mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2026-02-05 13:53:23 +02:00
Compare commits
1 Commits
b1049
...
avoid-gnu-
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
78fafcaf10 |
@@ -1,33 +0,0 @@
|
||||
ARG UBUNTU_VERSION=22.04
|
||||
|
||||
# This needs to generally match the container host's environment.
|
||||
ARG CUDA_VERSION=11.7.1
|
||||
|
||||
# Target the CUDA build image
|
||||
ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
|
||||
|
||||
FROM ${BASE_CUDA_DEV_CONTAINER} as build
|
||||
|
||||
# Unless otherwise specified, we make a fat build.
|
||||
ARG CUDA_DOCKER_ARCH=all
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential python3 python3-pip
|
||||
|
||||
COPY requirements.txt requirements.txt
|
||||
|
||||
RUN pip install --upgrade pip setuptools wheel \
|
||||
&& pip install -r requirements.txt
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
|
||||
# Set nvcc architecture
|
||||
ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
|
||||
# Enable cuBLAS
|
||||
ENV LLAMA_CUBLAS=1
|
||||
|
||||
RUN make
|
||||
|
||||
ENTRYPOINT ["/app/.devops/tools.sh"]
|
||||
@@ -1,58 +0,0 @@
|
||||
# SRPM for building from source and packaging an RPM for RPM-based distros.
|
||||
# https://fedoraproject.org/wiki/How_to_create_an_RPM_package
|
||||
# Built and maintained by John Boero - boeroboy@gmail.com
|
||||
# In honor of Seth Vidal https://www.redhat.com/it/blog/thank-you-seth-vidal
|
||||
|
||||
# Notes for llama.cpp:
|
||||
# 1. Tags are currently based on hash - which will not sort asciibetically.
|
||||
# We need to declare standard versioning if people want to sort latest releases.
|
||||
# 2. Builds for CUDA/OpenCL support are separate, with different depenedencies.
|
||||
# 3. NVidia's developer repo must be enabled with nvcc, cublas, clblas, etc installed.
|
||||
# Example: https://developer.download.nvidia.com/compute/cuda/repos/fedora37/x86_64/cuda-fedora37.repo
|
||||
# 4. OpenCL/CLBLAST support simply requires the ICD loader and basic opencl libraries.
|
||||
# It is up to the user to install the correct vendor-specific support.
|
||||
|
||||
Name: llama.cpp-clblast
|
||||
Version: master
|
||||
Release: 1%{?dist}
|
||||
Summary: OpenCL Inference of LLaMA model in pure C/C++
|
||||
License: MIT
|
||||
Source0: https://github.com/ggerganov/llama.cpp/archive/refs/heads/master.tar.gz
|
||||
BuildRequires: coreutils make gcc-c++ git mesa-libOpenCL-devel
|
||||
URL: https://github.com/ggerganov/llama.cpp
|
||||
|
||||
%define debug_package %{nil}
|
||||
%define source_date_epoch_from_changelog 0
|
||||
|
||||
%description
|
||||
CPU inference for Meta's Lllama2 models using default options.
|
||||
|
||||
%prep
|
||||
%setup -n llama.cpp-master
|
||||
|
||||
%build
|
||||
make -j LLAMA_CLBLAST=1
|
||||
|
||||
%install
|
||||
mkdir -p %{buildroot}%{_bindir}/
|
||||
cp -p main %{buildroot}%{_bindir}/llamacppclblast
|
||||
cp -p server %{buildroot}%{_bindir}/llamacppclblastserver
|
||||
cp -p simple %{buildroot}%{_bindir}/llamacppclblastsimple
|
||||
|
||||
%clean
|
||||
rm -rf %{buildroot}
|
||||
rm -rf %{_builddir}/*
|
||||
|
||||
%files
|
||||
%{_bindir}/llamacppclblast
|
||||
%{_bindir}/llamacppclblastserver
|
||||
%{_bindir}/llamacppclblastsimple
|
||||
|
||||
%pre
|
||||
|
||||
%post
|
||||
|
||||
%preun
|
||||
%postun
|
||||
|
||||
%changelog
|
||||
@@ -1,59 +0,0 @@
|
||||
# SRPM for building from source and packaging an RPM for RPM-based distros.
|
||||
# https://fedoraproject.org/wiki/How_to_create_an_RPM_package
|
||||
# Built and maintained by John Boero - boeroboy@gmail.com
|
||||
# In honor of Seth Vidal https://www.redhat.com/it/blog/thank-you-seth-vidal
|
||||
|
||||
# Notes for llama.cpp:
|
||||
# 1. Tags are currently based on hash - which will not sort asciibetically.
|
||||
# We need to declare standard versioning if people want to sort latest releases.
|
||||
# 2. Builds for CUDA/OpenCL support are separate, with different depenedencies.
|
||||
# 3. NVidia's developer repo must be enabled with nvcc, cublas, clblas, etc installed.
|
||||
# Example: https://developer.download.nvidia.com/compute/cuda/repos/fedora37/x86_64/cuda-fedora37.repo
|
||||
# 4. OpenCL/CLBLAST support simply requires the ICD loader and basic opencl libraries.
|
||||
# It is up to the user to install the correct vendor-specific support.
|
||||
|
||||
Name: llama.cpp-cublas
|
||||
Version: master
|
||||
Release: 1%{?dist}
|
||||
Summary: CPU Inference of LLaMA model in pure C/C++ (no CUDA/OpenCL)
|
||||
License: MIT
|
||||
Source0: https://github.com/ggerganov/llama.cpp/archive/refs/heads/master.tar.gz
|
||||
BuildRequires: coreutils make gcc-c++ git cuda-toolkit
|
||||
Requires: cuda-toolkit
|
||||
URL: https://github.com/ggerganov/llama.cpp
|
||||
|
||||
%define debug_package %{nil}
|
||||
%define source_date_epoch_from_changelog 0
|
||||
|
||||
%description
|
||||
CPU inference for Meta's Lllama2 models using default options.
|
||||
|
||||
%prep
|
||||
%setup -n llama.cpp-master
|
||||
|
||||
%build
|
||||
make -j LLAMA_CUBLAS=1
|
||||
|
||||
%install
|
||||
mkdir -p %{buildroot}%{_bindir}/
|
||||
cp -p main %{buildroot}%{_bindir}/llamacppcublas
|
||||
cp -p server %{buildroot}%{_bindir}/llamacppcublasserver
|
||||
cp -p simple %{buildroot}%{_bindir}/llamacppcublassimple
|
||||
|
||||
%clean
|
||||
rm -rf %{buildroot}
|
||||
rm -rf %{_builddir}/*
|
||||
|
||||
%files
|
||||
%{_bindir}/llamacppcublas
|
||||
%{_bindir}/llamacppcublasserver
|
||||
%{_bindir}/llamacppcublassimple
|
||||
|
||||
%pre
|
||||
|
||||
%post
|
||||
|
||||
%preun
|
||||
%postun
|
||||
|
||||
%changelog
|
||||
@@ -1,58 +0,0 @@
|
||||
# SRPM for building from source and packaging an RPM for RPM-based distros.
|
||||
# https://fedoraproject.org/wiki/How_to_create_an_RPM_package
|
||||
# Built and maintained by John Boero - boeroboy@gmail.com
|
||||
# In honor of Seth Vidal https://www.redhat.com/it/blog/thank-you-seth-vidal
|
||||
|
||||
# Notes for llama.cpp:
|
||||
# 1. Tags are currently based on hash - which will not sort asciibetically.
|
||||
# We need to declare standard versioning if people want to sort latest releases.
|
||||
# 2. Builds for CUDA/OpenCL support are separate, with different depenedencies.
|
||||
# 3. NVidia's developer repo must be enabled with nvcc, cublas, clblas, etc installed.
|
||||
# Example: https://developer.download.nvidia.com/compute/cuda/repos/fedora37/x86_64/cuda-fedora37.repo
|
||||
# 4. OpenCL/CLBLAST support simply requires the ICD loader and basic opencl libraries.
|
||||
# It is up to the user to install the correct vendor-specific support.
|
||||
|
||||
Name: llama.cpp
|
||||
Version: master
|
||||
Release: 1%{?dist}
|
||||
Summary: CPU Inference of LLaMA model in pure C/C++ (no CUDA/OpenCL)
|
||||
License: MIT
|
||||
Source0: https://github.com/ggerganov/llama.cpp/archive/refs/heads/master.tar.gz
|
||||
BuildRequires: coreutils make gcc-c++ git
|
||||
URL: https://github.com/ggerganov/llama.cpp
|
||||
|
||||
%define debug_package %{nil}
|
||||
%define source_date_epoch_from_changelog 0
|
||||
|
||||
%description
|
||||
CPU inference for Meta's Lllama2 models using default options.
|
||||
|
||||
%prep
|
||||
%autosetup
|
||||
|
||||
%build
|
||||
make -j
|
||||
|
||||
%install
|
||||
mkdir -p %{buildroot}%{_bindir}/
|
||||
cp -p main %{buildroot}%{_bindir}/llamacpp
|
||||
cp -p server %{buildroot}%{_bindir}/llamacppserver
|
||||
cp -p simple %{buildroot}%{_bindir}/llamacppsimple
|
||||
|
||||
%clean
|
||||
rm -rf %{buildroot}
|
||||
rm -rf %{_builddir}/*
|
||||
|
||||
%files
|
||||
%{_bindir}/llamacpp
|
||||
%{_bindir}/llamacppserver
|
||||
%{_bindir}/llamacppsimple
|
||||
|
||||
%pre
|
||||
|
||||
%post
|
||||
|
||||
%preun
|
||||
%postun
|
||||
|
||||
%changelog
|
||||
@@ -1,32 +0,0 @@
|
||||
ARG UBUNTU_VERSION=22.04
|
||||
# This needs to generally match the container host's environment.
|
||||
ARG CUDA_VERSION=11.7.1
|
||||
# Target the CUDA build image
|
||||
ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
|
||||
# Target the CUDA runtime image
|
||||
ARG BASE_CUDA_RUN_CONTAINER=nvidia/cuda:${CUDA_VERSION}-runtime-ubuntu${UBUNTU_VERSION}
|
||||
|
||||
FROM ${BASE_CUDA_DEV_CONTAINER} as build
|
||||
|
||||
# Unless otherwise specified, we make a fat build.
|
||||
ARG CUDA_DOCKER_ARCH=all
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
|
||||
# Set nvcc architecture
|
||||
ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
|
||||
# Enable cuBLAS
|
||||
ENV LLAMA_CUBLAS=1
|
||||
|
||||
RUN make
|
||||
|
||||
FROM ${BASE_CUDA_RUN_CONTAINER} as runtime
|
||||
|
||||
COPY --from=build /app/main /main
|
||||
|
||||
ENTRYPOINT [ "/main" ]
|
||||
@@ -10,13 +10,13 @@ shift
|
||||
# Join the remaining arguments into a single string
|
||||
arg2="$@"
|
||||
|
||||
if [[ "$arg1" == '--convert' || "$arg1" == '-c' ]]; then
|
||||
python3 ./convert.py "$arg2"
|
||||
elif [[ "$arg1" == '--quantize' || "$arg1" == '-q' ]]; then
|
||||
./quantize "$arg2"
|
||||
elif [[ "$arg1" == '--run' || "$arg1" == '-r' ]]; then
|
||||
./main "$arg2"
|
||||
elif [[ "$arg1" == '--all-in-one' || "$arg1" == '-a' ]]; then
|
||||
if [[ $arg1 == '--convert' || $arg1 == '-c' ]]; then
|
||||
python3 ./convert.py $arg2
|
||||
elif [[ $arg1 == '--quantize' || $arg1 == '-q' ]]; then
|
||||
./quantize $arg2
|
||||
elif [[ $arg1 == '--run' || $arg1 == '-r' ]]; then
|
||||
./main $arg2
|
||||
elif [[ $arg1 == '--all-in-one' || $arg1 == '-a' ]]; then
|
||||
echo "Converting PTH to GGML..."
|
||||
for i in `ls $1/$2/ggml-model-f16.bin*`; do
|
||||
if [ -f "${i/f16/q4_0}" ]; then
|
||||
@@ -26,8 +26,6 @@ elif [[ "$arg1" == '--all-in-one' || "$arg1" == '-a' ]]; then
|
||||
./quantize "$i" "${i/f16/q4_0}" q4_0
|
||||
fi
|
||||
done
|
||||
elif [[ "$arg1" == '--server' || "$arg1" == '-s' ]]; then
|
||||
./server "$arg2"
|
||||
else
|
||||
echo "Unknown command: $arg1"
|
||||
echo "Available commands: "
|
||||
@@ -39,6 +37,4 @@ else
|
||||
echo " ex: \"/models/7B/ggml-model-f16.bin\" \"/models/7B/ggml-model-q4_0.bin\" 2"
|
||||
echo " --all-in-one (-a): Execute --convert & --quantize"
|
||||
echo " ex: \"/models/\" 7B"
|
||||
echo " --server (-s): Run a model on the server"
|
||||
echo " ex: -m /models/7B/ggml-model-q4_0.bin -c 2048 -ngl 43 -mg 1 --port 8080"
|
||||
fi
|
||||
|
||||
116
.github/workflows/build.yml
vendored
116
.github/workflows/build.yml
vendored
@@ -16,10 +16,7 @@ on:
|
||||
paths: ['**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu']
|
||||
|
||||
env:
|
||||
BRANCH_NAME: ${{ github.head_ref || github.ref_name }}
|
||||
GGML_NLOOP: 3
|
||||
GGML_NITER: 1
|
||||
GGML_N_THREADS: 1
|
||||
BRANCH_NAME: ${{ github.head_ref || github.ref_name }}
|
||||
|
||||
jobs:
|
||||
ubuntu-focal-make:
|
||||
@@ -67,7 +64,7 @@ jobs:
|
||||
id: cmake_test
|
||||
run: |
|
||||
cd build
|
||||
ctest --verbose --timeout 900
|
||||
ctest --verbose
|
||||
|
||||
ubuntu-latest-cmake-sanitizer:
|
||||
runs-on: ubuntu-latest
|
||||
@@ -98,40 +95,6 @@ jobs:
|
||||
cmake .. -DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON -DCMAKE_BUILD_TYPE=${{ matrix.build_type }}
|
||||
cmake --build . --config ${{ matrix.build_type }}
|
||||
|
||||
- name: Test
|
||||
id: cmake_test
|
||||
run: |
|
||||
cd build
|
||||
ctest --verbose --timeout 900
|
||||
|
||||
ubuntu-latest-cmake-mpi:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
continue-on-error: true
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
mpi_library: [mpich, libopenmpi-dev]
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential ${{ matrix.mpi_library }}
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -DLLAMA_MPI=ON ..
|
||||
cmake --build . --config Release
|
||||
|
||||
- name: Test
|
||||
id: cmake_test
|
||||
run: |
|
||||
@@ -148,7 +111,6 @@ jobs:
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
continue-on-error: true
|
||||
run: |
|
||||
brew update
|
||||
|
||||
@@ -167,28 +129,25 @@ jobs:
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
continue-on-error: true
|
||||
run: |
|
||||
brew update
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
sysctl -a
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF ..
|
||||
cmake -DLLAMA_AVX2=OFF ..
|
||||
cmake --build . --config Release
|
||||
|
||||
- name: Test
|
||||
id: cmake_test
|
||||
run: |
|
||||
cd build
|
||||
ctest --verbose --timeout 900
|
||||
ctest --verbose
|
||||
|
||||
windows-latest-cmake:
|
||||
runs-on: windows-latest
|
||||
|
||||
env:
|
||||
OPENBLAS_VERSION: 0.3.23
|
||||
OPENCL_VERSION: 2023.04.17
|
||||
@@ -197,8 +156,6 @@ jobs:
|
||||
strategy:
|
||||
matrix:
|
||||
include:
|
||||
- build: 'noavx'
|
||||
defines: '-DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX=OFF -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF'
|
||||
- build: 'avx2'
|
||||
defines: '-DLLAMA_BUILD_SERVER=ON'
|
||||
- build: 'avx'
|
||||
@@ -289,34 +246,26 @@ jobs:
|
||||
if: ${{ matrix.build != 'clblast' && (matrix.build != 'avx512' || env.HAS_AVX512F == '1') }} # Test AVX-512 only when possible
|
||||
run: |
|
||||
cd build
|
||||
ctest -C Release --verbose --timeout 900
|
||||
ctest -C Release --verbose
|
||||
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
shell: bash
|
||||
run: |
|
||||
BUILD_NUMBER="$(git rev-list --count HEAD)"
|
||||
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
|
||||
if [[ "${{ env.BRANCH_NAME }}" == "master" ]]; then
|
||||
echo "name=b${BUILD_NUMBER}" >> $GITHUB_OUTPUT
|
||||
else
|
||||
SAFE_NAME=$(echo "${{ env.BRANCH_NAME }}" | tr '/' '-')
|
||||
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
- name: Get commit hash
|
||||
id: commit
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: pr-mpt/actions-commit-hash@v2
|
||||
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
run: |
|
||||
Copy-Item LICENSE .\build\bin\Release\llama.cpp.txt
|
||||
7z a llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}-x64.zip .\build\bin\Release\*
|
||||
7z a llama-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-win-${{ matrix.build }}-x64.zip .\build\bin\Release\*
|
||||
|
||||
- name: Upload artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: actions/upload-artifact@v3
|
||||
with:
|
||||
path: |
|
||||
llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}-x64.zip
|
||||
llama-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-win-${{ matrix.build }}-x64.zip
|
||||
|
||||
windows-latest-cmake-cublas:
|
||||
runs-on: windows-latest
|
||||
@@ -346,31 +295,23 @@ jobs:
|
||||
cmake .. -DLLAMA_BUILD_SERVER=ON -DLLAMA_CUBLAS=ON
|
||||
cmake --build . --config Release
|
||||
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
shell: bash
|
||||
run: |
|
||||
BUILD_NUMBER="$(git rev-list --count HEAD)"
|
||||
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
|
||||
if [[ "${{ env.BRANCH_NAME }}" == "master" ]]; then
|
||||
echo "name=b${BUILD_NUMBER}" >> $GITHUB_OUTPUT
|
||||
else
|
||||
SAFE_NAME=$(echo "${{ env.BRANCH_NAME }}" | tr '/' '-')
|
||||
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
- name: Get commit hash
|
||||
id: commit
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: pr-mpt/actions-commit-hash@v2
|
||||
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
run: |
|
||||
7z a llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}-cu${{ matrix.cuda }}-x64.zip .\build\bin\Release\*
|
||||
7z a llama-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-win-${{ matrix.build }}-cu${{ matrix.cuda }}-x64.zip .\build\bin\Release\*
|
||||
|
||||
- name: Upload artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: actions/upload-artifact@v3
|
||||
with:
|
||||
path: |
|
||||
llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}-cu${{ matrix.cuda }}-x64.zip
|
||||
llama-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-win-${{ matrix.build }}-cu${{ matrix.cuda }}-x64.zip
|
||||
|
||||
- name: Copy and pack Cuda runtime
|
||||
if: ${{ matrix.cuda == '12.1.0' }}
|
||||
@@ -416,34 +357,21 @@ jobs:
|
||||
- windows-latest-cmake-cublas
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
shell: bash
|
||||
run: |
|
||||
BUILD_NUMBER="$(git rev-list --count HEAD)"
|
||||
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
|
||||
if [[ "${{ env.BRANCH_NAME }}" == "master" ]]; then
|
||||
echo "name=b${BUILD_NUMBER}" >> $GITHUB_OUTPUT
|
||||
else
|
||||
SAFE_NAME=$(echo "${{ env.BRANCH_NAME }}" | tr '/' '-')
|
||||
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
|
||||
- name: Download artifacts
|
||||
id: download-artifact
|
||||
uses: actions/download-artifact@v3
|
||||
|
||||
- name: Get commit hash
|
||||
id: commit
|
||||
uses: pr-mpt/actions-commit-hash@v2
|
||||
|
||||
- name: Create release
|
||||
id: create_release
|
||||
uses: anzz1/action-create-release@v1
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
with:
|
||||
tag_name: ${{ steps.tag.outputs.name }}
|
||||
tag_name: ${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}
|
||||
|
||||
- name: Upload release
|
||||
id: upload_release
|
||||
|
||||
31
.gitignore
vendored
31
.gitignore
vendored
@@ -1,10 +1,5 @@
|
||||
*.o
|
||||
*.a
|
||||
*.so
|
||||
*.gguf
|
||||
*.bin
|
||||
*.exe
|
||||
*.dll
|
||||
.DS_Store
|
||||
.build/
|
||||
.cache/
|
||||
@@ -20,21 +15,17 @@ build/
|
||||
build-em/
|
||||
build-debug/
|
||||
build-release/
|
||||
build-ci-debug/
|
||||
build-ci-release/
|
||||
build-static/
|
||||
build-cublas/
|
||||
build-opencl/
|
||||
build-metal/
|
||||
build-mpi/
|
||||
build-no-accel/
|
||||
build-sanitize-addr/
|
||||
build-sanitize-thread/
|
||||
out/
|
||||
tmp/
|
||||
|
||||
models/*
|
||||
models-mnt
|
||||
*.bin
|
||||
|
||||
/main
|
||||
/quantize
|
||||
@@ -43,17 +34,13 @@ models-mnt
|
||||
/perplexity
|
||||
/embedding
|
||||
/train-text-from-scratch
|
||||
/convert-llama2c-to-ggml
|
||||
/simple
|
||||
/benchmark-matmult
|
||||
/vdot
|
||||
/server
|
||||
/Pipfile
|
||||
/embd-input-test
|
||||
/gguf
|
||||
/gguf-llama-simple
|
||||
/libllama.so
|
||||
/llama-bench
|
||||
|
||||
build-info.h
|
||||
arm_neon.h
|
||||
compile_commands.json
|
||||
@@ -69,17 +56,3 @@ qnt-*.txt
|
||||
perf-*.txt
|
||||
|
||||
examples/jeopardy/results.txt
|
||||
|
||||
pyproject.toml
|
||||
poetry.lock
|
||||
poetry.toml
|
||||
|
||||
# Test binaries
|
||||
tests/test-grammar-parser
|
||||
tests/test-double-float
|
||||
tests/test-grad0
|
||||
tests/test-opt
|
||||
tests/test-quantize-fns
|
||||
tests/test-quantize-perf
|
||||
tests/test-sampling
|
||||
tests/test-tokenizer-0
|
||||
|
||||
130
CMakeLists.txt
130
CMakeLists.txt
@@ -67,22 +67,18 @@ endif()
|
||||
option(LLAMA_ACCELERATE "llama: enable Accelerate framework" ON)
|
||||
option(LLAMA_BLAS "llama: use BLAS" OFF)
|
||||
set(LLAMA_BLAS_VENDOR "Generic" CACHE STRING "llama: BLAS library vendor")
|
||||
option(LLAMA_CUBLAS "llama: use CUDA" OFF)
|
||||
#option(LLAMA_CUDA_CUBLAS "llama: use cuBLAS for prompt processing" OFF)
|
||||
option(LLAMA_CUDA_FORCE_DMMV "llama: use dmmv instead of mmvq CUDA kernels" OFF)
|
||||
option(LLAMA_CUBLAS "llama: use cuBLAS" OFF)
|
||||
set(LLAMA_CUDA_DMMV_X "32" CACHE STRING "llama: x stride for dmmv CUDA kernels")
|
||||
set(LLAMA_CUDA_MMV_Y "1" CACHE STRING "llama: y block size for mmv CUDA kernels")
|
||||
option(LLAMA_CUDA_F16 "llama: use 16 bit floats for some calculations" OFF)
|
||||
set(LLAMA_CUDA_DMMV_Y "1" CACHE STRING "llama: y block size for dmmv CUDA kernels")
|
||||
option(LLAMA_CUDA_DMMV_F16 "llama: use 16 bit floats for dmmv CUDA kernels" OFF)
|
||||
set(LLAMA_CUDA_KQUANTS_ITER "2" CACHE STRING "llama: iters./thread per block for Q2_K/Q6_K")
|
||||
option(LLAMA_CLBLAST "llama: use CLBlast" OFF)
|
||||
option(LLAMA_METAL "llama: use Metal" OFF)
|
||||
option(LLAMA_MPI "llama: use MPI" OFF)
|
||||
option(LLAMA_K_QUANTS "llama: use k-quants" ON)
|
||||
option(LLAMA_QKK_64 "llama: use super-block size of 64 for k-quants" OFF)
|
||||
|
||||
option(LLAMA_BUILD_TESTS "llama: build tests" ${LLAMA_STANDALONE})
|
||||
option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
|
||||
option(LLAMA_BUILD_SERVER "llama: build server example" ON)
|
||||
option(LLAMA_BUILD_SERVER "llama: build server example" OFF)
|
||||
|
||||
#
|
||||
# Build info header
|
||||
@@ -219,9 +215,6 @@ if (LLAMA_BLAS)
|
||||
message(STATUS "BLAS found, Includes: ${BLAS_INCLUDE_DIRS}")
|
||||
add_compile_options(${BLAS_LINKER_FLAGS})
|
||||
add_compile_definitions(GGML_USE_OPENBLAS)
|
||||
if (${BLAS_INCLUDE_DIRS} MATCHES "mkl" AND (${LLAMA_BLAS_VENDOR} MATCHES "Generic" OR ${LLAMA_BLAS_VENDOR} MATCHES "Intel"))
|
||||
add_compile_definitions(GGML_BLAS_USE_MKL)
|
||||
endif()
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ${BLAS_LIBRARIES})
|
||||
set(LLAMA_EXTRA_INCLUDES ${LLAMA_EXTRA_INCLUDES} ${BLAS_INCLUDE_DIRS})
|
||||
|
||||
@@ -232,14 +225,6 @@ if (LLAMA_BLAS)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (LLAMA_K_QUANTS)
|
||||
set(GGML_SOURCES_EXTRA ${GGML_SOURCES_EXTRA} k_quants.c k_quants.h)
|
||||
add_compile_definitions(GGML_USE_K_QUANTS)
|
||||
if (LLAMA_QKK_64)
|
||||
add_compile_definitions(GGML_QKK_64)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (LLAMA_CUBLAS)
|
||||
cmake_minimum_required(VERSION 3.17)
|
||||
|
||||
@@ -252,19 +237,10 @@ if (LLAMA_CUBLAS)
|
||||
set(GGML_SOURCES_CUDA ggml-cuda.cu ggml-cuda.h)
|
||||
|
||||
add_compile_definitions(GGML_USE_CUBLAS)
|
||||
# if (LLAMA_CUDA_CUBLAS)
|
||||
# add_compile_definitions(GGML_CUDA_CUBLAS)
|
||||
# endif()
|
||||
if (LLAMA_CUDA_FORCE_DMMV)
|
||||
add_compile_definitions(GGML_CUDA_FORCE_DMMV)
|
||||
endif()
|
||||
add_compile_definitions(GGML_CUDA_DMMV_X=${LLAMA_CUDA_DMMV_X})
|
||||
add_compile_definitions(GGML_CUDA_MMV_Y=${LLAMA_CUDA_MMV_Y})
|
||||
if (DEFINED LLAMA_CUDA_DMMV_Y)
|
||||
add_compile_definitions(GGML_CUDA_MMV_Y=${LLAMA_CUDA_DMMV_Y}) # for backwards compatibility
|
||||
endif()
|
||||
if (LLAMA_CUDA_F16 OR LLAMA_CUDA_DMMV_F16)
|
||||
add_compile_definitions(GGML_CUDA_F16)
|
||||
add_compile_definitions(GGML_CUDA_DMMV_Y=${LLAMA_CUDA_DMMV_Y})
|
||||
if (LLAMA_CUDA_DMMV_F16)
|
||||
add_compile_definitions(GGML_CUDA_DMMV_F16)
|
||||
endif()
|
||||
add_compile_definitions(K_QUANTS_PER_ITERATION=${LLAMA_CUDA_KQUANTS_ITER})
|
||||
|
||||
@@ -275,14 +251,10 @@ if (LLAMA_CUBLAS)
|
||||
endif()
|
||||
|
||||
if (NOT DEFINED CMAKE_CUDA_ARCHITECTURES)
|
||||
# 52 == lowest CUDA 12 standard
|
||||
# 60 == f16 CUDA intrinsics
|
||||
# 61 == integer CUDA intrinsics
|
||||
# 70 == compute capability at which unrolling a loop in mul_mat_q kernels is faster
|
||||
if (LLAMA_CUDA_F16 OR LLAMA_CUDA_DMMV_F16)
|
||||
set(CMAKE_CUDA_ARCHITECTURES "60;61;70") # needed for f16 CUDA intrinsics
|
||||
if (LLAMA_CUDA_DMMV_F16)
|
||||
set(CMAKE_CUDA_ARCHITECTURES "61") # needed for f16 CUDA intrinsics
|
||||
else()
|
||||
set(CMAKE_CUDA_ARCHITECTURES "52;61;70") # lowest CUDA 12 standard + lowest for integer intrinsics
|
||||
set(CMAKE_CUDA_ARCHITECTURES "52") # lowest CUDA 12 standard
|
||||
endif()
|
||||
endif()
|
||||
message(STATUS "Using CUDA architectures: ${CMAKE_CUDA_ARCHITECTURES}")
|
||||
@@ -296,6 +268,7 @@ if (LLAMA_METAL)
|
||||
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
|
||||
find_library(METAL_FRAMEWORK Metal REQUIRED)
|
||||
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
|
||||
find_library(METALPERFORMANCE_FRAMEWORK MetalPerformanceShaders REQUIRED)
|
||||
|
||||
set(GGML_SOURCES_METAL ggml-metal.m ggml-metal.h)
|
||||
|
||||
@@ -312,29 +285,13 @@ if (LLAMA_METAL)
|
||||
${FOUNDATION_LIBRARY}
|
||||
${METAL_FRAMEWORK}
|
||||
${METALKIT_FRAMEWORK}
|
||||
${METALPERFORMANCE_FRAMEWORK}
|
||||
)
|
||||
endif()
|
||||
|
||||
if (LLAMA_MPI)
|
||||
cmake_minimum_required(VERSION 3.10)
|
||||
find_package(MPI)
|
||||
if (MPI_C_FOUND)
|
||||
message(STATUS "MPI found")
|
||||
set(GGML_SOURCES_MPI ggml-mpi.c ggml-mpi.h)
|
||||
add_compile_definitions(GGML_USE_MPI)
|
||||
add_compile_definitions(${MPI_C_COMPILE_DEFINITIONS})
|
||||
set(cxx_flags ${cxx_flags} -Wno-cast-qual)
|
||||
set(c_flags ${c_flags} -Wno-cast-qual)
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ${MPI_C_LIBRARIES})
|
||||
set(LLAMA_EXTRA_INCLUDES ${LLAMA_EXTRA_INCLUDES} ${MPI_C_INCLUDE_DIRS})
|
||||
# Even if you're only using the C header, C++ programs may bring in MPI
|
||||
# C++ functions, so more linkage is needed
|
||||
if (MPI_CXX_FOUND)
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ${MPI_CXX_LIBRARIES})
|
||||
endif()
|
||||
else()
|
||||
message(WARNING "MPI not found")
|
||||
endif()
|
||||
if (LLAMA_K_QUANTS)
|
||||
set(GGML_SOURCES_EXTRA ${GGML_SOURCES_EXTRA} k_quants.c k_quants.h)
|
||||
add_compile_definitions(GGML_USE_K_QUANTS)
|
||||
endif()
|
||||
|
||||
if (LLAMA_CLBLAST)
|
||||
@@ -363,7 +320,6 @@ if (LLAMA_ALL_WARNINGS)
|
||||
-Wshadow
|
||||
-Wstrict-prototypes
|
||||
-Wpointer-arith
|
||||
-Wmissing-prototypes
|
||||
)
|
||||
set(cxx_flags
|
||||
-Wall
|
||||
@@ -426,6 +382,11 @@ if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm" OR ${CMAKE_SYSTEM_PROCESSOR} MATCHES
|
||||
if (MSVC)
|
||||
# TODO: arm msvc?
|
||||
else()
|
||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "aarch64")
|
||||
# Apple M1, M2, etc.
|
||||
# Raspberry Pi 3, 4, Zero 2 (64-bit)
|
||||
add_compile_options(-mcpu=native)
|
||||
endif()
|
||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv6")
|
||||
# Raspberry Pi 1, Zero
|
||||
add_compile_options(-mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access)
|
||||
@@ -497,20 +458,15 @@ else()
|
||||
endif()
|
||||
|
||||
#
|
||||
# libraries
|
||||
# Build libraries
|
||||
#
|
||||
|
||||
# ggml
|
||||
|
||||
add_library(ggml OBJECT
|
||||
ggml.c
|
||||
ggml.h
|
||||
ggml-alloc.c
|
||||
ggml-alloc.h
|
||||
${GGML_SOURCES_CUDA}
|
||||
${GGML_SOURCES_OPENCL}
|
||||
${GGML_SOURCES_METAL}
|
||||
${GGML_SOURCES_MPI}
|
||||
${GGML_SOURCES_EXTRA}
|
||||
)
|
||||
|
||||
@@ -523,14 +479,12 @@ if (BUILD_SHARED_LIBS)
|
||||
set_target_properties(ggml PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
add_library(ggml_shared SHARED $<TARGET_OBJECTS:ggml>)
|
||||
target_link_libraries(ggml_shared PUBLIC Threads::Threads ${LLAMA_EXTRA_LIBS})
|
||||
install(TARGETS ggml_shared LIBRARY)
|
||||
endif()
|
||||
|
||||
# llama
|
||||
|
||||
add_library(llama
|
||||
llama.cpp
|
||||
llama.h
|
||||
llama-util.h
|
||||
)
|
||||
|
||||
target_include_directories(llama PUBLIC .)
|
||||
@@ -546,53 +500,13 @@ if (BUILD_SHARED_LIBS)
|
||||
if (LLAMA_METAL)
|
||||
set_target_properties(llama PROPERTIES RESOURCE "${CMAKE_CURRENT_SOURCE_DIR}/ggml-metal.metal")
|
||||
endif()
|
||||
install(TARGETS llama LIBRARY)
|
||||
endif()
|
||||
|
||||
#
|
||||
# install
|
||||
#
|
||||
|
||||
include(GNUInstallDirs)
|
||||
install(
|
||||
FILES convert.py
|
||||
PERMISSIONS
|
||||
OWNER_READ
|
||||
OWNER_WRITE
|
||||
OWNER_EXECUTE
|
||||
GROUP_READ
|
||||
GROUP_EXECUTE
|
||||
WORLD_READ
|
||||
WORLD_EXECUTE
|
||||
DESTINATION ${CMAKE_INSTALL_BINDIR})
|
||||
install(
|
||||
FILES convert-lora-to-ggml.py
|
||||
PERMISSIONS
|
||||
OWNER_READ
|
||||
OWNER_WRITE
|
||||
OWNER_EXECUTE
|
||||
GROUP_READ
|
||||
GROUP_EXECUTE
|
||||
WORLD_READ
|
||||
WORLD_EXECUTE
|
||||
DESTINATION ${CMAKE_INSTALL_BINDIR})
|
||||
if (LLAMA_METAL)
|
||||
install(
|
||||
FILES ggml-metal.metal
|
||||
PERMISSIONS
|
||||
OWNER_READ
|
||||
OWNER_WRITE
|
||||
GROUP_READ
|
||||
WORLD_READ
|
||||
DESTINATION ${CMAKE_INSTALL_BINDIR})
|
||||
endif()
|
||||
|
||||
#
|
||||
# programs, examples and tests
|
||||
#
|
||||
|
||||
add_subdirectory(common)
|
||||
|
||||
if (LLAMA_BUILD_TESTS AND NOT CMAKE_JS_VERSION)
|
||||
include(CTest)
|
||||
add_subdirectory(tests)
|
||||
|
||||
353
Makefile
353
Makefile
@@ -1,8 +1,11 @@
|
||||
# Define the default target now so that it is always the first target
|
||||
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch convert-llama2c-to-ggml simple server embd-input-test gguf llama-bench
|
||||
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch simple
|
||||
|
||||
# Binaries only useful for tests
|
||||
TEST_TARGETS = tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0
|
||||
ifdef LLAMA_BUILD_SERVER
|
||||
BUILD_TARGETS += server
|
||||
LLAMA_SERVER_VERBOSE ?= 1
|
||||
server: private CXXFLAGS += -DSERVER_VERBOSE=$(LLAMA_SERVER_VERBOSE)
|
||||
endif
|
||||
|
||||
default: $(BUILD_TARGETS)
|
||||
|
||||
@@ -40,15 +43,20 @@ endif
|
||||
|
||||
# keep standard at C11 and C++11
|
||||
# -Ofast tends to produce faster code, but may not be available for some compilers.
|
||||
ifdef LLAMA_FAST
|
||||
OPT = -Ofast
|
||||
else
|
||||
#OPT = -Ofast
|
||||
OPT = -O3
|
||||
endif
|
||||
CFLAGS = -I. $(OPT) -std=c11 -fPIC
|
||||
CXXFLAGS = -I. -I./common $(OPT) -std=c++11 -fPIC
|
||||
CFLAGS = -I. $(OPT) -std=c11 -fPIC
|
||||
CXXFLAGS = -I. -I./examples $(OPT) -std=c++11 -fPIC
|
||||
LDFLAGS =
|
||||
|
||||
# clock_gettime came in POSIX.1b (1993)
|
||||
# CLOCK_MONOTONIC came in POSIX.1-2001 / SUSv3 as optional
|
||||
# posix_memalign came in POSIX.1-2001 / SUSv3
|
||||
# M_PI is an XSI extension since POSIX.1-2001 / SUSv3, came in XPG1 (1985)
|
||||
# ref: https://github.com/ggerganov/whisper.cpp/pull/1027
|
||||
CFLAGS += -D_XOPEN_SOURCE=600
|
||||
CXXFLAGS += -D_XOPEN_SOURCE=600
|
||||
|
||||
ifdef LLAMA_DEBUG
|
||||
CFLAGS += -O0 -g
|
||||
CXXFLAGS += -O0 -g
|
||||
@@ -58,13 +66,8 @@ else
|
||||
CXXFLAGS += -DNDEBUG
|
||||
endif
|
||||
|
||||
ifdef LLAMA_SERVER_VERBOSE
|
||||
CXXFLAGS += -DSERVER_VERBOSE=$(LLAMA_SERVER_VERBOSE)
|
||||
endif
|
||||
|
||||
# warnings
|
||||
CFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wdouble-promotion -Wshadow -Wstrict-prototypes -Wpointer-arith \
|
||||
-Wmissing-prototypes
|
||||
CFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wdouble-promotion -Wshadow -Wstrict-prototypes -Wpointer-arith
|
||||
CXXFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wno-multichar
|
||||
|
||||
# OS specific
|
||||
@@ -94,28 +97,6 @@ ifeq ($(UNAME_S),Haiku)
|
||||
CXXFLAGS += -pthread
|
||||
endif
|
||||
|
||||
# detect Windows
|
||||
ifneq ($(findstring _NT,$(UNAME_S)),)
|
||||
_WIN32 := 1
|
||||
endif
|
||||
|
||||
# library name prefix
|
||||
ifneq ($(_WIN32),1)
|
||||
LIB_PRE := lib
|
||||
endif
|
||||
|
||||
# Dynamic Shared Object extension
|
||||
ifneq ($(_WIN32),1)
|
||||
DSO_EXT := .so
|
||||
else
|
||||
DSO_EXT := .dll
|
||||
endif
|
||||
|
||||
# Windows Sockets 2 (Winsock) for network-capable apps
|
||||
ifeq ($(_WIN32),1)
|
||||
LWINSOCK2 := -lws2_32
|
||||
endif
|
||||
|
||||
ifdef LLAMA_GPROF
|
||||
CFLAGS += -pg
|
||||
CXXFLAGS += -pg
|
||||
@@ -128,7 +109,7 @@ endif
|
||||
# Architecture specific
|
||||
# TODO: probably these flags need to be tweaked on some architectures
|
||||
# feel free to update the Makefile for your architecture and send a pull request or issue
|
||||
ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686 amd64))
|
||||
ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686))
|
||||
# Use all CPU extensions that are available:
|
||||
CFLAGS += -march=native -mtune=native
|
||||
CXXFLAGS += -march=native -mtune=native
|
||||
@@ -142,6 +123,97 @@ ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686 amd64))
|
||||
#CXXFLAGS += -mssse3
|
||||
endif
|
||||
|
||||
ifneq ($(filter ppc64%,$(UNAME_M)),)
|
||||
POWER9_M := $(shell grep "POWER9" /proc/cpuinfo)
|
||||
ifneq (,$(findstring POWER9,$(POWER9_M)))
|
||||
CFLAGS += -mcpu=power9
|
||||
CXXFLAGS += -mcpu=power9
|
||||
endif
|
||||
# Require c++23's std::byteswap for big-endian support.
|
||||
ifeq ($(UNAME_M),ppc64)
|
||||
CXXFLAGS += -std=c++23 -DGGML_BIG_ENDIAN
|
||||
endif
|
||||
endif
|
||||
|
||||
ifndef LLAMA_NO_K_QUANTS
|
||||
CFLAGS += -DGGML_USE_K_QUANTS
|
||||
CXXFLAGS += -DGGML_USE_K_QUANTS
|
||||
OBJS += k_quants.o
|
||||
endif
|
||||
|
||||
ifndef LLAMA_NO_ACCELERATE
|
||||
# Mac M1 - include Accelerate framework.
|
||||
# `-framework Accelerate` works on Mac Intel as well, with negliable performance boost (as of the predict time).
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
CFLAGS += -DGGML_USE_ACCELERATE
|
||||
LDFLAGS += -framework Accelerate
|
||||
endif
|
||||
endif # LLAMA_NO_ACCELERATE
|
||||
|
||||
ifdef LLAMA_OPENBLAS
|
||||
CFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/openblas -I/usr/include/openblas
|
||||
LDFLAGS += -lopenblas
|
||||
endif # LLAMA_OPENBLAS
|
||||
|
||||
ifdef LLAMA_BLIS
|
||||
CFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/blis -I/usr/include/blis
|
||||
LDFLAGS += -lblis -L/usr/local/lib
|
||||
endif # LLAMA_BLIS
|
||||
|
||||
ifdef LLAMA_CUBLAS
|
||||
CFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include
|
||||
CXXFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include
|
||||
LDFLAGS += -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/x86_64-linux/lib
|
||||
OBJS += ggml-cuda.o
|
||||
NVCC = nvcc
|
||||
NVCCFLAGS = --forward-unknown-to-host-compiler -arch=native
|
||||
ifdef LLAMA_CUDA_DMMV_X
|
||||
NVCCFLAGS += -DGGML_CUDA_DMMV_X=$(LLAMA_CUDA_DMMV_X)
|
||||
else
|
||||
NVCCFLAGS += -DGGML_CUDA_DMMV_X=32
|
||||
endif # LLAMA_CUDA_DMMV_X
|
||||
ifdef LLAMA_CUDA_DMMV_Y
|
||||
NVCCFLAGS += -DGGML_CUDA_DMMV_Y=$(LLAMA_CUDA_DMMV_Y)
|
||||
else
|
||||
NVCCFLAGS += -DGGML_CUDA_DMMV_Y=1
|
||||
endif # LLAMA_CUDA_DMMV_Y
|
||||
ifdef LLAMA_CUDA_DMMV_F16
|
||||
NVCCFLAGS += -DGGML_CUDA_DMMV_F16
|
||||
endif # LLAMA_CUDA_DMMV_F16
|
||||
ifdef LLAMA_CUDA_KQUANTS_ITER
|
||||
NVCCFLAGS += -DK_QUANTS_PER_ITERATION=$(LLAMA_CUDA_KQUANTS_ITER)
|
||||
else
|
||||
NVCCFLAGS += -DK_QUANTS_PER_ITERATION=2
|
||||
endif
|
||||
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
|
||||
$(NVCC) $(NVCCFLAGS) $(CXXFLAGS) -Wno-pedantic -c $< -o $@
|
||||
endif # LLAMA_CUBLAS
|
||||
|
||||
ifdef LLAMA_CLBLAST
|
||||
CFLAGS += -DGGML_USE_CLBLAST
|
||||
CXXFLAGS += -DGGML_USE_CLBLAST
|
||||
# Mac provides OpenCL as a framework
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
LDFLAGS += -lclblast -framework OpenCL
|
||||
else
|
||||
LDFLAGS += -lclblast -lOpenCL
|
||||
endif
|
||||
OBJS += ggml-opencl.o
|
||||
|
||||
ggml-opencl.o: ggml-opencl.cpp ggml-opencl.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
endif # LLAMA_CLBLAST
|
||||
|
||||
ifdef LLAMA_METAL
|
||||
CFLAGS += -DGGML_USE_METAL -DGGML_METAL_NDEBUG
|
||||
CXXFLAGS += -DGGML_USE_METAL
|
||||
LDFLAGS += -framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders
|
||||
OBJS += ggml-metal.o
|
||||
|
||||
ggml-metal.o: ggml-metal.m ggml-metal.h
|
||||
$(CC) $(CFLAGS) -c $< -o $@
|
||||
endif # LLAMA_METAL
|
||||
|
||||
ifneq ($(filter aarch64%,$(UNAME_M)),)
|
||||
# Apple M1, M2, etc.
|
||||
# Raspberry Pi 3, 4, Zero 2 (64-bit)
|
||||
@@ -164,139 +236,6 @@ ifneq ($(filter armv8%,$(UNAME_M)),)
|
||||
CFLAGS += -mfp16-format=ieee -mno-unaligned-access
|
||||
endif
|
||||
|
||||
ifneq ($(filter ppc64%,$(UNAME_M)),)
|
||||
POWER9_M := $(shell grep "POWER9" /proc/cpuinfo)
|
||||
ifneq (,$(findstring POWER9,$(POWER9_M)))
|
||||
CFLAGS += -mcpu=power9
|
||||
CXXFLAGS += -mcpu=power9
|
||||
endif
|
||||
# Require c++23's std::byteswap for big-endian support.
|
||||
ifeq ($(UNAME_M),ppc64)
|
||||
CXXFLAGS += -std=c++23 -DGGML_BIG_ENDIAN
|
||||
endif
|
||||
endif
|
||||
|
||||
ifndef LLAMA_NO_K_QUANTS
|
||||
CFLAGS += -DGGML_USE_K_QUANTS
|
||||
CXXFLAGS += -DGGML_USE_K_QUANTS
|
||||
OBJS += k_quants.o
|
||||
ifdef LLAMA_QKK_64
|
||||
CFLAGS += -DGGML_QKK_64
|
||||
CXXFLAGS += -DGGML_QKK_64
|
||||
endif
|
||||
endif
|
||||
|
||||
ifndef LLAMA_NO_ACCELERATE
|
||||
# Mac M1 - include Accelerate framework.
|
||||
# `-framework Accelerate` works on Mac Intel as well, with negliable performance boost (as of the predict time).
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
CFLAGS += -DGGML_USE_ACCELERATE
|
||||
LDFLAGS += -framework Accelerate
|
||||
endif
|
||||
endif # LLAMA_NO_ACCELERATE
|
||||
|
||||
ifdef LLAMA_MPI
|
||||
CFLAGS += -DGGML_USE_MPI -Wno-cast-qual
|
||||
CXXFLAGS += -DGGML_USE_MPI -Wno-cast-qual
|
||||
OBJS += ggml-mpi.o
|
||||
endif # LLAMA_MPI
|
||||
|
||||
ifdef LLAMA_OPENBLAS
|
||||
CFLAGS += -DGGML_USE_OPENBLAS $(shell pkg-config --cflags openblas)
|
||||
LDFLAGS += $(shell pkg-config --libs openblas)
|
||||
endif # LLAMA_OPENBLAS
|
||||
|
||||
ifdef LLAMA_BLIS
|
||||
CFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/blis -I/usr/include/blis
|
||||
LDFLAGS += -lblis -L/usr/local/lib
|
||||
endif # LLAMA_BLIS
|
||||
|
||||
ifdef LLAMA_CUBLAS
|
||||
CFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include
|
||||
CXXFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include
|
||||
LDFLAGS += -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/x86_64-linux/lib
|
||||
OBJS += ggml-cuda.o
|
||||
NVCCFLAGS = --forward-unknown-to-host-compiler -use_fast_math
|
||||
ifdef LLAMA_CUDA_NVCC
|
||||
NVCC = $(LLAMA_CUDA_NVCC)
|
||||
else
|
||||
NVCC = nvcc
|
||||
endif #LLAMA_CUDA_NVCC
|
||||
ifdef CUDA_DOCKER_ARCH
|
||||
NVCCFLAGS += -Wno-deprecated-gpu-targets -arch=$(CUDA_DOCKER_ARCH)
|
||||
else
|
||||
NVCCFLAGS += -arch=native
|
||||
endif # CUDA_DOCKER_ARCH
|
||||
ifdef LLAMA_CUDA_FORCE_DMMV
|
||||
NVCCFLAGS += -DGGML_CUDA_FORCE_DMMV
|
||||
endif # LLAMA_CUDA_FORCE_DMMV
|
||||
ifdef LLAMA_CUDA_DMMV_X
|
||||
NVCCFLAGS += -DGGML_CUDA_DMMV_X=$(LLAMA_CUDA_DMMV_X)
|
||||
else
|
||||
NVCCFLAGS += -DGGML_CUDA_DMMV_X=32
|
||||
endif # LLAMA_CUDA_DMMV_X
|
||||
ifdef LLAMA_CUDA_MMV_Y
|
||||
NVCCFLAGS += -DGGML_CUDA_MMV_Y=$(LLAMA_CUDA_MMV_Y)
|
||||
else ifdef LLAMA_CUDA_DMMV_Y
|
||||
NVCCFLAGS += -DGGML_CUDA_MMV_Y=$(LLAMA_CUDA_DMMV_Y) # for backwards compatibility
|
||||
else
|
||||
NVCCFLAGS += -DGGML_CUDA_MMV_Y=1
|
||||
endif # LLAMA_CUDA_MMV_Y
|
||||
ifdef LLAMA_CUDA_F16
|
||||
NVCCFLAGS += -DGGML_CUDA_F16
|
||||
endif # LLAMA_CUDA_F16
|
||||
ifdef LLAMA_CUDA_DMMV_F16
|
||||
NVCCFLAGS += -DGGML_CUDA_F16
|
||||
endif # LLAMA_CUDA_DMMV_F16
|
||||
ifdef LLAMA_CUDA_KQUANTS_ITER
|
||||
NVCCFLAGS += -DK_QUANTS_PER_ITERATION=$(LLAMA_CUDA_KQUANTS_ITER)
|
||||
else
|
||||
NVCCFLAGS += -DK_QUANTS_PER_ITERATION=2
|
||||
endif
|
||||
#ifdef LLAMA_CUDA_CUBLAS
|
||||
# NVCCFLAGS += -DGGML_CUDA_CUBLAS
|
||||
#endif # LLAMA_CUDA_CUBLAS
|
||||
ifdef LLAMA_CUDA_CCBIN
|
||||
NVCCFLAGS += -ccbin $(LLAMA_CUDA_CCBIN)
|
||||
endif
|
||||
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
|
||||
$(NVCC) $(NVCCFLAGS) $(subst -Ofast,-O3,$(CXXFLAGS)) -Wno-pedantic -c $< -o $@
|
||||
endif # LLAMA_CUBLAS
|
||||
|
||||
ifdef LLAMA_CLBLAST
|
||||
|
||||
CFLAGS += -DGGML_USE_CLBLAST $(shell pkg-config --cflags clblast OpenCL)
|
||||
CXXFLAGS += -DGGML_USE_CLBLAST $(shell pkg-config --cflags clblast OpenCL)
|
||||
|
||||
# Mac provides OpenCL as a framework
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
LDFLAGS += -lclblast -framework OpenCL
|
||||
else
|
||||
LDFLAGS += $(shell pkg-config --libs clblast OpenCL)
|
||||
endif
|
||||
OBJS += ggml-opencl.o
|
||||
|
||||
ggml-opencl.o: ggml-opencl.cpp ggml-opencl.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
endif # LLAMA_CLBLAST
|
||||
|
||||
ifdef LLAMA_METAL
|
||||
CFLAGS += -DGGML_USE_METAL -DGGML_METAL_NDEBUG
|
||||
CXXFLAGS += -DGGML_USE_METAL
|
||||
LDFLAGS += -framework Foundation -framework Metal -framework MetalKit
|
||||
OBJS += ggml-metal.o
|
||||
endif # LLAMA_METAL
|
||||
|
||||
ifdef LLAMA_METAL
|
||||
ggml-metal.o: ggml-metal.m ggml-metal.h
|
||||
$(CC) $(CFLAGS) -c $< -o $@
|
||||
endif # LLAMA_METAL
|
||||
|
||||
ifdef LLAMA_MPI
|
||||
ggml-mpi.o: ggml-mpi.c ggml-mpi.h
|
||||
$(CC) $(CFLAGS) -c $< -o $@
|
||||
endif # LLAMA_MPI
|
||||
|
||||
ifdef LLAMA_NO_K_QUANTS
|
||||
k_quants.o: k_quants.c k_quants.h
|
||||
$(CC) $(CFLAGS) -c $< -o $@
|
||||
@@ -324,34 +263,23 @@ $(info )
|
||||
ggml.o: ggml.c ggml.h ggml-cuda.h
|
||||
$(CC) $(CFLAGS) -c $< -o $@
|
||||
|
||||
ggml-alloc.o: ggml-alloc.c ggml.h ggml-alloc.h
|
||||
$(CC) $(CFLAGS) -c $< -o $@
|
||||
|
||||
OBJS += ggml-alloc.o
|
||||
|
||||
llama.o: llama.cpp ggml.h ggml-alloc.h ggml-cuda.h ggml-metal.h llama.h
|
||||
llama.o: llama.cpp ggml.h ggml-cuda.h ggml-metal.h llama.h llama-util.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
common.o: common/common.cpp common/common.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
console.o: common/console.cpp common/console.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
grammar-parser.o: common/grammar-parser.cpp common/grammar-parser.h
|
||||
common.o: examples/common.cpp examples/common.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
libllama.so: llama.o ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS)
|
||||
|
||||
clean:
|
||||
rm -vf *.o *.so *.dll main quantize quantize-stats perplexity embedding benchmark-matmult save-load-state server simple vdot train-text-from-scratch convert-llama2c-to-ggml embd-input-test gguf llama-bench build-info.h $(TEST_TARGETS)
|
||||
rm -vf *.o *.so main quantize quantize-stats perplexity embedding benchmark-matmult save-load-state server vdot train-text-from-scratch build-info.h
|
||||
|
||||
#
|
||||
# Examples
|
||||
#
|
||||
|
||||
main: examples/main/main.cpp build-info.h ggml.o llama.o common.o console.o grammar-parser.o $(OBJS)
|
||||
main: examples/main/main.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
@echo
|
||||
@echo '==== Run ./main -h for help. ===='
|
||||
@@ -375,26 +303,10 @@ embedding: examples/embedding/embedding.cpp build-info.h ggml.
|
||||
save-load-state: examples/save-load-state/save-load-state.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
server: examples/server/server.cpp examples/server/httplib.h examples/server/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp build-info.h ggml.o llama.o common.o grammar-parser.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -Iexamples/server $(filter-out %.h,$(filter-out %.hpp,$^)) -o $@ $(LDFLAGS) $(LWINSOCK2)
|
||||
server: examples/server/server.cpp examples/server/httplib.h examples/server/json.hpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -Iexamples/server $(filter-out %.h,$(filter-out %.hpp,$^)) -o $@ $(LDFLAGS)
|
||||
|
||||
$(LIB_PRE)embdinput$(DSO_EXT): examples/embd-input/embd-input.h examples/embd-input/embd-input-lib.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) --shared $(CXXFLAGS) $(filter-out %.h,$(filter-out %.hpp,$^)) -o $@ $(LDFLAGS)
|
||||
|
||||
|
||||
embd-input-test: $(LIB_PRE)embdinput$(DSO_EXT) examples/embd-input/embd-input-test.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %$(DSO_EXT),$(filter-out %.h,$(filter-out %.hpp,$^))) -o $@ $(LDFLAGS) -L. -lembdinput
|
||||
|
||||
gguf: examples/gguf/gguf.cpp build-info.h ggml.o llama.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
convert-llama2c-to-ggml: examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp build-info.h ggml.o llama.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-bench: examples/llama-bench/llama-bench.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp build-info.h ggml.o llama.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
build-info.h: $(wildcard .git/index) scripts/build-info.sh
|
||||
@@ -409,8 +321,6 @@ build-info.h: $(wildcard .git/index) scripts/build-info.sh
|
||||
# Tests
|
||||
#
|
||||
|
||||
tests: $(TEST_TARGETS)
|
||||
|
||||
benchmark-matmult: examples/benchmark/benchmark-matmult.cpp build-info.h ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
./$@
|
||||
@@ -418,29 +328,6 @@ benchmark-matmult: examples/benchmark/benchmark-matmult.cpp build-info.h ggml.o
|
||||
vdot: pocs/vdot/vdot.cpp ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-llama-grammar: tests/test-llama-grammar.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.txt,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-grammar-parser: tests/test-grammar-parser.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.txt,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-double-float: tests/test-double-float.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.txt,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-grad0: tests/test-grad0.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.txt,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-opt: tests/test-opt.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.txt,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-quantize-fns: tests/test-quantize-fns.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.txt,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-quantize-perf: tests/test-quantize-perf.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.txt,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-sampling: tests/test-sampling.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.txt,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-tokenizer-0: tests/test-tokenizer-0.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.txt,$^) -o $@ $(LDFLAGS)
|
||||
.PHONY: tests clean
|
||||
tests:
|
||||
bash ./tests/run-tests.sh
|
||||
|
||||
339
README.md
339
README.md
@@ -9,21 +9,11 @@
|
||||
|
||||
Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
|
||||
|
||||
### Hot topics
|
||||
**Hot topics:**
|
||||
|
||||
- Added support for Falcon models: https://github.com/ggerganov/llama.cpp/pull/2717
|
||||
|
||||
- A new file format has been introduced: [GGUF](https://github.com/ggerganov/llama.cpp/pull/2398)
|
||||
|
||||
Last revision compatible with the old format: [dadbed9](https://github.com/ggerganov/llama.cpp/commit/dadbed99e65252d79f81101a392d0d6497b86caa)
|
||||
|
||||
### Current `master` should be considered in Beta - expect some issues for a few days!
|
||||
|
||||
### Be prepared to re-convert and / or re-quantize your GGUF models while this notice is up!
|
||||
|
||||
### Issues with non-GGUF models will be considered with low priority!
|
||||
|
||||
----
|
||||
- New roadmap: https://github.com/users/ggerganov/projects/7
|
||||
- Azure CI brainstorming: https://github.com/ggerganov/llama.cpp/discussions/1985
|
||||
- p1 : LLM-based code completion engine at the edge : https://github.com/ggml-org/p1/discussions/1
|
||||
|
||||
<details>
|
||||
<summary>Table of Contents</summary>
|
||||
@@ -41,7 +31,6 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
|
||||
<li><a href="#memorydisk-requirements">Memory/Disk Requirements</a></li>
|
||||
<li><a href="#quantization">Quantization</a></li>
|
||||
<li><a href="#interactive-mode">Interactive mode</a></li>
|
||||
<li><a href="#constrained-output-with-grammars">Constrained output with grammars</a></li>
|
||||
<li><a href="#instruction-mode-with-alpaca">Instruction mode with Alpaca</a></li>
|
||||
<li><a href="#using-openllama">Using OpenLLaMA</a></li>
|
||||
<li><a href="#using-gpt4all">Using GPT4All</a></li>
|
||||
@@ -68,11 +57,12 @@ The main goal of `llama.cpp` is to run the LLaMA model using 4-bit integer quant
|
||||
- Apple silicon first-class citizen - optimized via ARM NEON, Accelerate and Metal frameworks
|
||||
- AVX, AVX2 and AVX512 support for x86 architectures
|
||||
- Mixed F16 / F32 precision
|
||||
- 2-bit, 3-bit, 4-bit, 5-bit, 6-bit and 8-bit integer quantization support
|
||||
- CUDA, Metal and OpenCL GPU backend support
|
||||
- 4-bit, 5-bit and 8-bit integer quantization support
|
||||
- Supports OpenBLAS/Apple BLAS/ARM Performance Lib/ATLAS/BLIS/Intel MKL/NVHPC/ACML/SCSL/SGIMATH and [more](https://cmake.org/cmake/help/latest/module/FindBLAS.html#blas-lapack-vendors) in BLAS
|
||||
- cuBLAS and CLBlast support
|
||||
|
||||
The original implementation of `llama.cpp` was [hacked in an evening](https://github.com/ggerganov/llama.cpp/issues/33#issuecomment-1465108022).
|
||||
Since then, the project has improved significantly thanks to many contributions. This project is mainly for educational purposes and serves
|
||||
Since then, the project has improved significantly thanks to many contributions. This project is for educational purposes and serves
|
||||
as the main playground for developing new features for the [ggml](https://github.com/ggerganov/ggml) library.
|
||||
|
||||
**Supported platforms:**
|
||||
@@ -85,19 +75,15 @@ as the main playground for developing new features for the [ggml](https://github
|
||||
**Supported models:**
|
||||
|
||||
- [X] LLaMA 🦙
|
||||
- [x] LLaMA 2 🦙🦙
|
||||
- [X] Falcon
|
||||
- [X] [Alpaca](https://github.com/ggerganov/llama.cpp#instruction-mode-with-alpaca)
|
||||
- [X] [GPT4All](https://github.com/ggerganov/llama.cpp#using-gpt4all)
|
||||
- [X] [Chinese LLaMA / Alpaca](https://github.com/ymcui/Chinese-LLaMA-Alpaca) and [Chinese LLaMA-2 / Alpaca-2](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2)
|
||||
- [X] [Chinese LLaMA / Alpaca](https://github.com/ymcui/Chinese-LLaMA-Alpaca)
|
||||
- [X] [Vigogne (French)](https://github.com/bofenghuang/vigogne)
|
||||
- [X] [Vicuna](https://github.com/ggerganov/llama.cpp/discussions/643#discussioncomment-5533894)
|
||||
- [X] [Koala](https://bair.berkeley.edu/blog/2023/04/03/koala/)
|
||||
- [X] [OpenBuddy 🐶 (Multilingual)](https://github.com/OpenBuddy/OpenBuddy)
|
||||
- [X] [Pygmalion 7B / Metharme 7B](#using-pygmalion-7b--metharme-7b)
|
||||
- [X] [WizardLM](https://github.com/nlpxucan/WizardLM)
|
||||
- [X] [Baichuan-7B](https://huggingface.co/baichuan-inc/baichuan-7B) and its derivations (such as [baichuan-7b-sft](https://huggingface.co/hiyouga/baichuan-7b-sft))
|
||||
- [X] [Aquila-7B](https://huggingface.co/BAAI/Aquila-7B) / [AquilaChat-7B](https://huggingface.co/BAAI/AquilaChat-7B)
|
||||
|
||||
**Bindings:**
|
||||
|
||||
@@ -105,10 +91,7 @@ as the main playground for developing new features for the [ggml](https://github
|
||||
- Go: [go-skynet/go-llama.cpp](https://github.com/go-skynet/go-llama.cpp)
|
||||
- Node.js: [hlhr202/llama-node](https://github.com/hlhr202/llama-node)
|
||||
- Ruby: [yoshoku/llama_cpp.rb](https://github.com/yoshoku/llama_cpp.rb)
|
||||
- Rust: [mdrokz/rust-llama.cpp](https://github.com/mdrokz/rust-llama.cpp)
|
||||
- C#/.NET: [SciSharp/LLamaSharp](https://github.com/SciSharp/LLamaSharp)
|
||||
- Scala 3: [donderom/llm4s](https://github.com/donderom/llm4s)
|
||||
- Clojure: [phronmophobic/llama.clj](https://github.com/phronmophobic/llama.clj)
|
||||
|
||||
**UI:**
|
||||
|
||||
@@ -117,84 +100,90 @@ as the main playground for developing new features for the [ggml](https://github
|
||||
|
||||
---
|
||||
|
||||
Here is a typical run using LLaMA v2 13B on M2 Ultra:
|
||||
Here is a typical run using LLaMA-7B:
|
||||
|
||||
```java
|
||||
$ make -j && ./main -m models/llama-13b-v2/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e
|
||||
make -j && ./main -m ./models/7B/ggml-model-q4_0.bin -p "Building a website can be done in 10 simple steps:" -n 512
|
||||
I llama.cpp build info:
|
||||
I UNAME_S: Darwin
|
||||
I UNAME_P: arm
|
||||
I UNAME_M: arm64
|
||||
I CFLAGS: -I. -O3 -std=c11 -fPIC -DNDEBUG -Wall -Wextra -Wpedantic -Wcast-qual -Wdouble-promotion -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -pthread -DGGML_USE_K_QUANTS -DGGML_USE_ACCELERATE
|
||||
I CXXFLAGS: -I. -I./common -O3 -std=c++11 -fPIC -DNDEBUG -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wno-multichar -pthread -DGGML_USE_K_QUANTS
|
||||
I CFLAGS: -I. -O3 -DNDEBUG -std=c11 -fPIC -pthread -DGGML_USE_ACCELERATE
|
||||
I CXXFLAGS: -I. -I./examples -O3 -DNDEBUG -std=c++11 -fPIC -pthread
|
||||
I LDFLAGS: -framework Accelerate
|
||||
I CC: Apple clang version 14.0.3 (clang-1403.0.22.14.1)
|
||||
I CXX: Apple clang version 14.0.3 (clang-1403.0.22.14.1)
|
||||
I CC: Apple clang version 14.0.0 (clang-1400.0.29.202)
|
||||
I CXX: Apple clang version 14.0.0 (clang-1400.0.29.202)
|
||||
|
||||
make: Nothing to be done for `default'.
|
||||
main: build = 1041 (cf658ad)
|
||||
main: seed = 1692823051
|
||||
llama_model_loader: loaded meta data with 16 key-value pairs and 363 tensors from models/llama-13b-v2/ggml-model-q4_0.gguf (version GGUF V1 (latest))
|
||||
llama_model_loader: - type f32: 81 tensors
|
||||
llama_model_loader: - type q4_0: 281 tensors
|
||||
llama_model_loader: - type q6_K: 1 tensors
|
||||
llm_load_print_meta: format = GGUF V1 (latest)
|
||||
llm_load_print_meta: arch = llama
|
||||
llm_load_print_meta: vocab type = SPM
|
||||
llm_load_print_meta: n_vocab = 32000
|
||||
llm_load_print_meta: n_merges = 0
|
||||
llm_load_print_meta: n_ctx_train = 4096
|
||||
llm_load_print_meta: n_ctx = 512
|
||||
llm_load_print_meta: n_embd = 5120
|
||||
llm_load_print_meta: n_head = 40
|
||||
llm_load_print_meta: n_head_kv = 40
|
||||
llm_load_print_meta: n_layer = 40
|
||||
llm_load_print_meta: n_rot = 128
|
||||
llm_load_print_meta: n_gqa = 1
|
||||
llm_load_print_meta: f_norm_eps = 1.0e-05
|
||||
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
|
||||
llm_load_print_meta: n_ff = 13824
|
||||
llm_load_print_meta: freq_base = 10000.0
|
||||
llm_load_print_meta: freq_scale = 1
|
||||
llm_load_print_meta: model type = 13B
|
||||
llm_load_print_meta: model ftype = mostly Q4_0
|
||||
llm_load_print_meta: model size = 13.02 B
|
||||
llm_load_print_meta: general.name = LLaMA v2
|
||||
llm_load_print_meta: BOS token = 1 '<s>'
|
||||
llm_load_print_meta: EOS token = 2 '</s>'
|
||||
llm_load_print_meta: UNK token = 0 '<unk>'
|
||||
llm_load_print_meta: LF token = 13 '<0x0A>'
|
||||
llm_load_tensors: ggml ctx size = 0.11 MB
|
||||
llm_load_tensors: mem required = 7024.01 MB (+ 400.00 MB per state)
|
||||
...................................................................................................
|
||||
llama_new_context_with_model: kv self size = 400.00 MB
|
||||
llama_new_context_with_model: compute buffer total size = 75.41 MB
|
||||
main: seed = 1678486056
|
||||
llama_model_load: loading model from './models/7B/ggml-model-q4_0.bin' - please wait ...
|
||||
llama_model_load: n_vocab = 32000
|
||||
llama_model_load: n_ctx = 512
|
||||
llama_model_load: n_embd = 4096
|
||||
llama_model_load: n_mult = 256
|
||||
llama_model_load: n_head = 32
|
||||
llama_model_load: n_layer = 32
|
||||
llama_model_load: n_rot = 128
|
||||
llama_model_load: f16 = 2
|
||||
llama_model_load: n_ff = 11008
|
||||
llama_model_load: ggml ctx size = 4529.34 MB
|
||||
llama_model_load: memory_size = 512.00 MB, n_mem = 16384
|
||||
llama_model_load: .................................... done
|
||||
llama_model_load: model size = 4017.27 MB / num tensors = 291
|
||||
|
||||
system_info: n_threads = 16 / 24 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | VSX = 0 |
|
||||
sampling: repeat_last_n = 64, repeat_penalty = 1.100000, presence_penalty = 0.000000, frequency_penalty = 0.000000, top_k = 40, tfs_z = 1.000000, top_p = 0.950000, typical_p = 1.000000, temp = 0.800000, mirostat = 0, mirostat_lr = 0.100000, mirostat_ent = 5.000000
|
||||
generate: n_ctx = 512, n_batch = 512, n_predict = 400, n_keep = 0
|
||||
main: prompt: 'Building a website can be done in 10 simple steps:'
|
||||
main: number of tokens in prompt = 15
|
||||
1 -> ''
|
||||
8893 -> 'Build'
|
||||
292 -> 'ing'
|
||||
263 -> ' a'
|
||||
4700 -> ' website'
|
||||
508 -> ' can'
|
||||
367 -> ' be'
|
||||
2309 -> ' done'
|
||||
297 -> ' in'
|
||||
29871 -> ' '
|
||||
29896 -> '1'
|
||||
29900 -> '0'
|
||||
2560 -> ' simple'
|
||||
6576 -> ' steps'
|
||||
29901 -> ':'
|
||||
|
||||
sampling parameters: temp = 0.800000, top_k = 40, top_p = 0.950000
|
||||
|
||||
|
||||
Building a website can be done in 10 simple steps:
|
||||
Step 1: Find the right website platform.
|
||||
Step 2: Choose your domain name and hosting plan.
|
||||
Step 3: Design your website layout.
|
||||
Step 4: Write your website content and add images.
|
||||
Step 5: Install security features to protect your site from hackers or spammers
|
||||
Step 6: Test your website on multiple browsers, mobile devices, operating systems etc…
|
||||
Step 7: Test it again with people who are not related to you personally – friends or family members will work just fine!
|
||||
Step 8: Start marketing and promoting the website via social media channels or paid ads
|
||||
Step 9: Analyze how many visitors have come to your site so far, what type of people visit more often than others (e.g., men vs women) etc…
|
||||
Step 10: Continue to improve upon all aspects mentioned above by following trends in web design and staying up-to-date on new technologies that can enhance user experience even further!
|
||||
How does a Website Work?
|
||||
A website works by having pages, which are made of HTML code. This code tells your computer how to display the content on each page you visit – whether it’s an image or text file (like PDFs). In order for someone else’s browser not only be able but also want those same results when accessing any given URL; some additional steps need taken by way of programming scripts that will add functionality such as making links clickable!
|
||||
The most common type is called static HTML pages because they remain unchanged over time unless modified manually (either through editing files directly or using an interface such as WordPress). They are usually served up via HTTP protocols – this means anyone can access them without having any special privileges like being part of a group who is allowed into restricted areas online; however, there may still exist some limitations depending upon where one lives geographically speaking.
|
||||
How to
|
||||
llama_print_timings: load time = 576.45 ms
|
||||
llama_print_timings: sample time = 283.10 ms / 400 runs ( 0.71 ms per token, 1412.91 tokens per second)
|
||||
llama_print_timings: prompt eval time = 599.83 ms / 19 tokens ( 31.57 ms per token, 31.68 tokens per second)
|
||||
llama_print_timings: eval time = 24513.59 ms / 399 runs ( 61.44 ms per token, 16.28 tokens per second)
|
||||
llama_print_timings: total time = 25431.49 ms
|
||||
Building a website can be done in 10 simple steps:
|
||||
1) Select a domain name and web hosting plan
|
||||
2) Complete a sitemap
|
||||
3) List your products
|
||||
4) Write product descriptions
|
||||
5) Create a user account
|
||||
6) Build the template
|
||||
7) Start building the website
|
||||
8) Advertise the website
|
||||
9) Provide email support
|
||||
10) Submit the website to search engines
|
||||
A website is a collection of web pages that are formatted with HTML. HTML is the code that defines what the website looks like and how it behaves.
|
||||
The HTML code is formatted into a template or a format. Once this is done, it is displayed on the user's browser.
|
||||
The web pages are stored in a web server. The web server is also called a host. When the website is accessed, it is retrieved from the server and displayed on the user's computer.
|
||||
A website is known as a website when it is hosted. This means that it is displayed on a host. The host is usually a web server.
|
||||
A website can be displayed on different browsers. The browsers are basically the software that renders the website on the user's screen.
|
||||
A website can also be viewed on different devices such as desktops, tablets and smartphones.
|
||||
Hence, to have a website displayed on a browser, the website must be hosted.
|
||||
A domain name is an address of a website. It is the name of the website.
|
||||
The website is known as a website when it is hosted. This means that it is displayed on a host. The host is usually a web server.
|
||||
A website can be displayed on different browsers. The browsers are basically the software that renders the website on the user’s screen.
|
||||
A website can also be viewed on different devices such as desktops, tablets and smartphones. Hence, to have a website displayed on a browser, the website must be hosted.
|
||||
A domain name is an address of a website. It is the name of the website.
|
||||
A website is an address of a website. It is a collection of web pages that are formatted with HTML. HTML is the code that defines what the website looks like and how it behaves.
|
||||
The HTML code is formatted into a template or a format. Once this is done, it is displayed on the user’s browser.
|
||||
A website is known as a website when it is hosted
|
||||
|
||||
main: mem per token = 14434244 bytes
|
||||
main: load time = 1332.48 ms
|
||||
main: sample time = 1081.40 ms
|
||||
main: predict time = 31378.77 ms / 61.41 ms per token
|
||||
main: total time = 34036.74 ms
|
||||
```
|
||||
|
||||
And here is another demo of running both LLaMA-7B and [whisper.cpp](https://github.com/ggerganov/whisper.cpp) on a single M1 Pro MacBook:
|
||||
@@ -243,34 +232,12 @@ In order to build llama.cpp you have three different options.
|
||||
cmake --build . --config Release
|
||||
```
|
||||
|
||||
- Using `Zig` (version 0.11 or later):
|
||||
|
||||
Building for optimization levels and CPU features can be accomplished using standard build arguments, for example AVX2, FMA, F16C,
|
||||
it's also possible to cross compile for other operating systems and architectures:
|
||||
- Using `Zig`:
|
||||
|
||||
```bash
|
||||
zig build -Doptimize=ReleaseFast -Dtarget=x86_64-windows-gnu -Dcpu=x86_64+avx2+fma+f16c
|
||||
zig build -Drelease-fast
|
||||
```
|
||||
|
||||
The `zig targets` command will give you valid options to use.
|
||||
|
||||
- Using `gmake` (FreeBSD):
|
||||
|
||||
1. Install and activate [DRM in FreeBSD](https://wiki.freebsd.org/Graphics)
|
||||
2. Add your user to **video** group
|
||||
3. Install compilation dependencies.
|
||||
|
||||
```bash
|
||||
sudo pkg install gmake automake autoconf pkgconf llvm15 clinfo clover \
|
||||
opencl clblast openblas
|
||||
|
||||
gmake CC=/usr/local/bin/clang15 CXX=/usr/local/bin/clang++15 -j4
|
||||
```
|
||||
|
||||
**Notes:** With this packages you can build llama.cpp with OPENBLAS and
|
||||
CLBLAST support for use OpenCL GPU acceleration in FreeBSD. Please read
|
||||
the instructions for use and activate this options in this document below.
|
||||
|
||||
### Metal Build
|
||||
|
||||
Using Metal allows the computation to be executed on the GPU for Apple devices:
|
||||
@@ -294,46 +261,7 @@ When built with Metal support, you can enable GPU inference with the `--gpu-laye
|
||||
Any value larger than 0 will offload the computation to the GPU. For example:
|
||||
|
||||
```bash
|
||||
./main -m ./models/7B/ggml-model-q4_0.gguf -n 128 -ngl 1
|
||||
```
|
||||
|
||||
### MPI Build
|
||||
|
||||
MPI lets you distribute the computation over a cluster of machines. Because of the serial nature of LLM prediction, this won't yield any end-to-end speed-ups, but it will let you run larger models than would otherwise fit into RAM on a single machine.
|
||||
|
||||
First you will need MPI libraries installed on your system. The two most popular (only?) options are [MPICH](https://www.mpich.org) and [OpenMPI](https://www.open-mpi.org). Either can be installed with a package manager (`apt`, Homebrew, MacPorts, etc).
|
||||
|
||||
Next you will need to build the project with `LLAMA_MPI` set to true on all machines; if you're building with `make`, you will also need to specify an MPI-capable compiler (when building with CMake, this is configured automatically):
|
||||
|
||||
- Using `make`:
|
||||
|
||||
```bash
|
||||
make CC=mpicc CXX=mpicxx LLAMA_MPI=1
|
||||
```
|
||||
|
||||
- Using `CMake`:
|
||||
|
||||
```bash
|
||||
cmake -S . -B build -DLLAMA_MPI=ON
|
||||
```
|
||||
|
||||
Once the programs are built, download/convert the weights on all of the machines in your cluster. The paths to the weights and programs should be identical on all machines.
|
||||
|
||||
Next, ensure password-less SSH access to each machine from the primary host, and create a `hostfile` with a list of the hostnames and their relative "weights" (slots). If you want to use localhost for computation, use its local subnet IP address rather than the loopback address or "localhost".
|
||||
|
||||
Here is an example hostfile:
|
||||
|
||||
```
|
||||
192.168.0.1:2
|
||||
malvolio.local:1
|
||||
```
|
||||
|
||||
The above will distribute the computation across 2 processes on the first host and 1 process on the second host. Each process will use roughly an equal amount of RAM. Try to keep these numbers small, as inter-process (intra-host) communication is expensive.
|
||||
|
||||
Finally, you're ready to run a computation using `mpirun`:
|
||||
|
||||
```bash
|
||||
mpirun -hostfile hostfile -n 3 ./main -m ./models/7B/ggml-model-q4_0.gguf -n 128
|
||||
./main -m ./models/7B/ggml-model-q4_0.bin -n 128 -ngl 1
|
||||
```
|
||||
|
||||
### BLAS Build
|
||||
@@ -411,15 +339,11 @@ Building the program with BLAS support may lead to some performance improvements
|
||||
|
||||
The environment variable [`CUDA_VISIBLE_DEVICES`](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars) can be used to specify which GPU(s) will be used. The following compilation options are also available to tweak performance:
|
||||
|
||||
<!---
|
||||
| LLAMA_CUDA_CUBLAS | Boolean | false | Use cuBLAS instead of custom CUDA kernels for prompt processing. Faster for all quantization formats except for q4_0 and q8_0, especially for k-quants. Increases VRAM usage (700 MiB for 7b, 970 MiB for 13b, 1430 MiB for 33b). |
|
||||
--->
|
||||
| Option | Legal values | Default | Description |
|
||||
|-------------------------|------------------------|---------|-------------|
|
||||
| LLAMA_CUDA_FORCE_DMMV | Boolean | false | Force the use of dequantization + matrix vector multiplication kernels instead of using kernels that do matrix vector multiplication on quantized data. By default the decision is made based on compute capability (MMVQ for 6.1/Pascal/GTX 1000 or higher). Does not affect k-quants. |
|
||||
| LLAMA_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the CUDA dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. |
|
||||
| LLAMA_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the CUDA mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. |
|
||||
| LLAMA_CUDA_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels and for the q4_1 and q5_1 matrix matrix multiplication kernels. Can improve performance on relatively recent GPUs. |
|
||||
| LLAMA_CUDA_DMMV_Y | Positive integer | 1 | Block size in y direction for the CUDA dequantization + mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. Does not affect k-quants. |
|
||||
| LLAMA_CUDA_DMMV_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels. Can improve performance on relatively recent GPUs. |
|
||||
| LLAMA_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per CUDA thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
|
||||
|
||||
- #### CLBlast
|
||||
@@ -502,9 +426,6 @@ Building the program with BLAS support may lead to some performance improvements
|
||||
# obtain the original LLaMA model weights and place them in ./models
|
||||
ls ./models
|
||||
65B 30B 13B 7B tokenizer_checklist.chk tokenizer.model
|
||||
# [Optional] for models using BPE tokenizers
|
||||
ls ./models
|
||||
65B 30B 13B 7B vocab.json
|
||||
|
||||
# install Python dependencies
|
||||
python3 -m pip install -r requirements.txt
|
||||
@@ -512,14 +433,11 @@ python3 -m pip install -r requirements.txt
|
||||
# convert the 7B model to ggml FP16 format
|
||||
python3 convert.py models/7B/
|
||||
|
||||
# [Optional] for models using BPE tokenizers
|
||||
python convert.py models/7B/ --vocabtype bpe
|
||||
|
||||
# quantize the model to 4-bits (using q4_0 method)
|
||||
./quantize ./models/7B/ggml-model-f16.gguf ./models/7B/ggml-model-q4_0.gguf q4_0
|
||||
./quantize ./models/7B/ggml-model-f16.bin ./models/7B/ggml-model-q4_0.bin q4_0
|
||||
|
||||
# run the inference
|
||||
./main -m ./models/7B/ggml-model-q4_0.gguf -n 128
|
||||
./main -m ./models/7B/ggml-model-q4_0.bin -n 128
|
||||
```
|
||||
|
||||
When running the larger models, make sure you have enough disk space to store all the intermediate files.
|
||||
@@ -539,8 +457,6 @@ As the models are currently fully loaded into memory, you will need adequate dis
|
||||
|
||||
Several quantization methods are supported. They differ in the resulting model disk size and inference speed.
|
||||
|
||||
*(outdated)*
|
||||
|
||||
| Model | Measure | F16 | Q4_0 | Q4_1 | Q5_0 | Q5_1 | Q8_0 |
|
||||
|------:|--------------|-------:|-------:|-------:|-------:|-------:|-------:|
|
||||
| 7B | perplexity | 5.9066 | 6.1565 | 6.0912 | 5.9862 | 5.9481 | 5.9070 |
|
||||
@@ -577,7 +493,7 @@ Here is an example of a few-shot interaction, invoked with the command
|
||||
./examples/chat-13B.sh
|
||||
|
||||
# custom arguments using a 13B model
|
||||
./main -m ./models/13B/ggml-model-q4_0.gguf -n 256 --repeat_penalty 1.0 --color -i -r "User:" -f prompts/chat-with-bob.txt
|
||||
./main -m ./models/13B/ggml-model-q4_0.bin -n 256 --repeat_penalty 1.0 --color -i -r "User:" -f prompts/chat-with-bob.txt
|
||||
```
|
||||
|
||||
Note the use of `--color` to distinguish between user input and generated text. Other parameters are explained in more detail in the [README](examples/main/README.md) for the `main` example program.
|
||||
@@ -603,16 +519,6 @@ PROMPT_TEMPLATE=./prompts/chat-with-bob.txt PROMPT_CACHE_FILE=bob.prompt.bin \
|
||||
CHAT_SAVE_DIR=./chat/bob ./examples/chat-persistent.sh
|
||||
```
|
||||
|
||||
### Constrained output with grammars
|
||||
|
||||
`llama.cpp` supports grammars to constrain model output. For example, you can force the model to output JSON only:
|
||||
|
||||
```bash
|
||||
./main -m ./models/13B/ggml-model-q4_0.gguf -n 256 --grammar-file grammars/json.gbnf -p 'Request: schedule a call at 8pm; Command:'
|
||||
```
|
||||
|
||||
The `grammars/` folder contains a handful of sample grammars. To write your own, check out the [GBNF Guide](./grammars/README.md).
|
||||
|
||||
### Instruction mode with Alpaca
|
||||
|
||||
1. First, download the `ggml` Alpaca model into the `./models` folder
|
||||
@@ -650,8 +556,6 @@ OpenLLaMA is an openly licensed reproduction of Meta's original LLaMA model. It
|
||||
|
||||
### Using [GPT4All](https://github.com/nomic-ai/gpt4all)
|
||||
|
||||
*Note: these instructions are likely obsoleted by the GGUF update*
|
||||
|
||||
- Obtain the `tokenizer.model` file from LLaMA model and put it to `models`
|
||||
- Obtain the `added_tokens.json` file from Alpaca model and put it to `models`
|
||||
- Obtain the `gpt4all-lora-quantized.bin` file from GPT4All model and put it to `models/gpt4all-7B`
|
||||
@@ -685,19 +589,6 @@ python3 convert.py pygmalion-7b/ --outtype q4_1
|
||||
- The LLaMA models are officially distributed by Facebook and will **never** be provided through this repository.
|
||||
- Refer to [Facebook's LLaMA repository](https://github.com/facebookresearch/llama/pull/73/files) if you need to request access to the model data.
|
||||
|
||||
### Obtaining and using the Facebook LLaMA 2 model
|
||||
|
||||
- Refer to [Facebook's LLaMA download page](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) if you want to access the model data.
|
||||
- Alternatively, if you want to save time and space, you can download already converted and quantized models from [TheBloke](https://huggingface.co/TheBloke), including:
|
||||
- [LLaMA 2 7B base](https://huggingface.co/TheBloke/Llama-2-7B-GGML)
|
||||
- [LLaMA 2 13B base](https://huggingface.co/TheBloke/Llama-2-13B-GGML)
|
||||
- [LLaMA 2 70B base](https://huggingface.co/TheBloke/Llama-2-70B-GGML)
|
||||
- [LLaMA 2 7B chat](https://huggingface.co/TheBloke/Llama-2-7B-chat-GGML)
|
||||
- [LLaMA 2 13B chat](https://huggingface.co/TheBloke/Llama-2-13B-chat-GGML)
|
||||
- [LLaMA 2 70B chat](https://huggingface.co/TheBloke/Llama-2-70B-chat-GGML)
|
||||
- Specify `-eps 1e-5` for best generation quality
|
||||
- Specify `-gqa 8` for 70B models to work
|
||||
|
||||
### Verifying the model files
|
||||
|
||||
Please verify the [sha256 checksums](SHA256SUMS) of all downloaded model files to confirm that you have the correct model data files before creating an issue relating to your model files.
|
||||
@@ -705,7 +596,7 @@ Please verify the [sha256 checksums](SHA256SUMS) of all downloaded model files t
|
||||
|
||||
```bash
|
||||
# run the verification script
|
||||
./scripts/verify-checksum-models.py
|
||||
python3 .\scripts\verify-checksum-models.py
|
||||
```
|
||||
|
||||
- On linux or macOS it is also possible to run the following commands to verify if you have all possible latest files in your self-installed `./models` subdirectory:
|
||||
@@ -727,7 +618,7 @@ If your issue is with model generation quality, then please at least scan the fo
|
||||
#### How to run
|
||||
|
||||
1. Download/extract: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
|
||||
2. Run `./perplexity -m models/7B/ggml-model-q4_0.gguf -f wiki.test.raw`
|
||||
2. Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
|
||||
3. Output:
|
||||
```
|
||||
perplexity : calculating perplexity over 655 chunks
|
||||
@@ -795,11 +686,9 @@ GGML_OPENCL_DEVICE=0
|
||||
export LD_LIBRARY_PATH=/vendor/lib64:$LD_LIBRARY_PATH
|
||||
```
|
||||
|
||||
(Note: some Android devices, like the Zenfone 8, need the following command instead - "export LD_LIBRARY_PATH=/system/vendor/lib64:$LD_LIBRARY_PATH". Source: https://www.reddit.com/r/termux/comments/kc3ynp/opencl_working_in_termux_more_in_comments/ )
|
||||
|
||||
For easy and swift re-execution, consider documenting this final part in a .sh script file. This will enable you to rerun the process with minimal hassle.
|
||||
|
||||
Place your desired model into the `~/llama.cpp/models/` directory and execute the `./main (...)` script.
|
||||
Place your desired model into the `/llama.cpp/models/` directory and execute the `./main (...)` script.
|
||||
|
||||
### Docker
|
||||
|
||||
@@ -826,45 +715,13 @@ docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --all-in-
|
||||
On completion, you are ready to play!
|
||||
|
||||
```bash
|
||||
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --run -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512
|
||||
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --run -m /models/7B/ggml-model-q4_0.bin -p "Building a website can be done in 10 simple steps:" -n 512
|
||||
```
|
||||
|
||||
or with a light image:
|
||||
|
||||
```bash
|
||||
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:light -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512
|
||||
```
|
||||
|
||||
### Docker With CUDA
|
||||
|
||||
Assuming one has the [nvidia-container-toolkit](https://github.com/NVIDIA/nvidia-container-toolkit) properly installed on Linux, or is using a GPU enabled cloud, `cuBLAS` should be accessible inside the container.
|
||||
|
||||
#### Building Locally
|
||||
|
||||
```bash
|
||||
docker build -t local/llama.cpp:full-cuda -f .devops/full-cuda.Dockerfile .
|
||||
docker build -t local/llama.cpp:light-cuda -f .devops/main-cuda.Dockerfile .
|
||||
```
|
||||
|
||||
You may want to pass in some different `ARGS`, depending on the CUDA environment supported by your container host, as well as the GPU architecture.
|
||||
|
||||
The defaults are:
|
||||
|
||||
- `CUDA_VERSION` set to `11.7.1`
|
||||
- `CUDA_DOCKER_ARCH` set to `all`
|
||||
|
||||
The resulting images, are essentially the same as the non-CUDA images:
|
||||
|
||||
1. `local/llama.cpp:full-cuda`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization.
|
||||
2. `local/llama.cpp:light-cuda`: This image only includes the main executable file.
|
||||
|
||||
#### Usage
|
||||
|
||||
After building locally, Usage is similar to the non-CUDA examples, but you'll need to add the `--gpus` flag. You will also want to use the `--n-gpu-layers` flag.
|
||||
|
||||
```bash
|
||||
docker run --gpus all -v /path/to/models:/models local/llama.cpp:full-cuda --run -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
|
||||
docker run --gpus all -v /path/to/models:/models local/llama.cpp:light-cuda -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
|
||||
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:light -m /models/7B/ggml-model-q4_0.bin -p "Building a website can be done in 10 simple steps:" -n 512
|
||||
```
|
||||
|
||||
### Contributing
|
||||
@@ -887,11 +744,5 @@ docker run --gpus all -v /path/to/models:/models local/llama.cpp:light-cuda -m /
|
||||
|
||||
### Docs
|
||||
|
||||
- [main](./examples/main/README.md)
|
||||
- [server](./examples/server/README.md)
|
||||
- [embd-input](./examples/embd-input/README.md)
|
||||
- [jeopardy](./examples/jeopardy/README.md)
|
||||
- [BLIS](./docs/BLIS.md)
|
||||
- [Performance troubleshooting](./docs/token_generation_performance_tips.md)
|
||||
- [GGML tips & tricks](https://github.com/ggerganov/llama.cpp/wiki/GGML-Tips-&-Tricks)
|
||||
- [GBNF grammars](./grammars/README.md)
|
||||
- [Performance troubleshooting](./docs/token_generation_performance_tips.md)
|
||||
|
||||
167
build.zig
167
build.zig
@@ -1,121 +1,58 @@
|
||||
// Compatible with Zig Version 0.11.0
|
||||
const std = @import("std");
|
||||
const ArrayList = std.ArrayList;
|
||||
const Compile = std.Build.Step.Compile;
|
||||
const ConfigHeader = std.Build.Step.ConfigHeader;
|
||||
const Mode = std.builtin.Mode;
|
||||
const CrossTarget = std.zig.CrossTarget;
|
||||
|
||||
const Maker = struct {
|
||||
builder: *std.build.Builder,
|
||||
target: CrossTarget,
|
||||
optimize: Mode,
|
||||
config_header: *ConfigHeader,
|
||||
enable_lto: bool,
|
||||
// Zig Version: 0.11.0-dev.3379+629f0d23b
|
||||
pub fn build(b: *std.build.Builder) void {
|
||||
const target = b.standardTargetOptions(.{});
|
||||
const optimize = b.standardOptimizeOption(.{});
|
||||
const lib = b.addStaticLibrary(.{
|
||||
.name = "llama",
|
||||
.target = target,
|
||||
.optimize = optimize,
|
||||
});
|
||||
lib.linkLibC();
|
||||
lib.linkLibCpp();
|
||||
lib.addIncludePath(".");
|
||||
lib.addIncludePath("./examples");
|
||||
lib.addCSourceFiles(&.{
|
||||
"ggml.c",
|
||||
}, &.{"-std=c11"});
|
||||
lib.addCSourceFiles(&.{
|
||||
"llama.cpp",
|
||||
}, &.{"-std=c++11"});
|
||||
b.installArtifact(lib);
|
||||
|
||||
include_dirs: ArrayList([]const u8),
|
||||
cflags: ArrayList([]const u8),
|
||||
cxxflags: ArrayList([]const u8),
|
||||
objs: ArrayList(*Compile),
|
||||
const examples = .{
|
||||
"main",
|
||||
"baby-llama",
|
||||
"embedding",
|
||||
// "metal",
|
||||
"perplexity",
|
||||
"quantize",
|
||||
"quantize-stats",
|
||||
"save-load-state",
|
||||
// "server",
|
||||
"simple",
|
||||
"train-text-from-scratch",
|
||||
};
|
||||
|
||||
fn addInclude(m: *Maker, dir: []const u8) !void {
|
||||
try m.include_dirs.append(dir);
|
||||
}
|
||||
fn addProjectInclude(m: *Maker, path: []const []const u8) !void {
|
||||
try m.addInclude(try m.builder.build_root.join(m.builder.allocator, path));
|
||||
}
|
||||
fn addCFlag(m: *Maker, flag: []const u8) !void {
|
||||
try m.cflags.append(flag);
|
||||
}
|
||||
fn addCxxFlag(m: *Maker, flag: []const u8) !void {
|
||||
try m.cxxflags.append(flag);
|
||||
}
|
||||
fn addFlag(m: *Maker, flag: []const u8) !void {
|
||||
try m.addCFlag(flag);
|
||||
try m.addCxxFlag(flag);
|
||||
}
|
||||
|
||||
fn init(builder: *std.build.Builder) !Maker {
|
||||
const commit_hash = @embedFile(".git/refs/heads/master");
|
||||
const config_header = builder.addConfigHeader(
|
||||
.{ .style = .blank, .include_path = "build-info.h" },
|
||||
.{
|
||||
.BUILD_NUMBER = 0,
|
||||
.BUILD_COMMIT = commit_hash[0 .. commit_hash.len - 1], // omit newline
|
||||
},
|
||||
);
|
||||
var m = Maker{
|
||||
.builder = builder,
|
||||
.target = builder.standardTargetOptions(.{}),
|
||||
.optimize = builder.standardOptimizeOption(.{}),
|
||||
.config_header = config_header,
|
||||
.enable_lto = false,
|
||||
.include_dirs = ArrayList([]const u8).init(builder.allocator),
|
||||
.cflags = ArrayList([]const u8).init(builder.allocator),
|
||||
.cxxflags = ArrayList([]const u8).init(builder.allocator),
|
||||
.objs = ArrayList(*Compile).init(builder.allocator),
|
||||
};
|
||||
try m.addCFlag("-std=c11");
|
||||
try m.addCxxFlag("-std=c++11");
|
||||
try m.addProjectInclude(&.{});
|
||||
try m.addProjectInclude(&.{"examples"});
|
||||
return m;
|
||||
}
|
||||
|
||||
fn obj(m: *const Maker, name: []const u8, src: []const u8) *Compile {
|
||||
const o = m.builder.addObject(.{ .name = name, .target = m.target, .optimize = m.optimize });
|
||||
if (std.mem.endsWith(u8, src, ".c")) {
|
||||
o.addCSourceFiles(&.{src}, m.cflags.items);
|
||||
o.linkLibC();
|
||||
} else {
|
||||
o.addCSourceFiles(&.{src}, m.cxxflags.items);
|
||||
o.linkLibCpp();
|
||||
}
|
||||
for (m.include_dirs.items) |i| o.addIncludePath(.{ .path = i });
|
||||
o.want_lto = m.enable_lto;
|
||||
return o;
|
||||
}
|
||||
|
||||
fn exe(m: *const Maker, name: []const u8, src: []const u8, deps: []const *Compile) *Compile {
|
||||
const e = m.builder.addExecutable(.{ .name = name, .target = m.target, .optimize = m.optimize });
|
||||
e.addCSourceFiles(&.{src}, m.cxxflags.items);
|
||||
for (deps) |d| e.addObject(d);
|
||||
for (m.objs.items) |o| e.addObject(o);
|
||||
for (m.include_dirs.items) |i| e.addIncludePath(.{ .path = i });
|
||||
e.linkLibC();
|
||||
e.linkLibCpp();
|
||||
e.addConfigHeader(m.config_header);
|
||||
m.builder.installArtifact(e);
|
||||
e.want_lto = m.enable_lto;
|
||||
return e;
|
||||
}
|
||||
};
|
||||
|
||||
pub fn build(b: *std.build.Builder) !void {
|
||||
var make = try Maker.init(b);
|
||||
make.enable_lto = b.option(bool, "lto", "Enable LTO optimization, (default: false)") orelse false;
|
||||
|
||||
if (b.option(bool, "k-quants", "Enable K-quants, (default: true)") orelse true) {
|
||||
try make.addFlag("-DGGML_USE_K_QUANTS");
|
||||
const k_quants = make.obj("k_quants", "k_quants.c");
|
||||
try make.objs.append(k_quants);
|
||||
}
|
||||
|
||||
const ggml = make.obj("ggml", "ggml.c");
|
||||
const ggml_alloc = make.obj("ggml-alloc", "ggml-alloc.c");
|
||||
const llama = make.obj("llama", "llama.cpp");
|
||||
const common = make.obj("common", "examples/common.cpp");
|
||||
const console = make.obj("common", "examples/console.cpp");
|
||||
const grammar_parser = make.obj("grammar-parser", "examples/grammar-parser.cpp");
|
||||
|
||||
_ = make.exe("main", "examples/main/main.cpp", &.{ ggml, ggml_alloc, llama, common, console, grammar_parser });
|
||||
_ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, ggml_alloc, llama });
|
||||
_ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, ggml_alloc, llama, common });
|
||||
_ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, ggml_alloc, llama, common });
|
||||
_ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, ggml_alloc, llama });
|
||||
|
||||
const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, ggml_alloc, llama, common, grammar_parser });
|
||||
if (server.target.isWindows()) {
|
||||
server.linkSystemLibrary("ws2_32");
|
||||
inline for (examples) |example_name| {
|
||||
const exe = b.addExecutable(.{
|
||||
.name = example_name,
|
||||
.target = target,
|
||||
.optimize = optimize,
|
||||
});
|
||||
exe.addIncludePath(".");
|
||||
exe.addIncludePath("./examples");
|
||||
exe.addCSourceFiles(&.{
|
||||
std.fmt.comptimePrint("examples/{s}/{s}.cpp", .{example_name, example_name}),
|
||||
"examples/common.cpp",
|
||||
}, &.{"-std=c++11"});
|
||||
exe.linkLibrary(lib);
|
||||
b.installArtifact(exe);
|
||||
const run_cmd = b.addRunArtifact(exe);
|
||||
run_cmd.step.dependOn(b.getInstallStep());
|
||||
if (b.args) |args| run_cmd.addArgs(args);
|
||||
const run_step = b.step("run_" ++ example_name, "Run the app");
|
||||
run_step.dependOn(&run_cmd.step);
|
||||
}
|
||||
}
|
||||
|
||||
25
ci/README.md
25
ci/README.md
@@ -1,25 +0,0 @@
|
||||
# CI
|
||||
|
||||
In addition to [Github Actions](https://github.com/ggerganov/llama.cpp/actions) `llama.cpp` uses a custom CI framework:
|
||||
|
||||
https://github.com/ggml-org/ci
|
||||
|
||||
It monitors the `master` branch for new commits and runs the
|
||||
[ci/run.sh](https://github.com/ggerganov/llama.cpp/blob/master/ci/run.sh) script on dedicated cloud instances. This allows us
|
||||
to execute heavier workloads compared to just using Github Actions. Also with time, the cloud instances will be scaled
|
||||
to cover various hardware architectures, including GPU and Apple Silicon instances.
|
||||
|
||||
Collaborators can optionally trigger the CI run by adding the `ggml-ci` keyword to their commit message.
|
||||
Only the branches of this repo are monitored for this keyword.
|
||||
|
||||
It is a good practice, before publishing changes to execute the full CI locally on your machine:
|
||||
|
||||
```bash
|
||||
mkdir tmp
|
||||
|
||||
# CPU-only build
|
||||
bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
||||
|
||||
# with CUDA support
|
||||
GG_BUILD_CUDA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
||||
```
|
||||
409
ci/run.sh
409
ci/run.sh
@@ -1,409 +0,0 @@
|
||||
#/bin/bash
|
||||
#
|
||||
# sample usage:
|
||||
#
|
||||
# mkdir tmp
|
||||
#
|
||||
# # CPU-only build
|
||||
# bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
||||
#
|
||||
# # with CUDA support
|
||||
# GG_BUILD_CUDA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
||||
#
|
||||
|
||||
if [ -z "$2" ]; then
|
||||
echo "usage: $0 <output-dir> <mnt-dir>"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
mkdir -p "$1"
|
||||
mkdir -p "$2"
|
||||
|
||||
OUT=$(realpath "$1")
|
||||
MNT=$(realpath "$2")
|
||||
|
||||
rm -v $OUT/*.log
|
||||
rm -v $OUT/*.exit
|
||||
rm -v $OUT/*.md
|
||||
|
||||
sd=`dirname $0`
|
||||
cd $sd/../
|
||||
SRC=`pwd`
|
||||
|
||||
## helpers
|
||||
|
||||
# download a file if it does not exist or if it is outdated
|
||||
function gg_wget {
|
||||
local out=$1
|
||||
local url=$2
|
||||
|
||||
local cwd=`pwd`
|
||||
|
||||
mkdir -p $out
|
||||
cd $out
|
||||
|
||||
# should not re-download if file is the same
|
||||
wget -nv -N $url
|
||||
|
||||
cd $cwd
|
||||
}
|
||||
|
||||
function gg_printf {
|
||||
printf -- "$@" >> $OUT/README.md
|
||||
}
|
||||
|
||||
function gg_run {
|
||||
ci=$1
|
||||
|
||||
set -o pipefail
|
||||
set -x
|
||||
|
||||
gg_run_$ci | tee $OUT/$ci.log
|
||||
cur=$?
|
||||
echo "$cur" > $OUT/$ci.exit
|
||||
|
||||
set +x
|
||||
set +o pipefail
|
||||
|
||||
gg_sum_$ci
|
||||
|
||||
ret=$((ret | cur))
|
||||
}
|
||||
|
||||
## ci
|
||||
|
||||
# ctest_debug
|
||||
|
||||
function gg_run_ctest_debug {
|
||||
cd ${SRC}
|
||||
|
||||
rm -rf build-ci-debug && mkdir build-ci-debug && cd build-ci-debug
|
||||
|
||||
set -e
|
||||
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Debug .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
|
||||
(time ctest --output-on-failure -E test-opt ) 2>&1 | tee -a $OUT/${ci}-ctest.log
|
||||
|
||||
set +e
|
||||
}
|
||||
|
||||
function gg_sum_ctest_debug {
|
||||
gg_printf '### %s\n\n' "${ci}"
|
||||
|
||||
gg_printf 'Runs ctest in debug mode\n'
|
||||
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
|
||||
gg_printf '```\n'
|
||||
gg_printf '%s\n' "$(cat $OUT/${ci}-ctest.log)"
|
||||
gg_printf '```\n'
|
||||
gg_printf '\n'
|
||||
}
|
||||
|
||||
# ctest_release
|
||||
|
||||
function gg_run_ctest_release {
|
||||
cd ${SRC}
|
||||
|
||||
rm -rf build-ci-release && mkdir build-ci-release && cd build-ci-release
|
||||
|
||||
set -e
|
||||
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Release .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
|
||||
if [ -z ${GG_BUILD_LOW_PERF} ]; then
|
||||
(time ctest --output-on-failure ) 2>&1 | tee -a $OUT/${ci}-ctest.log
|
||||
else
|
||||
(time ctest --output-on-failure -E test-opt ) 2>&1 | tee -a $OUT/${ci}-ctest.log
|
||||
fi
|
||||
|
||||
set +e
|
||||
}
|
||||
|
||||
function gg_sum_ctest_release {
|
||||
gg_printf '### %s\n\n' "${ci}"
|
||||
|
||||
gg_printf 'Runs ctest in release mode\n'
|
||||
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
|
||||
gg_printf '```\n'
|
||||
gg_printf '%s\n' "$(cat $OUT/${ci}-ctest.log)"
|
||||
gg_printf '```\n'
|
||||
}
|
||||
|
||||
# open_llama_3b_v2
|
||||
|
||||
function gg_run_open_llama_3b_v2 {
|
||||
cd ${SRC}
|
||||
|
||||
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/raw/main/config.json
|
||||
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/resolve/main/tokenizer.model
|
||||
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/raw/main/tokenizer_config.json
|
||||
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/raw/main/special_tokens_map.json
|
||||
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/resolve/main/pytorch_model.bin
|
||||
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/raw/main/generation_config.json
|
||||
|
||||
gg_wget models-mnt/wikitext/ https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip
|
||||
unzip -o models-mnt/wikitext/wikitext-2-raw-v1.zip -d models-mnt/wikitext/
|
||||
head -n 60 models-mnt/wikitext/wikitext-2-raw/wiki.test.raw > models-mnt/wikitext/wikitext-2-raw/wiki.test-60.raw
|
||||
|
||||
path_models="../models-mnt/open-llama/3B-v2"
|
||||
path_wiki="../models-mnt/wikitext/wikitext-2-raw"
|
||||
|
||||
rm -rf build-ci-release && mkdir build-ci-release && cd build-ci-release
|
||||
|
||||
set -e
|
||||
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Release -DLLAMA_QKK_64=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
|
||||
python3 ../convert.py ${path_models}
|
||||
|
||||
model_f16="${path_models}/ggml-model-f16.gguf"
|
||||
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
|
||||
model_q4_0="${path_models}/ggml-model-q4_0.gguf"
|
||||
model_q4_1="${path_models}/ggml-model-q4_1.gguf"
|
||||
model_q5_0="${path_models}/ggml-model-q5_0.gguf"
|
||||
model_q5_1="${path_models}/ggml-model-q5_1.gguf"
|
||||
model_q2_k="${path_models}/ggml-model-q2_k.gguf"
|
||||
model_q3_k="${path_models}/ggml-model-q3_k.gguf"
|
||||
model_q4_k="${path_models}/ggml-model-q4_k.gguf"
|
||||
model_q5_k="${path_models}/ggml-model-q5_k.gguf"
|
||||
model_q6_k="${path_models}/ggml-model-q6_k.gguf"
|
||||
|
||||
wiki_test_60="${path_wiki}/wiki.test-60.raw"
|
||||
|
||||
./bin/quantize ${model_f16} ${model_q8_0} q8_0
|
||||
./bin/quantize ${model_f16} ${model_q4_0} q4_0
|
||||
./bin/quantize ${model_f16} ${model_q4_1} q4_1
|
||||
./bin/quantize ${model_f16} ${model_q5_0} q5_0
|
||||
./bin/quantize ${model_f16} ${model_q5_1} q5_1
|
||||
./bin/quantize ${model_f16} ${model_q2_k} q2_k
|
||||
./bin/quantize ${model_f16} ${model_q3_k} q3_k
|
||||
./bin/quantize ${model_f16} ${model_q4_k} q4_k
|
||||
./bin/quantize ${model_f16} ${model_q5_k} q5_k
|
||||
./bin/quantize ${model_f16} ${model_q6_k} q6_k
|
||||
|
||||
(time ./bin/main --model ${model_f16} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/main --model ${model_q8_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/main --model ${model_q4_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/main --model ${model_q4_1} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/main --model ${model_q5_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/main --model ${model_q5_1} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/main --model ${model_q2_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/main --model ${model_q3_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/main --model ${model_q4_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/main --model ${model_q5_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/main --model ${model_q6_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
|
||||
(time ./bin/perplexity --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/perplexity --model ${model_q8_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/perplexity --model ${model_q4_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/perplexity --model ${model_q4_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/perplexity --model ${model_q5_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/perplexity --model ${model_q5_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/perplexity --model ${model_q2_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/perplexity --model ${model_q3_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/perplexity --model ${model_q4_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
|
||||
function check_ppl {
|
||||
qnt="$1"
|
||||
ppl=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
|
||||
|
||||
if [ $(echo "$ppl > 20.0" | bc) -eq 1 ]; then
|
||||
printf ' - %s @ %s (FAIL: ppl > 20.0)\n' "$qnt" "$ppl"
|
||||
return 20
|
||||
fi
|
||||
|
||||
printf ' - %s @ %s OK\n' "$qnt" "$ppl"
|
||||
return 0
|
||||
}
|
||||
|
||||
check_ppl "f16" "$(cat $OUT/${ci}-tg-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q8_0" "$(cat $OUT/${ci}-tg-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q4_0" "$(cat $OUT/${ci}-tg-q4_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q4_1" "$(cat $OUT/${ci}-tg-q4_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q5_0" "$(cat $OUT/${ci}-tg-q5_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q5_1" "$(cat $OUT/${ci}-tg-q5_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q2_k" "$(cat $OUT/${ci}-tg-q2_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q3_k" "$(cat $OUT/${ci}-tg-q3_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q4_k" "$(cat $OUT/${ci}-tg-q4_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q5_k" "$(cat $OUT/${ci}-tg-q5_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q6_k" "$(cat $OUT/${ci}-tg-q6_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
|
||||
set +e
|
||||
}
|
||||
|
||||
function gg_sum_open_llama_3b_v2 {
|
||||
gg_printf '### %s\n\n' "${ci}"
|
||||
|
||||
gg_printf 'OpenLLaMA 3B-v2:\n'
|
||||
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
|
||||
gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)"
|
||||
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
|
||||
gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
|
||||
gg_printf '- q4_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_0.log)"
|
||||
gg_printf '- q4_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_1.log)"
|
||||
gg_printf '- q5_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_0.log)"
|
||||
gg_printf '- q5_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_1.log)"
|
||||
gg_printf '- q2_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q2_k.log)"
|
||||
gg_printf '- q3_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q3_k.log)"
|
||||
gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)"
|
||||
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
|
||||
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
|
||||
}
|
||||
|
||||
# open_llama_7b_v2
|
||||
# requires: GG_BUILD_CUDA
|
||||
|
||||
function gg_run_open_llama_7b_v2 {
|
||||
cd ${SRC}
|
||||
|
||||
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/raw/main/config.json
|
||||
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/resolve/main/tokenizer.model
|
||||
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/raw/main/tokenizer_config.json
|
||||
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/raw/main/special_tokens_map.json
|
||||
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/raw/main/pytorch_model.bin.index.json
|
||||
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/resolve/main/pytorch_model-00001-of-00002.bin
|
||||
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/resolve/main/pytorch_model-00002-of-00002.bin
|
||||
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/raw/main/generation_config.json
|
||||
|
||||
gg_wget models-mnt/wikitext/ https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip
|
||||
unzip -o models-mnt/wikitext/wikitext-2-raw-v1.zip -d models-mnt/wikitext/
|
||||
|
||||
path_models="../models-mnt/open-llama/7B-v2"
|
||||
path_wiki="../models-mnt/wikitext/wikitext-2-raw"
|
||||
|
||||
rm -rf build-ci-release && mkdir build-ci-release && cd build-ci-release
|
||||
|
||||
set -e
|
||||
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Release -DLLAMA_CUBLAS=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
|
||||
python3 ../convert.py ${path_models}
|
||||
|
||||
model_f16="${path_models}/ggml-model-f16.gguf"
|
||||
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
|
||||
model_q4_0="${path_models}/ggml-model-q4_0.gguf"
|
||||
model_q4_1="${path_models}/ggml-model-q4_1.gguf"
|
||||
model_q5_0="${path_models}/ggml-model-q5_0.gguf"
|
||||
model_q5_1="${path_models}/ggml-model-q5_1.gguf"
|
||||
model_q2_k="${path_models}/ggml-model-q2_k.gguf"
|
||||
model_q3_k="${path_models}/ggml-model-q3_k.gguf"
|
||||
model_q4_k="${path_models}/ggml-model-q4_k.gguf"
|
||||
model_q5_k="${path_models}/ggml-model-q5_k.gguf"
|
||||
model_q6_k="${path_models}/ggml-model-q6_k.gguf"
|
||||
|
||||
wiki_test="${path_wiki}/wiki.test.raw"
|
||||
|
||||
./bin/quantize ${model_f16} ${model_q8_0} q8_0
|
||||
./bin/quantize ${model_f16} ${model_q4_0} q4_0
|
||||
./bin/quantize ${model_f16} ${model_q4_1} q4_1
|
||||
./bin/quantize ${model_f16} ${model_q5_0} q5_0
|
||||
./bin/quantize ${model_f16} ${model_q5_1} q5_1
|
||||
./bin/quantize ${model_f16} ${model_q2_k} q2_k
|
||||
./bin/quantize ${model_f16} ${model_q3_k} q3_k
|
||||
./bin/quantize ${model_f16} ${model_q4_k} q4_k
|
||||
./bin/quantize ${model_f16} ${model_q5_k} q5_k
|
||||
./bin/quantize ${model_f16} ${model_q6_k} q6_k
|
||||
|
||||
(time ./bin/main --model ${model_f16} -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/main --model ${model_q8_0} -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/main --model ${model_q4_0} -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/main --model ${model_q4_1} -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/main --model ${model_q5_0} -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/main --model ${model_q5_1} -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/main --model ${model_q2_k} -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/main --model ${model_q3_k} -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/main --model ${model_q4_k} -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/main --model ${model_q5_k} -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/main --model ${model_q6_k} -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
|
||||
(time ./bin/perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/perplexity --model ${model_q4_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/perplexity --model ${model_q4_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/perplexity --model ${model_q5_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/perplexity --model ${model_q5_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/perplexity --model ${model_q2_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/perplexity --model ${model_q3_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/perplexity --model ${model_q4_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
|
||||
function check_ppl {
|
||||
qnt="$1"
|
||||
ppl=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
|
||||
|
||||
if [ $(echo "$ppl > 20.0" | bc) -eq 1 ]; then
|
||||
printf ' - %s @ %s (FAIL: ppl > 20.0)\n' "$qnt" "$ppl"
|
||||
return 20
|
||||
fi
|
||||
|
||||
printf ' - %s @ %s OK\n' "$qnt" "$ppl"
|
||||
return 0
|
||||
}
|
||||
|
||||
check_ppl "f16" "$(cat $OUT/${ci}-tg-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q8_0" "$(cat $OUT/${ci}-tg-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q4_0" "$(cat $OUT/${ci}-tg-q4_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q4_1" "$(cat $OUT/${ci}-tg-q4_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q5_0" "$(cat $OUT/${ci}-tg-q5_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q5_1" "$(cat $OUT/${ci}-tg-q5_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q2_k" "$(cat $OUT/${ci}-tg-q2_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q3_k" "$(cat $OUT/${ci}-tg-q3_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q4_k" "$(cat $OUT/${ci}-tg-q4_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q5_k" "$(cat $OUT/${ci}-tg-q5_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q6_k" "$(cat $OUT/${ci}-tg-q6_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
|
||||
set +e
|
||||
}
|
||||
|
||||
function gg_sum_open_llama_7b_v2 {
|
||||
gg_printf '### %s\n\n' "${ci}"
|
||||
|
||||
gg_printf 'OpenLLaMA 7B-v2:\n'
|
||||
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
|
||||
gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)"
|
||||
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
|
||||
gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
|
||||
gg_printf '- q4_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_0.log)"
|
||||
gg_printf '- q4_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_1.log)"
|
||||
gg_printf '- q5_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_0.log)"
|
||||
gg_printf '- q5_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_1.log)"
|
||||
gg_printf '- q2_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q2_k.log)"
|
||||
gg_printf '- q3_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q3_k.log)"
|
||||
gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)"
|
||||
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
|
||||
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
|
||||
}
|
||||
|
||||
## main
|
||||
|
||||
if [ -z ${GG_BUILD_LOW_PERF} ]; then
|
||||
rm -rf ${SRC}/models-mnt
|
||||
|
||||
mnt_models=${MNT}/models
|
||||
mkdir -p ${mnt_models}
|
||||
ln -sfn ${mnt_models} ${SRC}/models-mnt
|
||||
|
||||
python3 -m pip install -r ${SRC}/requirements.txt
|
||||
fi
|
||||
|
||||
ret=0
|
||||
|
||||
test $ret -eq 0 && gg_run ctest_debug
|
||||
test $ret -eq 0 && gg_run ctest_release
|
||||
|
||||
if [ -z ${GG_BUILD_LOW_PERF} ]; then
|
||||
if [ -z ${GG_BUILD_CUDA} ]; then
|
||||
test $ret -eq 0 && gg_run open_llama_3b_v2
|
||||
else
|
||||
test $ret -eq 0 && gg_run open_llama_7b_v2
|
||||
fi
|
||||
fi
|
||||
|
||||
exit $ret
|
||||
@@ -1,20 +0,0 @@
|
||||
# common
|
||||
|
||||
set(TARGET common)
|
||||
|
||||
add_library(${TARGET} OBJECT
|
||||
common.h
|
||||
common.cpp
|
||||
console.h
|
||||
console.cpp
|
||||
grammar-parser.h
|
||||
grammar-parser.cpp
|
||||
)
|
||||
|
||||
if (BUILD_SHARED_LIBS)
|
||||
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
endif()
|
||||
|
||||
target_include_directories(${TARGET} PUBLIC .)
|
||||
target_compile_features(${TARGET} PUBLIC cxx_std_11)
|
||||
target_link_libraries(${TARGET} PRIVATE llama)
|
||||
@@ -1,500 +0,0 @@
|
||||
#include "console.h"
|
||||
#include <vector>
|
||||
#include <iostream>
|
||||
|
||||
#if defined(_WIN32)
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#ifndef NOMINMAX
|
||||
#define NOMINMAX
|
||||
#endif
|
||||
#include <windows.h>
|
||||
#include <fcntl.h>
|
||||
#include <io.h>
|
||||
#ifndef ENABLE_VIRTUAL_TERMINAL_PROCESSING
|
||||
#define ENABLE_VIRTUAL_TERMINAL_PROCESSING 0x0004
|
||||
#endif
|
||||
#else
|
||||
#include <climits>
|
||||
#include <sys/ioctl.h>
|
||||
#include <unistd.h>
|
||||
#include <wchar.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <signal.h>
|
||||
#include <termios.h>
|
||||
#endif
|
||||
|
||||
#define ANSI_COLOR_RED "\x1b[31m"
|
||||
#define ANSI_COLOR_GREEN "\x1b[32m"
|
||||
#define ANSI_COLOR_YELLOW "\x1b[33m"
|
||||
#define ANSI_COLOR_BLUE "\x1b[34m"
|
||||
#define ANSI_COLOR_MAGENTA "\x1b[35m"
|
||||
#define ANSI_COLOR_CYAN "\x1b[36m"
|
||||
#define ANSI_COLOR_RESET "\x1b[0m"
|
||||
#define ANSI_BOLD "\x1b[1m"
|
||||
|
||||
namespace console {
|
||||
|
||||
//
|
||||
// Console state
|
||||
//
|
||||
|
||||
static bool advanced_display = false;
|
||||
static bool simple_io = true;
|
||||
static display_t current_display = reset;
|
||||
|
||||
static FILE* out = stdout;
|
||||
|
||||
#if defined (_WIN32)
|
||||
static void* hConsole;
|
||||
#else
|
||||
static FILE* tty = nullptr;
|
||||
static termios initial_state;
|
||||
#endif
|
||||
|
||||
//
|
||||
// Init and cleanup
|
||||
//
|
||||
|
||||
void init(bool use_simple_io, bool use_advanced_display) {
|
||||
advanced_display = use_advanced_display;
|
||||
simple_io = use_simple_io;
|
||||
#if defined(_WIN32)
|
||||
// Windows-specific console initialization
|
||||
DWORD dwMode = 0;
|
||||
hConsole = GetStdHandle(STD_OUTPUT_HANDLE);
|
||||
if (hConsole == INVALID_HANDLE_VALUE || !GetConsoleMode(hConsole, &dwMode)) {
|
||||
hConsole = GetStdHandle(STD_ERROR_HANDLE);
|
||||
if (hConsole != INVALID_HANDLE_VALUE && (!GetConsoleMode(hConsole, &dwMode))) {
|
||||
hConsole = nullptr;
|
||||
simple_io = true;
|
||||
}
|
||||
}
|
||||
if (hConsole) {
|
||||
// Check conditions combined to reduce nesting
|
||||
if (advanced_display && !(dwMode & ENABLE_VIRTUAL_TERMINAL_PROCESSING) &&
|
||||
!SetConsoleMode(hConsole, dwMode | ENABLE_VIRTUAL_TERMINAL_PROCESSING)) {
|
||||
advanced_display = false;
|
||||
}
|
||||
// Set console output codepage to UTF8
|
||||
SetConsoleOutputCP(CP_UTF8);
|
||||
}
|
||||
HANDLE hConIn = GetStdHandle(STD_INPUT_HANDLE);
|
||||
if (hConIn != INVALID_HANDLE_VALUE && GetConsoleMode(hConIn, &dwMode)) {
|
||||
// Set console input codepage to UTF16
|
||||
_setmode(_fileno(stdin), _O_WTEXT);
|
||||
|
||||
// Set ICANON (ENABLE_LINE_INPUT) and ECHO (ENABLE_ECHO_INPUT)
|
||||
if (simple_io) {
|
||||
dwMode |= ENABLE_LINE_INPUT | ENABLE_ECHO_INPUT;
|
||||
} else {
|
||||
dwMode &= ~(ENABLE_LINE_INPUT | ENABLE_ECHO_INPUT);
|
||||
}
|
||||
if (!SetConsoleMode(hConIn, dwMode)) {
|
||||
simple_io = true;
|
||||
}
|
||||
}
|
||||
#else
|
||||
// POSIX-specific console initialization
|
||||
if (!simple_io) {
|
||||
struct termios new_termios;
|
||||
tcgetattr(STDIN_FILENO, &initial_state);
|
||||
new_termios = initial_state;
|
||||
new_termios.c_lflag &= ~(ICANON | ECHO);
|
||||
new_termios.c_cc[VMIN] = 1;
|
||||
new_termios.c_cc[VTIME] = 0;
|
||||
tcsetattr(STDIN_FILENO, TCSANOW, &new_termios);
|
||||
|
||||
tty = fopen("/dev/tty", "w+");
|
||||
if (tty != nullptr) {
|
||||
out = tty;
|
||||
}
|
||||
}
|
||||
|
||||
setlocale(LC_ALL, "");
|
||||
#endif
|
||||
}
|
||||
|
||||
void cleanup() {
|
||||
// Reset console display
|
||||
set_display(reset);
|
||||
|
||||
#if !defined(_WIN32)
|
||||
// Restore settings on POSIX systems
|
||||
if (!simple_io) {
|
||||
if (tty != nullptr) {
|
||||
out = stdout;
|
||||
fclose(tty);
|
||||
tty = nullptr;
|
||||
}
|
||||
tcsetattr(STDIN_FILENO, TCSANOW, &initial_state);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
//
|
||||
// Display and IO
|
||||
//
|
||||
|
||||
// Keep track of current display and only emit ANSI code if it changes
|
||||
void set_display(display_t display) {
|
||||
if (advanced_display && current_display != display) {
|
||||
fflush(stdout);
|
||||
switch(display) {
|
||||
case reset:
|
||||
fprintf(out, ANSI_COLOR_RESET);
|
||||
break;
|
||||
case prompt:
|
||||
fprintf(out, ANSI_COLOR_YELLOW);
|
||||
break;
|
||||
case user_input:
|
||||
fprintf(out, ANSI_BOLD ANSI_COLOR_GREEN);
|
||||
break;
|
||||
case error:
|
||||
fprintf(out, ANSI_BOLD ANSI_COLOR_RED);
|
||||
}
|
||||
current_display = display;
|
||||
fflush(out);
|
||||
}
|
||||
}
|
||||
|
||||
char32_t getchar32() {
|
||||
#if defined(_WIN32)
|
||||
HANDLE hConsole = GetStdHandle(STD_INPUT_HANDLE);
|
||||
wchar_t high_surrogate = 0;
|
||||
|
||||
while (true) {
|
||||
INPUT_RECORD record;
|
||||
DWORD count;
|
||||
if (!ReadConsoleInputW(hConsole, &record, 1, &count) || count == 0) {
|
||||
return WEOF;
|
||||
}
|
||||
|
||||
if (record.EventType == KEY_EVENT && record.Event.KeyEvent.bKeyDown) {
|
||||
wchar_t wc = record.Event.KeyEvent.uChar.UnicodeChar;
|
||||
if (wc == 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if ((wc >= 0xD800) && (wc <= 0xDBFF)) { // Check if wc is a high surrogate
|
||||
high_surrogate = wc;
|
||||
continue;
|
||||
}
|
||||
if ((wc >= 0xDC00) && (wc <= 0xDFFF)) { // Check if wc is a low surrogate
|
||||
if (high_surrogate != 0) { // Check if we have a high surrogate
|
||||
return ((high_surrogate - 0xD800) << 10) + (wc - 0xDC00) + 0x10000;
|
||||
}
|
||||
}
|
||||
|
||||
high_surrogate = 0; // Reset the high surrogate
|
||||
return static_cast<char32_t>(wc);
|
||||
}
|
||||
}
|
||||
#else
|
||||
wchar_t wc = getwchar();
|
||||
if (static_cast<wint_t>(wc) == WEOF) {
|
||||
return WEOF;
|
||||
}
|
||||
|
||||
#if WCHAR_MAX == 0xFFFF
|
||||
if ((wc >= 0xD800) && (wc <= 0xDBFF)) { // Check if wc is a high surrogate
|
||||
wchar_t low_surrogate = getwchar();
|
||||
if ((low_surrogate >= 0xDC00) && (low_surrogate <= 0xDFFF)) { // Check if the next wchar is a low surrogate
|
||||
return (static_cast<char32_t>(wc & 0x03FF) << 10) + (low_surrogate & 0x03FF) + 0x10000;
|
||||
}
|
||||
}
|
||||
if ((wc >= 0xD800) && (wc <= 0xDFFF)) { // Invalid surrogate pair
|
||||
return 0xFFFD; // Return the replacement character U+FFFD
|
||||
}
|
||||
#endif
|
||||
|
||||
return static_cast<char32_t>(wc);
|
||||
#endif
|
||||
}
|
||||
|
||||
void pop_cursor() {
|
||||
#if defined(_WIN32)
|
||||
if (hConsole != NULL) {
|
||||
CONSOLE_SCREEN_BUFFER_INFO bufferInfo;
|
||||
GetConsoleScreenBufferInfo(hConsole, &bufferInfo);
|
||||
|
||||
COORD newCursorPosition = bufferInfo.dwCursorPosition;
|
||||
if (newCursorPosition.X == 0) {
|
||||
newCursorPosition.X = bufferInfo.dwSize.X - 1;
|
||||
newCursorPosition.Y -= 1;
|
||||
} else {
|
||||
newCursorPosition.X -= 1;
|
||||
}
|
||||
|
||||
SetConsoleCursorPosition(hConsole, newCursorPosition);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
putc('\b', out);
|
||||
}
|
||||
|
||||
int estimateWidth(char32_t codepoint) {
|
||||
#if defined(_WIN32)
|
||||
return 1;
|
||||
#else
|
||||
return wcwidth(codepoint);
|
||||
#endif
|
||||
}
|
||||
|
||||
int put_codepoint(const char* utf8_codepoint, size_t length, int expectedWidth) {
|
||||
#if defined(_WIN32)
|
||||
CONSOLE_SCREEN_BUFFER_INFO bufferInfo;
|
||||
if (!GetConsoleScreenBufferInfo(hConsole, &bufferInfo)) {
|
||||
// go with the default
|
||||
return expectedWidth;
|
||||
}
|
||||
COORD initialPosition = bufferInfo.dwCursorPosition;
|
||||
DWORD nNumberOfChars = length;
|
||||
WriteConsole(hConsole, utf8_codepoint, nNumberOfChars, &nNumberOfChars, NULL);
|
||||
|
||||
CONSOLE_SCREEN_BUFFER_INFO newBufferInfo;
|
||||
GetConsoleScreenBufferInfo(hConsole, &newBufferInfo);
|
||||
|
||||
// Figure out our real position if we're in the last column
|
||||
if (utf8_codepoint[0] != 0x09 && initialPosition.X == newBufferInfo.dwSize.X - 1) {
|
||||
DWORD nNumberOfChars;
|
||||
WriteConsole(hConsole, &" \b", 2, &nNumberOfChars, NULL);
|
||||
GetConsoleScreenBufferInfo(hConsole, &newBufferInfo);
|
||||
}
|
||||
|
||||
int width = newBufferInfo.dwCursorPosition.X - initialPosition.X;
|
||||
if (width < 0) {
|
||||
width += newBufferInfo.dwSize.X;
|
||||
}
|
||||
return width;
|
||||
#else
|
||||
// We can trust expectedWidth if we've got one
|
||||
if (expectedWidth >= 0 || tty == nullptr) {
|
||||
fwrite(utf8_codepoint, length, 1, out);
|
||||
return expectedWidth;
|
||||
}
|
||||
|
||||
fputs("\033[6n", tty); // Query cursor position
|
||||
int x1;
|
||||
int y1;
|
||||
int x2;
|
||||
int y2;
|
||||
int results = 0;
|
||||
results = fscanf(tty, "\033[%d;%dR", &y1, &x1);
|
||||
|
||||
fwrite(utf8_codepoint, length, 1, tty);
|
||||
|
||||
fputs("\033[6n", tty); // Query cursor position
|
||||
results += fscanf(tty, "\033[%d;%dR", &y2, &x2);
|
||||
|
||||
if (results != 4) {
|
||||
return expectedWidth;
|
||||
}
|
||||
|
||||
int width = x2 - x1;
|
||||
if (width < 0) {
|
||||
// Calculate the width considering text wrapping
|
||||
struct winsize w;
|
||||
ioctl(STDOUT_FILENO, TIOCGWINSZ, &w);
|
||||
width += w.ws_col;
|
||||
}
|
||||
return width;
|
||||
#endif
|
||||
}
|
||||
|
||||
void replace_last(char ch) {
|
||||
#if defined(_WIN32)
|
||||
pop_cursor();
|
||||
put_codepoint(&ch, 1, 1);
|
||||
#else
|
||||
fprintf(out, "\b%c", ch);
|
||||
#endif
|
||||
}
|
||||
|
||||
void append_utf8(char32_t ch, std::string & out) {
|
||||
if (ch <= 0x7F) {
|
||||
out.push_back(static_cast<unsigned char>(ch));
|
||||
} else if (ch <= 0x7FF) {
|
||||
out.push_back(static_cast<unsigned char>(0xC0 | ((ch >> 6) & 0x1F)));
|
||||
out.push_back(static_cast<unsigned char>(0x80 | (ch & 0x3F)));
|
||||
} else if (ch <= 0xFFFF) {
|
||||
out.push_back(static_cast<unsigned char>(0xE0 | ((ch >> 12) & 0x0F)));
|
||||
out.push_back(static_cast<unsigned char>(0x80 | ((ch >> 6) & 0x3F)));
|
||||
out.push_back(static_cast<unsigned char>(0x80 | (ch & 0x3F)));
|
||||
} else if (ch <= 0x10FFFF) {
|
||||
out.push_back(static_cast<unsigned char>(0xF0 | ((ch >> 18) & 0x07)));
|
||||
out.push_back(static_cast<unsigned char>(0x80 | ((ch >> 12) & 0x3F)));
|
||||
out.push_back(static_cast<unsigned char>(0x80 | ((ch >> 6) & 0x3F)));
|
||||
out.push_back(static_cast<unsigned char>(0x80 | (ch & 0x3F)));
|
||||
} else {
|
||||
// Invalid Unicode code point
|
||||
}
|
||||
}
|
||||
|
||||
// Helper function to remove the last UTF-8 character from a string
|
||||
void pop_back_utf8_char(std::string & line) {
|
||||
if (line.empty()) {
|
||||
return;
|
||||
}
|
||||
|
||||
size_t pos = line.length() - 1;
|
||||
|
||||
// Find the start of the last UTF-8 character (checking up to 4 bytes back)
|
||||
for (size_t i = 0; i < 3 && pos > 0; ++i, --pos) {
|
||||
if ((line[pos] & 0xC0) != 0x80) {
|
||||
break; // Found the start of the character
|
||||
}
|
||||
}
|
||||
line.erase(pos);
|
||||
}
|
||||
|
||||
bool readline_advanced(std::string & line, bool multiline_input) {
|
||||
if (out != stdout) {
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
line.clear();
|
||||
std::vector<int> widths;
|
||||
bool is_special_char = false;
|
||||
bool end_of_stream = false;
|
||||
|
||||
char32_t input_char;
|
||||
while (true) {
|
||||
fflush(out); // Ensure all output is displayed before waiting for input
|
||||
input_char = getchar32();
|
||||
|
||||
if (input_char == '\r' || input_char == '\n') {
|
||||
break;
|
||||
}
|
||||
|
||||
if (input_char == (char32_t) WEOF || input_char == 0x04 /* Ctrl+D*/) {
|
||||
end_of_stream = true;
|
||||
break;
|
||||
}
|
||||
|
||||
if (is_special_char) {
|
||||
set_display(user_input);
|
||||
replace_last(line.back());
|
||||
is_special_char = false;
|
||||
}
|
||||
|
||||
if (input_char == '\033') { // Escape sequence
|
||||
char32_t code = getchar32();
|
||||
if (code == '[' || code == 0x1B) {
|
||||
// Discard the rest of the escape sequence
|
||||
while ((code = getchar32()) != (char32_t) WEOF) {
|
||||
if ((code >= 'A' && code <= 'Z') || (code >= 'a' && code <= 'z') || code == '~') {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else if (input_char == 0x08 || input_char == 0x7F) { // Backspace
|
||||
if (!widths.empty()) {
|
||||
int count;
|
||||
do {
|
||||
count = widths.back();
|
||||
widths.pop_back();
|
||||
// Move cursor back, print space, and move cursor back again
|
||||
for (int i = 0; i < count; i++) {
|
||||
replace_last(' ');
|
||||
pop_cursor();
|
||||
}
|
||||
pop_back_utf8_char(line);
|
||||
} while (count == 0 && !widths.empty());
|
||||
}
|
||||
} else {
|
||||
int offset = line.length();
|
||||
append_utf8(input_char, line);
|
||||
int width = put_codepoint(line.c_str() + offset, line.length() - offset, estimateWidth(input_char));
|
||||
if (width < 0) {
|
||||
width = 0;
|
||||
}
|
||||
widths.push_back(width);
|
||||
}
|
||||
|
||||
if (!line.empty() && (line.back() == '\\' || line.back() == '/')) {
|
||||
set_display(prompt);
|
||||
replace_last(line.back());
|
||||
is_special_char = true;
|
||||
}
|
||||
}
|
||||
|
||||
bool has_more = multiline_input;
|
||||
if (is_special_char) {
|
||||
replace_last(' ');
|
||||
pop_cursor();
|
||||
|
||||
char last = line.back();
|
||||
line.pop_back();
|
||||
if (last == '\\') {
|
||||
line += '\n';
|
||||
fputc('\n', out);
|
||||
has_more = !has_more;
|
||||
} else {
|
||||
// llama will just eat the single space, it won't act as a space
|
||||
if (line.length() == 1 && line.back() == ' ') {
|
||||
line.clear();
|
||||
pop_cursor();
|
||||
}
|
||||
has_more = false;
|
||||
}
|
||||
} else {
|
||||
if (end_of_stream) {
|
||||
has_more = false;
|
||||
} else {
|
||||
line += '\n';
|
||||
fputc('\n', out);
|
||||
}
|
||||
}
|
||||
|
||||
fflush(out);
|
||||
return has_more;
|
||||
}
|
||||
|
||||
bool readline_simple(std::string & line, bool multiline_input) {
|
||||
#if defined(_WIN32)
|
||||
std::wstring wline;
|
||||
if (!std::getline(std::wcin, wline)) {
|
||||
// Input stream is bad or EOF received
|
||||
line.clear();
|
||||
GenerateConsoleCtrlEvent(CTRL_C_EVENT, 0);
|
||||
return false;
|
||||
}
|
||||
|
||||
int size_needed = WideCharToMultiByte(CP_UTF8, 0, &wline[0], (int)wline.size(), NULL, 0, NULL, NULL);
|
||||
line.resize(size_needed);
|
||||
WideCharToMultiByte(CP_UTF8, 0, &wline[0], (int)wline.size(), &line[0], size_needed, NULL, NULL);
|
||||
#else
|
||||
if (!std::getline(std::cin, line)) {
|
||||
// Input stream is bad or EOF received
|
||||
line.clear();
|
||||
return false;
|
||||
}
|
||||
#endif
|
||||
if (!line.empty()) {
|
||||
char last = line.back();
|
||||
if (last == '/') { // Always return control on '/' symbol
|
||||
line.pop_back();
|
||||
return false;
|
||||
}
|
||||
if (last == '\\') { // '\\' changes the default action
|
||||
line.pop_back();
|
||||
multiline_input = !multiline_input;
|
||||
}
|
||||
}
|
||||
line += '\n';
|
||||
|
||||
// By default, continue input if multiline_input is set
|
||||
return multiline_input;
|
||||
}
|
||||
|
||||
bool readline(std::string & line, bool multiline_input) {
|
||||
set_display(user_input);
|
||||
|
||||
if (simple_io) {
|
||||
return readline_simple(line, multiline_input);
|
||||
}
|
||||
return readline_advanced(line, multiline_input);
|
||||
}
|
||||
|
||||
}
|
||||
@@ -1,19 +0,0 @@
|
||||
// Console functions
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <string>
|
||||
|
||||
namespace console {
|
||||
enum display_t {
|
||||
reset = 0,
|
||||
prompt,
|
||||
user_input,
|
||||
error
|
||||
};
|
||||
|
||||
void init(bool use_simple_io, bool use_advanced_display);
|
||||
void cleanup();
|
||||
void set_display(display_t display);
|
||||
bool readline(std::string & line, bool multiline_input);
|
||||
}
|
||||
@@ -1,423 +0,0 @@
|
||||
#include "grammar-parser.h"
|
||||
#include <cstdint>
|
||||
#include <cwchar>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
#include <stdexcept>
|
||||
#include <exception>
|
||||
|
||||
namespace grammar_parser {
|
||||
// NOTE: assumes valid utf8 (but checks for overrun)
|
||||
// copied from llama.cpp
|
||||
std::pair<uint32_t, const char *> decode_utf8(const char * src) {
|
||||
static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
|
||||
uint8_t first_byte = static_cast<uint8_t>(*src);
|
||||
uint8_t highbits = first_byte >> 4;
|
||||
int len = lookup[highbits];
|
||||
uint8_t mask = (1 << (8 - len)) - 1;
|
||||
uint32_t value = first_byte & mask;
|
||||
const char * end = src + len; // may overrun!
|
||||
const char * pos = src + 1;
|
||||
for ( ; pos < end && *pos; pos++) {
|
||||
value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
|
||||
}
|
||||
return std::make_pair(value, pos);
|
||||
}
|
||||
|
||||
uint32_t get_symbol_id(parse_state & state, const char * src, size_t len) {
|
||||
uint32_t next_id = static_cast<uint32_t>(state.symbol_ids.size());
|
||||
auto result = state.symbol_ids.insert(std::make_pair(std::string(src, len), next_id));
|
||||
return result.first->second;
|
||||
}
|
||||
|
||||
uint32_t generate_symbol_id(parse_state & state, const std::string & base_name) {
|
||||
uint32_t next_id = static_cast<uint32_t>(state.symbol_ids.size());
|
||||
state.symbol_ids[base_name + '_' + std::to_string(next_id)] = next_id;
|
||||
return next_id;
|
||||
}
|
||||
|
||||
void add_rule(
|
||||
parse_state & state,
|
||||
uint32_t rule_id,
|
||||
const std::vector<llama_grammar_element> & rule) {
|
||||
if (state.rules.size() <= rule_id) {
|
||||
state.rules.resize(rule_id + 1);
|
||||
}
|
||||
state.rules[rule_id] = rule;
|
||||
}
|
||||
|
||||
bool is_word_char(char c) {
|
||||
return ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || c == '-' || ('0' <= c && c <= '9');
|
||||
}
|
||||
|
||||
std::pair<uint32_t, const char *> parse_hex(const char * src, int size) {
|
||||
const char * pos = src;
|
||||
const char * end = src + size;
|
||||
uint32_t value = 0;
|
||||
for ( ; pos < end && *pos; pos++) {
|
||||
value <<= 4;
|
||||
char c = *pos;
|
||||
if ('a' <= c && c <= 'f') {
|
||||
value += c - 'a' + 10;
|
||||
} else if ('A' <= c && c <= 'F') {
|
||||
value += c - 'A' + 10;
|
||||
} else if ('0' <= c && c <= '9') {
|
||||
value += c - '0';
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (pos != end) {
|
||||
throw std::runtime_error("expecting " + std::to_string(size) + " hex chars at " + src);
|
||||
}
|
||||
return std::make_pair(value, pos);
|
||||
}
|
||||
|
||||
const char * parse_space(const char * src, bool newline_ok) {
|
||||
const char * pos = src;
|
||||
while (*pos == ' ' || *pos == '\t' || *pos == '#' ||
|
||||
(newline_ok && (*pos == '\r' || *pos == '\n'))) {
|
||||
if (*pos == '#') {
|
||||
while (*pos && *pos != '\r' && *pos != '\n') {
|
||||
pos++;
|
||||
}
|
||||
} else {
|
||||
pos++;
|
||||
}
|
||||
}
|
||||
return pos;
|
||||
}
|
||||
|
||||
const char * parse_name(const char * src) {
|
||||
const char * pos = src;
|
||||
while (is_word_char(*pos)) {
|
||||
pos++;
|
||||
}
|
||||
if (pos == src) {
|
||||
throw std::runtime_error(std::string("expecting name at ") + src);
|
||||
}
|
||||
return pos;
|
||||
}
|
||||
|
||||
std::pair<uint32_t, const char *> parse_char(const char * src) {
|
||||
if (*src == '\\') {
|
||||
switch (src[1]) {
|
||||
case 'x': return parse_hex(src + 2, 2);
|
||||
case 'u': return parse_hex(src + 2, 4);
|
||||
case 'U': return parse_hex(src + 2, 8);
|
||||
case 't': return std::make_pair('\t', src + 2);
|
||||
case 'r': return std::make_pair('\r', src + 2);
|
||||
case 'n': return std::make_pair('\n', src + 2);
|
||||
case '\\':
|
||||
case '"':
|
||||
case '[':
|
||||
case ']':
|
||||
return std::make_pair(src[1], src + 2);
|
||||
default:
|
||||
throw std::runtime_error(std::string("unknown escape at ") + src);
|
||||
}
|
||||
} else if (*src) {
|
||||
return decode_utf8(src);
|
||||
}
|
||||
throw std::runtime_error("unexpected end of input");
|
||||
}
|
||||
|
||||
const char * parse_alternates(
|
||||
parse_state & state,
|
||||
const char * src,
|
||||
const std::string & rule_name,
|
||||
uint32_t rule_id,
|
||||
bool is_nested);
|
||||
|
||||
const char * parse_sequence(
|
||||
parse_state & state,
|
||||
const char * src,
|
||||
const std::string & rule_name,
|
||||
std::vector<llama_grammar_element> & out_elements,
|
||||
bool is_nested) {
|
||||
size_t last_sym_start = out_elements.size();
|
||||
const char * pos = src;
|
||||
while (*pos) {
|
||||
if (*pos == '"') { // literal string
|
||||
pos++;
|
||||
last_sym_start = out_elements.size();
|
||||
while (*pos != '"') {
|
||||
auto char_pair = parse_char(pos);
|
||||
pos = char_pair.second;
|
||||
out_elements.push_back({LLAMA_GRETYPE_CHAR, char_pair.first});
|
||||
}
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
} else if (*pos == '[') { // char range(s)
|
||||
pos++;
|
||||
enum llama_gretype start_type = LLAMA_GRETYPE_CHAR;
|
||||
if (*pos == '^') {
|
||||
pos++;
|
||||
start_type = LLAMA_GRETYPE_CHAR_NOT;
|
||||
}
|
||||
last_sym_start = out_elements.size();
|
||||
while (*pos != ']') {
|
||||
auto char_pair = parse_char(pos);
|
||||
pos = char_pair.second;
|
||||
enum llama_gretype type = last_sym_start < out_elements.size()
|
||||
? LLAMA_GRETYPE_CHAR_ALT
|
||||
: start_type;
|
||||
|
||||
out_elements.push_back({type, char_pair.first});
|
||||
if (pos[0] == '-' && pos[1] != ']') {
|
||||
auto endchar_pair = parse_char(pos + 1);
|
||||
pos = endchar_pair.second;
|
||||
out_elements.push_back({LLAMA_GRETYPE_CHAR_RNG_UPPER, endchar_pair.first});
|
||||
}
|
||||
}
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
} else if (is_word_char(*pos)) { // rule reference
|
||||
const char * name_end = parse_name(pos);
|
||||
uint32_t ref_rule_id = get_symbol_id(state, pos, name_end - pos);
|
||||
pos = parse_space(name_end, is_nested);
|
||||
last_sym_start = out_elements.size();
|
||||
out_elements.push_back({LLAMA_GRETYPE_RULE_REF, ref_rule_id});
|
||||
} else if (*pos == '(') { // grouping
|
||||
// parse nested alternates into synthesized rule
|
||||
pos = parse_space(pos + 1, true);
|
||||
uint32_t sub_rule_id = generate_symbol_id(state, rule_name);
|
||||
pos = parse_alternates(state, pos, rule_name, sub_rule_id, true);
|
||||
last_sym_start = out_elements.size();
|
||||
// output reference to synthesized rule
|
||||
out_elements.push_back({LLAMA_GRETYPE_RULE_REF, sub_rule_id});
|
||||
if (*pos != ')') {
|
||||
throw std::runtime_error(std::string("expecting ')' at ") + pos);
|
||||
}
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
} else if (*pos == '*' || *pos == '+' || *pos == '?') { // repetition operator
|
||||
if (last_sym_start == out_elements.size()) {
|
||||
throw std::runtime_error(std::string("expecting preceeding item to */+/? at ") + pos);
|
||||
}
|
||||
|
||||
// apply transformation to previous symbol (last_sym_start to end) according to
|
||||
// rewrite rules:
|
||||
// S* --> S' ::= S S' |
|
||||
// S+ --> S' ::= S S' | S
|
||||
// S? --> S' ::= S |
|
||||
uint32_t sub_rule_id = generate_symbol_id(state, rule_name);
|
||||
std::vector<llama_grammar_element> sub_rule;
|
||||
// add preceding symbol to generated rule
|
||||
sub_rule.insert(
|
||||
sub_rule.end(), out_elements.begin() + last_sym_start, out_elements.end());
|
||||
if (*pos == '*' || *pos == '+') {
|
||||
// cause generated rule to recurse
|
||||
sub_rule.push_back({LLAMA_GRETYPE_RULE_REF, sub_rule_id});
|
||||
}
|
||||
// mark start of alternate def
|
||||
sub_rule.push_back({LLAMA_GRETYPE_ALT, 0});
|
||||
if (*pos == '+') {
|
||||
// add preceding symbol as alternate only for '+' (otherwise empty)
|
||||
sub_rule.insert(
|
||||
sub_rule.end(), out_elements.begin() + last_sym_start, out_elements.end());
|
||||
}
|
||||
sub_rule.push_back({LLAMA_GRETYPE_END, 0});
|
||||
add_rule(state, sub_rule_id, sub_rule);
|
||||
|
||||
// in original rule, replace previous symbol with reference to generated rule
|
||||
out_elements.resize(last_sym_start);
|
||||
out_elements.push_back({LLAMA_GRETYPE_RULE_REF, sub_rule_id});
|
||||
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
return pos;
|
||||
}
|
||||
|
||||
const char * parse_alternates(
|
||||
parse_state & state,
|
||||
const char * src,
|
||||
const std::string & rule_name,
|
||||
uint32_t rule_id,
|
||||
bool is_nested) {
|
||||
std::vector<llama_grammar_element> rule;
|
||||
const char * pos = parse_sequence(state, src, rule_name, rule, is_nested);
|
||||
while (*pos == '|') {
|
||||
rule.push_back({LLAMA_GRETYPE_ALT, 0});
|
||||
pos = parse_space(pos + 1, true);
|
||||
pos = parse_sequence(state, pos, rule_name, rule, is_nested);
|
||||
}
|
||||
rule.push_back({LLAMA_GRETYPE_END, 0});
|
||||
add_rule(state, rule_id, rule);
|
||||
return pos;
|
||||
}
|
||||
|
||||
const char * parse_rule(parse_state & state, const char * src) {
|
||||
const char * name_end = parse_name(src);
|
||||
const char * pos = parse_space(name_end, false);
|
||||
size_t name_len = name_end - src;
|
||||
uint32_t rule_id = get_symbol_id(state, src, name_len);
|
||||
const std::string name(src, name_len);
|
||||
|
||||
if (!(pos[0] == ':' && pos[1] == ':' && pos[2] == '=')) {
|
||||
throw std::runtime_error(std::string("expecting ::= at ") + pos);
|
||||
}
|
||||
pos = parse_space(pos + 3, true);
|
||||
|
||||
pos = parse_alternates(state, pos, name, rule_id, false);
|
||||
|
||||
if (*pos == '\r') {
|
||||
pos += pos[1] == '\n' ? 2 : 1;
|
||||
} else if (*pos == '\n') {
|
||||
pos++;
|
||||
} else if (*pos) {
|
||||
throw std::runtime_error(std::string("expecting newline or end at ") + pos);
|
||||
}
|
||||
return parse_space(pos, true);
|
||||
}
|
||||
|
||||
parse_state parse(const char * src) {
|
||||
try {
|
||||
parse_state state;
|
||||
const char * pos = parse_space(src, true);
|
||||
while (*pos) {
|
||||
pos = parse_rule(state, pos);
|
||||
}
|
||||
return state;
|
||||
} catch (const std::exception & err) {
|
||||
fprintf(stderr, "%s: error parsing grammar: %s\n", __func__, err.what());
|
||||
return parse_state();
|
||||
}
|
||||
}
|
||||
|
||||
void print_grammar_char(FILE * file, uint32_t c) {
|
||||
if (0x20 <= c && c <= 0x7f) {
|
||||
fprintf(file, "%c", static_cast<char>(c));
|
||||
} else {
|
||||
// cop out of encoding UTF-8
|
||||
fprintf(file, "<U+%04X>", c);
|
||||
}
|
||||
}
|
||||
|
||||
bool is_char_element(llama_grammar_element elem) {
|
||||
switch (elem.type) {
|
||||
case LLAMA_GRETYPE_CHAR: return true;
|
||||
case LLAMA_GRETYPE_CHAR_NOT: return true;
|
||||
case LLAMA_GRETYPE_CHAR_ALT: return true;
|
||||
case LLAMA_GRETYPE_CHAR_RNG_UPPER: return true;
|
||||
default: return false;
|
||||
}
|
||||
}
|
||||
|
||||
void print_rule_binary(FILE * file, const std::vector<llama_grammar_element> & rule) {
|
||||
for (auto elem : rule) {
|
||||
switch (elem.type) {
|
||||
case LLAMA_GRETYPE_END: fprintf(file, "END"); break;
|
||||
case LLAMA_GRETYPE_ALT: fprintf(file, "ALT"); break;
|
||||
case LLAMA_GRETYPE_RULE_REF: fprintf(file, "RULE_REF"); break;
|
||||
case LLAMA_GRETYPE_CHAR: fprintf(file, "CHAR"); break;
|
||||
case LLAMA_GRETYPE_CHAR_NOT: fprintf(file, "CHAR_NOT"); break;
|
||||
case LLAMA_GRETYPE_CHAR_RNG_UPPER: fprintf(file, "CHAR_RNG_UPPER"); break;
|
||||
case LLAMA_GRETYPE_CHAR_ALT: fprintf(file, "CHAR_ALT"); break;
|
||||
}
|
||||
switch (elem.type) {
|
||||
case LLAMA_GRETYPE_END:
|
||||
case LLAMA_GRETYPE_ALT:
|
||||
case LLAMA_GRETYPE_RULE_REF:
|
||||
fprintf(file, "(%u) ", elem.value);
|
||||
break;
|
||||
case LLAMA_GRETYPE_CHAR:
|
||||
case LLAMA_GRETYPE_CHAR_NOT:
|
||||
case LLAMA_GRETYPE_CHAR_RNG_UPPER:
|
||||
case LLAMA_GRETYPE_CHAR_ALT:
|
||||
fprintf(file, "(\"");
|
||||
print_grammar_char(file, elem.value);
|
||||
fprintf(file, "\") ");
|
||||
break;
|
||||
}
|
||||
}
|
||||
fprintf(file, "\n");
|
||||
}
|
||||
|
||||
void print_rule(
|
||||
FILE * file,
|
||||
uint32_t rule_id,
|
||||
const std::vector<llama_grammar_element> & rule,
|
||||
const std::map<uint32_t, std::string> & symbol_id_names) {
|
||||
if (rule.empty() || rule.back().type != LLAMA_GRETYPE_END) {
|
||||
throw std::runtime_error(
|
||||
"malformed rule, does not end with LLAMA_GRETYPE_END: " + std::to_string(rule_id));
|
||||
}
|
||||
fprintf(file, "%s ::= ", symbol_id_names.at(rule_id).c_str());
|
||||
for (size_t i = 0, end = rule.size() - 1; i < end; i++) {
|
||||
llama_grammar_element elem = rule[i];
|
||||
switch (elem.type) {
|
||||
case LLAMA_GRETYPE_END:
|
||||
throw std::runtime_error(
|
||||
"unexpected end of rule: " + std::to_string(rule_id) + "," +
|
||||
std::to_string(i));
|
||||
case LLAMA_GRETYPE_ALT:
|
||||
fprintf(file, "| ");
|
||||
break;
|
||||
case LLAMA_GRETYPE_RULE_REF:
|
||||
fprintf(file, "%s ", symbol_id_names.at(elem.value).c_str());
|
||||
break;
|
||||
case LLAMA_GRETYPE_CHAR:
|
||||
fprintf(file, "[");
|
||||
print_grammar_char(file, elem.value);
|
||||
break;
|
||||
case LLAMA_GRETYPE_CHAR_NOT:
|
||||
fprintf(file, "[^");
|
||||
print_grammar_char(file, elem.value);
|
||||
break;
|
||||
case LLAMA_GRETYPE_CHAR_RNG_UPPER:
|
||||
if (i == 0 || !is_char_element(rule[i - 1])) {
|
||||
throw std::runtime_error(
|
||||
"LLAMA_GRETYPE_CHAR_RNG_UPPER without preceding char: " +
|
||||
std::to_string(rule_id) + "," + std::to_string(i));
|
||||
}
|
||||
fprintf(file, "-");
|
||||
print_grammar_char(file, elem.value);
|
||||
break;
|
||||
case LLAMA_GRETYPE_CHAR_ALT:
|
||||
if (i == 0 || !is_char_element(rule[i - 1])) {
|
||||
throw std::runtime_error(
|
||||
"LLAMA_GRETYPE_CHAR_ALT without preceding char: " +
|
||||
std::to_string(rule_id) + "," + std::to_string(i));
|
||||
}
|
||||
print_grammar_char(file, elem.value);
|
||||
break;
|
||||
}
|
||||
if (is_char_element(elem)) {
|
||||
switch (rule[i + 1].type) {
|
||||
case LLAMA_GRETYPE_CHAR_ALT:
|
||||
case LLAMA_GRETYPE_CHAR_RNG_UPPER:
|
||||
break;
|
||||
default:
|
||||
fprintf(file, "] ");
|
||||
}
|
||||
}
|
||||
}
|
||||
fprintf(file, "\n");
|
||||
}
|
||||
|
||||
void print_grammar(FILE * file, const parse_state & state) {
|
||||
try {
|
||||
std::map<uint32_t, std::string> symbol_id_names;
|
||||
for (auto kv : state.symbol_ids) {
|
||||
symbol_id_names[kv.second] = kv.first;
|
||||
}
|
||||
for (size_t i = 0, end = state.rules.size(); i < end; i++) {
|
||||
// fprintf(file, "%zu: ", i);
|
||||
// print_rule_binary(file, state.rules[i]);
|
||||
print_rule(file, uint32_t(i), state.rules[i], symbol_id_names);
|
||||
// fprintf(file, "\n");
|
||||
}
|
||||
} catch (const std::exception & err) {
|
||||
fprintf(stderr, "\n%s: error printing grammar: %s\n", __func__, err.what());
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<const llama_grammar_element *> parse_state::c_rules() {
|
||||
std::vector<const llama_grammar_element *> ret;
|
||||
for (const auto & rule : rules) {
|
||||
ret.push_back(rule.data());
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
@@ -1,29 +0,0 @@
|
||||
// Implements a parser for an extended Backus-Naur form (BNF), producing the
|
||||
// binary context-free grammar format specified by llama.h. Supports character
|
||||
// ranges, grouping, and repetition operators. As an example, a grammar for
|
||||
// arithmetic might look like:
|
||||
//
|
||||
// root ::= expr
|
||||
// expr ::= term ([-+*/] term)*
|
||||
// term ::= num | "(" space expr ")" space
|
||||
// num ::= [0-9]+ space
|
||||
// space ::= [ \t\n]*
|
||||
|
||||
#pragma once
|
||||
#include "llama.h"
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <cstdint>
|
||||
#include <string>
|
||||
|
||||
namespace grammar_parser {
|
||||
struct parse_state {
|
||||
std::map<std::string, uint32_t> symbol_ids;
|
||||
std::vector<std::vector<llama_grammar_element>> rules;
|
||||
|
||||
std::vector<const llama_grammar_element *> c_rules();
|
||||
};
|
||||
|
||||
parse_state parse(const char * src);
|
||||
void print_grammar(FILE * file, const parse_state & state);
|
||||
}
|
||||
@@ -1,278 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# HF falcon--> gguf conversion
|
||||
|
||||
import gguf
|
||||
import os
|
||||
import sys
|
||||
import struct
|
||||
import json
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from typing import Any, List
|
||||
from pathlib import Path
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
def bytes_to_unicode():
|
||||
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
|
||||
"""
|
||||
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
||||
The reversible bpe codes work on unicode strings.
|
||||
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
||||
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
||||
This is a significant percentage of your normal, say, 32K bpe vocab.
|
||||
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
||||
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
||||
"""
|
||||
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
||||
cs = bs[:]
|
||||
n = 0
|
||||
for b in range(2**8):
|
||||
if b not in bs:
|
||||
bs.append(b)
|
||||
cs.append(2**8+n)
|
||||
n += 1
|
||||
cs = [chr(n) for n in cs]
|
||||
return dict(zip(bs, cs))
|
||||
|
||||
|
||||
def count_model_parts(dir_model: str) -> int:
|
||||
num_parts = 0
|
||||
for filename in os.listdir(dir_model):
|
||||
if filename.startswith("pytorch_model-"):
|
||||
num_parts += 1
|
||||
|
||||
if num_parts > 0:
|
||||
print("gguf: found " + str(num_parts) + " model parts")
|
||||
return num_parts
|
||||
|
||||
|
||||
if len(sys.argv) < 3:
|
||||
print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
|
||||
print(" ftype == 0 -> float32")
|
||||
print(" ftype == 1 -> float16")
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
# output in the same directory as the model
|
||||
dir_model = sys.argv[1]
|
||||
last_dir = os.path.basename(os.path.normpath(dir_model))
|
||||
|
||||
# possible tensor data types
|
||||
# ftype == 0 -> float32
|
||||
# ftype == 1 -> float16
|
||||
|
||||
# map from ftype to string
|
||||
ftype_str = ["f32", "f16"]
|
||||
|
||||
ftype = 1
|
||||
if len(sys.argv) > 2:
|
||||
ftype = int(sys.argv[2])
|
||||
if ftype < 0 or ftype > 1:
|
||||
print("Invalid ftype: " + str(ftype))
|
||||
|
||||
sys.exit(1)
|
||||
|
||||
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
|
||||
|
||||
print("gguf: loading model "+last_dir)
|
||||
|
||||
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
|
||||
hparams = json.load(f)
|
||||
|
||||
if hparams["architectures"][0] != "RWForCausalLM":
|
||||
print("Model architecture not supported: " + hparams["architectures"][0])
|
||||
|
||||
sys.exit()
|
||||
|
||||
# get number of model parts
|
||||
num_parts = count_model_parts(dir_model)
|
||||
|
||||
ARCH=gguf.MODEL_ARCH.FALCON
|
||||
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
|
||||
|
||||
print("gguf: get model metadata")
|
||||
|
||||
block_count = hparams["n_layer"]
|
||||
|
||||
gguf_writer.add_name("Falcon")
|
||||
gguf_writer.add_context_length(2048) # not in config.json
|
||||
gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
|
||||
gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||||
gguf_writer.add_feed_forward_length(4 * hparams["hidden_size"])
|
||||
gguf_writer.add_block_count(block_count)
|
||||
gguf_writer.add_head_count(hparams["n_head"])
|
||||
if "n_head_kv" in hparams:
|
||||
gguf_writer.add_head_count_kv(hparams["n_head_kv"])
|
||||
else:
|
||||
gguf_writer.add_head_count_kv(1)
|
||||
gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"])
|
||||
|
||||
# TOKENIZATION
|
||||
|
||||
print("gguf: get tokenizer metadata")
|
||||
|
||||
tokens: List[str] = []
|
||||
scores: List[float] = []
|
||||
toktypes: List[int] = []
|
||||
merges: List[str] = []
|
||||
|
||||
|
||||
if Path(dir_model + "/tokenizer.json").is_file():
|
||||
# gpt2 tokenizer
|
||||
gguf_writer.add_tokenizer_model("gpt2")
|
||||
|
||||
print("gguf: get gpt2 tokenizer merges")
|
||||
|
||||
with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f:
|
||||
tokenizer_json = json.load(f)
|
||||
merges = tokenizer_json["model"]["merges"]
|
||||
|
||||
gguf_writer.add_token_merges(merges)
|
||||
|
||||
print("gguf: get gpt2 tokenizer vocab")
|
||||
|
||||
vocab_size = len(tokenizer_json["model"]["vocab"])
|
||||
|
||||
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
|
||||
tokenizer = AutoTokenizer.from_pretrained(dir_model)
|
||||
|
||||
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
|
||||
byte_encoder = bytes_to_unicode()
|
||||
byte_decoder = {v: k for k, v in byte_encoder.items()}
|
||||
|
||||
for i in range(vocab_size):
|
||||
if i in reverse_vocab:
|
||||
try:
|
||||
text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
|
||||
except KeyError:
|
||||
text = bytearray()
|
||||
for c in reverse_vocab[i]:
|
||||
if ord(c) < 256: # single byte character
|
||||
text.append(byte_decoder[ord(c)])
|
||||
else: # multibyte special token character
|
||||
text.extend(c.encode('utf-8'))
|
||||
else:
|
||||
print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
|
||||
pad_token = f"[PAD{i}]".encode("utf8")
|
||||
text = bytearray(pad_token)
|
||||
|
||||
tokens.append(text)
|
||||
scores.append(0.0) # dymmy
|
||||
toktypes.append(gguf.TokenType.NORMAL) # dummy
|
||||
|
||||
gguf_writer.add_token_list(tokens)
|
||||
gguf_writer.add_token_scores(scores)
|
||||
gguf_writer.add_token_types(toktypes)
|
||||
|
||||
print("gguf: get special token ids")
|
||||
# Look for special tokens in config.json
|
||||
|
||||
if "bos_token_id" in hparams and hparams["bos_token_id"] != None:
|
||||
gguf_writer.add_bos_token_id(hparams["bos_token_id"])
|
||||
|
||||
if "eos_token_id" in hparams and hparams["eos_token_id"] != None:
|
||||
gguf_writer.add_eos_token_id(hparams["eos_token_id"])
|
||||
|
||||
if "unk_token_id" in hparams and hparams["unk_token_id"] != None:
|
||||
gguf_writer.add_unk_token_id(hparams["unk_token_id"])
|
||||
|
||||
if "sep_token_id" in hparams and hparams["sep_token_id"] != None:
|
||||
gguf_writer.add_sep_token_id(hparams["sep_token_id"])
|
||||
|
||||
if "pad_token_id" in hparams and hparams["pad_token_id"] != None:
|
||||
gguf_writer.add_pad_token_id(hparams["pad_token_id"])
|
||||
|
||||
|
||||
# TENSORS
|
||||
|
||||
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
|
||||
|
||||
# params for qkv transform
|
||||
n_head = hparams["n_head"]
|
||||
n_head_kv = hparams["n_head_kv"] if "n_head_kv" in hparams else 1
|
||||
|
||||
head_dim = hparams["hidden_size"] // n_head
|
||||
|
||||
# tensor info
|
||||
print("gguf: get tensor metadata")
|
||||
|
||||
if num_parts == 0:
|
||||
part_names = ("pytorch_model.bin",)
|
||||
else:
|
||||
part_names = (
|
||||
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
|
||||
)
|
||||
|
||||
for part_name in part_names:
|
||||
print("gguf: loading model part '" + part_name + "'")
|
||||
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
|
||||
|
||||
for name in model_part.keys():
|
||||
data = model_part[name]
|
||||
|
||||
old_dtype = data.dtype
|
||||
|
||||
# convert any unsupported data types to float32
|
||||
if data.dtype != torch.float16 and data.dtype != torch.float32:
|
||||
data = data.to(torch.float32)
|
||||
|
||||
# QKV tensor transform
|
||||
# The original query_key_value tensor contains n_head_kv "kv groups",
|
||||
# each consisting of n_head/n_head_kv query weights followed by one key
|
||||
# and one value weight (shared by all query heads in the kv group).
|
||||
# This layout makes it a big pain to work with in GGML.
|
||||
# So we rearrange them here,, so that we have n_head query weights
|
||||
# followed by n_head_kv key weights followed by n_head_kv value weights,
|
||||
# in contiguous fashion.
|
||||
# ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
|
||||
|
||||
if "query_key_value" in name:
|
||||
qkv = data.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
|
||||
q = qkv[:, :-2 ].reshape(n_head * head_dim, head_dim * n_head)
|
||||
k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
|
||||
v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
|
||||
data = torch.cat((q,k,v)).reshape_as(data)
|
||||
|
||||
data = data.squeeze().numpy()
|
||||
|
||||
# map tensor names
|
||||
if name.endswith(".weight") and name[:-7] in tensor_map:
|
||||
name = tensor_map[name[:-7]] + ".weight"
|
||||
elif name.endswith(".bias") and name[:-5] in tensor_map:
|
||||
name = tensor_map[name[:-5]] + ".bias"
|
||||
else:
|
||||
print("Can not map tensor '" + name + "'")
|
||||
sys.exit()
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
||||
# if f32 desired, convert any float16 to float32
|
||||
if ftype == 0 and data_dtype == np.float16:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||||
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
|
||||
|
||||
gguf_writer.add_tensor(name, data)
|
||||
|
||||
|
||||
print("gguf: write header")
|
||||
gguf_writer.write_header_to_file()
|
||||
print("gguf: write metadata")
|
||||
gguf_writer.write_kv_data_to_file()
|
||||
print("gguf: write tensors")
|
||||
gguf_writer.write_tensors_to_file()
|
||||
|
||||
gguf_writer.close()
|
||||
|
||||
print("gguf: model successfully exported to '" + fname_out + "'")
|
||||
print("")
|
||||
@@ -1,267 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# HF gptneox--> gguf conversion
|
||||
|
||||
import gguf
|
||||
import os
|
||||
import sys
|
||||
import struct
|
||||
import json
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from typing import Any, List
|
||||
from pathlib import Path
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
|
||||
|
||||
|
||||
def bytes_to_unicode():
|
||||
"""
|
||||
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
||||
The reversible bpe codes work on unicode strings.
|
||||
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
||||
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
||||
This is a significant percentage of your normal, say, 32K bpe vocab.
|
||||
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
||||
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
||||
"""
|
||||
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
||||
cs = bs[:]
|
||||
n = 0
|
||||
for b in range(2**8):
|
||||
if b not in bs:
|
||||
bs.append(b)
|
||||
cs.append(2**8+n)
|
||||
n += 1
|
||||
cs = [chr(n) for n in cs]
|
||||
return dict(zip(bs, cs))
|
||||
|
||||
|
||||
def count_model_parts(dir_model: str) -> int:
|
||||
num_parts = 0
|
||||
for filename in os.listdir(dir_model):
|
||||
if filename.startswith("pytorch_model-"):
|
||||
num_parts += 1
|
||||
|
||||
if num_parts > 0:
|
||||
print("gguf: found " + str(num_parts) + " model parts")
|
||||
return num_parts
|
||||
|
||||
|
||||
if len(sys.argv) < 3:
|
||||
print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
|
||||
print(" ftype == 0 -> float32")
|
||||
print(" ftype == 1 -> float16")
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
# output in the same directory as the model
|
||||
dir_model = sys.argv[1]
|
||||
last_dir = os.path.basename(os.path.normpath(dir_model))
|
||||
|
||||
# possible tensor data types
|
||||
# ftype == 0 -> float32
|
||||
# ftype == 1 -> float16
|
||||
|
||||
# map from ftype to string
|
||||
ftype_str = ["f32", "f16"]
|
||||
|
||||
ftype = 1
|
||||
if len(sys.argv) > 2:
|
||||
ftype = int(sys.argv[2])
|
||||
if ftype < 0 or ftype > 1:
|
||||
print("Invalid ftype: " + str(ftype))
|
||||
|
||||
sys.exit(1)
|
||||
|
||||
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
|
||||
|
||||
print("gguf: loading model "+last_dir)
|
||||
|
||||
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
|
||||
hparams = json.load(f)
|
||||
|
||||
if hparams["architectures"][0] != "GPTNeoXForCausalLM":
|
||||
print("Model architecture not supported: " + hparams["architectures"][0])
|
||||
|
||||
sys.exit()
|
||||
|
||||
# get number of model parts
|
||||
num_parts = count_model_parts(dir_model)
|
||||
|
||||
ARCH=gguf.MODEL_ARCH.GPTNEOX
|
||||
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
|
||||
|
||||
print("gguf: get model metadata")
|
||||
|
||||
block_count = hparams["num_hidden_layers"]
|
||||
|
||||
gguf_writer.add_name(last_dir)
|
||||
gguf_writer.add_context_length(hparams["max_position_embeddings"])
|
||||
gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||||
gguf_writer.add_block_count(block_count)
|
||||
gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
|
||||
gguf_writer.add_rope_dimension_count(int(hparams["rotary_pct"]*(hparams["hidden_size"]//hparams["num_attention_heads"])))
|
||||
gguf_writer.add_head_count(hparams["num_attention_heads"])
|
||||
gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
|
||||
gguf_writer.add_layer_norm_eps(hparams["layer_norm_eps"])
|
||||
|
||||
# TOKENIZATION
|
||||
|
||||
print("gguf: get tokenizer metadata")
|
||||
|
||||
tokens: List[str] = []
|
||||
merges: List[str] = []
|
||||
|
||||
|
||||
if Path(dir_model + "/tokenizer.json").is_file():
|
||||
# gpt2 tokenizer
|
||||
gguf_writer.add_tokenizer_model("gpt2")
|
||||
|
||||
print("gguf: get gpt2 tokenizer merges")
|
||||
|
||||
with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f:
|
||||
tokenizer_json = json.load(f)
|
||||
merges = tokenizer_json["model"]["merges"]
|
||||
|
||||
gguf_writer.add_token_merges(merges)
|
||||
|
||||
print("gguf: get gpt2 tokenizer vocab")
|
||||
|
||||
vocab_size = len(tokenizer_json["model"]["vocab"])
|
||||
|
||||
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
|
||||
tokenizer = AutoTokenizer.from_pretrained(dir_model)
|
||||
|
||||
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
|
||||
byte_encoder = bytes_to_unicode()
|
||||
byte_decoder = {v: k for k, v in byte_encoder.items()}
|
||||
|
||||
for i in range(vocab_size):
|
||||
if i in reverse_vocab:
|
||||
try:
|
||||
text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
|
||||
except KeyError:
|
||||
text = bytearray()
|
||||
for c in reverse_vocab[i]:
|
||||
if ord(c) < 256: # single byte character
|
||||
text.append(byte_decoder[ord(c)])
|
||||
else: # multibyte special token character
|
||||
text.extend(c.encode('utf-8'))
|
||||
else:
|
||||
print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
|
||||
pad_token = f"[PAD{i}]".encode("utf8")
|
||||
text = bytearray(pad_token)
|
||||
|
||||
tokens.append(text)
|
||||
|
||||
gguf_writer.add_token_list(tokens)
|
||||
|
||||
if "added_tokens" in tokenizer_json and Path(dir_model + "/tokenizer_config.json").is_file():
|
||||
print("gguf: get special token ids")
|
||||
|
||||
with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f:
|
||||
tokenizer_config = json.load(f)
|
||||
|
||||
# find special token ids
|
||||
|
||||
if "bos_token" in tokenizer_config:
|
||||
for key in tokenizer_json["added_tokens"]:
|
||||
if key["content"] == tokenizer_config["bos_token"]:
|
||||
gguf_writer.add_bos_token_id(key["id"])
|
||||
|
||||
if "eos_token" in tokenizer_config:
|
||||
for key in tokenizer_json["added_tokens"]:
|
||||
if key["content"] == tokenizer_config["eos_token"]:
|
||||
gguf_writer.add_eos_token_id(key["id"])
|
||||
|
||||
if "unk_token" in tokenizer_config:
|
||||
for key in tokenizer_json["added_tokens"]:
|
||||
if key["content"] == tokenizer_config["unk_token"]:
|
||||
gguf_writer.add_unk_token_id(key["id"])
|
||||
|
||||
if "sep_token" in tokenizer_config:
|
||||
for key in tokenizer_json["added_tokens"]:
|
||||
if key["content"] == tokenizer_config["sep_token"]:
|
||||
gguf_writer.add_sep_token_id(key["id"])
|
||||
|
||||
if "pad_token" in tokenizer_config:
|
||||
for key in tokenizer_json["added_tokens"]:
|
||||
if key["content"] == tokenizer_config["pad_token"]:
|
||||
gguf_writer.add_pad_token_id(key["id"])
|
||||
|
||||
|
||||
# TENSORS
|
||||
|
||||
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
|
||||
|
||||
# tensor info
|
||||
print("gguf: get tensor metadata")
|
||||
|
||||
if num_parts == 0:
|
||||
part_names = ("pytorch_model.bin",)
|
||||
else:
|
||||
part_names = (
|
||||
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
|
||||
)
|
||||
|
||||
for part_name in part_names:
|
||||
print("gguf: loading model part '" + part_name + "'")
|
||||
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
|
||||
|
||||
for name in model_part.keys():
|
||||
data = model_part[name]
|
||||
|
||||
# we don't need these
|
||||
if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
|
||||
continue
|
||||
|
||||
old_dtype = data.dtype
|
||||
|
||||
# convert any unsupported data types to float32
|
||||
if data.dtype != torch.float16 and data.dtype != torch.float32:
|
||||
data = data.to(torch.float32)
|
||||
|
||||
data = data.squeeze().numpy()
|
||||
|
||||
# map tensor names
|
||||
if name.endswith(".weight") and name[:-7] in tensor_map:
|
||||
name = tensor_map[name[:-7]] + ".weight"
|
||||
elif name.endswith(".bias") and name[:-5] in tensor_map:
|
||||
name = tensor_map[name[:-5]] + ".bias"
|
||||
else:
|
||||
print("Can not map tensor '" + name + "'")
|
||||
sys.exit()
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
||||
# if f32 desired, convert any float16 to float32
|
||||
if ftype == 0 and data_dtype == np.float16:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||||
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
|
||||
|
||||
gguf_writer.add_tensor(name, data)
|
||||
|
||||
|
||||
print("gguf: write header")
|
||||
gguf_writer.write_header_to_file()
|
||||
print("gguf: write metadata")
|
||||
gguf_writer.write_kv_data_to_file()
|
||||
print("gguf: write tensors")
|
||||
gguf_writer.write_tensors_to_file()
|
||||
|
||||
gguf_writer.close()
|
||||
|
||||
print("gguf: model successfully exported to '" + fname_out + "'")
|
||||
print("")
|
||||
@@ -1,308 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# 7b pth llama --> gguf conversion
|
||||
# Only models with a single datafile are supported, like 7B
|
||||
# HF files required in the model dir: config.json tokenizer_config.json tokenizer.json tokenizer.model
|
||||
|
||||
import gguf
|
||||
import os
|
||||
import sys
|
||||
import struct
|
||||
import json
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from typing import Any, List
|
||||
from pathlib import Path
|
||||
from sentencepiece import SentencePieceProcessor
|
||||
|
||||
#NDArray = np.ndarray[Any, Any]
|
||||
# compatible with python < 3.9
|
||||
NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
|
||||
|
||||
|
||||
def count_model_parts(dir_model: str) -> int:
|
||||
num_parts = 0
|
||||
for filename in os.listdir(dir_model):
|
||||
if filename.startswith("consolidated."):
|
||||
num_parts += 1
|
||||
|
||||
if num_parts > 0:
|
||||
print("gguf: found " + str(num_parts) + " model parts")
|
||||
return num_parts
|
||||
|
||||
|
||||
if len(sys.argv) < 3:
|
||||
print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
|
||||
print(" ftype == 0 -> float32")
|
||||
print(" ftype == 1 -> float16")
|
||||
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
# output in the same directory as the model
|
||||
dir_model = sys.argv[1]
|
||||
last_dir = os.path.basename(os.path.normpath(dir_model))
|
||||
|
||||
|
||||
# possible tensor data types
|
||||
# ftype == 0 -> float32
|
||||
# ftype == 1 -> float16
|
||||
|
||||
# map from ftype to string
|
||||
ftype_str = ["f32", "f16"]
|
||||
|
||||
ftype = 1
|
||||
if len(sys.argv) > 2:
|
||||
ftype = int(sys.argv[2])
|
||||
if ftype < 0 or ftype > 1:
|
||||
print("Invalid ftype: " + str(ftype))
|
||||
|
||||
sys.exit(1)
|
||||
|
||||
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
|
||||
|
||||
print("gguf: loading model "+last_dir)
|
||||
|
||||
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
|
||||
hparams = json.load(f)
|
||||
|
||||
if hparams["architectures"][0] != "LlamaForCausalLM":
|
||||
print("Model architecture not supported: " + hparams["architectures"][0])
|
||||
sys.exit()
|
||||
|
||||
# get number of model parts
|
||||
num_parts = count_model_parts(dir_model)
|
||||
|
||||
if num_parts > 1:
|
||||
print("gguf: Only models with a single datafile are supported.")
|
||||
|
||||
sys.exit()
|
||||
|
||||
ARCH=gguf.MODEL_ARCH.LLAMA
|
||||
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
|
||||
|
||||
|
||||
print("gguf: get model metadata")
|
||||
|
||||
block_count = hparams["num_hidden_layers"]
|
||||
head_count = hparams["num_attention_heads"]
|
||||
|
||||
if "num_key_value_heads" in hparams:
|
||||
head_count_kv = hparams["num_key_value_heads"]
|
||||
else:
|
||||
head_count_kv = head_count
|
||||
|
||||
if "_name_or_path" in hparams:
|
||||
hf_repo = hparams["_name_or_path"]
|
||||
else:
|
||||
hf_repo = ""
|
||||
|
||||
if "max_sequence_length" in hparams:
|
||||
ctx_length = hparams["max_sequence_length"]
|
||||
elif "max_position_embeddings" in hparams:
|
||||
ctx_length = hparams["max_position_embeddings"]
|
||||
else:
|
||||
print("gguf: can not find ctx length parameter.")
|
||||
|
||||
sys.exit()
|
||||
|
||||
|
||||
gguf_writer.add_name(last_dir)
|
||||
gguf_writer.add_source_hf_repo(hf_repo)
|
||||
gguf_writer.add_tensor_data_layout("Meta AI original pth")
|
||||
gguf_writer.add_context_length(ctx_length)
|
||||
gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||||
gguf_writer.add_block_count(block_count)
|
||||
gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
|
||||
gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
|
||||
gguf_writer.add_head_count(head_count)
|
||||
gguf_writer.add_head_count_kv(head_count_kv)
|
||||
gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
|
||||
|
||||
if "rope_scaling" in hparams and hparams["rope_scaling"] != None and "factor" in hparams["rope_scaling"]:
|
||||
if "type" in hparams["rope_scaling"]:
|
||||
if hparams["rope_scaling"]["type"] == "linear":
|
||||
gguf_writer.add_rope_scale_linear(hparams["rope_scaling"]["factor"])
|
||||
|
||||
|
||||
# TOKENIZATION
|
||||
|
||||
print("gguf: get tokenizer metadata")
|
||||
|
||||
tokens: List[bytes] = []
|
||||
scores: List[float] = []
|
||||
toktypes: List[int] = []
|
||||
|
||||
if Path(dir_model + "/tokenizer.model").is_file():
|
||||
# vocab type sentencepiece
|
||||
print("gguf: get sentencepiece tokenizer vocab and scores")
|
||||
|
||||
tokenizer = SentencePieceProcessor(dir_model + "/tokenizer.model")
|
||||
|
||||
for i in range(tokenizer.vocab_size()):
|
||||
text: bytes
|
||||
score: float
|
||||
|
||||
piece = tokenizer.id_to_piece(i)
|
||||
text = piece.encode("utf-8")
|
||||
score = tokenizer.get_score(i)
|
||||
|
||||
toktype = 1 # defualt to normal token type
|
||||
if tokenizer.is_unknown(i):
|
||||
toktype = 2
|
||||
if tokenizer.is_control(i):
|
||||
toktype = 3
|
||||
|
||||
# toktype = 4 is user-defined = tokens from added_tokens.json
|
||||
|
||||
if tokenizer.is_unused(i):
|
||||
toktype = 5
|
||||
if tokenizer.is_byte(i):
|
||||
toktype = 6
|
||||
|
||||
tokens.append(text)
|
||||
scores.append(score)
|
||||
toktypes.append(toktype)
|
||||
|
||||
if Path(dir_model + "/added_tokens.json").is_file():
|
||||
with open(dir_model + "/added_tokens.json", "r", encoding="utf-8") as f:
|
||||
addtokens_json = json.load(f)
|
||||
|
||||
print("gguf: get added tokens")
|
||||
|
||||
for key in addtokens_json:
|
||||
tokens.append( key.encode("utf-8") )
|
||||
scores.append(-1000.0)
|
||||
toktypes.append(4) # user-defined token type
|
||||
|
||||
gguf_writer.add_tokenizer_model("llama")
|
||||
gguf_writer.add_token_list(tokens)
|
||||
gguf_writer.add_token_scores(scores)
|
||||
gguf_writer.add_token_types(toktypes)
|
||||
|
||||
|
||||
print("gguf: get special token ids")
|
||||
|
||||
if Path(dir_model + "/tokenizer.json").is_file():
|
||||
# Look for special tokens in tokenizer.json if it exists
|
||||
|
||||
with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f:
|
||||
tokenizer = json.load(f)
|
||||
|
||||
if "added_tokens" in tokenizer and Path(dir_model + "/tokenizer_config.json").is_file():
|
||||
|
||||
with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f:
|
||||
tokenizer_config = json.load(f)
|
||||
|
||||
if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] != None:
|
||||
for key in tokenizer["added_tokens"]:
|
||||
if key["content"] == tokenizer_config["bos_token"]["content"]:
|
||||
gguf_writer.add_bos_token_id(key["id"])
|
||||
|
||||
if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] != None:
|
||||
for key in tokenizer["added_tokens"]:
|
||||
if key["content"] == tokenizer_config["eos_token"]["content"]:
|
||||
gguf_writer.add_eos_token_id(key["id"])
|
||||
|
||||
if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] != None:
|
||||
for key in tokenizer["added_tokens"]:
|
||||
if key["content"] == tokenizer_config["unk_token"]["content"]:
|
||||
gguf_writer.add_unk_token_id(key["id"])
|
||||
|
||||
if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] != None:
|
||||
for key in tokenizer["added_tokens"]:
|
||||
if key["content"] == tokenizer_config["sep_token"]["content"]:
|
||||
gguf_writer.add_sep_token_id(key["id"])
|
||||
|
||||
if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] != None:
|
||||
for key in tokenizer["added_tokens"]:
|
||||
if key["content"] == tokenizer_config["pad_token"]["content"]:
|
||||
gguf_writer.add_pad_token_id(key["id"])
|
||||
else:
|
||||
# If no tokenizer.json: Look for special tokens in config.json
|
||||
|
||||
if "bos_token_id" in hparams and hparams["bos_token_id"] != None:
|
||||
gguf_writer.add_bos_token_id(hparams["bos_token_id"])
|
||||
|
||||
if "eos_token_id" in hparams and hparams["eos_token_id"] != None:
|
||||
gguf_writer.add_eos_token_id(hparams["eos_token_id"])
|
||||
|
||||
if "unk_token_id" in hparams and hparams["unk_token_id"] != None:
|
||||
gguf_writer.add_unk_token_id(hparams["unk_token_id"])
|
||||
|
||||
if "sep_token_id" in hparams and hparams["sep_token_id"] != None:
|
||||
gguf_writer.add_sep_token_id(hparams["sep_token_id"])
|
||||
|
||||
if "pad_token_id" in hparams and hparams["pad_token_id"] != None:
|
||||
gguf_writer.add_pad_token_id(hparams["pad_token_id"])
|
||||
|
||||
|
||||
# TENSORS
|
||||
|
||||
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
|
||||
|
||||
# tensor info
|
||||
print("gguf: get tensor metadata")
|
||||
|
||||
part_names = (f"consolidated.{n:02}.pth" for n in range(0, num_parts))
|
||||
|
||||
for part_name in part_names:
|
||||
print("gguf: loading model part '" + part_name + "'")
|
||||
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
|
||||
|
||||
for name in model_part.keys():
|
||||
data = model_part[name]
|
||||
|
||||
# we don't need these
|
||||
if name == "rope.freqs":
|
||||
continue
|
||||
|
||||
old_dtype = data.dtype
|
||||
|
||||
# convert any unsupported data types to float32
|
||||
if data.dtype != torch.float16 and data.dtype != torch.float32:
|
||||
data = data.to(torch.float32)
|
||||
|
||||
data = data.squeeze().numpy()
|
||||
|
||||
# map tensor names
|
||||
if name.endswith(".weight") and name[:-7] in tensor_map:
|
||||
name = tensor_map[name[:-7]] + ".weight"
|
||||
elif name.endswith(".bias") and name[:-5] in tensor_map:
|
||||
name = tensor_map[name[:-5]] + ".bias"
|
||||
else:
|
||||
print("Can not map tensor '" + name + "'")
|
||||
sys.exit()
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
||||
# if f32 desired, convert any float16 to float32
|
||||
if ftype == 0 and data_dtype == np.float16:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||||
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
|
||||
|
||||
gguf_writer.add_tensor(name, data)
|
||||
|
||||
|
||||
print("gguf: write header")
|
||||
gguf_writer.write_header_to_file()
|
||||
print("gguf: write metadata")
|
||||
gguf_writer.write_kv_data_to_file()
|
||||
print("gguf: write tensors")
|
||||
gguf_writer.write_tensors_to_file()
|
||||
|
||||
gguf_writer.close()
|
||||
|
||||
|
||||
print("gguf: model successfully exported to '" + fname_out + "'")
|
||||
print("")
|
||||
@@ -1,345 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
import sys, struct, math, argparse
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
|
||||
import gguf
|
||||
|
||||
# Note: Does not support GGML_QKK_64
|
||||
QK_K = 256
|
||||
# Items here are (block size, type size)
|
||||
GGML_QUANT_SIZES = {
|
||||
gguf.GGMLQuantizationType.F32 : (1, 4),
|
||||
gguf.GGMLQuantizationType.F16 : (1, 2),
|
||||
gguf.GGMLQuantizationType.Q4_0 : (32, 2 + 16),
|
||||
gguf.GGMLQuantizationType.Q4_1 : (32, 2 + 2 + 16),
|
||||
gguf.GGMLQuantizationType.Q5_0 : (32, 2 + 4 + 16),
|
||||
gguf.GGMLQuantizationType.Q5_1 : (32, 2 + 2 + 4 + 16),
|
||||
gguf.GGMLQuantizationType.Q8_0 : (32, 2 + 32),
|
||||
gguf.GGMLQuantizationType.Q8_1 : (32, 4 + 4 + 32),
|
||||
gguf.GGMLQuantizationType.Q2_K : (256, 2 + 2 + QK_K // 16 + QK_K // 4),
|
||||
gguf.GGMLQuantizationType.Q3_K : (256, 2 + QK_K // 4 + QK_K // 8 + 12),
|
||||
gguf.GGMLQuantizationType.Q4_K : (256, 2 + 2 + QK_K // 2 + 12),
|
||||
gguf.GGMLQuantizationType.Q5_K : (256, 2 + 2 + QK_K // 2 + QK_K // 8 + 12),
|
||||
gguf.GGMLQuantizationType.Q6_K : (256, 2 + QK_K // 2 + QK_K // 4 + QK_K // 16),
|
||||
gguf.GGMLQuantizationType.Q8_K : (256, 4 + QK_K + QK_K // 8),
|
||||
}
|
||||
|
||||
class Hyperparameters:
|
||||
def __init__(self):
|
||||
self.n_vocab = self.n_embd = self.n_mult = self.n_head = self.n_layer = self.n_rot = self.ftype = 0
|
||||
self.n_ff = 0
|
||||
|
||||
def set_n_ff(self, model):
|
||||
ff_tensor_idx = model.tensor_map.get(b'layers.0.feed_forward.w1.weight')
|
||||
assert ff_tensor_idx is not None, 'Missing layer 0 FF tensor'
|
||||
ff_tensor = model.tensors[ff_tensor_idx]
|
||||
self.n_ff = ff_tensor.dims[1]
|
||||
|
||||
def load(self, data, offset):
|
||||
(
|
||||
self.n_vocab,
|
||||
self.n_embd,
|
||||
self.n_mult,
|
||||
self.n_head,
|
||||
self.n_layer,
|
||||
self.n_rot,
|
||||
self.ftype,
|
||||
) = struct.unpack('<7I', data[offset:offset + (4 * 7)])
|
||||
return 4 * 7
|
||||
|
||||
def __str__(self):
|
||||
return f'<Hyperparameters: n_vocab={self.n_vocab}, n_embd={self.n_embd}, n_mult={self.n_mult}, n_head={self.n_head}, n_layer={self.n_layer}, n_rot={self.n_rot}, n_ff={self.n_ff}, ftype={self.ftype}>'
|
||||
|
||||
class Vocab:
|
||||
def __init__(self):
|
||||
self.items = []
|
||||
|
||||
def load(self, data, offset, n_vocab):
|
||||
orig_offset = offset
|
||||
for _ in range(n_vocab):
|
||||
itemlen = struct.unpack('<I', data[offset:offset + 4])[0]
|
||||
assert itemlen < 4096, 'Absurd vocab item length'
|
||||
offset += 4
|
||||
vocab = bytes(data[offset:offset + itemlen])
|
||||
offset += itemlen
|
||||
score = struct.unpack('<f', data[offset:offset + 4])[0]
|
||||
offset += 4
|
||||
self.items.append((vocab, score))
|
||||
return offset - orig_offset
|
||||
|
||||
class Tensor:
|
||||
def __init__(self):
|
||||
self.name = None
|
||||
self.dims = ()
|
||||
self.dtype = None
|
||||
self.start_offset = 0
|
||||
self.len_bytes = 0
|
||||
|
||||
def load(self, data, offset):
|
||||
orig_offset = offset
|
||||
(n_dims, name_len, dtype) = struct.unpack('<3I', data[offset:offset + 12])
|
||||
assert n_dims >= 0 and n_dims <= 4, f'Invalid tensor dimensions {n_dims}'
|
||||
assert name_len < 4096, 'Absurd tensor name length'
|
||||
quant = GGML_QUANT_SIZES.get(dtype)
|
||||
assert quant is not None, 'Unknown tensor type'
|
||||
(blksize, tysize) = quant
|
||||
offset += 12
|
||||
self.dtype= dtype
|
||||
self.dims = struct.unpack(f'<{n_dims}I', data[offset:offset + (4 * n_dims)])
|
||||
offset += 4 * n_dims
|
||||
self.name = bytes(data[offset:offset + name_len])
|
||||
offset += name_len
|
||||
pad = ((offset + 31) & ~31) - offset
|
||||
offset += pad
|
||||
n_elems = np.prod(self.dims)
|
||||
n_bytes = np.int64(np.int64(n_elems) * np.int64(tysize)) // np.int64(blksize)
|
||||
self.start_offset = offset
|
||||
self.len_bytes = n_bytes
|
||||
offset += n_bytes
|
||||
# print(n_dims, name_len, dtype, self.dims, self.name, pad)
|
||||
return offset - orig_offset
|
||||
|
||||
class GGMLV3Model:
|
||||
def __init__(self):
|
||||
self.hyperparameters = None
|
||||
self.vocab = None
|
||||
self.tensor_map = {}
|
||||
self.tensors = []
|
||||
|
||||
def validate_header(self, data, offset):
|
||||
if bytes(data[offset:offset + 4]) != b'tjgg' or struct.unpack('<I', data[offset + 4:offset + 8])[0] != 3:
|
||||
raise ValueError('Only GGJTv3 supported')
|
||||
return 8
|
||||
|
||||
def load(self, data, offset):
|
||||
offset += self.validate_header(data, offset)
|
||||
hp = Hyperparameters()
|
||||
offset += hp.load(data, offset)
|
||||
vocab = Vocab()
|
||||
offset += vocab.load(data, offset, hp.n_vocab)
|
||||
tensors = []
|
||||
tensor_map = {}
|
||||
while offset < len(data):
|
||||
tensor = Tensor()
|
||||
offset += tensor.load(data, offset)
|
||||
tensor_map[tensor.name] = len(tensors)
|
||||
tensors.append(tensor)
|
||||
self.hyperparameters = hp
|
||||
self.vocab = vocab
|
||||
self.tensors = tensors
|
||||
self.tensor_map = tensor_map
|
||||
hp.set_n_ff(self)
|
||||
return offset
|
||||
|
||||
class GGMLToGGUF:
|
||||
def __init__(self, ggml_model, data, cfg, params_override = None, vocab_override = None):
|
||||
hp = ggml_model.hyperparameters
|
||||
self.model = ggml_model
|
||||
self.data = data
|
||||
self.cfg = cfg
|
||||
self.params_override = params_override
|
||||
self.vocab_override = vocab_override
|
||||
if params_override is not None:
|
||||
n_kv_head = params_override.n_head_kv
|
||||
else:
|
||||
if cfg.gqa == 1:
|
||||
n_kv_head = hp.n_head
|
||||
else:
|
||||
gqa = float(cfg.gqa)
|
||||
n_kv_head = None
|
||||
for x in range(1, 256):
|
||||
if float(hp.n_head) / float(x) == gqa:
|
||||
n_kv_head = x
|
||||
assert n_kv_head is not None, "Couldn't determine n_kv_head from GQA param"
|
||||
print(f'- Guessed n_kv_head = {n_kv_head} based on GQA {cfg.gqa}')
|
||||
self.n_kv_head = n_kv_head
|
||||
self.name_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.LLAMA, ggml_model.hyperparameters.n_layer)
|
||||
|
||||
def save(self):
|
||||
print('* Preparing to save GGUF file')
|
||||
gguf_writer = gguf.GGUFWriter(self.cfg.output, gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA], use_temp_file = False)
|
||||
self.add_params(gguf_writer)
|
||||
self.add_vocab(gguf_writer)
|
||||
self.add_tensors(gguf_writer)
|
||||
print(" gguf: write header")
|
||||
gguf_writer.write_header_to_file()
|
||||
print(" gguf: write metadata")
|
||||
gguf_writer.write_kv_data_to_file()
|
||||
print(" gguf: write tensors")
|
||||
gguf_writer.write_tensors_to_file()
|
||||
gguf_writer.close()
|
||||
|
||||
def add_params(self, gguf_writer):
|
||||
hp = self.model.hyperparameters
|
||||
cfg = self.cfg
|
||||
desc = cfg.desc if cfg.desc is not None else 'converted from legacy GGJTv3 format'
|
||||
try:
|
||||
# Filenames aren't necessarily valid UTF8.
|
||||
name = cfg.name if cfg.name is not None else cfg.input.name
|
||||
except UnicodeDecodeError:
|
||||
name = None
|
||||
print('* Adding model parameters and KV items')
|
||||
if name is not None:
|
||||
gguf_writer.add_name(name)
|
||||
gguf_writer.add_description(desc)
|
||||
if self.params_override is not None:
|
||||
po = self.params_override
|
||||
assert po.n_embd == hp.n_embd, 'Model hyperparams mismatch'
|
||||
assert po.n_layer == hp.n_layer, 'Model hyperparams mismatch'
|
||||
assert po.n_head == hp.n_head, 'Model hyperparams mismatch'
|
||||
gguf_writer.add_context_length (po.n_ctx)
|
||||
gguf_writer.add_embedding_length (po.n_embd)
|
||||
gguf_writer.add_block_count (po.n_layer)
|
||||
gguf_writer.add_feed_forward_length (po.n_ff)
|
||||
gguf_writer.add_rope_dimension_count(po.n_embd // po.n_head)
|
||||
gguf_writer.add_head_count (po.n_head)
|
||||
gguf_writer.add_head_count_kv (po.n_head_kv)
|
||||
gguf_writer.add_layer_norm_rms_eps (po.f_norm_eps)
|
||||
return
|
||||
gguf_writer.add_context_length(cfg.context_length)
|
||||
gguf_writer.add_embedding_length(hp.n_embd)
|
||||
gguf_writer.add_block_count(hp.n_layer)
|
||||
gguf_writer.add_feed_forward_length(hp.n_ff)
|
||||
gguf_writer.add_rope_dimension_count(hp.n_embd // hp.n_head)
|
||||
gguf_writer.add_head_count(hp.n_head)
|
||||
gguf_writer.add_head_count_kv(self.n_kv_head)
|
||||
gguf_writer.add_layer_norm_rms_eps(float(cfg.eps))
|
||||
|
||||
def add_vocab(self, gguf_writer):
|
||||
hp = self.model.hyperparameters
|
||||
gguf_writer.add_tokenizer_model('llama')
|
||||
tokens = []
|
||||
scores = []
|
||||
toktypes = []
|
||||
if self.vocab_override is not None:
|
||||
vo = self.vocab_override
|
||||
print('* Adding vocab item(s)')
|
||||
for (idx, (vbytes, score, ttype)) in enumerate(vo.all_tokens()):
|
||||
tokens.append(vbytes)
|
||||
scores.append(score)
|
||||
toktypes.append(ttype)
|
||||
assert len(tokens) == hp.n_vocab, f'Override vocab has a different number of items than hyperparameters - override = {len(tokens)} but n_vocab={hp.n_vocab}'
|
||||
gguf_writer.add_token_list(tokens)
|
||||
gguf_writer.add_token_scores(scores)
|
||||
if len(toktypes) > 0:
|
||||
gguf_writer.add_token_types(toktypes)
|
||||
return
|
||||
print(f'* Adding {hp.n_vocab} vocab item(s)')
|
||||
assert len(self.model.vocab.items) >= 3, 'Cannot handle unexpectedly short model vocab'
|
||||
for (tokid, (vbytes, vscore)) in enumerate(self.model.vocab.items):
|
||||
tt = 1 # Normal
|
||||
# Special handling for UNK, BOS, EOS tokens.
|
||||
if tokid <= 2:
|
||||
if tokid == 0:
|
||||
vbytes = b'<unk>'
|
||||
tt = 2
|
||||
elif tokid == 1:
|
||||
vbytes = b'<s>'
|
||||
tt = 3
|
||||
else:
|
||||
vbytes = b'</s>'
|
||||
tt = 3
|
||||
elif len(vbytes) == 0:
|
||||
tt = 3 # Control
|
||||
elif tokid >= 3 and tokid <= 258 and len(vbytes) == 1:
|
||||
vbytes = bytes(f'<0x{vbytes[0]:02X}>', encoding = 'UTF-8')
|
||||
tt = 6 # Byte
|
||||
else:
|
||||
vbytes = vbytes.replace(b' ', b'\xe2\x96\x81')
|
||||
toktypes.append(tt)
|
||||
tokens.append(vbytes)
|
||||
scores.append(vscore)
|
||||
gguf_writer.add_token_list(tokens)
|
||||
gguf_writer.add_token_scores(scores)
|
||||
gguf_writer.add_token_types(toktypes)
|
||||
gguf_writer.add_unk_token_id(0)
|
||||
gguf_writer.add_bos_token_id(1)
|
||||
gguf_writer.add_eos_token_id(2)
|
||||
|
||||
def add_tensors(self, gguf_writer):
|
||||
nm = self.name_map
|
||||
data = self.data
|
||||
print(f'* Adding {len(self.model.tensors)} tensor(s)')
|
||||
for tensor in self.model.tensors:
|
||||
name = str(tensor.name, 'UTF-8')
|
||||
if name.endswith('.weight'):
|
||||
name = name[:-7]
|
||||
suffix = '.weight'
|
||||
elif name.endswith('.bias'):
|
||||
name = name[:-5]
|
||||
suffix = '.bias'
|
||||
mapped_name = nm.get(name)
|
||||
assert mapped_name is not None, f'Bad name {name}'
|
||||
mapped_name += suffix
|
||||
tempdims = list(tensor.dims[:])
|
||||
if len(tempdims) > 1:
|
||||
temp = tempdims[1]
|
||||
tempdims[1] = tempdims[0]
|
||||
tempdims[0] = temp
|
||||
# print(f'+ {tensor.name} | {mapped_name} {tensor.dims} :: {tempdims}')
|
||||
gguf_writer.add_tensor(mapped_name, data[tensor.start_offset:tensor.start_offset + tensor.len_bytes], raw_shape = tempdims, raw_dtype = tensor.dtype)
|
||||
|
||||
def handle_metadata(cfg, hp):
|
||||
import convert
|
||||
assert cfg.model_metadata_dir.is_dir(), 'Metadata dir is not a directory'
|
||||
hf_config_path = cfg.model_metadata_dir / "config.json"
|
||||
orig_config_path = cfg.model_metadata_dir / "params.json"
|
||||
# We pass a fake model here. "original" mode will check the shapes of some
|
||||
# tensors if information is missing in the .json file: other than that, the
|
||||
# model data isn't used so this should be safe (at least for now).
|
||||
fakemodel = {
|
||||
'tok_embeddings.weight': convert.LazyTensor.__new__(convert.LazyTensor),
|
||||
'layers.0.feed_forward.w1.weight': convert.LazyTensor.__new__(convert.LazyTensor),
|
||||
}
|
||||
fakemodel['tok_embeddings.weight'].shape = [hp.n_vocab]
|
||||
fakemodel['layers.0.feed_forward.w1.weight'].shape = [hp.n_ff]
|
||||
if hf_config_path.exists():
|
||||
params = convert.Params.loadHFTransformerJson(fakemodel, hf_config_path)
|
||||
elif orig_config_path.exists():
|
||||
params = convert.Params.loadOriginalParamsJson(fakemodel, orig_config_path)
|
||||
else:
|
||||
raise ValueError('Unable to load metadata')
|
||||
vocab = convert.load_vocab(cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir, cfg.vocabtype)
|
||||
convert.check_vocab_size(params, vocab)
|
||||
return (params, vocab)
|
||||
|
||||
def handle_args():
|
||||
parser = argparse.ArgumentParser(description = 'Convert GGMLv3 models to GGUF')
|
||||
parser.add_argument('--input', '-i', type = Path, help = 'Input GGMLv3 filename')
|
||||
parser.add_argument('--output', '-o', type = Path, help ='Output GGUF filename')
|
||||
parser.add_argument('--name', help = 'Set model name')
|
||||
parser.add_argument('--desc', help = 'Set model description')
|
||||
parser.add_argument('--gqa', type = int, default = 1, help = 'grouped-query attention factor (use 8 for LLaMA2 70B)')
|
||||
parser.add_argument('--eps', default = '5.0e-06', help = 'RMS norm eps: Use 1e-6 for LLaMA1 and OpenLLaMA, use 1e-5 for LLaMA2')
|
||||
parser.add_argument('--context-length', '-c', type=int, default = 2048, help = 'Default max context length: LLaMA1 is typically 2048, LLaMA2 is typically 4096')
|
||||
parser.add_argument('--model-metadata-dir', '-m', type = Path, help ='Load HuggingFace/.pth vocab and metadata from the specified directory')
|
||||
parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file - only meaningful with --model-metadata-dir")
|
||||
parser.add_argument("--vocabtype", choices=["spm", "bpe"], help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm)", default="spm")
|
||||
return parser.parse_args()
|
||||
|
||||
def main():
|
||||
cfg = handle_args()
|
||||
print(f'* Using config: {cfg}')
|
||||
print('\n=== WARNING === Be aware that this conversion script is best-effort. Use a native GGUF model if possible. === WARNING ===\n')
|
||||
data = np.memmap(cfg.input, mode = 'r')
|
||||
model = GGMLV3Model()
|
||||
print('* Scanning GGML input file')
|
||||
offset = model.load(data, 0)
|
||||
print(f'* GGML model hyperparameters: {model.hyperparameters}')
|
||||
vocab_override = None
|
||||
params_override = None
|
||||
if cfg.model_metadata_dir is not None:
|
||||
(params_override, vocab_override) = handle_metadata(cfg, model.hyperparameters)
|
||||
print('!! Note: When overriding params the --gqa, --eps and --context-length options are ignored.')
|
||||
print(f'* Overriding params: {params_override}')
|
||||
print(f'* Overriding vocab: {vocab_override}')
|
||||
else:
|
||||
print('\n=== WARNING === Special tokens may not be converted correctly. Use --model-metadata-dir if possible === WARNING ===\n')
|
||||
converter = GGMLToGGUF(model, data, cfg, params_override = params_override, vocab_override = vocab_override)
|
||||
converter.save()
|
||||
print(f'* Successful completion. Output saved to: {cfg.output}')
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
@@ -1,328 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# HF llama --> gguf conversion
|
||||
|
||||
import gguf
|
||||
import os
|
||||
import sys
|
||||
import struct
|
||||
import json
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from typing import Any, List, Optional
|
||||
from pathlib import Path
|
||||
from sentencepiece import SentencePieceProcessor
|
||||
|
||||
#NDArray = np.ndarray[Any, Any]
|
||||
# compatible with python < 3.9
|
||||
NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
|
||||
|
||||
# reverse HF permute back to original pth layout
|
||||
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py
|
||||
|
||||
|
||||
def reverse_hf_permute(weights: NDArray, n_head: int, n_kv_head: Optional[int] = None) -> NDArray:
|
||||
if n_kv_head is not None and n_head != n_kv_head:
|
||||
n_head //= n_kv_head
|
||||
|
||||
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
||||
.swapaxes(1, 2)
|
||||
.reshape(weights.shape))
|
||||
|
||||
|
||||
def count_model_parts(dir_model: str) -> int:
|
||||
num_parts = 0
|
||||
|
||||
for filename in os.listdir(dir_model):
|
||||
if filename.startswith("pytorch_model-"):
|
||||
num_parts += 1
|
||||
|
||||
if num_parts > 0:
|
||||
print("gguf: found " + str(num_parts) + " model parts")
|
||||
|
||||
return num_parts
|
||||
|
||||
|
||||
if len(sys.argv) < 3:
|
||||
print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
|
||||
print(" ftype == 0 -> float32")
|
||||
print(" ftype == 1 -> float16")
|
||||
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
# output in the same directory as the model
|
||||
dir_model = sys.argv[1]
|
||||
last_dir = os.path.basename(os.path.normpath(dir_model))
|
||||
|
||||
|
||||
# possible tensor data types
|
||||
# ftype == 0 -> float32
|
||||
# ftype == 1 -> float16
|
||||
|
||||
|
||||
# map from ftype to string
|
||||
ftype_str = ["f32", "f16"]
|
||||
|
||||
ftype = 1
|
||||
if len(sys.argv) > 2:
|
||||
ftype = int(sys.argv[2])
|
||||
if ftype < 0 or ftype > 1:
|
||||
print("Invalid ftype: " + str(ftype))
|
||||
|
||||
sys.exit(1)
|
||||
|
||||
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
|
||||
|
||||
print("gguf: loading model "+last_dir)
|
||||
|
||||
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
|
||||
hparams = json.load(f)
|
||||
|
||||
if hparams["architectures"][0] != "LlamaForCausalLM":
|
||||
print("Model architecture not supported: " + hparams["architectures"][0])
|
||||
|
||||
sys.exit()
|
||||
|
||||
# get number of model parts
|
||||
num_parts = count_model_parts(dir_model)
|
||||
|
||||
ARCH=gguf.MODEL_ARCH.LLAMA
|
||||
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
|
||||
|
||||
print("gguf: get model metadata")
|
||||
|
||||
block_count = hparams["num_hidden_layers"]
|
||||
head_count = hparams["num_attention_heads"]
|
||||
|
||||
if "num_key_value_heads" in hparams:
|
||||
head_count_kv = hparams["num_key_value_heads"]
|
||||
else:
|
||||
head_count_kv = head_count
|
||||
|
||||
if "_name_or_path" in hparams:
|
||||
hf_repo = hparams["_name_or_path"]
|
||||
else:
|
||||
hf_repo = ""
|
||||
|
||||
if "max_sequence_length" in hparams:
|
||||
ctx_length = hparams["max_sequence_length"]
|
||||
elif "max_position_embeddings" in hparams:
|
||||
ctx_length = hparams["max_position_embeddings"]
|
||||
else:
|
||||
print("gguf: can not find ctx length parameter.")
|
||||
|
||||
sys.exit()
|
||||
|
||||
|
||||
gguf_writer.add_name(last_dir)
|
||||
gguf_writer.add_source_hf_repo(hf_repo)
|
||||
gguf_writer.add_tensor_data_layout("Meta AI original pth")
|
||||
gguf_writer.add_context_length(ctx_length)
|
||||
gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||||
gguf_writer.add_block_count(block_count)
|
||||
gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
|
||||
gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
|
||||
gguf_writer.add_head_count(head_count)
|
||||
gguf_writer.add_head_count_kv(head_count_kv)
|
||||
gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
|
||||
|
||||
if "rope_scaling" in hparams and hparams["rope_scaling"] != None and "factor" in hparams["rope_scaling"]:
|
||||
if "type" in hparams["rope_scaling"]:
|
||||
if hparams["rope_scaling"]["type"] == "linear":
|
||||
gguf_writer.add_rope_scale_linear(hparams["rope_scaling"]["factor"])
|
||||
|
||||
|
||||
# TOKENIZATION
|
||||
|
||||
print("gguf: get tokenizer metadata")
|
||||
|
||||
tokens: List[bytes] = []
|
||||
scores: List[float] = []
|
||||
toktypes: List[int] = []
|
||||
|
||||
if Path(dir_model + "/tokenizer.model").is_file():
|
||||
# vocab type sentencepiece
|
||||
print("gguf: get sentencepiece tokenizer vocab, scores and token types")
|
||||
|
||||
tokenizer = SentencePieceProcessor(dir_model + "/tokenizer.model")
|
||||
|
||||
for i in range(tokenizer.vocab_size()):
|
||||
text: bytes
|
||||
score: float
|
||||
|
||||
piece = tokenizer.id_to_piece(i)
|
||||
text = piece.encode("utf-8")
|
||||
score = tokenizer.get_score(i)
|
||||
|
||||
toktype = 1 # defualt to normal token type
|
||||
if tokenizer.is_unknown(i):
|
||||
toktype = 2
|
||||
if tokenizer.is_control(i):
|
||||
toktype = 3
|
||||
|
||||
# toktype = 4 is user-defined = tokens from added_tokens.json
|
||||
|
||||
if tokenizer.is_unused(i):
|
||||
toktype = 5
|
||||
if tokenizer.is_byte(i):
|
||||
toktype = 6
|
||||
|
||||
tokens.append(text)
|
||||
scores.append(score)
|
||||
toktypes.append(toktype)
|
||||
|
||||
if Path(dir_model + "/added_tokens.json").is_file():
|
||||
with open(dir_model + "/added_tokens.json", "r", encoding="utf-8") as f:
|
||||
addtokens_json = json.load(f)
|
||||
|
||||
print("gguf: get added tokens")
|
||||
|
||||
for key in addtokens_json:
|
||||
tokens.append( key.encode("utf-8") )
|
||||
scores.append(-1000.0)
|
||||
toktypes.append(4) # user-defined token type
|
||||
|
||||
|
||||
gguf_writer.add_tokenizer_model("llama")
|
||||
gguf_writer.add_token_list(tokens)
|
||||
gguf_writer.add_token_scores(scores)
|
||||
gguf_writer.add_token_types(toktypes)
|
||||
|
||||
|
||||
print("gguf: get special token ids")
|
||||
|
||||
if Path(dir_model + "/tokenizer.json").is_file():
|
||||
# Look for special tokens in tokenizer.json if it exists
|
||||
|
||||
with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f:
|
||||
tokenizer = json.load(f)
|
||||
|
||||
if "added_tokens" in tokenizer and Path(dir_model + "/tokenizer_config.json").is_file():
|
||||
|
||||
with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f:
|
||||
tokenizer_config = json.load(f)
|
||||
|
||||
if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] != None:
|
||||
for key in tokenizer["added_tokens"]:
|
||||
if key["content"] == tokenizer_config["bos_token"]["content"]:
|
||||
gguf_writer.add_bos_token_id(key["id"])
|
||||
|
||||
if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] != None:
|
||||
for key in tokenizer["added_tokens"]:
|
||||
if key["content"] == tokenizer_config["eos_token"]["content"]:
|
||||
gguf_writer.add_eos_token_id(key["id"])
|
||||
|
||||
if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] != None:
|
||||
for key in tokenizer["added_tokens"]:
|
||||
if key["content"] == tokenizer_config["unk_token"]["content"]:
|
||||
gguf_writer.add_unk_token_id(key["id"])
|
||||
|
||||
if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] != None:
|
||||
for key in tokenizer["added_tokens"]:
|
||||
if key["content"] == tokenizer_config["sep_token"]["content"]:
|
||||
gguf_writer.add_sep_token_id(key["id"])
|
||||
|
||||
if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] != None:
|
||||
for key in tokenizer["added_tokens"]:
|
||||
if key["content"] == tokenizer_config["pad_token"]["content"]:
|
||||
gguf_writer.add_pad_token_id(key["id"])
|
||||
else:
|
||||
# If no tokenizer.json: Look for special tokens in config.json
|
||||
|
||||
if "bos_token_id" in hparams and hparams["bos_token_id"] != None:
|
||||
gguf_writer.add_bos_token_id(hparams["bos_token_id"])
|
||||
|
||||
if "eos_token_id" in hparams and hparams["eos_token_id"] != None:
|
||||
gguf_writer.add_eos_token_id(hparams["eos_token_id"])
|
||||
|
||||
if "unk_token_id" in hparams and hparams["unk_token_id"] != None:
|
||||
gguf_writer.add_unk_token_id(hparams["unk_token_id"])
|
||||
|
||||
if "sep_token_id" in hparams and hparams["sep_token_id"] != None:
|
||||
gguf_writer.add_sep_token_id(hparams["sep_token_id"])
|
||||
|
||||
if "pad_token_id" in hparams and hparams["pad_token_id"] != None:
|
||||
gguf_writer.add_pad_token_id(hparams["pad_token_id"])
|
||||
|
||||
|
||||
# TENSORS
|
||||
|
||||
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
|
||||
|
||||
# tensor info
|
||||
print("gguf: get tensor metadata")
|
||||
|
||||
if num_parts == 0:
|
||||
part_names = ("pytorch_model.bin",)
|
||||
else:
|
||||
part_names = (
|
||||
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
|
||||
)
|
||||
|
||||
for part_name in part_names:
|
||||
print("gguf: loading model part '" + part_name + "'")
|
||||
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
|
||||
|
||||
for name in model_part.keys():
|
||||
data = model_part[name]
|
||||
|
||||
# we don't need these
|
||||
if name.endswith(".rotary_emb.inv_freq"):
|
||||
continue
|
||||
|
||||
old_dtype = data.dtype
|
||||
|
||||
# convert any unsupported data types to float32
|
||||
if data.dtype != torch.float16 and data.dtype != torch.float32:
|
||||
data = data.to(torch.float32)
|
||||
|
||||
data = data.squeeze().numpy()
|
||||
|
||||
# reverse permute these
|
||||
if name.endswith(".q_proj.weight"):
|
||||
data = reverse_hf_permute(data, head_count)
|
||||
if name.endswith(".k_proj.weight"):
|
||||
data = reverse_hf_permute(data, head_count, head_count_kv)
|
||||
|
||||
# map tensor names
|
||||
if name.endswith(".weight") and name[:-7] in tensor_map:
|
||||
name = tensor_map[name[:-7]] + ".weight"
|
||||
elif name.endswith(".bias") and name[:-5] in tensor_map:
|
||||
name = tensor_map[name[:-5]] + ".bias"
|
||||
else:
|
||||
print("Can not map tensor '" + name + "'")
|
||||
sys.exit()
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
||||
# if f32 desired, convert any float16 to float32
|
||||
if ftype == 0 and data_dtype == np.float16:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||||
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
|
||||
|
||||
gguf_writer.add_tensor(name, data)
|
||||
|
||||
|
||||
print("gguf: write header")
|
||||
gguf_writer.write_header_to_file()
|
||||
print("gguf: write metadata")
|
||||
gguf_writer.write_kv_data_to_file()
|
||||
print("gguf: write tensors")
|
||||
gguf_writer.write_tensors_to_file()
|
||||
|
||||
gguf_writer.close()
|
||||
|
||||
|
||||
print("gguf: model successfully exported to '" + fname_out + "'")
|
||||
print("")
|
||||
40
convert-lora-to-ggml.py
Executable file → Normal file
40
convert-lora-to-ggml.py
Executable file → Normal file
@@ -1,4 +1,3 @@
|
||||
#!/usr/bin/env python3
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
@@ -6,22 +5,23 @@ import struct
|
||||
import sys
|
||||
from typing import Any, Dict, Sequence, TextIO
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
NUMPY_TYPE_TO_FTYPE: Dict[str, int] = {"float32": 0, "float16": 1}
|
||||
|
||||
from convert import DATA_TYPE_TO_FTYPE, NUMPY_TYPE_TO_DATA_TYPE, DataType
|
||||
|
||||
HF_SUBLAYER_TO_GGML = {
|
||||
"self_attn.q_proj": "attn_q",
|
||||
"self_attn.k_proj": "attn_k",
|
||||
"self_attn.v_proj": "attn_v",
|
||||
"self_attn.o_proj": "attn_output",
|
||||
"mlp.gate_proj": "ffn_gate",
|
||||
"mlp.down_proj": "ffn_down",
|
||||
"mlp.up_proj": "ffn_up",
|
||||
"input_layernorm": "attn_norm",
|
||||
"self_attn.q_proj": "attention.wq",
|
||||
"self_attn.k_proj": "attention.wk",
|
||||
"self_attn.v_proj": "attention.wv",
|
||||
"self_attn.o_proj": "attention.wo",
|
||||
"mlp.gate_proj": "feed_forward.w1",
|
||||
"mlp.down_proj": "feed_forward.w2",
|
||||
"mlp.up_proj": "feed_forward.w3",
|
||||
"input_layernorm": "attention_norm",
|
||||
"post_attention_layernorm": "ffn_norm",
|
||||
# "norm": "norm",
|
||||
# "embed_tokens": "tok_embeddings",
|
||||
# "lm_head": "output",
|
||||
}
|
||||
|
||||
|
||||
@@ -38,7 +38,7 @@ def translate_tensor_name(t: str) -> str:
|
||||
sys.exit(1)
|
||||
|
||||
output_string = (
|
||||
f"blk.{nn}.{HF_SUBLAYER_TO_GGML[sub_layer]}.weight.lora{lora_type}"
|
||||
f"layers.{nn}.{HF_SUBLAYER_TO_GGML[sub_layer]}.weight.lora{lora_type}"
|
||||
)
|
||||
return output_string
|
||||
else:
|
||||
@@ -53,14 +53,12 @@ def write_file_header(fout: TextIO, params: Dict[str, Any]) -> None:
|
||||
# https://opendelta.readthedocs.io/en/latest/modules/deltas.html says that `lora_alpha` is an int
|
||||
# but some models ship a float value instead
|
||||
# let's convert to int, but fail if lossless conversion is not possible
|
||||
assert (
|
||||
int(params["lora_alpha"]) == params["lora_alpha"]
|
||||
), "cannot convert float to int losslessly"
|
||||
assert int(params["lora_alpha"]) == params["lora_alpha"], "cannot convert float to int losslessly"
|
||||
fout.write(struct.pack("i", int(params["lora_alpha"])))
|
||||
|
||||
|
||||
def write_tensor_header(
|
||||
self, name: str, shape: Sequence[int], data_type: np.dtype
|
||||
self, name: str, shape: Sequence[int], data_type: DataType
|
||||
) -> None:
|
||||
sname = name.encode("utf-8")
|
||||
fout.write(
|
||||
@@ -68,7 +66,7 @@ def write_tensor_header(
|
||||
"iii",
|
||||
len(shape),
|
||||
len(sname),
|
||||
NUMPY_TYPE_TO_FTYPE[data_type.name],
|
||||
DATA_TYPE_TO_FTYPE[NUMPY_TYPE_TO_DATA_TYPE[data_type]],
|
||||
)
|
||||
)
|
||||
fout.write(struct.pack("i" * len(shape), *shape[::-1]))
|
||||
@@ -115,10 +113,6 @@ with open(output_path, "wb") as fout:
|
||||
|
||||
write_file_header(fout, params)
|
||||
for k, v in model.items():
|
||||
if k.endswith(".default.weight"):
|
||||
k = k.replace(".default.weight", ".weight")
|
||||
if k in ["llama_proj.weight", "llama_proj.bias"]:
|
||||
continue
|
||||
if k.endswith("lora_A.weight"):
|
||||
if v.dtype != torch.float16 and v.dtype != torch.float32:
|
||||
v = v.float()
|
||||
@@ -126,7 +120,7 @@ with open(output_path, "wb") as fout:
|
||||
else:
|
||||
v = v.float()
|
||||
|
||||
t = v.detach().numpy()
|
||||
t = v.numpy()
|
||||
tname = translate_tensor_name(k)
|
||||
print(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB")
|
||||
write_tensor_header(fout, tname, t.shape, t.dtype)
|
||||
|
||||
13
convert-pth-to-ggml.py
Normal file
13
convert-pth-to-ggml.py
Normal file
@@ -0,0 +1,13 @@
|
||||
# Compatibility stub
|
||||
|
||||
import argparse
|
||||
|
||||
import convert
|
||||
|
||||
parser = argparse.ArgumentParser(
|
||||
description="""[DEPRECATED - use `convert.py` instead]
|
||||
Convert a LLaMA model checkpoint to a ggml compatible file""")
|
||||
parser.add_argument('dir_model', help='directory containing the model checkpoint')
|
||||
parser.add_argument('ftype', help='file type (0: float32, 1: float16)', type=int, choices=[0, 1], default=1)
|
||||
args = parser.parse_args()
|
||||
convert.main(['--outtype', 'f16' if args.ftype == 1 else 'f32', '--', args.dir_model])
|
||||
1046
convert.py
Executable file → Normal file
1046
convert.py
Executable file → Normal file
File diff suppressed because it is too large
Load Diff
@@ -3,7 +3,7 @@
|
||||
## Verifying that the model is running on the GPU with cuBLAS
|
||||
Make sure you compiled llama with the correct env variables according to [this guide](../README.md#cublas), so that llama accepts the `-ngl N` (or `--n-gpu-layers N`) flag. When running llama, you may configure `N` to be very large, and llama will offload the maximum possible number of layers to the GPU, even if it's less than the number you configured. For example:
|
||||
```shell
|
||||
./main -m "path/to/model.gguf" -ngl 200000 -p "Please sir, may I have some "
|
||||
./main -m "path/to/model.bin" -ngl 200000 -p "Please sir, may I have some "
|
||||
```
|
||||
|
||||
When running llama, before it starts the inference work, it will output diagnostic information that shows whether cuBLAS is offloading work to the GPU. Look for these lines:
|
||||
@@ -25,9 +25,9 @@ GPU: A6000 (48GB VRAM)
|
||||
CPU: 7 physical cores
|
||||
RAM: 32GB
|
||||
|
||||
Model: `TheBloke_Wizard-Vicuna-30B-Uncensored-GGML/Wizard-Vicuna-30B-Uncensored.q4_0.gguf` (30B parameters, 4bit quantization, GGML)
|
||||
Model: `TheBloke_Wizard-Vicuna-30B-Uncensored-GGML/Wizard-Vicuna-30B-Uncensored.ggmlv3.q4_0.bin` (30B parameters, 4bit quantization, GGML)
|
||||
|
||||
Run command: `./main -m "path/to/model.gguf" -p "An extremely detailed description of the 10 best ethnic dishes will follow, with recipes: " -n 1000 [additional benchmark flags]`
|
||||
Run command: `./main -m "path/to/model.bin" -p "-p "An extremely detailed description of the 10 best ethnic dishes will follow, with recipes: " -n 1000 [additional benchmark flags]`
|
||||
|
||||
Result:
|
||||
|
||||
|
||||
@@ -6,6 +6,23 @@ find_package(Threads REQUIRED)
|
||||
|
||||
# ...
|
||||
|
||||
# common
|
||||
|
||||
set(TARGET common)
|
||||
|
||||
add_library(${TARGET} OBJECT
|
||||
common.h
|
||||
common.cpp
|
||||
)
|
||||
|
||||
if (BUILD_SHARED_LIBS)
|
||||
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
endif()
|
||||
|
||||
target_include_directories(${TARGET} PUBLIC .)
|
||||
target_compile_features(${TARGET} PUBLIC cxx_std_11)
|
||||
target_link_libraries(${TARGET} PRIVATE llama)
|
||||
|
||||
# examples
|
||||
|
||||
include_directories(${CMAKE_CURRENT_SOURCE_DIR})
|
||||
@@ -21,10 +38,7 @@ else()
|
||||
add_subdirectory(benchmark)
|
||||
add_subdirectory(baby-llama)
|
||||
add_subdirectory(train-text-from-scratch)
|
||||
add_subdirectory(convert-llama2c-to-ggml)
|
||||
add_subdirectory(simple)
|
||||
add_subdirectory(embd-input)
|
||||
add_subdirectory(llama-bench)
|
||||
if (LLAMA_METAL)
|
||||
add_subdirectory(metal)
|
||||
endif()
|
||||
|
||||
@@ -2,21 +2,21 @@
|
||||
set -e
|
||||
|
||||
AI_NAME="${AI_NAME:-Miku}"
|
||||
MODEL="${MODEL:-./models/llama-2-7b-chat.ggmlv3.q4_K_M.bin}"
|
||||
MODEL="${MODEL:-./models/gpt4all-7B/gpt4all-lora-unfiltered-quantized.bin}"
|
||||
USER_NAME="${USER_NAME:-Anon}"
|
||||
|
||||
# Uncomment and adjust to the number of CPU cores you want to use.
|
||||
#N_THREAD="${N_THREAD:-4}"
|
||||
CTX_SIZE="${CTX_SIZE:-4096}"
|
||||
N_PREDICTS="${N_PREDICTS:-4096}"
|
||||
|
||||
GEN_OPTIONS=(--batch_size 1024
|
||||
--ctx_size "$CTX_SIZE"
|
||||
--ctx_size 2048
|
||||
--keep -1
|
||||
--repeat_last_n 256
|
||||
--repeat_penalty 1.17647
|
||||
--temp 0.6
|
||||
--mirostat 2)
|
||||
--temp 0.7
|
||||
--top_k 40
|
||||
--top_p 0.5)
|
||||
|
||||
if [ -n "$N_THREAD" ]; then
|
||||
GEN_OPTIONS+=(--threads "$N_THREAD")
|
||||
@@ -24,17 +24,16 @@ fi
|
||||
|
||||
./main "${GEN_OPTIONS[@]}" \
|
||||
--model "$MODEL" \
|
||||
--in-prefix " " \
|
||||
--in-suffix "${AI_NAME}:" \
|
||||
--n_predict "$N_PREDICTS" \
|
||||
--color --interactive \
|
||||
--reverse-prompt "${USER_NAME}:" \
|
||||
--prompt "This is a transcript of a 1000 page, never ending conversation between ${USER_NAME} and the cute and helpful AI assistant ${AI_NAME}. ${AI_NAME} is a girl who is an AI running on the user's computer.
|
||||
--prompt "
|
||||
This is a transcript of a 1000 page, never ending conversation between ${USER_NAME} and the cute and helpful AI assistant ${AI_NAME}. ${AI_NAME} is a girl who is an AI running on the user's computer.
|
||||
${AI_NAME} can think for herself without the user seeing her thoughts by adding a /think prefix to her output. She uses this to reason about the world and to think about what she should say next.
|
||||
${AI_NAME} is always coherent and makes sense, but if she isn't sure if what she is saying is correct, she will ask the user for help.
|
||||
${AI_NAME} is a very helpful AI and will help the user with anything they need. She is also very friendly and will try to make the user feel better if they are sad.
|
||||
${AI_NAME} is also very curious and will ask the user a lot of questions about themselves and their life. She will also try to make the user like her.
|
||||
The conversation is only between ${USER_NAME} and ${AI_NAME}.
|
||||
The conversation is only between ${USER_NAME} and ${AI_NAME}
|
||||
The conversation is only through text, so ${AI_NAME} can't see ${USER_NAME}'s face or hear his voice.
|
||||
${AI_NAME} can only communicate through text, so she can't send images or videos.
|
||||
|
||||
|
||||
@@ -7,7 +7,7 @@
|
||||
cd `dirname $0`
|
||||
cd ..
|
||||
|
||||
./main -m ./models/alpaca.13b.ggmlv3.q8_0.bin \
|
||||
./main -m ./models/ggml-alpaca-7b-q4.bin \
|
||||
--color \
|
||||
-f ./prompts/alpaca.txt \
|
||||
--ctx_size 2048 \
|
||||
|
||||
@@ -1,5 +1,4 @@
|
||||
set(TARGET baby-llama)
|
||||
add_executable(${TARGET} baby-llama.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
|
||||
@@ -8,12 +8,6 @@
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
#ifdef LLAMA_DEFAULT_RMS_EPS
|
||||
static const float rms_norm_eps = LLAMA_DEFAULT_RMS_EPS;
|
||||
#else
|
||||
static const float rms_norm_eps = 5e-6f;
|
||||
#endif
|
||||
|
||||
float frand() {
|
||||
return (float)rand()/(float)RAND_MAX;
|
||||
}
|
||||
@@ -37,17 +31,6 @@ float frand_normal(struct random_normal_distribution * rnd) {
|
||||
return ((r < rnd->min) ? (rnd->min) : (r > rnd->max) ? (rnd->max) : r);
|
||||
}
|
||||
|
||||
void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
|
||||
struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
|
||||
|
||||
if (plan.work_size > 0) {
|
||||
buf.resize(plan.work_size);
|
||||
plan.work_data = buf.data();
|
||||
}
|
||||
|
||||
ggml_graph_compute(graph, &plan);
|
||||
}
|
||||
|
||||
struct ggml_tensor * randomize_tensor(
|
||||
struct ggml_tensor * tensor,
|
||||
int ndims,
|
||||
@@ -568,7 +551,7 @@ struct ggml_tensor * forward(
|
||||
// norm
|
||||
{
|
||||
// cur shape [n_embd,N,1,1]
|
||||
cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
|
||||
cur = ggml_rms_norm(ctx0, inpL);
|
||||
|
||||
// cur = attention_norm*cur
|
||||
cur = ggml_mul(ctx0,
|
||||
@@ -583,8 +566,8 @@ struct ggml_tensor * forward(
|
||||
// wk shape [n_embd, n_embd, 1, 1]
|
||||
// Qcur shape [n_embd/n_head, n_head, N, 1]
|
||||
// Kcur shape [n_embd/n_head, n_head, N, 1]
|
||||
struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0, 0);
|
||||
struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0, 0);
|
||||
struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0);
|
||||
struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0);
|
||||
|
||||
// store key and value to memory
|
||||
{
|
||||
@@ -691,7 +674,7 @@ struct ggml_tensor * forward(
|
||||
// norm
|
||||
{
|
||||
// cur shape [n_embd,N,1,1]
|
||||
cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps);
|
||||
cur = ggml_rms_norm(ctx0, inpFF);
|
||||
|
||||
// cur = ffn_norm*cur
|
||||
// cur shape [n_embd,N,1,1]
|
||||
@@ -735,7 +718,7 @@ struct ggml_tensor * forward(
|
||||
{
|
||||
|
||||
// inpL shape [n_embd,N,1,1]
|
||||
inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
|
||||
inpL = ggml_rms_norm(ctx0, inpL);
|
||||
|
||||
// inpL = norm*inpL
|
||||
// inpL shape [n_embd,N,1,1]
|
||||
@@ -823,7 +806,7 @@ struct ggml_tensor * forward_batch(
|
||||
// norm
|
||||
{
|
||||
// cur shape [n_embd,N*n_batch,1,1]
|
||||
cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
|
||||
cur = ggml_rms_norm(ctx0, inpL);
|
||||
assert_shape_2d(cur, n_embd, N*n_batch);
|
||||
|
||||
// cur = attention_norm*cur
|
||||
@@ -840,8 +823,8 @@ struct ggml_tensor * forward_batch(
|
||||
// wk shape [n_embd, n_embd, 1, 1]
|
||||
// Qcur shape [n_embd/n_head, n_head, N, n_batch]
|
||||
// Kcur shape [n_embd/n_head, n_head, N, n_batch]
|
||||
struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0, 0);
|
||||
struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0, 0);
|
||||
struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0);
|
||||
struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0);
|
||||
assert_shape_4d(Qcur, n_embd/n_head, n_head, N, n_batch);
|
||||
assert_shape_4d(Kcur, n_embd/n_head, n_head, N, n_batch);
|
||||
|
||||
@@ -987,7 +970,7 @@ struct ggml_tensor * forward_batch(
|
||||
// norm
|
||||
{
|
||||
// cur shape [n_embd,N*n_batch,1,1]
|
||||
cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps);
|
||||
cur = ggml_rms_norm(ctx0, inpFF);
|
||||
assert_shape_2d(cur, n_embd, N*n_batch);
|
||||
|
||||
// cur = ffn_norm*cur
|
||||
@@ -1040,7 +1023,7 @@ struct ggml_tensor * forward_batch(
|
||||
{
|
||||
|
||||
// inpL shape [n_embd,N*n_batch,1,1]
|
||||
inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
|
||||
inpL = ggml_rms_norm(ctx0, inpL);
|
||||
assert_shape_2d(inpL, n_embd, N*n_batch);
|
||||
|
||||
// inpL = norm*inpL
|
||||
@@ -1110,7 +1093,7 @@ struct ggml_tensor * forward_lora(
|
||||
// norm
|
||||
{
|
||||
// cur shape [n_embd,N,1,1]
|
||||
cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
|
||||
cur = ggml_rms_norm(ctx0, inpL);
|
||||
|
||||
// cur = attention_norm*cur
|
||||
cur = ggml_mul(ctx0,
|
||||
@@ -1133,7 +1116,7 @@ struct ggml_tensor * forward_lora(
|
||||
model->layers[il].wqb,
|
||||
cur)),
|
||||
n_embd/n_head, n_head, N),
|
||||
n_past, n_rot, 0, 0);
|
||||
n_past, n_rot, 0);
|
||||
struct ggml_tensor * Kcur = ggml_rope(ctx0,
|
||||
ggml_reshape_3d(ctx0,
|
||||
ggml_mul_mat(ctx0,
|
||||
@@ -1142,7 +1125,7 @@ struct ggml_tensor * forward_lora(
|
||||
model->layers[il].wkb,
|
||||
cur)),
|
||||
n_embd/n_head, n_head, N),
|
||||
n_past, n_rot, 0, 0);
|
||||
n_past, n_rot, 0);
|
||||
|
||||
// store key and value to memory
|
||||
{
|
||||
@@ -1257,7 +1240,7 @@ struct ggml_tensor * forward_lora(
|
||||
// norm
|
||||
{
|
||||
// cur shape [n_embd,N,1,1]
|
||||
cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps);
|
||||
cur = ggml_rms_norm(ctx0, inpFF);
|
||||
|
||||
// cur = ffn_norm*cur
|
||||
// cur shape [n_embd,N,1,1]
|
||||
@@ -1301,7 +1284,7 @@ struct ggml_tensor * forward_lora(
|
||||
{
|
||||
|
||||
// inpL shape [n_embd,N,1,1]
|
||||
inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
|
||||
inpL = ggml_rms_norm(ctx0, inpL);
|
||||
|
||||
// inpL = norm*inpL
|
||||
// inpL shape [n_embd,N,1,1]
|
||||
@@ -1586,8 +1569,6 @@ int main(int argc, char ** argv) {
|
||||
int n_tokens = model.hparams.n_ctx;
|
||||
int n_vocab = model.hparams.n_vocab;
|
||||
|
||||
std::vector<uint8_t> work_buffer;
|
||||
|
||||
for (int ex=0; ex<n_examples; ++ex) {
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ compute_size,
|
||||
@@ -1605,6 +1586,7 @@ int main(int argc, char ** argv) {
|
||||
int n_past = 0;
|
||||
|
||||
ggml_cgraph gf = {};
|
||||
gf.n_threads = 1;
|
||||
|
||||
get_example_targets_batch(ctx0, 64*ex+0, tokens_input, targets);
|
||||
|
||||
@@ -1613,7 +1595,7 @@ int main(int argc, char ** argv) {
|
||||
struct ggml_tensor * e = square_error_loss(ctx0, targets, logits);
|
||||
|
||||
ggml_build_forward_expand(&gf, e);
|
||||
ggml_graph_compute_helper(work_buffer, &gf, /*n_threads*/ 1);
|
||||
ggml_graph_compute(ctx0, &gf);
|
||||
|
||||
float error_before_opt = ggml_get_f32_1d(e, 0);
|
||||
|
||||
@@ -1629,7 +1611,7 @@ int main(int argc, char ** argv) {
|
||||
ggml_opt(ctx0, opt_params_lbfgs, e);
|
||||
//
|
||||
ggml_build_forward_expand(&gf, e);
|
||||
ggml_graph_compute_helper(work_buffer, &gf, /*n_threads*/ 1);
|
||||
ggml_graph_compute(ctx0, &gf);
|
||||
|
||||
float error_after_opt = ggml_get_f32_1d(e, 0);
|
||||
|
||||
@@ -1677,12 +1659,13 @@ int main(int argc, char ** argv) {
|
||||
struct ggml_context * ctx0 = ggml_init(params);
|
||||
|
||||
ggml_cgraph gf = {};
|
||||
gf.n_threads = 1;
|
||||
|
||||
int n_past = 0;
|
||||
struct ggml_tensor * logits = forward(&model, &kv_self, ctx0, &gf, tokens_input, sample_ctx, n_past);
|
||||
|
||||
ggml_build_forward_expand(&gf, logits);
|
||||
ggml_graph_compute_helper(work_buffer, &gf, /*n_threads*/ 1);
|
||||
ggml_graph_compute(ctx0, &gf);
|
||||
|
||||
struct ggml_tensor * best_samples = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, sample_ctx);
|
||||
struct ggml_tensor * probs = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_vocab, sample_ctx);
|
||||
@@ -1704,11 +1687,10 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
print_matrix(model.tok_embeddings);
|
||||
printf("done\n");
|
||||
|
||||
printf("done\n");
|
||||
// ggml_free(kv_self.ctx);
|
||||
// ggml_free(model_lora.ctx);
|
||||
ggml_free(model.ctx);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -1,6 +1,5 @@
|
||||
set(TARGET benchmark)
|
||||
add_executable(${TARGET} benchmark-matmult.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
if(TARGET BUILD_INFO)
|
||||
|
||||
@@ -20,17 +20,6 @@
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
|
||||
struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
|
||||
|
||||
if (plan.work_size > 0) {
|
||||
buf.resize(plan.work_size);
|
||||
plan.work_data = buf.data();
|
||||
}
|
||||
|
||||
ggml_graph_compute(graph, &plan);
|
||||
}
|
||||
|
||||
float tensor_sum_elements(const ggml_tensor * tensor) {
|
||||
float sum = 0;
|
||||
if (tensor->type==GGML_TYPE_F32) {
|
||||
@@ -170,14 +159,13 @@ int main(int argc, char ** argv) {
|
||||
// printf("Creating compute graph\n");
|
||||
struct ggml_cgraph gf = ggml_build_forward(m11xm2);
|
||||
|
||||
printf("n_threads=%i\n", benchmark_params.n_threads);
|
||||
gf.n_threads=benchmark_params.n_threads;
|
||||
printf("cgraph->n_threads=%i\n",gf.n_threads);
|
||||
|
||||
TENSOR_DUMP(m11);
|
||||
TENSOR_DUMP(m2);
|
||||
|
||||
std::vector<uint8_t> work_buffer;
|
||||
|
||||
ggml_graph_compute_helper(work_buffer, &gf, benchmark_params.n_threads);
|
||||
ggml_graph_compute(ctx, &gf);
|
||||
|
||||
TENSOR_DUMP(gf.nodes[0]);
|
||||
|
||||
@@ -199,6 +187,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// printf("Creating compute graph\n");
|
||||
struct ggml_cgraph gf31 = ggml_build_forward(q31);
|
||||
gf31.n_threads=benchmark_params.n_threads;
|
||||
|
||||
// Set up a second graph computation to make sure we override the CPU cache lines
|
||||
// printf("Creating new tensor q12 & Running quantize\n");
|
||||
@@ -210,7 +199,8 @@ int main(int argc, char ** argv) {
|
||||
|
||||
//printf("Creating compute graph\n");
|
||||
struct ggml_cgraph gf32 = ggml_build_forward(q32);
|
||||
printf("n_threads=%i\n", benchmark_params.n_threads);
|
||||
gf32.n_threads=benchmark_params.n_threads;
|
||||
printf("cgraph->n_threads=%i\n",gf31.n_threads);
|
||||
|
||||
const int dimx = sizex;
|
||||
const int dimy = sizey;
|
||||
@@ -231,15 +221,14 @@ int main(int argc, char ** argv) {
|
||||
|
||||
long long int start = ggml_time_us();
|
||||
//printf("Running ggml_graph_compute\n");
|
||||
ggml_graph_compute_helper(work_buffer, &gf31, benchmark_params.n_threads);
|
||||
|
||||
ggml_graph_compute(ctx, &gf31);
|
||||
long long int stop = ggml_time_us();
|
||||
long long int usec = stop-start;
|
||||
double gflops = (double)(flops_per_matrix)/usec/1000.0;
|
||||
gflops_sum += gflops;
|
||||
printf("%9i;%8i;%6i;%6i;%6i;%15lli;%18lli;%10.2f\n",
|
||||
i,
|
||||
benchmark_params.n_threads,
|
||||
gf31.n_threads,
|
||||
sizex, sizey, sizez, flops_per_matrix,
|
||||
usec,gflops);
|
||||
|
||||
@@ -264,7 +253,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// Running a different graph computation to make sure we override the CPU cache lines
|
||||
ggml_graph_compute_helper(work_buffer, &gf32, benchmark_params.n_threads);
|
||||
ggml_graph_compute(ctx, &gf32);
|
||||
}
|
||||
printf("\n");
|
||||
printf("Average%78.2f\n",gflops_sum/((double)benchmark_params.n_iterations));
|
||||
|
||||
@@ -25,6 +25,7 @@
|
||||
#else
|
||||
#include <sys/ioctl.h>
|
||||
#include <unistd.h>
|
||||
#include <wchar.h>
|
||||
#endif
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
@@ -109,16 +110,13 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.seed = std::stoul(argv[i]);
|
||||
params.seed = std::stoi(argv[i]);
|
||||
} else if (arg == "-t" || arg == "--threads") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.n_threads = std::stoi(argv[i]);
|
||||
if (params.n_threads <= 0) {
|
||||
params.n_threads = std::thread::hardware_concurrency();
|
||||
}
|
||||
} else if (arg == "-p" || arg == "--prompt") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@@ -170,24 +168,6 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
break;
|
||||
}
|
||||
params.n_ctx = std::stoi(argv[i]);
|
||||
} else if (arg == "--rope-freq-base") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.rope_freq_base = std::stof(argv[i]);
|
||||
} else if (arg == "--rope-freq-scale") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.rope_freq_scale = std::stof(argv[i]);
|
||||
} else if (arg == "--rope-scale") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.rope_freq_scale = 1.0f/std::stof(argv[i]);
|
||||
} else if (arg == "--memory-f32") {
|
||||
params.memory_f16 = false;
|
||||
} else if (arg == "--top-p") {
|
||||
@@ -256,51 +236,19 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
break;
|
||||
}
|
||||
params.mirostat_tau = std::stof(argv[i]);
|
||||
} else if (arg == "--cfg-negative-prompt") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.cfg_negative_prompt = argv[i];
|
||||
} else if (arg == "--cfg-negative-prompt-file") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
std::ifstream file(argv[i]);
|
||||
if (!file) {
|
||||
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.cfg_negative_prompt));
|
||||
if (params.cfg_negative_prompt.back() == '\n') {
|
||||
params.cfg_negative_prompt.pop_back();
|
||||
}
|
||||
} else if (arg == "--cfg-scale") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.cfg_scale = std::stof(argv[i]);
|
||||
} else if (arg == "-b" || arg == "--batch-size") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.n_batch = std::stoi(argv[i]);
|
||||
params.n_batch = std::min(512, params.n_batch);
|
||||
} else if (arg == "--keep") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.n_keep = std::stoi(argv[i]);
|
||||
} else if (arg == "--chunks") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.n_chunks = std::stoi(argv[i]);
|
||||
} else if (arg == "-m" || arg == "--model") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@@ -336,8 +284,6 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
params.instruct = true;
|
||||
} else if (arg == "--multiline-input") {
|
||||
params.multiline_input = true;
|
||||
} else if (arg == "--simple-io") {
|
||||
params.simple_io = true;
|
||||
} else if (arg == "--color") {
|
||||
params.use_color = true;
|
||||
} else if (arg == "--mlock") {
|
||||
@@ -361,7 +307,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
params.main_gpu = std::stoi(argv[i]);
|
||||
#else
|
||||
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.\n");
|
||||
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.\n");
|
||||
#endif
|
||||
} else if (arg == "--tensor-split" || arg == "-ts") {
|
||||
if (++i >= argc) {
|
||||
@@ -385,26 +331,18 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
}
|
||||
}
|
||||
#else
|
||||
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n");
|
||||
#endif // GGML_USE_CUBLAS
|
||||
} else if (arg == "--no-mul-mat-q" || arg == "-nommq") {
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
params.mul_mat_q = false;
|
||||
#else
|
||||
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Disabling mul_mat_q kernels has no effect.\n");
|
||||
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n");
|
||||
#endif // GGML_USE_CUBLAS
|
||||
} else if (arg == "--low-vram" || arg == "-lv") {
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
params.low_vram = true;
|
||||
#else
|
||||
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set lower vram usage.\n");
|
||||
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set lower vram usage.\n");
|
||||
#endif // GGML_USE_CUBLAS
|
||||
} else if (arg == "--no-mmap") {
|
||||
params.use_mmap = false;
|
||||
} else if (arg == "--mtest") {
|
||||
params.mem_test = true;
|
||||
} else if (arg == "--numa") {
|
||||
params.numa = true;
|
||||
} else if (arg == "--export") {
|
||||
params.export_cgraph = true;
|
||||
} else if (arg == "--verbose-prompt") {
|
||||
@@ -417,28 +355,8 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
params.antiprompt.push_back(argv[i]);
|
||||
} else if (arg == "--perplexity") {
|
||||
params.perplexity = true;
|
||||
} else if (arg == "--ppl-stride") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.ppl_stride = std::stoi(argv[i]);
|
||||
} else if (arg == "--ppl-output-type") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.ppl_output_type = std::stoi(argv[i]);
|
||||
} else if (arg == "--hellaswag") {
|
||||
params.hellaswag = true;
|
||||
} else if (arg == "--hellaswag-tasks") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.hellaswag_tasks = std::stoi(argv[i]);
|
||||
} else if (arg == "--ignore-eos") {
|
||||
params.ignore_eos = true;
|
||||
params.logit_bias[llama_token_eos()] = -INFINITY;
|
||||
} else if (arg == "--no-penalize-nl") {
|
||||
params.penalize_nl = false;
|
||||
} else if (arg == "-l" || arg == "--logit-bias") {
|
||||
@@ -465,8 +383,6 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
exit(0);
|
||||
} else if (arg == "--random-prompt") {
|
||||
params.random_prompt = true;
|
||||
} else if (arg == "--in-prefix-bos") {
|
||||
params.input_prefix_bos = true;
|
||||
} else if (arg == "--in-prefix") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@@ -479,28 +395,6 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
break;
|
||||
}
|
||||
params.input_suffix = argv[i];
|
||||
} else if (arg == "--grammar") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.grammar = argv[i];
|
||||
} else if (arg == "--grammar-file") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
std::ifstream file(argv[i]);
|
||||
if (!file) {
|
||||
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
std::copy(
|
||||
std::istreambuf_iterator<char>(file),
|
||||
std::istreambuf_iterator<char>(),
|
||||
std::back_inserter(params.grammar)
|
||||
);
|
||||
} else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
gpt_print_usage(argc, argv, default_params);
|
||||
@@ -520,112 +414,96 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
exit(1);
|
||||
}
|
||||
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
if (!params.lora_adapter.empty() && params.n_gpu_layers > 0) {
|
||||
fprintf(stderr, "%s: error: the simultaneous use of LoRAs and GPU acceleration is not supported", __func__);
|
||||
exit(1);
|
||||
}
|
||||
#endif // GGML_USE_CUBLAS
|
||||
|
||||
if (escape_prompt) {
|
||||
process_escapes(params.prompt);
|
||||
process_escapes(params.input_prefix);
|
||||
process_escapes(params.input_suffix);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
fprintf(stdout, "usage: %s [options]\n", argv[0]);
|
||||
fprintf(stdout, "\n");
|
||||
fprintf(stdout, "options:\n");
|
||||
fprintf(stdout, " -h, --help show this help message and exit\n");
|
||||
fprintf(stdout, " -i, --interactive run in interactive mode\n");
|
||||
fprintf(stdout, " --interactive-first run in interactive mode and wait for input right away\n");
|
||||
fprintf(stdout, " -ins, --instruct run in instruction mode (use with Alpaca models)\n");
|
||||
fprintf(stdout, " --multiline-input allows you to write or paste multiple lines without ending each in '\\'\n");
|
||||
fprintf(stdout, " -r PROMPT, --reverse-prompt PROMPT\n");
|
||||
fprintf(stdout, " halt generation at PROMPT, return control in interactive mode\n");
|
||||
fprintf(stdout, " (can be specified more than once for multiple prompts).\n");
|
||||
fprintf(stdout, " --color colorise output to distinguish prompt and user input from generations\n");
|
||||
fprintf(stdout, " -s SEED, --seed SEED RNG seed (default: -1, use random seed for < 0)\n");
|
||||
fprintf(stdout, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
||||
fprintf(stdout, " -p PROMPT, --prompt PROMPT\n");
|
||||
fprintf(stdout, " prompt to start generation with (default: empty)\n");
|
||||
fprintf(stdout, " -e process prompt escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\)\n");
|
||||
fprintf(stdout, " --prompt-cache FNAME file to cache prompt state for faster startup (default: none)\n");
|
||||
fprintf(stdout, " --prompt-cache-all if specified, saves user input and generations to cache as well.\n");
|
||||
fprintf(stdout, " not supported with --interactive or other interactive options\n");
|
||||
fprintf(stdout, " --prompt-cache-ro if specified, uses the prompt cache but does not update it.\n");
|
||||
fprintf(stdout, " --random-prompt start with a randomized prompt.\n");
|
||||
fprintf(stdout, " --in-prefix-bos prefix BOS to user inputs, preceding the `--in-prefix` string\n");
|
||||
fprintf(stdout, " --in-prefix STRING string to prefix user inputs with (default: empty)\n");
|
||||
fprintf(stdout, " --in-suffix STRING string to suffix after user inputs with (default: empty)\n");
|
||||
fprintf(stdout, " -f FNAME, --file FNAME\n");
|
||||
fprintf(stdout, " prompt file to start generation.\n");
|
||||
fprintf(stdout, " -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict);
|
||||
fprintf(stdout, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
|
||||
fprintf(stdout, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
||||
fprintf(stdout, " --top-k N top-k sampling (default: %d, 0 = disabled)\n", params.top_k);
|
||||
fprintf(stdout, " --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)params.top_p);
|
||||
fprintf(stdout, " --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)params.tfs_z);
|
||||
fprintf(stdout, " --typical N locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)\n", (double)params.typical_p);
|
||||
fprintf(stdout, " --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", params.repeat_last_n);
|
||||
fprintf(stdout, " --repeat-penalty N penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)params.repeat_penalty);
|
||||
fprintf(stdout, " --presence-penalty N repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)params.presence_penalty);
|
||||
fprintf(stdout, " --frequency-penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)params.frequency_penalty);
|
||||
fprintf(stdout, " --mirostat N use Mirostat sampling.\n");
|
||||
fprintf(stdout, " Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n");
|
||||
fprintf(stdout, " (default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)\n", params.mirostat);
|
||||
fprintf(stdout, " --mirostat-lr N Mirostat learning rate, parameter eta (default: %.1f)\n", (double)params.mirostat_eta);
|
||||
fprintf(stdout, " --mirostat-ent N Mirostat target entropy, parameter tau (default: %.1f)\n", (double)params.mirostat_tau);
|
||||
fprintf(stdout, " -l TOKEN_ID(+/-)BIAS, --logit-bias TOKEN_ID(+/-)BIAS\n");
|
||||
fprintf(stdout, " modifies the likelihood of token appearing in the completion,\n");
|
||||
fprintf(stdout, " i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n");
|
||||
fprintf(stdout, " or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'\n");
|
||||
fprintf(stdout, " --grammar GRAMMAR BNF-like grammar to constrain generations (see samples in grammars/ dir)\n");
|
||||
fprintf(stdout, " --grammar-file FNAME file to read grammar from\n");
|
||||
fprintf(stdout, " --cfg-negative-prompt PROMPT\n");
|
||||
fprintf(stdout, " negative prompt to use for guidance. (default: empty)\n");
|
||||
fprintf(stdout, " --cfg-negative-prompt-file FNAME\n");
|
||||
fprintf(stdout, " negative prompt file to use for guidance. (default: empty)\n");
|
||||
fprintf(stdout, " --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", params.cfg_scale);
|
||||
fprintf(stdout, " --rope-scale N RoPE context linear scaling factor, inverse of --rope-freq-scale (default: %g)\n", 1.0f/params.rope_freq_scale);
|
||||
fprintf(stdout, " --rope-freq-base N RoPE base frequency, used by NTK-aware scaling (default: %.1f)\n", params.rope_freq_base);
|
||||
fprintf(stdout, " --rope-freq-scale N RoPE frequency linear scaling factor, inverse of --rope-scale (default: %g)\n", params.rope_freq_scale);
|
||||
fprintf(stdout, " --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n");
|
||||
fprintf(stdout, " --no-penalize-nl do not penalize newline token\n");
|
||||
fprintf(stdout, " --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
|
||||
fprintf(stdout, " not recommended: doubles context memory required and no measurable increase in quality\n");
|
||||
fprintf(stdout, " --temp N temperature (default: %.1f)\n", (double)params.temp);
|
||||
fprintf(stdout, " --perplexity compute perplexity over each ctx window of the prompt\n");
|
||||
fprintf(stdout, " --hellaswag compute HellaSwag score over random tasks from datafile supplied with -f\n");
|
||||
fprintf(stdout, " --hellaswag-tasks N number of tasks to use when computing the HellaSwag score (default: %zu)\n", params.hellaswag_tasks);
|
||||
fprintf(stdout, " --keep N number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep);
|
||||
fprintf(stdout, " --chunks N max number of chunks to process (default: %d, -1 = all)\n", params.n_chunks);
|
||||
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "options:\n");
|
||||
fprintf(stderr, " -h, --help show this help message and exit\n");
|
||||
fprintf(stderr, " -i, --interactive run in interactive mode\n");
|
||||
fprintf(stderr, " --interactive-first run in interactive mode and wait for input right away\n");
|
||||
fprintf(stderr, " -ins, --instruct run in instruction mode (use with Alpaca models)\n");
|
||||
fprintf(stderr, " --multiline-input allows you to write or paste multiple lines without ending each in '\\'\n");
|
||||
fprintf(stderr, " -r PROMPT, --reverse-prompt PROMPT\n");
|
||||
fprintf(stderr, " halt generation at PROMPT, return control in interactive mode\n");
|
||||
fprintf(stderr, " (can be specified more than once for multiple prompts).\n");
|
||||
fprintf(stderr, " --color colorise output to distinguish prompt and user input from generations\n");
|
||||
fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1, use random seed for < 0)\n");
|
||||
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
||||
fprintf(stderr, " -p PROMPT, --prompt PROMPT\n");
|
||||
fprintf(stderr, " prompt to start generation with (default: empty)\n");
|
||||
fprintf(stderr, " -e process prompt escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\)\n");
|
||||
fprintf(stderr, " --prompt-cache FNAME file to cache prompt state for faster startup (default: none)\n");
|
||||
fprintf(stderr, " --prompt-cache-all if specified, saves user input and generations to cache as well.\n");
|
||||
fprintf(stderr, " not supported with --interactive or other interactive options\n");
|
||||
fprintf(stderr, " --prompt-cache-ro if specified, uses the prompt cache but does not update it.\n");
|
||||
fprintf(stderr, " --random-prompt start with a randomized prompt.\n");
|
||||
fprintf(stderr, " --in-prefix STRING string to prefix user inputs with (default: empty)\n");
|
||||
fprintf(stderr, " --in-suffix STRING string to suffix after user inputs with (default: empty)\n");
|
||||
fprintf(stderr, " -f FNAME, --file FNAME\n");
|
||||
fprintf(stderr, " prompt file to start generation.\n");
|
||||
fprintf(stderr, " -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity)\n", params.n_predict);
|
||||
fprintf(stderr, " --top-k N top-k sampling (default: %d, 0 = disabled)\n", params.top_k);
|
||||
fprintf(stderr, " --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)params.top_p);
|
||||
fprintf(stderr, " --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)params.tfs_z);
|
||||
fprintf(stderr, " --typical N locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)\n", (double)params.typical_p);
|
||||
fprintf(stderr, " --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", params.repeat_last_n);
|
||||
fprintf(stderr, " --repeat-penalty N penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)params.repeat_penalty);
|
||||
fprintf(stderr, " --presence-penalty N repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)params.presence_penalty);
|
||||
fprintf(stderr, " --frequency-penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)params.frequency_penalty);
|
||||
fprintf(stderr, " --mirostat N use Mirostat sampling.\n");
|
||||
fprintf(stderr, " Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n");
|
||||
fprintf(stderr, " (default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)\n", params.mirostat);
|
||||
fprintf(stderr, " --mirostat-lr N Mirostat learning rate, parameter eta (default: %.1f)\n", (double)params.mirostat_eta);
|
||||
fprintf(stderr, " --mirostat-ent N Mirostat target entropy, parameter tau (default: %.1f)\n", (double)params.mirostat_tau);
|
||||
fprintf(stderr, " -l TOKEN_ID(+/-)BIAS, --logit-bias TOKEN_ID(+/-)BIAS\n");
|
||||
fprintf(stderr, " modifies the likelihood of token appearing in the completion,\n");
|
||||
fprintf(stderr, " i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n");
|
||||
fprintf(stderr, " or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'\n");
|
||||
fprintf(stderr, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
|
||||
fprintf(stderr, " --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n");
|
||||
fprintf(stderr, " --no-penalize-nl do not penalize newline token\n");
|
||||
fprintf(stderr, " --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
|
||||
fprintf(stderr, " not recommended: doubles context memory required and no measurable increase in quality\n");
|
||||
fprintf(stderr, " --temp N temperature (default: %.1f)\n", (double)params.temp);
|
||||
fprintf(stderr, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
||||
fprintf(stderr, " --perplexity compute perplexity over the prompt\n");
|
||||
fprintf(stderr, " --keep number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep);
|
||||
if (llama_mlock_supported()) {
|
||||
fprintf(stdout, " --mlock force system to keep model in RAM rather than swapping or compressing\n");
|
||||
fprintf(stderr, " --mlock force system to keep model in RAM rather than swapping or compressing\n");
|
||||
}
|
||||
if (llama_mmap_supported()) {
|
||||
fprintf(stdout, " --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
|
||||
fprintf(stderr, " --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
|
||||
}
|
||||
fprintf(stdout, " --numa attempt optimizations that help on some NUMA systems\n");
|
||||
fprintf(stdout, " if run without this previously, it is recommended to drop the system page cache before using this\n");
|
||||
fprintf(stdout, " see https://github.com/ggerganov/llama.cpp/issues/1437\n");
|
||||
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||
fprintf(stdout, " -ngl N, --n-gpu-layers N\n");
|
||||
fprintf(stdout, " number of layers to store in VRAM\n");
|
||||
fprintf(stdout, " -ts SPLIT --tensor-split SPLIT\n");
|
||||
fprintf(stdout, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
|
||||
fprintf(stdout, " -mg i, --main-gpu i the GPU to use for scratch and small tensors\n");
|
||||
fprintf(stdout, " -lv, --low-vram don't allocate VRAM scratch buffer\n");
|
||||
fprintf(stdout, " -nommq, --no-mul-mat-q\n");
|
||||
fprintf(stdout, " use cuBLAS instead of custom mul_mat_q CUDA kernels.\n");
|
||||
fprintf(stdout, " Not recommended since this is both slower and uses more VRAM.\n");
|
||||
fprintf(stderr, " -ngl N, --n-gpu-layers N\n");
|
||||
fprintf(stderr, " number of layers to store in VRAM\n");
|
||||
fprintf(stderr, " -ts SPLIT --tensor-split SPLIT\n");
|
||||
fprintf(stderr, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
|
||||
fprintf(stderr, " -mg i, --main-gpu i the GPU to use for scratch and small tensors\n" );
|
||||
fprintf(stderr, " -lv, --low-vram don't allocate VRAM scratch buffer\n" );
|
||||
#endif
|
||||
fprintf(stdout, " --mtest compute maximum memory usage\n");
|
||||
fprintf(stdout, " --export export the computation graph to 'llama.ggml'\n");
|
||||
fprintf(stdout, " --verbose-prompt print prompt before generation\n");
|
||||
fprintf(stderr, " --simple-io use basic IO for better compatibility in subprocesses and limited consoles\n");
|
||||
fprintf(stdout, " --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
|
||||
fprintf(stdout, " --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
|
||||
fprintf(stdout, " -m FNAME, --model FNAME\n");
|
||||
fprintf(stdout, " model path (default: %s)\n", params.model.c_str());
|
||||
fprintf(stdout, "\n");
|
||||
fprintf(stderr, " --mtest compute maximum memory usage\n");
|
||||
fprintf(stderr, " --export export the computation graph to 'llama.ggml'\n");
|
||||
fprintf(stderr, " --verbose-prompt print prompt before generation\n");
|
||||
fprintf(stderr, " --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
|
||||
fprintf(stderr, " --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
|
||||
fprintf(stderr, " -m FNAME, --model FNAME\n");
|
||||
fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
std::string gpt_random_prompt(std::mt19937 & rng) {
|
||||
@@ -647,34 +525,32 @@ std::string gpt_random_prompt(std::mt19937 & rng) {
|
||||
return "The";
|
||||
}
|
||||
|
||||
//
|
||||
// Model utils
|
||||
//
|
||||
// TODO: not great allocating this every time
|
||||
std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::string & text, bool add_bos) {
|
||||
// initialize to prompt numer of chars, since n_tokens <= n_prompt_chars
|
||||
std::vector<llama_token> res(text.size() + (int) add_bos);
|
||||
const int n = llama_tokenize(ctx, text.c_str(), res.data(), res.size(), add_bos);
|
||||
assert(n >= 0);
|
||||
res.resize(n);
|
||||
|
||||
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) {
|
||||
auto lparams = llama_context_default_params();
|
||||
|
||||
lparams.n_ctx = params.n_ctx;
|
||||
lparams.n_batch = params.n_batch;
|
||||
lparams.n_gpu_layers = params.n_gpu_layers;
|
||||
lparams.main_gpu = params.main_gpu;
|
||||
lparams.tensor_split = params.tensor_split;
|
||||
lparams.low_vram = params.low_vram;
|
||||
lparams.mul_mat_q = params.mul_mat_q;
|
||||
lparams.seed = params.seed;
|
||||
lparams.f16_kv = params.memory_f16;
|
||||
lparams.use_mmap = params.use_mmap;
|
||||
lparams.use_mlock = params.use_mlock;
|
||||
lparams.logits_all = params.perplexity;
|
||||
lparams.embedding = params.embedding;
|
||||
lparams.rope_freq_base = params.rope_freq_base;
|
||||
lparams.rope_freq_scale = params.rope_freq_scale;
|
||||
|
||||
return lparams;
|
||||
return res;
|
||||
}
|
||||
|
||||
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params) {
|
||||
auto lparams = llama_context_params_from_gpt_params(params);
|
||||
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(const gpt_params & params) {
|
||||
auto lparams = llama_context_default_params();
|
||||
|
||||
lparams.n_ctx = params.n_ctx;
|
||||
lparams.n_batch = params.n_batch;
|
||||
lparams.n_gpu_layers = params.n_gpu_layers;
|
||||
lparams.main_gpu = params.main_gpu;
|
||||
memcpy(lparams.tensor_split, params.tensor_split, LLAMA_MAX_DEVICES*sizeof(float));
|
||||
lparams.low_vram = params.low_vram;
|
||||
lparams.seed = params.seed;
|
||||
lparams.f16_kv = params.memory_f16;
|
||||
lparams.use_mmap = params.use_mmap;
|
||||
lparams.use_mlock = params.use_mlock;
|
||||
lparams.logits_all = params.perplexity;
|
||||
lparams.embedding = params.embedding;
|
||||
|
||||
llama_model * model = llama_load_model_from_file(params.model.c_str(), lparams);
|
||||
if (model == NULL) {
|
||||
@@ -702,45 +578,378 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
|
||||
}
|
||||
}
|
||||
|
||||
if (params.ignore_eos) {
|
||||
params.logit_bias[llama_token_eos(lctx)] = -INFINITY;
|
||||
}
|
||||
|
||||
return std::make_tuple(model, lctx);
|
||||
}
|
||||
|
||||
//
|
||||
// Vocab utils
|
||||
//
|
||||
|
||||
std::vector<llama_token> llama_tokenize(
|
||||
struct llama_context * ctx,
|
||||
const std::string & text,
|
||||
bool add_bos) {
|
||||
// upper limit for the number of tokens
|
||||
int n_tokens = text.length() + add_bos;
|
||||
std::vector<llama_token> result(n_tokens);
|
||||
n_tokens = llama_tokenize(ctx, text.c_str(), result.data(), result.size(), add_bos);
|
||||
if (n_tokens < 0) {
|
||||
result.resize(-n_tokens);
|
||||
int check = llama_tokenize(ctx, text.c_str(), result.data(), result.size(), add_bos);
|
||||
GGML_ASSERT(check == -n_tokens);
|
||||
} else {
|
||||
result.resize(n_tokens);
|
||||
void console_init(console_state & con_st) {
|
||||
#if defined(_WIN32)
|
||||
// Windows-specific console initialization
|
||||
DWORD dwMode = 0;
|
||||
con_st.hConsole = GetStdHandle(STD_OUTPUT_HANDLE);
|
||||
if (con_st.hConsole == INVALID_HANDLE_VALUE || !GetConsoleMode(con_st.hConsole, &dwMode)) {
|
||||
con_st.hConsole = GetStdHandle(STD_ERROR_HANDLE);
|
||||
if (con_st.hConsole != INVALID_HANDLE_VALUE && (!GetConsoleMode(con_st.hConsole, &dwMode))) {
|
||||
con_st.hConsole = NULL;
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
if (con_st.hConsole) {
|
||||
// Enable ANSI colors on Windows 10+
|
||||
if (con_st.use_color && !(dwMode & ENABLE_VIRTUAL_TERMINAL_PROCESSING)) {
|
||||
SetConsoleMode(con_st.hConsole, dwMode | ENABLE_VIRTUAL_TERMINAL_PROCESSING);
|
||||
}
|
||||
// Set console output codepage to UTF8
|
||||
SetConsoleOutputCP(CP_UTF8);
|
||||
}
|
||||
HANDLE hConIn = GetStdHandle(STD_INPUT_HANDLE);
|
||||
if (hConIn != INVALID_HANDLE_VALUE && GetConsoleMode(hConIn, &dwMode)) {
|
||||
// Set console input codepage to UTF16
|
||||
_setmode(_fileno(stdin), _O_WTEXT);
|
||||
|
||||
std::string llama_token_to_str(const struct llama_context * ctx, llama_token token) {
|
||||
std::vector<char> result(8, 0);
|
||||
const int n_tokens = llama_token_to_str(ctx, token, result.data(), result.size());
|
||||
if (n_tokens < 0) {
|
||||
result.resize(-n_tokens);
|
||||
int check = llama_token_to_str(ctx, token, result.data(), result.size());
|
||||
GGML_ASSERT(check == -n_tokens);
|
||||
} else {
|
||||
result.resize(n_tokens);
|
||||
// Turn off ICANON (ENABLE_LINE_INPUT) and ECHO (ENABLE_ECHO_INPUT)
|
||||
dwMode &= ~(ENABLE_LINE_INPUT | ENABLE_ECHO_INPUT);
|
||||
SetConsoleMode(hConIn, dwMode);
|
||||
}
|
||||
#else
|
||||
// POSIX-specific console initialization
|
||||
struct termios new_termios;
|
||||
tcgetattr(STDIN_FILENO, &con_st.prev_state);
|
||||
new_termios = con_st.prev_state;
|
||||
new_termios.c_lflag &= ~(ICANON | ECHO);
|
||||
new_termios.c_cc[VMIN] = 1;
|
||||
new_termios.c_cc[VTIME] = 0;
|
||||
tcsetattr(STDIN_FILENO, TCSANOW, &new_termios);
|
||||
|
||||
con_st.tty = fopen("/dev/tty", "w+");
|
||||
if (con_st.tty != nullptr) {
|
||||
con_st.out = con_st.tty;
|
||||
}
|
||||
|
||||
return std::string(result.data(), result.size());
|
||||
setlocale(LC_ALL, "");
|
||||
#endif
|
||||
}
|
||||
|
||||
void console_cleanup(console_state & con_st) {
|
||||
// Reset console color
|
||||
console_set_color(con_st, CONSOLE_COLOR_DEFAULT);
|
||||
|
||||
#if !defined(_WIN32)
|
||||
if (con_st.tty != nullptr) {
|
||||
con_st.out = stdout;
|
||||
fclose(con_st.tty);
|
||||
con_st.tty = nullptr;
|
||||
}
|
||||
// Restore the terminal settings on POSIX systems
|
||||
tcsetattr(STDIN_FILENO, TCSANOW, &con_st.prev_state);
|
||||
#endif
|
||||
}
|
||||
|
||||
/* Keep track of current color of output, and emit ANSI code if it changes. */
|
||||
void console_set_color(console_state & con_st, console_color_t color) {
|
||||
if (con_st.use_color && con_st.color != color) {
|
||||
fflush(stdout);
|
||||
switch(color) {
|
||||
case CONSOLE_COLOR_DEFAULT:
|
||||
fprintf(con_st.out, ANSI_COLOR_RESET);
|
||||
break;
|
||||
case CONSOLE_COLOR_PROMPT:
|
||||
fprintf(con_st.out, ANSI_COLOR_YELLOW);
|
||||
break;
|
||||
case CONSOLE_COLOR_USER_INPUT:
|
||||
fprintf(con_st.out, ANSI_BOLD ANSI_COLOR_GREEN);
|
||||
break;
|
||||
case CONSOLE_COLOR_ERROR:
|
||||
fprintf(con_st.out, ANSI_BOLD ANSI_COLOR_RED);
|
||||
break;
|
||||
}
|
||||
con_st.color = color;
|
||||
fflush(con_st.out);
|
||||
}
|
||||
}
|
||||
|
||||
char32_t getchar32() {
|
||||
#if defined(_WIN32)
|
||||
HANDLE hConsole = GetStdHandle(STD_INPUT_HANDLE);
|
||||
wchar_t high_surrogate = 0;
|
||||
|
||||
while (true) {
|
||||
INPUT_RECORD record;
|
||||
DWORD count;
|
||||
if (!ReadConsoleInputW(hConsole, &record, 1, &count) || count == 0) {
|
||||
return WEOF;
|
||||
}
|
||||
|
||||
if (record.EventType == KEY_EVENT && record.Event.KeyEvent.bKeyDown) {
|
||||
wchar_t wc = record.Event.KeyEvent.uChar.UnicodeChar;
|
||||
if (wc == 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if ((wc >= 0xD800) && (wc <= 0xDBFF)) { // Check if wc is a high surrogate
|
||||
high_surrogate = wc;
|
||||
continue;
|
||||
} else if ((wc >= 0xDC00) && (wc <= 0xDFFF)) { // Check if wc is a low surrogate
|
||||
if (high_surrogate != 0) { // Check if we have a high surrogate
|
||||
return ((high_surrogate - 0xD800) << 10) + (wc - 0xDC00) + 0x10000;
|
||||
}
|
||||
}
|
||||
|
||||
high_surrogate = 0; // Reset the high surrogate
|
||||
return static_cast<char32_t>(wc);
|
||||
}
|
||||
}
|
||||
#else
|
||||
wchar_t wc = getwchar();
|
||||
if (static_cast<wint_t>(wc) == WEOF) {
|
||||
return WEOF;
|
||||
}
|
||||
|
||||
#if WCHAR_MAX == 0xFFFF
|
||||
if ((wc >= 0xD800) && (wc <= 0xDBFF)) { // Check if wc is a high surrogate
|
||||
wchar_t low_surrogate = getwchar();
|
||||
if ((low_surrogate >= 0xDC00) && (low_surrogate <= 0xDFFF)) { // Check if the next wchar is a low surrogate
|
||||
return (static_cast<char32_t>(wc & 0x03FF) << 10) + (low_surrogate & 0x03FF) + 0x10000;
|
||||
}
|
||||
}
|
||||
if ((wc >= 0xD800) && (wc <= 0xDFFF)) { // Invalid surrogate pair
|
||||
return 0xFFFD; // Return the replacement character U+FFFD
|
||||
}
|
||||
#endif
|
||||
|
||||
return static_cast<char32_t>(wc);
|
||||
#endif
|
||||
}
|
||||
|
||||
void pop_cursor(console_state & con_st) {
|
||||
#if defined(_WIN32)
|
||||
if (con_st.hConsole != NULL) {
|
||||
CONSOLE_SCREEN_BUFFER_INFO bufferInfo;
|
||||
GetConsoleScreenBufferInfo(con_st.hConsole, &bufferInfo);
|
||||
|
||||
COORD newCursorPosition = bufferInfo.dwCursorPosition;
|
||||
if (newCursorPosition.X == 0) {
|
||||
newCursorPosition.X = bufferInfo.dwSize.X - 1;
|
||||
newCursorPosition.Y -= 1;
|
||||
} else {
|
||||
newCursorPosition.X -= 1;
|
||||
}
|
||||
|
||||
SetConsoleCursorPosition(con_st.hConsole, newCursorPosition);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
putc('\b', con_st.out);
|
||||
}
|
||||
|
||||
int estimateWidth(char32_t codepoint) {
|
||||
#if defined(_WIN32)
|
||||
return 1;
|
||||
#else
|
||||
return wcwidth(codepoint);
|
||||
#endif
|
||||
}
|
||||
|
||||
int put_codepoint(console_state & con_st, const char* utf8_codepoint, size_t length, int expectedWidth) {
|
||||
#if defined(_WIN32)
|
||||
CONSOLE_SCREEN_BUFFER_INFO bufferInfo;
|
||||
if (!GetConsoleScreenBufferInfo(con_st.hConsole, &bufferInfo)) {
|
||||
// go with the default
|
||||
return expectedWidth;
|
||||
}
|
||||
COORD initialPosition = bufferInfo.dwCursorPosition;
|
||||
DWORD nNumberOfChars = length;
|
||||
WriteConsole(con_st.hConsole, utf8_codepoint, nNumberOfChars, &nNumberOfChars, NULL);
|
||||
|
||||
CONSOLE_SCREEN_BUFFER_INFO newBufferInfo;
|
||||
GetConsoleScreenBufferInfo(con_st.hConsole, &newBufferInfo);
|
||||
|
||||
// Figure out our real position if we're in the last column
|
||||
if (utf8_codepoint[0] != 0x09 && initialPosition.X == newBufferInfo.dwSize.X - 1) {
|
||||
DWORD nNumberOfChars;
|
||||
WriteConsole(con_st.hConsole, &" \b", 2, &nNumberOfChars, NULL);
|
||||
GetConsoleScreenBufferInfo(con_st.hConsole, &newBufferInfo);
|
||||
}
|
||||
|
||||
int width = newBufferInfo.dwCursorPosition.X - initialPosition.X;
|
||||
if (width < 0) {
|
||||
width += newBufferInfo.dwSize.X;
|
||||
}
|
||||
return width;
|
||||
#else
|
||||
// we can trust expectedWidth if we've got one
|
||||
if (expectedWidth >= 0 || con_st.tty == nullptr) {
|
||||
fwrite(utf8_codepoint, length, 1, con_st.out);
|
||||
return expectedWidth;
|
||||
}
|
||||
|
||||
fputs("\033[6n", con_st.tty); // Query cursor position
|
||||
int x1, x2, y1, y2;
|
||||
int results = 0;
|
||||
results = fscanf(con_st.tty, "\033[%d;%dR", &y1, &x1);
|
||||
|
||||
fwrite(utf8_codepoint, length, 1, con_st.tty);
|
||||
|
||||
fputs("\033[6n", con_st.tty); // Query cursor position
|
||||
results += fscanf(con_st.tty, "\033[%d;%dR", &y2, &x2);
|
||||
|
||||
if (results != 4) {
|
||||
return expectedWidth;
|
||||
}
|
||||
|
||||
int width = x2 - x1;
|
||||
if (width < 0) {
|
||||
// Calculate the width considering text wrapping
|
||||
struct winsize w;
|
||||
ioctl(STDOUT_FILENO, TIOCGWINSZ, &w);
|
||||
width += w.ws_col;
|
||||
}
|
||||
return width;
|
||||
#endif
|
||||
}
|
||||
|
||||
void replace_last(console_state & con_st, char ch) {
|
||||
#if defined(_WIN32)
|
||||
pop_cursor(con_st);
|
||||
put_codepoint(con_st, &ch, 1, 1);
|
||||
#else
|
||||
fprintf(con_st.out, "\b%c", ch);
|
||||
#endif
|
||||
}
|
||||
|
||||
void append_utf8(char32_t ch, std::string & out) {
|
||||
if (ch <= 0x7F) {
|
||||
out.push_back(static_cast<unsigned char>(ch));
|
||||
} else if (ch <= 0x7FF) {
|
||||
out.push_back(static_cast<unsigned char>(0xC0 | ((ch >> 6) & 0x1F)));
|
||||
out.push_back(static_cast<unsigned char>(0x80 | (ch & 0x3F)));
|
||||
} else if (ch <= 0xFFFF) {
|
||||
out.push_back(static_cast<unsigned char>(0xE0 | ((ch >> 12) & 0x0F)));
|
||||
out.push_back(static_cast<unsigned char>(0x80 | ((ch >> 6) & 0x3F)));
|
||||
out.push_back(static_cast<unsigned char>(0x80 | (ch & 0x3F)));
|
||||
} else if (ch <= 0x10FFFF) {
|
||||
out.push_back(static_cast<unsigned char>(0xF0 | ((ch >> 18) & 0x07)));
|
||||
out.push_back(static_cast<unsigned char>(0x80 | ((ch >> 12) & 0x3F)));
|
||||
out.push_back(static_cast<unsigned char>(0x80 | ((ch >> 6) & 0x3F)));
|
||||
out.push_back(static_cast<unsigned char>(0x80 | (ch & 0x3F)));
|
||||
} else {
|
||||
// Invalid Unicode code point
|
||||
}
|
||||
}
|
||||
|
||||
// Helper function to remove the last UTF-8 character from a string
|
||||
void pop_back_utf8_char(std::string & line) {
|
||||
if (line.empty()) {
|
||||
return;
|
||||
}
|
||||
|
||||
size_t pos = line.length() - 1;
|
||||
|
||||
// Find the start of the last UTF-8 character (checking up to 4 bytes back)
|
||||
for (size_t i = 0; i < 3 && pos > 0; ++i, --pos) {
|
||||
if ((line[pos] & 0xC0) != 0x80) break; // Found the start of the character
|
||||
}
|
||||
line.erase(pos);
|
||||
}
|
||||
|
||||
bool console_readline(console_state & con_st, std::string & line) {
|
||||
console_set_color(con_st, CONSOLE_COLOR_USER_INPUT);
|
||||
if (con_st.out != stdout) {
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
line.clear();
|
||||
std::vector<int> widths;
|
||||
bool is_special_char = false;
|
||||
bool end_of_stream = false;
|
||||
|
||||
char32_t input_char;
|
||||
while (true) {
|
||||
fflush(con_st.out); // Ensure all output is displayed before waiting for input
|
||||
input_char = getchar32();
|
||||
|
||||
if (input_char == '\r' || input_char == '\n') {
|
||||
break;
|
||||
}
|
||||
|
||||
if (input_char == (char32_t) WEOF || input_char == 0x04 /* Ctrl+D*/) {
|
||||
end_of_stream = true;
|
||||
break;
|
||||
}
|
||||
|
||||
if (is_special_char) {
|
||||
console_set_color(con_st, CONSOLE_COLOR_USER_INPUT);
|
||||
replace_last(con_st, line.back());
|
||||
is_special_char = false;
|
||||
}
|
||||
|
||||
if (input_char == '\033') { // Escape sequence
|
||||
char32_t code = getchar32();
|
||||
if (code == '[' || code == 0x1B) {
|
||||
// Discard the rest of the escape sequence
|
||||
while ((code = getchar32()) != (char32_t) WEOF) {
|
||||
if ((code >= 'A' && code <= 'Z') || (code >= 'a' && code <= 'z') || code == '~') {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else if (input_char == 0x08 || input_char == 0x7F) { // Backspace
|
||||
if (!widths.empty()) {
|
||||
int count;
|
||||
do {
|
||||
count = widths.back();
|
||||
widths.pop_back();
|
||||
// Move cursor back, print space, and move cursor back again
|
||||
for (int i = 0; i < count; i++) {
|
||||
replace_last(con_st, ' ');
|
||||
pop_cursor(con_st);
|
||||
}
|
||||
pop_back_utf8_char(line);
|
||||
} while (count == 0 && !widths.empty());
|
||||
}
|
||||
} else {
|
||||
int offset = line.length();
|
||||
append_utf8(input_char, line);
|
||||
int width = put_codepoint(con_st, line.c_str() + offset, line.length() - offset, estimateWidth(input_char));
|
||||
if (width < 0) {
|
||||
width = 0;
|
||||
}
|
||||
widths.push_back(width);
|
||||
}
|
||||
|
||||
if (!line.empty() && (line.back() == '\\' || line.back() == '/')) {
|
||||
console_set_color(con_st, CONSOLE_COLOR_PROMPT);
|
||||
replace_last(con_st, line.back());
|
||||
is_special_char = true;
|
||||
}
|
||||
}
|
||||
|
||||
bool has_more = con_st.multiline_input;
|
||||
if (is_special_char) {
|
||||
replace_last(con_st, ' ');
|
||||
pop_cursor(con_st);
|
||||
|
||||
char last = line.back();
|
||||
line.pop_back();
|
||||
if (last == '\\') {
|
||||
line += '\n';
|
||||
fputc('\n', con_st.out);
|
||||
has_more = !has_more;
|
||||
} else {
|
||||
// llama will just eat the single space, it won't act as a space
|
||||
if (line.length() == 1 && line.back() == ' ') {
|
||||
line.clear();
|
||||
pop_cursor(con_st);
|
||||
}
|
||||
has_more = false;
|
||||
}
|
||||
} else {
|
||||
if (end_of_stream) {
|
||||
has_more = false;
|
||||
} else {
|
||||
line += '\n';
|
||||
fputc('\n', con_st.out);
|
||||
}
|
||||
}
|
||||
|
||||
fflush(con_st.out);
|
||||
return has_more;
|
||||
}
|
||||
@@ -11,27 +11,30 @@
|
||||
#include <unordered_map>
|
||||
#include <tuple>
|
||||
|
||||
#if !defined (_WIN32)
|
||||
#include <stdio.h>
|
||||
#include <termios.h>
|
||||
#endif
|
||||
|
||||
//
|
||||
// CLI argument parsing
|
||||
//
|
||||
int32_t get_num_physical_cores();
|
||||
|
||||
struct gpt_params {
|
||||
uint32_t seed = -1; // RNG seed
|
||||
int32_t seed = -1; // RNG seed
|
||||
int32_t n_threads = get_num_physical_cores();
|
||||
int32_t n_predict = -1; // new tokens to predict
|
||||
int32_t n_ctx = 512; // context size
|
||||
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
|
||||
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
||||
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
|
||||
int32_t n_gpu_layers = 0; // number of layers to store in VRAM
|
||||
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
||||
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
|
||||
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
|
||||
float rope_freq_base = 10000.0f; // RoPE base frequency
|
||||
float rope_freq_scale = 1.0f; // RoPE frequency scaling factor
|
||||
int32_t n_predict = -1; // new tokens to predict
|
||||
int32_t n_ctx = 512; // context size
|
||||
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
|
||||
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
||||
int32_t n_gpu_layers = 0; // number of layers to store in VRAM
|
||||
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
||||
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
|
||||
bool low_vram = 0; // if true, reduce VRAM usage at the cost of performance
|
||||
|
||||
// sampling parameters
|
||||
std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
|
||||
int32_t top_k = 40; // <= 0 to use vocab size
|
||||
float top_p = 0.95f; // 1.0 = disabled
|
||||
float tfs_z = 1.00f; // 1.0 = disabled
|
||||
@@ -41,38 +44,21 @@ struct gpt_params {
|
||||
int32_t repeat_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
|
||||
float frequency_penalty = 0.00f; // 0.0 = disabled
|
||||
float presence_penalty = 0.00f; // 0.0 = disabled
|
||||
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
|
||||
int mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
|
||||
float mirostat_tau = 5.00f; // target entropy
|
||||
float mirostat_eta = 0.10f; // learning rate
|
||||
|
||||
std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
|
||||
|
||||
// Classifier-Free Guidance
|
||||
// https://arxiv.org/abs/2306.17806
|
||||
std::string cfg_negative_prompt; // string to help guidance
|
||||
float cfg_scale = 1.f; // How strong is guidance
|
||||
|
||||
std::string model = "models/7B/ggml-model-f16.gguf"; // model path
|
||||
std::string model = "models/7B/ggml-model.bin"; // model path
|
||||
std::string model_alias = "unknown"; // model alias
|
||||
std::string prompt = "";
|
||||
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
|
||||
std::string input_prefix = ""; // string to prefix user inputs with
|
||||
std::string input_suffix = ""; // string to suffix user inputs with
|
||||
std::string grammar = ""; // optional BNF-like grammar to constrain sampling
|
||||
std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
|
||||
|
||||
std::string lora_adapter = ""; // lora adapter path
|
||||
std::string lora_base = ""; // base model path for the lora adapter
|
||||
|
||||
int ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
|
||||
int ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
|
||||
// (which is more convenient to use for plotting)
|
||||
//
|
||||
bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
|
||||
size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
|
||||
|
||||
bool low_vram = false; // if true, reduce VRAM usage at the cost of performance
|
||||
bool mul_mat_q = true; // if true, use mul_mat_q kernels instead of cuBLAS
|
||||
bool memory_f16 = true; // use f16 instead of f32 for memory kv
|
||||
bool random_prompt = false; // do not randomize prompt if none provided
|
||||
bool use_color = false; // use color to distinguish generations and inputs
|
||||
@@ -83,17 +69,13 @@ struct gpt_params {
|
||||
bool embedding = false; // get only sentence embedding
|
||||
bool interactive_first = false; // wait for user input immediately
|
||||
bool multiline_input = false; // reverse the usage of `\`
|
||||
bool simple_io = false; // improves compatibility with subprocesses and limited consoles
|
||||
|
||||
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
|
||||
bool ignore_eos = false; // ignore generated EOS tokens
|
||||
bool instruct = false; // instruction mode (used for Alpaca models)
|
||||
bool penalize_nl = true; // consider newlines as a repeatable token
|
||||
bool perplexity = false; // compute perplexity over the prompt
|
||||
bool use_mmap = true; // use mmap for faster loads
|
||||
bool use_mlock = false; // use mlock to keep model in memory
|
||||
bool mem_test = false; // compute maximum memory usage
|
||||
bool numa = false; // attempt optimizations that help on some NUMA systems
|
||||
bool export_cgraph = false; // export the computation graph
|
||||
bool verbose_prompt = false; // print prompt tokens before generation
|
||||
};
|
||||
@@ -104,22 +86,53 @@ void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
|
||||
|
||||
std::string gpt_random_prompt(std::mt19937 & rng);
|
||||
|
||||
//
|
||||
// Model utils
|
||||
//
|
||||
|
||||
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params);
|
||||
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params);
|
||||
|
||||
//
|
||||
// Vocab utils
|
||||
//
|
||||
|
||||
std::vector<llama_token> llama_tokenize(
|
||||
struct llama_context * ctx,
|
||||
const std::string & text,
|
||||
bool add_bos);
|
||||
std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::string & text, bool add_bos);
|
||||
|
||||
std::string llama_token_to_str(
|
||||
const struct llama_context * ctx,
|
||||
llama_token token);
|
||||
//
|
||||
// Model utils
|
||||
//
|
||||
|
||||
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(const gpt_params & params);
|
||||
|
||||
//
|
||||
// Console utils
|
||||
//
|
||||
|
||||
#define ANSI_COLOR_RED "\x1b[31m"
|
||||
#define ANSI_COLOR_GREEN "\x1b[32m"
|
||||
#define ANSI_COLOR_YELLOW "\x1b[33m"
|
||||
#define ANSI_COLOR_BLUE "\x1b[34m"
|
||||
#define ANSI_COLOR_MAGENTA "\x1b[35m"
|
||||
#define ANSI_COLOR_CYAN "\x1b[36m"
|
||||
#define ANSI_COLOR_RESET "\x1b[0m"
|
||||
#define ANSI_BOLD "\x1b[1m"
|
||||
|
||||
enum console_color_t {
|
||||
CONSOLE_COLOR_DEFAULT=0,
|
||||
CONSOLE_COLOR_PROMPT,
|
||||
CONSOLE_COLOR_USER_INPUT,
|
||||
CONSOLE_COLOR_ERROR
|
||||
};
|
||||
|
||||
struct console_state {
|
||||
bool multiline_input = false;
|
||||
bool use_color = false;
|
||||
console_color_t color = CONSOLE_COLOR_DEFAULT;
|
||||
|
||||
FILE* out = stdout;
|
||||
#if defined (_WIN32)
|
||||
void* hConsole;
|
||||
#else
|
||||
FILE* tty = nullptr;
|
||||
termios prev_state;
|
||||
#endif
|
||||
};
|
||||
|
||||
void console_init(console_state & con_st);
|
||||
void console_cleanup(console_state & con_st);
|
||||
void console_set_color(console_state & con_st, console_color_t color);
|
||||
bool console_readline(console_state & con_st, std::string & line);
|
||||
@@ -1,5 +0,0 @@
|
||||
set(TARGET convert-llama2c-to-ggml)
|
||||
add_executable(${TARGET} convert-llama2c-to-ggml.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
@@ -1,30 +0,0 @@
|
||||
## Convert llama2.c model to ggml
|
||||
|
||||
This example reads weights from project [llama2.c](https://github.com/karpathy/llama2.c) and saves them in ggml compatible format. The vocab that is available in `models/ggml-vocab.bin` is used by default.
|
||||
|
||||
To convert the model first download the models from the [llma2.c](https://github.com/karpathy/llama2.c) repository:
|
||||
|
||||
`$ make -j`
|
||||
|
||||
After successful compilation, following usage options are available:
|
||||
```
|
||||
usage: ./convert-llama2c-to-ggml [options]
|
||||
|
||||
options:
|
||||
-h, --help show this help message and exit
|
||||
--copy-vocab-from-model FNAME model path from which to copy vocab (default 'tokenizer.bin')
|
||||
--llama2c-model FNAME [REQUIRED] model path from which to load Karpathy's llama2.c model
|
||||
--llama2c-output-model FNAME model path to save the converted llama2.c model (default ak_llama_model.bin')
|
||||
```
|
||||
|
||||
An example command using a model from [karpathy/tinyllamas](https://huggingface.co/karpathy/tinyllamas) is as follows:
|
||||
|
||||
`$ ./convert-llama2c-to-ggml --copy-vocab-from-model ../llama2.c/tokenizer.bin --llama2c-model stories42M.bin --llama2c-output-model stories42M.ggmlv3.bin`
|
||||
|
||||
For now the generated model is in the legacy GGJTv3 format, so you need to convert it to gguf manually:
|
||||
|
||||
`$ python ./convert-llama-ggmlv3-to-gguf.py --eps 1e-5 --input stories42M.ggmlv3.bin --output stories42M.gguf.bin`
|
||||
|
||||
Now you can use the model with a command like:
|
||||
|
||||
`$ ./main -m stories42M.gguf.bin -p "One day, Lily met a Shoggoth" -n 500 -c 256`
|
||||
@@ -1,863 +0,0 @@
|
||||
#include "ggml.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
#include <cassert>
|
||||
#include <climits>
|
||||
#include <cstring>
|
||||
#include <cstdarg>
|
||||
#include <ctime>
|
||||
#include <random>
|
||||
#include <stdexcept>
|
||||
#include <algorithm>
|
||||
#include <string>
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
#define LLAMA_FILE_MAGIC_GGJT 0x67676a74u // 'ggjt'
|
||||
#define LLAMA_FILE_VERSION_GGJT_V3 3
|
||||
|
||||
//////////////////////////////////////// llama2.c model structs and functions to load models, alloc memory etc.
|
||||
typedef struct {
|
||||
int dim; // transformer dimension
|
||||
int hidden_dim; // for ffn layers
|
||||
int n_layers; // number of layers
|
||||
int n_heads; // number of query heads
|
||||
int n_kv_heads; // number of key/value heads (can be < query heads because of multiquery)
|
||||
int vocab_size; // vocabulary size, usually 256 (byte-level)
|
||||
int seq_len; // max sequence length
|
||||
} Config;
|
||||
|
||||
typedef struct {
|
||||
// token embedding table
|
||||
float* token_embedding_table; // (vocab_size, dim)
|
||||
// weights for rmsnorms
|
||||
float* rms_att_weight; // (layer, dim) rmsnorm weights
|
||||
float* rms_ffn_weight; // (layer, dim)
|
||||
// weights for matmuls
|
||||
float* wq; // (layer, dim, dim)
|
||||
float* wk; // (layer, dim, dim)
|
||||
float* wv; // (layer, dim, dim)
|
||||
float* wo; // (layer, dim, dim)
|
||||
// weights for ffn
|
||||
float* w1; // (layer, hidden_dim, dim)
|
||||
float* w2; // (layer, dim, hidden_dim)
|
||||
float* w3; // (layer, hidden_dim, dim)
|
||||
// final rmsnorm
|
||||
float* rms_final_weight; // (dim,)
|
||||
// freq_cis for RoPE relatively positional embeddings
|
||||
// float* freq_cis_real; // (seq_len, dim/2)
|
||||
// float* freq_cis_imag; // (seq_len, dim/2)
|
||||
// (optional) classifier weights for the logits, on the last layer
|
||||
float* wcls;
|
||||
} TransformerWeights;
|
||||
|
||||
void malloc_weights(TransformerWeights* w, Config* p, bool shared_weights) {
|
||||
// we calloc instead of malloc to keep valgrind happy
|
||||
w->token_embedding_table = new float[p->vocab_size * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->token_embedding_table\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
|
||||
|
||||
w->rms_att_weight = new float[p->n_layers * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->rms_att_weight\n",__func__,p->n_layers, p->dim, p->n_layers * p->dim);
|
||||
|
||||
w->rms_ffn_weight = new float[p->n_layers * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->rms_ffn_weight\n",__func__,p->n_layers , p->dim, p->n_layers * p->dim);
|
||||
|
||||
w->wq = new float[p->n_layers * p->dim * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wq\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
||||
|
||||
w->wk = new float[p->n_layers * p->dim * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wk\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
||||
|
||||
w->wv = new float[p->n_layers * p->dim * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wv\n",__func__, p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
||||
|
||||
w->wo = new float[p->n_layers * p->dim * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wo\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
||||
|
||||
w->w1 = new float[p->n_layers * p->hidden_dim * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w1\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
|
||||
|
||||
w->w2 = new float[p->n_layers * p->hidden_dim * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w2\n",__func__,p->n_layers, p->dim, p->hidden_dim, p->n_layers * p->hidden_dim * p->dim);
|
||||
|
||||
w->w3 = new float[p->n_layers * p->hidden_dim * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w3\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
|
||||
|
||||
w->rms_final_weight = new float[p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] float space for w->rms_final_weight\n",__func__,p->dim);
|
||||
|
||||
if (shared_weights) {
|
||||
w->wcls = NULL;
|
||||
} else {
|
||||
w->wcls = new float[p->vocab_size * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->wcls\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
|
||||
}
|
||||
}
|
||||
|
||||
int checkpoint_init_weights(TransformerWeights *w, Config* p, FILE* f, bool shared_weights) {
|
||||
if (fread(w->token_embedding_table, sizeof(float), p->vocab_size * p->dim, f) != static_cast<size_t>(p->vocab_size * p->dim)) return 1;
|
||||
if (fread(w->rms_att_weight, sizeof(float), p->n_layers * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim)) return 1;
|
||||
if (fread(w->wq, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
|
||||
if (fread(w->wk, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
|
||||
if (fread(w->wv, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
|
||||
if (fread(w->wo, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
|
||||
if (fread(w->rms_ffn_weight, sizeof(float), p->n_layers * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim)) return 1;
|
||||
if (fread(w->w1, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->hidden_dim)) return 1;
|
||||
if (fread(w->w2, sizeof(float), p->n_layers * p->hidden_dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->hidden_dim * p->dim)) return 1;
|
||||
if (fread(w->w3, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->hidden_dim)) return 1;
|
||||
if (fread(w->rms_final_weight, sizeof(float), p->dim, f) != static_cast<size_t>(p->dim)) return 1;
|
||||
|
||||
// Skip freq_cis_real & freq_cis_imag
|
||||
int head_size = p->dim / p->n_heads;
|
||||
fseek(f, p->seq_len * head_size * sizeof(float), SEEK_CUR);
|
||||
|
||||
if (!shared_weights && fread(w->wcls, sizeof(float), p->vocab_size * p->dim, f) != static_cast<size_t>(p->vocab_size * p->dim)) return 1;
|
||||
|
||||
// Check we didn't forget to read anything
|
||||
auto curr = ftell(f);
|
||||
fseek(f, 0, SEEK_END);
|
||||
auto end = ftell(f);
|
||||
if (curr != end) {
|
||||
printf("Error: failed to read the checkpoint file to the end (curr = %ld, end = %ld)\n", curr, end);
|
||||
return 1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void free_weights(TransformerWeights* w) {
|
||||
delete w->token_embedding_table;
|
||||
delete w->rms_att_weight;
|
||||
delete w->rms_ffn_weight;
|
||||
delete w->wq;
|
||||
delete w->wk;
|
||||
delete w->wv;
|
||||
delete w->wo;
|
||||
delete w->w1;
|
||||
delete w->w2;
|
||||
delete w->w3;
|
||||
delete w->rms_final_weight;
|
||||
if (w->wcls) delete w->wcls;
|
||||
}
|
||||
|
||||
void print_sample_weights(TransformerWeights *w){
|
||||
printf("----- Quick print of first of the weight vales of all the variables\n");
|
||||
printf("%f\n", w->token_embedding_table[0]);
|
||||
printf("%f\n", w->rms_att_weight[0]);
|
||||
printf("%f\n", w->rms_ffn_weight[0]);
|
||||
|
||||
printf("%f\n", w->wq[0]);
|
||||
printf("%f\n", w->wk[0]);
|
||||
printf("%f\n", w->wv[0]);
|
||||
printf("%f\n", w->wo[0]);
|
||||
printf("%f\n", w->w1[0]);
|
||||
printf("%f\n", w->w2[0]);
|
||||
printf("%f\n", w->w3[0]);
|
||||
printf("%f\n", w->rms_att_weight[0]);
|
||||
if (w->wcls) printf("%f\n", w->wcls[0]);
|
||||
}
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
//////////////////////////////////////// ggml structs and functions required to load models, configs and save the model.
|
||||
|
||||
struct llama_vocab {
|
||||
using id = int32_t;
|
||||
using token = std::string;
|
||||
using ttype = llama_token_type;
|
||||
|
||||
struct token_data {
|
||||
token text;
|
||||
float score;
|
||||
ttype type;
|
||||
};
|
||||
|
||||
std::unordered_map<token, id> token_to_id;
|
||||
std::vector<token_data> id_to_token;
|
||||
};
|
||||
|
||||
struct my_llama_hparams {
|
||||
uint32_t n_vocab = 32000;
|
||||
uint32_t n_ctx = 512; // this is provided as user input?
|
||||
uint32_t n_embd = 4096;
|
||||
uint32_t n_mult = 4;
|
||||
uint32_t n_head = 32;
|
||||
uint32_t n_layer = 32;
|
||||
uint32_t n_rot = 64;
|
||||
bool operator!=(const my_llama_hparams& other) const {
|
||||
return memcmp(this, &other, sizeof(my_llama_hparams));
|
||||
}
|
||||
};
|
||||
|
||||
struct my_llama_layer {
|
||||
// normalization
|
||||
struct ggml_tensor * attention_norm;
|
||||
|
||||
// attention
|
||||
struct ggml_tensor * wq;
|
||||
struct ggml_tensor * wk;
|
||||
struct ggml_tensor * wv;
|
||||
struct ggml_tensor * wo;
|
||||
|
||||
// normalization
|
||||
struct ggml_tensor * ffn_norm;
|
||||
|
||||
// ff
|
||||
struct ggml_tensor * w1;
|
||||
struct ggml_tensor * w2;
|
||||
struct ggml_tensor * w3;
|
||||
};
|
||||
|
||||
struct my_llama_model {
|
||||
struct ggml_context * ctx = NULL;
|
||||
|
||||
my_llama_hparams hparams;
|
||||
|
||||
struct ggml_tensor * tok_embeddings;
|
||||
|
||||
struct ggml_tensor * norm;
|
||||
struct ggml_tensor * output;
|
||||
|
||||
std::vector<my_llama_layer> layers;
|
||||
|
||||
uint32_t train_its = 0;
|
||||
uint32_t train_samples = 0;
|
||||
uint32_t train_tokens = 0;
|
||||
};
|
||||
|
||||
struct train_params {
|
||||
const char * fn_vocab_model;
|
||||
const char * fn_llama2c_model;
|
||||
const char * fn_llama2c_output_model;
|
||||
const char * fn_train_data;
|
||||
const char * fn_checkpoint_in;
|
||||
const char * fn_checkpoint_out;
|
||||
const char * fn_model_out;
|
||||
|
||||
uint32_t seed;
|
||||
|
||||
int n_ctx;
|
||||
int n_embd;
|
||||
int n_mult;
|
||||
int n_head;
|
||||
int n_layer;
|
||||
int n_rotmax;
|
||||
|
||||
int n_threads;
|
||||
int n_batch;
|
||||
int n_examples;
|
||||
int n_predict;
|
||||
|
||||
int print_info_interval;
|
||||
int print_details_interval;
|
||||
|
||||
bool samples_start_after_nl;
|
||||
bool use_adam;
|
||||
bool use_flash;
|
||||
bool use_scratch;
|
||||
|
||||
// only adam
|
||||
int warmup;
|
||||
int cos_decay_steps;
|
||||
float cos_decay_restart;
|
||||
float cos_decay_alpha;
|
||||
|
||||
int lbfgs_n_iter;
|
||||
int adam_n_iter;
|
||||
float adam_alpha;
|
||||
float adam_decay;
|
||||
|
||||
int mem_model_gb;
|
||||
int mem_compute_gb;
|
||||
int mem_compute0_gb;
|
||||
int mem_compute1_gb;
|
||||
};
|
||||
|
||||
uint32_t get_n_ff(const struct my_llama_hparams* hparams) {
|
||||
const uint32_t n_ff = ((2*(4*hparams->n_embd)/3 + hparams->n_mult - 1)/hparams->n_mult)*hparams->n_mult;
|
||||
return n_ff;
|
||||
}
|
||||
|
||||
void print_params(struct my_llama_hparams * params) {
|
||||
printf("%s: n_vocab: %d\n", __func__, params->n_vocab);
|
||||
printf("%s: n_ctx: %d\n", __func__, params->n_ctx);
|
||||
printf("%s: n_embd: %d\n", __func__, params->n_embd);
|
||||
printf("%s: n_mult: %d\n", __func__, params->n_mult);
|
||||
printf("%s: n_head: %d\n", __func__, params->n_head);
|
||||
printf("%s: n_ff: %d\n", __func__, get_n_ff(params));
|
||||
printf("%s: n_layer: %d\n", __func__, params->n_layer);
|
||||
printf("%s: n_rot: %d\n", __func__, params->n_rot);
|
||||
}
|
||||
|
||||
void init_model(struct my_llama_model * model) {
|
||||
const auto & hparams = model->hparams;
|
||||
|
||||
const uint32_t n_embd = hparams.n_embd;
|
||||
const uint32_t n_layer = hparams.n_layer;
|
||||
const uint32_t n_vocab = hparams.n_vocab;
|
||||
|
||||
const uint32_t n_ff = get_n_ff(&hparams);
|
||||
struct ggml_context * ctx = model->ctx;
|
||||
|
||||
model->train_its = 0;
|
||||
model->train_samples = 0;
|
||||
model->train_tokens = 0;
|
||||
|
||||
model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
|
||||
printf("[%s:GG] Allocating [%d] x [%d] = [%d] float space for model->tok_embeddings\n",__func__,n_embd , n_vocab, n_embd * n_vocab);
|
||||
|
||||
model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
printf("[%s:GG] Allocating [%d] float space for model->norm\n",__func__,n_embd);
|
||||
|
||||
model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
|
||||
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for model->output\n",__func__,n_embd, n_vocab, n_embd * n_vocab);
|
||||
|
||||
// printing the per-layer allocations here so we dont print in the for loop.
|
||||
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wq for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
|
||||
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wk for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
|
||||
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wv for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
|
||||
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wo for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
|
||||
|
||||
printf("[%s:GG] Allocating [%d] float space for layer.ffn_norm for [%d] layers\n",__func__,n_embd, n_layer);
|
||||
|
||||
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.w1 for [%d] layers\n",__func__, n_ff, n_embd, n_embd * n_ff, n_layer);
|
||||
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.w2 for [%d] layers\n",__func__, n_embd, n_ff, n_ff * n_embd, n_layer);
|
||||
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.w3 for [%d] layers\n",__func__, n_ff, n_embd, n_embd * n_ff, n_layer);
|
||||
|
||||
ggml_set_name(model->tok_embeddings, "tok_embeddings.weight");
|
||||
ggml_set_name(model->norm, "norm.weight");
|
||||
ggml_set_name(model->output, "output.weight");
|
||||
|
||||
model->layers.resize(n_layer);
|
||||
for (uint32_t i = 0; i < n_layer; ++i) {
|
||||
auto & layer = model->layers[i];
|
||||
|
||||
std::string layers_i = "layers." + std::to_string(i);
|
||||
|
||||
layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
||||
layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
||||
layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
||||
layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
||||
|
||||
layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
layer.w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
|
||||
layer.w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd);
|
||||
layer.w3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
|
||||
|
||||
ggml_set_name(layer.attention_norm, (layers_i + ".attention_norm.weight").c_str());
|
||||
|
||||
ggml_set_name(layer.wq, (layers_i + ".attention.wq.weight").c_str());
|
||||
ggml_set_name(layer.wk, (layers_i + ".attention.wk.weight").c_str());
|
||||
ggml_set_name(layer.wv, (layers_i + ".attention.wv.weight").c_str());
|
||||
ggml_set_name(layer.wo, (layers_i + ".attention.wo.weight").c_str());
|
||||
|
||||
ggml_set_name(layer.ffn_norm, (layers_i + ".ffn_norm.weight").c_str());
|
||||
|
||||
ggml_format_name(layer.w1, "%s.feed_forward.w1.weight", layers_i.c_str());
|
||||
ggml_format_name(layer.w2, "%s.feed_forward.w2.weight", layers_i.c_str());
|
||||
ggml_format_name(layer.w3, "%s.feed_forward.w3.weight", layers_i.c_str());
|
||||
}
|
||||
}
|
||||
|
||||
float get_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
|
||||
float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
|
||||
return *ptr;
|
||||
}
|
||||
|
||||
int32_t get_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
|
||||
int32_t * ptr = (int32_t *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
|
||||
return *ptr;
|
||||
}
|
||||
|
||||
void print_row(struct ggml_tensor * probs, int i) {
|
||||
for (int k = 0; k < probs->ne[0]; ++k) {
|
||||
float p = get_f32_2d(probs, k, i);
|
||||
printf(" %f", p);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
void print_matrix(struct ggml_tensor * probs) {
|
||||
assert(probs->n_dims == 2);
|
||||
for (int i = 0; i < probs->ne[1]; ++i) {
|
||||
for (int k = 0; k < probs->ne[0]; ++k) {
|
||||
float p = get_f32_2d(probs, k, i);
|
||||
printf(" %.2f", p);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef __GNUC__
|
||||
#ifdef __MINGW32__
|
||||
__attribute__((format(gnu_printf, 1, 2)))
|
||||
#else
|
||||
__attribute__((format(printf, 1, 2)))
|
||||
#endif
|
||||
#endif
|
||||
static std::string format(const char * fmt, ...) {
|
||||
va_list ap, ap2;
|
||||
va_start(ap, fmt);
|
||||
va_copy(ap2, ap);
|
||||
int size = vsnprintf(NULL, 0, fmt, ap);
|
||||
GGML_ASSERT(size >= 0 && size < INT_MAX);
|
||||
std::vector<char> buf(size + 1);
|
||||
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
|
||||
GGML_ASSERT(size2 == size);
|
||||
va_end(ap2);
|
||||
va_end(ap);
|
||||
return std::string(buf.data(), size);
|
||||
}
|
||||
|
||||
struct llama_file {
|
||||
// use FILE * so we don't have to re-open the file to mmap
|
||||
FILE * fp;
|
||||
size_t size;
|
||||
|
||||
llama_file(const char * fname, const char * mode) {
|
||||
fp = std::fopen(fname, mode);
|
||||
if (fp == NULL) {
|
||||
size = 0;
|
||||
} else {
|
||||
seek(0, SEEK_END);
|
||||
size = tell();
|
||||
seek(0, SEEK_SET);
|
||||
}
|
||||
}
|
||||
|
||||
size_t tell() const {
|
||||
#ifdef _WIN32
|
||||
__int64 ret = _ftelli64(fp);
|
||||
#else
|
||||
long ret = std::ftell(fp);
|
||||
#endif
|
||||
GGML_ASSERT(ret != -1); // this really shouldn't fail
|
||||
return (size_t) ret;
|
||||
}
|
||||
|
||||
void seek(size_t offset, int whence) {
|
||||
#ifdef _WIN32
|
||||
int ret = _fseeki64(fp, (__int64) offset, whence);
|
||||
#else
|
||||
int ret = std::fseek(fp, (long) offset, whence);
|
||||
#endif
|
||||
GGML_ASSERT(ret == 0); // same
|
||||
}
|
||||
|
||||
void read_raw(void * ptr, size_t size) {
|
||||
if (size == 0) {
|
||||
return;
|
||||
}
|
||||
errno = 0;
|
||||
std::size_t ret = std::fread(ptr, size, 1, fp);
|
||||
if (ferror(fp)) {
|
||||
throw std::runtime_error(format("read error: %s", strerror(errno)));
|
||||
}
|
||||
if (ret != 1) {
|
||||
throw std::runtime_error(std::string("unexpectedly reached end of file"));
|
||||
}
|
||||
}
|
||||
|
||||
std::uint32_t read_u32() {
|
||||
std::uint32_t ret;
|
||||
read_raw(&ret, sizeof(ret));
|
||||
return ret;
|
||||
}
|
||||
std::float_t read_f32() {
|
||||
std::float_t ret;
|
||||
read_raw(&ret, sizeof(ret));
|
||||
return ret;
|
||||
}
|
||||
|
||||
std::string read_string(std::uint32_t len) {
|
||||
std::vector<char> chars(len);
|
||||
read_raw(chars.data(), len);
|
||||
return std::string(chars.data(), len);
|
||||
}
|
||||
|
||||
void write_raw(const void * ptr, size_t size) {
|
||||
if (size == 0) {
|
||||
return;
|
||||
}
|
||||
errno = 0;
|
||||
size_t ret = std::fwrite(ptr, size, 1, fp);
|
||||
if (ret != 1) {
|
||||
throw std::runtime_error(format("write error: %s", strerror(errno)));
|
||||
}
|
||||
}
|
||||
|
||||
void write_u32(std::uint32_t val) {
|
||||
write_raw(&val, sizeof(val));
|
||||
}
|
||||
|
||||
~llama_file() {
|
||||
if (fp) {
|
||||
std::fclose(fp);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
void write_tensor(struct llama_file * file, struct ggml_tensor * tensor) {
|
||||
if (tensor == NULL) {
|
||||
file->write_u32(0);
|
||||
file->write_u32(0);
|
||||
file->write_u32(GGML_TYPE_F32);
|
||||
file->seek((0-file->tell()) & 31, SEEK_CUR);
|
||||
return;
|
||||
}
|
||||
const char * name = ggml_get_name(tensor);
|
||||
uint32_t name_len = strlen(name);
|
||||
uint32_t nd = tensor->n_dims;
|
||||
uint32_t ne[4] = { (uint32_t)tensor->ne[0],
|
||||
(uint32_t)tensor->ne[1],
|
||||
(uint32_t)tensor->ne[2],
|
||||
(uint32_t)tensor->ne[3] };
|
||||
file->write_u32(nd);
|
||||
file->write_u32(name_len);
|
||||
file->write_u32(tensor->type);
|
||||
file->write_raw(ne, sizeof(ne[0]) * nd);
|
||||
file->write_raw(name, name_len);
|
||||
file->seek((0-file->tell()) & 31, SEEK_CUR);
|
||||
file->write_raw(tensor->data, ggml_nbytes(tensor));
|
||||
}
|
||||
|
||||
bool is_ggml_file(const char *filename) {
|
||||
llama_file file(filename, "rb");
|
||||
if (file.size < 4) {
|
||||
return false;
|
||||
}
|
||||
uint32_t magic = file.read_u32();
|
||||
return magic == GGUF_MAGIC;
|
||||
}
|
||||
|
||||
void load_vocab(const char *filename, Config *config, struct llama_vocab *vocab) {
|
||||
#pragma message("TODO: implement reading vocabulary using gguf")
|
||||
// // heuristic to infer whether vocab is from ggml or from llama2.c vocabulary
|
||||
// if (is_ggml_file(filename)) {
|
||||
//
|
||||
// struct llama_context_params llama_params = llama_context_default_params();
|
||||
// llama_params.vocab_only = true;
|
||||
//
|
||||
// struct llama_model * lmodel = llama_load_model_from_file(filename, llama_params);
|
||||
// struct llama_context * lctx = llama_new_context_with_model(lmodel, llama_params);
|
||||
//
|
||||
// const int n_vocab = llama_n_vocab(lctx);
|
||||
// vocab->id_to_token.resize(n_vocab);
|
||||
// for (int i=0; i<n_vocab; ++i) {
|
||||
// vocab->id_to_token[i].text = llama_token_get_text(lctx, i);
|
||||
// vocab->id_to_token[i].score = llama_token_get_score(lctx, i);
|
||||
// vocab->id_to_token[i].type = llama_token_get_type(lctx, i);
|
||||
// vocab->token_to_id.emplace(vocab->id_to_token[i].text, i);
|
||||
// }
|
||||
// llama_free(lctx);
|
||||
// llama_free_model(lmodel);
|
||||
// } else
|
||||
{ // assume llama2.c vocabulary
|
||||
printf("Assuming llama2.c vocabulary since %s is not a ggml file\n", filename);
|
||||
llama_file file(filename, "rb");
|
||||
const int n_vocab = config->vocab_size;
|
||||
/* uint32_t max_token_length = */ file.read_u32(); // unused
|
||||
vocab->id_to_token.resize(n_vocab);
|
||||
for (int i=0; i<n_vocab; ++i) {
|
||||
float_t score = file.read_f32();
|
||||
uint32_t len = file.read_u32();
|
||||
std::string text = file.read_string(len);
|
||||
// Special-case handling of <0xXX> single byte tokens.
|
||||
char byte_val;
|
||||
if (sscanf(text.c_str(), "<0x%02hhX>", &byte_val) == 1) {
|
||||
char cstr[2] = { byte_val, 0 };
|
||||
text = cstr;
|
||||
}
|
||||
vocab->id_to_token[i].text = text;
|
||||
vocab->id_to_token[i].score = score;
|
||||
vocab->id_to_token[i].type = LLAMA_TOKEN_TYPE_UNDEFINED;
|
||||
vocab->token_to_id.emplace(text, i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void stuff_karpathy_weights_into_gg(struct ggml_tensor * gg_weights, float * karpathy_weights){
|
||||
int ct;
|
||||
switch (gg_weights->n_dims){
|
||||
case 1:
|
||||
ct = 0;
|
||||
for (int i0 = 0; i0 < gg_weights->ne[0]; i0++){
|
||||
float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0]);
|
||||
*ptr = karpathy_weights[ct];
|
||||
ct++;
|
||||
}
|
||||
break;
|
||||
case 2:
|
||||
ct = 0;
|
||||
for (int i1 = 0; i1 < gg_weights->ne[1]; i1++) {
|
||||
for (int i0 = 0; i0 < gg_weights->ne[0]; i0++) {
|
||||
float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0] + i1*gg_weights->nb[1]);
|
||||
*ptr = karpathy_weights[ct];
|
||||
ct++;
|
||||
}
|
||||
}
|
||||
break;
|
||||
case 3:
|
||||
ct = 0;
|
||||
for (int i2 = 0; i2 < gg_weights->ne[2]; i2++) {
|
||||
for (int i1 = 0; i1 < gg_weights->ne[1]; i1++) {
|
||||
for (int i0 = 0; i0 < gg_weights->ne[0]; i0++) {
|
||||
float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0] + i1*gg_weights->nb[1] + i2*gg_weights->nb[2]);
|
||||
*ptr = karpathy_weights[ct];
|
||||
ct++;
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void save_as_llama_model(struct llama_vocab * vocab, struct my_llama_model * model, TransformerWeights* w, const char * filename) {
|
||||
struct llama_file file(filename, "wb");
|
||||
if (file.fp == NULL) {
|
||||
return;
|
||||
}
|
||||
|
||||
#pragma message("TODO: implement file saving using gguf")
|
||||
// write_magic
|
||||
file.write_u32(LLAMA_FILE_MAGIC_GGJT); // magic
|
||||
file.write_u32(LLAMA_FILE_VERSION_GGJT_V3); // version
|
||||
// write_hparams
|
||||
file.write_u32(model->hparams.n_vocab);
|
||||
file.write_u32(model->hparams.n_embd);
|
||||
file.write_u32(model->hparams.n_mult);
|
||||
file.write_u32(model->hparams.n_head);
|
||||
file.write_u32(model->hparams.n_layer);
|
||||
file.write_u32(model->hparams.n_rot);
|
||||
file.write_u32(LLAMA_FTYPE_ALL_F32);
|
||||
|
||||
// write_vocab - for now we are just writing the existing BPE voc. assuming karpathy's vocabulary is the same. idk.
|
||||
uint32_t n_vocab = model->hparams.n_vocab;
|
||||
for (uint32_t i = 0; i < n_vocab; i++) {
|
||||
const auto & token_data = vocab->id_to_token.at(i);
|
||||
file.write_u32((uint32_t) token_data.text.size());
|
||||
file.write_raw(token_data.text.data(), token_data.text.size());
|
||||
file.write_raw(&token_data.score, sizeof(token_data.score));
|
||||
}
|
||||
|
||||
// stuff AK weights into GG weights one by one.
|
||||
// w->token_embedding_table -> model->tok_embeddings
|
||||
// float* -> struct ggml_tensor
|
||||
stuff_karpathy_weights_into_gg(model->tok_embeddings, w->token_embedding_table);
|
||||
stuff_karpathy_weights_into_gg(model->output, w->wcls ? w->wcls : w->token_embedding_table);
|
||||
|
||||
stuff_karpathy_weights_into_gg(model->norm, w->rms_final_weight);
|
||||
//print_row(model->norm, 0);
|
||||
|
||||
// for rms-att-weight
|
||||
int row_length = model->hparams.n_embd;
|
||||
const auto & hparams = model->hparams;
|
||||
//int n_ff = model->hparams.n_embd;
|
||||
int n_ff = get_n_ff(&hparams);
|
||||
|
||||
for (uint32_t i = 0; i < model->hparams.n_layer; ++i){
|
||||
auto & layer = model->layers[i];
|
||||
// 1d
|
||||
stuff_karpathy_weights_into_gg(layer.attention_norm, &w->rms_att_weight[i*row_length]);
|
||||
stuff_karpathy_weights_into_gg(layer.ffn_norm , &w->rms_ffn_weight[i*row_length]);
|
||||
|
||||
// from 3d matrix layer x dim x dim to 2d matrix dim x dim
|
||||
stuff_karpathy_weights_into_gg(layer.wq , &w->wq[i*row_length*row_length]);
|
||||
stuff_karpathy_weights_into_gg(layer.wk , &w->wk[i*row_length*row_length]);
|
||||
stuff_karpathy_weights_into_gg(layer.wv , &w->wv[i*row_length*row_length]);
|
||||
stuff_karpathy_weights_into_gg(layer.wo , &w->wo[i*row_length*row_length]);
|
||||
|
||||
stuff_karpathy_weights_into_gg(layer.w1 , &w->w1[i*row_length*n_ff]);
|
||||
stuff_karpathy_weights_into_gg(layer.w2 , &w->w2[i*n_ff*row_length]);
|
||||
stuff_karpathy_weights_into_gg(layer.w3 , &w->w3[i*row_length*n_ff]);
|
||||
}
|
||||
// write tensors
|
||||
write_tensor(&file, model->tok_embeddings);
|
||||
write_tensor(&file, model->norm);
|
||||
write_tensor(&file, model->output); // ?
|
||||
for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
|
||||
auto & layer = model->layers[i];
|
||||
|
||||
write_tensor(&file, layer.attention_norm);
|
||||
write_tensor(&file, layer.wq);
|
||||
write_tensor(&file, layer.wk);
|
||||
write_tensor(&file, layer.wv);
|
||||
write_tensor(&file, layer.wo);
|
||||
write_tensor(&file, layer.ffn_norm);
|
||||
write_tensor(&file, layer.w1);
|
||||
write_tensor(&file, layer.w2);
|
||||
write_tensor(&file, layer.w3);
|
||||
}
|
||||
}
|
||||
|
||||
struct train_params get_default_train_params() {
|
||||
struct train_params params;
|
||||
params.fn_vocab_model = "tokenizer.bin";
|
||||
params.fn_llama2c_output_model = "ak_llama_model.bin";
|
||||
params.fn_train_data = "shakespeare.txt";
|
||||
params.fn_checkpoint_in = "checkpoint.bin";
|
||||
params.fn_checkpoint_out = "checkpoint.bin";
|
||||
params.fn_model_out = "ggml-checkpoint-f32.bin";
|
||||
|
||||
params.seed = -1;
|
||||
|
||||
params.n_ctx = 128;
|
||||
params.n_embd = 256;
|
||||
params.n_mult = 256;
|
||||
params.n_head = 8;
|
||||
params.n_layer = 16;
|
||||
params.n_rotmax = 64;
|
||||
|
||||
params.n_threads = 6;
|
||||
params.n_batch = 8;
|
||||
params.n_examples = 8;
|
||||
params.n_predict = 1024;
|
||||
|
||||
params.print_info_interval = 1;
|
||||
params.print_details_interval = 2;
|
||||
|
||||
params.samples_start_after_nl = false;
|
||||
params.use_adam = true;
|
||||
params.use_flash = true;
|
||||
params.use_scratch = true;
|
||||
|
||||
// only adam
|
||||
params.warmup = 100;
|
||||
params.cos_decay_steps = 1000;
|
||||
params.cos_decay_restart = 1.1f;
|
||||
params.cos_decay_alpha = 0.0f;
|
||||
|
||||
params.lbfgs_n_iter = 16;
|
||||
params.adam_n_iter = 16;
|
||||
params.adam_alpha = 1e-3f;
|
||||
params.adam_decay = 1e-3f;
|
||||
|
||||
params.mem_model_gb = 2;
|
||||
params.mem_compute_gb = 24;
|
||||
params.mem_compute0_gb = 8;
|
||||
params.mem_compute1_gb = 2;
|
||||
|
||||
return params;
|
||||
}
|
||||
|
||||
void print_usage(int /*argc*/, char ** argv, const struct train_params * params) {
|
||||
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "options:\n");
|
||||
fprintf(stderr, " -h, --help show this help message and exit\n");
|
||||
fprintf(stderr, " --copy-vocab-from-model FNAME llama2.c vocabulary or ggmlv3 model path from which to copy vocab (default '%s')\n", params->fn_vocab_model);
|
||||
fprintf(stderr, " --llama2c-model FNAME [REQUIRED] model path from which to load Karpathy's llama2.c model\n");
|
||||
fprintf(stderr, " --llama2c-output-model FNAME model path to save the converted llama2.c model (default %s')\n", params->fn_llama2c_output_model);
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
bool params_parse(int argc, char ** argv, struct train_params * params) {
|
||||
bool invalid_param = false;
|
||||
bool reqd_param_found = false;
|
||||
std::string arg;
|
||||
struct train_params default_params = get_default_train_params();
|
||||
const std::string arg_prefix = "--";
|
||||
|
||||
for (int i = 1; i < argc; i++) {
|
||||
arg = argv[i];
|
||||
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
|
||||
std::replace(arg.begin(), arg.end(), '_', '-');
|
||||
}
|
||||
|
||||
if (arg == "--copy-vocab-from-model") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params->fn_vocab_model = argv[i];
|
||||
} else if (arg == "--llama2c-model") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
reqd_param_found = true;
|
||||
params->fn_llama2c_model = argv[i];
|
||||
} else if (arg == "--llama2c-output-model") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params->fn_llama2c_output_model = argv[i];
|
||||
} else if (arg == "-h" || arg == "--help") {
|
||||
print_usage(argc, argv, &default_params);
|
||||
exit(0);
|
||||
} else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
print_usage(argc, argv, &default_params);
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
if (invalid_param) {
|
||||
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
|
||||
print_usage(argc, argv, &default_params);
|
||||
exit(1);
|
||||
}
|
||||
if (!reqd_param_found){
|
||||
fprintf(stderr, "error: please specify a llama2.c .bin file to be converted with argument --llama2c-model\n");
|
||||
print_usage(argc, argv, &default_params);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
struct train_params params = get_default_train_params();
|
||||
if (!params_parse(argc, argv, ¶ms)) {
|
||||
return 1;
|
||||
}
|
||||
Config config;
|
||||
TransformerWeights weights;
|
||||
{
|
||||
FILE *file = fopen(params.fn_llama2c_model, "rb");
|
||||
if (!file) { printf("Unable to open the checkpoint file %s!\n", params.fn_llama2c_model); return 1; }
|
||||
// read in the config header
|
||||
if(fread(&config, sizeof(Config), 1, file) != 1) { return 1; }
|
||||
auto shared_weights = config.vocab_size > 0;
|
||||
config.vocab_size = abs(config.vocab_size);
|
||||
|
||||
// read in the Transformer weights
|
||||
malloc_weights(&weights, &config, shared_weights);
|
||||
if(checkpoint_init_weights(&weights, &config, file, shared_weights)) { return 1; }
|
||||
fclose(file);
|
||||
}
|
||||
|
||||
struct llama_vocab vocab;
|
||||
load_vocab(params.fn_vocab_model, &config, &vocab);
|
||||
|
||||
struct my_llama_model model;
|
||||
model.hparams.n_vocab = config.vocab_size; //llama_n_vocab(lctx);
|
||||
model.hparams.n_ctx = params.n_ctx;
|
||||
model.hparams.n_embd = config.dim; //params.n_embd;
|
||||
model.hparams.n_mult = 32;//params.n_mult;
|
||||
model.hparams.n_head = config.n_heads; //params.n_head;
|
||||
model.hparams.n_layer = config.n_layers; //params.n_layer;
|
||||
model.hparams.n_rot = std::min((uint32_t)params.n_rotmax, model.hparams.n_embd / model.hparams.n_head);
|
||||
print_params(&model.hparams);
|
||||
struct ggml_init_params lcparams;
|
||||
lcparams.mem_size = 1024ll*1024ll*1024ll*((size_t) params.mem_model_gb);
|
||||
lcparams.mem_buffer = NULL;
|
||||
lcparams.no_alloc = false;
|
||||
|
||||
model.ctx = ggml_init(lcparams);
|
||||
|
||||
init_model(&model);
|
||||
save_as_llama_model(&vocab, &model, &weights, params.fn_llama2c_output_model);
|
||||
|
||||
printf("Saving llama.c model file %s in ggml format at %s\n", params.fn_llama2c_model, params.fn_llama2c_output_model);
|
||||
|
||||
ggml_free(model.ctx);
|
||||
free_weights(&weights);
|
||||
return 0;
|
||||
}
|
||||
4
examples/embd-input/.gitignore
vendored
4
examples/embd-input/.gitignore
vendored
@@ -1,4 +0,0 @@
|
||||
PandaGPT
|
||||
MiniGPT-4
|
||||
*.pth
|
||||
|
||||
@@ -1,17 +0,0 @@
|
||||
set(TARGET embdinput)
|
||||
add_library(${TARGET} embd-input-lib.cpp embd-input.h)
|
||||
install(TARGETS ${TARGET} LIBRARY)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
if(TARGET BUILD_INFO)
|
||||
add_dependencies(${TARGET} BUILD_INFO)
|
||||
endif()
|
||||
|
||||
set(TARGET embd-input-test)
|
||||
add_executable(${TARGET} embd-input-test.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama embdinput ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
if(TARGET BUILD_INFO)
|
||||
add_dependencies(${TARGET} BUILD_INFO)
|
||||
endif()
|
||||
@@ -1,63 +0,0 @@
|
||||
### Examples for input embedding directly
|
||||
|
||||
## Requirement
|
||||
build `libembdinput.so`
|
||||
run the following comman in main dir (../../).
|
||||
```
|
||||
make
|
||||
```
|
||||
|
||||
## [LLaVA](https://github.com/haotian-liu/LLaVA/) example (llava.py)
|
||||
|
||||
1. Obtian LLaVA model (following https://github.com/haotian-liu/LLaVA/ , use https://huggingface.co/liuhaotian/LLaVA-13b-delta-v1-1/).
|
||||
2. Convert it to ggml format.
|
||||
3. `llava_projection.pth` is [pytorch_model-00003-of-00003.bin](https://huggingface.co/liuhaotian/LLaVA-13b-delta-v1-1/blob/main/pytorch_model-00003-of-00003.bin).
|
||||
|
||||
```
|
||||
import torch
|
||||
|
||||
bin_path = "../LLaVA-13b-delta-v1-1/pytorch_model-00003-of-00003.bin"
|
||||
pth_path = "./examples/embd-input/llava_projection.pth"
|
||||
|
||||
dic = torch.load(bin_path)
|
||||
used_key = ["model.mm_projector.weight","model.mm_projector.bias"]
|
||||
torch.save({k: dic[k] for k in used_key}, pth_path)
|
||||
```
|
||||
4. Check the path of LLaVA model and `llava_projection.pth` in `llava.py`.
|
||||
|
||||
|
||||
## [PandaGPT](https://github.com/yxuansu/PandaGPT) example (panda_gpt.py)
|
||||
|
||||
1. Obtian PandaGPT lora model from https://github.com/yxuansu/PandaGPT. Rename the file to `adapter_model.bin`. Use [convert-lora-to-ggml.py](../../convert-lora-to-ggml.py) to convert it to ggml format.
|
||||
The `adapter_config.json` is
|
||||
```
|
||||
{
|
||||
"peft_type": "LORA",
|
||||
"fan_in_fan_out": false,
|
||||
"bias": null,
|
||||
"modules_to_save": null,
|
||||
"r": 32,
|
||||
"lora_alpha": 32,
|
||||
"lora_dropout": 0.1,
|
||||
"target_modules": ["q_proj", "k_proj", "v_proj", "o_proj"]
|
||||
}
|
||||
```
|
||||
2. Papare the `vicuna` v0 model.
|
||||
3. Obtain the [ImageBind](https://dl.fbaipublicfiles.com/imagebind/imagebind_huge.pth) model.
|
||||
4. Clone the PandaGPT source.
|
||||
```
|
||||
git clone https://github.com/yxuansu/PandaGPT
|
||||
```
|
||||
5. Install the requirement of PandaGPT.
|
||||
6. Check the path of PandaGPT source, ImageBind model, lora model and vicuna model in panda_gpt.py.
|
||||
|
||||
## [MiniGPT-4](https://github.com/Vision-CAIR/MiniGPT-4/) example (minigpt4.py)
|
||||
|
||||
1. Obtain MiniGPT-4 model from https://github.com/Vision-CAIR/MiniGPT-4/ and put it in `embd-input`.
|
||||
2. Clone the MiniGPT-4 source.
|
||||
```
|
||||
git clone https://github.com/Vision-CAIR/MiniGPT-4/
|
||||
```
|
||||
3. Install the requirement of PandaGPT.
|
||||
4. Papare the `vicuna` v0 model.
|
||||
5. Check the path of MiniGPT-4 source, MiniGPT-4 model and vicuna model in `minigpt4.py`.
|
||||
@@ -1,223 +0,0 @@
|
||||
// Defines sigaction on msys:
|
||||
#ifndef _GNU_SOURCE
|
||||
#define _GNU_SOURCE
|
||||
#endif
|
||||
|
||||
#include "embd-input.h"
|
||||
|
||||
#include <cassert>
|
||||
#include <cinttypes>
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <ctime>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
static llama_context ** g_ctx;
|
||||
|
||||
extern "C" {
|
||||
|
||||
struct MyModel* create_mymodel(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
|
||||
if (gpt_params_parse(argc, argv, params) == false) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
|
||||
|
||||
if (params.seed == LLAMA_DEFAULT_SEED) {
|
||||
params.seed = uint32_t(time(NULL));
|
||||
}
|
||||
fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
|
||||
|
||||
llama_backend_init(params.numa);
|
||||
|
||||
llama_model * model;
|
||||
llama_context * ctx;
|
||||
|
||||
g_ctx = &ctx;
|
||||
|
||||
// load the model and apply lora adapter, if any
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||
if (model == NULL) {
|
||||
fprintf(stderr, "%s: error: unable to load model\n", __func__);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// print system information
|
||||
{
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
|
||||
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
|
||||
}
|
||||
struct MyModel * ret = new MyModel();
|
||||
ret->ctx = ctx;
|
||||
ret->params = params;
|
||||
ret->n_past = 0;
|
||||
// printf("ctx: %d\n", ret->ctx);
|
||||
return ret;
|
||||
}
|
||||
|
||||
void free_mymodel(struct MyModel * mymodel) {
|
||||
llama_context * ctx = mymodel->ctx;
|
||||
llama_print_timings(ctx);
|
||||
llama_free(ctx);
|
||||
delete mymodel;
|
||||
}
|
||||
|
||||
|
||||
bool eval_float(void * model, float * input, int N){
|
||||
MyModel * mymodel = (MyModel*)model;
|
||||
llama_context * ctx = mymodel->ctx;
|
||||
gpt_params params = mymodel->params;
|
||||
int n_emb = llama_n_embd(ctx);
|
||||
int n_past = mymodel->n_past;
|
||||
int n_batch = N; // params.n_batch;
|
||||
|
||||
for (int i = 0; i < (int) N; i += n_batch) {
|
||||
int n_eval = (int) N - i;
|
||||
if (n_eval > n_batch) {
|
||||
n_eval = n_batch;
|
||||
}
|
||||
if (llama_eval_embd(ctx, (input+i*n_emb), n_eval, n_past, params.n_threads)) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return false;
|
||||
}
|
||||
n_past += n_eval;
|
||||
}
|
||||
mymodel->n_past = n_past;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool eval_tokens(void * model, std::vector<llama_token> tokens) {
|
||||
MyModel * mymodel = (MyModel* )model;
|
||||
llama_context * ctx;
|
||||
ctx = mymodel->ctx;
|
||||
gpt_params params = mymodel->params;
|
||||
int n_past = mymodel->n_past;
|
||||
for (int i = 0; i < (int) tokens.size(); i += params.n_batch) {
|
||||
int n_eval = (int) tokens.size() - i;
|
||||
if (n_eval > params.n_batch) {
|
||||
n_eval = params.n_batch;
|
||||
}
|
||||
if (llama_eval(ctx, &tokens[i], n_eval, n_past, params.n_threads)) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return false;
|
||||
}
|
||||
n_past += n_eval;
|
||||
}
|
||||
mymodel->n_past = n_past;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool eval_id(struct MyModel* mymodel, int id) {
|
||||
std::vector<llama_token> tokens;
|
||||
tokens.push_back(id);
|
||||
return eval_tokens(mymodel, tokens);
|
||||
}
|
||||
|
||||
bool eval_string(struct MyModel * mymodel,const char* str){
|
||||
llama_context * ctx = mymodel->ctx;
|
||||
std::string str2 = str;
|
||||
std::vector<llama_token> embd_inp = ::llama_tokenize(ctx, str2, true);
|
||||
eval_tokens(mymodel, embd_inp);
|
||||
return true;
|
||||
}
|
||||
|
||||
llama_token sampling_id(struct MyModel* mymodel) {
|
||||
llama_context* ctx = mymodel->ctx;
|
||||
gpt_params params = mymodel->params;
|
||||
// int n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
// out of user input, sample next token
|
||||
const float temp = params.temp;
|
||||
const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k;
|
||||
const float top_p = params.top_p;
|
||||
const float tfs_z = params.tfs_z;
|
||||
const float typical_p = params.typical_p;
|
||||
// const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
|
||||
// const float repeat_penalty = params.repeat_penalty;
|
||||
// const float alpha_presence = params.presence_penalty;
|
||||
// const float alpha_frequency = params.frequency_penalty;
|
||||
const int mirostat = params.mirostat;
|
||||
const float mirostat_tau = params.mirostat_tau;
|
||||
const float mirostat_eta = params.mirostat_eta;
|
||||
// const bool penalize_nl = params.penalize_nl;
|
||||
|
||||
llama_token id = 0;
|
||||
{
|
||||
auto logits = llama_get_logits(ctx);
|
||||
auto n_vocab = llama_n_vocab(ctx);
|
||||
|
||||
// Apply params.logit_bias map
|
||||
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
|
||||
logits[it->first] += it->second;
|
||||
}
|
||||
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
||||
}
|
||||
|
||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||
|
||||
// TODO: Apply penalties
|
||||
// float nl_logit = logits[llama_token_nl(ctx)];
|
||||
// auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
|
||||
// llama_sample_repetition_penalty(ctx, &candidates_p,
|
||||
// last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
||||
// last_n_repeat, repeat_penalty);
|
||||
// llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
|
||||
// last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
||||
// last_n_repeat, alpha_frequency, alpha_presence);
|
||||
// if (!penalize_nl) {
|
||||
// logits[llama_token_nl(ctx)] = nl_logit;
|
||||
// }
|
||||
|
||||
if (temp <= 0) {
|
||||
// Greedy sampling
|
||||
id = llama_sample_token_greedy(ctx, &candidates_p);
|
||||
} else {
|
||||
if (mirostat == 1) {
|
||||
static float mirostat_mu = 2.0f * mirostat_tau;
|
||||
const int mirostat_m = 100;
|
||||
llama_sample_temperature(ctx, &candidates_p, temp);
|
||||
id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
|
||||
} else if (mirostat == 2) {
|
||||
static float mirostat_mu = 2.0f * mirostat_tau;
|
||||
llama_sample_temperature(ctx, &candidates_p, temp);
|
||||
id = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
|
||||
} else {
|
||||
// Temperature sampling
|
||||
llama_sample_top_k(ctx, &candidates_p, top_k, 1);
|
||||
llama_sample_tail_free(ctx, &candidates_p, tfs_z, 1);
|
||||
llama_sample_typical(ctx, &candidates_p, typical_p, 1);
|
||||
llama_sample_top_p(ctx, &candidates_p, top_p, 1);
|
||||
llama_sample_temperature(ctx, &candidates_p, temp);
|
||||
id = llama_sample_token(ctx, &candidates_p);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return id;
|
||||
}
|
||||
|
||||
const char * sampling(struct MyModel * mymodel) {
|
||||
llama_context * ctx = mymodel->ctx;
|
||||
int id = sampling_id(mymodel);
|
||||
static std::string ret;
|
||||
if (id == llama_token_eos(ctx)) {
|
||||
ret = "</s>";
|
||||
} else {
|
||||
ret = llama_token_to_str(ctx, id);
|
||||
}
|
||||
eval_id(mymodel, id);
|
||||
return ret.c_str();
|
||||
}
|
||||
|
||||
}
|
||||
@@ -1,35 +0,0 @@
|
||||
#include "embd-input.h"
|
||||
#include <stdlib.h>
|
||||
#include <random>
|
||||
#include <string.h>
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
|
||||
auto mymodel = create_mymodel(argc, argv);
|
||||
int N = 10;
|
||||
int max_tgt_len = 500;
|
||||
int n_embd = llama_n_embd(mymodel->ctx);
|
||||
|
||||
// add random float embd to test evaluation
|
||||
float * data = new float[N*n_embd];
|
||||
std::default_random_engine e;
|
||||
std::uniform_real_distribution<float> u(0,1);
|
||||
for (int i=0;i<N*n_embd;i++) {
|
||||
data[i] = u(e);
|
||||
}
|
||||
|
||||
eval_string(mymodel, "user: what is the color of the flag of UN?");
|
||||
eval_float(mymodel, data, N);
|
||||
eval_string(mymodel, "assistant:");
|
||||
eval_string(mymodel, mymodel->params.prompt.c_str());
|
||||
const char* tmp;
|
||||
for (int i=0; i<max_tgt_len; i++) {
|
||||
tmp = sampling(mymodel);
|
||||
if (strcmp(tmp, "</s>")==0) break;
|
||||
printf("%s", tmp);
|
||||
fflush(stdout);
|
||||
}
|
||||
printf("\n");
|
||||
free_mymodel(mymodel);
|
||||
return 0;
|
||||
}
|
||||
@@ -1,28 +0,0 @@
|
||||
#ifndef _EMBD_INPUT_H_
|
||||
#define _EMBD_INPUT_H_ 1
|
||||
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
#include "build-info.h"
|
||||
|
||||
extern "C" {
|
||||
|
||||
typedef struct MyModel {
|
||||
llama_context* ctx;
|
||||
gpt_params params;
|
||||
int n_past = 0;
|
||||
} MyModel;
|
||||
|
||||
struct MyModel* create_mymodel(int argc, char ** argv);
|
||||
|
||||
bool eval_float(void* model, float* input, int N);
|
||||
bool eval_tokens(void* model, std::vector<llama_token> tokens);
|
||||
bool eval_id(struct MyModel* mymodel, int id);
|
||||
bool eval_string(struct MyModel* mymodel, const char* str);
|
||||
const char * sampling(struct MyModel* mymodel);
|
||||
llama_token sampling_id(struct MyModel* mymodel);
|
||||
void free_mymodel(struct MyModel* mymodel);
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
@@ -1,72 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
import ctypes
|
||||
from ctypes import cdll, c_char_p, c_void_p, POINTER, c_float, c_int
|
||||
import numpy as np
|
||||
import os
|
||||
|
||||
libc = cdll.LoadLibrary("./libembdinput.so")
|
||||
libc.sampling.restype=c_char_p
|
||||
libc.create_mymodel.restype=c_void_p
|
||||
libc.eval_string.argtypes=[c_void_p, c_char_p]
|
||||
libc.sampling.argtypes=[c_void_p]
|
||||
libc.eval_float.argtypes=[c_void_p, POINTER(c_float), c_int]
|
||||
|
||||
|
||||
class MyModel:
|
||||
def __init__(self, args):
|
||||
argc = len(args)
|
||||
c_str = [c_char_p(i.encode()) for i in args]
|
||||
args_c = (c_char_p * argc)(*c_str)
|
||||
self.model = c_void_p(libc.create_mymodel(argc, args_c))
|
||||
self.max_tgt_len = 512
|
||||
self.print_string_eval = True
|
||||
|
||||
def __del__(self):
|
||||
libc.free_mymodel(self.model)
|
||||
|
||||
def eval_float(self, x):
|
||||
libc.eval_float(self.model, x.astype(np.float32).ctypes.data_as(POINTER(c_float)), x.shape[1])
|
||||
|
||||
def eval_string(self, x):
|
||||
libc.eval_string(self.model, x.encode()) # c_char_p(x.encode()))
|
||||
if self.print_string_eval:
|
||||
print(x)
|
||||
|
||||
def eval_token(self, x):
|
||||
libc.eval_id(self.model, x)
|
||||
|
||||
def sampling(self):
|
||||
s = libc.sampling(self.model)
|
||||
return s
|
||||
|
||||
def stream_generate(self, end="</s>"):
|
||||
ret = b""
|
||||
end = end.encode()
|
||||
for _ in range(self.max_tgt_len):
|
||||
tmp = self.sampling()
|
||||
ret += tmp
|
||||
yield tmp
|
||||
if ret.endswith(end):
|
||||
break
|
||||
|
||||
def generate_with_print(self, end="</s>"):
|
||||
ret = b""
|
||||
for i in self.stream_generate(end=end):
|
||||
ret += i
|
||||
print(i.decode(errors="replace"), end="", flush=True)
|
||||
print("")
|
||||
return ret.decode(errors="replace")
|
||||
|
||||
|
||||
def generate(self, end="</s>"):
|
||||
text = b"".join(self.stream_generate(end=end))
|
||||
return text.decode(errors="replace")
|
||||
|
||||
if __name__ == "__main__":
|
||||
model = MyModel(["main", "--model", "../llama.cpp/models/ggml-vic13b-q4_1.bin", "-c", "2048"])
|
||||
model.eval_string("""user: what is the color of the flag of UN?""")
|
||||
x = np.random.random((5120,10))# , dtype=np.float32)
|
||||
model.eval_float(x)
|
||||
model.eval_string("""assistant:""")
|
||||
for i in model.generate():
|
||||
print(i.decode(errors="replace"), end="", flush=True)
|
||||
@@ -1,71 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
import sys
|
||||
import os
|
||||
sys.path.insert(0, os.path.dirname(__file__))
|
||||
from embd_input import MyModel
|
||||
import numpy as np
|
||||
from torch import nn
|
||||
import torch
|
||||
from transformers import CLIPVisionModel, CLIPImageProcessor
|
||||
from PIL import Image
|
||||
|
||||
# model parameters from 'liuhaotian/LLaVA-13b-delta-v1-1'
|
||||
vision_tower = "openai/clip-vit-large-patch14"
|
||||
select_hidden_state_layer = -2
|
||||
# (vision_config.image_size // vision_config.patch_size) ** 2
|
||||
image_token_len = (224//14)**2
|
||||
|
||||
class Llava:
|
||||
def __init__(self, args):
|
||||
self.image_processor = CLIPImageProcessor.from_pretrained(vision_tower)
|
||||
self.vision_tower = CLIPVisionModel.from_pretrained(vision_tower)
|
||||
self.mm_projector = nn.Linear(1024, 5120)
|
||||
self.model = MyModel(["main", *args])
|
||||
|
||||
def load_projection(self, path):
|
||||
state = torch.load(path)
|
||||
self.mm_projector.load_state_dict({
|
||||
"weight": state["model.mm_projector.weight"],
|
||||
"bias": state["model.mm_projector.bias"]})
|
||||
|
||||
def chat(self, question):
|
||||
self.model.eval_string("user: ")
|
||||
self.model.eval_string(question)
|
||||
self.model.eval_string("\nassistant: ")
|
||||
return self.model.generate_with_print()
|
||||
|
||||
def chat_with_image(self, image, question):
|
||||
with torch.no_grad():
|
||||
embd_image = self.image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
|
||||
image_forward_out = self.vision_tower(embd_image.unsqueeze(0), output_hidden_states=True)
|
||||
select_hidden_state = image_forward_out.hidden_states[select_hidden_state_layer]
|
||||
image_feature = select_hidden_state[:, 1:]
|
||||
embd_image = self.mm_projector(image_feature)
|
||||
embd_image = embd_image.cpu().numpy()[0]
|
||||
self.model.eval_string("user: ")
|
||||
self.model.eval_token(32003-2) # im_start
|
||||
self.model.eval_float(embd_image.T)
|
||||
for i in range(image_token_len-embd_image.shape[0]):
|
||||
self.model.eval_token(32003-3) # im_patch
|
||||
self.model.eval_token(32003-1) # im_end
|
||||
self.model.eval_string(question)
|
||||
self.model.eval_string("\nassistant: ")
|
||||
return self.model.generate_with_print()
|
||||
|
||||
|
||||
if __name__=="__main__":
|
||||
# model form liuhaotian/LLaVA-13b-delta-v1-1
|
||||
a = Llava(["--model", "./models/ggml-llava-13b-v1.1.bin", "-c", "2048"])
|
||||
# Extract from https://huggingface.co/liuhaotian/LLaVA-13b-delta-v1-1/blob/main/pytorch_model-00003-of-00003.bin.
|
||||
# Also here can use pytorch_model-00003-of-00003.bin directly.
|
||||
a.load_projection(os.path.join(
|
||||
os.path.dirname(__file__) ,
|
||||
"llava_projection.pth"))
|
||||
respose = a.chat_with_image(
|
||||
Image.open("./media/llama1-logo.png").convert('RGB'),
|
||||
"what is the text in the picture?")
|
||||
respose
|
||||
a.chat("what is the color of it?")
|
||||
|
||||
|
||||
|
||||
@@ -1,129 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
import sys
|
||||
import os
|
||||
sys.path.insert(0, os.path.dirname(__file__))
|
||||
from embd_input import MyModel
|
||||
import numpy as np
|
||||
from torch import nn
|
||||
import torch
|
||||
from PIL import Image
|
||||
|
||||
minigpt4_path = os.path.join(os.path.dirname(__file__), "MiniGPT-4")
|
||||
sys.path.insert(0, minigpt4_path)
|
||||
from minigpt4.models.blip2 import Blip2Base
|
||||
from minigpt4.processors.blip_processors import Blip2ImageEvalProcessor
|
||||
|
||||
|
||||
class MiniGPT4(Blip2Base):
|
||||
"""
|
||||
MiniGPT4 model from https://github.com/Vision-CAIR/MiniGPT-4
|
||||
"""
|
||||
def __init__(self,
|
||||
args,
|
||||
vit_model="eva_clip_g",
|
||||
q_former_model="https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained_flant5xxl.pth",
|
||||
img_size=224,
|
||||
drop_path_rate=0,
|
||||
use_grad_checkpoint=False,
|
||||
vit_precision="fp32",
|
||||
freeze_vit=True,
|
||||
freeze_qformer=True,
|
||||
num_query_token=32,
|
||||
llama_model="",
|
||||
prompt_path="",
|
||||
prompt_template="",
|
||||
max_txt_len=32,
|
||||
end_sym='\n',
|
||||
low_resource=False, # use 8 bit and put vit in cpu
|
||||
device_8bit=0
|
||||
):
|
||||
super().__init__()
|
||||
self.img_size = img_size
|
||||
self.low_resource = low_resource
|
||||
self.preprocessor = Blip2ImageEvalProcessor(img_size)
|
||||
|
||||
print('Loading VIT')
|
||||
self.visual_encoder, self.ln_vision = self.init_vision_encoder(
|
||||
vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision
|
||||
)
|
||||
print('Loading VIT Done')
|
||||
print('Loading Q-Former')
|
||||
self.Qformer, self.query_tokens = self.init_Qformer(
|
||||
num_query_token, self.visual_encoder.num_features
|
||||
)
|
||||
self.Qformer.cls = None
|
||||
self.Qformer.bert.embeddings.word_embeddings = None
|
||||
self.Qformer.bert.embeddings.position_embeddings = None
|
||||
for layer in self.Qformer.bert.encoder.layer:
|
||||
layer.output = None
|
||||
layer.intermediate = None
|
||||
self.load_from_pretrained(url_or_filename=q_former_model)
|
||||
print('Loading Q-Former Done')
|
||||
self.llama_proj = nn.Linear(
|
||||
self.Qformer.config.hidden_size, 5120 # self.llama_model.config.hidden_size
|
||||
)
|
||||
self.max_txt_len = max_txt_len
|
||||
self.end_sym = end_sym
|
||||
self.model = MyModel(["main", *args])
|
||||
# system prompt
|
||||
self.model.eval_string("Give the following image: <Img>ImageContent</Img>. "
|
||||
"You will be able to see the image once I provide it to you. Please answer my questions."
|
||||
"###")
|
||||
|
||||
def encode_img(self, image):
|
||||
image = self.preprocessor(image)
|
||||
image = image.unsqueeze(0)
|
||||
device = image.device
|
||||
if self.low_resource:
|
||||
self.vit_to_cpu()
|
||||
image = image.to("cpu")
|
||||
|
||||
with self.maybe_autocast():
|
||||
image_embeds = self.ln_vision(self.visual_encoder(image)).to(device)
|
||||
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(device)
|
||||
|
||||
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
|
||||
query_output = self.Qformer.bert(
|
||||
query_embeds=query_tokens,
|
||||
encoder_hidden_states=image_embeds,
|
||||
encoder_attention_mask=image_atts,
|
||||
return_dict=True,
|
||||
)
|
||||
|
||||
inputs_llama = self.llama_proj(query_output.last_hidden_state)
|
||||
# atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(image.device)
|
||||
return inputs_llama
|
||||
|
||||
def load_projection(self, path):
|
||||
state = torch.load(path)["model"]
|
||||
self.llama_proj.load_state_dict({
|
||||
"weight": state["llama_proj.weight"],
|
||||
"bias": state["llama_proj.bias"]})
|
||||
|
||||
def chat(self, question):
|
||||
self.model.eval_string("Human: ")
|
||||
self.model.eval_string(question)
|
||||
self.model.eval_string("\n### Assistant:")
|
||||
return self.model.generate_with_print(end="###")
|
||||
|
||||
def chat_with_image(self, image, question):
|
||||
with torch.no_grad():
|
||||
embd_image = self.encode_img(image)
|
||||
embd_image = embd_image.cpu().numpy()[0]
|
||||
self.model.eval_string("Human: <Img>")
|
||||
self.model.eval_float(embd_image.T)
|
||||
self.model.eval_string("</Img> ")
|
||||
self.model.eval_string(question)
|
||||
self.model.eval_string("\n### Assistant:")
|
||||
return self.model.generate_with_print(end="###")
|
||||
|
||||
|
||||
if __name__=="__main__":
|
||||
a = MiniGPT4(["--model", "./models/ggml-vicuna-13b-v0-q4_1.bin", "-c", "2048"])
|
||||
a.load_projection(os.path.join(
|
||||
os.path.dirname(__file__) ,
|
||||
"pretrained_minigpt4.pth"))
|
||||
respose = a.chat_with_image(
|
||||
Image.open("./media/llama1-logo.png").convert('RGB'),
|
||||
"what is the text in the picture?")
|
||||
a.chat("what is the color of it?")
|
||||
@@ -1,99 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
import sys
|
||||
import os
|
||||
sys.path.insert(0, os.path.dirname(__file__))
|
||||
from embd_input import MyModel
|
||||
import numpy as np
|
||||
from torch import nn
|
||||
import torch
|
||||
|
||||
# use PandaGPT path
|
||||
panda_gpt_path = os.path.join(os.path.dirname(__file__), "PandaGPT")
|
||||
imagebind_ckpt_path = "./models/panda_gpt/"
|
||||
|
||||
sys.path.insert(0, os.path.join(panda_gpt_path,"code","model"))
|
||||
from ImageBind.models import imagebind_model
|
||||
from ImageBind import data
|
||||
|
||||
ModalityType = imagebind_model.ModalityType
|
||||
max_tgt_len = 400
|
||||
|
||||
class PandaGPT:
|
||||
def __init__(self, args):
|
||||
self.visual_encoder,_ = imagebind_model.imagebind_huge(pretrained=True, store_path=imagebind_ckpt_path)
|
||||
self.visual_encoder.eval()
|
||||
self.llama_proj = nn.Linear(1024, 5120) # self.visual_hidden_size, 5120)
|
||||
self.max_tgt_len = max_tgt_len
|
||||
self.model = MyModel(["main", *args])
|
||||
self.generated_text = ""
|
||||
self.device = "cpu"
|
||||
|
||||
def load_projection(self, path):
|
||||
state = torch.load(path, map_location="cpu")
|
||||
self.llama_proj.load_state_dict({
|
||||
"weight": state["llama_proj.weight"],
|
||||
"bias": state["llama_proj.bias"]})
|
||||
|
||||
def eval_inputs(self, inputs):
|
||||
self.model.eval_string("<Img>")
|
||||
embds = self.extract_multimoal_feature(inputs)
|
||||
for i in embds:
|
||||
self.model.eval_float(i.T)
|
||||
self.model.eval_string("</Img> ")
|
||||
|
||||
def chat(self, question):
|
||||
return self.chat_with_image(None, question)
|
||||
|
||||
def chat_with_image(self, inputs, question):
|
||||
if self.generated_text == "":
|
||||
self.model.eval_string("###")
|
||||
self.model.eval_string(" Human: ")
|
||||
if inputs:
|
||||
self.eval_inputs(inputs)
|
||||
self.model.eval_string(question)
|
||||
self.model.eval_string("\n### Assistant:")
|
||||
ret = self.model.generate_with_print(end="###")
|
||||
self.generated_text += ret
|
||||
return ret
|
||||
|
||||
def extract_multimoal_feature(self, inputs):
|
||||
features = []
|
||||
for key in ["image", "audio", "video", "thermal"]:
|
||||
if key + "_paths" in inputs:
|
||||
embeds = self.encode_data(key, inputs[key+"_paths"])
|
||||
features.append(embeds)
|
||||
return features
|
||||
|
||||
def encode_data(self, data_type, data_paths):
|
||||
|
||||
type_map = {
|
||||
"image": ModalityType.VISION,
|
||||
"audio": ModalityType.AUDIO,
|
||||
"video": ModalityType.VISION,
|
||||
"thermal": ModalityType.THERMAL,
|
||||
}
|
||||
load_map = {
|
||||
"image": data.load_and_transform_vision_data,
|
||||
"audio": data.load_and_transform_audio_data,
|
||||
"video": data.load_and_transform_video_data,
|
||||
"thermal": data.load_and_transform_thermal_data
|
||||
}
|
||||
|
||||
load_function = load_map[data_type]
|
||||
key = type_map[data_type]
|
||||
|
||||
inputs = {key: load_function(data_paths, self.device)}
|
||||
with torch.no_grad():
|
||||
embeddings = self.visual_encoder(inputs)
|
||||
embeds = embeddings[key]
|
||||
embeds = self.llama_proj(embeds).cpu().numpy()
|
||||
return embeds
|
||||
|
||||
|
||||
if __name__=="__main__":
|
||||
a = PandaGPT(["--model", "./models/ggml-vicuna-13b-v0-q4_1.bin", "-c", "2048", "--lora", "./models/panda_gpt/ggml-adapter-model.bin","--temp", "0"])
|
||||
a.load_projection("./models/panda_gpt/adapter_model.bin")
|
||||
a.chat_with_image(
|
||||
{"image_paths": ["./media/llama1-logo.png"]},
|
||||
"what is the text in the picture? 'llama' or 'lambda'?")
|
||||
a.chat("what is the color of it?")
|
||||
@@ -1,6 +1,5 @@
|
||||
set(TARGET embedding)
|
||||
add_executable(${TARGET} embedding.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
if(TARGET BUILD_INFO)
|
||||
|
||||
@@ -18,24 +18,24 @@ int main(int argc, char ** argv) {
|
||||
params.embedding = true;
|
||||
|
||||
if (params.n_ctx > 2048) {
|
||||
fprintf(stderr, "%s: warning: model might not support context sizes greater than 2048 tokens (%d specified);"
|
||||
fprintf(stderr, "%s: warning: model does not support context sizes greater than 2048 tokens (%d specified);"
|
||||
"expect poor results\n", __func__, params.n_ctx);
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
|
||||
|
||||
if (params.seed == LLAMA_DEFAULT_SEED) {
|
||||
if (params.seed < 0) {
|
||||
params.seed = time(NULL);
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
|
||||
fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
|
||||
|
||||
std::mt19937 rng(params.seed);
|
||||
if (params.random_prompt) {
|
||||
params.prompt = gpt_random_prompt(rng);
|
||||
}
|
||||
|
||||
llama_backend_init(params.numa);
|
||||
llama_init_backend();
|
||||
|
||||
llama_model * model;
|
||||
llama_context * ctx;
|
||||
@@ -67,40 +67,31 @@ int main(int argc, char ** argv) {
|
||||
fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
|
||||
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
|
||||
for (int i = 0; i < (int) embd_inp.size(); i++) {
|
||||
fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_str(ctx, embd_inp[i]).c_str());
|
||||
fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_str(ctx, embd_inp[i]));
|
||||
}
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
if (embd_inp.size() > (size_t)params.n_ctx) {
|
||||
fprintf(stderr, "%s: error: prompt is longer than the context window (%zu tokens, n_ctx = %d)\n",
|
||||
__func__, embd_inp.size(), params.n_ctx);
|
||||
return 1;
|
||||
}
|
||||
|
||||
while (!embd_inp.empty()) {
|
||||
int n_tokens = std::min(params.n_batch, (int) embd_inp.size());
|
||||
if (llama_eval(ctx, embd_inp.data(), n_tokens, n_past, params.n_threads)) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return 1;
|
||||
if (params.embedding){
|
||||
if (embd_inp.size() > 0) {
|
||||
if (llama_eval(ctx, embd_inp.data(), embd_inp.size(), n_past, params.n_threads)) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
n_past += n_tokens;
|
||||
embd_inp.erase(embd_inp.begin(), embd_inp.begin() + n_tokens);
|
||||
}
|
||||
|
||||
const int n_embd = llama_n_embd(ctx);
|
||||
const auto embeddings = llama_get_embeddings(ctx);
|
||||
const int n_embd = llama_n_embd(ctx);
|
||||
const auto embeddings = llama_get_embeddings(ctx);
|
||||
|
||||
for (int i = 0; i < n_embd; i++) {
|
||||
printf("%f ", embeddings[i]);
|
||||
for (int i = 0; i < n_embd; i++) {
|
||||
printf("%f ", embeddings[i]);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
printf("\n");
|
||||
|
||||
llama_print_timings(ctx);
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -1,246 +0,0 @@
|
||||
#include "ggml.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cstdio>
|
||||
#include <cinttypes>
|
||||
#include <string>
|
||||
#include <sstream>
|
||||
#include <fstream>
|
||||
#include <vector>
|
||||
|
||||
#undef MIN
|
||||
#undef MAX
|
||||
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
||||
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||||
|
||||
template<typename T>
|
||||
static std::string to_string(const T & val) {
|
||||
std::stringstream ss;
|
||||
ss << val;
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
bool gguf_ex_write(const std::string & fname) {
|
||||
struct gguf_context * ctx = gguf_init_empty();
|
||||
|
||||
gguf_set_val_u8 (ctx, "some.parameter.uint8", 0x12);
|
||||
gguf_set_val_i8 (ctx, "some.parameter.int8", -0x13);
|
||||
gguf_set_val_u16 (ctx, "some.parameter.uint16", 0x1234);
|
||||
gguf_set_val_i16 (ctx, "some.parameter.int16", -0x1235);
|
||||
gguf_set_val_u32 (ctx, "some.parameter.uint32", 0x12345678);
|
||||
gguf_set_val_i32 (ctx, "some.parameter.int32", -0x12345679);
|
||||
gguf_set_val_f32 (ctx, "some.parameter.float32", 0.123456789f);
|
||||
gguf_set_val_bool(ctx, "some.parameter.bool", true);
|
||||
gguf_set_val_str (ctx, "some.parameter.string", "hello world");
|
||||
|
||||
gguf_set_arr_data(ctx, "some.parameter.arr.i16", GGUF_TYPE_INT16, std::vector<int16_t>{ 1, 2, 3, 4, }.data(), 4);
|
||||
gguf_set_arr_data(ctx, "some.parameter.arr.f32", GGUF_TYPE_FLOAT32, std::vector<float>{ 3.145f, 2.718f, 1.414f, }.data(), 3);
|
||||
gguf_set_arr_str (ctx, "some.parameter.arr.str", std::vector<const char *>{ "hello", "world", "!" }.data(), 3);
|
||||
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ 128ull*1024ull*1024ull,
|
||||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ false,
|
||||
};
|
||||
|
||||
struct ggml_context * ctx_data = ggml_init(params);
|
||||
|
||||
const int n_tensors = 10;
|
||||
|
||||
// tensor infos
|
||||
for (int i = 0; i < n_tensors; ++i) {
|
||||
const std::string name = "tensor_" + to_string(i);
|
||||
|
||||
int64_t ne[GGML_MAX_DIMS] = { 1 };
|
||||
int32_t n_dims = rand() % GGML_MAX_DIMS + 1;
|
||||
|
||||
for (int j = 0; j < n_dims; ++j) {
|
||||
ne[j] = rand() % 10 + 1;
|
||||
}
|
||||
|
||||
struct ggml_tensor * cur = ggml_new_tensor(ctx_data, GGML_TYPE_F32, n_dims, ne);
|
||||
ggml_set_name(cur, name.c_str());
|
||||
|
||||
{
|
||||
float * data = (float *) cur->data;
|
||||
for (int j = 0; j < ggml_nelements(cur); ++j) {
|
||||
data[j] = 100 + i;
|
||||
}
|
||||
}
|
||||
|
||||
gguf_add_tensor(ctx, cur);
|
||||
}
|
||||
|
||||
gguf_write_to_file(ctx, fname.c_str(), false);
|
||||
|
||||
fprintf(stdout, "%s: wrote file '%s;\n", __func__, fname.c_str());
|
||||
|
||||
ggml_free(ctx_data);
|
||||
gguf_free(ctx);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// just read tensor info
|
||||
bool gguf_ex_read_0(const std::string & fname) {
|
||||
struct gguf_init_params params = {
|
||||
/*.no_alloc = */ false,
|
||||
/*.ctx = */ NULL,
|
||||
};
|
||||
|
||||
struct gguf_context * ctx = gguf_init_from_file(fname.c_str(), params);
|
||||
|
||||
fprintf(stdout, "%s: version: %d\n", __func__, gguf_get_version(ctx));
|
||||
fprintf(stdout, "%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx));
|
||||
fprintf(stdout, "%s: data offset: %zu\n", __func__, gguf_get_data_offset(ctx));
|
||||
|
||||
// kv
|
||||
{
|
||||
const int n_kv = gguf_get_n_kv(ctx);
|
||||
|
||||
fprintf(stdout, "%s: n_kv: %d\n", __func__, n_kv);
|
||||
|
||||
for (int i = 0; i < n_kv; ++i) {
|
||||
const char * key = gguf_get_key(ctx, i);
|
||||
|
||||
fprintf(stdout, "%s: kv[%d]: key = %s\n", __func__, i, key);
|
||||
}
|
||||
}
|
||||
|
||||
// find kv string
|
||||
{
|
||||
const char * findkey = "some.parameter.string";
|
||||
|
||||
const int keyidx = gguf_find_key(ctx, findkey);
|
||||
if (keyidx == -1) {
|
||||
fprintf(stdout, "%s: find key: %s not found.\n", __func__, findkey);
|
||||
} else {
|
||||
const char * key_value = gguf_get_val_str(ctx, keyidx);
|
||||
fprintf(stdout, "%s: find key: %s found, kv[%d] value = %s\n", __func__, findkey, keyidx, key_value);
|
||||
}
|
||||
}
|
||||
|
||||
// tensor info
|
||||
{
|
||||
const int n_tensors = gguf_get_n_tensors(ctx);
|
||||
|
||||
fprintf(stdout, "%s: n_tensors: %d\n", __func__, n_tensors);
|
||||
|
||||
for (int i = 0; i < n_tensors; ++i) {
|
||||
const char * name = gguf_get_tensor_name (ctx, i);
|
||||
const size_t offset = gguf_get_tensor_offset(ctx, i);
|
||||
|
||||
fprintf(stdout, "%s: tensor[%d]: name = %s, offset = %zu\n", __func__, i, name, offset);
|
||||
}
|
||||
}
|
||||
|
||||
gguf_free(ctx);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// read and create ggml_context containing the tensors and their data
|
||||
bool gguf_ex_read_1(const std::string & fname) {
|
||||
struct ggml_context * ctx_data = NULL;
|
||||
|
||||
struct gguf_init_params params = {
|
||||
/*.no_alloc = */ false,
|
||||
/*.ctx = */ &ctx_data,
|
||||
};
|
||||
|
||||
struct gguf_context * ctx = gguf_init_from_file(fname.c_str(), params);
|
||||
|
||||
fprintf(stdout, "%s: version: %d\n", __func__, gguf_get_version(ctx));
|
||||
fprintf(stdout, "%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx));
|
||||
fprintf(stdout, "%s: data offset: %zu\n", __func__, gguf_get_data_offset(ctx));
|
||||
|
||||
// kv
|
||||
{
|
||||
const int n_kv = gguf_get_n_kv(ctx);
|
||||
|
||||
fprintf(stdout, "%s: n_kv: %d\n", __func__, n_kv);
|
||||
|
||||
for (int i = 0; i < n_kv; ++i) {
|
||||
const char * key = gguf_get_key(ctx, i);
|
||||
|
||||
fprintf(stdout, "%s: kv[%d]: key = %s\n", __func__, i, key);
|
||||
}
|
||||
}
|
||||
|
||||
// tensor info
|
||||
{
|
||||
const int n_tensors = gguf_get_n_tensors(ctx);
|
||||
|
||||
fprintf(stdout, "%s: n_tensors: %d\n", __func__, n_tensors);
|
||||
|
||||
for (int i = 0; i < n_tensors; ++i) {
|
||||
const char * name = gguf_get_tensor_name (ctx, i);
|
||||
const size_t offset = gguf_get_tensor_offset(ctx, i);
|
||||
|
||||
fprintf(stdout, "%s: tensor[%d]: name = %s, offset = %zu\n", __func__, i, name, offset);
|
||||
}
|
||||
}
|
||||
|
||||
// data
|
||||
{
|
||||
const int n_tensors = gguf_get_n_tensors(ctx);
|
||||
|
||||
for (int i = 0; i < n_tensors; ++i) {
|
||||
fprintf(stdout, "%s: reading tensor %d data\n", __func__, i);
|
||||
|
||||
const char * name = gguf_get_tensor_name(ctx, i);
|
||||
|
||||
struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
|
||||
|
||||
fprintf(stdout, "%s: tensor[%d]: n_dims = %d, name = %s, data = %p\n", __func__, i, cur->n_dims, cur->name, cur->data);
|
||||
|
||||
// print first 10 elements
|
||||
const float * data = (const float *) cur->data;
|
||||
|
||||
printf("%s data[:10] : ", name);
|
||||
for (int j = 0; j < MIN(10, ggml_nelements(cur)); ++j) {
|
||||
printf("%f ", data[j]);
|
||||
}
|
||||
printf("\n\n");
|
||||
|
||||
// check data
|
||||
{
|
||||
const float * data = (const float *) cur->data;
|
||||
for (int j = 0; j < ggml_nelements(cur); ++j) {
|
||||
if (data[j] != 100 + i) {
|
||||
fprintf(stderr, "%s: tensor[%d]: data[%d] = %f\n", __func__, i, j, data[j]);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fprintf(stdout, "%s: ctx_data size: %zu\n", __func__, ggml_get_mem_size(ctx_data));
|
||||
|
||||
ggml_free(ctx_data);
|
||||
gguf_free(ctx);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
if (argc < 3) {
|
||||
fprintf(stdout, "usage: %s data.gguf r|w\n", argv[0]);
|
||||
return -1;
|
||||
}
|
||||
|
||||
const std::string fname(argv[1]);
|
||||
const std::string mode (argv[2]);
|
||||
|
||||
GGML_ASSERT((mode == "r" || mode == "w") && "mode must be r or w");
|
||||
|
||||
if (mode == "w") {
|
||||
GGML_ASSERT(gguf_ex_write(fname) && "failed to write gguf file");
|
||||
} else if (mode == "r") {
|
||||
GGML_ASSERT(gguf_ex_read_0(fname) && "failed to read gguf file");
|
||||
GGML_ASSERT(gguf_ex_read_1(fname) && "failed to read gguf file");
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
1
examples/jeopardy/graph.py
Executable file → Normal file
1
examples/jeopardy/graph.py
Executable file → Normal file
@@ -1,4 +1,3 @@
|
||||
#!/usr/bin/env python3
|
||||
import matplotlib.pyplot as plt
|
||||
import os
|
||||
import csv
|
||||
|
||||
0
examples/jeopardy/jeopardy.sh
Executable file → Normal file
0
examples/jeopardy/jeopardy.sh
Executable file → Normal file
@@ -1,133 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
import argparse
|
||||
import json
|
||||
import re
|
||||
import sys
|
||||
|
||||
# whitespace is constrained to a single space char to prevent model "running away" in
|
||||
# whitespace. Also maybe improves generation quality?
|
||||
SPACE_RULE = '" "?'
|
||||
|
||||
PRIMITIVE_RULES = {
|
||||
'boolean': '("true" | "false") space',
|
||||
'number': '("-"? ([0-9] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]? [0-9]+)? space',
|
||||
'integer': '("-"? ([0-9] | [1-9] [0-9]*)) space',
|
||||
'string': r''' "\"" (
|
||||
[^"\\] |
|
||||
"\\" (["\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F])
|
||||
)* "\"" space ''',
|
||||
'null': '"null" space',
|
||||
}
|
||||
|
||||
INVALID_RULE_CHARS_RE = re.compile(r'[^a-zA-Z0-9-]+')
|
||||
GRAMMAR_LITERAL_ESCAPE_RE = re.compile(r'[\r\n"]')
|
||||
GRAMMAR_LITERAL_ESCAPES = {'\r': '\\r', '\n': '\\n', '"': '\\"'}
|
||||
|
||||
|
||||
class SchemaConverter:
|
||||
def __init__(self, prop_order):
|
||||
self._prop_order = prop_order
|
||||
self._rules = {'space': SPACE_RULE}
|
||||
|
||||
def _format_literal(self, literal):
|
||||
escaped = GRAMMAR_LITERAL_ESCAPE_RE.sub(
|
||||
lambda m: GRAMMAR_LITERAL_ESCAPES.get(m.group(0)), json.dumps(literal)
|
||||
)
|
||||
return f'"{escaped}"'
|
||||
|
||||
def _add_rule(self, name, rule):
|
||||
esc_name = INVALID_RULE_CHARS_RE.sub('-', name)
|
||||
if esc_name not in self._rules or self._rules[esc_name] == rule:
|
||||
key = esc_name
|
||||
else:
|
||||
i = 0
|
||||
while f'{esc_name}{i}' in self._rules:
|
||||
i += 1
|
||||
key = f'{esc_name}{i}'
|
||||
self._rules[key] = rule
|
||||
return key
|
||||
|
||||
def visit(self, schema, name):
|
||||
schema_type = schema.get('type')
|
||||
rule_name = name or 'root'
|
||||
|
||||
if 'oneOf' in schema or 'anyOf' in schema:
|
||||
rule = ' | '.join((
|
||||
self.visit(alt_schema, f'{name}{"-" if name else ""}{i}')
|
||||
for i, alt_schema in enumerate(schema.get('oneOf') or schema['anyOf'])
|
||||
))
|
||||
return self._add_rule(rule_name, rule)
|
||||
|
||||
elif 'const' in schema:
|
||||
return self._add_rule(rule_name, self._format_literal(schema['const']))
|
||||
|
||||
elif 'enum' in schema:
|
||||
rule = ' | '.join((self._format_literal(v) for v in schema['enum']))
|
||||
return self._add_rule(rule_name, rule)
|
||||
|
||||
elif schema_type == 'object' and 'properties' in schema:
|
||||
# TODO: `required` keyword
|
||||
prop_order = self._prop_order
|
||||
prop_pairs = sorted(
|
||||
schema['properties'].items(),
|
||||
# sort by position in prop_order (if specified) then by key
|
||||
key=lambda kv: (prop_order.get(kv[0], len(prop_order)), kv[0]),
|
||||
)
|
||||
|
||||
rule = '"{" space'
|
||||
for i, (prop_name, prop_schema) in enumerate(prop_pairs):
|
||||
prop_rule_name = self.visit(prop_schema, f'{name}{"-" if name else ""}{prop_name}')
|
||||
if i > 0:
|
||||
rule += ' "," space'
|
||||
rule += fr' {self._format_literal(prop_name)} space ":" space {prop_rule_name}'
|
||||
rule += ' "}" space'
|
||||
|
||||
return self._add_rule(rule_name, rule)
|
||||
|
||||
elif schema_type == 'array' and 'items' in schema:
|
||||
# TODO `prefixItems` keyword
|
||||
item_rule_name = self.visit(schema['items'], f'{name}{"-" if name else ""}item')
|
||||
rule = f'"[" space ({item_rule_name} ("," space {item_rule_name})*)? "]" space'
|
||||
return self._add_rule(rule_name, rule)
|
||||
|
||||
else:
|
||||
assert schema_type in PRIMITIVE_RULES, f'Unrecognized schema: {schema}'
|
||||
return self._add_rule(
|
||||
'root' if rule_name == 'root' else schema_type,
|
||||
PRIMITIVE_RULES[schema_type]
|
||||
)
|
||||
|
||||
def format_grammar(self):
|
||||
return '\n'.join((f'{name} ::= {rule}' for name, rule in self._rules.items()))
|
||||
|
||||
|
||||
def main(args_in = None):
|
||||
parser = argparse.ArgumentParser(
|
||||
description='''
|
||||
Generates a grammar (suitable for use in ./main) that produces JSON conforming to a
|
||||
given JSON schema. Only a subset of JSON schema features are supported; more may be
|
||||
added in the future.
|
||||
''',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--prop-order',
|
||||
default=[],
|
||||
type=lambda s: s.split(','),
|
||||
help='''
|
||||
comma-separated property names defining the order of precedence for object properties;
|
||||
properties not specified here are given lower precedence than those that are, and are
|
||||
sorted alphabetically
|
||||
'''
|
||||
)
|
||||
parser.add_argument('schema', help='file containing JSON schema ("-" for stdin)')
|
||||
args = parser.parse_args(args_in)
|
||||
|
||||
schema = json.load(sys.stdin if args.schema == '-' else open(args.schema))
|
||||
prop_order = {name: idx for idx, name in enumerate(args.prop_order)}
|
||||
converter = SchemaConverter(prop_order)
|
||||
converter.visit(schema, '')
|
||||
print(converter.format_grammar())
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
@@ -1,8 +0,0 @@
|
||||
set(TARGET llama-bench)
|
||||
add_executable(${TARGET} llama-bench.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
if(TARGET BUILD_INFO)
|
||||
add_dependencies(${TARGET} BUILD_INFO)
|
||||
endif()
|
||||
@@ -1,969 +0,0 @@
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
#include <cassert>
|
||||
#include <chrono>
|
||||
#include <cinttypes>
|
||||
#include <cstring>
|
||||
#include <ctime>
|
||||
#include <iterator>
|
||||
#include <map>
|
||||
#include <numeric>
|
||||
#include <regex>
|
||||
#include <sstream>
|
||||
#include <stdio.h>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "ggml.h"
|
||||
#include "llama.h"
|
||||
#include "common.h"
|
||||
#include "build-info.h"
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
#include "ggml-cuda.h"
|
||||
#endif
|
||||
|
||||
// utils
|
||||
static uint64_t get_time_ns() {
|
||||
using clock = std::chrono::high_resolution_clock;
|
||||
return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
|
||||
}
|
||||
|
||||
template<class T>
|
||||
static std::string join(const std::vector<T> & values, const std::string & delim) {
|
||||
std::ostringstream str;
|
||||
for (size_t i = 0; i < values.size(); i++) {
|
||||
str << values[i];
|
||||
if (i < values.size() - 1) {
|
||||
str << delim;
|
||||
}
|
||||
}
|
||||
return str.str();
|
||||
}
|
||||
|
||||
template<class T>
|
||||
static std::vector<T> split(const std::string & str, char delim) {
|
||||
std::vector<T> values;
|
||||
std::istringstream str_stream(str);
|
||||
std::string token;
|
||||
while (std::getline(str_stream, token, delim)) {
|
||||
T value;
|
||||
std::istringstream token_stream(token);
|
||||
token_stream >> value;
|
||||
values.push_back(value);
|
||||
}
|
||||
return values;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
static T avg(const std::vector<T> & v) {
|
||||
if (v.empty()) {
|
||||
return 0;
|
||||
}
|
||||
T sum = std::accumulate(v.begin(), v.end(), T(0));
|
||||
return sum / (T)v.size();
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
static T stdev(const std::vector<T> & v) {
|
||||
if (v.size() <= 1) {
|
||||
return 0;
|
||||
}
|
||||
T mean = avg(v);
|
||||
T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
|
||||
T stdev = std::sqrt(sq_sum / (T)(v.size() - 1) - mean * mean * (T)v.size() / (T)(v.size() - 1));
|
||||
return stdev;
|
||||
}
|
||||
|
||||
static bool ggml_cpu_has_metal() {
|
||||
#if defined(GGML_USE_METAL)
|
||||
return true;
|
||||
#else
|
||||
return false;
|
||||
#endif
|
||||
}
|
||||
|
||||
static std::string get_cpu_info() {
|
||||
std::string id;
|
||||
#ifdef __linux__
|
||||
FILE * f = fopen("/proc/cpuinfo", "r");
|
||||
if (f) {
|
||||
char buf[1024];
|
||||
while (fgets(buf, sizeof(buf), f)) {
|
||||
if (strncmp(buf, "model name", 10) == 0) {
|
||||
char * p = strchr(buf, ':');
|
||||
if (p) {
|
||||
p++;
|
||||
while (std::isspace(*p)) {
|
||||
p++;
|
||||
}
|
||||
while (std::isspace(p[strlen(p) - 1])) {
|
||||
p[strlen(p) - 1] = '\0';
|
||||
}
|
||||
id = p;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
// TODO: other platforms
|
||||
return id;
|
||||
}
|
||||
|
||||
static std::string get_gpu_info() {
|
||||
std::string id;
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
int count = ggml_cuda_get_device_count();
|
||||
for (int i = 0; i < count; i++) {
|
||||
char buf[128];
|
||||
ggml_cuda_get_device_description(i, buf, sizeof(buf));
|
||||
id += buf;
|
||||
if (i < count - 1) {
|
||||
id += "/";
|
||||
}
|
||||
}
|
||||
#endif
|
||||
// TODO: other backends
|
||||
return id;
|
||||
}
|
||||
|
||||
// command line params
|
||||
enum output_formats {CSV, JSON, MARKDOWN, SQL};
|
||||
|
||||
struct cmd_params {
|
||||
std::vector<std::string> model;
|
||||
std::vector<int> n_prompt;
|
||||
std::vector<int> n_gen;
|
||||
std::vector<int> n_batch;
|
||||
std::vector<bool> f32_kv;
|
||||
std::vector<int> n_threads;
|
||||
std::vector<int> n_gpu_layers;
|
||||
std::vector<int> main_gpu;
|
||||
std::vector<bool> mul_mat_q;
|
||||
std::vector<bool> low_vram;
|
||||
std::vector<std::array<float, LLAMA_MAX_DEVICES>> tensor_split;
|
||||
int reps;
|
||||
bool verbose;
|
||||
output_formats output_format;
|
||||
};
|
||||
|
||||
static const cmd_params cmd_params_defaults = {
|
||||
/* model */ {"models/7B/ggml-model-q4_0.gguf"},
|
||||
/* n_prompt */ {512},
|
||||
/* n_gen */ {128},
|
||||
/* n_batch */ {512},
|
||||
/* f32_kv */ {false},
|
||||
/* n_threads */ {get_num_physical_cores()},
|
||||
/* n_gpu_layers */ {99},
|
||||
/* main_gpu */ {0},
|
||||
/* mul_mat_q */ {true},
|
||||
/* low_vram */ {false},
|
||||
/* tensor_split */ {{}},
|
||||
/* reps */ 5,
|
||||
/* verbose */ false,
|
||||
/* output_format */ MARKDOWN
|
||||
};
|
||||
|
||||
static void print_usage(int /* argc */, char ** argv) {
|
||||
fprintf(stdout, "usage: %s [options]\n", argv[0]);
|
||||
fprintf(stdout, "\n");
|
||||
fprintf(stdout, "options:\n");
|
||||
fprintf(stdout, " -h, --help\n");
|
||||
fprintf(stdout, " -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
|
||||
fprintf(stdout, " -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
|
||||
fprintf(stdout, " -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
|
||||
fprintf(stdout, " -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
|
||||
fprintf(stdout, " --memory-f32 <0|1> (default: %s)\n", join(cmd_params_defaults.f32_kv, ",").c_str());
|
||||
fprintf(stdout, " -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
|
||||
fprintf(stdout, " -ngl N, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
|
||||
fprintf(stdout, " -mg i, --main-gpu <n> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
|
||||
fprintf(stdout, " -lv, --low-vram <0|1> (default: %s)\n", join(cmd_params_defaults.low_vram, ",").c_str());
|
||||
fprintf(stdout, " -mmq, --mul-mat-q <0|1> (default: %s)\n", join(cmd_params_defaults.mul_mat_q, ",").c_str());
|
||||
fprintf(stdout, " -ts, --tensor_split <ts0/ts1/..> \n");
|
||||
fprintf(stdout, " -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
|
||||
fprintf(stdout, " -o, --output <csv|json|md|sql> (default: %s)\n", cmd_params_defaults.output_format == CSV ? "csv" : cmd_params_defaults.output_format == JSON ? "json" : cmd_params_defaults.output_format == MARKDOWN ? "md" : "sql");
|
||||
fprintf(stdout, " -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
|
||||
fprintf(stdout, "\n");
|
||||
fprintf(stdout, "Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
|
||||
|
||||
}
|
||||
|
||||
static cmd_params parse_cmd_params(int argc, char ** argv) {
|
||||
cmd_params params;
|
||||
std::string arg;
|
||||
bool invalid_param = false;
|
||||
const std::string arg_prefix = "--";
|
||||
const char split_delim = ',';
|
||||
|
||||
params.verbose = cmd_params_defaults.verbose;
|
||||
params.output_format = cmd_params_defaults.output_format;
|
||||
params.reps = cmd_params_defaults.reps;
|
||||
|
||||
for (int i = 1; i < argc; i++) {
|
||||
arg = argv[i];
|
||||
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
|
||||
std::replace(arg.begin(), arg.end(), '_', '-');
|
||||
}
|
||||
|
||||
if (arg == "-h" || arg == "--help") {
|
||||
print_usage(argc, argv);
|
||||
exit(0);
|
||||
} else if (arg == "-m" || arg == "--model") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
auto p = split<std::string>(argv[i], split_delim);
|
||||
params.model.insert(params.model.end(), p.begin(), p.end());
|
||||
} else if (arg == "-p" || arg == "--n-prompt") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
auto p = split<int>(argv[i], split_delim);
|
||||
params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
|
||||
} else if (arg == "-n" || arg == "--n-gen") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
auto p = split<int>(argv[i], split_delim);
|
||||
params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
|
||||
} else if (arg == "-b" || arg == "--batch-size") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
auto p = split<int>(argv[i], split_delim);
|
||||
params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
|
||||
} else if (arg == "--memory-f32") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
auto p = split<int>(argv[i], split_delim);
|
||||
params.f32_kv.insert(params.f32_kv.end(), p.begin(), p.end());
|
||||
} else if (arg == "-t" || arg == "--threads") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
auto p = split<int>(argv[i], split_delim);
|
||||
params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
|
||||
} else if (arg == "-ngl" || arg == "--n-gpu-layers") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
auto p = split<int>(argv[i], split_delim);
|
||||
params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
|
||||
} else if (arg == "-mg" || arg == "--main-gpu") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.main_gpu = split<int>(argv[i], split_delim);
|
||||
} else if (arg == "-lv" || arg == "--low-vram") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
auto p = split<bool>(argv[i], split_delim);
|
||||
params.low_vram.insert(params.low_vram.end(), p.begin(), p.end());
|
||||
} else if (arg == "-mmq" || arg == "--mul-mat-q") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
auto p = split<bool>(argv[i], split_delim);
|
||||
params.mul_mat_q.insert(params.mul_mat_q.end(), p.begin(), p.end());
|
||||
} else if (arg == "-ts" || arg == "--tensor-split") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
for (auto ts : split<std::string>(argv[i], split_delim)) {
|
||||
// split string by ; and /
|
||||
const std::regex regex{R"([;/]+)"};
|
||||
std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
|
||||
std::vector<std::string> split_arg{it, {}};
|
||||
GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
|
||||
|
||||
std::array<float, LLAMA_MAX_DEVICES> tensor_split;
|
||||
for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
|
||||
if (i < split_arg.size()) {
|
||||
tensor_split[i] = std::stof(split_arg[i]);
|
||||
} else {
|
||||
tensor_split[i] = 0.0f;
|
||||
}
|
||||
}
|
||||
params.tensor_split.push_back(tensor_split);
|
||||
}
|
||||
} else if (arg == "-r" || arg == "--repetitions") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.reps = std::stoi(argv[i]);
|
||||
} else if (arg == "-o" || arg == "--output") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
if (argv[i] == std::string("csv")) {
|
||||
params.output_format = CSV;
|
||||
} else if (argv[i] == std::string("json")) {
|
||||
params.output_format = JSON;
|
||||
} else if (argv[i] == std::string("md")) {
|
||||
params.output_format = MARKDOWN;
|
||||
} else if (argv[i] == std::string("sql")) {
|
||||
params.output_format = SQL;
|
||||
} else {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
} else if (arg == "-v" || arg == "--verbose") {
|
||||
params.verbose = true;
|
||||
} else {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (invalid_param) {
|
||||
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
|
||||
print_usage(argc, argv);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
// set defaults
|
||||
if (params.model.empty()) { params.model = cmd_params_defaults.model; }
|
||||
if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
|
||||
if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
|
||||
if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
|
||||
if (params.f32_kv.empty()) { params.f32_kv = cmd_params_defaults.f32_kv; }
|
||||
if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
|
||||
if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
|
||||
if (params.mul_mat_q.empty()) { params.mul_mat_q = cmd_params_defaults.mul_mat_q; }
|
||||
if (params.low_vram.empty()) { params.low_vram = cmd_params_defaults.low_vram; }
|
||||
if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
|
||||
if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
|
||||
|
||||
return params;
|
||||
}
|
||||
|
||||
struct cmd_params_instance {
|
||||
std::string model;
|
||||
int n_prompt;
|
||||
int n_gen;
|
||||
int n_batch;
|
||||
bool f32_kv;
|
||||
int n_threads;
|
||||
int n_gpu_layers;
|
||||
int main_gpu;
|
||||
bool mul_mat_q;
|
||||
bool low_vram;
|
||||
std::array<float, LLAMA_MAX_DEVICES> tensor_split;
|
||||
|
||||
llama_context_params to_llama_params() const {
|
||||
llama_context_params lparams = llama_context_default_params();
|
||||
lparams.n_ctx = n_prompt + n_gen;
|
||||
lparams.n_batch = n_batch;
|
||||
lparams.f16_kv = !f32_kv;
|
||||
lparams.n_gpu_layers = n_gpu_layers;
|
||||
lparams.main_gpu = main_gpu;
|
||||
lparams.mul_mat_q = mul_mat_q;
|
||||
lparams.low_vram = low_vram;
|
||||
lparams.tensor_split = tensor_split.data();
|
||||
|
||||
return lparams;
|
||||
}
|
||||
};
|
||||
|
||||
static std::vector<cmd_params_instance> get_cmd_params_instances_int(const cmd_params & params, int n_gen, int n_prompt) {
|
||||
std::vector<cmd_params_instance> instances;
|
||||
|
||||
for (const auto & m : params.model)
|
||||
for (const auto & nb : params.n_batch)
|
||||
for (const auto & fk : params.f32_kv)
|
||||
for (const auto & nl : params.n_gpu_layers)
|
||||
for (const auto & mg : params.main_gpu)
|
||||
for (const auto & mmq : params.mul_mat_q)
|
||||
for (const auto & lv : params.low_vram)
|
||||
for (const auto & ts : params.tensor_split)
|
||||
for (const auto & nt : params.n_threads) {
|
||||
cmd_params_instance instance = {
|
||||
/* .model = */ m,
|
||||
/* .n_prompt = */ n_prompt,
|
||||
/* .n_gen = */ n_gen,
|
||||
/* .n_batch = */ nb,
|
||||
/* .f32_kv = */ fk,
|
||||
/* .n_threads = */ nt,
|
||||
/* .n_gpu_layers = */ nl,
|
||||
/* .main_gpu = */ mg,
|
||||
/* .mul_mat_q = */ mmq,
|
||||
/* .low_vram = */ lv,
|
||||
/* .tensor_split = */ ts,
|
||||
};
|
||||
instances.push_back(instance);
|
||||
}
|
||||
return instances;
|
||||
}
|
||||
|
||||
static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
|
||||
std::vector<cmd_params_instance> instances;
|
||||
|
||||
for (const auto & n_prompt : params.n_prompt) {
|
||||
if (n_prompt == 0) {
|
||||
continue;
|
||||
}
|
||||
auto instances_prompt = get_cmd_params_instances_int(params, 0, n_prompt);
|
||||
instances.insert(instances.end(), instances_prompt.begin(), instances_prompt.end());
|
||||
}
|
||||
|
||||
for (const auto & n_gen : params.n_gen) {
|
||||
if (n_gen == 0) {
|
||||
continue;
|
||||
}
|
||||
auto instances_gen = get_cmd_params_instances_int(params, n_gen, 0);
|
||||
instances.insert(instances.end(), instances_gen.begin(), instances_gen.end());
|
||||
}
|
||||
|
||||
return instances;
|
||||
}
|
||||
|
||||
struct test {
|
||||
static const std::string build_commit;
|
||||
static const int build_number;
|
||||
static const bool cuda;
|
||||
static const bool opencl;
|
||||
static const bool metal;
|
||||
static const bool gpu_blas;
|
||||
static const bool blas;
|
||||
static const std::string cpu_info;
|
||||
static const std::string gpu_info;
|
||||
std::string model_filename;
|
||||
std::string model_type;
|
||||
int n_batch;
|
||||
int n_threads;
|
||||
bool f32_kv;
|
||||
int n_gpu_layers;
|
||||
int main_gpu;
|
||||
bool mul_mat_q;
|
||||
bool low_vram;
|
||||
std::array<float, LLAMA_MAX_DEVICES> tensor_split;
|
||||
int n_prompt;
|
||||
int n_gen;
|
||||
std::string test_time;
|
||||
std::vector<uint64_t> samples_ns;
|
||||
|
||||
test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
|
||||
model_filename = inst.model;
|
||||
char buf[128];
|
||||
llama_model_type(lmodel, buf, sizeof(buf));
|
||||
model_type = buf;
|
||||
n_batch = inst.n_batch;
|
||||
n_threads = inst.n_threads;
|
||||
f32_kv = inst.f32_kv;
|
||||
n_gpu_layers = inst.n_gpu_layers;
|
||||
main_gpu = inst.main_gpu;
|
||||
mul_mat_q = inst.mul_mat_q;
|
||||
low_vram = inst.low_vram;
|
||||
tensor_split = inst.tensor_split;
|
||||
n_prompt = inst.n_prompt;
|
||||
n_gen = inst.n_gen;
|
||||
// RFC 3339 date-time format
|
||||
time_t t = time(NULL);
|
||||
std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
|
||||
test_time = buf;
|
||||
|
||||
(void) ctx;
|
||||
}
|
||||
|
||||
uint64_t avg_ns() const {
|
||||
return ::avg(samples_ns);
|
||||
}
|
||||
|
||||
uint64_t stdev_ns() const {
|
||||
return ::stdev(samples_ns);
|
||||
}
|
||||
|
||||
std::vector<double> get_ts() const {
|
||||
int n_tokens = n_prompt + n_gen;
|
||||
std::vector<double> ts;
|
||||
std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
|
||||
return ts;
|
||||
}
|
||||
|
||||
double avg_ts() const {
|
||||
return ::avg(get_ts());
|
||||
}
|
||||
|
||||
double stdev_ts() const {
|
||||
return ::stdev(get_ts());
|
||||
}
|
||||
|
||||
static std::string get_backend() {
|
||||
if (cuda) {
|
||||
return "CUDA";
|
||||
}
|
||||
if (opencl) {
|
||||
return "OpenCL";
|
||||
}
|
||||
if (metal) {
|
||||
return "Metal";
|
||||
}
|
||||
if (gpu_blas) {
|
||||
return "GPU BLAS";
|
||||
}
|
||||
if (blas) {
|
||||
return "BLAS";
|
||||
}
|
||||
return "CPU";
|
||||
}
|
||||
|
||||
static const std::vector<std::string> & get_fields() {
|
||||
static const std::vector<std::string> fields = {
|
||||
"build_commit", "build_number",
|
||||
"cuda", "opencl", "metal", "gpu_blas", "blas",
|
||||
"cpu_info", "gpu_info",
|
||||
"model_filename", "model_type",
|
||||
"n_batch", "n_threads", "f16_kv",
|
||||
"n_gpu_layers", "main_gpu", "mul_mat_q", "low_vram", "tensor_split",
|
||||
"n_prompt", "n_gen", "test_time",
|
||||
"avg_ns", "stddev_ns",
|
||||
"avg_ts", "stddev_ts"
|
||||
};
|
||||
return fields;
|
||||
}
|
||||
|
||||
enum field_type {STRING, BOOL, INT, FLOAT};
|
||||
|
||||
static field_type get_field_type(const std::string & field) {
|
||||
if (field == "build_number" || field == "n_batch" || field == "n_threads" ||
|
||||
field == "n_gpu_layers" || field == "main_gpu" ||
|
||||
field == "n_prompt" || field == "n_gen" ||
|
||||
field == "avg_ns" || field == "stddev_ns") {
|
||||
return INT;
|
||||
}
|
||||
if (field == "cuda" || field == "opencl" || field == "metal" || field == "gpu_blas" || field == "blas" ||
|
||||
field == "f16_kv" || field == "mul_mat_q" || field == "low_vram") {
|
||||
return BOOL;
|
||||
}
|
||||
if (field == "avg_ts" || field == "stddev_ts") {
|
||||
return FLOAT;
|
||||
}
|
||||
return STRING;
|
||||
}
|
||||
|
||||
std::vector<std::string> get_values() const {
|
||||
std::string tensor_split_str;
|
||||
int max_nonzero = 0;
|
||||
for (int i = 0; i < LLAMA_MAX_DEVICES; i++) {
|
||||
if (tensor_split[i] > 0) {
|
||||
max_nonzero = i;
|
||||
}
|
||||
}
|
||||
for (int i = 0; i <= max_nonzero; i++) {
|
||||
char buf[32];
|
||||
snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
|
||||
tensor_split_str += buf;
|
||||
if (i < max_nonzero) {
|
||||
tensor_split_str += "/";
|
||||
}
|
||||
}
|
||||
std::vector<std::string> values = {
|
||||
build_commit, std::to_string(build_number),
|
||||
std::to_string(cuda), std::to_string(opencl), std::to_string(metal), std::to_string(gpu_blas), std::to_string(blas),
|
||||
cpu_info, gpu_info,
|
||||
model_filename, model_type,
|
||||
std::to_string(n_batch), std::to_string(n_threads), std::to_string(!f32_kv),
|
||||
std::to_string(n_gpu_layers), std::to_string(main_gpu), std::to_string(mul_mat_q), std::to_string(low_vram), tensor_split_str,
|
||||
std::to_string(n_prompt), std::to_string(n_gen), test_time,
|
||||
std::to_string(avg_ns()), std::to_string(stdev_ns()),
|
||||
std::to_string(avg_ts()), std::to_string(stdev_ts())
|
||||
};
|
||||
return values;
|
||||
}
|
||||
|
||||
std::map<std::string, std::string> get_map() const {
|
||||
std::map<std::string, std::string> map;
|
||||
auto fields = get_fields();
|
||||
auto values = get_values();
|
||||
std::transform(fields.begin(), fields.end(), values.begin(),
|
||||
std::inserter(map, map.end()), std::make_pair<const std::string &, const std::string &>);
|
||||
return map;
|
||||
}
|
||||
};
|
||||
|
||||
const std::string test::build_commit = BUILD_COMMIT;
|
||||
const int test::build_number = BUILD_NUMBER;
|
||||
const bool test::cuda = !!ggml_cpu_has_cublas();
|
||||
const bool test::opencl = !!ggml_cpu_has_clblast();
|
||||
const bool test::metal = !!ggml_cpu_has_metal();
|
||||
const bool test::gpu_blas = !!ggml_cpu_has_gpublas();
|
||||
const bool test::blas = !!ggml_cpu_has_blas();
|
||||
const std::string test::cpu_info = get_cpu_info();
|
||||
const std::string test::gpu_info = get_gpu_info();
|
||||
|
||||
struct printer {
|
||||
virtual ~printer() {}
|
||||
|
||||
FILE * fout;
|
||||
virtual void print_header(const cmd_params & params) { (void) params; };
|
||||
virtual void print_test(const test & t) = 0;
|
||||
virtual void print_footer() { };
|
||||
};
|
||||
|
||||
struct csv_printer : public printer {
|
||||
static std::string escape_csv(const std::string & field) {
|
||||
std::string escaped = "\"";
|
||||
for (auto c : field) {
|
||||
if (c == '"') {
|
||||
escaped += "\"";
|
||||
}
|
||||
escaped += c;
|
||||
}
|
||||
escaped += "\"";
|
||||
return escaped;
|
||||
}
|
||||
|
||||
void print_header(const cmd_params & params) override {
|
||||
std::vector<std::string> fields = test::get_fields();
|
||||
fprintf(fout, "%s\n", join(fields, ",").c_str());
|
||||
(void) params;
|
||||
}
|
||||
|
||||
void print_test(const test & t) override {
|
||||
std::vector<std::string> values = t.get_values();
|
||||
std::transform(values.begin(), values.end(), values.begin(), escape_csv);
|
||||
fprintf(fout, "%s\n", join(values, ",").c_str());
|
||||
}
|
||||
};
|
||||
|
||||
struct json_printer : public printer {
|
||||
bool first = true;
|
||||
|
||||
static std::string escape_json(const std::string & value) {
|
||||
std::string escaped;
|
||||
for (auto c : value) {
|
||||
if (c == '"') {
|
||||
escaped += "\\\"";
|
||||
} else if (c == '\\') {
|
||||
escaped += "\\\\";
|
||||
} else if (c <= 0x1f) {
|
||||
char buf[8];
|
||||
snprintf(buf, sizeof(buf), "\\u%04x", c);
|
||||
escaped += buf;
|
||||
} else {
|
||||
escaped += c;
|
||||
}
|
||||
}
|
||||
return escaped;
|
||||
}
|
||||
|
||||
static std::string format_value(const std::string & field, const std::string & value) {
|
||||
switch (test::get_field_type(field)) {
|
||||
case test::STRING:
|
||||
return "\"" + escape_json(value) + "\"";
|
||||
case test::BOOL:
|
||||
return value == "0" ? "false" : "true";
|
||||
default:
|
||||
return value;
|
||||
}
|
||||
}
|
||||
|
||||
void print_header(const cmd_params & params) override {
|
||||
fprintf(fout, "[\n");
|
||||
(void) params;
|
||||
}
|
||||
|
||||
void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
|
||||
assert(fields.size() == values.size());
|
||||
for (size_t i = 0; i < fields.size(); i++) {
|
||||
fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_value(fields.at(i), values.at(i)).c_str());
|
||||
}
|
||||
}
|
||||
|
||||
void print_test(const test & t) override {
|
||||
if (first) {
|
||||
first = false;
|
||||
} else {
|
||||
fprintf(fout, ",\n");
|
||||
}
|
||||
fprintf(fout, " {\n");
|
||||
print_fields(test::get_fields(), t.get_values());
|
||||
fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
|
||||
fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
|
||||
fprintf(fout, " }");
|
||||
fflush(fout);
|
||||
}
|
||||
|
||||
void print_footer() override {
|
||||
fprintf(fout, "\n]\n");
|
||||
}
|
||||
};
|
||||
|
||||
struct markdown_printer : public printer {
|
||||
std::vector<std::string> fields;
|
||||
|
||||
static int get_field_width(const std::string & field) {
|
||||
if (field == "model") {
|
||||
return -30;
|
||||
}
|
||||
if (field == "t/s") {
|
||||
return 15;
|
||||
}
|
||||
int width = std::max((int)field.length(), 10);
|
||||
|
||||
if (test::get_field_type(field) == test::STRING) {
|
||||
return -width;
|
||||
}
|
||||
return width;
|
||||
}
|
||||
|
||||
void print_header(const cmd_params & params) override {
|
||||
// select fields to print
|
||||
fields = { "model", "backend" };
|
||||
bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS";
|
||||
if (!is_cpu_backend) {
|
||||
fields.push_back("n_gpu_layers");
|
||||
}
|
||||
if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
|
||||
fields.push_back("n_threads");
|
||||
}
|
||||
if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
|
||||
fields.push_back("n_batch");
|
||||
}
|
||||
if (params.f32_kv.size() > 1 || params.f32_kv != cmd_params_defaults.f32_kv) {
|
||||
fields.push_back("f16_kv");
|
||||
}
|
||||
if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
|
||||
fields.push_back("main_gpu");
|
||||
}
|
||||
if (params.mul_mat_q.size() > 1 || params.mul_mat_q != cmd_params_defaults.mul_mat_q) {
|
||||
fields.push_back("mul_mat_q");
|
||||
}
|
||||
if (params.low_vram.size() > 1 || params.low_vram != cmd_params_defaults.low_vram) {
|
||||
fields.push_back("low_vram");
|
||||
}
|
||||
if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
|
||||
fields.push_back("tensor_split");
|
||||
}
|
||||
fields.push_back("test");
|
||||
fields.push_back("t/s");
|
||||
|
||||
fprintf(fout, "|");
|
||||
for (const auto & field : fields) {
|
||||
fprintf(fout, " %*s |", get_field_width(field), field.c_str());
|
||||
}
|
||||
fprintf(fout, "\n");
|
||||
fprintf(fout, "|");
|
||||
for (const auto & field : fields) {
|
||||
int width = get_field_width(field);
|
||||
fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
|
||||
}
|
||||
fprintf(fout, "\n");
|
||||
}
|
||||
|
||||
void print_test(const test & t) override {
|
||||
std::map<std::string, std::string> vmap = t.get_map();
|
||||
|
||||
fprintf(fout, "|");
|
||||
for (const auto & field : fields) {
|
||||
std::string value;
|
||||
if (field == "model") {
|
||||
value = t.model_type;
|
||||
} else if (field == "backend") {
|
||||
value = test::get_backend();
|
||||
} else if (field == "test") {
|
||||
char buf[128];
|
||||
if (t.n_prompt > 0 && t.n_gen == 0) {
|
||||
snprintf(buf, sizeof(buf), "pp %d", t.n_prompt);
|
||||
} else if (t.n_gen > 0 && t.n_prompt == 0) {
|
||||
snprintf(buf, sizeof(buf), "tg %d", t.n_gen);
|
||||
} else {
|
||||
assert(false);
|
||||
exit(1);
|
||||
}
|
||||
value = buf;
|
||||
} else if (field == "t/s") {
|
||||
char buf[128];
|
||||
snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
|
||||
value = buf;
|
||||
} else if (vmap.find(field) != vmap.end()) {
|
||||
value = vmap.at(field);
|
||||
} else {
|
||||
assert(false);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
int width = get_field_width(field);
|
||||
if (field == "t/s") {
|
||||
// HACK: the utf-8 character is 2 bytes
|
||||
width += 1;
|
||||
}
|
||||
fprintf(fout, " %*s |", width, value.c_str());
|
||||
}
|
||||
fprintf(fout, "\n");
|
||||
}
|
||||
|
||||
void print_footer() override {
|
||||
fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
|
||||
}
|
||||
};
|
||||
|
||||
struct sql_printer : public printer {
|
||||
static std::string get_sql_field_type(const std::string & field) {
|
||||
switch (test::get_field_type(field)) {
|
||||
case test::STRING:
|
||||
return "TEXT";
|
||||
case test::BOOL:
|
||||
case test::INT:
|
||||
return "INTEGER";
|
||||
case test::FLOAT:
|
||||
return "REAL";
|
||||
default:
|
||||
assert(false);
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
|
||||
void print_header(const cmd_params & params) override {
|
||||
std::vector<std::string> fields = test::get_fields();
|
||||
fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
|
||||
for (size_t i = 0; i < fields.size(); i++) {
|
||||
fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(), i < fields.size() - 1 ? "," : "");
|
||||
}
|
||||
fprintf(fout, ");\n");
|
||||
fprintf(fout, "\n");
|
||||
(void) params;
|
||||
}
|
||||
|
||||
void print_test(const test & t) override {
|
||||
fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
|
||||
fprintf(fout, "VALUES (");
|
||||
std::vector<std::string> values = t.get_values();
|
||||
for (size_t i = 0; i < values.size(); i++) {
|
||||
fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
|
||||
}
|
||||
fprintf(fout, ");\n");
|
||||
}
|
||||
};
|
||||
|
||||
static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
|
||||
std::vector<llama_token> tokens(n_batch, llama_token_bos(ctx));
|
||||
int n_processed = 0;
|
||||
while (n_processed < n_prompt) {
|
||||
int n_tokens = std::min(n_prompt - n_processed, n_batch);
|
||||
llama_eval(ctx, tokens.data(), n_tokens, n_past + n_processed, n_threads);
|
||||
n_processed += n_tokens;
|
||||
}
|
||||
}
|
||||
|
||||
static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
|
||||
llama_token token = llama_token_bos(ctx);
|
||||
for (int i = 0; i < n_gen; i++) {
|
||||
llama_eval(ctx, &token, 1, n_past + i, n_threads);
|
||||
}
|
||||
}
|
||||
|
||||
static void llama_null_log_callback(enum llama_log_level level, const char * text, void * user_data) {
|
||||
(void) level;
|
||||
(void) text;
|
||||
(void) user_data;
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
#if !defined(NDEBUG)
|
||||
fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
|
||||
#endif
|
||||
|
||||
#if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
|
||||
fprintf(stderr, "warning: debug build, performance may be affected\n");
|
||||
#endif
|
||||
|
||||
#if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
|
||||
fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
|
||||
#endif
|
||||
|
||||
cmd_params params = parse_cmd_params(argc, argv);
|
||||
|
||||
// initialize llama.cpp
|
||||
if (!params.verbose) {
|
||||
llama_log_set(llama_null_log_callback, NULL);
|
||||
}
|
||||
bool numa = false;
|
||||
llama_backend_init(numa);
|
||||
|
||||
// initialize printer
|
||||
std::unique_ptr<printer> p;
|
||||
switch (params.output_format) {
|
||||
case CSV:
|
||||
p.reset(new csv_printer());
|
||||
break;
|
||||
case JSON:
|
||||
p.reset(new json_printer());
|
||||
break;
|
||||
case MARKDOWN:
|
||||
p.reset(new markdown_printer());
|
||||
break;
|
||||
case SQL:
|
||||
p.reset(new sql_printer());
|
||||
break;
|
||||
default:
|
||||
assert(false);
|
||||
exit(1);
|
||||
}
|
||||
p->fout = stdout;
|
||||
p->print_header(params);
|
||||
|
||||
std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
|
||||
|
||||
for (const auto & inst : params_instances) {
|
||||
// TODO: keep the model between tests when possible
|
||||
llama_context_params lparams = inst.to_llama_params();
|
||||
|
||||
llama_model * lmodel = llama_load_model_from_file(inst.model.c_str(), lparams);
|
||||
if (lmodel == NULL) {
|
||||
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
|
||||
return 1;
|
||||
}
|
||||
|
||||
llama_context * ctx = llama_new_context_with_model(lmodel, lparams);
|
||||
if (ctx == NULL) {
|
||||
fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
|
||||
llama_free_model(lmodel);
|
||||
return 1;
|
||||
}
|
||||
|
||||
test t(inst, lmodel, ctx);
|
||||
|
||||
// warmup run
|
||||
test_gen(ctx, 1, 0, t.n_threads);
|
||||
|
||||
for (int i = 0; i < params.reps; i++) {
|
||||
uint64_t t_start = get_time_ns();
|
||||
if (t.n_prompt > 0) {
|
||||
test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
|
||||
}
|
||||
if (t.n_gen > 0) {
|
||||
test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads);
|
||||
}
|
||||
uint64_t t_ns = get_time_ns() - t_start;
|
||||
t.samples_ns.push_back(t_ns);
|
||||
}
|
||||
|
||||
p->print_test(t);
|
||||
|
||||
llama_print_timings(ctx);
|
||||
|
||||
llama_free(ctx);
|
||||
llama_free_model(lmodel);
|
||||
}
|
||||
|
||||
p->print_footer();
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
return 0;
|
||||
}
|
||||
@@ -1,132 +0,0 @@
|
||||
" Requires an already running llama.cpp server
|
||||
" To install either copy or symlink to ~/.vim/autoload/llama.vim
|
||||
" Then start with either :call llama#doLlamaGen(),
|
||||
" or add a keybind to your vimrc such as
|
||||
" nnoremap Z :call llama#doLlamaGen()<CR>
|
||||
" Similarly, you could add an insert mode keybind with
|
||||
" inoremap <C-B> <Cmd>call llama#doLlamaGen()<CR>
|
||||
"
|
||||
" g:llama_api_url and g:llama_overrides can be configured in your .vimrc
|
||||
" let g:llama_api_url = "192.168.1.10:8080"
|
||||
" llama_overrides can also be set through buffer/window scopes. For instance
|
||||
" autocmd filetype python let b:llama_overrides = {"temp": 0.2}
|
||||
" Could be added to your .vimrc to automatically set a lower temperature when
|
||||
" editing a python script
|
||||
" Additionally, an override dict can be stored at the top of a file
|
||||
" !*{"stop": ["User:"]}
|
||||
" Could be added to the start of your chatlog.txt to set the stopping token
|
||||
" These parameter dicts are merged together from lowest to highest priority:
|
||||
" server default -> g:llama_overrides -> w:llama_overrides ->
|
||||
" b:llama_overrides -> in file (!*) overrides
|
||||
"
|
||||
" Sublists (like logit_bias and stop) are overridden, not merged
|
||||
" Example override:
|
||||
" !*{"logit_bias": [[13, -5], [2, false]], "temperature": 1, "top_k": 5, "top_p": 0.5, "n_predict": 256, "repeat_last_n": 256, "repeat_penalty": 1.17647}
|
||||
if !exists("g:llama_api_url")
|
||||
let g:llama_api_url= "127.0.0.1:8080"
|
||||
endif
|
||||
if !exists("g:llama_overrides")
|
||||
let g:llama_overrides = {}
|
||||
endif
|
||||
const s:querydata = {"n_predict": 256, "stop": [ "\n" ], "stream": v:true }
|
||||
const s:curlcommand = ['curl','--data-raw', "{\"prompt\":\"### System:\"}", '--silent', '--no-buffer', '--request', 'POST', '--url', g:llama_api_url .. '/completion', '--header', "Content-Type: application/json"]
|
||||
let s:linedict = {}
|
||||
|
||||
func s:callbackHandler(bufn, channel, msg)
|
||||
if len(a:msg) < 3
|
||||
return
|
||||
elseif a:msg[0] == "d"
|
||||
let l:msg = a:msg[6:-1]
|
||||
else
|
||||
let l:msg = a:msg
|
||||
endif
|
||||
let l:decoded_msg = json_decode(l:msg)
|
||||
let l:newtext = split(l:decoded_msg['content'], "\n", 1)
|
||||
if len(l:newtext) > 0
|
||||
call setbufline(a:bufn, s:linedict[a:bufn], getbufline(a:bufn, s:linedict[a:bufn])[0] .. newtext[0])
|
||||
else
|
||||
echo "nothing genned"
|
||||
endif
|
||||
if len(newtext) > 1
|
||||
let l:failed = appendbufline(a:bufn, s:linedict[a:bufn], newtext[1:-1])
|
||||
let s:linedict[a:bufn] = s:linedict[a:bufn] + len(newtext)-1
|
||||
endif
|
||||
if has_key(l:decoded_msg, "stop") && l:decoded_msg.stop
|
||||
echo "Finished generation"
|
||||
endif
|
||||
endfunction
|
||||
|
||||
func llama#doLlamaGen()
|
||||
if exists("b:job")
|
||||
if job_status(b:job) == "run"
|
||||
call job_stop(b:job)
|
||||
return
|
||||
endif
|
||||
endif
|
||||
|
||||
let l:cbuffer = bufnr("%")
|
||||
let s:linedict[l:cbuffer] = line('$')
|
||||
let l:buflines = getbufline(l:cbuffer, 1, 1000)
|
||||
let l:querydata = copy(s:querydata)
|
||||
call extend(l:querydata, g:llama_overrides)
|
||||
if exists("w:llama_overrides")
|
||||
call extend(l:querydata, w:llama_overrides)
|
||||
endif
|
||||
if exists("b:llama_overrides")
|
||||
call extend(l:querydata, b:llama_overrides)
|
||||
endif
|
||||
if l:buflines[0][0:1] == '!*'
|
||||
let l:userdata = json_decode(l:buflines[0][2:-1])
|
||||
call extend(l:querydata, l:userdata)
|
||||
let l:buflines = l:buflines[1:-1]
|
||||
endif
|
||||
let l:querydata.prompt = join(l:buflines, "\n")
|
||||
let l:curlcommand = copy(s:curlcommand)
|
||||
let l:curlcommand[2] = json_encode(l:querydata)
|
||||
let b:job = job_start(l:curlcommand, {"callback": function("s:callbackHandler", [l:cbuffer])})
|
||||
endfunction
|
||||
|
||||
" Echos the tokkenization of the provided string , or cursor to end of word
|
||||
" Onus is placed on the user to include the preceding space
|
||||
func llama#tokenizeWord(...)
|
||||
if (a:0 > 0)
|
||||
let l:input = a:1
|
||||
else
|
||||
exe "normal \"*ye"
|
||||
let l:input = @*
|
||||
endif
|
||||
let l:querydata = {"content": l:input}
|
||||
let l:curlcommand = copy(s:curlcommand)
|
||||
let l:curlcommand[2] = json_encode(l:querydata)
|
||||
let l:curlcommand[8] = g:llama_api_url .. "/tokenize"
|
||||
let s:token_job = job_start(l:curlcommand, {"callback": function("s:tokenizeWordCallback", [l:input])})
|
||||
endfunction
|
||||
|
||||
func s:tokenizeWordCallback(plaintext, channel, msg)
|
||||
echo '"' .. a:plaintext ..'" - ' .. string(json_decode(a:msg).tokens)
|
||||
endfunction
|
||||
|
||||
|
||||
" Echos the token count of the entire buffer (or provided string)
|
||||
" Example usage :echo llama#tokenCount()
|
||||
func llama#tokenCount(...)
|
||||
if (a:0 > 0)
|
||||
let l:buflines = a:1
|
||||
else
|
||||
let l:buflines = getline(1,1000)
|
||||
if l:buflines[0][0:1] == '!*'
|
||||
let l:buflines = l:buflines[1:-1]
|
||||
endif
|
||||
let l:buflines = join(l:buflines, "\n")
|
||||
endif
|
||||
let l:querydata = {"content": l:buflines}
|
||||
let l:curlcommand = copy(s:curlcommand)
|
||||
let l:curlcommand[2] = json_encode(l:querydata)
|
||||
let l:curlcommand[8] = g:llama_api_url .. "/tokenize"
|
||||
let s:token_job = job_start(l:curlcommand, {"callback": "s:tokenCountCallback"})
|
||||
endfunction
|
||||
|
||||
func s:tokenCountCallback(channel, msg)
|
||||
let resp = json_decode(a:msg)
|
||||
echo len(resp.tokens)
|
||||
endfunction
|
||||
@@ -1,18 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
#
|
||||
# Temporary script - will be removed in the future
|
||||
#
|
||||
|
||||
cd `dirname $0`
|
||||
cd ..
|
||||
|
||||
./main -m models/available/Llama2/13B/llama-2-13b.ggmlv3.q4_0.bin \
|
||||
--color \
|
||||
--ctx_size 2048 \
|
||||
-n -1 \
|
||||
-ins -b 256 \
|
||||
--top_k 10000 \
|
||||
--temp 0.2 \
|
||||
--repeat_penalty 1.1 \
|
||||
-t 8
|
||||
@@ -1,18 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
#
|
||||
# Temporary script - will be removed in the future
|
||||
#
|
||||
|
||||
cd `dirname $0`
|
||||
cd ..
|
||||
|
||||
./main -m models/available/Llama2/7B/llama-2-7b.ggmlv3.q4_0.bin \
|
||||
--color \
|
||||
--ctx_size 2048 \
|
||||
-n -1 \
|
||||
-ins -b 256 \
|
||||
--top_k 10000 \
|
||||
--temp 0.2 \
|
||||
--repeat_penalty 1.1 \
|
||||
-t 8
|
||||
@@ -1,27 +0,0 @@
|
||||
" Basic plugin example
|
||||
|
||||
function! Llm()
|
||||
|
||||
let url = "http://127.0.0.1:8080/completion"
|
||||
|
||||
" Get the content of the current buffer
|
||||
let buffer_content = join(getline(1, '$'), "\n")
|
||||
|
||||
" Create the JSON payload
|
||||
let json_payload = {"temp":0.72,"top_k":100,"top_p":0.73,"repeat_penalty":1.100000023841858,"n_predict":10,"stream": v:false}
|
||||
let json_payload.prompt = buffer_content
|
||||
|
||||
" Define the curl command
|
||||
let curl_command = 'curl -k -s -X POST -H "Content-Type: application/json" -d @- ' . url
|
||||
let response = system(curl_command, json_encode(json_payload))
|
||||
|
||||
" Extract the content field from the response
|
||||
let content = json_decode(response).content
|
||||
|
||||
let split_newlines = split(content, '\n', 1)
|
||||
|
||||
" Insert the content at the cursor position
|
||||
call setline(line('.'), [ getline('.') . split_newlines[0] ] + split_newlines[1:])
|
||||
endfunction
|
||||
|
||||
command! Llm call Llm()
|
||||
@@ -1,6 +1,5 @@
|
||||
set(TARGET main)
|
||||
add_executable(${TARGET} main.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
if(TARGET BUILD_INFO)
|
||||
|
||||
@@ -140,12 +140,6 @@ The `--ctx-size` option allows you to set the size of the prompt context used by
|
||||
|
||||
- `-c N, --ctx-size N`: Set the size of the prompt context (default: 512). The LLaMA models were built with a context of 2048, which will yield the best results on longer input/inference. However, increasing the context size beyond 2048 may lead to unpredictable results.
|
||||
|
||||
### Extended Context Size
|
||||
|
||||
Some fine-tuned models have extened the context length by scaling RoPE. For example, if the original pretrained model have a context length (max sequence length) of 4096 (4k) and the fine-tuned model have 32k. That is a scaling factor of 8, and should work by setting the above `--ctx-size` to 32768 (32k) and `--rope-scale` to 8.
|
||||
|
||||
- `--rope-scale N`: Where N is the linear scaling factor used by the fine-tuned model.
|
||||
|
||||
### Keep Prompt
|
||||
|
||||
The `--keep` option allows users to retain the original prompt when the model runs out of context, ensuring a connection to the initial instruction or conversation topic is maintained.
|
||||
@@ -160,13 +154,9 @@ The following options allow you to control the text generation process and fine-
|
||||
|
||||
### Number of Tokens to Predict
|
||||
|
||||
- `-n N, --n-predict N`: Set the number of tokens to predict when generating text (default: 128, -1 = infinity, -2 = until context filled)
|
||||
- `-n N, --n-predict N`: Set the number of tokens to predict when generating text (default: 128, -1 = infinity).
|
||||
|
||||
The `--n-predict` option controls the number of tokens the model generates in response to the input prompt. By adjusting this value, you can influence the length of the generated text. A higher value will result in longer text, while a lower value will produce shorter text.
|
||||
|
||||
A value of -1 will enable infinite text generation, even though we have a finite context window. When the context window is full, some of the earlier tokens (half of the tokens after `--n-keep`) will be discarded. The context must then be re-evaluated before generation can resume. On large models and/or large context windows, this will result in significant pause in output.
|
||||
|
||||
If the pause is undesirable, a value of -2 will stop generation immediately when the context is filled.
|
||||
The `--n-predict` option controls the number of tokens the model generates in response to the input prompt. By adjusting this value, you can influence the length of the generated text. A higher value will result in longer text, while a lower value will produce shorter text. A value of -1 will cause text to be generated without limit.
|
||||
|
||||
It is important to note that the generated text may be shorter than the specified number of tokens if an End-of-Sequence (EOS) token or a reverse prompt is encountered. In interactive mode text generation will pause and control will be returned to the user. In non-interactive mode, the program will end. In both cases, the text generation may stop before reaching the specified `n-predict` value. If you want the model to keep going without ever producing End-of-Sequence on its own, you can use the `--ignore-eos` parameter.
|
||||
|
||||
@@ -212,9 +202,9 @@ Example usage: `--top-p 0.95`
|
||||
|
||||
- `--tfs N`: Enable tail free sampling with parameter z (default: 1.0, 1.0 = disabled).
|
||||
|
||||
Tail free sampling (TFS) is a text generation technique that aims to reduce the impact of less likely tokens, which may be less relevant, less coherent, or nonsensical, on the output. Similar to Top-P it tries to determine the bulk of the most likely tokens dynamically. But TFS filters out logits based on the second derivative of their probabilities. Adding tokens is stopped after the sum of the second derivatives reaches the parameter z. In short: TFS looks how quickly the probabilities of the tokens decrease and cuts off the tail of unlikely tokens using the parameter z. Typical values for z are in the range of 0.9 to 0.95. A value of 1.0 would include all tokens, and thus disables the effect of TFS.
|
||||
Tail free sampling (TFS) is a text generation technique that aims to reduce the impact of less likely tokens, which may be less relevant, less coherent, or nonsensical, on the output. The method adjusts the logits (token probabilities) by raising them to the power of the parameter z. A higher value of z (e.g., 2.0) will further suppress less likely tokens from the tail of the distribution, while a value of 1.0 disables the effect of TFS. By setting the parameter z, you can control how much the probabilities of less likely tokens are reduced.
|
||||
|
||||
Example usage: `--tfs 0.95`
|
||||
Example usage: `--tfs 2.0`
|
||||
|
||||
### Locally Typical Sampling
|
||||
|
||||
@@ -252,7 +242,7 @@ Example usage: `--logit-bias 29905-inf`
|
||||
|
||||
### RNG Seed
|
||||
|
||||
- `-s SEED, --seed SEED`: Set the random number generator (RNG) seed (default: -1, -1 = random seed).
|
||||
- `-s SEED, --seed SEED`: Set the random number generator (RNG) seed (default: -1, < 0 = random seed).
|
||||
|
||||
The RNG seed is used to initialize the random number generator that influences the text generation process. By setting a specific seed value, you can obtain consistent and reproducible results across multiple runs with the same input and settings. This can be helpful for testing, debugging, or comparing the effects of different options on the generated text to see when they diverge. If the seed is set to a value less than 0, a random seed will be used, which will result in different outputs on each run.
|
||||
|
||||
@@ -272,10 +262,6 @@ These options help improve the performance and memory usage of the LLaMA models.
|
||||
|
||||
- `--no-mmap`: Do not memory-map the model. By default, models are mapped into memory, which allows the system to load only the necessary parts of the model as needed. However, if the model is larger than your total amount of RAM or if your system is low on available memory, using mmap might increase the risk of pageouts, negatively impacting performance. Disabling mmap results in slower load times but may reduce pageouts if you're not using `--mlock`. Note that if the model is larger than the total amount of RAM, turning off mmap would prevent the model from loading at all.
|
||||
|
||||
### NUMA support
|
||||
|
||||
- `--numa`: Attempt optimizations that help on some systems with non-uniform memory access. This currently consists of pinning an equal proportion of the threads to the cores on each NUMA node, and disabling prefetch and readahead for mmap. The latter causes mapped pages to be faulted in on first access instead of all at once, and in combination with pinning threads to NUMA nodes, more of the pages end up on the NUMA node where they are used. Note that if the model is already in the system page cache, for example because of a previous run without this option, this will have little effect unless you drop the page cache first. This can be done by rebooting the system or on Linux by writing '3' to '/proc/sys/vm/drop\_caches' as root.
|
||||
|
||||
### Memory Float 32
|
||||
|
||||
- `--memory-f32`: Use 32-bit floats instead of 16-bit floats for memory key+value. This doubles the context memory requirement and cached prompt file size but does not appear to increase generation quality in a measurable way. Not recommended.
|
||||
@@ -288,10 +274,6 @@ These options help improve the performance and memory usage of the LLaMA models.
|
||||
|
||||
- `--prompt-cache FNAME`: Specify a file to cache the model state after the initial prompt. This can significantly speed up the startup time when you're using longer prompts. The file is created during the first run and is reused and updated in subsequent runs. **Note**: Restoring a cached prompt does not imply restoring the exact state of the session at the point it was saved. So even when specifying a specific seed, you are not guaranteed to get the same sequence of tokens as the original generation.
|
||||
|
||||
### Grammars
|
||||
|
||||
- `--grammar GRAMMAR`, `--grammar-file FILE`: Specify a grammar (defined inline or in a file) to constrain model output to a specific format. For example, you could force the model to output JSON or to speak only in emojis. See the [GBNF guide](../../grammars/README.md) for details on the syntax.
|
||||
|
||||
### Quantization
|
||||
|
||||
For information about 4-bit quantization, which can significantly improve performance and reduce memory usage, please refer to llama.cpp's primary [README](../../README.md#prepare-data--run).
|
||||
|
||||
@@ -4,10 +4,8 @@
|
||||
#endif
|
||||
|
||||
#include "common.h"
|
||||
#include "console.h"
|
||||
#include "llama.h"
|
||||
#include "build-info.h"
|
||||
#include "grammar-parser.h"
|
||||
|
||||
#include <cassert>
|
||||
#include <cinttypes>
|
||||
@@ -36,16 +34,18 @@
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
static console_state con_st;
|
||||
static llama_context ** g_ctx;
|
||||
|
||||
static bool is_interacting = false;
|
||||
|
||||
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
|
||||
void sigint_handler(int signo) {
|
||||
if (signo == SIGINT) {
|
||||
if (!is_interacting) {
|
||||
is_interacting = true;
|
||||
is_interacting=true;
|
||||
} else {
|
||||
console::cleanup();
|
||||
console_cleanup(con_st);
|
||||
printf("\n");
|
||||
llama_print_timings(*g_ctx);
|
||||
_exit(130);
|
||||
@@ -63,8 +63,10 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// save choice to use color for later
|
||||
// (note for later: this is a slightly awkward choice)
|
||||
console::init(params.simple_io, params.use_color);
|
||||
atexit([]() { console::cleanup(); });
|
||||
con_st.use_color = params.use_color;
|
||||
con_st.multiline_input = params.multiline_input;
|
||||
console_init(con_st);
|
||||
atexit([]() { console_cleanup(con_st); });
|
||||
|
||||
if (params.perplexity) {
|
||||
printf("\n************\n");
|
||||
@@ -82,17 +84,9 @@ int main(int argc, char ** argv) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (params.rope_freq_base != 10000.0) {
|
||||
fprintf(stderr, "%s: warning: changing RoPE frequency base to %g (default 10000.0)\n", __func__, params.rope_freq_base);
|
||||
}
|
||||
|
||||
if (params.rope_freq_scale != 1.0) {
|
||||
fprintf(stderr, "%s: warning: scaling RoPE frequency by %g (default 1.0)\n", __func__, params.rope_freq_scale);
|
||||
}
|
||||
|
||||
if (params.n_ctx > 2048) {
|
||||
// TODO: determine the actual max context of the model (e.g. 4096 for LLaMA v2) and use that instead of 2048
|
||||
fprintf(stderr, "%s: warning: base model only supports context sizes no greater than 2048 tokens (%d specified)\n", __func__, params.n_ctx);
|
||||
fprintf(stderr, "%s: warning: model does not support context sizes greater than 2048 tokens (%d specified);"
|
||||
"expect poor results\n", __func__, params.n_ctx);
|
||||
} else if (params.n_ctx < 8) {
|
||||
fprintf(stderr, "%s: warning: minimum context size is 8, using minimum size.\n", __func__);
|
||||
params.n_ctx = 8;
|
||||
@@ -100,31 +94,25 @@ int main(int argc, char ** argv) {
|
||||
|
||||
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
|
||||
|
||||
if (params.seed == LLAMA_DEFAULT_SEED) {
|
||||
if (params.seed < 0) {
|
||||
params.seed = time(NULL);
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
|
||||
fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
|
||||
|
||||
std::mt19937 rng(params.seed);
|
||||
if (params.random_prompt) {
|
||||
params.prompt = gpt_random_prompt(rng);
|
||||
}
|
||||
|
||||
llama_backend_init(params.numa);
|
||||
llama_init_backend();
|
||||
|
||||
llama_model * model;
|
||||
llama_context * ctx;
|
||||
llama_context * ctx_guidance = NULL;
|
||||
g_ctx = &ctx;
|
||||
|
||||
// load the model and apply lora adapter, if any
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||
if (params.cfg_scale > 1.f) {
|
||||
struct llama_context_params lparams = llama_context_params_from_gpt_params(params);
|
||||
ctx_guidance = llama_new_context_with_model(model, lparams);
|
||||
}
|
||||
|
||||
if (model == NULL) {
|
||||
fprintf(stderr, "%s: error: unable to load model\n", __func__);
|
||||
return 1;
|
||||
@@ -137,14 +125,17 @@ int main(int argc, char ** argv) {
|
||||
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
|
||||
}
|
||||
|
||||
// determine the maximum memory usage needed to do inference for the given n_batch and n_ctx parameters
|
||||
// determine the maximum memory usage needed to do inference for the given n_batch and n_predict parameters
|
||||
// uncomment the "used_mem" line in llama.cpp to see the results
|
||||
if (params.mem_test) {
|
||||
{
|
||||
fprintf(stderr, "%s: testing memory usage for n_batch = %d, n_ctx = %d\n", __func__, params.n_batch, params.n_ctx);
|
||||
const std::vector<llama_token> tmp(params.n_batch, llama_token_bos());
|
||||
llama_eval(ctx, tmp.data(), tmp.size(), 0, params.n_threads);
|
||||
}
|
||||
|
||||
const std::vector<llama_token> tmp(params.n_batch, llama_token_bos(ctx));
|
||||
llama_eval(ctx, tmp.data(), tmp.size(), params.n_ctx, params.n_threads);
|
||||
{
|
||||
const std::vector<llama_token> tmp = { 0, };
|
||||
llama_eval(ctx, tmp.data(), tmp.size(), params.n_predict - 1, params.n_threads);
|
||||
}
|
||||
|
||||
llama_print_timings(ctx);
|
||||
@@ -189,34 +180,18 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
|
||||
const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM;
|
||||
|
||||
// tokenize the prompt
|
||||
std::vector<llama_token> embd_inp;
|
||||
|
||||
if (params.interactive_first || params.instruct || !params.prompt.empty() || session_tokens.empty()) {
|
||||
embd_inp = ::llama_tokenize(ctx, params.prompt, is_spm);
|
||||
// Add a space in front of the first character to match OG llama tokenizer behavior
|
||||
params.prompt.insert(0, 1, ' ');
|
||||
|
||||
embd_inp = ::llama_tokenize(ctx, params.prompt, true);
|
||||
} else {
|
||||
embd_inp = session_tokens;
|
||||
}
|
||||
|
||||
// Should not run without any tokens
|
||||
if (embd_inp.empty()) {
|
||||
embd_inp.push_back(llama_token_bos(ctx));
|
||||
}
|
||||
|
||||
// Tokenize negative prompt
|
||||
std::vector<llama_token> guidance_inp;
|
||||
int guidance_offset = 0;
|
||||
int original_prompt_len = 0;
|
||||
if (ctx_guidance) {
|
||||
params.cfg_negative_prompt.insert(0, 1, ' ');
|
||||
guidance_inp = ::llama_tokenize(ctx_guidance, params.cfg_negative_prompt, is_spm);
|
||||
|
||||
std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, is_spm);
|
||||
original_prompt_len = original_inp.size();
|
||||
guidance_offset = (int)guidance_inp.size() - original_prompt_len;
|
||||
}
|
||||
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
if ((int) embd_inp.size() > n_ctx - 4) {
|
||||
@@ -259,8 +234,8 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// prefix & suffix for instruct mode
|
||||
const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", is_spm);
|
||||
const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false);
|
||||
const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", true);
|
||||
const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false);
|
||||
|
||||
// in instruct mode, we inject a prefix and a suffix to each input by the user
|
||||
if (params.instruct) {
|
||||
@@ -273,27 +248,20 @@ int main(int argc, char ** argv) {
|
||||
params.interactive = true;
|
||||
}
|
||||
|
||||
// determine newline token
|
||||
auto llama_token_newline = ::llama_tokenize(ctx, "\n", false);
|
||||
|
||||
if (params.verbose_prompt) {
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
|
||||
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
|
||||
for (int i = 0; i < (int) embd_inp.size(); i++) {
|
||||
fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_str(ctx, embd_inp[i]).c_str());
|
||||
fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_str(ctx, embd_inp[i]));
|
||||
}
|
||||
|
||||
if (ctx_guidance) {
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "%s: negative prompt: '%s'\n", __func__, params.cfg_negative_prompt.c_str());
|
||||
fprintf(stderr, "%s: number of tokens in negative prompt = %zu\n", __func__, guidance_inp.size());
|
||||
for (int i = 0; i < (int) guidance_inp.size(); i++) {
|
||||
fprintf(stderr, "%6d -> '%s'\n", guidance_inp[i], llama_token_to_str(ctx, guidance_inp[i]).c_str());
|
||||
}
|
||||
}
|
||||
|
||||
if (params.n_keep > 0) {
|
||||
fprintf(stderr, "%s: static prompt based on n_keep: '", __func__);
|
||||
for (int i = 0; i < params.n_keep; i++) {
|
||||
fprintf(stderr, "%s", llama_token_to_str(ctx, embd_inp[i]).c_str());
|
||||
fprintf(stderr, "%s", llama_token_to_str(ctx, embd_inp[i]));
|
||||
}
|
||||
fprintf(stderr, "'\n");
|
||||
}
|
||||
@@ -311,7 +279,7 @@ int main(int argc, char ** argv) {
|
||||
auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
|
||||
return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false;
|
||||
};
|
||||
SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
|
||||
SetConsoleCtrlHandler(static_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
|
||||
#endif
|
||||
|
||||
fprintf(stderr, "%s: interactive mode on.\n", __func__);
|
||||
@@ -322,10 +290,6 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
|
||||
if (params.input_prefix_bos) {
|
||||
fprintf(stderr, "Input prefix with BOS\n");
|
||||
}
|
||||
|
||||
if (!params.input_prefix.empty()) {
|
||||
fprintf(stderr, "Input prefix: '%s'\n", params.input_prefix.c_str());
|
||||
}
|
||||
@@ -339,37 +303,13 @@ int main(int argc, char ** argv) {
|
||||
fprintf(stderr, "generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
||||
fprintf(stderr, "\n\n");
|
||||
|
||||
grammar_parser::parse_state parsed_grammar;
|
||||
llama_grammar * grammar = NULL;
|
||||
if (!params.grammar.empty()) {
|
||||
parsed_grammar = grammar_parser::parse(params.grammar.c_str());
|
||||
// will be empty (default) if there are parse errors
|
||||
if (parsed_grammar.rules.empty()) {
|
||||
return 1;
|
||||
}
|
||||
fprintf(stderr, "%s: grammar:\n", __func__);
|
||||
grammar_parser::print_grammar(stderr, parsed_grammar);
|
||||
fprintf(stderr, "\n");
|
||||
|
||||
{
|
||||
auto it = params.logit_bias.find(llama_token_eos(ctx));
|
||||
if (it != params.logit_bias.end() && it->second == -INFINITY) {
|
||||
fprintf(stderr, "%s: warning: EOS token is disabled, which will cause most grammars to fail\n", __func__);
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
|
||||
grammar = llama_grammar_init(
|
||||
grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
|
||||
}
|
||||
|
||||
// TODO: replace with ring-buffer
|
||||
std::vector<llama_token> last_n_tokens(n_ctx);
|
||||
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
|
||||
|
||||
if (params.interactive) {
|
||||
const char *control_message;
|
||||
if (params.multiline_input) {
|
||||
if (con_st.multiline_input) {
|
||||
control_message = " - To return control to LLaMa, end your input with '\\'.\n"
|
||||
" - To return control without starting a new line, end your input with '/'.\n";
|
||||
} else {
|
||||
@@ -394,17 +334,15 @@ int main(int argc, char ** argv) {
|
||||
int n_remain = params.n_predict;
|
||||
int n_consumed = 0;
|
||||
int n_session_consumed = 0;
|
||||
int n_past_guidance = 0;
|
||||
|
||||
// the first thing we will do is to output the prompt, so set color accordingly
|
||||
console::set_display(console::prompt);
|
||||
console_set_color(con_st, CONSOLE_COLOR_PROMPT);
|
||||
|
||||
std::vector<llama_token> embd;
|
||||
std::vector<llama_token> embd_guidance;
|
||||
|
||||
// do one empty run to warm up the model
|
||||
{
|
||||
const std::vector<llama_token> tmp = { llama_token_bos(ctx), };
|
||||
const std::vector<llama_token> tmp = { llama_token_bos(), };
|
||||
llama_eval(ctx, tmp.data(), tmp.size(), 0, params.n_threads);
|
||||
llama_reset_timings(ctx);
|
||||
}
|
||||
@@ -418,9 +356,9 @@ int main(int argc, char ** argv) {
|
||||
// Ensure the input doesn't exceed the context size by truncating embd if necessary.
|
||||
if ((int)embd.size() > max_embd_size) {
|
||||
auto skipped_tokens = embd.size() - max_embd_size;
|
||||
console::set_display(console::error);
|
||||
console_set_color(con_st, CONSOLE_COLOR_ERROR);
|
||||
printf("<<input too long: skipped %zu token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : "");
|
||||
console::set_display(console::reset);
|
||||
console_set_color(con_st, CONSOLE_COLOR_DEFAULT);
|
||||
fflush(stdout);
|
||||
embd.resize(max_embd_size);
|
||||
}
|
||||
@@ -429,16 +367,11 @@ int main(int argc, char ** argv) {
|
||||
// if we run out of context:
|
||||
// - take the n_keep first tokens from the original prompt (via n_past)
|
||||
// - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
|
||||
if (n_past + (int) embd.size() + std::max<int>(0, guidance_offset) > n_ctx) {
|
||||
if (params.n_predict == -2) {
|
||||
fprintf(stderr, "\n\n%s: context full, stopping generation\n", __func__);
|
||||
break;
|
||||
}
|
||||
|
||||
if (n_past + (int) embd.size() > n_ctx) {
|
||||
const int n_left = n_past - params.n_keep;
|
||||
|
||||
// always keep the first token - BOS
|
||||
n_past = std::max(1, params.n_keep);
|
||||
n_past_guidance = std::max(1, params.n_keep + guidance_offset);
|
||||
|
||||
// insert n_left/2 tokens at the start of embd from last_n_tokens
|
||||
embd.insert(embd.begin(), last_n_tokens.begin() + n_ctx - n_left/2 - embd.size(), last_n_tokens.end() - embd.size());
|
||||
@@ -479,48 +412,6 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// evaluate tokens in batches
|
||||
// embd is typically prepared beforehand to fit within a batch, but not always
|
||||
|
||||
if (ctx_guidance) {
|
||||
int input_size = 0;
|
||||
llama_token* input_buf = NULL;
|
||||
|
||||
if (n_past_guidance < (int) guidance_inp.size()) {
|
||||
// Guidance context should have the same data with these modifications:
|
||||
//
|
||||
// * Replace the initial prompt
|
||||
// * Shift everything by guidance_offset
|
||||
embd_guidance = guidance_inp;
|
||||
if (embd.begin() + original_prompt_len < embd.end()) {
|
||||
embd_guidance.insert(
|
||||
embd_guidance.end(),
|
||||
embd.begin() + original_prompt_len,
|
||||
embd.end()
|
||||
);
|
||||
}
|
||||
|
||||
input_buf = embd_guidance.data();
|
||||
input_size = embd_guidance.size();
|
||||
//fprintf(stderr, "\n---------------------\n");
|
||||
//for (int i = 0; i < (int) embd_guidance.size(); i++) {
|
||||
//fprintf(stderr, "%s", llama_token_to_str(ctx, embd_guidance[i]));
|
||||
//}
|
||||
//fprintf(stderr, "\n---------------------\n");
|
||||
} else {
|
||||
input_buf = embd.data();
|
||||
input_size = embd.size();
|
||||
}
|
||||
|
||||
for (int i = 0; i < input_size; i += params.n_batch) {
|
||||
int n_eval = std::min(input_size - i, params.n_batch);
|
||||
if (llama_eval(ctx_guidance, input_buf + i, n_eval, n_past_guidance, params.n_threads)) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
n_past_guidance += n_eval;
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < (int) embd.size(); i += params.n_batch) {
|
||||
int n_eval = (int) embd.size() - i;
|
||||
if (n_eval > params.n_batch) {
|
||||
@@ -540,7 +431,6 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
embd.clear();
|
||||
embd_guidance.clear();
|
||||
|
||||
if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
|
||||
// out of user input, sample next token
|
||||
@@ -583,12 +473,8 @@ int main(int argc, char ** argv) {
|
||||
|
||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||
|
||||
if (ctx_guidance) {
|
||||
llama_sample_classifier_free_guidance(ctx, &candidates_p, ctx_guidance, params.cfg_scale);
|
||||
}
|
||||
|
||||
// Apply penalties
|
||||
float nl_logit = logits[llama_token_nl(ctx)];
|
||||
float nl_logit = logits[llama_token_nl()];
|
||||
auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
|
||||
llama_sample_repetition_penalty(ctx, &candidates_p,
|
||||
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
||||
@@ -597,11 +483,7 @@ int main(int argc, char ** argv) {
|
||||
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
||||
last_n_repeat, alpha_frequency, alpha_presence);
|
||||
if (!penalize_nl) {
|
||||
logits[llama_token_nl(ctx)] = nl_logit;
|
||||
}
|
||||
|
||||
if (grammar != NULL) {
|
||||
llama_sample_grammar(ctx, &candidates_p, grammar);
|
||||
logits[llama_token_nl()] = nl_logit;
|
||||
}
|
||||
|
||||
if (temp <= 0) {
|
||||
@@ -629,14 +511,20 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
// printf("`%d`", candidates_p.size);
|
||||
|
||||
if (grammar != NULL) {
|
||||
llama_grammar_accept_token(ctx, grammar, id);
|
||||
}
|
||||
|
||||
last_n_tokens.erase(last_n_tokens.begin());
|
||||
last_n_tokens.push_back(id);
|
||||
}
|
||||
|
||||
// replace end of text token with newline token when in interactive mode
|
||||
if (id == llama_token_eos() && params.interactive && !params.instruct) {
|
||||
id = llama_token_newline.front();
|
||||
if (params.antiprompt.size() != 0) {
|
||||
// tokenize and inject first reverse prompt
|
||||
const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false);
|
||||
embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end());
|
||||
}
|
||||
}
|
||||
|
||||
// add it to the context
|
||||
embd.push_back(id);
|
||||
|
||||
@@ -661,13 +549,13 @@ int main(int argc, char ** argv) {
|
||||
// display text
|
||||
if (input_echo) {
|
||||
for (auto id : embd) {
|
||||
printf("%s", llama_token_to_str(ctx, id).c_str());
|
||||
printf("%s", llama_token_to_str(ctx, id));
|
||||
}
|
||||
fflush(stdout);
|
||||
}
|
||||
// reset color to default if we there is no pending user input
|
||||
if (input_echo && (int)embd_inp.size() == n_consumed) {
|
||||
console::set_display(console::reset);
|
||||
console_set_color(con_st, CONSOLE_COLOR_DEFAULT);
|
||||
}
|
||||
|
||||
// if not currently processing queued inputs;
|
||||
@@ -693,7 +581,7 @@ int main(int argc, char ** argv) {
|
||||
if (last_output.find(antiprompt.c_str(), search_start_pos) != std::string::npos) {
|
||||
if (params.interactive) {
|
||||
is_interacting = true;
|
||||
console::set_display(console::user_input);
|
||||
console_set_color(con_st, CONSOLE_COLOR_USER_INPUT);
|
||||
}
|
||||
is_antiprompt = true;
|
||||
fflush(stdout);
|
||||
@@ -702,34 +590,11 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
|
||||
// deal with end of text token in interactive mode
|
||||
if (last_n_tokens.back() == llama_token_eos(ctx)) {
|
||||
if (params.interactive) {
|
||||
if (params.antiprompt.size() != 0) {
|
||||
// tokenize and inject first reverse prompt
|
||||
const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false);
|
||||
embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end());
|
||||
is_antiprompt = true;
|
||||
}
|
||||
|
||||
is_interacting = true;
|
||||
printf("\n");
|
||||
console::set_display(console::user_input);
|
||||
fflush(stdout);
|
||||
} else if (params.instruct) {
|
||||
is_interacting = true;
|
||||
}
|
||||
}
|
||||
|
||||
if (n_past > 0 && is_interacting) {
|
||||
if (params.instruct) {
|
||||
printf("\n> ");
|
||||
}
|
||||
|
||||
if (params.input_prefix_bos) {
|
||||
embd_inp.push_back(llama_token_bos(ctx));
|
||||
}
|
||||
|
||||
std::string buffer;
|
||||
if (!params.input_prefix.empty()) {
|
||||
buffer += params.input_prefix;
|
||||
@@ -739,12 +604,12 @@ int main(int argc, char ** argv) {
|
||||
std::string line;
|
||||
bool another_line = true;
|
||||
do {
|
||||
another_line = console::readline(line, params.multiline_input);
|
||||
another_line = console_readline(con_st, line);
|
||||
buffer += line;
|
||||
} while (another_line);
|
||||
|
||||
// done taking input, reset color
|
||||
console::set_display(console::reset);
|
||||
console_set_color(con_st, CONSOLE_COLOR_DEFAULT);
|
||||
|
||||
// Add tokens to embd only if the input buffer is non-empty
|
||||
// Entering a empty line lets the user pass control back
|
||||
@@ -776,25 +641,18 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
if (n_past > 0) {
|
||||
if (is_interacting) {
|
||||
// reset grammar state if we're restarting generation
|
||||
if (grammar != NULL) {
|
||||
llama_grammar_free(grammar);
|
||||
|
||||
std::vector<const llama_grammar_element *> grammar_rules( parsed_grammar.c_rules());
|
||||
grammar = llama_grammar_init(
|
||||
grammar_rules.data(), grammar_rules.size(),
|
||||
parsed_grammar.symbol_ids.at("root"));
|
||||
}
|
||||
}
|
||||
is_interacting = false;
|
||||
}
|
||||
}
|
||||
|
||||
// end of text token
|
||||
if (!embd.empty() && embd.back() == llama_token_eos(ctx) && !(params.instruct || params.interactive)) {
|
||||
fprintf(stderr, " [end of text]\n");
|
||||
break;
|
||||
if (!embd.empty() && embd.back() == llama_token_eos()) {
|
||||
if (params.instruct) {
|
||||
is_interacting = true;
|
||||
} else {
|
||||
fprintf(stderr, " [end of text]\n");
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
|
||||
@@ -810,14 +668,8 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
llama_print_timings(ctx);
|
||||
if (ctx_guidance) { llama_free(ctx_guidance); }
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
||||
if (grammar != NULL) {
|
||||
llama_grammar_free(grammar);
|
||||
}
|
||||
llama_backend_free();
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -1,93 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
This script converts Hugging Face llama models to GGML and quantizes them.
|
||||
|
||||
Usage:
|
||||
python make-ggml.py --model {model_dir_or_hf_repo_name} [--outname {output_name} (Optional)] [--outdir {output_directory} (Optional)] [--quants {quant_types} (Optional)] [--keep_fp16 (Optional)]
|
||||
|
||||
Arguments:
|
||||
- --model: (Required) The directory of the downloaded Hugging Face model or the name of the Hugging Face model repository. If the model directory does not exist, it will be downloaded from the Hugging Face model hub.
|
||||
- --outname: (Optional) The name of the output model. If not specified, the last part of the model directory path or the Hugging Face model repo name will be used.
|
||||
- --outdir: (Optional) The directory where the output model(s) will be stored. If not specified, '../models/{outname}' will be used.
|
||||
- --quants: (Optional) The types of quantization to apply. This should be a space-separated list. The default is 'Q4_K_M Q5_K_S'.
|
||||
- --keep_fp16: (Optional) If specified, the FP16 model will not be deleted after the quantized models are created.
|
||||
|
||||
Quant types:
|
||||
- Q4_0: small, very high quality loss - legacy, prefer using Q3_K_M
|
||||
- Q4_1: small, substantial quality loss - legacy, prefer using Q3_K_L
|
||||
- Q5_0: medium, balanced quality - legacy, prefer using Q4_K_M
|
||||
- Q5_1: medium, low quality loss - legacy, prefer using Q5_K_M
|
||||
- Q2_K: smallest, extreme quality loss - not recommended
|
||||
- Q3_K: alias for Q3_K_M
|
||||
- Q3_K_S: very small, very high quality loss
|
||||
- Q3_K_M: very small, very high quality loss
|
||||
- Q3_K_L: small, substantial quality loss
|
||||
- Q4_K: alias for Q4_K_M
|
||||
- Q4_K_S: small, significant quality loss
|
||||
- Q4_K_M: medium, balanced quality - recommended
|
||||
- Q5_K: alias for Q5_K_M
|
||||
- Q5_K_S: large, low quality loss - recommended
|
||||
- Q5_K_M: large, very low quality loss - recommended
|
||||
- Q6_K: very large, extremely low quality loss
|
||||
- Q8_0: very large, extremely low quality loss - not recommended
|
||||
- F16: extremely large, virtually no quality loss - not recommended
|
||||
- F32: absolutely huge, lossless - not recommended
|
||||
"""
|
||||
import subprocess
|
||||
subprocess.run(f"pip install huggingface-hub==0.16.4", shell=True, check=True)
|
||||
|
||||
import argparse
|
||||
import os
|
||||
from huggingface_hub import snapshot_download
|
||||
|
||||
def main(model, outname, outdir, quants, keep_fp16):
|
||||
ggml_version = "v3"
|
||||
|
||||
if not os.path.isdir(model):
|
||||
print(f"Model not found at {model}. Downloading...")
|
||||
try:
|
||||
if outname is None:
|
||||
outname = model.split('/')[-1]
|
||||
model = snapshot_download(repo_id=model, cache_dir='../models/hf_cache')
|
||||
except Exception as e:
|
||||
raise Exception(f"Could not download the model: {e}")
|
||||
|
||||
if outdir is None:
|
||||
outdir = f'../models/{outname}'
|
||||
|
||||
if not os.path.isfile(f"{model}/config.json"):
|
||||
raise Exception(f"Could not find config.json in {model}")
|
||||
|
||||
os.makedirs(outdir, exist_ok=True)
|
||||
|
||||
print("Building llama.cpp")
|
||||
subprocess.run(f"cd .. && make quantize", shell=True, check=True)
|
||||
|
||||
fp16 = f"{outdir}/{outname}.ggml{ggml_version}.fp16.bin"
|
||||
|
||||
print(f"Making unquantised GGML at {fp16}")
|
||||
if not os.path.isfile(fp16):
|
||||
subprocess.run(f"python3 ../convert.py {model} --outtype f16 --outfile {fp16}", shell=True, check=True)
|
||||
else:
|
||||
print(f"Unquantised GGML already exists at: {fp16}")
|
||||
|
||||
print("Making quants")
|
||||
for type in quants:
|
||||
outfile = f"{outdir}/{outname}.ggml{ggml_version}.{type}.bin"
|
||||
print(f"Making {type} : {outfile}")
|
||||
subprocess.run(f"../quantize {fp16} {outfile} {type}", shell=True, check=True)
|
||||
|
||||
if not keep_fp16:
|
||||
os.remove(fp16)
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description='Convert/Quantize HF to GGML. If you have the HF model downloaded already, pass the path to the model dir. Otherwise, pass the Hugging Face model repo name. You need to be in the /examples folder for it to work.')
|
||||
parser.add_argument('--model', required=True, help='Downloaded model dir or Hugging Face model repo name')
|
||||
parser.add_argument('--outname', default=None, help='Output model(s) name')
|
||||
parser.add_argument('--outdir', default=None, help='Output directory')
|
||||
parser.add_argument('--quants', nargs='*', default=["Q4_K_M", "Q5_K_S"], help='Quant types')
|
||||
parser.add_argument('--keep_fp16', action='store_true', help='Keep fp16 model', default=False)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
main(args.model, args.outname, args.outdir, args.quants, args.keep_fp16)
|
||||
@@ -1,4 +1,3 @@
|
||||
set(TEST_TARGET metal)
|
||||
add_executable(${TEST_TARGET} metal.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TEST_TARGET} PRIVATE ggml)
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
//
|
||||
// - First, export a LLaMA graph:
|
||||
//
|
||||
// $ ./bin/main -m ../models/7B/ggml-model-q4_0.gguf --export
|
||||
// $ ./bin/main -m ../models/7B/ggml-model-q4_0.bin --export
|
||||
//
|
||||
// - Run this tool to evaluate the exported graph:
|
||||
//
|
||||
@@ -35,9 +35,10 @@ int main(int argc, char ** argv) {
|
||||
struct ggml_context * ctx_eval = NULL;
|
||||
|
||||
struct ggml_cgraph gf = ggml_graph_import(fname_cgraph, &ctx_data, &ctx_eval);
|
||||
gf.n_threads = 1;
|
||||
|
||||
// this allocates all Metal resources and memory buffers
|
||||
auto * ctx_metal = ggml_metal_init(1);
|
||||
auto * ctx_metal = ggml_metal_init();
|
||||
|
||||
const size_t max_size_data = ggml_get_max_tensor_size(ctx_data);
|
||||
const size_t max_size_eval = ggml_get_max_tensor_size(ctx_eval);
|
||||
|
||||
@@ -1,6 +1,5 @@
|
||||
set(TARGET perplexity)
|
||||
add_executable(${TARGET} perplexity.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
if(TARGET BUILD_INFO)
|
||||
|
||||
@@ -4,8 +4,6 @@
|
||||
|
||||
#include <cmath>
|
||||
#include <ctime>
|
||||
#include <sstream>
|
||||
#include <cstring>
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
@@ -27,146 +25,20 @@ std::vector<float> softmax(const std::vector<float>& logits) {
|
||||
return probs;
|
||||
}
|
||||
|
||||
void perplexity_v2(llama_context * ctx, const gpt_params & params) {
|
||||
// Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
|
||||
// Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
|
||||
// Output: `perplexity: 13.5106 [114/114]`
|
||||
// BOS tokens will be added for each chunk before eval
|
||||
|
||||
if (params.ppl_stride <= 0) {
|
||||
fprintf(stderr, "%s: stride is %d but must be greater than zero!\n",__func__,params.ppl_stride);
|
||||
return;
|
||||
}
|
||||
|
||||
const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM;
|
||||
const bool add_bos = is_spm;
|
||||
|
||||
fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
|
||||
|
||||
auto tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
|
||||
|
||||
const int calc_chunk = params.n_ctx;
|
||||
|
||||
fprintf(stderr, "%s: have %zu tokens. Calculation chunk = %d\n", __func__, tokens.size(), calc_chunk);
|
||||
|
||||
if (int(tokens.size()) <= calc_chunk) {
|
||||
fprintf(stderr, "%s: there are only %zu tokens, this is not enough for a context size of %d and stride %d\n",__func__,
|
||||
tokens.size(), params.n_ctx, params.ppl_stride);
|
||||
return;
|
||||
}
|
||||
|
||||
const int n_chunk_max = (tokens.size() - calc_chunk + params.ppl_stride - 1) / params.ppl_stride;
|
||||
|
||||
const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
|
||||
const int n_vocab = llama_n_vocab(ctx);
|
||||
const int n_batch = params.n_batch;
|
||||
|
||||
int count = 0;
|
||||
double nll = 0.0;
|
||||
|
||||
fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
|
||||
|
||||
for (int i = 0; i < n_chunk; ++i) {
|
||||
const int start = i * params.ppl_stride;
|
||||
const int end = start + calc_chunk;
|
||||
|
||||
const int num_batches = (calc_chunk + n_batch - 1) / n_batch;
|
||||
//fprintf(stderr, "%s: evaluating %d...%d using %d batches\n", __func__, start, end, num_batches);
|
||||
|
||||
std::vector<float> logits;
|
||||
|
||||
const auto t_start = std::chrono::high_resolution_clock::now();
|
||||
|
||||
for (int j = 0; j < num_batches; ++j) {
|
||||
const int batch_start = start + j * n_batch;
|
||||
const int batch_size = std::min(end - batch_start, n_batch);
|
||||
|
||||
//fprintf(stderr, " Batch %d: starts at %d, size is %d, n_past is %d\n",j,batch_start,batch_size,j * n_batch);
|
||||
if (llama_eval(ctx, tokens.data() + batch_start, batch_size, j * n_batch, params.n_threads)) {
|
||||
//fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return;
|
||||
}
|
||||
|
||||
// save original token and restore it after eval
|
||||
const auto token_org = tokens[batch_start];
|
||||
|
||||
// add BOS token for the first batch of each chunk
|
||||
if (add_bos && j == 0) {
|
||||
tokens[batch_start] = llama_token_bos(ctx);
|
||||
}
|
||||
|
||||
const auto batch_logits = llama_get_logits(ctx);
|
||||
logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
|
||||
|
||||
if (j == 0) {
|
||||
tokens[batch_start] = token_org;
|
||||
}
|
||||
}
|
||||
|
||||
const auto t_end = std::chrono::high_resolution_clock::now();
|
||||
|
||||
if (i == 0) {
|
||||
const float t_total = std::chrono::duration<float>(t_end - t_start).count();
|
||||
fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
|
||||
int total_seconds = (int)(t_total * n_chunk);
|
||||
if (total_seconds >= 60*60) {
|
||||
fprintf(stderr, "%d hours ", total_seconds / (60*60));
|
||||
total_seconds = total_seconds % (60*60);
|
||||
}
|
||||
fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0);
|
||||
}
|
||||
|
||||
//fprintf(stderr, "%s: using tokens %d...%d\n",__func__,params.n_ctx - params.ppl_stride + start, params.n_ctx + start);
|
||||
for (int j = params.n_ctx - params.ppl_stride - 1; j < params.n_ctx - 1; ++j) {
|
||||
|
||||
// Calculate probability of next token, given the previous ones.
|
||||
const std::vector<float> tok_logits(
|
||||
logits.begin() + (j + 0) * n_vocab,
|
||||
logits.begin() + (j + 1) * n_vocab);
|
||||
|
||||
const float prob = softmax(tok_logits)[tokens[start + j + 1]];
|
||||
|
||||
nll += -std::log(prob);
|
||||
++count;
|
||||
}
|
||||
// perplexity is e^(average negative log-likelihood)
|
||||
if (params.ppl_output_type == 0) {
|
||||
printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
|
||||
} else {
|
||||
printf("%8d %.4lf\n", i*params.ppl_stride, std::exp(nll / count));
|
||||
}
|
||||
fflush(stdout);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
void perplexity(llama_context * ctx, const gpt_params & params) {
|
||||
if (params.ppl_stride > 0) {
|
||||
perplexity_v2(ctx, params);
|
||||
return;
|
||||
}
|
||||
|
||||
// Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
|
||||
// Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
|
||||
// Output: `perplexity: 13.5106 [114/114]`
|
||||
// BOS tokens will be added for each chunk before eval
|
||||
auto tokens = ::llama_tokenize(ctx, params.prompt, true);
|
||||
|
||||
const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM;
|
||||
const bool add_bos = is_spm;
|
||||
int count = 0;
|
||||
|
||||
fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
|
||||
|
||||
auto tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
|
||||
|
||||
const int n_chunk_max = tokens.size() / params.n_ctx;
|
||||
|
||||
const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
|
||||
const int n_chunk = tokens.size() / params.n_ctx;
|
||||
const int n_vocab = llama_n_vocab(ctx);
|
||||
const int n_batch = params.n_batch;
|
||||
|
||||
int count = 0;
|
||||
double nll = 0.0;
|
||||
|
||||
fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
|
||||
|
||||
for (int i = 0; i < n_chunk; ++i) {
|
||||
@@ -187,8 +59,8 @@ void perplexity(llama_context * ctx, const gpt_params & params) {
|
||||
const auto token_org = tokens[batch_start];
|
||||
|
||||
// add BOS token for the first batch of each chunk
|
||||
if (add_bos && j == 0) {
|
||||
tokens[batch_start] = llama_token_bos(ctx);
|
||||
if (j == 0) {
|
||||
tokens[batch_start] = llama_token_bos();
|
||||
}
|
||||
|
||||
if (llama_eval(ctx, tokens.data() + batch_start, batch_size, j * n_batch, params.n_threads)) {
|
||||
@@ -213,7 +85,7 @@ void perplexity(llama_context * ctx, const gpt_params & params) {
|
||||
fprintf(stderr, "%d hours ", total_seconds / (60*60));
|
||||
total_seconds = total_seconds % (60*60);
|
||||
}
|
||||
fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0);
|
||||
fprintf(stderr, "%d minutes\n", total_seconds / 60);
|
||||
}
|
||||
|
||||
// We get the logits for all the tokens in the context window (params.n_ctx)
|
||||
@@ -240,253 +112,12 @@ void perplexity(llama_context * ctx, const gpt_params & params) {
|
||||
++count;
|
||||
}
|
||||
// perplexity is e^(average negative log-likelihood)
|
||||
if (params.ppl_output_type == 0) {
|
||||
printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
|
||||
} else {
|
||||
printf("%8d %.4lf\n", i*params.n_ctx, std::exp(nll / count));
|
||||
}
|
||||
printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
|
||||
fflush(stdout);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
std::vector<float> hellaswag_evaluate_tokens(llama_context * ctx, const std::vector<int>& tokens, int n_past, int n_batch,
|
||||
int n_vocab, int n_thread) {
|
||||
std::vector<float> result;
|
||||
result.reserve(tokens.size() * n_vocab);
|
||||
size_t n_chunk = (tokens.size() + n_batch - 1)/n_batch;
|
||||
for (size_t i_chunk = 0; i_chunk < n_chunk; ++i_chunk) {
|
||||
size_t n_tokens = tokens.size() - i_chunk * n_batch;
|
||||
n_tokens = std::min(n_tokens, size_t(n_batch));
|
||||
if (llama_eval(ctx, tokens.data() + i_chunk * n_batch, n_tokens, n_past, n_thread)) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return {};
|
||||
}
|
||||
|
||||
const auto logits = llama_get_logits(ctx);
|
||||
result.insert(result.end(), logits, logits + n_tokens * n_vocab);
|
||||
|
||||
n_past += n_tokens;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
||||
// Calculates hellaswag score (acc_norm) from prompt
|
||||
//
|
||||
// Data extracted from the HellaSwag validation dataset (MIT license) https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl
|
||||
// All used data fields are preprocessed as in https://github.com/EleutherAI/lm-evaluation-harness/blob/df3da98c5405deafd519c2ddca52bb7c3fe36bef/lm_eval/tasks/hellaswag.py#L62-L68
|
||||
//
|
||||
// All 10042 tasks should be extracted to keep the results standardized like other implementations.
|
||||
//
|
||||
// Datafile layout:
|
||||
// ['??'] denotes json fields
|
||||
// 6 lines per task:
|
||||
// ['activity_label'] + ": " +['ctx'] - The first part of the query, the context
|
||||
// ['label'] - The index the best common sense ending aka gold ending
|
||||
// ['endings'][0] - Endings added to the first part of the query
|
||||
// ['endings'][1]
|
||||
// ['endings'][2]
|
||||
// ['endings'][3]
|
||||
|
||||
std::vector<std::string> prompt_lines;
|
||||
std::istringstream strstream(params.prompt);
|
||||
std::string line;
|
||||
|
||||
while (std::getline(strstream,line,'\n')) {
|
||||
prompt_lines.push_back(line);
|
||||
}
|
||||
|
||||
if( prompt_lines.size() % 6 != 0) {
|
||||
fprintf(stderr, "%s : number of lines in prompt not a multiple of 6.\n", __func__);
|
||||
return;
|
||||
}
|
||||
|
||||
size_t hs_task_count = prompt_lines.size()/6;
|
||||
fprintf(stderr, "%s : loaded %zu tasks from prompt.\n", __func__, hs_task_count);
|
||||
|
||||
const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM;
|
||||
|
||||
// This is needed as usual for LLaMA models
|
||||
const bool add_bos = is_spm;
|
||||
|
||||
// Number of tasks to use when computing the score
|
||||
if ( params.hellaswag_tasks < hs_task_count ) {
|
||||
hs_task_count = params.hellaswag_tasks;
|
||||
}
|
||||
|
||||
// The tasks should be randomized so the score stabilizes quickly.
|
||||
bool randomize_tasks = true;
|
||||
|
||||
// The random seed should not impact the final result if the computation is done over enough tasks, so kept hardcoded for now
|
||||
std::mt19937 rng(1);
|
||||
|
||||
// Dataholder for hellaswag tasks
|
||||
struct hs_data_t {
|
||||
std::string context;
|
||||
size_t gold_ending_idx;
|
||||
std::string ending[4];
|
||||
size_t ending_logprob_count[4];
|
||||
double ending_logprob[4];
|
||||
};
|
||||
|
||||
fprintf(stderr, "%s : selecting %zu %s tasks.\n", __func__, hs_task_count, (randomize_tasks?"randomized":"the first") );
|
||||
|
||||
// Select and read data from prompt lines
|
||||
hs_data_t *hs_data = new hs_data_t[hs_task_count];
|
||||
for (size_t i=0; i < hs_task_count; i++) {
|
||||
size_t idx = i;
|
||||
|
||||
// Select a random example of those left in the prompt
|
||||
if (randomize_tasks) {
|
||||
std::uniform_int_distribution<size_t> dist(0, prompt_lines.size()/6-1 ) ;
|
||||
idx = dist(rng);
|
||||
}
|
||||
|
||||
hs_data[i].context = prompt_lines[idx*6];
|
||||
hs_data[i].gold_ending_idx = std::stoi( prompt_lines[idx*6+1] );
|
||||
for (size_t j=0; j < 4; j++) {
|
||||
hs_data[i].ending[j] = " " + prompt_lines[idx*6+2+j];
|
||||
}
|
||||
|
||||
// Delete the selected random example from the prompt
|
||||
if (randomize_tasks) {
|
||||
prompt_lines.erase( std::next(prompt_lines.begin(),idx*6) , std::next(prompt_lines.begin(),idx*6+6) );
|
||||
}
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s : calculating hellaswag score over selected tasks.\n", __func__);
|
||||
printf("\ntask\tacc_norm\n");
|
||||
|
||||
double acc = 0.0f;
|
||||
const int n_vocab = llama_n_vocab(ctx);
|
||||
|
||||
std::vector<float> tok_logits(n_vocab);
|
||||
|
||||
for (size_t task_idx = 0; task_idx < hs_task_count; task_idx++) {
|
||||
// Tokenize the context to count tokens
|
||||
std::vector<int> context_embd = ::llama_tokenize(ctx, hs_data[task_idx].context, add_bos);
|
||||
size_t context_size = context_embd.size();
|
||||
|
||||
// Do the 1st ending
|
||||
// In this case we include the context when evaluating
|
||||
auto query_embd = ::llama_tokenize(ctx, hs_data[task_idx].context + hs_data[task_idx].ending[0], add_bos);
|
||||
auto query_size = query_embd.size();
|
||||
//printf("First query: %d\n",(int)query_size);
|
||||
|
||||
// Stop if query wont fit the ctx window
|
||||
if (query_size > (size_t)params.n_ctx) {
|
||||
fprintf(stderr, "%s : number of tokens in query %zu > n_ctxl\n", __func__, query_size);
|
||||
return;
|
||||
}
|
||||
|
||||
// Speedup small evaluations by evaluating atleast 32 tokens
|
||||
if (query_size < 32) {
|
||||
query_embd.resize(32);
|
||||
}
|
||||
|
||||
auto logits = hellaswag_evaluate_tokens(ctx, query_embd, 0, params.n_batch, n_vocab, params.n_threads);
|
||||
if (logits.empty()) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return;
|
||||
}
|
||||
|
||||
std::memcpy(tok_logits.data(), logits.data() + (context_size-1)*n_vocab, n_vocab*sizeof(float));
|
||||
const auto first_probs = softmax(tok_logits);
|
||||
|
||||
hs_data[task_idx].ending_logprob_count[0] = 1;
|
||||
hs_data[task_idx].ending_logprob[0] = std::log(first_probs[query_embd[context_size]]);
|
||||
|
||||
// Calculate the logprobs over the ending
|
||||
for (size_t j = context_size; j < query_size - 1; j++) {
|
||||
|
||||
std::memcpy(tok_logits.data(), logits.data() + j*n_vocab, n_vocab*sizeof(float));
|
||||
|
||||
const float prob = softmax(tok_logits)[query_embd[j + 1]];
|
||||
|
||||
hs_data[task_idx].ending_logprob[0] += std::log(prob);
|
||||
hs_data[task_idx].ending_logprob_count[0]++;
|
||||
}
|
||||
|
||||
// Calculate the mean token logprob for acc_norm
|
||||
hs_data[task_idx].ending_logprob[0] /= hs_data[task_idx].ending_logprob_count[0];
|
||||
|
||||
// Do the remaining endings
|
||||
// For these, we use the bare ending with n_past = context_size
|
||||
//
|
||||
for (size_t ending_idx = 1; ending_idx < 4; ending_idx++) {
|
||||
|
||||
// Tokenize the query
|
||||
query_embd = ::llama_tokenize(ctx, hs_data[task_idx].ending[ending_idx], false);
|
||||
query_size = query_embd.size();
|
||||
|
||||
// Stop if query wont fit the ctx window
|
||||
if (context_size + query_size > (size_t)params.n_ctx) {
|
||||
fprintf(stderr, "%s : number of tokens in query %zu > n_ctxl\n", __func__, query_size);
|
||||
return;
|
||||
}
|
||||
|
||||
// Speedup small evaluations by evaluating atleast 32 tokens
|
||||
// No, resizing to 32 is actually slightly slower (at least on CUDA)
|
||||
//if (query_size < 32) {
|
||||
// query_embd.resize(32);
|
||||
//}
|
||||
|
||||
// Evaluate the query
|
||||
logits = hellaswag_evaluate_tokens(ctx, query_embd, context_size, params.n_batch, n_vocab, params.n_threads);
|
||||
if (logits.empty()) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return;
|
||||
}
|
||||
|
||||
hs_data[task_idx].ending_logprob_count[ending_idx] = 1;
|
||||
hs_data[task_idx].ending_logprob[ending_idx] = std::log(first_probs[query_embd[0]]);
|
||||
|
||||
// Calculate the logprobs over the ending
|
||||
for (size_t j = 0; j < query_size - 1; j++) {
|
||||
std::memcpy(tok_logits.data(), logits.data() + j*n_vocab, n_vocab*sizeof(float));
|
||||
|
||||
const float prob = softmax(tok_logits)[query_embd[j + 1]];
|
||||
|
||||
hs_data[task_idx].ending_logprob[ending_idx] += std::log(prob);
|
||||
hs_data[task_idx].ending_logprob_count[ending_idx]++;
|
||||
}
|
||||
|
||||
// Calculate the mean token logprob for acc_norm
|
||||
hs_data[task_idx].ending_logprob[ending_idx] /= hs_data[task_idx].ending_logprob_count[ending_idx];
|
||||
|
||||
|
||||
// printf("task %lu, ending %lu, whole_len %lu, context_len %lu, ending_logprob_count %lu, ending_logprob %.4f\n",
|
||||
// task_idx,ending_idx,whole_size,context_size, hs_data[task_idx].ending_logprob_count[ending_idx], hs_data[task_idx].ending_logprob[ending_idx] );
|
||||
}
|
||||
|
||||
// Find the ending with maximum logprob
|
||||
size_t ending_logprob_max_idx = 0;
|
||||
double ending_logprob_max_val = hs_data[task_idx].ending_logprob[0];
|
||||
for (size_t j = 1; j < 4; j++) {
|
||||
if (hs_data[task_idx].ending_logprob[j] > ending_logprob_max_val) {
|
||||
ending_logprob_max_idx = j;
|
||||
ending_logprob_max_val = hs_data[task_idx].ending_logprob[j];
|
||||
}
|
||||
}
|
||||
|
||||
// printf("max logprob ending idx %lu, gold ending idx %lu\n", ending_logprob_max_idx, hs_data[task_idx].gold_ending_idx);
|
||||
|
||||
// If the gold ending got the maximum logprobe add one accuracy point
|
||||
if (ending_logprob_max_idx == hs_data[task_idx].gold_ending_idx) {
|
||||
acc += 1.0;
|
||||
}
|
||||
|
||||
// Print the accumulated accuracy mean x 100
|
||||
printf("%zu\t%.8lf\n",task_idx+1, acc/double(task_idx+1)*100.0);
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
delete [] hs_data;
|
||||
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
|
||||
@@ -498,31 +129,25 @@ int main(int argc, char ** argv) {
|
||||
params.perplexity = true;
|
||||
params.n_batch = std::min(params.n_batch, params.n_ctx);
|
||||
|
||||
if (params.ppl_stride > 0) {
|
||||
fprintf(stderr, "Will perform strided perplexity calculation -> adjusting context size from %d to %d\n",
|
||||
params.n_ctx, params.n_ctx + params.ppl_stride/2);
|
||||
params.n_ctx += params.ppl_stride/2;
|
||||
}
|
||||
|
||||
if (params.n_ctx > 2048) {
|
||||
fprintf(stderr, "%s: warning: model might not support context sizes greater than 2048 tokens (%d specified);"
|
||||
fprintf(stderr, "%s: warning: model does not support context sizes greater than 2048 tokens (%d specified);"
|
||||
"expect poor results\n", __func__, params.n_ctx);
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
|
||||
|
||||
if (params.seed == LLAMA_DEFAULT_SEED) {
|
||||
if (params.seed < 0) {
|
||||
params.seed = time(NULL);
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
|
||||
fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
|
||||
|
||||
std::mt19937 rng(params.seed);
|
||||
if (params.random_prompt) {
|
||||
params.prompt = gpt_random_prompt(rng);
|
||||
}
|
||||
|
||||
llama_backend_init(params.numa);
|
||||
llama_init_backend();
|
||||
|
||||
llama_model * model;
|
||||
llama_context * ctx;
|
||||
@@ -541,17 +166,11 @@ int main(int argc, char ** argv) {
|
||||
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
|
||||
}
|
||||
|
||||
if (params.hellaswag) {
|
||||
hellaswag_score(ctx, params);
|
||||
} else {
|
||||
perplexity(ctx, params);
|
||||
}
|
||||
perplexity(ctx, params);
|
||||
|
||||
llama_print_timings(ctx);
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -1,5 +1,4 @@
|
||||
set(TARGET quantize-stats)
|
||||
add_executable(${TARGET} quantize-stats.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
|
||||
@@ -24,7 +24,7 @@
|
||||
#endif
|
||||
|
||||
struct quantize_stats_params {
|
||||
std::string model = "models/7B/ggml-model-f16.gguf";
|
||||
std::string model = "models/7B/ggml-model-f16.bin";
|
||||
bool verbose = false;
|
||||
bool per_layer_stats = false;
|
||||
bool print_histogram = false;
|
||||
@@ -147,7 +147,7 @@ void test_roundtrip_on_chunk(
|
||||
const ggml_tensor * layer,
|
||||
int64_t offset,
|
||||
int64_t chunk_size,
|
||||
const ggml_type_traits_t & qfns,
|
||||
const quantize_fns_t & qfns,
|
||||
bool use_reference,
|
||||
float * input_scratch,
|
||||
char * quantized_scratch,
|
||||
@@ -163,11 +163,11 @@ void test_roundtrip_on_chunk(
|
||||
}
|
||||
|
||||
if (use_reference) {
|
||||
qfns.from_float_reference(input_scratch, quantized_scratch, chunk_size);
|
||||
qfns.quantize_row_q_reference(input_scratch, quantized_scratch, chunk_size);
|
||||
} else {
|
||||
qfns.from_float(input_scratch, quantized_scratch, chunk_size);
|
||||
qfns.quantize_row_q(input_scratch, quantized_scratch, chunk_size);
|
||||
}
|
||||
qfns.to_float(quantized_scratch, output_scratch, chunk_size);
|
||||
qfns.dequantize_row_q(quantized_scratch, output_scratch, chunk_size);
|
||||
|
||||
update_error_stats(chunk_size, input_scratch, output_scratch, stats);
|
||||
}
|
||||
@@ -177,7 +177,7 @@ void test_roundtrip_on_chunk(
|
||||
void test_roundtrip_on_layer(
|
||||
std::string & name,
|
||||
bool print_layer_stats,
|
||||
const ggml_type_traits_t & qfns,
|
||||
const quantize_fns_t & qfns,
|
||||
bool use_reference,
|
||||
const ggml_tensor * layer,
|
||||
std::vector<float> & input_scratch,
|
||||
@@ -388,8 +388,8 @@ int main(int argc, char ** argv) {
|
||||
if (!params.include_types.empty() && std::find(params.include_types.begin(), params.include_types.end(), i) == params.include_types.end()) {
|
||||
continue;
|
||||
}
|
||||
ggml_type_traits_t qfns = ggml_internal_get_type_traits(type);
|
||||
if (qfns.from_float && qfns.to_float) {
|
||||
quantize_fns_t qfns = ggml_internal_get_quantize_fn(i);
|
||||
if (qfns.quantize_row_q && qfns.dequantize_row_q) {
|
||||
if (params.verbose) {
|
||||
printf("testing %s ...\n", ggml_type_name(type));
|
||||
}
|
||||
|
||||
@@ -1,6 +1,5 @@
|
||||
set(TARGET quantize)
|
||||
add_executable(${TARGET} quantize.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
if(TARGET BUILD_INFO)
|
||||
|
||||
@@ -14,27 +14,103 @@ struct quant_option {
|
||||
};
|
||||
|
||||
static const std::vector<struct quant_option> QUANT_OPTIONS = {
|
||||
{ "Q4_0", LLAMA_FTYPE_MOSTLY_Q4_0, " 3.56G, +0.2166 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q4_1", LLAMA_FTYPE_MOSTLY_Q4_1, " 3.90G, +0.1585 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q5_0", LLAMA_FTYPE_MOSTLY_Q5_0, " 4.33G, +0.0683 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q5_1", LLAMA_FTYPE_MOSTLY_Q5_1, " 4.70G, +0.0349 ppl @ LLaMA-v1-7B", },
|
||||
{
|
||||
"Q4_0",
|
||||
LLAMA_FTYPE_MOSTLY_Q4_0,
|
||||
" 3.50G, +0.2499 ppl @ 7B - small, very high quality loss - legacy, prefer using Q3_K_M",
|
||||
},
|
||||
{
|
||||
"Q4_1",
|
||||
LLAMA_FTYPE_MOSTLY_Q4_1,
|
||||
" 3.90G, +0.1846 ppl @ 7B - small, substantial quality loss - legacy, prefer using Q3_K_L",
|
||||
},
|
||||
{
|
||||
"Q5_0",
|
||||
LLAMA_FTYPE_MOSTLY_Q5_0,
|
||||
" 4.30G, +0.0796 ppl @ 7B - medium, balanced quality - legacy, prefer using Q4_K_M",
|
||||
},
|
||||
{
|
||||
"Q5_1",
|
||||
LLAMA_FTYPE_MOSTLY_Q5_1,
|
||||
" 4.70G, +0.0415 ppl @ 7B - medium, low quality loss - legacy, prefer using Q5_K_M",
|
||||
},
|
||||
#ifdef GGML_USE_K_QUANTS
|
||||
{ "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.63G, +0.6717 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M, "alias for Q3_K_M" },
|
||||
{ "Q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S, " 2.75G, +0.5551 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M, " 3.07G, +0.2496 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L, " 3.35G, +0.1764 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q4_K", LLAMA_FTYPE_MOSTLY_Q4_K_M, "alias for Q4_K_M", },
|
||||
{ "Q4_K_S", LLAMA_FTYPE_MOSTLY_Q4_K_S, " 3.59G, +0.0992 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q4_K_M", LLAMA_FTYPE_MOSTLY_Q4_K_M, " 3.80G, +0.0532 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q5_K", LLAMA_FTYPE_MOSTLY_Q5_K_M, "alias for Q5_K_M", },
|
||||
{ "Q5_K_S", LLAMA_FTYPE_MOSTLY_Q5_K_S, " 4.33G, +0.0400 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M, " 4.45G, +0.0122 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q6_K", LLAMA_FTYPE_MOSTLY_Q6_K, " 5.15G, -0.0008 ppl @ LLaMA-v1-7B", },
|
||||
{
|
||||
"Q2_K",
|
||||
LLAMA_FTYPE_MOSTLY_Q2_K,
|
||||
" 2.67G, +0.8698 ppl @ 7B - smallest, extreme quality loss - not recommended",
|
||||
},
|
||||
{
|
||||
"Q3_K",
|
||||
LLAMA_FTYPE_MOSTLY_Q3_K_M,
|
||||
"alias for Q3_K_M"
|
||||
},
|
||||
{
|
||||
"Q3_K_S",
|
||||
LLAMA_FTYPE_MOSTLY_Q3_K_S,
|
||||
" 2.75G, +0.5505 ppl @ 7B - very small, very high quality loss",
|
||||
},
|
||||
{
|
||||
"Q3_K_M",
|
||||
LLAMA_FTYPE_MOSTLY_Q3_K_M,
|
||||
" 3.06G, +0.2437 ppl @ 7B - very small, very high quality loss",
|
||||
},
|
||||
{
|
||||
"Q3_K_L",
|
||||
LLAMA_FTYPE_MOSTLY_Q3_K_L,
|
||||
" 3.35G, +0.1803 ppl @ 7B - small, substantial quality loss",
|
||||
},
|
||||
{
|
||||
"Q4_K",
|
||||
LLAMA_FTYPE_MOSTLY_Q4_K_M,
|
||||
"alias for Q4_K_M",
|
||||
},
|
||||
{
|
||||
"Q4_K_S",
|
||||
LLAMA_FTYPE_MOSTLY_Q4_K_S,
|
||||
" 3.56G, +0.1149 ppl @ 7B - small, significant quality loss",
|
||||
},
|
||||
{
|
||||
"Q4_K_M",
|
||||
LLAMA_FTYPE_MOSTLY_Q4_K_M,
|
||||
" 3.80G, +0.0535 ppl @ 7B - medium, balanced quality - *recommended*",
|
||||
},
|
||||
{
|
||||
"Q5_K",
|
||||
LLAMA_FTYPE_MOSTLY_Q5_K_M,
|
||||
"alias for Q5_K_M",
|
||||
},
|
||||
{
|
||||
"Q5_K_S",
|
||||
LLAMA_FTYPE_MOSTLY_Q5_K_S,
|
||||
" 4.33G, +0.0353 ppl @ 7B - large, low quality loss - *recommended*",
|
||||
},
|
||||
{
|
||||
"Q5_K_M",
|
||||
LLAMA_FTYPE_MOSTLY_Q5_K_M,
|
||||
" 4.45G, +0.0142 ppl @ 7B - large, very low quality loss - *recommended*",
|
||||
},
|
||||
{
|
||||
"Q6_K",
|
||||
LLAMA_FTYPE_MOSTLY_Q6_K,
|
||||
" 5.15G, +0.0044 ppl @ 7B - very large, extremely low quality loss",
|
||||
},
|
||||
#endif
|
||||
{ "Q8_0", LLAMA_FTYPE_MOSTLY_Q8_0, " 6.70G, +0.0004 ppl @ LLaMA-v1-7B", },
|
||||
{ "F16", LLAMA_FTYPE_MOSTLY_F16, "13.00G @ 7B", },
|
||||
{ "F32", LLAMA_FTYPE_ALL_F32, "26.00G @ 7B", },
|
||||
{
|
||||
"Q8_0",
|
||||
LLAMA_FTYPE_MOSTLY_Q8_0,
|
||||
" 6.70G, +0.0004 ppl @ 7B - very large, extremely low quality loss - not recommended",
|
||||
},
|
||||
{
|
||||
"F16",
|
||||
LLAMA_FTYPE_MOSTLY_F16,
|
||||
"13.00G @ 7B - extremely large, virtually no quality loss - not recommended",
|
||||
},
|
||||
{
|
||||
"F32",
|
||||
LLAMA_FTYPE_ALL_F32,
|
||||
"26.00G @ 7B - absolutely huge, lossless - not recommended",
|
||||
},
|
||||
};
|
||||
|
||||
|
||||
@@ -68,10 +144,10 @@ bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftype, std:
|
||||
}
|
||||
|
||||
// usage:
|
||||
// ./quantize [--allow-requantize] [--leave-output-tensor] models/llama/ggml-model.gguf [models/llama/ggml-model-quant.gguf] type [nthreads]
|
||||
// ./quantize [--allow-requantize] [--leave-output-tensor] models/llama/ggml-model.bin [models/llama/ggml-model-quant.bin] type [nthreads]
|
||||
//
|
||||
void usage(const char * executable) {
|
||||
fprintf(stderr, "usage: %s [--help] [--allow-requantize] [--leave-output-tensor] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
|
||||
fprintf(stderr, "usage: %s [--help] [--allow-requantize] [--leave-output-tensor] model-f32.bin [model-quant.bin] type [nthreads]\n\n", executable);
|
||||
fprintf(stderr, " --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
|
||||
fprintf(stderr, " --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
|
||||
fprintf(stderr, "\nAllowed quantization types:\n");
|
||||
@@ -104,7 +180,7 @@ int main(int argc, char ** argv) {
|
||||
usage(argv[0]);
|
||||
}
|
||||
|
||||
llama_backend_init(false);
|
||||
llama_init_backend();
|
||||
|
||||
// parse command line arguments
|
||||
const std::string fname_inp = argv[arg_idx];
|
||||
@@ -118,8 +194,8 @@ int main(int argc, char ** argv) {
|
||||
if (pos != std::string::npos) {
|
||||
fpath = fname_inp.substr(0, pos + 1);
|
||||
}
|
||||
// export as [inp path]/ggml-model-[ftype].gguf
|
||||
fname_out = fpath + "ggml-model-" + ftype_str + ".gguf";
|
||||
// export as [inp path]/ggml-model-[ftype].bin
|
||||
fname_out = fpath + "ggml-model-" + ftype_str + ".bin";
|
||||
arg_idx++;
|
||||
}
|
||||
else {
|
||||
@@ -181,7 +257,5 @@ int main(int argc, char ** argv) {
|
||||
printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0);
|
||||
}
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
|
||||
#!/bin/bash
|
||||
|
||||
cd `dirname $0`
|
||||
|
||||
@@ -1,6 +1,5 @@
|
||||
set(TARGET save-load-state)
|
||||
add_executable(${TARGET} save-load-state.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
if(TARGET BUILD_INFO)
|
||||
|
||||
@@ -44,8 +44,9 @@ int main(int argc, char ** argv) {
|
||||
llama_free_model(model);
|
||||
return 1;
|
||||
}
|
||||
auto tokens = llama_tokenize(ctx, params.prompt.c_str(), true);
|
||||
auto n_prompt_tokens = tokens.size();
|
||||
auto tokens = std::vector<llama_token>(params.n_ctx);
|
||||
auto n_prompt_tokens = llama_tokenize(ctx, params.prompt.c_str(), tokens.data(), int(tokens.size()), true);
|
||||
|
||||
if (n_prompt_tokens < 1) {
|
||||
fprintf(stderr, "%s : failed to tokenize prompt\n", __func__);
|
||||
llama_free(ctx);
|
||||
@@ -90,7 +91,7 @@ int main(int argc, char ** argv) {
|
||||
auto next_token_str = llama_token_to_str(ctx, next_token);
|
||||
last_n_tokens_data.push_back(next_token);
|
||||
|
||||
printf("%s", next_token_str.c_str());
|
||||
printf("%s", next_token_str);
|
||||
if (llama_eval(ctx, &next_token, 1, n_past, params.n_threads)) {
|
||||
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
|
||||
llama_free(ctx);
|
||||
@@ -150,7 +151,7 @@ int main(int argc, char ** argv) {
|
||||
auto next_token_str = llama_token_to_str(ctx2, next_token);
|
||||
last_n_tokens_data.push_back(next_token);
|
||||
|
||||
printf("%s", next_token_str.c_str());
|
||||
printf("%s", next_token_str);
|
||||
if (llama_eval(ctx2, &next_token, 1, n_past, params.n_threads)) {
|
||||
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
|
||||
llama_free(ctx2);
|
||||
|
||||
@@ -1,26 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -e
|
||||
|
||||
cd "$(dirname "$0")/.." || exit
|
||||
|
||||
# Specify the model you want to use here:
|
||||
MODEL="${MODEL:-./models/llama-2-13b-chat.ggmlv3.q5_K_M.bin}"
|
||||
PROMPT_TEMPLATE=${PROMPT_TEMPLATE:-./prompts/chat-system.txt}
|
||||
|
||||
# Adjust to the number of CPU cores you want to use.
|
||||
N_THREAD="${N_THREAD:-12}"
|
||||
|
||||
# Note: you can also override the generation options by specifying them on the command line:
|
||||
GEN_OPTIONS="${GEN_OPTIONS:---ctx_size 4096 --batch-size 1024}"
|
||||
|
||||
|
||||
# shellcheck disable=SC2086 # Intended splitting of GEN_OPTIONS
|
||||
./server $GEN_OPTIONS \
|
||||
--model "$MODEL" \
|
||||
--threads "$N_THREAD" \
|
||||
--rope-freq-scale 1.0 \
|
||||
"$@"
|
||||
|
||||
# I used this to test the model with mps, but omitted it from the general purpose. If you want to use it, just specify it on the command line.
|
||||
# -ngl 1 \
|
||||
@@ -2,14 +2,10 @@ set(TARGET server)
|
||||
option(LLAMA_SERVER_VERBOSE "Build verbose logging option for Server" ON)
|
||||
include_directories(${CMAKE_CURRENT_SOURCE_DIR})
|
||||
add_executable(${TARGET} server.cpp json.hpp httplib.h)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_compile_definitions(${TARGET} PRIVATE
|
||||
SERVER_VERBOSE=$<BOOL:${LLAMA_SERVER_VERBOSE}>
|
||||
)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
if (WIN32)
|
||||
TARGET_LINK_LIBRARIES(${TARGET} PRIVATE ws2_32)
|
||||
endif()
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
if(TARGET BUILD_INFO)
|
||||
add_dependencies(${TARGET} BUILD_INFO)
|
||||
|
||||
@@ -1,13 +1,13 @@
|
||||
# llama.cpp/example/server
|
||||
|
||||
This example demonstrates a simple HTTP API server and a simple web front end to interact with llama.cpp.
|
||||
This example demonstrates a simple HTTP API server to interact with llama.cpp.
|
||||
|
||||
Command line options:
|
||||
|
||||
- `--threads N`, `-t N`: Set the number of threads to use during computation.
|
||||
- `-m FNAME`, `--model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.gguf`).
|
||||
- `-m FNAME`, `--model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.bin`).
|
||||
- `-m ALIAS`, `--alias ALIAS`: Set an alias for the model. The alias will be returned in API responses.
|
||||
- `-c N`, `--ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference. The size may differ in other models, for example, baichuan models were build with a context of 4096.
|
||||
- `-c N`, `--ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference.
|
||||
- `-ngl N`, `--n-gpu-layers N`: When compiled with appropriate support (currently CLBlast or cuBLAS), this option allows offloading some layers to the GPU for computation. Generally results in increased performance.
|
||||
- `-mg i, --main-gpu i`: When using multiple GPUs this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default GPU 0 is used. Requires cuBLAS.
|
||||
- `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance. Requires cuBLAS.
|
||||
@@ -16,28 +16,29 @@ Command line options:
|
||||
- `--memory-f32`: Use 32-bit floats instead of 16-bit floats for memory key+value. Not recommended.
|
||||
- `--mlock`: Lock the model in memory, preventing it from being swapped out when memory-mapped.
|
||||
- `--no-mmap`: Do not memory-map the model. By default, models are mapped into memory, which allows the system to load only the necessary parts of the model as needed.
|
||||
- `--numa`: Attempt optimizations that help on some NUMA systems.
|
||||
- `--lora FNAME`: Apply a LoRA (Low-Rank Adaptation) adapter to the model (implies --no-mmap). This allows you to adapt the pretrained model to specific tasks or domains.
|
||||
- `--lora-base FNAME`: Optional model to use as a base for the layers modified by the LoRA adapter. This flag is used in conjunction with the `--lora` flag, and specifies the base model for the adaptation.
|
||||
- `-to N`, `--timeout N`: Server read/write timeout in seconds. Default `600`.
|
||||
- `--host`: Set the hostname or ip address to listen. Default `127.0.0.1`.
|
||||
- `--port`: Set the port to listen. Default: `8080`.
|
||||
- `--path`: path from which to serve static files (default examples/server/public)
|
||||
- `--embedding`: Enable embedding extraction, Default: disabled.
|
||||
|
||||
## Build
|
||||
|
||||
server is build alongside everything else from the root of the project
|
||||
Build llama.cpp with server from repository root with either make or CMake.
|
||||
|
||||
- Using `make`:
|
||||
|
||||
```bash
|
||||
make
|
||||
LLAMA_BUILD_SERVER=1 make
|
||||
```
|
||||
|
||||
- Using `CMake`:
|
||||
|
||||
```bash
|
||||
mkdir build-server
|
||||
cd build-server
|
||||
cmake -DLLAMA_BUILD_SERVER=ON ..
|
||||
cmake --build . --config Release
|
||||
```
|
||||
|
||||
@@ -48,16 +49,17 @@ To get started right away, run the following command, making sure to use the cor
|
||||
### Unix-based systems (Linux, macOS, etc.):
|
||||
|
||||
```bash
|
||||
./server -m models/7B/ggml-model.gguf -c 2048
|
||||
./server -m models/7B/ggml-model.bin -c 2048
|
||||
```
|
||||
|
||||
### Windows:
|
||||
|
||||
```powershell
|
||||
server.exe -m models\7B\ggml-model.gguf -c 2048
|
||||
server.exe -m models\7B\ggml-model.bin -c 2048
|
||||
```
|
||||
|
||||
The above command will start a server that by default listens on `127.0.0.1:8080`.
|
||||
You can consume the endpoints with Postman or NodeJS with axios library. You can visit the web front end at the same url.
|
||||
You can consume the endpoints with Postman or NodeJS with axios library.
|
||||
|
||||
## Testing with CURL
|
||||
|
||||
@@ -66,7 +68,6 @@ Using [curl](https://curl.se/). On Windows `curl.exe` should be available in the
|
||||
```sh
|
||||
curl --request POST \
|
||||
--url http://localhost:8080/completion \
|
||||
--header "Content-Type: application/json" \
|
||||
--data '{"prompt": "Building a website can be done in 10 simple steps:","n_predict": 128}'
|
||||
```
|
||||
|
||||
@@ -126,7 +127,7 @@ node .
|
||||
|
||||
`stream`: It allows receiving each predicted token in real-time instead of waiting for the completion to finish. To enable this, set to `true`.
|
||||
|
||||
`prompt`: Provide a prompt as a string, or as an array of strings and numbers representing tokens. Internally, the prompt is compared, and it detects if a part has already been evaluated, and the remaining part will be evaluate. If the prompt is a string, or an array with the first element given as a string, a space is inserted in the front like main.cpp does.
|
||||
`prompt`: Provide a prompt. Internally, the prompt is compared, and it detects if a part has already been evaluated, and the remaining part will be evaluate. A space is inserted in the front like main.cpp does.
|
||||
|
||||
`stop`: Specify a JSON array of stopping strings.
|
||||
These words will not be included in the completion, so make sure to add them to the prompt for the next iteration (default: []).
|
||||
@@ -151,9 +152,7 @@ node .
|
||||
|
||||
`mirostat_eta`: Set the Mirostat learning rate, parameter eta (default: 0.1).
|
||||
|
||||
`grammar`: Set grammar for grammar-based sampling (default: no grammar)
|
||||
|
||||
`seed`: Set the random number generator (RNG) seed (default: -1, -1 = random seed).
|
||||
`seed`: Set the random number generator (RNG) seed (default: -1, < 0 = random seed).
|
||||
|
||||
`ignore_eos`: Ignore end of stream token and continue generating (default: false).
|
||||
|
||||
@@ -165,7 +164,7 @@ node .
|
||||
|
||||
`content`: Set the text to tokenize.
|
||||
|
||||
Note that the special `BOS` token is not added in front of the text and also a space character is not inserted automatically as it is for `/completion`.
|
||||
Note that the special `BOS` token is not added in fron of the text and also a space character is not inserted automatically as it is for `/completion`.
|
||||
|
||||
- **POST** `/embedding`: Generate embedding of a given text just as [the embedding example](../embedding) does.
|
||||
|
||||
@@ -191,49 +190,3 @@ Run with bash:
|
||||
```sh
|
||||
bash chat.sh
|
||||
```
|
||||
|
||||
### API like OAI
|
||||
|
||||
API example using Python Flask: [api_like_OAI.py](api_like_OAI.py)
|
||||
This example must be used with server.cpp
|
||||
|
||||
```sh
|
||||
python api_like_OAI.py
|
||||
```
|
||||
|
||||
After running the API server, you can use it in Python by setting the API base URL.
|
||||
```python
|
||||
openai.api_base = "http://<Your api-server IP>:port"
|
||||
```
|
||||
|
||||
Then you can utilize llama.cpp as an OpenAI's **chat.completion** or **text_completion** API
|
||||
|
||||
### Extending or building alternative Web Front End
|
||||
|
||||
The default location for the static files is `examples/server/public`. You can extend the front end by running the server binary with `--path` set to `./your-directory` and importing `/completion.js` to get access to the llamaComplete() method.
|
||||
|
||||
Read the documentation in `/completion.js` to see convenient ways to access llama.
|
||||
|
||||
A simple example is below:
|
||||
|
||||
```html
|
||||
<html>
|
||||
<body>
|
||||
<pre>
|
||||
<script type="module">
|
||||
import { llama } from '/completion.js'
|
||||
|
||||
const prompt = `### Instruction:
|
||||
Write dad jokes, each one paragraph.
|
||||
You can use html formatting if needed.
|
||||
|
||||
### Response:`
|
||||
|
||||
for await (const chunk of llama(prompt)) {
|
||||
document.write(chunk.data.content)
|
||||
}
|
||||
</script>
|
||||
</pre>
|
||||
</body>
|
||||
</html>
|
||||
```
|
||||
|
||||
@@ -1,220 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
import argparse
|
||||
from flask import Flask, jsonify, request, Response
|
||||
import urllib.parse
|
||||
import requests
|
||||
import time
|
||||
import json
|
||||
|
||||
|
||||
app = Flask(__name__)
|
||||
|
||||
parser = argparse.ArgumentParser(description="An example of using server.cpp with a similar API to OAI. It must be used together with server.cpp.")
|
||||
parser.add_argument("--chat-prompt", type=str, help="the top prompt in chat completions(default: 'A chat between a curious user and an artificial intelligence assistant. The assistant follows the given rules no matter what.\\n')", default='A chat between a curious user and an artificial intelligence assistant. The assistant follows the given rules no matter what.\\n')
|
||||
parser.add_argument("--user-name", type=str, help="USER name in chat completions(default: '\\nUSER: ')", default="\\nUSER: ")
|
||||
parser.add_argument("--ai-name", type=str, help="ASSISTANT name in chat completions(default: '\\nASSISTANT: ')", default="\\nASSISTANT: ")
|
||||
parser.add_argument("--system-name", type=str, help="SYSTEM name in chat completions(default: '\\nASSISTANT's RULE: ')", default="\\nASSISTANT's RULE: ")
|
||||
parser.add_argument("--stop", type=str, help="the end of response in chat completions(default: '</s>')", default="</s>")
|
||||
parser.add_argument("--llama-api", type=str, help="Set the address of server.cpp in llama.cpp(default: http://127.0.0.1:8080)", default='http://127.0.0.1:8080')
|
||||
parser.add_argument("--api-key", type=str, help="Set the api key to allow only few user(default: NULL)", default="")
|
||||
parser.add_argument("--host", type=str, help="Set the ip address to listen.(default: 127.0.0.1)", default='127.0.0.1')
|
||||
parser.add_argument("--port", type=int, help="Set the port to listen.(default: 8081)", default=8081)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
def is_present(json, key):
|
||||
try:
|
||||
buf = json[key]
|
||||
except KeyError:
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
|
||||
#convert chat to prompt
|
||||
def convert_chat(messages):
|
||||
prompt = "" + args.chat_prompt.replace("\\n", "\n")
|
||||
|
||||
system_n = args.system_name.replace("\\n", "\n")
|
||||
user_n = args.user_name.replace("\\n", "\n")
|
||||
ai_n = args.ai_name.replace("\\n", "\n")
|
||||
stop = args.stop.replace("\\n", "\n")
|
||||
|
||||
|
||||
for line in messages:
|
||||
if (line["role"] == "system"):
|
||||
prompt += f"{system_n}{line['content']}"
|
||||
if (line["role"] == "user"):
|
||||
prompt += f"{user_n}{line['content']}"
|
||||
if (line["role"] == "assistant"):
|
||||
prompt += f"{ai_n}{line['content']}{stop}"
|
||||
prompt += ai_n.rstrip()
|
||||
|
||||
return prompt
|
||||
|
||||
def make_postData(body, chat=False, stream=False):
|
||||
postData = {}
|
||||
if (chat):
|
||||
postData["prompt"] = convert_chat(body["messages"])
|
||||
else:
|
||||
postData["prompt"] = body["prompt"]
|
||||
if(is_present(body, "temperature")): postData["temperature"] = body["temperature"]
|
||||
if(is_present(body, "top_k")): postData["top_k"] = body["top_k"]
|
||||
if(is_present(body, "top_p")): postData["top_p"] = body["top_p"]
|
||||
if(is_present(body, "max_tokens")): postData["n_predict"] = body["max_tokens"]
|
||||
if(is_present(body, "presence_penalty")): postData["presence_penalty"] = body["presence_penalty"]
|
||||
if(is_present(body, "frequency_penalty")): postData["frequency_penalty"] = body["frequency_penalty"]
|
||||
if(is_present(body, "repeat_penalty")): postData["repeat_penalty"] = body["repeat_penalty"]
|
||||
if(is_present(body, "mirostat")): postData["mirostat"] = body["mirostat"]
|
||||
if(is_present(body, "mirostat_tau")): postData["mirostat_tau"] = body["mirostat_tau"]
|
||||
if(is_present(body, "mirostat_eta")): postData["mirostat_eta"] = body["mirostat_eta"]
|
||||
if(is_present(body, "seed")): postData["seed"] = body["seed"]
|
||||
if(is_present(body, "logit_bias")): postData["logit_bias"] = [[int(token), body["logit_bias"][token]] for token in body["logit_bias"].keys()]
|
||||
if (args.stop != ""):
|
||||
postData["stop"] = [args.stop]
|
||||
else:
|
||||
postData["stop"] = []
|
||||
if(is_present(body, "stop")): postData["stop"] += body["stop"]
|
||||
postData["n_keep"] = -1
|
||||
postData["stream"] = stream
|
||||
|
||||
return postData
|
||||
|
||||
def make_resData(data, chat=False, promptToken=[]):
|
||||
resData = {
|
||||
"id": "chatcmpl" if (chat) else "cmpl",
|
||||
"object": "chat.completion" if (chat) else "text_completion",
|
||||
"created": int(time.time()),
|
||||
"truncated": data["truncated"],
|
||||
"model": "LLaMA_CPP",
|
||||
"usage": {
|
||||
"prompt_tokens": data["tokens_evaluated"],
|
||||
"completion_tokens": data["tokens_predicted"],
|
||||
"total_tokens": data["tokens_evaluated"] + data["tokens_predicted"]
|
||||
}
|
||||
}
|
||||
if (len(promptToken) != 0):
|
||||
resData["promptToken"] = promptToken
|
||||
if (chat):
|
||||
#only one choice is supported
|
||||
resData["choices"] = [{
|
||||
"index": 0,
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": data["content"],
|
||||
},
|
||||
"finish_reason": "stop" if (data["stopped_eos"] or data["stopped_word"]) else "length"
|
||||
}]
|
||||
else:
|
||||
#only one choice is supported
|
||||
resData["choices"] = [{
|
||||
"text": data["content"],
|
||||
"index": 0,
|
||||
"logprobs": None,
|
||||
"finish_reason": "stop" if (data["stopped_eos"] or data["stopped_word"]) else "length"
|
||||
}]
|
||||
return resData
|
||||
|
||||
def make_resData_stream(data, chat=False, time_now = 0, start=False):
|
||||
resData = {
|
||||
"id": "chatcmpl" if (chat) else "cmpl",
|
||||
"object": "chat.completion.chunk" if (chat) else "text_completion.chunk",
|
||||
"created": time_now,
|
||||
"model": "LLaMA_CPP",
|
||||
"choices": [
|
||||
{
|
||||
"finish_reason": None,
|
||||
"index": 0
|
||||
}
|
||||
]
|
||||
}
|
||||
if (chat):
|
||||
if (start):
|
||||
resData["choices"][0]["delta"] = {
|
||||
"role": "assistant"
|
||||
}
|
||||
else:
|
||||
resData["choices"][0]["delta"] = {
|
||||
"content": data["content"]
|
||||
}
|
||||
if (data["stop"]):
|
||||
resData["choices"][0]["finish_reason"] = "stop" if (data["stopped_eos"] or data["stopped_word"]) else "length"
|
||||
else:
|
||||
resData["choices"][0]["text"] = data["content"]
|
||||
if (data["stop"]):
|
||||
resData["choices"][0]["finish_reason"] = "stop" if (data["stopped_eos"] or data["stopped_word"]) else "length"
|
||||
|
||||
return resData
|
||||
|
||||
|
||||
@app.route('/chat/completions', methods=['POST'])
|
||||
@app.route('/v1/chat/completions', methods=['POST'])
|
||||
def chat_completions():
|
||||
if (args.api_key != "" and request.headers["Authorization"].split()[1] != args.api_key):
|
||||
return Response(status=403)
|
||||
body = request.get_json()
|
||||
stream = False
|
||||
tokenize = False
|
||||
if(is_present(body, "stream")): stream = body["stream"]
|
||||
if(is_present(body, "tokenize")): tokenize = body["tokenize"]
|
||||
postData = make_postData(body, chat=True, stream=stream)
|
||||
|
||||
promptToken = []
|
||||
if (tokenize):
|
||||
tokenData = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/tokenize"), data=json.dumps({"content": postData["prompt"]})).json()
|
||||
promptToken = tokenData["tokens"]
|
||||
|
||||
if (not stream):
|
||||
data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData))
|
||||
print(data.json())
|
||||
resData = make_resData(data.json(), chat=True, promptToken=promptToken)
|
||||
return jsonify(resData)
|
||||
else:
|
||||
def generate():
|
||||
data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData), stream=True)
|
||||
time_now = int(time.time())
|
||||
resData = make_resData_stream({}, chat=True, time_now=time_now, start=True)
|
||||
yield 'data: {}\n'.format(json.dumps(resData))
|
||||
for line in data.iter_lines():
|
||||
if line:
|
||||
decoded_line = line.decode('utf-8')
|
||||
resData = make_resData_stream(json.loads(decoded_line[6:]), chat=True, time_now=time_now)
|
||||
yield 'data: {}\n'.format(json.dumps(resData))
|
||||
return Response(generate(), mimetype='text/event-stream')
|
||||
|
||||
|
||||
@app.route('/completions', methods=['POST'])
|
||||
@app.route('/v1/completions', methods=['POST'])
|
||||
def completion():
|
||||
if (args.api_key != "" and request.headers["Authorization"].split()[1] != args.api_key):
|
||||
return Response(status=403)
|
||||
body = request.get_json()
|
||||
stream = False
|
||||
tokenize = False
|
||||
if(is_present(body, "stream")): stream = body["stream"]
|
||||
if(is_present(body, "tokenize")): tokenize = body["tokenize"]
|
||||
postData = make_postData(body, chat=False, stream=stream)
|
||||
|
||||
promptToken = []
|
||||
if (tokenize):
|
||||
tokenData = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/tokenize"), data=json.dumps({"content": postData["prompt"]})).json()
|
||||
promptToken = tokenData["tokens"]
|
||||
|
||||
if (not stream):
|
||||
data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData))
|
||||
print(data.json())
|
||||
resData = make_resData(data.json(), chat=False, promptToken=promptToken)
|
||||
return jsonify(resData)
|
||||
else:
|
||||
def generate():
|
||||
data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData), stream=True)
|
||||
time_now = int(time.time())
|
||||
for line in data.iter_lines():
|
||||
if line:
|
||||
decoded_line = line.decode('utf-8')
|
||||
resData = make_resData_stream(json.loads(decoded_line[6:]), chat=False, time_now=time_now)
|
||||
yield 'data: {}\n'.format(json.dumps(resData))
|
||||
return Response(generate(), mimetype='text/event-stream')
|
||||
|
||||
if __name__ == '__main__':
|
||||
app.run(args.host, port=args.port)
|
||||
@@ -1,109 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
API_URL="${API_URL:-http://127.0.0.1:8080}"
|
||||
|
||||
CHAT=(
|
||||
"Hello, Assistant."
|
||||
"Hello. How may I help you today?"
|
||||
)
|
||||
|
||||
INSTRUCTION="A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions."
|
||||
|
||||
trim() {
|
||||
shopt -s extglob
|
||||
set -- "${1##+([[:space:]])}"
|
||||
printf "%s" "${1%%+([[:space:]])}"
|
||||
}
|
||||
|
||||
trim_trailing() {
|
||||
shopt -s extglob
|
||||
printf "%s" "${1%%+([[:space:]])}"
|
||||
}
|
||||
|
||||
format_prompt() {
|
||||
if [[ "${#CHAT[@]}" -eq 0 ]]; then
|
||||
echo -n "[INST] <<SYS>>\n${INSTRUCTION}\n<</SYS>>"
|
||||
else
|
||||
LAST_INDEX=$(( ${#CHAT[@]} - 1 ))
|
||||
echo -n "${CHAT[$LAST_INDEX]}\n[INST] $1 [/INST]"
|
||||
fi
|
||||
}
|
||||
|
||||
tokenize() {
|
||||
curl \
|
||||
--silent \
|
||||
--request POST \
|
||||
--url "${API_URL}/tokenize" \
|
||||
--header "Content-Type: application/json" \
|
||||
--data-raw "$(jq -ns --arg content "$1" '{content:$content}')" \
|
||||
| jq '.tokens[]'
|
||||
}
|
||||
|
||||
N_KEEP=$(tokenize "[INST] <<SYS>>\n${INSTRUCTION}\n<</SYS>>" | wc -l)
|
||||
|
||||
chat_completion() {
|
||||
PROMPT="$(trim_trailing "$(format_prompt "$1")")"
|
||||
DATA="$(echo -n "$PROMPT" | jq -Rs --argjson n_keep $N_KEEP '{
|
||||
prompt: .,
|
||||
temperature: 0.2,
|
||||
top_k: 40,
|
||||
top_p: 0.9,
|
||||
n_keep: $n_keep,
|
||||
n_predict: 1024,
|
||||
stop: ["[INST]"],
|
||||
stream: true
|
||||
}')"
|
||||
|
||||
# Create a temporary file to hold the Python output
|
||||
TEMPFILE=$(mktemp)
|
||||
|
||||
exec 3< <(curl \
|
||||
--silent \
|
||||
--no-buffer \
|
||||
--request POST \
|
||||
--url "${API_URL}/completion" \
|
||||
--header "Content-Type: application/json" \
|
||||
--data-raw "${DATA}")
|
||||
|
||||
python -c "
|
||||
import json
|
||||
import sys
|
||||
|
||||
answer = ''
|
||||
while True:
|
||||
line = sys.stdin.readline()
|
||||
if not line:
|
||||
break
|
||||
if line.startswith('data: '):
|
||||
json_content = line[6:].strip()
|
||||
content = json.loads(json_content)['content']
|
||||
sys.stdout.write(content)
|
||||
sys.stdout.flush()
|
||||
answer += content
|
||||
|
||||
answer = answer.rstrip('\n')
|
||||
|
||||
# Write the answer to the temporary file
|
||||
with open('$TEMPFILE', 'w') as f:
|
||||
f.write(answer)
|
||||
" <&3
|
||||
|
||||
exec 3<&-
|
||||
|
||||
# Read the answer from the temporary file
|
||||
ANSWER=$(cat $TEMPFILE)
|
||||
|
||||
# Clean up the temporary file
|
||||
rm $TEMPFILE
|
||||
|
||||
printf "\n"
|
||||
|
||||
CHAT+=("$1" "$(trim "$ANSWER")")
|
||||
}
|
||||
|
||||
while true; do
|
||||
echo -en "\033[0;32m" # Green color
|
||||
read -r -e -p "> " QUESTION
|
||||
echo -en "\033[0m" # Reset color
|
||||
chat_completion "${QUESTION}"
|
||||
done
|
||||
@@ -1,34 +1,5 @@
|
||||
import * as readline from 'node:readline'
|
||||
import { stdin, stdout } from 'node:process'
|
||||
import { readFileSync } from 'node:fs'
|
||||
import { SchemaConverter } from './public/json-schema-to-grammar.mjs'
|
||||
|
||||
const args = process.argv.slice(2);
|
||||
const grammarJsonSchemaFile = args.find(
|
||||
(_, index) => args[index - 1] === "--grammar-json-schema"
|
||||
);
|
||||
const grammarFile = args.find((_, index) => args[index - 1] === "--grammar");
|
||||
|
||||
// Example usage: function,arguments
|
||||
const grammarJsonSchemaPropOrder = args.find(
|
||||
(_, index) => args[index - 1] === "--grammar-json-schema-prop-order"
|
||||
);
|
||||
const propOrder = grammarJsonSchemaPropOrder
|
||||
? grammarJsonSchemaPropOrder
|
||||
.split(",")
|
||||
.reduce((acc, cur, index) => ({ ...acc, [cur]: index }), {})
|
||||
: {};
|
||||
|
||||
let grammar = null
|
||||
if (grammarJsonSchemaFile) {
|
||||
const schema = JSON.parse(readFileSync(grammarJsonSchemaFile, 'utf-8'))
|
||||
const converter = new SchemaConverter(propOrder)
|
||||
converter.visit(schema, '')
|
||||
grammar = converter.formatGrammar()
|
||||
}
|
||||
if (grammarFile) {
|
||||
grammar = readFileSync(grammarFile, 'utf-8')
|
||||
}
|
||||
|
||||
const API_URL = 'http://127.0.0.1:8080'
|
||||
|
||||
@@ -77,7 +48,6 @@ async function chat_completion(question) {
|
||||
n_keep: n_keep,
|
||||
n_predict: 256,
|
||||
stop: ["\n### Human:"], // stop completion after generating this
|
||||
grammar,
|
||||
stream: true,
|
||||
})
|
||||
})
|
||||
|
||||
2
examples/server/chat.sh
Executable file → Normal file
2
examples/server/chat.sh
Executable file → Normal file
@@ -32,7 +32,6 @@ tokenize() {
|
||||
--silent \
|
||||
--request POST \
|
||||
--url "${API_URL}/tokenize" \
|
||||
--header "Content-Type: application/json" \
|
||||
--data-raw "$(jq -ns --arg content "$1" '{content:$content}')" \
|
||||
| jq '.tokens[]'
|
||||
}
|
||||
@@ -65,7 +64,6 @@ chat_completion() {
|
||||
--no-buffer \
|
||||
--request POST \
|
||||
--url "${API_URL}/completion" \
|
||||
--header "Content-Type: application/json" \
|
||||
--data-raw "${DATA}")
|
||||
|
||||
printf "\n"
|
||||
|
||||
@@ -1,428 +0,0 @@
|
||||
unsigned char completion_js[] = {
|
||||
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x44,
|
||||
0x65, 0x66, 0x61, 0x75, 0x6c, 0x74, 0x73, 0x20, 0x3d, 0x20, 0x7b, 0x0a,
|
||||
0x20, 0x20, 0x73, 0x74, 0x72, 0x65, 0x61, 0x6d, 0x3a, 0x20, 0x74, 0x72,
|
||||
0x75, 0x65, 0x2c, 0x0a, 0x20, 0x20, 0x6e, 0x5f, 0x70, 0x72, 0x65, 0x64,
|
||||
0x69, 0x63, 0x74, 0x3a, 0x20, 0x35, 0x30, 0x30, 0x2c, 0x0a, 0x20, 0x20,
|
||||
0x74, 0x65, 0x6d, 0x70, 0x65, 0x72, 0x61, 0x74, 0x75, 0x72, 0x65, 0x3a,
|
||||
0x20, 0x30, 0x2e, 0x32, 0x2c, 0x0a, 0x20, 0x20, 0x73, 0x74, 0x6f, 0x70,
|
||||
0x3a, 0x20, 0x5b, 0x22, 0x3c, 0x2f, 0x73, 0x3e, 0x22, 0x5d, 0x0a, 0x7d,
|
||||
0x3b, 0x0a, 0x0a, 0x6c, 0x65, 0x74, 0x20, 0x67, 0x65, 0x6e, 0x65, 0x72,
|
||||
0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e,
|
||||
0x67, 0x73, 0x20, 0x3d, 0x20, 0x6e, 0x75, 0x6c, 0x6c, 0x3b, 0x0a, 0x0a,
|
||||
0x0a, 0x2f, 0x2f, 0x20, 0x43, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x65,
|
||||
0x73, 0x20, 0x74, 0x68, 0x65, 0x20, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74,
|
||||
0x20, 0x61, 0x73, 0x20, 0x61, 0x20, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61,
|
||||
0x74, 0x6f, 0x72, 0x2e, 0x20, 0x52, 0x65, 0x63, 0x6f, 0x6d, 0x6d, 0x65,
|
||||
0x6e, 0x64, 0x65, 0x64, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x6d, 0x6f, 0x73,
|
||||
0x74, 0x20, 0x75, 0x73, 0x65, 0x20, 0x63, 0x61, 0x73, 0x65, 0x73, 0x2e,
|
||||
0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x45, 0x78, 0x61, 0x6d, 0x70,
|
||||
0x6c, 0x65, 0x3a, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20,
|
||||
0x20, 0x69, 0x6d, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x7b, 0x20, 0x6c, 0x6c,
|
||||
0x61, 0x6d, 0x61, 0x20, 0x7d, 0x20, 0x66, 0x72, 0x6f, 0x6d, 0x20, 0x27,
|
||||
0x2f, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x2e,
|
||||
0x6a, 0x73, 0x27, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20,
|
||||
0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72, 0x65, 0x71, 0x75, 0x65,
|
||||
0x73, 0x74, 0x20, 0x3d, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x28, 0x22,
|
||||
0x54, 0x65, 0x6c, 0x6c, 0x20, 0x6d, 0x65, 0x20, 0x61, 0x20, 0x6a, 0x6f,
|
||||
0x6b, 0x65, 0x22, 0x2c, 0x20, 0x7b, 0x6e, 0x5f, 0x70, 0x72, 0x65, 0x64,
|
||||
0x69, 0x63, 0x74, 0x3a, 0x20, 0x38, 0x30, 0x30, 0x7d, 0x29, 0x0a, 0x2f,
|
||||
0x2f, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x61, 0x77, 0x61,
|
||||
0x69, 0x74, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68,
|
||||
0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x72, 0x65, 0x71, 0x75, 0x65,
|
||||
0x73, 0x74, 0x29, 0x20, 0x7b, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x77,
|
||||
0x72, 0x69, 0x74, 0x65, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64,
|
||||
0x61, 0x74, 0x61, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29,
|
||||
0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x2f, 0x2f, 0x0a,
|
||||
0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x61, 0x73, 0x79, 0x6e, 0x63,
|
||||
0x20, 0x66, 0x75, 0x6e, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x2a, 0x20, 0x6c,
|
||||
0x6c, 0x61, 0x6d, 0x61, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c,
|
||||
0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d, 0x20, 0x7b, 0x7d,
|
||||
0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x20, 0x3d, 0x20, 0x7b,
|
||||
0x7d, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63,
|
||||
0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x20, 0x3d, 0x20,
|
||||
0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x72,
|
||||
0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x69, 0x66,
|
||||
0x20, 0x28, 0x21, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65,
|
||||
0x72, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e,
|
||||
0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x6e, 0x65,
|
||||
0x77, 0x20, 0x41, 0x62, 0x6f, 0x72, 0x74, 0x43, 0x6f, 0x6e, 0x74, 0x72,
|
||||
0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d,
|
||||
0x0a, 0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x6f,
|
||||
0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x50, 0x61, 0x72, 0x61,
|
||||
0x6d, 0x73, 0x20, 0x3d, 0x20, 0x7b, 0x20, 0x2e, 0x2e, 0x2e, 0x70, 0x61,
|
||||
0x72, 0x61, 0x6d, 0x44, 0x65, 0x66, 0x61, 0x75, 0x6c, 0x74, 0x73, 0x2c,
|
||||
0x20, 0x2e, 0x2e, 0x2e, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20,
|
||||
0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x20, 0x7d, 0x3b, 0x0a, 0x0a, 0x20,
|
||||
0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72, 0x65, 0x73, 0x70, 0x6f,
|
||||
0x6e, 0x73, 0x65, 0x20, 0x3d, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20,
|
||||
0x66, 0x65, 0x74, 0x63, 0x68, 0x28, 0x22, 0x2f, 0x63, 0x6f, 0x6d, 0x70,
|
||||
0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x22, 0x2c, 0x20, 0x7b, 0x0a, 0x20,
|
||||
0x20, 0x20, 0x20, 0x6d, 0x65, 0x74, 0x68, 0x6f, 0x64, 0x3a, 0x20, 0x27,
|
||||
0x50, 0x4f, 0x53, 0x54, 0x27, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x62,
|
||||
0x6f, 0x64, 0x79, 0x3a, 0x20, 0x4a, 0x53, 0x4f, 0x4e, 0x2e, 0x73, 0x74,
|
||||
0x72, 0x69, 0x6e, 0x67, 0x69, 0x66, 0x79, 0x28, 0x63, 0x6f, 0x6d, 0x70,
|
||||
0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73,
|
||||
0x29, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x68, 0x65, 0x61, 0x64, 0x65,
|
||||
0x72, 0x73, 0x3a, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x27, 0x43, 0x6f, 0x6e, 0x6e, 0x65, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x27,
|
||||
0x3a, 0x20, 0x27, 0x6b, 0x65, 0x65, 0x70, 0x2d, 0x61, 0x6c, 0x69, 0x76,
|
||||
0x65, 0x27, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x27, 0x43,
|
||||
0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x2d, 0x54, 0x79, 0x70, 0x65, 0x27,
|
||||
0x3a, 0x20, 0x27, 0x61, 0x70, 0x70, 0x6c, 0x69, 0x63, 0x61, 0x74, 0x69,
|
||||
0x6f, 0x6e, 0x2f, 0x6a, 0x73, 0x6f, 0x6e, 0x27, 0x2c, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x27, 0x41, 0x63, 0x63, 0x65, 0x70, 0x74, 0x27,
|
||||
0x3a, 0x20, 0x27, 0x74, 0x65, 0x78, 0x74, 0x2f, 0x65, 0x76, 0x65, 0x6e,
|
||||
0x74, 0x2d, 0x73, 0x74, 0x72, 0x65, 0x61, 0x6d, 0x27, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x7d, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x73, 0x69, 0x67,
|
||||
0x6e, 0x61, 0x6c, 0x3a, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c,
|
||||
0x6c, 0x65, 0x72, 0x2e, 0x73, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x2c, 0x0a,
|
||||
0x20, 0x20, 0x7d, 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e,
|
||||
0x73, 0x74, 0x20, 0x72, 0x65, 0x61, 0x64, 0x65, 0x72, 0x20, 0x3d, 0x20,
|
||||
0x72, 0x65, 0x73, 0x70, 0x6f, 0x6e, 0x73, 0x65, 0x2e, 0x62, 0x6f, 0x64,
|
||||
0x79, 0x2e, 0x67, 0x65, 0x74, 0x52, 0x65, 0x61, 0x64, 0x65, 0x72, 0x28,
|
||||
0x29, 0x3b, 0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x64,
|
||||
0x65, 0x63, 0x6f, 0x64, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x6e, 0x65, 0x77,
|
||||
0x20, 0x54, 0x65, 0x78, 0x74, 0x44, 0x65, 0x63, 0x6f, 0x64, 0x65, 0x72,
|
||||
0x28, 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63,
|
||||
0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b,
|
||||
0x0a, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f,
|
||||
0x76, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, 0x20, 0x2f, 0x2f,
|
||||
0x20, 0x42, 0x75, 0x66, 0x66, 0x65, 0x72, 0x20, 0x66, 0x6f, 0x72, 0x20,
|
||||
0x70, 0x61, 0x72, 0x74, 0x69, 0x61, 0x6c, 0x6c, 0x79, 0x20, 0x72, 0x65,
|
||||
0x61, 0x64, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x73, 0x0a, 0x0a, 0x20, 0x20,
|
||||
0x74, 0x72, 0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65,
|
||||
0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x74, 0x72, 0x75,
|
||||
0x65, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x77, 0x68, 0x69, 0x6c,
|
||||
0x65, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x29, 0x20, 0x7b, 0x0a, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72,
|
||||
0x65, 0x73, 0x75, 0x6c, 0x74, 0x20, 0x3d, 0x20, 0x61, 0x77, 0x61, 0x69,
|
||||
0x74, 0x20, 0x72, 0x65, 0x61, 0x64, 0x65, 0x72, 0x2e, 0x72, 0x65, 0x61,
|
||||
0x64, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69,
|
||||
0x66, 0x20, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x6f,
|
||||
0x6e, 0x65, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x62, 0x72, 0x65, 0x61, 0x6b, 0x3b, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x2f, 0x2f, 0x20, 0x41, 0x64, 0x64, 0x20, 0x61, 0x6e, 0x79, 0x20, 0x6c,
|
||||
0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72, 0x20, 0x64, 0x61, 0x74, 0x61,
|
||||
0x20, 0x74, 0x6f, 0x20, 0x74, 0x68, 0x65, 0x20, 0x63, 0x75, 0x72, 0x72,
|
||||
0x65, 0x6e, 0x74, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66,
|
||||
0x20, 0x64, 0x61, 0x74, 0x61, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x74, 0x65, 0x78, 0x74, 0x20, 0x3d,
|
||||
0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72, 0x20, 0x2b, 0x20,
|
||||
0x64, 0x65, 0x63, 0x6f, 0x64, 0x65, 0x72, 0x2e, 0x64, 0x65, 0x63, 0x6f,
|
||||
0x64, 0x65, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x76, 0x61,
|
||||
0x6c, 0x75, 0x65, 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x2f, 0x2f, 0x20, 0x43, 0x68, 0x65, 0x63, 0x6b, 0x20, 0x69, 0x66,
|
||||
0x20, 0x74, 0x68, 0x65, 0x20, 0x6c, 0x61, 0x73, 0x74, 0x20, 0x63, 0x68,
|
||||
0x61, 0x72, 0x61, 0x63, 0x74, 0x65, 0x72, 0x20, 0x69, 0x73, 0x20, 0x61,
|
||||
0x20, 0x6c, 0x69, 0x6e, 0x65, 0x20, 0x62, 0x72, 0x65, 0x61, 0x6b, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20,
|
||||
0x65, 0x6e, 0x64, 0x73, 0x57, 0x69, 0x74, 0x68, 0x4c, 0x69, 0x6e, 0x65,
|
||||
0x42, 0x72, 0x65, 0x61, 0x6b, 0x20, 0x3d, 0x20, 0x74, 0x65, 0x78, 0x74,
|
||||
0x2e, 0x65, 0x6e, 0x64, 0x73, 0x57, 0x69, 0x74, 0x68, 0x28, 0x27, 0x5c,
|
||||
0x6e, 0x27, 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x2f, 0x2f, 0x20, 0x53, 0x70, 0x6c, 0x69, 0x74, 0x20, 0x74, 0x68, 0x65,
|
||||
0x20, 0x74, 0x65, 0x78, 0x74, 0x20, 0x69, 0x6e, 0x74, 0x6f, 0x20, 0x6c,
|
||||
0x69, 0x6e, 0x65, 0x73, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c,
|
||||
0x65, 0x74, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x73, 0x20, 0x3d, 0x20, 0x74,
|
||||
0x65, 0x78, 0x74, 0x2e, 0x73, 0x70, 0x6c, 0x69, 0x74, 0x28, 0x27, 0x5c,
|
||||
0x6e, 0x27, 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x2f, 0x2f, 0x20, 0x49, 0x66, 0x20, 0x74, 0x68, 0x65, 0x20, 0x74, 0x65,
|
||||
0x78, 0x74, 0x20, 0x64, 0x6f, 0x65, 0x73, 0x6e, 0x27, 0x74, 0x20, 0x65,
|
||||
0x6e, 0x64, 0x20, 0x77, 0x69, 0x74, 0x68, 0x20, 0x61, 0x20, 0x6c, 0x69,
|
||||
0x6e, 0x65, 0x20, 0x62, 0x72, 0x65, 0x61, 0x6b, 0x2c, 0x20, 0x74, 0x68,
|
||||
0x65, 0x6e, 0x20, 0x74, 0x68, 0x65, 0x20, 0x6c, 0x61, 0x73, 0x74, 0x20,
|
||||
0x6c, 0x69, 0x6e, 0x65, 0x20, 0x69, 0x73, 0x20, 0x69, 0x6e, 0x63, 0x6f,
|
||||
0x6d, 0x70, 0x6c, 0x65, 0x74, 0x65, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x2f, 0x2f, 0x20, 0x53, 0x74, 0x6f, 0x72, 0x65, 0x20, 0x69, 0x74,
|
||||
0x20, 0x69, 0x6e, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72,
|
||||
0x20, 0x74, 0x6f, 0x20, 0x62, 0x65, 0x20, 0x61, 0x64, 0x64, 0x65, 0x64,
|
||||
0x20, 0x74, 0x6f, 0x20, 0x74, 0x68, 0x65, 0x20, 0x6e, 0x65, 0x78, 0x74,
|
||||
0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x64, 0x61,
|
||||
0x74, 0x61, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20,
|
||||
0x28, 0x21, 0x65, 0x6e, 0x64, 0x73, 0x57, 0x69, 0x74, 0x68, 0x4c, 0x69,
|
||||
0x6e, 0x65, 0x42, 0x72, 0x65, 0x61, 0x6b, 0x29, 0x20, 0x7b, 0x0a, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f,
|
||||
0x76, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x73, 0x2e,
|
||||
0x70, 0x6f, 0x70, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x7d, 0x20, 0x65, 0x6c, 0x73, 0x65, 0x20, 0x7b, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76,
|
||||
0x65, 0x72, 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, 0x20, 0x2f, 0x2f, 0x20,
|
||||
0x52, 0x65, 0x73, 0x65, 0x74, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76,
|
||||
0x65, 0x72, 0x20, 0x69, 0x66, 0x20, 0x77, 0x65, 0x20, 0x68, 0x61, 0x76,
|
||||
0x65, 0x20, 0x61, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x20, 0x62, 0x72, 0x65,
|
||||
0x61, 0x6b, 0x20, 0x61, 0x74, 0x20, 0x74, 0x68, 0x65, 0x20, 0x65, 0x6e,
|
||||
0x64, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x50, 0x61, 0x72, 0x73,
|
||||
0x65, 0x20, 0x61, 0x6c, 0x6c, 0x20, 0x73, 0x73, 0x65, 0x20, 0x65, 0x76,
|
||||
0x65, 0x6e, 0x74, 0x73, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x61, 0x64, 0x64,
|
||||
0x20, 0x74, 0x68, 0x65, 0x6d, 0x20, 0x74, 0x6f, 0x20, 0x72, 0x65, 0x73,
|
||||
0x75, 0x6c, 0x74, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f,
|
||||
0x6e, 0x73, 0x74, 0x20, 0x72, 0x65, 0x67, 0x65, 0x78, 0x20, 0x3d, 0x20,
|
||||
0x2f, 0x5e, 0x28, 0x5c, 0x53, 0x2b, 0x29, 0x3a, 0x5c, 0x73, 0x28, 0x2e,
|
||||
0x2a, 0x29, 0x24, 0x2f, 0x67, 0x6d, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74,
|
||||
0x20, 0x6c, 0x69, 0x6e, 0x65, 0x20, 0x6f, 0x66, 0x20, 0x6c, 0x69, 0x6e,
|
||||
0x65, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6d, 0x61, 0x74, 0x63,
|
||||
0x68, 0x20, 0x3d, 0x20, 0x72, 0x65, 0x67, 0x65, 0x78, 0x2e, 0x65, 0x78,
|
||||
0x65, 0x63, 0x28, 0x6c, 0x69, 0x6e, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x6d, 0x61,
|
||||
0x74, 0x63, 0x68, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x5b,
|
||||
0x6d, 0x61, 0x74, 0x63, 0x68, 0x5b, 0x31, 0x5d, 0x5d, 0x20, 0x3d, 0x20,
|
||||
0x6d, 0x61, 0x74, 0x63, 0x68, 0x5b, 0x32, 0x5d, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x73, 0x69,
|
||||
0x6e, 0x63, 0x65, 0x20, 0x77, 0x65, 0x20, 0x6b, 0x6e, 0x6f, 0x77, 0x20,
|
||||
0x74, 0x68, 0x69, 0x73, 0x20, 0x69, 0x73, 0x20, 0x6c, 0x6c, 0x61, 0x6d,
|
||||
0x61, 0x2e, 0x63, 0x70, 0x70, 0x2c, 0x20, 0x6c, 0x65, 0x74, 0x27, 0x73,
|
||||
0x20, 0x6a, 0x75, 0x73, 0x74, 0x20, 0x64, 0x65, 0x63, 0x6f, 0x64, 0x65,
|
||||
0x20, 0x74, 0x68, 0x65, 0x20, 0x6a, 0x73, 0x6f, 0x6e, 0x20, 0x69, 0x6e,
|
||||
0x20, 0x64, 0x61, 0x74, 0x61, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x72, 0x65, 0x73, 0x75,
|
||||
0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x29, 0x20, 0x7b, 0x0a, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72,
|
||||
0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x20, 0x3d,
|
||||
0x20, 0x4a, 0x53, 0x4f, 0x4e, 0x2e, 0x70, 0x61, 0x72, 0x73, 0x65, 0x28,
|
||||
0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x29,
|
||||
0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x2b, 0x3d,
|
||||
0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61,
|
||||
0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3b, 0x0a, 0x0a, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f,
|
||||
0x2f, 0x20, 0x79, 0x69, 0x65, 0x6c, 0x64, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x79, 0x69, 0x65, 0x6c,
|
||||
0x64, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x3b, 0x0a, 0x0a, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f,
|
||||
0x2f, 0x20, 0x69, 0x66, 0x20, 0x77, 0x65, 0x20, 0x67, 0x6f, 0x74, 0x20,
|
||||
0x61, 0x20, 0x73, 0x74, 0x6f, 0x70, 0x20, 0x74, 0x6f, 0x6b, 0x65, 0x6e,
|
||||
0x20, 0x66, 0x72, 0x6f, 0x6d, 0x20, 0x73, 0x65, 0x72, 0x76, 0x65, 0x72,
|
||||
0x2c, 0x20, 0x77, 0x65, 0x20, 0x77, 0x69, 0x6c, 0x6c, 0x20, 0x62, 0x72,
|
||||
0x65, 0x61, 0x6b, 0x20, 0x68, 0x65, 0x72, 0x65, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20,
|
||||
0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61,
|
||||
0x2e, 0x73, 0x74, 0x6f, 0x70, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69,
|
||||
0x66, 0x20, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61,
|
||||
0x74, 0x61, 0x2e, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f,
|
||||
0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20,
|
||||
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61,
|
||||
0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67,
|
||||
0x73, 0x20, 0x3d, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64,
|
||||
0x61, 0x74, 0x61, 0x2e, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69,
|
||||
0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x3b,
|
||||
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x20,
|
||||
0x3d, 0x20, 0x66, 0x61, 0x6c, 0x73, 0x65, 0x3b, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x62,
|
||||
0x72, 0x65, 0x61, 0x6b, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x7d, 0x20,
|
||||
0x63, 0x61, 0x74, 0x63, 0x68, 0x20, 0x28, 0x65, 0x29, 0x20, 0x7b, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x65, 0x2e, 0x6e, 0x61,
|
||||
0x6d, 0x65, 0x20, 0x21, 0x3d, 0x3d, 0x20, 0x27, 0x41, 0x62, 0x6f, 0x72,
|
||||
0x74, 0x45, 0x72, 0x72, 0x6f, 0x72, 0x27, 0x29, 0x20, 0x7b, 0x0a, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65,
|
||||
0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x28, 0x22, 0x6c, 0x6c, 0x61, 0x6d,
|
||||
0x61, 0x20, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x3a, 0x20, 0x22, 0x2c, 0x20,
|
||||
0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x74, 0x68, 0x72, 0x6f, 0x77, 0x20, 0x65, 0x3b, 0x0a, 0x20,
|
||||
0x20, 0x7d, 0x0a, 0x20, 0x20, 0x66, 0x69, 0x6e, 0x61, 0x6c, 0x6c, 0x79,
|
||||
0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72,
|
||||
0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2e, 0x61, 0x62, 0x6f, 0x72, 0x74, 0x28,
|
||||
0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x72, 0x65,
|
||||
0x74, 0x75, 0x72, 0x6e, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74,
|
||||
0x3b, 0x0a, 0x7d, 0x0a, 0x0a, 0x2f, 0x2f, 0x20, 0x43, 0x61, 0x6c, 0x6c,
|
||||
0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2c, 0x20, 0x72, 0x65, 0x74, 0x75,
|
||||
0x72, 0x6e, 0x20, 0x61, 0x6e, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x20,
|
||||
0x74, 0x61, 0x72, 0x67, 0x65, 0x74, 0x20, 0x74, 0x68, 0x61, 0x74, 0x20,
|
||||
0x79, 0x6f, 0x75, 0x20, 0x63, 0x61, 0x6e, 0x20, 0x73, 0x75, 0x62, 0x63,
|
||||
0x72, 0x69, 0x62, 0x65, 0x20, 0x74, 0x6f, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f,
|
||||
0x2f, 0x20, 0x45, 0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65, 0x3a, 0x0a, 0x2f,
|
||||
0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x69, 0x6d, 0x70, 0x6f,
|
||||
0x72, 0x74, 0x20, 0x7b, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x45, 0x76,
|
||||
0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x20, 0x7d, 0x20,
|
||||
0x66, 0x72, 0x6f, 0x6d, 0x20, 0x27, 0x2f, 0x63, 0x6f, 0x6d, 0x70, 0x6c,
|
||||
0x65, 0x74, 0x69, 0x6f, 0x6e, 0x2e, 0x6a, 0x73, 0x27, 0x0a, 0x2f, 0x2f,
|
||||
0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74,
|
||||
0x20, 0x63, 0x6f, 0x6e, 0x6e, 0x20, 0x3d, 0x20, 0x6c, 0x6c, 0x61, 0x6d,
|
||||
0x61, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74,
|
||||
0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x20,
|
||||
0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x6e, 0x2e, 0x61, 0x64, 0x64, 0x45,
|
||||
0x76, 0x65, 0x6e, 0x74, 0x4c, 0x69, 0x73, 0x74, 0x65, 0x6e, 0x65, 0x72,
|
||||
0x28, 0x22, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x22, 0x2c, 0x20,
|
||||
0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b,
|
||||
0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x64, 0x6f, 0x63,
|
||||
0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x77, 0x72, 0x69, 0x74, 0x65, 0x28,
|
||||
0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c,
|
||||
0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x0a, 0x2f, 0x2f,
|
||||
0x20, 0x20, 0x20, 0x20, 0x7d, 0x29, 0x0a, 0x2f, 0x2f, 0x0a, 0x65, 0x78,
|
||||
0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c,
|
||||
0x6c, 0x61, 0x6d, 0x61, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72,
|
||||
0x67, 0x65, 0x74, 0x20, 0x3d, 0x20, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70,
|
||||
0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d, 0x20,
|
||||
0x7b, 0x7d, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x20, 0x3d,
|
||||
0x20, 0x7b, 0x7d, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20,
|
||||
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54,
|
||||
0x61, 0x72, 0x67, 0x65, 0x74, 0x20, 0x3d, 0x20, 0x6e, 0x65, 0x77, 0x20,
|
||||
0x45, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x28,
|
||||
0x29, 0x3b, 0x0a, 0x20, 0x20, 0x28, 0x61, 0x73, 0x79, 0x6e, 0x63, 0x20,
|
||||
0x28, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x6c, 0x65, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20,
|
||||
0x3d, 0x20, 0x22, 0x22, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6f,
|
||||
0x72, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x28, 0x63, 0x6f, 0x6e,
|
||||
0x73, 0x74, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20,
|
||||
0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74,
|
||||
0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x63, 0x6f,
|
||||
0x6e, 0x66, 0x69, 0x67, 0x29, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b,
|
||||
0x2e, 0x64, 0x61, 0x74, 0x61, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74,
|
||||
0x20, 0x2b, 0x3d, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61,
|
||||
0x74, 0x61, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3b, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x65, 0x76, 0x65, 0x6e,
|
||||
0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x64, 0x69, 0x73, 0x70,
|
||||
0x61, 0x74, 0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65,
|
||||
0x77, 0x20, 0x43, 0x75, 0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e,
|
||||
0x74, 0x28, 0x22, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x22, 0x2c,
|
||||
0x20, 0x7b, 0x20, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20, 0x63,
|
||||
0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x20, 0x7d, 0x29,
|
||||
0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x63, 0x68, 0x75,
|
||||
0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x67, 0x65, 0x6e, 0x65,
|
||||
0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69,
|
||||
0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67,
|
||||
0x65, 0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, 0x74, 0x63, 0x68, 0x45,
|
||||
0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, 0x20, 0x43, 0x75, 0x73,
|
||||
0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x22, 0x67, 0x65,
|
||||
0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74,
|
||||
0x74, 0x69, 0x6e, 0x67, 0x73, 0x22, 0x2c, 0x20, 0x7b, 0x20, 0x64, 0x65,
|
||||
0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e,
|
||||
0x64, 0x61, 0x74, 0x61, 0x2e, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74,
|
||||
0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73,
|
||||
0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28,
|
||||
0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x74,
|
||||
0x69, 0x6d, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54,
|
||||
0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, 0x74,
|
||||
0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, 0x20,
|
||||
0x43, 0x75, 0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28,
|
||||
0x22, 0x74, 0x69, 0x6d, 0x69, 0x6e, 0x67, 0x73, 0x22, 0x2c, 0x20, 0x7b,
|
||||
0x20, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20, 0x63, 0x68, 0x75,
|
||||
0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x74, 0x69, 0x6d, 0x69,
|
||||
0x6e, 0x67, 0x73, 0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20,
|
||||
0x20, 0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67,
|
||||
0x65, 0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, 0x74, 0x63, 0x68, 0x45,
|
||||
0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, 0x20, 0x43, 0x75, 0x73,
|
||||
0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x22, 0x64, 0x6f,
|
||||
0x6e, 0x65, 0x22, 0x2c, 0x20, 0x7b, 0x20, 0x64, 0x65, 0x74, 0x61, 0x69,
|
||||
0x6c, 0x3a, 0x20, 0x7b, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74,
|
||||
0x20, 0x7d, 0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x29,
|
||||
0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e,
|
||||
0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74,
|
||||
0x3b, 0x0a, 0x7d, 0x0a, 0x0a, 0x2f, 0x2f, 0x20, 0x43, 0x61, 0x6c, 0x6c,
|
||||
0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2c, 0x20, 0x72, 0x65, 0x74, 0x75,
|
||||
0x72, 0x6e, 0x20, 0x61, 0x20, 0x70, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65,
|
||||
0x20, 0x74, 0x68, 0x61, 0x74, 0x20, 0x72, 0x65, 0x73, 0x6f, 0x6c, 0x76,
|
||||
0x65, 0x73, 0x20, 0x74, 0x6f, 0x20, 0x74, 0x68, 0x65, 0x20, 0x63, 0x6f,
|
||||
0x6d, 0x70, 0x6c, 0x65, 0x74, 0x65, 0x64, 0x20, 0x74, 0x65, 0x78, 0x74,
|
||||
0x2e, 0x20, 0x54, 0x68, 0x69, 0x73, 0x20, 0x64, 0x6f, 0x65, 0x73, 0x20,
|
||||
0x6e, 0x6f, 0x74, 0x20, 0x73, 0x75, 0x70, 0x70, 0x6f, 0x72, 0x74, 0x20,
|
||||
0x73, 0x74, 0x72, 0x65, 0x61, 0x6d, 0x69, 0x6e, 0x67, 0x0a, 0x2f, 0x2f,
|
||||
0x0a, 0x2f, 0x2f, 0x20, 0x45, 0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65, 0x3a,
|
||||
0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c,
|
||||
0x6c, 0x61, 0x6d, 0x61, 0x50, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x28,
|
||||
0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x29, 0x2e, 0x74, 0x68, 0x65, 0x6e,
|
||||
0x28, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x20, 0x3d,
|
||||
0x3e, 0x20, 0x7b, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x77, 0x72,
|
||||
0x69, 0x74, 0x65, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29,
|
||||
0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x29, 0x0a, 0x2f,
|
||||
0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6f, 0x72, 0x0a,
|
||||
0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f,
|
||||
0x6e, 0x73, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20,
|
||||
0x3d, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d,
|
||||
0x61, 0x50, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x28, 0x70, 0x72, 0x6f,
|
||||
0x6d, 0x70, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x77, 0x72, 0x69,
|
||||
0x74, 0x65, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x0a,
|
||||
0x2f, 0x2f, 0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f,
|
||||
0x6e, 0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x50, 0x72, 0x6f,
|
||||
0x6d, 0x69, 0x73, 0x65, 0x20, 0x3d, 0x20, 0x28, 0x70, 0x72, 0x6f, 0x6d,
|
||||
0x70, 0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d,
|
||||
0x20, 0x7b, 0x7d, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x20,
|
||||
0x3d, 0x20, 0x7b, 0x7d, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20,
|
||||
0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x6e, 0x65, 0x77, 0x20,
|
||||
0x50, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x28, 0x61, 0x73, 0x79, 0x6e,
|
||||
0x63, 0x20, 0x28, 0x72, 0x65, 0x73, 0x6f, 0x6c, 0x76, 0x65, 0x2c, 0x20,
|
||||
0x72, 0x65, 0x6a, 0x65, 0x63, 0x74, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b,
|
||||
0x0a, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63, 0x6f, 0x6e,
|
||||
0x74, 0x65, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, 0x0a, 0x20,
|
||||
0x20, 0x20, 0x20, 0x74, 0x72, 0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74,
|
||||
0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68, 0x75, 0x6e,
|
||||
0x6b, 0x20, 0x6f, 0x66, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x28, 0x70,
|
||||
0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d,
|
||||
0x73, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x29, 0x29, 0x20,
|
||||
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f,
|
||||
0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x2b, 0x3d, 0x20, 0x63, 0x68, 0x75,
|
||||
0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x63, 0x6f, 0x6e, 0x74,
|
||||
0x65, 0x6e, 0x74, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d,
|
||||
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x73, 0x6f, 0x6c,
|
||||
0x76, 0x65, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x3b,
|
||||
0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x20, 0x63, 0x61, 0x74, 0x63, 0x68,
|
||||
0x20, 0x28, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x20, 0x7b, 0x0a, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x6a, 0x65, 0x63, 0x74, 0x28,
|
||||
0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x7d, 0x0a, 0x20, 0x20, 0x7d, 0x29, 0x3b, 0x0a, 0x7d, 0x3b, 0x0a, 0x0a,
|
||||
0x2f, 0x2a, 0x2a, 0x0a, 0x20, 0x2a, 0x20, 0x28, 0x64, 0x65, 0x70, 0x72,
|
||||
0x65, 0x63, 0x61, 0x74, 0x65, 0x64, 0x29, 0x0a, 0x20, 0x2a, 0x2f, 0x0a,
|
||||
0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74,
|
||||
0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x43, 0x6f, 0x6d, 0x70, 0x6c, 0x65,
|
||||
0x74, 0x65, 0x20, 0x3d, 0x20, 0x61, 0x73, 0x79, 0x6e, 0x63, 0x20, 0x28,
|
||||
0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x74,
|
||||
0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2c, 0x20, 0x63, 0x61, 0x6c, 0x6c,
|
||||
0x62, 0x61, 0x63, 0x6b, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20,
|
||||
0x20, 0x66, 0x6f, 0x72, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x28,
|
||||
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x20,
|
||||
0x6f, 0x66, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x28, 0x70, 0x61, 0x72,
|
||||
0x61, 0x6d, 0x73, 0x2e, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20,
|
||||
0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x7b, 0x20, 0x63, 0x6f,
|
||||
0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x20, 0x7d, 0x29, 0x29,
|
||||
0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x61, 0x6c, 0x6c, 0x62,
|
||||
0x61, 0x63, 0x6b, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x29, 0x3b, 0x0a,
|
||||
0x20, 0x20, 0x7d, 0x0a, 0x7d, 0x0a, 0x0a, 0x2f, 0x2f, 0x20, 0x47, 0x65,
|
||||
0x74, 0x20, 0x74, 0x68, 0x65, 0x20, 0x6d, 0x6f, 0x64, 0x65, 0x6c, 0x20,
|
||||
0x69, 0x6e, 0x66, 0x6f, 0x20, 0x66, 0x72, 0x6f, 0x6d, 0x20, 0x74, 0x68,
|
||||
0x65, 0x20, 0x73, 0x65, 0x72, 0x76, 0x65, 0x72, 0x2e, 0x20, 0x54, 0x68,
|
||||
0x69, 0x73, 0x20, 0x69, 0x73, 0x20, 0x75, 0x73, 0x65, 0x66, 0x75, 0x6c,
|
||||
0x20, 0x66, 0x6f, 0x72, 0x20, 0x67, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67,
|
||||
0x20, 0x74, 0x68, 0x65, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x78, 0x74,
|
||||
0x20, 0x77, 0x69, 0x6e, 0x64, 0x6f, 0x77, 0x20, 0x61, 0x6e, 0x64, 0x20,
|
||||
0x73, 0x6f, 0x20, 0x6f, 0x6e, 0x2e, 0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72,
|
||||
0x74, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d,
|
||||
0x61, 0x4d, 0x6f, 0x64, 0x65, 0x6c, 0x49, 0x6e, 0x66, 0x6f, 0x20, 0x3d,
|
||||
0x20, 0x61, 0x73, 0x79, 0x6e, 0x63, 0x20, 0x28, 0x29, 0x20, 0x3d, 0x3e,
|
||||
0x20, 0x7b, 0x0a, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x21, 0x67, 0x65,
|
||||
0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74,
|
||||
0x74, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f,
|
||||
0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x20, 0x3d, 0x20, 0x61,
|
||||
0x77, 0x61, 0x69, 0x74, 0x20, 0x66, 0x65, 0x74, 0x63, 0x68, 0x28, 0x22,
|
||||
0x2f, 0x6d, 0x6f, 0x64, 0x65, 0x6c, 0x2e, 0x6a, 0x73, 0x6f, 0x6e, 0x22,
|
||||
0x29, 0x2e, 0x74, 0x68, 0x65, 0x6e, 0x28, 0x72, 0x20, 0x3d, 0x3e, 0x20,
|
||||
0x72, 0x2e, 0x6a, 0x73, 0x6f, 0x6e, 0x28, 0x29, 0x29, 0x3b, 0x0a, 0x20,
|
||||
0x20, 0x7d, 0x0a, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20,
|
||||
0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73,
|
||||
0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x3b, 0x0a, 0x7d, 0x0a
|
||||
};
|
||||
unsigned int completion_js_len = 5099;
|
||||
@@ -1,20 +0,0 @@
|
||||
#!/bin/bash
|
||||
# Download and update deps for binary
|
||||
|
||||
# get the directory of this script file
|
||||
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
PUBLIC=$DIR/public
|
||||
|
||||
echo "download js bundle files"
|
||||
curl https://npm.reversehttp.com/@preact/signals-core,@preact/signals,htm/preact,preact,preact/hooks > $PUBLIC/index.js
|
||||
echo >> $PUBLIC/index.js # add newline
|
||||
|
||||
FILES=$(ls $PUBLIC)
|
||||
|
||||
cd $PUBLIC
|
||||
for FILE in $FILES; do
|
||||
echo "generate $FILE.hpp"
|
||||
|
||||
# use simple flag for old version of xxd
|
||||
xxd -i $FILE > $DIR/$FILE.hpp
|
||||
done
|
||||
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@@ -1,311 +0,0 @@
|
||||
unsigned char json_schema_to_grammar_mjs[] = {
|
||||
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x53, 0x50, 0x41, 0x43, 0x45, 0x5f,
|
||||
0x52, 0x55, 0x4c, 0x45, 0x20, 0x3d, 0x20, 0x27, 0x22, 0x20, 0x22, 0x3f,
|
||||
0x27, 0x3b, 0x0a, 0x0a, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x50, 0x52,
|
||||
0x49, 0x4d, 0x49, 0x54, 0x49, 0x56, 0x45, 0x5f, 0x52, 0x55, 0x4c, 0x45,
|
||||
0x53, 0x20, 0x3d, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x62, 0x6f, 0x6f, 0x6c,
|
||||
0x65, 0x61, 0x6e, 0x3a, 0x20, 0x27, 0x28, 0x22, 0x74, 0x72, 0x75, 0x65,
|
||||
0x22, 0x20, 0x7c, 0x20, 0x22, 0x66, 0x61, 0x6c, 0x73, 0x65, 0x22, 0x29,
|
||||
0x20, 0x73, 0x70, 0x61, 0x63, 0x65, 0x27, 0x2c, 0x0a, 0x20, 0x20, 0x6e,
|
||||
0x75, 0x6d, 0x62, 0x65, 0x72, 0x3a, 0x20, 0x27, 0x28, 0x22, 0x2d, 0x22,
|
||||
0x3f, 0x20, 0x28, 0x5b, 0x30, 0x2d, 0x39, 0x5d, 0x20, 0x7c, 0x20, 0x5b,
|
||||
0x31, 0x2d, 0x39, 0x5d, 0x20, 0x5b, 0x30, 0x2d, 0x39, 0x5d, 0x2a, 0x29,
|
||||
0x29, 0x20, 0x28, 0x22, 0x2e, 0x22, 0x20, 0x5b, 0x30, 0x2d, 0x39, 0x5d,
|
||||
0x2b, 0x29, 0x3f, 0x20, 0x28, 0x5b, 0x65, 0x45, 0x5d, 0x20, 0x5b, 0x2d,
|
||||
0x2b, 0x5d, 0x3f, 0x20, 0x5b, 0x30, 0x2d, 0x39, 0x5d, 0x2b, 0x29, 0x3f,
|
||||
0x20, 0x73, 0x70, 0x61, 0x63, 0x65, 0x27, 0x2c, 0x0a, 0x20, 0x20, 0x69,
|
||||
0x6e, 0x74, 0x65, 0x67, 0x65, 0x72, 0x3a, 0x20, 0x27, 0x28, 0x22, 0x2d,
|
||||
0x22, 0x3f, 0x20, 0x28, 0x5b, 0x30, 0x2d, 0x39, 0x5d, 0x20, 0x7c, 0x20,
|
||||
0x5b, 0x31, 0x2d, 0x39, 0x5d, 0x20, 0x5b, 0x30, 0x2d, 0x39, 0x5d, 0x2a,
|
||||
0x29, 0x29, 0x20, 0x73, 0x70, 0x61, 0x63, 0x65, 0x27, 0x2c, 0x0a, 0x20,
|
||||
0x20, 0x73, 0x74, 0x72, 0x69, 0x6e, 0x67, 0x3a, 0x20, 0x60, 0x20, 0x22,
|
||||
0x5c, 0x5c, 0x22, 0x22, 0x20, 0x28, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x5b, 0x5e, 0x22, 0x5c, 0x5c, 0x5c, 0x5c, 0x5d, 0x20,
|
||||
0x7c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x22, 0x5c,
|
||||
0x5c, 0x5c, 0x5c, 0x22, 0x20, 0x28, 0x5b, 0x22, 0x5c, 0x5c, 0x5c, 0x5c,
|
||||
0x2f, 0x62, 0x66, 0x6e, 0x72, 0x74, 0x5d, 0x20, 0x7c, 0x20, 0x22, 0x75,
|
||||
0x22, 0x20, 0x5b, 0x30, 0x2d, 0x39, 0x61, 0x2d, 0x66, 0x41, 0x2d, 0x46,
|
||||
0x5d, 0x20, 0x5b, 0x30, 0x2d, 0x39, 0x61, 0x2d, 0x66, 0x41, 0x2d, 0x46,
|
||||
0x5d, 0x20, 0x5b, 0x30, 0x2d, 0x39, 0x61, 0x2d, 0x66, 0x41, 0x2d, 0x46,
|
||||
0x5d, 0x20, 0x5b, 0x30, 0x2d, 0x39, 0x61, 0x2d, 0x66, 0x41, 0x2d, 0x46,
|
||||
0x5d, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x29, 0x2a, 0x20,
|
||||
0x22, 0x5c, 0x5c, 0x22, 0x22, 0x20, 0x73, 0x70, 0x61, 0x63, 0x65, 0x60,
|
||||
0x2c, 0x0a, 0x20, 0x20, 0x6e, 0x75, 0x6c, 0x6c, 0x3a, 0x20, 0x27, 0x22,
|
||||
0x6e, 0x75, 0x6c, 0x6c, 0x22, 0x20, 0x73, 0x70, 0x61, 0x63, 0x65, 0x27,
|
||||
0x2c, 0x0a, 0x7d, 0x3b, 0x0a, 0x0a, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20,
|
||||
0x49, 0x4e, 0x56, 0x41, 0x4c, 0x49, 0x44, 0x5f, 0x52, 0x55, 0x4c, 0x45,
|
||||
0x5f, 0x43, 0x48, 0x41, 0x52, 0x53, 0x5f, 0x52, 0x45, 0x20, 0x3d, 0x20,
|
||||
0x2f, 0x5b, 0x5e, 0x5c, 0x64, 0x41, 0x2d, 0x5a, 0x61, 0x2d, 0x7a, 0x2d,
|
||||
0x5d, 0x2b, 0x2f, 0x67, 0x3b, 0x0a, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20,
|
||||
0x47, 0x52, 0x41, 0x4d, 0x4d, 0x41, 0x52, 0x5f, 0x4c, 0x49, 0x54, 0x45,
|
||||
0x52, 0x41, 0x4c, 0x5f, 0x45, 0x53, 0x43, 0x41, 0x50, 0x45, 0x5f, 0x52,
|
||||
0x45, 0x20, 0x3d, 0x20, 0x2f, 0x5b, 0x5c, 0x6e, 0x5c, 0x72, 0x22, 0x5d,
|
||||
0x2f, 0x67, 0x3b, 0x0a, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x47, 0x52,
|
||||
0x41, 0x4d, 0x4d, 0x41, 0x52, 0x5f, 0x4c, 0x49, 0x54, 0x45, 0x52, 0x41,
|
||||
0x4c, 0x5f, 0x45, 0x53, 0x43, 0x41, 0x50, 0x45, 0x53, 0x20, 0x3d, 0x20,
|
||||
0x7b, 0x27, 0x5c, 0x72, 0x27, 0x3a, 0x20, 0x27, 0x5c, 0x5c, 0x72, 0x27,
|
||||
0x2c, 0x20, 0x27, 0x5c, 0x6e, 0x27, 0x3a, 0x20, 0x27, 0x5c, 0x5c, 0x6e,
|
||||
0x27, 0x2c, 0x20, 0x27, 0x22, 0x27, 0x3a, 0x20, 0x27, 0x5c, 0x5c, 0x22,
|
||||
0x27, 0x7d, 0x3b, 0x0a, 0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x20,
|
||||
0x63, 0x6c, 0x61, 0x73, 0x73, 0x20, 0x53, 0x63, 0x68, 0x65, 0x6d, 0x61,
|
||||
0x43, 0x6f, 0x6e, 0x76, 0x65, 0x72, 0x74, 0x65, 0x72, 0x20, 0x7b, 0x0a,
|
||||
0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x72, 0x75, 0x63, 0x74, 0x6f,
|
||||
0x72, 0x28, 0x70, 0x72, 0x6f, 0x70, 0x4f, 0x72, 0x64, 0x65, 0x72, 0x29,
|
||||
0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e,
|
||||
0x5f, 0x70, 0x72, 0x6f, 0x70, 0x4f, 0x72, 0x64, 0x65, 0x72, 0x20, 0x3d,
|
||||
0x20, 0x70, 0x72, 0x6f, 0x70, 0x4f, 0x72, 0x64, 0x65, 0x72, 0x20, 0x7c,
|
||||
0x7c, 0x20, 0x7b, 0x7d, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x74, 0x68,
|
||||
0x69, 0x73, 0x2e, 0x5f, 0x72, 0x75, 0x6c, 0x65, 0x73, 0x20, 0x3d, 0x20,
|
||||
0x6e, 0x65, 0x77, 0x20, 0x4d, 0x61, 0x70, 0x28, 0x29, 0x3b, 0x0a, 0x20,
|
||||
0x20, 0x20, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x5f, 0x72, 0x75, 0x6c,
|
||||
0x65, 0x73, 0x2e, 0x73, 0x65, 0x74, 0x28, 0x27, 0x73, 0x70, 0x61, 0x63,
|
||||
0x65, 0x27, 0x2c, 0x20, 0x53, 0x50, 0x41, 0x43, 0x45, 0x5f, 0x52, 0x55,
|
||||
0x4c, 0x45, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20,
|
||||
0x5f, 0x66, 0x6f, 0x72, 0x6d, 0x61, 0x74, 0x4c, 0x69, 0x74, 0x65, 0x72,
|
||||
0x61, 0x6c, 0x28, 0x6c, 0x69, 0x74, 0x65, 0x72, 0x61, 0x6c, 0x29, 0x20,
|
||||
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20,
|
||||
0x65, 0x73, 0x63, 0x61, 0x70, 0x65, 0x64, 0x20, 0x3d, 0x20, 0x4a, 0x53,
|
||||
0x4f, 0x4e, 0x2e, 0x73, 0x74, 0x72, 0x69, 0x6e, 0x67, 0x69, 0x66, 0x79,
|
||||
0x28, 0x6c, 0x69, 0x74, 0x65, 0x72, 0x61, 0x6c, 0x29, 0x2e, 0x72, 0x65,
|
||||
0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x47, 0x52, 0x41, 0x4d, 0x4d, 0x41, 0x52, 0x5f, 0x4c, 0x49, 0x54,
|
||||
0x45, 0x52, 0x41, 0x4c, 0x5f, 0x45, 0x53, 0x43, 0x41, 0x50, 0x45, 0x5f,
|
||||
0x52, 0x45, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x20,
|
||||
0x3d, 0x3e, 0x20, 0x47, 0x52, 0x41, 0x4d, 0x4d, 0x41, 0x52, 0x5f, 0x4c,
|
||||
0x49, 0x54, 0x45, 0x52, 0x41, 0x4c, 0x5f, 0x45, 0x53, 0x43, 0x41, 0x50,
|
||||
0x45, 0x53, 0x5b, 0x6d, 0x5d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x29, 0x3b,
|
||||
0x0a, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20,
|
||||
0x60, 0x22, 0x24, 0x7b, 0x65, 0x73, 0x63, 0x61, 0x70, 0x65, 0x64, 0x7d,
|
||||
0x22, 0x60, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x5f,
|
||||
0x61, 0x64, 0x64, 0x52, 0x75, 0x6c, 0x65, 0x28, 0x6e, 0x61, 0x6d, 0x65,
|
||||
0x2c, 0x20, 0x72, 0x75, 0x6c, 0x65, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x65, 0x73, 0x63, 0x4e, 0x61, 0x6d,
|
||||
0x65, 0x20, 0x3d, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x2e, 0x72, 0x65, 0x70,
|
||||
0x6c, 0x61, 0x63, 0x65, 0x28, 0x49, 0x4e, 0x56, 0x41, 0x4c, 0x49, 0x44,
|
||||
0x5f, 0x52, 0x55, 0x4c, 0x45, 0x5f, 0x43, 0x48, 0x41, 0x52, 0x53, 0x5f,
|
||||
0x52, 0x45, 0x2c, 0x20, 0x27, 0x2d, 0x27, 0x29, 0x3b, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x6b, 0x65, 0x79, 0x20, 0x3d, 0x20,
|
||||
0x65, 0x73, 0x63, 0x4e, 0x61, 0x6d, 0x65, 0x3b, 0x0a, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x5f,
|
||||
0x72, 0x75, 0x6c, 0x65, 0x73, 0x2e, 0x68, 0x61, 0x73, 0x28, 0x65, 0x73,
|
||||
0x63, 0x4e, 0x61, 0x6d, 0x65, 0x29, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x74, 0x68, 0x69, 0x73,
|
||||
0x2e, 0x5f, 0x72, 0x75, 0x6c, 0x65, 0x73, 0x2e, 0x67, 0x65, 0x74, 0x28,
|
||||
0x65, 0x73, 0x63, 0x4e, 0x61, 0x6d, 0x65, 0x29, 0x20, 0x3d, 0x3d, 0x3d,
|
||||
0x20, 0x72, 0x75, 0x6c, 0x65, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20,
|
||||
0x6b, 0x65, 0x79, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d,
|
||||
0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20,
|
||||
0x69, 0x20, 0x3d, 0x20, 0x30, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x77, 0x68, 0x69, 0x6c, 0x65, 0x20, 0x28, 0x74, 0x68, 0x69, 0x73,
|
||||
0x2e, 0x5f, 0x72, 0x75, 0x6c, 0x65, 0x73, 0x2e, 0x68, 0x61, 0x73, 0x28,
|
||||
0x60, 0x24, 0x7b, 0x65, 0x73, 0x63, 0x4e, 0x61, 0x6d, 0x65, 0x7d, 0x24,
|
||||
0x7b, 0x69, 0x7d, 0x60, 0x29, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x20, 0x2b, 0x3d, 0x20, 0x31, 0x3b,
|
||||
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x6b, 0x65, 0x79, 0x20, 0x3d, 0x20, 0x60, 0x24, 0x7b,
|
||||
0x65, 0x73, 0x63, 0x4e, 0x61, 0x6d, 0x65, 0x7d, 0x24, 0x7b, 0x69, 0x7d,
|
||||
0x60, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x5f, 0x72, 0x75, 0x6c, 0x65,
|
||||
0x73, 0x2e, 0x73, 0x65, 0x74, 0x28, 0x6b, 0x65, 0x79, 0x2c, 0x20, 0x72,
|
||||
0x75, 0x6c, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65,
|
||||
0x74, 0x75, 0x72, 0x6e, 0x20, 0x6b, 0x65, 0x79, 0x3b, 0x0a, 0x20, 0x20,
|
||||
0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x76, 0x69, 0x73, 0x69, 0x74, 0x28, 0x73,
|
||||
0x63, 0x68, 0x65, 0x6d, 0x61, 0x2c, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x29,
|
||||
0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74,
|
||||
0x20, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x54, 0x79, 0x70, 0x65, 0x20,
|
||||
0x3d, 0x20, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x2e, 0x74, 0x79, 0x70,
|
||||
0x65, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74,
|
||||
0x20, 0x72, 0x75, 0x6c, 0x65, 0x4e, 0x61, 0x6d, 0x65, 0x20, 0x3d, 0x20,
|
||||
0x6e, 0x61, 0x6d, 0x65, 0x20, 0x7c, 0x7c, 0x20, 0x27, 0x72, 0x6f, 0x6f,
|
||||
0x74, 0x27, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20,
|
||||
0x28, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x2e, 0x6f, 0x6e, 0x65, 0x4f,
|
||||
0x66, 0x20, 0x7c, 0x7c, 0x20, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x2e,
|
||||
0x61, 0x6e, 0x79, 0x4f, 0x66, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72, 0x75, 0x6c,
|
||||
0x65, 0x20, 0x3d, 0x20, 0x28, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x2e,
|
||||
0x6f, 0x6e, 0x65, 0x4f, 0x66, 0x20, 0x7c, 0x7c, 0x20, 0x73, 0x63, 0x68,
|
||||
0x65, 0x6d, 0x61, 0x2e, 0x61, 0x6e, 0x79, 0x4f, 0x66, 0x29, 0x2e, 0x6d,
|
||||
0x61, 0x70, 0x28, 0x28, 0x61, 0x6c, 0x74, 0x53, 0x63, 0x68, 0x65, 0x6d,
|
||||
0x61, 0x2c, 0x20, 0x69, 0x29, 0x20, 0x3d, 0x3e, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x76, 0x69,
|
||||
0x73, 0x69, 0x74, 0x28, 0x61, 0x6c, 0x74, 0x53, 0x63, 0x68, 0x65, 0x6d,
|
||||
0x61, 0x2c, 0x20, 0x60, 0x24, 0x7b, 0x6e, 0x61, 0x6d, 0x65, 0x7d, 0x24,
|
||||
0x7b, 0x6e, 0x61, 0x6d, 0x65, 0x20, 0x3f, 0x20, 0x22, 0x2d, 0x22, 0x20,
|
||||
0x3a, 0x20, 0x22, 0x22, 0x7d, 0x24, 0x7b, 0x69, 0x7d, 0x60, 0x29, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x29, 0x2e, 0x6a, 0x6f, 0x69, 0x6e,
|
||||
0x28, 0x27, 0x20, 0x7c, 0x20, 0x27, 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x74,
|
||||
0x68, 0x69, 0x73, 0x2e, 0x5f, 0x61, 0x64, 0x64, 0x52, 0x75, 0x6c, 0x65,
|
||||
0x28, 0x72, 0x75, 0x6c, 0x65, 0x4e, 0x61, 0x6d, 0x65, 0x2c, 0x20, 0x72,
|
||||
0x75, 0x6c, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x20,
|
||||
0x65, 0x6c, 0x73, 0x65, 0x20, 0x69, 0x66, 0x20, 0x28, 0x27, 0x63, 0x6f,
|
||||
0x6e, 0x73, 0x74, 0x27, 0x20, 0x69, 0x6e, 0x20, 0x73, 0x63, 0x68, 0x65,
|
||||
0x6d, 0x61, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e,
|
||||
0x5f, 0x61, 0x64, 0x64, 0x52, 0x75, 0x6c, 0x65, 0x28, 0x72, 0x75, 0x6c,
|
||||
0x65, 0x4e, 0x61, 0x6d, 0x65, 0x2c, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e,
|
||||
0x5f, 0x66, 0x6f, 0x72, 0x6d, 0x61, 0x74, 0x4c, 0x69, 0x74, 0x65, 0x72,
|
||||
0x61, 0x6c, 0x28, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x2e, 0x63, 0x6f,
|
||||
0x6e, 0x73, 0x74, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d,
|
||||
0x20, 0x65, 0x6c, 0x73, 0x65, 0x20, 0x69, 0x66, 0x20, 0x28, 0x27, 0x65,
|
||||
0x6e, 0x75, 0x6d, 0x27, 0x20, 0x69, 0x6e, 0x20, 0x73, 0x63, 0x68, 0x65,
|
||||
0x6d, 0x61, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72, 0x75, 0x6c, 0x65, 0x20, 0x3d,
|
||||
0x20, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x2e, 0x65, 0x6e, 0x75, 0x6d,
|
||||
0x2e, 0x6d, 0x61, 0x70, 0x28, 0x76, 0x20, 0x3d, 0x3e, 0x20, 0x74, 0x68,
|
||||
0x69, 0x73, 0x2e, 0x5f, 0x66, 0x6f, 0x72, 0x6d, 0x61, 0x74, 0x4c, 0x69,
|
||||
0x74, 0x65, 0x72, 0x61, 0x6c, 0x28, 0x76, 0x29, 0x29, 0x2e, 0x6a, 0x6f,
|
||||
0x69, 0x6e, 0x28, 0x27, 0x20, 0x7c, 0x20, 0x27, 0x29, 0x3b, 0x0a, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20,
|
||||
0x74, 0x68, 0x69, 0x73, 0x2e, 0x5f, 0x61, 0x64, 0x64, 0x52, 0x75, 0x6c,
|
||||
0x65, 0x28, 0x72, 0x75, 0x6c, 0x65, 0x4e, 0x61, 0x6d, 0x65, 0x2c, 0x20,
|
||||
0x72, 0x75, 0x6c, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d,
|
||||
0x20, 0x65, 0x6c, 0x73, 0x65, 0x20, 0x69, 0x66, 0x20, 0x28, 0x73, 0x63,
|
||||
0x68, 0x65, 0x6d, 0x61, 0x54, 0x79, 0x70, 0x65, 0x20, 0x3d, 0x3d, 0x3d,
|
||||
0x20, 0x27, 0x6f, 0x62, 0x6a, 0x65, 0x63, 0x74, 0x27, 0x20, 0x26, 0x26,
|
||||
0x20, 0x27, 0x70, 0x72, 0x6f, 0x70, 0x65, 0x72, 0x74, 0x69, 0x65, 0x73,
|
||||
0x27, 0x20, 0x69, 0x6e, 0x20, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x29,
|
||||
0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20,
|
||||
0x54, 0x4f, 0x44, 0x4f, 0x3a, 0x20, 0x60, 0x72, 0x65, 0x71, 0x75, 0x69,
|
||||
0x72, 0x65, 0x64, 0x60, 0x20, 0x6b, 0x65, 0x79, 0x77, 0x6f, 0x72, 0x64,
|
||||
0x20, 0x28, 0x66, 0x72, 0x6f, 0x6d, 0x20, 0x70, 0x79, 0x74, 0x68, 0x6f,
|
||||
0x6e, 0x20, 0x69, 0x6d, 0x70, 0x6c, 0x65, 0x6d, 0x65, 0x6e, 0x74, 0x61,
|
||||
0x74, 0x69, 0x6f, 0x6e, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x70, 0x72, 0x6f, 0x70, 0x4f, 0x72,
|
||||
0x64, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x5f,
|
||||
0x70, 0x72, 0x6f, 0x70, 0x4f, 0x72, 0x64, 0x65, 0x72, 0x3b, 0x0a, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x70,
|
||||
0x72, 0x6f, 0x70, 0x50, 0x61, 0x69, 0x72, 0x73, 0x20, 0x3d, 0x20, 0x4f,
|
||||
0x62, 0x6a, 0x65, 0x63, 0x74, 0x2e, 0x65, 0x6e, 0x74, 0x72, 0x69, 0x65,
|
||||
0x73, 0x28, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x2e, 0x70, 0x72, 0x6f,
|
||||
0x70, 0x65, 0x72, 0x74, 0x69, 0x65, 0x73, 0x29, 0x2e, 0x73, 0x6f, 0x72,
|
||||
0x74, 0x28, 0x28, 0x61, 0x2c, 0x20, 0x62, 0x29, 0x20, 0x3d, 0x3e, 0x20,
|
||||
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f,
|
||||
0x20, 0x73, 0x6f, 0x72, 0x74, 0x20, 0x62, 0x79, 0x20, 0x70, 0x6f, 0x73,
|
||||
0x69, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x69, 0x6e, 0x20, 0x70, 0x72, 0x6f,
|
||||
0x70, 0x5f, 0x6f, 0x72, 0x64, 0x65, 0x72, 0x20, 0x28, 0x69, 0x66, 0x20,
|
||||
0x73, 0x70, 0x65, 0x63, 0x69, 0x66, 0x69, 0x65, 0x64, 0x29, 0x20, 0x74,
|
||||
0x68, 0x65, 0x6e, 0x20, 0x62, 0x79, 0x20, 0x6b, 0x65, 0x79, 0x0a, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74,
|
||||
0x20, 0x6f, 0x72, 0x64, 0x65, 0x72, 0x41, 0x20, 0x3d, 0x20, 0x74, 0x79,
|
||||
0x70, 0x65, 0x6f, 0x66, 0x20, 0x70, 0x72, 0x6f, 0x70, 0x4f, 0x72, 0x64,
|
||||
0x65, 0x72, 0x5b, 0x61, 0x5b, 0x30, 0x5d, 0x5d, 0x20, 0x3d, 0x3d, 0x3d,
|
||||
0x20, 0x27, 0x6e, 0x75, 0x6d, 0x62, 0x65, 0x72, 0x27, 0x20, 0x3f, 0x20,
|
||||
0x70, 0x72, 0x6f, 0x70, 0x4f, 0x72, 0x64, 0x65, 0x72, 0x5b, 0x61, 0x5b,
|
||||
0x30, 0x5d, 0x5d, 0x20, 0x3a, 0x20, 0x49, 0x6e, 0x66, 0x69, 0x6e, 0x69,
|
||||
0x74, 0x79, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6f, 0x72, 0x64, 0x65, 0x72, 0x42,
|
||||
0x20, 0x3d, 0x20, 0x74, 0x79, 0x70, 0x65, 0x6f, 0x66, 0x20, 0x70, 0x72,
|
||||
0x6f, 0x70, 0x4f, 0x72, 0x64, 0x65, 0x72, 0x5b, 0x62, 0x5b, 0x30, 0x5d,
|
||||
0x5d, 0x20, 0x3d, 0x3d, 0x3d, 0x20, 0x27, 0x6e, 0x75, 0x6d, 0x62, 0x65,
|
||||
0x72, 0x27, 0x20, 0x3f, 0x20, 0x70, 0x72, 0x6f, 0x70, 0x4f, 0x72, 0x64,
|
||||
0x65, 0x72, 0x5b, 0x62, 0x5b, 0x30, 0x5d, 0x5d, 0x20, 0x3a, 0x20, 0x49,
|
||||
0x6e, 0x66, 0x69, 0x6e, 0x69, 0x74, 0x79, 0x3b, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20,
|
||||
0x6f, 0x72, 0x64, 0x65, 0x72, 0x41, 0x20, 0x2d, 0x20, 0x6f, 0x72, 0x64,
|
||||
0x65, 0x72, 0x42, 0x20, 0x7c, 0x7c, 0x20, 0x61, 0x5b, 0x30, 0x5d, 0x2e,
|
||||
0x6c, 0x6f, 0x63, 0x61, 0x6c, 0x65, 0x43, 0x6f, 0x6d, 0x70, 0x61, 0x72,
|
||||
0x65, 0x28, 0x62, 0x5b, 0x30, 0x5d, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x7d, 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x72, 0x75, 0x6c, 0x65, 0x20, 0x3d,
|
||||
0x20, 0x27, 0x22, 0x7b, 0x22, 0x20, 0x73, 0x70, 0x61, 0x63, 0x65, 0x27,
|
||||
0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x70, 0x72, 0x6f, 0x70,
|
||||
0x50, 0x61, 0x69, 0x72, 0x73, 0x2e, 0x66, 0x6f, 0x72, 0x45, 0x61, 0x63,
|
||||
0x68, 0x28, 0x28, 0x5b, 0x70, 0x72, 0x6f, 0x70, 0x4e, 0x61, 0x6d, 0x65,
|
||||
0x2c, 0x20, 0x70, 0x72, 0x6f, 0x70, 0x53, 0x63, 0x68, 0x65, 0x6d, 0x61,
|
||||
0x5d, 0x2c, 0x20, 0x69, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74,
|
||||
0x20, 0x70, 0x72, 0x6f, 0x70, 0x52, 0x75, 0x6c, 0x65, 0x4e, 0x61, 0x6d,
|
||||
0x65, 0x20, 0x3d, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x76, 0x69, 0x73,
|
||||
0x69, 0x74, 0x28, 0x70, 0x72, 0x6f, 0x70, 0x53, 0x63, 0x68, 0x65, 0x6d,
|
||||
0x61, 0x2c, 0x20, 0x60, 0x24, 0x7b, 0x6e, 0x61, 0x6d, 0x65, 0x7d, 0x24,
|
||||
0x7b, 0x6e, 0x61, 0x6d, 0x65, 0x20, 0x3f, 0x20, 0x22, 0x2d, 0x22, 0x20,
|
||||
0x3a, 0x20, 0x22, 0x22, 0x7d, 0x24, 0x7b, 0x70, 0x72, 0x6f, 0x70, 0x4e,
|
||||
0x61, 0x6d, 0x65, 0x7d, 0x60, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x69, 0x20, 0x3e, 0x20,
|
||||
0x30, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x72, 0x75, 0x6c, 0x65, 0x20, 0x2b, 0x3d, 0x20, 0x27,
|
||||
0x20, 0x22, 0x2c, 0x22, 0x20, 0x73, 0x70, 0x61, 0x63, 0x65, 0x27, 0x3b,
|
||||
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x75, 0x6c, 0x65, 0x20,
|
||||
0x2b, 0x3d, 0x20, 0x60, 0x20, 0x24, 0x7b, 0x74, 0x68, 0x69, 0x73, 0x2e,
|
||||
0x5f, 0x66, 0x6f, 0x72, 0x6d, 0x61, 0x74, 0x4c, 0x69, 0x74, 0x65, 0x72,
|
||||
0x61, 0x6c, 0x28, 0x70, 0x72, 0x6f, 0x70, 0x4e, 0x61, 0x6d, 0x65, 0x29,
|
||||
0x7d, 0x20, 0x73, 0x70, 0x61, 0x63, 0x65, 0x20, 0x22, 0x3a, 0x22, 0x20,
|
||||
0x73, 0x70, 0x61, 0x63, 0x65, 0x20, 0x24, 0x7b, 0x70, 0x72, 0x6f, 0x70,
|
||||
0x52, 0x75, 0x6c, 0x65, 0x4e, 0x61, 0x6d, 0x65, 0x7d, 0x60, 0x3b, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x29, 0x3b, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x72, 0x75, 0x6c, 0x65, 0x20, 0x2b, 0x3d, 0x20,
|
||||
0x27, 0x20, 0x22, 0x7d, 0x22, 0x20, 0x73, 0x70, 0x61, 0x63, 0x65, 0x27,
|
||||
0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74,
|
||||
0x75, 0x72, 0x6e, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x5f, 0x61, 0x64,
|
||||
0x64, 0x52, 0x75, 0x6c, 0x65, 0x28, 0x72, 0x75, 0x6c, 0x65, 0x4e, 0x61,
|
||||
0x6d, 0x65, 0x2c, 0x20, 0x72, 0x75, 0x6c, 0x65, 0x29, 0x3b, 0x0a, 0x20,
|
||||
0x20, 0x20, 0x20, 0x7d, 0x20, 0x65, 0x6c, 0x73, 0x65, 0x20, 0x69, 0x66,
|
||||
0x20, 0x28, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x54, 0x79, 0x70, 0x65,
|
||||
0x20, 0x3d, 0x3d, 0x3d, 0x20, 0x27, 0x61, 0x72, 0x72, 0x61, 0x79, 0x27,
|
||||
0x20, 0x26, 0x26, 0x20, 0x27, 0x69, 0x74, 0x65, 0x6d, 0x73, 0x27, 0x20,
|
||||
0x69, 0x6e, 0x20, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x29, 0x20, 0x7b,
|
||||
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x54, 0x4f,
|
||||
0x44, 0x4f, 0x20, 0x60, 0x70, 0x72, 0x65, 0x66, 0x69, 0x78, 0x49, 0x74,
|
||||
0x65, 0x6d, 0x73, 0x60, 0x20, 0x6b, 0x65, 0x79, 0x77, 0x6f, 0x72, 0x64,
|
||||
0x20, 0x28, 0x66, 0x72, 0x6f, 0x6d, 0x20, 0x70, 0x79, 0x74, 0x68, 0x6f,
|
||||
0x6e, 0x20, 0x69, 0x6d, 0x70, 0x6c, 0x65, 0x6d, 0x65, 0x6e, 0x74, 0x61,
|
||||
0x74, 0x69, 0x6f, 0x6e, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x69, 0x74, 0x65, 0x6d, 0x52, 0x75,
|
||||
0x6c, 0x65, 0x4e, 0x61, 0x6d, 0x65, 0x20, 0x3d, 0x20, 0x74, 0x68, 0x69,
|
||||
0x73, 0x2e, 0x76, 0x69, 0x73, 0x69, 0x74, 0x28, 0x73, 0x63, 0x68, 0x65,
|
||||
0x6d, 0x61, 0x2e, 0x69, 0x74, 0x65, 0x6d, 0x73, 0x2c, 0x20, 0x60, 0x24,
|
||||
0x7b, 0x6e, 0x61, 0x6d, 0x65, 0x7d, 0x24, 0x7b, 0x6e, 0x61, 0x6d, 0x65,
|
||||
0x20, 0x3f, 0x20, 0x22, 0x2d, 0x22, 0x20, 0x3a, 0x20, 0x22, 0x22, 0x7d,
|
||||
0x69, 0x74, 0x65, 0x6d, 0x60, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72, 0x75, 0x6c, 0x65,
|
||||
0x20, 0x3d, 0x20, 0x60, 0x22, 0x5b, 0x22, 0x20, 0x73, 0x70, 0x61, 0x63,
|
||||
0x65, 0x20, 0x28, 0x24, 0x7b, 0x69, 0x74, 0x65, 0x6d, 0x52, 0x75, 0x6c,
|
||||
0x65, 0x4e, 0x61, 0x6d, 0x65, 0x7d, 0x20, 0x28, 0x22, 0x2c, 0x22, 0x20,
|
||||
0x73, 0x70, 0x61, 0x63, 0x65, 0x20, 0x24, 0x7b, 0x69, 0x74, 0x65, 0x6d,
|
||||
0x52, 0x75, 0x6c, 0x65, 0x4e, 0x61, 0x6d, 0x65, 0x7d, 0x29, 0x2a, 0x29,
|
||||
0x3f, 0x20, 0x22, 0x5d, 0x22, 0x20, 0x73, 0x70, 0x61, 0x63, 0x65, 0x60,
|
||||
0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75,
|
||||
0x72, 0x6e, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x5f, 0x61, 0x64, 0x64,
|
||||
0x52, 0x75, 0x6c, 0x65, 0x28, 0x72, 0x75, 0x6c, 0x65, 0x4e, 0x61, 0x6d,
|
||||
0x65, 0x2c, 0x20, 0x72, 0x75, 0x6c, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x7d, 0x20, 0x65, 0x6c, 0x73, 0x65, 0x20, 0x7b, 0x0a, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x21, 0x50, 0x52,
|
||||
0x49, 0x4d, 0x49, 0x54, 0x49, 0x56, 0x45, 0x5f, 0x52, 0x55, 0x4c, 0x45,
|
||||
0x53, 0x5b, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x54, 0x79, 0x70, 0x65,
|
||||
0x5d, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x74, 0x68, 0x72, 0x6f, 0x77, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x45,
|
||||
0x72, 0x72, 0x6f, 0x72, 0x28, 0x60, 0x55, 0x6e, 0x72, 0x65, 0x63, 0x6f,
|
||||
0x67, 0x6e, 0x69, 0x7a, 0x65, 0x64, 0x20, 0x73, 0x63, 0x68, 0x65, 0x6d,
|
||||
0x61, 0x3a, 0x20, 0x24, 0x7b, 0x4a, 0x53, 0x4f, 0x4e, 0x2e, 0x73, 0x74,
|
||||
0x72, 0x69, 0x6e, 0x67, 0x69, 0x66, 0x79, 0x28, 0x73, 0x63, 0x68, 0x65,
|
||||
0x6d, 0x61, 0x29, 0x7d, 0x60, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65,
|
||||
0x74, 0x75, 0x72, 0x6e, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x5f, 0x61,
|
||||
0x64, 0x64, 0x52, 0x75, 0x6c, 0x65, 0x28, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x72, 0x75, 0x6c, 0x65, 0x4e, 0x61, 0x6d, 0x65,
|
||||
0x20, 0x3d, 0x3d, 0x3d, 0x20, 0x27, 0x72, 0x6f, 0x6f, 0x74, 0x27, 0x20,
|
||||
0x3f, 0x20, 0x27, 0x72, 0x6f, 0x6f, 0x74, 0x27, 0x20, 0x3a, 0x20, 0x73,
|
||||
0x63, 0x68, 0x65, 0x6d, 0x61, 0x54, 0x79, 0x70, 0x65, 0x2c, 0x0a, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x50, 0x52, 0x49, 0x4d, 0x49,
|
||||
0x54, 0x49, 0x56, 0x45, 0x5f, 0x52, 0x55, 0x4c, 0x45, 0x53, 0x5b, 0x73,
|
||||
0x63, 0x68, 0x65, 0x6d, 0x61, 0x54, 0x79, 0x70, 0x65, 0x5d, 0x0a, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x7d, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x66, 0x6f, 0x72,
|
||||
0x6d, 0x61, 0x74, 0x47, 0x72, 0x61, 0x6d, 0x6d, 0x61, 0x72, 0x28, 0x29,
|
||||
0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x67,
|
||||
0x72, 0x61, 0x6d, 0x6d, 0x61, 0x72, 0x20, 0x3d, 0x20, 0x27, 0x27, 0x3b,
|
||||
0x0a, 0x20, 0x20, 0x20, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x5f, 0x72,
|
||||
0x75, 0x6c, 0x65, 0x73, 0x2e, 0x66, 0x6f, 0x72, 0x45, 0x61, 0x63, 0x68,
|
||||
0x28, 0x28, 0x72, 0x75, 0x6c, 0x65, 0x2c, 0x20, 0x6e, 0x61, 0x6d, 0x65,
|
||||
0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x67, 0x72, 0x61, 0x6d, 0x6d, 0x61, 0x72, 0x20, 0x2b, 0x3d, 0x20,
|
||||
0x60, 0x24, 0x7b, 0x6e, 0x61, 0x6d, 0x65, 0x7d, 0x20, 0x3a, 0x3a, 0x3d,
|
||||
0x20, 0x24, 0x7b, 0x72, 0x75, 0x6c, 0x65, 0x7d, 0x5c, 0x6e, 0x60, 0x3b,
|
||||
0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x67, 0x72, 0x61, 0x6d,
|
||||
0x6d, 0x61, 0x72, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x7d, 0x0a
|
||||
};
|
||||
unsigned int json_schema_to_grammar_mjs_len = 3695;
|
||||
@@ -1,187 +0,0 @@
|
||||
const paramDefaults = {
|
||||
stream: true,
|
||||
n_predict: 500,
|
||||
temperature: 0.2,
|
||||
stop: ["</s>"]
|
||||
};
|
||||
|
||||
let generation_settings = null;
|
||||
|
||||
|
||||
// Completes the prompt as a generator. Recommended for most use cases.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// import { llama } from '/completion.js'
|
||||
//
|
||||
// const request = llama("Tell me a joke", {n_predict: 800})
|
||||
// for await (const chunk of request) {
|
||||
// document.write(chunk.data.content)
|
||||
// }
|
||||
//
|
||||
export async function* llama(prompt, params = {}, config = {}) {
|
||||
let controller = config.controller;
|
||||
|
||||
if (!controller) {
|
||||
controller = new AbortController();
|
||||
}
|
||||
|
||||
const completionParams = { ...paramDefaults, ...params, prompt };
|
||||
|
||||
const response = await fetch("/completion", {
|
||||
method: 'POST',
|
||||
body: JSON.stringify(completionParams),
|
||||
headers: {
|
||||
'Connection': 'keep-alive',
|
||||
'Content-Type': 'application/json',
|
||||
'Accept': 'text/event-stream'
|
||||
},
|
||||
signal: controller.signal,
|
||||
});
|
||||
|
||||
const reader = response.body.getReader();
|
||||
const decoder = new TextDecoder();
|
||||
|
||||
let content = "";
|
||||
let leftover = ""; // Buffer for partially read lines
|
||||
|
||||
try {
|
||||
let cont = true;
|
||||
|
||||
while (cont) {
|
||||
const result = await reader.read();
|
||||
if (result.done) {
|
||||
break;
|
||||
}
|
||||
|
||||
// Add any leftover data to the current chunk of data
|
||||
const text = leftover + decoder.decode(result.value);
|
||||
|
||||
// Check if the last character is a line break
|
||||
const endsWithLineBreak = text.endsWith('\n');
|
||||
|
||||
// Split the text into lines
|
||||
let lines = text.split('\n');
|
||||
|
||||
// If the text doesn't end with a line break, then the last line is incomplete
|
||||
// Store it in leftover to be added to the next chunk of data
|
||||
if (!endsWithLineBreak) {
|
||||
leftover = lines.pop();
|
||||
} else {
|
||||
leftover = ""; // Reset leftover if we have a line break at the end
|
||||
}
|
||||
|
||||
// Parse all sse events and add them to result
|
||||
const regex = /^(\S+):\s(.*)$/gm;
|
||||
for (const line of lines) {
|
||||
const match = regex.exec(line);
|
||||
if (match) {
|
||||
result[match[1]] = match[2]
|
||||
// since we know this is llama.cpp, let's just decode the json in data
|
||||
if (result.data) {
|
||||
result.data = JSON.parse(result.data);
|
||||
content += result.data.content;
|
||||
|
||||
// yield
|
||||
yield result;
|
||||
|
||||
// if we got a stop token from server, we will break here
|
||||
if (result.data.stop) {
|
||||
if (result.data.generation_settings) {
|
||||
generation_settings = result.data.generation_settings;
|
||||
}
|
||||
cont = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} catch (e) {
|
||||
if (e.name !== 'AbortError') {
|
||||
console.error("llama error: ", e);
|
||||
}
|
||||
throw e;
|
||||
}
|
||||
finally {
|
||||
controller.abort();
|
||||
}
|
||||
|
||||
return content;
|
||||
}
|
||||
|
||||
// Call llama, return an event target that you can subcribe to
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// import { llamaEventTarget } from '/completion.js'
|
||||
//
|
||||
// const conn = llamaEventTarget(prompt)
|
||||
// conn.addEventListener("message", (chunk) => {
|
||||
// document.write(chunk.detail.content)
|
||||
// })
|
||||
//
|
||||
export const llamaEventTarget = (prompt, params = {}, config = {}) => {
|
||||
const eventTarget = new EventTarget();
|
||||
(async () => {
|
||||
let content = "";
|
||||
for await (const chunk of llama(prompt, params, config)) {
|
||||
if (chunk.data) {
|
||||
content += chunk.data.content;
|
||||
eventTarget.dispatchEvent(new CustomEvent("message", { detail: chunk.data }));
|
||||
}
|
||||
if (chunk.data.generation_settings) {
|
||||
eventTarget.dispatchEvent(new CustomEvent("generation_settings", { detail: chunk.data.generation_settings }));
|
||||
}
|
||||
if (chunk.data.timings) {
|
||||
eventTarget.dispatchEvent(new CustomEvent("timings", { detail: chunk.data.timings }));
|
||||
}
|
||||
}
|
||||
eventTarget.dispatchEvent(new CustomEvent("done", { detail: { content } }));
|
||||
})();
|
||||
return eventTarget;
|
||||
}
|
||||
|
||||
// Call llama, return a promise that resolves to the completed text. This does not support streaming
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// llamaPromise(prompt).then((content) => {
|
||||
// document.write(content)
|
||||
// })
|
||||
//
|
||||
// or
|
||||
//
|
||||
// const content = await llamaPromise(prompt)
|
||||
// document.write(content)
|
||||
//
|
||||
export const llamaPromise = (prompt, params = {}, config = {}) => {
|
||||
return new Promise(async (resolve, reject) => {
|
||||
let content = "";
|
||||
try {
|
||||
for await (const chunk of llama(prompt, params, config)) {
|
||||
content += chunk.data.content;
|
||||
}
|
||||
resolve(content);
|
||||
} catch (error) {
|
||||
reject(error);
|
||||
}
|
||||
});
|
||||
};
|
||||
|
||||
/**
|
||||
* (deprecated)
|
||||
*/
|
||||
export const llamaComplete = async (params, controller, callback) => {
|
||||
for await (const chunk of llama(params.prompt, params, { controller })) {
|
||||
callback(chunk);
|
||||
}
|
||||
}
|
||||
|
||||
// Get the model info from the server. This is useful for getting the context window and so on.
|
||||
export const llamaModelInfo = async () => {
|
||||
if (!generation_settings) {
|
||||
generation_settings = await fetch("/model.json").then(r => r.json());
|
||||
}
|
||||
return generation_settings;
|
||||
}
|
||||
@@ -1,634 +0,0 @@
|
||||
<html>
|
||||
|
||||
<head>
|
||||
<meta charset="UTF-8">
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1" />
|
||||
<meta name="color-scheme" content="light dark">
|
||||
<title>llama.cpp - chat</title>
|
||||
|
||||
<style>
|
||||
body {
|
||||
font-family: system-ui;
|
||||
font-size: 90%;
|
||||
}
|
||||
|
||||
#container {
|
||||
margin: 0em auto;
|
||||
display: flex;
|
||||
flex-direction: column;
|
||||
justify-content: space-between;
|
||||
height: 100%;
|
||||
}
|
||||
|
||||
main {
|
||||
margin: 3px;
|
||||
display: flex;
|
||||
flex-direction: column;
|
||||
justify-content: space-between;
|
||||
gap: 1em;
|
||||
|
||||
flex-grow: 1;
|
||||
overflow-y: auto;
|
||||
|
||||
border: 1px solid #ccc;
|
||||
border-radius: 5px;
|
||||
padding: 0.5em;
|
||||
}
|
||||
|
||||
body {
|
||||
max-width: 600px;
|
||||
min-width: 300px;
|
||||
line-height: 1.2;
|
||||
margin: 0 auto;
|
||||
padding: 0 0.5em;
|
||||
}
|
||||
|
||||
p {
|
||||
overflow-wrap: break-word;
|
||||
word-wrap: break-word;
|
||||
hyphens: auto;
|
||||
margin-top: 0.5em;
|
||||
margin-bottom: 0.5em;
|
||||
}
|
||||
|
||||
#write form {
|
||||
margin: 1em 0 0 0;
|
||||
display: flex;
|
||||
flex-direction: column;
|
||||
gap: 0.5em;
|
||||
align-items: stretch;
|
||||
}
|
||||
|
||||
.right {
|
||||
display: flex;
|
||||
flex-direction: row;
|
||||
gap: 0.5em;
|
||||
justify-content: flex-end;
|
||||
}
|
||||
|
||||
fieldset {
|
||||
border: none;
|
||||
padding: 0;
|
||||
margin: 0;
|
||||
}
|
||||
|
||||
fieldset.two {
|
||||
display: grid;
|
||||
grid-template: "a a";
|
||||
gap: 1em;
|
||||
}
|
||||
|
||||
fieldset.three {
|
||||
display: grid;
|
||||
grid-template: "a a a";
|
||||
gap: 1em;
|
||||
}
|
||||
|
||||
details {
|
||||
border: 1px solid #aaa;
|
||||
border-radius: 4px;
|
||||
padding: 0.5em 0.5em 0;
|
||||
margin-top: 0.5em;
|
||||
}
|
||||
|
||||
summary {
|
||||
font-weight: bold;
|
||||
margin: -0.5em -0.5em 0;
|
||||
padding: 0.5em;
|
||||
cursor: pointer;
|
||||
}
|
||||
|
||||
details[open] {
|
||||
padding: 0.5em;
|
||||
}
|
||||
|
||||
|
||||
textarea {
|
||||
padding: 5px;
|
||||
flex-grow: 1;
|
||||
width: 100%;
|
||||
}
|
||||
|
||||
pre code {
|
||||
display: block;
|
||||
background-color: #222;
|
||||
color: #ddd;
|
||||
}
|
||||
code {
|
||||
font-family: monospace;
|
||||
padding: 0.1em 0.3em;
|
||||
border-radius: 3px;
|
||||
}
|
||||
|
||||
fieldset label {
|
||||
margin: 0.5em 0;
|
||||
display: block;
|
||||
}
|
||||
|
||||
header, footer {
|
||||
text-align: center;
|
||||
}
|
||||
|
||||
footer {
|
||||
font-size: 80%;
|
||||
color: #888;
|
||||
}
|
||||
</style>
|
||||
|
||||
<script type="module">
|
||||
import {
|
||||
html, h, signal, effect, computed, render, useSignal, useEffect, useRef
|
||||
} from '/index.js';
|
||||
|
||||
import { llama } from '/completion.js';
|
||||
import { SchemaConverter } from '/json-schema-to-grammar.mjs';
|
||||
|
||||
const session = signal({
|
||||
prompt: "This is a conversation between User and Llama, a friendly chatbot. Llama is helpful, kind, honest, good at writing, and never fails to answer any requests immediately and with precision.",
|
||||
template: "{{prompt}}\n\n{{history}}\n{{char}}:",
|
||||
historyTemplate: "{{name}}: {{message}}",
|
||||
transcript: [],
|
||||
type: "chat",
|
||||
char: "Llama",
|
||||
user: "User",
|
||||
})
|
||||
|
||||
const params = signal({
|
||||
n_predict: 400,
|
||||
temperature: 0.7,
|
||||
repeat_last_n: 256, // 0 = disable penalty, -1 = context size
|
||||
repeat_penalty: 1.18, // 1.0 = disabled
|
||||
top_k: 40, // <= 0 to use vocab size
|
||||
top_p: 0.5, // 1.0 = disabled
|
||||
tfs_z: 1.0, // 1.0 = disabled
|
||||
typical_p: 1.0, // 1.0 = disabled
|
||||
presence_penalty: 0.0, // 0.0 = disabled
|
||||
frequency_penalty: 0.0, // 0.0 = disabled
|
||||
mirostat: 0, // 0/1/2
|
||||
mirostat_tau: 5, // target entropy
|
||||
mirostat_eta: 0.1, // learning rate
|
||||
grammar: '',
|
||||
})
|
||||
|
||||
/* START: Support for storing prompt templates and parameters in borwser LocalStorage */
|
||||
|
||||
const local_storage_storageKey = "llamacpp_server_local_storage";
|
||||
|
||||
function local_storage_setDataFromObject(tag, content) {
|
||||
localStorage.setItem(local_storage_storageKey + '/' + tag, JSON.stringify(content));
|
||||
}
|
||||
|
||||
function local_storage_setDataFromRawText(tag, content) {
|
||||
localStorage.setItem(local_storage_storageKey + '/' + tag, content);
|
||||
}
|
||||
|
||||
function local_storage_getDataAsObject(tag) {
|
||||
const item = localStorage.getItem(local_storage_storageKey + '/' + tag);
|
||||
if (!item) {
|
||||
return null;
|
||||
} else {
|
||||
return JSON.parse(item);
|
||||
}
|
||||
}
|
||||
|
||||
function local_storage_getDataAsRawText(tag) {
|
||||
const item = localStorage.getItem(local_storage_storageKey + '/' + tag);
|
||||
if (!item) {
|
||||
return null;
|
||||
} else {
|
||||
return item;
|
||||
}
|
||||
}
|
||||
|
||||
// create a container for user templates and settings
|
||||
|
||||
const savedUserTemplates = signal({})
|
||||
const selectedUserTemplate = signal({ name: '', template: { session: {}, params: {} } })
|
||||
|
||||
// let's import locally saved templates and settings if there are any
|
||||
// user templates and settings are stored in one object
|
||||
// in form of { "templatename": "templatedata" } and { "settingstemplatename":"settingsdata" }
|
||||
|
||||
console.log('Importing saved templates')
|
||||
|
||||
let importedTemplates = local_storage_getDataAsObject('user_templates')
|
||||
|
||||
if (importedTemplates) {
|
||||
// saved templates were successfuly imported.
|
||||
|
||||
console.log('Processing saved templates and updating default template')
|
||||
|
||||
//console.log(importedTemplates);
|
||||
savedUserTemplates.value = importedTemplates;
|
||||
|
||||
//override default template
|
||||
savedUserTemplates.value.default = { session: session.value, params: params.value }
|
||||
local_storage_setDataFromObject('user_templates', savedUserTemplates.value)
|
||||
} else {
|
||||
// no saved templates detected.
|
||||
|
||||
console.log('Initializing LocalStorage and saving default template')
|
||||
|
||||
savedUserTemplates.value = { "default": { session: session.value, params: params.value } }
|
||||
local_storage_setDataFromObject('user_templates', savedUserTemplates.value)
|
||||
}
|
||||
|
||||
function userTemplateResetToDefault() {
|
||||
console.log('Reseting themplate to default')
|
||||
selectedUserTemplate.value.name = 'default';
|
||||
selectedUserTemplate.value.data = savedUserTemplates.value['default'];
|
||||
}
|
||||
|
||||
function userTemplateApply(t) {
|
||||
session.value = t.data.session;
|
||||
params.value = t.data.params;
|
||||
}
|
||||
|
||||
function userTemplateResetToDefaultAndApply() {
|
||||
userTemplateResetToDefault()
|
||||
userTemplateApply(selectedUserTemplate.value)
|
||||
}
|
||||
|
||||
function userTemplateLoadAndApplyAutosaved() {
|
||||
// get autosaved last used template
|
||||
let lastUsedTemplate = local_storage_getDataAsObject('user_templates_last')
|
||||
|
||||
if (lastUsedTemplate) {
|
||||
|
||||
console.log('Autosaved template found, restoring')
|
||||
|
||||
selectedUserTemplate.value = lastUsedTemplate
|
||||
}
|
||||
else {
|
||||
|
||||
console.log('No autosaved template found, using default template')
|
||||
// no autosaved last used template was found, so load from default.
|
||||
|
||||
userTemplateResetToDefault()
|
||||
}
|
||||
|
||||
console.log('Applying template')
|
||||
// and update internal data from templates
|
||||
|
||||
userTemplateApply(selectedUserTemplate.value)
|
||||
}
|
||||
|
||||
//console.log(savedUserTemplates.value)
|
||||
//console.log(selectedUserTemplate.value)
|
||||
|
||||
function userTemplateAutosave() {
|
||||
console.log('Template Autosave...')
|
||||
if (selectedUserTemplate.value.name == 'default') {
|
||||
// we don't want to save over default template, so let's create a new one
|
||||
let newTemplateName = 'UserTemplate-' + Date.now().toString()
|
||||
let newTemplate = { 'name': newTemplateName, 'data': { 'session': session.value, 'params': params.value } }
|
||||
|
||||
console.log('Saving as ' + newTemplateName)
|
||||
|
||||
// save in the autosave slot
|
||||
local_storage_setDataFromObject('user_templates_last', newTemplate)
|
||||
|
||||
// and load it back and apply
|
||||
userTemplateLoadAndApplyAutosaved()
|
||||
} else {
|
||||
local_storage_setDataFromObject('user_templates_last', { 'name': selectedUserTemplate.value.name, 'data': { 'session': session.value, 'params': params.value } })
|
||||
}
|
||||
}
|
||||
|
||||
console.log('Checking for autosaved last used template')
|
||||
userTemplateLoadAndApplyAutosaved()
|
||||
|
||||
/* END: Support for storing prompt templates and parameters in browsers LocalStorage */
|
||||
|
||||
const llamaStats = signal(null)
|
||||
const controller = signal(null)
|
||||
|
||||
const generating = computed(() => controller.value == null )
|
||||
const chatStarted = computed(() => session.value.transcript.length > 0)
|
||||
|
||||
const transcriptUpdate = (transcript) => {
|
||||
session.value = {
|
||||
...session.value,
|
||||
transcript
|
||||
}
|
||||
}
|
||||
|
||||
// simple template replace
|
||||
const template = (str, extraSettings) => {
|
||||
let settings = session.value;
|
||||
if (extraSettings) {
|
||||
settings = { ...settings, ...extraSettings };
|
||||
}
|
||||
return String(str).replaceAll(/\{\{(.*?)\}\}/g, (_, key) => template(settings[key]));
|
||||
}
|
||||
|
||||
// send message to server
|
||||
const chat = async (msg) => {
|
||||
if (controller.value) {
|
||||
console.log('already running...');
|
||||
return;
|
||||
}
|
||||
controller.value = new AbortController();
|
||||
|
||||
transcriptUpdate([...session.value.transcript, ["{{user}}", msg]])
|
||||
|
||||
const prompt = template(session.value.template, {
|
||||
message: msg,
|
||||
history: session.value.transcript.flatMap(([name, message]) => template(session.value.historyTemplate, {name, message})).join("\n"),
|
||||
});
|
||||
|
||||
let currentMessage = '';
|
||||
const history = session.value.transcript
|
||||
|
||||
const llamaParams = {
|
||||
...params.value,
|
||||
stop: ["</s>", template("{{char}}:"), template("{{user}}:")],
|
||||
}
|
||||
|
||||
for await (const chunk of llama(prompt, llamaParams, { controller: controller.value })) {
|
||||
const data = chunk.data;
|
||||
currentMessage += data.content;
|
||||
|
||||
// remove leading whitespace
|
||||
currentMessage = currentMessage.replace(/^\s+/, "")
|
||||
|
||||
transcriptUpdate([...history, ["{{char}}", currentMessage]])
|
||||
|
||||
if (data.stop) {
|
||||
console.log("Completion finished: '", currentMessage, "', summary: ", data);
|
||||
}
|
||||
|
||||
if (data.timings) {
|
||||
llamaStats.value = data.timings;
|
||||
}
|
||||
}
|
||||
|
||||
controller.value = null;
|
||||
}
|
||||
|
||||
function MessageInput() {
|
||||
const message = useSignal("")
|
||||
|
||||
const stop = (e) => {
|
||||
e.preventDefault();
|
||||
if (controller.value) {
|
||||
controller.value.abort();
|
||||
controller.value = null;
|
||||
}
|
||||
}
|
||||
|
||||
const reset = (e) => {
|
||||
stop(e);
|
||||
transcriptUpdate([]);
|
||||
}
|
||||
|
||||
const submit = (e) => {
|
||||
stop(e);
|
||||
chat(message.value);
|
||||
message.value = "";
|
||||
}
|
||||
|
||||
const enterSubmits = (event) => {
|
||||
if (event.which === 13 && !event.shiftKey) {
|
||||
submit(event);
|
||||
}
|
||||
}
|
||||
|
||||
return html`
|
||||
<form onsubmit=${submit}>
|
||||
<div>
|
||||
<textarea type="text" rows=2 onkeypress=${enterSubmits} value="${message}" oninput=${(e) => message.value = e.target.value} placeholder="Say something..."/>
|
||||
</div>
|
||||
<div class="right">
|
||||
<button type="submit" disabled=${!generating.value} >Send</button>
|
||||
<button onclick=${stop} disabled=${generating}>Stop</button>
|
||||
<button onclick=${reset}>Reset</button>
|
||||
</div>
|
||||
</form>
|
||||
`
|
||||
}
|
||||
|
||||
const ChatLog = (props) => {
|
||||
const messages = session.value.transcript;
|
||||
const container = useRef(null)
|
||||
|
||||
useEffect(() => {
|
||||
// scroll to bottom (if needed)
|
||||
const parent = container.current.parentElement;
|
||||
if (parent && parent.scrollHeight <= parent.scrollTop + parent.offsetHeight + 300) {
|
||||
parent.scrollTo(0, parent.scrollHeight)
|
||||
}
|
||||
}, [messages])
|
||||
|
||||
const chatLine = ([user, msg]) => {
|
||||
return html`<p key=${msg}><strong>${template(user)}:</strong> <${Markdownish} text=${template(msg)} /></p>`
|
||||
};
|
||||
|
||||
return html`
|
||||
<section id="chat" ref=${container}>
|
||||
${messages.flatMap(chatLine)}
|
||||
</section>`;
|
||||
};
|
||||
|
||||
const ConfigForm = (props) => {
|
||||
const updateSession = (el) => session.value = { ...session.value, [el.target.name]: el.target.value }
|
||||
const updateParams = (el) => params.value = { ...params.value, [el.target.name]: el.target.value }
|
||||
const updateParamsFloat = (el) => params.value = { ...params.value, [el.target.name]: parseFloat(el.target.value) }
|
||||
const updateParamsInt = (el) => params.value = { ...params.value, [el.target.name]: Math.floor(parseFloat(el.target.value)) }
|
||||
|
||||
const grammarJsonSchemaPropOrder = signal('')
|
||||
const updateGrammarJsonSchemaPropOrder = (el) => grammarJsonSchemaPropOrder.value = el.target.value
|
||||
const convertJSONSchemaGrammar = () => {
|
||||
try {
|
||||
const schema = JSON.parse(params.value.grammar)
|
||||
const converter = new SchemaConverter(
|
||||
grammarJsonSchemaPropOrder.value
|
||||
.split(',')
|
||||
.reduce((acc, cur, i) => ({...acc, [cur.trim()]: i}), {})
|
||||
)
|
||||
converter.visit(schema, '')
|
||||
params.value = {
|
||||
...params.value,
|
||||
grammar: converter.formatGrammar(),
|
||||
}
|
||||
} catch (e) {
|
||||
alert(`Convert failed: ${e.message}`)
|
||||
}
|
||||
}
|
||||
|
||||
const FloatField = ({label, max, min, name, step, value}) => {
|
||||
return html`
|
||||
<div>
|
||||
<label for="${name}">${label}</label>
|
||||
<input type="range" id="${name}" min="${min}" max="${max}" step="${step}" name="${name}" value="${value}" oninput=${updateParamsFloat} />
|
||||
<span>${value}</span>
|
||||
</div>
|
||||
`
|
||||
};
|
||||
|
||||
const IntField = ({label, max, min, name, value}) => {
|
||||
return html`
|
||||
<div>
|
||||
<label for="${name}">${label}</label>
|
||||
<input type="range" id="${name}" min="${min}" max="${max}" name="${name}" value="${value}" oninput=${updateParamsInt} />
|
||||
<span>${value}</span>
|
||||
</div>
|
||||
`
|
||||
};
|
||||
|
||||
const userTemplateReset = (e) => {
|
||||
e.preventDefault();
|
||||
userTemplateResetToDefaultAndApply()
|
||||
}
|
||||
|
||||
const UserTemplateResetButton = () => {
|
||||
if (selectedUserTemplate.value.name == 'default') {
|
||||
return html`
|
||||
<button disabled>Using default template</button>
|
||||
`
|
||||
}
|
||||
|
||||
return html`
|
||||
<button onclick=${userTemplateReset}>Reset all to default</button>
|
||||
`
|
||||
};
|
||||
|
||||
useEffect(() => {
|
||||
// autosave template on every change
|
||||
userTemplateAutosave()
|
||||
}, [session.value, params.value])
|
||||
|
||||
return html`
|
||||
<form>
|
||||
<fieldset>
|
||||
<${UserTemplateResetButton}/>
|
||||
</fieldset>
|
||||
|
||||
<fieldset>
|
||||
<div>
|
||||
<label for="prompt">Prompt</label>
|
||||
<textarea type="text" name="prompt" value="${session.value.prompt}" rows=4 oninput=${updateSession}/>
|
||||
</div>
|
||||
</fieldset>
|
||||
|
||||
<fieldset class="two">
|
||||
<div>
|
||||
<label for="user">User name</label>
|
||||
<input type="text" name="user" value="${session.value.user}" oninput=${updateSession} />
|
||||
</div>
|
||||
|
||||
<div>
|
||||
<label for="bot">Bot name</label>
|
||||
<input type="text" name="char" value="${session.value.char}" oninput=${updateSession} />
|
||||
</div>
|
||||
</fieldset>
|
||||
|
||||
<fieldset>
|
||||
<div>
|
||||
<label for="template">Prompt template</label>
|
||||
<textarea id="template" name="template" value="${session.value.template}" rows=4 oninput=${updateSession}/>
|
||||
</div>
|
||||
|
||||
<div>
|
||||
<label for="template">Chat history template</label>
|
||||
<textarea id="template" name="historyTemplate" value="${session.value.historyTemplate}" rows=1 oninput=${updateSession}/>
|
||||
</div>
|
||||
|
||||
<div>
|
||||
<label for="template">Grammar</label>
|
||||
<textarea id="grammar" name="grammar" placeholder="Use gbnf or JSON Schema+convert" value="${params.value.grammar}" rows=4 oninput=${updateParams}/>
|
||||
<input type="text" name="prop-order" placeholder="order: prop1,prop2,prop3" oninput=${updateGrammarJsonSchemaPropOrder} />
|
||||
<button type="button" onclick=${convertJSONSchemaGrammar}>Convert JSON Schema</button>
|
||||
</div>
|
||||
</fieldset>
|
||||
|
||||
<fieldset class="two">
|
||||
${IntField({label: "Predictions", max: 2048, min: -1, name: "n_predict", value: params.value.n_predict})}
|
||||
${FloatField({label: "Temperature", max: 1.5, min: 0.0, name: "temperature", step: 0.01, value: params.value.temperature})}
|
||||
${FloatField({label: "Penalize repeat sequence", max: 2.0, min: 0.0, name: "repeat_penalty", step: 0.01, value: params.value.repeat_penalty})}
|
||||
${IntField({label: "Consider N tokens for penalize", max: 2048, min: 0, name: "repeat_last_n", value: params.value.repeat_last_n})}
|
||||
${IntField({label: "Top-K sampling", max: 100, min: -1, name: "top_k", value: params.value.top_k})}
|
||||
${FloatField({label: "Top-P sampling", max: 1.0, min: 0.0, name: "top_p", step: 0.01, value: params.value.top_p})}
|
||||
</fieldset>
|
||||
<details>
|
||||
<summary>More options</summary>
|
||||
<fieldset class="two">
|
||||
${FloatField({label: "TFS-Z", max: 1.0, min: 0.0, name: "tfs_z", step: 0.01, value: params.value.tfs_z})}
|
||||
${FloatField({label: "Typical P", max: 1.0, min: 0.0, name: "typical_p", step: 0.01, value: params.value.typical_p})}
|
||||
${FloatField({label: "Presence penalty", max: 1.0, min: 0.0, name: "presence_penalty", step: 0.01, value: params.value.presence_penalty})}
|
||||
${FloatField({label: "Frequency penalty", max: 1.0, min: 0.0, name: "frequency_penalty", step: 0.01, value: params.value.frequency_penalty})}
|
||||
</fieldset>
|
||||
<hr />
|
||||
<fieldset class="three">
|
||||
<div>
|
||||
<label><input type="radio" name="mirostat" value="0" checked=${params.value.mirostat == 0} oninput=${updateParamsInt} /> no Mirostat</label>
|
||||
<label><input type="radio" name="mirostat" value="1" checked=${params.value.mirostat == 1} oninput=${updateParamsInt} /> Mirostat v1</label>
|
||||
<label><input type="radio" name="mirostat" value="2" checked=${params.value.mirostat == 2} oninput=${updateParamsInt} /> Mirostat v2</label>
|
||||
</div>
|
||||
${FloatField({label: "Mirostat tau", max: 10.0, min: 0.0, name: "mirostat_tau", step: 0.01, value: params.value.mirostat_tau})}
|
||||
${FloatField({label: "Mirostat eta", max: 1.0, min: 0.0, name: "mirostat_eta", step: 0.01, value: params.value.mirostat_eta})}
|
||||
</fieldset>
|
||||
</details>
|
||||
</form>
|
||||
`
|
||||
}
|
||||
// poor mans markdown replacement
|
||||
const Markdownish = (params) => {
|
||||
const md = params.text
|
||||
.replace(/&/g, '&')
|
||||
.replace(/</g, '<')
|
||||
.replace(/>/g, '>')
|
||||
.replace(/^#{1,6} (.*)$/gim, '<h3>$1</h3>')
|
||||
.replace(/\*\*(.*?)\*\*/g, '<strong>$1</strong>')
|
||||
.replace(/__(.*?)__/g, '<strong>$1</strong>')
|
||||
.replace(/\*(.*?)\*/g, '<em>$1</em>')
|
||||
.replace(/_(.*?)_/g, '<em>$1</em>')
|
||||
.replace(/```.*?\n([\s\S]*?)```/g, '<pre><code>$1</code></pre>')
|
||||
.replace(/`(.*?)`/g, '<code>$1</code>')
|
||||
.replace(/\n/gim, '<br />');
|
||||
return html`<span dangerouslySetInnerHTML=${{ __html: md }} />`;
|
||||
};
|
||||
|
||||
const ModelGenerationInfo = (params) => {
|
||||
if (!llamaStats.value) {
|
||||
return html`<span/>`
|
||||
}
|
||||
return html`
|
||||
<span>
|
||||
${llamaStats.value.predicted_per_token_ms.toFixed()}ms per token, ${llamaStats.value.predicted_per_second.toFixed(2)} tokens per second
|
||||
</span>
|
||||
`
|
||||
}
|
||||
|
||||
function App(props) {
|
||||
|
||||
return html`
|
||||
<div id="container">
|
||||
<header>
|
||||
<h1>llama.cpp</h1>
|
||||
</header>
|
||||
|
||||
<main id="content">
|
||||
<${chatStarted.value ? ChatLog : ConfigForm} />
|
||||
</main>
|
||||
|
||||
<section id="write">
|
||||
<${MessageInput} />
|
||||
</section>
|
||||
|
||||
<footer>
|
||||
<p><${ModelGenerationInfo} /></p>
|
||||
<p>Powered by <a href="https://github.com/ggerganov/llama.cpp">llama.cpp</a> and <a href="https://ggml.ai">ggml.ai</a>.</p>
|
||||
</footer>
|
||||
</div>
|
||||
`;
|
||||
}
|
||||
|
||||
render(h(App), document.body);
|
||||
</script>
|
||||
</head>
|
||||
|
||||
<body>
|
||||
</body>
|
||||
|
||||
</html>
|
||||
File diff suppressed because one or more lines are too long
@@ -1,112 +0,0 @@
|
||||
const SPACE_RULE = '" "?';
|
||||
|
||||
const PRIMITIVE_RULES = {
|
||||
boolean: '("true" | "false") space',
|
||||
number: '("-"? ([0-9] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]? [0-9]+)? space',
|
||||
integer: '("-"? ([0-9] | [1-9] [0-9]*)) space',
|
||||
string: ` "\\"" (
|
||||
[^"\\\\] |
|
||||
"\\\\" (["\\\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F])
|
||||
)* "\\"" space`,
|
||||
null: '"null" space',
|
||||
};
|
||||
|
||||
const INVALID_RULE_CHARS_RE = /[^\dA-Za-z-]+/g;
|
||||
const GRAMMAR_LITERAL_ESCAPE_RE = /[\n\r"]/g;
|
||||
const GRAMMAR_LITERAL_ESCAPES = {'\r': '\\r', '\n': '\\n', '"': '\\"'};
|
||||
|
||||
export class SchemaConverter {
|
||||
constructor(propOrder) {
|
||||
this._propOrder = propOrder || {};
|
||||
this._rules = new Map();
|
||||
this._rules.set('space', SPACE_RULE);
|
||||
}
|
||||
|
||||
_formatLiteral(literal) {
|
||||
const escaped = JSON.stringify(literal).replace(
|
||||
GRAMMAR_LITERAL_ESCAPE_RE,
|
||||
m => GRAMMAR_LITERAL_ESCAPES[m]
|
||||
);
|
||||
return `"${escaped}"`;
|
||||
}
|
||||
|
||||
_addRule(name, rule) {
|
||||
let escName = name.replace(INVALID_RULE_CHARS_RE, '-');
|
||||
let key = escName;
|
||||
|
||||
if (this._rules.has(escName)) {
|
||||
if (this._rules.get(escName) === rule) {
|
||||
return key;
|
||||
}
|
||||
|
||||
let i = 0;
|
||||
while (this._rules.has(`${escName}${i}`)) {
|
||||
i += 1;
|
||||
}
|
||||
key = `${escName}${i}`;
|
||||
}
|
||||
|
||||
this._rules.set(key, rule);
|
||||
return key;
|
||||
}
|
||||
|
||||
visit(schema, name) {
|
||||
const schemaType = schema.type;
|
||||
const ruleName = name || 'root';
|
||||
|
||||
if (schema.oneOf || schema.anyOf) {
|
||||
const rule = (schema.oneOf || schema.anyOf).map((altSchema, i) =>
|
||||
this.visit(altSchema, `${name}${name ? "-" : ""}${i}`)
|
||||
).join(' | ');
|
||||
|
||||
return this._addRule(ruleName, rule);
|
||||
} else if ('const' in schema) {
|
||||
return this._addRule(ruleName, this._formatLiteral(schema.const));
|
||||
} else if ('enum' in schema) {
|
||||
const rule = schema.enum.map(v => this._formatLiteral(v)).join(' | ');
|
||||
return this._addRule(ruleName, rule);
|
||||
} else if (schemaType === 'object' && 'properties' in schema) {
|
||||
// TODO: `required` keyword (from python implementation)
|
||||
const propOrder = this._propOrder;
|
||||
const propPairs = Object.entries(schema.properties).sort((a, b) => {
|
||||
// sort by position in prop_order (if specified) then by key
|
||||
const orderA = typeof propOrder[a[0]] === 'number' ? propOrder[a[0]] : Infinity;
|
||||
const orderB = typeof propOrder[b[0]] === 'number' ? propOrder[b[0]] : Infinity;
|
||||
return orderA - orderB || a[0].localeCompare(b[0]);
|
||||
});
|
||||
|
||||
let rule = '"{" space';
|
||||
propPairs.forEach(([propName, propSchema], i) => {
|
||||
const propRuleName = this.visit(propSchema, `${name}${name ? "-" : ""}${propName}`);
|
||||
if (i > 0) {
|
||||
rule += ' "," space';
|
||||
}
|
||||
rule += ` ${this._formatLiteral(propName)} space ":" space ${propRuleName}`;
|
||||
});
|
||||
rule += ' "}" space';
|
||||
|
||||
return this._addRule(ruleName, rule);
|
||||
} else if (schemaType === 'array' && 'items' in schema) {
|
||||
// TODO `prefixItems` keyword (from python implementation)
|
||||
const itemRuleName = this.visit(schema.items, `${name}${name ? "-" : ""}item`);
|
||||
const rule = `"[" space (${itemRuleName} ("," space ${itemRuleName})*)? "]" space`;
|
||||
return this._addRule(ruleName, rule);
|
||||
} else {
|
||||
if (!PRIMITIVE_RULES[schemaType]) {
|
||||
throw new Error(`Unrecognized schema: ${JSON.stringify(schema)}`);
|
||||
}
|
||||
return this._addRule(
|
||||
ruleName === 'root' ? 'root' : schemaType,
|
||||
PRIMITIVE_RULES[schemaType]
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
formatGrammar() {
|
||||
let grammar = '';
|
||||
this._rules.forEach((rule, name) => {
|
||||
grammar += `${name} ::= ${rule}\n`;
|
||||
});
|
||||
return grammar;
|
||||
}
|
||||
}
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,6 +1,5 @@
|
||||
set(TARGET simple)
|
||||
add_executable(${TARGET} simple.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
if(TARGET BUILD_INFO)
|
||||
|
||||
@@ -2,129 +2,178 @@
|
||||
#define _GNU_SOURCE
|
||||
#endif
|
||||
|
||||
#include "build-info.h"
|
||||
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
#include "build-info.h"
|
||||
|
||||
#include <cassert>
|
||||
#include <cinttypes>
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <ctime>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
|
||||
#include <signal.h>
|
||||
#include <unistd.h>
|
||||
#elif defined (_WIN32)
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#define NOMINMAX
|
||||
#include <windows.h>
|
||||
#include <signal.h>
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
int main(int argc, char ** argv)
|
||||
{
|
||||
gpt_params params;
|
||||
|
||||
if (argc == 1 || argv[1][0] == '-') {
|
||||
printf("usage: %s MODEL_PATH [PROMPT]\n" , argv[0]);
|
||||
//---------------------------------
|
||||
// Print help :
|
||||
//---------------------------------
|
||||
|
||||
if ( argc == 1 || argv[1][0] == '-' )
|
||||
{
|
||||
printf( "usage: %s MODEL_PATH [PROMPT]\n" , argv[0] );
|
||||
return 1 ;
|
||||
}
|
||||
|
||||
if (argc >= 2) {
|
||||
//---------------------------------
|
||||
// Load parameters :
|
||||
//---------------------------------
|
||||
|
||||
if ( argc >= 2 )
|
||||
{
|
||||
params.model = argv[1];
|
||||
}
|
||||
|
||||
if (argc >= 3) {
|
||||
if ( argc >= 3 )
|
||||
{
|
||||
params.prompt = argv[2];
|
||||
}
|
||||
|
||||
if (params.prompt.empty()) {
|
||||
if ( params.prompt.empty() )
|
||||
{
|
||||
params.prompt = "Hello my name is";
|
||||
}
|
||||
|
||||
// init LLM
|
||||
//---------------------------------
|
||||
// Init LLM :
|
||||
//---------------------------------
|
||||
|
||||
llama_backend_init(params.numa);
|
||||
llama_init_backend();
|
||||
|
||||
llama_context_params ctx_params = llama_context_default_params();
|
||||
llama_model * model;
|
||||
llama_context * ctx;
|
||||
|
||||
llama_model * model = llama_load_model_from_file(params.model.c_str(), ctx_params);
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params( params );
|
||||
|
||||
if (model == NULL) {
|
||||
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
|
||||
if ( model == NULL )
|
||||
{
|
||||
fprintf( stderr , "%s: error: unable to load model\n" , __func__ );
|
||||
return 1;
|
||||
}
|
||||
|
||||
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
|
||||
|
||||
// tokenize the prompt
|
||||
//---------------------------------
|
||||
// Tokenize the prompt :
|
||||
//---------------------------------
|
||||
|
||||
std::vector<llama_token> tokens_list;
|
||||
tokens_list = ::llama_tokenize(ctx, params.prompt, true);
|
||||
tokens_list = ::llama_tokenize( ctx , params.prompt , true );
|
||||
|
||||
const int max_context_size = llama_n_ctx(ctx);
|
||||
const int max_tokens_list_size = max_context_size - 4;
|
||||
const int max_context_size = llama_n_ctx( ctx );
|
||||
const int max_tokens_list_size = max_context_size - 4 ;
|
||||
|
||||
if ((int) tokens_list.size() > max_tokens_list_size) {
|
||||
fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) tokens_list.size(), max_tokens_list_size);
|
||||
if ( (int)tokens_list.size() > max_tokens_list_size )
|
||||
{
|
||||
fprintf( stderr , "%s: error: prompt too long (%d tokens, max %d)\n" ,
|
||||
__func__ , (int)tokens_list.size() , max_tokens_list_size );
|
||||
return 1;
|
||||
}
|
||||
|
||||
fprintf(stderr, "\n\n");
|
||||
fprintf( stderr, "\n\n" );
|
||||
|
||||
for (auto id : tokens_list) {
|
||||
fprintf(stderr, "%s", llama_token_to_str(ctx, id).c_str());
|
||||
// Print the tokens from the prompt :
|
||||
|
||||
for( auto id : tokens_list )
|
||||
{
|
||||
printf( "%s" , llama_token_to_str( ctx , id ) );
|
||||
}
|
||||
|
||||
fflush(stderr);
|
||||
fflush(stdout);
|
||||
|
||||
// main loop
|
||||
|
||||
//---------------------------------
|
||||
// Main prediction loop :
|
||||
//---------------------------------
|
||||
|
||||
// The LLM keeps a contextual cache memory of previous token evaluation.
|
||||
// Usually, once this cache is full, it is required to recompute a compressed context based on previous
|
||||
// tokens (see "infinite text generation via context swapping" in the main example), but in this minimalist
|
||||
// example, we will just stop the loop once this cache is full or once an end of stream is detected.
|
||||
|
||||
const int n_gen = std::min(32, max_context_size);
|
||||
while ( llama_get_kv_cache_token_count( ctx ) < max_context_size )
|
||||
{
|
||||
//---------------------------------
|
||||
// Evaluate the tokens :
|
||||
//---------------------------------
|
||||
|
||||
while (llama_get_kv_cache_token_count(ctx) < n_gen) {
|
||||
// evaluate the transformer
|
||||
|
||||
if (llama_eval(ctx, tokens_list.data(), int(tokens_list.size()), llama_get_kv_cache_token_count(ctx), params.n_threads)) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
if ( llama_eval( ctx , tokens_list.data() , tokens_list.size() , llama_get_kv_cache_token_count( ctx ) , params.n_threads ) )
|
||||
{
|
||||
fprintf( stderr, "%s : failed to eval\n" , __func__ );
|
||||
return 1;
|
||||
}
|
||||
|
||||
tokens_list.clear();
|
||||
|
||||
// sample the next token
|
||||
//---------------------------------
|
||||
// Select the best prediction :
|
||||
//---------------------------------
|
||||
|
||||
llama_token new_token_id = 0;
|
||||
|
||||
auto logits = llama_get_logits(ctx);
|
||||
auto n_vocab = llama_n_vocab(ctx);
|
||||
auto logits = llama_get_logits( ctx );
|
||||
auto n_vocab = llama_n_vocab( ctx ); // the size of the LLM vocabulary (in tokens)
|
||||
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
candidates.reserve( n_vocab );
|
||||
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
|
||||
for( llama_token token_id = 0 ; token_id < n_vocab ; token_id++ )
|
||||
{
|
||||
candidates.emplace_back( llama_token_data{ token_id , logits[ token_id ] , 0.0f } );
|
||||
}
|
||||
|
||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||
|
||||
new_token_id = llama_sample_token_greedy(ctx , &candidates_p);
|
||||
// Select it using the "Greedy sampling" method :
|
||||
new_token_id = llama_sample_token_greedy( ctx , &candidates_p );
|
||||
|
||||
|
||||
// is it an end of stream ?
|
||||
if (new_token_id == llama_token_eos(ctx)) {
|
||||
if ( new_token_id == llama_token_eos() )
|
||||
{
|
||||
fprintf(stderr, " [end of text]\n");
|
||||
break;
|
||||
}
|
||||
|
||||
// print the new token :
|
||||
printf("%s", llama_token_to_str(ctx, new_token_id).c_str());
|
||||
fflush(stdout);
|
||||
// Print the new token :
|
||||
printf( "%s" , llama_token_to_str( ctx , new_token_id ) );
|
||||
fflush( stdout );
|
||||
|
||||
// push this new token for next evaluation
|
||||
tokens_list.push_back(new_token_id);
|
||||
}
|
||||
// Push this new token for next evaluation :
|
||||
tokens_list.push_back( new_token_id );
|
||||
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
} // wend of main loop
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
fprintf(stderr, "\n\n");
|
||||
llama_free( ctx );
|
||||
llama_free_model( model );
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
// EOF
|
||||
|
||||
@@ -1,5 +1,4 @@
|
||||
set(TARGET train-text-from-scratch)
|
||||
add_executable(${TARGET} train-text-from-scratch.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user