Compare commits

...

7 Commits
b1516 ... b1523

Author SHA1 Message Date
Andrew Godfrey
947f64f163 finetune : zero the loraB initial vectors (#4082)
* finetune : zero the loraB initial vectors

Without this, the first iteration is starting out far from the base model, instead of exactly on it.
Zeroing loraB is what the paper recommends. loralib also zeroes at least one of the init vector pairs
(though it departs from the paper in using a different distribution for the other vector, in some cases).

* tabs to spaces

* Use ggml_set_zero instead of adding a new function
2023-11-17 11:23:11 +01:00
Andrew Godfrey
b83e149ec6 cuda : get_row_rounding F32 (#4095)
* Fix #4017

* Update ggml-cuda.cu

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* Update ggml-cuda.cu

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

---------

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
2023-11-17 10:01:15 +02:00
Georgi Gerganov
4f447a4833 llama : fix data units (#4101)
* llama : fix data units

ggml-ci

* Revert "llama : fix data units"

This reverts commit f5feac831f.

* llama : disambiguate data units

ggml-ci
2023-11-17 10:00:15 +02:00
Kerfuffle
91f6499393 Respect tokenizer.ggml.add_bos_token value when tokenizing (#4040)
* gguf-py: gguf-dump: Respect --no-tensor flag in JSON mode.

* Respect add_bos_token GGUF metadata value

* gguf-py: Try to fix SpecialVocab giving up too easily for the Nth time
2023-11-16 19:14:37 -07:00
texmex76
8da46278e1 gguf : fix potential infinite loops while parsing (#4100)
Co-authored-by: Bernhard Gstrein <gstrein@cs.uni-freiburg.de>
2023-11-16 17:01:48 +02:00
Jared Van Bortel
a6fc554e26 llama : restore prefix space in llama tokenizer (#4081) 2023-11-15 11:34:47 -05:00
slaren
1cf2850d52 ggml-cuda : increase max graph size (#4084) 2023-11-15 14:58:13 +02:00
16 changed files with 140 additions and 77 deletions

View File

@@ -1072,6 +1072,12 @@ std::string llama_detokenize_bpe(llama_context * ctx, const std::vector<llama_to
return result;
}
bool llama_should_add_bos_token(const llama_model * model) {
const int add_bos = llama_add_bos_token(model);
return add_bos != -1 ? bool(add_bos) : (llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM);
}
//
// YAML utils
//

View File

@@ -200,6 +200,10 @@ std::string llama_detokenize_bpe(
llama_context * ctx,
const std::vector<llama_token> & tokens);
// Uses the value from the model metadata if possible, otherwise
// defaults to true when model type is SPM, otherwise false.
bool llama_should_add_bos_token(const llama_model * model);
//
// YAML utils
//

View File

@@ -548,35 +548,35 @@ static void randomize_lora(struct my_llama_lora * lora, int seed, float mean, fl
struct random_normal_distribution * rnd = init_random_normal_distribution(seed, mean, std, min, max);
randomize_tensor_normal(lora->tok_embeddings_a, rnd);
randomize_tensor_normal(lora->tok_embeddings_b, rnd);
ggml_set_zero(lora->tok_embeddings_b);
randomize_tensor_normal(lora->norm_a, rnd);
randomize_tensor_normal(lora->norm_b, rnd);
ggml_set_zero(lora->norm_b);
randomize_tensor_normal(lora->output_a, rnd);
randomize_tensor_normal(lora->output_b, rnd);
ggml_set_zero(lora->output_b);
for (uint32_t i = 0; i < n_layer; ++i) {
auto & layer = lora->layers[i];
randomize_tensor_normal(layer.attention_norm_a, rnd);
randomize_tensor_normal(layer.attention_norm_b, rnd);
ggml_set_zero(layer.attention_norm_b);
randomize_tensor_normal(layer.wq_a, rnd);
randomize_tensor_normal(layer.wq_b, rnd);
ggml_set_zero(layer.wq_b);
randomize_tensor_normal(layer.wk_a, rnd);
randomize_tensor_normal(layer.wk_b, rnd);
ggml_set_zero(layer.wk_b);
randomize_tensor_normal(layer.wv_a, rnd);
randomize_tensor_normal(layer.wv_b, rnd);
ggml_set_zero(layer.wv_b);
randomize_tensor_normal(layer.wo_a, rnd);
randomize_tensor_normal(layer.wo_b, rnd);
ggml_set_zero(layer.wo_b);
randomize_tensor_normal(layer.ffn_norm_a, rnd);
randomize_tensor_normal(layer.ffn_norm_b, rnd);
ggml_set_zero(layer.ffn_norm_b);
randomize_tensor_normal(layer.w1_a, rnd);
randomize_tensor_normal(layer.w1_b, rnd);
ggml_set_zero(layer.w1_b);
randomize_tensor_normal(layer.w2_a, rnd);
randomize_tensor_normal(layer.w2_b, rnd);
ggml_set_zero(layer.w2_b);
randomize_tensor_normal(layer.w3_a, rnd);
randomize_tensor_normal(layer.w3_b, rnd);
ggml_set_zero(layer.w3_b);
}
free_random_normal_distribution(rnd);

View File

@@ -230,7 +230,7 @@ int main(int argc, char ** argv) {
LOG_TEE("\n");
LOG_TEE("%s\n", get_system_info(params).c_str());
}
const bool add_bos = llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM;
const bool add_bos = llama_should_add_bos_token(model);
LOG("add_bos: %d\n", add_bos);
bool suff_rm_leading_spc = params.escape;

View File

@@ -208,9 +208,10 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
int n_past = 0;
const int max_tgt_len = params->n_predict < 0 ? 256 : params->n_predict;
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx_llava->ctx_llama));
// llava chat format is "<system_prompt>\nUSER:<image_embeddings>\n<textual_prompt>\nASSISTANT:"
eval_string(ctx_llava->ctx_llama, "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\nUSER:", params->n_batch, &n_past, true);
eval_string(ctx_llava->ctx_llama, "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\nUSER:", params->n_batch, &n_past, add_bos);
llava_eval_image_embed(ctx_llava->ctx_llama, image_embed, params->n_batch, &n_past);
eval_string(ctx_llava->ctx_llama, (prompt + "\nASSISTANT:").c_str(), params->n_batch, &n_past, false);

View File

@@ -229,7 +229,7 @@ int main(int argc, char ** argv) {
}
}
const bool add_bos = llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM;
const bool add_bos = llama_should_add_bos_token(model);
LOG("add_bos: %d\n", add_bos);
std::vector<llama_token> embd_inp;

View File

@@ -149,8 +149,7 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params &
// Output: `perplexity: 13.5106 [114/114]`
// BOS tokens will be added for each chunk before eval
const bool is_spm = llama_vocab_type(llama_get_model(ctx)) == LLAMA_VOCAB_TYPE_SPM;
const bool add_bos = is_spm;
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
@@ -288,8 +287,7 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
// Output: `perplexity: 13.5106 [114/114]`
// BOS tokens will be added for each chunk before eval
const bool is_spm = llama_vocab_type(llama_get_model(ctx)) == LLAMA_VOCAB_TYPE_SPM;
const bool add_bos = is_spm;
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
const int n_ctx = llama_n_ctx(ctx);
auto tim1 = std::chrono::high_resolution_clock::now();
@@ -481,7 +479,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
fprintf(stderr, "================================= is_spm = %d\n", is_spm);
// This is needed as usual for LLaMA models
const bool add_bos = is_spm;
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
// Number of tasks to use when computing the score
if ( params.hellaswag_tasks < hs_task_count ) {

View File

@@ -501,6 +501,7 @@ struct llama_server_context
bool multimodal = false;
bool clean_kv_cache = true;
bool all_slots_are_idle = false;
bool add_bos_token = true;
int32_t id_gen;
int32_t n_ctx; // total context for all clients / slots
@@ -573,6 +574,8 @@ struct llama_server_context
n_ctx = llama_n_ctx(ctx);
add_bos_token = llama_should_add_bos_token(model);
return true;
}
@@ -864,7 +867,7 @@ struct llama_server_context
}
void update_system_prompt() {
system_tokens = ::llama_tokenize(ctx, system_prompt, true);
system_tokens = ::llama_tokenize(ctx, system_prompt, add_bos_token);
llama_batch_clear(batch);
@@ -1552,7 +1555,7 @@ struct llama_server_context
}
else
{
prompt_tokens = tokenize(slot.prompt, system_prompt.empty()); // add BOS if there isn't system prompt
prompt_tokens = tokenize(slot.prompt, system_prompt.empty() && add_bos_token); // add BOS if there isn't system prompt
}
slot.num_prompt_tokens = prompt_tokens.size();
@@ -1629,7 +1632,7 @@ struct llama_server_context
const bool has_images = process_images(slot);
// process the prefix of first image
std::vector<llama_token> prefix_tokens = has_images ? tokenize(slot.images[0].prefix_prompt, true) : prompt_tokens;
std::vector<llama_token> prefix_tokens = has_images ? tokenize(slot.images[0].prefix_prompt, add_bos_token) : prompt_tokens;
for (; slot.n_past < (int) prefix_tokens.size(); ++slot.n_past)
{
llama_batch_add(batch, prefix_tokens[slot.n_past], system_tokens.size() + slot.n_past, { slot.id }, false);

View File

@@ -88,6 +88,8 @@
#define CC_OFFSET_AMD 1000000
#define CC_RDNA2 (CC_OFFSET_AMD + 1030)
#define GGML_CUDA_MAX_NODES 8192
// define this if you want to always fallback to MMQ kernels and not use cuBLAS for matrix multiplication
// on modern hardware, using cuBLAS is recommended as it utilizes F16 tensor cores which are very performant
// for large computational tasks. the drawback is that this requires some extra amount of VRAM:
@@ -5838,7 +5840,7 @@ static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
return ptr;
}
#ifdef DEBUG_CUDA_MALLOC
fprintf(stderr, "%s: %d buffers, max_size = %u MB, tot_size = %u MB, requested %u MB\n", __func__, nnz,
fprintf(stderr, "%s: %d buffers, max_size = %u MiB, tot_size = %u MiB, requested %u MiB\n", __func__, nnz,
(uint32_t)(max_size/1024/1024), (uint32_t)(tot_size/1024/1024), (uint32_t)(size/1024/1024));
#endif
void * ptr;
@@ -5976,7 +5978,7 @@ void * ggml_cuda_host_malloc(size_t size) {
// The allocation error can be bypassed. A null ptr will assigned out of this function.
// This can fixed the OOM error in WSL.
cudaGetLastError();
fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n",
fprintf(stderr, "WARNING: failed to allocate %.2f MiB of pinned memory: %s\n",
size/1024.0/1024.0, cudaGetErrorString(err));
return nullptr;
}
@@ -6354,6 +6356,7 @@ static int64_t get_row_rounding(ggml_type type) {
case GGML_TYPE_Q8_0:
return max_compute_capability >= CC_RDNA2 ? 128 : 64;
case GGML_TYPE_F16:
case GGML_TYPE_F32:
return 1;
case GGML_TYPE_Q2_K:
return max_compute_capability >= CC_RDNA2 ? 128 : 32;
@@ -6376,6 +6379,7 @@ static int64_t get_row_rounding(ggml_type type) {
case GGML_TYPE_Q8_0:
return 64;
case GGML_TYPE_F16:
case GGML_TYPE_F32:
return 1;
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
@@ -7727,7 +7731,7 @@ static void ggml_cuda_alibi(const ggml_tensor * src0, const ggml_tensor * src1,
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_alibi);
}
void ggml_cuda_im2col(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
static void ggml_cuda_im2col(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_im2col);
}
@@ -7842,11 +7846,11 @@ static size_t g_temp_tensor_extra_index = 0;
static ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() {
if (g_temp_tensor_extras == nullptr) {
g_temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_DEFAULT_GRAPH_SIZE];
g_temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_CUDA_MAX_NODES];
}
size_t alloc_index = g_temp_tensor_extra_index;
g_temp_tensor_extra_index = (g_temp_tensor_extra_index + 1) % GGML_DEFAULT_GRAPH_SIZE;
g_temp_tensor_extra_index = (g_temp_tensor_extra_index + 1) % GGML_CUDA_MAX_NODES;
ggml_tensor_extra_gpu * extra = &g_temp_tensor_extras[alloc_index];
memset(extra, 0, sizeof(*extra));
@@ -8173,11 +8177,11 @@ struct ggml_backend_buffer_context_cuda {
ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() {
if (temp_tensor_extras == nullptr) {
temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_DEFAULT_GRAPH_SIZE];
temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_CUDA_MAX_NODES];
}
size_t alloc_index = temp_tensor_extra_index;
temp_tensor_extra_index = (temp_tensor_extra_index + 1) % GGML_DEFAULT_GRAPH_SIZE;
temp_tensor_extra_index = (temp_tensor_extra_index + 1) % GGML_CUDA_MAX_NODES;
ggml_tensor_extra_gpu * extra = &temp_tensor_extras[alloc_index];
memset(extra, 0, sizeof(*extra));

View File

@@ -345,10 +345,10 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
}
}
GGML_METAL_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
GGML_METAL_LOG_INFO("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
GGML_METAL_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
GGML_METAL_LOG_INFO("%s: recommendedMaxWorkingSetSize = %8.2f MiB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
if (ctx->device.maxTransferRate != 0) {
GGML_METAL_LOG_INFO("%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0);
GGML_METAL_LOG_INFO("%s: maxTransferRate = %8.2f MiB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0);
} else {
GGML_METAL_LOG_INFO("%s: maxTransferRate = built-in GPU\n", __func__);
}
@@ -541,11 +541,11 @@ bool ggml_metal_add_buffer(
ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:data length:size_aligned options:MTLResourceStorageModeShared deallocator:nil];
if (ctx->buffers[ctx->n_buffers].metal == nil) {
GGML_METAL_LOG_ERROR("%s: error: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_aligned / 1024.0 / 1024.0);
GGML_METAL_LOG_ERROR("%s: error: failed to allocate '%-16s' buffer, size = %8.2f MiB\n", __func__, name, size_aligned / 1024.0 / 1024.0);
return false;
}
GGML_METAL_LOG_INFO("%s: allocated '%-16s' buffer, size = %8.2f MB", __func__, name, size_aligned / 1024.0 / 1024.0);
GGML_METAL_LOG_INFO("%s: allocated '%-16s' buffer, size = %8.2f MiB", __func__, name, size_aligned / 1024.0 / 1024.0);
++ctx->n_buffers;
} else {
@@ -565,11 +565,11 @@ bool ggml_metal_add_buffer(
ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:(void *) ((uint8_t *) data + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil];
if (ctx->buffers[ctx->n_buffers].metal == nil) {
GGML_METAL_LOG_ERROR("%s: error: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_step_aligned / 1024.0 / 1024.0);
GGML_METAL_LOG_ERROR("%s: error: failed to allocate '%-16s' buffer, size = %8.2f MiB\n", __func__, name, size_step_aligned / 1024.0 / 1024.0);
return false;
}
GGML_METAL_LOG_INFO("%s: allocated '%-16s' buffer, size = %8.2f MB, offs = %12ld", __func__, name, size_step_aligned / 1024.0 / 1024.0, i);
GGML_METAL_LOG_INFO("%s: allocated '%-16s' buffer, size = %8.2f MiB, offs = %12ld", __func__, name, size_step_aligned / 1024.0 / 1024.0, i);
if (i + size_step < size) {
GGML_METAL_LOG_INFO("\n");
}

10
ggml.c
View File

@@ -18073,7 +18073,7 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
{
ctx->kv = malloc(ctx->header.n_kv * sizeof(struct gguf_kv));
for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
struct gguf_kv * kv = &ctx->kv[i];
//fprintf(stderr, "%s: reading kv %d\n", __func__, i);
@@ -18120,7 +18120,7 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
case GGUF_TYPE_STRING:
{
kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
}
} break;
@@ -18148,7 +18148,7 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
{
ctx->infos = malloc(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
struct gguf_tensor_info * info = &ctx->infos[i];
for (int j = 0; j < GGML_MAX_DIMS; ++j) {
@@ -18195,7 +18195,7 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
// compute the total size of the data section, taking into account the alignment
{
ctx->size = 0;
for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
struct gguf_tensor_info * info = &ctx->infos[i];
const int64_t ne =
@@ -18264,7 +18264,7 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
ggml_set_no_alloc(ctx_data, true);
// create the tensors
for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
const int64_t ne[GGML_MAX_DIMS] = {
ctx->infos[i].ne[0],
ctx->infos[i].ne[1],

View File

@@ -117,17 +117,18 @@ class SpecialVocab:
def _try_load_from_tokenizer_json(self, path: Path) -> bool:
tokenizer_file = path / 'tokenizer.json'
if not tokenizer_file.is_file():
return False
with open(tokenizer_file, encoding = 'utf-8') as f:
tokenizer = json.load(f)
if self.load_merges:
merges = tokenizer.get('model', {}).get('merges')
if isinstance(merges, list) and merges and isinstance(merges[0], str):
self.merges = merges
if tokenizer_file.is_file():
with open(tokenizer_file, encoding = 'utf-8') as f:
tokenizer = json.load(f)
if self.load_merges:
merges = tokenizer.get('model', {}).get('merges')
if isinstance(merges, list) and merges and isinstance(merges[0], str):
self.merges = merges
added_tokens = tokenizer.get('added_tokens', {})
else:
added_tokens = {}
tokenizer_config_file = path / 'tokenizer_config.json'
added_tokens = tokenizer.get('added_tokens')
if added_tokens is None or not tokenizer_config_file.is_file():
if not tokenizer_config_file.is_file():
return True
with open(tokenizer_config_file, encoding = 'utf-8') as f:
tokenizer_config = json.load(f)
@@ -135,6 +136,10 @@ class SpecialVocab:
add_entry = tokenizer_config.get(f'add_{typ}_token')
if isinstance(add_entry, bool):
self.add_special_token[typ] = add_entry
if not added_tokens:
# We will need this to get the content for the token, so if it's empty
# may as well just give up.
continue
entry = tokenizer_config.get(f'{typ}_token')
if isinstance(entry, str):
tc_content = entry

View File

@@ -1,6 +1,6 @@
[tool.poetry]
name = "gguf"
version = "0.5.2"
version = "0.5.3"
description = "Read and write ML models in GGUF for GGML"
authors = ["GGML <ggml@ggml.ai>"]
packages = [

View File

@@ -86,13 +86,14 @@ def dump_metadata_json(reader: GGUFReader, args: argparse.Namespace) -> None:
curr["value"] = str(bytes(field.parts[-1]), encoding="utf-8")
else:
curr["value"] = field.parts[-1].tolist()[0]
for idx, tensor in enumerate(reader.tensors):
tensors[tensor.name] = {
"index": idx,
"shape": tensor.shape.tolist(),
"type": tensor.tensor_type.name,
"offset": tensor.field.offset,
}
if not args.no_tensors:
for idx, tensor in enumerate(reader.tensors):
tensors[tensor.name] = {
"index": idx,
"shape": tensor.shape.tolist(),
"type": tensor.tensor_type.name,
"offset": tensor.field.offset,
}
json.dump(result, sys.stdout)

View File

@@ -255,6 +255,8 @@ enum llm_kv {
LLM_KV_TOKENIZER_UNK_ID,
LLM_KV_TOKENIZER_SEP_ID,
LLM_KV_TOKENIZER_PAD_ID,
LLM_KV_TOKENIZER_ADD_BOS,
LLM_KV_TOKENIZER_ADD_EOS,
LLM_KV_TOKENIZER_HF_JSON,
LLM_KV_TOKENIZER_RWKV,
};
@@ -303,6 +305,8 @@ static std::map<llm_kv, std::string> LLM_KV_NAMES = {
{ LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
{ LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
{ LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
{ LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" },
{ LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" },
{ LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
{ LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
};
@@ -1083,9 +1087,9 @@ enum e_model {
MODEL_70B,
};
static const size_t kB = 1024;
static const size_t MB = 1024*kB;
static const size_t GB = 1024*MB;
static const size_t kiB = 1024;
static const size_t MiB = 1024*kiB;
static const size_t GiB = 1024*MiB;
struct llama_hparams {
bool vocab_only;
@@ -1276,6 +1280,9 @@ struct llama_vocab {
id special_sep_id = -1;
id special_pad_id = -1;
int special_add_bos = -1; // -1 unknown, 1 add, 0 don't add.
int special_add_eos = -1; // -1 unknown, 1 add, 0 don't add.
id linefeed_id = 13;
id special_prefix_id = 32007;
id special_middle_id = 32009;
@@ -1481,7 +1488,7 @@ static bool llama_kv_cache_init(
vram_kv_cache += ggml_nbytes(cache.k);
}
if (vram_kv_cache > 0) {
LLAMA_LOG_INFO("%s: VRAM kv self = %.2f MB\n", __func__, vram_kv_cache / 1024.0 / 1024.0);
LLAMA_LOG_INFO("%s: VRAM kv self = %.2f MiB\n", __func__, vram_kv_cache / 1024.0 / 1024.0);
}
}
#endif
@@ -2388,6 +2395,23 @@ static void llm_load_vocab(
__func__, key.c_str(), id, old_id);
id = old_id;
}
}
// Handle add_bos_token and add_eos_token
std::string key = kv(LLM_KV_TOKENIZER_ADD_BOS);
int kid = gguf_find_key(ctx, key.c_str());
enum gguf_type ktype = kid < 0 ? GGUF_TYPE_COUNT : gguf_get_kv_type(ctx, kid);
vocab.special_add_bos = ktype == GGUF_TYPE_BOOL ? gguf_get_val_bool(ctx, kid) : -1;
if (ktype != GGUF_TYPE_BOOL && ktype != GGUF_TYPE_COUNT) {
LLAMA_LOG_WARN("%s: bad field type %d for '%s' - ignoring\n", __func__, ktype, key.c_str());
}
key = kv(LLM_KV_TOKENIZER_ADD_EOS);
kid = gguf_find_key(ctx, key.c_str());
ktype = kid < 0 ? GGUF_TYPE_COUNT : gguf_get_kv_type(ctx, kid);
vocab.special_add_eos = ktype == GGUF_TYPE_BOOL ? gguf_get_val_bool(ctx, kid) : -1;
if (ktype != GGUF_TYPE_BOOL && ktype != GGUF_TYPE_COUNT) {
LLAMA_LOG_WARN("%s: bad field type %d for '%s' - ignoring\n", __func__, ktype, key.c_str());
}
}
@@ -2519,8 +2543,8 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
if (ml.n_bytes < GB) {
LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
if (ml.n_bytes < GiB) {
LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
} else {
LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
}
@@ -2558,7 +2582,7 @@ static void llm_load_tensors(
ml.calc_sizes(ctx_size, mmapped_size);
LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MB\n", __func__, ctx_size/1024.0/1024.0);
LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, ctx_size/1024.0/1024.0);
// create the ggml context
{
@@ -3207,7 +3231,7 @@ static void llm_load_tensors(
ctx_size +
mmapped_size - vram_weights; // weights in VRAM not in memory
LLAMA_LOG_INFO("%s: mem required = %7.2f MB\n", __func__, mem_required / 1024.0 / 1024.0);
LLAMA_LOG_INFO("%s: mem required = %7.2f MiB\n", __func__, mem_required / 1024.0 / 1024.0);
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
@@ -3226,7 +3250,7 @@ static void llm_load_tensors(
#endif // GGML_USE_CUBLAS
LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
LLAMA_LOG_INFO("%s: VRAM used: %.2f MB\n", __func__, vram_weights / 1024.0 / 1024.0);
LLAMA_LOG_INFO("%s: VRAM used: %.2f MiB\n", __func__, vram_weights / 1024.0 / 1024.0);
#else
(void) n_gpu_layers;
#endif // defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
@@ -6283,7 +6307,10 @@ static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab &
// by modifying llm_tokenizer_x to operate with string offsets like pre-tokenizer
// and passing 'add space prefix' as bool argument
//
auto raw_text = (special ? "" : " ") + fragment.raw_text.substr(fragment.offset, fragment.length);
auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
if (&fragment == &fragment_buffer.front()) {
raw_text = " " + raw_text; // prefix with space if the first token is not special
}
#ifdef PRETOKENIZERDEBUG
fprintf(stderr,"TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
@@ -7935,7 +7962,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
workers.clear();
}
LLAMA_LOG_INFO("size = %8.2f MB -> %8.2f MB | hist: ", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB | hist: ", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
int64_t tot_count = 0;
for (size_t i = 0; i < hist_cur.size(); i++) {
hist_all[i] += hist_cur[i];
@@ -8475,7 +8502,7 @@ struct llama_context * llama_new_context_with_model(
{
const size_t memory_size = ggml_nbytes(ctx->kv_self.k) + ggml_nbytes(ctx->kv_self.v);
LLAMA_LOG_INFO("%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
LLAMA_LOG_INFO("%s: kv self size = %7.2f MiB\n", __func__, memory_size / 1024.0 / 1024.0);
}
// resized during inference
@@ -8520,7 +8547,7 @@ struct llama_context * llama_new_context_with_model(
// measure memory requirements for the graph
size_t alloc_size = ggml_allocr_alloc_graph(ctx->alloc, gf) + tensor_alignment;
LLAMA_LOG_INFO("%s: compute buffer total size = %.2f MB\n", __func__, (ctx->buf_compute.size + alloc_size) / 1024.0 / 1024.0);
LLAMA_LOG_INFO("%s: compute buffer total size = %.2f MiB\n", __func__, (ctx->buf_compute.size + alloc_size) / 1024.0 / 1024.0);
// recreate allocator with exact memory requirements
ggml_allocr_free(ctx->alloc);
@@ -8534,7 +8561,7 @@ struct llama_context * llama_new_context_with_model(
#endif
#ifdef GGML_USE_CUBLAS
ggml_cuda_set_scratch_size(alloc_size);
LLAMA_LOG_INFO("%s: VRAM scratch buffer: %.2f MB\n", __func__, alloc_size / 1024.0 / 1024.0);
LLAMA_LOG_INFO("%s: VRAM scratch buffer: %.2f MiB\n", __func__, alloc_size / 1024.0 / 1024.0);
// calculate total VRAM usage
auto add_tensor = [](const ggml_tensor * t, size_t & size) {
@@ -8554,10 +8581,10 @@ struct llama_context * llama_new_context_with_model(
size_t ctx_vram_size = alloc_size + kv_vram_size;
size_t total_vram_size = model_vram_size + ctx_vram_size;
LLAMA_LOG_INFO("%s: total VRAM used: %.2f MB (model: %.2f MB, context: %.2f MB)\n", __func__,
LLAMA_LOG_INFO("%s: total VRAM used: %.2f MiB (model: %.2f MiB, context: %.2f MiB)\n", __func__,
total_vram_size / 1024.0 / 1024.0,
model_vram_size / 1024.0 / 1024.0,
ctx_vram_size / 1024.0 / 1024.0);
ctx_vram_size / 1024.0 / 1024.0);
#endif
}
@@ -8578,7 +8605,7 @@ struct llama_context * llama_new_context_with_model(
const size_t max_size = ggml_get_max_tensor_size(ctx->model.ctx);
LLAMA_LOG_INFO("%s: max tensor size = %8.2f MB\n", __func__, max_size/1024.0/1024.0);
LLAMA_LOG_INFO("%s: max tensor size = %8.2f MiB\n", __func__, max_size/1024.0/1024.0);
#define LLAMA_METAL_CHECK_BUF(result) \
if (!(result)) { \
@@ -9285,6 +9312,14 @@ llama_token llama_token_nl(const struct llama_model * model) {
return model->vocab.linefeed_id;
}
int llama_add_bos_token(const struct llama_model * model) {
return model->vocab.special_add_bos;
}
int llama_add_eos_token(const struct llama_model * model) {
return model->vocab.special_add_eos;
}
llama_token llama_token_prefix(const struct llama_model * model) {
return model->vocab.special_prefix_id;
}

View File

@@ -517,6 +517,12 @@ extern "C" {
LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
// Returns -1 if unknown, 1 for true or 0 for false.
LLAMA_API int llama_add_bos_token(const struct llama_model * model);
// Returns -1 if unknown, 1 for true or 0 for false.
LLAMA_API int llama_add_eos_token(const struct llama_model * model);
// codellama infill tokens
LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
LLAMA_API llama_token llama_token_middle(const struct llama_model * model); // Beginning of infill middle