android: fix missing screenshots for Android.md (#18156)

* Android basic sample app layout polish

* Add missing screenshots and polish android README doc

* Replace file blobs with URLs served by GitHub pages service.
This commit is contained in:
Naco Siren
2025-12-18 23:32:04 -08:00
committed by GitHub
parent cdbada8d10
commit 52fc7fee8a
6 changed files with 37 additions and 33 deletions

View File

@@ -1,27 +1,27 @@
# Android
## Build with Android Studio
## Build GUI binding using Android Studio
Import the `examples/llama.android` directory into Android Studio, then perform a Gradle sync and build the project.
![Project imported into Android Studio](./android/imported-into-android-studio.png)
![Project imported into Android Studio](./android/imported-into-android-studio.jpg)
This Android binding supports hardware acceleration up to `SME2` for **Arm** and `AMX` for **x86-64** CPUs on Android and ChromeOS devices.
It automatically detects the host's hardware to load compatible kernels. As a result, it runs seamlessly on both the latest premium devices and older devices that may lack modern CPU features or have limited RAM, without requiring any manual configuration.
A minimal Android app frontend is included to showcase the bindings core functionalities:
1. **Parse GGUF metadata** via `GgufMetadataReader` from either a `ContentResolver` provided `Uri` or a local `File`.
2. **Obtain a `TierDetection` or `InferenceEngine`** instance through the high-level facade APIs.
3. **Send a raw user prompt** for automatic template formatting, prefill, and decoding. Then collect the generated tokens in a Kotlin `Flow`.
1. **Parse GGUF metadata** via `GgufMetadataReader` from either a `ContentResolver` provided `Uri` from shared storage, or a local `File` from your app's private storage.
2. **Obtain a `InferenceEngine`** instance through the `AiChat` facade and load your selected model via its app-private file path.
3. **Send a raw user prompt** for automatic template formatting, prefill, and batch decoding. Then collect the generated tokens in a Kotlin `Flow`.
For a production-ready experience that leverages advanced features such as system prompts and benchmarks, check out [Arm AI Chat](https://play.google.com/store/apps/details?id=com.arm.aichat) on Google Play.
For a production-ready experience that leverages advanced features such as system prompts and benchmarks, plus friendly UI features such as model management and Arm feature visualizer, check out [Arm AI Chat](https://play.google.com/store/apps/details?id=com.arm.aichat) on Google Play.
This project is made possible through a collaborative effort by Arm's **CT-ML**, **CE-ML** and **STE** groups:
| ![Home screen](./android/arm-ai-chat-home-screen.png) | ![System prompt](./android/system-prompt-setup.png) | !["Haiku"](./android/chat-with-system-prompt-haiku.png) |
| ![Home screen](https://naco-siren.github.io/ai-chat/policy/index/1-llm-starter-pack.png) | ![System prompt](https://naco-siren.github.io/ai-chat/policy/index/5-system-prompt.png) | !["Haiku"](https://naco-siren.github.io/ai-chat/policy/index/4-metrics.png) |
|:------------------------------------------------------:|:----------------------------------------------------:|:--------------------------------------------------------:|
| Home screen | System prompt | "Haiku" |
## Build on Android using Termux
## Build CLI on Android using Termux
[Termux](https://termux.dev/en/) is an Android terminal emulator and Linux environment app (no root required). As of writing, Termux is available experimentally in the Google Play Store; otherwise, it may be obtained directly from the project repo or on F-Droid.
@@ -52,7 +52,7 @@ To see what it might look like visually, here's an old demo of an interactive se
https://user-images.githubusercontent.com/271616/225014776-1d567049-ad71-4ef2-b050-55b0b3b9274c.mp4
## Cross-compile using Android NDK
## Cross-compile CLI using Android NDK
It's possible to build `llama.cpp` for Android on your host system via CMake and the Android NDK. If you are interested in this path, ensure you already have an environment prepared to cross-compile programs for Android (i.e., install the Android SDK). Note that, unlike desktop environments, the Android environment ships with a limited set of native libraries, and so only those libraries are available to CMake when building with the Android NDK (see: https://developer.android.com/ndk/guides/stable_apis.)
Once you're ready and have cloned `llama.cpp`, invoke the following in the project directory:

Binary file not shown.

After

Width:  |  Height:  |  Size: 479 KiB