Compare commits

..

1 Commits

Author SHA1 Message Date
Georgi Gerganov
de7e0912b6 convert : ignore tokens if their IDs are within [0, vocab_size) 2023-10-28 15:01:36 +03:00
24 changed files with 2780 additions and 2831 deletions

View File

@@ -1,7 +1,7 @@
---
name: Bug template
about: Used to report bugs in llama.cpp
labels: ["bug-unconfirmed"]
labels: ["bug"]
assignees: ''
---

View File

@@ -94,6 +94,7 @@ option(LLAMA_CLBLAST "llama: use CLBlast"
option(LLAMA_METAL "llama: use Metal" ${LLAMA_METAL_DEFAULT})
option(LLAMA_METAL_NDEBUG "llama: disable Metal debugging" OFF)
option(LLAMA_MPI "llama: use MPI" OFF)
option(LLAMA_K_QUANTS "llama: use k-quants" ON)
option(LLAMA_QKK_64 "llama: use super-block size of 64 for k-quants" OFF)
option(LLAMA_BUILD_TESTS "llama: build tests" ${LLAMA_STANDALONE})
@@ -277,8 +278,13 @@ if (LLAMA_BLAS)
endif()
endif()
if (LLAMA_QKK_64)
add_compile_definitions(GGML_QKK_64)
if (LLAMA_K_QUANTS)
set(GGML_HEADERS_EXTRA k_quants.h)
set(GGML_SOURCES_EXTRA k_quants.c)
add_compile_definitions(GGML_USE_K_QUANTS)
if (LLAMA_QKK_64)
add_compile_definitions(GGML_QKK_64)
endif()
endif()
if (LLAMA_CUBLAS)
@@ -667,8 +673,6 @@ add_library(ggml OBJECT
ggml-alloc.h
ggml-backend.c
ggml-backend.h
ggml-quants.c
ggml-quants.h
${GGML_SOURCES_CUDA} ${GGML_HEADERS_CUDA}
${GGML_SOURCES_OPENCL} ${GGML_HEADERS_OPENCL}
${GGML_SOURCES_METAL} ${GGML_HEADERS_METAL}

View File

@@ -342,9 +342,13 @@ else
MK_CXXFLAGS += -march=rv64gcv -mabi=lp64d
endif
ifndef LLAMA_NO_K_QUANTS
MK_CPPFLAGS += -DGGML_USE_K_QUANTS
OBJS += k_quants.o
ifdef LLAMA_QKK_64
MK_CPPFLAGS += -DGGML_QKK_64
endif
endif
ifndef LLAMA_NO_ACCELERATE
# Mac OS - include Accelerate framework.
@@ -361,7 +365,7 @@ ifdef LLAMA_MPI
MK_CPPFLAGS += -DGGML_USE_MPI
MK_CFLAGS += -Wno-cast-qual
MK_CXXFLAGS += -Wno-cast-qual
OBJS += ggml-mpi.o
OBJS += ggml-mpi.o
endif # LLAMA_MPI
ifdef LLAMA_OPENBLAS
@@ -378,7 +382,7 @@ endif # LLAMA_BLIS
ifdef LLAMA_CUBLAS
MK_CPPFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include
MK_LDFLAGS += -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/x86_64-linux/lib
OBJS += ggml-cuda.o
OBJS += ggml-cuda.o
NVCCFLAGS = --forward-unknown-to-host-compiler -use_fast_math
ifdef LLAMA_CUDA_NVCC
NVCC = $(LLAMA_CUDA_NVCC)
@@ -493,6 +497,11 @@ ggml-mpi.o: ggml-mpi.c ggml-mpi.h
$(CC) $(CFLAGS) -c $< -o $@
endif # LLAMA_MPI
ifndef LLAMA_NO_K_QUANTS
k_quants.o: k_quants.c k_quants.h
$(CC) $(CFLAGS) -c $< -o $@
endif # LLAMA_NO_K_QUANTS
# combine build flags with cmdline overrides
override CFLAGS := $(MK_CPPFLAGS) $(CPPFLAGS) $(MK_CFLAGS) $(CFLAGS)
override CXXFLAGS := $(MK_CPPFLAGS) $(CPPFLAGS) $(MK_CXXFLAGS) $(CXXFLAGS)
@@ -533,18 +542,15 @@ ggml-alloc.o: ggml-alloc.c ggml.h ggml-alloc.h
ggml-backend.o: ggml-backend.c ggml.h ggml-backend.h
$(CC) $(CFLAGS) -c $< -o $@
ggml-quants.o: ggml-quants.c ggml.h ggml-quants.h
$(CC) $(CFLAGS) -c $< -o $@
OBJS += ggml-alloc.o ggml-backend.o ggml-quants.o
OBJS += ggml-alloc.o ggml-backend.o
llama.o: llama.cpp ggml.h ggml-alloc.h ggml-backend.h ggml-cuda.h ggml-metal.h llama.h
$(CXX) $(CXXFLAGS) -c $< -o $@
COMMON_H_DEPS = common/common.h common/sampling.h common/log.h
COMMON_DEPS = common.o sampling.o grammar-parser.o
COMMON_H_DEPS = common/common.h common/sampling.h build-info.h common/log.h
COMMON_DEPS = $(COMMON_H_DEPS) common.o sampling.o grammar-parser.o
common.o: common/common.cpp build-info.h $(COMMON_H_DEPS)
common.o: common/common.cpp $(COMMON_H_DEPS)
$(CXX) $(CXXFLAGS) -c $< -o $@
sampling.o: common/sampling.cpp $(COMMON_H_DEPS)

View File

@@ -42,12 +42,13 @@ let package = Package(
"llama.cpp",
"ggml-alloc.c",
"ggml-backend.c",
"ggml-quants.c",
"k_quants.c",
] + additionalSources,
resources: resources,
publicHeadersPath: "spm-headers",
cSettings: [
.unsafeFlags(["-Wno-shorten-64-to-32", "-O3", "-DNDEBUG"]),
.define("GGML_USE_K_QUANTS"),
.define("GGML_USE_ACCELERATE")
// NOTE: NEW_LAPACK will required iOS version 16.4+
// We should consider add this in the future when we drop support for iOS 14

View File

@@ -116,10 +116,15 @@ pub fn build(b: *std.build.Builder) !void {
var make = try Maker.init(b);
make.enable_lto = b.option(bool, "lto", "Enable LTO optimization, (default: false)") orelse false;
if (b.option(bool, "k-quants", "Enable K-quants, (default: true)") orelse true) {
try make.addFlag("-DGGML_USE_K_QUANTS");
const k_quants = make.obj("k_quants", "k_quants.c");
try make.objs.append(k_quants);
}
const ggml = make.obj("ggml", "ggml.c");
const ggml_alloc = make.obj("ggml-alloc", "ggml-alloc.c");
const ggml_backend = make.obj("ggml-backend", "ggml-backend.c");
const ggml_quants = make.obj("ggml-quants", "ggml-quants.c");
const llama = make.obj("llama", "llama.cpp");
const common = make.obj("common", "common/common.cpp");
const console = make.obj("console", "common/console.cpp");
@@ -128,14 +133,14 @@ pub fn build(b: *std.build.Builder) !void {
const train = make.obj("train", "common/train.cpp");
const clip = make.obj("clip", "examples/llava/clip.cpp");
_ = make.exe("main", "examples/main/main.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, sampling, console, grammar_parser });
_ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common });
_ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common });
_ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common });
_ = make.exe("finetune", "examples/finetune/finetune.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, train });
_ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, train });
_ = make.exe("main", "examples/main/main.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, sampling, console, grammar_parser });
_ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common });
_ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common });
_ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common });
_ = make.exe("finetune", "examples/finetune/finetune.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, train });
_ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, train });
const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, sampling, grammar_parser, clip });
const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, sampling, grammar_parser, clip });
if (server.target.isWindows()) {
server.linkSystemLibrary("ws2_32");
}

View File

@@ -889,7 +889,7 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
std::vector<llama_token> tmp = { llama_token_bos(model), llama_token_eos(model), };
llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0));
llama_kv_cache_clear(lctx);
llama_kv_cache_tokens_rm(lctx, -1, -1);
llama_reset_timings(lctx);
}

View File

@@ -185,7 +185,7 @@ int main(int argc, char ** argv) {
const auto t_pp_start = ggml_time_us();
llama_kv_cache_clear(ctx);
llama_kv_cache_tokens_rm(ctx, -1, -1);
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
LOG_TEE("%s: llama_decode() failed\n", __func__);

View File

@@ -1037,7 +1037,7 @@ int main(int argc, char ** argv) {
test t(inst, lmodel, ctx);
llama_kv_cache_clear(ctx);
llama_kv_cache_tokens_rm(ctx, -1, -1);
// warmup run
if (t.n_prompt > 0) {
@@ -1048,7 +1048,7 @@ int main(int argc, char ** argv) {
}
for (int i = 0; i < params.reps; i++) {
llama_kv_cache_clear(ctx);
llama_kv_cache_tokens_rm(ctx, -1, -1);
uint64_t t_start = get_time_ns();
if (t.n_prompt > 0) {

View File

@@ -298,7 +298,7 @@ int main(int argc, char ** argv) {
}
// remove any "future" tokens that we might have inherited from the previous session
llama_kv_cache_seq_rm(ctx, -1, n_matching_session_tokens, -1);
llama_kv_cache_tokens_rm(ctx, n_matching_session_tokens, -1);
}
LOGLN(

View File

@@ -210,7 +210,7 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params &
const auto t_start = std::chrono::high_resolution_clock::now();
// clear the KV cache
llama_kv_cache_clear(ctx);
llama_kv_cache_tokens_rm(ctx, -1, -1);
for (int j = 0; j < num_batches; ++j) {
const int batch_start = start + j * n_batch;
@@ -339,7 +339,7 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
const auto t_start = std::chrono::high_resolution_clock::now();
// clear the KV cache
llama_kv_cache_clear(ctx);
llama_kv_cache_tokens_rm(ctx, -1, -1);
for (int j = 0; j < num_batches; ++j) {
const int batch_start = start + j * n_batch;
@@ -573,7 +573,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
}
// clear the KV cache
llama_kv_cache_clear(ctx);
llama_kv_cache_tokens_rm(ctx, -1, -1);
auto logits = hellaswag_evaluate_tokens(ctx, query_embd, 0, params.n_batch, n_vocab);
if (logits.empty()) {

View File

@@ -18,6 +18,7 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = {
{ "Q4_1", LLAMA_FTYPE_MOSTLY_Q4_1, " 3.90G, +0.1585 ppl @ LLaMA-v1-7B", },
{ "Q5_0", LLAMA_FTYPE_MOSTLY_Q5_0, " 4.33G, +0.0683 ppl @ LLaMA-v1-7B", },
{ "Q5_1", LLAMA_FTYPE_MOSTLY_Q5_1, " 4.70G, +0.0349 ppl @ LLaMA-v1-7B", },
#ifdef GGML_USE_K_QUANTS
{ "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.63G, +0.6717 ppl @ LLaMA-v1-7B", },
{ "Q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M, "alias for Q3_K_M" },
{ "Q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S, " 2.75G, +0.5551 ppl @ LLaMA-v1-7B", },
@@ -30,6 +31,7 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = {
{ "Q5_K_S", LLAMA_FTYPE_MOSTLY_Q5_K_S, " 4.33G, +0.0400 ppl @ LLaMA-v1-7B", },
{ "Q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M, " 4.45G, +0.0122 ppl @ LLaMA-v1-7B", },
{ "Q6_K", LLAMA_FTYPE_MOSTLY_Q6_K, " 5.15G, -0.0008 ppl @ LLaMA-v1-7B", },
#endif
{ "Q8_0", LLAMA_FTYPE_MOSTLY_Q8_0, " 6.70G, +0.0004 ppl @ LLaMA-v1-7B", },
{ "F16", LLAMA_FTYPE_MOSTLY_F16, "13.00G @ 7B", },
{ "F32", LLAMA_FTYPE_ALL_F32, "26.00G @ 7B", },
@@ -68,14 +70,13 @@ static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftyp
}
// usage:
// ./quantize [--allow-requantize] [--leave-output-tensor] [--pure] models/llama/ggml-model.gguf [models/llama/ggml-model-quant.gguf] type [nthreads]
// ./quantize [--allow-requantize] [--leave-output-tensor] models/llama/ggml-model.gguf [models/llama/ggml-model-quant.gguf] type [nthreads]
//
[[noreturn]]
static void usage(const char * executable) {
printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
printf(" --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
printf(" --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
printf(" --pure: Disable k-quant mixtures and quantize all tensors to the same type\n");
printf("\nAllowed quantization types:\n");
for (auto & it : QUANT_OPTIONS) {
if (it.name != "COPY") {
@@ -102,8 +103,6 @@ int main(int argc, char ** argv) {
params.quantize_output_tensor = false;
} else if (strcmp(argv[arg_idx], "--allow-requantize") == 0) {
params.allow_requantize = true;
} else if (strcmp(argv[arg_idx], "--pure") == 0) {
params.pure = true;
} else {
usage(argv[0]);
}

View File

@@ -857,7 +857,7 @@ struct llama_server_context
void kv_cache_clear() {
// clear the entire KV cache
llama_kv_cache_clear(ctx);
llama_kv_cache_tokens_rm(ctx, -1, -1);
clean_kv_cache = false;
}

6
flake.lock generated
View File

@@ -20,11 +20,11 @@
},
"nixpkgs": {
"locked": {
"lastModified": 1698134075,
"narHash": "sha256-foCD+nuKzfh49bIoiCBur4+Fx1nozo+4C/6k8BYk4sg=",
"lastModified": 1692913444,
"narHash": "sha256-1SvMQm2DwofNxXVtNWWtIcTh7GctEVrS/Xel/mdc6iY=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "8efd5d1e283604f75a808a20e6cde0ef313d07d4",
"rev": "18324978d632ffc55ef1d928e81630c620f4f447",
"type": "github"
},
"original": {

View File

@@ -51,9 +51,6 @@
};
llama-python =
pkgs.python3.withPackages (ps: with ps; [ numpy sentencepiece ]);
# TODO(Green-Sky): find a better way to opt-into the heavy ml python runtime
llama-python-extra =
pkgs.python3.withPackages (ps: with ps; [ numpy sentencepiece torchWithoutCuda transformers ]);
postPatch = ''
substituteInPlace ./ggml-metal.m \
--replace '[bundle pathForResource:@"ggml-metal" ofType:@"metal"];' "@\"$out/bin/ggml-metal.metal\";"
@@ -129,9 +126,5 @@
buildInputs = [ llama-python ];
packages = nativeBuildInputs ++ osSpecific;
};
devShells.extra = pkgs.mkShell {
buildInputs = [ llama-python-extra ];
packages = nativeBuildInputs ++ osSpecific;
};
});
}

View File

@@ -1,237 +0,0 @@
#pragma once
#include "ggml.h"
// GGML internal header
#include <assert.h>
#include <stddef.h>
#include <stdbool.h>
#include <string.h> // memcpy
#include <math.h> // fabsf
#ifdef __cplusplus
extern "C" {
#endif
// static_assert should be a #define, but if it's not,
// fall back to the _Static_assert C11 keyword.
// if C99 - static_assert is noop
// ref: https://stackoverflow.com/a/53923785/4039976
#ifndef static_assert
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
#define static_assert(cond, msg) _Static_assert(cond, msg)
#else
#define static_assert(cond, msg) struct global_scope_noop_trick
#endif
#endif
// __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
#if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
#ifndef __FMA__
#define __FMA__
#endif
#ifndef __F16C__
#define __F16C__
#endif
#ifndef __SSE3__
#define __SSE3__
#endif
#endif
#undef MIN
#undef MAX
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
// 16-bit float
// on Arm, we use __fp16
// on x86, we use uint16_t
#if defined(__ARM_NEON) && !defined(_MSC_VER)
// if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
//
// $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
//
#include <arm_neon.h>
#define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
#define GGML_COMPUTE_FP32_TO_FP16(x) (x)
#define GGML_FP16_TO_FP32(x) ((float) (x))
#define GGML_FP32_TO_FP16(x) (x)
#else
#ifdef __wasm_simd128__
#include <wasm_simd128.h>
#else
#ifdef __POWER9_VECTOR__
#include <altivec.h>
#undef bool
#define bool _Bool
#else
#if defined(_MSC_VER) || defined(__MINGW32__)
#include <intrin.h>
#else
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__)
#if !defined(__riscv)
#include <immintrin.h>
#endif
#endif
#endif
#endif
#endif
#ifdef __riscv_v_intrinsic
#include <riscv_vector.h>
#endif
#ifdef __F16C__
#ifdef _MSC_VER
#define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
#define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
#else
#define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
#define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
#endif
#elif defined(__POWER9_VECTOR__)
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
/* the inline asm below is about 12% faster than the lookup method */
#define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
register float f;
register double d;
__asm__(
"mtfprd %0,%2\n"
"xscvhpdp %0,%0\n"
"frsp %1,%0\n" :
/* temp */ "=d"(d),
/* out */ "=f"(f):
/* in */ "r"(h));
return f;
}
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
register double d;
register ggml_fp16_t r;
__asm__( /* xscvdphp can work on double or single precision */
"xscvdphp %0,%2\n"
"mffprd %1,%0\n" :
/* temp */ "=d"(d),
/* out */ "=r"(r):
/* in */ "f"(f));
return r;
}
#else
// FP16 <-> FP32
// ref: https://github.com/Maratyszcza/FP16
static inline float fp32_from_bits(uint32_t w) {
union {
uint32_t as_bits;
float as_value;
} fp32;
fp32.as_bits = w;
return fp32.as_value;
}
static inline uint32_t fp32_to_bits(float f) {
union {
float as_value;
uint32_t as_bits;
} fp32;
fp32.as_value = f;
return fp32.as_bits;
}
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
const uint32_t w = (uint32_t) h << 16;
const uint32_t sign = w & UINT32_C(0x80000000);
const uint32_t two_w = w + w;
const uint32_t exp_offset = UINT32_C(0xE0) << 23;
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
const float exp_scale = 0x1.0p-112f;
#else
const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
#endif
const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
const uint32_t magic_mask = UINT32_C(126) << 23;
const float magic_bias = 0.5f;
const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
const uint32_t result = sign |
(two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
return fp32_from_bits(result);
}
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
const float scale_to_inf = 0x1.0p+112f;
const float scale_to_zero = 0x1.0p-110f;
#else
const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
#endif
float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
const uint32_t w = fp32_to_bits(f);
const uint32_t shl1_w = w + w;
const uint32_t sign = w & UINT32_C(0x80000000);
uint32_t bias = shl1_w & UINT32_C(0xFF000000);
if (bias < UINT32_C(0x71000000)) {
bias = UINT32_C(0x71000000);
}
base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
const uint32_t bits = fp32_to_bits(base);
const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
const uint32_t nonsign = exp_bits + mantissa_bits;
return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
}
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
#endif // __F16C__
#endif // __ARM_NEON
// precomputed f32 table for f16 (256 KB)
// defined in ggml.c, initialized in ggml_init()
extern float ggml_table_f32_f16[1 << 16];
// On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
// so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
// This is also true for POWER9.
#if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
uint16_t s;
memcpy(&s, &f, sizeof(uint16_t));
return ggml_table_f32_f16[s];
}
#define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
#endif
// TODO: backend v2 PR
#ifdef __cplusplus
}
#endif

View File

@@ -210,10 +210,6 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
GGML_METAL_LOG_INFO("%s: default.metallib not found, loading from source\n", __func__);
NSString * sourcePath = [bundle pathForResource:@"ggml-metal" ofType:@"metal"];
if (sourcePath == nil) {
GGML_METAL_LOG_WARN("%s: error: could not use bundle path to find ggml-metal.metal, falling back to trying cwd\n", __func__);
sourcePath = @"ggml-metal.metal";
}
GGML_METAL_LOG_INFO("%s: loading '%s'\n", __func__, [sourcePath UTF8String]);
NSString * src = [NSString stringWithContentsOfFile:sourcePath encoding:NSUTF8StringEncoding error:&error];
if (error) {

2583
ggml.c

File diff suppressed because it is too large Load Diff

7
ggml.h
View File

@@ -1930,19 +1930,12 @@ extern "C" {
// quantization
//
// TODO: these would probably get removed in favor of the more general ggml_quantize_chunk
GGML_API size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_API size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_API size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_API size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_API size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_API size_t ggml_quantize_q2_K(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_API size_t ggml_quantize_q3_K(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_API size_t ggml_quantize_q4_K(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_API size_t ggml_quantize_q5_K(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_API size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist);
//

File diff suppressed because it is too large Load Diff

View File

@@ -1,63 +1,11 @@
#pragma once
#include "ggml-impl.h"
// GGML internal header
#include "ggml.h"
#include <stdint.h>
#include <assert.h>
#include <stddef.h>
#define QK4_0 32
typedef struct {
ggml_fp16_t d; // delta
uint8_t qs[QK4_0 / 2]; // nibbles / quants
} block_q4_0;
static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
#define QK4_1 32
typedef struct {
ggml_fp16_t d; // delta
ggml_fp16_t m; // min
uint8_t qs[QK4_1 / 2]; // nibbles / quants
} block_q4_1;
static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
#define QK5_0 32
typedef struct {
ggml_fp16_t d; // delta
uint8_t qh[4]; // 5-th bit of quants
uint8_t qs[QK5_0 / 2]; // nibbles / quants
} block_q5_0;
static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
#define QK5_1 32
typedef struct {
ggml_fp16_t d; // delta
ggml_fp16_t m; // min
uint8_t qh[4]; // 5-th bit of quants
uint8_t qs[QK5_1 / 2]; // nibbles / quants
} block_q5_1;
static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
#define QK8_0 32
typedef struct {
ggml_fp16_t d; // delta
int8_t qs[QK8_0]; // quants
} block_q8_0;
static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
#define QK8_1 32
typedef struct {
float d; // delta
float s; // d * sum(qs[i])
int8_t qs[QK8_1]; // quants
} block_q8_1;
static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
//
// Super-block quantization structures
//
// Super-block size
#ifdef GGML_QKK_64
#define QK_K 64
@@ -67,6 +15,18 @@ static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block s
#define K_SCALE_SIZE 12
#endif
#ifndef static_assert
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
#define static_assert(cond, msg) _Static_assert(cond, msg)
#else
#define static_assert(cond, msg) struct global_scope_noop_trick
#endif
#endif
//
// Super-block quantization structures
//
// 2-bit quantization
// weight is represented as x = a * q + b
// 16 blocks of 16 elements each
@@ -167,13 +127,6 @@ static_assert(sizeof(block_q8_K) == sizeof(float) + QK_K + QK_K/16*sizeof(int16_
// Quantization
void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k);
void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k);
void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k);
void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k);
void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k);
void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k);
void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict y, int k);
void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int k);
void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int k);
@@ -181,13 +134,6 @@ void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict
void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k);
void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k);
void quantize_row_q4_0(const float * restrict x, void * restrict y, int k);
void quantize_row_q4_1(const float * restrict x, void * restrict y, int k);
void quantize_row_q5_0(const float * restrict x, void * restrict y, int k);
void quantize_row_q5_1(const float * restrict x, void * restrict y, int k);
void quantize_row_q8_0(const float * restrict x, void * restrict y, int k);
void quantize_row_q8_1(const float * restrict x, void * restrict y, int k);
void quantize_row_q2_K(const float * restrict x, void * restrict y, int k);
void quantize_row_q3_K(const float * restrict x, void * restrict y, int k);
void quantize_row_q4_K(const float * restrict x, void * restrict y, int k);
@@ -196,13 +142,6 @@ void quantize_row_q6_K(const float * restrict x, void * restrict y, int k);
void quantize_row_q8_K(const float * restrict x, void * restrict y, int k);
// Dequantization
void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k);
void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k);
void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k);
void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k);
void dequantize_row_q8_0(const block_q8_0 * restrict x, float * restrict y, int k);
//void dequantize_row_q8_1(const block_q8_1 * restrict x, float * restrict y, int k);
void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int k);
void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k);
void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int k);
@@ -211,14 +150,16 @@ void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int
void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int k);
// Dot product
void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q4_1_q8_1(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q5_0_q8_0(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q5_1_q8_1(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q8_0_q8_0(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
// Quantization with histogram collection
size_t ggml_quantize_q2_K(const float * src, void * dst, int n, int k, int64_t * hist);
size_t ggml_quantize_q3_K(const float * src, void * dst, int n, int k, int64_t * hist);
size_t ggml_quantize_q4_K(const float * src, void * dst, int n, int k, int64_t * hist);
size_t ggml_quantize_q5_K(const float * src, void * dst, int n, int k, int64_t * hist);
size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist);

View File

@@ -19,11 +19,13 @@
#ifdef GGML_USE_MPI
# include "ggml-mpi.h"
#endif
#ifndef QK_K
# ifdef GGML_QKK_64
# define QK_K 64
# else
# define QK_K 256
#ifdef GGML_USE_K_QUANTS
# ifndef QK_K
# ifdef GGML_QKK_64
# define QK_K 64
# else
# define QK_K 256
# endif
# endif
#endif
@@ -1466,12 +1468,17 @@ static int32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
return 0;
}
static void llama_kv_cache_clear(struct llama_kv_cache & cache) {
for (int32_t i = 0; i < (int32_t) cache.size; ++i) {
static void llama_kv_cache_tokens_rm(struct llama_kv_cache & cache, int32_t c0, int32_t c1) {
if (c0 < 0) c0 = 0;
if (c1 < 0) c1 = cache.size;
for (int32_t i = c0; i < c1; ++i) {
cache.cells[i].pos = -1;
cache.cells[i].seq_id.clear();
}
cache.head = 0;
// Searching for a free slot can start here since we know it will be empty.
cache.head = uint32_t(c0);
}
static void llama_kv_cache_seq_rm(
@@ -1485,14 +1492,8 @@ static void llama_kv_cache_seq_rm(
if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
for (uint32_t i = 0; i < cache.size; ++i) {
if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
if (seq_id < 0) {
cache.cells[i].seq_id.clear();
} else if (cache.cells[i].has_seq_id(seq_id)) {
cache.cells[i].seq_id.erase(seq_id);
} else {
continue;
}
if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
cache.cells[i].seq_id.erase(seq_id);
if (cache.cells[i].seq_id.empty()) {
cache.cells[i].pos = -1;
if (new_head == cache.size) new_head = i;
@@ -1553,14 +1554,14 @@ static void llama_kv_cache_seq_shift(
for (uint32_t i = 0; i < cache.size; ++i) {
if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
cache.has_shift = true;
cache.cells[i].pos += delta;
cache.cells[i].delta += delta;
cache.cells[i].pos += delta;
if (cache.cells[i].pos < 0) {
cache.cells[i].pos = -1;
cache.cells[i].seq_id.clear();
if (new_head == cache.size) new_head = i;
} else {
cache.has_shift = true;
cache.cells[i].delta = delta;
}
}
}
@@ -6074,20 +6075,11 @@ static int llama_decode_internal(
#endif
// update the kv ring buffer
{
if (kv_self.has_shift) {
kv_self.has_shift = false;
for (uint32_t i = 0; i < kv_self.size; ++i) {
kv_self.cells[i].delta = 0;
}
}
kv_self.head += n_tokens;
// Ensure kv cache head points to a valid index.
if (kv_self.head >= kv_self.size) {
kv_self.head = 0;
}
lctx.kv_self.has_shift = false;
lctx.kv_self.head += n_tokens;
// Ensure kv cache head points to a valid index.
if (lctx.kv_self.head >= lctx.kv_self.size) {
lctx.kv_self.head = 0;
}
#ifdef GGML_PERF
@@ -8060,7 +8052,7 @@ struct no_init {
struct quantize_state_internal {
const llama_model & model;
const llama_model_quantize_params * params;
#ifdef GGML_USE_K_QUANTS
int n_attention_wv = 0;
int n_feed_forward_w2 = 0;
int i_attention_wv = 0;
@@ -8068,7 +8060,7 @@ struct quantize_state_internal {
int n_k_quantized = 0;
int n_fallback = 0;
#endif
quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
: model(model)
, params(params)
@@ -8133,6 +8125,7 @@ static void llama_convert_tensor_internal(
workers.clear();
}
#ifdef GGML_USE_K_QUANTS
static ggml_type get_k_quant_type(
quantize_state_internal & qs,
ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype
@@ -8244,6 +8237,7 @@ static ggml_type get_k_quant_type(
return new_type;
}
#endif
static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
ggml_type quantized_type;
@@ -8258,6 +8252,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
case LLAMA_FTYPE_MOSTLY_F16: quantized_type = GGML_TYPE_F16; break;
case LLAMA_FTYPE_ALL_F32: quantized_type = GGML_TYPE_F32; break;
#ifdef GGML_USE_K_QUANTS
// K-quants
case LLAMA_FTYPE_MOSTLY_Q2_K: quantized_type = GGML_TYPE_Q2_K; break;
case LLAMA_FTYPE_MOSTLY_Q3_K_S:
@@ -8268,7 +8263,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
case LLAMA_FTYPE_MOSTLY_Q5_K_S:
case LLAMA_FTYPE_MOSTLY_Q5_K_M: quantized_type = GGML_TYPE_Q5_K; break;
case LLAMA_FTYPE_MOSTLY_Q6_K: quantized_type = GGML_TYPE_Q6_K; break;
#endif
default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
}
@@ -8309,6 +8304,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
gguf_set_val_u32(ctx_out, "general.file_type", ftype);
#ifdef GGML_USE_K_QUANTS
for (int i = 0; i < ml.n_tensors; ++i) {
struct ggml_tensor * meta = ml.get_tensor_meta(i);
@@ -8326,6 +8322,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
LLAMA_LOG_WARN("%s ============ Strange model: n_attention_wv = %d, n_feed_forward_w2 = %d, hparams.n_layer = %d\n",
__func__, qs.n_attention_wv, qs.n_feed_forward_w2, model.hparams.n_layer);
}
#endif
size_t total_size_org = 0;
size_t total_size_new = 0;
@@ -8390,10 +8387,9 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
if (quantize) {
new_type = quantized_type;
if (!params->pure) {
new_type = get_k_quant_type(qs, new_type, tensor, ftype);
}
#ifdef GGML_USE_K_QUANTS
new_type = get_k_quant_type(qs, new_type, tensor, ftype);
#endif
// If we've decided to quantize to the same type the tensor is already
// in then there's nothing to do.
quantize = tensor->type != new_type;
@@ -8518,11 +8514,12 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
LLAMA_LOG_INFO("\n");
}
}
#ifdef GGML_USE_K_QUANTS
if (qs.n_fallback > 0) {
LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) incompatible with k-quants and required fallback quantization\n",
__func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
}
#endif
}
static int llama_apply_lora_from_file_internal(
@@ -8847,7 +8844,6 @@ struct llama_model_quantize_params llama_model_quantize_default_params() {
/*.allow_requantize =*/ false,
/*.quantize_output_tensor =*/ true,
/*.only_copy =*/ false,
/*.pure =*/ false,
};
return result;
@@ -9208,8 +9204,8 @@ int llama_get_kv_cache_token_count(const struct llama_context * ctx) {
return ctx->kv_self.head;
}
void llama_kv_cache_clear(struct llama_context * ctx) {
llama_kv_cache_clear(ctx->kv_self);
void llama_kv_cache_tokens_rm(struct llama_context * ctx, int32_t c0, int32_t c1) {
llama_kv_cache_tokens_rm(ctx->kv_self, c0, c1);
}
void llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
@@ -9655,7 +9651,7 @@ int llama_eval(
llama_token * tokens,
int32_t n_tokens,
int n_past) {
llama_kv_cache_seq_rm(ctx->kv_self, -1, n_past, -1);
llama_kv_cache_tokens_rm(ctx->kv_self, n_past, -1);
const int ret = llama_decode_internal(*ctx, llama_batch_get_one(tokens, n_tokens, n_past, 0));
if (ret < 0) {
@@ -9670,7 +9666,7 @@ int llama_eval_embd(
float * embd,
int32_t n_tokens,
int n_past) {
llama_kv_cache_seq_rm(ctx->kv_self, -1, n_past, -1);
llama_kv_cache_tokens_rm(ctx->kv_self, n_past, -1);
llama_batch batch = { n_tokens, nullptr, embd, nullptr, nullptr, nullptr, nullptr, n_past, 1, 0, };

16
llama.h
View File

@@ -191,7 +191,6 @@ extern "C" {
bool allow_requantize; // allow quantizing non-f32/f16 tensors
bool quantize_output_tensor; // quantize output.weight
bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
bool pure; // disable k-quant mixtures and quantize all tensors to the same type
} llama_model_quantize_params;
// grammar types
@@ -334,14 +333,17 @@ extern "C" {
LLAMA_API DEPRECATED(int llama_get_kv_cache_token_count(const struct llama_context * ctx),
"avoid using this, it will be removed in the future, instead - count the tokens in user code");
// Clear the KV cache
LLAMA_API void llama_kv_cache_clear(
struct llama_context * ctx);
// Remove all tokens data of cells in [c0, c1)
// c0 < 0 : [0, c1]
// c1 < 0 : [c0, inf)
LLAMA_API void llama_kv_cache_tokens_rm(
struct llama_context * ctx,
int32_t c0,
int32_t c1);
// Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
// seq_id < 0 : match any sequence
// p0 < 0 : [0, p1]
// p1 < 0 : [p0, inf)
// p0 < 0 : [0, p1]
// p1 < 0 : [p0, inf)
LLAMA_API void llama_kv_cache_seq_rm(
struct llama_context * ctx,
llama_seq_id seq_id,

View File

@@ -4,7 +4,7 @@
#undef NDEBUG
#include <cassert>
#if !defined(__riscv) && !defined(__s390__) && !defined(__ARM_NEON)
#if !defined(__riscv) && !defined(__s390__)
#include <immintrin.h>
#endif
#include <cmath>

View File

@@ -129,13 +129,6 @@ int main(int argc, char * argv[]) {
ggml_type type = (ggml_type) i;
ggml_type_traits_t qfns = ggml_internal_get_type_traits(type);
// deprecated - skip
if (qfns.blck_size == 0) {
continue;
}
printf("Testing %s\n", ggml_type_name((ggml_type) i));
if (qfns.from_float && qfns.to_float) {
const float total_error = total_quantization_error(qfns, test_size, test_data.data());
const float max_quantization_error =