mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2026-02-05 13:53:23 +02:00
Compare commits
176 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
c145f8a132 | ||
|
|
689a091bbe | ||
|
|
f3f28c5395 | ||
|
|
e75c6279d1 | ||
|
|
36376abe05 | ||
|
|
66c1968f7a | ||
|
|
1dcc3fde00 | ||
|
|
5d3de51f97 | ||
|
|
fc0c8d286a | ||
|
|
bd2d4e393b | ||
|
|
c8e0d7efeb | ||
|
|
8f1be0d42f | ||
|
|
6e4e973b26 | ||
|
|
d250c9d61d | ||
|
|
5bf2b94dd4 | ||
|
|
d2819d5577 | ||
|
|
4cb0727698 | ||
|
|
65085c713e | ||
|
|
6dcc02d244 | ||
|
|
5f5808ca7b | ||
|
|
f486f6e1e5 | ||
|
|
60ed04cf82 | ||
|
|
594845aab1 | ||
|
|
4524290e87 | ||
|
|
c06e45d729 | ||
|
|
9060a1e9df | ||
|
|
9350a1cf21 | ||
|
|
73122473ff | ||
|
|
0d4177126b | ||
|
|
7930a8a6e8 | ||
|
|
704359e299 | ||
|
|
594fca3fef | ||
|
|
ccbb277f46 | ||
|
|
8084d55440 | ||
|
|
aa23412989 | ||
|
|
f5ca054855 | ||
|
|
6c00a06692 | ||
|
|
ea9c8e1143 | ||
|
|
c4e6dd59e4 | ||
|
|
037259be68 | ||
|
|
263978904c | ||
|
|
cf45252a7c | ||
|
|
03bf161eb6 | ||
|
|
ad014bba97 | ||
|
|
49cc1f7d67 | ||
|
|
99b8b43d7b | ||
|
|
895407f31b | ||
|
|
099afc6274 | ||
|
|
df334a1125 | ||
|
|
dbd8828eb0 | ||
|
|
43fe07c1a4 | ||
|
|
4a46d2b792 | ||
|
|
3b169441df | ||
|
|
3bdc4cd0f5 | ||
|
|
2891c8aa9a | ||
|
|
97a336507e | ||
|
|
c88c74f967 | ||
|
|
a803333a4e | ||
|
|
684780141a | ||
|
|
85910c5b30 | ||
|
|
139b62a839 | ||
|
|
0f2411f154 | ||
|
|
a07d0fee1f | ||
|
|
e4640d8fdf | ||
|
|
907e08c110 | ||
|
|
f026f8120f | ||
|
|
cd9aea63b5 | ||
|
|
43b65f5eb8 | ||
|
|
4633d93af0 | ||
|
|
4b7b38bef5 | ||
|
|
e00d2a62dd | ||
|
|
7c777fcd5d | ||
|
|
e5ca3937c6 | ||
|
|
e4124c2477 | ||
|
|
b2f87cb64d | ||
|
|
44fbe34360 | ||
|
|
8e6a9d2de0 | ||
|
|
41f308f58e | ||
|
|
6e99f2a04f | ||
|
|
ff4ff05c5f | ||
|
|
b7b74cef36 | ||
|
|
4aa43fab56 | ||
|
|
a6e514a85f | ||
|
|
26d4efd11e | ||
|
|
8504d2d0da | ||
|
|
c4fbb6717c | ||
|
|
8c933b70c2 | ||
|
|
b906596bb7 | ||
|
|
aa7ab99be2 | ||
|
|
10afa6f1d1 | ||
|
|
0ef46da632 | ||
|
|
ee1628bdfe | ||
|
|
ed0bf32290 | ||
|
|
9a697d842b | ||
|
|
316c7faf77 | ||
|
|
f3e2b4fa3f | ||
|
|
f68664ac24 | ||
|
|
213d1439fa | ||
|
|
17c97fb062 | ||
|
|
b08f22c882 | ||
|
|
f57fadc009 | ||
|
|
2e9c0bd6b3 | ||
|
|
2c516611f1 | ||
|
|
8a79c591de | ||
|
|
31e7903221 | ||
|
|
4ffc7a17d4 | ||
|
|
906cff55c2 | ||
|
|
098f6d737b | ||
|
|
78b00dda6c | ||
|
|
c6b395535a | ||
|
|
abb61944a5 | ||
|
|
89503dcb5f | ||
|
|
7e1ae372f3 | ||
|
|
6fdfa2ecc6 | ||
|
|
a2d60c9158 | ||
|
|
e6f8177532 | ||
|
|
30679d438d | ||
|
|
4be04c8965 | ||
|
|
5d55b0cd82 | ||
|
|
4833ac209d | ||
|
|
9392ebd49e | ||
|
|
5ed26e1fc9 | ||
|
|
277fad30c6 | ||
|
|
3c0d25c475 | ||
|
|
3cc5ed353c | ||
|
|
60ecf099ed | ||
|
|
e920ed393d | ||
|
|
52bb63c708 | ||
|
|
1ec3332ade | ||
|
|
6a66c5071a | ||
|
|
a305dba8ff | ||
|
|
191221178f | ||
|
|
e437b37fd0 | ||
|
|
2d40085c26 | ||
|
|
b05102fe8c | ||
|
|
6b91b1e0a9 | ||
|
|
e805f0fa99 | ||
|
|
af3ba5d946 | ||
|
|
e1e721094d | ||
|
|
128dcbd3c9 | ||
|
|
4d0924a890 | ||
|
|
8ca511cade | ||
|
|
d71ac90985 | ||
|
|
ce32060198 | ||
|
|
1cfb5372cf | ||
|
|
d3bac7d584 | ||
|
|
5cb04dbc16 | ||
|
|
efb7bdbbd0 | ||
|
|
15606309a0 | ||
|
|
b2b9f025e7 | ||
|
|
dabcc5b471 | ||
|
|
f8e9140cb4 | ||
|
|
d62520eb2c | ||
|
|
01684139c3 | ||
|
|
e8dc55d006 | ||
|
|
e0085fdf7c | ||
|
|
e6f291d158 | ||
|
|
4003be0e5f | ||
|
|
fea4fd4ba7 | ||
|
|
8f8ddfcfad | ||
|
|
6fb50ebbf0 | ||
|
|
625a699b54 | ||
|
|
a4b07c057a | ||
|
|
549a1e6cd5 | ||
|
|
5f14ee0b0c | ||
|
|
8e14e3ddb3 | ||
|
|
f4d7e54974 | ||
|
|
2256f36b79 | ||
|
|
7359016c7c | ||
|
|
813416991a | ||
|
|
5589921ef8 | ||
|
|
49f44b5c55 | ||
|
|
6685cc41c2 | ||
|
|
ceebbb5b21 | ||
|
|
6daa69ee81 | ||
|
|
fbf1ddec69 |
@@ -1,8 +1,8 @@
|
||||
ARG ONEAPI_VERSION=2024.0.1-devel-ubuntu22.04
|
||||
ARG UBUNTU_VERSION=22.04
|
||||
|
||||
FROM intel/hpckit:$ONEAPI_VERSION as build
|
||||
FROM intel/oneapi-basekit:$ONEAPI_VERSION as build
|
||||
|
||||
ARG LLAMA_SYCL_F16=OFF
|
||||
RUN apt-get update && \
|
||||
apt-get install -y git
|
||||
|
||||
@@ -10,16 +10,18 @@ WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
|
||||
# for some reasons, "-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=Intel10_64lp -DLLAMA_NATIVE=ON" give worse performance
|
||||
RUN mkdir build && \
|
||||
cd build && \
|
||||
cmake .. -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx && \
|
||||
cmake --build . --config Release --target main server
|
||||
if [ "${LLAMA_SYCL_F16}" = "ON" ]; then \
|
||||
echo "LLAMA_SYCL_F16 is set" && \
|
||||
export OPT_SYCL_F16="-DLLAMA_SYCL_F16=ON"; \
|
||||
fi && \
|
||||
cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ${OPT_SYCL_F16} && \
|
||||
cmake --build . --config Release --target main
|
||||
|
||||
FROM ubuntu:$UBUNTU_VERSION as runtime
|
||||
FROM intel/oneapi-basekit:$ONEAPI_VERSION as runtime
|
||||
|
||||
COPY --from=build /app/build/bin/main /main
|
||||
COPY --from=build /app/build/bin/server /server
|
||||
|
||||
ENV LC_ALL=C.utf8
|
||||
|
||||
|
||||
29
.devops/main-vulkan.Dockerfile
Normal file
29
.devops/main-vulkan.Dockerfile
Normal file
@@ -0,0 +1,29 @@
|
||||
ARG UBUNTU_VERSION=jammy
|
||||
|
||||
FROM ubuntu:$UBUNTU_VERSION as build
|
||||
|
||||
# Install build tools
|
||||
RUN apt update && apt install -y git build-essential cmake wget
|
||||
|
||||
# Install Vulkan SDK
|
||||
RUN wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add - && \
|
||||
wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list && \
|
||||
apt update -y && \
|
||||
apt-get install -y vulkan-sdk
|
||||
|
||||
# Build it
|
||||
WORKDIR /app
|
||||
COPY . .
|
||||
RUN mkdir build && \
|
||||
cd build && \
|
||||
cmake .. -DLLAMA_VULKAN=1 && \
|
||||
cmake --build . --config Release --target main
|
||||
|
||||
# Clean up
|
||||
WORKDIR /
|
||||
RUN cp /app/build/bin/main /main && \
|
||||
rm -rf /app
|
||||
|
||||
ENV LC_ALL=C.utf8
|
||||
|
||||
ENTRYPOINT [ "/main" ]
|
||||
@@ -13,18 +13,22 @@
|
||||
cudaPackages,
|
||||
darwin,
|
||||
rocmPackages,
|
||||
vulkan-headers,
|
||||
vulkan-loader,
|
||||
clblast,
|
||||
useBlas ? builtins.all (x: !x) [
|
||||
useCuda
|
||||
useMetalKit
|
||||
useOpenCL
|
||||
useRocm
|
||||
useVulkan
|
||||
],
|
||||
useCuda ? config.cudaSupport,
|
||||
useMetalKit ? stdenv.isAarch64 && stdenv.isDarwin && !useOpenCL,
|
||||
useMpi ? false, # Increases the runtime closure size by ~700M
|
||||
useOpenCL ? false,
|
||||
useRocm ? config.rocmSupport,
|
||||
useVulkan ? false,
|
||||
llamaVersion ? "0.0.0", # Arbitrary version, substituted by the flake
|
||||
}@inputs:
|
||||
|
||||
@@ -48,7 +52,8 @@ let
|
||||
++ lib.optionals useMetalKit [ "MetalKit" ]
|
||||
++ lib.optionals useMpi [ "MPI" ]
|
||||
++ lib.optionals useOpenCL [ "OpenCL" ]
|
||||
++ lib.optionals useRocm [ "ROCm" ];
|
||||
++ lib.optionals useRocm [ "ROCm" ]
|
||||
++ lib.optionals useVulkan [ "Vulkan" ];
|
||||
|
||||
pnameSuffix =
|
||||
strings.optionalString (suffices != [ ])
|
||||
@@ -108,6 +113,11 @@ let
|
||||
hipblas
|
||||
rocblas
|
||||
];
|
||||
|
||||
vulkanBuildInputs = [
|
||||
vulkan-headers
|
||||
vulkan-loader
|
||||
];
|
||||
in
|
||||
|
||||
effectiveStdenv.mkDerivation (
|
||||
@@ -164,7 +174,8 @@ effectiveStdenv.mkDerivation (
|
||||
++ optionals useCuda cudaBuildInputs
|
||||
++ optionals useMpi [ mpi ]
|
||||
++ optionals useOpenCL [ clblast ]
|
||||
++ optionals useRocm rocmBuildInputs;
|
||||
++ optionals useRocm rocmBuildInputs
|
||||
++ optionals useVulkan vulkanBuildInputs;
|
||||
|
||||
cmakeFlags =
|
||||
[
|
||||
@@ -178,6 +189,7 @@ effectiveStdenv.mkDerivation (
|
||||
(cmakeBool "LLAMA_HIPBLAS" useRocm)
|
||||
(cmakeBool "LLAMA_METAL" useMetalKit)
|
||||
(cmakeBool "LLAMA_MPI" useMpi)
|
||||
(cmakeBool "LLAMA_VULKAN" useVulkan)
|
||||
]
|
||||
++ optionals useCuda [
|
||||
(
|
||||
@@ -218,6 +230,7 @@ effectiveStdenv.mkDerivation (
|
||||
useMpi
|
||||
useOpenCL
|
||||
useRocm
|
||||
useVulkan
|
||||
;
|
||||
|
||||
shell = mkShell {
|
||||
@@ -242,11 +255,11 @@ effectiveStdenv.mkDerivation (
|
||||
# Configurations we don't want even the CI to evaluate. Results in the
|
||||
# "unsupported platform" messages. This is mostly a no-op, because
|
||||
# cudaPackages would've refused to evaluate anyway.
|
||||
badPlatforms = optionals (useCuda || useOpenCL) lib.platforms.darwin;
|
||||
badPlatforms = optionals (useCuda || useOpenCL || useVulkan) lib.platforms.darwin;
|
||||
|
||||
# Configurations that are known to result in build failures. Can be
|
||||
# overridden by importing Nixpkgs with `allowBroken = true`.
|
||||
broken = (useMetalKit && !effectiveStdenv.isDarwin);
|
||||
broken = (useMetalKit && !effectiveStdenv.isDarwin) || (useVulkan && effectiveStdenv.isDarwin);
|
||||
|
||||
description = "Inference of LLaMA model in pure C/C++${descriptionSuffix}";
|
||||
homepage = "https://github.com/ggerganov/llama.cpp/";
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
ARG ONEAPI_VERSION=2024.0.1-devel-ubuntu22.04
|
||||
ARG UBUNTU_VERSION=22.04
|
||||
|
||||
FROM intel/hpckit:$ONEAPI_VERSION as build
|
||||
FROM intel/oneapi-basekit:$ONEAPI_VERSION as build
|
||||
|
||||
ARG LLAMA_SYCL_F16=OFF
|
||||
RUN apt-get update && \
|
||||
apt-get install -y git
|
||||
|
||||
@@ -10,13 +10,16 @@ WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
|
||||
# for some reasons, "-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=Intel10_64lp -DLLAMA_NATIVE=ON" give worse performance
|
||||
RUN mkdir build && \
|
||||
cd build && \
|
||||
cmake .. -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx && \
|
||||
cmake --build . --config Release --target main server
|
||||
if [ "${LLAMA_SYCL_F16}" = "ON" ]; then \
|
||||
echo "LLAMA_SYCL_F16 is set" && \
|
||||
export OPT_SYCL_F16="-DLLAMA_SYCL_F16=ON"; \
|
||||
fi && \
|
||||
cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ${OPT_SYCL_F16} && \
|
||||
cmake --build . --config Release --target server
|
||||
|
||||
FROM ubuntu:$UBUNTU_VERSION as runtime
|
||||
FROM intel/oneapi-basekit:$ONEAPI_VERSION as runtime
|
||||
|
||||
COPY --from=build /app/build/bin/server /server
|
||||
|
||||
|
||||
29
.devops/server-vulkan.Dockerfile
Normal file
29
.devops/server-vulkan.Dockerfile
Normal file
@@ -0,0 +1,29 @@
|
||||
ARG UBUNTU_VERSION=jammy
|
||||
|
||||
FROM ubuntu:$UBUNTU_VERSION as build
|
||||
|
||||
# Install build tools
|
||||
RUN apt update && apt install -y git build-essential cmake wget
|
||||
|
||||
# Install Vulkan SDK
|
||||
RUN wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add - && \
|
||||
wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list && \
|
||||
apt update -y && \
|
||||
apt-get install -y vulkan-sdk
|
||||
|
||||
# Build it
|
||||
WORKDIR /app
|
||||
COPY . .
|
||||
RUN mkdir build && \
|
||||
cd build && \
|
||||
cmake .. -DLLAMA_VULKAN=1 && \
|
||||
cmake --build . --config Release --target server
|
||||
|
||||
# Clean up
|
||||
WORKDIR /
|
||||
RUN cp /app/build/bin/server /server && \
|
||||
rm -rf /app
|
||||
|
||||
ENV LC_ALL=C.utf8
|
||||
|
||||
ENTRYPOINT [ "/server" ]
|
||||
1
.ecrc
1
.ecrc
@@ -1,4 +1,5 @@
|
||||
{
|
||||
"Exclude": ["^\\.gitmodules$"],
|
||||
"Disable": {
|
||||
"IndentSize": true
|
||||
}
|
||||
|
||||
99
.github/workflows/build.yml
vendored
99
.github/workflows/build.yml
vendored
@@ -37,6 +37,8 @@ jobs:
|
||||
|
||||
- name: Build
|
||||
id: make_build
|
||||
env:
|
||||
LLAMA_FATAL_WARNINGS: 1
|
||||
run: |
|
||||
CC=gcc-8 make -j $(nproc)
|
||||
|
||||
@@ -65,7 +67,7 @@ jobs:
|
||||
run: |
|
||||
mkdir build
|
||||
cd build
|
||||
cmake ..
|
||||
cmake .. -DLLAMA_FATAL_WARNINGS=ON
|
||||
cmake --build . --config Release -j $(nproc)
|
||||
|
||||
- name: Test
|
||||
@@ -100,7 +102,7 @@ jobs:
|
||||
run: |
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON -DCMAKE_BUILD_TYPE=${{ matrix.build_type }}
|
||||
cmake .. -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON -DCMAKE_BUILD_TYPE=${{ matrix.build_type }}
|
||||
cmake --build . --config ${{ matrix.build_type }} -j $(nproc)
|
||||
|
||||
- name: Test
|
||||
@@ -184,6 +186,47 @@ jobs:
|
||||
cmake -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ..
|
||||
cmake --build . --config Release -j $(nproc)
|
||||
|
||||
ubuntu-22-cmake-sycl-fp16:
|
||||
runs-on: ubuntu-22.04
|
||||
|
||||
continue-on-error: true
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
|
||||
- name: add oneAPI to apt
|
||||
shell: bash
|
||||
run: |
|
||||
cd /tmp
|
||||
wget https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
|
||||
sudo apt-key add GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
|
||||
rm GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
|
||||
sudo add-apt-repository "deb https://apt.repos.intel.com/oneapi all main"
|
||||
|
||||
- name: install oneAPI dpcpp compiler
|
||||
shell: bash
|
||||
run: |
|
||||
sudo apt update
|
||||
sudo apt install intel-oneapi-compiler-dpcpp-cpp
|
||||
|
||||
- name: install oneAPI MKL library
|
||||
shell: bash
|
||||
run: |
|
||||
sudo apt install intel-oneapi-mkl-devel
|
||||
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON ..
|
||||
cmake --build . --config Release -j $(nproc)
|
||||
|
||||
# TODO: build with LLAMA_NO_METAL because test-backend-ops fail on "Apple Paravirtual device" and I don't know
|
||||
# how to debug it.
|
||||
# ref: https://github.com/ggerganov/llama.cpp/actions/runs/7131777249/job/19420981052#step:5:1124
|
||||
@@ -203,6 +246,8 @@ jobs:
|
||||
|
||||
- name: Build
|
||||
id: make_build
|
||||
env:
|
||||
LLAMA_FATAL_WARNINGS: 1
|
||||
run: |
|
||||
LLAMA_NO_METAL=1 make -j $(sysctl -n hw.logicalcpu)
|
||||
|
||||
@@ -236,7 +281,7 @@ jobs:
|
||||
sysctl -a
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -DLLAMA_METAL=OFF ..
|
||||
cmake -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_METAL=OFF ..
|
||||
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu)
|
||||
|
||||
- name: Test
|
||||
@@ -337,6 +382,7 @@ jobs:
|
||||
OPENCL_VERSION: 2023.04.17
|
||||
CLBLAST_VERSION: 1.6.0
|
||||
SDE_VERSION: 9.33.0-2024-01-07
|
||||
VULKAN_VERSION: 1.3.261.1
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
@@ -353,6 +399,10 @@ jobs:
|
||||
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_CLBLAST=ON -DBUILD_SHARED_LIBS=ON -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/clblast"'
|
||||
- build: 'openblas'
|
||||
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_BLAS=ON -DBUILD_SHARED_LIBS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"'
|
||||
- build: 'kompute'
|
||||
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_KOMPUTE=ON -DKOMPUTE_OPT_DISABLE_VULKAN_VERSION_CHECK=ON -DBUILD_SHARED_LIBS=ON'
|
||||
- build: 'vulkan'
|
||||
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_VULKAN=ON -DBUILD_SHARED_LIBS=ON'
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
@@ -361,6 +411,12 @@ jobs:
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Clone Kompute submodule
|
||||
id: clone_kompute
|
||||
if: ${{ matrix.build == 'kompute' }}
|
||||
run: |
|
||||
git submodule update --init kompute
|
||||
|
||||
- name: Download OpenCL SDK
|
||||
id: get_opencl
|
||||
if: ${{ matrix.build == 'clblast' }}
|
||||
@@ -395,6 +451,15 @@ jobs:
|
||||
$lib = $(join-path $msvc 'bin\Hostx64\x64\lib.exe')
|
||||
& $lib /machine:x64 "/def:${env:RUNNER_TEMP}/openblas/lib/libopenblas.def" "/out:${env:RUNNER_TEMP}/openblas/lib/openblas.lib" /name:openblas.dll
|
||||
|
||||
- name: Install Vulkan SDK
|
||||
id: get_vulkan
|
||||
if: ${{ matrix.build == 'kompute' || matrix.build == 'vulkan' }}
|
||||
run: |
|
||||
curl.exe -o $env:RUNNER_TEMP/VulkanSDK-Installer.exe -L "https://sdk.lunarg.com/sdk/download/${env:VULKAN_VERSION}/windows/VulkanSDK-${env:VULKAN_VERSION}-Installer.exe"
|
||||
& "$env:RUNNER_TEMP\VulkanSDK-Installer.exe" --accept-licenses --default-answer --confirm-command install
|
||||
Add-Content $env:GITHUB_ENV "VULKAN_SDK=C:\VulkanSDK\${env:VULKAN_VERSION}"
|
||||
Add-Content $env:GITHUB_PATH "C:\VulkanSDK\${env:VULKAN_VERSION}\bin"
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
@@ -432,7 +497,8 @@ jobs:
|
||||
|
||||
- name: Test
|
||||
id: cmake_test
|
||||
if: ${{ matrix.build != 'clblast' && (matrix.build != 'avx512' || env.HAS_AVX512F == '1') }} # not all machines have native AVX-512
|
||||
# not all machines have native AVX-512
|
||||
if: ${{ matrix.build != 'clblast' && matrix.build != 'kompute' && matrix.build != 'vulkan' && (matrix.build != 'avx512' || env.HAS_AVX512F == '1') }}
|
||||
run: |
|
||||
cd build
|
||||
ctest -L main -C Release --verbose --timeout 900
|
||||
@@ -546,6 +612,31 @@ jobs:
|
||||
path: |
|
||||
cudart-llama-bin-win-cu${{ matrix.cuda }}-x64.zip
|
||||
|
||||
windows-latest-cmake-sycl:
|
||||
runs-on: windows-latest
|
||||
defaults:
|
||||
run:
|
||||
shell: bash
|
||||
|
||||
env:
|
||||
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/62641e01-1e8d-4ace-91d6-ae03f7f8a71f/w_BaseKit_p_2024.0.0.49563_offline.exe
|
||||
WINDOWS_DPCPP_MKL: intel.oneapi.win.cpp-dpcpp-common:intel.oneapi.win.mkl.devel
|
||||
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Install
|
||||
run: scripts/install-oneapi.bat $WINDOWS_BASEKIT_URL $WINDOWS_DPCPP_MKL
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: examples/sycl/win-build-sycl.bat
|
||||
|
||||
ios-xcode-build:
|
||||
runs-on: macos-latest
|
||||
|
||||
|
||||
6
.github/workflows/editorconfig.yml
vendored
6
.github/workflows/editorconfig.yml
vendored
@@ -1,6 +1,12 @@
|
||||
name: EditorConfig Checker
|
||||
|
||||
on:
|
||||
workflow_dispatch: # allows manual triggering
|
||||
inputs:
|
||||
create_release:
|
||||
description: 'Create new release'
|
||||
required: true
|
||||
type: boolean
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
|
||||
2
.github/workflows/python-lint.yml
vendored
2
.github/workflows/python-lint.yml
vendored
@@ -16,5 +16,5 @@ jobs:
|
||||
- name: flake8 Lint
|
||||
uses: py-actions/flake8@v2
|
||||
with:
|
||||
ignore: "E203,E211,E221,E225,E231,E241,E251,E261,E266,E501,E701,E704"
|
||||
ignore: "E203,E211,E221,E225,E231,E241,E251,E261,E266,E501,E701,E704,W503"
|
||||
exclude: "examples/*,examples/*/**,*/**/__init__.py"
|
||||
|
||||
3
.gitignore
vendored
3
.gitignore
vendored
@@ -23,11 +23,13 @@
|
||||
.clang-tidy
|
||||
.vs/
|
||||
.vscode/
|
||||
.idea/
|
||||
|
||||
lcov-report/
|
||||
gcovr-report/
|
||||
|
||||
build*
|
||||
cmake-build-*
|
||||
out/
|
||||
tmp/
|
||||
|
||||
@@ -89,3 +91,4 @@ examples/jeopardy/results.txt
|
||||
|
||||
poetry.lock
|
||||
poetry.toml
|
||||
nppBackup
|
||||
|
||||
3
.gitmodules
vendored
Normal file
3
.gitmodules
vendored
Normal file
@@ -0,0 +1,3 @@
|
||||
[submodule "kompute"]
|
||||
path = kompute
|
||||
url = https://github.com/nomic-ai/kompute.git
|
||||
385
CMakeLists.txt
385
CMakeLists.txt
@@ -55,6 +55,9 @@ option(LLAMA_ALL_WARNINGS "llama: enable all compiler warnings"
|
||||
option(LLAMA_ALL_WARNINGS_3RD_PARTY "llama: enable all compiler warnings in 3rd party libs" OFF)
|
||||
option(LLAMA_GPROF "llama: enable gprof" OFF)
|
||||
|
||||
# build
|
||||
option(LLAMA_FATAL_WARNINGS "llama: enable -Werror flag" OFF)
|
||||
|
||||
# sanitizers
|
||||
option(LLAMA_SANITIZE_THREAD "llama: enable thread sanitizer" OFF)
|
||||
option(LLAMA_SANITIZE_ADDRESS "llama: enable address sanitizer" OFF)
|
||||
@@ -79,7 +82,7 @@ if (NOT MSVC)
|
||||
endif()
|
||||
|
||||
if (WIN32)
|
||||
option(LLAMA_WIN_VER "llama: Windows Version" 0x602)
|
||||
set(LLAMA_WIN_VER "0x602" CACHE STRING "llama: Windows Version")
|
||||
endif()
|
||||
|
||||
# 3rd party libs
|
||||
@@ -100,24 +103,26 @@ option(LLAMA_HIPBLAS "llama: use hipBLAS"
|
||||
option(LLAMA_HIP_UMA "llama: use HIP unified memory architecture" OFF)
|
||||
option(LLAMA_CLBLAST "llama: use CLBlast" OFF)
|
||||
option(LLAMA_VULKAN "llama: use Vulkan" OFF)
|
||||
option(LLAMA_VULKAN_CHECK_RESULTS "llama: run Vulkan op checks" OFF)
|
||||
option(LLAMA_VULKAN_DEBUG "llama: enable Vulkan debug output" OFF)
|
||||
option(LLAMA_VULKAN_VALIDATE "llama: enable Vulkan validation" OFF)
|
||||
option(LLAMA_VULKAN_RUN_TESTS "llama: run Vulkan tests" OFF)
|
||||
option(LLAMA_METAL "llama: use Metal" ${LLAMA_METAL_DEFAULT})
|
||||
option(LLAMA_METAL_NDEBUG "llama: disable Metal debugging" OFF)
|
||||
option(LLAMA_METAL_SHADER_DEBUG "llama: compile Metal with -fno-fast-math" OFF)
|
||||
option(LLAMA_KOMPUTE "llama: use Kompute" OFF)
|
||||
option(LLAMA_MPI "llama: use MPI" OFF)
|
||||
option(LLAMA_QKK_64 "llama: use super-block size of 64 for k-quants" OFF)
|
||||
option(LLAMA_SYCL "llama: use SYCL" OFF)
|
||||
option(LLAMA_SYCL_F16 "llama: use 16 bit floats for sycl calculations" OFF)
|
||||
option(LLAMA_CPU_HBM "llama: use memkind for CPU HBM" OFF)
|
||||
|
||||
option(LLAMA_BUILD_TESTS "llama: build tests" ${LLAMA_STANDALONE})
|
||||
option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
|
||||
option(LLAMA_BUILD_SERVER "llama: build server example" ON)
|
||||
|
||||
|
||||
# add perf arguments
|
||||
option(LLAMA_PERF "llama: enable perf" OFF)
|
||||
if (LLAMA_PERF)
|
||||
add_definitions(-DGGML_PERF)
|
||||
endif()
|
||||
|
||||
# Required for relocatable CMake package
|
||||
include(${CMAKE_CURRENT_SOURCE_DIR}/scripts/build-info.cmake)
|
||||
@@ -125,6 +130,7 @@ include(${CMAKE_CURRENT_SOURCE_DIR}/scripts/build-info.cmake)
|
||||
#
|
||||
# Compile flags
|
||||
#
|
||||
|
||||
if (LLAMA_SYCL)
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
else()
|
||||
@@ -135,9 +141,18 @@ set(CMAKE_CXX_STANDARD_REQUIRED true)
|
||||
set(CMAKE_C_STANDARD 11)
|
||||
set(CMAKE_C_STANDARD_REQUIRED true)
|
||||
set(THREADS_PREFER_PTHREAD_FLAG ON)
|
||||
|
||||
find_package(Threads REQUIRED)
|
||||
include(CheckCXXCompilerFlag)
|
||||
|
||||
if (LLAMA_FATAL_WARNINGS)
|
||||
if (CMAKE_CXX_COMPILER_ID MATCHES "GNU" OR CMAKE_CXX_COMPILER_ID MATCHES "Clang")
|
||||
add_compile_options(-Werror)
|
||||
elseif (CMAKE_CXX_COMPILER_ID STREQUAL "MSVC")
|
||||
add_compile_options(/WX)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
# enable libstdc++ assertions for debug builds
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
|
||||
add_compile_definitions($<$<CONFIG:Debug>:_GLIBCXX_ASSERTIONS>)
|
||||
@@ -146,17 +161,17 @@ endif()
|
||||
if (NOT MSVC)
|
||||
if (LLAMA_SANITIZE_THREAD)
|
||||
add_compile_options(-fsanitize=thread)
|
||||
link_libraries(-fsanitize=thread)
|
||||
link_libraries (-fsanitize=thread)
|
||||
endif()
|
||||
|
||||
if (LLAMA_SANITIZE_ADDRESS)
|
||||
add_compile_options(-fsanitize=address -fno-omit-frame-pointer)
|
||||
link_libraries(-fsanitize=address)
|
||||
link_libraries (-fsanitize=address)
|
||||
endif()
|
||||
|
||||
if (LLAMA_SANITIZE_UNDEFINED)
|
||||
add_compile_options(-fsanitize=undefined)
|
||||
link_libraries(-fsanitize=undefined)
|
||||
link_libraries (-fsanitize=undefined)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
@@ -293,14 +308,17 @@ if (LLAMA_BLAS)
|
||||
endif()
|
||||
|
||||
message(STATUS "BLAS found, Includes: ${BLAS_INCLUDE_DIRS}")
|
||||
|
||||
add_compile_options(${BLAS_LINKER_FLAGS})
|
||||
|
||||
add_compile_definitions(GGML_USE_OPENBLAS)
|
||||
|
||||
if (${BLAS_INCLUDE_DIRS} MATCHES "mkl" AND (${LLAMA_BLAS_VENDOR} MATCHES "Generic" OR ${LLAMA_BLAS_VENDOR} MATCHES "Intel"))
|
||||
add_compile_definitions(GGML_BLAS_USE_MKL)
|
||||
endif()
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ${BLAS_LIBRARIES})
|
||||
set(LLAMA_EXTRA_INCLUDES ${LLAMA_EXTRA_INCLUDES} ${BLAS_INCLUDE_DIRS})
|
||||
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ${BLAS_LIBRARIES})
|
||||
set(LLAMA_EXTRA_INCLUDES ${LLAMA_EXTRA_INCLUDES} ${BLAS_INCLUDE_DIRS})
|
||||
else()
|
||||
message(WARNING "BLAS not found, please refer to "
|
||||
"https://cmake.org/cmake/help/latest/module/FindBLAS.html#blas-lapack-vendors"
|
||||
@@ -325,9 +343,6 @@ if (LLAMA_CUBLAS)
|
||||
set(GGML_SOURCES_CUDA ggml-cuda.cu)
|
||||
|
||||
add_compile_definitions(GGML_USE_CUBLAS)
|
||||
# if (LLAMA_CUDA_CUBLAS)
|
||||
# add_compile_definitions(GGML_CUDA_CUBLAS)
|
||||
# endif()
|
||||
if (LLAMA_CUDA_FORCE_DMMV)
|
||||
add_compile_definitions(GGML_CUDA_FORCE_DMMV)
|
||||
endif()
|
||||
@@ -382,15 +397,20 @@ if (LLAMA_MPI)
|
||||
find_package(MPI)
|
||||
if (MPI_C_FOUND)
|
||||
message(STATUS "MPI found")
|
||||
|
||||
set(GGML_HEADERS_MPI ggml-mpi.h)
|
||||
set(GGML_SOURCES_MPI ggml-mpi.c ggml-mpi.h)
|
||||
set(GGML_SOURCES_MPI ggml-mpi.c)
|
||||
|
||||
add_compile_definitions(GGML_USE_MPI)
|
||||
add_compile_definitions(${MPI_C_COMPILE_DEFINITIONS})
|
||||
|
||||
if (NOT MSVC)
|
||||
add_compile_options(-Wno-cast-qual)
|
||||
endif()
|
||||
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ${MPI_C_LIBRARIES})
|
||||
set(LLAMA_EXTRA_INCLUDES ${LLAMA_EXTRA_INCLUDES} ${MPI_C_INCLUDE_DIRS})
|
||||
|
||||
# Even if you're only using the C header, C++ programs may bring in MPI
|
||||
# C++ functions, so more linkage is needed
|
||||
if (MPI_CXX_FOUND)
|
||||
@@ -425,15 +445,25 @@ if (LLAMA_VULKAN)
|
||||
set(GGML_HEADERS_VULKAN ggml-vulkan.h)
|
||||
set(GGML_SOURCES_VULKAN ggml-vulkan.cpp)
|
||||
|
||||
add_library(ggml-vulkan STATIC ggml-vulkan.cpp ggml-vulkan.h)
|
||||
if (BUILD_SHARED_LIBS)
|
||||
set_target_properties(ggml-vulkan PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
endif()
|
||||
target_link_libraries(ggml-vulkan PRIVATE Vulkan::Vulkan)
|
||||
|
||||
add_compile_definitions(GGML_USE_VULKAN)
|
||||
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ggml-vulkan)
|
||||
if (LLAMA_VULKAN_CHECK_RESULTS)
|
||||
add_compile_definitions(GGML_VULKAN_CHECK_RESULTS)
|
||||
endif()
|
||||
|
||||
if (LLAMA_VULKAN_DEBUG)
|
||||
add_compile_definitions(GGML_VULKAN_DEBUG)
|
||||
endif()
|
||||
|
||||
if (LLAMA_VULKAN_VALIDATE)
|
||||
add_compile_definitions(GGML_VULKAN_VALIDATE)
|
||||
endif()
|
||||
|
||||
if (LLAMA_VULKAN_RUN_TESTS)
|
||||
add_compile_definitions(GGML_VULKAN_RUN_TESTS)
|
||||
endif()
|
||||
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} Vulkan::Vulkan)
|
||||
else()
|
||||
message(WARNING "Vulkan not found")
|
||||
endif()
|
||||
@@ -445,45 +475,46 @@ if (LLAMA_HIPBLAS)
|
||||
if (NOT ${CMAKE_C_COMPILER_ID} MATCHES "Clang")
|
||||
message(WARNING "Only LLVM is supported for HIP, hint: CC=/opt/rocm/llvm/bin/clang")
|
||||
endif()
|
||||
|
||||
if (NOT ${CMAKE_CXX_COMPILER_ID} MATCHES "Clang")
|
||||
message(WARNING "Only LLVM is supported for HIP, hint: CXX=/opt/rocm/llvm/bin/clang++")
|
||||
endif()
|
||||
|
||||
find_package(hip)
|
||||
find_package(hipblas)
|
||||
find_package(rocblas)
|
||||
find_package(hip REQUIRED)
|
||||
find_package(hipblas REQUIRED)
|
||||
find_package(rocblas REQUIRED)
|
||||
|
||||
if (${hipblas_FOUND} AND ${hip_FOUND})
|
||||
message(STATUS "HIP and hipBLAS found")
|
||||
add_compile_definitions(GGML_USE_HIPBLAS GGML_USE_CUBLAS)
|
||||
if (LLAMA_HIP_UMA)
|
||||
add_compile_definitions(GGML_HIP_UMA)
|
||||
endif()
|
||||
add_library(ggml-rocm OBJECT ggml-cuda.cu ggml-cuda.h)
|
||||
if (BUILD_SHARED_LIBS)
|
||||
set_target_properties(ggml-rocm PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
endif()
|
||||
if (LLAMA_CUDA_FORCE_DMMV)
|
||||
target_compile_definitions(ggml-rocm PRIVATE GGML_CUDA_FORCE_DMMV)
|
||||
endif()
|
||||
if (LLAMA_CUDA_FORCE_MMQ)
|
||||
target_compile_definitions(ggml-rocm PRIVATE GGML_CUDA_FORCE_MMQ)
|
||||
endif()
|
||||
target_compile_definitions(ggml-rocm PRIVATE GGML_CUDA_DMMV_X=${LLAMA_CUDA_DMMV_X})
|
||||
target_compile_definitions(ggml-rocm PRIVATE GGML_CUDA_MMV_Y=${LLAMA_CUDA_MMV_Y})
|
||||
target_compile_definitions(ggml-rocm PRIVATE K_QUANTS_PER_ITERATION=${LLAMA_CUDA_KQUANTS_ITER})
|
||||
set_source_files_properties(ggml-cuda.cu PROPERTIES LANGUAGE CXX)
|
||||
target_link_libraries(ggml-rocm PRIVATE hip::device PUBLIC hip::host roc::rocblas roc::hipblas)
|
||||
message(STATUS "HIP and hipBLAS found")
|
||||
|
||||
if (LLAMA_STATIC)
|
||||
message(FATAL_ERROR "Static linking not supported for HIP/ROCm")
|
||||
endif()
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ggml-rocm)
|
||||
else()
|
||||
message(WARNING "hipBLAS or HIP not found. Try setting CMAKE_PREFIX_PATH=/opt/rocm")
|
||||
set(GGML_HEADERS_ROCM ggml-cuda.h)
|
||||
set(GGML_SOURCES_ROCM ggml-cuda.cu)
|
||||
|
||||
add_compile_definitions(GGML_USE_HIPBLAS GGML_USE_CUBLAS)
|
||||
|
||||
if (LLAMA_HIP_UMA)
|
||||
add_compile_definitions(GGML_HIP_UMA)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (LLAMA_CUDA_FORCE_DMMV)
|
||||
add_compile_definitions(GGML_CUDA_FORCE_DMMV)
|
||||
endif()
|
||||
|
||||
if (LLAMA_CUDA_FORCE_MMQ)
|
||||
add_compile_definitions(GGML_CUDA_FORCE_MMQ)
|
||||
endif()
|
||||
|
||||
add_compile_definitions(GGML_CUDA_DMMV_X=${LLAMA_CUDA_DMMV_X})
|
||||
add_compile_definitions(GGML_CUDA_MMV_Y=${LLAMA_CUDA_MMV_Y})
|
||||
add_compile_definitions(K_QUANTS_PER_ITERATION=${LLAMA_CUDA_KQUANTS_ITER})
|
||||
|
||||
set_source_files_properties(ggml-cuda.cu PROPERTIES LANGUAGE CXX)
|
||||
|
||||
if (LLAMA_STATIC)
|
||||
message(FATAL_ERROR "Static linking not supported for HIP/ROCm")
|
||||
endif()
|
||||
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} hip::device PUBLIC hip::host roc::rocblas roc::hipblas)
|
||||
endif()
|
||||
|
||||
if (LLAMA_SYCL)
|
||||
if ( NOT DEFINED ENV{ONEAPI_ROOT})
|
||||
@@ -492,10 +523,14 @@ if (LLAMA_SYCL)
|
||||
#todo: AOT
|
||||
|
||||
find_package(IntelSYCL REQUIRED)
|
||||
|
||||
message(STATUS "SYCL found")
|
||||
|
||||
add_compile_definitions(GGML_USE_SYCL)
|
||||
|
||||
if (LLAMA_SYCL_F16)
|
||||
add_compile_definitions(GGML_SYCL_F16)
|
||||
endif()
|
||||
add_compile_definitions(GGML_USE_SYCL)
|
||||
|
||||
add_compile_options(-I./) #include DPCT
|
||||
add_compile_options(-I/${SYCL_INCLUDE_DIR})
|
||||
@@ -504,10 +539,182 @@ if (LLAMA_SYCL)
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O3")
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl -L${MKLROOT}/lib")
|
||||
|
||||
set(GGML_HEADERS_SYCL ggml.h ggml-sycl.h)
|
||||
set(GGML_HEADERS_SYCL ggml-sycl.h)
|
||||
set(GGML_SOURCES_SYCL ggml-sycl.cpp)
|
||||
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} sycl OpenCL mkl_core pthread m dl mkl_sycl_blas mkl_intel_ilp64 mkl_tbb_thread)
|
||||
if (WIN32)
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} -fsycl sycl7 OpenCL mkl_sycl_blas_dll.lib mkl_intel_ilp64_dll.lib mkl_sequential_dll.lib mkl_core_dll.lib)
|
||||
else()
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} -fsycl OpenCL mkl_core pthread m dl mkl_sycl_blas mkl_intel_ilp64 mkl_tbb_thread)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (LLAMA_KOMPUTE)
|
||||
add_compile_definitions(VULKAN_HPP_DISPATCH_LOADER_DYNAMIC=1)
|
||||
find_package(Vulkan COMPONENTS glslc REQUIRED)
|
||||
find_program(glslc_executable NAMES glslc HINTS Vulkan::glslc)
|
||||
if (NOT glslc_executable)
|
||||
message(FATAL_ERROR "glslc not found")
|
||||
endif()
|
||||
|
||||
function(compile_shader)
|
||||
set(options)
|
||||
set(oneValueArgs)
|
||||
set(multiValueArgs SOURCES)
|
||||
cmake_parse_arguments(compile_shader "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
|
||||
foreach(source ${compile_shader_SOURCES})
|
||||
get_filename_component(filename ${source} NAME)
|
||||
set(spv_file ${filename}.spv)
|
||||
add_custom_command(
|
||||
OUTPUT ${spv_file}
|
||||
DEPENDS ${CMAKE_CURRENT_SOURCE_DIR}/${source}
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/kompute-shaders/common.comp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/kompute-shaders/op_getrows.comp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/kompute-shaders/op_mul_mv_q_n_pre.comp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/kompute-shaders/op_mul_mv_q_n.comp
|
||||
COMMAND ${glslc_executable} --target-env=vulkan1.2 -o ${spv_file} ${CMAKE_CURRENT_SOURCE_DIR}/${source}
|
||||
COMMENT "Compiling ${source} to ${spv_file}"
|
||||
)
|
||||
|
||||
get_filename_component(RAW_FILE_NAME ${spv_file} NAME)
|
||||
set(FILE_NAME "shader${RAW_FILE_NAME}")
|
||||
string(REPLACE ".comp.spv" ".h" HEADER_FILE ${FILE_NAME})
|
||||
string(TOUPPER ${HEADER_FILE} HEADER_FILE_DEFINE)
|
||||
string(REPLACE "." "_" HEADER_FILE_DEFINE "${HEADER_FILE_DEFINE}")
|
||||
set(OUTPUT_HEADER_FILE "${HEADER_FILE}")
|
||||
message(STATUS "${HEADER_FILE} generating ${HEADER_FILE_DEFINE}")
|
||||
if(CMAKE_GENERATOR MATCHES "Visual Studio")
|
||||
add_custom_command(
|
||||
OUTPUT ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo "/*THIS FILE HAS BEEN AUTOMATICALLY GENERATED - DO NOT EDIT*/" > ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo \"\#ifndef ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo \"\#define ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo "namespace kp {" >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo "namespace shader_data {" >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_BINARY_DIR}/bin/$<CONFIG>/xxd -i ${RAW_FILE_NAME} >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo "}}" >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo \"\#endif // define ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE}
|
||||
DEPENDS ${spv_file} xxd
|
||||
COMMENT "Converting to hpp: ${FILE_NAME} ${CMAKE_BINARY_DIR}/bin/$<CONFIG>/xxd"
|
||||
)
|
||||
else()
|
||||
add_custom_command(
|
||||
OUTPUT ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo "/*THIS FILE HAS BEEN AUTOMATICALLY GENERATED - DO NOT EDIT*/" > ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo \"\#ifndef ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo \"\#define ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo "namespace kp {" >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo "namespace shader_data {" >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_BINARY_DIR}/bin/xxd -i ${RAW_FILE_NAME} >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo "}}" >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo \"\#endif // define ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE}
|
||||
DEPENDS ${spv_file} xxd
|
||||
COMMENT "Converting to hpp: ${FILE_NAME} ${CMAKE_BINARY_DIR}/bin/xxd"
|
||||
)
|
||||
endif()
|
||||
endforeach()
|
||||
endfunction()
|
||||
|
||||
if (EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/kompute/CMakeLists.txt")
|
||||
message(STATUS "Kompute found")
|
||||
set(KOMPUTE_OPT_LOG_LEVEL Error CACHE STRING "Kompute log level")
|
||||
add_subdirectory(kompute)
|
||||
|
||||
# Compile our shaders
|
||||
compile_shader(SOURCES
|
||||
kompute-shaders/op_scale.comp
|
||||
kompute-shaders/op_scale_8.comp
|
||||
kompute-shaders/op_add.comp
|
||||
kompute-shaders/op_addrow.comp
|
||||
kompute-shaders/op_mul.comp
|
||||
kompute-shaders/op_silu.comp
|
||||
kompute-shaders/op_relu.comp
|
||||
kompute-shaders/op_gelu.comp
|
||||
kompute-shaders/op_softmax.comp
|
||||
kompute-shaders/op_norm.comp
|
||||
kompute-shaders/op_rmsnorm.comp
|
||||
kompute-shaders/op_diagmask.comp
|
||||
kompute-shaders/op_mul_mat_mat_f32.comp
|
||||
kompute-shaders/op_mul_mat_f16.comp
|
||||
kompute-shaders/op_mul_mat_q8_0.comp
|
||||
kompute-shaders/op_mul_mat_q4_0.comp
|
||||
kompute-shaders/op_mul_mat_q4_1.comp
|
||||
kompute-shaders/op_mul_mat_q6_k.comp
|
||||
kompute-shaders/op_getrows_f16.comp
|
||||
kompute-shaders/op_getrows_q4_0.comp
|
||||
kompute-shaders/op_getrows_q4_1.comp
|
||||
kompute-shaders/op_getrows_q6_k.comp
|
||||
kompute-shaders/op_rope_f16.comp
|
||||
kompute-shaders/op_rope_f32.comp
|
||||
kompute-shaders/op_cpy_f16_f16.comp
|
||||
kompute-shaders/op_cpy_f16_f32.comp
|
||||
kompute-shaders/op_cpy_f32_f16.comp
|
||||
kompute-shaders/op_cpy_f32_f32.comp
|
||||
)
|
||||
|
||||
# Create a custom target for our generated shaders
|
||||
add_custom_target(generated_shaders DEPENDS
|
||||
shaderop_scale.h
|
||||
shaderop_scale_8.h
|
||||
shaderop_add.h
|
||||
shaderop_addrow.h
|
||||
shaderop_mul.h
|
||||
shaderop_silu.h
|
||||
shaderop_relu.h
|
||||
shaderop_gelu.h
|
||||
shaderop_softmax.h
|
||||
shaderop_norm.h
|
||||
shaderop_rmsnorm.h
|
||||
shaderop_diagmask.h
|
||||
shaderop_mul_mat_mat_f32.h
|
||||
shaderop_mul_mat_f16.h
|
||||
shaderop_mul_mat_q8_0.h
|
||||
shaderop_mul_mat_q4_0.h
|
||||
shaderop_mul_mat_q4_1.h
|
||||
shaderop_mul_mat_q6_k.h
|
||||
shaderop_getrows_f16.h
|
||||
shaderop_getrows_q4_0.h
|
||||
shaderop_getrows_q4_1.h
|
||||
shaderop_getrows_q6_k.h
|
||||
shaderop_rope_f16.h
|
||||
shaderop_rope_f32.h
|
||||
shaderop_cpy_f16_f16.h
|
||||
shaderop_cpy_f16_f32.h
|
||||
shaderop_cpy_f32_f16.h
|
||||
shaderop_cpy_f32_f32.h
|
||||
)
|
||||
|
||||
# Create a custom command that depends on the generated_shaders
|
||||
add_custom_command(
|
||||
OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/ggml-kompute.stamp
|
||||
COMMAND ${CMAKE_COMMAND} -E touch ${CMAKE_CURRENT_BINARY_DIR}/ggml-kompute.stamp
|
||||
DEPENDS generated_shaders
|
||||
COMMENT "Ensuring shaders are generated before compiling ggml-kompute.cpp"
|
||||
)
|
||||
|
||||
# Add the stamp to the main sources to ensure dependency tracking
|
||||
set(GGML_SOURCES_KOMPUTE ggml-kompute.cpp ${CMAKE_CURRENT_BINARY_DIR}/ggml-kompute.stamp)
|
||||
set(GGML_HEADERS_KOMPUTE ggml-kompute.h ${CMAKE_CURRENT_BINARY_DIR}/ggml-kompute.stamp)
|
||||
|
||||
add_compile_definitions(GGML_USE_KOMPUTE)
|
||||
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} kompute)
|
||||
set(LLAMA_EXTRA_INCLUDES ${LLAMA_EXTRA_INCLUDES} ${CMAKE_BINARY_DIR})
|
||||
else()
|
||||
message(WARNING "Kompute not found")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (LLAMA_CPU_HBM)
|
||||
find_library(memkind memkind REQUIRED)
|
||||
|
||||
add_compile_definitions(GGML_USE_CPU_HBM)
|
||||
|
||||
target_link_libraries(ggml PUBLIC memkind)
|
||||
endif()
|
||||
|
||||
if (LLAMA_PERF)
|
||||
add_compile_definitions(GGML_PERF)
|
||||
endif()
|
||||
|
||||
function(get_flags CCID CCVER)
|
||||
@@ -634,9 +841,9 @@ if (LLAMA_CCACHE)
|
||||
if (LLAMA_CCACHE_FOUND)
|
||||
set_property(GLOBAL PROPERTY RULE_LAUNCH_COMPILE ccache)
|
||||
set(ENV{CCACHE_SLOPPINESS} time_macros)
|
||||
message(STATUS "Using ccache")
|
||||
message(STATUS "ccache found, compilation results will be cached. Disable with LLAMA_CCACHE=OFF.")
|
||||
else()
|
||||
message(STATUS "Warning: ccache not found - consider installing it or use LLAMA_CCACHE=OFF")
|
||||
message(STATUS "Warning: ccache not found - consider installing it for faster compilation or disable this warning with LLAMA_CCACHE=OFF")
|
||||
endif ()
|
||||
endif()
|
||||
|
||||
@@ -646,6 +853,7 @@ execute_process(
|
||||
ERROR_VARIABLE output
|
||||
OUTPUT_QUIET
|
||||
)
|
||||
|
||||
if (output MATCHES "dyld-1015\.7")
|
||||
add_compile_definitions(HAVE_BUGGY_APPLE_LINKER)
|
||||
endif()
|
||||
@@ -655,10 +863,10 @@ endif()
|
||||
# feel free to update the Makefile for your architecture and send a pull request or issue
|
||||
message(STATUS "CMAKE_SYSTEM_PROCESSOR: ${CMAKE_SYSTEM_PROCESSOR}")
|
||||
if (MSVC)
|
||||
string(TOLOWER "${CMAKE_GENERATOR_PLATFORM}" CMAKE_GENERATOR_PLATFORM_LWR)
|
||||
message(STATUS "CMAKE_GENERATOR_PLATFORM: ${CMAKE_GENERATOR_PLATFORM}")
|
||||
string(TOLOWER "${CMAKE_GENERATOR_PLATFORM}" CMAKE_GENERATOR_PLATFORM_LWR)
|
||||
message(STATUS "CMAKE_GENERATOR_PLATFORM: ${CMAKE_GENERATOR_PLATFORM}")
|
||||
else ()
|
||||
set(CMAKE_GENERATOR_PLATFORM_LWR "")
|
||||
set(CMAKE_GENERATOR_PLATFORM_LWR "")
|
||||
endif ()
|
||||
|
||||
if (NOT MSVC)
|
||||
@@ -675,14 +883,26 @@ endif()
|
||||
|
||||
set(ARCH_FLAGS "")
|
||||
|
||||
if ((${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm") OR (${CMAKE_SYSTEM_PROCESSOR} MATCHES "aarch64") OR ("${CMAKE_GENERATOR_PLATFORM_LWR}" MATCHES "arm64"))
|
||||
if (CMAKE_OSX_ARCHITECTURES STREQUAL "arm64" OR CMAKE_GENERATOR_PLATFORM_LWR STREQUAL "arm64" OR
|
||||
(NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND
|
||||
CMAKE_SYSTEM_PROCESSOR MATCHES "^(aarch64|arm.*|ARM64)$"))
|
||||
message(STATUS "ARM detected")
|
||||
if (MSVC)
|
||||
add_compile_definitions(__aarch64__) # MSVC defines _M_ARM64 instead
|
||||
add_compile_definitions(__ARM_NEON)
|
||||
add_compile_definitions(__ARM_FEATURE_FMA)
|
||||
add_compile_definitions(__ARM_FEATURE_DOTPROD)
|
||||
# add_compile_definitions(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) # MSVC doesn't support vdupq_n_f16, vld1q_f16, vst1q_f16
|
||||
add_compile_definitions(__aarch64__) # MSVC defines _M_ARM64 instead
|
||||
|
||||
set(CMAKE_REQUIRED_FLAGS_PREV ${CMAKE_REQUIRED_FLAGS})
|
||||
string(JOIN " " CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS} "/arch:armv8.2")
|
||||
check_cxx_source_compiles("#include <arm_neon.h>\nint main() { int8x16_t _a, _b; int32x4_t _s = vdotq_s32(_s, _a, _b); return 0; }" GGML_COMPILER_SUPPORT_DOTPROD)
|
||||
if (GGML_COMPILER_SUPPORT_DOTPROD)
|
||||
add_compile_definitions(__ARM_FEATURE_DOTPROD)
|
||||
endif ()
|
||||
check_cxx_source_compiles("#include <arm_neon.h>\nint main() { float16_t _a; float16x8_t _s = vdupq_n_f16(_a); return 0; }" GGML_COMPILER_SUPPORT_FP16_VECTOR_ARITHMETIC)
|
||||
if (GGML_COMPILER_SUPPORT_FP16_VECTOR_ARITHMETIC)
|
||||
add_compile_definitions(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
|
||||
endif ()
|
||||
set(CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS_PREV})
|
||||
else()
|
||||
check_cxx_compiler_flag(-mfp16-format=ieee COMPILER_SUPPORTS_FP16_FORMAT_I3E)
|
||||
if (NOT "${COMPILER_SUPPORTS_FP16_FORMAT_I3E}" STREQUAL "")
|
||||
@@ -701,7 +921,9 @@ if ((${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm") OR (${CMAKE_SYSTEM_PROCESSOR} MATC
|
||||
list(APPEND ARCH_FLAGS -mno-unaligned-access)
|
||||
endif()
|
||||
endif()
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "^(x86_64|i686|AMD64)$" OR "${CMAKE_GENERATOR_PLATFORM_LWR}" MATCHES "^(x86_64|i686|amd64|x64)$" )
|
||||
elseif (CMAKE_OSX_ARCHITECTURES STREQUAL "x86_64" OR CMAKE_GENERATOR_PLATFORM_LWR MATCHES "^(x86_64|i686|amd64|x64|win32)$" OR
|
||||
(NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND
|
||||
CMAKE_SYSTEM_PROCESSOR MATCHES "^(x86_64|i686|AMD64)$"))
|
||||
message(STATUS "x86 detected")
|
||||
if (MSVC)
|
||||
# instruction set detection for MSVC only
|
||||
@@ -838,11 +1060,6 @@ endif()
|
||||
|
||||
# ggml
|
||||
|
||||
if (GGML_USE_CPU_HBM)
|
||||
add_definitions(-DGGML_USE_CPU_HBM)
|
||||
find_library(memkind memkind REQUIRED)
|
||||
endif()
|
||||
|
||||
add_library(ggml OBJECT
|
||||
ggml.c
|
||||
ggml.h
|
||||
@@ -852,23 +1069,24 @@ add_library(ggml OBJECT
|
||||
ggml-backend.h
|
||||
ggml-quants.c
|
||||
ggml-quants.h
|
||||
${GGML_SOURCES_CUDA} ${GGML_HEADERS_CUDA}
|
||||
${GGML_SOURCES_OPENCL} ${GGML_HEADERS_OPENCL}
|
||||
${GGML_SOURCES_VULKAN} ${GGML_HEADERS_VULKAN}
|
||||
${GGML_SOURCES_METAL} ${GGML_HEADERS_METAL}
|
||||
${GGML_SOURCES_MPI} ${GGML_HEADERS_MPI}
|
||||
${GGML_SOURCES_EXTRA} ${GGML_HEADERS_EXTRA}
|
||||
${GGML_SOURCES_SYCL} ${GGML_HEADERS_SYCL}
|
||||
${GGML_SOURCES_CUDA} ${GGML_HEADERS_CUDA}
|
||||
${GGML_SOURCES_OPENCL} ${GGML_HEADERS_OPENCL}
|
||||
${GGML_SOURCES_METAL} ${GGML_HEADERS_METAL}
|
||||
${GGML_SOURCES_MPI} ${GGML_HEADERS_MPI}
|
||||
${GGML_SOURCES_EXTRA} ${GGML_HEADERS_EXTRA}
|
||||
${GGML_SOURCES_SYCL} ${GGML_HEADERS_SYCL}
|
||||
${GGML_SOURCES_KOMPUTE} ${GGML_HEADERS_KOMPUTE}
|
||||
${GGML_SOURCES_VULKAN} ${GGML_HEADERS_VULKAN}
|
||||
${GGML_SOURCES_ROCM} ${GGML_HEADERS_ROCM}
|
||||
)
|
||||
|
||||
target_include_directories(ggml PUBLIC . ${LLAMA_EXTRA_INCLUDES})
|
||||
target_compile_features(ggml PUBLIC c_std_11) # don't bump
|
||||
target_compile_features (ggml PUBLIC c_std_11) # don't bump
|
||||
|
||||
target_link_libraries(ggml PUBLIC Threads::Threads ${LLAMA_EXTRA_LIBS})
|
||||
if (GGML_USE_CPU_HBM)
|
||||
target_link_libraries(ggml PUBLIC memkind)
|
||||
endif()
|
||||
|
||||
add_library(ggml_static STATIC $<TARGET_OBJECTS:ggml>)
|
||||
|
||||
if (BUILD_SHARED_LIBS)
|
||||
set_target_properties(ggml PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
add_library(ggml_shared SHARED $<TARGET_OBJECTS:ggml>)
|
||||
@@ -884,7 +1102,8 @@ add_library(llama
|
||||
)
|
||||
|
||||
target_include_directories(llama PUBLIC .)
|
||||
target_compile_features(llama PUBLIC cxx_std_11) # don't bump
|
||||
target_compile_features (llama PUBLIC cxx_std_11) # don't bump
|
||||
|
||||
target_link_libraries(llama PRIVATE
|
||||
ggml
|
||||
${LLAMA_EXTRA_LIBS}
|
||||
@@ -935,7 +1154,7 @@ install(FILES ${CMAKE_CURRENT_BINARY_DIR}/LlamaConfig.cmake
|
||||
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/Llama)
|
||||
|
||||
set(GGML_PUBLIC_HEADERS "ggml.h" "ggml-alloc.h" "ggml-backend.h"
|
||||
"${GGML_HEADERS_CUDA}" "${GGML_HEADERS_OPENCL}" "${GGML_HEADERS_VULKAN}"
|
||||
"${GGML_HEADERS_CUDA}" "${GGML_HEADERS_OPENCL}"
|
||||
"${GGML_HEADERS_METAL}" "${GGML_HEADERS_MPI}" "${GGML_HEADERS_EXTRA}")
|
||||
|
||||
set_target_properties(ggml PROPERTIES PUBLIC_HEADER "${GGML_PUBLIC_HEADERS}")
|
||||
|
||||
233
Makefile
233
Makefile
@@ -109,8 +109,21 @@ MK_NVCCFLAGS += -O3
|
||||
else
|
||||
MK_CFLAGS += -O3
|
||||
MK_CXXFLAGS += -O3
|
||||
MK_NVCCFLAGS += -O3
|
||||
endif
|
||||
|
||||
ifndef LLAMA_NO_CCACHE
|
||||
CCACHE := $(shell which ccache)
|
||||
ifdef CCACHE
|
||||
export CCACHE_SLOPPINESS = time_macros
|
||||
$(info I ccache found, compilation results will be cached. Disable with LLAMA_NO_CCACHE.)
|
||||
CC := $(CCACHE) $(CC)
|
||||
CXX := $(CCACHE) $(CXX)
|
||||
else
|
||||
$(info I ccache not found. Consider installing it for faster compilation.)
|
||||
endif # CCACHE
|
||||
endif # LLAMA_NO_CCACHE
|
||||
|
||||
# clock_gettime came in POSIX.1b (1993)
|
||||
# CLOCK_MONOTONIC came in POSIX.1-2001 / SUSv3 as optional
|
||||
# posix_memalign came in POSIX.1-2001 / SUSv3
|
||||
@@ -202,6 +215,35 @@ MK_CFLAGS += $(WARN_FLAGS) -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmis
|
||||
-Werror=implicit-function-declaration
|
||||
MK_CXXFLAGS += $(WARN_FLAGS) -Wmissing-declarations -Wmissing-noreturn
|
||||
|
||||
ifeq ($(LLAMA_FATAL_WARNINGS),1)
|
||||
MK_CFLAGS += -Werror
|
||||
MK_CXXFLAGS += -Werror
|
||||
endif
|
||||
|
||||
ifeq ($(CC_IS_CLANG), 1)
|
||||
# clang options
|
||||
MK_CFLAGS += -Wunreachable-code-break -Wunreachable-code-return
|
||||
MK_HOST_CXXFLAGS += -Wunreachable-code-break -Wunreachable-code-return -Wmissing-prototypes -Wextra-semi
|
||||
|
||||
ifneq '' '$(and $(CC_IS_LLVM_CLANG),$(filter 1,$(shell expr $(CC_VER) \>= 030800)))'
|
||||
MK_CFLAGS += -Wdouble-promotion
|
||||
endif
|
||||
ifneq '' '$(and $(CC_IS_APPLE_CLANG),$(filter 1,$(shell expr $(CC_VER) \>= 070300)))'
|
||||
MK_CFLAGS += -Wdouble-promotion
|
||||
endif
|
||||
else
|
||||
# gcc options
|
||||
MK_CFLAGS += -Wdouble-promotion
|
||||
MK_HOST_CXXFLAGS += -Wno-array-bounds
|
||||
|
||||
ifeq ($(shell expr $(CC_VER) \>= 070100), 1)
|
||||
MK_HOST_CXXFLAGS += -Wno-format-truncation
|
||||
endif
|
||||
ifeq ($(shell expr $(CC_VER) \>= 080100), 1)
|
||||
MK_HOST_CXXFLAGS += -Wextra-semi
|
||||
endif
|
||||
endif
|
||||
|
||||
# this version of Apple ld64 is buggy
|
||||
ifneq '' '$(findstring dyld-1015.7,$(shell $(CC) $(LDFLAGS) -Wl,-v 2>&1))'
|
||||
MK_CPPFLAGS += -DHAVE_BUGGY_APPLE_LINKER
|
||||
@@ -365,7 +407,7 @@ ifdef LLAMA_CUBLAS
|
||||
MK_CPPFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include
|
||||
MK_LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
|
||||
OBJS += ggml-cuda.o
|
||||
MK_NVCCFLAGS = -use_fast_math
|
||||
MK_NVCCFLAGS += -use_fast_math
|
||||
ifndef JETSON_EOL_MODULE_DETECT
|
||||
MK_NVCCFLAGS += --forward-unknown-to-host-compiler
|
||||
endif # JETSON_EOL_MODULE_DETECT
|
||||
@@ -373,9 +415,9 @@ ifdef LLAMA_DEBUG
|
||||
MK_NVCCFLAGS += -lineinfo
|
||||
endif # LLAMA_DEBUG
|
||||
ifdef LLAMA_CUDA_NVCC
|
||||
NVCC = $(LLAMA_CUDA_NVCC)
|
||||
NVCC = $(CCACHE) $(LLAMA_CUDA_NVCC)
|
||||
else
|
||||
NVCC = nvcc
|
||||
NVCC = $(CCACHE) nvcc
|
||||
endif #LLAMA_CUDA_NVCC
|
||||
ifdef CUDA_DOCKER_ARCH
|
||||
MK_NVCCFLAGS += -Wno-deprecated-gpu-targets -arch=$(CUDA_DOCKER_ARCH)
|
||||
@@ -457,6 +499,18 @@ ifdef LLAMA_VULKAN_CHECK_RESULTS
|
||||
MK_CPPFLAGS += -DGGML_VULKAN_CHECK_RESULTS
|
||||
endif
|
||||
|
||||
ifdef LLAMA_VULKAN_DEBUG
|
||||
MK_CPPFLAGS += -DGGML_VULKAN_DEBUG
|
||||
endif
|
||||
|
||||
ifdef LLAMA_VULKAN_VALIDATE
|
||||
MK_CPPFLAGS += -DGGML_VULKAN_VALIDATE
|
||||
endif
|
||||
|
||||
ifdef LLAMA_VULKAN_RUN_TESTS
|
||||
MK_CPPFLAGS += -DGGML_VULKAN_RUN_TESTS
|
||||
endif
|
||||
|
||||
ggml-vulkan.o: ggml-vulkan.cpp ggml-vulkan.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
endif # LLAMA_VULKAN
|
||||
@@ -470,7 +524,7 @@ ifdef LLAMA_HIPBLAS
|
||||
ROCM_PATH ?= /opt/rocm
|
||||
GPU_TARGETS ?= $(shell $(ROCM_PATH)/llvm/bin/amdgpu-arch)
|
||||
endif
|
||||
HIPCC ?= $(ROCM_PATH)/bin/hipcc
|
||||
HIPCC ?= $(CCACHE) $(ROCM_PATH)/bin/hipcc
|
||||
LLAMA_CUDA_DMMV_X ?= 32
|
||||
LLAMA_CUDA_MMV_Y ?= 1
|
||||
LLAMA_CUDA_KQUANTS_ITER ?= 2
|
||||
@@ -540,8 +594,19 @@ $(info I CFLAGS: $(CFLAGS))
|
||||
$(info I CXXFLAGS: $(CXXFLAGS))
|
||||
$(info I NVCCFLAGS: $(NVCCFLAGS))
|
||||
$(info I LDFLAGS: $(LDFLAGS))
|
||||
$(info I CC: $(shell $(CC) --version | head -n 1))
|
||||
$(info I CXX: $(shell $(CXX) --version | head -n 1))
|
||||
$(info I CC: $(shell $(CC) --version | head -n 1))
|
||||
$(info I CXX: $(shell $(CXX) --version | head -n 1))
|
||||
ifdef LLAMA_CUBLAS
|
||||
$(info I NVCC: $(shell $(NVCC) --version | tail -n 1))
|
||||
CUDA_VERSION := $(shell nvcc --version | grep -oP 'release (\K[0-9]+\.[0-9])')
|
||||
ifeq ($(shell awk -v "v=$(CUDA_VERSION)" 'BEGIN { print (v < 11.7) }'),1)
|
||||
ifndef CUDA_DOCKER_ARCH
|
||||
ifndef CUDA_POWER_ARCH
|
||||
$(error I ERROR: For CUDA versions < 11.7 a target CUDA architecture must be explicitly provided via CUDA_DOCKER_ARCH)
|
||||
endif # CUDA_POWER_ARCH
|
||||
endif # CUDA_DOCKER_ARCH
|
||||
endif # eq ($(shell echo "$(CUDA_VERSION) < 11.7" | bc),1)
|
||||
endif # LLAMA_CUBLAS
|
||||
$(info )
|
||||
|
||||
#
|
||||
@@ -586,99 +651,140 @@ train.o: common/train.cpp common/train.h
|
||||
libllama.so: llama.o ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS)
|
||||
|
||||
libllama.a: llama.o ggml.o $(OBJS) $(COMMON_DEPS)
|
||||
ar rcs libllama.a llama.o ggml.o $(OBJS) $(COMMON_DEPS)
|
||||
|
||||
clean:
|
||||
rm -vrf *.o tests/*.o *.so *.dll benchmark-matmult common/build-info.cpp *.dot $(COV_TARGETS) $(BUILD_TARGETS) $(TEST_TARGETS)
|
||||
rm -vrf *.o tests/*.o *.so *.a *.dll benchmark-matmult common/build-info.cpp *.dot $(COV_TARGETS) $(BUILD_TARGETS) $(TEST_TARGETS)
|
||||
find examples pocs -type f -name "*.o" -delete
|
||||
|
||||
#
|
||||
# Examples
|
||||
#
|
||||
|
||||
# $< is the first prerequisite, i.e. the source file.
|
||||
# Explicitly compile this to an object file so that it can be cached with ccache.
|
||||
# The source file is then filtered out from $^ (the list of all prerequisites) and the object file is added instead.
|
||||
|
||||
# Helper function that replaces .c, .cpp, and .cu file endings with .o:
|
||||
GET_OBJ_FILE = $(patsubst %.c,%.o,$(patsubst %.cpp,%.o,$(patsubst %.cu,%.o,$(1))))
|
||||
|
||||
main: examples/main/main.cpp ggml.o llama.o $(COMMON_DEPS) console.o grammar-parser.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
@echo
|
||||
@echo '==== Run ./main -h for help. ===='
|
||||
@echo
|
||||
|
||||
infill: examples/infill/infill.cpp ggml.o llama.o $(COMMON_DEPS) console.o grammar-parser.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
simple: examples/simple/simple.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
tokenize: examples/tokenize/tokenize.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
batched: examples/batched/batched.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
batched-bench: examples/batched-bench/batched-bench.cpp build-info.o ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
quantize: examples/quantize/quantize.cpp build-info.o ggml.o llama.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
quantize-stats: examples/quantize-stats/quantize-stats.cpp build-info.o ggml.o llama.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
perplexity: examples/perplexity/perplexity.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
imatrix: examples/imatrix/imatrix.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
embedding: examples/embedding/embedding.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
save-load-state: examples/save-load-state/save-load-state.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
server: examples/server/server.cpp examples/server/oai.hpp examples/server/utils.hpp examples/server/httplib.h examples/server/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp examples/llava/clip.cpp examples/llava/clip.h common/stb_image.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -Iexamples/server $(filter-out %.h,$(filter-out %.hpp,$^)) -o $@ $(LDFLAGS) $(LWINSOCK2) -Wno-cast-qual
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) -c examples/llava/clip.cpp -o $(call GET_OBJ_FILE, examples/llava/clip.cpp) -Wno-cast-qual
|
||||
$(CXX) $(CXXFLAGS) -Iexamples/server $(filter-out %.h %.hpp $< examples/llava/clip.cpp,$^) $(call GET_OBJ_FILE, $<) $(call GET_OBJ_FILE, examples/llava/clip.cpp) -o $@ $(LDFLAGS) $(LWINSOCK2)
|
||||
|
||||
gguf: examples/gguf/gguf.cpp ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
convert-llama2c-to-ggml: examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp ggml.o llama.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-bench: examples/llama-bench/llama-bench.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
libllava.a: examples/llava/llava.cpp examples/llava/llava.h examples/llava/clip.cpp examples/llava/clip.h common/stb_image.h common/base64.hpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -static -fPIC -c $< -o $@ -Wno-cast-qual
|
||||
|
||||
llava-cli: examples/llava/llava-cli.cpp examples/llava/clip.h examples/llava/clip.cpp examples/llava/llava.h examples/llava/llava.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -Wno-cast-qual
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) -c examples/llava/clip.cpp -o $(call GET_OBJ_FILE, examples/llava/clip.cpp) -Wno-cast-qual
|
||||
$(CXX) $(CXXFLAGS) -c examples/llava/llava.cpp -o $(call GET_OBJ_FILE, examples/llava/llava.cpp)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $< examples/llava/clip.cpp examples/llava/llava.cpp,$^) $(call GET_OBJ_FILE, $<) $(call GET_OBJ_FILE, examples/llava/clip.cpp) $(call GET_OBJ_FILE, examples/llava/llava.cpp) -o $@ $(LDFLAGS)
|
||||
|
||||
baby-llama: examples/baby-llama/baby-llama.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
beam-search: examples/beam-search/beam-search.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
finetune: examples/finetune/finetune.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
export-lora: examples/export-lora/export-lora.cpp ggml.o common/common.h $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
speculative: examples/speculative/speculative.cpp ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
parallel: examples/parallel/parallel.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
lookahead: examples/lookahead/lookahead.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
lookup: examples/lookup/lookup.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
passkey: examples/passkey/passkey.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
swift: examples/batched.swift
|
||||
@@ -686,7 +792,7 @@ swift: examples/batched.swift
|
||||
endif
|
||||
|
||||
common/build-info.cpp: $(wildcard .git/index) scripts/build-info.sh
|
||||
@sh scripts/build-info.sh $(CC) > $@.tmp
|
||||
@sh scripts/build-info.sh "$(CC)" > $@.tmp
|
||||
@if ! cmp -s $@.tmp $@; then \
|
||||
mv $@.tmp $@; \
|
||||
else \
|
||||
@@ -703,7 +809,8 @@ build-info.o: common/build-info.cpp
|
||||
tests: $(TEST_TARGETS)
|
||||
|
||||
benchmark-matmult: examples/benchmark/benchmark-matmult.cpp build-info.o ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
run-benchmark-matmult: benchmark-matmult
|
||||
./$@
|
||||
@@ -711,58 +818,76 @@ run-benchmark-matmult: benchmark-matmult
|
||||
.PHONY: run-benchmark-matmult swift
|
||||
|
||||
vdot: pocs/vdot/vdot.cpp ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
q8dot: pocs/vdot/q8dot.cpp ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-llama-grammar: tests/test-llama-grammar.cpp ggml.o grammar-parser.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-grammar-parser: tests/test-grammar-parser.cpp ggml.o llama.o grammar-parser.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-double-float: tests/test-double-float.cpp ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-grad0: tests/test-grad0.cpp ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-opt: tests/test-opt.cpp ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-quantize-fns: tests/test-quantize-fns.cpp ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-quantize-perf: tests/test-quantize-perf.cpp ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-sampling: tests/test-sampling.cpp ggml.o llama.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-tokenizer-0-falcon: tests/test-tokenizer-0-falcon.cpp ggml.o llama.o $(COMMON_DEPS) console.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-tokenizer-0-llama: tests/test-tokenizer-0-llama.cpp ggml.o llama.o $(COMMON_DEPS) console.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-tokenizer-1-bpe: tests/test-tokenizer-1-bpe.cpp ggml.o llama.o $(COMMON_DEPS) console.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-tokenizer-1-llama: tests/test-tokenizer-1-llama.cpp ggml.o llama.o $(COMMON_DEPS) console.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-rope: tests/test-rope.cpp ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-c.o: tests/test-c.c llama.h
|
||||
$(CC) $(CFLAGS) -c $(filter-out %.h,$^) -o $@
|
||||
|
||||
tests/test-backend-ops: tests/test-backend-ops.cpp ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-model-load-cancel: tests/test-model-load-cancel.cpp ggml.o llama.o tests/get-model.cpp $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-autorelease: tests/test-autorelease.cpp ggml.o llama.o tests/get-model.cpp $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
@@ -13,17 +13,31 @@ let package = Package(
|
||||
products: [
|
||||
.library(name: "llama", targets: ["llama"]),
|
||||
],
|
||||
dependencies: [
|
||||
.package(url: "https://github.com/ggerganov/ggml.git", .branch("release"))
|
||||
],
|
||||
targets: [
|
||||
.target(
|
||||
name: "llama",
|
||||
dependencies: ["ggml"],
|
||||
path: ".",
|
||||
exclude: ["ggml-metal.metal"],
|
||||
exclude: [
|
||||
"cmake",
|
||||
"examples",
|
||||
"scripts",
|
||||
"models",
|
||||
"tests",
|
||||
"CMakeLists.txt",
|
||||
"ggml-cuda.cu",
|
||||
"ggml-cuda.h",
|
||||
"Makefile"
|
||||
],
|
||||
sources: [
|
||||
"ggml.c",
|
||||
"llama.cpp",
|
||||
"ggml-alloc.c",
|
||||
"ggml-backend.c",
|
||||
"ggml-quants.c",
|
||||
"ggml-metal.m",
|
||||
],
|
||||
resources: [
|
||||
.process("ggml-metal.metal")
|
||||
],
|
||||
publicHeadersPath: "spm-headers",
|
||||
cSettings: [
|
||||
|
||||
494
README-sycl.md
Normal file
494
README-sycl.md
Normal file
@@ -0,0 +1,494 @@
|
||||
# llama.cpp for SYCL
|
||||
|
||||
- [Background](#background)
|
||||
- [OS](#os)
|
||||
- [Intel GPU](#intel-gpu)
|
||||
- [Docker](#docker)
|
||||
- [Linux](#linux)
|
||||
- [Windows](#windows)
|
||||
- [Environment Variable](#environment-variable)
|
||||
- [Known Issue](#known-issue)
|
||||
- [Q&A](#q&a)
|
||||
- [Todo](#todo)
|
||||
|
||||
## Background
|
||||
|
||||
SYCL is a higher-level programming model to improve programming productivity on various hardware accelerators—such as CPUs, GPUs, and FPGAs. It is a single-source embedded domain-specific language based on pure C++17.
|
||||
|
||||
oneAPI is a specification that is open and standards-based, supporting multiple architecture types including but not limited to GPU, CPU, and FPGA. The spec has both direct programming and API-based programming paradigms.
|
||||
|
||||
Intel uses the SYCL as direct programming language to support CPU, GPUs and FPGAs.
|
||||
|
||||
To avoid to re-invent the wheel, this code refer other code paths in llama.cpp (like OpenBLAS, cuBLAS, CLBlast). We use a open-source tool [SYCLomatic](https://github.com/oneapi-src/SYCLomatic) (Commercial release [Intel® DPC++ Compatibility Tool](https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html)) migrate to SYCL.
|
||||
|
||||
The llama.cpp for SYCL is used to support Intel GPUs.
|
||||
|
||||
For Intel CPU, recommend to use llama.cpp for X86 (Intel MKL building).
|
||||
|
||||
## OS
|
||||
|
||||
|OS|Status|Verified|
|
||||
|-|-|-|
|
||||
|Linux|Support|Ubuntu 22.04, Fedora Silverblue 39|
|
||||
|Windows|Support|Windows 11|
|
||||
|
||||
|
||||
## Intel GPU
|
||||
|
||||
### Verified
|
||||
|
||||
|Intel GPU| Status | Verified Model|
|
||||
|-|-|-|
|
||||
|Intel Data Center Max Series| Support| Max 1550|
|
||||
|Intel Data Center Flex Series| Support| Flex 170|
|
||||
|Intel Arc Series| Support| Arc 770, 730M|
|
||||
|Intel built-in Arc GPU| Support| built-in Arc GPU in Meteor Lake|
|
||||
|Intel iGPU| Support| iGPU in i5-1250P, i7-1260P, i7-1165G7|
|
||||
|
||||
Note: If the EUs (Execution Unit) in iGPU is less than 80, the inference speed will be too slow to use.
|
||||
|
||||
### Memory
|
||||
|
||||
The memory is a limitation to run LLM on GPUs.
|
||||
|
||||
When run llama.cpp, there is print log to show the applied memory on GPU. You could know how much memory to be used in your case. Like `llm_load_tensors: buffer size = 3577.56 MiB`.
|
||||
|
||||
For iGPU, please make sure the shared memory from host memory is enough. For llama-2-7b.Q4_0, recommend the host memory is 8GB+.
|
||||
|
||||
For dGPU, please make sure the device memory is enough. For llama-2-7b.Q4_0, recommend the device memory is 4GB+.
|
||||
|
||||
## Docker
|
||||
|
||||
Note:
|
||||
- Only docker on Linux is tested. Docker on WSL may not work.
|
||||
- You may need to install Intel GPU driver on the host machine (See the [Linux](#linux) section to know how to do that)
|
||||
|
||||
### Build the image
|
||||
|
||||
You can choose between **F16** and **F32** build. F16 is faster for long-prompt inference.
|
||||
|
||||
|
||||
```sh
|
||||
# For F16:
|
||||
#docker build -t llama-cpp-sycl --build-arg="LLAMA_SYCL_F16=ON" -f .devops/main-intel.Dockerfile .
|
||||
|
||||
# Or, for F32:
|
||||
docker build -t llama-cpp-sycl -f .devops/main-intel.Dockerfile .
|
||||
|
||||
# Note: you can also use the ".devops/main-server.Dockerfile", which compiles the "server" example
|
||||
```
|
||||
|
||||
### Run
|
||||
|
||||
```sh
|
||||
# Firstly, find all the DRI cards:
|
||||
ls -la /dev/dri
|
||||
# Then, pick the card that you want to use.
|
||||
|
||||
# For example with "/dev/dri/card1"
|
||||
docker run -it --rm -v "$(pwd):/app:Z" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card1:/dev/dri/card1 llama-cpp-sycl -m "/app/models/YOUR_MODEL_FILE" -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33
|
||||
```
|
||||
|
||||
## Linux
|
||||
|
||||
### Setup Environment
|
||||
|
||||
1. Install Intel GPU driver.
|
||||
|
||||
a. Please install Intel GPU driver by official guide: [Install GPU Drivers](https://dgpu-docs.intel.com/driver/installation.html).
|
||||
|
||||
Note: for iGPU, please install the client GPU driver.
|
||||
|
||||
b. Add user to group: video, render.
|
||||
|
||||
```sh
|
||||
sudo usermod -aG render username
|
||||
sudo usermod -aG video username
|
||||
```
|
||||
|
||||
Note: re-login to enable it.
|
||||
|
||||
c. Check
|
||||
|
||||
```sh
|
||||
sudo apt install clinfo
|
||||
sudo clinfo -l
|
||||
```
|
||||
|
||||
Output (example):
|
||||
|
||||
```
|
||||
Platform #0: Intel(R) OpenCL Graphics
|
||||
`-- Device #0: Intel(R) Arc(TM) A770 Graphics
|
||||
|
||||
|
||||
Platform #0: Intel(R) OpenCL HD Graphics
|
||||
`-- Device #0: Intel(R) Iris(R) Xe Graphics [0x9a49]
|
||||
```
|
||||
|
||||
2. Install Intel® oneAPI Base toolkit.
|
||||
|
||||
a. Please follow the procedure in [Get the Intel® oneAPI Base Toolkit ](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html).
|
||||
|
||||
Recommend to install to default folder: **/opt/intel/oneapi**.
|
||||
|
||||
Following guide use the default folder as example. If you use other folder, please modify the following guide info with your folder.
|
||||
|
||||
b. Check
|
||||
|
||||
```sh
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
|
||||
sycl-ls
|
||||
```
|
||||
|
||||
There should be one or more level-zero devices. Please confirm that at least one GPU is present, like **[ext_oneapi_level_zero:gpu:0]**.
|
||||
|
||||
Output (example):
|
||||
```
|
||||
[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.10.0.17_160000]
|
||||
[opencl:cpu:1] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i7-13700K OpenCL 3.0 (Build 0) [2023.16.10.0.17_160000]
|
||||
[opencl:gpu:2] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics OpenCL 3.0 NEO [23.30.26918.50]
|
||||
[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Arc(TM) A770 Graphics 1.3 [1.3.26918]
|
||||
|
||||
```
|
||||
|
||||
2. Build locally:
|
||||
|
||||
Note:
|
||||
- You can choose between **F16** and **F32** build. F16 is faster for long-prompt inference.
|
||||
- By default, it will build for all binary files. It will take more time. To reduce the time, we recommend to build for **example/main** only.
|
||||
|
||||
```sh
|
||||
mkdir -p build
|
||||
cd build
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
|
||||
# For FP16:
|
||||
#cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON
|
||||
|
||||
# Or, for FP32:
|
||||
cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||
|
||||
# Build example/main only
|
||||
#cmake --build . --config Release --target main
|
||||
|
||||
# Or, build all binary
|
||||
cmake --build . --config Release -v
|
||||
|
||||
cd ..
|
||||
```
|
||||
|
||||
or
|
||||
|
||||
```sh
|
||||
./examples/sycl/build.sh
|
||||
```
|
||||
|
||||
### Run
|
||||
|
||||
1. Put model file to folder **models**
|
||||
|
||||
You could download [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) as example.
|
||||
|
||||
2. Enable oneAPI running environment
|
||||
|
||||
```
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
```
|
||||
|
||||
3. List device ID
|
||||
|
||||
Run without parameter:
|
||||
|
||||
```sh
|
||||
./build/bin/ls-sycl-device
|
||||
|
||||
# or running the "main" executable and look at the output log:
|
||||
|
||||
./build/bin/main
|
||||
```
|
||||
|
||||
Check the ID in startup log, like:
|
||||
|
||||
```
|
||||
found 4 SYCL devices:
|
||||
Device 0: Intel(R) Arc(TM) A770 Graphics, compute capability 1.3,
|
||||
max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136
|
||||
Device 1: Intel(R) FPGA Emulation Device, compute capability 1.2,
|
||||
max compute_units 24, max work group size 67108864, max sub group size 64, global mem size 67065057280
|
||||
Device 2: 13th Gen Intel(R) Core(TM) i7-13700K, compute capability 3.0,
|
||||
max compute_units 24, max work group size 8192, max sub group size 64, global mem size 67065057280
|
||||
Device 3: Intel(R) Arc(TM) A770 Graphics, compute capability 3.0,
|
||||
max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136
|
||||
|
||||
```
|
||||
|
||||
|Attribute|Note|
|
||||
|-|-|
|
||||
|compute capability 1.3|Level-zero running time, recommended |
|
||||
|compute capability 3.0|OpenCL running time, slower than level-zero in most cases|
|
||||
|
||||
4. Set device ID and execute llama.cpp
|
||||
|
||||
Set device ID = 0 by **GGML_SYCL_DEVICE=0**
|
||||
|
||||
```sh
|
||||
GGML_SYCL_DEVICE=0 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33
|
||||
```
|
||||
or run by script:
|
||||
|
||||
```sh
|
||||
./examples/sycl/run_llama2.sh
|
||||
```
|
||||
|
||||
Note:
|
||||
|
||||
- By default, mmap is used to read model file. In some cases, it leads to the hang issue. Recommend to use parameter **--no-mmap** to disable mmap() to skip this issue.
|
||||
|
||||
|
||||
5. Check the device ID in output
|
||||
|
||||
Like:
|
||||
```
|
||||
Using device **0** (Intel(R) Arc(TM) A770 Graphics) as main device
|
||||
```
|
||||
|
||||
## Windows
|
||||
|
||||
### Setup Environment
|
||||
|
||||
1. Install Intel GPU driver.
|
||||
|
||||
Please install Intel GPU driver by official guide: [Install GPU Drivers](https://www.intel.com/content/www/us/en/products/docs/discrete-gpus/arc/software/drivers.html).
|
||||
|
||||
Note: **The driver is mandatory for compute function**.
|
||||
|
||||
2. Install Visual Studio.
|
||||
|
||||
Please install [Visual Studio](https://visualstudio.microsoft.com/) which impact oneAPI environment enabling in Windows.
|
||||
|
||||
3. Install Intel® oneAPI Base toolkit.
|
||||
|
||||
a. Please follow the procedure in [Get the Intel® oneAPI Base Toolkit ](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html).
|
||||
|
||||
Recommend to install to default folder: **/opt/intel/oneapi**.
|
||||
|
||||
Following guide uses the default folder as example. If you use other folder, please modify the following guide info with your folder.
|
||||
|
||||
b. Enable oneAPI running environment:
|
||||
|
||||
- In Search, input 'oneAPI'.
|
||||
|
||||
Search & open "Intel oneAPI command prompt for Intel 64 for Visual Studio 2022"
|
||||
|
||||
- In Run:
|
||||
|
||||
In CMD:
|
||||
```
|
||||
"C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64
|
||||
```
|
||||
|
||||
c. Check GPU
|
||||
|
||||
In oneAPI command line:
|
||||
|
||||
```
|
||||
sycl-ls
|
||||
```
|
||||
|
||||
There should be one or more level-zero devices. Please confirm that at least one GPU is present, like **[ext_oneapi_level_zero:gpu:0]**.
|
||||
|
||||
Output (example):
|
||||
```
|
||||
[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.10.0.17_160000]
|
||||
[opencl:cpu:1] Intel(R) OpenCL, 11th Gen Intel(R) Core(TM) i7-1185G7 @ 3.00GHz OpenCL 3.0 (Build 0) [2023.16.10.0.17_160000]
|
||||
[opencl:gpu:2] Intel(R) OpenCL Graphics, Intel(R) Iris(R) Xe Graphics OpenCL 3.0 NEO [31.0.101.5186]
|
||||
[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Iris(R) Xe Graphics 1.3 [1.3.28044]
|
||||
```
|
||||
|
||||
4. Install cmake & make
|
||||
|
||||
a. Download & install cmake for Windows: https://cmake.org/download/
|
||||
|
||||
b. Download & install mingw-w64 make for Windows provided by w64devkit
|
||||
|
||||
- Download the latest fortran version of [w64devkit](https://github.com/skeeto/w64devkit/releases).
|
||||
|
||||
- Extract `w64devkit` on your pc.
|
||||
|
||||
- Add the **bin** folder path in the Windows system PATH environment, like `C:\xxx\w64devkit\bin\`.
|
||||
|
||||
### Build locally:
|
||||
|
||||
In oneAPI command line window:
|
||||
|
||||
```
|
||||
mkdir -p build
|
||||
cd build
|
||||
@call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force
|
||||
|
||||
:: for FP16
|
||||
:: faster for long-prompt inference
|
||||
:: cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release -DLLAMA_SYCL_F16=ON
|
||||
|
||||
:: for FP32
|
||||
cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release
|
||||
|
||||
|
||||
:: build example/main only
|
||||
:: make main
|
||||
|
||||
:: build all binary
|
||||
make -j
|
||||
cd ..
|
||||
```
|
||||
|
||||
or
|
||||
|
||||
```
|
||||
.\examples\sycl\win-build-sycl.bat
|
||||
```
|
||||
|
||||
Note:
|
||||
|
||||
- By default, it will build for all binary files. It will take more time. To reduce the time, we recommend to build for **example/main** only.
|
||||
|
||||
### Run
|
||||
|
||||
1. Put model file to folder **models**
|
||||
|
||||
You could download [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) as example.
|
||||
|
||||
2. Enable oneAPI running environment
|
||||
|
||||
- In Search, input 'oneAPI'.
|
||||
|
||||
Search & open "Intel oneAPI command prompt for Intel 64 for Visual Studio 2022"
|
||||
|
||||
- In Run:
|
||||
|
||||
In CMD:
|
||||
```
|
||||
"C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64
|
||||
```
|
||||
|
||||
3. List device ID
|
||||
|
||||
Run without parameter:
|
||||
|
||||
```
|
||||
build\bin\ls-sycl-device.exe
|
||||
|
||||
or
|
||||
|
||||
build\bin\main.exe
|
||||
```
|
||||
|
||||
Check the ID in startup log, like:
|
||||
|
||||
```
|
||||
found 4 SYCL devices:
|
||||
Device 0: Intel(R) Arc(TM) A770 Graphics, compute capability 1.3,
|
||||
max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136
|
||||
Device 1: Intel(R) FPGA Emulation Device, compute capability 1.2,
|
||||
max compute_units 24, max work group size 67108864, max sub group size 64, global mem size 67065057280
|
||||
Device 2: 13th Gen Intel(R) Core(TM) i7-13700K, compute capability 3.0,
|
||||
max compute_units 24, max work group size 8192, max sub group size 64, global mem size 67065057280
|
||||
Device 3: Intel(R) Arc(TM) A770 Graphics, compute capability 3.0,
|
||||
max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136
|
||||
|
||||
```
|
||||
|
||||
|Attribute|Note|
|
||||
|-|-|
|
||||
|compute capability 1.3|Level-zero running time, recommended |
|
||||
|compute capability 3.0|OpenCL running time, slower than level-zero in most cases|
|
||||
|
||||
4. Set device ID and execute llama.cpp
|
||||
|
||||
Set device ID = 0 by **set GGML_SYCL_DEVICE=0**
|
||||
|
||||
```
|
||||
set GGML_SYCL_DEVICE=0
|
||||
build\bin\main.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0
|
||||
```
|
||||
or run by script:
|
||||
|
||||
```
|
||||
.\examples\sycl\win-run-llama2.bat
|
||||
```
|
||||
|
||||
Note:
|
||||
|
||||
- By default, mmap is used to read model file. In some cases, it leads to the hang issue. Recommend to use parameter **--no-mmap** to disable mmap() to skip this issue.
|
||||
|
||||
|
||||
5. Check the device ID in output
|
||||
|
||||
Like:
|
||||
```
|
||||
Using device **0** (Intel(R) Arc(TM) A770 Graphics) as main device
|
||||
```
|
||||
|
||||
## Environment Variable
|
||||
|
||||
#### Build
|
||||
|
||||
|Name|Value|Function|
|
||||
|-|-|-|
|
||||
|LLAMA_SYCL|ON (mandatory)|Enable build with SYCL code path. <br>For FP32/FP16, LLAMA_SYCL=ON is mandatory.|
|
||||
|LLAMA_SYCL_F16|ON (optional)|Enable FP16 build with SYCL code path. Faster for long-prompt inference. <br>For FP32, not set it.|
|
||||
|CMAKE_C_COMPILER|icx|Use icx compiler for SYCL code path|
|
||||
|CMAKE_CXX_COMPILER|icpx (Linux), icx (Windows)|use icpx/icx for SYCL code path|
|
||||
|
||||
#### Running
|
||||
|
||||
|
||||
|Name|Value|Function|
|
||||
|-|-|-|
|
||||
|GGML_SYCL_DEVICE|0 (default) or 1|Set the device id used. Check the device ids by default running output|
|
||||
|GGML_SYCL_DEBUG|0 (default) or 1|Enable log function by macro: GGML_SYCL_DEBUG|
|
||||
|
||||
## Known Issue
|
||||
|
||||
- Hang during startup
|
||||
|
||||
llama.cpp use mmap as default way to read model file and copy to GPU. In some system, memcpy will be abnormal and block.
|
||||
|
||||
Solution: add **--no-mmap** or **--mmap 0**.
|
||||
|
||||
## Q&A
|
||||
|
||||
- Error: `error while loading shared libraries: libsycl.so.7: cannot open shared object file: No such file or directory`.
|
||||
|
||||
Miss to enable oneAPI running environment.
|
||||
|
||||
Install oneAPI base toolkit and enable it by: `source /opt/intel/oneapi/setvars.sh`.
|
||||
|
||||
- In Windows, no result, not error.
|
||||
|
||||
Miss to enable oneAPI running environment.
|
||||
|
||||
- Meet compile error.
|
||||
|
||||
Remove folder **build** and try again.
|
||||
|
||||
- I can **not** see **[ext_oneapi_level_zero:gpu:0]** afer install GPU driver in Linux.
|
||||
|
||||
Please run **sudo sycl-ls**.
|
||||
|
||||
If you see it in result, please add video/render group to your ID:
|
||||
|
||||
```
|
||||
sudo usermod -aG render username
|
||||
sudo usermod -aG video username
|
||||
```
|
||||
|
||||
Then **relogin**.
|
||||
|
||||
If you do not see it, please check the installation GPU steps again.
|
||||
|
||||
## Todo
|
||||
|
||||
- Support multiple cards.
|
||||
277
README.md
277
README.md
@@ -6,11 +6,13 @@
|
||||
|
||||
[Roadmap](https://github.com/users/ggerganov/projects/7) / [Project status](https://github.com/ggerganov/llama.cpp/discussions/3471) / [Manifesto](https://github.com/ggerganov/llama.cpp/discussions/205) / [ggml](https://github.com/ggerganov/ggml)
|
||||
|
||||
Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
|
||||
Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others) in pure C/C++
|
||||
|
||||
### Hot topics
|
||||
|
||||
- ⚠️ Incoming backends: https://github.com/ggerganov/llama.cpp/discussions/5138
|
||||
- Remove LLAMA_MAX_DEVICES and LLAMA_SUPPORTS_GPU_OFFLOAD: https://github.com/ggerganov/llama.cpp/pull/5240
|
||||
- Incoming backends: https://github.com/ggerganov/llama.cpp/discussions/5138
|
||||
- [SYCL backend](README-sycl.md) is ready (1/28/2024), support Linux/Windows in Intel GPUs (iGPU, Arc/Flex/Max series)
|
||||
- New SOTA quantized models, including pure 2-bits: https://huggingface.co/ikawrakow
|
||||
- Collecting Apple Silicon performance stats:
|
||||
- M-series: https://github.com/ggerganov/llama.cpp/discussions/4167
|
||||
@@ -31,17 +33,14 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
|
||||
<li><a href="#get-the-code">Get the Code</a></li>
|
||||
<li><a href="#build">Build</a></li>
|
||||
<li><a href="#blas-build">BLAS Build</a></li>
|
||||
<li><a href="#prepare-data--run">Prepare Data & Run</a></li>
|
||||
<li><a href="#prepare-and-quantize">Prepare and Quantize</a></li>
|
||||
<li><a href="#run-the-quantized-model">Run the quantized model</a></li>
|
||||
<li><a href="#memorydisk-requirements">Memory/Disk Requirements</a></li>
|
||||
<li><a href="#quantization">Quantization</a></li>
|
||||
<li><a href="#interactive-mode">Interactive mode</a></li>
|
||||
<li><a href="#constrained-output-with-grammars">Constrained output with grammars</a></li>
|
||||
<li><a href="#instruction-mode-with-alpaca">Instruction mode with Alpaca</a></li>
|
||||
<li><a href="#using-openllama">Using OpenLLaMA</a></li>
|
||||
<li><a href="#using-gpt4all">Using GPT4All</a></li>
|
||||
<li><a href="#using-pygmalion-7b--metharme-7b">Using Pygmalion 7B & Metharme 7B</a></li>
|
||||
<li><a href="#obtaining-the-facebook-llama-original-model-and-stanford-alpaca-model-data">Obtaining the Facebook LLaMA original model and Stanford Alpaca model data</a></li>
|
||||
<li><a href="#verifying-the-model-files">Verifying the model files</a></li>
|
||||
<li><a href="#instruct-mode">Instruct mode</a></li>
|
||||
<li><a href="#obtaining-and-using-the-facebook-llama-2-model">Obtaining and using the Facebook LLaMA 2 model</a></li>
|
||||
<li><a href="#seminal-papers-and-background-on-the-models">Seminal papers and background on the models</a></li>
|
||||
<li><a href="#perplexity-measuring-model-quality">Perplexity (measuring model quality)</a></li>
|
||||
<li><a href="#android">Android</a></li>
|
||||
@@ -56,18 +55,20 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
|
||||
|
||||
## Description
|
||||
|
||||
The main goal of `llama.cpp` is to run the LLaMA model using 4-bit integer quantization on a MacBook
|
||||
The main goal of `llama.cpp` is to enable LLM inference with minimal setup and state-of-the-art performance on a wide
|
||||
variety of hardware - locally and in the cloud.
|
||||
|
||||
- Plain C/C++ implementation without dependencies
|
||||
- Apple silicon first-class citizen - optimized via ARM NEON, Accelerate and Metal frameworks
|
||||
- Plain C/C++ implementation without any dependencies
|
||||
- Apple silicon is a first-class citizen - optimized via ARM NEON, Accelerate and Metal frameworks
|
||||
- AVX, AVX2 and AVX512 support for x86 architectures
|
||||
- Mixed F16 / F32 precision
|
||||
- 2-bit, 3-bit, 4-bit, 5-bit, 6-bit and 8-bit integer quantization support
|
||||
- CUDA, Metal, OpenCL, SYCL GPU backend support
|
||||
- 2-bit, 3-bit, 4-bit, 5-bit, 6-bit, and 8-bit integer quantization for faster inference and reduced memory use
|
||||
- Custom CUDA kernels for running LLMs on NVIDIA GPUs (support for AMD GPUs via HIP)
|
||||
- Vulkan, SYCL, and (partial) OpenCL backend support
|
||||
- CPU+GPU hybrid inference to partially accelerate models larger than the total VRAM capacity
|
||||
|
||||
The original implementation of `llama.cpp` was [hacked in an evening](https://github.com/ggerganov/llama.cpp/issues/33#issuecomment-1465108022).
|
||||
Since then, the project has improved significantly thanks to many contributions. This project is mainly for educational purposes and serves
|
||||
as the main playground for developing new features for the [ggml](https://github.com/ggerganov/ggml) library.
|
||||
Since its [inception](https://github.com/ggerganov/llama.cpp/issues/33#issuecomment-1465108022), the project has
|
||||
improved significantly thanks to many contributions. It is the main playground for developing new features for the
|
||||
[ggml](https://github.com/ggerganov/ggml) library.
|
||||
|
||||
**Supported platforms:**
|
||||
|
||||
@@ -75,44 +76,46 @@ as the main playground for developing new features for the [ggml](https://github
|
||||
- [X] Linux
|
||||
- [X] Windows (via CMake)
|
||||
- [X] Docker
|
||||
- [X] FreeBSD
|
||||
|
||||
**Supported models:**
|
||||
|
||||
Typically finetunes of the base models below are supported as well.
|
||||
|
||||
- [X] LLaMA 🦙
|
||||
- [x] LLaMA 2 🦙🦙
|
||||
- [X] [Mistral 7B](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
||||
- [x] [Mixtral MoE](https://huggingface.co/models?search=mistral-ai/Mixtral)
|
||||
- [X] Falcon
|
||||
- [X] [Alpaca](https://github.com/ggerganov/llama.cpp#instruction-mode-with-alpaca)
|
||||
- [X] [GPT4All](https://github.com/ggerganov/llama.cpp#using-gpt4all)
|
||||
- [X] [Chinese LLaMA / Alpaca](https://github.com/ymcui/Chinese-LLaMA-Alpaca) and [Chinese LLaMA-2 / Alpaca-2](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2)
|
||||
- [X] [Vigogne (French)](https://github.com/bofenghuang/vigogne)
|
||||
- [X] [Vicuna](https://github.com/ggerganov/llama.cpp/discussions/643#discussioncomment-5533894)
|
||||
- [X] [Koala](https://bair.berkeley.edu/blog/2023/04/03/koala/)
|
||||
- [X] [OpenBuddy 🐶 (Multilingual)](https://github.com/OpenBuddy/OpenBuddy)
|
||||
- [X] [Pygmalion/Metharme](#using-pygmalion-7b--metharme-7b)
|
||||
- [X] [WizardLM](https://github.com/nlpxucan/WizardLM)
|
||||
- [X] [Baichuan 1 & 2](https://huggingface.co/models?search=baichuan-inc/Baichuan) + [derivations](https://huggingface.co/hiyouga/baichuan-7b-sft)
|
||||
- [X] [Aquila 1 & 2](https://huggingface.co/models?search=BAAI/Aquila)
|
||||
- [X] [Starcoder models](https://github.com/ggerganov/llama.cpp/pull/3187)
|
||||
- [X] [Mistral AI v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
||||
- [X] [Refact](https://huggingface.co/smallcloudai/Refact-1_6B-fim)
|
||||
- [X] [Persimmon 8B](https://github.com/ggerganov/llama.cpp/pull/3410)
|
||||
- [X] [MPT](https://github.com/ggerganov/llama.cpp/pull/3417)
|
||||
- [X] [Bloom](https://github.com/ggerganov/llama.cpp/pull/3553)
|
||||
- [x] [Yi models](https://huggingface.co/models?search=01-ai/Yi)
|
||||
- [X] [StableLM-3b-4e1t](https://github.com/ggerganov/llama.cpp/pull/3586)
|
||||
- [X] [StableLM models](https://huggingface.co/stabilityai)
|
||||
- [x] [Deepseek models](https://huggingface.co/models?search=deepseek-ai/deepseek)
|
||||
- [x] [Qwen models](https://huggingface.co/models?search=Qwen/Qwen)
|
||||
- [x] [Mixtral MoE](https://huggingface.co/models?search=mistral-ai/Mixtral)
|
||||
- [x] [PLaMo-13B](https://github.com/ggerganov/llama.cpp/pull/3557)
|
||||
- [x] [Phi models](https://huggingface.co/models?search=microsoft/phi)
|
||||
- [x] [GPT-2](https://huggingface.co/gpt2)
|
||||
- [x] [Orion 14B](https://github.com/ggerganov/llama.cpp/pull/5118)
|
||||
- [x] [InternLM2](https://huggingface.co/models?search=internlm2)
|
||||
- [x] [CodeShell](https://github.com/WisdomShell/codeshell)
|
||||
|
||||
**Multimodal models:**
|
||||
|
||||
- [x] [Llava 1.5 models](https://huggingface.co/collections/liuhaotian/llava-15-653aac15d994e992e2677a7e)
|
||||
- [x] [Bakllava](https://huggingface.co/models?search=SkunkworksAI/Bakllava)
|
||||
- [x] [LLaVA 1.5 models](https://huggingface.co/collections/liuhaotian/llava-15-653aac15d994e992e2677a7e)
|
||||
- [x] [BakLLaVA](https://huggingface.co/models?search=SkunkworksAI/Bakllava)
|
||||
- [x] [Obsidian](https://huggingface.co/NousResearch/Obsidian-3B-V0.5)
|
||||
- [x] [ShareGPT4V](https://huggingface.co/models?search=Lin-Chen/ShareGPT4V)
|
||||
- [x] [MobileVLM 1.7B/3B models](https://huggingface.co/models?search=mobileVLM)
|
||||
- [x] [Yi-VL](https://huggingface.co/models?search=Yi-VL)
|
||||
|
||||
|
||||
**Bindings:**
|
||||
@@ -121,6 +124,7 @@ as the main playground for developing new features for the [ggml](https://github
|
||||
- Go: [go-skynet/go-llama.cpp](https://github.com/go-skynet/go-llama.cpp)
|
||||
- Node.js: [withcatai/node-llama-cpp](https://github.com/withcatai/node-llama-cpp)
|
||||
- JS/TS (llama.cpp server client): [lgrammel/modelfusion](https://modelfusion.dev/integration/model-provider/llamacpp)
|
||||
- JavaScript/Wasm (works in browser): [tangledgroup/llama-cpp-wasm](https://github.com/tangledgroup/llama-cpp-wasm)
|
||||
- Ruby: [yoshoku/llama_cpp.rb](https://github.com/yoshoku/llama_cpp.rb)
|
||||
- Rust (nicer API): [mdrokz/rust-llama.cpp](https://github.com/mdrokz/rust-llama.cpp)
|
||||
- Rust (more direct bindings): [utilityai/llama-cpp-rs](https://github.com/utilityai/llama-cpp-rs)
|
||||
@@ -134,19 +138,30 @@ as the main playground for developing new features for the [ggml](https://github
|
||||
|
||||
**UI:**
|
||||
|
||||
- [nat/openplayground](https://github.com/nat/openplayground)
|
||||
- [oobabooga/text-generation-webui](https://github.com/oobabooga/text-generation-webui)
|
||||
- [withcatai/catai](https://github.com/withcatai/catai)
|
||||
- [semperai/amica](https://github.com/semperai/amica)
|
||||
- [psugihara/FreeChat](https://github.com/psugihara/FreeChat)
|
||||
- [ptsochantaris/emeltal](https://github.com/ptsochantaris/emeltal)
|
||||
Unless otherwise noted these projects are open-source with permissive licensing:
|
||||
|
||||
- [iohub/collama](https://github.com/iohub/coLLaMA)
|
||||
- [janhq/jan](https://github.com/janhq/jan) (AGPL)
|
||||
- [nat/openplayground](https://github.com/nat/openplayground)
|
||||
- [Faraday](https://faraday.dev/) (proprietary)
|
||||
- [LMStudio](https://lmstudio.ai/) (proprietary)
|
||||
- [LostRuins/koboldcpp](https://github.com/LostRuins/koboldcpp) (AGPL)
|
||||
- [Mozilla-Ocho/llamafile](https://github.com/Mozilla-Ocho/llamafile)
|
||||
- [nomic-ai/gpt4all](https://github.com/nomic-ai/gpt4all)
|
||||
- [ollama/ollama](https://github.com/ollama/ollama)
|
||||
- [oobabooga/text-generation-webui](https://github.com/oobabooga/text-generation-webui) (AGPL)
|
||||
- [psugihara/FreeChat](https://github.com/psugihara/FreeChat)
|
||||
- [cztomsik/ava](https://github.com/cztomsik/ava) (MIT)
|
||||
- [ptsochantaris/emeltal](https://github.com/ptsochantaris/emeltal)
|
||||
- [pythops/tenere](https://github.com/pythops/tenere) (AGPL)
|
||||
- [semperai/amica](https://github.com/semperai/amica)
|
||||
- [withcatai/catai](https://github.com/withcatai/catai)
|
||||
|
||||
---
|
||||
|
||||
Here is a typical run using LLaMA v2 13B on M2 Ultra:
|
||||
|
||||
```java
|
||||
```
|
||||
$ make -j && ./main -m models/llama-13b-v2/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e
|
||||
I llama.cpp build info:
|
||||
I UNAME_S: Darwin
|
||||
@@ -230,7 +245,7 @@ https://user-images.githubusercontent.com/1991296/224442907-7693d4be-acaa-4e01-8
|
||||
|
||||
## Usage
|
||||
|
||||
Here are the end-to-end binary build and model conversion steps for the LLaMA-7B model.
|
||||
Here are the end-to-end binary build and model conversion steps for most supported models.
|
||||
|
||||
### Get the Code
|
||||
|
||||
@@ -291,7 +306,7 @@ In order to build llama.cpp you have three different options.
|
||||
sudo pkg install gmake automake autoconf pkgconf llvm15 clinfo clover \
|
||||
opencl clblast openblas
|
||||
|
||||
gmake CC=/usr/local/bin/clang15 CXX=/usr/local/bin/clang++15 -j4
|
||||
gmake CC=/usr/local/bin/clang15 CXX=/usr/local/bin/clang++15 -j4
|
||||
```
|
||||
|
||||
**Notes:** With this packages you can build llama.cpp with OPENBLAS and
|
||||
@@ -391,28 +406,28 @@ Building the program with BLAS support may lead to some performance improvements
|
||||
|
||||
Check [BLIS.md](docs/BLIS.md) for more information.
|
||||
|
||||
- #### SYCL
|
||||
SYCL is a higher-level programming model to improve programming productivity on various hardware accelerators.
|
||||
|
||||
llama.cpp based on SYCL is used to **support Intel GPU** (Data Center Max series, Flex series, Arc series, Built-in GPU and iGPU).
|
||||
|
||||
For detailed info, please refer to [llama.cpp for SYCL](README-sycl.md).
|
||||
|
||||
- #### Intel oneMKL
|
||||
Building through oneAPI compilers will make avx_vnni instruction set available for intel processors that do not support avx512 and avx512_vnni. Please note that this build config **does not support Intel GPU**. For Intel GPU support, please refer to [llama.cpp for SYCL](./README-sycl.md).
|
||||
|
||||
- Using manual oneAPI installation:
|
||||
By default, `LLAMA_BLAS_VENDOR` is set to `Generic`, so if you already sourced intel environment script and assign `-DLLAMA_BLAS=ON` in cmake, the mkl version of Blas will automatically been selected. Otherwise please install oneAPI and follow the below steps:
|
||||
```bash
|
||||
mkdir build
|
||||
cd build
|
||||
source /opt/intel/oneapi/setvars.sh # You can skip this step if in oneapi-runtime docker image, only required for manual installation
|
||||
source /opt/intel/oneapi/setvars.sh # You can skip this step if in oneapi-basekit docker image, only required for manual installation
|
||||
cmake .. -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=Intel10_64lp -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_NATIVE=ON
|
||||
cmake --build . --config Release
|
||||
```
|
||||
|
||||
- Using oneAPI docker image:
|
||||
If you do not want to source the environment vars and install oneAPI manually, you can also build the code using intel docker container: [oneAPI-runtime](https://hub.docker.com/r/intel/oneapi-runtime)
|
||||
|
||||
```bash
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=Intel10_64lp -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_NATIVE=ON
|
||||
cmake --build . --config Release
|
||||
```
|
||||
|
||||
Building through oneAPI compilers will make avx_vnni instruction set available for intel processors that do not support avx512 and avx512_vnni.
|
||||
If you do not want to source the environment vars and install oneAPI manually, you can also build the code using intel docker container: [oneAPI-basekit](https://hub.docker.com/r/intel/oneapi-basekit). Then, you can use the commands given above.
|
||||
|
||||
Check [Optimizing and Running LLaMA2 on Intel® CPU](https://www.intel.com/content/www/us/en/content-details/791610/optimizing-and-running-llama2-on-intel-cpu.html) for more information.
|
||||
|
||||
@@ -599,43 +614,87 @@ Building the program with BLAS support may lead to some performance improvements
|
||||
|
||||
You can get a list of platforms and devices from the `clinfo -l` command, etc.
|
||||
|
||||
- #### SYCL
|
||||
- #### Vulkan
|
||||
|
||||
SYCL is a higher-level programming model to improve programming productivity on various hardware accelerators.
|
||||
**With docker**:
|
||||
|
||||
llama.cpp based on SYCL is used to support Intel GPU (Data Center Max series, Flex series, Arc series, Built-in GPU and iGPU).
|
||||
You don't need to install Vulkan SDK. It will be installed inside the container.
|
||||
|
||||
For detailed info, please refer to [llama.cpp for SYCL](README_sycl.md).
|
||||
```sh
|
||||
# Build the image
|
||||
docker build -t llama-cpp-vulkan -f .devops/main-vulkan.Dockerfile .
|
||||
|
||||
# Then, use it:
|
||||
docker run -it --rm -v "$(pwd):/app:Z" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card1:/dev/dri/card1 llama-cpp-vulkan -m "/app/models/YOUR_MODEL_FILE" -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33
|
||||
```
|
||||
|
||||
### Prepare Data & Run
|
||||
**Without docker**:
|
||||
|
||||
Firstly, you need to make sure you have installed [Vulkan SDK](https://vulkan.lunarg.com/doc/view/latest/linux/getting_started_ubuntu.html)
|
||||
|
||||
For example, on Ubuntu 22.04 (jammy), use the command below:
|
||||
|
||||
```bash
|
||||
wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add -
|
||||
wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list
|
||||
apt update -y
|
||||
apt-get install -y vulkan-sdk
|
||||
# To verify the installation, use the command below:
|
||||
vulkaninfo
|
||||
```
|
||||
|
||||
Alternatively your package manager might be able to provide the appropiate libraries. For example for Ubuntu 22.04 you can install `libvulkan-dev` instead.
|
||||
|
||||
Then, build llama.cpp using the cmake command below:
|
||||
|
||||
```bash
|
||||
mkdir -p build
|
||||
cd build
|
||||
cmake .. -DLLAMA_VULKAN=1
|
||||
cmake --build . --config Release
|
||||
# Test the output binary (with "-ngl 33" to offload all layers to GPU)
|
||||
./bin/main -m "PATH_TO_MODEL" -p "Hi you how are you" -n 50 -e -ngl 33 -t 4
|
||||
|
||||
# You should see in the output, ggml_vulkan detected your GPU. For example:
|
||||
# ggml_vulkan: Using Intel(R) Graphics (ADL GT2) | uma: 1 | fp16: 1 | warp size: 32
|
||||
```
|
||||
|
||||
### Prepare and Quantize
|
||||
|
||||
To obtain the official LLaMA 2 weights please see the <a href="#obtaining-and-using-the-facebook-llama-2-model">Obtaining and using the Facebook LLaMA 2 model</a> section. There is also a large selection of pre-quantized `gguf` models available on Hugging Face.
|
||||
|
||||
```bash
|
||||
# obtain the original LLaMA model weights and place them in ./models
|
||||
# obtain the official LLaMA model weights and place them in ./models
|
||||
ls ./models
|
||||
65B 30B 13B 7B tokenizer_checklist.chk tokenizer.model
|
||||
# [Optional] for models using BPE tokenizers
|
||||
ls ./models
|
||||
65B 30B 13B 7B vocab.json
|
||||
llama-2-7b tokenizer_checklist.chk tokenizer.model
|
||||
# [Optional] for models using BPE tokenizers
|
||||
ls ./models
|
||||
<folder containing weights and tokenizer json> vocab.json
|
||||
# [Optional] for PyTorch .bin models like Mistral-7B
|
||||
ls ./models
|
||||
<folder containing weights and tokenizer json>
|
||||
|
||||
# install Python dependencies
|
||||
python3 -m pip install -r requirements.txt
|
||||
|
||||
# convert the 7B model to ggml FP16 format
|
||||
python3 convert.py models/7B/
|
||||
# convert the model to ggml FP16 format
|
||||
python3 convert.py models/mymodel/
|
||||
|
||||
# [Optional] for models using BPE tokenizers
|
||||
python convert.py models/7B/ --vocabtype bpe
|
||||
# [Optional] for models using BPE tokenizers
|
||||
python convert.py models/mymodel/ --vocab-type bpe
|
||||
|
||||
# quantize the model to 4-bits (using q4_0 method)
|
||||
./quantize ./models/7B/ggml-model-f16.gguf ./models/7B/ggml-model-q4_0.gguf q4_0
|
||||
# quantize the model to 4-bits (using Q4_K_M method)
|
||||
./quantize ./models/mymodel/ggml-model-f16.gguf ./models/mymodel/ggml-model-Q4_K_M.gguf Q4_K_M
|
||||
|
||||
# update the gguf filetype to current if older version is unsupported by another application
|
||||
./quantize ./models/7B/ggml-model-q4_0.gguf ./models/7B/ggml-model-q4_0-v2.gguf COPY
|
||||
# update the gguf filetype to current version if older version is now unsupported
|
||||
./quantize ./models/mymodel/ggml-model-Q4_K_M.gguf ./models/mymodel/ggml-model-Q4_K_M-v2.gguf COPY
|
||||
```
|
||||
|
||||
### Run the quantized model
|
||||
|
||||
# run the inference
|
||||
./main -m ./models/7B/ggml-model-q4_0.gguf -n 128
|
||||
```bash
|
||||
# start inference on a gguf model
|
||||
./main -m ./models/mymodel/ggml-model-Q4_K_M.gguf -n 128
|
||||
```
|
||||
|
||||
When running the larger models, make sure you have enough disk space to store all the intermediate files.
|
||||
@@ -656,7 +715,7 @@ From the unzipped folder, open a terminal/cmd window here and place a pre-conver
|
||||
|
||||
As the models are currently fully loaded into memory, you will need adequate disk space to save them and sufficient RAM to load them. At the moment, memory and disk requirements are the same.
|
||||
|
||||
| Model | Original size | Quantized size (4-bit) |
|
||||
| Model | Original size | Quantized size (Q4_0) |
|
||||
|------:|--------------:|-----------------------:|
|
||||
| 7B | 13 GB | 3.9 GB |
|
||||
| 13B | 24 GB | 7.8 GB |
|
||||
@@ -683,9 +742,21 @@ Several quantization methods are supported. They differ in the resulting model d
|
||||
| 13B | bits/weight | 16.0 | 4.5 | 5.0 | 5.5 | 6.0 | 8.5 |
|
||||
|
||||
- [k-quants](https://github.com/ggerganov/llama.cpp/pull/1684)
|
||||
- recent k-quants improvements
|
||||
- recent k-quants improvements and new i-quants
|
||||
- [#2707](https://github.com/ggerganov/llama.cpp/pull/2707)
|
||||
- [#2807](https://github.com/ggerganov/llama.cpp/pull/2807)
|
||||
- [#4773 - 2-bit i-quants (inference)](https://github.com/ggerganov/llama.cpp/pull/4773)
|
||||
- [#4856 - 2-bit i-quants (inference)](https://github.com/ggerganov/llama.cpp/pull/4856)
|
||||
- [#4861 - importance matrix](https://github.com/ggerganov/llama.cpp/pull/4861)
|
||||
- [#4872 - MoE models](https://github.com/ggerganov/llama.cpp/pull/4872)
|
||||
- [#4897 - 2-bit quantization](https://github.com/ggerganov/llama.cpp/pull/4897)
|
||||
- [#4930 - imatrix for all k-quants](https://github.com/ggerganov/llama.cpp/pull/4930)
|
||||
- [#4951 - imatrix on the GPU](https://github.com/ggerganov/llama.cpp/pull/4957)
|
||||
- [#4969 - imatrix for legacy quants](https://github.com/ggerganov/llama.cpp/pull/4969)
|
||||
- [#4996 - k-qunats tuning](https://github.com/ggerganov/llama.cpp/pull/4996)
|
||||
- [#5060 - Q3_K_XS](https://github.com/ggerganov/llama.cpp/pull/5060)
|
||||
- [#5196 - 3-bit i-quants](https://github.com/ggerganov/llama.cpp/pull/5196)
|
||||
- [quantization tuning](https://github.com/ggerganov/llama.cpp/pull/5320), [another one](https://github.com/ggerganov/llama.cpp/pull/5334), and [another one](https://github.com/ggerganov/llama.cpp/pull/5361)
|
||||
|
||||
### Perplexity (measuring model quality)
|
||||
|
||||
@@ -760,9 +831,9 @@ The `grammars/` folder contains a handful of sample grammars. To write your own,
|
||||
|
||||
For authoring more complex JSON grammars, you can also check out https://grammar.intrinsiclabs.ai/, a browser app that lets you write TypeScript interfaces which it compiles to GBNF grammars that you can save for local use. Note that the app is built and maintained by members of the community, please file any issues or FRs on [its repo](http://github.com/intrinsiclabsai/gbnfgen) and not this one.
|
||||
|
||||
### Instruction mode with Alpaca
|
||||
### Instruct mode
|
||||
|
||||
1. First, download the `ggml` Alpaca model into the `./models` folder
|
||||
1. First, download and place the `ggml` model into the `./models` folder
|
||||
2. Run the `main` tool like this:
|
||||
|
||||
```
|
||||
@@ -788,50 +859,6 @@ cadaver, cauliflower, cabbage (vegetable), catalpa (tree) and Cailleach.
|
||||
>
|
||||
```
|
||||
|
||||
### Using [OpenLLaMA](https://github.com/openlm-research/open_llama)
|
||||
|
||||
OpenLLaMA is an openly licensed reproduction of Meta's original LLaMA model. It uses the same architecture and is a drop-in replacement for the original LLaMA weights.
|
||||
|
||||
- Download the [3B](https://huggingface.co/openlm-research/open_llama_3b), [7B](https://huggingface.co/openlm-research/open_llama_7b), or [13B](https://huggingface.co/openlm-research/open_llama_13b) model from Hugging Face.
|
||||
- Convert the model to ggml FP16 format using `python convert.py <path to OpenLLaMA directory>`
|
||||
|
||||
### Using [GPT4All](https://github.com/nomic-ai/gpt4all)
|
||||
|
||||
*Note: these instructions are likely obsoleted by the GGUF update*
|
||||
|
||||
- Obtain the `tokenizer.model` file from LLaMA model and put it to `models`
|
||||
- Obtain the `added_tokens.json` file from Alpaca model and put it to `models`
|
||||
- Obtain the `gpt4all-lora-quantized.bin` file from GPT4All model and put it to `models/gpt4all-7B`
|
||||
- It is distributed in the old `ggml` format which is now obsoleted
|
||||
- You have to convert it to the new format using `convert.py`:
|
||||
|
||||
```bash
|
||||
python3 convert.py models/gpt4all-7B/gpt4all-lora-quantized.bin
|
||||
```
|
||||
|
||||
- You can now use the newly generated `models/gpt4all-7B/ggml-model-q4_0.bin` model in exactly the same way as all other models
|
||||
|
||||
- The newer GPT4All-J model is not yet supported!
|
||||
|
||||
### Using Pygmalion 7B & Metharme 7B
|
||||
|
||||
- Obtain the [LLaMA weights](#obtaining-the-facebook-llama-original-model-and-stanford-alpaca-model-data)
|
||||
- Obtain the [Pygmalion 7B](https://huggingface.co/PygmalionAI/pygmalion-7b/) or [Metharme 7B](https://huggingface.co/PygmalionAI/metharme-7b) XOR encoded weights
|
||||
- Convert the LLaMA model with [the latest HF convert script](https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py)
|
||||
- Merge the XOR files with the converted LLaMA weights by running the [xor_codec](https://huggingface.co/PygmalionAI/pygmalion-7b/blob/main/xor_codec.py) script
|
||||
- Convert to `ggml` format using the `convert.py` script in this repo:
|
||||
```bash
|
||||
python3 convert.py pygmalion-7b/ --outtype q4_1
|
||||
```
|
||||
> The Pygmalion 7B & Metharme 7B weights are saved in [bfloat16](https://en.wikipedia.org/wiki/Bfloat16_floating-point_format) precision. If you wish to convert to `ggml` without quantizating, please specify the `--outtype` as `f32` instead of `f16`.
|
||||
|
||||
|
||||
### Obtaining the Facebook LLaMA original model and Stanford Alpaca model data
|
||||
|
||||
- **Under no circumstances should IPFS, magnet links, or any other links to model downloads be shared anywhere in this repository, including in issues, discussions, or pull requests. They will be immediately deleted.**
|
||||
- The LLaMA models are officially distributed by Facebook and will **never** be provided through this repository.
|
||||
- Refer to [Facebook's LLaMA repository](https://github.com/facebookresearch/llama/pull/73/files) if you need to request access to the model data.
|
||||
|
||||
### Obtaining and using the Facebook LLaMA 2 model
|
||||
|
||||
- Refer to [Facebook's LLaMA download page](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) if you want to access the model data.
|
||||
@@ -843,20 +870,6 @@ python3 convert.py pygmalion-7b/ --outtype q4_1
|
||||
- [LLaMA 2 13B chat](https://huggingface.co/TheBloke/Llama-2-13B-chat-GGUF)
|
||||
- [LLaMA 2 70B chat](https://huggingface.co/TheBloke/Llama-2-70B-chat-GGUF)
|
||||
|
||||
### Verifying the model files
|
||||
|
||||
Please verify the [sha256 checksums](SHA256SUMS) of all downloaded model files to confirm that you have the correct model data files before creating an issue relating to your model files.
|
||||
- The following python script will verify if you have all possible latest files in your self-installed `./models` subdirectory:
|
||||
|
||||
```bash
|
||||
# run the verification script
|
||||
./scripts/verify-checksum-models.py
|
||||
```
|
||||
|
||||
- On linux or macOS it is also possible to run the following commands to verify if you have all possible latest files in your self-installed `./models` subdirectory:
|
||||
- On Linux: `sha256sum --ignore-missing -c SHA256SUMS`
|
||||
- on macOS: `shasum -a 256 --ignore-missing -c SHA256SUMS`
|
||||
|
||||
### Seminal papers and background on the models
|
||||
|
||||
If your issue is with model generation quality, then please at least scan the following links and papers to understand the limitations of LLaMA models. This is especially important when choosing an appropriate model size and appreciating both the significant and subtle differences between LLaMA models and ChatGPT:
|
||||
@@ -945,7 +958,7 @@ We have three Docker images available for this project:
|
||||
|
||||
1. `ghcr.io/ggerganov/llama.cpp:full`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
2. `ghcr.io/ggerganov/llama.cpp:light`: This image only includes the main executable file. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
3. `ghcr.io/ggerganov/llama.cpp:server`: This image only includes the server executabhle file. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
3. `ghcr.io/ggerganov/llama.cpp:server`: This image only includes the server executable file. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
|
||||
Additionally, there the following images, similar to the above:
|
||||
|
||||
|
||||
252
README_sycl.md
252
README_sycl.md
@@ -1,252 +0,0 @@
|
||||
# llama.cpp for SYCL
|
||||
|
||||
[Background](#background)
|
||||
|
||||
[OS](#os)
|
||||
|
||||
[Intel GPU](#intel-gpu)
|
||||
|
||||
[Linux](#linux)
|
||||
|
||||
[Environment Variable](#environment-variable)
|
||||
|
||||
[Known Issue](#known-issue)
|
||||
|
||||
[Todo](#todo)
|
||||
|
||||
## Background
|
||||
|
||||
SYCL is a higher-level programming model to improve programming productivity on various hardware accelerators—such as CPUs, GPUs, and FPGAs. It is a single-source embedded domain-specific language based on pure C++17.
|
||||
|
||||
oneAPI is a specification that is open and standards-based, supporting multiple architecture types including but not limited to GPU, CPU, and FPGA. The spec has both direct programming and API-based programming paradigms.
|
||||
|
||||
Intel uses the SYCL as direct programming language to support CPU, GPUs and FPGAs.
|
||||
|
||||
To avoid to re-invent the wheel, this code refer other code paths in llama.cpp (like OpenBLAS, cuBLAS, CLBlast). We use a open-source tool [SYCLomatic](https://github.com/oneapi-src/SYCLomatic) (Commercial release [Intel® DPC++ Compatibility Tool](https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html)) migrate to SYCL.
|
||||
|
||||
The llama.cpp for SYCL is used to support Intel GPUs.
|
||||
|
||||
For Intel CPU, recommend to use llama.cpp for X86 (Intel MKL building).
|
||||
|
||||
## OS
|
||||
|
||||
|OS|Status|Verified|
|
||||
|-|-|-|
|
||||
|Linux|Support|Ubuntu 22.04|
|
||||
|Windows|Ongoing| |
|
||||
|
||||
|
||||
## Intel GPU
|
||||
|
||||
|Intel GPU| Status | Verified Model|
|
||||
|-|-|-|
|
||||
|Intel Data Center Max Series| Support| Max 1550|
|
||||
|Intel Data Center Flex Series| Support| Flex 170|
|
||||
|Intel Arc Series| Support| Arc 770|
|
||||
|Intel built-in Arc GPU| Support| built-in Arc GPU in Meteor Lake|
|
||||
|Intel iGPU| Support| iGPU in i5-1250P, i7-1165G7|
|
||||
|
||||
|
||||
## Linux
|
||||
|
||||
### Setup Environment
|
||||
|
||||
1. Install Intel GPU driver.
|
||||
|
||||
a. Please install Intel GPU driver by official guide: [Install GPU Drivers](https://dgpu-docs.intel.com/driver/installation.html).
|
||||
|
||||
Note: for iGPU, please install the client GPU driver.
|
||||
|
||||
b. Add user to group: video, render.
|
||||
|
||||
```
|
||||
sudo usermod -aG render username
|
||||
sudo usermod -aG video username
|
||||
```
|
||||
|
||||
Note: re-login to enable it.
|
||||
|
||||
c. Check
|
||||
|
||||
```
|
||||
sudo apt install clinfo
|
||||
sudo clinfo -l
|
||||
```
|
||||
|
||||
Output (example):
|
||||
|
||||
```
|
||||
Platform #0: Intel(R) OpenCL Graphics
|
||||
`-- Device #0: Intel(R) Arc(TM) A770 Graphics
|
||||
|
||||
|
||||
Platform #0: Intel(R) OpenCL HD Graphics
|
||||
`-- Device #0: Intel(R) Iris(R) Xe Graphics [0x9a49]
|
||||
```
|
||||
|
||||
2. Install Intel® oneAPI Base toolkit.
|
||||
|
||||
|
||||
a. Please follow the procedure in [Get the Intel® oneAPI Base Toolkit ](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html).
|
||||
|
||||
Recommend to install to default folder: **/opt/intel/oneapi**.
|
||||
|
||||
Following guide use the default folder as example. If you use other folder, please modify the following guide info with your folder.
|
||||
|
||||
b. Check
|
||||
|
||||
```
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
|
||||
sycl-ls
|
||||
```
|
||||
|
||||
There should be one or more level-zero devices. Like **[ext_oneapi_level_zero:gpu:0]**.
|
||||
|
||||
Output (example):
|
||||
```
|
||||
[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.10.0.17_160000]
|
||||
[opencl:cpu:1] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i7-13700K OpenCL 3.0 (Build 0) [2023.16.10.0.17_160000]
|
||||
[opencl:gpu:2] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics OpenCL 3.0 NEO [23.30.26918.50]
|
||||
[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Arc(TM) A770 Graphics 1.3 [1.3.26918]
|
||||
|
||||
```
|
||||
|
||||
2. Build locally:
|
||||
|
||||
```
|
||||
mkdir -p build
|
||||
cd build
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
|
||||
#for FP16
|
||||
#cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON # faster for long-prompt inference
|
||||
|
||||
#for FP32
|
||||
cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||
|
||||
#build example/main only
|
||||
#cmake --build . --config Release --target main
|
||||
|
||||
#build all binary
|
||||
cmake --build . --config Release -v
|
||||
|
||||
```
|
||||
|
||||
or
|
||||
|
||||
```
|
||||
./examples/sycl/build.sh
|
||||
```
|
||||
|
||||
Note:
|
||||
|
||||
- By default, it will build for all binary files. It will take more time. To reduce the time, we recommend to build for **example/main** only.
|
||||
|
||||
### Run
|
||||
|
||||
1. Put model file to folder **models**
|
||||
|
||||
2. Enable oneAPI running environment
|
||||
|
||||
```
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
```
|
||||
|
||||
3. List device ID
|
||||
|
||||
Run without parameter:
|
||||
|
||||
```
|
||||
./build/bin/ls-sycl-device
|
||||
|
||||
or
|
||||
|
||||
./build/bin/main
|
||||
```
|
||||
|
||||
Check the ID in startup log, like:
|
||||
|
||||
```
|
||||
found 4 SYCL devices:
|
||||
Device 0: Intel(R) Arc(TM) A770 Graphics, compute capability 1.3,
|
||||
max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136
|
||||
Device 1: Intel(R) FPGA Emulation Device, compute capability 1.2,
|
||||
max compute_units 24, max work group size 67108864, max sub group size 64, global mem size 67065057280
|
||||
Device 2: 13th Gen Intel(R) Core(TM) i7-13700K, compute capability 3.0,
|
||||
max compute_units 24, max work group size 8192, max sub group size 64, global mem size 67065057280
|
||||
Device 3: Intel(R) Arc(TM) A770 Graphics, compute capability 3.0,
|
||||
max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136
|
||||
|
||||
```
|
||||
|
||||
|Attribute|Note|
|
||||
|-|-|
|
||||
|compute capability 1.3|Level-zero running time, recommended |
|
||||
|compute capability 3.0|OpenCL running time, slower than level-zero in most cases|
|
||||
|
||||
4. Set device ID and execute llama.cpp
|
||||
|
||||
Set device ID = 0 by **GGML_SYCL_DEVICE=0**
|
||||
|
||||
```
|
||||
GGML_SYCL_DEVICE=0 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33
|
||||
```
|
||||
or run by script:
|
||||
|
||||
```
|
||||
./examples/sycl/run_llama2.sh
|
||||
```
|
||||
|
||||
Note:
|
||||
|
||||
- By default, mmap is used to read model file. In some cases, it leads to the hang issue. Recommend to use parameter **--no-mmap** to disable mmap() to skip this issue.
|
||||
|
||||
|
||||
5. Check the device ID in output
|
||||
|
||||
Like:
|
||||
```
|
||||
Using device **0** (Intel(R) Arc(TM) A770 Graphics) as main device
|
||||
```
|
||||
|
||||
|
||||
## Environment Variable
|
||||
|
||||
#### Build
|
||||
|
||||
|Name|Value|Function|
|
||||
|-|-|-|
|
||||
|LLAMA_SYCL|ON (mandatory)|Enable build with SYCL code path. <br>For FP32/FP16, LLAMA_SYCL=ON is mandatory.|
|
||||
|LLAMA_SYCL_F16|ON (optional)|Enable FP16 build with SYCL code path. Faster for long-prompt inference. <br>For FP32, not set it.|
|
||||
|CMAKE_C_COMPILER|icx|Use icx compiler for SYCL code path|
|
||||
|CMAKE_CXX_COMPILER|icpx|use icpx for SYCL code path|
|
||||
|
||||
#### Running
|
||||
|
||||
|
||||
|Name|Value|Function|
|
||||
|-|-|-|
|
||||
|GGML_SYCL_DEVICE|0 (default) or 1|Set the device id used. Check the device ids by default running output|
|
||||
|GGML_SYCL_DEBUG|0 (default) or 1|Enable log function by macro: GGML_SYCL_DEBUG|
|
||||
|
||||
## Known Issue
|
||||
|
||||
- Error: `error while loading shared libraries: libsycl.so.7: cannot open shared object file: No such file or directory`.
|
||||
|
||||
Miss to enable oneAPI running environment.
|
||||
|
||||
Install oneAPI base toolkit and enable it by: `source /opt/intel/oneapi/setvars.sh`.
|
||||
|
||||
|
||||
- Hang during startup
|
||||
|
||||
llama.cpp use mmap as default way to read model file and copy to GPU. In some system, memcpy will be abnormal and block.
|
||||
|
||||
Solution: add **--no-mmap**.
|
||||
|
||||
## Todo
|
||||
|
||||
- Support to build in Windows.
|
||||
|
||||
- Support multiple cards.
|
||||
40
SHA256SUMS
40
SHA256SUMS
@@ -1,40 +0,0 @@
|
||||
700df0d3013b703a806d2ae7f1bfb8e59814e3d06ae78be0c66368a50059f33d models/7B/consolidated.00.pth
|
||||
666a4bb533b303bdaf89e1b6a3b6f93535d868de31d903afdc20983dc526c847 models/7B/ggml-model-f16.bin
|
||||
ec2f2d1f0dfb73b72a4cbac7fa121abbe04c37ab327125a38248f930c0f09ddf models/7B/ggml-model-q4_0.bin
|
||||
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/7B/ggml-model-q4_1.bin
|
||||
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/7B/ggml-model-q5_0.bin
|
||||
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/7B/ggml-model-q5_1.bin
|
||||
7e89e242ddc0dd6f060b43ca219ce8b3e8f08959a72cb3c0855df8bb04d46265 models/7B/params.json
|
||||
745bf4e29a4dd6f411e72976d92b452da1b49168a4f41c951cfcc8051823cf08 models/13B/consolidated.00.pth
|
||||
d5ccbcc465c71c0de439a5aeffebe8344c68a519bce70bc7f9f92654ee567085 models/13B/consolidated.01.pth
|
||||
2b206e9b21fb1076f11cafc624e2af97c9e48ea09312a0962153acc20d45f808 models/13B/ggml-model-f16.bin
|
||||
fad169e6f0f575402cf75945961cb4a8ecd824ba4da6be2af831f320c4348fa5 models/13B/ggml-model-q4_0.bin
|
||||
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/13B/ggml-model-q4_1.bin
|
||||
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/13B/ggml-model-q5_0.bin
|
||||
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/13B/ggml-model-q5_1.bin
|
||||
4ab77bec4d4405ccb66a97b282574c89a94417e3c32e5f68f37e2876fc21322f models/13B/params.json
|
||||
e23294a58552d8cdec5b7e8abb87993b97ea6eced4178ff2697c02472539d067 models/30B/consolidated.00.pth
|
||||
4e077b7136c7ae2302e954860cf64930458d3076fcde9443f4d0e939e95903ff models/30B/consolidated.01.pth
|
||||
24a87f01028cbd3a12de551dcedb712346c0b5cbdeff1454e0ddf2df9b675378 models/30B/consolidated.02.pth
|
||||
1adfcef71420886119544949767f6a56cb6339b4d5fcde755d80fe68b49de93b models/30B/consolidated.03.pth
|
||||
7e1b524061a9f4b27c22a12d6d2a5bf13b8ebbea73e99f218809351ed9cf7d37 models/30B/ggml-model-f16.bin
|
||||
d2a441403944819492ec8c2002cc36fa38468149bfb4b7b4c52afc7bd9a7166d models/30B/ggml-model-q4_0.bin
|
||||
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/30B/ggml-model-q4_1.bin
|
||||
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/30B/ggml-model-q5_0.bin
|
||||
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/30B/ggml-model-q5_1.bin
|
||||
2c07118ea98d69dbe7810d88520e30288fa994751b337f8fca02b171955f44cb models/30B/params.json
|
||||
135c563f6b3938114458183afb01adc9a63bef3d8ff7cccc3977e5d3664ecafe models/65B/consolidated.00.pth
|
||||
9a600b37b19d38c7e43809485f70d17d1dc12206c07efa83bc72bb498a568bde models/65B/consolidated.01.pth
|
||||
e7babf7c5606f165a3756f527cb0fedc4f83e67ef1290391e52fb1cce5f26770 models/65B/consolidated.02.pth
|
||||
73176ffb426b40482f2aa67ae1217ef79fbbd1fff5482bae5060cdc5a24ab70e models/65B/consolidated.03.pth
|
||||
882e6431d0b08a8bc66261a0d3607da21cbaeafa96a24e7e59777632dbdac225 models/65B/consolidated.04.pth
|
||||
a287c0dfe49081626567c7fe87f74cce5831f58e459b427b5e05567641f47b78 models/65B/consolidated.05.pth
|
||||
72b4eba67a1a3b18cb67a85b70f8f1640caae9b40033ea943fb166bd80a7b36b models/65B/consolidated.06.pth
|
||||
d27f5b0677d7ff129ceacd73fd461c4d06910ad7787cf217b249948c3f3bc638 models/65B/consolidated.07.pth
|
||||
60758f2384d74e423dffddfd020ffed9d3bb186ebc54506f9c4a787d0f5367b0 models/65B/ggml-model-f16.bin
|
||||
cde053439fa4910ae454407e2717cc46cc2c2b4995c00c93297a2b52e790fa92 models/65B/ggml-model-q4_0.bin
|
||||
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/65B/ggml-model-q4_1.bin
|
||||
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/65B/ggml-model-q5_0.bin
|
||||
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/65B/ggml-model-q5_1.bin
|
||||
999ed1659b469ccc2a941714c0a9656fa571d17c9f7c8c7589817ca90edef51b models/65B/params.json
|
||||
9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347 models/tokenizer.model
|
||||
52
ci/run.sh
52
ci/run.sh
@@ -33,7 +33,7 @@ sd=`dirname $0`
|
||||
cd $sd/../
|
||||
SRC=`pwd`
|
||||
|
||||
CMAKE_EXTRA=""
|
||||
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=ON"
|
||||
|
||||
if [ ! -z ${GG_BUILD_METAL} ]; then
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DLLAMA_METAL_SHADER_DEBUG=ON"
|
||||
@@ -568,6 +568,54 @@ function gg_sum_open_llama_7b_v2 {
|
||||
#gg_printf '- shakespeare (q8_0 / f16 base lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log)"
|
||||
}
|
||||
|
||||
# bge-small
|
||||
|
||||
function gg_run_embd_bge_small {
|
||||
cd ${SRC}
|
||||
|
||||
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/config.json
|
||||
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/resolve/main/tokenizer.model
|
||||
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/tokenizer_config.json
|
||||
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/special_tokens_map.json
|
||||
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/resolve/main/pytorch_model.bin
|
||||
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/sentence_bert_config.json
|
||||
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/vocab.txt
|
||||
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/modules.json
|
||||
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/config.json
|
||||
|
||||
gg_wget models-mnt/bge-small/1_Pooling https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/1_Pooling/config.json
|
||||
|
||||
path_models="../models-mnt/bge-small"
|
||||
|
||||
rm -rf build-ci-release && mkdir build-ci-release && cd build-ci-release
|
||||
|
||||
set -e
|
||||
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
|
||||
python3 ../convert-hf-to-gguf.py ${path_models}
|
||||
|
||||
model_f16="${path_models}/ggml-model-f16.gguf"
|
||||
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
|
||||
|
||||
./bin/quantize ${model_f16} ${model_q8_0} q8_0
|
||||
|
||||
(time ./bin/embedding --model ${model_f16} -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/embedding --model ${model_q8_0} -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
|
||||
set +e
|
||||
}
|
||||
|
||||
function gg_sum_embd_bge_small {
|
||||
gg_printf '### %s\n\n' "${ci}"
|
||||
|
||||
gg_printf 'BGE Small (BERT):\n'
|
||||
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
|
||||
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
|
||||
gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
|
||||
}
|
||||
|
||||
## main
|
||||
|
||||
if [ -z ${GG_BUILD_LOW_PERF} ]; then
|
||||
@@ -591,6 +639,8 @@ test $ret -eq 0 && gg_run ctest_debug
|
||||
test $ret -eq 0 && gg_run ctest_release
|
||||
|
||||
if [ -z ${GG_BUILD_LOW_PERF} ]; then
|
||||
test $ret -eq 0 && gg_run embd_bge_small
|
||||
|
||||
if [ -z ${GG_BUILD_VRAM_GB} ] || [ ${GG_BUILD_VRAM_GB} -ge 8 ]; then
|
||||
if [ -z ${GG_BUILD_CUDA} ]; then
|
||||
test $ret -eq 0 && gg_run open_llama_3b_v2
|
||||
|
||||
@@ -46,6 +46,10 @@
|
||||
#define GGML_USE_CUBLAS_SYCL
|
||||
#endif
|
||||
|
||||
#if (defined(GGML_USE_CUBLAS) || defined(GGML_USE_SYCL)) || defined(GGML_USE_VULKAN)
|
||||
#define GGML_USE_CUBLAS_SYCL_VULKAN
|
||||
#endif
|
||||
|
||||
int32_t get_num_physical_cores() {
|
||||
#ifdef __linux__
|
||||
// enumerate the set of thread siblings, num entries is num cores
|
||||
@@ -336,13 +340,14 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
sparams.samplers_sequence = parse_samplers_input(argv[i]);
|
||||
const auto sampler_names = string_split(argv[i], ';');
|
||||
sparams.samplers_sequence = sampler_types_from_names(sampler_names, true);
|
||||
} else if (arg == "--sampling-seq") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
sparams.samplers_sequence = argv[i];
|
||||
sparams.samplers_sequence = sampler_types_from_chars(argv[i]);
|
||||
} else if (arg == "--top-p") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@@ -399,6 +404,18 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
break;
|
||||
}
|
||||
sparams.penalty_present = std::stof(argv[i]);
|
||||
} else if (arg == "--dynatemp-range") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
sparams.dynatemp_range = std::stof(argv[i]);
|
||||
} else if (arg == "--dynatemp-exp") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
sparams.dynatemp_exponent = std::stof(argv[i]);
|
||||
} else if (arg == "--mirostat") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@@ -515,7 +532,7 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.lora_adapter.push_back(std::make_tuple(argv[i], 1.0f));
|
||||
params.lora_adapter.emplace_back(argv[i], 1.0f);
|
||||
params.use_mmap = false;
|
||||
} else if (arg == "--lora-scaled") {
|
||||
if (++i >= argc) {
|
||||
@@ -527,7 +544,7 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.lora_adapter.push_back(std::make_tuple(lora_adapter, std::stof(argv[i])));
|
||||
params.lora_adapter.emplace_back(lora_adapter, std::stof(argv[i]));
|
||||
params.use_mmap = false;
|
||||
} else if (arg == "--lora-base") {
|
||||
if (++i >= argc) {
|
||||
@@ -583,20 +600,20 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
break;
|
||||
}
|
||||
params.n_gpu_layers = std::stoi(argv[i]);
|
||||
#ifndef LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
|
||||
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
|
||||
#endif
|
||||
if (!llama_supports_gpu_offload()) {
|
||||
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
|
||||
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
|
||||
}
|
||||
} else if (arg == "--gpu-layers-draft" || arg == "-ngld" || arg == "--n-gpu-layers-draft") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.n_gpu_layers_draft = std::stoi(argv[i]);
|
||||
#ifndef LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers-draft option will be ignored\n");
|
||||
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
|
||||
#endif
|
||||
if (!llama_supports_gpu_offload()) {
|
||||
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers-draft option will be ignored\n");
|
||||
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
|
||||
}
|
||||
} else if (arg == "--main-gpu" || arg == "-mg") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@@ -637,24 +654,32 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
const std::regex regex{R"([,/]+)"};
|
||||
std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
|
||||
std::vector<std::string> split_arg{it, {}};
|
||||
if (split_arg.size() >= LLAMA_MAX_DEVICES) {
|
||||
if (split_arg.size() >= llama_max_devices()) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
|
||||
for (size_t i = 0; i < llama_max_devices(); ++i) {
|
||||
if (i < split_arg.size()) {
|
||||
params.tensor_split[i] = std::stof(split_arg[i]);
|
||||
} else {
|
||||
params.tensor_split[i] = 0.0f;
|
||||
}
|
||||
}
|
||||
#ifndef GGML_USE_CUBLAS_SYCL
|
||||
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS/SYCL. Setting a tensor split has no effect.\n");
|
||||
#ifndef GGML_USE_CUBLAS_SYCL_VULKAN
|
||||
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS/SYCL/Vulkan. Setting a tensor split has no effect.\n");
|
||||
#endif // GGML_USE_CUBLAS_SYCL
|
||||
} else if (arg == "--no-mmap") {
|
||||
params.use_mmap = false;
|
||||
} else if (arg == "--numa") {
|
||||
params.numa = true;
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
std::string value(argv[i]);
|
||||
/**/ if (value == "distribute" || value == "") { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
|
||||
else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
|
||||
else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
|
||||
else { invalid_param = true; break; }
|
||||
} else if (arg == "--verbose-prompt") {
|
||||
params.verbose_prompt = true;
|
||||
} else if (arg == "--no-display-prompt") {
|
||||
@@ -664,7 +689,7 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.antiprompt.push_back(argv[i]);
|
||||
params.antiprompt.emplace_back(argv[i]);
|
||||
} else if (arg == "-ld" || arg == "--logdir") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@@ -880,7 +905,7 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
}
|
||||
|
||||
if (!params.kv_overrides.empty()) {
|
||||
params.kv_overrides.emplace_back(llama_model_kv_override());
|
||||
params.kv_overrides.emplace_back();
|
||||
params.kv_overrides.back().key[0] = 0;
|
||||
}
|
||||
|
||||
@@ -890,6 +915,14 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
const llama_sampling_params & sparams = params.sparams;
|
||||
|
||||
std::string sampler_type_chars;
|
||||
std::string sampler_type_names;
|
||||
for (const auto sampler_type : sparams.samplers_sequence) {
|
||||
sampler_type_chars += static_cast<char>(sampler_type);
|
||||
sampler_type_names += sampler_type_to_name_string(sampler_type) + ";";
|
||||
}
|
||||
sampler_type_names.pop_back();
|
||||
|
||||
printf("\n");
|
||||
printf("usage: %s [options]\n", argv[0]);
|
||||
printf("\n");
|
||||
@@ -910,7 +943,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
printf(" -tb N, --threads-batch N\n");
|
||||
printf(" number of threads to use during batch and prompt processing (default: same as --threads)\n");
|
||||
printf(" -td N, --threads-draft N");
|
||||
printf(" number of threads to use during generation (default: same as --threads)");
|
||||
printf(" number of threads to use during generation (default: same as --threads)\n");
|
||||
printf(" -tbd N, --threads-batch-draft N\n");
|
||||
printf(" number of threads to use during batch and prompt processing (default: same as --threads-draft)\n");
|
||||
printf(" -p PROMPT, --prompt PROMPT\n");
|
||||
@@ -931,8 +964,9 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
printf(" -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict);
|
||||
printf(" -c N, --ctx-size N size of the prompt context (default: %d, 0 = loaded from model)\n", params.n_ctx);
|
||||
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
||||
printf(" --samplers samplers that will be used for generation in the order, separated by \';\', for example: \"top_k;tfs;typical;top_p;min_p;temp\"\n");
|
||||
printf(" --sampling-seq simplified sequence for samplers that will be used (default: %s)\n", sparams.samplers_sequence.c_str());
|
||||
printf(" --samplers samplers that will be used for generation in the order, separated by \';\'\n");
|
||||
printf(" (default: %s)\n", sampler_type_names.c_str());
|
||||
printf(" --sampling-seq simplified sequence for samplers that will be used (default: %s)\n", sampler_type_chars.c_str());
|
||||
printf(" --top-k N top-k sampling (default: %d, 0 = disabled)\n", sparams.top_k);
|
||||
printf(" --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)sparams.top_p);
|
||||
printf(" --min-p N min-p sampling (default: %.1f, 0.0 = disabled)\n", (double)sparams.min_p);
|
||||
@@ -942,6 +976,8 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
printf(" --repeat-penalty N penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)sparams.penalty_repeat);
|
||||
printf(" --presence-penalty N repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.penalty_present);
|
||||
printf(" --frequency-penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.penalty_freq);
|
||||
printf(" --dynatemp-range N dynamic temperature range (default: %.1f, 0.0 = disabled)\n", (double)sparams.dynatemp_range);
|
||||
printf(" --dynatemp-exp N dynamic temperature exponent (default: %.1f)\n", (double)sparams.dynatemp_exponent);
|
||||
printf(" --mirostat N use Mirostat sampling.\n");
|
||||
printf(" Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n");
|
||||
printf(" (default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)\n", sparams.mirostat);
|
||||
@@ -978,7 +1014,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
printf(" --winogrande-tasks N number of tasks to use when computing the Winogrande score (default: %zu)\n", params.winogrande_tasks);
|
||||
printf(" --multiple-choice compute multiple choice score over random tasks from datafile supplied with -f\n");
|
||||
printf(" --multiple-choice-tasks N number of tasks to use when computing the multiple choice score (default: %zu)\n", params.winogrande_tasks);
|
||||
printf(" --kl-divergence computes KL-divergence to logits provided via --kl-divergence-base");
|
||||
printf(" --kl-divergence computes KL-divergence to logits provided via --kl-divergence-base\n");
|
||||
printf(" --keep N number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep);
|
||||
printf(" --draft N number of tokens to draft for speculative decoding (default: %d)\n", params.n_draft);
|
||||
printf(" --chunks N max number of chunks to process (default: %d, -1 = all)\n", params.n_chunks);
|
||||
@@ -989,30 +1025,33 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
|
||||
printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA. see examples/llava/README.md\n");
|
||||
printf(" --image IMAGE_FILE path to an image file. use with multimodal models\n");
|
||||
if (llama_mlock_supported()) {
|
||||
if (llama_supports_mlock()) {
|
||||
printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
|
||||
}
|
||||
if (llama_mmap_supported()) {
|
||||
if (llama_supports_mmap()) {
|
||||
printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
|
||||
}
|
||||
printf(" --numa attempt optimizations that help on some NUMA systems\n");
|
||||
printf(" --numa TYPE attempt optimizations that help on some NUMA systems\n");
|
||||
printf(" - distribute: spread execution evenly over all nodes\n");
|
||||
printf(" - isolate: only spawn threads on CPUs on the node that execution started on\n");
|
||||
printf(" - numactl: use the CPU map provided by numactl\n");
|
||||
printf(" if run without this previously, it is recommended to drop the system page cache before using this\n");
|
||||
printf(" see https://github.com/ggerganov/llama.cpp/issues/1437\n");
|
||||
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||
printf(" -ngl N, --n-gpu-layers N\n");
|
||||
printf(" number of layers to store in VRAM\n");
|
||||
printf(" -ngld N, --n-gpu-layers-draft N\n");
|
||||
printf(" number of layers to store in VRAM for the draft model\n");
|
||||
printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
|
||||
printf(" how to split the model across multiple GPUs, one of:\n");
|
||||
printf(" - none: use one GPU only\n");
|
||||
printf(" - layer (default): split layers and KV across GPUs\n");
|
||||
printf(" - row: split rows across GPUs\n");
|
||||
printf(" -ts SPLIT, --tensor-split SPLIT\n");
|
||||
printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
|
||||
printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
|
||||
printf(" or for intermediate results and KV (with split-mode = row) (default: %d)\n", params.main_gpu);
|
||||
#endif // LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||
if (llama_supports_gpu_offload()) {
|
||||
printf(" -ngl N, --n-gpu-layers N\n");
|
||||
printf(" number of layers to store in VRAM\n");
|
||||
printf(" -ngld N, --n-gpu-layers-draft N\n");
|
||||
printf(" number of layers to store in VRAM for the draft model\n");
|
||||
printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
|
||||
printf(" how to split the model across multiple GPUs, one of:\n");
|
||||
printf(" - none: use one GPU only\n");
|
||||
printf(" - layer (default): split layers and KV across GPUs\n");
|
||||
printf(" - row: split rows across GPUs\n");
|
||||
printf(" -ts SPLIT, --tensor-split SPLIT\n");
|
||||
printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
|
||||
printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
|
||||
printf(" or for intermediate results and KV (with split-mode = row) (default: %d)\n", params.main_gpu);
|
||||
}
|
||||
printf(" --verbose-prompt print a verbose prompt before generation (default: %s)\n", params.verbose_prompt ? "true" : "false");
|
||||
printf(" --no-display-prompt don't print prompt at generation (default: %s)\n", !params.display_prompt ? "true" : "false");
|
||||
printf(" -gan N, --grp-attn-n N\n");
|
||||
@@ -1079,45 +1118,101 @@ std::string gpt_random_prompt(std::mt19937 & rng) {
|
||||
}
|
||||
|
||||
//
|
||||
// String parsing
|
||||
// String utils
|
||||
//
|
||||
|
||||
std::string parse_samplers_input(std::string input) {
|
||||
std::string output = "";
|
||||
std::vector<std::string> string_split(std::string input, char separator) {
|
||||
std::vector<std::string> parts;
|
||||
size_t separator_pos = input.find(separator);
|
||||
while (separator_pos != std::string::npos) {
|
||||
std::string part = input.substr(0, separator_pos);
|
||||
parts.emplace_back(part);
|
||||
input = input.substr(separator_pos + 1);
|
||||
separator_pos = input.find(separator);
|
||||
}
|
||||
parts.emplace_back(input);
|
||||
return parts;
|
||||
}
|
||||
|
||||
std::vector<llama_sampler_type> sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
|
||||
std::unordered_map<std::string, llama_sampler_type> sampler_canonical_name_map {
|
||||
{"top_k", llama_sampler_type::TOP_K},
|
||||
{"top_p", llama_sampler_type::TOP_P},
|
||||
{"typical_p", llama_sampler_type::TYPICAL_P},
|
||||
{"min_p", llama_sampler_type::MIN_P},
|
||||
{"tfs_z", llama_sampler_type::TFS_Z},
|
||||
{"temperature", llama_sampler_type::TEMPERATURE}
|
||||
};
|
||||
|
||||
// since samplers names are written multiple ways
|
||||
// make it ready for both system names and input names
|
||||
std::unordered_map<std::string, char> samplers_symbols {
|
||||
{"top_k", 'k'},
|
||||
{"top-k", 'k'},
|
||||
{"top_p", 'p'},
|
||||
{"top-p", 'p'},
|
||||
{"nucleus", 'p'},
|
||||
{"typical_p", 'y'},
|
||||
{"typical-p", 'y'},
|
||||
{"typical", 'y'},
|
||||
{"min_p", 'm'},
|
||||
{"min-p", 'm'},
|
||||
{"tfs_z", 'f'},
|
||||
{"tfs-z", 'f'},
|
||||
{"tfs", 'f'},
|
||||
{"temp", 't'},
|
||||
{"temperature",'t'}
|
||||
std::unordered_map<std::string, llama_sampler_type> sampler_alt_name_map {
|
||||
{"top-k", llama_sampler_type::TOP_K},
|
||||
{"top-p", llama_sampler_type::TOP_P},
|
||||
{"nucleus", llama_sampler_type::TOP_P},
|
||||
{"typical-p", llama_sampler_type::TYPICAL_P},
|
||||
{"typical", llama_sampler_type::TYPICAL_P},
|
||||
{"min-p", llama_sampler_type::MIN_P},
|
||||
{"tfs-z", llama_sampler_type::TFS_Z},
|
||||
{"tfs", llama_sampler_type::TFS_Z},
|
||||
{"temp", llama_sampler_type::TEMPERATURE}
|
||||
};
|
||||
// expected format example: "temp;top_k;tfs_z;typical_p;top_p;min_p"
|
||||
size_t separator = input.find(';');
|
||||
while (separator != input.npos) {
|
||||
std::string name = input.substr(0,separator);
|
||||
input = input.substr(separator+1);
|
||||
separator = input.find(';');
|
||||
|
||||
if (samplers_symbols.find(name) != samplers_symbols.end()) {
|
||||
output += samplers_symbols[name];
|
||||
std::vector<llama_sampler_type> sampler_types;
|
||||
sampler_types.reserve(names.size());
|
||||
for (const auto & name : names)
|
||||
{
|
||||
auto sampler_item = sampler_canonical_name_map.find(name);
|
||||
if (sampler_item != sampler_canonical_name_map.end())
|
||||
{
|
||||
sampler_types.push_back(sampler_item->second);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (allow_alt_names)
|
||||
{
|
||||
sampler_item = sampler_alt_name_map.find(name);
|
||||
if (sampler_item != sampler_alt_name_map.end())
|
||||
{
|
||||
sampler_types.push_back(sampler_item->second);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (samplers_symbols.find(input) != samplers_symbols.end()) {
|
||||
output += samplers_symbols[input];
|
||||
return sampler_types;
|
||||
}
|
||||
|
||||
std::vector<llama_sampler_type> sampler_types_from_chars(const std::string & names_string) {
|
||||
std::unordered_map<char, llama_sampler_type> sampler_name_map {
|
||||
{'k', llama_sampler_type::TOP_K},
|
||||
{'p', llama_sampler_type::TOP_P},
|
||||
{'y', llama_sampler_type::TYPICAL_P},
|
||||
{'m', llama_sampler_type::MIN_P},
|
||||
{'f', llama_sampler_type::TFS_Z},
|
||||
{'t', llama_sampler_type::TEMPERATURE}
|
||||
};
|
||||
|
||||
std::vector<llama_sampler_type> sampler_types;
|
||||
sampler_types.reserve(names_string.size());
|
||||
for (const auto & c : names_string) {
|
||||
const auto sampler_item = sampler_name_map.find(c);
|
||||
if (sampler_item != sampler_name_map.end()) {
|
||||
sampler_types.push_back(sampler_item->second);
|
||||
}
|
||||
}
|
||||
return sampler_types;
|
||||
}
|
||||
|
||||
std::string sampler_type_to_name_string(llama_sampler_type sampler_type) {
|
||||
switch (sampler_type) {
|
||||
case llama_sampler_type::TOP_K: return "top_k";
|
||||
case llama_sampler_type::TFS_Z: return "tfs_z";
|
||||
case llama_sampler_type::TYPICAL_P: return "typical_p";
|
||||
case llama_sampler_type::TOP_P: return "top_p";
|
||||
case llama_sampler_type::MIN_P: return "min_p";
|
||||
case llama_sampler_type::TEMPERATURE: return "temperature";
|
||||
default : return "";
|
||||
}
|
||||
return output;
|
||||
}
|
||||
|
||||
//
|
||||
@@ -1520,7 +1615,9 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
|
||||
fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_cublas: %s\n", ggml_cpu_has_cublas() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_vulkan: %s\n", ggml_cpu_has_vulkan() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_clblast: %s\n", ggml_cpu_has_clblast() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_kompute: %s\n", ggml_cpu_has_kompute() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_gpublas: %s\n", ggml_cpu_has_gpublas() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_neon: %s\n", ggml_cpu_has_neon() ? "true" : "false");
|
||||
@@ -1530,6 +1627,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
|
||||
fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_sse3: %s\n", ggml_cpu_has_sse3() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_vsx: %s\n", ggml_cpu_has_vsx() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_matmul_int8: %s\n", ggml_cpu_has_matmul_int8() ? "true" : "false");
|
||||
|
||||
#ifdef NDEBUG
|
||||
fprintf(stream, "debug: false\n");
|
||||
@@ -1619,7 +1717,6 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
|
||||
fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false");
|
||||
fprintf(stream, "no_mul_mat_q: %s # default: false\n", !params.mul_mat_q ? "true" : "false");
|
||||
fprintf(stream, "no_penalize_nl: %s # default: false\n", !sparams.penalize_nl ? "true" : "false");
|
||||
fprintf(stream, "numa: %s # default: false\n", params.numa ? "true" : "false");
|
||||
fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type);
|
||||
fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride);
|
||||
fprintf(stream, "presence_penalty: %f # default: 0.0\n", sparams.penalty_present);
|
||||
@@ -1644,16 +1741,16 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
|
||||
|
||||
fprintf(stream, "rope_freq_base: %f # default: 10000.0\n", params.rope_freq_base);
|
||||
fprintf(stream, "rope_freq_scale: %f # default: 1.0\n", params.rope_freq_scale);
|
||||
fprintf(stream, "seed: %d # default: -1 (random seed)\n", params.seed);
|
||||
fprintf(stream, "seed: %u # default: -1 (random seed)\n", params.seed);
|
||||
fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false");
|
||||
fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false");
|
||||
fprintf(stream, "temp: %f # default: 0.8\n", sparams.temp);
|
||||
|
||||
const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + LLAMA_MAX_DEVICES);
|
||||
const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + llama_max_devices());
|
||||
dump_vector_float_yaml(stream, "tensor_split", tensor_split_vector);
|
||||
|
||||
fprintf(stream, "tfs: %f # default: 1.0\n", sparams.tfs_z);
|
||||
fprintf(stream, "threads: %d # default: %d\n", params.n_threads, std::thread::hardware_concurrency());
|
||||
fprintf(stream, "threads: %d # default: %u\n", params.n_threads, std::thread::hardware_concurrency());
|
||||
fprintf(stream, "top_k: %d # default: 40\n", sparams.top_k);
|
||||
fprintf(stream, "top_p: %f # default: 0.95\n", sparams.top_p);
|
||||
fprintf(stream, "min_p: %f # default: 0.0\n", sparams.min_p);
|
||||
@@ -1704,7 +1801,8 @@ void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size) {
|
||||
if (cs_curr[j] < 0) { continue; }
|
||||
if (seqs.find(cs_curr[j]) == seqs.end()) {
|
||||
if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
|
||||
seqs[cs_curr[j]] = seqs.size();
|
||||
const size_t sz = seqs.size();
|
||||
seqs[cs_curr[j]] = sz;
|
||||
}
|
||||
}
|
||||
if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
|
||||
|
||||
@@ -43,40 +43,40 @@ extern char const *LLAMA_BUILD_TARGET;
|
||||
int32_t get_num_physical_cores();
|
||||
|
||||
struct gpt_params {
|
||||
uint32_t seed = -1; // RNG seed
|
||||
uint32_t seed = -1; // RNG seed
|
||||
|
||||
int32_t n_threads = get_num_physical_cores();
|
||||
int32_t n_threads_draft = -1;
|
||||
int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
|
||||
int32_t n_threads_batch_draft = -1;
|
||||
int32_t n_predict = -1; // new tokens to predict
|
||||
int32_t n_ctx = 512; // context size
|
||||
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
|
||||
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
||||
int32_t n_draft = 8; // number of tokens to draft during speculative decoding
|
||||
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
|
||||
int32_t n_parallel = 1; // number of parallel sequences to decode
|
||||
int32_t n_sequences = 1; // number of sequences to decode
|
||||
float p_accept = 0.5f; // speculative decoding accept probability
|
||||
float p_split = 0.1f; // speculative decoding split probability
|
||||
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
|
||||
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
|
||||
llama_split_mode split_mode = LLAMA_SPLIT_LAYER; // how to split the model across GPUs
|
||||
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
||||
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
|
||||
int32_t n_beams = 0; // if non-zero then use beam search of given width.
|
||||
int32_t grp_attn_n = 1; // group-attention factor
|
||||
int32_t grp_attn_w = 512; // group-attention width
|
||||
int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
|
||||
float rope_freq_base = 0.0f; // RoPE base frequency
|
||||
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
|
||||
float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
|
||||
float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
|
||||
float yarn_beta_fast = 32.0f; // YaRN low correction dim
|
||||
float yarn_beta_slow = 1.0f; // YaRN high correction dim
|
||||
int32_t yarn_orig_ctx = 0; // YaRN original context length
|
||||
int8_t rope_scaling_type = LLAMA_ROPE_SCALING_UNSPECIFIED; // TODO: better to be int32_t for alignment
|
||||
// pinging @cebtenzzre
|
||||
int32_t n_threads = get_num_physical_cores();
|
||||
int32_t n_threads_draft = -1;
|
||||
int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
|
||||
int32_t n_threads_batch_draft = -1;
|
||||
int32_t n_predict = -1; // new tokens to predict
|
||||
int32_t n_ctx = 512; // context size
|
||||
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
|
||||
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
||||
int32_t n_draft = 8; // number of tokens to draft during speculative decoding
|
||||
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
|
||||
int32_t n_parallel = 1; // number of parallel sequences to decode
|
||||
int32_t n_sequences = 1; // number of sequences to decode
|
||||
float p_accept = 0.5f; // speculative decoding accept probability
|
||||
float p_split = 0.1f; // speculative decoding split probability
|
||||
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
|
||||
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
|
||||
llama_split_mode split_mode = LLAMA_SPLIT_LAYER; // how to split the model across GPUs
|
||||
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
||||
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
|
||||
int32_t n_beams = 0; // if non-zero then use beam search of given width.
|
||||
int32_t grp_attn_n = 1; // group-attention factor
|
||||
int32_t grp_attn_w = 512; // group-attention width
|
||||
int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
|
||||
float rope_freq_base = 0.0f; // RoPE base frequency
|
||||
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
|
||||
float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
|
||||
float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
|
||||
float yarn_beta_fast = 32.0f; // YaRN low correction dim
|
||||
float yarn_beta_slow = 1.0f; // YaRN high correction dim
|
||||
int32_t yarn_orig_ctx = 0; // YaRN original context length
|
||||
int32_t rope_scaling_type = LLAMA_ROPE_SCALING_UNSPECIFIED;
|
||||
ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
|
||||
|
||||
// // sampling parameters
|
||||
struct llama_sampling_params sparams;
|
||||
@@ -135,7 +135,6 @@ struct gpt_params {
|
||||
bool logits_all = false; // return logits for all tokens in the batch
|
||||
bool use_mmap = true; // use mmap for faster loads
|
||||
bool use_mlock = false; // use mlock to keep model in memory
|
||||
bool numa = false; // attempt optimizations that help on some NUMA systems
|
||||
bool verbose_prompt = false; // print prompt tokens before generation
|
||||
bool display_prompt = true; // print prompt before generation
|
||||
bool infill = false; // use infill mode
|
||||
@@ -163,10 +162,13 @@ std::string gpt_random_prompt(std::mt19937 & rng);
|
||||
void process_escapes(std::string& input);
|
||||
|
||||
//
|
||||
// String parsing
|
||||
// String utils
|
||||
//
|
||||
|
||||
std::string parse_samplers_input(std::string input);
|
||||
std::vector<llama_sampler_type> sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names);
|
||||
std::vector<llama_sampler_type> sampler_types_from_chars(const std::string & names_string);
|
||||
std::vector<std::string> string_split(std::string input, char separator);
|
||||
std::string sampler_type_to_name_string(llama_sampler_type sampler_type);
|
||||
|
||||
//
|
||||
// Model utils
|
||||
|
||||
@@ -103,15 +103,10 @@ std::string llama_sampling_print(const llama_sampling_params & params) {
|
||||
std::string llama_sampling_order_print(const llama_sampling_params & params) {
|
||||
std::string result = "CFG -> Penalties ";
|
||||
if (params.mirostat == 0) {
|
||||
for (auto s : params.samplers_sequence) {
|
||||
switch (s) {
|
||||
case 'k': result += "-> top_k "; break;
|
||||
case 'f': result += "-> tfs_z "; break;
|
||||
case 'y': result += "-> typical_p "; break;
|
||||
case 'p': result += "-> top_p "; break;
|
||||
case 'm': result += "-> min_p "; break;
|
||||
case 't': result += "-> temp "; break;
|
||||
default : break;
|
||||
for (auto sampler_type : params.samplers_sequence) {
|
||||
const auto sampler_type_name = sampler_type_to_name_string(sampler_type);
|
||||
if (!sampler_type_name.empty()) {
|
||||
result += "-> " + sampler_type_name + " ";
|
||||
}
|
||||
}
|
||||
} else {
|
||||
@@ -126,27 +121,25 @@ static void sampler_queue(
|
||||
struct llama_context * ctx_main,
|
||||
const llama_sampling_params & params,
|
||||
llama_token_data_array & cur_p,
|
||||
size_t & min_keep) {
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
|
||||
|
||||
size_t min_keep) {
|
||||
const float temp = params.temp;
|
||||
const float dynatemp_range = params.dynatemp_range;
|
||||
const float dynatemp_exponent = params.dynatemp_exponent;
|
||||
const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k;
|
||||
const int32_t top_k = params.top_k;
|
||||
const float top_p = params.top_p;
|
||||
const float min_p = params.min_p;
|
||||
const float tfs_z = params.tfs_z;
|
||||
const float typical_p = params.typical_p;
|
||||
const std::string & samplers_sequence = params.samplers_sequence;
|
||||
const std::vector<llama_sampler_type> & samplers_sequence = params.samplers_sequence;
|
||||
|
||||
for (auto s : samplers_sequence) {
|
||||
switch (s){
|
||||
case 'k': llama_sample_top_k (ctx_main, &cur_p, top_k, min_keep); break;
|
||||
case 'f': llama_sample_tail_free(ctx_main, &cur_p, tfs_z, min_keep); break;
|
||||
case 'y': llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep); break;
|
||||
case 'p': llama_sample_top_p (ctx_main, &cur_p, top_p, min_keep); break;
|
||||
case 'm': llama_sample_min_p (ctx_main, &cur_p, min_p, min_keep); break;
|
||||
case 't':
|
||||
for (auto sampler_type : samplers_sequence) {
|
||||
switch (sampler_type) {
|
||||
case llama_sampler_type::TOP_K : llama_sample_top_k (ctx_main, &cur_p, top_k, min_keep); break;
|
||||
case llama_sampler_type::TFS_Z : llama_sample_tail_free(ctx_main, &cur_p, tfs_z, min_keep); break;
|
||||
case llama_sampler_type::TYPICAL_P: llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep); break;
|
||||
case llama_sampler_type::TOP_P : llama_sample_top_p (ctx_main, &cur_p, top_p, min_keep); break;
|
||||
case llama_sampler_type::MIN_P : llama_sample_min_p (ctx_main, &cur_p, min_p, min_keep); break;
|
||||
case llama_sampler_type::TEMPERATURE:
|
||||
if (dynatemp_range > 0) {
|
||||
float dynatemp_min = std::max(0.0f, temp - dynatemp_range);
|
||||
float dynatemp_max = std::max(0.0f, temp + dynatemp_range);
|
||||
@@ -255,10 +248,7 @@ static llama_token llama_sampling_sample_impl(
|
||||
llama_sample_temp(ctx_main, &cur_p, temp);
|
||||
id = llama_sample_token_mirostat_v2(ctx_main, &cur_p, mirostat_tau, mirostat_eta, &ctx_sampling->mirostat_mu);
|
||||
} else {
|
||||
// temperature sampling
|
||||
size_t min_keep = std::max(1, params.n_probs);
|
||||
|
||||
sampler_queue(ctx_main, params, cur_p, min_keep);
|
||||
sampler_queue(ctx_main, params, cur_p, 1);
|
||||
|
||||
id = llama_sample_token(ctx_main, &cur_p);
|
||||
|
||||
|
||||
@@ -8,6 +8,16 @@
|
||||
#include <vector>
|
||||
#include <unordered_map>
|
||||
|
||||
// sampler types
|
||||
enum class llama_sampler_type : char {
|
||||
TOP_K = 'k',
|
||||
TOP_P = 'p',
|
||||
MIN_P = 'm',
|
||||
TFS_Z = 'f',
|
||||
TYPICAL_P = 'y',
|
||||
TEMPERATURE = 't'
|
||||
};
|
||||
|
||||
// sampling parameters
|
||||
typedef struct llama_sampling_params {
|
||||
int32_t n_prev = 64; // number of previous tokens to remember
|
||||
@@ -28,7 +38,15 @@ typedef struct llama_sampling_params {
|
||||
float mirostat_tau = 5.00f; // target entropy
|
||||
float mirostat_eta = 0.10f; // learning rate
|
||||
bool penalize_nl = true; // consider newlines as a repeatable token
|
||||
std::string samplers_sequence = "kfypmt"; // top_k, tail_free, typical_p, top_p, min_p, temp
|
||||
|
||||
std::vector<llama_sampler_type> samplers_sequence = {
|
||||
llama_sampler_type::TOP_K,
|
||||
llama_sampler_type::TFS_Z,
|
||||
llama_sampler_type::TYPICAL_P,
|
||||
llama_sampler_type::TOP_P,
|
||||
llama_sampler_type::MIN_P,
|
||||
llama_sampler_type::TEMPERATURE
|
||||
};
|
||||
|
||||
std::string grammar; // optional BNF-like grammar to constrain sampling
|
||||
|
||||
|
||||
@@ -1363,12 +1363,12 @@ bool consume_common_train_arg(
|
||||
*invalid_param = true;
|
||||
return true;
|
||||
}
|
||||
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||
params->n_gpu_layers = std::stoi(argv[i]);
|
||||
#else
|
||||
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
|
||||
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
|
||||
#endif
|
||||
if (llama_supports_gpu_offload()) {
|
||||
params->n_gpu_layers = std::stoi(argv[i]);
|
||||
} else {
|
||||
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
|
||||
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
|
||||
}
|
||||
} else if (arg == "-h" || arg == "--help") {
|
||||
params->print_usage = true;
|
||||
return true;
|
||||
|
||||
@@ -10,7 +10,7 @@ import re
|
||||
import sys
|
||||
from enum import IntEnum
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, Any, ContextManager, Iterator, cast
|
||||
from typing import TYPE_CHECKING, Any, ContextManager, Iterator, Sequence, cast
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
@@ -22,14 +22,7 @@ if 'NO_LOCAL_GGUF' not in os.environ:
|
||||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
|
||||
import gguf
|
||||
|
||||
|
||||
# check for any of the given keys in the dictionary and return the value of the first key found
|
||||
def get_key_opts(d, keys):
|
||||
for k in keys:
|
||||
if k in d:
|
||||
return d[k]
|
||||
print(f"Could not find any of {keys}")
|
||||
sys.exit()
|
||||
from convert import HfVocab
|
||||
|
||||
|
||||
###### MODEL DEFINITIONS ######
|
||||
@@ -56,6 +49,15 @@ class Model:
|
||||
self.hparams = Model.load_hparams(self.dir_model)
|
||||
self.model_arch = self._get_model_architecture()
|
||||
self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=False)
|
||||
self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"])
|
||||
|
||||
def find_hparam(self, keys: Sequence[str], optional: bool = False) -> Any:
|
||||
key = next((k for k in keys if k in self.hparams), None)
|
||||
if key is not None:
|
||||
return self.hparams[key]
|
||||
if optional:
|
||||
return None
|
||||
raise KeyError(f"could not find any of: {keys}")
|
||||
|
||||
def set_vocab(self):
|
||||
self._set_vocab_gpt2()
|
||||
@@ -77,28 +79,33 @@ class Model:
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
self.gguf_writer.add_name(self.dir_model.name)
|
||||
self.gguf_writer.add_block_count(self.hparams.get(
|
||||
"n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")),
|
||||
))
|
||||
if (n_ctx := self.hparams.get("max_position_embeddings")) is not None:
|
||||
self.gguf_writer.add_block_count(self.block_count)
|
||||
|
||||
if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
|
||||
self.gguf_writer.add_context_length(n_ctx)
|
||||
if (n_embd := self.hparams.get("hidden_size")) is not None:
|
||||
self.gguf_writer.add_embedding_length(n_embd)
|
||||
if (n_ff := self.hparams.get("intermediate_size")) is not None:
|
||||
|
||||
n_embd = self.find_hparam(["hidden_size", "n_embd"])
|
||||
self.gguf_writer.add_embedding_length(n_embd)
|
||||
|
||||
if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
|
||||
self.gguf_writer.add_feed_forward_length(n_ff)
|
||||
if (n_head := self.hparams.get("num_attention_heads")) is not None:
|
||||
self.gguf_writer.add_head_count(n_head)
|
||||
|
||||
n_head = self.find_hparam(["num_attention_heads", "n_head"])
|
||||
self.gguf_writer.add_head_count(n_head)
|
||||
|
||||
if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
|
||||
self.gguf_writer.add_head_count_kv(n_head_kv)
|
||||
|
||||
if (n_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
|
||||
self.gguf_writer.add_layer_norm_rms_eps(n_rms_eps)
|
||||
if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
|
||||
self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
|
||||
if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon"], optional=True)) is not None:
|
||||
self.gguf_writer.add_layer_norm_eps(f_norm_eps)
|
||||
if (n_experts := self.hparams.get("num_local_experts")) is not None:
|
||||
self.gguf_writer.add_expert_count(n_experts)
|
||||
if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
|
||||
self.gguf_writer.add_expert_used_count(n_experts_used)
|
||||
|
||||
self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
|
||||
def write_tensors(self):
|
||||
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
|
||||
@@ -203,6 +210,14 @@ class Model:
|
||||
return CodeShellModel
|
||||
if model_architecture == "OrionForCausalLM":
|
||||
return OrionModel
|
||||
if model_architecture == "InternLM2ForCausalLM":
|
||||
return InternLM2Model
|
||||
if model_architecture == "MiniCPMForCausalLM":
|
||||
return MiniCPMModel
|
||||
if model_architecture == "BertModel":
|
||||
return BertModel
|
||||
if model_architecture == "NomicBertModel":
|
||||
return NomicBertModel
|
||||
return Model
|
||||
|
||||
def _is_model_safetensors(self) -> bool:
|
||||
@@ -254,6 +269,14 @@ class Model:
|
||||
return gguf.MODEL_ARCH.CODESHELL
|
||||
if arch == "OrionForCausalLM":
|
||||
return gguf.MODEL_ARCH.ORION
|
||||
if arch == "InternLM2ForCausalLM":
|
||||
return gguf.MODEL_ARCH.INTERNLM2
|
||||
if arch == "MiniCPMForCausalLM":
|
||||
return gguf.MODEL_ARCH.MINICPM
|
||||
if arch == "BertModel":
|
||||
return gguf.MODEL_ARCH.BERT
|
||||
if arch == "NomicBertModel":
|
||||
return gguf.MODEL_ARCH.NOMIC_BERT
|
||||
|
||||
raise NotImplementedError(f'Architecture "{arch}" not supported!')
|
||||
|
||||
@@ -398,6 +421,31 @@ class Model:
|
||||
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
def _set_vocab_hf(self):
|
||||
path = self.dir_model
|
||||
added_tokens_path = self.dir_model
|
||||
vocab = HfVocab(
|
||||
path, added_tokens_path if added_tokens_path.exists() else None
|
||||
)
|
||||
tokens = []
|
||||
scores = []
|
||||
toktypes = []
|
||||
|
||||
for text, score, toktype in vocab.all_tokens():
|
||||
tokens.append(text)
|
||||
scores.append(score)
|
||||
toktypes.append(toktype)
|
||||
|
||||
assert len(tokens) == vocab.vocab_size
|
||||
|
||||
self.gguf_writer.add_tokenizer_model("llama")
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
self.gguf_writer.add_token_scores(scores)
|
||||
self.gguf_writer.add_token_types(toktypes)
|
||||
|
||||
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
|
||||
class GPTNeoXModel(Model):
|
||||
def set_gguf_parameters(self):
|
||||
@@ -1037,6 +1085,83 @@ class MixtralModel(Model):
|
||||
self._set_vocab_sentencepiece()
|
||||
|
||||
|
||||
class MiniCPMModel(Model):
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.hparams["num_hidden_layers"]
|
||||
self.gguf_writer.add_name("MiniCPM")
|
||||
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
|
||||
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
|
||||
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
|
||||
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
|
||||
self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
|
||||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
|
||||
def set_vocab(self):
|
||||
self._set_vocab_hf()
|
||||
|
||||
def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
|
||||
if n_kv_head is not None and n_head != n_kv_head:
|
||||
n_head //= n_kv_head
|
||||
|
||||
return (
|
||||
weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
||||
.swapaxes(1, 2)
|
||||
.reshape(weights.shape)
|
||||
)
|
||||
|
||||
def write_tensors(self):
|
||||
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
|
||||
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||||
n_head = self.hparams.get("num_attention_heads")
|
||||
n_kv_head = self.hparams.get("num_key_value_heads")
|
||||
for name, data_torch in self.get_tensors():
|
||||
# we don't need these
|
||||
if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
|
||||
continue
|
||||
|
||||
old_dtype = data_torch.dtype
|
||||
|
||||
# convert any unsupported data types to float32
|
||||
if data_torch.dtype not in (torch.float16, torch.float32):
|
||||
data_torch = data_torch.to(torch.float32)
|
||||
|
||||
# HF models permute some of the tensors, so we need to undo that
|
||||
if name.endswith(("q_proj.weight")):
|
||||
data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
|
||||
if name.endswith(("k_proj.weight")):
|
||||
data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
|
||||
|
||||
data = data_torch.squeeze().numpy()
|
||||
|
||||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
||||
# if f32 desired, convert any float16 to float32
|
||||
if self.ftype == 0 and data_dtype == np.float16:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||||
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
||||
class QwenModel(Model):
|
||||
@staticmethod
|
||||
def token_bytes_to_string(b):
|
||||
@@ -1134,7 +1259,7 @@ class GPT2Model(Model):
|
||||
|
||||
for name, data_torch in self.get_tensors():
|
||||
# we don't need these
|
||||
if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq", ".attn.bias")):
|
||||
if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq", ".attn.bias", ".attn.masked_bias")):
|
||||
continue
|
||||
|
||||
if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
|
||||
@@ -1181,21 +1306,21 @@ class GPT2Model(Model):
|
||||
|
||||
class Phi2Model(Model):
|
||||
def set_gguf_parameters(self):
|
||||
block_count = get_key_opts(self.hparams, ["num_hidden_layers", "n_layer"])
|
||||
block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
|
||||
|
||||
rot_pct = get_key_opts(self.hparams, ["partial_rotary_factor"])
|
||||
n_embd = get_key_opts(self.hparams, ["hidden_size", "n_embd"])
|
||||
n_head = get_key_opts(self.hparams, ["num_attention_heads", "n_head"])
|
||||
rot_pct = self.find_hparam(["partial_rotary_factor"])
|
||||
n_embd = self.find_hparam(["hidden_size", "n_embd"])
|
||||
n_head = self.find_hparam(["num_attention_heads", "n_head"])
|
||||
|
||||
self.gguf_writer.add_name("Phi2")
|
||||
self.gguf_writer.add_context_length(get_key_opts(self.hparams, ["n_positions", "max_position_embeddings"]))
|
||||
self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
|
||||
|
||||
self.gguf_writer.add_embedding_length(n_embd)
|
||||
self.gguf_writer.add_feed_forward_length(4 * n_embd)
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
self.gguf_writer.add_head_count(n_head)
|
||||
self.gguf_writer.add_head_count_kv(n_head)
|
||||
self.gguf_writer.add_layer_norm_eps(get_key_opts(self.hparams, ["layer_norm_epsilon", "layer_norm_eps"]))
|
||||
self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
|
||||
self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
self.gguf_writer.add_add_bos_token(False)
|
||||
@@ -1344,6 +1469,322 @@ class CodeShellModel(Model):
|
||||
self.gguf_writer.add_tensor("output.weight", data)
|
||||
print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
|
||||
class InternLM2Model(Model):
|
||||
def set_vocab(self):
|
||||
# (TODO): Is there a better way?
|
||||
# Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
|
||||
# \x00 specially and convert it into an emoji character to prevent it from being mistakenly
|
||||
# recognized as an empty string in C++.
|
||||
from sentencepiece import SentencePieceProcessor
|
||||
from sentencepiece import sentencepiece_model_pb2 as model
|
||||
|
||||
tokenizer_path = self.dir_model / 'tokenizer.model'
|
||||
|
||||
tokens: list[bytes] = []
|
||||
scores: list[float] = []
|
||||
toktypes: list[int] = []
|
||||
|
||||
if not tokenizer_path.is_file():
|
||||
print(f'Error: Missing {tokenizer_path}', file=sys.stderr)
|
||||
sys.exit(1)
|
||||
|
||||
sentencepiece_model = model.ModelProto()
|
||||
sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
|
||||
add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
|
||||
|
||||
tokenizer = SentencePieceProcessor(str(tokenizer_path))
|
||||
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
|
||||
|
||||
for token_id in range(vocab_size):
|
||||
piece = tokenizer.id_to_piece(token_id)
|
||||
text = piece.encode("utf-8")
|
||||
score = tokenizer.get_score(token_id)
|
||||
if text == b"\x00":
|
||||
# (TODO): fixme
|
||||
# Hack here and replace the \x00 characters.
|
||||
print(f"InternLM2 convert token '{text}' to '🐉'!")
|
||||
text = "🐉"
|
||||
|
||||
toktype = SentencePieceTokenTypes.NORMAL
|
||||
if tokenizer.is_unknown(token_id):
|
||||
toktype = SentencePieceTokenTypes.UNKNOWN
|
||||
elif tokenizer.is_control(token_id):
|
||||
toktype = SentencePieceTokenTypes.CONTROL
|
||||
elif tokenizer.is_unused(token_id):
|
||||
toktype = SentencePieceTokenTypes.UNUSED
|
||||
elif tokenizer.is_byte(token_id):
|
||||
toktype = SentencePieceTokenTypes.BYTE
|
||||
|
||||
tokens.append(text)
|
||||
scores.append(score)
|
||||
toktypes.append(toktype)
|
||||
|
||||
added_tokens_file = self.dir_model / 'added_tokens.json'
|
||||
if added_tokens_file.is_file():
|
||||
with open(added_tokens_file, "r", encoding="utf-8") as f:
|
||||
added_tokens_json = json.load(f)
|
||||
|
||||
for key in added_tokens_json:
|
||||
tokens.append(key.encode("utf-8"))
|
||||
scores.append(-1000.0)
|
||||
toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
|
||||
|
||||
self.gguf_writer.add_tokenizer_model("llama")
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
self.gguf_writer.add_token_scores(scores)
|
||||
self.gguf_writer.add_token_types(toktypes)
|
||||
self.gguf_writer.add_add_space_prefix(add_prefix)
|
||||
|
||||
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
|
||||
old_eos = special_vocab.special_token_ids["eos"]
|
||||
if "chat" in os.path.basename(self.dir_model.absolute()):
|
||||
# For the chat model, we replace the eos with '<|im_end|>'.
|
||||
special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer)
|
||||
print(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \
|
||||
in chat mode so that the conversation can end normally.")
|
||||
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
def _try_get_sft_eos(self, tokenizer):
|
||||
unused_145_list = tokenizer.encode('[UNUSED_TOKEN_145]')
|
||||
im_end_list = tokenizer.encode('<|im_end|>')
|
||||
assert (len(unused_145_list) == 1) ^ (len(im_end_list) == 1)
|
||||
if len(unused_145_list) == 1:
|
||||
eos_token = unused_145_list[0]
|
||||
if len(im_end_list) == 1:
|
||||
eos_token = im_end_list[0]
|
||||
return eos_token
|
||||
|
||||
def _hf_permute_qk(self, weights, n_head: int, n_head_kv: int):
|
||||
if n_head_kv is not None and n_head != n_head_kv:
|
||||
n_head = n_head_kv
|
||||
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
||||
.swapaxes(1, 2)
|
||||
.reshape(weights.shape))
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
self.gguf_writer.add_name("InternLM2")
|
||||
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
|
||||
self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
|
||||
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
||||
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
|
||||
self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
|
||||
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
|
||||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
|
||||
self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
|
||||
|
||||
def post_write_tensors(self, tensor_map, name, data_torch):
|
||||
old_dtype = data_torch.dtype
|
||||
|
||||
# convert any unsupported data types to float32
|
||||
if data_torch.dtype not in (torch.float16, torch.float32):
|
||||
data_torch = data_torch.to(torch.float32)
|
||||
|
||||
data = data_torch.squeeze().numpy()
|
||||
|
||||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
||||
# if f32 desired, convert any float16 to float32
|
||||
if self.ftype == 0 and data_dtype == np.float16:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||||
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
def write_tensors(self):
|
||||
from einops import rearrange
|
||||
|
||||
num_heads = self.hparams.get("num_attention_heads")
|
||||
num_kv_heads = self.hparams.get("num_key_value_heads")
|
||||
hidden_size = self.hparams.get("hidden_size")
|
||||
q_per_kv = num_heads // num_kv_heads
|
||||
head_dim = hidden_size // num_heads
|
||||
num_groups = num_heads // q_per_kv
|
||||
|
||||
block_count = self.hparams["num_hidden_layers"]
|
||||
model_kv = dict(self.get_tensors())
|
||||
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||||
qkv_pattern = r"model\.layers\.(\d+)\.attention\.wqkv"
|
||||
for name, data_torch in model_kv.items():
|
||||
# we don't need these
|
||||
if name.endswith(".rotary_emb.inv_freq"):
|
||||
continue
|
||||
|
||||
if re.match(qkv_pattern, name):
|
||||
bid = re.findall(qkv_pattern, name)[0]
|
||||
qkv = data_torch
|
||||
qkv = rearrange(qkv.T, " o (g n i) ->o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim)
|
||||
q, k, v = qkv[..., : q_per_kv, :], qkv[..., q_per_kv: q_per_kv + 1, :], qkv[..., q_per_kv + 1: q_per_kv + 2, :]
|
||||
# The model weights of q and k equire additional reshape.
|
||||
q = self._hf_permute_qk(rearrange(q, " o g n i -> o (g n i)").T, num_heads, num_heads)
|
||||
k = self._hf_permute_qk(rearrange(k, " o g n i -> o (g n i)").T, num_heads, num_kv_heads)
|
||||
v = rearrange(v, " o g n i -> o (g n i)").T
|
||||
self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wq.weight", q)
|
||||
self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wk.weight", k)
|
||||
self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wv.weight", v)
|
||||
else:
|
||||
self.post_write_tensors(tensor_map, name, data_torch)
|
||||
|
||||
|
||||
class BertModel(Model):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.vocab_size = None
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
self.gguf_writer.add_causal_attention(False)
|
||||
|
||||
# get pooling path
|
||||
with open(self.dir_model / "modules.json", encoding="utf-8") as f:
|
||||
modules = json.load(f)
|
||||
pooling_path = None
|
||||
for mod in modules:
|
||||
if mod["type"] == "sentence_transformers.models.Pooling":
|
||||
pooling_path = mod["path"]
|
||||
break
|
||||
|
||||
# get pooling type
|
||||
pooling_type = gguf.PoolingType.NONE
|
||||
if pooling_path is not None:
|
||||
with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
|
||||
pooling = json.load(f)
|
||||
if pooling["pooling_mode_mean_tokens"]:
|
||||
pooling_type = gguf.PoolingType.MEAN
|
||||
elif pooling["pooling_mode_cls_token"]:
|
||||
pooling_type = gguf.PoolingType.CLS
|
||||
else:
|
||||
raise NotImplementedError("Only MEAN and CLS pooling types supported")
|
||||
|
||||
self.gguf_writer.add_pooling_type(pooling_type.value)
|
||||
|
||||
def set_vocab(self):
|
||||
path = self.dir_model
|
||||
added_tokens_path = self.dir_model if self.dir_model.exists() else None
|
||||
|
||||
# use huggingface vocab to get all tokens
|
||||
vocab = HfVocab(path, added_tokens_path)
|
||||
tokens, scores, toktypes = zip(*vocab.all_tokens())
|
||||
assert len(tokens) == vocab.vocab_size
|
||||
self.vocab_size = vocab.vocab_size
|
||||
|
||||
# we need this to validate the size of the token_type embeddings
|
||||
# though currently we are passing all zeros to the token_type embeddings
|
||||
n_token_types = len(set(toktypes))
|
||||
self.gguf_writer.add_token_type_count(n_token_types)
|
||||
|
||||
# convert to phantom space vocab
|
||||
def phantom(tok, typ):
|
||||
if tok.startswith(b"[") and tok.endswith(b"]"):
|
||||
return tok
|
||||
if tok.startswith(b"##"):
|
||||
return tok[2:]
|
||||
return b"\xe2\x96\x81" + tok
|
||||
tokens = tuple(phantom(t, y) for t, y in zip(tokens, toktypes))
|
||||
|
||||
# set up bos and eos tokens (cls and sep)
|
||||
self.gguf_writer.add_bos_token_id(vocab.tokenizer.cls_token_id)
|
||||
self.gguf_writer.add_eos_token_id(vocab.tokenizer.sep_token_id)
|
||||
|
||||
# add vocab to gguf
|
||||
self.gguf_writer.add_tokenizer_model("bert")
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
self.gguf_writer.add_token_scores(scores)
|
||||
self.gguf_writer.add_token_types(toktypes)
|
||||
|
||||
# handle special tokens
|
||||
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
def write_tensors(self):
|
||||
tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
|
||||
tensors = dict(self.get_tensors())
|
||||
for name, data_torch in tensors.items():
|
||||
# we are only using BERT for embeddings so we don't need the pooling layer
|
||||
if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
|
||||
continue # we don't need these
|
||||
|
||||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
|
||||
data = data_torch.squeeze().numpy()
|
||||
n_dims = len(data.shape)
|
||||
new_dtype: type[np.floating[Any]]
|
||||
|
||||
if (
|
||||
self.ftype == 1 and name.endswith(".weight") and n_dims == 2
|
||||
and name != "embeddings.token_type_embeddings.weight" # not used with get_rows, must be F32
|
||||
):
|
||||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||
new_dtype = np.float16
|
||||
else:
|
||||
# if f32 desired, convert any float16 to float32
|
||||
new_dtype = np.float32
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {data_torch.dtype} --> {new_dtype}")
|
||||
|
||||
if data.dtype != new_dtype:
|
||||
data = data.astype(new_dtype)
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
||||
class NomicBertModel(BertModel):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
# the HF config claims n_ctx=8192, but it uses RoPE scaling
|
||||
self.hparams["n_ctx"] = 2048
|
||||
|
||||
# SwigLU activation
|
||||
assert self.hparams["activation_function"] == "swiglu"
|
||||
# this doesn't do anything in the HF version
|
||||
assert self.hparams["causal"] is False
|
||||
# no bias tensors
|
||||
assert self.hparams["qkv_proj_bias"] is False
|
||||
assert self.hparams["mlp_fc1_bias"] is False
|
||||
assert self.hparams["mlp_fc2_bias"] is False
|
||||
# norm at end of layer
|
||||
assert self.hparams["prenorm"] is False
|
||||
# standard RoPE
|
||||
assert self.hparams["rotary_emb_fraction"] == 1.0
|
||||
assert self.hparams["rotary_emb_interleaved"] is False
|
||||
assert self.hparams["rotary_emb_scale_base"] is None
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
|
||||
|
||||
def get_tensors(self):
|
||||
assert self.vocab_size is not None
|
||||
for name, data in super().get_tensors():
|
||||
# Nomic Embed's token embeddings tensor is padded, but llama.cpp wants tensor sizes to match exactly.
|
||||
if name == 'embeddings.word_embeddings.weight' and data.shape[1] != self.vocab_size:
|
||||
rounded_vocab_size = (self.vocab_size + 63) // 64 * 64
|
||||
assert data.shape == (rounded_vocab_size, self.hparams["n_embd"])
|
||||
data = data[:self.vocab_size, :]
|
||||
yield name, data
|
||||
|
||||
|
||||
###### CONVERSION LOGIC ######
|
||||
|
||||
|
||||
|
||||
@@ -88,7 +88,8 @@ def main():
|
||||
gguf_writer.add_embedding_length(hidden_size)
|
||||
gguf_writer.add_block_count(block_count)
|
||||
gguf_writer.add_feed_forward_length(hparams.ffn_hidden_size)
|
||||
gguf_writer.add_rope_dimension_count(hidden_size // head_count)
|
||||
# ref: https://github.com/ggerganov/llama.cpp/pull/4889/commits/eea19039fc52ea2dbd1aab45b59ab4e3e29a3443
|
||||
gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2)
|
||||
gguf_writer.add_head_count(head_count)
|
||||
gguf_writer.add_head_count_kv(head_count_kv)
|
||||
gguf_writer.add_rope_freq_base(hparams.rotary_emb_base)
|
||||
|
||||
51
convert.py
51
convert.py
@@ -334,9 +334,9 @@ class Params:
|
||||
class BpeVocab:
|
||||
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None) -> None:
|
||||
self.bpe_tokenizer = json.loads(open(str(fname_tokenizer), encoding="utf-8").read())
|
||||
try:
|
||||
if isinstance(self.bpe_tokenizer.get('model'), dict):
|
||||
self.vocab = self.bpe_tokenizer["model"]["vocab"]
|
||||
except KeyError:
|
||||
else:
|
||||
self.vocab = self.bpe_tokenizer
|
||||
added_tokens: dict[str, int]
|
||||
if fname_added_tokens is not None:
|
||||
@@ -515,10 +515,14 @@ class HfVocab:
|
||||
|
||||
# Yield token text, score, and type
|
||||
yield token_text, self.get_token_score(token_id), self.get_token_type(
|
||||
token_id, self.special_ids # Reuse already stored special IDs
|
||||
token_id, token_text, self.special_ids # Reuse already stored special IDs
|
||||
)
|
||||
|
||||
def get_token_type(self, token_id: int, special_ids: set[int]) -> gguf.TokenType:
|
||||
def get_token_type(self, token_id: int, token_text: bytes, special_ids: set[int]) -> gguf.TokenType:
|
||||
# Special case for byte tokens
|
||||
if re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
|
||||
return gguf.TokenType.BYTE
|
||||
|
||||
# Determine token type based on whether it's a special token
|
||||
return gguf.TokenType.CONTROL if token_id in special_ids else gguf.TokenType.NORMAL
|
||||
|
||||
@@ -530,7 +534,7 @@ class HfVocab:
|
||||
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
for text in self.added_tokens_list:
|
||||
if text in self.specials:
|
||||
toktype = self.get_token_type(self.specials[text], self.special_ids)
|
||||
toktype = self.get_token_type(self.specials[text], b'', self.special_ids)
|
||||
score = self.get_token_score(self.specials[text])
|
||||
else:
|
||||
toktype = gguf.TokenType.USER_DEFINED
|
||||
@@ -1169,7 +1173,7 @@ def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyM
|
||||
for (name, tensor) in model.items()}
|
||||
|
||||
|
||||
def convert_model_names(model: LazyModel, params: Params) -> LazyModel:
|
||||
def convert_model_names(model: LazyModel, params: Params, skip_unknown: bool) -> LazyModel:
|
||||
tmap = gguf.TensorNameMap(ARCH, params.n_layer)
|
||||
should_skip: set[gguf.MODEL_TENSOR] = set(gguf.MODEL_TENSOR_SKIP.get(ARCH, []))
|
||||
|
||||
@@ -1195,7 +1199,11 @@ def convert_model_names(model: LazyModel, params: Params) -> LazyModel:
|
||||
for name, lazy_tensor in model.items():
|
||||
tensor_type, name_new = tmap.get_type_and_name(name, try_suffixes = (".weight", ".bias")) or (None, None)
|
||||
if name_new is None:
|
||||
raise Exception(f"Unexpected tensor name: {name}")
|
||||
if skip_unknown:
|
||||
print(f"Unexpected tensor name: {name} - skipping")
|
||||
continue
|
||||
else:
|
||||
raise Exception(f"Unexpected tensor name: {name}. Use --skip-unknown to ignore it (e.g. LLaVA)")
|
||||
|
||||
if tensor_type in should_skip:
|
||||
print(f"skipping tensor {name_new}")
|
||||
@@ -1373,19 +1381,20 @@ def main(args_in: list[str] | None = None) -> None:
|
||||
output_choices.append("q8_0")
|
||||
vocab_types = ["spm", "bpe", "hfft"]
|
||||
parser = argparse.ArgumentParser(description="Convert a LLaMa model to a GGML compatible file")
|
||||
parser.add_argument("--awq-path", type=Path, help="Path to scale awq cache file", default=None)
|
||||
parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model")
|
||||
parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file")
|
||||
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
|
||||
parser.add_argument("--outtype", choices=output_choices, help="output format - note: q8_0 may be very slow (default: f16 or f32 based on input)")
|
||||
parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file")
|
||||
parser.add_argument("--vocab-type", choices=vocab_types, help="The vocabulary format used to define the tokenizer model (default: spm)", default="spm")
|
||||
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
|
||||
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)")
|
||||
parser.add_argument("--ctx", type=int, help="model training context (default: based on input)")
|
||||
parser.add_argument("--concurrency", type=int, help=f"concurrency used for conversion (default: {DEFAULT_CONCURRENCY})", default=DEFAULT_CONCURRENCY)
|
||||
parser.add_argument("--big-endian", action="store_true", help="model is executed on big endian machine")
|
||||
parser.add_argument("--pad-vocab", action="store_true", help="add pad tokens when model vocab expects more than tokenizer metadata provides")
|
||||
parser.add_argument("--awq-path", type=Path, help="Path to scale awq cache file", default=None)
|
||||
parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model")
|
||||
parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file")
|
||||
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
|
||||
parser.add_argument("--outtype", choices=output_choices, help="output format - note: q8_0 may be very slow (default: f16 or f32 based on input)")
|
||||
parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file")
|
||||
parser.add_argument("--vocab-type", choices=vocab_types, help="The vocabulary format used to define the tokenizer model (default: spm)", default="spm")
|
||||
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
|
||||
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)")
|
||||
parser.add_argument("--ctx", type=int, help="model training context (default: based on input)")
|
||||
parser.add_argument("--concurrency", type=int, help=f"concurrency used for conversion (default: {DEFAULT_CONCURRENCY})", default=DEFAULT_CONCURRENCY)
|
||||
parser.add_argument("--big-endian", action="store_true", help="model is executed on big endian machine")
|
||||
parser.add_argument("--pad-vocab", action="store_true", help="add pad tokens when model vocab expects more than tokenizer metadata provides")
|
||||
parser.add_argument("--skip-unknown", action="store_true", help="skip unknown tensor names instead of failing")
|
||||
|
||||
args = parser.parse_args(args_in)
|
||||
if args.awq_path:
|
||||
@@ -1457,7 +1466,7 @@ def main(args_in: list[str] | None = None) -> None:
|
||||
print(f"Special vocab info: {special_vocab}")
|
||||
|
||||
model = model_plus.model
|
||||
model = convert_model_names(model, params)
|
||||
model = convert_model_names(model, params, args.skip_unknown)
|
||||
ftype = pick_output_type(model, args.outtype)
|
||||
model = convert_to_output_type(model, ftype)
|
||||
outfile = args.outfile or default_outfile(model_plus.paths, ftype)
|
||||
|
||||
@@ -38,6 +38,7 @@ else()
|
||||
add_subdirectory(speculative)
|
||||
add_subdirectory(lookahead)
|
||||
add_subdirectory(lookup)
|
||||
add_subdirectory(gguf)
|
||||
add_subdirectory(train-text-from-scratch)
|
||||
add_subdirectory(imatrix)
|
||||
if (LLAMA_BUILD_SERVER)
|
||||
|
||||
@@ -82,13 +82,14 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// init LLM
|
||||
|
||||
llama_backend_init(params.numa);
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
// initialize the model
|
||||
|
||||
llama_model_params model_params = llama_model_default_params();
|
||||
|
||||
const std::vector<float> t_split (LLAMA_MAX_DEVICES, 0.0f);
|
||||
const std::vector<float> t_split(llama_max_devices(), 0.0f);
|
||||
|
||||
model_params.n_gpu_layers = n_gpu_layers;
|
||||
model_params.tensor_split = t_split.data();
|
||||
@@ -158,7 +159,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("%s: n_kv_max = %d, is_pp_shared = %d, n_gpu_layers = %d, mmq = %d, n_threads = %d, n_threads_batch = %d\n", __func__, n_kv_max, is_pp_shared, n_gpu_layers, mmq, ctx_params.n_threads, ctx_params.n_threads_batch);
|
||||
LOG_TEE("%s: n_kv_max = %d, is_pp_shared = %d, n_gpu_layers = %d, mmq = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, is_pp_shared, n_gpu_layers, mmq, ctx_params.n_threads, ctx_params.n_threads_batch);
|
||||
LOG_TEE("\n");
|
||||
|
||||
LOG_TEE("|%6s | %6s | %4s | %6s | %8s | %8s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "B", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s", "T s", "S t/s");
|
||||
|
||||
@@ -17,7 +17,7 @@ let n_parallel: Int = arguments.count > 3 && Int(arguments[3]) != nil ? Int(argu
|
||||
let n_len: Int = 32
|
||||
|
||||
// init LLM
|
||||
llama_backend_init(false)
|
||||
llama_backend_init()
|
||||
defer {
|
||||
llama_backend_free()
|
||||
}
|
||||
|
||||
@@ -50,7 +50,8 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// init LLM
|
||||
|
||||
llama_backend_init(params.numa);
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
// initialize the model
|
||||
|
||||
@@ -91,7 +92,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_batch = %d, n_parallel = %d, n_kv_req = %d\n", __func__, n_len, n_ctx, ctx_params.n_batch, n_parallel, n_kv_req);
|
||||
LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_batch = %u, n_parallel = %d, n_kv_req = %d\n", __func__, n_len, n_ctx, ctx_params.n_batch, n_parallel, n_kv_req);
|
||||
|
||||
// make sure the KV cache is big enough to hold all the prompt and generated tokens
|
||||
if (n_kv_req > n_ctx) {
|
||||
|
||||
@@ -119,7 +119,8 @@ int main(int argc, char ** argv)
|
||||
// Init LLM :
|
||||
//---------------------------------
|
||||
|
||||
llama_backend_init(params.numa);
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
llama_model * model;
|
||||
llama_context * ctx;
|
||||
|
||||
@@ -325,14 +325,14 @@ struct train_params {
|
||||
};
|
||||
|
||||
static void print_params(struct my_llama_hparams * params) {
|
||||
printf("%s: n_vocab: %d\n", __func__, params->n_vocab);
|
||||
printf("%s: n_ctx: %d\n", __func__, params->n_ctx);
|
||||
printf("%s: n_embd: %d\n", __func__, params->n_embd);
|
||||
printf("%s: n_mult: %d\n", __func__, params->n_mult);
|
||||
printf("%s: n_head: %d\n", __func__, params->n_head);
|
||||
printf("%s: n_ff: %d\n", __func__, params->n_ff);
|
||||
printf("%s: n_layer: %d\n", __func__, params->n_layer);
|
||||
printf("%s: n_rot: %d\n", __func__, params->n_rot);
|
||||
printf("%s: n_vocab: %u\n", __func__, params->n_vocab);
|
||||
printf("%s: n_ctx: %u\n", __func__, params->n_ctx);
|
||||
printf("%s: n_embd: %u\n", __func__, params->n_embd);
|
||||
printf("%s: n_mult: %u\n", __func__, params->n_mult);
|
||||
printf("%s: n_head: %u\n", __func__, params->n_head);
|
||||
printf("%s: n_ff: %u\n", __func__, params->n_ff);
|
||||
printf("%s: n_layer: %u\n", __func__, params->n_layer);
|
||||
printf("%s: n_rot: %u\n", __func__, params->n_rot);
|
||||
}
|
||||
|
||||
static void init_model(struct my_llama_model * model) {
|
||||
@@ -350,25 +350,25 @@ static void init_model(struct my_llama_model * model) {
|
||||
model->train_tokens = 0;
|
||||
|
||||
model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
|
||||
printf("[%s:GG] Allocating [%d] x [%d] = [%d] float space for model->tok_embeddings\n",__func__,n_embd , n_vocab, n_embd * n_vocab);
|
||||
printf("[%s:GG] Allocating [%u] x [%u] = [%u] float space for model->tok_embeddings\n",__func__,n_embd , n_vocab, n_embd * n_vocab);
|
||||
|
||||
model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
printf("[%s:GG] Allocating [%d] float space for model->norm\n",__func__,n_embd);
|
||||
printf("[%s:GG] Allocating [%u] float space for model->norm\n",__func__,n_embd);
|
||||
|
||||
model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
|
||||
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for model->output\n",__func__,n_embd, n_vocab, n_embd * n_vocab);
|
||||
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for model->output\n",__func__,n_embd, n_vocab, n_embd * n_vocab);
|
||||
|
||||
// printing the per-layer allocations here so we dont print in the for loop.
|
||||
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wq for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
|
||||
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wk for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
|
||||
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wv for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
|
||||
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wo for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
|
||||
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.wq for [%u] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
|
||||
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.wk for [%u] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
|
||||
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.wv for [%u] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
|
||||
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.wo for [%u] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
|
||||
|
||||
printf("[%s:GG] Allocating [%d] float space for layer.ffn_norm for [%d] layers\n",__func__,n_embd, n_layer);
|
||||
printf("[%s:GG] Allocating [%u] float space for layer.ffn_norm for [%u] layers\n",__func__,n_embd, n_layer);
|
||||
|
||||
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.w1 for [%d] layers\n",__func__, n_ff, n_embd, n_embd * n_ff, n_layer);
|
||||
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.w2 for [%d] layers\n",__func__, n_embd, n_ff, n_ff * n_embd, n_layer);
|
||||
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.w3 for [%d] layers\n",__func__, n_ff, n_embd, n_embd * n_ff, n_layer);
|
||||
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.w1 for [%u] layers\n",__func__, n_ff, n_embd, n_embd * n_ff, n_layer);
|
||||
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.w2 for [%u] layers\n",__func__, n_embd, n_ff, n_ff * n_embd, n_layer);
|
||||
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.w3 for [%u] layers\n",__func__, n_ff, n_embd, n_embd * n_ff, n_layer);
|
||||
|
||||
ggml_set_name(model->tok_embeddings, "tok_embeddings.weight");
|
||||
ggml_set_name(model->norm, "norm.weight");
|
||||
|
||||
@@ -7,6 +7,51 @@
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
static std::vector<std::string> split_lines(const std::string & s) {
|
||||
std::string line;
|
||||
std::vector<std::string> lines;
|
||||
std::stringstream ss(s);
|
||||
while (std::getline(ss, line)) {
|
||||
lines.push_back(line);
|
||||
}
|
||||
return lines;
|
||||
}
|
||||
|
||||
static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, int seq_id) {
|
||||
for (size_t i = 0; i < tokens.size(); i++) {
|
||||
llama_batch_add(batch, tokens[i], i, { seq_id }, false);
|
||||
}
|
||||
}
|
||||
|
||||
static void normalize(float * vec, float * out, int n) {
|
||||
float norm = 0;
|
||||
for (int i = 0; i < n; i++) {
|
||||
norm += vec[i] * vec[i];
|
||||
}
|
||||
norm = sqrt(norm);
|
||||
for (int i = 0; i < n; i++) {
|
||||
out[i] = vec[i] / norm;
|
||||
}
|
||||
}
|
||||
|
||||
static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd) {
|
||||
// clear previous kv_cache values (irrelevant for embeddings)
|
||||
llama_kv_cache_clear(ctx);
|
||||
|
||||
// run model
|
||||
fprintf(stderr, "%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);
|
||||
if (llama_decode(ctx, batch) < 0) {
|
||||
fprintf(stderr, "%s : failed to decode\n", __func__);
|
||||
}
|
||||
|
||||
// normalize on copy
|
||||
for (int k = 0; k < n_seq; k++) {
|
||||
float * emb = llama_get_embeddings_ith(ctx, k);
|
||||
float * out = output + k * n_embd;
|
||||
normalize(emb, out, n_embd);
|
||||
}
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
|
||||
@@ -29,7 +74,8 @@ int main(int argc, char ** argv) {
|
||||
params.prompt = gpt_random_prompt(rng);
|
||||
}
|
||||
|
||||
llama_backend_init(params.numa);
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
llama_model * model;
|
||||
llama_context * ctx;
|
||||
@@ -55,49 +101,84 @@ int main(int argc, char ** argv) {
|
||||
fprintf(stderr, "%s\n", get_system_info(params).c_str());
|
||||
}
|
||||
|
||||
int n_past = 0;
|
||||
// split the prompt into lines
|
||||
std::vector<std::string> prompts = split_lines(params.prompt);
|
||||
|
||||
// tokenize the prompt
|
||||
auto embd_inp = ::llama_tokenize(ctx, params.prompt, true);
|
||||
// max batch size
|
||||
const uint64_t n_batch = params.n_batch;
|
||||
GGML_ASSERT(params.n_batch == params.n_ctx);
|
||||
|
||||
// tokenize the prompts and trim
|
||||
std::vector<std::vector<int32_t>> inputs;
|
||||
for (const auto & prompt : prompts) {
|
||||
auto inp = ::llama_tokenize(ctx, prompt, true);
|
||||
if (inp.size() > n_batch) {
|
||||
inp.resize(n_batch);
|
||||
}
|
||||
inputs.push_back(inp);
|
||||
}
|
||||
|
||||
// tokenization stats
|
||||
if (params.verbose_prompt) {
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
|
||||
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
|
||||
for (int i = 0; i < (int) embd_inp.size(); i++) {
|
||||
fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_piece(ctx, embd_inp[i]).c_str());
|
||||
for (int i = 0; i < (int) inputs.size(); i++) {
|
||||
fprintf(stderr, "%s: prompt %d: '%s'\n", __func__, i, prompts[i].c_str());
|
||||
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, inputs[i].size());
|
||||
for (int j = 0; j < (int) inputs[i].size(); j++) {
|
||||
fprintf(stderr, "%6d -> '%s'\n", inputs[i][j], llama_token_to_piece(ctx, inputs[i][j]).c_str());
|
||||
}
|
||||
fprintf(stderr, "\n\n");
|
||||
}
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
if (embd_inp.size() > (size_t)n_ctx) {
|
||||
fprintf(stderr, "%s: error: prompt is longer than the context window (%zu tokens, n_ctx = %d)\n",
|
||||
__func__, embd_inp.size(), n_ctx);
|
||||
return 1;
|
||||
}
|
||||
|
||||
while (!embd_inp.empty()) {
|
||||
int n_tokens = std::min(params.n_batch, (int) embd_inp.size());
|
||||
if (llama_decode(ctx, llama_batch_get_one(embd_inp.data(), n_tokens, n_past, 0))) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
n_past += n_tokens;
|
||||
embd_inp.erase(embd_inp.begin(), embd_inp.begin() + n_tokens);
|
||||
}
|
||||
// initialize batch
|
||||
const int n_prompts = prompts.size();
|
||||
struct llama_batch batch = llama_batch_init(n_batch, 0, n_prompts);
|
||||
|
||||
// allocate output
|
||||
const int n_embd = llama_n_embd(model);
|
||||
const auto * embeddings = llama_get_embeddings(ctx);
|
||||
std::vector<float> embeddings(n_prompts * n_embd, 0);
|
||||
float * emb = embeddings.data();
|
||||
|
||||
for (int i = 0; i < n_embd; i++) {
|
||||
printf("%f ", embeddings[i]);
|
||||
// break into batches
|
||||
int p = 0; // number of prompts processed already
|
||||
int s = 0; // number of prompts in current batch
|
||||
for (int k = 0; k < n_prompts; k++) {
|
||||
// clamp to n_batch tokens
|
||||
auto & inp = inputs[k];
|
||||
const uint64_t n_toks = inp.size();
|
||||
|
||||
// encode if at capacity
|
||||
if (batch.n_tokens + n_toks > n_batch) {
|
||||
float * out = emb + p * n_embd;
|
||||
batch_decode(ctx, batch, out, s, n_embd);
|
||||
llama_batch_clear(batch);
|
||||
p += s;
|
||||
s = 0;
|
||||
}
|
||||
|
||||
// add to batch
|
||||
batch_add_seq(batch, inp, s);
|
||||
s += 1;
|
||||
}
|
||||
printf("\n");
|
||||
|
||||
// final batch
|
||||
float * out = emb + p * n_embd;
|
||||
batch_decode(ctx, batch, out, s, n_embd);
|
||||
|
||||
// print first 3 embeddings
|
||||
for (int j = 0; j < std::min(3, n_prompts); j++) {
|
||||
fprintf(stderr, "embedding %d: ", j);
|
||||
for (int i = 0; i < n_embd; i++) {
|
||||
fprintf(stderr, "%f ", emb[j * n_embd + i]);
|
||||
}
|
||||
fprintf(stderr, "\n\n");
|
||||
}
|
||||
fprintf(stderr, "\n");
|
||||
|
||||
// clean up
|
||||
llama_print_timings(ctx);
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
return 0;
|
||||
|
||||
@@ -7,8 +7,6 @@
|
||||
#include <string>
|
||||
#include <thread>
|
||||
|
||||
static const size_t tensor_alignment = 32;
|
||||
|
||||
struct lora_info {
|
||||
std::string filename;
|
||||
float scale;
|
||||
@@ -337,24 +335,14 @@ static bool apply_lora(struct ggml_tensor * tensor, struct lora_data * lora, int
|
||||
params.mem_buffer = NULL;
|
||||
params.no_alloc = true;
|
||||
struct ggml_context * ctx = NULL;
|
||||
struct ggml_allocr * alloc = NULL;
|
||||
struct ggml_cgraph * gf = NULL;
|
||||
struct ggml_gallocr * alloc = NULL;
|
||||
struct ggml_cgraph * gf = NULL;
|
||||
|
||||
ctx = ggml_init(params);
|
||||
alloc = ggml_allocr_new_measure(tensor_alignment);
|
||||
alloc = ggml_gallocr_new(ggml_backend_cpu_buffer_type());
|
||||
gf = build_graph_lora(ctx, tensor, lora_a, lora_b, scaling);
|
||||
size_t alloc_size = ggml_allocr_alloc_graph(alloc, gf);
|
||||
ggml_allocr_free(alloc);
|
||||
ggml_free(ctx);
|
||||
|
||||
static std::vector<uint8_t> data_compute;
|
||||
data_compute.resize(alloc_size + tensor_alignment);
|
||||
|
||||
ctx = ggml_init(params);
|
||||
alloc = ggml_allocr_new(data_compute.data(), data_compute.size(), tensor_alignment);
|
||||
gf = build_graph_lora(ctx, tensor, lora_a, lora_b, scaling);
|
||||
ggml_allocr_alloc_graph(alloc, gf);
|
||||
ggml_allocr_free(alloc);
|
||||
ggml_gallocr_alloc_graph(alloc, gf);
|
||||
|
||||
struct ggml_cplan cplan = ggml_graph_plan(gf, n_threads);
|
||||
static std::vector<uint8_t> data_work;
|
||||
@@ -363,6 +351,7 @@ static bool apply_lora(struct ggml_tensor * tensor, struct lora_data * lora, int
|
||||
|
||||
ggml_graph_compute(gf, &cplan);
|
||||
|
||||
ggml_gallocr_free(alloc);
|
||||
ggml_free(ctx);
|
||||
return true;
|
||||
}
|
||||
|
||||
@@ -80,9 +80,9 @@ The LORA rank can be configured for each model tensor type separately with these
|
||||
--rank-wk N LORA rank for wk tensor (default 4)
|
||||
--rank-wv N LORA rank for wv tensor (default 4)
|
||||
--rank-wo N LORA rank for wo tensor (default 4)
|
||||
--rank-w1 N LORA rank for w1 tensor (default 4)
|
||||
--rank-w2 N LORA rank for w2 tensor (default 4)
|
||||
--rank-w3 N LORA rank for w3 tensor (default 4)
|
||||
--rank-ffn_gate N LORA rank for ffn_gate tensor (default 4)
|
||||
--rank-ffn_down N LORA rank for ffn_down tensor (default 4)
|
||||
--rank-ffn_up N LORA rank for ffn_up tensor (default 4)
|
||||
```
|
||||
|
||||
The LORA rank of 'norm' tensors should always be 1.
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
#include "ggml.h"
|
||||
#include "ggml-alloc.h"
|
||||
#include "ggml-backend.h"
|
||||
#include "llama.h"
|
||||
#include "common.h"
|
||||
#include "train.h"
|
||||
@@ -13,8 +14,6 @@
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
static const size_t tensor_alignment = 32;
|
||||
|
||||
struct my_llama_hparams {
|
||||
uint32_t n_vocab = 32000;
|
||||
uint32_t n_ctx = 512;
|
||||
@@ -61,9 +60,9 @@ struct my_llama_layer {
|
||||
struct ggml_tensor * ffn_norm;
|
||||
|
||||
// ff
|
||||
struct ggml_tensor * w1;
|
||||
struct ggml_tensor * w2;
|
||||
struct ggml_tensor * w3;
|
||||
struct ggml_tensor * ffn_gate; // w1
|
||||
struct ggml_tensor * ffn_down; // w2
|
||||
struct ggml_tensor * ffn_up; // w3
|
||||
};
|
||||
|
||||
struct my_llama_model {
|
||||
@@ -86,9 +85,9 @@ struct my_llama_lora_hparams {
|
||||
uint32_t n_rank_wv = 4;
|
||||
uint32_t n_rank_wo = 4;
|
||||
uint32_t n_rank_ffn_norm = 1;
|
||||
uint32_t n_rank_w1 = 4;
|
||||
uint32_t n_rank_w2 = 4;
|
||||
uint32_t n_rank_w3 = 4;
|
||||
uint32_t n_rank_ffn_gate = 4;
|
||||
uint32_t n_rank_ffn_down = 4;
|
||||
uint32_t n_rank_ffn_up = 4;
|
||||
uint32_t n_rank_tok_embeddings = 4;
|
||||
uint32_t n_rank_norm = 1;
|
||||
uint32_t n_rank_output = 4;
|
||||
@@ -118,17 +117,17 @@ struct my_llama_lora_layer {
|
||||
struct ggml_tensor * ffn_norm_b;
|
||||
|
||||
// ff
|
||||
struct ggml_tensor * w1_a;
|
||||
struct ggml_tensor * w1_b;
|
||||
struct ggml_tensor * w2_a;
|
||||
struct ggml_tensor * w2_b;
|
||||
struct ggml_tensor * w3_a;
|
||||
struct ggml_tensor * w3_b;
|
||||
struct ggml_tensor * ffn_gate_a;
|
||||
struct ggml_tensor * ffn_gate_b;
|
||||
struct ggml_tensor * ffn_down_a;
|
||||
struct ggml_tensor * ffn_down_b;
|
||||
struct ggml_tensor * ffn_up_a;
|
||||
struct ggml_tensor * ffn_up_b;
|
||||
};
|
||||
|
||||
struct my_llama_lora {
|
||||
struct ggml_context * ctx = NULL;
|
||||
std::vector<uint8_t> data;
|
||||
ggml_backend_buffer_t data;
|
||||
|
||||
my_llama_lora_hparams hparams;
|
||||
|
||||
@@ -209,9 +208,9 @@ static void print_lora_params(struct my_llama_lora_hparams * params) {
|
||||
printf("%s: n_rank_wv : %u\n", __func__, params->n_rank_wv);
|
||||
printf("%s: n_rank_wo : %u\n", __func__, params->n_rank_wo);
|
||||
printf("%s: n_rank_ffn_norm : %u\n", __func__, params->n_rank_ffn_norm);
|
||||
printf("%s: n_rank_w1 : %u\n", __func__, params->n_rank_w1);
|
||||
printf("%s: n_rank_w2 : %u\n", __func__, params->n_rank_w2);
|
||||
printf("%s: n_rank_w3 : %u\n", __func__, params->n_rank_w3);
|
||||
printf("%s: n_rank_ffn_gate : %u\n", __func__, params->n_rank_ffn_gate);
|
||||
printf("%s: n_rank_ffn_down : %u\n", __func__, params->n_rank_ffn_down);
|
||||
printf("%s: n_rank_ffn_up : %u\n", __func__, params->n_rank_ffn_up);
|
||||
printf("%s: n_rank_tok_embeddings : %u\n", __func__, params->n_rank_tok_embeddings);
|
||||
printf("%s: n_rank_norm : %u\n", __func__, params->n_rank_norm);
|
||||
printf("%s: n_rank_output : %u\n", __func__, params->n_rank_output);
|
||||
@@ -320,9 +319,9 @@ static void init_model(struct llama_model * input, struct my_llama_model * model
|
||||
layer.wv = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_V, i));
|
||||
layer.wo = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_OUT, i));
|
||||
layer.ffn_norm = llama_get_model_tensor(input, tni(LLM_TENSOR_FFN_NORM, i));
|
||||
layer.w1 = llama_get_model_tensor(input, tni(LLM_TENSOR_FFN_GATE, i));
|
||||
layer.w2 = llama_get_model_tensor(input, tni(LLM_TENSOR_FFN_DOWN, i));
|
||||
layer.w3 = llama_get_model_tensor(input, tni(LLM_TENSOR_FFN_UP, i));
|
||||
layer.ffn_gate = llama_get_model_tensor(input, tni(LLM_TENSOR_FFN_GATE, i));
|
||||
layer.ffn_down = llama_get_model_tensor(input, tni(LLM_TENSOR_FFN_DOWN, i));
|
||||
layer.ffn_up = llama_get_model_tensor(input, tni(LLM_TENSOR_FFN_UP, i));
|
||||
|
||||
assert_shape_1d(layer.attention_norm, hparams.n_embd);
|
||||
assert_shape_2d(layer.wq, hparams.n_embd, hparams.n_embd);
|
||||
@@ -330,9 +329,9 @@ static void init_model(struct llama_model * input, struct my_llama_model * model
|
||||
assert_shape_2d(layer.wv, hparams.n_embd, hparams.n_embd_gqa());
|
||||
assert_shape_2d(layer.wo, hparams.n_embd, hparams.n_embd);
|
||||
assert_shape_1d(layer.ffn_norm, hparams.n_embd);
|
||||
assert_shape_2d(layer.w1, hparams.n_embd, hparams.n_ff);
|
||||
assert_shape_2d(layer.w2, hparams.n_ff, hparams.n_embd);
|
||||
assert_shape_2d(layer.w3, hparams.n_embd, hparams.n_ff);
|
||||
assert_shape_2d(layer.ffn_gate, hparams.n_embd, hparams.n_ff);
|
||||
assert_shape_2d(layer.ffn_down, hparams.n_ff, hparams.n_embd);
|
||||
assert_shape_2d(layer.ffn_up, hparams.n_embd, hparams.n_ff);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -363,69 +362,12 @@ static void set_param_lora(struct my_llama_lora * lora) {
|
||||
ggml_set_param(ctx, layer.wo_b);
|
||||
ggml_set_param(ctx, layer.ffn_norm_a);
|
||||
ggml_set_param(ctx, layer.ffn_norm_b);
|
||||
ggml_set_param(ctx, layer.w1_a);
|
||||
ggml_set_param(ctx, layer.w1_b);
|
||||
ggml_set_param(ctx, layer.w2_a);
|
||||
ggml_set_param(ctx, layer.w2_b);
|
||||
ggml_set_param(ctx, layer.w3_a);
|
||||
ggml_set_param(ctx, layer.w3_b);
|
||||
}
|
||||
}
|
||||
|
||||
static void alloc_lora(struct ggml_allocr * alloc, struct my_llama_lora * lora) {
|
||||
ggml_allocr_alloc(alloc, lora->tok_embeddings_a);
|
||||
ggml_allocr_alloc(alloc, lora->tok_embeddings_b);
|
||||
ggml_allocr_alloc(alloc, lora->norm_a);
|
||||
ggml_allocr_alloc(alloc, lora->norm_b);
|
||||
ggml_allocr_alloc(alloc, lora->output_a);
|
||||
ggml_allocr_alloc(alloc, lora->output_b);
|
||||
for (uint32_t i = 0; i < lora->layers.size(); ++i) {
|
||||
auto & layer = lora->layers[i];
|
||||
ggml_allocr_alloc(alloc, layer.attention_norm_a);
|
||||
ggml_allocr_alloc(alloc, layer.attention_norm_b);
|
||||
ggml_allocr_alloc(alloc, layer.wq_a);
|
||||
ggml_allocr_alloc(alloc, layer.wq_b);
|
||||
ggml_allocr_alloc(alloc, layer.wk_a);
|
||||
ggml_allocr_alloc(alloc, layer.wk_b);
|
||||
ggml_allocr_alloc(alloc, layer.wv_a);
|
||||
ggml_allocr_alloc(alloc, layer.wv_b);
|
||||
ggml_allocr_alloc(alloc, layer.wo_a);
|
||||
ggml_allocr_alloc(alloc, layer.wo_b);
|
||||
ggml_allocr_alloc(alloc, layer.ffn_norm_a);
|
||||
ggml_allocr_alloc(alloc, layer.ffn_norm_b);
|
||||
ggml_allocr_alloc(alloc, layer.w1_a);
|
||||
ggml_allocr_alloc(alloc, layer.w1_b);
|
||||
ggml_allocr_alloc(alloc, layer.w2_a);
|
||||
ggml_allocr_alloc(alloc, layer.w2_b);
|
||||
ggml_allocr_alloc(alloc, layer.w3_a);
|
||||
ggml_allocr_alloc(alloc, layer.w3_b);
|
||||
}
|
||||
ggml_allocr_alloc(alloc, lora->tok_embeddings_a->grad);
|
||||
ggml_allocr_alloc(alloc, lora->tok_embeddings_b->grad);
|
||||
ggml_allocr_alloc(alloc, lora->norm_a->grad);
|
||||
ggml_allocr_alloc(alloc, lora->norm_b->grad);
|
||||
ggml_allocr_alloc(alloc, lora->output_a->grad);
|
||||
ggml_allocr_alloc(alloc, lora->output_b->grad);
|
||||
for (uint32_t i = 0; i < lora->layers.size(); ++i) {
|
||||
auto & layer = lora->layers[i];
|
||||
ggml_allocr_alloc(alloc, layer.attention_norm_a->grad);
|
||||
ggml_allocr_alloc(alloc, layer.attention_norm_b->grad);
|
||||
ggml_allocr_alloc(alloc, layer.wq_a->grad);
|
||||
ggml_allocr_alloc(alloc, layer.wq_b->grad);
|
||||
ggml_allocr_alloc(alloc, layer.wk_a->grad);
|
||||
ggml_allocr_alloc(alloc, layer.wk_b->grad);
|
||||
ggml_allocr_alloc(alloc, layer.wv_a->grad);
|
||||
ggml_allocr_alloc(alloc, layer.wv_b->grad);
|
||||
ggml_allocr_alloc(alloc, layer.wo_a->grad);
|
||||
ggml_allocr_alloc(alloc, layer.wo_b->grad);
|
||||
ggml_allocr_alloc(alloc, layer.ffn_norm_a->grad);
|
||||
ggml_allocr_alloc(alloc, layer.ffn_norm_b->grad);
|
||||
ggml_allocr_alloc(alloc, layer.w1_a->grad);
|
||||
ggml_allocr_alloc(alloc, layer.w1_b->grad);
|
||||
ggml_allocr_alloc(alloc, layer.w2_a->grad);
|
||||
ggml_allocr_alloc(alloc, layer.w2_b->grad);
|
||||
ggml_allocr_alloc(alloc, layer.w3_a->grad);
|
||||
ggml_allocr_alloc(alloc, layer.w3_b->grad);
|
||||
ggml_set_param(ctx, layer.ffn_gate_a);
|
||||
ggml_set_param(ctx, layer.ffn_gate_b);
|
||||
ggml_set_param(ctx, layer.ffn_down_a);
|
||||
ggml_set_param(ctx, layer.ffn_down_b);
|
||||
ggml_set_param(ctx, layer.ffn_up_a);
|
||||
ggml_set_param(ctx, layer.ffn_up_b);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -493,12 +435,12 @@ static void init_lora(const struct my_llama_model * model, struct my_llama_lora
|
||||
layer.ffn_norm_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_ffn_norm, n_embd);
|
||||
layer.ffn_norm_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_ffn_norm, 1);
|
||||
|
||||
layer.w1_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_w1, n_embd);
|
||||
layer.w1_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_w1, n_ff);
|
||||
layer.w2_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_w2, n_ff);
|
||||
layer.w2_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_w2, n_embd);
|
||||
layer.w3_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_w3, n_embd);
|
||||
layer.w3_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_w3, n_ff);
|
||||
layer.ffn_gate_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_ffn_gate, n_embd);
|
||||
layer.ffn_gate_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_ffn_gate, n_ff);
|
||||
layer.ffn_down_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_ffn_down, n_ff);
|
||||
layer.ffn_down_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_ffn_down, n_embd);
|
||||
layer.ffn_up_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_ffn_up, n_embd);
|
||||
layer.ffn_up_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_ffn_up, n_ff);
|
||||
|
||||
ggml_set_name(layer.attention_norm_a, tni(LLM_TENSOR_ATTN_NORM, ".weight.lora_a", i));
|
||||
ggml_set_name(layer.attention_norm_b, tni(LLM_TENSOR_ATTN_NORM, ".weight.lora_b", i));
|
||||
@@ -512,28 +454,18 @@ static void init_lora(const struct my_llama_model * model, struct my_llama_lora
|
||||
ggml_set_name(layer.wo_b, tni(LLM_TENSOR_ATTN_OUT, ".weight.lora_b", i));
|
||||
ggml_set_name(layer.ffn_norm_a, tni(LLM_TENSOR_FFN_NORM, ".weight.lora_a", i));
|
||||
ggml_set_name(layer.ffn_norm_b, tni(LLM_TENSOR_FFN_NORM, ".weight.lora_b", i));
|
||||
ggml_set_name(layer.w1_a, tni(LLM_TENSOR_FFN_GATE, ".weight.lora_a", i));
|
||||
ggml_set_name(layer.w1_b, tni(LLM_TENSOR_FFN_GATE, ".weight.lora_b", i));
|
||||
ggml_set_name(layer.w2_a, tni(LLM_TENSOR_FFN_DOWN, ".weight.lora_a", i));
|
||||
ggml_set_name(layer.w2_b, tni(LLM_TENSOR_FFN_DOWN, ".weight.lora_b", i));
|
||||
ggml_set_name(layer.w3_a, tni(LLM_TENSOR_FFN_UP, ".weight.lora_a", i));
|
||||
ggml_set_name(layer.w3_b, tni(LLM_TENSOR_FFN_UP, ".weight.lora_b", i));
|
||||
ggml_set_name(layer.ffn_gate_a, tni(LLM_TENSOR_FFN_GATE, ".weight.lora_a", i));
|
||||
ggml_set_name(layer.ffn_gate_b, tni(LLM_TENSOR_FFN_GATE, ".weight.lora_b", i));
|
||||
ggml_set_name(layer.ffn_down_a, tni(LLM_TENSOR_FFN_DOWN, ".weight.lora_a", i));
|
||||
ggml_set_name(layer.ffn_down_b, tni(LLM_TENSOR_FFN_DOWN, ".weight.lora_b", i));
|
||||
ggml_set_name(layer.ffn_up_a, tni(LLM_TENSOR_FFN_UP, ".weight.lora_a", i));
|
||||
ggml_set_name(layer.ffn_up_b, tni(LLM_TENSOR_FFN_UP, ".weight.lora_b", i));
|
||||
}
|
||||
|
||||
set_param_lora(lora);
|
||||
|
||||
// measure data size
|
||||
size_t size = 0;
|
||||
for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||
size += GGML_PAD(ggml_nbytes(t), tensor_alignment);
|
||||
}
|
||||
|
||||
// allocate data
|
||||
struct ggml_allocr * alloc = NULL;
|
||||
lora->data.resize(size + tensor_alignment);
|
||||
alloc = ggml_allocr_new(lora->data.data(), lora->data.size(), tensor_alignment);
|
||||
alloc_lora(alloc, lora);
|
||||
ggml_allocr_free(alloc);
|
||||
// allocate data for lora tensors
|
||||
lora->data = ggml_backend_alloc_ctx_tensors_from_buft(ctx, ggml_backend_cpu_buffer_type());
|
||||
}
|
||||
|
||||
static void randomize_lora(struct my_llama_lora * lora, int seed, float mean, float std, float min, float max) {
|
||||
@@ -565,12 +497,12 @@ static void randomize_lora(struct my_llama_lora * lora, int seed, float mean, fl
|
||||
randomize_tensor_normal(layer.ffn_norm_a, rnd);
|
||||
ggml_set_zero(layer.ffn_norm_b);
|
||||
|
||||
randomize_tensor_normal(layer.w1_a, rnd);
|
||||
ggml_set_zero(layer.w1_b);
|
||||
randomize_tensor_normal(layer.w2_a, rnd);
|
||||
ggml_set_zero(layer.w2_b);
|
||||
randomize_tensor_normal(layer.w3_a, rnd);
|
||||
ggml_set_zero(layer.w3_b);
|
||||
randomize_tensor_normal(layer.ffn_gate_a, rnd);
|
||||
ggml_set_zero(layer.ffn_gate_b);
|
||||
randomize_tensor_normal(layer.ffn_down_a, rnd);
|
||||
ggml_set_zero(layer.ffn_down_b);
|
||||
randomize_tensor_normal(layer.ffn_up_a, rnd);
|
||||
ggml_set_zero(layer.ffn_up_b);
|
||||
}
|
||||
|
||||
free_random_normal_distribution(rnd);
|
||||
@@ -579,7 +511,7 @@ static void randomize_lora(struct my_llama_lora * lora, int seed, float mean, fl
|
||||
static struct ggml_tensor * llama_build_lora_finetune_graphs(
|
||||
struct my_llama_model * model,
|
||||
struct my_llama_lora * lora,
|
||||
struct ggml_allocr * alloc,
|
||||
ggml_gallocr_t alloc,
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_cgraph * gf,
|
||||
struct ggml_cgraph * gb,
|
||||
@@ -590,7 +522,8 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
|
||||
const int n_tokens,
|
||||
const int n_batch,
|
||||
const bool enable_flash_attn,
|
||||
const bool enable_checkpointing) {
|
||||
const bool enable_checkpointing,
|
||||
const bool measure_only) {
|
||||
|
||||
ggml_set_scratch(ctx, { 0, 0, nullptr, });
|
||||
const int n_past = 0;
|
||||
@@ -622,13 +555,7 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
|
||||
|
||||
// KQ_pos - contains the positions
|
||||
struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, N);
|
||||
ggml_allocr_alloc(alloc, KQ_pos);
|
||||
if (!ggml_allocr_is_measure(alloc)) {
|
||||
int * data = (int *) KQ_pos->data;
|
||||
for (int i = 0; i < N; ++i) {
|
||||
data[i] = n_past + i;
|
||||
}
|
||||
}
|
||||
ggml_set_input(KQ_pos);
|
||||
|
||||
// rope has so much parameters that we make a custom function for it
|
||||
auto rope = [ctx, KQ_pos, n_rot, n_ctx, rope_freq_base, rope_freq_scale]
|
||||
@@ -683,13 +610,13 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
|
||||
|
||||
struct ggml_tensor * attention_norm = add_to_f32(ctx, layer.attention_norm, ggml_mul_mat(ctx, llayer.attention_norm_a, llayer.attention_norm_b));
|
||||
struct ggml_tensor * ffn_norm = add_to_f32(ctx, layer.ffn_norm, ggml_mul_mat(ctx, llayer.ffn_norm_a, llayer.ffn_norm_b));
|
||||
struct ggml_tensor * wq = add_to_f32(ctx, layer.wq, ggml_mul_mat(ctx, llayer.wq_a, llayer.wq_b));
|
||||
struct ggml_tensor * wk = add_to_f32(ctx, layer.wk, ggml_mul_mat(ctx, llayer.wk_a, llayer.wk_b));
|
||||
struct ggml_tensor * wv = add_to_f32(ctx, layer.wv, ggml_mul_mat(ctx, llayer.wv_a, llayer.wv_b));
|
||||
struct ggml_tensor * wo = add_to_f32(ctx, layer.wo, ggml_mul_mat(ctx, llayer.wo_a, llayer.wo_b));
|
||||
struct ggml_tensor * w1 = add_to_f32(ctx, layer.w1, ggml_mul_mat(ctx, llayer.w1_a, llayer.w1_b));
|
||||
struct ggml_tensor * w2 = add_to_f32(ctx, layer.w2, ggml_mul_mat(ctx, llayer.w2_a, llayer.w2_b));
|
||||
struct ggml_tensor * w3 = add_to_f32(ctx, layer.w3, ggml_mul_mat(ctx, llayer.w3_a, llayer.w3_b));
|
||||
struct ggml_tensor * wq = add_to_f32(ctx, layer.wq, ggml_mul_mat(ctx, llayer.wq_a, llayer.wq_b));
|
||||
struct ggml_tensor * wk = add_to_f32(ctx, layer.wk, ggml_mul_mat(ctx, llayer.wk_a, llayer.wk_b));
|
||||
struct ggml_tensor * wv = add_to_f32(ctx, layer.wv, ggml_mul_mat(ctx, llayer.wv_a, llayer.wv_b));
|
||||
struct ggml_tensor * wo = add_to_f32(ctx, layer.wo, ggml_mul_mat(ctx, llayer.wo_a, llayer.wo_b));
|
||||
struct ggml_tensor * ffn_gate = add_to_f32(ctx, layer.ffn_gate, ggml_mul_mat(ctx, llayer.ffn_gate_a, llayer.ffn_gate_b));
|
||||
struct ggml_tensor * ffn_down = add_to_f32(ctx, layer.ffn_down, ggml_mul_mat(ctx, llayer.ffn_down_a, llayer.ffn_down_b));
|
||||
struct ggml_tensor * ffn_up = add_to_f32(ctx, layer.ffn_up, ggml_mul_mat(ctx, llayer.ffn_up_a, llayer.ffn_up_b));
|
||||
|
||||
struct ggml_tensor * t02 = ggml_rms_norm (ctx, cur, rms_norm_eps); set_name(t02, "t02"); assert_shape_2d(t02, n_embd, N*n_batch);
|
||||
struct ggml_tensor * t03 = ggml_repeat (ctx, attention_norm, t02); set_name(t03, "t03"); assert_shape_2d(t03, n_embd, N*n_batch);
|
||||
@@ -732,11 +659,11 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
|
||||
struct ggml_tensor * t22 = ggml_rms_norm (ctx, t21, rms_norm_eps); set_name(t22, "t22"); assert_shape_2d(t22, n_embd, N*n_batch);
|
||||
struct ggml_tensor * t23 = ggml_repeat (ctx, ffn_norm, t22); set_name(t23, "t23"); assert_shape_2d(t23, n_embd, N*n_batch);
|
||||
struct ggml_tensor * t24 = ggml_mul (ctx, t23, t22); set_name(t24, "t24"); assert_shape_2d(t24, n_embd, N*n_batch);
|
||||
struct ggml_tensor * t25 = ggml_mul_mat (ctx, w3, t24); set_name(t25, "t25"); assert_shape_2d(t25, n_ff, N*n_batch);
|
||||
struct ggml_tensor * t26 = ggml_mul_mat (ctx, w1, t24); set_name(t26, "t26"); assert_shape_2d(t26, n_ff, N*n_batch);
|
||||
struct ggml_tensor * t25 = ggml_mul_mat (ctx, ffn_up, t24); set_name(t25, "t25"); assert_shape_2d(t25, n_ff, N*n_batch);
|
||||
struct ggml_tensor * t26 = ggml_mul_mat (ctx, ffn_gate, t24); set_name(t26, "t26"); assert_shape_2d(t26, n_ff, N*n_batch);
|
||||
struct ggml_tensor * t27 = ggml_silu (ctx, t26); set_name(t27, "t27"); assert_shape_2d(t27, n_ff, N*n_batch);
|
||||
struct ggml_tensor * t28 = ggml_mul (ctx, t27, t25); set_name(t28, "t28"); assert_shape_2d(t28, n_ff, N*n_batch);
|
||||
struct ggml_tensor * t29 = ggml_mul_mat (ctx, w2, t28); set_name(t29, "t29"); assert_shape_2d(t29, n_embd, N*n_batch);
|
||||
struct ggml_tensor * t29 = ggml_mul_mat (ctx, ffn_down, t28); set_name(t29, "t29"); assert_shape_2d(t29, n_embd, N*n_batch);
|
||||
struct ggml_tensor * t30 = ggml_add (ctx, t29, t21); set_name(t30, "t30"); assert_shape_2d(t30, n_embd, N*n_batch);
|
||||
cur = t30;
|
||||
if (enable_checkpointing) {
|
||||
@@ -780,7 +707,7 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
|
||||
// input gradient
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36->grad, 1.0f));
|
||||
GGML_ASSERT(t36->grad->data == NULL && t36->grad->view_src == NULL);
|
||||
ggml_allocr_alloc(alloc, t36->grad);
|
||||
ggml_set_input(t36->grad);
|
||||
// KQ_pos
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, KQ_pos, 1.0f));
|
||||
|
||||
@@ -796,20 +723,32 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wk, 1.0f));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wv, 1.0f));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wo, 1.0f));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.w1, 1.0f));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.w2, 1.0f));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.w3, 1.0f));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.ffn_gate, 1.0f));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.ffn_down, 1.0f));
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.ffn_up, 1.0f));
|
||||
}
|
||||
|
||||
// allocating checkpoints in one block to reduce memory fragmentation
|
||||
// note: they will be freed in reverse order
|
||||
for (unsigned int i = 0; i < checkpoints.size(); ++i) {
|
||||
if (checkpoints[i]->data == NULL && checkpoints[i]->view_src == NULL) {
|
||||
ggml_allocr_alloc(alloc, checkpoints[i]);
|
||||
ggml_set_input(checkpoints[i]);
|
||||
}
|
||||
}
|
||||
|
||||
ggml_allocr_alloc_graph(alloc, gb);
|
||||
if (measure_only) {
|
||||
ggml_gallocr_reserve(alloc, gb);
|
||||
} else {
|
||||
ggml_gallocr_alloc_graph(alloc, gb);
|
||||
|
||||
// set KQ_pos
|
||||
{
|
||||
int * data = (int *) KQ_pos->data;
|
||||
for (int i = 0; i < N; ++i) {
|
||||
data[i] = n_past + i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// remove the additional nodes and leafs
|
||||
for (int i = n_leafs_before; i < gb->n_leafs; ++i) {
|
||||
@@ -859,9 +798,9 @@ static void load_llama_lora_gguf(struct gguf_context * fctx, struct ggml_context
|
||||
GGUF_GET_KEY(fctx, lora->hparams.n_rank_wv, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_ATTN_V);
|
||||
GGUF_GET_KEY(fctx, lora->hparams.n_rank_wo, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_ATTN_OUT);
|
||||
GGUF_GET_KEY(fctx, lora->hparams.n_rank_ffn_norm, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_FFN_NORM);
|
||||
GGUF_GET_KEY(fctx, lora->hparams.n_rank_w1, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_FFN_GATE);
|
||||
GGUF_GET_KEY(fctx, lora->hparams.n_rank_w2, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_FFN_DOWN);
|
||||
GGUF_GET_KEY(fctx, lora->hparams.n_rank_w3, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_FFN_UP);
|
||||
GGUF_GET_KEY(fctx, lora->hparams.n_rank_ffn_gate, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_FFN_GATE);
|
||||
GGUF_GET_KEY(fctx, lora->hparams.n_rank_ffn_down, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_FFN_DOWN);
|
||||
GGUF_GET_KEY(fctx, lora->hparams.n_rank_ffn_up, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_FFN_UP);
|
||||
|
||||
init_lora(model, lora);
|
||||
|
||||
@@ -886,12 +825,12 @@ static void load_llama_lora_gguf(struct gguf_context * fctx, struct ggml_context
|
||||
copy_tensor_by_name(layer.wo_b, f_ggml_ctx, ggml_get_name(layer.wo_b));
|
||||
copy_tensor_by_name(layer.ffn_norm_a, f_ggml_ctx, ggml_get_name(layer.ffn_norm_a));
|
||||
copy_tensor_by_name(layer.ffn_norm_b, f_ggml_ctx, ggml_get_name(layer.ffn_norm_b));
|
||||
copy_tensor_by_name(layer.w1_a, f_ggml_ctx, ggml_get_name(layer.w1_a));
|
||||
copy_tensor_by_name(layer.w1_b, f_ggml_ctx, ggml_get_name(layer.w1_b));
|
||||
copy_tensor_by_name(layer.w2_a, f_ggml_ctx, ggml_get_name(layer.w2_a));
|
||||
copy_tensor_by_name(layer.w2_b, f_ggml_ctx, ggml_get_name(layer.w2_b));
|
||||
copy_tensor_by_name(layer.w3_a, f_ggml_ctx, ggml_get_name(layer.w3_a));
|
||||
copy_tensor_by_name(layer.w3_b, f_ggml_ctx, ggml_get_name(layer.w3_b));
|
||||
copy_tensor_by_name(layer.ffn_gate_a, f_ggml_ctx, ggml_get_name(layer.ffn_gate_a));
|
||||
copy_tensor_by_name(layer.ffn_gate_b, f_ggml_ctx, ggml_get_name(layer.ffn_gate_b));
|
||||
copy_tensor_by_name(layer.ffn_down_a, f_ggml_ctx, ggml_get_name(layer.ffn_down_a));
|
||||
copy_tensor_by_name(layer.ffn_down_b, f_ggml_ctx, ggml_get_name(layer.ffn_down_b));
|
||||
copy_tensor_by_name(layer.ffn_up_a, f_ggml_ctx, ggml_get_name(layer.ffn_up_a));
|
||||
copy_tensor_by_name(layer.ffn_up_b, f_ggml_ctx, ggml_get_name(layer.ffn_up_b));
|
||||
}
|
||||
}
|
||||
|
||||
@@ -929,9 +868,9 @@ static void save_llama_lora_gguf(struct gguf_context * fctx, struct my_llama_mod
|
||||
gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_ATTN_V, lora->hparams.n_rank_wv);
|
||||
gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_ATTN_OUT, lora->hparams.n_rank_wo);
|
||||
gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_FFN_NORM, lora->hparams.n_rank_ffn_norm);
|
||||
gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_FFN_GATE, lora->hparams.n_rank_w1);
|
||||
gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_FFN_DOWN, lora->hparams.n_rank_w2);
|
||||
gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_FFN_UP, lora->hparams.n_rank_w3);
|
||||
gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_FFN_GATE, lora->hparams.n_rank_ffn_gate);
|
||||
gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_FFN_DOWN, lora->hparams.n_rank_ffn_down);
|
||||
gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_FFN_UP, lora->hparams.n_rank_ffn_up);
|
||||
|
||||
gguf_add_tensor(fctx, lora->tok_embeddings_a);
|
||||
gguf_add_tensor(fctx, lora->tok_embeddings_b);
|
||||
@@ -955,12 +894,12 @@ static void save_llama_lora_gguf(struct gguf_context * fctx, struct my_llama_mod
|
||||
gguf_add_tensor(fctx, layer.wo_b);
|
||||
gguf_add_tensor(fctx, layer.ffn_norm_a);
|
||||
gguf_add_tensor(fctx, layer.ffn_norm_b);
|
||||
gguf_add_tensor(fctx, layer.w1_a);
|
||||
gguf_add_tensor(fctx, layer.w1_b);
|
||||
gguf_add_tensor(fctx, layer.w2_a);
|
||||
gguf_add_tensor(fctx, layer.w2_b);
|
||||
gguf_add_tensor(fctx, layer.w3_a);
|
||||
gguf_add_tensor(fctx, layer.w3_b);
|
||||
gguf_add_tensor(fctx, layer.ffn_gate_a);
|
||||
gguf_add_tensor(fctx, layer.ffn_gate_b);
|
||||
gguf_add_tensor(fctx, layer.ffn_down_a);
|
||||
gguf_add_tensor(fctx, layer.ffn_down_b);
|
||||
gguf_add_tensor(fctx, layer.ffn_up_a);
|
||||
gguf_add_tensor(fctx, layer.ffn_up_b);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1165,12 +1104,12 @@ static void save_as_llama_lora(const char * filename, struct my_llama_lora * lor
|
||||
write_tensor(&file, layer.wo_b, tni(LLM_TENSOR_ATTN_OUT, i, ".weight.loraB"));
|
||||
write_tensor(&file, layer.ffn_norm_a, tni(LLM_TENSOR_FFN_NORM, i, ".weight.loraA"));
|
||||
write_tensor(&file, layer.ffn_norm_b, tni(LLM_TENSOR_FFN_NORM, i, ".weight.loraB"));
|
||||
write_tensor(&file, layer.w1_a, tni(LLM_TENSOR_FFN_GATE, i, ".weight.loraA"));
|
||||
write_tensor(&file, layer.w1_b, tni(LLM_TENSOR_FFN_GATE, i, ".weight.loraB"));
|
||||
write_tensor(&file, layer.w2_a, tni(LLM_TENSOR_FFN_DOWN, i, ".weight.loraA"));
|
||||
write_tensor(&file, layer.w2_b, tni(LLM_TENSOR_FFN_DOWN, i, ".weight.loraB"));
|
||||
write_tensor(&file, layer.w3_a, tni(LLM_TENSOR_FFN_UP, i, ".weight.loraA"));
|
||||
write_tensor(&file, layer.w3_b, tni(LLM_TENSOR_FFN_UP, i, ".weight.loraB"));
|
||||
write_tensor(&file, layer.ffn_gate_a, tni(LLM_TENSOR_FFN_GATE, i, ".weight.loraA"));
|
||||
write_tensor(&file, layer.ffn_gate_b, tni(LLM_TENSOR_FFN_GATE, i, ".weight.loraB"));
|
||||
write_tensor(&file, layer.ffn_down_a, tni(LLM_TENSOR_FFN_DOWN, i, ".weight.loraA"));
|
||||
write_tensor(&file, layer.ffn_down_b, tni(LLM_TENSOR_FFN_DOWN, i, ".weight.loraB"));
|
||||
write_tensor(&file, layer.ffn_up_a, tni(LLM_TENSOR_FFN_UP, i, ".weight.loraA"));
|
||||
write_tensor(&file, layer.ffn_up_b, tni(LLM_TENSOR_FFN_UP, i, ".weight.loraB"));
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1200,9 +1139,9 @@ struct train_params {
|
||||
uint32_t n_rank_wv;
|
||||
uint32_t n_rank_wo;
|
||||
uint32_t n_rank_ffn_norm;
|
||||
uint32_t n_rank_w1;
|
||||
uint32_t n_rank_w2;
|
||||
uint32_t n_rank_w3;
|
||||
uint32_t n_rank_ffn_gate;
|
||||
uint32_t n_rank_ffn_down;
|
||||
uint32_t n_rank_ffn_up;
|
||||
uint32_t n_rank_tok_embeddings;
|
||||
uint32_t n_rank_norm;
|
||||
uint32_t n_rank_output;
|
||||
@@ -1213,9 +1152,9 @@ struct train_params {
|
||||
bool custom_n_rank_wv;
|
||||
bool custom_n_rank_wo;
|
||||
bool custom_n_rank_ffn_norm;
|
||||
bool custom_n_rank_w1;
|
||||
bool custom_n_rank_w2;
|
||||
bool custom_n_rank_w3;
|
||||
bool custom_n_rank_ffn_gate;
|
||||
bool custom_n_rank_ffn_down;
|
||||
bool custom_n_rank_ffn_up;
|
||||
bool custom_n_rank_tok_embeddings;
|
||||
bool custom_n_rank_norm;
|
||||
bool custom_n_rank_output;
|
||||
@@ -1247,9 +1186,9 @@ static struct train_params get_default_train_params() {
|
||||
params.n_rank_wv = 4;
|
||||
params.n_rank_wo = 4;
|
||||
params.n_rank_ffn_norm = 1;
|
||||
params.n_rank_w1 = 4;
|
||||
params.n_rank_w2 = 4;
|
||||
params.n_rank_w3 = 4;
|
||||
params.n_rank_ffn_gate = 4;
|
||||
params.n_rank_ffn_down = 4;
|
||||
params.n_rank_ffn_up = 4;
|
||||
params.n_rank_tok_embeddings = 4;
|
||||
params.n_rank_norm = 1;
|
||||
params.n_rank_output = 4;
|
||||
@@ -1260,9 +1199,9 @@ static struct train_params get_default_train_params() {
|
||||
params.custom_n_rank_wv = false;
|
||||
params.custom_n_rank_wo = false;
|
||||
params.custom_n_rank_ffn_norm = false;
|
||||
params.custom_n_rank_w1 = false;
|
||||
params.custom_n_rank_w2 = false;
|
||||
params.custom_n_rank_w3 = false;
|
||||
params.custom_n_rank_ffn_gate = false;
|
||||
params.custom_n_rank_ffn_down = false;
|
||||
params.custom_n_rank_ffn_up = false;
|
||||
params.custom_n_rank_tok_embeddings = false;
|
||||
params.custom_n_rank_norm = false;
|
||||
params.custom_n_rank_output = false;
|
||||
@@ -1293,9 +1232,9 @@ static void train_print_usage(int argc, char ** argv, const struct train_params
|
||||
fprintf(stderr, " --rank-wk N LORA rank for wk tensor, overrides default rank.\n");
|
||||
fprintf(stderr, " --rank-wv N LORA rank for wv tensor, overrides default rank.\n");
|
||||
fprintf(stderr, " --rank-wo N LORA rank for wo tensor, overrides default rank.\n");
|
||||
fprintf(stderr, " --rank-w1 N LORA rank for w1 tensor, overrides default rank.\n");
|
||||
fprintf(stderr, " --rank-w2 N LORA rank for w2 tensor, overrides default rank.\n");
|
||||
fprintf(stderr, " --rank-w3 N LORA rank for w3 tensor, overrides default rank.\n");
|
||||
fprintf(stderr, " --rank-ffn_gate N LORA rank for ffn_gate tensor, overrides default rank.\n");
|
||||
fprintf(stderr, " --rank-ffn_down N LORA rank for ffn_down tensor, overrides default rank.\n");
|
||||
fprintf(stderr, " --rank-ffn_up N LORA rank for ffn_up tensor, overrides default rank.\n");
|
||||
|
||||
print_common_train_usage(argc, argv, ¶ms->common);
|
||||
}
|
||||
@@ -1430,27 +1369,27 @@ static bool train_params_parse(int argc, char ** argv, struct train_params * par
|
||||
}
|
||||
params->n_rank_wo = std::stoi(argv[i]);
|
||||
params->custom_n_rank_wo = true;
|
||||
} else if (arg == "--rank-w1") {
|
||||
} else if (arg == "--rank-ffn_gate") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params->n_rank_w1 = std::stoi(argv[i]);
|
||||
params->custom_n_rank_w1 = true;
|
||||
} else if (arg == "--rank-w2") {
|
||||
params->n_rank_ffn_gate = std::stoi(argv[i]);
|
||||
params->custom_n_rank_ffn_gate = true;
|
||||
} else if (arg == "--rank-ffn_down") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params->n_rank_w2 = std::stoi(argv[i]);
|
||||
params->custom_n_rank_w2 = true;
|
||||
} else if (arg == "--rank-w3") {
|
||||
params->n_rank_ffn_down = std::stoi(argv[i]);
|
||||
params->custom_n_rank_ffn_down = true;
|
||||
} else if (arg == "--rank-ffn_up") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params->n_rank_w3 = std::stoi(argv[i]);
|
||||
params->custom_n_rank_w3 = true;
|
||||
params->n_rank_ffn_up = std::stoi(argv[i]);
|
||||
params->custom_n_rank_ffn_up = true;
|
||||
} else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
train_print_usage(argc, argv, &default_params);
|
||||
@@ -1513,12 +1452,12 @@ static int64_t get_parameter_count(struct my_llama_lora* lora) {
|
||||
nx += ggml_nelements(layer.wo_b);
|
||||
nx += ggml_nelements(layer.ffn_norm_a);
|
||||
nx += ggml_nelements(layer.ffn_norm_b);
|
||||
nx += ggml_nelements(layer.w1_a);
|
||||
nx += ggml_nelements(layer.w1_b);
|
||||
nx += ggml_nelements(layer.w2_a);
|
||||
nx += ggml_nelements(layer.w2_b);
|
||||
nx += ggml_nelements(layer.w3_a);
|
||||
nx += ggml_nelements(layer.w3_b);
|
||||
nx += ggml_nelements(layer.ffn_gate_a);
|
||||
nx += ggml_nelements(layer.ffn_gate_b);
|
||||
nx += ggml_nelements(layer.ffn_down_a);
|
||||
nx += ggml_nelements(layer.ffn_down_b);
|
||||
nx += ggml_nelements(layer.ffn_up_a);
|
||||
nx += ggml_nelements(layer.ffn_up_b);
|
||||
}
|
||||
return nx;
|
||||
}
|
||||
@@ -1572,9 +1511,9 @@ int main(int argc, char ** argv) {
|
||||
uint32_t n_rank_wv = params.custom_n_rank_wv ? params.n_rank_wv : params.lora_r;
|
||||
uint32_t n_rank_wo = params.custom_n_rank_wo ? params.n_rank_wo : params.lora_r;
|
||||
uint32_t n_rank_ffn_norm = params.custom_n_rank_ffn_norm ? params.n_rank_ffn_norm : 1;
|
||||
uint32_t n_rank_w1 = params.custom_n_rank_w1 ? params.n_rank_w1 : params.lora_r;
|
||||
uint32_t n_rank_w2 = params.custom_n_rank_w2 ? params.n_rank_w2 : params.lora_r;
|
||||
uint32_t n_rank_w3 = params.custom_n_rank_w3 ? params.n_rank_w3 : params.lora_r;
|
||||
uint32_t n_rank_ffn_gate = params.custom_n_rank_ffn_gate ? params.n_rank_ffn_gate : params.lora_r;
|
||||
uint32_t n_rank_ffn_down = params.custom_n_rank_ffn_down ? params.n_rank_ffn_down : params.lora_r;
|
||||
uint32_t n_rank_ffn_up = params.custom_n_rank_ffn_up ? params.n_rank_ffn_up : params.lora_r;
|
||||
uint32_t n_rank_tok_embeddings = params.custom_n_rank_tok_embeddings ? params.n_rank_tok_embeddings : params.lora_r;
|
||||
uint32_t n_rank_norm = params.custom_n_rank_norm ? params.n_rank_norm : 1;
|
||||
uint32_t n_rank_output = params.custom_n_rank_output ? params.n_rank_output : params.lora_r;
|
||||
@@ -1584,9 +1523,9 @@ int main(int argc, char ** argv) {
|
||||
lora.hparams.n_rank_wv = n_rank_wv;
|
||||
lora.hparams.n_rank_wo = n_rank_wo;
|
||||
lora.hparams.n_rank_ffn_norm = n_rank_ffn_norm;
|
||||
lora.hparams.n_rank_w1 = n_rank_w1;
|
||||
lora.hparams.n_rank_w2 = n_rank_w2;
|
||||
lora.hparams.n_rank_w3 = n_rank_w3;
|
||||
lora.hparams.n_rank_ffn_gate = n_rank_ffn_gate;
|
||||
lora.hparams.n_rank_ffn_down = n_rank_ffn_down;
|
||||
lora.hparams.n_rank_ffn_up = n_rank_ffn_up;
|
||||
lora.hparams.n_rank_tok_embeddings = n_rank_tok_embeddings;
|
||||
lora.hparams.n_rank_norm = n_rank_norm;
|
||||
lora.hparams.n_rank_output = n_rank_output;
|
||||
@@ -1627,9 +1566,9 @@ int main(int argc, char ** argv) {
|
||||
|| (lora.hparams.n_rank_wv != n_rank_wv)
|
||||
|| (lora.hparams.n_rank_wo != n_rank_wo)
|
||||
|| (lora.hparams.n_rank_ffn_norm != n_rank_ffn_norm)
|
||||
|| (lora.hparams.n_rank_w1 != n_rank_w1)
|
||||
|| (lora.hparams.n_rank_w2 != n_rank_w2)
|
||||
|| (lora.hparams.n_rank_w3 != n_rank_w3)
|
||||
|| (lora.hparams.n_rank_ffn_gate != n_rank_ffn_gate)
|
||||
|| (lora.hparams.n_rank_ffn_down != n_rank_ffn_down)
|
||||
|| (lora.hparams.n_rank_ffn_up != n_rank_ffn_up)
|
||||
|| (lora.hparams.n_rank_tok_embeddings != n_rank_tok_embeddings)
|
||||
|| (lora.hparams.n_rank_norm != n_rank_norm)
|
||||
|| (lora.hparams.n_rank_output != n_rank_output)
|
||||
@@ -1663,7 +1602,7 @@ int main(int argc, char ** argv) {
|
||||
printf("%s: seen train_samples %llu\n", __func__, (long long unsigned) train->train_samples);
|
||||
printf("%s: seen train_tokens %llu\n", __func__, (long long unsigned) train->train_tokens);
|
||||
printf("%s: completed train_epochs %llu\n", __func__, (long long unsigned) train->train_epochs);
|
||||
printf("%s: lora_size = %zu bytes (%.1f MB)\n", __func__, (ggml_used_mem(lora.ctx) + lora.data.size()), (float) (ggml_used_mem(lora.ctx) + lora.data.size()) / (1024.0f*1024.0f));
|
||||
printf("%s: lora_size = %zu bytes (%.1f MB)\n", __func__, (ggml_used_mem(lora.ctx) + ggml_backend_buffer_get_size(lora.data)), (float) (ggml_used_mem(lora.ctx) + ggml_backend_buffer_get_size(lora.data)) / (1024.0f*1024.0f));
|
||||
|
||||
if (params.only_write_lora) {
|
||||
save_train_files_data save_data;
|
||||
@@ -1690,10 +1629,6 @@ int main(int argc, char ** argv) {
|
||||
int n_vocab = model.hparams.n_vocab;
|
||||
int n_batch = params.common.n_batch;
|
||||
|
||||
|
||||
std::vector<uint8_t> mem_input_data;
|
||||
std::vector<uint8_t> mem_compute_data;
|
||||
|
||||
// context for input tensors without their data
|
||||
struct ggml_init_params ctx_input_params = {
|
||||
ggml_tensor_overhead() * 2, // mem_size
|
||||
@@ -1706,17 +1641,11 @@ int main(int argc, char ** argv) {
|
||||
struct ggml_tensor * tokens_input = ggml_new_tensor_2d(ctx_input, GGML_TYPE_I32, n_tokens, n_batch);
|
||||
struct ggml_tensor * target_probs = ggml_new_tensor_3d(ctx_input, GGML_TYPE_F32, n_vocab, n_tokens, n_batch);
|
||||
|
||||
// measure required memory for input tensors
|
||||
size_t max_input_size = GGML_PAD(ggml_nbytes(tokens_input), tensor_alignment) +
|
||||
GGML_PAD(ggml_nbytes(target_probs), tensor_alignment) +
|
||||
tensor_alignment;
|
||||
printf("%s: input_size = %zu bytes (%.1f MB)\n", __func__, max_input_size, (float) max_input_size / (1024.0f*1024.0f));
|
||||
|
||||
// allocate input tensors
|
||||
mem_input_data.resize(max_input_size);
|
||||
ggml_allocr_t alloc_inps = ggml_allocr_new(mem_input_data.data(), mem_input_data.size(), tensor_alignment);
|
||||
ggml_allocr_alloc(alloc_inps, tokens_input);
|
||||
ggml_allocr_alloc(alloc_inps, target_probs);
|
||||
// measure required memory for input tensors
|
||||
ggml_backend_buffer_t input_data = ggml_backend_alloc_ctx_tensors_from_buft(ctx_input, ggml_backend_cpu_buffer_type());
|
||||
size_t max_input_size = ggml_backend_buffer_get_size(input_data);
|
||||
printf("%s: input_size = %zu bytes (%.1f MB)\n", __func__, max_input_size, (float) max_input_size / (1024.0f*1024.0f));
|
||||
|
||||
// context for compute tensors without their data
|
||||
const size_t estimated_compute_size_wo_data = (
|
||||
@@ -1743,7 +1672,7 @@ int main(int argc, char ** argv) {
|
||||
// find best evaluation order
|
||||
for (unsigned order = 0; order < (unsigned) GGML_CGRAPH_EVAL_ORDER_COUNT; ++order) {
|
||||
ctx_compute = ggml_init(ctx_compute_params);
|
||||
ggml_allocr_t alloc = ggml_allocr_new_measure(tensor_alignment);
|
||||
ggml_gallocr_t alloc = ggml_gallocr_new(ggml_backend_cpu_buffer_type());
|
||||
gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
|
||||
gf->order = (enum ggml_cgraph_eval_order) order;
|
||||
gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
|
||||
@@ -1756,14 +1685,15 @@ int main(int argc, char ** argv) {
|
||||
&logits, tokens_input, target_probs,
|
||||
n_tokens, n_batch,
|
||||
params.common.use_flash,
|
||||
params.common.use_checkpointing
|
||||
params.common.use_checkpointing,
|
||||
true
|
||||
);
|
||||
size_t max_compute_size = ggml_allocr_max_size(alloc) + tensor_alignment;
|
||||
size_t max_compute_size = ggml_gallocr_get_buffer_size(alloc, 0); // FIXME: this will still allocate the buffer
|
||||
if (max_compute_size < best_compute_size) {
|
||||
best_compute_size = max_compute_size;
|
||||
best_order = gf->order;
|
||||
}
|
||||
ggml_allocr_free(alloc);
|
||||
ggml_gallocr_free(alloc);
|
||||
ggml_free(ctx_compute);
|
||||
}
|
||||
size_t max_compute_size = best_compute_size;
|
||||
@@ -1774,9 +1704,8 @@ int main(int argc, char ** argv) {
|
||||
"invalid");
|
||||
|
||||
// allocate compute tensors
|
||||
mem_compute_data.resize(max_compute_size);
|
||||
ctx_compute = ggml_init(ctx_compute_params);
|
||||
ggml_allocr_t alloc = ggml_allocr_new(mem_compute_data.data(), mem_compute_data.size(), tensor_alignment);
|
||||
ggml_gallocr_t alloc = ggml_gallocr_new(ggml_backend_cpu_buffer_type());
|
||||
gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
|
||||
gf->order = best_order;
|
||||
gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
|
||||
@@ -1789,11 +1718,9 @@ int main(int argc, char ** argv) {
|
||||
&logits, tokens_input, target_probs,
|
||||
n_tokens, n_batch,
|
||||
params.common.use_flash,
|
||||
params.common.use_checkpointing
|
||||
params.common.use_checkpointing,
|
||||
false
|
||||
);
|
||||
ggml_allocr_free(alloc);
|
||||
ggml_allocr_free(alloc_inps);
|
||||
|
||||
|
||||
// tokenize data
|
||||
std::vector<llama_token> train_tokens;
|
||||
@@ -1908,6 +1835,8 @@ int main(int argc, char ** argv) {
|
||||
ggml_free(ctx_work);
|
||||
ggml_free(ctx_compute);
|
||||
ggml_free(ctx_input);
|
||||
ggml_gallocr_free(alloc);
|
||||
|
||||
|
||||
int64_t t1 = ggml_time_ms();
|
||||
printf("%s: total training time: ", __func__);
|
||||
|
||||
@@ -36,6 +36,8 @@ public:
|
||||
void set_parameters(StatParams&& params) { m_params = std::move(params); }
|
||||
bool collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data);
|
||||
void save_imatrix() const;
|
||||
bool load_imatrix(const char * file_name, bool add);
|
||||
static bool load_imatrix(const char * file_name, std::unordered_map<std::string, Stats>& imatrix);
|
||||
private:
|
||||
std::unordered_map<std::string, Stats> m_stats;
|
||||
StatParams m_params;
|
||||
@@ -189,6 +191,57 @@ void IMatrixCollector::save_imatrix(const char * fname) const {
|
||||
}
|
||||
}
|
||||
|
||||
bool IMatrixCollector::load_imatrix(const char * imatrix_file, std::unordered_map<std::string, Stats>& imatrix_data) {
|
||||
std::ifstream in(imatrix_file, std::ios::binary);
|
||||
if (!in) {
|
||||
printf("%s: failed to open %s\n",__func__,imatrix_file);
|
||||
return false;
|
||||
}
|
||||
int n_entries;
|
||||
in.read((char*)&n_entries, sizeof(n_entries));
|
||||
if (in.fail() || n_entries < 1) {
|
||||
printf("%s: no data in file %s\n", __func__, imatrix_file);
|
||||
return false;
|
||||
}
|
||||
for (int i = 0; i < n_entries; ++i) {
|
||||
int len; in.read((char *)&len, sizeof(len));
|
||||
std::vector<char> name_as_vec(len+1);
|
||||
in.read((char *)name_as_vec.data(), len);
|
||||
if (in.fail()) {
|
||||
printf("%s: failed reading name for entry %d from %s\n",__func__,i+1,imatrix_file);
|
||||
return false;
|
||||
}
|
||||
name_as_vec[len] = 0;
|
||||
std::string name{name_as_vec.data()};
|
||||
auto& e = imatrix_data[std::move(name)];
|
||||
int ncall;
|
||||
in.read((char*)&ncall, sizeof(ncall));
|
||||
int nval;
|
||||
in.read((char *)&nval, sizeof(nval));
|
||||
if (in.fail() || nval < 1) {
|
||||
printf("%s: failed reading number of values for entry %d\n",__func__,i);
|
||||
imatrix_data = {};
|
||||
return false;
|
||||
}
|
||||
e.values.resize(nval);
|
||||
in.read((char*)e.values.data(), nval*sizeof(float));
|
||||
if (in.fail()) {
|
||||
printf("%s: failed reading data for entry %d\n",__func__,i);
|
||||
imatrix_data = {};
|
||||
return false;
|
||||
}
|
||||
e.ncall = ncall;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool IMatrixCollector::load_imatrix(const char * file_name, bool add) {
|
||||
if (!add) {
|
||||
m_stats.clear();
|
||||
}
|
||||
return load_imatrix(file_name, m_stats);
|
||||
}
|
||||
|
||||
static IMatrixCollector g_collector;
|
||||
|
||||
static bool ik_collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data) {
|
||||
@@ -269,7 +322,7 @@ static void process_logits(
|
||||
}
|
||||
}
|
||||
|
||||
static bool compute_imatrix(llama_context * ctx, const gpt_params & params, bool compute_ppl) {
|
||||
static bool compute_imatrix(llama_context * ctx, const gpt_params & params, bool compute_ppl, int from_chunk) {
|
||||
|
||||
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
@@ -282,6 +335,15 @@ static bool compute_imatrix(llama_context * ctx, const gpt_params & params, bool
|
||||
auto tim2 = std::chrono::high_resolution_clock::now();
|
||||
fprintf(stderr, "%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());
|
||||
|
||||
if (from_chunk > 0) {
|
||||
if (size_t((from_chunk + 2)*n_ctx) >= tokens.size()) {
|
||||
fprintf(stderr, "%s: there will be not enough tokens left after removing %d chunks\n", __func__, from_chunk);
|
||||
return false;
|
||||
}
|
||||
fprintf(stderr, "%s: removing initial %d chunks (%d tokens)\n", __func__, from_chunk, from_chunk*n_ctx);
|
||||
tokens.erase(tokens.begin(), tokens.begin() + from_chunk*n_ctx);
|
||||
}
|
||||
|
||||
if (int(tokens.size()) < 2*n_ctx) {
|
||||
fprintf(stderr, "%s: you need at least %d tokens for a context of %d tokens\n",__func__,2*n_ctx,
|
||||
n_ctx);
|
||||
@@ -402,7 +464,10 @@ static bool compute_imatrix(llama_context * ctx, const gpt_params & params, bool
|
||||
int main(int argc, char ** argv) {
|
||||
|
||||
StatParams sparams;
|
||||
std::string prev_result_file;
|
||||
std::string combine_files;
|
||||
bool compute_ppl = true;
|
||||
int from_chunk = 0;
|
||||
std::vector<char*> args;
|
||||
args.push_back(argv[0]);
|
||||
int iarg = 1;
|
||||
@@ -423,6 +488,13 @@ int main(int argc, char ** argv) {
|
||||
compute_ppl = false;
|
||||
} else if (arg == "--keep-imatrix") {
|
||||
sparams.keep_every = std::stoi(argv[++iarg]);
|
||||
} else if (arg == "--continue-from") {
|
||||
prev_result_file = argv[++iarg];
|
||||
} else if (arg == "--combine") {
|
||||
combine_files = argv[++iarg];
|
||||
}
|
||||
else if (arg == "--from-chunk") {
|
||||
from_chunk = std::stoi(argv[++iarg]);
|
||||
} else {
|
||||
args.push_back(argv[iarg]);
|
||||
}
|
||||
@@ -436,14 +508,50 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
|
||||
g_collector.set_parameters(std::move(sparams));
|
||||
|
||||
if (!combine_files.empty()) {
|
||||
std::vector<std::string> files;
|
||||
size_t pos = 0;
|
||||
while (true) {
|
||||
auto new_pos = combine_files.find(',', pos);
|
||||
if (new_pos != std::string::npos) {
|
||||
files.emplace_back(combine_files.substr(pos, new_pos - pos));
|
||||
pos = new_pos + 1;
|
||||
} else {
|
||||
files.emplace_back(combine_files.substr(pos));
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (files.size() < 2) {
|
||||
fprintf(stderr, "You must provide at least two comma separated files to use --combine\n");
|
||||
return 1;
|
||||
}
|
||||
printf("Combining the following %d files\n", int(files.size()));
|
||||
for (auto& file : files) {
|
||||
printf(" %s\n", file.c_str());
|
||||
if (!g_collector.load_imatrix(file.c_str(), true)) {
|
||||
fprintf(stderr, "Failed to load %s\n", file.c_str());
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
g_collector.save_imatrix();
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (!prev_result_file.empty()) {
|
||||
if (!g_collector.load_imatrix(prev_result_file.c_str(), false)) {
|
||||
fprintf(stderr, "=============== Failed to load %s\n", prev_result_file.c_str());
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
gpt_params params;
|
||||
params.n_batch = 512;
|
||||
if (!gpt_params_parse(args.size(), args.data(), params)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
g_collector.set_parameters(std::move(sparams));
|
||||
|
||||
params.logits_all = true;
|
||||
params.n_batch = std::min(params.n_batch, params.n_ctx);
|
||||
|
||||
@@ -460,7 +568,8 @@ int main(int argc, char ** argv) {
|
||||
params.prompt = gpt_random_prompt(rng);
|
||||
}
|
||||
|
||||
llama_backend_init(params.numa);
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
llama_model_params mparams = llama_model_params_from_gpt_params(params);
|
||||
|
||||
@@ -495,7 +604,7 @@ int main(int argc, char ** argv) {
|
||||
fprintf(stderr, "%s\n", get_system_info(params).c_str());
|
||||
}
|
||||
|
||||
bool OK = compute_imatrix(ctx, params, compute_ppl);
|
||||
bool OK = compute_imatrix(ctx, params, compute_ppl, from_chunk);
|
||||
if (!OK) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
@@ -202,7 +202,8 @@ int main(int argc, char ** argv) {
|
||||
std::mt19937 rng(params.seed);
|
||||
|
||||
LOG("%s: llama backend init\n", __func__);
|
||||
llama_backend_init(params.numa);
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
llama_model * model;
|
||||
llama_context * ctx;
|
||||
|
||||
@@ -23,19 +23,23 @@ usage: ./llama-bench [options]
|
||||
|
||||
options:
|
||||
-h, --help
|
||||
-m, --model <filename> (default: models/7B/ggml-model-q4_0.gguf)
|
||||
-p, --n-prompt <n> (default: 512)
|
||||
-n, --n-gen <n> (default: 128)
|
||||
-b, --batch-size <n> (default: 512)
|
||||
--memory-f32 <0|1> (default: 0)
|
||||
-t, --threads <n> (default: 16)
|
||||
-ngl N, --n-gpu-layers <n> (default: 99)
|
||||
-mg i, --main-gpu <i> (default: 0)
|
||||
-mmq, --mul-mat-q <0|1> (default: 1)
|
||||
-ts, --tensor_split <ts0/ts1/..>
|
||||
-r, --repetitions <n> (default: 5)
|
||||
-o, --output <csv|json|md|sql> (default: md)
|
||||
-v, --verbose (default: 0)
|
||||
-m, --model <filename> (default: models/7B/ggml-model-q4_0.gguf)
|
||||
-p, --n-prompt <n> (default: 512)
|
||||
-n, --n-gen <n> (default: 128)
|
||||
-b, --batch-size <n> (default: 512)
|
||||
-ctk <t>, --cache-type-k <t> (default: f16)
|
||||
-ctv <t>, --cache-type-v <t> (default: f16)
|
||||
-t, --threads <n> (default: 112)
|
||||
-ngl, --n-gpu-layers <n> (default: 99)
|
||||
-sm, --split-mode <none|layer|row> (default: layer)
|
||||
-mg, --main-gpu <i> (default: 0)
|
||||
-nkvo, --no-kv-offload <0|1> (default: 0)
|
||||
-mmp, --mmap <0|1> (default: 1)
|
||||
-mmq, --mul-mat-q <0|1> (default: 1)
|
||||
-ts, --tensor_split <ts0/ts1/..> (default: 0)
|
||||
-r, --repetitions <n> (default: 5)
|
||||
-o, --output <csv|json|md|sql> (default: md)
|
||||
-v, --verbose (default: 0)
|
||||
|
||||
Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.
|
||||
```
|
||||
@@ -51,6 +55,10 @@ Each test is repeated the number of times given by `-r`, and the results are ave
|
||||
|
||||
For a description of the other options, see the [main example](../main/README.md).
|
||||
|
||||
Note:
|
||||
|
||||
- When using SYCL backend, there would be hang issue in some cases. Please set `--mmp 0`.
|
||||
|
||||
## Examples
|
||||
|
||||
### Text generation with different models
|
||||
|
||||
@@ -20,6 +20,7 @@
|
||||
#include "llama.h"
|
||||
#include "common.h"
|
||||
#include "ggml-cuda.h"
|
||||
#include "ggml-sycl.h"
|
||||
|
||||
// utils
|
||||
static uint64_t get_time_ns() {
|
||||
@@ -120,6 +121,22 @@ static std::string get_gpu_info() {
|
||||
id += "/";
|
||||
}
|
||||
}
|
||||
#endif
|
||||
#ifdef GGML_USE_SYCL
|
||||
int device_list[GGML_SYCL_MAX_DEVICES];
|
||||
ggml_sycl_get_gpu_list(device_list, GGML_SYCL_MAX_DEVICES);
|
||||
|
||||
for (int i = 0; i < GGML_SYCL_MAX_DEVICES; i++) {
|
||||
if (device_list[i] >0 ){
|
||||
char buf[128];
|
||||
ggml_sycl_get_device_description(i, buf, sizeof(buf));
|
||||
id += buf;
|
||||
id += "/";
|
||||
}
|
||||
}
|
||||
if (id.length() >2 ) {
|
||||
id.pop_back();
|
||||
}
|
||||
#endif
|
||||
// TODO: other backends
|
||||
return id;
|
||||
@@ -160,7 +177,8 @@ struct cmd_params {
|
||||
std::vector<int> main_gpu;
|
||||
std::vector<bool> no_kv_offload;
|
||||
std::vector<bool> mul_mat_q;
|
||||
std::vector<std::array<float, LLAMA_MAX_DEVICES>> tensor_split;
|
||||
std::vector<std::vector<float>> tensor_split;
|
||||
std::vector<bool> use_mmap;
|
||||
int reps;
|
||||
bool verbose;
|
||||
output_formats output_format;
|
||||
@@ -179,7 +197,8 @@ static const cmd_params cmd_params_defaults = {
|
||||
/* main_gpu */ {0},
|
||||
/* no_kv_offload */ {false},
|
||||
/* mul_mat_q */ {true},
|
||||
/* tensor_split */ {{}},
|
||||
/* tensor_split */ {std::vector<float>(llama_max_devices(), 0.0f)},
|
||||
/* use_mmap */ {true},
|
||||
/* reps */ 5,
|
||||
/* verbose */ false,
|
||||
/* output_format */ MARKDOWN
|
||||
@@ -201,6 +220,7 @@ static void print_usage(int /* argc */, char ** argv) {
|
||||
printf(" -sm, --split-mode <none|layer|row> (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
|
||||
printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
|
||||
printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
|
||||
printf(" -mmp, --mmap <0|1> (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str());
|
||||
printf(" -mmq, --mul-mat-q <0|1> (default: %s)\n", join(cmd_params_defaults.mul_mat_q, ",").c_str());
|
||||
printf(" -ts, --tensor_split <ts0/ts1/..> (default: 0)\n");
|
||||
printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
|
||||
@@ -370,6 +390,13 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
||||
}
|
||||
auto p = split<bool>(argv[i], split_delim);
|
||||
params.mul_mat_q.insert(params.mul_mat_q.end(), p.begin(), p.end());
|
||||
} else if (arg == "-mmp" || arg == "--mmap") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
auto p = split<bool>(argv[i], split_delim);
|
||||
params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end());
|
||||
} else if (arg == "-ts" || arg == "--tensor-split") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@@ -380,10 +407,10 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
||||
const std::regex regex{R"([;/]+)"};
|
||||
std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
|
||||
std::vector<std::string> split_arg{it, {}};
|
||||
GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
|
||||
GGML_ASSERT(split_arg.size() <= llama_max_devices());
|
||||
|
||||
std::array<float, LLAMA_MAX_DEVICES> tensor_split;
|
||||
for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
|
||||
std::vector<float> tensor_split(llama_max_devices());
|
||||
for (size_t i = 0; i < llama_max_devices(); ++i) {
|
||||
if (i < split_arg.size()) {
|
||||
tensor_split[i] = std::stof(split_arg[i]);
|
||||
} else {
|
||||
@@ -441,6 +468,7 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
||||
if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
|
||||
if (params.mul_mat_q.empty()) { params.mul_mat_q = cmd_params_defaults.mul_mat_q; }
|
||||
if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
|
||||
if (params.use_mmap.empty()) { params.use_mmap = cmd_params_defaults.use_mmap; }
|
||||
if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
|
||||
|
||||
return params;
|
||||
@@ -459,7 +487,8 @@ struct cmd_params_instance {
|
||||
int main_gpu;
|
||||
bool no_kv_offload;
|
||||
bool mul_mat_q;
|
||||
std::array<float, LLAMA_MAX_DEVICES> tensor_split;
|
||||
std::vector<float> tensor_split;
|
||||
bool use_mmap;
|
||||
|
||||
llama_model_params to_llama_mparams() const {
|
||||
llama_model_params mparams = llama_model_default_params();
|
||||
@@ -468,6 +497,7 @@ struct cmd_params_instance {
|
||||
mparams.split_mode = split_mode;
|
||||
mparams.main_gpu = main_gpu;
|
||||
mparams.tensor_split = tensor_split.data();
|
||||
mparams.use_mmap = use_mmap;
|
||||
|
||||
return mparams;
|
||||
}
|
||||
@@ -477,6 +507,7 @@ struct cmd_params_instance {
|
||||
n_gpu_layers == other.n_gpu_layers &&
|
||||
split_mode == other.split_mode &&
|
||||
main_gpu == other.main_gpu &&
|
||||
use_mmap == other.use_mmap &&
|
||||
tensor_split == other.tensor_split;
|
||||
}
|
||||
|
||||
@@ -503,6 +534,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
||||
for (const auto & sm : params.split_mode)
|
||||
for (const auto & mg : params.main_gpu)
|
||||
for (const auto & ts : params.tensor_split)
|
||||
for (const auto & mmp : params.use_mmap)
|
||||
for (const auto & nb : params.n_batch)
|
||||
for (const auto & tk : params.type_k)
|
||||
for (const auto & tv : params.type_v)
|
||||
@@ -527,6 +559,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
||||
/* .no_kv_offload= */ nkvo,
|
||||
/* .mul_mat_q = */ mmq,
|
||||
/* .tensor_split = */ ts,
|
||||
/* .use_mmap = */ mmp,
|
||||
};
|
||||
instances.push_back(instance);
|
||||
}
|
||||
@@ -549,6 +582,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
||||
/* .no_kv_offload= */ nkvo,
|
||||
/* .mul_mat_q = */ mmq,
|
||||
/* .tensor_split = */ ts,
|
||||
/* .use_mmap = */ mmp,
|
||||
};
|
||||
instances.push_back(instance);
|
||||
}
|
||||
@@ -563,7 +597,9 @@ struct test {
|
||||
static const bool cuda;
|
||||
static const bool opencl;
|
||||
static const bool vulkan;
|
||||
static const bool kompute;
|
||||
static const bool metal;
|
||||
static const bool sycl;
|
||||
static const bool gpu_blas;
|
||||
static const bool blas;
|
||||
static const std::string cpu_info;
|
||||
@@ -581,7 +617,8 @@ struct test {
|
||||
int main_gpu;
|
||||
bool no_kv_offload;
|
||||
bool mul_mat_q;
|
||||
std::array<float, LLAMA_MAX_DEVICES> tensor_split;
|
||||
std::vector<float> tensor_split;
|
||||
bool use_mmap;
|
||||
int n_prompt;
|
||||
int n_gen;
|
||||
std::string test_time;
|
||||
@@ -604,6 +641,7 @@ struct test {
|
||||
no_kv_offload = inst.no_kv_offload;
|
||||
mul_mat_q = inst.mul_mat_q;
|
||||
tensor_split = inst.tensor_split;
|
||||
use_mmap = inst.use_mmap;
|
||||
n_prompt = inst.n_prompt;
|
||||
n_gen = inst.n_gen;
|
||||
// RFC 3339 date-time format
|
||||
@@ -647,28 +685,35 @@ struct test {
|
||||
if (vulkan) {
|
||||
return "Vulkan";
|
||||
}
|
||||
if (kompute) {
|
||||
return "Kompute";
|
||||
}
|
||||
if (metal) {
|
||||
return "Metal";
|
||||
}
|
||||
if (sycl) {
|
||||
return GGML_SYCL_NAME;
|
||||
}
|
||||
if (gpu_blas) {
|
||||
return "GPU BLAS";
|
||||
}
|
||||
if (blas) {
|
||||
return "BLAS";
|
||||
}
|
||||
|
||||
return "CPU";
|
||||
}
|
||||
|
||||
static const std::vector<std::string> & get_fields() {
|
||||
static const std::vector<std::string> fields = {
|
||||
"build_commit", "build_number",
|
||||
"cuda", "opencl", "vulkan", "metal", "gpu_blas", "blas",
|
||||
"cuda", "opencl", "vulkan", "kompute", "metal", "sycl", "gpu_blas", "blas",
|
||||
"cpu_info", "gpu_info",
|
||||
"model_filename", "model_type", "model_size", "model_n_params",
|
||||
"n_batch", "n_threads", "type_k", "type_v",
|
||||
"n_gpu_layers", "split_mode",
|
||||
"main_gpu", "no_kv_offload",
|
||||
"mul_mat_q", "tensor_split",
|
||||
"mul_mat_q", "tensor_split", "use_mmap",
|
||||
"n_prompt", "n_gen", "test_time",
|
||||
"avg_ns", "stddev_ns",
|
||||
"avg_ts", "stddev_ts"
|
||||
@@ -686,8 +731,9 @@ struct test {
|
||||
field == "avg_ns" || field == "stddev_ns") {
|
||||
return INT;
|
||||
}
|
||||
if (field == "cuda" || field == "opencl" || field == "vulkan"|| field == "metal" || field == "gpu_blas" || field == "blas" ||
|
||||
field == "f16_kv" || field == "no_kv_offload" || field == "mul_mat_q") {
|
||||
if (field == "cuda" || field == "opencl" || field == "vulkan" || field == "kompute" || field == "metal" ||
|
||||
field == "gpu_blas" || field == "blas" || field == "sycl" ||field == "f16_kv" || field == "no_kv_offload" ||
|
||||
field == "mul_mat_q" || field == "use_mmap") {
|
||||
return BOOL;
|
||||
}
|
||||
if (field == "avg_ts" || field == "stddev_ts") {
|
||||
@@ -699,7 +745,7 @@ struct test {
|
||||
std::vector<std::string> get_values() const {
|
||||
std::string tensor_split_str;
|
||||
int max_nonzero = 0;
|
||||
for (int i = 0; i < LLAMA_MAX_DEVICES; i++) {
|
||||
for (size_t i = 0; i < llama_max_devices(); i++) {
|
||||
if (tensor_split[i] > 0) {
|
||||
max_nonzero = i;
|
||||
}
|
||||
@@ -714,13 +760,14 @@ struct test {
|
||||
}
|
||||
std::vector<std::string> values = {
|
||||
build_commit, std::to_string(build_number),
|
||||
std::to_string(cuda), std::to_string(opencl), std::to_string(vulkan), std::to_string(metal), std::to_string(gpu_blas), std::to_string(blas),
|
||||
std::to_string(cuda), std::to_string(opencl), std::to_string(vulkan), std::to_string(vulkan),
|
||||
std::to_string(metal), std::to_string(sycl), std::to_string(gpu_blas), std::to_string(blas),
|
||||
cpu_info, gpu_info,
|
||||
model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
|
||||
std::to_string(n_batch), std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v),
|
||||
std::to_string(n_gpu_layers), split_mode_str(split_mode),
|
||||
std::to_string(main_gpu), std::to_string(no_kv_offload),
|
||||
std::to_string(mul_mat_q), tensor_split_str,
|
||||
std::to_string(mul_mat_q), tensor_split_str, std::to_string(use_mmap),
|
||||
std::to_string(n_prompt), std::to_string(n_gen), test_time,
|
||||
std::to_string(avg_ns()), std::to_string(stdev_ns()),
|
||||
std::to_string(avg_ts()), std::to_string(stdev_ts())
|
||||
@@ -743,9 +790,11 @@ const int test::build_number = LLAMA_BUILD_NUMBER;
|
||||
const bool test::cuda = !!ggml_cpu_has_cublas();
|
||||
const bool test::opencl = !!ggml_cpu_has_clblast();
|
||||
const bool test::vulkan = !!ggml_cpu_has_vulkan();
|
||||
const bool test::kompute = !!ggml_cpu_has_kompute();
|
||||
const bool test::metal = !!ggml_cpu_has_metal();
|
||||
const bool test::gpu_blas = !!ggml_cpu_has_gpublas();
|
||||
const bool test::blas = !!ggml_cpu_has_blas();
|
||||
const bool test::sycl = !!ggml_cpu_has_sycl();
|
||||
const std::string test::cpu_info = get_cpu_info();
|
||||
const std::string test::gpu_info = get_gpu_info();
|
||||
|
||||
@@ -888,6 +937,9 @@ struct markdown_printer : public printer {
|
||||
if (field == "no_kv_offload") {
|
||||
return "nkvo";
|
||||
}
|
||||
if (field == "use_mmap") {
|
||||
return "mmap";
|
||||
}
|
||||
if (field == "tensor_split") {
|
||||
return "ts";
|
||||
}
|
||||
@@ -896,43 +948,46 @@ struct markdown_printer : public printer {
|
||||
|
||||
void print_header(const cmd_params & params) override {
|
||||
// select fields to print
|
||||
fields.push_back("model");
|
||||
fields.push_back("size");
|
||||
fields.push_back("params");
|
||||
fields.push_back("backend");
|
||||
fields.emplace_back("model");
|
||||
fields.emplace_back("size");
|
||||
fields.emplace_back("params");
|
||||
fields.emplace_back("backend");
|
||||
bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS";
|
||||
if (!is_cpu_backend) {
|
||||
fields.push_back("n_gpu_layers");
|
||||
fields.emplace_back("n_gpu_layers");
|
||||
}
|
||||
if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
|
||||
fields.push_back("n_threads");
|
||||
fields.emplace_back("n_threads");
|
||||
}
|
||||
if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
|
||||
fields.push_back("n_batch");
|
||||
fields.emplace_back("n_batch");
|
||||
}
|
||||
if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
|
||||
fields.push_back("type_k");
|
||||
fields.emplace_back("type_k");
|
||||
}
|
||||
if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
|
||||
fields.push_back("type_v");
|
||||
fields.emplace_back("type_v");
|
||||
}
|
||||
if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
|
||||
fields.push_back("main_gpu");
|
||||
fields.emplace_back("main_gpu");
|
||||
}
|
||||
if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
|
||||
fields.push_back("split_mode");
|
||||
fields.emplace_back("split_mode");
|
||||
}
|
||||
if (params.mul_mat_q.size() > 1 || params.mul_mat_q != cmd_params_defaults.mul_mat_q) {
|
||||
fields.push_back("mul_mat_q");
|
||||
fields.emplace_back("mul_mat_q");
|
||||
}
|
||||
if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
|
||||
fields.push_back("no_kv_offload");
|
||||
fields.emplace_back("no_kv_offload");
|
||||
}
|
||||
if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
|
||||
fields.push_back("tensor_split");
|
||||
fields.emplace_back("tensor_split");
|
||||
}
|
||||
fields.push_back("test");
|
||||
fields.push_back("t/s");
|
||||
if (params.use_mmap.size() > 1 || params.use_mmap != cmd_params_defaults.use_mmap) {
|
||||
fields.emplace_back("use_mmap");
|
||||
}
|
||||
fields.emplace_back("test");
|
||||
fields.emplace_back("t/s");
|
||||
|
||||
fprintf(fout, "|");
|
||||
for (const auto & field : fields) {
|
||||
@@ -1096,8 +1151,7 @@ int main(int argc, char ** argv) {
|
||||
if (!params.verbose) {
|
||||
llama_log_set(llama_null_log_callback, NULL);
|
||||
}
|
||||
bool numa = false;
|
||||
llama_backend_init(numa);
|
||||
llama_backend_init();
|
||||
|
||||
// initialize printer
|
||||
std::unique_ptr<printer> p;
|
||||
|
||||
@@ -274,8 +274,8 @@ Java_com_example_llama_Llm_new_1batch(JNIEnv *, jobject, jint n_tokens, jint emb
|
||||
|
||||
extern "C"
|
||||
JNIEXPORT void JNICALL
|
||||
Java_com_example_llama_Llm_backend_1init(JNIEnv *, jobject, jboolean numa) {
|
||||
llama_backend_init(numa);
|
||||
Java_com_example_llama_Llm_backend_1init(JNIEnv *, jobject) {
|
||||
llama_backend_init();
|
||||
}
|
||||
|
||||
extern "C"
|
||||
|
||||
@@ -51,7 +51,7 @@ actor LlamaContext {
|
||||
}
|
||||
|
||||
static func create_context(path: String) throws -> LlamaContext {
|
||||
llama_backend_init(false)
|
||||
llama_backend_init()
|
||||
var model_params = llama_model_default_params()
|
||||
|
||||
#if targetEnvironment(simulator)
|
||||
|
||||
@@ -111,17 +111,71 @@ llama_print_timings: eval time = 1279.03 ms / 18 runs ( 71.06 m
|
||||
llama_print_timings: total time = 34570.79 ms
|
||||
```
|
||||
|
||||
## Orin compile and run
|
||||
### compile
|
||||
```sh
|
||||
make LLAMA_CUBLAS=1 CUDA_DOCKER_ARCH=sm_87 LLAMA_CUDA_F16=1 -j 32
|
||||
```
|
||||
|
||||
### run on Orin
|
||||
### case 1
|
||||
**input**
|
||||
```sh
|
||||
./llava-cli \
|
||||
-m /data/local/tmp/ggml-model-q4_k.gguf \
|
||||
--mmproj /data/local/tmp/mmproj-model-f16.gguf \
|
||||
--image /data/local/tmp/demo.jpeg \
|
||||
-p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWho is the author of this book? \nAnswer the question using a single word or phrase. ASSISTANT:" \
|
||||
--n-gpu-layers 999
|
||||
```
|
||||
**output**
|
||||
```sh
|
||||
|
||||
encode_image_with_clip: image encoded in 296.62 ms by CLIP ( 2.06 ms per image patch)
|
||||
|
||||
Susan Wise Bauer
|
||||
|
||||
llama_print_timings: load time = 1067.64 ms
|
||||
llama_print_timings: sample time = 1.53 ms / 6 runs ( 0.25 ms per token, 3934.43 tokens per second)
|
||||
llama_print_timings: prompt eval time = 306.84 ms / 246 tokens ( 1.25 ms per token, 801.72 tokens per second)
|
||||
llama_print_timings: eval time = 91.50 ms / 6 runs ( 15.25 ms per token, 65.58 tokens per second)
|
||||
llama_print_timings: total time = 1352.63 ms / 252 tokens
|
||||
```
|
||||
|
||||
### case 2
|
||||
**input**
|
||||
```sh
|
||||
./llava-cli \
|
||||
-m /data/local/tmp/ggml-model-q4_k.gguf \
|
||||
--mmproj /data/local/tmp/mmproj-model-f16.gguf \
|
||||
-p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWhat is in the image? ASSISTANT:" \
|
||||
--n-gpu-layers 999
|
||||
|
||||
```
|
||||
**output**
|
||||
```sh
|
||||
encode_image_with_clip: image encoded in 302.15 ms by CLIP ( 2.10 ms per image patch)
|
||||
|
||||
The image features a cat lying in the grass.
|
||||
|
||||
llama_print_timings: load time = 1057.07 ms
|
||||
llama_print_timings: sample time = 3.27 ms / 11 runs ( 0.30 ms per token, 3360.83 tokens per second)
|
||||
llama_print_timings: prompt eval time = 213.60 ms / 232 tokens ( 0.92 ms per token, 1086.14 tokens per second)
|
||||
llama_print_timings: eval time = 166.65 ms / 11 runs ( 15.15 ms per token, 66.01 tokens per second)
|
||||
llama_print_timings: total time = 1365.47 ms / 243 tokens
|
||||
```
|
||||
|
||||
## Minor shortcomings
|
||||
The `n_patch` of output in `ldp` is 1/4 of the input. In order to implement quickly, we uniformly modified `clip_n_patches` function to a quarter. when counting the time consumption, the calculated time will be 4 times bigger than the real cost.
|
||||
|
||||
## TODO
|
||||
|
||||
- [ ] Support non-CPU backend for the new operators, such as `depthwise`, `hardswish`, `hardsigmoid`
|
||||
- [x] Support non-CPU backend for the new operators, such as `depthwise`, `hardswish`, `hardsigmoid`
|
||||
- [ ] Optimize LDP projector performance
|
||||
|
||||
- Optimize the structure definition to avoid unnecessary memory rearrangements, to reduce the use of `ggml_permute_cpy`;
|
||||
- Optimize operator implementation (ARM CPU/NVIDIA GPU): such as depthwise conv, hardswish, hardsigmoid, etc.
|
||||
- [ ] run MobileVLM on `Jetson Orin`
|
||||
- [x] run MobileVLM on `Jetson Orin`
|
||||
- [ ] Support more model variants, such as `MobileVLM-3B`.
|
||||
|
||||
|
||||
|
||||
@@ -1,10 +1,12 @@
|
||||
# LLaVA
|
||||
|
||||
Currently this implementation supports [llava-v1.5](https://huggingface.co/liuhaotian/llava-v1.5-7b) variants.
|
||||
Currently this implementation supports [llava-v1.5](https://huggingface.co/liuhaotian/llava-v1.5-7b) variants,
|
||||
as well as llava-1.6 [llava-v1.6](https://huggingface.co/collections/liuhaotian/llava-16-65b9e40155f60fd046a5ccf2) variants.
|
||||
|
||||
The pre-converted [7b](https://huggingface.co/mys/ggml_llava-v1.5-7b)
|
||||
and [13b](https://huggingface.co/mys/ggml_llava-v1.5-13b)
|
||||
models are available.
|
||||
For llava-1.6 a variety of prepared gguf models are available as well [7b-34b](https://huggingface.co/cmp-nct/llava-1.6-gguf)
|
||||
|
||||
After API is confirmed, more models will be supported / uploaded.
|
||||
|
||||
@@ -14,14 +16,15 @@ Build with cmake or run `make llava-cli` to build it.
|
||||
After building, run: `./llava-cli` to see the usage. For example:
|
||||
|
||||
```sh
|
||||
./llava-cli -m llava-v1.5-7b/ggml-model-q5_k.gguf --mmproj llava-v1.5-7b/mmproj-model-f16.gguf --image path/to/an/image.jpg
|
||||
./llava-cli -m ../llava-v1.5-7b/ggml-model-f16.gguf --mmproj ../llava-v1.5-7b/mmproj-model-f16.gguf --image path/to/an/image.jpg
|
||||
```
|
||||
|
||||
**note**: A lower temperature like 0.1 is recommended for better quality. add `--temp 0.1` to the command to do so.
|
||||
**note**: For GPU offloading ensure to use the `-ngl` flag just like usual
|
||||
|
||||
## Model conversion
|
||||
## LLaVA 1.5
|
||||
|
||||
- Clone `llava-v15-7b`` and `clip-vit-large-patch14-336`` locally:
|
||||
- Clone a LLaVA and a CLIP model ([available options](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md)). For example:
|
||||
|
||||
```sh
|
||||
git clone https://huggingface.co/liuhaotian/llava-v1.5-7b
|
||||
@@ -29,28 +32,75 @@ git clone https://huggingface.co/liuhaotian/llava-v1.5-7b
|
||||
git clone https://huggingface.co/openai/clip-vit-large-patch14-336
|
||||
```
|
||||
|
||||
2. Use `llava-surgery.py` to split the LLaVA model to LLaMA and multimodel projector constituents:
|
||||
2. Install the required Python packages:
|
||||
|
||||
```sh
|
||||
pip install -r examples/llava/requirements.txt
|
||||
```
|
||||
|
||||
3. Use `llava-surgery.py` to split the LLaVA model to LLaMA and multimodel projector constituents:
|
||||
|
||||
```sh
|
||||
python ./examples/llava/llava-surgery.py -m ../llava-v1.5-7b
|
||||
```
|
||||
|
||||
3. Use `convert-image-encoder-to-gguf.py` to convert the LLaVA image encoder to GGUF:
|
||||
4. Use `convert-image-encoder-to-gguf.py` to convert the LLaVA image encoder to GGUF:
|
||||
|
||||
```sh
|
||||
python ./examples/llava/convert-image-encoder-to-gguf -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
|
||||
python ./examples/llava/convert-image-encoder-to-gguf.py -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
|
||||
```
|
||||
|
||||
4. Use `convert.py` to convert the LLaMA part of LLaVA to GGUF:
|
||||
5. Use `convert.py` to convert the LLaMA part of LLaVA to GGUF:
|
||||
|
||||
```sh
|
||||
python ./convert.py ../llava-v1.5-7b
|
||||
python ./convert.py ../llava-v1.5-7b --skip-unknown
|
||||
```
|
||||
|
||||
Now both the LLaMA part and the image encoder is in the `llava-v1.5-7b` directory.
|
||||
|
||||
## LLaVA 1.6 gguf conversion
|
||||
|
||||
1) Backup your pth/safetensor model files as llava-surgery modifies them
|
||||
2) Use `python llava-surgery-v2.py -C -m /path/to/hf-model` which also supports llava-1.5 variants pytorch as well as safetensor models:
|
||||
- you will find a llava.projector and a llava.clip file in your model directory
|
||||
3) Copy the llava.clip file into a subdirectory (like vit), rename it to pytorch_model.bin and add a fitting vit configuration to the directory (https://huggingface.co/cmp-nct/llava-1.6-gguf/blob/main/config_vit.json) and rename it to config.json.
|
||||
4) Create the visual gguf model: `python ./examples/llava/convert-image-encoder-to-gguf.py -m ../path/to/vit --llava-projector ../path/to/llava.projector --output-dir ../path/to/output --clip-model-is-vision`
|
||||
- This is similar to llava-1.5, the difference is that we tell the encoder that we are working with the pure vision model part of CLIP
|
||||
5) Everything else as usual: convert.py the hf model, quantize as needed
|
||||
**note** llava-1.6 needs more context than llava-1.5, at least 3000 is needed (just run it at -c 4096)
|
||||
**note** llava-1.6 greatly benefits from batched prompt processing (defaults work)
|
||||
|
||||
## llava-cli templating and llava-1.6 prompting
|
||||
|
||||
llava-1.5 models all use the same vicuna prompt, here you can just add your image question like `-p "Provide a full description."`
|
||||
For llava-1.5 models which are not vicuna (mistral and Yi) you need to adapt system prompt as well as user prompt, for this purpose llava-cli has a basic templating system:
|
||||
|
||||
**For Mistral and using llava-cli binary:**
|
||||
Add this: `-p "<image>\nUSER:\nProvide a full description.\nASSISTANT:\n"`
|
||||
The mistral template for llava-1.6 seems to be no system print and a USER/ASSISTANT role
|
||||
|
||||
**For the 34B this should work:**
|
||||
Add this: `-e -p <|im_start|>system\nAnswer the questions.<|im_end|><|im_start|>user\n<image>\nProvide a full description.<|im_end|><|im_start|>assistant\n`
|
||||
|
||||
|
||||
## How to know if you are running in llava-1.5 or llava-1.6 mode
|
||||
|
||||
When running llava-cli you will see a visual information right before the prompt is being processed:
|
||||
|
||||
**Llava-1.5:**
|
||||
`encode_image_with_clip: image embedding created: 576 tokens`
|
||||
|
||||
**Llava-1.6 (anything above 576):**
|
||||
`encode_image_with_clip: image embedding created: 2880 tokens`
|
||||
|
||||
|
||||
Alternatively just pay notice to how many "tokens" have been used for your prompt, it will also show 1000+ tokens for llava-1.6
|
||||
|
||||
|
||||
|
||||
|
||||
## TODO
|
||||
|
||||
- [ ] Support non-CPU backend for the image encoding part.
|
||||
- [x] Support non-CPU backend for the image encoding part.
|
||||
- [ ] Support different sampling methods.
|
||||
- [ ] Support more model variants.
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -24,25 +24,7 @@ struct clip_ctx;
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct clip_vision_hparams {
|
||||
int32_t image_size;
|
||||
int32_t patch_size;
|
||||
int32_t hidden_size;
|
||||
int32_t n_intermediate;
|
||||
int32_t projection_dim;
|
||||
int32_t n_head;
|
||||
int32_t n_layer;
|
||||
float eps;
|
||||
};
|
||||
|
||||
CLIP_API struct clip_ctx * clip_model_load(const char * fname, int verbosity);
|
||||
|
||||
CLIP_API void clip_free(struct clip_ctx * ctx);
|
||||
|
||||
CLIP_API size_t clip_embd_nbytes(const struct clip_ctx * ctx);
|
||||
|
||||
CLIP_API int clip_n_patches (const struct clip_ctx * ctx);
|
||||
CLIP_API int clip_n_mmproj_embd(const struct clip_ctx * ctx);
|
||||
struct clip_ctx;
|
||||
|
||||
struct clip_image_u8_batch {
|
||||
struct clip_image_u8 * data;
|
||||
@@ -54,18 +36,43 @@ struct clip_image_f32_batch {
|
||||
size_t size;
|
||||
};
|
||||
|
||||
CLIP_API struct clip_ctx * clip_model_load (const char * fname, int verbosity);
|
||||
CLIP_API struct clip_ctx * clip_model_load_cpu(const char * fname, int verbosity);
|
||||
|
||||
CLIP_API void clip_free(struct clip_ctx * ctx);
|
||||
|
||||
CLIP_API size_t clip_embd_nbytes(const struct clip_ctx * ctx);
|
||||
|
||||
CLIP_API int32_t clip_image_size (const struct clip_ctx * ctx);
|
||||
CLIP_API int32_t clip_patch_size (const struct clip_ctx * ctx);
|
||||
CLIP_API int32_t clip_hidden_size(const struct clip_ctx * ctx);
|
||||
|
||||
// TODO: should be enum, not string
|
||||
CLIP_API const char * clip_patch_merge_type(const struct clip_ctx * ctx);
|
||||
|
||||
CLIP_API const int32_t * clip_image_grid(const struct clip_ctx * ctx);
|
||||
|
||||
CLIP_API int clip_n_patches (const struct clip_ctx * ctx);
|
||||
CLIP_API int clip_n_mmproj_embd(const struct clip_ctx * ctx);
|
||||
|
||||
CLIP_API struct clip_image_u8 * clip_image_u8_init ();
|
||||
CLIP_API struct clip_image_f32 * clip_image_f32_init();
|
||||
|
||||
CLIP_API void clip_image_u8_free (struct clip_image_u8 * img);
|
||||
CLIP_API void clip_image_u8_free (struct clip_image_u8 * img);
|
||||
CLIP_API void clip_image_f32_free(struct clip_image_f32 * img);
|
||||
CLIP_API void clip_image_u8_batch_free (struct clip_image_u8_batch & batch);
|
||||
CLIP_API void clip_image_f32_batch_free(struct clip_image_f32_batch & batch);
|
||||
|
||||
CLIP_API bool clip_image_load_from_file(const char * fname, struct clip_image_u8 * img);
|
||||
|
||||
/** interpret bytes as an image file with length bytes_length, and use the result to populate img */
|
||||
CLIP_API bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img);
|
||||
|
||||
CLIP_API bool clip_image_preprocess (struct clip_ctx * ctx, const struct clip_image_u8 * img, struct clip_image_f32 * res, bool pad2square);
|
||||
/** preprocess img and store the result in res_imgs, pad_to_square may be overriden to false depending on model configuration */
|
||||
CLIP_API bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32_batch & res_imgs );
|
||||
|
||||
CLIP_API struct ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx);
|
||||
|
||||
CLIP_API bool clip_image_encode (struct clip_ctx * ctx, int n_threads, struct clip_image_f32 * img, float * vec);
|
||||
CLIP_API bool clip_image_batch_encode(struct clip_ctx * ctx, int n_threads, const struct clip_image_f32_batch * imgs, float * vec);
|
||||
|
||||
|
||||
@@ -71,25 +71,26 @@ def bytes_to_unicode():
|
||||
return dict(zip(bs, cs))
|
||||
|
||||
|
||||
ap = argparse.ArgumentParser(prog="convert_hf_to_gguf.py")
|
||||
ap = argparse.ArgumentParser()
|
||||
ap.add_argument("-m", "--model-dir", help="Path to model directory cloned from HF Hub", required=True)
|
||||
ap.add_argument("--use-f32", action="store_true", default=False, help="Use f32 instead of f16")
|
||||
ap.add_argument("--text-only", action="store_true", required=False,
|
||||
help="Save a text-only model. It can't be used to encode images")
|
||||
ap.add_argument("--vision-only", action="store_true", required=False,
|
||||
help="Save a vision-only model. It can't be used to encode texts")
|
||||
ap.add_argument("--clip_model_is_vision", action="store_true", required=False,
|
||||
ap.add_argument("--clip-model-is-vision", action="store_true", required=False,
|
||||
help="The clip model is a pure vision model (ShareGPT4V vision extract for example)")
|
||||
ap.add_argument("--clip-model-is-openclip", action="store_true", required=False,
|
||||
help="The clip model is from openclip (for ViT-SO400M type))")
|
||||
ap.add_argument("--llava-projector", help="Path to llava.projector file. If specified, save an image encoder for LLaVA models.")
|
||||
ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp", choices=["mlp", "ldp"], default="mlp")
|
||||
ap.add_argument("--image-mean", nargs=3, type=float, required=False, help="Override image mean values")
|
||||
ap.add_argument("--image-std", nargs=3, type=float, required=False, help="Override image std values")
|
||||
ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None)
|
||||
# Example --image_mean 0.48145466 0.4578275 0.40821073 --image_std 0.26862954 0.26130258 0.27577711
|
||||
# Example --image_mean 0.5 0.5 0.5 --image_std 0.5 0.5 0.5
|
||||
default_image_mean = [0.48145466, 0.4578275, 0.40821073]
|
||||
default_image_std = [0.26862954, 0.26130258, 0.27577711]
|
||||
ap.add_argument('--image_mean', type=float, nargs='+', help='Mean of the images for normalization (overrides processor) ', default=None)
|
||||
ap.add_argument('--image_std', type=float, nargs='+', help='Standard deviation of the images for normalization (overrides processor)', default=None)
|
||||
ap.add_argument('--image-mean', type=float, nargs='+', help='Mean of the images for normalization (overrides processor) ', default=None)
|
||||
ap.add_argument('--image-std', type=float, nargs='+', help='Standard deviation of the images for normalization (overrides processor)', default=None)
|
||||
|
||||
# with proper
|
||||
args = ap.parse_args()
|
||||
@@ -105,7 +106,7 @@ if args.use_f32:
|
||||
# output in the same directory as the model if output_dir is None
|
||||
dir_model = args.model_dir
|
||||
|
||||
if args.clip_model_is_vision:
|
||||
if args.clip_model_is_vision or not os.path.exists(dir_model + "/vocab.json") or args.clip_model_is_openclip:
|
||||
vocab = None
|
||||
tokens = None
|
||||
else:
|
||||
@@ -133,7 +134,7 @@ ftype = 1
|
||||
if args.use_f32:
|
||||
ftype = 0
|
||||
|
||||
if args.clip_model_is_vision:
|
||||
if args.clip_model_is_vision or args.clip_model_is_openclip:
|
||||
model = CLIPVisionModel.from_pretrained(dir_model)
|
||||
processor = None
|
||||
else:
|
||||
@@ -202,6 +203,57 @@ if has_vision_encoder:
|
||||
fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, VISION), v_hparams["layer_norm_eps"])
|
||||
block_count = v_hparams["num_hidden_layers"] - 1 if has_llava_projector else v_hparams["num_hidden_layers"]
|
||||
fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), block_count)
|
||||
# /**
|
||||
# "image_grid_pinpoints": [
|
||||
# [
|
||||
# 336,
|
||||
# 672
|
||||
# ],
|
||||
# [
|
||||
# 672,
|
||||
# 336
|
||||
# ],
|
||||
# [
|
||||
# 672,
|
||||
# 672
|
||||
# ],
|
||||
# [
|
||||
# 1008,
|
||||
# 336
|
||||
# ],
|
||||
# [
|
||||
# 336,
|
||||
# 1008
|
||||
# ]
|
||||
# ],
|
||||
# Flattened:
|
||||
# [
|
||||
# 336, 672,
|
||||
# 672, 336,
|
||||
# 672, 672,
|
||||
# 1008, 336,
|
||||
# 336, 1008
|
||||
# ]
|
||||
# *
|
||||
# */
|
||||
if "image_grid_pinpoints" in v_hparams:
|
||||
# flatten it
|
||||
image_grid_pinpoints = []
|
||||
for pinpoint in v_hparams["image_grid_pinpoints"]:
|
||||
for p in pinpoint:
|
||||
image_grid_pinpoints.append(p)
|
||||
fout.add_array("clip.vision.image_grid_pinpoints", image_grid_pinpoints)
|
||||
if "image_crop_resolution" in v_hparams:
|
||||
fout.add_uint32("clip.vision.image_crop_resolution", v_hparams["image_crop_resolution"])
|
||||
if "image_aspect_ratio" in v_hparams:
|
||||
fout.add_string("clip.vision.image_aspect_ratio", v_hparams["image_aspect_ratio"])
|
||||
if "image_split_resolution" in v_hparams:
|
||||
fout.add_uint32("clip.vision.image_split_resolution", v_hparams["image_split_resolution"])
|
||||
if "mm_patch_merge_type" in v_hparams:
|
||||
fout.add_string("clip.vision.mm_patch_merge_type", v_hparams["mm_patch_merge_type"])
|
||||
if "mm_projector_type" in v_hparams:
|
||||
fout.add_string("clip.vision.mm_projector_type", v_hparams["mm_projector_type"])
|
||||
|
||||
|
||||
if processor is not None:
|
||||
image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean
|
||||
|
||||
@@ -34,7 +34,7 @@ static bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) {
|
||||
|
||||
static bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){
|
||||
std::string str2 = str;
|
||||
std::vector<llama_token> embd_inp = ::llama_tokenize(ctx_llama, str2, add_bos);
|
||||
std::vector<llama_token> embd_inp = ::llama_tokenize(ctx_llama, str2, add_bos, true);
|
||||
eval_tokens(ctx_llama, embd_inp, n_batch, n_past);
|
||||
return true;
|
||||
}
|
||||
@@ -152,26 +152,32 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
|
||||
size_t image_pos = prompt.find("<image>");
|
||||
if (image_pos != std::string::npos) {
|
||||
// new templating mode: Provide the full prompt including system message and use <image> as a placeholder for the image
|
||||
|
||||
system_prompt = prompt.substr(0, image_pos);
|
||||
user_prompt = prompt.substr(image_pos + std::string("<image>").length());
|
||||
// We replace \n with actual newlines in user_prompt, just in case -e was not used in templating string
|
||||
size_t pos = 0;
|
||||
while ((pos = user_prompt.find("\\n", pos)) != std::string::npos) {
|
||||
user_prompt.replace(pos, 2, "\n");
|
||||
pos += 1; // Advance past the replaced newline
|
||||
}
|
||||
while ((pos = system_prompt.find("\\n", pos)) != std::string::npos) {
|
||||
system_prompt.replace(pos, 2, "\n");
|
||||
pos += 1; // Advance past the replaced newline
|
||||
}
|
||||
|
||||
printf("system_prompt: %s\n", system_prompt.c_str());
|
||||
if (params->verbose_prompt) {
|
||||
auto tmp = ::llama_tokenize(ctx_llava->ctx_llama, system_prompt, true, true);
|
||||
for (int i = 0; i < (int) tmp.size(); i++) {
|
||||
printf("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
|
||||
}
|
||||
}
|
||||
printf("user_prompt: %s\n", user_prompt.c_str());
|
||||
if (params->verbose_prompt) {
|
||||
auto tmp = ::llama_tokenize(ctx_llava->ctx_llama, user_prompt, true, true);
|
||||
for (int i = 0; i < (int) tmp.size(); i++) {
|
||||
printf("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// llava-1.5 native mode
|
||||
system_prompt = "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\nUSER:";
|
||||
user_prompt = prompt + "\nASSISTANT:";
|
||||
if (params->verbose_prompt) {
|
||||
auto tmp = ::llama_tokenize(ctx_llava->ctx_llama, user_prompt, true, true);
|
||||
for (int i = 0; i < (int) tmp.size(); i++) {
|
||||
printf("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
eval_string(ctx_llava->ctx_llama, system_prompt.c_str(), params->n_batch, &n_past, add_bos);
|
||||
@@ -183,13 +189,17 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
|
||||
fprintf(stderr, "\n");
|
||||
|
||||
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params->sparams);
|
||||
|
||||
std::string response = "";
|
||||
for (int i = 0; i < max_tgt_len; i++) {
|
||||
const char * tmp = sample(ctx_sampling, ctx_llava->ctx_llama, &n_past);
|
||||
response += tmp;
|
||||
if (strcmp(tmp, "</s>") == 0) break;
|
||||
if (strstr(tmp, "###")) break; // Yi-VL behavior
|
||||
|
||||
printf("%s", tmp);
|
||||
if (strstr(response.c_str(), "<|im_end|>")) break; // Yi-34B llava-1.6 - for some reason those decode not as the correct token (tokenizer works)
|
||||
if (strstr(response.c_str(), "<|im_start|>")) break; // Yi-34B llava-1.6
|
||||
if (strstr(response.c_str(), "USER:")) break; // mistral llava-1.6
|
||||
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
@@ -208,7 +218,8 @@ static struct llava_context * llava_init(gpt_params * params) {
|
||||
|
||||
auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
|
||||
|
||||
llama_backend_init(params->numa);
|
||||
llama_backend_init();
|
||||
llama_numa_init(params->numa);
|
||||
|
||||
llama_model_params model_params = llama_model_params_from_gpt_params(*params);
|
||||
|
||||
|
||||
167
examples/llava/llava-surgery-v2.py
Normal file
167
examples/llava/llava-surgery-v2.py
Normal file
@@ -0,0 +1,167 @@
|
||||
import argparse
|
||||
import glob
|
||||
import os
|
||||
import torch
|
||||
from safetensors.torch import load as safe_load, save as safe_save, safe_open, save_file
|
||||
|
||||
# Function to determine if file is a SafeTensor file
|
||||
def is_safetensor_file(file_path):
|
||||
return file_path.endswith('.safetensors')
|
||||
|
||||
|
||||
# Unified loading function
|
||||
def load_model(file_path):
|
||||
if is_safetensor_file(file_path):
|
||||
tensors = {}
|
||||
with safe_open(file_path, framework="pt", device="cpu") as f:
|
||||
for key in f.keys():
|
||||
tensors[key] = f.get_tensor(key).clone()
|
||||
# output shape
|
||||
print(f"{key} : {tensors[key].shape}")
|
||||
return tensors, 'safetensor'
|
||||
else:
|
||||
return torch.load(file_path, map_location=torch.device('cpu')), 'pytorch'
|
||||
|
||||
|
||||
# Unified saving function
|
||||
def save_model(model, file_path, file_type):
|
||||
if file_type == 'safetensor':
|
||||
# safe_save(model, file_path)
|
||||
save_file(model, file_path)
|
||||
else:
|
||||
torch.save(model, file_path)
|
||||
|
||||
|
||||
# Adapted function to clean vision tower from checkpoint
|
||||
def clean_vision_tower_from_checkpoint(checkpoint_path):
|
||||
checkpoint, file_type = load_model(checkpoint_path)
|
||||
# file_type = 'pytorch'
|
||||
model_path = os.path.dirname(checkpoint_path)
|
||||
print(f"Searching for vision tower tensors in {checkpoint_path}")
|
||||
clip_tensors = [k for k, v in checkpoint.items() if (k.startswith("model.vision_tower") or k.startswith("vit."))]
|
||||
|
||||
if len(clip_tensors) > 0:
|
||||
print(f"Found {len(clip_tensors)} tensors to extract from {checkpoint_path}")
|
||||
# Adapted for file type
|
||||
clip_path = os.path.join(model_path, "llava.clip")
|
||||
|
||||
if os.path.exists(clip_path):
|
||||
print(f"Loading existing llava.clip from {clip_path}")
|
||||
existing_clip, _ = load_model(clip_path)
|
||||
else:
|
||||
print(f"Creating new llava.clip at {clip_path}")
|
||||
existing_clip = {}
|
||||
# Update existing_clip with new tensors, avoid duplicates
|
||||
for name in clip_tensors:
|
||||
simple_name = name[name.index('vision_model.'):] if 'vision_model.' in name else name
|
||||
print(f"Adding {simple_name} to llava.clip")
|
||||
if simple_name not in existing_clip:
|
||||
existing_clip[simple_name] = checkpoint[name]
|
||||
|
||||
# Save the updated clip tensors back to llava.clip
|
||||
save_model(existing_clip, clip_path, 'pytorch')
|
||||
|
||||
# Remove the tensors from the original checkpoint
|
||||
for name in clip_tensors:
|
||||
del checkpoint[name]
|
||||
|
||||
# Save the updated checkpoint
|
||||
checkpoint_path = checkpoint_path
|
||||
save_model(checkpoint, checkpoint_path, file_type)
|
||||
return True
|
||||
return False
|
||||
|
||||
def find_relevant_checkpoints(checkpoint_paths, newline_criteria, projector):
|
||||
newline_checkpoint_path = None
|
||||
projector_checkpoint_path = None
|
||||
|
||||
for path in checkpoint_paths:
|
||||
checkpoint, _ = load_model(path)
|
||||
if newline_criteria(checkpoint) and newline_checkpoint_path is None:
|
||||
newline_checkpoint_path = path
|
||||
if projector(checkpoint):
|
||||
projector_checkpoint_path = path
|
||||
|
||||
return newline_checkpoint_path, projector_checkpoint_path
|
||||
|
||||
def newline_criteria(checkpoint):
|
||||
return any(k.startswith("model.image_newline") for k in checkpoint.keys())
|
||||
|
||||
def proj_criteria(checkpoint):
|
||||
return any(k.startswith("model.mm_projector") or k.startswith("vision_proj.") for k in checkpoint.keys())
|
||||
|
||||
|
||||
# Command-line interface setup
|
||||
ap = argparse.ArgumentParser()
|
||||
ap.add_argument("-m", "--model", required=True, help="Path to LLaVA v1.5+ model")
|
||||
ap.add_argument("-C", "--clean-vision-tower", action="store_true", help="Remove any vision tower from the model files")
|
||||
args = ap.parse_args()
|
||||
|
||||
if args.clean_vision_tower:
|
||||
# Generalized to handle both PyTorch and SafeTensors models
|
||||
model_files = sorted(glob.glob(f"{args.model}/*"), key=os.path.getmtime, reverse=True)
|
||||
# checkpoint_paths = [path for path in model_files if (path.endswith('.bin') and path.startswith('pytorch')) or (path.endswith('.safetensors') and path.startswith('model'))]
|
||||
checkpoint_paths = [path for path in model_files if (path.endswith('.bin') and 'pytorch' in path.split('/')[-1].split('\\')[-1]) or (path.endswith('.safetensors') and 'model' in path.split('/')[-1].split('\\')[-1])]
|
||||
for projector_checkpoint_path in checkpoint_paths:
|
||||
print(f"Cleaning {projector_checkpoint_path}")
|
||||
if not clean_vision_tower_from_checkpoint(projector_checkpoint_path):
|
||||
print(f"No vision tower found in {projector_checkpoint_path}")
|
||||
# we break once none is found, so far all models append them at the end
|
||||
# break
|
||||
print("Done! All vision tower tensors are removed from the model files and stored in llava.clip file.")
|
||||
|
||||
# Now we look for the projector in the last checkpoint
|
||||
model_files = sorted(glob.glob(f"{args.model}/*"), key=os.path.getmtime, reverse=True)
|
||||
checkpoint_paths = [path for path in model_files if (path.endswith('.bin') and 'pytorch' in path.split('/')[-1].split('\\')[-1]) or (path.endswith('.safetensors') and 'model' in path.split('/')[-1].split('\\')[-1])]
|
||||
# last_checkpoint_path = checkpoint_paths[0]
|
||||
# first_checkpoint_path = checkpoint_paths[-1]
|
||||
newline_checkpoint_path, projector_checkpoint_path = find_relevant_checkpoints(checkpoint_paths, newline_criteria, proj_criteria)
|
||||
|
||||
print(f"Taking projector from {projector_checkpoint_path}")
|
||||
first_mm_tensors = []
|
||||
first_checkpoint = None
|
||||
if newline_checkpoint_path is not None:
|
||||
print(f"Taking newline from {newline_checkpoint_path}")
|
||||
first_checkpoint, file_type = load_model(newline_checkpoint_path)
|
||||
first_mm_tensors = [k for k, v in first_checkpoint.items() if k.startswith("model.image_newline")]
|
||||
|
||||
# Load the checkpoint
|
||||
mm_tensors = []
|
||||
last_checkpoint = None
|
||||
if projector_checkpoint_path is not None:
|
||||
last_checkpoint, file_type = load_model(projector_checkpoint_path)
|
||||
mm_tensors = [k for k, v in last_checkpoint.items() if k.startswith("model.mm_projector") or k.startswith("vision_proj.")]
|
||||
|
||||
if len(mm_tensors) == 0:
|
||||
if last_checkpoint is not None:
|
||||
for k, v in last_checkpoint.items():
|
||||
print(k)
|
||||
print(f"Found {len(mm_tensors)} tensors to extract out of {len(last_checkpoint)} tensors.")
|
||||
print("No tensors found. Is this a LLaVA model?")
|
||||
exit()
|
||||
|
||||
print(f"Found {len(mm_tensors)} tensors to extract.")
|
||||
print(f"Found additional {len(first_mm_tensors)} tensors to extract.")
|
||||
# projector = {name: checkpoint.[name].float() for name in mm_tensors}
|
||||
projector = {}
|
||||
for name in mm_tensors:
|
||||
projector[name] = last_checkpoint[name].float()
|
||||
for name in first_mm_tensors:
|
||||
projector[name] = first_checkpoint[name].float()
|
||||
|
||||
if len(projector) > 0:
|
||||
save_model(projector, f"{args.model}/llava.projector", 'pytorch')
|
||||
|
||||
for name in mm_tensors:
|
||||
del last_checkpoint[name]
|
||||
for name in first_mm_tensors:
|
||||
del first_checkpoint[name]
|
||||
|
||||
if len(mm_tensors) > 0:
|
||||
save_model(last_checkpoint, projector_checkpoint_path, file_type)
|
||||
if len(first_mm_tensors) > 0:
|
||||
save_model(first_checkpoint, newline_checkpoint_path, file_type)
|
||||
|
||||
print("Done!")
|
||||
print(f"Now you can convert {args.model} to a a regular LLaMA GGUF file.")
|
||||
print(f"Also, use {args.model}/llava.projector to prepare a llava-encoder.gguf file.")
|
||||
@@ -19,10 +19,6 @@ mm_tensors = [k for k, v in checkpoint.items() if k.startswith("model.mm_project
|
||||
projector = {name: checkpoint[name].float() for name in mm_tensors}
|
||||
torch.save(projector, f"{args.model}/llava.projector")
|
||||
|
||||
# remove these tensors from the checkpoint and save it again
|
||||
for name in mm_tensors:
|
||||
del checkpoint[name]
|
||||
|
||||
# BakLLaVA models contain CLIP tensors in it
|
||||
clip_tensors = [k for k, v in checkpoint.items() if k.startswith("model.vision_tower")]
|
||||
if len(clip_tensors) > 0:
|
||||
@@ -39,8 +35,8 @@ if len(clip_tensors) > 0:
|
||||
f.write("{}\n")
|
||||
|
||||
|
||||
torch.save(checkpoint, path)
|
||||
torch.save(checkpoint, path)
|
||||
|
||||
print("Done!")
|
||||
print(f"Now you can convert {args.model} to a a regular LLaMA GGUF file.")
|
||||
print(f"Now you can convert {args.model} to a regular LLaMA GGUF file.")
|
||||
print(f"Also, use {args.model}/llava.projector to prepare a llava-encoder.gguf file.")
|
||||
|
||||
@@ -2,32 +2,296 @@
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
#include "llava.h"
|
||||
#include "base64.hpp"
|
||||
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
#include <vector>
|
||||
#include <numeric>
|
||||
|
||||
// RGB uint8 image
|
||||
struct clip_image_u8 {
|
||||
int nx;
|
||||
int ny;
|
||||
|
||||
std::vector<uint8_t> buf;
|
||||
};
|
||||
|
||||
// RGB float32 image (NHWC)
|
||||
// Memory layout: RGBRGBRGB...
|
||||
struct clip_image_f32 {
|
||||
int nx;
|
||||
int ny;
|
||||
|
||||
std::vector<float> buf;
|
||||
};
|
||||
|
||||
struct clip_image_grid_shape {
|
||||
int first;
|
||||
int second;
|
||||
};
|
||||
|
||||
/**
|
||||
* Selects the best resolution from a list of possible resolutions based on the original size.
|
||||
*
|
||||
* @param original_size The original size of the image in the format (width, height).
|
||||
* @param possible_resolutions A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
|
||||
* @return The best fit resolution in the format (width, height).
|
||||
*/
|
||||
static std::pair<int, int> select_best_resolution(const std::pair<int, int>& original_size, const std::vector<std::pair<int, int>>& possible_resolutions) {
|
||||
int original_width = original_size.first;
|
||||
int original_height = original_size.second;
|
||||
|
||||
std::pair<int, int> best_fit;
|
||||
int max_effective_resolution = 0;
|
||||
int min_wasted_resolution = std::numeric_limits<int>::max();
|
||||
|
||||
for (const auto& resolution : possible_resolutions) {
|
||||
int width = resolution.first;
|
||||
int height = resolution.second;
|
||||
float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height);
|
||||
int downscaled_width = static_cast<int>(original_width * scale);
|
||||
int downscaled_height = static_cast<int>(original_height * scale);
|
||||
int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
|
||||
int wasted_resolution = (width * height) - effective_resolution;
|
||||
// fprintf(stderr, "resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
|
||||
if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
|
||||
max_effective_resolution = effective_resolution;
|
||||
min_wasted_resolution = wasted_resolution;
|
||||
best_fit = resolution;
|
||||
}
|
||||
}
|
||||
|
||||
return best_fit;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Get the anyres image grid shape object
|
||||
*
|
||||
* @param image_size
|
||||
* @param grid_pinpoints
|
||||
* @param image_patch_size
|
||||
* @return <int, int>
|
||||
*/
|
||||
static struct clip_image_grid_shape get_anyres_image_grid_shape(const std::pair<int, int> & image_size, const std::vector<std::pair<int, int>> & grid_pinpoints, int image_patch_size) {
|
||||
/**
|
||||
Conversion from gguf flat array to vector:
|
||||
std::vector<std::pair<int, int>> possible_resolutions;
|
||||
for (int i = 0; i < 32 && params.image_grid_pinpoints[i] != 0; i+=2) {
|
||||
possible_resolutions.push_back({params.image_grid_pinpoints[i], params.image_grid_pinpoints[i+1]});
|
||||
}
|
||||
*/
|
||||
auto best_resolution = select_best_resolution(image_size, grid_pinpoints);
|
||||
return {best_resolution.first / image_patch_size, best_resolution.second / image_patch_size};
|
||||
}
|
||||
|
||||
// Take the image segments in a grid configuration and return the embeddings and the number of embeddings into preallocated memory (image_embd_out)
|
||||
static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *> & image_embd_v, struct clip_image_grid_shape grid_shape, float * image_embd_out, int * n_img_pos_out) {
|
||||
struct {
|
||||
struct ggml_tensor * newline;
|
||||
struct ggml_context * ctx;
|
||||
} model;
|
||||
|
||||
const int32_t image_size = clip_image_size(ctx_clip);
|
||||
const int32_t patch_size = clip_patch_size(ctx_clip);
|
||||
|
||||
int32_t num_patches_per_side = image_size / patch_size; // 336 / 14 = 24 - used for embedding-patching boxes (24*24 = 576 patches)
|
||||
|
||||
int num_patches_width = grid_shape.first; // grid 1-4
|
||||
int num_patches_height = grid_shape.second; // grid 1-4
|
||||
|
||||
const size_t num_images = num_patches_width * num_patches_height + 1;
|
||||
|
||||
// TODO: size calculation is not calculated - it's only tens of MB
|
||||
size_t ctx_size = 0;
|
||||
|
||||
{
|
||||
ctx_size += clip_embd_nbytes(ctx_clip) * num_images * 8; // image_features
|
||||
ctx_size += 1024*1024 * ggml_type_size(GGML_TYPE_F32);
|
||||
}
|
||||
|
||||
struct ggml_init_params params {
|
||||
/*.mem_size =*/ ctx_size,
|
||||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ false, // NOTE: this should be false when using the legacy API
|
||||
};
|
||||
|
||||
// Python reference code for full unpad:
|
||||
/*
|
||||
base_image_feature = image_feature[0]
|
||||
image_feature = image_feature[1:]
|
||||
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
|
||||
image_feature = image_feature.flatten(1, 2).flatten(2, 3)
|
||||
image_feature = unpad_image(image_feature, image_sizes[image_idx])
|
||||
image_feature = torch.cat((
|
||||
image_feature,
|
||||
self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1)
|
||||
), dim=-1)
|
||||
image_feature = image_feature.flatten(1, 2).transpose(0, 1)
|
||||
image_feature = torch.cat((base_image_feature, image_feature), dim=0)
|
||||
*/
|
||||
// We now have two options: unpad or no unpad. Unpad removes tokens for faster llm eval.
|
||||
// In terms of result quality it appears to make no difference, so we'll start with the easier approach given 5D tensors are not supported in ggml yet.
|
||||
// Without unpad we have to split the sub-image embeddings into patches of 24 features each and permute them.
|
||||
// Once all images are processed to prepended the base_image_features without any changes.
|
||||
|
||||
// Pytorch reference simplified, modified for ggml compatibility - confirmed identical output in python (for a 2x2 grid image (676x676 scaling))
|
||||
/*
|
||||
image_feature = image_feature.view(2, 2, 24, 24, 4096)
|
||||
image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
|
||||
image_feature = image_feature.view(2, 24, 2, 24, 4096)
|
||||
image_feature = image_feature.flatten(0, 3)
|
||||
|
||||
// Reshape to 4D tensor by merging the last two dimensions
|
||||
image_feature = image_feature.view(2, 2, 24, 24*4096)
|
||||
image_feature = image_feature.permute(0, 2, 1, 3).contiguous()
|
||||
image_feature = image_feature.view(-1, 4096)
|
||||
*/
|
||||
|
||||
model.ctx = ggml_init(params);
|
||||
|
||||
ggml_tensor * newline_tmp = clip_get_newline_tensor(ctx_clip);
|
||||
model.newline = ggml_new_tensor_1d(model.ctx, GGML_TYPE_F32, newline_tmp->ne[0]);
|
||||
if (newline_tmp->backend != GGML_BACKEND_CPU) {
|
||||
if (newline_tmp->buffer == NULL) {
|
||||
printf("newline_tmp tensor buffer is NULL\n");
|
||||
}
|
||||
ggml_backend_tensor_get(newline_tmp, model.newline->data, 0, ggml_nbytes(newline_tmp));
|
||||
} else {
|
||||
model.newline->data = newline_tmp->data;
|
||||
if (model.newline->data == NULL) {
|
||||
printf("newline_tmp tensor data is NULL\n");
|
||||
}
|
||||
}
|
||||
|
||||
struct ggml_tensor * image_features = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F32, clip_n_mmproj_embd(ctx_clip), clip_n_patches(ctx_clip), num_images - 1); // example: 4096 x 576 x 4
|
||||
// ggml_tensor_printf(image_features,"image_features",__LINE__,false,false);
|
||||
// fill it with the image embeddings, ignoring the base
|
||||
for (size_t i = 1; i < num_images; i++) {
|
||||
size_t offset = (i-1) * clip_embd_nbytes(ctx_clip);
|
||||
memcpy((uint8_t *)(image_features->data) + offset, image_embd_v[i], clip_embd_nbytes(ctx_clip));
|
||||
}
|
||||
|
||||
struct ggml_cgraph * gf = ggml_new_graph(model.ctx);
|
||||
size_t size_ele = ggml_type_size(GGML_TYPE_F32);
|
||||
|
||||
struct ggml_tensor *image_features_patchview = ggml_view_4d(model.ctx, image_features,
|
||||
num_patches_per_side * clip_n_mmproj_embd(ctx_clip),
|
||||
num_patches_per_side,
|
||||
num_patches_width,
|
||||
num_patches_height,
|
||||
size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip),
|
||||
size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip) * num_patches_per_side,
|
||||
size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip) * num_patches_per_side * num_patches_width, 0);
|
||||
// ggml_tensor_printf(image_features_patchview,"image_features_patchview",__LINE__,false,false);
|
||||
struct ggml_tensor *permuted_cont = ggml_cont(model.ctx, ggml_permute(model.ctx, image_features_patchview, 0, 2, 1, 3));
|
||||
/**
|
||||
At the end of each row we have to add the row_end embeddings, which are the same as the newline embeddings
|
||||
image_feature = torch.cat((
|
||||
image_feature,
|
||||
self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)
|
||||
), dim=-1)
|
||||
*
|
||||
*/
|
||||
|
||||
// ggml_tensor_printf(permuted_cont,"permuted_cont",__LINE__,false,false);
|
||||
struct ggml_tensor *flatten = ggml_view_2d(model.ctx, permuted_cont, clip_n_mmproj_embd(ctx_clip), num_patches_height * num_patches_width * num_patches_per_side * num_patches_per_side, size_ele * clip_n_mmproj_embd(ctx_clip), 0);
|
||||
// ggml_tensor_printf(flatten,"flatten",__LINE__,false,false);
|
||||
ggml_build_forward_expand(gf, flatten);
|
||||
ggml_graph_compute_with_ctx(model.ctx, gf, 1);
|
||||
struct ggml_tensor* result = gf->nodes[gf->n_nodes - 1];
|
||||
|
||||
memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as global context
|
||||
// append without newline tokens (default behavior in llava_arch when not using unpad ):
|
||||
memcpy(image_embd_out + clip_n_patches(ctx_clip) * clip_n_mmproj_embd(ctx_clip), (float*)result->data, clip_embd_nbytes(ctx_clip) * (num_images-1)); // grid patches
|
||||
*n_img_pos_out = static_cast<int>(result->ne[1]+clip_n_patches(ctx_clip));
|
||||
|
||||
// Debug: Test single segments
|
||||
// Current findings: sending base image, sending a segment embedding all works similar to python
|
||||
// However, permuted embeddings do not work yet (stride issue?)
|
||||
// memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as context
|
||||
// memcpy(image_embd_out, (float*)prepared_cont->data, clip_embd_nbytes(ctx_clip)); // main image as context
|
||||
// *n_img_pos_out=576;
|
||||
|
||||
ggml_free(model.ctx);
|
||||
return true;
|
||||
}
|
||||
|
||||
#include "base64.hpp"
|
||||
|
||||
static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_pos) {
|
||||
clip_image_f32 * img_res = clip_image_f32_init();
|
||||
if (!clip_image_preprocess(ctx_clip, img, img_res, /*pad2square =*/ true)) {
|
||||
// std::vector<clip_image_f32*> img_res_v; // format VectN x H x W x RGB (N x 336 x 336 x 3), so interleaved RGB - different to the python implementation which is N x 3 x 336 x 336
|
||||
clip_image_f32_batch img_res_v;
|
||||
img_res_v.size = 0;
|
||||
img_res_v.data = nullptr;
|
||||
if (!clip_image_preprocess(ctx_clip, img, img_res_v)) {
|
||||
fprintf(stderr, "%s: unable to preprocess image\n", __func__);
|
||||
clip_image_f32_free(img_res);
|
||||
delete[] img_res_v.data;
|
||||
return false;
|
||||
}
|
||||
|
||||
*n_img_pos = clip_n_patches(ctx_clip);
|
||||
|
||||
const int64_t t_img_enc_start_us = ggml_time_us();
|
||||
bool encoded = clip_image_encode(ctx_clip, n_threads, img_res, image_embd);
|
||||
clip_image_f32_free(img_res);
|
||||
if (!encoded) {
|
||||
fprintf(stderr, "Unable to encode image\n");
|
||||
|
||||
return false;
|
||||
const char * mm_patch_merge_type = clip_patch_merge_type(ctx_clip);
|
||||
|
||||
if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) {
|
||||
// flat / default llava-1.5 type embedding
|
||||
*n_img_pos = clip_n_patches(ctx_clip);
|
||||
bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd); // image_embd shape is 576 x 4096
|
||||
delete[] img_res_v.data;
|
||||
if (!encoded) {
|
||||
fprintf(stderr, "Unable to encode image\n");
|
||||
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
// spatial_unpad llava-1.6 type embedding
|
||||
// TODO: CLIP needs batching support - in HF the llm projection is separate after encoding, which might be a solution to quickly get batching working
|
||||
std::vector<float *> image_embd_v;
|
||||
image_embd_v.resize(img_res_v.size);
|
||||
for (size_t i = 0; i < img_res_v.size; i++) {
|
||||
image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip)); // 576 patches * 4096 embeddings * 4 bytes = 9437184
|
||||
const bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]); // image data is in 3x336x336 format and will be converted to 336x336x3 inside
|
||||
if (!encoded) {
|
||||
fprintf(stderr, "Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
const int64_t t_img_enc_batch_us = ggml_time_us();
|
||||
printf("%s: %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
|
||||
|
||||
const int32_t * image_grid = clip_image_grid(ctx_clip);
|
||||
|
||||
std::vector<std::pair<int, int>> grid_pinpoints;
|
||||
for (int i = 0; i < 32 && image_grid[i] != 0; i += 2) {
|
||||
grid_pinpoints.push_back({image_grid[i], image_grid[i+1]});
|
||||
}
|
||||
|
||||
// free all img_res_v - not needed anymore
|
||||
delete[] img_res_v.data;
|
||||
img_res_v.size = 0;
|
||||
img_res_v.data = nullptr;
|
||||
|
||||
const int32_t image_size = clip_image_size(ctx_clip);
|
||||
|
||||
struct clip_image_grid_shape grid_shape = get_anyres_image_grid_shape({img->nx,img->ny}, grid_pinpoints, image_size);
|
||||
|
||||
int n_img_pos_out;
|
||||
clip_llava_handle_patches(ctx_clip, image_embd_v, grid_shape, image_embd, &n_img_pos_out);
|
||||
*n_img_pos = n_img_pos_out;
|
||||
|
||||
for (size_t i = 0; i < image_embd_v.size(); i++) {
|
||||
free(image_embd_v[i]);
|
||||
}
|
||||
image_embd_v.clear();
|
||||
|
||||
// debug image/segment/normalization content:
|
||||
// clip_image_u8 * tmp = clip_image_u8_init();
|
||||
// clip_image_convert_f32_to_u8(*image_feature, *tmp);
|
||||
// clip_image_save_to_bmp(*tmp, "image_feature.bmp");
|
||||
}
|
||||
|
||||
printf("%s: image embedding created: %d tokens\n", __func__, *n_img_pos);
|
||||
|
||||
const int64_t t_img_enc_end_us = ggml_time_us();
|
||||
float t_img_enc_ms = (t_img_enc_end_us - t_img_enc_start_us) / 1000.0;
|
||||
|
||||
@@ -48,10 +312,9 @@ bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx *
|
||||
}
|
||||
|
||||
static bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) {
|
||||
float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip));
|
||||
float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*6); // TODO: base on gridsize/llava model
|
||||
if (!image_embd) {
|
||||
fprintf(stderr, "Unable to allocate memory for image embeddings\n");
|
||||
free(image_embd);
|
||||
return false;
|
||||
}
|
||||
|
||||
@@ -85,7 +348,7 @@ bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_
|
||||
return true;
|
||||
}
|
||||
|
||||
LLAVA_API struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length) {
|
||||
struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length) {
|
||||
clip_image_u8 * img = clip_image_u8_init();
|
||||
if (!clip_image_load_from_bytes(image_bytes, image_bytes_length, img)) {
|
||||
clip_image_u8_free(img);
|
||||
@@ -142,7 +405,7 @@ static bool load_file_to_bytes(const char* path, unsigned char** bytesOut, long
|
||||
return true;
|
||||
}
|
||||
|
||||
LLAVA_API struct llava_image_embed * llava_image_embed_make_with_filename(struct clip_ctx * ctx_clip, int n_threads, const char * image_path) {
|
||||
struct llava_image_embed * llava_image_embed_make_with_filename(struct clip_ctx * ctx_clip, int n_threads, const char * image_path) {
|
||||
unsigned char* image_bytes;
|
||||
long image_bytes_length;
|
||||
auto loaded = load_file_to_bytes(image_path, &image_bytes, &image_bytes_length);
|
||||
@@ -151,13 +414,13 @@ LLAVA_API struct llava_image_embed * llava_image_embed_make_with_filename(struct
|
||||
return NULL;
|
||||
}
|
||||
|
||||
auto embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, image_bytes, image_bytes_length);
|
||||
llava_image_embed *embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, image_bytes, image_bytes_length);
|
||||
free(image_bytes);
|
||||
|
||||
return embed;
|
||||
}
|
||||
|
||||
LLAVA_API void llava_image_embed_free(struct llava_image_embed * embed) {
|
||||
void llava_image_embed_free(struct llava_image_embed * embed) {
|
||||
free(embed->embed);
|
||||
free(embed);
|
||||
}
|
||||
|
||||
@@ -3,7 +3,6 @@
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
|
||||
#ifdef LLAMA_SHARED
|
||||
# if defined(_WIN32) && !defined(__MINGW32__)
|
||||
# ifdef LLAMA_BUILD
|
||||
@@ -42,7 +41,6 @@ LLAVA_API void llava_image_embed_free(struct llava_image_embed * embed);
|
||||
/** write the image represented by embed into the llama context with batch size n_batch, starting at context pos n_past. on completion, n_past points to the next position in the context after the image embed. */
|
||||
LLAVA_API bool llava_eval_image_embed(struct llama_context * ctx_llama, const struct llava_image_embed * embed, int n_batch, int * n_past);
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
3
examples/llava/requirements.txt
Normal file
3
examples/llava/requirements.txt
Normal file
@@ -0,0 +1,3 @@
|
||||
-r ../../requirements/requirements-convert.txt
|
||||
pillow~=10.2.0
|
||||
torch~=2.1.1
|
||||
@@ -54,7 +54,8 @@ int main(int argc, char ** argv) {
|
||||
#endif // LOG_DISABLE_LOGS
|
||||
|
||||
// init llama.cpp
|
||||
llama_backend_init(params.numa);
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
llama_model * model = NULL;
|
||||
llama_context * ctx = NULL;
|
||||
|
||||
@@ -1,7 +1,9 @@
|
||||
#include "common.h"
|
||||
#include "ggml.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <cstdint>
|
||||
#include <cstdio>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
@@ -29,7 +31,8 @@ int main(int argc, char ** argv){
|
||||
#endif // LOG_DISABLE_LOGS
|
||||
|
||||
// init llama.cpp
|
||||
llama_backend_init(params.numa);
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
llama_model * model = NULL;
|
||||
llama_context * ctx = NULL;
|
||||
@@ -73,6 +76,8 @@ int main(int argc, char ** argv){
|
||||
int n_drafted = 0;
|
||||
int n_accept = 0;
|
||||
|
||||
int64_t t_draft_us = 0;
|
||||
|
||||
int n_past = inp.size();
|
||||
|
||||
bool has_eos = false;
|
||||
@@ -160,7 +165,7 @@ int main(int argc, char ** argv){
|
||||
|
||||
// generate n_pred tokens through prompt lookup
|
||||
auto prompt_lookup = [&]() -> void {
|
||||
int inp_size = inp.size();
|
||||
const int inp_size = inp.size();
|
||||
for (int ngram_size = ngram_max ; ngram_size > ngram_min; --ngram_size){
|
||||
const llama_token * ngram = &inp[inp_size - ngram_size];
|
||||
|
||||
@@ -191,8 +196,12 @@ int main(int argc, char ** argv){
|
||||
return;
|
||||
};
|
||||
|
||||
const int64_t t_start_draft_us = ggml_time_us();
|
||||
|
||||
prompt_lookup();
|
||||
|
||||
t_draft_us += ggml_time_us() - t_start_draft_us;
|
||||
|
||||
llama_decode(ctx, batch_tgt);
|
||||
++n_past;
|
||||
|
||||
@@ -210,6 +219,8 @@ int main(int argc, char ** argv){
|
||||
LOG_TEE("n_draft = %d\n", n_draft);
|
||||
LOG_TEE("n_predict = %d\n", n_predict);
|
||||
LOG_TEE("n_drafted = %d\n", n_drafted);
|
||||
LOG_TEE("t_draft = %.2f ms, %.2f us per token, %.2f tokens per second\n",
|
||||
t_draft_us*1e-3, 1.0f*t_draft_us/n_drafted, n_drafted/(1e-6*t_draft_us));
|
||||
LOG_TEE("n_accept = %d\n", n_accept);
|
||||
LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
|
||||
|
||||
|
||||
@@ -283,7 +283,11 @@ These options help improve the performance and memory usage of the LLaMA models.
|
||||
|
||||
### NUMA support
|
||||
|
||||
- `--numa`: Attempt optimizations that help on some systems with non-uniform memory access. This currently consists of pinning an equal proportion of the threads to the cores on each NUMA node, and disabling prefetch and readahead for mmap. The latter causes mapped pages to be faulted in on first access instead of all at once, and in combination with pinning threads to NUMA nodes, more of the pages end up on the NUMA node where they are used. Note that if the model is already in the system page cache, for example because of a previous run without this option, this will have little effect unless you drop the page cache first. This can be done by rebooting the system or on Linux by writing '3' to '/proc/sys/vm/drop_caches' as root.
|
||||
- `--numa distribute`: Pin an equal proportion of the threads to the cores on each NUMA node. This will spread the load amongst all cores on the system, utilitizing all memory channels at the expense of potentially requiring memory to travel over the slow links between nodes.
|
||||
- `--numa isolate`: Pin all threads to the NUMA node that the program starts on. This limits the number of cores and amount of memory that can be used, but guarantees all memory access remains local to the NUMA node.
|
||||
- `--numa numactl`: Pin threads to the CPUMAP that is passed to the program by starting it with the numactl utility. This is the most flexible mode, and allow arbitraty core usage patterns, for example a map that uses all the cores on one NUMA nodes, and just enough cores on a second node to saturate the inter-node memory bus.
|
||||
|
||||
These flags attempt optimizations that help on some systems with non-uniform memory access. This currently consists of one of the above strategies, and disabling prefetch and readahead for mmap. The latter causes mapped pages to be faulted in on first access instead of all at once, and in combination with pinning threads to NUMA nodes, more of the pages end up on the NUMA node where they are used. Note that if the model is already in the system page cache, for example because of a previous run without this option, this will have little effect unless you drop the page cache first. This can be done by rebooting the system or on Linux by writing '3' to '/proc/sys/vm/drop_caches' as root.
|
||||
|
||||
### Memory Float 32
|
||||
|
||||
|
||||
@@ -39,6 +39,17 @@ static std::ostringstream * g_output_ss;
|
||||
static std::vector<llama_token> * g_output_tokens;
|
||||
static bool is_interacting = false;
|
||||
|
||||
static bool file_exists(const std::string &path) {
|
||||
std::ifstream f(path.c_str());
|
||||
return f.good();
|
||||
}
|
||||
|
||||
static bool file_is_empty(const std::string &path) {
|
||||
std::ifstream f;
|
||||
f.exceptions(std::ifstream::failbit | std::ifstream::badbit);
|
||||
f.open(path.c_str(), std::ios::in | std::ios::binary | std::ios::ate);
|
||||
return f.tellg() == 0;
|
||||
}
|
||||
|
||||
static void write_logfile(
|
||||
const llama_context * ctx, const gpt_params & params, const llama_model * model,
|
||||
@@ -87,7 +98,7 @@ static void write_logfile(
|
||||
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
|
||||
static void sigint_handler(int signo) {
|
||||
if (signo == SIGINT) {
|
||||
if (!is_interacting) {
|
||||
if (!is_interacting && g_params->interactive) {
|
||||
is_interacting = true;
|
||||
} else {
|
||||
console::cleanup();
|
||||
@@ -174,7 +185,8 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
LOG("%s: llama backend init\n", __func__);
|
||||
llama_backend_init(params.numa);
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
llama_model * model;
|
||||
llama_context * ctx;
|
||||
@@ -215,12 +227,12 @@ int main(int argc, char ** argv) {
|
||||
|
||||
if (!path_session.empty()) {
|
||||
LOG_TEE("%s: attempting to load saved session from '%s'\n", __func__, path_session.c_str());
|
||||
|
||||
// fopen to check for existing session
|
||||
FILE * fp = std::fopen(path_session.c_str(), "rb");
|
||||
if (fp != NULL) {
|
||||
std::fclose(fp);
|
||||
|
||||
if (!file_exists(path_session)) {
|
||||
LOG_TEE("%s: session file does not exist, will create.\n", __func__);
|
||||
} else if (file_is_empty(path_session)) {
|
||||
LOG_TEE("%s: The session file is empty. A new session will be initialized.\n", __func__);
|
||||
} else {
|
||||
// The file exists and is not empty
|
||||
session_tokens.resize(n_ctx);
|
||||
size_t n_token_count_out = 0;
|
||||
if (!llama_load_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) {
|
||||
@@ -229,10 +241,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
session_tokens.resize(n_token_count_out);
|
||||
llama_set_rng_seed(ctx, params.seed);
|
||||
|
||||
LOG_TEE("%s: loaded a session with prompt size of %d tokens\n", __func__, (int) session_tokens.size());
|
||||
} else {
|
||||
LOG_TEE("%s: session file does not exist, will create\n", __func__);
|
||||
LOG_TEE("%s: loaded a session with prompt size of %d tokens\n", __func__, (int)session_tokens.size());
|
||||
}
|
||||
}
|
||||
|
||||
@@ -344,12 +353,12 @@ int main(int argc, char ** argv) {
|
||||
// in instruct mode, we inject a prefix and a suffix to each input by the user
|
||||
if (params.instruct) {
|
||||
params.interactive_first = true;
|
||||
params.antiprompt.push_back("### Instruction:\n\n");
|
||||
params.antiprompt.emplace_back("### Instruction:\n\n");
|
||||
}
|
||||
// similar for chatml mode
|
||||
else if (params.chatml) {
|
||||
params.interactive_first = true;
|
||||
params.antiprompt.push_back("<|im_start|>user\n");
|
||||
params.antiprompt.emplace_back("<|im_start|>user\n");
|
||||
}
|
||||
|
||||
// enable interactive mode if interactive start is specified
|
||||
@@ -384,7 +393,8 @@ int main(int argc, char ** argv) {
|
||||
LOG_TEE("\n");
|
||||
}
|
||||
|
||||
if (params.interactive) {
|
||||
// ctrl+C handling
|
||||
{
|
||||
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
|
||||
struct sigaction sigint_action;
|
||||
sigint_action.sa_handler = sigint_handler;
|
||||
@@ -397,7 +407,9 @@ int main(int argc, char ** argv) {
|
||||
};
|
||||
SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
|
||||
#endif
|
||||
}
|
||||
|
||||
if (params.interactive) {
|
||||
LOG_TEE("%s: interactive mode on.\n", __func__);
|
||||
|
||||
if (!params.antiprompt.empty()) {
|
||||
|
||||
@@ -122,7 +122,8 @@ int main(int argc, char ** argv) {
|
||||
#endif // LOG_DISABLE_LOGS
|
||||
|
||||
// init llama.cpp
|
||||
llama_backend_init(params.numa);
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
llama_model * model = NULL;
|
||||
llama_context * ctx = NULL;
|
||||
|
||||
@@ -71,7 +71,8 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// init LLM
|
||||
|
||||
llama_backend_init(params.numa);
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
// initialize the model
|
||||
|
||||
|
||||
@@ -457,14 +457,14 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
||||
|
||||
std::ofstream logits_stream;
|
||||
if (!params.logits_file.empty()) {
|
||||
logits_stream.open(params.logits_file.c_str());
|
||||
logits_stream.open(params.logits_file.c_str(), std::ios::binary);
|
||||
if (!logits_stream.is_open()) {
|
||||
fprintf(stderr, "%s: failed to open %s for writing\n", __func__, params.logits_file.c_str());
|
||||
return {};
|
||||
}
|
||||
fprintf(stderr, "%s: saving all logits to %s\n", __func__, params.logits_file.c_str());
|
||||
logits_stream.write("_logits_", 8);
|
||||
logits_stream.write((const char *)&n_ctx, sizeof(n_ctx));
|
||||
logits_stream.write(reinterpret_cast<const char *>(&n_ctx), sizeof(n_ctx));
|
||||
}
|
||||
|
||||
auto tim1 = std::chrono::high_resolution_clock::now();
|
||||
@@ -881,7 +881,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
||||
size_t li = hs_cur.common_prefix;
|
||||
for (int s = 0; s < 4; ++s) {
|
||||
for (size_t j = hs_cur.common_prefix; j < hs_cur.seq_tokens[s].size() - 1; j++) {
|
||||
eval_pairs.push_back(std::make_pair(hs_cur.i_batch + li++, hs_cur.seq_tokens[s][j + 1]));
|
||||
eval_pairs.emplace_back(hs_cur.i_batch + li++, hs_cur.seq_tokens[s][j + 1]);
|
||||
}
|
||||
++li;
|
||||
}
|
||||
@@ -1159,13 +1159,13 @@ static void winogrande_score(llama_context * ctx, const gpt_params & params) {
|
||||
const int last_1st = task.seq_tokens[0].size() - n_base1 > 1 ? 1 : 0;
|
||||
size_t li = n_base1 - 1;
|
||||
for (size_t j = n_base1-1; j < task.seq_tokens[0].size()-1-last_1st; ++j) {
|
||||
eval_pairs.push_back(std::make_pair(task.i_batch + li++, task.seq_tokens[0][j+1]));
|
||||
eval_pairs.emplace_back(task.i_batch + li++, task.seq_tokens[0][j+1]);
|
||||
}
|
||||
const auto& n_base2 = skip_choice ? task.n_base2 : task.common_prefix;
|
||||
const int last_2nd = task.seq_tokens[1].size() - n_base2 > 1 ? 1 : 0;
|
||||
li = task.seq_tokens[0].size() - task.common_prefix + n_base2 - 1;
|
||||
for (size_t j = n_base2-1; j < task.seq_tokens[1].size()-1-last_2nd; ++j) {
|
||||
eval_pairs.push_back(std::make_pair(task.i_batch + li++, task.seq_tokens[1][j+1]));
|
||||
eval_pairs.emplace_back(task.i_batch + li++, task.seq_tokens[1][j+1]);
|
||||
}
|
||||
}
|
||||
compute_logprobs(batch_logits.data(), n_vocab, workers, eval_pairs, eval_results);
|
||||
@@ -1524,7 +1524,7 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
|
||||
size_t li = cur_task.common_prefix;
|
||||
for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) {
|
||||
for (size_t j = cur_task.common_prefix; j < cur_task.seq_tokens[s].size() - 1; j++) {
|
||||
eval_pairs.push_back(std::make_pair(cur_task.i_batch + li++, cur_task.seq_tokens[s][j + 1]));
|
||||
eval_pairs.emplace_back(cur_task.i_batch + li++, cur_task.seq_tokens[s][j + 1]);
|
||||
}
|
||||
++li;
|
||||
}
|
||||
@@ -1623,7 +1623,7 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) {
|
||||
uint32_t n_ctx;
|
||||
in.read((char *)&n_ctx, sizeof(n_ctx));
|
||||
if (n_ctx > llama_n_ctx(ctx)) {
|
||||
fprintf(stderr, "%s: %s has been computed with %d, while the current context is %d. Increase it with -c and retry\n",
|
||||
fprintf(stderr, "%s: %s has been computed with %u, while the current context is %d. Increase it with -c and retry\n",
|
||||
__func__, params.logits_file.c_str(), n_ctx, params.n_ctx);
|
||||
}
|
||||
|
||||
@@ -1809,7 +1809,8 @@ int main(int argc, char ** argv) {
|
||||
params.prompt = gpt_random_prompt(rng);
|
||||
}
|
||||
|
||||
llama_backend_init(params.numa);
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
llama_model * model;
|
||||
llama_context * ctx;
|
||||
|
||||
@@ -257,13 +257,13 @@ int main(int argc, char ** argv) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.include_layers.push_back(argv[i]);
|
||||
params.include_layers.emplace_back(argv[i]);
|
||||
} else if (arg == "-L" || arg == "--exclude-layer") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.exclude_layers.push_back(argv[i]);
|
||||
params.exclude_layers.emplace_back(argv[i]);
|
||||
} else if (arg == "-t" || arg == "--type") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@@ -378,6 +378,8 @@ int main(int argc, char ** argv) {
|
||||
printf("testing %s ...\n", ggml_type_name(type));
|
||||
}
|
||||
|
||||
ggml_quantize_init(type);
|
||||
|
||||
error_stats global_stats {};
|
||||
|
||||
for (const auto& kv_tensor : tensors) {
|
||||
|
||||
@@ -23,8 +23,10 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = {
|
||||
{ "Q5_1", LLAMA_FTYPE_MOSTLY_Q5_1, " 4.70G, +0.0349 ppl @ LLaMA-v1-7B", },
|
||||
{ "IQ2_XXS",LLAMA_FTYPE_MOSTLY_IQ2_XXS," 2.06 bpw quantization", },
|
||||
{ "IQ2_XS", LLAMA_FTYPE_MOSTLY_IQ2_XS, " 2.31 bpw quantization", },
|
||||
{ "IQ1_S", LLAMA_FTYPE_MOSTLY_IQ1_S, " 1.56 bpw quantization", },
|
||||
{ "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.63G, +0.6717 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q2_K_S", LLAMA_FTYPE_MOSTLY_Q2_K_S, " 2.16G, +9.0634 ppl @ LLaMA-v1-7B", },
|
||||
{ "IQ3_XXS",LLAMA_FTYPE_MOSTLY_IQ3_XXS," 3.06 bpw quantization", },
|
||||
{ "Q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M, "alias for Q3_K_M" },
|
||||
{ "Q3_K_XS",LLAMA_FTYPE_MOSTLY_Q3_K_XS,"3-bit extra small quantization" , },
|
||||
{ "Q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S, " 2.75G, +0.5551 ppl @ LLaMA-v1-7B", },
|
||||
@@ -36,7 +38,7 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = {
|
||||
{ "Q5_K", LLAMA_FTYPE_MOSTLY_Q5_K_M, "alias for Q5_K_M", },
|
||||
{ "Q5_K_S", LLAMA_FTYPE_MOSTLY_Q5_K_S, " 4.33G, +0.0400 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M, " 4.45G, +0.0122 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q6_K", LLAMA_FTYPE_MOSTLY_Q6_K, " 5.15G, -0.0008 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q6_K", LLAMA_FTYPE_MOSTLY_Q6_K, " 5.15G, +0.0008 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q8_0", LLAMA_FTYPE_MOSTLY_Q8_0, " 6.70G, +0.0004 ppl @ LLaMA-v1-7B", },
|
||||
{ "F16", LLAMA_FTYPE_MOSTLY_F16, "13.00G @ 7B", },
|
||||
{ "F32", LLAMA_FTYPE_ALL_F32, "26.00G @ 7B", },
|
||||
@@ -207,13 +209,13 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
} else if (strcmp(argv[arg_idx], "--include-weights") == 0) {
|
||||
if (arg_idx < argc-1) {
|
||||
included_weights.push_back(argv[++arg_idx]);
|
||||
included_weights.emplace_back(argv[++arg_idx]);
|
||||
} else {
|
||||
usage(argv[0]);
|
||||
}
|
||||
} else if (strcmp(argv[arg_idx], "--exclude-weights") == 0) {
|
||||
if (arg_idx < argc-1) {
|
||||
excluded_weights.push_back(argv[++arg_idx]);
|
||||
excluded_weights.emplace_back(argv[++arg_idx]);
|
||||
} else {
|
||||
usage(argv[0]);
|
||||
}
|
||||
@@ -236,7 +238,7 @@ int main(int argc, char ** argv) {
|
||||
params.imatrix = &imatrix_data;
|
||||
}
|
||||
|
||||
llama_backend_init(false);
|
||||
llama_backend_init();
|
||||
|
||||
// parse command line arguments
|
||||
const std::string fname_inp = argv[arg_idx];
|
||||
@@ -286,9 +288,10 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
|
||||
if ((params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || params.ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) && imatrix_data.empty()) {
|
||||
if ((params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS ||
|
||||
params.ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S || params.ftype == LLAMA_FTYPE_MOSTLY_IQ1_S) && imatrix_data.empty()) {
|
||||
fprintf(stderr, "\n===============================================================================================\n");
|
||||
fprintf(stderr, "Please do not use IQ2_XXS, IQ2_XS or Q2_K_S quantization without an importance matrix\n");
|
||||
fprintf(stderr, "Please do not use IQ1_S, IQ2_XXS, IQ2_XS or Q2_K_S quantization without an importance matrix\n");
|
||||
fprintf(stderr, "===============================================================================================\n\n\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
@@ -4,34 +4,44 @@ This example demonstrates a simple HTTP API server and a simple web front end to
|
||||
|
||||
Command line options:
|
||||
|
||||
- `--threads N`, `-t N`: Set the number of threads to use during generation.
|
||||
- `-tb N, --threads-batch N`: Set the number of threads to use during batch and prompt processing. If not specified, the number of threads will be set to the number of threads used for generation.
|
||||
- `-m FNAME`, `--model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.gguf`).
|
||||
- `-a ALIAS`, `--alias ALIAS`: Set an alias for the model. The alias will be returned in API responses.
|
||||
- `-c N`, `--ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference. The size may differ in other models, for example, baichuan models were build with a context of 4096.
|
||||
- `-ngl N`, `--n-gpu-layers N`: When compiled with appropriate support (currently CLBlast or cuBLAS), this option allows offloading some layers to the GPU for computation. Generally results in increased performance.
|
||||
- `-mg i, --main-gpu i`: When using multiple GPUs this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default GPU 0 is used. Requires cuBLAS.
|
||||
- `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance. Requires cuBLAS.
|
||||
- `-b N`, `--batch-size N`: Set the batch size for prompt processing. Default: `512`.
|
||||
- `--memory-f32`: Use 32-bit floats instead of 16-bit floats for memory key+value. Not recommended.
|
||||
- `--mlock`: Lock the model in memory, preventing it from being swapped out when memory-mapped.
|
||||
- `--no-mmap`: Do not memory-map the model. By default, models are mapped into memory, which allows the system to load only the necessary parts of the model as needed.
|
||||
- `--numa`: Attempt optimizations that help on some NUMA systems.
|
||||
- `--lora FNAME`: Apply a LoRA (Low-Rank Adaptation) adapter to the model (implies --no-mmap). This allows you to adapt the pretrained model to specific tasks or domains.
|
||||
- `--lora-base FNAME`: Optional model to use as a base for the layers modified by the LoRA adapter. This flag is used in conjunction with the `--lora` flag, and specifies the base model for the adaptation.
|
||||
- `-to N`, `--timeout N`: Server read/write timeout in seconds. Default `600`.
|
||||
- `--host`: Set the hostname or ip address to listen. Default `127.0.0.1`.
|
||||
- `--port`: Set the port to listen. Default: `8080`.
|
||||
- `--path`: path from which to serve static files (default examples/server/public)
|
||||
- `--api-key`: Set an api key for request authorization. By default the server responds to every request. With an api key set, the requests must have the Authorization header set with the api key as Bearer token. May be used multiple times to enable multiple valid keys.
|
||||
- `--api-key-file`: path to file containing api keys delimited by new lines. If set, requests must include one of the keys for access. May be used in conjunction with `--api-key`'s.
|
||||
- `--embedding`: Enable embedding extraction, Default: disabled.
|
||||
- `-np N`, `--parallel N`: Set the number of slots for process requests (default: 1)
|
||||
- `-cb`, `--cont-batching`: enable continuous batching (a.k.a dynamic batching) (default: disabled)
|
||||
- `-spf FNAME`, `--system-prompt-file FNAME` Set a file to load "a system prompt (initial prompt of all slots), this is useful for chat applications. [See more](#change-system-prompt-on-runtime)
|
||||
- `--mmproj MMPROJ_FILE`: Path to a multimodal projector file for LLaVA.
|
||||
- `--grp-attn-n`: Set the group attention factor to extend context size through self-extend(default: 1=disabled), used together with group attention width `--grp-attn-w`
|
||||
- `--grp-attn-w`: Set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n`
|
||||
- `--threads N`, `-t N`: Set the number of threads to use during generation.
|
||||
- `-tb N, --threads-batch N`: Set the number of threads to use during batch and prompt processing. If not specified, the number of threads will be set to the number of threads used for generation.
|
||||
- `-m FNAME`, `--model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.gguf`).
|
||||
- `-a ALIAS`, `--alias ALIAS`: Set an alias for the model. The alias will be returned in API responses.
|
||||
- `-c N`, `--ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference. The size may differ in other models, for example, baichuan models were build with a context of 4096.
|
||||
- `-ngl N`, `--n-gpu-layers N`: When compiled with appropriate support (currently CLBlast or cuBLAS), this option allows offloading some layers to the GPU for computation. Generally results in increased performance.
|
||||
- `-mg i, --main-gpu i`: When using multiple GPUs this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default GPU 0 is used. Requires cuBLAS.
|
||||
- `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance. Requires cuBLAS.
|
||||
- `-b N`, `--batch-size N`: Set the batch size for prompt processing. Default: `512`.
|
||||
- `--memory-f32`: Use 32-bit floats instead of 16-bit floats for memory key+value. Not recommended.
|
||||
- `--mlock`: Lock the model in memory, preventing it from being swapped out when memory-mapped.
|
||||
- `--no-mmap`: Do not memory-map the model. By default, models are mapped into memory, which allows the system to load only the necessary parts of the model as needed.
|
||||
- `--numa STRATEGY`: Attempt one of the below optimization strategies that help on some NUMA systems
|
||||
- `--numa distribute`: Spread execution evenly over all nodes
|
||||
- `--numa isolate`: Only spawn threads on CPUs on the node that execution started on
|
||||
- `--numa numactl`: Use the CPU map provided by numactl
|
||||
if run without this previously, it is recommended to drop the system page cache before using this
|
||||
see https://github.com/ggerganov/llama.cpp/issues/1437
|
||||
|
||||
- `--numa`: Attempt optimizations that help on some NUMA systems.
|
||||
- `--lora FNAME`: Apply a LoRA (Low-Rank Adaptation) adapter to the model (implies --no-mmap). This allows you to adapt the pretrained model to specific tasks or domains.
|
||||
- `--lora-base FNAME`: Optional model to use as a base for the layers modified by the LoRA adapter. This flag is used in conjunction with the `--lora` flag, and specifies the base model for the adaptation.
|
||||
- `-to N`, `--timeout N`: Server read/write timeout in seconds. Default `600`.
|
||||
- `--host`: Set the hostname or ip address to listen. Default `127.0.0.1`.
|
||||
- `--port`: Set the port to listen. Default: `8080`.
|
||||
- `--path`: path from which to serve static files (default examples/server/public)
|
||||
- `--api-key`: Set an api key for request authorization. By default the server responds to every request. With an api key set, the requests must have the Authorization header set with the api key as Bearer token. May be used multiple times to enable multiple valid keys.
|
||||
- `--api-key-file`: path to file containing api keys delimited by new lines. If set, requests must include one of the keys for access. May be used in conjunction with `--api-key`'s.
|
||||
- `--embedding`: Enable embedding extraction, Default: disabled.
|
||||
- `-np N`, `--parallel N`: Set the number of slots for process requests (default: 1)
|
||||
- `-cb`, `--cont-batching`: enable continuous batching (a.k.a dynamic batching) (default: disabled)
|
||||
- `-spf FNAME`, `--system-prompt-file FNAME` Set a file to load "a system prompt (initial prompt of all slots), this is useful for chat applications. [See more](#change-system-prompt-on-runtime)
|
||||
- `--mmproj MMPROJ_FILE`: Path to a multimodal projector file for LLaVA.
|
||||
- `--grp-attn-n`: Set the group attention factor to extend context size through self-extend(default: 1=disabled), used together with group attention width `--grp-attn-w`
|
||||
- `--grp-attn-w`: Set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n`
|
||||
- `-n, --n-predict`: Set the maximum tokens to predict (default: -1)
|
||||
- `--slots-endpoint-disable`: To disable slots state monitoring endpoint. Slots state may contain user data, prompts included.
|
||||
|
||||
## Build
|
||||
|
||||
server is build alongside everything else from the root of the project
|
||||
@@ -52,21 +62,23 @@ server is build alongside everything else from the root of the project
|
||||
|
||||
To get started right away, run the following command, making sure to use the correct path for the model you have:
|
||||
|
||||
### Unix-based systems (Linux, macOS, etc.):
|
||||
### Unix-based systems (Linux, macOS, etc.)
|
||||
|
||||
```bash
|
||||
./server -m models/7B/ggml-model.gguf -c 2048
|
||||
```
|
||||
|
||||
### Windows:
|
||||
### Windows
|
||||
|
||||
```powershell
|
||||
server.exe -m models\7B\ggml-model.gguf -c 2048
|
||||
```
|
||||
|
||||
The above command will start a server that by default listens on `127.0.0.1:8080`.
|
||||
You can consume the endpoints with Postman or NodeJS with axios library. You can visit the web front end at the same url.
|
||||
|
||||
### Docker:
|
||||
### Docker
|
||||
|
||||
```bash
|
||||
docker run -p 8080:8080 -v /path/to/models:/models ggerganov/llama.cpp:server -m models/7B/ggml-model.gguf -c 512 --host 0.0.0.0 --port 8080
|
||||
|
||||
@@ -120,12 +132,14 @@ node index.js
|
||||
```
|
||||
|
||||
## API Endpoints
|
||||
- **GET** `/health`: Returns the current state of the server:
|
||||
- `{"status": "loading model"}` if the model is still being loaded.
|
||||
- `{"status": "error"}` if the model failed to load.
|
||||
- `{"status": "ok"}` if the model is successfully loaded and the server is ready for further requests mentioned below.
|
||||
|
||||
- **POST** `/completion`: Given a `prompt`, it returns the predicted completion.
|
||||
- **GET** `/health`: Returns the current state of the server:
|
||||
- `{"status": "loading model"}` if the model is still being loaded.
|
||||
- `{"status": "error"}` if the model failed to load.
|
||||
- `{"status": "ok"}` if the model is successfully loaded and the server is ready for further requests mentioned below.
|
||||
- `{"status": "no slot available", "slots_idle": 0, "slots_processing": 32}` if no slot are currently available
|
||||
|
||||
- **POST** `/completion`: Given a `prompt`, it returns the predicted completion.
|
||||
|
||||
*Options:*
|
||||
|
||||
@@ -133,6 +147,10 @@ node index.js
|
||||
|
||||
`temperature`: Adjust the randomness of the generated text (default: 0.8).
|
||||
|
||||
`dynatemp_range`: Dynamic temperature range (default: 0.0, 0.0 = disabled).
|
||||
|
||||
`dynatemp_exponent`: Dynamic temperature exponent (default: 1.0).
|
||||
|
||||
`top_k`: Limit the next token selection to the K most probable tokens (default: 40).
|
||||
|
||||
`top_p`: Limit the next token selection to a subset of tokens with a cumulative probability above a threshold P (default: 0.95).
|
||||
@@ -177,7 +195,7 @@ node index.js
|
||||
|
||||
`ignore_eos`: Ignore end of stream token and continue generating (default: false).
|
||||
|
||||
`logit_bias`: Modify the likelihood of a token appearing in the generated text completion. For example, use `"logit_bias": [[15043,1.0]]` to increase the likelihood of the token 'Hello', or `"logit_bias": [[15043,-1.0]]` to decrease its likelihood. Setting the value to false, `"logit_bias": [[15043,false]]` ensures that the token `Hello` is never produced (default: []).
|
||||
`logit_bias`: Modify the likelihood of a token appearing in the generated text completion. For example, use `"logit_bias": [[15043,1.0]]` to increase the likelihood of the token 'Hello', or `"logit_bias": [[15043,-1.0]]` to decrease its likelihood. Setting the value to false, `"logit_bias": [[15043,false]]` ensures that the token `Hello` is never produced. The tokens can also be represented as strings, e.g. `[["Hello, World!",-0.5]]` will reduce the likelihood of all the individual tokens that represent the string `Hello, World!`, just like the `presence_penalty` does. (default: []).
|
||||
|
||||
`n_probs`: If greater than 0, the response also contains the probabilities of top N tokens for each generated token (default: 0)
|
||||
|
||||
@@ -189,14 +207,15 @@ node index.js
|
||||
|
||||
`system_prompt`: Change the system prompt (initial prompt of all slots), this is useful for chat applications. [See more](#change-system-prompt-on-runtime)
|
||||
|
||||
### Result JSON:
|
||||
`samplers`: The order the samplers should be applied in. An array of strings representing sampler type names. If a sampler is not set, it will not be used. If a sampler is specified more than once, it will be applied multiple times. (default: `["top_k", "tfs_z", "typical_p", "top_p", "min_p", "temperature"]` - these are all the available values)
|
||||
|
||||
* Note: When using streaming mode (`stream`) only `content` and `stop` will be returned until end of completion.
|
||||
### Result JSON
|
||||
|
||||
- Note: When using streaming mode (`stream`) only `content` and `stop` will be returned until end of completion.
|
||||
|
||||
- `completion_probabilities`: An array of token probabilities for each completion. The array's length is `n_predict`. Each item in the array has the following structure:
|
||||
|
||||
```
|
||||
```json
|
||||
{
|
||||
"content": "<the token selected by the model>",
|
||||
"probs": [
|
||||
@@ -212,6 +231,7 @@ node index.js
|
||||
]
|
||||
},
|
||||
```
|
||||
|
||||
Notice that each `probs` is an array of length `n_probs`.
|
||||
|
||||
- `content`: Completion result as a string (excluding `stopping_word` if any). In case of streaming mode, will contain the next token as a string.
|
||||
@@ -228,7 +248,7 @@ Notice that each `probs` is an array of length `n_probs`.
|
||||
- `tokens_evaluated`: Number of tokens evaluated in total from the prompt
|
||||
- `truncated`: Boolean indicating if the context size was exceeded during generation, i.e. the number of tokens provided in the prompt (`tokens_evaluated`) plus tokens generated (`tokens predicted`) exceeded the context size (`n_ctx`)
|
||||
|
||||
- **POST** `/tokenize`: Tokenize a given text.
|
||||
- **POST** `/tokenize`: Tokenize a given text.
|
||||
|
||||
*Options:*
|
||||
|
||||
@@ -236,13 +256,13 @@ Notice that each `probs` is an array of length `n_probs`.
|
||||
|
||||
Note that the special `BOS` token is not added in front of the text and also a space character is not inserted automatically as it is for `/completion`.
|
||||
|
||||
- **POST** `/detokenize`: Convert tokens to text.
|
||||
- **POST** `/detokenize`: Convert tokens to text.
|
||||
|
||||
*Options:*
|
||||
|
||||
`tokens`: Set the tokens to detokenize.
|
||||
|
||||
- **POST** `/embedding`: Generate embedding of a given text just as [the embedding example](../embedding) does.
|
||||
- **POST** `/embedding`: Generate embedding of a given text just as [the embedding example](../embedding) does.
|
||||
|
||||
*Options:*
|
||||
|
||||
@@ -250,7 +270,7 @@ Notice that each `probs` is an array of length `n_probs`.
|
||||
|
||||
`image_data`: An array of objects to hold base64-encoded image `data` and its `id`s to be reference in `content`. You can determine the place of the image in the content as in the following: `Image: [img-21].\nCaption: This is a picture of a house`. In this case, `[img-21]` will be replaced by the embeddings of the image with id `21` in the following `image_data` array: `{..., "image_data": [{"data": "<BASE64_STRING>", "id": 21}]}`. Use `image_data` only with multimodal models, e.g., LLaVA.
|
||||
|
||||
- **POST** `/infill`: For code infilling. Takes a prefix and a suffix and returns the predicted completion as stream.
|
||||
- **POST** `/infill`: For code infilling. Takes a prefix and a suffix and returns the predicted completion as stream.
|
||||
|
||||
*Options:*
|
||||
|
||||
@@ -260,9 +280,25 @@ Notice that each `probs` is an array of length `n_probs`.
|
||||
|
||||
It also accepts all the options of `/completion` except `stream` and `prompt`.
|
||||
|
||||
- **GET** `/props`: Return the required assistant name and anti-prompt to generate the prompt in case you have specified a system prompt for all slots.
|
||||
- **GET** `/props`: Return current server settings.
|
||||
|
||||
- **POST** `/v1/chat/completions`: OpenAI-compatible Chat Completions API. Given a ChatML-formatted json description in `messages`, it returns the predicted completion. Both synchronous and streaming mode are supported, so scripted and interactive applications work fine. While no strong claims of compatibility with OpenAI API spec is being made, in our experience it suffices to support many apps. Only ChatML-tuned models, such as Dolphin, OpenOrca, OpenHermes, OpenChat-3.5, etc can be used with this endpoint. Compared to `api_like_OAI.py` this API implementation does not require a wrapper to be served.
|
||||
### Result JSON
|
||||
|
||||
```json
|
||||
{
|
||||
"assistant_name": "",
|
||||
"user_name": "",
|
||||
"default_generation_settings": { ... },
|
||||
"total_slots": 1
|
||||
}
|
||||
```
|
||||
|
||||
- `assistant_name` - the required assistant name to generate the prompt in case you have specified a system prompt for all slots.
|
||||
- `user_name` - the required anti-prompt to generate the prompt in case you have specified a system prompt for all slots.
|
||||
- `default_generation_settings` - the default generation settings for the `/completion` endpoint, has the same fields as the `generation_settings` response object from the `/completion` endpoint.
|
||||
- `total_slots` - the total number of slots for process requests (defined by `--parallel` option)
|
||||
|
||||
- **POST** `/v1/chat/completions`: OpenAI-compatible Chat Completions API. Given a ChatML-formatted json description in `messages`, it returns the predicted completion. Both synchronous and streaming mode are supported, so scripted and interactive applications work fine. While no strong claims of compatibility with OpenAI API spec is being made, in our experience it suffices to support many apps. Only ChatML-tuned models, such as Dolphin, OpenOrca, OpenHermes, OpenChat-3.5, etc can be used with this endpoint. Compared to `api_like_OAI.py` this API implementation does not require a wrapper to be served.
|
||||
|
||||
*Options:*
|
||||
|
||||
@@ -290,6 +326,7 @@ Notice that each `probs` is an array of length `n_probs`.
|
||||
|
||||
print(completion.choices[0].message)
|
||||
```
|
||||
|
||||
... or raw HTTP requests:
|
||||
|
||||
```shell
|
||||
@@ -311,6 +348,103 @@ Notice that each `probs` is an array of length `n_probs`.
|
||||
}'
|
||||
```
|
||||
|
||||
- **POST** `/v1/embeddings`: OpenAI-compatible embeddings API.
|
||||
|
||||
*Options:*
|
||||
|
||||
See [OpenAI Embeddings API documentation](https://platform.openai.com/docs/api-reference/embeddings).
|
||||
|
||||
*Examples:*
|
||||
|
||||
- input as string
|
||||
|
||||
```shell
|
||||
curl http://localhost:8080/v1/embeddings \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "Authorization: Bearer no-key" \
|
||||
-d '{
|
||||
"input": "hello",
|
||||
"model":"GPT-4",
|
||||
"encoding_format": "float"
|
||||
}'
|
||||
```
|
||||
|
||||
- `input` as string array
|
||||
|
||||
```shell
|
||||
curl http://localhost:8080/v1/embeddings \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "Authorization: Bearer no-key" \
|
||||
-d '{
|
||||
"input": ["hello", "world"],
|
||||
"model":"GPT-4",
|
||||
"encoding_format": "float"
|
||||
}'
|
||||
```
|
||||
|
||||
- **GET** `/slots`: Returns the current slots processing state. Can be disabled with `--slots-endpoint-disable`.
|
||||
|
||||
### Result JSON
|
||||
|
||||
```json
|
||||
[
|
||||
{
|
||||
"dynatemp_exponent": 1.0,
|
||||
"dynatemp_range": 0.0,
|
||||
"frequency_penalty": 0.0,
|
||||
"grammar": "",
|
||||
"id": 0,
|
||||
"ignore_eos": false,
|
||||
"logit_bias": [],
|
||||
"min_p": 0.05000000074505806,
|
||||
"mirostat": 0,
|
||||
"mirostat_eta": 0.10000000149011612,
|
||||
"mirostat_tau": 5.0,
|
||||
"model": "llama-2-7b-32k-instruct.Q2_K.gguf",
|
||||
"n_ctx": 2048,
|
||||
"n_keep": 0,
|
||||
"n_predict": 100000,
|
||||
"n_probs": 0,
|
||||
"next_token": {
|
||||
"has_next_token": true,
|
||||
"n_remain": -1,
|
||||
"num_tokens_predicted": 0,
|
||||
"stopped_eos": false,
|
||||
"stopped_limit": false,
|
||||
"stopped_word": false,
|
||||
"stopping_word": ""
|
||||
},
|
||||
"penalize_nl": true,
|
||||
"penalty_prompt_tokens": [],
|
||||
"presence_penalty": 0.0,
|
||||
"prompt": "Say hello to llama.cpp",
|
||||
"repeat_last_n": 64,
|
||||
"repeat_penalty": 1.100000023841858,
|
||||
"samplers": [
|
||||
"top_k",
|
||||
"tfs_z",
|
||||
"typical_p",
|
||||
"top_p",
|
||||
"min_p",
|
||||
"temperature"
|
||||
],
|
||||
"seed": 42,
|
||||
"state": 1,
|
||||
"stop": [
|
||||
"\n"
|
||||
],
|
||||
"stream": false,
|
||||
"task_id": 0,
|
||||
"temperature": 0.0,
|
||||
"tfs_z": 1.0,
|
||||
"top_k": 40,
|
||||
"top_p": 0.949999988079071,
|
||||
"typical_p": 1.0,
|
||||
"use_penalty_prompt_tokens": false
|
||||
}
|
||||
]
|
||||
```
|
||||
|
||||
## More examples
|
||||
|
||||
### Change system prompt on runtime
|
||||
@@ -362,6 +496,7 @@ python api_like_OAI.py
|
||||
```
|
||||
|
||||
After running the API server, you can use it in Python by setting the API base URL.
|
||||
|
||||
```python
|
||||
openai.api_base = "http://<Your api-server IP>:port"
|
||||
```
|
||||
|
||||
@@ -48,6 +48,7 @@ chat_completion() {
|
||||
top_p: 0.9,
|
||||
n_keep: $n_keep,
|
||||
n_predict: 256,
|
||||
cache_prompt: true,
|
||||
stop: ["\n### Human:"],
|
||||
stream: true
|
||||
}')"
|
||||
|
||||
@@ -236,214 +236,250 @@ unsigned char completion_js[] = {
|
||||
0x20, 0x4a, 0x53, 0x4f, 0x4e, 0x2e, 0x70, 0x61, 0x72, 0x73, 0x65, 0x28,
|
||||
0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72,
|
||||
0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65, 0x2e, 0x65,
|
||||
0x72, 0x72, 0x6f, 0x72, 0x28, 0x60, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2e,
|
||||
0x63, 0x70, 0x70, 0x20, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x3a, 0x20, 0x24,
|
||||
0x7b, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f,
|
||||
0x72, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x7d, 0x60, 0x29,
|
||||
0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c,
|
||||
0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x2e, 0x63, 0x6f, 0x6e, 0x74,
|
||||
0x65, 0x6e, 0x74, 0x2e, 0x69, 0x6e, 0x63, 0x6c, 0x75, 0x64, 0x65, 0x73,
|
||||
0x28, 0x27, 0x73, 0x6c, 0x6f, 0x74, 0x20, 0x75, 0x6e, 0x61, 0x76, 0x61,
|
||||
0x69, 0x6c, 0x61, 0x62, 0x6c, 0x65, 0x27, 0x29, 0x29, 0x20, 0x7b, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x2f, 0x2f, 0x20, 0x54, 0x68, 0x72, 0x6f, 0x77, 0x20, 0x61,
|
||||
0x6e, 0x20, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x20, 0x74, 0x6f, 0x20, 0x62,
|
||||
0x65, 0x20, 0x63, 0x61, 0x75, 0x67, 0x68, 0x74, 0x20, 0x62, 0x79, 0x20,
|
||||
0x75, 0x70, 0x73, 0x74, 0x72, 0x65, 0x61, 0x6d, 0x20, 0x63, 0x61, 0x6c,
|
||||
0x6c, 0x65, 0x72, 0x73, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x68, 0x72, 0x6f, 0x77,
|
||||
0x20, 0x6e, 0x65, 0x77, 0x20, 0x45, 0x72, 0x72, 0x6f, 0x72, 0x28, 0x27,
|
||||
0x73, 0x6c, 0x6f, 0x74, 0x20, 0x75, 0x6e, 0x61, 0x76, 0x61, 0x69, 0x6c,
|
||||
0x61, 0x62, 0x6c, 0x65, 0x27, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x20, 0x65, 0x6c,
|
||||
0x73, 0x65, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f,
|
||||
0x6c, 0x65, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x28, 0x60, 0x6c, 0x6c,
|
||||
0x61, 0x6d, 0x61, 0x2e, 0x63, 0x70, 0x70, 0x20, 0x65, 0x72, 0x72, 0x6f,
|
||||
0x72, 0x3a, 0x20, 0x24, 0x7b, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e,
|
||||
0x65, 0x72, 0x72, 0x6f, 0x72, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e,
|
||||
0x74, 0x7d, 0x60, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x7d, 0x0a, 0x20, 0x20, 0x7d, 0x20, 0x63, 0x61, 0x74, 0x63, 0x68, 0x20,
|
||||
0x28, 0x65, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66,
|
||||
0x20, 0x28, 0x65, 0x2e, 0x6e, 0x61, 0x6d, 0x65, 0x20, 0x21, 0x3d, 0x3d,
|
||||
0x20, 0x27, 0x41, 0x62, 0x6f, 0x72, 0x74, 0x45, 0x72, 0x72, 0x6f, 0x72,
|
||||
0x27, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63,
|
||||
0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72,
|
||||
0x28, 0x22, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x20, 0x65, 0x72, 0x72, 0x6f,
|
||||
0x72, 0x3a, 0x20, 0x22, 0x2c, 0x20, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x74, 0x68, 0x72, 0x6f,
|
||||
0x77, 0x20, 0x65, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x66,
|
||||
0x69, 0x6e, 0x61, 0x6c, 0x6c, 0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2e,
|
||||
0x61, 0x62, 0x6f, 0x72, 0x74, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d,
|
||||
0x0a, 0x0a, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x63,
|
||||
0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3b, 0x0a, 0x7d, 0x0a, 0x0a, 0x2f,
|
||||
0x2f, 0x20, 0x43, 0x61, 0x6c, 0x6c, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61,
|
||||
0x2c, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x61, 0x6e, 0x20,
|
||||
0x65, 0x76, 0x65, 0x6e, 0x74, 0x20, 0x74, 0x61, 0x72, 0x67, 0x65, 0x74,
|
||||
0x20, 0x74, 0x68, 0x61, 0x74, 0x20, 0x79, 0x6f, 0x75, 0x20, 0x63, 0x61,
|
||||
0x6e, 0x20, 0x73, 0x75, 0x62, 0x73, 0x63, 0x72, 0x69, 0x62, 0x65, 0x20,
|
||||
0x74, 0x6f, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x45, 0x78, 0x61,
|
||||
0x6d, 0x70, 0x6c, 0x65, 0x3a, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20,
|
||||
0x20, 0x20, 0x20, 0x69, 0x6d, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x7b, 0x20,
|
||||
0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61,
|
||||
0x72, 0x67, 0x65, 0x74, 0x20, 0x7d, 0x20, 0x66, 0x72, 0x6f, 0x6d, 0x20,
|
||||
0x27, 0x2f, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e,
|
||||
0x2e, 0x6a, 0x73, 0x27, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20,
|
||||
0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x6e,
|
||||
0x20, 0x3d, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x45, 0x76, 0x65, 0x6e,
|
||||
0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x28, 0x70, 0x72, 0x6f, 0x6d,
|
||||
0x70, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f,
|
||||
0x6e, 0x6e, 0x2e, 0x61, 0x64, 0x64, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x4c,
|
||||
0x69, 0x73, 0x74, 0x65, 0x6e, 0x65, 0x72, 0x28, 0x22, 0x6d, 0x65, 0x73,
|
||||
0x73, 0x61, 0x67, 0x65, 0x22, 0x2c, 0x20, 0x28, 0x63, 0x68, 0x75, 0x6e,
|
||||
0x6b, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x2f, 0x2f, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74,
|
||||
0x2e, 0x77, 0x72, 0x69, 0x74, 0x65, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b,
|
||||
0x2e, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x2e, 0x63, 0x6f, 0x6e, 0x74,
|
||||
0x65, 0x6e, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x7d,
|
||||
0x29, 0x0a, 0x2f, 0x2f, 0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x20,
|
||||
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x45,
|
||||
0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x20, 0x3d,
|
||||
0x20, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70, 0x61,
|
||||
0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d, 0x20, 0x7b, 0x7d, 0x2c, 0x20, 0x63,
|
||||
0x6f, 0x6e, 0x66, 0x69, 0x67, 0x20, 0x3d, 0x20, 0x7b, 0x7d, 0x29, 0x20,
|
||||
0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74,
|
||||
0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74,
|
||||
0x20, 0x3d, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x45, 0x76, 0x65, 0x6e, 0x74,
|
||||
0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20,
|
||||
0x28, 0x61, 0x73, 0x79, 0x6e, 0x63, 0x20, 0x28, 0x29, 0x20, 0x3d, 0x3e,
|
||||
0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63,
|
||||
0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b,
|
||||
0x0a, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x61, 0x77, 0x61,
|
||||
0x69, 0x74, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68,
|
||||
0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61,
|
||||
0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70, 0x61, 0x72,
|
||||
0x61, 0x6d, 0x73, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x29,
|
||||
0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66,
|
||||
0x20, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61,
|
||||
0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x2b, 0x3d, 0x20, 0x63,
|
||||
0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x63, 0x6f,
|
||||
0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67,
|
||||
0x65, 0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, 0x74, 0x63, 0x68, 0x45,
|
||||
0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, 0x20, 0x43, 0x75, 0x73,
|
||||
0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x22, 0x6d, 0x65,
|
||||
0x73, 0x73, 0x61, 0x67, 0x65, 0x22, 0x2c, 0x20, 0x7b, 0x20, 0x64, 0x65,
|
||||
0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e,
|
||||
0x64, 0x61, 0x74, 0x61, 0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x72, 0x65,
|
||||
0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x20,
|
||||
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72,
|
||||
0x6f, 0x72, 0x20, 0x3d, 0x20, 0x4a, 0x53, 0x4f, 0x4e, 0x2e, 0x70, 0x61,
|
||||
0x72, 0x73, 0x65, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65,
|
||||
0x72, 0x72, 0x6f, 0x72, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f,
|
||||
0x6c, 0x65, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x28, 0x60, 0x6c, 0x6c,
|
||||
0x61, 0x6d, 0x61, 0x2e, 0x63, 0x70, 0x70, 0x20, 0x65, 0x72, 0x72, 0x6f,
|
||||
0x72, 0x3a, 0x20, 0x24, 0x7b, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e,
|
||||
0x65, 0x72, 0x72, 0x6f, 0x72, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e,
|
||||
0x74, 0x7d, 0x60, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x69, 0x66, 0x20, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61,
|
||||
0x74, 0x61, 0x2e, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f,
|
||||
0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20,
|
||||
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x65, 0x76,
|
||||
0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x64, 0x69,
|
||||
0x73, 0x70, 0x61, 0x74, 0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28,
|
||||
0x6e, 0x65, 0x77, 0x20, 0x43, 0x75, 0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76,
|
||||
0x65, 0x6e, 0x74, 0x28, 0x22, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74,
|
||||
0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73,
|
||||
0x22, 0x2c, 0x20, 0x7b, 0x20, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x3a,
|
||||
0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e,
|
||||
0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73,
|
||||
0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x20, 0x7d, 0x29, 0x29, 0x3b,
|
||||
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b,
|
||||
0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x74, 0x69, 0x6d, 0x69, 0x6e, 0x67,
|
||||
0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74,
|
||||
0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, 0x74, 0x63, 0x68, 0x45, 0x76, 0x65,
|
||||
0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, 0x20, 0x43, 0x75, 0x73, 0x74, 0x6f,
|
||||
0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x22, 0x74, 0x69, 0x6d, 0x69,
|
||||
0x6e, 0x67, 0x73, 0x22, 0x2c, 0x20, 0x7b, 0x20, 0x64, 0x65, 0x74, 0x61,
|
||||
0x69, 0x6c, 0x3a, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61,
|
||||
0x74, 0x61, 0x2e, 0x74, 0x69, 0x6d, 0x69, 0x6e, 0x67, 0x73, 0x20, 0x7d,
|
||||
0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x65, 0x76,
|
||||
0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x64, 0x69,
|
||||
0x73, 0x70, 0x61, 0x74, 0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28,
|
||||
0x6e, 0x65, 0x77, 0x20, 0x43, 0x75, 0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76,
|
||||
0x65, 0x6e, 0x74, 0x28, 0x22, 0x64, 0x6f, 0x6e, 0x65, 0x22, 0x2c, 0x20,
|
||||
0x7b, 0x20, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20, 0x7b, 0x20,
|
||||
0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x7d, 0x20, 0x7d, 0x29,
|
||||
0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x29, 0x28, 0x29, 0x3b, 0x0a, 0x20,
|
||||
0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x65, 0x76, 0x65, 0x6e,
|
||||
0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x3b, 0x0a, 0x7d, 0x0a, 0x0a,
|
||||
0x2f, 0x2f, 0x20, 0x43, 0x61, 0x6c, 0x6c, 0x20, 0x6c, 0x6c, 0x61, 0x6d,
|
||||
0x61, 0x2c, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x61, 0x20,
|
||||
0x70, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x20, 0x74, 0x68, 0x61, 0x74,
|
||||
0x20, 0x72, 0x65, 0x73, 0x6f, 0x6c, 0x76, 0x65, 0x73, 0x20, 0x74, 0x6f,
|
||||
0x20, 0x74, 0x68, 0x65, 0x20, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74,
|
||||
0x65, 0x64, 0x20, 0x74, 0x65, 0x78, 0x74, 0x2e, 0x20, 0x54, 0x68, 0x69,
|
||||
0x73, 0x20, 0x64, 0x6f, 0x65, 0x73, 0x20, 0x6e, 0x6f, 0x74, 0x20, 0x73,
|
||||
0x75, 0x70, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x73, 0x74, 0x72, 0x65, 0x61,
|
||||
0x6d, 0x69, 0x6e, 0x67, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x45,
|
||||
0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65, 0x3a, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f,
|
||||
0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x50,
|
||||
0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70,
|
||||
0x74, 0x29, 0x2e, 0x74, 0x68, 0x65, 0x6e, 0x28, 0x28, 0x63, 0x6f, 0x6e,
|
||||
0x74, 0x65, 0x6e, 0x74, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x2f,
|
||||
0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x64, 0x6f, 0x63, 0x75,
|
||||
0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x7d, 0x20, 0x63, 0x61,
|
||||
0x74, 0x63, 0x68, 0x20, 0x28, 0x65, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x65, 0x2e, 0x6e, 0x61, 0x6d, 0x65,
|
||||
0x20, 0x21, 0x3d, 0x3d, 0x20, 0x27, 0x41, 0x62, 0x6f, 0x72, 0x74, 0x45,
|
||||
0x72, 0x72, 0x6f, 0x72, 0x27, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65, 0x2e, 0x65,
|
||||
0x72, 0x72, 0x6f, 0x72, 0x28, 0x22, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x20,
|
||||
0x65, 0x72, 0x72, 0x6f, 0x72, 0x3a, 0x20, 0x22, 0x2c, 0x20, 0x65, 0x29,
|
||||
0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x74, 0x68, 0x72, 0x6f, 0x77, 0x20, 0x65, 0x3b, 0x0a, 0x20, 0x20, 0x7d,
|
||||
0x0a, 0x20, 0x20, 0x66, 0x69, 0x6e, 0x61, 0x6c, 0x6c, 0x79, 0x20, 0x7b,
|
||||
0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c,
|
||||
0x6c, 0x65, 0x72, 0x2e, 0x61, 0x62, 0x6f, 0x72, 0x74, 0x28, 0x29, 0x3b,
|
||||
0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75,
|
||||
0x72, 0x6e, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3b, 0x0a,
|
||||
0x7d, 0x0a, 0x0a, 0x2f, 0x2f, 0x20, 0x43, 0x61, 0x6c, 0x6c, 0x20, 0x6c,
|
||||
0x6c, 0x61, 0x6d, 0x61, 0x2c, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e,
|
||||
0x20, 0x61, 0x6e, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x20, 0x74, 0x61,
|
||||
0x72, 0x67, 0x65, 0x74, 0x20, 0x74, 0x68, 0x61, 0x74, 0x20, 0x79, 0x6f,
|
||||
0x75, 0x20, 0x63, 0x61, 0x6e, 0x20, 0x73, 0x75, 0x62, 0x73, 0x63, 0x72,
|
||||
0x69, 0x62, 0x65, 0x20, 0x74, 0x6f, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f,
|
||||
0x20, 0x45, 0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65, 0x3a, 0x0a, 0x2f, 0x2f,
|
||||
0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x69, 0x6d, 0x70, 0x6f, 0x72,
|
||||
0x74, 0x20, 0x7b, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x45, 0x76, 0x65,
|
||||
0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x20, 0x7d, 0x20, 0x66,
|
||||
0x72, 0x6f, 0x6d, 0x20, 0x27, 0x2f, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65,
|
||||
0x74, 0x69, 0x6f, 0x6e, 0x2e, 0x6a, 0x73, 0x27, 0x0a, 0x2f, 0x2f, 0x0a,
|
||||
0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20,
|
||||
0x63, 0x6f, 0x6e, 0x6e, 0x20, 0x3d, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61,
|
||||
0x45, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x28,
|
||||
0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x20, 0x20,
|
||||
0x20, 0x20, 0x63, 0x6f, 0x6e, 0x6e, 0x2e, 0x61, 0x64, 0x64, 0x45, 0x76,
|
||||
0x65, 0x6e, 0x74, 0x4c, 0x69, 0x73, 0x74, 0x65, 0x6e, 0x65, 0x72, 0x28,
|
||||
0x22, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x22, 0x2c, 0x20, 0x28,
|
||||
0x63, 0x68, 0x75, 0x6e, 0x6b, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a,
|
||||
0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x64, 0x6f, 0x63, 0x75,
|
||||
0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x77, 0x72, 0x69, 0x74, 0x65, 0x28, 0x63,
|
||||
0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x7d, 0x29, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x6f, 0x72, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63,
|
||||
0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x61, 0x77, 0x61,
|
||||
0x69, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x50, 0x72, 0x6f, 0x6d,
|
||||
0x69, 0x73, 0x65, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x29, 0x0a,
|
||||
0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x64, 0x6f, 0x63, 0x75, 0x6d,
|
||||
0x65, 0x6e, 0x74, 0x2e, 0x77, 0x72, 0x69, 0x74, 0x65, 0x28, 0x63, 0x6f,
|
||||
0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x0a, 0x65, 0x78,
|
||||
0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c,
|
||||
0x6c, 0x61, 0x6d, 0x61, 0x50, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x20,
|
||||
0x3d, 0x20, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70,
|
||||
0x61, 0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d, 0x20, 0x7b, 0x7d, 0x2c, 0x20,
|
||||
0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x20, 0x3d, 0x20, 0x7b, 0x7d, 0x29,
|
||||
0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75,
|
||||
0x72, 0x6e, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x50, 0x72, 0x6f, 0x6d, 0x69,
|
||||
0x73, 0x65, 0x28, 0x61, 0x73, 0x79, 0x6e, 0x63, 0x20, 0x28, 0x72, 0x65,
|
||||
0x73, 0x6f, 0x6c, 0x76, 0x65, 0x2c, 0x20, 0x72, 0x65, 0x6a, 0x65, 0x63,
|
||||
0x74, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x6c, 0x65, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20,
|
||||
0x3d, 0x20, 0x22, 0x22, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x74, 0x72,
|
||||
0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6f,
|
||||
0x72, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x28, 0x63, 0x6f, 0x6e,
|
||||
0x73, 0x74, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20,
|
||||
0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74,
|
||||
0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x63, 0x6f,
|
||||
0x6e, 0x66, 0x69, 0x67, 0x29, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74,
|
||||
0x20, 0x2b, 0x3d, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61,
|
||||
0x74, 0x61, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3b, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x72, 0x65, 0x73, 0x6f, 0x6c, 0x76, 0x65, 0x28, 0x63, 0x6f,
|
||||
0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x7d, 0x20, 0x63, 0x61, 0x74, 0x63, 0x68, 0x20, 0x28, 0x65, 0x72, 0x72,
|
||||
0x6f, 0x72, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x72, 0x65, 0x6a, 0x65, 0x63, 0x74, 0x28, 0x65, 0x72, 0x72, 0x6f, 0x72,
|
||||
0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x7d,
|
||||
0x29, 0x3b, 0x0a, 0x7d, 0x3b, 0x0a, 0x0a, 0x2f, 0x2a, 0x2a, 0x0a, 0x20,
|
||||
0x2a, 0x20, 0x28, 0x64, 0x65, 0x70, 0x72, 0x65, 0x63, 0x61, 0x74, 0x65,
|
||||
0x64, 0x29, 0x0a, 0x20, 0x2a, 0x2f, 0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72,
|
||||
0x74, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d,
|
||||
0x61, 0x43, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x65, 0x20, 0x3d, 0x20,
|
||||
0x61, 0x73, 0x79, 0x6e, 0x63, 0x20, 0x28, 0x70, 0x61, 0x72, 0x61, 0x6d,
|
||||
0x73, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65,
|
||||
0x72, 0x2c, 0x20, 0x63, 0x61, 0x6c, 0x6c, 0x62, 0x61, 0x63, 0x6b, 0x29,
|
||||
0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x66, 0x6f, 0x72, 0x20,
|
||||
0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74,
|
||||
0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x6c, 0x6c,
|
||||
0x61, 0x6d, 0x61, 0x28, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x70,
|
||||
0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d,
|
||||
0x73, 0x2c, 0x20, 0x7b, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c,
|
||||
0x6c, 0x65, 0x72, 0x20, 0x7d, 0x29, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x63, 0x61, 0x6c, 0x6c, 0x62, 0x61, 0x63, 0x6b, 0x28, 0x63,
|
||||
0x68, 0x75, 0x6e, 0x6b, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x7d,
|
||||
0x0a, 0x0a, 0x2f, 0x2f, 0x20, 0x47, 0x65, 0x74, 0x20, 0x74, 0x68, 0x65,
|
||||
0x20, 0x6d, 0x6f, 0x64, 0x65, 0x6c, 0x20, 0x69, 0x6e, 0x66, 0x6f, 0x20,
|
||||
0x66, 0x72, 0x6f, 0x6d, 0x20, 0x74, 0x68, 0x65, 0x20, 0x73, 0x65, 0x72,
|
||||
0x76, 0x65, 0x72, 0x2e, 0x20, 0x54, 0x68, 0x69, 0x73, 0x20, 0x69, 0x73,
|
||||
0x20, 0x75, 0x73, 0x65, 0x66, 0x75, 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x20,
|
||||
0x67, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x20, 0x74, 0x68, 0x65, 0x20,
|
||||
0x63, 0x6f, 0x6e, 0x74, 0x65, 0x78, 0x74, 0x20, 0x77, 0x69, 0x6e, 0x64,
|
||||
0x6f, 0x77, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x73, 0x6f, 0x20, 0x6f, 0x6e,
|
||||
0x2e, 0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f, 0x6e,
|
||||
0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x4d, 0x6f, 0x64, 0x65,
|
||||
0x6c, 0x49, 0x6e, 0x66, 0x6f, 0x20, 0x3d, 0x20, 0x61, 0x73, 0x79, 0x6e,
|
||||
0x63, 0x20, 0x28, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20,
|
||||
0x69, 0x66, 0x20, 0x28, 0x21, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74,
|
||||
0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73,
|
||||
0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x67, 0x65, 0x6e, 0x65,
|
||||
0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69,
|
||||
0x6e, 0x67, 0x73, 0x20, 0x3d, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20,
|
||||
0x66, 0x65, 0x74, 0x63, 0x68, 0x28, 0x22, 0x2f, 0x6d, 0x6f, 0x64, 0x65,
|
||||
0x6c, 0x2e, 0x6a, 0x73, 0x6f, 0x6e, 0x22, 0x29, 0x2e, 0x74, 0x68, 0x65,
|
||||
0x6e, 0x28, 0x72, 0x20, 0x3d, 0x3e, 0x20, 0x72, 0x2e, 0x6a, 0x73, 0x6f,
|
||||
0x6e, 0x28, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20,
|
||||
0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x67, 0x65, 0x6e, 0x65, 0x72,
|
||||
0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x2e,
|
||||
0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x20,
|
||||
0x20, 0x20, 0x20, 0x7d, 0x29, 0x0a, 0x2f, 0x2f, 0x0a, 0x65, 0x78, 0x70,
|
||||
0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c, 0x6c,
|
||||
0x61, 0x6d, 0x61, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67,
|
||||
0x65, 0x74, 0x20, 0x3d, 0x20, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74,
|
||||
0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d, 0x20, 0x7b,
|
||||
0x7d, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x20, 0x3d, 0x20,
|
||||
0x7b, 0x7d, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x63,
|
||||
0x6f, 0x6e, 0x73, 0x74, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61,
|
||||
0x72, 0x67, 0x65, 0x74, 0x20, 0x3d, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x45,
|
||||
0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x28, 0x29,
|
||||
0x3b, 0x0a, 0x20, 0x20, 0x28, 0x61, 0x73, 0x79, 0x6e, 0x63, 0x20, 0x28,
|
||||
0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x6c,
|
||||
0x65, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x3d,
|
||||
0x20, 0x22, 0x22, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6f, 0x72,
|
||||
0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73,
|
||||
0x74, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x6c,
|
||||
0x6c, 0x61, 0x6d, 0x61, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c,
|
||||
0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x63, 0x6f, 0x6e,
|
||||
0x66, 0x69, 0x67, 0x29, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e,
|
||||
0x64, 0x61, 0x74, 0x61, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20,
|
||||
0x2b, 0x3d, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74,
|
||||
0x61, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3b, 0x0a, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74,
|
||||
0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61,
|
||||
0x74, 0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77,
|
||||
0x20, 0x43, 0x75, 0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74,
|
||||
0x28, 0x22, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x22, 0x2c, 0x20,
|
||||
0x7b, 0x20, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20, 0x63, 0x68,
|
||||
0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x20, 0x7d, 0x29, 0x29,
|
||||
0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x63, 0x68, 0x75, 0x6e,
|
||||
0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x67, 0x65, 0x6e, 0x65, 0x72,
|
||||
0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e,
|
||||
0x67, 0x73, 0x3b, 0x0a, 0x7d, 0x0a
|
||||
0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65,
|
||||
0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, 0x74, 0x63, 0x68, 0x45, 0x76,
|
||||
0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, 0x20, 0x43, 0x75, 0x73, 0x74,
|
||||
0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x22, 0x67, 0x65, 0x6e,
|
||||
0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74,
|
||||
0x69, 0x6e, 0x67, 0x73, 0x22, 0x2c, 0x20, 0x7b, 0x20, 0x64, 0x65, 0x74,
|
||||
0x61, 0x69, 0x6c, 0x3a, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64,
|
||||
0x61, 0x74, 0x61, 0x2e, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69,
|
||||
0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x20,
|
||||
0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d,
|
||||
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x63,
|
||||
0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x74, 0x69,
|
||||
0x6d, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61,
|
||||
0x72, 0x67, 0x65, 0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, 0x74, 0x63,
|
||||
0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, 0x20, 0x43,
|
||||
0x75, 0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x22,
|
||||
0x74, 0x69, 0x6d, 0x69, 0x6e, 0x67, 0x73, 0x22, 0x2c, 0x20, 0x7b, 0x20,
|
||||
0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20, 0x63, 0x68, 0x75, 0x6e,
|
||||
0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x74, 0x69, 0x6d, 0x69, 0x6e,
|
||||
0x67, 0x73, 0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65,
|
||||
0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, 0x74, 0x63, 0x68, 0x45, 0x76,
|
||||
0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, 0x20, 0x43, 0x75, 0x73, 0x74,
|
||||
0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x22, 0x64, 0x6f, 0x6e,
|
||||
0x65, 0x22, 0x2c, 0x20, 0x7b, 0x20, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c,
|
||||
0x3a, 0x20, 0x7b, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20,
|
||||
0x7d, 0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x29, 0x28,
|
||||
0x29, 0x3b, 0x0a, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20,
|
||||
0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x3b,
|
||||
0x0a, 0x7d, 0x0a, 0x0a, 0x2f, 0x2f, 0x20, 0x43, 0x61, 0x6c, 0x6c, 0x20,
|
||||
0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2c, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72,
|
||||
0x6e, 0x20, 0x61, 0x20, 0x70, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x20,
|
||||
0x74, 0x68, 0x61, 0x74, 0x20, 0x72, 0x65, 0x73, 0x6f, 0x6c, 0x76, 0x65,
|
||||
0x73, 0x20, 0x74, 0x6f, 0x20, 0x74, 0x68, 0x65, 0x20, 0x63, 0x6f, 0x6d,
|
||||
0x70, 0x6c, 0x65, 0x74, 0x65, 0x64, 0x20, 0x74, 0x65, 0x78, 0x74, 0x2e,
|
||||
0x20, 0x54, 0x68, 0x69, 0x73, 0x20, 0x64, 0x6f, 0x65, 0x73, 0x20, 0x6e,
|
||||
0x6f, 0x74, 0x20, 0x73, 0x75, 0x70, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x73,
|
||||
0x74, 0x72, 0x65, 0x61, 0x6d, 0x69, 0x6e, 0x67, 0x0a, 0x2f, 0x2f, 0x0a,
|
||||
0x2f, 0x2f, 0x20, 0x45, 0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65, 0x3a, 0x0a,
|
||||
0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x6c,
|
||||
0x61, 0x6d, 0x61, 0x50, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x28, 0x70,
|
||||
0x72, 0x6f, 0x6d, 0x70, 0x74, 0x29, 0x2e, 0x74, 0x68, 0x65, 0x6e, 0x28,
|
||||
0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x20, 0x3d, 0x3e,
|
||||
0x20, 0x7b, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x77, 0x72, 0x69,
|
||||
0x74, 0x65, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x0a,
|
||||
0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x29, 0x0a, 0x2f, 0x2f,
|
||||
0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6f, 0x72, 0x0a, 0x2f,
|
||||
0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e,
|
||||
0x73, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x3d,
|
||||
0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61,
|
||||
0x50, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x28, 0x70, 0x72, 0x6f, 0x6d,
|
||||
0x70, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x64,
|
||||
0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x77, 0x72, 0x69, 0x74,
|
||||
0x65, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x0a, 0x2f,
|
||||
0x2f, 0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f, 0x6e,
|
||||
0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x50, 0x72, 0x6f, 0x6d,
|
||||
0x69, 0x73, 0x65, 0x20, 0x3d, 0x20, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70,
|
||||
0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d, 0x20,
|
||||
0x7b, 0x7d, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x20, 0x3d,
|
||||
0x20, 0x7b, 0x7d, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20,
|
||||
0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x50,
|
||||
0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x28, 0x61, 0x73, 0x79, 0x6e, 0x63,
|
||||
0x20, 0x28, 0x72, 0x65, 0x73, 0x6f, 0x6c, 0x76, 0x65, 0x2c, 0x20, 0x72,
|
||||
0x65, 0x6a, 0x65, 0x63, 0x74, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74,
|
||||
0x65, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x74, 0x72, 0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20,
|
||||
0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b,
|
||||
0x20, 0x6f, 0x66, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x28, 0x70, 0x72,
|
||||
0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73,
|
||||
0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x29, 0x29, 0x20, 0x7b,
|
||||
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e,
|
||||
0x74, 0x65, 0x6e, 0x74, 0x20, 0x2b, 0x3d, 0x20, 0x63, 0x68, 0x75, 0x6e,
|
||||
0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65,
|
||||
0x6e, 0x74, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x73, 0x6f, 0x6c, 0x76,
|
||||
0x65, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x3b, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x7d, 0x20, 0x63, 0x61, 0x74, 0x63, 0x68, 0x20,
|
||||
0x28, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x6a, 0x65, 0x63, 0x74, 0x28, 0x65,
|
||||
0x72, 0x72, 0x6f, 0x72, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d,
|
||||
0x0a, 0x20, 0x20, 0x7d, 0x29, 0x3b, 0x0a, 0x7d, 0x3b, 0x0a, 0x0a, 0x2f,
|
||||
0x2a, 0x2a, 0x0a, 0x20, 0x2a, 0x20, 0x28, 0x64, 0x65, 0x70, 0x72, 0x65,
|
||||
0x63, 0x61, 0x74, 0x65, 0x64, 0x29, 0x0a, 0x20, 0x2a, 0x2f, 0x0a, 0x65,
|
||||
0x78, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20,
|
||||
0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x43, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74,
|
||||
0x65, 0x20, 0x3d, 0x20, 0x61, 0x73, 0x79, 0x6e, 0x63, 0x20, 0x28, 0x70,
|
||||
0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72,
|
||||
0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2c, 0x20, 0x63, 0x61, 0x6c, 0x6c, 0x62,
|
||||
0x61, 0x63, 0x6b, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20,
|
||||
0x66, 0x6f, 0x72, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x28, 0x63,
|
||||
0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x20, 0x6f,
|
||||
0x66, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x28, 0x70, 0x61, 0x72, 0x61,
|
||||
0x6d, 0x73, 0x2e, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70,
|
||||
0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x7b, 0x20, 0x63, 0x6f, 0x6e,
|
||||
0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x20, 0x7d, 0x29, 0x29, 0x20,
|
||||
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x61, 0x6c, 0x6c, 0x62, 0x61,
|
||||
0x63, 0x6b, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x29, 0x3b, 0x0a, 0x20,
|
||||
0x20, 0x7d, 0x0a, 0x7d, 0x0a, 0x0a, 0x2f, 0x2f, 0x20, 0x47, 0x65, 0x74,
|
||||
0x20, 0x74, 0x68, 0x65, 0x20, 0x6d, 0x6f, 0x64, 0x65, 0x6c, 0x20, 0x69,
|
||||
0x6e, 0x66, 0x6f, 0x20, 0x66, 0x72, 0x6f, 0x6d, 0x20, 0x74, 0x68, 0x65,
|
||||
0x20, 0x73, 0x65, 0x72, 0x76, 0x65, 0x72, 0x2e, 0x20, 0x54, 0x68, 0x69,
|
||||
0x73, 0x20, 0x69, 0x73, 0x20, 0x75, 0x73, 0x65, 0x66, 0x75, 0x6c, 0x20,
|
||||
0x66, 0x6f, 0x72, 0x20, 0x67, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x20,
|
||||
0x74, 0x68, 0x65, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x78, 0x74, 0x20,
|
||||
0x77, 0x69, 0x6e, 0x64, 0x6f, 0x77, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x73,
|
||||
0x6f, 0x20, 0x6f, 0x6e, 0x2e, 0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74,
|
||||
0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61,
|
||||
0x4d, 0x6f, 0x64, 0x65, 0x6c, 0x49, 0x6e, 0x66, 0x6f, 0x20, 0x3d, 0x20,
|
||||
0x61, 0x73, 0x79, 0x6e, 0x63, 0x20, 0x28, 0x29, 0x20, 0x3d, 0x3e, 0x20,
|
||||
0x7b, 0x0a, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x21, 0x67, 0x65, 0x6e,
|
||||
0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74,
|
||||
0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x20,
|
||||
0x3d, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x66, 0x65, 0x74, 0x63,
|
||||
0x68, 0x28, 0x22, 0x2f, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x22, 0x29, 0x2e,
|
||||
0x74, 0x68, 0x65, 0x6e, 0x28, 0x72, 0x20, 0x3d, 0x3e, 0x20, 0x72, 0x2e,
|
||||
0x6a, 0x73, 0x6f, 0x6e, 0x28, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f,
|
||||
0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x20, 0x3d, 0x20, 0x70,
|
||||
0x72, 0x6f, 0x70, 0x73, 0x2e, 0x64, 0x65, 0x66, 0x61, 0x75, 0x6c, 0x74,
|
||||
0x5f, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f,
|
||||
0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x3b, 0x0a, 0x20, 0x20,
|
||||
0x7d, 0x0a, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x67,
|
||||
0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65,
|
||||
0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x3b, 0x0a, 0x7d, 0x0a
|
||||
};
|
||||
unsigned int completion_js_len = 5346;
|
||||
unsigned int completion_js_len = 5782;
|
||||
|
||||
@@ -15,9 +15,13 @@
|
||||
using json = nlohmann::json;
|
||||
|
||||
inline static json oaicompat_completion_params_parse(
|
||||
const json &body /* openai api json semantics */)
|
||||
const json &body, /* openai api json semantics */
|
||||
const std::string &chat_template)
|
||||
{
|
||||
json llama_params;
|
||||
std::string formatted_prompt = chat_template == "chatml"
|
||||
? format_chatml(body["messages"]) // OpenAI 'messages' to chatml (with <|im_start|>,...)
|
||||
: format_llama2(body["messages"]); // OpenAI 'messages' to llama2 (with [INST],...)
|
||||
|
||||
llama_params["__oaicompat"] = true;
|
||||
|
||||
@@ -30,7 +34,7 @@ inline static json oaicompat_completion_params_parse(
|
||||
// https://platform.openai.com/docs/api-reference/chat/create
|
||||
llama_sampling_params default_sparams;
|
||||
llama_params["model"] = json_value(body, "model", std::string("unknown"));
|
||||
llama_params["prompt"] = format_chatml(body["messages"]); // OpenAI 'messages' to llama.cpp 'prompt'
|
||||
llama_params["prompt"] = formatted_prompt;
|
||||
llama_params["cache_prompt"] = json_value(body, "cache_prompt", false);
|
||||
llama_params["temperature"] = json_value(body, "temperature", 0.0);
|
||||
llama_params["top_k"] = json_value(body, "top_k", default_sparams.top_k);
|
||||
|
||||
@@ -195,7 +195,8 @@ export const llamaComplete = async (params, controller, callback) => {
|
||||
// Get the model info from the server. This is useful for getting the context window and so on.
|
||||
export const llamaModelInfo = async () => {
|
||||
if (!generation_settings) {
|
||||
generation_settings = await fetch("/model.json").then(r => r.json());
|
||||
const props = await fetch("/props").then(r => r.json());
|
||||
generation_settings = props.default_generation_settings;
|
||||
}
|
||||
return generation_settings;
|
||||
}
|
||||
|
||||
@@ -28,6 +28,7 @@
|
||||
#include <chrono>
|
||||
#include <condition_variable>
|
||||
#include <atomic>
|
||||
#include <signal.h>
|
||||
|
||||
using json = nlohmann::json;
|
||||
|
||||
@@ -36,9 +37,11 @@ struct server_params
|
||||
std::string hostname = "127.0.0.1";
|
||||
std::vector<std::string> api_keys;
|
||||
std::string public_path = "examples/server/public";
|
||||
std::string chat_template = "chatml";
|
||||
int32_t port = 8080;
|
||||
int32_t read_timeout = 600;
|
||||
int32_t write_timeout = 600;
|
||||
bool slots_endpoint = true;
|
||||
};
|
||||
|
||||
bool server_verbose = false;
|
||||
@@ -157,6 +160,7 @@ struct llama_client_slot
|
||||
int32_t n_decoded = 0;
|
||||
int32_t n_remaining = -1;
|
||||
int32_t i_batch = -1;
|
||||
int32_t n_predict = -1;
|
||||
|
||||
int32_t num_prompt_tokens = 0;
|
||||
int32_t num_prompt_tokens_processed = 0;
|
||||
@@ -185,7 +189,7 @@ struct llama_client_slot
|
||||
llama_sampling_context *ctx_sampling = nullptr;
|
||||
|
||||
int32_t ga_i = 0; // group-attention state
|
||||
int32_t ga_n = 1;// group-attention factor
|
||||
int32_t ga_n = 1; // group-attention factor
|
||||
int32_t ga_w = 512; // group-attention width
|
||||
|
||||
int32_t n_past_se = 0; // self-extend
|
||||
@@ -219,7 +223,8 @@ struct llama_client_slot
|
||||
sent_token_probs_index = 0;
|
||||
infill = false;
|
||||
ga_i = 0;
|
||||
n_past_se = 0;
|
||||
n_past_se = 0;
|
||||
|
||||
generated_token_probs.clear();
|
||||
|
||||
for (slot_image & img : images)
|
||||
@@ -333,6 +338,7 @@ struct llama_server_context
|
||||
|
||||
// slots / clients
|
||||
std::vector<llama_client_slot> slots;
|
||||
json default_generation_settings_for_props;
|
||||
|
||||
llama_server_queue queue_tasks;
|
||||
llama_server_response queue_results;
|
||||
@@ -406,6 +412,7 @@ struct llama_server_context
|
||||
|
||||
slot.id = i;
|
||||
slot.n_ctx = n_ctx_slot;
|
||||
slot.n_predict = params.n_predict;
|
||||
|
||||
LOG_TEE(" -> Slot %i - max context: %i\n", slot.id, n_ctx_slot);
|
||||
|
||||
@@ -429,11 +436,10 @@ struct llama_server_context
|
||||
slots.push_back(slot);
|
||||
}
|
||||
|
||||
batch = llama_batch_init(n_ctx, 0, params.n_parallel);
|
||||
default_generation_settings_for_props = get_formated_generation(slots.front());
|
||||
default_generation_settings_for_props["seed"] = -1;
|
||||
|
||||
// empty system prompt
|
||||
system_prompt = "";
|
||||
system_tokens.clear();
|
||||
batch = llama_batch_init(n_ctx, 0, params.n_parallel);
|
||||
}
|
||||
|
||||
std::vector<llama_token> tokenize(const json & json_prompt, bool add_bos) const
|
||||
@@ -519,27 +525,38 @@ struct llama_server_context
|
||||
slot->oaicompat_model = "";
|
||||
}
|
||||
|
||||
slot->params.stream = json_value(data, "stream", false);
|
||||
slot->params.cache_prompt = json_value(data, "cache_prompt", false);
|
||||
slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict);
|
||||
slot->sparams.top_k = json_value(data, "top_k", default_sparams.top_k);
|
||||
slot->sparams.top_p = json_value(data, "top_p", default_sparams.top_p);
|
||||
slot->sparams.min_p = json_value(data, "min_p", default_sparams.min_p);
|
||||
slot->sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z);
|
||||
slot->sparams.typical_p = json_value(data, "typical_p", default_sparams.typical_p);
|
||||
slot->sparams.temp = json_value(data, "temperature", default_sparams.temp);
|
||||
slot->sparams.penalty_last_n = json_value(data, "repeat_last_n", default_sparams.penalty_last_n);
|
||||
slot->sparams.penalty_repeat = json_value(data, "repeat_penalty", default_sparams.penalty_repeat);
|
||||
slot->sparams.penalty_freq = json_value(data, "frequency_penalty", default_sparams.penalty_freq);
|
||||
slot->sparams.penalty_present = json_value(data, "presence_penalty", default_sparams.penalty_present);
|
||||
slot->sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat);
|
||||
slot->sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau);
|
||||
slot->sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta);
|
||||
slot->sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl);
|
||||
slot->params.n_keep = json_value(data, "n_keep", slot->params.n_keep);
|
||||
slot->params.seed = json_value(data, "seed", default_params.seed);
|
||||
slot->sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
|
||||
slot->sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
|
||||
slot->params.stream = json_value(data, "stream", false);
|
||||
slot->params.cache_prompt = json_value(data, "cache_prompt", false);
|
||||
slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict);
|
||||
slot->sparams.top_k = json_value(data, "top_k", default_sparams.top_k);
|
||||
slot->sparams.top_p = json_value(data, "top_p", default_sparams.top_p);
|
||||
slot->sparams.min_p = json_value(data, "min_p", default_sparams.min_p);
|
||||
slot->sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z);
|
||||
slot->sparams.typical_p = json_value(data, "typical_p", default_sparams.typical_p);
|
||||
slot->sparams.temp = json_value(data, "temperature", default_sparams.temp);
|
||||
slot->sparams.dynatemp_range = json_value(data, "dynatemp_range", default_sparams.dynatemp_range);
|
||||
slot->sparams.dynatemp_exponent = json_value(data, "dynatemp_exponent", default_sparams.dynatemp_exponent);
|
||||
slot->sparams.penalty_last_n = json_value(data, "repeat_last_n", default_sparams.penalty_last_n);
|
||||
slot->sparams.penalty_repeat = json_value(data, "repeat_penalty", default_sparams.penalty_repeat);
|
||||
slot->sparams.penalty_freq = json_value(data, "frequency_penalty", default_sparams.penalty_freq);
|
||||
slot->sparams.penalty_present = json_value(data, "presence_penalty", default_sparams.penalty_present);
|
||||
slot->sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat);
|
||||
slot->sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau);
|
||||
slot->sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta);
|
||||
slot->sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl);
|
||||
slot->params.n_keep = json_value(data, "n_keep", slot->params.n_keep);
|
||||
slot->params.seed = json_value(data, "seed", default_params.seed);
|
||||
slot->sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
|
||||
slot->sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
|
||||
|
||||
if (slot->n_predict > 0 && slot->params.n_predict > slot->n_predict) {
|
||||
// Might be better to reject the request with a 400 ?
|
||||
LOG_WARNING("Max tokens to predict exceeds server configuration", {
|
||||
{"params.n_predict", slot->params.n_predict},
|
||||
{"slot.n_predict", slot->n_predict},
|
||||
});
|
||||
slot->params.n_predict = slot->n_predict;
|
||||
}
|
||||
|
||||
// infill
|
||||
if (data.count("input_prefix") != 0)
|
||||
@@ -618,18 +635,36 @@ struct llama_server_context
|
||||
const int n_vocab = llama_n_vocab(model);
|
||||
for (const auto &el : *logit_bias)
|
||||
{
|
||||
if (el.is_array() && el.size() == 2 && el[0].is_number_integer())
|
||||
if (el.is_array() && el.size() == 2)
|
||||
{
|
||||
llama_token tok = el[0].get<llama_token>();
|
||||
if (tok >= 0 && tok < n_vocab)
|
||||
float bias;
|
||||
if (el[1].is_number())
|
||||
{
|
||||
if (el[1].is_number())
|
||||
bias = el[1].get<float>();
|
||||
}
|
||||
else if (el[1].is_boolean() && !el[1].get<bool>())
|
||||
{
|
||||
bias = -INFINITY;
|
||||
}
|
||||
else
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
if (el[0].is_number_integer())
|
||||
{
|
||||
llama_token tok = el[0].get<llama_token>();
|
||||
if (tok >= 0 && tok < n_vocab)
|
||||
{
|
||||
slot->sparams.logit_bias[tok] = el[1].get<float>();
|
||||
slot->sparams.logit_bias[tok] = bias;
|
||||
}
|
||||
else if (el[1].is_boolean() && !el[1].get<bool>())
|
||||
}
|
||||
else if (el[0].is_string())
|
||||
{
|
||||
auto toks = llama_tokenize(model, el[0].get<std::string>(), false);
|
||||
for (auto tok : toks)
|
||||
{
|
||||
slot->sparams.logit_bias[tok] = -INFINITY;
|
||||
slot->sparams.logit_bias[tok] = bias;
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -650,6 +685,24 @@ struct llama_server_context
|
||||
}
|
||||
}
|
||||
|
||||
const auto &samplers_sequence = data.find("samplers");
|
||||
if (samplers_sequence != data.end() && samplers_sequence->is_array())
|
||||
{
|
||||
std::vector<std::string> sampler_names;
|
||||
for (const auto &sampler_name : *samplers_sequence)
|
||||
{
|
||||
if (sampler_name.is_string())
|
||||
{
|
||||
sampler_names.emplace_back(sampler_name);
|
||||
}
|
||||
}
|
||||
slot->sparams.samplers_sequence = sampler_types_from_names(sampler_names, false);
|
||||
}
|
||||
else
|
||||
{
|
||||
slot->sparams.samplers_sequence = default_sparams.samplers_sequence;
|
||||
}
|
||||
|
||||
if (multimodal)
|
||||
{
|
||||
const auto &images_data = data.find("image_data");
|
||||
@@ -739,27 +792,30 @@ struct llama_server_context
|
||||
}
|
||||
|
||||
void update_system_prompt() {
|
||||
system_tokens = ::llama_tokenize(ctx, system_prompt, add_bos_token);
|
||||
|
||||
llama_batch_clear(batch);
|
||||
|
||||
kv_cache_clear();
|
||||
system_tokens.clear();
|
||||
|
||||
for (int i = 0; i < (int) system_tokens.size(); ++i)
|
||||
{
|
||||
llama_batch_add(batch, system_tokens[i], i, { 0 }, false);
|
||||
}
|
||||
if (!system_prompt.empty()) {
|
||||
system_tokens = ::llama_tokenize(ctx, system_prompt, add_bos_token);
|
||||
|
||||
if (llama_decode(ctx, batch) != 0)
|
||||
{
|
||||
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
||||
return;
|
||||
}
|
||||
llama_batch_clear(batch);
|
||||
|
||||
// assign the system KV cache to all parallel sequences
|
||||
for (int32_t i = 1; i < params.n_parallel; ++i)
|
||||
{
|
||||
llama_kv_cache_seq_cp(ctx, 0, i, 0, system_tokens.size());
|
||||
for (int i = 0; i < (int)system_tokens.size(); ++i)
|
||||
{
|
||||
llama_batch_add(batch, system_tokens[i], i, { 0 }, false);
|
||||
}
|
||||
|
||||
if (llama_decode(ctx, batch) != 0)
|
||||
{
|
||||
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
||||
return;
|
||||
}
|
||||
|
||||
// assign the system KV cache to all parallel sequences
|
||||
for (int32_t i = 1; i < params.n_parallel; ++i)
|
||||
{
|
||||
llama_kv_cache_seq_cp(ctx, 0, i, 0, system_tokens.size());
|
||||
}
|
||||
}
|
||||
|
||||
LOG_TEE("system prompt updated\n");
|
||||
@@ -781,10 +837,8 @@ struct llama_server_context
|
||||
name_user = sys_props.value("anti_prompt", "");
|
||||
name_assistant = sys_props.value("assistant_name", "");
|
||||
|
||||
if (slots.size() > 0)
|
||||
{
|
||||
notify_system_prompt_changed();
|
||||
}
|
||||
|
||||
notify_system_prompt_changed();
|
||||
}
|
||||
|
||||
static size_t find_stopping_strings(const std::string &text, const size_t last_token_size,
|
||||
@@ -942,18 +996,31 @@ struct llama_server_context
|
||||
{
|
||||
continue;
|
||||
}
|
||||
clip_image_f32 * img_res = clip_image_f32_init();
|
||||
if (!clip_image_preprocess(clp_ctx, img.img_data, img_res, /*pad2square =*/ true))
|
||||
clip_image_f32_batch img_res_v;
|
||||
img_res_v.size = 0;
|
||||
img_res_v.data = nullptr;
|
||||
if (!clip_image_preprocess(clp_ctx, img.img_data, img_res_v))
|
||||
{
|
||||
LOG_TEE("Error processing the given image");
|
||||
clip_free(clp_ctx);
|
||||
clip_image_f32_batch_free(img_res_v);
|
||||
return false;
|
||||
}
|
||||
if (img_res_v.size == 0)
|
||||
{
|
||||
LOG_TEE("Error processing the given image");
|
||||
return false;
|
||||
}
|
||||
|
||||
// note: assumes only one image was returned by clip_image_preprocess
|
||||
clip_image_f32 * img_res = img_res_v.data;
|
||||
|
||||
img.image_tokens = clip_n_patches(clp_ctx);
|
||||
img.image_embedding = (float *)malloc(clip_embd_nbytes(clp_ctx));
|
||||
if (!img.image_embedding)
|
||||
{
|
||||
LOG_TEE("Unable to allocate memory for image embeddings\n");
|
||||
clip_image_f32_batch_free(img_res_v);
|
||||
clip_free(clp_ctx);
|
||||
return false;
|
||||
}
|
||||
@@ -961,9 +1028,12 @@ struct llama_server_context
|
||||
if (!clip_image_encode(clp_ctx, params.n_threads, img_res, img.image_embedding))
|
||||
{
|
||||
LOG_TEE("Unable to encode image\n");
|
||||
clip_image_f32_batch_free(img_res_v);
|
||||
return false;
|
||||
}
|
||||
clip_image_f32_free(img_res);
|
||||
|
||||
clip_image_f32_batch_free(img_res_v);
|
||||
|
||||
img.request_encode_image = false;
|
||||
}
|
||||
|
||||
@@ -982,21 +1052,25 @@ struct llama_server_context
|
||||
queue_results.send(res);
|
||||
}
|
||||
|
||||
json get_model_props()
|
||||
{
|
||||
return get_formated_generation(slots[0]);
|
||||
}
|
||||
|
||||
json get_formated_generation(llama_client_slot &slot)
|
||||
{
|
||||
const auto eos_bias = slot.sparams.logit_bias.find(llama_token_eos(model));
|
||||
const bool ignore_eos = eos_bias != slot.sparams.logit_bias.end() &&
|
||||
eos_bias->second < 0.0f && std::isinf(eos_bias->second);
|
||||
std::vector<std::string> samplers_sequence;
|
||||
for (const auto &sampler_type : slot.sparams.samplers_sequence)
|
||||
{
|
||||
samplers_sequence.emplace_back(sampler_type_to_name_string(sampler_type));
|
||||
}
|
||||
|
||||
return json {
|
||||
{"n_ctx", slot.n_ctx},
|
||||
{"n_predict", slot.n_predict},
|
||||
{"model", params.model_alias},
|
||||
{"seed", slot.params.seed},
|
||||
{"temperature", slot.sparams.temp},
|
||||
{"dynatemp_range", slot.sparams.dynatemp_range},
|
||||
{"dynatemp_exponent", slot.sparams.dynatemp_exponent},
|
||||
{"top_k", slot.sparams.top_k},
|
||||
{"top_p", slot.sparams.top_p},
|
||||
{"min_p", slot.sparams.min_p},
|
||||
@@ -1020,6 +1094,7 @@ struct llama_server_context
|
||||
{"logit_bias", slot.sparams.logit_bias},
|
||||
{"n_probs", slot.sparams.n_probs},
|
||||
{"grammar", slot.sparams.grammar},
|
||||
{"samplers", samplers_sequence}
|
||||
};
|
||||
}
|
||||
|
||||
@@ -1158,13 +1233,30 @@ struct llama_server_context
|
||||
task.multitask_id = multitask_id;
|
||||
|
||||
// when a completion task's prompt array is not a singleton, we split it into multiple requests
|
||||
if (task.data.count("prompt") && task.data.at("prompt").size() > 1)
|
||||
{
|
||||
split_multiprompt_task(task_id, task);
|
||||
}
|
||||
|
||||
// otherwise, it's a single-prompt task, we actually queue it
|
||||
queue_tasks.post(task);
|
||||
// if there's numbers in the prompt array it will be treated as an array of tokens
|
||||
if (task.data.count("prompt") != 0 && task.data.at("prompt").size() > 1) {
|
||||
bool numbers = false;
|
||||
for (const auto& e : task.data.at("prompt")) {
|
||||
if (e.is_number()) {
|
||||
numbers = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// NOTE: split_multiprompt_task() does not handle a mix of strings and numbers,
|
||||
// it will completely stall the server. I don't know where the bug for this is.
|
||||
//
|
||||
// if there are numbers, it needs to be treated like a single prompt,
|
||||
// queue_tasks handles a mix of strings and numbers just fine.
|
||||
if (numbers) {
|
||||
queue_tasks.post(task);
|
||||
} else {
|
||||
split_multiprompt_task(task_id, task);
|
||||
}
|
||||
} else {
|
||||
queue_tasks.post(task);
|
||||
}
|
||||
}
|
||||
|
||||
// for multiple images processing
|
||||
@@ -1227,7 +1319,7 @@ struct llama_server_context
|
||||
std::vector<llama_token> append_tokens = tokenize(json_prompt, false); // has next image
|
||||
for (int i = 0; i < (int) append_tokens.size(); ++i)
|
||||
{
|
||||
llama_batch_add(batch, append_tokens[i], slot.n_past, { slot.id }, true);
|
||||
llama_batch_add(batch, append_tokens[i], system_tokens.size() + slot.n_past, { slot.id }, true);
|
||||
slot.n_past += 1;
|
||||
}
|
||||
}
|
||||
@@ -1246,7 +1338,10 @@ struct llama_server_context
|
||||
void split_multiprompt_task(int multitask_id, task_server& multiprompt_task)
|
||||
{
|
||||
int prompt_count = multiprompt_task.data.at("prompt").size();
|
||||
assert(prompt_count > 1);
|
||||
if (prompt_count <= 1) {
|
||||
send_error(multiprompt_task, "error while handling multiple prompts");
|
||||
return;
|
||||
}
|
||||
|
||||
// generate all the ID for subtask
|
||||
std::vector<int> subtask_ids(prompt_count);
|
||||
@@ -1295,6 +1390,8 @@ struct llama_server_context
|
||||
for (llama_client_slot &slot : slots)
|
||||
{
|
||||
slot.cache_tokens.clear();
|
||||
slot.n_past = 0;
|
||||
slot.n_past_se = 0;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1364,26 +1461,26 @@ struct llama_server_context
|
||||
kv_cache_clear();
|
||||
}
|
||||
return true;
|
||||
} else {
|
||||
task_server task;
|
||||
task.type = TASK_TYPE_NEXT_RESPONSE;
|
||||
task.target_id = -1;
|
||||
queue_tasks.post(task);
|
||||
}
|
||||
|
||||
task_server task;
|
||||
task.type = TASK_TYPE_NEXT_RESPONSE;
|
||||
task.target_id = -1;
|
||||
queue_tasks.post(task);
|
||||
|
||||
for (llama_client_slot &slot : slots)
|
||||
{
|
||||
if (slot.ga_n == 1)
|
||||
{
|
||||
if (slot.is_processing() && slot.cache_tokens.size() >= (size_t) slot.n_ctx)
|
||||
if (slot.is_processing() && system_tokens.size() + slot.cache_tokens.size() >= (size_t) slot.n_ctx)
|
||||
{
|
||||
// Shift context
|
||||
const int n_left = slot.n_past - slot.params.n_keep - 1;
|
||||
const int n_left = system_tokens.size() + slot.n_past - slot.params.n_keep - 1;
|
||||
const int n_discard = n_left / 2;
|
||||
|
||||
LOG_TEE("slot %d: context shift - n_keep = %d, n_left = %d, n_discard = %d\n", slot.id, slot.params.n_keep, n_left, n_discard);
|
||||
llama_kv_cache_seq_rm (ctx, slot.id, slot.params.n_keep + 1 , slot.params.n_keep + n_discard + 1);
|
||||
llama_kv_cache_seq_shift(ctx, slot.id, slot.params.n_keep + 1 + n_discard, slot.n_past, -n_discard);
|
||||
llama_kv_cache_seq_shift(ctx, slot.id, slot.params.n_keep + 1 + n_discard, system_tokens.size() + slot.n_past, -n_discard);
|
||||
|
||||
for (size_t i = slot.params.n_keep + 1 + n_discard; i < slot.cache_tokens.size(); i++)
|
||||
{
|
||||
@@ -1429,8 +1526,10 @@ struct llama_server_context
|
||||
slot.i_batch = batch.n_tokens;
|
||||
|
||||
const int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past;
|
||||
llama_batch_add(batch, slot.sampled, system_tokens.size() + slot_npast, { slot.id }, true);
|
||||
|
||||
// TODO: we always have to take into account the "system_tokens"
|
||||
// this is not great and needs to be improved somehow
|
||||
llama_batch_add(batch, slot.sampled, system_tokens.size() + slot_npast, { slot.id }, true);
|
||||
slot.n_past += 1;
|
||||
}
|
||||
|
||||
@@ -1481,8 +1580,8 @@ struct llama_server_context
|
||||
|
||||
prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(model));
|
||||
prefix_tokens.insert(prefix_tokens.begin(), llama_token_bos(model)); // always add BOS
|
||||
prefix_tokens.insert(prefix_tokens.end(), llama_token_suffix(model));
|
||||
prefix_tokens.insert(prefix_tokens.end(), suffix_tokens.begin(), suffix_tokens.end());
|
||||
prefix_tokens.insert(prefix_tokens.end(), llama_token_suffix(model));
|
||||
prefix_tokens.insert(prefix_tokens.end(), suffix_tokens.begin(), suffix_tokens.end());
|
||||
prefix_tokens.push_back(llama_token_middle(model));
|
||||
prompt_tokens = prefix_tokens;
|
||||
}
|
||||
@@ -1564,10 +1663,6 @@ struct llama_server_context
|
||||
LOG_TEE("slot %d : in cache: %i tokens | to process: %i tokens\n", slot.id, slot.n_past, slot.num_prompt_tokens_processed);
|
||||
}
|
||||
|
||||
LOG_TEE("slot %d : kv cache rm - [%d, end)\n", slot.id, (int) system_tokens.size() + slot.n_past);
|
||||
|
||||
llama_kv_cache_seq_rm(ctx, slot.id, system_tokens.size() + slot.n_past, -1);
|
||||
|
||||
slot.cache_tokens = prompt_tokens;
|
||||
|
||||
if (slot.n_past == slot.num_prompt_tokens && slot.n_past > 0)
|
||||
@@ -1581,9 +1676,13 @@ struct llama_server_context
|
||||
}
|
||||
}
|
||||
|
||||
LOG_TEE("slot %d : kv cache rm - [%d, end)\n", slot.id, (int) system_tokens.size() + slot.n_past);
|
||||
|
||||
llama_kv_cache_seq_rm(ctx, slot.id, system_tokens.size() + slot.n_past, -1);
|
||||
|
||||
LOG_VERBOSE("prompt ingested", {
|
||||
{"n_past", slot.n_past},
|
||||
{"cached", tokens_to_str(ctx, slot.cache_tokens.cbegin(), slot.cache_tokens.cbegin() + slot.n_past)},
|
||||
{"n_past", slot.n_past},
|
||||
{"cached", tokens_to_str(ctx, slot.cache_tokens.cbegin(), slot.cache_tokens.cbegin() + slot.n_past)},
|
||||
{"to_eval", tokens_to_str(ctx, slot.cache_tokens.cbegin() + slot.n_past, slot.cache_tokens.cend())},
|
||||
});
|
||||
|
||||
@@ -1591,10 +1690,13 @@ struct llama_server_context
|
||||
|
||||
// process the prefix of first image
|
||||
std::vector<llama_token> prefix_tokens = has_images ? tokenize(slot.images[0].prefix_prompt, add_bos_token) : prompt_tokens;
|
||||
|
||||
int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past;
|
||||
int ga_i = slot.ga_i;
|
||||
|
||||
int32_t ga_i = slot.ga_i;
|
||||
int32_t ga_n = slot.ga_n;
|
||||
int32_t ga_w = slot.ga_w;
|
||||
|
||||
for (; slot.n_past < (int) prefix_tokens.size(); ++slot.n_past)
|
||||
{
|
||||
if (slot.ga_n != 1)
|
||||
@@ -1606,7 +1708,7 @@ struct llama_server_context
|
||||
}
|
||||
}
|
||||
llama_batch_add(batch, prefix_tokens[slot.n_past], system_tokens.size() + slot_npast, {slot.id }, false);
|
||||
slot_npast += 1;
|
||||
slot_npast++;
|
||||
}
|
||||
|
||||
if (has_images && !ingest_images(slot, n_batch))
|
||||
@@ -1666,6 +1768,7 @@ struct llama_server_context
|
||||
slot.n_past_se += n_tokens;
|
||||
}
|
||||
}
|
||||
|
||||
llama_batch batch_view =
|
||||
{
|
||||
n_tokens,
|
||||
@@ -1780,53 +1883,60 @@ static void server_print_usage(const char *argv0, const gpt_params ¶ms,
|
||||
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
||||
printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
|
||||
printf(" not recommended: doubles context memory required and no measurable increase in quality\n");
|
||||
if (llama_mlock_supported())
|
||||
if (llama_supports_mlock())
|
||||
{
|
||||
printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
|
||||
printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
|
||||
}
|
||||
if (llama_mmap_supported())
|
||||
if (llama_supports_mmap())
|
||||
{
|
||||
printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
|
||||
printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
|
||||
}
|
||||
printf(" --numa TYPE attempt optimizations that help on some NUMA systems\n");
|
||||
printf(" - distribute: spread execution evenly over all nodes\n");
|
||||
printf(" - isolate: only spawn threads on CPUs on the node that execution started on\n");
|
||||
printf(" - numactl: use the CPU map provided my numactl\n");
|
||||
if (llama_supports_gpu_offload()) {
|
||||
printf(" -ngl N, --n-gpu-layers N\n");
|
||||
printf(" number of layers to store in VRAM\n");
|
||||
printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
|
||||
printf(" how to split the model across multiple GPUs, one of:\n");
|
||||
printf(" - none: use one GPU only\n");
|
||||
printf(" - layer (default): split layers and KV across GPUs\n");
|
||||
printf(" - row: split rows across GPUs\n");
|
||||
printf(" -ts SPLIT --tensor-split SPLIT\n");
|
||||
printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
|
||||
printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
|
||||
printf(" or for intermediate results and KV (with split-mode = row)\n");
|
||||
}
|
||||
printf(" --numa attempt optimizations that help on some NUMA systems\n");
|
||||
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||
printf(" -ngl N, --n-gpu-layers N\n");
|
||||
printf(" number of layers to store in VRAM\n");
|
||||
printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
|
||||
printf(" how to split the model across multiple GPUs, one of:\n");
|
||||
printf(" - none: use one GPU only\n");
|
||||
printf(" - layer (default): split layers and KV across GPUs\n");
|
||||
printf(" - row: split rows across GPUs\n");
|
||||
printf(" -ts SPLIT --tensor-split SPLIT\n");
|
||||
printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
|
||||
printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
|
||||
printf(" or for intermediate results and KV (with split-mode = row)\n");
|
||||
#endif
|
||||
printf(" -m FNAME, --model FNAME\n");
|
||||
printf(" model path (default: %s)\n", params.model.c_str());
|
||||
printf(" model path (default: %s)\n", params.model.c_str());
|
||||
printf(" -a ALIAS, --alias ALIAS\n");
|
||||
printf(" set an alias for the model, will be added as `model` field in completion response\n");
|
||||
printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
|
||||
printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
|
||||
printf(" --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str());
|
||||
printf(" --port PORT port to listen (default (default: %d)\n", sparams.port);
|
||||
printf(" --path PUBLIC_PATH path from which to serve static files (default %s)\n", sparams.public_path.c_str());
|
||||
printf(" --api-key API_KEY optional api key to enhance server security. If set, requests must include this key for access.\n");
|
||||
printf(" --api-key-file FNAME path to file containing api keys delimited by new lines. If set, requests must include one of the keys for access.\n");
|
||||
printf(" -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout);
|
||||
printf(" --embedding enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled");
|
||||
printf(" -np N, --parallel N number of slots for process requests (default: %d)\n", params.n_parallel);
|
||||
printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
|
||||
printf(" -spf FNAME, --system-prompt-file FNAME\n");
|
||||
printf(" Set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications.\n");
|
||||
printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA.\n");
|
||||
printf(" --log-disable disables logging to a file.\n");
|
||||
printf(" set an alias for the model, will be added as `model` field in completion response\n");
|
||||
printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
|
||||
printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
|
||||
printf(" --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str());
|
||||
printf(" --port PORT port to listen (default (default: %d)\n", sparams.port);
|
||||
printf(" --path PUBLIC_PATH path from which to serve static files (default %s)\n", sparams.public_path.c_str());
|
||||
printf(" --api-key API_KEY optional api key to enhance server security. If set, requests must include this key for access.\n");
|
||||
printf(" --api-key-file FNAME path to file containing api keys delimited by new lines. If set, requests must include one of the keys for access.\n");
|
||||
printf(" -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout);
|
||||
printf(" --embedding enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled");
|
||||
printf(" -np N, --parallel N number of slots for process requests (default: %d)\n", params.n_parallel);
|
||||
printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
|
||||
printf(" -spf FNAME, --system-prompt-file FNAME\n");
|
||||
printf(" set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications.\n");
|
||||
printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA.\n");
|
||||
printf(" --log-disable disables logging to a file.\n");
|
||||
printf(" --slots-endpoint-disable disables slots monitoring endpoint.\n");
|
||||
printf("\n");
|
||||
printf(" -n, --n-predict maximum tokens to predict (default: %d)\n", params.n_predict);
|
||||
printf(" --override-kv KEY=TYPE:VALUE\n");
|
||||
printf(" advanced option to override model metadata by key. may be specified multiple times.\n");
|
||||
printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
|
||||
printf(" -gan N, --grp-attn-n N Set the group attention factor to extend context size through self-extend(default: 1=disabled), used together with group attention width `--grp-attn-w`");
|
||||
printf(" -gaw N, --grp-attn-w N Set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n`");
|
||||
printf(" advanced option to override model metadata by key. may be specified multiple times.\n");
|
||||
printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
|
||||
printf(" -gan N, --grp-attn-n N set the group attention factor to extend context size through self-extend(default: 1=disabled), used together with group attention width `--grp-attn-w`");
|
||||
printf(" -gaw N, --grp-attn-w N set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n`");
|
||||
printf(" --chat-template FORMAT_NAME");
|
||||
printf(" set chat template, possible value is: llama2, chatml (default %s)", sparams.chat_template.c_str());
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
@@ -1875,7 +1985,7 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
sparams.api_keys.push_back(argv[i]);
|
||||
sparams.api_keys.emplace_back(argv[i]);
|
||||
}
|
||||
else if (arg == "--api-key-file")
|
||||
{
|
||||
@@ -2057,13 +2167,13 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||
params.n_gpu_layers = std::stoi(argv[i]);
|
||||
#else
|
||||
LOG_WARNING("Not compiled with GPU offload support, --n-gpu-layers option will be ignored. "
|
||||
if (llama_supports_gpu_offload()) {
|
||||
params.n_gpu_layers = std::stoi(argv[i]);
|
||||
} else {
|
||||
LOG_WARNING("Not compiled with GPU offload support, --n-gpu-layers option will be ignored. "
|
||||
"See main README.md for information on enabling GPU BLAS support",
|
||||
{{"n_gpu_layers", params.n_gpu_layers}});
|
||||
#endif
|
||||
}
|
||||
}
|
||||
else if (arg == "--split-mode" || arg == "-sm")
|
||||
{
|
||||
@@ -2106,9 +2216,9 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
||||
const std::regex regex{R"([,/]+)"};
|
||||
std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
|
||||
std::vector<std::string> split_arg{it, {}};
|
||||
GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
|
||||
GGML_ASSERT(split_arg.size() <= llama_max_devices());
|
||||
|
||||
for (size_t i_device = 0; i_device < LLAMA_MAX_DEVICES; ++i_device)
|
||||
for (size_t i_device = 0; i_device < llama_max_devices(); ++i_device)
|
||||
{
|
||||
if (i_device < split_arg.size())
|
||||
{
|
||||
@@ -2151,7 +2261,7 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.lora_adapter.push_back(std::make_tuple(argv[i], 1.0f));
|
||||
params.lora_adapter.emplace_back(argv[i], 1.0f);
|
||||
params.use_mmap = false;
|
||||
}
|
||||
else if (arg == "--lora-scaled")
|
||||
@@ -2167,7 +2277,7 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.lora_adapter.push_back(std::make_tuple(lora_adapter, std::stof(argv[i])));
|
||||
params.lora_adapter.emplace_back(lora_adapter, std::stof(argv[i]));
|
||||
params.use_mmap = false;
|
||||
}
|
||||
else if (arg == "--lora-base")
|
||||
@@ -2195,9 +2305,17 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
||||
{
|
||||
params.use_mmap = false;
|
||||
}
|
||||
else if (arg == "--numa")
|
||||
{
|
||||
params.numa = true;
|
||||
else if (arg == "--numa") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
} else {
|
||||
std::string value(argv[i]);
|
||||
/**/ if (value == "distribute" || value == "" ) { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
|
||||
else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
|
||||
else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
|
||||
else { invalid_param = true; break; }
|
||||
}
|
||||
}
|
||||
else if (arg == "--embedding")
|
||||
{
|
||||
@@ -2258,6 +2376,25 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
||||
log_set_target(stdout);
|
||||
LOG_INFO("logging to file is disabled.", {});
|
||||
}
|
||||
else if (arg == "--slots-endpoint-disable")
|
||||
{
|
||||
sparams.slots_endpoint = false;
|
||||
}
|
||||
else if (arg == "--chat-template")
|
||||
{
|
||||
if (++i >= argc)
|
||||
{
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
std::string value(argv[i]);
|
||||
if (value != "chatml" && value != "llama2") {
|
||||
fprintf(stderr, "error: chat template can be \"llama2\" or \"chatml\", but got: %s\n", value.c_str());
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
sparams.chat_template = value;
|
||||
}
|
||||
else if (arg == "--override-kv")
|
||||
{
|
||||
if (++i >= argc) {
|
||||
@@ -2309,7 +2446,7 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
||||
}
|
||||
}
|
||||
if (!params.kv_overrides.empty()) {
|
||||
params.kv_overrides.emplace_back(llama_model_kv_override());
|
||||
params.kv_overrides.emplace_back();
|
||||
params.kv_overrides.back().key[0] = 0;
|
||||
}
|
||||
|
||||
@@ -2394,6 +2531,9 @@ static void append_to_generated_text_from_generated_token_probs(llama_server_con
|
||||
}
|
||||
}
|
||||
|
||||
std::function<void(int)> shutdown_handler;
|
||||
inline void signal_handler(int signal) { shutdown_handler(signal); }
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
#if SERVER_VERBOSE != 1
|
||||
@@ -2413,7 +2553,8 @@ int main(int argc, char **argv)
|
||||
params.model_alias = params.model;
|
||||
}
|
||||
|
||||
llama_backend_init(params.numa);
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
LOG_INFO("build info", {{"build", LLAMA_BUILD_NUMBER},
|
||||
{"commit", LLAMA_COMMIT}});
|
||||
@@ -2443,8 +2584,35 @@ int main(int argc, char **argv)
|
||||
server_state current_state = state.load();
|
||||
switch(current_state) {
|
||||
case SERVER_STATE_READY:
|
||||
res.set_content(R"({"status": "ok"})", "application/json");
|
||||
res.status = 200; // HTTP OK
|
||||
if (llama.all_slots_are_idle) {
|
||||
res.set_content(R"({"status": "ok"})", "application/json");
|
||||
res.status = 200; // HTTP OK
|
||||
} else {
|
||||
int available_slots = 0;
|
||||
int processing_slots = 0;
|
||||
for (llama_client_slot & slot : llama.slots) {
|
||||
if (slot.available()) {
|
||||
available_slots++;
|
||||
} else {
|
||||
processing_slots++;
|
||||
}
|
||||
}
|
||||
if (available_slots > 0) {
|
||||
json health = {
|
||||
{"status", "ok"},
|
||||
{"slots_idle", available_slots},
|
||||
{"slots_processing", processing_slots}};
|
||||
res.set_content(health.dump(), "application/json");
|
||||
res.status = 200; // HTTP OK
|
||||
} else {
|
||||
json health = {
|
||||
{"status", "no slot available"},
|
||||
{"slots_idle", available_slots},
|
||||
{"slots_processing", processing_slots}};
|
||||
res.set_content(health.dump(), "application/json");
|
||||
res.status = 503; // HTTP Service Unavailable
|
||||
}
|
||||
}
|
||||
break;
|
||||
case SERVER_STATE_LOADING_MODEL:
|
||||
res.set_content(R"({"status": "loading model"})", "application/json");
|
||||
@@ -2457,6 +2625,32 @@ int main(int argc, char **argv)
|
||||
}
|
||||
});
|
||||
|
||||
if (sparams.slots_endpoint) {
|
||||
svr.Get("/slots", [&](const httplib::Request&, httplib::Response& res) {
|
||||
json slots;
|
||||
for (llama_client_slot & slot : llama.slots) {
|
||||
json slot_data = llama.get_formated_generation(slot);
|
||||
slot_data["id"] = slot.id;
|
||||
slot_data["task_id"] = slot.task_id;
|
||||
slot_data["state"] = slot.state;
|
||||
slot_data["prompt"] = slot.prompt;
|
||||
slot_data["next_token"] = {
|
||||
{"has_next_token", slot.has_next_token},
|
||||
{"n_remain", slot.n_remaining},
|
||||
{"num_tokens_predicted", slot.n_decoded},
|
||||
{"stopped_eos", slot.stopped_eos},
|
||||
{"stopped_word", slot.stopped_word},
|
||||
{"stopped_limit", slot.stopped_limit},
|
||||
{"stopping_word", slot.stopping_word},
|
||||
};
|
||||
|
||||
slots.push_back(slot_data);
|
||||
}
|
||||
res.set_content(slots.dump(), "application/json");
|
||||
res.status = 200; // HTTP OK
|
||||
});
|
||||
}
|
||||
|
||||
svr.set_logger(log_server_request);
|
||||
|
||||
svr.set_exception_handler([](const httplib::Request &, httplib::Response &res, std::exception_ptr ep)
|
||||
@@ -2605,7 +2799,9 @@ int main(int argc, char **argv)
|
||||
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
||||
json data = {
|
||||
{ "user_name", llama.name_user.c_str() },
|
||||
{ "assistant_name", llama.name_assistant.c_str() }
|
||||
{ "assistant_name", llama.name_assistant.c_str() },
|
||||
{ "default_generation_settings", llama.default_generation_settings_for_props },
|
||||
{ "total_slots", llama.params.n_parallel }
|
||||
};
|
||||
res.set_content(data.dump(), "application/json; charset=utf-8");
|
||||
});
|
||||
@@ -2709,13 +2905,13 @@ int main(int argc, char **argv)
|
||||
|
||||
|
||||
// TODO: add mount point without "/v1" prefix -- how?
|
||||
svr.Post("/v1/chat/completions", [&llama, &validate_api_key](const httplib::Request &req, httplib::Response &res)
|
||||
svr.Post("/v1/chat/completions", [&llama, &validate_api_key, &sparams](const httplib::Request &req, httplib::Response &res)
|
||||
{
|
||||
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
||||
if (!validate_api_key(req, res)) {
|
||||
return;
|
||||
}
|
||||
json data = oaicompat_completion_params_parse(json::parse(req.body));
|
||||
json data = oaicompat_completion_params_parse(json::parse(req.body), sparams.chat_template);
|
||||
|
||||
const int task_id = llama.queue_tasks.get_new_id();
|
||||
llama.queue_results.add_waiting_task_id(task_id);
|
||||
@@ -2856,12 +3052,6 @@ int main(int argc, char **argv)
|
||||
}
|
||||
});
|
||||
|
||||
svr.Get("/model.json", [&llama](const httplib::Request &, httplib::Response &res)
|
||||
{
|
||||
const json data = llama.get_model_props();
|
||||
return res.set_content(data.dump(), "application/json; charset=utf-8");
|
||||
});
|
||||
|
||||
svr.Options(R"(/.*)", [](const httplib::Request &, httplib::Response &res)
|
||||
{ return res.set_content("", "application/json; charset=utf-8"); });
|
||||
|
||||
@@ -3014,8 +3204,25 @@ int main(int argc, char **argv)
|
||||
std::placeholders::_2,
|
||||
std::placeholders::_3
|
||||
));
|
||||
llama.queue_tasks.start_loop();
|
||||
|
||||
shutdown_handler = [&](int) {
|
||||
llama.queue_tasks.terminate();
|
||||
};
|
||||
|
||||
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
|
||||
struct sigaction sigint_action;
|
||||
sigint_action.sa_handler = signal_handler;
|
||||
sigemptyset (&sigint_action.sa_mask);
|
||||
sigint_action.sa_flags = 0;
|
||||
sigaction(SIGINT, &sigint_action, NULL);
|
||||
#elif defined (_WIN32)
|
||||
auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
|
||||
return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
|
||||
};
|
||||
SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
|
||||
#endif
|
||||
llama.queue_tasks.start_loop();
|
||||
svr.stop();
|
||||
t.join();
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
@@ -167,6 +167,34 @@ static T json_value(const json &body, const std::string &key, const T &default_v
|
||||
: default_value;
|
||||
}
|
||||
|
||||
inline std::string format_llama2(std::vector<json> messages)
|
||||
{
|
||||
std::ostringstream output;
|
||||
bool is_inside_turn = false;
|
||||
|
||||
for (auto it = messages.begin(); it != messages.end(); ++it) {
|
||||
if (!is_inside_turn) {
|
||||
output << "[INST] ";
|
||||
}
|
||||
std::string role = json_value(*it, "role", std::string("user"));
|
||||
std::string content = json_value(*it, "content", std::string(""));
|
||||
if (role == "system") {
|
||||
output << "<<SYS>>\n" << content << "\n<<SYS>>\n\n";
|
||||
is_inside_turn = true;
|
||||
} else if (role == "user") {
|
||||
output << content << " [/INST]";
|
||||
is_inside_turn = true;
|
||||
} else {
|
||||
output << " " << content << " </s>";
|
||||
is_inside_turn = false;
|
||||
}
|
||||
}
|
||||
|
||||
LOG_VERBOSE("format_llama2", {{"text", output.str()}});
|
||||
|
||||
return output.str();
|
||||
}
|
||||
|
||||
inline std::string format_chatml(std::vector<json> messages)
|
||||
{
|
||||
std::ostringstream chatml_msgs;
|
||||
@@ -180,6 +208,8 @@ inline std::string format_chatml(std::vector<json> messages)
|
||||
|
||||
chatml_msgs << "<|im_start|>assistant" << '\n';
|
||||
|
||||
LOG_VERBOSE("format_chatml", {{"text", chatml_msgs.str()}});
|
||||
|
||||
return chatml_msgs.str();
|
||||
}
|
||||
|
||||
@@ -190,6 +220,7 @@ inline std::string format_chatml(std::vector<json> messages)
|
||||
struct llama_server_queue {
|
||||
int id = 0;
|
||||
std::mutex mutex_tasks;
|
||||
bool running;
|
||||
// queues
|
||||
std::vector<task_server> queue_tasks;
|
||||
std::vector<task_server> queue_tasks_deferred;
|
||||
@@ -248,9 +279,18 @@ struct llama_server_queue {
|
||||
queue_tasks_deferred.clear();
|
||||
}
|
||||
|
||||
// Start the main loop. This call is blocking
|
||||
[[noreturn]]
|
||||
// end the start_loop routine
|
||||
void terminate() {
|
||||
{
|
||||
std::unique_lock<std::mutex> lock(mutex_tasks);
|
||||
running = false;
|
||||
}
|
||||
condition_tasks.notify_all();
|
||||
}
|
||||
|
||||
// Start the main loop.
|
||||
void start_loop() {
|
||||
running = true;
|
||||
while (true) {
|
||||
// new task arrived
|
||||
LOG_VERBOSE("have new task", {});
|
||||
@@ -294,8 +334,12 @@ struct llama_server_queue {
|
||||
{
|
||||
std::unique_lock<std::mutex> lock(mutex_tasks);
|
||||
if (queue_tasks.empty()) {
|
||||
if (!running) {
|
||||
LOG_VERBOSE("ending start_loop", {});
|
||||
return;
|
||||
}
|
||||
condition_tasks.wait(lock, [&]{
|
||||
return !queue_tasks.empty();
|
||||
return (!queue_tasks.empty() || !running);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
@@ -31,7 +31,8 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// init LLM
|
||||
|
||||
llama_backend_init(params.numa);
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
// initialize the model
|
||||
|
||||
|
||||
@@ -50,7 +50,8 @@ int main(int argc, char ** argv) {
|
||||
#endif // LOG_DISABLE_LOGS
|
||||
|
||||
// init llama.cpp
|
||||
llama_backend_init(params.numa);
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
llama_model * model_tgt = NULL;
|
||||
llama_model * model_dft = NULL;
|
||||
|
||||
@@ -1,7 +1,9 @@
|
||||
/*MIT license
|
||||
Copyright (C) 2024 Intel Corporation
|
||||
SPDX-License-Identifier: MIT
|
||||
*/
|
||||
//
|
||||
// MIT license
|
||||
// Copyright (C) 2024 Intel Corporation
|
||||
// SPDX-License-Identifier: MIT
|
||||
//
|
||||
|
||||
|
||||
#include "ggml-sycl.h"
|
||||
|
||||
|
||||
23
examples/sycl/win-build-sycl.bat
Normal file
23
examples/sycl/win-build-sycl.bat
Normal file
@@ -0,0 +1,23 @@
|
||||
|
||||
:: MIT license
|
||||
:: Copyright (C) 2024 Intel Corporation
|
||||
:: SPDX-License-Identifier: MIT
|
||||
|
||||
mkdir -p build
|
||||
cd build
|
||||
@call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force
|
||||
|
||||
:: for FP16
|
||||
:: faster for long-prompt inference
|
||||
:: cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release -DLLAMA_SYCL_F16=ON
|
||||
|
||||
:: for FP32
|
||||
cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release
|
||||
|
||||
|
||||
:: build example/main only
|
||||
:: make main
|
||||
|
||||
:: build all binary
|
||||
make -j
|
||||
cd ..
|
||||
13
examples/sycl/win-run-llama2.bat
Normal file
13
examples/sycl/win-run-llama2.bat
Normal file
@@ -0,0 +1,13 @@
|
||||
:: MIT license
|
||||
:: Copyright (C) 2024 Intel Corporation
|
||||
:: SPDX-License-Identifier: MIT
|
||||
|
||||
set INPUT2="Building a website can be done in 10 simple steps:\nStep 1:"
|
||||
@call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force
|
||||
|
||||
|
||||
set GGML_SYCL_DEVICE=0
|
||||
rem set GGML_SYCL_DEBUG=1
|
||||
.\build\bin\main.exe -m models\llama-2-7b.Q4_0.gguf -p %INPUT2% -n 400 -e -ngl 33 -s 0
|
||||
|
||||
|
||||
@@ -17,7 +17,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
const bool printing_ids = argc > 3 && std::string(argv[3]) == "--ids";
|
||||
|
||||
llama_backend_init(false);
|
||||
llama_backend_init();
|
||||
|
||||
llama_model_params model_params = llama_model_default_params();
|
||||
model_params.vocab_only = true;
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
#include "ggml.h"
|
||||
#include "ggml-alloc.h"
|
||||
#include "ggml-backend.h"
|
||||
#include "common.h"
|
||||
#include "train.h"
|
||||
#include "llama.h"
|
||||
@@ -19,8 +20,6 @@
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
static const size_t tensor_alignment = 32;
|
||||
|
||||
struct my_llama_hparams {
|
||||
uint32_t n_vocab = 32000;
|
||||
uint32_t n_ctx = 512;
|
||||
@@ -51,14 +50,14 @@ struct my_llama_layer {
|
||||
struct ggml_tensor * ffn_norm;
|
||||
|
||||
// ff
|
||||
struct ggml_tensor * w1;
|
||||
struct ggml_tensor * w2;
|
||||
struct ggml_tensor * w3;
|
||||
struct ggml_tensor * ffn_gate; // w1
|
||||
struct ggml_tensor * ffn_down; // w2
|
||||
struct ggml_tensor * ffn_up; // w3
|
||||
};
|
||||
|
||||
struct my_llama_model {
|
||||
struct ggml_context * ctx = NULL;
|
||||
std::vector<uint8_t> data;
|
||||
ggml_backend_buffer_t data = NULL;
|
||||
|
||||
my_llama_hparams hparams;
|
||||
|
||||
@@ -112,13 +111,13 @@ static const char * LLM_TENSOR_FFN_DOWN = "blk.%d.ffn_down";
|
||||
static const char * LLM_TENSOR_FFN_UP = "blk.%d.ffn_up";
|
||||
|
||||
static void print_params(struct my_llama_hparams * params) {
|
||||
printf("%s: n_vocab: %d\n", __func__, params->n_vocab);
|
||||
printf("%s: n_ctx: %d\n", __func__, params->n_ctx);
|
||||
printf("%s: n_embd: %d\n", __func__, params->n_embd);
|
||||
printf("%s: n_head: %d\n", __func__, params->n_head);
|
||||
printf("%s: n_ff: %d\n", __func__, params->n_ff);
|
||||
printf("%s: n_layer: %d\n", __func__, params->n_layer);
|
||||
printf("%s: n_rot: %d\n", __func__, params->n_rot);
|
||||
printf("%s: n_vocab: %u\n", __func__, params->n_vocab);
|
||||
printf("%s: n_ctx: %u\n", __func__, params->n_ctx);
|
||||
printf("%s: n_embd: %u\n", __func__, params->n_embd);
|
||||
printf("%s: n_head: %u\n", __func__, params->n_head);
|
||||
printf("%s: n_ff: %u\n", __func__, params->n_ff);
|
||||
printf("%s: n_layer: %u\n", __func__, params->n_layer);
|
||||
printf("%s: n_rot: %u\n", __func__, params->n_rot);
|
||||
}
|
||||
|
||||
static void set_param_model(struct my_llama_model * model) {
|
||||
@@ -141,42 +140,9 @@ static void set_param_model(struct my_llama_model * model) {
|
||||
ggml_set_param(ctx, layer.wv);
|
||||
ggml_set_param(ctx, layer.wo);
|
||||
ggml_set_param(ctx, layer.ffn_norm);
|
||||
ggml_set_param(ctx, layer.w1);
|
||||
ggml_set_param(ctx, layer.w2);
|
||||
ggml_set_param(ctx, layer.w3);
|
||||
}
|
||||
}
|
||||
|
||||
static void alloc_model(struct ggml_allocr * alloc, struct my_llama_model * model) {
|
||||
ggml_allocr_alloc(alloc, model->tok_embeddings);
|
||||
ggml_allocr_alloc(alloc, model->norm);
|
||||
ggml_allocr_alloc(alloc, model->output);
|
||||
for (uint32_t i = 0; i < model->layers.size(); ++i) {
|
||||
auto & layer = model->layers[i];
|
||||
ggml_allocr_alloc(alloc, layer.attention_norm);
|
||||
ggml_allocr_alloc(alloc, layer.wq);
|
||||
ggml_allocr_alloc(alloc, layer.wk);
|
||||
ggml_allocr_alloc(alloc, layer.wv);
|
||||
ggml_allocr_alloc(alloc, layer.wo);
|
||||
ggml_allocr_alloc(alloc, layer.ffn_norm);
|
||||
ggml_allocr_alloc(alloc, layer.w1);
|
||||
ggml_allocr_alloc(alloc, layer.w2);
|
||||
ggml_allocr_alloc(alloc, layer.w3);
|
||||
}
|
||||
ggml_allocr_alloc(alloc, model->tok_embeddings->grad);
|
||||
ggml_allocr_alloc(alloc, model->norm->grad);
|
||||
ggml_allocr_alloc(alloc, model->output->grad);
|
||||
for (uint32_t i = 0; i < model->layers.size(); ++i) {
|
||||
auto & layer = model->layers[i];
|
||||
ggml_allocr_alloc(alloc, layer.attention_norm->grad);
|
||||
ggml_allocr_alloc(alloc, layer.wq->grad);
|
||||
ggml_allocr_alloc(alloc, layer.wk->grad);
|
||||
ggml_allocr_alloc(alloc, layer.wv->grad);
|
||||
ggml_allocr_alloc(alloc, layer.wo->grad);
|
||||
ggml_allocr_alloc(alloc, layer.ffn_norm->grad);
|
||||
ggml_allocr_alloc(alloc, layer.w1->grad);
|
||||
ggml_allocr_alloc(alloc, layer.w2->grad);
|
||||
ggml_allocr_alloc(alloc, layer.w3->grad);
|
||||
ggml_set_param(ctx, layer.ffn_gate);
|
||||
ggml_set_param(ctx, layer.ffn_down);
|
||||
ggml_set_param(ctx, layer.ffn_up);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -232,9 +198,9 @@ static void init_model(struct my_llama_model * model) {
|
||||
|
||||
layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
layer.w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
|
||||
layer.w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd);
|
||||
layer.w3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
|
||||
layer.ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
|
||||
layer.ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd);
|
||||
layer.ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
|
||||
|
||||
ggml_set_name(layer.attention_norm, tni(LLM_TENSOR_ATTN_NORM, i));
|
||||
|
||||
@@ -245,24 +211,15 @@ static void init_model(struct my_llama_model * model) {
|
||||
|
||||
ggml_set_name(layer.ffn_norm, tni(LLM_TENSOR_FFN_NORM, i));
|
||||
|
||||
ggml_set_name(layer.w1, tni(LLM_TENSOR_FFN_GATE, i));
|
||||
ggml_set_name(layer.w2, tni(LLM_TENSOR_FFN_DOWN, i));
|
||||
ggml_set_name(layer.w3, tni(LLM_TENSOR_FFN_UP, i));
|
||||
ggml_set_name(layer.ffn_gate, tni(LLM_TENSOR_FFN_GATE, i));
|
||||
ggml_set_name(layer.ffn_down, tni(LLM_TENSOR_FFN_DOWN, i));
|
||||
ggml_set_name(layer.ffn_up, tni(LLM_TENSOR_FFN_UP, i));
|
||||
}
|
||||
|
||||
set_param_model(model);
|
||||
|
||||
// measure data size
|
||||
size_t size = 0;
|
||||
for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||
size += GGML_PAD(ggml_nbytes(t), tensor_alignment);
|
||||
}
|
||||
|
||||
// allocate data
|
||||
struct ggml_allocr * alloc = NULL;
|
||||
model->data.resize(size + tensor_alignment);
|
||||
alloc = ggml_allocr_new(model->data.data(), model->data.size(), tensor_alignment);
|
||||
alloc_model(alloc, model);
|
||||
model->data = ggml_backend_alloc_ctx_tensors_from_buft(ctx, ggml_backend_cpu_buffer_type());
|
||||
}
|
||||
|
||||
static void randomize_model(struct my_llama_model * model, int seed, float mean, float std, float min, float max) {
|
||||
@@ -287,9 +244,9 @@ static void randomize_model(struct my_llama_model * model, int seed, float mean,
|
||||
|
||||
randomize_tensor_normal(layer.ffn_norm, rnd);
|
||||
|
||||
randomize_tensor_normal(layer.w1, rnd);
|
||||
randomize_tensor_normal(layer.w2, rnd);
|
||||
randomize_tensor_normal(layer.w3, rnd);
|
||||
randomize_tensor_normal(layer.ffn_gate, rnd);
|
||||
randomize_tensor_normal(layer.ffn_down, rnd);
|
||||
randomize_tensor_normal(layer.ffn_up, rnd);
|
||||
}
|
||||
|
||||
free_random_normal_distribution(rnd);
|
||||
@@ -297,7 +254,7 @@ static void randomize_model(struct my_llama_model * model, int seed, float mean,
|
||||
|
||||
static struct ggml_tensor * llama_build_train_graphs(
|
||||
struct my_llama_model * model,
|
||||
struct ggml_allocr * alloc,
|
||||
ggml_gallocr_t alloc,
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_cgraph * gf,
|
||||
struct ggml_cgraph * gb,
|
||||
@@ -308,7 +265,8 @@ static struct ggml_tensor * llama_build_train_graphs(
|
||||
const int n_tokens,
|
||||
const int n_batch,
|
||||
const bool enable_flash_attn,
|
||||
const bool enable_checkpointing) {
|
||||
const bool enable_checkpointing,
|
||||
const bool measure_only) {
|
||||
|
||||
ggml_set_scratch(ctx, { 0, 0, nullptr, });
|
||||
const int n_past = 0;
|
||||
@@ -334,13 +292,7 @@ static struct ggml_tensor * llama_build_train_graphs(
|
||||
|
||||
// KQ_pos - contains the positions
|
||||
struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, N);
|
||||
ggml_allocr_alloc(alloc, KQ_pos);
|
||||
if (!ggml_allocr_is_measure(alloc)) {
|
||||
int * data = (int *) KQ_pos->data;
|
||||
for (int i = 0; i < N; ++i) {
|
||||
data[i] = n_past + i;
|
||||
}
|
||||
}
|
||||
ggml_set_input(KQ_pos);
|
||||
|
||||
// rope has so much parameters that we make a custom function for it
|
||||
auto rope = [ctx, KQ_pos, n_rot, n_ctx, rope_freq_base, rope_freq_scale]
|
||||
@@ -404,11 +356,11 @@ static struct ggml_tensor * llama_build_train_graphs(
|
||||
struct ggml_tensor * t22 = ggml_rms_norm (ctx, t21, f_norm_rms_eps); set_name(t22, "t22"); assert_shape_2d(t22, n_embd, N*n_batch);
|
||||
struct ggml_tensor * t23 = ggml_repeat (ctx, layer.ffn_norm, t22); set_name(t23, "t23"); assert_shape_2d(t23, n_embd, N*n_batch);
|
||||
struct ggml_tensor * t24 = ggml_mul (ctx, t23, t22); set_name(t24, "t24"); assert_shape_2d(t24, n_embd, N*n_batch);
|
||||
struct ggml_tensor * t25 = ggml_mul_mat (ctx, layer.w3, t24); set_name(t25, "t25"); assert_shape_2d(t25, n_ff, N*n_batch);
|
||||
struct ggml_tensor * t26 = ggml_mul_mat (ctx, layer.w1, t24); set_name(t26, "t26"); assert_shape_2d(t26, n_ff, N*n_batch);
|
||||
struct ggml_tensor * t25 = ggml_mul_mat (ctx, layer.ffn_up, t24); set_name(t25, "t25"); assert_shape_2d(t25, n_ff, N*n_batch);
|
||||
struct ggml_tensor * t26 = ggml_mul_mat (ctx, layer.ffn_gate, t24); set_name(t26, "t26"); assert_shape_2d(t26, n_ff, N*n_batch);
|
||||
struct ggml_tensor * t27 = ggml_silu (ctx, t26); set_name(t27, "t27"); assert_shape_2d(t27, n_ff, N*n_batch);
|
||||
struct ggml_tensor * t28 = ggml_mul (ctx, t27, t25); set_name(t28, "t28"); assert_shape_2d(t28, n_ff, N*n_batch);
|
||||
struct ggml_tensor * t29 = ggml_mul_mat (ctx, layer.w2, t28); set_name(t29, "t29"); assert_shape_2d(t29, n_embd, N*n_batch);
|
||||
struct ggml_tensor * t29 = ggml_mul_mat (ctx, layer.ffn_down, t28); set_name(t29, "t29"); assert_shape_2d(t29, n_embd, N*n_batch);
|
||||
struct ggml_tensor * t30 = ggml_add (ctx, t29, t21); set_name(t30, "t30"); assert_shape_2d(t30, n_embd, N*n_batch);
|
||||
cur = t30;
|
||||
checkpoints.push_back(cur);
|
||||
@@ -448,21 +400,31 @@ static struct ggml_tensor * llama_build_train_graphs(
|
||||
// KQ_pos
|
||||
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, KQ_pos, 1.0f));
|
||||
GGML_ASSERT(t36->grad->data == NULL && t36->grad->view_src == NULL);
|
||||
|
||||
ggml_allocr_alloc(alloc, t36->grad);
|
||||
ggml_set_input(t36->grad);
|
||||
|
||||
// allocating checkpoints in one block to reduce memory fragmentation
|
||||
// note: they will be freed in reverse order
|
||||
for (int i = 0; i < (int) checkpoints.size(); ++i) {
|
||||
if (checkpoints[i]->data == NULL && checkpoints[i]->view_src == NULL) {
|
||||
ggml_allocr_alloc(alloc, checkpoints[i]);
|
||||
ggml_set_input(checkpoints[i]);
|
||||
}
|
||||
}
|
||||
|
||||
//int n_leafs_after = gb->n_leafs;
|
||||
//int n_nodes_after = gb->n_nodes;
|
||||
if (measure_only) {
|
||||
// FIXME: will still allocate
|
||||
ggml_gallocr_reserve(alloc, gb);
|
||||
} else {
|
||||
ggml_gallocr_alloc_graph(alloc, gb);
|
||||
|
||||
ggml_allocr_alloc_graph(alloc, gb);
|
||||
if (!measure_only) {
|
||||
int * data = (int *) KQ_pos->data;
|
||||
for (int i = 0; i < N; ++i) {
|
||||
data[i] = n_past + i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// remove the additional nodes and leafs
|
||||
for (int i = n_leafs_before; i < gb->n_leafs; ++i) {
|
||||
@@ -559,9 +521,9 @@ static void load_llama_model_gguf(struct gguf_context * fctx, struct ggml_contex
|
||||
copy_tensor_by_name(layer.wv, f_ggml_ctx, tni(LLM_TENSOR_ATTN_V, i));
|
||||
copy_tensor_by_name(layer.wo, f_ggml_ctx, tni(LLM_TENSOR_ATTN_OUT, i));
|
||||
copy_tensor_by_name(layer.ffn_norm, f_ggml_ctx, tni(LLM_TENSOR_FFN_NORM, i));
|
||||
copy_tensor_by_name(layer.w1, f_ggml_ctx, tni(LLM_TENSOR_FFN_GATE, i));
|
||||
copy_tensor_by_name(layer.w2, f_ggml_ctx, tni(LLM_TENSOR_FFN_DOWN, i));
|
||||
copy_tensor_by_name(layer.w3, f_ggml_ctx, tni(LLM_TENSOR_FFN_UP, i));
|
||||
copy_tensor_by_name(layer.ffn_gate, f_ggml_ctx, tni(LLM_TENSOR_FFN_GATE, i));
|
||||
copy_tensor_by_name(layer.ffn_down, f_ggml_ctx, tni(LLM_TENSOR_FFN_DOWN, i));
|
||||
copy_tensor_by_name(layer.ffn_up, f_ggml_ctx, tni(LLM_TENSOR_FFN_UP, i));
|
||||
}
|
||||
}
|
||||
|
||||
@@ -702,9 +664,9 @@ static void save_llama_model_gguf(struct gguf_context * fctx, const char * fn_vo
|
||||
gguf_add_tensor(fctx, layer.wv);
|
||||
gguf_add_tensor(fctx, layer.wo);
|
||||
gguf_add_tensor(fctx, layer.ffn_norm);
|
||||
gguf_add_tensor(fctx, layer.w1);
|
||||
gguf_add_tensor(fctx, layer.w2);
|
||||
gguf_add_tensor(fctx, layer.w3);
|
||||
gguf_add_tensor(fctx, layer.ffn_gate);
|
||||
gguf_add_tensor(fctx, layer.ffn_down);
|
||||
gguf_add_tensor(fctx, layer.ffn_up);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -953,9 +915,9 @@ static int64_t get_parameter_count(struct my_llama_model* model) {
|
||||
nx += ggml_nelements(layer.wv);
|
||||
nx += ggml_nelements(layer.wo);
|
||||
nx += ggml_nelements(layer.ffn_norm);
|
||||
nx += ggml_nelements(layer.w1);
|
||||
nx += ggml_nelements(layer.w2);
|
||||
nx += ggml_nelements(layer.w3);
|
||||
nx += ggml_nelements(layer.ffn_gate);
|
||||
nx += ggml_nelements(layer.ffn_down);
|
||||
nx += ggml_nelements(layer.ffn_up);
|
||||
}
|
||||
return nx;
|
||||
}
|
||||
@@ -1046,7 +1008,7 @@ int main(int argc, char ** argv) {
|
||||
printf("%s: seen train_samples %llu\n", __func__, (long long unsigned) train->train_samples);
|
||||
printf("%s: seen train_tokens %llu\n", __func__, (long long unsigned) train->train_tokens);
|
||||
printf("%s: completed train_epochs %llu\n", __func__, (long long unsigned) train->train_epochs);
|
||||
printf("%s: model_size = %zu bytes (%.1f MB)\n", __func__, (ggml_used_mem(model.ctx) + model.data.size()), (float) (ggml_used_mem(model.ctx) + model.data.size()) / (1024.0f*1024.0f));
|
||||
printf("%s: model_size = %zu bytes (%.1f MB)\n", __func__, (ggml_used_mem(model.ctx) + ggml_backend_buffer_get_size(model.data)), (float) (ggml_used_mem(model.ctx) + ggml_backend_buffer_get_size(model.data)) / (1024.0f*1024.0f));
|
||||
|
||||
if (params.only_write_model) {
|
||||
save_train_files_data save_data;
|
||||
@@ -1073,11 +1035,6 @@ int main(int argc, char ** argv) {
|
||||
int n_vocab = model.hparams.n_vocab;
|
||||
int n_batch = params.common.n_batch;
|
||||
|
||||
std::vector<uint8_t> mem_input_data;
|
||||
std::vector<uint8_t> mem_compute_data;
|
||||
|
||||
ggml_allocr * alloc = NULL;
|
||||
|
||||
// context for input tensors without their data
|
||||
struct ggml_init_params ctx_input_params = {
|
||||
ggml_tensor_overhead() * 2, // mem_size
|
||||
@@ -1091,16 +1048,10 @@ int main(int argc, char ** argv) {
|
||||
struct ggml_tensor * target_probs = ggml_new_tensor_3d(ctx_input, GGML_TYPE_F32, n_vocab, n_tokens, n_batch);
|
||||
|
||||
// measure required memory for input tensors
|
||||
size_t max_input_size = GGML_PAD(ggml_nbytes(tokens_input), tensor_alignment) +
|
||||
GGML_PAD(ggml_nbytes(target_probs), tensor_alignment) +
|
||||
tensor_alignment;
|
||||
printf("%s: input_size = %zu bytes (%.1f MB)\n", __func__, max_input_size, (float) max_input_size / (1024.0f*1024.0f));
|
||||
|
||||
// allocate input tensors
|
||||
mem_input_data.resize(max_input_size);
|
||||
alloc = ggml_allocr_new(mem_input_data.data(), mem_input_data.size(), tensor_alignment);
|
||||
ggml_allocr_alloc(alloc, tokens_input);
|
||||
ggml_allocr_alloc(alloc, target_probs);
|
||||
ggml_backend_buffer_t input_data = ggml_backend_alloc_ctx_tensors_from_buft(ctx_input, ggml_backend_cpu_buffer_type());
|
||||
size_t max_input_size = ggml_backend_buffer_get_size(input_data);
|
||||
printf("%s: input_size = %zu bytes (%.1f MB)\n", __func__, max_input_size, (float) max_input_size / (1024.0f*1024.0f));
|
||||
|
||||
// context for compute tensors without their data
|
||||
const size_t estimated_compute_size_wo_data = (
|
||||
@@ -1127,7 +1078,7 @@ int main(int argc, char ** argv) {
|
||||
// find best evaluation order
|
||||
for (unsigned order = 0; order < (unsigned) GGML_CGRAPH_EVAL_ORDER_COUNT; ++order) {
|
||||
ctx_compute = ggml_init(ctx_compute_params);
|
||||
alloc = ggml_allocr_new_measure(tensor_alignment);
|
||||
ggml_gallocr_t alloc = ggml_gallocr_new(ggml_backend_cpu_buffer_type());
|
||||
gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
|
||||
gf->order = (enum ggml_cgraph_eval_order) order;
|
||||
gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
|
||||
@@ -1140,9 +1091,10 @@ int main(int argc, char ** argv) {
|
||||
&logits, tokens_input, target_probs,
|
||||
n_tokens, n_batch,
|
||||
params.common.use_flash,
|
||||
params.common.use_checkpointing
|
||||
params.common.use_checkpointing,
|
||||
true
|
||||
);
|
||||
size_t max_compute_size = ggml_allocr_max_size(alloc) + tensor_alignment;
|
||||
size_t max_compute_size = ggml_gallocr_get_buffer_size(alloc, 0); // FIXME: this will still allocate the buffer
|
||||
if (max_compute_size < best_compute_size) {
|
||||
best_compute_size = max_compute_size;
|
||||
best_order = gf->order;
|
||||
@@ -1157,9 +1109,8 @@ int main(int argc, char ** argv) {
|
||||
"invalid");
|
||||
|
||||
// allocate compute tensors
|
||||
mem_compute_data.resize(max_compute_size);
|
||||
ctx_compute = ggml_init(ctx_compute_params);
|
||||
alloc = ggml_allocr_new(mem_compute_data.data(), mem_compute_data.size(), tensor_alignment);
|
||||
ggml_gallocr_t alloc = ggml_gallocr_new(ggml_backend_cpu_buffer_type());
|
||||
gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
|
||||
gf->order = best_order;
|
||||
gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
|
||||
@@ -1172,7 +1123,8 @@ int main(int argc, char ** argv) {
|
||||
&logits, tokens_input, target_probs,
|
||||
n_tokens, n_batch,
|
||||
params.common.use_flash,
|
||||
params.common.use_checkpointing
|
||||
params.common.use_checkpointing,
|
||||
false
|
||||
);
|
||||
|
||||
std::vector<llama_token> train_tokens;
|
||||
|
||||
18
flake.lock
generated
18
flake.lock
generated
@@ -5,11 +5,11 @@
|
||||
"nixpkgs-lib": "nixpkgs-lib"
|
||||
},
|
||||
"locked": {
|
||||
"lastModified": 1704982712,
|
||||
"narHash": "sha256-2Ptt+9h8dczgle2Oo6z5ni5rt/uLMG47UFTR1ry/wgg=",
|
||||
"lastModified": 1706830856,
|
||||
"narHash": "sha256-a0NYyp+h9hlb7ddVz4LUn1vT/PLwqfrWYcHMvFB1xYg=",
|
||||
"owner": "hercules-ci",
|
||||
"repo": "flake-parts",
|
||||
"rev": "07f6395285469419cf9d078f59b5b49993198c00",
|
||||
"rev": "b253292d9c0a5ead9bc98c4e9a26c6312e27d69f",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
@@ -20,11 +20,11 @@
|
||||
},
|
||||
"nixpkgs": {
|
||||
"locked": {
|
||||
"lastModified": 1706191920,
|
||||
"narHash": "sha256-eLihrZAPZX0R6RyM5fYAWeKVNuQPYjAkCUBr+JNvtdE=",
|
||||
"lastModified": 1708118438,
|
||||
"narHash": "sha256-kk9/0nuVgA220FcqH/D2xaN6uGyHp/zoxPNUmPCMmEE=",
|
||||
"owner": "NixOS",
|
||||
"repo": "nixpkgs",
|
||||
"rev": "ae5c332cbb5827f6b1f02572496b141021de335f",
|
||||
"rev": "5863c27340ba4de8f83e7e3c023b9599c3cb3c80",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
@@ -37,11 +37,11 @@
|
||||
"nixpkgs-lib": {
|
||||
"locked": {
|
||||
"dir": "lib",
|
||||
"lastModified": 1703961334,
|
||||
"narHash": "sha256-M1mV/Cq+pgjk0rt6VxoyyD+O8cOUiai8t9Q6Yyq4noY=",
|
||||
"lastModified": 1706550542,
|
||||
"narHash": "sha256-UcsnCG6wx++23yeER4Hg18CXWbgNpqNXcHIo5/1Y+hc=",
|
||||
"owner": "NixOS",
|
||||
"repo": "nixpkgs",
|
||||
"rev": "b0d36bd0a420ecee3bc916c91886caca87c894e9",
|
||||
"rev": "97b17f32362e475016f942bbdfda4a4a72a8a652",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
|
||||
@@ -157,6 +157,7 @@
|
||||
|
||||
mpi-cpu = config.packages.default.override { useMpi = true; };
|
||||
mpi-cuda = config.packages.default.override { useMpi = true; };
|
||||
vulkan = config.packages.default.override { useVulkan = true; };
|
||||
}
|
||||
// lib.optionalAttrs (system == "x86_64-linux") {
|
||||
rocm = config.legacyPackages.llamaPackagesRocm.llama-cpp;
|
||||
|
||||
1375
ggml-alloc.c
1375
ggml-alloc.c
File diff suppressed because it is too large
Load Diff
110
ggml-alloc.h
110
ggml-alloc.h
@@ -6,88 +6,62 @@
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct ggml_backend;
|
||||
struct ggml_backend_buffer;
|
||||
struct ggml_backend_buffer_type;
|
||||
|
||||
//
|
||||
// Legacy API
|
||||
//
|
||||
|
||||
typedef struct ggml_allocr * ggml_allocr_t;
|
||||
|
||||
// initialize allocator for use with CPU backend only
|
||||
GGML_API ggml_allocr_t ggml_allocr_new(void * data, size_t size, size_t alignment);
|
||||
GGML_API ggml_allocr_t ggml_allocr_new_measure(size_t alignment);
|
||||
|
||||
// initialize allocator for use with ggml-backend
|
||||
GGML_API ggml_allocr_t ggml_allocr_new_from_buffer(struct ggml_backend_buffer * buffer);
|
||||
GGML_API ggml_allocr_t ggml_allocr_new_from_backend(struct ggml_backend * backend, size_t size); // allocates an owned buffer
|
||||
GGML_API ggml_allocr_t ggml_allocr_new_measure_from_backend(struct ggml_backend * backend);
|
||||
|
||||
GGML_API struct ggml_backend_buffer * ggml_allocr_get_buffer(ggml_allocr_t alloc);
|
||||
|
||||
// tell the allocator to parse nodes following the order described in the list
|
||||
// you should call this if your graph are optimized to execute out-of-order
|
||||
GGML_API void ggml_allocr_set_parse_seq(ggml_allocr_t alloc, const int * list, int n);
|
||||
|
||||
GGML_API void ggml_allocr_free (ggml_allocr_t alloc);
|
||||
GGML_API bool ggml_allocr_is_measure (ggml_allocr_t alloc);
|
||||
GGML_API void ggml_allocr_reset (ggml_allocr_t alloc);
|
||||
GGML_API void ggml_allocr_alloc (ggml_allocr_t alloc, struct ggml_tensor * tensor);
|
||||
GGML_API size_t ggml_allocr_max_size (ggml_allocr_t alloc);
|
||||
|
||||
GGML_API size_t ggml_allocr_alloc_graph(ggml_allocr_t alloc, struct ggml_cgraph * graph);
|
||||
|
||||
//
|
||||
// ggml-backend v2 API
|
||||
//
|
||||
|
||||
// Separate tensor and graph allocator objects
|
||||
// This is necessary for multi-backend allocation because the graph allocator needs to use multiple tensor allocators
|
||||
// The original API is kept as a wrapper around the new API
|
||||
typedef struct ggml_backend_buffer_type * ggml_backend_buffer_type_t;
|
||||
typedef struct ggml_backend_buffer * ggml_backend_buffer_t;
|
||||
typedef struct ggml_backend * ggml_backend_t;
|
||||
|
||||
// Tensor allocator
|
||||
typedef struct ggml_tallocr * ggml_tallocr_t;
|
||||
|
||||
GGML_API ggml_tallocr_t ggml_tallocr_new(void * data, size_t size, size_t alignment);
|
||||
GGML_API ggml_tallocr_t ggml_tallocr_new_measure(size_t alignment);
|
||||
GGML_API ggml_tallocr_t ggml_tallocr_new_from_buft(struct ggml_backend_buffer_type * buft, size_t size);
|
||||
GGML_API ggml_tallocr_t ggml_tallocr_new_from_backend(struct ggml_backend * backend, size_t size); // allocates an owned buffer
|
||||
GGML_API ggml_tallocr_t ggml_tallocr_new_from_buffer(struct ggml_backend_buffer * buffer);
|
||||
GGML_API ggml_tallocr_t ggml_tallocr_new_measure_from_buft(struct ggml_backend_buffer_type * buft);
|
||||
GGML_API ggml_tallocr_t ggml_tallocr_new_measure_from_backend(struct ggml_backend * backend);
|
||||
|
||||
GGML_API struct ggml_backend_buffer * ggml_tallocr_get_buffer(ggml_tallocr_t talloc);
|
||||
|
||||
GGML_API void ggml_tallocr_free (ggml_tallocr_t talloc);
|
||||
GGML_API bool ggml_tallocr_is_measure (ggml_tallocr_t talloc);
|
||||
GGML_API void ggml_tallocr_reset (ggml_tallocr_t talloc);
|
||||
GGML_API void ggml_tallocr_alloc (ggml_tallocr_t talloc, struct ggml_tensor * tensor);
|
||||
GGML_API size_t ggml_tallocr_max_size (ggml_tallocr_t talloc);
|
||||
|
||||
GGML_API ggml_tallocr_t ggml_tallocr_new(ggml_backend_buffer_t buffer);
|
||||
GGML_API void ggml_tallocr_free(ggml_tallocr_t talloc);
|
||||
GGML_API void ggml_tallocr_alloc(ggml_tallocr_t talloc, struct ggml_tensor * tensor);
|
||||
|
||||
// Graph allocator
|
||||
/*
|
||||
Example usage:
|
||||
ggml_gallocr_t galloc = ggml_gallocr_new(ggml_bacckend_cpu_buffer_type());
|
||||
|
||||
// optional: create a worst-case graph and reserve the buffers to avoid reallocations
|
||||
ggml_gallocr_reserve(galloc, build_graph(max_batch));
|
||||
|
||||
// allocate the graph
|
||||
struct ggml_cgraph * graph = build_graph(batch);
|
||||
ggml_gallocr_alloc_graph(galloc, graph);
|
||||
|
||||
printf("compute buffer size: %zu bytes\n", ggml_gallocr_get_buffer_size(galloc, 0));
|
||||
|
||||
// evaluate the graph
|
||||
ggml_backend_graph_compute(backend, graph);
|
||||
*/
|
||||
|
||||
// special tensor flags for use with the graph allocator:
|
||||
// ggml_set_input(): all input tensors are allocated at the beginning of the graph in non-overlapping addresses
|
||||
// ggml_set_output(): output tensors are never freed and never overwritten
|
||||
|
||||
typedef struct ggml_gallocr * ggml_gallocr_t;
|
||||
|
||||
GGML_API ggml_gallocr_t ggml_gallocr_new(void);
|
||||
GGML_API void ggml_gallocr_free(ggml_gallocr_t galloc);
|
||||
GGML_API ggml_gallocr_t ggml_gallocr_new(ggml_backend_buffer_type_t buft);
|
||||
GGML_API ggml_gallocr_t ggml_gallocr_new_n(ggml_backend_buffer_type_t * bufts, int n_bufs);
|
||||
GGML_API void ggml_gallocr_free(ggml_gallocr_t galloc);
|
||||
|
||||
GGML_API void ggml_gallocr_set_parse_seq(ggml_gallocr_t galloc, const int * list, int n);
|
||||
GGML_API size_t ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, ggml_tallocr_t talloc, struct ggml_cgraph * graph);
|
||||
// pre-allocate buffers from a measure graph - does not allocate or modify the graph
|
||||
// call with a worst-case graph to avoid buffer reallocations
|
||||
// not strictly required for single buffer usage: ggml_gallocr_alloc_graph will reallocate the buffers automatically if needed
|
||||
// returns false if the buffer allocation failed
|
||||
GGML_API bool ggml_gallocr_reserve(ggml_gallocr_t galloc, struct ggml_cgraph * graph);
|
||||
GGML_API bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids);
|
||||
|
||||
// Allocate tensors from the allocators given by the hash table
|
||||
GGML_API void ggml_gallocr_alloc_graph_n(
|
||||
ggml_gallocr_t galloc,
|
||||
struct ggml_cgraph * graph,
|
||||
struct ggml_hash_set hash_set,
|
||||
ggml_tallocr_t * hash_node_talloc);
|
||||
// automatic reallocation if the topology changes when using a single buffer
|
||||
// returns false if using multiple buffers and a re-allocation is needed (call ggml_gallocr_reserve_n first to set the node buffers)
|
||||
GGML_API bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph * graph);
|
||||
|
||||
GGML_API size_t ggml_gallocr_get_buffer_size(ggml_gallocr_t galloc, int buffer_id);
|
||||
|
||||
// Utils
|
||||
// Create a buffer and allocate all the tensors in a ggml_context
|
||||
GGML_API struct ggml_backend_buffer * ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_context * ctx, struct ggml_backend_buffer_type * buft);
|
||||
GGML_API struct ggml_backend_buffer * ggml_backend_alloc_ctx_tensors(struct ggml_context * ctx, struct ggml_backend * backend);
|
||||
GGML_API struct ggml_backend_buffer * ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_context * ctx, ggml_backend_buffer_type_t buft);
|
||||
GGML_API struct ggml_backend_buffer * ggml_backend_alloc_ctx_tensors(struct ggml_context * ctx, ggml_backend_t backend);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
||||
550
ggml-backend.c
550
ggml-backend.c
File diff suppressed because it is too large
Load Diff
@@ -83,8 +83,9 @@ extern "C" {
|
||||
|
||||
GGML_API ggml_backend_t ggml_backend_cpu_init(void);
|
||||
|
||||
GGML_API GGML_CALL bool ggml_backend_is_cpu (ggml_backend_t backend);
|
||||
GGML_API void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads);
|
||||
GGML_API GGML_CALL bool ggml_backend_is_cpu (ggml_backend_t backend);
|
||||
GGML_API void ggml_backend_cpu_set_n_threads (ggml_backend_t backend_cpu, int n_threads);
|
||||
GGML_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data);
|
||||
|
||||
// Create a backend buffer from an existing pointer
|
||||
GGML_API GGML_CALL ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size);
|
||||
@@ -129,11 +130,7 @@ extern "C" {
|
||||
|
||||
// in build_graph:
|
||||
build_graph(...) {
|
||||
// allocating tensors in a specific backend (optional, recommended: pre-allocate inputs in a different buffer)
|
||||
alloc_cpu = ggml_backend_sched_get_allocr(sched, backend_cpu);
|
||||
ggml_allocr_alloc(alloc_cpu, tensor);
|
||||
|
||||
// manually assigning nodes to a backend (optional, shouldn't be needed in most cases)
|
||||
// manually assign nodes to a backend (optional, should not be needed in most cases)
|
||||
struct ggml_tensor * node = ggml_mul_mat(ctx, ...);
|
||||
ggml_backend_sched_set_node_backend(sched, node, backend_gpu);
|
||||
}
|
||||
@@ -163,20 +160,19 @@ extern "C" {
|
||||
GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size);
|
||||
GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched);
|
||||
// Initialize backend buffers from a measure graph
|
||||
GGML_API void ggml_backend_sched_init_measure(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph);
|
||||
GGML_API bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph);
|
||||
// Get the number of splits of the last graph
|
||||
GGML_API int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched);
|
||||
|
||||
GGML_API ggml_tallocr_t ggml_backend_sched_get_tallocr(ggml_backend_sched_t sched, ggml_backend_t backend);
|
||||
GGML_API ggml_backend_buffer_t ggml_backend_sched_get_buffer (ggml_backend_sched_t sched, ggml_backend_t backend);
|
||||
GGML_API size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend);
|
||||
|
||||
GGML_API void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend);
|
||||
GGML_API ggml_backend_t ggml_backend_sched_get_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node);
|
||||
|
||||
// Allocate and compute graph on the backend scheduler
|
||||
GGML_API void ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph);
|
||||
GGML_API bool ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph);
|
||||
|
||||
// Reset all assignments and allocators - must be called before using the sched allocators to allocate inputs
|
||||
// Reset all assignments and allocators - must be called before changing the node backends
|
||||
GGML_API void ggml_backend_sched_reset(ggml_backend_sched_t sched);
|
||||
|
||||
// Set a callback to be called for each resulting node during graph compute
|
||||
|
||||
1412
ggml-cuda.cu
1412
ggml-cuda.cu
File diff suppressed because it is too large
Load Diff
@@ -19,6 +19,7 @@ extern "C" {
|
||||
// fall back to the _Static_assert C11 keyword.
|
||||
// if C99 - static_assert is noop
|
||||
// ref: https://stackoverflow.com/a/53923785/4039976
|
||||
#ifndef __cplusplus
|
||||
#ifndef static_assert
|
||||
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
|
||||
#define static_assert(cond, msg) _Static_assert(cond, msg)
|
||||
@@ -26,6 +27,7 @@ extern "C" {
|
||||
#define static_assert(cond, msg) struct global_scope_noop_trick
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
|
||||
#if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
|
||||
|
||||
1990
ggml-kompute.cpp
Normal file
1990
ggml-kompute.cpp
Normal file
File diff suppressed because it is too large
Load Diff
46
ggml-kompute.h
Normal file
46
ggml-kompute.h
Normal file
@@ -0,0 +1,46 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-backend.h"
|
||||
|
||||
#include <stdbool.h>
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct ggml_vk_device {
|
||||
int index;
|
||||
int type; // same as VkPhysicalDeviceType
|
||||
size_t heapSize;
|
||||
const char * name;
|
||||
const char * vendor;
|
||||
int subgroupSize;
|
||||
uint64_t bufferAlignment;
|
||||
uint64_t maxAlloc;
|
||||
};
|
||||
|
||||
struct ggml_vk_device * ggml_vk_available_devices(size_t memoryRequired, size_t * count);
|
||||
bool ggml_vk_get_device(struct ggml_vk_device * device, size_t memoryRequired, const char * name);
|
||||
bool ggml_vk_has_vulkan(void);
|
||||
bool ggml_vk_has_device(void);
|
||||
struct ggml_vk_device ggml_vk_current_device(void);
|
||||
|
||||
//
|
||||
// backend API
|
||||
//
|
||||
|
||||
// forward declaration
|
||||
typedef struct ggml_backend * ggml_backend_t;
|
||||
|
||||
GGML_API ggml_backend_t ggml_backend_kompute_init(int device);
|
||||
|
||||
GGML_API bool ggml_backend_is_kompute(ggml_backend_t backend);
|
||||
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_kompute_buffer_type(int device);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
@@ -57,6 +57,9 @@ GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(voi
|
||||
// ref: https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf
|
||||
GGML_API bool ggml_backend_metal_supports_family(ggml_backend_t backend, int family);
|
||||
|
||||
// capture all command buffers committed the next time `ggml_backend_graph_compute` is called
|
||||
GGML_API void ggml_backend_metal_capture_next_compute(ggml_backend_t backend);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
158
ggml-metal.m
158
ggml-metal.m
@@ -60,6 +60,8 @@ enum ggml_metal_kernel_type {
|
||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q6_K,
|
||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS,
|
||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS,
|
||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_XXS,
|
||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S,
|
||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_I32,
|
||||
GGML_METAL_KERNEL_TYPE_RMS_NORM,
|
||||
GGML_METAL_KERNEL_TYPE_GROUP_NORM,
|
||||
@@ -81,6 +83,8 @@ enum ggml_metal_kernel_type {
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_Q6_K_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XXS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_XXS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32,
|
||||
//GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F16,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32,
|
||||
@@ -98,6 +102,8 @@ enum ggml_metal_kernel_type {
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q6_K_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XXS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_XXS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32,
|
||||
@@ -112,6 +118,8 @@ enum ggml_metal_kernel_type {
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32,
|
||||
@@ -126,10 +134,13 @@ enum ggml_metal_kernel_type {
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32,
|
||||
GGML_METAL_KERNEL_TYPE_ROPE_F32,
|
||||
GGML_METAL_KERNEL_TYPE_ROPE_F16,
|
||||
GGML_METAL_KERNEL_TYPE_ALIBI_F32,
|
||||
GGML_METAL_KERNEL_TYPE_IM2COL_F16,
|
||||
GGML_METAL_KERNEL_TYPE_IM2COL_F32,
|
||||
GGML_METAL_KERNEL_TYPE_UPSCALE_F32,
|
||||
GGML_METAL_KERNEL_TYPE_PAD_F32,
|
||||
GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC,
|
||||
@@ -163,12 +174,14 @@ struct ggml_metal_context {
|
||||
|
||||
bool support_simdgroup_reduction;
|
||||
bool support_simdgroup_mm;
|
||||
|
||||
bool should_capture_next_compute;
|
||||
};
|
||||
|
||||
// MSL code
|
||||
// TODO: move the contents here when ready
|
||||
// for now it is easier to work in a separate file
|
||||
//static NSString * const msl_library_source = @"see metal.metal";
|
||||
// static NSString * const msl_library_source = @"see metal.metal";
|
||||
|
||||
// Here to assist with NSBundle Path Hack
|
||||
@interface GGMLMetalClass : NSObject
|
||||
@@ -349,6 +362,8 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_LOG_INFO("%s: simdgroup matrix mul. support = %s\n", __func__, ctx->support_simdgroup_mm ? "true" : "false");
|
||||
GGML_METAL_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
|
||||
|
||||
ctx->should_capture_next_compute = false;
|
||||
|
||||
#if TARGET_OS_OSX || (TARGET_OS_IOS && __clang_major__ >= 15)
|
||||
if (@available(macOS 10.12, iOS 16.0, *)) {
|
||||
GGML_METAL_LOG_INFO("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1e6);
|
||||
@@ -422,6 +437,8 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q6_K, get_rows_q6_K, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS, get_rows_iq2_xxs, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS, get_rows_iq2_xs, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_XXS, get_rows_iq3_xxs, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S, get_rows_iq1_s, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_I32, get_rows_i32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RMS_NORM, rms_norm, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GROUP_NORM, group_norm, ctx->support_simdgroup_reduction);
|
||||
@@ -443,6 +460,8 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q6_K_F32, mul_mv_q6_K_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XXS_F32, mul_mv_iq2_xxs_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32, mul_mv_iq2_xs_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_XXS_F32, mul_mv_iq3_xxs_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32, mul_mv_iq1_s_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32, mul_mv_id_f32_f32, ctx->support_simdgroup_reduction);
|
||||
//GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F16, mul_mv_id_f16_f16, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32, mul_mv_id_f16_f32, ctx->support_simdgroup_reduction);
|
||||
@@ -460,6 +479,8 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q6_K_F32, mul_mv_id_q6_K_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XXS_F32, mul_mv_id_iq2_xxs_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32, mul_mv_id_iq2_xs_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_XXS_F32, mul_mv_id_iq3_xxs_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32, mul_mv_id_iq1_s_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32, mul_mm_f32_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32, mul_mm_f16_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32, mul_mm_q4_0_f32, ctx->support_simdgroup_mm);
|
||||
@@ -474,6 +495,8 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F32, mul_mm_q6_K_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32, mul_mm_iq2_xxs_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32, mul_mm_iq2_xs_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32, mul_mm_iq3_xxs_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32, mul_mm_iq1_s_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32, mul_mm_id_f32_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32, mul_mm_id_f16_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32, mul_mm_id_q4_0_f32, ctx->support_simdgroup_mm);
|
||||
@@ -488,10 +511,13 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F32, mul_mm_id_q6_K_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32, mul_mm_id_iq2_xxs_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32, mul_mm_id_iq2_xs_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32, mul_mm_id_iq3_xxs_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32, mul_mm_id_iq1_s_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_F32, rope_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_F16, rope_f16, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ALIBI_F32, alibi_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F16, im2col_f16, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F32, im2col_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UPSCALE_F32, upscale_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_PAD_F32, pad_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC, argsort_f32_i32_asc, true);
|
||||
@@ -616,6 +642,10 @@ static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const
|
||||
case GGML_OP_ALIBI:
|
||||
case GGML_OP_ROPE:
|
||||
case GGML_OP_IM2COL:
|
||||
return true;
|
||||
case GGML_OP_POOL_1D:
|
||||
case GGML_OP_POOL_2D:
|
||||
return false;
|
||||
case GGML_OP_UPSCALE:
|
||||
case GGML_OP_PAD:
|
||||
case GGML_OP_ARGSORT:
|
||||
@@ -667,6 +697,7 @@ static bool ggml_metal_graph_compute(
|
||||
struct ggml_metal_context * ctx,
|
||||
struct ggml_cgraph * gf) {
|
||||
|
||||
@autoreleasepool {
|
||||
MTLComputePassDescriptor * edesc = MTLComputePassDescriptor.computePassDescriptor;
|
||||
edesc.dispatchType = MTLDispatchTypeSerial;
|
||||
|
||||
@@ -677,6 +708,20 @@ static bool ggml_metal_graph_compute(
|
||||
const int n_cb = ctx->n_cb;
|
||||
const int n_nodes_per_cb = (n_nodes + n_cb - 1) / n_cb;
|
||||
|
||||
const bool should_capture = ctx->should_capture_next_compute;
|
||||
if (should_capture) {
|
||||
ctx->should_capture_next_compute = false;
|
||||
|
||||
MTLCaptureDescriptor * descriptor = [MTLCaptureDescriptor new];
|
||||
descriptor.captureObject = ctx->queue;
|
||||
|
||||
NSError * error = nil;
|
||||
if (![[MTLCaptureManager sharedCaptureManager] startCaptureWithDescriptor:descriptor error:&error]) {
|
||||
GGML_METAL_LOG_ERROR("%s: error: unable to start capture '%s'\n", __func__, [[error localizedDescription] UTF8String]);
|
||||
GGML_ASSERT(!"capture failed");
|
||||
}
|
||||
}
|
||||
|
||||
id<MTLCommandBuffer> command_buffer_builder[n_cb];
|
||||
for (int cb_idx = 0; cb_idx < n_cb; ++cb_idx) {
|
||||
id<MTLCommandBuffer> command_buffer = [ctx->queue commandBufferWithUnretainedReferences];
|
||||
@@ -685,6 +730,7 @@ static bool ggml_metal_graph_compute(
|
||||
// enqueue the command buffers in order to specify their execution order
|
||||
[command_buffer enqueue];
|
||||
}
|
||||
|
||||
const id<MTLCommandBuffer> *command_buffers = command_buffer_builder;
|
||||
|
||||
dispatch_apply(n_cb, ctx->d_queue, ^(size_t iter) {
|
||||
@@ -692,6 +738,7 @@ static bool ggml_metal_graph_compute(
|
||||
|
||||
size_t offs_src0 = 0;
|
||||
size_t offs_src1 = 0;
|
||||
size_t offs_src2 = 0;
|
||||
size_t offs_dst = 0;
|
||||
|
||||
id<MTLCommandBuffer> command_buffer = command_buffers[cb_idx];
|
||||
@@ -710,6 +757,7 @@ static bool ggml_metal_graph_compute(
|
||||
|
||||
struct ggml_tensor * src0 = gf->nodes[i]->src[0];
|
||||
struct ggml_tensor * src1 = gf->nodes[i]->src[1];
|
||||
struct ggml_tensor * src2 = gf->nodes[i]->src[2];
|
||||
struct ggml_tensor * dst = gf->nodes[i];
|
||||
|
||||
switch (dst->op) {
|
||||
@@ -731,9 +779,9 @@ static bool ggml_metal_graph_compute(
|
||||
GGML_ASSERT(!"unsupported op");
|
||||
}
|
||||
|
||||
#ifndef GGML_METAL_NDEBUG
|
||||
[encoder pushDebugGroup:[NSString stringWithCString:ggml_op_desc(dst) encoding:NSUTF8StringEncoding]];
|
||||
#endif
|
||||
if (should_capture) {
|
||||
[encoder pushDebugGroup:[NSString stringWithCString:ggml_op_desc(dst) encoding:NSUTF8StringEncoding]];
|
||||
}
|
||||
|
||||
const int64_t ne00 = src0 ? src0->ne[0] : 0;
|
||||
const int64_t ne01 = src0 ? src0->ne[1] : 0;
|
||||
@@ -771,6 +819,7 @@ static bool ggml_metal_graph_compute(
|
||||
|
||||
id<MTLBuffer> id_src0 = src0 ? ggml_metal_get_buffer(src0, &offs_src0) : nil;
|
||||
id<MTLBuffer> id_src1 = src1 ? ggml_metal_get_buffer(src1, &offs_src1) : nil;
|
||||
id<MTLBuffer> id_src2 = src2 ? ggml_metal_get_buffer(src2, &offs_src2) : nil;
|
||||
id<MTLBuffer> id_dst = dst ? ggml_metal_get_buffer(dst, &offs_dst) : nil;
|
||||
|
||||
//GGML_METAL_LOG_INFO("%s: op - %s\n", __func__, ggml_op_name(dst->op));
|
||||
@@ -1152,7 +1201,16 @@ static bool ggml_metal_graph_compute(
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX].pipeline;
|
||||
}
|
||||
|
||||
const float scale = ((float *) dst->op_params)[0];
|
||||
const float scale = ((float *) dst->op_params)[0];
|
||||
const float max_bias = ((float *) dst->op_params)[1];
|
||||
|
||||
const int64_t nrows_x = ggml_nrows(src0);
|
||||
const int64_t nrows_y = src0->ne[1];
|
||||
const uint32_t n_head_kv = nrows_x/nrows_y;
|
||||
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv));
|
||||
|
||||
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
||||
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
||||
|
||||
[encoder setComputePipelineState:pipeline];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
@@ -1161,11 +1219,20 @@ static bool ggml_metal_graph_compute(
|
||||
} else {
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
|
||||
}
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
||||
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
|
||||
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
|
||||
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
|
||||
[encoder setBytes:&scale length:sizeof(scale) atIndex:6];
|
||||
if (id_src2) {
|
||||
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:2];
|
||||
} else {
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:2];
|
||||
}
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:3];
|
||||
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:4];
|
||||
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:5];
|
||||
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:6];
|
||||
[encoder setBytes:&scale length:sizeof(scale) atIndex:7];
|
||||
[encoder setBytes:&max_bias length:sizeof(max_bias) atIndex:8];
|
||||
[encoder setBytes:&m0 length:sizeof(m0) atIndex:9];
|
||||
[encoder setBytes:&m1 length:sizeof(m1) atIndex:10];
|
||||
[encoder setBytes:&n_head_log2 length:sizeof(n_head_log2) atIndex:11];
|
||||
[encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01*ne02*ne03, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
||||
@@ -1260,6 +1327,8 @@ static bool ggml_metal_graph_compute(
|
||||
case GGML_TYPE_Q6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32].pipeline; break;
|
||||
case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ3_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32].pipeline; break;
|
||||
case GGML_TYPE_IQ1_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32 ].pipeline; break;
|
||||
default: GGML_ASSERT(false && "MUL MAT-MAT not implemented");
|
||||
}
|
||||
|
||||
@@ -1388,6 +1457,18 @@ static bool ggml_metal_graph_compute(
|
||||
nth1 = 16;
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32].pipeline;
|
||||
} break;
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
{
|
||||
nth0 = 4;
|
||||
nth1 = 16;
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_XXS_F32].pipeline;
|
||||
} break;
|
||||
case GGML_TYPE_IQ1_S:
|
||||
{
|
||||
nth0 = 4;
|
||||
nth1 = 16;
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32].pipeline;
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src0t);
|
||||
@@ -1422,7 +1503,7 @@ static bool ggml_metal_graph_compute(
|
||||
|
||||
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 ||
|
||||
src0t == GGML_TYPE_Q5_0 || src0t == GGML_TYPE_Q5_1 || src0t == GGML_TYPE_Q8_0 ||
|
||||
src0t == GGML_TYPE_Q2_K) { // || src0t == GGML_TYPE_Q4_K) {
|
||||
src0t == GGML_TYPE_Q2_K || src0t == GGML_TYPE_IQ1_S) { // || src0t == GGML_TYPE_Q4_K) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src0t == GGML_TYPE_IQ2_XXS || src0t == GGML_TYPE_IQ2_XS) {
|
||||
@@ -1430,6 +1511,11 @@ static bool ggml_metal_graph_compute(
|
||||
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src0t == GGML_TYPE_IQ3_XXS) {
|
||||
const int mem_size = 256*4+128;
|
||||
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src0t == GGML_TYPE_Q4_K) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
@@ -1466,8 +1552,6 @@ static bool ggml_metal_graph_compute(
|
||||
// max size of the src1ids array in the kernel stack
|
||||
GGML_ASSERT(ne11 <= 512);
|
||||
|
||||
struct ggml_tensor * src2 = gf->nodes[i]->src[2];
|
||||
|
||||
const int64_t ne20 = src2 ? src2->ne[0] : 0;
|
||||
const int64_t ne21 = src2 ? src2->ne[1] : 0;
|
||||
const int64_t ne22 = src2 ? src2->ne[2] : 0;
|
||||
@@ -1524,6 +1608,8 @@ static bool ggml_metal_graph_compute(
|
||||
case GGML_TYPE_Q6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32].pipeline; break;
|
||||
case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ3_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32].pipeline; break;
|
||||
case GGML_TYPE_IQ1_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32 ].pipeline; break;
|
||||
default: GGML_ASSERT(false && "MUL_MAT_ID not implemented");
|
||||
}
|
||||
|
||||
@@ -1655,6 +1741,18 @@ static bool ggml_metal_graph_compute(
|
||||
nth1 = 16;
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32].pipeline;
|
||||
} break;
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
{
|
||||
nth0 = 4;
|
||||
nth1 = 16;
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_XXS_F32].pipeline;
|
||||
} break;
|
||||
case GGML_TYPE_IQ1_S:
|
||||
{
|
||||
nth0 = 4;
|
||||
nth1 = 16;
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32].pipeline;
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src2t);
|
||||
@@ -1705,7 +1803,7 @@ static bool ggml_metal_graph_compute(
|
||||
|
||||
if (src2t == GGML_TYPE_Q4_0 || src2t == GGML_TYPE_Q4_1 ||
|
||||
src2t == GGML_TYPE_Q5_0 || src2t == GGML_TYPE_Q5_1 || src2t == GGML_TYPE_Q8_0 ||
|
||||
src2t == GGML_TYPE_Q2_K) { // || src2t == GGML_TYPE_Q4_K) {
|
||||
src2t == GGML_TYPE_Q2_K || src2t == GGML_TYPE_IQ1_S) { // || src2t == GGML_TYPE_Q4_K) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 7)/8, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src2t == GGML_TYPE_IQ2_XXS || src2t == GGML_TYPE_IQ2_XS) {
|
||||
@@ -1713,6 +1811,11 @@ static bool ggml_metal_graph_compute(
|
||||
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 7)/8, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src2t == GGML_TYPE_IQ3_XXS) {
|
||||
const int mem_size = 256*4+128;
|
||||
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 7)/8, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src2t == GGML_TYPE_Q4_K) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 3)/4, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
@@ -1753,6 +1856,8 @@ static bool ggml_metal_graph_compute(
|
||||
case GGML_TYPE_Q6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q6_K ].pipeline; break;
|
||||
case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS].pipeline; break;
|
||||
case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS ].pipeline; break;
|
||||
case GGML_TYPE_IQ3_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_XXS].pipeline; break;
|
||||
case GGML_TYPE_IQ1_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S ].pipeline; break;
|
||||
case GGML_TYPE_I32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_I32 ].pipeline; break;
|
||||
default: GGML_ASSERT(false && "not implemented");
|
||||
}
|
||||
@@ -1961,7 +2066,7 @@ static bool ggml_metal_graph_compute(
|
||||
{
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
|
||||
|
||||
const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
|
||||
const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
|
||||
@@ -1969,6 +2074,7 @@ static bool ggml_metal_graph_compute(
|
||||
const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
|
||||
const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
|
||||
const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
|
||||
|
||||
const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
|
||||
|
||||
const int32_t N = src1->ne[is_2D ? 3 : 2];
|
||||
@@ -1989,8 +2095,8 @@ static bool ggml_metal_graph_compute(
|
||||
|
||||
id<MTLComputePipelineState> pipeline = nil;
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32: GGML_ASSERT(false && "not implemented"); break;
|
||||
switch (dst->type) {
|
||||
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_IM2COL_F32].pipeline; break;
|
||||
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_IM2COL_F16].pipeline; break;
|
||||
default: GGML_ASSERT(false);
|
||||
};
|
||||
@@ -2183,9 +2289,9 @@ static bool ggml_metal_graph_compute(
|
||||
}
|
||||
}
|
||||
|
||||
#ifndef GGML_METAL_NDEBUG
|
||||
[encoder popDebugGroup];
|
||||
#endif
|
||||
if (should_capture) {
|
||||
[encoder popDebugGroup];
|
||||
}
|
||||
}
|
||||
|
||||
[encoder endEncoding];
|
||||
@@ -2207,6 +2313,11 @@ static bool ggml_metal_graph_compute(
|
||||
}
|
||||
}
|
||||
|
||||
if (should_capture) {
|
||||
[[MTLCaptureManager sharedCaptureManager] stopCapture];
|
||||
}
|
||||
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
@@ -2578,6 +2689,13 @@ bool ggml_backend_metal_supports_family(ggml_backend_t backend, int family) {
|
||||
return [ctx->device supportsFamily:(MTLGPUFamilyApple1 + family - 1)];
|
||||
}
|
||||
|
||||
void ggml_backend_metal_capture_next_compute(ggml_backend_t backend) {
|
||||
GGML_ASSERT(ggml_backend_is_metal(backend));
|
||||
|
||||
struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context;
|
||||
ctx->should_capture_next_compute = true;
|
||||
}
|
||||
|
||||
GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data); // silence warning
|
||||
|
||||
GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data) {
|
||||
|
||||
691
ggml-metal.metal
691
ggml-metal.metal
@@ -351,12 +351,17 @@ kernel void kernel_sum_rows(
|
||||
kernel void kernel_soft_max(
|
||||
device const float * src0,
|
||||
device const float * src1,
|
||||
device const float * src2,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int64_t & ne02,
|
||||
constant float & scale,
|
||||
threadgroup float * buf [[threadgroup(0)]],
|
||||
constant float & max_bias,
|
||||
constant float & m0,
|
||||
constant float & m1,
|
||||
constant uint32_t & n_head_log2,
|
||||
threadgroup float * buf [[threadgroup(0)]],
|
||||
uint tgpig[[threadgroup_position_in_grid]],
|
||||
uint tpitg[[thread_position_in_threadgroup]],
|
||||
uint sgitg[[simdgroup_index_in_threadgroup]],
|
||||
@@ -368,13 +373,26 @@ kernel void kernel_soft_max(
|
||||
|
||||
device const float * psrc0 = src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
|
||||
device const float * pmask = src1 != src0 ? src1 + i01*ne00 : nullptr;
|
||||
device const float * ppos = src2 != src0 ? src2 : nullptr;
|
||||
device float * pdst = dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
|
||||
|
||||
float slope = 0.0f;
|
||||
|
||||
// ALiBi
|
||||
if (max_bias > 0.0f) {
|
||||
const int64_t h = i02;
|
||||
|
||||
const float base = h < n_head_log2 ? m0 : m1;
|
||||
const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
||||
|
||||
slope = pow(base, exp);
|
||||
}
|
||||
|
||||
// parallel max
|
||||
float lmax = -INFINITY;
|
||||
|
||||
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
|
||||
lmax = MAX(lmax, psrc0[i00]*scale + (pmask ? pmask[i00] : 0.0f));
|
||||
lmax = MAX(lmax, psrc0[i00]*scale + (pmask ? pmask[i00] : 0.0f) + slope*ppos[i00]);
|
||||
}
|
||||
|
||||
// find the max value in the block
|
||||
@@ -399,7 +417,7 @@ kernel void kernel_soft_max(
|
||||
// parallel sum
|
||||
float lsum = 0.0f;
|
||||
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
|
||||
const float exp_psrc0 = exp((psrc0[i00]*scale + (pmask ? pmask[i00] : 0.0f)) - max_val);
|
||||
const float exp_psrc0 = exp((psrc0[i00]*scale + (pmask ? pmask[i00] : 0.0f) + slope*ppos[i00]) - max_val);
|
||||
lsum += exp_psrc0;
|
||||
pdst[i00] = exp_psrc0;
|
||||
}
|
||||
@@ -437,12 +455,17 @@ kernel void kernel_soft_max(
|
||||
kernel void kernel_soft_max_4(
|
||||
device const float * src0,
|
||||
device const float * src1,
|
||||
device const float * src2,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int64_t & ne02,
|
||||
constant float & scale,
|
||||
threadgroup float * buf [[threadgroup(0)]],
|
||||
constant float & max_bias,
|
||||
constant float & m0,
|
||||
constant float & m1,
|
||||
constant uint32_t & n_head_log2,
|
||||
threadgroup float * buf [[threadgroup(0)]],
|
||||
uint tgpig[[threadgroup_position_in_grid]],
|
||||
uint tpitg[[thread_position_in_threadgroup]],
|
||||
uint sgitg[[simdgroup_index_in_threadgroup]],
|
||||
@@ -454,13 +477,25 @@ kernel void kernel_soft_max_4(
|
||||
|
||||
device const float4 * psrc4 = (device const float4 *)(src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
|
||||
device const float4 * pmask = src1 != src0 ? (device const float4 *)(src1 + i01*ne00) : nullptr;
|
||||
device const float4 * ppos = src2 != src0 ? (device const float4 *)(src2) : nullptr;
|
||||
device float4 * pdst4 = (device float4 *)(dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
|
||||
|
||||
float slope = 0.0f;
|
||||
|
||||
if (max_bias > 0.0f) {
|
||||
const int64_t h = i02;
|
||||
|
||||
const float base = h < n_head_log2 ? m0 : m1;
|
||||
const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
||||
|
||||
slope = pow(base, exp);
|
||||
}
|
||||
|
||||
// parallel max
|
||||
float4 lmax4 = -INFINITY;
|
||||
|
||||
for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
|
||||
lmax4 = fmax(lmax4, psrc4[i00]*scale + (pmask ? pmask[i00] : 0.0f));
|
||||
lmax4 = fmax(lmax4, psrc4[i00]*scale + (pmask ? pmask[i00] : 0.0f) + slope*ppos[i00]);
|
||||
}
|
||||
|
||||
const float lmax = MAX(MAX(lmax4[0], lmax4[1]), MAX(lmax4[2], lmax4[3]));
|
||||
@@ -486,7 +521,7 @@ kernel void kernel_soft_max_4(
|
||||
// parallel sum
|
||||
float4 lsum4 = 0.0f;
|
||||
for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
|
||||
const float4 exp_psrc4 = exp((psrc4[i00]*scale + (pmask ? pmask[i00] : 0.0f)) - max_val);
|
||||
const float4 exp_psrc4 = exp((psrc4[i00]*scale + (pmask ? pmask[i00] : 0.0f) + slope*ppos[i00]) - max_val);
|
||||
lsum4 += exp_psrc4;
|
||||
pdst4[i00] = exp_psrc4;
|
||||
}
|
||||
@@ -1775,9 +1810,29 @@ kernel void kernel_rope(
|
||||
template [[host_name("kernel_rope_f32")]] kernel rope_t kernel_rope<float>;
|
||||
template [[host_name("kernel_rope_f16")]] kernel rope_t kernel_rope<half>;
|
||||
|
||||
kernel void kernel_im2col_f16(
|
||||
typedef void (im2col_t)(
|
||||
device const float * x,
|
||||
device half * dst,
|
||||
device char * dst,
|
||||
constant int32_t & ofs0,
|
||||
constant int32_t & ofs1,
|
||||
constant int32_t & IW,
|
||||
constant int32_t & IH,
|
||||
constant int32_t & CHW,
|
||||
constant int32_t & s0,
|
||||
constant int32_t & s1,
|
||||
constant int32_t & p0,
|
||||
constant int32_t & p1,
|
||||
constant int32_t & d0,
|
||||
constant int32_t & d1,
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint3 tgpg[[threadgroups_per_grid]],
|
||||
uint3 tpitg[[thread_position_in_threadgroup]],
|
||||
uint3 ntg[[threads_per_threadgroup]]);
|
||||
|
||||
template <typename T>
|
||||
kernel void kernel_im2col(
|
||||
device const float * x,
|
||||
device char * dst,
|
||||
constant int32_t & ofs0,
|
||||
constant int32_t & ofs1,
|
||||
constant int32_t & IW,
|
||||
@@ -1800,14 +1855,19 @@ kernel void kernel_im2col_f16(
|
||||
(tpitg[0] * tgpg[1] * tgpg[2] + tgpig[1] * tgpg[2] + tgpig[2]) * CHW +
|
||||
(tgpig[0] * (ntg[1] * ntg[2]) + tpitg[1] * ntg[2] + tpitg[2]);
|
||||
|
||||
device T * pdst = (device T *) (dst);
|
||||
|
||||
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
|
||||
dst[offset_dst] = 0.0f;
|
||||
pdst[offset_dst] = 0.0f;
|
||||
} else {
|
||||
const int32_t offset_src = tpitg[0] * ofs0 + tgpig[0] * ofs1;
|
||||
dst[offset_dst] = x[offset_src + iih * IW + iiw];
|
||||
pdst[offset_dst] = x[offset_src + iih * IW + iiw];
|
||||
}
|
||||
}
|
||||
|
||||
template [[host_name("kernel_im2col_f32")]] kernel im2col_t kernel_im2col<float>;
|
||||
template [[host_name("kernel_im2col_f16")]] kernel im2col_t kernel_im2col<half>;
|
||||
|
||||
kernel void kernel_upscale_f32(
|
||||
device const char * src0,
|
||||
device char * dst,
|
||||
@@ -2459,6 +2519,19 @@ typedef struct {
|
||||
} block_iq2_xs;
|
||||
// 74 bytes / block for QK_K = 256, so 2.3125 bpw
|
||||
|
||||
typedef struct {
|
||||
half d;
|
||||
uint8_t qs[3*QK_K/8];
|
||||
} block_iq3_xxs;
|
||||
// 98 bytes / block for QK_K = 256, so 3.0625 bpw
|
||||
|
||||
typedef struct {
|
||||
half d;
|
||||
uint8_t qs[QK_K/8];
|
||||
uint8_t scales[QK_K/16];
|
||||
} block_iq1_s;
|
||||
|
||||
|
||||
//====================================== dot products =========================
|
||||
|
||||
void kernel_mul_mv_q2_K_f32_impl(
|
||||
@@ -3681,6 +3754,173 @@ constexpr constant static uint64_t iq2xs_grid[512] = {
|
||||
0x2b2b2b2b082b2b08, 0x2b2b2b2b082b2b2b, 0x2b2b2b2b2b190819, 0x2b2b2b2b2b2b2b2b,
|
||||
};
|
||||
|
||||
constexpr constant static uint32_t iq3xxs_grid[256] = {
|
||||
0x04040404, 0x04040414, 0x04040424, 0x04040c0c, 0x04040c1c, 0x04040c3e, 0x04041404, 0x04041414,
|
||||
0x04041c0c, 0x04042414, 0x04043e1c, 0x04043e2c, 0x040c040c, 0x040c041c, 0x040c0c04, 0x040c0c14,
|
||||
0x040c140c, 0x040c142c, 0x040c1c04, 0x040c1c14, 0x040c240c, 0x040c2c24, 0x040c3e04, 0x04140404,
|
||||
0x04140414, 0x04140424, 0x04140c0c, 0x04141404, 0x04141414, 0x04141c0c, 0x04141c1c, 0x04141c3e,
|
||||
0x04142c0c, 0x04142c3e, 0x04143e2c, 0x041c040c, 0x041c043e, 0x041c0c04, 0x041c0c14, 0x041c142c,
|
||||
0x041c3e04, 0x04240c1c, 0x04241c3e, 0x04242424, 0x04242c3e, 0x04243e1c, 0x04243e2c, 0x042c040c,
|
||||
0x042c043e, 0x042c1c14, 0x042c2c14, 0x04341c2c, 0x04343424, 0x043e0c04, 0x043e0c24, 0x043e0c34,
|
||||
0x043e241c, 0x043e340c, 0x0c04040c, 0x0c04041c, 0x0c040c04, 0x0c040c14, 0x0c04140c, 0x0c04141c,
|
||||
0x0c041c04, 0x0c041c14, 0x0c041c24, 0x0c04243e, 0x0c042c04, 0x0c0c0404, 0x0c0c0414, 0x0c0c0c0c,
|
||||
0x0c0c1404, 0x0c0c1414, 0x0c14040c, 0x0c14041c, 0x0c140c04, 0x0c140c14, 0x0c14140c, 0x0c141c04,
|
||||
0x0c143e14, 0x0c1c0404, 0x0c1c0414, 0x0c1c1404, 0x0c1c1c0c, 0x0c1c2434, 0x0c1c3434, 0x0c24040c,
|
||||
0x0c24042c, 0x0c242c04, 0x0c2c1404, 0x0c2c1424, 0x0c2c2434, 0x0c2c3e0c, 0x0c34042c, 0x0c3e1414,
|
||||
0x0c3e2404, 0x14040404, 0x14040414, 0x14040c0c, 0x14040c1c, 0x14041404, 0x14041414, 0x14041434,
|
||||
0x14041c0c, 0x14042414, 0x140c040c, 0x140c041c, 0x140c042c, 0x140c0c04, 0x140c0c14, 0x140c140c,
|
||||
0x140c1c04, 0x140c341c, 0x140c343e, 0x140c3e04, 0x14140404, 0x14140414, 0x14140c0c, 0x14140c3e,
|
||||
0x14141404, 0x14141414, 0x14141c3e, 0x14142404, 0x14142c2c, 0x141c040c, 0x141c0c04, 0x141c0c24,
|
||||
0x141c3e04, 0x141c3e24, 0x14241c2c, 0x14242c1c, 0x142c041c, 0x142c143e, 0x142c240c, 0x142c3e24,
|
||||
0x143e040c, 0x143e041c, 0x143e0c34, 0x143e242c, 0x1c04040c, 0x1c040c04, 0x1c040c14, 0x1c04140c,
|
||||
0x1c04141c, 0x1c042c04, 0x1c04342c, 0x1c043e14, 0x1c0c0404, 0x1c0c0414, 0x1c0c1404, 0x1c0c1c0c,
|
||||
0x1c0c2424, 0x1c0c2434, 0x1c14040c, 0x1c14041c, 0x1c140c04, 0x1c14142c, 0x1c142c14, 0x1c143e14,
|
||||
0x1c1c0c0c, 0x1c1c1c1c, 0x1c241c04, 0x1c24243e, 0x1c243e14, 0x1c2c0404, 0x1c2c0434, 0x1c2c1414,
|
||||
0x1c2c2c2c, 0x1c340c24, 0x1c341c34, 0x1c34341c, 0x1c3e1c1c, 0x1c3e3404, 0x24040424, 0x24040c3e,
|
||||
0x24041c2c, 0x24041c3e, 0x24042c1c, 0x24042c3e, 0x240c3e24, 0x24141404, 0x24141c3e, 0x24142404,
|
||||
0x24143404, 0x24143434, 0x241c043e, 0x241c242c, 0x24240424, 0x24242c0c, 0x24243424, 0x242c142c,
|
||||
0x242c241c, 0x242c3e04, 0x243e042c, 0x243e0c04, 0x243e0c14, 0x243e1c04, 0x2c040c14, 0x2c04240c,
|
||||
0x2c043e04, 0x2c0c0404, 0x2c0c0434, 0x2c0c1434, 0x2c0c2c2c, 0x2c140c24, 0x2c141c14, 0x2c143e14,
|
||||
0x2c1c0414, 0x2c1c2c1c, 0x2c240c04, 0x2c24141c, 0x2c24143e, 0x2c243e14, 0x2c2c0414, 0x2c2c1c0c,
|
||||
0x2c342c04, 0x2c3e1424, 0x2c3e2414, 0x34041424, 0x34042424, 0x34042434, 0x34043424, 0x340c140c,
|
||||
0x340c340c, 0x34140c3e, 0x34143424, 0x341c1c04, 0x341c1c34, 0x34242424, 0x342c042c, 0x342c2c14,
|
||||
0x34341c1c, 0x343e041c, 0x343e140c, 0x3e04041c, 0x3e04042c, 0x3e04043e, 0x3e040c04, 0x3e041c14,
|
||||
0x3e042c14, 0x3e0c1434, 0x3e0c2404, 0x3e140c14, 0x3e14242c, 0x3e142c14, 0x3e1c0404, 0x3e1c0c2c,
|
||||
0x3e1c1c1c, 0x3e1c3404, 0x3e24140c, 0x3e24240c, 0x3e2c0404, 0x3e2c0414, 0x3e2c1424, 0x3e341c04,
|
||||
};
|
||||
|
||||
#define NGRID_IQ1S 512
|
||||
constexpr constant static uint64_t iq1s_grid[NGRID_IQ1S] = {
|
||||
0xffffffffffff0101, 0xffffffffff01ff00, 0xffffffffff010100, 0xffffffff00000000,
|
||||
0xffffffff01ff00ff, 0xffffffff01ff0001, 0xffffffff0101ffff, 0xffffffff0101ff01,
|
||||
0xffffff00ff000000, 0xffffff000000ff00, 0xffffff00000000ff, 0xffffff0000000100,
|
||||
0xffffff0000010000, 0xffffff0001000000, 0xffffff01ffff00ff, 0xffffff01ff01ff00,
|
||||
0xffffff01ff010100, 0xffffff0100000001, 0xffffff0101ffff00, 0xffffff0101ff0101,
|
||||
0xffffff0101010100, 0xffff00ffff00ff01, 0xffff00ffff0000ff, 0xffff00ff00ff0100,
|
||||
0xffff00ff0100ff00, 0xffff00ff010001ff, 0xffff0000ff0101ff, 0xffff000000ffff00,
|
||||
0xffff000000000000, 0xffff00000001ff01, 0xffff000001000101, 0xffff0000010100ff,
|
||||
0xffff0001ffff0100, 0xffff00010000ff00, 0xffff000100010101, 0xffff000101000000,
|
||||
0xffff01ffffff0000, 0xffff01ffff01ffff, 0xffff01ffff010100, 0xffff01ff00000000,
|
||||
0xffff01ff01ffffff, 0xffff01ff01ff0001, 0xffff01ff0101ffff, 0xffff01ff01010001,
|
||||
0xffff0100ffffff01, 0xffff01000000ffff, 0xffff010000000100, 0xffff010001ff01ff,
|
||||
0xffff010001000000, 0xffff0101ff000000, 0xffff0101000101ff, 0xffff010101ffff01,
|
||||
0xffff01010101ff00, 0xff00ffffff000000, 0xff00ffff00ffff00, 0xff00ffff00000001,
|
||||
0xff00ffff000001ff, 0xff00ffff01010000, 0xff00ff00ffff0000, 0xff00ff00ff00ff00,
|
||||
0xff00ff00ff0000ff, 0xff00ff00ff000100, 0xff00ff00ff010001, 0xff00ff0000ff0001,
|
||||
0xff00ff000000ffff, 0xff00ff0000000000, 0xff00ff000001ff00, 0xff00ff0000010100,
|
||||
0xff00ff0001ff0000, 0xff00ff000100ff00, 0xff00ff0001000100, 0xff00ff01ff000000,
|
||||
0xff00ff0100ff0000, 0xff00ff01000001ff, 0xff00ff0101010001, 0xff0000ff00000000,
|
||||
0xff0000ff0001ff00, 0xff0000ff00010100, 0xff000000ffff0101, 0xff000000ff000000,
|
||||
0xff000000ff01ff00, 0xff00000000ff0000, 0xff0000000000ff00, 0xff000000000000ff,
|
||||
0xff00000000000000, 0xff00000000000001, 0xff00000000000100, 0xff0000000001ffff,
|
||||
0xff00000000010000, 0xff00000001000000, 0xff00000001010100, 0xff000001ff00ff01,
|
||||
0xff000001ff0100ff, 0xff00000100000000, 0xff0000010001ff00, 0xff00000101ff0100,
|
||||
0xff0000010100ff00, 0xff0001ff00ff00ff, 0xff0001ff00000101, 0xff0001ff000100ff,
|
||||
0xff0001ff01000000, 0xff000100ff0001ff, 0xff0001000000ff01, 0xff00010000000000,
|
||||
0xff00010000010001, 0xff00010000010100, 0xff00010001ffff00, 0xff00010001ff0101,
|
||||
0xff00010001010000, 0xff000101ffffffff, 0xff000101ff000101, 0xff00010101ff00ff,
|
||||
0xff00010101000001, 0xff000101010100ff, 0xff01ffffff000101, 0xff01ffffff01ffff,
|
||||
0xff01ffffff01ff01, 0xff01ffffff0101ff, 0xff01ffff00000000, 0xff01ffff01ff0001,
|
||||
0xff01ffff0101ff01, 0xff01ff00ff000000, 0xff01ff0000ff0100, 0xff01ff000000ff01,
|
||||
0xff01ff0000010000, 0xff01ff00010000ff, 0xff01ff01ff01ff00, 0xff01ff0100000101,
|
||||
0xff0100ffffff0000, 0xff0100ffff010000, 0xff0100ff01ff00ff, 0xff0100ff01000100,
|
||||
0xff0100ff010100ff, 0xff010000ffffff01, 0xff01000000000000, 0xff0100000101ff00,
|
||||
0xff010001ffff00ff, 0xff010001ff000100, 0xff01000100ffff00, 0xff01000100010001,
|
||||
0xff01000101ff0001, 0xff010001010001ff, 0xff0101ffffffffff, 0xff0101ffff01ffff,
|
||||
0xff0101ffff010101, 0xff0101ff0000ff00, 0xff0101ff01010001, 0xff010100ff000000,
|
||||
0xff010100ff01ff01, 0xff01010000ff0001, 0xff01010000000100, 0xff01010001000000,
|
||||
0xff0101010100ffff, 0x00ffffff0000ff01, 0x00ffffff000000ff, 0x00ffffff00000100,
|
||||
0x00ffffff00010000, 0x00ffff00ffff0001, 0x00ffff00ff0000ff, 0x00ffff00ff000100,
|
||||
0x00ffff0000000000, 0x00ffff0001000100, 0x00ffff0001010001, 0x00ffff01ff00ff01,
|
||||
0x00ffff0100ff0100, 0x00ffff010000ff00, 0x00ffff01000100ff, 0x00ffff0101ff00ff,
|
||||
0x00ffff010101ff00, 0x00ff00ffffffffff, 0x00ff00ffffff01ff, 0x00ff00ffff000101,
|
||||
0x00ff00ff00000000, 0x00ff00ff000101ff, 0x00ff00ff01010101, 0x00ff0000ff000000,
|
||||
0x00ff0000ff01ffff, 0x00ff000000ff0000, 0x00ff00000000ff00, 0x00ff0000000000ff,
|
||||
0x00ff000000000000, 0x00ff000000000001, 0x00ff000000000100, 0x00ff000000010000,
|
||||
0x00ff000001ffff01, 0x00ff000001000000, 0x00ff0001ff000101, 0x00ff000100ffffff,
|
||||
0x00ff000100000000, 0x00ff0001010001ff, 0x00ff01ffff000000, 0x00ff01ff0001ff00,
|
||||
0x00ff01ff01ff0100, 0x00ff0100ff01ff01, 0x00ff010000ff00ff, 0x00ff010000ff0101,
|
||||
0x00ff010000000000, 0x00ff010000010101, 0x00ff01000100ff00, 0x00ff010001010000,
|
||||
0x00ff0101ffffff00, 0x00ff01010000ff01, 0x00ff010100000100, 0x00ff010101ff0000,
|
||||
0x0000ffffffff0100, 0x0000ffffff00ff00, 0x0000ffffff0000ff, 0x0000ffffff010000,
|
||||
0x0000ffff00000000, 0x0000ffff00010101, 0x0000ffff01ffff01, 0x0000ffff01000100,
|
||||
0x0000ff00ff000000, 0x0000ff00ff01ff00, 0x0000ff00ff0101ff, 0x0000ff0000ff0000,
|
||||
0x0000ff000000ff00, 0x0000ff00000000ff, 0x0000ff0000000000, 0x0000ff0000000001,
|
||||
0x0000ff0000000100, 0x0000ff0000010000, 0x0000ff0001ffffff, 0x0000ff0001ff01ff,
|
||||
0x0000ff0001000000, 0x0000ff000101ffff, 0x0000ff01ffff0101, 0x0000ff01ff010000,
|
||||
0x0000ff0100000000, 0x0000ff0101000101, 0x000000ffffff0001, 0x000000ffff000000,
|
||||
0x000000ff00ff0000, 0x000000ff0000ff00, 0x000000ff000000ff, 0x000000ff00000000,
|
||||
0x000000ff00000001, 0x000000ff00000100, 0x000000ff00010000, 0x000000ff01000000,
|
||||
0x000000ff0101ff00, 0x00000000ffff0000, 0x00000000ff00ff00, 0x00000000ff0000ff,
|
||||
0x00000000ff000000, 0x00000000ff000001, 0x00000000ff000100, 0x00000000ff010000,
|
||||
0x0000000000ffff00, 0x0000000000ff00ff, 0x0000000000ff0000, 0x0000000000ff0001,
|
||||
0x0000000000ff0100, 0x000000000000ffff, 0x000000000000ff00, 0x000000000000ff01,
|
||||
0x00000000000000ff, 0x0000000000000001, 0x00000000000001ff, 0x0000000000000100,
|
||||
0x0000000000000101, 0x000000000001ff00, 0x00000000000100ff, 0x0000000000010000,
|
||||
0x0000000000010001, 0x0000000000010100, 0x0000000001ff0000, 0x000000000100ff00,
|
||||
0x00000000010000ff, 0x0000000001000000, 0x0000000001000001, 0x0000000001000100,
|
||||
0x0000000001010000, 0x00000001ffff01ff, 0x00000001ff000000, 0x0000000100ff0000,
|
||||
0x000000010000ff00, 0x00000001000000ff, 0x0000000100000000, 0x0000000100000001,
|
||||
0x0000000100000100, 0x0000000100010000, 0x0000000101000000, 0x000001ffff00ff00,
|
||||
0x000001ffff010001, 0x000001ffff0101ff, 0x000001ff00ffff01, 0x000001ff0000ffff,
|
||||
0x000001ff00000000, 0x000001ff010000ff, 0x000001ff01010100, 0x00000100ffff0100,
|
||||
0x00000100ff000000, 0x0000010000ff0000, 0x000001000000ff00, 0x00000100000000ff,
|
||||
0x0000010000000000, 0x0000010000000001, 0x0000010000000100, 0x0000010000010000,
|
||||
0x0000010001000000, 0x000001000101ff01, 0x00000101ffff0001, 0x00000101ff01ffff,
|
||||
0x0000010100000000, 0x0000010101010100, 0x0001ffffff000000, 0x0001ffff00ffffff,
|
||||
0x0001ffff00000100, 0x0001ffff0001ff00, 0x0001ffff01000000, 0x0001ff00ffffff00,
|
||||
0x0001ff00ffff01ff, 0x0001ff00ff010000, 0x0001ff0000000000, 0x0001ff0000010001,
|
||||
0x0001ff0001ff0000, 0x0001ff0001010100, 0x0001ff01ff0000ff, 0x0001ff01ff000001,
|
||||
0x0001ff0100ffffff, 0x0001ff010001ffff, 0x0001ff01000101ff, 0x0001ff010100ff01,
|
||||
0x000100ffff00ffff, 0x000100ffff00ff01, 0x000100ffff000100, 0x000100ff00000000,
|
||||
0x000100ff000101ff, 0x000100ff01ff0101, 0x000100ff0100ffff, 0x000100ff01010101,
|
||||
0x00010000ff000000, 0x00010000ff010100, 0x0001000000ff0000, 0x000100000000ff00,
|
||||
0x00010000000000ff, 0x0001000000000000, 0x0001000000000001, 0x0001000000000100,
|
||||
0x0001000000010000, 0x0001000001ffff01, 0x0001000001000000, 0x0001000100ff0101,
|
||||
0x0001000100000000, 0x00010001010100ff, 0x000101ffffff01ff, 0x000101ffffff0101,
|
||||
0x000101ff00010000, 0x000101ff01ff0000, 0x000101ff0100ff01, 0x00010100ffff0000,
|
||||
0x0001010000000000, 0x000101000001ffff, 0x0001010000010101, 0x00010100010001ff,
|
||||
0x00010101ff00ff00, 0x00010101ff010001, 0x0001010100ffffff, 0x0001010100ff01ff,
|
||||
0x00010101000101ff, 0x0001010101ff0000, 0x000101010100ff01, 0x0001010101000101,
|
||||
0x01ffffffffff0101, 0x01ffffffff01ffff, 0x01ffffffff01ff01, 0x01ffffffff0101ff,
|
||||
0x01ffffffff010101, 0x01ffffff00000000, 0x01ffffff01ff01ff, 0x01ffffff01000101,
|
||||
0x01ffffff0101ff01, 0x01ffffff010100ff, 0x01ffff000000ff00, 0x01ffff0000000001,
|
||||
0x01ffff00000001ff, 0x01ffff0000010000, 0x01ffff0001ff0000, 0x01ffff01ffffffff,
|
||||
0x01ffff01ffff01ff, 0x01ffff01ff000000, 0x01ffff01ff01ffff, 0x01ffff01ff0101ff,
|
||||
0x01ffff010100ffff, 0x01ff00ffffff0000, 0x01ff00ffff010000, 0x01ff00ff00ffff01,
|
||||
0x01ff0000ff0000ff, 0x01ff000000000000, 0x01ff00000001ff01, 0x01ff000001ffffff,
|
||||
0x01ff000001010100, 0x01ff0001ffffff01, 0x01ff0001ff010001, 0x01ff000101ff0100,
|
||||
0x01ff000101000001, 0x01ff0001010100ff, 0x01ff01ffff00ffff, 0x01ff01ff00010001,
|
||||
0x01ff01ff01000000, 0x01ff01ff010101ff, 0x01ff0100ff000001, 0x01ff010000ffff00,
|
||||
0x01ff010000000100, 0x01ff010001ff01ff, 0x01ff01000101ffff, 0x01ff0101ffff00ff,
|
||||
0x01ff0101ffff0101, 0x01ff0101ff0101ff, 0x01ff010100010000, 0x0100ffff00ff00ff,
|
||||
0x0100ffff00ff0001, 0x0100ffff00000100, 0x0100ffff0100ff00, 0x0100ff00ffff0000,
|
||||
0x0100ff00ff00ffff, 0x0100ff00ff00ff01, 0x0100ff00ff000100, 0x0100ff00ff010000,
|
||||
0x0100ff0000000000, 0x0100ff00000100ff, 0x0100ff0001ff0101, 0x0100ff0001010101,
|
||||
0x0100ff0100ff00ff, 0x0100ff0100ff0001, 0x0100ff0100000100, 0x0100ff0100010001,
|
||||
0x0100ff0101000000, 0x010000ffff00ff00, 0x010000ff0000ffff, 0x010000ff00000000,
|
||||
0x010000ff010001ff, 0x010000ff01010001, 0x01000000ffffff00, 0x01000000ffff0101,
|
||||
0x01000000ff000000, 0x01000000ff0100ff, 0x01000000ff010101, 0x0100000000ff0000,
|
||||
0x010000000000ff00, 0x01000000000000ff, 0x0100000000000000, 0x0100000000000001,
|
||||
0x0100000000000100, 0x0100000000010000, 0x0100000001000000, 0x0100000100000000,
|
||||
0x01000001000101ff, 0x0100000101ffff01, 0x010001ffff000101, 0x010001ff00ff0100,
|
||||
0x010001ff0000ff00, 0x010001ff000100ff, 0x010001ff01ffffff, 0x01000100ffff0000,
|
||||
0x01000100ff0001ff, 0x0100010000000000, 0x010001000001ff00, 0x0100010001ff0000,
|
||||
0x01000100010000ff, 0x0100010001000101, 0x01000101ff00ff01, 0x0100010100ff0100,
|
||||
0x010001010000ffff, 0x0100010101010001, 0x0101ffffffff0101, 0x0101ffffff0001ff,
|
||||
0x0101ffffff01ffff, 0x0101ffffff010101, 0x0101ffff00000000, 0x0101ffff0101ffff,
|
||||
0x0101ffff010101ff, 0x0101ff00ff000000, 0x0101ff0000ff0100, 0x0101ff000000ff00,
|
||||
0x0101ff0000010000, 0x0101ff00010000ff, 0x0101ff0001000001, 0x0101ff01ff010101,
|
||||
0x0101ff0100000000, 0x0101ff010101ff00, 0x010100ffffff0000, 0x010100ffff010000,
|
||||
0x010100ff00ff01ff, 0x010100ff000000ff, 0x010100ff00000101, 0x010100ff01ffff00,
|
||||
0x01010000ffffff01, 0x01010000ff000100, 0x01010000ff01ff01, 0x0101000000000000,
|
||||
0x01010000000100ff, 0x010100000101ff01, 0x01010001ffff0000, 0x01010001ff00ffff,
|
||||
0x01010001ff010000, 0x0101000101ffffff, 0x0101000101ff01ff, 0x0101000101010101,
|
||||
0x010101ffff01ffff, 0x010101ff00000000, 0x010101ff0001ff01, 0x010101ff0101ffff,
|
||||
0x010101ff010101ff, 0x01010100ffffffff, 0x01010100ff000001, 0x010101000000ff00,
|
||||
0x0101010001010000, 0x0101010100ff0001, 0x010101010001ff01, 0x010101010101ffff,
|
||||
};
|
||||
|
||||
constexpr constant static uint8_t ksigns_iq2xs[128] = {
|
||||
0, 129, 130, 3, 132, 5, 6, 135, 136, 9, 10, 139, 12, 141, 142, 15,
|
||||
144, 17, 18, 147, 20, 149, 150, 23, 24, 153, 154, 27, 156, 29, 30, 159,
|
||||
@@ -3970,6 +4210,260 @@ kernel void kernel_mul_mv_iq2_xs_f32(
|
||||
kernel_mul_mv_iq2_xs_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg);
|
||||
}
|
||||
|
||||
void kernel_mul_mv_iq3_xxs_f32_impl(
|
||||
device const void * src0,
|
||||
device const float * src1,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int64_t & ne02,
|
||||
constant int64_t & ne10,
|
||||
constant int64_t & ne12,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
constant uint & r2,
|
||||
constant uint & r3,
|
||||
threadgroup int8_t * shared_values [[threadgroup(0)]],
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint tiisg[[thread_index_in_simdgroup]],
|
||||
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
||||
|
||||
const int nb = ne00/QK_K;
|
||||
const int r0 = tgpig.x;
|
||||
const int r1 = tgpig.y;
|
||||
const int im = tgpig.z;
|
||||
|
||||
const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
|
||||
const int ib_row = first_row * nb;
|
||||
|
||||
const uint i12 = im%ne12;
|
||||
const uint i13 = im/ne12;
|
||||
|
||||
const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
|
||||
|
||||
device const block_iq3_xxs * x = (device const block_iq3_xxs *) src0 + ib_row + offset0;
|
||||
device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
|
||||
|
||||
float yl[32];
|
||||
float sumf[N_DST]={0.f}, all_sum;
|
||||
|
||||
const int nb32 = nb * (QK_K / 32);
|
||||
|
||||
threadgroup uint32_t * values = (threadgroup uint32_t *)shared_values;
|
||||
threadgroup uint8_t * shared_signs = (threadgroup uint8_t *)(values + 256);
|
||||
{
|
||||
int nval = 4;
|
||||
int pos = (32*sgitg + tiisg)*nval;
|
||||
for (int i = 0; i < nval; ++i) values[pos + i] = iq3xxs_grid[pos + i];
|
||||
nval = 2;
|
||||
pos = (32*sgitg + tiisg)*nval;
|
||||
for (int i = 0; i < nval; ++i) shared_signs[pos+i] = ksigns_iq2xs[pos+i];
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
}
|
||||
|
||||
#if QK_K == 256
|
||||
const int ix = tiisg;
|
||||
|
||||
device const float * y4 = y + 32 * ix;
|
||||
|
||||
for (int ib32 = ix; ib32 < nb32; ib32 += 32) {
|
||||
|
||||
for (int i = 0; i < 32; ++i) {
|
||||
yl[i] = y4[i];
|
||||
}
|
||||
|
||||
const int ibl = ib32 / (QK_K / 32);
|
||||
const int ib = ib32 % (QK_K / 32);
|
||||
|
||||
device const block_iq3_xxs * xr = x + ibl;
|
||||
device const uint8_t * q3 = xr->qs + 8 * ib;
|
||||
device const uint16_t * gas = (device const uint16_t *)(xr->qs + QK_K/4) + 2 * ib;
|
||||
device const half * dh = &xr->d;
|
||||
|
||||
for (int row = 0; row < N_DST; row++) {
|
||||
|
||||
const float db = dh[0];
|
||||
const uint32_t aux32 = gas[0] | (gas[1] << 16);
|
||||
const float d = db * (0.5f + (aux32 >> 28));
|
||||
|
||||
float2 sum = {0};
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
const threadgroup uint8_t * grid1 = (const threadgroup uint8_t *)(values + q3[2*l+0]);
|
||||
const threadgroup uint8_t * grid2 = (const threadgroup uint8_t *)(values + q3[2*l+1]);
|
||||
const uint8_t signs = shared_signs[(aux32 >> 7*l) & 127];
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
sum[0] += yl[8*l + j + 0] * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
|
||||
sum[1] += yl[8*l + j + 4] * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
|
||||
}
|
||||
}
|
||||
sumf[row] += d * (sum[0] + sum[1]);
|
||||
|
||||
dh += nb*sizeof(block_iq3_xxs)/2;
|
||||
q3 += nb*sizeof(block_iq3_xxs);
|
||||
gas += nb*sizeof(block_iq3_xxs)/2;
|
||||
}
|
||||
|
||||
y4 += 32 * 32;
|
||||
}
|
||||
#else
|
||||
// TODO
|
||||
#endif
|
||||
|
||||
for (int row = 0; row < N_DST; ++row) {
|
||||
all_sum = simd_sum(sumf[row]);
|
||||
if (tiisg == 0) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum * 0.5f;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
[[host_name("kernel_mul_mv_iq3_xxs_f32")]]
|
||||
kernel void kernel_mul_mv_iq3_xxs_f32(
|
||||
device const void * src0,
|
||||
device const float * src1,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int64_t & ne02,
|
||||
constant uint64_t & nb00,
|
||||
constant uint64_t & nb01,
|
||||
constant uint64_t & nb02,
|
||||
constant int64_t & ne10,
|
||||
constant int64_t & ne11,
|
||||
constant int64_t & ne12,
|
||||
constant uint64_t & nb10,
|
||||
constant uint64_t & nb11,
|
||||
constant uint64_t & nb12,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
constant uint & r2,
|
||||
constant uint & r3,
|
||||
threadgroup int8_t * shared_values [[threadgroup(0)]],
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint tiisg[[thread_index_in_simdgroup]],
|
||||
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
||||
|
||||
kernel_mul_mv_iq3_xxs_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg);
|
||||
}
|
||||
|
||||
void kernel_mul_mv_iq1_s_f32_impl(
|
||||
device const void * src0,
|
||||
device const float * src1,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int64_t & ne02,
|
||||
constant int64_t & ne10,
|
||||
constant int64_t & ne12,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
constant uint & r2,
|
||||
constant uint & r3,
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint tiisg[[thread_index_in_simdgroup]],
|
||||
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
||||
|
||||
const int nb = ne00/QK_K;
|
||||
const int r0 = tgpig.x;
|
||||
const int r1 = tgpig.y;
|
||||
const int im = tgpig.z;
|
||||
|
||||
const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
|
||||
const int ib_row = first_row * nb;
|
||||
|
||||
const uint i12 = im%ne12;
|
||||
const uint i13 = im/ne12;
|
||||
|
||||
const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
|
||||
|
||||
device const block_iq1_s * x = (device const block_iq1_s *) src0 + ib_row + offset0;
|
||||
device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
|
||||
|
||||
float yl[16];
|
||||
float sumf[N_DST]={0.f}, all_sum;
|
||||
|
||||
const int nb32 = nb * (QK_K / 32);
|
||||
|
||||
#if QK_K == 256
|
||||
const int ix = tiisg/2;
|
||||
const int il = tiisg%2;
|
||||
|
||||
device const float * y4 = y + 32 * ix + 16 * il;
|
||||
|
||||
for (int ib32 = ix; ib32 < nb32; ib32 += 16) {
|
||||
|
||||
for (int i = 0; i < 16; ++i) {
|
||||
yl[i] = y4[i];
|
||||
}
|
||||
|
||||
const int ibl = ib32 / (QK_K / 32);
|
||||
const int ib = ib32 % (QK_K / 32);
|
||||
|
||||
device const block_iq1_s * xr = x + ibl;
|
||||
device const uint8_t * qs = xr->qs + 4 * ib + 2 * il;
|
||||
device const uint8_t * sc = xr->scales + 2 * ib + il;
|
||||
device const half * dh = &xr->d;
|
||||
|
||||
for (int row = 0; row < N_DST; row++) {
|
||||
|
||||
constant int8_t * grid1 = (constant int8_t *)(iq1s_grid + (qs[0] | ((sc[0] & 0x08) << 5)));
|
||||
constant int8_t * grid2 = (constant int8_t *)(iq1s_grid + (qs[1] | ((sc[0] & 0x80) << 1)));
|
||||
|
||||
float2 sum = {0};
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
sum[0] += yl[j+ 0] * grid1[j];
|
||||
sum[1] += yl[j+ 8] * grid2[j];
|
||||
}
|
||||
sumf[row] += (float)dh[0] * (sum[0] * (2*(sc[0] & 7) + 1) + sum[1] * (2*((sc[0] >> 4) & 7) + 1));
|
||||
|
||||
dh += nb*sizeof(block_iq1_s)/2;
|
||||
qs += nb*sizeof(block_iq1_s);
|
||||
sc += nb*sizeof(block_iq1_s);
|
||||
}
|
||||
|
||||
y4 += 16 * 32;
|
||||
}
|
||||
#else
|
||||
// TODO
|
||||
#endif
|
||||
|
||||
for (int row = 0; row < N_DST; ++row) {
|
||||
all_sum = simd_sum(sumf[row]);
|
||||
if (tiisg == 0) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
[[host_name("kernel_mul_mv_iq1_s_f32")]]
|
||||
kernel void kernel_mul_mv_iq1_s_f32(
|
||||
device const void * src0,
|
||||
device const float * src1,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int64_t & ne02,
|
||||
constant uint64_t & nb00,
|
||||
constant uint64_t & nb01,
|
||||
constant uint64_t & nb02,
|
||||
constant int64_t & ne10,
|
||||
constant int64_t & ne11,
|
||||
constant int64_t & ne12,
|
||||
constant uint64_t & nb10,
|
||||
constant uint64_t & nb11,
|
||||
constant uint64_t & nb12,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
constant uint & r2,
|
||||
constant uint & r3,
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint tiisg[[thread_index_in_simdgroup]],
|
||||
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
||||
|
||||
kernel_mul_mv_iq1_s_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, tgpig, tiisg, sgitg);
|
||||
}
|
||||
|
||||
|
||||
//============================= templates and their specializations =============================
|
||||
|
||||
// NOTE: this is not dequantizing - we are simply fitting the template
|
||||
@@ -4287,6 +4781,49 @@ void dequantize_iq2_xs(device const block_iq2_xs * xb, short il, thread type4x4
|
||||
}
|
||||
}
|
||||
|
||||
template <typename type4x4>
|
||||
void dequantize_iq3_xxs(device const block_iq3_xxs * xb, short il, thread type4x4 & reg) {
|
||||
// il is 0...15 for QK_K = 256 => index of block of 32 is il/2
|
||||
const float d = xb->d;
|
||||
const int ib32 = il/2;
|
||||
il = il%2;
|
||||
// il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16
|
||||
device const uint8_t * q3 = xb->qs + 8*ib32;
|
||||
device const uint16_t * gas = (device const uint16_t *)(xb->qs + QK_K/4) + 2*ib32;
|
||||
const uint32_t aux32 = gas[0] | (gas[1] << 16);
|
||||
const float dl = d * (0.5f + (aux32 >> 28)) * 0.5f;
|
||||
constant uint8_t * grid1 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+0]);
|
||||
constant uint8_t * grid2 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+1]);
|
||||
uint8_t signs = ksigns_iq2xs[(aux32 >> 14*il) & 127];
|
||||
for (int i = 0; i < 4; ++i) {
|
||||
reg[0][i] = dl * grid1[i] * (signs & kmask_iq2xs[i+0] ? -1.f : 1.f);
|
||||
reg[1][i] = dl * grid2[i] * (signs & kmask_iq2xs[i+4] ? -1.f : 1.f);
|
||||
}
|
||||
grid1 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+2]);
|
||||
grid2 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+3]);
|
||||
signs = ksigns_iq2xs[(aux32 >> (14*il+7)) & 127];
|
||||
for (int i = 0; i < 4; ++i) {
|
||||
reg[2][i] = dl * grid1[i] * (signs & kmask_iq2xs[i+0] ? -1.f : 1.f);
|
||||
reg[3][i] = dl * grid2[i] * (signs & kmask_iq2xs[i+4] ? -1.f : 1.f);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename type4x4>
|
||||
void dequantize_iq1_s(device const block_iq1_s * xb, short il, thread type4x4 & reg) {
|
||||
// il is 0...15 for QK_K = 256 => index of block of 32 is il/2
|
||||
const float d = xb->d;
|
||||
device const uint8_t * qs = xb->qs + 2*il;
|
||||
device const uint8_t * sc = xb->scales + il;
|
||||
const float dl1 = d * (2*(sc[0] & 7) + 1);
|
||||
const float dl2 = d * (2*((sc[0] >> 4) & 7) + 1);
|
||||
constant int8_t * grid1 = (constant int8_t *)(iq1s_grid + (qs[0] | ((sc[0] & 0x08) << 5)));
|
||||
constant int8_t * grid2 = (constant int8_t *)(iq1s_grid + (qs[1] | ((sc[0] & 0x80) << 1)));
|
||||
for (int i = 0; i < 8; ++i) {
|
||||
reg[i/4+0][i%4] = dl1 * grid1[i];
|
||||
reg[i/4+2][i%4] = dl2 * grid2[i];
|
||||
}
|
||||
}
|
||||
|
||||
template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread float4x4 &)>
|
||||
kernel void kernel_get_rows(
|
||||
device const void * src0,
|
||||
@@ -4828,6 +5365,8 @@ template [[host_name("kernel_get_rows_q5_K")]] kernel get_rows_t kernel_get_rows
|
||||
template [[host_name("kernel_get_rows_q6_K")]] kernel get_rows_t kernel_get_rows<block_q6_K, QK_NL, dequantize_q6_K>;
|
||||
template [[host_name("kernel_get_rows_iq2_xxs")]] kernel get_rows_t kernel_get_rows<block_iq2_xxs, QK_NL, dequantize_iq2_xxs>;
|
||||
template [[host_name("kernel_get_rows_iq2_xs")]] kernel get_rows_t kernel_get_rows<block_iq2_xs, QK_NL, dequantize_iq2_xs>;
|
||||
template [[host_name("kernel_get_rows_iq3_xxs")]] kernel get_rows_t kernel_get_rows<block_iq3_xxs, QK_NL, dequantize_iq3_xxs>;
|
||||
template [[host_name("kernel_get_rows_iq1_s")]] kernel get_rows_t kernel_get_rows<block_iq1_s, QK_NL, dequantize_iq1_s>;
|
||||
|
||||
//
|
||||
// matrix-matrix multiplication
|
||||
@@ -4866,6 +5405,8 @@ template [[host_name("kernel_mul_mm_q5_K_f32")]] kernel mat_mm_t kernel_mul_mm<b
|
||||
template [[host_name("kernel_mul_mm_q6_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q6_K, QK_NL, dequantize_q6_K>;
|
||||
template [[host_name("kernel_mul_mm_iq2_xxs_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq2_xxs, QK_NL, dequantize_iq2_xxs>;
|
||||
template [[host_name("kernel_mul_mm_iq2_xs_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq2_xs, QK_NL, dequantize_iq2_xs>;
|
||||
template [[host_name("kernel_mul_mm_iq3_xxs_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq3_xxs, QK_NL, dequantize_iq3_xxs>;
|
||||
template [[host_name("kernel_mul_mm_iq1_s_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq1_s, QK_NL, dequantize_iq1_s>;
|
||||
|
||||
//
|
||||
// indirect matrix-matrix multiplication
|
||||
@@ -4916,6 +5457,8 @@ template [[host_name("kernel_mul_mm_id_q5_K_f32")]] kernel mat_mm_id_t kernel_mu
|
||||
template [[host_name("kernel_mul_mm_id_q6_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q6_K, QK_NL, dequantize_q6_K>;
|
||||
template [[host_name("kernel_mul_mm_id_iq2_xxs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq2_xxs, QK_NL, dequantize_iq2_xxs>;
|
||||
template [[host_name("kernel_mul_mm_id_iq2_xs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq2_xs, QK_NL, dequantize_iq2_xs>;
|
||||
template [[host_name("kernel_mul_mm_id_iq3_xxs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq3_xxs, QK_NL, dequantize_iq3_xxs>;
|
||||
template [[host_name("kernel_mul_mm_id_iq1_s_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq1_s, QK_NL, dequantize_iq1_s>;
|
||||
|
||||
//
|
||||
// matrix-vector multiplication
|
||||
@@ -5818,3 +6361,131 @@ kernel void kernel_mul_mv_id_iq2_xs_f32(
|
||||
tiisg,
|
||||
sgitg);
|
||||
}
|
||||
|
||||
[[host_name("kernel_mul_mv_id_iq3_xxs_f32")]]
|
||||
kernel void kernel_mul_mv_id_iq3_xxs_f32(
|
||||
device const char * ids,
|
||||
device const char * src1,
|
||||
device float * dst,
|
||||
constant uint64_t & nbi1,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int64_t & ne02,
|
||||
constant uint64_t & nb00,
|
||||
constant uint64_t & nb01,
|
||||
constant uint64_t & nb02,
|
||||
constant int64_t & ne10,
|
||||
constant int64_t & ne11,
|
||||
constant int64_t & ne12,
|
||||
constant int64_t & ne13,
|
||||
constant uint64_t & nb10,
|
||||
constant uint64_t & nb11,
|
||||
constant uint64_t & nb12,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
constant uint64_t & nb1,
|
||||
constant uint & r2,
|
||||
constant uint & r3,
|
||||
constant int & idx,
|
||||
device const char * src00,
|
||||
device const char * src01,
|
||||
device const char * src02,
|
||||
device const char * src03,
|
||||
device const char * src04,
|
||||
device const char * src05,
|
||||
device const char * src06,
|
||||
device const char * src07,
|
||||
threadgroup int8_t * shared_values [[threadgroup(0)]],
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint tiitg[[thread_index_in_threadgroup]],
|
||||
uint tiisg[[thread_index_in_simdgroup]],
|
||||
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
||||
device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
|
||||
|
||||
const int64_t bid = tgpig.z/(ne12*ne13);
|
||||
|
||||
tgpig.z = tgpig.z%(ne12*ne13);
|
||||
|
||||
const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
|
||||
|
||||
kernel_mul_mv_iq3_xxs_f32_impl(
|
||||
src0[id],
|
||||
(device const float *) (src1 + bid*nb11),
|
||||
dst + bid*ne0,
|
||||
ne00,
|
||||
ne01,
|
||||
ne02,
|
||||
ne10,
|
||||
ne12,
|
||||
ne0,
|
||||
ne1,
|
||||
r2,
|
||||
r3,
|
||||
shared_values,
|
||||
tgpig,
|
||||
tiisg,
|
||||
sgitg);
|
||||
}
|
||||
|
||||
[[host_name("kernel_mul_mv_id_iq1_s_f32")]]
|
||||
kernel void kernel_mul_mv_id_iq1_s_f32(
|
||||
device const char * ids,
|
||||
device const char * src1,
|
||||
device float * dst,
|
||||
constant uint64_t & nbi1,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int64_t & ne02,
|
||||
constant uint64_t & nb00,
|
||||
constant uint64_t & nb01,
|
||||
constant uint64_t & nb02,
|
||||
constant int64_t & ne10,
|
||||
constant int64_t & ne11,
|
||||
constant int64_t & ne12,
|
||||
constant int64_t & ne13,
|
||||
constant uint64_t & nb10,
|
||||
constant uint64_t & nb11,
|
||||
constant uint64_t & nb12,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
constant uint64_t & nb1,
|
||||
constant uint & r2,
|
||||
constant uint & r3,
|
||||
constant int & idx,
|
||||
device const char * src00,
|
||||
device const char * src01,
|
||||
device const char * src02,
|
||||
device const char * src03,
|
||||
device const char * src04,
|
||||
device const char * src05,
|
||||
device const char * src06,
|
||||
device const char * src07,
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint tiitg[[thread_index_in_threadgroup]],
|
||||
uint tiisg[[thread_index_in_simdgroup]],
|
||||
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
||||
device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
|
||||
|
||||
const int64_t bid = tgpig.z/(ne12*ne13);
|
||||
|
||||
tgpig.z = tgpig.z%(ne12*ne13);
|
||||
|
||||
const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
|
||||
|
||||
kernel_mul_mv_iq1_s_f32_impl(
|
||||
src0[id],
|
||||
(device const float *) (src1 + bid*nb11),
|
||||
dst + bid*ne0,
|
||||
ne00,
|
||||
ne01,
|
||||
ne02,
|
||||
ne10,
|
||||
ne12,
|
||||
ne0,
|
||||
ne1,
|
||||
r2,
|
||||
r3,
|
||||
tgpig,
|
||||
tiisg,
|
||||
sgitg);
|
||||
}
|
||||
|
||||
1858
ggml-quants.c
1858
ggml-quants.c
File diff suppressed because it is too large
Load Diff
141
ggml-quants.h
141
ggml-quants.h
@@ -166,7 +166,7 @@ typedef struct {
|
||||
static_assert(sizeof(block_q8_K) == sizeof(float) + QK_K + QK_K/16*sizeof(int16_t), "wrong q8_K block size/padding");
|
||||
|
||||
// (Almost) "true" 2-bit quantization.
|
||||
// Due to the need to use blocks as per ggml dsign, it ends up using
|
||||
// Due to the need to use blocks as per ggml design, it ends up using
|
||||
// 2.0625 bpw because of the 16-bit scale for each block of 256.
|
||||
typedef struct {
|
||||
ggml_fp16_t d;
|
||||
@@ -182,72 +182,100 @@ typedef struct {
|
||||
} block_iq2_xs;
|
||||
static_assert(sizeof(block_iq2_xs) == sizeof(ggml_fp16_t) + QK_K/8*sizeof(uint16_t) + QK_K/32, "wrong iq2_xs block size/padding");
|
||||
|
||||
// (Almost) "true" 3-bit quantization.
|
||||
// Due to the need to use blocks as per ggml design, it ends up using
|
||||
// 3.0625 bpw because of the 16-bit scale for each block of 256.
|
||||
typedef struct {
|
||||
ggml_fp16_t d;
|
||||
uint8_t qs[3*QK_K/8];
|
||||
} block_iq3_xxs;
|
||||
static_assert(sizeof(block_iq3_xxs) == sizeof(ggml_fp16_t) + 3*(QK_K/8), "wrong iq3_xxs block size/padding");
|
||||
|
||||
typedef struct {
|
||||
ggml_fp16_t d;
|
||||
uint8_t qs[QK_K/8];
|
||||
uint8_t scales[QK_K/16];
|
||||
} block_iq1_s;
|
||||
static_assert(sizeof(block_iq1_s) == sizeof(ggml_fp16_t) + QK_K/8 + QK_K/16, "wrong iq1_s block size/padding");
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// Quantization
|
||||
void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k);
|
||||
void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k);
|
||||
void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k);
|
||||
void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k);
|
||||
void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k);
|
||||
void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k);
|
||||
void quantize_row_q4_0_reference(const float * GGML_RESTRICT x, block_q4_0 * GGML_RESTRICT y, int k);
|
||||
void quantize_row_q4_1_reference(const float * GGML_RESTRICT x, block_q4_1 * GGML_RESTRICT y, int k);
|
||||
void quantize_row_q5_0_reference(const float * GGML_RESTRICT x, block_q5_0 * GGML_RESTRICT y, int k);
|
||||
void quantize_row_q5_1_reference(const float * GGML_RESTRICT x, block_q5_1 * GGML_RESTRICT y, int k);
|
||||
void quantize_row_q8_0_reference(const float * GGML_RESTRICT x, block_q8_0 * GGML_RESTRICT y, int k);
|
||||
void quantize_row_q8_1_reference(const float * GGML_RESTRICT x, block_q8_1 * GGML_RESTRICT y, int k);
|
||||
|
||||
void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict y, int k);
|
||||
void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int k);
|
||||
void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int k);
|
||||
void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int k);
|
||||
void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k);
|
||||
void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k);
|
||||
void quantize_row_q2_K_reference(const float * GGML_RESTRICT x, block_q2_K * GGML_RESTRICT y, int k);
|
||||
void quantize_row_q3_K_reference(const float * GGML_RESTRICT x, block_q3_K * GGML_RESTRICT y, int k);
|
||||
void quantize_row_q4_K_reference(const float * GGML_RESTRICT x, block_q4_K * GGML_RESTRICT y, int k);
|
||||
void quantize_row_q5_K_reference(const float * GGML_RESTRICT x, block_q5_K * GGML_RESTRICT y, int k);
|
||||
void quantize_row_q6_K_reference(const float * GGML_RESTRICT x, block_q6_K * GGML_RESTRICT y, int k);
|
||||
void quantize_row_q8_K_reference(const float * GGML_RESTRICT x, block_q8_K * GGML_RESTRICT y, int k);
|
||||
void quantize_row_iq3_xxs_reference(const float * GGML_RESTRICT x, block_iq3_xxs * GGML_RESTRICT y, int k);
|
||||
|
||||
void quantize_row_q4_0(const float * restrict x, void * restrict y, int k);
|
||||
void quantize_row_q4_1(const float * restrict x, void * restrict y, int k);
|
||||
void quantize_row_q5_0(const float * restrict x, void * restrict y, int k);
|
||||
void quantize_row_q5_1(const float * restrict x, void * restrict y, int k);
|
||||
void quantize_row_q8_0(const float * restrict x, void * restrict y, int k);
|
||||
void quantize_row_q8_1(const float * restrict x, void * restrict y, int k);
|
||||
void quantize_row_q4_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
void quantize_row_q4_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
void quantize_row_q5_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
void quantize_row_q5_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
void quantize_row_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
|
||||
void quantize_row_q2_K(const float * restrict x, void * restrict y, int k);
|
||||
void quantize_row_q3_K(const float * restrict x, void * restrict y, int k);
|
||||
void quantize_row_q4_K(const float * restrict x, void * restrict y, int k);
|
||||
void quantize_row_q5_K(const float * restrict x, void * restrict y, int k);
|
||||
void quantize_row_q6_K(const float * restrict x, void * restrict y, int k);
|
||||
void quantize_row_q8_K(const float * restrict x, void * restrict y, int k);
|
||||
void quantize_row_q2_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
void quantize_row_q3_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
void quantize_row_q4_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
void quantize_row_q5_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
void quantize_row_q6_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
void quantize_row_q8_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
void quantize_row_iq3_xxs(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
|
||||
// Dequantization
|
||||
void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k);
|
||||
void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k);
|
||||
void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k);
|
||||
void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k);
|
||||
void dequantize_row_q8_0(const block_q8_0 * restrict x, float * restrict y, int k);
|
||||
//void dequantize_row_q8_1(const block_q8_1 * restrict x, float * restrict y, int k);
|
||||
void dequantize_row_q4_0(const block_q4_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
void dequantize_row_q4_1(const block_q4_1 * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
void dequantize_row_q5_0(const block_q5_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
void dequantize_row_q5_1(const block_q5_1 * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
void dequantize_row_q8_0(const block_q8_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
//void dequantize_row_q8_1(const block_q8_1 * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
|
||||
void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int k);
|
||||
void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k);
|
||||
void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int k);
|
||||
void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int k);
|
||||
void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int k);
|
||||
void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int k);
|
||||
void dequantize_row_iq2_xxs(const block_iq2_xxs * restrict x, float * restrict y, int k);
|
||||
void dequantize_row_iq2_xs (const block_iq2_xs * restrict x, float * restrict y, int k);
|
||||
void dequantize_row_q2_K(const block_q2_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
void dequantize_row_q3_K(const block_q3_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
void dequantize_row_q4_K(const block_q4_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
void dequantize_row_q5_K(const block_q5_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
void dequantize_row_q6_K(const block_q6_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
void dequantize_row_q8_K(const block_q8_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
void dequantize_row_iq2_xxs(const block_iq2_xxs * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
void dequantize_row_iq2_xs (const block_iq2_xs * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
void dequantize_row_iq3_xxs(const block_iq3_xxs * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
void dequantize_row_iq1_s (const block_iq1_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
|
||||
// Dot product
|
||||
void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||
void ggml_vec_dot_q4_1_q8_1(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||
void ggml_vec_dot_q5_0_q8_0(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||
void ggml_vec_dot_q5_1_q8_1(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||
void ggml_vec_dot_q8_0_q8_0(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||
void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
|
||||
void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||
void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||
void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||
void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||
void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||
void ggml_vec_dot_iq2_xxs_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||
void ggml_vec_dot_iq2_xs_q8_K (int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||
void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq2_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq2_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq3_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq1_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
|
||||
//
|
||||
// Quantization utilizing an importance matrix (a.k.a. "Activation aWare Quantization")
|
||||
//
|
||||
size_t quantize_iq2_xxs(const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_iq2_xs (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_iq3_xxs(const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_iq1_s (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_q2_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_q3_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_q4_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
@@ -258,5 +286,12 @@ size_t quantize_q4_1 (const float * src, void * dst, int nrows, int n_per_row,
|
||||
size_t quantize_q5_0 (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_q5_1 (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
|
||||
void iq2xs_init_impl(int grid_size);
|
||||
void iq2xs_free_impl(int grid_size);
|
||||
void iq2xs_init_impl(enum ggml_type type);
|
||||
void iq2xs_free_impl(enum ggml_type type);
|
||||
void iq3xs_init_impl(int grid_size);
|
||||
void iq3xs_free_impl(int grid_size);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
404
ggml-sycl.cpp
404
ggml-sycl.cpp
@@ -1,7 +1,14 @@
|
||||
/*MIT license
|
||||
Copyright (C) 2024 Intel Corporation
|
||||
SPDX-License-Identifier: MIT
|
||||
*/
|
||||
//
|
||||
// MIT license
|
||||
// Copyright (C) 2024 Intel Corporation
|
||||
// SPDX-License-Identifier: MIT
|
||||
//
|
||||
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
|
||||
#include <algorithm>
|
||||
#include <assert.h>
|
||||
@@ -330,6 +337,7 @@ namespace dpct
|
||||
}
|
||||
size_t get_global_mem_size() const { return _global_mem_size; }
|
||||
size_t get_local_mem_size() const { return _local_mem_size; }
|
||||
size_t get_max_mem_alloc_size() const { return _max_mem_alloc_size; }
|
||||
/// Returns the maximum clock rate of device's global memory in kHz. If
|
||||
/// compiler does not support this API then returns default value 3200000 kHz.
|
||||
unsigned int get_memory_clock_rate() const { return _memory_clock_rate; }
|
||||
@@ -391,6 +399,10 @@ namespace dpct
|
||||
{
|
||||
_local_mem_size = local_mem_size;
|
||||
}
|
||||
void set_max_mem_alloc_size(size_t max_mem_alloc_size)
|
||||
{
|
||||
_max_mem_alloc_size = max_mem_alloc_size;
|
||||
}
|
||||
void set_max_work_group_size(int max_work_group_size)
|
||||
{
|
||||
_max_work_group_size = max_work_group_size;
|
||||
@@ -458,6 +470,7 @@ namespace dpct
|
||||
int _max_register_size_per_work_group;
|
||||
size_t _global_mem_size;
|
||||
size_t _local_mem_size;
|
||||
size_t _max_mem_alloc_size;
|
||||
size_t _max_nd_range_size[3];
|
||||
int _max_nd_range_size_i[3];
|
||||
uint32_t _device_id;
|
||||
@@ -509,6 +522,7 @@ namespace dpct
|
||||
dev.get_info<sycl::info::device::max_work_group_size>());
|
||||
prop.set_global_mem_size(dev.get_info<sycl::info::device::global_mem_size>());
|
||||
prop.set_local_mem_size(dev.get_info<sycl::info::device::local_mem_size>());
|
||||
prop.set_max_mem_alloc_size(dev.get_info<sycl::info::device::max_mem_alloc_size>());
|
||||
|
||||
#if (defined(SYCL_EXT_INTEL_DEVICE_INFO) && SYCL_EXT_INTEL_DEVICE_INFO >= 6)
|
||||
if (dev.has(sycl::aspect::ext_intel_memory_clock_rate))
|
||||
@@ -637,6 +651,11 @@ namespace dpct
|
||||
return get_device_info().get_global_mem_size();
|
||||
}
|
||||
|
||||
size_t get_max_mem_alloc_size() const
|
||||
{
|
||||
return get_device_info().get_max_mem_alloc_size();
|
||||
}
|
||||
|
||||
/// Get the number of bytes of free and total memory on the SYCL device.
|
||||
/// \param [out] free_memory The number of bytes of free memory on the SYCL device.
|
||||
/// \param [out] total_memory The number of bytes of total memory on the SYCL device.
|
||||
@@ -1347,6 +1366,7 @@ namespace dpct
|
||||
}
|
||||
#else
|
||||
return q.memcpy(to_ptr, from_ptr, size, dep_events);
|
||||
GGML_UNUSED(direction);
|
||||
#endif // DPCT_USM_LEVEL_NONE
|
||||
}
|
||||
|
||||
@@ -1648,7 +1668,7 @@ namespace dpct
|
||||
using Ty = typename DataType<T>::T2;
|
||||
Ty s_h;
|
||||
if (get_pointer_attribute(q, s) == pointer_access_attribute::device_only)
|
||||
detail::dpct_memcpy(q, (void *)&s_h, (void *)s, sizeof(T), device_to_host)
|
||||
detail::dpct_memcpy(q, (void *)&s_h, (const void *)s, sizeof(T), device_to_host)
|
||||
.wait();
|
||||
else
|
||||
s_h = *reinterpret_cast<const Ty *>(s);
|
||||
@@ -1672,6 +1692,20 @@ namespace dpct
|
||||
int ldb, const void *beta, void *c, int ldc)
|
||||
{
|
||||
#ifndef __INTEL_MKL__
|
||||
GGML_UNUSED(q);
|
||||
GGML_UNUSED(a_trans);
|
||||
GGML_UNUSED(b_trans);
|
||||
GGML_UNUSED(m);
|
||||
GGML_UNUSED(n);
|
||||
GGML_UNUSED(k);
|
||||
GGML_UNUSED(alpha);
|
||||
GGML_UNUSED(a);
|
||||
GGML_UNUSED(lda);
|
||||
GGML_UNUSED(b);
|
||||
GGML_UNUSED(ldb);
|
||||
GGML_UNUSED(beta);
|
||||
GGML_UNUSED(c);
|
||||
GGML_UNUSED(ldc);
|
||||
throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces "
|
||||
"Project does not support this API.");
|
||||
#else
|
||||
@@ -1811,7 +1845,7 @@ namespace dpct
|
||||
|
||||
template <typename T>
|
||||
T permute_sub_group_by_xor(sycl::sub_group g, T x, unsigned int mask,
|
||||
int logical_sub_group_size = 32)
|
||||
unsigned int logical_sub_group_size = 32)
|
||||
{
|
||||
unsigned int id = g.get_local_linear_id();
|
||||
unsigned int start_index =
|
||||
@@ -2141,6 +2175,7 @@ namespace dpct
|
||||
}
|
||||
#else
|
||||
return q.memcpy(to_ptr, from_ptr, size, dep_events);
|
||||
GGML_UNUSED(direction);
|
||||
#endif // DPCT_USM_LEVEL_NONE
|
||||
}
|
||||
|
||||
@@ -2921,7 +2956,6 @@ void ggml_sycl_set_main_device(int main_device);
|
||||
void ggml_sycl_set_mul_mat_q(bool mul_mat_q);
|
||||
void ggml_sycl_set_scratch_size(size_t scratch_size);
|
||||
void ggml_sycl_free_scratch(void);
|
||||
int ggml_sycl_get_device_count(void);
|
||||
void ggml_sycl_get_device_description(int device, char * description, size_t description_size);
|
||||
bool ggml_backend_is_sycl(ggml_backend_t backend);
|
||||
int ggml_backend_sycl_get_device(ggml_backend_t backend);
|
||||
@@ -3284,7 +3318,7 @@ void log_ggml_var_device(const char*name, float *src, size_t total_elements, boo
|
||||
std::ofstream logfile;
|
||||
logfile.open(filename);
|
||||
// printf("local buf element %d\n", total_elements);
|
||||
for(int i=0; i<total_elements; i++){
|
||||
for(size_t i=0; i<total_elements; i++){
|
||||
if((i+1)%20 ==0) logfile <<std::endl;
|
||||
else logfile << local_buf[i] <<" ";
|
||||
}
|
||||
@@ -3378,6 +3412,7 @@ static __dpct_inline__ float warp_reduce_max(float x,
|
||||
|
||||
static __dpct_inline__ float op_repeat(const float a, const float b) {
|
||||
return b;
|
||||
GGML_UNUSED(a);
|
||||
}
|
||||
|
||||
static __dpct_inline__ float op_add(const float a, const float b) {
|
||||
@@ -7658,6 +7693,13 @@ static void cpy_1_f16_f16(const char * cxi, char * cdsti) {
|
||||
*dsti = *xi;
|
||||
}
|
||||
|
||||
static void cpy_1_f16_f32(const char * cxi, char * cdsti) {
|
||||
const sycl::half *xi = (const sycl::half *)cxi;
|
||||
float *dsti = (float *)cdsti;
|
||||
|
||||
*dsti = *xi;
|
||||
}
|
||||
|
||||
static void cpy_1_i16_i16(const char * cxi, char * cdsti) {
|
||||
const int16_t *xi = (const int16_t *)cxi;
|
||||
int16_t *dsti = (int16_t *)cdsti;
|
||||
@@ -7674,9 +7716,9 @@ static void cpy_1_i32_i32(const char * cxi, char * cdsti) {
|
||||
|
||||
template <cpy_kernel_t cpy_1>
|
||||
static void cpy_f32_f16(const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
|
||||
const int ne10, const int ne11, const int nb10, const int nb11, const int nb12,
|
||||
const sycl::nd_item<3> &item_ct1) {
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
|
||||
const int nb12, const int nb13, const sycl::nd_item<3> &item_ct1) {
|
||||
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
||||
item_ct1.get_local_id(2);
|
||||
|
||||
@@ -7686,15 +7728,17 @@ static void cpy_f32_f16(const char * cx, char * cdst, const int ne,
|
||||
|
||||
// determine indices i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
|
||||
// then combine those indices with the corresponding byte offsets to get the total offsets
|
||||
const int i02 = i / (ne00*ne01);
|
||||
const int i01 = (i - i02*ne01*ne00) / ne00;
|
||||
const int i00 = i - i02*ne01*ne00 - i01*ne00;
|
||||
const int x_offset = i00*nb00 + i01*nb01 + i02*nb02;
|
||||
const int i03 = i/(ne00 * ne01 * ne02);
|
||||
const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
|
||||
const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
|
||||
const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
|
||||
const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
|
||||
|
||||
const int i12 = i / (ne10*ne11);
|
||||
const int i11 = (i - i12*ne10*ne11) / ne10;
|
||||
const int i10 = i - i12*ne10*ne11 - i11*ne10;
|
||||
const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12;
|
||||
const int i13 = i/(ne10 * ne11 * ne12);
|
||||
const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
|
||||
const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
|
||||
const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
|
||||
const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13 * nb13;
|
||||
|
||||
cpy_1(cx + x_offset, cdst + dst_offset);
|
||||
}
|
||||
@@ -7788,9 +7832,9 @@ static void cpy_blck_f32_q4_1(const char * cxi, char * cdsti) {
|
||||
|
||||
template <cpy_kernel_t cpy_blck, int qk>
|
||||
static void cpy_f32_q(const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
|
||||
const int ne10, const int ne11, const int nb10, const int nb11, const int nb12,
|
||||
const sycl::nd_item<3> &item_ct1) {
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
|
||||
const int nb12, const int nb13, const sycl::nd_item<3> &item_ct1) {
|
||||
const int i = (item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
||||
item_ct1.get_local_id(2)) *
|
||||
qk;
|
||||
@@ -7799,15 +7843,17 @@ static void cpy_f32_q(const char * cx, char * cdst, const int ne,
|
||||
return;
|
||||
}
|
||||
|
||||
const int i02 = i / (ne00*ne01);
|
||||
const int i01 = (i - i02*ne01*ne00) / ne00;
|
||||
const int i00 = (i - i02*ne01*ne00 - i01*ne00);
|
||||
const int x_offset = i00*nb00 + i01*nb01 + i02*nb02;
|
||||
const int i03 = i/(ne00 * ne01 * ne02);
|
||||
const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
|
||||
const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
|
||||
const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
|
||||
const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
|
||||
|
||||
const int i12 = i / (ne10*ne11);
|
||||
const int i11 = (i - i12*ne10*ne11) / ne10;
|
||||
const int i10 = (i - i12*ne10*ne11 - i11*ne10)/qk;
|
||||
const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12;
|
||||
const int i13 = i/(ne10 * ne11 * ne12);
|
||||
const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
|
||||
const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
|
||||
const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
|
||||
const int dst_offset = (i10/qk)*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
|
||||
|
||||
cpy_blck(cx + x_offset, cdst + dst_offset);
|
||||
}
|
||||
@@ -8212,7 +8258,8 @@ static void clamp_f32(const float * x, float * dst, const float min, const float
|
||||
dst[i] = x[i] < min ? min : (x[i] > max ? max : x[i]);
|
||||
}
|
||||
|
||||
static void im2col_f32_f16(const float *x, sycl::half *dst, int offset_delta,
|
||||
template <typename T>
|
||||
static void im2col_kernel(const float *x, T *dst, int offset_delta,
|
||||
int IW, int IH, int OW, int KW, int KH,
|
||||
int pelements, int CHW, int s0, int s1, int p0,
|
||||
int p1, int d0, int d1,
|
||||
@@ -10563,10 +10610,12 @@ static void ggml_mul_mat_vec_nc_f16_f32_sycl(
|
||||
|
||||
static void ggml_cpy_f32_f32_sycl(const char *cx, char *cdst, const int ne,
|
||||
const int ne00, const int ne01,
|
||||
const int nb00, const int nb01,
|
||||
const int nb02, const int ne10,
|
||||
const int ne11, const int nb10,
|
||||
const int nb11, const int nb12,
|
||||
const int ne02, const int nb00,
|
||||
const int nb01, const int nb02,
|
||||
const int nb03, const int ne10,
|
||||
const int ne11, const int ne12,
|
||||
const int nb10, const int nb11,
|
||||
const int nb12, const int nb13,
|
||||
dpct::queue_ptr stream) {
|
||||
|
||||
const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
|
||||
@@ -10579,8 +10628,8 @@ static void ggml_cpy_f32_f32_sycl(const char *cx, char *cdst, const int ne,
|
||||
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
|
||||
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
cpy_f32_f16<cpy_1_f32_f32>(cx, cdst, ne, ne00, ne01, nb00, nb01,
|
||||
nb02, ne10, ne11, nb10, nb11, nb12,
|
||||
cpy_f32_f16<cpy_1_f32_f32>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
|
||||
nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
|
||||
item_ct1);
|
||||
});
|
||||
}
|
||||
@@ -10588,10 +10637,12 @@ static void ggml_cpy_f32_f32_sycl(const char *cx, char *cdst, const int ne,
|
||||
|
||||
static void ggml_cpy_f32_f16_sycl(const char *cx, char *cdst, const int ne,
|
||||
const int ne00, const int ne01,
|
||||
const int nb00, const int nb01,
|
||||
const int nb02, const int ne10,
|
||||
const int ne11, const int nb10,
|
||||
const int nb11, const int nb12,
|
||||
const int ne02, const int nb00,
|
||||
const int nb01, const int nb02,
|
||||
const int nb03, const int ne10,
|
||||
const int ne11, const int ne12,
|
||||
const int nb10, const int nb11,
|
||||
const int nb12, const int nb13,
|
||||
dpct::queue_ptr stream) {
|
||||
|
||||
const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
|
||||
@@ -10604,8 +10655,8 @@ static void ggml_cpy_f32_f16_sycl(const char *cx, char *cdst, const int ne,
|
||||
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
|
||||
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
cpy_f32_f16<cpy_1_f32_f16>(cx, cdst, ne, ne00, ne01, nb00, nb01,
|
||||
nb02, ne10, ne11, nb10, nb11, nb12,
|
||||
cpy_f32_f16<cpy_1_f32_f16>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
|
||||
nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
|
||||
item_ct1);
|
||||
});
|
||||
}
|
||||
@@ -10613,10 +10664,12 @@ static void ggml_cpy_f32_f16_sycl(const char *cx, char *cdst, const int ne,
|
||||
|
||||
static void ggml_cpy_f32_q8_0_sycl(const char *cx, char *cdst, const int ne,
|
||||
const int ne00, const int ne01,
|
||||
const int nb00, const int nb01,
|
||||
const int nb02, const int ne10,
|
||||
const int ne11, const int nb10,
|
||||
const int nb11, const int nb12,
|
||||
const int ne02, const int nb00,
|
||||
const int nb01, const int nb02,
|
||||
const int nb03, const int ne10,
|
||||
const int ne11, const int ne12,
|
||||
const int nb10, const int nb11,
|
||||
const int nb12, const int nb13,
|
||||
dpct::queue_ptr stream) {
|
||||
|
||||
GGML_ASSERT(ne % QK8_0 == 0);
|
||||
@@ -10625,17 +10678,20 @@ static void ggml_cpy_f32_q8_0_sycl(const char *cx, char *cdst, const int ne,
|
||||
sycl::range<3>(1, 1, 1)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
cpy_f32_q<cpy_blck_f32_q8_0, QK8_0>(
|
||||
cx, cdst, ne, ne00, ne01, nb00, nb01, nb02,
|
||||
ne10, ne11, nb10, nb11, nb12, item_ct1);
|
||||
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
|
||||
nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
|
||||
item_ct1);
|
||||
});
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_q4_0_sycl(const char *cx, char *cdst, const int ne,
|
||||
const int ne00, const int ne01,
|
||||
const int nb00, const int nb01,
|
||||
const int nb02, const int ne10,
|
||||
const int ne11, const int nb10,
|
||||
const int nb11, const int nb12,
|
||||
const int ne02, const int nb00,
|
||||
const int nb01, const int nb02,
|
||||
const int nb03, const int ne10,
|
||||
const int ne11, const int ne12,
|
||||
const int nb10, const int nb11,
|
||||
const int nb12, const int nb13,
|
||||
dpct::queue_ptr stream) {
|
||||
|
||||
GGML_ASSERT(ne % QK4_0 == 0);
|
||||
@@ -10644,17 +10700,20 @@ static void ggml_cpy_f32_q4_0_sycl(const char *cx, char *cdst, const int ne,
|
||||
sycl::range<3>(1, 1, 1)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
cpy_f32_q<cpy_blck_f32_q4_0, QK4_0>(
|
||||
cx, cdst, ne, ne00, ne01, nb00, nb01, nb02,
|
||||
ne10, ne11, nb10, nb11, nb12, item_ct1);
|
||||
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
|
||||
nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
|
||||
item_ct1);
|
||||
});
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_q4_1_sycl(const char *cx, char *cdst, const int ne,
|
||||
const int ne00, const int ne01,
|
||||
const int nb00, const int nb01,
|
||||
const int nb02, const int ne10,
|
||||
const int ne11, const int nb10,
|
||||
const int nb11, const int nb12,
|
||||
const int ne02, const int nb00,
|
||||
const int nb01, const int nb02,
|
||||
const int nb03, const int ne10,
|
||||
const int ne11, const int ne12,
|
||||
const int nb10, const int nb11,
|
||||
const int nb12, const int nb13,
|
||||
dpct::queue_ptr stream) {
|
||||
|
||||
GGML_ASSERT(ne % QK4_1 == 0);
|
||||
@@ -10663,17 +10722,20 @@ static void ggml_cpy_f32_q4_1_sycl(const char *cx, char *cdst, const int ne,
|
||||
sycl::range<3>(1, 1, 1)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
cpy_f32_q<cpy_blck_f32_q4_1, QK4_1>(
|
||||
cx, cdst, ne, ne00, ne01, nb00, nb01, nb02,
|
||||
ne10, ne11, nb10, nb11, nb12, item_ct1);
|
||||
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
|
||||
nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
|
||||
item_ct1);
|
||||
});
|
||||
}
|
||||
|
||||
static void ggml_cpy_f16_f16_sycl(const char *cx, char *cdst, const int ne,
|
||||
const int ne00, const int ne01,
|
||||
const int nb00, const int nb01,
|
||||
const int nb02, const int ne10,
|
||||
const int ne11, const int nb10,
|
||||
const int nb11, const int nb12,
|
||||
const int ne02, const int nb00,
|
||||
const int nb01, const int nb02,
|
||||
const int nb03, const int ne10,
|
||||
const int ne11, const int ne12,
|
||||
const int nb10, const int nb11,
|
||||
const int nb12, const int nb13,
|
||||
dpct::queue_ptr stream) {
|
||||
|
||||
const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
|
||||
@@ -10686,8 +10748,8 @@ static void ggml_cpy_f16_f16_sycl(const char *cx, char *cdst, const int ne,
|
||||
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
|
||||
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
cpy_f32_f16<cpy_1_f16_f16>(cx, cdst, ne, ne00, ne01, nb00, nb01,
|
||||
nb02, ne10, ne11, nb10, nb11, nb12,
|
||||
cpy_f32_f16<cpy_1_f16_f16>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
|
||||
nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
|
||||
item_ct1);
|
||||
});
|
||||
}
|
||||
@@ -10695,10 +10757,12 @@ static void ggml_cpy_f16_f16_sycl(const char *cx, char *cdst, const int ne,
|
||||
|
||||
static void ggml_cpy_i16_i16_sycl(const char *cx, char *cdst, const int ne,
|
||||
const int ne00, const int ne01,
|
||||
const int nb00, const int nb01,
|
||||
const int nb02, const int ne10,
|
||||
const int ne11, const int nb10,
|
||||
const int nb11, const int nb12,
|
||||
const int ne02, const int nb00,
|
||||
const int nb01, const int nb02,
|
||||
const int nb03, const int ne10,
|
||||
const int ne11, const int ne12,
|
||||
const int nb10, const int nb11,
|
||||
const int nb12, const int nb13,
|
||||
dpct::queue_ptr stream) {
|
||||
|
||||
const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
|
||||
@@ -10711,8 +10775,8 @@ static void ggml_cpy_i16_i16_sycl(const char *cx, char *cdst, const int ne,
|
||||
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
|
||||
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
cpy_f32_f16<cpy_1_i16_i16>(cx, cdst, ne, ne00, ne01, nb00, nb01,
|
||||
nb02, ne10, ne11, nb10, nb11, nb12,
|
||||
cpy_f32_f16<cpy_1_i16_i16>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
|
||||
nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
|
||||
item_ct1);
|
||||
});
|
||||
}
|
||||
@@ -10720,10 +10784,12 @@ static void ggml_cpy_i16_i16_sycl(const char *cx, char *cdst, const int ne,
|
||||
|
||||
static void ggml_cpy_i32_i32_sycl(const char *cx, char *cdst, const int ne,
|
||||
const int ne00, const int ne01,
|
||||
const int nb00, const int nb01,
|
||||
const int nb02, const int ne10,
|
||||
const int ne11, const int nb10,
|
||||
const int nb11, const int nb12,
|
||||
const int ne02, const int nb00,
|
||||
const int nb01, const int nb02,
|
||||
const int nb03, const int ne10,
|
||||
const int ne11, const int ne12,
|
||||
const int nb10, const int nb11,
|
||||
const int nb12, const int nb13,
|
||||
dpct::queue_ptr stream) {
|
||||
|
||||
const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
|
||||
@@ -10736,8 +10802,8 @@ static void ggml_cpy_i32_i32_sycl(const char *cx, char *cdst, const int ne,
|
||||
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
|
||||
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
cpy_f32_f16<cpy_1_i32_i32>(cx, cdst, ne, ne00, ne01, nb00, nb01,
|
||||
nb02, ne10, ne11, nb10, nb11, nb12,
|
||||
cpy_f32_f16<cpy_1_i32_i32>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
|
||||
nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
|
||||
item_ct1);
|
||||
});
|
||||
}
|
||||
@@ -10984,7 +11050,8 @@ static void soft_max_f32_sycl(const float *x, const float *y, float *dst,
|
||||
});
|
||||
}
|
||||
|
||||
static void im2col_f32_f16_sycl(const float *x, sycl::half *dst, int IW, int IH,
|
||||
template <typename T>
|
||||
static void im2col_sycl(const float *x, T *dst, int IW, int IH,
|
||||
int OW, int OH, int KW, int KH, int IC,
|
||||
int offset_delta, int s0, int s1, int p0,
|
||||
int p1, int d0, int d1,
|
||||
@@ -11001,7 +11068,7 @@ static void im2col_f32_f16_sycl(const float *x, sycl::half *dst, int IW, int IH,
|
||||
sycl::range<3>(1, 1, SYCL_IM2COL_BLOCK_SIZE),
|
||||
sycl::range<3>(1, 1, SYCL_IM2COL_BLOCK_SIZE)),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
im2col_f32_f16(x, dst, offset_delta, IW, IH, OW, KW, KH,
|
||||
im2col_kernel(x, dst, offset_delta, IW, IH, OW, KW, KH,
|
||||
parallel_elements, (IC * KH * KW), s0, s1, p0,
|
||||
p1, d0, d1, item_ct1);
|
||||
});
|
||||
@@ -11138,10 +11205,10 @@ DPCT1082:64: Migration of CUmemGenericAllocationHandle type is not supported.
|
||||
// g_sycl_pool_handles[GGML_SYCL_MAX_DEVICES];
|
||||
static dpct::device_ptr g_sycl_pool_addr[GGML_SYCL_MAX_DEVICES] = {0};
|
||||
static size_t g_sycl_pool_used[GGML_SYCL_MAX_DEVICES] = {0};
|
||||
static const size_t SYCL_POOL_VMM_MAX_SIZE = 1ull << 36; // 64 GB
|
||||
|
||||
static void *ggml_sycl_pool_malloc_vmm(size_t size, size_t *actual_size) try {
|
||||
|
||||
GGML_UNUSED(size);
|
||||
GGML_UNUSED(actual_size);
|
||||
return NULL;
|
||||
}
|
||||
catch (sycl::exception const &exc) {
|
||||
@@ -11305,10 +11372,10 @@ void ggml_init_sycl() try {
|
||||
GGML_ASSERT(g_all_sycl_device_count <= GGML_SYCL_MAX_DEVICES);
|
||||
int64_t total_vram = 0;
|
||||
|
||||
#if defined(GGML_SYCL_FP16)
|
||||
fprintf(stderr, "%s: GGML_SYCL_FP16: yes\n", __func__);
|
||||
#if defined(GGML_SYCL_F16)
|
||||
fprintf(stderr, "%s: GGML_SYCL_F16: yes\n", __func__);
|
||||
#else
|
||||
fprintf(stderr, "%s: GGML_SYCL_FP16: no\n", __func__);
|
||||
fprintf(stderr, "%s: GGML_SYCL_F16: no\n", __func__);
|
||||
#endif
|
||||
|
||||
|
||||
@@ -11331,9 +11398,8 @@ void ggml_init_sycl() try {
|
||||
if(id!=user_device_id) continue;
|
||||
|
||||
device_inx++;
|
||||
int device_vmm = 0;
|
||||
|
||||
g_device_caps[device_inx].vmm = !!device_vmm;
|
||||
g_device_caps[device_inx].vmm = 0;
|
||||
g_device_caps[device_inx].device_id = id;
|
||||
g_sycl_device_id2index[id].index = device_inx;
|
||||
|
||||
@@ -11341,18 +11407,12 @@ void ggml_init_sycl() try {
|
||||
SYCL_CHECK(CHECK_TRY_ERROR(dpct::get_device_info(
|
||||
prop, dpct::dev_mgr::instance().get_device(id))));
|
||||
|
||||
// fprintf(stderr,
|
||||
// " Device %d: %s, compute capability %d.%d, VMM: %s\n", id,
|
||||
// prop.get_name(), prop.get_major_version(),
|
||||
// prop.get_minor_version(), device_vmm ? "yes" : "no");
|
||||
|
||||
g_tensor_split[device_inx] = total_vram;
|
||||
total_vram += prop.get_global_mem_size();
|
||||
|
||||
g_device_caps[device_inx].cc =
|
||||
100 * prop.get_major_version() + 10 * prop.get_minor_version();
|
||||
|
||||
// printf("g_device_caps[%d].cc=%d\n", device_inx, g_device_caps[device_inx].cc);
|
||||
}
|
||||
device_inx = -1;
|
||||
for (int id = 0; id < g_all_sycl_device_count; ++id) {
|
||||
@@ -11518,11 +11578,8 @@ static dpct::err0 ggml_sycl_cpy_tensor_2d(void *dst,
|
||||
}
|
||||
char * dst_ptr = (char *) dst;
|
||||
|
||||
const int64_t ne0 = src->ne[0];
|
||||
const int64_t nb0 = src->nb[0];
|
||||
const int64_t nb1 = src->nb[1];
|
||||
const int64_t nb2 = src->nb[2];
|
||||
const int64_t nb3 = src->nb[3];
|
||||
GGML_TENSOR_LOCALS_1(int64_t, ne, src, ne);
|
||||
GGML_TENSOR_LOCALS(int64_t, nb, src, nb);
|
||||
const enum ggml_type type = src->type;
|
||||
const int64_t ts = ggml_type_size(type);
|
||||
const int64_t bs = ggml_blck_size(type);
|
||||
@@ -12088,7 +12145,8 @@ inline void ggml_sycl_op_dequantize_mul_mat_vec(
|
||||
const int64_t src1_ncols, const int64_t src1_padded_row_size,
|
||||
const dpct::queue_ptr &stream) {
|
||||
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
const int64_t row_diff = row_high - row_low;
|
||||
|
||||
// on some GPUs it is faster to convert src1 to half and to use half precision intrinsics
|
||||
@@ -12107,8 +12165,9 @@ inline void ggml_sycl_op_dequantize_mul_mat_vec(
|
||||
} else {
|
||||
src1_dfloat = src1_dfloat_a.alloc(ne00);
|
||||
ggml_cpy_f32_f16_sycl((const char *)src1_ddf_i, (char *)src1_dfloat,
|
||||
ne00, ne00, 1, sizeof(float), 0, 0, ne00, 1,
|
||||
sizeof(sycl::half), 0, 0, stream);
|
||||
ne00, ne00, ne01, ne02, nb00, nb01, nb02,
|
||||
nb03, ne10, ne11, ne12, nb10, nb11, nb12,
|
||||
nb13, stream);
|
||||
}
|
||||
}
|
||||
#else
|
||||
@@ -12188,7 +12247,6 @@ inline void ggml_sycl_op_mul_mat_sycl(
|
||||
// ldc == nrows of the matrix that cuBLAS writes into
|
||||
int ldc = dst->backend == GGML_BACKEND_GPU && device_id == g_main_device ? ne0 : row_diff;
|
||||
|
||||
const int compute_capability = g_device_caps[id].cc;
|
||||
#ifdef GGML_SYCL_F16
|
||||
bool use_fp16 = true; // TODO(Yu) SYCL capability check
|
||||
#else
|
||||
@@ -12365,9 +12423,7 @@ inline void ggml_sycl_op_alibi(const ggml_tensor *src0, const ggml_tensor *src1,
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t ne01 = src0->ne[1];
|
||||
const int64_t ne02 = src0->ne[2];
|
||||
GGML_TENSOR_LOCALS_3(int64_t, ne0, src0, ne);
|
||||
const int64_t nrows = ggml_nrows(src0);
|
||||
|
||||
//const int n_past = ((int32_t *) dst->op_params)[0];
|
||||
@@ -12397,7 +12453,7 @@ inline void ggml_sycl_op_im2col(const ggml_tensor *src0,
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
|
||||
|
||||
const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
|
||||
const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
|
||||
@@ -12420,8 +12476,11 @@ inline void ggml_sycl_op_im2col(const ggml_tensor *src0,
|
||||
|
||||
const size_t delta_offset = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32
|
||||
|
||||
im2col_f32_f16_sycl(src1_dd, (sycl::half *)dst_dd, IW, IH, OW, OH, KW, KH,
|
||||
IC, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
|
||||
if (dst->type == GGML_TYPE_F16) {
|
||||
im2col_sycl(src1_dd, (sycl::half *)dst_dd, IW, IH, OW, OH, KW, KH, IC, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
|
||||
} else {
|
||||
im2col_sycl(src1_dd, (float *)dst_dd, IW, IH, OW, OH, KW, KH, IC, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
|
||||
}
|
||||
|
||||
(void) src0;
|
||||
(void) src0_dd;
|
||||
@@ -12673,7 +12732,7 @@ static void ggml_sycl_set_peer_access(const int n_tokens) {
|
||||
continue;
|
||||
}
|
||||
|
||||
int can_access_peer;
|
||||
// int can_access_peer;
|
||||
// SYCL_CHECK(syclDeviceCanAccessPeer(&can_access_peer, id, id_other));
|
||||
// if (can_access_peer) {
|
||||
// if (enable_peer_access) {
|
||||
@@ -12694,16 +12753,9 @@ static void ggml_sycl_op_mul_mat(const ggml_tensor *src0,
|
||||
ggml_sycl_op_mul_mat_t op,
|
||||
const bool convert_src1_to_q8_1) try {
|
||||
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t ne01 = src0->ne[1];
|
||||
const int64_t ne02 = src0->ne[2];
|
||||
const int64_t ne03 = src0->ne[3];
|
||||
const int64_t nrows0 = ggml_nrows(src0);
|
||||
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
|
||||
|
||||
const int64_t ne10 = src1->ne[0];
|
||||
const int64_t ne11 = src1->ne[1];
|
||||
const int64_t ne12 = src1->ne[2];
|
||||
const int64_t ne13 = src1->ne[3];
|
||||
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
|
||||
const int64_t nrows1 = ggml_nrows(src1);
|
||||
|
||||
GGML_ASSERT(ne03 == ne13);
|
||||
@@ -13274,23 +13326,13 @@ static void ggml_sycl_mul_mat_mat_batched_sycl(const ggml_tensor *src0,
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
|
||||
const int64_t ne00 = src0->ne[0]; GGML_UNUSED(ne00);
|
||||
const int64_t ne01 = src0->ne[1];
|
||||
const int64_t ne02 = src0->ne[2];
|
||||
const int64_t ne03 = src0->ne[3];
|
||||
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
|
||||
|
||||
const int64_t nb01 = src0->nb[1];
|
||||
const int64_t nb02 = src0->nb[2]; GGML_UNUSED(nb02);
|
||||
const int64_t nb03 = src0->nb[3]; GGML_UNUSED(nb03);
|
||||
GGML_TENSOR_LOCALS(int64_t, nb0, src0, nb);
|
||||
|
||||
const int64_t ne10 = src1->ne[0];
|
||||
const int64_t ne11 = src1->ne[1];
|
||||
const int64_t ne12 = src1->ne[2];
|
||||
const int64_t ne13 = src1->ne[3];
|
||||
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
|
||||
|
||||
const int64_t nb11 = src1->nb[1];
|
||||
const int64_t nb12 = src1->nb[2]; GGML_UNUSED(nb12);
|
||||
const int64_t nb13 = src1->nb[3]; GGML_UNUSED(nb13);
|
||||
GGML_TENSOR_LOCALS(int64_t, nb1, src1, nb);
|
||||
|
||||
const int64_t ne1 = ggml_nelements(src1);
|
||||
const int64_t ne = ggml_nelements(dst);
|
||||
@@ -13592,23 +13634,15 @@ static void ggml_sycl_mul_mat_id_sycl(ggml_tensor * dst) {
|
||||
GGML_ASSERT(src00->backend != GGML_BACKEND_GPU_SPLIT);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
|
||||
const int64_t ne00 = src00->ne[0]; GGML_UNUSED(ne00);
|
||||
const int64_t ne01 = src00->ne[1];
|
||||
const int64_t ne02 = src00->ne[2];
|
||||
const int64_t ne03 = src00->ne[3];
|
||||
GGML_TENSOR_LOCALS(int64_t, ne0, src00, ne);
|
||||
|
||||
//const int64_t nb01 = src00->nb[1];
|
||||
const int64_t nb02 = src00->nb[2]; GGML_UNUSED(nb02);
|
||||
const int64_t nb03 = src00->nb[3]; GGML_UNUSED(nb03);
|
||||
GGML_TENSOR_LOCALS(int64_t, nb0, src00, nb);
|
||||
|
||||
const int64_t ne10 = src1->ne[0];
|
||||
const int64_t ne11 = src1->ne[1];
|
||||
const int64_t ne12 = src1->ne[2];
|
||||
const int64_t ne13 = src1->ne[3];
|
||||
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
|
||||
|
||||
GGML_TENSOR_LOCALS(int64_t, nb1, src1, nb);
|
||||
//const int64_t nb11 = src1->nb[1];
|
||||
const int64_t nb12 = src1->nb[2]; GGML_UNUSED(nb12);
|
||||
const int64_t nb13 = src1->nb[3]; GGML_UNUSED(nb13);
|
||||
|
||||
const int64_t ne1 = ggml_nelements(src1);
|
||||
const int64_t ne = ggml_nelements(dst);
|
||||
@@ -13794,13 +13828,6 @@ static void ggml_sycl_mul_mat_id(const ggml_tensor *src0,
|
||||
src1_row_extra.data_device[g_main_device_index] = src1_contiguous.get();
|
||||
dst_row_extra.data_device[g_main_device_index] = dst_contiguous.get();
|
||||
|
||||
const dpct::memcpy_direction src1_kind =
|
||||
src1->backend == GGML_BACKEND_CPU ? dpct::host_to_device
|
||||
: dpct::device_to_device;
|
||||
const dpct::memcpy_direction dst_kind = dst->backend == GGML_BACKEND_CPU
|
||||
? dpct::device_to_host
|
||||
: dpct::device_to_device;
|
||||
|
||||
for (int32_t row_id = 0; row_id < n_as; ++row_id) {
|
||||
const struct ggml_tensor * src0_row = dst->src[row_id + 2];
|
||||
|
||||
@@ -13884,21 +13911,7 @@ static void ggml_sycl_cpy(const ggml_tensor *src0, const ggml_tensor *src1,
|
||||
GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
|
||||
GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
|
||||
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t ne01 = src0->ne[1];
|
||||
GGML_ASSERT(src0->ne[3] == 1);
|
||||
|
||||
const int64_t nb00 = src0->nb[0];
|
||||
const int64_t nb01 = src0->nb[1];
|
||||
const int64_t nb02 = src0->nb[2];
|
||||
|
||||
const int64_t ne10 = src1->ne[0];
|
||||
const int64_t ne11 = src1->ne[1];
|
||||
GGML_ASSERT(src1->ne[3] == 1);
|
||||
|
||||
const int64_t nb10 = src1->nb[0];
|
||||
const int64_t nb11 = src1->nb[1];
|
||||
const int64_t nb12 = src1->nb[2];
|
||||
GGML_TENSOR_BINARY_OP_LOCALS;
|
||||
|
||||
SYCL_CHECK(ggml_sycl_set_device(g_main_device));
|
||||
dpct::queue_ptr main_stream = g_syclStreams[g_main_device_index][0];
|
||||
@@ -13910,21 +13923,21 @@ static void ggml_sycl_cpy(const ggml_tensor *src0, const ggml_tensor *src1,
|
||||
char * src1_ddc = (char *) src1_extra->data_device[g_main_device_index];
|
||||
|
||||
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
|
||||
ggml_cpy_f32_f32_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream);
|
||||
ggml_cpy_f32_f32_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
|
||||
ggml_cpy_f32_f16_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream);
|
||||
ggml_cpy_f32_f16_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) {
|
||||
ggml_cpy_f32_q8_0_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream);
|
||||
ggml_cpy_f32_q8_0_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) {
|
||||
ggml_cpy_f32_q4_0_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream);
|
||||
ggml_cpy_f32_q4_0_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) {
|
||||
ggml_cpy_f32_q4_1_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream);
|
||||
ggml_cpy_f32_q4_1_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
|
||||
ggml_cpy_f16_f16_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream);
|
||||
ggml_cpy_f16_f16_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
} else if (src0->type == GGML_TYPE_I16 && src1->type == GGML_TYPE_I16) {
|
||||
ggml_cpy_i16_i16_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream);
|
||||
ggml_cpy_i16_i16_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
} else if (src0->type == GGML_TYPE_I32 && src1->type == GGML_TYPE_I32) {
|
||||
ggml_cpy_i32_i32_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream);
|
||||
ggml_cpy_i32_i32_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
} else {
|
||||
fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__,
|
||||
ggml_type_name(src0->type), ggml_type_name(src1->type));
|
||||
@@ -14486,6 +14499,37 @@ bool ggml_sycl_compute_forward(struct ggml_compute_params * params, struct ggml_
|
||||
return true;
|
||||
}
|
||||
|
||||
GGML_API GGML_CALL void ggml_sycl_get_gpu_list(int *id_list, int max_len) try {
|
||||
int max_compute_units = -1;
|
||||
for(int i=0;i<max_len;i++) id_list[i] = 0;
|
||||
|
||||
int device_count = dpct::dev_mgr::instance().device_count();
|
||||
|
||||
for(int id=0; id< device_count; id++){
|
||||
sycl::device device = dpct::dev_mgr::instance().get_device(id);
|
||||
if (!device.is_gpu()) continue;
|
||||
dpct::device_info prop;
|
||||
dpct::get_device_info(prop, device);
|
||||
if(max_compute_units < prop.get_max_compute_units()) max_compute_units = prop.get_max_compute_units();
|
||||
}
|
||||
|
||||
for(int id=0;id< device_count;id++){
|
||||
sycl::device device = dpct::dev_mgr::instance().get_device(id);
|
||||
if (!device.is_gpu()) continue;
|
||||
dpct::device_info prop;
|
||||
dpct::get_device_info(prop, device);
|
||||
if(max_compute_units == prop.get_max_compute_units() && prop.get_major_version() == 1 ){
|
||||
id_list[id] = 1;
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
catch (sycl::exception const &exc) {
|
||||
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
||||
<< ", line:" << __LINE__ << std::endl;
|
||||
std::exit(1);
|
||||
}
|
||||
|
||||
int ggml_sycl_get_device_count() try {
|
||||
int device_count;
|
||||
if (CHECK_TRY_ERROR(device_count =
|
||||
@@ -14500,7 +14544,7 @@ catch (sycl::exception const &exc) {
|
||||
std::exit(1);
|
||||
}
|
||||
|
||||
void ggml_sycl_get_device_description(int device, char *description,
|
||||
GGML_API GGML_CALL void ggml_sycl_get_device_description(int device, char *description,
|
||||
size_t description_size) try {
|
||||
dpct::device_info prop;
|
||||
SYCL_CHECK(CHECK_TRY_ERROR(dpct::get_device_info(
|
||||
@@ -14751,6 +14795,12 @@ static size_t ggml_backend_sycl_buffer_type_get_alignment(ggml_backend_buffer_ty
|
||||
UNUSED(buft);
|
||||
}
|
||||
|
||||
static size_t ggml_backend_sycl_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
|
||||
return dpct::get_current_device().get_max_mem_alloc_size();
|
||||
|
||||
UNUSED(buft);
|
||||
}
|
||||
|
||||
static size_t ggml_backend_sycl_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
|
||||
int64_t row_low = 0;
|
||||
int64_t row_high = ggml_nrows(tensor);
|
||||
@@ -14781,7 +14831,7 @@ static ggml_backend_buffer_type_i ggml_backend_sycl_buffer_type_interface = {
|
||||
/* .get_name = */ ggml_backend_sycl_buffer_type_name,
|
||||
/* .alloc_buffer = */ ggml_backend_sycl_buffer_type_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_sycl_buffer_type_get_alignment,
|
||||
/* .get_max_size = */ NULL, // TODO: return device.maxBufferLength
|
||||
/* .get_max_size = */ ggml_backend_sycl_buffer_type_get_max_size,
|
||||
/* .get_alloc_size = */ ggml_backend_sycl_buffer_type_get_alloc_size,
|
||||
/* .supports_backend = */ ggml_backend_sycl_buffer_type_supports_backend,
|
||||
/* .is_host = */ nullptr,
|
||||
|
||||
12
ggml-sycl.h
12
ggml-sycl.h
@@ -1,7 +1,8 @@
|
||||
/*MIT license
|
||||
Copyright (C) 2024 Intel Corporation
|
||||
SPDX-License-Identifier: MIT
|
||||
*/
|
||||
//
|
||||
// MIT license
|
||||
// Copyright (C) 2024 Intel Corporation
|
||||
// SPDX-License-Identifier: MIT
|
||||
//
|
||||
|
||||
#pragma once
|
||||
|
||||
@@ -21,7 +22,8 @@ GGML_API ggml_backend_t ggml_backend_sycl_init(int device);
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(int device);
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_host_buffer_type(void);
|
||||
GGML_API void ggml_backend_sycl_print_sycl_devices(void);
|
||||
|
||||
GGML_API GGML_CALL void ggml_sycl_get_gpu_list(int *id_list, int max_len);
|
||||
GGML_API GGML_CALL void ggml_sycl_get_device_description(int device, char *description, size_t description_size);
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
12316
ggml-vulkan-shaders.hpp
12316
ggml-vulkan-shaders.hpp
File diff suppressed because it is too large
Load Diff
3308
ggml-vulkan.cpp
3308
ggml-vulkan.cpp
File diff suppressed because it is too large
Load Diff
@@ -8,24 +8,29 @@ extern "C" {
|
||||
#endif
|
||||
|
||||
#define GGML_VK_NAME "Vulkan"
|
||||
#define GGML_VK_MAX_DEVICES 16
|
||||
|
||||
GGML_API void ggml_vk_init(void);
|
||||
GGML_API void ggml_vk_init_cpu_assist(void);
|
||||
|
||||
GGML_API void ggml_vk_preallocate_buffers_graph(struct ggml_tensor * node);
|
||||
GGML_API void ggml_vk_preallocate_buffers(void);
|
||||
GGML_API void ggml_vk_build_graph(struct ggml_tensor * node, bool last_node);
|
||||
GGML_API bool ggml_vk_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_vk_preallocate_buffers_graph_cpu_assist(struct ggml_tensor * node);
|
||||
GGML_API void ggml_vk_preallocate_buffers_cpu_assist(void);
|
||||
GGML_API void ggml_vk_build_graph_cpu_assist(struct ggml_tensor * node, bool last_node);
|
||||
GGML_API bool ggml_vk_compute_forward_cpu_assist(struct ggml_compute_params * params, struct ggml_tensor * tensor);
|
||||
#ifdef GGML_VULKAN_CHECK_RESULTS
|
||||
void ggml_vk_check_results_1(struct ggml_compute_params * params, struct ggml_tensor * tensor);
|
||||
void ggml_vk_check_results_1_cpu_assist(struct ggml_compute_params * params, struct ggml_tensor * tensor);
|
||||
#endif
|
||||
GGML_API void ggml_vk_graph_cleanup(void);
|
||||
GGML_API void ggml_vk_graph_cleanup_cpu_assist(void);
|
||||
GGML_API void ggml_vk_free_cpu_assist(void);
|
||||
|
||||
// backend API
|
||||
GGML_API GGML_CALL ggml_backend_t ggml_backend_vk_init(void);
|
||||
GGML_API GGML_CALL ggml_backend_t ggml_backend_vk_init(size_t dev_num);
|
||||
|
||||
GGML_API GGML_CALL bool ggml_backend_is_vk(ggml_backend_t backend);
|
||||
GGML_API GGML_CALL int ggml_backend_vk_get_device_count(void);
|
||||
GGML_API GGML_CALL void ggml_backend_vk_get_device_description(int device, char * description, size_t description_size);
|
||||
GGML_API GGML_CALL void ggml_backend_vk_get_device_memory(int device, size_t * free, size_t * total);
|
||||
|
||||
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_buffer_type(void);
|
||||
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_buffer_type(size_t dev_num);
|
||||
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
|
||||
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_host_buffer_type(void);
|
||||
|
||||
|
||||
65
ggml.h
65
ggml.h
@@ -353,6 +353,8 @@ extern "C" {
|
||||
GGML_TYPE_Q8_K = 15,
|
||||
GGML_TYPE_IQ2_XXS = 16,
|
||||
GGML_TYPE_IQ2_XS = 17,
|
||||
GGML_TYPE_IQ3_XXS = 18,
|
||||
GGML_TYPE_IQ1_S = 19,
|
||||
GGML_TYPE_I8,
|
||||
GGML_TYPE_I16,
|
||||
GGML_TYPE_I32,
|
||||
@@ -389,6 +391,8 @@ extern "C" {
|
||||
GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
|
||||
GGML_FTYPE_MOSTLY_IQ2_XXS = 15, // except 1d tensors
|
||||
GGML_FTYPE_MOSTLY_IQ2_XS = 16, // except 1d tensors
|
||||
GGML_FTYPE_MOSTLY_IQ3_XXS = 17, // except 1d tensors
|
||||
GGML_FTYPE_MOSTLY_IQ1_S = 18, // except 1d tensors
|
||||
};
|
||||
|
||||
// available tensor operations:
|
||||
@@ -503,11 +507,17 @@ extern "C" {
|
||||
|
||||
enum ggml_log_level {
|
||||
GGML_LOG_LEVEL_ERROR = 2,
|
||||
GGML_LOG_LEVEL_WARN = 3,
|
||||
GGML_LOG_LEVEL_INFO = 4,
|
||||
GGML_LOG_LEVEL_WARN = 3,
|
||||
GGML_LOG_LEVEL_INFO = 4,
|
||||
GGML_LOG_LEVEL_DEBUG = 5
|
||||
};
|
||||
|
||||
enum ggml_tensor_flag {
|
||||
GGML_TENSOR_FLAG_INPUT = 1,
|
||||
GGML_TENSOR_FLAG_OUTPUT = 2,
|
||||
GGML_TENSOR_FLAG_PARAM = 4,
|
||||
};
|
||||
|
||||
// ggml object
|
||||
struct ggml_object {
|
||||
size_t offs;
|
||||
@@ -541,7 +551,7 @@ extern "C" {
|
||||
// op params - allocated as int32_t for alignment
|
||||
int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
|
||||
|
||||
bool is_param;
|
||||
int32_t flags;
|
||||
|
||||
struct ggml_tensor * grad;
|
||||
struct ggml_tensor * src[GGML_MAX_SRC];
|
||||
@@ -565,6 +575,11 @@ extern "C" {
|
||||
|
||||
static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
|
||||
|
||||
// Abort callback
|
||||
// If not NULL, called before ggml computation
|
||||
// If it returns true, the computation is aborted
|
||||
typedef bool (*ggml_abort_callback)(void * data);
|
||||
|
||||
// the compute plan that needs to be prepared for ggml_graph_compute()
|
||||
// since https://github.com/ggerganov/ggml/issues/287
|
||||
struct ggml_cplan {
|
||||
@@ -574,8 +589,8 @@ extern "C" {
|
||||
int n_threads;
|
||||
|
||||
// abort ggml_graph_compute when true
|
||||
bool (*abort_callback)(void * data);
|
||||
void * abort_callback_data;
|
||||
ggml_abort_callback abort_callback;
|
||||
void * abort_callback_data;
|
||||
};
|
||||
|
||||
enum ggml_cgraph_eval_order {
|
||||
@@ -645,6 +660,16 @@ extern "C" {
|
||||
void * wdata;
|
||||
};
|
||||
|
||||
// numa strategies
|
||||
enum ggml_numa_strategy {
|
||||
GGML_NUMA_STRATEGY_DISABLED = 0,
|
||||
GGML_NUMA_STRATEGY_DISTRIBUTE = 1,
|
||||
GGML_NUMA_STRATEGY_ISOLATE = 2,
|
||||
GGML_NUMA_STRATEGY_NUMACTL = 3,
|
||||
GGML_NUMA_STRATEGY_MIRROR = 4,
|
||||
GGML_NUMA_STRATEGY_COUNT
|
||||
};
|
||||
|
||||
// misc
|
||||
|
||||
GGML_API void ggml_time_init(void); // call this once at the beginning of the program
|
||||
@@ -655,7 +680,7 @@ extern "C" {
|
||||
|
||||
GGML_API void ggml_print_backtrace(void);
|
||||
|
||||
GGML_API void ggml_numa_init(void); // call once for better performance on NUMA systems
|
||||
GGML_API void ggml_numa_init(enum ggml_numa_strategy numa); // call once for better performance on NUMA systems
|
||||
GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
|
||||
|
||||
GGML_API void ggml_print_object (const struct ggml_object * obj);
|
||||
@@ -1360,13 +1385,17 @@ extern "C" {
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
// fused soft_max(a*scale + mask)
|
||||
// fused soft_max(a*scale + mask + pos[i]*(ALiBi slope))
|
||||
// mask is optional
|
||||
// pos is required when max_bias > 0.0f
|
||||
// max_bias = 0.0f for no ALiBi
|
||||
GGML_API struct ggml_tensor * ggml_soft_max_ext(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * mask,
|
||||
float scale);
|
||||
struct ggml_tensor * pos,
|
||||
float scale,
|
||||
float max_bias);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_soft_max_back(
|
||||
struct ggml_context * ctx,
|
||||
@@ -1468,12 +1497,13 @@ extern "C" {
|
||||
|
||||
// alibi position embedding
|
||||
// in-place, returns view(a)
|
||||
GGML_API struct ggml_tensor * ggml_alibi(
|
||||
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_alibi(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int n_past,
|
||||
int n_head,
|
||||
float bias_max);
|
||||
float bias_max),
|
||||
"use ggml_soft_max_ext instead (will be removed in Mar 2024)");
|
||||
|
||||
// clamp
|
||||
// in-place, returns view(a)
|
||||
@@ -1493,7 +1523,8 @@ extern "C" {
|
||||
int p1,
|
||||
int d0,
|
||||
int d1,
|
||||
bool is_2D);
|
||||
bool is_2D,
|
||||
enum ggml_type dst_type);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_conv_depthwise_2d(
|
||||
struct ggml_context * ctx,
|
||||
@@ -2084,6 +2115,12 @@ extern "C" {
|
||||
ggml_opt_callback callback,
|
||||
void * callback_data);
|
||||
|
||||
//
|
||||
// tensor flags
|
||||
//
|
||||
GGML_API void ggml_set_input(struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_set_output(struct ggml_tensor * tensor);
|
||||
|
||||
//
|
||||
// quantization
|
||||
//
|
||||
@@ -2264,11 +2301,13 @@ extern "C" {
|
||||
GGML_API int ggml_cpu_has_cublas (void);
|
||||
GGML_API int ggml_cpu_has_clblast (void);
|
||||
GGML_API int ggml_cpu_has_vulkan (void);
|
||||
GGML_API int ggml_cpu_has_kompute (void);
|
||||
GGML_API int ggml_cpu_has_gpublas (void);
|
||||
GGML_API int ggml_cpu_has_sse3 (void);
|
||||
GGML_API int ggml_cpu_has_ssse3 (void);
|
||||
GGML_API int ggml_cpu_has_sycl (void);
|
||||
GGML_API int ggml_cpu_has_vsx (void);
|
||||
GGML_API int ggml_cpu_has_matmul_int8(void);
|
||||
|
||||
//
|
||||
// Internal types and functions exposed for tests and benchmarks
|
||||
@@ -2282,7 +2321,8 @@ extern "C" {
|
||||
#endif
|
||||
typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
typedef void (*ggml_vec_dot_t) (const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y);
|
||||
typedef void (*ggml_vec_dot_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x, size_t bx,
|
||||
const void * GGML_RESTRICT y, size_t by, int nrc);
|
||||
|
||||
typedef struct {
|
||||
const char * type_name;
|
||||
@@ -2294,6 +2334,7 @@ extern "C" {
|
||||
ggml_from_float_t from_float_reference;
|
||||
ggml_vec_dot_t vec_dot;
|
||||
enum ggml_type vec_dot_type;
|
||||
int64_t nrows; // number of rows to process simultaneously;
|
||||
} ggml_type_traits_t;
|
||||
|
||||
GGML_API ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type);
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user