Compare commits

..

179 Commits
b1617 ... b1796

Author SHA1 Message Date
Georgi Gerganov
18c2e1752c ggml : fix vld1q_s8_x4 32-bit compat (#4828)
* ggml : fix vld1q_s8_x4 32-bit compat

ggml-ci

* ggml : fix 32-bit ARM compat (cont)

ggml-ci
2024-01-09 10:42:06 +02:00
Johannes Gäßler
8f900abfc0 CUDA: faster softmax via shared memory + fp16 math (#4742) 2024-01-09 08:58:55 +01:00
howlger
1fc2f265ff common : fix the short form of --grp-attn-w, not -gat (#4825)
See https://github.com/ggerganov/llama.cpp/blob/master/common/common.cpp#L230C53-L230C57
2024-01-08 21:05:53 +02:00
Georgi Gerganov
a9a8c5de3d readme : add link to SOTA models 2024-01-08 20:25:17 +02:00
Kawrakow
dd5ae06405 SOTA 2-bit quants (#4773)
* iq2_xxs: basics

* iq2_xxs: scalar and AVX2 dot products

Needed to change Q8_K to have quants in the -127...127 range,
else the IQ2_XXS AVX implementation becomes very awkward.
The alternative would have been to use Q8_0 instead. Perhaps
I'll change later, for now this is what we have.

* iq2_xxs: ARM_NEON dot product

Somehow strangely slow (112 ms/token).

* iq2_xxs: WIP Metal

Dequantize works, something is still wrong with the
dot product.

* iq2_xxs: Metal dot product now works

We have
PP-512 = 475 t/s
TG-128 = 47.3 t/s

Not the greatest performance, but not complete garbage either.

* iq2_xxs: slighty faster dot product

TG-128 is now 48.4 t/s

* iq2_xxs: slighty faster dot product

TG-128 is now 50.9 t/s

* iq2_xxs: even faster Metal dot product

TG-128 is now 54.1 t/s.

Strangely enough, putting the signs lookup table
into shared memory has a bigger impact than the
grid values being in shared memory.

* iq2_xxs: dequantize CUDA kernel - fix conflict with master

* iq2_xxs: quantized CUDA dot product (MMVQ)

We get TG-128 = 153.1 t/s

* iq2_xxs: slightly faster CUDA dot product

TG-128 is now at 155.1 t/s.

* iq2_xxs: add to llama ftype enum

* iq2_xxs: fix MoE on Metal

* Fix missing MMQ ops when on hipBLAS

I had put the ggml_supports_mmq call at the wrong place.

* Fix bug in qequantize_row_iq2_xxs

The 0.25f factor was missing.
Great detective work by @ggerganov!

* Fixing tests

* PR suggestion

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-08 16:02:32 +01:00
Georgi Gerganov
668b31fc7d swift : exclude ggml-metal.metal from the package (#4822) 2024-01-08 16:40:51 +02:00
Georgi Gerganov
42ea63c5a3 llama.swiftui : update readme 2024-01-08 15:57:36 +02:00
Georgi Gerganov
52531fdff8 main : add self-extend support (#4815)
* examples : add passkey test

* passkey : better prints

* passkey : select pass key pos from CLI

* passkey : simplify n_past logic

* llama : "self-extend"-like context extension

* passkey : add comment

* main : add Self-Extend support

* llama : add comment about llama_kv_cache_seq_div
2024-01-08 11:18:32 +02:00
Georgi Gerganov
b0034d93ce examples : add passkey test (#3856)
* examples : add passkey test

* passkey : better prints

* passkey : select pass key pos from CLI

* passkey : simplify n_past logic

* make : add passkey target

* passkey : add "self-extend"-like context extension (#4810)

* llama : "self-extend"-like context extension

* passkey : add comment

* passkey : add readme
2024-01-08 11:14:04 +02:00
Lars Grammel
b7e7982953 readme : add lgrammel/modelfusion JS/TS client for llama.cpp (#4814) 2024-01-07 22:24:11 +02:00
slaren
226460cc0d llama-bench : add no-kv-offload parameter (#4812) 2024-01-07 17:59:01 +01:00
Johannes Gäßler
d5a410e855 CUDA: fixed redundant value dequantization (#4809) 2024-01-07 17:24:08 +01:00
Georgi Gerganov
9dede37d81 llama : remove unused vars (#4796) 2024-01-07 14:29:36 +02:00
Georgi Gerganov
3c36213df8 llama : remove redundant GQA check (#4796) 2024-01-07 11:21:53 +02:00
Alex Azarov
72d8407b36 llama.swiftui : use llama.cpp as SPM package (#4804) 2024-01-07 10:20:50 +02:00
Georgi Gerganov
d117d4dc5d llama : print tensor meta for debugging 2024-01-07 09:51:12 +02:00
Alex Azarov
3418c03ecc llama.swiftui : add visionOS target (#4805) 2024-01-07 09:46:55 +02:00
Konstantin Zhuravlyov
63ee677efd ggml : use __builtin_amdgcn_sudot4 in __dp4a for gfx11 (#4787) 2024-01-07 08:52:42 +02:00
Georgi Gerganov
67984921a7 server : fix n_predict check (#4798) 2024-01-07 08:45:26 +02:00
Daniel Illescas Romero
c75ca5d96f llama.swiftui : use correct pointer for llama_token_eos (#4797) 2024-01-06 17:12:59 +02:00
Georgi Gerganov
96e80dabc6 examples : improve base-translate.sh script (#4783) 2024-01-06 11:40:24 +02:00
a-n-n-a-l-e-e
eec22a1c63 cmake : check for openblas64 (#4134)
openblas v0.3.22 64-bit pkg-config file is named openblas64.pc
https://github.com/OpenMathLib/OpenBLAS/issues/3790
2024-01-05 18:04:40 +02:00
Ikko Eltociear Ashimine
be36bb946a flake.nix : fix typo (#4700)
betwen -> between
2024-01-05 18:02:44 +02:00
Georgi Gerganov
91d38876df metal : switch back to default.metallib (ggml/681)
ggml-ci
2024-01-05 18:02:06 +02:00
Georgi Gerganov
d061bf9405 ggml : fix q2_k bpw in comments (ggml/680) 2024-01-05 18:02:06 +02:00
Finn Voorhees
1bf681f90e ggml : add error handling to graph_compute (whisper/1714) 2024-01-05 18:02:06 +02:00
Georgi Gerganov
c1d7cb28d3 ggml : do not sched_yield when calling BLAS (#4761)
* ggml : do not sched_yield when calling BLAS

ggml-ci

* ggml : fix do_yield logic

ggml-ci

* ggml : simplify do_yield logic

ggml-ci
2024-01-05 15:18:21 +02:00
Georgi Gerganov
3681f22443 examples : add few-shot translation example (#4783) 2024-01-05 15:11:10 +02:00
Daniel Bevenius
b3a7c20b5c finetune : remove unused includes (#4756)
This commit removes unused includes from finetune.cpp.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-01-04 21:45:37 +02:00
Georgi Gerganov
012cf349ae server : send token probs for "stream == false" (#4714) 2024-01-04 19:56:33 +02:00
Johannes Gäßler
a91928014f Print backend name on test-backend-ops failure (#4751) 2024-01-04 09:43:23 +01:00
singularity
3c0b585561 llama.swiftui : support loading custom model from file picker (#4767)
* swiftui: support load model from file picker

* swiftui: remove trailing whitespace
2024-01-04 10:22:38 +02:00
Michael Coppola
e5804313a1 server : fix options in README.md (#4765)
* fix examples/server/README.md

* minor : fix whitespace

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-04 10:17:09 +02:00
Georgi Gerganov
dc891b7f7a ggml : include stdlib.h before intrin.h (#4736) 2024-01-04 10:12:26 +02:00
singularity
46cea79e1f llama.swiftui : fix build of ggml.metallib (#4754)
* metal: fix metal backend init failure in swiftui

* metal: build ggml.metallib instead of copy src

* llama.swift : remove debug flags from metallib build

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-04 09:58:16 +02:00
Daniel Bevenius
cb1e2818e0 train : fix typo in overlapping-samples help msg (#4758)
This commit fixes a typo in the help message for the
--overlapping-samples option.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-01-03 19:53:40 +02:00
Ashraful Islam
ece9a45e8f swift : update Package.swift to use ggml as dependency (#4691)
* updates the package.swift to use ggml as dependency

* changes the ggml package url src to ggerganov
2024-01-03 19:30:02 +02:00
Georgi Gerganov
7bed7eba35 cuda : simplify expression
Co-authored-by: slaren <slarengh@gmail.com>
2024-01-03 14:38:38 +02:00
Georgi Gerganov
d55356d3ba cuda : mark I16 and I32 ops as unsupported
ggml-ci
2024-01-03 14:38:38 +02:00
Georgi Gerganov
75e3fd8581 sync : ggml
ggml-ci
2024-01-03 14:38:38 +02:00
Georgi Gerganov
289313716f metal : add kernel_get_rows_i32
ggml-ci
2024-01-03 14:38:38 +02:00
Georgi Gerganov
ab62fc3e55 scripts : fix sync order + metal sed 2024-01-03 14:38:38 +02:00
Guillaume Wenzek
5f66ebca9c ggml : extend ggml_get_rows, ggml_repeat, ggml_concat (ggml/639)
* add more int ops

* ggml_compute_forward_dup_bytes

* add tests

* PR comments

* tests : minor indentations

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-03 14:38:38 +02:00
Justin Parker
f2eb19bd8b server : throw an error when slot unavailable (#4741) 2024-01-03 10:43:19 +02:00
Georgi Gerganov
f3f62f0d83 metal : optimize ggml_mul_mat_id (faster Mixtral PP) (#4725)
* ggml : disable fast-math for Metal (cmake build only)

ggml-ci

* metal : fix Metal API debug warnings

* cmake : add -fno-inline for Metal build (#4545)

* metal : fix API debug warnings

* metal : fix compile warnings

* metal : use uint64_t for strides

* cmake : rename option to LLAMA_METAL_SHADER_DEBUG

* metal : fix mat-vec Q8_0 kernel for BS > 1

* metal : normalize mat-vec kernel signatures

* cmake : respect LLAMA_QKK_64 option

* metal : fix mat-vec Q4_K kernel for QK_K == 64

* metal : optimizing ggml_mul_mat_id (wip)

* metal : minor fix

* metal : opt mul_mm_id
2024-01-02 21:07:47 +02:00
Phil H
0ef3ca2ac6 server : add token counts to html footer (#4738)
* server: add token counts to stats

* server: generate hpp

---------

Co-authored-by: phiharri <ph@got-root.co.uk>
2024-01-02 17:48:49 +02:00
Georgi Gerganov
540938f890 llama : llama_model_desc print number of experts 2024-01-02 16:26:45 +02:00
Marcus Dunn
0040d42eeb llama : replace all API facing int's with int32_t (#4577)
* replaced all API facing `int`'s with `int32_t`

* formatting and missed `int` in `llama_token_to_piece`
2024-01-02 16:15:16 +02:00
postmasters
83e633c27e llama : differentiate the KV dims in the attention (#4657)
* Add n_key_dim and n_value_dim

Some models use values that are not derived from `n_embd`.
Also remove `n_embd_head` and `n_embd_gqa` because it is not clear
which "head" is referred to (key or value).

Fix issue #4648.

* Fix `llm_build_kqv` to use `n_value_gqa`

* Rebase

* Rename variables

* Fix llm_build_kqv to be more generic wrt n_embd_head_k

* Update default values for n_embd_head_k and n_embd_head_v

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Fix llm_load_tensors: the asserts were not backcompat

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-02 13:51:28 +02:00
Georgi Gerganov
32866c5edd editorconfig : fix whitespace and indentation #4710 2024-01-02 13:28:15 +02:00
minarchist
5d7002d437 server : add --override-kv parameter (#4710)
* Changes to server to allow metadata override

* documentation

* flake.nix: expose full scope in legacyPackages

* flake.nix: rocm not yet supported on aarch64, so hide the output

* flake.nix: expose checks

* workflows: nix-ci: init; build flake outputs

* workflows: nix-ci: add a job for eval

* workflows: weekly `nix flake update`

* workflows: nix-flakestry: drop tag filters

...and add a job for flakehub.com

* workflows: nix-ci: add a qemu job for jetsons

* flake.nix: suggest the binary caches

* flake.lock: update

to a commit recently cached by nixpkgs-cuda-ci

---------

Co-authored-by: John <john@jLap.lan>
Co-authored-by: Someone Serge <sergei.kozlukov@aalto.fi>
2024-01-02 12:38:15 +02:00
Nam D. Tran
26f3071d71 py : re-enable mmap in convert hf (#4732)
* update: awq support llama-7b model

* update: change order

* update: benchmark results for llama2-7b

* update: mistral 7b v1 benchmark

* update: support 4 models

* fix: Readme

* update: ready for PR

* update: readme

* fix: readme

* update: change order import

* black

* format code

* update: work for bot mpt and awqmpt

* update: readme

* Rename to llm_build_ffn_mpt_awq

* Formatted other files

* Fixed params count

* fix: remove code

* update: more detail for mpt

* fix: readme

* fix: readme

* update: change folder architecture

* fix: common.cpp

* fix: readme

* fix: remove ggml_repeat

* update: cicd

* update: cicd

* uppdate: remove use_awq arg

* update: readme

* llama : adapt plamo to new ffn

ggml-ci

* fix: update torch version

---------

Co-authored-by: Trần Đức Nam <v.namtd12@vinai.io>
Co-authored-by: Le Hoang Anh <v.anhlh33@vinai.io>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-02 11:23:38 +02:00
Daniel Bevenius
775ac8712a finetune: fix typo in README.md (#4733)
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-01-02 10:16:55 +01:00
Georgi Gerganov
58ba655af0 metal : enable shader debugging (cmake option) (#4705)
* ggml : disable fast-math for Metal (cmake build only)

ggml-ci

* metal : fix Metal API debug warnings

* cmake : add -fno-inline for Metal build (#4545)

* metal : fix API debug warnings

* metal : fix compile warnings

* metal : use uint64_t for strides

* cmake : rename option to LLAMA_METAL_SHADER_DEBUG

* metal : fix mat-vec Q8_0 kernel for BS > 1

* metal : normalize mat-vec kernel signatures

* cmake : respect LLAMA_QKK_64 option

* metal : fix mat-vec Q4_K kernel for QK_K == 64

ggml-ci
2024-01-02 10:57:44 +02:00
Someone Serge
edd1ab7bc3 flake.lock: update
to a commit recently cached by nixpkgs-cuda-ci
2023-12-31 13:14:58 -08:00
Someone Serge
198ed7ebfc flake.nix: suggest the binary caches 2023-12-31 13:14:58 -08:00
Someone Serge
d836174731 workflows: nix-ci: add a qemu job for jetsons 2023-12-31 13:14:58 -08:00
Someone Serge
06f2a5d190 workflows: nix-flakestry: drop tag filters
...and add a job for flakehub.com
2023-12-31 13:14:58 -08:00
Someone Serge
c5239944ba workflows: weekly nix flake update 2023-12-31 13:14:58 -08:00
Someone Serge
1e9ae54cf2 workflows: nix-ci: add a job for eval 2023-12-31 13:14:58 -08:00
Someone Serge
7adedecbe3 workflows: nix-ci: init; build flake outputs 2023-12-31 13:14:58 -08:00
Someone Serge
356ea17e0f flake.nix: expose checks 2023-12-31 13:14:58 -08:00
Someone Serge
a5c088d8c6 flake.nix: rocm not yet supported on aarch64, so hide the output 2023-12-31 13:14:58 -08:00
Someone Serge
1e3900ebac flake.nix: expose full scope in legacyPackages 2023-12-31 13:14:58 -08:00
Georgi Gerganov
e39106c055 ggml : add ggml_vdotq_s32 alias (#4715)
ggml-ci
2023-12-31 11:43:31 +02:00
Georgi Gerganov
9fbda719de clip : refactor + bug fixes (#4696)
* clip : refactor + bug fixes

ggml-ci

* server : add log message
2023-12-30 23:24:42 +02:00
Johannes Gäßler
39d8bc71ed CUDA: fixed tensor cores not being used on RDNA3 (#4697) 2023-12-30 13:52:01 +01:00
automaticcat
24a447e20a ggml : add ggml_cpu_has_avx_vnni() (#4589)
* feat: add avx_vnni based on intel documents

* ggml: add avx vnni based on intel document

* llama: add avx vnni information display

* docs: add more details about using oneMKL and oneAPI for intel processors

* docs: add more details about using oneMKL and oneAPI for intel processors

* docs: add more details about using oneMKL and oneAPI for intel processors

* docs: add more details about using oneMKL and oneAPI for intel processors

* docs: add more details about using oneMKL and oneAPI for intel processors

* Update ggml.c

Fix indentation upgate

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-30 10:07:48 +02:00
Johannes Gäßler
a20f3c7465 CUDA: fix tensor core logic for Pascal and HIP (#4682) 2023-12-29 23:12:53 +01:00
Georgi Gerganov
0235b9b571 clip : use ggml_backend_buffer_is_host (#4205) 2023-12-29 18:53:34 +02:00
Steward Garcia
ce18d727a4 clip : enable gpu backend (#4205)
* clip: enable CUDA backend

* add missing kernels

* add enough padding for alignment

* remove ggml_repeat of clip.cpp

* add metal backend

* llava : fixes

- avoid ggml_repeat
- use GGML_USE_ instead of CLIP_USE_ macros
- remove unused vars

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-29 18:52:15 +02:00
hydai
91bb39cec7 cuda: fix vmm oom issue on NVIDIA AGX Orin (#4687)
Signed-off-by: hydai <hydai@secondstate.io>
2023-12-29 17:31:19 +01:00
crasm
04ac0607e9 python : add check-requirements.sh and GitHub workflow (#4585)
* python: add check-requirements.sh and GitHub workflow

This script and workflow forces package versions to remain compatible
across all convert*.py scripts, while allowing secondary convert scripts
to import dependencies not wanted in convert.py.

* Move requirements into ./requirements

* Fail on "==" being used for package requirements (but can be suppressed)

* Enforce "compatible release" syntax instead of ==

* Update workflow

* Add upper version bound for transformers and protobuf

* improve check-requirements.sh

* small syntax change

* don't remove venvs if nocleanup is passed

* See if this fixes docker workflow

* Move check-requirements.sh into ./scripts/

---------

Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2023-12-29 16:50:29 +02:00
Philip Taron
68eccbdc5b flake.nix : rewrite (#4605)
* flake.lock: update to hotfix CUDA::cuda_driver

Required to support https://github.com/ggerganov/llama.cpp/pull/4606

* flake.nix: rewrite

1. Split into separate files per output.

2. Added overlays, so that this flake can be integrated into others.
   The names in the overlay are `llama-cpp`, `llama-cpp-opencl`,
   `llama-cpp-cuda`, and `llama-cpp-rocm` so that they fit into the
   broader set of Nix packages from [nixpkgs](https://github.com/nixos/nixpkgs).

3. Use [callPackage](https://summer.nixos.org/blog/callpackage-a-tool-for-the-lazy/)
   rather than `with pkgs;` so that there's dependency injection rather
   than dependency lookup.

4. Add a description and meta information for each package.
   The description includes a bit about what's trying to accelerate each one.

5. Use specific CUDA packages instead of cudatoolkit on the advice of SomeoneSerge.

6. Format with `serokell/nixfmt` for a consistent style.

7. Update `flake.lock` with the latest goods.

* flake.nix: use finalPackage instead of passing it manually

* nix: unclutter darwin support

* nix: pass most darwin frameworks unconditionally

...for simplicity

* *.nix: nixfmt

nix shell github:piegamesde/nixfmt/rfc101-style --command \
    nixfmt flake.nix .devops/nix/*.nix

* flake.nix: add maintainers

* nix: move meta down to follow Nixpkgs style more closely

* nix: add missing meta attributes

nix: clarify the interpretation of meta.maintainers

nix: clarify the meaning of "broken" and "badPlatforms"

nix: passthru: expose the use* flags for inspection

E.g.:

```
❯ nix eval .#cuda.useCuda
true
```

* flake.nix: avoid re-evaluating nixpkgs too many times

* flake.nix: use flake-parts

* nix: migrate to pname+version

* flake.nix: overlay: expose both the namespace and the default attribute

* ci: add the (Nix) flakestry workflow

* nix: cmakeFlags: explicit OFF bools

* nix: cuda: reduce runtime closure

* nix: fewer rebuilds

* nix: respect config.cudaCapabilities

* nix: add the impure driver's location to the DT_RUNPATHs

* nix: clean sources more thoroughly

...this way outPaths change less frequently,
and so there are fewer rebuilds

* nix: explicit mpi support

* nix: explicit jetson support

* flake.nix: darwin: only expose the default

---------

Co-authored-by: Someone Serge <sergei.kozlukov@aalto.fi>
2023-12-29 16:42:26 +02:00
Cuong Trinh Manh
97bbca6e85 cmake : fix ld warning duplicate libraries libllama.a (#4671)
* fix "ld: warning: ignoring duplicate libraries: '../libllama.a'"

* fix warning in example.
2023-12-29 16:39:15 +02:00
Justine Tunney
4af4801566 llava-cli : refactor to use sampling library (#4669)
This change makes it possible to use flags like `--grammar` when using
the `llava-cli` program. The rest is just code cleanup deleting a long
standing TODO comment.

This change also ensures that logging information is emitted to stderr
which helps the `llava-cli` command be more friendly to shell scripts.

See Mozilla-Ocho/llamafile@1cd334f
2023-12-29 16:38:38 +02:00
Justine Tunney
db49ff8ed7 server : replace sleep with condition variables (#4673)
The server currently schedules tasks using a sleep(5ms) busy loop. This
adds unnecessary latency since most sleep implementations do a round up
to the system scheduling quantum (usually 10ms). Other libc sleep impls
spin for smaller time intervals which results in the server's busy loop
consuming all available cpu. Having the explicit notify() / wait() code
also helps aid in the readability of the server code.

See mozilla-Ocho/llamafile@711344b
2023-12-29 16:24:12 +02:00
SakuraUmi
60f55e888c server : fix OpenAI server sampling w.r.t. penalty. (#4675) 2023-12-29 16:22:44 +02:00
Karthik Sethuraman
b93edd22f5 server : allow to generate multimodal embeddings (#4681) 2023-12-29 16:22:10 +02:00
andrijdavid
82d6eab224 main-cmake-pkg : fix build issue (#4665)
* Fix main-cmake-pkg compilation

* Use glob to load common files

* cmake : fix trailing whitespace

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-29 16:18:20 +02:00
Peter Sugihara
afd997ab60 llama.swiftui : fix infinite loop, ouput timings, buff UI (#4674)
* fix infinite loop

* slight UI simplification, clearer UX

* clearer UI text, add timings to completion log
2023-12-29 15:58:56 +02:00
Georgi Gerganov
c8255f8a6b scripts : print list of sync commits 2023-12-29 15:12:35 +02:00
Tamotsu Takahashi
441f51dca0 ci : build with CLBlast + ggml-opencl use GGML_API (whisper/1576)
* Build with CLBlast

* Declare GGML_API

After rebasing, examples/talk-llama failed:

"D:\a\whisper.cpp\whisper.cpp\build\ALL_BUILD.vcxproj" (build target) (1) ->
"D:\a\whisper.cpp\whisper.cpp\build\examples\talk-llama\talk-llama.vcxproj" (default target) (14) ->
(Link target) ->
  llama.obj : error LNK2019: unresolved external symbol ggml_cl_free_data referenced in function "public: __cdecl llama_model::~llama_model(void)" (??1llama_model@@QEAA@XZ) [D:\a\whisper.cpp\whisper.cpp\build\examples\talk-llama\talk-llama.vcxproj]
  llama.obj : error LNK2019: unresolved external symbol ggml_cl_transform_tensor referenced in function "public: void __cdecl llama_model_loader::load_all_data(struct ggml_context *,void (__cdecl*)(float,void *),void *,struct llama_mlock *)" (?load_all_data@llama_model_loader@@QEAAXPEAUggml_context@@P6AXMPEAX@Z1PEAUllama_mlock@@@Z) [D:\a\whisper.cpp\whisper.cpp\build\examples\talk-llama\talk-llama.vcxproj]
  D:\a\whisper.cpp\whisper.cpp\build\bin\Release\talk-llama.exe : fatal error LNK1120: 2 unresolved externals [D:\a\whisper.cpp\whisper.cpp\build\examples\talk-llama\talk-llama.vcxproj]
2023-12-29 15:11:53 +02:00
Georgi Gerganov
38b3de4658 sync : ggml 2023-12-29 14:56:41 +02:00
bssrdf
afc8c19291 ggml : fix some mul mat cases + add tests for src1 F16 (ggml/669)
* fixed mul-mat error for old GPUs

* style fixes

* add mul mat src1 f16 test cases, fix more cases

ggml-ci

---------

Co-authored-by: bssrdf <bssrdf@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
2023-12-29 14:54:19 +02:00
Georgi Gerganov
ca38b8d334 scripts : do not sync commits from this repo 2023-12-29 14:54:05 +02:00
Justine Tunney
65e5f6dadb Fix OpenAI server sampling w.r.t. temp and seed (#4668)
The default values for tfs_z and typical_p were being set to zero, which
caused the token candidates array to get shrunk down to one element thus
preventing any sampling. Note this only applies to OpenAI API compatible
HTTP server requests.

The solution is to use the default values that OpenAI documents, as well
as ensuring we use the llama.cpp defaults for the rest. I've tested this
change still ensures deterministic output by default. If a "temperature"
greater than 0 is explicitly passed, then output is unique each time. If
"seed" is specified in addition to "temperature" then the output becomes
deterministic once more.

See mozilla-Ocho/llamafile#117
See mozilla-Ocho/llamafile@9e4bf29
2023-12-28 15:20:00 -04:00
manikbhandari
ea5497df5d gpt2 : Add gpt2 architecture integration (#4555) 2023-12-28 15:03:57 +01:00
Nam D. Tran
f6793491b5 llama : add AWQ for llama, llama2, mpt, and mistral models (#4593)
* update: awq support llama-7b model

* update: change order

* update: benchmark results for llama2-7b

* update: mistral 7b v1 benchmark

* update: support 4 models

* fix: Readme

* update: ready for PR

* update: readme

* fix: readme

* update: change order import

* black

* format code

* update: work for bot mpt and awqmpt

* update: readme

* Rename to llm_build_ffn_mpt_awq

* Formatted other files

* Fixed params count

* fix: remove code

* update: more detail for mpt

* fix: readme

* fix: readme

* update: change folder architecture

* fix: common.cpp

* fix: readme

* fix: remove ggml_repeat

* update: cicd

* update: cicd

* uppdate: remove use_awq arg

* update: readme

* llama : adapt plamo to new ffn

ggml-ci

---------

Co-authored-by: Trần Đức Nam <v.namtd12@vinai.io>
Co-authored-by: Le Hoang Anh <v.anhlh33@vinai.io>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-27 17:39:45 +02:00
Daniel Bevenius
879b690a9e finetune : fix output formatting in print_params (#4653)
This commit fixes the output formatting in the print_params function
which currently looks like this:
```console
print_params: n_vocab:   32000
print_params: n_ctx:     128
print_params: n_embd:    4096
print_params: n_ff:      11008
print_params: n_head:    32
print_params: n_head_kv: 32
print_params: n_layer:   32
print_params: norm_rms_eps          : 0.000010
print_params: rope_freq_base        : 10000.000000
print_params: rope_freq_scale       : 1.000000
```
With this comit the output will look like this:
```console
print_params: n_vocab               : 32000
print_params: n_ctx                 : 128
print_params: n_embd                : 4096
print_params: n_ff                  : 11008
print_params: n_head                : 32
print_params: n_head_kv             : 32
print_params: n_layer               : 32
print_params: norm_rms_eps          : 0.000010
print_params: rope_freq_base        : 10000.000000
print_params: rope_freq_scale       : 1.000000
```

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2023-12-27 16:16:55 +02:00
Georgi Gerganov
b47879b0dd scripts : add sync-ggml-am.sh 2023-12-27 11:44:22 +02:00
Georgi Gerganov
951010fa53 ggml : fix dot product for ARM (#4630)
ggml-ci
2023-12-27 11:02:13 +02:00
wonjun Jang
f56d6077d0 Add byte token type when tokenizer.model is not exists (#4641)
* Add byte token type to hf format

* remove unused variable
2023-12-27 17:37:25 +09:00
slaren
dc68f0054c cuda : fix vmm pool with multi GPU (#4620)
* cuda : fix vmm pool with multi GPU

* hip

* use recommended granularity instead of minimum

* better error checking

* fix mixtral

* use cudaMemcpy3DPeerAsync

* use cuda_pool_alloc in ggml_cuda_op_mul_mat

* consolidate error checking in ggml_cuda_set_device

* remove unnecessary inlines

ggml-ci

* style fixes

* only use vmm for the main device

* fix scratch buffer size, re-enable vmm pool for all devices

* remove unnecessary check id != g_main_device
2023-12-26 21:23:59 +01:00
WillCorticesAI
de8e496437 Update comment for AdamW implementation reference. (#4604)
Co-authored-by: Will Findley <findley@gmail.com>
2023-12-26 11:42:08 +01:00
FantasyGmm
77465dad48 Fix new CUDA10 compilation errors (#4635) 2023-12-26 11:38:36 +01:00
Paul Tsochantaris
a206137f92 Adding Emeltal reference to UI list (#4629) 2023-12-25 18:09:53 +02:00
slaren
b9f47952ff simplify bug issue template (#4623) 2023-12-24 22:01:12 +02:00
Shintarou Okada
753be377b6 llama : add PLaMo model (#3557)
* add plamo mock

* add tensor loading

* plamo convert

* update norm

* able to compile

* fix norm_rms_eps hparam

* runnable

* use inp_pos

* seems ok

* update kqv code

* remove develop code

* update README

* shuffle attn_q.weight and attn_output.weight for broadcasting

* remove plamo_llm_build_kqv and use llm_build_kqv

* fix style

* update

* llama : remove obsolete KQ_scale

* plamo : fix tensor names for correct GPU offload

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-24 15:35:49 +02:00
slaren
5bf3953d7e cuda : improve cuda pool efficiency using virtual memory (#4606)
* cuda : improve cuda pool efficiency using virtual memory

* fix mixtral

* fix cmake build

* check for vmm support, disable for hip

ggml-ci

* fix hip build

* clarify granularity

* move all caps to g_device_caps

* refactor error checking

* add cuda_pool_alloc, refactor most pool allocations

ggml-ci

* fix hip build

* CUBLAS_TF32_TENSOR_OP_MATH is not a macro

* more hip crap

* llama : fix msvc warnings

* ggml : fix msvc warnings

* minor

* minor

* cuda : fallback to CPU on host buffer alloc fail

* Update ggml-cuda.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Update ggml-cuda.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* ensure allocations are always aligned

* act_size -> actual_size

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2023-12-24 14:34:22 +01:00
slaren
708e179e85 fallback to CPU buffer if host buffer alloc fails (#4610) 2023-12-23 16:10:51 +01:00
Samuel Maynard
925e5584a0 ci(docker): fix tags in "Build and push docker image (tagged)" (#4603) 2023-12-23 11:35:55 +02:00
Alexey Parfenov
6123979952 server : allow to specify custom prompt for penalty calculation (#3727) 2023-12-23 11:31:49 +02:00
kalomaze
b9ec82d262 grammar : check the full vocab only if necessary (opt) (#4306)
* Check the full vocab for grammar only if necessary

* Fix missing logit restoration step (?)

Does this matter, actually?

* Fix whitespace / formatting

* Adjust comment

* Didn't mean to push test gbnf

* Split sampling into the helper function (?)

And also revert the changes made to the header

* common : fix final newline

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-23 11:27:07 +02:00
Johannes Gäßler
e0a4002273 CUDA: fixed row rounding for 0 tensor splits (#4594) 2023-12-23 09:16:33 +01:00
LeonEricsson
7082d24cec lookup : add prompt lookup decoding example (#4484)
* initial commit, going through initializations

* main loop finished, starting to debug

* BUG: generates gibberish/repeating tokens after a while

* kv_cache management

* Added colors to distinguish drafted tokens (--color). Updated README

* lookup : fix token positions in the draft batch

* lookup : use n_draft from CLI params

* lookup : final touches

---------

Co-authored-by: Leon Ericsson <leon.ericsson@icloud.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-22 18:05:56 +02:00
Georgi Gerganov
ba66175132 sync : ggml (fix im2col) (#4591)
* cuda : fix im2col_f32_f16 (ggml/#658)

ggml-ci

* ggml-alloc : fix ggml_tallocr_is_own

---------

Co-authored-by: leejet <leejet714@gmail.com>
2023-12-22 17:53:43 +02:00
FantasyGmm
a55876955b cuda : fix jetson compile error (#4560)
* fix old jetson compile error

* Update Makefile

* update jetson detect and cuda version detect

* update cuda marco define

* update makefile and cuda,fix some issue

* Update README.md

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update Makefile

* Update README.md

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-22 17:11:12 +02:00
Henrik Forstén
6724ef1657 Fix CudaMemcpy direction (#4599) 2023-12-22 14:34:05 +01:00
slaren
48b7ff193e llama : fix platforms without mmap (#4578)
* llama : fix platforms without mmap

* win32 : limit prefetch size to the file size

* fix win32 error clobber, unnecessary std::string in std::runtime_error
2023-12-22 13:12:53 +02:00
Herman Semenov
48b24b170e ggml : add comment about backward GGML_OP_DIAG_MASK_INF (#4203) 2023-12-22 11:26:49 +02:00
Michael Kesper
28cb35a0ec make : add LLAMA_HIP_UMA option (#4587)
NB: LLAMA_HIP_UMA=1 (or any value) adds MK_CPPFLAG -DGGML_HIP_UMA
2023-12-22 10:03:25 +02:00
rhuddleston
f31b984898 ci : tag docker image with build number (#4584) 2023-12-22 08:56:34 +02:00
Deins
2bb98279c5 readme : add zig bindings (#4581) 2023-12-22 08:49:54 +02:00
bobqianic
0137ef88ea ggml : extend enum ggml_log_level with GGML_LOG_LEVEL_DEBUG (#4579) 2023-12-22 08:47:01 +02:00
crasm
c7e9701f86 llama : add ability to cancel model loading (#4462)
* llama : Add ability to cancel model load

Updated llama_progress_callback so that if it returns false, the model
loading is aborted.

* llama : Add test for model load cancellation

* Fix bool return in llama_model_load, remove std::ignore use

* Update llama.cpp

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* Fail test if model file is missing

* Revert "Fail test if model file is missing"

This reverts commit 32ebd525bf.

* Add test-model-load-cancel to Makefile

* Revert "Revert "Fail test if model file is missing""

This reverts commit 2796953257.

* Simplify .gitignore for tests, clang-tidy fixes

* Label all ctest tests

* ci : ctest uses -L main

* Attempt at writing ctest_with_model

* ci : get ci/run.sh working with test-model-load-cancel

* ci : restrict .github/workflows/build.yml ctest to -L main

* update requirements.txt

* Disable test-model-load-cancel in make

* Remove venv before creation

* Restructure requirements.txt

Top-level now imports the specific additional requirements for each
python file. Using `pip install -r requirements.txt` will fail if
versions become mismatched in the per-file requirements.

* Make per-python-script requirements work alone

This doesn't break the main requirements.txt.

* Add comment

* Add convert-persimmon-to-gguf.py to new requirements.txt scheme

* Add check-requirements.sh script and GitHub workflow

* Remove shellcheck installation step from workflow

* Add nocleanup special arg

* Fix merge

see: https://github.com/ggerganov/llama.cpp/pull/4462#discussion_r1434593573

* reset to upstream/master

* Redo changes for cancelling model load

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
2023-12-22 08:19:36 +02:00
Georgi Gerganov
afefa319f1 ggml : change ggml_scale to take a float instead of tensor (#4573)
* ggml : change ggml_scale to take a float instead of tensor

* ggml : fix CPU implementation

* tests : fix test-grad0

ggml-ci
2023-12-21 23:20:49 +02:00
Georgi Gerganov
769a7bc85e gguf-py : fix broken link 2023-12-21 23:20:36 +02:00
Georgi Gerganov
32259b2dad gguf : simplify example dependencies 2023-12-21 23:08:14 +02:00
Samuel Maynard
4a5f9d629e ci : add jlumbroso/free-disk-space to docker workflow (#4150)
* [github][workflows][docker]: removes hardcoded `ggerganov` from `ghcr` repo

* [github][workflows][docker]: adds `jlumbroso/free-disk-space`
2023-12-21 22:36:26 +02:00
slaren
d232aca5a7 llama : initial ggml-backend integration (#4520)
* llama : initial ggml-backend integration

* add ggml-metal

* cuda backend can be used though ggml-backend with LLAMA_GGML_BACKEND_CUDA_TEST
access all tensor data with ggml_backend_tensor_get/set

* add ggml_backend_buffer_clear
zero-init KV cache buffer

* add ggml_backend_buffer_is_hos, used to avoid copies if possible when accesing tensor data

* disable gpu backends with ngl 0

* more accurate mlock

* unmap offloaded part of the model

* use posix_fadvise64(.., POSIX_FADV_SEQUENTIAL) to improve performance with mmap

* update quantize and lora

* update session copy/set to use ggml-backend

ggml-ci

* use posix_fadvise instead of posix_fadvise64

* ggml_backend_alloc_ctx_tensors_from_buft : remove old print

* llama_mmap::align_offset : use pointers instead of references for out parameters

* restore progress_callback behavior

* move final progress_callback call to load_all_data

* cuda : fix fprintf format string (minor)

* do not offload scales

* llama_mmap : avoid unmapping the same fragments again in the destructor

* remove unnecessary unmap

* metal : add default log function that prints to stderr, cleanup code

ggml-ci

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-21 21:07:46 +01:00
Marcus Dunn
31f27758fa llama : allow getting n_batch from llama_context in c api (#4540)
* allowed getting n_batch from llama_context in c api

* changed to use `uint32_t` instead of `int`

* changed to use `uint32_t` instead of `int` in `llama_n_ctx`

* Update llama.h

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-21 21:57:48 +02:00
Finn Voorhees
56fa50819f metal : fix ggml_metal_log vargs (#4373) 2023-12-21 21:55:02 +02:00
Erik Garrison
0f630fbc92 cuda : ROCm AMD Unified Memory Architecture (UMA) handling (#4449)
* AMD ROCm: handle UMA memory VRAM expansions

This resolves #2797 by allowing ROCm AMD GPU users with a UMA to
dynamically expand the VRAM allocated to the GPU.

Without this, AMD ROCm users with shared CPU/GPU memory usually are
stuck with the BIOS-set (or fixed) framebuffer VRAM, making it
impossible to load more than 1-2 layers.

Note that the model is duplicated in RAM because it's loaded once for
the CPU and then copied into a second set of allocations that are
managed by the HIP UMA system. We can fix this later.

* clarify build process for ROCm on linux with cmake

* avoid using deprecated ROCm hipMallocHost

* keep simplifying the change required for UMA

* cmake: enable UMA-compatible allocation when LLAMA_HIP_UMA=ON
2023-12-21 21:45:32 +02:00
arlo-phoenix
562cf222b5 ggml-cuda: Fix HIP build by adding define for __trap (#4569)
Regression of 1398823922
HIP doesn't have trap, only abort
2023-12-21 20:13:25 +01:00
Jared Van Bortel
8fe03ffdda common : remove incorrect --model-draft default (#4568) 2023-12-21 19:55:34 +02:00
Johannes Gäßler
9154494808 CUDA: mul_mat_id always on GPU for batches >= 32 (#4553) 2023-12-21 18:42:59 +01:00
Georgi Gerganov
c083718c89 readme : update coding guidelines 2023-12-21 19:27:14 +02:00
howlger
880e352277 py : open merges file as 'utf-8' (#4566)
Otherwise, on Windows converting bling-phi-2-v0 (<https://huggingface.co/llmware/bling-phi-2-v0>) via convert-hf-to-gguf.py will fail with the following error:

```
Traceback (most recent call last):
  File "C:\Users\User\git\gguf\convert-hf-to-gguf.py", line 1061, in <module>
    model_instance.set_vocab()
  File "C:\Users\User\git\gguf\convert-hf-to-gguf.py", line 52, in set_vocab
    self._set_vocab_gpt2()
  File "C:\Users\User\git\gguf\convert-hf-to-gguf.py", line 264, in _set_vocab_gpt2
    special_vocab = gguf.SpecialVocab(dir_model, load_merges=True)
  File "C:\Users\User\git\gguf\gguf\vocab.py", line 33, in __init__
    self._load(Path(path))
  File "C:\Users\User\git\gguf\gguf\vocab.py", line 81, in _load
    self._try_load_merges_txt(path)
  File "C:\Users\User\git\gguf\gguf\vocab.py", line 95, in _try_load_merges_txt
    for line in fp:
  File "C:\Users\User\miniconda3\envs\gguf\lib\encodings\cp1252.py", line 23, in decode
    return codecs.charmap_decode(input,self.errors,decoding_table)[0]
UnicodeDecodeError: 'charmap' codec can't decode byte 0x81 in position 1415: character maps to <undefined>
```
2023-12-21 19:07:34 +02:00
bobqianic
66f35a2f48 cuda : better error message for ggml_get_rows (#4561)
* Update ggml-cuda.cu

* Update ggml-cuda.cu

* Update ggml-cuda.cu

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-21 19:06:44 +02:00
slaren
1398823922 cuda : replace asserts in wrong architecture checks with __trap (#4556)
* cuda : replace asserts in wrong architecture checks with __trap

* make bad_arch noreturn, remove returns
2023-12-21 18:02:30 +01:00
Johannes Gäßler
d3223afdad llama : disable per-tensor info prints on model load (#4562) 2023-12-21 18:34:17 +02:00
LoganDark
1d7a1912ce Fix access violation in ggml_cuda_free_data if tensor->extra is NULL (#4554) 2023-12-21 10:59:27 +01:00
Johannes Gäßler
799fc22689 CUDA: Faster Mixtral prompt processing (#4538)
* CUDA: make MoE tensors contiguous for batch size>1

* Update ggml-cuda.cu

Co-authored-by: slaren <slarengh@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>
2023-12-20 15:41:22 +01:00
Eric Sommerlade
328b83de23 ggml : fixed check for _MSC_VER (#4535)
Co-authored-by: Eric Sommerlade <ersomme@microsoft.com>
2023-12-19 18:17:01 +02:00
arlo-phoenix
a7aee47b98 ggml-cuda: Fix HIP build (#4528)
regression of #4490
Adds defines for two new datatypes
cublasComputeType_t, cudaDataType_t.

Currently using deprecated hipblasDatatype_t since newer ones very recent.
2023-12-18 22:33:45 +01:00
Georgi Gerganov
0e18b2e7d0 llama.swiftui : add tinyllama 1.1B F16 2023-12-18 20:17:43 +02:00
Georgi Gerganov
6ff39b129d llama.swiftui : add more models 2023-12-18 20:05:12 +02:00
Ebey Abraham
b9e74f9bca llama : add phi-2 + fix NeoX rope + ggml_mul_mat_set_prec (#4490)
* phi2 implementation

* fix breaking change

* phi-2 : various fixes

* phi-2 : use layer norm eps

* py : whitespaces

* llama : fix meta KV override bug

* convert : phi don't add BOS token

* convert : revert "added_tokens_decoder" change

* phi-2 : scale Q instead of KQ for better precision

* ggml : fix NeoX rope to rotate just first n_dims

* cuda : less diff in the rope_neox kernel

* ggml : add ggml_mul_mat_set_prec

ggml-ci

* Update ggml-cuda.cu

Co-authored-by: slaren <slarengh@gmail.com>

* Update ggml-cuda.cu

Co-authored-by: slaren <slarengh@gmail.com>

* cuda : ggml_cuda_op_mul_mat_cublas support F32 precision

* cuda : remove oboslete comment

---------

Co-authored-by: Ebey Abraham <ebeyabraham@microsoft.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
2023-12-18 19:27:47 +02:00
hankcs
3c04bf6da8 llama : fix try_override for bool_value which always return true (#4519) 2023-12-18 15:14:58 +02:00
Jared Van Bortel
2994f0c5a2 decode : fix logits_valid for legacy API (#4516) 2023-12-17 19:39:02 -05:00
Georgi Gerganov
b1306c4394 readme : update hot topics 2023-12-17 20:16:23 +02:00
Georgi Gerganov
800a489e4a llama.swiftui : add bench functionality (#4483)
* llama.swiftui : add bench button

* llama.swiftui : initial bench functionality

* force to use n_gpu_layers on simulator

* add download buttons & expose llamaState.loadModel

* update project.pbxproj

* comment #Preview & fix editorconfig check

* gitignore : xcode stuff

* llama.swiftui : UX improvements

* llama.swiftui : avoid data copy via "downloadTask"

* llama.swiftui : remove model from project

* llama : remove "mostly" from model infos

* llama.swiftui : improve bench

---------

Co-authored-by: jhen <developer@jhen.me>
2023-12-17 19:38:41 +02:00
Jared Van Bortel
f7f468a97d gguf-py : fail fast on nonsensical special token IDs (#4489) 2023-12-17 10:45:46 -05:00
Matheus Gabriel Alves Silva
919c40660f build : Check the ROCm installation location (#4485)
* build : Check the ROCm installation location

* more generic approach

* fixup! It was returning the path instead of the command output

* fixup! Trailing whitespace
2023-12-17 17:23:33 +02:00
slaren
45668633fd finetune : keep allocs alive until all allocations are done (#4486) 2023-12-17 16:05:56 +01:00
olexiyb
0ffc92d2d2 server : disable llm logs if SERVER_VERBOSE is off (#3792) 2023-12-17 17:02:16 +02:00
AdithyanI
8edd2b40fd server : fix grammar being ignored (#4494)
Fix bug in identifying the grammar.
2023-12-17 16:57:56 +02:00
Alexey Parfenov
eb16dae7e7 server : fix possible ambiguity in content type charset (#4501) 2023-12-17 16:56:09 +02:00
mzcu
62bd52b7bf server : allow requests larger than 8K (#4500) 2023-12-17 16:54:37 +02:00
Bach Le
5daa5f54fd Link to cublas dynamically on Windows even with LLAMA_STATIC (#4506) 2023-12-17 11:57:33 +01:00
slaren
c6c4fc081c lora : add support for non-llama models (#3333)
* lora : add support for non-llama models

ggml-ci

* avoid leaking ggml_context on failure
cleanup

ggml-ci

* lora : allow 1d tensors

* lora : include embd and output layers in size calculation

* fix style
2023-12-16 18:58:46 +01:00
Jared Van Bortel
8a5be3bd58 llama : sanity checks for access to logits (#4274)
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-15 22:16:15 -05:00
ShadovvBeast
88ae8952b6 server : add optional API Key Authentication example (#4441)
* Add API key authentication for enhanced server-client security

* server : to snake_case

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-15 13:49:01 +02:00
slaren
ee4725a686 ggml : group mul_mat_id rows by matrix (cpu only) (#4480)
* ggml : group mul_mat_id rows by matrix (cpu only)

* remove mmid parameters from mm forward

* store row groups in wdata and calculate only once in GGML_TASK_INIT

ggml-ci
2023-12-15 12:45:50 +01:00
slaren
6744dbe924 ggml : use ggml_row_size where possible (#4472)
* ggml : use ggml_row_size where possible

ggml-ci

* ggml : move ggml_nbytes_split to ggml-cuda.cu
2023-12-14 20:05:21 +01:00
slaren
cafcd4f895 ggml : remove n_dims from ggml_tensor (#4469)
ggml-ci
2023-12-14 16:52:08 +01:00
wonjun Jang
c50e400163 py : add protobuf dependency (#4466) 2023-12-14 14:44:49 +02:00
LostRuins
20a68a7030 ggml : add ggml_row_size() (fixes llama out of space) (#4461)
* Fixes "Not enough space in the context's memory pool" encountered on certain models, which seems to be caused by some imprecision related to the automatic casting of floating point values

* do not cast to size_t, instead just use doubles

* ggml : add ggml_row_size(), deprecate ggml_type_sizef()

* ggml : fix row size compute to avoid overflows

* tests : fix sizey -> sizez

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-14 14:13:33 +02:00
Georgi Gerganov
55e87c3749 ggml : fix OpenCL broadcast requirement for ggml_mul (close #4453) 2023-12-14 10:35:29 +02:00
wonjun Jang
873637afc7 convert : support loading vocab from fast tokenizer config (#3633)
* Add HFVocab into convert.py

* Update convert.py

* Update convert.py

* add bytes_to_unicode function

* change add_meta_vocab fucntion

* remove debug code

* remove byte_encoder

* Add newline between classes

* Check tokenizer.json when tokenizer.model is not exist.

* Move transformers dependency to local code

* Add error context with 'raise from'

* Add fast tokenizer option to BpeVocab

* Update convert.py

* Add VocabLoader and remove *Vocab class

* Add transformers dependency

* remove added tokens and check newline token to decide spm or bpe

* Update convert.py

* Add special token type

* Update convert.py

* Update convert.py

* Update convert.py

* Fix typo in convert.py

* Fix when params.n_vocab < tokenizer vocab size

* update vocab class

* change funtion name

* Remove unused variable/functions, add types to class variable and methods, delete blank liens

* fix flake8 warnings

* code style cleanup

* make mypy happy

* change exception

---------

Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2023-12-14 10:09:34 +02:00
BarfingLemurs
0353a18401 readme : update supported model list (#4457) 2023-12-14 09:38:49 +02:00
shibe2
948ff137ec server : fix handling of characters that span multiple tokens when streaming (#4446) 2023-12-13 21:57:15 +02:00
Georgi Gerganov
4d98d9a656 sync : ggml (SD ops, tests, kernels) (#4444)
* sync : ggml (SD ops, tests, kernels)

ggml-ci

* cuda : restore im2col

ggml-ci

* metal : fix accuracy of dequantization kernels

ggml-ci

* cuda : restore correct im2col

ggml-ci

* metal : try to fix moe test by reducing expert size

ggml-ci

* cuda : fix bin bcast when src1 and dst have different types

ggml-ci

---------

Co-authored-by: slaren <slarengh@gmail.com>
2023-12-13 21:54:54 +02:00
Jared Van Bortel
70f806b821 build : detect host compiler and cuda compiler separately (#4414) 2023-12-13 12:10:10 -05:00
Siwen Yu
9fb13f9584 common : add --version option to show build info in CLI (#4433) 2023-12-13 14:50:14 +02:00
Georgi Gerganov
113f9942fc readme : update hot topics 2023-12-13 14:05:38 +02:00
slaren
799a1cb13b llama : add Mixtral support (#4406)
* convert : support Mixtral as LLAMA arch

* convert : fix n_ff typo

* llama : model loading

* ggml : sync latest ggml_mul_mat_id

* llama : update graph to support MoE

* llama : fix cur -> cur_expert

* llama : first working version

* llama : fix expert weighting in the FFN

* ggml : ggml_get_rows support 2D indexing [n_tokens, n_experts] (cpu only)

* ggml : add n_as argument to ggml_mul_mat_id

* ggml : fix ggml_get_rows to take into account ne02 / ne11

* metal : add more general support for ggml_get_rows + tests

* llama : add basic support for offloading moe with CUDA

* metal : add/mul/div use general kernel when src1 not cont

* metal : reduce the kernel launches for ggml_mul_mat_id

* ggml : get_rows : support non-contiguos tensors with gaps, generalize up to 3D

* ggml : update get_rows f16 and q

* cuda : support non-contiguous src1 in get_rows

* llama : offload missing ffn_moe_silu

* metal : fix ggml_get_rows to work with non-cont src1

* metal : add indirect mat-vec kernels for all quantization types

* llama : do not quantize expert gating tensors

* llama : add n_expert and n_expert_used to hparams + change quants

* test-backend-ops : add moe test

* cuda : fix get_rows when ncols is odd

* convert : determine n_ctx correctly

* metal : fix ggml_mul_mat_id for F32

* test-backend-ops : make experts more evenly probable (test_moe)

* test-backend-ops : cleanup, add moe test for batches

* test-backend-ops : add cpy from f32 -> all types test

* test-backend-ops : fix dequantize block offset

* llama : fix hard-coded number of experts

* test-backend-ops : simplify and disable slow tests to avoid CI timeout

* test-backend-ops : disable MOE test with thread sanitizer

* cuda : fix mul_mat_id with multi gpu

* convert : use 1e6 rope_freq_base for mixtral

* convert : fix style

* convert : support safetensors format

* gguf-py : bump version

* metal : add cpy f16 -> f32 kernel

* metal : fix binary ops for ne10 % 4 != 0

* test-backend-ops : add one more sum_rows test

* ggml : do not use BLAS with ggml_mul_mat_id

* convert-hf : support for mixtral-instruct (#4428)

* convert : typo fix, add additional hyperparameters, use LLaMA arch for Mixtral-instruct

* convert : use sentencepiece tokenizer for Mixtral-instruct

* convert : make flake8 happy

* metal : fix soft_max kernels

ref: 1914017863

* metal : limit kernels to not use more than the allowed threads

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Radek Pilar <github@mrkva.eu>
2023-12-13 14:04:25 +02:00
kalomaze
fecac45658 server : tweak default sampling parameters (#4367)
* Set a more typical Top P setting as the default

* Update temp max
2023-12-12 12:12:35 +02:00
Richard Kiss
9494d7c477 english : use typos to fix comments and logs (#4354) 2023-12-12 11:53:36 +02:00
Jared Van Bortel
6138963fb2 build : target Windows 8 for standard mingw-w64 (#4405)
* build : target Windows 8 for standard mingw-w64

* make : fix missing console.o deps

This was causing a link error with `make all` on Windows.
2023-12-12 11:27:26 +02:00
crasm
6391817cd1 llama : document logits_all deprecation (#4418)
llama_context_params.logits_all is a parameter for controlling
llama_eval. This documents that logits_all should not be used with
llama_decode and llama_batch.
2023-12-12 11:25:57 +02:00
Vladimir Zorin
d9d4cfef64 server : fix local model name in server (#4420) 2023-12-12 11:25:29 +02:00
Taikono-Himazin
41a11aaf99 ggml : increased GGML_MAX_PARAMS to allow finetuning of 70b models (#4424) 2023-12-12 11:24:32 +02:00
Yueh-Po Peng
8a7b2fa528 Update README.md (#4388)
Fix small typo.
2023-12-10 23:27:38 +01:00
Xiang (Kevin) Li
e18f7345a3 grammar : revert the replacement of llama_token_to_piece with id_to_token (#4396) 2023-12-09 23:29:27 +02:00
Georgi Gerganov
fe680e3d10 sync : ggml (new ops, tests, backend, etc.) (#4359)
* sync : ggml (part 1)

* sync : ggml (part 2, CUDA)

* sync : ggml (part 3, Metal)

* ggml : build fixes

ggml-ci

* cuda : restore lost changes

* cuda : restore lost changes (StableLM rope)

* cmake : enable separable compilation for CUDA

ggml-ci

* ggml-cuda : remove device side dequantize

* Revert "cmake : enable separable compilation for CUDA"

This reverts commit 09e35d04b1.

* cuda : remove assert for rope

* tests : add test-backend-ops

* ggml : fix bug in ggml_concat

* ggml : restore `ggml_get_n_tasks()` logic in `ggml_graph_plan()`

* ci : try to fix macOS

* ggml-backend : remove backend self-registration

* ci : disable Metal for macOS cmake build

ggml-ci

* metal : fix "supports family" call

* metal : fix assert

* metal : print resource path

ggml-ci

---------

Co-authored-by: slaren <slarengh@gmail.com>
2023-12-07 22:26:54 +02:00
Georgi Gerganov
bcc0eb4591 llama : per-layer KV cache + quantum K cache (#4309)
* per-layer KV

* remove unnecessary copies

* less code duplication, offload k and v separately

* llama : offload KV cache per-layer

* llama : offload K shift tensors

* llama : offload for rest of the model arches

* llama : enable offload debug temporarily

* llama : keep the KV related layers on the device

* llama : remove mirrors, perform Device -> Host when partial offload

* common : add command-line arg to disable KV cache offloading

* llama : update session save/load

* llama : support quantum K cache (#4312)

* llama : support quantum K cache (wip)

* metal : add F32 -> Q8_0 copy kernel

* cuda : add F32 -> Q8_0 copy kernel

ggml-ci

* cuda : use mmv kernel for quantum cache ops

* llama : pass KV cache type through API

* llama : fix build

ggml-ci

* metal : add F32 -> Q4_0 copy kernel

* metal : add F32 -> Q4_1 copy kernel

* cuda : wip

* cuda : add F32 -> Q4_0 and F32 -> Q4_1 copy kernels

* llama-bench : support type_k/type_v

* metal : use mm kernel only for quantum KV cache

* cuda : add comment

* llama : remove memory_f16 and kv_f16 flags

---------

Co-authored-by: slaren <slarengh@gmail.com>

* readme : add API change notice

---------

Co-authored-by: slaren <slarengh@gmail.com>
2023-12-07 13:03:17 +02:00
Hongyu Ouyang
81bc9214a3 train : fix #4227 (double free in examples/train-text-from-scratch/train-text-from-scratch.cpp) (#4351)
On commit b1108 (44c117f4) xaedes added

    ggml_allocr * alloc = NULL;

    ... (many lines in between)

    if (alloc) {
        ggml_allocr_free(alloc);
    }

Which is correct, but it's easy to lose context after many lines in between.

On commit b1287 (0e76a899) xaedes made a big change. From here on, alloc is freed eagerly.

    alloc = ggml_allocr_new(...)
    ... (short lines of code)
    ggml_allocr_free(alloc)

This happens a few times, but alloc is never set to NULL, and many lines below,
we still have

    if (alloc) {
        ggml_allocr_free(alloc);
    }

which causes a double-free.
2023-12-07 12:25:22 +02:00
133 changed files with 23076 additions and 10059 deletions

View File

@@ -14,7 +14,8 @@ ARG CUDA_DOCKER_ARCH=all
RUN apt-get update && \
apt-get install -y build-essential python3 python3-pip git
COPY requirements.txt requirements.txt
COPY requirements.txt requirements.txt
COPY requirements requirements
RUN pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt

View File

@@ -23,7 +23,8 @@ ARG ROCM_DOCKER_ARCH=\
gfx1101 \
gfx1102
COPY requirements.txt requirements.txt
COPY requirements.txt requirements.txt
COPY requirements requirements
RUN pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt

View File

@@ -5,7 +5,8 @@ FROM ubuntu:$UBUNTU_VERSION as build
RUN apt-get update && \
apt-get install -y build-essential python3 python3-pip git
COPY requirements.txt requirements.txt
COPY requirements.txt requirements.txt
COPY requirements requirements
RUN pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt

View File

@@ -23,7 +23,8 @@ ARG ROCM_DOCKER_ARCH=\
gfx1101 \
gfx1102
COPY requirements.txt requirements.txt
COPY requirements.txt requirements.txt
COPY requirements requirements
RUN pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt

22
.devops/nix/apps.nix Normal file
View File

@@ -0,0 +1,22 @@
{
perSystem =
{ config, lib, ... }:
{
apps =
let
inherit (config.packages) default;
binaries = [
"llama"
"llama-embedding"
"llama-server"
"quantize"
"train-text-from-scratch"
];
mkApp = name: {
type = "app";
program = "${default}/bin/${name}";
};
in
lib.genAttrs binaries mkApp;
};
}

13
.devops/nix/devshells.nix Normal file
View File

@@ -0,0 +1,13 @@
{
perSystem =
{ config, lib, ... }:
{
devShells =
lib.concatMapAttrs
(name: package: {
${name} = package.passthru.shell;
${name + "-extra"} = package.passthru.shell-extra;
})
config.packages;
};
}

View File

@@ -0,0 +1,39 @@
{ inputs, ... }:
{
perSystem =
{
config,
system,
lib,
pkgsCuda,
...
}:
{
legacyPackages =
let
caps.llamaPackagesXavier = "7.2";
caps.llamaPackagesOrin = "8.7";
caps.llamaPackagesTX2 = "6.2";
caps.llamaPackagesNano = "5.3";
pkgsFor =
cap:
import inputs.nixpkgs {
inherit system;
config = {
cudaSupport = true;
cudaCapabilities = [ cap ];
cudaEnableForwardCompat = false;
inherit (pkgsCuda.config) allowUnfreePredicate;
};
};
in
builtins.mapAttrs (name: cap: (pkgsFor cap).callPackage ./scope.nix { }) caps;
packages = lib.optionalAttrs (system == "aarch64-linux") {
jetson-xavier = config.legacyPackages.llamaPackagesXavier.llama-cpp;
jetson-orin = config.legacyPackages.llamaPackagesOrin.llama-cpp;
jetson-nano = config.legacyPackages.llamaPackagesNano.llama-cpp;
};
};
}

View File

@@ -0,0 +1,35 @@
{ inputs, ... }:
{
# The _module.args definitions are passed on to modules as arguments. E.g.
# the module `{ pkgs ... }: { /* config */ }` implicitly uses
# `_module.args.pkgs` (defined in this case by flake-parts).
perSystem =
{ system, ... }:
{
_module.args = {
pkgsCuda = import inputs.nixpkgs {
inherit system;
# Ensure dependencies use CUDA consistently (e.g. that openmpi, ucc,
# and ucx are built with CUDA support)
config.cudaSupport = true;
config.allowUnfreePredicate =
p:
builtins.all
(
license:
license.free
|| builtins.elem license.shortName [
"CUDA EULA"
"cuDNN EULA"
]
)
(p.meta.licenses or [ p.meta.license ]);
};
# Ensure dependencies use ROCm consistently
pkgsRocm = import inputs.nixpkgs {
inherit system;
config.rocmSupport = true;
};
};
};
}

265
.devops/nix/package.nix Normal file
View File

@@ -0,0 +1,265 @@
{
lib,
config,
stdenv,
mkShell,
cmake,
ninja,
pkg-config,
git,
python3,
mpi,
openblas, # TODO: Use the generic `blas` so users could switch between alternative implementations
cudaPackages,
darwin,
rocmPackages,
clblast,
useBlas ? builtins.all (x: !x) [
useCuda
useMetalKit
useOpenCL
useRocm
],
useCuda ? config.cudaSupport,
useMetalKit ? stdenv.isAarch64 && stdenv.isDarwin && !useOpenCL,
useMpi ? false, # Increases the runtime closure size by ~700M
useOpenCL ? false,
useRocm ? config.rocmSupport,
llamaVersion ? "0.0.0", # Arbitrary version, substituted by the flake
}@inputs:
let
inherit (lib)
cmakeBool
cmakeFeature
optionals
strings
versionOlder
;
# It's necessary to consistently use backendStdenv when building with CUDA support,
# otherwise we get libstdc++ errors downstream.
stdenv = throw "Use effectiveStdenv instead";
effectiveStdenv = if useCuda then cudaPackages.backendStdenv else inputs.stdenv;
suffices =
lib.optionals useBlas [ "BLAS" ]
++ lib.optionals useCuda [ "CUDA" ]
++ lib.optionals useMetalKit [ "MetalKit" ]
++ lib.optionals useMpi [ "MPI" ]
++ lib.optionals useOpenCL [ "OpenCL" ]
++ lib.optionals useRocm [ "ROCm" ];
pnameSuffix =
strings.optionalString (suffices != [ ])
"-${strings.concatMapStringsSep "-" strings.toLower suffices}";
descriptionSuffix =
strings.optionalString (suffices != [ ])
", accelerated with ${strings.concatStringsSep ", " suffices}";
# TODO: package the Python in this repository in a Nix-like way.
# It'd be nice to migrate to buildPythonPackage, as well as ensure this repo
# is PEP 517-compatible, and ensure the correct .dist-info is generated.
# https://peps.python.org/pep-0517/
llama-python = python3.withPackages (
ps: [
ps.numpy
ps.sentencepiece
]
);
# TODO(Green-Sky): find a better way to opt-into the heavy ml python runtime
llama-python-extra = python3.withPackages (
ps: [
ps.numpy
ps.sentencepiece
ps.torchWithoutCuda
ps.transformers
]
);
# apple_sdk is supposed to choose sane defaults, no need to handle isAarch64
# separately
darwinBuildInputs =
with darwin.apple_sdk.frameworks;
[
Accelerate
CoreVideo
CoreGraphics
]
++ optionals useMetalKit [ MetalKit ];
cudaBuildInputs = with cudaPackages; [
cuda_cccl.dev # <nv/target>
# A temporary hack for reducing the closure size, remove once cudaPackages
# have stopped using lndir: https://github.com/NixOS/nixpkgs/issues/271792
cuda_cudart.dev
cuda_cudart.lib
cuda_cudart.static
libcublas.dev
libcublas.lib
libcublas.static
];
rocmBuildInputs = with rocmPackages; [
clr
hipblas
rocblas
];
in
effectiveStdenv.mkDerivation (
finalAttrs: {
pname = "llama-cpp${pnameSuffix}";
version = llamaVersion;
src = lib.cleanSourceWith {
filter =
name: type:
!(builtins.any (_: _) [
(lib.hasSuffix ".nix" name) # Ignore *.nix files when computing outPaths
(name == "README.md") # Ignore *.md changes whe computing outPaths
(lib.hasPrefix "." name) # Skip hidden files and directories
]);
src = lib.cleanSource ../../.;
};
postPatch = ''
substituteInPlace ./ggml-metal.m \
--replace '[bundle pathForResource:@"ggml-metal" ofType:@"metal"];' "@\"$out/bin/ggml-metal.metal\";"
# TODO: Package up each Python script or service appropriately.
# If we were to migrate to buildPythonPackage and prepare the `pyproject.toml`,
# we could make those *.py into setuptools' entrypoints
substituteInPlace ./*.py --replace "/usr/bin/env python" "${llama-python}/bin/python"
'';
nativeBuildInputs =
[
cmake
ninja
pkg-config
git
]
++ optionals useCuda [
cudaPackages.cuda_nvcc
# TODO: Replace with autoAddDriverRunpath
# once https://github.com/NixOS/nixpkgs/pull/275241 has been merged
cudaPackages.autoAddOpenGLRunpathHook
];
buildInputs =
optionals effectiveStdenv.isDarwin darwinBuildInputs
++ optionals useCuda cudaBuildInputs
++ optionals useMpi [ mpi ]
++ optionals useOpenCL [ clblast ]
++ optionals useRocm rocmBuildInputs;
cmakeFlags =
[
(cmakeBool "LLAMA_NATIVE" true)
(cmakeBool "LLAMA_BUILD_SERVER" true)
(cmakeBool "BUILD_SHARED_LIBS" true)
(cmakeBool "CMAKE_SKIP_BUILD_RPATH" true)
(cmakeBool "LLAMA_BLAS" useBlas)
(cmakeBool "LLAMA_CLBLAST" useOpenCL)
(cmakeBool "LLAMA_CUBLAS" useCuda)
(cmakeBool "LLAMA_HIPBLAS" useRocm)
(cmakeBool "LLAMA_METAL" useMetalKit)
(cmakeBool "LLAMA_MPI" useMpi)
]
++ optionals useCuda [
(
with cudaPackages.flags;
cmakeFeature "CMAKE_CUDA_ARCHITECTURES" (
builtins.concatStringsSep ";" (map dropDot cudaCapabilities)
)
)
]
++ optionals useRocm [
(cmakeFeature "CMAKE_C_COMPILER" "hipcc")
(cmakeFeature "CMAKE_CXX_COMPILER" "hipcc")
# Build all targets supported by rocBLAS. When updating search for TARGET_LIST_ROCM
# in https://github.com/ROCmSoftwarePlatform/rocBLAS/blob/develop/CMakeLists.txt
# and select the line that matches the current nixpkgs version of rocBLAS.
# Should likely use `rocmPackages.clr.gpuTargets`.
"-DAMDGPU_TARGETS=gfx803;gfx900;gfx906:xnack-;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102"
]
++ optionals useMetalKit [ (lib.cmakeFeature "CMAKE_C_FLAGS" "-D__ARM_FEATURE_DOTPROD=1") ]
++ optionals useBlas [ (lib.cmakeFeature "LLAMA_BLAS_VENDOR" "OpenBLAS") ];
# TODO(SomeoneSerge): It's better to add proper install targets at the CMake level,
# if they haven't been added yet.
postInstall = ''
mv $out/bin/main $out/bin/llama
mv $out/bin/server $out/bin/llama-server
mkdir -p $out/include
cp $src/llama.h $out/include/
'';
# Define the shells here, but don't add in the inputsFrom to avoid recursion.
passthru = {
inherit
useBlas
useCuda
useMetalKit
useMpi
useOpenCL
useRocm
;
shell = mkShell {
name = "shell-${finalAttrs.finalPackage.name}";
description = "contains numpy and sentencepiece";
buildInputs = [ llama-python ];
inputsFrom = [ finalAttrs.finalPackage ];
};
shell-extra = mkShell {
name = "shell-extra-${finalAttrs.finalPackage.name}";
description = "contains numpy, sentencepiece, torchWithoutCuda, and transformers";
buildInputs = [ llama-python-extra ];
inputsFrom = [ finalAttrs.finalPackage ];
};
};
meta = {
# Configurations we don't want even the CI to evaluate. Results in the
# "unsupported platform" messages. This is mostly a no-op, because
# cudaPackages would've refused to evaluate anyway.
badPlatforms = optionals (useCuda || useOpenCL) lib.platforms.darwin;
# Configurations that are known to result in build failures. Can be
# overridden by importing Nixpkgs with `allowBroken = true`.
broken = (useMetalKit && !effectiveStdenv.isDarwin);
description = "Inference of LLaMA model in pure C/C++${descriptionSuffix}";
homepage = "https://github.com/ggerganov/llama.cpp/";
license = lib.licenses.mit;
# Accommodates `nix run` and `lib.getExe`
mainProgram = "llama";
# These people might respond, on the best effort basis, if you ping them
# in case of Nix-specific regressions or for reviewing Nix-specific PRs.
# Consider adding yourself to this list if you want to ensure this flake
# stays maintained and you're willing to invest your time. Do not add
# other people without their consent. Consider removing people after
# they've been unreachable for long periods of time.
# Note that lib.maintainers is defined in Nixpkgs, but you may just add
# an attrset following the same format as in
# https://github.com/NixOS/nixpkgs/blob/f36a80e54da29775c78d7eff0e628c2b4e34d1d7/maintainers/maintainer-list.nix
maintainers = with lib.maintainers; [
philiptaron
SomeoneSerge
];
# Extend `badPlatforms` instead
platforms = lib.platforms.all;
};
}
)

12
.devops/nix/scope.nix Normal file
View File

@@ -0,0 +1,12 @@
{
lib,
newScope,
llamaVersion ? "0.0.0",
}:
lib.makeScope newScope (
self: {
inherit llamaVersion;
llama-cpp = self.callPackage ./package.nix { };
}
)

View File

@@ -15,8 +15,14 @@ indent_size = 4
[Makefile]
indent_style = tab
[scripts/*.mk]
indent_style = tab
[prompts/*.txt]
insert_final_newline = unset
[examples/server/public/*]
indent_size = 2
[examples/llama.swiftui/llama.swiftui.xcodeproj/*]
indent_style = tab

View File

@@ -6,179 +6,4 @@ assignees: ''
---
# Prerequisites
Please answer the following questions for yourself before submitting an issue.
- [ ] I am running the latest code. Development is very rapid so there are no tagged versions as of now.
- [ ] I carefully followed the [README.md](https://github.com/ggerganov/llama.cpp/blob/master/README.md).
- [ ] I [searched using keywords relevant to my issue](https://docs.github.com/en/issues/tracking-your-work-with-issues/filtering-and-searching-issues-and-pull-requests) to make sure that I am creating a new issue that is not already open (or closed).
- [ ] I reviewed the [Discussions](https://github.com/ggerganov/llama.cpp/discussions), and have a new bug or useful enhancement to share.
# Expected Behavior
Please provide a detailed written description of what you were trying to do, and what you expected `llama.cpp` to do.
# Current Behavior
Please provide a detailed written description of what `llama.cpp` did, instead.
# Environment and Context
Please provide detailed information about your computer setup. This is important in case the issue is not reproducible except for under certain specific conditions.
* Physical (or virtual) hardware you are using, e.g. for Linux:
`$ lscpu`
* Operating System, e.g. for Linux:
`$ uname -a`
* SDK version, e.g. for Linux:
```
$ python3 --version
$ make --version
$ g++ --version
```
# Failure Information (for bugs)
Please help provide information about the failure / bug.
# Steps to Reproduce
Please provide detailed steps for reproducing the issue. We are not sitting in front of your screen, so the more detail the better.
1. step 1
2. step 2
3. step 3
4. etc.
# Failure Logs
Please include any relevant log snippets or files. If it works under one configuration but not under another, please provide logs for both configurations and their corresponding outputs so it is easy to see where behavior changes.
Also, please try to **avoid using screenshots** if at all possible. Instead, copy/paste the console output and use [Github's markdown](https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github/basic-writing-and-formatting-syntax) to cleanly format your logs for easy readability.
Example environment info:
```
llama.cpp$ git log | head -1
commit 2af23d30434a677c6416812eea52ccc0af65119c
llama.cpp$ lscpu | egrep "AMD|Flags"
Vendor ID: AuthenticAMD
Model name: AMD Ryzen Threadripper 1950X 16-Core Processor
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid amd_dcm aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb hw_pstate ssbd ibpb vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt sha_ni xsaveopt xsavec xgetbv1 xsaves clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif overflow_recov succor smca sme sev
Virtualization: AMD-V
llama.cpp$ python3 --version
Python 3.10.9
llama.cpp$ pip list | egrep "torch|numpy|sentencepiece"
numpy 1.24.2
numpydoc 1.5.0
sentencepiece 0.1.97
torch 1.13.1
torchvision 0.14.1
llama.cpp$ make --version | head -1
GNU Make 4.3
$ md5sum ./models/65B/ggml-model-q4_0.bin
dbdd682cce80e2d6e93cefc7449df487 ./models/65B/ggml-model-q4_0.bin
```
Example run with the Linux command [perf](https://www.brendangregg.com/perf.html)
```
llama.cpp$ perf stat ./main -m ./models/65B/ggml-model-q4_0.bin -t 16 -n 1024 -p "Please close your issue when it has been answered."
main: seed = 1679149377
llama_model_load: loading model from './models/65B/ggml-model-q4_0.bin' - please wait ...
llama_model_load: n_vocab = 32000
llama_model_load: n_ctx = 512
llama_model_load: n_embd = 8192
llama_model_load: n_mult = 256
llama_model_load: n_head = 64
llama_model_load: n_layer = 80
llama_model_load: n_rot = 128
llama_model_load: f16 = 2
llama_model_load: n_ff = 22016
llama_model_load: n_parts = 8
llama_model_load: ggml ctx size = 41477.73 MB
llama_model_load: memory_size = 2560.00 MB, n_mem = 40960
llama_model_load: loading model part 1/8 from './models/65B/ggml-model-q4_0.bin'
llama_model_load: .......................................................................................... done
llama_model_load: model size = 4869.09 MB / num tensors = 723
llama_model_load: loading model part 2/8 from './models/65B/ggml-model-q4_0.bin.1'
llama_model_load: .......................................................................................... done
llama_model_load: model size = 4869.09 MB / num tensors = 723
llama_model_load: loading model part 3/8 from './models/65B/ggml-model-q4_0.bin.2'
llama_model_load: .......................................................................................... done
llama_model_load: model size = 4869.09 MB / num tensors = 723
llama_model_load: loading model part 4/8 from './models/65B/ggml-model-q4_0.bin.3'
llama_model_load: .......................................................................................... done
llama_model_load: model size = 4869.09 MB / num tensors = 723
llama_model_load: loading model part 5/8 from './models/65B/ggml-model-q4_0.bin.4'
llama_model_load: .......................................................................................... done
llama_model_load: model size = 4869.09 MB / num tensors = 723
llama_model_load: loading model part 6/8 from './models/65B/ggml-model-q4_0.bin.5'
llama_model_load: .......................................................................................... done
llama_model_load: model size = 4869.09 MB / num tensors = 723
llama_model_load: loading model part 7/8 from './models/65B/ggml-model-q4_0.bin.6'
llama_model_load: .......................................................................................... done
llama_model_load: model size = 4869.09 MB / num tensors = 723
llama_model_load: loading model part 8/8 from './models/65B/ggml-model-q4_0.bin.7'
llama_model_load: .......................................................................................... done
llama_model_load: model size = 4869.09 MB / num tensors = 723
system_info: n_threads = 16 / 32 | AVX = 1 | AVX2 = 1 | AVX512 = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | VSX = 0 |
main: prompt: 'Please close your issue when it has been answered.'
main: number of tokens in prompt = 11
1 -> ''
12148 -> 'Please'
3802 -> ' close'
596 -> ' your'
2228 -> ' issue'
746 -> ' when'
372 -> ' it'
756 -> ' has'
1063 -> ' been'
7699 -> ' answered'
29889 -> '.'
sampling parameters: temp = 0.800000, top_k = 40, top_p = 0.950000, repeat_last_n = 64, repeat_penalty = 1.300000
Please close your issue when it has been answered.
@duncan-donut: I'm trying to figure out what kind of "support" you need for this script and why, exactly? Is there a question about how the code works that hasn't already been addressed in one or more comments below this ticket, or are we talking something else entirely like some sorta bugfixing job because your server setup is different from mine??
I can understand if your site needs to be running smoothly and you need help with a fix of sorts but there should really be nothing wrong here that the code itself could not handle. And given that I'm getting reports about how it works perfectly well on some other servers, what exactly are we talking? A detailed report will do wonders in helping us get this resolved for ya quickly so please take your time and describe the issue(s) you see as clearly & concisely as possible!!
@duncan-donut: I'm not sure if you have access to cPanel but you could try these instructions. It is worth a shot! Let me know how it goes (or what error message, exactly!) when/if ya give that code a go? [end of text]
main: mem per token = 71159620 bytes
main: load time = 19309.95 ms
main: sample time = 168.62 ms
main: predict time = 223895.61 ms / 888.47 ms per token
main: total time = 246406.42 ms
Performance counter stats for './main -m ./models/65B/ggml-model-q4_0.bin -t 16 -n 1024 -p Please close your issue when it has been answered.':
3636882.89 msec task-clock # 14.677 CPUs utilized
13509 context-switches # 3.714 /sec
2436 cpu-migrations # 0.670 /sec
10476679 page-faults # 2.881 K/sec
13133115082869 cycles # 3.611 GHz (16.77%)
29314462753 stalled-cycles-frontend # 0.22% frontend cycles idle (16.76%)
10294402631459 stalled-cycles-backend # 78.39% backend cycles idle (16.74%)
23479217109614 instructions # 1.79 insn per cycle
# 0.44 stalled cycles per insn (16.76%)
2353072268027 branches # 647.002 M/sec (16.77%)
1998682780 branch-misses # 0.08% of all branches (16.76%)
247.802177522 seconds time elapsed
3618.573072000 seconds user
18.491698000 seconds sys
```
Please include information about your system, the steps to reproduce the bug, and the version of llama.cpp that you are using. If possible, please provide a minimal code example that reproduces the bug.

View File

@@ -143,6 +143,9 @@ jobs:
cd build
ctest --verbose
# TODO: build with LLAMA_NO_METAL because test-backend-ops fail on "Apple Paravirtual device" and I don't know
# how to debug it.
# ref: https://github.com/ggerganov/llama.cpp/actions/runs/7131777249/job/19420981052#step:5:1124
macOS-latest-make:
runs-on: macos-latest
@@ -160,14 +163,18 @@ jobs:
- name: Build
id: make_build
run: |
make -j $(sysctl -n hw.logicalcpu)
LLAMA_NO_METAL=1 make -j $(sysctl -n hw.logicalcpu)
- name: Test
id: make_test
run: |
make tests -j $(sysctl -n hw.logicalcpu)
make test -j $(sysctl -n hw.logicalcpu)
LLAMA_NO_METAL=1 make tests -j $(sysctl -n hw.logicalcpu)
LLAMA_NO_METAL=1 make test -j $(sysctl -n hw.logicalcpu)
# TODO: build with LLAMA_METAL=OFF because test-backend-ops fail on "Apple Paravirtual device" and I don't know
# how to debug it.
# ref: https://github.com/ggerganov/llama.cpp/actions/runs/7132125951/job/19422043567?pr=4359#step:5:6584
# would be great if we fix these
macOS-latest-cmake:
runs-on: macos-latest
@@ -188,7 +195,7 @@ jobs:
sysctl -a
mkdir build
cd build
cmake ..
cmake -DLLAMA_METAL=OFF ..
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu)
- name: Test
@@ -508,7 +515,6 @@ jobs:
- name: Build Xcode project
run: xcodebuild -project examples/llama.swiftui/llama.swiftui.xcodeproj -scheme llama.swiftui -sdk iphoneos CODE_SIGNING_REQUIRED=NO CODE_SIGN_IDENTITY= -destination 'generic/platform=iOS' build
# freeBSD-latest:
# runs-on: macos-12
# steps:

View File

@@ -52,6 +52,36 @@ jobs:
username: ${{ github.repository_owner }}
password: ${{ secrets.GITHUB_TOKEN }}
# https://github.com/jlumbroso/free-disk-space/tree/54081f138730dfa15788a46383842cd2f914a1be#example
- name: Free Disk Space (Ubuntu)
uses: jlumbroso/free-disk-space@main
with:
# this might remove tools that are actually needed,
# if set to "true" but frees about 6 GB
tool-cache: false
# all of these default to true, but feel free to set to
# "false" if necessary for your workflow
android: true
dotnet: true
haskell: true
large-packages: true
docker-images: true
swap-storage: true
- name: Determine tag name
id: tag
shell: bash
run: |
BUILD_NUMBER="$(git rev-list --count HEAD)"
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
if [[ "${{ env.BRANCH_NAME }}" == "master" ]]; then
echo "name=b${BUILD_NUMBER}" >> $GITHUB_OUTPUT
else
SAFE_NAME=$(echo "${{ env.BRANCH_NAME }}" | tr '/' '-')
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
fi
- name: Build and push Docker image (versioned)
if: github.event_name == 'push'
uses: docker/build-push-action@v4
@@ -59,7 +89,7 @@ jobs:
context: .
push: true
platforms: ${{ matrix.config.platforms }}
tags: "ghcr.io/ggerganov/llama.cpp:${{ matrix.config.tag }}-${{ env.COMMIT_SHA }}"
tags: "ghcr.io/${{ github.repository_owner }}/llama.cpp:${{ matrix.config.tag }}-${{ env.COMMIT_SHA }}"
file: ${{ matrix.config.dockerfile }}
- name: Build and push Docker image (tagged)
@@ -68,5 +98,5 @@ jobs:
context: .
push: ${{ github.event_name == 'push' }}
platforms: ${{ matrix.config.platforms }}
tags: "ghcr.io/ggerganov/llama.cpp:${{ matrix.config.tag }}"
tags: "ghcr.io/${{ github.repository_owner }}/llama.cpp:${{ matrix.config.tag }},ghcr.io/${{ github.repository_owner }}/llama.cpp:${{ matrix.config.tag }}-${{ steps.tag.outputs.name }}"
file: ${{ matrix.config.dockerfile }}

112
.github/workflows/nix-ci.yml vendored Normal file
View File

@@ -0,0 +1,112 @@
name: Nix CI
on:
workflow_dispatch: # allows manual triggering
push:
branches:
- master
paths: ['.github/workflows/**', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', '**/*.sh', '**/*.py', '**/*.nix']
pull_request:
types: [opened, synchronize, reopened]
paths: ['**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', '**/*.sh', '**/*.py', '**/*.nix']
jobs:
nix-eval:
strategy:
fail-fast: false
matrix:
os: [ ubuntu-latest, macos-latest ]
runs-on: ${{ matrix.os }}
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Install Nix
uses: DeterminateSystems/nix-installer-action@v9
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
extra-conf: |
extra-substituters = https://${{ vars.CACHIX_NAME }}.cachix.org https://cuda-maintainers.cachix.org
extra-trusted-public-keys = ${{ vars.CACHIX_PUBLIC_KEY }} cuda-maintainers.cachix.org-1:0dq3bujKpuEPMCX6U4WylrUDZ9JyUG0VpVZa7CNfq5E=
- uses: DeterminateSystems/magic-nix-cache-action@v2
with:
upstream-cache: https://${{ matrix.cachixName }}.cachix.org
- name: List all flake outputs
run: nix flake show --all-systems
- name: Show all output paths
run: >
nix run github:nix-community/nix-eval-jobs
-- --gc-roots-dir gcroot
--flake
".#packages.$(nix eval --raw --impure --expr builtins.currentSystem)"
nix-build:
if: ${{ vars.CACHIX_NAME != '' }}
strategy:
fail-fast: false
matrix:
os: [ ubuntu-latest, macos-latest ]
runs-on: ${{ matrix.os }}
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Install Nix
uses: DeterminateSystems/nix-installer-action@v9
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
extra-conf: |
extra-substituters = https://${{ vars.CACHIX_NAME }}.cachix.org https://cuda-maintainers.cachix.org
extra-trusted-public-keys = ${{ vars.CACHIX_PUBLIC_KEY }} cuda-maintainers.cachix.org-1:0dq3bujKpuEPMCX6U4WylrUDZ9JyUG0VpVZa7CNfq5E=
- uses: DeterminateSystems/magic-nix-cache-action@v2
with:
upstream-cache: https://${{ matrix.cachixName }}.cachix.org
- name: Set-up cachix to push the results to
uses: cachix/cachix-action@v13
with:
authToken: '${{ secrets.CACHIX_AUTH_TOKEN }}'
name: ${{ vars.CACHIX_NAME }}
- name: Build
run: >
nix run github:Mic92/nix-fast-build
-- --skip-cached --no-nom
--flake
".#checks.$(nix eval --raw --impure --expr builtins.currentSystem)"
nix-build-aarch64:
if: ${{ vars.CACHIX_NAME != '' }}
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Install QEMU
# Copy-paste from https://github.com/orgs/community/discussions/8305#discussioncomment-5888654
run: |
sudo apt-get install -y qemu-user-static qemu-system-aarch64
sudo usermod -a -G kvm $USER
- name: Install Nix
uses: DeterminateSystems/nix-installer-action@v9
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
extra-conf: |
extra-platforms = aarch64-linux
extra-system-features = nixos-test kvm
extra-substituters = https://${{ vars.CACHIX_NAME }}.cachix.org https://cuda-maintainers.cachix.org
extra-trusted-public-keys = ${{ vars.CACHIX_PUBLIC_KEY }} cuda-maintainers.cachix.org-1:0dq3bujKpuEPMCX6U4WylrUDZ9JyUG0VpVZa7CNfq5E=
- uses: DeterminateSystems/magic-nix-cache-action@v2
with:
upstream-cache: https://${{ matrix.cachixName }}.cachix.org
- name: Set-up cachix to push the results to
uses: cachix/cachix-action@v13
with:
authToken: '${{ secrets.CACHIX_AUTH_TOKEN }}'
name: ${{ vars.CACHIX_NAME }}
- name: Show all output paths
run: >
nix run github:nix-community/nix-eval-jobs
-- --gc-roots-dir gcroot
--flake
".#packages.aarch64-linux"
- name: Build
run: >
nix run github:Mic92/nix-fast-build
-- --skip-cached --no-nom
--systems aarch64-linux
--flake
".#checks.aarch64-linux"

22
.github/workflows/nix-flake-update.yml vendored Normal file
View File

@@ -0,0 +1,22 @@
name: update-flake-lock
on:
workflow_dispatch:
schedule:
- cron: '0 0 * * 0' # runs weekly on Sunday at 00:00
jobs:
lockfile:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Install Nix
uses: DeterminateSystems/nix-installer-action@main
- name: Update flake.lock
uses: DeterminateSystems/update-flake-lock@main
with:
pr-title: "nix: update flake.lock"
pr-labels: |
nix
pr-reviewers: philiptaron,SomeoneSerge
token: ${{ secrets.GITHUB_TOKEN }}

36
.github/workflows/nix-publish-flake.yml vendored Normal file
View File

@@ -0,0 +1,36 @@
# Make the flake discoverable on https://flakestry.dev and https://flakehub.com/flakes
name: "Publish a flake to flakestry & flakehub"
on:
push:
tags:
- "*"
workflow_dispatch:
inputs:
tag:
description: "The existing tag to publish"
type: "string"
required: true
jobs:
flakestry-publish:
runs-on: ubuntu-latest
permissions:
id-token: "write"
contents: "read"
steps:
- uses: flakestry/flakestry-publish@main
with:
version: "${{ inputs.tag || github.ref_name }}"
flakehub-publish:
runs-on: "ubuntu-latest"
permissions:
id-token: "write"
contents: "read"
steps:
- uses: "actions/checkout@v4"
with:
ref: "${{ (inputs.tag != null) && format('refs/tags/{0}', inputs.tag) || '' }}"
- uses: "DeterminateSystems/nix-installer-action@main"
- uses: "DeterminateSystems/flakehub-push@main"
with:
visibility: "public"
tag: "${{ inputs.tag }}"

View File

@@ -0,0 +1,29 @@
name: Python check requirements.txt
on:
push:
paths:
- 'scripts/check-requirements.sh'
- 'convert*.py'
- 'requirements.txt'
- 'requirements/*.txt'
pull_request:
paths:
- 'scripts/check-requirements.sh'
- 'convert*.py'
- 'requirements.txt'
- 'requirements/*.txt'
jobs:
python-check-requirements:
runs-on: ubuntu-latest
name: check-requirements
steps:
- name: Check out source repository
uses: actions/checkout@v3
- name: Set up Python environment
uses: actions/setup-python@v4
with:
python-version: "3.11"
- name: Run check-requirements.sh script
run: bash scripts/check-requirements.sh nocleanup

3
.gitignore vendored
View File

@@ -48,8 +48,10 @@ models-mnt
/llama-bench
/llava-cli
/lookahead
/lookup
/main
/metal
/passkey
/perplexity
/q8dot
/quantize
@@ -101,3 +103,4 @@ poetry.toml
/tests/test-tokenizer-1-llama
/tests/test-tokenizer-1-bpe
/tests/test-rope
/tests/test-backend-ops

View File

@@ -91,15 +91,17 @@ set(LLAMA_CUDA_KQUANTS_ITER "2" CACHE STRING "llama: iters./thread per block for
set(LLAMA_CUDA_PEER_MAX_BATCH_SIZE "128" CACHE STRING
"llama: max. batch size for using peer access")
option(LLAMA_HIPBLAS "llama: use hipBLAS" OFF)
option(LLAMA_HIP_UMA "llama: use HIP unified memory architecture" OFF)
option(LLAMA_CLBLAST "llama: use CLBlast" OFF)
option(LLAMA_METAL "llama: use Metal" ${LLAMA_METAL_DEFAULT})
option(LLAMA_METAL_NDEBUG "llama: disable Metal debugging" OFF)
option(LLAMA_METAL_SHADER_DEBUG "llama: compile Metal with -fno-fast-math" OFF)
option(LLAMA_MPI "llama: use MPI" OFF)
option(LLAMA_QKK_64 "llama: use super-block size of 64 for k-quants" OFF)
option(LLAMA_BUILD_TESTS "llama: build tests" ${LLAMA_STANDALONE})
option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
option(LLAMA_BUILD_SERVER "llama: build server example" ON)
option(LLAMA_BUILD_TESTS "llama: build tests" ${LLAMA_STANDALONE})
option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
option(LLAMA_BUILD_SERVER "llama: build server example" ON)
# Required for relocatable CMake package
include(${CMAKE_CURRENT_SOURCE_DIR}/scripts/build-info.cmake)
@@ -153,9 +155,9 @@ if (APPLE AND LLAMA_ACCELERATE)
endif()
if (LLAMA_METAL)
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
find_library(METAL_FRAMEWORK Metal REQUIRED)
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
find_library(METAL_FRAMEWORK Metal REQUIRED)
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
message(STATUS "Metal framework found")
set(GGML_HEADERS_METAL ggml-metal.h)
@@ -172,6 +174,35 @@ if (LLAMA_METAL)
# copy ggml-metal.metal to bin directory
configure_file(ggml-metal.metal ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.metal COPYONLY)
if (LLAMA_METAL_SHADER_DEBUG)
# custom command to do the following:
# xcrun -sdk macosx metal -fno-fast-math -c ggml-metal.metal -o ggml-metal.air
# xcrun -sdk macosx metallib ggml-metal.air -o default.metallib
#
# note: this is the only way I found to disable fast-math in Metal. it's ugly, but at least it works
# disabling fast math is needed in order to pass tests/test-backend-ops
# note: adding -fno-inline fixes the tests when using MTL_SHADER_VALIDATION=1
# note: unfortunately, we have to call it default.metallib instead of ggml.metallib
# ref: https://github.com/ggerganov/whisper.cpp/issues/1720
set(XC_FLAGS -fno-fast-math -fno-inline -g)
if (LLAMA_QKK_64)
set(XC_FLAGS ${XC_FLAGS} -DQK_K=64)
endif()
add_custom_command(
OUTPUT ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/default.metallib
COMMAND xcrun -sdk macosx metal ${XC_FLAGS} -c ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.metal -o ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.air
COMMAND xcrun -sdk macosx metallib ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.air -o ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/default.metallib
DEPENDS ggml-metal.metal
COMMENT "Compiling Metal kernels"
)
add_custom_target(
ggml-metal ALL
DEPENDS ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/default.metallib
)
endif()
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS}
${FOUNDATION_LIBRARY}
${METAL_FRAMEWORK}
@@ -199,7 +230,11 @@ if (LLAMA_BLAS)
if (${LLAMA_BLAS_VENDOR} MATCHES "Generic")
pkg_check_modules(DepBLAS REQUIRED blas)
elseif (${LLAMA_BLAS_VENDOR} MATCHES "OpenBLAS")
pkg_check_modules(DepBLAS REQUIRED openblas)
# As of openblas v0.3.22, the 64-bit is named openblas64.pc
pkg_check_modules(DepBLAS openblas64)
if (NOT DepBLAS_FOUND)
pkg_check_modules(DepBLAS REQUIRED openblas)
endif()
elseif (${LLAMA_BLAS_VENDOR} MATCHES "FLAME")
pkg_check_modules(DepBLAS REQUIRED blis)
elseif (${LLAMA_BLAS_VENDOR} MATCHES "ATLAS")
@@ -291,11 +326,18 @@ if (LLAMA_CUBLAS)
add_compile_definitions(GGML_CUDA_PEER_MAX_BATCH_SIZE=${LLAMA_CUDA_PEER_MAX_BATCH_SIZE})
if (LLAMA_STATIC)
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas_static CUDA::cublasLt_static)
if (WIN32)
# As of 12.3.1 CUDA Tookit for Windows does not offer a static cublas library
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas CUDA::cublasLt)
else ()
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas_static CUDA::cublasLt_static)
endif()
else()
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} CUDA::cudart CUDA::cublas CUDA::cublasLt)
endif()
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} CUDA::cuda_driver)
if (NOT DEFINED CMAKE_CUDA_ARCHITECTURES)
# 52 == lowest CUDA 12 standard
# 60 == f16 CUDA intrinsics
@@ -372,6 +414,9 @@ if (LLAMA_HIPBLAS)
if (${hipblas_FOUND} AND ${hip_FOUND})
message(STATUS "HIP and hipBLAS found")
add_compile_definitions(GGML_USE_HIPBLAS GGML_USE_CUBLAS)
if (LLAMA_HIP_UMA)
add_compile_definitions(GGML_HIP_UMA)
endif()
add_library(ggml-rocm OBJECT ggml-cuda.cu ggml-cuda.h)
if (BUILD_SHARED_LIBS)
set_target_properties(ggml-rocm PROPERTIES POSITION_INDEPENDENT_CODE ON)
@@ -397,57 +442,102 @@ if (LLAMA_HIPBLAS)
endif()
endif()
if (LLAMA_ALL_WARNINGS)
if (NOT MSVC)
set(warning_flags -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function)
set(c_flags -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -Werror=implicit-int -Werror=implicit-function-declaration)
set(cxx_flags -Wmissing-declarations -Wmissing-noreturn)
set(host_cxx_flags "")
function(get_flags CCID CCVER)
set(C_FLAGS "")
set(CXX_FLAGS "")
if (CMAKE_C_COMPILER_ID MATCHES "Clang")
set(warning_flags ${warning_flags} -Wunreachable-code-break -Wunreachable-code-return)
set(host_cxx_flags ${host_cxx_flags} -Wmissing-prototypes -Wextra-semi)
if (CCID MATCHES "Clang")
set(C_FLAGS -Wunreachable-code-break -Wunreachable-code-return)
set(CXX_FLAGS -Wunreachable-code-break -Wunreachable-code-return -Wmissing-prototypes -Wextra-semi)
if (
(CMAKE_C_COMPILER_ID STREQUAL "Clang" AND CMAKE_C_COMPILER_VERSION VERSION_GREATER_EQUAL 3.8.0) OR
(CMAKE_C_COMPILER_ID STREQUAL "AppleClang" AND CMAKE_C_COMPILER_VERSION VERSION_GREATER_EQUAL 7.3.0)
)
set(c_flags ${c_flags} -Wdouble-promotion)
endif()
elseif (CMAKE_C_COMPILER_ID STREQUAL "GNU")
set(c_flags ${c_flags} -Wdouble-promotion)
set(host_cxx_flags ${host_cxx_flags} -Wno-array-bounds)
if (CMAKE_CXX_COMPILER_VERSION VERSION_GREATER_EQUAL 7.1.0)
set(host_cxx_flags ${host_cxx_flags} -Wno-format-truncation)
endif()
if (CMAKE_CXX_COMPILER_VERSION VERSION_GREATER_EQUAL 8.1.0)
set(host_cxx_flags ${host_cxx_flags} -Wextra-semi)
endif()
if (
(CCID STREQUAL "Clang" AND CCVER VERSION_GREATER_EQUAL 3.8.0) OR
(CCID STREQUAL "AppleClang" AND CCVER VERSION_GREATER_EQUAL 7.3.0)
)
set(C_FLAGS ${C_FLAGS} -Wdouble-promotion)
endif()
elseif (CCID STREQUAL "GNU")
set(C_FLAGS -Wdouble-promotion)
set(CXX_FLAGS -Wno-array-bounds)
if (CCVER VERSION_GREATER_EQUAL 7.1.0)
set(CXX_FLAGS ${CXX_FLAGS} -Wno-format-truncation)
endif()
if (CCVER VERSION_GREATER_EQUAL 8.1.0)
set(CXX_FLAGS ${CXX_FLAGS} -Wextra-semi)
endif()
else()
# todo : msvc
endif()
set(c_flags ${c_flags} ${warning_flags})
set(cxx_flags ${cxx_flags} ${warning_flags})
add_compile_options("$<$<COMPILE_LANGUAGE:C>:${c_flags}>"
"$<$<COMPILE_LANGUAGE:CXX>:${cxx_flags}>"
"$<$<COMPILE_LANGUAGE:CXX>:${host_cxx_flags}>")
set(GF_C_FLAGS ${C_FLAGS} PARENT_SCOPE)
set(GF_CXX_FLAGS ${CXX_FLAGS} PARENT_SCOPE)
endfunction()
if (LLAMA_ALL_WARNINGS)
if (NOT MSVC)
set(WARNING_FLAGS -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function)
set(C_FLAGS -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes
-Werror=implicit-int -Werror=implicit-function-declaration)
set(CXX_FLAGS -Wmissing-declarations -Wmissing-noreturn)
set(C_FLAGS ${WARNING_FLAGS} ${C_FLAGS})
set(CXX_FLAGS ${WARNING_FLAGS} ${CXX_FLAGS})
get_flags(${CMAKE_CXX_COMPILER_ID} ${CMAKE_CXX_COMPILER_VERSION})
add_compile_options("$<$<COMPILE_LANGUAGE:C>:${C_FLAGS};${GF_C_FLAGS}>"
"$<$<COMPILE_LANGUAGE:CXX>:${CXX_FLAGS};${GF_CXX_FLAGS}>")
else()
# todo : msvc
set(C_FLAGS "")
set(CXX_FLAGS "")
endif()
endif()
if (NOT MSVC)
set(cuda_flags -Wno-pedantic)
endif()
set(cuda_flags ${cxx_flags} -use_fast_math ${cuda_flags})
if (LLAMA_CUBLAS)
set(CUDA_FLAGS ${CXX_FLAGS} -use_fast_math)
if (NOT MSVC)
set(CUDA_FLAGS ${CUDA_FLAGS} -Wno-pedantic)
endif()
list(JOIN host_cxx_flags " " cuda_host_flags) # pass host compiler flags as a single argument
if (NOT cuda_host_flags STREQUAL "")
set(cuda_flags ${cuda_flags} -Xcompiler ${cuda_host_flags})
endif()
if (LLAMA_ALL_WARNINGS AND NOT MSVC)
set(NVCC_CMD ${CMAKE_CUDA_COMPILER} .c)
if (NOT CMAKE_CUDA_HOST_COMPILER STREQUAL "")
set(NVCC_CMD ${NVCC_CMD} -ccbin ${CMAKE_CUDA_HOST_COMPILER})
endif()
add_compile_options("$<$<COMPILE_LANGUAGE:CUDA>:${cuda_flags}>")
execute_process(
COMMAND ${NVCC_CMD} -Xcompiler --version
OUTPUT_VARIABLE CUDA_CCFULLVER
ERROR_QUIET
)
if (NOT CUDA_CCFULLVER MATCHES clang)
set(CUDA_CCID "GNU")
execute_process(
COMMAND ${NVCC_CMD} -Xcompiler "-dumpfullversion -dumpversion"
OUTPUT_VARIABLE CUDA_CCVER
ERROR_QUIET
)
else()
if (CUDA_CCFULLVER MATCHES Apple)
set(CUDA_CCID "AppleClang")
else()
set(CUDA_CCID "Clang")
endif()
string(REGEX REPLACE "^.* version ([0-9.]*).*$" "\\1" CUDA_CCVER ${CUDA_CCFULLVER})
endif()
message("-- CUDA host compiler is ${CUDA_CCID} ${CUDA_CCVER}")
get_flags(${CUDA_CCID} ${CUDA_CCVER})
list(JOIN GF_CXX_FLAGS " " CUDA_CXX_FLAGS) # pass host compiler flags as a single argument
if (NOT CUDA_CXX_FLAGS STREQUAL "")
set(CUDA_FLAGS ${CUDA_FLAGS} -Xcompiler ${CUDA_CXX_FLAGS})
endif()
endif()
add_compile_options("$<$<COMPILE_LANGUAGE:CUDA>:${CUDA_FLAGS}>")
endif()
if (WIN32)
add_compile_definitions(_CRT_SECURE_NO_WARNINGS)
@@ -471,6 +561,7 @@ endif()
execute_process(
COMMAND ${CMAKE_C_COMPILER} ${CMAKE_EXE_LINKER_FLAGS} -Wl,-v
ERROR_VARIABLE output
OUTPUT_QUIET
)
if (output MATCHES "dyld-1015\.7")
add_compile_definitions(HAVE_BUGGY_APPLE_LINKER)
@@ -593,6 +684,11 @@ else()
message(STATUS "Unknown architecture")
endif()
if (MINGW)
# Target Windows 8 for PrefetchVirtualMemory
add_compile_definitions(_WIN32_WINNT=0x602)
endif()
#
# POSIX conformance
#
@@ -662,11 +758,11 @@ add_library(ggml OBJECT
ggml-backend.h
ggml-quants.c
ggml-quants.h
${GGML_SOURCES_CUDA} ${GGML_HEADERS_CUDA}
${GGML_SOURCES_CUDA} ${GGML_HEADERS_CUDA}
${GGML_SOURCES_OPENCL} ${GGML_HEADERS_OPENCL}
${GGML_SOURCES_METAL} ${GGML_HEADERS_METAL}
${GGML_SOURCES_MPI} ${GGML_HEADERS_MPI}
${GGML_SOURCES_EXTRA} ${GGML_HEADERS_EXTRA}
${GGML_SOURCES_METAL} ${GGML_HEADERS_METAL}
${GGML_SOURCES_MPI} ${GGML_HEADERS_MPI}
${GGML_SOURCES_EXTRA} ${GGML_HEADERS_EXTRA}
)
target_include_directories(ggml PUBLIC . ${LLAMA_EXTRA_INCLUDES})

191
Makefile
View File

@@ -2,13 +2,14 @@
BUILD_TARGETS = \
main quantize quantize-stats perplexity embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml \
simple batched batched-bench save-load-state server gguf llama-bench libllava.a llava-cli baby-llama beam-search \
speculative infill tokenize benchmark-matmult parallel finetune export-lora lookahead tests/test-c.o
speculative infill tokenize benchmark-matmult parallel finetune export-lora lookahead lookup passkey tests/test-c.o
# Binaries only useful for tests
TEST_TARGETS = \
tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt \
tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama \
tests/test-tokenizer-0-falcon tests/test-tokenizer-1-llama tests/test-tokenizer-1-bpe tests/test-rope
tests/test-tokenizer-0-falcon tests/test-tokenizer-1-llama tests/test-tokenizer-1-bpe tests/test-rope \
tests/test-backend-ops
# Code coverage output files
COV_TARGETS = *.gcno tests/*.gcno *.gcda tests/*.gcda *.gcov tests/*.gcov lcov-report gcovr-report
@@ -25,20 +26,6 @@ ifndef UNAME_M
UNAME_M := $(shell uname -m)
endif
ifeq '' '$(findstring clang,$(shell $(CC) --version))'
CC_IS_GCC=1
CC_VER := $(shell $(CC) -dumpfullversion -dumpversion | awk -F. '{ printf("%02d%02d%02d", $$1, $$2, $$3) }')
else
CC_IS_CLANG=1
ifeq '' '$(findstring Apple,$(shell $(CC) --version))'
CC_IS_LLVM_CLANG=1
else
CC_IS_APPLE_CLANG=1
endif
CC_VER := $(shell $(CC) --version | sed -n 's/^.* version \([0-9.]*\).*$$/\1/p' \
| awk -F. '{ printf("%02d%02d%02d", $$1, $$2, $$3) }')
endif
# Mac OS + Arm can report x86_64
# ref: https://github.com/ggerganov/whisper.cpp/issues/66#issuecomment-1282546789
ifeq ($(UNAME_S),Darwin)
@@ -78,7 +65,7 @@ test: $(TEST_TARGETS)
./$$test_target; \
fi; \
if [ $$? -ne 0 ]; then \
printf 'Test $$test_target FAILED!\n\n' $$test_target; \
printf 'Test %s FAILED!\n\n' $$test_target; \
failures=$$(( failures + 1 )); \
else \
printf 'Test %s passed.\n\n' $$test_target; \
@@ -120,12 +107,12 @@ MK_CXXFLAGS = -std=c++11 -fPIC
# -Ofast tends to produce faster code, but may not be available for some compilers.
ifdef LLAMA_FAST
MK_CFLAGS += -Ofast
MK_HOST_CXXFLAGS += -Ofast
MK_CUDA_CXXFLAGS += -O3
MK_CFLAGS += -Ofast
HOST_CXXFLAGS += -Ofast
MK_NVCCFLAGS += -O3
else
MK_CFLAGS += -O3
MK_CXXFLAGS += -O3
MK_CFLAGS += -O3
MK_CXXFLAGS += -O3
endif
# clock_gettime came in POSIX.1b (1993)
@@ -219,30 +206,6 @@ MK_CFLAGS += $(WARN_FLAGS) -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmis
-Werror=implicit-function-declaration
MK_CXXFLAGS += $(WARN_FLAGS) -Wmissing-declarations -Wmissing-noreturn
ifeq ($(CC_IS_CLANG), 1)
# clang options
MK_CFLAGS += -Wunreachable-code-break -Wunreachable-code-return
MK_HOST_CXXFLAGS += -Wunreachable-code-break -Wunreachable-code-return -Wmissing-prototypes -Wextra-semi
ifneq '' '$(and $(CC_IS_LLVM_CLANG),$(filter 1,$(shell expr $(CC_VER) \>= 030800)))'
MK_CFLAGS += -Wdouble-promotion
endif
ifneq '' '$(and $(CC_IS_APPLE_CLANG),$(filter 1,$(shell expr $(CC_VER) \>= 070300)))'
MK_CFLAGS += -Wdouble-promotion
endif
else
# gcc options
MK_CFLAGS += -Wdouble-promotion
MK_HOST_CXXFLAGS += -Wno-array-bounds
ifeq ($(shell expr $(CC_VER) \>= 070100), 1)
MK_HOST_CXXFLAGS += -Wno-format-truncation
endif
ifeq ($(shell expr $(CC_VER) \>= 080100), 1)
MK_HOST_CXXFLAGS += -Wextra-semi
endif
endif
# this version of Apple ld64 is buggy
ifneq '' '$(findstring dyld-1015.7,$(shell $(CC) $(LDFLAGS) -Wl,-v 2>&1))'
MK_CPPFLAGS += -DHAVE_BUGGY_APPLE_LINKER
@@ -293,8 +256,8 @@ ifndef RISCV
ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686 amd64))
# Use all CPU extensions that are available:
MK_CFLAGS += -march=native -mtune=native
MK_HOST_CXXFLAGS += -march=native -mtune=native
MK_CFLAGS += -march=native -mtune=native
HOST_CXXFLAGS += -march=native -mtune=native
# Usage AVX-only
#MK_CFLAGS += -mfma -mf16c -mavx
@@ -305,19 +268,31 @@ ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686 amd64))
#MK_CXXFLAGS += -mssse3
endif
# The stack is only 16-byte aligned on Windows, so don't let gcc emit aligned moves.
# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=54412
# https://github.com/ggerganov/llama.cpp/issues/2922
ifneq '' '$(findstring mingw,$(shell $(CC) -dumpmachine))'
# The stack is only 16-byte aligned on Windows, so don't let gcc emit aligned moves.
# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=54412
# https://github.com/ggerganov/llama.cpp/issues/2922
MK_CFLAGS += -Xassembler -muse-unaligned-vector-move
MK_CXXFLAGS += -Xassembler -muse-unaligned-vector-move
# Target Windows 8 for PrefetchVirtualMemory
MK_CPPFLAGS += -D_WIN32_WINNT=0x602
endif
ifneq ($(filter aarch64%,$(UNAME_M)),)
# Apple M1, M2, etc.
# Raspberry Pi 3, 4, Zero 2 (64-bit)
# Nvidia Jetson
MK_CFLAGS += -mcpu=native
MK_CXXFLAGS += -mcpu=native
JETSON_RELEASE_INFO = $(shell jetson_release)
ifdef JETSON_RELEASE_INFO
ifneq ($(filter TX2%,$(JETSON_RELEASE_INFO)),)
JETSON_EOL_MODULE_DETECT = 1
CC = aarch64-unknown-linux-gnu-gcc
cxx = aarch64-unknown-linux-gnu-g++
endif
endif
endif
ifneq ($(filter armv6%,$(UNAME_M)),)
@@ -391,64 +366,72 @@ ifdef LLAMA_BLIS
endif # LLAMA_BLIS
ifdef LLAMA_CUBLAS
MK_CPPFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include
MK_LDFLAGS += -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/x86_64-linux/lib
MK_CPPFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include
MK_LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
OBJS += ggml-cuda.o
NVCCFLAGS = --forward-unknown-to-host-compiler -use_fast_math
MK_NVCCFLAGS = -use_fast_math
ifndef JETSON_EOL_MODULE_DETECT
MK_NVCCFLAGS += --forward-unknown-to-host-compiler
endif # JETSON_EOL_MODULE_DETECT
ifdef LLAMA_DEBUG
MK_NVCCFLAGS += -lineinfo
endif # LLAMA_DEBUG
ifdef LLAMA_CUDA_NVCC
NVCC = $(LLAMA_CUDA_NVCC)
else
NVCC = nvcc
endif #LLAMA_CUDA_NVCC
ifdef CUDA_DOCKER_ARCH
NVCCFLAGS += -Wno-deprecated-gpu-targets -arch=$(CUDA_DOCKER_ARCH)
else ifdef CUDA_POWER_ARCH
NVCCFLAGS +=
else
NVCCFLAGS += -arch=native
MK_NVCCFLAGS += -Wno-deprecated-gpu-targets -arch=$(CUDA_DOCKER_ARCH)
else ifndef CUDA_POWER_ARCH
MK_NVCCFLAGS += -arch=native
endif # CUDA_DOCKER_ARCH
ifdef LLAMA_CUDA_FORCE_DMMV
NVCCFLAGS += -DGGML_CUDA_FORCE_DMMV
MK_NVCCFLAGS += -DGGML_CUDA_FORCE_DMMV
endif # LLAMA_CUDA_FORCE_DMMV
ifdef LLAMA_CUDA_FORCE_MMQ
NVCCFLAGS += -DGGML_CUDA_FORCE_MMQ
MK_NVCCFLAGS += -DGGML_CUDA_FORCE_MMQ
endif # LLAMA_CUDA_FORCE_MMQ
ifdef LLAMA_CUDA_DMMV_X
NVCCFLAGS += -DGGML_CUDA_DMMV_X=$(LLAMA_CUDA_DMMV_X)
MK_NVCCFLAGS += -DGGML_CUDA_DMMV_X=$(LLAMA_CUDA_DMMV_X)
else
NVCCFLAGS += -DGGML_CUDA_DMMV_X=32
MK_NVCCFLAGS += -DGGML_CUDA_DMMV_X=32
endif # LLAMA_CUDA_DMMV_X
ifdef LLAMA_CUDA_MMV_Y
NVCCFLAGS += -DGGML_CUDA_MMV_Y=$(LLAMA_CUDA_MMV_Y)
MK_NVCCFLAGS += -DGGML_CUDA_MMV_Y=$(LLAMA_CUDA_MMV_Y)
else ifdef LLAMA_CUDA_DMMV_Y
NVCCFLAGS += -DGGML_CUDA_MMV_Y=$(LLAMA_CUDA_DMMV_Y) # for backwards compatibility
MK_NVCCFLAGS += -DGGML_CUDA_MMV_Y=$(LLAMA_CUDA_DMMV_Y) # for backwards compatibility
else
NVCCFLAGS += -DGGML_CUDA_MMV_Y=1
MK_NVCCFLAGS += -DGGML_CUDA_MMV_Y=1
endif # LLAMA_CUDA_MMV_Y
ifdef LLAMA_CUDA_F16
NVCCFLAGS += -DGGML_CUDA_F16
MK_NVCCFLAGS += -DGGML_CUDA_F16
endif # LLAMA_CUDA_F16
ifdef LLAMA_CUDA_DMMV_F16
NVCCFLAGS += -DGGML_CUDA_F16
MK_NVCCFLAGS += -DGGML_CUDA_F16
endif # LLAMA_CUDA_DMMV_F16
ifdef LLAMA_CUDA_KQUANTS_ITER
NVCCFLAGS += -DK_QUANTS_PER_ITERATION=$(LLAMA_CUDA_KQUANTS_ITER)
MK_NVCCFLAGS += -DK_QUANTS_PER_ITERATION=$(LLAMA_CUDA_KQUANTS_ITER)
else
NVCCFLAGS += -DK_QUANTS_PER_ITERATION=2
MK_NVCCFLAGS += -DK_QUANTS_PER_ITERATION=2
endif
ifdef LLAMA_CUDA_PEER_MAX_BATCH_SIZE
NVCCFLAGS += -DGGML_CUDA_PEER_MAX_BATCH_SIZE=$(LLAMA_CUDA_PEER_MAX_BATCH_SIZE)
MK_NVCCFLAGS += -DGGML_CUDA_PEER_MAX_BATCH_SIZE=$(LLAMA_CUDA_PEER_MAX_BATCH_SIZE)
else
NVCCFLAGS += -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128
MK_NVCCFLAGS += -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128
endif # LLAMA_CUDA_PEER_MAX_BATCH_SIZE
#ifdef LLAMA_CUDA_CUBLAS
# NVCCFLAGS += -DGGML_CUDA_CUBLAS
# MK_NVCCFLAGS += -DGGML_CUDA_CUBLAS
#endif # LLAMA_CUDA_CUBLAS
ifdef LLAMA_CUDA_CCBIN
NVCCFLAGS += -ccbin $(LLAMA_CUDA_CCBIN)
MK_NVCCFLAGS += -ccbin $(LLAMA_CUDA_CCBIN)
endif
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
$(NVCC) $(NVCCFLAGS) -c $< -o $@
ifdef JETSON_EOL_MODULE_DETECT
$(NVCC) -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/usr/local/cuda/targets/aarch64-linux/include -std=c++11 -O3 $(NVCCFLAGS) -Xcompiler "$(CUDA_CXXFLAGS)" -c $< -o $@
else
$(NVCC) $(BASE_CXXFLAGS) $(NVCCFLAGS) -Wno-pedantic -Xcompiler "$(CUDA_CXXFLAGS)" -c $< -o $@
endif # JETSON_EOL_MODULE_DETECT
endif # LLAMA_CUBLAS
ifdef LLAMA_CLBLAST
@@ -470,13 +453,22 @@ ggml-opencl.o: ggml-opencl.cpp ggml-opencl.h
endif # LLAMA_CLBLAST
ifdef LLAMA_HIPBLAS
ROCM_PATH ?= /opt/rocm
HIPCC ?= $(ROCM_PATH)/bin/hipcc
GPU_TARGETS ?= $(shell $(ROCM_PATH)/llvm/bin/amdgpu-arch)
ifeq ($(wildcard /opt/rocm),)
ROCM_PATH ?= /usr
GPU_TARGETS ?= $(shell $(shell which amdgpu-arch))
else
ROCM_PATH ?= /opt/rocm
GPU_TARGETS ?= $(shell $(ROCM_PATH)/llvm/bin/amdgpu-arch)
endif
HIPCC ?= $(ROCM_PATH)/bin/hipcc
LLAMA_CUDA_DMMV_X ?= 32
LLAMA_CUDA_MMV_Y ?= 1
LLAMA_CUDA_KQUANTS_ITER ?= 2
MK_CPPFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUBLAS
ifdef LLAMA_HIP_UMA
MK_CPPFLAGS += -DGGML_HIP_UMA
endif # LLAMA_HIP_UMA
MK_LDFLAGS += -L$(ROCM_PATH)/lib -Wl,-rpath=$(ROCM_PATH)/lib
MK_LDFLAGS += -lhipblas -lamdhip64 -lrocblas
HIPFLAGS += $(addprefix --offload-arch=,$(GPU_TARGETS))
@@ -510,16 +502,22 @@ ggml-mpi.o: ggml-mpi.c ggml-mpi.h
$(CC) $(CFLAGS) -c $< -o $@
endif # LLAMA_MPI
# combine build flags with cmdline overrides
override CFLAGS := $(MK_CPPFLAGS) $(CPPFLAGS) $(MK_CFLAGS) $(CFLAGS)
override CXXFLAGS := $(MK_CPPFLAGS) $(CPPFLAGS) $(MK_CXXFLAGS) $(CXXFLAGS)
override CUDA_CXXFLAGS := $(MK_CUDA_CXXFLAGS) $(CUDA_CXXFLAGS)
override HOST_CXXFLAGS := $(MK_HOST_CXXFLAGS) $(HOST_CXXFLAGS)
override LDFLAGS := $(MK_LDFLAGS) $(LDFLAGS)
GF_CC := $(CC)
include scripts/get-flags.mk
# save CXXFLAGS before we add host-only options
NVCCFLAGS := $(NVCCFLAGS) $(CXXFLAGS) $(CUDA_CXXFLAGS) -Wno-pedantic -Xcompiler "$(HOST_CXXFLAGS)"
override CXXFLAGS += $(HOST_CXXFLAGS)
# combine build flags with cmdline overrides
override CFLAGS := $(MK_CPPFLAGS) $(CPPFLAGS) $(MK_CFLAGS) $(GF_CFLAGS) $(CFLAGS)
BASE_CXXFLAGS := $(MK_CPPFLAGS) $(CPPFLAGS) $(MK_CXXFLAGS) $(CXXFLAGS)
override CXXFLAGS := $(BASE_CXXFLAGS) $(HOST_CXXFLAGS) $(GF_CXXFLAGS)
override NVCCFLAGS := $(MK_NVCCFLAGS) $(NVCCFLAGS)
override LDFLAGS := $(MK_LDFLAGS) $(LDFLAGS)
# identify CUDA host compiler
ifdef LLAMA_CUBLAS
GF_CC := $(NVCC) $(NVCCFLAGS) 2>/dev/null .c -Xcompiler
include scripts/get-flags.mk
CUDA_CXXFLAGS := $(GF_CXXFLAGS)
endif
#
# Print build information
@@ -625,7 +623,7 @@ save-load-state: examples/save-load-state/save-load-state.cpp ggml.o llama.o $(C
server: examples/server/server.cpp examples/server/httplib.h examples/server/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp examples/llava/clip.cpp examples/llava/clip.h common/stb_image.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
$(CXX) $(CXXFLAGS) -Iexamples/server $(filter-out %.h,$(filter-out %.hpp,$^)) -o $@ $(LDFLAGS) $(LWINSOCK2) -Wno-cast-qual
gguf: examples/gguf/gguf.cpp ggml.o llama.o $(OBJS)
gguf: examples/gguf/gguf.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS)
@@ -664,6 +662,12 @@ parallel: examples/parallel/parallel.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
lookahead: examples/lookahead/lookahead.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
lookup: examples/lookup/lookup.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
passkey: examples/passkey/passkey.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
ifdef LLAMA_METAL
metal: examples/metal/metal.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
@@ -729,16 +733,16 @@ tests/test-quantize-perf: tests/test-quantize-perf.cpp ggml.o $(OBJS)
tests/test-sampling: tests/test-sampling.cpp ggml.o llama.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-tokenizer-0-falcon: tests/test-tokenizer-0-falcon.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
tests/test-tokenizer-0-falcon: tests/test-tokenizer-0-falcon.cpp ggml.o llama.o $(COMMON_DEPS) console.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-tokenizer-0-llama: tests/test-tokenizer-0-llama.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
tests/test-tokenizer-0-llama: tests/test-tokenizer-0-llama.cpp ggml.o llama.o $(COMMON_DEPS) console.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-tokenizer-1-bpe: tests/test-tokenizer-1-bpe.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
tests/test-tokenizer-1-bpe: tests/test-tokenizer-1-bpe.cpp ggml.o llama.o $(COMMON_DEPS) console.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-tokenizer-1-llama: tests/test-tokenizer-1-llama.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
tests/test-tokenizer-1-llama: tests/test-tokenizer-1-llama.cpp ggml.o llama.o $(COMMON_DEPS) console.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-rope: tests/test-rope.cpp ggml.o $(OBJS)
@@ -746,3 +750,6 @@ tests/test-rope: tests/test-rope.cpp ggml.o $(OBJS)
tests/test-c.o: tests/test-c.c llama.h
$(CC) $(CFLAGS) -c $(filter-out %.h,$^) -o $@
tests/test-backend-ops: tests/test-backend-ops.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)

View File

@@ -13,21 +13,17 @@ let package = Package(
products: [
.library(name: "llama", targets: ["llama"]),
],
dependencies: [
.package(url: "https://github.com/ggerganov/ggml.git", .branch("master"))
],
targets: [
.target(
name: "llama",
dependencies: ["ggml"],
path: ".",
exclude: [],
exclude: ["ggml-metal.metal"],
sources: [
"ggml.c",
"llama.cpp",
"ggml-alloc.c",
"ggml-backend.c",
"ggml-quants.c",
"ggml-metal.m",
],
resources: [
.process("ggml-metal.metal")
],
publicHeadersPath: "spm-headers",
cSettings: [

View File

@@ -10,9 +10,12 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
### Hot topics
- Using `llama.cpp` with AWS instances: https://github.com/ggerganov/llama.cpp/discussions/4225
- New SOTA quantized models, including pure 2-bits: https://huggingface.co/ikawrakow
- Collecting Apple Silicon performance stats:
- M-series: https://github.com/ggerganov/llama.cpp/discussions/4167
- A-series: https://github.com/ggerganov/llama.cpp/discussions/4508
- Added Mixtral support: https://github.com/ggerganov/llama.cpp/pull/4406
- Looking for contributions to improve and maintain the `server` example: https://github.com/ggerganov/llama.cpp/issues/4216
- Collecting Apple Silicon performance stats: https://github.com/ggerganov/llama.cpp/discussions/4167
----
@@ -95,7 +98,20 @@ as the main playground for developing new features for the [ggml](https://github
- [X] [Persimmon 8B](https://github.com/ggerganov/llama.cpp/pull/3410)
- [X] [MPT](https://github.com/ggerganov/llama.cpp/pull/3417)
- [X] [Bloom](https://github.com/ggerganov/llama.cpp/pull/3553)
- [x] [Yi models](https://huggingface.co/models?search=01-ai/Yi)
- [X] [StableLM-3b-4e1t](https://github.com/ggerganov/llama.cpp/pull/3586)
- [x] [Deepseek models](https://huggingface.co/models?search=deepseek-ai/deepseek)
- [x] [Qwen models](https://huggingface.co/models?search=Qwen/Qwen)
- [x] [Mixtral MoE](https://huggingface.co/models?search=mistral-ai/Mixtral)
- [x] [PLaMo-13B](https://github.com/ggerganov/llama.cpp/pull/3557)
- [x] [GPT-2](https://huggingface.co/gpt2)
**Multimodal models:**
- [x] [Llava 1.5 models](https://huggingface.co/collections/liuhaotian/llava-15-653aac15d994e992e2677a7e)
- [x] [Bakllava](https://huggingface.co/models?search=SkunkworksAI/Bakllava)
- [x] [Obsidian](https://huggingface.co/NousResearch/Obsidian-3B-V0.5)
- [x] [ShareGPT4V](https://huggingface.co/models?search=Lin-Chen/ShareGPT4V)
**Bindings:**
@@ -103,6 +119,7 @@ as the main playground for developing new features for the [ggml](https://github
- Python: [abetlen/llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
- Go: [go-skynet/go-llama.cpp](https://github.com/go-skynet/go-llama.cpp)
- Node.js: [withcatai/node-llama-cpp](https://github.com/withcatai/node-llama-cpp)
- JS/TS (llama.cpp server client): [lgrammel/modelfusion](https://modelfusion.dev/integration/model-provider/llamacpp)
- Ruby: [yoshoku/llama_cpp.rb](https://github.com/yoshoku/llama_cpp.rb)
- Rust: [mdrokz/rust-llama.cpp](https://github.com/mdrokz/rust-llama.cpp)
- C#/.NET: [SciSharp/LLamaSharp](https://github.com/SciSharp/LLamaSharp)
@@ -110,6 +127,7 @@ as the main playground for developing new features for the [ggml](https://github
- Clojure: [phronmophobic/llama.clj](https://github.com/phronmophobic/llama.clj)
- React Native: [mybigday/llama.rn](https://github.com/mybigday/llama.rn)
- Java: [kherud/java-llama.cpp](https://github.com/kherud/java-llama.cpp)
- Zig: [deins/llama.cpp.zig](https://github.com/Deins/llama.cpp.zig)
**UI:**
@@ -118,6 +136,7 @@ as the main playground for developing new features for the [ggml](https://github
- [withcatai/catai](https://github.com/withcatai/catai)
- [semperai/amica](https://github.com/semperai/amica)
- [psugihara/FreeChat](https://github.com/psugihara/FreeChat)
- [ptsochantaris/emeltal](https://github.com/ptsochantaris/emeltal)
---
@@ -368,20 +387,37 @@ Building the program with BLAS support may lead to some performance improvements
Check [BLIS.md](docs/BLIS.md) for more information.
- #### Intel MKL
- #### Intel oneMKL
- Using manual oneAPI installation:
By default, `LLAMA_BLAS_VENDOR` is set to `Generic`, so if you already sourced intel environment script and assign `-DLLAMA_BLAS=ON` in cmake, the mkl version of Blas will automatically been selected. Otherwise please install oneAPI and follow the below steps:
```bash
mkdir build
cd build
source /opt/intel/oneapi/setvars.sh # You can skip this step if in oneapi-runtime docker image, only required for manual installation
cmake .. -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=Intel10_64lp -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_NATIVE=ON
cmake --build . --config Release
```
By default, `LLAMA_BLAS_VENDOR` is set to `Generic`, so if you already sourced intel environment script and assign `-DLLAMA_BLAS=ON` in cmake, the mkl version of Blas will automatically been selected. You may also specify it by:
- Using oneAPI docker image:
If you do not want to source the environment vars and install oneAPI manually, you can also build the code using intel docker container: [oneAPI-runtime](https://hub.docker.com/r/intel/oneapi-runtime)
```bash
mkdir build
cd build
cmake .. -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=Intel10_64lp -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
cmake --build . --config Release
```
```bash
mkdir build
cd build
cmake .. -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=Intel10_64lp -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_NATIVE=ON
cmake --build . --config Release
```
Building through oneAPI compilers will make avx_vnni instruction set available for intel processors that do not support avx512 and avx512_vnni.
Check [Optimizing and Running LLaMA2 on Intel® CPU](https://www.intel.com/content/www/us/en/content-details/791610/optimizing-and-running-llama2-on-intel-cpu.html) for more information.
- #### cuBLAS
This provides BLAS acceleration using the CUDA cores of your Nvidia GPU. Make sure to have the CUDA toolkit installed. You can download it from your Linux distro's package manager (e.g. `apt install nvidia-cuda-toolkit`) or from here: [CUDA Toolkit](https://developer.nvidia.com/cuda-downloads).
For Jetson user, if you have Jetson Orin, you can try this: [Offical Support](https://www.jetson-ai-lab.com/tutorial_text-generation.html). If you are using an old model(nano/TX2), need some additional operations before compiling.
- Using `make`:
```bash
make LLAMA_CUBLAS=1
@@ -419,14 +455,21 @@ Building the program with BLAS support may lead to some performance improvements
```bash
make LLAMA_HIPBLAS=1
```
- Using `CMake` for Linux:
- Using `CMake` for Linux (assuming a gfx1030-compatible AMD GPU):
```bash
mkdir build
cd build
CC=/opt/rocm/llvm/bin/clang CXX=/opt/rocm/llvm/bin/clang++ cmake .. -DLLAMA_HIPBLAS=ON
cmake --build .
CC=/opt/rocm/llvm/bin/clang CXX=/opt/rocm/llvm/bin/clang++ \
cmake -H. -Bbuild -DLLAMA_HIPBLAS=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
&& cmake --build build -- -j 16
```
- Using `CMake` for Windows (using x64 Native Tools Command Prompt for VS):
On Linux it is also possible to use unified memory architecture (UMA) to share main memory between the CPU and integrated GPU by setting `-DLLAMA_HIP_UMA=ON"`.
However, this hurts performance for non-integrated GPUs (but enables working with integrated GPUs).
- Using `make` (example for target gfx1030, build with 16 CPU threads):
```bash
make -j16 LLAMA_HIPBLAS=1 LLAMA_HIP_UMA=1 AMDGPU_TARGETS=gxf1030
```
- Using `CMake` for Windows (using x64 Native Tools Command Prompt for VS, and assuming a gfx1100-compatible AMD GPU):
```bash
set PATH=%HIP_PATH%\bin;%PATH%
mkdir build
@@ -435,10 +478,11 @@ Building the program with BLAS support may lead to some performance improvements
cmake --build .
```
Make sure that `AMDGPU_TARGETS` is set to the GPU arch you want to compile for. The above example uses `gfx1100` that corresponds to Radeon RX 7900XTX/XT/GRE. You can find a list of targets [here](https://llvm.org/docs/AMDGPUUsage.html#processors)
Find your gpu version string by matching the most significant version information from `rocminfo | grep gfx | head -1 | awk '{print $2}'` with the list of processors, e.g. `gfx1035` maps to `gfx1030`.
The environment variable [`HIP_VISIBLE_DEVICES`](https://rocm.docs.amd.com/en/latest/understand/gpu_isolation.html#hip-visible-devices) can be used to specify which GPU(s) will be used.
If your GPU is not officially supported you can use the environment variable [`HSA_OVERRIDE_GFX_VERSION`] set to a similar GPU, for example 10.3.0 on RDNA2 or 11.0.0 on RDNA3.
If your GPU is not officially supported you can use the environment variable [`HSA_OVERRIDE_GFX_VERSION`] set to a similar GPU, for example 10.3.0 on RDNA2 (e.g. gfx1030, gfx1031, or gfx1035) or 11.0.0 on RDNA3.
The following compilation options are also available to tweak performance (yes, they refer to CUDA, not HIP, because it uses the same code as the cuBLAS version above):
| Option | Legal values | Default | Description |
@@ -969,6 +1013,8 @@ docker run --gpus all -v /path/to/models:/models local/llama.cpp:light-cuda -m /
- There are no strict rules for the code style, but try to follow the patterns in the code (indentation, spaces, etc.). Vertical alignment makes things more readable and easier to batch edit
- Clean-up any trailing whitespaces, use 4 spaces for indentation, brackets on the same line, `void * ptr`, `int & a`
- See [good first issues](https://github.com/ggerganov/llama.cpp/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22) for tasks suitable for first contributions
- Tensors store data in row-major order. We refer to dimension 0 as columns, 1 as rows, 2 as matrices
- Matrix multiplication is unconventional: [`z = ggml_mul_mat(ctx, x, y)`](https://github.com/ggerganov/llama.cpp/blob/880e352277fc017df4d5794f0c21c44e1eae2b84/ggml.h#L1058-L1064) means `zT = x @ yT`
### Docs

116
awq-py/README.md Normal file
View File

@@ -0,0 +1,116 @@
# AWQ: Activation-aware Weight Quantization for LLM - version apply to llamacpp
[[Paper](https://arxiv.org/abs/2306.00978)][[Original Repo](https://github.com/mit-han-lab/llm-awq)][[Easy-to-use Repo](https://github.com/casper-hansen/AutoAWQ)]
**Supported models:**
- [X] LLaMA
- [x] LLaMA 2
- [X] MPT
- [X] Mistral AI v0.1
- [ ] Bloom
- [ ] Mixtral MoE
**TODO:**
- [x] Update version work with both MPT and MPT-AWQ model
- [ ] Add OPT model
- [ ] Add Bloom model
- [ ] Add Mixtral MoE
- [ ] Support w3, w2
## Contents
- [Install](##Install)
- [Convert](##Convert)
- [Quantize](##Quantize)
- [Test](##Test)
- [Benchmark](##Benchmark)
- [Results](##Results)
## Install
Install requirements
```bash
pip install -r requirements.txt
```
Get the pre-computed AWQ search results for multiple model families, including LLaMA, LLaMA2, MPT, OPT
```bash
git clone https://huggingface.co/datasets/mit-han-lab/awq-model-zoo awq_cache
```
## Convert
Example for llama model
```bash
# For llama7b and llama2 models
python convert.py models/llama-7b/ --awq-path awq_cache/llama-7b-w4-g128.pt --outfile models/llama_7b_fp16.gguf
# For mistral and mpt models
python convert-hf-to-gguf.py models/mpt-7b/ --awq-path awq_cache/llama-7b-w4-g128.pt --outfile models/mpt_7b_fp16.gguf
```
## Quantize
```bash
# We only benchmark and confirm the results on q4_0, q4_1, and q2_k types.
./quantize models/llama_7b_fp16.gguf models/llama_7b_q4_0.gguf q4_0
```
## Test
```bash
# For all models.
./build/bin/main -m models/llama_7b_q4_0.gguf -n 128 --prompt "Once upon a time"
```
## Benchmark
The perplexity measurements in table above are done against the `wikitext2` test dataset (https://paperswithcode.com/dataset/wikitext-2), with context length of 512.
```bash
# For llama and llama2, and mistral models.
./perplexity -m models/llama_7b_q4_0.gguf -f datasets/wikitext-2-raw/wiki.test.raw
```
## Results
Results are run on OpenBLAS (CPU) and CuBLAS (GPU) for fair comparison
We use three types of llamacpp quantization methods to work with our version, including q4_0, q4_1, and q2_k
### Llama 7B (Build with OpenBLAS)
| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K |
|-----------:|--------------|-------:|-------:|-------:|-------:|
|Llama 7B | perplexity | 5.9066 | 6.1214 | 6.0643 | 6.5808 |
|Llama 7B | file size | 12.9G | 3.5G | 3.9G | 2.7G |
|Llama 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|AWQ-LLama 7B| perplexity | 5.9175 | 6.0252 | 5.9987 | 6.3692 |
|AWQ-LLama 7B| file size | 12.9G | 3.5G | 3.9G | 2.7G |
|AWQ-LLama 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
### Llama2 7B (Build with CuBLAS)
| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K |
|------------:|--------------|-------:|-------:|-------:|-------:|
|Llama2 7B | perplexity | 5.8664 | 6.0260 | 6.0656 | 6.4496 |
|Llama2 7B | file size | 12.9G | 3.5G | 3.9G | 2.7G |
|Llama2 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|AWQ-LLama2 7B| perplexity | 5.8801 | 6.0054 | 5.9849 | 6.3650 |
|AWQ-LLama2 7B| file size | 12.9G | 3.5G | 3.9G | 2.7G |
|AWQ-LLama2 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
### Mistral 7B v0.1 (Build with CuBLAS)
| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K |
|-------------:|--------------|-------:|-------:|-------:|-------:|
|Mistral 7B | perplexity | 5.6931 | 5.8202 | 5.8268 | 6.1645 |
|Mistral 7B | file size | 14.5G | 4.1G | 4.5G | 3.1G |
|Mistral 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|AWQ-Mistral 7B| perplexity | 5.6934 | 5.8020 | 5.7691 | 6.0426 |
|AWQ-Mistral 7B| file size | 14.5G | 4.1G | 4.5G | 3.1G |
|AWQ-Mistral 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
### MPT 7B (Build with OpenBLAS)
| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K |
|---------:|--------------|-------:|-------:|-------:|--------:|
|MPT 7B | perplexity | 8.4369 | 8.7956 | 8.6265 | 11.4913 |
|MPT 7B | file size | 13.7G | 3.9G | 4.3G | 2.8G |
|MPT 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|AWQ-MPT 7B| perplexity | 8.4944 | 8.7053 | 8.6750 | 10.2873|
|AWQ-MPT 7B| file size | 13.7G | 3.9G | 4.3G | 2.8G |
|AWQ-MPT 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |

254
awq-py/awq/apply_awq.py Normal file
View File

@@ -0,0 +1,254 @@
"""
Implements the AWQ for llama.cpp use cases.
Original paper: https://arxiv.org/abs/2306.00978
This code is based on versions of the AWQ implementation found in the following repositories:
* https://github.com/mit-han-lab/llm-awq
* https://github.com/casper-hansen/AutoAWQ
"""
import os
import torch
import torch.nn as nn
from transformers import AutoModelForCausalLM, AutoConfig
from transformers.models.bloom.modeling_bloom import BloomGelu
from transformers.models.llama.modeling_llama import LlamaRMSNorm
from transformers.activations import GELUActivation
class ScaledActivation(nn.Module):
"""
ScaledActivation module wraps an existing activation function and applies a
scale factor to its output.
Args:
module (nn.Module): The activation function to be scaled.
scales (torch.Tensor): A tensor of size (num_features,) containing the initial
scale factors for each feature.
Returns:
torch.Tensor: The scaled output of the activation function.
"""
def __init__(self, module, scales):
super().__init__()
self.act = module
self.scales = nn.Parameter(scales.data)
def forward(self, x):
return self.act(x) / self.scales.view(1, 1, -1).to(x.device)
def set_op_by_name(layer, name, new_module):
"""
Set the new module for given module's name.
Args:
layer (nn.Module): The layer in which to replace the submodule.
name (str): The path to the submodule to be replaced, using dot notation
to access nested modules.
new_module (nn.Module): The new module to replace the existing one.
"""
levels = name.split(".")
if len(levels) > 1:
mod_ = layer
for l_idx in range(len(levels) - 1):
if levels[l_idx].isdigit():
mod_ = mod_[int(levels[l_idx])]
else:
mod_ = getattr(mod_, levels[l_idx])
setattr(mod_, levels[-1], new_module)
else:
setattr(layer, name, new_module)
def get_op_by_name(module, op_name):
"""
Retrieves a submodule within a given layer based on its name.
Args:
module (nn.Module): The layer containing the submodule to find.
op_name (str): The name of the submodule.
Returns:
nn.Module: The requested submodule found within the given layer.
Raises:
ValueError: If the specified submodule cannot be found within the layer.
"""
for name, m in module.named_modules():
if name == op_name:
return m
raise ValueError(f"Cannot find op {op_name} in module {module}")
@torch.no_grad()
def scale_ln_fcs(ln, fcs, scales):
"""
Scales the weights of a LayerNorm and a list of fully-connected layers proportionally.
Args:
ln (nn.LayerNorm): The LayerNorm module to be scaled.
fcs (List[nn.Linear]): A list of fully-connected layers to be scaled.
scales (torch.Tensor): A 1D tensor of size (num_features,).
"""
if not isinstance(fcs, list):
fcs = [fcs]
scales = scales.to(ln.weight.device)
ln.weight.div_(scales)
if hasattr(ln, "bias") and ln.bias is not None:
ln.bias.div_(scales)
for fc in fcs:
fc.weight.mul_(scales.view(1, -1))
for p in ln.parameters():
assert torch.isnan(p).sum() == 0
for fc in fcs:
for p in fc.parameters():
assert torch.isnan(p).sum() == 0
@torch.no_grad()
def scale_fc_fc(fc1, fc2, scales):
"""
Scales the weights of two fully-connected layers in a specific pattern.
Args:
fc1 (nn.Linear): The first fully-connected layer to be scaled.
fc2 (nn.Linear): The second fully-connected layer to be scaled.
scales (torch.Tensor): A 1D tensor of size (num_features,).
"""
assert isinstance(fc1, nn.Linear)
assert isinstance(fc2, nn.Linear)
scales = scales.to(fc1.weight.device)
fc1.weight[-scales.size(0):].div_(scales.view(-1, 1))
if fc1.bias is not None:
fc1.bias.div_(scales.view(-1))
fc2.weight.mul_(scales.view(1, -1))
for p in fc1.parameters():
assert torch.isnan(p).sum() == 0
for p in fc2.parameters():
assert torch.isnan(p).sum() == 0
@torch.no_grad()
def scale_gelu_fc(gelu, fc, scales):
"""
Scales the weight of a GELU activation and a fully-connected layer proportionally.
Args:
gelu (Union[nn.GELU, BloomGelu, GELUActivation]): The GELU activation module to be scaled.
fc (nn.Linear): The fully-connected layer to be scaled.
scales (torch.Tensor): A 1D tensor of size (num_features,).
Raises:
TypeError: If the `gelu` module is not of type `nn.GELU`, `BloomGelu`, or `GELUActivation`.
TypeError: If the `fc` module is not of type `nn.Linear`.
"""
assert isinstance(gelu, (nn.GELU, BloomGelu, GELUActivation))
assert isinstance(fc, nn.Linear)
fc.weight.mul_(scales.view(1, -1).to(fc.weight.device))
for p in fc.parameters():
assert torch.isnan(p).sum() == 0
def apply_scale(module, scales_list, input_feat_dict=None):
"""
Applies different scaling strategies to layers based on their type and hierarchy within a given module.
Args:
module (nn.Module): The module containing the layers to be scaled.
scales_list (List[Tuple[str, List[str], torch.Tensor]]): A list of tuples containing:
* prev_op_name (str): The name of the preceding operation or module,
relative to which the layers to be scaled are located.
* layer_names (List[str]): A list of names of the layers to be scaled, relative to the preceding operation.
* scales (torch.Tensor): A 1D tensor of size (num_features,) containing the scaling factors for each feature.
input_feat_dict (Optional[Dict[str, torch.Tensor]]): A dictionary mapping layer names to their corresponding
input features (optional).
"""
for prev_op_name, layer_names, scales in scales_list:
prev_op = get_op_by_name(module, prev_op_name)
layers = [get_op_by_name(module, name) for name in layer_names]
prev_op.cuda()
for layer in layers:
layer.cuda()
scales.cuda()
if isinstance(prev_op, nn.Linear):
assert len(layers) == 1
scale_fc_fc(prev_op, layers[0], scales)
elif isinstance(prev_op, (nn.LayerNorm, LlamaRMSNorm)) or "rmsnorm" in str(prev_op.__class__).lower():
scale_ln_fcs(prev_op, layers, scales)
elif isinstance(prev_op, (nn.GELU, BloomGelu, GELUActivation)):
new_module = ScaledActivation(prev_op, scales)
set_op_by_name(module, prev_op_name, new_module)
scale_gelu_fc(prev_op, layers[0], scales)
else:
raise NotImplementedError(f"prev_op {type(prev_op)} not supported yet!")
# apply the scaling to input feat if given; prepare it for clipping
if input_feat_dict is not None:
for layer_name in layer_names:
inp = input_feat_dict[layer_name]
inp.div_(scales.view(1, -1).to(inp.device))
prev_op.cpu()
for layer in layers:
layer.cpu()
scales.cpu()
@torch.no_grad()
def apply_clip(module, clip_list):
"""
Applies element-wise clipping to the weight of a specific layer within a given module.
Args:
module (nn.Module): The module containing the layer to be clipped.
clip_list (List[Tuple[str, torch.Tensor]]): A list of tuples containing:
* name (str): The name of the layer to be clipped, relative to the root of the module.
* max_val (torch.Tensor): A 1D or 2D tensor defining the upper bound for each element of the layer's weight.
"""
for name, max_val in clip_list:
layer = get_op_by_name(module, name)
layer.cuda()
max_val = max_val.to(layer.weight.device)
org_shape = layer.weight.shape
layer.weight.data = layer.weight.data.reshape(*max_val.shape[:2], -1)
layer.weight.data = torch.clamp(layer.weight.data, -max_val, max_val)
layer.weight.data = layer.weight.data.reshape(org_shape)
layer.cpu()
def add_scale_weights(model_path, scale_path, tmp_path):
"""
Adds pre-computed Activation Weight Quantization (AWQ) results to a model,
including scaling factors and clipping bounds.
Args:
model_path (str): Path to the pre-trained model to be equipped with AWQ.
scale_path (str): Path to the AWQ scale factors (.pt file).
tmp_path (str): Path to the temporary directory where the equipped model will be saved.
"""
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_path, config=config, trust_remote_code=True
)
model.eval()
awq_results = torch.load(str(scale_path), map_location="cpu")
apply_scale(model, awq_results["scale"])
apply_clip(model, awq_results["clip"])
model.save_pretrained(str(tmp_path))
os.system(f"cp {str(model_path)}/tokenizer* {str(tmp_path)}")

2
awq-py/requirements.txt Normal file
View File

@@ -0,0 +1,2 @@
torch>=2.1.1
transformers>=4.32.0

View File

@@ -30,6 +30,12 @@ sd=`dirname $0`
cd $sd/../
SRC=`pwd`
CMAKE_EXTRA=""
if [ ! -z ${GG_BUILD_METAL} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DLLAMA_METAL_SHADER_DEBUG=ON"
fi
## helpers
# download a file if it does not exist or if it is outdated
@@ -81,8 +87,8 @@ function gg_run_ctest_debug {
set -e
(time cmake -DCMAKE_BUILD_TYPE=Debug .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
(time cmake -DCMAKE_BUILD_TYPE=Debug ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
(time ctest --output-on-failure -E test-opt ) 2>&1 | tee -a $OUT/${ci}-ctest.log
@@ -109,8 +115,8 @@ function gg_run_ctest_release {
set -e
(time cmake -DCMAKE_BUILD_TYPE=Release .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
if [ -z ${GG_BUILD_LOW_PERF} ]; then
(time ctest --output-on-failure ) 2>&1 | tee -a $OUT/${ci}-ctest.log

View File

@@ -65,4 +65,4 @@ endif()
target_include_directories(${TARGET} PUBLIC .)
target_compile_features(${TARGET} PUBLIC cxx_std_11)
target_link_libraries(${TARGET} PRIVATE llama build_info)
target_link_libraries(${TARGET} PRIVATE build_info PUBLIC llama)

View File

@@ -220,6 +220,20 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
break;
}
params.n_ctx = std::stoi(argv[i]);
} else if (arg == "--grp-attn-n" || arg == "-gan") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.grp_attn_n = std::stoi(argv[i]);
} else if (arg == "--grp-attn-w" || arg == "-gaw") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.grp_attn_w = std::stoi(argv[i]);
} else if (arg == "--rope-freq-base") {
if (++i >= argc) {
invalid_param = true;
@@ -278,8 +292,6 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
break;
}
params.yarn_beta_slow = std::stof(argv[i]);
} else if (arg == "--memory-f32") {
params.memory_f16 = false;
} else if (arg == "--samplers") {
if (++i >= argc) {
invalid_param = true;
@@ -510,6 +522,12 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
params.infill = true;
} else if (arg == "-dkvc" || arg == "--dump-kv-cache") {
params.dump_kv_cache = true;
} else if (arg == "-nkvo" || arg == "--no-kv-offload") {
params.no_kv_offload = true;
} else if (arg == "-ctk" || arg == "--cache-type-k") {
params.cache_type_k = argv[++i];
} else if (arg == "-ctv" || arg == "--cache-type-v") {
params.cache_type_v = argv[++i];
} else if (arg == "--multiline-input") {
params.multiline_input = true;
} else if (arg == "--simple-io") {
@@ -652,6 +670,10 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
} else if (arg == "-h" || arg == "--help") {
return false;
} else if (arg == "--version") {
fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET);
exit(0);
} else if (arg == "--random-prompt") {
params.random_prompt = true;
} else if (arg == "--in-prefix-bos") {
@@ -790,6 +812,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf("\n");
printf("options:\n");
printf(" -h, --help show this help message and exit\n");
printf(" --version show version and build info\n");
printf(" -i, --interactive run in interactive mode\n");
printf(" --interactive-first run in interactive mode and wait for input right away\n");
printf(" -ins, --instruct run in instruction mode (use with Alpaca models)\n");
@@ -858,8 +881,6 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" --yarn-beta-fast N YaRN: low correction dim or beta (default: %.1f)\n", params.yarn_beta_fast);
printf(" --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n");
printf(" --no-penalize-nl do not penalize newline token\n");
printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
printf(" not recommended: doubles context memory required and no measurable increase in quality\n");
printf(" --temp N temperature (default: %.1f)\n", (double)sparams.temp);
printf(" --logits-all return logits for all tokens in the batch (default: disabled)\n");
printf(" --hellaswag compute HellaSwag score over random tasks from datafile supplied with -f\n");
@@ -897,9 +918,19 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" Not recommended since this is both slower and uses more VRAM.\n");
#endif // GGML_USE_CUBLAS
#endif
printf(" -gan N, --grp-attn-n N\n");
printf(" group-attention factor (default: %d)\n", params.grp_attn_n);
printf(" -gaw N, --grp-attn-w N\n");
printf(" group-attention width (default: %.1f)\n", (double)params.grp_attn_w);
printf(" --verbose-prompt print prompt before generation\n");
printf(" -dkvc, --dump-kv-cache\n");
printf(" verbose print of the KV cache\n");
printf(" -nkvo, --no-kv-offload\n");
printf(" disable KV offload\n");
printf(" -ctk TYPE, --cache-type-k TYPE\n");
printf(" KV cache data type for K (default: %s)\n", params.cache_type_k.c_str());
printf(" -ctv TYPE, --cache-type-v TYPE\n");
printf(" KV cache data type for V (default: %s)\n", params.cache_type_v.c_str());
printf(" --simple-io use basic IO for better compatibility in subprocesses and limited consoles\n");
printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
printf(" --lora-scaled FNAME S apply LoRA adapter with user defined scaling S (implies --no-mmap)\n");
@@ -907,7 +938,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" -m FNAME, --model FNAME\n");
printf(" model path (default: %s)\n", params.model.c_str());
printf(" -md FNAME, --model-draft FNAME\n");
printf(" draft model for speculative decoding (default: %s)\n", params.model.c_str());
printf(" draft model for speculative decoding\n");
printf(" -ld LOGDIR, --logdir LOGDIR\n");
printf(" path under which to save YAML logs (no logging if unset)\n");
printf(" --override-kv KEY=TYPE:VALUE\n");
@@ -1015,6 +1046,29 @@ struct llama_model_params llama_model_params_from_gpt_params(const gpt_params &
return mparams;
}
static ggml_type kv_cache_type_from_str(const std::string & s) {
if (s == "f16") {
return GGML_TYPE_F16;
}
if (s == "q8_0") {
return GGML_TYPE_Q8_0;
}
if (s == "q4_0") {
return GGML_TYPE_Q4_0;
}
if (s == "q4_1") {
return GGML_TYPE_Q4_1;
}
if (s == "q5_0") {
return GGML_TYPE_Q5_0;
}
if (s == "q5_1") {
return GGML_TYPE_Q5_1;
}
throw std::runtime_error("Invalid cache type: " + s);
}
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) {
auto cparams = llama_context_default_params();
@@ -1024,7 +1078,6 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
cparams.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
cparams.mul_mat_q = params.mul_mat_q;
cparams.seed = params.seed;
cparams.f16_kv = params.memory_f16;
cparams.logits_all = params.logits_all;
cparams.embedding = params.embedding;
cparams.rope_scaling_type = params.rope_scaling_type;
@@ -1035,6 +1088,10 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
cparams.yarn_beta_fast = params.yarn_beta_fast;
cparams.yarn_beta_slow = params.yarn_beta_slow;
cparams.yarn_orig_ctx = params.yarn_orig_ctx;
cparams.offload_kqv = !params.no_kv_offload;
cparams.type_k = kv_cache_type_from_str(params.cache_type_k);
cparams.type_v = kv_cache_type_from_str(params.cache_type_v);
return cparams;
}
@@ -1355,6 +1412,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
fprintf(stream, "build_number: %d\n", LLAMA_BUILD_NUMBER);
fprintf(stream, "cpu_has_arm_fma: %s\n", ggml_cpu_has_arm_fma() ? "true" : "false");
fprintf(stream, "cpu_has_avx: %s\n", ggml_cpu_has_avx() ? "true" : "false");
fprintf(stream, "cpu_has_avx_vnni: %s\n", ggml_cpu_has_avx_vnni() ? "true" : "false");
fprintf(stream, "cpu_has_avx2: %s\n", ggml_cpu_has_avx2() ? "true" : "false");
fprintf(stream, "cpu_has_avx512: %s\n", ggml_cpu_has_avx512() ? "true" : "false");
fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false");
@@ -1447,7 +1505,6 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
}
fprintf(stream, "lora_base: %s\n", params.lora_base.c_str());
fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu);
fprintf(stream, "memory_f32: %s # default: false\n", !params.memory_f16 ? "true" : "false");
fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", sparams.mirostat);
fprintf(stream, "mirostat_ent: %f # default: 5.0\n", sparams.mirostat_tau);
fprintf(stream, "mirostat_lr: %f # default: 0.1\n", sparams.mirostat_eta);

View File

@@ -51,7 +51,7 @@ struct gpt_params {
int32_t n_ctx = 512; // context size
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_draft = 16; // number of tokens to draft during speculative decoding
int32_t n_draft = 8; // number of tokens to draft during speculative decoding
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
int32_t n_parallel = 1; // number of parallel sequences to decode
int32_t n_sequences = 1; // number of sequences to decode
@@ -62,6 +62,8 @@ struct gpt_params {
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
int32_t n_beams = 0; // if non-zero then use beam search of given width.
int32_t grp_attn_n = 1; // group-attention factor
int32_t grp_attn_w = 512; // group-attention width
float rope_freq_base = 0.0f; // RoPE base frequency
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
@@ -100,7 +102,6 @@ struct gpt_params {
size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
bool mul_mat_q = true; // if true, use mul_mat_q kernels instead of cuBLAS
bool memory_f16 = true; // use f16 instead of f32 for memory kv
bool random_prompt = false; // do not randomize prompt if none provided
bool use_color = false; // use color to distinguish generations and inputs
bool interactive = false; // interactive mode
@@ -125,10 +126,14 @@ struct gpt_params {
bool verbose_prompt = false; // print prompt tokens before generation
bool infill = false; // use infill mode
bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
bool no_kv_offload = false; // disable KV offloading
std::string cache_type_k = "f16"; // KV cache data type for the K
std::string cache_type_v = "f16"; // KV cache data type for the V
// multimodal models (see examples/llava)
std::string mmproj = ""; // path to multimodal projector
std::string image = ""; // path to an image file
std::string image = ""; // path to an image file
};
bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params);
@@ -237,3 +242,4 @@ void dump_kv_cache_view(const llama_kv_cache_view & view, int row_size = 80);
// Dump the KV cache view showing individual sequences in each cell (long output).
void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size = 40);

View File

@@ -61,13 +61,13 @@
// #define LOG_TARGET stderr
// #include "log.h"
//
// The log target can also be redirected to a diffrent function
// The log target can also be redirected to a different function
// like so:
//
// #define LOG_TARGET log_handler_diffrent()
// #define LOG_TARGET log_handler_different()
// #include "log.h"
//
// FILE* log_handler_diffrent()
// FILE* log_handler_different()
// {
// return stderr;
// }
@@ -421,7 +421,7 @@ inline FILE *log_handler2_impl(bool change = false, LogTriState append = LogTriS
// Disables logs entirely at runtime.
// Makes LOG() and LOG_TEE() produce no output,
// untill enabled back.
// until enabled back.
#define log_disable() log_disable_impl()
// INTERNAL, DO NOT USE

View File

@@ -149,11 +149,12 @@ static void sampler_queue(
}
}
llama_token llama_sampling_sample(
static llama_token llama_sampling_sample_impl(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
struct llama_context * ctx_cfg,
const int idx) {
const int idx,
bool is_resampling) { // Add a parameter to indicate if we are resampling
const llama_sampling_params & params = ctx_sampling->params;
const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
@@ -173,8 +174,17 @@ llama_token llama_sampling_sample(
llama_token id = 0;
// Get a pointer to the logits
float * logits = llama_get_logits_ith(ctx_main, idx);
// Declare original_logits at the beginning of the function scope
std::vector<float> original_logits;
if (!is_resampling) {
// Only make a copy of the original logits if we are not in the resampling phase, not sure if I actually have to do this.
original_logits = std::vector<float>(logits, logits + llama_n_vocab(llama_get_model(ctx_main)));
}
// apply params.logit_bias map
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
logits[it->first] += it->second;
@@ -193,12 +203,14 @@ llama_token llama_sampling_sample(
}
// apply penalties
if (!prev.empty()) {
const auto& penalty_tokens = params.use_penalty_prompt_tokens ? params.penalty_prompt_tokens : prev;
const int penalty_tokens_used_size = std::min((int)penalty_tokens.size(), penalty_last_n);
if (penalty_tokens_used_size) {
const float nl_logit = logits[llama_token_nl(llama_get_model(ctx_main))];
llama_sample_repetition_penalties(ctx_main, &cur_p,
prev.data() + prev.size() - penalty_last_n,
penalty_last_n, penalty_repeat, penalty_freq, penalty_present);
penalty_tokens.data() + penalty_tokens.size() - penalty_tokens_used_size,
penalty_tokens_used_size, penalty_repeat, penalty_freq, penalty_present);
if (!penalize_nl) {
for (size_t idx = 0; idx < cur_p.size; idx++) {
@@ -210,7 +222,8 @@ llama_token llama_sampling_sample(
}
}
if (ctx_sampling->grammar != NULL) {
// If we are in the resampling phase, apply grammar checks before sampling logic
if (is_resampling && ctx_sampling->grammar != NULL) {
llama_sample_grammar(ctx_main, &cur_p, ctx_sampling->grammar);
}
@@ -252,9 +265,40 @@ llama_token llama_sampling_sample(
}
}
if (ctx_sampling->grammar != NULL && !is_resampling) {
// Create an array with a single token data element for the sampled id
llama_token_data single_token_data = {id, logits[id], 0.0f};
llama_token_data_array single_token_data_array = { &single_token_data, 1, false };
// Apply grammar constraints to the single token
llama_sample_grammar(ctx_main, &single_token_data_array, ctx_sampling->grammar);
// Check if the token is valid according to the grammar by seeing if its logit has been set to -INFINITY
bool is_valid = single_token_data_array.data[0].logit != -INFINITY;
// If the token is not valid according to the grammar, perform resampling
if (!is_valid) {
LOG("Resampling because token %d: '%s' does not meet grammar rules\n", id, llama_token_to_piece(ctx_main, id).c_str());
// Restore logits from the copy
std::copy(original_logits.begin(), original_logits.end(), logits);
return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, true); // Pass true for is_resampling
}
}
return id;
}
llama_token llama_sampling_sample(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
struct llama_context * ctx_cfg,
const int idx) {
// Call the implementation function with is_resampling set to false by default
return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, false);
}
void llama_sampling_accept(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,

View File

@@ -36,6 +36,9 @@ typedef struct llama_sampling_params {
float cfg_scale = 1.f; // how strong is guidance
std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
std::vector<llama_token> penalty_prompt_tokens;
bool use_penalty_prompt_tokens = false;
} llama_sampling_params;
// general sampler context

View File

@@ -71,7 +71,7 @@ void free_random_uniform_distribution(struct random_uniform_distribution * rnd)
struct ggml_tensor * randomize_tensor_normal(struct ggml_tensor * tensor, struct random_normal_distribution * rnd) {
float scale = 1.0f; // xavier
switch (tensor->n_dims) {
switch (ggml_n_dims(tensor)) {
case 1:
scale /= sqrtf((float) tensor->ne[0]);
for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
@@ -119,7 +119,7 @@ struct ggml_tensor * randomize_tensor_normal(struct ggml_tensor * tensor, struct
}
struct ggml_tensor * randomize_tensor_uniform(struct ggml_tensor * tensor, struct random_uniform_distribution * rnd) {
switch (tensor->n_dims) {
switch (ggml_n_dims(tensor)) {
case 1:
for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0]);
@@ -183,25 +183,27 @@ float fclamp(const float v, const float min, const float max) {
}
void assert_shape_1d(struct ggml_tensor * tensor, int64_t ne0) {
GGML_ASSERT(tensor->n_dims == 1);
GGML_ASSERT(tensor->ne[0] == ne0);
GGML_ASSERT(tensor->ne[1] == 1);
GGML_ASSERT(tensor->ne[2] == 1);
GGML_ASSERT(tensor->ne[3] == 1);
}
void assert_shape_2d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1) {
GGML_ASSERT(tensor->n_dims == 2);
GGML_ASSERT(tensor->ne[0] == ne0);
GGML_ASSERT(tensor->ne[1] == ne1);
GGML_ASSERT(tensor->ne[2] == 1);
GGML_ASSERT(tensor->ne[3] == 1);
}
void assert_shape_3d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2) {
GGML_ASSERT(tensor->n_dims == 3);
GGML_ASSERT(tensor->ne[0] == ne0);
GGML_ASSERT(tensor->ne[1] == ne1);
GGML_ASSERT(tensor->ne[2] == ne2);
GGML_ASSERT(tensor->ne[3] == 1);
}
void assert_shape_4d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
GGML_ASSERT(tensor->n_dims == 4);
GGML_ASSERT(tensor->ne[0] == ne0);
GGML_ASSERT(tensor->ne[1] == ne1);
GGML_ASSERT(tensor->ne[2] == ne2);
@@ -225,8 +227,8 @@ int64_t get_example_targets_batch(
bool sample_random_offsets
) {
GGML_ASSERT(samples_count > 0);
GGML_ASSERT(tokens_input->n_dims == 2);
GGML_ASSERT(target_probs->n_dims == 3);
GGML_ASSERT(ggml_is_matrix(tokens_input));
GGML_ASSERT(ggml_is_3d(target_probs));
int64_t n_vocab = target_probs->ne[0];
int64_t n_tokens = tokens_input->ne[0];
int64_t n_batch = tokens_input->ne[1];
@@ -1105,7 +1107,7 @@ void print_common_train_usage(int /*argc*/, char ** /*argv*/, const struct train
fprintf(stderr, " --sample-start STR Sets the starting point for samples after the specified pattern. If empty use every token position as sample start. (default '%s')\n", params->sample_start.c_str());
fprintf(stderr, " --include-sample-start Include the sample start in the samples. (default off)\n");
fprintf(stderr, " --escape process sample start escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\)\n");
fprintf(stderr, " --overlapping-samples Samples my overlap, will include sample-start of second and following samples. When off, samples will end at begin of next sample. (default off)\n");
fprintf(stderr, " --overlapping-samples Samples may overlap, will include sample-start of second and following samples. When off, samples will end at begin of next sample. (default off)\n");
fprintf(stderr, " --fill-with-next-samples Samples shorter than context length will be followed by the next (shuffled) samples. (default off)\n");
fprintf(stderr, " --separate-with-eos When fill-with-next-samples, insert end-of-sequence token between samples.%s\n", params->separate_with_eos ? " (default)" : "");
fprintf(stderr, " --separate-with-bos When fill-with-next-samples, insert begin-of-sequence token between samples.%s\n", params->separate_with_bos ? " (default)" : "");

View File

@@ -46,7 +46,7 @@ class Model:
self.part_names = self._get_part_names()
self.hparams = Model.load_hparams(self.dir_model)
self.model_arch = self._get_model_architecture()
self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess)
self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=False)
def set_vocab(self):
self._set_vocab_gpt2()
@@ -77,8 +77,18 @@ class Model:
self.gguf_writer.add_embedding_length(n_embd)
if (n_ff := self.hparams.get("intermediate_size")) is not None:
self.gguf_writer.add_feed_forward_length(n_ff)
if (n_head := self.hparams.get("num_attention_head")) is not None:
if (n_head := self.hparams.get("num_attention_heads")) is not None:
self.gguf_writer.add_head_count(n_head)
if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
self.gguf_writer.add_head_count_kv(n_head_kv)
if (n_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
self.gguf_writer.add_layer_norm_rms_eps(n_rms_eps)
if (n_experts := self.hparams.get("num_local_experts")) is not None:
self.gguf_writer.add_expert_count(n_experts)
if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
self.gguf_writer.add_expert_used_count(n_experts_used)
self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
def write_tensors(self):
@@ -170,6 +180,14 @@ class Model:
return StableLMModel
if model_architecture == "QWenLMHeadModel":
return QwenModel
if model_architecture == "MixtralForCausalLM":
return MixtralModel
if model_architecture == "GPT2LMHeadModel":
return GPT2Model
if model_architecture == "PhiForCausalLM":
return Phi2Model
if model_architecture == "PlamoForCausalLM":
return PlamoModel
return Model
def _is_model_safetensors(self) -> bool:
@@ -207,6 +225,14 @@ class Model:
return gguf.MODEL_ARCH.STABLELM
if arch == "QWenLMHeadModel":
return gguf.MODEL_ARCH.QWEN
if arch == "MixtralForCausalLM":
return gguf.MODEL_ARCH.LLAMA
if arch == "GPT2LMHeadModel":
return gguf.MODEL_ARCH.GPT2
if arch == "PhiForCausalLM":
return gguf.MODEL_ARCH.PHI2
if arch == "PlamoForCausalLM":
return gguf.MODEL_ARCH.PLAMO
raise NotImplementedError(f'Architecture "{arch}" not supported!')
@@ -216,7 +242,7 @@ class Model:
tokens: list[bytearray] = []
toktypes: list[int] = []
from transformers import AutoTokenizer # type: ignore[attr-defined]
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(dir_model)
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
assert max(tokenizer.vocab.values()) < vocab_size
@@ -442,7 +468,11 @@ class MPTModel(Model):
data = data_torch.squeeze().numpy()
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
if "scales" in name:
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias", ".scales"))
new_name = new_name.replace("scales", "act.scales")
else:
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
if new_name is None:
print(f"Can not map tensor {name!r}")
sys.exit()
@@ -826,7 +856,7 @@ class StableLMModel(Model):
hparams = self.hparams
block_count = hparams["num_hidden_layers"]
self.gguf_writer.add_name(dir_model.name)
self.gguf_writer.add_name(self.dir_model.name)
self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
self.gguf_writer.add_block_count(block_count)
@@ -837,6 +867,11 @@ class StableLMModel(Model):
self.gguf_writer.add_layer_norm_eps(1e-5)
class MixtralModel(Model):
def set_vocab(self):
self._set_vocab_sentencepiece()
class QwenModel(Model):
@staticmethod
def token_bytes_to_string(b):
@@ -867,7 +902,7 @@ class QwenModel(Model):
tokens: list[bytearray] = []
toktypes: list[int] = []
from transformers import AutoTokenizer # type: ignore[attr-defined]
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
vocab_size = hparams["vocab_size"]
assert max(tokenizer.get_vocab().values()) < vocab_size
@@ -961,15 +996,178 @@ class QwenModel(Model):
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
self.gguf_writer.add_tensor(new_name, data)
class GPT2Model(Model):
def set_gguf_parameters(self):
self.gguf_writer.add_name(self.dir_model.name)
self.gguf_writer.add_block_count(self.hparams["n_layer"])
self.gguf_writer.add_context_length(self.hparams["n_ctx"])
self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
self.gguf_writer.add_head_count(self.hparams["n_head"])
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
self.gguf_writer.add_file_type(self.ftype)
def write_tensors(self):
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
for name, data_torch in self.get_tensors():
# we don't need these
if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq", ".attn.bias")):
continue
if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
data_torch = data_torch.transpose(1, 0)
old_dtype = data_torch.dtype
# convert any unsupported data types to float32
if data_torch.dtype not in (torch.float16, torch.float32):
data_torch = data_torch.to(torch.float32)
data = data_torch.squeeze().numpy()
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
if new_name is None:
print(f"Can not map tensor {name!r}")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if self.ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
self.gguf_writer.add_tensor(new_name, data)
# note: GPT2 output is tied to (same as) wte in original model
if new_name == "token_embd.weight":
print(f"output.weight, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
self.gguf_writer.add_tensor("output.weight", data)
class Phi2Model(Model):
def set_gguf_parameters(self):
block_count = self.hparams["n_layer"]
self.gguf_writer.add_name("Phi2")
self.gguf_writer.add_context_length(self.hparams["n_positions"])
self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_head_count(self.hparams["n_head"])
self.gguf_writer.add_head_count_kv(self.hparams["n_head"])
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
self.gguf_writer.add_rope_dimension_count(self.hparams["rotary_dim"])
self.gguf_writer.add_file_type(self.ftype)
self.gguf_writer.add_add_bos_token(False)
class PlamoModel(Model):
def set_vocab(self):
self._set_vocab_sentencepiece()
def set_gguf_parameters(self):
hparams = self.hparams
block_count = hparams["num_hidden_layers"]
self.gguf_writer.add_name("PLaMo")
self.gguf_writer.add_context_length(4096) # not in config.json
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_head_count(hparams["num_attention_heads"])
self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
def shuffle_attn_q_weight(self, data_torch):
assert data_torch.size() == (5120, 5120)
data_torch = data_torch.reshape(8, 5, 128, 5120)
data_torch = torch.permute(data_torch, (1, 0, 2, 3))
data_torch = torch.reshape(data_torch, (5120, 5120))
return data_torch
def shuffle_attn_output_weight(self, data_torch):
assert data_torch.size() == (5120, 5120)
data_torch = data_torch.reshape(5120, 8, 5, 128)
data_torch = torch.permute(data_torch, (0, 2, 1, 3))
data_torch = torch.reshape(data_torch, (5120, 5120))
return data_torch
def write_tensors(self):
block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
for name, data_torch in self.get_tensors():
if "self_attn.rotary_emb.inv_freq" in name:
continue
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
if new_name is None:
print(f"Can not map tensor {name!r}")
sys.exit()
# shuffle for broadcasting of gqa in ggml_mul_mat
if new_name.endswith("attn_q.weight"):
data_torch = self.shuffle_attn_q_weight(data_torch)
elif new_name.endswith("attn_output.weight"):
data_torch = self.shuffle_attn_output_weight(data_torch)
old_dtype = data_torch.dtype
# convert any unsupported data types to float32
if data_torch.dtype not in (torch.float16, torch.float32):
data_torch = data_torch.to(torch.float32)
data = data_torch.squeeze().numpy()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if self.ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
self.gguf_writer.add_tensor(new_name, data)
###### CONVERSION LOGIC ######
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(description="Convert a huggingface model to a GGML compatible file")
parser = argparse.ArgumentParser(
description="Convert a huggingface model to a GGML compatible file")
parser.add_argument(
"--vocab-only", action="store_true",
help="extract only the vocab",
)
parser.add_argument(
"--awq-path", type=Path, default=None,
help="Path to scale awq cache file")
parser.add_argument(
"--outfile", type=Path,
help="path to write to; default: based on input",
@@ -987,43 +1185,62 @@ def parse_args() -> argparse.Namespace:
return parser.parse_args()
args = parse_args()
def main() -> None:
args = parse_args()
dir_model = args.model
if not dir_model.is_dir():
print(f'Error: {args.model} is not a directory', file=sys.stderr)
sys.exit(1)
dir_model = args.model
ftype_map = {
"f32": gguf.GGMLQuantizationType.F32,
"f16": gguf.GGMLQuantizationType.F16,
}
if args.awq_path:
sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
from awq.apply_awq import add_scale_weights
tmp_model_path = args.model / "weighted_model"
dir_model = tmp_model_path
if tmp_model_path.is_dir():
print(f"{tmp_model_path} exists as a weighted model.")
else:
tmp_model_path.mkdir(parents=True, exist_ok=True)
print("Saving new weighted model ...")
add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
print(f"Saved weighted model at {tmp_model_path}.")
if args.outfile is not None:
fname_out = args.outfile
else:
# output in the same directory as the model by default
fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'
if not dir_model.is_dir():
print(f'Error: {args.model} is not a directory', file=sys.stderr)
sys.exit(1)
print(f"Loading model: {dir_model.name}")
ftype_map = {
"f32": gguf.GGMLQuantizationType.F32,
"f16": gguf.GGMLQuantizationType.F16,
}
hparams = Model.load_hparams(dir_model)
with torch.inference_mode():
model_class = Model.from_model_architecture(hparams["architectures"][0])
model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian)
print("Set model parameters")
model_instance.set_gguf_parameters()
print("Set model tokenizer")
model_instance.set_vocab()
if args.vocab_only:
print(f"Exporting model vocab to '{fname_out}'")
model_instance.write_vocab()
if args.outfile is not None:
fname_out = args.outfile
else:
print(f"Exporting model to '{fname_out}'")
model_instance.write()
# output in the same directory as the model by default
fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'
print(f"Model successfully exported to '{fname_out}'")
print(f"Loading model: {dir_model.name}")
hparams = Model.load_hparams(dir_model)
with torch.inference_mode():
model_class = Model.from_model_architecture(hparams["architectures"][0])
model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian)
print("Set model parameters")
model_instance.set_gguf_parameters()
print("Set model tokenizer")
model_instance.set_vocab()
if args.vocab_only:
print(f"Exporting model vocab to '{fname_out}'")
model_instance.write_vocab()
else:
print(f"Exporting model to '{fname_out}'")
model_instance.write()
print(f"Model successfully exported to '{fname_out}'")
if __name__ == '__main__':
main()

View File

@@ -3,7 +3,6 @@ from __future__ import annotations
import json
import os
import re
import struct
import sys
from typing import Any, BinaryIO, Sequence
@@ -11,43 +10,15 @@ from typing import Any, BinaryIO, Sequence
import numpy as np
import torch
from pathlib import Path
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
import gguf
NUMPY_TYPE_TO_FTYPE: dict[str, int] = {"float32": 0, "float16": 1}
HF_SUBLAYER_TO_GGML = {
"self_attn.q_proj": "attn_q",
"self_attn.k_proj": "attn_k",
"self_attn.v_proj": "attn_v",
"self_attn.o_proj": "attn_output",
"mlp.gate_proj": "ffn_gate",
"mlp.down_proj": "ffn_down",
"mlp.up_proj": "ffn_up",
"input_layernorm": "attn_norm",
"post_attention_layernorm": "ffn_norm",
}
def translate_tensor_name(t: str) -> str:
match = re.match(r".*layers\.(\d+)\.(\w+\.\w+)\.lora_(A|B)\.weight", t)
if match:
nn = match.group(1)
sub_layer = match.group(2)
lora_type = match.group(3)
sub_layer_renamed = HF_SUBLAYER_TO_GGML.get(sub_layer)
if sub_layer_renamed is None:
print(f"Error: unrecognized sub-layer {sub_layer} in tensor {t}")
sys.exit(1)
output_string = (
f"blk.{nn}.{HF_SUBLAYER_TO_GGML[sub_layer]}.weight.lora{lora_type}"
)
return output_string
else:
print(f"Error: unrecognized tensor {t}")
sys.exit(1)
def write_file_header(fout: BinaryIO, params: dict[str, Any]) -> None:
fout.write(b"ggla"[::-1]) # magic (ggml lora)
fout.write(struct.pack("i", 1)) # file version
@@ -61,9 +32,7 @@ def write_file_header(fout: BinaryIO, params: dict[str, Any]) -> None:
fout.write(struct.pack("i", int(params["lora_alpha"])))
def write_tensor_header(
self, name: str, shape: Sequence[int], data_type: np.dtype[Any]
) -> None:
def write_tensor_header(fout: BinaryIO, name: str, shape: Sequence[int], data_type: np.dtype[Any]) -> None:
sname = name.encode("utf-8")
fout.write(
struct.pack(
@@ -78,60 +47,96 @@ def write_tensor_header(
fout.seek((fout.tell() + 31) & -32)
if len(sys.argv) != 2:
print(f"Usage: python {sys.argv[0]} <path>")
print(
"Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'"
)
sys.exit(1)
if __name__ == '__main__':
if len(sys.argv) < 2:
print(f"Usage: python {sys.argv[0]} <path> [arch]")
print(
"Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'"
)
print(f"Arch must be one of {list(gguf.MODEL_ARCH_NAMES.values())} (default: llama)")
sys.exit(1)
input_json = os.path.join(sys.argv[1], "adapter_config.json")
input_model = os.path.join(sys.argv[1], "adapter_model.bin")
output_path = os.path.join(sys.argv[1], "ggml-adapter-model.bin")
input_json = os.path.join(sys.argv[1], "adapter_config.json")
input_model = os.path.join(sys.argv[1], "adapter_model.bin")
output_path = os.path.join(sys.argv[1], "ggml-adapter-model.bin")
model = torch.load(input_model, map_location="cpu")
model = torch.load(input_model, map_location="cpu")
arch_name = sys.argv[2] if len(sys.argv) == 3 else "llama"
with open(input_json, "r") as f:
params = json.load(f)
if arch_name not in gguf.MODEL_ARCH_NAMES.values():
print(f"Error: unsupported architecture {arch_name}")
sys.exit(1)
if params["peft_type"] != "LORA":
print(f"Error: unsupported adapter type {params['peft_type']}, expected LORA")
sys.exit(1)
arch = list(gguf.MODEL_ARCH_NAMES.keys())[list(gguf.MODEL_ARCH_NAMES.values()).index(arch_name)]
name_map = gguf.TensorNameMap(arch, 200) # 200 layers ought to be enough for anyone
if params["fan_in_fan_out"] is True:
print("Error: param fan_in_fan_out is not supported")
sys.exit(1)
with open(input_json, "r") as f:
params = json.load(f)
if params["bias"] is not None and params["bias"] != "none":
print("Error: param bias is not supported")
sys.exit(1)
if params["peft_type"] != "LORA":
print(f"Error: unsupported adapter type {params['peft_type']}, expected LORA")
sys.exit(1)
# TODO: these seem to be layers that have been trained but without lora.
# doesn't seem widely used but eventually should be supported
if params["modules_to_save"] is not None and len(params["modules_to_save"]) > 0:
print("Error: param modules_to_save is not supported")
sys.exit(1)
if params["fan_in_fan_out"] is True:
print("Error: param fan_in_fan_out is not supported")
sys.exit(1)
with open(output_path, "wb") as fout:
fout.truncate()
if params["bias"] is not None and params["bias"] != "none":
print("Error: param bias is not supported")
sys.exit(1)
write_file_header(fout, params)
for k, v in model.items():
if k.endswith(".default.weight"):
k = k.replace(".default.weight", ".weight")
if k in ["llama_proj.weight", "llama_proj.bias"]:
continue
if k.endswith("lora_A.weight"):
if v.dtype != torch.float16 and v.dtype != torch.float32:
# TODO: these seem to be layers that have been trained but without lora.
# doesn't seem widely used but eventually should be supported
if params["modules_to_save"] is not None and len(params["modules_to_save"]) > 0:
print("Error: param modules_to_save is not supported")
sys.exit(1)
with open(output_path, "wb") as fout:
fout.truncate()
write_file_header(fout, params)
for k, v in model.items():
orig_k = k
if k.endswith(".default.weight"):
k = k.replace(".default.weight", ".weight")
if k in ["llama_proj.weight", "llama_proj.bias"]:
continue
if k.endswith("lora_A.weight"):
if v.dtype != torch.float16 and v.dtype != torch.float32:
v = v.float()
v = v.T
else:
v = v.float()
v = v.T
else:
v = v.float()
t = v.detach().numpy()
tname = translate_tensor_name(k)
print(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB")
write_tensor_header(fout, tname, t.shape, t.dtype)
t.tofile(fout)
t = v.detach().numpy()
print(f"Converted {input_json} and {input_model} to {output_path}")
prefix = "base_model.model."
if k.startswith(prefix):
k = k[len(prefix) :]
lora_suffixes = (".lora_A.weight", ".lora_B.weight")
if k.endswith(lora_suffixes):
suffix = k[-len(lora_suffixes[0]):]
k = k[: -len(lora_suffixes[0])]
else:
print(f"Error: unrecognized tensor name {orig_k}")
sys.exit(1)
tname = name_map.get_name(k)
if tname is None:
print(f"Error: could not map tensor name {orig_k}")
print(" Note: the arch parameter must be specified if the model is not llama")
sys.exit(1)
if suffix == ".lora_A.weight":
tname += ".weight.loraA"
elif suffix == ".lora_B.weight":
tname += ".weight.loraB"
else:
assert False
print(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB")
write_tensor_header(fout, tname, t.shape, t.dtype)
t.tofile(fout)
print(f"Converted {input_json} and {input_model} to {output_path}")

1
convert-persimmon-to-gguf.py Normal file → Executable file
View File

@@ -1,3 +1,4 @@
#!/usr/bin/env python3
import torch
import os
from pprint import pprint

View File

@@ -10,6 +10,7 @@ import itertools
import json
import math
import mmap
import os
import pickle
import re
import signal
@@ -18,15 +19,15 @@ import sys
import time
import zipfile
from abc import ABCMeta, abstractmethod
from collections import OrderedDict
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
from dataclasses import dataclass
from pathlib import Path
from typing import IO, TYPE_CHECKING, Any, Callable, Iterable, Literal, TypeVar
from typing import IO, TYPE_CHECKING, Any, Callable, Iterable, Literal, Optional, TypeVar, cast
import numpy as np
from sentencepiece import SentencePieceProcessor
import os
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
import gguf
@@ -42,6 +43,7 @@ NDArray: TypeAlias = 'np.ndarray[Any, Any]'
ARCH = gguf.MODEL_ARCH.LLAMA
DEFAULT_CONCURRENCY = 8
#
# data types
#
@@ -62,10 +64,10 @@ class UnquantizedDataType(DataType):
pass
DT_F16 = UnquantizedDataType('F16', dtype = np.dtype(np.float16), valid_conversions = ['F32', 'Q8_0'])
DT_F32 = UnquantizedDataType('F32', dtype = np.dtype(np.float32), valid_conversions = ['F16', 'Q8_0'])
DT_I32 = UnquantizedDataType('I32', dtype = np.dtype(np.int16), valid_conversions = [])
DT_BF16 = UnquantizedDataType('BF16', dtype = np.dtype(np.uint16), valid_conversions = ['F32', 'F16', 'Q8_0'])
DT_F16 = UnquantizedDataType('F16', dtype = np.dtype(np.float16), valid_conversions = ['F32', 'Q8_0'])
DT_F32 = UnquantizedDataType('F32', dtype = np.dtype(np.float32), valid_conversions = ['F16', 'Q8_0'])
DT_I32 = UnquantizedDataType('I32', dtype = np.dtype(np.int16), valid_conversions = [])
DT_BF16 = UnquantizedDataType('BF16', dtype = np.dtype(np.uint16), valid_conversions = ['F32', 'F16', 'Q8_0'])
@dataclass(frozen=True)
@@ -151,14 +153,16 @@ GGML_FILE_TYPE_TO_DATA_TYPE: dict[GGMLFileType, DataType] = {
@dataclass
class Params:
n_vocab: int
n_embd: int
n_layer: int
n_ctx: int
n_ff: int
n_head: int
n_head_kv: int
f_norm_eps: float
n_vocab: int
n_embd: int
n_layer: int
n_ctx: int
n_ff: int
n_head: int
n_head_kv: int
n_experts: int | None = None
n_experts_used: int | None = None
f_norm_eps: float | None = None
rope_scaling_type: gguf.RopeScalingType | None = None
f_rope_freq_base: float | None = None
@@ -233,6 +237,13 @@ class Params:
raise Exception("failed to guess 'n_ctx'. This model is unknown or unsupported.\n"
"Suggestion: provide 'config.json' of the model in the same directory containing model files.")
n_experts = None
n_experts_used = None
if "num_local_experts" in config:
n_experts = config["num_local_experts"]
n_experts_used = config["num_experts_per_tok"]
return Params(
n_vocab = config["vocab_size"],
n_embd = config["hidden_size"],
@@ -241,6 +252,8 @@ class Params:
n_ff = config["intermediate_size"],
n_head = (n_head := config["num_attention_heads"]),
n_head_kv = config.get("num_key_value_heads", n_head),
n_experts = n_experts,
n_experts_used = n_experts_used,
f_norm_eps = config["rms_norm_eps"],
f_rope_freq_base = config.get("rope_theta"),
rope_scaling_type = rope_scaling_type,
@@ -255,8 +268,15 @@ class Params:
def loadOriginalParamsJson(model: LazyModel, config_path: Path) -> Params:
config = json.load(open(config_path))
n_experts = None
n_experts_used = None
f_rope_freq_base = None
# hack to determine LLaMA v1 vs v2 vs CodeLlama
if config.get("rope_theta") == 1000000:
if config.get("moe"):
# Mixtral
n_ctx = 32768
elif config.get("rope_theta") == 1000000:
# CodeLlama
n_ctx = 16384
elif config["norm_eps"] == 1e-05:
@@ -266,16 +286,27 @@ class Params:
# LLaMA v1
n_ctx = 2048
if "layers.0.feed_forward.w1.weight" in model:
n_ff = model["layers.0.feed_forward.w1.weight"].shape[0]
if config.get("moe"):
n_ff = model["layers.0.feed_forward.experts.0.w1.weight"].shape[0]
n_experts = config["moe"]["num_experts"]
n_experts_used = config["moe"]["num_experts_per_tok"]
f_rope_freq_base = 1e6
return Params(
n_vocab = model["tok_embeddings.weight"].shape[0],
n_embd = config["dim"],
n_layer = config["n_layers"],
n_ctx = n_ctx,
n_ff = model["layers.0.feed_forward.w1.weight"].shape[0],
n_ff = n_ff,
n_head = (n_head := config["n_heads"]),
n_head_kv = config.get("n_kv_heads", n_head),
n_experts = n_experts,
n_experts_used = n_experts_used,
f_norm_eps = config["norm_eps"],
f_rope_freq_base = config.get("rope_theta"),
f_rope_freq_base = config.get("rope_theta", f_rope_freq_base),
)
@staticmethod
@@ -297,127 +328,140 @@ class Params:
return params
#
# vocab
#
class VocabLoader:
def __init__(self, params: Params, fname_tokenizer: Path) -> None:
try:
from transformers import AutoTokenizer
except ImportError as e:
raise ImportError(
"To use VocabLoader, please install the `transformers` package. "
"You can install it with `pip install transformers`."
) from e
class BpeVocab:
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None) -> None:
self.bpe_tokenizer = json.loads(open(str(fname_tokenizer), encoding="utf-8").read())
added_tokens: dict[str, int]
if fname_added_tokens is not None:
# FIXME: Verify that added tokens here _cannot_ overlap with the main vocab.
added_tokens = json.load(open(fname_added_tokens, encoding="utf-8"))
try:
self.tokenizer = AutoTokenizer.from_pretrained(str(fname_tokenizer), trust_remote_code=True)
except ValueError:
self.tokenizer = AutoTokenizer.from_pretrained(str(fname_tokenizer), use_fast=False, trust_remote_code=True)
self.added_tokens_dict: OrderedDict[str, int] = OrderedDict()
for tok, tokidx in sorted(self.tokenizer.get_added_vocab().items(), key=lambda x: x[1]):
if tokidx >= params.n_vocab or tokidx < self.tokenizer.vocab_size:
continue
self.added_tokens_dict[tok] = tokidx
self.unk_token_id: int = self.tokenizer.unk_token_id
self.specials: dict[str, int] = {
tok: self.tokenizer.get_vocab()[tok]
for tok in self.tokenizer.all_special_tokens
}
self.special_ids: set[int] = set(self.tokenizer.all_special_ids)
self.reverse_vocab = {id: encoded_tok for encoded_tok, id in self.tokenizer.get_vocab().items()}
self.vocab_size_base: int = self.tokenizer.vocab_size
self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_dict)
self.fname_tokenizer: Path = fname_tokenizer
vocab_file = "tokenizer.model"
path_candidate = find_vocab_file_path(self.fname_tokenizer, vocab_file)
if path_candidate is not None:
self.spm = SentencePieceProcessor(str(path_candidate))
print(self.spm.vocab_size(), self.vocab_size_base)
else:
# Fall back to trying to find the added tokens in tokenizer.json
tokenizer_json_file = fname_tokenizer.parent / 'tokenizer.json'
if not tokenizer_json_file.is_file():
added_tokens = {}
else:
tokenizer_json = json.load(open(tokenizer_json_file, encoding="utf-8"))
added_tokens = dict(
(item['content'], item['id'])
for item in tokenizer_json.get('added_tokens', [])
# Added tokens here can be duplicates of the main vocabulary.
if item['content'] not in self.bpe_tokenizer)
self.spm = None
vocab_size: int = len(self.bpe_tokenizer)
expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
actual_ids = sorted(added_tokens.values())
if expected_ids != actual_ids:
expected_end_id = vocab_size + len(actual_ids) - 1
raise Exception(f"Expected the {len(actual_ids)} added token ID(s) to be sequential in the range {vocab_size} - {expected_end_id}; got {actual_ids}")
def hf_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
added_tokens_ids = set(self.added_tokens_dict.values())
items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1])
self.added_tokens_list = [text for (text, idx) in items]
self.vocab_size_base: int = vocab_size
self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_list)
self.fname_tokenizer = fname_tokenizer
self.fname_added_tokens = fname_added_tokens
for i in range(self.vocab_size_base):
if i in added_tokens_ids:
continue
def bpe_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
tokenizer = self.bpe_tokenizer
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.items()}
text = self.reverse_vocab[i].encode("utf-8")
yield text, self.get_token_score(i), self.get_token_type(i)
for i, _ in enumerate(tokenizer):
yield reverse_vocab[i], 0.0, gguf.TokenType.NORMAL
def get_token_type(self, token_id: int) -> gguf.TokenType:
toktype = gguf.TokenType.NORMAL
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
for text in self.added_tokens_list:
score = -1000.0
yield text.encode("utf-8"), score, gguf.TokenType.CONTROL
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
yield from self.bpe_tokens()
yield from self.added_tokens()
def __repr__(self) -> str:
return f"<BpeVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
class SentencePieceVocab:
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None) -> None:
self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer))
added_tokens: dict[str, int]
if fname_added_tokens is not None:
added_tokens = json.load(open(fname_added_tokens, encoding="utf-8"))
else:
added_tokens = {}
vocab_size: int = self.sentencepiece_tokenizer.vocab_size()
new_tokens = {id: piece for piece, id in added_tokens.items() if id >= vocab_size}
expected_new_ids = list(range(vocab_size, vocab_size + len(new_tokens)))
actual_new_ids = sorted(new_tokens.keys())
if expected_new_ids != actual_new_ids:
raise ValueError(f"Expected new token IDs {expected_new_ids} to be sequential; got {actual_new_ids}")
# Token pieces that were added to the base vocabulary.
self.added_tokens_list = [new_tokens[id] for id in actual_new_ids]
self.vocab_size_base = vocab_size
self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
self.fname_tokenizer = fname_tokenizer
self.fname_added_tokens = fname_added_tokens
def sentencepiece_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
tokenizer = self.sentencepiece_tokenizer
for i in range(tokenizer.vocab_size()):
piece = tokenizer.id_to_piece(i)
text: bytes = piece.encode("utf-8")
score: float = tokenizer.get_score(i)
toktype = gguf.TokenType.NORMAL
if tokenizer.is_unknown(i):
if self.spm is not None and token_id < self.spm.vocab_size():
if self.spm.is_unknown(token_id):
toktype = gguf.TokenType.UNKNOWN
if tokenizer.is_control(i):
if self.spm.is_control(token_id):
toktype = gguf.TokenType.CONTROL
# NOTE: I think added_tokens are user defined.
# ref: https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto
# if tokenizer.is_user_defined(i): toktype = gguf.TokenType.USER_DEFINED
if tokenizer.is_unused(i):
if self.spm.is_unused(token_id):
toktype = gguf.TokenType.UNUSED
if tokenizer.is_byte(i):
if self.spm.is_byte(token_id):
toktype = gguf.TokenType.BYTE
else:
token = self.reverse_vocab[token_id]
if token_id == self.unk_token_id:
toktype = gguf.TokenType.UNKNOWN
elif token_id in self.special_ids:
toktype = gguf.TokenType.CONTROL
elif len(token) == 6 and token.startswith("<0x") and token.endswith(">"):
toktype = gguf.TokenType.BYTE
yield text, score, toktype
return toktype
def get_token_score(self, token_id: int) -> float:
if self.spm is not None and token_id < self.spm.vocab_size():
return cast(float, self.spm.get_score(token_id))
return 0.0
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
for text in self.added_tokens_list:
score = -1000.0
yield text.encode("utf-8"), score, gguf.TokenType.USER_DEFINED
for text in self.added_tokens_dict:
if text in self.specials:
toktype = self.get_token_type(self.specials[text])
score = self.get_token_score(self.specials[text])
else:
toktype = gguf.TokenType.USER_DEFINED
score = -1000.0
yield text.encode("utf-8"), score, toktype
def has_newline_token(self) -> bool:
return '<0x0A>' in self.tokenizer.vocab or '\n' in self.tokenizer.vocab
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
yield from self.sentencepiece_tokens()
yield from self.hf_tokens()
yield from self.added_tokens()
def get_vocab_type(self) -> str:
path_candidates = []
vocab_file = "tokenizer.model"
path_candidates.append(vocab_file)
path_candidate = find_vocab_file_path(self.fname_tokenizer, vocab_file)
if path_candidate is not None:
return "llama"
vocab_file = "vocab.json"
path_candidates.append(vocab_file)
path_candidate = find_vocab_file_path(self.fname_tokenizer, vocab_file)
if path_candidate is not None:
return "gpt2"
vocab_file = "tokenizer.json"
path_candidates.append(vocab_file)
path_candidate = find_vocab_file_path(self.fname_tokenizer, vocab_file)
if path_candidate:
if not self.has_newline_token():
return "gpt2"
return "llama"
raise FileNotFoundError(
f"Could not find {path_candidates} in {self.fname_tokenizer} or its parent; "
"if it's in another directory, pass the directory as --vocab-dir"
)
def __repr__(self) -> str:
return f"<SentencePieceVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
return f"<VocabLoader with {self.vocab_size_base} base tokens and {len(self.added_tokens_dict)} added tokens>"
Vocab: TypeAlias = 'BpeVocab | SentencePieceVocab'
Vocab: TypeAlias = 'VocabLoader'
#
# data loading
@@ -585,7 +629,7 @@ def merge_multifile_models(models_plus: list[ModelPlus]) -> ModelPlus:
if any("model.embed_tokens.weight" in mp.model for mp in models_plus):
# Transformers models put different tensors in different files, but
# don't split indivdual tensors between files.
# don't split individual tensors between files.
model: LazyModel = {}
for mp in models_plus:
model.update(mp.model)
@@ -678,7 +722,7 @@ class LazyUnpickler(pickle.Unpickler):
return func(*args)
CLASSES: dict[tuple[str, str], Any] = {
# getattr used here as a workaround for mypy not being smart enough to detrmine
# getattr used here as a workaround for mypy not being smart enough to determine
# the staticmethods have a __func__ attribute.
('torch._tensor', '_rebuild_from_type_v2'): getattr(rebuild_from_type_v2, '__func__'),
('torch._utils', '_rebuild_tensor_v2'): getattr(lazy_rebuild_tensor_v2, '__func__'),
@@ -794,20 +838,27 @@ def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], conc
yield result
def check_vocab_size(params: Params, vocab: Vocab) -> None:
def check_vocab_size(params: Params, vocab: Vocab, pad_vocab: bool = False) -> None:
if params.n_vocab != vocab.vocab_size:
assert isinstance(vocab, BpeVocab) or isinstance(vocab, SentencePieceVocab)
if params.n_vocab == vocab.vocab_size_base:
if params.n_vocab == vocab.vocab_size:
print("Ignoring added_tokens.json since model matches vocab size without it.")
vocab.added_tokens_list = []
vocab.vocab_size = vocab.vocab_size_base
vocab.added_tokens_dict = OrderedDict()
vocab.vocab_size = vocab.vocab_size
return
if pad_vocab and params.n_vocab > vocab.vocab_size:
pad_count = params.n_vocab - vocab.vocab_size
print(f'Padding vocab with {pad_count} token(s) - <dummy00001> through <dummy{pad_count:05}>')
for i in range(1, (params.n_vocab - vocab.vocab_size) + 1):
vocab.added_tokens_dict[f'<dummy{i:05}>'] = -1
vocab.vocab_size = params.n_vocab
return
msg = f"Vocab size mismatch (model has {params.n_vocab}, but {vocab.fname_tokenizer}"
if vocab.fname_added_tokens is not None:
msg += f" combined with {vocab.fname_added_tokens}"
msg += f" has {vocab.vocab_size})."
if vocab.vocab_size < params.n_vocab < vocab.vocab_size + 20 and vocab.fname_added_tokens is None:
if vocab.vocab_size < params.n_vocab < vocab.vocab_size + 20:
msg += f" Most likely you are missing added_tokens.json (should be in {vocab.fname_tokenizer.parent})."
if vocab.vocab_size < params.n_vocab:
msg += " Possibly try using the --padvocab option."
raise Exception(msg)
@@ -832,7 +883,17 @@ class OutputFile:
self.gguf.add_rope_dimension_count(params.n_embd // params.n_head)
self.gguf.add_head_count (params.n_head)
self.gguf.add_head_count_kv (params.n_head_kv)
self.gguf.add_layer_norm_rms_eps (params.f_norm_eps)
if params.n_experts:
self.gguf.add_expert_count(params.n_experts)
if params.n_experts_used:
self.gguf.add_expert_used_count(params.n_experts_used)
if params.f_norm_eps:
self.gguf.add_layer_norm_rms_eps(params.f_norm_eps)
else:
raise ValueError('f_norm_eps is None')
if params.f_rope_freq_base is not None:
self.gguf.add_rope_freq_base(params.f_rope_freq_base)
@@ -861,12 +922,8 @@ class OutputFile:
scores.append(score)
toktypes.append(toktype)
if isinstance(vocab, SentencePieceVocab):
self.gguf.add_tokenizer_model("llama")
elif isinstance(vocab, BpeVocab):
self.gguf.add_tokenizer_model("gpt2")
else:
raise ValueError('Unknown vocab type: Not BpeVocab or SentencePieceVocab')
vocab_type = vocab.get_vocab_type()
self.gguf.add_tokenizer_model(vocab_type)
self.gguf.add_token_list(tokens)
self.gguf.add_token_scores(scores)
self.gguf.add_token_types(toktypes)
@@ -892,8 +949,12 @@ class OutputFile:
self.gguf.close()
@staticmethod
def write_vocab_only(fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab, endianess:gguf.GGUFEndian = gguf.GGUFEndian.LITTLE) -> None:
check_vocab_size(params, vocab)
def write_vocab_only(
fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab,
endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE,
pad_vocab: bool = False,
) -> None:
check_vocab_size(params, vocab, pad_vocab = pad_vocab)
of = OutputFile(fname_out, endianess=endianess)
@@ -920,8 +981,13 @@ class OutputFile:
return dt.quantize(arr)
@staticmethod
def write_all(fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: Vocab, svocab: gguf.SpecialVocab, concurrency: int = DEFAULT_CONCURRENCY, endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE) -> None:
check_vocab_size(params, vocab)
def write_all(
fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: Vocab, svocab: gguf.SpecialVocab,
concurrency: int = DEFAULT_CONCURRENCY,
endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE,
pad_vocab: bool = False,
) -> None:
check_vocab_size(params, vocab, pad_vocab = pad_vocab)
of = OutputFile(fname_out, endianess=endianess)
@@ -956,7 +1022,7 @@ class OutputFile:
def pick_output_type(model: LazyModel, output_type_str: str | None) -> GGMLFileType:
wq_type = model[gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ATTN_Q].format(bid=0) +".weight"].data_type
wq_type = model[gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ATTN_Q].format(bid=0) + ".weight"].data_type
if output_type_str == "f32" or (output_type_str is None and wq_type == DT_F32):
return GGMLFileType.AllF32
@@ -1079,35 +1145,17 @@ def load_some_model(path: Path) -> ModelPlus:
return model_plus
def load_vocab(path: Path, vocabtype: str | None) -> Vocab:
# Be extra-friendly and accept either a file or a directory. Also, if it's
# a directory, it might be the model directory, and tokenizer.model might
# be in the parent of that.
if path.is_dir():
vocab_file = "tokenizer.model"
if vocabtype == 'bpe':
vocab_file = "vocab.json"
path2 = path / vocab_file
# Use `.parent` instead of /.. to handle the symlink case better.
path3 = path.parent / vocab_file
if path2.exists():
path = path2
elif path3.exists():
path = path3
else:
raise FileNotFoundError(
f"Could not find {vocab_file} in {path} or its parent; "
"if it's in another directory, pass the directory as --vocab-dir")
def find_vocab_file_path(path: Path, vocab_file: str) -> Optional[Path]:
path2 = path / vocab_file
# Use `.parent` instead of /.. to handle the symlink case better.
path3 = path.parent / vocab_file
print(f"Loading vocab file '{path}', type '{vocabtype}'")
if path2.exists():
return path2
if path3.exists():
return path3
added_tokens_path = path.parent / "added_tokens.json"
if vocabtype == "bpe":
return BpeVocab(path, added_tokens_path if added_tokens_path.exists() else None)
elif vocabtype == "spm":
return SentencePieceVocab(path, added_tokens_path if added_tokens_path.exists() else None)
else:
raise ValueError(f"Unsupported vocabulary type {vocabtype}")
return None
def default_outfile(model_paths: list[Path], file_type: GGMLFileType) -> Path:
@@ -1139,19 +1187,33 @@ def main(args_in: list[str] | None = None) -> None:
# We currently only support Q8_0 output on little endian systems.
output_choices.append("q8_0")
parser = argparse.ArgumentParser(description="Convert a LLaMa model to a GGML compatible file")
parser.add_argument("--awq-path", type=Path, help="Path to scale awq cache file", default=None)
parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model")
parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file")
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
parser.add_argument("--outtype", choices=output_choices, help="output format - note: q8_0 may be very slow (default: f16 or f32 based on input)")
parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file")
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin, *.safetensors)")
parser.add_argument("--vocabtype", choices=["spm", "bpe"], help="vocab format (default: spm)", default="spm")
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)")
parser.add_argument("--ctx", type=int, help="model training context (default: based on input)")
parser.add_argument("--concurrency", type=int, help=f"concurrency used for conversion (default: {DEFAULT_CONCURRENCY})", default = DEFAULT_CONCURRENCY)
parser.add_argument("--bigendian", action="store_true", help="model is executed on big endian machine")
parser.add_argument("--padvocab", action="store_true", help="add pad tokens when model vocab expects more than tokenizer metadata provides")
args = parser.parse_args(args_in)
if args.awq_path:
sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
from awq.apply_awq import add_scale_weights
tmp_model_path = args.model / "weighted_model"
if tmp_model_path.is_dir():
print(f"{tmp_model_path} exists as a weighted model.")
else:
tmp_model_path.mkdir(parents=True, exist_ok=True)
print("Saving new weighted model ...")
add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
print(f"Saved weighted model at {tmp_model_path}.")
args.model = tmp_model_path
if args.dump_single:
model_plus = lazy_load_file(args.model)
do_dump_model(model_plus)
@@ -1192,12 +1254,13 @@ def main(args_in: list[str] | None = None) -> None:
if not args.outfile:
raise ValueError("need --outfile if using --vocab-only")
# FIXME: Try to respect vocab_dir somehow?
vocab = load_vocab(args.vocab_dir or args.model, args.vocabtype)
vocab = VocabLoader(params, args.vocab_dir or args.model)
special_vocab = gguf.SpecialVocab(model_plus.paths[0].parent,
load_merges = args.vocabtype == 'bpe',
load_merges = True,
n_vocab = vocab.vocab_size)
outfile = args.outfile
OutputFile.write_vocab_only(outfile, params, vocab, special_vocab)
OutputFile.write_vocab_only(outfile, params, vocab, special_vocab,
endianess = endianess, pad_vocab = args.padvocab)
print(f"Wrote {outfile}")
return
@@ -1205,12 +1268,15 @@ def main(args_in: list[str] | None = None) -> None:
vocab = model_plus.vocab
else:
vocab_dir = args.vocab_dir if args.vocab_dir else model_plus.paths[0].parent
vocab = load_vocab(vocab_dir, args.vocabtype)
vocab = VocabLoader(params, vocab_dir)
# FIXME: Try to respect vocab_dir somehow?
print(f"Vocab info: {vocab}")
special_vocab = gguf.SpecialVocab(model_plus.paths[0].parent,
load_merges = args.vocabtype == 'bpe',
load_merges = True,
n_vocab = vocab.vocab_size)
print(f"Special vocab info: {special_vocab}")
model = model_plus.model
model = convert_model_names(model, params)
ftype = pick_output_type(model, args.outtype)
@@ -1220,7 +1286,8 @@ def main(args_in: list[str] | None = None) -> None:
params.ftype = ftype
print(f"Writing {outfile}, format {ftype}")
OutputFile.write_all(outfile, ftype, params, model, vocab, special_vocab, concurrency = args.concurrency, endianess=endianess)
OutputFile.write_all(outfile, ftype, params, model, vocab, special_vocab,
concurrency = args.concurrency, endianess = endianess, pad_vocab = args.padvocab)
print(f"Wrote {outfile}")

View File

@@ -31,8 +31,10 @@ else()
add_subdirectory(quantize-stats)
add_subdirectory(save-load-state)
add_subdirectory(simple)
add_subdirectory(passkey)
add_subdirectory(speculative)
add_subdirectory(lookahead)
add_subdirectory(lookup)
add_subdirectory(train-text-from-scratch)
if (LLAMA_METAL)
add_subdirectory(metal)

View File

@@ -575,10 +575,7 @@ static struct ggml_tensor * forward(
// KQ_scaled = KQ / sqrt(n_embd/n_head)
// KQ_scaled shape [n_past + N, N, n_head, 1]
struct ggml_tensor * KQ_scaled =
ggml_scale(ctx0,
KQ,
ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head)));
struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, 1.0f/sqrtf(float(n_embd)/n_head));
// KQ_masked = mask_past(KQ_scaled)
// KQ_masked shape [n_past + N, N, n_head, 1]
@@ -844,10 +841,7 @@ static struct ggml_tensor * forward_batch(
// KQ_scaled = KQ / sqrt(n_embd/n_head)
// KQ_scaled shape [n_past + N, N, n_head, n_batch]
struct ggml_tensor * KQ_scaled =
ggml_scale(ctx0,
KQ,
ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head)));
struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, 1.0f/sqrtf(float(n_embd)/n_head));
assert_shape_4d(KQ_scaled, n_past + N, N, n_head, n_batch);
// KQ_masked = mask_past(KQ_scaled)
@@ -1131,10 +1125,7 @@ static struct ggml_tensor * forward_lora(
// KQ_scaled = KQ / sqrt(n_embd/n_head)
// KQ_scaled shape [n_past + N, N, n_head, 1]
struct ggml_tensor * KQ_scaled =
ggml_scale(ctx0,
KQ,
ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head)));
struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, 1.0f/sqrtf(float(n_embd)/n_head));
// KQ_masked = mask_past(KQ_scaled)
// KQ_masked shape [n_past + N, N, n_head, 1]
@@ -1258,9 +1249,9 @@ static struct ggml_tensor * forward_lora(
}
static void sample_softmax(struct ggml_tensor * logits, struct ggml_tensor * probs, struct ggml_tensor * best_samples) {
assert(logits->n_dims == 2);
assert(probs->n_dims == 2);
assert(best_samples->n_dims == 1);
assert(ggml_is_matrix(logits));
assert(ggml_is_matrix(probs));
assert(ggml_is_vector(best_samples));
assert(logits->ne[1] == best_samples->ne[0]);
assert(logits->ne[0] == probs->ne[0]);
assert(logits->ne[1] == probs->ne[1]);
@@ -1292,9 +1283,9 @@ static void sample_softmax_batch(
struct ggml_context * ctx, struct ggml_tensor * logits, struct ggml_tensor * probs,
struct ggml_tensor * best_samples
) {
GGML_ASSERT(best_samples->n_dims == 2);
GGML_ASSERT(logits->n_dims == 3);
GGML_ASSERT(probs->n_dims == 3);
GGML_ASSERT(ggml_is_matrix(best_samples));
GGML_ASSERT(ggml_is_3d(logits));
GGML_ASSERT(ggml_is_3d(probs));
int n_tokens = best_samples->ne[0];
int n_batch = best_samples->ne[1];
int n_vocab = logits->ne[0];
@@ -1334,7 +1325,7 @@ static void print_row(struct ggml_tensor * probs, int i) {
}
static void print_matrix(struct ggml_tensor * probs) {
assert(probs->n_dims == 2);
assert(ggml_is_matrix(probs));
for (int i = 0; i < probs->ne[1]; ++i) {
for (int k = 0; k < probs->ne[0]; ++k) {
float p = ggml_get_f32_1d(probs, i*probs->ne[0] + k);
@@ -1386,8 +1377,8 @@ static void get_example_targets(int example_id, struct ggml_tensor * tokens_inpu
static void get_example_targets_batch(
struct ggml_context * ctx, int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * targets
) {
GGML_ASSERT(tokens_input->n_dims == 2);
GGML_ASSERT( targets->n_dims == 3);
GGML_ASSERT(ggml_is_matrix(tokens_input));
GGML_ASSERT(ggml_is_3d(targets));
int n_tokens = tokens_input->ne[0];
int n_batch = tokens_input->ne[1];
GGML_ASSERT(n_tokens == targets->ne[1]);

61
examples/base-translate.sh Executable file
View File

@@ -0,0 +1,61 @@
#!/bin/bash
#
# Few-shot translation example.
# Requires a base model (i.e. no fine-tuned or instruct models).
#
# Usage:
#
# cd llama.cpp
# make -j
#
# ./examples/base-translate.sh <model-base> "<text>" [extra-main-args]
#
if [ $# -lt 2 ]; then
echo "Usage: ./base-translate.sh <model-base> \"<text>\" [extra-main-args]"
exit 1
fi
eargs=""
if [ $# -gt 2 ]; then
eargs="${@:3}"
fi
ftmp="__llama.cpp_example_tmp__.txt"
trap "rm -f $ftmp" EXIT
echo "Translate from English to French:
===
sea otter, peppermint, plush girafe:
sea otter => loutre de mer
peppermint => menthe poivrée
plush girafe => girafe peluche
===
violin
violin => violon
===
phone, computer, mouse, keyboard:
phone => téléphone
computer => ordinateur
mouse => souris
keyboard => clavier
===
" > $ftmp
echo "$2
" >> $ftmp
model=$1
# generate the most likely continuation until the string "===" is found
./main -m $model -f $ftmp -n 64 --temp 0 --repeat-penalty 1.0 --no-penalize-nl -r "===" $eargs

View File

@@ -69,6 +69,7 @@ int main(int argc, char ** argv) {
std::vector<llama_token> tokens_list;
tokens_list = ::llama_tokenize(model, params.prompt, true);
const int n_kv_req = tokens_list.size() + (n_len - tokens_list.size())*n_parallel;
// initialize the context

View File

@@ -129,13 +129,13 @@ int main(int argc, char ** argv) {
const ggml_type qtype = GGML_TYPE_Q4_1;
size_t ctx_size = 0;
ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32);
ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32);
ctx_size += sizex*sizez*ggml_type_sizef(GGML_TYPE_F32);
ctx_size += sizex*sizey*ggml_type_sizef(qtype);
ctx_size += sizex*sizey*ggml_type_sizef(qtype);
ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32); // BLAS
ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32); // BLAS
ctx_size += ggml_row_size(GGML_TYPE_F32, sizex*sizey);
ctx_size += ggml_row_size(GGML_TYPE_F32, sizex*sizey);
ctx_size += ggml_row_size(GGML_TYPE_F32, sizex*sizez);
ctx_size += ggml_row_size(qtype, sizex*sizey);
ctx_size += ggml_row_size(qtype, sizex*sizey);
ctx_size += ggml_row_size(GGML_TYPE_F32, sizex*sizey); // BLAS
ctx_size += ggml_row_size(GGML_TYPE_F32, sizex*sizey); // BLAS
ctx_size += 1024*1024*16;
printf("Allocating Memory of size %zi bytes, %zi MB\n",ctx_size, (ctx_size/1024/1024));

View File

@@ -427,7 +427,7 @@ static void print_row(struct ggml_tensor * probs, int i) {
}
static void print_matrix(struct ggml_tensor * probs) {
assert(probs->n_dims == 2);
assert(ggml_is_matrix(probs));
for (int i = 0; i < probs->ne[1]; ++i) {
for (int k = 0; k < probs->ne[0]; ++k) {
float p = get_f32_2d(probs, k, i);
@@ -639,7 +639,7 @@ static void load_vocab(const char *filename, Config *config, struct llama_vocab
static void convert_weights_ak_to_gg(struct ggml_tensor * gg_weights, const float * karpathy_weights) {
int ct;
switch (gg_weights->n_dims){
switch (ggml_n_dims(gg_weights)) {
case 1:
ct = 0;
for (int i0 = 0; i0 < gg_weights->ne[0]; i0++){

View File

@@ -309,7 +309,7 @@ static struct ggml_cgraph * build_graph_lora(
) {
struct ggml_tensor * ab = ggml_mul_mat(ctx, lora_a, lora_b);
if (scaling != 1.0f) {
ab = ggml_scale(ctx, ab, ggml_new_f32(ctx, scaling));
ab = ggml_scale(ctx, ab, scaling);
}
struct ggml_tensor * res = ggml_add_inplace(ctx, tensor, ab);

View File

@@ -61,7 +61,7 @@ For example to apply 40% of the 'shakespeare' LORA adapter, 80% of the 'bible' L
--lora lora-open-llama-3b-v2-q8_0-yet-another-one-LATEST.bin
```
The scale numbers don't need to add up to one, and you can also use numbers greater than 1 to further increase the influence of an adapter. But making the values to big will sometimes result in worse output. Play around to find good values.
The scale numbers don't need to add up to one, and you can also use numbers greater than 1 to further increase the influence of an adapter. But making the values too big will sometimes result in worse output. Play around to find good values.
Gradient checkpointing reduces the memory requirements by ~50% but increases the runtime.
If you have enough RAM, you can make finetuning a bit faster by disabling checkpointing with `--no-checkpointing`.

View File

@@ -3,15 +3,9 @@
#include "llama.h"
#include "common.h"
#include "train.h"
#include <unordered_map>
#include <vector>
#include <cassert>
#include <climits>
#include <cstring>
#include <cstdarg>
#include <ctime>
#include <random>
#include <stdexcept>
#include <algorithm>
#include <string>
@@ -196,13 +190,13 @@ static const char * LLM_TENSOR_FFN_DOWN = "blk.%d.ffn_down";
static const char * LLM_TENSOR_FFN_UP = "blk.%d.ffn_up";
static void print_params(struct my_llama_hparams * params) {
printf("%s: n_vocab: %u\n", __func__, params->n_vocab);
printf("%s: n_ctx: %u\n", __func__, params->n_ctx);
printf("%s: n_embd: %u\n", __func__, params->n_embd);
printf("%s: n_ff: %u\n", __func__, params->n_ff);
printf("%s: n_head: %u\n", __func__, params->n_head);
printf("%s: n_head_kv: %u\n", __func__, params->n_head_kv);
printf("%s: n_layer: %u\n", __func__, params->n_layer);
printf("%s: n_vocab : %u\n", __func__, params->n_vocab);
printf("%s: n_ctx : %u\n", __func__, params->n_ctx);
printf("%s: n_embd : %u\n", __func__, params->n_embd);
printf("%s: n_ff : %u\n", __func__, params->n_ff);
printf("%s: n_head : %u\n", __func__, params->n_head);
printf("%s: n_head_kv : %u\n", __func__, params->n_head_kv);
printf("%s: n_layer : %u\n", __func__, params->n_layer);
printf("%s: norm_rms_eps : %f\n", __func__, params->f_norm_rms_eps);
printf("%s: rope_freq_base : %f\n", __func__, params->rope_freq_base);
printf("%s: rope_freq_scale : %f\n", __func__, params->rope_freq_scale);
@@ -269,7 +263,7 @@ static void load_model_hparams_gguf(struct gguf_context * ctx, struct my_llama_h
float rope_freq_scale = 1.0f;
GGUF_GET_KEY(ctx, hparams->f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
GGUF_GET_KEY(ctx, hparams->rope_freq_base, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE));
GGUF_GET_KEY(ctx, rope_freq_scale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR));
GGUF_GET_KEY(ctx, rope_freq_scale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR));
if (rope_freq_scale != 1.0f) {
hparams->rope_freq_scale = 1.0f / rope_freq_scale;
}
@@ -612,6 +606,7 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
const int n_rot = hparams.n_embd_head();
const int n_embd_head = hparams.n_embd_head();
const int n_embd_gqa = hparams.n_embd_gqa();
const float rms_norm_eps = hparams.f_norm_rms_eps;
const float rope_freq_base = hparams.rope_freq_base;
const float rope_freq_scale = hparams.rope_freq_scale;
@@ -680,10 +675,7 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
checkpoints.push_back(t01);
}
struct ggml_tensor * kv_scale = NULL;
if (!enable_flash_attn) {
kv_scale = ggml_new_f32(ctx, 1.0f/sqrtf(float(n_embd)/n_head));
}
const float kv_scale = 1.0f/sqrtf(float(n_embd)/n_head);
for (int il = 0; il < n_layer; ++il) {
struct my_llama_layer & layer = model->layers[il];
@@ -781,32 +773,32 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
// make sure some tensors are not reallocated by inserting new temporary nodes depending on them
int n_leafs_before = gb->n_leafs;
int n_nodes_before = gb->n_nodes;
struct ggml_tensor * one = ggml_new_f32(ctx, 1.0f);
// output tensors
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t35, one));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36, one));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t35, 1.0f));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36, 1.0f));
// input gradient
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36->grad, one));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36->grad, 1.0f));
GGML_ASSERT(t36->grad->data == NULL && t36->grad->view_src == NULL);
ggml_allocr_alloc(alloc, t36->grad);
// KQ_pos
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, KQ_pos, one));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, KQ_pos, 1.0f));
// make sure base model tensors data cannot be used in viewable operations
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->tok_embeddings, one));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->norm, one));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->output, one));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->tok_embeddings, 1.0f));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->norm, 1.0f));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->output, 1.0f));
for (int il = 0; il < n_layer; ++il) {
struct my_llama_layer & layer = model->layers[il];
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.attention_norm, one));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.ffn_norm, one));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wq, one));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wk, one));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wv, one));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wo, one));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.w1, one));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.w2, one));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.w3, one));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.attention_norm, 1.0f));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.ffn_norm, 1.0f));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wq, 1.0f));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wk, 1.0f));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wv, 1.0f));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wo, 1.0f));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.w1, 1.0f));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.w2, 1.0f));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.w3, 1.0f));
}
// allocating checkpoints in one block to reduce memory fragmentation
@@ -1110,7 +1102,7 @@ static void write_tensor(struct llama_file * file, struct ggml_tensor * tensor,
name = ggml_get_name(tensor);
}
uint32_t name_len = strlen(name);
uint32_t nd = tensor->n_dims;
uint32_t nd = ggml_n_dims(tensor);
uint32_t ne[4] = { (uint32_t)tensor->ne[0],
(uint32_t)tensor->ne[1],
(uint32_t)tensor->ne[2],
@@ -1620,8 +1612,6 @@ int main(int argc, char ** argv) {
opt->params.adam.gclip = params.common.adam_gclip;
opt->params.adam.eps_f = params.common.adam_eps_f;
ggml_allocr * alloc = NULL;
printf("%s: init model\n", __func__);
bool existed = load_checkpoint_lora_file(params.common.fn_checkpoint_in, &model, &lora, train);
@@ -1725,10 +1715,9 @@ int main(int argc, char ** argv) {
// allocate input tensors
mem_input_data.resize(max_input_size);
alloc = ggml_allocr_new(mem_input_data.data(), mem_input_data.size(), tensor_alignment);
ggml_allocr_alloc(alloc, tokens_input);
ggml_allocr_alloc(alloc, target_probs);
ggml_allocr_free(alloc);
ggml_allocr_t alloc_inps = ggml_allocr_new(mem_input_data.data(), mem_input_data.size(), tensor_alignment);
ggml_allocr_alloc(alloc_inps, tokens_input);
ggml_allocr_alloc(alloc_inps, target_probs);
// context for compute tensors without their data
const size_t estimated_compute_size_wo_data = (
@@ -1755,7 +1744,7 @@ int main(int argc, char ** argv) {
// find best evaluation order
for (unsigned order = 0; order < (unsigned) GGML_CGRAPH_EVAL_ORDER_COUNT; ++order) {
ctx_compute = ggml_init(ctx_compute_params);
alloc = ggml_allocr_new_measure(tensor_alignment);
ggml_allocr_t alloc = ggml_allocr_new_measure(tensor_alignment);
gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
gf->order = (enum ggml_cgraph_eval_order) order;
gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
@@ -1788,7 +1777,7 @@ int main(int argc, char ** argv) {
// allocate compute tensors
mem_compute_data.resize(max_compute_size);
ctx_compute = ggml_init(ctx_compute_params);
alloc = ggml_allocr_new(mem_compute_data.data(), mem_compute_data.size(), tensor_alignment);
ggml_allocr_t alloc = ggml_allocr_new(mem_compute_data.data(), mem_compute_data.size(), tensor_alignment);
gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
gf->order = best_order;
gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
@@ -1804,6 +1793,8 @@ int main(int argc, char ** argv) {
params.common.use_checkpointing
);
ggml_allocr_free(alloc);
ggml_allocr_free(alloc_inps);
// tokenize data
std::vector<llama_token> train_tokens;

View File

@@ -1,5 +1,5 @@
set(TARGET gguf)
add_executable(${TARGET} gguf.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE llama ${CMAKE_THREAD_LIBS_INIT})
target_link_libraries(${TARGET} PRIVATE ggml ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

View File

@@ -1,5 +1,4 @@
#include "ggml.h"
#include "llama.h"
#include <cstdio>
#include <cinttypes>
@@ -195,7 +194,7 @@ static bool gguf_ex_read_1(const std::string & fname) {
struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
printf("%s: tensor[%d]: n_dims = %d, name = %s, data = %p\n", __func__, i, cur->n_dims, cur->name, cur->data);
printf("%s: tensor[%d]: n_dims = %d, name = %s, data = %p\n", __func__, i, ggml_n_dims(cur), cur->name, cur->data);
// print first 10 elements
const float * data = (const float *) cur->data;

View File

@@ -53,6 +53,13 @@ static std::vector<T> split(const std::string & str, char delim) {
return values;
}
template<typename T, typename F>
static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
std::vector<std::string> str_values;
std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
return str_values;
}
template<typename T>
static T avg(const std::vector<T> & v) {
if (v.empty()) {
@@ -126,10 +133,12 @@ struct cmd_params {
std::vector<int> n_prompt;
std::vector<int> n_gen;
std::vector<int> n_batch;
std::vector<bool> f32_kv;
std::vector<ggml_type> type_k;
std::vector<ggml_type> type_v;
std::vector<int> n_threads;
std::vector<int> n_gpu_layers;
std::vector<int> main_gpu;
std::vector<bool> no_kv_offload;
std::vector<bool> mul_mat_q;
std::vector<std::array<float, LLAMA_MAX_DEVICES>> tensor_split;
int reps;
@@ -142,10 +151,12 @@ static const cmd_params cmd_params_defaults = {
/* n_prompt */ {512},
/* n_gen */ {128},
/* n_batch */ {512},
/* f32_kv */ {false},
/* type_k */ {GGML_TYPE_F16},
/* type_v */ {GGML_TYPE_F16},
/* n_threads */ {get_num_physical_cores()},
/* n_gpu_layers */ {99},
/* main_gpu */ {0},
/* no_kv_offload */ {false},
/* mul_mat_q */ {true},
/* tensor_split */ {{}},
/* reps */ 5,
@@ -162,10 +173,12 @@ static void print_usage(int /* argc */, char ** argv) {
printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
printf(" --memory-f32 <0|1> (default: %s)\n", join(cmd_params_defaults.f32_kv, ",").c_str());
printf(" -ctk <t>, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
printf(" -ctv <t>, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
printf(" -mmq, --mul-mat-q <0|1> (default: %s)\n", join(cmd_params_defaults.mul_mat_q, ",").c_str());
printf(" -ts, --tensor_split <ts0/ts1/..> \n");
printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
@@ -173,9 +186,32 @@ static void print_usage(int /* argc */, char ** argv) {
printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
printf("\n");
printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
}
static ggml_type ggml_type_from_name(const std::string & s) {
if (s == "f16") {
return GGML_TYPE_F16;
}
if (s == "q8_0") {
return GGML_TYPE_Q8_0;
}
if (s == "q4_0") {
return GGML_TYPE_Q4_0;
}
if (s == "q4_1") {
return GGML_TYPE_Q4_1;
}
if (s == "q5_0") {
return GGML_TYPE_Q5_0;
}
if (s == "q5_1") {
return GGML_TYPE_Q5_1;
}
return GGML_TYPE_COUNT;
}
static cmd_params parse_cmd_params(int argc, char ** argv) {
cmd_params params;
std::string arg;
@@ -224,13 +260,38 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
}
auto p = split<int>(argv[i], split_delim);
params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
} else if (arg == "--memory-f32") {
} else if (arg == "-ctk" || arg == "--cache-type-k") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = split<int>(argv[i], split_delim);
params.f32_kv.insert(params.f32_kv.end(), p.begin(), p.end());
auto p = split<std::string>(argv[i], split_delim);
std::vector<ggml_type> types;
for (const auto & t : p) {
ggml_type gt = ggml_type_from_name(t);
if (gt == GGML_TYPE_COUNT) {
invalid_param = true;
break;
}
types.push_back(gt);
}
params.type_k.insert(params.type_k.end(), types.begin(), types.end());
} else if (arg == "-ctv" || arg == "--cache-type-v") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = split<std::string>(argv[i], split_delim);
std::vector<ggml_type> types;
for (const auto & t : p) {
ggml_type gt = ggml_type_from_name(t);
if (gt == GGML_TYPE_COUNT) {
invalid_param = true;
break;
}
types.push_back(gt);
}
params.type_v.insert(params.type_v.end(), types.begin(), types.end());
} else if (arg == "-t" || arg == "--threads") {
if (++i >= argc) {
invalid_param = true;
@@ -251,6 +312,13 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
break;
}
params.main_gpu = split<int>(argv[i], split_delim);
} else if (arg == "-nkvo" || arg == "--no-kv-offload") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = split<bool>(argv[i], split_delim);
params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
} else if (arg == "-mmq" || arg == "--mul-mat-q") {
if (++i >= argc) {
invalid_param = true;
@@ -321,9 +389,11 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
if (params.f32_kv.empty()) { params.f32_kv = cmd_params_defaults.f32_kv; }
if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; }
if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; }
if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
if (params.mul_mat_q.empty()) { params.mul_mat_q = cmd_params_defaults.mul_mat_q; }
if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
@@ -336,10 +406,12 @@ struct cmd_params_instance {
int n_prompt;
int n_gen;
int n_batch;
bool f32_kv;
ggml_type type_k;
ggml_type type_v;
int n_threads;
int n_gpu_layers;
int main_gpu;
bool no_kv_offload;
bool mul_mat_q;
std::array<float, LLAMA_MAX_DEVICES> tensor_split;
@@ -365,8 +437,10 @@ struct cmd_params_instance {
cparams.n_ctx = n_prompt + n_gen;
cparams.n_batch = n_batch;
cparams.f16_kv = !f32_kv;
cparams.type_k = type_k;
cparams.type_v = type_v;
cparams.mul_mat_q = mul_mat_q;
cparams.offload_kqv = !no_kv_offload;
return cparams;
}
@@ -380,18 +454,22 @@ static std::vector<cmd_params_instance> get_cmd_params_instances_int(const cmd_p
for (const auto & mg : params.main_gpu)
for (const auto & ts : params.tensor_split)
for (const auto & nb : params.n_batch)
for (const auto & fk : params.f32_kv)
for (const auto & tk : params.type_k)
for (const auto & tv : params.type_v)
for (const auto & mmq : params.mul_mat_q)
for (const auto & nkvo : params.no_kv_offload)
for (const auto & nt : params.n_threads) {
cmd_params_instance instance = {
/* .model = */ m,
/* .n_prompt = */ n_prompt,
/* .n_gen = */ n_gen,
/* .n_batch = */ nb,
/* .f32_kv = */ fk,
/* .type_k = */ tk,
/* .type_v = */ tv,
/* .n_threads = */ nt,
/* .n_gpu_layers = */ nl,
/* .main_gpu = */ mg,
/* .no_kv_offload= */ nkvo,
/* .mul_mat_q = */ mmq,
/* .tensor_split = */ ts,
};
@@ -410,8 +488,10 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
for (const auto & mg : params.main_gpu)
for (const auto & ts : params.tensor_split)
for (const auto & nb : params.n_batch)
for (const auto & fk : params.f32_kv)
for (const auto & tk : params.type_k)
for (const auto & tv : params.type_v)
for (const auto & mmq : params.mul_mat_q)
for (const auto & nkvo : params.no_kv_offload)
for (const auto & nt : params.n_threads) {
for (const auto & n_prompt : params.n_prompt) {
if (n_prompt == 0) {
@@ -422,10 +502,12 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
/* .n_prompt = */ n_prompt,
/* .n_gen = */ 0,
/* .n_batch = */ nb,
/* .f32_kv = */ fk,
/* .type_k = */ tk,
/* .type_v = */ tv,
/* .n_threads = */ nt,
/* .n_gpu_layers = */ nl,
/* .main_gpu = */ mg,
/* .no_kv_offload= */ nkvo,
/* .mul_mat_q = */ mmq,
/* .tensor_split = */ ts,
};
@@ -441,10 +523,12 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
/* .n_prompt = */ 0,
/* .n_gen = */ n_gen,
/* .n_batch = */ nb,
/* .f32_kv = */ fk,
/* .type_k = */ tk,
/* .type_v = */ tv,
/* .n_threads = */ nt,
/* .n_gpu_layers = */ nl,
/* .main_gpu = */ mg,
/* .no_kv_offload= */ nkvo,
/* .mul_mat_q = */ mmq,
/* .tensor_split = */ ts,
};
@@ -489,9 +573,11 @@ struct test {
uint64_t model_n_params;
int n_batch;
int n_threads;
bool f32_kv;
ggml_type type_k;
ggml_type type_v;
int n_gpu_layers;
int main_gpu;
bool no_kv_offload;
bool mul_mat_q;
std::array<float, LLAMA_MAX_DEVICES> tensor_split;
int n_prompt;
@@ -508,9 +594,11 @@ struct test {
model_n_params = llama_model_n_params(lmodel);
n_batch = inst.n_batch;
n_threads = inst.n_threads;
f32_kv = inst.f32_kv;
type_k = inst.type_k;
type_v = inst.type_v;
n_gpu_layers = inst.n_gpu_layers;
main_gpu = inst.main_gpu;
no_kv_offload = inst.no_kv_offload;
mul_mat_q = inst.mul_mat_q;
tensor_split = inst.tensor_split;
n_prompt = inst.n_prompt;
@@ -571,8 +659,9 @@ struct test {
"cuda", "opencl", "metal", "gpu_blas", "blas",
"cpu_info", "gpu_info",
"model_filename", "model_type", "model_size", "model_n_params",
"n_batch", "n_threads", "f16_kv",
"n_gpu_layers", "main_gpu", "mul_mat_q", "tensor_split",
"n_batch", "n_threads", "type_k", "type_v",
"n_gpu_layers", "main_gpu", "no_kv_offload",
"mul_mat_q", "tensor_split",
"n_prompt", "n_gen", "test_time",
"avg_ns", "stddev_ns",
"avg_ts", "stddev_ts"
@@ -591,7 +680,7 @@ struct test {
return INT;
}
if (field == "cuda" || field == "opencl" || field == "metal" || field == "gpu_blas" || field == "blas" ||
field == "f16_kv" || field == "mul_mat_q") {
field == "f16_kv" || field == "no_kv_offload" || field == "mul_mat_q") {
return BOOL;
}
if (field == "avg_ts" || field == "stddev_ts") {
@@ -621,8 +710,9 @@ struct test {
std::to_string(cuda), std::to_string(opencl), std::to_string(metal), std::to_string(gpu_blas), std::to_string(blas),
cpu_info, gpu_info,
model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
std::to_string(n_batch), std::to_string(n_threads), std::to_string(!f32_kv),
std::to_string(n_gpu_layers), std::to_string(main_gpu), std::to_string(mul_mat_q), tensor_split_str,
std::to_string(n_batch), std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v),
std::to_string(n_gpu_layers), std::to_string(main_gpu), std::to_string(no_kv_offload),
std::to_string(mul_mat_q), tensor_split_str,
std::to_string(n_prompt), std::to_string(n_gen), test_time,
std::to_string(avg_ns()), std::to_string(stdev_ns()),
std::to_string(avg_ts()), std::to_string(stdev_ts())
@@ -783,6 +873,9 @@ struct markdown_printer : public printer {
if (field == "mul_mat_q") {
return "mmq";
}
if (field == "no_kv_offload") {
return "nkvo";
}
if (field == "tensor_split") {
return "ts";
}
@@ -805,8 +898,11 @@ struct markdown_printer : public printer {
if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
fields.push_back("n_batch");
}
if (params.f32_kv.size() > 1 || params.f32_kv != cmd_params_defaults.f32_kv) {
fields.push_back("f16_kv");
if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
fields.push_back("type_k");
}
if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
fields.push_back("type_v");
}
if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
fields.push_back("main_gpu");
@@ -814,6 +910,9 @@ struct markdown_printer : public printer {
if (params.mul_mat_q.size() > 1 || params.mul_mat_q != cmd_params_defaults.mul_mat_q) {
fields.push_back("mul_mat_q");
}
if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
fields.push_back("no_kv_offload");
}
if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
fields.push_back("tensor_split");
}

View File

@@ -1 +1,2 @@
xcuserdata
xcshareddata

View File

@@ -1,7 +1,12 @@
# llama.swiftui
# llama.cpp/examples/llama.swiftui
Local inference of llama.cpp on an iPhone.
So far I only tested with starcoder 1B model, but it can most likely handle 7B models as well.
Local inference of llama.cpp on an iPhone. This is a sample app that can be used as a starting
point for more advanced projects.
For usage instructions and performance stats, check the following discussion: https://github.com/ggerganov/llama.cpp/discussions/4508
![image](https://github.com/ggerganov/llama.cpp/assets/1991296/2b40284f-8421-47a2-b634-74eece09a299)
Video demonstration:
https://github.com/bachittle/llama.cpp/assets/39804642/e290827a-4edb-4093-9642-2a5e399ec545

View File

@@ -1,21 +1,38 @@
import Foundation
// import llama
import llama
enum LlamaError: Error {
case couldNotInitializeContext
}
func llama_batch_clear(_ batch: inout llama_batch) {
batch.n_tokens = 0
}
func llama_batch_add(_ batch: inout llama_batch, _ id: llama_token, _ pos: llama_pos, _ seq_ids: [llama_seq_id], _ logits: Bool) {
batch.token [Int(batch.n_tokens)] = id
batch.pos [Int(batch.n_tokens)] = pos
batch.n_seq_id[Int(batch.n_tokens)] = Int32(seq_ids.count)
for i in 0..<seq_ids.count {
batch.seq_id[Int(batch.n_tokens)]![Int(i)] = seq_ids[i]
}
batch.logits [Int(batch.n_tokens)] = logits ? 1 : 0
batch.n_tokens += 1
}
actor LlamaContext {
private var model: OpaquePointer
private var context: OpaquePointer
private var batch: llama_batch
private var tokens_list: [llama_token]
/// This variable is used to store temporarily invalid cchars
private var temporary_invalid_cchars: [CChar]
var n_len: Int32 = 512
var n_len: Int32 = 64
var n_cur: Int32 = 0
var n_decode: Int32 = 0
init(model: OpaquePointer, context: OpaquePointer) {
@@ -27,25 +44,34 @@ actor LlamaContext {
}
deinit {
llama_batch_free(batch)
llama_free(context)
llama_free_model(model)
llama_backend_free()
}
static func createContext(path: String) throws -> LlamaContext {
static func create_context(path: String) throws -> LlamaContext {
llama_backend_init(false)
let model_params = llama_model_default_params()
var model_params = llama_model_default_params()
#if targetEnvironment(simulator)
model_params.n_gpu_layers = 0
print("Running on simulator, force use n_gpu_layers = 0")
#endif
let model = llama_load_model_from_file(path, model_params)
guard let model else {
print("Could not load model at \(path)")
throw LlamaError.couldNotInitializeContext
}
let n_threads = max(1, min(8, ProcessInfo.processInfo.processorCount - 2))
print("Using \(n_threads) threads")
var ctx_params = llama_context_default_params()
ctx_params.seed = 1234
ctx_params.seed = 1234
ctx_params.n_ctx = 2048
ctx_params.n_threads = 8
ctx_params.n_threads_batch = 8
ctx_params.n_threads = UInt32(n_threads)
ctx_params.n_threads_batch = UInt32(n_threads)
let context = llama_new_context_with_model(model, ctx_params)
guard let context else {
@@ -56,6 +82,26 @@ actor LlamaContext {
return LlamaContext(model: model, context: context)
}
func model_info() -> String {
let result = UnsafeMutablePointer<Int8>.allocate(capacity: 256)
result.initialize(repeating: Int8(0), count: 256)
defer {
result.deallocate()
}
// TODO: this is probably very stupid way to get the string from C
let nChars = llama_model_desc(model, result, 256)
let bufferPointer = UnsafeBufferPointer(start: result, count: Int(nChars))
var SwiftString = ""
for char in bufferPointer {
SwiftString.append(Character(UnicodeScalar(UInt8(char))))
}
return SwiftString
}
func get_n_tokens() -> Int32 {
return batch.n_tokens;
}
@@ -79,16 +125,11 @@ actor LlamaContext {
print(String(cString: token_to_piece(token: id) + [0]))
}
// batch = llama_batch_init(512, 0) // done in init()
batch.n_tokens = Int32(tokens_list.count)
llama_batch_clear(&batch)
for i1 in 0..<batch.n_tokens {
for i1 in 0..<tokens_list.count {
let i = Int(i1)
batch.token[i] = tokens_list[i]
batch.pos[i] = i1
batch.n_seq_id[Int(i)] = 1
batch.seq_id[Int(i)]![0] = 0
batch.logits[i] = 0
llama_batch_add(&batch, tokens_list[i], Int32(i), [0], false)
}
batch.logits[Int(batch.n_tokens) - 1] = 1 // true
@@ -117,7 +158,7 @@ actor LlamaContext {
new_token_id = llama_sample_token_greedy(context, &candidates_p)
}
if new_token_id == llama_token_eos(context) || n_cur == n_len {
if new_token_id == llama_token_eos(model) || n_cur == n_len {
print("\n")
let new_token_str = String(cString: temporary_invalid_cchars + [0])
temporary_invalid_cchars.removeAll()
@@ -141,18 +182,11 @@ actor LlamaContext {
print(new_token_str)
// tokens_list.append(new_token_id)
batch.n_tokens = 0
batch.token[Int(batch.n_tokens)] = new_token_id
batch.pos[Int(batch.n_tokens)] = n_cur
batch.n_seq_id[Int(batch.n_tokens)] = 1
batch.seq_id[Int(batch.n_tokens)]![0] = 0
batch.logits[Int(batch.n_tokens)] = 1 // true
batch.n_tokens += 1
llama_batch_clear(&batch)
llama_batch_add(&batch, new_token_id, n_cur, [0], true)
n_decode += 1
n_cur += 1
n_cur += 1
if llama_decode(context, batch) != 0 {
print("failed to evaluate llama!")
@@ -161,14 +195,111 @@ actor LlamaContext {
return new_token_str
}
func bench(pp: Int, tg: Int, pl: Int, nr: Int = 1) -> String {
var pp_avg: Double = 0
var tg_avg: Double = 0
var pp_std: Double = 0
var tg_std: Double = 0
for _ in 0..<nr {
// bench prompt processing
llama_batch_clear(&batch)
let n_tokens = pp
for i in 0..<n_tokens {
llama_batch_add(&batch, 0, Int32(i), [0], false)
}
batch.logits[Int(batch.n_tokens) - 1] = 1 // true
llama_kv_cache_clear(context)
let t_pp_start = ggml_time_us()
if llama_decode(context, batch) != 0 {
print("llama_decode() failed during prompt")
}
let t_pp_end = ggml_time_us()
// bench text generation
llama_kv_cache_clear(context)
let t_tg_start = ggml_time_us()
for i in 0..<tg {
llama_batch_clear(&batch)
for j in 0..<pl {
llama_batch_add(&batch, 0, Int32(i), [Int32(j)], true)
}
if llama_decode(context, batch) != 0 {
print("llama_decode() failed during text generation")
}
}
let t_tg_end = ggml_time_us()
llama_kv_cache_clear(context)
let t_pp = Double(t_pp_end - t_pp_start) / 1000000.0
let t_tg = Double(t_tg_end - t_tg_start) / 1000000.0
let speed_pp = Double(pp) / t_pp
let speed_tg = Double(pl*tg) / t_tg
pp_avg += speed_pp
tg_avg += speed_tg
pp_std += speed_pp * speed_pp
tg_std += speed_tg * speed_tg
print("pp \(speed_pp) t/s, tg \(speed_tg) t/s")
}
pp_avg /= Double(nr)
tg_avg /= Double(nr)
if nr > 1 {
pp_std = sqrt(pp_std / Double(nr - 1) - pp_avg * pp_avg * Double(nr) / Double(nr - 1))
tg_std = sqrt(tg_std / Double(nr - 1) - tg_avg * tg_avg * Double(nr) / Double(nr - 1))
} else {
pp_std = 0
tg_std = 0
}
let model_desc = model_info();
let model_size = String(format: "%.2f GiB", Double(llama_model_size(model)) / 1024.0 / 1024.0 / 1024.0);
let model_n_params = String(format: "%.2f B", Double(llama_model_n_params(model)) / 1e9);
let backend = "Metal";
let pp_avg_str = String(format: "%.2f", pp_avg);
let tg_avg_str = String(format: "%.2f", tg_avg);
let pp_std_str = String(format: "%.2f", pp_std);
let tg_std_str = String(format: "%.2f", tg_std);
var result = ""
result += String("| model | size | params | backend | test | t/s |\n")
result += String("| --- | --- | --- | --- | --- | --- |\n")
result += String("| \(model_desc) | \(model_size) | \(model_n_params) | \(backend) | pp \(pp) | \(pp_avg_str) ± \(pp_std_str) |\n")
result += String("| \(model_desc) | \(model_size) | \(model_n_params) | \(backend) | tg \(tg) | \(tg_avg_str) ± \(tg_std_str) |\n")
return result;
}
func clear() {
tokens_list.removeAll()
temporary_invalid_cchars.removeAll()
llama_kv_cache_clear(context)
}
private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
let utf8Count = text.utf8.count
let n_tokens = utf8Count + (add_bos ? 1 : 0)
let n_tokens = utf8Count + (add_bos ? 1 : 0) + 1
let tokens = UnsafeMutablePointer<llama_token>.allocate(capacity: n_tokens)
let tokenCount = llama_tokenize(model, text, Int32(utf8Count), tokens, Int32(n_tokens), add_bos, false)

View File

@@ -1,5 +0,0 @@
//
// Use this file to import your target's public headers that you would like to expose to Swift.
//
#import "llama.h"

View File

@@ -1,481 +1,435 @@
// !$*UTF8*$!
{
archiveVersion = 1;
classes = {
};
objectVersion = 56;
objects = {
archiveVersion = 1;
classes = {
};
objectVersion = 56;
objects = {
/* Begin PBXBuildFile section */
542376082B0D9BFB008E6A1C /* ggml-quants.c in Sources */ = {isa = PBXBuildFile; fileRef = 542376072B0D9BFB008E6A1C /* ggml-quants.c */; };
5423760B2B0D9C4B008E6A1C /* ggml-backend.c in Sources */ = {isa = PBXBuildFile; fileRef = 5423760A2B0D9C4B008E6A1C /* ggml-backend.c */; };
542378792ACE3F3500834A7B /* ggml-metal.metal in Resources */ = {isa = PBXBuildFile; fileRef = 549479C82AC9E10B00E0F78B /* ggml-metal.metal */; };
542EA09D2AC8723900A8AEE9 /* ggml.c in Sources */ = {isa = PBXBuildFile; fileRef = 542EA09B2AC8723900A8AEE9 /* ggml.c */; settings = {COMPILER_FLAGS = "-DGGML_USE_ACCELERATE -DGGML_USE_METAL -DGGML_USE_K_QUANTS -O3"; }; };
542EA0A02AC8725700A8AEE9 /* ggml-alloc.c in Sources */ = {isa = PBXBuildFile; fileRef = 542EA09F2AC8725700A8AEE9 /* ggml-alloc.c */; };
542EA0A32AC8729100A8AEE9 /* llama.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 542EA0A12AC8729100A8AEE9 /* llama.cpp */; settings = {COMPILER_FLAGS = "-DGGML_USE_K_QUANTS -DGGML_USE_METAL -O3"; }; };
549479CB2AC9E16000E0F78B /* Metal.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = 549479CA2AC9E16000E0F78B /* Metal.framework */; };
549479CD2AC9E42A00E0F78B /* ggml-metal.m in Sources */ = {isa = PBXBuildFile; fileRef = 549479C52AC9E0F200E0F78B /* ggml-metal.m */; settings = {COMPILER_FLAGS = "-fno-objc-arc -DGGML_SWIFT -DGGML_USE_METAL -O3"; }; };
8A1C83772AC328BD0096AF73 /* llama_swiftuiApp.swift in Sources */ = {isa = PBXBuildFile; fileRef = 8A1C83762AC328BD0096AF73 /* llama_swiftuiApp.swift */; };
8A1C83792AC328BD0096AF73 /* ContentView.swift in Sources */ = {isa = PBXBuildFile; fileRef = 8A1C83782AC328BD0096AF73 /* ContentView.swift */; };
8A1C837B2AC328BE0096AF73 /* Assets.xcassets in Resources */ = {isa = PBXBuildFile; fileRef = 8A1C837A2AC328BE0096AF73 /* Assets.xcassets */; };
8A1C837E2AC328BE0096AF73 /* Preview Assets.xcassets in Resources */ = {isa = PBXBuildFile; fileRef = 8A1C837D2AC328BE0096AF73 /* Preview Assets.xcassets */; };
8A39BE0A2AC7601100BFEB40 /* Accelerate.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = 8A39BE092AC7601000BFEB40 /* Accelerate.framework */; };
8A3F84242AC4C891005E2EE8 /* models in Resources */ = {isa = PBXBuildFile; fileRef = 8A3F84232AC4C891005E2EE8 /* models */; };
8A907F332AC7138A006146EA /* LibLlama.swift in Sources */ = {isa = PBXBuildFile; fileRef = 8A907F322AC7134E006146EA /* LibLlama.swift */; };
8A9F7C4D2AC332EE008AE1EA /* LlamaState.swift in Sources */ = {isa = PBXBuildFile; fileRef = 8A9F7C4C2AC332EE008AE1EA /* LlamaState.swift */; };
549479CB2AC9E16000E0F78B /* Metal.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = 549479CA2AC9E16000E0F78B /* Metal.framework */; };
7FA3D2B32B2EA2F600543F92 /* DownloadButton.swift in Sources */ = {isa = PBXBuildFile; fileRef = 7FA3D2B22B2EA2F600543F92 /* DownloadButton.swift */; };
8A1C83772AC328BD0096AF73 /* llama_swiftuiApp.swift in Sources */ = {isa = PBXBuildFile; fileRef = 8A1C83762AC328BD0096AF73 /* llama_swiftuiApp.swift */; };
8A1C83792AC328BD0096AF73 /* ContentView.swift in Sources */ = {isa = PBXBuildFile; fileRef = 8A1C83782AC328BD0096AF73 /* ContentView.swift */; };
8A1C837B2AC328BE0096AF73 /* Assets.xcassets in Resources */ = {isa = PBXBuildFile; fileRef = 8A1C837A2AC328BE0096AF73 /* Assets.xcassets */; };
8A39BE0A2AC7601100BFEB40 /* Accelerate.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = 8A39BE092AC7601000BFEB40 /* Accelerate.framework */; };
8A3F84242AC4C891005E2EE8 /* models in Resources */ = {isa = PBXBuildFile; fileRef = 8A3F84232AC4C891005E2EE8 /* models */; };
8A907F332AC7138A006146EA /* LibLlama.swift in Sources */ = {isa = PBXBuildFile; fileRef = 8A907F322AC7134E006146EA /* LibLlama.swift */; };
8A9F7C4D2AC332EE008AE1EA /* LlamaState.swift in Sources */ = {isa = PBXBuildFile; fileRef = 8A9F7C4C2AC332EE008AE1EA /* LlamaState.swift */; };
DF810E132B4A5BA200301144 /* llama in Frameworks */ = {isa = PBXBuildFile; productRef = DF810E122B4A5BA200301144 /* llama */; };
F1FE20E22B465ECA00B45541 /* LoadCustomButton.swift in Sources */ = {isa = PBXBuildFile; fileRef = F1FE20E12B465EC900B45541 /* LoadCustomButton.swift */; };
/* End PBXBuildFile section */
/* Begin PBXFileReference section */
542376062B0D9BEA008E6A1C /* ggml-quants.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-quants.h"; path = "../../ggml-quants.h"; sourceTree = "<group>"; };
542376072B0D9BFB008E6A1C /* ggml-quants.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; name = "ggml-quants.c"; path = "../../ggml-quants.c"; sourceTree = "<group>"; };
542376092B0D9C40008E6A1C /* ggml-backend.h */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.h; name = "ggml-backend.h"; path = "../../ggml-backend.h"; sourceTree = "<group>"; };
5423760A2B0D9C4B008E6A1C /* ggml-backend.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; name = "ggml-backend.c"; path = "../../ggml-backend.c"; sourceTree = "<group>"; };
542EA09B2AC8723900A8AEE9 /* ggml.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; name = ggml.c; path = ../../ggml.c; sourceTree = "<group>"; };
542EA09C2AC8723900A8AEE9 /* ggml.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = ggml.h; path = ../../ggml.h; sourceTree = "<group>"; };
542EA09E2AC8725700A8AEE9 /* ggml-alloc.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-alloc.h"; path = "../../ggml-alloc.h"; sourceTree = "<group>"; };
542EA09F2AC8725700A8AEE9 /* ggml-alloc.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; name = "ggml-alloc.c"; path = "../../ggml-alloc.c"; sourceTree = "<group>"; };
542EA0A12AC8729100A8AEE9 /* llama.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = llama.cpp; path = ../../llama.cpp; sourceTree = "<group>"; };
542EA0A22AC8729100A8AEE9 /* llama.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = llama.h; path = ../../llama.h; sourceTree = "<group>"; };
549479C52AC9E0F200E0F78B /* ggml-metal.m */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.objc; name = "ggml-metal.m"; path = "../../ggml-metal.m"; sourceTree = "<group>"; };
549479C62AC9E0F200E0F78B /* ggml-metal.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-metal.h"; path = "../../ggml-metal.h"; sourceTree = "<group>"; };
549479C82AC9E10B00E0F78B /* ggml-metal.metal */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.metal; name = "ggml-metal.metal"; path = "../../ggml-metal.metal"; sourceTree = "<group>"; };
549479CA2AC9E16000E0F78B /* Metal.framework */ = {isa = PBXFileReference; lastKnownFileType = wrapper.framework; name = Metal.framework; path = System/Library/Frameworks/Metal.framework; sourceTree = SDKROOT; };
8A08D20A2AC73B1500FE6CD4 /* bridging-header.h */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.h; path = "bridging-header.h"; sourceTree = "<group>"; };
8A1C83732AC328BD0096AF73 /* llama.swiftui.app */ = {isa = PBXFileReference; explicitFileType = wrapper.application; includeInIndex = 0; path = llama.swiftui.app; sourceTree = BUILT_PRODUCTS_DIR; };
8A1C83762AC328BD0096AF73 /* llama_swiftuiApp.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = llama_swiftuiApp.swift; sourceTree = "<group>"; };
8A1C83782AC328BD0096AF73 /* ContentView.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = ContentView.swift; sourceTree = "<group>"; };
8A1C837A2AC328BE0096AF73 /* Assets.xcassets */ = {isa = PBXFileReference; lastKnownFileType = folder.assetcatalog; path = Assets.xcassets; sourceTree = "<group>"; };
8A1C837D2AC328BE0096AF73 /* Preview Assets.xcassets */ = {isa = PBXFileReference; lastKnownFileType = folder.assetcatalog; path = "Preview Assets.xcassets"; sourceTree = "<group>"; };
8A39BE092AC7601000BFEB40 /* Accelerate.framework */ = {isa = PBXFileReference; lastKnownFileType = wrapper.framework; name = Accelerate.framework; path = System/Library/Frameworks/Accelerate.framework; sourceTree = SDKROOT; };
8A3F841F2AC4C824005E2EE8 /* llama-2-7b-chat.Q2_K.gguf */ = {isa = PBXFileReference; lastKnownFileType = file; path = "llama-2-7b-chat.Q2_K.gguf"; sourceTree = "<group>"; };
8A3F84232AC4C891005E2EE8 /* models */ = {isa = PBXFileReference; lastKnownFileType = folder; name = models; path = llama.swiftui/Resources/models; sourceTree = "<group>"; };
8A907F322AC7134E006146EA /* LibLlama.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = LibLlama.swift; sourceTree = "<group>"; };
8A9F7C4C2AC332EE008AE1EA /* LlamaState.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = LlamaState.swift; sourceTree = "<group>"; };
549479CA2AC9E16000E0F78B /* Metal.framework */ = {isa = PBXFileReference; lastKnownFileType = wrapper.framework; name = Metal.framework; path = System/Library/Frameworks/Metal.framework; sourceTree = SDKROOT; };
7FA3D2B22B2EA2F600543F92 /* DownloadButton.swift */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.swift; path = DownloadButton.swift; sourceTree = "<group>"; };
8A1C83732AC328BD0096AF73 /* llama.swiftui.app */ = {isa = PBXFileReference; explicitFileType = wrapper.application; includeInIndex = 0; path = llama.swiftui.app; sourceTree = BUILT_PRODUCTS_DIR; };
8A1C83762AC328BD0096AF73 /* llama_swiftuiApp.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = llama_swiftuiApp.swift; sourceTree = "<group>"; };
8A1C83782AC328BD0096AF73 /* ContentView.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = ContentView.swift; sourceTree = "<group>"; };
8A1C837A2AC328BE0096AF73 /* Assets.xcassets */ = {isa = PBXFileReference; lastKnownFileType = folder.assetcatalog; path = Assets.xcassets; sourceTree = "<group>"; };
8A39BE092AC7601000BFEB40 /* Accelerate.framework */ = {isa = PBXFileReference; lastKnownFileType = wrapper.framework; name = Accelerate.framework; path = System/Library/Frameworks/Accelerate.framework; sourceTree = SDKROOT; };
8A3F84232AC4C891005E2EE8 /* models */ = {isa = PBXFileReference; lastKnownFileType = folder; name = models; path = llama.swiftui/Resources/models; sourceTree = "<group>"; };
8A907F322AC7134E006146EA /* LibLlama.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = LibLlama.swift; sourceTree = "<group>"; };
8A9F7C4C2AC332EE008AE1EA /* LlamaState.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = LlamaState.swift; sourceTree = "<group>"; };
DF2D2FE72B4A59BE00FCB72D /* llama.cpp */ = {isa = PBXFileReference; lastKnownFileType = wrapper; name = llama.cpp; path = ../..; sourceTree = "<group>"; };
F1FE20E12B465EC900B45541 /* LoadCustomButton.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = LoadCustomButton.swift; sourceTree = "<group>"; };
/* End PBXFileReference section */
/* Begin PBXFrameworksBuildPhase section */
8A1C83702AC328BD0096AF73 /* Frameworks */ = {
isa = PBXFrameworksBuildPhase;
buildActionMask = 2147483647;
files = (
549479CB2AC9E16000E0F78B /* Metal.framework in Frameworks */,
8A39BE0A2AC7601100BFEB40 /* Accelerate.framework in Frameworks */,
);
runOnlyForDeploymentPostprocessing = 0;
};
8A1C83702AC328BD0096AF73 /* Frameworks */ = {
isa = PBXFrameworksBuildPhase;
buildActionMask = 2147483647;
files = (
DF810E132B4A5BA200301144 /* llama in Frameworks */,
549479CB2AC9E16000E0F78B /* Metal.framework in Frameworks */,
8A39BE0A2AC7601100BFEB40 /* Accelerate.framework in Frameworks */,
);
runOnlyForDeploymentPostprocessing = 0;
};
/* End PBXFrameworksBuildPhase section */
/* Begin PBXGroup section */
8A08D1F62AC7383900FE6CD4 /* llama.cpp */ = {
isa = PBXGroup;
children = (
5423760A2B0D9C4B008E6A1C /* ggml-backend.c */,
542376092B0D9C40008E6A1C /* ggml-backend.h */,
542376062B0D9BEA008E6A1C /* ggml-quants.h */,
542376072B0D9BFB008E6A1C /* ggml-quants.c */,
549479C82AC9E10B00E0F78B /* ggml-metal.metal */,
549479C62AC9E0F200E0F78B /* ggml-metal.h */,
549479C52AC9E0F200E0F78B /* ggml-metal.m */,
542EA09B2AC8723900A8AEE9 /* ggml.c */,
542EA09C2AC8723900A8AEE9 /* ggml.h */,
542EA09F2AC8725700A8AEE9 /* ggml-alloc.c */,
542EA09E2AC8725700A8AEE9 /* ggml-alloc.h */,
542EA0A12AC8729100A8AEE9 /* llama.cpp */,
542EA0A22AC8729100A8AEE9 /* llama.h */,
);
name = llama.cpp;
sourceTree = "<group>";
};
8A1C836A2AC328BD0096AF73 = {
isa = PBXGroup;
children = (
8A08D1F62AC7383900FE6CD4 /* llama.cpp */,
8A907F312AC7134E006146EA /* llama.cpp.swift */,
8A3F84232AC4C891005E2EE8 /* models */,
8A1C83752AC328BD0096AF73 /* llama.swiftui */,
8A1C83742AC328BD0096AF73 /* Products */,
8A39BE082AC7601000BFEB40 /* Frameworks */,
);
sourceTree = "<group>";
};
8A1C83742AC328BD0096AF73 /* Products */ = {
isa = PBXGroup;
children = (
8A1C83732AC328BD0096AF73 /* llama.swiftui.app */,
);
name = Products;
sourceTree = "<group>";
};
8A1C83752AC328BD0096AF73 /* llama.swiftui */ = {
isa = PBXGroup;
children = (
8A3F84102AC4BD85005E2EE8 /* Resources */,
8A9F7C4B2AC332DC008AE1EA /* Models */,
8A9F7C4A2AC332BF008AE1EA /* UI */,
8A1C83762AC328BD0096AF73 /* llama_swiftuiApp.swift */,
8A1C837A2AC328BE0096AF73 /* Assets.xcassets */,
8A1C837C2AC328BE0096AF73 /* Preview Content */,
);
path = llama.swiftui;
sourceTree = "<group>";
};
8A1C837C2AC328BE0096AF73 /* Preview Content */ = {
isa = PBXGroup;
children = (
8A1C837D2AC328BE0096AF73 /* Preview Assets.xcassets */,
);
path = "Preview Content";
sourceTree = "<group>";
};
8A39BE082AC7601000BFEB40 /* Frameworks */ = {
isa = PBXGroup;
children = (
549479CA2AC9E16000E0F78B /* Metal.framework */,
8A39BE092AC7601000BFEB40 /* Accelerate.framework */,
);
name = Frameworks;
sourceTree = "<group>";
};
8A3F84102AC4BD85005E2EE8 /* Resources */ = {
isa = PBXGroup;
children = (
8A3F84112AC4BD8C005E2EE8 /* models */,
);
path = Resources;
sourceTree = "<group>";
};
8A3F84112AC4BD8C005E2EE8 /* models */ = {
isa = PBXGroup;
children = (
8A3F841F2AC4C824005E2EE8 /* llama-2-7b-chat.Q2_K.gguf */,
);
path = models;
sourceTree = "<group>";
};
8A907F312AC7134E006146EA /* llama.cpp.swift */ = {
isa = PBXGroup;
children = (
8A08D20A2AC73B1500FE6CD4 /* bridging-header.h */,
8A907F322AC7134E006146EA /* LibLlama.swift */,
);
path = llama.cpp.swift;
sourceTree = "<group>";
};
8A9F7C4A2AC332BF008AE1EA /* UI */ = {
isa = PBXGroup;
children = (
8A1C83782AC328BD0096AF73 /* ContentView.swift */,
);
path = UI;
sourceTree = "<group>";
};
8A9F7C4B2AC332DC008AE1EA /* Models */ = {
isa = PBXGroup;
children = (
8A9F7C4C2AC332EE008AE1EA /* LlamaState.swift */,
);
path = Models;
sourceTree = "<group>";
};
8A1C836A2AC328BD0096AF73 = {
isa = PBXGroup;
children = (
DF2D2FE72B4A59BE00FCB72D /* llama.cpp */,
8A907F312AC7134E006146EA /* llama.cpp.swift */,
8A3F84232AC4C891005E2EE8 /* models */,
8A1C83752AC328BD0096AF73 /* llama.swiftui */,
8A1C83742AC328BD0096AF73 /* Products */,
8A39BE082AC7601000BFEB40 /* Frameworks */,
);
sourceTree = "<group>";
};
8A1C83742AC328BD0096AF73 /* Products */ = {
isa = PBXGroup;
children = (
8A1C83732AC328BD0096AF73 /* llama.swiftui.app */,
);
name = Products;
sourceTree = "<group>";
};
8A1C83752AC328BD0096AF73 /* llama.swiftui */ = {
isa = PBXGroup;
children = (
8A3F84102AC4BD85005E2EE8 /* Resources */,
8A9F7C4B2AC332DC008AE1EA /* Models */,
8A9F7C4A2AC332BF008AE1EA /* UI */,
8A1C83762AC328BD0096AF73 /* llama_swiftuiApp.swift */,
8A1C837A2AC328BE0096AF73 /* Assets.xcassets */,
);
path = llama.swiftui;
sourceTree = "<group>";
};
8A39BE082AC7601000BFEB40 /* Frameworks */ = {
isa = PBXGroup;
children = (
549479CA2AC9E16000E0F78B /* Metal.framework */,
8A39BE092AC7601000BFEB40 /* Accelerate.framework */,
);
name = Frameworks;
sourceTree = "<group>";
};
8A3F84102AC4BD85005E2EE8 /* Resources */ = {
isa = PBXGroup;
children = (
8A3F84112AC4BD8C005E2EE8 /* models */,
);
path = Resources;
sourceTree = "<group>";
};
8A3F84112AC4BD8C005E2EE8 /* models */ = {
isa = PBXGroup;
children = (
);
path = models;
sourceTree = "<group>";
};
8A907F312AC7134E006146EA /* llama.cpp.swift */ = {
isa = PBXGroup;
children = (
8A907F322AC7134E006146EA /* LibLlama.swift */,
);
path = llama.cpp.swift;
sourceTree = "<group>";
};
8A9F7C4A2AC332BF008AE1EA /* UI */ = {
isa = PBXGroup;
children = (
7FA3D2B22B2EA2F600543F92 /* DownloadButton.swift */,
8A1C83782AC328BD0096AF73 /* ContentView.swift */,
F1FE20E12B465EC900B45541 /* LoadCustomButton.swift */,
);
path = UI;
sourceTree = "<group>";
};
8A9F7C4B2AC332DC008AE1EA /* Models */ = {
isa = PBXGroup;
children = (
8A9F7C4C2AC332EE008AE1EA /* LlamaState.swift */,
);
path = Models;
sourceTree = "<group>";
};
/* End PBXGroup section */
/* Begin PBXNativeTarget section */
8A1C83722AC328BD0096AF73 /* llama.swiftui */ = {
isa = PBXNativeTarget;
buildConfigurationList = 8A1C83812AC328BE0096AF73 /* Build configuration list for PBXNativeTarget "llama.swiftui" */;
buildPhases = (
8A1C836F2AC328BD0096AF73 /* Sources */,
8A1C83702AC328BD0096AF73 /* Frameworks */,
8A1C83712AC328BD0096AF73 /* Resources */,
);
buildRules = (
);
dependencies = (
);
name = llama.swiftui;
packageProductDependencies = (
);
productName = llama.swiftui;
productReference = 8A1C83732AC328BD0096AF73 /* llama.swiftui.app */;
productType = "com.apple.product-type.application";
};
8A1C83722AC328BD0096AF73 /* llama.swiftui */ = {
isa = PBXNativeTarget;
buildConfigurationList = 8A1C83812AC328BE0096AF73 /* Build configuration list for PBXNativeTarget "llama.swiftui" */;
buildPhases = (
8A1C836F2AC328BD0096AF73 /* Sources */,
8A1C83702AC328BD0096AF73 /* Frameworks */,
8A1C83712AC328BD0096AF73 /* Resources */,
);
buildRules = (
);
dependencies = (
);
name = llama.swiftui;
packageProductDependencies = (
DF810E122B4A5BA200301144 /* llama */,
);
productName = llama.swiftui;
productReference = 8A1C83732AC328BD0096AF73 /* llama.swiftui.app */;
productType = "com.apple.product-type.application";
};
/* End PBXNativeTarget section */
/* Begin PBXProject section */
8A1C836B2AC328BD0096AF73 /* Project object */ = {
isa = PBXProject;
attributes = {
BuildIndependentTargetsInParallel = 1;
LastSwiftUpdateCheck = 1500;
LastUpgradeCheck = 1500;
TargetAttributes = {
8A1C83722AC328BD0096AF73 = {
CreatedOnToolsVersion = 15.0;
LastSwiftMigration = 1500;
};
};
};
buildConfigurationList = 8A1C836E2AC328BD0096AF73 /* Build configuration list for PBXProject "llama.swiftui" */;
compatibilityVersion = "Xcode 14.0";
developmentRegion = en;
hasScannedForEncodings = 0;
knownRegions = (
en,
Base,
);
mainGroup = 8A1C836A2AC328BD0096AF73;
packageReferences = (
);
productRefGroup = 8A1C83742AC328BD0096AF73 /* Products */;
projectDirPath = "";
projectRoot = "";
targets = (
8A1C83722AC328BD0096AF73 /* llama.swiftui */,
);
};
8A1C836B2AC328BD0096AF73 /* Project object */ = {
isa = PBXProject;
attributes = {
BuildIndependentTargetsInParallel = 1;
LastSwiftUpdateCheck = 1500;
LastUpgradeCheck = 1500;
TargetAttributes = {
8A1C83722AC328BD0096AF73 = {
CreatedOnToolsVersion = 15.0;
LastSwiftMigration = 1500;
};
};
};
buildConfigurationList = 8A1C836E2AC328BD0096AF73 /* Build configuration list for PBXProject "llama.swiftui" */;
compatibilityVersion = "Xcode 14.0";
developmentRegion = en;
hasScannedForEncodings = 0;
knownRegions = (
en,
Base,
);
mainGroup = 8A1C836A2AC328BD0096AF73;
packageReferences = (
);
productRefGroup = 8A1C83742AC328BD0096AF73 /* Products */;
projectDirPath = "";
projectRoot = "";
targets = (
8A1C83722AC328BD0096AF73 /* llama.swiftui */,
);
};
/* End PBXProject section */
/* Begin PBXResourcesBuildPhase section */
8A1C83712AC328BD0096AF73 /* Resources */ = {
isa = PBXResourcesBuildPhase;
buildActionMask = 2147483647;
files = (
542378792ACE3F3500834A7B /* ggml-metal.metal in Resources */,
8A3F84242AC4C891005E2EE8 /* models in Resources */,
8A1C837E2AC328BE0096AF73 /* Preview Assets.xcassets in Resources */,
8A1C837B2AC328BE0096AF73 /* Assets.xcassets in Resources */,
);
runOnlyForDeploymentPostprocessing = 0;
};
8A1C83712AC328BD0096AF73 /* Resources */ = {
isa = PBXResourcesBuildPhase;
buildActionMask = 2147483647;
files = (
8A3F84242AC4C891005E2EE8 /* models in Resources */,
8A1C837B2AC328BE0096AF73 /* Assets.xcassets in Resources */,
);
runOnlyForDeploymentPostprocessing = 0;
};
/* End PBXResourcesBuildPhase section */
/* Begin PBXSourcesBuildPhase section */
8A1C836F2AC328BD0096AF73 /* Sources */ = {
isa = PBXSourcesBuildPhase;
buildActionMask = 2147483647;
files = (
542376082B0D9BFB008E6A1C /* ggml-quants.c in Sources */,
549479CD2AC9E42A00E0F78B /* ggml-metal.m in Sources */,
542EA09D2AC8723900A8AEE9 /* ggml.c in Sources */,
8A907F332AC7138A006146EA /* LibLlama.swift in Sources */,
542EA0A32AC8729100A8AEE9 /* llama.cpp in Sources */,
8A9F7C4D2AC332EE008AE1EA /* LlamaState.swift in Sources */,
8A1C83792AC328BD0096AF73 /* ContentView.swift in Sources */,
8A1C83772AC328BD0096AF73 /* llama_swiftuiApp.swift in Sources */,
542EA0A02AC8725700A8AEE9 /* ggml-alloc.c in Sources */,
5423760B2B0D9C4B008E6A1C /* ggml-backend.c in Sources */,
);
runOnlyForDeploymentPostprocessing = 0;
};
8A1C836F2AC328BD0096AF73 /* Sources */ = {
isa = PBXSourcesBuildPhase;
buildActionMask = 2147483647;
files = (
F1FE20E22B465ECA00B45541 /* LoadCustomButton.swift in Sources */,
8A907F332AC7138A006146EA /* LibLlama.swift in Sources */,
8A9F7C4D2AC332EE008AE1EA /* LlamaState.swift in Sources */,
8A1C83792AC328BD0096AF73 /* ContentView.swift in Sources */,
8A1C83772AC328BD0096AF73 /* llama_swiftuiApp.swift in Sources */,
7FA3D2B32B2EA2F600543F92 /* DownloadButton.swift in Sources */,
);
runOnlyForDeploymentPostprocessing = 0;
};
/* End PBXSourcesBuildPhase section */
/* Begin XCBuildConfiguration section */
8A1C837F2AC328BE0096AF73 /* Debug */ = {
isa = XCBuildConfiguration;
buildSettings = {
ALWAYS_SEARCH_USER_PATHS = NO;
ASSETCATALOG_COMPILER_GENERATE_SWIFT_ASSET_SYMBOL_EXTENSIONS = YES;
CLANG_ANALYZER_NONNULL = YES;
CLANG_ANALYZER_NUMBER_OBJECT_CONVERSION = YES_AGGRESSIVE;
CLANG_CXX_LANGUAGE_STANDARD = "gnu++20";
CLANG_ENABLE_MODULES = YES;
CLANG_ENABLE_OBJC_ARC = YES;
CLANG_ENABLE_OBJC_WEAK = YES;
CLANG_WARN_BLOCK_CAPTURE_AUTORELEASING = YES;
CLANG_WARN_BOOL_CONVERSION = YES;
CLANG_WARN_COMMA = YES;
CLANG_WARN_CONSTANT_CONVERSION = YES;
CLANG_WARN_DEPRECATED_OBJC_IMPLEMENTATIONS = YES;
CLANG_WARN_DIRECT_OBJC_ISA_USAGE = YES_ERROR;
CLANG_WARN_DOCUMENTATION_COMMENTS = YES;
CLANG_WARN_EMPTY_BODY = YES;
CLANG_WARN_ENUM_CONVERSION = YES;
CLANG_WARN_INFINITE_RECURSION = YES;
CLANG_WARN_INT_CONVERSION = YES;
CLANG_WARN_NON_LITERAL_NULL_CONVERSION = YES;
CLANG_WARN_OBJC_IMPLICIT_RETAIN_SELF = YES;
CLANG_WARN_OBJC_LITERAL_CONVERSION = YES;
CLANG_WARN_OBJC_ROOT_CLASS = YES_ERROR;
CLANG_WARN_QUOTED_INCLUDE_IN_FRAMEWORK_HEADER = YES;
CLANG_WARN_RANGE_LOOP_ANALYSIS = YES;
CLANG_WARN_STRICT_PROTOTYPES = YES;
CLANG_WARN_SUSPICIOUS_MOVE = YES;
CLANG_WARN_UNGUARDED_AVAILABILITY = YES_AGGRESSIVE;
CLANG_WARN_UNREACHABLE_CODE = YES;
CLANG_WARN__DUPLICATE_METHOD_MATCH = YES;
COPY_PHASE_STRIP = NO;
DEBUG_INFORMATION_FORMAT = dwarf;
ENABLE_STRICT_OBJC_MSGSEND = YES;
ENABLE_TESTABILITY = YES;
ENABLE_USER_SCRIPT_SANDBOXING = YES;
GCC_C_LANGUAGE_STANDARD = gnu17;
GCC_DYNAMIC_NO_PIC = NO;
GCC_NO_COMMON_BLOCKS = YES;
GCC_OPTIMIZATION_LEVEL = 0;
GCC_PREPROCESSOR_DEFINITIONS = (
"DEBUG=1",
"$(inherited)",
);
GCC_WARN_64_TO_32_BIT_CONVERSION = YES;
GCC_WARN_ABOUT_RETURN_TYPE = YES_ERROR;
GCC_WARN_UNDECLARED_SELECTOR = YES;
GCC_WARN_UNINITIALIZED_AUTOS = YES_AGGRESSIVE;
GCC_WARN_UNUSED_FUNCTION = YES;
GCC_WARN_UNUSED_VARIABLE = YES;
IPHONEOS_DEPLOYMENT_TARGET = 17.0;
LOCALIZATION_PREFERS_STRING_CATALOGS = YES;
MTL_ENABLE_DEBUG_INFO = INCLUDE_SOURCE;
MTL_FAST_MATH = YES;
ONLY_ACTIVE_ARCH = YES;
SDKROOT = iphoneos;
SWIFT_ACTIVE_COMPILATION_CONDITIONS = "DEBUG $(inherited)";
SWIFT_OPTIMIZATION_LEVEL = "-Onone";
};
name = Debug;
};
8A1C83802AC328BE0096AF73 /* Release */ = {
isa = XCBuildConfiguration;
buildSettings = {
ALWAYS_SEARCH_USER_PATHS = NO;
ASSETCATALOG_COMPILER_GENERATE_SWIFT_ASSET_SYMBOL_EXTENSIONS = YES;
CLANG_ANALYZER_NONNULL = YES;
CLANG_ANALYZER_NUMBER_OBJECT_CONVERSION = YES_AGGRESSIVE;
CLANG_CXX_LANGUAGE_STANDARD = "gnu++20";
CLANG_ENABLE_MODULES = YES;
CLANG_ENABLE_OBJC_ARC = YES;
CLANG_ENABLE_OBJC_WEAK = YES;
CLANG_WARN_BLOCK_CAPTURE_AUTORELEASING = YES;
CLANG_WARN_BOOL_CONVERSION = YES;
CLANG_WARN_COMMA = YES;
CLANG_WARN_CONSTANT_CONVERSION = YES;
CLANG_WARN_DEPRECATED_OBJC_IMPLEMENTATIONS = YES;
CLANG_WARN_DIRECT_OBJC_ISA_USAGE = YES_ERROR;
CLANG_WARN_DOCUMENTATION_COMMENTS = YES;
CLANG_WARN_EMPTY_BODY = YES;
CLANG_WARN_ENUM_CONVERSION = YES;
CLANG_WARN_INFINITE_RECURSION = YES;
CLANG_WARN_INT_CONVERSION = YES;
CLANG_WARN_NON_LITERAL_NULL_CONVERSION = YES;
CLANG_WARN_OBJC_IMPLICIT_RETAIN_SELF = YES;
CLANG_WARN_OBJC_LITERAL_CONVERSION = YES;
CLANG_WARN_OBJC_ROOT_CLASS = YES_ERROR;
CLANG_WARN_QUOTED_INCLUDE_IN_FRAMEWORK_HEADER = YES;
CLANG_WARN_RANGE_LOOP_ANALYSIS = YES;
CLANG_WARN_STRICT_PROTOTYPES = YES;
CLANG_WARN_SUSPICIOUS_MOVE = YES;
CLANG_WARN_UNGUARDED_AVAILABILITY = YES_AGGRESSIVE;
CLANG_WARN_UNREACHABLE_CODE = YES;
CLANG_WARN__DUPLICATE_METHOD_MATCH = YES;
COPY_PHASE_STRIP = NO;
DEBUG_INFORMATION_FORMAT = "dwarf-with-dsym";
ENABLE_NS_ASSERTIONS = NO;
ENABLE_STRICT_OBJC_MSGSEND = YES;
ENABLE_USER_SCRIPT_SANDBOXING = YES;
GCC_C_LANGUAGE_STANDARD = gnu17;
GCC_NO_COMMON_BLOCKS = YES;
GCC_WARN_64_TO_32_BIT_CONVERSION = YES;
GCC_WARN_ABOUT_RETURN_TYPE = YES_ERROR;
GCC_WARN_UNDECLARED_SELECTOR = YES;
GCC_WARN_UNINITIALIZED_AUTOS = YES_AGGRESSIVE;
GCC_WARN_UNUSED_FUNCTION = YES;
GCC_WARN_UNUSED_VARIABLE = YES;
IPHONEOS_DEPLOYMENT_TARGET = 17.0;
LOCALIZATION_PREFERS_STRING_CATALOGS = YES;
MTL_ENABLE_DEBUG_INFO = NO;
MTL_FAST_MATH = YES;
SDKROOT = iphoneos;
SWIFT_COMPILATION_MODE = wholemodule;
VALIDATE_PRODUCT = YES;
};
name = Release;
};
8A1C83822AC328BE0096AF73 /* Debug */ = {
isa = XCBuildConfiguration;
buildSettings = {
ASSETCATALOG_COMPILER_APPICON_NAME = AppIcon;
ASSETCATALOG_COMPILER_GLOBAL_ACCENT_COLOR_NAME = AccentColor;
CLANG_ENABLE_MODULES = YES;
CODE_SIGN_STYLE = Automatic;
CURRENT_PROJECT_VERSION = 1;
DEVELOPMENT_ASSET_PATHS = "\"llama.swiftui/Preview Content\"";
DEVELOPMENT_TEAM = STLSG3FG8Q;
ENABLE_PREVIEWS = YES;
GENERATE_INFOPLIST_FILE = YES;
INFOPLIST_KEY_UIApplicationSceneManifest_Generation = YES;
INFOPLIST_KEY_UIApplicationSupportsIndirectInputEvents = YES;
INFOPLIST_KEY_UILaunchScreen_Generation = YES;
INFOPLIST_KEY_UISupportedInterfaceOrientations_iPad = "UIInterfaceOrientationPortrait UIInterfaceOrientationPortraitUpsideDown UIInterfaceOrientationLandscapeLeft UIInterfaceOrientationLandscapeRight";
INFOPLIST_KEY_UISupportedInterfaceOrientations_iPhone = "UIInterfaceOrientationPortrait UIInterfaceOrientationLandscapeLeft UIInterfaceOrientationLandscapeRight";
IPHONEOS_DEPLOYMENT_TARGET = 16.0;
LD_RUNPATH_SEARCH_PATHS = (
"$(inherited)",
"@executable_path/Frameworks",
);
MARKETING_VERSION = 1.0;
PRODUCT_BUNDLE_IDENTIFIER = "com.bachittle.llama-swift";
PRODUCT_NAME = "$(TARGET_NAME)";
SWIFT_EMIT_LOC_STRINGS = YES;
SWIFT_OBJC_BRIDGING_HEADER = "llama.cpp.swift/bridging-header.h";
SWIFT_OPTIMIZATION_LEVEL = "-Onone";
SWIFT_VERSION = 5.0;
TARGETED_DEVICE_FAMILY = "1,2";
};
name = Debug;
};
8A1C83832AC328BE0096AF73 /* Release */ = {
isa = XCBuildConfiguration;
buildSettings = {
ASSETCATALOG_COMPILER_APPICON_NAME = AppIcon;
ASSETCATALOG_COMPILER_GLOBAL_ACCENT_COLOR_NAME = AccentColor;
CLANG_ENABLE_MODULES = YES;
CODE_SIGN_STYLE = Automatic;
CURRENT_PROJECT_VERSION = 1;
DEVELOPMENT_ASSET_PATHS = "\"llama.swiftui/Preview Content\"";
DEVELOPMENT_TEAM = STLSG3FG8Q;
ENABLE_PREVIEWS = YES;
GENERATE_INFOPLIST_FILE = YES;
INFOPLIST_KEY_UIApplicationSceneManifest_Generation = YES;
INFOPLIST_KEY_UIApplicationSupportsIndirectInputEvents = YES;
INFOPLIST_KEY_UILaunchScreen_Generation = YES;
INFOPLIST_KEY_UISupportedInterfaceOrientations_iPad = "UIInterfaceOrientationPortrait UIInterfaceOrientationPortraitUpsideDown UIInterfaceOrientationLandscapeLeft UIInterfaceOrientationLandscapeRight";
INFOPLIST_KEY_UISupportedInterfaceOrientations_iPhone = "UIInterfaceOrientationPortrait UIInterfaceOrientationLandscapeLeft UIInterfaceOrientationLandscapeRight";
IPHONEOS_DEPLOYMENT_TARGET = 16.0;
LD_RUNPATH_SEARCH_PATHS = (
"$(inherited)",
"@executable_path/Frameworks",
);
MARKETING_VERSION = 1.0;
PRODUCT_BUNDLE_IDENTIFIER = "com.bachittle.llama-swift";
PRODUCT_NAME = "$(TARGET_NAME)";
SWIFT_EMIT_LOC_STRINGS = YES;
SWIFT_OBJC_BRIDGING_HEADER = "llama.cpp.swift/bridging-header.h";
SWIFT_VERSION = 5.0;
TARGETED_DEVICE_FAMILY = "1,2";
};
name = Release;
};
8A1C837F2AC328BE0096AF73 /* Debug */ = {
isa = XCBuildConfiguration;
buildSettings = {
ALWAYS_SEARCH_USER_PATHS = NO;
ASSETCATALOG_COMPILER_GENERATE_SWIFT_ASSET_SYMBOL_EXTENSIONS = YES;
CLANG_ANALYZER_NONNULL = YES;
CLANG_ANALYZER_NUMBER_OBJECT_CONVERSION = YES_AGGRESSIVE;
CLANG_CXX_LANGUAGE_STANDARD = "gnu++20";
CLANG_ENABLE_MODULES = YES;
CLANG_ENABLE_OBJC_ARC = YES;
CLANG_ENABLE_OBJC_WEAK = YES;
CLANG_WARN_BLOCK_CAPTURE_AUTORELEASING = YES;
CLANG_WARN_BOOL_CONVERSION = YES;
CLANG_WARN_COMMA = YES;
CLANG_WARN_CONSTANT_CONVERSION = YES;
CLANG_WARN_DEPRECATED_OBJC_IMPLEMENTATIONS = YES;
CLANG_WARN_DIRECT_OBJC_ISA_USAGE = YES_ERROR;
CLANG_WARN_DOCUMENTATION_COMMENTS = YES;
CLANG_WARN_EMPTY_BODY = YES;
CLANG_WARN_ENUM_CONVERSION = YES;
CLANG_WARN_INFINITE_RECURSION = YES;
CLANG_WARN_INT_CONVERSION = YES;
CLANG_WARN_NON_LITERAL_NULL_CONVERSION = YES;
CLANG_WARN_OBJC_IMPLICIT_RETAIN_SELF = YES;
CLANG_WARN_OBJC_LITERAL_CONVERSION = YES;
CLANG_WARN_OBJC_ROOT_CLASS = YES_ERROR;
CLANG_WARN_QUOTED_INCLUDE_IN_FRAMEWORK_HEADER = YES;
CLANG_WARN_RANGE_LOOP_ANALYSIS = YES;
CLANG_WARN_STRICT_PROTOTYPES = YES;
CLANG_WARN_SUSPICIOUS_MOVE = YES;
CLANG_WARN_UNGUARDED_AVAILABILITY = YES_AGGRESSIVE;
CLANG_WARN_UNREACHABLE_CODE = YES;
CLANG_WARN__DUPLICATE_METHOD_MATCH = YES;
COPY_PHASE_STRIP = NO;
DEBUG_INFORMATION_FORMAT = dwarf;
ENABLE_STRICT_OBJC_MSGSEND = YES;
ENABLE_TESTABILITY = YES;
ENABLE_USER_SCRIPT_SANDBOXING = YES;
GCC_C_LANGUAGE_STANDARD = gnu17;
GCC_DYNAMIC_NO_PIC = NO;
GCC_NO_COMMON_BLOCKS = YES;
GCC_OPTIMIZATION_LEVEL = 0;
GCC_PREPROCESSOR_DEFINITIONS = (
"DEBUG=1",
"$(inherited)",
);
GCC_WARN_64_TO_32_BIT_CONVERSION = YES;
GCC_WARN_ABOUT_RETURN_TYPE = YES_ERROR;
GCC_WARN_UNDECLARED_SELECTOR = YES;
GCC_WARN_UNINITIALIZED_AUTOS = YES_AGGRESSIVE;
GCC_WARN_UNUSED_FUNCTION = YES;
GCC_WARN_UNUSED_VARIABLE = YES;
IPHONEOS_DEPLOYMENT_TARGET = 17.0;
LOCALIZATION_PREFERS_STRING_CATALOGS = YES;
MTL_ENABLE_DEBUG_INFO = INCLUDE_SOURCE;
MTL_FAST_MATH = YES;
ONLY_ACTIVE_ARCH = YES;
SDKROOT = iphoneos;
SWIFT_ACTIVE_COMPILATION_CONDITIONS = "DEBUG $(inherited)";
SWIFT_OPTIMIZATION_LEVEL = "-Onone";
};
name = Debug;
};
8A1C83802AC328BE0096AF73 /* Release */ = {
isa = XCBuildConfiguration;
buildSettings = {
ALWAYS_SEARCH_USER_PATHS = NO;
ASSETCATALOG_COMPILER_GENERATE_SWIFT_ASSET_SYMBOL_EXTENSIONS = YES;
CLANG_ANALYZER_NONNULL = YES;
CLANG_ANALYZER_NUMBER_OBJECT_CONVERSION = YES_AGGRESSIVE;
CLANG_CXX_LANGUAGE_STANDARD = "gnu++20";
CLANG_ENABLE_MODULES = YES;
CLANG_ENABLE_OBJC_ARC = YES;
CLANG_ENABLE_OBJC_WEAK = YES;
CLANG_WARN_BLOCK_CAPTURE_AUTORELEASING = YES;
CLANG_WARN_BOOL_CONVERSION = YES;
CLANG_WARN_COMMA = YES;
CLANG_WARN_CONSTANT_CONVERSION = YES;
CLANG_WARN_DEPRECATED_OBJC_IMPLEMENTATIONS = YES;
CLANG_WARN_DIRECT_OBJC_ISA_USAGE = YES_ERROR;
CLANG_WARN_DOCUMENTATION_COMMENTS = YES;
CLANG_WARN_EMPTY_BODY = YES;
CLANG_WARN_ENUM_CONVERSION = YES;
CLANG_WARN_INFINITE_RECURSION = YES;
CLANG_WARN_INT_CONVERSION = YES;
CLANG_WARN_NON_LITERAL_NULL_CONVERSION = YES;
CLANG_WARN_OBJC_IMPLICIT_RETAIN_SELF = YES;
CLANG_WARN_OBJC_LITERAL_CONVERSION = YES;
CLANG_WARN_OBJC_ROOT_CLASS = YES_ERROR;
CLANG_WARN_QUOTED_INCLUDE_IN_FRAMEWORK_HEADER = YES;
CLANG_WARN_RANGE_LOOP_ANALYSIS = YES;
CLANG_WARN_STRICT_PROTOTYPES = YES;
CLANG_WARN_SUSPICIOUS_MOVE = YES;
CLANG_WARN_UNGUARDED_AVAILABILITY = YES_AGGRESSIVE;
CLANG_WARN_UNREACHABLE_CODE = YES;
CLANG_WARN__DUPLICATE_METHOD_MATCH = YES;
COPY_PHASE_STRIP = NO;
DEBUG_INFORMATION_FORMAT = "dwarf-with-dsym";
ENABLE_NS_ASSERTIONS = NO;
ENABLE_STRICT_OBJC_MSGSEND = YES;
ENABLE_USER_SCRIPT_SANDBOXING = YES;
GCC_C_LANGUAGE_STANDARD = gnu17;
GCC_NO_COMMON_BLOCKS = YES;
GCC_WARN_64_TO_32_BIT_CONVERSION = YES;
GCC_WARN_ABOUT_RETURN_TYPE = YES_ERROR;
GCC_WARN_UNDECLARED_SELECTOR = YES;
GCC_WARN_UNINITIALIZED_AUTOS = YES_AGGRESSIVE;
GCC_WARN_UNUSED_FUNCTION = YES;
GCC_WARN_UNUSED_VARIABLE = YES;
IPHONEOS_DEPLOYMENT_TARGET = 17.0;
LOCALIZATION_PREFERS_STRING_CATALOGS = YES;
MTL_ENABLE_DEBUG_INFO = NO;
MTL_FAST_MATH = YES;
SDKROOT = iphoneos;
SWIFT_COMPILATION_MODE = wholemodule;
VALIDATE_PRODUCT = YES;
};
name = Release;
};
8A1C83822AC328BE0096AF73 /* Debug */ = {
isa = XCBuildConfiguration;
buildSettings = {
ASSETCATALOG_COMPILER_APPICON_NAME = AppIcon;
CLANG_ENABLE_MODULES = YES;
CODE_SIGN_STYLE = Automatic;
CURRENT_PROJECT_VERSION = 1;
DEVELOPMENT_TEAM = STLSG3FG8Q;
ENABLE_PREVIEWS = YES;
GENERATE_INFOPLIST_FILE = YES;
INFOPLIST_KEY_UIApplicationSceneManifest_Generation = YES;
INFOPLIST_KEY_UIApplicationSupportsIndirectInputEvents = YES;
INFOPLIST_KEY_UILaunchScreen_Generation = YES;
INFOPLIST_KEY_UISupportedInterfaceOrientations_iPad = "UIInterfaceOrientationPortrait UIInterfaceOrientationPortraitUpsideDown UIInterfaceOrientationLandscapeLeft UIInterfaceOrientationLandscapeRight";
INFOPLIST_KEY_UISupportedInterfaceOrientations_iPhone = "UIInterfaceOrientationPortrait UIInterfaceOrientationLandscapeLeft UIInterfaceOrientationLandscapeRight";
IPHONEOS_DEPLOYMENT_TARGET = 16.0;
LD_RUNPATH_SEARCH_PATHS = (
"$(inherited)",
"@executable_path/Frameworks",
);
MARKETING_VERSION = 1.0;
PRODUCT_BUNDLE_IDENTIFIER = "com.bachittle.llama-swift";
PRODUCT_NAME = "$(TARGET_NAME)";
SUPPORTED_PLATFORMS = "iphoneos iphonesimulator xros xrsimulator";
SUPPORTS_XR_DESIGNED_FOR_IPHONE_IPAD = NO;
SWIFT_EMIT_LOC_STRINGS = YES;
SWIFT_OPTIMIZATION_LEVEL = "-Onone";
SWIFT_VERSION = 5.0;
TARGETED_DEVICE_FAMILY = "1,2,7";
};
name = Debug;
};
8A1C83832AC328BE0096AF73 /* Release */ = {
isa = XCBuildConfiguration;
buildSettings = {
ASSETCATALOG_COMPILER_APPICON_NAME = AppIcon;
CLANG_ENABLE_MODULES = YES;
CODE_SIGN_STYLE = Automatic;
CURRENT_PROJECT_VERSION = 1;
DEVELOPMENT_TEAM = STLSG3FG8Q;
ENABLE_PREVIEWS = YES;
GENERATE_INFOPLIST_FILE = YES;
INFOPLIST_KEY_UIApplicationSceneManifest_Generation = YES;
INFOPLIST_KEY_UIApplicationSupportsIndirectInputEvents = YES;
INFOPLIST_KEY_UILaunchScreen_Generation = YES;
INFOPLIST_KEY_UISupportedInterfaceOrientations_iPad = "UIInterfaceOrientationPortrait UIInterfaceOrientationPortraitUpsideDown UIInterfaceOrientationLandscapeLeft UIInterfaceOrientationLandscapeRight";
INFOPLIST_KEY_UISupportedInterfaceOrientations_iPhone = "UIInterfaceOrientationPortrait UIInterfaceOrientationLandscapeLeft UIInterfaceOrientationLandscapeRight";
IPHONEOS_DEPLOYMENT_TARGET = 16.0;
LD_RUNPATH_SEARCH_PATHS = (
"$(inherited)",
"@executable_path/Frameworks",
);
MARKETING_VERSION = 1.0;
PRODUCT_BUNDLE_IDENTIFIER = "com.bachittle.llama-swift";
PRODUCT_NAME = "$(TARGET_NAME)";
SUPPORTED_PLATFORMS = "iphoneos iphonesimulator xros xrsimulator";
SUPPORTS_XR_DESIGNED_FOR_IPHONE_IPAD = NO;
SWIFT_EMIT_LOC_STRINGS = YES;
SWIFT_VERSION = 5.0;
TARGETED_DEVICE_FAMILY = "1,2,7";
};
name = Release;
};
/* End XCBuildConfiguration section */
/* Begin XCConfigurationList section */
8A1C836E2AC328BD0096AF73 /* Build configuration list for PBXProject "llama.swiftui" */ = {
isa = XCConfigurationList;
buildConfigurations = (
8A1C837F2AC328BE0096AF73 /* Debug */,
8A1C83802AC328BE0096AF73 /* Release */,
);
defaultConfigurationIsVisible = 0;
defaultConfigurationName = Release;
};
8A1C83812AC328BE0096AF73 /* Build configuration list for PBXNativeTarget "llama.swiftui" */ = {
isa = XCConfigurationList;
buildConfigurations = (
8A1C83822AC328BE0096AF73 /* Debug */,
8A1C83832AC328BE0096AF73 /* Release */,
);
defaultConfigurationIsVisible = 0;
defaultConfigurationName = Release;
};
8A1C836E2AC328BD0096AF73 /* Build configuration list for PBXProject "llama.swiftui" */ = {
isa = XCConfigurationList;
buildConfigurations = (
8A1C837F2AC328BE0096AF73 /* Debug */,
8A1C83802AC328BE0096AF73 /* Release */,
);
defaultConfigurationIsVisible = 0;
defaultConfigurationName = Release;
};
8A1C83812AC328BE0096AF73 /* Build configuration list for PBXNativeTarget "llama.swiftui" */ = {
isa = XCConfigurationList;
buildConfigurations = (
8A1C83822AC328BE0096AF73 /* Debug */,
8A1C83832AC328BE0096AF73 /* Release */,
);
defaultConfigurationIsVisible = 0;
defaultConfigurationName = Release;
};
/* End XCConfigurationList section */
};
rootObject = 8A1C836B2AC328BD0096AF73 /* Project object */;
/* Begin XCSwiftPackageProductDependency section */
DF810E122B4A5BA200301144 /* llama */ = {
isa = XCSwiftPackageProductDependency;
productName = llama;
};
/* End XCSwiftPackageProductDependency section */
};
rootObject = 8A1C836B2AC328BD0096AF73 /* Project object */;
}

View File

@@ -1,11 +0,0 @@
{
"colors" : [
{
"idiom" : "universal"
}
],
"info" : {
"author" : "xcode",
"version" : 1
}
}

View File

@@ -3,27 +3,30 @@ import Foundation
@MainActor
class LlamaState: ObservableObject {
@Published var messageLog = ""
@Published var cacheCleared = false
let NS_PER_S = 1_000_000_000.0
private var llamaContext: LlamaContext?
private var modelUrl: URL? {
Bundle.main.url(forResource: "q8_0", withExtension: "gguf", subdirectory: "models")
private var defaultModelUrl: URL? {
Bundle.main.url(forResource: "ggml-model", withExtension: "gguf", subdirectory: "models")
// Bundle.main.url(forResource: "llama-2-7b-chat", withExtension: "Q2_K.gguf", subdirectory: "models")
}
init() {
do {
try loadModel()
try loadModel(modelUrl: defaultModelUrl)
} catch {
messageLog += "Error!\n"
}
}
private func loadModel() throws {
messageLog += "Loading model...\n"
func loadModel(modelUrl: URL?) throws {
if let modelUrl {
llamaContext = try LlamaContext.createContext(path: modelUrl.path())
messageLog += "Loading model...\n"
llamaContext = try LlamaContext.create_context(path: modelUrl.path())
messageLog += "Loaded model \(modelUrl.lastPathComponent)\n"
} else {
messageLog += "Could not locate model\n"
messageLog += "Load a model from the list below\n"
}
}
@@ -31,15 +34,67 @@ class LlamaState: ObservableObject {
guard let llamaContext else {
return
}
messageLog += "Attempting to complete text...\n"
let t_start = DispatchTime.now().uptimeNanoseconds
await llamaContext.completion_init(text: text)
let t_heat_end = DispatchTime.now().uptimeNanoseconds
let t_heat = Double(t_heat_end - t_start) / NS_PER_S
messageLog += "\(text)"
while await llamaContext.n_cur <= llamaContext.n_len {
while await llamaContext.n_cur < llamaContext.n_len {
let result = await llamaContext.completion_loop()
messageLog += "\(result)"
}
let t_end = DispatchTime.now().uptimeNanoseconds
let t_generation = Double(t_end - t_heat_end) / NS_PER_S
let tokens_per_second = Double(await llamaContext.n_len) / t_generation
await llamaContext.clear()
messageLog += "\n\ndone\n"
messageLog += """
\n
Done
Heat up took \(t_heat)s
Generated \(tokens_per_second) t/s\n
"""
}
func bench() async {
guard let llamaContext else {
return
}
messageLog += "\n"
messageLog += "Running benchmark...\n"
messageLog += "Model info: "
messageLog += await llamaContext.model_info() + "\n"
let t_start = DispatchTime.now().uptimeNanoseconds
let _ = await llamaContext.bench(pp: 8, tg: 4, pl: 1) // heat up
let t_end = DispatchTime.now().uptimeNanoseconds
let t_heat = Double(t_end - t_start) / NS_PER_S
messageLog += "Heat up time: \(t_heat) seconds, please wait...\n"
// if more than 5 seconds, then we're probably running on a slow device
if t_heat > 5.0 {
messageLog += "Heat up time is too long, aborting benchmark\n"
return
}
let result = await llamaContext.bench(pp: 512, tg: 128, pl: 1, nr: 3)
messageLog += "\(result)"
messageLog += "\n"
}
func clear() async {
guard let llamaContext else {
return
}
await llamaContext.clear()
messageLog = ""
}
}

View File

@@ -1,6 +0,0 @@
{
"info" : {
"author" : "xcode",
"version" : 1
}
}

View File

@@ -5,25 +5,110 @@ struct ContentView: View {
@State private var multiLineText = ""
private static func cleanupModelCaches() {
// Delete all models (*.gguf)
let fileManager = FileManager.default
let documentsUrl = FileManager.default.urls(for: .documentDirectory, in: .userDomainMask)[0]
do {
let fileURLs = try fileManager.contentsOfDirectory(at: documentsUrl, includingPropertiesForKeys: nil)
for fileURL in fileURLs {
if fileURL.pathExtension == "gguf" {
try fileManager.removeItem(at: fileURL)
}
}
} catch {
print("Error while enumerating files \(documentsUrl.path): \(error.localizedDescription)")
}
}
var body: some View {
VStack {
ScrollView(.vertical) {
ScrollView(.vertical, showsIndicators: true) {
Text(llamaState.messageLog)
.font(.system(size: 12))
.frame(maxWidth: .infinity, alignment: .leading)
.padding()
.onTapGesture {
UIApplication.shared.sendAction(#selector(UIResponder.resignFirstResponder), to: nil, from: nil, for: nil)
}
}
TextEditor(text: $multiLineText)
.frame(height: 200)
.frame(height: 80)
.padding()
.border(Color.gray, width: 0.5)
Button(action: {
sendText()
}) {
Text("Send")
.padding()
.background(Color.blue)
.foregroundColor(.white)
.cornerRadius(8)
HStack {
Button("Send") {
sendText()
}
Button("Bench") {
bench()
}
Button("Clear") {
clear()
}
Button("Copy") {
UIPasteboard.general.string = llamaState.messageLog
}
}.buttonStyle(.bordered)
VStack(alignment: .leading) {
DownloadButton(
llamaState: llamaState,
modelName: "TinyLlama-1.1B (Q4_0, 0.6 GiB)",
modelUrl: "https://huggingface.co/TheBloke/TinyLlama-1.1B-1T-OpenOrca-GGUF/resolve/main/tinyllama-1.1b-1t-openorca.Q4_0.gguf?download=true",
filename: "tinyllama-1.1b-1t-openorca.Q4_0.gguf"
)
DownloadButton(
llamaState: llamaState,
modelName: "TinyLlama-1.1B (Q8_0, 1.1 GiB)",
modelUrl: "https://huggingface.co/TheBloke/TinyLlama-1.1B-1T-OpenOrca-GGUF/resolve/main/tinyllama-1.1b-1t-openorca.Q8_0.gguf?download=true",
filename: "tinyllama-1.1b-1t-openorca.Q8_0.gguf"
)
DownloadButton(
llamaState: llamaState,
modelName: "TinyLlama-1.1B (F16, 2.2 GiB)",
modelUrl: "https://huggingface.co/ggml-org/models/resolve/main/tinyllama-1.1b/ggml-model-f16.gguf?download=true",
filename: "tinyllama-1.1b-f16.gguf"
)
DownloadButton(
llamaState: llamaState,
modelName: "Phi-2.7B (Q4_0, 1.6 GiB)",
modelUrl: "https://huggingface.co/ggml-org/models/resolve/main/phi-2/ggml-model-q4_0.gguf?download=true",
filename: "phi-2-q4_0.gguf"
)
DownloadButton(
llamaState: llamaState,
modelName: "Phi-2.7B (Q8_0, 2.8 GiB)",
modelUrl: "https://huggingface.co/ggml-org/models/resolve/main/phi-2/ggml-model-q8_0.gguf?download=true",
filename: "phi-2-q8_0.gguf"
)
DownloadButton(
llamaState: llamaState,
modelName: "Mistral-7B-v0.1 (Q4_0, 3.8 GiB)",
modelUrl: "https://huggingface.co/TheBloke/Mistral-7B-v0.1-GGUF/resolve/main/mistral-7b-v0.1.Q4_0.gguf?download=true",
filename: "mistral-7b-v0.1.Q4_0.gguf"
)
Button("Clear downloaded models") {
ContentView.cleanupModelCaches()
llamaState.cacheCleared = true
}
LoadCustomButton(llamaState: llamaState)
}
.padding(.top, 4)
.font(.system(size: 12))
.frame(maxWidth: .infinity, alignment: .leading)
}
.padding()
}
@@ -34,9 +119,20 @@ struct ContentView: View {
multiLineText = ""
}
}
func bench() {
Task {
await llamaState.bench()
}
}
func clear() {
Task {
await llamaState.clear()
}
}
}
/*
#Preview {
ContentView()
}
*/
//#Preview {
// ContentView()
//}

View File

@@ -0,0 +1,122 @@
import SwiftUI
struct DownloadButton: View {
@ObservedObject private var llamaState: LlamaState
private var modelName: String
private var modelUrl: String
private var filename: String
@State private var status: String
@State private var downloadTask: URLSessionDownloadTask?
@State private var progress = 0.0
@State private var observation: NSKeyValueObservation?
private static func getFileURL(filename: String) -> URL {
FileManager.default.urls(for: .documentDirectory, in: .userDomainMask)[0].appendingPathComponent(filename)
}
private func checkFileExistenceAndUpdateStatus() {
}
init(llamaState: LlamaState, modelName: String, modelUrl: String, filename: String) {
self.llamaState = llamaState
self.modelName = modelName
self.modelUrl = modelUrl
self.filename = filename
let fileURL = DownloadButton.getFileURL(filename: filename)
status = FileManager.default.fileExists(atPath: fileURL.path) ? "downloaded" : "download"
}
private func download() {
status = "downloading"
print("Downloading model \(modelName) from \(modelUrl)")
guard let url = URL(string: modelUrl) else { return }
let fileURL = DownloadButton.getFileURL(filename: filename)
downloadTask = URLSession.shared.downloadTask(with: url) { temporaryURL, response, error in
if let error = error {
print("Error: \(error.localizedDescription)")
return
}
guard let response = response as? HTTPURLResponse, (200...299).contains(response.statusCode) else {
print("Server error!")
return
}
do {
if let temporaryURL = temporaryURL {
try FileManager.default.copyItem(at: temporaryURL, to: fileURL)
print("Writing to \(filename) completed")
llamaState.cacheCleared = false
status = "downloaded"
}
} catch let err {
print("Error: \(err.localizedDescription)")
}
}
observation = downloadTask?.progress.observe(\.fractionCompleted) { progress, _ in
self.progress = progress.fractionCompleted
}
downloadTask?.resume()
}
var body: some View {
VStack {
if status == "download" {
Button(action: download) {
Text("Download " + modelName)
}
} else if status == "downloading" {
Button(action: {
downloadTask?.cancel()
status = "download"
}) {
Text("\(modelName) (Downloading \(Int(progress * 100))%)")
}
} else if status == "downloaded" {
Button(action: {
let fileURL = DownloadButton.getFileURL(filename: filename)
if !FileManager.default.fileExists(atPath: fileURL.path) {
download()
return
}
do {
try llamaState.loadModel(modelUrl: fileURL)
} catch let err {
print("Error: \(err.localizedDescription)")
}
}) {
Text("Load \(modelName)")
}
} else {
Text("Unknown status")
}
}
.onDisappear() {
downloadTask?.cancel()
}
.onChange(of: llamaState.cacheCleared) { newValue in
if newValue {
downloadTask?.cancel()
let fileURL = DownloadButton.getFileURL(filename: filename)
status = FileManager.default.fileExists(atPath: fileURL.path) ? "downloaded" : "download"
}
}
}
}
// #Preview {
// DownloadButton(
// llamaState: LlamaState(),
// modelName: "TheBloke / TinyLlama-1.1B-1T-OpenOrca-GGUF (Q4_0)",
// modelUrl: "https://huggingface.co/TheBloke/TinyLlama-1.1B-1T-OpenOrca-GGUF/resolve/main/tinyllama-1.1b-1t-openorca.Q4_0.gguf?download=true",
// filename: "tinyllama-1.1b-1t-openorca.Q4_0.gguf"
// )
// }

View File

@@ -0,0 +1,44 @@
import SwiftUI
import UniformTypeIdentifiers
struct LoadCustomButton: View {
@ObservedObject private var llamaState: LlamaState
@State private var showFileImporter = false
init(llamaState: LlamaState) {
self.llamaState = llamaState
}
var body: some View {
VStack {
Button(action: {
showFileImporter = true
}) {
Text("Load Custom Model")
}
}
.fileImporter(
isPresented: $showFileImporter,
allowedContentTypes: [UTType(filenameExtension: "gguf", conformingTo: .data)!],
allowsMultipleSelection: false
) { result in
switch result {
case .success(let files):
files.forEach { file in
let gotAccess = file.startAccessingSecurityScopedResource()
if !gotAccess { return }
do {
try llamaState.loadModel(modelUrl: file.absoluteURL)
} catch let err {
print("Error: \(err.localizedDescription)")
}
file.stopAccessingSecurityScopedResource()
}
case .failure(let error):
print(error)
}
}
}
}

View File

@@ -24,7 +24,8 @@ endif()
if (NOT MSVC)
target_compile_options(llava PRIVATE -Wno-cast-qual) # stb_image.h
endif()
endif()
if(TARGET BUILD_INFO)
add_dependencies(llava BUILD_INFO)
endif()
@@ -32,5 +33,5 @@ endif()
set(TARGET llava-cli)
add_executable(llava-cli llava-cli.cpp)
install(TARGETS llava-cli RUNTIME)
target_link_libraries(llava-cli PRIVATE common llama llava ${CMAKE_THREAD_LIBS_INIT})
target_link_libraries(llava-cli PRIVATE common llava ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(llava PRIVATE cxx_std_11)

View File

@@ -16,12 +16,19 @@
#include "clip.h"
#include "ggml.h"
#include "ggml-alloc.h"
#include "ggml-backend.h"
#ifdef GGML_USE_CUBLAS
#include "ggml-cuda.h"
#endif
#ifdef GGML_USE_METAL
#include "ggml-metal.h"
#endif
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
#define CLIP_DEBUG
static std::string format(const char * fmt, ...) {
va_list ap;
va_list ap2;
@@ -139,6 +146,27 @@ static std::string get_ftype(int ftype) {
}
}
//
// image data
//
// RGB uint8 image
struct clip_image_u8 {
int nx;
int ny;
std::vector<uint8_t> buf;
};
// RGB float32 image (NHWC)
// Memory layout: RGBRGBRGB...
struct clip_image_f32 {
int nx;
int ny;
std::vector<float> buf;
};
//
// clip layers
//
@@ -196,39 +224,31 @@ struct clip_vision_model {
struct ggml_tensor * mm_2_b;
};
// Replacement for std::vector<uint8_t> that doesn't require zero-initialization.
struct clip_buffer {
uint8_t * data = NULL;
size_t size = 0;
void resize(size_t size) {
delete[] data;
data = new uint8_t[size];
this->size = size;
}
~clip_buffer() { delete[] data; }
};
struct clip_ctx {
bool has_text_encoder = false;
bool has_vision_encoder = false;
bool has_text_encoder = false;
bool has_vision_encoder = false;
bool has_llava_projector = false;
struct clip_vision_model vision_model;
float image_mean[3];
float image_std[3];
bool use_gelu = false;
int32_t ftype = 1;
struct ggml_context * ctx;
struct gguf_context * ctx_gguf;
struct ggml_context * ctx_data;
std::vector<uint8_t> buf_compute_meta;
// memory buffers to evaluate the model
clip_buffer buf_compute;
clip_buffer buf_alloc;
ggml_allocr * alloc = NULL;
ggml_backend_buffer_t params_buffer = NULL;
ggml_backend_buffer_t compute_buffer = NULL;
ggml_backend_t backend = NULL;
ggml_allocr * compute_alloc = NULL;
};
static ggml_cgraph * clip_image_build_graph(const clip_ctx * ctx, const clip_image_f32_batch * imgs) {
static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs) {
if (!ctx->has_vision_encoder) {
printf("This gguf file seems to have no vision encoder\n");
return nullptr;
@@ -249,28 +269,24 @@ static ggml_cgraph * clip_image_build_graph(const clip_ctx * ctx, const clip_ima
//const int projection_dim = hparams.projection_dim;
const float eps = hparams.eps;
int batch_size = imgs->size;
if(ctx->has_llava_projector) {
if (ctx->has_llava_projector) {
GGML_ASSERT(batch_size == 1);
}
const auto & buf_compute = ctx->buf_compute;
struct ggml_init_params params = {
/*.mem_size =*/ buf_compute.size,
/*.mem_buffer =*/ buf_compute.data,
/*.no_alloc =*/ false,
/*.mem_size =*/ ctx->buf_compute_meta.size(),
/*.mem_buffer =*/ ctx->buf_compute_meta.data(),
/*.no_alloc =*/ true,
};
params.no_alloc = true;
struct ggml_context * ctx0 = ggml_init(params);
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size, image_size, 3, batch_size);
ggml_allocr_alloc(ctx->alloc, inp_raw);
ggml_allocr_alloc(ctx->compute_alloc, inp_raw);
if (!ggml_allocr_is_measure(ctx->alloc)) {
float * data = (float *)ggml_get_data(inp_raw);
if (!ggml_allocr_is_measure(ctx->compute_alloc)) {
float * data = (float *)malloc(ggml_nbytes(inp_raw));
for (size_t i = 0; i < imgs->size; i++) {
const int nx = imgs->data[i].nx;
@@ -283,12 +299,14 @@ static ggml_cgraph * clip_image_build_graph(const clip_ctx * ctx, const clip_ima
for (int k = 0; k < 3; k++) {
for (int y = 0; y < ny; y++) {
for (int x = 0; x < nx; x++) {
data[(b * 3 * n) + k * n + y * nx + x] = imgs->data[b].data[3 * (y * nx + x) + k];
data[(b * 3 * n) + k * n + y * nx + x] = imgs->data[b].buf[3 * (y * nx + x) + k];
}
}
}
}
}
ggml_backend_tensor_set(inp_raw, data, 0, ggml_nbytes(inp_raw));
free(data);
}
struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
@@ -298,42 +316,39 @@ static ggml_cgraph * clip_image_build_graph(const clip_ctx * ctx, const clip_ima
// concat class_embeddings and patch_embeddings
struct ggml_tensor * embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size);
ggml_allocr_alloc(ctx->alloc, embeddings);
if (!ggml_allocr_is_measure(ctx->alloc)) {
ggml_set_zero(embeddings);
ggml_allocr_alloc(ctx->compute_alloc, embeddings);
if (!ggml_allocr_is_measure(ctx->compute_alloc)) {
void* zero_mem = malloc(ggml_nbytes(embeddings));
memset(zero_mem, 0, ggml_nbytes(embeddings));
ggml_backend_tensor_set(embeddings, zero_mem, 0, ggml_nbytes(embeddings));
free(zero_mem);
}
struct ggml_tensor * temp = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, 1, batch_size);
ggml_allocr_alloc(ctx->alloc, temp);
embeddings = ggml_acc(ctx0, embeddings, model.class_embedding,
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0);
embeddings = ggml_acc(ctx0, embeddings, ggml_repeat(ctx0, model.class_embedding, temp), embeddings->nb[1],
embeddings->nb[2], embeddings->nb[3], 0);
embeddings =
ggml_acc(ctx0, embeddings, inp, embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
embeddings = ggml_acc(ctx0, embeddings, inp,
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions);
ggml_allocr_alloc(ctx->alloc, positions);
if (!ggml_allocr_is_measure(ctx->alloc)) {
ggml_allocr_alloc(ctx->compute_alloc, positions);
if (!ggml_allocr_is_measure(ctx->compute_alloc)) {
int* positions_data = (int*)malloc(ggml_nbytes(positions));
for (int i = 0; i < num_positions; i++) {
ggml_set_i32_1d(positions, i, i);
positions_data[i] = i;
}
ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
free(positions_data);
}
embeddings =
ggml_add(ctx0, embeddings, ggml_repeat(ctx0, ggml_get_rows(ctx0, model.position_embeddings, positions), embeddings));
ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions));
// pre-layernorm
{
embeddings = ggml_norm(ctx0, embeddings, eps);
embeddings = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.pre_ln_w, embeddings), embeddings),
ggml_repeat(ctx0, model.pre_ln_b, embeddings));
}
struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
ggml_allocr_alloc(ctx->alloc, KQ_scale);
if (!ggml_allocr_is_measure(ctx->alloc)) {
ggml_set_f32(KQ_scale, 1.0f / sqrt((float)d_head));
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.pre_ln_w), model.pre_ln_b);
}
// loop over layers
@@ -346,30 +361,30 @@ static ggml_cgraph * clip_image_build_graph(const clip_ctx * ctx, const clip_ima
{
cur = ggml_norm(ctx0, cur, eps);
cur = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].ln_1_w, cur), cur),
ggml_repeat(ctx0, model.layers[il].ln_1_b, cur));
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w),
model.layers[il].ln_1_b);
}
// self-attention
{
struct ggml_tensor * Q =
ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].q_b, cur), ggml_mul_mat(ctx0, model.layers[il].q_w, cur));
ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b);
Q = ggml_scale_inplace(ctx0, Q, KQ_scale);
Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head));
Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_positions, batch_size);
Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
Q = ggml_reshape_3d(ctx0, Q, d_head, num_positions, n_head * batch_size);
struct ggml_tensor * K =
ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].k_b, cur), ggml_mul_mat(ctx0, model.layers[il].k_w, cur));
ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b);
K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
struct ggml_tensor * V =
ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].v_b, cur), ggml_mul_mat(ctx0, model.layers[il].v_w, cur));
ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b);
V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
@@ -385,7 +400,7 @@ static ggml_cgraph * clip_image_build_graph(const clip_ctx * ctx, const clip_ima
}
// attention output
cur = ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].o_b, cur), ggml_mul_mat(ctx0, model.layers[il].o_w, cur));
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b);
// re-add the layer input, e.g., residual
cur = ggml_add(ctx0, cur, embeddings);
@@ -396,12 +411,11 @@ static ggml_cgraph * clip_image_build_graph(const clip_ctx * ctx, const clip_ima
{
cur = ggml_norm(ctx0, cur, eps);
cur = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].ln_2_w, cur), cur),
ggml_repeat(ctx0, model.layers[il].ln_2_b, cur));
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b);
}
cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur);
cur = ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].ff_i_b, cur), cur);
cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b);
if (ctx->use_gelu) {
cur = ggml_gelu_inplace(ctx0, cur);
@@ -410,7 +424,7 @@ static ggml_cgraph * clip_image_build_graph(const clip_ctx * ctx, const clip_ima
}
cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur);
cur = ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].ff_o_b, cur), cur);
cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b);
// residual 2
cur = ggml_add(ctx0, embeddings, cur);
@@ -423,23 +437,26 @@ static ggml_cgraph * clip_image_build_graph(const clip_ctx * ctx, const clip_ima
embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
struct ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches);
ggml_allocr_alloc(ctx->alloc, patches);
if (!ggml_allocr_is_measure(ctx->alloc)) {
for (int i = 0; i < num_patches; ++i) {
ggml_set_i32_1d(patches, i, i+1);
ggml_allocr_alloc(ctx->compute_alloc, patches);
if (!ggml_allocr_is_measure(ctx->compute_alloc)) {
int* patches_data = (int*)malloc(ggml_nbytes(patches));
for (int i = 0; i < num_patches; i++) {
patches_data[i] = i + 1;
}
ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches));
free(patches_data);
}
embeddings = ggml_get_rows(ctx0, embeddings, patches);
// mm projection 0
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
embeddings = ggml_add(ctx0, ggml_repeat(ctx0, model.mm_0_b, embeddings), embeddings);
embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
embeddings = ggml_gelu(ctx0, embeddings);
embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
embeddings = ggml_add(ctx0, ggml_repeat(ctx0, model.mm_2_b, embeddings), embeddings);
embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
}
// build the graph
@@ -452,7 +469,6 @@ static ggml_cgraph * clip_image_build_graph(const clip_ctx * ctx, const clip_ima
// read and create ggml_context containing the tensors and their data
struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
struct ggml_context * meta = NULL;
struct gguf_init_params params = {
@@ -485,7 +501,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
printf("%s: ftype: %s\n", __func__, ftype_str.c_str());
printf("\n");
}
const int n_tensors = gguf_get_n_tensors(ctx);
// kv
if (verbosity >= 3) {
const int n_kv = gguf_get_n_kv(ctx);
@@ -499,27 +515,38 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
}
// data
size_t ctx_size = 0;
size_t buffer_size = 0;
{
const int n_tensors = gguf_get_n_tensors(ctx);
for (int i = 0; i < n_tensors; ++i) {
const char * name = gguf_get_tensor_name(ctx, i);
const size_t offset = gguf_get_tensor_offset(ctx, i);
struct ggml_tensor * cur = ggml_get_tensor(meta, name);
ctx_size += sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE;
size_t tensor_size = ggml_nbytes(cur);
size_t padded_size = ggml_nbytes_pad(cur);
ctx_size += padded_size;
buffer_size += tensor_size;
if (verbosity >= 3) {
printf("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, padded_size=%zu, offset=%zu\n", __func__, i,
cur->n_dims, cur->name, tensor_size, padded_size, offset);
printf("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu\n", __func__, i,
ggml_n_dims(cur), cur->name, tensor_size, offset);
}
}
}
buffer_size += n_tensors * 128 /* CLIP PADDING */;
clip_ctx * new_clip = new clip_ctx;
#ifdef GGML_USE_CUBLAS
new_clip->backend = ggml_backend_cuda_init(0);
printf("%s: CLIP using CUDA backend\n", __func__);
#endif
#ifdef GGML_USE_METAL
new_clip->backend = ggml_backend_metal_init();
printf("%s: CLIP using Metal backend\n", __func__);
#endif
if (!new_clip->backend) {
new_clip->backend = ggml_backend_cpu_init();
printf("%s: CLIP using CPU backend\n", __func__);
}
// model size and capabilities
{
@@ -545,21 +572,24 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
printf("%s: text_encoder: %d\n", __func__, new_clip->has_text_encoder);
printf("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder);
printf("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector);
printf("%s: model size: %.2f MB\n", __func__, (ctx_size / 1024.0 / 1024.0));
printf("%s: model size: %.2f MB\n", __func__, buffer_size / 1024.0 / 1024.0);
printf("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0);
}
}
printf("%s: params backend buffer size = % 6.2f MB (%i tensors)\n", __func__, buffer_size / (1024.0 * 1024.0), n_tensors);
// load tensors
{
std::vector<uint8_t> read_buf;
struct ggml_init_params params = {
/*.mem_size =*/ ctx_size,
/*.mem_size =*/ (n_tensors + 1) * ggml_tensor_overhead(),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ false,
/*.no_alloc =*/ true,
};
new_clip->ctx = ggml_init(params);
if (!new_clip->ctx) {
new_clip->ctx_data = ggml_init(params);
if (!new_clip->ctx_data) {
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
clip_free(new_clip);
return nullptr;
@@ -572,13 +602,21 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
return nullptr;
}
const int n_tensors = gguf_get_n_tensors(ctx);
// add tensors to context
for (int i = 0; i < n_tensors; ++i) {
const char * name = gguf_get_tensor_name(ctx, i);
struct ggml_tensor * t = ggml_get_tensor(meta, name);
struct ggml_tensor * cur = ggml_dup_tensor(new_clip->ctx, t);
struct ggml_tensor * cur = ggml_dup_tensor(new_clip->ctx_data, t);
ggml_set_name(cur, name);
}
// alloc memory and offload data
new_clip->params_buffer = ggml_backend_alloc_buffer(new_clip->backend, buffer_size);
ggml_allocr* alloc = ggml_allocr_new_from_buffer(new_clip->params_buffer);
for (int i = 0; i < n_tensors; ++i) {
const char * name = gguf_get_tensor_name(ctx, i);
struct ggml_tensor * cur = ggml_get_tensor(new_clip->ctx_data, name);
ggml_allocr_alloc(alloc, cur);
const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i);
fin.seekg(offset, std::ios::beg);
if (!fin) {
@@ -586,10 +624,18 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
clip_free(new_clip);
return nullptr;
}
fin.read(reinterpret_cast<char *>(cur->data), ggml_nbytes(t));
int num_bytes = ggml_nbytes(cur);
if (ggml_backend_buffer_is_host(new_clip->params_buffer)) {
// for the CPU and Metal backend, we can read directly into the tensor
fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
} else {
// read into a temporary buffer first, then copy to device memory
read_buf.resize(num_bytes);
fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
}
}
ggml_allocr_free(alloc);
fin.close();
}
@@ -598,20 +644,20 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
// load vision model
auto & vision_model = new_clip->vision_model;
auto & hparams = vision_model.hparams;
hparams.hidden_size = get_u32(ctx, format(KEY_N_EMBD, "vision"));
hparams.n_head = get_u32(ctx, format(KEY_N_HEAD, "vision"));
hparams.hidden_size = get_u32(ctx, format(KEY_N_EMBD, "vision"));
hparams.n_head = get_u32(ctx, format(KEY_N_HEAD, "vision"));
hparams.n_intermediate = get_u32(ctx, format(KEY_N_FF, "vision"));
hparams.n_layer = get_u32(ctx, format(KEY_N_BLOCK, "vision"));
hparams.image_size = get_u32(ctx, KEY_IMAGE_SIZE);
hparams.patch_size = get_u32(ctx, KEY_PATCH_SIZE);
hparams.n_layer = get_u32(ctx, format(KEY_N_BLOCK, "vision"));
hparams.image_size = get_u32(ctx, KEY_IMAGE_SIZE);
hparams.patch_size = get_u32(ctx, KEY_PATCH_SIZE);
hparams.projection_dim = get_u32(ctx, format(KEY_PROJ_DIM, "vision"));
hparams.eps = get_f32(ctx, format(KEY_LAYER_NORM_EPS, "vision"));
hparams.eps = get_f32(ctx, format(KEY_LAYER_NORM_EPS, "vision"));
int idx_mean = get_key_idx(ctx, KEY_IMAGE_MEAN);
int idx_std = get_key_idx(ctx, KEY_IMAGE_STD);
int idx_std = get_key_idx(ctx, KEY_IMAGE_STD);
for (int i = 0; i < 3; ++i) {
new_clip->image_mean[i] = *((const float *)gguf_get_arr_data(ctx, idx_mean));
new_clip->image_std[i] = *((const float *)gguf_get_arr_data(ctx, idx_std));
new_clip->image_std[i] = *((const float *)gguf_get_arr_data(ctx, idx_std));
}
if (verbosity >= 2) {
@@ -625,35 +671,35 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
printf("v_n_layer %d\n", hparams.n_layer);
}
vision_model.patch_embeddings = get_tensor(new_clip->ctx, TN_PATCH_EMBD);
vision_model.class_embedding = get_tensor(new_clip->ctx, TN_CLASS_EMBD);
vision_model.position_embeddings = get_tensor(new_clip->ctx, format(TN_POS_EMBD, "v"));
vision_model.pre_ln_w = get_tensor(new_clip->ctx, format(TN_LN_PRE, "v", "weight"));
vision_model.pre_ln_b = get_tensor(new_clip->ctx, format(TN_LN_PRE, "v", "bias"));
vision_model.mm_0_w = get_tensor(new_clip->ctx, format(TN_LLAVA_PROJ, 0, "weight"));
vision_model.mm_0_b = get_tensor(new_clip->ctx, format(TN_LLAVA_PROJ, 0, "bias"));
vision_model.mm_2_w = get_tensor(new_clip->ctx, format(TN_LLAVA_PROJ, 2, "weight"));
vision_model.mm_2_b = get_tensor(new_clip->ctx, format(TN_LLAVA_PROJ, 2, "bias"));
vision_model.patch_embeddings = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD);
vision_model.class_embedding = get_tensor(new_clip->ctx_data, TN_CLASS_EMBD);
vision_model.position_embeddings = get_tensor(new_clip->ctx_data, format(TN_POS_EMBD, "v"));
vision_model.pre_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "weight"));
vision_model.pre_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "bias"));
vision_model.mm_0_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "weight"));
vision_model.mm_0_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "bias"));
vision_model.mm_2_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "weight"));
vision_model.mm_2_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "bias"));
vision_model.layers.resize(hparams.n_layer);
for (int il = 0; il < hparams.n_layer; ++il) {
auto & layer = vision_model.layers[il];
layer.k_w = get_tensor(new_clip->ctx, format(TN_ATTN_K, "v", il, "weight"));
layer.q_w = get_tensor(new_clip->ctx, format(TN_ATTN_Q, "v", il, "weight"));
layer.v_w = get_tensor(new_clip->ctx, format(TN_ATTN_V, "v", il, "weight"));
layer.o_w = get_tensor(new_clip->ctx, format(TN_ATTN_OUTPUT, "v", il, "weight"));
layer.ln_1_w = get_tensor(new_clip->ctx, format(TN_LN_1, "v", il, "weight"));
layer.ln_2_w = get_tensor(new_clip->ctx, format(TN_LN_2, "v", il, "weight"));
layer.ff_i_w = get_tensor(new_clip->ctx, format(TN_FFN_DOWN, "v", il, "weight"));
layer.ff_o_w = get_tensor(new_clip->ctx, format(TN_FFN_UP, "v", il, "weight"));
layer.k_b = get_tensor(new_clip->ctx, format(TN_ATTN_K, "v", il, "bias"));
layer.q_b = get_tensor(new_clip->ctx, format(TN_ATTN_Q, "v", il, "bias"));
layer.v_b = get_tensor(new_clip->ctx, format(TN_ATTN_V, "v", il, "bias"));
layer.o_b = get_tensor(new_clip->ctx, format(TN_ATTN_OUTPUT, "v", il, "bias"));
layer.ln_1_b = get_tensor(new_clip->ctx, format(TN_LN_1, "v", il, "bias"));
layer.ln_2_b = get_tensor(new_clip->ctx, format(TN_LN_2, "v", il, "bias"));
layer.ff_i_b = get_tensor(new_clip->ctx, format(TN_FFN_DOWN, "v", il, "bias"));
layer.ff_o_b = get_tensor(new_clip->ctx, format(TN_FFN_UP, "v", il, "bias"));
layer.k_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_K, "v", il, "weight"));
layer.q_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_Q, "v", il, "weight"));
layer.v_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_V, "v", il, "weight"));
layer.o_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_OUTPUT, "v", il, "weight"));
layer.ln_1_w = get_tensor(new_clip->ctx_data, format(TN_LN_1, "v", il, "weight"));
layer.ln_2_w = get_tensor(new_clip->ctx_data, format(TN_LN_2, "v", il, "weight"));
layer.ff_i_w = get_tensor(new_clip->ctx_data, format(TN_FFN_DOWN, "v", il, "weight"));
layer.ff_o_w = get_tensor(new_clip->ctx_data, format(TN_FFN_UP, "v", il, "weight"));
layer.k_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_K, "v", il, "bias"));
layer.q_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_Q, "v", il, "bias"));
layer.v_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_V, "v", il, "bias"));
layer.o_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_OUTPUT, "v", il, "bias"));
layer.ln_1_b = get_tensor(new_clip->ctx_data, format(TN_LN_1, "v", il, "bias"));
layer.ln_2_b = get_tensor(new_clip->ctx_data, format(TN_LN_2, "v", il, "bias"));
layer.ff_i_b = get_tensor(new_clip->ctx_data, format(TN_FFN_DOWN, "v", il, "bias"));
layer.ff_o_b = get_tensor(new_clip->ctx_data, format(TN_FFN_UP, "v", il, "bias"));
}
}
@@ -661,45 +707,45 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
new_clip->ctx_gguf = ctx;
// measure mem requirement and allocate
// measure mem requirement and allocate
{
static const size_t tensor_alignment = 32;
new_clip->buf_compute.resize(ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead());
new_clip->alloc = ggml_allocr_new_measure(tensor_alignment);
new_clip->buf_compute_meta.resize(GGML_DEFAULT_GRAPH_SIZE * ggml_tensor_overhead() + ggml_graph_overhead());
new_clip->compute_alloc = ggml_allocr_new_measure_from_backend(new_clip->backend);
clip_image_f32_batch batch;
batch.size = 1;
ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch);
size_t alloc_size = ggml_allocr_alloc_graph(new_clip->alloc, gf) + tensor_alignment;
ggml_allocr_free(new_clip->alloc);
new_clip->buf_alloc.resize(alloc_size);
new_clip->alloc = ggml_allocr_new(new_clip->buf_alloc.data, new_clip->buf_alloc.size, tensor_alignment);
size_t compute_memory_buffer_size = ggml_allocr_alloc_graph(new_clip->compute_alloc, gf);
ggml_allocr_free(new_clip->compute_alloc);
new_clip->compute_buffer = ggml_backend_alloc_buffer(new_clip->backend, compute_memory_buffer_size);
new_clip->compute_alloc = ggml_allocr_new_from_buffer(new_clip->compute_buffer);
printf("%s: total allocated memory: %.2f MB\n", __func__, (new_clip->buf_compute.size + alloc_size)/1024.0/1024.0);
printf("%s: compute allocated memory: %.2f MB\n", __func__, compute_memory_buffer_size /1024.0/1024.0);
}
return new_clip;
}
clip_image_u8 * make_clip_image_u8() {
auto img = new clip_image_u8();
return img;
struct clip_image_u8 * clip_image_u8_init() {
return new clip_image_u8();
}
clip_image_f32 * make_clip_image_f32() { return new clip_image_f32(); }
void clip_image_u8_free(clip_image_u8 * img) { if (img->data) { delete[] img->data; } delete img; }
void clip_image_f32_free(clip_image_f32 * img) { if (img->data) { delete[] img->data; } delete img; }
struct clip_image_f32 * clip_image_f32_init() {
return new clip_image_f32();
}
void clip_image_u8_free (struct clip_image_u8 * img) { delete img; }
void clip_image_f32_free(struct clip_image_f32 * img) { delete img; }
static void build_clip_img_from_data(const stbi_uc * data, int nx, int ny, clip_image_u8 * img) {
img->nx = nx;
img->ny = ny;
img->size = nx * ny * 3;
img->data = new uint8_t[img->size]();
memcpy(img->data, data, img->size);
img->buf.resize(3 * nx * ny);
memcpy(img->buf.data(), data, img->buf.size());
}
bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) {
int nx, ny, nc;
auto data = stbi_load(fname, &nx, &ny, &nc, 3);
auto * data = stbi_load(fname, &nx, &ny, &nc, 3);
if (!data) {
fprintf(stderr, "%s: failed to load image '%s'\n", __func__, fname);
return false;
@@ -711,7 +757,7 @@ bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) {
bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img) {
int nx, ny, nc;
auto data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3);
auto * data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3);
if (!data) {
fprintf(stderr, "%s: failed to decode image bytes\n", __func__);
return false;
@@ -723,7 +769,7 @@ bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length
// normalize: x = (x - mean) / std
// TODO: implement bicubic interpolation instead of linear.
bool clip_image_preprocess(const clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32 * res, const bool pad2square) {
bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32 * res, const bool pad2square) {
if (!ctx->has_vision_encoder) {
printf("This gguf file seems to have no vision encoder\n");
return false;
@@ -732,18 +778,17 @@ bool clip_image_preprocess(const clip_ctx * ctx, const clip_image_u8 * img, clip
// the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
// see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
clip_image_u8 * temp = make_clip_image_u8(); // we will keep the input image data here temporarily
clip_image_u8 * temp = clip_image_u8_init(); // we will keep the input image data here temporarily
if (pad2square && img->nx != img->ny) {
int longer_side = std::max(img->nx, img->ny);
temp->nx = longer_side;
temp->ny = longer_side;
temp->size = 3 * longer_side * longer_side;
temp->data = new uint8_t[temp->size]();
uint8_t bc[3] = {122, 116, 104}; // bakground color in RGB from LLaVA
temp->buf.resize(3 * longer_side * longer_side);
const uint8_t bc[3] = {122, 116, 104}; // background color in RGB from LLaVA
// fill with background color
for (size_t i = 0; i < temp->size; i++) {
temp->data[i] = bc[i % 3];
for (size_t i = 0; i < temp->buf.size(); i++) {
temp->buf[i] = bc[i % 3];
}
// copy from the input image
@@ -751,17 +796,16 @@ bool clip_image_preprocess(const clip_ctx * ctx, const clip_image_u8 * img, clip
for (int x = 0; x < img->nx; x++) {
const int i = 3 * (y * img->nx + x);
const int j = 3 * (y * temp->nx + x);
temp->data[j] = img->data[i];
temp->data[j+1] = img->data[i+1];
temp->data[j+2] = img->data[i+2];
temp->buf[j] = img->buf[i];
temp->buf[j+1] = img->buf[i+1];
temp->buf[j+2] = img->buf[i+2];
}
}
} else {
temp->nx = img->nx;
temp->ny = img->ny;
temp->size = img->size;
temp->data = new uint8_t[temp->size]();
memcpy(&temp->data[0], &img->data[0], temp->size); // copy
temp->nx = img->nx;
temp->ny = img->ny;
temp->buf.resize(img->buf.size());
memcpy(temp->buf.data(), img->buf.data(), temp->buf.size());
}
const int nx = temp->nx;
@@ -772,8 +816,7 @@ bool clip_image_preprocess(const clip_ctx * ctx, const clip_image_u8 * img, clip
res->nx = nx2;
res->ny = ny2;
res->size = 3 * nx2 * ny2;
res->data = new float[res->size]();
res->buf.resize(3 * nx2 * ny2);
const float scale = std::max(nx, ny) / (float)ctx->vision_model.hparams.image_size;
@@ -804,10 +847,10 @@ bool clip_image_preprocess(const clip_ctx * ctx, const clip_image_u8 * img, clip
const int j10 = 3 * (y1 * nx + x0) + c;
const int j11 = 3 * (y1 * nx + x1) + c;
const float v00 = temp->data[j00];
const float v01 = temp->data[j01];
const float v10 = temp->data[j10];
const float v11 = temp->data[j11];
const float v00 = temp->buf[j00];
const float v01 = temp->buf[j01];
const float v10 = temp->buf[j10];
const float v11 = temp->buf[j11];
const float v0 = v00 * (1.0f - dx) + v01 * dx;
const float v1 = v10 * (1.0f - dx) + v11 * dx;
@@ -818,7 +861,7 @@ bool clip_image_preprocess(const clip_ctx * ctx, const clip_image_u8 * img, clip
const int i = 3 * (y * nx3 + x) + c;
res->data[i] = ((float(v2) / 255.0f) - m3[c]) / s3[c];
res->buf[i] = ((float(v2) / 255.0f) - m3[c]) / s3[c];
}
}
}
@@ -828,12 +871,13 @@ bool clip_image_preprocess(const clip_ctx * ctx, const clip_image_u8 * img, clip
}
void clip_free(clip_ctx * ctx) {
ggml_free(ctx->ctx);
ggml_free(ctx->ctx_data);
gguf_free(ctx->ctx_gguf);
delete ctx;
}
bool clip_image_encode(const clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
if (!ctx->has_vision_encoder) {
printf("This gguf file seems to have no vision encoder\n");
return false;
@@ -845,8 +889,7 @@ bool clip_image_encode(const clip_ctx * ctx, const int n_threads, clip_image_f32
return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
}
bool clip_image_batch_encode(const clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs, float * vec) {
bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs, float * vec) {
if (!ctx->has_vision_encoder) {
printf("This gguf file seems to have no vision encoder\n");
return false;
@@ -858,29 +901,29 @@ bool clip_image_batch_encode(const clip_ctx * ctx, const int n_threads, const cl
}
// reset alloc buffer to clean the memory from previous invocations
ggml_allocr_reset(ctx->alloc);
ggml_allocr_reset(ctx->compute_alloc);
// build the inference graph
ggml_cgraph * gf = clip_image_build_graph(ctx, imgs);
ggml_allocr_alloc_graph(ctx->alloc, gf);
ggml_allocr_alloc_graph(ctx->compute_alloc, gf);
struct ggml_cplan plan = ggml_graph_plan(gf, n_threads);
if (plan.work_size > 0) {
plan.work_data = (uint8_t *)malloc(plan.work_size);
if (ggml_backend_is_cpu(ctx->backend)) {
ggml_backend_cpu_set_n_threads(ctx->backend, n_threads);
}
ggml_graph_compute(gf, &plan);
#ifdef GGML_USE_METAL
if (ggml_backend_is_metal(ctx->backend)) {
ggml_backend_metal_set_n_cb(ctx->backend, n_threads);
}
#endif
ggml_backend_graph_compute(ctx->backend, gf);
// the last node is the embedding tensor
struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 1];
struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 1];
// copy the embeddings to the location passed by the user
memcpy(vec, ggml_get_data_f32(embeddings), ggml_nbytes(embeddings));
if (plan.work_size > 0) {
free(plan.work_data);
}
ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
return true;
}
@@ -889,31 +932,32 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
ggml_type type = GGML_TYPE_Q4_1;
switch (itype) {
case 2:
type = GGML_TYPE_Q4_0;
break;
case 3:
type = GGML_TYPE_Q4_1;
break;
case 6:
type = GGML_TYPE_Q5_0;
break;
case 7:
type = GGML_TYPE_Q5_1;
break;
case 8:
type = GGML_TYPE_Q8_0;
break;
default:
fprintf(stderr, "%s: invalid quantization type %d\n", __func__, itype);
return false;
case 2:
type = GGML_TYPE_Q4_0;
break;
case 3:
type = GGML_TYPE_Q4_1;
break;
case 6:
type = GGML_TYPE_Q5_0;
break;
case 7:
type = GGML_TYPE_Q5_1;
break;
case 8:
type = GGML_TYPE_Q8_0;
break;
default:
fprintf(stderr, "%s: invalid quantization type %d\n", __func__, itype);
return false;
};
auto ctx_clip = clip_model_load(fname_inp, 2);
const auto & ctx_src = ctx_clip->ctx_gguf;
const auto & ctx_data = ctx_clip->ctx;
auto * ctx_clip = clip_model_load(fname_inp, 2);
auto ctx_out = gguf_init_empty();
const auto & ctx_src = ctx_clip->ctx_gguf;
const auto & ctx_data = ctx_clip->ctx_data;
auto * ctx_out = gguf_init_empty();
gguf_set_kv(ctx_out, ctx_src);
gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
gguf_set_val_u32(ctx_out, "general.file_type", itype);
@@ -962,7 +1006,7 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
}
// quantize only 2D tensors
quantize &= (cur->n_dims == 2);
quantize &= (ggml_n_dims(cur) == 2);
if (quantize) {
new_type = type;
@@ -1035,7 +1079,7 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
fout.put(0);
}
printf("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), cur->n_dims, quantize,
printf("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), ggml_n_dims(cur), quantize,
orig_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
}
@@ -1051,8 +1095,8 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
gguf_free(ctx_out);
{
printf("%s: original size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0);
printf("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0);
printf("%s: original size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0);
printf("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0);
int64_t sum_all = 0;
for (size_t i = 0; i < hist_all.size(); ++i) {

View File

@@ -35,31 +35,14 @@ struct clip_vision_hparams {
float eps;
};
/** load mmproj model */
CLIP_API struct clip_ctx * clip_model_load(const char * fname, const int verbosity);
/** free mmproj model */
CLIP_API struct clip_ctx * clip_model_load(const char * fname, int verbosity);
CLIP_API void clip_free(struct clip_ctx * ctx);
size_t clip_embd_nbytes(const struct clip_ctx * ctx);
int clip_n_patches(const struct clip_ctx * ctx);
int clip_n_mmproj_embd(const struct clip_ctx * ctx);
CLIP_API size_t clip_embd_nbytes(const struct clip_ctx * ctx);
// RGB uint8 image
struct clip_image_u8 {
int nx;
int ny;
uint8_t * data = NULL;
size_t size;
};
// RGB float32 image (NHWC)
// Memory layout: RGBRGBRGB...
struct clip_image_f32 {
int nx;
int ny;
float * data = NULL;
size_t size;
};
CLIP_API int clip_n_patches (const struct clip_ctx * ctx);
CLIP_API int clip_n_mmproj_embd(const struct clip_ctx * ctx);
struct clip_image_u8_batch {
struct clip_image_u8 * data;
@@ -71,21 +54,22 @@ struct clip_image_f32_batch {
size_t size;
};
struct clip_image_u8 * make_clip_image_u8();
struct clip_image_f32 * make_clip_image_f32();
CLIP_API void clip_image_u8_free(clip_image_u8 * img);
CLIP_API void clip_image_f32_free(clip_image_f32 * img);
CLIP_API struct clip_image_u8 * clip_image_u8_init ();
CLIP_API struct clip_image_f32 * clip_image_f32_init();
CLIP_API void clip_image_u8_free (struct clip_image_u8 * img);
CLIP_API void clip_image_f32_free(struct clip_image_f32 * img);
CLIP_API bool clip_image_load_from_file(const char * fname, struct clip_image_u8 * img);
/** interpret bytes as an image file with length bytes_length, and use the result to populate img */
CLIP_API bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img);
bool clip_image_preprocess(const struct clip_ctx * ctx, const struct clip_image_u8 * img, struct clip_image_f32 * res, const bool pad2square);
bool clip_image_encode(const struct clip_ctx * ctx, const int n_threads, struct clip_image_f32 * img, float * vec);
CLIP_API bool clip_image_preprocess (struct clip_ctx * ctx, const struct clip_image_u8 * img, struct clip_image_f32 * res, bool pad2square);
CLIP_API bool clip_image_encode (struct clip_ctx * ctx, int n_threads, struct clip_image_f32 * img, float * vec);
CLIP_API bool clip_image_batch_encode(struct clip_ctx * ctx, int n_threads, const struct clip_image_f32_batch * imgs, float * vec);
bool clip_image_batch_encode(const struct clip_ctx * ctx, const int n_threads, const struct clip_image_f32_batch * imgs,
float * vec);
bool clip_model_quantize(const char * fname_inp, const char * fname_out, const int itype);
CLIP_API bool clip_model_quantize(const char * fname_inp, const char * fname_out, int itype);
#ifdef __cplusplus
}

View File

@@ -51,7 +51,7 @@ def bytes_to_unicode():
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a signficant percentage of your normal, say, 32K bpe vocab.
This is a significant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""

View File

@@ -39,73 +39,11 @@ static bool eval_string(struct llama_context * ctx_llama, const char* str, int n
return true;
}
// TODO: use common/sampling.h
static llama_token sample_id(llama_context * ctx_llama, gpt_params & params) {
auto & sparams = params.sparams;
// out of user input, sample next token
const float temp = sparams.temp;
const int32_t top_k = sparams.top_k <= 0 ? llama_n_vocab(llama_get_model(ctx_llama)) : sparams.top_k;
const float top_p = sparams.top_p;
const float tfs_z = sparams.tfs_z;
const float typical_p = sparams.typical_p;
// const int32_t repeat_last_n = sparams.repeat_last_n < 0 ? n_ctx : sparams.repeat_last_n;
// const float repeat_penalty = sparams.repeat_penalty;
// const float alpha_presence = sparams.presence_penalty;
// const float alpha_frequency = sparams.frequency_penalty;
const int mirostat = sparams.mirostat;
const float mirostat_tau = sparams.mirostat_tau;
const float mirostat_eta = sparams.mirostat_eta;
// const bool penalize_nl = sparams.penalize_nl;
llama_token id = 0;
{
auto logits = llama_get_logits(ctx_llama);
auto n_vocab = llama_n_vocab(llama_get_model(ctx_llama));
// Apply params.logit_bias map
for (auto it = sparams.logit_bias.begin(); it != sparams.logit_bias.end(); it++) {
logits[it->first] += it->second;
}
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
if (temp <= 0) {
// Greedy sampling
id = llama_sample_token_greedy(ctx_llama, &candidates_p);
} else {
if (mirostat == 1) {
static float mirostat_mu = 2.0f * mirostat_tau;
const int mirostat_m = 100;
llama_sample_temp(ctx_llama, &candidates_p, temp);
id = llama_sample_token_mirostat(ctx_llama, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
} else if (mirostat == 2) {
static float mirostat_mu = 2.0f * mirostat_tau;
llama_sample_temp(ctx_llama, &candidates_p, temp);
id = llama_sample_token_mirostat_v2(ctx_llama, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
} else {
// Temperature sampling
llama_sample_top_k(ctx_llama, &candidates_p, top_k, 1);
llama_sample_tail_free(ctx_llama, &candidates_p, tfs_z, 1);
llama_sample_typical(ctx_llama, &candidates_p, typical_p, 1);
llama_sample_top_p(ctx_llama, &candidates_p, top_p, 1);
llama_sample_temp(ctx_llama, &candidates_p, temp);
id = llama_sample_token(ctx_llama, &candidates_p);
}
}
}
return id;
}
static const char * sample(struct llama_context * ctx_llama, gpt_params & params, int * n_past) {
int id = sample_id(ctx_llama, params);
static const char * sample(struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_llama,
int * n_past) {
const llama_token id = llama_sampling_sample(ctx_sampling, ctx_llama, NULL);
llama_sampling_accept(ctx_sampling, ctx_llama, id, true);
static std::string ret;
if (id == llama_token_eos(llama_get_model(ctx_llama))) {
ret = "</s>";
@@ -174,8 +112,8 @@ struct llava_context {
};
static void show_additional_info(int /*argc*/, char ** argv) {
printf("\n example usage: %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
printf(" note: a lower temperature value like 0.1 is recommended for better quality.\n");
fprintf(stderr, "\n example usage: %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
fprintf(stderr, " note: a lower temperature value like 0.1 is recommended for better quality.\n");
}
static struct llava_image_embed * load_image(llava_context * ctx_llava, gpt_params * params) {
@@ -185,7 +123,7 @@ static struct llava_image_embed * load_image(llava_context * ctx_llava, gpt_para
auto prompt = params->prompt;
if (prompt_contains_image(prompt)) {
if (!params->image.empty()) {
printf("using base64 encoded image instead of command line image path\n");
fprintf(stderr, "using base64 encoded image instead of command line image path\n");
}
embed = llava_image_embed_make_with_prompt_base64(ctx_llava->ctx_clip, params->n_threads, prompt);
if (!embed) {
@@ -217,16 +155,19 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
// generate the response
printf("\n");
fprintf(stderr, "\n");
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params->sparams);
for (int i = 0; i < max_tgt_len; i++) {
const char * tmp = sample(ctx_llava->ctx_llama, *params, &n_past);
const char * tmp = sample(ctx_sampling, ctx_llava->ctx_llama, &n_past);
if (strcmp(tmp, "</s>") == 0) break;
printf("%s", tmp);
fflush(stdout);
}
llama_sampling_free(ctx_sampling);
printf("\n");
}

View File

@@ -10,7 +10,7 @@
#include "base64.hpp"
static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_pos) {
clip_image_f32 * img_res = make_clip_image_f32();
clip_image_f32 * img_res = clip_image_f32_init();
if (!clip_image_preprocess(ctx_clip, img, img_res, /*pad2square =*/ true)) {
fprintf(stderr, "%s: unable to preprocess image\n", __func__);
clip_image_f32_free(img_res);
@@ -86,7 +86,7 @@ bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_
}
LLAVA_API struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length) {
clip_image_u8 * img = make_clip_image_u8();
clip_image_u8 * img = clip_image_u8_init();
if (!clip_image_load_from_bytes(image_bytes, image_bytes_length, img)) {
clip_image_u8_free(img);
fprintf(stderr, "%s: can't load image from bytes, is it a valid image?", __func__);

View File

@@ -1,6 +1,6 @@
# llama.cpp/examples/lookahead
Demonstartion of lookahead decoding technique:
Demonstration of lookahead decoding technique:
https://lmsys.org/blog/2023-11-21-lookahead-decoding/

View File

@@ -0,0 +1,5 @@
set(TARGET lookup)
add_executable(${TARGET} lookup.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

13
examples/lookup/README.md Normal file
View File

@@ -0,0 +1,13 @@
# llama.cpp/examples/lookup
Demonstration of Prompt Lookup Decoding
https://github.com/apoorvumang/prompt-lookup-decoding
The key parameters for lookup decoding are `ngram_min`, `ngram_max` and `n_draft`. The first two determine the size of the ngrams to search for in the prompt for a match. The latter specifies how many subsequent tokens to draft if a match is found.
More info:
https://github.com/ggerganov/llama.cpp/pull/4484
https://github.com/ggerganov/llama.cpp/issues/4226

230
examples/lookup/lookup.cpp Normal file
View File

@@ -0,0 +1,230 @@
#include "common.h"
#include "llama.h"
#include <cmath>
#include <cstdio>
#include <string>
#include <vector>
int main(int argc, char ** argv){
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
return 1;
}
// max/min n-grams size to search for in prompt
const int ngram_max = 4;
const int ngram_min = 1;
// length of the candidate / draft sequence, if match is found
const int n_draft = params.n_draft;
const bool dump_kv_cache = params.dump_kv_cache;
#ifndef LOG_DISABLE_LOGS
log_set_target(log_filename_generator("lookup", "log"));
LOG_TEE("Log start\n");
log_dump_cmdline(argc, argv);
#endif // LOG_DISABLE_LOGS
// init llama.cpp
llama_backend_init(params.numa);
llama_model * model = NULL;
llama_context * ctx = NULL;
// load the model
std::tie(model, ctx) = llama_init_from_gpt_params(params);
// tokenize the prompt
const bool add_bos = llama_should_add_bos_token(model);
LOG("add_bos tgt: %d\n", add_bos);
std::vector<llama_token> inp;
inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
const int max_context_size = llama_n_ctx(ctx);
const int max_tokens_list_size = max_context_size - 4;
if ((int) inp.size() > max_tokens_list_size) {
fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
return 1;
}
fprintf(stderr, "\n\n");
for (auto id : inp) {
fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
}
fflush(stderr);
const int n_input = inp.size();
const auto t_enc_start = ggml_time_us();
llama_decode(ctx, llama_batch_get_one( inp.data(), n_input - 1, 0, 0));
llama_decode(ctx, llama_batch_get_one(&inp.back(), 1, n_input - 1, 0));
const auto t_enc_end = ggml_time_us();
int n_predict = 0;
int n_drafted = 0;
int n_accept = 0;
int n_past = inp.size();
bool has_eos = false;
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams);
std::vector<llama_token> draft;
llama_batch batch_tgt = llama_batch_init(params.n_ctx, 0, 1);
// debug
struct llama_kv_cache_view kvc_view = llama_kv_cache_view_init(ctx, 1);
const auto t_dec_start = ggml_time_us();
while (true) {
// debug
if (dump_kv_cache) {
llama_kv_cache_view_update(ctx, &kvc_view);
dump_kv_cache_view_seqs(kvc_view, 40);
}
// print current draft sequence
LOG("drafted %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, draft).c_str());
int i_dft = 0;
while (true) {
// sample from the target model
llama_token id = llama_sampling_sample(ctx_sampling, ctx, NULL, i_dft);
llama_sampling_accept(ctx_sampling, ctx, id, true);
const std::string token_str = llama_token_to_piece(ctx, id);
if (!params.use_color) {
printf("%s", token_str.c_str());
}
if (id == llama_token_eos(model)) {
has_eos = true;
}
++n_predict;
// check if the target token matches the draft
if (i_dft < (int) draft.size() && id == draft[i_dft]) {
LOG("the sampled target token matches the %dth drafted token (%d, '%s') - accepted\n", i_dft, id, token_str.c_str());
++n_accept;
++n_past;
++i_dft;
inp.push_back(id);
if (params.use_color) {
// color accepted draft token
printf("\033[34m%s\033[0m", token_str.c_str());
fflush(stdout);
}
continue;
}
if (params.use_color) {
printf("%s", token_str.c_str());
}
fflush(stdout);
LOG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", id, token_str.c_str());
draft.clear();
draft.push_back(id);
inp.push_back(id);
break;
}
if ((params.n_predict > 0 && n_predict > params.n_predict) || has_eos) {
break;
}
// KV cache management
// clean the cache of draft tokens that weren't accepted
llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
llama_batch_clear(batch_tgt);
llama_batch_add(batch_tgt, draft[0], n_past, { 0 }, true);
// generate n_pred tokens through prompt lookup
auto prompt_lookup = [&]() -> void {
int inp_size = inp.size();
for (int ngram_size = ngram_max ; ngram_size > ngram_min; --ngram_size){
const llama_token * ngram = &inp[inp_size - ngram_size];
for (int i = 0; i <= (int) inp_size - (ngram_size * 2); ++i) {
bool match = true;
for (int j = 0; j < ngram_size; ++j) {
if (inp[i + j] != ngram[j]) {
match = false;
break;
}
}
if (match) {
const int startIdx = i + ngram_size;
const int endIdx = startIdx + n_draft;
if (endIdx < inp_size) {
for (int j = startIdx; j < endIdx; ++j) {
LOG(" - draft candidate %d: %d\n", j, inp[j]);
draft.push_back(inp[j]);
llama_batch_add(batch_tgt, inp[j], n_past + (j - startIdx) + 1, { 0 }, true);
++n_drafted;
}
return;
}
}
}
}
return;
};
prompt_lookup();
llama_decode(ctx, batch_tgt);
++n_past;
draft.erase(draft.begin());
}
auto t_dec_end = ggml_time_us();
LOG_TEE("\n\n");
LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
LOG_TEE("\n");
LOG_TEE("n_draft = %d\n", n_draft);
LOG_TEE("n_predict = %d\n", n_predict);
LOG_TEE("n_drafted = %d\n", n_drafted);
LOG_TEE("n_accept = %d\n", n_accept);
LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
LOG_TEE("\ntarget:\n");
llama_print_timings(ctx);
llama_sampling_free(ctx_sampling);
llama_batch_free(batch_tgt);
llama_free(ctx);
llama_free_model(model);
llama_backend_free();
fprintf(stderr, "\n\n");
return 0;
}

View File

@@ -7,28 +7,13 @@ find_package(Llama 0.0.1 REQUIRED)
# Bake common functionality in with target. Because applications
# using the relocatable Llama package should be outside of the
# source tree, main-cmake-pkg pretends the dependencies are built-in.
set(_common_path "${CMAKE_CURRENT_LIST_DIR}/../../common")
add_library(common OBJECT
${_common_path}/common.h
${_common_path}/common.cpp
${_common_path}/console.h
${_common_path}/console.cpp
${_common_path}/grammar-parser.h
${_common_path}/grammar-parser.cpp
${_common_path}/sampling.h
${_common_path}/sampling.cpp
)
# WARNING: because build-info.h is auto-generated, it will only
# be available after the user has built the llama.cpp sources.
#
configure_file(${_common_path}/../build-info.h
${CMAKE_CURRENT_BINARY_DIR}/build-info.h
COPYONLY)
target_include_directories(common PUBLIC ${LLAMA_INCLUDE_DIR}
${CMAKE_CURRENT_BINARY_DIR})
add_library(common OBJECT)
file(GLOB _common_files
"${_common_path}/*.h"
"${_common_path}/*.cpp"
)
target_sources(common PRIVATE ${_common_files})
# If the common project was part of "main-cmake-pkg" the transient
# defines would automatically be attached. Because the common func-

View File

@@ -439,6 +439,21 @@ int main(int argc, char ** argv) {
LOG_TEE("sampling: \n%s\n", llama_sampling_print(sparams).c_str());
LOG_TEE("sampling order: \n%s\n", llama_sampling_order_print(sparams).c_str());
LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
// group-attention state
// number of grouped KV tokens so far (used only if params.grp_attn_n > 1)
int ga_i = 0;
const int ga_n = params.grp_attn_n;
const int ga_w = params.grp_attn_w;
if (ga_n != 1) {
GGML_ASSERT(ga_n > 0 && "grp_attn_n must be positive"); // NOLINT
GGML_ASSERT(ga_w % ga_n == 0 && "grp_attn_w must be a multiple of grp_attn_n"); // NOLINT
//GGML_ASSERT(n_ctx_train % ga_w == 0 && "n_ctx_train must be a multiple of grp_attn_w"); // NOLINT
//GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * grp_attn_n"); // NOLINT
LOG_TEE("self-extend: n_ctx_train = %d, grp_attn_n = %d, grp_attn_w = %d\n", n_ctx_train, ga_n, ga_w);
}
LOG_TEE("\n\n");
if (params.interactive) {
@@ -500,37 +515,61 @@ int main(int argc, char ** argv) {
fflush(stdout);
}
// infinite text generation via context swapping
// if we run out of context:
// - take the n_keep first tokens from the original prompt (via n_past)
// - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
if (n_past + (int) embd.size() + std::max<int>(0, guidance_offset) > n_ctx) {
if (params.n_predict == -2) {
LOG_TEE("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict);
break;
if (ga_n == 1) {
// infinite text generation via context shifting
// if we run out of context:
// - take the n_keep first tokens from the original prompt (via n_past)
// - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
if (n_past + (int) embd.size() + std::max<int>(0, guidance_offset) > n_ctx) {
if (params.n_predict == -2) {
LOG_TEE("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict);
break;
}
const int n_left = n_past - params.n_keep - 1;
const int n_discard = n_left/2;
LOG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
n_past, n_left, n_ctx, params.n_keep, n_discard);
llama_kv_cache_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1);
llama_kv_cache_seq_shift(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard);
n_past -= n_discard;
if (ctx_guidance) {
n_past_guidance -= n_discard;
}
LOG("after swap: n_past = %d, n_past_guidance = %d\n", n_past, n_past_guidance);
LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str());
LOG("clear session path\n");
path_session.clear();
}
} else {
// context extension via Self-Extend
while (n_past >= ga_i + ga_w) {
const int ib = (ga_n*ga_i)/ga_w;
const int bd = (ga_w/ga_n)*(ga_n - 1);
const int dd = (ga_w/ga_n) - ib*bd - ga_w;
const int n_left = n_past - params.n_keep - 1;
const int n_discard = n_left/2;
LOG("\n");
LOG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", ga_i, n_past, ib*bd, ga_i + ib*bd, n_past + ib*bd);
LOG("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n, (ga_i + ib*bd)/ga_n, (ga_i + ib*bd + ga_w)/ga_n);
LOG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", ga_i + ib*bd + ga_w, n_past + ib*bd, dd, ga_i + ib*bd + ga_w + dd, n_past + ib*bd + dd);
LOG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
n_past, n_left, n_ctx, params.n_keep, n_discard);
llama_kv_cache_seq_shift(ctx, 0, ga_i, n_past, ib*bd);
llama_kv_cache_seq_div (ctx, 0, ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n);
llama_kv_cache_seq_shift(ctx, 0, ga_i + ib*bd + ga_w, n_past + ib*bd, dd);
llama_kv_cache_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1);
llama_kv_cache_seq_shift(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard);
n_past -= bd;
n_past -= n_discard;
ga_i += ga_w/ga_n;
if (ctx_guidance) {
n_past_guidance -= n_discard;
LOG("\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", n_past + bd, n_past, ga_i);
}
LOG("after swap: n_past = %d, n_past_guidance = %d\n", n_past, n_past_guidance);
LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str());
LOG("clear session path\n");
path_session.clear();
}
// try to reuse a matching prefix from the loaded session instead of re-eval (via n_past)

View File

@@ -0,0 +1,5 @@
set(TARGET passkey)
add_executable(${TARGET} passkey.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

View File

@@ -0,0 +1,12 @@
# llama.cpp/example/passkey
See the following PRs for more info:
- https://github.com/ggerganov/llama.cpp/pull/3856
- https://github.com/ggerganov/llama.cpp/pull/4810
### Usage
```bash
make -j && ./passkey ./models/llama-7b-v2/ggml-model-f16.gguf 250
```

View File

@@ -0,0 +1,296 @@
#include "common.h"
#include "llama.h"
#include <cmath>
#include <cstdio>
#include <string>
#include <vector>
int main(int argc, char ** argv) {
gpt_params params;
if (argc == 1 || argv[1][0] == '-') {
printf("usage: %s MODEL_PATH N_JUNK N_GRP I_POS SEED\n" , argv[0]);
return 1 ;
}
int seed = -1;
int n_junk = 250; // number of times to repeat the junk text
int n_keep = 32; // number of tokens in the prompt prefix
int n_grp = 1; // if more than 1 - perform LongLM SelfExtend
int i_pos = -1; // position of the passkey in the junk text
if (argc >= 2) {
params.model = argv[1];
}
if (argc >= 3) {
n_junk = std::stoi(argv[2]);
}
if (argc >= 4) {
n_grp = std::stoi(argv[3]);
}
if (argc >= 5) {
i_pos = std::stoi(argv[4]);
}
if (argc >= 6) {
seed = std::stoi(argv[5]);
}
if (seed == -1) {
seed = time(NULL);
}
srand(seed);
if (i_pos == -1) {
i_pos = rand() % n_junk;
}
const std::string prompt_prefix = "There is an important info hidden inside a lot of irrelevant text. Find it and memorize them. I will quiz you about the important information there.";
const std::string prompt_suffix = " What is the pass key? The pass key is";
// generate junk text
params.prompt = prompt_prefix;
const int passkey = rand() % 50000 + 1;
for (int i = 0; i < n_junk; i++) {
if (i % n_junk == i_pos) {
params.prompt += " The pass key is " + std::to_string(passkey) + ". Remember it. " + std::to_string(passkey) + " is the pass key.";
}
params.prompt += " The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.";
}
params.prompt += prompt_suffix;
// init LLM
llama_backend_init(params.numa);
// initialize the model
llama_model_params model_params = llama_model_default_params();
model_params.n_gpu_layers = 99; // offload all layers to the GPU
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
if (model == NULL) {
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
return 1;
}
// initialize the context
llama_context_params ctx_params = llama_context_default_params();
ctx_params.seed = seed;
ctx_params.n_ctx = llama_n_ctx_train(model)*n_grp + n_keep;
ctx_params.n_batch = 512;
ctx_params.n_threads = params.n_threads;
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
GGML_ASSERT(ctx_params.n_batch % n_grp == 0 && "n_batch must be divisible by n_grp");
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
if (ctx == NULL) {
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
return 1;
}
// tokenize the prompt
std::vector<llama_token> tokens_list;
tokens_list = ::llama_tokenize(ctx, params.prompt, true);
// tokenize the prefix and use it as a sink
const int n_tokens_prefix = ::llama_tokenize(ctx, prompt_prefix, true).size();
const int n_tokens_all = tokens_list.size();
// we leave a margin of 16 tokens for the generated text - it should contain just the passkey
const int n_predict = 16;
// total length of the sequences including the prompt
const int n_len = n_tokens_all + n_predict;
const int n_ctx = llama_n_ctx(ctx) - n_keep;
const int n_kv_req = llama_n_ctx(ctx);
const int n_batch = ctx_params.n_batch;
const int n_batch_grp = ctx_params.n_batch/n_grp;
LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_kv_req = %d, n_grp = %d, n_batch = %d\n", __func__, n_len, n_ctx, n_kv_req, n_grp, n_batch);
// print the prompt token-by-token
LOG_TEE("\n");
LOG_TEE("prefix tokens: %d\n", n_tokens_prefix);
LOG_TEE("prompt tokens: %d\n", n_tokens_all);
//LOG_TEE("prompt: %s\n", params.prompt.c_str());
llama_batch batch = llama_batch_init(512, 0, 1);
int n_past = 0;
// fill the KV cache
for (int i = 0; i < n_ctx; i += n_batch) {
if (i > 0 && n_grp > 1) {
// if SelfExtend is enabled, we compress the position from the last batch by a factor of n_grp
const int ib = i/n_batch - 1;
const int bd = n_batch_grp*(n_grp - 1);
llama_kv_cache_seq_shift(ctx, 0, n_past - n_batch, n_past, ib*bd);
llama_kv_cache_seq_div (ctx, 0, n_past - n_batch + ib*bd, n_past + ib*bd, n_grp);
n_past -= bd;
}
llama_batch_clear(batch);
for (int j = 0; j < n_batch && i + j < n_tokens_all; j++) {
llama_batch_add(batch, tokens_list[i + j], n_past++, { 0 }, false);
}
if (i + n_batch >= n_tokens_all) {
batch.logits[batch.n_tokens - 1] = true;
}
if (llama_decode(ctx, batch) != 0) {
LOG_TEE("%s: llama_decode() failed\n", __func__);
return 1;
}
LOG_TEE("%s: processed: [%6d, %6d)\n", __func__, i, std::min(i + n_batch, n_tokens_all));
if (i + n_batch >= n_tokens_all) {
break;
}
}
for (int i = n_ctx; i < n_tokens_all; i += n_batch) {
const int n_discard = n_batch;
LOG_TEE("%s: shifting KV cache with %d\n", __func__, n_discard);
llama_kv_cache_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
llama_kv_cache_seq_shift(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
n_past -= n_discard;
llama_batch_clear(batch);
for (int j = 0; j < n_batch && i + j < n_tokens_all; j++) {
llama_batch_add(batch, tokens_list[i + j], n_past++, { 0 }, false);
}
if (i + n_batch >= n_tokens_all) {
batch.logits[batch.n_tokens - 1] = true;
}
if (llama_decode(ctx, batch) != 0) {
LOG_TEE("%s: llama_decode() failed\n", __func__);
return 1;
}
LOG_TEE("%s: processed: [%6d, %6d)\n", __func__, i, std::min(i + n_batch, n_tokens_all));
}
{
const int n_discard = n_past - n_ctx + n_predict;
if (n_discard > 0) {
LOG_TEE("%s: shifting KV cache with %d to free space for the answer\n", __func__, n_discard);
llama_kv_cache_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
llama_kv_cache_seq_shift(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
n_past -= n_discard;
}
}
LOG_TEE("\n");
LOG_TEE("%s: passkey = %d, inserted at position %d / %d (token pos: ~%d)\n", __func__, passkey, i_pos, n_junk, (i_pos * n_tokens_all) / n_junk);
LOG_TEE("\n");
// main loop
int n_cur = n_tokens_all;
int n_decode = 0;
LOG_TEE("%s", prompt_suffix.c_str());
fflush(stdout);
const auto t_main_start = ggml_time_us();
while (n_cur <= n_len) {
// sample the next token
{
auto n_vocab = llama_n_vocab(model);
auto * logits = llama_get_logits_ith(ctx, batch.n_tokens - 1);
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
// sample the most likely token
const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
// is it an end of stream?
if (new_token_id == llama_token_eos(model) || n_cur == n_len) {
LOG_TEE("\n");
break;
}
LOG_TEE("%s", llama_token_to_piece(ctx, new_token_id).c_str());
fflush(stdout);
n_decode += 1;
// prepare the next batch
llama_batch_clear(batch);
// push this new token for next evaluation
llama_batch_add(batch, new_token_id, n_past++, { 0 }, true);
}
n_cur += 1;
// evaluate the current batch with the transformer model
if (llama_decode(ctx, batch)) {
fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
return 1;
}
}
LOG_TEE("\n");
const auto t_main_end = ggml_time_us();
LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
__func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
llama_print_timings(ctx);
fprintf(stderr, "\n");
llama_batch_free(batch);
llama_free(ctx);
llama_free_model(model);
llama_backend_free();
return 0;
}

View File

@@ -321,7 +321,6 @@ int main(int argc, char ** argv) {
auto cparams = llama_context_default_params();
cparams.n_ctx = 256;
cparams.seed = 1;
cparams.f16_kv = false;
ctx = llama_new_context_with_model(model, cparams);

View File

@@ -6,7 +6,7 @@ install(TARGETS ${TARGET} RUNTIME)
target_compile_definitions(${TARGET} PRIVATE
SERVER_VERBOSE=$<BOOL:${LLAMA_SERVER_VERBOSE}>
)
target_link_libraries(${TARGET} PRIVATE common llama llava ${CMAKE_THREAD_LIBS_INIT})
target_link_libraries(${TARGET} PRIVATE common llava ${CMAKE_THREAD_LIBS_INIT})
if (WIN32)
TARGET_LINK_LIBRARIES(${TARGET} PRIVATE ws2_32)
endif()

View File

@@ -148,6 +148,8 @@ node index.js
`frequency_penalty`: Repeat alpha frequency penalty (default: 0.0, 0.0 = disabled);
`penalty_prompt`: This will replace the `prompt` for the purpose of the penalty evaluation. Can be either `null`, a string or an array of numbers representing tokens (default: `null` = use the original `prompt`).
`mirostat`: Enable Mirostat sampling, controlling perplexity during text generation (default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0).
`mirostat_tau`: Set the Mirostat target entropy, parameter tau (default: 5.0).
@@ -164,7 +166,13 @@ node index.js
`n_probs`: If greater than 0, the response also contains the probabilities of top N tokens for each generated token (default: 0)
`image_data`: An array of objects to hold base64-encoded image `data` and its `id`s to be reference in `prompt`. You can determine the place of the image in the prompt as in the following: `USER:[img-12]Describe the image in detail.\nASSISTANT:` In this case, `[img-12]` will be replaced by the embeddings of the image id 12 in the following `image_data` array: `{..., "image_data": [{"data": "<BASE64_STRING>", "id": 12}]}`. Use `image_data` only with multimodal models, e.g., LLaVA.
`image_data`: An array of objects to hold base64-encoded image `data` and its `id`s to be reference in `prompt`. You can determine the place of the image in the prompt as in the following: `USER:[img-12]Describe the image in detail.\nASSISTANT:`. In this case, `[img-12]` will be replaced by the embeddings of the image with id `12` in the following `image_data` array: `{..., "image_data": [{"data": "<BASE64_STRING>", "id": 12}]}`. Use `image_data` only with multimodal models, e.g., LLaVA.
`slot_id`: Assign the completion task to an specific slot. If is -1 the task will be assigned to a Idle slot (default: -1)
`cache_prompt`: Save the prompt and generation for avoid reprocess entire prompt if a part of this isn't change (default: false)
`system_prompt`: Change the system prompt (initial prompt of all slots), this is useful for chat applications. [See more](#change-system-prompt-on-runtime)
*Result JSON:*
@@ -196,12 +204,6 @@ node index.js
`truncated`: Boolean indicating if the context size was exceeded during generation, i.e. the number of tokens provided in the prompt (`tokens_evaluated`) plus tokens generated (`tokens predicted`) exceeded the context size (`n_ctx`)
`slot_id`: Assign the completion task to an specific slot. If is -1 the task will be assigned to a Idle slot (default: -1)
`cache_prompt`: Save the prompt and generation for avoid reprocess entire prompt if a part of this isn't change (default: false)
`system_prompt`: Change the system prompt (initial prompt of all slots), this is useful for chat applications. [See more](#change-system-prompt-on-runtime)
- **POST** `/tokenize`: Tokenize a given text.
*Options:*
@@ -222,7 +224,9 @@ node index.js
`content`: Set the text to process.
**POST** `/infill`: For code infilling. Takes a prefix and a suffix and returns the predicted completion as stream.
`image_data`: An array of objects to hold base64-encoded image `data` and its `id`s to be reference in `content`. You can determine the place of the image in the content as in the following: `Image: [img-21].\nCaption: This is a picture of a house`. In this case, `[img-21]` will be replaced by the embeddings of the image with id `21` in the following `image_data` array: `{..., "image_data": [{"data": "<BASE64_STRING>", "id": 21}]}`. Use `image_data` only with multimodal models, e.g., LLaVA.
- **POST** `/infill`: For code infilling. Takes a prefix and a suffix and returns the predicted completion as stream.
*Options:*

View File

@@ -74,355 +74,376 @@ unsigned char completion_js[] = {
0x6f, 0x6e, 0x2f, 0x6a, 0x73, 0x6f, 0x6e, 0x27, 0x2c, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x27, 0x41, 0x63, 0x63, 0x65, 0x70, 0x74, 0x27,
0x3a, 0x20, 0x27, 0x74, 0x65, 0x78, 0x74, 0x2f, 0x65, 0x76, 0x65, 0x6e,
0x74, 0x2d, 0x73, 0x74, 0x72, 0x65, 0x61, 0x6d, 0x27, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x7d, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x73, 0x69, 0x67,
0x6e, 0x61, 0x6c, 0x3a, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c,
0x6c, 0x65, 0x72, 0x2e, 0x73, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x2c, 0x0a,
0x20, 0x20, 0x7d, 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e,
0x73, 0x74, 0x20, 0x72, 0x65, 0x61, 0x64, 0x65, 0x72, 0x20, 0x3d, 0x20,
0x72, 0x65, 0x73, 0x70, 0x6f, 0x6e, 0x73, 0x65, 0x2e, 0x62, 0x6f, 0x64,
0x79, 0x2e, 0x67, 0x65, 0x74, 0x52, 0x65, 0x61, 0x64, 0x65, 0x72, 0x28,
0x29, 0x3b, 0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x64,
0x65, 0x63, 0x6f, 0x64, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x6e, 0x65, 0x77,
0x20, 0x54, 0x65, 0x78, 0x74, 0x44, 0x65, 0x63, 0x6f, 0x64, 0x65, 0x72,
0x28, 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63,
0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b,
0x0a, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f,
0x76, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, 0x20, 0x2f, 0x2f,
0x20, 0x42, 0x75, 0x66, 0x66, 0x65, 0x72, 0x20, 0x66, 0x6f, 0x72, 0x20,
0x70, 0x61, 0x72, 0x74, 0x69, 0x61, 0x6c, 0x6c, 0x79, 0x20, 0x72, 0x65,
0x61, 0x64, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x73, 0x0a, 0x0a, 0x20, 0x20,
0x74, 0x72, 0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65,
0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x74, 0x72, 0x75,
0x65, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x77, 0x68, 0x69, 0x6c,
0x65, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x29, 0x20, 0x7b, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72,
0x65, 0x73, 0x75, 0x6c, 0x74, 0x20, 0x3d, 0x20, 0x61, 0x77, 0x61, 0x69,
0x74, 0x20, 0x72, 0x65, 0x61, 0x64, 0x65, 0x72, 0x2e, 0x72, 0x65, 0x61,
0x64, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69,
0x66, 0x20, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x6f,
0x6e, 0x65, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x62, 0x72, 0x65, 0x61, 0x6b, 0x3b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x2f, 0x2f, 0x20, 0x41, 0x64, 0x64, 0x20, 0x61, 0x6e, 0x79, 0x20, 0x6c,
0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72, 0x20, 0x64, 0x61, 0x74, 0x61,
0x20, 0x74, 0x6f, 0x20, 0x74, 0x68, 0x65, 0x20, 0x63, 0x75, 0x72, 0x72,
0x65, 0x6e, 0x74, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66,
0x20, 0x64, 0x61, 0x74, 0x61, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x74, 0x65, 0x78, 0x74, 0x20, 0x3d,
0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72, 0x20, 0x2b, 0x20,
0x64, 0x65, 0x63, 0x6f, 0x64, 0x65, 0x72, 0x2e, 0x64, 0x65, 0x63, 0x6f,
0x64, 0x65, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x76, 0x61,
0x6c, 0x75, 0x65, 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x2f, 0x2f, 0x20, 0x43, 0x68, 0x65, 0x63, 0x6b, 0x20, 0x69, 0x66,
0x20, 0x74, 0x68, 0x65, 0x20, 0x6c, 0x61, 0x73, 0x74, 0x20, 0x63, 0x68,
0x61, 0x72, 0x61, 0x63, 0x74, 0x65, 0x72, 0x20, 0x69, 0x73, 0x20, 0x61,
0x20, 0x6c, 0x69, 0x6e, 0x65, 0x20, 0x62, 0x72, 0x65, 0x61, 0x6b, 0x0a,
0x74, 0x2d, 0x73, 0x74, 0x72, 0x65, 0x61, 0x6d, 0x27, 0x2c, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x2e, 0x2e, 0x28, 0x70, 0x61, 0x72,
0x61, 0x6d, 0x73, 0x2e, 0x61, 0x70, 0x69, 0x5f, 0x6b, 0x65, 0x79, 0x20,
0x3f, 0x20, 0x7b, 0x27, 0x41, 0x75, 0x74, 0x68, 0x6f, 0x72, 0x69, 0x7a,
0x61, 0x74, 0x69, 0x6f, 0x6e, 0x27, 0x3a, 0x20, 0x60, 0x42, 0x65, 0x61,
0x72, 0x65, 0x72, 0x20, 0x24, 0x7b, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73,
0x2e, 0x61, 0x70, 0x69, 0x5f, 0x6b, 0x65, 0x79, 0x7d, 0x60, 0x7d, 0x20,
0x3a, 0x20, 0x7b, 0x7d, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x2c,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x73, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x3a,
0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2e,
0x73, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x2c, 0x0a, 0x20, 0x20, 0x7d, 0x29,
0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72,
0x65, 0x61, 0x64, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x72, 0x65, 0x73, 0x70,
0x6f, 0x6e, 0x73, 0x65, 0x2e, 0x62, 0x6f, 0x64, 0x79, 0x2e, 0x67, 0x65,
0x74, 0x52, 0x65, 0x61, 0x64, 0x65, 0x72, 0x28, 0x29, 0x3b, 0x0a, 0x20,
0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x64, 0x65, 0x63, 0x6f, 0x64,
0x65, 0x72, 0x20, 0x3d, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x54, 0x65, 0x78,
0x74, 0x44, 0x65, 0x63, 0x6f, 0x64, 0x65, 0x72, 0x28, 0x29, 0x3b, 0x0a,
0x0a, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65,
0x6e, 0x74, 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, 0x0a, 0x20, 0x20, 0x6c,
0x65, 0x74, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72, 0x20,
0x3d, 0x20, 0x22, 0x22, 0x3b, 0x20, 0x2f, 0x2f, 0x20, 0x42, 0x75, 0x66,
0x66, 0x65, 0x72, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x70, 0x61, 0x72, 0x74,
0x69, 0x61, 0x6c, 0x6c, 0x79, 0x20, 0x72, 0x65, 0x61, 0x64, 0x20, 0x6c,
0x69, 0x6e, 0x65, 0x73, 0x0a, 0x0a, 0x20, 0x20, 0x74, 0x72, 0x79, 0x20,
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63, 0x6f,
0x6e, 0x74, 0x20, 0x3d, 0x20, 0x74, 0x72, 0x75, 0x65, 0x3b, 0x0a, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x77, 0x68, 0x69, 0x6c, 0x65, 0x20, 0x28, 0x63,
0x6f, 0x6e, 0x74, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c,
0x74, 0x20, 0x3d, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x72, 0x65,
0x61, 0x64, 0x65, 0x72, 0x2e, 0x72, 0x65, 0x61, 0x64, 0x28, 0x29, 0x3b,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x72,
0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x6f, 0x6e, 0x65, 0x29, 0x20,
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x62, 0x72,
0x65, 0x61, 0x6b, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d,
0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x41,
0x64, 0x64, 0x20, 0x61, 0x6e, 0x79, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f,
0x76, 0x65, 0x72, 0x20, 0x64, 0x61, 0x74, 0x61, 0x20, 0x74, 0x6f, 0x20,
0x74, 0x68, 0x65, 0x20, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, 0x20,
0x63, 0x68, 0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x64, 0x61, 0x74,
0x61, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73,
0x74, 0x20, 0x74, 0x65, 0x78, 0x74, 0x20, 0x3d, 0x20, 0x6c, 0x65, 0x66,
0x74, 0x6f, 0x76, 0x65, 0x72, 0x20, 0x2b, 0x20, 0x64, 0x65, 0x63, 0x6f,
0x64, 0x65, 0x72, 0x2e, 0x64, 0x65, 0x63, 0x6f, 0x64, 0x65, 0x28, 0x72,
0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x29,
0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20,
0x43, 0x68, 0x65, 0x63, 0x6b, 0x20, 0x69, 0x66, 0x20, 0x74, 0x68, 0x65,
0x20, 0x6c, 0x61, 0x73, 0x74, 0x20, 0x63, 0x68, 0x61, 0x72, 0x61, 0x63,
0x74, 0x65, 0x72, 0x20, 0x69, 0x73, 0x20, 0x61, 0x20, 0x6c, 0x69, 0x6e,
0x65, 0x20, 0x62, 0x72, 0x65, 0x61, 0x6b, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x65, 0x6e, 0x64, 0x73,
0x57, 0x69, 0x74, 0x68, 0x4c, 0x69, 0x6e, 0x65, 0x42, 0x72, 0x65, 0x61,
0x6b, 0x20, 0x3d, 0x20, 0x74, 0x65, 0x78, 0x74, 0x2e, 0x65, 0x6e, 0x64,
0x73, 0x57, 0x69, 0x74, 0x68, 0x28, 0x27, 0x5c, 0x6e, 0x27, 0x29, 0x3b,
0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x53,
0x70, 0x6c, 0x69, 0x74, 0x20, 0x74, 0x68, 0x65, 0x20, 0x74, 0x65, 0x78,
0x74, 0x20, 0x69, 0x6e, 0x74, 0x6f, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x73,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x6c,
0x69, 0x6e, 0x65, 0x73, 0x20, 0x3d, 0x20, 0x74, 0x65, 0x78, 0x74, 0x2e,
0x73, 0x70, 0x6c, 0x69, 0x74, 0x28, 0x27, 0x5c, 0x6e, 0x27, 0x29, 0x3b,
0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x49,
0x66, 0x20, 0x74, 0x68, 0x65, 0x20, 0x74, 0x65, 0x78, 0x74, 0x20, 0x64,
0x6f, 0x65, 0x73, 0x6e, 0x27, 0x74, 0x20, 0x65, 0x6e, 0x64, 0x20, 0x77,
0x69, 0x74, 0x68, 0x20, 0x61, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x20, 0x62,
0x72, 0x65, 0x61, 0x6b, 0x2c, 0x20, 0x74, 0x68, 0x65, 0x6e, 0x20, 0x74,
0x68, 0x65, 0x20, 0x6c, 0x61, 0x73, 0x74, 0x20, 0x6c, 0x69, 0x6e, 0x65,
0x20, 0x69, 0x73, 0x20, 0x69, 0x6e, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65,
0x74, 0x65, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20,
0x53, 0x74, 0x6f, 0x72, 0x65, 0x20, 0x69, 0x74, 0x20, 0x69, 0x6e, 0x20,
0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72, 0x20, 0x74, 0x6f, 0x20,
0x62, 0x65, 0x20, 0x61, 0x64, 0x64, 0x65, 0x64, 0x20, 0x74, 0x6f, 0x20,
0x74, 0x68, 0x65, 0x20, 0x6e, 0x65, 0x78, 0x74, 0x20, 0x63, 0x68, 0x75,
0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x64, 0x61, 0x74, 0x61, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x21, 0x65, 0x6e,
0x64, 0x73, 0x57, 0x69, 0x74, 0x68, 0x4c, 0x69, 0x6e, 0x65, 0x42, 0x72,
0x65, 0x61, 0x6b, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72, 0x20,
0x3d, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x73, 0x2e, 0x70, 0x6f, 0x70, 0x28,
0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x20, 0x65,
0x6c, 0x73, 0x65, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72, 0x20, 0x3d,
0x20, 0x22, 0x22, 0x3b, 0x20, 0x2f, 0x2f, 0x20, 0x52, 0x65, 0x73, 0x65,
0x74, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72, 0x20, 0x69,
0x66, 0x20, 0x77, 0x65, 0x20, 0x68, 0x61, 0x76, 0x65, 0x20, 0x61, 0x20,
0x6c, 0x69, 0x6e, 0x65, 0x20, 0x62, 0x72, 0x65, 0x61, 0x6b, 0x20, 0x61,
0x74, 0x20, 0x74, 0x68, 0x65, 0x20, 0x65, 0x6e, 0x64, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x2f, 0x2f, 0x20, 0x50, 0x61, 0x72, 0x73, 0x65, 0x20, 0x61, 0x6c,
0x6c, 0x20, 0x73, 0x73, 0x65, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x73,
0x20, 0x61, 0x6e, 0x64, 0x20, 0x61, 0x64, 0x64, 0x20, 0x74, 0x68, 0x65,
0x6d, 0x20, 0x74, 0x6f, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20,
0x65, 0x6e, 0x64, 0x73, 0x57, 0x69, 0x74, 0x68, 0x4c, 0x69, 0x6e, 0x65,
0x42, 0x72, 0x65, 0x61, 0x6b, 0x20, 0x3d, 0x20, 0x74, 0x65, 0x78, 0x74,
0x2e, 0x65, 0x6e, 0x64, 0x73, 0x57, 0x69, 0x74, 0x68, 0x28, 0x27, 0x5c,
0x6e, 0x27, 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x2f, 0x2f, 0x20, 0x53, 0x70, 0x6c, 0x69, 0x74, 0x20, 0x74, 0x68, 0x65,
0x20, 0x74, 0x65, 0x78, 0x74, 0x20, 0x69, 0x6e, 0x74, 0x6f, 0x20, 0x6c,
0x69, 0x6e, 0x65, 0x73, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c,
0x65, 0x74, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x73, 0x20, 0x3d, 0x20, 0x74,
0x65, 0x78, 0x74, 0x2e, 0x73, 0x70, 0x6c, 0x69, 0x74, 0x28, 0x27, 0x5c,
0x6e, 0x27, 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x2f, 0x2f, 0x20, 0x49, 0x66, 0x20, 0x74, 0x68, 0x65, 0x20, 0x74, 0x65,
0x78, 0x74, 0x20, 0x64, 0x6f, 0x65, 0x73, 0x6e, 0x27, 0x74, 0x20, 0x65,
0x6e, 0x64, 0x20, 0x77, 0x69, 0x74, 0x68, 0x20, 0x61, 0x20, 0x6c, 0x69,
0x6e, 0x65, 0x20, 0x62, 0x72, 0x65, 0x61, 0x6b, 0x2c, 0x20, 0x74, 0x68,
0x65, 0x6e, 0x20, 0x74, 0x68, 0x65, 0x20, 0x6c, 0x61, 0x73, 0x74, 0x20,
0x6c, 0x69, 0x6e, 0x65, 0x20, 0x69, 0x73, 0x20, 0x69, 0x6e, 0x63, 0x6f,
0x6d, 0x70, 0x6c, 0x65, 0x74, 0x65, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x2f, 0x2f, 0x20, 0x53, 0x74, 0x6f, 0x72, 0x65, 0x20, 0x69, 0x74,
0x20, 0x69, 0x6e, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72,
0x20, 0x74, 0x6f, 0x20, 0x62, 0x65, 0x20, 0x61, 0x64, 0x64, 0x65, 0x64,
0x20, 0x74, 0x6f, 0x20, 0x74, 0x68, 0x65, 0x20, 0x6e, 0x65, 0x78, 0x74,
0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x64, 0x61,
0x74, 0x61, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20,
0x28, 0x21, 0x65, 0x6e, 0x64, 0x73, 0x57, 0x69, 0x74, 0x68, 0x4c, 0x69,
0x6e, 0x65, 0x42, 0x72, 0x65, 0x61, 0x6b, 0x29, 0x20, 0x7b, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f,
0x76, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x73, 0x2e,
0x70, 0x6f, 0x70, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x7d, 0x20, 0x65, 0x6c, 0x73, 0x65, 0x20, 0x7b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76,
0x65, 0x72, 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, 0x20, 0x2f, 0x2f, 0x20,
0x52, 0x65, 0x73, 0x65, 0x74, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76,
0x65, 0x72, 0x20, 0x69, 0x66, 0x20, 0x77, 0x65, 0x20, 0x68, 0x61, 0x76,
0x65, 0x20, 0x61, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x20, 0x62, 0x72, 0x65,
0x61, 0x6b, 0x20, 0x61, 0x74, 0x20, 0x74, 0x68, 0x65, 0x20, 0x65, 0x6e,
0x64, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x50, 0x61, 0x72, 0x73,
0x65, 0x20, 0x61, 0x6c, 0x6c, 0x20, 0x73, 0x73, 0x65, 0x20, 0x65, 0x76,
0x65, 0x6e, 0x74, 0x73, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x61, 0x64, 0x64,
0x20, 0x74, 0x68, 0x65, 0x6d, 0x20, 0x74, 0x6f, 0x20, 0x72, 0x65, 0x73,
0x75, 0x6c, 0x74, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f,
0x6e, 0x73, 0x74, 0x20, 0x72, 0x65, 0x67, 0x65, 0x78, 0x20, 0x3d, 0x20,
0x2f, 0x5e, 0x28, 0x5c, 0x53, 0x2b, 0x29, 0x3a, 0x5c, 0x73, 0x28, 0x2e,
0x2a, 0x29, 0x24, 0x2f, 0x67, 0x6d, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74,
0x20, 0x6c, 0x69, 0x6e, 0x65, 0x20, 0x6f, 0x66, 0x20, 0x6c, 0x69, 0x6e,
0x65, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6d, 0x61, 0x74, 0x63,
0x68, 0x20, 0x3d, 0x20, 0x72, 0x65, 0x67, 0x65, 0x78, 0x2e, 0x65, 0x78,
0x65, 0x63, 0x28, 0x6c, 0x69, 0x6e, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x6d, 0x61,
0x74, 0x63, 0x68, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x5b,
0x6d, 0x61, 0x74, 0x63, 0x68, 0x5b, 0x31, 0x5d, 0x5d, 0x20, 0x3d, 0x20,
0x6d, 0x61, 0x74, 0x63, 0x68, 0x5b, 0x32, 0x5d, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x73, 0x69,
0x6e, 0x63, 0x65, 0x20, 0x77, 0x65, 0x20, 0x6b, 0x6e, 0x6f, 0x77, 0x20,
0x74, 0x68, 0x69, 0x73, 0x20, 0x69, 0x73, 0x20, 0x6c, 0x6c, 0x61, 0x6d,
0x61, 0x2e, 0x63, 0x70, 0x70, 0x2c, 0x20, 0x6c, 0x65, 0x74, 0x27, 0x73,
0x20, 0x6a, 0x75, 0x73, 0x74, 0x20, 0x64, 0x65, 0x63, 0x6f, 0x64, 0x65,
0x20, 0x74, 0x68, 0x65, 0x20, 0x6a, 0x73, 0x6f, 0x6e, 0x20, 0x69, 0x6e,
0x20, 0x64, 0x61, 0x74, 0x61, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x72, 0x65, 0x73, 0x75,
0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x29, 0x20, 0x7b, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72,
0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x20, 0x3d,
0x20, 0x4a, 0x53, 0x4f, 0x4e, 0x2e, 0x70, 0x61, 0x72, 0x73, 0x65, 0x28,
0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x29,
0x72, 0x65, 0x67, 0x65, 0x78, 0x20, 0x3d, 0x20, 0x2f, 0x5e, 0x28, 0x5c,
0x53, 0x2b, 0x29, 0x3a, 0x5c, 0x73, 0x28, 0x2e, 0x2a, 0x29, 0x24, 0x2f,
0x67, 0x6d, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6f,
0x72, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c, 0x69, 0x6e,
0x65, 0x20, 0x6f, 0x66, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x73, 0x29, 0x20,
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f,
0x6e, 0x73, 0x74, 0x20, 0x6d, 0x61, 0x74, 0x63, 0x68, 0x20, 0x3d, 0x20,
0x72, 0x65, 0x67, 0x65, 0x78, 0x2e, 0x65, 0x78, 0x65, 0x63, 0x28, 0x6c,
0x69, 0x6e, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x6d, 0x61, 0x74, 0x63, 0x68, 0x29,
0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x5b, 0x6d, 0x61, 0x74, 0x63,
0x68, 0x5b, 0x31, 0x5d, 0x5d, 0x20, 0x3d, 0x20, 0x6d, 0x61, 0x74, 0x63,
0x68, 0x5b, 0x32, 0x5d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x73, 0x69, 0x6e, 0x63, 0x65, 0x20,
0x77, 0x65, 0x20, 0x6b, 0x6e, 0x6f, 0x77, 0x20, 0x74, 0x68, 0x69, 0x73,
0x20, 0x69, 0x73, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2e, 0x63, 0x70,
0x70, 0x2c, 0x20, 0x6c, 0x65, 0x74, 0x27, 0x73, 0x20, 0x6a, 0x75, 0x73,
0x74, 0x20, 0x64, 0x65, 0x63, 0x6f, 0x64, 0x65, 0x20, 0x74, 0x68, 0x65,
0x20, 0x6a, 0x73, 0x6f, 0x6e, 0x20, 0x69, 0x6e, 0x20, 0x64, 0x61, 0x74,
0x61, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x69, 0x66, 0x20, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64,
0x61, 0x74, 0x61, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c,
0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x20, 0x3d, 0x20, 0x4a, 0x53, 0x4f,
0x4e, 0x2e, 0x70, 0x61, 0x72, 0x73, 0x65, 0x28, 0x72, 0x65, 0x73, 0x75,
0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x29, 0x3b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f,
0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x2b, 0x3d, 0x20, 0x72, 0x65, 0x73,
0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x63, 0x6f, 0x6e,
0x74, 0x65, 0x6e, 0x74, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x79, 0x69,
0x65, 0x6c, 0x64, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x79, 0x69, 0x65, 0x6c, 0x64, 0x20, 0x72, 0x65,
0x73, 0x75, 0x6c, 0x74, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x69, 0x66,
0x20, 0x77, 0x65, 0x20, 0x67, 0x6f, 0x74, 0x20, 0x61, 0x20, 0x73, 0x74,
0x6f, 0x70, 0x20, 0x74, 0x6f, 0x6b, 0x65, 0x6e, 0x20, 0x66, 0x72, 0x6f,
0x6d, 0x20, 0x73, 0x65, 0x72, 0x76, 0x65, 0x72, 0x2c, 0x20, 0x77, 0x65,
0x20, 0x77, 0x69, 0x6c, 0x6c, 0x20, 0x62, 0x72, 0x65, 0x61, 0x6b, 0x20,
0x68, 0x65, 0x72, 0x65, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x72, 0x65, 0x73,
0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x73, 0x74, 0x6f,
0x70, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x72,
0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x67,
0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65,
0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e,
0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x20, 0x3d, 0x20,
0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e,
0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73,
0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x3b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x66, 0x61,
0x6c, 0x73, 0x65, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x62, 0x72, 0x65, 0x61, 0x6b,
0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x2b, 0x3d,
0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61,
0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3b, 0x0a, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f,
0x2f, 0x20, 0x79, 0x69, 0x65, 0x6c, 0x64, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x79, 0x69, 0x65, 0x6c,
0x64, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x3b, 0x0a, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f,
0x2f, 0x20, 0x69, 0x66, 0x20, 0x77, 0x65, 0x20, 0x67, 0x6f, 0x74, 0x20,
0x61, 0x20, 0x73, 0x74, 0x6f, 0x70, 0x20, 0x74, 0x6f, 0x6b, 0x65, 0x6e,
0x20, 0x66, 0x72, 0x6f, 0x6d, 0x20, 0x73, 0x65, 0x72, 0x76, 0x65, 0x72,
0x2c, 0x20, 0x77, 0x65, 0x20, 0x77, 0x69, 0x6c, 0x6c, 0x20, 0x62, 0x72,
0x65, 0x61, 0x6b, 0x20, 0x68, 0x65, 0x72, 0x65, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20,
0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61,
0x2e, 0x73, 0x74, 0x6f, 0x70, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69,
0x66, 0x20, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61,
0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74,
0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65,
0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x20, 0x3d,
0x20, 0x4a, 0x53, 0x4f, 0x4e, 0x2e, 0x70, 0x61, 0x72, 0x73, 0x65, 0x28,
0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72,
0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65, 0x2e, 0x65,
0x72, 0x72, 0x6f, 0x72, 0x28, 0x60, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2e,
0x63, 0x70, 0x70, 0x20, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x3a, 0x20, 0x24,
0x7b, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f,
0x72, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x7d, 0x60, 0x29,
0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x7d, 0x0a, 0x20, 0x20, 0x7d, 0x20, 0x63, 0x61, 0x74, 0x63, 0x68, 0x20,
0x28, 0x65, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66,
0x20, 0x28, 0x65, 0x2e, 0x6e, 0x61, 0x6d, 0x65, 0x20, 0x21, 0x3d, 0x3d,
0x20, 0x27, 0x41, 0x62, 0x6f, 0x72, 0x74, 0x45, 0x72, 0x72, 0x6f, 0x72,
0x27, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63,
0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72,
0x28, 0x22, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x20, 0x65, 0x72, 0x72, 0x6f,
0x72, 0x3a, 0x20, 0x22, 0x2c, 0x20, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x74, 0x68, 0x72, 0x6f,
0x77, 0x20, 0x65, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x66,
0x69, 0x6e, 0x61, 0x6c, 0x6c, 0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2e,
0x61, 0x62, 0x6f, 0x72, 0x74, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d,
0x0a, 0x0a, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x63,
0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3b, 0x0a, 0x7d, 0x0a, 0x0a, 0x2f,
0x2f, 0x20, 0x43, 0x61, 0x6c, 0x6c, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61,
0x2c, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x61, 0x6e, 0x20,
0x65, 0x76, 0x65, 0x6e, 0x74, 0x20, 0x74, 0x61, 0x72, 0x67, 0x65, 0x74,
0x20, 0x74, 0x68, 0x61, 0x74, 0x20, 0x79, 0x6f, 0x75, 0x20, 0x63, 0x61,
0x6e, 0x20, 0x73, 0x75, 0x62, 0x73, 0x63, 0x72, 0x69, 0x62, 0x65, 0x20,
0x74, 0x6f, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x45, 0x78, 0x61,
0x6d, 0x70, 0x6c, 0x65, 0x3a, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20,
0x20, 0x20, 0x20, 0x69, 0x6d, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x7b, 0x20,
0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61,
0x72, 0x67, 0x65, 0x74, 0x20, 0x7d, 0x20, 0x66, 0x72, 0x6f, 0x6d, 0x20,
0x27, 0x2f, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e,
0x2e, 0x6a, 0x73, 0x27, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20,
0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x6e,
0x20, 0x3d, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x45, 0x76, 0x65, 0x6e,
0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x28, 0x70, 0x72, 0x6f, 0x6d,
0x70, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f,
0x6e, 0x6e, 0x2e, 0x61, 0x64, 0x64, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x4c,
0x69, 0x73, 0x74, 0x65, 0x6e, 0x65, 0x72, 0x28, 0x22, 0x6d, 0x65, 0x73,
0x73, 0x61, 0x67, 0x65, 0x22, 0x2c, 0x20, 0x28, 0x63, 0x68, 0x75, 0x6e,
0x6b, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x2f, 0x2f, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74,
0x2e, 0x77, 0x72, 0x69, 0x74, 0x65, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b,
0x2e, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x2e, 0x63, 0x6f, 0x6e, 0x74,
0x65, 0x6e, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x7d,
0x29, 0x0a, 0x2f, 0x2f, 0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x20,
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x45,
0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x20, 0x3d,
0x20, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70, 0x61,
0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d, 0x20, 0x7b, 0x7d, 0x2c, 0x20, 0x63,
0x6f, 0x6e, 0x66, 0x69, 0x67, 0x20, 0x3d, 0x20, 0x7b, 0x7d, 0x29, 0x20,
0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74,
0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74,
0x20, 0x3d, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x45, 0x76, 0x65, 0x6e, 0x74,
0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20,
0x28, 0x61, 0x73, 0x79, 0x6e, 0x63, 0x20, 0x28, 0x29, 0x20, 0x3d, 0x3e,
0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63,
0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x61, 0x77, 0x61,
0x69, 0x74, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68,
0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61,
0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70, 0x61, 0x72,
0x61, 0x6d, 0x73, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x29,
0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66,
0x20, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61,
0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x2b, 0x3d, 0x20, 0x63,
0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x63, 0x6f,
0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67,
0x65, 0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, 0x74, 0x63, 0x68, 0x45,
0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, 0x20, 0x43, 0x75, 0x73,
0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x22, 0x6d, 0x65,
0x73, 0x73, 0x61, 0x67, 0x65, 0x22, 0x2c, 0x20, 0x7b, 0x20, 0x64, 0x65,
0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e,
0x64, 0x61, 0x74, 0x61, 0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x69, 0x66, 0x20, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61,
0x74, 0x61, 0x2e, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f,
0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20,
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61,
0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67,
0x73, 0x20, 0x3d, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64,
0x61, 0x74, 0x61, 0x2e, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69,
0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x3b,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x20,
0x3d, 0x20, 0x66, 0x61, 0x6c, 0x73, 0x65, 0x3b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x62,
0x72, 0x65, 0x61, 0x6b, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x7d, 0x20,
0x63, 0x61, 0x74, 0x63, 0x68, 0x20, 0x28, 0x65, 0x29, 0x20, 0x7b, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x65, 0x2e, 0x6e, 0x61,
0x6d, 0x65, 0x20, 0x21, 0x3d, 0x3d, 0x20, 0x27, 0x41, 0x62, 0x6f, 0x72,
0x74, 0x45, 0x72, 0x72, 0x6f, 0x72, 0x27, 0x29, 0x20, 0x7b, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65,
0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x28, 0x22, 0x6c, 0x6c, 0x61, 0x6d,
0x61, 0x20, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x3a, 0x20, 0x22, 0x2c, 0x20,
0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x74, 0x68, 0x72, 0x6f, 0x77, 0x20, 0x65, 0x3b, 0x0a, 0x20,
0x20, 0x7d, 0x0a, 0x20, 0x20, 0x66, 0x69, 0x6e, 0x61, 0x6c, 0x6c, 0x79,
0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72,
0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2e, 0x61, 0x62, 0x6f, 0x72, 0x74, 0x28,
0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x72, 0x65,
0x74, 0x75, 0x72, 0x6e, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74,
0x3b, 0x0a, 0x7d, 0x0a, 0x0a, 0x2f, 0x2f, 0x20, 0x43, 0x61, 0x6c, 0x6c,
0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2c, 0x20, 0x72, 0x65, 0x74, 0x75,
0x72, 0x6e, 0x20, 0x61, 0x6e, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x20,
0x74, 0x61, 0x72, 0x67, 0x65, 0x74, 0x20, 0x74, 0x68, 0x61, 0x74, 0x20,
0x79, 0x6f, 0x75, 0x20, 0x63, 0x61, 0x6e, 0x20, 0x73, 0x75, 0x62, 0x63,
0x72, 0x69, 0x62, 0x65, 0x20, 0x74, 0x6f, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f,
0x2f, 0x20, 0x45, 0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65, 0x3a, 0x0a, 0x2f,
0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x69, 0x6d, 0x70, 0x6f,
0x72, 0x74, 0x20, 0x7b, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x45, 0x76,
0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x20, 0x7d, 0x20,
0x66, 0x72, 0x6f, 0x6d, 0x20, 0x27, 0x2f, 0x63, 0x6f, 0x6d, 0x70, 0x6c,
0x65, 0x74, 0x69, 0x6f, 0x6e, 0x2e, 0x6a, 0x73, 0x27, 0x0a, 0x2f, 0x2f,
0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74,
0x20, 0x63, 0x6f, 0x6e, 0x6e, 0x20, 0x3d, 0x20, 0x6c, 0x6c, 0x61, 0x6d,
0x61, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74,
0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x20,
0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x6e, 0x2e, 0x61, 0x64, 0x64, 0x45,
0x76, 0x65, 0x6e, 0x74, 0x4c, 0x69, 0x73, 0x74, 0x65, 0x6e, 0x65, 0x72,
0x28, 0x22, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x22, 0x2c, 0x20,
0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b,
0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x64, 0x6f, 0x63,
0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x77, 0x72, 0x69, 0x74, 0x65, 0x28,
0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c,
0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x0a, 0x2f, 0x2f,
0x20, 0x20, 0x20, 0x20, 0x7d, 0x29, 0x0a, 0x2f, 0x2f, 0x0a, 0x65, 0x78,
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x65, 0x76,
0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x64, 0x69,
0x73, 0x70, 0x61, 0x74, 0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28,
0x6e, 0x65, 0x77, 0x20, 0x43, 0x75, 0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76,
0x65, 0x6e, 0x74, 0x28, 0x22, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74,
0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73,
0x22, 0x2c, 0x20, 0x7b, 0x20, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x3a,
0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e,
0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73,
0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x20, 0x7d, 0x29, 0x29, 0x3b,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b,
0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x74, 0x69, 0x6d, 0x69, 0x6e, 0x67,
0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74,
0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, 0x74, 0x63, 0x68, 0x45, 0x76, 0x65,
0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, 0x20, 0x43, 0x75, 0x73, 0x74, 0x6f,
0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x22, 0x74, 0x69, 0x6d, 0x69,
0x6e, 0x67, 0x73, 0x22, 0x2c, 0x20, 0x7b, 0x20, 0x64, 0x65, 0x74, 0x61,
0x69, 0x6c, 0x3a, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61,
0x74, 0x61, 0x2e, 0x74, 0x69, 0x6d, 0x69, 0x6e, 0x67, 0x73, 0x20, 0x7d,
0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x65, 0x76,
0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x64, 0x69,
0x73, 0x70, 0x61, 0x74, 0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28,
0x6e, 0x65, 0x77, 0x20, 0x43, 0x75, 0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76,
0x65, 0x6e, 0x74, 0x28, 0x22, 0x64, 0x6f, 0x6e, 0x65, 0x22, 0x2c, 0x20,
0x7b, 0x20, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20, 0x7b, 0x20,
0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x7d, 0x20, 0x7d, 0x29,
0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x29, 0x28, 0x29, 0x3b, 0x0a, 0x20,
0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x65, 0x76, 0x65, 0x6e,
0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x3b, 0x0a, 0x7d, 0x0a, 0x0a,
0x2f, 0x2f, 0x20, 0x43, 0x61, 0x6c, 0x6c, 0x20, 0x6c, 0x6c, 0x61, 0x6d,
0x61, 0x2c, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x61, 0x20,
0x70, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x20, 0x74, 0x68, 0x61, 0x74,
0x20, 0x72, 0x65, 0x73, 0x6f, 0x6c, 0x76, 0x65, 0x73, 0x20, 0x74, 0x6f,
0x20, 0x74, 0x68, 0x65, 0x20, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74,
0x65, 0x64, 0x20, 0x74, 0x65, 0x78, 0x74, 0x2e, 0x20, 0x54, 0x68, 0x69,
0x73, 0x20, 0x64, 0x6f, 0x65, 0x73, 0x20, 0x6e, 0x6f, 0x74, 0x20, 0x73,
0x75, 0x70, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x73, 0x74, 0x72, 0x65, 0x61,
0x6d, 0x69, 0x6e, 0x67, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x45,
0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65, 0x3a, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f,
0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x50,
0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70,
0x74, 0x29, 0x2e, 0x74, 0x68, 0x65, 0x6e, 0x28, 0x28, 0x63, 0x6f, 0x6e,
0x74, 0x65, 0x6e, 0x74, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x2f,
0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x64, 0x6f, 0x63, 0x75,
0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x77, 0x72, 0x69, 0x74, 0x65, 0x28, 0x63,
0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x20, 0x20,
0x20, 0x20, 0x20, 0x7d, 0x29, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20,
0x20, 0x20, 0x20, 0x20, 0x6f, 0x72, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f,
0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63,
0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x61, 0x77, 0x61,
0x69, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x50, 0x72, 0x6f, 0x6d,
0x69, 0x73, 0x65, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x29, 0x0a,
0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x64, 0x6f, 0x63, 0x75, 0x6d,
0x65, 0x6e, 0x74, 0x2e, 0x77, 0x72, 0x69, 0x74, 0x65, 0x28, 0x63, 0x6f,
0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x0a, 0x65, 0x78,
0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c,
0x6c, 0x61, 0x6d, 0x61, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72,
0x67, 0x65, 0x74, 0x20, 0x3d, 0x20, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70,
0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d, 0x20,
0x7b, 0x7d, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x20, 0x3d,
0x20, 0x7b, 0x7d, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20,
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54,
0x61, 0x72, 0x67, 0x65, 0x74, 0x20, 0x3d, 0x20, 0x6e, 0x65, 0x77, 0x20,
0x45, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x28,
0x29, 0x3b, 0x0a, 0x20, 0x20, 0x28, 0x61, 0x73, 0x79, 0x6e, 0x63, 0x20,
0x28, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x6c, 0x61, 0x6d, 0x61, 0x50, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x20,
0x3d, 0x20, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70,
0x61, 0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d, 0x20, 0x7b, 0x7d, 0x2c, 0x20,
0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x20, 0x3d, 0x20, 0x7b, 0x7d, 0x29,
0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75,
0x72, 0x6e, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x50, 0x72, 0x6f, 0x6d, 0x69,
0x73, 0x65, 0x28, 0x61, 0x73, 0x79, 0x6e, 0x63, 0x20, 0x28, 0x72, 0x65,
0x73, 0x6f, 0x6c, 0x76, 0x65, 0x2c, 0x20, 0x72, 0x65, 0x6a, 0x65, 0x63,
0x74, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x6c, 0x65, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20,
0x3d, 0x20, 0x22, 0x22, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6f,
0x3d, 0x20, 0x22, 0x22, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x74, 0x72,
0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6f,
0x72, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x28, 0x63, 0x6f, 0x6e,
0x73, 0x74, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20,
0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74,
0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x63, 0x6f,
0x6e, 0x66, 0x69, 0x67, 0x29, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b,
0x2e, 0x64, 0x61, 0x74, 0x61, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74,
0x20, 0x2b, 0x3d, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61,
0x74, 0x61, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3b, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x65, 0x76, 0x65, 0x6e,
0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x64, 0x69, 0x73, 0x70,
0x61, 0x74, 0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65,
0x77, 0x20, 0x43, 0x75, 0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e,
0x74, 0x28, 0x22, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x22, 0x2c,
0x20, 0x7b, 0x20, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20, 0x63,
0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x20, 0x7d, 0x29,
0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x63, 0x68, 0x75,
0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x67, 0x65, 0x6e, 0x65,
0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69,
0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67,
0x65, 0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, 0x74, 0x63, 0x68, 0x45,
0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, 0x20, 0x43, 0x75, 0x73,
0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x22, 0x67, 0x65,
0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74,
0x74, 0x69, 0x6e, 0x67, 0x73, 0x22, 0x2c, 0x20, 0x7b, 0x20, 0x64, 0x65,
0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e,
0x64, 0x61, 0x74, 0x61, 0x2e, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74,
0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73,
0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28,
0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x74,
0x69, 0x6d, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54,
0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, 0x74,
0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, 0x20,
0x43, 0x75, 0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28,
0x22, 0x74, 0x69, 0x6d, 0x69, 0x6e, 0x67, 0x73, 0x22, 0x2c, 0x20, 0x7b,
0x20, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20, 0x63, 0x68, 0x75,
0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x74, 0x69, 0x6d, 0x69,
0x6e, 0x67, 0x73, 0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67,
0x65, 0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, 0x74, 0x63, 0x68, 0x45,
0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, 0x20, 0x43, 0x75, 0x73,
0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x22, 0x64, 0x6f,
0x6e, 0x65, 0x22, 0x2c, 0x20, 0x7b, 0x20, 0x64, 0x65, 0x74, 0x61, 0x69,
0x6c, 0x3a, 0x20, 0x7b, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74,
0x20, 0x7d, 0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x29,
0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e,
0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74,
0x3b, 0x0a, 0x7d, 0x0a, 0x0a, 0x2f, 0x2f, 0x20, 0x43, 0x61, 0x6c, 0x6c,
0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2c, 0x20, 0x72, 0x65, 0x74, 0x75,
0x72, 0x6e, 0x20, 0x61, 0x20, 0x70, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65,
0x20, 0x74, 0x68, 0x61, 0x74, 0x20, 0x72, 0x65, 0x73, 0x6f, 0x6c, 0x76,
0x65, 0x73, 0x20, 0x74, 0x6f, 0x20, 0x74, 0x68, 0x65, 0x20, 0x63, 0x6f,
0x6d, 0x70, 0x6c, 0x65, 0x74, 0x65, 0x64, 0x20, 0x74, 0x65, 0x78, 0x74,
0x2e, 0x20, 0x54, 0x68, 0x69, 0x73, 0x20, 0x64, 0x6f, 0x65, 0x73, 0x20,
0x6e, 0x6f, 0x74, 0x20, 0x73, 0x75, 0x70, 0x70, 0x6f, 0x72, 0x74, 0x20,
0x73, 0x74, 0x72, 0x65, 0x61, 0x6d, 0x69, 0x6e, 0x67, 0x0a, 0x2f, 0x2f,
0x0a, 0x2f, 0x2f, 0x20, 0x45, 0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65, 0x3a,
0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c,
0x6c, 0x61, 0x6d, 0x61, 0x50, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x28,
0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x29, 0x2e, 0x74, 0x68, 0x65, 0x6e,
0x28, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x20, 0x3d,
0x3e, 0x20, 0x7b, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x77, 0x72,
0x69, 0x74, 0x65, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29,
0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x29, 0x0a, 0x2f,
0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6f, 0x72, 0x0a,
0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f,
0x6e, 0x73, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20,
0x3d, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d,
0x61, 0x50, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x28, 0x70, 0x72, 0x6f,
0x6d, 0x70, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20,
0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x77, 0x72, 0x69,
0x74, 0x65, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x0a,
0x2f, 0x2f, 0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f,
0x6e, 0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x50, 0x72, 0x6f,
0x6d, 0x69, 0x73, 0x65, 0x20, 0x3d, 0x20, 0x28, 0x70, 0x72, 0x6f, 0x6d,
0x70, 0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d,
0x20, 0x7b, 0x7d, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x20,
0x3d, 0x20, 0x7b, 0x7d, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20,
0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x6e, 0x65, 0x77, 0x20,
0x50, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x28, 0x61, 0x73, 0x79, 0x6e,
0x63, 0x20, 0x28, 0x72, 0x65, 0x73, 0x6f, 0x6c, 0x76, 0x65, 0x2c, 0x20,
0x72, 0x65, 0x6a, 0x65, 0x63, 0x74, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63, 0x6f, 0x6e,
0x74, 0x65, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x74, 0x72, 0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74,
0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68, 0x75, 0x6e,
0x6b, 0x20, 0x6f, 0x66, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x28, 0x70,
0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d,
0x73, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x29, 0x29, 0x20,
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f,
0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x2b, 0x3d, 0x20, 0x63, 0x68, 0x75,
0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x63, 0x6f, 0x6e, 0x74,
0x65, 0x6e, 0x74, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x73, 0x6f, 0x6c,
0x76, 0x65, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x3b,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x20, 0x63, 0x61, 0x74, 0x63, 0x68,
0x20, 0x28, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x20, 0x7b, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x6a, 0x65, 0x63, 0x74, 0x28,
0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x7d, 0x0a, 0x20, 0x20, 0x7d, 0x29, 0x3b, 0x0a, 0x7d, 0x3b, 0x0a, 0x0a,
0x2f, 0x2a, 0x2a, 0x0a, 0x20, 0x2a, 0x20, 0x28, 0x64, 0x65, 0x70, 0x72,
0x65, 0x63, 0x61, 0x74, 0x65, 0x64, 0x29, 0x0a, 0x20, 0x2a, 0x2f, 0x0a,
0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74,
0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x43, 0x6f, 0x6d, 0x70, 0x6c, 0x65,
0x74, 0x65, 0x20, 0x3d, 0x20, 0x61, 0x73, 0x79, 0x6e, 0x63, 0x20, 0x28,
0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x74,
0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2c, 0x20, 0x63, 0x61, 0x6c, 0x6c,
0x62, 0x61, 0x63, 0x6b, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20,
0x20, 0x66, 0x6f, 0x72, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x28,
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x20,
0x6f, 0x66, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x28, 0x70, 0x61, 0x72,
0x61, 0x6d, 0x73, 0x2e, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20,
0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x7b, 0x20, 0x63, 0x6f,
0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x20, 0x7d, 0x29, 0x29,
0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x61, 0x6c, 0x6c, 0x62,
0x61, 0x63, 0x6b, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x29, 0x3b, 0x0a,
0x20, 0x20, 0x7d, 0x0a, 0x7d, 0x0a, 0x0a, 0x2f, 0x2f, 0x20, 0x47, 0x65,
0x74, 0x20, 0x74, 0x68, 0x65, 0x20, 0x6d, 0x6f, 0x64, 0x65, 0x6c, 0x20,
0x69, 0x6e, 0x66, 0x6f, 0x20, 0x66, 0x72, 0x6f, 0x6d, 0x20, 0x74, 0x68,
0x65, 0x20, 0x73, 0x65, 0x72, 0x76, 0x65, 0x72, 0x2e, 0x20, 0x54, 0x68,
0x69, 0x73, 0x20, 0x69, 0x73, 0x20, 0x75, 0x73, 0x65, 0x66, 0x75, 0x6c,
0x20, 0x66, 0x6f, 0x72, 0x20, 0x67, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67,
0x20, 0x74, 0x68, 0x65, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x78, 0x74,
0x20, 0x77, 0x69, 0x6e, 0x64, 0x6f, 0x77, 0x20, 0x61, 0x6e, 0x64, 0x20,
0x73, 0x6f, 0x20, 0x6f, 0x6e, 0x2e, 0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x72, 0x65, 0x73, 0x6f, 0x6c, 0x76, 0x65, 0x28, 0x63, 0x6f,
0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x7d, 0x20, 0x63, 0x61, 0x74, 0x63, 0x68, 0x20, 0x28, 0x65, 0x72, 0x72,
0x6f, 0x72, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x72, 0x65, 0x6a, 0x65, 0x63, 0x74, 0x28, 0x65, 0x72, 0x72, 0x6f, 0x72,
0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x7d,
0x29, 0x3b, 0x0a, 0x7d, 0x3b, 0x0a, 0x0a, 0x2f, 0x2a, 0x2a, 0x0a, 0x20,
0x2a, 0x20, 0x28, 0x64, 0x65, 0x70, 0x72, 0x65, 0x63, 0x61, 0x74, 0x65,
0x64, 0x29, 0x0a, 0x20, 0x2a, 0x2f, 0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72,
0x74, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d,
0x61, 0x4d, 0x6f, 0x64, 0x65, 0x6c, 0x49, 0x6e, 0x66, 0x6f, 0x20, 0x3d,
0x20, 0x61, 0x73, 0x79, 0x6e, 0x63, 0x20, 0x28, 0x29, 0x20, 0x3d, 0x3e,
0x20, 0x7b, 0x0a, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x21, 0x67, 0x65,
0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74,
0x74, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f,
0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x20, 0x3d, 0x20, 0x61,
0x77, 0x61, 0x69, 0x74, 0x20, 0x66, 0x65, 0x74, 0x63, 0x68, 0x28, 0x22,
0x2f, 0x6d, 0x6f, 0x64, 0x65, 0x6c, 0x2e, 0x6a, 0x73, 0x6f, 0x6e, 0x22,
0x29, 0x2e, 0x74, 0x68, 0x65, 0x6e, 0x28, 0x72, 0x20, 0x3d, 0x3e, 0x20,
0x72, 0x2e, 0x6a, 0x73, 0x6f, 0x6e, 0x28, 0x29, 0x29, 0x3b, 0x0a, 0x20,
0x20, 0x7d, 0x0a, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20,
0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73,
0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x3b, 0x0a, 0x7d, 0x0a
0x61, 0x43, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x65, 0x20, 0x3d, 0x20,
0x61, 0x73, 0x79, 0x6e, 0x63, 0x20, 0x28, 0x70, 0x61, 0x72, 0x61, 0x6d,
0x73, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65,
0x72, 0x2c, 0x20, 0x63, 0x61, 0x6c, 0x6c, 0x62, 0x61, 0x63, 0x6b, 0x29,
0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x66, 0x6f, 0x72, 0x20,
0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74,
0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x6c, 0x6c,
0x61, 0x6d, 0x61, 0x28, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x70,
0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d,
0x73, 0x2c, 0x20, 0x7b, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c,
0x6c, 0x65, 0x72, 0x20, 0x7d, 0x29, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x63, 0x61, 0x6c, 0x6c, 0x62, 0x61, 0x63, 0x6b, 0x28, 0x63,
0x68, 0x75, 0x6e, 0x6b, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x7d,
0x0a, 0x0a, 0x2f, 0x2f, 0x20, 0x47, 0x65, 0x74, 0x20, 0x74, 0x68, 0x65,
0x20, 0x6d, 0x6f, 0x64, 0x65, 0x6c, 0x20, 0x69, 0x6e, 0x66, 0x6f, 0x20,
0x66, 0x72, 0x6f, 0x6d, 0x20, 0x74, 0x68, 0x65, 0x20, 0x73, 0x65, 0x72,
0x76, 0x65, 0x72, 0x2e, 0x20, 0x54, 0x68, 0x69, 0x73, 0x20, 0x69, 0x73,
0x20, 0x75, 0x73, 0x65, 0x66, 0x75, 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x20,
0x67, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x20, 0x74, 0x68, 0x65, 0x20,
0x63, 0x6f, 0x6e, 0x74, 0x65, 0x78, 0x74, 0x20, 0x77, 0x69, 0x6e, 0x64,
0x6f, 0x77, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x73, 0x6f, 0x20, 0x6f, 0x6e,
0x2e, 0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f, 0x6e,
0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x4d, 0x6f, 0x64, 0x65,
0x6c, 0x49, 0x6e, 0x66, 0x6f, 0x20, 0x3d, 0x20, 0x61, 0x73, 0x79, 0x6e,
0x63, 0x20, 0x28, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20,
0x69, 0x66, 0x20, 0x28, 0x21, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74,
0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73,
0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x67, 0x65, 0x6e, 0x65,
0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69,
0x6e, 0x67, 0x73, 0x20, 0x3d, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20,
0x66, 0x65, 0x74, 0x63, 0x68, 0x28, 0x22, 0x2f, 0x6d, 0x6f, 0x64, 0x65,
0x6c, 0x2e, 0x6a, 0x73, 0x6f, 0x6e, 0x22, 0x29, 0x2e, 0x74, 0x68, 0x65,
0x6e, 0x28, 0x72, 0x20, 0x3d, 0x3e, 0x20, 0x72, 0x2e, 0x6a, 0x73, 0x6f,
0x6e, 0x28, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20,
0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x67, 0x65, 0x6e, 0x65, 0x72,
0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e,
0x67, 0x73, 0x3b, 0x0a, 0x7d, 0x0a
};
unsigned int completion_js_len = 5099;
unsigned int completion_js_len = 5346;

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -11227,7 +11227,7 @@ class binary_reader
}
if (is_ndarray) // ndarray dimensional vector can only contain integers, and can not embed another array
{
return sax->parse_error(chars_read, get_token_string(), parse_error::create(113, chars_read, exception_message(input_format, "ndarray dimentional vector is not allowed", "size"), nullptr));
return sax->parse_error(chars_read, get_token_string(), parse_error::create(113, chars_read, exception_message(input_format, "ndarray dimensional vector is not allowed", "size"), nullptr));
}
std::vector<size_t> dim;
if (JSON_HEDLEY_UNLIKELY(!get_ubjson_ndarray_size(dim)))

View File

@@ -34,7 +34,8 @@ export async function* llama(prompt, params = {}, config = {}) {
headers: {
'Connection': 'keep-alive',
'Content-Type': 'application/json',
'Accept': 'text/event-stream'
'Accept': 'text/event-stream',
...(params.api_key ? {'Authorization': `Bearer ${params.api_key}`} : {})
},
signal: controller.signal,
});
@@ -94,6 +95,15 @@ export async function* llama(prompt, params = {}, config = {}) {
break;
}
}
if (result.error) {
result.error = JSON.parse(result.error);
if (result.error.content.includes('slot unavailable')) {
// Throw an error to be caught by upstream callers
throw new Error('slot unavailable');
} else {
console.error(`llama.cpp error: ${result.error.content}`);
}
}
if (result.error) {
result.error = JSON.parse(result.error);
console.error(`llama.cpp error: ${result.error.content}`);
@@ -114,7 +124,7 @@ export async function* llama(prompt, params = {}, config = {}) {
return content;
}
// Call llama, return an event target that you can subcribe to
// Call llama, return an event target that you can subscribe to
//
// Example:
//

View File

@@ -223,7 +223,7 @@
repeat_last_n: 256, // 0 = disable penalty, -1 = context size
repeat_penalty: 1.18, // 1.0 = disabled
top_k: 40, // <= 0 to use vocab size
top_p: 0.5, // 1.0 = disabled
top_p: 0.95, // 1.0 = disabled
min_p: 0.05, // 0 = disabled
tfs_z: 1.0, // 1.0 = disabled
typical_p: 1.0, // 1.0 = disabled
@@ -235,10 +235,11 @@
grammar: '',
n_probs: 0, // no completion_probabilities,
image_data: [],
cache_prompt: true
cache_prompt: true,
api_key: ''
})
/* START: Support for storing prompt templates and parameters in borwser LocalStorage */
/* START: Support for storing prompt templates and parameters in browsers LocalStorage */
const local_storage_storageKey = "llamacpp_server_local_storage";
@@ -282,7 +283,7 @@
let importedTemplates = local_storage_getDataAsObject('user_templates')
if (importedTemplates) {
// saved templates were successfuly imported.
// saved templates were successfully imported.
console.log('Processing saved templates and updating default template')
params.value = { ...params.value, image_data: [] };
@@ -303,7 +304,7 @@
}
function userTemplateResetToDefault() {
console.log('Reseting themplate to default')
console.log('Resetting template to default')
selectedUserTemplate.value.name = 'default';
selectedUserTemplate.value.data = savedUserTemplates.value['default'];
}
@@ -426,7 +427,7 @@
}
if (data.timings) {
llamaStats.value = data.timings;
llamaStats.value = data;
}
}
@@ -762,7 +763,7 @@
<fieldset class="two">
${IntField({ label: "Predictions", max: 2048, min: -1, name: "n_predict", value: params.value.n_predict })}
${FloatField({ label: "Temperature", max: 1.5, min: 0.0, name: "temperature", step: 0.01, value: params.value.temperature })}
${FloatField({ label: "Temperature", max: 2.0, min: 0.0, name: "temperature", step: 0.01, value: params.value.temperature })}
${FloatField({ label: "Penalize repeat sequence", max: 2.0, min: 0.0, name: "repeat_penalty", step: 0.01, value: params.value.repeat_penalty })}
${IntField({ label: "Consider N tokens for penalize", max: 2048, min: 0, name: "repeat_last_n", value: params.value.repeat_last_n })}
${IntField({ label: "Top-K sampling", max: 100, min: -1, name: "top_k", value: params.value.top_k })}
@@ -790,6 +791,10 @@
<fieldset>
${IntField({ label: "Show Probabilities", max: 10, min: 0, name: "n_probs", value: params.value.n_probs })}
</fieldset>
<fieldset>
<label for="api_key">API Key</label>
<input type="text" name="api_key" value="${params.value.api_key}" placeholder="Enter API key" oninput=${updateParams} />
</fieldset>
</details>
</form>
`
@@ -875,7 +880,7 @@
}
return html`
<span>
${llamaStats.value.predicted_per_token_ms.toFixed()}ms per token, ${llamaStats.value.predicted_per_second.toFixed(2)} tokens per second
${llamaStats.value.tokens_predicted} predicted, ${llamaStats.value.tokens_cached} cached, ${llamaStats.value.timings.predicted_per_token_ms.toFixed()}ms per token, ${llamaStats.value.timings.predicted_per_second.toFixed(2)} tokens per second
</span>
`
}

View File

@@ -10,7 +10,8 @@
// crash the server in debug mode, otherwise send an http 500 error
#define CPPHTTPLIB_NO_EXCEPTIONS 1
#endif
// increase max payload length to allow use of larger context size
#define CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 1048576
#include "httplib.h"
#include "json.hpp"
@@ -24,6 +25,7 @@
#include <thread>
#include <mutex>
#include <chrono>
#include <condition_variable>
#ifndef SERVER_VERBOSE
#define SERVER_VERBOSE 1
@@ -36,6 +38,7 @@ using json = nlohmann::json;
struct server_params
{
std::string hostname = "127.0.0.1";
std::string api_key;
std::string public_path = "examples/server/public";
int32_t port = 8080;
int32_t read_timeout = 600;
@@ -79,7 +82,7 @@ static inline bool is_base64(uint8_t c)
return (isalnum(c) || (c == '+') || (c == '/'));
}
static std::vector<uint8_t> base64_decode(std::string const &encoded_string)
static std::vector<uint8_t> base64_decode(const std::string & encoded_string)
{
int i = 0;
int j = 0;
@@ -206,10 +209,10 @@ struct slot_image
int32_t id;
bool request_encode_image = false;
float* image_embedding = nullptr;
float * image_embedding = nullptr;
int32_t image_tokens = 0;
clip_image_u8 img_data;
clip_image_u8 * img_data;
std::string prefix_prompt; // before of this image
};
@@ -376,7 +379,6 @@ struct llama_client_slot
int32_t num_prompt_tokens = 0;
int32_t num_prompt_tokens_processed = 0;
int32_t multibyte_pending = 0;
json prompt;
std::string generated_text;
@@ -425,7 +427,6 @@ struct llama_client_slot
stopped_word = false;
stopped_limit = false;
stopping_word = "";
multibyte_pending = 0;
n_past = 0;
sent_count = 0;
sent_token_probs_index = 0;
@@ -433,20 +434,27 @@ struct llama_client_slot
generated_token_probs.clear();
for (slot_image &img : images)
for (slot_image & img : images)
{
free(img.image_embedding);
delete[] img.img_data.data;
if (img.img_data) {
clip_image_u8_free(img.img_data);
}
img.prefix_prompt = "";
}
images.clear();
// llama_set_rng_seed(ctx, params.seed); in batched the seed matter???????
}
bool has_budget(gpt_params &global_params) {
if (params.n_predict == -1 && global_params.n_predict == -1)
{
return true; // limitless
}
n_remaining = -1;
if(params.n_predict != -1)
if (params.n_predict != -1)
{
n_remaining = params.n_predict - n_decoded;
}
@@ -454,7 +462,8 @@ struct llama_client_slot
{
n_remaining = global_params.n_predict - n_decoded;
}
return n_remaining > 0 || n_remaining == -1; // no budget || limitless
return n_remaining > 0; // no budget
}
bool available() const {
@@ -542,7 +551,9 @@ struct llama_server_context
std::vector<task_result> queue_results;
std::vector<task_multi> queue_multitasks;
std::mutex mutex_tasks; // also guards id_gen, and queue_multitasks
std::condition_variable condition_tasks;
std::mutex mutex_results;
std::condition_variable condition_results;
~llama_server_context()
{
@@ -761,6 +772,42 @@ struct llama_server_context
slot->prompt = "";
}
slot->sparams.penalty_prompt_tokens.clear();
slot->sparams.use_penalty_prompt_tokens = false;
const auto &penalty_prompt = data.find("penalty_prompt");
if (penalty_prompt != data.end())
{
if (penalty_prompt->is_string())
{
const auto penalty_prompt_string = penalty_prompt->get<std::string>();
auto penalty_tokens = llama_tokenize(model, penalty_prompt_string, false);
slot->sparams.penalty_prompt_tokens.swap(penalty_tokens);
if (slot->params.n_predict > 0)
{
slot->sparams.penalty_prompt_tokens.reserve(slot->sparams.penalty_prompt_tokens.size() + slot->params.n_predict);
}
slot->sparams.use_penalty_prompt_tokens = true;
}
else if (penalty_prompt->is_array())
{
const auto n_tokens = penalty_prompt->size();
slot->sparams.penalty_prompt_tokens.reserve(n_tokens + std::max(0, slot->params.n_predict));
const int n_vocab = llama_n_vocab(model);
for (const auto &penalty_token : *penalty_prompt)
{
if (penalty_token.is_number_integer())
{
const auto tok = penalty_token.get<llama_token>();
if (tok >= 0 && tok < n_vocab)
{
slot->sparams.penalty_prompt_tokens.push_back(tok);
}
}
}
slot->sparams.use_penalty_prompt_tokens = true;
}
}
slot->sparams.logit_bias.clear();
if (json_value(data, "ignore_eos", false))
@@ -813,24 +860,17 @@ struct llama_server_context
{
for (const auto &img : *images_data)
{
std::string data_b64 = img["data"].get<std::string>();
const std::vector<uint8_t> image_buffer = base64_decode(img["data"].get<std::string>());
slot_image img_sl;
img_sl.id = img.count("id") != 0 ? img["id"].get<int>() : slot->images.size();
int width, height, channels;
std::vector<uint8_t> image_buffer = base64_decode(data_b64);
data_b64.clear();
auto data = stbi_load_from_memory(image_buffer.data(), image_buffer.size(), &width, &height, &channels, 3);
if (!data) {
img_sl.img_data = clip_image_u8_init();
if (!clip_image_load_from_bytes(image_buffer.data(), image_buffer.size(), img_sl.img_data))
{
LOG_TEE("slot %i - failed to load image [id: %i]\n", slot->id, img_sl.id);
return false;
}
LOG_TEE("slot %i - image loaded [id: %i] resolution (%i x %i)\n", slot->id, img_sl.id, width, height);
img_sl.img_data.nx = width;
img_sl.img_data.ny = height;
img_sl.img_data.size = width * height * 3;
img_sl.img_data.data = new uint8_t[width * height * 3]();
memcpy(img_sl.img_data.data, data, width * height * 3);
stbi_image_free(data);
LOG_TEE("slot %i - loaded image\n", slot->id);
img_sl.request_encode_image = true;
slot->images.push_back(img_sl);
}
@@ -885,6 +925,7 @@ struct llama_server_context
llama_sampling_free(slot->ctx_sampling);
}
slot->ctx_sampling = llama_sampling_init(slot->sparams);
llama_set_rng_seed(ctx, slot->params.seed);
slot->command = LOAD_PROMPT;
all_slots_are_idle = false;
@@ -992,35 +1033,42 @@ struct llama_server_context
slot.generated_text += token_str;
slot.has_next_token = true;
if (slot.multibyte_pending > 0)
if (slot.ctx_sampling->params.use_penalty_prompt_tokens && result.tok != -1)
{
slot.multibyte_pending -= token_str.size();
// we can change penalty_prompt_tokens because it is always created from scratch each request
slot.ctx_sampling->params.penalty_prompt_tokens.push_back(result.tok);
}
else if (token_str.size() == 1)
// check if there is incomplete UTF-8 character at the end
bool incomplete = false;
for (unsigned i = 1; i < 5 && i <= slot.generated_text.size(); ++i)
{
const char c = token_str[0];
// 2-byte characters: 110xxxxx 10xxxxxx
unsigned char c = slot.generated_text[slot.generated_text.size() - i];
if ((c & 0xC0) == 0x80)
{
// continuation byte: 10xxxxxx
continue;
}
if ((c & 0xE0) == 0xC0)
{
slot.multibyte_pending = 1;
// 3-byte characters: 1110xxxx 10xxxxxx 10xxxxxx
// 2-byte character: 110xxxxx ...
incomplete = i < 2;
}
else if ((c & 0xF0) == 0xE0)
{
slot.multibyte_pending = 2;
// 4-byte characters: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
// 3-byte character: 1110xxxx ...
incomplete = i < 3;
}
else if ((c & 0xF8) == 0xF0)
{
slot.multibyte_pending = 3;
}
else
{
slot.multibyte_pending = 0;
// 4-byte character: 11110xxx ...
incomplete = i < 4;
}
// else 1-byte character or invalid byte
break;
}
if (slot.multibyte_pending == 0)
if (!incomplete)
{
size_t pos = std::min(slot.sent_count, slot.generated_text.size());
const std::string str_test = slot.generated_text.substr(pos);
@@ -1055,13 +1103,13 @@ struct llama_server_context
}
}
if (slot.multibyte_pending > 0 && !slot.has_next_token)
if (incomplete)
{
slot.has_next_token = true;
}
// check the limits
if (slot.n_decoded > 2 && slot.has_next_token && !slot.has_budget(params))
if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params))
{
slot.stopped_limit = true;
slot.has_next_token = false;
@@ -1097,8 +1145,8 @@ struct llama_server_context
{
continue;
}
clip_image_f32 img_res;
if (!clip_image_preprocess(clp_ctx, &img.img_data, &img_res, /*pad2square =*/ true))
clip_image_f32 * img_res = clip_image_f32_init();
if (!clip_image_preprocess(clp_ctx, img.img_data, img_res, /*pad2square =*/ true))
{
LOG_TEE("Error processing the given image");
clip_free(clp_ctx);
@@ -1113,11 +1161,12 @@ struct llama_server_context
return false;
}
LOG_TEE("slot %i - encoding image [id: %i]\n", slot.id, img.id);
if (!clip_image_encode(clp_ctx, params.n_threads, &img_res, img.image_embedding))
if (!clip_image_encode(clp_ctx, params.n_threads, img_res, img.image_embedding))
{
LOG_TEE("Unable to encode image\n");
return false;
}
clip_image_f32_free(img_res);
img.request_encode_image = false;
}
@@ -1126,7 +1175,7 @@ struct llama_server_context
void send_error(task_server& task, std::string error)
{
std::lock_guard<std::mutex> lock(mutex_results);
std::unique_lock<std::mutex> lock(mutex_results);
task_result res;
res.id = task.id;
res.multitask_id = task.multitask_id;
@@ -1134,6 +1183,7 @@ struct llama_server_context
res.error = true;
res.result_json = { { "content", error } };
queue_results.push_back(res);
condition_results.notify_all();
}
void add_multi_task(int id, std::vector<int>& sub_ids)
@@ -1143,6 +1193,7 @@ struct llama_server_context
multi.id = id;
std::copy(sub_ids.begin(), sub_ids.end(), std::inserter(multi.subtasks_remaining, multi.subtasks_remaining.end()));
queue_multitasks.push_back(multi);
condition_tasks.notify_one();
}
void update_multi_task(int multitask_id, int subtask_id, task_result& result)
@@ -1154,6 +1205,7 @@ struct llama_server_context
{
multitask.subtasks_remaining.erase(subtask_id);
multitask.results.push_back(result);
condition_tasks.notify_one();
}
}
}
@@ -1172,7 +1224,7 @@ struct llama_server_context
{"n_ctx", slot.n_ctx},
{"model", params.model_alias},
{"seed", slot.params.seed},
{"temp", slot.sparams.temp},
{"temperature", slot.sparams.temp},
{"top_k", slot.sparams.top_k},
{"top_p", slot.sparams.top_p},
{"min_p", slot.sparams.min_p},
@@ -1182,6 +1234,8 @@ struct llama_server_context
{"repeat_penalty", slot.sparams.penalty_repeat},
{"presence_penalty", slot.sparams.penalty_present},
{"frequency_penalty", slot.sparams.penalty_freq},
{"penalty_prompt_tokens", slot.sparams.penalty_prompt_tokens},
{"use_penalty_prompt_tokens", slot.sparams.use_penalty_prompt_tokens},
{"mirostat", slot.sparams.mirostat},
{"mirostat_tau", slot.sparams.mirostat_tau},
{"mirostat_eta", slot.sparams.mirostat_eta},
@@ -1199,7 +1253,7 @@ struct llama_server_context
void send_partial_response(llama_client_slot &slot, completion_token_output tkn)
{
std::lock_guard<std::mutex> lock(mutex_results);
std::unique_lock<std::mutex> lock(mutex_results);
task_result res;
res.id = slot.task_id;
res.multitask_id = slot.multitask_id;
@@ -1218,7 +1272,7 @@ struct llama_server_context
{
std::vector<completion_token_output> probs_output = {};
const std::vector<llama_token> to_send_toks = llama_tokenize(ctx, tkn.text_to_send, false);
size_t probs_pos = std::min(slot.sent_token_probs_index, slot.generated_token_probs.size());
size_t probs_pos = std::min(slot.sent_token_probs_index, slot.generated_token_probs.size());
size_t probs_stop_pos = std::min(slot.sent_token_probs_index + to_send_toks.size(), slot.generated_token_probs.size());
if (probs_pos < probs_stop_pos)
{
@@ -1235,11 +1289,12 @@ struct llama_server_context
}
queue_results.push_back(res);
condition_results.notify_all();
}
void send_final_response(llama_client_slot &slot)
{
std::lock_guard<std::mutex> lock(mutex_results);
std::unique_lock<std::mutex> lock(mutex_results);
task_result res;
res.id = slot.task_id;
res.multitask_id = slot.multitask_id;
@@ -1277,7 +1332,7 @@ struct llama_server_context
{
probs = std::vector<completion_token_output>(
slot.generated_token_probs.begin(),
slot.generated_token_probs.begin() + slot.sent_token_probs_index);
slot.generated_token_probs.end());
}
res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs);
}
@@ -1295,11 +1350,12 @@ struct llama_server_context
}
queue_results.push_back(res);
condition_results.notify_all();
}
void send_embedding(llama_client_slot &slot)
{
std::lock_guard<std::mutex> lock(mutex_results);
std::unique_lock<std::mutex> lock(mutex_results);
task_result res;
res.id = slot.task_id;
res.multitask_id = slot.multitask_id;
@@ -1327,6 +1383,7 @@ struct llama_server_context
};
}
queue_results.push_back(res);
condition_results.notify_all();
}
int request_completion(json data, bool infill, bool embedding, int multitask_id)
@@ -1350,6 +1407,7 @@ struct llama_server_context
// otherwise, it's a single-prompt task, we actually queue it
queue_tasks.push_back(task);
condition_tasks.notify_one();
return task.id;
}
@@ -1357,13 +1415,10 @@ struct llama_server_context
{
while (true)
{
std::this_thread::sleep_for(std::chrono::microseconds(5));
std::lock_guard<std::mutex> lock(mutex_results);
if (queue_results.empty())
{
continue;
}
std::unique_lock<std::mutex> lock(mutex_results);
condition_results.wait(lock, [&]{
return !queue_results.empty();
});
for (int i = 0; i < (int) queue_results.size(); i++)
{
@@ -1459,12 +1514,13 @@ struct llama_server_context
void request_cancel(int task_id)
{
std::lock_guard<std::mutex> lock(mutex_tasks);
std::unique_lock<std::mutex> lock(mutex_tasks);
task_server task;
task.id = id_gen++;
task.type = CANCEL_TASK;
task.target_id = task_id;
queue_tasks.push_back(task);
condition_tasks.notify_one();
}
int split_multiprompt_task(task_server& multiprompt_task)
@@ -1490,7 +1546,7 @@ struct llama_server_context
void process_tasks()
{
std::lock_guard<std::mutex> lock(mutex_tasks);
std::unique_lock<std::mutex> lock(mutex_tasks);
while (!queue_tasks.empty())
{
task_server task = queue_tasks.front();
@@ -1562,6 +1618,7 @@ struct llama_server_context
std::lock_guard<std::mutex> lock(mutex_results);
queue_results.push_back(aggregate_result);
condition_results.notify_all();
queue_iterator = queue_multitasks.erase(queue_iterator);
}
@@ -1592,8 +1649,10 @@ struct llama_server_context
LOG_TEE("all slots are idle and system prompt is empty, clear the KV cache\n");
kv_cache_clear();
}
// avoid 100% usage of cpu all time
std::this_thread::sleep_for(std::chrono::milliseconds(5));
std::unique_lock<std::mutex> lock(mutex_tasks);
condition_tasks.wait(lock, [&]{
return !queue_tasks.empty();
});
}
for (llama_client_slot &slot : slots)
@@ -1651,7 +1710,6 @@ struct llama_server_context
llama_batch_add(batch, slot.sampled, system_tokens.size() + slot.n_past, { slot.id }, true);
slot.n_decoded += 1;
slot.n_past += 1;
}
@@ -1869,6 +1927,7 @@ struct llama_server_context
llama_sampling_accept(slot.ctx_sampling, ctx, id, true);
slot.n_decoded += 1;
if (slot.n_decoded == 1)
{
slot.t_start_genereration = ggml_time_us();
@@ -1954,6 +2013,7 @@ static void server_print_usage(const char *argv0, const gpt_params &params,
printf(" --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str());
printf(" --port PORT port to listen (default (default: %d)\n", sparams.port);
printf(" --path PUBLIC_PATH path from which to serve static files (default %s)\n", sparams.public_path.c_str());
printf(" --api-key API_KEY optional api key to enhance server security. If set, requests must include this key for access.\n");
printf(" -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout);
printf(" --embedding enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled");
printf(" -np N, --parallel N number of slots for process requests (default: %d)\n", params.n_parallel);
@@ -1963,6 +2023,10 @@ static void server_print_usage(const char *argv0, const gpt_params &params,
printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA.\n");
printf(" --log-disable disables logging to a file.\n");
printf("\n");
printf(" --override-kv KEY=TYPE:VALUE\n");
printf(" advanced option to override model metadata by key. may be specified multiple times.\n");
printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
printf("\n");
}
static void server_params_parse(int argc, char **argv, server_params &sparams,
@@ -2003,6 +2067,15 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
}
sparams.public_path = argv[i];
}
else if (arg == "--api-key")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
sparams.api_key = argv[i];
}
else if (arg == "--timeout" || arg == "-to")
{
if (++i >= argc)
@@ -2108,10 +2181,6 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
}
params.yarn_beta_slow = std::stof(argv[i]);
}
else if (arg == "--memory-f32" || arg == "--memory_f32")
{
params.memory_f16 = false;
}
else if (arg == "--threads" || arg == "-t")
{
if (++i >= argc)
@@ -2321,6 +2390,49 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
log_set_target(stdout);
LOG_INFO("logging to file is disabled.", {});
}
else if (arg == "--override-kv")
{
if (++i >= argc) {
invalid_param = true;
break;
}
char * sep = strchr(argv[i], '=');
if (sep == nullptr || sep - argv[i] >= 128) {
fprintf(stderr, "error: Malformed KV override: %s\n", argv[i]);
invalid_param = true;
break;
}
struct llama_model_kv_override kvo;
std::strncpy(kvo.key, argv[i], sep - argv[i]);
kvo.key[sep - argv[i]] = 0;
sep++;
if (strncmp(sep, "int:", 4) == 0) {
sep += 4;
kvo.tag = LLAMA_KV_OVERRIDE_INT;
kvo.int_value = std::atol(sep);
} else if (strncmp(sep, "float:", 6) == 0) {
sep += 6;
kvo.tag = LLAMA_KV_OVERRIDE_FLOAT;
kvo.float_value = std::atof(sep);
} else if (strncmp(sep, "bool:", 5) == 0) {
sep += 5;
kvo.tag = LLAMA_KV_OVERRIDE_BOOL;
if (std::strcmp(sep, "true") == 0) {
kvo.bool_value = true;
} else if (std::strcmp(sep, "false") == 0) {
kvo.bool_value = false;
} else {
fprintf(stderr, "error: Invalid boolean value for KV override: %s\n", argv[i]);
invalid_param = true;
break;
}
} else {
fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]);
invalid_param = true;
break;
}
params.kv_overrides.push_back(kvo);
}
else
{
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
@@ -2328,6 +2440,10 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
exit(1);
}
}
if (!params.kv_overrides.empty()) {
params.kv_overrides.emplace_back(llama_model_kv_override());
params.kv_overrides.back().key[0] = 0;
}
if (invalid_param)
{
@@ -2386,27 +2502,35 @@ json oaicompat_completion_params_parse(
llama_params["__oaicompat"] = true;
// Map OpenAI parameters to llama.cpp parameters
//
// For parameters that are defined by the OpenAI documentation (e.g.
// temperature), we explicitly specify OpenAI's intended default; we
// need to do that because sometimes OpenAI disagrees with llama.cpp
//
// https://platform.openai.com/docs/api-reference/chat/create
llama_sampling_params default_sparams;
llama_params["model"] = json_value(body, "model", std::string("uknown"));
llama_params["prompt"] = format_chatml(body["messages"]); // OpenAI 'messages' to llama.cpp 'prompt'
llama_params["cache_prompt"] = json_value(body, "cache_prompt", false);
llama_params["temperature"] = json_value(body, "temperature", 0.8);
llama_params["top_k"] = json_value(body, "top_k", 40);
llama_params["top_p"] = json_value(body, "top_p", 0.95);
llama_params["temperature"] = json_value(body, "temperature", 0.0);
llama_params["top_k"] = json_value(body, "top_k", default_sparams.top_k);
llama_params["top_p"] = json_value(body, "top_p", 1.0);
llama_params["n_predict"] = json_value(body, "max_tokens", -1);
llama_params["logit_bias"] = json_value(body, "logit_bias",json::object());
llama_params["frequency_penalty"] = json_value(body, "frequency_penalty", 0.0);
llama_params["presence_penalty"] = json_value(body, "presence_penalty", 0.0);
llama_params["seed"] = json_value(body, "seed", 0);
llama_params["seed"] = json_value(body, "seed", LLAMA_DEFAULT_SEED);
llama_params["stream"] = json_value(body, "stream", false);
llama_params["mirostat"] = json_value(body, "mirostat", false);
llama_params["mirostat_tau"] = json_value(body, "mirostat_tau", 0.0);
llama_params["mirostat_eta"] = json_value(body, "mirostat_eta", 0.0);
llama_params["penalize_nl"] = json_value(body, "penalize_nl", false);
llama_params["typical_p"] = json_value(body, "typical_p", 0.0);
llama_params["repeat_last_n"] = json_value(body, "repeat_last_n", 0);
llama_params["mirostat"] = json_value(body, "mirostat", default_sparams.mirostat);
llama_params["mirostat_tau"] = json_value(body, "mirostat_tau", default_sparams.mirostat_tau);
llama_params["mirostat_eta"] = json_value(body, "mirostat_eta", default_sparams.mirostat_eta);
llama_params["penalize_nl"] = json_value(body, "penalize_nl", default_sparams.penalize_nl);
llama_params["typical_p"] = json_value(body, "typical_p", default_sparams.typical_p);
llama_params["repeat_last_n"] = json_value(body, "repeat_last_n", default_sparams.penalty_last_n);
llama_params["ignore_eos"] = json_value(body, "ignore_eos", false);
llama_params["tfs_z"] = json_value(body, "tfs_z", 0.0);
llama_params["tfs_z"] = json_value(body, "tfs_z", default_sparams.tfs_z);
if (llama_params.count("grammar") != 0) {
if (body.count("grammar") != 0) {
llama_params["grammar"] = json_value(body, "grammar", json::object());
}
@@ -2637,6 +2761,9 @@ static void append_to_generated_text_from_generated_token_probs(llama_server_con
int main(int argc, char **argv)
{
#if SERVER_VERBOSE != 1
log_disable();
#endif
// own arguments required by this example
gpt_params params;
server_params sparams;
@@ -2673,6 +2800,32 @@ int main(int argc, char **argv)
httplib::Server svr;
// Middleware for API key validation
auto validate_api_key = [&sparams](const httplib::Request &req, httplib::Response &res) -> bool {
// If API key is not set, skip validation
if (sparams.api_key.empty()) {
return true;
}
// Check for API key in the header
auto auth_header = req.get_header_value("Authorization");
std::string prefix = "Bearer ";
if (auth_header.substr(0, prefix.size()) == prefix) {
std::string received_api_key = auth_header.substr(prefix.size());
if (received_api_key == sparams.api_key) {
return true; // API key is valid
}
}
// API key is invalid or not provided
res.set_content("Unauthorized: Invalid API Key", "text/plain; charset=utf-8");
res.status = 401; // Unauthorized
LOG_WARNING("Unauthorized: Invalid API Key", {});
return false;
};
svr.set_default_headers({{"Server", "llama.cpp"},
{"Access-Control-Allow-Origin", "*"},
{"Access-Control-Allow-Headers", "content-type"}});
@@ -2680,28 +2833,28 @@ int main(int argc, char **argv)
// this is only called if no index.html is found in the public --path
svr.Get("/", [](const httplib::Request &, httplib::Response &res)
{
res.set_content(reinterpret_cast<const char*>(&index_html), index_html_len, "text/html");
res.set_content(reinterpret_cast<const char*>(&index_html), index_html_len, "text/html; charset=utf-8");
return false;
});
// this is only called if no index.js is found in the public --path
svr.Get("/index.js", [](const httplib::Request &, httplib::Response &res)
{
res.set_content(reinterpret_cast<const char *>(&index_js), index_js_len, "text/javascript");
res.set_content(reinterpret_cast<const char *>(&index_js), index_js_len, "text/javascript; charset=utf-8");
return false;
});
// this is only called if no index.html is found in the public --path
svr.Get("/completion.js", [](const httplib::Request &, httplib::Response &res)
{
res.set_content(reinterpret_cast<const char*>(&completion_js), completion_js_len, "application/javascript");
res.set_content(reinterpret_cast<const char*>(&completion_js), completion_js_len, "application/javascript; charset=utf-8");
return false;
});
// this is only called if no index.html is found in the public --path
svr.Get("/json-schema-to-grammar.mjs", [](const httplib::Request &, httplib::Response &res)
{
res.set_content(reinterpret_cast<const char*>(&json_schema_to_grammar_mjs), json_schema_to_grammar_mjs_len, "application/javascript");
res.set_content(reinterpret_cast<const char*>(&json_schema_to_grammar_mjs), json_schema_to_grammar_mjs_len, "application/javascript; charset=utf-8");
return false;
});
@@ -2712,23 +2865,26 @@ int main(int argc, char **argv)
{ "user_name", llama.name_user.c_str() },
{ "assistant_name", llama.name_assistant.c_str() }
};
res.set_content(data.dump(), "application/json");
res.set_content(data.dump(), "application/json; charset=utf-8");
});
svr.Post("/completion", [&llama](const httplib::Request &req, httplib::Response &res)
svr.Post("/completion", [&llama, &validate_api_key](const httplib::Request &req, httplib::Response &res)
{
if (!validate_api_key(req, res)) {
return;
}
json data = json::parse(req.body);
const int task_id = llama.request_completion(data, false, false, -1);
if (!json_value(data, "stream", false)) {
std::string completion_text;
task_result result = llama.next_result(task_id);
if (!result.error && result.stop) {
res.set_content(result.result_json.dump(-1, ' ', false, json::error_handler_t::replace), "application/json");
res.set_content(result.result_json.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8");
}
else
{
res.status = 404;
res.set_content(result.result_json["content"], "text/plain");
res.set_content(result.result_json["content"], "text/plain; charset=utf-8");
return;
}
} else {
@@ -2799,12 +2955,15 @@ int main(int argc, char **argv)
}}
};
res.set_content(models.dump(), "application/json");
res.set_content(models.dump(), "application/json; charset=utf-8");
});
// TODO: add mount point without "/v1" prefix -- how?
svr.Post("/v1/chat/completions", [&llama](const httplib::Request &req, httplib::Response &res)
svr.Post("/v1/chat/completions", [&llama, &validate_api_key](const httplib::Request &req, httplib::Response &res)
{
if (!validate_api_key(req, res)) {
return;
}
json data = oaicompat_completion_params_parse(json::parse(req.body));
const int task_id = llama.request_completion(data, false, false, -1);
@@ -2818,10 +2977,10 @@ int main(int argc, char **argv)
res.set_content(oaicompat_result.dump(-1, ' ', false,
json::error_handler_t::replace),
"application/json");
"application/json; charset=utf-8");
} else {
res.status = 500;
res.set_content(result.result_json["content"], "text/plain");
res.set_content(result.result_json["content"], "text/plain; charset=utf-8");
return;
}
} else {
@@ -2873,8 +3032,11 @@ int main(int argc, char **argv)
}
});
svr.Post("/infill", [&llama](const httplib::Request &req, httplib::Response &res)
svr.Post("/infill", [&llama, &validate_api_key](const httplib::Request &req, httplib::Response &res)
{
if (!validate_api_key(req, res)) {
return;
}
json data = json::parse(req.body);
const int task_id = llama.request_completion(data, true, false, -1);
if (!json_value(data, "stream", false)) {
@@ -2882,12 +3044,12 @@ int main(int argc, char **argv)
task_result result = llama.next_result(task_id);
if (!result.error && result.stop)
{
res.set_content(result.result_json.dump(-1, ' ', false, json::error_handler_t::replace), "application/json");
res.set_content(result.result_json.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8");
}
else
{
res.status = 404;
res.set_content(result.result_json["content"], "text/plain");
res.set_content(result.result_json["content"], "text/plain; charset=utf-8");
return;
}
} else {
@@ -2936,11 +3098,11 @@ int main(int argc, char **argv)
svr.Get("/model.json", [&llama](const httplib::Request &, httplib::Response &res)
{
const json data = llama.get_model_props();
return res.set_content(data.dump(), "application/json");
return res.set_content(data.dump(), "application/json; charset=utf-8");
});
svr.Options(R"(/.*)", [](const httplib::Request &, httplib::Response &res)
{ return res.set_content("", "application/json"); });
{ return res.set_content("", "application/json; charset=utf-8"); });
svr.Post("/tokenize", [&llama](const httplib::Request &req, httplib::Response &res)
{
@@ -2951,7 +3113,7 @@ int main(int argc, char **argv)
tokens = llama.tokenize(body["content"], false);
}
const json data = format_tokenizer_response(tokens);
return res.set_content(data.dump(), "application/json");
return res.set_content(data.dump(), "application/json; charset=utf-8");
});
svr.Post("/detokenize", [&llama](const httplib::Request &req, httplib::Response &res)
@@ -2965,7 +3127,7 @@ int main(int argc, char **argv)
}
const json data = format_detokenized_response(content);
return res.set_content(data.dump(), "application/json");
return res.set_content(data.dump(), "application/json; charset=utf-8");
});
svr.Post("/embedding", [&llama](const httplib::Request &req, httplib::Response &res)
@@ -2980,9 +3142,19 @@ int main(int argc, char **argv)
{
prompt = "";
}
const int task_id = llama.request_completion({ {"prompt", prompt}, { "n_predict", 0} }, false, true, -1);
json image_data;
if (body.count("image_data") != 0) {
image_data = body["image_data"];
}
else
{
image_data = "";
}
const int task_id = llama.request_completion({ {"prompt", prompt}, { "n_predict", 0}, {"image_data", image_data} }, false, true, -1);
task_result result = llama.next_result(task_id);
return res.set_content(result.result_json.dump(), "application/json");
return res.set_content(result.result_json.dump(), "application/json; charset=utf-8");
});
svr.set_logger(log_server_request);
@@ -3003,19 +3175,23 @@ int main(int argc, char **argv)
{
snprintf(buf, sizeof(buf), fmt, "Unknown Exception");
}
res.set_content(buf, "text/plain");
res.set_content(buf, "text/plain; charset=utf-8");
res.status = 500;
});
svr.set_error_handler([](const httplib::Request &, httplib::Response &res)
{
if (res.status == 401)
{
res.set_content("Unauthorized", "text/plain; charset=utf-8");
}
if (res.status == 400)
{
res.set_content("Invalid request", "text/plain");
res.set_content("Invalid request", "text/plain; charset=utf-8");
}
else if (res.status != 500)
else if (res.status == 404)
{
res.set_content("File Not Found", "text/plain");
res.set_content("File Not Found", "text/plain; charset=utf-8");
res.status = 404;
}
});
@@ -3036,11 +3212,15 @@ int main(int argc, char **argv)
// to make it ctrl+clickable:
LOG_TEE("\nllama server listening at http://%s:%d\n\n", sparams.hostname.c_str(), sparams.port);
LOG_INFO("HTTP server listening", {
{"hostname", sparams.hostname},
{"port", sparams.port},
});
std::unordered_map<std::string, std::string> log_data;
log_data["hostname"] = sparams.hostname;
log_data["port"] = std::to_string(sparams.port);
if (!sparams.api_key.empty()) {
log_data["api_key"] = "api_key: ****" + sparams.api_key.substr(sparams.api_key.length() - 4);
}
LOG_INFO("HTTP server listening", log_data);
// run the HTTP server in a thread - see comment below
std::thread t([&]()
{

View File

@@ -1,6 +1,6 @@
# llama.cpp/examples/speculative
Demonstartion of speculative decoding and tree-based speculative decoding techniques
Demonstration of speculative decoding and tree-based speculative decoding techniques
More info:

View File

@@ -428,7 +428,7 @@ int main(int argc, char ** argv) {
++n_past_tgt;
}
// the first token is always proposed by the traget model before the speculation loop so we erase it here
// the first token is always proposed by the target model before the speculation loop so we erase it here
for (int s = 0; s < n_seq_dft; ++s) {
if (!drafts[s].active) {
continue;

View File

@@ -369,10 +369,7 @@ static struct ggml_tensor * llama_build_train_graphs(
checkpoints.push_back(t00);
checkpoints.push_back(t01);
struct ggml_tensor * kv_scale = NULL;
if (!enable_flash_attn) {
kv_scale = ggml_new_f32(ctx, 1.0f/sqrtf(float(n_embd)/n_head));
}
const float kv_scale = 1.0f/sqrtf(float(n_embd)/n_head);
for (int il = 0; il < n_layer; ++il) {
struct my_llama_layer & layer = model->layers[il];
@@ -444,14 +441,13 @@ static struct ggml_tensor * llama_build_train_graphs(
// make sure some tensors are not reallocated by inserting new temporary nodes depending on them
int n_leafs_before = gb->n_leafs;
int n_nodes_before = gb->n_nodes;
struct ggml_tensor * one = ggml_new_f32(ctx, 1.0f);
// output tensors
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t35, one));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36, one));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t35, 1.0f));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36, 1.0f));
// input gradient
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36->grad, one));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36->grad, 1.0f));
// KQ_pos
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, KQ_pos, one));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, KQ_pos, 1.0f));
GGML_ASSERT(t36->grad->data == NULL && t36->grad->view_src == NULL);
ggml_allocr_alloc(alloc, t36->grad);
@@ -1295,10 +1291,6 @@ int main(int argc, char ** argv) {
opt_cb_data.last_save_iter = opt->iter;
}
if (alloc) {
ggml_allocr_free(alloc);
}
ggml_free(opt->ctx);
free_train_state(train);
ggml_free(model.ctx);

55
flake.lock generated
View File

@@ -1,30 +1,30 @@
{
"nodes": {
"flake-utils": {
"flake-parts": {
"inputs": {
"systems": "systems"
"nixpkgs-lib": "nixpkgs-lib"
},
"locked": {
"lastModified": 1694529238,
"narHash": "sha256-zsNZZGTGnMOf9YpHKJqMSsa0dXbfmxeoJ7xHlrt+xmY=",
"owner": "numtide",
"repo": "flake-utils",
"rev": "ff7b65b44d01cf9ba6a71320833626af21126384",
"lastModified": 1701473968,
"narHash": "sha256-YcVE5emp1qQ8ieHUnxt1wCZCC3ZfAS+SRRWZ2TMda7E=",
"owner": "hercules-ci",
"repo": "flake-parts",
"rev": "34fed993f1674c8d06d58b37ce1e0fe5eebcb9f5",
"type": "github"
},
"original": {
"owner": "numtide",
"repo": "flake-utils",
"owner": "hercules-ci",
"repo": "flake-parts",
"type": "github"
}
},
"nixpkgs": {
"locked": {
"lastModified": 1698318101,
"narHash": "sha256-gUihHt3yPD7bVqg+k/UVHgngyaJ3DMEBchbymBMvK1E=",
"lastModified": 1703637592,
"narHash": "sha256-8MXjxU0RfFfzl57Zy3OfXCITS0qWDNLzlBAdwxGZwfY=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "63678e9f3d3afecfeafa0acead6239cdb447574c",
"rev": "cfc3698c31b1fb9cdcf10f36c9643460264d0ca8",
"type": "github"
},
"original": {
@@ -34,26 +34,29 @@
"type": "github"
}
},
"root": {
"inputs": {
"flake-utils": "flake-utils",
"nixpkgs": "nixpkgs"
}
},
"systems": {
"nixpkgs-lib": {
"locked": {
"lastModified": 1681028828,
"narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
"owner": "nix-systems",
"repo": "default",
"rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
"dir": "lib",
"lastModified": 1701253981,
"narHash": "sha256-ztaDIyZ7HrTAfEEUt9AtTDNoCYxUdSd6NrRHaYOIxtk=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "e92039b55bcd58469325ded85d4f58dd5a4eaf58",
"type": "github"
},
"original": {
"owner": "nix-systems",
"repo": "default",
"dir": "lib",
"owner": "NixOS",
"ref": "nixos-unstable",
"repo": "nixpkgs",
"type": "github"
}
},
"root": {
"inputs": {
"flake-parts": "flake-parts",
"nixpkgs": "nixpkgs"
}
}
},
"root": "root",

271
flake.nix
View File

@@ -1,139 +1,144 @@
{
description = "Port of Facebook's LLaMA model in C/C++";
inputs = {
nixpkgs.url = "github:NixOS/nixpkgs/nixos-unstable";
flake-utils.url = "github:numtide/flake-utils";
flake-parts.url = "github:hercules-ci/flake-parts";
};
outputs = { self, nixpkgs, flake-utils }:
flake-utils.lib.eachDefaultSystem (system:
let
name = "llama.cpp";
src = ./.;
meta.mainProgram = "llama";
inherit (pkgs.stdenv) isAarch32 isAarch64 isDarwin;
buildInputs = with pkgs; [ openmpi ];
osSpecific = with pkgs; buildInputs ++ (
if isAarch64 && isDarwin then
with pkgs.darwin.apple_sdk_11_0.frameworks; [
Accelerate
MetalKit
]
else if isAarch32 && isDarwin then
with pkgs.darwin.apple_sdk.frameworks; [
Accelerate
CoreGraphics
CoreVideo
]
else if isDarwin then
with pkgs.darwin.apple_sdk.frameworks; [
Accelerate
CoreGraphics
CoreVideo
]
else
with pkgs; [ openblas ]
);
pkgs = import nixpkgs { inherit system; };
nativeBuildInputs = with pkgs; [ cmake ninja pkg-config ];
cudatoolkit_joined = with pkgs; symlinkJoin {
# HACK(Green-Sky): nix currently has issues with cmake findcudatoolkit
# see https://github.com/NixOS/nixpkgs/issues/224291
# copied from jaxlib
name = "${cudaPackages.cudatoolkit.name}-merged";
paths = [
cudaPackages.cudatoolkit.lib
cudaPackages.cudatoolkit.out
] ++ lib.optionals (lib.versionOlder cudaPackages.cudatoolkit.version "11") [
# for some reason some of the required libs are in the targets/x86_64-linux
# directory; not sure why but this works around it
"${cudaPackages.cudatoolkit}/targets/${system}"
];
};
llama-python =
pkgs.python3.withPackages (ps: with ps; [ numpy sentencepiece ]);
# TODO(Green-Sky): find a better way to opt-into the heavy ml python runtime
llama-python-extra =
pkgs.python3.withPackages (ps: with ps; [ numpy sentencepiece torchWithoutCuda transformers ]);
postPatch = ''
substituteInPlace ./ggml-metal.m \
--replace '[bundle pathForResource:@"ggml-metal" ofType:@"metal"];' "@\"$out/bin/ggml-metal.metal\";"
substituteInPlace ./*.py --replace '/usr/bin/env python' '${llama-python}/bin/python'
'';
postInstall = ''
mv $out/bin/main $out/bin/llama
mv $out/bin/server $out/bin/llama-server
mkdir -p $out/include
cp ${src}/llama.h $out/include/
'';
cmakeFlags = [ "-DLLAMA_NATIVE=OFF" "-DLLAMA_BUILD_SERVER=ON" "-DBUILD_SHARED_LIBS=ON" "-DCMAKE_SKIP_BUILD_RPATH=ON" ];
in
# Optional binary cache
nixConfig = {
extra-substituters = [
# Populated by the CI in ggerganov/llama.cpp
"https://llama-cpp.cachix.org"
# A development cache for nixpkgs imported with `config.cudaSupport = true`.
# Populated by https://hercules-ci.com/github/SomeoneSerge/nixpkgs-cuda-ci.
# This lets one skip building e.g. the CUDA-enabled openmpi.
# TODO: Replace once nix-community obtains an official one.
"https://cuda-maintainers.cachix.org"
];
# Verify these are the same keys as published on
# - https://app.cachix.org/cache/llama-cpp
# - https://app.cachix.org/cache/cuda-maintainers
extra-trusted-public-keys = [
"llama-cpp.cachix.org-1:H75X+w83wUKTIPSO1KWy9ADUrzThyGs8P5tmAbkWhQc="
"cuda-maintainers.cachix.org-1:0dq3bujKpuEPMCX6U4WylrUDZ9JyUG0VpVZa7CNfq5E="
];
};
# For inspection, use `nix flake show github:ggerganov/llama.cpp` or the nix repl:
#
# ```bash
# nix repl
# nix-repl> :lf github:ggerganov/llama.cpp
# Added 13 variables.
# nix-repl> outputs.apps.x86_64-linux.quantize
# { program = "/nix/store/00000000000000000000000000000000-llama.cpp/bin/quantize"; type = "app"; }
# ```
outputs =
{ self, flake-parts, ... }@inputs:
let
# We could include the git revisions in the package names but those would
# needlessly trigger rebuilds:
# llamaVersion = self.dirtyShortRev or self.shortRev;
# Nix already uses cryptographic hashes for versioning, so we'll just fix
# the fake semver for now:
llamaVersion = "0.0.0";
in
flake-parts.lib.mkFlake { inherit inputs; }
{
packages.default = pkgs.stdenv.mkDerivation {
inherit name src meta postPatch nativeBuildInputs postInstall;
buildInputs = osSpecific;
cmakeFlags = cmakeFlags
++ (if isAarch64 && isDarwin then [
"-DCMAKE_C_FLAGS=-D__ARM_FEATURE_DOTPROD=1"
"-DLLAMA_METAL=ON"
] else [
"-DLLAMA_BLAS=ON"
"-DLLAMA_BLAS_VENDOR=OpenBLAS"
]);
};
packages.opencl = pkgs.stdenv.mkDerivation {
inherit name src meta postPatch nativeBuildInputs postInstall;
buildInputs = with pkgs; buildInputs ++ [ clblast ];
cmakeFlags = cmakeFlags ++ [
"-DLLAMA_CLBLAST=ON"
];
};
packages.cuda = pkgs.stdenv.mkDerivation {
inherit name src meta postPatch nativeBuildInputs postInstall;
buildInputs = with pkgs; buildInputs ++ [ cudatoolkit_joined ];
cmakeFlags = cmakeFlags ++ [
"-DLLAMA_CUBLAS=ON"
];
};
packages.rocm = pkgs.stdenv.mkDerivation {
inherit name src meta postPatch nativeBuildInputs postInstall;
buildInputs = with pkgs.rocmPackages; buildInputs ++ [ clr hipblas rocblas ];
cmakeFlags = cmakeFlags ++ [
"-DLLAMA_HIPBLAS=1"
"-DCMAKE_C_COMPILER=hipcc"
"-DCMAKE_CXX_COMPILER=hipcc"
# Build all targets supported by rocBLAS. When updating search for TARGET_LIST_ROCM
# in github.com/ROCmSoftwarePlatform/rocBLAS/blob/develop/CMakeLists.txt
# and select the line that matches the current nixpkgs version of rocBLAS.
"-DAMDGPU_TARGETS=gfx803;gfx900;gfx906:xnack-;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102"
];
};
apps.llama-server = {
type = "app";
program = "${self.packages.${system}.default}/bin/llama-server";
};
apps.llama-embedding = {
type = "app";
program = "${self.packages.${system}.default}/bin/embedding";
};
apps.llama = {
type = "app";
program = "${self.packages.${system}.default}/bin/llama";
};
apps.quantize = {
type = "app";
program = "${self.packages.${system}.default}/bin/quantize";
};
apps.train-text-from-scratch = {
type = "app";
program = "${self.packages.${system}.default}/bin/train-text-from-scratch";
};
apps.default = self.apps.${system}.llama;
devShells.default = pkgs.mkShell {
buildInputs = [ llama-python ];
packages = nativeBuildInputs ++ osSpecific;
};
devShells.extra = pkgs.mkShell {
buildInputs = [ llama-python-extra ];
packages = nativeBuildInputs ++ osSpecific;
};
});
imports = [
.devops/nix/nixpkgs-instances.nix
.devops/nix/apps.nix
.devops/nix/devshells.nix
.devops/nix/jetson-support.nix
];
# An overlay can be used to have a more granular control over llama-cpp's
# dependencies and configuration, than that offered by the `.override`
# mechanism. Cf. https://nixos.org/manual/nixpkgs/stable/#chap-overlays.
#
# E.g. in a flake:
# ```
# { nixpkgs, llama-cpp, ... }:
# let pkgs = import nixpkgs {
# overlays = [ (llama-cpp.overlays.default) ];
# system = "aarch64-linux";
# config.allowUnfree = true;
# config.cudaSupport = true;
# config.cudaCapabilities = [ "7.2" ];
# config.cudaEnableForwardCompat = false;
# }; in {
# packages.aarch64-linux.llamaJetsonXavier = pkgs.llamaPackages.llama-cpp;
# }
# ```
#
# Cf. https://nixos.org/manual/nix/unstable/command-ref/new-cli/nix3-flake.html?highlight=flake#flake-format
flake.overlays.default =
(final: prev: {
llamaPackages = final.callPackage .devops/nix/scope.nix { inherit llamaVersion; };
inherit (final.llamaPackages) llama-cpp;
});
systems = [
"aarch64-darwin"
"aarch64-linux"
"x86_64-darwin" # x86_64-darwin isn't tested (and likely isn't relevant)
"x86_64-linux"
];
perSystem =
{
config,
lib,
system,
pkgs,
pkgsCuda,
pkgsRocm,
...
}:
{
# Unlike `.#packages`, legacyPackages may contain values of
# arbitrary types (including nested attrsets) and may even throw
# exceptions. This attribute isn't recursed into by `nix flake
# show` either.
#
# You can add arbitrary scripts to `.devops/nix/scope.nix` and
# access them as `nix build .#llamaPackages.${scriptName}` using
# the same path you would with an overlay.
legacyPackages = {
llamaPackages = pkgs.callPackage .devops/nix/scope.nix { inherit llamaVersion; };
llamaPackagesCuda = pkgsCuda.callPackage .devops/nix/scope.nix { inherit llamaVersion; };
llamaPackagesRocm = pkgsRocm.callPackage .devops/nix/scope.nix { inherit llamaVersion; };
};
# We don't use the overlay here so as to avoid making too many instances of nixpkgs,
# cf. https://zimbatm.com/notes/1000-instances-of-nixpkgs
packages =
{
default = config.legacyPackages.llamaPackages.llama-cpp;
}
// lib.optionalAttrs pkgs.stdenv.isLinux {
opencl = config.packages.default.override { useOpenCL = true; };
cuda = config.legacyPackages.llamaPackagesCuda.llama-cpp;
mpi-cpu = config.packages.default.override { useMpi = true; };
mpi-cuda = config.packages.default.override { useMpi = true; };
}
// lib.optionalAttrs (system == "x86_64-linux") {
rocm = config.legacyPackages.llamaPackagesRocm.llama-cpp;
};
# Packages exposed in `.#checks` will be built by the CI and by
# `nix flake check`. Currently we expose all packages, but we could
# make more granular choices
checks = config.packages;
};
};
}

View File

@@ -72,7 +72,7 @@ static void remove_allocated_tensor(ggml_tallocr_t alloc, struct ggml_tensor * t
// check if a tensor is allocated by this buffer
static bool ggml_tallocr_is_own(ggml_tallocr_t alloc, const struct ggml_tensor * tensor) {
return tensor->buffer == alloc->buffer;
return tensor->buffer == alloc->buffer && (!tensor->view_src || tensor->view_src->buffer == alloc->buffer);
}
static bool ggml_is_view(struct ggml_tensor * t) {
@@ -168,10 +168,6 @@ static void ggml_tallocr_free_tensor(ggml_tallocr_t alloc, struct ggml_tensor *
size = aligned_offset(NULL, size, alloc->alignment);
AT_PRINTF("%s: freeing %s at %p (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, ptr, size, alloc->n_free_blocks);
if (!alloc->measure) {
ggml_backend_buffer_free_tensor(alloc->buffer, tensor);
}
#ifdef GGML_ALLOCATOR_DEBUG
remove_allocated_tensor(alloc, tensor);
#endif
@@ -237,7 +233,7 @@ void ggml_tallocr_reset(ggml_tallocr_t alloc) {
}
ggml_tallocr_t ggml_tallocr_new(void * data, size_t size, size_t alignment) {
struct ggml_backend_buffer * buffer = ggml_backend_cpu_buffer_from_ptr(NULL, data, size);
struct ggml_backend_buffer * buffer = ggml_backend_cpu_buffer_from_ptr(data, size);
ggml_tallocr_t alloc = (ggml_tallocr_t)malloc(sizeof(struct ggml_tallocr));
@@ -449,17 +445,15 @@ static ggml_tallocr_t node_tallocr(ggml_gallocr_t galloc, struct ggml_tensor * n
static void init_view(ggml_gallocr_t galloc, struct ggml_tensor * view, bool update_backend) {
ggml_tallocr_t alloc = node_tallocr(galloc, view);
//printf("init_view: %s from src %s\n", view->name, view->view_src->name);
GGML_ASSERT(view->view_src != NULL && view->view_src->data != NULL);
if (update_backend) {
view->backend = view->view_src->backend;
}
view->buffer = view->view_src->buffer;
// views are initialized in the alloc buffer rather than the view_src buffer
view->buffer = alloc->buffer;
view->data = (char *)view->view_src->data + view->view_offs;
// FIXME: the view should be initialized by the owning buffer, but currently this breaks the CUDA backend
// due to the ggml_tensor_extra_gpu ring buffer overwriting the KV cache extras
assert(ggml_tallocr_is_measure(alloc) || !view->buffer || view->buffer->backend == alloc->buffer->backend);
assert(ggml_tallocr_is_measure(alloc) || !view->buffer || view->buffer->buft == alloc->buffer->buft);
if (!alloc->measure) {
ggml_backend_buffer_init_tensor(alloc->buffer, view);
@@ -741,6 +735,10 @@ void ggml_allocr_set_parse_seq(ggml_allocr_t alloc, const int * list, int n) {
}
void ggml_allocr_free(ggml_allocr_t alloc) {
if (alloc == NULL) {
return;
}
ggml_gallocr_free(alloc->galloc);
ggml_tallocr_free(alloc->talloc);
free(alloc);
@@ -765,3 +763,48 @@ size_t ggml_allocr_max_size(ggml_allocr_t alloc) {
size_t ggml_allocr_alloc_graph(ggml_allocr_t alloc, struct ggml_cgraph * graph) {
return ggml_gallocr_alloc_graph(alloc->galloc, alloc->talloc, graph);
}
// utils
ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_context * ctx, ggml_backend_buffer_type_t buft) {
GGML_ASSERT(ggml_get_no_alloc(ctx) == true);
size_t alignment = ggml_backend_buft_get_alignment(buft);
size_t nbytes = 0;
for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
if (t->data == NULL && t->view_src == NULL) {
nbytes += GGML_PAD(ggml_backend_buft_get_alloc_size(buft, t), alignment);
}
}
if (nbytes == 0) {
// all the tensors in the context are already allocated
return NULL;
}
ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, nbytes);
ggml_tallocr_t tallocr = ggml_tallocr_new_from_buffer(buffer);
for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
if (t->data == NULL) {
if (t->view_src == NULL) {
ggml_tallocr_alloc(tallocr, t);
} else {
ggml_backend_view_init(buffer, t);
}
} else {
if (t->view_src != NULL) {
// view of a pre-allocated tensor
ggml_backend_view_init(buffer, t);
}
}
}
ggml_tallocr_free(tallocr);
return buffer;
}
ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors(struct ggml_context * ctx, ggml_backend_t backend) {
return ggml_backend_alloc_ctx_tensors_from_buft(ctx, ggml_backend_get_default_buffer_type(backend));
}

View File

@@ -8,6 +8,7 @@ extern "C" {
struct ggml_backend;
struct ggml_backend_buffer;
struct ggml_backend_buffer_type;
//
// Legacy API
@@ -42,7 +43,7 @@ GGML_API size_t ggml_allocr_alloc_graph(ggml_allocr_t alloc, struct ggml_cgraph
// ggml-backend v2 API
//
// Seperate tensor and graph allocator objects
// Separate tensor and graph allocator objects
// This is necessary for multi-backend allocation because the graph allocator needs to use multiple tensor allocators
// The original API is kept as a wrapper around the new API
@@ -80,6 +81,12 @@ GGML_API void ggml_gallocr_alloc_graph_n(
struct ggml_hash_set hash_set,
ggml_tallocr_t * hash_node_talloc);
// Utils
// Create a buffer and allocate all the tensors in a ggml_context
GGML_API struct ggml_backend_buffer * ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_context * ctx, struct ggml_backend_buffer_type * buft);
GGML_API struct ggml_backend_buffer * ggml_backend_alloc_ctx_tensors(struct ggml_context * ctx, struct ggml_backend * backend);
#ifdef __cplusplus
}
#endif

View File

@@ -12,31 +12,54 @@ extern "C" {
// Backend buffer
//
// buffer type
typedef void * ggml_backend_buffer_type_context_t;
struct ggml_backend_buffer_type_i {
ggml_backend_buffer_t (*alloc_buffer) (ggml_backend_buffer_type_t buft, size_t size);
size_t (*get_alignment) (ggml_backend_buffer_type_t buft); // tensor alignment
size_t (*get_alloc_size) (ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor); // data size needed to allocate the tensor, including padding
bool (*supports_backend)(ggml_backend_buffer_type_t buft, ggml_backend_t backend); // check if the buffer type is usable by the backend
// check if tensor data is in host memory
// should be equivalent to supports_backend(buft, ggml_backend_cpu_init())
bool (*is_host) (ggml_backend_buffer_type_t buft);
};
struct ggml_backend_buffer_type {
struct ggml_backend_buffer_type_i iface;
ggml_backend_buffer_type_context_t context;
};
// buffer
typedef void * ggml_backend_buffer_context_t;
struct ggml_backend_buffer_i {
void (*free_buffer) (ggml_backend_buffer_t buffer);
void * (*get_base) (ggml_backend_buffer_t buffer); // get base pointer
size_t (*get_alloc_size)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // pre-allocation callback
void (*init_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // post-allocation callback
void (*free_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // pre-free callback
void (*free_buffer) (ggml_backend_buffer_t buffer);
//void (*reset) (ggml_backend_buffer_t buffer); // reset any internal state due to tensor initialization, such as tensor extras
void * (*get_base) (ggml_backend_buffer_t buffer);
void (*init_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
void (*set_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
void (*get_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
// (optional) copy tensor between different buffer-type, allow for single-copy tranfers
void (*cpy_tensor_from)(ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst);
void (*cpy_tensor_to) (ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst);
void (*clear) (ggml_backend_buffer_t buffer, uint8_t value);
};
struct ggml_backend_buffer {
struct ggml_backend_buffer_i iface;
ggml_backend_t backend;
struct ggml_backend_buffer_i iface;
ggml_backend_buffer_type_t buft;
ggml_backend_buffer_context_t context;
size_t size;
};
GGML_API ggml_backend_buffer_t ggml_backend_buffer_init(
struct ggml_backend * backend,
ggml_backend_buffer_t ggml_backend_buffer_init(
ggml_backend_buffer_type_t buft,
struct ggml_backend_buffer_i iface,
ggml_backend_buffer_context_t context,
size_t size);
//
// Backend
//
@@ -49,20 +72,17 @@ extern "C" {
void (*free)(ggml_backend_t backend);
// buffer allocation
ggml_backend_buffer_t (*alloc_buffer)(ggml_backend_t backend, size_t size);
ggml_backend_buffer_type_t (*get_default_buffer_type)(ggml_backend_t backend);
// get buffer alignment
size_t (*get_alignment)(ggml_backend_t backend);
// tensor data access
// these functions can be asynchronous, helper functions are provided for synchronous access that automatically call synchronize
// (optional) asynchroneous tensor data access
void (*set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
void (*get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
void (*synchronize) (ggml_backend_t backend);
// (optional) copy tensor between different backends, allow for single-copy tranfers
void (*cpy_tensor_from)(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
void (*cpy_tensor_to) (ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
// (optional) asynchroneous tensor copy
void (*cpy_tensor_from_async)(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
void (*cpy_tensor_to_async) (ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
void (*synchronize)(ggml_backend_t backend);
// compute graph with a plan
ggml_backend_graph_plan_t (*graph_plan_create) (ggml_backend_t backend, struct ggml_cgraph * cgraph);
@@ -70,7 +90,7 @@ extern "C" {
void (*graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
// compute graph without a plan
void (*graph_compute)(ggml_backend_t backend, struct ggml_cgraph * cgraph);
bool (*graph_compute)(ggml_backend_t backend, struct ggml_cgraph * cgraph);
// check if the backend supports an operation
bool (*supports_op)(ggml_backend_t backend, const struct ggml_tensor * op);
@@ -82,6 +102,15 @@ extern "C" {
ggml_backend_context_t context;
};
//
// Backend registry
//
typedef ggml_backend_t (*ggml_backend_init_fn)(const char * params, void * user_data);
void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data);
#ifdef __cplusplus
}
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -7,41 +7,47 @@
extern "C" {
#endif
typedef struct ggml_backend_buffer_type * ggml_backend_buffer_type_t;
typedef struct ggml_backend_buffer * ggml_backend_buffer_t;
typedef struct ggml_backend * ggml_backend_t;
typedef void * ggml_backend_graph_plan_t;
//
// Backend buffer
//
struct ggml_backend_buffer;
typedef struct ggml_backend_buffer * ggml_backend_buffer_t;
// buffer type
GGML_API ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size);
GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft);
GGML_API size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor);
GGML_API bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend);
GGML_API bool ggml_backend_buft_is_host (ggml_backend_buffer_type_t buft);
// backend buffer functions
// buffer
GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer);
GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer);
GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer);
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
GGML_API void ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
GGML_API void ggml_backend_buffer_free_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
GGML_API void ggml_backend_buffer_clear (ggml_backend_buffer_t buffer, uint8_t value);
GGML_API bool ggml_backend_buffer_is_host (ggml_backend_buffer_t buffer);
GGML_API ggml_backend_buffer_type_t ggml_backend_buffer_type(ggml_backend_buffer_t buffer);
//
// Backend
//
struct ggml_backend;
typedef struct ggml_backend * ggml_backend_t;
typedef void * ggml_backend_graph_plan_t;
GGML_API ggml_backend_t ggml_get_backend(const struct ggml_tensor * tensor);
GGML_API const char * ggml_backend_name(ggml_backend_t backend);
GGML_API void ggml_backend_free(ggml_backend_t backend);
GGML_API ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size);
GGML_API ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend);
GGML_API ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size);
GGML_API size_t ggml_backend_get_alignment(ggml_backend_t backend);
GGML_API size_t ggml_backend_get_alignment(ggml_backend_t backend);
GGML_API void ggml_backend_tensor_set_async( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
GGML_API void ggml_backend_tensor_get_async(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
GGML_API void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
GGML_API void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
GGML_API void ggml_backend_tensor_set( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
GGML_API void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
@@ -52,11 +58,12 @@ extern "C" {
GGML_API void ggml_backend_graph_plan_free (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
GGML_API void ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
GGML_API void ggml_backend_graph_compute (ggml_backend_t backend, struct ggml_cgraph * cgraph);
GGML_API bool ggml_backend_graph_compute (ggml_backend_t backend, struct ggml_cgraph * cgraph);
GGML_API bool ggml_backend_supports_op (ggml_backend_t backend, const struct ggml_tensor * op);
// tensor copy between different backends
GGML_API void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst);
GGML_API void ggml_backend_tensor_copy_async(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst); // automatic fallback to sync copy
//
// CPU backend
@@ -68,8 +75,27 @@ extern "C" {
GGML_API void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads);
// Create a backend buffer from an existing pointer
GGML_API ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(ggml_backend_t backend_cpu, void * ptr, size_t size);
GGML_API ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size);
GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void);
#ifdef GGML_USE_CPU_HBM
GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void);
#endif
//
// Backend registry
//
// The backend registry is a registry of all the available backends, and allows initializing backends in a generic way
GGML_API size_t ggml_backend_reg_get_count(void);
GGML_API size_t ggml_backend_reg_find_by_name(const char * name);
GGML_API ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str); // str is name[:params]
GGML_API const char * ggml_backend_reg_get_name(size_t i);
GGML_API ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params); // params is backend-specific
GGML_API ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i);
GGML_API ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size);
//
// Backend scheduler
@@ -131,6 +157,32 @@ extern "C" {
ggml_backend_sched_t sched,
struct ggml_cgraph * graph);
//
// Utils
//
struct ggml_backend_graph_copy {
ggml_backend_buffer_t buffer;
struct ggml_context * ctx_allocated;
struct ggml_context * ctx_unallocated;
struct ggml_cgraph * graph;
};
// Copy a graph to a different backend
GGML_API struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph);
GGML_API void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy);
typedef bool (*ggml_backend_eval_callback)(int node_index, struct ggml_tensor * t1, struct ggml_tensor * t2, void * user_data);
// Compare the output of two backends
GGML_API void ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data);
// Tensor initialization
GGML_API void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr);
GGML_API void ggml_backend_view_init(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
#ifdef __cplusplus
}
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -49,7 +49,15 @@ GGML_API int ggml_cuda_get_device_count(void);
GGML_API void ggml_cuda_get_device_description(int device, char * description, size_t description_size);
// backend API
GGML_API ggml_backend_t ggml_backend_cuda_init(void); // TODO: take a list of devices to use
GGML_API ggml_backend_t ggml_backend_cuda_init(int device);
GGML_API bool ggml_backend_is_cuda(ggml_backend_t backend);
GGML_API int ggml_backend_cuda_get_device(ggml_backend_t backend);
GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device);
// pinned host buffer for use with CPU backend for faster copies between CPU and GPU
GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void);
#ifdef __cplusplus
}

View File

@@ -5,6 +5,7 @@
// GGML internal header
#include <assert.h>
#include <stdlib.h> // load `stdlib.h` before other headers to work around MinGW bug: https://sourceforge.net/p/mingw-w64/bugs/192/
#include <stddef.h>
#include <stdbool.h>
#include <string.h> // memcpy
@@ -232,7 +233,7 @@ bool ggml_hash_contains (const struct ggml_hash_set hash_set, struct ggml
// returns GGML_HASHTABLE_FULL if table is full, otherwise the current index of the key or where it should be inserted
size_t ggml_hash_find (const struct ggml_hash_set hash_set, struct ggml_tensor * key);
// returns GGML_HAHSHTABLE_ALREADY_EXISTS if key already exists, index otherwise, asserts if table is full
// returns GGML_HASHTABLE_ALREADY_EXISTS if key already exists, index otherwise, asserts if table is full
size_t ggml_hash_insert ( struct ggml_hash_set hash_set, struct ggml_tensor * key);
// return index, asserts if table is full

View File

@@ -87,7 +87,7 @@ int * ggml_metal_get_concur_list(struct ggml_metal_context * ctx);
// same as ggml_graph_compute but uses Metal
// creates gf->n_threads command buffers in parallel
void ggml_metal_graph_compute(struct ggml_metal_context * ctx, struct ggml_cgraph * gf);
bool ggml_metal_graph_compute(struct ggml_metal_context * ctx, struct ggml_cgraph * gf);
//
// backend API
@@ -98,8 +98,17 @@ GGML_API ggml_backend_t ggml_backend_metal_init(void);
GGML_API bool ggml_backend_is_metal(ggml_backend_t backend);
GGML_API ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size);
GGML_API void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb);
GGML_API ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
// helper to check if the device supports a specific family
// ideally, the user code should be doing these checks
// ref: https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf
GGML_API bool ggml_backend_metal_supports_family(ggml_backend_t backend, int family);
#ifdef __cplusplus
}
#endif

Some files were not shown because too many files have changed in this diff Show More