Compare commits

..

9 Commits

Author SHA1 Message Date
Georgi Gerganov
f86b9d152c lookup : minor 2023-12-17 17:25:28 +02:00
Georgi Gerganov
5b27975479 lookup : fix token positions in the draft batch 2023-12-17 16:47:26 +02:00
Leon Ericsson
1b26d7151a Added colors to distinguish drafted tokens (--color). Updated README 2023-12-17 13:04:46 +01:00
Leon Ericsson
45b8032b9c Merge branch 'prompt-lookup' of github.com:LeonEricsson/llama.cpp into prompt-lookup 2023-12-16 12:13:50 +01:00
Leon Ericsson
21431197a1 kv_cache management 2023-12-16 12:12:33 +01:00
LeonEricsson
340484161f Merge branch 'ggerganov:master' into prompt-lookup 2023-12-15 14:15:04 +01:00
Leon Ericsson
1665ad8bf1 BUG: generates gibberish/repeating tokens after a while 2023-12-15 14:14:17 +01:00
Leon Ericsson
0ec5fdb5ce main loop finished, starting to debug 2023-12-10 20:20:01 +01:00
Leon Ericsson
cae8f50b1a initial commit, going through initializations 2023-12-04 21:52:17 +01:00
47 changed files with 1766 additions and 2964 deletions

View File

@@ -23,6 +23,3 @@ insert_final_newline = unset
[examples/server/public/*]
indent_size = 2
[examples/llama.swiftui/llama.swiftui.xcodeproj/*]
indent_style = tab

View File

@@ -52,36 +52,6 @@ jobs:
username: ${{ github.repository_owner }}
password: ${{ secrets.GITHUB_TOKEN }}
# https://github.com/jlumbroso/free-disk-space/tree/54081f138730dfa15788a46383842cd2f914a1be#example
- name: Free Disk Space (Ubuntu)
uses: jlumbroso/free-disk-space@main
with:
# this might remove tools that are actually needed,
# if set to "true" but frees about 6 GB
tool-cache: false
# all of these default to true, but feel free to set to
# "false" if necessary for your workflow
android: true
dotnet: true
haskell: true
large-packages: true
docker-images: true
swap-storage: true
- name: Determine tag name
id: tag
shell: bash
run: |
BUILD_NUMBER="$(git rev-list --count HEAD)"
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
if [[ "${{ env.BRANCH_NAME }}" == "master" ]]; then
echo "name=b${BUILD_NUMBER}" >> $GITHUB_OUTPUT
else
SAFE_NAME=$(echo "${{ env.BRANCH_NAME }}" | tr '/' '-')
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
fi
- name: Build and push Docker image (versioned)
if: github.event_name == 'push'
uses: docker/build-push-action@v4
@@ -89,7 +59,7 @@ jobs:
context: .
push: true
platforms: ${{ matrix.config.platforms }}
tags: "ghcr.io/${{ github.repository_owner }}/llama.cpp:${{ matrix.config.tag }}-${{ env.COMMIT_SHA }}"
tags: "ghcr.io/ggerganov/llama.cpp:${{ matrix.config.tag }}-${{ env.COMMIT_SHA }}"
file: ${{ matrix.config.dockerfile }}
- name: Build and push Docker image (tagged)
@@ -98,5 +68,5 @@ jobs:
context: .
push: ${{ github.event_name == 'push' }}
platforms: ${{ matrix.config.platforms }}
tags: "ghcr.io/${{ github.repository_owner }}/llama.cpp:${{ matrix.config.tag }},ghcr.io/${{ github.repository_owner }}/llama.cpp:${{ matrix.config.tag }}-${{ steps.tag.outputs.name }}"
tags: "ghcr.io/ggerganov/llama.cpp:${{ matrix.config.tag }}"
file: ${{ matrix.config.dockerfile }}

View File

@@ -91,7 +91,6 @@ set(LLAMA_CUDA_KQUANTS_ITER "2" CACHE STRING "llama: iters./thread per block for
set(LLAMA_CUDA_PEER_MAX_BATCH_SIZE "128" CACHE STRING
"llama: max. batch size for using peer access")
option(LLAMA_HIPBLAS "llama: use hipBLAS" OFF)
option(LLAMA_HIP_UMA "llama: use HIP unified memory architecture" OFF)
option(LLAMA_CLBLAST "llama: use CLBlast" OFF)
option(LLAMA_METAL "llama: use Metal" ${LLAMA_METAL_DEFAULT})
option(LLAMA_METAL_NDEBUG "llama: disable Metal debugging" OFF)
@@ -292,12 +291,7 @@ if (LLAMA_CUBLAS)
add_compile_definitions(GGML_CUDA_PEER_MAX_BATCH_SIZE=${LLAMA_CUDA_PEER_MAX_BATCH_SIZE})
if (LLAMA_STATIC)
if (WIN32)
# As of 12.3.1 CUDA Tookit for Windows does not offer a static cublas library
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas CUDA::cublasLt)
else ()
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas_static CUDA::cublasLt_static)
endif()
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas_static CUDA::cublasLt_static)
else()
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} CUDA::cudart CUDA::cublas CUDA::cublasLt)
endif()
@@ -378,9 +372,6 @@ if (LLAMA_HIPBLAS)
if (${hipblas_FOUND} AND ${hip_FOUND})
message(STATUS "HIP and hipBLAS found")
add_compile_definitions(GGML_USE_HIPBLAS GGML_USE_CUBLAS)
if (LLAMA_HIP_UMA)
add_compile_definitions(GGML_HIP_UMA)
endif()
add_library(ggml-rocm OBJECT ggml-cuda.cu ggml-cuda.h)
if (BUILD_SHARED_LIBS)
set_target_properties(ggml-rocm PROPERTIES POSITION_INDEPENDENT_CODE ON)

View File

@@ -65,7 +65,7 @@ test: $(TEST_TARGETS)
./$$test_target; \
fi; \
if [ $$? -ne 0 ]; then \
printf 'Test %s FAILED!\n\n' $$test_target; \
printf 'Test $$test_target FAILED!\n\n' $$test_target; \
failures=$$(( failures + 1 )); \
else \
printf 'Test %s passed.\n\n' $$test_target; \
@@ -282,17 +282,8 @@ endif
ifneq ($(filter aarch64%,$(UNAME_M)),)
# Apple M1, M2, etc.
# Raspberry Pi 3, 4, Zero 2 (64-bit)
# Nvidia Jetson
MK_CFLAGS += -mcpu=native
MK_CXXFLAGS += -mcpu=native
JETSON_RELEASE_INFO = $(shell jetson_release)
ifdef JETSON_RELEASE_INFO
ifneq ($(filter TX2%,$(JETSON_RELEASE_INFO)),)
JETSON_EOL_MODULE_DETECT = 1
CC = aarch64-unknown-linux-gnu-gcc
cxx = aarch64-unknown-linux-gnu-g++
endif
endif
endif
ifneq ($(filter armv6%,$(UNAME_M)),)
@@ -366,13 +357,10 @@ ifdef LLAMA_BLIS
endif # LLAMA_BLIS
ifdef LLAMA_CUBLAS
MK_CPPFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include
MK_LDFLAGS += -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib
MK_CPPFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include
MK_LDFLAGS += -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/x86_64-linux/lib
OBJS += ggml-cuda.o
MK_NVCCFLAGS = -use_fast_math
ifndef JETSON_EOL_MODULE_DETECT
MK_NVCCFLAGS += --forward-unknown-to-host-compiler
endif # JETSON_EOL_MODULE_DETECT
MK_NVCCFLAGS = --forward-unknown-to-host-compiler -use_fast_math
ifdef LLAMA_DEBUG
MK_NVCCFLAGS += -lineinfo
@@ -429,11 +417,7 @@ ifdef LLAMA_CUDA_CCBIN
MK_NVCCFLAGS += -ccbin $(LLAMA_CUDA_CCBIN)
endif
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
ifdef JETSON_EOL_MODULE_DETECT
$(NVCC) -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/usr/local/cuda/targets/aarch64-linux/include -std=c++11 -O3 $(NVCCFLAGS) -Xcompiler "$(CUDA_CXXFLAGS)" -c $< -o $@
else
$(NVCC) $(BASE_CXXFLAGS) $(NVCCFLAGS) -Wno-pedantic -Xcompiler "$(CUDA_CXXFLAGS)" -c $< -o $@
endif # JETSON_EOL_MODULE_DETECT
endif # LLAMA_CUBLAS
ifdef LLAMA_CLBLAST
@@ -455,22 +439,13 @@ ggml-opencl.o: ggml-opencl.cpp ggml-opencl.h
endif # LLAMA_CLBLAST
ifdef LLAMA_HIPBLAS
ifeq ($(wildcard /opt/rocm),)
ROCM_PATH ?= /usr
GPU_TARGETS ?= $(shell $(shell which amdgpu-arch))
else
ROCM_PATH ?= /opt/rocm
GPU_TARGETS ?= $(shell $(ROCM_PATH)/llvm/bin/amdgpu-arch)
endif
HIPCC ?= $(ROCM_PATH)/bin/hipcc
ROCM_PATH ?= /opt/rocm
HIPCC ?= $(ROCM_PATH)/bin/hipcc
GPU_TARGETS ?= $(shell $(ROCM_PATH)/llvm/bin/amdgpu-arch)
LLAMA_CUDA_DMMV_X ?= 32
LLAMA_CUDA_MMV_Y ?= 1
LLAMA_CUDA_KQUANTS_ITER ?= 2
MK_CPPFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUBLAS
ifdef LLAMA_HIP_UMA
MK_CPPFLAGS += -DGGML_HIP_UMA
endif # LLAMA_HIP_UMA
MK_LDFLAGS += -L$(ROCM_PATH)/lib -Wl,-rpath=$(ROCM_PATH)/lib
MK_LDFLAGS += -lhipblas -lamdhip64 -lrocblas
HIPFLAGS += $(addprefix --offload-arch=,$(GPU_TARGETS))
@@ -625,7 +600,7 @@ save-load-state: examples/save-load-state/save-load-state.cpp ggml.o llama.o $(C
server: examples/server/server.cpp examples/server/httplib.h examples/server/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp examples/llava/clip.cpp examples/llava/clip.h common/stb_image.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
$(CXX) $(CXXFLAGS) -Iexamples/server $(filter-out %.h,$(filter-out %.hpp,$^)) -o $@ $(LDFLAGS) $(LWINSOCK2) -Wno-cast-qual
gguf: examples/gguf/gguf.cpp ggml.o $(OBJS)
gguf: examples/gguf/gguf.cpp ggml.o llama.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS)

View File

@@ -10,11 +10,11 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
### Hot topics
- Collecting Apple Silicon performance stats:
- M-series: https://github.com/ggerganov/llama.cpp/discussions/4167
- A-series: https://github.com/ggerganov/llama.cpp/discussions/4508
- Added Mixtral support: https://github.com/ggerganov/llama.cpp/pull/4406
- **llama.h API change for handling KV cache offloading and data type: https://github.com/ggerganov/llama.cpp/pull/4309**
- Using `llama.cpp` with AWS instances: https://github.com/ggerganov/llama.cpp/discussions/4225
- Looking for contributions to improve and maintain the `server` example: https://github.com/ggerganov/llama.cpp/issues/4216
- Collecting Apple Silicon performance stats: https://github.com/ggerganov/llama.cpp/discussions/4167
----
@@ -123,7 +123,6 @@ as the main playground for developing new features for the [ggml](https://github
- Clojure: [phronmophobic/llama.clj](https://github.com/phronmophobic/llama.clj)
- React Native: [mybigday/llama.rn](https://github.com/mybigday/llama.rn)
- Java: [kherud/java-llama.cpp](https://github.com/kherud/java-llama.cpp)
- Zig: [deins/llama.cpp.zig](https://github.com/Deins/llama.cpp.zig)
**UI:**
@@ -396,9 +395,6 @@ Building the program with BLAS support may lead to some performance improvements
- #### cuBLAS
This provides BLAS acceleration using the CUDA cores of your Nvidia GPU. Make sure to have the CUDA toolkit installed. You can download it from your Linux distro's package manager (e.g. `apt install nvidia-cuda-toolkit`) or from here: [CUDA Toolkit](https://developer.nvidia.com/cuda-downloads).
For Jetson user, if you have Jetson Orin, you can try this: [Offical Support](https://www.jetson-ai-lab.com/tutorial_text-generation.html). If you are using an old model(nano/TX2), need some additional operations before compiling.
- Using `make`:
```bash
make LLAMA_CUBLAS=1
@@ -436,21 +432,14 @@ Building the program with BLAS support may lead to some performance improvements
```bash
make LLAMA_HIPBLAS=1
```
- Using `CMake` for Linux (assuming a gfx1030-compatible AMD GPU):
- Using `CMake` for Linux:
```bash
CC=/opt/rocm/llvm/bin/clang CXX=/opt/rocm/llvm/bin/clang++ \
cmake -H. -Bbuild -DLLAMA_HIPBLAS=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
&& cmake --build build -- -j 16
mkdir build
cd build
CC=/opt/rocm/llvm/bin/clang CXX=/opt/rocm/llvm/bin/clang++ cmake .. -DLLAMA_HIPBLAS=ON
cmake --build .
```
On Linux it is also possible to use unified memory architecture (UMA) to share main memory between the CPU and integrated GPU by setting `-DLLAMA_HIP_UMA=ON"`.
However, this hurts performance for non-integrated GPUs (but enables working with integrated GPUs).
- Using `make` (example for target gfx1030, build with 16 CPU threads):
```bash
make -j16 LLAMA_HIPBLAS=1 LLAMA_HIP_UMA=1 AMDGPU_TARGETS=gxf1030
```
- Using `CMake` for Windows (using x64 Native Tools Command Prompt for VS, and assuming a gfx1100-compatible AMD GPU):
- Using `CMake` for Windows (using x64 Native Tools Command Prompt for VS):
```bash
set PATH=%HIP_PATH%\bin;%PATH%
mkdir build
@@ -459,11 +448,10 @@ Building the program with BLAS support may lead to some performance improvements
cmake --build .
```
Make sure that `AMDGPU_TARGETS` is set to the GPU arch you want to compile for. The above example uses `gfx1100` that corresponds to Radeon RX 7900XTX/XT/GRE. You can find a list of targets [here](https://llvm.org/docs/AMDGPUUsage.html#processors)
Find your gpu version string by matching the most significant version information from `rocminfo | grep gfx | head -1 | awk '{print $2}'` with the list of processors, e.g. `gfx1035` maps to `gfx1030`.
The environment variable [`HIP_VISIBLE_DEVICES`](https://rocm.docs.amd.com/en/latest/understand/gpu_isolation.html#hip-visible-devices) can be used to specify which GPU(s) will be used.
If your GPU is not officially supported you can use the environment variable [`HSA_OVERRIDE_GFX_VERSION`] set to a similar GPU, for example 10.3.0 on RDNA2 (e.g. gfx1030, gfx1031, or gfx1035) or 11.0.0 on RDNA3.
If your GPU is not officially supported you can use the environment variable [`HSA_OVERRIDE_GFX_VERSION`] set to a similar GPU, for example 10.3.0 on RDNA2 or 11.0.0 on RDNA3.
The following compilation options are also available to tweak performance (yes, they refer to CUDA, not HIP, because it uses the same code as the cuBLAS version above):
| Option | Legal values | Default | Description |
@@ -994,8 +982,6 @@ docker run --gpus all -v /path/to/models:/models local/llama.cpp:light-cuda -m /
- There are no strict rules for the code style, but try to follow the patterns in the code (indentation, spaces, etc.). Vertical alignment makes things more readable and easier to batch edit
- Clean-up any trailing whitespaces, use 4 spaces for indentation, brackets on the same line, `void * ptr`, `int & a`
- See [good first issues](https://github.com/ggerganov/llama.cpp/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22) for tasks suitable for first contributions
- Tensors store data in row-major order. We refer to dimension 0 as columns, 1 as rows, 2 as matrices
- Matrix multiplication is unconventional: [`z = ggml_mul_mat(ctx, x, y)`](https://github.com/ggerganov/llama.cpp/blob/880e352277fc017df4d5794f0c21c44e1eae2b84/ggml.h#L1058-L1064) means `zT = x @ yT`
### Docs

View File

@@ -920,7 +920,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" -m FNAME, --model FNAME\n");
printf(" model path (default: %s)\n", params.model.c_str());
printf(" -md FNAME, --model-draft FNAME\n");
printf(" draft model for speculative decoding\n");
printf(" draft model for speculative decoding (default: %s)\n", params.model.c_str());
printf(" -ld LOGDIR, --logdir LOGDIR\n");
printf(" path under which to save YAML logs (no logging if unset)\n");
printf(" --override-kv KEY=TYPE:VALUE\n");

View File

@@ -51,7 +51,7 @@ struct gpt_params {
int32_t n_ctx = 512; // context size
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_draft = 8; // number of tokens to draft during speculative decoding
int32_t n_draft = 16; // number of tokens to draft during speculative decoding
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
int32_t n_parallel = 1; // number of parallel sequences to decode
int32_t n_sequences = 1; // number of sequences to decode

View File

@@ -149,12 +149,11 @@ static void sampler_queue(
}
}
static llama_token llama_sampling_sample_impl(
llama_token llama_sampling_sample(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
struct llama_context * ctx_cfg,
const int idx,
bool is_resampling) { // Add a parameter to indicate if we are resampling
const int idx) {
const llama_sampling_params & params = ctx_sampling->params;
const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
@@ -174,17 +173,8 @@ static llama_token llama_sampling_sample_impl(
llama_token id = 0;
// Get a pointer to the logits
float * logits = llama_get_logits_ith(ctx_main, idx);
// Declare original_logits at the beginning of the function scope
std::vector<float> original_logits;
if (!is_resampling) {
// Only make a copy of the original logits if we are not in the resampling phase, not sure if I actually have to do this.
original_logits = std::vector<float>(logits, logits + llama_n_vocab(llama_get_model(ctx_main)));
}
// apply params.logit_bias map
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
logits[it->first] += it->second;
@@ -203,14 +193,12 @@ static llama_token llama_sampling_sample_impl(
}
// apply penalties
const auto& penalty_tokens = params.use_penalty_prompt_tokens ? params.penalty_prompt_tokens : prev;
const int penalty_tokens_used_size = std::min((int)penalty_tokens.size(), penalty_last_n);
if (penalty_tokens_used_size) {
if (!prev.empty()) {
const float nl_logit = logits[llama_token_nl(llama_get_model(ctx_main))];
llama_sample_repetition_penalties(ctx_main, &cur_p,
penalty_tokens.data() + penalty_tokens.size() - penalty_tokens_used_size,
penalty_tokens_used_size, penalty_repeat, penalty_freq, penalty_present);
prev.data() + prev.size() - penalty_last_n,
penalty_last_n, penalty_repeat, penalty_freq, penalty_present);
if (!penalize_nl) {
for (size_t idx = 0; idx < cur_p.size; idx++) {
@@ -222,8 +210,7 @@ static llama_token llama_sampling_sample_impl(
}
}
// If we are in the resampling phase, apply grammar checks before sampling logic
if (is_resampling && ctx_sampling->grammar != NULL) {
if (ctx_sampling->grammar != NULL) {
llama_sample_grammar(ctx_main, &cur_p, ctx_sampling->grammar);
}
@@ -265,40 +252,9 @@ static llama_token llama_sampling_sample_impl(
}
}
if (ctx_sampling->grammar != NULL && !is_resampling) {
// Create an array with a single token data element for the sampled id
llama_token_data single_token_data = {id, logits[id], 0.0f};
llama_token_data_array single_token_data_array = { &single_token_data, 1, false };
// Apply grammar constraints to the single token
llama_sample_grammar(ctx_main, &single_token_data_array, ctx_sampling->grammar);
// Check if the token is valid according to the grammar by seeing if its logit has been set to -INFINITY
bool is_valid = single_token_data_array.data[0].logit != -INFINITY;
// If the token is not valid according to the grammar, perform resampling
if (!is_valid) {
LOG("Resampling because token %d: '%s' does not meet grammar rules\n", id, llama_token_to_piece(ctx_main, id).c_str());
// Restore logits from the copy
std::copy(original_logits.begin(), original_logits.end(), logits);
return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, true); // Pass true for is_resampling
}
}
return id;
}
llama_token llama_sampling_sample(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
struct llama_context * ctx_cfg,
const int idx) {
// Call the implementation function with is_resampling set to false by default
return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, false);
}
void llama_sampling_accept(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,

View File

@@ -36,9 +36,6 @@ typedef struct llama_sampling_params {
float cfg_scale = 1.f; // how strong is guidance
std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
std::vector<llama_token> penalty_prompt_tokens;
bool use_penalty_prompt_tokens = false;
} llama_sampling_params;
// general sampler context

View File

@@ -182,8 +182,6 @@ class Model:
return QwenModel
if model_architecture == "MixtralForCausalLM":
return MixtralModel
if model_architecture == "PhiForCausalLM":
return Phi2Model
return Model
def _is_model_safetensors(self) -> bool:
@@ -223,8 +221,6 @@ class Model:
return gguf.MODEL_ARCH.QWEN
if arch == "MixtralForCausalLM":
return gguf.MODEL_ARCH.LLAMA
if arch == "PhiForCausalLM":
return gguf.MODEL_ARCH.PHI2
raise NotImplementedError(f'Architecture "{arch}" not supported!')
@@ -984,24 +980,6 @@ class QwenModel(Model):
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
self.gguf_writer.add_tensor(new_name, data)
class Phi2Model(Model):
def set_gguf_parameters(self):
block_count = self.hparams["n_layer"]
self.gguf_writer.add_name("Phi2")
self.gguf_writer.add_context_length(self.hparams["n_positions"])
self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_head_count(self.hparams["n_head"])
self.gguf_writer.add_head_count_kv(self.hparams["n_head"])
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
self.gguf_writer.add_rope_dimension_count(self.hparams["rotary_dim"])
self.gguf_writer.add_file_type(self.ftype)
self.gguf_writer.add_add_bos_token(False)
###### CONVERSION LOGIC ######

View File

@@ -3,6 +3,7 @@ from __future__ import annotations
import json
import os
import re
import struct
import sys
from typing import Any, BinaryIO, Sequence
@@ -10,15 +11,43 @@ from typing import Any, BinaryIO, Sequence
import numpy as np
import torch
from pathlib import Path
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
import gguf
NUMPY_TYPE_TO_FTYPE: dict[str, int] = {"float32": 0, "float16": 1}
HF_SUBLAYER_TO_GGML = {
"self_attn.q_proj": "attn_q",
"self_attn.k_proj": "attn_k",
"self_attn.v_proj": "attn_v",
"self_attn.o_proj": "attn_output",
"mlp.gate_proj": "ffn_gate",
"mlp.down_proj": "ffn_down",
"mlp.up_proj": "ffn_up",
"input_layernorm": "attn_norm",
"post_attention_layernorm": "ffn_norm",
}
def translate_tensor_name(t: str) -> str:
match = re.match(r".*layers\.(\d+)\.(\w+\.\w+)\.lora_(A|B)\.weight", t)
if match:
nn = match.group(1)
sub_layer = match.group(2)
lora_type = match.group(3)
sub_layer_renamed = HF_SUBLAYER_TO_GGML.get(sub_layer)
if sub_layer_renamed is None:
print(f"Error: unrecognized sub-layer {sub_layer} in tensor {t}")
sys.exit(1)
output_string = (
f"blk.{nn}.{HF_SUBLAYER_TO_GGML[sub_layer]}.weight.lora{lora_type}"
)
return output_string
else:
print(f"Error: unrecognized tensor {t}")
sys.exit(1)
def write_file_header(fout: BinaryIO, params: dict[str, Any]) -> None:
fout.write(b"ggla"[::-1]) # magic (ggml lora)
fout.write(struct.pack("i", 1)) # file version
@@ -32,7 +61,9 @@ def write_file_header(fout: BinaryIO, params: dict[str, Any]) -> None:
fout.write(struct.pack("i", int(params["lora_alpha"])))
def write_tensor_header(fout: BinaryIO, name: str, shape: Sequence[int], data_type: np.dtype[Any]) -> None:
def write_tensor_header(
self, name: str, shape: Sequence[int], data_type: np.dtype[Any]
) -> None:
sname = name.encode("utf-8")
fout.write(
struct.pack(
@@ -47,12 +78,11 @@ def write_tensor_header(fout: BinaryIO, name: str, shape: Sequence[int], data_ty
fout.seek((fout.tell() + 31) & -32)
if len(sys.argv) < 2:
print(f"Usage: python {sys.argv[0]} <path> [arch]")
if len(sys.argv) != 2:
print(f"Usage: python {sys.argv[0]} <path>")
print(
"Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'"
)
print(f"Arch must be one of {list(gguf.MODEL_ARCH_NAMES.values())} (default: llama)")
sys.exit(1)
input_json = os.path.join(sys.argv[1], "adapter_config.json")
@@ -60,14 +90,6 @@ input_model = os.path.join(sys.argv[1], "adapter_model.bin")
output_path = os.path.join(sys.argv[1], "ggml-adapter-model.bin")
model = torch.load(input_model, map_location="cpu")
arch_name = sys.argv[2] if len(sys.argv) == 3 else "llama"
if arch_name not in gguf.MODEL_ARCH_NAMES.values():
print(f"Error: unsupported architecture {arch_name}")
sys.exit(1)
arch = list(gguf.MODEL_ARCH_NAMES.keys())[list(gguf.MODEL_ARCH_NAMES.values()).index(arch_name)]
name_map = gguf.TensorNameMap(arch, 200) # 200 layers ought to be enough for anyone
with open(input_json, "r") as f:
params = json.load(f)
@@ -95,7 +117,6 @@ with open(output_path, "wb") as fout:
write_file_header(fout, params)
for k, v in model.items():
orig_k = k
if k.endswith(".default.weight"):
k = k.replace(".default.weight", ".weight")
if k in ["llama_proj.weight", "llama_proj.bias"]:
@@ -108,32 +129,7 @@ with open(output_path, "wb") as fout:
v = v.float()
t = v.detach().numpy()
prefix = "base_model.model."
if k.startswith(prefix):
k = k[len(prefix) :]
lora_suffixes = (".lora_A.weight", ".lora_B.weight")
if k.endswith(lora_suffixes):
suffix = k[-len(lora_suffixes[0]):]
k = k[: -len(lora_suffixes[0])]
else:
print(f"Error: unrecognized tensor name {orig_k}")
sys.exit(1)
tname = name_map.get_name(k)
if tname is None:
print(f"Error: could not map tensor name {orig_k}")
print(" Note: the arch parameter must be specified if the model is not llama")
sys.exit(1)
if suffix == ".lora_A.weight":
tname += ".weight.loraA"
elif suffix == ".lora_B.weight":
tname += ".weight.loraB"
else:
assert False
tname = translate_tensor_name(k)
print(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB")
write_tensor_header(fout, tname, t.shape, t.dtype)
t.tofile(fout)

View File

@@ -575,7 +575,10 @@ static struct ggml_tensor * forward(
// KQ_scaled = KQ / sqrt(n_embd/n_head)
// KQ_scaled shape [n_past + N, N, n_head, 1]
struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, 1.0f/sqrtf(float(n_embd)/n_head));
struct ggml_tensor * KQ_scaled =
ggml_scale(ctx0,
KQ,
ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head)));
// KQ_masked = mask_past(KQ_scaled)
// KQ_masked shape [n_past + N, N, n_head, 1]
@@ -841,7 +844,10 @@ static struct ggml_tensor * forward_batch(
// KQ_scaled = KQ / sqrt(n_embd/n_head)
// KQ_scaled shape [n_past + N, N, n_head, n_batch]
struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, 1.0f/sqrtf(float(n_embd)/n_head));
struct ggml_tensor * KQ_scaled =
ggml_scale(ctx0,
KQ,
ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head)));
assert_shape_4d(KQ_scaled, n_past + N, N, n_head, n_batch);
// KQ_masked = mask_past(KQ_scaled)
@@ -1125,7 +1131,10 @@ static struct ggml_tensor * forward_lora(
// KQ_scaled = KQ / sqrt(n_embd/n_head)
// KQ_scaled shape [n_past + N, N, n_head, 1]
struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, 1.0f/sqrtf(float(n_embd)/n_head));
struct ggml_tensor * KQ_scaled =
ggml_scale(ctx0,
KQ,
ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head)));
// KQ_masked = mask_past(KQ_scaled)
// KQ_masked shape [n_past + N, N, n_head, 1]

View File

@@ -309,7 +309,7 @@ static struct ggml_cgraph * build_graph_lora(
) {
struct ggml_tensor * ab = ggml_mul_mat(ctx, lora_a, lora_b);
if (scaling != 1.0f) {
ab = ggml_scale(ctx, ab, scaling);
ab = ggml_scale(ctx, ab, ggml_new_f32(ctx, scaling));
}
struct ggml_tensor * res = ggml_add_inplace(ctx, tensor, ab);

View File

@@ -269,7 +269,7 @@ static void load_model_hparams_gguf(struct gguf_context * ctx, struct my_llama_h
float rope_freq_scale = 1.0f;
GGUF_GET_KEY(ctx, hparams->f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
GGUF_GET_KEY(ctx, hparams->rope_freq_base, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE));
GGUF_GET_KEY(ctx, rope_freq_scale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR));
GGUF_GET_KEY(ctx, rope_freq_scale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR));
if (rope_freq_scale != 1.0f) {
hparams->rope_freq_scale = 1.0f / rope_freq_scale;
}
@@ -612,7 +612,6 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
const int n_rot = hparams.n_embd_head();
const int n_embd_head = hparams.n_embd_head();
const int n_embd_gqa = hparams.n_embd_gqa();
const float rms_norm_eps = hparams.f_norm_rms_eps;
const float rope_freq_base = hparams.rope_freq_base;
const float rope_freq_scale = hparams.rope_freq_scale;
@@ -681,7 +680,10 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
checkpoints.push_back(t01);
}
const float kv_scale = 1.0f/sqrtf(float(n_embd)/n_head);
struct ggml_tensor * kv_scale = NULL;
if (!enable_flash_attn) {
kv_scale = ggml_new_f32(ctx, 1.0f/sqrtf(float(n_embd)/n_head));
}
for (int il = 0; il < n_layer; ++il) {
struct my_llama_layer & layer = model->layers[il];
@@ -779,32 +781,32 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
// make sure some tensors are not reallocated by inserting new temporary nodes depending on them
int n_leafs_before = gb->n_leafs;
int n_nodes_before = gb->n_nodes;
struct ggml_tensor * one = ggml_new_f32(ctx, 1.0f);
// output tensors
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t35, 1.0f));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36, 1.0f));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t35, one));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36, one));
// input gradient
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36->grad, 1.0f));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36->grad, one));
GGML_ASSERT(t36->grad->data == NULL && t36->grad->view_src == NULL);
ggml_allocr_alloc(alloc, t36->grad);
// KQ_pos
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, KQ_pos, 1.0f));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, KQ_pos, one));
// make sure base model tensors data cannot be used in viewable operations
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->tok_embeddings, 1.0f));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->norm, 1.0f));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->output, 1.0f));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->tok_embeddings, one));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->norm, one));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->output, one));
for (int il = 0; il < n_layer; ++il) {
struct my_llama_layer & layer = model->layers[il];
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.attention_norm, 1.0f));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.ffn_norm, 1.0f));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wq, 1.0f));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wk, 1.0f));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wv, 1.0f));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wo, 1.0f));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.w1, 1.0f));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.w2, 1.0f));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.w3, 1.0f));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.attention_norm, one));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.ffn_norm, one));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wq, one));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wk, one));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wv, one));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wo, one));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.w1, one));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.w2, one));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.w3, one));
}
// allocating checkpoints in one block to reduce memory fragmentation
@@ -1618,6 +1620,8 @@ int main(int argc, char ** argv) {
opt->params.adam.gclip = params.common.adam_gclip;
opt->params.adam.eps_f = params.common.adam_eps_f;
ggml_allocr * alloc = NULL;
printf("%s: init model\n", __func__);
bool existed = load_checkpoint_lora_file(params.common.fn_checkpoint_in, &model, &lora, train);
@@ -1721,9 +1725,10 @@ int main(int argc, char ** argv) {
// allocate input tensors
mem_input_data.resize(max_input_size);
ggml_allocr_t alloc_inps = ggml_allocr_new(mem_input_data.data(), mem_input_data.size(), tensor_alignment);
ggml_allocr_alloc(alloc_inps, tokens_input);
ggml_allocr_alloc(alloc_inps, target_probs);
alloc = ggml_allocr_new(mem_input_data.data(), mem_input_data.size(), tensor_alignment);
ggml_allocr_alloc(alloc, tokens_input);
ggml_allocr_alloc(alloc, target_probs);
ggml_allocr_free(alloc);
// context for compute tensors without their data
const size_t estimated_compute_size_wo_data = (
@@ -1750,7 +1755,7 @@ int main(int argc, char ** argv) {
// find best evaluation order
for (unsigned order = 0; order < (unsigned) GGML_CGRAPH_EVAL_ORDER_COUNT; ++order) {
ctx_compute = ggml_init(ctx_compute_params);
ggml_allocr_t alloc = ggml_allocr_new_measure(tensor_alignment);
alloc = ggml_allocr_new_measure(tensor_alignment);
gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
gf->order = (enum ggml_cgraph_eval_order) order;
gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
@@ -1783,7 +1788,7 @@ int main(int argc, char ** argv) {
// allocate compute tensors
mem_compute_data.resize(max_compute_size);
ctx_compute = ggml_init(ctx_compute_params);
ggml_allocr_t alloc = ggml_allocr_new(mem_compute_data.data(), mem_compute_data.size(), tensor_alignment);
alloc = ggml_allocr_new(mem_compute_data.data(), mem_compute_data.size(), tensor_alignment);
gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
gf->order = best_order;
gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
@@ -1799,8 +1804,6 @@ int main(int argc, char ** argv) {
params.common.use_checkpointing
);
ggml_allocr_free(alloc);
ggml_allocr_free(alloc_inps);
// tokenize data
std::vector<llama_token> train_tokens;

View File

@@ -1,5 +1,5 @@
set(TARGET gguf)
add_executable(${TARGET} gguf.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE ggml ${CMAKE_THREAD_LIBS_INIT})
target_link_libraries(${TARGET} PRIVATE llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

View File

@@ -1,4 +1,5 @@
#include "ggml.h"
#include "llama.h"
#include <cstdio>
#include <cinttypes>

View File

@@ -1,2 +1 @@
xcuserdata
xcshareddata

View File

@@ -6,34 +6,16 @@ enum LlamaError: Error {
case couldNotInitializeContext
}
func llama_batch_clear(_ batch: inout llama_batch) {
batch.n_tokens = 0
}
func llama_batch_add(_ batch: inout llama_batch, _ id: llama_token, _ pos: llama_pos, _ seq_ids: [llama_seq_id], _ logits: Bool) {
batch.token [Int(batch.n_tokens)] = id
batch.pos [Int(batch.n_tokens)] = pos
batch.n_seq_id[Int(batch.n_tokens)] = Int32(seq_ids.count)
for i in 0..<seq_ids.count {
batch.seq_id[Int(batch.n_tokens)]![Int(i)] = seq_ids[i]
}
batch.logits [Int(batch.n_tokens)] = logits ? 1 : 0
batch.n_tokens += 1
}
actor LlamaContext {
private var model: OpaquePointer
private var context: OpaquePointer
private var batch: llama_batch
private var tokens_list: [llama_token]
/// This variable is used to store temporarily invalid cchars
private var temporary_invalid_cchars: [CChar]
var n_len: Int32 = 64
var n_len: Int32 = 512
var n_cur: Int32 = 0
var n_decode: Int32 = 0
init(model: OpaquePointer, context: OpaquePointer) {
@@ -45,34 +27,25 @@ actor LlamaContext {
}
deinit {
llama_batch_free(batch)
llama_free(context)
llama_free_model(model)
llama_backend_free()
}
static func create_context(path: String) throws -> LlamaContext {
static func createContext(path: String) throws -> LlamaContext {
llama_backend_init(false)
var model_params = llama_model_default_params()
let model_params = llama_model_default_params()
#if targetEnvironment(simulator)
model_params.n_gpu_layers = 0
print("Running on simulator, force use n_gpu_layers = 0")
#endif
let model = llama_load_model_from_file(path, model_params)
guard let model else {
print("Could not load model at \(path)")
throw LlamaError.couldNotInitializeContext
}
let n_threads = max(1, min(8, ProcessInfo.processInfo.processorCount - 2))
print("Using \(n_threads) threads")
var ctx_params = llama_context_default_params()
ctx_params.seed = 1234
ctx_params.seed = 1234
ctx_params.n_ctx = 2048
ctx_params.n_threads = UInt32(n_threads)
ctx_params.n_threads_batch = UInt32(n_threads)
ctx_params.n_threads = 8
ctx_params.n_threads_batch = 8
let context = llama_new_context_with_model(model, ctx_params)
guard let context else {
@@ -83,26 +56,6 @@ actor LlamaContext {
return LlamaContext(model: model, context: context)
}
func model_info() -> String {
let result = UnsafeMutablePointer<Int8>.allocate(capacity: 256)
result.initialize(repeating: Int8(0), count: 256)
defer {
result.deallocate()
}
// TODO: this is probably very stupid way to get the string from C
let nChars = llama_model_desc(model, result, 256)
let bufferPointer = UnsafeBufferPointer(start: result, count: Int(nChars))
var SwiftString = ""
for char in bufferPointer {
SwiftString.append(Character(UnicodeScalar(UInt8(char))))
}
return SwiftString
}
func get_n_tokens() -> Int32 {
return batch.n_tokens;
}
@@ -126,11 +79,16 @@ actor LlamaContext {
print(String(cString: token_to_piece(token: id) + [0]))
}
llama_batch_clear(&batch)
// batch = llama_batch_init(512, 0) // done in init()
batch.n_tokens = Int32(tokens_list.count)
for i1 in 0..<tokens_list.count {
for i1 in 0..<batch.n_tokens {
let i = Int(i1)
llama_batch_add(&batch, tokens_list[i], Int32(i), [0], false)
batch.token[i] = tokens_list[i]
batch.pos[i] = i1
batch.n_seq_id[Int(i)] = 1
batch.seq_id[Int(i)]![0] = 0
batch.logits[i] = 0
}
batch.logits[Int(batch.n_tokens) - 1] = 1 // true
@@ -183,11 +141,18 @@ actor LlamaContext {
print(new_token_str)
// tokens_list.append(new_token_id)
llama_batch_clear(&batch)
llama_batch_add(&batch, new_token_id, n_cur, [0], true)
batch.n_tokens = 0
batch.token[Int(batch.n_tokens)] = new_token_id
batch.pos[Int(batch.n_tokens)] = n_cur
batch.n_seq_id[Int(batch.n_tokens)] = 1
batch.seq_id[Int(batch.n_tokens)]![0] = 0
batch.logits[Int(batch.n_tokens)] = 1 // true
batch.n_tokens += 1
n_decode += 1
n_cur += 1
n_cur += 1
if llama_decode(context, batch) != 0 {
print("failed to evaluate llama!")
@@ -196,111 +161,14 @@ actor LlamaContext {
return new_token_str
}
func bench(pp: Int, tg: Int, pl: Int, nr: Int = 1) -> String {
var pp_avg: Double = 0
var tg_avg: Double = 0
var pp_std: Double = 0
var tg_std: Double = 0
for _ in 0..<nr {
// bench prompt processing
llama_batch_clear(&batch)
let n_tokens = pp
for i in 0..<n_tokens {
llama_batch_add(&batch, 0, Int32(i), [0], false)
}
batch.logits[Int(batch.n_tokens) - 1] = 1 // true
llama_kv_cache_clear(context)
let t_pp_start = ggml_time_us()
if llama_decode(context, batch) != 0 {
print("llama_decode() failed during prompt")
}
let t_pp_end = ggml_time_us()
// bench text generation
llama_kv_cache_clear(context)
let t_tg_start = ggml_time_us()
for i in 0..<tg {
llama_batch_clear(&batch)
for j in 0..<pl {
llama_batch_add(&batch, 0, Int32(i), [Int32(j)], true)
}
if llama_decode(context, batch) != 0 {
print("llama_decode() failed during text generation")
}
}
let t_tg_end = ggml_time_us()
llama_kv_cache_clear(context)
let t_pp = Double(t_pp_end - t_pp_start) / 1000000.0
let t_tg = Double(t_tg_end - t_tg_start) / 1000000.0
let speed_pp = Double(pp) / t_pp
let speed_tg = Double(pl*tg) / t_tg
pp_avg += speed_pp
tg_avg += speed_tg
pp_std += speed_pp * speed_pp
tg_std += speed_tg * speed_tg
print("pp \(speed_pp) t/s, tg \(speed_tg) t/s")
}
pp_avg /= Double(nr)
tg_avg /= Double(nr)
if nr > 1 {
pp_std = sqrt(pp_std / Double(nr - 1) - pp_avg * pp_avg * Double(nr) / Double(nr - 1))
tg_std = sqrt(tg_std / Double(nr - 1) - tg_avg * tg_avg * Double(nr) / Double(nr - 1))
} else {
pp_std = 0
tg_std = 0
}
let model_desc = model_info();
let model_size = String(format: "%.2f GiB", Double(llama_model_size(model)) / 1024.0 / 1024.0 / 1024.0);
let model_n_params = String(format: "%.2f B", Double(llama_model_n_params(model)) / 1e9);
let backend = "Metal";
let pp_avg_str = String(format: "%.2f", pp_avg);
let tg_avg_str = String(format: "%.2f", tg_avg);
let pp_std_str = String(format: "%.2f", pp_std);
let tg_std_str = String(format: "%.2f", tg_std);
var result = ""
result += String("| model | size | params | backend | test | t/s |\n")
result += String("| --- | --- | --- | --- | --- | --- |\n")
result += String("| \(model_desc) | \(model_size) | \(model_n_params) | \(backend) | pp \(pp) | \(pp_avg_str) ± \(pp_std_str) |\n")
result += String("| \(model_desc) | \(model_size) | \(model_n_params) | \(backend) | tg \(tg) | \(tg_avg_str) ± \(tg_std_str) |\n")
return result;
}
func clear() {
tokens_list.removeAll()
temporary_invalid_cchars.removeAll()
llama_kv_cache_clear(context)
}
private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
let utf8Count = text.utf8.count
let n_tokens = utf8Count + (add_bos ? 1 : 0) + 1
let n_tokens = utf8Count + (add_bos ? 1 : 0)
let tokens = UnsafeMutablePointer<llama_token>.allocate(capacity: n_tokens)
let tokenCount = llama_tokenize(model, text, Int32(utf8Count), tokens, Int32(n_tokens), add_bos, false)

View File

@@ -1,483 +1,481 @@
// !$*UTF8*$!
{
archiveVersion = 1;
classes = {
};
objectVersion = 56;
objects = {
archiveVersion = 1;
classes = {
};
objectVersion = 56;
objects = {
/* Begin PBXBuildFile section */
542376082B0D9BFB008E6A1C /* ggml-quants.c in Sources */ = {isa = PBXBuildFile; fileRef = 542376072B0D9BFB008E6A1C /* ggml-quants.c */; settings = {COMPILER_FLAGS = "-O3"; }; };
5423760B2B0D9C4B008E6A1C /* ggml-backend.c in Sources */ = {isa = PBXBuildFile; fileRef = 5423760A2B0D9C4B008E6A1C /* ggml-backend.c */; settings = {COMPILER_FLAGS = "-O3"; }; };
542378792ACE3F3500834A7B /* ggml-metal.metal in Resources */ = {isa = PBXBuildFile; fileRef = 549479C82AC9E10B00E0F78B /* ggml-metal.metal */; };
542EA09D2AC8723900A8AEE9 /* ggml.c in Sources */ = {isa = PBXBuildFile; fileRef = 542EA09B2AC8723900A8AEE9 /* ggml.c */; settings = {COMPILER_FLAGS = "-DGGML_USE_ACCELERATE -DGGML_USE_METAL -DGGML_USE_K_QUANTS -O3"; }; };
542EA0A02AC8725700A8AEE9 /* ggml-alloc.c in Sources */ = {isa = PBXBuildFile; fileRef = 542EA09F2AC8725700A8AEE9 /* ggml-alloc.c */; settings = {COMPILER_FLAGS = "-O3"; }; };
542EA0A32AC8729100A8AEE9 /* llama.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 542EA0A12AC8729100A8AEE9 /* llama.cpp */; settings = {COMPILER_FLAGS = "-DGGML_USE_K_QUANTS -DGGML_USE_METAL -O3"; }; };
549479CB2AC9E16000E0F78B /* Metal.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = 549479CA2AC9E16000E0F78B /* Metal.framework */; };
549479CD2AC9E42A00E0F78B /* ggml-metal.m in Sources */ = {isa = PBXBuildFile; fileRef = 549479C52AC9E0F200E0F78B /* ggml-metal.m */; settings = {COMPILER_FLAGS = "-fno-objc-arc -DGGML_SWIFT -DGGML_USE_METAL -O3"; }; };
7FA3D2B32B2EA2F600543F92 /* DownloadButton.swift in Sources */ = {isa = PBXBuildFile; fileRef = 7FA3D2B22B2EA2F600543F92 /* DownloadButton.swift */; };
8A1C83772AC328BD0096AF73 /* llama_swiftuiApp.swift in Sources */ = {isa = PBXBuildFile; fileRef = 8A1C83762AC328BD0096AF73 /* llama_swiftuiApp.swift */; };
8A1C83792AC328BD0096AF73 /* ContentView.swift in Sources */ = {isa = PBXBuildFile; fileRef = 8A1C83782AC328BD0096AF73 /* ContentView.swift */; };
8A1C837B2AC328BE0096AF73 /* Assets.xcassets in Resources */ = {isa = PBXBuildFile; fileRef = 8A1C837A2AC328BE0096AF73 /* Assets.xcassets */; };
8A1C837E2AC328BE0096AF73 /* Preview Assets.xcassets in Resources */ = {isa = PBXBuildFile; fileRef = 8A1C837D2AC328BE0096AF73 /* Preview Assets.xcassets */; };
8A39BE0A2AC7601100BFEB40 /* Accelerate.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = 8A39BE092AC7601000BFEB40 /* Accelerate.framework */; };
8A3F84242AC4C891005E2EE8 /* models in Resources */ = {isa = PBXBuildFile; fileRef = 8A3F84232AC4C891005E2EE8 /* models */; };
8A907F332AC7138A006146EA /* LibLlama.swift in Sources */ = {isa = PBXBuildFile; fileRef = 8A907F322AC7134E006146EA /* LibLlama.swift */; };
8A9F7C4D2AC332EE008AE1EA /* LlamaState.swift in Sources */ = {isa = PBXBuildFile; fileRef = 8A9F7C4C2AC332EE008AE1EA /* LlamaState.swift */; };
542376082B0D9BFB008E6A1C /* ggml-quants.c in Sources */ = {isa = PBXBuildFile; fileRef = 542376072B0D9BFB008E6A1C /* ggml-quants.c */; };
5423760B2B0D9C4B008E6A1C /* ggml-backend.c in Sources */ = {isa = PBXBuildFile; fileRef = 5423760A2B0D9C4B008E6A1C /* ggml-backend.c */; };
542378792ACE3F3500834A7B /* ggml-metal.metal in Resources */ = {isa = PBXBuildFile; fileRef = 549479C82AC9E10B00E0F78B /* ggml-metal.metal */; };
542EA09D2AC8723900A8AEE9 /* ggml.c in Sources */ = {isa = PBXBuildFile; fileRef = 542EA09B2AC8723900A8AEE9 /* ggml.c */; settings = {COMPILER_FLAGS = "-DGGML_USE_ACCELERATE -DGGML_USE_METAL -DGGML_USE_K_QUANTS -O3"; }; };
542EA0A02AC8725700A8AEE9 /* ggml-alloc.c in Sources */ = {isa = PBXBuildFile; fileRef = 542EA09F2AC8725700A8AEE9 /* ggml-alloc.c */; };
542EA0A32AC8729100A8AEE9 /* llama.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 542EA0A12AC8729100A8AEE9 /* llama.cpp */; settings = {COMPILER_FLAGS = "-DGGML_USE_K_QUANTS -DGGML_USE_METAL -O3"; }; };
549479CB2AC9E16000E0F78B /* Metal.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = 549479CA2AC9E16000E0F78B /* Metal.framework */; };
549479CD2AC9E42A00E0F78B /* ggml-metal.m in Sources */ = {isa = PBXBuildFile; fileRef = 549479C52AC9E0F200E0F78B /* ggml-metal.m */; settings = {COMPILER_FLAGS = "-fno-objc-arc -DGGML_SWIFT -DGGML_USE_METAL -O3"; }; };
8A1C83772AC328BD0096AF73 /* llama_swiftuiApp.swift in Sources */ = {isa = PBXBuildFile; fileRef = 8A1C83762AC328BD0096AF73 /* llama_swiftuiApp.swift */; };
8A1C83792AC328BD0096AF73 /* ContentView.swift in Sources */ = {isa = PBXBuildFile; fileRef = 8A1C83782AC328BD0096AF73 /* ContentView.swift */; };
8A1C837B2AC328BE0096AF73 /* Assets.xcassets in Resources */ = {isa = PBXBuildFile; fileRef = 8A1C837A2AC328BE0096AF73 /* Assets.xcassets */; };
8A1C837E2AC328BE0096AF73 /* Preview Assets.xcassets in Resources */ = {isa = PBXBuildFile; fileRef = 8A1C837D2AC328BE0096AF73 /* Preview Assets.xcassets */; };
8A39BE0A2AC7601100BFEB40 /* Accelerate.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = 8A39BE092AC7601000BFEB40 /* Accelerate.framework */; };
8A3F84242AC4C891005E2EE8 /* models in Resources */ = {isa = PBXBuildFile; fileRef = 8A3F84232AC4C891005E2EE8 /* models */; };
8A907F332AC7138A006146EA /* LibLlama.swift in Sources */ = {isa = PBXBuildFile; fileRef = 8A907F322AC7134E006146EA /* LibLlama.swift */; };
8A9F7C4D2AC332EE008AE1EA /* LlamaState.swift in Sources */ = {isa = PBXBuildFile; fileRef = 8A9F7C4C2AC332EE008AE1EA /* LlamaState.swift */; };
/* End PBXBuildFile section */
/* Begin PBXFileReference section */
542376062B0D9BEA008E6A1C /* ggml-quants.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-quants.h"; path = "../../ggml-quants.h"; sourceTree = "<group>"; };
542376072B0D9BFB008E6A1C /* ggml-quants.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; name = "ggml-quants.c"; path = "../../ggml-quants.c"; sourceTree = "<group>"; };
542376092B0D9C40008E6A1C /* ggml-backend.h */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.h; name = "ggml-backend.h"; path = "../../ggml-backend.h"; sourceTree = "<group>"; };
5423760A2B0D9C4B008E6A1C /* ggml-backend.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; name = "ggml-backend.c"; path = "../../ggml-backend.c"; sourceTree = "<group>"; };
542EA09B2AC8723900A8AEE9 /* ggml.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; name = ggml.c; path = ../../ggml.c; sourceTree = "<group>"; };
542EA09C2AC8723900A8AEE9 /* ggml.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = ggml.h; path = ../../ggml.h; sourceTree = "<group>"; };
542EA09E2AC8725700A8AEE9 /* ggml-alloc.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-alloc.h"; path = "../../ggml-alloc.h"; sourceTree = "<group>"; };
542EA09F2AC8725700A8AEE9 /* ggml-alloc.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; name = "ggml-alloc.c"; path = "../../ggml-alloc.c"; sourceTree = "<group>"; };
542EA0A12AC8729100A8AEE9 /* llama.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = llama.cpp; path = ../../llama.cpp; sourceTree = "<group>"; };
542EA0A22AC8729100A8AEE9 /* llama.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = llama.h; path = ../../llama.h; sourceTree = "<group>"; };
549479C52AC9E0F200E0F78B /* ggml-metal.m */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.objc; name = "ggml-metal.m"; path = "../../ggml-metal.m"; sourceTree = "<group>"; };
549479C62AC9E0F200E0F78B /* ggml-metal.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-metal.h"; path = "../../ggml-metal.h"; sourceTree = "<group>"; };
549479C82AC9E10B00E0F78B /* ggml-metal.metal */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.metal; name = "ggml-metal.metal"; path = "../../ggml-metal.metal"; sourceTree = "<group>"; };
549479CA2AC9E16000E0F78B /* Metal.framework */ = {isa = PBXFileReference; lastKnownFileType = wrapper.framework; name = Metal.framework; path = System/Library/Frameworks/Metal.framework; sourceTree = SDKROOT; };
7FA3D2B22B2EA2F600543F92 /* DownloadButton.swift */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.swift; path = DownloadButton.swift; sourceTree = "<group>"; };
8A08D20A2AC73B1500FE6CD4 /* bridging-header.h */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.h; path = "bridging-header.h"; sourceTree = "<group>"; };
8A1C83732AC328BD0096AF73 /* llama.swiftui.app */ = {isa = PBXFileReference; explicitFileType = wrapper.application; includeInIndex = 0; path = llama.swiftui.app; sourceTree = BUILT_PRODUCTS_DIR; };
8A1C83762AC328BD0096AF73 /* llama_swiftuiApp.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = llama_swiftuiApp.swift; sourceTree = "<group>"; };
8A1C83782AC328BD0096AF73 /* ContentView.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = ContentView.swift; sourceTree = "<group>"; };
8A1C837A2AC328BE0096AF73 /* Assets.xcassets */ = {isa = PBXFileReference; lastKnownFileType = folder.assetcatalog; path = Assets.xcassets; sourceTree = "<group>"; };
8A1C837D2AC328BE0096AF73 /* Preview Assets.xcassets */ = {isa = PBXFileReference; lastKnownFileType = folder.assetcatalog; path = "Preview Assets.xcassets"; sourceTree = "<group>"; };
8A39BE092AC7601000BFEB40 /* Accelerate.framework */ = {isa = PBXFileReference; lastKnownFileType = wrapper.framework; name = Accelerate.framework; path = System/Library/Frameworks/Accelerate.framework; sourceTree = SDKROOT; };
8A3F84232AC4C891005E2EE8 /* models */ = {isa = PBXFileReference; lastKnownFileType = folder; name = models; path = llama.swiftui/Resources/models; sourceTree = "<group>"; };
8A907F322AC7134E006146EA /* LibLlama.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = LibLlama.swift; sourceTree = "<group>"; };
8A9F7C4C2AC332EE008AE1EA /* LlamaState.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = LlamaState.swift; sourceTree = "<group>"; };
542376062B0D9BEA008E6A1C /* ggml-quants.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-quants.h"; path = "../../ggml-quants.h"; sourceTree = "<group>"; };
542376072B0D9BFB008E6A1C /* ggml-quants.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; name = "ggml-quants.c"; path = "../../ggml-quants.c"; sourceTree = "<group>"; };
542376092B0D9C40008E6A1C /* ggml-backend.h */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.h; name = "ggml-backend.h"; path = "../../ggml-backend.h"; sourceTree = "<group>"; };
5423760A2B0D9C4B008E6A1C /* ggml-backend.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; name = "ggml-backend.c"; path = "../../ggml-backend.c"; sourceTree = "<group>"; };
542EA09B2AC8723900A8AEE9 /* ggml.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; name = ggml.c; path = ../../ggml.c; sourceTree = "<group>"; };
542EA09C2AC8723900A8AEE9 /* ggml.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = ggml.h; path = ../../ggml.h; sourceTree = "<group>"; };
542EA09E2AC8725700A8AEE9 /* ggml-alloc.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-alloc.h"; path = "../../ggml-alloc.h"; sourceTree = "<group>"; };
542EA09F2AC8725700A8AEE9 /* ggml-alloc.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; name = "ggml-alloc.c"; path = "../../ggml-alloc.c"; sourceTree = "<group>"; };
542EA0A12AC8729100A8AEE9 /* llama.cpp */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = llama.cpp; path = ../../llama.cpp; sourceTree = "<group>"; };
542EA0A22AC8729100A8AEE9 /* llama.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = llama.h; path = ../../llama.h; sourceTree = "<group>"; };
549479C52AC9E0F200E0F78B /* ggml-metal.m */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.objc; name = "ggml-metal.m"; path = "../../ggml-metal.m"; sourceTree = "<group>"; };
549479C62AC9E0F200E0F78B /* ggml-metal.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-metal.h"; path = "../../ggml-metal.h"; sourceTree = "<group>"; };
549479C82AC9E10B00E0F78B /* ggml-metal.metal */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.metal; name = "ggml-metal.metal"; path = "../../ggml-metal.metal"; sourceTree = "<group>"; };
549479CA2AC9E16000E0F78B /* Metal.framework */ = {isa = PBXFileReference; lastKnownFileType = wrapper.framework; name = Metal.framework; path = System/Library/Frameworks/Metal.framework; sourceTree = SDKROOT; };
8A08D20A2AC73B1500FE6CD4 /* bridging-header.h */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.h; path = "bridging-header.h"; sourceTree = "<group>"; };
8A1C83732AC328BD0096AF73 /* llama.swiftui.app */ = {isa = PBXFileReference; explicitFileType = wrapper.application; includeInIndex = 0; path = llama.swiftui.app; sourceTree = BUILT_PRODUCTS_DIR; };
8A1C83762AC328BD0096AF73 /* llama_swiftuiApp.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = llama_swiftuiApp.swift; sourceTree = "<group>"; };
8A1C83782AC328BD0096AF73 /* ContentView.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = ContentView.swift; sourceTree = "<group>"; };
8A1C837A2AC328BE0096AF73 /* Assets.xcassets */ = {isa = PBXFileReference; lastKnownFileType = folder.assetcatalog; path = Assets.xcassets; sourceTree = "<group>"; };
8A1C837D2AC328BE0096AF73 /* Preview Assets.xcassets */ = {isa = PBXFileReference; lastKnownFileType = folder.assetcatalog; path = "Preview Assets.xcassets"; sourceTree = "<group>"; };
8A39BE092AC7601000BFEB40 /* Accelerate.framework */ = {isa = PBXFileReference; lastKnownFileType = wrapper.framework; name = Accelerate.framework; path = System/Library/Frameworks/Accelerate.framework; sourceTree = SDKROOT; };
8A3F841F2AC4C824005E2EE8 /* llama-2-7b-chat.Q2_K.gguf */ = {isa = PBXFileReference; lastKnownFileType = file; path = "llama-2-7b-chat.Q2_K.gguf"; sourceTree = "<group>"; };
8A3F84232AC4C891005E2EE8 /* models */ = {isa = PBXFileReference; lastKnownFileType = folder; name = models; path = llama.swiftui/Resources/models; sourceTree = "<group>"; };
8A907F322AC7134E006146EA /* LibLlama.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = LibLlama.swift; sourceTree = "<group>"; };
8A9F7C4C2AC332EE008AE1EA /* LlamaState.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = LlamaState.swift; sourceTree = "<group>"; };
/* End PBXFileReference section */
/* Begin PBXFrameworksBuildPhase section */
8A1C83702AC328BD0096AF73 /* Frameworks */ = {
isa = PBXFrameworksBuildPhase;
buildActionMask = 2147483647;
files = (
549479CB2AC9E16000E0F78B /* Metal.framework in Frameworks */,
8A39BE0A2AC7601100BFEB40 /* Accelerate.framework in Frameworks */,
);
runOnlyForDeploymentPostprocessing = 0;
};
8A1C83702AC328BD0096AF73 /* Frameworks */ = {
isa = PBXFrameworksBuildPhase;
buildActionMask = 2147483647;
files = (
549479CB2AC9E16000E0F78B /* Metal.framework in Frameworks */,
8A39BE0A2AC7601100BFEB40 /* Accelerate.framework in Frameworks */,
);
runOnlyForDeploymentPostprocessing = 0;
};
/* End PBXFrameworksBuildPhase section */
/* Begin PBXGroup section */
8A08D1F62AC7383900FE6CD4 /* llama.cpp */ = {
isa = PBXGroup;
children = (
5423760A2B0D9C4B008E6A1C /* ggml-backend.c */,
542376092B0D9C40008E6A1C /* ggml-backend.h */,
542376062B0D9BEA008E6A1C /* ggml-quants.h */,
542376072B0D9BFB008E6A1C /* ggml-quants.c */,
549479C82AC9E10B00E0F78B /* ggml-metal.metal */,
549479C62AC9E0F200E0F78B /* ggml-metal.h */,
549479C52AC9E0F200E0F78B /* ggml-metal.m */,
542EA09B2AC8723900A8AEE9 /* ggml.c */,
542EA09C2AC8723900A8AEE9 /* ggml.h */,
542EA09F2AC8725700A8AEE9 /* ggml-alloc.c */,
542EA09E2AC8725700A8AEE9 /* ggml-alloc.h */,
542EA0A12AC8729100A8AEE9 /* llama.cpp */,
542EA0A22AC8729100A8AEE9 /* llama.h */,
);
name = llama.cpp;
sourceTree = "<group>";
};
8A1C836A2AC328BD0096AF73 = {
isa = PBXGroup;
children = (
8A08D1F62AC7383900FE6CD4 /* llama.cpp */,
8A907F312AC7134E006146EA /* llama.cpp.swift */,
8A3F84232AC4C891005E2EE8 /* models */,
8A1C83752AC328BD0096AF73 /* llama.swiftui */,
8A1C83742AC328BD0096AF73 /* Products */,
8A39BE082AC7601000BFEB40 /* Frameworks */,
);
sourceTree = "<group>";
};
8A1C83742AC328BD0096AF73 /* Products */ = {
isa = PBXGroup;
children = (
8A1C83732AC328BD0096AF73 /* llama.swiftui.app */,
);
name = Products;
sourceTree = "<group>";
};
8A1C83752AC328BD0096AF73 /* llama.swiftui */ = {
isa = PBXGroup;
children = (
8A3F84102AC4BD85005E2EE8 /* Resources */,
8A9F7C4B2AC332DC008AE1EA /* Models */,
8A9F7C4A2AC332BF008AE1EA /* UI */,
8A1C83762AC328BD0096AF73 /* llama_swiftuiApp.swift */,
8A1C837A2AC328BE0096AF73 /* Assets.xcassets */,
8A1C837C2AC328BE0096AF73 /* Preview Content */,
);
path = llama.swiftui;
sourceTree = "<group>";
};
8A1C837C2AC328BE0096AF73 /* Preview Content */ = {
isa = PBXGroup;
children = (
8A1C837D2AC328BE0096AF73 /* Preview Assets.xcassets */,
);
path = "Preview Content";
sourceTree = "<group>";
};
8A39BE082AC7601000BFEB40 /* Frameworks */ = {
isa = PBXGroup;
children = (
549479CA2AC9E16000E0F78B /* Metal.framework */,
8A39BE092AC7601000BFEB40 /* Accelerate.framework */,
);
name = Frameworks;
sourceTree = "<group>";
};
8A3F84102AC4BD85005E2EE8 /* Resources */ = {
isa = PBXGroup;
children = (
8A3F84112AC4BD8C005E2EE8 /* models */,
);
path = Resources;
sourceTree = "<group>";
};
8A3F84112AC4BD8C005E2EE8 /* models */ = {
isa = PBXGroup;
children = (
);
path = models;
sourceTree = "<group>";
};
8A907F312AC7134E006146EA /* llama.cpp.swift */ = {
isa = PBXGroup;
children = (
8A08D20A2AC73B1500FE6CD4 /* bridging-header.h */,
8A907F322AC7134E006146EA /* LibLlama.swift */,
);
path = llama.cpp.swift;
sourceTree = "<group>";
};
8A9F7C4A2AC332BF008AE1EA /* UI */ = {
isa = PBXGroup;
children = (
7FA3D2B22B2EA2F600543F92 /* DownloadButton.swift */,
8A1C83782AC328BD0096AF73 /* ContentView.swift */,
);
path = UI;
sourceTree = "<group>";
};
8A9F7C4B2AC332DC008AE1EA /* Models */ = {
isa = PBXGroup;
children = (
8A9F7C4C2AC332EE008AE1EA /* LlamaState.swift */,
);
path = Models;
sourceTree = "<group>";
};
8A08D1F62AC7383900FE6CD4 /* llama.cpp */ = {
isa = PBXGroup;
children = (
5423760A2B0D9C4B008E6A1C /* ggml-backend.c */,
542376092B0D9C40008E6A1C /* ggml-backend.h */,
542376062B0D9BEA008E6A1C /* ggml-quants.h */,
542376072B0D9BFB008E6A1C /* ggml-quants.c */,
549479C82AC9E10B00E0F78B /* ggml-metal.metal */,
549479C62AC9E0F200E0F78B /* ggml-metal.h */,
549479C52AC9E0F200E0F78B /* ggml-metal.m */,
542EA09B2AC8723900A8AEE9 /* ggml.c */,
542EA09C2AC8723900A8AEE9 /* ggml.h */,
542EA09F2AC8725700A8AEE9 /* ggml-alloc.c */,
542EA09E2AC8725700A8AEE9 /* ggml-alloc.h */,
542EA0A12AC8729100A8AEE9 /* llama.cpp */,
542EA0A22AC8729100A8AEE9 /* llama.h */,
);
name = llama.cpp;
sourceTree = "<group>";
};
8A1C836A2AC328BD0096AF73 = {
isa = PBXGroup;
children = (
8A08D1F62AC7383900FE6CD4 /* llama.cpp */,
8A907F312AC7134E006146EA /* llama.cpp.swift */,
8A3F84232AC4C891005E2EE8 /* models */,
8A1C83752AC328BD0096AF73 /* llama.swiftui */,
8A1C83742AC328BD0096AF73 /* Products */,
8A39BE082AC7601000BFEB40 /* Frameworks */,
);
sourceTree = "<group>";
};
8A1C83742AC328BD0096AF73 /* Products */ = {
isa = PBXGroup;
children = (
8A1C83732AC328BD0096AF73 /* llama.swiftui.app */,
);
name = Products;
sourceTree = "<group>";
};
8A1C83752AC328BD0096AF73 /* llama.swiftui */ = {
isa = PBXGroup;
children = (
8A3F84102AC4BD85005E2EE8 /* Resources */,
8A9F7C4B2AC332DC008AE1EA /* Models */,
8A9F7C4A2AC332BF008AE1EA /* UI */,
8A1C83762AC328BD0096AF73 /* llama_swiftuiApp.swift */,
8A1C837A2AC328BE0096AF73 /* Assets.xcassets */,
8A1C837C2AC328BE0096AF73 /* Preview Content */,
);
path = llama.swiftui;
sourceTree = "<group>";
};
8A1C837C2AC328BE0096AF73 /* Preview Content */ = {
isa = PBXGroup;
children = (
8A1C837D2AC328BE0096AF73 /* Preview Assets.xcassets */,
);
path = "Preview Content";
sourceTree = "<group>";
};
8A39BE082AC7601000BFEB40 /* Frameworks */ = {
isa = PBXGroup;
children = (
549479CA2AC9E16000E0F78B /* Metal.framework */,
8A39BE092AC7601000BFEB40 /* Accelerate.framework */,
);
name = Frameworks;
sourceTree = "<group>";
};
8A3F84102AC4BD85005E2EE8 /* Resources */ = {
isa = PBXGroup;
children = (
8A3F84112AC4BD8C005E2EE8 /* models */,
);
path = Resources;
sourceTree = "<group>";
};
8A3F84112AC4BD8C005E2EE8 /* models */ = {
isa = PBXGroup;
children = (
8A3F841F2AC4C824005E2EE8 /* llama-2-7b-chat.Q2_K.gguf */,
);
path = models;
sourceTree = "<group>";
};
8A907F312AC7134E006146EA /* llama.cpp.swift */ = {
isa = PBXGroup;
children = (
8A08D20A2AC73B1500FE6CD4 /* bridging-header.h */,
8A907F322AC7134E006146EA /* LibLlama.swift */,
);
path = llama.cpp.swift;
sourceTree = "<group>";
};
8A9F7C4A2AC332BF008AE1EA /* UI */ = {
isa = PBXGroup;
children = (
8A1C83782AC328BD0096AF73 /* ContentView.swift */,
);
path = UI;
sourceTree = "<group>";
};
8A9F7C4B2AC332DC008AE1EA /* Models */ = {
isa = PBXGroup;
children = (
8A9F7C4C2AC332EE008AE1EA /* LlamaState.swift */,
);
path = Models;
sourceTree = "<group>";
};
/* End PBXGroup section */
/* Begin PBXNativeTarget section */
8A1C83722AC328BD0096AF73 /* llama.swiftui */ = {
isa = PBXNativeTarget;
buildConfigurationList = 8A1C83812AC328BE0096AF73 /* Build configuration list for PBXNativeTarget "llama.swiftui" */;
buildPhases = (
8A1C836F2AC328BD0096AF73 /* Sources */,
8A1C83702AC328BD0096AF73 /* Frameworks */,
8A1C83712AC328BD0096AF73 /* Resources */,
);
buildRules = (
);
dependencies = (
);
name = llama.swiftui;
packageProductDependencies = (
);
productName = llama.swiftui;
productReference = 8A1C83732AC328BD0096AF73 /* llama.swiftui.app */;
productType = "com.apple.product-type.application";
};
8A1C83722AC328BD0096AF73 /* llama.swiftui */ = {
isa = PBXNativeTarget;
buildConfigurationList = 8A1C83812AC328BE0096AF73 /* Build configuration list for PBXNativeTarget "llama.swiftui" */;
buildPhases = (
8A1C836F2AC328BD0096AF73 /* Sources */,
8A1C83702AC328BD0096AF73 /* Frameworks */,
8A1C83712AC328BD0096AF73 /* Resources */,
);
buildRules = (
);
dependencies = (
);
name = llama.swiftui;
packageProductDependencies = (
);
productName = llama.swiftui;
productReference = 8A1C83732AC328BD0096AF73 /* llama.swiftui.app */;
productType = "com.apple.product-type.application";
};
/* End PBXNativeTarget section */
/* Begin PBXProject section */
8A1C836B2AC328BD0096AF73 /* Project object */ = {
isa = PBXProject;
attributes = {
BuildIndependentTargetsInParallel = 1;
LastSwiftUpdateCheck = 1500;
LastUpgradeCheck = 1500;
TargetAttributes = {
8A1C83722AC328BD0096AF73 = {
CreatedOnToolsVersion = 15.0;
LastSwiftMigration = 1500;
};
};
};
buildConfigurationList = 8A1C836E2AC328BD0096AF73 /* Build configuration list for PBXProject "llama.swiftui" */;
compatibilityVersion = "Xcode 14.0";
developmentRegion = en;
hasScannedForEncodings = 0;
knownRegions = (
en,
Base,
);
mainGroup = 8A1C836A2AC328BD0096AF73;
packageReferences = (
);
productRefGroup = 8A1C83742AC328BD0096AF73 /* Products */;
projectDirPath = "";
projectRoot = "";
targets = (
8A1C83722AC328BD0096AF73 /* llama.swiftui */,
);
};
8A1C836B2AC328BD0096AF73 /* Project object */ = {
isa = PBXProject;
attributes = {
BuildIndependentTargetsInParallel = 1;
LastSwiftUpdateCheck = 1500;
LastUpgradeCheck = 1500;
TargetAttributes = {
8A1C83722AC328BD0096AF73 = {
CreatedOnToolsVersion = 15.0;
LastSwiftMigration = 1500;
};
};
};
buildConfigurationList = 8A1C836E2AC328BD0096AF73 /* Build configuration list for PBXProject "llama.swiftui" */;
compatibilityVersion = "Xcode 14.0";
developmentRegion = en;
hasScannedForEncodings = 0;
knownRegions = (
en,
Base,
);
mainGroup = 8A1C836A2AC328BD0096AF73;
packageReferences = (
);
productRefGroup = 8A1C83742AC328BD0096AF73 /* Products */;
projectDirPath = "";
projectRoot = "";
targets = (
8A1C83722AC328BD0096AF73 /* llama.swiftui */,
);
};
/* End PBXProject section */
/* Begin PBXResourcesBuildPhase section */
8A1C83712AC328BD0096AF73 /* Resources */ = {
isa = PBXResourcesBuildPhase;
buildActionMask = 2147483647;
files = (
542378792ACE3F3500834A7B /* ggml-metal.metal in Resources */,
8A3F84242AC4C891005E2EE8 /* models in Resources */,
8A1C837E2AC328BE0096AF73 /* Preview Assets.xcassets in Resources */,
8A1C837B2AC328BE0096AF73 /* Assets.xcassets in Resources */,
);
runOnlyForDeploymentPostprocessing = 0;
};
8A1C83712AC328BD0096AF73 /* Resources */ = {
isa = PBXResourcesBuildPhase;
buildActionMask = 2147483647;
files = (
542378792ACE3F3500834A7B /* ggml-metal.metal in Resources */,
8A3F84242AC4C891005E2EE8 /* models in Resources */,
8A1C837E2AC328BE0096AF73 /* Preview Assets.xcassets in Resources */,
8A1C837B2AC328BE0096AF73 /* Assets.xcassets in Resources */,
);
runOnlyForDeploymentPostprocessing = 0;
};
/* End PBXResourcesBuildPhase section */
/* Begin PBXSourcesBuildPhase section */
8A1C836F2AC328BD0096AF73 /* Sources */ = {
isa = PBXSourcesBuildPhase;
buildActionMask = 2147483647;
files = (
542376082B0D9BFB008E6A1C /* ggml-quants.c in Sources */,
549479CD2AC9E42A00E0F78B /* ggml-metal.m in Sources */,
542EA09D2AC8723900A8AEE9 /* ggml.c in Sources */,
8A907F332AC7138A006146EA /* LibLlama.swift in Sources */,
542EA0A32AC8729100A8AEE9 /* llama.cpp in Sources */,
8A9F7C4D2AC332EE008AE1EA /* LlamaState.swift in Sources */,
8A1C83792AC328BD0096AF73 /* ContentView.swift in Sources */,
8A1C83772AC328BD0096AF73 /* llama_swiftuiApp.swift in Sources */,
7FA3D2B32B2EA2F600543F92 /* DownloadButton.swift in Sources */,
542EA0A02AC8725700A8AEE9 /* ggml-alloc.c in Sources */,
5423760B2B0D9C4B008E6A1C /* ggml-backend.c in Sources */,
);
runOnlyForDeploymentPostprocessing = 0;
};
8A1C836F2AC328BD0096AF73 /* Sources */ = {
isa = PBXSourcesBuildPhase;
buildActionMask = 2147483647;
files = (
542376082B0D9BFB008E6A1C /* ggml-quants.c in Sources */,
549479CD2AC9E42A00E0F78B /* ggml-metal.m in Sources */,
542EA09D2AC8723900A8AEE9 /* ggml.c in Sources */,
8A907F332AC7138A006146EA /* LibLlama.swift in Sources */,
542EA0A32AC8729100A8AEE9 /* llama.cpp in Sources */,
8A9F7C4D2AC332EE008AE1EA /* LlamaState.swift in Sources */,
8A1C83792AC328BD0096AF73 /* ContentView.swift in Sources */,
8A1C83772AC328BD0096AF73 /* llama_swiftuiApp.swift in Sources */,
542EA0A02AC8725700A8AEE9 /* ggml-alloc.c in Sources */,
5423760B2B0D9C4B008E6A1C /* ggml-backend.c in Sources */,
);
runOnlyForDeploymentPostprocessing = 0;
};
/* End PBXSourcesBuildPhase section */
/* Begin XCBuildConfiguration section */
8A1C837F2AC328BE0096AF73 /* Debug */ = {
isa = XCBuildConfiguration;
buildSettings = {
ALWAYS_SEARCH_USER_PATHS = NO;
ASSETCATALOG_COMPILER_GENERATE_SWIFT_ASSET_SYMBOL_EXTENSIONS = YES;
CLANG_ANALYZER_NONNULL = YES;
CLANG_ANALYZER_NUMBER_OBJECT_CONVERSION = YES_AGGRESSIVE;
CLANG_CXX_LANGUAGE_STANDARD = "gnu++20";
CLANG_ENABLE_MODULES = YES;
CLANG_ENABLE_OBJC_ARC = YES;
CLANG_ENABLE_OBJC_WEAK = YES;
CLANG_WARN_BLOCK_CAPTURE_AUTORELEASING = YES;
CLANG_WARN_BOOL_CONVERSION = YES;
CLANG_WARN_COMMA = YES;
CLANG_WARN_CONSTANT_CONVERSION = YES;
CLANG_WARN_DEPRECATED_OBJC_IMPLEMENTATIONS = YES;
CLANG_WARN_DIRECT_OBJC_ISA_USAGE = YES_ERROR;
CLANG_WARN_DOCUMENTATION_COMMENTS = YES;
CLANG_WARN_EMPTY_BODY = YES;
CLANG_WARN_ENUM_CONVERSION = YES;
CLANG_WARN_INFINITE_RECURSION = YES;
CLANG_WARN_INT_CONVERSION = YES;
CLANG_WARN_NON_LITERAL_NULL_CONVERSION = YES;
CLANG_WARN_OBJC_IMPLICIT_RETAIN_SELF = YES;
CLANG_WARN_OBJC_LITERAL_CONVERSION = YES;
CLANG_WARN_OBJC_ROOT_CLASS = YES_ERROR;
CLANG_WARN_QUOTED_INCLUDE_IN_FRAMEWORK_HEADER = YES;
CLANG_WARN_RANGE_LOOP_ANALYSIS = YES;
CLANG_WARN_STRICT_PROTOTYPES = YES;
CLANG_WARN_SUSPICIOUS_MOVE = YES;
CLANG_WARN_UNGUARDED_AVAILABILITY = YES_AGGRESSIVE;
CLANG_WARN_UNREACHABLE_CODE = YES;
CLANG_WARN__DUPLICATE_METHOD_MATCH = YES;
COPY_PHASE_STRIP = NO;
DEBUG_INFORMATION_FORMAT = dwarf;
ENABLE_STRICT_OBJC_MSGSEND = YES;
ENABLE_TESTABILITY = YES;
ENABLE_USER_SCRIPT_SANDBOXING = YES;
GCC_C_LANGUAGE_STANDARD = gnu17;
GCC_DYNAMIC_NO_PIC = NO;
GCC_NO_COMMON_BLOCKS = YES;
GCC_OPTIMIZATION_LEVEL = 0;
GCC_PREPROCESSOR_DEFINITIONS = (
"DEBUG=1",
"$(inherited)",
);
GCC_WARN_64_TO_32_BIT_CONVERSION = YES;
GCC_WARN_ABOUT_RETURN_TYPE = YES_ERROR;
GCC_WARN_UNDECLARED_SELECTOR = YES;
GCC_WARN_UNINITIALIZED_AUTOS = YES_AGGRESSIVE;
GCC_WARN_UNUSED_FUNCTION = YES;
GCC_WARN_UNUSED_VARIABLE = YES;
IPHONEOS_DEPLOYMENT_TARGET = 17.0;
LOCALIZATION_PREFERS_STRING_CATALOGS = YES;
MTL_ENABLE_DEBUG_INFO = INCLUDE_SOURCE;
MTL_FAST_MATH = YES;
ONLY_ACTIVE_ARCH = YES;
SDKROOT = iphoneos;
SWIFT_ACTIVE_COMPILATION_CONDITIONS = "DEBUG $(inherited)";
SWIFT_OPTIMIZATION_LEVEL = "-Onone";
};
name = Debug;
};
8A1C83802AC328BE0096AF73 /* Release */ = {
isa = XCBuildConfiguration;
buildSettings = {
ALWAYS_SEARCH_USER_PATHS = NO;
ASSETCATALOG_COMPILER_GENERATE_SWIFT_ASSET_SYMBOL_EXTENSIONS = YES;
CLANG_ANALYZER_NONNULL = YES;
CLANG_ANALYZER_NUMBER_OBJECT_CONVERSION = YES_AGGRESSIVE;
CLANG_CXX_LANGUAGE_STANDARD = "gnu++20";
CLANG_ENABLE_MODULES = YES;
CLANG_ENABLE_OBJC_ARC = YES;
CLANG_ENABLE_OBJC_WEAK = YES;
CLANG_WARN_BLOCK_CAPTURE_AUTORELEASING = YES;
CLANG_WARN_BOOL_CONVERSION = YES;
CLANG_WARN_COMMA = YES;
CLANG_WARN_CONSTANT_CONVERSION = YES;
CLANG_WARN_DEPRECATED_OBJC_IMPLEMENTATIONS = YES;
CLANG_WARN_DIRECT_OBJC_ISA_USAGE = YES_ERROR;
CLANG_WARN_DOCUMENTATION_COMMENTS = YES;
CLANG_WARN_EMPTY_BODY = YES;
CLANG_WARN_ENUM_CONVERSION = YES;
CLANG_WARN_INFINITE_RECURSION = YES;
CLANG_WARN_INT_CONVERSION = YES;
CLANG_WARN_NON_LITERAL_NULL_CONVERSION = YES;
CLANG_WARN_OBJC_IMPLICIT_RETAIN_SELF = YES;
CLANG_WARN_OBJC_LITERAL_CONVERSION = YES;
CLANG_WARN_OBJC_ROOT_CLASS = YES_ERROR;
CLANG_WARN_QUOTED_INCLUDE_IN_FRAMEWORK_HEADER = YES;
CLANG_WARN_RANGE_LOOP_ANALYSIS = YES;
CLANG_WARN_STRICT_PROTOTYPES = YES;
CLANG_WARN_SUSPICIOUS_MOVE = YES;
CLANG_WARN_UNGUARDED_AVAILABILITY = YES_AGGRESSIVE;
CLANG_WARN_UNREACHABLE_CODE = YES;
CLANG_WARN__DUPLICATE_METHOD_MATCH = YES;
COPY_PHASE_STRIP = NO;
DEBUG_INFORMATION_FORMAT = "dwarf-with-dsym";
ENABLE_NS_ASSERTIONS = NO;
ENABLE_STRICT_OBJC_MSGSEND = YES;
ENABLE_USER_SCRIPT_SANDBOXING = YES;
GCC_C_LANGUAGE_STANDARD = gnu17;
GCC_NO_COMMON_BLOCKS = YES;
GCC_WARN_64_TO_32_BIT_CONVERSION = YES;
GCC_WARN_ABOUT_RETURN_TYPE = YES_ERROR;
GCC_WARN_UNDECLARED_SELECTOR = YES;
GCC_WARN_UNINITIALIZED_AUTOS = YES_AGGRESSIVE;
GCC_WARN_UNUSED_FUNCTION = YES;
GCC_WARN_UNUSED_VARIABLE = YES;
IPHONEOS_DEPLOYMENT_TARGET = 17.0;
LOCALIZATION_PREFERS_STRING_CATALOGS = YES;
MTL_ENABLE_DEBUG_INFO = NO;
MTL_FAST_MATH = YES;
SDKROOT = iphoneos;
SWIFT_COMPILATION_MODE = wholemodule;
VALIDATE_PRODUCT = YES;
};
name = Release;
};
8A1C83822AC328BE0096AF73 /* Debug */ = {
isa = XCBuildConfiguration;
buildSettings = {
ASSETCATALOG_COMPILER_APPICON_NAME = AppIcon;
ASSETCATALOG_COMPILER_GLOBAL_ACCENT_COLOR_NAME = AccentColor;
CLANG_ENABLE_MODULES = YES;
CODE_SIGN_STYLE = Automatic;
CURRENT_PROJECT_VERSION = 1;
DEVELOPMENT_ASSET_PATHS = "\"llama.swiftui/Preview Content\"";
DEVELOPMENT_TEAM = STLSG3FG8Q;
ENABLE_PREVIEWS = YES;
GENERATE_INFOPLIST_FILE = YES;
INFOPLIST_KEY_UIApplicationSceneManifest_Generation = YES;
INFOPLIST_KEY_UIApplicationSupportsIndirectInputEvents = YES;
INFOPLIST_KEY_UILaunchScreen_Generation = YES;
INFOPLIST_KEY_UISupportedInterfaceOrientations_iPad = "UIInterfaceOrientationPortrait UIInterfaceOrientationPortraitUpsideDown UIInterfaceOrientationLandscapeLeft UIInterfaceOrientationLandscapeRight";
INFOPLIST_KEY_UISupportedInterfaceOrientations_iPhone = "UIInterfaceOrientationPortrait UIInterfaceOrientationLandscapeLeft UIInterfaceOrientationLandscapeRight";
IPHONEOS_DEPLOYMENT_TARGET = 16.0;
LD_RUNPATH_SEARCH_PATHS = (
"$(inherited)",
"@executable_path/Frameworks",
);
MARKETING_VERSION = 1.0;
PRODUCT_BUNDLE_IDENTIFIER = "com.bachittle.llama-swift";
PRODUCT_NAME = "$(TARGET_NAME)";
SWIFT_EMIT_LOC_STRINGS = YES;
SWIFT_OBJC_BRIDGING_HEADER = "llama.cpp.swift/bridging-header.h";
SWIFT_OPTIMIZATION_LEVEL = "-Onone";
SWIFT_VERSION = 5.0;
TARGETED_DEVICE_FAMILY = "1,2";
};
name = Debug;
};
8A1C83832AC328BE0096AF73 /* Release */ = {
isa = XCBuildConfiguration;
buildSettings = {
ASSETCATALOG_COMPILER_APPICON_NAME = AppIcon;
ASSETCATALOG_COMPILER_GLOBAL_ACCENT_COLOR_NAME = AccentColor;
CLANG_ENABLE_MODULES = YES;
CODE_SIGN_STYLE = Automatic;
CURRENT_PROJECT_VERSION = 1;
DEVELOPMENT_ASSET_PATHS = "\"llama.swiftui/Preview Content\"";
DEVELOPMENT_TEAM = STLSG3FG8Q;
ENABLE_PREVIEWS = YES;
GENERATE_INFOPLIST_FILE = YES;
INFOPLIST_KEY_UIApplicationSceneManifest_Generation = YES;
INFOPLIST_KEY_UIApplicationSupportsIndirectInputEvents = YES;
INFOPLIST_KEY_UILaunchScreen_Generation = YES;
INFOPLIST_KEY_UISupportedInterfaceOrientations_iPad = "UIInterfaceOrientationPortrait UIInterfaceOrientationPortraitUpsideDown UIInterfaceOrientationLandscapeLeft UIInterfaceOrientationLandscapeRight";
INFOPLIST_KEY_UISupportedInterfaceOrientations_iPhone = "UIInterfaceOrientationPortrait UIInterfaceOrientationLandscapeLeft UIInterfaceOrientationLandscapeRight";
IPHONEOS_DEPLOYMENT_TARGET = 16.0;
LD_RUNPATH_SEARCH_PATHS = (
"$(inherited)",
"@executable_path/Frameworks",
);
MARKETING_VERSION = 1.0;
PRODUCT_BUNDLE_IDENTIFIER = "com.bachittle.llama-swift";
PRODUCT_NAME = "$(TARGET_NAME)";
SWIFT_EMIT_LOC_STRINGS = YES;
SWIFT_OBJC_BRIDGING_HEADER = "llama.cpp.swift/bridging-header.h";
SWIFT_VERSION = 5.0;
TARGETED_DEVICE_FAMILY = "1,2";
};
name = Release;
};
8A1C837F2AC328BE0096AF73 /* Debug */ = {
isa = XCBuildConfiguration;
buildSettings = {
ALWAYS_SEARCH_USER_PATHS = NO;
ASSETCATALOG_COMPILER_GENERATE_SWIFT_ASSET_SYMBOL_EXTENSIONS = YES;
CLANG_ANALYZER_NONNULL = YES;
CLANG_ANALYZER_NUMBER_OBJECT_CONVERSION = YES_AGGRESSIVE;
CLANG_CXX_LANGUAGE_STANDARD = "gnu++20";
CLANG_ENABLE_MODULES = YES;
CLANG_ENABLE_OBJC_ARC = YES;
CLANG_ENABLE_OBJC_WEAK = YES;
CLANG_WARN_BLOCK_CAPTURE_AUTORELEASING = YES;
CLANG_WARN_BOOL_CONVERSION = YES;
CLANG_WARN_COMMA = YES;
CLANG_WARN_CONSTANT_CONVERSION = YES;
CLANG_WARN_DEPRECATED_OBJC_IMPLEMENTATIONS = YES;
CLANG_WARN_DIRECT_OBJC_ISA_USAGE = YES_ERROR;
CLANG_WARN_DOCUMENTATION_COMMENTS = YES;
CLANG_WARN_EMPTY_BODY = YES;
CLANG_WARN_ENUM_CONVERSION = YES;
CLANG_WARN_INFINITE_RECURSION = YES;
CLANG_WARN_INT_CONVERSION = YES;
CLANG_WARN_NON_LITERAL_NULL_CONVERSION = YES;
CLANG_WARN_OBJC_IMPLICIT_RETAIN_SELF = YES;
CLANG_WARN_OBJC_LITERAL_CONVERSION = YES;
CLANG_WARN_OBJC_ROOT_CLASS = YES_ERROR;
CLANG_WARN_QUOTED_INCLUDE_IN_FRAMEWORK_HEADER = YES;
CLANG_WARN_RANGE_LOOP_ANALYSIS = YES;
CLANG_WARN_STRICT_PROTOTYPES = YES;
CLANG_WARN_SUSPICIOUS_MOVE = YES;
CLANG_WARN_UNGUARDED_AVAILABILITY = YES_AGGRESSIVE;
CLANG_WARN_UNREACHABLE_CODE = YES;
CLANG_WARN__DUPLICATE_METHOD_MATCH = YES;
COPY_PHASE_STRIP = NO;
DEBUG_INFORMATION_FORMAT = dwarf;
ENABLE_STRICT_OBJC_MSGSEND = YES;
ENABLE_TESTABILITY = YES;
ENABLE_USER_SCRIPT_SANDBOXING = YES;
GCC_C_LANGUAGE_STANDARD = gnu17;
GCC_DYNAMIC_NO_PIC = NO;
GCC_NO_COMMON_BLOCKS = YES;
GCC_OPTIMIZATION_LEVEL = 0;
GCC_PREPROCESSOR_DEFINITIONS = (
"DEBUG=1",
"$(inherited)",
);
GCC_WARN_64_TO_32_BIT_CONVERSION = YES;
GCC_WARN_ABOUT_RETURN_TYPE = YES_ERROR;
GCC_WARN_UNDECLARED_SELECTOR = YES;
GCC_WARN_UNINITIALIZED_AUTOS = YES_AGGRESSIVE;
GCC_WARN_UNUSED_FUNCTION = YES;
GCC_WARN_UNUSED_VARIABLE = YES;
IPHONEOS_DEPLOYMENT_TARGET = 17.0;
LOCALIZATION_PREFERS_STRING_CATALOGS = YES;
MTL_ENABLE_DEBUG_INFO = INCLUDE_SOURCE;
MTL_FAST_MATH = YES;
ONLY_ACTIVE_ARCH = YES;
SDKROOT = iphoneos;
SWIFT_ACTIVE_COMPILATION_CONDITIONS = "DEBUG $(inherited)";
SWIFT_OPTIMIZATION_LEVEL = "-Onone";
};
name = Debug;
};
8A1C83802AC328BE0096AF73 /* Release */ = {
isa = XCBuildConfiguration;
buildSettings = {
ALWAYS_SEARCH_USER_PATHS = NO;
ASSETCATALOG_COMPILER_GENERATE_SWIFT_ASSET_SYMBOL_EXTENSIONS = YES;
CLANG_ANALYZER_NONNULL = YES;
CLANG_ANALYZER_NUMBER_OBJECT_CONVERSION = YES_AGGRESSIVE;
CLANG_CXX_LANGUAGE_STANDARD = "gnu++20";
CLANG_ENABLE_MODULES = YES;
CLANG_ENABLE_OBJC_ARC = YES;
CLANG_ENABLE_OBJC_WEAK = YES;
CLANG_WARN_BLOCK_CAPTURE_AUTORELEASING = YES;
CLANG_WARN_BOOL_CONVERSION = YES;
CLANG_WARN_COMMA = YES;
CLANG_WARN_CONSTANT_CONVERSION = YES;
CLANG_WARN_DEPRECATED_OBJC_IMPLEMENTATIONS = YES;
CLANG_WARN_DIRECT_OBJC_ISA_USAGE = YES_ERROR;
CLANG_WARN_DOCUMENTATION_COMMENTS = YES;
CLANG_WARN_EMPTY_BODY = YES;
CLANG_WARN_ENUM_CONVERSION = YES;
CLANG_WARN_INFINITE_RECURSION = YES;
CLANG_WARN_INT_CONVERSION = YES;
CLANG_WARN_NON_LITERAL_NULL_CONVERSION = YES;
CLANG_WARN_OBJC_IMPLICIT_RETAIN_SELF = YES;
CLANG_WARN_OBJC_LITERAL_CONVERSION = YES;
CLANG_WARN_OBJC_ROOT_CLASS = YES_ERROR;
CLANG_WARN_QUOTED_INCLUDE_IN_FRAMEWORK_HEADER = YES;
CLANG_WARN_RANGE_LOOP_ANALYSIS = YES;
CLANG_WARN_STRICT_PROTOTYPES = YES;
CLANG_WARN_SUSPICIOUS_MOVE = YES;
CLANG_WARN_UNGUARDED_AVAILABILITY = YES_AGGRESSIVE;
CLANG_WARN_UNREACHABLE_CODE = YES;
CLANG_WARN__DUPLICATE_METHOD_MATCH = YES;
COPY_PHASE_STRIP = NO;
DEBUG_INFORMATION_FORMAT = "dwarf-with-dsym";
ENABLE_NS_ASSERTIONS = NO;
ENABLE_STRICT_OBJC_MSGSEND = YES;
ENABLE_USER_SCRIPT_SANDBOXING = YES;
GCC_C_LANGUAGE_STANDARD = gnu17;
GCC_NO_COMMON_BLOCKS = YES;
GCC_WARN_64_TO_32_BIT_CONVERSION = YES;
GCC_WARN_ABOUT_RETURN_TYPE = YES_ERROR;
GCC_WARN_UNDECLARED_SELECTOR = YES;
GCC_WARN_UNINITIALIZED_AUTOS = YES_AGGRESSIVE;
GCC_WARN_UNUSED_FUNCTION = YES;
GCC_WARN_UNUSED_VARIABLE = YES;
IPHONEOS_DEPLOYMENT_TARGET = 17.0;
LOCALIZATION_PREFERS_STRING_CATALOGS = YES;
MTL_ENABLE_DEBUG_INFO = NO;
MTL_FAST_MATH = YES;
SDKROOT = iphoneos;
SWIFT_COMPILATION_MODE = wholemodule;
VALIDATE_PRODUCT = YES;
};
name = Release;
};
8A1C83822AC328BE0096AF73 /* Debug */ = {
isa = XCBuildConfiguration;
buildSettings = {
ASSETCATALOG_COMPILER_APPICON_NAME = AppIcon;
ASSETCATALOG_COMPILER_GLOBAL_ACCENT_COLOR_NAME = AccentColor;
CLANG_ENABLE_MODULES = YES;
CODE_SIGN_STYLE = Automatic;
CURRENT_PROJECT_VERSION = 1;
DEVELOPMENT_ASSET_PATHS = "\"llama.swiftui/Preview Content\"";
DEVELOPMENT_TEAM = STLSG3FG8Q;
ENABLE_PREVIEWS = YES;
GENERATE_INFOPLIST_FILE = YES;
INFOPLIST_KEY_UIApplicationSceneManifest_Generation = YES;
INFOPLIST_KEY_UIApplicationSupportsIndirectInputEvents = YES;
INFOPLIST_KEY_UILaunchScreen_Generation = YES;
INFOPLIST_KEY_UISupportedInterfaceOrientations_iPad = "UIInterfaceOrientationPortrait UIInterfaceOrientationPortraitUpsideDown UIInterfaceOrientationLandscapeLeft UIInterfaceOrientationLandscapeRight";
INFOPLIST_KEY_UISupportedInterfaceOrientations_iPhone = "UIInterfaceOrientationPortrait UIInterfaceOrientationLandscapeLeft UIInterfaceOrientationLandscapeRight";
IPHONEOS_DEPLOYMENT_TARGET = 16.0;
LD_RUNPATH_SEARCH_PATHS = (
"$(inherited)",
"@executable_path/Frameworks",
);
MARKETING_VERSION = 1.0;
PRODUCT_BUNDLE_IDENTIFIER = "com.bachittle.llama-swift";
PRODUCT_NAME = "$(TARGET_NAME)";
SWIFT_EMIT_LOC_STRINGS = YES;
SWIFT_OBJC_BRIDGING_HEADER = "llama.cpp.swift/bridging-header.h";
SWIFT_OPTIMIZATION_LEVEL = "-Onone";
SWIFT_VERSION = 5.0;
TARGETED_DEVICE_FAMILY = "1,2";
};
name = Debug;
};
8A1C83832AC328BE0096AF73 /* Release */ = {
isa = XCBuildConfiguration;
buildSettings = {
ASSETCATALOG_COMPILER_APPICON_NAME = AppIcon;
ASSETCATALOG_COMPILER_GLOBAL_ACCENT_COLOR_NAME = AccentColor;
CLANG_ENABLE_MODULES = YES;
CODE_SIGN_STYLE = Automatic;
CURRENT_PROJECT_VERSION = 1;
DEVELOPMENT_ASSET_PATHS = "\"llama.swiftui/Preview Content\"";
DEVELOPMENT_TEAM = STLSG3FG8Q;
ENABLE_PREVIEWS = YES;
GENERATE_INFOPLIST_FILE = YES;
INFOPLIST_KEY_UIApplicationSceneManifest_Generation = YES;
INFOPLIST_KEY_UIApplicationSupportsIndirectInputEvents = YES;
INFOPLIST_KEY_UILaunchScreen_Generation = YES;
INFOPLIST_KEY_UISupportedInterfaceOrientations_iPad = "UIInterfaceOrientationPortrait UIInterfaceOrientationPortraitUpsideDown UIInterfaceOrientationLandscapeLeft UIInterfaceOrientationLandscapeRight";
INFOPLIST_KEY_UISupportedInterfaceOrientations_iPhone = "UIInterfaceOrientationPortrait UIInterfaceOrientationLandscapeLeft UIInterfaceOrientationLandscapeRight";
IPHONEOS_DEPLOYMENT_TARGET = 16.0;
LD_RUNPATH_SEARCH_PATHS = (
"$(inherited)",
"@executable_path/Frameworks",
);
MARKETING_VERSION = 1.0;
PRODUCT_BUNDLE_IDENTIFIER = "com.bachittle.llama-swift";
PRODUCT_NAME = "$(TARGET_NAME)";
SWIFT_EMIT_LOC_STRINGS = YES;
SWIFT_OBJC_BRIDGING_HEADER = "llama.cpp.swift/bridging-header.h";
SWIFT_VERSION = 5.0;
TARGETED_DEVICE_FAMILY = "1,2";
};
name = Release;
};
/* End XCBuildConfiguration section */
/* Begin XCConfigurationList section */
8A1C836E2AC328BD0096AF73 /* Build configuration list for PBXProject "llama.swiftui" */ = {
isa = XCConfigurationList;
buildConfigurations = (
8A1C837F2AC328BE0096AF73 /* Debug */,
8A1C83802AC328BE0096AF73 /* Release */,
);
defaultConfigurationIsVisible = 0;
defaultConfigurationName = Release;
};
8A1C83812AC328BE0096AF73 /* Build configuration list for PBXNativeTarget "llama.swiftui" */ = {
isa = XCConfigurationList;
buildConfigurations = (
8A1C83822AC328BE0096AF73 /* Debug */,
8A1C83832AC328BE0096AF73 /* Release */,
);
defaultConfigurationIsVisible = 0;
defaultConfigurationName = Release;
};
8A1C836E2AC328BD0096AF73 /* Build configuration list for PBXProject "llama.swiftui" */ = {
isa = XCConfigurationList;
buildConfigurations = (
8A1C837F2AC328BE0096AF73 /* Debug */,
8A1C83802AC328BE0096AF73 /* Release */,
);
defaultConfigurationIsVisible = 0;
defaultConfigurationName = Release;
};
8A1C83812AC328BE0096AF73 /* Build configuration list for PBXNativeTarget "llama.swiftui" */ = {
isa = XCConfigurationList;
buildConfigurations = (
8A1C83822AC328BE0096AF73 /* Debug */,
8A1C83832AC328BE0096AF73 /* Release */,
);
defaultConfigurationIsVisible = 0;
defaultConfigurationName = Release;
};
/* End XCConfigurationList section */
};
rootObject = 8A1C836B2AC328BD0096AF73 /* Project object */;
};
rootObject = 8A1C836B2AC328BD0096AF73 /* Project object */;
}

View File

@@ -3,26 +3,24 @@ import Foundation
@MainActor
class LlamaState: ObservableObject {
@Published var messageLog = ""
@Published var cacheCleared = false
private var llamaContext: LlamaContext?
private var defaultModelUrl: URL? {
Bundle.main.url(forResource: "ggml-model", withExtension: "gguf", subdirectory: "models")
private var modelUrl: URL? {
Bundle.main.url(forResource: "q8_0", withExtension: "gguf", subdirectory: "models")
// Bundle.main.url(forResource: "llama-2-7b-chat", withExtension: "Q2_K.gguf", subdirectory: "models")
}
init() {
do {
try loadModel(modelUrl: defaultModelUrl)
try loadModel()
} catch {
messageLog += "Error!\n"
}
}
func loadModel(modelUrl: URL?) throws {
private func loadModel() throws {
messageLog += "Loading model...\n"
if let modelUrl {
llamaContext = try LlamaContext.create_context(path: modelUrl.path())
llamaContext = try LlamaContext.createContext(path: modelUrl.path())
messageLog += "Loaded model \(modelUrl.lastPathComponent)\n"
} else {
messageLog += "Could not locate model\n"
@@ -33,7 +31,7 @@ class LlamaState: ObservableObject {
guard let llamaContext else {
return
}
messageLog += "Attempting to complete text...\n"
await llamaContext.completion_init(text: text)
messageLog += "\(text)"
@@ -44,42 +42,4 @@ class LlamaState: ObservableObject {
await llamaContext.clear()
messageLog += "\n\ndone\n"
}
func bench() async {
guard let llamaContext else {
return
}
messageLog += "\n"
messageLog += "Running benchmark...\n"
messageLog += "Model info: "
messageLog += await llamaContext.model_info() + "\n"
let t_start = DispatchTime.now().uptimeNanoseconds
await llamaContext.bench(pp: 8, tg: 4, pl: 1) // heat up
let t_end = DispatchTime.now().uptimeNanoseconds
let t_heat = Double(t_end - t_start) / 1_000_000_000.0
messageLog += "Heat up time: \(t_heat) seconds, please wait...\n"
// if more than 5 seconds, then we're probably running on a slow device
if t_heat > 5.0 {
messageLog += "Heat up time is too long, aborting benchmark\n"
return
}
let result = await llamaContext.bench(pp: 512, tg: 128, pl: 1, nr: 3)
messageLog += "\(result)"
messageLog += "\n"
}
func clear() async {
guard let llamaContext else {
return
}
await llamaContext.clear()
messageLog = ""
}
}

View File

@@ -5,132 +5,24 @@ struct ContentView: View {
@State private var multiLineText = ""
private static func cleanupModelCaches() {
// Delete all models (*.gguf)
let fileManager = FileManager.default
let documentsUrl = FileManager.default.urls(for: .documentDirectory, in: .userDomainMask)[0]
do {
let fileURLs = try fileManager.contentsOfDirectory(at: documentsUrl, includingPropertiesForKeys: nil)
for fileURL in fileURLs {
if fileURL.pathExtension == "gguf" {
try fileManager.removeItem(at: fileURL)
}
}
} catch {
print("Error while enumerating files \(documentsUrl.path): \(error.localizedDescription)")
}
}
var body: some View {
VStack {
ScrollView(.vertical, showsIndicators: true) {
ScrollView(.vertical) {
Text(llamaState.messageLog)
.font(.system(size: 12))
.frame(maxWidth: .infinity, alignment: .leading)
.padding()
.onTapGesture {
UIApplication.shared.sendAction(#selector(UIResponder.resignFirstResponder), to: nil, from: nil, for: nil)
}
}
TextEditor(text: $multiLineText)
.frame(height: 80)
.frame(height: 200)
.padding()
.border(Color.gray, width: 0.5)
HStack {
Button("Send") {
sendText()
}
.padding(8)
.background(Color.blue)
.foregroundColor(.white)
.cornerRadius(8)
Button("Bench") {
bench()
}
.padding(8)
.background(Color.blue)
.foregroundColor(.white)
.cornerRadius(8)
Button("Clear") {
clear()
}
.padding(8)
.background(Color.blue)
.foregroundColor(.white)
.cornerRadius(8)
Button("Copy") {
UIPasteboard.general.string = llamaState.messageLog
}
.padding(8)
.background(Color.blue)
.foregroundColor(.white)
.cornerRadius(8)
}
VStack {
DownloadButton(
llamaState: llamaState,
modelName: "TinyLlama-1.1B (Q4_0, 0.6 GiB)",
modelUrl: "https://huggingface.co/TheBloke/TinyLlama-1.1B-1T-OpenOrca-GGUF/resolve/main/tinyllama-1.1b-1t-openorca.Q4_0.gguf?download=true",
filename: "tinyllama-1.1b-1t-openorca.Q4_0.gguf"
)
.font(.system(size: 12))
.padding(.top, 4)
.frame(maxWidth: .infinity, alignment: .leading)
DownloadButton(
llamaState: llamaState,
modelName: "TinyLlama-1.1B (Q8_0, 1.1 GiB)",
modelUrl: "https://huggingface.co/TheBloke/TinyLlama-1.1B-1T-OpenOrca-GGUF/resolve/main/tinyllama-1.1b-1t-openorca.Q8_0.gguf?download=true",
filename: "tinyllama-1.1b-1t-openorca.Q8_0.gguf"
)
.font(.system(size: 12))
DownloadButton(
llamaState: llamaState,
modelName: "TinyLlama-1.1B (F16, 2.2 GiB)",
modelUrl: "https://huggingface.co/ggml-org/models/resolve/main/tinyllama-1.1b/ggml-model-f16.gguf?download=true",
filename: "tinyllama-1.1b-f16.gguf"
)
.font(.system(size: 12))
.frame(maxWidth: .infinity, alignment: .leading)
DownloadButton(
llamaState: llamaState,
modelName: "Phi-2.7B (Q4_0, 1.6 GiB)",
modelUrl: "https://huggingface.co/ggml-org/models/resolve/main/phi-2/ggml-model-q4_0.gguf?download=true",
filename: "phi-2-q4_0.gguf"
)
.font(.system(size: 12))
DownloadButton(
llamaState: llamaState,
modelName: "Phi-2.7B (Q8_0, 2.8 GiB)",
modelUrl: "https://huggingface.co/ggml-org/models/resolve/main/phi-2/ggml-model-q8_0.gguf?download=true",
filename: "phi-2-q8_0.gguf"
)
.font(.system(size: 12))
.frame(maxWidth: .infinity, alignment: .leading)
DownloadButton(
llamaState: llamaState,
modelName: "Mistral-7B-v0.1 (Q4_0, 3.8 GiB)",
modelUrl: "https://huggingface.co/TheBloke/Mistral-7B-v0.1-GGUF/resolve/main/mistral-7b-v0.1.Q4_0.gguf?download=true",
filename: "mistral-7b-v0.1.Q4_0.gguf"
)
.font(.system(size: 12))
Button("Clear downloaded models") {
ContentView.cleanupModelCaches()
llamaState.cacheCleared = true
}
.padding(8)
.font(.system(size: 12))
Button(action: {
sendText()
}) {
Text("Send")
.padding()
.background(Color.blue)
.foregroundColor(.white)
.cornerRadius(8)
}
}
.padding()
@@ -142,20 +34,9 @@ struct ContentView: View {
multiLineText = ""
}
}
func bench() {
Task {
await llamaState.bench()
}
}
func clear() {
Task {
await llamaState.clear()
}
}
}
//#Preview {
// ContentView()
//}
/*
#Preview {
ContentView()
}
*/

View File

@@ -1,122 +0,0 @@
import SwiftUI
struct DownloadButton: View {
@ObservedObject private var llamaState: LlamaState
private var modelName: String
private var modelUrl: String
private var filename: String
@State private var status: String
@State private var downloadTask: URLSessionDownloadTask?
@State private var progress = 0.0
@State private var observation: NSKeyValueObservation?
private static func getFileURL(filename: String) -> URL {
FileManager.default.urls(for: .documentDirectory, in: .userDomainMask)[0].appendingPathComponent(filename)
}
private func checkFileExistenceAndUpdateStatus() {
}
init(llamaState: LlamaState, modelName: String, modelUrl: String, filename: String) {
self.llamaState = llamaState
self.modelName = modelName
self.modelUrl = modelUrl
self.filename = filename
let fileURL = DownloadButton.getFileURL(filename: filename)
status = FileManager.default.fileExists(atPath: fileURL.path) ? "downloaded" : "download"
}
private func download() {
status = "downloading"
print("Downloading model \(modelName) from \(modelUrl)")
guard let url = URL(string: modelUrl) else { return }
let fileURL = DownloadButton.getFileURL(filename: filename)
downloadTask = URLSession.shared.downloadTask(with: url) { temporaryURL, response, error in
if let error = error {
print("Error: \(error.localizedDescription)")
return
}
guard let response = response as? HTTPURLResponse, (200...299).contains(response.statusCode) else {
print("Server error!")
return
}
do {
if let temporaryURL = temporaryURL {
try FileManager.default.copyItem(at: temporaryURL, to: fileURL)
print("Writing to \(filename) completed")
llamaState.cacheCleared = false
status = "downloaded"
}
} catch let err {
print("Error: \(err.localizedDescription)")
}
}
observation = downloadTask?.progress.observe(\.fractionCompleted) { progress, _ in
self.progress = progress.fractionCompleted
}
downloadTask?.resume()
}
var body: some View {
VStack {
if status == "download" {
Button(action: download) {
Text("Download " + modelName)
}
} else if status == "downloading" {
Button(action: {
downloadTask?.cancel()
status = "download"
}) {
Text("\(modelName) (Downloading \(Int(progress * 100))%)")
}
} else if status == "downloaded" {
Button(action: {
let fileURL = DownloadButton.getFileURL(filename: filename)
if !FileManager.default.fileExists(atPath: fileURL.path) {
download()
return
}
do {
try llamaState.loadModel(modelUrl: fileURL)
} catch let err {
print("Error: \(err.localizedDescription)")
}
}) {
Text("\(modelName) (Downloaded)")
}
} else {
Text("Unknown status")
}
}
.onDisappear() {
downloadTask?.cancel()
}
.onChange(of: llamaState.cacheCleared) { newValue in
if newValue {
downloadTask?.cancel()
let fileURL = DownloadButton.getFileURL(filename: filename)
status = FileManager.default.fileExists(atPath: fileURL.path) ? "downloaded" : "download"
}
}
}
}
// #Preview {
// DownloadButton(
// llamaState: LlamaState(),
// modelName: "TheBloke / TinyLlama-1.1B-1T-OpenOrca-GGUF (Q4_0)",
// modelUrl: "https://huggingface.co/TheBloke/TinyLlama-1.1B-1T-OpenOrca-GGUF/resolve/main/tinyllama-1.1b-1t-openorca.Q4_0.gguf?download=true",
// filename: "tinyllama-1.1b-1t-openorca.Q4_0.gguf"
// )
// }

View File

@@ -330,6 +330,12 @@ static ggml_cgraph * clip_image_build_graph(const clip_ctx * ctx, const clip_ima
ggml_repeat(ctx0, model.pre_ln_b, embeddings));
}
struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
ggml_allocr_alloc(ctx->alloc, KQ_scale);
if (!ggml_allocr_is_measure(ctx->alloc)) {
ggml_set_f32(KQ_scale, 1.0f / sqrt((float)d_head));
}
// loop over layers
for (int il = 0; il < n_layer - 1; il++) {
struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states
@@ -350,7 +356,7 @@ static ggml_cgraph * clip_image_build_graph(const clip_ctx * ctx, const clip_ima
struct ggml_tensor * Q =
ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].q_b, cur), ggml_mul_mat(ctx0, model.layers[il].q_w, cur));
Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head));
Q = ggml_scale_inplace(ctx0, Q, KQ_scale);
Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_positions, batch_size);
Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
Q = ggml_reshape_3d(ctx0, Q, d_head, num_positions, n_head * batch_size);

View File

@@ -4,7 +4,7 @@ Demonstration of Prompt Lookup Decoding
https://github.com/apoorvumang/prompt-lookup-decoding
The key parameters for lookup decoding are `ngram_min`, `ngram_max` and `n_draft`. The first two determine the size of the ngrams to search for in the prompt for a match. The latter specifies how many subsequent tokens to draft if a match is found.
The two key parameters for lookup decoding are `max_ngram_size` and `n_draft`. The first, determines how many ngrams to use when searching through the prompt for a match and the second specifies how many subsequent tokens to draft if a match is found.
More info:

View File

@@ -9,16 +9,15 @@
int main(int argc, char ** argv){
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
if (gpt_params_parse(argc, argv, params) == false) {
return 1;
}
// max/min n-grams size to search for in prompt
const int ngram_max = 4;
const int ngram_min = 1;
// maximum n-grams to search for in prompt
const int max_ngram_size = 3;
// length of the candidate / draft sequence, if match is found
const int n_draft = params.n_draft;
const int n_draft = 10;
const bool dump_kv_cache = params.dump_kv_cache;
@@ -161,7 +160,7 @@ int main(int argc, char ** argv){
// generate n_pred tokens through prompt lookup
auto prompt_lookup = [&]() -> void {
int inp_size = inp.size();
for (int ngram_size = ngram_max ; ngram_size > ngram_min; --ngram_size){
for (int ngram_size = max_ngram_size ; ngram_size > 0; --ngram_size){
const llama_token * ngram = &inp[inp_size - ngram_size];
for (int i = 0; i <= (int) inp_size - (ngram_size * 2); ++i) {

View File

@@ -148,8 +148,6 @@ node index.js
`frequency_penalty`: Repeat alpha frequency penalty (default: 0.0, 0.0 = disabled);
`penalty_prompt`: This will replace the `prompt` for the purpose of the penalty evaluation. Can be either `null`, a string or an array of numbers representing tokens (default: `null` = use the original `prompt`).
`mirostat`: Enable Mirostat sampling, controlling perplexity during text generation (default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0).
`mirostat_tau`: Set the Mirostat target entropy, parameter tau (default: 5.0).

View File

@@ -10,8 +10,7 @@
// crash the server in debug mode, otherwise send an http 500 error
#define CPPHTTPLIB_NO_EXCEPTIONS 1
#endif
// increase max payload length to allow use of larger context size
#define CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 1048576
#include "httplib.h"
#include "json.hpp"
@@ -761,42 +760,6 @@ struct llama_server_context
slot->prompt = "";
}
slot->sparams.penalty_prompt_tokens.clear();
slot->sparams.use_penalty_prompt_tokens = false;
const auto &penalty_prompt = data.find("penalty_prompt");
if (penalty_prompt != data.end())
{
if (penalty_prompt->is_string())
{
const auto penalty_prompt_string = penalty_prompt->get<std::string>();
auto penalty_tokens = llama_tokenize(model, penalty_prompt_string, false);
slot->sparams.penalty_prompt_tokens.swap(penalty_tokens);
if (slot->params.n_predict > 0)
{
slot->sparams.penalty_prompt_tokens.reserve(slot->sparams.penalty_prompt_tokens.size() + slot->params.n_predict);
}
slot->sparams.use_penalty_prompt_tokens = true;
}
else if (penalty_prompt->is_array())
{
const auto n_tokens = penalty_prompt->size();
slot->sparams.penalty_prompt_tokens.reserve(n_tokens + std::max(0, slot->params.n_predict));
const int n_vocab = llama_n_vocab(model);
for (const auto &penalty_token : *penalty_prompt)
{
if (penalty_token.is_number_integer())
{
const auto tok = penalty_token.get<llama_token>();
if (tok >= 0 && tok < n_vocab)
{
slot->sparams.penalty_prompt_tokens.push_back(tok);
}
}
}
slot->sparams.use_penalty_prompt_tokens = true;
}
}
slot->sparams.logit_bias.clear();
if (json_value(data, "ignore_eos", false))
@@ -1028,12 +991,6 @@ struct llama_server_context
slot.generated_text += token_str;
slot.has_next_token = true;
if (slot.ctx_sampling->params.use_penalty_prompt_tokens && result.tok != -1)
{
// we can change penalty_prompt_tokens because it is always created from scratch each request
slot.ctx_sampling->params.penalty_prompt_tokens.push_back(result.tok);
}
// check if there is incomplete UTF-8 character at the end
bool incomplete = false;
for (unsigned i = 1; i < 5 && i <= slot.generated_text.size(); ++i)
@@ -1225,8 +1182,6 @@ struct llama_server_context
{"repeat_penalty", slot.sparams.penalty_repeat},
{"presence_penalty", slot.sparams.penalty_present},
{"frequency_penalty", slot.sparams.penalty_freq},
{"penalty_prompt_tokens", slot.sparams.penalty_prompt_tokens},
{"use_penalty_prompt_tokens", slot.sparams.use_penalty_prompt_tokens},
{"mirostat", slot.sparams.mirostat},
{"mirostat_tau", slot.sparams.mirostat_tau},
{"mirostat_eta", slot.sparams.mirostat_eta},
@@ -2458,7 +2413,7 @@ json oaicompat_completion_params_parse(
llama_params["ignore_eos"] = json_value(body, "ignore_eos", false);
llama_params["tfs_z"] = json_value(body, "tfs_z", 0.0);
if (body.count("grammar") != 0) {
if (llama_params.count("grammar") != 0) {
llama_params["grammar"] = json_value(body, "grammar", json::object());
}
@@ -2689,9 +2644,6 @@ static void append_to_generated_text_from_generated_token_probs(llama_server_con
int main(int argc, char **argv)
{
#if SERVER_VERBOSE != 1
log_disable();
#endif
// own arguments required by this example
gpt_params params;
server_params sparams;
@@ -2746,7 +2698,7 @@ int main(int argc, char **argv)
}
// API key is invalid or not provided
res.set_content("Unauthorized: Invalid API Key", "text/plain; charset=utf-8");
res.set_content("Unauthorized: Invalid API Key", "text/plain");
res.status = 401; // Unauthorized
LOG_WARNING("Unauthorized: Invalid API Key", {});
@@ -2761,28 +2713,28 @@ int main(int argc, char **argv)
// this is only called if no index.html is found in the public --path
svr.Get("/", [](const httplib::Request &, httplib::Response &res)
{
res.set_content(reinterpret_cast<const char*>(&index_html), index_html_len, "text/html; charset=utf-8");
res.set_content(reinterpret_cast<const char*>(&index_html), index_html_len, "text/html");
return false;
});
// this is only called if no index.js is found in the public --path
svr.Get("/index.js", [](const httplib::Request &, httplib::Response &res)
{
res.set_content(reinterpret_cast<const char *>(&index_js), index_js_len, "text/javascript; charset=utf-8");
res.set_content(reinterpret_cast<const char *>(&index_js), index_js_len, "text/javascript");
return false;
});
// this is only called if no index.html is found in the public --path
svr.Get("/completion.js", [](const httplib::Request &, httplib::Response &res)
{
res.set_content(reinterpret_cast<const char*>(&completion_js), completion_js_len, "application/javascript; charset=utf-8");
res.set_content(reinterpret_cast<const char*>(&completion_js), completion_js_len, "application/javascript");
return false;
});
// this is only called if no index.html is found in the public --path
svr.Get("/json-schema-to-grammar.mjs", [](const httplib::Request &, httplib::Response &res)
{
res.set_content(reinterpret_cast<const char*>(&json_schema_to_grammar_mjs), json_schema_to_grammar_mjs_len, "application/javascript; charset=utf-8");
res.set_content(reinterpret_cast<const char*>(&json_schema_to_grammar_mjs), json_schema_to_grammar_mjs_len, "application/javascript");
return false;
});
@@ -2793,7 +2745,7 @@ int main(int argc, char **argv)
{ "user_name", llama.name_user.c_str() },
{ "assistant_name", llama.name_assistant.c_str() }
};
res.set_content(data.dump(), "application/json; charset=utf-8");
res.set_content(data.dump(), "application/json");
});
svr.Post("/completion", [&llama, &validate_api_key](const httplib::Request &req, httplib::Response &res)
@@ -2807,12 +2759,12 @@ int main(int argc, char **argv)
std::string completion_text;
task_result result = llama.next_result(task_id);
if (!result.error && result.stop) {
res.set_content(result.result_json.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8");
res.set_content(result.result_json.dump(-1, ' ', false, json::error_handler_t::replace), "application/json");
}
else
{
res.status = 404;
res.set_content(result.result_json["content"], "text/plain; charset=utf-8");
res.set_content(result.result_json["content"], "text/plain");
return;
}
} else {
@@ -2883,7 +2835,7 @@ int main(int argc, char **argv)
}}
};
res.set_content(models.dump(), "application/json; charset=utf-8");
res.set_content(models.dump(), "application/json");
});
// TODO: add mount point without "/v1" prefix -- how?
@@ -2905,10 +2857,10 @@ int main(int argc, char **argv)
res.set_content(oaicompat_result.dump(-1, ' ', false,
json::error_handler_t::replace),
"application/json; charset=utf-8");
"application/json");
} else {
res.status = 500;
res.set_content(result.result_json["content"], "text/plain; charset=utf-8");
res.set_content(result.result_json["content"], "text/plain");
return;
}
} else {
@@ -2972,12 +2924,12 @@ int main(int argc, char **argv)
task_result result = llama.next_result(task_id);
if (!result.error && result.stop)
{
res.set_content(result.result_json.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8");
res.set_content(result.result_json.dump(-1, ' ', false, json::error_handler_t::replace), "application/json");
}
else
{
res.status = 404;
res.set_content(result.result_json["content"], "text/plain; charset=utf-8");
res.set_content(result.result_json["content"], "text/plain");
return;
}
} else {
@@ -3026,11 +2978,11 @@ int main(int argc, char **argv)
svr.Get("/model.json", [&llama](const httplib::Request &, httplib::Response &res)
{
const json data = llama.get_model_props();
return res.set_content(data.dump(), "application/json; charset=utf-8");
return res.set_content(data.dump(), "application/json");
});
svr.Options(R"(/.*)", [](const httplib::Request &, httplib::Response &res)
{ return res.set_content("", "application/json; charset=utf-8"); });
{ return res.set_content("", "application/json"); });
svr.Post("/tokenize", [&llama](const httplib::Request &req, httplib::Response &res)
{
@@ -3041,7 +2993,7 @@ int main(int argc, char **argv)
tokens = llama.tokenize(body["content"], false);
}
const json data = format_tokenizer_response(tokens);
return res.set_content(data.dump(), "application/json; charset=utf-8");
return res.set_content(data.dump(), "application/json");
});
svr.Post("/detokenize", [&llama](const httplib::Request &req, httplib::Response &res)
@@ -3055,7 +3007,7 @@ int main(int argc, char **argv)
}
const json data = format_detokenized_response(content);
return res.set_content(data.dump(), "application/json; charset=utf-8");
return res.set_content(data.dump(), "application/json");
});
svr.Post("/embedding", [&llama](const httplib::Request &req, httplib::Response &res)
@@ -3072,7 +3024,7 @@ int main(int argc, char **argv)
}
const int task_id = llama.request_completion({ {"prompt", prompt}, { "n_predict", 0} }, false, true, -1);
task_result result = llama.next_result(task_id);
return res.set_content(result.result_json.dump(), "application/json; charset=utf-8");
return res.set_content(result.result_json.dump(), "application/json");
});
svr.set_logger(log_server_request);
@@ -3093,7 +3045,7 @@ int main(int argc, char **argv)
{
snprintf(buf, sizeof(buf), fmt, "Unknown Exception");
}
res.set_content(buf, "text/plain; charset=utf-8");
res.set_content(buf, "text/plain");
res.status = 500;
});
@@ -3101,15 +3053,15 @@ int main(int argc, char **argv)
{
if (res.status == 401)
{
res.set_content("Unauthorized", "text/plain; charset=utf-8");
res.set_content("Unauthorized", "text/plain");
}
if (res.status == 400)
{
res.set_content("Invalid request", "text/plain; charset=utf-8");
res.set_content("Invalid request", "text/plain");
}
else if (res.status == 404)
{
res.set_content("File Not Found", "text/plain; charset=utf-8");
res.set_content("File Not Found", "text/plain");
res.status = 404;
}
});

View File

@@ -369,7 +369,10 @@ static struct ggml_tensor * llama_build_train_graphs(
checkpoints.push_back(t00);
checkpoints.push_back(t01);
const float kv_scale = 1.0f/sqrtf(float(n_embd)/n_head);
struct ggml_tensor * kv_scale = NULL;
if (!enable_flash_attn) {
kv_scale = ggml_new_f32(ctx, 1.0f/sqrtf(float(n_embd)/n_head));
}
for (int il = 0; il < n_layer; ++il) {
struct my_llama_layer & layer = model->layers[il];
@@ -441,13 +444,14 @@ static struct ggml_tensor * llama_build_train_graphs(
// make sure some tensors are not reallocated by inserting new temporary nodes depending on them
int n_leafs_before = gb->n_leafs;
int n_nodes_before = gb->n_nodes;
struct ggml_tensor * one = ggml_new_f32(ctx, 1.0f);
// output tensors
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t35, 1.0f));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36, 1.0f));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t35, one));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36, one));
// input gradient
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36->grad, 1.0f));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36->grad, one));
// KQ_pos
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, KQ_pos, 1.0f));
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, KQ_pos, one));
GGML_ASSERT(t36->grad->data == NULL && t36->grad->view_src == NULL);
ggml_allocr_alloc(alloc, t36->grad);

View File

@@ -72,7 +72,7 @@ static void remove_allocated_tensor(ggml_tallocr_t alloc, struct ggml_tensor * t
// check if a tensor is allocated by this buffer
static bool ggml_tallocr_is_own(ggml_tallocr_t alloc, const struct ggml_tensor * tensor) {
return tensor->buffer == alloc->buffer && (!tensor->view_src || tensor->view_src->buffer == alloc->buffer);
return tensor->buffer == alloc->buffer;
}
static bool ggml_is_view(struct ggml_tensor * t) {
@@ -449,10 +449,11 @@ static void init_view(ggml_gallocr_t galloc, struct ggml_tensor * view, bool upd
if (update_backend) {
view->backend = view->view_src->backend;
}
// views are initialized in the alloc buffer rather than the view_src buffer
view->buffer = alloc->buffer;
view->buffer = view->view_src->buffer;
view->data = (char *)view->view_src->data + view->view_offs;
// FIXME: the view should be initialized by the owning buffer, but currently this breaks the CUDA backend
// due to the ggml_tensor_extra_gpu ring buffer overwriting the KV cache extras
assert(ggml_tallocr_is_measure(alloc) || !view->buffer || view->buffer->buft == alloc->buffer->buft);
if (!alloc->measure) {
@@ -735,10 +736,6 @@ void ggml_allocr_set_parse_seq(ggml_allocr_t alloc, const int * list, int n) {
}
void ggml_allocr_free(ggml_allocr_t alloc) {
if (alloc == NULL) {
return;
}
ggml_gallocr_free(alloc->galloc);
ggml_tallocr_free(alloc->talloc);
free(alloc);
@@ -778,7 +775,7 @@ ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_conte
}
if (nbytes == 0) {
// all the tensors in the context are already allocated
fprintf(stderr, "%s: no tensors to allocate\n", __func__);
return NULL;
}
@@ -792,11 +789,6 @@ ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_conte
} else {
ggml_backend_view_init(buffer, t);
}
} else {
if (t->view_src != NULL) {
// view of a pre-allocated tensor
ggml_backend_view_init(buffer, t);
}
}
}

View File

@@ -20,9 +20,6 @@ extern "C" {
size_t (*get_alignment) (ggml_backend_buffer_type_t buft); // tensor alignment
size_t (*get_alloc_size) (ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor); // data size needed to allocate the tensor, including padding
bool (*supports_backend)(ggml_backend_buffer_type_t buft, ggml_backend_t backend); // check if the buffer type is usable by the backend
// check if tensor data is in host memory
// should be equivalent to supports_backend(buft, ggml_backend_cpu_init())
bool (*is_host) (ggml_backend_buffer_type_t buft);
};
struct ggml_backend_buffer_type {
@@ -34,16 +31,15 @@ extern "C" {
typedef void * ggml_backend_buffer_context_t;
struct ggml_backend_buffer_i {
void (*free_buffer) (ggml_backend_buffer_t buffer);
void (*free_buffer)(ggml_backend_buffer_t buffer);
//void (*reset) (ggml_backend_buffer_t buffer); // reset any internal state due to tensor initialization, such as tensor extras
void * (*get_base) (ggml_backend_buffer_t buffer);
void (*init_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
void (*set_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
void (*get_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
void * (*get_base) (ggml_backend_buffer_t buffer);
void (*init_tensor)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
void (*set_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
void (*get_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
// (optional) copy tensor between different buffer-type, allow for single-copy tranfers
void (*cpy_tensor_from)(ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst);
void (*cpy_tensor_to) (ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst);
void (*clear) (ggml_backend_buffer_t buffer, uint8_t value);
void (*cpy_tensor_from)(ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst);
void (*cpy_tensor_to) (ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst);
};
struct ggml_backend_buffer {
@@ -82,7 +78,7 @@ extern "C" {
void (*cpy_tensor_from_async)(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
void (*cpy_tensor_to_async) (ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
void (*synchronize)(ggml_backend_t backend);
void (*synchronize) (ggml_backend_t backend);
// compute graph with a plan
ggml_backend_graph_plan_t (*graph_plan_create) (ggml_backend_t backend, struct ggml_cgraph * cgraph);

View File

@@ -35,13 +35,6 @@ bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_ba
return buft->iface.supports_backend(buft, backend);
}
bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) {
if (buft->iface.is_host) {
return buft->iface.is_host(buft);
}
return false;
}
// backend buffer
ggml_backend_buffer_t ggml_backend_buffer_init(
@@ -101,14 +94,6 @@ size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct g
return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type(buffer), tensor);
}
void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
buffer->iface.clear(buffer, value);
}
bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) {
return ggml_backend_buft_is_host(ggml_backend_buffer_type(buffer));
}
ggml_backend_buffer_type_t ggml_backend_buffer_type(ggml_backend_buffer_t buffer) {
return buffer->buft;
}
@@ -393,6 +378,7 @@ static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
free(buffer->context);
GGML_UNUSED(buffer);
}
static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
@@ -425,10 +411,6 @@ static void ggml_backend_cpu_buffer_cpy_tensor_to(ggml_backend_buffer_t buffer,
GGML_UNUSED(buffer);
}
static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
memset(buffer->context, value, buffer->size);
}
static struct ggml_backend_buffer_i cpu_backend_buffer_i = {
/* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer,
/* .get_base = */ ggml_backend_cpu_buffer_get_base,
@@ -437,7 +419,6 @@ static struct ggml_backend_buffer_i cpu_backend_buffer_i = {
/* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
/* .cpy_tensor_from = */ ggml_backend_cpu_buffer_cpy_tensor_from,
/* .cpy_tensor_to = */ ggml_backend_cpu_buffer_cpy_tensor_to,
/* .clear = */ ggml_backend_cpu_buffer_clear,
};
// for buffers from ptr, free is not called
@@ -449,7 +430,6 @@ static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = {
/* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
/* .cpy_tensor_from = */ ggml_backend_cpu_buffer_cpy_tensor_from,
/* .cpy_tensor_to = */ ggml_backend_cpu_buffer_cpy_tensor_to,
/* .clear = */ ggml_backend_cpu_buffer_clear,
};
static const size_t TENSOR_ALIGNMENT = 64; // should be enough for AVX 512
@@ -475,70 +455,20 @@ static bool ggml_backend_cpu_buffer_type_supports_backend(ggml_backend_buffer_ty
GGML_UNUSED(buft);
}
static bool ggml_backend_cpu_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
return true;
GGML_UNUSED(buft);
}
ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = {
static struct ggml_backend_buffer_type ggml_backend_buffer_type_cpu = {
/* .iface = */ {
/* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
/* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend,
/* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
},
/* .context = */ NULL,
};
return &ggml_backend_cpu_buffer_type;
return &ggml_backend_buffer_type_cpu;
}
#ifdef GGML_USE_CPU_HBM
// buffer type HBM
#include <hbwmalloc.h>
static void ggml_backend_cpu_hbm_buffer_free_buffer(ggml_backend_buffer_t buffer) {
hbw_free(buffer->context);
}
static ggml_backend_buffer_t ggml_backend_cpu_hbm_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
//void * ptr = hbw_malloc(size);
void * ptr;
int result = hbw_posix_memalign(&ptr, ggml_backend_cpu_buffer_type_get_alignment(buft), size);
if (result != 0) {
fprintf(stderr, "failed to allocate HBM buffer of size %zu\n", size);
return NULL;
}
// FIXME: this is a hack to avoid having to implement a new buffer type
ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
buffer->buft = buft;
buffer->iface.free_buffer = ggml_backend_cpu_hbm_buffer_free_buffer;
return buffer;
}
ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type() {
static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_hbm = {
/* .iface = */ {
/* .alloc_buffer = */ ggml_backend_cpu_hbm_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
/* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend,
/* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
},
/* .context = */ NULL,
};
return &ggml_backend_cpu_buffer_type_hbm;
}
#endif
struct ggml_backend_cpu_context {
int n_threads;
void * work_data;
@@ -575,7 +505,7 @@ static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend
struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu));
cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
cpu_plan->cgraph = *cgraph; // FIXME: deep copy
cpu_plan->cgraph = *cgraph;
if (cpu_plan->cplan.work_size > 0) {
cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size);
@@ -1250,7 +1180,7 @@ void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml
// utils
void ggml_backend_view_init(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
GGML_ASSERT(tensor->buffer == NULL);
//GGML_ASSERT(tensor->data == NULL); // views of pre-allocted tensors may have the data set, but still need to be initialized
GGML_ASSERT(tensor->data == NULL);
GGML_ASSERT(tensor->view_src != NULL);
GGML_ASSERT(tensor->view_src->buffer != NULL);
GGML_ASSERT(tensor->view_src->data != NULL);

View File

@@ -21,7 +21,6 @@ extern "C" {
GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft);
GGML_API size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor);
GGML_API bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend);
GGML_API bool ggml_backend_buft_is_host (ggml_backend_buffer_type_t buft);
// buffer
GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer);
@@ -30,8 +29,6 @@ extern "C" {
GGML_API void ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
GGML_API void ggml_backend_buffer_clear (ggml_backend_buffer_t buffer, uint8_t value);
GGML_API bool ggml_backend_buffer_is_host (ggml_backend_buffer_t buffer);
GGML_API ggml_backend_buffer_type_t ggml_backend_buffer_type(ggml_backend_buffer_t buffer);
//
@@ -79,10 +76,6 @@ extern "C" {
GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void);
#ifdef GGML_USE_CPU_HBM
GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void);
#endif
//
// Backend registry
//

View File

@@ -31,7 +31,6 @@
#define CUDA_R_16F HIPBLAS_R_16F
#define CUDA_R_32F HIPBLAS_R_32F
#define __shfl_xor_sync(mask, var, laneMask, width) __shfl_xor(var, laneMask, width)
#define cublasComputeType_t hipblasDatatype_t //deprecated, new hipblasComputeType_t not in 5.6
#define cublasCreate hipblasCreate
#define cublasGemmEx hipblasGemmEx
#define cublasGemmBatchedEx hipblasGemmBatchedEx
@@ -41,7 +40,6 @@
#define cublasSetStream hipblasSetStream
#define cublasSgemm hipblasSgemm
#define cublasStatus_t hipblasStatus_t
#define cudaDataType_t hipblasDatatype_t //deprecated, new hipblasDatatype not in 5.6
#define cudaDeviceCanAccessPeer hipDeviceCanAccessPeer
#define cudaDeviceDisablePeerAccess hipDeviceDisablePeerAccess
#define cudaDeviceEnablePeerAccess hipDeviceEnablePeerAccess
@@ -60,13 +58,8 @@
#define cudaGetDeviceProperties hipGetDeviceProperties
#define cudaGetErrorString hipGetErrorString
#define cudaGetLastError hipGetLastError
#ifdef GGML_HIP_UMA
#define cudaMalloc hipMallocManaged
#define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size)
#else
#define cudaMalloc hipMalloc
#define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size, hipHostMallocDefault)
#endif
#define cudaMemcpy hipMemcpy
#define cudaMemcpy2DAsync hipMemcpy2DAsync
#define cudaMemcpyAsync hipMemcpyAsync
@@ -85,18 +78,10 @@
#define cudaStreamWaitEvent(stream, event, flags) hipStreamWaitEvent(stream, event, flags)
#define cudaStream_t hipStream_t
#define cudaSuccess hipSuccess
#define __trap abort
#else
#include <cuda_runtime.h>
#include <cublas_v2.h>
#include <cuda_fp16.h>
// CUDA 10.2 does not have these macro definitions.
#ifndef CUBLAS_TF32_TENSOR_OP_MATH
#define CUBLAS_TF32_TENSOR_OP_MATH CUBLAS_TENSOR_OP_MATH
#define CUBLAS_COMPUTE_16F CUDA_R_16F
#define CUBLAS_COMPUTE_32F CUDA_R_32F
#define cublasComputeType_t cudaDataType_t
#endif
#endif // defined(GGML_USE_HIPBLAS)
#include "ggml-cuda.h"
@@ -525,14 +510,6 @@ static size_t g_scratch_offset = 0;
static cublasHandle_t g_cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};
[[noreturn]]
static __device__ void bad_arch() {
printf("ERROR: ggml-cuda was compiled without support for the current GPU architecture.\n");
__trap();
(void) bad_arch; // suppress unused function warning
}
static __device__ __forceinline__ float warp_reduce_sum(float x) {
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
@@ -1993,7 +1970,8 @@ template <int vdr> static __device__ __forceinline__ float vec_dot_q4_0_q8_1_imp
// second part effectively subtracts 8 from each quant value
return d4 * (sumi * ds8f.x - (8*vdr/QI4_0) * ds8f.y);
#else
bad_arch();
assert(false);
return 0.0f; // only to satisfy the compiler
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}
@@ -2030,7 +2008,8 @@ template <int vdr> static __device__ __forceinline__ float vec_dot_q4_1_q8_1_imp
// scale second part of sum by QI8_1/(vdr * QR4_1) to compensate for multiple threads adding it
return sumi * d4d8 + m4s8 / (QI8_1 / (vdr * QR4_1));
#else
bad_arch();
assert(false);
return 0.0f; // only to satisfy the compiler
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}
@@ -2065,7 +2044,8 @@ template <int vdr> static __device__ __forceinline__ float vec_dot_q5_0_q8_1_imp
// second part effectively subtracts 16 from each quant value
return d5 * (sumi * ds8f.x - (16*vdr/QI5_0) * ds8f.y);
#else
bad_arch();
assert(false);
return 0.0f; // only to satisfy the compiler
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}
@@ -2110,7 +2090,8 @@ template <int vdr> static __device__ __forceinline__ float vec_dot_q5_1_q8_1_imp
return sumi*d5d8 + m5s8 / (QI5_1 / vdr);
#else
bad_arch();
assert(false);
return 0.0f; // only to satisfy the compiler
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}
@@ -2131,7 +2112,8 @@ template <int vdr> static __device__ __forceinline__ float vec_dot_q8_0_q8_1_imp
return d8_0*d8_1 * sumi;
#else
bad_arch();
assert(false);
return 0.0f; // only to satisfy the compiler
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}
@@ -2161,7 +2143,8 @@ template <int vdr> static __device__ __forceinline__ float vec_dot_q8_1_q8_1_imp
// scale second part of sum by QI8_1/ vdr to compensate for multiple threads adding it
return sumi*d8d8 + m8s8 / (QI8_1 / vdr);
#else
bad_arch();
assert(false);
return 0.0f; // only to satisfy the compiler
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}
@@ -2196,7 +2179,8 @@ static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmvq(
return dm2f.x*sumf_d - dm2f.y*sumf_m;
#else
bad_arch();
assert(false);
return 0.0f; // only to satisfy the compiler
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}
@@ -2233,7 +2217,8 @@ static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmq(
return d8 * (dm2f.x*sumi_d - dm2f.y*sumi_m);
#else
bad_arch();
assert(false);
return 0.0f; // only to satisfy the compiler
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}
@@ -2273,7 +2258,8 @@ static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmvq(
return d3 * sumf;
#else
bad_arch();
assert(false);
return 0.0f; // only to satisfy the compiler
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}
@@ -2298,7 +2284,8 @@ static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmq(
return d3*d8 * sumi;
#else
bad_arch();
assert(false);
return 0.0f; // only to satisfy the compiler
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}
@@ -2331,7 +2318,8 @@ static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_vmmq(
return dm4f.x*sumf_d - dm4f.y*sumf_m;
#else
bad_arch();
assert(false);
return 0.0f; // only to satisfy the compiler
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}
@@ -2364,7 +2352,8 @@ static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_mmq(
return dm4f.x*sumf_d - dm4f.y*sumf_m;
#else
bad_arch();
assert(false);
return 0.0f; // only to satisfy the compiler
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}
@@ -2404,7 +2393,8 @@ static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_vmmq(
return dm5f.x*sumf_d - dm5f.y*sumf_m;
#else
bad_arch();
assert(false);
return 0.0f; // only to satisfy the compiler
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}
@@ -2437,7 +2427,8 @@ static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_mmq(
return dm4f.x*sumf_d - dm4f.y*sumf_m;
#else
bad_arch();
assert(false);
return 0.0f; // only to satisfy the compiler
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}
@@ -2467,7 +2458,8 @@ static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmvq(
return d*sumf;
#else
bad_arch();
assert(false);
return 0.0f; // only to satisfy the compiler
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}
@@ -2498,7 +2490,8 @@ static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmq(
return d6 * sumf_d;
#else
bad_arch();
assert(false);
return 0.0f; // only to satisfy the compiler
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}
@@ -3364,7 +3357,8 @@ static __device__ __forceinline__ float vec_dot_q4_K_q8_1(
return dall * sumf_d - dmin * sumf_m;
#else
bad_arch();
assert(false);
return 0.0f; // only to satisfy the compiler
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
#endif
@@ -3547,7 +3541,8 @@ static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
return d * sumf_d;
#else
bad_arch();
assert(false);
return 0.0f; // only to satisfy the compiler
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
#endif
@@ -3957,7 +3952,7 @@ template <bool need_check> static __global__ void
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
#else
(void) vec_dot_q4_0_q8_1_mul_mat;
bad_arch();
assert(false);
#endif // __CUDA_ARCH__ >= CC_VOLTA
}
@@ -4026,7 +4021,7 @@ template <bool need_check> static __global__ void
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
#else
(void) vec_dot_q4_1_q8_1_mul_mat;
bad_arch();
assert(false);
#endif // __CUDA_ARCH__ >= CC_VOLTA
}
@@ -4093,7 +4088,7 @@ template <bool need_check> static __global__ void
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
#else
(void) vec_dot_q5_0_q8_1_mul_mat;
bad_arch();
assert(false);
#endif // __CUDA_ARCH__ >= CC_VOLTA
}
@@ -4160,7 +4155,7 @@ mul_mat_q5_1(
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
#else
(void) vec_dot_q5_1_q8_1_mul_mat;
bad_arch();
assert(false);
#endif // __CUDA_ARCH__ >= CC_VOLTA
}
@@ -4227,7 +4222,7 @@ template <bool need_check> static __global__ void
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
#else
(void) vec_dot_q8_0_q8_1_mul_mat;
bad_arch();
assert(false);
#endif // __CUDA_ARCH__ >= CC_VOLTA
}
@@ -4294,7 +4289,7 @@ mul_mat_q2_K(
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
#else
(void) vec_dot_q2_K_q8_1_mul_mat;
bad_arch();
assert(false);
#endif // __CUDA_ARCH__ >= CC_VOLTA
}
@@ -4363,7 +4358,7 @@ template <bool need_check> static __global__ void
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
#else
(void) vec_dot_q3_K_q8_1_mul_mat;
bad_arch();
assert(false);
#endif // __CUDA_ARCH__ >= CC_VOLTA
}
@@ -4432,7 +4427,7 @@ template <bool need_check> static __global__ void
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
#else
(void) vec_dot_q4_K_q8_1_mul_mat;
bad_arch();
assert(false);
#endif // __CUDA_ARCH__ >= CC_VOLTA
}
@@ -4499,7 +4494,7 @@ mul_mat_q5_K(
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
#else
(void) vec_dot_q5_K_q8_1_mul_mat;
bad_arch();
assert(false);
#endif // __CUDA_ARCH__ >= CC_VOLTA
}
@@ -4568,7 +4563,7 @@ template <bool need_check> static __global__ void
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
#else
(void) vec_dot_q6_K_q8_1_mul_mat;
bad_arch();
assert(false);
#endif // __CUDA_ARCH__ >= CC_VOLTA
}
@@ -5003,16 +4998,7 @@ static __global__ void rope_neox(
const int ib = col / n_dims;
const int ic = col % n_dims;
if (ib > 0) {
const int i = row*ncols + ib*n_dims + ic;
dst[i + 0] = x[i + 0];
dst[i + 1] = x[i + 1];
return;
}
const int i = row*ncols + ib*n_dims + ic/2;
const int i = row*ncols + ib*n_dims + ic/2;
const int i2 = row/p_delta_rows;
float cur_rot = inv_ndims * ic - ib;
@@ -5273,17 +5259,17 @@ static __global__ void im2col_f32_f16(
const int ky = (i - kd) / OW;
const int ix = i % OW;
const int64_t iiw = ix * s0 + kx * d0 - p0;
const int64_t iih = blockIdx.y * s1 + ky * d1 - p1;
const int iiw = ix * s0 + kx * d0 - p0;
const int iih = blockIdx.y * s1 + ky * d1 - p1;
const int64_t offset_dst =
const int offset_dst =
(blockIdx.y * OW + ix) * CHW +
(blockIdx.z * (KW * KH) + ky * KW + kx);
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
dst[offset_dst] = __float2half(0.0f);
} else {
const int64_t offset_src = blockIdx.z * offset_delta;
const int offset_src = blockIdx.z * offset_delta;
dst[offset_dst] = __float2half(x[offset_src + iih * IW + iiw]);
}
}
@@ -6729,7 +6715,8 @@ void * ggml_cuda_host_malloc(size_t size) {
void * ptr = nullptr;
cudaError_t err = cudaMallocHost((void **) &ptr, size);
if (err != cudaSuccess) {
// clear the error
// The allocation error can be bypassed. A null ptr will assigned out of this function.
// This can fixed the OOM error in WSL.
cudaGetLastError();
fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n",
size/1024.0/1024.0, cudaGetErrorString(err));
@@ -6827,7 +6814,6 @@ static void ggml_cuda_op_get_rows(
break;
default:
// TODO: k-quants
fprintf(stderr, "%s: unsupported type: %s\n", __func__, ggml_type_name(src0->type));
GGML_ASSERT(false);
break;
}
@@ -7071,7 +7057,6 @@ inline void ggml_cuda_op_upscale(
(void) src1;
(void) dst;
(void) src1_dd;
}
inline void ggml_cuda_op_pad(
@@ -7088,7 +7073,6 @@ inline void ggml_cuda_op_pad(
(void) src1;
(void) dst;
(void) src1_dd;
}
inline void ggml_cuda_op_rms_norm(
@@ -7392,7 +7376,7 @@ inline void ggml_cuda_op_mul_mat_cublas(
const int compute_capability = g_compute_capabilities[id];
if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) {
if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1]) {
// convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32
half * src0_as_f16 = nullptr;
size_t src0_as = 0;
@@ -7706,10 +7690,17 @@ inline void ggml_cuda_op_scale(
const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
float scale;
memcpy(&scale, dst->op_params, sizeof(float));
// HACK: support for ggml backend interface
if (src1->backend == GGML_BACKEND_CPU) {
scale = ((float *) src1->data)[0];
} else {
// TODO: pass pointer to kernel instead of copying to host
CUDA_CHECK(cudaMemcpy(&scale, src1->data, sizeof(float), cudaMemcpyDeviceToHost));
}
scale_f32_cuda(src0_dd, dst_dd, scale, ggml_nelements(src0), main_stream);
CUDA_CHECK(cudaGetLastError());
@@ -7756,6 +7747,8 @@ static void ggml_cuda_op_flatten(const ggml_tensor * src0, const ggml_tensor * s
const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_GPU;
const bool dst_on_device = dst->backend == GGML_BACKEND_GPU;
const bool src1_stays_on_host = use_src1 && dst->op == GGML_OP_SCALE;
// dd = data device
float * src0_ddf = nullptr;
float * src1_ddf = nullptr;
@@ -7776,7 +7769,7 @@ static void ggml_cuda_op_flatten(const ggml_tensor * src0, const ggml_tensor * s
CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddf, src0, 0, 0, 0, nrows0, main_stream));
}
if (use_src1) {
if (use_src1 && !src1_stays_on_host) {
if (src1_on_device) {
src1_ddf = (float *) src1_extra->data_device[g_main_device];
} else {
@@ -7824,11 +7817,6 @@ static void ggml_cuda_set_peer_access(const int n_tokens) {
}
#ifdef NDEBUG
for (int id = 0; id < g_device_count; ++id) {
CUDA_CHECK(ggml_cuda_set_device(id));
CUDA_CHECK(cudaDeviceSynchronize());
}
for (int id = 0; id < g_device_count; ++id) {
CUDA_CHECK(ggml_cuda_set_device(id));
@@ -7880,6 +7868,8 @@ static void ggml_cuda_op_mul_mat(
const int nb2 = dst->nb[2];
const int nb3 = dst->nb[3];
ggml_cuda_set_peer_access(ne11);
GGML_ASSERT(dst->backend != GGML_BACKEND_GPU_SPLIT);
GGML_ASSERT(src1->backend != GGML_BACKEND_GPU_SPLIT);
@@ -7936,16 +7926,12 @@ static void ggml_cuda_op_mul_mat(
if (id != 0) {
row_low[id] = ne01*g_tensor_split[id];
if (row_low[id] < ne01) {
row_low[id] -= row_low[id] % rounding;
}
row_low[id] -= row_low[id] % rounding;
}
if (id != g_device_count - 1) {
row_high[id] = ne01*g_tensor_split[id + 1];
if (row_high[id] < ne01) {
row_high[id] -= row_high[id] % rounding;
}
row_high[id] -= row_high[id] % rounding;
}
}
}
@@ -8314,27 +8300,27 @@ static void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor
}
static __global__ void k_compute_batched_ptrs(
const half * src0_as_f16, const half * src1_as_f16, char * dst,
const half * src0_as_f16, const half * src1_as_f16, half * dst_f16,
const void ** ptrs_src, void ** ptrs_dst,
int64_t ne12, int64_t ne13,
int64_t ne23,
size_t nb02, size_t nb03,
size_t nb12, size_t nb13,
size_t nbd2, size_t nbd3,
int64_t r2, int64_t r3) {
int64_t i13 = blockIdx.x * blockDim.x + threadIdx.x;
int64_t i12 = blockIdx.y * blockDim.y + threadIdx.y;
int ne12, int ne13,
int ne23,
int nb02, int nb03,
int nb12, int nb13,
int nb2, int nb3,
int r2, int r3) {
int i13 = blockIdx.x * blockDim.x + threadIdx.x;
int i12 = blockIdx.y * blockDim.y + threadIdx.y;
if (i13 >= ne13 || i12 >= ne12) {
return;
}
int64_t i03 = i13 / r3;
int64_t i02 = i12 / r2;
int i03 = i13 / r3;
int i02 = i12 / r2;
ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02 + i03*nb03;
ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12/2 + i13*nb13/2;
ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst + i12*nbd2 + i13*nbd3;
ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst_f16 + i12* nb2/2 + i13* nb3/2;
}
static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
@@ -8390,41 +8376,7 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const
to_fp16_cuda(src1_ddf, src1_as_f16, ne1, main_stream);
size_t dst_as = 0;
half * dst_f16 = nullptr;
char * dst_t = nullptr;
cublasComputeType_t cu_compute_type = CUBLAS_COMPUTE_16F;
cudaDataType_t cu_data_type = CUDA_R_16F;
// dst strides
size_t nbd2 = dst->nb[2];
size_t nbd3 = dst->nb[3];
const half alpha_f16 = 1.0f;
const half beta_f16 = 0.0f;
const float alpha_f32 = 1.0f;
const float beta_f32 = 0.0f;
const void * alpha = &alpha_f16;
const void * beta = &beta_f16;
if (dst->op_params[0] == GGML_PREC_DEFAULT) {
dst_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &dst_as);
dst_t = (char *) dst_f16;
nbd2 /= sizeof(float) / sizeof(half);
nbd3 /= sizeof(float) / sizeof(half);
} else {
dst_t = (char *) dst_ddf;
cu_compute_type = CUBLAS_COMPUTE_32F;
cu_data_type = CUDA_R_32F;
alpha = &alpha_f32;
beta = &beta_f32;
}
half * dst_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &dst_as);
GGML_ASSERT(ne12 % ne02 == 0);
GGML_ASSERT(ne13 % ne03 == 0);
@@ -8433,6 +8385,9 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const
const int64_t r2 = ne12/ne02;
const int64_t r3 = ne13/ne03;
const half alpha_f16 = 1.0f;
const half beta_f16 = 0.0f;
#if 0
// use cublasGemmEx
{
@@ -8442,12 +8397,12 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const
int i02 = i12 / r2;
CUBLAS_CHECK(
cublasGemmEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
cublasGemmEx(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
ne01, ne11, ne10,
alpha, (const char *) src0_as_f16 + i02*src0->nb[2] + i03*src0->nb[3] , CUDA_R_16F, nb01/sizeof(half),
(const char *) src1_as_f16 + i12*src1->nb[2]/2 + i13*src1->nb[3]/2, CUDA_R_16F, nb11/sizeof(float),
beta, ( char *) dst_t + i12*nbd2 + i13*nbd3, cu_data_type, ne01,
cu_compute_type,
&alpha_f16, (const char *) src0_as_f16 + i02*src0->nb[2] + i03*src0->nb[3] , CUDA_R_16F, nb01/sizeof(half),
(const char *) src1_as_f16 + i12*src1->nb[2]/2 + i13*src1->nb[3]/2, CUDA_R_16F, nb11/sizeof(float),
&beta_f16, ( char *) dst_f16 + i12* dst->nb[2]/2 + i13* dst->nb[3]/2, CUDA_R_16F, ne01,
CUBLAS_COMPUTE_16F,
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
}
}
@@ -8459,11 +8414,11 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const
CUBLAS_CHECK(
cublasGemmStridedBatchedEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
ne01, ne11, ne10,
alpha, (const char *) src0_as_f16, CUDA_R_16F, nb01/sizeof(half), src0->nb[2]/sizeof(half), // strideA
(const char *) src1_as_f16, CUDA_R_16F, nb11/sizeof(float), src1->nb[2]/sizeof(float), // strideB
beta, ( char *) dst_t, cu_data_type, ne01, dst->nb[2]/sizeof(float), // strideC
&alpha_f16, (const char *) src0_as_f16, CUDA_R_16F, nb01/sizeof(half), src0->nb[2]/sizeof(half), // strideA
(const char *) src1_as_f16, CUDA_R_16F, nb11/sizeof(float), src1->nb[2]/sizeof(float), // strideB
&beta_f16, ( char *) dst_f16, CUDA_R_16F, ne01, dst->nb[2]/sizeof(float), // strideC
ne12*ne13,
cu_compute_type,
CUBLAS_COMPUTE_16F,
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
} else {
// use cublasGemmBatchedEx
@@ -8480,24 +8435,24 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const
dim3 block_dims(ne13, ne12);
k_compute_batched_ptrs<<<1, block_dims, 0, main_stream>>>(
src0_as_f16, src1_as_f16, dst_t,
src0_as_f16, src1_as_f16, dst_f16,
ptrs_src, ptrs_dst,
ne12, ne13,
ne23,
nb02, nb03,
nb12, nb13,
nbd2, nbd3,
dst->nb[2], dst->nb[3],
r2, r3);
CUDA_CHECK(cudaGetLastError());
CUBLAS_CHECK(
cublasGemmBatchedEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
ne01, ne11, ne10,
alpha, (const void **) (ptrs_src + 0*ne23), CUDA_R_16F, nb01/sizeof(half),
(const void **) (ptrs_src + 1*ne23), CUDA_R_16F, nb11/sizeof(float),
beta, ( void **) (ptrs_dst + 0*ne23), cu_data_type, ne01,
&alpha_f16, (const void **) (ptrs_src + 0*ne23), CUDA_R_16F, nb01/sizeof(half),
(const void **) (ptrs_src + 1*ne23), CUDA_R_16F, nb11/sizeof(float),
&beta_f16, ( void **) (ptrs_dst + 0*ne23), CUDA_R_16F, ne01,
ne23,
cu_compute_type,
CUBLAS_COMPUTE_16F,
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
if (ptrs_src_s != 0) {
@@ -8509,14 +8464,11 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const
}
#endif
if (dst->op_params[0] == GGML_PREC_DEFAULT) {
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
to_fp32_cuda(dst_f16, dst_ddf, ne, main_stream);
ggml_cuda_pool_free(dst_f16, dst_as);
}
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
to_fp32_cuda(dst_f16, dst_ddf, ne, main_stream);
ggml_cuda_pool_free(src1_as_f16, src1_as);
ggml_cuda_pool_free(dst_f16, dst_as);
}
static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
@@ -8780,8 +8732,7 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s
// TODO: mmq/mmv support
#endif
const int64_t nb11 = src1->nb[1];
const int64_t nb1 = dst->nb[1];
GGML_ASSERT(dst->backend == GGML_BACKEND_GPU);
const struct ggml_tensor * ids = src0;
const int32_t id = ((int32_t *) dst->op_params)[0];
@@ -8789,12 +8740,10 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s
std::vector<char> ids_host(ggml_nbytes(ids));
const cudaStream_t stream = g_cudaStreams[g_main_device][0];
if (ids->backend == GGML_BACKEND_GPU) {
const char * ids_dev = (const char *)((const ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device];
CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream));
CUDA_CHECK(cudaStreamSynchronize(stream));
CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, g_cudaStreams[g_main_device][0]));
CUDA_CHECK(cudaStreamSynchronize(g_cudaStreams[g_main_device][0]));
} else {
memcpy(ids_host.data(), ids->data, ggml_nbytes(ids));
}
@@ -8808,110 +8757,37 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s
ggml_tensor src1_row = *src1;
ggml_tensor dst_row = *dst;
src1_row.backend = GGML_BACKEND_GPU;
dst_row.backend = GGML_BACKEND_GPU;
src1_row.ne[1] = 1;
dst_row.ne[1] = 1;
src1_row.nb[2] = src1_row.nb[1];
dst_row.nb[2] = dst_row.nb[1];
src1_row.nb[3] = src1_row.nb[1];
dst_row.nb[3] = dst_row.nb[1];
src1_row.extra = &src1_row_extra;
dst_row.extra = &dst_row_extra;
char * src1_original = src1->backend == GGML_BACKEND_CPU ?
(char *) src1->data : (char *) src1_extra->data_device[g_main_device];
char * dst_original = dst->backend == GGML_BACKEND_CPU ?
(char *) dst->data : (char *) dst_extra->data_device[g_main_device];
if (src1->ne[1] == 1) {
GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);
GGML_ASSERT(dst->backend == GGML_BACKEND_GPU);
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
//int32_t row_id;
//CUDA_CHECK(cudaMemcpyAsync(&row_id, ids_dev + i01*ids->nb[1] + id*ids->nb[0], sizeof(int32_t), cudaMemcpyDeviceToHost, g_cudaStreams[g_main_device][0]));
//CUDA_CHECK(cudaStreamSynchronize(g_cudaStreams[g_main_device][0]));
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
//int32_t row_id;
//CUDA_CHECK(cudaMemcpyAsync(&row_id, ids_dev + i01*ids->nb[1] + id*ids->nb[0], sizeof(int32_t), cudaMemcpyDeviceToHost, g_cudaStreams[g_main_device][0]));
//CUDA_CHECK(cudaStreamSynchronize(g_cudaStreams[g_main_device][0]));
const int32_t row_id = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
const int32_t row_id = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
GGML_ASSERT(row_id >= 0 && row_id < n_as);
GGML_ASSERT(row_id >= 0 && row_id < n_as);
const struct ggml_tensor * src0_row = dst->src[row_id + 2];
const struct ggml_tensor * src0_row = dst->src[row_id + 2];
src1_row_extra.data_device[g_main_device] = (char *) src1_extra->data_device[g_main_device] + i01*src1->nb[1];
src1_row.data = (char *) src1->data + i01*src1->nb[1];
src1_row_extra.data_device[g_main_device] = src1_original + i01*src1->nb[1];
src1_row.data = (char *) src1->data + i01*src1->nb[1]; // TODO why is this set?
dst_row_extra.data_device[g_main_device] = (char *) dst_extra->data_device[g_main_device] + i01*dst->nb[1];
dst_row.data = (char *) dst->data + i01*dst->nb[1];
dst_row_extra.data_device[g_main_device] = dst_original + i01*dst->nb[1];
dst_row.data = (char *) dst->data + i01*dst->nb[1]; // TODO why is this set?
ggml_cuda_mul_mat(src0_row, &src1_row, &dst_row);
}
} else {
size_t as_src1, as_dst;
char * src1_contiguous = (char *) ggml_cuda_pool_malloc(sizeof(float)*ggml_nelements(src1), &as_src1);
char * dst_contiguous = (char *) ggml_cuda_pool_malloc(sizeof(float)*ggml_nelements(dst), &as_dst);
src1_row_extra.data_device[g_main_device] = src1_contiguous;
dst_row_extra.data_device[g_main_device] = dst_contiguous;
const cudaMemcpyKind src1_kind = src1->backend == GGML_BACKEND_CPU ?
cudaMemcpyHostToDevice : cudaMemcpyDeviceToDevice;
const cudaMemcpyKind dst_kind = dst->backend == GGML_BACKEND_CPU ?
cudaMemcpyDeviceToHost : cudaMemcpyDeviceToDevice;
for (int32_t row_id = 0; row_id < n_as; ++row_id) {
const struct ggml_tensor * src0_row = dst->src[row_id + 2];
int64_t num_src1_rows = 0;
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
if (row_id_i != row_id) {
continue;
}
GGML_ASSERT(row_id >= 0 && row_id < n_as);
CUDA_CHECK(cudaMemcpyAsync(src1_contiguous + num_src1_rows*nb11, src1_original + i01*nb11,
nb11, src1_kind, stream));
num_src1_rows++;
}
if (num_src1_rows == 0) {
continue;
}
src1_row.ne[1] = num_src1_rows;
dst_row.ne[1] = num_src1_rows;
src1_row.nb[1] = nb11;
src1_row.nb[2] = num_src1_rows*nb11;
src1_row.nb[3] = num_src1_rows*nb11;
dst_row.nb[1] = nb1;
dst_row.nb[2] = num_src1_rows*nb1;
dst_row.nb[3] = num_src1_rows*nb1;
ggml_cuda_mul_mat(src0_row, &src1_row, &dst_row);
num_src1_rows = 0;
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
if (row_id_i != row_id) {
continue;
}
GGML_ASSERT(row_id >= 0 && row_id < n_as);
CUDA_CHECK(cudaMemcpyAsync(dst_original + i01*nb1, dst_contiguous + num_src1_rows*nb1,
nb1, dst_kind, stream));
num_src1_rows++;
}
}
ggml_cuda_pool_free(src1_contiguous, as_src1);
ggml_cuda_pool_free(dst_contiguous, as_dst);
}
if (dst->backend == GGML_BACKEND_CPU) {
CUDA_CHECK(cudaStreamSynchronize(stream));
ggml_cuda_mul_mat(src0_row, &src1_row, &dst_row);
}
}
@@ -9082,7 +8958,7 @@ void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) {
char * buf;
CUDA_CHECK(cudaMalloc(&buf, size));
char * buf_host = (char *)data + offset_split;
char * buf_host = (char*)data + offset_split;
// set padding to 0 to avoid possible NaN values
if (size > original_size) {
@@ -9104,7 +8980,7 @@ void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) {
}
void ggml_cuda_free_data(struct ggml_tensor * tensor) {
if (!tensor || !tensor->extra || (tensor->backend != GGML_BACKEND_GPU && tensor->backend != GGML_BACKEND_GPU_SPLIT) ) {
if (!tensor || (tensor->backend != GGML_BACKEND_GPU && tensor->backend != GGML_BACKEND_GPU_SPLIT) ) {
return;
}
@@ -9227,10 +9103,11 @@ void ggml_cuda_assign_scratch_offset(struct ggml_tensor * tensor, size_t offset)
ggml_tensor_extra_gpu * extra = ggml_cuda_alloc_temp_tensor_extra();
const bool inplace = tensor->view_src != nullptr;
const bool inplace = (tensor->src[0] != nullptr && tensor->src[0]->data == tensor->data) ||
tensor->op == GGML_OP_VIEW;
if (inplace && (tensor->view_src->backend == GGML_BACKEND_GPU || tensor->view_src->backend == GGML_BACKEND_GPU_SPLIT)) {
ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->view_src->extra;
if (inplace && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT)) {
ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->src[0]->extra;
char * src0_ddc = (char *) src0_extra->data_device[g_main_device];
size_t view_offset = 0;
if (tensor->op == GGML_OP_VIEW) {
@@ -9310,14 +9187,14 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_
|| (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT))
|| (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_GPU);
if (!any_on_device && tensor->op != GGML_OP_MUL_MAT && tensor->op != GGML_OP_MUL_MAT_ID) {
if (!any_on_device && tensor->op != GGML_OP_MUL_MAT) {
return false;
}
if (tensor->op == GGML_OP_MUL_MAT) {
if (tensor->src[0]->ne[3] != tensor->src[1]->ne[3]) {
#ifndef NDEBUG
fprintf(stderr, "%s: cannot compute %s: src0->ne[3] = %" PRId64 ", src1->ne[3] = %" PRId64 " - fallback to CPU\n", __func__, tensor->name, tensor->src[0]->ne[3], tensor->src[1]->ne[3]);
fprintf(stderr, "%s: cannot compute %s: src0->ne[3] = " PRId64 ", src1->ne[3] = " PRId64 " - fallback to CPU\n", __func__, tensor->name, tensor->src[0]->ne[3], tensor->src[1]->ne[3]);
#endif
return false;
}
@@ -9446,10 +9323,6 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_
return false;
}
if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT) {
ggml_cuda_set_peer_access(tensor->src[1]->ne[1]);
}
if (params->ith != 0) {
return true;
}
@@ -9523,7 +9396,7 @@ static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, g
ggml_backend_buffer_context_cuda * ctx = (ggml_backend_buffer_context_cuda *)buffer->context;
if (tensor->view_src != NULL && tensor->view_offs == 0) {
assert(tensor->view_src->buffer->buft == buffer->buft);
assert(tensor->view_src->buffer->buft == buffer->buft); // TODO
tensor->backend = tensor->view_src->backend;
tensor->extra = tensor->view_src->extra;
return;
@@ -9554,34 +9427,23 @@ static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, g
}
static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
ggml_backend_buffer_context_cuda * ctx = (ggml_backend_buffer_context_cuda *)buffer->context;
ggml_cuda_set_device(ctx->device);
CUDA_CHECK(cudaDeviceSynchronize());
CUDA_CHECK(cudaMemcpy((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice));
UNUSED(buffer);
}
static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
ggml_backend_buffer_context_cuda * ctx = (ggml_backend_buffer_context_cuda *)buffer->context;
ggml_cuda_set_device(ctx->device);
CUDA_CHECK(cudaDeviceSynchronize());
CUDA_CHECK(cudaMemcpy(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost));
}
static void ggml_backend_cuda_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
ggml_backend_buffer_context_cuda * ctx = (ggml_backend_buffer_context_cuda *)buffer->context;
ggml_cuda_set_device(ctx->device);
CUDA_CHECK(cudaDeviceSynchronize());
CUDA_CHECK(cudaMemset(ctx->dev_ptr, value, buffer->size));
UNUSED(buffer);
}
static struct ggml_backend_buffer_i cuda_backend_buffer_interface = {
@@ -9592,7 +9454,6 @@ static struct ggml_backend_buffer_i cuda_backend_buffer_interface = {
/* .get_tensor = */ ggml_backend_cuda_buffer_get_tensor,
/* .cpy_tensor_from = */ NULL,
/* .cpy_tensor_to = */ NULL,
/* .clear = */ ggml_backend_cuda_buffer_clear,
};
// cuda buffer type
@@ -9644,43 +9505,40 @@ static bool ggml_backend_cuda_buffer_type_supports_backend(ggml_backend_buffer_t
UNUSED(buft);
}
static ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface = {
static ggml_backend_buffer_type_i cuda_backend_buffer_type_interface = {
/* .alloc_buffer = */ ggml_backend_cuda_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_cuda_buffer_type_get_alignment,
/* .get_alloc_size = */ ggml_backend_cuda_buffer_type_get_alloc_size,
/* .supports_backend = */ ggml_backend_cuda_buffer_type_supports_backend,
/* .is_host = */ nullptr,
};
ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) {
static struct ggml_backend_buffer_type ggml_backend_cuda_buffer_types[GGML_CUDA_MAX_DEVICES];
static bool ggml_backend_cuda_buffer_type_initialized = false;
if (!ggml_backend_cuda_buffer_type_initialized) {
static struct ggml_backend_buffer_type ggml_backend_buffer_type_cuda[GGML_CUDA_MAX_DEVICES];
static bool ggml_backend_buffer_type_cuda_initialized = false;
if (!ggml_backend_buffer_type_cuda_initialized) {
for (int i = 0; i < GGML_CUDA_MAX_DEVICES; i++) {
ggml_backend_cuda_buffer_types[i] = {
/* .iface = */ ggml_backend_cuda_buffer_type_interface,
ggml_backend_buffer_type_cuda[i] = {
/* .iface = */ cuda_backend_buffer_type_interface,
/* .context = */ (ggml_backend_buffer_type_context_t) (intptr_t) i,
};
}
ggml_backend_cuda_buffer_type_initialized = true;
ggml_backend_buffer_type_cuda_initialized = true;
}
return &ggml_backend_cuda_buffer_types[device];
return &ggml_backend_buffer_type_cuda[device];
}
// host buffer type
static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_cuda_host_free(buffer->context);
ggml_backend_buffer_context_cuda * ctx = (ggml_backend_buffer_context_cuda *)buffer->context;
CUDA_CHECK(cudaFreeHost(ctx->dev_ptr));
delete ctx;
}
static ggml_backend_buffer_t ggml_backend_cuda_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
void * ptr = ggml_cuda_host_malloc(size);
if (ptr == nullptr) {
return nullptr;
}
void * ptr;
CUDA_CHECK(cudaMallocHost(&ptr, size));
// FIXME: this is a hack to avoid having to implement a new buffer type
ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
@@ -9688,21 +9546,24 @@ static ggml_backend_buffer_t ggml_backend_cuda_host_buffer_type_alloc_buffer(ggm
buffer->iface.free_buffer = ggml_backend_cuda_host_buffer_free_buffer;
return buffer;
UNUSED(buft);
}
struct ggml_backend_buffer_type_i cuda_backend_host_buffer_type_interface = {
/* .alloc_buffer = */ ggml_backend_cuda_host_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
/* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
/* .supports_backend = */ ggml_backend_cpu_buffer_type()->iface.supports_backend,
};
ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type() {
static struct ggml_backend_buffer_type ggml_backend_cuda_buffer_type_host = {
/* .iface = */ {
/* .alloc_buffer = */ ggml_backend_cuda_host_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
/* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
/* .supports_backend = */ ggml_backend_cpu_buffer_type()->iface.supports_backend,
/* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
},
static struct ggml_backend_buffer_type ggml_backend_buffer_type_cuda_host = {
/* .iface = */ cuda_backend_host_buffer_type_interface,
/* .context = */ nullptr,
};
return &ggml_backend_cuda_buffer_type_host;
return &ggml_backend_buffer_type_cuda_host;
}
// backend
@@ -9734,6 +9595,8 @@ static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend, ggml_tens
ggml_backend_context_cuda * cuda_ctx = (ggml_backend_context_cuda *)backend->context;
GGML_ASSERT(tensor->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, g_cudaStreams[cuda_ctx->device][0]));
@@ -9743,6 +9606,8 @@ static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend, const ggm
ggml_backend_context_cuda * cuda_ctx = (ggml_backend_context_cuda *)backend->context;
GGML_ASSERT(tensor->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, g_cudaStreams[cuda_ctx->device][0]));

View File

@@ -98,10 +98,7 @@ GGML_API ggml_backend_t ggml_backend_metal_init(void);
GGML_API bool ggml_backend_is_metal(ggml_backend_t backend);
GGML_API ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size);
GGML_API void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb);
GGML_API ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
// helper to check if the device supports a specific family

View File

@@ -180,15 +180,7 @@ struct ggml_metal_context {
@implementation GGMLMetalClass
@end
static void ggml_metal_default_log_callback(enum ggml_log_level level, const char * msg, void * user_data) {
fprintf(stderr, "%s", msg);
UNUSED(level);
UNUSED(user_data);
}
ggml_log_callback ggml_metal_log_callback = ggml_metal_default_log_callback;
ggml_log_callback ggml_metal_log_callback = NULL;
void * ggml_metal_log_user_data = NULL;
void ggml_metal_log_set_callback(ggml_log_callback log_callback, void * user_data) {
@@ -615,24 +607,12 @@ int * ggml_metal_get_concur_list(struct ggml_metal_context * ctx) {
}
// temporarily defined here for compatibility between ggml-backend and the old API
struct ggml_backend_metal_buffer {
void * data;
size_t size;
struct ggml_backend_metal_buffer_context {
void * data;
id<MTLBuffer> metal;
};
struct ggml_backend_metal_buffer_context {
void * all_data;
size_t all_size;
bool owned;
// multiple buffers are used only to avoid the maximum buffer size limitation when using mmap
int n_buffers;
struct ggml_backend_metal_buffer buffers[GGML_METAL_MAX_BUFFERS];
};
// finds the Metal buffer that contains the tensor data on the GPU device
// the assumption is that there is 1-to-1 mapping between the host and device memory buffers, so we can find the
// Metal buffer based on the host memory pointer
@@ -642,29 +622,17 @@ static id<MTLBuffer> ggml_metal_get_buffer(struct ggml_metal_context * ctx, stru
const int64_t tsize = ggml_nbytes(t);
ggml_backend_buffer_t buffer = t->view_src ? t->view_src->buffer : t->buffer;
// compatibility with ggml-backend
if (buffer && buffer->buft == ggml_backend_metal_buffer_type()) {
struct ggml_backend_metal_buffer_context * buf_ctx = (struct ggml_backend_metal_buffer_context *) buffer->context;
if (t->buffer && t->buffer->buft == ggml_backend_metal_buffer_type()) {
struct ggml_backend_metal_buffer_context * buf_ctx = (struct ggml_backend_metal_buffer_context *) t->buffer->context;
// find the view that contains the tensor fully
for (int i = 0; i < buf_ctx->n_buffers; ++i) {
const int64_t ioffs = (int64_t) t->data - (int64_t) buf_ctx->buffers[i].data;
const int64_t ioffs = (int64_t) t->data - (int64_t) buf_ctx->data;
//GGML_METAL_LOG_INFO("ioffs = %10ld, tsize = %10ld, sum = %10ld, buf_ctx->buffers[%d].size = %10ld\n", ioffs, tsize, ioffs + tsize, i, buf_ctx->buffers[i].size);
if (ioffs >= 0 && ioffs + tsize <= (int64_t) buf_ctx->buffers[i].size) {
*offs = (size_t) ioffs;
GGML_ASSERT(ioffs >= 0 && ioffs + tsize <= (int64_t) t->buffer->size);
//GGML_METAL_LOG_INFO("%s: tensor '%16s', offs = %8ld\n", __func__, t->name, *offs);
*offs = (size_t) ioffs;
return buf_ctx->buffers[i].metal;
}
}
GGML_METAL_LOG_ERROR("%s: error: tensor '%s' buffer is nil\n", __func__, t->name);
return nil;
return buf_ctx->metal;
}
// find the view that contains the tensor fully
@@ -1293,7 +1261,7 @@ void ggml_metal_graph_compute(
{
GGML_ASSERT(ggml_is_contiguous(src0));
const float scale = *(const float *) dst->op_params;
const float scale = *(const float *) src1->data;
int64_t n = ggml_nelements(dst);
@@ -1304,8 +1272,8 @@ void ggml_metal_graph_compute(
[encoder setComputePipelineState:ctx->pipeline_scale];
}
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&scale length:sizeof(scale) atIndex:2];
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
@@ -2393,7 +2361,6 @@ void ggml_metal_graph_compute(
// backend interface
// default buffer
static id<MTLDevice> g_backend_device = nil;
static int g_backend_device_ref_count = 0;
@@ -2421,31 +2388,34 @@ static void ggml_backend_metal_free_device(void) {
static void * ggml_backend_metal_buffer_get_base(ggml_backend_buffer_t buffer) {
struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
return ctx->all_data;
return ctx->data;
}
static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer) {
struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
for (int i = 0; i < ctx->n_buffers; i++) {
[ctx->buffers[i].metal release];
}
[ctx->metal release];
ggml_backend_metal_free_device();
if (ctx->owned) {
free(ctx->all_data);
}
free(ctx->data);
free(ctx);
UNUSED(buffer);
}
static void ggml_backend_metal_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
memcpy((char *)tensor->data + offset, data, size);
UNUSED(buffer);
}
static void ggml_backend_metal_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
memcpy(data, (const char *)tensor->data + offset, size);
UNUSED(buffer);
@@ -2463,13 +2433,7 @@ static void ggml_backend_metal_buffer_cpy_tensor_to(ggml_backend_buffer_t buffer
UNUSED(buffer);
}
static void ggml_backend_metal_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
memset(ctx->all_data, value, ctx->all_size);
}
static struct ggml_backend_buffer_i ggml_backend_metal_buffer_i = {
static struct ggml_backend_buffer_i metal_backend_buffer_i = {
/* .free_buffer = */ ggml_backend_metal_buffer_free_buffer,
/* .get_base = */ ggml_backend_metal_buffer_get_base,
/* .init_tensor = */ NULL,
@@ -2477,11 +2441,8 @@ static struct ggml_backend_buffer_i ggml_backend_metal_buffer_i = {
/* .get_tensor = */ ggml_backend_metal_buffer_get_tensor,
/* .cpy_tensor_from = */ ggml_backend_metal_buffer_cpy_tensor_from,
/* .cpy_tensor_to = */ ggml_backend_metal_buffer_cpy_tensor_to,
/* .clear = */ ggml_backend_metal_buffer_clear,
};
// default buffer type
static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
struct ggml_backend_metal_buffer_context * ctx = malloc(sizeof(struct ggml_backend_metal_buffer_context));
@@ -2492,46 +2453,13 @@ static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_ba
size_aligned += (size_page - (size_aligned % size_page));
}
id<MTLDevice> device = ggml_backend_metal_get_device();
ctx->all_data = ggml_metal_host_malloc(size_aligned);
ctx->all_size = size_aligned;
ctx->owned = true;
ctx->n_buffers = 1;
ctx->buffers[0].data = ctx->all_data;
ctx->buffers[0].size = size;
ctx->buffers[0].metal = [device newBufferWithBytesNoCopy:ctx->all_data
ctx->data = ggml_metal_host_malloc(size);
ctx->metal = [ggml_backend_metal_get_device() newBufferWithBytesNoCopy:ctx->data
length:size_aligned
options:MTLResourceStorageModeShared
deallocator:nil];
if (ctx->buffers[0].metal == nil) {
GGML_METAL_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_aligned / 1024.0 / 1024.0);
free(ctx);
ggml_backend_metal_free_device();
return NULL;
}
GGML_METAL_LOG_INFO("%s: allocated buffer, size = %8.2f MiB", __func__, size_aligned / 1024.0 / 1024.0);
#if TARGET_OS_OSX
GGML_METAL_LOG_INFO(", (%8.2f / %8.2f)",
device.currentAllocatedSize / 1024.0 / 1024.0,
device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
if (device.currentAllocatedSize > device.recommendedMaxWorkingSetSize) {
GGML_METAL_LOG_WARN("%s: warning: current allocated size is greater than the recommended max working set size\n", __func__);
} else {
GGML_METAL_LOG_INFO("\n");
}
#else
GGML_METAL_LOG_INFO(", (%8.2f)\n", device.currentAllocatedSize / 1024.0 / 1024.0);
#endif
return ggml_backend_buffer_init(buft, ggml_backend_metal_buffer_i, ctx, size);
return ggml_backend_buffer_init(buft, metal_backend_buffer_i, ctx, size);
}
static size_t ggml_backend_metal_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
@@ -2542,13 +2470,7 @@ static size_t ggml_backend_metal_buffer_type_get_alignment(ggml_backend_buffer_t
static bool ggml_backend_metal_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
return ggml_backend_is_metal(backend) || ggml_backend_is_cpu(backend);
UNUSED(buft);
}
static bool ggml_backend_metal_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
return true;
UNUSED(buft);
GGML_UNUSED(buft);
}
ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void) {
@@ -2558,7 +2480,6 @@ ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void) {
/* .get_alignment = */ ggml_backend_metal_buffer_type_get_alignment,
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
/* .supports_backend = */ ggml_backend_metal_buffer_type_supports_backend,
/* .is_host = */ ggml_backend_metal_buffer_type_is_host,
},
/* .context = */ NULL,
};
@@ -2566,87 +2487,6 @@ ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void) {
return &ggml_backend_buffer_type_metal;
}
// buffer from ptr
ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size) {
struct ggml_backend_metal_buffer_context * ctx = malloc(sizeof(struct ggml_backend_metal_buffer_context));
ctx->all_data = data;
ctx->all_size = size;
ctx->owned = false;
ctx->n_buffers = 0;
const size_t size_page = sysconf(_SC_PAGESIZE);
size_t size_aligned = size;
if ((size_aligned % size_page) != 0) {
size_aligned += (size_page - (size_aligned % size_page));
}
id<MTLDevice> device = ggml_backend_metal_get_device();
// the buffer fits into the max buffer size allowed by the device
if (size_aligned <= device.maxBufferLength) {
ctx->buffers[ctx->n_buffers].data = data;
ctx->buffers[ctx->n_buffers].size = size;
ctx->buffers[ctx->n_buffers].metal = [device newBufferWithBytesNoCopy:data length:size_aligned options:MTLResourceStorageModeShared deallocator:nil];
if (ctx->buffers[ctx->n_buffers].metal == nil) {
GGML_METAL_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_aligned / 1024.0 / 1024.0);
return false;
}
GGML_METAL_LOG_INFO("%s: allocated buffer, size = %8.2f MiB", __func__, size_aligned / 1024.0 / 1024.0);
++ctx->n_buffers;
} else {
// this overlap between the views will guarantee that the tensor with the maximum size will fully fit into
// one of the views
const size_t size_ovlp = ((max_size + size_page - 1) / size_page + 1) * size_page; // round-up 2 pages just in case
const size_t size_step = device.maxBufferLength - size_ovlp;
const size_t size_view = device.maxBufferLength;
for (size_t i = 0; i < size; i += size_step) {
const size_t size_step_aligned = (i + size_view <= size) ? size_view : (size_aligned - i);
ctx->buffers[ctx->n_buffers].data = (void *) ((uint8_t *) data + i);
ctx->buffers[ctx->n_buffers].size = size_step_aligned;
ctx->buffers[ctx->n_buffers].metal = [device newBufferWithBytesNoCopy:(void *) ((uint8_t *) data + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil];
if (ctx->buffers[ctx->n_buffers].metal == nil) {
GGML_METAL_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_step_aligned / 1024.0 / 1024.0);
return false;
}
GGML_METAL_LOG_INFO("%s: allocated buffer, size = %8.2f MiB, offs = %12ld", __func__, size_step_aligned / 1024.0 / 1024.0, i);
if (i + size_step < size) {
GGML_METAL_LOG_INFO("\n");
}
++ctx->n_buffers;
}
}
#if TARGET_OS_OSX
GGML_METAL_LOG_INFO(", (%8.2f / %8.2f)",
device.currentAllocatedSize / 1024.0 / 1024.0,
device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
if (device.currentAllocatedSize > device.recommendedMaxWorkingSetSize) {
GGML_METAL_LOG_WARN("%s: warning: current allocated size is greater than the recommended max working set size\n", __func__);
} else {
GGML_METAL_LOG_INFO("\n");
}
#else
GGML_METAL_LOG_INFO(", (%8.2f)\n", device.currentAllocatedSize / 1024.0 / 1024.0);
#endif
return ggml_backend_buffer_init(ggml_backend_metal_buffer_type(), ggml_backend_metal_buffer_i, ctx, size);
}
// backend
static const char * ggml_backend_metal_name(ggml_backend_t backend) {
return "Metal";
@@ -2659,6 +2499,10 @@ static void ggml_backend_metal_free(ggml_backend_t backend) {
free(backend);
}
static void ggml_backend_metal_synchronize(ggml_backend_t backend) {
UNUSED(backend);
}
static ggml_backend_buffer_type_t ggml_backend_metal_get_default_buffer_type(ggml_backend_t backend) {
return ggml_backend_metal_buffer_type();
@@ -2685,15 +2529,25 @@ static struct ggml_backend_i metal_backend_i = {
/* .get_tensor_async = */ NULL,
/* .cpy_tensor_from_async = */ NULL,
/* .cpy_tensor_to_async = */ NULL,
/* .synchronize = */ NULL,
/* .graph_plan_create = */ NULL,
/* .synchronize = */ ggml_backend_metal_synchronize,
/* .graph_plan_create = */ NULL, // the metal implementation does not require creating graph plans atm
/* .graph_plan_free = */ NULL,
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_metal_graph_compute,
/* .supports_op = */ ggml_backend_metal_supports_op,
};
// TODO: make a common log callback for all backends in ggml-backend
static void ggml_backend_log_callback(enum ggml_log_level level, const char * msg, void * user_data) {
fprintf(stderr, "%s", msg);
UNUSED(level);
UNUSED(user_data);
}
ggml_backend_t ggml_backend_metal_init(void) {
ggml_metal_log_set_callback(ggml_backend_log_callback, NULL);
struct ggml_metal_context * ctx = ggml_metal_init(GGML_DEFAULT_N_THREADS);
if (ctx == NULL) {

View File

@@ -1702,9 +1702,8 @@ kernel void kernel_rope(
dst_data[1] = x0*sin_theta + x1*cos_theta;
}
} else {
for (int64_t ic = 2*tiitg; ic < ne0; ic += 2*tptg.x) {
if (ic < n_dims) {
const int64_t ib = 0;
for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
for (int64_t ic = 2*tiitg; ic < n_dims; ic += 2*tptg.x) {
// simplified from `(ib * n_dims + ic) * inv_ndims`
const float cur_rot = inv_ndims*ic - ib;
@@ -1723,14 +1722,6 @@ kernel void kernel_rope(
dst_data[0] = x0*cos_theta - x1*sin_theta;
dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
} else {
const int64_t i0 = ic;
device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
dst_data[0] = src[0];
dst_data[1] = src[1];
}
}
}

View File

@@ -3677,7 +3677,7 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
const uint8x16_t mins = vshrq_n_u8(mins_and_scales, 4);
const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
const ggml_int16x8x2_t mins16 = {{vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(mins))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(mins)))}};
const ggml_int16x8x2_t mins16 = {vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(mins))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(mins)))};
const int32x4_t s0 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[0]), vget_low_s16 (q8sums.val[0])),
vmull_s16(vget_high_s16(mins16.val[0]), vget_high_s16(q8sums.val[0])));
const int32x4_t s1 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[1]), vget_low_s16 (q8sums.val[1])),
@@ -6626,7 +6626,7 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
const int8x16_t scales = vld1q_s8(scale);
const ggml_int16x8x2_t q6scales = {{vmovl_s8(vget_low_s8(scales)), vmovl_s8(vget_high_s8(scales))}};
const ggml_int16x8x2_t q6scales = {vmovl_s8(vget_low_s8(scales)), vmovl_s8(vget_high_s8(scales))};
const int32x4_t prod = vaddq_s32(vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[0]), vget_low_s16 (q6scales.val[0])),
vmull_s16(vget_high_s16(q8sums.val[0]), vget_high_s16(q6scales.val[0]))),

116
ggml.c
View File

@@ -2383,8 +2383,20 @@ size_t ggml_get_mem_size(const struct ggml_context * ctx) {
size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
size_t max_size = 0;
for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
max_size = MAX(max_size, ggml_nbytes(tensor));
struct ggml_object * obj = ctx->objects_begin;
while (obj != NULL) {
if (obj->type == GGML_OBJECT_TENSOR) {
struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
const size_t size = ggml_nbytes(tensor);
if (max_size < size) {
max_size = size;
}
}
obj = obj->next;
}
return max_size;
@@ -3081,7 +3093,7 @@ struct ggml_tensor * ggml_view_tensor(
return result;
}
struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
struct ggml_tensor * ggml_get_first_tensor(struct ggml_context * ctx) {
struct ggml_object * obj = ctx->objects_begin;
char * const mem_buffer = ctx->mem_buffer;
@@ -3097,7 +3109,7 @@ struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
return NULL;
}
struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
struct ggml_tensor * ggml_get_next_tensor(struct ggml_context * ctx, struct ggml_tensor * tensor) {
struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
obj = obj->next;
@@ -4086,14 +4098,6 @@ struct ggml_tensor * ggml_mul_mat(
return result;
}
void ggml_mul_mat_set_prec(
struct ggml_tensor * a,
enum ggml_prec prec) {
const int32_t prec_i32 = (int32_t) prec;
ggml_set_op_params_i32(a, 0, prec_i32);
}
// ggml_mul_mat_id
struct ggml_tensor * ggml_mul_mat_id(
@@ -4171,23 +4175,23 @@ struct ggml_tensor * ggml_out_prod(
static struct ggml_tensor * ggml_scale_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
float s,
struct ggml_tensor * b,
bool inplace) {
GGML_ASSERT(ggml_is_scalar(b));
GGML_ASSERT(ggml_is_padded_1d(a));
bool is_node = false;
if (a->grad) {
if (a->grad || b->grad) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
ggml_set_op_params(result, &s, sizeof(s));
result->op = GGML_OP_SCALE;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
@@ -4195,15 +4199,15 @@ static struct ggml_tensor * ggml_scale_impl(
struct ggml_tensor * ggml_scale(
struct ggml_context * ctx,
struct ggml_tensor * a,
float s) {
return ggml_scale_impl(ctx, a, s, false);
struct ggml_tensor * b) {
return ggml_scale_impl(ctx, a, b, false);
}
struct ggml_tensor * ggml_scale_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
float s) {
return ggml_scale_impl(ctx, a, s, true);
struct ggml_tensor * b) {
return ggml_scale_impl(ctx, a, b, true);
}
// ggml_set
@@ -9164,8 +9168,6 @@ static void ggml_compute_forward_norm_f32(
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
GGML_ASSERT(eps > 0.0f);
// TODO: optimize
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
@@ -9235,8 +9237,6 @@ static void ggml_compute_forward_rms_norm_f32(
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
GGML_ASSERT(eps > 0.0f);
// TODO: optimize
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
@@ -10325,18 +10325,19 @@ static void ggml_compute_forward_out_prod(
static void ggml_compute_forward_scale_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(dst));
GGML_ASSERT(ggml_are_same_shape(src0, dst));
GGML_ASSERT(ggml_is_scalar(src1));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
// scale factor
float v;
memcpy(&v, dst->op_params, sizeof(float));
const float v = *(float *) src1->data;
const int ith = params->ith;
const int nth = params->nth;
@@ -10367,11 +10368,12 @@ static void ggml_compute_forward_scale_f32(
static void ggml_compute_forward_scale(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_scale_f32(params, src0, dst);
ggml_compute_forward_scale_f32(params, src0, src1, dst);
} break;
default:
{
@@ -11560,13 +11562,10 @@ static void ggml_compute_forward_rope_f32(
}
} else {
// TODO: this might be wrong for ne0 != n_dims - need double check
// it seems we have to rope just the first n_dims elements and do nothing with the rest
// ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
// ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
theta_base *= freq_scale;
for (int64_t ic = 0; ic < ne0; ic += 2) {
if (ic < n_dims) {
const int64_t ib = 0;
for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
for (int64_t ic = 0; ic < n_dims; ic += 2) {
// simplified from `(ib * n_dims + ic) * inv_ndims`
float cur_rot = inv_ndims * ic - ib;
@@ -11589,14 +11588,6 @@ static void ggml_compute_forward_rope_f32(
dst_data[0] = x0*cos_theta - x1*sin_theta;
dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
} else {
const int64_t i0 = ic;
const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
dst_data[0] = src[0];
dst_data[1] = src[1];
}
}
}
@@ -11724,13 +11715,10 @@ static void ggml_compute_forward_rope_f16(
}
} else {
// TODO: this might be wrong for ne0 != n_dims - need double check
// it seems we have to rope just the first n_dims elements and do nothing with the rest
// ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
// ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
theta_base *= freq_scale;
for (int64_t ic = 0; ic < ne0; ic += 2) {
if (ic < n_dims) {
const int64_t ib = 0;
for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
for (int64_t ic = 0; ic < n_dims; ic += 2) {
// simplified from `(ib * n_dims + ic) * inv_ndims`
float cur_rot = inv_ndims * ic - ib;
@@ -11753,14 +11741,6 @@ static void ggml_compute_forward_rope_f16(
dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
} else {
const int64_t i0 = ic;
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
dst_data[0] = src[0];
dst_data[1] = src[1];
}
}
}
@@ -14381,7 +14361,7 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
} break;
case GGML_OP_SCALE:
{
ggml_compute_forward_scale(params, tensor->src[0], tensor);
ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
} break;
case GGML_OP_SET:
{
@@ -14837,7 +14817,7 @@ static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct gg
static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
if (ggml_hash_contains(zero_table, a)) {
struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
struct ggml_tensor * a_zero = ggml_scale(ctx, a, ggml_new_f32(ctx, 0));
return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
} else {
return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
@@ -14973,7 +14953,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
src0->grad,
ggml_scale(ctx,
ggml_mul(ctx, src0, tensor->grad),
2.0f),
ggml_new_f32(ctx, 2.0f)),
zero_table);
}
} break;
@@ -14987,7 +14967,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
ggml_div(ctx,
tensor->grad,
tensor),
0.5f),
ggml_new_f32(ctx, 0.5f)),
zero_table);
}
} break;
@@ -15153,13 +15133,17 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
{
// necessary for llama
if (src0->grad) {
float s;
memcpy(&s, tensor->op_params, sizeof(float));
src0->grad =
ggml_add_or_set(ctx,
src0->grad,
ggml_scale_impl(ctx, tensor->grad, s, false),
ggml_scale_impl(ctx, tensor->grad, src1, false),
zero_table);
}
if (src1->grad) {
src1->grad =
ggml_add_or_set(ctx,
src1->grad,
ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
zero_table);
}
} break;
@@ -15337,8 +15321,6 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
const int n_past = ((int32_t *) tensor->op_params)[0];
src0->grad =
ggml_add_or_set(ctx, src0->grad,
/* ggml_diag_mask_inf_impl() shouldn't be here */
/* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
zero_table);
}
@@ -19197,10 +19179,6 @@ char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
return ctx->infos[i].name.data;
}
enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
return ctx->infos[i].type;
}
// returns the index
static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
const int idx = gguf_find_key(ctx, key);

34
ggml.h
View File

@@ -303,7 +303,7 @@ extern "C" {
#if defined(__ARM_NEON) && defined(__CUDACC__)
typedef half ggml_fp16_t;
#elif defined(__ARM_NEON) && !defined(_MSC_VER)
#elif defined(__ARM_NEON)
typedef __fp16 ggml_fp16_t;
#else
typedef uint16_t ggml_fp16_t;
@@ -343,12 +343,6 @@ extern "C" {
GGML_TYPE_COUNT,
};
// precision
enum ggml_prec {
GGML_PREC_DEFAULT,
GGML_PREC_F32,
};
enum ggml_backend_type {
GGML_BACKEND_CPU = 0,
GGML_BACKEND_GPU = 10,
@@ -484,8 +478,7 @@ extern "C" {
enum ggml_log_level {
GGML_LOG_LEVEL_ERROR = 2,
GGML_LOG_LEVEL_WARN = 3,
GGML_LOG_LEVEL_INFO = 4,
GGML_LOG_LEVEL_DEBUG = 5
GGML_LOG_LEVEL_INFO = 4
};
// ggml object
@@ -736,8 +729,8 @@ extern "C" {
GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
// Context tensor enumeration and lookup
GGML_API struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx);
GGML_API struct ggml_tensor * ggml_get_next_tensor (const struct ggml_context * ctx, struct ggml_tensor * tensor);
GGML_API struct ggml_tensor * ggml_get_first_tensor(struct ggml_context * ctx);
GGML_API struct ggml_tensor * ggml_get_next_tensor (struct ggml_context * ctx, struct ggml_tensor * tensor);
GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
@@ -1064,12 +1057,6 @@ extern "C" {
struct ggml_tensor * a,
struct ggml_tensor * b);
// change the precision of a matrix multiplication
// set to GGML_PREC_F32 for higher precision (useful for phi-2)
GGML_API void ggml_mul_mat_set_prec(
struct ggml_tensor * a,
enum ggml_prec prec);
// indirect matrix multiplication
// ggml_mul_mat_id(ctx, as, ids, id, b) ~= ggml_mul_mat(as[ids[id]], b)
GGML_API struct ggml_tensor * ggml_mul_mat_id(
@@ -1095,13 +1082,13 @@ extern "C" {
GGML_API struct ggml_tensor * ggml_scale(
struct ggml_context * ctx,
struct ggml_tensor * a,
float s);
struct ggml_tensor * b);
// in-place, returns view(a)
GGML_API struct ggml_tensor * ggml_scale_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
float s);
struct ggml_tensor * b);
// b -> view(a,offset,nb1,nb2,3), return modified a
GGML_API struct ggml_tensor * ggml_set(
@@ -2136,11 +2123,10 @@ extern "C" {
GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id);
GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i);
GGML_API int gguf_get_n_tensors (const struct gguf_context * ctx);
GGML_API int gguf_find_tensor (const struct gguf_context * ctx, const char * name);
GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i);
GGML_API char * gguf_get_tensor_name (const struct gguf_context * ctx, int i);
GGML_API enum ggml_type gguf_get_tensor_type (const struct gguf_context * ctx, int i);
GGML_API int gguf_get_n_tensors (const struct gguf_context * ctx);
GGML_API int gguf_find_tensor (const struct gguf_context * ctx, const char * name);
GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i);
GGML_API char * gguf_get_tensor_name (const struct gguf_context * ctx, int i);
// overrides existing values or adds a new one
GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);

View File

@@ -3,7 +3,7 @@
This is a Python package for writing binary files in the [GGUF](https://github.com/ggerganov/ggml/pull/302)
(GGML Universal File) format.
See [convert-llama-hf-to-gguf.py](https://github.com/ggerganov/llama.cpp/blob/master/convert-hf-to-gguf.py)
See [convert-llama-hf-to-gguf.py](https://github.com/ggerganov/llama.cpp/blob/master/convert-llama-hf-to-gguf.py)
as an example for its usage.
## Installation

View File

@@ -95,7 +95,6 @@ class MODEL_ARCH(IntEnum):
BLOOM = auto()
STABLELM = auto()
QWEN = auto()
PHI2 = auto()
class MODEL_TENSOR(IntEnum):
@@ -141,7 +140,6 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.BLOOM: "bloom",
MODEL_ARCH.STABLELM: "stablelm",
MODEL_ARCH.QWEN: "qwen",
MODEL_ARCH.PHI2: "phi2",
}
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
@@ -352,17 +350,6 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_ARCH.GPT2: [
# TODO
],
MODEL_ARCH.PHI2: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
]
# TODO
}

View File

@@ -17,7 +17,6 @@ class TensorNameMap:
"tok_embeddings", # llama-pth
"embeddings.word_embeddings", # bert
"language_model.embedding.word_embeddings", # persimmon
"transformer.embd.wte", # phi2
),
# Token type embeddings
@@ -42,7 +41,6 @@ class TensorNameMap:
"lm_head", # gpt2 mpt falcon llama-hf baichuan qwen
"output", # llama-pth bloom
"word_embeddings_for_head", # persimmon
"lm_head.linear", # phi2
),
# Output norm
@@ -55,7 +53,6 @@ class TensorNameMap:
"transformer.norm_f", # mpt
"ln_f", # refact bloom qwen
"language_model.encoder.final_layernorm", # persimmon
"lm_head.ln", # phi2
),
# Rope frequencies
@@ -78,7 +75,6 @@ class TensorNameMap:
"encoder.layer.{bid}.attention.output.LayerNorm", # bert
"language_model.encoder.layers.{bid}.input_layernorm", # persimmon
"model.layers.{bid}.ln1", # yi
"transformer.h.{bid}.ln", # phi2
),
# Attention norm 2
@@ -94,7 +90,6 @@ class TensorNameMap:
"transformer.h.{bid}.self_attention.query_key_value", # falcon
"h.{bid}.self_attention.query_key_value", # bloom
"language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
"transformer.h.{bid}.mixer.Wqkv", # phi2
),
# Attention query
@@ -133,7 +128,6 @@ class TensorNameMap:
"encoder.layer.{bid}.attention.output.dense", # bert
"transformer.h.{bid}.attn.out_proj", # gpt-j
"language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
"transformer.h.{bid}.mixer.out_proj", # phi2
),
# Rotary embeddings
@@ -173,7 +167,6 @@ class TensorNameMap:
"transformer.h.{bid}.mlp.fc_in", # gpt-j
"language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
"transformer.h.{bid}.mlp.w1", # qwen
"transformer.h.{bid}.mlp.fc1", # phi2
),
MODEL_TENSOR.FFN_UP_EXP: (
@@ -205,7 +198,6 @@ class TensorNameMap:
"encoder.layer.{bid}.output.dense", # bert
"transformer.h.{bid}.mlp.fc_out", # gpt-j
"language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
"transformer.h.{bid}.mlp.fc2", # phi2
),
MODEL_TENSOR.FFN_DOWN_EXP: (

View File

@@ -84,7 +84,7 @@ class SpecialVocab:
merges_file = path / 'merges.txt'
if not merges_file.is_file():
return False
with open(merges_file, 'r', encoding = 'utf-8') as fp:
with open(merges_file, 'r') as fp:
first_line = next(fp, '').strip()
if not first_line.startswith('#'):
fp.seek(0)
@@ -109,10 +109,8 @@ class SpecialVocab:
return True
def _set_special_token(self, typ: str, tid: Any) -> None:
if not isinstance(tid, int):
if not isinstance(tid, int) or tid < 0:
return
if tid < 0:
raise ValueError(f'invalid value for special token type {typ}: {tid}')
if self.n_vocab is None or tid < self.n_vocab:
if typ in self.special_token_ids:
return

1756
llama.cpp

File diff suppressed because it is too large Load Diff

11
llama.h
View File

@@ -39,7 +39,6 @@
#define LLAMA_MAX_RNG_STATE (64*1024)
#define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
#define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
@@ -127,7 +126,7 @@ extern "C" {
bool sorted;
} llama_token_data_array;
typedef bool (*llama_progress_callback)(float progress, void *ctx);
typedef void (*llama_progress_callback)(float progress, void *ctx);
// Input data for llama_decode
// A llama_batch object can contain input about one or many sequences
@@ -180,9 +179,7 @@ extern "C" {
int32_t main_gpu; // the GPU that is used for scratch and small tensors
const float * tensor_split; // how to split layers across multiple GPUs (size: LLAMA_MAX_DEVICES)
// Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
// If the provided progress_callback returns true, model loading continues.
// If it returns false, model loading is immediately aborted.
// called with a progress value between 0 and 1, pass NULL to disable
llama_progress_callback progress_callback;
// context pointer passed to the progress callback
@@ -316,9 +313,7 @@ extern "C" {
LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
// TODO: become more consistent with returned int types across the API
LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
LLAMA_API int llama_n_ctx (const struct llama_context * ctx);
LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_model * model);

View File

@@ -766,19 +766,18 @@ struct test_bin_bcast : public test_case {
struct test_scale : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
float scale;
std::string vars() override {
return VARS_TO_STR3(type, ne, scale);
return VARS_TO_STR2(type, ne);
}
test_scale(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {10, 10, 10, 10},
float scale = 2.0f)
: type(type), ne(ne), scale(scale) {}
std::array<int64_t, 4> ne = {10, 10, 10, 10})
: type(type), ne(ne) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_tensor * scale = ggml_new_tensor_1d(ctx, type, 1);
ggml_tensor * out = ggml_scale(ctx, a, scale);
return out;
}
@@ -1556,7 +1555,6 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
test_cases.emplace_back(new test_rope(type, { 64, 8, 10, 1}, 64, 2, 512)); // neox (falcon 40B)
test_cases.emplace_back(new test_rope(type, { 64, 128, 10, 1}, 64, 2, 512)); // neox (falcon 40B)
test_cases.emplace_back(new test_rope(type, { 80, 32, 10, 1}, 20, 2, 512)); // neox (stablelm)
test_cases.emplace_back(new test_rope(type, { 80, 32, 10, 1}, 32, 2, 512)); // neox (phi-2)
}
test_cases.emplace_back(new test_alibi());

View File

@@ -881,19 +881,19 @@ int main(int argc, const char ** argv) {
// scale
{
srand(seed);
const int nargs = 1;
const int nargs = 2;
int64_t ne2[4];
ne2[0] = 1;
for (int ndims = 1; ndims <= 2; ++ndims) {
x[1] = get_random_tensor_f32(ctx0, 1, ne2, -1.0f, 1.0f);
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
const float s = -1.0f + 2.0f*frand();
ggml_set_param(ctx0, x[0]);
ggml_set_param(ctx0, x[1]);
struct ggml_tensor * f = ggml_sum(ctx0, ggml_scale(ctx0, x[0], s));
struct ggml_tensor * f = ggml_sum(ctx0, ggml_scale(ctx0, x[0], x[1]));
check_gradient("scale", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
}
@@ -1395,7 +1395,7 @@ int main(int argc, const char ** argv) {
ggml_add1(ctx0,
ggml_scale(ctx0,
ggml_soft_max(ctx0, x[0]),
1.0f - eps),
ggml_new_f32(ctx0, 1.0f - eps)),
ggml_new_f32(ctx0, eps))));
check_gradient("softmax", ctx0, x, f, ndims, nargs, 1e-3f, 2e-1f, INFINITY);