Compare commits

..

32 Commits
b1434 ... b1466

Author SHA1 Message Date
Georgi Gerganov
183b3fac6c metal : fix build errors and kernel sig after #2268 (#3898) 2023-11-02 08:33:37 +02:00
cebtenzzre
2fffa0d61f cuda : fix RoPE after #2268 (#3897) 2023-11-02 07:49:44 +02:00
cebtenzzre
0eb332a10f llama : fix llama_context_default_params after #2268 (#3893) 2023-11-01 19:29:14 -04:00
slaren
d02e98cde0 ggml-cuda : compute ptrs for cublasGemmBatchedEx in a kernel (#3891)
* ggml-cuda : compute ptrs for cublasGemmBatchedEx in a kernel

* fix warnings
2023-11-01 23:10:09 +01:00
cebtenzzre
898aeca90a llama : implement YaRN RoPE scaling (#2268)
Co-authored-by: cebtenzzre <cebtenzzre@gmail.com>
Co-authored-by: Jeffrey Quesnelle <jquesnelle@gmail.com>
2023-11-01 18:04:33 -04:00
Georgi Gerganov
c43c2da8af llm : fix llm_build_kqv taking unused tensor (benign, #3837) 2023-11-01 23:08:30 +02:00
Georgi Gerganov
523e49b111 llm : fix falcon norm after refactoring (#3837) 2023-11-01 23:00:50 +02:00
Georgi Gerganov
e16b9fa4ba metal : multi-simd softmax (#3710)
ggml-ci
2023-11-01 21:25:00 +02:00
Georgi Gerganov
ff8f9a88da common : minor (#3715) 2023-11-01 21:15:55 +02:00
Georgi Gerganov
50337961a6 llm : add llm_build_context (#3881)
* llm : add llm_build_context

* llm : deduce norm eps based on type + explict max_alibi_bias, clamp_kqv

* llm : restore the non-graph llm_build_ functional API

ggml-ci

* llm : cleanup + comments
2023-11-01 20:11:02 +02:00
bandoti
0e40806c1c common : allow caller to handle help/argument exceptions (#3715)
* Allow caller to handle help/argument exceptions

* Prepend newline to usage output

* Add new gpt_params_parse_ex function to hide arg-parse impl

* Fix issue blocking success case

* exit instead of returning false

* Update common/common.h

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update common/common.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-11-01 19:42:01 +02:00
staviq
a2758d08e4 log : make generating separate log files optional (#3787)
* impl --log-new, --log-append

* Update common/log.h

Co-authored-by: cebtenzzre <cebtenzzre@gmail.com>

* Update common/log.h

Co-authored-by: cebtenzzre <cebtenzzre@gmail.com>

* Apply suggestions from code review

Co-authored-by: cebtenzzre <cebtenzzre@gmail.com>

---------

Co-authored-by: cebtenzzre <cebtenzzre@gmail.com>
2023-11-01 16:18:27 +02:00
l3utterfly
e75dfdd31b sampling : null grammar field after reset (#3885) 2023-11-01 15:40:43 +02:00
Georgi Gerganov
9a3b4f6c86 ggml : fix UNUSED macro (#3762) 2023-11-01 13:50:45 +02:00
Andrew Godfrey
73bdcb395e finetune : add -ngl parameter (#3762)
* Add '-ngl' support to finetune.cpp

* Add fprintf in ggml_cuda_op_add

When I tried CUDA offloading during finetuning following the readme, I got an assert here.
This probably isn't an important case because inference later gives a warning saying you should use f16 or f32 instead when using lora

* Add 'finetune.sh', which currently fails when using GPU

"error: operator (): Finetuning on tensors with type 'f16' is not yet supported"

* tweak finetune.sh

* Suppress some warnings in ggml.c

* Add f16 implementation to ggml_compute_forward_add_f16_f32

* Add an f16 case to ggml_add_cast_impl and llama_build_lora_finetune_graphs

* finetune.sh: Edit comments

* Add "add_f16_f32_f32_cuda"

* Tweak an error message

* finetune.sh: Add an optional LLAMA_MODEL_DIR variable

* finetune.sh: Add an optional LLAMA_TRAINING_DIR variable

* train : minor

* tabs to spaces

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: cebtenzzre <cebtenzzre@gmail.com>
2023-11-01 13:49:04 +02:00
Georgi Gerganov
f0e209324a scripts : add server-llm.sh (#3868)
* scripts : add deploy-server.sh

* scripts : rename to server-llm.sh

* scripts : working curl pipe
2023-11-01 11:29:07 +02:00
Adrian Hesketh
ca190bca8e server : re-enable completion and embedded at the same time (#3876) 2023-11-01 11:28:28 +02:00
Georgi Gerganov
71e3718abd llama : refactor graph build code (#3837)
* llama : factor out ggml-alloc from graph graph build functions

ggml-ci

* metal : disable kernel load log

* llama : factor out tensor offloading outside the build call (wip)

ggml-ci

* llama : offload rest of the models

ggml-ci

* llama : update offload log messages to print node index

* llama : comments

* llama : support offloading result_norm + comments

* llama : factor graph input into a function

* llama : do tensor offload only with CUDA

* llama : fix res_norm offloading

* llama : try to optimize offloading code

* llama : fix non-CUDA build

* llama : try to fix build

* llama : move refact in correct place + optimize graph input

* llama : refactor tensor offloading as callback

* llama : add layer index to all tensor names

* llama : add functional header

* llama : comment

ggml-ci

* llama : remove obsolete map for layer counting

* llama : add llm_build helper functions (#3848)

* llama : add llm_build_norm helper function

ggml-ci

* llama : add llm_build_ffn helper function (#3849)

ggml-ci

* llama : add llm_build_k_shift helper

ggml-ci

* llama : fix offloading after recent changes

* llama : add llm_build_kv_store helper

ggml-ci

* llama : remove obsolete offload names

* llama : fix llm_build_k_shift to use n_head_kv instead of n_head

* llama : simplify falcon Q, K, V computation

* llama : remove obsolete comments in build graphs

* llama : add llm_build_kqv helper

ggml-ci

* llama : minor

* llama : add LLAMA_OFFLOAD_DEBUG + fix starcoder offloading

* llama : fix input allocation logic

* llama : update offload functions for KQ tensors

* llama : normalize tensor names

ggml-ci

* llama : enable warning about not offloaded tensors

* llama : remove extra ; + deduplicate gate_b logic

* llama : add llm_build_inp_embd helper
2023-11-01 08:04:02 +02:00
kalomaze
238657db23 samplers : Min-P sampler implementation [alternative to Top P/Top K] (#3841)
* Introduce the new Min-P sampler by @kalomaze
   The Min-P sampling method was designed as an alternative to Top-P, and aims to ensure a balance of quality and variety. The parameter *p* represents the minimum probability for a token to be considered, relative to the probability of the most likely token.

* Min-P enabled and set to 0.05 default

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: cebtenzzre <cebtenzzre@gmail.com>
2023-10-31 20:44:49 +01:00
Tungsten842
07178c98e1 flake.nix: fix for rocm 5.7 (#3853) 2023-10-31 19:24:03 +02:00
Georgi Gerganov
207b51900e ggml : move FP16 <-> FP32 code to ggml-impl.h (#3861)
* ggml : move FP16 <-> FP32 stuff to ggml-impl.h

ggml-ci

* tests : fix ARM build

* ggml : explicitly initialize deprecated type traits

* ggml : add math.h to ggml-impl.h

* ggml : remove duplicate static assert macros

* ggml : prefix lookup tables with ggml_

ggml-ci

* ggml-impl : move extern "C" to start of file
2023-10-30 19:19:15 +02:00
Kerfuffle
6e08281e58 Extend llama_kv_cache_seq_rm to allow matching any sequence (#3843)
* Extend llama_kv_cache_seq_rm to allow matichng any sequence

* Replace llama_kv_cache_tokens_rm with llama_kv_cache_clear

Use llama_kv_cache_clear for cache clearing

Change calls to llama_kv_cache_tokens_rm that want to delete by position to use llama_kv_cache_seq_rm functionality
2023-10-29 11:31:40 -06:00
cebtenzzre
2046eb4345 make : remove unnecessary dependency on build-info.h (#3842) 2023-10-29 18:33:47 +02:00
Georgi Gerganov
71a09da301 llama : fix kv shift bug (#3835)
ggml-ci
2023-10-29 18:32:51 +02:00
Georgi Gerganov
d69d777c02 ggml : quantization refactoring (#3833)
* ggml : factor all quantization code in ggml-quants

ggml-ci

* ggml-quants : fix Zig and Swift builds + quantize tool

ggml-ci

* quantize : --pure option for disabling k-quant mixtures

---------

Co-authored-by: cebtenzzre <cebtenzzre@gmail.com>
2023-10-29 18:32:28 +02:00
Erik Scholz
ff3bad83e2 flake : update flake.lock for newer transformers version + provide extra dev shell (#3797)
* flake : update flake.lock for newer transformers version + provide extra dev shell with torch and transformers (for most convert-xxx.py scripts)
2023-10-28 16:41:07 +02:00
Aarni Koskela
82a6646e02 metal : try cwd for ggml-metal.metal if bundle lookup fails (#3793)
* Try cwd for ggml-metal if bundle lookup fails

When building with `-DBUILD_SHARED_LIBS=ON -DLLAMA_METAL=ON -DLLAMA_BUILD_SERVER=ON`,
`server` would fail to load `ggml-metal.metal` because `[bundle pathForResource:...]`
returns `nil`.  In that case, fall back to `ggml-metal.metal` in the cwd instead of
passing `null` as a path.

Follows up on #1782

* Update ggml-metal.m

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-10-28 15:43:01 +03:00
Georgi Gerganov
ba231e8a6d issues : change label from bug to bug-unconfirmed (#3748) 2023-10-28 15:35:26 +03:00
Georgi Gerganov
8a2f2fea29 convert : ignore tokens if their IDs are within [0, vocab_size) (#3831) 2023-10-28 06:25:15 -06:00
Kerfuffle
bd6d9e2059 llama : allow quantizing k-quants to fall back when tensor size incompatible (#3747)
* Allow quantizing k-quants to fall back when tensor size incompatible

* quantizing: Add warning when tensors were incompatible with k-quants

Clean up k-quants state passing a bit
2023-10-28 14:54:24 +03:00
Georgi Gerganov
ee1a0ec9cb llama : add option for greedy sampling with probs (#3813)
* llama : add option for greedy sampling with probs

* llama : add comment about llama_sample_token_greedy() missing probs

* sampling : temp == 0.0 -> no probs, temp < 0.0 -> probs
2023-10-28 14:23:11 +03:00
Henk Poley
177461104b common : print that one line of the syntax help *also* to standard output (#3823) 2023-10-28 13:16:33 +03:00
42 changed files with 6265 additions and 5951 deletions

View File

@@ -1,7 +1,7 @@
---
name: Bug template
about: Used to report bugs in llama.cpp
labels: ["bug"]
labels: ["bug-unconfirmed"]
assignees: ''
---

1
.gitignore vendored
View File

@@ -15,6 +15,7 @@
.DS_Store
.build/
.cache/
.ccls-cache/
.direnv/
.envrc
.swiftpm

View File

@@ -94,7 +94,6 @@ option(LLAMA_CLBLAST "llama: use CLBlast"
option(LLAMA_METAL "llama: use Metal" ${LLAMA_METAL_DEFAULT})
option(LLAMA_METAL_NDEBUG "llama: disable Metal debugging" OFF)
option(LLAMA_MPI "llama: use MPI" OFF)
option(LLAMA_K_QUANTS "llama: use k-quants" ON)
option(LLAMA_QKK_64 "llama: use super-block size of 64 for k-quants" OFF)
option(LLAMA_BUILD_TESTS "llama: build tests" ${LLAMA_STANDALONE})
@@ -278,13 +277,8 @@ if (LLAMA_BLAS)
endif()
endif()
if (LLAMA_K_QUANTS)
set(GGML_HEADERS_EXTRA k_quants.h)
set(GGML_SOURCES_EXTRA k_quants.c)
add_compile_definitions(GGML_USE_K_QUANTS)
if (LLAMA_QKK_64)
add_compile_definitions(GGML_QKK_64)
endif()
if (LLAMA_QKK_64)
add_compile_definitions(GGML_QKK_64)
endif()
if (LLAMA_CUBLAS)
@@ -673,6 +667,8 @@ add_library(ggml OBJECT
ggml-alloc.h
ggml-backend.c
ggml-backend.h
ggml-quants.c
ggml-quants.h
${GGML_SOURCES_CUDA} ${GGML_HEADERS_CUDA}
${GGML_SOURCES_OPENCL} ${GGML_HEADERS_OPENCL}
${GGML_SOURCES_METAL} ${GGML_HEADERS_METAL}

View File

@@ -342,13 +342,9 @@ else
MK_CXXFLAGS += -march=rv64gcv -mabi=lp64d
endif
ifndef LLAMA_NO_K_QUANTS
MK_CPPFLAGS += -DGGML_USE_K_QUANTS
OBJS += k_quants.o
ifdef LLAMA_QKK_64
MK_CPPFLAGS += -DGGML_QKK_64
endif
endif
ifndef LLAMA_NO_ACCELERATE
# Mac OS - include Accelerate framework.
@@ -365,7 +361,7 @@ ifdef LLAMA_MPI
MK_CPPFLAGS += -DGGML_USE_MPI
MK_CFLAGS += -Wno-cast-qual
MK_CXXFLAGS += -Wno-cast-qual
OBJS += ggml-mpi.o
OBJS += ggml-mpi.o
endif # LLAMA_MPI
ifdef LLAMA_OPENBLAS
@@ -382,7 +378,7 @@ endif # LLAMA_BLIS
ifdef LLAMA_CUBLAS
MK_CPPFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include
MK_LDFLAGS += -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/x86_64-linux/lib
OBJS += ggml-cuda.o
OBJS += ggml-cuda.o
NVCCFLAGS = --forward-unknown-to-host-compiler -use_fast_math
ifdef LLAMA_CUDA_NVCC
NVCC = $(LLAMA_CUDA_NVCC)
@@ -497,11 +493,6 @@ ggml-mpi.o: ggml-mpi.c ggml-mpi.h
$(CC) $(CFLAGS) -c $< -o $@
endif # LLAMA_MPI
ifndef LLAMA_NO_K_QUANTS
k_quants.o: k_quants.c k_quants.h
$(CC) $(CFLAGS) -c $< -o $@
endif # LLAMA_NO_K_QUANTS
# combine build flags with cmdline overrides
override CFLAGS := $(MK_CPPFLAGS) $(CPPFLAGS) $(MK_CFLAGS) $(CFLAGS)
override CXXFLAGS := $(MK_CPPFLAGS) $(CPPFLAGS) $(MK_CXXFLAGS) $(CXXFLAGS)
@@ -542,15 +533,18 @@ ggml-alloc.o: ggml-alloc.c ggml.h ggml-alloc.h
ggml-backend.o: ggml-backend.c ggml.h ggml-backend.h
$(CC) $(CFLAGS) -c $< -o $@
OBJS += ggml-alloc.o ggml-backend.o
ggml-quants.o: ggml-quants.c ggml.h ggml-quants.h
$(CC) $(CFLAGS) -c $< -o $@
OBJS += ggml-alloc.o ggml-backend.o ggml-quants.o
llama.o: llama.cpp ggml.h ggml-alloc.h ggml-backend.h ggml-cuda.h ggml-metal.h llama.h
$(CXX) $(CXXFLAGS) -c $< -o $@
COMMON_H_DEPS = common/common.h common/sampling.h build-info.h common/log.h
COMMON_DEPS = $(COMMON_H_DEPS) common.o sampling.o grammar-parser.o
COMMON_H_DEPS = common/common.h common/sampling.h common/log.h
COMMON_DEPS = common.o sampling.o grammar-parser.o
common.o: common/common.cpp $(COMMON_H_DEPS)
common.o: common/common.cpp build-info.h $(COMMON_H_DEPS)
$(CXX) $(CXXFLAGS) -c $< -o $@
sampling.o: common/sampling.cpp $(COMMON_H_DEPS)

View File

@@ -42,13 +42,12 @@ let package = Package(
"llama.cpp",
"ggml-alloc.c",
"ggml-backend.c",
"k_quants.c",
"ggml-quants.c",
] + additionalSources,
resources: resources,
publicHeadersPath: "spm-headers",
cSettings: [
.unsafeFlags(["-Wno-shorten-64-to-32", "-O3", "-DNDEBUG"]),
.define("GGML_USE_K_QUANTS"),
.define("GGML_USE_ACCELERATE")
// NOTE: NEW_LAPACK will required iOS version 16.4+
// We should consider add this in the future when we drop support for iOS 14

View File

@@ -116,15 +116,10 @@ pub fn build(b: *std.build.Builder) !void {
var make = try Maker.init(b);
make.enable_lto = b.option(bool, "lto", "Enable LTO optimization, (default: false)") orelse false;
if (b.option(bool, "k-quants", "Enable K-quants, (default: true)") orelse true) {
try make.addFlag("-DGGML_USE_K_QUANTS");
const k_quants = make.obj("k_quants", "k_quants.c");
try make.objs.append(k_quants);
}
const ggml = make.obj("ggml", "ggml.c");
const ggml_alloc = make.obj("ggml-alloc", "ggml-alloc.c");
const ggml_backend = make.obj("ggml-backend", "ggml-backend.c");
const ggml_quants = make.obj("ggml-quants", "ggml-quants.c");
const llama = make.obj("llama", "llama.cpp");
const common = make.obj("common", "common/common.cpp");
const console = make.obj("console", "common/console.cpp");
@@ -133,14 +128,14 @@ pub fn build(b: *std.build.Builder) !void {
const train = make.obj("train", "common/train.cpp");
const clip = make.obj("clip", "examples/llava/clip.cpp");
_ = make.exe("main", "examples/main/main.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, sampling, console, grammar_parser });
_ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common });
_ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common });
_ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common });
_ = make.exe("finetune", "examples/finetune/finetune.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, train });
_ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, train });
_ = make.exe("main", "examples/main/main.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, sampling, console, grammar_parser });
_ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common });
_ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common });
_ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common });
_ = make.exe("finetune", "examples/finetune/finetune.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, train });
_ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, train });
const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, sampling, grammar_parser, clip });
const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, sampling, grammar_parser, clip });
if (server.target.isWindows()) {
server.linkSystemLibrary("ws2_32");
}

View File

@@ -103,9 +103,24 @@ void process_escapes(std::string& input) {
}
bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
bool result = true;
try {
if (!gpt_params_parse_ex(argc, argv, params)) {
gpt_print_usage(argc, argv, gpt_params());
exit(0);
}
}
catch (const std::invalid_argument & ex) {
fprintf(stderr, "%s\n", ex.what());
gpt_print_usage(argc, argv, gpt_params());
exit(1);
}
return result;
}
bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
bool invalid_param = false;
std::string arg;
gpt_params default_params;
const std::string arg_prefix = "--";
llama_sampling_params & sparams = params.sparams;
@@ -204,12 +219,52 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
break;
}
params.rope_freq_scale = std::stof(argv[i]);
} else if (arg == "--rope-scaling") {
if (++i >= argc) {
invalid_param = true;
break;
}
std::string value(argv[i]);
/**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_NONE; }
else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_LINEAR; }
else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_YARN; }
else { invalid_param = true; break; }
} else if (arg == "--rope-scale") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.rope_freq_scale = 1.0f/std::stof(argv[i]);
} else if (arg == "--yarn-orig-ctx") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.yarn_orig_ctx = std::stoi(argv[i]);
} else if (arg == "--yarn-ext-factor") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.yarn_ext_factor = std::stof(argv[i]);
} else if (arg == "--yarn-attn-factor") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.yarn_attn_factor = std::stof(argv[i]);
} else if (arg == "--yarn-beta-fast") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.yarn_beta_fast = std::stof(argv[i]);
} else if (arg == "--yarn-beta-slow") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.yarn_beta_slow = std::stof(argv[i]);
} else if (arg == "--memory-f32") {
params.memory_f16 = false;
} else if (arg == "--top-p") {
@@ -218,12 +273,19 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
break;
}
sparams.top_p = std::stof(argv[i]);
} else if (arg == "--min-p") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.min_p = std::stof(argv[i]);
} else if (arg == "--temp") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.temp = std::stof(argv[i]);
sparams.temp = std::max(sparams.temp, 0.0f);
} else if (arg == "--tfs") {
if (++i >= argc) {
invalid_param = true;
@@ -547,11 +609,8 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
break;
}
} else if (arg == "-h" || arg == "--help") {
gpt_print_usage(argc, argv, default_params);
#ifndef LOG_DISABLE_LOGS
log_print_usage();
#endif // LOG_DISABLE_LOGS
exit(0);
return false;
} else if (arg == "--random-prompt") {
params.random_prompt = true;
} else if (arg == "--in-prefix-bos") {
@@ -610,22 +669,17 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
// End of Parse args for logging parameters
#endif // LOG_DISABLE_LOGS
} else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
gpt_print_usage(argc, argv, default_params);
exit(1);
throw std::invalid_argument("error: unknown argument: " + arg);
}
}
if (invalid_param) {
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
gpt_print_usage(argc, argv, default_params);
exit(1);
throw std::invalid_argument("error: invalid parameter for argument: " + arg);
}
if (params.prompt_cache_all &&
(params.interactive || params.interactive_first ||
params.instruct)) {
fprintf(stderr, "error: --prompt-cache-all not supported in interactive mode yet\n");
gpt_print_usage(argc, argv, default_params);
exit(1);
throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n");
}
if (params.escape) {
@@ -644,6 +698,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
const llama_sampling_params & sparams = params.sparams;
printf("\n");
printf("usage: %s [options]\n", argv[0]);
printf("\n");
printf("options:\n");
@@ -678,6 +733,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
printf(" --top-k N top-k sampling (default: %d, 0 = disabled)\n", sparams.top_k);
printf(" --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)sparams.top_p);
printf(" --min-p N min-p sampling (default: %.1f, 0.0 = disabled)\n", (double)sparams.min_p);
printf(" --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)sparams.tfs_z);
printf(" --typical N locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)\n", (double)sparams.typical_p);
printf(" --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", sparams.penalty_last_n);
@@ -700,9 +756,16 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" --cfg-negative-prompt-file FNAME\n");
printf(" negative prompt file to use for guidance. (default: empty)\n");
printf(" --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", sparams.cfg_scale);
printf(" --rope-scale N RoPE context linear scaling factor, inverse of --rope-freq-scale\n");
printf(" --rope-scaling {none,linear,yarn}\n");
printf(" RoPE frequency scaling method, defaults to linear unless specified by the model\n");
printf(" --rope-scale N RoPE context scaling factor, expands context by a factor of N\n");
printf(" --rope-freq-base N RoPE base frequency, used by NTK-aware scaling (default: loaded from model)\n");
printf(" --rope-freq-scale N RoPE frequency linear scaling factor (default: loaded from model)\n");
printf(" --rope-freq-scale N RoPE frequency scaling factor, expands context by a factor of 1/N\n");
printf(" --yarn-orig-ctx N YaRN: original context size of model (default: 0 = model training context size)\n");
printf(" --yarn-ext-factor N YaRN: extrapolation mix factor (default: 1.0, 0.0 = full interpolation)\n");
printf(" --yarn-attn-factor N YaRN: scale sqrt(t) or attention magnitude (default: 1.0)\n");
printf(" --yarn-beta-slow N YaRN: high correction dim or alpha (default: %.1f)\n", params.yarn_beta_slow);
printf(" --yarn-beta-fast N YaRN: low correction dim or beta (default: %.1f)\n", params.yarn_beta_fast);
printf(" --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n");
printf(" --no-penalize-nl do not penalize newline token\n");
printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
@@ -743,7 +806,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
#endif // GGML_USE_CUBLAS
#endif
printf(" --verbose-prompt print prompt before generation\n");
fprintf(stderr, " --simple-io use basic IO for better compatibility in subprocesses and limited consoles\n");
printf(" --simple-io use basic IO for better compatibility in subprocesses and limited consoles\n");
printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
printf(" --lora-scaled FNAME S apply LoRA adapter with user defined scaling S (implies --no-mmap)\n");
printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
@@ -754,6 +817,9 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" -ld LOGDIR, --logdir LOGDIR\n");
printf(" path under which to save YAML logs (no logging if unset)\n");
printf("\n");
#ifndef LOG_DISABLE_LOGS
log_print_usage();
#endif // LOG_DISABLE_LOGS
}
std::string get_system_info(const gpt_params & params) {
@@ -807,17 +873,23 @@ struct llama_model_params llama_model_params_from_gpt_params(const gpt_params &
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) {
auto cparams = llama_context_default_params();
cparams.n_ctx = params.n_ctx;
cparams.n_batch = params.n_batch;
cparams.n_threads = params.n_threads;
cparams.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
cparams.mul_mat_q = params.mul_mat_q;
cparams.seed = params.seed;
cparams.f16_kv = params.memory_f16;
cparams.logits_all = params.logits_all;
cparams.embedding = params.embedding;
cparams.rope_freq_base = params.rope_freq_base;
cparams.rope_freq_scale = params.rope_freq_scale;
cparams.n_ctx = params.n_ctx;
cparams.n_batch = params.n_batch;
cparams.n_threads = params.n_threads;
cparams.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
cparams.mul_mat_q = params.mul_mat_q;
cparams.seed = params.seed;
cparams.f16_kv = params.memory_f16;
cparams.logits_all = params.logits_all;
cparams.embedding = params.embedding;
cparams.rope_scaling_type = params.rope_scaling_type;
cparams.rope_freq_base = params.rope_freq_base;
cparams.rope_freq_scale = params.rope_freq_scale;
cparams.yarn_ext_factor = params.yarn_ext_factor;
cparams.yarn_attn_factor = params.yarn_attn_factor;
cparams.yarn_beta_fast = params.yarn_beta_fast;
cparams.yarn_beta_slow = params.yarn_beta_slow;
cparams.yarn_orig_ctx = params.yarn_orig_ctx;
return cparams;
}
@@ -888,7 +960,7 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
std::vector<llama_token> tmp = { llama_token_bos(model), llama_token_eos(model), };
llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0));
llama_kv_cache_tokens_rm(lctx, -1, -1);
llama_kv_cache_clear(lctx);
llama_reset_timings(lctx);
}
@@ -1274,6 +1346,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
fprintf(stream, "threads: %d # default: %d\n", params.n_threads, std::thread::hardware_concurrency());
fprintf(stream, "top_k: %d # default: 40\n", sparams.top_k);
fprintf(stream, "top_p: %f # default: 0.95\n", sparams.top_p);
fprintf(stream, "min_p: %f # default: 0.0\n", sparams.min_p);
fprintf(stream, "typical_p: %f # default: 1.0\n", sparams.typical_p);
fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false");
}

View File

@@ -9,6 +9,7 @@
#define LOG_NO_FILE_LINE_FUNCTION
#include "log.h"
#include <cmath>
#include <string>
#include <vector>
#include <random>
@@ -54,6 +55,12 @@ struct gpt_params {
int32_t n_beams = 0; // if non-zero then use beam search of given width.
float rope_freq_base = 0.0f; // RoPE base frequency
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
float yarn_ext_factor = NAN; // YaRN extrapolation mix factor
float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
float yarn_beta_fast = 32.0f;// YaRN low correction dim
float yarn_beta_slow = 1.0f; // YaRN high correction dim
int32_t yarn_orig_ctx = 0; // YaRN original context length
int8_t rope_scaling_type = LLAMA_ROPE_SCALING_UNSPECIFIED;
// // sampling parameters
struct llama_sampling_params sparams;
@@ -110,6 +117,8 @@ struct gpt_params {
std::string image = ""; // path to an image file
};
bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params);
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
void gpt_print_usage(int argc, char ** argv, const gpt_params & params);

View File

@@ -97,38 +97,56 @@
#define LOG_TEE_TARGET stderr
#endif
// NOTE: currently disabled as it produces too many log files
// Utility for synchronizing log configuration state
// since std::optional was introduced only in c++17
enum LogTriState
{
LogTriStateSame,
LogTriStateFalse,
LogTriStateTrue
};
// Utility to obtain "pid" like unique process id and use it when creating log files.
//inline std::string log_get_pid()
//{
// static std::string pid;
// if (pid.empty())
// {
// // std::this_thread::get_id() is the most portable way of obtaining a "process id"
// // it's not the same as "pid" but is unique enough to solve multiple instances
// // trying to write to the same log.
// std::stringstream ss;
// ss << std::this_thread::get_id();
// pid = ss.str();
// }
//
// return pid;
//}
inline std::string log_get_pid()
{
static std::string pid;
if (pid.empty())
{
// std::this_thread::get_id() is the most portable way of obtaining a "process id"
// it's not the same as "pid" but is unique enough to solve multiple instances
// trying to write to the same log.
std::stringstream ss;
ss << std::this_thread::get_id();
pid = ss.str();
}
return pid;
}
// Utility function for generating log file names with unique id based on thread id.
// invocation with log_filename_generator( "llama", "log" ) creates a string "llama.<number>.log"
// where the number is a runtime id of the current thread.
#define log_filename_generator(log_file_basename, log_file_extension) log_filename_generator_impl(log_file_basename, log_file_extension)
#define log_filename_generator(log_file_basename, log_file_extension) log_filename_generator_impl(LogTriStateSame, log_file_basename, log_file_extension)
// INTERNAL, DO NOT USE
inline std::string log_filename_generator_impl(const std::string & log_file_basename, const std::string & log_file_extension)
inline std::string log_filename_generator_impl(LogTriState multilog, const std::string & log_file_basename, const std::string & log_file_extension)
{
static bool _multilog = false;
if (multilog != LogTriStateSame)
{
_multilog = multilog == LogTriStateTrue;
}
std::stringstream buf;
buf << log_file_basename;
//buf << ".";
//buf << log_get_pid();
if (_multilog)
{
buf << ".";
buf << log_get_pid();
}
buf << ".";
buf << log_file_extension;
@@ -213,15 +231,6 @@ inline std::string log_filename_generator_impl(const std::string & log_file_base
#define LOG_TEE_FLF_VAL ,""
#endif
// Utility for synchronizing log configuration state
// since std::optional was introduced only in c++17
enum LogTriState
{
LogTriStateSame,
LogTriStateFalse,
LogTriStateTrue
};
// INTERNAL, DO NOT USE
// USE LOG() INSTEAD
//
@@ -315,16 +324,23 @@ enum LogTriState
#endif
// INTERNAL, DO NOT USE
inline FILE *log_handler1_impl(bool change = false, LogTriState disable = LogTriStateSame, const std::string & filename = LOG_DEFAULT_FILE_NAME, FILE *target = nullptr)
inline FILE *log_handler1_impl(bool change = false, LogTriState append = LogTriStateSame, LogTriState disable = LogTriStateSame, const std::string & filename = LOG_DEFAULT_FILE_NAME, FILE *target = nullptr)
{
static bool _initialized{false};
static bool _disabled{(filename.empty() && target == nullptr)};
static bool _initialized = false;
static bool _append = false;
static bool _disabled = filename.empty() && target == nullptr;
static std::string log_current_filename{filename};
static FILE *log_current_target{target};
static FILE *logfile = nullptr;
if (change)
{
if (append != LogTriStateSame)
{
_append = append == LogTriStateTrue;
return logfile;
}
if (disable == LogTriStateTrue)
{
// Disable primary target
@@ -377,7 +393,7 @@ inline FILE *log_handler1_impl(bool change = false, LogTriState disable = LogTri
}
}
logfile = fopen(filename.c_str(), "w");
logfile = fopen(filename.c_str(), _append ? "a" : "w");
}
if (!logfile)
@@ -398,9 +414,9 @@ inline FILE *log_handler1_impl(bool change = false, LogTriState disable = LogTri
}
// INTERNAL, DO NOT USE
inline FILE *log_handler2_impl(bool change = false, LogTriState disable = LogTriStateSame, FILE *target = nullptr, const std::string & filename = LOG_DEFAULT_FILE_NAME)
inline FILE *log_handler2_impl(bool change = false, LogTriState append = LogTriStateSame, LogTriState disable = LogTriStateSame, FILE *target = nullptr, const std::string & filename = LOG_DEFAULT_FILE_NAME)
{
return log_handler1_impl(change, disable, filename, target);
return log_handler1_impl(change, append, disable, filename, target);
}
// Disables logs entirely at runtime.
@@ -411,7 +427,7 @@ inline FILE *log_handler2_impl(bool change = false, LogTriState disable = LogTri
// INTERNAL, DO NOT USE
inline FILE *log_disable_impl()
{
return log_handler1_impl(true, LogTriStateTrue);
return log_handler1_impl(true, LogTriStateSame, LogTriStateTrue);
}
// Enables logs at runtime.
@@ -420,19 +436,31 @@ inline FILE *log_disable_impl()
// INTERNAL, DO NOT USE
inline FILE *log_enable_impl()
{
return log_handler1_impl(true, LogTriStateFalse);
return log_handler1_impl(true, LogTriStateSame, LogTriStateFalse);
}
// Sets target fir logs, either by a file name or FILE* pointer (stdout, stderr, or any valid FILE*)
#define log_set_target(target) log_set_target_impl(target)
// INTERNAL, DO NOT USE
inline FILE *log_set_target_impl(const std::string & filename) { return log_handler1_impl(true, LogTriStateSame, filename); }
inline FILE *log_set_target_impl(FILE *target) { return log_handler2_impl(true, LogTriStateSame, target); }
inline FILE *log_set_target_impl(const std::string & filename) { return log_handler1_impl(true, LogTriStateSame, LogTriStateSame, filename); }
inline FILE *log_set_target_impl(FILE *target) { return log_handler2_impl(true, LogTriStateSame, LogTriStateSame, target); }
// INTERNAL, DO NOT USE
inline FILE *log_handler() { return log_handler1_impl(); }
// Enable or disable creating separate log files for each run.
// can ONLY be invoked BEFORE first log use.
#define log_multilog(enable) log_filename_generator_impl((enable) ? LogTriStateTrue : LogTriStateFalse, "", "")
// Enable or disable append mode for log file.
// can ONLY be invoked BEFORE first log use.
#define log_append(enable) log_append_impl(enable)
// INTERNAL, DO NOT USE
inline FILE *log_append_impl(bool enable)
{
return log_handler1_impl(true, enable ? LogTriStateTrue : LogTriStateFalse, LogTriStateSame);
}
inline void log_test()
{
log_disable();
@@ -494,6 +522,18 @@ inline bool log_param_single_parse(const std::string & param)
return true;
}
if (param == "--log-new")
{
log_multilog(true);
return true;
}
if (param == "--log-append")
{
log_append(true);
return true;
}
return false;
}
@@ -523,7 +563,9 @@ inline void log_print_usage()
printf(" --log-disable Disable trace logs\n");
printf(" --log-enable Enable trace logs\n");
printf(" --log-file Specify a log filename (without extension)\n");
printf(" Log file will be tagged with unique ID and written as \"<name>.<ID>.log\"\n"); /* */
printf(" --log-new Create a separate new log file on start. "
"Each log file will have unique name: \"<name>.<ID>.log\"\n");
printf(" --log-append Don't truncate the old log file.\n");
}
#define log_dump_cmdline(argc, argv) log_dump_cmdline_impl(argc, argv)

View File

@@ -39,6 +39,7 @@ void llama_sampling_free(struct llama_sampling_context * ctx) {
void llama_sampling_reset(llama_sampling_context * ctx) {
if (ctx->grammar != NULL) {
llama_grammar_free(ctx->grammar);
ctx->grammar = NULL;
}
if (!ctx->parsed_grammar.rules.empty()) {
@@ -89,10 +90,10 @@ std::string llama_sampling_print(const llama_sampling_params & params) {
snprintf(result, sizeof(result),
"\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
"\ttop_k = %d, tfs_z = %.3f, top_p = %.3f, typical_p = %.3f, temp = %.3f\n"
"\ttop_k = %d, tfs_z = %.3f, top_p = %.3f, min_p = %.3f, typical_p = %.3f, temp = %.3f\n"
"\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present,
params.top_k, params.tfs_z, params.top_p, params.typical_p, params.temp,
params.top_k, params.tfs_z, params.top_p, params.min_p, params.typical_p, params.temp,
params.mirostat, params.mirostat_eta, params.mirostat_tau);
return std::string(result);
@@ -110,6 +111,7 @@ llama_token llama_sampling_sample(
const float temp = params.temp;
const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k;
const float top_p = params.top_p;
const float min_p = params.min_p;
const float tfs_z = params.tfs_z;
const float typical_p = params.typical_p;
const int32_t penalty_last_n = params.penalty_last_n < 0 ? params.n_prev : params.penalty_last_n;
@@ -167,8 +169,12 @@ llama_token llama_sampling_sample(
llama_sample_grammar(ctx_main, &cur_p, ctx_sampling->grammar);
}
if (temp <= 0) {
// greedy sampling
if (temp < 0.0) {
// greedy sampling, with probs
llama_sample_softmax(ctx_main, &cur_p);
id = cur_p.data[0].id;
} else if (temp == 0.0) {
// greedy sampling, no probs
id = llama_sample_token_greedy(ctx_main, &cur_p);
} else {
if (mirostat == 1) {
@@ -186,6 +192,7 @@ llama_token llama_sampling_sample(
llama_sample_tail_free(ctx_main, &cur_p, tfs_z, min_keep);
llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep);
llama_sample_top_p (ctx_main, &cur_p, top_p, min_keep);
llama_sample_min_p (ctx_main, &cur_p, min_p, min_keep);
llama_sample_temp (ctx_main, &cur_p, temp);
id = llama_sample_token(ctx_main, &cur_p);

View File

@@ -14,6 +14,7 @@ typedef struct llama_sampling_params {
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
int32_t top_k = 40; // <= 0 to use vocab size
float top_p = 0.95f; // 1.0 = disabled
float min_p = 0.05f; // 0.0 = disabled
float tfs_z = 1.00f; // 1.0 = disabled
float typical_p = 1.00f; // 1.0 = disabled
float temp = 0.80f; // 1.0 = disabled

View File

@@ -1045,6 +1045,7 @@ struct train_params_common get_default_train_params_common() {
params.n_batch = 8;
params.n_gradient_accumulation = 1;
params.n_epochs = -1;
params.n_gpu_layers = 0;
params.custom_n_ctx = false;
@@ -1080,6 +1081,7 @@ struct train_params_common get_default_train_params_common() {
params.adam_beta2 = 0.999f;
params.adam_gclip = 1.0f;
params.adam_eps_f = 0.0f;
return params;
}

View File

@@ -44,6 +44,7 @@ struct train_params_common {
int n_batch;
int n_gradient_accumulation;
int n_epochs;
int n_gpu_layers;
bool custom_n_ctx;

View File

@@ -163,7 +163,8 @@ gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
if "rope_scaling" in hparams and hparams["rope_scaling"] != None and "factor" in hparams["rope_scaling"]:
if "type" in hparams["rope_scaling"]:
if hparams["rope_scaling"]["type"] == "linear":
gguf_writer.add_rope_scale_linear(hparams["rope_scaling"]["factor"])
gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
# TOKENIZATION

View File

@@ -151,8 +151,11 @@ class Params:
n_head_kv: int
f_norm_eps: float
rope_scaling_type: gguf.RopeScalingType | None = None
f_rope_freq_base: float | None = None
f_rope_scale: float | None = None
n_orig_ctx: int | None = None
rope_finetuned: bool | None = None
ftype: GGMLFileType | None = None
@@ -198,20 +201,20 @@ class Params:
def loadHFTransformerJson(model: LazyModel, config_path: Path) -> Params:
config = json.load(open(config_path))
n_vocab = config["vocab_size"]
n_embd = config["hidden_size"]
n_layer = config["num_hidden_layers"]
n_ff = config["intermediate_size"]
n_head = config["num_attention_heads"]
n_head_kv = config["num_key_value_heads"] if "num_key_value_heads" in config else n_head
f_norm_eps = config["rms_norm_eps"]
f_rope_freq_base = config["rope_theta"] if "rope_theta" in config else None
rope_scaling_type = f_rope_scale = n_orig_ctx = rope_finetuned = None
rope_scaling = config.get("rope_scaling")
if isinstance(rope_scaling, dict) and rope_scaling.get("type") == "linear":
f_rope_scale = config["rope_scaling"].get("factor")
else:
f_rope_scale = None
if rope_scaling is not None and (typ := rope_scaling.get("type")):
rope_factor = rope_scaling.get("factor")
f_rope_scale = rope_factor
if typ == "linear":
rope_scaling_type = gguf.RopeScalingType.LINEAR
elif typ == "yarn":
rope_scaling_type = gguf.RopeScalingType.YARN
n_orig_ctx = rope_scaling['original_max_position_embeddings']
rope_finetuned = rope_scaling['finetuned']
else:
raise NotImplementedError(f'Unknown rope scaling type: {typ}')
if "max_sequence_length" in config:
n_ctx = config["max_sequence_length"]
@@ -222,16 +225,19 @@ class Params:
"Suggestion: provide 'config.json' of the model in the same directory containing model files.")
return Params(
n_vocab = n_vocab,
n_embd = n_embd,
n_layer = n_layer,
n_ctx = n_ctx,
n_ff = n_ff,
n_head = n_head,
n_head_kv = n_head_kv,
f_norm_eps = f_norm_eps,
f_rope_freq_base = f_rope_freq_base,
f_rope_scale = f_rope_scale,
n_vocab = config["vocab_size"],
n_embd = config["hidden_size"],
n_layer = config["num_hidden_layers"],
n_ctx = n_ctx,
n_ff = config["intermediate_size"],
n_head = (n_head := config["num_attention_heads"]),
n_head_kv = config.get("num_key_value_heads", n_head),
f_norm_eps = config["rms_norm_eps"],
f_rope_freq_base = config.get("rope_theta"),
rope_scaling_type = rope_scaling_type,
f_rope_scale = f_rope_scale,
n_orig_ctx = n_orig_ctx,
rope_finetuned = rope_finetuned,
)
# LLaMA v2 70B params.json
@@ -240,17 +246,8 @@ class Params:
def loadOriginalParamsJson(model: LazyModel, config_path: Path) -> Params:
config = json.load(open(config_path))
n_vocab = config["vocab_size"] if "vocab_size" in config else -1
n_embd = config["dim"]
n_layer = config["n_layers"]
n_ff = -1
n_head = config["n_heads"]
n_head_kv = config["n_kv_heads"] if "n_kv_heads" in config else n_head
f_norm_eps = config["norm_eps"]
f_rope_freq_base = config["rope_theta"] if "rope_theta" in config else None
# hack to determine LLaMA v1 vs v2 vs CodeLlama
if f_rope_freq_base == 1000000:
if config.get("rope_theta") == 1000000:
# CodeLlama
n_ctx = 16384
elif config["norm_eps"] == 1e-05:
@@ -260,22 +257,16 @@ class Params:
# LLaMA v1
n_ctx = 2048
if n_vocab == -1:
n_vocab = model["tok_embeddings.weight"].shape[0]
if n_ff == -1:
n_ff = model["layers.0.feed_forward.w1.weight"].shape[0]
return Params(
n_vocab = n_vocab,
n_embd = n_embd,
n_layer = n_layer,
n_vocab = config.get("vocab_size", model["tok_embeddings.weight"].shape[0]),
n_embd = config["dim"],
n_layer = config["n_layers"],
n_ctx = n_ctx,
n_ff = n_ff,
n_head = n_head,
n_head_kv = n_head_kv,
f_norm_eps = f_norm_eps,
f_rope_freq_base = f_rope_freq_base,
n_ff = model["layers.0.feed_forward.w1.weight"].shape[0],
n_head = (n_head := config["n_heads"]),
n_head_kv = config.get("n_kv_heads", n_head),
f_norm_eps = config["norm_eps"],
f_rope_freq_base = config.get("rope_theta"),
)
@staticmethod
@@ -366,16 +357,19 @@ class SentencePieceVocab:
added_tokens = {}
vocab_size: int = self.sentencepiece_tokenizer.vocab_size()
expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
actual_ids = sorted(added_tokens.values())
if expected_ids != actual_ids:
raise Exception(f"Expected added token IDs to be sequential and start at {vocab_size}; got {actual_ids}")
items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1])
self.added_tokens_list = [text for (text, idx) in items]
self.vocab_size_base: int = vocab_size
self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_list)
self.fname_tokenizer = fname_tokenizer
new_tokens = {id: piece for piece, id in added_tokens.items() if id >= vocab_size}
expected_new_ids = list(range(vocab_size, vocab_size + len(new_tokens)))
actual_new_ids = sorted(new_tokens.keys())
if expected_new_ids != actual_new_ids:
raise ValueError(f"Expected new token IDs {expected_new_ids} to be sequential; got {actual_new_ids}")
# Token pieces that were added to the base vocabulary.
self.added_tokens_list = [new_tokens[id] for id in actual_new_ids]
self.vocab_size_base = vocab_size
self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
self.fname_tokenizer = fname_tokenizer
self.fname_added_tokens = fname_added_tokens
def sentencepiece_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
@@ -828,8 +822,16 @@ class OutputFile:
if params.f_rope_freq_base is not None:
self.gguf.add_rope_freq_base(params.f_rope_freq_base)
if params.f_rope_scale is not None:
self.gguf.add_rope_scale_linear(params.f_rope_scale)
if params.rope_scaling_type:
assert params.f_rope_scale is not None
self.gguf.add_rope_scaling_type(params.rope_scaling_type)
self.gguf.add_rope_scaling_factor(params.f_rope_scale)
if params.n_orig_ctx is not None:
self.gguf.add_rope_scaling_orig_ctx_len(params.n_orig_ctx)
if params.rope_finetuned is not None:
self.gguf.add_rope_scaling_finetuned(params.rope_finetuned)
if params.ftype is not None:
self.gguf.add_file_type(params.ftype)

View File

@@ -185,7 +185,7 @@ int main(int argc, char ** argv) {
const auto t_pp_start = ggml_time_us();
llama_kv_cache_tokens_rm(ctx, -1, -1);
llama_kv_cache_clear(ctx);
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
LOG_TEE("%s: llama_decode() failed\n", __func__);

View File

@@ -642,8 +642,9 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
const int rope_mode = 0;
return ggml_rope_custom(ctx,
t, KQ_pos, n_rot, rope_mode, n_ctx,
rope_freq_base, rope_freq_scale);
t, KQ_pos, n_rot, rope_mode, n_ctx, 0,
rope_freq_base, rope_freq_scale, 0.0f, 0.0f, 0.0f, 0.0f
);
};
set_name(tokens_input, "tokens_input");
@@ -652,7 +653,7 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
GGML_ASSERT(tokens_input->type == GGML_TYPE_I32);
auto add_to_f32 = [] (struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b) {
if (ggml_is_quantized(a->type)) {
if (ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16) {
return ggml_add_cast(ctx, a, b, GGML_TYPE_F32);
} else if (a->type == GGML_TYPE_F32) {
return ggml_add(ctx, a, b);
@@ -1459,6 +1460,17 @@ static bool train_params_parse(int argc, char ** argv, struct train_params * par
}
params->n_rank_w3 = std::stoi(argv[i]);
params->custom_n_rank_w3 = true;
} else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers") {
if (++i >= argc) {
invalid_param = true;
break;
}
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
params->common.n_gpu_layers = std::stoi(argv[i]);
#else
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
#endif
} else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
train_print_usage(argc, argv, &default_params);
@@ -1545,6 +1557,7 @@ int main(int argc, char ** argv) {
srand(params.common.seed);
struct llama_model_params llama_mparams = llama_model_default_params();
llama_mparams.n_gpu_layers = params.common.n_gpu_layers;
llama_mparams.vocab_only = false;
printf("%s: model base = '%s'\n", __func__, params.fn_model_base);

View File

@@ -0,0 +1,34 @@
#!/bin/bash
cd `dirname $0`
cd ../..
EXE="./finetune"
if [[ ! $LLAMA_MODEL_DIR ]]; then LLAMA_MODEL_DIR="./models"; fi
if [[ ! $LLAMA_TRAINING_DIR ]]; then LLAMA_TRAINING_DIR="."; fi
# MODEL="$LLAMA_MODEL_DIR/openllama-3b-v2-q8_0.gguf" # This is the model the readme uses.
MODEL="$LLAMA_MODEL_DIR/openllama-3b-v2.gguf" # An f16 model. Note in this case with "-g", you get an f32-format .BIN file that isn't yet supported if you use it with "main --lora" with GPU inferencing.
while getopts "dg" opt; do
case $opt in
d)
DEBUGGER="gdb --args"
;;
g)
EXE="./build/bin/Release/finetune"
GPUARG="--gpu-layers 25"
;;
esac
done
$DEBUGGER $EXE \
--model-base $MODEL \
$GPUARG \
--checkpoint-in chk-ol3b-shakespeare-LATEST.gguf \
--checkpoint-out chk-ol3b-shakespeare-ITERATION.gguf \
--lora-out lora-ol3b-shakespeare-ITERATION.bin \
--train-data "$LLAMA_TRAINING_DIR\shakespeare.txt" \
--save-every 10 \
--threads 10 --adam-iter 30 --batch 4 --ctx 64 \
--use-checkpointing

View File

@@ -1037,7 +1037,7 @@ int main(int argc, char ** argv) {
test t(inst, lmodel, ctx);
llama_kv_cache_tokens_rm(ctx, -1, -1);
llama_kv_cache_clear(ctx);
// warmup run
if (t.n_prompt > 0) {
@@ -1048,7 +1048,7 @@ int main(int argc, char ** argv) {
}
for (int i = 0; i < params.reps; i++) {
llama_kv_cache_tokens_rm(ctx, -1, -1);
llama_kv_cache_clear(ctx);
uint64_t t_start = get_time_ns();
if (t.n_prompt > 0) {

View File

@@ -208,6 +208,14 @@ Top-p sampling, also known as nucleus sampling, is another text generation metho
Example usage: `--top-p 0.95`
### Min P Sampling
- `--min-p N`: Sets a minimum base probability threshold for token selection (default: 0.05).
The Min-P sampling method was designed as an alternative to Top-P, and aims to ensure a balance of quality and variety. The parameter *p* represents the minimum probability for a token to be considered, relative to the probability of the most likely token. For example, with *p*=0.05 and the most likely token having a probability of 0.9, logits with a value less than 0.045 are filtered out.
Example usage: `--min-p 0.05`
### Tail Free Sampling (TFS)
- `--tfs N`: Enable tail free sampling with parameter z (default: 1.0, 1.0 = disabled).

View File

@@ -298,7 +298,7 @@ int main(int argc, char ** argv) {
}
// remove any "future" tokens that we might have inherited from the previous session
llama_kv_cache_tokens_rm(ctx, n_matching_session_tokens, -1);
llama_kv_cache_seq_rm(ctx, -1, n_matching_session_tokens, -1);
}
LOGLN(

View File

@@ -210,7 +210,7 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params &
const auto t_start = std::chrono::high_resolution_clock::now();
// clear the KV cache
llama_kv_cache_tokens_rm(ctx, -1, -1);
llama_kv_cache_clear(ctx);
for (int j = 0; j < num_batches; ++j) {
const int batch_start = start + j * n_batch;
@@ -339,7 +339,7 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
const auto t_start = std::chrono::high_resolution_clock::now();
// clear the KV cache
llama_kv_cache_tokens_rm(ctx, -1, -1);
llama_kv_cache_clear(ctx);
for (int j = 0; j < num_batches; ++j) {
const int batch_start = start + j * n_batch;
@@ -573,7 +573,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
}
// clear the KV cache
llama_kv_cache_tokens_rm(ctx, -1, -1);
llama_kv_cache_clear(ctx);
auto logits = hellaswag_evaluate_tokens(ctx, query_embd, 0, params.n_batch, n_vocab);
if (logits.empty()) {

View File

@@ -18,7 +18,6 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = {
{ "Q4_1", LLAMA_FTYPE_MOSTLY_Q4_1, " 3.90G, +0.1585 ppl @ LLaMA-v1-7B", },
{ "Q5_0", LLAMA_FTYPE_MOSTLY_Q5_0, " 4.33G, +0.0683 ppl @ LLaMA-v1-7B", },
{ "Q5_1", LLAMA_FTYPE_MOSTLY_Q5_1, " 4.70G, +0.0349 ppl @ LLaMA-v1-7B", },
#ifdef GGML_USE_K_QUANTS
{ "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.63G, +0.6717 ppl @ LLaMA-v1-7B", },
{ "Q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M, "alias for Q3_K_M" },
{ "Q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S, " 2.75G, +0.5551 ppl @ LLaMA-v1-7B", },
@@ -31,7 +30,6 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = {
{ "Q5_K_S", LLAMA_FTYPE_MOSTLY_Q5_K_S, " 4.33G, +0.0400 ppl @ LLaMA-v1-7B", },
{ "Q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M, " 4.45G, +0.0122 ppl @ LLaMA-v1-7B", },
{ "Q6_K", LLAMA_FTYPE_MOSTLY_Q6_K, " 5.15G, -0.0008 ppl @ LLaMA-v1-7B", },
#endif
{ "Q8_0", LLAMA_FTYPE_MOSTLY_Q8_0, " 6.70G, +0.0004 ppl @ LLaMA-v1-7B", },
{ "F16", LLAMA_FTYPE_MOSTLY_F16, "13.00G @ 7B", },
{ "F32", LLAMA_FTYPE_ALL_F32, "26.00G @ 7B", },
@@ -70,13 +68,14 @@ static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftyp
}
// usage:
// ./quantize [--allow-requantize] [--leave-output-tensor] models/llama/ggml-model.gguf [models/llama/ggml-model-quant.gguf] type [nthreads]
// ./quantize [--allow-requantize] [--leave-output-tensor] [--pure] models/llama/ggml-model.gguf [models/llama/ggml-model-quant.gguf] type [nthreads]
//
[[noreturn]]
static void usage(const char * executable) {
printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
printf(" --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
printf(" --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
printf(" --pure: Disable k-quant mixtures and quantize all tensors to the same type\n");
printf("\nAllowed quantization types:\n");
for (auto & it : QUANT_OPTIONS) {
if (it.name != "COPY") {
@@ -103,6 +102,8 @@ int main(int argc, char ** argv) {
params.quantize_output_tensor = false;
} else if (strcmp(argv[arg_idx], "--allow-requantize") == 0) {
params.allow_requantize = true;
} else if (strcmp(argv[arg_idx], "--pure") == 0) {
params.pure = true;
} else {
usage(argv[0]);
}

View File

@@ -149,6 +149,7 @@ struct task_server {
task_type type;
json data;
bool infill_mode = false;
bool embedding_mode = false;
};
struct task_result {
@@ -371,6 +372,7 @@ struct llama_client_slot
std::vector<completion_token_output> generated_token_probs;
bool infill = false;
bool embedding = false;
bool has_next_token = true;
bool truncated = false;
bool stopped_eos = false;
@@ -857,7 +859,7 @@ struct llama_server_context
void kv_cache_clear() {
// clear the entire KV cache
llama_kv_cache_tokens_rm(ctx, -1, -1);
llama_kv_cache_clear(ctx);
clean_kv_cache = false;
}
@@ -1244,13 +1246,14 @@ struct llama_server_context
queue_results.push_back(res);
}
int request_completion(json data, bool infill)
int request_completion(json data, bool infill, bool embedding)
{
std::lock_guard<std::mutex> lock(mutex_tasks);
task_server task;
task.id = id_gen++;
task.data = data;
task.infill_mode = infill;
task.embedding_mode = embedding;
task.type = COMPLETION_TASK;
queue_tasks.push_back(task);
return task.id;
@@ -1376,7 +1379,7 @@ struct llama_server_context
{
LOG_TEE("slot unavailable\n");
// send error result
send_error(task.id, "slot unavaliable");
send_error(task.id, "slot unavailable");
return;
}
@@ -1388,6 +1391,7 @@ struct llama_server_context
slot->reset();
slot->infill = task.infill_mode;
slot->embedding = task.embedding_mode;
slot->task_id = task.id;
if (!launch_slot_with_data(slot, task.data))
@@ -1695,7 +1699,7 @@ struct llama_server_context
}
// prompt evaluated for embedding
if (params.embedding)
if (slot.embedding)
{
send_embedding(slot);
slot.release();
@@ -1751,12 +1755,18 @@ static void server_print_usage(const char *argv0, const gpt_params &params,
printf("options:\n");
printf(" -h, --help show this help message and exit\n");
printf(" -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
printf(" -tb N, --threads-batch N number of threads to use during batch and prompt processing (default: same as --threads)\n");
printf(" -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
printf(" -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
printf(" --rope-scaling {none,linear,yarn}\n");
printf(" RoPE frequency scaling method, defaults to linear unless specified by the model\n");
printf(" --rope-freq-base N RoPE base frequency (default: loaded from model)\n");
printf(" --rope-freq-scale N RoPE frequency scaling factor (default: loaded from model)\n");
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
printf(" --rope-freq-scale N RoPE frequency scaling factor, expands context by a factor of 1/N\n");
printf(" --yarn-ext-factor N YaRN: extrapolation mix factor (default: 1.0, 0.0 = full interpolation)\n");
printf(" --yarn-attn-factor N YaRN: scale sqrt(t) or attention magnitude (default: 1.0)\n");
printf(" --yarn-beta-slow N YaRN: high correction dim or alpha (default: %.1f)\n", params.yarn_beta_slow);
printf(" --yarn-beta-fast N YaRN: low correction dim or beta (default: %.1f)\n", params.yarn_beta_fast);
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
printf(" not recommended: doubles context memory required and no measurable increase in quality\n");
if (llama_mlock_supported())
@@ -1877,6 +1887,19 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
}
params.n_ctx = std::stoi(argv[i]);
}
else if (arg == "--rope-scaling")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
std::string value(argv[i]);
/**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_NONE; }
else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_LINEAR; }
else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_YARN; }
else { invalid_param = true; break; }
}
else if (arg == "--rope-freq-base")
{
if (++i >= argc)
@@ -1895,6 +1918,38 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
}
params.rope_freq_scale = std::stof(argv[i]);
}
else if (arg == "--yarn-ext-factor")
{
if (++i >= argc) {
invalid_param = true;
break;
}
params.yarn_ext_factor = std::stof(argv[i]);
}
else if (arg == "--yarn-attn-factor")
{
if (++i >= argc) {
invalid_param = true;
break;
}
params.yarn_attn_factor = std::stof(argv[i]);
}
else if (arg == "--yarn-beta-fast")
{
if (++i >= argc) {
invalid_param = true;
break;
}
params.yarn_beta_fast = std::stof(argv[i]);
}
else if (arg == "--yarn-beta-slow")
{
if (++i >= argc) {
invalid_param = true;
break;
}
params.yarn_beta_slow = std::stof(argv[i]);
}
else if (arg == "--memory-f32" || arg == "--memory_f32")
{
params.memory_f16 = false;
@@ -2274,7 +2329,7 @@ int main(int argc, char **argv)
svr.Post("/completion", [&llama](const httplib::Request &req, httplib::Response &res)
{
json data = json::parse(req.body);
const int task_id = llama.request_completion(data, false);
const int task_id = llama.request_completion(data, false, false);
if (!json_value(data, "stream", false)) {
std::string completion_text;
task_result result = llama.next_result(task_id);
@@ -2329,7 +2384,7 @@ int main(int argc, char **argv)
svr.Post("/infill", [&llama](const httplib::Request &req, httplib::Response &res)
{
json data = json::parse(req.body);
const int task_id = llama.request_completion(data, true);
const int task_id = llama.request_completion(data, true, false);
if (!json_value(data, "stream", false)) {
std::string completion_text;
task_result result = llama.next_result(task_id);
@@ -2433,7 +2488,7 @@ int main(int argc, char **argv)
{
prompt = "";
}
const int task_id = llama.request_completion({ {"prompt", prompt}, { "n_predict", 0} }, false);
const int task_id = llama.request_completion({ {"prompt", prompt}, { "n_predict", 0} }, false, true);
task_result result = llama.next_result(task_id);
return res.set_content(result.result_json.dump(), "application/json");
});

View File

@@ -148,7 +148,7 @@ int main(int argc, char ** argv) {
std::vector<seq_draft> drafts(n_seq_dft);
params.sparams.grammar.clear(); // the draft samplers will copy the target sampler's grammar
params.sparams.temp = std::max(0.01f, params.sparams.temp);
params.sparams.temp = -1.0f; // force greedy sampling with probs for the draft model
for (int s = 0; s < n_seq_dft; ++s) {
drafts[s].ctx_sampling = llama_sampling_init(params.sparams);

View File

@@ -349,9 +349,9 @@ static struct ggml_tensor * llama_build_train_graphs(
// not capturing these, to silcence warnings
const int rope_mode = 0;
return ggml_rope_custom(ctx,
t, KQ_pos, n_rot, rope_mode, n_ctx,
rope_freq_base, rope_freq_scale);
return ggml_rope_custom(
ctx, t, KQ_pos, n_rot, rope_mode, n_ctx, 0, rope_freq_base, rope_freq_scale, 0.0f, 1.0f, 0.0f, 0.0f
);
};
set_name(tokens_input, "tokens_input");

12
flake.lock generated
View File

@@ -5,11 +5,11 @@
"systems": "systems"
},
"locked": {
"lastModified": 1692799911,
"narHash": "sha256-3eihraek4qL744EvQXsK1Ha6C3CR7nnT8X2qWap4RNk=",
"lastModified": 1694529238,
"narHash": "sha256-zsNZZGTGnMOf9YpHKJqMSsa0dXbfmxeoJ7xHlrt+xmY=",
"owner": "numtide",
"repo": "flake-utils",
"rev": "f9e7cf818399d17d347f847525c5a5a8032e4e44",
"rev": "ff7b65b44d01cf9ba6a71320833626af21126384",
"type": "github"
},
"original": {
@@ -20,11 +20,11 @@
},
"nixpkgs": {
"locked": {
"lastModified": 1692913444,
"narHash": "sha256-1SvMQm2DwofNxXVtNWWtIcTh7GctEVrS/Xel/mdc6iY=",
"lastModified": 1698318101,
"narHash": "sha256-gUihHt3yPD7bVqg+k/UVHgngyaJ3DMEBchbymBMvK1E=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "18324978d632ffc55ef1d928e81630c620f4f447",
"rev": "63678e9f3d3afecfeafa0acead6239cdb447574c",
"type": "github"
},
"original": {

View File

@@ -11,8 +11,7 @@
meta.mainProgram = "llama";
inherit (pkgs.stdenv) isAarch32 isAarch64 isDarwin;
buildInputs = with pkgs; [ openmpi ];
osSpecific = with pkgs; buildInputs ++
(
osSpecific = with pkgs; buildInputs ++ (
if isAarch64 && isDarwin then
with pkgs.darwin.apple_sdk_11_0.frameworks; [
Accelerate
@@ -51,6 +50,9 @@
};
llama-python =
pkgs.python3.withPackages (ps: with ps; [ numpy sentencepiece ]);
# TODO(Green-Sky): find a better way to opt-into the heavy ml python runtime
llama-python-extra =
pkgs.python3.withPackages (ps: with ps; [ numpy sentencepiece torchWithoutCuda transformers ]);
postPatch = ''
substituteInPlace ./ggml-metal.m \
--replace '[bundle pathForResource:@"ggml-metal" ofType:@"metal"];' "@\"$out/bin/ggml-metal.metal\";"
@@ -93,12 +95,15 @@
};
packages.rocm = pkgs.stdenv.mkDerivation {
inherit name src meta postPatch nativeBuildInputs postInstall;
buildInputs = with pkgs; buildInputs ++ [ hip hipblas rocblas ];
buildInputs = with pkgs.rocmPackages; buildInputs ++ [ clr hipblas rocblas ];
cmakeFlags = cmakeFlags ++ [
"-DLLAMA_HIPBLAS=1"
"-DCMAKE_C_COMPILER=hipcc"
"-DCMAKE_CXX_COMPILER=hipcc"
"-DCMAKE_POSITION_INDEPENDENT_CODE=ON"
# Build all targets supported by rocBLAS. When updating search for TARGET_LIST_ROCM
# in github.com/ROCmSoftwarePlatform/rocBLAS/blob/develop/CMakeLists.txt
# and select the line that matches the current nixpkgs version of rocBLAS.
"-DAMDGPU_TARGETS=gfx803;gfx900;gfx906:xnack-;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102"
];
};
apps.llama-server = {
@@ -126,5 +131,9 @@
buildInputs = [ llama-python ];
packages = nativeBuildInputs ++ osSpecific;
};
devShells.extra = pkgs.mkShell {
buildInputs = [ llama-python-extra ];
packages = nativeBuildInputs ++ osSpecific;
};
});
}

View File

@@ -513,6 +513,15 @@ static __global__ void add_f16_f32_f16(const half * x, const float * y, half * d
dst[i] = __hadd(x[i], __float2half(y[i]));
}
static __global__ void add_f16_f32_f32(const half * x, const float * y, float * dst, const int k) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= k) {
return;
}
dst[i] = __half2float(x[i]) + y[i];
}
static __global__ void mul_f32(const float * x, const float * y, float * dst, const int kx, const int ky) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
@@ -4484,11 +4493,41 @@ static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne,
cpy_1(cx + x_offset, cdst + dst_offset);
}
// rope == RoPE == rotary positional embedding
static __device__ float rope_yarn_ramp(const float low, const float high, const int i0) {
const float y = (i0 / 2 - low) / max(0.001f, high - low);
return 1.0f - min(1.0f, max(0.0f, y));
}
struct rope_corr_dims {
float v[4];
};
// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
static __device__ void rope_yarn(
float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale,
float * cos_theta, float * sin_theta
) {
// Get n-d rotational scaling corrected for extrapolation
float theta_interp = freq_scale * theta_extrap;
float theta = theta_interp;
if (ext_factor != 0.0f) {
float ramp_mix = rope_yarn_ramp(corr_dims.v[0], corr_dims.v[1], i0) * ext_factor;
theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
// Get n-d magnitude scaling corrected for interpolation
mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
}
*cos_theta = cosf(theta) * mscale;
*sin_theta = sinf(theta) * mscale;
}
// rope == RoPE == rotary positional embedding
template<typename T, bool has_pos>
static __global__ void rope(const T * x, T * dst, const int ncols, const int32_t * pos, const float freq_scale,
const int p_delta_rows, const float theta_scale) {
static __global__ void rope(
const T * x, T * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
float ext_factor, float attn_factor, rope_corr_dims corr_dims
) {
const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
if (col >= ncols) {
@@ -4500,10 +4539,10 @@ static __global__ void rope(const T * x, T * dst, const int ncols, const int32_t
const int i2 = row/p_delta_rows;
const int p = has_pos ? pos[i2] : 0;
const float p0 = p*freq_scale;
const float theta = p0*powf(theta_scale, col/2);
const float sin_theta = sinf(theta);
const float cos_theta = cosf(theta);
const float theta_base = p*powf(freq_base, -float(col)/ncols);
float cos_theta, sin_theta;
rope_yarn(theta_base, freq_scale, corr_dims, col, ext_factor, attn_factor, &cos_theta, &sin_theta);
const float x0 = x[i + 0];
const float x1 = x[i + 1];
@@ -4513,8 +4552,10 @@ static __global__ void rope(const T * x, T * dst, const int ncols, const int32_t
}
template<typename T, bool has_pos>
static __global__ void rope_neox(const T * x, T * dst, const int ncols, const int32_t * pos, const float freq_scale,
const int p_delta_rows, const float theta_scale) {
static __global__ void rope_neox(
const T * x, T * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
float ext_factor, float attn_factor, rope_corr_dims corr_dims
) {
const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
if (col >= ncols) {
@@ -4525,11 +4566,14 @@ static __global__ void rope_neox(const T * x, T * dst, const int ncols, const in
const int i = row*ncols + col/2;
const int i2 = row/p_delta_rows;
// simplified from `(ib * ncols + col) * (-1 / ncols)`, where ib is assumed to be zero
const float cur_rot = -float(col)/ncols;
const int p = has_pos ? pos[i2] : 0;
const float p0 = p*freq_scale;
const float theta = p0*powf(theta_scale, col/2);
const float sin_theta = sinf(theta);
const float cos_theta = cosf(theta);
const float theta_base = p*powf(freq_base, cur_rot);
float cos_theta, sin_theta;
rope_yarn(theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);
const float x0 = x[i + 0];
const float x1 = x[i + ncols/2];
@@ -4538,8 +4582,10 @@ static __global__ void rope_neox(const T * x, T * dst, const int ncols, const in
dst[i + ncols/2] = x0*sin_theta + x1*cos_theta;
}
static __global__ void rope_glm_f32(const float * x, float * dst, const int ncols, const int32_t * pos, const float freq_scale,
const int p_delta_rows, const float theta_scale, const int n_ctx) {
static __global__ void rope_glm_f32(
const float * x, float * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
int n_ctx
) {
const int col = blockDim.x*blockIdx.x + threadIdx.x;
const int half_n_dims = ncols/4;
@@ -4551,7 +4597,7 @@ static __global__ void rope_glm_f32(const float * x, float * dst, const int ncol
const int i = row*ncols + col;
const int i2 = row/p_delta_rows;
const float col_theta_scale = powf(theta_scale, col);
const float col_theta_scale = powf(freq_base, -2.0f*col/ncols);
// FIXME: this is likely wrong
const int p = pos != nullptr ? pos[i2] : 0;
@@ -4693,6 +4739,11 @@ static void add_f16_f32_f16_cuda(const half * x, const float * y, half * dst, co
add_f16_f32_f16<<<num_blocks, CUDA_ADD_BLOCK_SIZE, 0, stream>>>(x, y, dst, k);
}
static void add_f16_f32_f32_cuda(const half * x, const float * y, float * dst, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_ADD_BLOCK_SIZE - 1) / CUDA_ADD_BLOCK_SIZE;
add_f16_f32_f32<<<num_blocks, CUDA_ADD_BLOCK_SIZE, 0, stream>>>(x, y, dst, k);
}
static void mul_f32_cuda(const float * x, const float * y, float * dst, const int kx, const int ky, cudaStream_t stream) {
const int num_blocks = (kx + CUDA_MUL_BLOCK_SIZE - 1) / CUDA_MUL_BLOCK_SIZE;
mul_f32<<<num_blocks, CUDA_MUL_BLOCK_SIZE, 0, stream>>>(x, y, dst, kx, ky);
@@ -5570,40 +5621,54 @@ static void clamp_f32_cuda(const float * x, float * dst, const float min, const
}
template<typename T>
static void rope_cuda(const T * x, T * dst, const int ncols, const int nrows, const int32_t * pos, const float freq_scale,
const int p_delta_rows, const float theta_scale, cudaStream_t stream) {
static void rope_cuda(
const T * x, T * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream
) {
GGML_ASSERT(ncols % 2 == 0);
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
const dim3 block_nums(nrows, num_blocks_x, 1);
if (pos == nullptr) {
rope<T, false><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, pos, freq_scale, p_delta_rows, theta_scale);
rope<T, false><<<block_nums, block_dims, 0, stream>>>(
x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims
);
} else {
rope<T, true><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, pos, freq_scale, p_delta_rows, theta_scale);
rope<T, true><<<block_nums, block_dims, 0, stream>>>(
x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims
);
}
}
template<typename T>
static void rope_neox_cuda(const T * x, T * dst, const int ncols, const int nrows, const int32_t * pos, const float freq_scale,
const int p_delta_rows, const float theta_scale, cudaStream_t stream) {
static void rope_neox_cuda(
const T * x, T * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream
) {
GGML_ASSERT(ncols % 2 == 0);
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
const dim3 block_nums(nrows, num_blocks_x, 1);
if (pos == nullptr) {
rope_neox<T, false><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, pos, freq_scale, p_delta_rows, theta_scale);
rope_neox<T, false><<<block_nums, block_dims, 0, stream>>>(
x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims
);
} else {
rope_neox<T, true><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, pos, freq_scale, p_delta_rows, theta_scale);
rope_neox<T, true><<<block_nums, block_dims, 0, stream>>>(
x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims
);
}
}
static void rope_glm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const int32_t * pos, const float freq_scale,
const int p_delta_rows, const float theta_scale, const int n_ctx, cudaStream_t stream) {
static void rope_glm_f32_cuda(
const float * x, float * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
float freq_base, int n_ctx, cudaStream_t stream
) {
GGML_ASSERT(ncols % 4 == 0);
const dim3 block_dims(CUDA_ROPE_BLOCK_SIZE/4, 1, 1);
const int num_blocks_x = (ncols + CUDA_ROPE_BLOCK_SIZE - 1) / CUDA_ROPE_BLOCK_SIZE;
const dim3 block_nums(num_blocks_x, nrows, 1);
rope_glm_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, pos, freq_scale, p_delta_rows, theta_scale, n_ctx);
rope_glm_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, n_ctx);
}
static void alibi_f32_cuda(const float * x, float * dst, const int ncols, const int nrows,
@@ -5996,7 +6061,10 @@ inline void ggml_cuda_op_add(
add_f32_cuda(src0_dd, src1_dd, dst_dd, ggml_nelements(src0), ne10*ne11, main_stream);
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
add_f16_f32_f16_cuda((const half *) src0_dd, src1_dd, (half *) dst_dd, ggml_nelements(src0), main_stream);
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
add_f16_f32_f32_cuda((const half *) src0_dd, src1_dd, dst_dd, ggml_nelements(src0), main_stream);
} else {
fprintf(stderr, "src0->type: %d dst->type: %d\n", src0->type, dst->type);
GGML_ASSERT(false);
}
@@ -6460,17 +6528,20 @@ inline void ggml_cuda_op_rope(
const int64_t ne2 = dst->ne[2];
const int64_t nrows = ggml_nrows(src0);
//const int n_past = ((int32_t *) dst->op_params)[0];
const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2];
const int n_ctx = ((int32_t *) dst->op_params)[3];
//const int n_past = ((int32_t *) dst->op_params)[0];
const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2];
const int n_ctx = ((int32_t *) dst->op_params)[3];
const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
// RoPE alteration for extended context
float freq_base, freq_scale;
memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
const float theta_scale = powf(freq_base, -2.0f/n_dims);
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
const int32_t * pos = nullptr;
if ((mode & 1) == 0) {
@@ -6482,24 +6553,39 @@ inline void ggml_cuda_op_rope(
const bool is_neox = mode & 2;
const bool is_glm = mode & 4;
rope_corr_dims corr_dims;
ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims.v);
// compute
if (is_glm) {
GGML_ASSERT(false);
rope_glm_f32_cuda(src0_dd, dst_dd, ne00, nrows, pos, freq_scale, ne01, theta_scale, n_ctx, main_stream);
rope_glm_f32_cuda(src0_dd, dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, n_ctx, main_stream);
} else if (is_neox) {
GGML_ASSERT(ne00 == n_dims && "ne00 != n_dims is not implemented for CUDA yet");
if (src0->type == GGML_TYPE_F32) {
rope_neox_cuda((const float *)src0_dd, (float *)dst_dd, ne00, nrows, pos, freq_scale, ne01, theta_scale, main_stream);
rope_neox_cuda(
(const float *)src0_dd, (float *)dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
attn_factor, corr_dims, main_stream
);
} else if (src0->type == GGML_TYPE_F16) {
rope_neox_cuda((const half *)src0_dd, (half *)dst_dd, ne00, nrows, pos, freq_scale, ne01, theta_scale, main_stream);
rope_neox_cuda(
(const half *)src0_dd, (half *)dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
attn_factor, corr_dims, main_stream
);
} else {
GGML_ASSERT(false);
}
} else {
if (src0->type == GGML_TYPE_F32) {
rope_cuda((const float *)src0_dd, (float *)dst_dd, ne00, nrows, pos, freq_scale, ne01, theta_scale, main_stream);
rope_cuda(
(const float *)src0_dd, (float *)dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
attn_factor, corr_dims, main_stream
);
} else if (src0->type == GGML_TYPE_F16) {
rope_cuda((const half *)src0_dd, (half *)dst_dd, ne00, nrows, pos, freq_scale, ne01, theta_scale, main_stream);
rope_cuda(
(const half *)src0_dd, (half *)dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
attn_factor, corr_dims, main_stream
);
} else {
GGML_ASSERT(false);
}
@@ -6610,8 +6696,10 @@ inline void ggml_cuda_op_clamp(
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
const float min = ((float *) dst->op_params)[0];
const float max = ((float *) dst->op_params)[1];
float min;
float max;
memcpy(&min, dst->op_params, sizeof(float));
memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
clamp_f32_cuda(src0_dd, dst_dd, min, max, ggml_nelements(src0), main_stream);
CUDA_CHECK(cudaGetLastError());
@@ -7135,6 +7223,30 @@ static void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor
ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream);
}
__global__ void k_compute_batched_ptrs(
const half * src0_as_f16, const half * src1_as_f16, half * dst_f16,
void ** ptrs,
int ne12, int ne13,
int ne23,
int nb02, int nb03,
int nb12, int nb13,
int nb2, int nb3,
int r2, int r3) {
int i13 = blockIdx.x * blockDim.x + threadIdx.x;
int i12 = blockIdx.y * blockDim.y + threadIdx.y;
if (i13 >= ne13 || i12 >= ne12) {
return;
}
int i03 = i13 / r3;
int i02 = i12 / r2;
ptrs[0*ne23 + i12 + i13*ne12] = (char *) src0_as_f16 + i02*nb02 + i03*nb03;
ptrs[1*ne23 + i12 + i13*ne12] = (char *) src1_as_f16 + i12*nb12/2 + i13*nb13/2;
ptrs[2*ne23 + i12 + i13*ne12] = (char *) dst_f16 + i12* nb2/2 + i13* nb3/2;
}
static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(!ggml_is_transposed(src0));
GGML_ASSERT(!ggml_is_transposed(src1));
@@ -7236,49 +7348,35 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
} else {
// use cublasGemmBatchedEx
// TODO: https://github.com/ggerganov/llama.cpp/pull/3749#discussion_r1369997000
const int ne23 = ne12*ne13;
// TODO: avoid this alloc
void ** ptrs = (void **) malloc(3*ne23*sizeof(void *));
for (int i13 = 0; i13 < ne13; ++i13) {
for (int i12 = 0; i12 < ne12; ++i12) {
int i03 = i13 / r3;
int i02 = i12 / r2;
ptrs[0*ne23 + i12 + i13*ne12] = (char *) src0_as_f16 + i02*src0->nb[2] + i03*src0->nb[3];
ptrs[1*ne23 + i12 + i13*ne12] = (char *) src1_as_f16 + i12*src1->nb[2]/2 + i13*src1->nb[3]/2;
ptrs[2*ne23 + i12 + i13*ne12] = (char *) dst_f16 + i12* dst->nb[2]/2 + i13* dst->nb[3]/2;
}
}
// allocate device memory for pointers
void ** ptrs_as = nullptr;
CUDA_CHECK(cudaMalloc(&ptrs_as, 3*ne23*sizeof(void *)));
size_t ptrs_s = 0;
ptrs_as = (void **) ggml_cuda_pool_malloc(3*ne23*sizeof(void *), &ptrs_s);
// TODO: this does not work for some reason -- not sure why?
//size_t ptrs_s = 0;
//ptrs_as = (void **) ggml_cuda_pool_malloc(3*ne23*sizeof(void *), &ptrs_s);
// copy pointers to device
CUDA_CHECK(cudaMemcpy(ptrs_as, ptrs, 3*ne23*sizeof(void *), cudaMemcpyHostToDevice));
free(ptrs);
dim3 block_dims(ne13, ne12);
k_compute_batched_ptrs<<<1, block_dims, 0, main_stream>>>(
src0_as_f16, src1_as_f16, dst_f16,
ptrs_as,
ne12, ne13,
ne23,
nb02, nb03,
nb12, nb13,
dst->nb[2], dst->nb[3],
r2, r3);
CUDA_CHECK(cudaGetLastError());
CUBLAS_CHECK(
cublasGemmBatchedEx(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
ne01, ne11, ne10,
&alpha_f16, (const void **) (ptrs_as + 0*ne23), CUDA_R_16F, nb01/sizeof(half),
(const void **) (ptrs_as + 1*ne23), CUDA_R_16F, nb11/sizeof(float),
&beta_f16, ( void **) (ptrs_as + 2*ne23), CUDA_R_16F, ne01,
&alpha_f16, (const void * const *) (ptrs_as + 0*ne23), CUDA_R_16F, nb01/sizeof(half),
(const void * const *) (ptrs_as + 1*ne23), CUDA_R_16F, nb11/sizeof(float),
&beta_f16, ( void ** ) (ptrs_as + 2*ne23), CUDA_R_16F, ne01,
ne23,
CUBLAS_COMPUTE_16F,
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
// free device memory for pointers
CUDA_CHECK(cudaFree(ptrs_as));
//ggml_cuda_pool_free(ptrs_as, ptrs_s);
ggml_cuda_pool_free(ptrs_as, ptrs_s);
}
#endif

237
ggml-impl.h Normal file
View File

@@ -0,0 +1,237 @@
#pragma once
#include "ggml.h"
// GGML internal header
#include <assert.h>
#include <stddef.h>
#include <stdbool.h>
#include <string.h> // memcpy
#include <math.h> // fabsf
#ifdef __cplusplus
extern "C" {
#endif
// static_assert should be a #define, but if it's not,
// fall back to the _Static_assert C11 keyword.
// if C99 - static_assert is noop
// ref: https://stackoverflow.com/a/53923785/4039976
#ifndef static_assert
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
#define static_assert(cond, msg) _Static_assert(cond, msg)
#else
#define static_assert(cond, msg) struct global_scope_noop_trick
#endif
#endif
// __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
#if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
#ifndef __FMA__
#define __FMA__
#endif
#ifndef __F16C__
#define __F16C__
#endif
#ifndef __SSE3__
#define __SSE3__
#endif
#endif
#undef MIN
#undef MAX
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
// 16-bit float
// on Arm, we use __fp16
// on x86, we use uint16_t
#if defined(__ARM_NEON) && !defined(_MSC_VER)
// if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
//
// $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
//
#include <arm_neon.h>
#define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
#define GGML_COMPUTE_FP32_TO_FP16(x) (x)
#define GGML_FP16_TO_FP32(x) ((float) (x))
#define GGML_FP32_TO_FP16(x) (x)
#else
#ifdef __wasm_simd128__
#include <wasm_simd128.h>
#else
#ifdef __POWER9_VECTOR__
#include <altivec.h>
#undef bool
#define bool _Bool
#else
#if defined(_MSC_VER) || defined(__MINGW32__)
#include <intrin.h>
#else
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__)
#if !defined(__riscv)
#include <immintrin.h>
#endif
#endif
#endif
#endif
#endif
#ifdef __riscv_v_intrinsic
#include <riscv_vector.h>
#endif
#ifdef __F16C__
#ifdef _MSC_VER
#define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
#define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
#else
#define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
#define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
#endif
#elif defined(__POWER9_VECTOR__)
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
/* the inline asm below is about 12% faster than the lookup method */
#define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
register float f;
register double d;
__asm__(
"mtfprd %0,%2\n"
"xscvhpdp %0,%0\n"
"frsp %1,%0\n" :
/* temp */ "=d"(d),
/* out */ "=f"(f):
/* in */ "r"(h));
return f;
}
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
register double d;
register ggml_fp16_t r;
__asm__( /* xscvdphp can work on double or single precision */
"xscvdphp %0,%2\n"
"mffprd %1,%0\n" :
/* temp */ "=d"(d),
/* out */ "=r"(r):
/* in */ "f"(f));
return r;
}
#else
// FP16 <-> FP32
// ref: https://github.com/Maratyszcza/FP16
static inline float fp32_from_bits(uint32_t w) {
union {
uint32_t as_bits;
float as_value;
} fp32;
fp32.as_bits = w;
return fp32.as_value;
}
static inline uint32_t fp32_to_bits(float f) {
union {
float as_value;
uint32_t as_bits;
} fp32;
fp32.as_value = f;
return fp32.as_bits;
}
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
const uint32_t w = (uint32_t) h << 16;
const uint32_t sign = w & UINT32_C(0x80000000);
const uint32_t two_w = w + w;
const uint32_t exp_offset = UINT32_C(0xE0) << 23;
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
const float exp_scale = 0x1.0p-112f;
#else
const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
#endif
const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
const uint32_t magic_mask = UINT32_C(126) << 23;
const float magic_bias = 0.5f;
const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
const uint32_t result = sign |
(two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
return fp32_from_bits(result);
}
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
const float scale_to_inf = 0x1.0p+112f;
const float scale_to_zero = 0x1.0p-110f;
#else
const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
#endif
float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
const uint32_t w = fp32_to_bits(f);
const uint32_t shl1_w = w + w;
const uint32_t sign = w & UINT32_C(0x80000000);
uint32_t bias = shl1_w & UINT32_C(0xFF000000);
if (bias < UINT32_C(0x71000000)) {
bias = UINT32_C(0x71000000);
}
base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
const uint32_t bits = fp32_to_bits(base);
const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
const uint32_t nonsign = exp_bits + mantissa_bits;
return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
}
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
#endif // __F16C__
#endif // __ARM_NEON
// precomputed f32 table for f16 (256 KB)
// defined in ggml.c, initialized in ggml_init()
extern float ggml_table_f32_f16[1 << 16];
// On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
// so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
// This is also true for POWER9.
#if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
uint16_t s;
memcpy(&s, &f, sizeof(uint16_t));
return ggml_table_f32_f16[s];
}
#define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
#endif
// TODO: backend v2 PR
#ifdef __cplusplus
}
#endif

View File

@@ -210,6 +210,10 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
GGML_METAL_LOG_INFO("%s: default.metallib not found, loading from source\n", __func__);
NSString * sourcePath = [bundle pathForResource:@"ggml-metal" ofType:@"metal"];
if (sourcePath == nil) {
GGML_METAL_LOG_WARN("%s: error: could not use bundle path to find ggml-metal.metal, falling back to trying cwd\n", __func__);
sourcePath = @"ggml-metal.metal";
}
GGML_METAL_LOG_INFO("%s: loading '%s'\n", __func__, [sourcePath UTF8String]);
NSString * src = [NSString stringWithContentsOfFile:sourcePath encoding:NSUTF8StringEncoding error:&error];
if (error) {
@@ -234,14 +238,17 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
// load kernels
{
NSError * error = nil;
#define GGML_METAL_ADD_KERNEL(name) \
ctx->function_##name = [ctx->library newFunctionWithName:@"kernel_"#name]; \
ctx->pipeline_##name = [ctx->device newComputePipelineStateWithFunction:ctx->function_##name error:&error]; \
/*
GGML_METAL_LOG_INFO("%s: loaded %-32s %16p | th_max = %4d | th_width = %4d\n", __func__, "kernel_"#name, (void *) ctx->pipeline_##name, \
(int) ctx->pipeline_##name.maxTotalThreadsPerThreadgroup, \
(int) ctx->pipeline_##name.threadExecutionWidth); \
*/
#define GGML_METAL_ADD_KERNEL(name) \
ctx->function_##name = [ctx->library newFunctionWithName:@"kernel_"#name]; \
ctx->pipeline_##name = [ctx->device newComputePipelineStateWithFunction:ctx->function_##name error:&error]; \
if (error) { \
GGML_METAL_LOG_ERROR("%s: error: load pipeline error: %s\n", __func__, [[error description] UTF8String]); \
GGML_METAL_LOG_ERROR("%s: error: load pipeline error: %s\n", __func__, [[error description] UTF8String]); \
return NULL; \
}
@@ -994,11 +1001,15 @@ void ggml_metal_graph_compute(
} break;
case GGML_OP_SOFT_MAX:
{
const int nth = MIN(32, ne00);
int nth = 32; // SIMD width
if (ne00%4 == 0) {
[encoder setComputePipelineState:ctx->pipeline_soft_max_4];
} else {
do {
nth *= 2;
} while (nth <= ne00 && nth <= 1024);
nth /= 2;
[encoder setComputePipelineState:ctx->pipeline_soft_max];
}
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
@@ -1006,8 +1017,9 @@ void ggml_metal_graph_compute(
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
[encoder setThreadgroupMemoryLength:nth/32*sizeof(float) atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
[encoder dispatchThreadgroups:MTLSizeMake(ne01*ne02*ne03, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_DIAG_MASK_INF:
{
@@ -1388,14 +1400,18 @@ void ggml_metal_graph_compute(
const int nth = MIN(1024, ne00);
const int n_past = ((int32_t *) dst->op_params)[0];
const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2];
const int n_past = ((int32_t *) dst->op_params)[0];
const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2];
const int n_orig_ctx = ((int32_t *) dst->op_params)[3];
float freq_base;
float freq_scale;
memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
switch (src0->type) {
case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_rope_f32]; break;
@@ -1403,30 +1419,35 @@ void ggml_metal_graph_compute(
default: GGML_ASSERT(false);
};
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:3];
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:4];
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:5];
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:6];
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:7];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:8];
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:9];
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:10];
[encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:11];
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:12];
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:13];
[encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:14];
[encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:15];
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:16];
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:17];
[encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:18];
[encoder setBytes:&n_past length:sizeof( int) atIndex:19];
[encoder setBytes:&n_dims length:sizeof( int) atIndex:20];
[encoder setBytes:&mode length:sizeof( int) atIndex:21];
[encoder setBytes:&freq_base length:sizeof(float) atIndex:22];
[encoder setBytes:&freq_scale length:sizeof(float) atIndex:23];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:3];
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:4];
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:5];
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:6];
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:7];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:8];
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:9];
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:10];
[encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:11];
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:12];
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:13];
[encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:14];
[encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:15];
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:16];
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:17];
[encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:18];
[encoder setBytes:&n_past length:sizeof( int) atIndex:19];
[encoder setBytes:&n_dims length:sizeof( int) atIndex:20];
[encoder setBytes:&mode length:sizeof( int) atIndex:21];
[encoder setBytes:&n_orig_ctx length:sizeof( int) atIndex:22];
[encoder setBytes:&freq_base length:sizeof( float) atIndex:23];
[encoder setBytes:&freq_scale length:sizeof( float) atIndex:24];
[encoder setBytes:&ext_factor length:sizeof( float) atIndex:25];
[encoder setBytes:&attn_factor length:sizeof( float) atIndex:26];
[encoder setBytes:&beta_fast length:sizeof( float) atIndex:27];
[encoder setBytes:&beta_slow length:sizeof( float) atIndex:28];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;

View File

@@ -184,36 +184,73 @@ kernel void kernel_soft_max(
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const int64_t i03 = tgpig[2];
const int64_t i02 = tgpig[1];
const int64_t i01 = tgpig[0];
threadgroup float * buf [[threadgroup(0)]],
uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]],
uint tiisg[[thread_index_in_simdgroup]],
uint ntg[[threads_per_threadgroup]]) {
const int64_t i03 = (tgpig) / (ne02*ne01);
const int64_t i02 = (tgpig - i03*ne02*ne01) / ne01;
const int64_t i01 = (tgpig - i03*ne02*ne01 - i02*ne01);
device const float * psrc0 = src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
device float * pdst = dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
// parallel max
float lmax = tpitg[0] < ne00 ? psrc0[tpitg[0]] : -INFINITY;
for (int i00 = tpitg[0] + ntg[0]; i00 < ne00; i00 += ntg[0]) {
float lmax = tpitg < ne00 ? psrc0[tpitg] : -INFINITY;
for (int i00 = tpitg + ntg; i00 < ne00; i00 += ntg) {
lmax = MAX(lmax, psrc0[i00]);
}
const float max = simd_max(lmax);
float max = simd_max(lmax);
if (tiisg == 0) {
buf[sgitg] = max;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// broadcast, simd group number is ntg / 32
for (uint i = ntg / 32 / 2; i > 0; i /= 2) {
if (tpitg < i) {
buf[tpitg] = MAX(buf[tpitg], buf[tpitg + i]);
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
max = buf[0];
// parallel sum
float lsum = 0.0f;
for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) {
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
const float exp_psrc0 = exp(psrc0[i00] - max);
lsum += exp_psrc0;
// Remember the result of exp here. exp is expensive, so we really do not
// whish to compute it twice.
// wish to compute it twice.
pdst[i00] = exp_psrc0;
}
const float sum = simd_sum(lsum);
float sum = simd_sum(lsum);
if (tiisg == 0) {
buf[sgitg] = sum;
}
for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) {
threadgroup_barrier(mem_flags::mem_threadgroup);
// broadcast, simd group number is ntg / 32
for (uint i = ntg / 32 / 2; i > 0; i /= 2) {
if (tpitg < i) {
buf[tpitg] += buf[tpitg + i];
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
sum = buf[0];
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
pdst[i00] /= sum;
}
}
@@ -224,37 +261,73 @@ kernel void kernel_soft_max_4(
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const int64_t i03 = tgpig[2];
const int64_t i02 = tgpig[1];
const int64_t i01 = tgpig[0];
threadgroup float * buf [[threadgroup(0)]],
uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]],
uint tiisg[[thread_index_in_simdgroup]],
uint ntg[[threads_per_threadgroup]]) {
const int64_t i03 = (tgpig) / (ne02*ne01);
const int64_t i02 = (tgpig - i03*ne02*ne01) / ne01;
const int64_t i01 = (tgpig - i03*ne02*ne01 - i02*ne01);
device const float4 * psrc4 = (device const float4 *)(src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
device float4 * pdst4 = (device float4 *)(dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
// parallel max
float4 lmax4 = tpitg[0] < ne00/4 ? psrc4[tpitg[0]] : -INFINITY;
for (int i00 = tpitg[0] + ntg[0]; i00 < ne00/4; i00 += ntg[0]) {
float4 lmax4 = tpitg < ne00/4 ? psrc4[tpitg] : -INFINITY;
for (int i00 = tpitg + ntg; i00 < ne00/4; i00 += ntg) {
lmax4 = fmax(lmax4, psrc4[i00]);
}
float lmax = MAX(MAX(lmax4[0], lmax4[1]), MAX(lmax4[2], lmax4[3]));
const float max = simd_max(lmax);
const float lmax = MAX(MAX(lmax4[0], lmax4[1]), MAX(lmax4[2], lmax4[3]));
float max = simd_max(lmax);
if (tiisg == 0) {
buf[sgitg] = max;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// broadcast, simd group number is ntg / 32
for (uint i = ntg / 32 / 2; i > 0; i /= 2) {
if (tpitg < i) {
buf[tpitg] = MAX(buf[tpitg], buf[tpitg + i]);
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
max = buf[0];
// parallel sum
float4 lsum4 = 0.0f;
for (int i00 = tpitg[0]; i00 < ne00/4; i00 += ntg[0]) {
for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
const float4 exp_psrc4 = exp(psrc4[i00] - max);
lsum4 += exp_psrc4;
pdst4[i00] = exp_psrc4;
}
float lsum = lsum4[0] + lsum4[1] + lsum4[2] + lsum4[3];
const float sum = simd_sum(lsum);
const float lsum = lsum4[0] + lsum4[1] + lsum4[2] + lsum4[3];
float sum = simd_sum(lsum);
if (tiisg == 0) {
buf[sgitg] = sum;
}
for (int i00 = tpitg[0]; i00 < ne00/4; i00 += ntg[0]) {
threadgroup_barrier(mem_flags::mem_threadgroup);
// broadcast, simd group number is ntg / 32
for (uint i = ntg / 32 / 2; i > 0; i /= 2) {
if (tpitg < i) {
buf[tpitg] += buf[tpitg + i];
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
sum = buf[0];
for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
pdst4[i00] /= sum;
}
}
@@ -274,7 +347,7 @@ kernel void kernel_diag_mask_inf(
dst[i02*ne01*ne00 + i01*ne00 + i00] = -INFINITY;
} else {
dst[i02*ne01*ne00 + i01*ne00 + i00] = src0[i02*ne01*ne00 + i01*ne00 + i00];
}
}
}
kernel void kernel_diag_mask_inf_8(
@@ -988,6 +1061,45 @@ kernel void kernel_alibi_f32(
}
}
static float rope_yarn_ramp(const float low, const float high, const int i0) {
const float y = (i0 / 2 - low) / max(0.001f, high - low);
return 1.0f - min(1.0f, max(0.0f, y));
}
// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
static void rope_yarn(
float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
thread float * cos_theta, thread float * sin_theta
) {
// Get n-d rotational scaling corrected for extrapolation
float theta_interp = freq_scale * theta_extrap;
float theta = theta_interp;
if (ext_factor != 0.0f) {
float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
// Get n-d magnitude scaling corrected for interpolation
mscale *= 1.0f + 0.1f * log(1.0f / freq_scale);
}
*cos_theta = cos(theta) * mscale;
*sin_theta = sin(theta) * mscale;
}
// Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
// `corr_fac(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
static float rope_yarn_corr_factor(int n_dims, int n_orig_ctx, float n_rot, float base) {
return n_dims * log(n_orig_ctx / (n_rot * 2 * M_PI_F)) / (2 * log(base));
}
static void rope_yarn_corr_dims(
int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
) {
// start and end correction dims
dims[0] = max(0.0f, floor(rope_yarn_corr_factor(n_dims, n_orig_ctx, beta_fast, freq_base)));
dims[1] = min(n_dims - 1.0f, ceil(rope_yarn_corr_factor(n_dims, n_orig_ctx, beta_slow, freq_base)));
}
typedef void (rope_t)(
device const void * src0,
device const int32_t * src1,
@@ -1011,8 +1123,13 @@ typedef void (rope_t)(
constant int & n_past,
constant int & n_dims,
constant int & mode,
constant int & n_orig_ctx,
constant float & freq_base,
constant float & freq_scale,
constant float & ext_factor,
constant float & attn_factor,
constant float & beta_fast,
constant float & beta_slow,
uint tiitg[[thread_index_in_threadgroup]],
uint3 tptg[[threads_per_threadgroup]],
uint3 tgpig[[threadgroup_position_in_grid]]);
@@ -1041,8 +1158,13 @@ kernel void kernel_rope(
constant int & n_past,
constant int & n_dims,
constant int & mode,
constant int & n_orig_ctx,
constant float & freq_base,
constant float & freq_scale,
constant float & ext_factor,
constant float & attn_factor,
constant float & beta_fast,
constant float & beta_slow,
uint tiitg[[thread_index_in_threadgroup]],
uint3 tptg[[threads_per_threadgroup]],
uint3 tgpig[[threadgroup_position_in_grid]]) {
@@ -1052,19 +1174,22 @@ kernel void kernel_rope(
const bool is_neox = mode & 2;
float corr_dims[2];
rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
device const int32_t * pos = src1;
const int64_t p = pos[i2];
const float theta_0 = freq_scale * (float)p;
const float theta_0 = (float)p;
const float inv_ndims = -1.f/n_dims;
if (!is_neox) {
for (int64_t i0 = 2*tiitg; i0 < ne0; i0 += 2*tptg.x) {
const float theta = theta_0 * pow(freq_base, inv_ndims*i0);
const float cos_theta = cos(theta);
const float sin_theta = sin(theta);
float cos_theta, sin_theta;
rope_yarn(theta, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
@@ -1079,9 +1204,12 @@ kernel void kernel_rope(
for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
for (int64_t ic = 2*tiitg; ic < n_dims; ic += 2*tptg.x) {
const float theta = theta_0 * pow(freq_base, inv_ndims*ic - ib);
const float cos_theta = cos(theta);
const float sin_theta = sin(theta);
// simplified from `(ib * n_dims + ic) * inv_ndims`
const float cur_rot = inv_ndims*ic - ib;
const float theta = theta_0 * pow(freq_base, cur_rot);
float cos_theta, sin_theta;
rope_yarn(theta, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);
const int64_t i0 = ib*n_dims + ic/2;

File diff suppressed because it is too large Load Diff

View File

@@ -1,11 +1,63 @@
#pragma once
#include "ggml.h"
#include "ggml-impl.h"
// GGML internal header
#include <stdint.h>
#include <assert.h>
#include <stddef.h>
#define QK4_0 32
typedef struct {
ggml_fp16_t d; // delta
uint8_t qs[QK4_0 / 2]; // nibbles / quants
} block_q4_0;
static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
#define QK4_1 32
typedef struct {
ggml_fp16_t d; // delta
ggml_fp16_t m; // min
uint8_t qs[QK4_1 / 2]; // nibbles / quants
} block_q4_1;
static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
#define QK5_0 32
typedef struct {
ggml_fp16_t d; // delta
uint8_t qh[4]; // 5-th bit of quants
uint8_t qs[QK5_0 / 2]; // nibbles / quants
} block_q5_0;
static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
#define QK5_1 32
typedef struct {
ggml_fp16_t d; // delta
ggml_fp16_t m; // min
uint8_t qh[4]; // 5-th bit of quants
uint8_t qs[QK5_1 / 2]; // nibbles / quants
} block_q5_1;
static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
#define QK8_0 32
typedef struct {
ggml_fp16_t d; // delta
int8_t qs[QK8_0]; // quants
} block_q8_0;
static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
#define QK8_1 32
typedef struct {
float d; // delta
float s; // d * sum(qs[i])
int8_t qs[QK8_1]; // quants
} block_q8_1;
static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
//
// Super-block quantization structures
//
// Super-block size
#ifdef GGML_QKK_64
#define QK_K 64
@@ -15,18 +67,6 @@
#define K_SCALE_SIZE 12
#endif
#ifndef static_assert
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
#define static_assert(cond, msg) _Static_assert(cond, msg)
#else
#define static_assert(cond, msg) struct global_scope_noop_trick
#endif
#endif
//
// Super-block quantization structures
//
// 2-bit quantization
// weight is represented as x = a * q + b
// 16 blocks of 16 elements each
@@ -127,6 +167,13 @@ static_assert(sizeof(block_q8_K) == sizeof(float) + QK_K + QK_K/16*sizeof(int16_
// Quantization
void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k);
void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k);
void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k);
void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k);
void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k);
void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k);
void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict y, int k);
void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int k);
void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int k);
@@ -134,6 +181,13 @@ void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict
void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k);
void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k);
void quantize_row_q4_0(const float * restrict x, void * restrict y, int k);
void quantize_row_q4_1(const float * restrict x, void * restrict y, int k);
void quantize_row_q5_0(const float * restrict x, void * restrict y, int k);
void quantize_row_q5_1(const float * restrict x, void * restrict y, int k);
void quantize_row_q8_0(const float * restrict x, void * restrict y, int k);
void quantize_row_q8_1(const float * restrict x, void * restrict y, int k);
void quantize_row_q2_K(const float * restrict x, void * restrict y, int k);
void quantize_row_q3_K(const float * restrict x, void * restrict y, int k);
void quantize_row_q4_K(const float * restrict x, void * restrict y, int k);
@@ -142,6 +196,13 @@ void quantize_row_q6_K(const float * restrict x, void * restrict y, int k);
void quantize_row_q8_K(const float * restrict x, void * restrict y, int k);
// Dequantization
void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k);
void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k);
void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k);
void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k);
void dequantize_row_q8_0(const block_q8_0 * restrict x, float * restrict y, int k);
//void dequantize_row_q8_1(const block_q8_1 * restrict x, float * restrict y, int k);
void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int k);
void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k);
void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int k);
@@ -150,16 +211,14 @@ void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int
void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int k);
// Dot product
void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q4_1_q8_1(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q5_0_q8_0(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q5_1_q8_1(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q8_0_q8_0(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
// Quantization with histogram collection
size_t ggml_quantize_q2_K(const float * src, void * dst, int n, int k, int64_t * hist);
size_t ggml_quantize_q3_K(const float * src, void * dst, int n, int k, int64_t * hist);
size_t ggml_quantize_q4_K(const float * src, void * dst, int n, int k, int64_t * hist);
size_t ggml_quantize_q5_K(const float * src, void * dst, int n, int k, int64_t * hist);
size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist);

2873
ggml.c

File diff suppressed because it is too large Load Diff

29
ggml.h
View File

@@ -219,7 +219,7 @@
#define GGML_MAX_CONTEXTS 64
#define GGML_MAX_SRC 6
#define GGML_MAX_NAME 64
#define GGML_MAX_OP_PARAMS 32
#define GGML_MAX_OP_PARAMS 64
#define GGML_DEFAULT_N_THREADS 4
#if UINTPTR_MAX == 0xFFFFFFFF
@@ -709,7 +709,7 @@ extern "C" {
// Context tensor enumeration and lookup
GGML_API struct ggml_tensor * ggml_get_first_tensor(struct ggml_context * ctx);
GGML_API struct ggml_tensor * ggml_get_next_tensor (struct ggml_context * ctx, struct ggml_tensor * tensor);
GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
GGML_API struct ggml_tensor * ggml_get_tensor (struct ggml_context * ctx, const char * name);
GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
@@ -1326,8 +1326,13 @@ extern "C" {
int n_dims,
int mode,
int n_ctx,
int n_orig_ctx,
float freq_base,
float freq_scale);
float freq_scale,
float ext_factor,
float attn_factor,
float beta_fast,
float beta_slow);
// in-place, returns view(a)
GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
@@ -1337,8 +1342,17 @@ extern "C" {
int n_dims,
int mode,
int n_ctx,
int n_orig_ctx,
float freq_base,
float freq_scale);
float freq_scale,
float ext_factor,
float attn_factor,
float beta_fast,
float beta_slow);
// compute correction dims for YaRN RoPE scaling
void ggml_rope_yarn_corr_dims(
int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]);
// xPos RoPE, in-place, returns view(a)
GGML_API struct ggml_tensor * ggml_rope_xpos_inplace(
@@ -1930,12 +1944,19 @@ extern "C" {
// quantization
//
// TODO: these would probably get removed in favor of the more general ggml_quantize_chunk
GGML_API size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_API size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_API size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_API size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_API size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_API size_t ggml_quantize_q2_K(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_API size_t ggml_quantize_q3_K(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_API size_t ggml_quantize_q4_K(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_API size_t ggml_quantize_q5_K(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_API size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist);
//

View File

@@ -7,7 +7,7 @@ import shutil
import struct
import sys
import tempfile
from enum import IntEnum, auto
from enum import Enum, IntEnum, auto
from io import BufferedWriter
from pathlib import Path
from typing import IO, Any, BinaryIO, Callable, Sequence
@@ -53,9 +53,12 @@ KEY_ATTENTION_LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon"
KEY_ATTENTION_LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
# RoPE
KEY_ROPE_DIMENSION_COUNT = "{arch}.rope.dimension_count"
KEY_ROPE_FREQ_BASE = "{arch}.rope.freq_base"
KEY_ROPE_SCALE_LINEAR = "{arch}.rope.scale_linear"
KEY_ROPE_DIMENSION_COUNT = "{arch}.rope.dimension_count"
KEY_ROPE_FREQ_BASE = "{arch}.rope.freq_base"
KEY_ROPE_SCALING_TYPE = "{arch}.rope.scaling.type"
KEY_ROPE_SCALING_FACTOR = "{arch}.rope.scaling.factor"
KEY_ROPE_SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length"
KEY_ROPE_SCALING_FINETUNED = "{arch}.rope.scaling.finetuned"
# tokenization
KEY_TOKENIZER_MODEL = "tokenizer.ggml.model"
@@ -577,6 +580,11 @@ class TokenType(IntEnum):
UNUSED = 5
BYTE = 6
class RopeScalingType(Enum):
NONE = 'none'
LINEAR = 'linear'
YARN = 'yarn'
#
# implementation
#
@@ -948,8 +956,17 @@ class GGUFWriter:
def add_rope_freq_base(self, value: float):
self.add_float32(KEY_ROPE_FREQ_BASE.format(arch=self.arch), value)
def add_rope_scale_linear(self, value: float):
self.add_float32(KEY_ROPE_SCALE_LINEAR.format(arch=self.arch), value)
def add_rope_scaling_type(self, value: RopeScalingType):
self.add_string(KEY_ROPE_SCALING_TYPE.format(arch=self.arch), value.value)
def add_rope_scaling_factor(self, value: float):
self.add_float32(KEY_ROPE_SCALING_FACTOR.format(arch=self.arch), value)
def add_rope_scaling_orig_ctx_len(self, value: int):
self.add_uint32(KEY_ROPE_SCALING_ORIG_CTX_LEN.format(arch=self.arch), value)
def add_rope_scaling_finetuned(self, value: bool):
self.add_bool(KEY_ROPE_SCALING_FINETUNED.format(arch=self.arch), value)
def add_tokenizer_model(self, model: str):
self.add_string(KEY_TOKENIZER_MODEL, model)

4837
llama.cpp

File diff suppressed because it is too large Load Diff

42
llama.h
View File

@@ -106,6 +106,14 @@ extern "C" {
LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
};
enum llama_rope_scaling_type {
LLAMA_ROPE_SCALING_UNSPECIFIED = -1,
LLAMA_ROPE_SCALING_NONE = 0,
LLAMA_ROPE_SCALING_LINEAR = 1,
LLAMA_ROPE_SCALING_YARN = 2,
LLAMA_ROPE_SCALING_MAX_VALUE = LLAMA_ROPE_SCALING_YARN,
};
typedef struct llama_token_data {
llama_token id; // token id
float logit; // log-odds of the token
@@ -172,10 +180,16 @@ extern "C" {
uint32_t n_batch; // prompt processing maximum batch size
uint32_t n_threads; // number of threads to use for generation
uint32_t n_threads_batch; // number of threads to use for batch processing
int8_t rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
// ref: https://github.com/ggerganov/llama.cpp/pull/2054
float rope_freq_base; // RoPE base frequency, 0 = from model
float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
float rope_freq_base; // RoPE base frequency, 0 = from model
float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
float yarn_ext_factor; // YaRN extrapolation mix factor, NaN = from model
float yarn_attn_factor; // YaRN magnitude scaling factor
float yarn_beta_fast; // YaRN low correction dim
float yarn_beta_slow; // YaRN high correction dim
uint32_t yarn_orig_ctx; // YaRN original context size
// Keep the booleans together to avoid misalignment during copy-by-value.
bool mul_mat_q; // if true, use experimental mul_mat_q kernels (DEPRECATED - always true)
@@ -191,6 +205,7 @@ extern "C" {
bool allow_requantize; // allow quantizing non-f32/f16 tensors
bool quantize_output_tensor; // quantize output.weight
bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
bool pure; // disable k-quant mixtures and quantize all tensors to the same type
} llama_model_quantize_params;
// grammar types
@@ -333,17 +348,14 @@ extern "C" {
LLAMA_API DEPRECATED(int llama_get_kv_cache_token_count(const struct llama_context * ctx),
"avoid using this, it will be removed in the future, instead - count the tokens in user code");
// Remove all tokens data of cells in [c0, c1)
// c0 < 0 : [0, c1]
// c1 < 0 : [c0, inf)
LLAMA_API void llama_kv_cache_tokens_rm(
struct llama_context * ctx,
int32_t c0,
int32_t c1);
// Clear the KV cache
LLAMA_API void llama_kv_cache_clear(
struct llama_context * ctx);
// Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
// p0 < 0 : [0, p1]
// p1 < 0 : [p0, inf)
// seq_id < 0 : match any sequence
// p0 < 0 : [0, p1]
// p1 < 0 : [p0, inf)
LLAMA_API void llama_kv_cache_seq_rm(
struct llama_context * ctx,
llama_seq_id seq_id,
@@ -600,6 +612,13 @@ extern "C" {
float p,
size_t min_keep);
/// @details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
LLAMA_API void llama_sample_min_p(
struct llama_context * ctx,
llama_token_data_array * candidates,
float p,
size_t min_keep);
/// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
LLAMA_API void llama_sample_tail_free(
struct llama_context * ctx,
@@ -658,6 +677,7 @@ extern "C" {
float * mu);
/// @details Selects the token with the highest probability.
/// Does not compute the token probabilities. Use llama_sample_softmax() instead.
LLAMA_API llama_token llama_sample_token_greedy(
struct llama_context * ctx,
llama_token_data_array * candidates);

391
scripts/server-llm.sh Normal file
View File

@@ -0,0 +1,391 @@
#!/bin/bash
#
# Helper script for deploying llama.cpp server with a single Bash command
#
# - Works on Linux and macOS
# - Supports: CPU, CUDA, Metal, OpenCL
# - Can run all GGUF models from HuggingFace
# - Can serve requests in parallel
# - Always builds latest llama.cpp from GitHub
#
# Limitations
#
# - Chat templates are poorly supported (base models recommended)
# - Might be unstable!
#
# Usage:
# ./server-llm.sh [--port] [--repo] [--wtype] [--backend] [--gpu-id] [--n-parallel] [--n-kv] [--verbose]
#
# --port: port number, default is 8888
# --repo: path to a repo containing GGUF model files
# --wtype: weights type (f16, q8_0, q4_0, q4_1), default is user-input
# --backend: cpu, cuda, metal, opencl, depends on the OS
# --gpu-id: gpu id, default is 0
# --n-parallel: number of parallel requests, default is 8
# --n-kv: KV cache size, default is 4096
# --verbose: verbose output
#
# Example:
#
# bash -c "$(curl -s https://ggml.ai/server-llm.sh)"
#
set -e
# required utils: curl, git, make
if ! command -v curl &> /dev/null; then
printf "[-] curl not found\n"
exit 1
fi
if ! command -v git &> /dev/null; then
printf "[-] git not found\n"
exit 1
fi
if ! command -v make &> /dev/null; then
printf "[-] make not found\n"
exit 1
fi
# parse arguments
port=8888
repo=""
wtype=""
backend="cpu"
# if macOS, use metal backend by default
if [[ "$OSTYPE" == "darwin"* ]]; then
backend="metal"
elif command -v nvcc &> /dev/null; then
backend="cuda"
fi
gpu_id=0
n_parallel=8
n_kv=4096
verbose=0
function print_usage {
printf "Usage:\n"
printf " ./server-llm.sh [--port] [--repo] [--wtype] [--backend] [--gpu-id] [--n-parallel] [--n-kv] [--verbose]\n\n"
printf " --port: port number, default is 8888\n"
printf " --repo: path to a repo containing GGUF model files\n"
printf " --wtype: weights type (f16, q8_0, q4_0, q4_1), default is user-input\n"
printf " --backend: cpu, cuda, metal, opencl, depends on the OS\n"
printf " --gpu-id: gpu id, default is 0\n"
printf " --n-parallel: number of parallel requests, default is 8\n"
printf " --n-kv: KV cache size, default is 4096\n"
printf " --verbose: verbose output\n\n"
printf "Example:\n\n"
printf ' bash -c "$(curl -s https://ggml.ai/server-llm.sh)"\n\n'
}
while [[ $# -gt 0 ]]; do
key="$1"
case $key in
--port)
port="$2"
shift
shift
;;
--repo)
repo="$2"
shift
shift
;;
--wtype)
wtype="$2"
shift
shift
;;
--backend)
backend="$2"
shift
shift
;;
--gpu-id)
gpu_id="$2"
shift
shift
;;
--n-parallel)
n_parallel="$2"
shift
shift
;;
--n-kv)
n_kv="$2"
shift
shift
;;
--verbose)
verbose=1
shift
;;
--help)
print_usage
exit 0
;;
*)
echo "Unknown argument: $key"
print_usage
exit 1
;;
esac
done
# available weights types
wtypes=("F16" "Q8_0" "Q4_0" "Q4_1" "Q5_0" "Q5_1" "Q6_K" "Q5_K_M" "Q5_K_S" "Q4_K_M" "Q4_K_S" "Q3_K_L" "Q3_K_M" "Q3_K_S" "Q2_K")
wfiles=()
for wt in "${wtypes[@]}"; do
wfiles+=("")
done
# sample repos
repos=(
"https://huggingface.co/TheBloke/Llama-2-7B-GGUF"
"https://huggingface.co/TheBloke/Llama-2-13B-GGUF"
"https://huggingface.co/TheBloke/Llama-2-70B-GGUF"
"https://huggingface.co/TheBloke/CodeLlama-7B-GGUF"
"https://huggingface.co/TheBloke/CodeLlama-13B-GGUF"
"https://huggingface.co/TheBloke/CodeLlama-34B-GGUF"
"https://huggingface.co/TheBloke/Mistral-7B-v0.1-GGUF"
"https://huggingface.co/TheBloke/zephyr-7B-beta-GGUF"
"https://huggingface.co/TheBloke/OpenHermes-2-Mistral-7B-GGUF"
"https://huggingface.co/TheBloke/CausalLM-7B-GGUF"
)
printf "\n"
printf "[I] This is a helper script for deploying llama.cpp's server on this machine.\n\n"
printf " Based on the options that follow, the script might download a model file\n"
printf " from the internet, which can be a few GBs in size. The script will also\n"
printf " build the latest llama.cpp source code from GitHub, which can be unstable.\n"
printf "\n"
printf " Upon success, an HTTP server will be started and it will serve the selected\n"
printf " model using llama.cpp for demonstration purposes.\n"
printf "\n"
printf " Please note:\n"
printf "\n"
printf " - All new data will be stored in the current folder\n"
printf " - The server will be listening on all network interfaces\n"
printf " - The server will run with default settings which are not always optimal\n"
printf " - Do not judge the quality of a model based on the results from this script\n"
printf " - Do not use this script to benchmark llama.cpp\n"
printf " - Do not use this script in production\n"
printf " - This script is only for demonstration purposes\n"
printf "\n"
printf " If you don't know what you are doing, please press Ctrl-C to abort now\n"
printf "\n"
printf " Press Enter to continue ...\n\n"
read
if [[ -z "$repo" ]]; then
printf "[+] No repo provided from the command line\n"
printf " Please select a number from the list below or enter an URL:\n\n"
is=0
for r in "${repos[@]}"; do
printf " %2d) %s\n" $is "$r"
is=$((is+1))
done
# ask for repo until index of sample repo is provided or an URL
while [[ -z "$repo" ]]; do
printf "\n Or choose one from: https://huggingface.co/models?sort=trending&search=gguf\n\n"
read -p "[+] Select repo: " repo
# check if the input is a number
if [[ "$repo" =~ ^[0-9]+$ ]]; then
if [[ "$repo" -ge 0 && "$repo" -lt ${#repos[@]} ]]; then
repo="${repos[$repo]}"
else
printf "[-] Invalid repo index: %s\n" "$repo"
repo=""
fi
elif [[ "$repo" =~ ^https?:// ]]; then
repo="$repo"
else
printf "[-] Invalid repo URL: %s\n" "$repo"
repo=""
fi
done
fi
# remove suffix
repo=$(echo "$repo" | sed -E 's/\/tree\/main$//g')
printf "[+] Checking for GGUF model files in %s\n" "$repo"
# find GGUF files in the source
# TODO: better logic
model_tree="${repo%/}/tree/main"
model_files=$(curl -s "$model_tree" | grep -i "\\.gguf</span>" | sed -E 's/.*<span class="truncate group-hover:underline">(.*)<\/span><\/a>/\1/g')
# list all files in the provided git repo
printf "[+] Model files:\n\n"
for file in $model_files; do
# determine iw by grepping the filename with wtypes
iw=-1
is=0
for wt in "${wtypes[@]}"; do
# uppercase
ufile=$(echo "$file" | tr '[:lower:]' '[:upper:]')
if [[ "$ufile" =~ "$wt" ]]; then
iw=$is
break
fi
is=$((is+1))
done
if [[ $iw -eq -1 ]]; then
continue
fi
wfiles[$iw]="$file"
have=" "
if [[ -f "$file" ]]; then
have="*"
fi
printf " %2d) %s %s\n" $iw "$have" "$file"
done
# ask for weights type until provided and available
while [[ -z "$wtype" ]]; do
printf "\n"
read -p "[+] Select weight type: " wtype
wfile="${wfiles[$wtype]}"
if [[ -z "$wfile" ]]; then
printf "[-] Invalid weight type: %s\n" "$wtype"
wtype=""
fi
done
printf "[+] Selected weight type: %s (%s)\n" "$wtype" "$wfile"
url="${repo%/}/resolve/main/$wfile"
# check file if the model has been downloaded before
chk="$wfile.chk"
# check if we should download the file
# - if $wfile does not exist
# - if $wfile exists but $chk does not exist
# - if $wfile exists and $chk exists but $wfile is newer than $chk
# TODO: better logic using git lfs info
do_download=0
if [[ ! -f "$wfile" ]]; then
do_download=1
elif [[ ! -f "$chk" ]]; then
do_download=1
elif [[ "$wfile" -nt "$chk" ]]; then
do_download=1
fi
if [[ $do_download -eq 1 ]]; then
printf "[+] Downloading weights from %s\n" "$url"
# download the weights file
curl -o "$wfile" -# -L "$url"
# create a check file if successful
if [[ $? -eq 0 ]]; then
printf "[+] Creating check file %s\n" "$chk"
touch "$chk"
fi
else
printf "[+] Using cached weights %s\n" "$wfile"
fi
# get latest llama.cpp and build
printf "[+] Downloading latest llama.cpp\n"
llama_cpp_dir="__llama_cpp_port_${port}__"
if [[ -d "$llama_cpp_dir" && ! -f "$llama_cpp_dir/__ggml_script__" ]]; then
# if the dir exists and there isn't a file "__ggml_script__" in it, abort
printf "[-] Directory %s already exists\n" "$llama_cpp_dir"
printf "[-] Please remove it and try again\n"
exit 1
elif [[ -d "$llama_cpp_dir" ]]; then
printf "[+] Directory %s already exists\n" "$llama_cpp_dir"
printf "[+] Using cached llama.cpp\n"
cd "$llama_cpp_dir"
git reset --hard
git fetch
git checkout origin/master
cd ..
else
printf "[+] Cloning llama.cpp\n"
git clone https://github.com/ggerganov/llama.cpp "$llama_cpp_dir"
fi
# mark that that the directory is made by this script
touch "$llama_cpp_dir/__ggml_script__"
if [[ $verbose -eq 1 ]]; then
set -x
fi
# build
cd "$llama_cpp_dir"
make clean
log="--silent"
if [[ $verbose -eq 1 ]]; then
log=""
fi
if [[ "$backend" == "cuda" ]]; then
printf "[+] Building with CUDA backend\n"
LLAMA_CUBLAS=1 make -j server $log
elif [[ "$backend" == "cpu" ]]; then
printf "[+] Building with CPU backend\n"
make -j server $log
elif [[ "$backend" == "metal" ]]; then
printf "[+] Building with Metal backend\n"
make -j server $log
elif [[ "$backend" == "opencl" ]]; then
printf "[+] Building with OpenCL backend\n"
LLAMA_CLBLAST=1 make -j server $log
else
printf "[-] Unknown backend: %s\n" "$backend"
exit 1
fi
# run the server
printf "[+] Running server\n"
args=""
if [[ "$backend" == "cuda" ]]; then
export CUDA_VISIBLE_DEVICES=$gpu_id
args="-ngl 999"
elif [[ "$backend" == "cpu" ]]; then
args="-ngl 0"
elif [[ "$backend" == "metal" ]]; then
args="-ngl 999"
elif [[ "$backend" == "opencl" ]]; then
args="-ngl 999"
else
printf "[-] Unknown backend: %s\n" "$backend"
exit 1
fi
if [[ $verbose -eq 1 ]]; then
args="$args --verbose"
fi
./server -m "../$wfile" --host 0.0.0.0 --port "$port" -c $n_kv -np "$n_parallel" $args
exit 0

View File

@@ -4,7 +4,7 @@
#undef NDEBUG
#include <cassert>
#if !defined(__riscv) && !defined(__s390__)
#if !defined(__riscv) && !defined(__s390__) && !defined(__ARM_NEON)
#include <immintrin.h>
#endif
#include <cmath>

View File

@@ -129,6 +129,13 @@ int main(int argc, char * argv[]) {
ggml_type type = (ggml_type) i;
ggml_type_traits_t qfns = ggml_internal_get_type_traits(type);
// deprecated - skip
if (qfns.blck_size == 0) {
continue;
}
printf("Testing %s\n", ggml_type_name((ggml_type) i));
if (qfns.from_float && qfns.to_float) {
const float total_error = total_quantization_error(qfns, test_size, test_data.data());
const float max_quantization_error =