model: support Ministral3 (#17644)

* conversion script

* support ministral 3

* maybe this is better?

* add TODO for rope_yarn_log_mul

* better ppl (tested on 14B-Instruct)

* Add Ministral3 support to Mistral format

* improve arch handling

* add sizes

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* nits

---------

Co-authored-by: Julien Denize <julien.denize@mistral.ai>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
This commit is contained in:
Xuan-Son Nguyen
2025-12-01 12:26:52 +01:00
committed by GitHub
parent 649495c9d9
commit cd3c118908
11 changed files with 342 additions and 10 deletions

View File

@@ -1581,10 +1581,27 @@ class MmprojModel(ModelBase):
# load preprocessor config
self.preprocessor_config = {}
if not self.is_mistral_format:
with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
# prefer preprocessor_config.json if possible
preprocessor_config_path = self.dir_model / "preprocessor_config.json"
if preprocessor_config_path.is_file():
with open(preprocessor_config_path, "r", encoding="utf-8") as f:
self.preprocessor_config = json.load(f)
# prefer processor_config.json if possible
processor_config_path = self.dir_model / "processor_config.json"
if processor_config_path.is_file():
with open(processor_config_path, "r", encoding="utf-8") as f:
cfg = json.load(f)
# move image_processor to root level for compat
if "image_processor" in cfg:
cfg = {
**cfg,
**cfg["image_processor"],
}
# merge configs
self.preprocessor_config = {**self.preprocessor_config, **cfg}
def get_vision_config(self) -> dict[str, Any] | None:
config_name = "vision_config" if not self.is_mistral_format else "vision_encoder"
return self.global_config.get(config_name)
@@ -2797,7 +2814,32 @@ class Llama4VisionModel(MmprojModel):
@ModelBase.register("Mistral3ForConditionalGeneration")
class Mistral3Model(LlamaModel):
model_arch = gguf.MODEL_ARCH.LLAMA
model_arch = gguf.MODEL_ARCH.MISTRAL3
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# for compatibility, we use LLAMA arch for older models
# TODO: remove this once everyone has migrated to newer version of llama.cpp
if self.hparams.get("model_type") != "ministral3":
self.model_arch = gguf.MODEL_ARCH.LLAMA
self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[self.model_arch]
self.gguf_writer.add_architecture()
self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
def set_gguf_parameters(self):
super().set_gguf_parameters()
rope_params = self.hparams.get("rope_parameters")
if self.hparams.get("model_type") == "ministral3":
assert rope_params is not None, "ministral3 must have 'rope_parameters' config"
assert rope_params["rope_type"] == "yarn", "ministral3 rope_type must be 'yarn'"
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(rope_params["factor"])
self.gguf_writer.add_rope_scaling_yarn_beta_fast(rope_params["beta_fast"])
self.gguf_writer.add_rope_scaling_yarn_beta_slow(rope_params["beta_slow"])
self.gguf_writer.add_rope_scaling_yarn_log_mul(rope_params["mscale_all_dim"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_params["original_max_position_embeddings"])
self.gguf_writer.add_rope_freq_base(rope_params["rope_theta"])
self.gguf_writer.add_attn_temperature_scale(rope_params["llama_4_scaling_beta"])
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
name = name.replace("language_model.", "")
@@ -9809,12 +9851,22 @@ class ApertusModel(LlamaModel):
class MistralModel(LlamaModel):
model_arch = gguf.MODEL_ARCH.LLAMA
model_arch = gguf.MODEL_ARCH.MISTRAL3
model_name = "Mistral"
hf_arch = ""
is_mistral_format = True
undo_permute = False
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# for compatibility, we use LLAMA arch for older models
# TODO: remove this once everyone migrates to newer version of llama.cpp
if "llama_4_scaling" not in self.hparams:
self.model_arch = gguf.MODEL_ARCH.LLAMA
self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[self.model_arch]
self.gguf_writer.add_architecture()
self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
@staticmethod
def get_community_chat_template(vocab: MistralVocab, templates_dir: Path, is_mistral_format: bool):
assert TokenizerVersion is not None and Tekkenizer is not None and SentencePieceTokenizer is not None, _mistral_import_error_msg
@@ -9854,6 +9906,20 @@ class MistralModel(LlamaModel):
return template
def set_gguf_parameters(self):
super().set_gguf_parameters()
if "yarn" in self.hparams:
yarn_params = self.hparams["yarn"]
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(yarn_params["factor"])
self.gguf_writer.add_rope_scaling_yarn_beta_fast(yarn_params["beta"])
self.gguf_writer.add_rope_scaling_yarn_beta_slow(yarn_params["alpha"])
self.gguf_writer.add_rope_scaling_yarn_log_mul(1.0) # mscale_all_dim
self.gguf_writer.add_rope_scaling_orig_ctx_len(yarn_params["original_max_position_embeddings"])
if "llama_4_scaling" in self.hparams:
self.gguf_writer.add_attn_temperature_scale(self.hparams["llama_4_scaling"]["beta"])
class PixtralModel(LlavaVisionModel):
model_name = "Pixtral"