Compare commits

..

3 Commits

Author SHA1 Message Date
Georgi Gerganov
b5af7ad84f llama : refactor quantization to avoid <mutex> header
ggml-ci
2024-01-02 15:56:57 +02:00
postmasters
83e633c27e llama : differentiate the KV dims in the attention (#4657)
* Add n_key_dim and n_value_dim

Some models use values that are not derived from `n_embd`.
Also remove `n_embd_head` and `n_embd_gqa` because it is not clear
which "head" is referred to (key or value).

Fix issue #4648.

* Fix `llm_build_kqv` to use `n_value_gqa`

* Rebase

* Rename variables

* Fix llm_build_kqv to be more generic wrt n_embd_head_k

* Update default values for n_embd_head_k and n_embd_head_v

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Fix llm_load_tensors: the asserts were not backcompat

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-02 13:51:28 +02:00
Georgi Gerganov
32866c5edd editorconfig : fix whitespace and indentation #4710 2024-01-02 13:28:15 +02:00
4 changed files with 243 additions and 115 deletions

View File

@@ -2383,8 +2383,8 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
log_set_target(stdout);
LOG_INFO("logging to file is disabled.", {});
}
else if (arg == "--override-kv")
{
else if (arg == "--override-kv")
{
if (++i >= argc) {
invalid_param = true;
break;

View File

@@ -46,6 +46,8 @@ class Keys:
HEAD_COUNT_KV = "{arch}.attention.head_count_kv"
MAX_ALIBI_BIAS = "{arch}.attention.max_alibi_bias"
CLAMP_KQV = "{arch}.attention.clamp_kqv"
KEY_LENGTH = "{arch}.attention.key_length"
VALUE_LENGTH = "{arch}.attention.value_length"
LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon"
LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"

View File

@@ -333,6 +333,12 @@ class GGUFWriter:
def add_head_count_kv(self, count: int) -> None:
self.add_uint32(Keys.Attention.HEAD_COUNT_KV.format(arch=self.arch), count)
def add_key_length(self, length: int) -> None:
self.add_uint32(Keys.Attention.KEY_LENGTH.format(arch=self.arch), length)
def add_value_length(self, length: int) -> None:
self.add_uint32(Keys.Attention.VALUE_LENGTH.format(arch=self.arch), length)
def add_max_alibi_bias(self, bias: float) -> None:
self.add_float32(Keys.Attention.MAX_ALIBI_BIAS.format(arch=self.arch), bias)

346
llama.cpp
View File

@@ -68,7 +68,6 @@
#include <initializer_list>
#include <map>
#include <memory>
#include <mutex>
#include <numeric>
#include <queue>
#include <random>
@@ -245,6 +244,8 @@ enum llm_kv {
LLM_KV_ATTENTION_HEAD_COUNT_KV,
LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
LLM_KV_ATTENTION_CLAMP_KQV,
LLM_KV_ATTENTION_KEY_LENGTH,
LLM_KV_ATTENTION_VALUE_LENGTH,
LLM_KV_ATTENTION_LAYERNORM_EPS,
LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
@@ -297,6 +298,8 @@ static std::map<llm_kv, std::string> LLM_KV_NAMES = {
{ LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
{ LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
{ LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
{ LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
{ LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
{ LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
{ LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
@@ -1284,6 +1287,8 @@ struct llama_hparams {
uint32_t n_head_kv;
uint32_t n_layer;
uint32_t n_rot;
uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
uint32_t n_ff;
uint32_t n_expert = 0;
uint32_t n_expert_used = 0;
@@ -1310,6 +1315,8 @@ struct llama_hparams {
if (this->n_head_kv != other.n_head_kv) return true;
if (this->n_layer != other.n_layer) return true;
if (this->n_rot != other.n_rot) return true;
if (this->n_embd_head_k != other.n_embd_head_k) return true;
if (this->n_embd_head_v != other.n_embd_head_v) return true;
if (this->n_ff != other.n_ff) return true;
if (this->n_expert != other.n_expert) return true;
if (this->n_expert_used != other.n_expert_used) return true;
@@ -1331,12 +1338,12 @@ struct llama_hparams {
return n_head/n_head_kv;
}
uint32_t n_embd_head() const {
return n_embd/n_head;
uint32_t n_embd_k_gqa() const { // dimension of key embeddings across all k-v heads
return n_embd_head_k * n_head_kv;
}
uint32_t n_embd_gqa() const {
return n_embd/n_gqa();
uint32_t n_embd_v_gqa() const { // dimension of value embeddings across all k-v heads
return n_embd_head_v * n_head_kv;
}
};
@@ -1645,8 +1652,9 @@ static bool llama_kv_cache_init(
uint32_t n_ctx,
int n_gpu_layers,
bool offload) {
const uint32_t n_embd = hparams.n_embd_gqa();
const uint32_t n_layer = hparams.n_layer;
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
const uint32_t n_layer = hparams.n_layer;
cache.has_shift = false;
@@ -1677,8 +1685,8 @@ static bool llama_kv_cache_init(
const int i_gpu_start = (int) n_layer - n_gpu_layers;
for (int i = 0; i < (int) n_layer; i++) {
ggml_tensor * k = ggml_new_tensor_1d(cache.ctx, ktype, n_embd*n_ctx);
ggml_tensor * v = ggml_new_tensor_1d(cache.ctx, vtype, n_embd*n_ctx);
ggml_tensor * k = ggml_new_tensor_1d(cache.ctx, ktype, n_embd_k_gqa*n_ctx);
ggml_tensor * v = ggml_new_tensor_1d(cache.ctx, vtype, n_embd_v_gqa*n_ctx);
ggml_format_name(k, "cache_k_l%d", i);
ggml_format_name(v, "cache_v_l%d", i);
cache.k_l.push_back(k);
@@ -2672,6 +2680,12 @@ static void llm_load_hparams(
// gpt-j n_rot = rotary_dim
}
hparams.n_embd_head_k = hparams.n_embd / hparams.n_head;
ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
hparams.n_embd_head_v = hparams.n_embd / hparams.n_head;
ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
// arch-specific KVs
switch (model.arch) {
case LLM_ARCH_LLAMA:
@@ -3082,8 +3096,12 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head);
LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot); // a.k.a. n_embd_head, n_head_dim
LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa());
LLAMA_LOG_INFO("%s: n_embd_k_gqa = %u\n", __func__, hparams.n_embd_k_gqa());
LLAMA_LOG_INFO("%s: n_embd_v_gqa = %u\n", __func__, hparams.n_embd_v_gqa());
LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
@@ -3173,10 +3191,11 @@ static bool llm_load_tensors(
// create tensors for the weights
{
const int64_t n_embd = hparams.n_embd;
const int64_t n_embd_gqa = hparams.n_embd_gqa();
const int64_t n_layer = hparams.n_layer;
const int64_t n_vocab = hparams.n_vocab;
const int64_t n_embd = hparams.n_embd;
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
const int64_t n_layer = hparams.n_layer;
const int64_t n_vocab = hparams.n_vocab;
const auto tn = LLM_TN(model.arch);
switch (model.arch) {
@@ -3202,7 +3221,10 @@ static bool llm_load_tensors(
model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
}
const uint32_t n_ff = hparams.n_ff;
const uint32_t n_ff = hparams.n_ff;
const int64_t n_embd_gqa = n_embd_v_gqa;
GGML_ASSERT(n_embd_gqa == n_embd / hparams.n_gqa());
GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
const int i_gpu_start = n_layer - n_gpu_layers;
@@ -3270,7 +3292,10 @@ static bool llm_load_tensors(
model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
}
const uint32_t n_ff = hparams.n_ff;
const uint32_t n_ff = hparams.n_ff;
const int64_t n_embd_gqa = n_embd_v_gqa;
GGML_ASSERT(n_embd_gqa == n_embd / hparams.n_gqa());
GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
const int i_gpu_start = n_layer - n_gpu_layers;
@@ -3318,7 +3343,10 @@ static bool llm_load_tensors(
model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
}
const uint32_t n_ff = hparams.n_ff;
const uint32_t n_ff = hparams.n_ff;
const int64_t n_embd_gqa = n_embd_v_gqa;
GGML_ASSERT(n_embd_gqa == n_embd / hparams.n_gqa());
GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
const int i_gpu_start = n_layer - n_gpu_layers;
@@ -3368,7 +3396,10 @@ static bool llm_load_tensors(
model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
}
const uint32_t n_ff = hparams.n_ff;
const uint32_t n_ff = hparams.n_ff;
const int64_t n_embd_gqa = n_embd_v_gqa;
GGML_ASSERT(n_embd_gqa == n_embd / hparams.n_gqa());
GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
const int i_gpu_start = n_layer - n_gpu_layers;
@@ -3420,7 +3451,11 @@ static bool llm_load_tensors(
model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
}
const uint32_t n_ff = hparams.n_ff;
const uint32_t n_ff = hparams.n_ff;
const int64_t n_embd_gqa = n_embd_v_gqa;
GGML_ASSERT(n_embd_gqa == n_embd / hparams.n_gqa());
GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
const int i_gpu_start = n_layer - n_gpu_layers;
model.layers.resize(n_layer);
for (uint32_t i = 0; i < n_layer; ++i) {
@@ -3469,7 +3504,10 @@ static bool llm_load_tensors(
model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
}
const uint32_t n_ff = hparams.n_ff;
const uint32_t n_ff = hparams.n_ff;
const int64_t n_embd_gqa = n_embd_v_gqa;
GGML_ASSERT(n_embd_gqa == n_embd / hparams.n_gqa());
GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
const int i_gpu_start = n_layer - n_gpu_layers;
@@ -3520,7 +3558,10 @@ static bool llm_load_tensors(
model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
}
const uint32_t n_ff = hparams.n_ff;
const uint32_t n_ff = hparams.n_ff;
const int64_t n_embd_gqa = n_embd_v_gqa;
GGML_ASSERT(n_embd_gqa == n_embd / hparams.n_gqa());
GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
const int i_gpu_start = n_layer - n_gpu_layers;
@@ -3567,7 +3608,10 @@ static bool llm_load_tensors(
model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
}
const uint32_t n_ff = hparams.n_ff;
const uint32_t n_ff = hparams.n_ff;
const int64_t n_embd_gqa = n_embd_v_gqa;
GGML_ASSERT(n_embd_gqa == n_embd / hparams.n_gqa());
GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
const int i_gpu_start = n_layer - n_gpu_layers;
@@ -3665,7 +3709,10 @@ static bool llm_load_tensors(
model.output_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab}, backend_output);
}
const uint32_t n_ff = hparams.n_ff;
const uint32_t n_ff = hparams.n_ff;
const int64_t n_embd_gqa = n_embd_v_gqa;
GGML_ASSERT(n_embd_gqa == n_embd / hparams.n_gqa());
GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
const int i_gpu_start = n_layer - n_gpu_layers;
@@ -3714,7 +3761,10 @@ static bool llm_load_tensors(
model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
}
const uint32_t n_ff = hparams.n_ff;
const uint32_t n_ff = hparams.n_ff;
const int64_t n_embd_gqa = n_embd_v_gqa;
GGML_ASSERT(n_embd_gqa == n_embd / hparams.n_gqa());
GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
const int i_gpu_start = n_layer - n_gpu_layers;
@@ -3761,7 +3811,10 @@ static bool llm_load_tensors(
model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
}
const uint32_t n_ff = hparams.n_ff;
const uint32_t n_ff = hparams.n_ff;
const int64_t n_embd_gqa = n_embd_v_gqa;
GGML_ASSERT(n_embd_gqa == n_embd / hparams.n_gqa());
GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
const int i_gpu_start = n_layer - n_gpu_layers;
@@ -4000,8 +4053,8 @@ static struct ggml_tensor * llm_build_inp_embd(
return inpL;
}
// Persimmon: n_rot = n_embd_head/2
// Other: n_rot = n_embd_head
// Persimmon: n_rot = n_embd_head_k/2
// Other: n_rot = n_embd_head_k
static void llm_build_k_shift(
struct ggml_context * ctx,
const llama_hparams & hparams,
@@ -4014,17 +4067,17 @@ static void llm_build_k_shift(
float freq_base,
float freq_scale,
const llm_build_cb & cb) {
const int64_t n_layer = hparams.n_layer;
const int64_t n_head_kv = hparams.n_head_kv;
const int64_t n_embd_gqa = hparams.n_embd_gqa();
const int64_t n_embd_head = hparams.n_embd_head();
const int32_t n_orig_ctx = cparams.n_yarn_orig_ctx;
const float ext_factor = cparams.yarn_ext_factor;
const float attn_factor = cparams.yarn_attn_factor;
const float beta_fast = cparams.yarn_beta_fast;
const float beta_slow = cparams.yarn_beta_slow;
const int64_t n_layer = hparams.n_layer;
const int64_t n_head_kv = hparams.n_head_kv;
const int64_t n_embd_head_k = hparams.n_embd_head_k;
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
const int32_t n_orig_ctx = cparams.n_yarn_orig_ctx;
const float ext_factor = cparams.yarn_ext_factor;
const float attn_factor = cparams.yarn_attn_factor;
const float beta_fast = cparams.yarn_beta_fast;
const float beta_slow = cparams.yarn_beta_slow;
GGML_ASSERT(n_embd_head % n_rot == 0);
GGML_ASSERT(n_embd_head_k % n_rot == 0);
struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, n_ctx);
cb(K_shift, "K_shift", -1);
@@ -4042,9 +4095,9 @@ static void llm_build_k_shift(
// we rotate only the first n_rot dimensions
ggml_rope_custom_inplace(ctx,
ggml_view_3d(ctx, kv.k_l[il],
n_embd_head, n_head_kv, n_ctx,
ggml_row_size(kv.k_l[il]->type, n_embd_head),
ggml_row_size(kv.k_l[il]->type, n_embd_gqa),
n_embd_head_k, n_head_kv, n_ctx,
ggml_row_size(kv.k_l[il]->type, n_embd_head_k),
ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa),
0),
K_shift, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
@@ -4065,18 +4118,19 @@ static void llm_build_kv_store(
int32_t kv_head,
const llm_build_cb & cb,
int64_t il) {
const int64_t n_embd_gqa = hparams.n_embd_gqa();
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
// compute the transposed [n_tokens, n_embd] V matrix
struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, n_embd_gqa, n_tokens));
struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, n_embd_v_gqa, n_tokens));
//struct ggml_tensor * v_cur_t = ggml_transpose(ctx, v_cur); // TODO: reshape above is likely not needed
cb(v_cur_t, "v_cur_t", il);
struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_gqa,
(ggml_row_size(kv.k_l[il]->type, n_embd_gqa))*kv_head);
struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa,
(ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa))*kv_head);
cb(k_cache_view, "k_cache_view", il);
struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_gqa,
struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa,
( n_ctx)*ggml_element_size(kv.v_l[il]),
(kv_head)*ggml_element_size(kv.v_l[il]));
cb(v_cache_view, "v_cache_view", il);
@@ -4226,20 +4280,20 @@ static struct ggml_tensor * llm_build_kqv(
float kq_scale,
const llm_build_cb & cb,
int il) {
const int64_t n_embd = hparams.n_embd;
const int64_t n_head = hparams.n_head;
const int64_t n_head_kv = hparams.n_head_kv;
const int64_t n_embd_head = hparams.n_embd_head();
const int64_t n_embd_gqa = hparams.n_embd_gqa();
const int64_t n_head = hparams.n_head;
const int64_t n_head_kv = hparams.n_head_kv;
const int64_t n_embd_head_k = hparams.n_embd_head_k;
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
const int64_t n_embd_head_v = hparams.n_embd_head_v;
struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
cb(q, "q", il);
struct ggml_tensor * k =
ggml_view_3d(ctx, kv.k_l[il],
n_embd_head, n_kv, n_head_kv,
ggml_row_size(kv.k_l[il]->type, n_embd_gqa),
ggml_row_size(kv.k_l[il]->type, n_embd_head),
n_embd_head_k, n_kv, n_head_kv,
ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa),
ggml_row_size(kv.k_l[il]->type, n_embd_head_k),
0);
cb(k, "k", il);
@@ -4278,9 +4332,9 @@ static struct ggml_tensor * llm_build_kqv(
// split cached v into n_head heads
struct ggml_tensor * v =
ggml_view_3d(ctx, kv.v_l[il],
n_kv, n_embd_head, n_head_kv,
n_kv, n_embd_head_v, n_head_kv,
ggml_element_size(kv.v_l[il])*n_ctx,
ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head,
ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v,
0);
cb(v, "v", il);
@@ -4290,7 +4344,7 @@ static struct ggml_tensor * llm_build_kqv(
struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
cb(kqv_merged, "kqv_merged", il);
struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, n_embd, n_tokens);
struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_k*n_head, n_tokens);
cb(cur, "kqv_merged_cont", il);
cur = ggml_mul_mat(ctx, wo, cur);
@@ -4317,8 +4371,10 @@ struct llm_build_context {
const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train)
const int64_t n_head;
const int64_t n_head_kv;
const int64_t n_embd_head;
const int64_t n_embd_gqa;
const int64_t n_embd_head_k;
const int64_t n_embd_k_gqa;
const int64_t n_embd_head_v;
const int64_t n_embd_v_gqa;
const int64_t n_expert;
const int64_t n_expert_used;
@@ -4360,8 +4416,10 @@ struct llm_build_context {
n_ctx (cparams.n_ctx),
n_head (hparams.n_head),
n_head_kv (hparams.n_head_kv),
n_embd_head (hparams.n_embd_head()),
n_embd_gqa (hparams.n_embd_gqa()),
n_embd_head_k (hparams.n_embd_head_k),
n_embd_k_gqa (hparams.n_embd_k_gqa()),
n_embd_head_v (hparams.n_embd_head_v),
n_embd_v_gqa (hparams.n_embd_v_gqa()),
n_expert (hparams.n_expert),
n_expert_used (hparams.n_expert_used),
freq_base (cparams.rope_freq_base),
@@ -4404,6 +4462,8 @@ struct llm_build_context {
struct ggml_cgraph * build_llama() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
struct ggml_tensor * cur;
@@ -4588,6 +4648,9 @@ struct llm_build_context {
struct ggml_cgraph * build_baichuan() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
@@ -4705,6 +4768,11 @@ struct llm_build_context {
struct ggml_cgraph * build_falcon() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_gqa == n_embd);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
@@ -4824,6 +4892,11 @@ struct llm_build_context {
struct ggml_cgraph * build_starcoder() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_gqa == n_embd);
struct ggml_tensor * cur;
struct ggml_tensor * pos;
struct ggml_tensor * inpL;
@@ -4920,7 +4993,12 @@ struct llm_build_context {
struct ggml_cgraph * build_persimmon() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
const int64_t n_rot = n_embd_head / 2;
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_gqa == n_embd);
const int64_t n_rot = n_embd_head_k / 2;
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
@@ -5129,6 +5207,11 @@ struct llm_build_context {
struct ggml_cgraph * build_refact() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_gqa == n_embd);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
@@ -5217,6 +5300,11 @@ struct llm_build_context {
struct ggml_cgraph * build_bloom() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_gqa == n_embd);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
@@ -5308,6 +5396,11 @@ struct llm_build_context {
struct ggml_cgraph * build_mpt() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_gqa == n_embd);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
@@ -5403,6 +5496,9 @@ struct llm_build_context {
struct ggml_cgraph * build_stablelm() {
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
@@ -5513,6 +5609,9 @@ struct llm_build_context {
struct ggml_cgraph * build_qwen() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
@@ -5624,6 +5723,11 @@ struct llm_build_context {
struct ggml_cgraph * build_phi2() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_gqa == n_embd);
struct ggml_tensor * cur;
struct ggml_tensor * attn_norm_output;
struct ggml_tensor * ffn_output;
@@ -5736,6 +5840,9 @@ struct llm_build_context {
struct ggml_cgraph * build_plamo() {
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
@@ -5840,6 +5947,11 @@ struct llm_build_context {
struct ggml_cgraph * build_gpt2() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_gqa == n_embd);
struct ggml_tensor * cur;
struct ggml_tensor * pos;
struct ggml_tensor * inpL;
@@ -8972,7 +9084,6 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
std::vector<std::thread> workers;
workers.reserve(nthread);
std::mutex mutex;
int idx = 0;
@@ -9046,7 +9157,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
new_size = ggml_nbytes(tensor);
LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
} else {
const size_t nelements = ggml_nelements(tensor);
const size_t ne = ggml_nelements(tensor);
float * f32_data;
@@ -9055,53 +9166,60 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
} else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
} else {
llama_convert_tensor_internal(tensor, f32_conv_buf, workers, nelements, nthread);
llama_convert_tensor_internal(tensor, f32_conv_buf, workers, ne, nthread);
f32_data = (float *) f32_conv_buf.data();
}
LLAMA_LOG_INFO("quantizing to %s .. ", ggml_type_name(new_type));
fflush(stdout);
if (work.size() < nelements * 4) {
work.resize(nelements * 4); // upper bound on size
if (work.size() < ne * 4) {
work.resize(ne * 4); // upper bound on size
}
new_data = work.data();
std::array<int64_t, 1 << 4> hist_cur = {};
static const int chunk_size = 32 * 512;
const int nchunk = (nelements + chunk_size - 1)/chunk_size;
const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
if (nthread_use < 2) {
new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nelements, hist_cur.data());
} else {
size_t counter = 0;
new_size = 0;
auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements]() {
std::array<int64_t, 1 << 4> local_hist = {};
size_t local_size = 0;
while (true) {
std::unique_lock<std::mutex> lock(mutex);
size_t first = counter; counter += chunk_size;
if (first >= nelements) {
if (local_size > 0) {
for (int j=0; j<int(local_hist.size()); ++j) {
hist_cur[j] += local_hist[j];
}
new_size += local_size;
}
break;
}
lock.unlock();
size_t last = std::min(nelements, first + chunk_size);
{
static const size_t chunk_size = 32*512;
const int nchunk = GGML_PAD(ne, chunk_size)/chunk_size;
const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
std::vector<size_t> size_th(nthread_use, 0);
std::vector<std::array<int64_t, 1 << 4>> hist_cur_th(nthread_use);
auto compute = [&size_th, &hist_cur_th, new_type, f32_data, new_data, ne, nchunk, nthread_use](int tid) {
auto & local_size = size_th[tid];
auto & local_hist = hist_cur_th[tid];
for (int ch = tid; ch < nchunk; ch += nthread_use) {
const size_t first = ch * chunk_size;
const size_t last = std::min(ne, first + chunk_size);
local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first, last - first, local_hist.data());
}
};
for (int it = 0; it < nthread_use - 1; ++it) {
workers.emplace_back(compute);
workers.emplace_back(compute, it);
}
compute();
for (auto & w : workers) { w.join(); }
compute(nthread_use - 1);
for (auto & w : workers) {
w.join();
}
workers.clear();
new_size = 0;
for (int it = 0; it < nthread_use; ++it) {
for (int j = 0; j < int(hist_cur.size()); ++j) {
hist_cur[j] += hist_cur_th[it][j];
}
new_size += size_th[it];
}
}
LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB | hist: ", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
@@ -9113,7 +9231,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
if (tot_count > 0) {
for (size_t i = 0; i < hist_cur.size(); i++) {
LLAMA_LOG_INFO("%5.3f ", hist_cur[i] / float(nelements));
LLAMA_LOG_INFO("%5.3f ", hist_cur[i] / float(ne));
}
}
LLAMA_LOG_INFO("\n");
@@ -9627,8 +9745,8 @@ struct llama_context * llama_new_context_with_model(
const ggml_type type_k = params.type_k;
const ggml_type type_v = params.type_v;
GGML_ASSERT(hparams.n_embd_head() % ggml_blck_size(type_k) == 0);
GGML_ASSERT(hparams.n_embd_head() % ggml_blck_size(type_v) == 0);
GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);
// reserve memory for context buffers
if (!hparams.vocab_only) {
@@ -10172,9 +10290,10 @@ static void llama_copy_state_data_internal(struct llama_context * ctx, llama_dat
const auto & hparams = ctx->model.hparams;
const auto & cparams = ctx->cparams;
const auto n_layer = hparams.n_layer;
const auto n_embd = hparams.n_embd_gqa();
const auto n_ctx = cparams.n_ctx;
const auto n_layer = hparams.n_layer;
const auto n_embd_k_gqa = hparams.n_embd_k_gqa();
const auto n_embd_v_gqa = hparams.n_embd_v_gqa();
const auto n_ctx = cparams.n_ctx;
const size_t kv_buf_size = ggml_backend_buffer_get_size(kv_self.buf);
const uint32_t kv_head = kv_self.head;
@@ -10196,15 +10315,15 @@ static void llama_copy_state_data_internal(struct llama_context * ctx, llama_dat
std::vector<struct ggml_tensor *> vout2d(n_layer);
for (int il = 0; il < (int) n_layer; ++il) {
kout2d[il] = ggml_new_tensor_2d(cpy_ctx, kv_self.k_l[il]->type, n_embd, kv_head);
vout2d[il] = ggml_new_tensor_2d(cpy_ctx, kv_self.v_l[il]->type, kv_head, n_embd);
kout2d[il] = ggml_new_tensor_2d(cpy_ctx, kv_self.k_l[il]->type, n_embd_k_gqa, kv_head);
vout2d[il] = ggml_new_tensor_2d(cpy_ctx, kv_self.v_l[il]->type, kv_head, n_embd_v_gqa);
ggml_tensor * k2d = ggml_view_2d(cpy_ctx, kv_self.k_l[il],
n_embd, kv_head,
elt_size*n_embd, 0);
n_embd_k_gqa, kv_head,
elt_size*n_embd_k_gqa, 0);
ggml_tensor * v2d = ggml_view_2d(cpy_ctx, kv_self.v_l[il],
kv_head, n_embd,
kv_head, n_embd_v_gqa,
elt_size*n_ctx, 0);
ggml_build_forward_expand(gf, ggml_cpy(cpy_ctx, k2d, kout2d[il]));
@@ -10311,9 +10430,10 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
const auto & hparams = ctx->model.hparams;
const auto & cparams = ctx->cparams;
const int n_layer = hparams.n_layer;
const int n_embd = hparams.n_embd_gqa();
const int n_ctx = cparams.n_ctx;
const int n_layer = hparams.n_layer;
const int n_embd_k_gqa = hparams.n_embd_k_gqa();
const int n_embd_v_gqa = hparams.n_embd_v_gqa();
const int n_ctx = cparams.n_ctx;
size_t kv_buf_size;
uint32_t kv_head;
@@ -10337,15 +10457,15 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
std::vector<struct ggml_tensor *> vin2d(n_layer);
for (int il = 0; il < n_layer; ++il) {
kin2d[il] = ggml_new_tensor_2d(cpy_ctx, kv_self.k_l[il]->type, n_embd, kv_head);
vin2d[il] = ggml_new_tensor_2d(cpy_ctx, kv_self.v_l[il]->type, kv_head, n_embd);
kin2d[il] = ggml_new_tensor_2d(cpy_ctx, kv_self.k_l[il]->type, n_embd_k_gqa, kv_head);
vin2d[il] = ggml_new_tensor_2d(cpy_ctx, kv_self.v_l[il]->type, kv_head, n_embd_v_gqa);
ggml_tensor * k2d = ggml_view_2d(cpy_ctx, kv_self.k_l[il],
n_embd, kv_head,
elt_size*n_embd, 0);
n_embd_k_gqa, kv_head,
elt_size*n_embd_k_gqa, 0);
ggml_tensor * v2d = ggml_view_2d(cpy_ctx, kv_self.v_l[il],
kv_head, n_embd,
kv_head, n_embd_v_gqa,
elt_size*n_ctx, 0);
ggml_build_forward_expand(gf, ggml_cpy(cpy_ctx, kin2d[il], k2d));