mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2026-02-12 14:03:20 +02:00
Compare commits
4 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
977629a34e | ||
|
|
d3f5fbef6c | ||
|
|
e3da126f2a | ||
|
|
8af1991e2a |
63
.github/workflows/build.yml
vendored
63
.github/workflows/build.yml
vendored
@@ -291,32 +291,24 @@ jobs:
|
||||
cd build
|
||||
ctest -C Release --verbose --timeout 900
|
||||
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
shell: bash
|
||||
run: |
|
||||
BUILD_NUMBER="$(git rev-list --count HEAD)"
|
||||
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
|
||||
if [[ "${{ env.BRANCH_NAME }}" == "master" ]]; then
|
||||
echo "name=b${BUILD_NUMBER}" >> $GITHUB_OUTPUT
|
||||
else
|
||||
SAFE_NAME=$(echo "${{ env.BRANCH_NAME }}" | tr '/' '-')
|
||||
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
- name: Get commit hash
|
||||
id: commit
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: pr-mpt/actions-commit-hash@v2
|
||||
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
run: |
|
||||
Copy-Item LICENSE .\build\bin\Release\llama.cpp.txt
|
||||
7z a llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}-x64.zip .\build\bin\Release\*
|
||||
7z a llama-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-win-${{ matrix.build }}-x64.zip .\build\bin\Release\*
|
||||
|
||||
- name: Upload artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: actions/upload-artifact@v3
|
||||
with:
|
||||
path: |
|
||||
llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}-x64.zip
|
||||
llama-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-win-${{ matrix.build }}-x64.zip
|
||||
|
||||
windows-latest-cmake-cublas:
|
||||
runs-on: windows-latest
|
||||
@@ -346,31 +338,23 @@ jobs:
|
||||
cmake .. -DLLAMA_BUILD_SERVER=ON -DLLAMA_CUBLAS=ON
|
||||
cmake --build . --config Release
|
||||
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
shell: bash
|
||||
run: |
|
||||
BUILD_NUMBER="$(git rev-list --count HEAD)"
|
||||
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
|
||||
if [[ "${{ env.BRANCH_NAME }}" == "master" ]]; then
|
||||
echo "name=b${BUILD_NUMBER}" >> $GITHUB_OUTPUT
|
||||
else
|
||||
SAFE_NAME=$(echo "${{ env.BRANCH_NAME }}" | tr '/' '-')
|
||||
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
- name: Get commit hash
|
||||
id: commit
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: pr-mpt/actions-commit-hash@v2
|
||||
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
run: |
|
||||
7z a llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}-cu${{ matrix.cuda }}-x64.zip .\build\bin\Release\*
|
||||
7z a llama-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-win-${{ matrix.build }}-cu${{ matrix.cuda }}-x64.zip .\build\bin\Release\*
|
||||
|
||||
- name: Upload artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: actions/upload-artifact@v3
|
||||
with:
|
||||
path: |
|
||||
llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}-cu${{ matrix.cuda }}-x64.zip
|
||||
llama-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-win-${{ matrix.build }}-cu${{ matrix.cuda }}-x64.zip
|
||||
|
||||
- name: Copy and pack Cuda runtime
|
||||
if: ${{ matrix.cuda == '12.1.0' }}
|
||||
@@ -416,34 +400,21 @@ jobs:
|
||||
- windows-latest-cmake-cublas
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
shell: bash
|
||||
run: |
|
||||
BUILD_NUMBER="$(git rev-list --count HEAD)"
|
||||
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
|
||||
if [[ "${{ env.BRANCH_NAME }}" == "master" ]]; then
|
||||
echo "name=b${BUILD_NUMBER}" >> $GITHUB_OUTPUT
|
||||
else
|
||||
SAFE_NAME=$(echo "${{ env.BRANCH_NAME }}" | tr '/' '-')
|
||||
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
|
||||
- name: Download artifacts
|
||||
id: download-artifact
|
||||
uses: actions/download-artifact@v3
|
||||
|
||||
- name: Get commit hash
|
||||
id: commit
|
||||
uses: pr-mpt/actions-commit-hash@v2
|
||||
|
||||
- name: Create release
|
||||
id: create_release
|
||||
uses: anzz1/action-create-release@v1
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
with:
|
||||
tag_name: ${{ steps.tag.outputs.name }}
|
||||
tag_name: ${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}
|
||||
|
||||
- name: Upload release
|
||||
id: upload_release
|
||||
|
||||
160
README.md
160
README.md
@@ -11,17 +11,15 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
|
||||
|
||||
### Hot topics
|
||||
|
||||
- Added support for Falcon models: https://github.com/ggerganov/llama.cpp/pull/2717
|
||||
A new file format has been introduced: [GGUF](https://github.com/ggerganov/llama.cpp/pull/2398)
|
||||
|
||||
- A new file format has been introduced: [GGUF](https://github.com/ggerganov/llama.cpp/pull/2398)
|
||||
Last revision compatible with the old format: [dadbed9](https://github.com/ggerganov/llama.cpp/commit/dadbed99e65252d79f81101a392d0d6497b86caa)
|
||||
|
||||
Last revision compatible with the old format: [dadbed9](https://github.com/ggerganov/llama.cpp/commit/dadbed99e65252d79f81101a392d0d6497b86caa)
|
||||
### Current `master` should be considered in Beta - expect some issues for a few days!
|
||||
|
||||
### Current `master` should be considered in Beta - expect some issues for a few days!
|
||||
### Be prepared to re-convert and / or re-quantize your GGUF models while this notice is up!
|
||||
|
||||
### Be prepared to re-convert and / or re-quantize your GGUF models while this notice is up!
|
||||
|
||||
### Issues with non-GGUF models will be considered with low priority!
|
||||
### Issues with non-GGUF models will be considered with low priority!
|
||||
|
||||
----
|
||||
|
||||
@@ -68,11 +66,12 @@ The main goal of `llama.cpp` is to run the LLaMA model using 4-bit integer quant
|
||||
- Apple silicon first-class citizen - optimized via ARM NEON, Accelerate and Metal frameworks
|
||||
- AVX, AVX2 and AVX512 support for x86 architectures
|
||||
- Mixed F16 / F32 precision
|
||||
- 2-bit, 3-bit, 4-bit, 5-bit, 6-bit and 8-bit integer quantization support
|
||||
- CUDA, Metal and OpenCL GPU backend support
|
||||
- 4-bit, 5-bit and 8-bit integer quantization support
|
||||
- Supports OpenBLAS/Apple BLAS/ARM Performance Lib/ATLAS/BLIS/Intel MKL/NVHPC/ACML/SCSL/SGIMATH and [more](https://cmake.org/cmake/help/latest/module/FindBLAS.html#blas-lapack-vendors) in BLAS
|
||||
- cuBLAS and CLBlast support
|
||||
|
||||
The original implementation of `llama.cpp` was [hacked in an evening](https://github.com/ggerganov/llama.cpp/issues/33#issuecomment-1465108022).
|
||||
Since then, the project has improved significantly thanks to many contributions. This project is mainly for educational purposes and serves
|
||||
Since then, the project has improved significantly thanks to many contributions. This project is for educational purposes and serves
|
||||
as the main playground for developing new features for the [ggml](https://github.com/ggerganov/ggml) library.
|
||||
|
||||
**Supported platforms:**
|
||||
@@ -86,7 +85,6 @@ as the main playground for developing new features for the [ggml](https://github
|
||||
|
||||
- [X] LLaMA 🦙
|
||||
- [x] LLaMA 2 🦙🦙
|
||||
- [X] Falcon
|
||||
- [X] [Alpaca](https://github.com/ggerganov/llama.cpp#instruction-mode-with-alpaca)
|
||||
- [X] [GPT4All](https://github.com/ggerganov/llama.cpp#using-gpt4all)
|
||||
- [X] [Chinese LLaMA / Alpaca](https://github.com/ymcui/Chinese-LLaMA-Alpaca) and [Chinese LLaMA-2 / Alpaca-2](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2)
|
||||
@@ -117,84 +115,90 @@ as the main playground for developing new features for the [ggml](https://github
|
||||
|
||||
---
|
||||
|
||||
Here is a typical run using LLaMA v2 13B on M2 Ultra:
|
||||
Here is a typical run using LLaMA-7B:
|
||||
|
||||
```java
|
||||
$ make -j && ./main -m models/llama-13b-v2/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e
|
||||
make -j && ./main -m ./models/7B/ggml-model-q4_0.bin -p "Building a website can be done in 10 simple steps:" -n 512
|
||||
I llama.cpp build info:
|
||||
I UNAME_S: Darwin
|
||||
I UNAME_P: arm
|
||||
I UNAME_M: arm64
|
||||
I CFLAGS: -I. -O3 -std=c11 -fPIC -DNDEBUG -Wall -Wextra -Wpedantic -Wcast-qual -Wdouble-promotion -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -pthread -DGGML_USE_K_QUANTS -DGGML_USE_ACCELERATE
|
||||
I CXXFLAGS: -I. -I./common -O3 -std=c++11 -fPIC -DNDEBUG -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wno-multichar -pthread -DGGML_USE_K_QUANTS
|
||||
I CFLAGS: -I. -O3 -DNDEBUG -std=c11 -fPIC -pthread -DGGML_USE_ACCELERATE
|
||||
I CXXFLAGS: -I. -I./examples -O3 -DNDEBUG -std=c++11 -fPIC -pthread
|
||||
I LDFLAGS: -framework Accelerate
|
||||
I CC: Apple clang version 14.0.3 (clang-1403.0.22.14.1)
|
||||
I CXX: Apple clang version 14.0.3 (clang-1403.0.22.14.1)
|
||||
I CC: Apple clang version 14.0.0 (clang-1400.0.29.202)
|
||||
I CXX: Apple clang version 14.0.0 (clang-1400.0.29.202)
|
||||
|
||||
make: Nothing to be done for `default'.
|
||||
main: build = 1041 (cf658ad)
|
||||
main: seed = 1692823051
|
||||
llama_model_loader: loaded meta data with 16 key-value pairs and 363 tensors from models/llama-13b-v2/ggml-model-q4_0.gguf (version GGUF V1 (latest))
|
||||
llama_model_loader: - type f32: 81 tensors
|
||||
llama_model_loader: - type q4_0: 281 tensors
|
||||
llama_model_loader: - type q6_K: 1 tensors
|
||||
llm_load_print_meta: format = GGUF V1 (latest)
|
||||
llm_load_print_meta: arch = llama
|
||||
llm_load_print_meta: vocab type = SPM
|
||||
llm_load_print_meta: n_vocab = 32000
|
||||
llm_load_print_meta: n_merges = 0
|
||||
llm_load_print_meta: n_ctx_train = 4096
|
||||
llm_load_print_meta: n_ctx = 512
|
||||
llm_load_print_meta: n_embd = 5120
|
||||
llm_load_print_meta: n_head = 40
|
||||
llm_load_print_meta: n_head_kv = 40
|
||||
llm_load_print_meta: n_layer = 40
|
||||
llm_load_print_meta: n_rot = 128
|
||||
llm_load_print_meta: n_gqa = 1
|
||||
llm_load_print_meta: f_norm_eps = 1.0e-05
|
||||
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
|
||||
llm_load_print_meta: n_ff = 13824
|
||||
llm_load_print_meta: freq_base = 10000.0
|
||||
llm_load_print_meta: freq_scale = 1
|
||||
llm_load_print_meta: model type = 13B
|
||||
llm_load_print_meta: model ftype = mostly Q4_0
|
||||
llm_load_print_meta: model size = 13.02 B
|
||||
llm_load_print_meta: general.name = LLaMA v2
|
||||
llm_load_print_meta: BOS token = 1 '<s>'
|
||||
llm_load_print_meta: EOS token = 2 '</s>'
|
||||
llm_load_print_meta: UNK token = 0 '<unk>'
|
||||
llm_load_print_meta: LF token = 13 '<0x0A>'
|
||||
llm_load_tensors: ggml ctx size = 0.11 MB
|
||||
llm_load_tensors: mem required = 7024.01 MB (+ 400.00 MB per state)
|
||||
...................................................................................................
|
||||
llama_new_context_with_model: kv self size = 400.00 MB
|
||||
llama_new_context_with_model: compute buffer total size = 75.41 MB
|
||||
main: seed = 1678486056
|
||||
llama_model_load: loading model from './models/7B/ggml-model-q4_0.bin' - please wait ...
|
||||
llama_model_load: n_vocab = 32000
|
||||
llama_model_load: n_ctx = 512
|
||||
llama_model_load: n_embd = 4096
|
||||
llama_model_load: n_mult = 256
|
||||
llama_model_load: n_head = 32
|
||||
llama_model_load: n_layer = 32
|
||||
llama_model_load: n_rot = 128
|
||||
llama_model_load: f16 = 2
|
||||
llama_model_load: n_ff = 11008
|
||||
llama_model_load: ggml ctx size = 4529.34 MB
|
||||
llama_model_load: memory_size = 512.00 MB, n_mem = 16384
|
||||
llama_model_load: .................................... done
|
||||
llama_model_load: model size = 4017.27 MB / num tensors = 291
|
||||
|
||||
system_info: n_threads = 16 / 24 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | VSX = 0 |
|
||||
sampling: repeat_last_n = 64, repeat_penalty = 1.100000, presence_penalty = 0.000000, frequency_penalty = 0.000000, top_k = 40, tfs_z = 1.000000, top_p = 0.950000, typical_p = 1.000000, temp = 0.800000, mirostat = 0, mirostat_lr = 0.100000, mirostat_ent = 5.000000
|
||||
generate: n_ctx = 512, n_batch = 512, n_predict = 400, n_keep = 0
|
||||
main: prompt: 'Building a website can be done in 10 simple steps:'
|
||||
main: number of tokens in prompt = 15
|
||||
1 -> ''
|
||||
8893 -> 'Build'
|
||||
292 -> 'ing'
|
||||
263 -> ' a'
|
||||
4700 -> ' website'
|
||||
508 -> ' can'
|
||||
367 -> ' be'
|
||||
2309 -> ' done'
|
||||
297 -> ' in'
|
||||
29871 -> ' '
|
||||
29896 -> '1'
|
||||
29900 -> '0'
|
||||
2560 -> ' simple'
|
||||
6576 -> ' steps'
|
||||
29901 -> ':'
|
||||
|
||||
sampling parameters: temp = 0.800000, top_k = 40, top_p = 0.950000
|
||||
|
||||
|
||||
Building a website can be done in 10 simple steps:
|
||||
Step 1: Find the right website platform.
|
||||
Step 2: Choose your domain name and hosting plan.
|
||||
Step 3: Design your website layout.
|
||||
Step 4: Write your website content and add images.
|
||||
Step 5: Install security features to protect your site from hackers or spammers
|
||||
Step 6: Test your website on multiple browsers, mobile devices, operating systems etc…
|
||||
Step 7: Test it again with people who are not related to you personally – friends or family members will work just fine!
|
||||
Step 8: Start marketing and promoting the website via social media channels or paid ads
|
||||
Step 9: Analyze how many visitors have come to your site so far, what type of people visit more often than others (e.g., men vs women) etc…
|
||||
Step 10: Continue to improve upon all aspects mentioned above by following trends in web design and staying up-to-date on new technologies that can enhance user experience even further!
|
||||
How does a Website Work?
|
||||
A website works by having pages, which are made of HTML code. This code tells your computer how to display the content on each page you visit – whether it’s an image or text file (like PDFs). In order for someone else’s browser not only be able but also want those same results when accessing any given URL; some additional steps need taken by way of programming scripts that will add functionality such as making links clickable!
|
||||
The most common type is called static HTML pages because they remain unchanged over time unless modified manually (either through editing files directly or using an interface such as WordPress). They are usually served up via HTTP protocols – this means anyone can access them without having any special privileges like being part of a group who is allowed into restricted areas online; however, there may still exist some limitations depending upon where one lives geographically speaking.
|
||||
How to
|
||||
llama_print_timings: load time = 576.45 ms
|
||||
llama_print_timings: sample time = 283.10 ms / 400 runs ( 0.71 ms per token, 1412.91 tokens per second)
|
||||
llama_print_timings: prompt eval time = 599.83 ms / 19 tokens ( 31.57 ms per token, 31.68 tokens per second)
|
||||
llama_print_timings: eval time = 24513.59 ms / 399 runs ( 61.44 ms per token, 16.28 tokens per second)
|
||||
llama_print_timings: total time = 25431.49 ms
|
||||
Building a website can be done in 10 simple steps:
|
||||
1) Select a domain name and web hosting plan
|
||||
2) Complete a sitemap
|
||||
3) List your products
|
||||
4) Write product descriptions
|
||||
5) Create a user account
|
||||
6) Build the template
|
||||
7) Start building the website
|
||||
8) Advertise the website
|
||||
9) Provide email support
|
||||
10) Submit the website to search engines
|
||||
A website is a collection of web pages that are formatted with HTML. HTML is the code that defines what the website looks like and how it behaves.
|
||||
The HTML code is formatted into a template or a format. Once this is done, it is displayed on the user's browser.
|
||||
The web pages are stored in a web server. The web server is also called a host. When the website is accessed, it is retrieved from the server and displayed on the user's computer.
|
||||
A website is known as a website when it is hosted. This means that it is displayed on a host. The host is usually a web server.
|
||||
A website can be displayed on different browsers. The browsers are basically the software that renders the website on the user's screen.
|
||||
A website can also be viewed on different devices such as desktops, tablets and smartphones.
|
||||
Hence, to have a website displayed on a browser, the website must be hosted.
|
||||
A domain name is an address of a website. It is the name of the website.
|
||||
The website is known as a website when it is hosted. This means that it is displayed on a host. The host is usually a web server.
|
||||
A website can be displayed on different browsers. The browsers are basically the software that renders the website on the user’s screen.
|
||||
A website can also be viewed on different devices such as desktops, tablets and smartphones. Hence, to have a website displayed on a browser, the website must be hosted.
|
||||
A domain name is an address of a website. It is the name of the website.
|
||||
A website is an address of a website. It is a collection of web pages that are formatted with HTML. HTML is the code that defines what the website looks like and how it behaves.
|
||||
The HTML code is formatted into a template or a format. Once this is done, it is displayed on the user’s browser.
|
||||
A website is known as a website when it is hosted
|
||||
|
||||
main: mem per token = 14434244 bytes
|
||||
main: load time = 1332.48 ms
|
||||
main: sample time = 1081.40 ms
|
||||
main: predict time = 31378.77 ms / 61.41 ms per token
|
||||
main: total time = 34036.74 ms
|
||||
```
|
||||
|
||||
And here is another demo of running both LLaMA-7B and [whisper.cpp](https://github.com/ggerganov/whisper.cpp) on a single M1 Pro MacBook:
|
||||
@@ -539,8 +543,6 @@ As the models are currently fully loaded into memory, you will need adequate dis
|
||||
|
||||
Several quantization methods are supported. They differ in the resulting model disk size and inference speed.
|
||||
|
||||
*(outdated)*
|
||||
|
||||
| Model | Measure | F16 | Q4_0 | Q4_1 | Q5_0 | Q5_1 | Q8_0 |
|
||||
|------:|--------------|-------:|-------:|-------:|-------:|-------:|-------:|
|
||||
| 7B | perplexity | 5.9066 | 6.1565 | 6.0912 | 5.9862 | 5.9481 | 5.9070 |
|
||||
|
||||
@@ -744,3 +744,35 @@ std::string llama_token_to_str(const struct llama_context * ctx, llama_token tok
|
||||
|
||||
return std::string(result.data(), result.size());
|
||||
}
|
||||
|
||||
std::vector<llama_token> llama_tokenize_bpe(
|
||||
struct llama_context * ctx,
|
||||
const std::string & text,
|
||||
bool add_bos) {
|
||||
int n_tokens = text.length() + add_bos;
|
||||
std::vector<llama_token> result(n_tokens);
|
||||
n_tokens = llama_tokenize_bpe(ctx, text.c_str(), result.data(), result.size(), add_bos);
|
||||
if (n_tokens < 0) {
|
||||
result.resize(-n_tokens);
|
||||
int check = llama_tokenize_bpe(ctx, text.c_str(), result.data(), result.size(), add_bos);
|
||||
GGML_ASSERT(check == -n_tokens);
|
||||
} else {
|
||||
result.resize(n_tokens);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
std::string llama_token_to_str_bpe(const struct llama_context * ctx, llama_token token) {
|
||||
std::vector<char> result(8, 0);
|
||||
const int n_tokens = llama_token_to_str_bpe(ctx, token, result.data(), result.size());
|
||||
if (n_tokens < 0) {
|
||||
result.resize(-n_tokens);
|
||||
const int check = llama_token_to_str_bpe(ctx, token, result.data(), result.size());
|
||||
GGML_ASSERT(check == -n_tokens);
|
||||
} else {
|
||||
result.resize(n_tokens);
|
||||
}
|
||||
|
||||
return std::string(result.data(), result.size());
|
||||
}
|
||||
|
||||
|
||||
@@ -120,6 +120,15 @@ std::vector<llama_token> llama_tokenize(
|
||||
const std::string & text,
|
||||
bool add_bos);
|
||||
|
||||
std::vector<llama_token> llama_tokenize_bpe(
|
||||
struct llama_context * ctx,
|
||||
const std::string & text,
|
||||
bool add_bos);
|
||||
|
||||
std::string llama_token_to_str(
|
||||
const struct llama_context * ctx,
|
||||
llama_token token);
|
||||
|
||||
std::string llama_token_to_str_bpe(
|
||||
const struct llama_context * ctx,
|
||||
llama_token token);
|
||||
|
||||
@@ -95,17 +95,14 @@ print("gguf: get model metadata")
|
||||
|
||||
block_count = hparams["n_layer"]
|
||||
|
||||
gguf_writer.add_name("Falcon")
|
||||
gguf_writer.add_name(last_dir)
|
||||
gguf_writer.add_context_length(2048) # not in config.json
|
||||
gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
|
||||
gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||||
gguf_writer.add_feed_forward_length(4 * hparams["hidden_size"])
|
||||
gguf_writer.add_block_count(block_count)
|
||||
gguf_writer.add_head_count(hparams["n_head"])
|
||||
if "n_head_kv" in hparams:
|
||||
gguf_writer.add_head_count_kv(hparams["n_head_kv"])
|
||||
else:
|
||||
gguf_writer.add_head_count_kv(1)
|
||||
if "n_head_kv" in hparams: gguf_writer.add_head_count_kv(hparams["n_head_kv"])
|
||||
gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"])
|
||||
|
||||
# TOKENIZATION
|
||||
@@ -113,8 +110,6 @@ gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"])
|
||||
print("gguf: get tokenizer metadata")
|
||||
|
||||
tokens: List[str] = []
|
||||
scores: List[float] = []
|
||||
toktypes: List[int] = []
|
||||
merges: List[str] = []
|
||||
|
||||
|
||||
@@ -158,30 +153,41 @@ if Path(dir_model + "/tokenizer.json").is_file():
|
||||
text = bytearray(pad_token)
|
||||
|
||||
tokens.append(text)
|
||||
scores.append(0.0) # dymmy
|
||||
toktypes.append(gguf.TokenType.NORMAL) # dummy
|
||||
|
||||
gguf_writer.add_token_list(tokens)
|
||||
gguf_writer.add_token_scores(scores)
|
||||
gguf_writer.add_token_types(toktypes)
|
||||
|
||||
print("gguf: get special token ids")
|
||||
# Look for special tokens in config.json
|
||||
if "added_tokens" in tokenizer_json and Path(dir_model + "/tokenizer_config.json").is_file():
|
||||
print("gguf: get special token ids")
|
||||
|
||||
if "bos_token_id" in hparams and hparams["bos_token_id"] != None:
|
||||
gguf_writer.add_bos_token_id(hparams["bos_token_id"])
|
||||
with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f:
|
||||
tokenizer_config = json.load(f)
|
||||
|
||||
if "eos_token_id" in hparams and hparams["eos_token_id"] != None:
|
||||
gguf_writer.add_eos_token_id(hparams["eos_token_id"])
|
||||
# find special token ids
|
||||
|
||||
if "unk_token_id" in hparams and hparams["unk_token_id"] != None:
|
||||
gguf_writer.add_unk_token_id(hparams["unk_token_id"])
|
||||
if "bos_token" in tokenizer_config:
|
||||
for key in tokenizer_json["added_tokens"]:
|
||||
if key["content"] == tokenizer_config["bos_token"]:
|
||||
gguf_writer.add_bos_token_id(key["id"])
|
||||
|
||||
if "sep_token_id" in hparams and hparams["sep_token_id"] != None:
|
||||
gguf_writer.add_sep_token_id(hparams["sep_token_id"])
|
||||
if "eos_token" in tokenizer_config:
|
||||
for key in tokenizer_json["added_tokens"]:
|
||||
if key["content"] == tokenizer_config["eos_token"]:
|
||||
gguf_writer.add_eos_token_id(key["id"])
|
||||
|
||||
if "pad_token_id" in hparams and hparams["pad_token_id"] != None:
|
||||
gguf_writer.add_pad_token_id(hparams["pad_token_id"])
|
||||
if "unk_token" in tokenizer_config:
|
||||
for key in tokenizer_json["added_tokens"]:
|
||||
if key["content"] == tokenizer_config["unk_token"]:
|
||||
gguf_writer.add_unk_token_id(key["id"])
|
||||
|
||||
if "sep_token" in tokenizer_config:
|
||||
for key in tokenizer_json["added_tokens"]:
|
||||
if key["content"] == tokenizer_config["sep_token"]:
|
||||
gguf_writer.add_sep_token_id(key["id"])
|
||||
|
||||
if "pad_token" in tokenizer_config:
|
||||
for key in tokenizer_json["added_tokens"]:
|
||||
if key["content"] == tokenizer_config["pad_token"]:
|
||||
gguf_writer.add_pad_token_id(key["id"])
|
||||
|
||||
|
||||
# TENSORS
|
||||
@@ -189,9 +195,8 @@ if "pad_token_id" in hparams and hparams["pad_token_id"] != None:
|
||||
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
|
||||
|
||||
# params for qkv transform
|
||||
n_head = hparams["n_head"]
|
||||
n_head = hparams["n_head"]
|
||||
n_head_kv = hparams["n_head_kv"] if "n_head_kv" in hparams else 1
|
||||
|
||||
head_dim = hparams["hidden_size"] // n_head
|
||||
|
||||
# tensor info
|
||||
|
||||
15
convert.py
15
convert.py
@@ -106,9 +106,6 @@ class Params:
|
||||
|
||||
ftype: Optional[GGMLFileType] = None
|
||||
|
||||
# path to the directory containing the model files
|
||||
path_model: Optional['Path'] = None
|
||||
|
||||
@staticmethod
|
||||
def find_n_mult(n_ff: int, n_embd: int) -> int:
|
||||
# hardcoded magic range
|
||||
@@ -194,7 +191,7 @@ class Params:
|
||||
def loadOriginalParamsJson(model: 'LazyModel', config_path: 'Path') -> 'Params':
|
||||
config = json.load(open(config_path))
|
||||
|
||||
n_vocab = config["vocab_size"] if "vocab_size" in config else -1
|
||||
n_vocab = config["vocab_size"]
|
||||
n_embd = config["dim"]
|
||||
n_layer = config["n_layers"]
|
||||
n_mult = config["multiple_of"]
|
||||
@@ -234,8 +231,6 @@ class Params:
|
||||
else:
|
||||
params = Params.guessed(model_plus.model)
|
||||
|
||||
params.path_model = model_plus.paths[0].parent
|
||||
|
||||
return params
|
||||
|
||||
|
||||
@@ -738,13 +733,7 @@ class OutputFile:
|
||||
self.gguf = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
|
||||
|
||||
def add_meta_arch(self, params: Params) -> None:
|
||||
name = "LLaMA"
|
||||
if (params.n_ctx == 4096):
|
||||
name = "LLaMA v2"
|
||||
if params.path_model:
|
||||
name = str(params.path_model.parent).split('/')[-1]
|
||||
|
||||
self.gguf.add_name (name)
|
||||
self.gguf.add_name ("LLaMA")
|
||||
self.gguf.add_context_length (params.n_ctx)
|
||||
self.gguf.add_embedding_length (params.n_embd)
|
||||
self.gguf.add_block_count (params.n_layer)
|
||||
|
||||
@@ -11,6 +11,8 @@ cd ..
|
||||
#
|
||||
# "--keep 48" is based on the contents of prompts/chat-with-bob.txt
|
||||
#
|
||||
./main -m ./models/7B/ggml-model-q4_0.bin -c 512 -b 1024 -n 256 --keep 48 \
|
||||
--repeat_penalty 1.0 --color -i \
|
||||
-r "User:" -f prompts/chat-with-bob.txt
|
||||
./main -m ./models/7B/ggml-model-q4_0.bin -c 512 -b 1024 -n -1 --keep 48 \
|
||||
--repeat_penalty 1.0 --color \
|
||||
-i --interactive-first \
|
||||
-r "User:" --in-prefix " " \
|
||||
-f prompts/chat-with-bob.txt
|
||||
|
||||
@@ -43,7 +43,7 @@ static bool is_interacting = false;
|
||||
void sigint_handler(int signo) {
|
||||
if (signo == SIGINT) {
|
||||
if (!is_interacting) {
|
||||
is_interacting = true;
|
||||
is_interacting=true;
|
||||
} else {
|
||||
console::cleanup();
|
||||
printf("\n");
|
||||
@@ -189,12 +189,10 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
|
||||
const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM;
|
||||
|
||||
// tokenize the prompt
|
||||
std::vector<llama_token> embd_inp;
|
||||
if (params.interactive_first || params.instruct || !params.prompt.empty() || session_tokens.empty()) {
|
||||
embd_inp = ::llama_tokenize(ctx, params.prompt, is_spm);
|
||||
embd_inp = ::llama_tokenize(ctx, params.prompt, true);
|
||||
} else {
|
||||
embd_inp = session_tokens;
|
||||
}
|
||||
@@ -210,9 +208,9 @@ int main(int argc, char ** argv) {
|
||||
int original_prompt_len = 0;
|
||||
if (ctx_guidance) {
|
||||
params.cfg_negative_prompt.insert(0, 1, ' ');
|
||||
guidance_inp = ::llama_tokenize(ctx_guidance, params.cfg_negative_prompt, is_spm);
|
||||
guidance_inp = ::llama_tokenize(ctx_guidance, params.cfg_negative_prompt, true);
|
||||
|
||||
std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, is_spm);
|
||||
std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, true);
|
||||
original_prompt_len = original_inp.size();
|
||||
guidance_offset = (int)guidance_inp.size() - original_prompt_len;
|
||||
}
|
||||
@@ -259,8 +257,8 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// prefix & suffix for instruct mode
|
||||
const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", is_spm);
|
||||
const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false);
|
||||
const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", true);
|
||||
const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false);
|
||||
|
||||
// in instruct mode, we inject a prefix and a suffix to each input by the user
|
||||
if (params.instruct) {
|
||||
@@ -633,6 +631,16 @@ int main(int argc, char ** argv) {
|
||||
llama_grammar_accept_token(ctx, grammar, id);
|
||||
}
|
||||
|
||||
// replace end of text token with newline token and inject reverse prompt when in interactive mode
|
||||
if (id == llama_token_eos() && params.interactive && !params.instruct && !params.input_prefix_bos) {
|
||||
id = llama_token_nl();
|
||||
if (params.antiprompt.size() != 0) {
|
||||
// tokenize and inject first reverse prompt
|
||||
const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false);
|
||||
embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end());
|
||||
}
|
||||
}
|
||||
|
||||
last_n_tokens.erase(last_n_tokens.begin());
|
||||
last_n_tokens.push_back(id);
|
||||
}
|
||||
@@ -714,8 +722,8 @@ int main(int argc, char ** argv) {
|
||||
|
||||
is_interacting = true;
|
||||
printf("\n");
|
||||
console::set_display(console::user_input);
|
||||
fflush(stdout);
|
||||
console::set_display(console::user_input);
|
||||
} else if (params.instruct) {
|
||||
is_interacting = true;
|
||||
}
|
||||
@@ -724,6 +732,7 @@ int main(int argc, char ** argv) {
|
||||
if (n_past > 0 && is_interacting) {
|
||||
if (params.instruct) {
|
||||
printf("\n> ");
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
if (params.input_prefix_bos) {
|
||||
@@ -734,6 +743,7 @@ int main(int argc, char ** argv) {
|
||||
if (!params.input_prefix.empty()) {
|
||||
buffer += params.input_prefix;
|
||||
printf("%s", buffer.c_str());
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
std::string line;
|
||||
@@ -753,6 +763,7 @@ int main(int argc, char ** argv) {
|
||||
if (!params.input_suffix.empty()) {
|
||||
buffer += params.input_suffix;
|
||||
printf("%s", params.input_suffix.c_str());
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
// instruct mode: insert instruction prefix
|
||||
@@ -798,8 +809,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
|
||||
// We skip this logic when n_predict == -1 (infinite) or -2 (stop at context size).
|
||||
if (params.interactive && n_remain <= 0 && params.n_predict >= 0) {
|
||||
if (params.interactive && n_remain <= 0 && params.n_predict != -1) {
|
||||
n_remain = params.n_predict;
|
||||
is_interacting = true;
|
||||
}
|
||||
|
||||
@@ -28,6 +28,7 @@ std::vector<float> softmax(const std::vector<float>& logits) {
|
||||
}
|
||||
|
||||
void perplexity_v2(llama_context * ctx, const gpt_params & params) {
|
||||
|
||||
// Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
|
||||
// Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
|
||||
// Output: `perplexity: 13.5106 [114/114]`
|
||||
@@ -37,13 +38,7 @@ void perplexity_v2(llama_context * ctx, const gpt_params & params) {
|
||||
fprintf(stderr, "%s: stride is %d but must be greater than zero!\n",__func__,params.ppl_stride);
|
||||
return;
|
||||
}
|
||||
|
||||
const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM;
|
||||
const bool add_bos = is_spm;
|
||||
|
||||
fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
|
||||
|
||||
auto tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
|
||||
auto tokens = ::llama_tokenize(ctx, params.prompt, true);
|
||||
|
||||
const int calc_chunk = params.n_ctx;
|
||||
|
||||
@@ -91,7 +86,7 @@ void perplexity_v2(llama_context * ctx, const gpt_params & params) {
|
||||
const auto token_org = tokens[batch_start];
|
||||
|
||||
// add BOS token for the first batch of each chunk
|
||||
if (add_bos && j == 0) {
|
||||
if (j == 0) {
|
||||
tokens[batch_start] = llama_token_bos(ctx);
|
||||
}
|
||||
|
||||
@@ -141,6 +136,7 @@ void perplexity_v2(llama_context * ctx, const gpt_params & params) {
|
||||
}
|
||||
|
||||
void perplexity(llama_context * ctx, const gpt_params & params) {
|
||||
|
||||
if (params.ppl_stride > 0) {
|
||||
perplexity_v2(ctx, params);
|
||||
return;
|
||||
@@ -150,13 +146,7 @@ void perplexity(llama_context * ctx, const gpt_params & params) {
|
||||
// Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
|
||||
// Output: `perplexity: 13.5106 [114/114]`
|
||||
// BOS tokens will be added for each chunk before eval
|
||||
|
||||
const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM;
|
||||
const bool add_bos = is_spm;
|
||||
|
||||
fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
|
||||
|
||||
auto tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
|
||||
auto tokens = ::llama_tokenize(ctx, params.prompt, true);
|
||||
|
||||
const int n_chunk_max = tokens.size() / params.n_ctx;
|
||||
|
||||
@@ -187,7 +177,7 @@ void perplexity(llama_context * ctx, const gpt_params & params) {
|
||||
const auto token_org = tokens[batch_start];
|
||||
|
||||
// add BOS token for the first batch of each chunk
|
||||
if (add_bos && j == 0) {
|
||||
if (j == 0) {
|
||||
tokens[batch_start] = llama_token_bos(ctx);
|
||||
}
|
||||
|
||||
@@ -305,10 +295,8 @@ void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
||||
size_t hs_task_count = prompt_lines.size()/6;
|
||||
fprintf(stderr, "%s : loaded %zu tasks from prompt.\n", __func__, hs_task_count);
|
||||
|
||||
const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM;
|
||||
|
||||
// This is needed as usual for LLaMA models
|
||||
const bool add_bos = is_spm;
|
||||
bool prepend_bos = true;
|
||||
|
||||
// Number of tasks to use when computing the score
|
||||
if ( params.hellaswag_tasks < hs_task_count ) {
|
||||
@@ -364,13 +352,14 @@ void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
||||
std::vector<float> tok_logits(n_vocab);
|
||||
|
||||
for (size_t task_idx = 0; task_idx < hs_task_count; task_idx++) {
|
||||
|
||||
// Tokenize the context to count tokens
|
||||
std::vector<int> context_embd = ::llama_tokenize(ctx, hs_data[task_idx].context, add_bos);
|
||||
std::vector<int> context_embd = ::llama_tokenize(ctx, hs_data[task_idx].context, prepend_bos);
|
||||
size_t context_size = context_embd.size();
|
||||
|
||||
// Do the 1st ending
|
||||
// In this case we include the context when evaluating
|
||||
auto query_embd = ::llama_tokenize(ctx, hs_data[task_idx].context + hs_data[task_idx].ending[0], add_bos);
|
||||
auto query_embd = ::llama_tokenize(ctx, hs_data[task_idx].context + hs_data[task_idx].ending[0], prepend_bos);
|
||||
auto query_size = query_embd.size();
|
||||
//printf("First query: %d\n",(int)query_size);
|
||||
|
||||
|
||||
137
ggml-alloc.c
137
ggml-alloc.c
@@ -68,7 +68,7 @@ struct ggml_allocr {
|
||||
size_t max_size;
|
||||
bool measure;
|
||||
int parse_seq[GGML_MAX_NODES];
|
||||
int parse_seq_len;
|
||||
bool has_parse_seq;
|
||||
|
||||
#ifdef GGML_ALLOCATOR_DEBUG
|
||||
struct ggml_tensor * allocated_tensors[1024];
|
||||
@@ -238,11 +238,15 @@ static void ggml_allocator_free_tensor(struct ggml_allocr * alloc, struct ggml_t
|
||||
alloc->n_free_blocks++;
|
||||
}
|
||||
|
||||
void ggml_allocr_set_parse_seq(struct ggml_allocr * alloc, const int * list, int n) {
|
||||
void ggml_allocr_set_parse_seq(struct ggml_allocr * alloc, int * list, int n) {
|
||||
int pos = 0;
|
||||
for (int i = 0; i < n; i++) {
|
||||
alloc->parse_seq[i] = list[i];
|
||||
if (list[i] != -1) {
|
||||
alloc->parse_seq[pos] = list[i];
|
||||
pos++;
|
||||
}
|
||||
}
|
||||
alloc->parse_seq_len = n;
|
||||
alloc->has_parse_seq = true;
|
||||
}
|
||||
|
||||
void ggml_allocr_reset(struct ggml_allocr * alloc) {
|
||||
@@ -265,7 +269,7 @@ struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment)
|
||||
/*.max_size = */ 0,
|
||||
/*.measure = */ false,
|
||||
/*.parse_seq = */ {0},
|
||||
/*.parse_seq_len = */ 0,
|
||||
/*.has_parse_seq = */ false,
|
||||
#ifdef GGML_ALLOCATOR_DEBUG
|
||||
/*.allocated_tensors = */ = {0},
|
||||
#endif
|
||||
@@ -294,7 +298,7 @@ struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) {
|
||||
/*.max_size = */ 0,
|
||||
/*.measure = */ true,
|
||||
/*.parse_seq = */ {0},
|
||||
/*.parse_seq_len = */ 0,
|
||||
/*.has_parse_seq = */ false,
|
||||
#ifdef GGML_ALLOCATOR_DEBUG
|
||||
/*.allocated_tensors = */ = {0},
|
||||
#endif
|
||||
@@ -441,8 +445,8 @@ static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node)
|
||||
else {
|
||||
AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name);
|
||||
node->data = parent->data;
|
||||
return;
|
||||
}
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -493,86 +497,69 @@ static size_t ggml_allocator_alloc_graph_tensors_n(
|
||||
allocate_node(alloc, input);
|
||||
}
|
||||
}
|
||||
// if we have parse_seq then we allocate nodes following the list, and we only free nodes at barriers
|
||||
int last_barrier_pos = 0;
|
||||
int n_nodes = alloc->parse_seq_len ? alloc->parse_seq_len : gf->n_nodes;
|
||||
for (int ind = 0; ind < gf->n_nodes; ind++) {
|
||||
int i;
|
||||
if (alloc->has_parse_seq) {
|
||||
i = alloc->parse_seq[ind];
|
||||
} else {
|
||||
i = ind;
|
||||
}
|
||||
struct ggml_tensor * node = gf->nodes[i];
|
||||
|
||||
for (int ind = 0; ind < n_nodes; ind++) {
|
||||
// allocate a node if there is no parse_seq or this is not a barrier
|
||||
if ((alloc->parse_seq_len==0) || alloc->parse_seq[ind] != -1) {
|
||||
int i = alloc->parse_seq_len ? alloc->parse_seq[ind] : ind;
|
||||
struct ggml_tensor * node = gf->nodes[i];
|
||||
|
||||
// allocate parents (leafs)
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * parent = node->src[j];
|
||||
if (parent == NULL) {
|
||||
break;
|
||||
}
|
||||
allocate_node(alloc, parent);
|
||||
// allocate parents (leafs)
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * parent = node->src[j];
|
||||
if (parent == NULL) {
|
||||
break;
|
||||
}
|
||||
|
||||
// allocate node
|
||||
allocate_node(alloc, node);
|
||||
|
||||
AT_PRINTF("exec: %s (%s) <= ", ggml_op_name(node->op), node->name);
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * parent = node->src[j];
|
||||
if (parent == NULL) {
|
||||
break;
|
||||
}
|
||||
AT_PRINTF("%s", parent->name);
|
||||
if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) {
|
||||
AT_PRINTF(", ");
|
||||
}
|
||||
}
|
||||
AT_PRINTF("\n");
|
||||
allocate_node(alloc, parent);
|
||||
}
|
||||
|
||||
// allocate node
|
||||
allocate_node(alloc, node);
|
||||
|
||||
AT_PRINTF("exec: %s (%s) <= ", ggml_op_name(node->op), node->name);
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * parent = node->src[j];
|
||||
if (parent == NULL) {
|
||||
break;
|
||||
}
|
||||
AT_PRINTF("%s", parent->name);
|
||||
if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) {
|
||||
AT_PRINTF(", ");
|
||||
}
|
||||
}
|
||||
AT_PRINTF("\n");
|
||||
|
||||
// update parents
|
||||
// update immediately if there is no parse_seq
|
||||
// update only at barriers if there is parse_seq
|
||||
if ((alloc->parse_seq_len==0) || alloc->parse_seq[ind] == -1) {
|
||||
int update_start = alloc->parse_seq_len ? last_barrier_pos : ind;
|
||||
int update_end = alloc->parse_seq_len ? ind : ind + 1;
|
||||
for (int i = update_start; i < update_end; i++) {
|
||||
int node_i = alloc->parse_seq_len ? alloc->parse_seq[i] : i;
|
||||
struct ggml_tensor * node = gf->nodes[node_i];
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * parent = node->src[j];
|
||||
if (parent == NULL) {
|
||||
break;
|
||||
}
|
||||
struct hash_node * p_hn = hash_get(ht, parent);
|
||||
p_hn->n_children -= 1;
|
||||
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * parent = node->src[j];
|
||||
if (parent == NULL) {
|
||||
break;
|
||||
//AT_PRINTF("parent %s: %d children, %d views\n", parent->name, parent->n_children, parent->n_views);
|
||||
|
||||
if (p_hn->n_children == 0 && p_hn->n_views == 0) {
|
||||
if (ggml_is_view(parent)) {
|
||||
struct ggml_tensor * view_src = get_view_source(parent);
|
||||
struct hash_node * view_src_hn = hash_get(ht, view_src);
|
||||
view_src_hn->n_views -= 1;
|
||||
AT_PRINTF("view_src %s: %d children, %d views\n", view_src->name, view_src->n_children, view_src->n_views);
|
||||
if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src->data != node->data) {
|
||||
ggml_allocator_free_tensor(alloc, view_src);
|
||||
}
|
||||
struct hash_node * p_hn = hash_get(ht, parent);
|
||||
p_hn->n_children -= 1;
|
||||
|
||||
//AT_PRINTF("parent %s: %d children, %d views\n", parent->name, parent->n_children, parent->n_views);
|
||||
|
||||
if (p_hn->n_children == 0 && p_hn->n_views == 0) {
|
||||
if (ggml_is_view(parent)) {
|
||||
struct ggml_tensor * view_src = get_view_source(parent);
|
||||
struct hash_node * view_src_hn = hash_get(ht, view_src);
|
||||
view_src_hn->n_views -= 1;
|
||||
AT_PRINTF("view_src %s\n", view_src->name);
|
||||
if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src->data != node->data) {
|
||||
ggml_allocator_free_tensor(alloc, view_src);
|
||||
}
|
||||
}
|
||||
else {
|
||||
if (parent->data != node->data) {
|
||||
ggml_allocator_free_tensor(alloc, parent);
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
if (parent->data != node->data) {
|
||||
ggml_allocator_free_tensor(alloc, parent);
|
||||
}
|
||||
}
|
||||
}
|
||||
AT_PRINTF("\n");
|
||||
if (alloc->parse_seq_len) {
|
||||
last_barrier_pos = ind + 1;
|
||||
}
|
||||
}
|
||||
AT_PRINTF("\n");
|
||||
}
|
||||
// free graph outputs here that wouldn't be freed otherwise because they have no children
|
||||
if (outputs != NULL && outputs[g] != NULL) {
|
||||
|
||||
@@ -12,7 +12,7 @@ GGML_API struct ggml_allocr * ggml_allocr_new_measure(size_t alignment);
|
||||
|
||||
// tell the allocator to parse nodes following the order described in the list
|
||||
// you should call this if your graph are optimized to execute out-of-order
|
||||
GGML_API void ggml_allocr_set_parse_seq(struct ggml_allocr * alloc, const int * list, int n);
|
||||
GGML_API void ggml_allocr_set_parse_seq(struct ggml_allocr * alloc, int * list, int n);
|
||||
|
||||
GGML_API void ggml_allocr_free(struct ggml_allocr * alloc);
|
||||
GGML_API bool ggml_allocr_is_measure(struct ggml_allocr * alloc);
|
||||
|
||||
29
ggml-cuda.cu
29
ggml-cuda.cu
@@ -3907,29 +3907,6 @@ static __global__ void rope_f32(const float * x, float * dst, const int ncols, c
|
||||
dst[i + 1] = x0*sin_theta + x1*cos_theta;
|
||||
}
|
||||
|
||||
// TODO: this implementation is wrong!
|
||||
//static __global__ void rope_neox_f32(const float * x, float * dst, const int ncols, const float p0,
|
||||
// const float p_delta, const int p_delta_rows, const float theta_scale) {
|
||||
// const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
|
||||
//
|
||||
// if (col >= ncols) {
|
||||
// return;
|
||||
// }
|
||||
//
|
||||
// const int row = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
// const int i = row*ncols + col/2;
|
||||
//
|
||||
// const float theta = (p0 + p_delta * (row/p_delta_rows))*powf(theta_scale, col/2);
|
||||
// const float sin_theta = sinf(theta);
|
||||
// const float cos_theta = cosf(theta);
|
||||
//
|
||||
// const float x0 = x[i + 0];
|
||||
// const float x1 = x[i + ncols/2];
|
||||
//
|
||||
// dst[i + 0] = x0*cos_theta - x1*sin_theta;
|
||||
// dst[i + ncols/2] = x0*sin_theta + x1*cos_theta;
|
||||
//}
|
||||
|
||||
static __global__ void rope_glm_f32(const float * x, float * dst, const int ncols, const float p, const float block_p, const float theta_scale) {
|
||||
const int col = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
const int half_n_dims = ncols/4;
|
||||
@@ -5538,8 +5515,7 @@ inline void ggml_cuda_op_rope(
|
||||
|
||||
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
||||
|
||||
const bool is_neox = mode & 2;
|
||||
const bool is_glm = mode & 4;
|
||||
const bool is_glm = mode & 4;
|
||||
|
||||
// compute
|
||||
if (is_glm) {
|
||||
@@ -5547,9 +5523,6 @@ inline void ggml_cuda_op_rope(
|
||||
const float id_p = min(p, n_ctx - 2.f);
|
||||
const float block_p = max(p - (n_ctx - 2.f), 0.f);
|
||||
rope_glm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, id_p, block_p, theta_scale, cudaStream_main);
|
||||
} else if (is_neox) {
|
||||
GGML_ASSERT(false && "RoPE NeoX not implemented yet");
|
||||
#pragma message("TODO: implement RoPE NeoX for CUDA")
|
||||
} else {
|
||||
const float p0 = (((mode & 1) == 0 ? n_past : 0)) * freq_scale;
|
||||
rope_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p0, freq_scale, ne01, theta_scale, cudaStream_main);
|
||||
|
||||
153
ggml-metal.m
153
ggml-metal.m
@@ -63,7 +63,6 @@ struct ggml_metal_context {
|
||||
GGML_METAL_DECL_KERNEL(get_rows_f16);
|
||||
GGML_METAL_DECL_KERNEL(get_rows_q4_0);
|
||||
GGML_METAL_DECL_KERNEL(get_rows_q4_1);
|
||||
GGML_METAL_DECL_KERNEL(get_rows_q8_0);
|
||||
GGML_METAL_DECL_KERNEL(get_rows_q2_K);
|
||||
GGML_METAL_DECL_KERNEL(get_rows_q3_K);
|
||||
GGML_METAL_DECL_KERNEL(get_rows_q4_K);
|
||||
@@ -74,7 +73,6 @@ struct ggml_metal_context {
|
||||
GGML_METAL_DECL_KERNEL(mul_mat_f16_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mat_q4_0_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mat_q4_1_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mat_q8_0_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mat_q2_K_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mat_q3_K_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mat_q4_K_f32);
|
||||
@@ -83,7 +81,6 @@ struct ggml_metal_context {
|
||||
GGML_METAL_DECL_KERNEL(mul_mm_f16_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mm_q4_0_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mm_q4_1_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mm_q8_0_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mm_q2_K_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mm_q3_K_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mm_q4_K_f32);
|
||||
@@ -170,9 +167,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
#define GGML_METAL_ADD_KERNEL(name) \
|
||||
ctx->function_##name = [ctx->library newFunctionWithName:@"kernel_"#name]; \
|
||||
ctx->pipeline_##name = [ctx->device newComputePipelineStateWithFunction:ctx->function_##name error:&error]; \
|
||||
fprintf(stderr, "%s: loaded %-32s %16p | th_max = %4d | th_width = %4d\n", __func__, "kernel_"#name, (void *) ctx->pipeline_##name, \
|
||||
(int) ctx->pipeline_##name.maxTotalThreadsPerThreadgroup, \
|
||||
(int) ctx->pipeline_##name.threadExecutionWidth); \
|
||||
fprintf(stderr, "%s: loaded %-32s %16p\n", __func__, "kernel_"#name, (void *) ctx->pipeline_##name); \
|
||||
if (error) { \
|
||||
fprintf(stderr, "%s: load pipeline error: %s\n", __func__, [[error description] UTF8String]); \
|
||||
return NULL; \
|
||||
@@ -191,7 +186,6 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_ADD_KERNEL(get_rows_f16);
|
||||
GGML_METAL_ADD_KERNEL(get_rows_q4_0);
|
||||
GGML_METAL_ADD_KERNEL(get_rows_q4_1);
|
||||
GGML_METAL_ADD_KERNEL(get_rows_q8_0);
|
||||
GGML_METAL_ADD_KERNEL(get_rows_q2_K);
|
||||
GGML_METAL_ADD_KERNEL(get_rows_q3_K);
|
||||
GGML_METAL_ADD_KERNEL(get_rows_q4_K);
|
||||
@@ -202,7 +196,6 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_ADD_KERNEL(mul_mat_f16_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mat_q4_0_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mat_q4_1_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mat_q8_0_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mat_q2_K_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mat_q3_K_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mat_q4_K_f32);
|
||||
@@ -210,7 +203,6 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_ADD_KERNEL(mul_mat_q6_K_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mm_f16_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mm_q4_0_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mm_q8_0_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mm_q4_1_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mm_q2_K_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mm_q3_K_f32);
|
||||
@@ -226,12 +218,12 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
#undef GGML_METAL_ADD_KERNEL
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
|
||||
fprintf(stderr, "%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
|
||||
fprintf(stderr, "%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
|
||||
fprintf(stderr, "%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
|
||||
if (ctx->device.maxTransferRate != 0) {
|
||||
fprintf(stderr, "%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0);
|
||||
fprintf(stderr, "%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0);
|
||||
} else {
|
||||
fprintf(stderr, "%s: maxTransferRate = built-in GPU\n", __func__);
|
||||
fprintf(stderr, "%s: maxTransferRate = built-in GPU\n", __func__);
|
||||
}
|
||||
|
||||
return ctx;
|
||||
@@ -545,8 +537,8 @@ void ggml_metal_graph_compute(
|
||||
|
||||
id<MTLComputeCommandEncoder> encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
||||
|
||||
const int node_start = (cb_idx + 0) * n_nodes_per_cb;
|
||||
const int node_end = MIN((cb_idx == n_cb - 1) ? n_nodes : (cb_idx + 1) * n_nodes_per_cb, n_nodes);
|
||||
const int node_start = (cb_idx + 0) * n_nodes_per_cb;
|
||||
const int node_end = (cb_idx == n_cb - 1) ? n_nodes : (cb_idx + 1) * n_nodes_per_cb;
|
||||
|
||||
for (int ind = node_start; ind < node_end; ++ind) {
|
||||
const int i = has_concur ? ctx->concur_list[ind] : ind;
|
||||
@@ -752,32 +744,32 @@ void ggml_metal_graph_compute(
|
||||
[ctx->device supportsFamily:MTLGPUFamilyApple7] &&
|
||||
ne00%32 == 0 &&
|
||||
ne11 > 1) {
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_mul_mm_f16_f32]; break;
|
||||
case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_0_f32]; break;
|
||||
case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_1_f32]; break;
|
||||
case GGML_TYPE_Q8_0: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q8_0_f32]; break;
|
||||
case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q2_K_f32]; break;
|
||||
case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q3_K_f32]; break;
|
||||
case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_K_f32]; break;
|
||||
case GGML_TYPE_Q5_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q5_K_f32]; break;
|
||||
case GGML_TYPE_Q6_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q6_K_f32]; break;
|
||||
default: GGML_ASSERT(false && "MUL MAT-MAT not implemented");
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_mul_mm_f16_f32]; break;
|
||||
case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_0_f32]; break;
|
||||
case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_1_f32]; break;
|
||||
case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q2_K_f32]; break;
|
||||
case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q3_K_f32]; break;
|
||||
case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_K_f32]; break;
|
||||
case GGML_TYPE_Q5_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q5_K_f32]; break;
|
||||
case GGML_TYPE_Q6_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q6_K_f32]; break;
|
||||
default: GGML_ASSERT(false && "MUL MAT-MAT not implemented");
|
||||
}
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
||||
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
|
||||
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
|
||||
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:5];
|
||||
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:6];
|
||||
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:7];
|
||||
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:8];
|
||||
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:9];
|
||||
[encoder setBytes:&gqa length:sizeof(gqa) atIndex:10];
|
||||
[encoder setThreadgroupMemoryLength:8192 atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake( (ne11+31)/32, (ne01+63) / 64, ne12) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
|
||||
}
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
||||
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
|
||||
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
|
||||
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:5];
|
||||
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:6];
|
||||
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:7];
|
||||
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:8];
|
||||
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:9];
|
||||
[encoder setBytes:&gqa length:sizeof(gqa) atIndex:10];
|
||||
[encoder setThreadgroupMemoryLength:8192 atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake( (ne11+31)/32, (ne01+63) / 64, ne12) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
|
||||
} else {
|
||||
else {
|
||||
int nth0 = 32;
|
||||
int nth1 = 1;
|
||||
|
||||
@@ -807,15 +799,6 @@ void ggml_metal_graph_compute(
|
||||
nth1 = 8;
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_1_f32];
|
||||
} break;
|
||||
case GGML_TYPE_Q8_0:
|
||||
{
|
||||
GGML_ASSERT(ne02 == 1);
|
||||
GGML_ASSERT(ne12 == 1);
|
||||
|
||||
nth0 = 8;
|
||||
nth1 = 8;
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q8_0_f32];
|
||||
} break;
|
||||
case GGML_TYPE_Q2_K:
|
||||
{
|
||||
GGML_ASSERT(ne02 == 1);
|
||||
@@ -885,24 +868,24 @@ void ggml_metal_graph_compute(
|
||||
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:14];
|
||||
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:15];
|
||||
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:16];
|
||||
[encoder setBytes:&gqa length:sizeof(gqa) atIndex:17];
|
||||
[encoder setBytes:&gqa length:sizeof(gqa) atIndex:17];
|
||||
|
||||
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 || src0t == GGML_TYPE_Q8_0 ||
|
||||
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 ||
|
||||
src0t == GGML_TYPE_Q2_K || src0t == GGML_TYPE_Q4_K) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7) / 8, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src0t == GGML_TYPE_Q3_K) {
|
||||
#ifdef GGML_QKK_64
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01+1)/2, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
#else
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01+3)/4, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
#endif
|
||||
}
|
||||
else if (src0t == GGML_TYPE_Q5_K) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3) / 4, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src0t == GGML_TYPE_Q6_K) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01+1)/2, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
} else {
|
||||
[encoder setThreadgroupMemoryLength:nth0*sizeof(float) atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
@@ -912,10 +895,9 @@ void ggml_metal_graph_compute(
|
||||
case GGML_OP_GET_ROWS:
|
||||
{
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_get_rows_f16]; break;
|
||||
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_get_rows_f16]; break;
|
||||
case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_0]; break;
|
||||
case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_1]; break;
|
||||
case GGML_TYPE_Q8_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q8_0]; break;
|
||||
case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q2_K]; break;
|
||||
case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q3_K]; break;
|
||||
case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_K]; break;
|
||||
@@ -956,17 +938,16 @@ void ggml_metal_graph_compute(
|
||||
} break;
|
||||
case GGML_OP_NORM:
|
||||
{
|
||||
float eps;
|
||||
memcpy(&eps, dst->op_params, sizeof(float));
|
||||
const float eps = 1e-5f;
|
||||
|
||||
const int nth = 256;
|
||||
|
||||
[encoder setComputePipelineState:ctx->pipeline_norm];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
|
||||
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
|
||||
[encoder setBytes:&eps length:sizeof( float) atIndex:4];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
|
||||
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
|
||||
[encoder setBytes:&eps length:sizeof( float) atIndex:4];
|
||||
[encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0];
|
||||
|
||||
const int64_t nrows = ggml_nrows(src0);
|
||||
@@ -1009,9 +990,7 @@ void ggml_metal_graph_compute(
|
||||
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
|
||||
[encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
|
||||
[encoder setBytes:&m0 length:sizeof( float) atIndex:18];
|
||||
|
||||
const int nth = 32;
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
||||
} break;
|
||||
case GGML_OP_ROPE:
|
||||
@@ -1026,8 +1005,8 @@ void ggml_metal_graph_compute(
|
||||
memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
|
||||
|
||||
[encoder setComputePipelineState:ctx->pipeline_rope];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
|
||||
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
|
||||
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
|
||||
@@ -1078,24 +1057,24 @@ void ggml_metal_graph_compute(
|
||||
default: GGML_ASSERT(false && "not implemented");
|
||||
}
|
||||
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
|
||||
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
|
||||
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
|
||||
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
|
||||
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
|
||||
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
|
||||
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
|
||||
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
|
||||
[encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10];
|
||||
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11];
|
||||
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12];
|
||||
[encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13];
|
||||
[encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14];
|
||||
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15];
|
||||
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
|
||||
[encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
|
||||
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
|
||||
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
|
||||
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
|
||||
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
|
||||
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
|
||||
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
|
||||
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
|
||||
[encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10];
|
||||
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11];
|
||||
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12];
|
||||
[encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13];
|
||||
[encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14];
|
||||
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15];
|
||||
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
|
||||
[encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
||||
} break;
|
||||
|
||||
120
ggml-metal.metal
120
ggml-metal.metal
@@ -18,12 +18,6 @@ typedef struct {
|
||||
uint8_t qs[QK4_1 / 2]; // nibbles / quants
|
||||
} block_q4_1;
|
||||
|
||||
#define QK8_0 32
|
||||
typedef struct {
|
||||
half d; // delta
|
||||
int8_t qs[QK8_0]; // quants
|
||||
} block_q8_0;
|
||||
|
||||
kernel void kernel_add(
|
||||
device const float * src0,
|
||||
device const float * src1,
|
||||
@@ -93,12 +87,7 @@ kernel void kernel_gelu(
|
||||
device float * dst,
|
||||
uint tpig[[thread_position_in_grid]]) {
|
||||
float x = src0[tpig];
|
||||
|
||||
// BEWARE !!!
|
||||
// Simply using "tanh" instead of "precise::tanh" will sometimes results in NaNs!
|
||||
// This was observed with Falcon 7B and 40B models
|
||||
//
|
||||
dst[tpig] = 0.5f*x*(1.0f + precise::tanh(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
|
||||
dst[tpig] = 0.5f*x*(1.0f + tanh(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
|
||||
}
|
||||
|
||||
kernel void kernel_soft_max(
|
||||
@@ -363,7 +352,7 @@ void mul_vec_q_n_f32(device const void * src0, device const float * src1, device
|
||||
const int first_row = (r0 * nsg + sgitg) * nr;
|
||||
const uint offset0 = first_row * nb + im/gqa*(nb*ne0);
|
||||
device const block_q_type * x = (device const block_q_type *) src0 + offset0;
|
||||
device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
|
||||
device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
|
||||
float yl[16]; // src1 vector cache
|
||||
float sumf[nr]={0.f};
|
||||
|
||||
@@ -435,68 +424,6 @@ kernel void kernel_mul_mat_q4_1_f32(
|
||||
mul_vec_q_n_f32<block_q4_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,gqa,tgpig,tiisg,sgitg);
|
||||
}
|
||||
|
||||
kernel void kernel_mul_mat_q8_0_f32(
|
||||
device const void * src0,
|
||||
device const float * src1,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01[[buffer(4)]],
|
||||
constant int64_t & ne02[[buffer(5)]],
|
||||
constant int64_t & ne10[[buffer(9)]],
|
||||
constant int64_t & ne12[[buffer(11)]],
|
||||
constant int64_t & ne0[[buffer(15)]],
|
||||
constant int64_t & ne1[[buffer(16)]],
|
||||
constant uint & gqa[[buffer(17)]],
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint tiisg[[thread_index_in_simdgroup]],
|
||||
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
||||
const int nr = N_DST;
|
||||
const int nsg = N_SIMDGROUP;
|
||||
const int nw = N_SIMDWIDTH;
|
||||
|
||||
const int nb = ne00/QK8_0;
|
||||
const int r0 = tgpig.x;
|
||||
const int r1 = tgpig.y;
|
||||
const int im = tgpig.z;
|
||||
const int first_row = (r0 * nsg + sgitg) * nr;
|
||||
const uint offset0 = first_row * nb + im/gqa*(nb*ne0);
|
||||
device const block_q8_0 * x = (device const block_q8_0 *) src0 + offset0;
|
||||
device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
|
||||
|
||||
float yl[16];
|
||||
float sumf[nr]={0.f};
|
||||
|
||||
const int ix = tiisg/2;
|
||||
const int il = tiisg%2;
|
||||
|
||||
device const float * yb = y + ix * QK8_0 + 16*il;
|
||||
|
||||
// each thread in a SIMD group deals with half a block.
|
||||
for (int ib = ix; ib < nb; ib += nw/2) {
|
||||
for (int i = 0; i < 16; ++i) {
|
||||
yl[i] = yb[i];
|
||||
}
|
||||
|
||||
for (int row = 0; row < nr; row++) {
|
||||
device const int8_t * qs = x[ib+row*nb].qs + 16*il;
|
||||
float sumq = 0.f;
|
||||
for (int iq = 0; iq < 16; ++iq) {
|
||||
sumq += qs[iq] * yl[iq];
|
||||
}
|
||||
sumf[row] += sumq*x[ib+row*nb].d;
|
||||
}
|
||||
|
||||
yb += QK8_0 * 16;
|
||||
}
|
||||
|
||||
for (int row = 0; row < nr; ++row) {
|
||||
const float tot = simd_sum(sumf[row]);
|
||||
if (tiisg == 0 && first_row + row < ne01) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + row] = tot;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_mul_mat_f16_f32(
|
||||
device const char * src0,
|
||||
device const char * src1,
|
||||
@@ -548,6 +475,7 @@ kernel void kernel_mul_mat_f16_f32(
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
kernel void kernel_alibi_f32(
|
||||
device const float * src0,
|
||||
device float * dst,
|
||||
@@ -643,25 +571,7 @@ kernel void kernel_rope(
|
||||
dst_data[1] = x0*sin_theta + x1*cos_theta;
|
||||
}
|
||||
} else {
|
||||
for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
|
||||
for (int64_t ic = 0; ic < n_dims; ic += 2) {
|
||||
const float cos_theta = cos(theta);
|
||||
const float sin_theta = sin(theta);
|
||||
|
||||
theta *= theta_scale;
|
||||
|
||||
const int64_t i0 = ib*n_dims + ic/2;
|
||||
|
||||
device const float * const src = (device float *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
||||
device float * dst_data = (device float *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||||
|
||||
const float x0 = src[0];
|
||||
const float x1 = src[n_dims/2];
|
||||
|
||||
dst_data[0] = x0*cos_theta - x1*sin_theta;
|
||||
dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
|
||||
}
|
||||
}
|
||||
// TODO: implement
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1688,12 +1598,12 @@ template <typename type4x4>
|
||||
void dequantize_q4_0(device const block_q4_0 *xb, short il, thread type4x4 & reg) {
|
||||
device const uint16_t * qs = ((device const uint16_t *)xb + 1);
|
||||
const half d = il ? (xb->d / 16.h) : xb->d;
|
||||
const half m = il ? ( -8.h * 16.h) : -8.h;
|
||||
const half m = il ? (-8.h * 16.h) : -8.h;
|
||||
const ushort mask0 = il ? 0x00F0 : 0x000F;
|
||||
const ushort mask1 = il ? 0xF000 : 0x0F00;
|
||||
|
||||
for (int i=0;i<8;i++) {
|
||||
reg[i/2][2*(i%2)] = (((qs[i] & mask0) ) + m) * d;
|
||||
reg[i/2][2*(i%2)] = (((qs[i] & mask0)) + m) * d;
|
||||
reg[i/2][2*(i%2)+1] = (((qs[i] & mask1) >> 8) + m) * d;
|
||||
}
|
||||
}
|
||||
@@ -1707,21 +1617,11 @@ void dequantize_q4_1(device const block_q4_1 *xb, short il, thread type4x4 & reg
|
||||
const ushort mask1 = il ? 0xF000 : 0x0F00;
|
||||
|
||||
for (int i=0;i<8;i++) {
|
||||
reg[i/2][2*(i%2)] = (((qs[i] & mask0) ) * d) + m;
|
||||
reg[i/2][2*(i%2)] = (((qs[i] & mask0)) * d) + m;
|
||||
reg[i/2][2*(i%2)+1] = (((qs[i] & mask1) >> 8) * d) + m;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename type4x4>
|
||||
void dequantize_q8_0(device const block_q8_0 *xb, short il, thread type4x4 & reg) {
|
||||
device const int8_t * qs = ((device const int8_t *)xb->qs);
|
||||
const half d = xb->d;
|
||||
|
||||
for (int i=0;i<16;i++) {
|
||||
reg[i/4][i%4] = (qs[i + 16*il] * d);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename type4x4>
|
||||
void dequantize_q2_K(device const block_q2_K *xb, short il, thread type4x4 & reg) {
|
||||
const half d = xb->d;
|
||||
@@ -2024,10 +1924,9 @@ kernel void kernel_mul_mm(device const uchar * src0,
|
||||
typedef void (get_rows_t)(device const void *, device const int *, device float *, constant int64_t &, \
|
||||
constant uint64_t &, constant uint64_t &, uint, uint, uint);
|
||||
|
||||
template [[host_name("kernel_get_rows_f16")]] kernel get_rows_t kernel_get_rows<half4x4, 1, dequantize_f16>;
|
||||
template [[host_name("kernel_get_rows_f16")]] kernel get_rows_t kernel_get_rows<half4x4, 1, dequantize_f16>;
|
||||
template [[host_name("kernel_get_rows_q4_0")]] kernel get_rows_t kernel_get_rows<block_q4_0, 2, dequantize_q4_0>;
|
||||
template [[host_name("kernel_get_rows_q4_1")]] kernel get_rows_t kernel_get_rows<block_q4_1, 2, dequantize_q4_1>;
|
||||
template [[host_name("kernel_get_rows_q8_0")]] kernel get_rows_t kernel_get_rows<block_q8_0, 2, dequantize_q8_0>;
|
||||
template [[host_name("kernel_get_rows_q2_K")]] kernel get_rows_t kernel_get_rows<block_q2_K, QK_NL, dequantize_q2_K>;
|
||||
template [[host_name("kernel_get_rows_q3_K")]] kernel get_rows_t kernel_get_rows<block_q3_K, QK_NL, dequantize_q3_K>;
|
||||
template [[host_name("kernel_get_rows_q4_K")]] kernel get_rows_t kernel_get_rows<block_q4_K, QK_NL, dequantize_q4_K>;
|
||||
@@ -2038,10 +1937,9 @@ typedef void (mat_mm_t)(device const uchar *, device const float *, device float
|
||||
constant int64_t &, constant int64_t &, constant int64_t &, constant int64_t &, \
|
||||
constant int64_t &, constant int64_t &, constant uint &, threadgroup uchar *, uint3, uint, uint);
|
||||
|
||||
template [[host_name("kernel_mul_mm_f16_f32")]] kernel mat_mm_t kernel_mul_mm<half4x4, 1, dequantize_f16>;
|
||||
template [[host_name("kernel_mul_mm_f16_f32")]] kernel mat_mm_t kernel_mul_mm<half4x4, 1, dequantize_f16>;
|
||||
template [[host_name("kernel_mul_mm_q4_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_0, 2, dequantize_q4_0>;
|
||||
template [[host_name("kernel_mul_mm_q4_1_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_1, 2, dequantize_q4_1>;
|
||||
template [[host_name("kernel_mul_mm_q8_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q8_0, 2, dequantize_q8_0>;
|
||||
template [[host_name("kernel_mul_mm_q2_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q2_K, QK_NL, dequantize_q2_K>;
|
||||
template [[host_name("kernel_mul_mm_q3_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q3_K, QK_NL, dequantize_q3_K>;
|
||||
template [[host_name("kernel_mul_mm_q4_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_K, QK_NL, dequantize_q4_K>;
|
||||
|
||||
30
ggml.c
30
ggml.c
@@ -3554,9 +3554,9 @@ inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) {
|
||||
inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
|
||||
inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
|
||||
|
||||
static const float GELU_COEF_A = 0.044715f;
|
||||
static const float GELU_QUICK_COEF = -1.702f;
|
||||
static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
|
||||
static const float GELU_COEF_A = 0.044715f;
|
||||
static const float GELU_QUICK_COEF = -1.702f;
|
||||
static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
|
||||
|
||||
inline static float ggml_gelu_f32(float x) {
|
||||
return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
|
||||
@@ -5555,6 +5555,10 @@ struct ggml_tensor * ggml_repeat(
|
||||
is_node = true;
|
||||
}
|
||||
|
||||
if (ggml_are_same_shape(a, b) && !is_node) {
|
||||
return a;
|
||||
}
|
||||
|
||||
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
|
||||
|
||||
result->op = GGML_OP_REPEAT;
|
||||
@@ -5785,7 +5789,6 @@ struct ggml_tensor * ggml_silu_back(
|
||||
static struct ggml_tensor * ggml_norm_impl(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
float eps,
|
||||
bool inplace) {
|
||||
bool is_node = false;
|
||||
|
||||
@@ -5796,7 +5799,7 @@ static struct ggml_tensor * ggml_norm_impl(
|
||||
|
||||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||||
|
||||
ggml_set_op_params(result, &eps, sizeof(eps));
|
||||
// TODO: maybe store epsilon here?
|
||||
|
||||
result->op = GGML_OP_NORM;
|
||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||
@@ -5807,16 +5810,14 @@ static struct ggml_tensor * ggml_norm_impl(
|
||||
|
||||
struct ggml_tensor * ggml_norm(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
float eps) {
|
||||
return ggml_norm_impl(ctx, a, eps, false);
|
||||
struct ggml_tensor * a) {
|
||||
return ggml_norm_impl(ctx, a, false);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_norm_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
float eps) {
|
||||
return ggml_norm_impl(ctx, a, eps, true);
|
||||
struct ggml_tensor * a) {
|
||||
return ggml_norm_impl(ctx, a, true);
|
||||
}
|
||||
|
||||
// ggml_rms_norm
|
||||
@@ -10618,8 +10619,7 @@ static void ggml_compute_forward_norm_f32(
|
||||
|
||||
GGML_TENSOR_UNARY_OP_LOCALS;
|
||||
|
||||
float eps;
|
||||
memcpy(&eps, dst->op_params, sizeof(float));
|
||||
const float eps = 1e-5f; // TODO: make this a parameter
|
||||
|
||||
// TODO: optimize
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
@@ -12537,7 +12537,7 @@ static void ggml_compute_forward_rope_f32(
|
||||
dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
|
||||
}
|
||||
} else {
|
||||
// TODO: this might be wrong for ne0 != n_dims - need double check
|
||||
// TODO: this is probably wrong, but I can't figure it out ..
|
||||
// ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
|
||||
for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
|
||||
for (int64_t ic = 0; ic < n_dims; ic += 2) {
|
||||
@@ -12666,7 +12666,7 @@ static void ggml_compute_forward_rope_f16(
|
||||
dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
|
||||
}
|
||||
} else {
|
||||
// TODO: this might be wrong for ne0 != n_dims - need double check
|
||||
// TODO: this is probably wrong, but I can't figure it out ..
|
||||
// ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
|
||||
for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
|
||||
for (int64_t ic = 0; ic < n_dims; ic += 2) {
|
||||
|
||||
7
ggml.h
7
ggml.h
@@ -909,15 +909,14 @@ extern "C" {
|
||||
struct ggml_tensor * b);
|
||||
|
||||
// normalize along rows
|
||||
// TODO: eps is hardcoded to 1e-5 for now
|
||||
GGML_API struct ggml_tensor * ggml_norm(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
float eps);
|
||||
struct ggml_tensor * a);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_norm_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
float eps);
|
||||
struct ggml_tensor * a);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_rms_norm(
|
||||
struct ggml_context * ctx,
|
||||
|
||||
26
gguf.py
26
gguf.py
@@ -30,12 +30,12 @@ KEY_GENERAL_SOURCE_HF_REPO = "general.source.hugginface.repository"
|
||||
KEY_GENERAL_FILE_TYPE = "general.file_type"
|
||||
|
||||
# LLM
|
||||
KEY_CONTEXT_LENGTH = "{arch}.context_length"
|
||||
KEY_EMBEDDING_LENGTH = "{arch}.embedding_length"
|
||||
KEY_BLOCK_COUNT = "{arch}.block_count"
|
||||
KEY_FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
|
||||
KEY_USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
|
||||
KEY_TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
|
||||
KEY_LLM_CONTEXT_LENGTH = "{arch}.context_length"
|
||||
KEY_LLM_EMBEDDING_LENGTH = "{arch}.embedding_length"
|
||||
KEY_LLM_BLOCK_COUNT = "{arch}.block_count"
|
||||
KEY_LLM_FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
|
||||
KEY_LLM_USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
|
||||
KEY_LLM_TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
|
||||
|
||||
# attention
|
||||
KEY_ATTENTION_HEAD_COUNT = "{arch}.attention.head_count"
|
||||
@@ -583,7 +583,7 @@ class GGUFWriter:
|
||||
self.add_string(KEY_GENERAL_AUTHOR, author)
|
||||
|
||||
def add_tensor_data_layout(self, layout: str):
|
||||
self.add_string(KEY_TENSOR_DATA_LAYOUT.format(arch=self.arch), layout)
|
||||
self.add_string(KEY_LLM_TENSOR_DATA_LAYOUT.format(arch=self.arch), layout)
|
||||
|
||||
def add_url(self, url: str):
|
||||
self.add_string(KEY_GENERAL_URL, url)
|
||||
@@ -613,27 +613,27 @@ class GGUFWriter:
|
||||
|
||||
def add_context_length(self, length: int):
|
||||
self.add_uint32(
|
||||
KEY_CONTEXT_LENGTH.format(arch=self.arch), length)
|
||||
KEY_LLM_CONTEXT_LENGTH.format(arch=self.arch), length)
|
||||
|
||||
def add_embedding_length(self, length: int):
|
||||
self.add_uint32(
|
||||
KEY_EMBEDDING_LENGTH.format(arch=self.arch), length)
|
||||
KEY_LLM_EMBEDDING_LENGTH.format(arch=self.arch), length)
|
||||
|
||||
def add_block_count(self, length: int):
|
||||
self.add_uint32(
|
||||
KEY_BLOCK_COUNT.format(arch=self.arch), length)
|
||||
KEY_LLM_BLOCK_COUNT.format(arch=self.arch), length)
|
||||
|
||||
def add_feed_forward_length(self, length: int):
|
||||
self.add_uint32(
|
||||
KEY_FEED_FORWARD_LENGTH.format(arch=self.arch), length)
|
||||
KEY_LLM_FEED_FORWARD_LENGTH.format(arch=self.arch), length)
|
||||
|
||||
def add_parallel_residual(self, use: bool):
|
||||
self.add_bool(
|
||||
KEY_USE_PARALLEL_RESIDUAL.format(arch=self.arch), use)
|
||||
KEY_LLM_USE_PARALLEL_RESIDUAL.format(arch=self.arch), use)
|
||||
|
||||
def add_tensor_data_layout(self, layout: str):
|
||||
self.add_string(
|
||||
KEY_TENSOR_DATA_LAYOUT.format(arch=self.arch), layout)
|
||||
KEY_LLM_TENSOR_DATA_LAYOUT.format(arch=self.arch), layout)
|
||||
|
||||
def add_head_count(self, count: int):
|
||||
self.add_uint32(
|
||||
|
||||
15
llama.h
15
llama.h
@@ -247,8 +247,6 @@ extern "C" {
|
||||
LLAMA_API int llama_n_ctx (const struct llama_context * ctx);
|
||||
LLAMA_API int llama_n_embd (const struct llama_context * ctx);
|
||||
|
||||
LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_context * ctx);
|
||||
|
||||
LLAMA_API int llama_model_n_vocab(const struct llama_model * model);
|
||||
LLAMA_API int llama_model_n_ctx (const struct llama_model * model);
|
||||
LLAMA_API int llama_model_n_embd (const struct llama_model * model);
|
||||
@@ -370,6 +368,13 @@ extern "C" {
|
||||
int n_max_tokens,
|
||||
bool add_bos);
|
||||
|
||||
LLAMA_API int llama_tokenize_bpe(
|
||||
struct llama_context * ctx,
|
||||
const char * text,
|
||||
llama_token * tokens,
|
||||
int n_max_tokens,
|
||||
bool add_bos);
|
||||
|
||||
LLAMA_API int llama_tokenize_with_model(
|
||||
const struct llama_model * model,
|
||||
const char * text,
|
||||
@@ -385,6 +390,12 @@ extern "C" {
|
||||
char * buf,
|
||||
int length);
|
||||
|
||||
LLAMA_API int llama_token_to_str_bpe(
|
||||
const struct llama_context * ctx,
|
||||
llama_token token,
|
||||
char * buf,
|
||||
int length);
|
||||
|
||||
LLAMA_API int llama_token_to_str_with_model(
|
||||
const struct llama_model * model,
|
||||
llama_token token,
|
||||
|
||||
93
scripts/perf-run-all.sh
Executable file
93
scripts/perf-run-all.sh
Executable file
@@ -0,0 +1,93 @@
|
||||
#!/bin/bash
|
||||
#
|
||||
# Measure the performance (time per token) of the various quantization techniques
|
||||
#
|
||||
|
||||
QUANTIZE=0
|
||||
if [ "$1" != "" ]; then
|
||||
echo "Quantizing"
|
||||
QUANTIZE=1
|
||||
fi
|
||||
|
||||
if [ "$QUANTIZE" != "0" ]; then
|
||||
#
|
||||
# quantize
|
||||
#
|
||||
|
||||
# 7B
|
||||
time ./bin/quantize ../models/7B/ggml-model-f16.bin ../models/7B/ggml-model-q4_0.bin q4_0 2>&1 | tee ../qnt-7b-q4_0.txt
|
||||
time ./bin/quantize ../models/7B/ggml-model-f16.bin ../models/7B/ggml-model-q4_1.bin q4_1 2>&1 | tee ../qnt-7b-q4_1.txt
|
||||
time ./bin/quantize ../models/7B/ggml-model-f16.bin ../models/7B/ggml-model-q5_0.bin q5_0 2>&1 | tee ../qnt-7b-q5_0.txt
|
||||
time ./bin/quantize ../models/7B/ggml-model-f16.bin ../models/7B/ggml-model-q5_1.bin q5_1 2>&1 | tee ../qnt-7b-q5_1.txt
|
||||
time ./bin/quantize ../models/7B/ggml-model-f16.bin ../models/7B/ggml-model-q8_0.bin q8_0 2>&1 | tee ../qnt-7b-q8_0.txt
|
||||
|
||||
# 13B
|
||||
time ./bin/quantize ../models/13B/ggml-model-f16.bin ../models/13B/ggml-model-q4_0.bin q4_0 2>&1 | tee ../qnt-13b-q4_0.txt
|
||||
time ./bin/quantize ../models/13B/ggml-model-f16.bin ../models/13B/ggml-model-q4_1.bin q4_1 2>&1 | tee ../qnt-13b-q4_1.txt
|
||||
time ./bin/quantize ../models/13B/ggml-model-f16.bin ../models/13B/ggml-model-q5_0.bin q5_0 2>&1 | tee ../qnt-13b-q5_0.txt
|
||||
time ./bin/quantize ../models/13B/ggml-model-f16.bin ../models/13B/ggml-model-q5_1.bin q5_1 2>&1 | tee ../qnt-13b-q5_1.txt
|
||||
time ./bin/quantize ../models/13B/ggml-model-f16.bin ../models/13B/ggml-model-q8_0.bin q8_0 2>&1 | tee ../qnt-13b-q8_0.txt
|
||||
fi
|
||||
|
||||
#
|
||||
# perf
|
||||
# run each command twice
|
||||
#
|
||||
|
||||
set -x
|
||||
|
||||
# 7B - 4 threads
|
||||
./bin/main -m ../models/7B/ggml-model-f16.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | grep "I believe"
|
||||
time ./bin/main -m ../models/7B/ggml-model-f16.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | tee ../perf-7b-f16.txt | grep llama_print_timings
|
||||
./bin/main -m ../models/7B/ggml-model-q4_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | grep "I believe"
|
||||
time ./bin/main -m ../models/7B/ggml-model-q4_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | tee ../perf-7b-q4_0.txt | grep llama_print_timings
|
||||
./bin/main -m ../models/7B/ggml-model-q4_1.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | grep "I believe"
|
||||
time ./bin/main -m ../models/7B/ggml-model-q4_1.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | tee ../perf-7b-q4_1.txt | grep llama_print_timings
|
||||
./bin/main -m ../models/7B/ggml-model-q5_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | grep "I believe"
|
||||
time ./bin/main -m ../models/7B/ggml-model-q5_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | tee ../perf-7b-q5_0.txt | grep llama_print_timings
|
||||
./bin/main -m ../models/7B/ggml-model-q5_1.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | grep "I believe"
|
||||
time ./bin/main -m ../models/7B/ggml-model-q5_1.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | tee ../perf-7b-q5_1.txt | grep llama_print_timings
|
||||
./bin/main -m ../models/7B/ggml-model-q8_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | grep "I believe"
|
||||
time ./bin/main -m ../models/7B/ggml-model-q8_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | tee ../perf-7b-q8_0.txt | grep llama_print_timings
|
||||
|
||||
# 7B - 8 threads
|
||||
./bin/main -m ../models/7B/ggml-model-f16.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | grep "I believe"
|
||||
time ./bin/main -m ../models/7B/ggml-model-f16.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | tee ../perf-7b-f16.txt | grep llama_print_timings
|
||||
./bin/main -m ../models/7B/ggml-model-q4_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | grep "I believe"
|
||||
time ./bin/main -m ../models/7B/ggml-model-q4_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | tee ../perf-7b-q4_0.txt | grep llama_print_timings
|
||||
./bin/main -m ../models/7B/ggml-model-q4_1.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | grep "I believe"
|
||||
time ./bin/main -m ../models/7B/ggml-model-q4_1.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | tee ../perf-7b-q4_1.txt | grep llama_print_timings
|
||||
./bin/main -m ../models/7B/ggml-model-q5_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | grep "I believe"
|
||||
time ./bin/main -m ../models/7B/ggml-model-q5_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | tee ../perf-7b-q5_0.txt | grep llama_print_timings
|
||||
./bin/main -m ../models/7B/ggml-model-q5_1.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | grep "I believe"
|
||||
time ./bin/main -m ../models/7B/ggml-model-q5_1.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | tee ../perf-7b-q5_1.txt | grep llama_print_timings
|
||||
./bin/main -m ../models/7B/ggml-model-q8_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | grep "I believe"
|
||||
time ./bin/main -m ../models/7B/ggml-model-q8_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | tee ../perf-7b-q8_0.txt | grep llama_print_timings
|
||||
|
||||
# 13B - 4 threads
|
||||
./bin/main -m ../models/13B/ggml-model-f16.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | grep "I believe"
|
||||
time ./bin/main -m ../models/13B/ggml-model-f16.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | tee ../perf-13b-f16.txt | grep llama_print_timings
|
||||
./bin/main -m ../models/13B/ggml-model-q4_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | grep "I believe"
|
||||
time ./bin/main -m ../models/13B/ggml-model-q4_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | tee ../perf-13b-q4_0.txt | grep llama_print_timings
|
||||
./bin/main -m ../models/13B/ggml-model-q4_1.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | grep "I believe"
|
||||
time ./bin/main -m ../models/13B/ggml-model-q4_1.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | tee ../perf-13b-q4_1.txt | grep llama_print_timings
|
||||
./bin/main -m ../models/13B/ggml-model-q5_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | grep "I believe"
|
||||
time ./bin/main -m ../models/13B/ggml-model-q5_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | tee ../perf-13b-q5_0.txt | grep llama_print_timings
|
||||
./bin/main -m ../models/13B/ggml-model-q5_1.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | grep "I believe"
|
||||
time ./bin/main -m ../models/13B/ggml-model-q5_1.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | tee ../perf-13b-q5_1.txt | grep llama_print_timings
|
||||
./bin/main -m ../models/13B/ggml-model-q8_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | grep "I believe"
|
||||
time ./bin/main -m ../models/13B/ggml-model-q8_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 4 2>&1 | tee ../perf-13b-q8_0.txt | grep llama_print_timings
|
||||
|
||||
# 13B - 8 threads
|
||||
./bin/main -m ../models/13B/ggml-model-f16.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | grep "I believe"
|
||||
time ./bin/main -m ../models/13B/ggml-model-f16.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | tee ../perf-13b-f16.txt | grep llama_print_timings
|
||||
./bin/main -m ../models/13B/ggml-model-q4_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | grep "I believe"
|
||||
time ./bin/main -m ../models/13B/ggml-model-q4_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | tee ../perf-13b-q4_0.txt | grep llama_print_timings
|
||||
./bin/main -m ../models/13B/ggml-model-q4_1.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | grep "I believe"
|
||||
time ./bin/main -m ../models/13B/ggml-model-q4_1.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | tee ../perf-13b-q4_1.txt | grep llama_print_timings
|
||||
./bin/main -m ../models/13B/ggml-model-q5_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | grep "I believe"
|
||||
time ./bin/main -m ../models/13B/ggml-model-q5_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | tee ../perf-13b-q5_0.txt | grep llama_print_timings
|
||||
./bin/main -m ../models/13B/ggml-model-q5_1.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | grep "I believe"
|
||||
time ./bin/main -m ../models/13B/ggml-model-q5_1.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | tee ../perf-13b-q5_1.txt | grep llama_print_timings
|
||||
./bin/main -m ../models/13B/ggml-model-q8_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | grep "I believe"
|
||||
time ./bin/main -m ../models/13B/ggml-model-q8_0.bin -p "I believe the meaning of life is" --no-mmap -c 2048 --ignore-eos -s 1 -n 64 -t 8 2>&1 | tee ../perf-13b-q8_0.txt | grep llama_print_timings
|
||||
39
scripts/ppl-run-all.sh
Executable file
39
scripts/ppl-run-all.sh
Executable file
@@ -0,0 +1,39 @@
|
||||
#!/bin/bash
|
||||
|
||||
#
|
||||
# quantize
|
||||
#
|
||||
|
||||
# 7B
|
||||
time ./bin/quantize ../models/7B/ggml-model-f16.bin ../models/7B/ggml-model-q4_0.bin q4_0 2>&1 | tee ../qnt-7b-q4_0.txt
|
||||
time ./bin/quantize ../models/7B/ggml-model-f16.bin ../models/7B/ggml-model-q4_1.bin q4_1 2>&1 | tee ../qnt-7b-q4_1.txt
|
||||
time ./bin/quantize ../models/7B/ggml-model-f16.bin ../models/7B/ggml-model-q5_0.bin q5_0 2>&1 | tee ../qnt-7b-q5_0.txt
|
||||
time ./bin/quantize ../models/7B/ggml-model-f16.bin ../models/7B/ggml-model-q5_1.bin q5_1 2>&1 | tee ../qnt-7b-q5_1.txt
|
||||
time ./bin/quantize ../models/7B/ggml-model-f16.bin ../models/7B/ggml-model-q8_0.bin q8_0 2>&1 | tee ../qnt-7b-q8_0.txt
|
||||
|
||||
# 13B
|
||||
time ./bin/quantize ../models/13B/ggml-model-f16.bin ../models/13B/ggml-model-q4_0.bin q4_0 2>&1 | tee ../qnt-13b-q4_0.txt
|
||||
time ./bin/quantize ../models/13B/ggml-model-f16.bin ../models/13B/ggml-model-q4_1.bin q4_1 2>&1 | tee ../qnt-13b-q4_1.txt
|
||||
time ./bin/quantize ../models/13B/ggml-model-f16.bin ../models/13B/ggml-model-q5_0.bin q5_0 2>&1 | tee ../qnt-13b-q5_0.txt
|
||||
time ./bin/quantize ../models/13B/ggml-model-f16.bin ../models/13B/ggml-model-q5_1.bin q5_1 2>&1 | tee ../qnt-13b-q5_1.txt
|
||||
time ./bin/quantize ../models/13B/ggml-model-f16.bin ../models/13B/ggml-model-q8_0.bin q8_0 2>&1 | tee ../qnt-13b-q8_0.txt
|
||||
|
||||
#
|
||||
# perplexity
|
||||
#
|
||||
|
||||
# 7B
|
||||
time ./bin/perplexity -m ../models/7B/ggml-model-f16.bin -f ./wiki.test.raw --no-mmap -t 12 2>&1 | tee ../ppl-7b-f16.txt
|
||||
time ./bin/perplexity -m ../models/7B/ggml-model-q4_0.bin -f ./wiki.test.raw --no-mmap -t 12 2>&1 | tee ../ppl-7b-q4_0.txt
|
||||
time ./bin/perplexity -m ../models/7B/ggml-model-q4_1.bin -f ./wiki.test.raw --no-mmap -t 12 2>&1 | tee ../ppl-7b-q4_1.txt
|
||||
time ./bin/perplexity -m ../models/7B/ggml-model-q5_0.bin -f ./wiki.test.raw --no-mmap -t 12 2>&1 | tee ../ppl-7b-q5_0.txt
|
||||
time ./bin/perplexity -m ../models/7B/ggml-model-q5_1.bin -f ./wiki.test.raw --no-mmap -t 12 2>&1 | tee ../ppl-7b-q5_1.txt
|
||||
time ./bin/perplexity -m ../models/7B/ggml-model-q8_0.bin -f ./wiki.test.raw --no-mmap -t 12 2>&1 | tee ../ppl-7b-q8_0.txt
|
||||
|
||||
# 13B
|
||||
time ./bin/perplexity -m ../models/13B/ggml-model-f16.bin -f ./wiki.test.raw --no-mmap -t 12 2>&1 | tee ../ppl-13b-f16.txt
|
||||
time ./bin/perplexity -m ../models/13B/ggml-model-q4_0.bin -f ./wiki.test.raw --no-mmap -t 12 2>&1 | tee ../ppl-13b-q4_0.txt
|
||||
time ./bin/perplexity -m ../models/13B/ggml-model-q4_1.bin -f ./wiki.test.raw --no-mmap -t 12 2>&1 | tee ../ppl-13b-q4_1.txt
|
||||
time ./bin/perplexity -m ../models/13B/ggml-model-q5_0.bin -f ./wiki.test.raw --no-mmap -t 12 2>&1 | tee ../ppl-13b-q5_0.txt
|
||||
time ./bin/perplexity -m ../models/13B/ggml-model-q5_1.bin -f ./wiki.test.raw --no-mmap -t 12 2>&1 | tee ../ppl-13b-q5_1.txt
|
||||
time ./bin/perplexity -m ../models/13B/ggml-model-q8_0.bin -f ./wiki.test.raw --no-mmap -t 12 2>&1 | tee ../ppl-13b-q8_0.txt
|
||||
@@ -1,27 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
qnt=(q8_0 q6_k q5_k q5_1 q5_0 q4_k q4_1 q4_0 q3_k q2_k)
|
||||
args=""
|
||||
|
||||
if [ -z "$1" ]; then
|
||||
echo "usage: $0 <model> [qnt] [args]"
|
||||
echo "default: $0 <model> \"${qnt[@]}\" \"${args}\""
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ ! -z "$2" ]; then
|
||||
qnt=($2)
|
||||
fi
|
||||
|
||||
if [ ! -z "$3" ]; then
|
||||
args="$3"
|
||||
fi
|
||||
|
||||
model="$1"
|
||||
out="../tmp/results-${model}"
|
||||
|
||||
mkdir -p ${out}
|
||||
|
||||
for q in ${qnt[@]}; do
|
||||
time ./bin/quantize ../models/${model}/ggml-model-f16.gguf ../models/${model}/ggml-model-${q}.gguf ${q} 2>&1 ${args} | tee ${out}/qnt-${q}.txt
|
||||
done
|
||||
@@ -1,31 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
qnt=(f16 q8_0 q6_k q5_k q5_1 q5_0 q4_k q4_1 q4_0 q3_k q2_k)
|
||||
args="-ngl 999 -n 64 -p 512"
|
||||
|
||||
if [ -z "$1" ]; then
|
||||
echo "usage: $0 <model> [qnt] [args]"
|
||||
echo "default: $0 <model> \"${qnt[@]}\" \"${args}\""
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ ! -z "$2" ]; then
|
||||
qnt=($2)
|
||||
fi
|
||||
|
||||
if [ ! -z "$3" ]; then
|
||||
args="$3"
|
||||
fi
|
||||
|
||||
model="$1"
|
||||
out="../tmp/results-${model}"
|
||||
|
||||
mkdir -p ${out}
|
||||
|
||||
mstr=""
|
||||
|
||||
for q in ${qnt[@]}; do
|
||||
mstr="${mstr} -m ../models/${model}/ggml-model-${q}.gguf"
|
||||
done
|
||||
|
||||
./bin/llama-bench ${mstr} ${args} 2> /dev/null
|
||||
@@ -1,27 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
qnt=(f16 q8_0 q6_k q5_k q5_1 q5_0 q4_k q4_1 q4_0 q3_k q2_k)
|
||||
args="--no-mmap -ngl 999 -t 8"
|
||||
|
||||
if [ -z "$1" ]; then
|
||||
echo "usage: $0 <model> [qnt] [args]"
|
||||
echo "default: $0 <model> \"${qnt[@]}\" \"${args}\""
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ ! -z "$2" ]; then
|
||||
qnt=($2)
|
||||
fi
|
||||
|
||||
if [ ! -z "$3" ]; then
|
||||
args="$3"
|
||||
fi
|
||||
|
||||
model="$1"
|
||||
out="../tmp/results-${model}"
|
||||
|
||||
mkdir -p ${out}
|
||||
|
||||
for q in ${qnt[@]}; do
|
||||
time ./bin/perplexity -m ../models/${model}/ggml-model-f16.gguf -f ./wiki.test.raw ${args} 2>&1 | tee ${out}/ppl-${q}.txt
|
||||
done
|
||||
@@ -28,8 +28,7 @@ llama_build_and_test_executable(test-sampling.cpp)
|
||||
llama_build_executable(test-tokenizer-0.cpp)
|
||||
llama_test_executable (test-tokenizer-0.llama test-tokenizer-0.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama.gguf)
|
||||
llama_build_executable(test-tokenizer-1.cpp)
|
||||
# test-tokenizer-1 requires a BPE vocab. re-enable when we have one.
|
||||
#llama_test_executable (test-tokenizer-1.llama test-tokenizer-1.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-falcon.gguf)
|
||||
llama_test_executable (test-tokenizer-1.llama test-tokenizer-1.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama.gguf)
|
||||
#llama_test_executable(test-tokenizer-1.aquila test-tokenizer-1.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-aquila.gguf)
|
||||
llama_build_and_test_executable(test-grammar-parser.cpp)
|
||||
llama_build_and_test_executable(test-llama-grammar.cpp)
|
||||
|
||||
@@ -67,13 +67,11 @@ int main(int argc, char **argv) {
|
||||
}
|
||||
}
|
||||
|
||||
GGML_ASSERT(llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_BPE);
|
||||
|
||||
const int n_vocab = llama_n_vocab(ctx);
|
||||
|
||||
for (int i = 0; i < n_vocab; ++i) {
|
||||
std::string forward = llama_token_to_str(ctx, i);
|
||||
std::vector<llama_token> tokens = llama_tokenize(ctx, forward, false);
|
||||
std::string forward = llama_token_to_str_bpe(ctx, i);
|
||||
std::vector<llama_token> tokens = llama_tokenize_bpe(ctx, forward, false);
|
||||
if (tokens.size() == 1) {
|
||||
if (i != tokens[0]) {
|
||||
std::string backward = llama_token_to_str(ctx, tokens[0]);
|
||||
@@ -81,6 +79,16 @@ int main(int argc, char **argv) {
|
||||
__func__, i, llama_token_to_str(ctx, i).c_str(), tokens[0], backward.c_str());
|
||||
return 2;
|
||||
}
|
||||
} else {
|
||||
llama_token_type type = llama_token_get_type(ctx, i);
|
||||
if (type == LLAMA_TOKEN_TYPE_UNKNOWN || type == LLAMA_TOKEN_TYPE_CONTROL || type == LLAMA_TOKEN_TYPE_BYTE) {
|
||||
fprintf(stderr, "%s : info: token %d is string %s and bpe returns tokens %s\n",
|
||||
__func__, i, llama_token_to_str(ctx, i).c_str(), unescape_whitespace(ctx, tokens).c_str());
|
||||
} else {
|
||||
fprintf(stderr, "%s : error: token %d is string %s but bpe returns tokens %s\n",
|
||||
__func__, i, llama_token_to_str(ctx, i).c_str(), unescape_whitespace(ctx, tokens).c_str());
|
||||
return 2;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user