Compare commits
297 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
26d607608d | ||
|
|
44879ee885 | ||
|
|
9ecdd12e95 | ||
|
|
89758723c7 | ||
|
|
2bed4aa3f3 | ||
|
|
125d03a503 | ||
|
|
011e8ec577 | ||
|
|
6f9939d119 | ||
|
|
780e24a22e | ||
|
|
3ce7e8f8e7 | ||
|
|
b2d80e105a | ||
|
|
28603cd283 | ||
|
|
5e97ec91ae | ||
|
|
7251870780 | ||
|
|
fe8b3c0d4b | ||
|
|
f4dd059259 | ||
|
|
f7276f7500 | ||
|
|
15bceec2d7 | ||
|
|
d6bd4d46dd | ||
|
|
152d9d05e0 | ||
|
|
66d575c45c | ||
|
|
57744932c6 | ||
|
|
3466c6ebcf | ||
|
|
504dc37be8 | ||
|
|
05490fad7f | ||
|
|
6c5629d4d2 | ||
|
|
7dcbe39d36 | ||
|
|
726c0fa9a2 | ||
|
|
942c0107a7 | ||
|
|
b43ebde3b0 | ||
|
|
97c1549808 | ||
|
|
6df465a91d | ||
|
|
77bc1bbd05 | ||
|
|
48e2b13372 | ||
|
|
cca894f16a | ||
|
|
381ee19572 | ||
|
|
a5cacb22b2 | ||
|
|
9b75cb2b3c | ||
|
|
de9a147df1 | ||
|
|
7051aacfac | ||
|
|
2b3b999cac | ||
|
|
993fba8180 | ||
|
|
8b20858e5e | ||
|
|
57e2a7a52a | ||
|
|
9b6ea4263a | ||
|
|
821f0a271e | ||
|
|
96d7f56d29 | ||
|
|
2d5419d08a | ||
|
|
d391ae9b49 | ||
|
|
e9240cdfa0 | ||
|
|
b46757735d | ||
|
|
3e945cc1e9 | ||
|
|
ad19812cda | ||
|
|
682986a08e | ||
|
|
dcad445d0c | ||
|
|
1e605f4102 | ||
|
|
6b6916b215 | ||
|
|
38566680cd | ||
|
|
ba69bbc84c | ||
|
|
44a1a4a41a | ||
|
|
c918fe8dca | ||
|
|
0f83e727af | ||
|
|
4f4bf35f46 | ||
|
|
2b3a665d39 | ||
|
|
7563293665 | ||
|
|
f46c0c1b0e | ||
|
|
5c99960901 | ||
|
|
bee938da74 | ||
|
|
cec8a48470 | ||
|
|
334a835a1c | ||
|
|
4feb4b33ee | ||
|
|
959ef0c0df | ||
|
|
c37b3474e6 | ||
|
|
158f8c9e21 | ||
|
|
862f5e41ab | ||
|
|
3a48d558a6 | ||
|
|
7c8d3abd1a | ||
|
|
122ed4840c | ||
|
|
a0b3ac8c48 | ||
|
|
d75c232e1d | ||
|
|
e0324285a5 | ||
|
|
3e5ca7931c | ||
|
|
4483396751 | ||
|
|
d9aa4ffa6e | ||
|
|
ddb008d845 | ||
|
|
2faaef3979 | ||
|
|
4a3156de2f | ||
|
|
a836c8f534 | ||
|
|
467a882fd2 | ||
|
|
bb0c139247 | ||
|
|
9408cfdad6 | ||
|
|
03c5267490 | ||
|
|
a128c38de8 | ||
|
|
5f5fe1bd60 | ||
|
|
ac32902a87 | ||
|
|
147b17ac94 | ||
|
|
807179ec58 | ||
|
|
76484fbfd3 | ||
|
|
c71d608ce7 | ||
|
|
4be5ef556d | ||
|
|
0ea069b87b | ||
|
|
f172de03f1 | ||
|
|
2d57de5255 | ||
|
|
df845cc982 | ||
|
|
6b48ed0893 | ||
|
|
722d33f34e | ||
|
|
c30b1ef39a | ||
|
|
b38b5e93ae | ||
|
|
7dc78764e2 | ||
|
|
356327feb3 | ||
|
|
ee8243adaa | ||
|
|
15ebe59210 | ||
|
|
de473f5f8e | ||
|
|
f238461236 | ||
|
|
fa5c1fb44a | ||
|
|
52ee4540c0 | ||
|
|
3fe81781e3 | ||
|
|
e7e4df031b | ||
|
|
584d674be6 | ||
|
|
930f907d3e | ||
|
|
e790eef21c | ||
|
|
5537d9d36b | ||
|
|
1b280c9fff | ||
|
|
3cabe80630 | ||
|
|
4315a94366 | ||
|
|
2d00741e12 | ||
|
|
f445c0e68c | ||
|
|
326b418b59 | ||
|
|
1d118386fe | ||
|
|
7edefbd79c | ||
|
|
3ca63b4538 | ||
|
|
b037787548 | ||
|
|
469e75d0a3 | ||
|
|
49662cbed3 | ||
|
|
3ba5b8ca8e | ||
|
|
4330bd83fe | ||
|
|
27379455c3 | ||
|
|
eab6795006 | ||
|
|
d8d90aa343 | ||
|
|
43f76bf1c3 | ||
|
|
2f043328e3 | ||
|
|
2a7c94db5f | ||
|
|
64802ec00d | ||
|
|
3267c2abc7 | ||
|
|
f85a973aa1 | ||
|
|
5362e43962 | ||
|
|
e739de7909 | ||
|
|
c910e3c28a | ||
|
|
f34432ca1e | ||
|
|
7a9f75c38b | ||
|
|
5c1980d8d4 | ||
|
|
cd108e641d | ||
|
|
57d016ba2d | ||
|
|
329ff61569 | ||
|
|
d34633d8db | ||
|
|
4f56458d34 | ||
|
|
6efb8eb30e | ||
|
|
36e5a08b20 | ||
|
|
4dccb38d9a | ||
|
|
9a818f7c42 | ||
|
|
18adb4e9bb | ||
|
|
d9653894df | ||
|
|
128de3585b | ||
|
|
8c58330318 | ||
|
|
18c2e1752c | ||
|
|
8f900abfc0 | ||
|
|
1fc2f265ff | ||
|
|
a9a8c5de3d | ||
|
|
dd5ae06405 | ||
|
|
668b31fc7d | ||
|
|
42ea63c5a3 | ||
|
|
52531fdff8 | ||
|
|
b0034d93ce | ||
|
|
b7e7982953 | ||
|
|
226460cc0d | ||
|
|
d5a410e855 | ||
|
|
9dede37d81 | ||
|
|
3c36213df8 | ||
|
|
72d8407b36 | ||
|
|
d117d4dc5d | ||
|
|
3418c03ecc | ||
|
|
63ee677efd | ||
|
|
67984921a7 | ||
|
|
c75ca5d96f | ||
|
|
96e80dabc6 | ||
|
|
eec22a1c63 | ||
|
|
be36bb946a | ||
|
|
91d38876df | ||
|
|
d061bf9405 | ||
|
|
1bf681f90e | ||
|
|
c1d7cb28d3 | ||
|
|
3681f22443 | ||
|
|
b3a7c20b5c | ||
|
|
012cf349ae | ||
|
|
a91928014f | ||
|
|
3c0b585561 | ||
|
|
e5804313a1 | ||
|
|
dc891b7f7a | ||
|
|
46cea79e1f | ||
|
|
cb1e2818e0 | ||
|
|
ece9a45e8f | ||
|
|
7bed7eba35 | ||
|
|
d55356d3ba | ||
|
|
75e3fd8581 | ||
|
|
289313716f | ||
|
|
ab62fc3e55 | ||
|
|
5f66ebca9c | ||
|
|
f2eb19bd8b | ||
|
|
f3f62f0d83 | ||
|
|
0ef3ca2ac6 | ||
|
|
540938f890 | ||
|
|
0040d42eeb | ||
|
|
83e633c27e | ||
|
|
32866c5edd | ||
|
|
5d7002d437 | ||
|
|
26f3071d71 | ||
|
|
775ac8712a | ||
|
|
58ba655af0 | ||
|
|
edd1ab7bc3 | ||
|
|
198ed7ebfc | ||
|
|
d836174731 | ||
|
|
06f2a5d190 | ||
|
|
c5239944ba | ||
|
|
1e9ae54cf2 | ||
|
|
7adedecbe3 | ||
|
|
356ea17e0f | ||
|
|
a5c088d8c6 | ||
|
|
1e3900ebac | ||
|
|
e39106c055 | ||
|
|
9fbda719de | ||
|
|
39d8bc71ed | ||
|
|
24a447e20a | ||
|
|
a20f3c7465 | ||
|
|
0235b9b571 | ||
|
|
ce18d727a4 | ||
|
|
91bb39cec7 | ||
|
|
04ac0607e9 | ||
|
|
68eccbdc5b | ||
|
|
97bbca6e85 | ||
|
|
4af4801566 | ||
|
|
db49ff8ed7 | ||
|
|
60f55e888c | ||
|
|
b93edd22f5 | ||
|
|
82d6eab224 | ||
|
|
afd997ab60 | ||
|
|
c8255f8a6b | ||
|
|
441f51dca0 | ||
|
|
38b3de4658 | ||
|
|
afc8c19291 | ||
|
|
ca38b8d334 | ||
|
|
65e5f6dadb | ||
|
|
ea5497df5d | ||
|
|
f6793491b5 | ||
|
|
879b690a9e | ||
|
|
b47879b0dd | ||
|
|
951010fa53 | ||
|
|
f56d6077d0 | ||
|
|
dc68f0054c | ||
|
|
de8e496437 | ||
|
|
77465dad48 | ||
|
|
a206137f92 | ||
|
|
b9f47952ff | ||
|
|
753be377b6 | ||
|
|
5bf3953d7e | ||
|
|
708e179e85 | ||
|
|
925e5584a0 | ||
|
|
6123979952 | ||
|
|
b9ec82d262 | ||
|
|
e0a4002273 | ||
|
|
7082d24cec | ||
|
|
ba66175132 | ||
|
|
a55876955b | ||
|
|
6724ef1657 | ||
|
|
48b7ff193e | ||
|
|
48b24b170e | ||
|
|
28cb35a0ec | ||
|
|
f31b984898 | ||
|
|
2bb98279c5 | ||
|
|
0137ef88ea | ||
|
|
c7e9701f86 | ||
|
|
afefa319f1 | ||
|
|
769a7bc85e | ||
|
|
32259b2dad | ||
|
|
4a5f9d629e | ||
|
|
d232aca5a7 | ||
|
|
31f27758fa | ||
|
|
56fa50819f | ||
|
|
0f630fbc92 | ||
|
|
562cf222b5 | ||
|
|
8fe03ffdda | ||
|
|
9154494808 | ||
|
|
c083718c89 | ||
|
|
880e352277 | ||
|
|
66f35a2f48 | ||
|
|
1398823922 | ||
|
|
d3223afdad | ||
|
|
1d7a1912ce |
@@ -14,7 +14,8 @@ ARG CUDA_DOCKER_ARCH=all
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential python3 python3-pip git
|
||||
|
||||
COPY requirements.txt requirements.txt
|
||||
COPY requirements.txt requirements.txt
|
||||
COPY requirements requirements
|
||||
|
||||
RUN pip install --upgrade pip setuptools wheel \
|
||||
&& pip install -r requirements.txt
|
||||
|
||||
@@ -23,7 +23,8 @@ ARG ROCM_DOCKER_ARCH=\
|
||||
gfx1101 \
|
||||
gfx1102
|
||||
|
||||
COPY requirements.txt requirements.txt
|
||||
COPY requirements.txt requirements.txt
|
||||
COPY requirements requirements
|
||||
|
||||
RUN pip install --upgrade pip setuptools wheel \
|
||||
&& pip install -r requirements.txt
|
||||
|
||||
@@ -5,7 +5,8 @@ FROM ubuntu:$UBUNTU_VERSION as build
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential python3 python3-pip git
|
||||
|
||||
COPY requirements.txt requirements.txt
|
||||
COPY requirements.txt requirements.txt
|
||||
COPY requirements requirements
|
||||
|
||||
RUN pip install --upgrade pip setuptools wheel \
|
||||
&& pip install -r requirements.txt
|
||||
|
||||
26
.devops/main-intel.Dockerfile
Normal file
@@ -0,0 +1,26 @@
|
||||
ARG ONEAPI_VERSION=2024.0.1-devel-ubuntu22.04
|
||||
ARG UBUNTU_VERSION=22.04
|
||||
|
||||
FROM intel/hpckit:$ONEAPI_VERSION as build
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y git
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
|
||||
# for some reasons, "-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=Intel10_64lp -DLLAMA_NATIVE=ON" give worse performance
|
||||
RUN mkdir build && \
|
||||
cd build && \
|
||||
cmake .. -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx && \
|
||||
cmake --build . --config Release --target main server
|
||||
|
||||
FROM ubuntu:$UBUNTU_VERSION as runtime
|
||||
|
||||
COPY --from=build /app/build/bin/main /main
|
||||
COPY --from=build /app/build/bin/server /server
|
||||
|
||||
ENV LC_ALL=C.utf8
|
||||
|
||||
ENTRYPOINT [ "/main" ]
|
||||
@@ -23,7 +23,8 @@ ARG ROCM_DOCKER_ARCH=\
|
||||
gfx1101 \
|
||||
gfx1102
|
||||
|
||||
COPY requirements.txt requirements.txt
|
||||
COPY requirements.txt requirements.txt
|
||||
COPY requirements requirements
|
||||
|
||||
RUN pip install --upgrade pip setuptools wheel \
|
||||
&& pip install -r requirements.txt
|
||||
|
||||
22
.devops/nix/apps.nix
Normal file
@@ -0,0 +1,22 @@
|
||||
{
|
||||
perSystem =
|
||||
{ config, lib, ... }:
|
||||
{
|
||||
apps =
|
||||
let
|
||||
inherit (config.packages) default;
|
||||
binaries = [
|
||||
"llama"
|
||||
"llama-embedding"
|
||||
"llama-server"
|
||||
"quantize"
|
||||
"train-text-from-scratch"
|
||||
];
|
||||
mkApp = name: {
|
||||
type = "app";
|
||||
program = "${default}/bin/${name}";
|
||||
};
|
||||
in
|
||||
lib.genAttrs binaries mkApp;
|
||||
};
|
||||
}
|
||||
13
.devops/nix/devshells.nix
Normal file
@@ -0,0 +1,13 @@
|
||||
{
|
||||
perSystem =
|
||||
{ config, lib, ... }:
|
||||
{
|
||||
devShells =
|
||||
lib.concatMapAttrs
|
||||
(name: package: {
|
||||
${name} = package.passthru.shell;
|
||||
${name + "-extra"} = package.passthru.shell-extra;
|
||||
})
|
||||
config.packages;
|
||||
};
|
||||
}
|
||||
39
.devops/nix/jetson-support.nix
Normal file
@@ -0,0 +1,39 @@
|
||||
{ inputs, ... }:
|
||||
{
|
||||
perSystem =
|
||||
{
|
||||
config,
|
||||
system,
|
||||
lib,
|
||||
pkgsCuda,
|
||||
...
|
||||
}:
|
||||
{
|
||||
legacyPackages =
|
||||
let
|
||||
caps.llamaPackagesXavier = "7.2";
|
||||
caps.llamaPackagesOrin = "8.7";
|
||||
caps.llamaPackagesTX2 = "6.2";
|
||||
caps.llamaPackagesNano = "5.3";
|
||||
|
||||
pkgsFor =
|
||||
cap:
|
||||
import inputs.nixpkgs {
|
||||
inherit system;
|
||||
config = {
|
||||
cudaSupport = true;
|
||||
cudaCapabilities = [ cap ];
|
||||
cudaEnableForwardCompat = false;
|
||||
inherit (pkgsCuda.config) allowUnfreePredicate;
|
||||
};
|
||||
};
|
||||
in
|
||||
builtins.mapAttrs (name: cap: (pkgsFor cap).callPackage ./scope.nix { }) caps;
|
||||
|
||||
packages = lib.optionalAttrs (system == "aarch64-linux") {
|
||||
jetson-xavier = config.legacyPackages.llamaPackagesXavier.llama-cpp;
|
||||
jetson-orin = config.legacyPackages.llamaPackagesOrin.llama-cpp;
|
||||
jetson-nano = config.legacyPackages.llamaPackagesNano.llama-cpp;
|
||||
};
|
||||
};
|
||||
}
|
||||
47
.devops/nix/nixpkgs-instances.nix
Normal file
@@ -0,0 +1,47 @@
|
||||
{ inputs, ... }:
|
||||
{
|
||||
# The _module.args definitions are passed on to modules as arguments. E.g.
|
||||
# the module `{ pkgs ... }: { /* config */ }` implicitly uses
|
||||
# `_module.args.pkgs` (defined in this case by flake-parts).
|
||||
perSystem =
|
||||
{ system, ... }:
|
||||
{
|
||||
_module.args = {
|
||||
# Note: bringing up https://zimbatm.com/notes/1000-instances-of-nixpkgs
|
||||
# again, the below creates several nixpkgs instances which the
|
||||
# flake-centric CLI will be forced to evaluate e.g. on `nix flake show`.
|
||||
#
|
||||
# This is currently "slow" and "expensive", on a certain scale.
|
||||
# This also isn't "right" in that this hinders dependency injection at
|
||||
# the level of flake inputs. This might get removed in the foreseeable
|
||||
# future.
|
||||
#
|
||||
# Note that you can use these expressions without Nix
|
||||
# (`pkgs.callPackage ./devops/nix/scope.nix { }` is the entry point).
|
||||
|
||||
pkgsCuda = import inputs.nixpkgs {
|
||||
inherit system;
|
||||
# Ensure dependencies use CUDA consistently (e.g. that openmpi, ucc,
|
||||
# and ucx are built with CUDA support)
|
||||
config.cudaSupport = true;
|
||||
config.allowUnfreePredicate =
|
||||
p:
|
||||
builtins.all
|
||||
(
|
||||
license:
|
||||
license.free
|
||||
|| builtins.elem license.shortName [
|
||||
"CUDA EULA"
|
||||
"cuDNN EULA"
|
||||
]
|
||||
)
|
||||
(p.meta.licenses or [ p.meta.license ]);
|
||||
};
|
||||
# Ensure dependencies use ROCm consistently
|
||||
pkgsRocm = import inputs.nixpkgs {
|
||||
inherit system;
|
||||
config.rocmSupport = true;
|
||||
};
|
||||
};
|
||||
};
|
||||
}
|
||||
274
.devops/nix/package.nix
Normal file
@@ -0,0 +1,274 @@
|
||||
{
|
||||
lib,
|
||||
config,
|
||||
stdenv,
|
||||
mkShell,
|
||||
cmake,
|
||||
ninja,
|
||||
pkg-config,
|
||||
git,
|
||||
python3,
|
||||
mpi,
|
||||
openblas, # TODO: Use the generic `blas` so users could switch between alternative implementations
|
||||
cudaPackages,
|
||||
darwin,
|
||||
rocmPackages,
|
||||
clblast,
|
||||
useBlas ? builtins.all (x: !x) [
|
||||
useCuda
|
||||
useMetalKit
|
||||
useOpenCL
|
||||
useRocm
|
||||
],
|
||||
useCuda ? config.cudaSupport,
|
||||
useMetalKit ? stdenv.isAarch64 && stdenv.isDarwin && !useOpenCL,
|
||||
useMpi ? false, # Increases the runtime closure size by ~700M
|
||||
useOpenCL ? false,
|
||||
useRocm ? config.rocmSupport,
|
||||
llamaVersion ? "0.0.0", # Arbitrary version, substituted by the flake
|
||||
}@inputs:
|
||||
|
||||
let
|
||||
inherit (lib)
|
||||
cmakeBool
|
||||
cmakeFeature
|
||||
optionals
|
||||
strings
|
||||
versionOlder
|
||||
;
|
||||
|
||||
# It's necessary to consistently use backendStdenv when building with CUDA support,
|
||||
# otherwise we get libstdc++ errors downstream.
|
||||
stdenv = throw "Use effectiveStdenv instead";
|
||||
effectiveStdenv = if useCuda then cudaPackages.backendStdenv else inputs.stdenv;
|
||||
|
||||
suffices =
|
||||
lib.optionals useBlas [ "BLAS" ]
|
||||
++ lib.optionals useCuda [ "CUDA" ]
|
||||
++ lib.optionals useMetalKit [ "MetalKit" ]
|
||||
++ lib.optionals useMpi [ "MPI" ]
|
||||
++ lib.optionals useOpenCL [ "OpenCL" ]
|
||||
++ lib.optionals useRocm [ "ROCm" ];
|
||||
|
||||
pnameSuffix =
|
||||
strings.optionalString (suffices != [ ])
|
||||
"-${strings.concatMapStringsSep "-" strings.toLower suffices}";
|
||||
descriptionSuffix =
|
||||
strings.optionalString (suffices != [ ])
|
||||
", accelerated with ${strings.concatStringsSep ", " suffices}";
|
||||
|
||||
# TODO: package the Python in this repository in a Nix-like way.
|
||||
# It'd be nice to migrate to buildPythonPackage, as well as ensure this repo
|
||||
# is PEP 517-compatible, and ensure the correct .dist-info is generated.
|
||||
# https://peps.python.org/pep-0517/
|
||||
llama-python = python3.withPackages (
|
||||
ps: [
|
||||
ps.numpy
|
||||
ps.sentencepiece
|
||||
]
|
||||
);
|
||||
|
||||
# TODO(Green-Sky): find a better way to opt-into the heavy ml python runtime
|
||||
llama-python-extra = python3.withPackages (
|
||||
ps: [
|
||||
ps.numpy
|
||||
ps.sentencepiece
|
||||
ps.tiktoken
|
||||
ps.torchWithoutCuda
|
||||
ps.transformers
|
||||
]
|
||||
);
|
||||
|
||||
# apple_sdk is supposed to choose sane defaults, no need to handle isAarch64
|
||||
# separately
|
||||
darwinBuildInputs =
|
||||
with darwin.apple_sdk.frameworks;
|
||||
[
|
||||
Accelerate
|
||||
CoreVideo
|
||||
CoreGraphics
|
||||
]
|
||||
++ optionals useMetalKit [ MetalKit ];
|
||||
|
||||
cudaBuildInputs = with cudaPackages; [
|
||||
cuda_cccl.dev # <nv/target>
|
||||
|
||||
# A temporary hack for reducing the closure size, remove once cudaPackages
|
||||
# have stopped using lndir: https://github.com/NixOS/nixpkgs/issues/271792
|
||||
cuda_cudart.dev
|
||||
cuda_cudart.lib
|
||||
cuda_cudart.static
|
||||
libcublas.dev
|
||||
libcublas.lib
|
||||
libcublas.static
|
||||
];
|
||||
|
||||
rocmBuildInputs = with rocmPackages; [
|
||||
clr
|
||||
hipblas
|
||||
rocblas
|
||||
];
|
||||
in
|
||||
|
||||
effectiveStdenv.mkDerivation (
|
||||
finalAttrs: {
|
||||
pname = "llama-cpp${pnameSuffix}";
|
||||
version = llamaVersion;
|
||||
|
||||
# Note: none of the files discarded here are visible in the sandbox or
|
||||
# affect the output hash. This also means they can be modified without
|
||||
# triggering a rebuild.
|
||||
src = lib.cleanSourceWith {
|
||||
filter =
|
||||
name: type:
|
||||
let
|
||||
noneOf = builtins.all (x: !x);
|
||||
baseName = baseNameOf name;
|
||||
in
|
||||
noneOf [
|
||||
(lib.hasSuffix ".nix" name) # Ignore *.nix files when computing outPaths
|
||||
(lib.hasSuffix ".md" name) # Ignore *.md changes whe computing outPaths
|
||||
(lib.hasPrefix "." baseName) # Skip hidden files and directories
|
||||
(baseName == "flake.lock")
|
||||
];
|
||||
src = lib.cleanSource ../../.;
|
||||
};
|
||||
|
||||
postPatch = ''
|
||||
substituteInPlace ./ggml-metal.m \
|
||||
--replace '[bundle pathForResource:@"ggml-metal" ofType:@"metal"];' "@\"$out/bin/ggml-metal.metal\";"
|
||||
|
||||
# TODO: Package up each Python script or service appropriately.
|
||||
# If we were to migrate to buildPythonPackage and prepare the `pyproject.toml`,
|
||||
# we could make those *.py into setuptools' entrypoints
|
||||
substituteInPlace ./*.py --replace "/usr/bin/env python" "${llama-python}/bin/python"
|
||||
'';
|
||||
|
||||
nativeBuildInputs =
|
||||
[
|
||||
cmake
|
||||
ninja
|
||||
pkg-config
|
||||
git
|
||||
]
|
||||
++ optionals useCuda [
|
||||
cudaPackages.cuda_nvcc
|
||||
|
||||
# TODO: Replace with autoAddDriverRunpath
|
||||
# once https://github.com/NixOS/nixpkgs/pull/275241 has been merged
|
||||
cudaPackages.autoAddOpenGLRunpathHook
|
||||
];
|
||||
|
||||
buildInputs =
|
||||
optionals effectiveStdenv.isDarwin darwinBuildInputs
|
||||
++ optionals useCuda cudaBuildInputs
|
||||
++ optionals useMpi [ mpi ]
|
||||
++ optionals useOpenCL [ clblast ]
|
||||
++ optionals useRocm rocmBuildInputs;
|
||||
|
||||
cmakeFlags =
|
||||
[
|
||||
(cmakeBool "LLAMA_NATIVE" false)
|
||||
(cmakeBool "LLAMA_BUILD_SERVER" true)
|
||||
(cmakeBool "BUILD_SHARED_LIBS" true)
|
||||
(cmakeBool "CMAKE_SKIP_BUILD_RPATH" true)
|
||||
(cmakeBool "LLAMA_BLAS" useBlas)
|
||||
(cmakeBool "LLAMA_CLBLAST" useOpenCL)
|
||||
(cmakeBool "LLAMA_CUBLAS" useCuda)
|
||||
(cmakeBool "LLAMA_HIPBLAS" useRocm)
|
||||
(cmakeBool "LLAMA_METAL" useMetalKit)
|
||||
(cmakeBool "LLAMA_MPI" useMpi)
|
||||
]
|
||||
++ optionals useCuda [
|
||||
(
|
||||
with cudaPackages.flags;
|
||||
cmakeFeature "CMAKE_CUDA_ARCHITECTURES" (
|
||||
builtins.concatStringsSep ";" (map dropDot cudaCapabilities)
|
||||
)
|
||||
)
|
||||
]
|
||||
++ optionals useRocm [
|
||||
(cmakeFeature "CMAKE_C_COMPILER" "hipcc")
|
||||
(cmakeFeature "CMAKE_CXX_COMPILER" "hipcc")
|
||||
|
||||
# Build all targets supported by rocBLAS. When updating search for TARGET_LIST_ROCM
|
||||
# in https://github.com/ROCmSoftwarePlatform/rocBLAS/blob/develop/CMakeLists.txt
|
||||
# and select the line that matches the current nixpkgs version of rocBLAS.
|
||||
# Should likely use `rocmPackages.clr.gpuTargets`.
|
||||
"-DAMDGPU_TARGETS=gfx803;gfx900;gfx906:xnack-;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102"
|
||||
]
|
||||
++ optionals useMetalKit [ (lib.cmakeFeature "CMAKE_C_FLAGS" "-D__ARM_FEATURE_DOTPROD=1") ]
|
||||
++ optionals useBlas [ (lib.cmakeFeature "LLAMA_BLAS_VENDOR" "OpenBLAS") ];
|
||||
|
||||
# TODO(SomeoneSerge): It's better to add proper install targets at the CMake level,
|
||||
# if they haven't been added yet.
|
||||
postInstall = ''
|
||||
mv $out/bin/main $out/bin/llama
|
||||
mv $out/bin/server $out/bin/llama-server
|
||||
mkdir -p $out/include
|
||||
cp $src/llama.h $out/include/
|
||||
'';
|
||||
|
||||
# Define the shells here, but don't add in the inputsFrom to avoid recursion.
|
||||
passthru = {
|
||||
inherit
|
||||
useBlas
|
||||
useCuda
|
||||
useMetalKit
|
||||
useMpi
|
||||
useOpenCL
|
||||
useRocm
|
||||
;
|
||||
|
||||
shell = mkShell {
|
||||
name = "shell-${finalAttrs.finalPackage.name}";
|
||||
description = "contains numpy and sentencepiece";
|
||||
buildInputs = [ llama-python ];
|
||||
inputsFrom = [ finalAttrs.finalPackage ];
|
||||
};
|
||||
|
||||
shell-extra = mkShell {
|
||||
name = "shell-extra-${finalAttrs.finalPackage.name}";
|
||||
description = "contains numpy, sentencepiece, torchWithoutCuda, and transformers";
|
||||
buildInputs = [ llama-python-extra ];
|
||||
inputsFrom = [ finalAttrs.finalPackage ];
|
||||
};
|
||||
};
|
||||
|
||||
meta = {
|
||||
# Configurations we don't want even the CI to evaluate. Results in the
|
||||
# "unsupported platform" messages. This is mostly a no-op, because
|
||||
# cudaPackages would've refused to evaluate anyway.
|
||||
badPlatforms = optionals (useCuda || useOpenCL) lib.platforms.darwin;
|
||||
|
||||
# Configurations that are known to result in build failures. Can be
|
||||
# overridden by importing Nixpkgs with `allowBroken = true`.
|
||||
broken = (useMetalKit && !effectiveStdenv.isDarwin);
|
||||
|
||||
description = "Inference of LLaMA model in pure C/C++${descriptionSuffix}";
|
||||
homepage = "https://github.com/ggerganov/llama.cpp/";
|
||||
license = lib.licenses.mit;
|
||||
|
||||
# Accommodates `nix run` and `lib.getExe`
|
||||
mainProgram = "llama";
|
||||
|
||||
# These people might respond, on the best effort basis, if you ping them
|
||||
# in case of Nix-specific regressions or for reviewing Nix-specific PRs.
|
||||
# Consider adding yourself to this list if you want to ensure this flake
|
||||
# stays maintained and you're willing to invest your time. Do not add
|
||||
# other people without their consent. Consider removing people after
|
||||
# they've been unreachable for long periods of time.
|
||||
|
||||
# Note that lib.maintainers is defined in Nixpkgs, but you may just add
|
||||
# an attrset following the same format as in
|
||||
# https://github.com/NixOS/nixpkgs/blob/f36a80e54da29775c78d7eff0e628c2b4e34d1d7/maintainers/maintainer-list.nix
|
||||
maintainers = with lib.maintainers; [
|
||||
philiptaron
|
||||
SomeoneSerge
|
||||
];
|
||||
|
||||
# Extend `badPlatforms` instead
|
||||
platforms = lib.platforms.all;
|
||||
};
|
||||
}
|
||||
)
|
||||
16
.devops/nix/scope.nix
Normal file
@@ -0,0 +1,16 @@
|
||||
{
|
||||
lib,
|
||||
newScope,
|
||||
llamaVersion ? "0.0.0",
|
||||
}:
|
||||
|
||||
# We're using `makeScope` instead of just writing out an attrset
|
||||
# because it allows users to apply overlays later using `overrideScope'`.
|
||||
# Cf. https://noogle.dev/f/lib/makeScope
|
||||
|
||||
lib.makeScope newScope (
|
||||
self: {
|
||||
inherit llamaVersion;
|
||||
llama-cpp = self.callPackage ./package.nix { };
|
||||
}
|
||||
)
|
||||
177
.github/ISSUE_TEMPLATE/bug.md
vendored
@@ -6,179 +6,4 @@ assignees: ''
|
||||
|
||||
---
|
||||
|
||||
# Prerequisites
|
||||
|
||||
Please answer the following questions for yourself before submitting an issue.
|
||||
|
||||
- [ ] I am running the latest code. Development is very rapid so there are no tagged versions as of now.
|
||||
- [ ] I carefully followed the [README.md](https://github.com/ggerganov/llama.cpp/blob/master/README.md).
|
||||
- [ ] I [searched using keywords relevant to my issue](https://docs.github.com/en/issues/tracking-your-work-with-issues/filtering-and-searching-issues-and-pull-requests) to make sure that I am creating a new issue that is not already open (or closed).
|
||||
- [ ] I reviewed the [Discussions](https://github.com/ggerganov/llama.cpp/discussions), and have a new bug or useful enhancement to share.
|
||||
|
||||
# Expected Behavior
|
||||
|
||||
Please provide a detailed written description of what you were trying to do, and what you expected `llama.cpp` to do.
|
||||
|
||||
# Current Behavior
|
||||
|
||||
Please provide a detailed written description of what `llama.cpp` did, instead.
|
||||
|
||||
# Environment and Context
|
||||
|
||||
Please provide detailed information about your computer setup. This is important in case the issue is not reproducible except for under certain specific conditions.
|
||||
|
||||
* Physical (or virtual) hardware you are using, e.g. for Linux:
|
||||
|
||||
`$ lscpu`
|
||||
|
||||
* Operating System, e.g. for Linux:
|
||||
|
||||
`$ uname -a`
|
||||
|
||||
* SDK version, e.g. for Linux:
|
||||
|
||||
```
|
||||
$ python3 --version
|
||||
$ make --version
|
||||
$ g++ --version
|
||||
```
|
||||
|
||||
# Failure Information (for bugs)
|
||||
|
||||
Please help provide information about the failure / bug.
|
||||
|
||||
# Steps to Reproduce
|
||||
|
||||
Please provide detailed steps for reproducing the issue. We are not sitting in front of your screen, so the more detail the better.
|
||||
|
||||
1. step 1
|
||||
2. step 2
|
||||
3. step 3
|
||||
4. etc.
|
||||
|
||||
# Failure Logs
|
||||
|
||||
Please include any relevant log snippets or files. If it works under one configuration but not under another, please provide logs for both configurations and their corresponding outputs so it is easy to see where behavior changes.
|
||||
|
||||
Also, please try to **avoid using screenshots** if at all possible. Instead, copy/paste the console output and use [Github's markdown](https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github/basic-writing-and-formatting-syntax) to cleanly format your logs for easy readability.
|
||||
|
||||
Example environment info:
|
||||
```
|
||||
llama.cpp$ git log | head -1
|
||||
commit 2af23d30434a677c6416812eea52ccc0af65119c
|
||||
|
||||
llama.cpp$ lscpu | egrep "AMD|Flags"
|
||||
Vendor ID: AuthenticAMD
|
||||
Model name: AMD Ryzen Threadripper 1950X 16-Core Processor
|
||||
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid amd_dcm aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb hw_pstate ssbd ibpb vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt sha_ni xsaveopt xsavec xgetbv1 xsaves clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif overflow_recov succor smca sme sev
|
||||
Virtualization: AMD-V
|
||||
|
||||
llama.cpp$ python3 --version
|
||||
Python 3.10.9
|
||||
|
||||
llama.cpp$ pip list | egrep "torch|numpy|sentencepiece"
|
||||
numpy 1.24.2
|
||||
numpydoc 1.5.0
|
||||
sentencepiece 0.1.97
|
||||
torch 1.13.1
|
||||
torchvision 0.14.1
|
||||
|
||||
llama.cpp$ make --version | head -1
|
||||
GNU Make 4.3
|
||||
|
||||
$ md5sum ./models/65B/ggml-model-q4_0.bin
|
||||
dbdd682cce80e2d6e93cefc7449df487 ./models/65B/ggml-model-q4_0.bin
|
||||
```
|
||||
|
||||
Example run with the Linux command [perf](https://www.brendangregg.com/perf.html)
|
||||
```
|
||||
llama.cpp$ perf stat ./main -m ./models/65B/ggml-model-q4_0.bin -t 16 -n 1024 -p "Please close your issue when it has been answered."
|
||||
main: seed = 1679149377
|
||||
llama_model_load: loading model from './models/65B/ggml-model-q4_0.bin' - please wait ...
|
||||
llama_model_load: n_vocab = 32000
|
||||
llama_model_load: n_ctx = 512
|
||||
llama_model_load: n_embd = 8192
|
||||
llama_model_load: n_mult = 256
|
||||
llama_model_load: n_head = 64
|
||||
llama_model_load: n_layer = 80
|
||||
llama_model_load: n_rot = 128
|
||||
llama_model_load: f16 = 2
|
||||
llama_model_load: n_ff = 22016
|
||||
llama_model_load: n_parts = 8
|
||||
llama_model_load: ggml ctx size = 41477.73 MB
|
||||
llama_model_load: memory_size = 2560.00 MB, n_mem = 40960
|
||||
llama_model_load: loading model part 1/8 from './models/65B/ggml-model-q4_0.bin'
|
||||
llama_model_load: .......................................................................................... done
|
||||
llama_model_load: model size = 4869.09 MB / num tensors = 723
|
||||
llama_model_load: loading model part 2/8 from './models/65B/ggml-model-q4_0.bin.1'
|
||||
llama_model_load: .......................................................................................... done
|
||||
llama_model_load: model size = 4869.09 MB / num tensors = 723
|
||||
llama_model_load: loading model part 3/8 from './models/65B/ggml-model-q4_0.bin.2'
|
||||
llama_model_load: .......................................................................................... done
|
||||
llama_model_load: model size = 4869.09 MB / num tensors = 723
|
||||
llama_model_load: loading model part 4/8 from './models/65B/ggml-model-q4_0.bin.3'
|
||||
llama_model_load: .......................................................................................... done
|
||||
llama_model_load: model size = 4869.09 MB / num tensors = 723
|
||||
llama_model_load: loading model part 5/8 from './models/65B/ggml-model-q4_0.bin.4'
|
||||
llama_model_load: .......................................................................................... done
|
||||
llama_model_load: model size = 4869.09 MB / num tensors = 723
|
||||
llama_model_load: loading model part 6/8 from './models/65B/ggml-model-q4_0.bin.5'
|
||||
llama_model_load: .......................................................................................... done
|
||||
llama_model_load: model size = 4869.09 MB / num tensors = 723
|
||||
llama_model_load: loading model part 7/8 from './models/65B/ggml-model-q4_0.bin.6'
|
||||
llama_model_load: .......................................................................................... done
|
||||
llama_model_load: model size = 4869.09 MB / num tensors = 723
|
||||
llama_model_load: loading model part 8/8 from './models/65B/ggml-model-q4_0.bin.7'
|
||||
llama_model_load: .......................................................................................... done
|
||||
llama_model_load: model size = 4869.09 MB / num tensors = 723
|
||||
|
||||
system_info: n_threads = 16 / 32 | AVX = 1 | AVX2 = 1 | AVX512 = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | VSX = 0 |
|
||||
|
||||
main: prompt: 'Please close your issue when it has been answered.'
|
||||
main: number of tokens in prompt = 11
|
||||
1 -> ''
|
||||
12148 -> 'Please'
|
||||
3802 -> ' close'
|
||||
596 -> ' your'
|
||||
2228 -> ' issue'
|
||||
746 -> ' when'
|
||||
372 -> ' it'
|
||||
756 -> ' has'
|
||||
1063 -> ' been'
|
||||
7699 -> ' answered'
|
||||
29889 -> '.'
|
||||
|
||||
sampling parameters: temp = 0.800000, top_k = 40, top_p = 0.950000, repeat_last_n = 64, repeat_penalty = 1.300000
|
||||
|
||||
|
||||
Please close your issue when it has been answered.
|
||||
@duncan-donut: I'm trying to figure out what kind of "support" you need for this script and why, exactly? Is there a question about how the code works that hasn't already been addressed in one or more comments below this ticket, or are we talking something else entirely like some sorta bugfixing job because your server setup is different from mine??
|
||||
I can understand if your site needs to be running smoothly and you need help with a fix of sorts but there should really be nothing wrong here that the code itself could not handle. And given that I'm getting reports about how it works perfectly well on some other servers, what exactly are we talking? A detailed report will do wonders in helping us get this resolved for ya quickly so please take your time and describe the issue(s) you see as clearly & concisely as possible!!
|
||||
@duncan-donut: I'm not sure if you have access to cPanel but you could try these instructions. It is worth a shot! Let me know how it goes (or what error message, exactly!) when/if ya give that code a go? [end of text]
|
||||
|
||||
|
||||
main: mem per token = 71159620 bytes
|
||||
main: load time = 19309.95 ms
|
||||
main: sample time = 168.62 ms
|
||||
main: predict time = 223895.61 ms / 888.47 ms per token
|
||||
main: total time = 246406.42 ms
|
||||
|
||||
Performance counter stats for './main -m ./models/65B/ggml-model-q4_0.bin -t 16 -n 1024 -p Please close your issue when it has been answered.':
|
||||
|
||||
3636882.89 msec task-clock # 14.677 CPUs utilized
|
||||
13509 context-switches # 3.714 /sec
|
||||
2436 cpu-migrations # 0.670 /sec
|
||||
10476679 page-faults # 2.881 K/sec
|
||||
13133115082869 cycles # 3.611 GHz (16.77%)
|
||||
29314462753 stalled-cycles-frontend # 0.22% frontend cycles idle (16.76%)
|
||||
10294402631459 stalled-cycles-backend # 78.39% backend cycles idle (16.74%)
|
||||
23479217109614 instructions # 1.79 insn per cycle
|
||||
# 0.44 stalled cycles per insn (16.76%)
|
||||
2353072268027 branches # 647.002 M/sec (16.77%)
|
||||
1998682780 branch-misses # 0.08% of all branches (16.76%)
|
||||
|
||||
247.802177522 seconds time elapsed
|
||||
|
||||
3618.573072000 seconds user
|
||||
18.491698000 seconds sys
|
||||
```
|
||||
Please include information about your system, the steps to reproduce the bug, and the version of llama.cpp that you are using. If possible, please provide a minimal code example that reproduces the bug.
|
||||
|
||||
28
.github/workflows/build.yml
vendored
@@ -295,7 +295,7 @@ jobs:
|
||||
OPENBLAS_VERSION: 0.3.23
|
||||
OPENCL_VERSION: 2023.04.17
|
||||
CLBLAST_VERSION: 1.6.0
|
||||
SDE_VERSION: 9.21.1-2023-04-24
|
||||
SDE_VERSION: 9.33.0-2024-01-07
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
@@ -400,7 +400,7 @@ jobs:
|
||||
id: cmake_test_sde
|
||||
if: ${{ matrix.build == 'avx512' && env.HAS_AVX512F == '0' }} # use Intel SDE for AVX-512 emulation
|
||||
run: |
|
||||
curl.exe -o $env:RUNNER_TEMP/sde.tar.xz -L "https://downloadmirror.intel.com/777395/sde-external-${env:SDE_VERSION}-win.tar.xz"
|
||||
curl.exe -o $env:RUNNER_TEMP/sde.tar.xz -L "https://downloadmirror.intel.com/813591/sde-external-${env:SDE_VERSION}-win.tar.xz"
|
||||
# for some weird reason windows tar doesn't like sde tar.xz
|
||||
7z x "-o${env:RUNNER_TEMP}" $env:RUNNER_TEMP/sde.tar.xz
|
||||
7z x "-o${env:RUNNER_TEMP}" $env:RUNNER_TEMP/sde.tar
|
||||
@@ -515,6 +515,30 @@ jobs:
|
||||
- name: Build Xcode project
|
||||
run: xcodebuild -project examples/llama.swiftui/llama.swiftui.xcodeproj -scheme llama.swiftui -sdk iphoneos CODE_SIGNING_REQUIRED=NO CODE_SIGN_IDENTITY= -destination 'generic/platform=iOS' build
|
||||
|
||||
android-build:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Set up JDK
|
||||
uses: actions/setup-java@v3
|
||||
with:
|
||||
java-version: 17
|
||||
distribution: zulu
|
||||
|
||||
- name: Setup Android SDK
|
||||
uses: android-actions/setup-android@v3
|
||||
with:
|
||||
log-accepted-android-sdk-licenses: false
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cd examples/llama.android
|
||||
|
||||
# Skip armeabi-v7a for now (https://github.com/llvm/llvm-project/issues/65820).
|
||||
./gradlew build --no-daemon -Pskip-armeabi-v7a
|
||||
|
||||
# freeBSD-latest:
|
||||
# runs-on: macos-12
|
||||
|
||||
35
.github/workflows/docker.yml
vendored
@@ -35,6 +35,7 @@ jobs:
|
||||
- { tag: "full-cuda", dockerfile: ".devops/full-cuda.Dockerfile", platforms: "linux/amd64" }
|
||||
- { tag: "light-rocm", dockerfile: ".devops/main-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
||||
- { tag: "full-rocm", dockerfile: ".devops/full-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
||||
- { tag: "light-intel", dockerfile: ".devops/main-intel.Dockerfile", platforms: "linux/amd64" }
|
||||
steps:
|
||||
- name: Check out the repo
|
||||
uses: actions/checkout@v3
|
||||
@@ -52,6 +53,36 @@ jobs:
|
||||
username: ${{ github.repository_owner }}
|
||||
password: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
||||
# https://github.com/jlumbroso/free-disk-space/tree/54081f138730dfa15788a46383842cd2f914a1be#example
|
||||
- name: Free Disk Space (Ubuntu)
|
||||
uses: jlumbroso/free-disk-space@main
|
||||
with:
|
||||
# this might remove tools that are actually needed,
|
||||
# if set to "true" but frees about 6 GB
|
||||
tool-cache: false
|
||||
|
||||
# all of these default to true, but feel free to set to
|
||||
# "false" if necessary for your workflow
|
||||
android: true
|
||||
dotnet: true
|
||||
haskell: true
|
||||
large-packages: true
|
||||
docker-images: true
|
||||
swap-storage: true
|
||||
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
shell: bash
|
||||
run: |
|
||||
BUILD_NUMBER="$(git rev-list --count HEAD)"
|
||||
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
|
||||
if [[ "${{ env.BRANCH_NAME }}" == "master" ]]; then
|
||||
echo "name=b${BUILD_NUMBER}" >> $GITHUB_OUTPUT
|
||||
else
|
||||
SAFE_NAME=$(echo "${{ env.BRANCH_NAME }}" | tr '/' '-')
|
||||
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
|
||||
- name: Build and push Docker image (versioned)
|
||||
if: github.event_name == 'push'
|
||||
uses: docker/build-push-action@v4
|
||||
@@ -59,7 +90,7 @@ jobs:
|
||||
context: .
|
||||
push: true
|
||||
platforms: ${{ matrix.config.platforms }}
|
||||
tags: "ghcr.io/ggerganov/llama.cpp:${{ matrix.config.tag }}-${{ env.COMMIT_SHA }}"
|
||||
tags: "ghcr.io/${{ github.repository_owner }}/llama.cpp:${{ matrix.config.tag }}-${{ env.COMMIT_SHA }}"
|
||||
file: ${{ matrix.config.dockerfile }}
|
||||
|
||||
- name: Build and push Docker image (tagged)
|
||||
@@ -68,5 +99,5 @@ jobs:
|
||||
context: .
|
||||
push: ${{ github.event_name == 'push' }}
|
||||
platforms: ${{ matrix.config.platforms }}
|
||||
tags: "ghcr.io/ggerganov/llama.cpp:${{ matrix.config.tag }}"
|
||||
tags: "ghcr.io/${{ github.repository_owner }}/llama.cpp:${{ matrix.config.tag }},ghcr.io/${{ github.repository_owner }}/llama.cpp:${{ matrix.config.tag }}-${{ steps.tag.outputs.name }}"
|
||||
file: ${{ matrix.config.dockerfile }}
|
||||
|
||||
62
.github/workflows/nix-ci-aarch64.yml
vendored
Normal file
@@ -0,0 +1,62 @@
|
||||
name: Nix aarch64 builds
|
||||
|
||||
on:
|
||||
workflow_dispatch: # allows manual triggering
|
||||
schedule:
|
||||
# Rebuild daily rather than on every push because QEMU is expensive (e.g.
|
||||
# 1.5h instead of minutes with the cold cache).
|
||||
#
|
||||
# randint(0, 59), randint(0, 23)
|
||||
- cron: '26 12 * * *'
|
||||
# But also rebuild if we touched any of the Nix expressions:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
paths: ['**/*.nix', 'flake.lock']
|
||||
pull_request:
|
||||
types: [opened, synchronize, reopened]
|
||||
paths: ['**/*.nix', 'flake.lock']
|
||||
|
||||
jobs:
|
||||
nix-build-aarch64:
|
||||
if: ${{ vars.CACHIX_NAME != '' }}
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
- name: Install QEMU
|
||||
# Copy-paste from https://github.com/orgs/community/discussions/8305#discussioncomment-5888654
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y qemu-user-static qemu-system-aarch64
|
||||
sudo usermod -a -G kvm $USER
|
||||
- name: Install Nix
|
||||
uses: DeterminateSystems/nix-installer-action@v9
|
||||
with:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
extra-conf: |
|
||||
extra-platforms = aarch64-linux
|
||||
extra-system-features = nixos-test kvm
|
||||
extra-substituters = https://${{ vars.CACHIX_NAME }}.cachix.org https://cuda-maintainers.cachix.org
|
||||
extra-trusted-public-keys = ${{ vars.CACHIX_PUBLIC_KEY }} cuda-maintainers.cachix.org-1:0dq3bujKpuEPMCX6U4WylrUDZ9JyUG0VpVZa7CNfq5E=
|
||||
- uses: DeterminateSystems/magic-nix-cache-action@v2
|
||||
with:
|
||||
upstream-cache: https://${{ matrix.cachixName }}.cachix.org
|
||||
- name: Set-up cachix to push the results to
|
||||
uses: cachix/cachix-action@v13
|
||||
with:
|
||||
authToken: '${{ secrets.CACHIX_AUTH_TOKEN }}'
|
||||
name: ${{ vars.CACHIX_NAME }}
|
||||
- name: Show all output paths
|
||||
run: >
|
||||
nix run github:nix-community/nix-eval-jobs
|
||||
-- --gc-roots-dir gcroot
|
||||
--flake
|
||||
".#packages.aarch64-linux"
|
||||
- name: Build
|
||||
run: >
|
||||
nix run github:Mic92/nix-fast-build
|
||||
-- --skip-cached --no-nom
|
||||
--systems aarch64-linux
|
||||
--flake
|
||||
".#checks.aarch64-linux"
|
||||
69
.github/workflows/nix-ci.yml
vendored
Normal file
@@ -0,0 +1,69 @@
|
||||
name: Nix CI
|
||||
|
||||
on:
|
||||
workflow_dispatch: # allows manual triggering
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
pull_request:
|
||||
types: [opened, synchronize, reopened]
|
||||
|
||||
jobs:
|
||||
nix-eval:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
os: [ ubuntu-latest, macos-latest ]
|
||||
runs-on: ${{ matrix.os }}
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
- name: Install Nix
|
||||
uses: DeterminateSystems/nix-installer-action@v9
|
||||
with:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
extra-conf: |
|
||||
extra-substituters = https://${{ vars.CACHIX_NAME }}.cachix.org https://cuda-maintainers.cachix.org
|
||||
extra-trusted-public-keys = ${{ vars.CACHIX_PUBLIC_KEY }} cuda-maintainers.cachix.org-1:0dq3bujKpuEPMCX6U4WylrUDZ9JyUG0VpVZa7CNfq5E=
|
||||
- uses: DeterminateSystems/magic-nix-cache-action@v2
|
||||
with:
|
||||
upstream-cache: https://${{ matrix.cachixName }}.cachix.org
|
||||
- name: List all flake outputs
|
||||
run: nix flake show --all-systems
|
||||
- name: Show all output paths
|
||||
run: >
|
||||
nix run github:nix-community/nix-eval-jobs
|
||||
-- --gc-roots-dir gcroot
|
||||
--flake
|
||||
".#packages.$(nix eval --raw --impure --expr builtins.currentSystem)"
|
||||
nix-build:
|
||||
if: ${{ vars.CACHIX_NAME != '' }}
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
os: [ ubuntu-latest, macos-latest ]
|
||||
runs-on: ${{ matrix.os }}
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
- name: Install Nix
|
||||
uses: DeterminateSystems/nix-installer-action@v9
|
||||
with:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
extra-conf: |
|
||||
extra-substituters = https://${{ vars.CACHIX_NAME }}.cachix.org https://cuda-maintainers.cachix.org
|
||||
extra-trusted-public-keys = ${{ vars.CACHIX_PUBLIC_KEY }} cuda-maintainers.cachix.org-1:0dq3bujKpuEPMCX6U4WylrUDZ9JyUG0VpVZa7CNfq5E=
|
||||
- uses: DeterminateSystems/magic-nix-cache-action@v2
|
||||
with:
|
||||
upstream-cache: https://${{ matrix.cachixName }}.cachix.org
|
||||
- name: Set-up cachix to push the results to
|
||||
uses: cachix/cachix-action@v13
|
||||
with:
|
||||
authToken: '${{ secrets.CACHIX_AUTH_TOKEN }}'
|
||||
name: ${{ vars.CACHIX_NAME }}
|
||||
- name: Build
|
||||
run: >
|
||||
nix run github:Mic92/nix-fast-build
|
||||
-- --skip-cached --no-nom
|
||||
--flake
|
||||
".#checks.$(nix eval --raw --impure --expr builtins.currentSystem)"
|
||||
22
.github/workflows/nix-flake-update.yml
vendored
Normal file
@@ -0,0 +1,22 @@
|
||||
name: update-flake-lock
|
||||
on:
|
||||
workflow_dispatch:
|
||||
schedule:
|
||||
- cron: '0 0 * * 0' # runs weekly on Sunday at 00:00
|
||||
|
||||
jobs:
|
||||
lockfile:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
- name: Install Nix
|
||||
uses: DeterminateSystems/nix-installer-action@main
|
||||
- name: Update flake.lock
|
||||
uses: DeterminateSystems/update-flake-lock@main
|
||||
with:
|
||||
pr-title: "nix: update flake.lock"
|
||||
pr-labels: |
|
||||
nix
|
||||
pr-reviewers: philiptaron,SomeoneSerge
|
||||
token: ${{ secrets.FLAKE_TOKEN }}
|
||||
36
.github/workflows/nix-publish-flake.yml
vendored
Normal file
@@ -0,0 +1,36 @@
|
||||
# Make the flake discoverable on https://flakestry.dev and https://flakehub.com/flakes
|
||||
name: "Publish a flake to flakestry & flakehub"
|
||||
on:
|
||||
push:
|
||||
tags:
|
||||
- "*"
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
tag:
|
||||
description: "The existing tag to publish"
|
||||
type: "string"
|
||||
required: true
|
||||
jobs:
|
||||
flakestry-publish:
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
id-token: "write"
|
||||
contents: "read"
|
||||
steps:
|
||||
- uses: flakestry/flakestry-publish@main
|
||||
with:
|
||||
version: "${{ inputs.tag || github.ref_name }}"
|
||||
flakehub-publish:
|
||||
runs-on: "ubuntu-latest"
|
||||
permissions:
|
||||
id-token: "write"
|
||||
contents: "read"
|
||||
steps:
|
||||
- uses: "actions/checkout@v4"
|
||||
with:
|
||||
ref: "${{ (inputs.tag != null) && format('refs/tags/{0}', inputs.tag) || '' }}"
|
||||
- uses: "DeterminateSystems/nix-installer-action@main"
|
||||
- uses: "DeterminateSystems/flakehub-push@main"
|
||||
with:
|
||||
visibility: "public"
|
||||
tag: "${{ inputs.tag }}"
|
||||
29
.github/workflows/python-check-requirements.yml
vendored
Normal file
@@ -0,0 +1,29 @@
|
||||
name: Python check requirements.txt
|
||||
|
||||
on:
|
||||
push:
|
||||
paths:
|
||||
- 'scripts/check-requirements.sh'
|
||||
- 'convert*.py'
|
||||
- 'requirements.txt'
|
||||
- 'requirements/*.txt'
|
||||
pull_request:
|
||||
paths:
|
||||
- 'scripts/check-requirements.sh'
|
||||
- 'convert*.py'
|
||||
- 'requirements.txt'
|
||||
- 'requirements/*.txt'
|
||||
|
||||
jobs:
|
||||
python-check-requirements:
|
||||
runs-on: ubuntu-latest
|
||||
name: check-requirements
|
||||
steps:
|
||||
- name: Check out source repository
|
||||
uses: actions/checkout@v3
|
||||
- name: Set up Python environment
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: "3.11"
|
||||
- name: Run check-requirements.sh script
|
||||
run: bash scripts/check-requirements.sh nocleanup
|
||||
4
.gitignore
vendored
@@ -43,13 +43,16 @@ models-mnt
|
||||
/embedding
|
||||
/gguf
|
||||
/gguf-llama-simple
|
||||
/imatrix
|
||||
/infill
|
||||
/libllama.so
|
||||
/llama-bench
|
||||
/llava-cli
|
||||
/lookahead
|
||||
/lookup
|
||||
/main
|
||||
/metal
|
||||
/passkey
|
||||
/perplexity
|
||||
/q8dot
|
||||
/quantize
|
||||
@@ -102,3 +105,4 @@ poetry.toml
|
||||
/tests/test-tokenizer-1-bpe
|
||||
/tests/test-rope
|
||||
/tests/test-backend-ops
|
||||
/tests/test-autorelease
|
||||
|
||||
116
CMakeLists.txt
@@ -1,4 +1,4 @@
|
||||
cmake_minimum_required(VERSION 3.13) # for add_link_options
|
||||
cmake_minimum_required(VERSION 3.14) # for add_link_options and implicit target directories.
|
||||
project("llama.cpp" C CXX)
|
||||
|
||||
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
|
||||
@@ -47,6 +47,7 @@ option(BUILD_SHARED_LIBS "build shared libraries"
|
||||
option(LLAMA_STATIC "llama: static link libraries" OFF)
|
||||
option(LLAMA_NATIVE "llama: enable -march=native flag" ON)
|
||||
option(LLAMA_LTO "llama: enable link time optimization" OFF)
|
||||
option(LLAMA_CCACHE "llama: use ccache if available" ON)
|
||||
|
||||
# debug
|
||||
option(LLAMA_ALL_WARNINGS "llama: enable all compiler warnings" ON)
|
||||
@@ -76,6 +77,10 @@ if (NOT MSVC)
|
||||
option(LLAMA_F16C "llama: enable F16C" ${INS_ENB})
|
||||
endif()
|
||||
|
||||
if (WIN32)
|
||||
option(LLAMA_WIN_VER "llama: Windows Version" 0x602)
|
||||
endif()
|
||||
|
||||
# 3rd party libs
|
||||
option(LLAMA_ACCELERATE "llama: enable Accelerate framework" ON)
|
||||
option(LLAMA_BLAS "llama: use BLAS" OFF)
|
||||
@@ -91,9 +96,11 @@ set(LLAMA_CUDA_KQUANTS_ITER "2" CACHE STRING "llama: iters./thread per block for
|
||||
set(LLAMA_CUDA_PEER_MAX_BATCH_SIZE "128" CACHE STRING
|
||||
"llama: max. batch size for using peer access")
|
||||
option(LLAMA_HIPBLAS "llama: use hipBLAS" OFF)
|
||||
option(LLAMA_HIP_UMA "llama: use HIP unified memory architecture" OFF)
|
||||
option(LLAMA_CLBLAST "llama: use CLBlast" OFF)
|
||||
option(LLAMA_METAL "llama: use Metal" ${LLAMA_METAL_DEFAULT})
|
||||
option(LLAMA_METAL_NDEBUG "llama: disable Metal debugging" OFF)
|
||||
option(LLAMA_METAL_SHADER_DEBUG "llama: compile Metal with -fno-fast-math" OFF)
|
||||
option(LLAMA_MPI "llama: use MPI" OFF)
|
||||
option(LLAMA_QKK_64 "llama: use super-block size of 64 for k-quants" OFF)
|
||||
|
||||
@@ -101,6 +108,13 @@ option(LLAMA_BUILD_TESTS "llama: build tests" ${LLAMA_STA
|
||||
option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
|
||||
option(LLAMA_BUILD_SERVER "llama: build server example" ON)
|
||||
|
||||
|
||||
# add perf arguments
|
||||
option(LLAMA_PERF "llama: enable perf" OFF)
|
||||
if (LLAMA_PERF)
|
||||
add_definitions(-DGGML_PERF)
|
||||
endif()
|
||||
|
||||
# Required for relocatable CMake package
|
||||
include(${CMAKE_CURRENT_SOURCE_DIR}/scripts/build-info.cmake)
|
||||
|
||||
@@ -153,9 +167,9 @@ if (APPLE AND LLAMA_ACCELERATE)
|
||||
endif()
|
||||
|
||||
if (LLAMA_METAL)
|
||||
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
|
||||
find_library(METAL_FRAMEWORK Metal REQUIRED)
|
||||
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
|
||||
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
|
||||
find_library(METAL_FRAMEWORK Metal REQUIRED)
|
||||
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
|
||||
|
||||
message(STATUS "Metal framework found")
|
||||
set(GGML_HEADERS_METAL ggml-metal.h)
|
||||
@@ -172,6 +186,35 @@ if (LLAMA_METAL)
|
||||
# copy ggml-metal.metal to bin directory
|
||||
configure_file(ggml-metal.metal ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.metal COPYONLY)
|
||||
|
||||
if (LLAMA_METAL_SHADER_DEBUG)
|
||||
# custom command to do the following:
|
||||
# xcrun -sdk macosx metal -fno-fast-math -c ggml-metal.metal -o ggml-metal.air
|
||||
# xcrun -sdk macosx metallib ggml-metal.air -o default.metallib
|
||||
#
|
||||
# note: this is the only way I found to disable fast-math in Metal. it's ugly, but at least it works
|
||||
# disabling fast math is needed in order to pass tests/test-backend-ops
|
||||
# note: adding -fno-inline fixes the tests when using MTL_SHADER_VALIDATION=1
|
||||
# note: unfortunately, we have to call it default.metallib instead of ggml.metallib
|
||||
# ref: https://github.com/ggerganov/whisper.cpp/issues/1720
|
||||
set(XC_FLAGS -fno-fast-math -fno-inline -g)
|
||||
if (LLAMA_QKK_64)
|
||||
set(XC_FLAGS ${XC_FLAGS} -DQK_K=64)
|
||||
endif()
|
||||
|
||||
add_custom_command(
|
||||
OUTPUT ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/default.metallib
|
||||
COMMAND xcrun -sdk macosx metal ${XC_FLAGS} -c ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.metal -o ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.air
|
||||
COMMAND xcrun -sdk macosx metallib ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.air -o ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/default.metallib
|
||||
DEPENDS ggml-metal.metal
|
||||
COMMENT "Compiling Metal kernels"
|
||||
)
|
||||
|
||||
add_custom_target(
|
||||
ggml-metal ALL
|
||||
DEPENDS ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/default.metallib
|
||||
)
|
||||
endif()
|
||||
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS}
|
||||
${FOUNDATION_LIBRARY}
|
||||
${METAL_FRAMEWORK}
|
||||
@@ -199,7 +242,11 @@ if (LLAMA_BLAS)
|
||||
if (${LLAMA_BLAS_VENDOR} MATCHES "Generic")
|
||||
pkg_check_modules(DepBLAS REQUIRED blas)
|
||||
elseif (${LLAMA_BLAS_VENDOR} MATCHES "OpenBLAS")
|
||||
pkg_check_modules(DepBLAS REQUIRED openblas)
|
||||
# As of openblas v0.3.22, the 64-bit is named openblas64.pc
|
||||
pkg_check_modules(DepBLAS openblas64)
|
||||
if (NOT DepBLAS_FOUND)
|
||||
pkg_check_modules(DepBLAS REQUIRED openblas)
|
||||
endif()
|
||||
elseif (${LLAMA_BLAS_VENDOR} MATCHES "FLAME")
|
||||
pkg_check_modules(DepBLAS REQUIRED blis)
|
||||
elseif (${LLAMA_BLAS_VENDOR} MATCHES "ATLAS")
|
||||
@@ -301,6 +348,8 @@ if (LLAMA_CUBLAS)
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} CUDA::cudart CUDA::cublas CUDA::cublasLt)
|
||||
endif()
|
||||
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} CUDA::cuda_driver)
|
||||
|
||||
if (NOT DEFINED CMAKE_CUDA_ARCHITECTURES)
|
||||
# 52 == lowest CUDA 12 standard
|
||||
# 60 == f16 CUDA intrinsics
|
||||
@@ -377,6 +426,9 @@ if (LLAMA_HIPBLAS)
|
||||
if (${hipblas_FOUND} AND ${hip_FOUND})
|
||||
message(STATUS "HIP and hipBLAS found")
|
||||
add_compile_definitions(GGML_USE_HIPBLAS GGML_USE_CUBLAS)
|
||||
if (LLAMA_HIP_UMA)
|
||||
add_compile_definitions(GGML_HIP_UMA)
|
||||
endif()
|
||||
add_library(ggml-rocm OBJECT ggml-cuda.cu ggml-cuda.h)
|
||||
if (BUILD_SHARED_LIBS)
|
||||
set_target_properties(ggml-rocm PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
@@ -426,6 +478,11 @@ function(get_flags CCID CCVER)
|
||||
if (CCVER VERSION_GREATER_EQUAL 8.1.0)
|
||||
set(CXX_FLAGS ${CXX_FLAGS} -Wextra-semi)
|
||||
endif()
|
||||
elseif (CCID MATCHES "Intel")
|
||||
# enable max optimization level when using Intel compiler
|
||||
set(C_FLAGS -ipo -O3 -static -fp-model=fast -flto -fno-stack-protector)
|
||||
set(CXX_FLAGS -ipo -O3 -static -fp-model=fast -flto -fno-stack-protector)
|
||||
add_link_options(-fuse-ld=lld -static-intel)
|
||||
endif()
|
||||
|
||||
set(GF_C_FLAGS ${C_FLAGS} PARENT_SCOPE)
|
||||
@@ -517,6 +574,17 @@ if (LLAMA_LTO)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (LLAMA_CCACHE)
|
||||
find_program(LLAMA_CCACHE_FOUND ccache)
|
||||
if (LLAMA_CCACHE_FOUND)
|
||||
set_property(GLOBAL PROPERTY RULE_LAUNCH_COMPILE ccache)
|
||||
set(ENV{CCACHE_SLOPPINESS} time_macros)
|
||||
message(STATUS "Using ccache")
|
||||
else()
|
||||
message(STATUS "Warning: ccache not found - consider installing it or use LLAMA_CCACHE=OFF")
|
||||
endif ()
|
||||
endif()
|
||||
|
||||
# this version of Apple ld64 is buggy
|
||||
execute_process(
|
||||
COMMAND ${CMAKE_C_COMPILER} ${CMAKE_EXE_LINKER_FLAGS} -Wl,-v
|
||||
@@ -550,6 +618,13 @@ if (NOT MSVC)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
function(add_compile_option_cpp ARG)
|
||||
# Adds a compile option to C/C++ only, but not for Cuda.
|
||||
# Use, e.g., for CPU-architecture flags.
|
||||
add_compile_options($<$<COMPILE_LANGUAGE:CXX>:${ARG}>)
|
||||
add_compile_options($<$<COMPILE_LANGUAGE:C>:${ARG}>)
|
||||
endfunction()
|
||||
|
||||
if ((${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm") OR (${CMAKE_SYSTEM_PROCESSOR} MATCHES "aarch64") OR ("${CMAKE_GENERATOR_PLATFORM_LWR}" MATCHES "arm64"))
|
||||
message(STATUS "ARM detected")
|
||||
if (MSVC)
|
||||
@@ -584,8 +659,7 @@ elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "^(x86_64|i686|AMD64)$" OR "${CMAKE_GE
|
||||
include(cmake/FindSIMD.cmake)
|
||||
endif ()
|
||||
if (LLAMA_AVX512)
|
||||
add_compile_options($<$<COMPILE_LANGUAGE:C>:/arch:AVX512>)
|
||||
add_compile_options($<$<COMPILE_LANGUAGE:CXX>:/arch:AVX512>)
|
||||
add_compile_option_cpp(/arch:AVX512)
|
||||
# MSVC has no compile-time flags enabling specific
|
||||
# AVX512 extensions, neither it defines the
|
||||
# macros corresponding to the extensions.
|
||||
@@ -599,37 +673,35 @@ elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "^(x86_64|i686|AMD64)$" OR "${CMAKE_GE
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AVX512VNNI__>)
|
||||
endif()
|
||||
elseif (LLAMA_AVX2)
|
||||
add_compile_options($<$<COMPILE_LANGUAGE:C>:/arch:AVX2>)
|
||||
add_compile_options($<$<COMPILE_LANGUAGE:CXX>:/arch:AVX2>)
|
||||
add_compile_option_cpp(/arch:AVX2)
|
||||
elseif (LLAMA_AVX)
|
||||
add_compile_options($<$<COMPILE_LANGUAGE:C>:/arch:AVX>)
|
||||
add_compile_options($<$<COMPILE_LANGUAGE:CXX>:/arch:AVX>)
|
||||
add_compile_option_cpp(/arch:AVX)
|
||||
endif()
|
||||
else()
|
||||
if (LLAMA_NATIVE)
|
||||
add_compile_options(-march=native)
|
||||
add_compile_option_cpp(-march=native)
|
||||
endif()
|
||||
if (LLAMA_F16C)
|
||||
add_compile_options(-mf16c)
|
||||
add_compile_option_cpp(-mf16c)
|
||||
endif()
|
||||
if (LLAMA_FMA)
|
||||
add_compile_options(-mfma)
|
||||
add_compile_option_cpp(-mfma)
|
||||
endif()
|
||||
if (LLAMA_AVX)
|
||||
add_compile_options(-mavx)
|
||||
add_compile_option_cpp(-mavx)
|
||||
endif()
|
||||
if (LLAMA_AVX2)
|
||||
add_compile_options(-mavx2)
|
||||
add_compile_option_cpp(-mavx2)
|
||||
endif()
|
||||
if (LLAMA_AVX512)
|
||||
add_compile_options(-mavx512f)
|
||||
add_compile_options(-mavx512bw)
|
||||
add_compile_option_cpp(-mavx512f)
|
||||
add_compile_option_cpp(-mavx512bw)
|
||||
endif()
|
||||
if (LLAMA_AVX512_VBMI)
|
||||
add_compile_options(-mavx512vbmi)
|
||||
add_compile_option_cpp(-mavx512vbmi)
|
||||
endif()
|
||||
if (LLAMA_AVX512_VNNI)
|
||||
add_compile_options(-mavx512vnni)
|
||||
add_compile_option_cpp(-mavx512vnni)
|
||||
endif()
|
||||
endif()
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64")
|
||||
@@ -646,7 +718,7 @@ endif()
|
||||
|
||||
if (MINGW)
|
||||
# Target Windows 8 for PrefetchVirtualMemory
|
||||
add_compile_definitions(_WIN32_WINNT=0x602)
|
||||
add_compile_definitions(_WIN32_WINNT=${LLAMA_WIN_VER})
|
||||
endif()
|
||||
|
||||
#
|
||||
@@ -798,7 +870,7 @@ install(FILES ${CMAKE_CURRENT_BINARY_DIR}/LlamaConfig.cmake
|
||||
${CMAKE_CURRENT_BINARY_DIR}/LlamaConfigVersion.cmake
|
||||
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/Llama)
|
||||
|
||||
set(GGML_PUBLIC_HEADERS "ggml.h"
|
||||
set(GGML_PUBLIC_HEADERS "ggml.h" "ggml-alloc.h" "ggml-backend.h"
|
||||
"${GGML_HEADERS_CUDA}" "${GGML_HEADERS_OPENCL}"
|
||||
"${GGML_HEADERS_METAL}" "${GGML_HEADERS_MPI}" "${GGML_HEADERS_EXTRA}")
|
||||
|
||||
|
||||
58
Makefile
@@ -1,15 +1,15 @@
|
||||
# Define the default target now so that it is always the first target
|
||||
BUILD_TARGETS = \
|
||||
main quantize quantize-stats perplexity embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml \
|
||||
main quantize quantize-stats perplexity imatrix embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml \
|
||||
simple batched batched-bench save-load-state server gguf llama-bench libllava.a llava-cli baby-llama beam-search \
|
||||
speculative infill tokenize benchmark-matmult parallel finetune export-lora lookahead tests/test-c.o
|
||||
speculative infill tokenize benchmark-matmult parallel finetune export-lora lookahead lookup passkey tests/test-c.o
|
||||
|
||||
# Binaries only useful for tests
|
||||
TEST_TARGETS = \
|
||||
tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt \
|
||||
tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama \
|
||||
tests/test-tokenizer-0-falcon tests/test-tokenizer-1-llama tests/test-tokenizer-1-bpe tests/test-rope \
|
||||
tests/test-backend-ops
|
||||
tests/test-backend-ops tests/test-autorelease
|
||||
|
||||
# Code coverage output files
|
||||
COV_TARGETS = *.gcno tests/*.gcno *.gcda tests/*.gcda *.gcov tests/*.gcov lcov-report gcovr-report
|
||||
@@ -43,10 +43,6 @@ ifeq ($(UNAME_S),Darwin)
|
||||
endif
|
||||
endif
|
||||
|
||||
ifneq '' '$(or $(filter clean,$(MAKECMDGOALS)),$(LLAMA_METAL))'
|
||||
BUILD_TARGETS += metal
|
||||
endif
|
||||
|
||||
default: $(BUILD_TARGETS)
|
||||
|
||||
test: $(TEST_TARGETS)
|
||||
@@ -65,7 +61,7 @@ test: $(TEST_TARGETS)
|
||||
./$$test_target; \
|
||||
fi; \
|
||||
if [ $$? -ne 0 ]; then \
|
||||
printf 'Test $$test_target FAILED!\n\n' $$test_target; \
|
||||
printf 'Test %s FAILED!\n\n' $$test_target; \
|
||||
failures=$$(( failures + 1 )); \
|
||||
else \
|
||||
printf 'Test %s passed.\n\n' $$test_target; \
|
||||
@@ -282,8 +278,17 @@ endif
|
||||
ifneq ($(filter aarch64%,$(UNAME_M)),)
|
||||
# Apple M1, M2, etc.
|
||||
# Raspberry Pi 3, 4, Zero 2 (64-bit)
|
||||
# Nvidia Jetson
|
||||
MK_CFLAGS += -mcpu=native
|
||||
MK_CXXFLAGS += -mcpu=native
|
||||
JETSON_RELEASE_INFO = $(shell jetson_release)
|
||||
ifdef JETSON_RELEASE_INFO
|
||||
ifneq ($(filter TX2%,$(JETSON_RELEASE_INFO)),)
|
||||
JETSON_EOL_MODULE_DETECT = 1
|
||||
CC = aarch64-unknown-linux-gnu-gcc
|
||||
cxx = aarch64-unknown-linux-gnu-g++
|
||||
endif
|
||||
endif
|
||||
endif
|
||||
|
||||
ifneq ($(filter armv6%,$(UNAME_M)),)
|
||||
@@ -357,15 +362,16 @@ ifdef LLAMA_BLIS
|
||||
endif # LLAMA_BLIS
|
||||
|
||||
ifdef LLAMA_CUBLAS
|
||||
MK_CPPFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include
|
||||
MK_LDFLAGS += -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/x86_64-linux/lib
|
||||
MK_CPPFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include
|
||||
MK_LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
|
||||
OBJS += ggml-cuda.o
|
||||
MK_NVCCFLAGS = --forward-unknown-to-host-compiler -use_fast_math
|
||||
|
||||
MK_NVCCFLAGS = -use_fast_math
|
||||
ifndef JETSON_EOL_MODULE_DETECT
|
||||
MK_NVCCFLAGS += --forward-unknown-to-host-compiler
|
||||
endif # JETSON_EOL_MODULE_DETECT
|
||||
ifdef LLAMA_DEBUG
|
||||
MK_NVCCFLAGS += -lineinfo
|
||||
endif
|
||||
|
||||
endif # LLAMA_DEBUG
|
||||
ifdef LLAMA_CUDA_NVCC
|
||||
NVCC = $(LLAMA_CUDA_NVCC)
|
||||
else
|
||||
@@ -417,7 +423,11 @@ ifdef LLAMA_CUDA_CCBIN
|
||||
MK_NVCCFLAGS += -ccbin $(LLAMA_CUDA_CCBIN)
|
||||
endif
|
||||
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
|
||||
ifdef JETSON_EOL_MODULE_DETECT
|
||||
$(NVCC) -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/usr/local/cuda/targets/aarch64-linux/include -std=c++11 -O3 $(NVCCFLAGS) -Xcompiler "$(CUDA_CXXFLAGS)" -c $< -o $@
|
||||
else
|
||||
$(NVCC) $(BASE_CXXFLAGS) $(NVCCFLAGS) -Wno-pedantic -Xcompiler "$(CUDA_CXXFLAGS)" -c $< -o $@
|
||||
endif # JETSON_EOL_MODULE_DETECT
|
||||
endif # LLAMA_CUBLAS
|
||||
|
||||
ifdef LLAMA_CLBLAST
|
||||
@@ -452,6 +462,9 @@ ifdef LLAMA_HIPBLAS
|
||||
LLAMA_CUDA_MMV_Y ?= 1
|
||||
LLAMA_CUDA_KQUANTS_ITER ?= 2
|
||||
MK_CPPFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUBLAS
|
||||
ifdef LLAMA_HIP_UMA
|
||||
MK_CPPFLAGS += -DGGML_HIP_UMA
|
||||
endif # LLAMA_HIP_UMA
|
||||
MK_LDFLAGS += -L$(ROCM_PATH)/lib -Wl,-rpath=$(ROCM_PATH)/lib
|
||||
MK_LDFLAGS += -lhipblas -lamdhip64 -lrocblas
|
||||
HIPFLAGS += $(addprefix --offload-arch=,$(GPU_TARGETS))
|
||||
@@ -597,6 +610,9 @@ quantize-stats: examples/quantize-stats/quantize-stats.cpp build-info.o ggml.
|
||||
perplexity: examples/perplexity/perplexity.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
imatrix: examples/imatrix/imatrix.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
embedding: examples/embedding/embedding.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
@@ -606,7 +622,7 @@ save-load-state: examples/save-load-state/save-load-state.cpp ggml.o llama.o $(C
|
||||
server: examples/server/server.cpp examples/server/httplib.h examples/server/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp examples/llava/clip.cpp examples/llava/clip.h common/stb_image.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -Iexamples/server $(filter-out %.h,$(filter-out %.hpp,$^)) -o $@ $(LDFLAGS) $(LWINSOCK2) -Wno-cast-qual
|
||||
|
||||
gguf: examples/gguf/gguf.cpp ggml.o llama.o $(OBJS)
|
||||
gguf: examples/gguf/gguf.cpp ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS)
|
||||
@@ -645,10 +661,11 @@ parallel: examples/parallel/parallel.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
lookahead: examples/lookahead/lookahead.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
ifdef LLAMA_METAL
|
||||
metal: examples/metal/metal.cpp ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
|
||||
endif
|
||||
lookup: examples/lookup/lookup.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
passkey: examples/passkey/passkey.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
swift: examples/batched.swift
|
||||
@@ -730,3 +747,6 @@ tests/test-c.o: tests/test-c.c llama.h
|
||||
|
||||
tests/test-backend-ops: tests/test-backend-ops.cpp ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-autorelease: tests/test-autorelease.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
@@ -13,21 +13,17 @@ let package = Package(
|
||||
products: [
|
||||
.library(name: "llama", targets: ["llama"]),
|
||||
],
|
||||
dependencies: [
|
||||
.package(url: "https://github.com/ggerganov/ggml.git", .branch("release"))
|
||||
],
|
||||
targets: [
|
||||
.target(
|
||||
name: "llama",
|
||||
dependencies: ["ggml"],
|
||||
path: ".",
|
||||
exclude: [],
|
||||
exclude: ["ggml-metal.metal"],
|
||||
sources: [
|
||||
"ggml.c",
|
||||
"llama.cpp",
|
||||
"ggml-alloc.c",
|
||||
"ggml-backend.c",
|
||||
"ggml-quants.c",
|
||||
"ggml-metal.m",
|
||||
],
|
||||
resources: [
|
||||
.process("ggml-metal.metal")
|
||||
],
|
||||
publicHeadersPath: "spm-headers",
|
||||
cSettings: [
|
||||
|
||||
65
README.md
@@ -10,6 +10,7 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
|
||||
|
||||
### Hot topics
|
||||
|
||||
- New SOTA quantized models, including pure 2-bits: https://huggingface.co/ikawrakow
|
||||
- Collecting Apple Silicon performance stats:
|
||||
- M-series: https://github.com/ggerganov/llama.cpp/discussions/4167
|
||||
- A-series: https://github.com/ggerganov/llama.cpp/discussions/4508
|
||||
@@ -102,6 +103,8 @@ as the main playground for developing new features for the [ggml](https://github
|
||||
- [x] [Deepseek models](https://huggingface.co/models?search=deepseek-ai/deepseek)
|
||||
- [x] [Qwen models](https://huggingface.co/models?search=Qwen/Qwen)
|
||||
- [x] [Mixtral MoE](https://huggingface.co/models?search=mistral-ai/Mixtral)
|
||||
- [x] [PLaMo-13B](https://github.com/ggerganov/llama.cpp/pull/3557)
|
||||
- [x] [GPT-2](https://huggingface.co/gpt2)
|
||||
|
||||
**Multimodal models:**
|
||||
|
||||
@@ -116,6 +119,7 @@ as the main playground for developing new features for the [ggml](https://github
|
||||
- Python: [abetlen/llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
|
||||
- Go: [go-skynet/go-llama.cpp](https://github.com/go-skynet/go-llama.cpp)
|
||||
- Node.js: [withcatai/node-llama-cpp](https://github.com/withcatai/node-llama-cpp)
|
||||
- JS/TS (llama.cpp server client): [lgrammel/modelfusion](https://modelfusion.dev/integration/model-provider/llamacpp)
|
||||
- Ruby: [yoshoku/llama_cpp.rb](https://github.com/yoshoku/llama_cpp.rb)
|
||||
- Rust: [mdrokz/rust-llama.cpp](https://github.com/mdrokz/rust-llama.cpp)
|
||||
- C#/.NET: [SciSharp/LLamaSharp](https://github.com/SciSharp/LLamaSharp)
|
||||
@@ -123,6 +127,8 @@ as the main playground for developing new features for the [ggml](https://github
|
||||
- Clojure: [phronmophobic/llama.clj](https://github.com/phronmophobic/llama.clj)
|
||||
- React Native: [mybigday/llama.rn](https://github.com/mybigday/llama.rn)
|
||||
- Java: [kherud/java-llama.cpp](https://github.com/kherud/java-llama.cpp)
|
||||
- Zig: [deins/llama.cpp.zig](https://github.com/Deins/llama.cpp.zig)
|
||||
- Flutter/Dart: [netdur/llama_cpp_dart](https://github.com/netdur/llama_cpp_dart)
|
||||
|
||||
**UI:**
|
||||
|
||||
@@ -131,6 +137,8 @@ as the main playground for developing new features for the [ggml](https://github
|
||||
- [withcatai/catai](https://github.com/withcatai/catai)
|
||||
- [semperai/amica](https://github.com/semperai/amica)
|
||||
- [psugihara/FreeChat](https://github.com/psugihara/FreeChat)
|
||||
- [ptsochantaris/emeltal](https://github.com/ptsochantaris/emeltal)
|
||||
- [iohub/collama](https://github.com/iohub/coLLaMA)
|
||||
|
||||
---
|
||||
|
||||
@@ -381,20 +389,37 @@ Building the program with BLAS support may lead to some performance improvements
|
||||
|
||||
Check [BLIS.md](docs/BLIS.md) for more information.
|
||||
|
||||
- #### Intel MKL
|
||||
- #### Intel oneMKL
|
||||
- Using manual oneAPI installation:
|
||||
By default, `LLAMA_BLAS_VENDOR` is set to `Generic`, so if you already sourced intel environment script and assign `-DLLAMA_BLAS=ON` in cmake, the mkl version of Blas will automatically been selected. Otherwise please install oneAPI and follow the below steps:
|
||||
```bash
|
||||
mkdir build
|
||||
cd build
|
||||
source /opt/intel/oneapi/setvars.sh # You can skip this step if in oneapi-runtime docker image, only required for manual installation
|
||||
cmake .. -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=Intel10_64lp -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_NATIVE=ON
|
||||
cmake --build . --config Release
|
||||
```
|
||||
|
||||
By default, `LLAMA_BLAS_VENDOR` is set to `Generic`, so if you already sourced intel environment script and assign `-DLLAMA_BLAS=ON` in cmake, the mkl version of Blas will automatically been selected. You may also specify it by:
|
||||
- Using oneAPI docker image:
|
||||
If you do not want to source the environment vars and install oneAPI manually, you can also build the code using intel docker container: [oneAPI-runtime](https://hub.docker.com/r/intel/oneapi-runtime)
|
||||
|
||||
```bash
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=Intel10_64lp -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||
cmake --build . --config Release
|
||||
```
|
||||
```bash
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=Intel10_64lp -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_NATIVE=ON
|
||||
cmake --build . --config Release
|
||||
```
|
||||
|
||||
Building through oneAPI compilers will make avx_vnni instruction set available for intel processors that do not support avx512 and avx512_vnni.
|
||||
|
||||
Check [Optimizing and Running LLaMA2 on Intel® CPU](https://www.intel.com/content/www/us/en/content-details/791610/optimizing-and-running-llama2-on-intel-cpu.html) for more information.
|
||||
|
||||
- #### cuBLAS
|
||||
|
||||
This provides BLAS acceleration using the CUDA cores of your Nvidia GPU. Make sure to have the CUDA toolkit installed. You can download it from your Linux distro's package manager (e.g. `apt install nvidia-cuda-toolkit`) or from here: [CUDA Toolkit](https://developer.nvidia.com/cuda-downloads).
|
||||
|
||||
For Jetson user, if you have Jetson Orin, you can try this: [Offical Support](https://www.jetson-ai-lab.com/tutorial_text-generation.html). If you are using an old model(nano/TX2), need some additional operations before compiling.
|
||||
|
||||
- Using `make`:
|
||||
```bash
|
||||
make LLAMA_CUBLAS=1
|
||||
@@ -432,14 +457,21 @@ Building the program with BLAS support may lead to some performance improvements
|
||||
```bash
|
||||
make LLAMA_HIPBLAS=1
|
||||
```
|
||||
- Using `CMake` for Linux:
|
||||
- Using `CMake` for Linux (assuming a gfx1030-compatible AMD GPU):
|
||||
```bash
|
||||
mkdir build
|
||||
cd build
|
||||
CC=/opt/rocm/llvm/bin/clang CXX=/opt/rocm/llvm/bin/clang++ cmake .. -DLLAMA_HIPBLAS=ON
|
||||
cmake --build .
|
||||
CC=/opt/rocm/llvm/bin/clang CXX=/opt/rocm/llvm/bin/clang++ \
|
||||
cmake -H. -Bbuild -DLLAMA_HIPBLAS=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
|
||||
&& cmake --build build -- -j 16
|
||||
```
|
||||
- Using `CMake` for Windows (using x64 Native Tools Command Prompt for VS):
|
||||
On Linux it is also possible to use unified memory architecture (UMA) to share main memory between the CPU and integrated GPU by setting `-DLLAMA_HIP_UMA=ON"`.
|
||||
However, this hurts performance for non-integrated GPUs (but enables working with integrated GPUs).
|
||||
|
||||
- Using `make` (example for target gfx1030, build with 16 CPU threads):
|
||||
```bash
|
||||
make -j16 LLAMA_HIPBLAS=1 LLAMA_HIP_UMA=1 AMDGPU_TARGETS=gxf1030
|
||||
```
|
||||
|
||||
- Using `CMake` for Windows (using x64 Native Tools Command Prompt for VS, and assuming a gfx1100-compatible AMD GPU):
|
||||
```bash
|
||||
set PATH=%HIP_PATH%\bin;%PATH%
|
||||
mkdir build
|
||||
@@ -448,10 +480,11 @@ Building the program with BLAS support may lead to some performance improvements
|
||||
cmake --build .
|
||||
```
|
||||
Make sure that `AMDGPU_TARGETS` is set to the GPU arch you want to compile for. The above example uses `gfx1100` that corresponds to Radeon RX 7900XTX/XT/GRE. You can find a list of targets [here](https://llvm.org/docs/AMDGPUUsage.html#processors)
|
||||
Find your gpu version string by matching the most significant version information from `rocminfo | grep gfx | head -1 | awk '{print $2}'` with the list of processors, e.g. `gfx1035` maps to `gfx1030`.
|
||||
|
||||
|
||||
The environment variable [`HIP_VISIBLE_DEVICES`](https://rocm.docs.amd.com/en/latest/understand/gpu_isolation.html#hip-visible-devices) can be used to specify which GPU(s) will be used.
|
||||
If your GPU is not officially supported you can use the environment variable [`HSA_OVERRIDE_GFX_VERSION`] set to a similar GPU, for example 10.3.0 on RDNA2 or 11.0.0 on RDNA3.
|
||||
If your GPU is not officially supported you can use the environment variable [`HSA_OVERRIDE_GFX_VERSION`] set to a similar GPU, for example 10.3.0 on RDNA2 (e.g. gfx1030, gfx1031, or gfx1035) or 11.0.0 on RDNA3.
|
||||
The following compilation options are also available to tweak performance (yes, they refer to CUDA, not HIP, because it uses the same code as the cuBLAS version above):
|
||||
|
||||
| Option | Legal values | Default | Description |
|
||||
@@ -982,6 +1015,8 @@ docker run --gpus all -v /path/to/models:/models local/llama.cpp:light-cuda -m /
|
||||
- There are no strict rules for the code style, but try to follow the patterns in the code (indentation, spaces, etc.). Vertical alignment makes things more readable and easier to batch edit
|
||||
- Clean-up any trailing whitespaces, use 4 spaces for indentation, brackets on the same line, `void * ptr`, `int & a`
|
||||
- See [good first issues](https://github.com/ggerganov/llama.cpp/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22) for tasks suitable for first contributions
|
||||
- Tensors store data in row-major order. We refer to dimension 0 as columns, 1 as rows, 2 as matrices
|
||||
- Matrix multiplication is unconventional: [`z = ggml_mul_mat(ctx, x, y)`](https://github.com/ggerganov/llama.cpp/blob/880e352277fc017df4d5794f0c21c44e1eae2b84/ggml.h#L1058-L1064) means `zT = x @ yT`
|
||||
|
||||
### Docs
|
||||
|
||||
|
||||
116
awq-py/README.md
Normal file
@@ -0,0 +1,116 @@
|
||||
# AWQ: Activation-aware Weight Quantization for LLM - version apply to llamacpp
|
||||
[[Paper](https://arxiv.org/abs/2306.00978)][[Original Repo](https://github.com/mit-han-lab/llm-awq)][[Easy-to-use Repo](https://github.com/casper-hansen/AutoAWQ)]
|
||||
|
||||
**Supported models:**
|
||||
|
||||
- [X] LLaMA
|
||||
- [x] LLaMA 2
|
||||
- [X] MPT
|
||||
- [X] Mistral AI v0.1
|
||||
- [ ] Bloom
|
||||
- [ ] Mixtral MoE
|
||||
|
||||
**TODO:**
|
||||
- [x] Update version work with both MPT and MPT-AWQ model
|
||||
- [ ] Add OPT model
|
||||
- [ ] Add Bloom model
|
||||
- [ ] Add Mixtral MoE
|
||||
- [ ] Support w3, w2
|
||||
|
||||
|
||||
## Contents
|
||||
|
||||
- [Install](##Install)
|
||||
- [Convert](##Convert)
|
||||
- [Quantize](##Quantize)
|
||||
- [Test](##Test)
|
||||
- [Benchmark](##Benchmark)
|
||||
- [Results](##Results)
|
||||
|
||||
## Install
|
||||
Install requirements
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
Get the pre-computed AWQ search results for multiple model families, including LLaMA, LLaMA2, MPT, OPT
|
||||
```bash
|
||||
git clone https://huggingface.co/datasets/mit-han-lab/awq-model-zoo awq_cache
|
||||
```
|
||||
|
||||
## Convert
|
||||
Example for llama model
|
||||
```bash
|
||||
# For llama7b and llama2 models
|
||||
python convert.py models/llama-7b/ --awq-path awq_cache/llama-7b-w4-g128.pt --outfile models/llama_7b_fp16.gguf
|
||||
# For mistral and mpt models
|
||||
python convert-hf-to-gguf.py models/mpt-7b/ --awq-path awq_cache/mpt-7b-w4-g128.pt --outfile models/mpt_7b_fp16.gguf
|
||||
```
|
||||
|
||||
## Quantize
|
||||
```bash
|
||||
# We only benchmark and confirm the results on q4_0, q4_1, and q2_k types.
|
||||
./quantize models/llama_7b_fp16.gguf models/llama_7b_q4_0.gguf q4_0
|
||||
```
|
||||
|
||||
## Test
|
||||
```bash
|
||||
# For all models.
|
||||
./build/bin/main -m models/llama_7b_q4_0.gguf -n 128 --prompt "Once upon a time"
|
||||
```
|
||||
|
||||
## Benchmark
|
||||
The perplexity measurements in table above are done against the `wikitext2` test dataset (https://paperswithcode.com/dataset/wikitext-2), with context length of 512.
|
||||
```bash
|
||||
# For llama and llama2, and mistral models.
|
||||
./perplexity -m models/llama_7b_q4_0.gguf -f datasets/wikitext-2-raw/wiki.test.raw
|
||||
```
|
||||
|
||||
## Results
|
||||
Results are run on OpenBLAS (CPU) and CuBLAS (GPU) for fair comparison
|
||||
We use three types of llamacpp quantization methods to work with our version, including q4_0, q4_1, and q2_k
|
||||
|
||||
### Llama 7B (Build with OpenBLAS)
|
||||
|
||||
| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K |
|
||||
|-----------:|--------------|-------:|-------:|-------:|-------:|
|
||||
|Llama 7B | perplexity | 5.9066 | 6.1214 | 6.0643 | 6.5808 |
|
||||
|Llama 7B | file size | 12.9G | 3.5G | 3.9G | 2.7G |
|
||||
|Llama 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|
||||
|AWQ-LLama 7B| perplexity | 5.9175 | 6.0252 | 5.9987 | 6.3692 |
|
||||
|AWQ-LLama 7B| file size | 12.9G | 3.5G | 3.9G | 2.7G |
|
||||
|AWQ-LLama 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|
||||
|
||||
|
||||
### Llama2 7B (Build with CuBLAS)
|
||||
|
||||
| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K |
|
||||
|------------:|--------------|-------:|-------:|-------:|-------:|
|
||||
|Llama2 7B | perplexity | 5.8664 | 6.0260 | 6.0656 | 6.4496 |
|
||||
|Llama2 7B | file size | 12.9G | 3.5G | 3.9G | 2.7G |
|
||||
|Llama2 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|
||||
|AWQ-LLama2 7B| perplexity | 5.8801 | 6.0054 | 5.9849 | 6.3650 |
|
||||
|AWQ-LLama2 7B| file size | 12.9G | 3.5G | 3.9G | 2.7G |
|
||||
|AWQ-LLama2 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|
||||
|
||||
|
||||
### Mistral 7B v0.1 (Build with CuBLAS)
|
||||
|
||||
| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K |
|
||||
|-------------:|--------------|-------:|-------:|-------:|-------:|
|
||||
|Mistral 7B | perplexity | 5.6931 | 5.8202 | 5.8268 | 6.1645 |
|
||||
|Mistral 7B | file size | 14.5G | 4.1G | 4.5G | 3.1G |
|
||||
|Mistral 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|
||||
|AWQ-Mistral 7B| perplexity | 5.6934 | 5.8020 | 5.7691 | 6.0426 |
|
||||
|AWQ-Mistral 7B| file size | 14.5G | 4.1G | 4.5G | 3.1G |
|
||||
|AWQ-Mistral 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|
||||
|
||||
### MPT 7B (Build with OpenBLAS)
|
||||
|
||||
| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K |
|
||||
|---------:|--------------|-------:|-------:|-------:|--------:|
|
||||
|MPT 7B | perplexity | 8.4369 | 8.7956 | 8.6265 | 11.4913 |
|
||||
|MPT 7B | file size | 13.7G | 3.9G | 4.3G | 2.8G |
|
||||
|MPT 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|
||||
|AWQ-MPT 7B| perplexity | 8.4944 | 8.7053 | 8.6750 | 10.2873|
|
||||
|AWQ-MPT 7B| file size | 13.7G | 3.9G | 4.3G | 2.8G |
|
||||
|AWQ-MPT 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|
||||
254
awq-py/awq/apply_awq.py
Normal file
@@ -0,0 +1,254 @@
|
||||
"""
|
||||
Implements the AWQ for llama.cpp use cases.
|
||||
Original paper: https://arxiv.org/abs/2306.00978
|
||||
|
||||
This code is based on versions of the AWQ implementation found in the following repositories:
|
||||
* https://github.com/mit-han-lab/llm-awq
|
||||
* https://github.com/casper-hansen/AutoAWQ
|
||||
"""
|
||||
|
||||
import os
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from transformers import AutoModelForCausalLM, AutoConfig
|
||||
from transformers.models.bloom.modeling_bloom import BloomGelu
|
||||
from transformers.models.llama.modeling_llama import LlamaRMSNorm
|
||||
from transformers.activations import GELUActivation
|
||||
|
||||
|
||||
class ScaledActivation(nn.Module):
|
||||
"""
|
||||
ScaledActivation module wraps an existing activation function and applies a
|
||||
scale factor to its output.
|
||||
|
||||
Args:
|
||||
module (nn.Module): The activation function to be scaled.
|
||||
scales (torch.Tensor): A tensor of size (num_features,) containing the initial
|
||||
scale factors for each feature.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: The scaled output of the activation function.
|
||||
"""
|
||||
|
||||
def __init__(self, module, scales):
|
||||
super().__init__()
|
||||
self.act = module
|
||||
self.scales = nn.Parameter(scales.data)
|
||||
|
||||
def forward(self, x):
|
||||
return self.act(x) / self.scales.view(1, 1, -1).to(x.device)
|
||||
|
||||
|
||||
def set_op_by_name(layer, name, new_module):
|
||||
"""
|
||||
Set the new module for given module's name.
|
||||
|
||||
Args:
|
||||
layer (nn.Module): The layer in which to replace the submodule.
|
||||
name (str): The path to the submodule to be replaced, using dot notation
|
||||
to access nested modules.
|
||||
new_module (nn.Module): The new module to replace the existing one.
|
||||
"""
|
||||
levels = name.split(".")
|
||||
if len(levels) > 1:
|
||||
mod_ = layer
|
||||
for l_idx in range(len(levels) - 1):
|
||||
if levels[l_idx].isdigit():
|
||||
mod_ = mod_[int(levels[l_idx])]
|
||||
else:
|
||||
mod_ = getattr(mod_, levels[l_idx])
|
||||
setattr(mod_, levels[-1], new_module)
|
||||
else:
|
||||
setattr(layer, name, new_module)
|
||||
|
||||
|
||||
def get_op_by_name(module, op_name):
|
||||
"""
|
||||
Retrieves a submodule within a given layer based on its name.
|
||||
|
||||
Args:
|
||||
module (nn.Module): The layer containing the submodule to find.
|
||||
op_name (str): The name of the submodule.
|
||||
|
||||
Returns:
|
||||
nn.Module: The requested submodule found within the given layer.
|
||||
|
||||
Raises:
|
||||
ValueError: If the specified submodule cannot be found within the layer.
|
||||
"""
|
||||
for name, m in module.named_modules():
|
||||
if name == op_name:
|
||||
return m
|
||||
raise ValueError(f"Cannot find op {op_name} in module {module}")
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def scale_ln_fcs(ln, fcs, scales):
|
||||
"""
|
||||
Scales the weights of a LayerNorm and a list of fully-connected layers proportionally.
|
||||
|
||||
Args:
|
||||
ln (nn.LayerNorm): The LayerNorm module to be scaled.
|
||||
fcs (List[nn.Linear]): A list of fully-connected layers to be scaled.
|
||||
scales (torch.Tensor): A 1D tensor of size (num_features,).
|
||||
"""
|
||||
|
||||
if not isinstance(fcs, list):
|
||||
fcs = [fcs]
|
||||
|
||||
scales = scales.to(ln.weight.device)
|
||||
|
||||
ln.weight.div_(scales)
|
||||
if hasattr(ln, "bias") and ln.bias is not None:
|
||||
ln.bias.div_(scales)
|
||||
|
||||
for fc in fcs:
|
||||
fc.weight.mul_(scales.view(1, -1))
|
||||
|
||||
for p in ln.parameters():
|
||||
assert torch.isnan(p).sum() == 0
|
||||
for fc in fcs:
|
||||
for p in fc.parameters():
|
||||
assert torch.isnan(p).sum() == 0
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def scale_fc_fc(fc1, fc2, scales):
|
||||
"""
|
||||
Scales the weights of two fully-connected layers in a specific pattern.
|
||||
|
||||
Args:
|
||||
fc1 (nn.Linear): The first fully-connected layer to be scaled.
|
||||
fc2 (nn.Linear): The second fully-connected layer to be scaled.
|
||||
scales (torch.Tensor): A 1D tensor of size (num_features,).
|
||||
"""
|
||||
assert isinstance(fc1, nn.Linear)
|
||||
assert isinstance(fc2, nn.Linear)
|
||||
|
||||
scales = scales.to(fc1.weight.device)
|
||||
|
||||
fc1.weight[-scales.size(0):].div_(scales.view(-1, 1))
|
||||
if fc1.bias is not None:
|
||||
fc1.bias.div_(scales.view(-1))
|
||||
|
||||
fc2.weight.mul_(scales.view(1, -1))
|
||||
|
||||
for p in fc1.parameters():
|
||||
assert torch.isnan(p).sum() == 0
|
||||
for p in fc2.parameters():
|
||||
assert torch.isnan(p).sum() == 0
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def scale_gelu_fc(gelu, fc, scales):
|
||||
"""
|
||||
Scales the weight of a GELU activation and a fully-connected layer proportionally.
|
||||
|
||||
Args:
|
||||
gelu (Union[nn.GELU, BloomGelu, GELUActivation]): The GELU activation module to be scaled.
|
||||
fc (nn.Linear): The fully-connected layer to be scaled.
|
||||
scales (torch.Tensor): A 1D tensor of size (num_features,).
|
||||
|
||||
Raises:
|
||||
TypeError: If the `gelu` module is not of type `nn.GELU`, `BloomGelu`, or `GELUActivation`.
|
||||
TypeError: If the `fc` module is not of type `nn.Linear`.
|
||||
"""
|
||||
assert isinstance(gelu, (nn.GELU, BloomGelu, GELUActivation))
|
||||
assert isinstance(fc, nn.Linear)
|
||||
|
||||
fc.weight.mul_(scales.view(1, -1).to(fc.weight.device))
|
||||
|
||||
for p in fc.parameters():
|
||||
assert torch.isnan(p).sum() == 0
|
||||
|
||||
|
||||
def apply_scale(module, scales_list, input_feat_dict=None):
|
||||
"""
|
||||
Applies different scaling strategies to layers based on their type and hierarchy within a given module.
|
||||
|
||||
Args:
|
||||
module (nn.Module): The module containing the layers to be scaled.
|
||||
scales_list (List[Tuple[str, List[str], torch.Tensor]]): A list of tuples containing:
|
||||
* prev_op_name (str): The name of the preceding operation or module,
|
||||
relative to which the layers to be scaled are located.
|
||||
* layer_names (List[str]): A list of names of the layers to be scaled, relative to the preceding operation.
|
||||
* scales (torch.Tensor): A 1D tensor of size (num_features,) containing the scaling factors for each feature.
|
||||
input_feat_dict (Optional[Dict[str, torch.Tensor]]): A dictionary mapping layer names to their corresponding
|
||||
input features (optional).
|
||||
"""
|
||||
for prev_op_name, layer_names, scales in scales_list:
|
||||
prev_op = get_op_by_name(module, prev_op_name)
|
||||
layers = [get_op_by_name(module, name) for name in layer_names]
|
||||
|
||||
prev_op.cuda()
|
||||
for layer in layers:
|
||||
layer.cuda()
|
||||
scales.cuda()
|
||||
|
||||
if isinstance(prev_op, nn.Linear):
|
||||
assert len(layers) == 1
|
||||
scale_fc_fc(prev_op, layers[0], scales)
|
||||
elif isinstance(prev_op, (nn.LayerNorm, LlamaRMSNorm)) or "rmsnorm" in str(prev_op.__class__).lower():
|
||||
scale_ln_fcs(prev_op, layers, scales)
|
||||
elif isinstance(prev_op, (nn.GELU, BloomGelu, GELUActivation)):
|
||||
new_module = ScaledActivation(prev_op, scales)
|
||||
set_op_by_name(module, prev_op_name, new_module)
|
||||
scale_gelu_fc(prev_op, layers[0], scales)
|
||||
else:
|
||||
raise NotImplementedError(f"prev_op {type(prev_op)} not supported yet!")
|
||||
|
||||
# apply the scaling to input feat if given; prepare it for clipping
|
||||
if input_feat_dict is not None:
|
||||
for layer_name in layer_names:
|
||||
inp = input_feat_dict[layer_name]
|
||||
inp.div_(scales.view(1, -1).to(inp.device))
|
||||
|
||||
prev_op.cpu()
|
||||
for layer in layers:
|
||||
layer.cpu()
|
||||
scales.cpu()
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def apply_clip(module, clip_list):
|
||||
"""
|
||||
Applies element-wise clipping to the weight of a specific layer within a given module.
|
||||
|
||||
Args:
|
||||
module (nn.Module): The module containing the layer to be clipped.
|
||||
clip_list (List[Tuple[str, torch.Tensor]]): A list of tuples containing:
|
||||
* name (str): The name of the layer to be clipped, relative to the root of the module.
|
||||
* max_val (torch.Tensor): A 1D or 2D tensor defining the upper bound for each element of the layer's weight.
|
||||
"""
|
||||
for name, max_val in clip_list:
|
||||
layer = get_op_by_name(module, name)
|
||||
layer.cuda()
|
||||
max_val = max_val.to(layer.weight.device)
|
||||
org_shape = layer.weight.shape
|
||||
layer.weight.data = layer.weight.data.reshape(*max_val.shape[:2], -1)
|
||||
layer.weight.data = torch.clamp(layer.weight.data, -max_val, max_val)
|
||||
layer.weight.data = layer.weight.data.reshape(org_shape)
|
||||
layer.cpu()
|
||||
|
||||
|
||||
def add_scale_weights(model_path, scale_path, tmp_path):
|
||||
"""
|
||||
Adds pre-computed Activation Weight Quantization (AWQ) results to a model,
|
||||
including scaling factors and clipping bounds.
|
||||
|
||||
Args:
|
||||
model_path (str): Path to the pre-trained model to be equipped with AWQ.
|
||||
scale_path (str): Path to the AWQ scale factors (.pt file).
|
||||
tmp_path (str): Path to the temporary directory where the equipped model will be saved.
|
||||
"""
|
||||
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_path, config=config, trust_remote_code=True
|
||||
)
|
||||
model.eval()
|
||||
awq_results = torch.load(str(scale_path), map_location="cpu")
|
||||
apply_scale(model, awq_results["scale"])
|
||||
apply_clip(model, awq_results["clip"])
|
||||
model.save_pretrained(str(tmp_path))
|
||||
os.system(f"cp {str(model_path)}/tokenizer* {str(tmp_path)}")
|
||||
2
awq-py/requirements.txt
Normal file
@@ -0,0 +1,2 @@
|
||||
torch>=2.1.1
|
||||
transformers>=4.32.0
|
||||
39
ci/run.sh
@@ -30,6 +30,16 @@ sd=`dirname $0`
|
||||
cd $sd/../
|
||||
SRC=`pwd`
|
||||
|
||||
CMAKE_EXTRA=""
|
||||
|
||||
if [ ! -z ${GG_BUILD_METAL} ]; then
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DLLAMA_METAL_SHADER_DEBUG=ON"
|
||||
fi
|
||||
|
||||
if [ ! -z ${GG_BUILD_CUDA} ]; then
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DLLAMA_CUBLAS=1"
|
||||
fi
|
||||
|
||||
## helpers
|
||||
|
||||
# download a file if it does not exist or if it is outdated
|
||||
@@ -81,8 +91,8 @@ function gg_run_ctest_debug {
|
||||
|
||||
set -e
|
||||
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Debug .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Debug ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
|
||||
(time ctest --output-on-failure -E test-opt ) 2>&1 | tee -a $OUT/${ci}-ctest.log
|
||||
|
||||
@@ -109,8 +119,8 @@ function gg_run_ctest_release {
|
||||
|
||||
set -e
|
||||
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Release .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
|
||||
if [ -z ${GG_BUILD_LOW_PERF} ]; then
|
||||
(time ctest --output-on-failure ) 2>&1 | tee -a $OUT/${ci}-ctest.log
|
||||
@@ -154,8 +164,8 @@ function gg_run_open_llama_3b_v2 {
|
||||
|
||||
set -e
|
||||
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Release -DLLAMA_QKK_64=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DLLAMA_QKK_64=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
|
||||
python3 ../convert.py ${path_models}
|
||||
|
||||
@@ -173,6 +183,8 @@ function gg_run_open_llama_3b_v2 {
|
||||
|
||||
wiki_test_60="${path_wiki}/wiki.test-60.raw"
|
||||
|
||||
./bin/test-autorelease ${model_f16}
|
||||
|
||||
./bin/quantize ${model_f16} ${model_q8_0} q8_0
|
||||
./bin/quantize ${model_f16} ${model_q4_0} q4_0
|
||||
./bin/quantize ${model_f16} ${model_q4_1} q4_1
|
||||
@@ -208,6 +220,8 @@ function gg_run_open_llama_3b_v2 {
|
||||
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
|
||||
(time ./bin/imatrix --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
|
||||
|
||||
(time ./bin/save-load-state --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
|
||||
function check_ppl {
|
||||
@@ -235,6 +249,8 @@ function gg_run_open_llama_3b_v2 {
|
||||
check_ppl "q5_k" "$(cat $OUT/${ci}-tg-q5_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q6_k" "$(cat $OUT/${ci}-tg-q6_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
|
||||
cat $OUT/${ci}-imatrix.log | grep "Final" >> $OUT/${ci}-imatrix-sum.log
|
||||
|
||||
# lora
|
||||
function compare_ppl {
|
||||
qnt="$1"
|
||||
@@ -276,7 +292,6 @@ function gg_run_open_llama_3b_v2 {
|
||||
(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} --lora ${lora_shakespeare} --lora-base ${model_f16} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log
|
||||
compare_ppl "q8_0 / f16 base shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log
|
||||
|
||||
|
||||
set +e
|
||||
}
|
||||
|
||||
@@ -286,6 +301,7 @@ function gg_sum_open_llama_3b_v2 {
|
||||
gg_printf 'OpenLLaMA 3B-v2:\n'
|
||||
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
|
||||
gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)"
|
||||
gg_printf '- imatrix:\n```\n%s\n```\n' "$(cat $OUT/${ci}-imatrix-sum.log)"
|
||||
gg_printf '- lora:\n%s\n' "$(cat $OUT/${ci}-lora-ppl.log)"
|
||||
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
|
||||
gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
|
||||
@@ -331,8 +347,8 @@ function gg_run_open_llama_7b_v2 {
|
||||
|
||||
set -e
|
||||
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Release -DLLAMA_CUBLAS=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DLLAMA_CUBLAS=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
|
||||
python3 ../convert.py ${path_models}
|
||||
|
||||
@@ -385,6 +401,8 @@ function gg_run_open_llama_7b_v2 {
|
||||
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
|
||||
(time ./bin/imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
|
||||
|
||||
(time ./bin/save-load-state --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
|
||||
function check_ppl {
|
||||
@@ -412,6 +430,8 @@ function gg_run_open_llama_7b_v2 {
|
||||
check_ppl "q5_k" "$(cat $OUT/${ci}-tg-q5_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q6_k" "$(cat $OUT/${ci}-tg-q6_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
|
||||
cat $OUT/${ci}-imatrix.log | grep "Final" >> $OUT/${ci}-imatrix-sum.log
|
||||
|
||||
# lora
|
||||
function compare_ppl {
|
||||
qnt="$1"
|
||||
@@ -463,6 +483,7 @@ function gg_sum_open_llama_7b_v2 {
|
||||
gg_printf 'OpenLLaMA 7B-v2:\n'
|
||||
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
|
||||
gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)"
|
||||
gg_printf '- imatrix:\n```\n%s\n```\n' "$(cat $OUT/${ci}-imatrix-sum.log)"
|
||||
gg_printf '- lora:\n%s\n' "$(cat $OUT/${ci}-lora-ppl.log)"
|
||||
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
|
||||
gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
|
||||
|
||||
@@ -65,4 +65,4 @@ endif()
|
||||
|
||||
target_include_directories(${TARGET} PUBLIC .)
|
||||
target_compile_features(${TARGET} PUBLIC cxx_std_11)
|
||||
target_link_libraries(${TARGET} PRIVATE llama build_info)
|
||||
target_link_libraries(${TARGET} PRIVATE build_info PUBLIC llama)
|
||||
|
||||
@@ -167,6 +167,24 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
if (params.n_threads_batch <= 0) {
|
||||
params.n_threads_batch = std::thread::hardware_concurrency();
|
||||
}
|
||||
} else if (arg == "-td" || arg == "--threads-draft") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.n_threads_draft = std::stoi(argv[i]);
|
||||
if (params.n_threads_draft <= 0) {
|
||||
params.n_threads_draft = std::thread::hardware_concurrency();
|
||||
}
|
||||
} else if (arg == "-tbd" || arg == "--threads-batch-draft") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.n_threads_batch_draft = std::stoi(argv[i]);
|
||||
if (params.n_threads_batch_draft <= 0) {
|
||||
params.n_threads_batch_draft = std::thread::hardware_concurrency();
|
||||
}
|
||||
} else if (arg == "-p" || arg == "--prompt") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@@ -185,6 +203,23 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
params.prompt_cache_all = true;
|
||||
} else if (arg == "--prompt-cache-ro") {
|
||||
params.prompt_cache_ro = true;
|
||||
} else if (arg == "-bf" || arg == "--binary-file") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
std::ifstream file(argv[i], std::ios::binary);
|
||||
if (!file) {
|
||||
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
// store the external file name in params
|
||||
params.prompt_file = argv[i];
|
||||
std::ostringstream ss;
|
||||
ss << file.rdbuf();
|
||||
params.prompt = ss.str();
|
||||
fprintf(stderr, "Read %zu bytes from binary file %s\n", params.prompt.size(), argv[i]);
|
||||
} else if (arg == "-f" || arg == "--file") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@@ -220,6 +255,20 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
break;
|
||||
}
|
||||
params.n_ctx = std::stoi(argv[i]);
|
||||
} else if (arg == "--grp-attn-n" || arg == "-gan") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
|
||||
params.grp_attn_n = std::stoi(argv[i]);
|
||||
} else if (arg == "--grp-attn-w" || arg == "-gaw") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
|
||||
params.grp_attn_w = std::stoi(argv[i]);
|
||||
} else if (arg == "--rope-freq-base") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@@ -529,9 +578,8 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||
params.n_gpu_layers = std::stoi(argv[i]);
|
||||
#else
|
||||
#ifndef LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
|
||||
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
|
||||
#endif
|
||||
@@ -540,9 +588,8 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||
params.n_gpu_layers_draft = std::stoi(argv[i]);
|
||||
#else
|
||||
#ifndef LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers-draft option will be ignored\n");
|
||||
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
|
||||
#endif
|
||||
@@ -551,25 +598,44 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
params.main_gpu = std::stoi(argv[i]);
|
||||
#else
|
||||
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.\n");
|
||||
#endif
|
||||
#ifndef GGML_USE_CUBLAS
|
||||
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Setting the main GPU has no effect.\n");
|
||||
#endif // GGML_USE_CUBLAS
|
||||
} else if (arg == "--split-mode" || arg == "-sm") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
std::string arg_next = argv[i];
|
||||
if (arg_next == "none") {
|
||||
params.split_mode = LLAMA_SPLIT_NONE;
|
||||
} else if (arg_next == "layer") {
|
||||
params.split_mode = LLAMA_SPLIT_LAYER;
|
||||
} else if (arg_next == "row") {
|
||||
params.split_mode = LLAMA_SPLIT_ROW;
|
||||
} else {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
#ifndef GGML_USE_CUBLAS
|
||||
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Setting the split mode has no effect.\n");
|
||||
#endif // GGML_USE_CUBLAS
|
||||
} else if (arg == "--tensor-split" || arg == "-ts") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
std::string arg_next = argv[i];
|
||||
|
||||
// split string by , and /
|
||||
const std::regex regex{R"([,/]+)"};
|
||||
std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
|
||||
std::vector<std::string> split_arg{it, {}};
|
||||
GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
|
||||
|
||||
if (split_arg.size() >= LLAMA_MAX_DEVICES) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
|
||||
if (i < split_arg.size()) {
|
||||
params.tensor_split[i] = std::stof(split_arg[i]);
|
||||
@@ -577,14 +643,8 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
params.tensor_split[i] = 0.0f;
|
||||
}
|
||||
}
|
||||
#else
|
||||
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n");
|
||||
#endif // GGML_USE_CUBLAS
|
||||
} else if (arg == "--no-mul-mat-q" || arg == "-nommq") {
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
params.mul_mat_q = false;
|
||||
#else
|
||||
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Disabling mul_mat_q kernels has no effect.\n");
|
||||
#ifndef GGML_USE_CUBLAS
|
||||
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Setting a tensor split has no effect.\n");
|
||||
#endif // GGML_USE_CUBLAS
|
||||
} else if (arg == "--no-mmap") {
|
||||
params.use_mmap = false;
|
||||
@@ -592,6 +652,8 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
params.numa = true;
|
||||
} else if (arg == "--verbose-prompt") {
|
||||
params.verbose_prompt = true;
|
||||
} else if (arg == "--no-display-prompt") {
|
||||
params.display_prompt = false;
|
||||
} else if (arg == "-r" || arg == "--reverse-prompt") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@@ -608,6 +670,12 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
if (params.logdir.back() != DIRECTORY_SEPARATOR) {
|
||||
params.logdir += DIRECTORY_SEPARATOR;
|
||||
}
|
||||
} else if (arg == "--save-all-logits" || arg == "--kl-divergence-base") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.logits_file = argv[i];
|
||||
} else if (arg == "--perplexity" || arg == "--all-logits") {
|
||||
params.logits_all = true;
|
||||
} else if (arg == "--ppl-stride") {
|
||||
@@ -616,6 +684,12 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
break;
|
||||
}
|
||||
params.ppl_stride = std::stoi(argv[i]);
|
||||
} else if (arg == "-ptc" || arg == "--print-token-count") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.n_print = std::stoi(argv[i]);
|
||||
} else if (arg == "--ppl-output-type") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@@ -630,6 +704,24 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
break;
|
||||
}
|
||||
params.hellaswag_tasks = std::stoi(argv[i]);
|
||||
} else if (arg == "--winogrande") {
|
||||
params.winogrande = true;
|
||||
} else if (arg == "--winogrande-tasks") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.winogrande_tasks = std::stoi(argv[i]);
|
||||
} else if (arg == "--multiple-choice") {
|
||||
params.multiple_choice = true;
|
||||
} else if (arg == "--multiple-choice-tasks") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.multiple_choice_tasks = std::stoi(argv[i]);
|
||||
} else if (arg == "--kl-divergence") {
|
||||
params.kl_divergence = true;
|
||||
} else if (arg == "--ignore-eos") {
|
||||
params.ignore_eos = true;
|
||||
} else if (arg == "--no-penalize-nl") {
|
||||
@@ -798,7 +890,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
printf("\n");
|
||||
printf("options:\n");
|
||||
printf(" -h, --help show this help message and exit\n");
|
||||
printf(" --version show version and build info\n");
|
||||
printf(" --version show version and build info\n");
|
||||
printf(" -i, --interactive run in interactive mode\n");
|
||||
printf(" --interactive-first run in interactive mode and wait for input right away\n");
|
||||
printf(" -ins, --instruct run in instruction mode (use with Alpaca models)\n");
|
||||
@@ -812,6 +904,10 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
printf(" -t N, --threads N number of threads to use during generation (default: %d)\n", params.n_threads);
|
||||
printf(" -tb N, --threads-batch N\n");
|
||||
printf(" number of threads to use during batch and prompt processing (default: same as --threads)\n");
|
||||
printf(" -td N, --threads-draft N");
|
||||
printf(" number of threads to use during generation (default: same as --threads)");
|
||||
printf(" -tbd N, --threads-batch-draft N\n");
|
||||
printf(" number of threads to use during batch and prompt processing (default: same as --threads-draft)\n");
|
||||
printf(" -p PROMPT, --prompt PROMPT\n");
|
||||
printf(" prompt to start generation with (default: empty)\n");
|
||||
printf(" -e, --escape process prompt escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\)\n");
|
||||
@@ -825,6 +921,8 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
printf(" --in-suffix STRING string to suffix after user inputs with (default: empty)\n");
|
||||
printf(" -f FNAME, --file FNAME\n");
|
||||
printf(" prompt file to start generation.\n");
|
||||
printf(" -bf FNAME, --binary-file FNAME\n");
|
||||
printf(" binary file containing multiple choice tasks.\n");
|
||||
printf(" -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict);
|
||||
printf(" -c N, --ctx-size N size of the prompt context (default: %d, 0 = loaded from model)\n", params.n_ctx);
|
||||
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
||||
@@ -871,6 +969,11 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
printf(" --logits-all return logits for all tokens in the batch (default: disabled)\n");
|
||||
printf(" --hellaswag compute HellaSwag score over random tasks from datafile supplied with -f\n");
|
||||
printf(" --hellaswag-tasks N number of tasks to use when computing the HellaSwag score (default: %zu)\n", params.hellaswag_tasks);
|
||||
printf(" --winogrande compute Winogrande score over random tasks from datafile supplied with -f\n");
|
||||
printf(" --winogrande-tasks N number of tasks to use when computing the Winogrande score (default: %zu)\n", params.winogrande_tasks);
|
||||
printf(" --multiple-choice compute multiple choice score over random tasks from datafile supplied with -f\n");
|
||||
printf(" --multiple-choice-tasks N number of tasks to use when computing the multiple choice score (default: %zu)\n", params.winogrande_tasks);
|
||||
printf(" --kl-divergence computes KL-divergence to logits provided via --kl-divergence-base");
|
||||
printf(" --keep N number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep);
|
||||
printf(" --draft N number of tokens to draft for speculative decoding (default: %d)\n", params.n_draft);
|
||||
printf(" --chunks N max number of chunks to process (default: %d, -1 = all)\n", params.n_chunks);
|
||||
@@ -895,16 +998,22 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
printf(" number of layers to store in VRAM\n");
|
||||
printf(" -ngld N, --n-gpu-layers-draft N\n");
|
||||
printf(" number of layers to store in VRAM for the draft model\n");
|
||||
printf(" -ts SPLIT --tensor-split SPLIT\n");
|
||||
printf(" how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
|
||||
printf(" -mg i, --main-gpu i the GPU to use for scratch and small tensors\n");
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
printf(" -nommq, --no-mul-mat-q\n");
|
||||
printf(" use " GGML_CUBLAS_NAME " instead of custom mul_mat_q " GGML_CUDA_NAME " kernels.\n");
|
||||
printf(" Not recommended since this is both slower and uses more VRAM.\n");
|
||||
#endif // GGML_USE_CUBLAS
|
||||
printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
|
||||
printf(" how to split the model across multiple GPUs, one of:\n");
|
||||
printf(" - none: use one GPU only\n");
|
||||
printf(" - layer (default): split layers and KV across GPUs\n");
|
||||
printf(" - row: split rows across GPUs\n");
|
||||
printf(" -ts SPLIT, --tensor-split SPLIT\n");
|
||||
printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
|
||||
printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
|
||||
printf(" or for intermediate results and KV (with split-mode = row) (default: %d)\n", params.main_gpu);
|
||||
#endif
|
||||
printf(" --verbose-prompt print prompt before generation\n");
|
||||
printf(" --verbose-prompt print a verbose prompt before generation (default: %s)\n", params.verbose_prompt ? "true" : "false");
|
||||
printf(" --no-display-prompt don't print prompt at generation (default: %s)\n", !params.display_prompt ? "true" : "false");
|
||||
printf(" -gan N, --grp-attn-n N\n");
|
||||
printf(" group-attention factor (default: %d)\n", params.grp_attn_n);
|
||||
printf(" -gaw N, --grp-attn-w N\n");
|
||||
printf(" group-attention width (default: %.1f)\n", (double)params.grp_attn_w);
|
||||
printf(" -dkvc, --dump-kv-cache\n");
|
||||
printf(" verbose print of the KV cache\n");
|
||||
printf(" -nkvo, --no-kv-offload\n");
|
||||
@@ -920,12 +1029,14 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
printf(" -m FNAME, --model FNAME\n");
|
||||
printf(" model path (default: %s)\n", params.model.c_str());
|
||||
printf(" -md FNAME, --model-draft FNAME\n");
|
||||
printf(" draft model for speculative decoding (default: %s)\n", params.model.c_str());
|
||||
printf(" draft model for speculative decoding\n");
|
||||
printf(" -ld LOGDIR, --logdir LOGDIR\n");
|
||||
printf(" path under which to save YAML logs (no logging if unset)\n");
|
||||
printf(" --override-kv KEY=TYPE:VALUE\n");
|
||||
printf(" advanced option to override model metadata by key. may be specified multiple times.\n");
|
||||
printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
|
||||
printf(" -ptc N, --print-token-count N\n");
|
||||
printf(" print token count every N tokens (default: %d)\n", params.n_print);
|
||||
printf("\n");
|
||||
#ifndef LOG_DISABLE_LOGS
|
||||
log_print_usage();
|
||||
@@ -1015,6 +1126,7 @@ struct llama_model_params llama_model_params_from_gpt_params(const gpt_params &
|
||||
mparams.n_gpu_layers = params.n_gpu_layers;
|
||||
}
|
||||
mparams.main_gpu = params.main_gpu;
|
||||
mparams.split_mode = params.split_mode;
|
||||
mparams.tensor_split = params.tensor_split;
|
||||
mparams.use_mmap = params.use_mmap;
|
||||
mparams.use_mlock = params.use_mlock;
|
||||
@@ -1029,6 +1141,9 @@ struct llama_model_params llama_model_params_from_gpt_params(const gpt_params &
|
||||
}
|
||||
|
||||
static ggml_type kv_cache_type_from_str(const std::string & s) {
|
||||
if (s == "f32") {
|
||||
return GGML_TYPE_F32;
|
||||
}
|
||||
if (s == "f16") {
|
||||
return GGML_TYPE_F16;
|
||||
}
|
||||
@@ -1394,6 +1509,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
|
||||
fprintf(stream, "build_number: %d\n", LLAMA_BUILD_NUMBER);
|
||||
fprintf(stream, "cpu_has_arm_fma: %s\n", ggml_cpu_has_arm_fma() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_avx: %s\n", ggml_cpu_has_avx() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_avx_vnni: %s\n", ggml_cpu_has_avx_vnni() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_avx2: %s\n", ggml_cpu_has_avx2() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_avx512: %s\n", ggml_cpu_has_avx512() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false");
|
||||
@@ -1539,6 +1655,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
|
||||
fprintf(stream, "min_p: %f # default: 0.0\n", sparams.min_p);
|
||||
fprintf(stream, "typical_p: %f # default: 1.0\n", sparams.typical_p);
|
||||
fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false");
|
||||
fprintf(stream, "display_prompt: %s # default: true\n", params.display_prompt ? "true" : "false");
|
||||
}
|
||||
|
||||
//
|
||||
|
||||
@@ -46,12 +46,14 @@ struct gpt_params {
|
||||
uint32_t seed = -1; // RNG seed
|
||||
|
||||
int32_t n_threads = get_num_physical_cores();
|
||||
int32_t n_threads_draft = -1;
|
||||
int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
|
||||
int32_t n_threads_batch_draft = -1;
|
||||
int32_t n_predict = -1; // new tokens to predict
|
||||
int32_t n_ctx = 512; // context size
|
||||
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
|
||||
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
||||
int32_t n_draft = 16; // number of tokens to draft during speculative decoding
|
||||
int32_t n_draft = 8; // number of tokens to draft during speculative decoding
|
||||
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
|
||||
int32_t n_parallel = 1; // number of parallel sequences to decode
|
||||
int32_t n_sequences = 1; // number of sequences to decode
|
||||
@@ -59,9 +61,13 @@ struct gpt_params {
|
||||
float p_split = 0.1f; // speculative decoding split probability
|
||||
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
|
||||
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
|
||||
llama_split_mode split_mode = LLAMA_SPLIT_LAYER; // how to split the model across GPUs
|
||||
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
||||
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
|
||||
int32_t n_beams = 0; // if non-zero then use beam search of given width.
|
||||
int32_t grp_attn_n = 1; // group-attention factor
|
||||
int32_t grp_attn_w = 512; // group-attention width
|
||||
int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
|
||||
float rope_freq_base = 0.0f; // RoPE base frequency
|
||||
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
|
||||
float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
|
||||
@@ -85,6 +91,7 @@ struct gpt_params {
|
||||
std::string input_suffix = ""; // string to suffix user inputs with
|
||||
std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
|
||||
std::string logdir = ""; // directory in which to save YAML log files
|
||||
std::string logits_file = ""; // file for saving *all* logits
|
||||
|
||||
std::vector<llama_model_kv_override> kv_overrides;
|
||||
|
||||
@@ -99,6 +106,14 @@ struct gpt_params {
|
||||
bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
|
||||
size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
|
||||
|
||||
bool winogrande = false; // compute Winogrande score over random tasks from datafile supplied in prompt
|
||||
size_t winogrande_tasks= 0; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed
|
||||
|
||||
bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt
|
||||
size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed
|
||||
|
||||
bool kl_divergence = false; // compute KL-divergence
|
||||
|
||||
bool mul_mat_q = true; // if true, use mul_mat_q kernels instead of cuBLAS
|
||||
bool random_prompt = false; // do not randomize prompt if none provided
|
||||
bool use_color = false; // use color to distinguish generations and inputs
|
||||
@@ -122,6 +137,7 @@ struct gpt_params {
|
||||
bool use_mlock = false; // use mlock to keep model in memory
|
||||
bool numa = false; // attempt optimizations that help on some NUMA systems
|
||||
bool verbose_prompt = false; // print prompt tokens before generation
|
||||
bool display_prompt = true; // print prompt before generation
|
||||
bool infill = false; // use infill mode
|
||||
bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
|
||||
bool no_kv_offload = false; // disable KV offloading
|
||||
|
||||
@@ -149,11 +149,12 @@ static void sampler_queue(
|
||||
}
|
||||
}
|
||||
|
||||
llama_token llama_sampling_sample(
|
||||
static llama_token llama_sampling_sample_impl(
|
||||
struct llama_sampling_context * ctx_sampling,
|
||||
struct llama_context * ctx_main,
|
||||
struct llama_context * ctx_cfg,
|
||||
const int idx) {
|
||||
const int idx,
|
||||
bool is_resampling) { // Add a parameter to indicate if we are resampling
|
||||
const llama_sampling_params & params = ctx_sampling->params;
|
||||
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
|
||||
@@ -173,13 +174,27 @@ llama_token llama_sampling_sample(
|
||||
|
||||
llama_token id = 0;
|
||||
|
||||
// Get a pointer to the logits
|
||||
float * logits = llama_get_logits_ith(ctx_main, idx);
|
||||
|
||||
// Declare original_logits at the beginning of the function scope
|
||||
std::vector<float> original_logits;
|
||||
|
||||
if (!is_resampling) {
|
||||
// Only make a copy of the original logits if we are not in the resampling phase, not sure if I actually have to do this.
|
||||
original_logits = std::vector<float>(logits, logits + llama_n_vocab(llama_get_model(ctx_main)));
|
||||
}
|
||||
|
||||
// apply params.logit_bias map
|
||||
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
|
||||
logits[it->first] += it->second;
|
||||
}
|
||||
|
||||
if (ctx_cfg) {
|
||||
float * logits_guidance = llama_get_logits_ith(ctx_cfg, idx);
|
||||
llama_sample_apply_guidance(ctx_main, logits, logits_guidance, params.cfg_scale);
|
||||
}
|
||||
|
||||
cur.clear();
|
||||
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
@@ -188,17 +203,15 @@ llama_token llama_sampling_sample(
|
||||
|
||||
llama_token_data_array cur_p = { cur.data(), cur.size(), false };
|
||||
|
||||
if (ctx_cfg) {
|
||||
llama_sample_classifier_free_guidance(ctx_main, &cur_p, ctx_cfg, params.cfg_scale);
|
||||
}
|
||||
|
||||
// apply penalties
|
||||
if (!prev.empty()) {
|
||||
const auto& penalty_tokens = params.use_penalty_prompt_tokens ? params.penalty_prompt_tokens : prev;
|
||||
const int penalty_tokens_used_size = std::min((int)penalty_tokens.size(), penalty_last_n);
|
||||
if (penalty_tokens_used_size) {
|
||||
const float nl_logit = logits[llama_token_nl(llama_get_model(ctx_main))];
|
||||
|
||||
llama_sample_repetition_penalties(ctx_main, &cur_p,
|
||||
prev.data() + prev.size() - penalty_last_n,
|
||||
penalty_last_n, penalty_repeat, penalty_freq, penalty_present);
|
||||
penalty_tokens.data() + penalty_tokens.size() - penalty_tokens_used_size,
|
||||
penalty_tokens_used_size, penalty_repeat, penalty_freq, penalty_present);
|
||||
|
||||
if (!penalize_nl) {
|
||||
for (size_t idx = 0; idx < cur_p.size; idx++) {
|
||||
@@ -210,7 +223,8 @@ llama_token llama_sampling_sample(
|
||||
}
|
||||
}
|
||||
|
||||
if (ctx_sampling->grammar != NULL) {
|
||||
// If we are in the resampling phase, apply grammar checks before sampling logic
|
||||
if (is_resampling && ctx_sampling->grammar != NULL) {
|
||||
llama_sample_grammar(ctx_main, &cur_p, ctx_sampling->grammar);
|
||||
}
|
||||
|
||||
@@ -252,9 +266,40 @@ llama_token llama_sampling_sample(
|
||||
}
|
||||
}
|
||||
|
||||
if (ctx_sampling->grammar != NULL && !is_resampling) {
|
||||
// Create an array with a single token data element for the sampled id
|
||||
llama_token_data single_token_data = {id, logits[id], 0.0f};
|
||||
llama_token_data_array single_token_data_array = { &single_token_data, 1, false };
|
||||
|
||||
// Apply grammar constraints to the single token
|
||||
llama_sample_grammar(ctx_main, &single_token_data_array, ctx_sampling->grammar);
|
||||
|
||||
// Check if the token is valid according to the grammar by seeing if its logit has been set to -INFINITY
|
||||
bool is_valid = single_token_data_array.data[0].logit != -INFINITY;
|
||||
|
||||
// If the token is not valid according to the grammar, perform resampling
|
||||
if (!is_valid) {
|
||||
LOG("Resampling because token %d: '%s' does not meet grammar rules\n", id, llama_token_to_piece(ctx_main, id).c_str());
|
||||
|
||||
// Restore logits from the copy
|
||||
std::copy(original_logits.begin(), original_logits.end(), logits);
|
||||
|
||||
return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, true); // Pass true for is_resampling
|
||||
}
|
||||
}
|
||||
|
||||
return id;
|
||||
}
|
||||
|
||||
llama_token llama_sampling_sample(
|
||||
struct llama_sampling_context * ctx_sampling,
|
||||
struct llama_context * ctx_main,
|
||||
struct llama_context * ctx_cfg,
|
||||
const int idx) {
|
||||
// Call the implementation function with is_resampling set to false by default
|
||||
return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, false);
|
||||
}
|
||||
|
||||
void llama_sampling_accept(
|
||||
struct llama_sampling_context * ctx_sampling,
|
||||
struct llama_context * ctx_main,
|
||||
|
||||
@@ -17,7 +17,7 @@ typedef struct llama_sampling_params {
|
||||
float min_p = 0.05f; // 0.0 = disabled
|
||||
float tfs_z = 1.00f; // 1.0 = disabled
|
||||
float typical_p = 1.00f; // 1.0 = disabled
|
||||
float temp = 0.80f; // 1.0 = disabled
|
||||
float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
|
||||
int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
|
||||
float penalty_repeat = 1.10f; // 1.0 = disabled
|
||||
float penalty_freq = 0.00f; // 0.0 = disabled
|
||||
@@ -36,6 +36,9 @@ typedef struct llama_sampling_params {
|
||||
float cfg_scale = 1.f; // how strong is guidance
|
||||
|
||||
std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
|
||||
|
||||
std::vector<llama_token> penalty_prompt_tokens;
|
||||
bool use_penalty_prompt_tokens = false;
|
||||
} llama_sampling_params;
|
||||
|
||||
// general sampler context
|
||||
|
||||
@@ -1107,7 +1107,7 @@ void print_common_train_usage(int /*argc*/, char ** /*argv*/, const struct train
|
||||
fprintf(stderr, " --sample-start STR Sets the starting point for samples after the specified pattern. If empty use every token position as sample start. (default '%s')\n", params->sample_start.c_str());
|
||||
fprintf(stderr, " --include-sample-start Include the sample start in the samples. (default off)\n");
|
||||
fprintf(stderr, " --escape process sample start escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\)\n");
|
||||
fprintf(stderr, " --overlapping-samples Samples my overlap, will include sample-start of second and following samples. When off, samples will end at begin of next sample. (default off)\n");
|
||||
fprintf(stderr, " --overlapping-samples Samples may overlap, will include sample-start of second and following samples. When off, samples will end at begin of next sample. (default off)\n");
|
||||
fprintf(stderr, " --fill-with-next-samples Samples shorter than context length will be followed by the next (shuffled) samples. (default off)\n");
|
||||
fprintf(stderr, " --separate-with-eos When fill-with-next-samples, insert end-of-sequence token between samples.%s\n", params->separate_with_eos ? " (default)" : "");
|
||||
fprintf(stderr, " --separate-with-bos When fill-with-next-samples, insert begin-of-sequence token between samples.%s\n", params->separate_with_bos ? " (default)" : "");
|
||||
|
||||
@@ -10,7 +10,7 @@ import re
|
||||
import sys
|
||||
from enum import IntEnum
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, Any, ContextManager, Iterator, cast, Optional
|
||||
from typing import TYPE_CHECKING, Any, ContextManager, Iterator, cast
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
@@ -23,6 +23,15 @@ if 'NO_LOCAL_GGUF' not in os.environ:
|
||||
import gguf
|
||||
|
||||
|
||||
# check for any of the given keys in the dictionary and return the value of the first key found
|
||||
def get_key_opts(d, keys):
|
||||
for k in keys:
|
||||
if k in d:
|
||||
return d[k]
|
||||
print(f"Could not find any of {keys}")
|
||||
sys.exit()
|
||||
|
||||
|
||||
###### MODEL DEFINITIONS ######
|
||||
|
||||
class SentencePieceTokenTypes(IntEnum):
|
||||
@@ -46,7 +55,7 @@ class Model:
|
||||
self.part_names = self._get_part_names()
|
||||
self.hparams = Model.load_hparams(self.dir_model)
|
||||
self.model_arch = self._get_model_architecture()
|
||||
self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess)
|
||||
self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=False)
|
||||
|
||||
def set_vocab(self):
|
||||
self._set_vocab_gpt2()
|
||||
@@ -180,10 +189,18 @@ class Model:
|
||||
return StableLMModel
|
||||
if model_architecture == "QWenLMHeadModel":
|
||||
return QwenModel
|
||||
if model_architecture == "Qwen2ForCausalLM":
|
||||
return Model
|
||||
if model_architecture == "MixtralForCausalLM":
|
||||
return MixtralModel
|
||||
if model_architecture == "GPT2LMHeadModel":
|
||||
return GPT2Model
|
||||
if model_architecture == "PhiForCausalLM":
|
||||
return Phi2Model
|
||||
if model_architecture == "PlamoForCausalLM":
|
||||
return PlamoModel
|
||||
if model_architecture == "CodeShellForCausalLM":
|
||||
return CodeShellModel
|
||||
return Model
|
||||
|
||||
def _is_model_safetensors(self) -> bool:
|
||||
@@ -221,10 +238,18 @@ class Model:
|
||||
return gguf.MODEL_ARCH.STABLELM
|
||||
if arch == "QWenLMHeadModel":
|
||||
return gguf.MODEL_ARCH.QWEN
|
||||
if arch == "Qwen2ForCausalLM":
|
||||
return gguf.MODEL_ARCH.QWEN2
|
||||
if arch == "MixtralForCausalLM":
|
||||
return gguf.MODEL_ARCH.LLAMA
|
||||
if arch == "GPT2LMHeadModel":
|
||||
return gguf.MODEL_ARCH.GPT2
|
||||
if arch == "PhiForCausalLM":
|
||||
return gguf.MODEL_ARCH.PHI2
|
||||
if arch == "PlamoForCausalLM":
|
||||
return gguf.MODEL_ARCH.PLAMO
|
||||
if arch == "CodeShellForCausalLM":
|
||||
return gguf.MODEL_ARCH.CODESHELL
|
||||
|
||||
raise NotImplementedError(f'Architecture "{arch}" not supported!')
|
||||
|
||||
@@ -234,7 +259,7 @@ class Model:
|
||||
tokens: list[bytearray] = []
|
||||
toktypes: list[int] = []
|
||||
|
||||
from transformers import AutoTokenizer # type: ignore[attr-defined]
|
||||
from transformers import AutoTokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(dir_model)
|
||||
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
|
||||
assert max(tokenizer.vocab.values()) < vocab_size
|
||||
@@ -264,6 +289,58 @@ class Model:
|
||||
special_vocab = gguf.SpecialVocab(dir_model, load_merges=True)
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
def _set_vocab_qwen(self):
|
||||
dir_model = self.dir_model
|
||||
hparams = self.hparams
|
||||
tokens: list[bytearray] = []
|
||||
toktypes: list[int] = []
|
||||
|
||||
from transformers import AutoTokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
|
||||
vocab_size = hparams["vocab_size"]
|
||||
assert max(tokenizer.get_vocab().values()) < vocab_size
|
||||
|
||||
merges = []
|
||||
vocab = {}
|
||||
mergeable_ranks = tokenizer.mergeable_ranks
|
||||
for token, rank in mergeable_ranks.items():
|
||||
vocab[QwenModel.token_bytes_to_string(token)] = rank
|
||||
if len(token) == 1:
|
||||
continue
|
||||
merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
|
||||
assert len(merged) == 2
|
||||
merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
|
||||
|
||||
# for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
|
||||
added_vocab = tokenizer.special_tokens
|
||||
reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in (vocab | added_vocab).items()}
|
||||
|
||||
for i in range(vocab_size):
|
||||
if i not in reverse_vocab:
|
||||
pad_token = f"[PAD{i}]".encode("utf-8")
|
||||
tokens.append(bytearray(pad_token))
|
||||
toktypes.append(gguf.TokenType.USER_DEFINED)
|
||||
elif reverse_vocab[i] in added_vocab:
|
||||
tokens.append(reverse_vocab[i])
|
||||
toktypes.append(gguf.TokenType.CONTROL)
|
||||
else:
|
||||
tokens.append(reverse_vocab[i])
|
||||
toktypes.append(gguf.TokenType.NORMAL)
|
||||
|
||||
self.gguf_writer.add_tokenizer_model("gpt2")
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
self.gguf_writer.add_token_types(toktypes)
|
||||
|
||||
special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
|
||||
special_vocab.merges = merges
|
||||
# only add special tokens when they were not already loaded from config.json
|
||||
if len(special_vocab.special_token_ids) == 0:
|
||||
special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
|
||||
special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
|
||||
# this one is usually not in config.json anyway
|
||||
special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
def _set_vocab_sentencepiece(self):
|
||||
from sentencepiece import SentencePieceProcessor
|
||||
|
||||
@@ -460,7 +537,12 @@ class MPTModel(Model):
|
||||
data = data_torch.squeeze().numpy()
|
||||
|
||||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if "scales" in name:
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias", ".scales"))
|
||||
if new_name is not None:
|
||||
new_name = new_name.replace("scales", "act.scales")
|
||||
else:
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
@@ -805,10 +887,17 @@ class PersimmonModel(Model):
|
||||
hidden_size = self.hparams["hidden_size"]
|
||||
|
||||
self.gguf_writer.add_name('persimmon-8b-chat')
|
||||
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
|
||||
self.gguf_writer.add_embedding_length(hidden_size)
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
|
||||
self.gguf_writer.add_rope_dimension_count(hidden_size // head_count)
|
||||
|
||||
# NOTE: not sure about this change - why does the model not have a rope dimension count when it is smaller
|
||||
# than the head size?
|
||||
# ref: https://github.com/ggerganov/llama.cpp/pull/4889
|
||||
# self.gguf_writer.add_rope_dimension_count(hidden_size // head_count)
|
||||
self.gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2)
|
||||
|
||||
self.gguf_writer.add_head_count(head_count)
|
||||
self.gguf_writer.add_head_count_kv(head_count_kv)
|
||||
self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
|
||||
@@ -840,11 +929,18 @@ class PersimmonModel(Model):
|
||||
|
||||
|
||||
class StableLMModel(Model):
|
||||
def set_vocab(self):
|
||||
if (self.dir_model / "tokenizer.json").is_file():
|
||||
self._set_vocab_gpt2()
|
||||
else:
|
||||
# StableLM 2 1.6B uses a vocab in a similar format to Qwen's vocab
|
||||
self._set_vocab_qwen()
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
hparams = self.hparams
|
||||
block_count = hparams["num_hidden_layers"]
|
||||
|
||||
self.gguf_writer.add_name(dir_model.name)
|
||||
self.gguf_writer.add_name(self.dir_model.name)
|
||||
self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
|
||||
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
@@ -868,7 +964,7 @@ class QwenModel(Model):
|
||||
return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
|
||||
|
||||
@staticmethod
|
||||
def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: Optional[int] = None) -> list[bytes]:
|
||||
def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
|
||||
parts = [bytes([b]) for b in token]
|
||||
while True:
|
||||
min_idx = None
|
||||
@@ -885,52 +981,7 @@ class QwenModel(Model):
|
||||
return parts
|
||||
|
||||
def set_vocab(self):
|
||||
dir_model = self.dir_model
|
||||
hparams = self.hparams
|
||||
tokens: list[bytearray] = []
|
||||
toktypes: list[int] = []
|
||||
|
||||
from transformers import AutoTokenizer # type: ignore[attr-defined]
|
||||
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
|
||||
vocab_size = hparams["vocab_size"]
|
||||
assert max(tokenizer.get_vocab().values()) < vocab_size
|
||||
|
||||
merges = []
|
||||
vocab = {}
|
||||
mergeable_ranks = tokenizer.mergeable_ranks
|
||||
for token, rank in mergeable_ranks.items():
|
||||
vocab[self.token_bytes_to_string(token)] = rank
|
||||
if len(token) == 1:
|
||||
continue
|
||||
merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
|
||||
assert len(merged) == 2
|
||||
merges.append(' '.join(map(self.token_bytes_to_string, merged)))
|
||||
|
||||
reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in vocab.items()}
|
||||
added_vocab = tokenizer.special_tokens
|
||||
|
||||
for i in range(vocab_size):
|
||||
if i not in reverse_vocab:
|
||||
pad_token = f"[PAD{i}]".encode("utf-8")
|
||||
tokens.append(bytearray(pad_token))
|
||||
toktypes.append(gguf.TokenType.USER_DEFINED)
|
||||
elif reverse_vocab[i] in added_vocab:
|
||||
tokens.append(reverse_vocab[i])
|
||||
toktypes.append(gguf.TokenType.CONTROL)
|
||||
else:
|
||||
tokens.append(reverse_vocab[i])
|
||||
toktypes.append(gguf.TokenType.NORMAL)
|
||||
|
||||
self.gguf_writer.add_tokenizer_model("gpt2")
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
self.gguf_writer.add_token_types(toktypes)
|
||||
|
||||
special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
|
||||
special_vocab.merges = merges
|
||||
special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
|
||||
special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
|
||||
special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
self._set_vocab_qwen()
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
self.gguf_writer.add_name("Qwen")
|
||||
@@ -985,32 +1036,246 @@ class QwenModel(Model):
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
||||
class GPT2Model(Model):
|
||||
def set_gguf_parameters(self):
|
||||
self.gguf_writer.add_name(self.dir_model.name)
|
||||
self.gguf_writer.add_block_count(self.hparams["n_layer"])
|
||||
self.gguf_writer.add_context_length(self.hparams["n_ctx"])
|
||||
self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
|
||||
self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
|
||||
self.gguf_writer.add_head_count(self.hparams["n_head"])
|
||||
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
|
||||
def write_tensors(self):
|
||||
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
|
||||
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||||
|
||||
for name, data_torch in self.get_tensors():
|
||||
# we don't need these
|
||||
if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq", ".attn.bias")):
|
||||
continue
|
||||
|
||||
if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
|
||||
data_torch = data_torch.transpose(1, 0)
|
||||
|
||||
old_dtype = data_torch.dtype
|
||||
|
||||
# convert any unsupported data types to float32
|
||||
if data_torch.dtype not in (torch.float16, torch.float32):
|
||||
data_torch = data_torch.to(torch.float32)
|
||||
|
||||
data = data_torch.squeeze().numpy()
|
||||
|
||||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
||||
# if f32 desired, convert any float16 to float32
|
||||
if self.ftype == 0 and data_dtype == np.float16:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||||
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
# note: GPT2 output is tied to (same as) wte in original model
|
||||
if new_name == "token_embd.weight":
|
||||
print(f"output.weight, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
self.gguf_writer.add_tensor("output.weight", data)
|
||||
|
||||
|
||||
class Phi2Model(Model):
|
||||
def set_gguf_parameters(self):
|
||||
block_count = get_key_opts(self.hparams, ["num_hidden_layers", "n_layer"])
|
||||
|
||||
rot_pct = get_key_opts(self.hparams, ["partial_rotary_factor"])
|
||||
n_embd = get_key_opts(self.hparams, ["hidden_size", "n_embd"])
|
||||
n_head = get_key_opts(self.hparams, ["num_attention_heads", "n_head"])
|
||||
|
||||
self.gguf_writer.add_name("Phi2")
|
||||
self.gguf_writer.add_context_length(get_key_opts(self.hparams, ["n_positions", "max_position_embeddings"]))
|
||||
|
||||
self.gguf_writer.add_embedding_length(n_embd)
|
||||
self.gguf_writer.add_feed_forward_length(4 * n_embd)
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
self.gguf_writer.add_head_count(n_head)
|
||||
self.gguf_writer.add_head_count_kv(n_head)
|
||||
self.gguf_writer.add_layer_norm_eps(get_key_opts(self.hparams, ["layer_norm_epsilon", "layer_norm_eps"]))
|
||||
self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
self.gguf_writer.add_add_bos_token(False)
|
||||
|
||||
|
||||
class PlamoModel(Model):
|
||||
def set_vocab(self):
|
||||
self._set_vocab_sentencepiece()
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
hparams = self.hparams
|
||||
block_count = hparams["num_hidden_layers"]
|
||||
|
||||
self.gguf_writer.add_name("PLaMo")
|
||||
self.gguf_writer.add_context_length(4096) # not in config.json
|
||||
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||||
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
self.gguf_writer.add_head_count(hparams["num_attention_heads"])
|
||||
self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
|
||||
self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
|
||||
|
||||
def shuffle_attn_q_weight(self, data_torch):
|
||||
assert data_torch.size() == (5120, 5120)
|
||||
data_torch = data_torch.reshape(8, 5, 128, 5120)
|
||||
data_torch = torch.permute(data_torch, (1, 0, 2, 3))
|
||||
data_torch = torch.reshape(data_torch, (5120, 5120))
|
||||
return data_torch
|
||||
|
||||
def shuffle_attn_output_weight(self, data_torch):
|
||||
assert data_torch.size() == (5120, 5120)
|
||||
data_torch = data_torch.reshape(5120, 8, 5, 128)
|
||||
data_torch = torch.permute(data_torch, (0, 2, 1, 3))
|
||||
data_torch = torch.reshape(data_torch, (5120, 5120))
|
||||
return data_torch
|
||||
|
||||
def write_tensors(self):
|
||||
block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
|
||||
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||||
|
||||
for name, data_torch in self.get_tensors():
|
||||
if "self_attn.rotary_emb.inv_freq" in name:
|
||||
continue
|
||||
|
||||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
|
||||
# shuffle for broadcasting of gqa in ggml_mul_mat
|
||||
if new_name.endswith("attn_q.weight"):
|
||||
data_torch = self.shuffle_attn_q_weight(data_torch)
|
||||
elif new_name.endswith("attn_output.weight"):
|
||||
data_torch = self.shuffle_attn_output_weight(data_torch)
|
||||
|
||||
old_dtype = data_torch.dtype
|
||||
|
||||
# convert any unsupported data types to float32
|
||||
if data_torch.dtype not in (torch.float16, torch.float32):
|
||||
data_torch = data_torch.to(torch.float32)
|
||||
|
||||
data = data_torch.squeeze().numpy()
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
||||
# if f32 desired, convert any float16 to float32
|
||||
if self.ftype == 0 and data_dtype == np.float16:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||||
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
||||
class CodeShellModel(Model):
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.hparams["n_layer"]
|
||||
|
||||
self.gguf_writer.add_name("Phi2")
|
||||
self.gguf_writer.add_name("CodeShell")
|
||||
self.gguf_writer.add_context_length(self.hparams["n_positions"])
|
||||
self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
|
||||
self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
self.gguf_writer.add_head_count(self.hparams["n_head"])
|
||||
self.gguf_writer.add_head_count_kv(self.hparams["n_head"])
|
||||
self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
|
||||
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
|
||||
self.gguf_writer.add_rope_dimension_count(self.hparams["rotary_dim"])
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
self.gguf_writer.add_add_bos_token(False)
|
||||
self.gguf_writer.add_rope_freq_base(10000.0)
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||||
self.gguf_writer.add_rope_scaling_factor(1.0)
|
||||
|
||||
def write_tensors(self):
|
||||
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
|
||||
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||||
tensors = dict(self.get_tensors())
|
||||
has_lm_head = "lm_head.weight" in tensors.keys() or "output.weight" in tensors.keys()
|
||||
for name, data_torch in tensors.items():
|
||||
# we don't need these
|
||||
if name.endswith((".attn.rotary_emb.inv_freq")):
|
||||
continue
|
||||
|
||||
old_dtype = data_torch.dtype
|
||||
|
||||
# convert any unsupported data types to float32
|
||||
if data_torch.dtype not in (torch.float16, torch.float32):
|
||||
data_torch = data_torch.to(torch.float32)
|
||||
|
||||
data = data_torch.squeeze().numpy()
|
||||
|
||||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
||||
# if f32 desired, convert any float16 to float32
|
||||
if self.ftype == 0 and data_dtype == np.float16:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||||
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
if not has_lm_head and name == "transformer.wte.weight":
|
||||
self.gguf_writer.add_tensor("output.weight", data)
|
||||
print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
###### CONVERSION LOGIC ######
|
||||
|
||||
|
||||
def parse_args() -> argparse.Namespace:
|
||||
parser = argparse.ArgumentParser(description="Convert a huggingface model to a GGML compatible file")
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Convert a huggingface model to a GGML compatible file")
|
||||
parser.add_argument(
|
||||
"--vocab-only", action="store_true",
|
||||
help="extract only the vocab",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--awq-path", type=Path, default=None,
|
||||
help="Path to scale awq cache file")
|
||||
parser.add_argument(
|
||||
"--outfile", type=Path,
|
||||
help="path to write to; default: based on input",
|
||||
@@ -1028,43 +1293,62 @@ def parse_args() -> argparse.Namespace:
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
args = parse_args()
|
||||
def main() -> None:
|
||||
args = parse_args()
|
||||
|
||||
dir_model = args.model
|
||||
if not dir_model.is_dir():
|
||||
print(f'Error: {args.model} is not a directory', file=sys.stderr)
|
||||
sys.exit(1)
|
||||
dir_model = args.model
|
||||
|
||||
ftype_map = {
|
||||
"f32": gguf.GGMLQuantizationType.F32,
|
||||
"f16": gguf.GGMLQuantizationType.F16,
|
||||
}
|
||||
if args.awq_path:
|
||||
sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
|
||||
from awq.apply_awq import add_scale_weights # type: ignore[import-not-found]
|
||||
tmp_model_path = args.model / "weighted_model"
|
||||
dir_model = tmp_model_path
|
||||
if tmp_model_path.is_dir():
|
||||
print(f"{tmp_model_path} exists as a weighted model.")
|
||||
else:
|
||||
tmp_model_path.mkdir(parents=True, exist_ok=True)
|
||||
print("Saving new weighted model ...")
|
||||
add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
|
||||
print(f"Saved weighted model at {tmp_model_path}.")
|
||||
|
||||
if args.outfile is not None:
|
||||
fname_out = args.outfile
|
||||
else:
|
||||
# output in the same directory as the model by default
|
||||
fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'
|
||||
if not dir_model.is_dir():
|
||||
print(f'Error: {args.model} is not a directory', file=sys.stderr)
|
||||
sys.exit(1)
|
||||
|
||||
print(f"Loading model: {dir_model.name}")
|
||||
ftype_map = {
|
||||
"f32": gguf.GGMLQuantizationType.F32,
|
||||
"f16": gguf.GGMLQuantizationType.F16,
|
||||
}
|
||||
|
||||
hparams = Model.load_hparams(dir_model)
|
||||
|
||||
with torch.inference_mode():
|
||||
model_class = Model.from_model_architecture(hparams["architectures"][0])
|
||||
model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian)
|
||||
|
||||
print("Set model parameters")
|
||||
model_instance.set_gguf_parameters()
|
||||
|
||||
print("Set model tokenizer")
|
||||
model_instance.set_vocab()
|
||||
|
||||
if args.vocab_only:
|
||||
print(f"Exporting model vocab to '{fname_out}'")
|
||||
model_instance.write_vocab()
|
||||
if args.outfile is not None:
|
||||
fname_out = args.outfile
|
||||
else:
|
||||
print(f"Exporting model to '{fname_out}'")
|
||||
model_instance.write()
|
||||
# output in the same directory as the model by default
|
||||
fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'
|
||||
|
||||
print(f"Model successfully exported to '{fname_out}'")
|
||||
print(f"Loading model: {dir_model.name}")
|
||||
|
||||
hparams = Model.load_hparams(dir_model)
|
||||
|
||||
with torch.inference_mode():
|
||||
model_class = Model.from_model_architecture(hparams["architectures"][0])
|
||||
model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian)
|
||||
|
||||
print("Set model parameters")
|
||||
model_instance.set_gguf_parameters()
|
||||
|
||||
print("Set model tokenizer")
|
||||
model_instance.set_vocab()
|
||||
|
||||
if args.vocab_only:
|
||||
print(f"Exporting model vocab to '{fname_out}'")
|
||||
model_instance.write_vocab()
|
||||
else:
|
||||
print(f"Exporting model to '{fname_out}'")
|
||||
model_instance.write()
|
||||
|
||||
print(f"Model successfully exported to '{fname_out}'")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
||||
@@ -2,6 +2,7 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import argparse
|
||||
import os
|
||||
import struct
|
||||
import sys
|
||||
from enum import IntEnum
|
||||
@@ -9,7 +10,6 @@ from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
|
||||
import os
|
||||
if 'NO_LOCAL_GGUF' not in os.environ:
|
||||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
|
||||
import gguf
|
||||
@@ -371,15 +371,11 @@ def handle_metadata(cfg, hp):
|
||||
params = convert.Params.loadOriginalParamsJson(fakemodel, orig_config_path)
|
||||
else:
|
||||
raise ValueError('Unable to load metadata')
|
||||
vocab = convert.load_vocab(
|
||||
cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir,
|
||||
cfg.vocabtype)
|
||||
# FIXME: Respect cfg.vocab_dir?
|
||||
svocab = gguf.SpecialVocab(cfg.model_metadata_dir,
|
||||
load_merges = cfg.vocabtype == 'bpe',
|
||||
n_vocab = vocab.vocab_size)
|
||||
vocab_path = Path(cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir)
|
||||
vocab_factory = convert.VocabFactory(vocab_path)
|
||||
vocab, special_vocab = vocab_factory.load_vocab(cfg.vocabtype, cfg.model_metadata_dir)
|
||||
convert.check_vocab_size(params, vocab)
|
||||
return (params, vocab, svocab)
|
||||
return params, vocab, special_vocab
|
||||
|
||||
|
||||
def handle_args():
|
||||
|
||||
@@ -5,17 +5,16 @@ import json
|
||||
import os
|
||||
import struct
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Any, BinaryIO, Sequence
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from pathlib import Path
|
||||
if 'NO_LOCAL_GGUF' not in os.environ:
|
||||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
|
||||
import gguf
|
||||
|
||||
|
||||
NUMPY_TYPE_TO_FTYPE: dict[str, int] = {"float32": 0, "float16": 1}
|
||||
|
||||
|
||||
@@ -47,95 +46,103 @@ def write_tensor_header(fout: BinaryIO, name: str, shape: Sequence[int], data_ty
|
||||
fout.seek((fout.tell() + 31) & -32)
|
||||
|
||||
|
||||
if len(sys.argv) < 2:
|
||||
print(f"Usage: python {sys.argv[0]} <path> [arch]")
|
||||
print(
|
||||
"Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'"
|
||||
)
|
||||
print(f"Arch must be one of {list(gguf.MODEL_ARCH_NAMES.values())} (default: llama)")
|
||||
sys.exit(1)
|
||||
if __name__ == '__main__':
|
||||
if len(sys.argv) < 2:
|
||||
print(f"Usage: python {sys.argv[0]} <path> [arch]")
|
||||
print(
|
||||
"Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'"
|
||||
)
|
||||
print(f"Arch must be one of {list(gguf.MODEL_ARCH_NAMES.values())} (default: llama)")
|
||||
sys.exit(1)
|
||||
|
||||
input_json = os.path.join(sys.argv[1], "adapter_config.json")
|
||||
input_model = os.path.join(sys.argv[1], "adapter_model.bin")
|
||||
output_path = os.path.join(sys.argv[1], "ggml-adapter-model.bin")
|
||||
input_json = os.path.join(sys.argv[1], "adapter_config.json")
|
||||
input_model = os.path.join(sys.argv[1], "adapter_model.bin")
|
||||
output_path = os.path.join(sys.argv[1], "ggml-adapter-model.bin")
|
||||
|
||||
model = torch.load(input_model, map_location="cpu")
|
||||
arch_name = sys.argv[2] if len(sys.argv) == 3 else "llama"
|
||||
if os.path.exists(input_model):
|
||||
model = torch.load(input_model, map_location="cpu")
|
||||
else:
|
||||
input_model = os.path.join(sys.argv[1], "adapter_model.safetensors")
|
||||
# lazy import load_file only if lora is in safetensors format.
|
||||
from safetensors.torch import load_file
|
||||
model = load_file(input_model, device="cpu")
|
||||
|
||||
if arch_name not in gguf.MODEL_ARCH_NAMES.values():
|
||||
print(f"Error: unsupported architecture {arch_name}")
|
||||
sys.exit(1)
|
||||
arch_name = sys.argv[2] if len(sys.argv) == 3 else "llama"
|
||||
|
||||
arch = list(gguf.MODEL_ARCH_NAMES.keys())[list(gguf.MODEL_ARCH_NAMES.values()).index(arch_name)]
|
||||
name_map = gguf.TensorNameMap(arch, 200) # 200 layers ought to be enough for anyone
|
||||
if arch_name not in gguf.MODEL_ARCH_NAMES.values():
|
||||
print(f"Error: unsupported architecture {arch_name}")
|
||||
sys.exit(1)
|
||||
|
||||
with open(input_json, "r") as f:
|
||||
params = json.load(f)
|
||||
arch = list(gguf.MODEL_ARCH_NAMES.keys())[list(gguf.MODEL_ARCH_NAMES.values()).index(arch_name)]
|
||||
name_map = gguf.TensorNameMap(arch, 200) # 200 layers ought to be enough for anyone
|
||||
|
||||
if params["peft_type"] != "LORA":
|
||||
print(f"Error: unsupported adapter type {params['peft_type']}, expected LORA")
|
||||
sys.exit(1)
|
||||
with open(input_json, "r") as f:
|
||||
params = json.load(f)
|
||||
|
||||
if params["fan_in_fan_out"] is True:
|
||||
print("Error: param fan_in_fan_out is not supported")
|
||||
sys.exit(1)
|
||||
if params["peft_type"] != "LORA":
|
||||
print(f"Error: unsupported adapter type {params['peft_type']}, expected LORA")
|
||||
sys.exit(1)
|
||||
|
||||
if params["bias"] is not None and params["bias"] != "none":
|
||||
print("Error: param bias is not supported")
|
||||
sys.exit(1)
|
||||
if params["fan_in_fan_out"] is True:
|
||||
print("Error: param fan_in_fan_out is not supported")
|
||||
sys.exit(1)
|
||||
|
||||
# TODO: these seem to be layers that have been trained but without lora.
|
||||
# doesn't seem widely used but eventually should be supported
|
||||
if params["modules_to_save"] is not None and len(params["modules_to_save"]) > 0:
|
||||
print("Error: param modules_to_save is not supported")
|
||||
sys.exit(1)
|
||||
if params["bias"] is not None and params["bias"] != "none":
|
||||
print("Error: param bias is not supported")
|
||||
sys.exit(1)
|
||||
|
||||
with open(output_path, "wb") as fout:
|
||||
fout.truncate()
|
||||
# TODO: these seem to be layers that have been trained but without lora.
|
||||
# doesn't seem widely used but eventually should be supported
|
||||
if params["modules_to_save"] is not None and len(params["modules_to_save"]) > 0:
|
||||
print("Error: param modules_to_save is not supported")
|
||||
sys.exit(1)
|
||||
|
||||
write_file_header(fout, params)
|
||||
for k, v in model.items():
|
||||
orig_k = k
|
||||
if k.endswith(".default.weight"):
|
||||
k = k.replace(".default.weight", ".weight")
|
||||
if k in ["llama_proj.weight", "llama_proj.bias"]:
|
||||
continue
|
||||
if k.endswith("lora_A.weight"):
|
||||
if v.dtype != torch.float16 and v.dtype != torch.float32:
|
||||
with open(output_path, "wb") as fout:
|
||||
fout.truncate()
|
||||
|
||||
write_file_header(fout, params)
|
||||
for k, v in model.items():
|
||||
orig_k = k
|
||||
if k.endswith(".default.weight"):
|
||||
k = k.replace(".default.weight", ".weight")
|
||||
if k in ["llama_proj.weight", "llama_proj.bias"]:
|
||||
continue
|
||||
if k.endswith("lora_A.weight"):
|
||||
if v.dtype != torch.float16 and v.dtype != torch.float32:
|
||||
v = v.float()
|
||||
v = v.T
|
||||
else:
|
||||
v = v.float()
|
||||
v = v.T
|
||||
else:
|
||||
v = v.float()
|
||||
|
||||
t = v.detach().numpy()
|
||||
t = v.detach().numpy()
|
||||
|
||||
prefix = "base_model.model."
|
||||
if k.startswith(prefix):
|
||||
k = k[len(prefix) :]
|
||||
prefix = "base_model.model."
|
||||
if k.startswith(prefix):
|
||||
k = k[len(prefix) :]
|
||||
|
||||
lora_suffixes = (".lora_A.weight", ".lora_B.weight")
|
||||
if k.endswith(lora_suffixes):
|
||||
suffix = k[-len(lora_suffixes[0]):]
|
||||
k = k[: -len(lora_suffixes[0])]
|
||||
else:
|
||||
print(f"Error: unrecognized tensor name {orig_k}")
|
||||
sys.exit(1)
|
||||
lora_suffixes = (".lora_A.weight", ".lora_B.weight")
|
||||
if k.endswith(lora_suffixes):
|
||||
suffix = k[-len(lora_suffixes[0]):]
|
||||
k = k[: -len(lora_suffixes[0])]
|
||||
else:
|
||||
print(f"Error: unrecognized tensor name {orig_k}")
|
||||
sys.exit(1)
|
||||
|
||||
tname = name_map.get_name(k)
|
||||
if tname is None:
|
||||
print(f"Error: could not map tensor name {orig_k}")
|
||||
print(" Note: the arch parameter must be specified if the model is not llama")
|
||||
sys.exit(1)
|
||||
tname = name_map.get_name(k)
|
||||
if tname is None:
|
||||
print(f"Error: could not map tensor name {orig_k}")
|
||||
print(" Note: the arch parameter must be specified if the model is not llama")
|
||||
sys.exit(1)
|
||||
|
||||
if suffix == ".lora_A.weight":
|
||||
tname += ".weight.loraA"
|
||||
elif suffix == ".lora_B.weight":
|
||||
tname += ".weight.loraB"
|
||||
else:
|
||||
assert False
|
||||
if suffix == ".lora_A.weight":
|
||||
tname += ".weight.loraA"
|
||||
elif suffix == ".lora_B.weight":
|
||||
tname += ".weight.loraB"
|
||||
else:
|
||||
assert False
|
||||
|
||||
print(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB")
|
||||
write_tensor_header(fout, tname, t.shape, t.dtype)
|
||||
t.tofile(fout)
|
||||
print(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB")
|
||||
write_tensor_header(fout, tname, t.shape, t.dtype)
|
||||
t.tofile(fout)
|
||||
|
||||
print(f"Converted {input_json} and {input_model} to {output_path}")
|
||||
print(f"Converted {input_json} and {input_model} to {output_path}")
|
||||
|
||||
13
convert-persimmon-to-gguf.py
Normal file → Executable file
@@ -1,10 +1,13 @@
|
||||
import torch
|
||||
import os
|
||||
from pprint import pprint
|
||||
import sys
|
||||
#!/usr/bin/env python3
|
||||
import argparse
|
||||
import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from pprint import pprint
|
||||
|
||||
import torch
|
||||
from sentencepiece import SentencePieceProcessor
|
||||
|
||||
if 'NO_LOCAL_GGUF' not in os.environ:
|
||||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
|
||||
import gguf
|
||||
@@ -68,7 +71,7 @@ def main():
|
||||
persimmon_model = torch.load(args.ckpt_path)
|
||||
hparams = persimmon_model['args']
|
||||
pprint(hparams)
|
||||
tensors = {}
|
||||
tensors: dict[str, torch.Tensor] = {}
|
||||
_flatten_dict(persimmon_model['model'], tensors, None)
|
||||
|
||||
arch = gguf.MODEL_ARCH.PERSIMMON
|
||||
|
||||
500
convert.py
@@ -19,11 +19,10 @@ import sys
|
||||
import time
|
||||
import zipfile
|
||||
from abc import ABCMeta, abstractmethod
|
||||
from collections import OrderedDict
|
||||
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
from typing import IO, TYPE_CHECKING, Any, Callable, Iterable, Literal, Optional, TypeVar, cast
|
||||
from typing import IO, TYPE_CHECKING, Any, Callable, Iterable, Literal, TypeVar
|
||||
|
||||
import numpy as np
|
||||
from sentencepiece import SentencePieceProcessor
|
||||
@@ -328,137 +327,226 @@ class Params:
|
||||
return params
|
||||
|
||||
|
||||
class VocabLoader:
|
||||
def __init__(self, params: Params, fname_tokenizer: Path) -> None:
|
||||
#
|
||||
# vocab
|
||||
#
|
||||
|
||||
class BpeVocab:
|
||||
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None) -> None:
|
||||
self.bpe_tokenizer = json.loads(open(str(fname_tokenizer), encoding="utf-8").read())
|
||||
self.vocab = self.bpe_tokenizer["model"]["vocab"]
|
||||
added_tokens: dict[str, int]
|
||||
if fname_added_tokens is not None:
|
||||
# FIXME: Verify that added tokens here _cannot_ overlap with the main vocab.
|
||||
added_tokens = json.load(open(fname_added_tokens, encoding="utf-8"))
|
||||
else:
|
||||
# Fall back to trying to find the added tokens in tokenizer.json
|
||||
tokenizer_json_file = fname_tokenizer.parent / 'tokenizer.json'
|
||||
if not tokenizer_json_file.is_file():
|
||||
added_tokens = {}
|
||||
else:
|
||||
tokenizer_json = json.load(open(tokenizer_json_file, encoding="utf-8"))
|
||||
added_tokens = dict(
|
||||
(item['content'], item['id'])
|
||||
for item in tokenizer_json.get('added_tokens', [])
|
||||
# Added tokens here can be duplicates of the main vocabulary.
|
||||
if item['content'] not in self.bpe_tokenizer)
|
||||
|
||||
vocab_size: int = len(self.vocab)
|
||||
expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
|
||||
actual_ids = sorted(added_tokens.values())
|
||||
if expected_ids != actual_ids:
|
||||
expected_end_id = vocab_size + len(actual_ids) - 1
|
||||
raise Exception(f"Expected the {len(actual_ids)} added token ID(s) to be sequential in the range {vocab_size} - {expected_end_id}; got {actual_ids}")
|
||||
|
||||
items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1])
|
||||
self.added_tokens_dict = added_tokens
|
||||
self.added_tokens_list = [text for (text, idx) in items]
|
||||
self.vocab_size_base: int = vocab_size
|
||||
self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_list)
|
||||
self.fname_tokenizer = fname_tokenizer
|
||||
self.fname_added_tokens = fname_added_tokens
|
||||
|
||||
def bpe_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
reverse_vocab = {id: encoded_tok for encoded_tok, id in self.vocab.items()}
|
||||
|
||||
for i, _ in enumerate(self.vocab):
|
||||
yield reverse_vocab[i], 0.0, gguf.TokenType.NORMAL
|
||||
|
||||
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
for text in self.added_tokens_list:
|
||||
score = -1000.0
|
||||
yield text.encode("utf-8"), score, gguf.TokenType.CONTROL
|
||||
|
||||
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
yield from self.bpe_tokens()
|
||||
yield from self.added_tokens()
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return f"<BpeVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
|
||||
|
||||
|
||||
class SentencePieceVocab:
|
||||
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None) -> None:
|
||||
self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer))
|
||||
added_tokens: dict[str, int]
|
||||
if fname_added_tokens is not None:
|
||||
added_tokens = json.load(open(fname_added_tokens, encoding="utf-8"))
|
||||
else:
|
||||
added_tokens = {}
|
||||
|
||||
vocab_size: int = self.sentencepiece_tokenizer.vocab_size()
|
||||
|
||||
new_tokens = {id: piece for piece, id in added_tokens.items() if id >= vocab_size}
|
||||
expected_new_ids = list(range(vocab_size, vocab_size + len(new_tokens)))
|
||||
actual_new_ids = sorted(new_tokens.keys())
|
||||
|
||||
if expected_new_ids != actual_new_ids:
|
||||
raise ValueError(f"Expected new token IDs {expected_new_ids} to be sequential; got {actual_new_ids}")
|
||||
|
||||
# Token pieces that were added to the base vocabulary.
|
||||
self.added_tokens_dict = added_tokens
|
||||
self.added_tokens_list = [new_tokens[id] for id in actual_new_ids]
|
||||
self.vocab_size_base = vocab_size
|
||||
self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
|
||||
self.fname_tokenizer = fname_tokenizer
|
||||
self.fname_added_tokens = fname_added_tokens
|
||||
|
||||
def sentencepiece_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
tokenizer = self.sentencepiece_tokenizer
|
||||
for i in range(tokenizer.vocab_size()):
|
||||
piece = tokenizer.id_to_piece(i)
|
||||
text: bytes = piece.encode("utf-8")
|
||||
score: float = tokenizer.get_score(i)
|
||||
|
||||
toktype = gguf.TokenType.NORMAL
|
||||
if tokenizer.is_unknown(i):
|
||||
toktype = gguf.TokenType.UNKNOWN
|
||||
if tokenizer.is_control(i):
|
||||
toktype = gguf.TokenType.CONTROL
|
||||
|
||||
# NOTE: I think added_tokens are user defined.
|
||||
# ref: https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto
|
||||
# if tokenizer.is_user_defined(i): toktype = gguf.TokenType.USER_DEFINED
|
||||
|
||||
if tokenizer.is_unused(i):
|
||||
toktype = gguf.TokenType.UNUSED
|
||||
if tokenizer.is_byte(i):
|
||||
toktype = gguf.TokenType.BYTE
|
||||
|
||||
yield text, score, toktype
|
||||
|
||||
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
for text in self.added_tokens_list:
|
||||
score = -1000.0
|
||||
yield text.encode("utf-8"), score, gguf.TokenType.USER_DEFINED
|
||||
|
||||
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
yield from self.sentencepiece_tokens()
|
||||
yield from self.added_tokens()
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return f"<SentencePieceVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
|
||||
|
||||
|
||||
class HfVocab:
|
||||
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None = None) -> None:
|
||||
try:
|
||||
from transformers import AutoTokenizer
|
||||
except ImportError as e:
|
||||
raise ImportError(
|
||||
"To use VocabLoader, please install the `transformers` package. "
|
||||
"To use HfVocab, please install the `transformers` package. "
|
||||
"You can install it with `pip install transformers`."
|
||||
) from e
|
||||
|
||||
try:
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(str(fname_tokenizer), trust_remote_code=True)
|
||||
except ValueError:
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(str(fname_tokenizer), use_fast=False, trust_remote_code=True)
|
||||
print("fname_tokenizer:", fname_tokenizer)
|
||||
# Allow the tokenizer to default to slow or fast versions.
|
||||
# Explicitly set tokenizer to use local paths.
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(
|
||||
fname_tokenizer,
|
||||
cache_dir=fname_tokenizer,
|
||||
local_files_only=True,
|
||||
)
|
||||
|
||||
self.added_tokens_dict: OrderedDict[str, int] = OrderedDict()
|
||||
# Initialize lists and dictionaries for added tokens
|
||||
self.added_tokens_list = []
|
||||
self.added_tokens_dict = dict()
|
||||
self.added_tokens_ids = set()
|
||||
|
||||
for tok, tokidx in sorted(self.tokenizer.get_added_vocab().items(), key=lambda x: x[1]):
|
||||
if tokidx >= params.n_vocab or tokidx < self.tokenizer.vocab_size:
|
||||
continue
|
||||
# Process added tokens
|
||||
for tok, tokidx in sorted(
|
||||
self.tokenizer.get_added_vocab().items(), key=lambda x: x[1]
|
||||
):
|
||||
# Only consider added tokens that are not in the base vocabulary
|
||||
if tokidx >= self.tokenizer.vocab_size:
|
||||
self.added_tokens_list.append(tok)
|
||||
self.added_tokens_dict[tok] = tokidx
|
||||
self.added_tokens_ids.add(tokidx)
|
||||
|
||||
self.added_tokens_dict[tok] = tokidx
|
||||
|
||||
self.unk_token_id: int = self.tokenizer.unk_token_id
|
||||
self.specials: dict[str, int] = {
|
||||
# Store special tokens and their IDs
|
||||
self.specials = {
|
||||
tok: self.tokenizer.get_vocab()[tok]
|
||||
for tok in self.tokenizer.all_special_tokens
|
||||
}
|
||||
self.special_ids: set[int] = set(self.tokenizer.all_special_ids)
|
||||
self.vocab_size_base: int = self.tokenizer.vocab_size
|
||||
self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_dict)
|
||||
self.fname_tokenizer: Path = fname_tokenizer
|
||||
self.special_ids = set(self.tokenizer.all_special_ids)
|
||||
|
||||
vocab_file = "tokenizer.model"
|
||||
path_candidate = find_vocab_file_path(self.fname_tokenizer, vocab_file)
|
||||
if path_candidate is not None:
|
||||
self.spm = SentencePieceProcessor(str(path_candidate))
|
||||
print(self.spm.vocab_size(), self.vocab_size_base)
|
||||
else:
|
||||
self.spm = None
|
||||
# Set vocabulary sizes
|
||||
self.vocab_size_base = self.tokenizer.vocab_size
|
||||
self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
|
||||
|
||||
self.fname_tokenizer = fname_tokenizer
|
||||
self.fname_added_tokens = fname_added_tokens
|
||||
|
||||
def hf_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
tokenizer = self.tokenizer
|
||||
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.get_vocab().items()}
|
||||
added_tokens_ids = set(self.added_tokens_dict.values())
|
||||
reverse_vocab = {
|
||||
id: encoded_tok for encoded_tok, id in self.tokenizer.get_vocab().items()
|
||||
}
|
||||
|
||||
for i in range(self.vocab_size_base):
|
||||
if i in added_tokens_ids:
|
||||
for token_id in range(self.vocab_size_base):
|
||||
# Skip processing added tokens here
|
||||
if token_id in self.added_tokens_ids:
|
||||
continue
|
||||
|
||||
text = reverse_vocab[i].encode("utf-8")
|
||||
yield text, self.get_token_score(i), self.get_token_type(i)
|
||||
# Convert token text to bytes
|
||||
token_text = reverse_vocab[token_id].encode("utf-8")
|
||||
|
||||
def get_token_type(self, token_id: int) -> gguf.TokenType:
|
||||
toktype = gguf.TokenType.NORMAL
|
||||
# Yield token text, score, and type
|
||||
yield token_text, self.get_token_score(token_id), self.get_token_type(
|
||||
token_id, self.special_ids # Reuse already stored special IDs
|
||||
)
|
||||
|
||||
if self.spm is not None and token_id < self.spm.vocab_size():
|
||||
if self.spm.is_unknown(token_id):
|
||||
toktype = gguf.TokenType.UNKNOWN
|
||||
if self.spm.is_control(token_id):
|
||||
toktype = gguf.TokenType.CONTROL
|
||||
if self.spm.is_unused(token_id):
|
||||
toktype = gguf.TokenType.UNUSED
|
||||
if self.spm.is_byte(token_id):
|
||||
toktype = gguf.TokenType.BYTE
|
||||
else:
|
||||
if token_id == self.unk_token_id:
|
||||
toktype = gguf.TokenType.UNKNOWN
|
||||
if token_id in self.special_ids:
|
||||
toktype = gguf.TokenType.CONTROL
|
||||
|
||||
return toktype
|
||||
def get_token_type(self, token_id: int, special_ids: set[int]) -> gguf.TokenType:
|
||||
# Determine token type based on whether it's a special token
|
||||
return gguf.TokenType.CONTROL if token_id in special_ids else gguf.TokenType.NORMAL
|
||||
|
||||
def get_token_score(self, token_id: int) -> float:
|
||||
if self.spm is not None and token_id < self.spm.vocab_size():
|
||||
return cast(float, self.spm.get_score(token_id))
|
||||
return 0.0
|
||||
# Placeholder for actual logic to determine the token's score
|
||||
# This needs to be implemented based on specific requirements
|
||||
return -1000.0 # Default score
|
||||
|
||||
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
|
||||
for text in self.added_tokens_dict:
|
||||
for text in self.added_tokens_list:
|
||||
if text in self.specials:
|
||||
|
||||
toktype = self.get_token_type(self.specials[text])
|
||||
toktype = self.get_token_type(self.specials[text], self.special_ids)
|
||||
score = self.get_token_score(self.specials[text])
|
||||
|
||||
else:
|
||||
toktype = gguf.TokenType.USER_DEFINED
|
||||
score = -1000.0
|
||||
|
||||
yield text.encode("utf-8"), score, toktype
|
||||
|
||||
def has_newline_token(self) -> bool:
|
||||
return '<0x0A>' in self.tokenizer.vocab or '\n' in self.tokenizer.vocab
|
||||
def has_newline_token(self):
|
||||
return "<0x0A>" in self.tokenizer.vocab or "\n" in self.tokenizer.vocab
|
||||
|
||||
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
yield from self.hf_tokens()
|
||||
yield from self.added_tokens()
|
||||
|
||||
def get_vocab_type(self) -> str:
|
||||
path_candidates = []
|
||||
vocab_file = "tokenizer.model"
|
||||
path_candidates.append(vocab_file)
|
||||
path_candidate = find_vocab_file_path(self.fname_tokenizer, vocab_file)
|
||||
if path_candidate is not None:
|
||||
return "llama"
|
||||
|
||||
vocab_file = "vocab.json"
|
||||
path_candidates.append(vocab_file)
|
||||
path_candidate = find_vocab_file_path(self.fname_tokenizer, vocab_file)
|
||||
if path_candidate is not None:
|
||||
return "gpt2"
|
||||
|
||||
vocab_file = "tokenizer.json"
|
||||
path_candidates.append(vocab_file)
|
||||
path_candidate = find_vocab_file_path(self.fname_tokenizer, vocab_file)
|
||||
if path_candidate:
|
||||
if not self.has_newline_token():
|
||||
return "gpt2"
|
||||
return "llama"
|
||||
|
||||
raise FileNotFoundError(
|
||||
f"Could not find {path_candidates} in {self.fname_tokenizer} or its parent; "
|
||||
"if it's in another directory, pass the directory as --vocab-dir"
|
||||
)
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return f"<VocabLoader with {self.vocab_size_base} base tokens and {len(self.added_tokens_dict)} added tokens>"
|
||||
return f"<HfVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
|
||||
|
||||
|
||||
Vocab: TypeAlias = 'VocabLoader'
|
||||
Vocab: TypeAlias = "BpeVocab | SentencePieceVocab | HfVocab"
|
||||
|
||||
|
||||
#
|
||||
@@ -634,7 +722,7 @@ def merge_multifile_models(models_plus: list[ModelPlus]) -> ModelPlus:
|
||||
else:
|
||||
model = merge_sharded([mp.model for mp in models_plus])
|
||||
|
||||
return ModelPlus(model, paths, format, vocab)
|
||||
return ModelPlus(model, paths, format, vocab) # pytype: disable=wrong-arg-types
|
||||
|
||||
|
||||
def permute_lazy(lazy_tensor: LazyTensor, n_head: int, n_head_kv: int) -> LazyTensor:
|
||||
@@ -815,7 +903,7 @@ def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], conc
|
||||
executor_class = ProcessPoolExecutor
|
||||
else:
|
||||
executor_class = ThreadPoolExecutor
|
||||
with executor_class(max_workers = max_workers) as executor:
|
||||
with executor_class(max_workers=max_workers) as executor:
|
||||
futures: list[concurrent.futures.Future[Out]] = []
|
||||
done = False
|
||||
for _ in range(concurrency):
|
||||
@@ -837,27 +925,35 @@ def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], conc
|
||||
|
||||
|
||||
def check_vocab_size(params: Params, vocab: Vocab, pad_vocab: bool = False) -> None:
|
||||
if params.n_vocab != vocab.vocab_size:
|
||||
if params.n_vocab == vocab.vocab_size:
|
||||
print("Ignoring added_tokens.json since model matches vocab size without it.")
|
||||
vocab.added_tokens_dict = OrderedDict()
|
||||
vocab.vocab_size = vocab.vocab_size
|
||||
return
|
||||
# Handle special case where the model's vocab size is not set
|
||||
if params.n_vocab == -1:
|
||||
raise ValueError(
|
||||
f"The model's vocab size is set to -1 in params.json. Please update it manually. Maybe {vocab.vocab_size}?"
|
||||
)
|
||||
|
||||
if pad_vocab and params.n_vocab > vocab.vocab_size:
|
||||
pad_count = params.n_vocab - vocab.vocab_size
|
||||
print(f'Padding vocab with {pad_count} token(s) - <dummy00001> through <dummy{pad_count:05}>')
|
||||
for i in range(1, (params.n_vocab - vocab.vocab_size) + 1):
|
||||
vocab.added_tokens_dict[f'<dummy{i:05}>'] = -1
|
||||
vocab.vocab_size = params.n_vocab
|
||||
return
|
||||
msg = f"Vocab size mismatch (model has {params.n_vocab}, but {vocab.fname_tokenizer}"
|
||||
msg += f" has {vocab.vocab_size})."
|
||||
if vocab.vocab_size < params.n_vocab < vocab.vocab_size + 20:
|
||||
msg += f" Most likely you are missing added_tokens.json (should be in {vocab.fname_tokenizer.parent})."
|
||||
if vocab.vocab_size < params.n_vocab:
|
||||
msg += " Possibly try using the --padvocab option."
|
||||
raise Exception(msg)
|
||||
# Check for a vocab size mismatch
|
||||
if params.n_vocab == vocab.vocab_size:
|
||||
print("Ignoring added_tokens.json since model matches vocab size without it.")
|
||||
return
|
||||
|
||||
if pad_vocab and params.n_vocab > vocab.vocab_size:
|
||||
pad_count = params.n_vocab - vocab.vocab_size
|
||||
print(
|
||||
f"Padding vocab with {pad_count} token(s) - <dummy00001> through <dummy{pad_count:05}>"
|
||||
)
|
||||
for i in range(1, pad_count + 1):
|
||||
vocab.added_tokens_dict[f"<dummy{i:05}>"] = -1
|
||||
vocab.added_tokens_list.append(f"<dummy{i:05}>")
|
||||
vocab.vocab_size = params.n_vocab
|
||||
return
|
||||
|
||||
msg = f"Vocab size mismatch (model has {params.n_vocab}, but {vocab.fname_tokenizer} has {vocab.vocab_size})."
|
||||
if vocab.vocab_size < params.n_vocab < vocab.vocab_size + 20:
|
||||
msg += f" Most likely you are missing added_tokens.json (should be in {vocab.fname_tokenizer.parent})."
|
||||
if vocab.vocab_size < params.n_vocab:
|
||||
msg += " Add the --pad-vocab option and try again."
|
||||
|
||||
raise Exception(msg)
|
||||
|
||||
|
||||
class OutputFile:
|
||||
@@ -910,18 +1006,46 @@ class OutputFile:
|
||||
if params.ftype is not None:
|
||||
self.gguf.add_file_type(params.ftype)
|
||||
|
||||
def add_meta_vocab(self, vocab: Vocab) -> None:
|
||||
def handle_tokenizer_model(self, vocab: Vocab) -> str:
|
||||
# Map the vocab types to the supported tokenizer models
|
||||
tokenizer_model = {
|
||||
SentencePieceVocab: "llama",
|
||||
HfVocab: "llama",
|
||||
BpeVocab: "gpt2",
|
||||
}.get(type(vocab))
|
||||
|
||||
# Block if vocab type is not predefined
|
||||
if tokenizer_model is None:
|
||||
raise ValueError("Unknown vocab type: Not supported")
|
||||
|
||||
return tokenizer_model
|
||||
|
||||
def extract_vocabulary_from_model(self, vocab: Vocab) -> tuple[list[bytes], list[float], list[gguf.TokenType]]:
|
||||
tokens = []
|
||||
scores = []
|
||||
toktypes = []
|
||||
|
||||
# NOTE: `all_tokens` returns the base vocabulary and added tokens
|
||||
for text, score, toktype in vocab.all_tokens():
|
||||
tokens.append(text)
|
||||
scores.append(score)
|
||||
toktypes.append(toktype)
|
||||
|
||||
vocab_type = vocab.get_vocab_type()
|
||||
self.gguf.add_tokenizer_model(vocab_type)
|
||||
assert len(tokens) == vocab.vocab_size
|
||||
|
||||
return tokens, scores, toktypes
|
||||
|
||||
def add_meta_vocab(self, vocab: Vocab) -> None:
|
||||
# Handle the tokenizer model
|
||||
tokenizer_model = self.handle_tokenizer_model(vocab)
|
||||
|
||||
# Ensure that tokenizer_model is added to the GGUF model
|
||||
self.gguf.add_tokenizer_model(tokenizer_model)
|
||||
|
||||
# Extract model vocabulary for model conversion
|
||||
tokens, scores, toktypes = self.extract_vocabulary_from_model(vocab)
|
||||
|
||||
# Add extracted token information for model conversion
|
||||
self.gguf.add_token_list(tokens)
|
||||
self.gguf.add_token_scores(scores)
|
||||
self.gguf.add_token_types(toktypes)
|
||||
@@ -934,7 +1058,7 @@ class OutputFile:
|
||||
raw_dtype = getattr(tensor.data_type, 'ggml_type', None)
|
||||
data_type = getattr(tensor.data_type, 'quantized_type', None) or tensor.data_type.dtype
|
||||
data_nbytes = tensor.data_type.elements_to_bytes(n_elements)
|
||||
self.gguf.add_tensor_info(name, tensor.shape, data_type, data_nbytes, raw_dtype = raw_dtype)
|
||||
self.gguf.add_tensor_info(name, tensor.shape, data_type, data_nbytes, raw_dtype=raw_dtype)
|
||||
|
||||
def write_meta(self) -> None:
|
||||
self.gguf.write_header_to_file()
|
||||
@@ -949,8 +1073,7 @@ class OutputFile:
|
||||
@staticmethod
|
||||
def write_vocab_only(
|
||||
fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab,
|
||||
endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE,
|
||||
pad_vocab: bool = False,
|
||||
endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, pad_vocab: bool = False,
|
||||
) -> None:
|
||||
check_vocab_size(params, vocab, pad_vocab = pad_vocab)
|
||||
|
||||
@@ -981,11 +1104,10 @@ class OutputFile:
|
||||
@staticmethod
|
||||
def write_all(
|
||||
fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: Vocab, svocab: gguf.SpecialVocab,
|
||||
concurrency: int = DEFAULT_CONCURRENCY,
|
||||
endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE,
|
||||
concurrency: int = DEFAULT_CONCURRENCY, endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE,
|
||||
pad_vocab: bool = False,
|
||||
) -> None:
|
||||
check_vocab_size(params, vocab, pad_vocab = pad_vocab)
|
||||
check_vocab_size(params, vocab, pad_vocab=pad_vocab)
|
||||
|
||||
of = OutputFile(fname_out, endianess=endianess)
|
||||
|
||||
@@ -1004,7 +1126,10 @@ class OutputFile:
|
||||
# tensor data
|
||||
ndarrays_inner = bounded_parallel_map(OutputFile.do_item, model.items(), concurrency = concurrency)
|
||||
if ftype == GGMLFileType.MostlyQ8_0:
|
||||
ndarrays = bounded_parallel_map(OutputFile.maybe_do_quantize, ndarrays_inner, concurrency = concurrency, max_workers = concurrency, use_processpool_executor = True)
|
||||
ndarrays = bounded_parallel_map(
|
||||
OutputFile.maybe_do_quantize, ndarrays_inner, concurrency=concurrency, max_workers=concurrency,
|
||||
use_processpool_executor=True,
|
||||
)
|
||||
else:
|
||||
ndarrays = map(OutputFile.maybe_do_quantize, ndarrays_inner)
|
||||
|
||||
@@ -1013,7 +1138,9 @@ class OutputFile:
|
||||
elapsed = time.time() - start
|
||||
size = ' x '.join(f"{dim:6d}" for dim in lazy_tensor.shape)
|
||||
padi = len(str(len(model)))
|
||||
print(f"[{i+1:{padi}d}/{len(model)}] Writing tensor {name:38s} | size {size:16} | type {lazy_tensor.data_type.name:4} | T+{int(elapsed):4}")
|
||||
print(
|
||||
f"[{i+1:{padi}d}/{len(model)}] Writing tensor {name:38s} | size {size:16} | type {lazy_tensor.data_type.name:4} | T+{int(elapsed):4}"
|
||||
)
|
||||
of.gguf.write_tensor_data(ndarray)
|
||||
|
||||
of.close()
|
||||
@@ -1143,17 +1270,74 @@ def load_some_model(path: Path) -> ModelPlus:
|
||||
return model_plus
|
||||
|
||||
|
||||
def find_vocab_file_path(path: Path, vocab_file: str) -> Optional[Path]:
|
||||
path2 = path / vocab_file
|
||||
# Use `.parent` instead of /.. to handle the symlink case better.
|
||||
path3 = path.parent / vocab_file
|
||||
class VocabFactory:
|
||||
def __init__(self, path: Path):
|
||||
self.path = path
|
||||
self.files: dict[str, Path | None] = {
|
||||
"tokenizer.model": None,
|
||||
"vocab.json": None,
|
||||
"tokenizer.json": None,
|
||||
}
|
||||
self._detect_files()
|
||||
|
||||
if path2.exists():
|
||||
return path2
|
||||
if path3.exists():
|
||||
return path3
|
||||
def _detect_files(self):
|
||||
for file in self.files.keys():
|
||||
file_path = self.path / file
|
||||
parent_file_path = self.path.parent / file
|
||||
if file_path.exists():
|
||||
self.files[file] = file_path
|
||||
elif parent_file_path.exists():
|
||||
self.files[file] = parent_file_path
|
||||
print(f"Found vocab files: {self.files}")
|
||||
|
||||
return None
|
||||
def _select_file(self, vocabtype: str | None) -> Path:
|
||||
if vocabtype in ["spm", "bpe"]:
|
||||
for file_key in self.files.keys():
|
||||
if (file := self.files[file_key]) is not None:
|
||||
return file
|
||||
raise FileNotFoundError(f"{vocabtype} vocab not found.")
|
||||
if vocabtype == "hfft":
|
||||
# For Hugging Face Fast Tokenizer, return the directory path instead of a specific file
|
||||
return self.path
|
||||
raise ValueError(f"Unsupported vocabulary type {vocabtype}")
|
||||
|
||||
def _create_special_vocab(self, vocab: Vocab, vocabtype: str, model_parent_path: Path) -> gguf.SpecialVocab:
|
||||
load_merges = vocabtype == "bpe"
|
||||
n_vocab = vocab.vocab_size if hasattr(vocab, "vocab_size") else None
|
||||
return gguf.SpecialVocab(
|
||||
model_parent_path,
|
||||
load_merges=load_merges,
|
||||
special_token_types=None, # Predetermined or passed as a parameter
|
||||
n_vocab=n_vocab,
|
||||
)
|
||||
|
||||
def load_vocab(self, vocabtype: str, model_parent_path: Path) -> tuple[Vocab, gguf.SpecialVocab]:
|
||||
path = self._select_file(vocabtype)
|
||||
print(f"Loading vocab file '{path}', type '{vocabtype}'")
|
||||
|
||||
added_tokens_path = path.parent / "added_tokens.json"
|
||||
vocab: Vocab
|
||||
if vocabtype == "bpe":
|
||||
vocab = BpeVocab(
|
||||
path, added_tokens_path if added_tokens_path.exists() else None
|
||||
)
|
||||
elif vocabtype == "spm":
|
||||
vocab = SentencePieceVocab(
|
||||
path, added_tokens_path if added_tokens_path.exists() else None
|
||||
)
|
||||
elif vocabtype == "hfft":
|
||||
vocab = HfVocab(
|
||||
path, added_tokens_path if added_tokens_path.exists() else None
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unsupported vocabulary type {vocabtype}")
|
||||
# FIXME: Respect --vocab-dir?
|
||||
special_vocab = self._create_special_vocab(
|
||||
vocab,
|
||||
vocabtype,
|
||||
model_parent_path,
|
||||
)
|
||||
return vocab, special_vocab
|
||||
|
||||
|
||||
def default_outfile(model_paths: list[Path], file_type: GGMLFileType) -> Path:
|
||||
@@ -1184,20 +1368,36 @@ def main(args_in: list[str] | None = None) -> None:
|
||||
if np.uint32(1) == np.uint32(1).newbyteorder("<"):
|
||||
# We currently only support Q8_0 output on little endian systems.
|
||||
output_choices.append("q8_0")
|
||||
vocab_types = ["spm", "bpe", "hfft"]
|
||||
parser = argparse.ArgumentParser(description="Convert a LLaMa model to a GGML compatible file")
|
||||
parser.add_argument("--awq-path", type=Path, help="Path to scale awq cache file", default=None)
|
||||
parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model")
|
||||
parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file")
|
||||
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
|
||||
parser.add_argument("--outtype", choices=output_choices, help="output format - note: q8_0 may be very slow (default: f16 or f32 based on input)")
|
||||
parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file")
|
||||
parser.add_argument("--vocab-type", choices=vocab_types, help="The vocabulary format used to define the tokenizer model (default: spm)", default="spm")
|
||||
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
|
||||
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)")
|
||||
parser.add_argument("--ctx", type=int, help="model training context (default: based on input)")
|
||||
parser.add_argument("--concurrency", type=int, help=f"concurrency used for conversion (default: {DEFAULT_CONCURRENCY})", default = DEFAULT_CONCURRENCY)
|
||||
parser.add_argument("--bigendian", action="store_true", help="model is executed on big endian machine")
|
||||
parser.add_argument("--padvocab", action="store_true", help="add pad tokens when model vocab expects more than tokenizer metadata provides")
|
||||
parser.add_argument("--concurrency", type=int, help=f"concurrency used for conversion (default: {DEFAULT_CONCURRENCY})", default=DEFAULT_CONCURRENCY)
|
||||
parser.add_argument("--big-endian", action="store_true", help="model is executed on big endian machine")
|
||||
parser.add_argument("--pad-vocab", action="store_true", help="add pad tokens when model vocab expects more than tokenizer metadata provides")
|
||||
|
||||
args = parser.parse_args(args_in)
|
||||
if args.awq_path:
|
||||
sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
|
||||
from awq.apply_awq import add_scale_weights # type: ignore[import-not-found]
|
||||
tmp_model_path = args.model / "weighted_model"
|
||||
if tmp_model_path.is_dir():
|
||||
print(f"{tmp_model_path} exists as a weighted model.")
|
||||
else:
|
||||
tmp_model_path.mkdir(parents=True, exist_ok=True)
|
||||
print("Saving new weighted model ...")
|
||||
add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
|
||||
print(f"Saved weighted model at {tmp_model_path}.")
|
||||
args.model = tmp_model_path
|
||||
|
||||
if args.dump_single:
|
||||
model_plus = lazy_load_file(args.model)
|
||||
do_dump_model(model_plus)
|
||||
@@ -1212,7 +1412,7 @@ def main(args_in: list[str] | None = None) -> None:
|
||||
do_dump_model(model_plus)
|
||||
return
|
||||
endianess = gguf.GGUFEndian.LITTLE
|
||||
if args.bigendian:
|
||||
if args.big_endian:
|
||||
endianess = gguf.GGUFEndian.BIG
|
||||
|
||||
params = Params.load(model_plus)
|
||||
@@ -1233,34 +1433,26 @@ def main(args_in: list[str] | None = None) -> None:
|
||||
|
||||
print(f"params = {params}")
|
||||
|
||||
vocab: Vocab
|
||||
model_parent_path = model_plus.paths[0].parent
|
||||
vocab_path = Path(args.vocab_dir or args.model or model_parent_path)
|
||||
vocab_factory = VocabFactory(vocab_path)
|
||||
vocab, special_vocab = vocab_factory.load_vocab(args.vocab_type, model_parent_path)
|
||||
|
||||
if args.vocab_only:
|
||||
if not args.outfile:
|
||||
raise ValueError("need --outfile if using --vocab-only")
|
||||
# FIXME: Try to respect vocab_dir somehow?
|
||||
vocab = VocabLoader(params, args.vocab_dir or args.model)
|
||||
special_vocab = gguf.SpecialVocab(model_plus.paths[0].parent,
|
||||
load_merges = True,
|
||||
n_vocab = vocab.vocab_size)
|
||||
outfile = args.outfile
|
||||
OutputFile.write_vocab_only(outfile, params, vocab, special_vocab,
|
||||
endianess = endianess, pad_vocab = args.padvocab)
|
||||
endianess=endianess, pad_vocab=args.pad_vocab)
|
||||
print(f"Wrote {outfile}")
|
||||
return
|
||||
|
||||
if model_plus.vocab is not None and args.vocab_dir is None:
|
||||
vocab = model_plus.vocab
|
||||
else:
|
||||
vocab_dir = args.vocab_dir if args.vocab_dir else model_plus.paths[0].parent
|
||||
vocab = VocabLoader(params, vocab_dir)
|
||||
|
||||
# FIXME: Try to respect vocab_dir somehow?
|
||||
print(f"Vocab info: {vocab}")
|
||||
special_vocab = gguf.SpecialVocab(model_plus.paths[0].parent,
|
||||
load_merges = True,
|
||||
n_vocab = vocab.vocab_size)
|
||||
|
||||
print(f"Special vocab info: {special_vocab}")
|
||||
|
||||
model = model_plus.model
|
||||
model = convert_model_names(model, params)
|
||||
ftype = pick_output_type(model, args.outtype)
|
||||
@@ -1271,7 +1463,7 @@ def main(args_in: list[str] | None = None) -> None:
|
||||
print(f"Writing {outfile}, format {ftype}")
|
||||
|
||||
OutputFile.write_all(outfile, ftype, params, model, vocab, special_vocab,
|
||||
concurrency = args.concurrency, endianess = endianess, pad_vocab = args.padvocab)
|
||||
concurrency=args.concurrency, endianess=endianess, pad_vocab=args.pad_vocab)
|
||||
print(f"Wrote {outfile}")
|
||||
|
||||
|
||||
|
||||
@@ -31,12 +31,12 @@ else()
|
||||
add_subdirectory(quantize-stats)
|
||||
add_subdirectory(save-load-state)
|
||||
add_subdirectory(simple)
|
||||
add_subdirectory(passkey)
|
||||
add_subdirectory(speculative)
|
||||
add_subdirectory(lookahead)
|
||||
add_subdirectory(lookup)
|
||||
add_subdirectory(train-text-from-scratch)
|
||||
if (LLAMA_METAL)
|
||||
add_subdirectory(metal)
|
||||
endif()
|
||||
add_subdirectory(imatrix)
|
||||
if (LLAMA_BUILD_SERVER)
|
||||
add_subdirectory(server)
|
||||
endif()
|
||||
|
||||
@@ -575,10 +575,7 @@ static struct ggml_tensor * forward(
|
||||
|
||||
// KQ_scaled = KQ / sqrt(n_embd/n_head)
|
||||
// KQ_scaled shape [n_past + N, N, n_head, 1]
|
||||
struct ggml_tensor * KQ_scaled =
|
||||
ggml_scale(ctx0,
|
||||
KQ,
|
||||
ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head)));
|
||||
struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, 1.0f/sqrtf(float(n_embd)/n_head));
|
||||
|
||||
// KQ_masked = mask_past(KQ_scaled)
|
||||
// KQ_masked shape [n_past + N, N, n_head, 1]
|
||||
@@ -844,10 +841,7 @@ static struct ggml_tensor * forward_batch(
|
||||
|
||||
// KQ_scaled = KQ / sqrt(n_embd/n_head)
|
||||
// KQ_scaled shape [n_past + N, N, n_head, n_batch]
|
||||
struct ggml_tensor * KQ_scaled =
|
||||
ggml_scale(ctx0,
|
||||
KQ,
|
||||
ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head)));
|
||||
struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, 1.0f/sqrtf(float(n_embd)/n_head));
|
||||
assert_shape_4d(KQ_scaled, n_past + N, N, n_head, n_batch);
|
||||
|
||||
// KQ_masked = mask_past(KQ_scaled)
|
||||
@@ -1131,10 +1125,7 @@ static struct ggml_tensor * forward_lora(
|
||||
|
||||
// KQ_scaled = KQ / sqrt(n_embd/n_head)
|
||||
// KQ_scaled shape [n_past + N, N, n_head, 1]
|
||||
struct ggml_tensor * KQ_scaled =
|
||||
ggml_scale(ctx0,
|
||||
KQ,
|
||||
ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head)));
|
||||
struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, 1.0f/sqrtf(float(n_embd)/n_head));
|
||||
|
||||
// KQ_masked = mask_past(KQ_scaled)
|
||||
// KQ_masked shape [n_past + N, N, n_head, 1]
|
||||
|
||||
61
examples/base-translate.sh
Executable file
@@ -0,0 +1,61 @@
|
||||
#!/bin/bash
|
||||
#
|
||||
# Few-shot translation example.
|
||||
# Requires a base model (i.e. no fine-tuned or instruct models).
|
||||
#
|
||||
# Usage:
|
||||
#
|
||||
# cd llama.cpp
|
||||
# make -j
|
||||
#
|
||||
# ./examples/base-translate.sh <model-base> "<text>" [extra-main-args]
|
||||
#
|
||||
|
||||
if [ $# -lt 2 ]; then
|
||||
echo "Usage: ./base-translate.sh <model-base> \"<text>\" [extra-main-args]"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
eargs=""
|
||||
if [ $# -gt 2 ]; then
|
||||
eargs="${@:3}"
|
||||
fi
|
||||
|
||||
ftmp="__llama.cpp_example_tmp__.txt"
|
||||
trap "rm -f $ftmp" EXIT
|
||||
|
||||
echo "Translate from English to French:
|
||||
|
||||
===
|
||||
|
||||
sea otter, peppermint, plush girafe:
|
||||
|
||||
sea otter => loutre de mer
|
||||
peppermint => menthe poivrée
|
||||
plush girafe => girafe peluche
|
||||
|
||||
===
|
||||
|
||||
violin
|
||||
|
||||
violin => violon
|
||||
|
||||
===
|
||||
|
||||
phone, computer, mouse, keyboard:
|
||||
|
||||
phone => téléphone
|
||||
computer => ordinateur
|
||||
mouse => souris
|
||||
keyboard => clavier
|
||||
|
||||
===
|
||||
" > $ftmp
|
||||
|
||||
echo "$2
|
||||
" >> $ftmp
|
||||
|
||||
model=$1
|
||||
|
||||
# generate the most likely continuation until the string "===" is found
|
||||
./main -m $model -f $ftmp -n 64 --temp 0 --repeat-penalty 1.0 --no-penalize-nl -r "===" $eargs
|
||||
@@ -88,7 +88,10 @@ int main(int argc, char ** argv) {
|
||||
|
||||
llama_model_params model_params = llama_model_default_params();
|
||||
|
||||
const std::vector<float> t_split (LLAMA_MAX_DEVICES, 0.0f);
|
||||
|
||||
model_params.n_gpu_layers = n_gpu_layers;
|
||||
model_params.tensor_split = t_split.data();
|
||||
|
||||
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
|
||||
|
||||
|
||||
@@ -69,6 +69,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
std::vector<llama_token> tokens_list;
|
||||
tokens_list = ::llama_tokenize(model, params.prompt, true);
|
||||
|
||||
const int n_kv_req = tokens_list.size() + (n_len - tokens_list.size())*n_parallel;
|
||||
|
||||
// initialize the context
|
||||
|
||||
@@ -194,7 +194,7 @@ int main(int argc, char ** argv) {
|
||||
// Set up a the benchmark matrices
|
||||
// printf("Creating new tensor q11 & Running quantize\n");
|
||||
struct ggml_tensor * q11 = ggml_new_tensor_2d(ctx, qtype, sizex, sizey);
|
||||
ggml_quantize_chunk(qtype, (const float *) m11->data, q11->data, 0, nelements, hist_cur.data());
|
||||
ggml_quantize_chunk(qtype, (const float *) m11->data, q11->data, 0, nelements/m11->ne[0], m11->ne[0], hist_cur.data(), nullptr);
|
||||
|
||||
// Set up a the compute graph
|
||||
// printf("Creating new tensor q31\n");
|
||||
@@ -207,7 +207,7 @@ int main(int argc, char ** argv) {
|
||||
// Set up a second graph computation to make sure we override the CPU cache lines
|
||||
// printf("Creating new tensor q12 & Running quantize\n");
|
||||
struct ggml_tensor * q12 = ggml_new_tensor_2d(ctx, qtype, sizex, sizey);
|
||||
ggml_quantize_chunk(qtype, (const float *) m12->data, q12->data, 0, nelements, hist_cur.data());
|
||||
ggml_quantize_chunk(qtype, (const float *) m12->data, q12->data, 0, nelements/m12->ne[0], m12->ne[0], hist_cur.data(), nullptr);
|
||||
|
||||
// printf("Creating new tensor q32\n");
|
||||
struct ggml_tensor * q32 = ggml_mul_mat(ctx, q12, m2);
|
||||
|
||||
@@ -245,9 +245,8 @@ static struct lora_data * load_lora(struct lora_info * info) {
|
||||
params_ggml.no_alloc = true;
|
||||
result->ctx = ggml_init(params_ggml);
|
||||
|
||||
uint32_t LLAMA_FILE_MAGIC_LORA = 0x67676C61; // 'ggla'
|
||||
uint32_t magic = file.read_u32();
|
||||
if (magic != LLAMA_FILE_MAGIC_LORA) {
|
||||
if (magic != LLAMA_FILE_MAGIC_GGLA) {
|
||||
die_fmt("unexpected lora header file magic in '%s'", info->filename.c_str());
|
||||
}
|
||||
uint32_t version = file.read_u32();
|
||||
@@ -309,7 +308,7 @@ static struct ggml_cgraph * build_graph_lora(
|
||||
) {
|
||||
struct ggml_tensor * ab = ggml_mul_mat(ctx, lora_a, lora_b);
|
||||
if (scaling != 1.0f) {
|
||||
ab = ggml_scale(ctx, ab, ggml_new_f32(ctx, scaling));
|
||||
ab = ggml_scale(ctx, ab, scaling);
|
||||
}
|
||||
struct ggml_tensor * res = ggml_add_inplace(ctx, tensor, ab);
|
||||
|
||||
|
||||
@@ -61,7 +61,7 @@ For example to apply 40% of the 'shakespeare' LORA adapter, 80% of the 'bible' L
|
||||
--lora lora-open-llama-3b-v2-q8_0-yet-another-one-LATEST.bin
|
||||
```
|
||||
|
||||
The scale numbers don't need to add up to one, and you can also use numbers greater than 1 to further increase the influence of an adapter. But making the values to big will sometimes result in worse output. Play around to find good values.
|
||||
The scale numbers don't need to add up to one, and you can also use numbers greater than 1 to further increase the influence of an adapter. But making the values too big will sometimes result in worse output. Play around to find good values.
|
||||
|
||||
Gradient checkpointing reduces the memory requirements by ~50% but increases the runtime.
|
||||
If you have enough RAM, you can make finetuning a bit faster by disabling checkpointing with `--no-checkpointing`.
|
||||
|
||||
@@ -3,15 +3,9 @@
|
||||
#include "llama.h"
|
||||
#include "common.h"
|
||||
#include "train.h"
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
#include <cassert>
|
||||
#include <climits>
|
||||
#include <cstring>
|
||||
#include <cstdarg>
|
||||
#include <ctime>
|
||||
#include <random>
|
||||
#include <stdexcept>
|
||||
#include <algorithm>
|
||||
#include <string>
|
||||
|
||||
@@ -196,13 +190,13 @@ static const char * LLM_TENSOR_FFN_DOWN = "blk.%d.ffn_down";
|
||||
static const char * LLM_TENSOR_FFN_UP = "blk.%d.ffn_up";
|
||||
|
||||
static void print_params(struct my_llama_hparams * params) {
|
||||
printf("%s: n_vocab: %u\n", __func__, params->n_vocab);
|
||||
printf("%s: n_ctx: %u\n", __func__, params->n_ctx);
|
||||
printf("%s: n_embd: %u\n", __func__, params->n_embd);
|
||||
printf("%s: n_ff: %u\n", __func__, params->n_ff);
|
||||
printf("%s: n_head: %u\n", __func__, params->n_head);
|
||||
printf("%s: n_head_kv: %u\n", __func__, params->n_head_kv);
|
||||
printf("%s: n_layer: %u\n", __func__, params->n_layer);
|
||||
printf("%s: n_vocab : %u\n", __func__, params->n_vocab);
|
||||
printf("%s: n_ctx : %u\n", __func__, params->n_ctx);
|
||||
printf("%s: n_embd : %u\n", __func__, params->n_embd);
|
||||
printf("%s: n_ff : %u\n", __func__, params->n_ff);
|
||||
printf("%s: n_head : %u\n", __func__, params->n_head);
|
||||
printf("%s: n_head_kv : %u\n", __func__, params->n_head_kv);
|
||||
printf("%s: n_layer : %u\n", __func__, params->n_layer);
|
||||
printf("%s: norm_rms_eps : %f\n", __func__, params->f_norm_rms_eps);
|
||||
printf("%s: rope_freq_base : %f\n", __func__, params->rope_freq_base);
|
||||
printf("%s: rope_freq_scale : %f\n", __func__, params->rope_freq_scale);
|
||||
@@ -269,7 +263,7 @@ static void load_model_hparams_gguf(struct gguf_context * ctx, struct my_llama_h
|
||||
float rope_freq_scale = 1.0f;
|
||||
GGUF_GET_KEY(ctx, hparams->f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
|
||||
GGUF_GET_KEY(ctx, hparams->rope_freq_base, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE));
|
||||
GGUF_GET_KEY(ctx, rope_freq_scale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR));
|
||||
GGUF_GET_KEY(ctx, rope_freq_scale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR));
|
||||
if (rope_freq_scale != 1.0f) {
|
||||
hparams->rope_freq_scale = 1.0f / rope_freq_scale;
|
||||
}
|
||||
@@ -612,6 +606,7 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
|
||||
const int n_rot = hparams.n_embd_head();
|
||||
const int n_embd_head = hparams.n_embd_head();
|
||||
const int n_embd_gqa = hparams.n_embd_gqa();
|
||||
|
||||
const float rms_norm_eps = hparams.f_norm_rms_eps;
|
||||
const float rope_freq_base = hparams.rope_freq_base;
|
||||
const float rope_freq_scale = hparams.rope_freq_scale;
|
||||
@@ -680,10 +675,7 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
|
||||
checkpoints.push_back(t01);
|
||||
}
|
||||
|
||||
struct ggml_tensor * kv_scale = NULL;
|
||||
if (!enable_flash_attn) {
|
||||
kv_scale = ggml_new_f32(ctx, 1.0f/sqrtf(float(n_embd)/n_head));
|
||||
}
|
||||
const float kv_scale = 1.0f/sqrtf(float(n_embd)/n_head);
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
struct my_llama_layer & layer = model->layers[il];
|
||||
@@ -781,32 +773,32 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
|
||||
// make sure some tensors are not reallocated by inserting new temporary nodes depending on them
|
||||
int n_leafs_before = gb->n_leafs;
|
||||
int n_nodes_before = gb->n_nodes;
|
||||
struct ggml_tensor * one = ggml_new_f32(ctx, 1.0f);
|
||||
|
||||
// output tensors
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t35, one));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36, one));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t35, 1.0f));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36, 1.0f));
|
||||
// input gradient
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36->grad, one));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36->grad, 1.0f));
|
||||
GGML_ASSERT(t36->grad->data == NULL && t36->grad->view_src == NULL);
|
||||
ggml_allocr_alloc(alloc, t36->grad);
|
||||
// KQ_pos
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, KQ_pos, one));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, KQ_pos, 1.0f));
|
||||
|
||||
// make sure base model tensors data cannot be used in viewable operations
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->tok_embeddings, one));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->norm, one));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->output, one));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->tok_embeddings, 1.0f));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->norm, 1.0f));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->output, 1.0f));
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
struct my_llama_layer & layer = model->layers[il];
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.attention_norm, one));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.ffn_norm, one));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wq, one));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wk, one));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wv, one));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wo, one));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.w1, one));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.w2, one));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.w3, one));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.attention_norm, 1.0f));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.ffn_norm, 1.0f));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wq, 1.0f));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wk, 1.0f));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wv, 1.0f));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wo, 1.0f));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.w1, 1.0f));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.w2, 1.0f));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.w3, 1.0f));
|
||||
}
|
||||
|
||||
// allocating checkpoints in one block to reduce memory fragmentation
|
||||
@@ -1146,9 +1138,8 @@ static void save_as_llama_lora(const char * filename, struct my_llama_lora * lor
|
||||
return tn_buf.data();
|
||||
};
|
||||
|
||||
uint32_t LLAMA_FILE_MAGIC_LORA = 0x67676C61; // 'ggla'
|
||||
// write_magic
|
||||
file.write_u32(LLAMA_FILE_MAGIC_LORA); // magic
|
||||
file.write_u32(LLAMA_FILE_MAGIC_GGLA); // magic
|
||||
file.write_u32(1); // version
|
||||
// write_hparams
|
||||
file.write_u32(lora->hparams.lora_r);
|
||||
@@ -1808,7 +1799,9 @@ int main(int argc, char ** argv) {
|
||||
std::vector<llama_token> train_tokens;
|
||||
std::vector<size_t> train_samples_begin;
|
||||
std::vector<size_t> train_samples_size;
|
||||
printf("%s: tokenize training data\n", __func__);
|
||||
printf("%s: tokenize training data from %s\n", __func__, params.common.fn_train_data);
|
||||
printf("%s: sample-start: %s\n", __func__, params.common.sample_start.c_str());
|
||||
printf("%s: include-sample-start: %s\n", __func__, params.common.include_sample_start ? "true" : "false");
|
||||
tokenize_file(lctx,
|
||||
params.common.fn_train_data,
|
||||
params.common.sample_start,
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
set(TARGET gguf)
|
||||
add_executable(${TARGET} gguf.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_link_libraries(${TARGET} PRIVATE ggml ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
|
||||
@@ -1,5 +1,4 @@
|
||||
#include "ggml.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cstdio>
|
||||
#include <cinttypes>
|
||||
|
||||
5
examples/imatrix/CMakeLists.txt
Normal file
@@ -0,0 +1,5 @@
|
||||
set(TARGET imatrix)
|
||||
add_executable(${TARGET} imatrix.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
32
examples/imatrix/README.md
Normal file
@@ -0,0 +1,32 @@
|
||||
# llama.cpp/examples/imatrix
|
||||
|
||||
Compute an importance matrix for a model and given text dataset. Can be used during quantization to enchance the quality of the quantum models.
|
||||
More information is available here: https://github.com/ggerganov/llama.cpp/pull/4861
|
||||
|
||||
## Usage
|
||||
|
||||
```
|
||||
./imatrix -m <some_fp_model> -f <some_training_data> [-o <output_file>] [--verbosity <verbosity_level>]
|
||||
[-ofreq num_chunks] [-ow <0 or 1>] [other common params]
|
||||
```
|
||||
|
||||
Here `-m` with a model name and `-f` with a file containing training data (such as e.g. `wiki.train.raw`) are mandatory.
|
||||
The parameters in square brackets are optional and have the following meaning:
|
||||
* `-o` (or `--output-file`) specifies the name of the file where the computed data will be stored. If missing `imatrix.dat` is used.
|
||||
* `--verbosity` specifies the verbosity level. If set to `0`, no output other than the perplexity of the processed chunks will be generated. If set to `1`, each time the results are saved a message is written to `stderr`. If `>=2`, a message is output each time data is collected for any tensor. Default verbosity level is `1`.
|
||||
* `-ofreq` (or `--output-frequency`) specifies how often the so far computed result is saved to disk. Default is 10 (i.e., every 10 chunks)
|
||||
* `-ow` (or `--output-weight`) specifies if data will be collected for the `output.weight` tensor. My experience is that it is better to not utilize the importance matrix when quantizing `output.weight`, so this is set to `false` by default.
|
||||
|
||||
For faster computation, make sure to use GPU offloading via the `-ngl` argument
|
||||
|
||||
## Example
|
||||
|
||||
```bash
|
||||
LLAMA_CUBLAS=1 make -j
|
||||
|
||||
# generate importance matrix (imatrix.dat)
|
||||
./imatrix -m ggml-model-f16.gguf -f train-data.txt -ngl 99
|
||||
|
||||
# use the imatrix to perform a Q4_K_M quantization
|
||||
./quantize --imatrix imatrix.dat ggml-model-f16.gguf ./ggml-model-q4_k_m.gguf q4_k_m
|
||||
```
|
||||
513
examples/imatrix/imatrix.cpp
Normal file
@@ -0,0 +1,513 @@
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <ctime>
|
||||
#include <sstream>
|
||||
#include <thread>
|
||||
#include <mutex>
|
||||
#include <vector>
|
||||
#include <fstream>
|
||||
#include <unordered_map>
|
||||
#include <algorithm>
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
struct Stats {
|
||||
std::vector<float> values;
|
||||
int ncall = 0;
|
||||
};
|
||||
|
||||
struct StatParams {
|
||||
std::string ofile = "imatrix.dat";
|
||||
int n_output_frequency = 10;
|
||||
int verbosity = 1;
|
||||
int keep_every = 0;
|
||||
bool collect_output_weight = false;
|
||||
};
|
||||
|
||||
class IMatrixCollector {
|
||||
public:
|
||||
IMatrixCollector() = default;
|
||||
void set_parameters(StatParams&& params) { m_params = std::move(params); }
|
||||
bool collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data);
|
||||
void save_imatrix() const;
|
||||
private:
|
||||
std::unordered_map<std::string, Stats> m_stats;
|
||||
StatParams m_params;
|
||||
std::mutex m_mutex;
|
||||
int m_last_call = 0;
|
||||
std::vector<float> m_src1_data;
|
||||
std::vector<int> m_ids; // the expert ids from ggml_mul_mat_id
|
||||
//
|
||||
void save_imatrix(const char * file_name) const;
|
||||
void keep_imatrix(int ncall) const;
|
||||
};
|
||||
|
||||
bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data) {
|
||||
GGML_UNUSED(user_data);
|
||||
|
||||
const struct ggml_tensor * src0 = t->src[0];
|
||||
const struct ggml_tensor * src1 = t->src[1];
|
||||
|
||||
// when ask is true, the scheduler wants to know if we are interested in data from this tensor
|
||||
// if we return true, a follow-up call will be made with ask=false in which we can do the actual collection
|
||||
if (ask) {
|
||||
if (t->op == GGML_OP_MUL_MAT_ID) return true; // collect all indirect matrix multiplications
|
||||
if (t->op != GGML_OP_MUL_MAT) return false;
|
||||
if (src1->ne[1] < 16 || src1->type != GGML_TYPE_F32) return false;
|
||||
if (!(strncmp(src0->name, "blk.", 4) == 0 || (m_params.collect_output_weight && strcmp(src0->name, "output.weight") == 0))) return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
std::lock_guard<std::mutex> lock(m_mutex);
|
||||
|
||||
// copy the data from the GPU memory if needed
|
||||
const bool is_host = ggml_backend_buffer_is_host(src1->buffer);
|
||||
|
||||
if (!is_host) {
|
||||
m_src1_data.resize(ggml_nelements(src1));
|
||||
ggml_backend_tensor_get(src1, m_src1_data.data(), 0, ggml_nbytes(src1));
|
||||
}
|
||||
|
||||
const float * data = is_host ? (const float *) src1->data : m_src1_data.data();
|
||||
|
||||
if (t->op == GGML_OP_MUL_MAT_ID) {
|
||||
const int idx = ((int32_t *) t->op_params)[0];
|
||||
const int n_as = ((int32_t *) t->op_params)[1];
|
||||
|
||||
// the top-k selected expert ids are stored in the src0 tensor
|
||||
// for simplicity, always copy src0 to host, because it is small
|
||||
// take into account that src0 is not contiguous!
|
||||
GGML_ASSERT(src0->ne[1] == src1->ne[1]);
|
||||
GGML_ASSERT(n_as*ggml_nrows(src0)*sizeof(int) == GGML_PAD(ggml_nbytes(src0), n_as*sizeof(int)));
|
||||
m_ids.resize(ggml_nbytes(src0)/sizeof(int));
|
||||
ggml_backend_tensor_get(src0, m_ids.data(), 0, ggml_nbytes(src0));
|
||||
|
||||
// loop over all possible experts, regardless if they are used or not in the batch
|
||||
// this is necessary to guarantee equal number of "ncall" for each tensor
|
||||
for (int ex = 0; ex < n_as; ++ex) {
|
||||
src0 = t->src[2 + ex];
|
||||
auto& e = m_stats[src0->name];
|
||||
if (e.values.empty()) {
|
||||
e.values.resize(src1->ne[0], 0);
|
||||
}
|
||||
else if (e.values.size() != (size_t)src1->ne[0]) {
|
||||
fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", src0->name, (int)e.values.size(), (int)src1->ne[0]);
|
||||
exit(1); //GGML_ASSERT(false);
|
||||
}
|
||||
// NOTE: since we select top-k experts, the number of calls for the expert tensors will be k times larger
|
||||
// using the following line, we can correct for that if needed
|
||||
//if (idx == t->src[0]->ne[0] - 1) ++e.ncall;
|
||||
++e.ncall;
|
||||
if (m_params.verbosity > 1) {
|
||||
printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, src0->name, ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type);
|
||||
}
|
||||
for (int row = 0; row < (int)src1->ne[1]; ++row) {
|
||||
const int excur = m_ids[row*n_as + idx];
|
||||
GGML_ASSERT(excur >= 0 && excur < n_as); // sanity check
|
||||
if (excur != ex) continue;
|
||||
const float * x = data + row * src1->ne[0];
|
||||
for (int j = 0; j < (int)src1->ne[0]; ++j) {
|
||||
e.values[j] += x[j]*x[j];
|
||||
}
|
||||
}
|
||||
if (e.ncall > m_last_call) {
|
||||
m_last_call = e.ncall;
|
||||
if (m_last_call % m_params.n_output_frequency == 0) {
|
||||
save_imatrix();
|
||||
}
|
||||
if (m_params.keep_every > 0 && m_last_call%m_params.keep_every == 0) {
|
||||
keep_imatrix(m_last_call);
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
auto& e = m_stats[src0->name];
|
||||
if (e.values.empty()) {
|
||||
e.values.resize(src1->ne[0], 0);
|
||||
}
|
||||
else if (e.values.size() != (size_t)src1->ne[0]) {
|
||||
fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", src0->name, (int)e.values.size(), (int)src1->ne[0]);
|
||||
exit(1); //GGML_ASSERT(false);
|
||||
}
|
||||
++e.ncall;
|
||||
if (m_params.verbosity > 1) {
|
||||
printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, src0->name, ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type);
|
||||
}
|
||||
for (int row = 0; row < (int)src1->ne[1]; ++row) {
|
||||
const float * x = data + row * src1->ne[0];
|
||||
for (int j = 0; j < (int)src1->ne[0]; ++j) {
|
||||
e.values[j] += x[j]*x[j];
|
||||
}
|
||||
}
|
||||
if (e.ncall > m_last_call) {
|
||||
m_last_call = e.ncall;
|
||||
if (m_last_call % m_params.n_output_frequency == 0) {
|
||||
save_imatrix();
|
||||
}
|
||||
if (m_params.keep_every > 0 && m_last_call%m_params.keep_every == 0) {
|
||||
keep_imatrix(m_last_call);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void IMatrixCollector::save_imatrix() const {
|
||||
save_imatrix(m_params.ofile.empty() ? "imatrix.dat" : m_params.ofile.c_str());
|
||||
}
|
||||
|
||||
void IMatrixCollector::keep_imatrix(int ncall) const {
|
||||
auto file_name = m_params.ofile;
|
||||
if (file_name.empty()) file_name = "imatrix.dat";
|
||||
file_name += ".at_";
|
||||
file_name += std::to_string(ncall);
|
||||
save_imatrix(file_name.c_str());
|
||||
}
|
||||
|
||||
void IMatrixCollector::save_imatrix(const char * fname) const {
|
||||
std::ofstream out(fname, std::ios::binary);
|
||||
int n_entries = m_stats.size();
|
||||
out.write((const char*)&n_entries, sizeof(n_entries));
|
||||
for (auto& p : m_stats) {
|
||||
int len = p.first.size();
|
||||
out.write((const char*)&len, sizeof(len));
|
||||
out.write(p.first.c_str(), len);
|
||||
out.write((const char*)&p.second.ncall, sizeof(p.second.ncall));
|
||||
int nval = p.second.values.size();
|
||||
out.write((const char*)&nval, sizeof(nval));
|
||||
if (nval > 0) out.write((const char*)p.second.values.data(), nval*sizeof(float));
|
||||
}
|
||||
if (m_params.verbosity > 0) {
|
||||
fprintf(stderr, "\n%s: stored collected data after %d chunks in %s\n",__func__,m_last_call,fname);
|
||||
}
|
||||
}
|
||||
|
||||
static IMatrixCollector g_collector;
|
||||
|
||||
static bool ik_collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data) {
|
||||
return g_collector.collect_imatrix(t, ask, user_data);
|
||||
}
|
||||
|
||||
|
||||
struct results_log_softmax {
|
||||
double log_softmax;
|
||||
float logit;
|
||||
float prob;
|
||||
};
|
||||
|
||||
static std::vector<float> softmax(const std::vector<float>& logits) {
|
||||
std::vector<float> probs(logits.size());
|
||||
float max_logit = logits[0];
|
||||
for (float v : logits) {
|
||||
max_logit = std::max(max_logit, v);
|
||||
}
|
||||
double sum_exp = 0.0;
|
||||
for (size_t i = 0; i < logits.size(); i++) {
|
||||
// Subtract the maximum logit value from the current logit value for numerical stability
|
||||
const float logit = logits[i] - max_logit;
|
||||
const float exp_logit = expf(logit);
|
||||
sum_exp += exp_logit;
|
||||
probs[i] = exp_logit;
|
||||
}
|
||||
for (size_t i = 0; i < probs.size(); i++) {
|
||||
probs[i] /= sum_exp;
|
||||
}
|
||||
return probs;
|
||||
}
|
||||
|
||||
static results_log_softmax log_softmax(int n_vocab, const float * logits, int tok) {
|
||||
float max_logit = logits[0];
|
||||
for (int i = 1; i < n_vocab; ++i) {
|
||||
max_logit = std::max(max_logit, logits[i]);
|
||||
}
|
||||
double sum_exp = 0.0;
|
||||
for (int i = 0; i < n_vocab; ++i) {
|
||||
sum_exp += expf(logits[i] - max_logit);
|
||||
}
|
||||
return {logits[tok] - max_logit - log(sum_exp), logits[tok], expf(logits[tok] - max_logit) / (float) sum_exp};
|
||||
}
|
||||
|
||||
static void process_logits(
|
||||
int n_vocab, const float * logits, const int * tokens, int n_token, std::vector<std::thread> & workers,
|
||||
double & nll, double & nll2, float * logit_history, float * prob_history
|
||||
) {
|
||||
std::mutex mutex;
|
||||
int counter = 0;
|
||||
auto compute = [&mutex, &counter, &nll, &nll2, logit_history, prob_history, n_vocab, logits, tokens, n_token] () {
|
||||
double local_nll = 0;
|
||||
double local_nll2 = 0;
|
||||
while (true) {
|
||||
std::unique_lock<std::mutex> lock(mutex);
|
||||
int i = counter++;
|
||||
if (i >= n_token) {
|
||||
nll += local_nll; nll2 += local_nll2;
|
||||
break;
|
||||
}
|
||||
lock.unlock();
|
||||
const results_log_softmax results = log_softmax(n_vocab, logits + i*n_vocab, tokens[i+1]);
|
||||
const double v = -results.log_softmax;
|
||||
local_nll += v;
|
||||
local_nll2 += v*v;
|
||||
|
||||
logit_history[i] = results.logit;
|
||||
prob_history[i] = results.prob;
|
||||
}
|
||||
};
|
||||
for (auto & w : workers) {
|
||||
w = std::thread(compute);
|
||||
}
|
||||
compute();
|
||||
for (auto & w : workers) {
|
||||
w.join();
|
||||
}
|
||||
}
|
||||
|
||||
static bool compute_imatrix(llama_context * ctx, const gpt_params & params, bool compute_ppl) {
|
||||
|
||||
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
auto tim1 = std::chrono::high_resolution_clock::now();
|
||||
fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
|
||||
|
||||
std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
|
||||
|
||||
auto tim2 = std::chrono::high_resolution_clock::now();
|
||||
fprintf(stderr, "%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());
|
||||
|
||||
if (int(tokens.size()) < 2*n_ctx) {
|
||||
fprintf(stderr, "%s: you need at least %d tokens for a context of %d tokens\n",__func__,2*n_ctx,
|
||||
n_ctx);
|
||||
fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
|
||||
return false;
|
||||
}
|
||||
|
||||
std::vector<float> logit_history;
|
||||
std::vector<float> prob_history;
|
||||
|
||||
if (compute_ppl) {
|
||||
logit_history.resize(tokens.size());
|
||||
prob_history.resize(tokens.size());
|
||||
}
|
||||
|
||||
const int n_chunk_max = tokens.size() / n_ctx;
|
||||
|
||||
const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
const int n_batch = params.n_batch;
|
||||
|
||||
int count = 0;
|
||||
double nll = 0.0;
|
||||
double nll2 = 0.0;
|
||||
|
||||
fprintf(stderr, "%s: computing over %d chunks with batch_size %d\n", __func__, n_chunk, n_batch);
|
||||
|
||||
std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
|
||||
|
||||
const int num_batches = (n_ctx + n_batch - 1) / n_batch;
|
||||
|
||||
std::vector<float> logits;
|
||||
if (compute_ppl && num_batches > 1) {
|
||||
logits.reserve((size_t)n_ctx * n_vocab);
|
||||
}
|
||||
|
||||
for (int i = 0; i < n_chunk; ++i) {
|
||||
const int start = i * n_ctx;
|
||||
const int end = start + n_ctx;
|
||||
|
||||
std::vector<float> logits;
|
||||
|
||||
const auto t_start = std::chrono::high_resolution_clock::now();
|
||||
|
||||
// clear the KV cache
|
||||
llama_kv_cache_clear(ctx);
|
||||
|
||||
for (int j = 0; j < num_batches; ++j) {
|
||||
const int batch_start = start + j * n_batch;
|
||||
const int batch_size = std::min(end - batch_start, n_batch);
|
||||
|
||||
// save original token and restore it after eval
|
||||
const auto token_org = tokens[batch_start];
|
||||
|
||||
// add BOS token for the first batch of each chunk
|
||||
if (add_bos && j == 0) {
|
||||
tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
|
||||
}
|
||||
|
||||
if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
// restore the original token in case it was set to BOS
|
||||
tokens[batch_start] = token_org;
|
||||
|
||||
if (compute_ppl && num_batches > 1) {
|
||||
const auto * batch_logits = llama_get_logits(ctx);
|
||||
logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
|
||||
}
|
||||
}
|
||||
|
||||
const auto t_end = std::chrono::high_resolution_clock::now();
|
||||
|
||||
if (i == 0) {
|
||||
const float t_total = std::chrono::duration<float>(t_end - t_start).count();
|
||||
fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
|
||||
int total_seconds = (int)(t_total * n_chunk);
|
||||
if (total_seconds >= 60*60) {
|
||||
fprintf(stderr, "%d hours ", total_seconds / (60*60));
|
||||
total_seconds = total_seconds % (60*60);
|
||||
}
|
||||
fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0);
|
||||
}
|
||||
|
||||
if (compute_ppl) {
|
||||
const int first = n_ctx/2;
|
||||
const auto all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx);
|
||||
process_logits(n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first,
|
||||
workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first);
|
||||
count += n_ctx - first - 1;
|
||||
|
||||
printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
|
||||
fflush(stdout);
|
||||
|
||||
logits.clear();
|
||||
}
|
||||
}
|
||||
printf("\n");
|
||||
|
||||
if (compute_ppl) {
|
||||
nll2 /= count;
|
||||
nll /= count;
|
||||
const double ppl = exp(nll);
|
||||
nll2 -= nll * nll;
|
||||
if (nll2 > 0) {
|
||||
nll2 = sqrt(nll2/(count-1));
|
||||
printf("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl);
|
||||
} else {
|
||||
printf("Unexpected negative standard deviation of log(prob)\n");
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
|
||||
StatParams sparams;
|
||||
bool compute_ppl = true;
|
||||
std::vector<char*> args;
|
||||
args.push_back(argv[0]);
|
||||
int iarg = 1;
|
||||
for (; iarg < argc-1; ++iarg) {
|
||||
std::string arg{argv[iarg]};
|
||||
if (arg == "-o" || arg == "--output-file") {
|
||||
sparams.ofile = argv[++iarg];
|
||||
}
|
||||
else if (arg == "-ofreq" || arg == "--output-frequency") {
|
||||
sparams.n_output_frequency = std::stoi(argv[++iarg]);
|
||||
}
|
||||
else if (arg == "-ow" || arg == "--output-weight") {
|
||||
sparams.collect_output_weight = std::stoi(argv[++iarg]);
|
||||
}
|
||||
else if (arg == "--verbosity") {
|
||||
sparams.verbosity = std::stoi(argv[++iarg]);
|
||||
} else if (arg == "--no-ppl") {
|
||||
compute_ppl = false;
|
||||
} else if (arg == "--keep-imatrix") {
|
||||
sparams.keep_every = std::stoi(argv[++iarg]);
|
||||
} else {
|
||||
args.push_back(argv[iarg]);
|
||||
}
|
||||
}
|
||||
if (iarg < argc) {
|
||||
std::string arg{argv[iarg]};
|
||||
if (arg == "--no-ppl") {
|
||||
compute_ppl = false;
|
||||
} else {
|
||||
args.push_back(argv[iarg]);
|
||||
}
|
||||
}
|
||||
|
||||
gpt_params params;
|
||||
params.n_batch = 512;
|
||||
if (!gpt_params_parse(args.size(), args.data(), params)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
g_collector.set_parameters(std::move(sparams));
|
||||
|
||||
params.logits_all = true;
|
||||
params.n_batch = std::min(params.n_batch, params.n_ctx);
|
||||
|
||||
print_build_info();
|
||||
|
||||
if (params.seed == LLAMA_DEFAULT_SEED) {
|
||||
params.seed = time(NULL);
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
|
||||
|
||||
std::mt19937 rng(params.seed);
|
||||
if (params.random_prompt) {
|
||||
params.prompt = gpt_random_prompt(rng);
|
||||
}
|
||||
|
||||
llama_backend_init(params.numa);
|
||||
|
||||
llama_model_params mparams = llama_model_params_from_gpt_params(params);
|
||||
|
||||
llama_model * model = llama_load_model_from_file(params.model.c_str(), mparams);
|
||||
if (model == NULL) {
|
||||
fprintf(stderr, "%s: error: unable to load model\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
llama_context_params cparams = llama_context_params_from_gpt_params(params);
|
||||
|
||||
// pass the callback to the backend scheduler
|
||||
// it will be executed for each node during the graph computation
|
||||
cparams.cb_eval = ik_collect_imatrix;
|
||||
cparams.cb_eval_user_data = NULL;
|
||||
|
||||
llama_context * ctx = llama_new_context_with_model(model, cparams);
|
||||
if (ctx == NULL) {
|
||||
fprintf(stderr, "%s: error: unable to create context\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
const int n_ctx_train = llama_n_ctx_train(model);
|
||||
if (params.n_ctx > n_ctx_train) {
|
||||
fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
|
||||
__func__, n_ctx_train, params.n_ctx);
|
||||
}
|
||||
|
||||
// print system information
|
||||
{
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "%s\n", get_system_info(params).c_str());
|
||||
}
|
||||
|
||||
bool OK = compute_imatrix(ctx, params, compute_ppl);
|
||||
if (!OK) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
g_collector.save_imatrix();
|
||||
|
||||
llama_print_timings(ctx);
|
||||
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
return 0;
|
||||
}
|
||||
@@ -128,6 +128,25 @@ static std::string get_gpu_info() {
|
||||
// command line params
|
||||
enum output_formats {CSV, JSON, MARKDOWN, SQL};
|
||||
|
||||
static const char * output_format_str(output_formats format) {
|
||||
switch (format) {
|
||||
case CSV: return "csv";
|
||||
case JSON: return "json";
|
||||
case MARKDOWN: return "md";
|
||||
case SQL: return "sql";
|
||||
default: GGML_ASSERT(!"invalid output format");
|
||||
}
|
||||
}
|
||||
|
||||
static const char * split_mode_str(llama_split_mode mode) {
|
||||
switch (mode) {
|
||||
case LLAMA_SPLIT_NONE: return "none";
|
||||
case LLAMA_SPLIT_LAYER: return "layer";
|
||||
case LLAMA_SPLIT_ROW: return "row";
|
||||
default: GGML_ASSERT(!"invalid split mode");
|
||||
}
|
||||
}
|
||||
|
||||
struct cmd_params {
|
||||
std::vector<std::string> model;
|
||||
std::vector<int> n_prompt;
|
||||
@@ -137,7 +156,9 @@ struct cmd_params {
|
||||
std::vector<ggml_type> type_v;
|
||||
std::vector<int> n_threads;
|
||||
std::vector<int> n_gpu_layers;
|
||||
std::vector<llama_split_mode> split_mode;
|
||||
std::vector<int> main_gpu;
|
||||
std::vector<bool> no_kv_offload;
|
||||
std::vector<bool> mul_mat_q;
|
||||
std::vector<std::array<float, LLAMA_MAX_DEVICES>> tensor_split;
|
||||
int reps;
|
||||
@@ -154,7 +175,9 @@ static const cmd_params cmd_params_defaults = {
|
||||
/* type_v */ {GGML_TYPE_F16},
|
||||
/* n_threads */ {get_num_physical_cores()},
|
||||
/* n_gpu_layers */ {99},
|
||||
/* split_mode */ {LLAMA_SPLIT_LAYER},
|
||||
/* main_gpu */ {0},
|
||||
/* no_kv_offload */ {false},
|
||||
/* mul_mat_q */ {true},
|
||||
/* tensor_split */ {{}},
|
||||
/* reps */ 5,
|
||||
@@ -167,20 +190,22 @@ static void print_usage(int /* argc */, char ** argv) {
|
||||
printf("\n");
|
||||
printf("options:\n");
|
||||
printf(" -h, --help\n");
|
||||
printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
|
||||
printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
|
||||
printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
|
||||
printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
|
||||
printf(" -ctk <t>, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
|
||||
printf(" -ctv <t>, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
|
||||
printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
|
||||
printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
|
||||
printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
|
||||
printf(" -mmq, --mul-mat-q <0|1> (default: %s)\n", join(cmd_params_defaults.mul_mat_q, ",").c_str());
|
||||
printf(" -ts, --tensor_split <ts0/ts1/..> \n");
|
||||
printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
|
||||
printf(" -o, --output <csv|json|md|sql> (default: %s)\n", cmd_params_defaults.output_format == CSV ? "csv" : cmd_params_defaults.output_format == JSON ? "json" : cmd_params_defaults.output_format == MARKDOWN ? "md" : "sql");
|
||||
printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
|
||||
printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
|
||||
printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
|
||||
printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
|
||||
printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
|
||||
printf(" -ctk <t>, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
|
||||
printf(" -ctv <t>, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
|
||||
printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
|
||||
printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
|
||||
printf(" -sm, --split-mode <none|layer|row> (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
|
||||
printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
|
||||
printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
|
||||
printf(" -mmq, --mul-mat-q <0|1> (default: %s)\n", join(cmd_params_defaults.mul_mat_q, ",").c_str());
|
||||
printf(" -ts, --tensor_split <ts0/ts1/..> (default: 0)\n");
|
||||
printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
|
||||
printf(" -o, --output <csv|json|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format));
|
||||
printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
|
||||
printf("\n");
|
||||
printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
|
||||
}
|
||||
@@ -303,12 +328,41 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
||||
}
|
||||
auto p = split<int>(argv[i], split_delim);
|
||||
params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
|
||||
} else if (arg == "-sm" || arg == "--split-mode") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
auto p = split<std::string>(argv[i], split_delim);
|
||||
std::vector<llama_split_mode> modes;
|
||||
for (const auto & m : p) {
|
||||
llama_split_mode mode;
|
||||
if (m == "none") {
|
||||
mode = LLAMA_SPLIT_NONE;
|
||||
} else if (m == "layer") {
|
||||
mode = LLAMA_SPLIT_LAYER;
|
||||
} else if (m == "row") {
|
||||
mode = LLAMA_SPLIT_ROW;
|
||||
} else {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
modes.push_back(mode);
|
||||
}
|
||||
params.split_mode.insert(params.split_mode.end(), modes.begin(), modes.end());
|
||||
} else if (arg == "-mg" || arg == "--main-gpu") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.main_gpu = split<int>(argv[i], split_delim);
|
||||
} else if (arg == "-nkvo" || arg == "--no-kv-offload") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
auto p = split<bool>(argv[i], split_delim);
|
||||
params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
|
||||
} else if (arg == "-mmq" || arg == "--mul-mat-q") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@@ -382,7 +436,9 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
||||
if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; }
|
||||
if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; }
|
||||
if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
|
||||
if (params.split_mode.empty()) { params.split_mode = cmd_params_defaults.split_mode; }
|
||||
if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
|
||||
if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
|
||||
if (params.mul_mat_q.empty()) { params.mul_mat_q = cmd_params_defaults.mul_mat_q; }
|
||||
if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
|
||||
if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
|
||||
@@ -399,7 +455,9 @@ struct cmd_params_instance {
|
||||
ggml_type type_v;
|
||||
int n_threads;
|
||||
int n_gpu_layers;
|
||||
llama_split_mode split_mode;
|
||||
int main_gpu;
|
||||
bool no_kv_offload;
|
||||
bool mul_mat_q;
|
||||
std::array<float, LLAMA_MAX_DEVICES> tensor_split;
|
||||
|
||||
@@ -407,6 +465,7 @@ struct cmd_params_instance {
|
||||
llama_model_params mparams = llama_model_default_params();
|
||||
|
||||
mparams.n_gpu_layers = n_gpu_layers;
|
||||
mparams.split_mode = split_mode;
|
||||
mparams.main_gpu = main_gpu;
|
||||
mparams.tensor_split = tensor_split.data();
|
||||
|
||||
@@ -416,6 +475,7 @@ struct cmd_params_instance {
|
||||
bool equal_mparams(const cmd_params_instance & other) const {
|
||||
return model == other.model &&
|
||||
n_gpu_layers == other.n_gpu_layers &&
|
||||
split_mode == other.split_mode &&
|
||||
main_gpu == other.main_gpu &&
|
||||
tensor_split == other.tensor_split;
|
||||
}
|
||||
@@ -428,54 +488,26 @@ struct cmd_params_instance {
|
||||
cparams.type_k = type_k;
|
||||
cparams.type_v = type_v;
|
||||
cparams.mul_mat_q = mul_mat_q;
|
||||
cparams.offload_kqv = !no_kv_offload;
|
||||
|
||||
return cparams;
|
||||
}
|
||||
};
|
||||
|
||||
static std::vector<cmd_params_instance> get_cmd_params_instances_int(const cmd_params & params, int n_gen, int n_prompt) {
|
||||
std::vector<cmd_params_instance> instances;
|
||||
|
||||
for (const auto & m : params.model)
|
||||
for (const auto & nl : params.n_gpu_layers)
|
||||
for (const auto & mg : params.main_gpu)
|
||||
for (const auto & ts : params.tensor_split)
|
||||
for (const auto & nb : params.n_batch)
|
||||
for (const auto & tk : params.type_k)
|
||||
for (const auto & tv : params.type_v)
|
||||
for (const auto & mmq : params.mul_mat_q)
|
||||
for (const auto & nt : params.n_threads) {
|
||||
cmd_params_instance instance = {
|
||||
/* .model = */ m,
|
||||
/* .n_prompt = */ n_prompt,
|
||||
/* .n_gen = */ n_gen,
|
||||
/* .n_batch = */ nb,
|
||||
/* .type_k = */ tk,
|
||||
/* .type_v = */ tv,
|
||||
/* .n_threads = */ nt,
|
||||
/* .n_gpu_layers = */ nl,
|
||||
/* .main_gpu = */ mg,
|
||||
/* .mul_mat_q = */ mmq,
|
||||
/* .tensor_split = */ ts,
|
||||
};
|
||||
instances.push_back(instance);
|
||||
}
|
||||
return instances;
|
||||
}
|
||||
|
||||
static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
|
||||
std::vector<cmd_params_instance> instances;
|
||||
|
||||
#if 1
|
||||
// this ordering minimizes the number of times that each model needs to be reloaded
|
||||
for (const auto & m : params.model)
|
||||
for (const auto & nl : params.n_gpu_layers)
|
||||
for (const auto & sm : params.split_mode)
|
||||
for (const auto & mg : params.main_gpu)
|
||||
for (const auto & ts : params.tensor_split)
|
||||
for (const auto & nb : params.n_batch)
|
||||
for (const auto & tk : params.type_k)
|
||||
for (const auto & tv : params.type_v)
|
||||
for (const auto & mmq : params.mul_mat_q)
|
||||
for (const auto & nkvo : params.no_kv_offload)
|
||||
for (const auto & nt : params.n_threads) {
|
||||
for (const auto & n_prompt : params.n_prompt) {
|
||||
if (n_prompt == 0) {
|
||||
@@ -490,7 +522,9 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
||||
/* .type_v = */ tv,
|
||||
/* .n_threads = */ nt,
|
||||
/* .n_gpu_layers = */ nl,
|
||||
/* .split_mode = */ sm,
|
||||
/* .main_gpu = */ mg,
|
||||
/* .no_kv_offload= */ nkvo,
|
||||
/* .mul_mat_q = */ mmq,
|
||||
/* .tensor_split = */ ts,
|
||||
};
|
||||
@@ -510,31 +544,15 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
||||
/* .type_v = */ tv,
|
||||
/* .n_threads = */ nt,
|
||||
/* .n_gpu_layers = */ nl,
|
||||
/* .split_mode = */ sm,
|
||||
/* .main_gpu = */ mg,
|
||||
/* .no_kv_offload= */ nkvo,
|
||||
/* .mul_mat_q = */ mmq,
|
||||
/* .tensor_split = */ ts,
|
||||
};
|
||||
instances.push_back(instance);
|
||||
}
|
||||
}
|
||||
#else
|
||||
// this ordering separates the prompt and generation tests
|
||||
for (const auto & n_prompt : params.n_prompt) {
|
||||
if (n_prompt == 0) {
|
||||
continue;
|
||||
}
|
||||
auto instances_prompt = get_cmd_params_instances_int(params, 0, n_prompt);
|
||||
instances.insert(instances.end(), instances_prompt.begin(), instances_prompt.end());
|
||||
}
|
||||
|
||||
for (const auto & n_gen : params.n_gen) {
|
||||
if (n_gen == 0) {
|
||||
continue;
|
||||
}
|
||||
auto instances_gen = get_cmd_params_instances_int(params, n_gen, 0);
|
||||
instances.insert(instances.end(), instances_gen.begin(), instances_gen.end());
|
||||
}
|
||||
#endif
|
||||
|
||||
return instances;
|
||||
}
|
||||
@@ -558,7 +576,9 @@ struct test {
|
||||
ggml_type type_k;
|
||||
ggml_type type_v;
|
||||
int n_gpu_layers;
|
||||
llama_split_mode split_mode;
|
||||
int main_gpu;
|
||||
bool no_kv_offload;
|
||||
bool mul_mat_q;
|
||||
std::array<float, LLAMA_MAX_DEVICES> tensor_split;
|
||||
int n_prompt;
|
||||
@@ -578,7 +598,9 @@ struct test {
|
||||
type_k = inst.type_k;
|
||||
type_v = inst.type_v;
|
||||
n_gpu_layers = inst.n_gpu_layers;
|
||||
split_mode = inst.split_mode;
|
||||
main_gpu = inst.main_gpu;
|
||||
no_kv_offload = inst.no_kv_offload;
|
||||
mul_mat_q = inst.mul_mat_q;
|
||||
tensor_split = inst.tensor_split;
|
||||
n_prompt = inst.n_prompt;
|
||||
@@ -640,7 +662,9 @@ struct test {
|
||||
"cpu_info", "gpu_info",
|
||||
"model_filename", "model_type", "model_size", "model_n_params",
|
||||
"n_batch", "n_threads", "type_k", "type_v",
|
||||
"n_gpu_layers", "main_gpu", "mul_mat_q", "tensor_split",
|
||||
"n_gpu_layers", "split_mode",
|
||||
"main_gpu", "no_kv_offload",
|
||||
"mul_mat_q", "tensor_split",
|
||||
"n_prompt", "n_gen", "test_time",
|
||||
"avg_ns", "stddev_ns",
|
||||
"avg_ts", "stddev_ts"
|
||||
@@ -659,7 +683,7 @@ struct test {
|
||||
return INT;
|
||||
}
|
||||
if (field == "cuda" || field == "opencl" || field == "metal" || field == "gpu_blas" || field == "blas" ||
|
||||
field == "f16_kv" || field == "mul_mat_q") {
|
||||
field == "f16_kv" || field == "no_kv_offload" || field == "mul_mat_q") {
|
||||
return BOOL;
|
||||
}
|
||||
if (field == "avg_ts" || field == "stddev_ts") {
|
||||
@@ -690,7 +714,9 @@ struct test {
|
||||
cpu_info, gpu_info,
|
||||
model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
|
||||
std::to_string(n_batch), std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v),
|
||||
std::to_string(n_gpu_layers), std::to_string(main_gpu), std::to_string(mul_mat_q), tensor_split_str,
|
||||
std::to_string(n_gpu_layers), split_mode_str(split_mode),
|
||||
std::to_string(main_gpu), std::to_string(no_kv_offload),
|
||||
std::to_string(mul_mat_q), tensor_split_str,
|
||||
std::to_string(n_prompt), std::to_string(n_gen), test_time,
|
||||
std::to_string(avg_ns()), std::to_string(stdev_ns()),
|
||||
std::to_string(avg_ts()), std::to_string(stdev_ts())
|
||||
@@ -845,12 +871,18 @@ struct markdown_printer : public printer {
|
||||
if (field == "n_gpu_layers") {
|
||||
return "ngl";
|
||||
}
|
||||
if (field == "split_mode") {
|
||||
return "sm";
|
||||
}
|
||||
if (field == "n_threads") {
|
||||
return "threads";
|
||||
}
|
||||
if (field == "mul_mat_q") {
|
||||
return "mmq";
|
||||
}
|
||||
if (field == "no_kv_offload") {
|
||||
return "nkvo";
|
||||
}
|
||||
if (field == "tensor_split") {
|
||||
return "ts";
|
||||
}
|
||||
@@ -882,9 +914,15 @@ struct markdown_printer : public printer {
|
||||
if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
|
||||
fields.push_back("main_gpu");
|
||||
}
|
||||
if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
|
||||
fields.push_back("split_mode");
|
||||
}
|
||||
if (params.mul_mat_q.size() > 1 || params.mul_mat_q != cmd_params_defaults.mul_mat_q) {
|
||||
fields.push_back("mul_mat_q");
|
||||
}
|
||||
if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
|
||||
fields.push_back("no_kv_offload");
|
||||
}
|
||||
if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
|
||||
fields.push_back("tensor_split");
|
||||
}
|
||||
|
||||
33
examples/llama.android/.gitignore
vendored
Normal file
@@ -0,0 +1,33 @@
|
||||
# Gradle files
|
||||
.gradle/
|
||||
build/
|
||||
|
||||
# Local configuration file (sdk path, etc)
|
||||
local.properties
|
||||
|
||||
# Log/OS Files
|
||||
*.log
|
||||
|
||||
# Android Studio generated files and folders
|
||||
captures/
|
||||
.externalNativeBuild/
|
||||
.cxx/
|
||||
*.apk
|
||||
output.json
|
||||
|
||||
# IntelliJ
|
||||
*.iml
|
||||
.idea/
|
||||
misc.xml
|
||||
deploymentTargetDropDown.xml
|
||||
render.experimental.xml
|
||||
|
||||
# Keystore files
|
||||
*.jks
|
||||
*.keystore
|
||||
|
||||
# Google Services (e.g. APIs or Firebase)
|
||||
google-services.json
|
||||
|
||||
# Android Profiling
|
||||
*.hprof
|
||||
0
examples/llama.android/README.md
Normal file
1
examples/llama.android/app/.gitignore
vendored
Normal file
@@ -0,0 +1 @@
|
||||
/build
|
||||
91
examples/llama.android/app/build.gradle.kts
Normal file
@@ -0,0 +1,91 @@
|
||||
plugins {
|
||||
id("com.android.application")
|
||||
id("org.jetbrains.kotlin.android")
|
||||
}
|
||||
|
||||
android {
|
||||
namespace = "com.example.llama"
|
||||
compileSdk = 34
|
||||
|
||||
ndkVersion = "26.1.10909125"
|
||||
|
||||
defaultConfig {
|
||||
applicationId = "com.example.llama"
|
||||
minSdk = 33
|
||||
targetSdk = 34
|
||||
versionCode = 1
|
||||
versionName = "1.0"
|
||||
|
||||
testInstrumentationRunner = "androidx.test.runner.AndroidJUnitRunner"
|
||||
vectorDrawables {
|
||||
useSupportLibrary = true
|
||||
}
|
||||
ndk {
|
||||
// Workaround for https://github.com/llvm/llvm-project/issues/65820
|
||||
// affecting armeabi-v7a. Skip armeabi-v7a when invoked with
|
||||
// -Pskip-armeabi-v7a (e.g., ./gradlew build -Pskip-armeabi-v7a).
|
||||
if (project.hasProperty("skip-armeabi-v7a")) {
|
||||
abiFilters += listOf("arm64-v8a", "x86_64", "x86")
|
||||
}
|
||||
}
|
||||
externalNativeBuild {
|
||||
cmake {
|
||||
cppFlags += listOf()
|
||||
arguments += listOf()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
buildTypes {
|
||||
release {
|
||||
isMinifyEnabled = false
|
||||
proguardFiles(
|
||||
getDefaultProguardFile("proguard-android-optimize.txt"),
|
||||
"proguard-rules.pro"
|
||||
)
|
||||
}
|
||||
}
|
||||
compileOptions {
|
||||
sourceCompatibility = JavaVersion.VERSION_1_8
|
||||
targetCompatibility = JavaVersion.VERSION_1_8
|
||||
}
|
||||
kotlinOptions {
|
||||
jvmTarget = "1.8"
|
||||
}
|
||||
buildFeatures {
|
||||
compose = true
|
||||
}
|
||||
composeOptions {
|
||||
kotlinCompilerExtensionVersion = "1.5.1"
|
||||
}
|
||||
packaging {
|
||||
resources {
|
||||
excludes += "/META-INF/{AL2.0,LGPL2.1}"
|
||||
}
|
||||
}
|
||||
externalNativeBuild {
|
||||
cmake {
|
||||
path = file("src/main/cpp/CMakeLists.txt")
|
||||
version = "3.22.1"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
dependencies {
|
||||
|
||||
implementation("androidx.core:core-ktx:1.12.0")
|
||||
implementation("androidx.lifecycle:lifecycle-runtime-ktx:2.6.2")
|
||||
implementation("androidx.activity:activity-compose:1.8.2")
|
||||
implementation(platform("androidx.compose:compose-bom:2023.08.00"))
|
||||
implementation("androidx.compose.ui:ui")
|
||||
implementation("androidx.compose.ui:ui-graphics")
|
||||
implementation("androidx.compose.ui:ui-tooling-preview")
|
||||
implementation("androidx.compose.material3:material3")
|
||||
testImplementation("junit:junit:4.13.2")
|
||||
androidTestImplementation("androidx.test.ext:junit:1.1.5")
|
||||
androidTestImplementation("androidx.test.espresso:espresso-core:3.5.1")
|
||||
androidTestImplementation(platform("androidx.compose:compose-bom:2023.08.00"))
|
||||
androidTestImplementation("androidx.compose.ui:ui-test-junit4")
|
||||
debugImplementation("androidx.compose.ui:ui-tooling")
|
||||
debugImplementation("androidx.compose.ui:ui-test-manifest")
|
||||
}
|
||||
21
examples/llama.android/app/proguard-rules.pro
vendored
Normal file
@@ -0,0 +1,21 @@
|
||||
# Add project specific ProGuard rules here.
|
||||
# You can control the set of applied configuration files using the
|
||||
# proguardFiles setting in build.gradle.
|
||||
#
|
||||
# For more details, see
|
||||
# http://developer.android.com/guide/developing/tools/proguard.html
|
||||
|
||||
# If your project uses WebView with JS, uncomment the following
|
||||
# and specify the fully qualified class name to the JavaScript interface
|
||||
# class:
|
||||
#-keepclassmembers class fqcn.of.javascript.interface.for.webview {
|
||||
# public *;
|
||||
#}
|
||||
|
||||
# Uncomment this to preserve the line number information for
|
||||
# debugging stack traces.
|
||||
#-keepattributes SourceFile,LineNumberTable
|
||||
|
||||
# If you keep the line number information, uncomment this to
|
||||
# hide the original source file name.
|
||||
#-renamesourcefileattribute SourceFile
|
||||
30
examples/llama.android/app/src/main/AndroidManifest.xml
Normal file
@@ -0,0 +1,30 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
|
||||
xmlns:tools="http://schemas.android.com/tools">
|
||||
|
||||
<uses-permission android:name="android.permission.INTERNET" />
|
||||
|
||||
<application
|
||||
android:allowBackup="true"
|
||||
android:dataExtractionRules="@xml/data_extraction_rules"
|
||||
android:fullBackupContent="@xml/backup_rules"
|
||||
android:icon="@mipmap/ic_launcher"
|
||||
android:label="@string/app_name"
|
||||
android:roundIcon="@mipmap/ic_launcher_round"
|
||||
android:supportsRtl="true"
|
||||
android:theme="@style/Theme.LlamaAndroid"
|
||||
>
|
||||
|
||||
<activity
|
||||
android:name=".MainActivity"
|
||||
android:exported="true"
|
||||
android:theme="@style/Theme.LlamaAndroid">
|
||||
<intent-filter>
|
||||
<action android:name="android.intent.action.MAIN" />
|
||||
|
||||
<category android:name="android.intent.category.LAUNCHER" />
|
||||
</intent-filter>
|
||||
</activity>
|
||||
</application>
|
||||
|
||||
</manifest>
|
||||
50
examples/llama.android/app/src/main/cpp/CMakeLists.txt
Normal file
@@ -0,0 +1,50 @@
|
||||
|
||||
# For more information about using CMake with Android Studio, read the
|
||||
# documentation: https://d.android.com/studio/projects/add-native-code.html.
|
||||
# For more examples on how to use CMake, see https://github.com/android/ndk-samples.
|
||||
|
||||
# Sets the minimum CMake version required for this project.
|
||||
cmake_minimum_required(VERSION 3.22.1)
|
||||
|
||||
# Declares the project name. The project name can be accessed via ${ PROJECT_NAME},
|
||||
# Since this is the top level CMakeLists.txt, the project name is also accessible
|
||||
# with ${CMAKE_PROJECT_NAME} (both CMake variables are in-sync within the top level
|
||||
# build script scope).
|
||||
project("llama-android")
|
||||
|
||||
include(FetchContent)
|
||||
FetchContent_Declare(
|
||||
llama
|
||||
GIT_REPOSITORY https://github.com/ggerganov/llama.cpp
|
||||
GIT_TAG master
|
||||
)
|
||||
|
||||
# Also provides "common"
|
||||
FetchContent_MakeAvailable(llama)
|
||||
|
||||
# Creates and names a library, sets it as either STATIC
|
||||
# or SHARED, and provides the relative paths to its source code.
|
||||
# You can define multiple libraries, and CMake builds them for you.
|
||||
# Gradle automatically packages shared libraries with your APK.
|
||||
#
|
||||
# In this top level CMakeLists.txt, ${CMAKE_PROJECT_NAME} is used to define
|
||||
# the target library name; in the sub-module's CMakeLists.txt, ${PROJECT_NAME}
|
||||
# is preferred for the same purpose.
|
||||
#
|
||||
# In order to load a library into your app from Java/Kotlin, you must call
|
||||
# System.loadLibrary() and pass the name of the library defined here;
|
||||
# for GameActivity/NativeActivity derived applications, the same library name must be
|
||||
# used in the AndroidManifest.xml file.
|
||||
add_library(${CMAKE_PROJECT_NAME} SHARED
|
||||
# List C/C++ source files with relative paths to this CMakeLists.txt.
|
||||
llama-android.cpp)
|
||||
|
||||
# Specifies libraries CMake should link to your target library. You
|
||||
# can link libraries from various origins, such as libraries defined in this
|
||||
# build script, prebuilt third-party libraries, or Android system libraries.
|
||||
target_link_libraries(${CMAKE_PROJECT_NAME}
|
||||
# List libraries link to the target library
|
||||
llama
|
||||
common
|
||||
android
|
||||
log)
|
||||
394
examples/llama.android/app/src/main/cpp/llama-android.cpp
Normal file
@@ -0,0 +1,394 @@
|
||||
#include <android/log.h>
|
||||
#include <jni.h>
|
||||
#include <iomanip>
|
||||
#include <math.h>
|
||||
#include <string>
|
||||
#include <unistd.h>
|
||||
#include "llama.h"
|
||||
#include "common/common.h"
|
||||
|
||||
// Write C++ code here.
|
||||
//
|
||||
// Do not forget to dynamically load the C++ library into your application.
|
||||
//
|
||||
// For instance,
|
||||
//
|
||||
// In MainActivity.java:
|
||||
// static {
|
||||
// System.loadLibrary("llama-android");
|
||||
// }
|
||||
//
|
||||
// Or, in MainActivity.kt:
|
||||
// companion object {
|
||||
// init {
|
||||
// System.loadLibrary("llama-android")
|
||||
// }
|
||||
// }
|
||||
|
||||
#define TAG "llama-android.cpp"
|
||||
#define LOGi(...) __android_log_print(ANDROID_LOG_INFO, TAG, __VA_ARGS__)
|
||||
#define LOGe(...) __android_log_print(ANDROID_LOG_ERROR, TAG, __VA_ARGS__)
|
||||
|
||||
jclass la_int_var;
|
||||
jmethodID la_int_var_value;
|
||||
jmethodID la_int_var_inc;
|
||||
|
||||
static void log_callback(ggml_log_level level, const char * fmt, void * data) {
|
||||
if (level == GGML_LOG_LEVEL_ERROR) __android_log_print(ANDROID_LOG_ERROR, TAG, fmt, data);
|
||||
else if (level == GGML_LOG_LEVEL_INFO) __android_log_print(ANDROID_LOG_INFO, TAG, fmt, data);
|
||||
else if (level == GGML_LOG_LEVEL_WARN) __android_log_print(ANDROID_LOG_WARN, TAG, fmt, data);
|
||||
else __android_log_print(ANDROID_LOG_DEFAULT, TAG, fmt, data);
|
||||
}
|
||||
|
||||
extern "C"
|
||||
JNIEXPORT jlong JNICALL
|
||||
Java_com_example_llama_Llm_load_1model(JNIEnv *env, jobject, jstring filename) {
|
||||
llama_model_params model_params = llama_model_default_params();
|
||||
|
||||
auto path_to_model = env->GetStringUTFChars(filename, 0);
|
||||
LOGi("Loading model from %s", path_to_model);
|
||||
|
||||
auto model = llama_load_model_from_file(path_to_model, model_params);
|
||||
env->ReleaseStringUTFChars(filename, path_to_model);
|
||||
|
||||
if (!model) {
|
||||
LOGe("load_model() failed");
|
||||
env->ThrowNew(env->FindClass("java/lang/IllegalStateException"), "load_model() failed");
|
||||
return 0;
|
||||
}
|
||||
|
||||
return reinterpret_cast<jlong>(model);
|
||||
}
|
||||
|
||||
extern "C"
|
||||
JNIEXPORT void JNICALL
|
||||
Java_com_example_llama_Llm_free_1model(JNIEnv *, jobject, jlong model) {
|
||||
llama_free_model(reinterpret_cast<llama_model *>(model));
|
||||
}
|
||||
|
||||
extern "C"
|
||||
JNIEXPORT jlong JNICALL
|
||||
Java_com_example_llama_Llm_new_1context(JNIEnv *env, jobject, jlong jmodel) {
|
||||
auto model = reinterpret_cast<llama_model *>(jmodel);
|
||||
|
||||
if (!model) {
|
||||
LOGe("new_context(): model cannot be null");
|
||||
env->ThrowNew(env->FindClass("java/lang/IllegalArgumentException"), "Model cannot be null");
|
||||
return 0;
|
||||
}
|
||||
|
||||
int n_threads = std::max(1, std::min(8, (int) sysconf(_SC_NPROCESSORS_ONLN) - 2));
|
||||
LOGi("Using %d threads", n_threads);
|
||||
|
||||
llama_context_params ctx_params = llama_context_default_params();
|
||||
ctx_params.seed = 1234;
|
||||
ctx_params.n_ctx = 2048;
|
||||
ctx_params.n_threads = n_threads;
|
||||
ctx_params.n_threads_batch = n_threads;
|
||||
|
||||
llama_context * context = llama_new_context_with_model(model, ctx_params);
|
||||
|
||||
if (!context) {
|
||||
LOGe("llama_new_context_with_model() returned null)");
|
||||
env->ThrowNew(env->FindClass("java/lang/IllegalStateException"),
|
||||
"llama_new_context_with_model() returned null)");
|
||||
return 0;
|
||||
}
|
||||
|
||||
return reinterpret_cast<jlong>(context);
|
||||
}
|
||||
|
||||
extern "C"
|
||||
JNIEXPORT void JNICALL
|
||||
Java_com_example_llama_Llm_free_1context(JNIEnv *, jobject, jlong context) {
|
||||
llama_free(reinterpret_cast<llama_context *>(context));
|
||||
}
|
||||
|
||||
extern "C"
|
||||
JNIEXPORT void JNICALL
|
||||
Java_com_example_llama_Llm_backend_1free(JNIEnv *, jobject) {
|
||||
llama_backend_free();
|
||||
}
|
||||
|
||||
extern "C"
|
||||
JNIEXPORT void JNICALL
|
||||
Java_com_example_llama_Llm_log_1to_1android(JNIEnv *, jobject) {
|
||||
llama_log_set(log_callback, NULL);
|
||||
}
|
||||
|
||||
extern "C"
|
||||
JNIEXPORT jstring JNICALL
|
||||
Java_com_example_llama_Llm_bench_1model(
|
||||
JNIEnv *env,
|
||||
jobject,
|
||||
jlong context_pointer,
|
||||
jlong model_pointer,
|
||||
jlong batch_pointer,
|
||||
jint pp,
|
||||
jint tg,
|
||||
jint pl,
|
||||
jint nr
|
||||
) {
|
||||
auto pp_avg = 0.0;
|
||||
auto tg_avg = 0.0;
|
||||
auto pp_std = 0.0;
|
||||
auto tg_std = 0.0;
|
||||
|
||||
const auto context = reinterpret_cast<llama_context *>(context_pointer);
|
||||
const auto model = reinterpret_cast<llama_model *>(model_pointer);
|
||||
const auto batch = reinterpret_cast<llama_batch *>(batch_pointer);
|
||||
|
||||
const int n_ctx = llama_n_ctx(context);
|
||||
|
||||
LOGi("n_ctx = %d", n_ctx);
|
||||
|
||||
int i, j;
|
||||
int nri;
|
||||
for (nri = 0; nri < nr; nri++) {
|
||||
LOGi("Benchmark prompt processing (pp)");
|
||||
|
||||
llama_batch_clear(*batch);
|
||||
|
||||
const int n_tokens = pp;
|
||||
for (i = 0; i < n_tokens; i++) {
|
||||
llama_batch_add(*batch, 0, i, { 0 }, false);
|
||||
}
|
||||
|
||||
batch->logits[batch->n_tokens - 1] = true;
|
||||
llama_kv_cache_clear(context);
|
||||
|
||||
const auto t_pp_start = ggml_time_us();
|
||||
if (llama_decode(context, *batch) != 0) {
|
||||
LOGi("llama_decode() failed during prompt processing");
|
||||
}
|
||||
const auto t_pp_end = ggml_time_us();
|
||||
|
||||
// bench text generation
|
||||
|
||||
LOGi("Benchmark text generation (tg)");
|
||||
|
||||
llama_kv_cache_clear(context);
|
||||
const auto t_tg_start = ggml_time_us();
|
||||
for (i = 0; i < tg; i++) {
|
||||
|
||||
llama_batch_clear(*batch);
|
||||
for (j = 0; j < pl; j++) {
|
||||
llama_batch_add(*batch, 0, i, { j }, true);
|
||||
}
|
||||
|
||||
LOGi("llama_decode() text generation: %d", i);
|
||||
if (llama_decode(context, *batch) != 0) {
|
||||
LOGi("llama_decode() failed during text generation");
|
||||
}
|
||||
}
|
||||
|
||||
const auto t_tg_end = ggml_time_us();
|
||||
|
||||
llama_kv_cache_clear(context);
|
||||
|
||||
const auto t_pp = double(t_pp_end - t_pp_start) / 1000000.0;
|
||||
const auto t_tg = double(t_tg_end - t_tg_start) / 1000000.0;
|
||||
|
||||
const auto speed_pp = double(pp) / t_pp;
|
||||
const auto speed_tg = double(pl * tg) / t_tg;
|
||||
|
||||
pp_avg += speed_pp;
|
||||
tg_avg += speed_tg;
|
||||
|
||||
pp_std += speed_pp * speed_pp;
|
||||
tg_std += speed_tg * speed_tg;
|
||||
|
||||
LOGi("pp %f t/s, tg %f t/s", speed_pp, speed_tg);
|
||||
}
|
||||
|
||||
pp_avg /= double(nr);
|
||||
tg_avg /= double(nr);
|
||||
|
||||
if (nr > 1) {
|
||||
pp_std = sqrt(pp_std / double(nr - 1) - pp_avg * pp_avg * double(nr) / double(nr - 1));
|
||||
tg_std = sqrt(tg_std / double(nr - 1) - tg_avg * tg_avg * double(nr) / double(nr - 1));
|
||||
} else {
|
||||
pp_std = 0;
|
||||
tg_std = 0;
|
||||
}
|
||||
|
||||
char model_desc[128];
|
||||
llama_model_desc(model, model_desc, sizeof(model_desc));
|
||||
|
||||
const auto model_size = double(llama_model_size(model)) / 1024.0 / 1024.0 / 1024.0;
|
||||
const auto model_n_params = double(llama_model_n_params(model)) / 1e9;
|
||||
|
||||
const auto backend = "(Android)"; // TODO: What should this be?
|
||||
|
||||
std::stringstream result;
|
||||
result << std::setprecision(2);
|
||||
result << "| model | size | params | backend | test | t/s |\n";
|
||||
result << "| --- | --- | --- | --- | --- | --- |\n";
|
||||
result << "| " << model_desc << " | " << model_size << "GiB | " << model_n_params << "B | " << backend << " | pp " << pp << " | " << pp_avg << " ± " << pp_std << " |\n";
|
||||
result << "| " << model_desc << " | " << model_size << "GiB | " << model_n_params << "B | " << backend << " | tg " << tg << " | " << tg_avg << " ± " << tg_std << " |\n";
|
||||
|
||||
return env->NewStringUTF(result.str().c_str());
|
||||
}
|
||||
|
||||
extern "C"
|
||||
JNIEXPORT void JNICALL
|
||||
Java_com_example_llama_Llm_free_1batch(JNIEnv *, jobject, jlong batch_pointer) {
|
||||
llama_batch_free(*reinterpret_cast<llama_batch *>(batch_pointer));
|
||||
}
|
||||
|
||||
extern "C"
|
||||
JNIEXPORT jlong JNICALL
|
||||
Java_com_example_llama_Llm_new_1batch(JNIEnv *, jobject, jint n_tokens, jint embd, jint n_seq_max) {
|
||||
|
||||
// Source: Copy of llama.cpp:llama_batch_init but heap-allocated.
|
||||
|
||||
llama_batch *batch = new llama_batch {
|
||||
0,
|
||||
nullptr,
|
||||
nullptr,
|
||||
nullptr,
|
||||
nullptr,
|
||||
nullptr,
|
||||
nullptr,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
};
|
||||
|
||||
if (embd) {
|
||||
batch->embd = (float *) malloc(sizeof(float) * n_tokens * embd);
|
||||
} else {
|
||||
batch->token = (llama_token *) malloc(sizeof(llama_token) * n_tokens);
|
||||
}
|
||||
|
||||
batch->pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens);
|
||||
batch->n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens);
|
||||
batch->seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * n_tokens);
|
||||
for (int i = 0; i < n_tokens; ++i) {
|
||||
batch->seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
|
||||
}
|
||||
batch->logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens);
|
||||
|
||||
return reinterpret_cast<jlong>(batch);
|
||||
}
|
||||
|
||||
extern "C"
|
||||
JNIEXPORT void JNICALL
|
||||
Java_com_example_llama_Llm_backend_1init(JNIEnv *, jobject, jboolean numa) {
|
||||
llama_backend_init(numa);
|
||||
}
|
||||
|
||||
extern "C"
|
||||
JNIEXPORT jstring JNICALL
|
||||
Java_com_example_llama_Llm_system_1info(JNIEnv *env, jobject) {
|
||||
return env->NewStringUTF(llama_print_system_info());
|
||||
}
|
||||
|
||||
extern "C"
|
||||
JNIEXPORT jint JNICALL
|
||||
Java_com_example_llama_Llm_completion_1init(
|
||||
JNIEnv *env,
|
||||
jobject,
|
||||
jlong context_pointer,
|
||||
jlong batch_pointer,
|
||||
jstring jtext,
|
||||
jint n_len
|
||||
) {
|
||||
|
||||
const auto text = env->GetStringUTFChars(jtext, 0);
|
||||
const auto context = reinterpret_cast<llama_context *>(context_pointer);
|
||||
const auto batch = reinterpret_cast<llama_batch *>(batch_pointer);
|
||||
|
||||
const auto tokens_list = llama_tokenize(context, text, 1);
|
||||
|
||||
auto n_ctx = llama_n_ctx(context);
|
||||
auto n_kv_req = tokens_list.size() + (n_len - tokens_list.size());
|
||||
|
||||
LOGi("n_len = %d, n_ctx = %d, n_kv_req = %d", n_len, n_ctx, n_kv_req);
|
||||
|
||||
if (n_kv_req > n_ctx) {
|
||||
LOGe("error: n_kv_req > n_ctx, the required KV cache size is not big enough");
|
||||
}
|
||||
|
||||
for (auto id : tokens_list) {
|
||||
LOGi("%s", llama_token_to_piece(context, id).c_str());
|
||||
}
|
||||
|
||||
llama_batch_clear(*batch);
|
||||
|
||||
// evaluate the initial prompt
|
||||
for (auto i = 0; i < tokens_list.size(); i++) {
|
||||
llama_batch_add(*batch, tokens_list[i], i, { 0 }, false);
|
||||
}
|
||||
|
||||
// llama_decode will output logits only for the last token of the prompt
|
||||
batch->logits[batch->n_tokens - 1] = true;
|
||||
|
||||
if (llama_decode(context, *batch) != 0) {
|
||||
LOGe("llama_decode() failed");
|
||||
}
|
||||
|
||||
env->ReleaseStringUTFChars(jtext, text);
|
||||
|
||||
return batch->n_tokens;
|
||||
}
|
||||
|
||||
extern "C"
|
||||
JNIEXPORT jstring JNICALL
|
||||
Java_com_example_llama_Llm_completion_1loop(
|
||||
JNIEnv * env,
|
||||
jobject,
|
||||
jlong context_pointer,
|
||||
jlong batch_pointer,
|
||||
jint n_len,
|
||||
jobject intvar_ncur
|
||||
) {
|
||||
const auto context = reinterpret_cast<llama_context *>(context_pointer);
|
||||
const auto batch = reinterpret_cast<llama_batch *>(batch_pointer);
|
||||
const auto model = llama_get_model(context);
|
||||
|
||||
if (!la_int_var) la_int_var = env->GetObjectClass(intvar_ncur);
|
||||
if (!la_int_var_value) la_int_var_value = env->GetMethodID(la_int_var, "getValue", "()I");
|
||||
if (!la_int_var_inc) la_int_var_inc = env->GetMethodID(la_int_var, "inc", "()V");
|
||||
|
||||
auto n_vocab = llama_n_vocab(model);
|
||||
auto logits = llama_get_logits_ith(context, batch->n_tokens - 1);
|
||||
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
|
||||
}
|
||||
|
||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||
|
||||
// sample the most likely token
|
||||
const auto new_token_id = llama_sample_token_greedy(context, &candidates_p);
|
||||
|
||||
const auto n_cur = env->CallIntMethod(intvar_ncur, la_int_var_value);
|
||||
if (new_token_id == llama_token_eos(model) || n_cur == n_len) {
|
||||
return env->NewStringUTF("");
|
||||
}
|
||||
|
||||
auto new_token_chars = llama_token_to_piece(context, new_token_id);
|
||||
LOGi("new_token_chars: `%s`", new_token_chars.c_str());
|
||||
auto new_token = env->NewStringUTF(new_token_chars.c_str());
|
||||
|
||||
llama_batch_clear(*batch);
|
||||
llama_batch_add(*batch, new_token_id, n_cur, { 0 }, true);
|
||||
|
||||
env->CallVoidMethod(intvar_ncur, la_int_var_inc);
|
||||
|
||||
if (llama_decode(context, *batch) != 0) {
|
||||
LOGe("llama_decode() returned null");
|
||||
}
|
||||
|
||||
return new_token;
|
||||
}
|
||||
|
||||
extern "C"
|
||||
JNIEXPORT void JNICALL
|
||||
Java_com_example_llama_Llm_kv_1cache_1clear(JNIEnv *, jobject, jlong context) {
|
||||
llama_kv_cache_clear(reinterpret_cast<llama_context *>(context));
|
||||
}
|
||||
@@ -0,0 +1,119 @@
|
||||
package com.example.llama
|
||||
|
||||
import android.app.DownloadManager
|
||||
import android.net.Uri
|
||||
import android.util.Log
|
||||
import androidx.compose.material3.Button
|
||||
import androidx.compose.material3.Text
|
||||
import androidx.compose.runtime.Composable
|
||||
import androidx.compose.runtime.getValue
|
||||
import androidx.compose.runtime.mutableDoubleStateOf
|
||||
import androidx.compose.runtime.mutableStateOf
|
||||
import androidx.compose.runtime.remember
|
||||
import androidx.compose.runtime.rememberCoroutineScope
|
||||
import androidx.compose.runtime.setValue
|
||||
import androidx.core.database.getLongOrNull
|
||||
import androidx.core.net.toUri
|
||||
import kotlinx.coroutines.delay
|
||||
import kotlinx.coroutines.launch
|
||||
import java.io.File
|
||||
|
||||
data class Downloadable(val name: String, val source: Uri, val destination: File) {
|
||||
companion object {
|
||||
@JvmStatic
|
||||
private val tag: String? = this::class.qualifiedName
|
||||
|
||||
sealed interface State
|
||||
data object Ready: State
|
||||
data class Downloading(val id: Long): State
|
||||
data class Downloaded(val downloadable: Downloadable): State
|
||||
data class Error(val message: String): State
|
||||
|
||||
@JvmStatic
|
||||
@Composable
|
||||
fun Button(viewModel: MainViewModel, dm: DownloadManager, item: Downloadable) {
|
||||
var status: State by remember {
|
||||
mutableStateOf(
|
||||
if (item.destination.exists()) Downloaded(item)
|
||||
else Ready
|
||||
)
|
||||
}
|
||||
var progress by remember { mutableDoubleStateOf(0.0) }
|
||||
|
||||
val coroutineScope = rememberCoroutineScope()
|
||||
|
||||
suspend fun waitForDownload(result: Downloading, item: Downloadable): State {
|
||||
while (true) {
|
||||
val cursor = dm.query(DownloadManager.Query().setFilterById(result.id))
|
||||
|
||||
if (cursor == null) {
|
||||
Log.e(tag, "dm.query() returned null")
|
||||
return Error("dm.query() returned null")
|
||||
}
|
||||
|
||||
if (!cursor.moveToFirst() || cursor.count < 1) {
|
||||
cursor.close()
|
||||
Log.i(tag, "cursor.moveToFirst() returned false or cursor.count < 1, download canceled?")
|
||||
return Ready
|
||||
}
|
||||
|
||||
val pix = cursor.getColumnIndex(DownloadManager.COLUMN_BYTES_DOWNLOADED_SO_FAR)
|
||||
val tix = cursor.getColumnIndex(DownloadManager.COLUMN_TOTAL_SIZE_BYTES)
|
||||
val sofar = cursor.getLongOrNull(pix) ?: 0
|
||||
val total = cursor.getLongOrNull(tix) ?: 1
|
||||
cursor.close()
|
||||
|
||||
if (sofar == total) {
|
||||
return Downloaded(item)
|
||||
}
|
||||
|
||||
progress = (sofar * 1.0) / total
|
||||
|
||||
delay(1000L)
|
||||
}
|
||||
}
|
||||
|
||||
fun onClick() {
|
||||
when (val s = status) {
|
||||
is Downloaded -> {
|
||||
viewModel.load(item.destination.path)
|
||||
}
|
||||
|
||||
is Downloading -> {
|
||||
coroutineScope.launch {
|
||||
status = waitForDownload(s, item)
|
||||
}
|
||||
}
|
||||
|
||||
else -> {
|
||||
item.destination.delete()
|
||||
|
||||
val request = DownloadManager.Request(item.source).apply {
|
||||
setTitle("Downloading model")
|
||||
setDescription("Downloading model: ${item.name}")
|
||||
setAllowedNetworkTypes(DownloadManager.Request.NETWORK_WIFI)
|
||||
setDestinationUri(item.destination.toUri())
|
||||
}
|
||||
|
||||
viewModel.log("Saving ${item.name} to ${item.destination.path}")
|
||||
Log.i(tag, "Saving ${item.name} to ${item.destination.path}")
|
||||
|
||||
val id = dm.enqueue(request)
|
||||
status = Downloading(id)
|
||||
onClick()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Button(onClick = { onClick() }, enabled = status !is Downloading) {
|
||||
when (status) {
|
||||
is Downloading -> Text(text = "Downloading ${(progress * 100).toInt()}%")
|
||||
is Downloaded -> Text("Load ${item.name}")
|
||||
is Ready -> Text("Download ${item.name}")
|
||||
is Error -> Text("Download ${item.name}")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,172 @@
|
||||
package com.example.llama
|
||||
|
||||
import android.util.Log
|
||||
import kotlinx.coroutines.CoroutineDispatcher
|
||||
import kotlinx.coroutines.asCoroutineDispatcher
|
||||
import kotlinx.coroutines.flow.Flow
|
||||
import kotlinx.coroutines.flow.flow
|
||||
import kotlinx.coroutines.flow.flowOn
|
||||
import kotlinx.coroutines.withContext
|
||||
import java.util.concurrent.Executors
|
||||
import kotlin.concurrent.thread
|
||||
|
||||
class Llm {
|
||||
private val tag: String? = this::class.simpleName
|
||||
|
||||
private val threadLocalState: ThreadLocal<State> = ThreadLocal.withInitial { State.Idle }
|
||||
|
||||
private val runLoop: CoroutineDispatcher = Executors.newSingleThreadExecutor {
|
||||
thread(start = false, name = "Llm-RunLoop") {
|
||||
Log.d(tag, "Dedicated thread for native code: ${Thread.currentThread().name}")
|
||||
|
||||
// No-op if called more than once.
|
||||
System.loadLibrary("llama-android")
|
||||
|
||||
// Set llama log handler to Android
|
||||
log_to_android()
|
||||
backend_init(false)
|
||||
|
||||
Log.d(tag, system_info())
|
||||
|
||||
it.run()
|
||||
}.apply {
|
||||
uncaughtExceptionHandler = Thread.UncaughtExceptionHandler { _, exception: Throwable ->
|
||||
Log.e(tag, "Unhandled exception", exception)
|
||||
}
|
||||
}
|
||||
}.asCoroutineDispatcher()
|
||||
|
||||
private val nlen: Int = 64
|
||||
|
||||
private external fun log_to_android()
|
||||
private external fun load_model(filename: String): Long
|
||||
private external fun free_model(model: Long)
|
||||
private external fun new_context(model: Long): Long
|
||||
private external fun free_context(context: Long)
|
||||
private external fun backend_init(numa: Boolean)
|
||||
private external fun backend_free()
|
||||
private external fun free_batch(batch: Long)
|
||||
private external fun new_batch(nTokens: Int, embd: Int, nSeqMax: Int): Long
|
||||
private external fun bench_model(
|
||||
context: Long,
|
||||
model: Long,
|
||||
batch: Long,
|
||||
pp: Int,
|
||||
tg: Int,
|
||||
pl: Int,
|
||||
nr: Int
|
||||
): String
|
||||
|
||||
private external fun system_info(): String
|
||||
|
||||
private external fun completion_init(
|
||||
context: Long,
|
||||
batch: Long,
|
||||
text: String,
|
||||
nLen: Int
|
||||
): Int
|
||||
|
||||
private external fun completion_loop(
|
||||
context: Long,
|
||||
batch: Long,
|
||||
nLen: Int,
|
||||
ncur: IntVar
|
||||
): String
|
||||
|
||||
private external fun kv_cache_clear(context: Long)
|
||||
|
||||
suspend fun bench(pp: Int, tg: Int, pl: Int, nr: Int = 1): String {
|
||||
return withContext(runLoop) {
|
||||
when (val state = threadLocalState.get()) {
|
||||
is State.Loaded -> {
|
||||
Log.d(tag, "bench(): $state")
|
||||
bench_model(state.context, state.model, state.batch, pp, tg, pl, nr)
|
||||
}
|
||||
|
||||
else -> throw IllegalStateException("No model loaded")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
suspend fun load(pathToModel: String) {
|
||||
withContext(runLoop) {
|
||||
when (threadLocalState.get()) {
|
||||
is State.Idle -> {
|
||||
val model = load_model(pathToModel)
|
||||
if (model == 0L) throw IllegalStateException("load_model() failed")
|
||||
|
||||
val context = new_context(model)
|
||||
if (context == 0L) throw IllegalStateException("new_context() failed")
|
||||
|
||||
val batch = new_batch(512, 0, 1)
|
||||
if (batch == 0L) throw IllegalStateException("new_batch() failed")
|
||||
|
||||
Log.i(tag, "Loaded model $pathToModel")
|
||||
threadLocalState.set(State.Loaded(model, context, batch))
|
||||
}
|
||||
else -> throw IllegalStateException("Model already loaded")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fun send(message: String): Flow<String> = flow {
|
||||
when (val state = threadLocalState.get()) {
|
||||
is State.Loaded -> {
|
||||
val ncur = IntVar(completion_init(state.context, state.batch, message, nlen))
|
||||
while (ncur.value <= nlen) {
|
||||
val str = completion_loop(state.context, state.batch, nlen, ncur)
|
||||
if (str.isEmpty()) {
|
||||
break
|
||||
}
|
||||
emit(str)
|
||||
}
|
||||
kv_cache_clear(state.context)
|
||||
}
|
||||
else -> {}
|
||||
}
|
||||
}.flowOn(runLoop)
|
||||
|
||||
/**
|
||||
* Unloads the model and frees resources.
|
||||
*
|
||||
* This is a no-op if there's no model loaded.
|
||||
*/
|
||||
suspend fun unload() {
|
||||
withContext(runLoop) {
|
||||
when (val state = threadLocalState.get()) {
|
||||
is State.Loaded -> {
|
||||
free_context(state.context)
|
||||
free_model(state.model)
|
||||
free_batch(state.batch)
|
||||
|
||||
threadLocalState.set(State.Idle)
|
||||
}
|
||||
else -> {}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
companion object {
|
||||
private class IntVar(value: Int) {
|
||||
@Volatile
|
||||
var value: Int = value
|
||||
private set
|
||||
|
||||
fun inc() {
|
||||
synchronized(this) {
|
||||
value += 1
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private sealed interface State {
|
||||
data object Idle: State
|
||||
data class Loaded(val model: Long, val context: Long, val batch: Long): State
|
||||
}
|
||||
|
||||
// Enforce only one instance of Llm.
|
||||
private val _instance: Llm = Llm()
|
||||
|
||||
fun instance(): Llm = _instance
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,154 @@
|
||||
package com.example.llama
|
||||
|
||||
import android.app.ActivityManager
|
||||
import android.app.DownloadManager
|
||||
import android.content.ClipData
|
||||
import android.content.ClipboardManager
|
||||
import android.net.Uri
|
||||
import android.os.Bundle
|
||||
import android.os.StrictMode
|
||||
import android.os.StrictMode.VmPolicy
|
||||
import android.text.format.Formatter
|
||||
import androidx.activity.ComponentActivity
|
||||
import androidx.activity.compose.setContent
|
||||
import androidx.activity.viewModels
|
||||
import androidx.compose.foundation.layout.Box
|
||||
import androidx.compose.foundation.layout.Column
|
||||
import androidx.compose.foundation.layout.Row
|
||||
import androidx.compose.foundation.layout.fillMaxSize
|
||||
import androidx.compose.foundation.layout.padding
|
||||
import androidx.compose.foundation.lazy.LazyColumn
|
||||
import androidx.compose.foundation.lazy.items
|
||||
import androidx.compose.foundation.lazy.rememberLazyListState
|
||||
import androidx.compose.material3.Button
|
||||
import androidx.compose.material3.LocalContentColor
|
||||
import androidx.compose.material3.MaterialTheme
|
||||
import androidx.compose.material3.OutlinedTextField
|
||||
import androidx.compose.material3.Surface
|
||||
import androidx.compose.material3.Text
|
||||
import androidx.compose.runtime.Composable
|
||||
import androidx.compose.ui.Modifier
|
||||
import androidx.compose.ui.unit.dp
|
||||
import androidx.core.content.getSystemService
|
||||
import com.example.llama.ui.theme.LlamaAndroidTheme
|
||||
import java.io.File
|
||||
|
||||
class MainActivity(
|
||||
activityManager: ActivityManager? = null,
|
||||
downloadManager: DownloadManager? = null,
|
||||
clipboardManager: ClipboardManager? = null,
|
||||
): ComponentActivity() {
|
||||
private val tag: String? = this::class.simpleName
|
||||
|
||||
private val activityManager by lazy { activityManager ?: getSystemService<ActivityManager>()!! }
|
||||
private val downloadManager by lazy { downloadManager ?: getSystemService<DownloadManager>()!! }
|
||||
private val clipboardManager by lazy { clipboardManager ?: getSystemService<ClipboardManager>()!! }
|
||||
|
||||
private val viewModel: MainViewModel by viewModels()
|
||||
|
||||
// Get a MemoryInfo object for the device's current memory status.
|
||||
private fun availableMemory(): ActivityManager.MemoryInfo {
|
||||
return ActivityManager.MemoryInfo().also { memoryInfo ->
|
||||
activityManager.getMemoryInfo(memoryInfo)
|
||||
}
|
||||
}
|
||||
|
||||
override fun onCreate(savedInstanceState: Bundle?) {
|
||||
super.onCreate(savedInstanceState)
|
||||
|
||||
StrictMode.setVmPolicy(
|
||||
VmPolicy.Builder(StrictMode.getVmPolicy())
|
||||
.detectLeakedClosableObjects()
|
||||
.build()
|
||||
)
|
||||
|
||||
val free = Formatter.formatFileSize(this, availableMemory().availMem)
|
||||
val total = Formatter.formatFileSize(this, availableMemory().totalMem)
|
||||
|
||||
viewModel.log("Current memory: $free / $total")
|
||||
viewModel.log("Downloads directory: ${getExternalFilesDir(null)}")
|
||||
|
||||
val extFilesDir = getExternalFilesDir(null)
|
||||
|
||||
val models = listOf(
|
||||
Downloadable(
|
||||
"Phi-2 7B (Q4_0, 1.6 GiB)",
|
||||
Uri.parse("https://huggingface.co/ggml-org/models/resolve/main/phi-2/ggml-model-q4_0.gguf?download=true"),
|
||||
File(extFilesDir, "phi-2-q4_0.gguf"),
|
||||
),
|
||||
Downloadable(
|
||||
"TinyLlama 1.1B (f16, 2.2 GiB)",
|
||||
Uri.parse("https://huggingface.co/ggml-org/models/resolve/main/tinyllama-1.1b/ggml-model-f16.gguf?download=true"),
|
||||
File(extFilesDir, "tinyllama-1.1-f16.gguf"),
|
||||
),
|
||||
Downloadable(
|
||||
"Phi 2 DPO (Q3_K_M, 1.48 GiB)",
|
||||
Uri.parse("https://huggingface.co/TheBloke/phi-2-dpo-GGUF/resolve/main/phi-2-dpo.Q3_K_M.gguf?download=true"),
|
||||
File(extFilesDir, "phi-2-dpo.Q3_K_M.gguf")
|
||||
),
|
||||
)
|
||||
|
||||
setContent {
|
||||
LlamaAndroidTheme {
|
||||
// A surface container using the 'background' color from the theme
|
||||
Surface(
|
||||
modifier = Modifier.fillMaxSize(),
|
||||
color = MaterialTheme.colorScheme.background
|
||||
) {
|
||||
MainCompose(
|
||||
viewModel,
|
||||
clipboardManager,
|
||||
downloadManager,
|
||||
models,
|
||||
)
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@Composable
|
||||
fun MainCompose(
|
||||
viewModel: MainViewModel,
|
||||
clipboard: ClipboardManager,
|
||||
dm: DownloadManager,
|
||||
models: List<Downloadable>
|
||||
) {
|
||||
Column {
|
||||
val scrollState = rememberLazyListState()
|
||||
|
||||
Box(modifier = Modifier.weight(1f)) {
|
||||
LazyColumn(state = scrollState) {
|
||||
items(viewModel.messages) {
|
||||
Text(
|
||||
it,
|
||||
style = MaterialTheme.typography.bodyLarge.copy(color = LocalContentColor.current),
|
||||
modifier = Modifier.padding(16.dp)
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
OutlinedTextField(
|
||||
value = viewModel.message,
|
||||
onValueChange = { viewModel.updateMessage(it) },
|
||||
label = { Text("Message") },
|
||||
)
|
||||
Row {
|
||||
Button({ viewModel.send() }) { Text("Send") }
|
||||
Button({ viewModel.bench(8, 4, 1) }) { Text("Bench") }
|
||||
Button({ viewModel.clear() }) { Text("Clear") }
|
||||
Button({
|
||||
viewModel.messages.joinToString("\n").let {
|
||||
clipboard.setPrimaryClip(ClipData.newPlainText("", it))
|
||||
}
|
||||
}) { Text("Copy") }
|
||||
}
|
||||
|
||||
Column {
|
||||
for (model in models) {
|
||||
Downloadable.Button(viewModel, dm, model)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,104 @@
|
||||
package com.example.llama
|
||||
|
||||
import android.util.Log
|
||||
import androidx.compose.runtime.getValue
|
||||
import androidx.compose.runtime.mutableStateOf
|
||||
import androidx.compose.runtime.setValue
|
||||
import androidx.lifecycle.ViewModel
|
||||
import androidx.lifecycle.viewModelScope
|
||||
import kotlinx.coroutines.flow.catch
|
||||
import kotlinx.coroutines.launch
|
||||
|
||||
class MainViewModel(private val llm: Llm = Llm.instance()): ViewModel() {
|
||||
companion object {
|
||||
@JvmStatic
|
||||
private val NanosPerSecond = 1_000_000_000.0
|
||||
}
|
||||
|
||||
private val tag: String? = this::class.simpleName
|
||||
|
||||
var messages by mutableStateOf(listOf("Initializing..."))
|
||||
private set
|
||||
|
||||
var message by mutableStateOf("")
|
||||
private set
|
||||
|
||||
override fun onCleared() {
|
||||
super.onCleared()
|
||||
|
||||
viewModelScope.launch {
|
||||
try {
|
||||
llm.unload()
|
||||
} catch (exc: IllegalStateException) {
|
||||
messages += exc.message!!
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fun send() {
|
||||
val text = message
|
||||
message = ""
|
||||
|
||||
// Add to messages console.
|
||||
messages += text
|
||||
messages += ""
|
||||
|
||||
viewModelScope.launch {
|
||||
llm.send(text)
|
||||
.catch {
|
||||
Log.e(tag, "send() failed", it)
|
||||
messages += it.message!!
|
||||
}
|
||||
.collect { messages = messages.dropLast(1) + (messages.last() + it) }
|
||||
}
|
||||
}
|
||||
|
||||
fun bench(pp: Int, tg: Int, pl: Int, nr: Int = 1) {
|
||||
viewModelScope.launch {
|
||||
try {
|
||||
val start = System.nanoTime()
|
||||
val warmupResult = llm.bench(pp, tg, pl, nr)
|
||||
val end = System.nanoTime()
|
||||
|
||||
messages += warmupResult
|
||||
|
||||
val warmup = (end - start).toDouble() / NanosPerSecond
|
||||
messages += "Warm up time: $warmup seconds, please wait..."
|
||||
|
||||
if (warmup > 5.0) {
|
||||
messages += "Warm up took too long, aborting benchmark"
|
||||
return@launch
|
||||
}
|
||||
|
||||
messages += llm.bench(512, 128, 1, 3)
|
||||
} catch (exc: IllegalStateException) {
|
||||
Log.e(tag, "bench() failed", exc)
|
||||
messages += exc.message!!
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fun load(pathToModel: String) {
|
||||
viewModelScope.launch {
|
||||
try {
|
||||
llm.load(pathToModel)
|
||||
messages += "Loaded $pathToModel"
|
||||
} catch (exc: IllegalStateException) {
|
||||
Log.e(tag, "load() failed", exc)
|
||||
messages += exc.message!!
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fun updateMessage(newMessage: String) {
|
||||
message = newMessage
|
||||
}
|
||||
|
||||
fun clear() {
|
||||
messages = listOf()
|
||||
}
|
||||
|
||||
fun log(message: String) {
|
||||
messages += message
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,11 @@
|
||||
package com.example.llama.ui.theme
|
||||
|
||||
import androidx.compose.ui.graphics.Color
|
||||
|
||||
val Purple80 = Color(0xFFD0BCFF)
|
||||
val PurpleGrey80 = Color(0xFFCCC2DC)
|
||||
val Pink80 = Color(0xFFEFB8C8)
|
||||
|
||||
val Purple40 = Color(0xFF6650a4)
|
||||
val PurpleGrey40 = Color(0xFF625b71)
|
||||
val Pink40 = Color(0xFF7D5260)
|
||||
@@ -0,0 +1,70 @@
|
||||
package com.example.llama.ui.theme
|
||||
|
||||
import android.app.Activity
|
||||
import android.os.Build
|
||||
import androidx.compose.foundation.isSystemInDarkTheme
|
||||
import androidx.compose.material3.MaterialTheme
|
||||
import androidx.compose.material3.darkColorScheme
|
||||
import androidx.compose.material3.dynamicDarkColorScheme
|
||||
import androidx.compose.material3.dynamicLightColorScheme
|
||||
import androidx.compose.material3.lightColorScheme
|
||||
import androidx.compose.runtime.Composable
|
||||
import androidx.compose.runtime.SideEffect
|
||||
import androidx.compose.ui.graphics.toArgb
|
||||
import androidx.compose.ui.platform.LocalContext
|
||||
import androidx.compose.ui.platform.LocalView
|
||||
import androidx.core.view.WindowCompat
|
||||
|
||||
private val DarkColorScheme = darkColorScheme(
|
||||
primary = Purple80,
|
||||
secondary = PurpleGrey80,
|
||||
tertiary = Pink80
|
||||
)
|
||||
|
||||
private val LightColorScheme = lightColorScheme(
|
||||
primary = Purple40,
|
||||
secondary = PurpleGrey40,
|
||||
tertiary = Pink40
|
||||
|
||||
/* Other default colors to override
|
||||
background = Color(0xFFFFFBFE),
|
||||
surface = Color(0xFFFFFBFE),
|
||||
onPrimary = Color.White,
|
||||
onSecondary = Color.White,
|
||||
onTertiary = Color.White,
|
||||
onBackground = Color(0xFF1C1B1F),
|
||||
onSurface = Color(0xFF1C1B1F),
|
||||
*/
|
||||
)
|
||||
|
||||
@Composable
|
||||
fun LlamaAndroidTheme(
|
||||
darkTheme: Boolean = isSystemInDarkTheme(),
|
||||
// Dynamic color is available on Android 12+
|
||||
dynamicColor: Boolean = true,
|
||||
content: @Composable () -> Unit
|
||||
) {
|
||||
val colorScheme = when {
|
||||
dynamicColor && Build.VERSION.SDK_INT >= Build.VERSION_CODES.S -> {
|
||||
val context = LocalContext.current
|
||||
if (darkTheme) dynamicDarkColorScheme(context) else dynamicLightColorScheme(context)
|
||||
}
|
||||
|
||||
darkTheme -> DarkColorScheme
|
||||
else -> LightColorScheme
|
||||
}
|
||||
val view = LocalView.current
|
||||
if (!view.isInEditMode) {
|
||||
SideEffect {
|
||||
val window = (view.context as Activity).window
|
||||
window.statusBarColor = colorScheme.primary.toArgb()
|
||||
WindowCompat.getInsetsController(window, view).isAppearanceLightStatusBars = darkTheme
|
||||
}
|
||||
}
|
||||
|
||||
MaterialTheme(
|
||||
colorScheme = colorScheme,
|
||||
typography = Typography,
|
||||
content = content
|
||||
)
|
||||
}
|
||||
@@ -0,0 +1,34 @@
|
||||
package com.example.llama.ui.theme
|
||||
|
||||
import androidx.compose.material3.Typography
|
||||
import androidx.compose.ui.text.TextStyle
|
||||
import androidx.compose.ui.text.font.FontFamily
|
||||
import androidx.compose.ui.text.font.FontWeight
|
||||
import androidx.compose.ui.unit.sp
|
||||
|
||||
// Set of Material typography styles to start with
|
||||
val Typography = Typography(
|
||||
bodyLarge = TextStyle(
|
||||
fontFamily = FontFamily.Default,
|
||||
fontWeight = FontWeight.Normal,
|
||||
fontSize = 16.sp,
|
||||
lineHeight = 24.sp,
|
||||
letterSpacing = 0.5.sp
|
||||
)
|
||||
/* Other default text styles to override
|
||||
titleLarge = TextStyle(
|
||||
fontFamily = FontFamily.Default,
|
||||
fontWeight = FontWeight.Normal,
|
||||
fontSize = 22.sp,
|
||||
lineHeight = 28.sp,
|
||||
letterSpacing = 0.sp
|
||||
),
|
||||
labelSmall = TextStyle(
|
||||
fontFamily = FontFamily.Default,
|
||||
fontWeight = FontWeight.Medium,
|
||||
fontSize = 11.sp,
|
||||
lineHeight = 16.sp,
|
||||
letterSpacing = 0.5.sp
|
||||
)
|
||||
*/
|
||||
)
|
||||
@@ -0,0 +1,170 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<vector xmlns:android="http://schemas.android.com/apk/res/android"
|
||||
android:width="108dp"
|
||||
android:height="108dp"
|
||||
android:viewportWidth="108"
|
||||
android:viewportHeight="108">
|
||||
<path
|
||||
android:fillColor="#3DDC84"
|
||||
android:pathData="M0,0h108v108h-108z" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M9,0L9,108"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M19,0L19,108"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M29,0L29,108"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M39,0L39,108"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M49,0L49,108"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M59,0L59,108"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M69,0L69,108"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M79,0L79,108"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M89,0L89,108"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M99,0L99,108"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M0,9L108,9"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M0,19L108,19"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M0,29L108,29"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M0,39L108,39"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M0,49L108,49"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M0,59L108,59"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M0,69L108,69"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M0,79L108,79"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M0,89L108,89"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M0,99L108,99"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M19,29L89,29"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M19,39L89,39"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M19,49L89,49"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M19,59L89,59"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M19,69L89,69"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M19,79L89,79"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M29,19L29,89"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M39,19L39,89"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M49,19L49,89"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M59,19L59,89"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M69,19L69,89"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M79,19L79,89"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
</vector>
|
||||
@@ -0,0 +1,30 @@
|
||||
<vector xmlns:android="http://schemas.android.com/apk/res/android"
|
||||
xmlns:aapt="http://schemas.android.com/aapt"
|
||||
android:width="108dp"
|
||||
android:height="108dp"
|
||||
android:viewportWidth="108"
|
||||
android:viewportHeight="108">
|
||||
<path android:pathData="M31,63.928c0,0 6.4,-11 12.1,-13.1c7.2,-2.6 26,-1.4 26,-1.4l38.1,38.1L107,108.928l-32,-1L31,63.928z">
|
||||
<aapt:attr name="android:fillColor">
|
||||
<gradient
|
||||
android:endX="85.84757"
|
||||
android:endY="92.4963"
|
||||
android:startX="42.9492"
|
||||
android:startY="49.59793"
|
||||
android:type="linear">
|
||||
<item
|
||||
android:color="#44000000"
|
||||
android:offset="0.0" />
|
||||
<item
|
||||
android:color="#00000000"
|
||||
android:offset="1.0" />
|
||||
</gradient>
|
||||
</aapt:attr>
|
||||
</path>
|
||||
<path
|
||||
android:fillColor="#FFFFFF"
|
||||
android:fillType="nonZero"
|
||||
android:pathData="M65.3,45.828l3.8,-6.6c0.2,-0.4 0.1,-0.9 -0.3,-1.1c-0.4,-0.2 -0.9,-0.1 -1.1,0.3l-3.9,6.7c-6.3,-2.8 -13.4,-2.8 -19.7,0l-3.9,-6.7c-0.2,-0.4 -0.7,-0.5 -1.1,-0.3C38.8,38.328 38.7,38.828 38.9,39.228l3.8,6.6C36.2,49.428 31.7,56.028 31,63.928h46C76.3,56.028 71.8,49.428 65.3,45.828zM43.4,57.328c-0.8,0 -1.5,-0.5 -1.8,-1.2c-0.3,-0.7 -0.1,-1.5 0.4,-2.1c0.5,-0.5 1.4,-0.7 2.1,-0.4c0.7,0.3 1.2,1 1.2,1.8C45.3,56.528 44.5,57.328 43.4,57.328L43.4,57.328zM64.6,57.328c-0.8,0 -1.5,-0.5 -1.8,-1.2s-0.1,-1.5 0.4,-2.1c0.5,-0.5 1.4,-0.7 2.1,-0.4c0.7,0.3 1.2,1 1.2,1.8C66.5,56.528 65.6,57.328 64.6,57.328L64.6,57.328z"
|
||||
android:strokeWidth="1"
|
||||
android:strokeColor="#00000000" />
|
||||
</vector>
|
||||
@@ -0,0 +1,6 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<adaptive-icon xmlns:android="http://schemas.android.com/apk/res/android">
|
||||
<background android:drawable="@drawable/ic_launcher_background" />
|
||||
<foreground android:drawable="@drawable/ic_launcher_foreground" />
|
||||
<monochrome android:drawable="@drawable/ic_launcher_foreground" />
|
||||
</adaptive-icon>
|
||||
@@ -0,0 +1,6 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<adaptive-icon xmlns:android="http://schemas.android.com/apk/res/android">
|
||||
<background android:drawable="@drawable/ic_launcher_background" />
|
||||
<foreground android:drawable="@drawable/ic_launcher_foreground" />
|
||||
<monochrome android:drawable="@drawable/ic_launcher_foreground" />
|
||||
</adaptive-icon>
|
||||
|
After Width: | Height: | Size: 1.4 KiB |
|
After Width: | Height: | Size: 2.8 KiB |
|
After Width: | Height: | Size: 982 B |
|
After Width: | Height: | Size: 1.7 KiB |
|
After Width: | Height: | Size: 1.9 KiB |
|
After Width: | Height: | Size: 3.8 KiB |
|
After Width: | Height: | Size: 2.8 KiB |
|
After Width: | Height: | Size: 5.8 KiB |
|
After Width: | Height: | Size: 3.8 KiB |
|
After Width: | Height: | Size: 7.6 KiB |
10
examples/llama.android/app/src/main/res/values/colors.xml
Normal file
@@ -0,0 +1,10 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<resources>
|
||||
<color name="purple_200">#FFBB86FC</color>
|
||||
<color name="purple_500">#FF6200EE</color>
|
||||
<color name="purple_700">#FF3700B3</color>
|
||||
<color name="teal_200">#FF03DAC5</color>
|
||||
<color name="teal_700">#FF018786</color>
|
||||
<color name="black">#FF000000</color>
|
||||
<color name="white">#FFFFFFFF</color>
|
||||
</resources>
|
||||
@@ -0,0 +1,3 @@
|
||||
<resources>
|
||||
<string name="app_name">LlamaAndroid</string>
|
||||
</resources>
|
||||
@@ -0,0 +1,5 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<resources>
|
||||
|
||||
<style name="Theme.LlamaAndroid" parent="android:Theme.Material.Light.NoActionBar" />
|
||||
</resources>
|
||||
13
examples/llama.android/app/src/main/res/xml/backup_rules.xml
Normal file
@@ -0,0 +1,13 @@
|
||||
<?xml version="1.0" encoding="utf-8"?><!--
|
||||
Sample backup rules file; uncomment and customize as necessary.
|
||||
See https://developer.android.com/guide/topics/data/autobackup
|
||||
for details.
|
||||
Note: This file is ignored for devices older that API 31
|
||||
See https://developer.android.com/about/versions/12/backup-restore
|
||||
-->
|
||||
<full-backup-content>
|
||||
<!--
|
||||
<include domain="sharedpref" path="."/>
|
||||
<exclude domain="sharedpref" path="device.xml"/>
|
||||
-->
|
||||
</full-backup-content>
|
||||
@@ -0,0 +1,19 @@
|
||||
<?xml version="1.0" encoding="utf-8"?><!--
|
||||
Sample data extraction rules file; uncomment and customize as necessary.
|
||||
See https://developer.android.com/about/versions/12/backup-restore#xml-changes
|
||||
for details.
|
||||
-->
|
||||
<data-extraction-rules>
|
||||
<cloud-backup>
|
||||
<!-- TODO: Use <include> and <exclude> to control what is backed up.
|
||||
<include .../>
|
||||
<exclude .../>
|
||||
-->
|
||||
</cloud-backup>
|
||||
<!--
|
||||
<device-transfer>
|
||||
<include .../>
|
||||
<exclude .../>
|
||||
</device-transfer>
|
||||
-->
|
||||
</data-extraction-rules>
|
||||
5
examples/llama.android/build.gradle.kts
Normal file
@@ -0,0 +1,5 @@
|
||||
// Top-level build file where you can add configuration options common to all sub-projects/modules.
|
||||
plugins {
|
||||
id("com.android.application") version "8.2.0" apply false
|
||||
id("org.jetbrains.kotlin.android") version "1.9.0" apply false
|
||||
}
|
||||
23
examples/llama.android/gradle.properties
Normal file
@@ -0,0 +1,23 @@
|
||||
# Project-wide Gradle settings.
|
||||
# IDE (e.g. Android Studio) users:
|
||||
# Gradle settings configured through the IDE *will override*
|
||||
# any settings specified in this file.
|
||||
# For more details on how to configure your build environment visit
|
||||
# http://www.gradle.org/docs/current/userguide/build_environment.html
|
||||
# Specifies the JVM arguments used for the daemon process.
|
||||
# The setting is particularly useful for tweaking memory settings.
|
||||
org.gradle.jvmargs=-Xmx2048m -Dfile.encoding=UTF-8
|
||||
# When configured, Gradle will run in incubating parallel mode.
|
||||
# This option should only be used with decoupled projects. More details, visit
|
||||
# http://www.gradle.org/docs/current/userguide/multi_project_builds.html#sec:decoupled_projects
|
||||
# org.gradle.parallel=true
|
||||
# AndroidX package structure to make it clearer which packages are bundled with the
|
||||
# Android operating system, and which are packaged with your app's APK
|
||||
# https://developer.android.com/topic/libraries/support-library/androidx-rn
|
||||
android.useAndroidX=true
|
||||
# Kotlin code style for this project: "official" or "obsolete":
|
||||
kotlin.code.style=official
|
||||
# Enables namespacing of each library's R class so that its R class includes only the
|
||||
# resources declared in the library itself and none from the library's dependencies,
|
||||
# thereby reducing the size of the R class for that library
|
||||
android.nonTransitiveRClass=true
|
||||
BIN
examples/llama.android/gradle/wrapper/gradle-wrapper.jar
vendored
Normal file
6
examples/llama.android/gradle/wrapper/gradle-wrapper.properties
vendored
Normal file
@@ -0,0 +1,6 @@
|
||||
#Thu Dec 21 14:31:09 AEDT 2023
|
||||
distributionBase=GRADLE_USER_HOME
|
||||
distributionPath=wrapper/dists
|
||||
distributionUrl=https\://services.gradle.org/distributions/gradle-8.2-bin.zip
|
||||
zipStoreBase=GRADLE_USER_HOME
|
||||
zipStorePath=wrapper/dists
|
||||
185
examples/llama.android/gradlew
vendored
Executable file
@@ -0,0 +1,185 @@
|
||||
#!/usr/bin/env sh
|
||||
|
||||
#
|
||||
# Copyright 2015 the original author or authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# https://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
##############################################################################
|
||||
##
|
||||
## Gradle start up script for UN*X
|
||||
##
|
||||
##############################################################################
|
||||
|
||||
# Attempt to set APP_HOME
|
||||
# Resolve links: $0 may be a link
|
||||
PRG="$0"
|
||||
# Need this for relative symlinks.
|
||||
while [ -h "$PRG" ] ; do
|
||||
ls=`ls -ld "$PRG"`
|
||||
link=`expr "$ls" : '.*-> \(.*\)$'`
|
||||
if expr "$link" : '/.*' > /dev/null; then
|
||||
PRG="$link"
|
||||
else
|
||||
PRG=`dirname "$PRG"`"/$link"
|
||||
fi
|
||||
done
|
||||
SAVED="`pwd`"
|
||||
cd "`dirname \"$PRG\"`/" >/dev/null
|
||||
APP_HOME="`pwd -P`"
|
||||
cd "$SAVED" >/dev/null
|
||||
|
||||
APP_NAME="Gradle"
|
||||
APP_BASE_NAME=`basename "$0"`
|
||||
|
||||
# Add default JVM options here. You can also use JAVA_OPTS and GRADLE_OPTS to pass JVM options to this script.
|
||||
DEFAULT_JVM_OPTS='"-Xmx64m" "-Xms64m"'
|
||||
|
||||
# Use the maximum available, or set MAX_FD != -1 to use that value.
|
||||
MAX_FD="maximum"
|
||||
|
||||
warn () {
|
||||
echo "$*"
|
||||
}
|
||||
|
||||
die () {
|
||||
echo
|
||||
echo "$*"
|
||||
echo
|
||||
exit 1
|
||||
}
|
||||
|
||||
# OS specific support (must be 'true' or 'false').
|
||||
cygwin=false
|
||||
msys=false
|
||||
darwin=false
|
||||
nonstop=false
|
||||
case "`uname`" in
|
||||
CYGWIN* )
|
||||
cygwin=true
|
||||
;;
|
||||
Darwin* )
|
||||
darwin=true
|
||||
;;
|
||||
MINGW* )
|
||||
msys=true
|
||||
;;
|
||||
NONSTOP* )
|
||||
nonstop=true
|
||||
;;
|
||||
esac
|
||||
|
||||
CLASSPATH=$APP_HOME/gradle/wrapper/gradle-wrapper.jar
|
||||
|
||||
|
||||
# Determine the Java command to use to start the JVM.
|
||||
if [ -n "$JAVA_HOME" ] ; then
|
||||
if [ -x "$JAVA_HOME/jre/sh/java" ] ; then
|
||||
# IBM's JDK on AIX uses strange locations for the executables
|
||||
JAVACMD="$JAVA_HOME/jre/sh/java"
|
||||
else
|
||||
JAVACMD="$JAVA_HOME/bin/java"
|
||||
fi
|
||||
if [ ! -x "$JAVACMD" ] ; then
|
||||
die "ERROR: JAVA_HOME is set to an invalid directory: $JAVA_HOME
|
||||
|
||||
Please set the JAVA_HOME variable in your environment to match the
|
||||
location of your Java installation."
|
||||
fi
|
||||
else
|
||||
JAVACMD="java"
|
||||
which java >/dev/null 2>&1 || die "ERROR: JAVA_HOME is not set and no 'java' command could be found in your PATH.
|
||||
|
||||
Please set the JAVA_HOME variable in your environment to match the
|
||||
location of your Java installation."
|
||||
fi
|
||||
|
||||
# Increase the maximum file descriptors if we can.
|
||||
if [ "$cygwin" = "false" -a "$darwin" = "false" -a "$nonstop" = "false" ] ; then
|
||||
MAX_FD_LIMIT=`ulimit -H -n`
|
||||
if [ $? -eq 0 ] ; then
|
||||
if [ "$MAX_FD" = "maximum" -o "$MAX_FD" = "max" ] ; then
|
||||
MAX_FD="$MAX_FD_LIMIT"
|
||||
fi
|
||||
ulimit -n $MAX_FD
|
||||
if [ $? -ne 0 ] ; then
|
||||
warn "Could not set maximum file descriptor limit: $MAX_FD"
|
||||
fi
|
||||
else
|
||||
warn "Could not query maximum file descriptor limit: $MAX_FD_LIMIT"
|
||||
fi
|
||||
fi
|
||||
|
||||
# For Darwin, add options to specify how the application appears in the dock
|
||||
if $darwin; then
|
||||
GRADLE_OPTS="$GRADLE_OPTS \"-Xdock:name=$APP_NAME\" \"-Xdock:icon=$APP_HOME/media/gradle.icns\""
|
||||
fi
|
||||
|
||||
# For Cygwin or MSYS, switch paths to Windows format before running java
|
||||
if [ "$cygwin" = "true" -o "$msys" = "true" ] ; then
|
||||
APP_HOME=`cygpath --path --mixed "$APP_HOME"`
|
||||
CLASSPATH=`cygpath --path --mixed "$CLASSPATH"`
|
||||
|
||||
JAVACMD=`cygpath --unix "$JAVACMD"`
|
||||
|
||||
# We build the pattern for arguments to be converted via cygpath
|
||||
ROOTDIRSRAW=`find -L / -maxdepth 1 -mindepth 1 -type d 2>/dev/null`
|
||||
SEP=""
|
||||
for dir in $ROOTDIRSRAW ; do
|
||||
ROOTDIRS="$ROOTDIRS$SEP$dir"
|
||||
SEP="|"
|
||||
done
|
||||
OURCYGPATTERN="(^($ROOTDIRS))"
|
||||
# Add a user-defined pattern to the cygpath arguments
|
||||
if [ "$GRADLE_CYGPATTERN" != "" ] ; then
|
||||
OURCYGPATTERN="$OURCYGPATTERN|($GRADLE_CYGPATTERN)"
|
||||
fi
|
||||
# Now convert the arguments - kludge to limit ourselves to /bin/sh
|
||||
i=0
|
||||
for arg in "$@" ; do
|
||||
CHECK=`echo "$arg"|egrep -c "$OURCYGPATTERN" -`
|
||||
CHECK2=`echo "$arg"|egrep -c "^-"` ### Determine if an option
|
||||
|
||||
if [ $CHECK -ne 0 ] && [ $CHECK2 -eq 0 ] ; then ### Added a condition
|
||||
eval `echo args$i`=`cygpath --path --ignore --mixed "$arg"`
|
||||
else
|
||||
eval `echo args$i`="\"$arg\""
|
||||
fi
|
||||
i=`expr $i + 1`
|
||||
done
|
||||
case $i in
|
||||
0) set -- ;;
|
||||
1) set -- "$args0" ;;
|
||||
2) set -- "$args0" "$args1" ;;
|
||||
3) set -- "$args0" "$args1" "$args2" ;;
|
||||
4) set -- "$args0" "$args1" "$args2" "$args3" ;;
|
||||
5) set -- "$args0" "$args1" "$args2" "$args3" "$args4" ;;
|
||||
6) set -- "$args0" "$args1" "$args2" "$args3" "$args4" "$args5" ;;
|
||||
7) set -- "$args0" "$args1" "$args2" "$args3" "$args4" "$args5" "$args6" ;;
|
||||
8) set -- "$args0" "$args1" "$args2" "$args3" "$args4" "$args5" "$args6" "$args7" ;;
|
||||
9) set -- "$args0" "$args1" "$args2" "$args3" "$args4" "$args5" "$args6" "$args7" "$args8" ;;
|
||||
esac
|
||||
fi
|
||||
|
||||
# Escape application args
|
||||
save () {
|
||||
for i do printf %s\\n "$i" | sed "s/'/'\\\\''/g;1s/^/'/;\$s/\$/' \\\\/" ; done
|
||||
echo " "
|
||||
}
|
||||
APP_ARGS=`save "$@"`
|
||||
|
||||
# Collect all arguments for the java command, following the shell quoting and substitution rules
|
||||
eval set -- $DEFAULT_JVM_OPTS $JAVA_OPTS $GRADLE_OPTS "\"-Dorg.gradle.appname=$APP_BASE_NAME\"" -classpath "\"$CLASSPATH\"" org.gradle.wrapper.GradleWrapperMain "$APP_ARGS"
|
||||
|
||||
exec "$JAVACMD" "$@"
|
||||
17
examples/llama.android/settings.gradle.kts
Normal file
@@ -0,0 +1,17 @@
|
||||
pluginManagement {
|
||||
repositories {
|
||||
google()
|
||||
mavenCentral()
|
||||
gradlePluginPortal()
|
||||
}
|
||||
}
|
||||
dependencyResolutionManagement {
|
||||
repositoriesMode.set(RepositoriesMode.FAIL_ON_PROJECT_REPOS)
|
||||
repositories {
|
||||
google()
|
||||
mavenCentral()
|
||||
}
|
||||
}
|
||||
|
||||
rootProject.name = "LlamaAndroid"
|
||||
include(":app")
|
||||
@@ -1,7 +1,12 @@
|
||||
# llama.swiftui
|
||||
# llama.cpp/examples/llama.swiftui
|
||||
|
||||
Local inference of llama.cpp on an iPhone.
|
||||
So far I only tested with starcoder 1B model, but it can most likely handle 7B models as well.
|
||||
Local inference of llama.cpp on an iPhone. This is a sample app that can be used as a starting
|
||||
point for more advanced projects.
|
||||
|
||||
For usage instructions and performance stats, check the following discussion: https://github.com/ggerganov/llama.cpp/discussions/4508
|
||||
|
||||

|
||||
|
||||
Video demonstration:
|
||||
|
||||
https://github.com/bachittle/llama.cpp/assets/39804642/e290827a-4edb-4093-9642-2a5e399ec545
|
||||
|
||||
|
||||
@@ -1,6 +1,5 @@
|
||||
import Foundation
|
||||
|
||||
// import llama
|
||||
import llama
|
||||
|
||||
enum LlamaError: Error {
|
||||
case couldNotInitializeContext
|
||||
@@ -159,7 +158,7 @@ actor LlamaContext {
|
||||
new_token_id = llama_sample_token_greedy(context, &candidates_p)
|
||||
}
|
||||
|
||||
if new_token_id == llama_token_eos(context) || n_cur == n_len {
|
||||
if new_token_id == llama_token_eos(model) || n_cur == n_len {
|
||||
print("\n")
|
||||
let new_token_str = String(cString: temporary_invalid_cchars + [0])
|
||||
temporary_invalid_cchars.removeAll()
|
||||
|
||||
@@ -1,5 +0,0 @@
|
||||
//
|
||||
// Use this file to import your target's public headers that you would like to expose to Swift.
|
||||
//
|
||||
|
||||
#import "llama.h"
|
||||
@@ -7,51 +7,34 @@
|
||||
objects = {
|
||||
|
||||
/* Begin PBXBuildFile section */
|
||||
542376082B0D9BFB008E6A1C /* ggml-quants.c in Sources */ = {isa = PBXBuildFile; fileRef = 542376072B0D9BFB008E6A1C /* ggml-quants.c */; settings = {COMPILER_FLAGS = "-O3"; }; };
|
||||
5423760B2B0D9C4B008E6A1C /* ggml-backend.c in Sources */ = {isa = PBXBuildFile; fileRef = 5423760A2B0D9C4B008E6A1C /* ggml-backend.c */; settings = {COMPILER_FLAGS = "-O3"; }; };
|
||||
542378792ACE3F3500834A7B /* ggml-metal.metal in Resources */ = {isa = PBXBuildFile; fileRef = 549479C82AC9E10B00E0F78B /* ggml-metal.metal */; };
|
||||
542EA09D2AC8723900A8AEE9 /* ggml.c in Sources */ = {isa = PBXBuildFile; fileRef = 542EA09B2AC8723900A8AEE9 /* ggml.c */; settings = {COMPILER_FLAGS = "-DGGML_USE_ACCELERATE -DGGML_USE_METAL -DGGML_USE_K_QUANTS -O3"; }; };
|
||||
542EA0A02AC8725700A8AEE9 /* ggml-alloc.c in Sources */ = {isa = PBXBuildFile; fileRef = 542EA09F2AC8725700A8AEE9 /* ggml-alloc.c */; settings = {COMPILER_FLAGS = "-O3"; }; };
|
||||
542EA0A32AC8729100A8AEE9 /* llama.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 542EA0A12AC8729100A8AEE9 /* llama.cpp */; settings = {COMPILER_FLAGS = "-DGGML_USE_K_QUANTS -DGGML_USE_METAL -O3"; }; };
|
||||
549479CB2AC9E16000E0F78B /* Metal.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = 549479CA2AC9E16000E0F78B /* Metal.framework */; };
|
||||
549479CD2AC9E42A00E0F78B /* ggml-metal.m in Sources */ = {isa = PBXBuildFile; fileRef = 549479C52AC9E0F200E0F78B /* ggml-metal.m */; settings = {COMPILER_FLAGS = "-fno-objc-arc -DGGML_SWIFT -DGGML_USE_METAL -O3"; }; };
|
||||
79E1D9CD2B4CD16E005F8E46 /* InputButton.swift in Sources */ = {isa = PBXBuildFile; fileRef = 79E1D9CC2B4CD16E005F8E46 /* InputButton.swift */; };
|
||||
7FA3D2B32B2EA2F600543F92 /* DownloadButton.swift in Sources */ = {isa = PBXBuildFile; fileRef = 7FA3D2B22B2EA2F600543F92 /* DownloadButton.swift */; };
|
||||
8A1C83772AC328BD0096AF73 /* llama_swiftuiApp.swift in Sources */ = {isa = PBXBuildFile; fileRef = 8A1C83762AC328BD0096AF73 /* llama_swiftuiApp.swift */; };
|
||||
8A1C83792AC328BD0096AF73 /* ContentView.swift in Sources */ = {isa = PBXBuildFile; fileRef = 8A1C83782AC328BD0096AF73 /* ContentView.swift */; };
|
||||
8A1C837B2AC328BE0096AF73 /* Assets.xcassets in Resources */ = {isa = PBXBuildFile; fileRef = 8A1C837A2AC328BE0096AF73 /* Assets.xcassets */; };
|
||||
8A1C837E2AC328BE0096AF73 /* Preview Assets.xcassets in Resources */ = {isa = PBXBuildFile; fileRef = 8A1C837D2AC328BE0096AF73 /* Preview Assets.xcassets */; };
|
||||
8A39BE0A2AC7601100BFEB40 /* Accelerate.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = 8A39BE092AC7601000BFEB40 /* Accelerate.framework */; };
|
||||
8A3F84242AC4C891005E2EE8 /* models in Resources */ = {isa = PBXBuildFile; fileRef = 8A3F84232AC4C891005E2EE8 /* models */; };
|
||||
8A907F332AC7138A006146EA /* LibLlama.swift in Sources */ = {isa = PBXBuildFile; fileRef = 8A907F322AC7134E006146EA /* LibLlama.swift */; };
|
||||
8A9F7C4D2AC332EE008AE1EA /* LlamaState.swift in Sources */ = {isa = PBXBuildFile; fileRef = 8A9F7C4C2AC332EE008AE1EA /* LlamaState.swift */; };
|
||||
DF810E132B4A5BA200301144 /* llama in Frameworks */ = {isa = PBXBuildFile; productRef = DF810E122B4A5BA200301144 /* llama */; };
|
||||
F1FE20E22B465ECA00B45541 /* LoadCustomButton.swift in Sources */ = {isa = PBXBuildFile; fileRef = F1FE20E12B465EC900B45541 /* LoadCustomButton.swift */; };
|
||||
/* End PBXBuildFile section */
|
||||
|
||||
/* Begin PBXFileReference section */
|
||||
542376062B0D9BEA008E6A1C /* ggml-quants.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-quants.h"; path = "../../ggml-quants.h"; sourceTree = "<group>"; };
|
||||
542376072B0D9BFB008E6A1C /* ggml-quants.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; name = "ggml-quants.c"; path = "../../ggml-quants.c"; sourceTree = "<group>"; };
|
||||
542376092B0D9C40008E6A1C /* ggml-backend.h */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.h; name = "ggml-backend.h"; path = "../../ggml-backend.h"; sourceTree = "<group>"; };
|
||||
5423760A2B0D9C4B008E6A1C /* ggml-backend.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; name = "ggml-backend.c"; path = "../../ggml-backend.c"; sourceTree = "<group>"; };
|
||||
542EA09B2AC8723900A8AEE9 /* ggml.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; name = ggml.c; path = ../../ggml.c; sourceTree = "<group>"; };
|
||||
542EA09C2AC8723900A8AEE9 /* ggml.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = ggml.h; path = ../../ggml.h; sourceTree = "<group>"; };
|
||||
542EA09E2AC8725700A8AEE9 /* ggml-alloc.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-alloc.h"; path = "../../ggml-alloc.h"; sourceTree = "<group>"; };
|
||||
542EA09F2AC8725700A8AEE9 /* ggml-alloc.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; name = "ggml-alloc.c"; path = "../../ggml-alloc.c"; sourceTree = "<group>"; };
|
||||
542EA0A12AC8729100A8AEE9 /* llama.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = llama.cpp; path = ../../llama.cpp; sourceTree = "<group>"; };
|
||||
542EA0A22AC8729100A8AEE9 /* llama.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = llama.h; path = ../../llama.h; sourceTree = "<group>"; };
|
||||
549479C52AC9E0F200E0F78B /* ggml-metal.m */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.objc; name = "ggml-metal.m"; path = "../../ggml-metal.m"; sourceTree = "<group>"; };
|
||||
549479C62AC9E0F200E0F78B /* ggml-metal.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-metal.h"; path = "../../ggml-metal.h"; sourceTree = "<group>"; };
|
||||
549479C82AC9E10B00E0F78B /* ggml-metal.metal */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.metal; name = "ggml-metal.metal"; path = "../../ggml-metal.metal"; sourceTree = "<group>"; };
|
||||
549479CA2AC9E16000E0F78B /* Metal.framework */ = {isa = PBXFileReference; lastKnownFileType = wrapper.framework; name = Metal.framework; path = System/Library/Frameworks/Metal.framework; sourceTree = SDKROOT; };
|
||||
79E1D9CC2B4CD16E005F8E46 /* InputButton.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = InputButton.swift; sourceTree = "<group>"; };
|
||||
7FA3D2B22B2EA2F600543F92 /* DownloadButton.swift */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.swift; path = DownloadButton.swift; sourceTree = "<group>"; };
|
||||
8A08D20A2AC73B1500FE6CD4 /* bridging-header.h */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.h; path = "bridging-header.h"; sourceTree = "<group>"; };
|
||||
8A1C83732AC328BD0096AF73 /* llama.swiftui.app */ = {isa = PBXFileReference; explicitFileType = wrapper.application; includeInIndex = 0; path = llama.swiftui.app; sourceTree = BUILT_PRODUCTS_DIR; };
|
||||
8A1C83762AC328BD0096AF73 /* llama_swiftuiApp.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = llama_swiftuiApp.swift; sourceTree = "<group>"; };
|
||||
8A1C83782AC328BD0096AF73 /* ContentView.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = ContentView.swift; sourceTree = "<group>"; };
|
||||
8A1C837A2AC328BE0096AF73 /* Assets.xcassets */ = {isa = PBXFileReference; lastKnownFileType = folder.assetcatalog; path = Assets.xcassets; sourceTree = "<group>"; };
|
||||
8A1C837D2AC328BE0096AF73 /* Preview Assets.xcassets */ = {isa = PBXFileReference; lastKnownFileType = folder.assetcatalog; path = "Preview Assets.xcassets"; sourceTree = "<group>"; };
|
||||
8A39BE092AC7601000BFEB40 /* Accelerate.framework */ = {isa = PBXFileReference; lastKnownFileType = wrapper.framework; name = Accelerate.framework; path = System/Library/Frameworks/Accelerate.framework; sourceTree = SDKROOT; };
|
||||
8A3F84232AC4C891005E2EE8 /* models */ = {isa = PBXFileReference; lastKnownFileType = folder; name = models; path = llama.swiftui/Resources/models; sourceTree = "<group>"; };
|
||||
8A907F322AC7134E006146EA /* LibLlama.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = LibLlama.swift; sourceTree = "<group>"; };
|
||||
8A9F7C4C2AC332EE008AE1EA /* LlamaState.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = LlamaState.swift; sourceTree = "<group>"; };
|
||||
DF2D2FE72B4A59BE00FCB72D /* llama.cpp */ = {isa = PBXFileReference; lastKnownFileType = wrapper; name = llama.cpp; path = ../..; sourceTree = "<group>"; };
|
||||
F1FE20E12B465EC900B45541 /* LoadCustomButton.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = LoadCustomButton.swift; sourceTree = "<group>"; };
|
||||
/* End PBXFileReference section */
|
||||
|
||||
/* Begin PBXFrameworksBuildPhase section */
|
||||
@@ -59,6 +42,7 @@
|
||||
isa = PBXFrameworksBuildPhase;
|
||||
buildActionMask = 2147483647;
|
||||
files = (
|
||||
DF810E132B4A5BA200301144 /* llama in Frameworks */,
|
||||
549479CB2AC9E16000E0F78B /* Metal.framework in Frameworks */,
|
||||
8A39BE0A2AC7601100BFEB40 /* Accelerate.framework in Frameworks */,
|
||||
);
|
||||
@@ -67,30 +51,10 @@
|
||||
/* End PBXFrameworksBuildPhase section */
|
||||
|
||||
/* Begin PBXGroup section */
|
||||
8A08D1F62AC7383900FE6CD4 /* llama.cpp */ = {
|
||||
isa = PBXGroup;
|
||||
children = (
|
||||
5423760A2B0D9C4B008E6A1C /* ggml-backend.c */,
|
||||
542376092B0D9C40008E6A1C /* ggml-backend.h */,
|
||||
542376062B0D9BEA008E6A1C /* ggml-quants.h */,
|
||||
542376072B0D9BFB008E6A1C /* ggml-quants.c */,
|
||||
549479C82AC9E10B00E0F78B /* ggml-metal.metal */,
|
||||
549479C62AC9E0F200E0F78B /* ggml-metal.h */,
|
||||
549479C52AC9E0F200E0F78B /* ggml-metal.m */,
|
||||
542EA09B2AC8723900A8AEE9 /* ggml.c */,
|
||||
542EA09C2AC8723900A8AEE9 /* ggml.h */,
|
||||
542EA09F2AC8725700A8AEE9 /* ggml-alloc.c */,
|
||||
542EA09E2AC8725700A8AEE9 /* ggml-alloc.h */,
|
||||
542EA0A12AC8729100A8AEE9 /* llama.cpp */,
|
||||
542EA0A22AC8729100A8AEE9 /* llama.h */,
|
||||
);
|
||||
name = llama.cpp;
|
||||
sourceTree = "<group>";
|
||||
};
|
||||
8A1C836A2AC328BD0096AF73 = {
|
||||
isa = PBXGroup;
|
||||
children = (
|
||||
8A08D1F62AC7383900FE6CD4 /* llama.cpp */,
|
||||
DF2D2FE72B4A59BE00FCB72D /* llama.cpp */,
|
||||
8A907F312AC7134E006146EA /* llama.cpp.swift */,
|
||||
8A3F84232AC4C891005E2EE8 /* models */,
|
||||
8A1C83752AC328BD0096AF73 /* llama.swiftui */,
|
||||
@@ -115,19 +79,10 @@
|
||||
8A9F7C4A2AC332BF008AE1EA /* UI */,
|
||||
8A1C83762AC328BD0096AF73 /* llama_swiftuiApp.swift */,
|
||||
8A1C837A2AC328BE0096AF73 /* Assets.xcassets */,
|
||||
8A1C837C2AC328BE0096AF73 /* Preview Content */,
|
||||
);
|
||||
path = llama.swiftui;
|
||||
sourceTree = "<group>";
|
||||
};
|
||||
8A1C837C2AC328BE0096AF73 /* Preview Content */ = {
|
||||
isa = PBXGroup;
|
||||
children = (
|
||||
8A1C837D2AC328BE0096AF73 /* Preview Assets.xcassets */,
|
||||
);
|
||||
path = "Preview Content";
|
||||
sourceTree = "<group>";
|
||||
};
|
||||
8A39BE082AC7601000BFEB40 /* Frameworks */ = {
|
||||
isa = PBXGroup;
|
||||
children = (
|
||||
@@ -155,7 +110,6 @@
|
||||
8A907F312AC7134E006146EA /* llama.cpp.swift */ = {
|
||||
isa = PBXGroup;
|
||||
children = (
|
||||
8A08D20A2AC73B1500FE6CD4 /* bridging-header.h */,
|
||||
8A907F322AC7134E006146EA /* LibLlama.swift */,
|
||||
);
|
||||
path = llama.cpp.swift;
|
||||
@@ -166,6 +120,8 @@
|
||||
children = (
|
||||
7FA3D2B22B2EA2F600543F92 /* DownloadButton.swift */,
|
||||
8A1C83782AC328BD0096AF73 /* ContentView.swift */,
|
||||
F1FE20E12B465EC900B45541 /* LoadCustomButton.swift */,
|
||||
79E1D9CC2B4CD16E005F8E46 /* InputButton.swift */,
|
||||
);
|
||||
path = UI;
|
||||
sourceTree = "<group>";
|
||||
@@ -195,6 +151,7 @@
|
||||
);
|
||||
name = llama.swiftui;
|
||||
packageProductDependencies = (
|
||||
DF810E122B4A5BA200301144 /* llama */,
|
||||
);
|
||||
productName = llama.swiftui;
|
||||
productReference = 8A1C83732AC328BD0096AF73 /* llama.swiftui.app */;
|
||||
@@ -241,9 +198,7 @@
|
||||
isa = PBXResourcesBuildPhase;
|
||||
buildActionMask = 2147483647;
|
||||
files = (
|
||||
542378792ACE3F3500834A7B /* ggml-metal.metal in Resources */,
|
||||
8A3F84242AC4C891005E2EE8 /* models in Resources */,
|
||||
8A1C837E2AC328BE0096AF73 /* Preview Assets.xcassets in Resources */,
|
||||
8A1C837B2AC328BE0096AF73 /* Assets.xcassets in Resources */,
|
||||
);
|
||||
runOnlyForDeploymentPostprocessing = 0;
|
||||
@@ -255,17 +210,13 @@
|
||||
isa = PBXSourcesBuildPhase;
|
||||
buildActionMask = 2147483647;
|
||||
files = (
|
||||
542376082B0D9BFB008E6A1C /* ggml-quants.c in Sources */,
|
||||
549479CD2AC9E42A00E0F78B /* ggml-metal.m in Sources */,
|
||||
542EA09D2AC8723900A8AEE9 /* ggml.c in Sources */,
|
||||
F1FE20E22B465ECA00B45541 /* LoadCustomButton.swift in Sources */,
|
||||
8A907F332AC7138A006146EA /* LibLlama.swift in Sources */,
|
||||
542EA0A32AC8729100A8AEE9 /* llama.cpp in Sources */,
|
||||
8A9F7C4D2AC332EE008AE1EA /* LlamaState.swift in Sources */,
|
||||
8A1C83792AC328BD0096AF73 /* ContentView.swift in Sources */,
|
||||
8A1C83772AC328BD0096AF73 /* llama_swiftuiApp.swift in Sources */,
|
||||
7FA3D2B32B2EA2F600543F92 /* DownloadButton.swift in Sources */,
|
||||
542EA0A02AC8725700A8AEE9 /* ggml-alloc.c in Sources */,
|
||||
5423760B2B0D9C4B008E6A1C /* ggml-backend.c in Sources */,
|
||||
79E1D9CD2B4CD16E005F8E46 /* InputButton.swift in Sources */,
|
||||
);
|
||||
runOnlyForDeploymentPostprocessing = 0;
|
||||
};
|
||||
@@ -395,12 +346,10 @@
|
||||
isa = XCBuildConfiguration;
|
||||
buildSettings = {
|
||||
ASSETCATALOG_COMPILER_APPICON_NAME = AppIcon;
|
||||
ASSETCATALOG_COMPILER_GLOBAL_ACCENT_COLOR_NAME = AccentColor;
|
||||
CLANG_ENABLE_MODULES = YES;
|
||||
CODE_SIGN_STYLE = Automatic;
|
||||
CURRENT_PROJECT_VERSION = 1;
|
||||
DEVELOPMENT_ASSET_PATHS = "\"llama.swiftui/Preview Content\"";
|
||||
DEVELOPMENT_TEAM = STLSG3FG8Q;
|
||||
DEVELOPMENT_TEAM = K5UQJPP73A;
|
||||
ENABLE_PREVIEWS = YES;
|
||||
GENERATE_INFOPLIST_FILE = YES;
|
||||
INFOPLIST_KEY_UIApplicationSceneManifest_Generation = YES;
|
||||
@@ -416,11 +365,12 @@
|
||||
MARKETING_VERSION = 1.0;
|
||||
PRODUCT_BUNDLE_IDENTIFIER = "com.bachittle.llama-swift";
|
||||
PRODUCT_NAME = "$(TARGET_NAME)";
|
||||
SUPPORTED_PLATFORMS = "iphoneos iphonesimulator xros xrsimulator";
|
||||
SUPPORTS_XR_DESIGNED_FOR_IPHONE_IPAD = NO;
|
||||
SWIFT_EMIT_LOC_STRINGS = YES;
|
||||
SWIFT_OBJC_BRIDGING_HEADER = "llama.cpp.swift/bridging-header.h";
|
||||
SWIFT_OPTIMIZATION_LEVEL = "-Onone";
|
||||
SWIFT_VERSION = 5.0;
|
||||
TARGETED_DEVICE_FAMILY = "1,2";
|
||||
TARGETED_DEVICE_FAMILY = "1,2,7";
|
||||
};
|
||||
name = Debug;
|
||||
};
|
||||
@@ -428,12 +378,10 @@
|
||||
isa = XCBuildConfiguration;
|
||||
buildSettings = {
|
||||
ASSETCATALOG_COMPILER_APPICON_NAME = AppIcon;
|
||||
ASSETCATALOG_COMPILER_GLOBAL_ACCENT_COLOR_NAME = AccentColor;
|
||||
CLANG_ENABLE_MODULES = YES;
|
||||
CODE_SIGN_STYLE = Automatic;
|
||||
CURRENT_PROJECT_VERSION = 1;
|
||||
DEVELOPMENT_ASSET_PATHS = "\"llama.swiftui/Preview Content\"";
|
||||
DEVELOPMENT_TEAM = STLSG3FG8Q;
|
||||
DEVELOPMENT_TEAM = K5UQJPP73A;
|
||||
ENABLE_PREVIEWS = YES;
|
||||
GENERATE_INFOPLIST_FILE = YES;
|
||||
INFOPLIST_KEY_UIApplicationSceneManifest_Generation = YES;
|
||||
@@ -449,10 +397,11 @@
|
||||
MARKETING_VERSION = 1.0;
|
||||
PRODUCT_BUNDLE_IDENTIFIER = "com.bachittle.llama-swift";
|
||||
PRODUCT_NAME = "$(TARGET_NAME)";
|
||||
SUPPORTED_PLATFORMS = "iphoneos iphonesimulator xros xrsimulator";
|
||||
SUPPORTS_XR_DESIGNED_FOR_IPHONE_IPAD = NO;
|
||||
SWIFT_EMIT_LOC_STRINGS = YES;
|
||||
SWIFT_OBJC_BRIDGING_HEADER = "llama.cpp.swift/bridging-header.h";
|
||||
SWIFT_VERSION = 5.0;
|
||||
TARGETED_DEVICE_FAMILY = "1,2";
|
||||
TARGETED_DEVICE_FAMILY = "1,2,7";
|
||||
};
|
||||
name = Release;
|
||||
};
|
||||
@@ -478,6 +427,13 @@
|
||||
defaultConfigurationName = Release;
|
||||
};
|
||||
/* End XCConfigurationList section */
|
||||
|
||||
/* Begin XCSwiftPackageProductDependency section */
|
||||
DF810E122B4A5BA200301144 /* llama */ = {
|
||||
isa = XCSwiftPackageProductDependency;
|
||||
productName = llama;
|
||||
};
|
||||
/* End XCSwiftPackageProductDependency section */
|
||||
};
|
||||
rootObject = 8A1C836B2AC328BD0096AF73 /* Project object */;
|
||||
}
|
||||
|
||||
@@ -1,11 +0,0 @@
|
||||
{
|
||||
"colors" : [
|
||||
{
|
||||
"idiom" : "universal"
|
||||
}
|
||||
],
|
||||
"info" : {
|
||||
"author" : "xcode",
|
||||
"version" : 1
|
||||
}
|
||||
}
|
||||
@@ -1,9 +1,20 @@
|
||||
import Foundation
|
||||
|
||||
struct Model: Identifiable {
|
||||
var id = UUID()
|
||||
var name: String
|
||||
var url: String
|
||||
var filename: String
|
||||
var status: String?
|
||||
}
|
||||
|
||||
@MainActor
|
||||
class LlamaState: ObservableObject {
|
||||
@Published var messageLog = ""
|
||||
@Published var cacheCleared = false
|
||||
@Published var downloadedModels: [Model] = []
|
||||
@Published var undownloadedModels: [Model] = []
|
||||
let NS_PER_S = 1_000_000_000.0
|
||||
|
||||
private var llamaContext: LlamaContext?
|
||||
private var defaultModelUrl: URL? {
|
||||
@@ -12,37 +23,130 @@ class LlamaState: ObservableObject {
|
||||
}
|
||||
|
||||
init() {
|
||||
loadModelsFromDisk()
|
||||
loadDefaultModels()
|
||||
}
|
||||
|
||||
private func loadModelsFromDisk() {
|
||||
do {
|
||||
let documentsURL = getDocumentsDirectory()
|
||||
let modelURLs = try FileManager.default.contentsOfDirectory(at: documentsURL, includingPropertiesForKeys: nil, options: [.skipsHiddenFiles, .skipsSubdirectoryDescendants])
|
||||
for modelURL in modelURLs {
|
||||
let modelName = modelURL.deletingPathExtension().lastPathComponent
|
||||
downloadedModels.append(Model(name: modelName, url: "", filename: modelURL.lastPathComponent, status: "downloaded"))
|
||||
}
|
||||
} catch {
|
||||
print("Error loading models from disk: \(error)")
|
||||
}
|
||||
}
|
||||
|
||||
private func loadDefaultModels() {
|
||||
do {
|
||||
try loadModel(modelUrl: defaultModelUrl)
|
||||
} catch {
|
||||
messageLog += "Error!\n"
|
||||
}
|
||||
}
|
||||
|
||||
func loadModel(modelUrl: URL?) throws {
|
||||
messageLog += "Loading model...\n"
|
||||
if let modelUrl {
|
||||
llamaContext = try LlamaContext.create_context(path: modelUrl.path())
|
||||
messageLog += "Loaded model \(modelUrl.lastPathComponent)\n"
|
||||
} else {
|
||||
messageLog += "Could not locate model\n"
|
||||
for model in defaultModels {
|
||||
let fileURL = getDocumentsDirectory().appendingPathComponent(model.filename)
|
||||
if FileManager.default.fileExists(atPath: fileURL.path) {
|
||||
|
||||
} else {
|
||||
var undownloadedModel = model
|
||||
undownloadedModel.status = "download"
|
||||
undownloadedModels.append(undownloadedModel)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func getDocumentsDirectory() -> URL {
|
||||
let paths = FileManager.default.urls(for: .documentDirectory, in: .userDomainMask)
|
||||
return paths[0]
|
||||
}
|
||||
private let defaultModels: [Model] = [
|
||||
Model(name: "TinyLlama-1.1B (Q4_0, 0.6 GiB)",url: "https://huggingface.co/TheBloke/TinyLlama-1.1B-1T-OpenOrca-GGUF/resolve/main/tinyllama-1.1b-1t-openorca.Q4_0.gguf?download=true",filename: "tinyllama-1.1b-1t-openorca.Q4_0.gguf", status: "download"),
|
||||
Model(
|
||||
name: "TinyLlama-1.1B Chat (Q8_0, 1.1 GiB)",
|
||||
url: "https://huggingface.co/TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF/resolve/main/tinyllama-1.1b-chat-v1.0.Q8_0.gguf?download=true",
|
||||
filename: "tinyllama-1.1b-chat-v1.0.Q8_0.gguf", status: "download"
|
||||
),
|
||||
|
||||
Model(
|
||||
name: "TinyLlama-1.1B (F16, 2.2 GiB)",
|
||||
url: "https://huggingface.co/ggml-org/models/resolve/main/tinyllama-1.1b/ggml-model-f16.gguf?download=true",
|
||||
filename: "tinyllama-1.1b-f16.gguf", status: "download"
|
||||
),
|
||||
|
||||
Model(
|
||||
name: "Phi-2.7B (Q4_0, 1.6 GiB)",
|
||||
url: "https://huggingface.co/ggml-org/models/resolve/main/phi-2/ggml-model-q4_0.gguf?download=true",
|
||||
filename: "phi-2-q4_0.gguf", status: "download"
|
||||
),
|
||||
|
||||
Model(
|
||||
name: "Phi-2.7B (Q8_0, 2.8 GiB)",
|
||||
url: "https://huggingface.co/ggml-org/models/resolve/main/phi-2/ggml-model-q8_0.gguf?download=true",
|
||||
filename: "phi-2-q8_0.gguf", status: "download"
|
||||
),
|
||||
|
||||
Model(
|
||||
name: "Mistral-7B-v0.1 (Q4_0, 3.8 GiB)",
|
||||
url: "https://huggingface.co/TheBloke/Mistral-7B-v0.1-GGUF/resolve/main/mistral-7b-v0.1.Q4_0.gguf?download=true",
|
||||
filename: "mistral-7b-v0.1.Q4_0.gguf", status: "download"
|
||||
),
|
||||
Model(
|
||||
name: "OpenHermes-2.5-Mistral-7B (Q3_K_M, 3.52 GiB)",
|
||||
url: "https://huggingface.co/TheBloke/OpenHermes-2.5-Mistral-7B-GGUF/resolve/main/openhermes-2.5-mistral-7b.Q3_K_M.gguf?download=true",
|
||||
filename: "openhermes-2.5-mistral-7b.Q3_K_M.gguf", status: "download"
|
||||
)
|
||||
]
|
||||
func loadModel(modelUrl: URL?) throws {
|
||||
if let modelUrl {
|
||||
messageLog += "Loading model...\n"
|
||||
llamaContext = try LlamaContext.create_context(path: modelUrl.path())
|
||||
messageLog += "Loaded model \(modelUrl.lastPathComponent)\n"
|
||||
|
||||
// Assuming that the model is successfully loaded, update the downloaded models
|
||||
updateDownloadedModels(modelName: modelUrl.lastPathComponent, status: "downloaded")
|
||||
} else {
|
||||
messageLog += "Load a model from the list below\n"
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
private func updateDownloadedModels(modelName: String, status: String) {
|
||||
undownloadedModels.removeAll { $0.name == modelName }
|
||||
}
|
||||
|
||||
|
||||
func complete(text: String) async {
|
||||
guard let llamaContext else {
|
||||
return
|
||||
}
|
||||
|
||||
let t_start = DispatchTime.now().uptimeNanoseconds
|
||||
await llamaContext.completion_init(text: text)
|
||||
let t_heat_end = DispatchTime.now().uptimeNanoseconds
|
||||
let t_heat = Double(t_heat_end - t_start) / NS_PER_S
|
||||
|
||||
messageLog += "\(text)"
|
||||
|
||||
while await llamaContext.n_cur <= llamaContext.n_len {
|
||||
while await llamaContext.n_cur < llamaContext.n_len {
|
||||
let result = await llamaContext.completion_loop()
|
||||
messageLog += "\(result)"
|
||||
}
|
||||
|
||||
let t_end = DispatchTime.now().uptimeNanoseconds
|
||||
let t_generation = Double(t_end - t_heat_end) / NS_PER_S
|
||||
let tokens_per_second = Double(await llamaContext.n_len) / t_generation
|
||||
|
||||
await llamaContext.clear()
|
||||
messageLog += "\n\ndone\n"
|
||||
messageLog += """
|
||||
\n
|
||||
Done
|
||||
Heat up took \(t_heat)s
|
||||
Generated \(tokens_per_second) t/s\n
|
||||
"""
|
||||
}
|
||||
|
||||
func bench() async {
|
||||
@@ -56,10 +160,10 @@ class LlamaState: ObservableObject {
|
||||
messageLog += await llamaContext.model_info() + "\n"
|
||||
|
||||
let t_start = DispatchTime.now().uptimeNanoseconds
|
||||
await llamaContext.bench(pp: 8, tg: 4, pl: 1) // heat up
|
||||
let _ = await llamaContext.bench(pp: 8, tg: 4, pl: 1) // heat up
|
||||
let t_end = DispatchTime.now().uptimeNanoseconds
|
||||
|
||||
let t_heat = Double(t_end - t_start) / 1_000_000_000.0
|
||||
let t_heat = Double(t_end - t_start) / NS_PER_S
|
||||
messageLog += "Heat up time: \(t_heat) seconds, please wait...\n"
|
||||
|
||||
// if more than 5 seconds, then we're probably running on a slow device
|
||||
|
||||