Compare commits

..

123 Commits
b2016 ... b2139

Author SHA1 Message Date
Douglas Hanley
03bf161eb6 llama : support batched embeddings (#5466)
* batched embedding: pool outputs by sequence id. updated embedding example

* bring back non-causal attention

* embd : minor improvements

* llama : minor

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-13 14:06:58 +02:00
Johannes Gäßler
ad014bba97 make: add error message for bad CUDA version (#5444)
* make: add error message for bad CUDA version

* Update Makefile

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

---------

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
2024-02-13 12:38:37 +01:00
Georgi Gerganov
49cc1f7d67 bert : add tests + fix quantization (#5475)
* llama : do not quantize pos embd and token type tensors

* ci : add BERT tests

ggml-ci

* ci : do not do BERT tests on low-perf nodes

ggml-ci
2024-02-13 13:01:29 +02:00
Georgi Gerganov
99b8b43d7b tests : disable moe test (#5473) 2024-02-13 11:20:24 +02:00
Kawrakow
895407f31b ggml-quants : fix compiler warnings (shadow variable) (#5472)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-13 09:07:57 +02:00
Georgi Gerganov
099afc6274 llama : fix quantization when tensors are missing (#5423) 2024-02-12 20:14:39 +02:00
Georgi Gerganov
df334a1125 swift : package no longer use ggml dependency (#5465)
* Revert "swift : update Package.swift to use ggml as dependency (#4691)"

This reverts commit ece9a45e8f.

* spm : add ggml headers
2024-02-12 19:54:29 +02:00
Lee
dbd8828eb0 py : fix persimmon n_rot conversion (#5460)
* convert : fix persimmon offical weight conversion to write correct n_rot.

* Update convert-persimmon-to-gguf.py

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-12 19:29:57 +02:00
Abhilash Majumder
43fe07c1a4 ggml-sycl: Replace 3d ops with macro (#5458)
* use macro

* use macro

* fix format
2024-02-12 20:22:05 +05:30
Daniel Bevenius
4a46d2b792 llava : remove prog parameter from ArgumentParser (#5457)
* llava: remove prog parameter from ArgumentParser

This commit removes the `prog` parameter from `ArgumentParser`
so that it uses the default value which is the name of the script.

The motivation for this change is that currently the usage output looks
like this:
```console
$ python examples/llava/convert-image-encoder-to-gguf.py --help
usage: convert_hf_to_gguf.py [-h] ...
```
And with this change it will look like this:
```console
$ python examples/llava/convert-image-encoder-to-gguf.py --help
usage: convert-image-encoder-to-gguf.py [-h] ...
```

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

* ci: add W503 to flake8 ignore list

This commit adds W503 to the ignore list for flake8. This is done to
avoid the following error:
W503 line break before binary operator

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

---------

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-02-12 10:38:44 +02:00
Georgi Gerganov
3b169441df sync : ggml (#5452)
* ggml-alloc : v3 (ggml/727)

* ggml-alloc v3

ggml-ci

* fix ci

ggml-ci

* whisper : check for backend buffer allocation failures

* whisper : avoid leaks when initialization fails

* cleanup

ggml-ci

* style fixes

ggml-ci

* sync : ggml

* update llama.cpp, clip.cpp, export-lora.cpp

* update finetune.cpp, train-text-from-scratch.cpp

ggml-ci

* ggml-backend : reduce alignment to 32 to match gguf and fix mmap

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-02-12 09:16:06 +02:00
Johannes Gäßler
3bdc4cd0f5 CUDA: mul_mat_vec_q tiling, refactor mul mat logic (#5434)
* CUDA: mul_mat_vec_q tiling, refactor mul mat logic

Co-authored-by: slaren <slarengh@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-02-11 19:08:39 +01:00
Douglas Hanley
2891c8aa9a Add support for BERT embedding models (#5423)
* BERT model graph construction (build_bert)
* WordPiece tokenizer (llm_tokenize_wpm)
* Add flag for non-causal attention models
* Allow for models that only output embeddings
* Support conversion of BERT models to GGUF
* Based on prior work by @xyzhang626 and @skeskinen

---------

Co-authored-by: Jared Van Bortel <jared@nomic.ai>
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-11 11:21:38 -05:00
github-actions[bot]
97a336507e flake.lock: Update
Flake lock file updates:

• Updated input 'nixpkgs':
    'github:NixOS/nixpkgs/b8b232ae7b8b144397fdb12d20f592e5e7c1a64d' (2024-01-31)
  → 'github:NixOS/nixpkgs/f8e2ebd66d097614d51a56a755450d4ae1632df1' (2024-02-07)
2024-02-11 07:50:41 -08:00
Sergio López
c88c74f967 vulkan: only use M-sized matmul on Apple GPUs (#5412)
* vulkan: refactor guess_matmul_pipeline for vendor

Refactor ggml_vk_guess_matmul_pipeline to simplify adding per-vendor
conditionals.

Signed-off-by: Sergio Lopez <slp@redhat.com>

* vulkan: only use M-sized matmul on Apple GPUs

L-sized and S-sized matmuls are broken on Apple GPUs, force using
M-size with this vendor.

Signed-off-by: Sergio Lopez <slp@redhat.com>

---------

Signed-off-by: Sergio Lopez <slp@redhat.com>
2024-02-11 15:12:00 +01:00
Alexey Parfenov
a803333a4e common : use enums for sampler types (#5418)
* common: use enums for sampler types

* Apply suggestions from code review

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* minor : spaces

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-11 15:43:31 +02:00
Alexey Parfenov
684780141a server : allow to specify tokens as strings in logit_bias (#5003)
* server: allow to specify tokens as strings in logit_bias

* Apply suggestions from code review

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-11 15:38:14 +02:00
Georgi Gerganov
85910c5b30 main : ctrl+C print timing in non-interactive mode (#3873) 2024-02-11 15:35:50 +02:00
Georgi Gerganov
139b62a839 common : fix compile warning 2024-02-11 15:33:43 +02:00
Georgi Gerganov
0f2411f154 ggml : fix compile warnings (unused vars) (#4966) 2024-02-11 15:33:01 +02:00
snadampal
a07d0fee1f ggml : add mmla kernels for quantized GEMM (#4966)
* ggml: aarch64: implement smmla kernel for q8_0_q8_0 quantized gemm

armv8.2-a and above supports MMLA instructions that have higher
throughput than DOT. this commit adds mmla kernel for
q8_0_q8_0 gemm. The feature is enabled if the platform supports
"__ARM_FEATURE_MATMUL_INT8"

On AWS Graviton3 processors this kernel resulted up to 1.5x
improvement for prompt evaluation throughput compared to the
default sdot kernel.

* ggml: aarch64: implement smmla kernel for q4_0_q8_0 quantized gemm

armv8.2-a and above supports MMLA instructions that have higher
throughput than DOT. this commit adds mmla kernel for
q4_0_q8_0 gemm. The feature is enabled if the platform supports
"__ARM_FEATURE_MATMUL_INT8"

On AWS Graviton3 processors this kernel resulted up to 1.5x
improvement for prompt evaluation throughput compared to the
default sdot kernel.

* ggml: aarch64: implement smmla kernel for q4_1_q8_1 quantized gemm

armv8.2-a and above supports MMLA instructions that have higher
throughput than DOT. this commit adds mmla kernel for
q4_1_q8_1 gemm. The feature is enabled if the platform supports
"__ARM_FEATURE_MATMUL_INT8"

On AWS Graviton3 processors this kernel resulted up to 1.5x
improvement for prompt evaluation throughput compared to the
default sdot kernel.

* ggml: update unit tests for the new vec_dot interface

* llama.cpp: add MATMUL_INT8 capability to system_info
2024-02-11 15:22:33 +02:00
Johannes Gäßler
e4640d8fdf lookup: add print for drafting performance (#5450) 2024-02-11 12:44:51 +01:00
Xuan Son Nguyen
907e08c110 server : add llama2 chat template (#5425)
* server: add mistral chat template

* server: fix typo

* server: rename template mistral to llama2

* server: format_llama2: remove BOS

* server: validate "--chat-template" argument

* server: clean up using_chatml variable

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

---------

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
2024-02-11 12:16:22 +02:00
Ian Bull
f026f8120f metal : use autoreleasepool to avoid memory leaks (#5437)
There appears to be a known memory leak when using the
`MLTCommandBuffer`. It is suggested to use `@autoreleasepool` in
[1,2]

[1] https://developer.apple.com/forums/thread/662721
[2] https://forums.developer.apple.com/forums/thread/120931

This change-set wraps the `ggml_metal_graph_compute` in a
`@autoreleasepool`.

This commit addresses https://github.com/ggerganov/llama.cpp/issues/5436
2024-02-10 12:53:28 +02:00
Georgi Gerganov
cd9aea63b5 scripts : update sync scripts with new backends 2024-02-10 09:53:05 +02:00
Georgi Gerganov
43b65f5eb8 sync : ggml 2024-02-10 09:30:36 +02:00
Michael Podvitskiy
4633d93af0 ggml : add abort_callback for cpu backend (ggml/725)
* a way to use abort_callback with the cpu backend

* whisper update
2024-02-10 09:29:21 +02:00
Neuman Vong
4b7b38bef5 vulkan: Set limit for task concurrency (#5427)
A common default for the maximum number of open files is 256, which can
lead to `asyncio.gather(*tasks)` failing with Too many open files.

    $ python ggml_vk_generate_shaders.py --glslc=$ANDROID_NDK_PATH/shader-tools/darwin-x86_64/glslc
    ggml_vulkan: Generating and compiling shaders to SPIR-V
    Traceback (most recent call last):
      File "/Users/neuman/Code.noindex/github/llama.cpp/ggml_vk_generate_shaders.py", line 2326, in <module>
        asyncio.run(main())
      File "/Users/neuman/Code.noindex/miniforge3/lib/python3.10/asyncio/runners.py", line 44, in run
        return loop.run_until_complete(main)
      File "/Users/neuman/Code.noindex/miniforge3/lib/python3.10/asyncio/base_events.py", line 649, in run_until_complete
        return future.result()
      File "/Users/neuman/Code.noindex/github/llama.cpp/ggml_vk_generate_shaders.py", line 2294, in main
        await asyncio.gather(*tasks)
    [...snip...]
    OSError: [Errno 24] Too many open files

This change sets a reasonable concurrency limit for tasks (and therefore
open files), without significant impact on run time.
2024-02-09 19:30:19 +01:00
Daniel Bevenius
e00d2a62dd llava : add requirements.txt and update README.md (#5428)
* llava: add requirements.txt and update README.md

This commit adds a `requirements.txt` file to the `examples/llava`
directory. This file contains the required Python packages to run the
scripts in the `examples/llava` directory.

The motivation of this to make it easier for users to run the scripts in
`examples/llava`. This will avoid users from having to possibly run into
missing package issues if the packages are not installed on their system.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

* llava: fix typo in llava-surgery.py output

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

---------

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-02-09 15:00:59 +02:00
Riley Stewart
7c777fcd5d server : fix prompt caching for repeated prompts (#5420) 2024-02-09 12:49:49 +02:00
Paul Tsochantaris
e5ca3937c6 llama : do not cap thread count when MoE on CPU (#5419)
* Not capping thread count when MoE inference is running on CPU

* Whitespace
2024-02-09 12:48:06 +02:00
Marko Tasic
e4124c2477 readme : add JavaScript/Wasm repo (#5415) 2024-02-09 12:17:00 +02:00
Michael Podvitskiy
b2f87cb64d ggml : fix error C2078: too many initializers for MSVC ARM64 (#5404) 2024-02-09 11:56:43 +02:00
0cc4m
44fbe34360 Fix Vulkan crash on APUs with very little device memory (#5424)
* Fix Vulkan crash on APUs with very little device memory

* Fix debug output function names
2024-02-09 06:52:33 +01:00
Johannes Gäßler
8e6a9d2de0 CUDA: more warps for mmvq on NVIDIA (#5394) 2024-02-08 21:56:40 +01:00
slaren
41f308f58e llama : do not print "offloading layers" message in CPU-only builds (#5416) 2024-02-08 21:33:03 +01:00
Abhilash Majumder
6e99f2a04f Fix f16_sycl cpy call from Arc (#5411)
* fix f16_sycl cpy call

* rm old logic

* add fp16 build CI

* use macro

* format fix
2024-02-08 22:39:10 +05:30
Daniel Bevenius
ff4ff05c5f llava : add missing .py, and fix paths in README.md (#5414)
This commit adds the missing .py extension to the convert-image-encoder-to-gguf
script. It also fixes the paths for the `model` and `mmproj` options in the
example llava-cli command.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-02-08 16:20:03 +02:00
Johannes Gäßler
b7b74cef36 fix trailing whitespace (#5407) 2024-02-08 11:36:54 +01:00
runfuture
4aa43fab56 llama : fix MiniCPM (#5392)
* fix bug for norm_rms_eps missing

* to align with the same order as convert.py for model write

* fix: undo HF models permute tensor

* update for flake8 lint
2024-02-08 12:36:19 +02:00
Daniel Bevenius
a6e514a85f llava: fix typo/formatting in README.md (#5405)
This commit fixes a typo in the README.md file for the llava example
which is causing the formatting to look a little off:

Clone llava-v15-7b`` and clip-vit-large-patch14-336`` locally

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-02-08 09:58:19 +01:00
Johannes Gäßler
26d4efd11e sampling: fix top_k <= 0 (#5388)
* sampling: fix top_k <= 0

* Update llama.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-08 09:46:30 +01:00
Georgi Gerganov
8504d2d0da tests : .gitignore obj files 2024-02-08 09:46:47 +02:00
Michael Podvitskiy
c4fbb6717c CMAKE_OSX_ARCHITECTURES for MacOS cross compilation (#5393)
Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-02-07 16:39:23 -05:00
Ebey Abraham
8c933b70c2 fix typo in readme (#5399)
Co-authored-by: Ebey Abraham <ebeyabraham@microsoft.com>
2024-02-07 22:11:30 +01:00
Kamil Tomšík
b906596bb7 Add Ava in the list of llama.cpp UIs (#4362) 2024-02-07 13:44:52 -05:00
Johannes Gäßler
aa7ab99be2 CUDA: fixed mmvq kernel for bs 2,3,4 and -sm row (#5386) 2024-02-07 12:40:26 +01:00
Neo Zhang Jianyu
10afa6f1d1 [SYCL] update install make by w64devkit (#5297) 2024-02-07 18:16:55 +08:00
Xiao-Yong Jin
0ef46da632 llava-cli : always tokenize special tokens (#5382)
* llava-cli: tokenize special tokens in prompt

* llava-cli: use the escape CLI argument, remove incomplete separate escaping process
2024-02-07 10:17:25 +02:00
0cc4m
ee1628bdfe Basic Vulkan Multi-GPU implementation (#5321)
* Initial Vulkan multi-gpu implementation

Move most global variables into backend context

* Add names to backend device functions

* Add further missing cleanup code

* Reduce code duplication in tensor split layer assignment

* generalize LLAMA_SPLIT_LAYER for all backends, do not expose device count and memory in llama.h

* Only do device info print in the beginning and initialize one backend for cpu assist

Add missing cleanup code

* Rework backend memory management to make sure devices and buffers get properly allocated and freed

* Rename cpu assist free function

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-02-07 07:54:50 +01:00
Eve
ed0bf32290 readme : modernize (#5379)
* first cleanup, update everything to Llama 2 and remove outdated content

* Delete SHA256SUMS

* make build instructions generic

* recommend Q4_K_M quantization method

* Update README.md
2024-02-07 08:21:30 +02:00
Ben Williams
9a697d842b readme : update ui list (#5354) 2024-02-07 08:16:48 +02:00
runfuture
316c7faf77 llama : add MiniCPM support (#5346)
* support minicpm arch.

* fix tab/space typo.

* convert minicpm model via convert-hf-gguf.py

* try to make tokenizer work

* fix bug for quantize minicpm

* fix for flake8 lint

* remove convert-minicpm.py

* fix for editorconfig

* correct minicpm model type (size)

* constants expanded for minicpm

* Minor change of the constant names for minicpm
2024-02-07 08:15:56 +02:00
Justin Parker
f3e2b4fa3f server : update /props with "total_slots" value (#5373)
* include total "num_slots" in default_generation_settings_for_props

* cleanup total_slots return value in /props endpoint

* update /props endpoint docs with total_slots

* remove num_slots from default_generation_settings_for_props

* update /props endpoint section
2024-02-07 08:15:19 +02:00
Sang-Kil Park
f68664ac24 convert : fix TypeError on GPT-2 vocab.json (#5288) 2024-02-06 23:28:00 -05:00
Alexey Parfenov
213d1439fa server : remove model.json endpoint (#5371) 2024-02-06 20:08:38 +02:00
Johannes Gäßler
17c97fb062 CUDA: mul_mat_vec_q max. batch size 8 -> 4 (#5370) 2024-02-06 19:43:06 +02:00
Kawrakow
b08f22c882 Update README.md (#5366)
Add some links to quantization related PRs
2024-02-06 19:00:16 +02:00
Kawrakow
f57fadc009 Slight quantization improvement for Q4_K and Q5_K (#5361)
* Q4_K: slightly better quantization

* Q5_K: slightly better quantization

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-06 17:28:02 +02:00
BarfingLemurs
2e9c0bd6b3 readme : add phi, orion 14b, internlm2, and yi-VL to readme (#5362) 2024-02-06 16:06:48 +02:00
Johannes Gäßler
2c516611f1 CUDA: mul_mat_vec_q for batch sizes > 1 (#5351) 2024-02-06 14:44:06 +01:00
Justin Parker
8a79c591de server : include total "num_slots" in props endpoint (#5349) 2024-02-06 11:20:59 +02:00
Michael Coppola
31e7903221 server : add dynatemp_range and dynatemp_exponent (#5352)
* server: added `dynatemp_range` and `dynatemp_exponent`

* Update README.md

---------

Co-authored-by: Michael Coppola <info@michaeljcoppola.com>
2024-02-06 11:20:00 +02:00
Niall Coates
4ffc7a17d4 server : various fixes for the prompt field in /completion (#5300)
server : fix deadlock when prompt array contains strings and numbers

server : removed an unnecessary generation when generating multi-prompts

server : removed an unnecessary assert
2024-02-06 10:16:23 +02:00
Georgi Gerganov
906cff55c2 py : handle byte tokens in get_token_type (#5341)
* py : handle byte tokens in `get_token_type`

* py : fix empty bytes arg
2024-02-06 07:47:22 +02:00
Johannes Gäßler
098f6d737b make: Use ccache for faster compilation (#5318)
* make: Use ccache for faster compilation
2024-02-05 19:33:00 +01:00
Johannes Gäßler
78b00dda6c README: updated introduction (#5343)
* README: updated introduction

* readme : update

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-05 15:55:10 +01:00
Kawrakow
c6b395535a ggml : make use of ggml-quants.h possible in C++ code (#5338)
* Make use of ggml-quants.h possible in C++ code

* One cannot possibly be defining static_assert in a C++ compilation

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-05 14:09:47 +02:00
Dr. Tom Murphy VII Ph.D
abb61944a5 ggml : avoid duplicating function calls using MIN/MAX macros (#5325)
* Avoid duplicating function calls when using MIN/MAX macros.

Since these copy "a" and "b" they ask the compiler to evaluate one of them twice. The compiler doesn't have a problem with removing the duplication in something like MAX(0, x + 2), but in some cases we're calling functions, and those calls just happen twice.
By explicitly evaluating at the expression we get smaller and faster code without duplicate calls. See ggml_rope_yarn_corr_dims in Compiler Explorer:

https://godbolt.org/z/Ee4KMrvKh

Code behaves exactly the same.

* Update ggml.c

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-05 13:13:57 +02:00
Kawrakow
89503dcb5f iq3_xxs: quards for the no-imatrix situation (#5334)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-05 12:32:27 +02:00
Guoteng
7e1ae372f3 py : fix internlm2-hf convert to gguf (#5305)
* py : fix internlm2-hf convert to gguf

* ggml-ci
2024-02-05 11:04:06 +02:00
Kawrakow
6fdfa2ecc6 iq2_xxs: tune quantization (#5320)
We get slightly better PPL, and we cut quantization time in
nearly half.

The trick is to 1st quantize without forcing points onto the E8-lattice.
We can then use a narrower search range around the block scale that we
got that way.

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-05 10:46:06 +02:00
Alexey Parfenov
a2d60c9158 server : allow to get default generation settings for completion (#5307) 2024-02-05 10:10:22 +02:00
l3utterfly
e6f8177532 common : add dynamic temperature parameters to main example cli (#5295)
* added dynamic temp params in main

* added help text
2024-02-05 10:00:47 +02:00
Georgi Gerganov
30679d438d scripts : fix typos, cleanup (#5303) 2024-02-05 09:48:03 +02:00
Нияз Гарифзянов
4be04c8965 scripts : add non-interactive server-llm.sh (#5303)
* Update server-llm.sh

Add flag --non-interactive that allows run script without asking a permission

* Update scripts/server-llm.sh

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-05 09:43:57 +02:00
chiranko
5d55b0cd82 readme : add CodeShell models to the supported models list (#5330) 2024-02-05 09:41:38 +02:00
AidanBeltonS
4833ac209d [SYCL] Fix cpy with dims of 3 (#5289)
* Fix cpy with dims of 3

* rm asserts

---------

Co-authored-by: Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
2024-02-05 12:38:24 +05:30
github-actions[bot]
9392ebd49e flake.lock: Update
Flake lock file updates:

• Updated input 'flake-parts':
    'github:hercules-ci/flake-parts/07f6395285469419cf9d078f59b5b49993198c00' (2024-01-11)
  → 'github:hercules-ci/flake-parts/b253292d9c0a5ead9bc98c4e9a26c6312e27d69f' (2024-02-01)
• Updated input 'flake-parts/nixpkgs-lib':
    'github:NixOS/nixpkgs/b0d36bd0a420ecee3bc916c91886caca87c894e9?dir=lib' (2023-12-30)
  → 'github:NixOS/nixpkgs/97b17f32362e475016f942bbdfda4a4a72a8a652?dir=lib' (2024-01-29)
• Updated input 'nixpkgs':
    'github:NixOS/nixpkgs/ae5c332cbb5827f6b1f02572496b141021de335f' (2024-01-25)
  → 'github:NixOS/nixpkgs/b8b232ae7b8b144397fdb12d20f592e5e7c1a64d' (2024-01-31)
2024-02-04 08:45:35 -08:00
Kawrakow
5ed26e1fc9 Adding some imatrix tools (#5302)
* imatrix: adding --combine and --continue-from

* imatrix: be able to start from a specific chunk

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-04 10:39:58 +02:00
Welby Seely
277fad30c6 cmake : use set() for LLAMA_WIN_VER (#5298)
option() is specifically for booleans.

Fixes #5158
2024-02-03 23:18:51 -05:00
Johannes Gäßler
3c0d25c475 make: add nvcc info print (#5310) 2024-02-03 20:15:13 +01:00
Johannes Gäßler
3cc5ed353c make: fix nvcc optimization flags for host code (#5309) 2024-02-03 20:14:59 +01:00
Martin Schwaighofer
60ecf099ed add Vulkan support to Nix flake 2024-02-03 13:13:07 -06:00
0cc4m
e920ed393d Vulkan Intel Fixes, Optimizations and Debugging Flags (#5301)
* Fix Vulkan on Intel ARC

Optimize matmul for Intel ARC

Add Vulkan dequant test

* Add Vulkan debug and validate flags to Make and CMakeLists.txt

* Enable asynchronous transfers in Vulkan backend

* Fix flake8

* Disable Vulkan async backend functions for now

* Also add Vulkan run tests command to Makefile and CMakeLists.txt
2024-02-03 18:15:00 +01:00
Michael Klimenko
52bb63c708 refactor : switch to emplace_back to avoid extra object (#5291) 2024-02-03 13:23:37 +02:00
Jared Van Bortel
1ec3332ade YaRN : store rope scaling type as int32_t in memory (#5285)
* YaRN : store rope scaling type as int32_t in memory

* llama : store mapped names as const char *
2024-02-03 13:22:06 +02:00
BADR
6a66c5071a readme : add tenere in the ui tools list (#5284) 2024-02-03 13:20:26 +02:00
AidanBeltonS
a305dba8ff Fix im2col with 32fp (#5286) 2024-02-03 16:11:37 +08:00
kalomaze
191221178f perplexity : fix KL divergence calculations on Windows (#5273) 2024-02-02 16:15:30 +02:00
Georgi Gerganov
e437b37fd0 scripts : parse wtype in server-llm.sh (#5167)
* scripts : parse wtype in server-llm.sh

* scripts : fix check for wfile
2024-02-02 14:23:40 +02:00
Mirror Azure
2d40085c26 py : add check for '.attn.masked_bias' layers to GPT2model (#5281) 2024-02-02 13:39:09 +02:00
AidanBeltonS
b05102fe8c Tidy ggml-sycl (#5261)
* Tidy some code in ggml-sycl

* Remove blank space

* Remove std::printf comments

---------

Co-authored-by: Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
2024-02-02 16:39:48 +08:00
Xuan Son Nguyen
6b91b1e0a9 docker : add build for SYCL, Vulkan + update readme (#5228)
* add vulkan dockerfile

* intel dockerfile: compile sycl by default

* fix vulkan dockerfile

* add docs for vulkan

* docs: sycl build in docker

* docs: remove trailing spaces

* docs: sycl: add docker section

* docs: clarify install vulkan SDK outside docker

* sycl: use intel/oneapi-basekit docker image

* docs: correct TOC

* docs: correct docker image for Intel oneMKL
2024-02-02 09:56:31 +02:00
Meng, Hengyu
e805f0fa99 [SYCL] get MAX_MEM_ALLOC from device property (#5270)
* get max alloc size from device prop

* fix macro typo
2024-02-02 15:54:14 +08:00
Neo Zhang Jianyu
af3ba5d946 [SYCL] update guide of SYCL backend (#5254)
* update guide for make installation, memory, gguf model link,  rm todo for windows build

* add vs install requirement

* update for gpu device check

* update help of llama-bench

* fix grammer issues
2024-02-02 15:53:27 +08:00
Ian Bull
e1e721094d llama : fix memory leak in llama_batch_free (#5252)
The llama_batch_init allocates memory for a fixed number of tokens.
However, the llama_batch_free only frees memory for the number of
tokens that were added to the batch.

This change-set uses a null terminated array for the batch seq_id, and
frees all the elements until the nullptr is reached. This change-set
also changes the name of the first parameter from `n_tokens` to
`n_tokens_alloc` to more clearly indicate that this value is the number
of tokens allocated to the batch, not the number of tokens in the batch.
2024-02-02 09:20:13 +02:00
Neo Zhang Jianyu
128dcbd3c9 add --no-mmap in llama-bench (#5257)
* add --no-mmap, show sycl backend

* fix conflict

* fix code format, change print for --no-mmap

* ren no_mmap to mmap, show mmap when not default value in printer

* update guide for mmap

* mv position to reduce model reload
2024-02-01 20:48:53 +01:00
0cc4m
4d0924a890 Vulkan Phi Fix for AMD Proprietary Drivers (#5260)
* Replace tanh to avoid NaN in gelu shader on AMD proprietary driver

* Fix another Vulkan CPY buffer size bug
2024-02-01 19:25:24 +01:00
slaren
8ca511cade cuda : fix LLAMA_CUDA_F16 (#5262) 2024-02-01 18:30:17 +01:00
Ali Nehzat
d71ac90985 make : generate .a library for static linking (#5205) 2024-02-01 17:18:53 +02:00
Guoteng
ce32060198 llama : support InternLM2 (#5184)
* support InternLM2 inference
  * add add_space_prefix KV pair
2024-02-01 11:19:51 +02:00
Eve
1cfb5372cf Fix broken Vulkan Cmake (properly) (#5230)
* build vulkan as object

* vulkan ci
2024-01-31 20:21:55 +01:00
Georgi Gerganov
d3bac7d584 llama : reorder build_orion() at correct place (#5118) 2024-01-31 18:47:10 +02:00
Georgi Gerganov
5cb04dbc16 llama : remove LLAMA_MAX_DEVICES and LLAMA_SUPPORTS_GPU_OFFLOAD (#5240)
* llama : remove LLAMA_MAX_DEVICES from llama.h

ggml-ci

* Update llama.cpp

Co-authored-by: slaren <slarengh@gmail.com>

* server : remove LLAMA_MAX_DEVICES

ggml-ci

* llama : remove LLAMA_SUPPORTS_GPU_OFFLOAD

ggml-ci

* train : remove LLAMA_SUPPORTS_GPU_OFFLOAD

* readme : add deprecation notice

* readme : change deprecation notice to "remove" and fix url

* llama : remove gpu includes from llama.h

ggml-ci

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-01-31 17:30:17 +02:00
Georgi Gerganov
efb7bdbbd0 metal : add im2col F32 dst support (#5132) 2024-01-31 15:35:41 +02:00
JidongZhang-THU
15606309a0 llava : add MobileVLM support (#5132)
* New Feature:
    1. Sum_Rows:
        fix cuda kernel overflow
        fix block shape error when nrows too big
    2. Im2Col:
        Support Batch in cuda
        Support f32 to f32 both in cpu && cuda
    3. DepthWiseConv:
        Support by Im2Col && MulMat
    4. Pool_2d:
        Supoort avg pooling in cuda
    5. HardSigmoid:
        Imp in cuda
    6. HardSwish:
        Imp in cuda

* fix tabs instead of spaces

* code clean

* CUDA POOL2D

* ADD POOL2D test case in test-backend-ops.cpp

* code clean

* fix pool2d_kernel

nits

* fix bug in pool2d kernel

* fix avg pooling, count_include_pad

nits

* test-backend-ops : add more pool_2d tests

* cuda : fix warnings and formatting

* ggml : check types in release builds too in pool_2d

* test-backend-ops : remove f16 pool_2d tests

* cuda : more style fixes

* Add assert in ggml_cuda_op_pool2d

* pool2d float padding fallback

* test-backend-ops : add dst_type to im2col

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-01-31 15:10:15 +02:00
Neo Zhang Jianyu
b2b9f025e7 format license text, restore apache license by legal suggestion (#5233) 2024-01-31 18:34:46 +05:30
slaren
dabcc5b471 ggml : limit n_threads to the max n_tasks (#5238) 2024-01-31 13:43:03 +01:00
0cc4m
f8e9140cb4 Vulkan Fixes (#5223)
* Fix Vulkan F16 models

* Fix Vulkan context shift crash

* Add Vulkan to common.cpp dump_non_result_info_yaml function

* Fix bug in Vulkan CPY op

* Fix small matrix multiplication errors in AMD GPUs on Windows or with amdvlk

Co-authored-by: Engininja2 <139037756+Engininja2@users.noreply.github.com>

---------

Co-authored-by: Engininja2 <139037756+Engininja2@users.noreply.github.com>
2024-01-31 11:44:19 +01:00
Yiming Cui
d62520eb2c Fix typos of IQ2_XXS and IQ3_XXS in llama.cpp (#5231) 2024-01-30 22:04:21 -05:00
Neo Zhang Jianyu
01684139c3 support SYCL backend windows build (#5208)
* support SYCL backend windows build

* add windows build in CI

* add for win build CI

* correct install oneMKL

* fix install issue

* fix ci

* fix install cmd

* fix install cmd

* fix install cmd

* fix install cmd

* fix install cmd

* fix win build

* fix win build

* fix win build

* restore other CI part

* restore as base

* rm no new line

* fix no new line issue, add -j

* fix grammer issue

* allow to trigger manually, fix format issue

* fix format

* add newline

* fix format

* fix format

* fix format issuse

---------

Co-authored-by: Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
2024-01-31 08:08:07 +05:30
Jared Van Bortel
e8dc55d006 kompute : llama-bench support and ggml_cpu_has_kompute() (#5226) 2024-01-30 19:04:37 -05:00
Georgi Gerganov
e0085fdf7c Revert "server : change deps.sh xxd files to string literals (#5221)"
This reverts commit 4003be0e5f.
2024-01-30 21:19:26 +02:00
Georgi Gerganov
e6f291d158 server : fix context shift (#5195)
* server : fix context shift + simplify self-extend

* server : take system_tokens into account

* server : more n_past fixes

* server : rever n_past_se changes
2024-01-30 20:17:30 +02:00
JohnnyB
4003be0e5f server : change deps.sh xxd files to string literals (#5221)
* Changed ugly xxd to literals.

HPP files are much more readable as multiline literals rather than hex arrays.

* Dashes in literal variable names.

Replace . and - with _ in file names -> variable names.

* Comment on removing xxd.

XXD-> string literals

* XXD to string literals.

Replaced these unreadable headers with string literal versions using new deps.sh.
2024-01-30 20:15:05 +02:00
Kawrakow
fea4fd4ba7 ggml : fix IQ3_XXS on Metal (#5219)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-30 19:15:28 +02:00
Georgi Gerganov
8f8ddfcfad sync : ggml (#0) 2024-01-30 16:21:57 +02:00
Georgi Gerganov
6fb50ebbf0 gguf : fix comparison (ggml/715)
ggml-ci
2024-01-30 16:20:25 +02:00
John Balis
625a699b54 ggml_cuda_cpy support for 4d tensors and float16->float32 upcasting (ggml/686)
* added cuda float16->float32 upcasting to ggml_cuda_cpy

* added ability to copy 4d tensors with the cuda backend

* added tests for float16_>float32 upcast and 4d tensor cuda copys

* added 4d copy test for float32->float16 copy

* applied patch suggested by @iamlemec

* simplify cpy tests

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-01-30 16:20:25 +02:00
Georgi Gerganov
a4b07c057a gguf : add input validation, prevent integer overflows (ggml/709)
* gguf : add input validation, prevent integer overflows

ggml-ci

* gguf : fix switch default case

* gguf : sanitize info->n_dims and info->type

ggml-ci

* gguf : assert GGUF_TYPE_SIZE access

ggml-ci

* ggml : assert mallocs are successful

ggml-ci

* gguf : prevent integer overflow

* gguf : sanitize tensor info

ggml-ci

* gguf : stricter limit on the number of items

ggml-ci
2024-01-30 16:20:25 +02:00
Georgi Gerganov
549a1e6cd5 ci : fix yolo URLs + fix metal capture (ggml/712) 2024-01-30 16:20:25 +02:00
Jack Mousseau
5f14ee0b0c metal : add debug capture backend function (ggml/694)
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-30 16:20:25 +02:00
98 changed files with 10306 additions and 15962 deletions

View File

@@ -1,8 +1,8 @@
ARG ONEAPI_VERSION=2024.0.1-devel-ubuntu22.04
ARG UBUNTU_VERSION=22.04
FROM intel/hpckit:$ONEAPI_VERSION as build
FROM intel/oneapi-basekit:$ONEAPI_VERSION as build
ARG LLAMA_SYCL_F16=OFF
RUN apt-get update && \
apt-get install -y git
@@ -10,16 +10,18 @@ WORKDIR /app
COPY . .
# for some reasons, "-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=Intel10_64lp -DLLAMA_NATIVE=ON" give worse performance
RUN mkdir build && \
cd build && \
cmake .. -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx && \
cmake --build . --config Release --target main server
if [ "${LLAMA_SYCL_F16}" = "ON" ]; then \
echo "LLAMA_SYCL_F16 is set" && \
export OPT_SYCL_F16="-DLLAMA_SYCL_F16=ON"; \
fi && \
cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ${OPT_SYCL_F16} && \
cmake --build . --config Release --target main
FROM ubuntu:$UBUNTU_VERSION as runtime
FROM intel/oneapi-basekit:$ONEAPI_VERSION as runtime
COPY --from=build /app/build/bin/main /main
COPY --from=build /app/build/bin/server /server
ENV LC_ALL=C.utf8

View File

@@ -0,0 +1,29 @@
ARG UBUNTU_VERSION=jammy
FROM ubuntu:$UBUNTU_VERSION as build
# Install build tools
RUN apt update && apt install -y git build-essential cmake wget
# Install Vulkan SDK
RUN wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add - && \
wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list && \
apt update -y && \
apt-get install -y vulkan-sdk
# Build it
WORKDIR /app
COPY . .
RUN mkdir build && \
cd build && \
cmake .. -DLLAMA_VULKAN=1 && \
cmake --build . --config Release --target main
# Clean up
WORKDIR /
RUN cp /app/build/bin/main /main && \
rm -rf /app
ENV LC_ALL=C.utf8
ENTRYPOINT [ "/main" ]

View File

@@ -13,18 +13,22 @@
cudaPackages,
darwin,
rocmPackages,
vulkan-headers,
vulkan-loader,
clblast,
useBlas ? builtins.all (x: !x) [
useCuda
useMetalKit
useOpenCL
useRocm
useVulkan
],
useCuda ? config.cudaSupport,
useMetalKit ? stdenv.isAarch64 && stdenv.isDarwin && !useOpenCL,
useMpi ? false, # Increases the runtime closure size by ~700M
useOpenCL ? false,
useRocm ? config.rocmSupport,
useVulkan ? false,
llamaVersion ? "0.0.0", # Arbitrary version, substituted by the flake
}@inputs:
@@ -48,7 +52,8 @@ let
++ lib.optionals useMetalKit [ "MetalKit" ]
++ lib.optionals useMpi [ "MPI" ]
++ lib.optionals useOpenCL [ "OpenCL" ]
++ lib.optionals useRocm [ "ROCm" ];
++ lib.optionals useRocm [ "ROCm" ]
++ lib.optionals useVulkan [ "Vulkan" ];
pnameSuffix =
strings.optionalString (suffices != [ ])
@@ -108,6 +113,11 @@ let
hipblas
rocblas
];
vulkanBuildInputs = [
vulkan-headers
vulkan-loader
];
in
effectiveStdenv.mkDerivation (
@@ -164,7 +174,8 @@ effectiveStdenv.mkDerivation (
++ optionals useCuda cudaBuildInputs
++ optionals useMpi [ mpi ]
++ optionals useOpenCL [ clblast ]
++ optionals useRocm rocmBuildInputs;
++ optionals useRocm rocmBuildInputs
++ optionals useVulkan vulkanBuildInputs;
cmakeFlags =
[
@@ -178,6 +189,7 @@ effectiveStdenv.mkDerivation (
(cmakeBool "LLAMA_HIPBLAS" useRocm)
(cmakeBool "LLAMA_METAL" useMetalKit)
(cmakeBool "LLAMA_MPI" useMpi)
(cmakeBool "LLAMA_VULKAN" useVulkan)
]
++ optionals useCuda [
(
@@ -218,6 +230,7 @@ effectiveStdenv.mkDerivation (
useMpi
useOpenCL
useRocm
useVulkan
;
shell = mkShell {
@@ -242,11 +255,11 @@ effectiveStdenv.mkDerivation (
# Configurations we don't want even the CI to evaluate. Results in the
# "unsupported platform" messages. This is mostly a no-op, because
# cudaPackages would've refused to evaluate anyway.
badPlatforms = optionals (useCuda || useOpenCL) lib.platforms.darwin;
badPlatforms = optionals (useCuda || useOpenCL || useVulkan) lib.platforms.darwin;
# Configurations that are known to result in build failures. Can be
# overridden by importing Nixpkgs with `allowBroken = true`.
broken = (useMetalKit && !effectiveStdenv.isDarwin);
broken = (useMetalKit && !effectiveStdenv.isDarwin) || (useVulkan && effectiveStdenv.isDarwin);
description = "Inference of LLaMA model in pure C/C++${descriptionSuffix}";
homepage = "https://github.com/ggerganov/llama.cpp/";

View File

@@ -1,8 +1,8 @@
ARG ONEAPI_VERSION=2024.0.1-devel-ubuntu22.04
ARG UBUNTU_VERSION=22.04
FROM intel/hpckit:$ONEAPI_VERSION as build
FROM intel/oneapi-basekit:$ONEAPI_VERSION as build
ARG LLAMA_SYCL_F16=OFF
RUN apt-get update && \
apt-get install -y git
@@ -10,13 +10,16 @@ WORKDIR /app
COPY . .
# for some reasons, "-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=Intel10_64lp -DLLAMA_NATIVE=ON" give worse performance
RUN mkdir build && \
cd build && \
cmake .. -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx && \
cmake --build . --config Release --target main server
if [ "${LLAMA_SYCL_F16}" = "ON" ]; then \
echo "LLAMA_SYCL_F16 is set" && \
export OPT_SYCL_F16="-DLLAMA_SYCL_F16=ON"; \
fi && \
cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ${OPT_SYCL_F16} && \
cmake --build . --config Release --target server
FROM ubuntu:$UBUNTU_VERSION as runtime
FROM intel/oneapi-basekit:$ONEAPI_VERSION as runtime
COPY --from=build /app/build/bin/server /server

View File

@@ -0,0 +1,29 @@
ARG UBUNTU_VERSION=jammy
FROM ubuntu:$UBUNTU_VERSION as build
# Install build tools
RUN apt update && apt install -y git build-essential cmake wget
# Install Vulkan SDK
RUN wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add - && \
wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list && \
apt update -y && \
apt-get install -y vulkan-sdk
# Build it
WORKDIR /app
COPY . .
RUN mkdir build && \
cd build && \
cmake .. -DLLAMA_VULKAN=1 && \
cmake --build . --config Release --target server
# Clean up
WORKDIR /
RUN cp /app/build/bin/server /server && \
rm -rf /app
ENV LC_ALL=C.utf8
ENTRYPOINT [ "/server" ]

View File

@@ -1,2 +1,3 @@
[flake8]
max-line-length = 125
ignore = W503

View File

@@ -184,6 +184,47 @@ jobs:
cmake -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ..
cmake --build . --config Release -j $(nproc)
ubuntu-22-cmake-sycl-fp16:
runs-on: ubuntu-22.04
continue-on-error: true
steps:
- uses: actions/checkout@v2
- name: add oneAPI to apt
shell: bash
run: |
cd /tmp
wget https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
sudo apt-key add GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
rm GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
sudo add-apt-repository "deb https://apt.repos.intel.com/oneapi all main"
- name: install oneAPI dpcpp compiler
shell: bash
run: |
sudo apt update
sudo apt install intel-oneapi-compiler-dpcpp-cpp
- name: install oneAPI MKL library
shell: bash
run: |
sudo apt install intel-oneapi-mkl-devel
- name: Clone
id: checkout
uses: actions/checkout@v3
- name: Build
id: cmake_build
run: |
source /opt/intel/oneapi/setvars.sh
mkdir build
cd build
cmake -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON ..
cmake --build . --config Release -j $(nproc)
# TODO: build with LLAMA_NO_METAL because test-backend-ops fail on "Apple Paravirtual device" and I don't know
# how to debug it.
# ref: https://github.com/ggerganov/llama.cpp/actions/runs/7131777249/job/19420981052#step:5:1124
@@ -356,6 +397,8 @@ jobs:
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_BLAS=ON -DBUILD_SHARED_LIBS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"'
- build: 'kompute'
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_KOMPUTE=ON -DKOMPUTE_OPT_DISABLE_VULKAN_VERSION_CHECK=ON -DBUILD_SHARED_LIBS=ON'
- build: 'vulkan'
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_VULKAN=ON -DBUILD_SHARED_LIBS=ON'
steps:
- name: Clone
@@ -406,7 +449,7 @@ jobs:
- name: Install Vulkan SDK
id: get_vulkan
if: ${{ matrix.build == 'kompute' }}
if: ${{ matrix.build == 'kompute' || matrix.build == 'vulkan' }}
run: |
curl.exe -o $env:RUNNER_TEMP/VulkanSDK-Installer.exe -L "https://sdk.lunarg.com/sdk/download/${env:VULKAN_VERSION}/windows/VulkanSDK-${env:VULKAN_VERSION}-Installer.exe"
& "$env:RUNNER_TEMP\VulkanSDK-Installer.exe" --accept-licenses --default-answer --confirm-command install
@@ -451,7 +494,7 @@ jobs:
- name: Test
id: cmake_test
# not all machines have native AVX-512
if: ${{ matrix.build != 'clblast' && matrix.build != 'kompute' && (matrix.build != 'avx512' || env.HAS_AVX512F == '1') }}
if: ${{ matrix.build != 'clblast' && matrix.build != 'kompute' && matrix.build != 'vulkan' && (matrix.build != 'avx512' || env.HAS_AVX512F == '1') }}
run: |
cd build
ctest -L main -C Release --verbose --timeout 900
@@ -565,6 +608,31 @@ jobs:
path: |
cudart-llama-bin-win-cu${{ matrix.cuda }}-x64.zip
windows-latest-cmake-sycl:
runs-on: windows-latest
defaults:
run:
shell: bash
env:
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/62641e01-1e8d-4ace-91d6-ae03f7f8a71f/w_BaseKit_p_2024.0.0.49563_offline.exe
WINDOWS_DPCPP_MKL: intel.oneapi.win.cpp-dpcpp-common:intel.oneapi.win.mkl.devel
steps:
- name: Clone
id: checkout
uses: actions/checkout@v3
with:
fetch-depth: 0
- name: Install
run: scripts/install-oneapi.bat $WINDOWS_BASEKIT_URL $WINDOWS_DPCPP_MKL
- name: Build
id: cmake_build
run: examples/sycl/win-build-sycl.bat
ios-xcode-build:
runs-on: macos-latest

View File

@@ -1,6 +1,12 @@
name: EditorConfig Checker
on:
workflow_dispatch: # allows manual triggering
inputs:
create_release:
description: 'Create new release'
required: true
type: boolean
push:
branches:
- master

View File

@@ -16,5 +16,5 @@ jobs:
- name: flake8 Lint
uses: py-actions/flake8@v2
with:
ignore: "E203,E211,E221,E225,E231,E241,E251,E261,E266,E501,E701,E704"
ignore: "E203,E211,E221,E225,E231,E241,E251,E261,E266,E501,E701,E704,W503"
exclude: "examples/*,examples/*/**,*/**/__init__.py"

1
.gitignore vendored
View File

@@ -89,3 +89,4 @@ examples/jeopardy/results.txt
poetry.lock
poetry.toml
nppBackup

View File

@@ -79,7 +79,7 @@ if (NOT MSVC)
endif()
if (WIN32)
option(LLAMA_WIN_VER "llama: Windows Version" 0x602)
set(LLAMA_WIN_VER "0x602" CACHE STRING "llama: Windows Version")
endif()
# 3rd party libs
@@ -100,6 +100,10 @@ option(LLAMA_HIPBLAS "llama: use hipBLAS"
option(LLAMA_HIP_UMA "llama: use HIP unified memory architecture" OFF)
option(LLAMA_CLBLAST "llama: use CLBlast" OFF)
option(LLAMA_VULKAN "llama: use Vulkan" OFF)
option(LLAMA_VULKAN_CHECK_RESULTS "llama: run Vulkan op checks" OFF)
option(LLAMA_VULKAN_DEBUG "llama: enable Vulkan debug output" OFF)
option(LLAMA_VULKAN_VALIDATE "llama: enable Vulkan validation" OFF)
option(LLAMA_VULKAN_RUN_TESTS "llama: run Vulkan tests" OFF)
option(LLAMA_METAL "llama: use Metal" ${LLAMA_METAL_DEFAULT})
option(LLAMA_METAL_NDEBUG "llama: disable Metal debugging" OFF)
option(LLAMA_METAL_SHADER_DEBUG "llama: compile Metal with -fno-fast-math" OFF)
@@ -423,10 +427,7 @@ if (LLAMA_VULKAN)
if (Vulkan_FOUND)
message(STATUS "Vulkan found")
set(GGML_HEADERS_VULKAN ggml-vulkan.h)
set(GGML_SOURCES_VULKAN ggml-vulkan.cpp)
add_library(ggml-vulkan STATIC ggml-vulkan.cpp ggml-vulkan.h)
add_library(ggml-vulkan OBJECT ggml-vulkan.cpp ggml-vulkan.h)
if (BUILD_SHARED_LIBS)
set_target_properties(ggml-vulkan PROPERTIES POSITION_INDEPENDENT_CODE ON)
endif()
@@ -434,6 +435,22 @@ if (LLAMA_VULKAN)
add_compile_definitions(GGML_USE_VULKAN)
if (LLAMA_VULKAN_CHECK_RESULTS)
target_compile_definitions(ggml-vulkan PRIVATE GGML_VULKAN_CHECK_RESULTS)
endif()
if (LLAMA_VULKAN_DEBUG)
target_compile_definitions(ggml-vulkan PRIVATE GGML_VULKAN_DEBUG)
endif()
if (LLAMA_VULKAN_VALIDATE)
target_compile_definitions(ggml-vulkan PRIVATE GGML_VULKAN_VALIDATE)
endif()
if (LLAMA_VULKAN_RUN_TESTS)
target_compile_definitions(ggml-vulkan PRIVATE GGML_VULKAN_RUN_TESTS)
endif()
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ggml-vulkan)
else()
message(WARNING "Vulkan not found")
@@ -507,7 +524,11 @@ if (LLAMA_SYCL)
set(GGML_HEADERS_SYCL ggml.h ggml-sycl.h)
set(GGML_SOURCES_SYCL ggml-sycl.cpp)
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} sycl OpenCL mkl_core pthread m dl mkl_sycl_blas mkl_intel_ilp64 mkl_tbb_thread)
if (WIN32)
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} -fsycl sycl7 OpenCL mkl_sycl_blas_dll.lib mkl_intel_ilp64_dll.lib mkl_sequential_dll.lib mkl_core_dll.lib)
else()
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} -fsycl OpenCL mkl_core pthread m dl mkl_sycl_blas mkl_intel_ilp64 mkl_tbb_thread)
endif()
endif()
if (LLAMA_KOMPUTE)
@@ -788,9 +809,9 @@ if (LLAMA_CCACHE)
if (LLAMA_CCACHE_FOUND)
set_property(GLOBAL PROPERTY RULE_LAUNCH_COMPILE ccache)
set(ENV{CCACHE_SLOPPINESS} time_macros)
message(STATUS "Using ccache")
message(STATUS "ccache found, compilation results will be cached. Disable with LLAMA_CCACHE=OFF.")
else()
message(STATUS "Warning: ccache not found - consider installing it or use LLAMA_CCACHE=OFF")
message(STATUS "Warning: ccache not found - consider installing it for faster compilation or disable this warning with LLAMA_CCACHE=OFF")
endif ()
endif()
@@ -829,7 +850,9 @@ endif()
set(ARCH_FLAGS "")
if ((${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm") OR (${CMAKE_SYSTEM_PROCESSOR} MATCHES "aarch64") OR ("${CMAKE_GENERATOR_PLATFORM_LWR}" MATCHES "arm64"))
if (CMAKE_OSX_ARCHITECTURES STREQUAL "arm64" OR CMAKE_GENERATOR_PLATFORM_LWR STREQUAL "arm64" OR
(NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND
CMAKE_SYSTEM_PROCESSOR MATCHES "^(aarch64|arm.*|ARM64)$"))
message(STATUS "ARM detected")
if (MSVC)
add_compile_definitions(__ARM_NEON)
@@ -855,7 +878,9 @@ if ((${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm") OR (${CMAKE_SYSTEM_PROCESSOR} MATC
list(APPEND ARCH_FLAGS -mno-unaligned-access)
endif()
endif()
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "^(x86_64|i686|AMD64)$" OR "${CMAKE_GENERATOR_PLATFORM_LWR}" MATCHES "^(x86_64|i686|amd64|x64)$" )
elseif (CMAKE_OSX_ARCHITECTURES STREQUAL "x86_64" OR CMAKE_GENERATOR_PLATFORM_LWR MATCHES "^(x86_64|i686|amd64|x64|win32)$" OR
(NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND
CMAKE_SYSTEM_PROCESSOR MATCHES "^(x86_64|i686|AMD64)$"))
message(STATUS "x86 detected")
if (MSVC)
# instruction set detection for MSVC only
@@ -1008,7 +1033,6 @@ add_library(ggml OBJECT
ggml-quants.h
${GGML_SOURCES_CUDA} ${GGML_HEADERS_CUDA}
${GGML_SOURCES_OPENCL} ${GGML_HEADERS_OPENCL}
${GGML_SOURCES_VULKAN} ${GGML_HEADERS_VULKAN}
${GGML_SOURCES_METAL} ${GGML_HEADERS_METAL}
${GGML_SOURCES_MPI} ${GGML_HEADERS_MPI}
${GGML_SOURCES_EXTRA} ${GGML_HEADERS_EXTRA}
@@ -1090,7 +1114,7 @@ install(FILES ${CMAKE_CURRENT_BINARY_DIR}/LlamaConfig.cmake
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/Llama)
set(GGML_PUBLIC_HEADERS "ggml.h" "ggml-alloc.h" "ggml-backend.h"
"${GGML_HEADERS_CUDA}" "${GGML_HEADERS_OPENCL}" "${GGML_HEADERS_VULKAN}"
"${GGML_HEADERS_CUDA}" "${GGML_HEADERS_OPENCL}"
"${GGML_HEADERS_METAL}" "${GGML_HEADERS_MPI}" "${GGML_HEADERS_EXTRA}")
set_target_properties(ggml PROPERTIES PUBLIC_HEADER "${GGML_PUBLIC_HEADERS}")

204
Makefile
View File

@@ -109,8 +109,21 @@ MK_NVCCFLAGS += -O3
else
MK_CFLAGS += -O3
MK_CXXFLAGS += -O3
MK_NVCCFLAGS += -O3
endif
ifndef LLAMA_NO_CCACHE
CCACHE := $(shell which ccache)
ifdef CCACHE
export CCACHE_SLOPPINESS = time_macros
$(info I ccache found, compilation results will be cached. Disable with LLAMA_NO_CCACHE.)
CC := $(CCACHE) $(CC)
CXX := $(CCACHE) $(CXX)
else
$(info I ccache not found. Consider installing it for faster compilation.)
endif # CCACHE
endif # LLAMA_NO_CCACHE
# clock_gettime came in POSIX.1b (1993)
# CLOCK_MONOTONIC came in POSIX.1-2001 / SUSv3 as optional
# posix_memalign came in POSIX.1-2001 / SUSv3
@@ -365,7 +378,7 @@ ifdef LLAMA_CUBLAS
MK_CPPFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include
MK_LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
OBJS += ggml-cuda.o
MK_NVCCFLAGS = -use_fast_math
MK_NVCCFLAGS += -use_fast_math
ifndef JETSON_EOL_MODULE_DETECT
MK_NVCCFLAGS += --forward-unknown-to-host-compiler
endif # JETSON_EOL_MODULE_DETECT
@@ -373,9 +386,9 @@ ifdef LLAMA_DEBUG
MK_NVCCFLAGS += -lineinfo
endif # LLAMA_DEBUG
ifdef LLAMA_CUDA_NVCC
NVCC = $(LLAMA_CUDA_NVCC)
NVCC = $(CCACHE) $(LLAMA_CUDA_NVCC)
else
NVCC = nvcc
NVCC = $(CCACHE) nvcc
endif #LLAMA_CUDA_NVCC
ifdef CUDA_DOCKER_ARCH
MK_NVCCFLAGS += -Wno-deprecated-gpu-targets -arch=$(CUDA_DOCKER_ARCH)
@@ -457,6 +470,18 @@ ifdef LLAMA_VULKAN_CHECK_RESULTS
MK_CPPFLAGS += -DGGML_VULKAN_CHECK_RESULTS
endif
ifdef LLAMA_VULKAN_DEBUG
MK_CPPFLAGS += -DGGML_VULKAN_DEBUG
endif
ifdef LLAMA_VULKAN_VALIDATE
MK_CPPFLAGS += -DGGML_VULKAN_VALIDATE
endif
ifdef LLAMA_VULKAN_RUN_TESTS
MK_CPPFLAGS += -DGGML_VULKAN_RUN_TESTS
endif
ggml-vulkan.o: ggml-vulkan.cpp ggml-vulkan.h
$(CXX) $(CXXFLAGS) -c $< -o $@
endif # LLAMA_VULKAN
@@ -470,7 +495,7 @@ ifdef LLAMA_HIPBLAS
ROCM_PATH ?= /opt/rocm
GPU_TARGETS ?= $(shell $(ROCM_PATH)/llvm/bin/amdgpu-arch)
endif
HIPCC ?= $(ROCM_PATH)/bin/hipcc
HIPCC ?= $(CCACHE) $(ROCM_PATH)/bin/hipcc
LLAMA_CUDA_DMMV_X ?= 32
LLAMA_CUDA_MMV_Y ?= 1
LLAMA_CUDA_KQUANTS_ITER ?= 2
@@ -540,8 +565,19 @@ $(info I CFLAGS: $(CFLAGS))
$(info I CXXFLAGS: $(CXXFLAGS))
$(info I NVCCFLAGS: $(NVCCFLAGS))
$(info I LDFLAGS: $(LDFLAGS))
$(info I CC: $(shell $(CC) --version | head -n 1))
$(info I CXX: $(shell $(CXX) --version | head -n 1))
$(info I CC: $(shell $(CC) --version | head -n 1))
$(info I CXX: $(shell $(CXX) --version | head -n 1))
ifdef LLAMA_CUBLAS
$(info I NVCC: $(shell $(NVCC) --version | tail -n 1))
CUDA_VERSION := $(shell nvcc --version | grep -oP 'release (\K[0-9]+\.[0-9])')
ifeq ($(shell awk -v "v=$(CUDA_VERSION)" 'BEGIN { print (v < 11.7) }'),1)
ifndef CUDA_DOCKER_ARCH
ifndef CUDA_POWER_ARCH
$(error I ERROR: For CUDA versions < 11.7 a target CUDA architecture must be explicitly provided via CUDA_DOCKER_ARCH)
endif # CUDA_POWER_ARCH
endif # CUDA_DOCKER_ARCH
endif # eq ($(shell echo "$(CUDA_VERSION) < 11.7" | bc),1)
endif # LLAMA_CUBLAS
$(info )
#
@@ -586,99 +622,140 @@ train.o: common/train.cpp common/train.h
libllama.so: llama.o ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS)
libllama.a: llama.o ggml.o $(OBJS) $(COMMON_DEPS)
ar rcs libllama.a llama.o ggml.o $(OBJS) $(COMMON_DEPS)
clean:
rm -vrf *.o tests/*.o *.so *.dll benchmark-matmult common/build-info.cpp *.dot $(COV_TARGETS) $(BUILD_TARGETS) $(TEST_TARGETS)
rm -vrf *.o tests/*.o *.so *.a *.dll benchmark-matmult common/build-info.cpp *.dot $(COV_TARGETS) $(BUILD_TARGETS) $(TEST_TARGETS)
find examples pocs -type f -name "*.o" -delete
#
# Examples
#
# $< is the first prerequisite, i.e. the source file.
# Explicitly compile this to an object file so that it can be cached with ccache.
# The source file is then filtered out from $^ (the list of all prerequisites) and the object file is added instead.
# Helper function that replaces .c, .cpp, and .cu file endings with .o:
GET_OBJ_FILE = $(patsubst %.c,%.o,$(patsubst %.cpp,%.o,$(patsubst %.cu,%.o,$(1))))
main: examples/main/main.cpp ggml.o llama.o $(COMMON_DEPS) console.o grammar-parser.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
@echo
@echo '==== Run ./main -h for help. ===='
@echo
infill: examples/infill/infill.cpp ggml.o llama.o $(COMMON_DEPS) console.o grammar-parser.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
simple: examples/simple/simple.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
tokenize: examples/tokenize/tokenize.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
batched: examples/batched/batched.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
batched-bench: examples/batched-bench/batched-bench.cpp build-info.o ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
quantize: examples/quantize/quantize.cpp build-info.o ggml.o llama.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
quantize-stats: examples/quantize-stats/quantize-stats.cpp build-info.o ggml.o llama.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
perplexity: examples/perplexity/perplexity.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
imatrix: examples/imatrix/imatrix.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
embedding: examples/embedding/embedding.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
save-load-state: examples/save-load-state/save-load-state.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
server: examples/server/server.cpp examples/server/oai.hpp examples/server/utils.hpp examples/server/httplib.h examples/server/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp examples/llava/clip.cpp examples/llava/clip.h common/stb_image.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
$(CXX) $(CXXFLAGS) -Iexamples/server $(filter-out %.h,$(filter-out %.hpp,$^)) -o $@ $(LDFLAGS) $(LWINSOCK2) -Wno-cast-qual
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) -c examples/llava/clip.cpp -o $(call GET_OBJ_FILE, examples/llava/clip.cpp) -Wno-cast-qual
$(CXX) $(CXXFLAGS) -Iexamples/server $(filter-out %.h %.hpp $< examples/llava/clip.cpp,$^) $(call GET_OBJ_FILE, $<) $(call GET_OBJ_FILE, examples/llava/clip.cpp) -o $@ $(LDFLAGS) $(LWINSOCK2)
gguf: examples/gguf/gguf.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
convert-llama2c-to-ggml: examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp ggml.o llama.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
llama-bench: examples/llama-bench/llama-bench.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
libllava.a: examples/llava/llava.cpp examples/llava/llava.h examples/llava/clip.cpp examples/llava/clip.h common/stb_image.h common/base64.hpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) -static -fPIC -c $< -o $@ -Wno-cast-qual
llava-cli: examples/llava/llava-cli.cpp examples/llava/clip.h examples/llava/clip.cpp examples/llava/llava.h examples/llava/llava.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -Wno-cast-qual
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) -c examples/llava/clip.cpp -o $(call GET_OBJ_FILE, examples/llava/clip.cpp) -Wno-cast-qual
$(CXX) $(CXXFLAGS) -c examples/llava/llava.cpp -o $(call GET_OBJ_FILE, examples/llava/llava.cpp)
$(CXX) $(CXXFLAGS) $(filter-out %.h $< examples/llava/clip.cpp examples/llava/llava.cpp,$^) $(call GET_OBJ_FILE, $<) $(call GET_OBJ_FILE, examples/llava/clip.cpp) $(call GET_OBJ_FILE, examples/llava/llava.cpp) -o $@ $(LDFLAGS)
baby-llama: examples/baby-llama/baby-llama.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
beam-search: examples/beam-search/beam-search.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
finetune: examples/finetune/finetune.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
export-lora: examples/export-lora/export-lora.cpp ggml.o common/common.h $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
speculative: examples/speculative/speculative.cpp ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
parallel: examples/parallel/parallel.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
lookahead: examples/lookahead/lookahead.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
lookup: examples/lookup/lookup.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
passkey: examples/passkey/passkey.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
ifeq ($(UNAME_S),Darwin)
swift: examples/batched.swift
@@ -686,7 +763,7 @@ swift: examples/batched.swift
endif
common/build-info.cpp: $(wildcard .git/index) scripts/build-info.sh
@sh scripts/build-info.sh $(CC) > $@.tmp
@sh scripts/build-info.sh "$(CC)" > $@.tmp
@if ! cmp -s $@.tmp $@; then \
mv $@.tmp $@; \
else \
@@ -703,7 +780,8 @@ build-info.o: common/build-info.cpp
tests: $(TEST_TARGETS)
benchmark-matmult: examples/benchmark/benchmark-matmult.cpp build-info.o ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
run-benchmark-matmult: benchmark-matmult
./$@
@@ -711,58 +789,76 @@ run-benchmark-matmult: benchmark-matmult
.PHONY: run-benchmark-matmult swift
vdot: pocs/vdot/vdot.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
q8dot: pocs/vdot/q8dot.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
tests/test-llama-grammar: tests/test-llama-grammar.cpp ggml.o grammar-parser.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
tests/test-grammar-parser: tests/test-grammar-parser.cpp ggml.o llama.o grammar-parser.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
tests/test-double-float: tests/test-double-float.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
tests/test-grad0: tests/test-grad0.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
tests/test-opt: tests/test-opt.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
tests/test-quantize-fns: tests/test-quantize-fns.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
tests/test-quantize-perf: tests/test-quantize-perf.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
tests/test-sampling: tests/test-sampling.cpp ggml.o llama.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
tests/test-tokenizer-0-falcon: tests/test-tokenizer-0-falcon.cpp ggml.o llama.o $(COMMON_DEPS) console.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
tests/test-tokenizer-0-llama: tests/test-tokenizer-0-llama.cpp ggml.o llama.o $(COMMON_DEPS) console.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
tests/test-tokenizer-1-bpe: tests/test-tokenizer-1-bpe.cpp ggml.o llama.o $(COMMON_DEPS) console.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
tests/test-tokenizer-1-llama: tests/test-tokenizer-1-llama.cpp ggml.o llama.o $(COMMON_DEPS) console.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
tests/test-rope: tests/test-rope.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
tests/test-c.o: tests/test-c.c llama.h
$(CC) $(CFLAGS) -c $(filter-out %.h,$^) -o $@
tests/test-backend-ops: tests/test-backend-ops.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
tests/test-model-load-cancel: tests/test-model-load-cancel.cpp ggml.o llama.o tests/get-model.cpp $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
tests/test-autorelease: tests/test-autorelease.cpp ggml.o llama.o tests/get-model.cpp $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)

View File

@@ -13,17 +13,31 @@ let package = Package(
products: [
.library(name: "llama", targets: ["llama"]),
],
dependencies: [
.package(url: "https://github.com/ggerganov/ggml.git", .branch("release"))
],
targets: [
.target(
name: "llama",
dependencies: ["ggml"],
path: ".",
exclude: ["ggml-metal.metal"],
exclude: [
"cmake",
"examples",
"scripts",
"models",
"tests",
"CMakeLists.txt",
"ggml-cuda.cu",
"ggml-cuda.h",
"Makefile"
],
sources: [
"ggml.c",
"llama.cpp",
"ggml-alloc.c",
"ggml-backend.c",
"ggml-quants.c",
"ggml-metal.m",
],
resources: [
.process("ggml-metal.metal")
],
publicHeadersPath: "spm-headers",
cSettings: [

494
README-sycl.md Normal file
View File

@@ -0,0 +1,494 @@
# llama.cpp for SYCL
- [Background](#background)
- [OS](#os)
- [Intel GPU](#intel-gpu)
- [Docker](#docker)
- [Linux](#linux)
- [Windows](#windows)
- [Environment Variable](#environment-variable)
- [Known Issue](#known-issue)
- [Q&A](#q&a)
- [Todo](#todo)
## Background
SYCL is a higher-level programming model to improve programming productivity on various hardware accelerators—such as CPUs, GPUs, and FPGAs. It is a single-source embedded domain-specific language based on pure C++17.
oneAPI is a specification that is open and standards-based, supporting multiple architecture types including but not limited to GPU, CPU, and FPGA. The spec has both direct programming and API-based programming paradigms.
Intel uses the SYCL as direct programming language to support CPU, GPUs and FPGAs.
To avoid to re-invent the wheel, this code refer other code paths in llama.cpp (like OpenBLAS, cuBLAS, CLBlast). We use a open-source tool [SYCLomatic](https://github.com/oneapi-src/SYCLomatic) (Commercial release [Intel® DPC++ Compatibility Tool](https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html)) migrate to SYCL.
The llama.cpp for SYCL is used to support Intel GPUs.
For Intel CPU, recommend to use llama.cpp for X86 (Intel MKL building).
## OS
|OS|Status|Verified|
|-|-|-|
|Linux|Support|Ubuntu 22.04, Fedora Silverblue 39|
|Windows|Support|Windows 11|
## Intel GPU
### Verified
|Intel GPU| Status | Verified Model|
|-|-|-|
|Intel Data Center Max Series| Support| Max 1550|
|Intel Data Center Flex Series| Support| Flex 170|
|Intel Arc Series| Support| Arc 770, 730M|
|Intel built-in Arc GPU| Support| built-in Arc GPU in Meteor Lake|
|Intel iGPU| Support| iGPU in i5-1250P, i7-1260P, i7-1165G7|
Note: If the EUs (Execution Unit) in iGPU is less than 80, the inference speed will be too slow to use.
### Memory
The memory is a limitation to run LLM on GPUs.
When run llama.cpp, there is print log to show the applied memory on GPU. You could know how much memory to be used in your case. Like `llm_load_tensors: buffer size = 3577.56 MiB`.
For iGPU, please make sure the shared memory from host memory is enough. For llama-2-7b.Q4_0, recommend the host memory is 8GB+.
For dGPU, please make sure the device memory is enough. For llama-2-7b.Q4_0, recommend the device memory is 4GB+.
## Docker
Note:
- Only docker on Linux is tested. Docker on WSL may not work.
- You may need to install Intel GPU driver on the host machine (See the [Linux](#linux) section to know how to do that)
### Build the image
You can choose between **F16** and **F32** build. F16 is faster for long-prompt inference.
```sh
# For F16:
#docker build -t llama-cpp-sycl --build-arg="LLAMA_SYCL_F16=ON" -f .devops/main-intel.Dockerfile .
# Or, for F32:
docker build -t llama-cpp-sycl -f .devops/main-intel.Dockerfile .
# Note: you can also use the ".devops/main-server.Dockerfile", which compiles the "server" example
```
### Run
```sh
# Firstly, find all the DRI cards:
ls -la /dev/dri
# Then, pick the card that you want to use.
# For example with "/dev/dri/card1"
docker run -it --rm -v "$(pwd):/app:Z" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card1:/dev/dri/card1 llama-cpp-sycl -m "/app/models/YOUR_MODEL_FILE" -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33
```
## Linux
### Setup Environment
1. Install Intel GPU driver.
a. Please install Intel GPU driver by official guide: [Install GPU Drivers](https://dgpu-docs.intel.com/driver/installation.html).
Note: for iGPU, please install the client GPU driver.
b. Add user to group: video, render.
```sh
sudo usermod -aG render username
sudo usermod -aG video username
```
Note: re-login to enable it.
c. Check
```sh
sudo apt install clinfo
sudo clinfo -l
```
Output (example):
```
Platform #0: Intel(R) OpenCL Graphics
`-- Device #0: Intel(R) Arc(TM) A770 Graphics
Platform #0: Intel(R) OpenCL HD Graphics
`-- Device #0: Intel(R) Iris(R) Xe Graphics [0x9a49]
```
2. Install Intel® oneAPI Base toolkit.
a. Please follow the procedure in [Get the Intel® oneAPI Base Toolkit ](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html).
Recommend to install to default folder: **/opt/intel/oneapi**.
Following guide use the default folder as example. If you use other folder, please modify the following guide info with your folder.
b. Check
```sh
source /opt/intel/oneapi/setvars.sh
sycl-ls
```
There should be one or more level-zero devices. Please confirm that at least one GPU is present, like **[ext_oneapi_level_zero:gpu:0]**.
Output (example):
```
[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.10.0.17_160000]
[opencl:cpu:1] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i7-13700K OpenCL 3.0 (Build 0) [2023.16.10.0.17_160000]
[opencl:gpu:2] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics OpenCL 3.0 NEO [23.30.26918.50]
[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Arc(TM) A770 Graphics 1.3 [1.3.26918]
```
2. Build locally:
Note:
- You can choose between **F16** and **F32** build. F16 is faster for long-prompt inference.
- By default, it will build for all binary files. It will take more time. To reduce the time, we recommend to build for **example/main** only.
```sh
mkdir -p build
cd build
source /opt/intel/oneapi/setvars.sh
# For FP16:
#cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON
# Or, for FP32:
cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
# Build example/main only
#cmake --build . --config Release --target main
# Or, build all binary
cmake --build . --config Release -v
cd ..
```
or
```sh
./examples/sycl/build.sh
```
### Run
1. Put model file to folder **models**
You could download [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) as example.
2. Enable oneAPI running environment
```
source /opt/intel/oneapi/setvars.sh
```
3. List device ID
Run without parameter:
```sh
./build/bin/ls-sycl-device
# or running the "main" executable and look at the output log:
./build/bin/main
```
Check the ID in startup log, like:
```
found 4 SYCL devices:
Device 0: Intel(R) Arc(TM) A770 Graphics, compute capability 1.3,
max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136
Device 1: Intel(R) FPGA Emulation Device, compute capability 1.2,
max compute_units 24, max work group size 67108864, max sub group size 64, global mem size 67065057280
Device 2: 13th Gen Intel(R) Core(TM) i7-13700K, compute capability 3.0,
max compute_units 24, max work group size 8192, max sub group size 64, global mem size 67065057280
Device 3: Intel(R) Arc(TM) A770 Graphics, compute capability 3.0,
max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136
```
|Attribute|Note|
|-|-|
|compute capability 1.3|Level-zero running time, recommended |
|compute capability 3.0|OpenCL running time, slower than level-zero in most cases|
4. Set device ID and execute llama.cpp
Set device ID = 0 by **GGML_SYCL_DEVICE=0**
```sh
GGML_SYCL_DEVICE=0 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33
```
or run by script:
```sh
./examples/sycl/run_llama2.sh
```
Note:
- By default, mmap is used to read model file. In some cases, it leads to the hang issue. Recommend to use parameter **--no-mmap** to disable mmap() to skip this issue.
5. Check the device ID in output
Like:
```
Using device **0** (Intel(R) Arc(TM) A770 Graphics) as main device
```
## Windows
### Setup Environment
1. Install Intel GPU driver.
Please install Intel GPU driver by official guide: [Install GPU Drivers](https://www.intel.com/content/www/us/en/products/docs/discrete-gpus/arc/software/drivers.html).
Note: **The driver is mandatory for compute function**.
2. Install Visual Studio.
Please install [Visual Studio](https://visualstudio.microsoft.com/) which impact oneAPI environment enabling in Windows.
3. Install Intel® oneAPI Base toolkit.
a. Please follow the procedure in [Get the Intel® oneAPI Base Toolkit ](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html).
Recommend to install to default folder: **/opt/intel/oneapi**.
Following guide uses the default folder as example. If you use other folder, please modify the following guide info with your folder.
b. Enable oneAPI running environment:
- In Search, input 'oneAPI'.
Search & open "Intel oneAPI command prompt for Intel 64 for Visual Studio 2022"
- In Run:
In CMD:
```
"C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64
```
c. Check GPU
In oneAPI command line:
```
sycl-ls
```
There should be one or more level-zero devices. Please confirm that at least one GPU is present, like **[ext_oneapi_level_zero:gpu:0]**.
Output (example):
```
[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.10.0.17_160000]
[opencl:cpu:1] Intel(R) OpenCL, 11th Gen Intel(R) Core(TM) i7-1185G7 @ 3.00GHz OpenCL 3.0 (Build 0) [2023.16.10.0.17_160000]
[opencl:gpu:2] Intel(R) OpenCL Graphics, Intel(R) Iris(R) Xe Graphics OpenCL 3.0 NEO [31.0.101.5186]
[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Iris(R) Xe Graphics 1.3 [1.3.28044]
```
4. Install cmake & make
a. Download & install cmake for Windows: https://cmake.org/download/
b. Download & install mingw-w64 make for Windows provided by w64devkit
- Download the latest fortran version of [w64devkit](https://github.com/skeeto/w64devkit/releases).
- Extract `w64devkit` on your pc.
- Add the **bin** folder path in the Windows system PATH environment, like `C:\xxx\w64devkit\bin\`.
### Build locally:
In oneAPI command line window:
```
mkdir -p build
cd build
@call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force
:: for FP16
:: faster for long-prompt inference
:: cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release -DLLAMA_SYCL_F16=ON
:: for FP32
cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release
:: build example/main only
:: make main
:: build all binary
make -j
cd ..
```
or
```
.\examples\sycl\win-build-sycl.bat
```
Note:
- By default, it will build for all binary files. It will take more time. To reduce the time, we recommend to build for **example/main** only.
### Run
1. Put model file to folder **models**
You could download [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) as example.
2. Enable oneAPI running environment
- In Search, input 'oneAPI'.
Search & open "Intel oneAPI command prompt for Intel 64 for Visual Studio 2022"
- In Run:
In CMD:
```
"C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64
```
3. List device ID
Run without parameter:
```
build\bin\ls-sycl-device.exe
or
build\bin\main.exe
```
Check the ID in startup log, like:
```
found 4 SYCL devices:
Device 0: Intel(R) Arc(TM) A770 Graphics, compute capability 1.3,
max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136
Device 1: Intel(R) FPGA Emulation Device, compute capability 1.2,
max compute_units 24, max work group size 67108864, max sub group size 64, global mem size 67065057280
Device 2: 13th Gen Intel(R) Core(TM) i7-13700K, compute capability 3.0,
max compute_units 24, max work group size 8192, max sub group size 64, global mem size 67065057280
Device 3: Intel(R) Arc(TM) A770 Graphics, compute capability 3.0,
max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136
```
|Attribute|Note|
|-|-|
|compute capability 1.3|Level-zero running time, recommended |
|compute capability 3.0|OpenCL running time, slower than level-zero in most cases|
4. Set device ID and execute llama.cpp
Set device ID = 0 by **set GGML_SYCL_DEVICE=0**
```
set GGML_SYCL_DEVICE=0
build\bin\main.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0
```
or run by script:
```
.\examples\sycl\win-run-llama2.bat
```
Note:
- By default, mmap is used to read model file. In some cases, it leads to the hang issue. Recommend to use parameter **--no-mmap** to disable mmap() to skip this issue.
5. Check the device ID in output
Like:
```
Using device **0** (Intel(R) Arc(TM) A770 Graphics) as main device
```
## Environment Variable
#### Build
|Name|Value|Function|
|-|-|-|
|LLAMA_SYCL|ON (mandatory)|Enable build with SYCL code path. <br>For FP32/FP16, LLAMA_SYCL=ON is mandatory.|
|LLAMA_SYCL_F16|ON (optional)|Enable FP16 build with SYCL code path. Faster for long-prompt inference. <br>For FP32, not set it.|
|CMAKE_C_COMPILER|icx|Use icx compiler for SYCL code path|
|CMAKE_CXX_COMPILER|icpx (Linux), icx (Windows)|use icpx/icx for SYCL code path|
#### Running
|Name|Value|Function|
|-|-|-|
|GGML_SYCL_DEVICE|0 (default) or 1|Set the device id used. Check the device ids by default running output|
|GGML_SYCL_DEBUG|0 (default) or 1|Enable log function by macro: GGML_SYCL_DEBUG|
## Known Issue
- Hang during startup
llama.cpp use mmap as default way to read model file and copy to GPU. In some system, memcpy will be abnormal and block.
Solution: add **--no-mmap** or **--mmap 0**.
## Q&A
- Error: `error while loading shared libraries: libsycl.so.7: cannot open shared object file: No such file or directory`.
Miss to enable oneAPI running environment.
Install oneAPI base toolkit and enable it by: `source /opt/intel/oneapi/setvars.sh`.
- In Windows, no result, not error.
Miss to enable oneAPI running environment.
- Meet compile error.
Remove folder **build** and try again.
- I can **not** see **[ext_oneapi_level_zero:gpu:0]** afer install GPU driver in Linux.
Please run **sudo sycl-ls**.
If you see it in result, please add video/render group to your ID:
```
sudo usermod -aG render username
sudo usermod -aG video username
```
Then **relogin**.
If you do not see it, please check the installation GPU steps again.
## Todo
- Support multiple cards.

266
README.md
View File

@@ -6,10 +6,13 @@
[Roadmap](https://github.com/users/ggerganov/projects/7) / [Project status](https://github.com/ggerganov/llama.cpp/discussions/3471) / [Manifesto](https://github.com/ggerganov/llama.cpp/discussions/205) / [ggml](https://github.com/ggerganov/ggml)
Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others) in pure C/C++
### Hot topics
- Remove LLAMA_MAX_DEVICES and LLAMA_SUPPORTS_GPU_OFFLOAD: https://github.com/ggerganov/llama.cpp/pull/5240
- Incoming backends: https://github.com/ggerganov/llama.cpp/discussions/5138
- [SYCL backend](README-sycl.md) is ready (1/28/2024), support Linux/Windows in Intel GPUs (iGPU, Arc/Flex/Max series)
- New SOTA quantized models, including pure 2-bits: https://huggingface.co/ikawrakow
- Collecting Apple Silicon performance stats:
- M-series: https://github.com/ggerganov/llama.cpp/discussions/4167
@@ -30,17 +33,14 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
<li><a href="#get-the-code">Get the Code</a></li>
<li><a href="#build">Build</a></li>
<li><a href="#blas-build">BLAS Build</a></li>
<li><a href="#prepare-data--run">Prepare Data & Run</a></li>
<li><a href="#prepare-and-quantize">Prepare and Quantize</a></li>
<li><a href="#run-the-quantized-model">Run the quantized model</a></li>
<li><a href="#memorydisk-requirements">Memory/Disk Requirements</a></li>
<li><a href="#quantization">Quantization</a></li>
<li><a href="#interactive-mode">Interactive mode</a></li>
<li><a href="#constrained-output-with-grammars">Constrained output with grammars</a></li>
<li><a href="#instruction-mode-with-alpaca">Instruction mode with Alpaca</a></li>
<li><a href="#using-openllama">Using OpenLLaMA</a></li>
<li><a href="#using-gpt4all">Using GPT4All</a></li>
<li><a href="#using-pygmalion-7b--metharme-7b">Using Pygmalion 7B & Metharme 7B</a></li>
<li><a href="#obtaining-the-facebook-llama-original-model-and-stanford-alpaca-model-data">Obtaining the Facebook LLaMA original model and Stanford Alpaca model data</a></li>
<li><a href="#verifying-the-model-files">Verifying the model files</a></li>
<li><a href="#instruct-mode">Instruct mode</a></li>
<li><a href="#obtaining-and-using-the-facebook-llama-2-model">Obtaining and using the Facebook LLaMA 2 model</a></li>
<li><a href="#seminal-papers-and-background-on-the-models">Seminal papers and background on the models</a></li>
<li><a href="#perplexity-measuring-model-quality">Perplexity (measuring model quality)</a></li>
<li><a href="#android">Android</a></li>
@@ -55,18 +55,20 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
## Description
The main goal of `llama.cpp` is to run the LLaMA model using 4-bit integer quantization on a MacBook
The main goal of `llama.cpp` is to enable LLM inference with minimal setup and state-of-the-art performance on a wide
variety of hardware - locally and in the cloud.
- Plain C/C++ implementation without dependencies
- Apple silicon first-class citizen - optimized via ARM NEON, Accelerate and Metal frameworks
- Plain C/C++ implementation without any dependencies
- Apple silicon is a first-class citizen - optimized via ARM NEON, Accelerate and Metal frameworks
- AVX, AVX2 and AVX512 support for x86 architectures
- Mixed F16 / F32 precision
- 2-bit, 3-bit, 4-bit, 5-bit, 6-bit and 8-bit integer quantization support
- CUDA, Metal, OpenCL, SYCL GPU backend support
- 2-bit, 3-bit, 4-bit, 5-bit, 6-bit, and 8-bit integer quantization for faster inference and reduced memory use
- Custom CUDA kernels for running LLMs on NVIDIA GPUs (support for AMD GPUs via HIP)
- Vulkan, SYCL, and (partial) OpenCL backend support
- CPU+GPU hybrid inference to partially accelerate models larger than the total VRAM capacity
The original implementation of `llama.cpp` was [hacked in an evening](https://github.com/ggerganov/llama.cpp/issues/33#issuecomment-1465108022).
Since then, the project has improved significantly thanks to many contributions. This project is mainly for educational purposes and serves
as the main playground for developing new features for the [ggml](https://github.com/ggerganov/ggml) library.
Since its [inception](https://github.com/ggerganov/llama.cpp/issues/33#issuecomment-1465108022), the project has
improved significantly thanks to many contributions. It is the main playground for developing new features for the
[ggml](https://github.com/ggerganov/ggml) library.
**Supported platforms:**
@@ -74,44 +76,46 @@ as the main playground for developing new features for the [ggml](https://github
- [X] Linux
- [X] Windows (via CMake)
- [X] Docker
- [X] FreeBSD
**Supported models:**
Typically finetunes of the base models below are supported as well.
- [X] LLaMA 🦙
- [x] LLaMA 2 🦙🦙
- [X] [Mistral 7B](https://huggingface.co/mistralai/Mistral-7B-v0.1)
- [x] [Mixtral MoE](https://huggingface.co/models?search=mistral-ai/Mixtral)
- [X] Falcon
- [X] [Alpaca](https://github.com/ggerganov/llama.cpp#instruction-mode-with-alpaca)
- [X] [GPT4All](https://github.com/ggerganov/llama.cpp#using-gpt4all)
- [X] [Chinese LLaMA / Alpaca](https://github.com/ymcui/Chinese-LLaMA-Alpaca) and [Chinese LLaMA-2 / Alpaca-2](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2)
- [X] [Vigogne (French)](https://github.com/bofenghuang/vigogne)
- [X] [Vicuna](https://github.com/ggerganov/llama.cpp/discussions/643#discussioncomment-5533894)
- [X] [Koala](https://bair.berkeley.edu/blog/2023/04/03/koala/)
- [X] [OpenBuddy 🐶 (Multilingual)](https://github.com/OpenBuddy/OpenBuddy)
- [X] [Pygmalion/Metharme](#using-pygmalion-7b--metharme-7b)
- [X] [WizardLM](https://github.com/nlpxucan/WizardLM)
- [X] [Baichuan 1 & 2](https://huggingface.co/models?search=baichuan-inc/Baichuan) + [derivations](https://huggingface.co/hiyouga/baichuan-7b-sft)
- [X] [Aquila 1 & 2](https://huggingface.co/models?search=BAAI/Aquila)
- [X] [Starcoder models](https://github.com/ggerganov/llama.cpp/pull/3187)
- [X] [Mistral AI v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
- [X] [Refact](https://huggingface.co/smallcloudai/Refact-1_6B-fim)
- [X] [Persimmon 8B](https://github.com/ggerganov/llama.cpp/pull/3410)
- [X] [MPT](https://github.com/ggerganov/llama.cpp/pull/3417)
- [X] [Bloom](https://github.com/ggerganov/llama.cpp/pull/3553)
- [x] [Yi models](https://huggingface.co/models?search=01-ai/Yi)
- [X] [StableLM-3b-4e1t](https://github.com/ggerganov/llama.cpp/pull/3586)
- [X] [StableLM models](https://huggingface.co/stabilityai)
- [x] [Deepseek models](https://huggingface.co/models?search=deepseek-ai/deepseek)
- [x] [Qwen models](https://huggingface.co/models?search=Qwen/Qwen)
- [x] [Mixtral MoE](https://huggingface.co/models?search=mistral-ai/Mixtral)
- [x] [PLaMo-13B](https://github.com/ggerganov/llama.cpp/pull/3557)
- [x] [Phi models](https://huggingface.co/models?search=microsoft/phi)
- [x] [GPT-2](https://huggingface.co/gpt2)
- [x] [Orion 14B](https://github.com/ggerganov/llama.cpp/pull/5118)
- [x] [InternLM2](https://huggingface.co/models?search=internlm2)
- [x] [CodeShell](https://github.com/WisdomShell/codeshell)
**Multimodal models:**
- [x] [Llava 1.5 models](https://huggingface.co/collections/liuhaotian/llava-15-653aac15d994e992e2677a7e)
- [x] [Bakllava](https://huggingface.co/models?search=SkunkworksAI/Bakllava)
- [x] [LLaVA 1.5 models](https://huggingface.co/collections/liuhaotian/llava-15-653aac15d994e992e2677a7e)
- [x] [BakLLaVA](https://huggingface.co/models?search=SkunkworksAI/Bakllava)
- [x] [Obsidian](https://huggingface.co/NousResearch/Obsidian-3B-V0.5)
- [x] [ShareGPT4V](https://huggingface.co/models?search=Lin-Chen/ShareGPT4V)
- [x] [MobileVLM 1.7B/3B models](https://huggingface.co/models?search=mobileVLM)
- [x] [Yi-VL](https://huggingface.co/models?search=Yi-VL)
**Bindings:**
@@ -120,6 +124,7 @@ as the main playground for developing new features for the [ggml](https://github
- Go: [go-skynet/go-llama.cpp](https://github.com/go-skynet/go-llama.cpp)
- Node.js: [withcatai/node-llama-cpp](https://github.com/withcatai/node-llama-cpp)
- JS/TS (llama.cpp server client): [lgrammel/modelfusion](https://modelfusion.dev/integration/model-provider/llamacpp)
- JavaScript/Wasm (works in browser): [tangledgroup/llama-cpp-wasm](https://github.com/tangledgroup/llama-cpp-wasm)
- Ruby: [yoshoku/llama_cpp.rb](https://github.com/yoshoku/llama_cpp.rb)
- Rust (nicer API): [mdrokz/rust-llama.cpp](https://github.com/mdrokz/rust-llama.cpp)
- Rust (more direct bindings): [utilityai/llama-cpp-rs](https://github.com/utilityai/llama-cpp-rs)
@@ -133,19 +138,30 @@ as the main playground for developing new features for the [ggml](https://github
**UI:**
- [nat/openplayground](https://github.com/nat/openplayground)
- [oobabooga/text-generation-webui](https://github.com/oobabooga/text-generation-webui)
- [withcatai/catai](https://github.com/withcatai/catai)
- [semperai/amica](https://github.com/semperai/amica)
- [psugihara/FreeChat](https://github.com/psugihara/FreeChat)
- [ptsochantaris/emeltal](https://github.com/ptsochantaris/emeltal)
Unless otherwise noted these projects are open-source with permissive licensing:
- [iohub/collama](https://github.com/iohub/coLLaMA)
- [janhq/jan](https://github.com/janhq/jan) (AGPL)
- [nat/openplayground](https://github.com/nat/openplayground)
- [Faraday](https://faraday.dev/) (proprietary)
- [LMStudio](https://lmstudio.ai/) (proprietary)
- [LostRuins/koboldcpp](https://github.com/LostRuins/koboldcpp) (AGPL)
- [Mozilla-Ocho/llamafile](https://github.com/Mozilla-Ocho/llamafile)
- [nomic-ai/gpt4all](https://github.com/nomic-ai/gpt4all)
- [ollama/ollama](https://github.com/ollama/ollama)
- [oobabooga/text-generation-webui](https://github.com/oobabooga/text-generation-webui) (AGPL)
- [psugihara/FreeChat](https://github.com/psugihara/FreeChat)
- [cztomsik/ava](https://github.com/cztomsik/ava) (MIT)
- [ptsochantaris/emeltal](https://github.com/ptsochantaris/emeltal)
- [pythops/tenere](https://github.com/pythops/tenere) (AGPL)
- [semperai/amica](https://github.com/semperai/amica)
- [withcatai/catai](https://github.com/withcatai/catai)
---
Here is a typical run using LLaMA v2 13B on M2 Ultra:
```java
```
$ make -j && ./main -m models/llama-13b-v2/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e
I llama.cpp build info:
I UNAME_S: Darwin
@@ -229,7 +245,7 @@ https://user-images.githubusercontent.com/1991296/224442907-7693d4be-acaa-4e01-8
## Usage
Here are the end-to-end binary build and model conversion steps for the LLaMA-7B model.
Here are the end-to-end binary build and model conversion steps for most supported models.
### Get the Code
@@ -390,28 +406,28 @@ Building the program with BLAS support may lead to some performance improvements
Check [BLIS.md](docs/BLIS.md) for more information.
- #### SYCL
SYCL is a higher-level programming model to improve programming productivity on various hardware accelerators.
llama.cpp based on SYCL is used to **support Intel GPU** (Data Center Max series, Flex series, Arc series, Built-in GPU and iGPU).
For detailed info, please refer to [llama.cpp for SYCL](README-sycl.md).
- #### Intel oneMKL
Building through oneAPI compilers will make avx_vnni instruction set available for intel processors that do not support avx512 and avx512_vnni. Please note that this build config **does not support Intel GPU**. For Intel GPU support, please refer to [llama.cpp for SYCL](./README-sycl.md).
- Using manual oneAPI installation:
By default, `LLAMA_BLAS_VENDOR` is set to `Generic`, so if you already sourced intel environment script and assign `-DLLAMA_BLAS=ON` in cmake, the mkl version of Blas will automatically been selected. Otherwise please install oneAPI and follow the below steps:
```bash
mkdir build
cd build
source /opt/intel/oneapi/setvars.sh # You can skip this step if in oneapi-runtime docker image, only required for manual installation
source /opt/intel/oneapi/setvars.sh # You can skip this step if in oneapi-basekit docker image, only required for manual installation
cmake .. -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=Intel10_64lp -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_NATIVE=ON
cmake --build . --config Release
```
- Using oneAPI docker image:
If you do not want to source the environment vars and install oneAPI manually, you can also build the code using intel docker container: [oneAPI-runtime](https://hub.docker.com/r/intel/oneapi-runtime)
```bash
mkdir build
cd build
cmake .. -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=Intel10_64lp -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_NATIVE=ON
cmake --build . --config Release
```
Building through oneAPI compilers will make avx_vnni instruction set available for intel processors that do not support avx512 and avx512_vnni.
If you do not want to source the environment vars and install oneAPI manually, you can also build the code using intel docker container: [oneAPI-basekit](https://hub.docker.com/r/intel/oneapi-basekit). Then, you can use the commands given above.
Check [Optimizing and Running LLaMA2 on Intel® CPU](https://www.intel.com/content/www/us/en/content-details/791610/optimizing-and-running-llama2-on-intel-cpu.html) for more information.
@@ -598,43 +614,87 @@ Building the program with BLAS support may lead to some performance improvements
You can get a list of platforms and devices from the `clinfo -l` command, etc.
- #### SYCL
- #### Vulkan
SYCL is a higher-level programming model to improve programming productivity on various hardware accelerators.
**With docker**:
llama.cpp based on SYCL is used to support Intel GPU (Data Center Max series, Flex series, Arc series, Built-in GPU and iGPU).
You don't need to install Vulkan SDK. It will be installed inside the container.
For detailed info, please refer to [llama.cpp for SYCL](README_sycl.md).
```sh
# Build the image
docker build -t llama-cpp-vulkan -f .devops/main-vulkan.Dockerfile .
# Then, use it:
docker run -it --rm -v "$(pwd):/app:Z" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card1:/dev/dri/card1 llama-cpp-vulkan -m "/app/models/YOUR_MODEL_FILE" -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33
```
### Prepare Data & Run
**Without docker**:
Firstly, you need to make sure you have installed [Vulkan SDK](https://vulkan.lunarg.com/doc/view/latest/linux/getting_started_ubuntu.html)
For example, on Ubuntu 22.04 (jammy), use the command below:
```bash
wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add -
wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list
apt update -y
apt-get install -y vulkan-sdk
# To verify the installation, use the command below:
vulkaninfo
```
Alternatively your package manager might be able to provide the appropiate libraries. For example for Ubuntu 22.04 you can install `libvulkan-dev` instead.
Then, build llama.cpp using the cmake command below:
```bash
mkdir -p build
cd build
cmake .. -DLLAMA_VULKAN=1
cmake --build . --config Release
# Test the output binary (with "-ngl 33" to offload all layers to GPU)
./bin/main -m "PATH_TO_MODEL" -p "Hi you how are you" -n 50 -e -ngl 33 -t 4
# You should see in the output, ggml_vulkan detected your GPU. For example:
# ggml_vulkan: Using Intel(R) Graphics (ADL GT2) | uma: 1 | fp16: 1 | warp size: 32
```
### Prepare and Quantize
To obtain the official LLaMA 2 weights please see the <a href="#obtaining-and-using-the-facebook-llama-2-model">Obtaining and using the Facebook LLaMA 2 model</a> section. There is also a large selection of pre-quantized `gguf` models available on Hugging Face.
```bash
# obtain the original LLaMA model weights and place them in ./models
# obtain the official LLaMA model weights and place them in ./models
ls ./models
65B 30B 13B 7B tokenizer_checklist.chk tokenizer.model
llama-2-7b tokenizer_checklist.chk tokenizer.model
# [Optional] for models using BPE tokenizers
ls ./models
65B 30B 13B 7B vocab.json
<folder containing weights and tokenizer json> vocab.json
# [Optional] for PyTorch .bin models like Mistral-7B
ls ./models
<folder containing weights and tokenizer json>
# install Python dependencies
python3 -m pip install -r requirements.txt
# convert the 7B model to ggml FP16 format
python3 convert.py models/7B/
# convert the model to ggml FP16 format
python3 convert.py models/mymodel/
# [Optional] for models using BPE tokenizers
python convert.py models/7B/ --vocabtype bpe
python convert.py models/mymodel/ --vocab-type bpe
# quantize the model to 4-bits (using q4_0 method)
./quantize ./models/7B/ggml-model-f16.gguf ./models/7B/ggml-model-q4_0.gguf q4_0
# quantize the model to 4-bits (using Q4_K_M method)
./quantize ./models/mymodel/ggml-model-f16.gguf ./models/mymodel/ggml-model-Q4_K_M.gguf Q4_K_M
# update the gguf filetype to current if older version is unsupported by another application
./quantize ./models/7B/ggml-model-q4_0.gguf ./models/7B/ggml-model-q4_0-v2.gguf COPY
# update the gguf filetype to current version if older version is now unsupported
./quantize ./models/mymodel/ggml-model-Q4_K_M.gguf ./models/mymodel/ggml-model-Q4_K_M-v2.gguf COPY
```
### Run the quantized model
# run the inference
./main -m ./models/7B/ggml-model-q4_0.gguf -n 128
```bash
# start inference on a gguf model
./main -m ./models/mymodel/ggml-model-Q4_K_M.gguf -n 128
```
When running the larger models, make sure you have enough disk space to store all the intermediate files.
@@ -655,7 +715,7 @@ From the unzipped folder, open a terminal/cmd window here and place a pre-conver
As the models are currently fully loaded into memory, you will need adequate disk space to save them and sufficient RAM to load them. At the moment, memory and disk requirements are the same.
| Model | Original size | Quantized size (4-bit) |
| Model | Original size | Quantized size (Q4_0) |
|------:|--------------:|-----------------------:|
| 7B | 13 GB | 3.9 GB |
| 13B | 24 GB | 7.8 GB |
@@ -682,9 +742,21 @@ Several quantization methods are supported. They differ in the resulting model d
| 13B | bits/weight | 16.0 | 4.5 | 5.0 | 5.5 | 6.0 | 8.5 |
- [k-quants](https://github.com/ggerganov/llama.cpp/pull/1684)
- recent k-quants improvements
- recent k-quants improvements and new i-quants
- [#2707](https://github.com/ggerganov/llama.cpp/pull/2707)
- [#2807](https://github.com/ggerganov/llama.cpp/pull/2807)
- [#4773 - 2-bit i-quants (inference)](https://github.com/ggerganov/llama.cpp/pull/4773)
- [#4856 - 2-bit i-quants (inference)](https://github.com/ggerganov/llama.cpp/pull/4856)
- [#4861 - importance matrix](https://github.com/ggerganov/llama.cpp/pull/4861)
- [#4872 - MoE models](https://github.com/ggerganov/llama.cpp/pull/4872)
- [#4897 - 2-bit quantization](https://github.com/ggerganov/llama.cpp/pull/4897)
- [#4930 - imatrix for all k-quants](https://github.com/ggerganov/llama.cpp/pull/4930)
- [#4951 - imatrix on the GPU](https://github.com/ggerganov/llama.cpp/pull/4957)
- [#4969 - imatrix for legacy quants](https://github.com/ggerganov/llama.cpp/pull/4969)
- [#4996 - k-qunats tuning](https://github.com/ggerganov/llama.cpp/pull/4996)
- [#5060 - Q3_K_XS](https://github.com/ggerganov/llama.cpp/pull/5060)
- [#5196 - 3-bit i-quants](https://github.com/ggerganov/llama.cpp/pull/5196)
- [quantization tuning](https://github.com/ggerganov/llama.cpp/pull/5320), [another one](https://github.com/ggerganov/llama.cpp/pull/5334), and [another one](https://github.com/ggerganov/llama.cpp/pull/5361)
### Perplexity (measuring model quality)
@@ -759,9 +831,9 @@ The `grammars/` folder contains a handful of sample grammars. To write your own,
For authoring more complex JSON grammars, you can also check out https://grammar.intrinsiclabs.ai/, a browser app that lets you write TypeScript interfaces which it compiles to GBNF grammars that you can save for local use. Note that the app is built and maintained by members of the community, please file any issues or FRs on [its repo](http://github.com/intrinsiclabsai/gbnfgen) and not this one.
### Instruction mode with Alpaca
### Instruct mode
1. First, download the `ggml` Alpaca model into the `./models` folder
1. First, download and place the `ggml` model into the `./models` folder
2. Run the `main` tool like this:
```
@@ -787,50 +859,6 @@ cadaver, cauliflower, cabbage (vegetable), catalpa (tree) and Cailleach.
>
```
### Using [OpenLLaMA](https://github.com/openlm-research/open_llama)
OpenLLaMA is an openly licensed reproduction of Meta's original LLaMA model. It uses the same architecture and is a drop-in replacement for the original LLaMA weights.
- Download the [3B](https://huggingface.co/openlm-research/open_llama_3b), [7B](https://huggingface.co/openlm-research/open_llama_7b), or [13B](https://huggingface.co/openlm-research/open_llama_13b) model from Hugging Face.
- Convert the model to ggml FP16 format using `python convert.py <path to OpenLLaMA directory>`
### Using [GPT4All](https://github.com/nomic-ai/gpt4all)
*Note: these instructions are likely obsoleted by the GGUF update*
- Obtain the `tokenizer.model` file from LLaMA model and put it to `models`
- Obtain the `added_tokens.json` file from Alpaca model and put it to `models`
- Obtain the `gpt4all-lora-quantized.bin` file from GPT4All model and put it to `models/gpt4all-7B`
- It is distributed in the old `ggml` format which is now obsoleted
- You have to convert it to the new format using `convert.py`:
```bash
python3 convert.py models/gpt4all-7B/gpt4all-lora-quantized.bin
```
- You can now use the newly generated `models/gpt4all-7B/ggml-model-q4_0.bin` model in exactly the same way as all other models
- The newer GPT4All-J model is not yet supported!
### Using Pygmalion 7B & Metharme 7B
- Obtain the [LLaMA weights](#obtaining-the-facebook-llama-original-model-and-stanford-alpaca-model-data)
- Obtain the [Pygmalion 7B](https://huggingface.co/PygmalionAI/pygmalion-7b/) or [Metharme 7B](https://huggingface.co/PygmalionAI/metharme-7b) XOR encoded weights
- Convert the LLaMA model with [the latest HF convert script](https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py)
- Merge the XOR files with the converted LLaMA weights by running the [xor_codec](https://huggingface.co/PygmalionAI/pygmalion-7b/blob/main/xor_codec.py) script
- Convert to `ggml` format using the `convert.py` script in this repo:
```bash
python3 convert.py pygmalion-7b/ --outtype q4_1
```
> The Pygmalion 7B & Metharme 7B weights are saved in [bfloat16](https://en.wikipedia.org/wiki/Bfloat16_floating-point_format) precision. If you wish to convert to `ggml` without quantizating, please specify the `--outtype` as `f32` instead of `f16`.
### Obtaining the Facebook LLaMA original model and Stanford Alpaca model data
- **Under no circumstances should IPFS, magnet links, or any other links to model downloads be shared anywhere in this repository, including in issues, discussions, or pull requests. They will be immediately deleted.**
- The LLaMA models are officially distributed by Facebook and will **never** be provided through this repository.
- Refer to [Facebook's LLaMA repository](https://github.com/facebookresearch/llama/pull/73/files) if you need to request access to the model data.
### Obtaining and using the Facebook LLaMA 2 model
- Refer to [Facebook's LLaMA download page](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) if you want to access the model data.
@@ -842,20 +870,6 @@ python3 convert.py pygmalion-7b/ --outtype q4_1
- [LLaMA 2 13B chat](https://huggingface.co/TheBloke/Llama-2-13B-chat-GGUF)
- [LLaMA 2 70B chat](https://huggingface.co/TheBloke/Llama-2-70B-chat-GGUF)
### Verifying the model files
Please verify the [sha256 checksums](SHA256SUMS) of all downloaded model files to confirm that you have the correct model data files before creating an issue relating to your model files.
- The following python script will verify if you have all possible latest files in your self-installed `./models` subdirectory:
```bash
# run the verification script
./scripts/verify-checksum-models.py
```
- On linux or macOS it is also possible to run the following commands to verify if you have all possible latest files in your self-installed `./models` subdirectory:
- On Linux: `sha256sum --ignore-missing -c SHA256SUMS`
- on macOS: `shasum -a 256 --ignore-missing -c SHA256SUMS`
### Seminal papers and background on the models
If your issue is with model generation quality, then please at least scan the following links and papers to understand the limitations of LLaMA models. This is especially important when choosing an appropriate model size and appreciating both the significant and subtle differences between LLaMA models and ChatGPT:

View File

@@ -1,252 +0,0 @@
# llama.cpp for SYCL
[Background](#background)
[OS](#os)
[Intel GPU](#intel-gpu)
[Linux](#linux)
[Environment Variable](#environment-variable)
[Known Issue](#known-issue)
[Todo](#todo)
## Background
SYCL is a higher-level programming model to improve programming productivity on various hardware accelerators—such as CPUs, GPUs, and FPGAs. It is a single-source embedded domain-specific language based on pure C++17.
oneAPI is a specification that is open and standards-based, supporting multiple architecture types including but not limited to GPU, CPU, and FPGA. The spec has both direct programming and API-based programming paradigms.
Intel uses the SYCL as direct programming language to support CPU, GPUs and FPGAs.
To avoid to re-invent the wheel, this code refer other code paths in llama.cpp (like OpenBLAS, cuBLAS, CLBlast). We use a open-source tool [SYCLomatic](https://github.com/oneapi-src/SYCLomatic) (Commercial release [Intel® DPC++ Compatibility Tool](https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html)) migrate to SYCL.
The llama.cpp for SYCL is used to support Intel GPUs.
For Intel CPU, recommend to use llama.cpp for X86 (Intel MKL building).
## OS
|OS|Status|Verified|
|-|-|-|
|Linux|Support|Ubuntu 22.04|
|Windows|Ongoing| |
## Intel GPU
|Intel GPU| Status | Verified Model|
|-|-|-|
|Intel Data Center Max Series| Support| Max 1550|
|Intel Data Center Flex Series| Support| Flex 170|
|Intel Arc Series| Support| Arc 770|
|Intel built-in Arc GPU| Support| built-in Arc GPU in Meteor Lake|
|Intel iGPU| Support| iGPU in i5-1250P, i7-1165G7|
## Linux
### Setup Environment
1. Install Intel GPU driver.
a. Please install Intel GPU driver by official guide: [Install GPU Drivers](https://dgpu-docs.intel.com/driver/installation.html).
Note: for iGPU, please install the client GPU driver.
b. Add user to group: video, render.
```
sudo usermod -aG render username
sudo usermod -aG video username
```
Note: re-login to enable it.
c. Check
```
sudo apt install clinfo
sudo clinfo -l
```
Output (example):
```
Platform #0: Intel(R) OpenCL Graphics
`-- Device #0: Intel(R) Arc(TM) A770 Graphics
Platform #0: Intel(R) OpenCL HD Graphics
`-- Device #0: Intel(R) Iris(R) Xe Graphics [0x9a49]
```
2. Install Intel® oneAPI Base toolkit.
a. Please follow the procedure in [Get the Intel® oneAPI Base Toolkit ](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html).
Recommend to install to default folder: **/opt/intel/oneapi**.
Following guide use the default folder as example. If you use other folder, please modify the following guide info with your folder.
b. Check
```
source /opt/intel/oneapi/setvars.sh
sycl-ls
```
There should be one or more level-zero devices. Like **[ext_oneapi_level_zero:gpu:0]**.
Output (example):
```
[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.10.0.17_160000]
[opencl:cpu:1] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i7-13700K OpenCL 3.0 (Build 0) [2023.16.10.0.17_160000]
[opencl:gpu:2] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics OpenCL 3.0 NEO [23.30.26918.50]
[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Arc(TM) A770 Graphics 1.3 [1.3.26918]
```
2. Build locally:
```
mkdir -p build
cd build
source /opt/intel/oneapi/setvars.sh
#for FP16
#cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON # faster for long-prompt inference
#for FP32
cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
#build example/main only
#cmake --build . --config Release --target main
#build all binary
cmake --build . --config Release -v
```
or
```
./examples/sycl/build.sh
```
Note:
- By default, it will build for all binary files. It will take more time. To reduce the time, we recommend to build for **example/main** only.
### Run
1. Put model file to folder **models**
2. Enable oneAPI running environment
```
source /opt/intel/oneapi/setvars.sh
```
3. List device ID
Run without parameter:
```
./build/bin/ls-sycl-device
or
./build/bin/main
```
Check the ID in startup log, like:
```
found 4 SYCL devices:
Device 0: Intel(R) Arc(TM) A770 Graphics, compute capability 1.3,
max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136
Device 1: Intel(R) FPGA Emulation Device, compute capability 1.2,
max compute_units 24, max work group size 67108864, max sub group size 64, global mem size 67065057280
Device 2: 13th Gen Intel(R) Core(TM) i7-13700K, compute capability 3.0,
max compute_units 24, max work group size 8192, max sub group size 64, global mem size 67065057280
Device 3: Intel(R) Arc(TM) A770 Graphics, compute capability 3.0,
max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136
```
|Attribute|Note|
|-|-|
|compute capability 1.3|Level-zero running time, recommended |
|compute capability 3.0|OpenCL running time, slower than level-zero in most cases|
4. Set device ID and execute llama.cpp
Set device ID = 0 by **GGML_SYCL_DEVICE=0**
```
GGML_SYCL_DEVICE=0 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33
```
or run by script:
```
./examples/sycl/run_llama2.sh
```
Note:
- By default, mmap is used to read model file. In some cases, it leads to the hang issue. Recommend to use parameter **--no-mmap** to disable mmap() to skip this issue.
5. Check the device ID in output
Like
```
Using device **0** (Intel(R) Arc(TM) A770 Graphics) as main device
```
## Environment Variable
#### Build
|Name|Value|Function|
|-|-|-|
|LLAMA_SYCL|ON (mandatory)|Enable build with SYCL code path. <br>For FP32/FP16, LLAMA_SYCL=ON is mandatory.|
|LLAMA_SYCL_F16|ON (optional)|Enable FP16 build with SYCL code path. Faster for long-prompt inference. <br>For FP32, not set it.|
|CMAKE_C_COMPILER|icx|Use icx compiler for SYCL code path|
|CMAKE_CXX_COMPILER|icpx|use icpx for SYCL code path|
#### Running
|Name|Value|Function|
|-|-|-|
|GGML_SYCL_DEVICE|0 (default) or 1|Set the device id used. Check the device ids by default running output|
|GGML_SYCL_DEBUG|0 (default) or 1|Enable log function by macro: GGML_SYCL_DEBUG|
## Known Issue
- Error: `error while loading shared libraries: libsycl.so.7: cannot open shared object file: No such file or directory`.
Miss to enable oneAPI running environment.
Install oneAPI base toolkit and enable it by: `source /opt/intel/oneapi/setvars.sh`.
- Hang during startup
llama.cpp use mmap as default way to read model file and copy to GPU. In some system, memcpy will be abnormal and block.
Solution: add **--no-mmap**.
## Todo
- Support to build in Windows.
- Support multiple cards.

View File

@@ -1,40 +0,0 @@
700df0d3013b703a806d2ae7f1bfb8e59814e3d06ae78be0c66368a50059f33d models/7B/consolidated.00.pth
666a4bb533b303bdaf89e1b6a3b6f93535d868de31d903afdc20983dc526c847 models/7B/ggml-model-f16.bin
ec2f2d1f0dfb73b72a4cbac7fa121abbe04c37ab327125a38248f930c0f09ddf models/7B/ggml-model-q4_0.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/7B/ggml-model-q4_1.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/7B/ggml-model-q5_0.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/7B/ggml-model-q5_1.bin
7e89e242ddc0dd6f060b43ca219ce8b3e8f08959a72cb3c0855df8bb04d46265 models/7B/params.json
745bf4e29a4dd6f411e72976d92b452da1b49168a4f41c951cfcc8051823cf08 models/13B/consolidated.00.pth
d5ccbcc465c71c0de439a5aeffebe8344c68a519bce70bc7f9f92654ee567085 models/13B/consolidated.01.pth
2b206e9b21fb1076f11cafc624e2af97c9e48ea09312a0962153acc20d45f808 models/13B/ggml-model-f16.bin
fad169e6f0f575402cf75945961cb4a8ecd824ba4da6be2af831f320c4348fa5 models/13B/ggml-model-q4_0.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/13B/ggml-model-q4_1.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/13B/ggml-model-q5_0.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/13B/ggml-model-q5_1.bin
4ab77bec4d4405ccb66a97b282574c89a94417e3c32e5f68f37e2876fc21322f models/13B/params.json
e23294a58552d8cdec5b7e8abb87993b97ea6eced4178ff2697c02472539d067 models/30B/consolidated.00.pth
4e077b7136c7ae2302e954860cf64930458d3076fcde9443f4d0e939e95903ff models/30B/consolidated.01.pth
24a87f01028cbd3a12de551dcedb712346c0b5cbdeff1454e0ddf2df9b675378 models/30B/consolidated.02.pth
1adfcef71420886119544949767f6a56cb6339b4d5fcde755d80fe68b49de93b models/30B/consolidated.03.pth
7e1b524061a9f4b27c22a12d6d2a5bf13b8ebbea73e99f218809351ed9cf7d37 models/30B/ggml-model-f16.bin
d2a441403944819492ec8c2002cc36fa38468149bfb4b7b4c52afc7bd9a7166d models/30B/ggml-model-q4_0.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/30B/ggml-model-q4_1.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/30B/ggml-model-q5_0.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/30B/ggml-model-q5_1.bin
2c07118ea98d69dbe7810d88520e30288fa994751b337f8fca02b171955f44cb models/30B/params.json
135c563f6b3938114458183afb01adc9a63bef3d8ff7cccc3977e5d3664ecafe models/65B/consolidated.00.pth
9a600b37b19d38c7e43809485f70d17d1dc12206c07efa83bc72bb498a568bde models/65B/consolidated.01.pth
e7babf7c5606f165a3756f527cb0fedc4f83e67ef1290391e52fb1cce5f26770 models/65B/consolidated.02.pth
73176ffb426b40482f2aa67ae1217ef79fbbd1fff5482bae5060cdc5a24ab70e models/65B/consolidated.03.pth
882e6431d0b08a8bc66261a0d3607da21cbaeafa96a24e7e59777632dbdac225 models/65B/consolidated.04.pth
a287c0dfe49081626567c7fe87f74cce5831f58e459b427b5e05567641f47b78 models/65B/consolidated.05.pth
72b4eba67a1a3b18cb67a85b70f8f1640caae9b40033ea943fb166bd80a7b36b models/65B/consolidated.06.pth
d27f5b0677d7ff129ceacd73fd461c4d06910ad7787cf217b249948c3f3bc638 models/65B/consolidated.07.pth
60758f2384d74e423dffddfd020ffed9d3bb186ebc54506f9c4a787d0f5367b0 models/65B/ggml-model-f16.bin
cde053439fa4910ae454407e2717cc46cc2c2b4995c00c93297a2b52e790fa92 models/65B/ggml-model-q4_0.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/65B/ggml-model-q4_1.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/65B/ggml-model-q5_0.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/65B/ggml-model-q5_1.bin
999ed1659b469ccc2a941714c0a9656fa571d17c9f7c8c7589817ca90edef51b models/65B/params.json
9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347 models/tokenizer.model

View File

@@ -568,6 +568,50 @@ function gg_sum_open_llama_7b_v2 {
#gg_printf '- shakespeare (q8_0 / f16 base lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log)"
}
# bge-small
function gg_run_embd_bge_small {
cd ${SRC}
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/config.json
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/resolve/main/tokenizer.model
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/tokenizer_config.json
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/special_tokens_map.json
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/resolve/main/pytorch_model.bin
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/sentence_bert_config.json
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/vocab.txt
path_models="../models-mnt/bge-small"
rm -rf build-ci-release && mkdir build-ci-release && cd build-ci-release
set -e
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
python3 ../convert-hf-to-gguf.py ${path_models}
model_f16="${path_models}/ggml-model-f16.gguf"
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
./bin/quantize ${model_f16} ${model_q8_0} q8_0
(time ./bin/embedding --model ${model_f16} -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/embedding --model ${model_q8_0} -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
set +e
}
function gg_sum_embd_bge_small {
gg_printf '### %s\n\n' "${ci}"
gg_printf 'BGE Small (BERT):\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
}
## main
if [ -z ${GG_BUILD_LOW_PERF} ]; then
@@ -591,6 +635,8 @@ test $ret -eq 0 && gg_run ctest_debug
test $ret -eq 0 && gg_run ctest_release
if [ -z ${GG_BUILD_LOW_PERF} ]; then
test $ret -eq 0 && gg_run embd_bge_small
if [ -z ${GG_BUILD_VRAM_GB} ] || [ ${GG_BUILD_VRAM_GB} -ge 8 ]; then
if [ -z ${GG_BUILD_CUDA} ]; then
test $ret -eq 0 && gg_run open_llama_3b_v2

View File

@@ -46,6 +46,10 @@
#define GGML_USE_CUBLAS_SYCL
#endif
#if (defined(GGML_USE_CUBLAS) || defined(GGML_USE_SYCL)) || defined(GGML_USE_VULKAN)
#define GGML_USE_CUBLAS_SYCL_VULKAN
#endif
int32_t get_num_physical_cores() {
#ifdef __linux__
// enumerate the set of thread siblings, num entries is num cores
@@ -336,13 +340,14 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
invalid_param = true;
break;
}
sparams.samplers_sequence = parse_samplers_input(argv[i]);
const auto sampler_names = string_split(argv[i], ';');
sparams.samplers_sequence = sampler_types_from_names(sampler_names);
} else if (arg == "--sampling-seq") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.samplers_sequence = argv[i];
sparams.samplers_sequence = sampler_types_from_chars(argv[i]);
} else if (arg == "--top-p") {
if (++i >= argc) {
invalid_param = true;
@@ -399,6 +404,18 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
break;
}
sparams.penalty_present = std::stof(argv[i]);
} else if (arg == "--dynatemp-range") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.dynatemp_range = std::stof(argv[i]);
} else if (arg == "--dynatemp-exp") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.dynatemp_exponent = std::stof(argv[i]);
} else if (arg == "--mirostat") {
if (++i >= argc) {
invalid_param = true;
@@ -515,7 +532,7 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
invalid_param = true;
break;
}
params.lora_adapter.push_back(std::make_tuple(argv[i], 1.0f));
params.lora_adapter.emplace_back(argv[i], 1.0f);
params.use_mmap = false;
} else if (arg == "--lora-scaled") {
if (++i >= argc) {
@@ -527,7 +544,7 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
invalid_param = true;
break;
}
params.lora_adapter.push_back(std::make_tuple(lora_adapter, std::stof(argv[i])));
params.lora_adapter.emplace_back(lora_adapter, std::stof(argv[i]));
params.use_mmap = false;
} else if (arg == "--lora-base") {
if (++i >= argc) {
@@ -583,20 +600,20 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
break;
}
params.n_gpu_layers = std::stoi(argv[i]);
#ifndef LLAMA_SUPPORTS_GPU_OFFLOAD
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
#endif
if (!llama_supports_gpu_offload()) {
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
}
} else if (arg == "--gpu-layers-draft" || arg == "-ngld" || arg == "--n-gpu-layers-draft") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_gpu_layers_draft = std::stoi(argv[i]);
#ifndef LLAMA_SUPPORTS_GPU_OFFLOAD
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers-draft option will be ignored\n");
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
#endif
if (!llama_supports_gpu_offload()) {
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers-draft option will be ignored\n");
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
}
} else if (arg == "--main-gpu" || arg == "-mg") {
if (++i >= argc) {
invalid_param = true;
@@ -637,19 +654,19 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
const std::regex regex{R"([,/]+)"};
std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
std::vector<std::string> split_arg{it, {}};
if (split_arg.size() >= LLAMA_MAX_DEVICES) {
if (split_arg.size() >= llama_max_devices()) {
invalid_param = true;
break;
}
for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
for (size_t i = 0; i < llama_max_devices(); ++i) {
if (i < split_arg.size()) {
params.tensor_split[i] = std::stof(split_arg[i]);
} else {
params.tensor_split[i] = 0.0f;
}
}
#ifndef GGML_USE_CUBLAS_SYCL
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS/SYCL. Setting a tensor split has no effect.\n");
#ifndef GGML_USE_CUBLAS_SYCL_VULKAN
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS/SYCL/Vulkan. Setting a tensor split has no effect.\n");
#endif // GGML_USE_CUBLAS_SYCL
} else if (arg == "--no-mmap") {
params.use_mmap = false;
@@ -664,7 +681,7 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
invalid_param = true;
break;
}
params.antiprompt.push_back(argv[i]);
params.antiprompt.emplace_back(argv[i]);
} else if (arg == "-ld" || arg == "--logdir") {
if (++i >= argc) {
invalid_param = true;
@@ -880,7 +897,7 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
}
if (!params.kv_overrides.empty()) {
params.kv_overrides.emplace_back(llama_model_kv_override());
params.kv_overrides.emplace_back();
params.kv_overrides.back().key[0] = 0;
}
@@ -890,6 +907,14 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
const llama_sampling_params & sparams = params.sparams;
std::string sampler_type_chars;
std::string sampler_type_names;
for (const auto sampler_type : sparams.samplers_sequence) {
sampler_type_chars += static_cast<char>(sampler_type);
sampler_type_names += sampler_type_to_name_string(sampler_type) + ";";
}
sampler_type_names.pop_back();
printf("\n");
printf("usage: %s [options]\n", argv[0]);
printf("\n");
@@ -931,8 +956,8 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict);
printf(" -c N, --ctx-size N size of the prompt context (default: %d, 0 = loaded from model)\n", params.n_ctx);
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
printf(" --samplers samplers that will be used for generation in the order, separated by \';\', for example: \"top_k;tfs;typical;top_p;min_p;temp\"\n");
printf(" --sampling-seq simplified sequence for samplers that will be used (default: %s)\n", sparams.samplers_sequence.c_str());
printf(" --samplers samplers that will be used for generation in the order, separated by \';\' (default: %s)\n", sampler_type_names.c_str());
printf(" --sampling-seq simplified sequence for samplers that will be used (default: %s)\n", sampler_type_chars.c_str());
printf(" --top-k N top-k sampling (default: %d, 0 = disabled)\n", sparams.top_k);
printf(" --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)sparams.top_p);
printf(" --min-p N min-p sampling (default: %.1f, 0.0 = disabled)\n", (double)sparams.min_p);
@@ -942,6 +967,8 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" --repeat-penalty N penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)sparams.penalty_repeat);
printf(" --presence-penalty N repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.penalty_present);
printf(" --frequency-penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.penalty_freq);
printf(" --dynatemp-range N dynamic temperature range (default: %.1f, 0.0 = disabled)\n", (double)sparams.dynatemp_range);
printf(" --dynatemp-exp N dynamic temperature exponent (default: %.1f)\n", (double)sparams.dynatemp_exponent);
printf(" --mirostat N use Mirostat sampling.\n");
printf(" Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n");
printf(" (default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)\n", sparams.mirostat);
@@ -989,30 +1016,30 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA. see examples/llava/README.md\n");
printf(" --image IMAGE_FILE path to an image file. use with multimodal models\n");
if (llama_mlock_supported()) {
if (llama_supports_mlock()) {
printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
}
if (llama_mmap_supported()) {
if (llama_supports_mmap()) {
printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
}
printf(" --numa attempt optimizations that help on some NUMA systems\n");
printf(" if run without this previously, it is recommended to drop the system page cache before using this\n");
printf(" see https://github.com/ggerganov/llama.cpp/issues/1437\n");
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
printf(" -ngl N, --n-gpu-layers N\n");
printf(" number of layers to store in VRAM\n");
printf(" -ngld N, --n-gpu-layers-draft N\n");
printf(" number of layers to store in VRAM for the draft model\n");
printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
printf(" how to split the model across multiple GPUs, one of:\n");
printf(" - none: use one GPU only\n");
printf(" - layer (default): split layers and KV across GPUs\n");
printf(" - row: split rows across GPUs\n");
printf(" -ts SPLIT, --tensor-split SPLIT\n");
printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
printf(" or for intermediate results and KV (with split-mode = row) (default: %d)\n", params.main_gpu);
#endif // LLAMA_SUPPORTS_GPU_OFFLOAD
if (llama_supports_gpu_offload()) {
printf(" -ngl N, --n-gpu-layers N\n");
printf(" number of layers to store in VRAM\n");
printf(" -ngld N, --n-gpu-layers-draft N\n");
printf(" number of layers to store in VRAM for the draft model\n");
printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
printf(" how to split the model across multiple GPUs, one of:\n");
printf(" - none: use one GPU only\n");
printf(" - layer (default): split layers and KV across GPUs\n");
printf(" - row: split rows across GPUs\n");
printf(" -ts SPLIT, --tensor-split SPLIT\n");
printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
printf(" or for intermediate results and KV (with split-mode = row) (default: %d)\n", params.main_gpu);
}
printf(" --verbose-prompt print a verbose prompt before generation (default: %s)\n", params.verbose_prompt ? "true" : "false");
printf(" --no-display-prompt don't print prompt at generation (default: %s)\n", !params.display_prompt ? "true" : "false");
printf(" -gan N, --grp-attn-n N\n");
@@ -1079,45 +1106,85 @@ std::string gpt_random_prompt(std::mt19937 & rng) {
}
//
// String parsing
// String utils
//
std::string parse_samplers_input(std::string input) {
std::string output = "";
std::vector<std::string> string_split(std::string input, char separator) {
std::vector<std::string> parts;
size_t separator_pos = input.find(separator);
while (separator_pos != std::string::npos) {
std::string part = input.substr(0, separator_pos);
parts.emplace_back(part);
input = input.substr(separator_pos + 1);
separator_pos = input.find(separator);
}
parts.emplace_back(input);
return parts;
}
std::vector<llama_sampler_type> sampler_types_from_names(const std::vector<std::string> & names) {
// since samplers names are written multiple ways
// make it ready for both system names and input names
std::unordered_map<std::string, char> samplers_symbols {
{"top_k", 'k'},
{"top-k", 'k'},
{"top_p", 'p'},
{"top-p", 'p'},
{"nucleus", 'p'},
{"typical_p", 'y'},
{"typical-p", 'y'},
{"typical", 'y'},
{"min_p", 'm'},
{"min-p", 'm'},
{"tfs_z", 'f'},
{"tfs-z", 'f'},
{"tfs", 'f'},
{"temp", 't'},
{"temperature",'t'}
std::unordered_map<std::string, llama_sampler_type> sampler_name_map {
{"top_k", llama_sampler_type::TOP_K},
{"top-k", llama_sampler_type::TOP_K},
{"top_p", llama_sampler_type::TOP_P},
{"top-p", llama_sampler_type::TOP_P},
{"nucleus", llama_sampler_type::TOP_P},
{"typical_p", llama_sampler_type::TYPICAL_P},
{"typical-p", llama_sampler_type::TYPICAL_P},
{"typical", llama_sampler_type::TYPICAL_P},
{"min_p", llama_sampler_type::MIN_P},
{"min-p", llama_sampler_type::MIN_P},
{"tfs_z", llama_sampler_type::TFS_Z},
{"tfs-z", llama_sampler_type::TFS_Z},
{"tfs", llama_sampler_type::TFS_Z},
{"temp", llama_sampler_type::TEMP},
{"temperature", llama_sampler_type::TEMP}
};
// expected format example: "temp;top_k;tfs_z;typical_p;top_p;min_p"
size_t separator = input.find(';');
while (separator != input.npos) {
std::string name = input.substr(0,separator);
input = input.substr(separator+1);
separator = input.find(';');
if (samplers_symbols.find(name) != samplers_symbols.end()) {
output += samplers_symbols[name];
std::vector<llama_sampler_type> sampler_types;
sampler_types.reserve(names.size());
for (const auto& name : names) {
const auto sampler_item = sampler_name_map.find(name);
if (sampler_item != sampler_name_map.end()) {
sampler_types.push_back(sampler_item->second);
}
}
if (samplers_symbols.find(input) != samplers_symbols.end()) {
output += samplers_symbols[input];
return sampler_types;
}
std::vector<llama_sampler_type> sampler_types_from_chars(const std::string & names_string) {
std::unordered_map<char, llama_sampler_type> sampler_name_map {
{'k', llama_sampler_type::TOP_K},
{'p', llama_sampler_type::TOP_P},
{'y', llama_sampler_type::TYPICAL_P},
{'m', llama_sampler_type::MIN_P},
{'f', llama_sampler_type::TFS_Z},
{'t', llama_sampler_type::TEMP}
};
std::vector<llama_sampler_type> sampler_types;
sampler_types.reserve(names_string.size());
for (const auto & c : names_string) {
const auto sampler_item = sampler_name_map.find(c);
if (sampler_item != sampler_name_map.end()) {
sampler_types.push_back(sampler_item->second);
}
}
return sampler_types;
}
std::string sampler_type_to_name_string(llama_sampler_type sampler_type) {
switch (sampler_type) {
case llama_sampler_type::TOP_K: return "top_k";
case llama_sampler_type::TFS_Z: return "tfs_z";
case llama_sampler_type::TYPICAL_P: return "typical_p";
case llama_sampler_type::TOP_P: return "top_p";
case llama_sampler_type::MIN_P: return "min_p";
case llama_sampler_type::TEMP: return "temp";
default : return "";
}
return output;
}
//
@@ -1520,7 +1587,9 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false");
fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false");
fprintf(stream, "cpu_has_cublas: %s\n", ggml_cpu_has_cublas() ? "true" : "false");
fprintf(stream, "cpu_has_vulkan: %s\n", ggml_cpu_has_vulkan() ? "true" : "false");
fprintf(stream, "cpu_has_clblast: %s\n", ggml_cpu_has_clblast() ? "true" : "false");
fprintf(stream, "cpu_has_kompute: %s\n", ggml_cpu_has_kompute() ? "true" : "false");
fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false");
fprintf(stream, "cpu_has_gpublas: %s\n", ggml_cpu_has_gpublas() ? "true" : "false");
fprintf(stream, "cpu_has_neon: %s\n", ggml_cpu_has_neon() ? "true" : "false");
@@ -1530,6 +1599,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false");
fprintf(stream, "cpu_has_sse3: %s\n", ggml_cpu_has_sse3() ? "true" : "false");
fprintf(stream, "cpu_has_vsx: %s\n", ggml_cpu_has_vsx() ? "true" : "false");
fprintf(stream, "cpu_has_matmul_int8: %s\n", ggml_cpu_has_matmul_int8() ? "true" : "false");
#ifdef NDEBUG
fprintf(stream, "debug: false\n");
@@ -1649,7 +1719,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false");
fprintf(stream, "temp: %f # default: 0.8\n", sparams.temp);
const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + LLAMA_MAX_DEVICES);
const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + llama_max_devices());
dump_vector_float_yaml(stream, "tensor_split", tensor_split_vector);
fprintf(stream, "tfs: %f # default: 1.0\n", sparams.tfs_z);

View File

@@ -43,40 +43,39 @@ extern char const *LLAMA_BUILD_TARGET;
int32_t get_num_physical_cores();
struct gpt_params {
uint32_t seed = -1; // RNG seed
uint32_t seed = -1; // RNG seed
int32_t n_threads = get_num_physical_cores();
int32_t n_threads_draft = -1;
int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
int32_t n_threads_batch_draft = -1;
int32_t n_predict = -1; // new tokens to predict
int32_t n_ctx = 512; // context size
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_draft = 8; // number of tokens to draft during speculative decoding
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
int32_t n_parallel = 1; // number of parallel sequences to decode
int32_t n_sequences = 1; // number of sequences to decode
float p_accept = 0.5f; // speculative decoding accept probability
float p_split = 0.1f; // speculative decoding split probability
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
llama_split_mode split_mode = LLAMA_SPLIT_LAYER; // how to split the model across GPUs
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
int32_t n_beams = 0; // if non-zero then use beam search of given width.
int32_t grp_attn_n = 1; // group-attention factor
int32_t grp_attn_w = 512; // group-attention width
int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
float rope_freq_base = 0.0f; // RoPE base frequency
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
float yarn_beta_fast = 32.0f; // YaRN low correction dim
float yarn_beta_slow = 1.0f; // YaRN high correction dim
int32_t yarn_orig_ctx = 0; // YaRN original context length
int8_t rope_scaling_type = LLAMA_ROPE_SCALING_UNSPECIFIED; // TODO: better to be int32_t for alignment
// pinging @cebtenzzre
int32_t n_threads = get_num_physical_cores();
int32_t n_threads_draft = -1;
int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
int32_t n_threads_batch_draft = -1;
int32_t n_predict = -1; // new tokens to predict
int32_t n_ctx = 512; // context size
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_draft = 8; // number of tokens to draft during speculative decoding
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
int32_t n_parallel = 1; // number of parallel sequences to decode
int32_t n_sequences = 1; // number of sequences to decode
float p_accept = 0.5f; // speculative decoding accept probability
float p_split = 0.1f; // speculative decoding split probability
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
llama_split_mode split_mode = LLAMA_SPLIT_LAYER; // how to split the model across GPUs
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
int32_t n_beams = 0; // if non-zero then use beam search of given width.
int32_t grp_attn_n = 1; // group-attention factor
int32_t grp_attn_w = 512; // group-attention width
int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
float rope_freq_base = 0.0f; // RoPE base frequency
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
float yarn_beta_fast = 32.0f; // YaRN low correction dim
float yarn_beta_slow = 1.0f; // YaRN high correction dim
int32_t yarn_orig_ctx = 0; // YaRN original context length
int32_t rope_scaling_type = LLAMA_ROPE_SCALING_UNSPECIFIED;
// // sampling parameters
struct llama_sampling_params sparams;
@@ -163,10 +162,13 @@ std::string gpt_random_prompt(std::mt19937 & rng);
void process_escapes(std::string& input);
//
// String parsing
// String utils
//
std::string parse_samplers_input(std::string input);
std::vector<llama_sampler_type> sampler_types_from_names(const std::vector<std::string> & names);
std::vector<llama_sampler_type> sampler_types_from_chars(const std::string & names_string);
std::vector<std::string> string_split(std::string input, char separator);
std::string sampler_type_to_name_string(llama_sampler_type sampler_type);
//
// Model utils

View File

@@ -103,15 +103,10 @@ std::string llama_sampling_print(const llama_sampling_params & params) {
std::string llama_sampling_order_print(const llama_sampling_params & params) {
std::string result = "CFG -> Penalties ";
if (params.mirostat == 0) {
for (auto s : params.samplers_sequence) {
switch (s) {
case 'k': result += "-> top_k "; break;
case 'f': result += "-> tfs_z "; break;
case 'y': result += "-> typical_p "; break;
case 'p': result += "-> top_p "; break;
case 'm': result += "-> min_p "; break;
case 't': result += "-> temp "; break;
default : break;
for (auto sampler_type : params.samplers_sequence) {
const auto sampler_type_name = sampler_type_to_name_string(sampler_type);
if (!sampler_type_name.empty()) {
result += "-> " + sampler_type_name + " ";
}
}
} else {
@@ -127,26 +122,24 @@ static void sampler_queue(
const llama_sampling_params & params,
llama_token_data_array & cur_p,
size_t & min_keep) {
const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
const float temp = params.temp;
const float dynatemp_range = params.dynatemp_range;
const float dynatemp_exponent = params.dynatemp_exponent;
const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k;
const int32_t top_k = params.top_k;
const float top_p = params.top_p;
const float min_p = params.min_p;
const float tfs_z = params.tfs_z;
const float typical_p = params.typical_p;
const std::string & samplers_sequence = params.samplers_sequence;
const std::vector<llama_sampler_type> & samplers_sequence = params.samplers_sequence;
for (auto s : samplers_sequence) {
switch (s){
case 'k': llama_sample_top_k (ctx_main, &cur_p, top_k, min_keep); break;
case 'f': llama_sample_tail_free(ctx_main, &cur_p, tfs_z, min_keep); break;
case 'y': llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep); break;
case 'p': llama_sample_top_p (ctx_main, &cur_p, top_p, min_keep); break;
case 'm': llama_sample_min_p (ctx_main, &cur_p, min_p, min_keep); break;
case 't':
for (auto sampler_type : samplers_sequence) {
switch (sampler_type) {
case llama_sampler_type::TOP_K : llama_sample_top_k (ctx_main, &cur_p, top_k, min_keep); break;
case llama_sampler_type::TFS_Z : llama_sample_tail_free(ctx_main, &cur_p, tfs_z, min_keep); break;
case llama_sampler_type::TYPICAL_P: llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep); break;
case llama_sampler_type::TOP_P : llama_sample_top_p (ctx_main, &cur_p, top_p, min_keep); break;
case llama_sampler_type::MIN_P : llama_sample_min_p (ctx_main, &cur_p, min_p, min_keep); break;
case llama_sampler_type::TEMP:
if (dynatemp_range > 0) {
float dynatemp_min = std::max(0.0f, temp - dynatemp_range);
float dynatemp_max = std::max(0.0f, temp + dynatemp_range);

View File

@@ -8,6 +8,16 @@
#include <vector>
#include <unordered_map>
// sampler types
enum class llama_sampler_type : char {
TOP_K = 'k',
TOP_P = 'p',
MIN_P = 'm',
TFS_Z = 'f',
TYPICAL_P = 'y',
TEMP = 't'
};
// sampling parameters
typedef struct llama_sampling_params {
int32_t n_prev = 64; // number of previous tokens to remember
@@ -28,7 +38,15 @@ typedef struct llama_sampling_params {
float mirostat_tau = 5.00f; // target entropy
float mirostat_eta = 0.10f; // learning rate
bool penalize_nl = true; // consider newlines as a repeatable token
std::string samplers_sequence = "kfypmt"; // top_k, tail_free, typical_p, top_p, min_p, temp
std::vector<llama_sampler_type> samplers_sequence = {
llama_sampler_type::TOP_K,
llama_sampler_type::TFS_Z,
llama_sampler_type::TYPICAL_P,
llama_sampler_type::TOP_P,
llama_sampler_type::MIN_P,
llama_sampler_type::TEMP
};
std::string grammar; // optional BNF-like grammar to constrain sampling

View File

@@ -1363,12 +1363,12 @@ bool consume_common_train_arg(
*invalid_param = true;
return true;
}
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
params->n_gpu_layers = std::stoi(argv[i]);
#else
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
#endif
if (llama_supports_gpu_offload()) {
params->n_gpu_layers = std::stoi(argv[i]);
} else {
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
}
} else if (arg == "-h" || arg == "--help") {
params->print_usage = true;
return true;

View File

@@ -22,6 +22,8 @@ if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
import gguf
from convert import HfVocab
# check for any of the given keys in the dictionary and return the value of the first key found
def get_key_opts(d, keys):
@@ -203,6 +205,12 @@ class Model:
return CodeShellModel
if model_architecture == "OrionForCausalLM":
return OrionModel
if model_architecture == "InternLM2ForCausalLM":
return InternLM2Model
if model_architecture == "MiniCPMForCausalLM":
return MiniCPMModel
if model_architecture == "BertModel":
return BertModel
return Model
def _is_model_safetensors(self) -> bool:
@@ -254,6 +262,12 @@ class Model:
return gguf.MODEL_ARCH.CODESHELL
if arch == "OrionForCausalLM":
return gguf.MODEL_ARCH.ORION
if arch == "InternLM2ForCausalLM":
return gguf.MODEL_ARCH.INTERNLM2
if arch == "MiniCPMForCausalLM":
return gguf.MODEL_ARCH.MINICPM
if arch == "BertModel":
return gguf.MODEL_ARCH.BERT
raise NotImplementedError(f'Architecture "{arch}" not supported!')
@@ -398,6 +412,31 @@ class Model:
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
special_vocab.add_to_gguf(self.gguf_writer)
def _set_vocab_hf(self):
path = self.dir_model
added_tokens_path = self.dir_model
vocab = HfVocab(
path, added_tokens_path if added_tokens_path.exists() else None
)
tokens = []
scores = []
toktypes = []
for text, score, toktype in vocab.all_tokens():
tokens.append(text)
scores.append(score)
toktypes.append(toktype)
assert len(tokens) == vocab.vocab_size
self.gguf_writer.add_tokenizer_model("llama")
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_scores(scores)
self.gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
special_vocab.add_to_gguf(self.gguf_writer)
class GPTNeoXModel(Model):
def set_gguf_parameters(self):
@@ -1037,6 +1076,83 @@ class MixtralModel(Model):
self._set_vocab_sentencepiece()
class MiniCPMModel(Model):
def set_gguf_parameters(self):
block_count = self.hparams["num_hidden_layers"]
self.gguf_writer.add_name("MiniCPM")
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
self.gguf_writer.add_file_type(self.ftype)
def set_vocab(self):
self._set_vocab_hf()
def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
if n_kv_head is not None and n_head != n_kv_head:
n_head //= n_kv_head
return (
weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
.swapaxes(1, 2)
.reshape(weights.shape)
)
def write_tensors(self):
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
n_head = self.hparams.get("num_attention_heads")
n_kv_head = self.hparams.get("num_key_value_heads")
for name, data_torch in self.get_tensors():
# we don't need these
if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
continue
old_dtype = data_torch.dtype
# convert any unsupported data types to float32
if data_torch.dtype not in (torch.float16, torch.float32):
data_torch = data_torch.to(torch.float32)
# HF models permute some of the tensors, so we need to undo that
if name.endswith(("q_proj.weight")):
data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
if name.endswith(("k_proj.weight")):
data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
data = data_torch.squeeze().numpy()
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
if new_name is None:
print(f"Can not map tensor {name!r}")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if self.ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
self.gguf_writer.add_tensor(new_name, data)
class QwenModel(Model):
@staticmethod
def token_bytes_to_string(b):
@@ -1134,7 +1250,7 @@ class GPT2Model(Model):
for name, data_torch in self.get_tensors():
# we don't need these
if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq", ".attn.bias")):
if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq", ".attn.bias", ".attn.masked_bias")):
continue
if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
@@ -1344,6 +1460,270 @@ class CodeShellModel(Model):
self.gguf_writer.add_tensor("output.weight", data)
print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
class InternLM2Model(Model):
def set_vocab(self):
# (TODO): Is there a better way?
# Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
# \x00 specially and convert it into an emoji character to prevent it from being mistakenly
# recognized as an empty string in C++.
from sentencepiece import SentencePieceProcessor
from sentencepiece import sentencepiece_model_pb2 as model
tokenizer_path = self.dir_model / 'tokenizer.model'
tokens: list[bytes] = []
scores: list[float] = []
toktypes: list[int] = []
if not tokenizer_path.is_file():
print(f'Error: Missing {tokenizer_path}', file=sys.stderr)
sys.exit(1)
sentencepiece_model = model.ModelProto()
sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
tokenizer = SentencePieceProcessor(str(tokenizer_path))
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
for token_id in range(vocab_size):
piece = tokenizer.id_to_piece(token_id)
text = piece.encode("utf-8")
score = tokenizer.get_score(token_id)
if text == b"\x00":
# (TODO): fixme
# Hack here and replace the \x00 characters.
print(f"InternLM2 convert token '{text}' to '🐉'!")
text = "🐉"
toktype = SentencePieceTokenTypes.NORMAL
if tokenizer.is_unknown(token_id):
toktype = SentencePieceTokenTypes.UNKNOWN
elif tokenizer.is_control(token_id):
toktype = SentencePieceTokenTypes.CONTROL
elif tokenizer.is_unused(token_id):
toktype = SentencePieceTokenTypes.UNUSED
elif tokenizer.is_byte(token_id):
toktype = SentencePieceTokenTypes.BYTE
tokens.append(text)
scores.append(score)
toktypes.append(toktype)
added_tokens_file = self.dir_model / 'added_tokens.json'
if added_tokens_file.is_file():
with open(added_tokens_file, "r", encoding="utf-8") as f:
added_tokens_json = json.load(f)
for key in added_tokens_json:
tokens.append(key.encode("utf-8"))
scores.append(-1000.0)
toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
self.gguf_writer.add_tokenizer_model("llama")
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_scores(scores)
self.gguf_writer.add_token_types(toktypes)
self.gguf_writer.add_add_space_prefix(add_prefix)
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
old_eos = special_vocab.special_token_ids["eos"]
if "chat" in os.path.basename(self.dir_model.absolute()):
# For the chat model, we replace the eos with '<|im_end|>'.
special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer)
print(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \
in chat mode so that the conversation can end normally.")
special_vocab.add_to_gguf(self.gguf_writer)
def _try_get_sft_eos(self, tokenizer):
unused_145_list = tokenizer.encode('[UNUSED_TOKEN_145]')
im_end_list = tokenizer.encode('<|im_end|>')
assert (len(unused_145_list) == 1) ^ (len(im_end_list) == 1)
if len(unused_145_list) == 1:
eos_token = unused_145_list[0]
if len(im_end_list) == 1:
eos_token = im_end_list[0]
return eos_token
def _hf_permute_qk(self, weights, n_head: int, n_head_kv: int):
if n_head_kv is not None and n_head != n_head_kv:
n_head = n_head_kv
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
.swapaxes(1, 2)
.reshape(weights.shape))
def set_gguf_parameters(self):
self.gguf_writer.add_name("InternLM2")
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
def post_write_tensors(self, tensor_map, name, data_torch):
old_dtype = data_torch.dtype
# convert any unsupported data types to float32
if data_torch.dtype not in (torch.float16, torch.float32):
data_torch = data_torch.to(torch.float32)
data = data_torch.squeeze().numpy()
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
if new_name is None:
print(f"Can not map tensor {name!r}")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if self.ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
self.gguf_writer.add_tensor(new_name, data)
def write_tensors(self):
from einops import rearrange
num_heads = self.hparams.get("num_attention_heads")
num_kv_heads = self.hparams.get("num_key_value_heads")
hidden_size = self.hparams.get("hidden_size")
q_per_kv = num_heads // num_kv_heads
head_dim = hidden_size // num_heads
num_groups = num_heads // q_per_kv
block_count = self.hparams["num_hidden_layers"]
model_kv = dict(self.get_tensors())
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
qkv_pattern = r"model\.layers\.(\d+)\.attention\.wqkv"
for name, data_torch in model_kv.items():
# we don't need these
if name.endswith(".rotary_emb.inv_freq"):
continue
if re.match(qkv_pattern, name):
bid = re.findall(qkv_pattern, name)[0]
qkv = data_torch
qkv = rearrange(qkv.T, " o (g n i) ->o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim)
q, k, v = qkv[..., : q_per_kv, :], qkv[..., q_per_kv: q_per_kv + 1, :], qkv[..., q_per_kv + 1: q_per_kv + 2, :]
# The model weights of q and k equire additional reshape.
q = self._hf_permute_qk(rearrange(q, " o g n i -> o (g n i)").T, num_heads, num_heads)
k = self._hf_permute_qk(rearrange(k, " o g n i -> o (g n i)").T, num_heads, num_kv_heads)
v = rearrange(v, " o g n i -> o (g n i)").T
self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wq.weight", q)
self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wk.weight", k)
self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wv.weight", v)
else:
self.post_write_tensors(tensor_map, name, data_torch)
class BertModel(Model):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.block_count = self.hparams["num_hidden_layers"]
def set_gguf_parameters(self):
# TODO(cebtenzzre): merge with parent class
self.gguf_writer.add_name(self.dir_model.name)
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
self.gguf_writer.add_block_count(self.block_count)
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
self.gguf_writer.add_causal_attention(False)
self.gguf_writer.add_pooling_layer(True)
self.gguf_writer.add_file_type(self.ftype)
def set_vocab(self):
path = self.dir_model
added_tokens_path = self.dir_model if self.dir_model.exists() else None
# use huggingface vocab to get all tokens
vocab = HfVocab(path, added_tokens_path)
tokens, scores, toktypes = zip(*vocab.all_tokens())
assert len(tokens) == vocab.vocab_size
# we need this to validate the size of the token_type embeddings
# though currently we are passing all zeros to the token_type embeddings
n_token_types = len(set(toktypes))
self.gguf_writer.add_token_type_count(n_token_types)
# convert to phantom space vocab
def phantom(tok, typ):
if tok.startswith(b"[") and tok.endswith(b"]"):
return tok
if tok.startswith(b"##"):
return tok[2:]
return b"\xe2\x96\x81" + tok
tokens = [phantom(t, y) for t, y in zip(tokens, toktypes)]
# set up bos and eos tokens (cls and sep)
self.gguf_writer.add_bos_token_id(vocab.tokenizer.cls_token_id)
self.gguf_writer.add_eos_token_id(vocab.tokenizer.sep_token_id)
# add vocab to gguf
self.gguf_writer.add_tokenizer_model("bert")
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_scores(scores)
self.gguf_writer.add_token_types(toktypes)
# handle special tokens
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
special_vocab.add_to_gguf(self.gguf_writer)
def write_tensors(self):
tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
tensors = dict(self.get_tensors())
for name, data_torch in tensors.items():
# we are only using BERT for embeddings so we don't need the pooling layer
if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
continue # we don't need these
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
if new_name is None:
print(f"Can not map tensor {name!r}")
sys.exit()
data = data_torch.squeeze().numpy()
n_dims = len(data.shape)
new_dtype: type[np.floating[Any]]
if (
self.ftype == 1 and name.endswith(".weight") and n_dims == 2
and name != "embeddings.token_type_embeddings.weight" # not used with get_rows, must be F32
):
# if f16 desired, convert any float32 2-dim weight tensors to float16
new_dtype = np.float16
else:
# if f32 desired, convert any float16 to float32
new_dtype = np.float32
print(f"{new_name}, n_dims = {n_dims}, {data_torch.dtype} --> {new_dtype}")
if data.dtype != new_dtype:
data = data.astype(new_dtype)
self.gguf_writer.add_tensor(new_name, data)
###### CONVERSION LOGIC ######

View File

@@ -88,7 +88,8 @@ def main():
gguf_writer.add_embedding_length(hidden_size)
gguf_writer.add_block_count(block_count)
gguf_writer.add_feed_forward_length(hparams.ffn_hidden_size)
gguf_writer.add_rope_dimension_count(hidden_size // head_count)
# ref: https://github.com/ggerganov/llama.cpp/pull/4889/commits/eea19039fc52ea2dbd1aab45b59ab4e3e29a3443
gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2)
gguf_writer.add_head_count(head_count)
gguf_writer.add_head_count_kv(head_count_kv)
gguf_writer.add_rope_freq_base(hparams.rotary_emb_base)

View File

@@ -334,9 +334,9 @@ class Params:
class BpeVocab:
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None) -> None:
self.bpe_tokenizer = json.loads(open(str(fname_tokenizer), encoding="utf-8").read())
try:
if isinstance(self.bpe_tokenizer.get('model'), dict):
self.vocab = self.bpe_tokenizer["model"]["vocab"]
except KeyError:
else:
self.vocab = self.bpe_tokenizer
added_tokens: dict[str, int]
if fname_added_tokens is not None:
@@ -515,10 +515,14 @@ class HfVocab:
# Yield token text, score, and type
yield token_text, self.get_token_score(token_id), self.get_token_type(
token_id, self.special_ids # Reuse already stored special IDs
token_id, token_text, self.special_ids # Reuse already stored special IDs
)
def get_token_type(self, token_id: int, special_ids: set[int]) -> gguf.TokenType:
def get_token_type(self, token_id: int, token_text: bytes, special_ids: set[int]) -> gguf.TokenType:
# Special case for byte tokens
if re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
return gguf.TokenType.BYTE
# Determine token type based on whether it's a special token
return gguf.TokenType.CONTROL if token_id in special_ids else gguf.TokenType.NORMAL
@@ -530,7 +534,7 @@ class HfVocab:
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
for text in self.added_tokens_list:
if text in self.specials:
toktype = self.get_token_type(self.specials[text], self.special_ids)
toktype = self.get_token_type(self.specials[text], b'', self.special_ids)
score = self.get_token_score(self.specials[text])
else:
toktype = gguf.TokenType.USER_DEFINED

View File

@@ -88,7 +88,7 @@ int main(int argc, char ** argv) {
llama_model_params model_params = llama_model_default_params();
const std::vector<float> t_split (LLAMA_MAX_DEVICES, 0.0f);
const std::vector<float> t_split(llama_max_devices(), 0.0f);
model_params.n_gpu_layers = n_gpu_layers;
model_params.tensor_split = t_split.data();

View File

@@ -7,6 +7,51 @@
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
static std::vector<std::string> split_lines(const std::string & s) {
std::string line;
std::vector<std::string> lines;
std::stringstream ss(s);
while (std::getline(ss, line)) {
lines.push_back(line);
}
return lines;
}
static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, int seq_id) {
for (size_t i = 0; i < tokens.size(); i++) {
llama_batch_add(batch, tokens[i], i, { seq_id }, false);
}
}
static void normalize(float * vec, float * out, int n) {
float norm = 0;
for (int i = 0; i < n; i++) {
norm += vec[i] * vec[i];
}
norm = sqrt(norm);
for (int i = 0; i < n; i++) {
out[i] = vec[i] / norm;
}
}
static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd) {
// clear previous kv_cache values (irrelevant for embeddings)
llama_kv_cache_clear(ctx);
// run model
fprintf(stderr, "%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);
if (llama_decode(ctx, batch) < 0) {
fprintf(stderr, "%s : failed to decode\n", __func__);
}
// normalize on copy
for (int k = 0; k < n_seq; k++) {
float * emb = llama_get_embeddings_ith(ctx, k);
float * out = output + k * n_embd;
normalize(emb, out, n_embd);
}
}
int main(int argc, char ** argv) {
gpt_params params;
@@ -55,49 +100,84 @@ int main(int argc, char ** argv) {
fprintf(stderr, "%s\n", get_system_info(params).c_str());
}
int n_past = 0;
// split the prompt into lines
std::vector<std::string> prompts = split_lines(params.prompt);
// tokenize the prompt
auto embd_inp = ::llama_tokenize(ctx, params.prompt, true);
// max batch size
const uint64_t n_batch = params.n_batch;
GGML_ASSERT(params.n_batch == params.n_ctx);
// tokenize the prompts and trim
std::vector<std::vector<int32_t>> inputs;
for (const auto & prompt : prompts) {
auto inp = ::llama_tokenize(ctx, prompt, true);
if (inp.size() > n_batch) {
inp.resize(n_batch);
}
inputs.push_back(inp);
}
// tokenization stats
if (params.verbose_prompt) {
fprintf(stderr, "\n");
fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
for (int i = 0; i < (int) embd_inp.size(); i++) {
fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_piece(ctx, embd_inp[i]).c_str());
for (int i = 0; i < (int) inputs.size(); i++) {
fprintf(stderr, "%s: prompt %d: '%s'\n", __func__, i, prompts[i].c_str());
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, inputs[i].size());
for (int j = 0; j < (int) inputs[i].size(); j++) {
fprintf(stderr, "%6d -> '%s'\n", inputs[i][j], llama_token_to_piece(ctx, inputs[i][j]).c_str());
}
fprintf(stderr, "\n\n");
}
fprintf(stderr, "\n");
}
if (embd_inp.size() > (size_t)n_ctx) {
fprintf(stderr, "%s: error: prompt is longer than the context window (%zu tokens, n_ctx = %d)\n",
__func__, embd_inp.size(), n_ctx);
return 1;
}
while (!embd_inp.empty()) {
int n_tokens = std::min(params.n_batch, (int) embd_inp.size());
if (llama_decode(ctx, llama_batch_get_one(embd_inp.data(), n_tokens, n_past, 0))) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return 1;
}
n_past += n_tokens;
embd_inp.erase(embd_inp.begin(), embd_inp.begin() + n_tokens);
}
// initialize batch
const int n_prompts = prompts.size();
struct llama_batch batch = llama_batch_init(n_batch, 0, n_prompts);
// allocate output
const int n_embd = llama_n_embd(model);
const auto * embeddings = llama_get_embeddings(ctx);
std::vector<float> embeddings(n_prompts * n_embd, 0);
float * emb = embeddings.data();
for (int i = 0; i < n_embd; i++) {
printf("%f ", embeddings[i]);
// break into batches
int p = 0; // number of prompts processed already
int s = 0; // number of prompts in current batch
for (int k = 0; k < n_prompts; k++) {
// clamp to n_batch tokens
auto & inp = inputs[k];
const uint64_t n_toks = inp.size();
// encode if at capacity
if (batch.n_tokens + n_toks > n_batch) {
float * out = emb + p * n_embd;
batch_decode(ctx, batch, out, s, n_embd);
llama_batch_clear(batch);
p += s;
s = 0;
}
// add to batch
batch_add_seq(batch, inp, s);
s += 1;
}
printf("\n");
// final batch
float * out = emb + p * n_embd;
batch_decode(ctx, batch, out, s, n_embd);
// print first 3 embeddings
for (int j = 0; j < std::min(3, n_prompts); j++) {
fprintf(stderr, "embedding %d: ", j);
for (int i = 0; i < n_embd; i++) {
fprintf(stderr, "%f ", emb[j * n_embd + i]);
}
fprintf(stderr, "\n\n");
}
fprintf(stderr, "\n");
// clean up
llama_print_timings(ctx);
llama_free(ctx);
llama_free_model(model);
llama_backend_free();
return 0;

View File

@@ -337,24 +337,14 @@ static bool apply_lora(struct ggml_tensor * tensor, struct lora_data * lora, int
params.mem_buffer = NULL;
params.no_alloc = true;
struct ggml_context * ctx = NULL;
struct ggml_allocr * alloc = NULL;
struct ggml_cgraph * gf = NULL;
struct ggml_gallocr * alloc = NULL;
struct ggml_cgraph * gf = NULL;
ctx = ggml_init(params);
alloc = ggml_allocr_new_measure(tensor_alignment);
alloc = ggml_gallocr_new(ggml_backend_cpu_buffer_type());
gf = build_graph_lora(ctx, tensor, lora_a, lora_b, scaling);
size_t alloc_size = ggml_allocr_alloc_graph(alloc, gf);
ggml_allocr_free(alloc);
ggml_free(ctx);
static std::vector<uint8_t> data_compute;
data_compute.resize(alloc_size + tensor_alignment);
ctx = ggml_init(params);
alloc = ggml_allocr_new(data_compute.data(), data_compute.size(), tensor_alignment);
gf = build_graph_lora(ctx, tensor, lora_a, lora_b, scaling);
ggml_allocr_alloc_graph(alloc, gf);
ggml_allocr_free(alloc);
ggml_gallocr_alloc_graph(alloc, gf);
struct ggml_cplan cplan = ggml_graph_plan(gf, n_threads);
static std::vector<uint8_t> data_work;
@@ -363,6 +353,7 @@ static bool apply_lora(struct ggml_tensor * tensor, struct lora_data * lora, int
ggml_graph_compute(gf, &cplan);
ggml_gallocr_free(alloc);
ggml_free(ctx);
return true;
}

View File

@@ -1,5 +1,6 @@
#include "ggml.h"
#include "ggml-alloc.h"
#include "ggml-backend.h"
#include "llama.h"
#include "common.h"
#include "train.h"
@@ -13,8 +14,6 @@
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
static const size_t tensor_alignment = 32;
struct my_llama_hparams {
uint32_t n_vocab = 32000;
uint32_t n_ctx = 512;
@@ -128,7 +127,7 @@ struct my_llama_lora_layer {
struct my_llama_lora {
struct ggml_context * ctx = NULL;
std::vector<uint8_t> data;
ggml_backend_buffer_t data;
my_llama_lora_hparams hparams;
@@ -372,63 +371,6 @@ static void set_param_lora(struct my_llama_lora * lora) {
}
}
static void alloc_lora(struct ggml_allocr * alloc, struct my_llama_lora * lora) {
ggml_allocr_alloc(alloc, lora->tok_embeddings_a);
ggml_allocr_alloc(alloc, lora->tok_embeddings_b);
ggml_allocr_alloc(alloc, lora->norm_a);
ggml_allocr_alloc(alloc, lora->norm_b);
ggml_allocr_alloc(alloc, lora->output_a);
ggml_allocr_alloc(alloc, lora->output_b);
for (uint32_t i = 0; i < lora->layers.size(); ++i) {
auto & layer = lora->layers[i];
ggml_allocr_alloc(alloc, layer.attention_norm_a);
ggml_allocr_alloc(alloc, layer.attention_norm_b);
ggml_allocr_alloc(alloc, layer.wq_a);
ggml_allocr_alloc(alloc, layer.wq_b);
ggml_allocr_alloc(alloc, layer.wk_a);
ggml_allocr_alloc(alloc, layer.wk_b);
ggml_allocr_alloc(alloc, layer.wv_a);
ggml_allocr_alloc(alloc, layer.wv_b);
ggml_allocr_alloc(alloc, layer.wo_a);
ggml_allocr_alloc(alloc, layer.wo_b);
ggml_allocr_alloc(alloc, layer.ffn_norm_a);
ggml_allocr_alloc(alloc, layer.ffn_norm_b);
ggml_allocr_alloc(alloc, layer.w1_a);
ggml_allocr_alloc(alloc, layer.w1_b);
ggml_allocr_alloc(alloc, layer.w2_a);
ggml_allocr_alloc(alloc, layer.w2_b);
ggml_allocr_alloc(alloc, layer.w3_a);
ggml_allocr_alloc(alloc, layer.w3_b);
}
ggml_allocr_alloc(alloc, lora->tok_embeddings_a->grad);
ggml_allocr_alloc(alloc, lora->tok_embeddings_b->grad);
ggml_allocr_alloc(alloc, lora->norm_a->grad);
ggml_allocr_alloc(alloc, lora->norm_b->grad);
ggml_allocr_alloc(alloc, lora->output_a->grad);
ggml_allocr_alloc(alloc, lora->output_b->grad);
for (uint32_t i = 0; i < lora->layers.size(); ++i) {
auto & layer = lora->layers[i];
ggml_allocr_alloc(alloc, layer.attention_norm_a->grad);
ggml_allocr_alloc(alloc, layer.attention_norm_b->grad);
ggml_allocr_alloc(alloc, layer.wq_a->grad);
ggml_allocr_alloc(alloc, layer.wq_b->grad);
ggml_allocr_alloc(alloc, layer.wk_a->grad);
ggml_allocr_alloc(alloc, layer.wk_b->grad);
ggml_allocr_alloc(alloc, layer.wv_a->grad);
ggml_allocr_alloc(alloc, layer.wv_b->grad);
ggml_allocr_alloc(alloc, layer.wo_a->grad);
ggml_allocr_alloc(alloc, layer.wo_b->grad);
ggml_allocr_alloc(alloc, layer.ffn_norm_a->grad);
ggml_allocr_alloc(alloc, layer.ffn_norm_b->grad);
ggml_allocr_alloc(alloc, layer.w1_a->grad);
ggml_allocr_alloc(alloc, layer.w1_b->grad);
ggml_allocr_alloc(alloc, layer.w2_a->grad);
ggml_allocr_alloc(alloc, layer.w2_b->grad);
ggml_allocr_alloc(alloc, layer.w3_a->grad);
ggml_allocr_alloc(alloc, layer.w3_b->grad);
}
}
static void init_lora(const struct my_llama_model * model, struct my_llama_lora * lora) {
const auto & lparams = lora->hparams;
@@ -522,18 +464,8 @@ static void init_lora(const struct my_llama_model * model, struct my_llama_lora
set_param_lora(lora);
// measure data size
size_t size = 0;
for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
size += GGML_PAD(ggml_nbytes(t), tensor_alignment);
}
// allocate data
struct ggml_allocr * alloc = NULL;
lora->data.resize(size + tensor_alignment);
alloc = ggml_allocr_new(lora->data.data(), lora->data.size(), tensor_alignment);
alloc_lora(alloc, lora);
ggml_allocr_free(alloc);
// allocate data for lora tensors
lora->data = ggml_backend_alloc_ctx_tensors_from_buft(ctx, ggml_backend_cpu_buffer_type());
}
static void randomize_lora(struct my_llama_lora * lora, int seed, float mean, float std, float min, float max) {
@@ -579,7 +511,7 @@ static void randomize_lora(struct my_llama_lora * lora, int seed, float mean, fl
static struct ggml_tensor * llama_build_lora_finetune_graphs(
struct my_llama_model * model,
struct my_llama_lora * lora,
struct ggml_allocr * alloc,
ggml_gallocr_t alloc,
struct ggml_context * ctx,
struct ggml_cgraph * gf,
struct ggml_cgraph * gb,
@@ -590,7 +522,8 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
const int n_tokens,
const int n_batch,
const bool enable_flash_attn,
const bool enable_checkpointing) {
const bool enable_checkpointing,
const bool measure_only) {
ggml_set_scratch(ctx, { 0, 0, nullptr, });
const int n_past = 0;
@@ -622,13 +555,7 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
// KQ_pos - contains the positions
struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, N);
ggml_allocr_alloc(alloc, KQ_pos);
if (!ggml_allocr_is_measure(alloc)) {
int * data = (int *) KQ_pos->data;
for (int i = 0; i < N; ++i) {
data[i] = n_past + i;
}
}
ggml_set_input(KQ_pos);
// rope has so much parameters that we make a custom function for it
auto rope = [ctx, KQ_pos, n_rot, n_ctx, rope_freq_base, rope_freq_scale]
@@ -780,7 +707,7 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
// input gradient
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36->grad, 1.0f));
GGML_ASSERT(t36->grad->data == NULL && t36->grad->view_src == NULL);
ggml_allocr_alloc(alloc, t36->grad);
ggml_set_input(t36->grad);
// KQ_pos
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, KQ_pos, 1.0f));
@@ -805,11 +732,23 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
// note: they will be freed in reverse order
for (unsigned int i = 0; i < checkpoints.size(); ++i) {
if (checkpoints[i]->data == NULL && checkpoints[i]->view_src == NULL) {
ggml_allocr_alloc(alloc, checkpoints[i]);
ggml_set_input(checkpoints[i]);
}
}
ggml_allocr_alloc_graph(alloc, gb);
if (measure_only) {
ggml_gallocr_reserve(alloc, gb);
} else {
ggml_gallocr_alloc_graph(alloc, gb);
// set KQ_pos
{
int * data = (int *) KQ_pos->data;
for (int i = 0; i < N; ++i) {
data[i] = n_past + i;
}
}
}
// remove the additional nodes and leafs
for (int i = n_leafs_before; i < gb->n_leafs; ++i) {
@@ -1663,7 +1602,7 @@ int main(int argc, char ** argv) {
printf("%s: seen train_samples %llu\n", __func__, (long long unsigned) train->train_samples);
printf("%s: seen train_tokens %llu\n", __func__, (long long unsigned) train->train_tokens);
printf("%s: completed train_epochs %llu\n", __func__, (long long unsigned) train->train_epochs);
printf("%s: lora_size = %zu bytes (%.1f MB)\n", __func__, (ggml_used_mem(lora.ctx) + lora.data.size()), (float) (ggml_used_mem(lora.ctx) + lora.data.size()) / (1024.0f*1024.0f));
printf("%s: lora_size = %zu bytes (%.1f MB)\n", __func__, (ggml_used_mem(lora.ctx) + ggml_backend_buffer_get_size(lora.data)), (float) (ggml_used_mem(lora.ctx) + ggml_backend_buffer_get_size(lora.data)) / (1024.0f*1024.0f));
if (params.only_write_lora) {
save_train_files_data save_data;
@@ -1690,10 +1629,6 @@ int main(int argc, char ** argv) {
int n_vocab = model.hparams.n_vocab;
int n_batch = params.common.n_batch;
std::vector<uint8_t> mem_input_data;
std::vector<uint8_t> mem_compute_data;
// context for input tensors without their data
struct ggml_init_params ctx_input_params = {
ggml_tensor_overhead() * 2, // mem_size
@@ -1706,17 +1641,11 @@ int main(int argc, char ** argv) {
struct ggml_tensor * tokens_input = ggml_new_tensor_2d(ctx_input, GGML_TYPE_I32, n_tokens, n_batch);
struct ggml_tensor * target_probs = ggml_new_tensor_3d(ctx_input, GGML_TYPE_F32, n_vocab, n_tokens, n_batch);
// measure required memory for input tensors
size_t max_input_size = GGML_PAD(ggml_nbytes(tokens_input), tensor_alignment) +
GGML_PAD(ggml_nbytes(target_probs), tensor_alignment) +
tensor_alignment;
printf("%s: input_size = %zu bytes (%.1f MB)\n", __func__, max_input_size, (float) max_input_size / (1024.0f*1024.0f));
// allocate input tensors
mem_input_data.resize(max_input_size);
ggml_allocr_t alloc_inps = ggml_allocr_new(mem_input_data.data(), mem_input_data.size(), tensor_alignment);
ggml_allocr_alloc(alloc_inps, tokens_input);
ggml_allocr_alloc(alloc_inps, target_probs);
// measure required memory for input tensors
ggml_backend_buffer_t input_data = ggml_backend_alloc_ctx_tensors_from_buft(ctx_input, ggml_backend_cpu_buffer_type());
size_t max_input_size = ggml_backend_buffer_get_size(input_data);
printf("%s: input_size = %zu bytes (%.1f MB)\n", __func__, max_input_size, (float) max_input_size / (1024.0f*1024.0f));
// context for compute tensors without their data
const size_t estimated_compute_size_wo_data = (
@@ -1743,7 +1672,7 @@ int main(int argc, char ** argv) {
// find best evaluation order
for (unsigned order = 0; order < (unsigned) GGML_CGRAPH_EVAL_ORDER_COUNT; ++order) {
ctx_compute = ggml_init(ctx_compute_params);
ggml_allocr_t alloc = ggml_allocr_new_measure(tensor_alignment);
ggml_gallocr_t alloc = ggml_gallocr_new(ggml_backend_cpu_buffer_type());
gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
gf->order = (enum ggml_cgraph_eval_order) order;
gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
@@ -1756,14 +1685,15 @@ int main(int argc, char ** argv) {
&logits, tokens_input, target_probs,
n_tokens, n_batch,
params.common.use_flash,
params.common.use_checkpointing
params.common.use_checkpointing,
true
);
size_t max_compute_size = ggml_allocr_max_size(alloc) + tensor_alignment;
size_t max_compute_size = ggml_gallocr_get_buffer_size(alloc, 0); // FIXME: this will still allocate the buffer
if (max_compute_size < best_compute_size) {
best_compute_size = max_compute_size;
best_order = gf->order;
}
ggml_allocr_free(alloc);
ggml_gallocr_free(alloc);
ggml_free(ctx_compute);
}
size_t max_compute_size = best_compute_size;
@@ -1774,9 +1704,8 @@ int main(int argc, char ** argv) {
"invalid");
// allocate compute tensors
mem_compute_data.resize(max_compute_size);
ctx_compute = ggml_init(ctx_compute_params);
ggml_allocr_t alloc = ggml_allocr_new(mem_compute_data.data(), mem_compute_data.size(), tensor_alignment);
ggml_gallocr_t alloc = ggml_gallocr_new(ggml_backend_cpu_buffer_type());
gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
gf->order = best_order;
gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
@@ -1789,11 +1718,9 @@ int main(int argc, char ** argv) {
&logits, tokens_input, target_probs,
n_tokens, n_batch,
params.common.use_flash,
params.common.use_checkpointing
params.common.use_checkpointing,
false
);
ggml_allocr_free(alloc);
ggml_allocr_free(alloc_inps);
// tokenize data
std::vector<llama_token> train_tokens;
@@ -1908,6 +1835,8 @@ int main(int argc, char ** argv) {
ggml_free(ctx_work);
ggml_free(ctx_compute);
ggml_free(ctx_input);
ggml_gallocr_free(alloc);
int64_t t1 = ggml_time_ms();
printf("%s: total training time: ", __func__);

View File

@@ -36,6 +36,8 @@ public:
void set_parameters(StatParams&& params) { m_params = std::move(params); }
bool collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data);
void save_imatrix() const;
bool load_imatrix(const char * file_name, bool add);
static bool load_imatrix(const char * file_name, std::unordered_map<std::string, Stats>& imatrix);
private:
std::unordered_map<std::string, Stats> m_stats;
StatParams m_params;
@@ -189,6 +191,57 @@ void IMatrixCollector::save_imatrix(const char * fname) const {
}
}
bool IMatrixCollector::load_imatrix(const char * imatrix_file, std::unordered_map<std::string, Stats>& imatrix_data) {
std::ifstream in(imatrix_file, std::ios::binary);
if (!in) {
printf("%s: failed to open %s\n",__func__,imatrix_file);
return false;
}
int n_entries;
in.read((char*)&n_entries, sizeof(n_entries));
if (in.fail() || n_entries < 1) {
printf("%s: no data in file %s\n", __func__, imatrix_file);
return false;
}
for (int i = 0; i < n_entries; ++i) {
int len; in.read((char *)&len, sizeof(len));
std::vector<char> name_as_vec(len+1);
in.read((char *)name_as_vec.data(), len);
if (in.fail()) {
printf("%s: failed reading name for entry %d from %s\n",__func__,i+1,imatrix_file);
return false;
}
name_as_vec[len] = 0;
std::string name{name_as_vec.data()};
auto& e = imatrix_data[std::move(name)];
int ncall;
in.read((char*)&ncall, sizeof(ncall));
int nval;
in.read((char *)&nval, sizeof(nval));
if (in.fail() || nval < 1) {
printf("%s: failed reading number of values for entry %d\n",__func__,i);
imatrix_data = {};
return false;
}
e.values.resize(nval);
in.read((char*)e.values.data(), nval*sizeof(float));
if (in.fail()) {
printf("%s: failed reading data for entry %d\n",__func__,i);
imatrix_data = {};
return false;
}
e.ncall = ncall;
}
return true;
}
bool IMatrixCollector::load_imatrix(const char * file_name, bool add) {
if (!add) {
m_stats.clear();
}
return load_imatrix(file_name, m_stats);
}
static IMatrixCollector g_collector;
static bool ik_collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data) {
@@ -269,7 +322,7 @@ static void process_logits(
}
}
static bool compute_imatrix(llama_context * ctx, const gpt_params & params, bool compute_ppl) {
static bool compute_imatrix(llama_context * ctx, const gpt_params & params, bool compute_ppl, int from_chunk) {
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
const int n_ctx = llama_n_ctx(ctx);
@@ -282,6 +335,15 @@ static bool compute_imatrix(llama_context * ctx, const gpt_params & params, bool
auto tim2 = std::chrono::high_resolution_clock::now();
fprintf(stderr, "%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());
if (from_chunk > 0) {
if (size_t((from_chunk + 2)*n_ctx) >= tokens.size()) {
fprintf(stderr, "%s: there will be not enough tokens left after removing %d chunks\n", __func__, from_chunk);
return false;
}
fprintf(stderr, "%s: removing initial %d chunks (%d tokens)\n", __func__, from_chunk, from_chunk*n_ctx);
tokens.erase(tokens.begin(), tokens.begin() + from_chunk*n_ctx);
}
if (int(tokens.size()) < 2*n_ctx) {
fprintf(stderr, "%s: you need at least %d tokens for a context of %d tokens\n",__func__,2*n_ctx,
n_ctx);
@@ -402,7 +464,10 @@ static bool compute_imatrix(llama_context * ctx, const gpt_params & params, bool
int main(int argc, char ** argv) {
StatParams sparams;
std::string prev_result_file;
std::string combine_files;
bool compute_ppl = true;
int from_chunk = 0;
std::vector<char*> args;
args.push_back(argv[0]);
int iarg = 1;
@@ -423,6 +488,13 @@ int main(int argc, char ** argv) {
compute_ppl = false;
} else if (arg == "--keep-imatrix") {
sparams.keep_every = std::stoi(argv[++iarg]);
} else if (arg == "--continue-from") {
prev_result_file = argv[++iarg];
} else if (arg == "--combine") {
combine_files = argv[++iarg];
}
else if (arg == "--from-chunk") {
from_chunk = std::stoi(argv[++iarg]);
} else {
args.push_back(argv[iarg]);
}
@@ -436,14 +508,50 @@ int main(int argc, char ** argv) {
}
}
g_collector.set_parameters(std::move(sparams));
if (!combine_files.empty()) {
std::vector<std::string> files;
size_t pos = 0;
while (true) {
auto new_pos = combine_files.find(',', pos);
if (new_pos != std::string::npos) {
files.emplace_back(combine_files.substr(pos, new_pos - pos));
pos = new_pos + 1;
} else {
files.emplace_back(combine_files.substr(pos));
break;
}
}
if (files.size() < 2) {
fprintf(stderr, "You must provide at least two comma separated files to use --combine\n");
return 1;
}
printf("Combining the following %d files\n", int(files.size()));
for (auto& file : files) {
printf(" %s\n", file.c_str());
if (!g_collector.load_imatrix(file.c_str(), true)) {
fprintf(stderr, "Failed to load %s\n", file.c_str());
return 1;
}
}
g_collector.save_imatrix();
return 0;
}
if (!prev_result_file.empty()) {
if (!g_collector.load_imatrix(prev_result_file.c_str(), false)) {
fprintf(stderr, "=============== Failed to load %s\n", prev_result_file.c_str());
return 1;
}
}
gpt_params params;
params.n_batch = 512;
if (!gpt_params_parse(args.size(), args.data(), params)) {
return 1;
}
g_collector.set_parameters(std::move(sparams));
params.logits_all = true;
params.n_batch = std::min(params.n_batch, params.n_ctx);
@@ -495,7 +603,7 @@ int main(int argc, char ** argv) {
fprintf(stderr, "%s\n", get_system_info(params).c_str());
}
bool OK = compute_imatrix(ctx, params, compute_ppl);
bool OK = compute_imatrix(ctx, params, compute_ppl, from_chunk);
if (!OK) {
return 1;
}

View File

@@ -23,19 +23,23 @@ usage: ./llama-bench [options]
options:
-h, --help
-m, --model <filename> (default: models/7B/ggml-model-q4_0.gguf)
-p, --n-prompt <n> (default: 512)
-n, --n-gen <n> (default: 128)
-b, --batch-size <n> (default: 512)
--memory-f32 <0|1> (default: 0)
-t, --threads <n> (default: 16)
-ngl N, --n-gpu-layers <n> (default: 99)
-mg i, --main-gpu <i> (default: 0)
-mmq, --mul-mat-q <0|1> (default: 1)
-ts, --tensor_split <ts0/ts1/..>
-r, --repetitions <n> (default: 5)
-o, --output <csv|json|md|sql> (default: md)
-v, --verbose (default: 0)
-m, --model <filename> (default: models/7B/ggml-model-q4_0.gguf)
-p, --n-prompt <n> (default: 512)
-n, --n-gen <n> (default: 128)
-b, --batch-size <n> (default: 512)
-ctk <t>, --cache-type-k <t> (default: f16)
-ctv <t>, --cache-type-v <t> (default: f16)
-t, --threads <n> (default: 112)
-ngl, --n-gpu-layers <n> (default: 99)
-sm, --split-mode <none|layer|row> (default: layer)
-mg, --main-gpu <i> (default: 0)
-nkvo, --no-kv-offload <0|1> (default: 0)
-mmp, --mmap <0|1> (default: 1)
-mmq, --mul-mat-q <0|1> (default: 1)
-ts, --tensor_split <ts0/ts1/..> (default: 0)
-r, --repetitions <n> (default: 5)
-o, --output <csv|json|md|sql> (default: md)
-v, --verbose (default: 0)
Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.
```
@@ -51,6 +55,10 @@ Each test is repeated the number of times given by `-r`, and the results are ave
For a description of the other options, see the [main example](../main/README.md).
Note:
- When using SYCL backend, there would be hang issue in some cases. Please set `--mmp 0`.
## Examples
### Text generation with different models

View File

@@ -20,6 +20,7 @@
#include "llama.h"
#include "common.h"
#include "ggml-cuda.h"
#include "ggml-sycl.h"
// utils
static uint64_t get_time_ns() {
@@ -120,6 +121,22 @@ static std::string get_gpu_info() {
id += "/";
}
}
#endif
#ifdef GGML_USE_SYCL
int device_list[GGML_SYCL_MAX_DEVICES];
ggml_sycl_get_gpu_list(device_list, GGML_SYCL_MAX_DEVICES);
for (int i = 0; i < GGML_SYCL_MAX_DEVICES; i++) {
if (device_list[i] >0 ){
char buf[128];
ggml_sycl_get_device_description(i, buf, sizeof(buf));
id += buf;
id += "/";
}
}
if (id.length() >2 ) {
id.pop_back();
}
#endif
// TODO: other backends
return id;
@@ -160,7 +177,8 @@ struct cmd_params {
std::vector<int> main_gpu;
std::vector<bool> no_kv_offload;
std::vector<bool> mul_mat_q;
std::vector<std::array<float, LLAMA_MAX_DEVICES>> tensor_split;
std::vector<std::vector<float>> tensor_split;
std::vector<bool> use_mmap;
int reps;
bool verbose;
output_formats output_format;
@@ -179,7 +197,8 @@ static const cmd_params cmd_params_defaults = {
/* main_gpu */ {0},
/* no_kv_offload */ {false},
/* mul_mat_q */ {true},
/* tensor_split */ {{}},
/* tensor_split */ {std::vector<float>(llama_max_devices(), 0.0f)},
/* use_mmap */ {true},
/* reps */ 5,
/* verbose */ false,
/* output_format */ MARKDOWN
@@ -201,6 +220,7 @@ static void print_usage(int /* argc */, char ** argv) {
printf(" -sm, --split-mode <none|layer|row> (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
printf(" -mmp, --mmap <0|1> (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str());
printf(" -mmq, --mul-mat-q <0|1> (default: %s)\n", join(cmd_params_defaults.mul_mat_q, ",").c_str());
printf(" -ts, --tensor_split <ts0/ts1/..> (default: 0)\n");
printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
@@ -370,6 +390,13 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
}
auto p = split<bool>(argv[i], split_delim);
params.mul_mat_q.insert(params.mul_mat_q.end(), p.begin(), p.end());
} else if (arg == "-mmp" || arg == "--mmap") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = split<bool>(argv[i], split_delim);
params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end());
} else if (arg == "-ts" || arg == "--tensor-split") {
if (++i >= argc) {
invalid_param = true;
@@ -380,10 +407,10 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
const std::regex regex{R"([;/]+)"};
std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
std::vector<std::string> split_arg{it, {}};
GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
GGML_ASSERT(split_arg.size() <= llama_max_devices());
std::array<float, LLAMA_MAX_DEVICES> tensor_split;
for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
std::vector<float> tensor_split(llama_max_devices());
for (size_t i = 0; i < llama_max_devices(); ++i) {
if (i < split_arg.size()) {
tensor_split[i] = std::stof(split_arg[i]);
} else {
@@ -441,6 +468,7 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
if (params.mul_mat_q.empty()) { params.mul_mat_q = cmd_params_defaults.mul_mat_q; }
if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
if (params.use_mmap.empty()) { params.use_mmap = cmd_params_defaults.use_mmap; }
if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
return params;
@@ -459,7 +487,8 @@ struct cmd_params_instance {
int main_gpu;
bool no_kv_offload;
bool mul_mat_q;
std::array<float, LLAMA_MAX_DEVICES> tensor_split;
std::vector<float> tensor_split;
bool use_mmap;
llama_model_params to_llama_mparams() const {
llama_model_params mparams = llama_model_default_params();
@@ -468,6 +497,7 @@ struct cmd_params_instance {
mparams.split_mode = split_mode;
mparams.main_gpu = main_gpu;
mparams.tensor_split = tensor_split.data();
mparams.use_mmap = use_mmap;
return mparams;
}
@@ -477,6 +507,7 @@ struct cmd_params_instance {
n_gpu_layers == other.n_gpu_layers &&
split_mode == other.split_mode &&
main_gpu == other.main_gpu &&
use_mmap == other.use_mmap &&
tensor_split == other.tensor_split;
}
@@ -503,6 +534,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
for (const auto & sm : params.split_mode)
for (const auto & mg : params.main_gpu)
for (const auto & ts : params.tensor_split)
for (const auto & mmp : params.use_mmap)
for (const auto & nb : params.n_batch)
for (const auto & tk : params.type_k)
for (const auto & tv : params.type_v)
@@ -527,6 +559,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
/* .no_kv_offload= */ nkvo,
/* .mul_mat_q = */ mmq,
/* .tensor_split = */ ts,
/* .use_mmap = */ mmp,
};
instances.push_back(instance);
}
@@ -549,6 +582,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
/* .no_kv_offload= */ nkvo,
/* .mul_mat_q = */ mmq,
/* .tensor_split = */ ts,
/* .use_mmap = */ mmp,
};
instances.push_back(instance);
}
@@ -563,7 +597,9 @@ struct test {
static const bool cuda;
static const bool opencl;
static const bool vulkan;
static const bool kompute;
static const bool metal;
static const bool sycl;
static const bool gpu_blas;
static const bool blas;
static const std::string cpu_info;
@@ -581,7 +617,8 @@ struct test {
int main_gpu;
bool no_kv_offload;
bool mul_mat_q;
std::array<float, LLAMA_MAX_DEVICES> tensor_split;
std::vector<float> tensor_split;
bool use_mmap;
int n_prompt;
int n_gen;
std::string test_time;
@@ -604,6 +641,7 @@ struct test {
no_kv_offload = inst.no_kv_offload;
mul_mat_q = inst.mul_mat_q;
tensor_split = inst.tensor_split;
use_mmap = inst.use_mmap;
n_prompt = inst.n_prompt;
n_gen = inst.n_gen;
// RFC 3339 date-time format
@@ -647,28 +685,35 @@ struct test {
if (vulkan) {
return "Vulkan";
}
if (kompute) {
return "Kompute";
}
if (metal) {
return "Metal";
}
if (sycl) {
return GGML_SYCL_NAME;
}
if (gpu_blas) {
return "GPU BLAS";
}
if (blas) {
return "BLAS";
}
return "CPU";
}
static const std::vector<std::string> & get_fields() {
static const std::vector<std::string> fields = {
"build_commit", "build_number",
"cuda", "opencl", "vulkan", "metal", "gpu_blas", "blas",
"cuda", "opencl", "vulkan", "kompute", "metal", "sycl", "gpu_blas", "blas",
"cpu_info", "gpu_info",
"model_filename", "model_type", "model_size", "model_n_params",
"n_batch", "n_threads", "type_k", "type_v",
"n_gpu_layers", "split_mode",
"main_gpu", "no_kv_offload",
"mul_mat_q", "tensor_split",
"mul_mat_q", "tensor_split", "use_mmap",
"n_prompt", "n_gen", "test_time",
"avg_ns", "stddev_ns",
"avg_ts", "stddev_ts"
@@ -686,8 +731,9 @@ struct test {
field == "avg_ns" || field == "stddev_ns") {
return INT;
}
if (field == "cuda" || field == "opencl" || field == "vulkan"|| field == "metal" || field == "gpu_blas" || field == "blas" ||
field == "f16_kv" || field == "no_kv_offload" || field == "mul_mat_q") {
if (field == "cuda" || field == "opencl" || field == "vulkan" || field == "kompute" || field == "metal" ||
field == "gpu_blas" || field == "blas" || field == "sycl" ||field == "f16_kv" || field == "no_kv_offload" ||
field == "mul_mat_q" || field == "use_mmap") {
return BOOL;
}
if (field == "avg_ts" || field == "stddev_ts") {
@@ -699,7 +745,7 @@ struct test {
std::vector<std::string> get_values() const {
std::string tensor_split_str;
int max_nonzero = 0;
for (int i = 0; i < LLAMA_MAX_DEVICES; i++) {
for (size_t i = 0; i < llama_max_devices(); i++) {
if (tensor_split[i] > 0) {
max_nonzero = i;
}
@@ -714,13 +760,14 @@ struct test {
}
std::vector<std::string> values = {
build_commit, std::to_string(build_number),
std::to_string(cuda), std::to_string(opencl), std::to_string(vulkan), std::to_string(metal), std::to_string(gpu_blas), std::to_string(blas),
std::to_string(cuda), std::to_string(opencl), std::to_string(vulkan), std::to_string(vulkan),
std::to_string(metal), std::to_string(sycl), std::to_string(gpu_blas), std::to_string(blas),
cpu_info, gpu_info,
model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
std::to_string(n_batch), std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v),
std::to_string(n_gpu_layers), split_mode_str(split_mode),
std::to_string(main_gpu), std::to_string(no_kv_offload),
std::to_string(mul_mat_q), tensor_split_str,
std::to_string(mul_mat_q), tensor_split_str, std::to_string(use_mmap),
std::to_string(n_prompt), std::to_string(n_gen), test_time,
std::to_string(avg_ns()), std::to_string(stdev_ns()),
std::to_string(avg_ts()), std::to_string(stdev_ts())
@@ -743,9 +790,11 @@ const int test::build_number = LLAMA_BUILD_NUMBER;
const bool test::cuda = !!ggml_cpu_has_cublas();
const bool test::opencl = !!ggml_cpu_has_clblast();
const bool test::vulkan = !!ggml_cpu_has_vulkan();
const bool test::kompute = !!ggml_cpu_has_kompute();
const bool test::metal = !!ggml_cpu_has_metal();
const bool test::gpu_blas = !!ggml_cpu_has_gpublas();
const bool test::blas = !!ggml_cpu_has_blas();
const bool test::sycl = !!ggml_cpu_has_sycl();
const std::string test::cpu_info = get_cpu_info();
const std::string test::gpu_info = get_gpu_info();
@@ -888,6 +937,9 @@ struct markdown_printer : public printer {
if (field == "no_kv_offload") {
return "nkvo";
}
if (field == "use_mmap") {
return "mmap";
}
if (field == "tensor_split") {
return "ts";
}
@@ -896,43 +948,46 @@ struct markdown_printer : public printer {
void print_header(const cmd_params & params) override {
// select fields to print
fields.push_back("model");
fields.push_back("size");
fields.push_back("params");
fields.push_back("backend");
fields.emplace_back("model");
fields.emplace_back("size");
fields.emplace_back("params");
fields.emplace_back("backend");
bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS";
if (!is_cpu_backend) {
fields.push_back("n_gpu_layers");
fields.emplace_back("n_gpu_layers");
}
if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
fields.push_back("n_threads");
fields.emplace_back("n_threads");
}
if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
fields.push_back("n_batch");
fields.emplace_back("n_batch");
}
if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
fields.push_back("type_k");
fields.emplace_back("type_k");
}
if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
fields.push_back("type_v");
fields.emplace_back("type_v");
}
if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
fields.push_back("main_gpu");
fields.emplace_back("main_gpu");
}
if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
fields.push_back("split_mode");
fields.emplace_back("split_mode");
}
if (params.mul_mat_q.size() > 1 || params.mul_mat_q != cmd_params_defaults.mul_mat_q) {
fields.push_back("mul_mat_q");
fields.emplace_back("mul_mat_q");
}
if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
fields.push_back("no_kv_offload");
fields.emplace_back("no_kv_offload");
}
if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
fields.push_back("tensor_split");
fields.emplace_back("tensor_split");
}
fields.push_back("test");
fields.push_back("t/s");
if (params.use_mmap.size() > 1 || params.use_mmap != cmd_params_defaults.use_mmap) {
fields.emplace_back("use_mmap");
}
fields.emplace_back("test");
fields.emplace_back("t/s");
fprintf(fout, "|");
for (const auto & field : fields) {

View File

@@ -111,17 +111,71 @@ llama_print_timings: eval time = 1279.03 ms / 18 runs ( 71.06 m
llama_print_timings: total time = 34570.79 ms
```
## Orin compile and run
### compile
```sh
make LLAMA_CUBLAS=1 CUDA_DOCKER_ARCH=sm_87 LLAMA_CUDA_F16=1 -j 32
```
### run on Orin
### case 1
**input**
```sh
./llava-cli \
-m /data/local/tmp/ggml-model-q4_k.gguf \
--mmproj /data/local/tmp/mmproj-model-f16.gguf \
--image /data/local/tmp/demo.jpeg \
-p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWho is the author of this book? \nAnswer the question using a single word or phrase. ASSISTANT:" \
--n-gpu-layers 999
```
**output**
```sh
encode_image_with_clip: image encoded in 296.62 ms by CLIP ( 2.06 ms per image patch)
Susan Wise Bauer
llama_print_timings: load time = 1067.64 ms
llama_print_timings: sample time = 1.53 ms / 6 runs ( 0.25 ms per token, 3934.43 tokens per second)
llama_print_timings: prompt eval time = 306.84 ms / 246 tokens ( 1.25 ms per token, 801.72 tokens per second)
llama_print_timings: eval time = 91.50 ms / 6 runs ( 15.25 ms per token, 65.58 tokens per second)
llama_print_timings: total time = 1352.63 ms / 252 tokens
```
### case 2
**input**
```sh
./llava-cli \
-m /data/local/tmp/ggml-model-q4_k.gguf \
--mmproj /data/local/tmp/mmproj-model-f16.gguf \
-p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWhat is in the image? ASSISTANT:" \
--n-gpu-layers 999
```
**output**
```sh
encode_image_with_clip: image encoded in 302.15 ms by CLIP ( 2.10 ms per image patch)
The image features a cat lying in the grass.
llama_print_timings: load time = 1057.07 ms
llama_print_timings: sample time = 3.27 ms / 11 runs ( 0.30 ms per token, 3360.83 tokens per second)
llama_print_timings: prompt eval time = 213.60 ms / 232 tokens ( 0.92 ms per token, 1086.14 tokens per second)
llama_print_timings: eval time = 166.65 ms / 11 runs ( 15.15 ms per token, 66.01 tokens per second)
llama_print_timings: total time = 1365.47 ms / 243 tokens
```
## Minor shortcomings
The `n_patch` of output in `ldp` is 1/4 of the input. In order to implement quickly, we uniformly modified `clip_n_patches` function to a quarter. when counting the time consumption, the calculated time will be 4 times bigger than the real cost.
## TODO
- [ ] Support non-CPU backend for the new operators, such as `depthwise`, `hardswish`, `hardsigmoid`
- [x] Support non-CPU backend for the new operators, such as `depthwise`, `hardswish`, `hardsigmoid`
- [ ] Optimize LDP projector performance
- Optimize the structure definition to avoid unnecessary memory rearrangements, to reduce the use of `ggml_permute_cpy`;
- Optimize operator implementation (ARM CPU/NVIDIA GPU): such as depthwise conv, hardswish, hardsigmoid, etc.
- [ ] run MobileVLM on `Jetson Orin`
- [x] run MobileVLM on `Jetson Orin`
- [ ] Support more model variants, such as `MobileVLM-3B`.

View File

@@ -14,14 +14,14 @@ Build with cmake or run `make llava-cli` to build it.
After building, run: `./llava-cli` to see the usage. For example:
```sh
./llava-cli -m llava-v1.5-7b/ggml-model-q5_k.gguf --mmproj llava-v1.5-7b/mmproj-model-f16.gguf --image path/to/an/image.jpg
./llava-cli -m ../llava-v1.5-7b/ggml-model-f16.gguf --mmproj ../llava-v1.5-7b/mmproj-model-f16.gguf --image path/to/an/image.jpg
```
**note**: A lower temperature like 0.1 is recommended for better quality. add `--temp 0.1` to the command to do so.
## Model conversion
- Clone `llava-v15-7b`` and `clip-vit-large-patch14-336`` locally:
- Clone `llava-v15-7b` and `clip-vit-large-patch14-336` locally:
```sh
git clone https://huggingface.co/liuhaotian/llava-v1.5-7b
@@ -29,19 +29,25 @@ git clone https://huggingface.co/liuhaotian/llava-v1.5-7b
git clone https://huggingface.co/openai/clip-vit-large-patch14-336
```
2. Use `llava-surgery.py` to split the LLaVA model to LLaMA and multimodel projector constituents:
2. Install the required Python packages:
```sh
pip install -r examples/llava/requirements.txt
```
3. Use `llava-surgery.py` to split the LLaVA model to LLaMA and multimodel projector constituents:
```sh
python ./examples/llava/llava-surgery.py -m ../llava-v1.5-7b
```
3. Use `convert-image-encoder-to-gguf.py` to convert the LLaVA image encoder to GGUF:
4. Use `convert-image-encoder-to-gguf.py` to convert the LLaVA image encoder to GGUF:
```sh
python ./examples/llava/convert-image-encoder-to-gguf -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
python ./examples/llava/convert-image-encoder-to-gguf.py -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
```
4. Use `convert.py` to convert the LLaMA part of LLaVA to GGUF:
5. Use `convert.py` to convert the LLaMA part of LLaVA to GGUF:
```sh
python ./convert.py ../llava-v1.5-7b

View File

@@ -367,7 +367,7 @@ struct clip_ctx {
ggml_backend_buffer_t params_buffer = NULL;
ggml_backend_buffer_t compute_buffer = NULL;
ggml_backend_t backend = NULL;
ggml_allocr * compute_alloc = NULL;
ggml_gallocr_t compute_alloc = NULL;
};
static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs) {
@@ -405,31 +405,8 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size, image_size, 3, batch_size);
ggml_allocr_alloc(ctx->compute_alloc, inp_raw);
if (!ggml_allocr_is_measure(ctx->compute_alloc)) {
float * data = (float *)malloc(ggml_nbytes(inp_raw));
for (size_t i = 0; i < imgs->size; i++) {
const int nx = imgs->data[i].nx;
const int ny = imgs->data[i].ny;
GGML_ASSERT(nx == image_size && ny == image_size);
const int n = nx * ny;
for (int b = 0; b < batch_size; b++) {
for (int k = 0; k < 3; k++) {
for (int y = 0; y < ny; y++) {
for (int x = 0; x < nx; x++) {
data[(b * 3 * n) + k * n + y * nx + x] = imgs->data[b].buf[3 * (y * nx + x) + k];
}
}
}
}
}
ggml_backend_tensor_set(inp_raw, data, 0, ggml_nbytes(inp_raw));
free(data);
}
ggml_set_name(inp_raw, "inp_raw");
ggml_set_input(inp_raw);
struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
@@ -438,13 +415,8 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
// concat class_embeddings and patch_embeddings
struct ggml_tensor * embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size);
ggml_allocr_alloc(ctx->compute_alloc, embeddings);
if (!ggml_allocr_is_measure(ctx->compute_alloc)) {
void* zero_mem = malloc(ggml_nbytes(embeddings));
memset(zero_mem, 0, ggml_nbytes(embeddings));
ggml_backend_tensor_set(embeddings, zero_mem, 0, ggml_nbytes(embeddings));
free(zero_mem);
}
ggml_set_name(embeddings, "embeddings");
ggml_set_input(embeddings);
embeddings = ggml_acc(ctx0, embeddings, model.class_embedding,
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0);
@@ -453,15 +425,8 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions);
ggml_allocr_alloc(ctx->compute_alloc, positions);
if (!ggml_allocr_is_measure(ctx->compute_alloc)) {
int* positions_data = (int*)malloc(ggml_nbytes(positions));
for (int i = 0; i < num_positions; i++) {
positions_data[i] = i;
}
ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
free(positions_data);
}
ggml_set_name(positions, "positions");
ggml_set_input(positions);
embeddings =
ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions));
@@ -560,15 +525,8 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
struct ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches);
ggml_allocr_alloc(ctx->compute_alloc, patches);
if (!ggml_allocr_is_measure(ctx->compute_alloc)) {
int* patches_data = (int*)malloc(ggml_nbytes(patches));
for (int i = 0; i < num_patches; i++) {
patches_data[i] = i + 1;
}
ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches));
free(patches_data);
}
ggml_set_name(patches, "patches");
ggml_set_input(patches);
// shape [1, 576, 1024]
// ne is whcn, ne = [1024, 576, 1, 1]
@@ -809,7 +767,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
}
// data
size_t buffer_size = 0;
size_t model_size = 0;
{
for (int i = 0; i < n_tensors; ++i) {
const char * name = gguf_get_tensor_name(ctx, i);
@@ -817,7 +775,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
enum ggml_type type = gguf_get_tensor_type(ctx, i);
struct ggml_tensor * cur = ggml_get_tensor(meta, name);
size_t tensor_size = ggml_nbytes(cur);
buffer_size += tensor_size;
model_size += tensor_size;
if (verbosity >= 3) {
printf("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
__func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
@@ -825,8 +783,6 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
}
}
buffer_size += n_tensors * 128 /* CLIP PADDING */;
clip_ctx * new_clip = new clip_ctx;
// update projector type
@@ -886,12 +842,12 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
printf("%s: text_encoder: %d\n", __func__, new_clip->has_text_encoder);
printf("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder);
printf("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector);
printf("%s: model size: %.2f MB\n", __func__, buffer_size / 1024.0 / 1024.0);
printf("%s: model size: %.2f MB\n", __func__, model_size / 1024.0 / 1024.0);
printf("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0);
}
}
printf("%s: params backend buffer size = % 6.2f MB (%i tensors)\n", __func__, buffer_size / (1024.0 * 1024.0), n_tensors);
printf("%s: params backend buffer size = % 6.2f MB (%i tensors)\n", __func__, model_size / (1024.0 * 1024.0), n_tensors);
// load tensors
{
@@ -925,12 +881,10 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
}
// alloc memory and offload data
new_clip->params_buffer = ggml_backend_alloc_buffer(new_clip->backend, buffer_size);
ggml_allocr* alloc = ggml_allocr_new_from_buffer(new_clip->params_buffer);
new_clip->params_buffer = ggml_backend_alloc_ctx_tensors(new_clip->ctx_data, new_clip->backend);
for (int i = 0; i < n_tensors; ++i) {
const char * name = gguf_get_tensor_name(ctx, i);
struct ggml_tensor * cur = ggml_get_tensor(new_clip->ctx_data, name);
ggml_allocr_alloc(alloc, cur);
const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i);
fin.seekg(offset, std::ios::beg);
if (!fin) {
@@ -949,7 +903,6 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
}
}
ggml_allocr_free(alloc);
fin.close();
}
@@ -1077,15 +1030,12 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
// measure mem requirement and allocate
{
new_clip->buf_compute_meta.resize(GGML_DEFAULT_GRAPH_SIZE * ggml_tensor_overhead() + ggml_graph_overhead());
new_clip->compute_alloc = ggml_allocr_new_measure_from_backend(new_clip->backend);
new_clip->compute_alloc = ggml_gallocr_new(ggml_backend_get_default_buffer_type(new_clip->backend));
clip_image_f32_batch batch;
batch.size = 1;
ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch);
size_t compute_memory_buffer_size = ggml_allocr_alloc_graph(new_clip->compute_alloc, gf);
ggml_allocr_free(new_clip->compute_alloc);
new_clip->compute_buffer = ggml_backend_alloc_buffer(new_clip->backend, compute_memory_buffer_size);
new_clip->compute_alloc = ggml_allocr_new_from_buffer(new_clip->compute_buffer);
ggml_gallocr_reserve(new_clip->compute_alloc, gf);
size_t compute_memory_buffer_size = ggml_gallocr_get_buffer_size(new_clip->compute_alloc, 0);
printf("%s: compute allocated memory: %.2f MB\n", __func__, compute_memory_buffer_size /1024.0/1024.0);
}
@@ -1267,12 +1217,72 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
GGML_ASSERT(batch_size == 1); // TODO: support multiple images
}
// reset alloc buffer to clean the memory from previous invocations
ggml_allocr_reset(ctx->compute_alloc);
// build the inference graph
ggml_cgraph * gf = clip_image_build_graph(ctx, imgs);
ggml_allocr_alloc_graph(ctx->compute_alloc, gf);
ggml_gallocr_alloc_graph(ctx->compute_alloc, gf);
// set inputs
const auto & model = ctx->vision_model;
const auto & hparams = model.hparams;
const int image_size = hparams.image_size;
const int patch_size = hparams.patch_size;
const int num_patches = ((image_size / patch_size) * (image_size / patch_size));
const int num_positions = num_patches + 1;
{
struct ggml_tensor * inp_raw = ggml_graph_get_tensor(gf, "inp_raw");
float * data = (float *)malloc(ggml_nbytes(inp_raw));
for (size_t i = 0; i < imgs->size; i++) {
const int nx = imgs->data[i].nx;
const int ny = imgs->data[i].ny;
GGML_ASSERT(nx == image_size && ny == image_size);
const int n = nx * ny;
for (int b = 0; b < batch_size; b++) {
for (int k = 0; k < 3; k++) {
for (int y = 0; y < ny; y++) {
for (int x = 0; x < nx; x++) {
data[(b * 3 * n) + k * n + y * nx + x] = imgs->data[b].buf[3 * (y * nx + x) + k];
}
}
}
}
}
ggml_backend_tensor_set(inp_raw, data, 0, ggml_nbytes(inp_raw));
free(data);
}
{
struct ggml_tensor * embeddings = ggml_graph_get_tensor(gf, "embeddings");
void* zero_mem = malloc(ggml_nbytes(embeddings));
memset(zero_mem, 0, ggml_nbytes(embeddings));
ggml_backend_tensor_set(embeddings, zero_mem, 0, ggml_nbytes(embeddings));
free(zero_mem);
}
{
struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
int* positions_data = (int*)malloc(ggml_nbytes(positions));
for (int i = 0; i < num_positions; i++) {
positions_data[i] = i;
}
ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
free(positions_data);
}
{
struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches");
int* patches_data = (int*)malloc(ggml_nbytes(patches));
for (int i = 0; i < num_patches; i++) {
patches_data[i] = i + 1;
}
ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches));
free(patches_data);
}
if (ggml_backend_is_cpu(ctx->backend)) {
ggml_backend_cpu_set_n_threads(ctx->backend, n_threads);

View File

@@ -71,7 +71,7 @@ def bytes_to_unicode():
return dict(zip(bs, cs))
ap = argparse.ArgumentParser(prog="convert_hf_to_gguf.py")
ap = argparse.ArgumentParser()
ap.add_argument("-m", "--model-dir", help="Path to model directory cloned from HF Hub", required=True)
ap.add_argument("--use-f32", action="store_true", default=False, help="Use f32 instead of f16")
ap.add_argument("--text-only", action="store_true", required=False,

View File

@@ -34,7 +34,7 @@ static bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) {
static bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){
std::string str2 = str;
std::vector<llama_token> embd_inp = ::llama_tokenize(ctx_llama, str2, add_bos);
std::vector<llama_token> embd_inp = ::llama_tokenize(ctx_llama, str2, add_bos, true);
eval_tokens(ctx_llama, embd_inp, n_batch, n_past);
return true;
}
@@ -152,20 +152,8 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
size_t image_pos = prompt.find("<image>");
if (image_pos != std::string::npos) {
// new templating mode: Provide the full prompt including system message and use <image> as a placeholder for the image
system_prompt = prompt.substr(0, image_pos);
user_prompt = prompt.substr(image_pos + std::string("<image>").length());
// We replace \n with actual newlines in user_prompt, just in case -e was not used in templating string
size_t pos = 0;
while ((pos = user_prompt.find("\\n", pos)) != std::string::npos) {
user_prompt.replace(pos, 2, "\n");
pos += 1; // Advance past the replaced newline
}
while ((pos = system_prompt.find("\\n", pos)) != std::string::npos) {
system_prompt.replace(pos, 2, "\n");
pos += 1; // Advance past the replaced newline
}
printf("system_prompt: %s\n", system_prompt.c_str());
printf("user_prompt: %s\n", user_prompt.c_str());
} else {

View File

@@ -42,5 +42,5 @@ if len(clip_tensors) > 0:
torch.save(checkpoint, path)
print("Done!")
print(f"Now you can convert {args.model} to a a regular LLaMA GGUF file.")
print(f"Now you can convert {args.model} to a regular LLaMA GGUF file.")
print(f"Also, use {args.model}/llava.projector to prepare a llava-encoder.gguf file.")

View File

@@ -0,0 +1,3 @@
-r ../../requirements/requirements-convert.txt
pillow~=10.2.0
torch~=2.1.1

View File

@@ -1,7 +1,9 @@
#include "common.h"
#include "ggml.h"
#include "llama.h"
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <string>
#include <vector>
@@ -73,6 +75,8 @@ int main(int argc, char ** argv){
int n_drafted = 0;
int n_accept = 0;
int64_t t_draft_us = 0;
int n_past = inp.size();
bool has_eos = false;
@@ -160,7 +164,7 @@ int main(int argc, char ** argv){
// generate n_pred tokens through prompt lookup
auto prompt_lookup = [&]() -> void {
int inp_size = inp.size();
const int inp_size = inp.size();
for (int ngram_size = ngram_max ; ngram_size > ngram_min; --ngram_size){
const llama_token * ngram = &inp[inp_size - ngram_size];
@@ -191,8 +195,12 @@ int main(int argc, char ** argv){
return;
};
const int64_t t_start_draft_us = ggml_time_us();
prompt_lookup();
t_draft_us += ggml_time_us() - t_start_draft_us;
llama_decode(ctx, batch_tgt);
++n_past;
@@ -210,6 +218,8 @@ int main(int argc, char ** argv){
LOG_TEE("n_draft = %d\n", n_draft);
LOG_TEE("n_predict = %d\n", n_predict);
LOG_TEE("n_drafted = %d\n", n_drafted);
LOG_TEE("t_draft = %.2f ms, %.2f us per token, %.2f tokens per second\n",
t_draft_us*1e-3, 1.0f*t_draft_us/n_drafted, n_drafted/(1e-6*t_draft_us));
LOG_TEE("n_accept = %d\n", n_accept);
LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);

View File

@@ -98,7 +98,7 @@ static void write_logfile(
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
static void sigint_handler(int signo) {
if (signo == SIGINT) {
if (!is_interacting) {
if (!is_interacting && g_params->interactive) {
is_interacting = true;
} else {
console::cleanup();
@@ -352,12 +352,12 @@ int main(int argc, char ** argv) {
// in instruct mode, we inject a prefix and a suffix to each input by the user
if (params.instruct) {
params.interactive_first = true;
params.antiprompt.push_back("### Instruction:\n\n");
params.antiprompt.emplace_back("### Instruction:\n\n");
}
// similar for chatml mode
else if (params.chatml) {
params.interactive_first = true;
params.antiprompt.push_back("<|im_start|>user\n");
params.antiprompt.emplace_back("<|im_start|>user\n");
}
// enable interactive mode if interactive start is specified
@@ -392,7 +392,8 @@ int main(int argc, char ** argv) {
LOG_TEE("\n");
}
if (params.interactive) {
// ctrl+C handling
{
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
struct sigaction sigint_action;
sigint_action.sa_handler = sigint_handler;
@@ -405,7 +406,9 @@ int main(int argc, char ** argv) {
};
SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
#endif
}
if (params.interactive) {
LOG_TEE("%s: interactive mode on.\n", __func__);
if (!params.antiprompt.empty()) {

View File

@@ -457,14 +457,14 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
std::ofstream logits_stream;
if (!params.logits_file.empty()) {
logits_stream.open(params.logits_file.c_str());
logits_stream.open(params.logits_file.c_str(), std::ios::binary);
if (!logits_stream.is_open()) {
fprintf(stderr, "%s: failed to open %s for writing\n", __func__, params.logits_file.c_str());
return {};
}
fprintf(stderr, "%s: saving all logits to %s\n", __func__, params.logits_file.c_str());
logits_stream.write("_logits_", 8);
logits_stream.write((const char *)&n_ctx, sizeof(n_ctx));
logits_stream.write(reinterpret_cast<const char *>(&n_ctx), sizeof(n_ctx));
}
auto tim1 = std::chrono::high_resolution_clock::now();
@@ -881,7 +881,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
size_t li = hs_cur.common_prefix;
for (int s = 0; s < 4; ++s) {
for (size_t j = hs_cur.common_prefix; j < hs_cur.seq_tokens[s].size() - 1; j++) {
eval_pairs.push_back(std::make_pair(hs_cur.i_batch + li++, hs_cur.seq_tokens[s][j + 1]));
eval_pairs.emplace_back(hs_cur.i_batch + li++, hs_cur.seq_tokens[s][j + 1]);
}
++li;
}
@@ -1159,13 +1159,13 @@ static void winogrande_score(llama_context * ctx, const gpt_params & params) {
const int last_1st = task.seq_tokens[0].size() - n_base1 > 1 ? 1 : 0;
size_t li = n_base1 - 1;
for (size_t j = n_base1-1; j < task.seq_tokens[0].size()-1-last_1st; ++j) {
eval_pairs.push_back(std::make_pair(task.i_batch + li++, task.seq_tokens[0][j+1]));
eval_pairs.emplace_back(task.i_batch + li++, task.seq_tokens[0][j+1]);
}
const auto& n_base2 = skip_choice ? task.n_base2 : task.common_prefix;
const int last_2nd = task.seq_tokens[1].size() - n_base2 > 1 ? 1 : 0;
li = task.seq_tokens[0].size() - task.common_prefix + n_base2 - 1;
for (size_t j = n_base2-1; j < task.seq_tokens[1].size()-1-last_2nd; ++j) {
eval_pairs.push_back(std::make_pair(task.i_batch + li++, task.seq_tokens[1][j+1]));
eval_pairs.emplace_back(task.i_batch + li++, task.seq_tokens[1][j+1]);
}
}
compute_logprobs(batch_logits.data(), n_vocab, workers, eval_pairs, eval_results);
@@ -1524,7 +1524,7 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
size_t li = cur_task.common_prefix;
for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) {
for (size_t j = cur_task.common_prefix; j < cur_task.seq_tokens[s].size() - 1; j++) {
eval_pairs.push_back(std::make_pair(cur_task.i_batch + li++, cur_task.seq_tokens[s][j + 1]));
eval_pairs.emplace_back(cur_task.i_batch + li++, cur_task.seq_tokens[s][j + 1]);
}
++li;
}

View File

@@ -257,13 +257,13 @@ int main(int argc, char ** argv) {
invalid_param = true;
break;
}
params.include_layers.push_back(argv[i]);
params.include_layers.emplace_back(argv[i]);
} else if (arg == "-L" || arg == "--exclude-layer") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.exclude_layers.push_back(argv[i]);
params.exclude_layers.emplace_back(argv[i]);
} else if (arg == "-t" || arg == "--type") {
if (++i >= argc) {
invalid_param = true;

View File

@@ -208,13 +208,13 @@ int main(int argc, char ** argv) {
}
} else if (strcmp(argv[arg_idx], "--include-weights") == 0) {
if (arg_idx < argc-1) {
included_weights.push_back(argv[++arg_idx]);
included_weights.emplace_back(argv[++arg_idx]);
} else {
usage(argv[0]);
}
} else if (strcmp(argv[arg_idx], "--exclude-weights") == 0) {
if (arg_idx < argc-1) {
excluded_weights.push_back(argv[++arg_idx]);
excluded_weights.emplace_back(argv[++arg_idx]);
} else {
usage(argv[0]);
}

View File

@@ -137,6 +137,10 @@ node index.js
`temperature`: Adjust the randomness of the generated text (default: 0.8).
`dynatemp_range`: Dynamic temperature range (default: 0.0, 0.0 = disabled).
`dynatemp_exponent`: Dynamic temperature exponent (default: 1.0).
`top_k`: Limit the next token selection to the K most probable tokens (default: 40).
`top_p`: Limit the next token selection to a subset of tokens with a cumulative probability above a threshold P (default: 0.95).
@@ -181,7 +185,7 @@ node index.js
`ignore_eos`: Ignore end of stream token and continue generating (default: false).
`logit_bias`: Modify the likelihood of a token appearing in the generated text completion. For example, use `"logit_bias": [[15043,1.0]]` to increase the likelihood of the token 'Hello', or `"logit_bias": [[15043,-1.0]]` to decrease its likelihood. Setting the value to false, `"logit_bias": [[15043,false]]` ensures that the token `Hello` is never produced (default: []).
`logit_bias`: Modify the likelihood of a token appearing in the generated text completion. For example, use `"logit_bias": [[15043,1.0]]` to increase the likelihood of the token 'Hello', or `"logit_bias": [[15043,-1.0]]` to decrease its likelihood. Setting the value to false, `"logit_bias": [[15043,false]]` ensures that the token `Hello` is never produced. The tokens can also be represented as strings, e.g. `[["Hello, World!",-0.5]]` will reduce the likelihood of all the individual tokens that represent the string `Hello, World!`, just like the `presence_penalty` does. (default: []).
`n_probs`: If greater than 0, the response also contains the probabilities of top N tokens for each generated token (default: 0)
@@ -264,7 +268,23 @@ Notice that each `probs` is an array of length `n_probs`.
It also accepts all the options of `/completion` except `stream` and `prompt`.
- **GET** `/props`: Return the required assistant name and anti-prompt to generate the prompt in case you have specified a system prompt for all slots.
- **GET** `/props`: Return current server settings.
### Result JSON
```json
{
"assistant_name": "",
"user_name": "",
"default_generation_settings": { ... },
"total_slots": 1
}
```
- `assistant_name` - the required assistant name to generate the prompt in case you have specified a system prompt for all slots.
- `user_name` - the required anti-prompt to generate the prompt in case you have specified a system prompt for all slots.
- `default_generation_settings` - the default generation settings for the `/completion` endpoint, has the same fields as the `generation_settings` response object from the `/completion` endpoint.
- `total_slots` - the total number of slots for process requests (defined by `--parallel` option)
- **POST** `/v1/chat/completions`: OpenAI-compatible Chat Completions API. Given a ChatML-formatted json description in `messages`, it returns the predicted completion. Both synchronous and streaming mode are supported, so scripted and interactive applications work fine. While no strong claims of compatibility with OpenAI API spec is being made, in our experience it suffices to support many apps. Only ChatML-tuned models, such as Dolphin, OpenOrca, OpenHermes, OpenChat-3.5, etc can be used with this endpoint. Compared to `api_like_OAI.py` this API implementation does not require a wrapper to be served.

View File

@@ -48,6 +48,7 @@ chat_completion() {
top_p: 0.9,
n_keep: $n_keep,
n_predict: 256,
cache_prompt: true,
stop: ["\n### Human:"],
stream: true
}')"

View File

@@ -236,214 +236,250 @@ unsigned char completion_js[] = {
0x20, 0x4a, 0x53, 0x4f, 0x4e, 0x2e, 0x70, 0x61, 0x72, 0x73, 0x65, 0x28,
0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72,
0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65, 0x2e, 0x65,
0x72, 0x72, 0x6f, 0x72, 0x28, 0x60, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2e,
0x63, 0x70, 0x70, 0x20, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x3a, 0x20, 0x24,
0x7b, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f,
0x72, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x7d, 0x60, 0x29,
0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a,
0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c,
0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x2e, 0x63, 0x6f, 0x6e, 0x74,
0x65, 0x6e, 0x74, 0x2e, 0x69, 0x6e, 0x63, 0x6c, 0x75, 0x64, 0x65, 0x73,
0x28, 0x27, 0x73, 0x6c, 0x6f, 0x74, 0x20, 0x75, 0x6e, 0x61, 0x76, 0x61,
0x69, 0x6c, 0x61, 0x62, 0x6c, 0x65, 0x27, 0x29, 0x29, 0x20, 0x7b, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x2f, 0x2f, 0x20, 0x54, 0x68, 0x72, 0x6f, 0x77, 0x20, 0x61,
0x6e, 0x20, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x20, 0x74, 0x6f, 0x20, 0x62,
0x65, 0x20, 0x63, 0x61, 0x75, 0x67, 0x68, 0x74, 0x20, 0x62, 0x79, 0x20,
0x75, 0x70, 0x73, 0x74, 0x72, 0x65, 0x61, 0x6d, 0x20, 0x63, 0x61, 0x6c,
0x6c, 0x65, 0x72, 0x73, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x68, 0x72, 0x6f, 0x77,
0x20, 0x6e, 0x65, 0x77, 0x20, 0x45, 0x72, 0x72, 0x6f, 0x72, 0x28, 0x27,
0x73, 0x6c, 0x6f, 0x74, 0x20, 0x75, 0x6e, 0x61, 0x76, 0x61, 0x69, 0x6c,
0x61, 0x62, 0x6c, 0x65, 0x27, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x20, 0x65, 0x6c,
0x73, 0x65, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f,
0x6c, 0x65, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x28, 0x60, 0x6c, 0x6c,
0x61, 0x6d, 0x61, 0x2e, 0x63, 0x70, 0x70, 0x20, 0x65, 0x72, 0x72, 0x6f,
0x72, 0x3a, 0x20, 0x24, 0x7b, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e,
0x65, 0x72, 0x72, 0x6f, 0x72, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e,
0x74, 0x7d, 0x60, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x7d, 0x0a, 0x20, 0x20, 0x7d, 0x20, 0x63, 0x61, 0x74, 0x63, 0x68, 0x20,
0x28, 0x65, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66,
0x20, 0x28, 0x65, 0x2e, 0x6e, 0x61, 0x6d, 0x65, 0x20, 0x21, 0x3d, 0x3d,
0x20, 0x27, 0x41, 0x62, 0x6f, 0x72, 0x74, 0x45, 0x72, 0x72, 0x6f, 0x72,
0x27, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63,
0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72,
0x28, 0x22, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x20, 0x65, 0x72, 0x72, 0x6f,
0x72, 0x3a, 0x20, 0x22, 0x2c, 0x20, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x74, 0x68, 0x72, 0x6f,
0x77, 0x20, 0x65, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x66,
0x69, 0x6e, 0x61, 0x6c, 0x6c, 0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2e,
0x61, 0x62, 0x6f, 0x72, 0x74, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d,
0x0a, 0x0a, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x63,
0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3b, 0x0a, 0x7d, 0x0a, 0x0a, 0x2f,
0x2f, 0x20, 0x43, 0x61, 0x6c, 0x6c, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61,
0x2c, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x61, 0x6e, 0x20,
0x65, 0x76, 0x65, 0x6e, 0x74, 0x20, 0x74, 0x61, 0x72, 0x67, 0x65, 0x74,
0x20, 0x74, 0x68, 0x61, 0x74, 0x20, 0x79, 0x6f, 0x75, 0x20, 0x63, 0x61,
0x6e, 0x20, 0x73, 0x75, 0x62, 0x73, 0x63, 0x72, 0x69, 0x62, 0x65, 0x20,
0x74, 0x6f, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x45, 0x78, 0x61,
0x6d, 0x70, 0x6c, 0x65, 0x3a, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20,
0x20, 0x20, 0x20, 0x69, 0x6d, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x7b, 0x20,
0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61,
0x72, 0x67, 0x65, 0x74, 0x20, 0x7d, 0x20, 0x66, 0x72, 0x6f, 0x6d, 0x20,
0x27, 0x2f, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e,
0x2e, 0x6a, 0x73, 0x27, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20,
0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x6e,
0x20, 0x3d, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x45, 0x76, 0x65, 0x6e,
0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x28, 0x70, 0x72, 0x6f, 0x6d,
0x70, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f,
0x6e, 0x6e, 0x2e, 0x61, 0x64, 0x64, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x4c,
0x69, 0x73, 0x74, 0x65, 0x6e, 0x65, 0x72, 0x28, 0x22, 0x6d, 0x65, 0x73,
0x73, 0x61, 0x67, 0x65, 0x22, 0x2c, 0x20, 0x28, 0x63, 0x68, 0x75, 0x6e,
0x6b, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x2f, 0x2f, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74,
0x2e, 0x77, 0x72, 0x69, 0x74, 0x65, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b,
0x2e, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x2e, 0x63, 0x6f, 0x6e, 0x74,
0x65, 0x6e, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x7d,
0x29, 0x0a, 0x2f, 0x2f, 0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x20,
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x45,
0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x20, 0x3d,
0x20, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70, 0x61,
0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d, 0x20, 0x7b, 0x7d, 0x2c, 0x20, 0x63,
0x6f, 0x6e, 0x66, 0x69, 0x67, 0x20, 0x3d, 0x20, 0x7b, 0x7d, 0x29, 0x20,
0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74,
0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74,
0x20, 0x3d, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x45, 0x76, 0x65, 0x6e, 0x74,
0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20,
0x28, 0x61, 0x73, 0x79, 0x6e, 0x63, 0x20, 0x28, 0x29, 0x20, 0x3d, 0x3e,
0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63,
0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x61, 0x77, 0x61,
0x69, 0x74, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68,
0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61,
0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70, 0x61, 0x72,
0x61, 0x6d, 0x73, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x29,
0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66,
0x20, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61,
0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x2b, 0x3d, 0x20, 0x63,
0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x63, 0x6f,
0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67,
0x65, 0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, 0x74, 0x63, 0x68, 0x45,
0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, 0x20, 0x43, 0x75, 0x73,
0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x22, 0x6d, 0x65,
0x73, 0x73, 0x61, 0x67, 0x65, 0x22, 0x2c, 0x20, 0x7b, 0x20, 0x64, 0x65,
0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e,
0x64, 0x61, 0x74, 0x61, 0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x72, 0x65,
0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x20,
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72,
0x6f, 0x72, 0x20, 0x3d, 0x20, 0x4a, 0x53, 0x4f, 0x4e, 0x2e, 0x70, 0x61,
0x72, 0x73, 0x65, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65,
0x72, 0x72, 0x6f, 0x72, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f,
0x6c, 0x65, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x28, 0x60, 0x6c, 0x6c,
0x61, 0x6d, 0x61, 0x2e, 0x63, 0x70, 0x70, 0x20, 0x65, 0x72, 0x72, 0x6f,
0x72, 0x3a, 0x20, 0x24, 0x7b, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e,
0x65, 0x72, 0x72, 0x6f, 0x72, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e,
0x74, 0x7d, 0x60, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x69, 0x66, 0x20, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61,
0x74, 0x61, 0x2e, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f,
0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20,
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x65, 0x76,
0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x64, 0x69,
0x73, 0x70, 0x61, 0x74, 0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28,
0x6e, 0x65, 0x77, 0x20, 0x43, 0x75, 0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76,
0x65, 0x6e, 0x74, 0x28, 0x22, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74,
0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73,
0x22, 0x2c, 0x20, 0x7b, 0x20, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x3a,
0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e,
0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73,
0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x20, 0x7d, 0x29, 0x29, 0x3b,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b,
0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x74, 0x69, 0x6d, 0x69, 0x6e, 0x67,
0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74,
0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, 0x74, 0x63, 0x68, 0x45, 0x76, 0x65,
0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, 0x20, 0x43, 0x75, 0x73, 0x74, 0x6f,
0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x22, 0x74, 0x69, 0x6d, 0x69,
0x6e, 0x67, 0x73, 0x22, 0x2c, 0x20, 0x7b, 0x20, 0x64, 0x65, 0x74, 0x61,
0x69, 0x6c, 0x3a, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61,
0x74, 0x61, 0x2e, 0x74, 0x69, 0x6d, 0x69, 0x6e, 0x67, 0x73, 0x20, 0x7d,
0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x65, 0x76,
0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x64, 0x69,
0x73, 0x70, 0x61, 0x74, 0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28,
0x6e, 0x65, 0x77, 0x20, 0x43, 0x75, 0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76,
0x65, 0x6e, 0x74, 0x28, 0x22, 0x64, 0x6f, 0x6e, 0x65, 0x22, 0x2c, 0x20,
0x7b, 0x20, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20, 0x7b, 0x20,
0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x7d, 0x20, 0x7d, 0x29,
0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x29, 0x28, 0x29, 0x3b, 0x0a, 0x20,
0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x65, 0x76, 0x65, 0x6e,
0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x3b, 0x0a, 0x7d, 0x0a, 0x0a,
0x2f, 0x2f, 0x20, 0x43, 0x61, 0x6c, 0x6c, 0x20, 0x6c, 0x6c, 0x61, 0x6d,
0x61, 0x2c, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x61, 0x20,
0x70, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x20, 0x74, 0x68, 0x61, 0x74,
0x20, 0x72, 0x65, 0x73, 0x6f, 0x6c, 0x76, 0x65, 0x73, 0x20, 0x74, 0x6f,
0x20, 0x74, 0x68, 0x65, 0x20, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74,
0x65, 0x64, 0x20, 0x74, 0x65, 0x78, 0x74, 0x2e, 0x20, 0x54, 0x68, 0x69,
0x73, 0x20, 0x64, 0x6f, 0x65, 0x73, 0x20, 0x6e, 0x6f, 0x74, 0x20, 0x73,
0x75, 0x70, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x73, 0x74, 0x72, 0x65, 0x61,
0x6d, 0x69, 0x6e, 0x67, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x45,
0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65, 0x3a, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f,
0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x50,
0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70,
0x74, 0x29, 0x2e, 0x74, 0x68, 0x65, 0x6e, 0x28, 0x28, 0x63, 0x6f, 0x6e,
0x74, 0x65, 0x6e, 0x74, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x2f,
0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x64, 0x6f, 0x63, 0x75,
0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x7d, 0x20, 0x63, 0x61,
0x74, 0x63, 0x68, 0x20, 0x28, 0x65, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x65, 0x2e, 0x6e, 0x61, 0x6d, 0x65,
0x20, 0x21, 0x3d, 0x3d, 0x20, 0x27, 0x41, 0x62, 0x6f, 0x72, 0x74, 0x45,
0x72, 0x72, 0x6f, 0x72, 0x27, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65, 0x2e, 0x65,
0x72, 0x72, 0x6f, 0x72, 0x28, 0x22, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x20,
0x65, 0x72, 0x72, 0x6f, 0x72, 0x3a, 0x20, 0x22, 0x2c, 0x20, 0x65, 0x29,
0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x74, 0x68, 0x72, 0x6f, 0x77, 0x20, 0x65, 0x3b, 0x0a, 0x20, 0x20, 0x7d,
0x0a, 0x20, 0x20, 0x66, 0x69, 0x6e, 0x61, 0x6c, 0x6c, 0x79, 0x20, 0x7b,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c,
0x6c, 0x65, 0x72, 0x2e, 0x61, 0x62, 0x6f, 0x72, 0x74, 0x28, 0x29, 0x3b,
0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75,
0x72, 0x6e, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3b, 0x0a,
0x7d, 0x0a, 0x0a, 0x2f, 0x2f, 0x20, 0x43, 0x61, 0x6c, 0x6c, 0x20, 0x6c,
0x6c, 0x61, 0x6d, 0x61, 0x2c, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e,
0x20, 0x61, 0x6e, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x20, 0x74, 0x61,
0x72, 0x67, 0x65, 0x74, 0x20, 0x74, 0x68, 0x61, 0x74, 0x20, 0x79, 0x6f,
0x75, 0x20, 0x63, 0x61, 0x6e, 0x20, 0x73, 0x75, 0x62, 0x73, 0x63, 0x72,
0x69, 0x62, 0x65, 0x20, 0x74, 0x6f, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f,
0x20, 0x45, 0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65, 0x3a, 0x0a, 0x2f, 0x2f,
0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x69, 0x6d, 0x70, 0x6f, 0x72,
0x74, 0x20, 0x7b, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x45, 0x76, 0x65,
0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x20, 0x7d, 0x20, 0x66,
0x72, 0x6f, 0x6d, 0x20, 0x27, 0x2f, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65,
0x74, 0x69, 0x6f, 0x6e, 0x2e, 0x6a, 0x73, 0x27, 0x0a, 0x2f, 0x2f, 0x0a,
0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20,
0x63, 0x6f, 0x6e, 0x6e, 0x20, 0x3d, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61,
0x45, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x28,
0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x20, 0x20,
0x20, 0x20, 0x63, 0x6f, 0x6e, 0x6e, 0x2e, 0x61, 0x64, 0x64, 0x45, 0x76,
0x65, 0x6e, 0x74, 0x4c, 0x69, 0x73, 0x74, 0x65, 0x6e, 0x65, 0x72, 0x28,
0x22, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x22, 0x2c, 0x20, 0x28,
0x63, 0x68, 0x75, 0x6e, 0x6b, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a,
0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x64, 0x6f, 0x63, 0x75,
0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x77, 0x72, 0x69, 0x74, 0x65, 0x28, 0x63,
0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x20, 0x20,
0x20, 0x20, 0x20, 0x7d, 0x29, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20,
0x20, 0x20, 0x20, 0x20, 0x6f, 0x72, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f,
0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63,
0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x61, 0x77, 0x61,
0x69, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x50, 0x72, 0x6f, 0x6d,
0x69, 0x73, 0x65, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x29, 0x0a,
0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x64, 0x6f, 0x63, 0x75, 0x6d,
0x65, 0x6e, 0x74, 0x2e, 0x77, 0x72, 0x69, 0x74, 0x65, 0x28, 0x63, 0x6f,
0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x0a, 0x65, 0x78,
0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c,
0x6c, 0x61, 0x6d, 0x61, 0x50, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x20,
0x3d, 0x20, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70,
0x61, 0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d, 0x20, 0x7b, 0x7d, 0x2c, 0x20,
0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x20, 0x3d, 0x20, 0x7b, 0x7d, 0x29,
0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75,
0x72, 0x6e, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x50, 0x72, 0x6f, 0x6d, 0x69,
0x73, 0x65, 0x28, 0x61, 0x73, 0x79, 0x6e, 0x63, 0x20, 0x28, 0x72, 0x65,
0x73, 0x6f, 0x6c, 0x76, 0x65, 0x2c, 0x20, 0x72, 0x65, 0x6a, 0x65, 0x63,
0x74, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x6c, 0x65, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20,
0x3d, 0x20, 0x22, 0x22, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x74, 0x72,
0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6f,
0x72, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x28, 0x63, 0x6f, 0x6e,
0x73, 0x74, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20,
0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74,
0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x63, 0x6f,
0x6e, 0x66, 0x69, 0x67, 0x29, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74,
0x20, 0x2b, 0x3d, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61,
0x74, 0x61, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3b, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x72, 0x65, 0x73, 0x6f, 0x6c, 0x76, 0x65, 0x28, 0x63, 0x6f,
0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x7d, 0x20, 0x63, 0x61, 0x74, 0x63, 0x68, 0x20, 0x28, 0x65, 0x72, 0x72,
0x6f, 0x72, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x72, 0x65, 0x6a, 0x65, 0x63, 0x74, 0x28, 0x65, 0x72, 0x72, 0x6f, 0x72,
0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x7d,
0x29, 0x3b, 0x0a, 0x7d, 0x3b, 0x0a, 0x0a, 0x2f, 0x2a, 0x2a, 0x0a, 0x20,
0x2a, 0x20, 0x28, 0x64, 0x65, 0x70, 0x72, 0x65, 0x63, 0x61, 0x74, 0x65,
0x64, 0x29, 0x0a, 0x20, 0x2a, 0x2f, 0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72,
0x74, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d,
0x61, 0x43, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x65, 0x20, 0x3d, 0x20,
0x61, 0x73, 0x79, 0x6e, 0x63, 0x20, 0x28, 0x70, 0x61, 0x72, 0x61, 0x6d,
0x73, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65,
0x72, 0x2c, 0x20, 0x63, 0x61, 0x6c, 0x6c, 0x62, 0x61, 0x63, 0x6b, 0x29,
0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x66, 0x6f, 0x72, 0x20,
0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74,
0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x6c, 0x6c,
0x61, 0x6d, 0x61, 0x28, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x70,
0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d,
0x73, 0x2c, 0x20, 0x7b, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c,
0x6c, 0x65, 0x72, 0x20, 0x7d, 0x29, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x63, 0x61, 0x6c, 0x6c, 0x62, 0x61, 0x63, 0x6b, 0x28, 0x63,
0x68, 0x75, 0x6e, 0x6b, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x7d,
0x0a, 0x0a, 0x2f, 0x2f, 0x20, 0x47, 0x65, 0x74, 0x20, 0x74, 0x68, 0x65,
0x20, 0x6d, 0x6f, 0x64, 0x65, 0x6c, 0x20, 0x69, 0x6e, 0x66, 0x6f, 0x20,
0x66, 0x72, 0x6f, 0x6d, 0x20, 0x74, 0x68, 0x65, 0x20, 0x73, 0x65, 0x72,
0x76, 0x65, 0x72, 0x2e, 0x20, 0x54, 0x68, 0x69, 0x73, 0x20, 0x69, 0x73,
0x20, 0x75, 0x73, 0x65, 0x66, 0x75, 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x20,
0x67, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x20, 0x74, 0x68, 0x65, 0x20,
0x63, 0x6f, 0x6e, 0x74, 0x65, 0x78, 0x74, 0x20, 0x77, 0x69, 0x6e, 0x64,
0x6f, 0x77, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x73, 0x6f, 0x20, 0x6f, 0x6e,
0x2e, 0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f, 0x6e,
0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x4d, 0x6f, 0x64, 0x65,
0x6c, 0x49, 0x6e, 0x66, 0x6f, 0x20, 0x3d, 0x20, 0x61, 0x73, 0x79, 0x6e,
0x63, 0x20, 0x28, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20,
0x69, 0x66, 0x20, 0x28, 0x21, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74,
0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73,
0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x67, 0x65, 0x6e, 0x65,
0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69,
0x6e, 0x67, 0x73, 0x20, 0x3d, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20,
0x66, 0x65, 0x74, 0x63, 0x68, 0x28, 0x22, 0x2f, 0x6d, 0x6f, 0x64, 0x65,
0x6c, 0x2e, 0x6a, 0x73, 0x6f, 0x6e, 0x22, 0x29, 0x2e, 0x74, 0x68, 0x65,
0x6e, 0x28, 0x72, 0x20, 0x3d, 0x3e, 0x20, 0x72, 0x2e, 0x6a, 0x73, 0x6f,
0x6e, 0x28, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20,
0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x67, 0x65, 0x6e, 0x65, 0x72,
0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x2e,
0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x20,
0x20, 0x20, 0x20, 0x7d, 0x29, 0x0a, 0x2f, 0x2f, 0x0a, 0x65, 0x78, 0x70,
0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c, 0x6c,
0x61, 0x6d, 0x61, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67,
0x65, 0x74, 0x20, 0x3d, 0x20, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74,
0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d, 0x20, 0x7b,
0x7d, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x20, 0x3d, 0x20,
0x7b, 0x7d, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x63,
0x6f, 0x6e, 0x73, 0x74, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61,
0x72, 0x67, 0x65, 0x74, 0x20, 0x3d, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x45,
0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x28, 0x29,
0x3b, 0x0a, 0x20, 0x20, 0x28, 0x61, 0x73, 0x79, 0x6e, 0x63, 0x20, 0x28,
0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x6c,
0x65, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x3d,
0x20, 0x22, 0x22, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6f, 0x72,
0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73,
0x74, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x6c,
0x6c, 0x61, 0x6d, 0x61, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c,
0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x63, 0x6f, 0x6e,
0x66, 0x69, 0x67, 0x29, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e,
0x64, 0x61, 0x74, 0x61, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20,
0x2b, 0x3d, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74,
0x61, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3b, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74,
0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61,
0x74, 0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77,
0x20, 0x43, 0x75, 0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74,
0x28, 0x22, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x22, 0x2c, 0x20,
0x7b, 0x20, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20, 0x63, 0x68,
0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x20, 0x7d, 0x29, 0x29,
0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x63, 0x68, 0x75, 0x6e,
0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x67, 0x65, 0x6e, 0x65, 0x72,
0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e,
0x67, 0x73, 0x3b, 0x0a, 0x7d, 0x0a
0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65,
0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, 0x74, 0x63, 0x68, 0x45, 0x76,
0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, 0x20, 0x43, 0x75, 0x73, 0x74,
0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x22, 0x67, 0x65, 0x6e,
0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74,
0x69, 0x6e, 0x67, 0x73, 0x22, 0x2c, 0x20, 0x7b, 0x20, 0x64, 0x65, 0x74,
0x61, 0x69, 0x6c, 0x3a, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64,
0x61, 0x74, 0x61, 0x2e, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69,
0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x20,
0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x63,
0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x74, 0x69,
0x6d, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61,
0x72, 0x67, 0x65, 0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, 0x74, 0x63,
0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, 0x20, 0x43,
0x75, 0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x22,
0x74, 0x69, 0x6d, 0x69, 0x6e, 0x67, 0x73, 0x22, 0x2c, 0x20, 0x7b, 0x20,
0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20, 0x63, 0x68, 0x75, 0x6e,
0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x74, 0x69, 0x6d, 0x69, 0x6e,
0x67, 0x73, 0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65,
0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, 0x74, 0x63, 0x68, 0x45, 0x76,
0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, 0x20, 0x43, 0x75, 0x73, 0x74,
0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x22, 0x64, 0x6f, 0x6e,
0x65, 0x22, 0x2c, 0x20, 0x7b, 0x20, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c,
0x3a, 0x20, 0x7b, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20,
0x7d, 0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x29, 0x28,
0x29, 0x3b, 0x0a, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20,
0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x3b,
0x0a, 0x7d, 0x0a, 0x0a, 0x2f, 0x2f, 0x20, 0x43, 0x61, 0x6c, 0x6c, 0x20,
0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2c, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72,
0x6e, 0x20, 0x61, 0x20, 0x70, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x20,
0x74, 0x68, 0x61, 0x74, 0x20, 0x72, 0x65, 0x73, 0x6f, 0x6c, 0x76, 0x65,
0x73, 0x20, 0x74, 0x6f, 0x20, 0x74, 0x68, 0x65, 0x20, 0x63, 0x6f, 0x6d,
0x70, 0x6c, 0x65, 0x74, 0x65, 0x64, 0x20, 0x74, 0x65, 0x78, 0x74, 0x2e,
0x20, 0x54, 0x68, 0x69, 0x73, 0x20, 0x64, 0x6f, 0x65, 0x73, 0x20, 0x6e,
0x6f, 0x74, 0x20, 0x73, 0x75, 0x70, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x73,
0x74, 0x72, 0x65, 0x61, 0x6d, 0x69, 0x6e, 0x67, 0x0a, 0x2f, 0x2f, 0x0a,
0x2f, 0x2f, 0x20, 0x45, 0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65, 0x3a, 0x0a,
0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x6c,
0x61, 0x6d, 0x61, 0x50, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x28, 0x70,
0x72, 0x6f, 0x6d, 0x70, 0x74, 0x29, 0x2e, 0x74, 0x68, 0x65, 0x6e, 0x28,
0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x20, 0x3d, 0x3e,
0x20, 0x7b, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x77, 0x72, 0x69,
0x74, 0x65, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x0a,
0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x29, 0x0a, 0x2f, 0x2f,
0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6f, 0x72, 0x0a, 0x2f,
0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e,
0x73, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x3d,
0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61,
0x50, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x28, 0x70, 0x72, 0x6f, 0x6d,
0x70, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x64,
0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x77, 0x72, 0x69, 0x74,
0x65, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x0a, 0x2f,
0x2f, 0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f, 0x6e,
0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x50, 0x72, 0x6f, 0x6d,
0x69, 0x73, 0x65, 0x20, 0x3d, 0x20, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70,
0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d, 0x20,
0x7b, 0x7d, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x20, 0x3d,
0x20, 0x7b, 0x7d, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20,
0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x50,
0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x28, 0x61, 0x73, 0x79, 0x6e, 0x63,
0x20, 0x28, 0x72, 0x65, 0x73, 0x6f, 0x6c, 0x76, 0x65, 0x2c, 0x20, 0x72,
0x65, 0x6a, 0x65, 0x63, 0x74, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74,
0x65, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x74, 0x72, 0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20,
0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b,
0x20, 0x6f, 0x66, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x28, 0x70, 0x72,
0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73,
0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x29, 0x29, 0x20, 0x7b,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e,
0x74, 0x65, 0x6e, 0x74, 0x20, 0x2b, 0x3d, 0x20, 0x63, 0x68, 0x75, 0x6e,
0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65,
0x6e, 0x74, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x73, 0x6f, 0x6c, 0x76,
0x65, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x3b, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x7d, 0x20, 0x63, 0x61, 0x74, 0x63, 0x68, 0x20,
0x28, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x6a, 0x65, 0x63, 0x74, 0x28, 0x65,
0x72, 0x72, 0x6f, 0x72, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d,
0x0a, 0x20, 0x20, 0x7d, 0x29, 0x3b, 0x0a, 0x7d, 0x3b, 0x0a, 0x0a, 0x2f,
0x2a, 0x2a, 0x0a, 0x20, 0x2a, 0x20, 0x28, 0x64, 0x65, 0x70, 0x72, 0x65,
0x63, 0x61, 0x74, 0x65, 0x64, 0x29, 0x0a, 0x20, 0x2a, 0x2f, 0x0a, 0x65,
0x78, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20,
0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x43, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74,
0x65, 0x20, 0x3d, 0x20, 0x61, 0x73, 0x79, 0x6e, 0x63, 0x20, 0x28, 0x70,
0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72,
0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2c, 0x20, 0x63, 0x61, 0x6c, 0x6c, 0x62,
0x61, 0x63, 0x6b, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20,
0x66, 0x6f, 0x72, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x28, 0x63,
0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x20, 0x6f,
0x66, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x28, 0x70, 0x61, 0x72, 0x61,
0x6d, 0x73, 0x2e, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70,
0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x7b, 0x20, 0x63, 0x6f, 0x6e,
0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x20, 0x7d, 0x29, 0x29, 0x20,
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x61, 0x6c, 0x6c, 0x62, 0x61,
0x63, 0x6b, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x29, 0x3b, 0x0a, 0x20,
0x20, 0x7d, 0x0a, 0x7d, 0x0a, 0x0a, 0x2f, 0x2f, 0x20, 0x47, 0x65, 0x74,
0x20, 0x74, 0x68, 0x65, 0x20, 0x6d, 0x6f, 0x64, 0x65, 0x6c, 0x20, 0x69,
0x6e, 0x66, 0x6f, 0x20, 0x66, 0x72, 0x6f, 0x6d, 0x20, 0x74, 0x68, 0x65,
0x20, 0x73, 0x65, 0x72, 0x76, 0x65, 0x72, 0x2e, 0x20, 0x54, 0x68, 0x69,
0x73, 0x20, 0x69, 0x73, 0x20, 0x75, 0x73, 0x65, 0x66, 0x75, 0x6c, 0x20,
0x66, 0x6f, 0x72, 0x20, 0x67, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x20,
0x74, 0x68, 0x65, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x78, 0x74, 0x20,
0x77, 0x69, 0x6e, 0x64, 0x6f, 0x77, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x73,
0x6f, 0x20, 0x6f, 0x6e, 0x2e, 0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74,
0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61,
0x4d, 0x6f, 0x64, 0x65, 0x6c, 0x49, 0x6e, 0x66, 0x6f, 0x20, 0x3d, 0x20,
0x61, 0x73, 0x79, 0x6e, 0x63, 0x20, 0x28, 0x29, 0x20, 0x3d, 0x3e, 0x20,
0x7b, 0x0a, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x21, 0x67, 0x65, 0x6e,
0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74,
0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x20,
0x3d, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x66, 0x65, 0x74, 0x63,
0x68, 0x28, 0x22, 0x2f, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x22, 0x29, 0x2e,
0x74, 0x68, 0x65, 0x6e, 0x28, 0x72, 0x20, 0x3d, 0x3e, 0x20, 0x72, 0x2e,
0x6a, 0x73, 0x6f, 0x6e, 0x28, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f,
0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x20, 0x3d, 0x20, 0x70,
0x72, 0x6f, 0x70, 0x73, 0x2e, 0x64, 0x65, 0x66, 0x61, 0x75, 0x6c, 0x74,
0x5f, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f,
0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x3b, 0x0a, 0x20, 0x20,
0x7d, 0x0a, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x67,
0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65,
0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x3b, 0x0a, 0x7d, 0x0a
};
unsigned int completion_js_len = 5346;
unsigned int completion_js_len = 5782;

View File

@@ -15,9 +15,13 @@
using json = nlohmann::json;
inline static json oaicompat_completion_params_parse(
const json &body /* openai api json semantics */)
const json &body, /* openai api json semantics */
const std::string &chat_template)
{
json llama_params;
std::string formatted_prompt = chat_template == "chatml"
? format_chatml(body["messages"]) // OpenAI 'messages' to chatml (with <|im_start|>,...)
: format_llama2(body["messages"]); // OpenAI 'messages' to llama2 (with [INST],...)
llama_params["__oaicompat"] = true;
@@ -30,7 +34,7 @@ inline static json oaicompat_completion_params_parse(
// https://platform.openai.com/docs/api-reference/chat/create
llama_sampling_params default_sparams;
llama_params["model"] = json_value(body, "model", std::string("unknown"));
llama_params["prompt"] = format_chatml(body["messages"]); // OpenAI 'messages' to llama.cpp 'prompt'
llama_params["prompt"] = formatted_prompt;
llama_params["cache_prompt"] = json_value(body, "cache_prompt", false);
llama_params["temperature"] = json_value(body, "temperature", 0.0);
llama_params["top_k"] = json_value(body, "top_k", default_sparams.top_k);

View File

@@ -195,7 +195,8 @@ export const llamaComplete = async (params, controller, callback) => {
// Get the model info from the server. This is useful for getting the context window and so on.
export const llamaModelInfo = async () => {
if (!generation_settings) {
generation_settings = await fetch("/model.json").then(r => r.json());
const props = await fetch("/props").then(r => r.json());
generation_settings = props.default_generation_settings;
}
return generation_settings;
}

View File

@@ -36,6 +36,7 @@ struct server_params
std::string hostname = "127.0.0.1";
std::vector<std::string> api_keys;
std::string public_path = "examples/server/public";
std::string chat_template = "chatml";
int32_t port = 8080;
int32_t read_timeout = 600;
int32_t write_timeout = 600;
@@ -185,7 +186,7 @@ struct llama_client_slot
llama_sampling_context *ctx_sampling = nullptr;
int32_t ga_i = 0; // group-attention state
int32_t ga_n = 1;// group-attention factor
int32_t ga_n = 1; // group-attention factor
int32_t ga_w = 512; // group-attention width
int32_t n_past_se = 0; // self-extend
@@ -219,7 +220,8 @@ struct llama_client_slot
sent_token_probs_index = 0;
infill = false;
ga_i = 0;
n_past_se = 0;
n_past_se = 0;
generated_token_probs.clear();
for (slot_image & img : images)
@@ -333,6 +335,7 @@ struct llama_server_context
// slots / clients
std::vector<llama_client_slot> slots;
json default_generation_settings_for_props;
llama_server_queue queue_tasks;
llama_server_response queue_results;
@@ -429,6 +432,9 @@ struct llama_server_context
slots.push_back(slot);
}
default_generation_settings_for_props = get_formated_generation(slots.front());
default_generation_settings_for_props["seed"] = -1;
batch = llama_batch_init(n_ctx, 0, params.n_parallel);
// empty system prompt
@@ -519,27 +525,29 @@ struct llama_server_context
slot->oaicompat_model = "";
}
slot->params.stream = json_value(data, "stream", false);
slot->params.cache_prompt = json_value(data, "cache_prompt", false);
slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict);
slot->sparams.top_k = json_value(data, "top_k", default_sparams.top_k);
slot->sparams.top_p = json_value(data, "top_p", default_sparams.top_p);
slot->sparams.min_p = json_value(data, "min_p", default_sparams.min_p);
slot->sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z);
slot->sparams.typical_p = json_value(data, "typical_p", default_sparams.typical_p);
slot->sparams.temp = json_value(data, "temperature", default_sparams.temp);
slot->sparams.penalty_last_n = json_value(data, "repeat_last_n", default_sparams.penalty_last_n);
slot->sparams.penalty_repeat = json_value(data, "repeat_penalty", default_sparams.penalty_repeat);
slot->sparams.penalty_freq = json_value(data, "frequency_penalty", default_sparams.penalty_freq);
slot->sparams.penalty_present = json_value(data, "presence_penalty", default_sparams.penalty_present);
slot->sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat);
slot->sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau);
slot->sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta);
slot->sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl);
slot->params.n_keep = json_value(data, "n_keep", slot->params.n_keep);
slot->params.seed = json_value(data, "seed", default_params.seed);
slot->sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
slot->sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
slot->params.stream = json_value(data, "stream", false);
slot->params.cache_prompt = json_value(data, "cache_prompt", false);
slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict);
slot->sparams.top_k = json_value(data, "top_k", default_sparams.top_k);
slot->sparams.top_p = json_value(data, "top_p", default_sparams.top_p);
slot->sparams.min_p = json_value(data, "min_p", default_sparams.min_p);
slot->sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z);
slot->sparams.typical_p = json_value(data, "typical_p", default_sparams.typical_p);
slot->sparams.temp = json_value(data, "temperature", default_sparams.temp);
slot->sparams.dynatemp_range = json_value(data, "dynatemp_range", default_sparams.dynatemp_range);
slot->sparams.dynatemp_exponent = json_value(data, "dynatemp_exponent", default_sparams.dynatemp_exponent);
slot->sparams.penalty_last_n = json_value(data, "repeat_last_n", default_sparams.penalty_last_n);
slot->sparams.penalty_repeat = json_value(data, "repeat_penalty", default_sparams.penalty_repeat);
slot->sparams.penalty_freq = json_value(data, "frequency_penalty", default_sparams.penalty_freq);
slot->sparams.penalty_present = json_value(data, "presence_penalty", default_sparams.penalty_present);
slot->sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat);
slot->sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau);
slot->sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta);
slot->sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl);
slot->params.n_keep = json_value(data, "n_keep", slot->params.n_keep);
slot->params.seed = json_value(data, "seed", default_params.seed);
slot->sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
slot->sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
// infill
if (data.count("input_prefix") != 0)
@@ -618,18 +626,36 @@ struct llama_server_context
const int n_vocab = llama_n_vocab(model);
for (const auto &el : *logit_bias)
{
if (el.is_array() && el.size() == 2 && el[0].is_number_integer())
if (el.is_array() && el.size() == 2)
{
llama_token tok = el[0].get<llama_token>();
if (tok >= 0 && tok < n_vocab)
float bias;
if (el[1].is_number())
{
if (el[1].is_number())
bias = el[1].get<float>();
}
else if (el[1].is_boolean() && !el[1].get<bool>())
{
bias = -INFINITY;
}
else
{
continue;
}
if (el[0].is_number_integer())
{
llama_token tok = el[0].get<llama_token>();
if (tok >= 0 && tok < n_vocab)
{
slot->sparams.logit_bias[tok] = el[1].get<float>();
slot->sparams.logit_bias[tok] = bias;
}
else if (el[1].is_boolean() && !el[1].get<bool>())
}
else if (el[0].is_string())
{
auto toks = llama_tokenize(model, el[0].get<std::string>(), false);
for (auto tok : toks)
{
slot->sparams.logit_bias[tok] = -INFINITY;
slot->sparams.logit_bias[tok] = bias;
}
}
}
@@ -982,11 +1008,6 @@ struct llama_server_context
queue_results.send(res);
}
json get_model_props()
{
return get_formated_generation(slots[0]);
}
json get_formated_generation(llama_client_slot &slot)
{
const auto eos_bias = slot.sparams.logit_bias.find(llama_token_eos(model));
@@ -997,6 +1018,8 @@ struct llama_server_context
{"model", params.model_alias},
{"seed", slot.params.seed},
{"temperature", slot.sparams.temp},
{"dynatemp_range", slot.sparams.dynatemp_range},
{"dynatemp_exponent", slot.sparams.dynatemp_exponent},
{"top_k", slot.sparams.top_k},
{"top_p", slot.sparams.top_p},
{"min_p", slot.sparams.min_p},
@@ -1158,13 +1181,30 @@ struct llama_server_context
task.multitask_id = multitask_id;
// when a completion task's prompt array is not a singleton, we split it into multiple requests
if (task.data.count("prompt") && task.data.at("prompt").size() > 1)
{
split_multiprompt_task(task_id, task);
}
// otherwise, it's a single-prompt task, we actually queue it
queue_tasks.post(task);
// if there's numbers in the prompt array it will be treated as an array of tokens
if (task.data.count("prompt") != 0 && task.data.at("prompt").size() > 1) {
bool numbers = false;
for (const auto& e : task.data.at("prompt")) {
if (e.is_number()) {
numbers = true;
break;
}
}
// NOTE: split_multiprompt_task() does not handle a mix of strings and numbers,
// it will completely stall the server. I don't know where the bug for this is.
//
// if there are numbers, it needs to be treated like a single prompt,
// queue_tasks handles a mix of strings and numbers just fine.
if (numbers) {
queue_tasks.post(task);
} else {
split_multiprompt_task(task_id, task);
}
} else {
queue_tasks.post(task);
}
}
// for multiple images processing
@@ -1227,7 +1267,7 @@ struct llama_server_context
std::vector<llama_token> append_tokens = tokenize(json_prompt, false); // has next image
for (int i = 0; i < (int) append_tokens.size(); ++i)
{
llama_batch_add(batch, append_tokens[i], slot.n_past, { slot.id }, true);
llama_batch_add(batch, append_tokens[i], system_tokens.size() + slot.n_past, { slot.id }, true);
slot.n_past += 1;
}
}
@@ -1246,7 +1286,10 @@ struct llama_server_context
void split_multiprompt_task(int multitask_id, task_server& multiprompt_task)
{
int prompt_count = multiprompt_task.data.at("prompt").size();
assert(prompt_count > 1);
if (prompt_count <= 1) {
send_error(multiprompt_task, "error while handling multiple prompts");
return;
}
// generate all the ID for subtask
std::vector<int> subtask_ids(prompt_count);
@@ -1295,6 +1338,8 @@ struct llama_server_context
for (llama_client_slot &slot : slots)
{
slot.cache_tokens.clear();
slot.n_past = 0;
slot.n_past_se = 0;
}
}
@@ -1364,26 +1409,26 @@ struct llama_server_context
kv_cache_clear();
}
return true;
} else {
task_server task;
task.type = TASK_TYPE_NEXT_RESPONSE;
task.target_id = -1;
queue_tasks.post(task);
}
task_server task;
task.type = TASK_TYPE_NEXT_RESPONSE;
task.target_id = -1;
queue_tasks.post(task);
for (llama_client_slot &slot : slots)
{
if (slot.ga_n == 1)
{
if (slot.is_processing() && slot.cache_tokens.size() >= (size_t) slot.n_ctx)
if (slot.is_processing() && system_tokens.size() + slot.cache_tokens.size() >= (size_t) slot.n_ctx)
{
// Shift context
const int n_left = slot.n_past - slot.params.n_keep - 1;
const int n_left = system_tokens.size() + slot.n_past - slot.params.n_keep - 1;
const int n_discard = n_left / 2;
LOG_TEE("slot %d: context shift - n_keep = %d, n_left = %d, n_discard = %d\n", slot.id, slot.params.n_keep, n_left, n_discard);
llama_kv_cache_seq_rm (ctx, slot.id, slot.params.n_keep + 1 , slot.params.n_keep + n_discard + 1);
llama_kv_cache_seq_shift(ctx, slot.id, slot.params.n_keep + 1 + n_discard, slot.n_past, -n_discard);
llama_kv_cache_seq_shift(ctx, slot.id, slot.params.n_keep + 1 + n_discard, system_tokens.size() + slot.n_past, -n_discard);
for (size_t i = slot.params.n_keep + 1 + n_discard; i < slot.cache_tokens.size(); i++)
{
@@ -1429,8 +1474,10 @@ struct llama_server_context
slot.i_batch = batch.n_tokens;
const int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past;
llama_batch_add(batch, slot.sampled, system_tokens.size() + slot_npast, { slot.id }, true);
// TODO: we always have to take into account the "system_tokens"
// this is not great and needs to be improved somehow
llama_batch_add(batch, slot.sampled, system_tokens.size() + slot_npast, { slot.id }, true);
slot.n_past += 1;
}
@@ -1481,8 +1528,8 @@ struct llama_server_context
prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(model));
prefix_tokens.insert(prefix_tokens.begin(), llama_token_bos(model)); // always add BOS
prefix_tokens.insert(prefix_tokens.end(), llama_token_suffix(model));
prefix_tokens.insert(prefix_tokens.end(), suffix_tokens.begin(), suffix_tokens.end());
prefix_tokens.insert(prefix_tokens.end(), llama_token_suffix(model));
prefix_tokens.insert(prefix_tokens.end(), suffix_tokens.begin(), suffix_tokens.end());
prefix_tokens.push_back(llama_token_middle(model));
prompt_tokens = prefix_tokens;
}
@@ -1564,10 +1611,6 @@ struct llama_server_context
LOG_TEE("slot %d : in cache: %i tokens | to process: %i tokens\n", slot.id, slot.n_past, slot.num_prompt_tokens_processed);
}
LOG_TEE("slot %d : kv cache rm - [%d, end)\n", slot.id, (int) system_tokens.size() + slot.n_past);
llama_kv_cache_seq_rm(ctx, slot.id, system_tokens.size() + slot.n_past, -1);
slot.cache_tokens = prompt_tokens;
if (slot.n_past == slot.num_prompt_tokens && slot.n_past > 0)
@@ -1581,9 +1624,13 @@ struct llama_server_context
}
}
LOG_TEE("slot %d : kv cache rm - [%d, end)\n", slot.id, (int) system_tokens.size() + slot.n_past);
llama_kv_cache_seq_rm(ctx, slot.id, system_tokens.size() + slot.n_past, -1);
LOG_VERBOSE("prompt ingested", {
{"n_past", slot.n_past},
{"cached", tokens_to_str(ctx, slot.cache_tokens.cbegin(), slot.cache_tokens.cbegin() + slot.n_past)},
{"n_past", slot.n_past},
{"cached", tokens_to_str(ctx, slot.cache_tokens.cbegin(), slot.cache_tokens.cbegin() + slot.n_past)},
{"to_eval", tokens_to_str(ctx, slot.cache_tokens.cbegin() + slot.n_past, slot.cache_tokens.cend())},
});
@@ -1591,10 +1638,13 @@ struct llama_server_context
// process the prefix of first image
std::vector<llama_token> prefix_tokens = has_images ? tokenize(slot.images[0].prefix_prompt, add_bos_token) : prompt_tokens;
int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past;
int ga_i = slot.ga_i;
int32_t ga_i = slot.ga_i;
int32_t ga_n = slot.ga_n;
int32_t ga_w = slot.ga_w;
for (; slot.n_past < (int) prefix_tokens.size(); ++slot.n_past)
{
if (slot.ga_n != 1)
@@ -1606,7 +1656,7 @@ struct llama_server_context
}
}
llama_batch_add(batch, prefix_tokens[slot.n_past], system_tokens.size() + slot_npast, {slot.id }, false);
slot_npast += 1;
slot_npast++;
}
if (has_images && !ingest_images(slot, n_batch))
@@ -1666,6 +1716,7 @@ struct llama_server_context
slot.n_past_se += n_tokens;
}
}
llama_batch batch_view =
{
n_tokens,
@@ -1780,53 +1831,55 @@ static void server_print_usage(const char *argv0, const gpt_params &params,
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
printf(" not recommended: doubles context memory required and no measurable increase in quality\n");
if (llama_mlock_supported())
if (llama_supports_mlock())
{
printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
}
if (llama_mmap_supported())
if (llama_supports_mmap())
{
printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
}
printf(" --numa attempt optimizations that help on some NUMA systems\n");
if (llama_supports_gpu_offload()) {
printf(" -ngl N, --n-gpu-layers N\n");
printf(" number of layers to store in VRAM\n");
printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
printf(" how to split the model across multiple GPUs, one of:\n");
printf(" - none: use one GPU only\n");
printf(" - layer (default): split layers and KV across GPUs\n");
printf(" - row: split rows across GPUs\n");
printf(" -ts SPLIT --tensor-split SPLIT\n");
printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
printf(" or for intermediate results and KV (with split-mode = row)\n");
}
printf(" --numa attempt optimizations that help on some NUMA systems\n");
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
printf(" -ngl N, --n-gpu-layers N\n");
printf(" number of layers to store in VRAM\n");
printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
printf(" how to split the model across multiple GPUs, one of:\n");
printf(" - none: use one GPU only\n");
printf(" - layer (default): split layers and KV across GPUs\n");
printf(" - row: split rows across GPUs\n");
printf(" -ts SPLIT --tensor-split SPLIT\n");
printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
printf(" or for intermediate results and KV (with split-mode = row)\n");
#endif
printf(" -m FNAME, --model FNAME\n");
printf(" model path (default: %s)\n", params.model.c_str());
printf(" model path (default: %s)\n", params.model.c_str());
printf(" -a ALIAS, --alias ALIAS\n");
printf(" set an alias for the model, will be added as `model` field in completion response\n");
printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
printf(" --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str());
printf(" --port PORT port to listen (default (default: %d)\n", sparams.port);
printf(" --path PUBLIC_PATH path from which to serve static files (default %s)\n", sparams.public_path.c_str());
printf(" --api-key API_KEY optional api key to enhance server security. If set, requests must include this key for access.\n");
printf(" --api-key-file FNAME path to file containing api keys delimited by new lines. If set, requests must include one of the keys for access.\n");
printf(" -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout);
printf(" --embedding enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled");
printf(" -np N, --parallel N number of slots for process requests (default: %d)\n", params.n_parallel);
printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
printf(" -spf FNAME, --system-prompt-file FNAME\n");
printf(" Set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications.\n");
printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA.\n");
printf(" --log-disable disables logging to a file.\n");
printf(" set an alias for the model, will be added as `model` field in completion response\n");
printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
printf(" --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str());
printf(" --port PORT port to listen (default (default: %d)\n", sparams.port);
printf(" --path PUBLIC_PATH path from which to serve static files (default %s)\n", sparams.public_path.c_str());
printf(" --api-key API_KEY optional api key to enhance server security. If set, requests must include this key for access.\n");
printf(" --api-key-file FNAME path to file containing api keys delimited by new lines. If set, requests must include one of the keys for access.\n");
printf(" -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout);
printf(" --embedding enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled");
printf(" -np N, --parallel N number of slots for process requests (default: %d)\n", params.n_parallel);
printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
printf(" -spf FNAME, --system-prompt-file FNAME\n");
printf(" set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications.\n");
printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA.\n");
printf(" --log-disable disables logging to a file.\n");
printf("\n");
printf(" --override-kv KEY=TYPE:VALUE\n");
printf(" advanced option to override model metadata by key. may be specified multiple times.\n");
printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
printf(" -gan N, --grp-attn-n N Set the group attention factor to extend context size through self-extend(default: 1=disabled), used together with group attention width `--grp-attn-w`");
printf(" -gaw N, --grp-attn-w N Set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n`");
printf(" advanced option to override model metadata by key. may be specified multiple times.\n");
printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
printf(" -gan N, --grp-attn-n N set the group attention factor to extend context size through self-extend(default: 1=disabled), used together with group attention width `--grp-attn-w`");
printf(" -gaw N, --grp-attn-w N set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n`");
printf(" --chat-template FORMAT_NAME");
printf(" set chat template, possible valus is: llama2, chatml (default %s)", sparams.chat_template.c_str());
printf("\n");
}
@@ -1875,7 +1928,7 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
invalid_param = true;
break;
}
sparams.api_keys.push_back(argv[i]);
sparams.api_keys.emplace_back(argv[i]);
}
else if (arg == "--api-key-file")
{
@@ -2057,13 +2110,13 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
invalid_param = true;
break;
}
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
params.n_gpu_layers = std::stoi(argv[i]);
#else
LOG_WARNING("Not compiled with GPU offload support, --n-gpu-layers option will be ignored. "
if (llama_supports_gpu_offload()) {
params.n_gpu_layers = std::stoi(argv[i]);
} else {
LOG_WARNING("Not compiled with GPU offload support, --n-gpu-layers option will be ignored. "
"See main README.md for information on enabling GPU BLAS support",
{{"n_gpu_layers", params.n_gpu_layers}});
#endif
}
}
else if (arg == "--split-mode" || arg == "-sm")
{
@@ -2106,9 +2159,9 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
const std::regex regex{R"([,/]+)"};
std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
std::vector<std::string> split_arg{it, {}};
GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
GGML_ASSERT(split_arg.size() <= llama_max_devices());
for (size_t i_device = 0; i_device < LLAMA_MAX_DEVICES; ++i_device)
for (size_t i_device = 0; i_device < llama_max_devices(); ++i_device)
{
if (i_device < split_arg.size())
{
@@ -2151,7 +2204,7 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
invalid_param = true;
break;
}
params.lora_adapter.push_back(std::make_tuple(argv[i], 1.0f));
params.lora_adapter.emplace_back(argv[i], 1.0f);
params.use_mmap = false;
}
else if (arg == "--lora-scaled")
@@ -2167,7 +2220,7 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
invalid_param = true;
break;
}
params.lora_adapter.push_back(std::make_tuple(lora_adapter, std::stof(argv[i])));
params.lora_adapter.emplace_back(lora_adapter, std::stof(argv[i]));
params.use_mmap = false;
}
else if (arg == "--lora-base")
@@ -2258,6 +2311,21 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
log_set_target(stdout);
LOG_INFO("logging to file is disabled.", {});
}
else if (arg == "--chat-template")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
std::string value(argv[i]);
if (value != "chatml" && value != "llama2") {
fprintf(stderr, "error: chat template can be \"llama2\" or \"chatml\", but got: %s\n", value.c_str());
invalid_param = true;
break;
}
sparams.chat_template = value;
}
else if (arg == "--override-kv")
{
if (++i >= argc) {
@@ -2309,7 +2377,7 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
}
}
if (!params.kv_overrides.empty()) {
params.kv_overrides.emplace_back(llama_model_kv_override());
params.kv_overrides.emplace_back();
params.kv_overrides.back().key[0] = 0;
}
@@ -2605,7 +2673,9 @@ int main(int argc, char **argv)
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
json data = {
{ "user_name", llama.name_user.c_str() },
{ "assistant_name", llama.name_assistant.c_str() }
{ "assistant_name", llama.name_assistant.c_str() },
{ "default_generation_settings", llama.default_generation_settings_for_props },
{ "total_slots", llama.params.n_parallel }
};
res.set_content(data.dump(), "application/json; charset=utf-8");
});
@@ -2709,13 +2779,13 @@ int main(int argc, char **argv)
// TODO: add mount point without "/v1" prefix -- how?
svr.Post("/v1/chat/completions", [&llama, &validate_api_key](const httplib::Request &req, httplib::Response &res)
svr.Post("/v1/chat/completions", [&llama, &validate_api_key, &sparams](const httplib::Request &req, httplib::Response &res)
{
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
if (!validate_api_key(req, res)) {
return;
}
json data = oaicompat_completion_params_parse(json::parse(req.body));
json data = oaicompat_completion_params_parse(json::parse(req.body), sparams.chat_template);
const int task_id = llama.queue_tasks.get_new_id();
llama.queue_results.add_waiting_task_id(task_id);
@@ -2856,12 +2926,6 @@ int main(int argc, char **argv)
}
});
svr.Get("/model.json", [&llama](const httplib::Request &, httplib::Response &res)
{
const json data = llama.get_model_props();
return res.set_content(data.dump(), "application/json; charset=utf-8");
});
svr.Options(R"(/.*)", [](const httplib::Request &, httplib::Response &res)
{ return res.set_content("", "application/json; charset=utf-8"); });

View File

@@ -167,6 +167,34 @@ static T json_value(const json &body, const std::string &key, const T &default_v
: default_value;
}
inline std::string format_llama2(std::vector<json> messages)
{
std::ostringstream output;
bool is_inside_turn = false;
for (auto it = messages.begin(); it != messages.end(); ++it) {
if (!is_inside_turn) {
output << "[INST] ";
}
std::string role = json_value(*it, "role", std::string("user"));
std::string content = json_value(*it, "content", std::string(""));
if (role == "system") {
output << "<<SYS>>\n" << content << "\n<<SYS>>\n\n";
is_inside_turn = true;
} else if (role == "user") {
output << content << " [/INST]";
is_inside_turn = true;
} else {
output << " " << content << " </s>";
is_inside_turn = false;
}
}
LOG_VERBOSE("format_llama2", {{"text", output.str()}});
return output.str();
}
inline std::string format_chatml(std::vector<json> messages)
{
std::ostringstream chatml_msgs;
@@ -180,6 +208,8 @@ inline std::string format_chatml(std::vector<json> messages)
chatml_msgs << "<|im_start|>assistant" << '\n';
LOG_VERBOSE("format_chatml", {{"text", chatml_msgs.str()}});
return chatml_msgs.str();
}

View File

@@ -1,7 +1,9 @@
/*MIT license
Copyright (C) 2024 Intel Corporation
SPDX-License-Identifier: MIT
*/
//
// MIT license
// Copyright (C) 2024 Intel Corporation
// SPDX-License-Identifier: MIT
//
#include "ggml-sycl.h"

View File

@@ -0,0 +1,23 @@
:: MIT license
:: Copyright (C) 2024 Intel Corporation
:: SPDX-License-Identifier: MIT
mkdir -p build
cd build
@call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force
:: for FP16
:: faster for long-prompt inference
:: cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release -DLLAMA_SYCL_F16=ON
:: for FP32
cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release
:: build example/main only
:: make main
:: build all binary
make -j
cd ..

View File

@@ -0,0 +1,13 @@
:: MIT license
:: Copyright (C) 2024 Intel Corporation
:: SPDX-License-Identifier: MIT
set INPUT2="Building a website can be done in 10 simple steps:\nStep 1:"
@call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force
set GGML_SYCL_DEVICE=0
rem set GGML_SYCL_DEBUG=1
.\build\bin\main.exe -m models\llama-2-7b.Q4_0.gguf -p %INPUT2% -n 400 -e -ngl 33 -s 0

View File

@@ -1,5 +1,6 @@
#include "ggml.h"
#include "ggml-alloc.h"
#include "ggml-backend.h"
#include "common.h"
#include "train.h"
#include "llama.h"
@@ -19,8 +20,6 @@
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
static const size_t tensor_alignment = 32;
struct my_llama_hparams {
uint32_t n_vocab = 32000;
uint32_t n_ctx = 512;
@@ -58,7 +57,7 @@ struct my_llama_layer {
struct my_llama_model {
struct ggml_context * ctx = NULL;
std::vector<uint8_t> data;
ggml_backend_buffer_t data = NULL;
my_llama_hparams hparams;
@@ -147,39 +146,6 @@ static void set_param_model(struct my_llama_model * model) {
}
}
static void alloc_model(struct ggml_allocr * alloc, struct my_llama_model * model) {
ggml_allocr_alloc(alloc, model->tok_embeddings);
ggml_allocr_alloc(alloc, model->norm);
ggml_allocr_alloc(alloc, model->output);
for (uint32_t i = 0; i < model->layers.size(); ++i) {
auto & layer = model->layers[i];
ggml_allocr_alloc(alloc, layer.attention_norm);
ggml_allocr_alloc(alloc, layer.wq);
ggml_allocr_alloc(alloc, layer.wk);
ggml_allocr_alloc(alloc, layer.wv);
ggml_allocr_alloc(alloc, layer.wo);
ggml_allocr_alloc(alloc, layer.ffn_norm);
ggml_allocr_alloc(alloc, layer.w1);
ggml_allocr_alloc(alloc, layer.w2);
ggml_allocr_alloc(alloc, layer.w3);
}
ggml_allocr_alloc(alloc, model->tok_embeddings->grad);
ggml_allocr_alloc(alloc, model->norm->grad);
ggml_allocr_alloc(alloc, model->output->grad);
for (uint32_t i = 0; i < model->layers.size(); ++i) {
auto & layer = model->layers[i];
ggml_allocr_alloc(alloc, layer.attention_norm->grad);
ggml_allocr_alloc(alloc, layer.wq->grad);
ggml_allocr_alloc(alloc, layer.wk->grad);
ggml_allocr_alloc(alloc, layer.wv->grad);
ggml_allocr_alloc(alloc, layer.wo->grad);
ggml_allocr_alloc(alloc, layer.ffn_norm->grad);
ggml_allocr_alloc(alloc, layer.w1->grad);
ggml_allocr_alloc(alloc, layer.w2->grad);
ggml_allocr_alloc(alloc, layer.w3->grad);
}
}
static void init_model(struct my_llama_model * model) {
const auto & hparams = model->hparams;
@@ -252,17 +218,8 @@ static void init_model(struct my_llama_model * model) {
set_param_model(model);
// measure data size
size_t size = 0;
for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
size += GGML_PAD(ggml_nbytes(t), tensor_alignment);
}
// allocate data
struct ggml_allocr * alloc = NULL;
model->data.resize(size + tensor_alignment);
alloc = ggml_allocr_new(model->data.data(), model->data.size(), tensor_alignment);
alloc_model(alloc, model);
model->data = ggml_backend_alloc_ctx_tensors_from_buft(ctx, ggml_backend_cpu_buffer_type());
}
static void randomize_model(struct my_llama_model * model, int seed, float mean, float std, float min, float max) {
@@ -297,7 +254,7 @@ static void randomize_model(struct my_llama_model * model, int seed, float mean,
static struct ggml_tensor * llama_build_train_graphs(
struct my_llama_model * model,
struct ggml_allocr * alloc,
ggml_gallocr_t alloc,
struct ggml_context * ctx,
struct ggml_cgraph * gf,
struct ggml_cgraph * gb,
@@ -308,7 +265,8 @@ static struct ggml_tensor * llama_build_train_graphs(
const int n_tokens,
const int n_batch,
const bool enable_flash_attn,
const bool enable_checkpointing) {
const bool enable_checkpointing,
const bool measure_only) {
ggml_set_scratch(ctx, { 0, 0, nullptr, });
const int n_past = 0;
@@ -334,13 +292,7 @@ static struct ggml_tensor * llama_build_train_graphs(
// KQ_pos - contains the positions
struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, N);
ggml_allocr_alloc(alloc, KQ_pos);
if (!ggml_allocr_is_measure(alloc)) {
int * data = (int *) KQ_pos->data;
for (int i = 0; i < N; ++i) {
data[i] = n_past + i;
}
}
ggml_set_input(KQ_pos);
// rope has so much parameters that we make a custom function for it
auto rope = [ctx, KQ_pos, n_rot, n_ctx, rope_freq_base, rope_freq_scale]
@@ -448,21 +400,31 @@ static struct ggml_tensor * llama_build_train_graphs(
// KQ_pos
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, KQ_pos, 1.0f));
GGML_ASSERT(t36->grad->data == NULL && t36->grad->view_src == NULL);
ggml_allocr_alloc(alloc, t36->grad);
ggml_set_input(t36->grad);
// allocating checkpoints in one block to reduce memory fragmentation
// note: they will be freed in reverse order
for (int i = 0; i < (int) checkpoints.size(); ++i) {
if (checkpoints[i]->data == NULL && checkpoints[i]->view_src == NULL) {
ggml_allocr_alloc(alloc, checkpoints[i]);
ggml_set_input(checkpoints[i]);
}
}
//int n_leafs_after = gb->n_leafs;
//int n_nodes_after = gb->n_nodes;
if (measure_only) {
// FIXME: will still allocate
ggml_gallocr_reserve(alloc, gb);
} else {
ggml_gallocr_alloc_graph(alloc, gb);
ggml_allocr_alloc_graph(alloc, gb);
if (!measure_only) {
int * data = (int *) KQ_pos->data;
for (int i = 0; i < N; ++i) {
data[i] = n_past + i;
}
}
}
// remove the additional nodes and leafs
for (int i = n_leafs_before; i < gb->n_leafs; ++i) {
@@ -1046,7 +1008,7 @@ int main(int argc, char ** argv) {
printf("%s: seen train_samples %llu\n", __func__, (long long unsigned) train->train_samples);
printf("%s: seen train_tokens %llu\n", __func__, (long long unsigned) train->train_tokens);
printf("%s: completed train_epochs %llu\n", __func__, (long long unsigned) train->train_epochs);
printf("%s: model_size = %zu bytes (%.1f MB)\n", __func__, (ggml_used_mem(model.ctx) + model.data.size()), (float) (ggml_used_mem(model.ctx) + model.data.size()) / (1024.0f*1024.0f));
printf("%s: model_size = %zu bytes (%.1f MB)\n", __func__, (ggml_used_mem(model.ctx) + ggml_backend_buffer_get_size(model.data)), (float) (ggml_used_mem(model.ctx) + ggml_backend_buffer_get_size(model.data)) / (1024.0f*1024.0f));
if (params.only_write_model) {
save_train_files_data save_data;
@@ -1073,11 +1035,6 @@ int main(int argc, char ** argv) {
int n_vocab = model.hparams.n_vocab;
int n_batch = params.common.n_batch;
std::vector<uint8_t> mem_input_data;
std::vector<uint8_t> mem_compute_data;
ggml_allocr * alloc = NULL;
// context for input tensors without their data
struct ggml_init_params ctx_input_params = {
ggml_tensor_overhead() * 2, // mem_size
@@ -1091,16 +1048,10 @@ int main(int argc, char ** argv) {
struct ggml_tensor * target_probs = ggml_new_tensor_3d(ctx_input, GGML_TYPE_F32, n_vocab, n_tokens, n_batch);
// measure required memory for input tensors
size_t max_input_size = GGML_PAD(ggml_nbytes(tokens_input), tensor_alignment) +
GGML_PAD(ggml_nbytes(target_probs), tensor_alignment) +
tensor_alignment;
printf("%s: input_size = %zu bytes (%.1f MB)\n", __func__, max_input_size, (float) max_input_size / (1024.0f*1024.0f));
// allocate input tensors
mem_input_data.resize(max_input_size);
alloc = ggml_allocr_new(mem_input_data.data(), mem_input_data.size(), tensor_alignment);
ggml_allocr_alloc(alloc, tokens_input);
ggml_allocr_alloc(alloc, target_probs);
ggml_backend_buffer_t input_data = ggml_backend_alloc_ctx_tensors_from_buft(ctx_input, ggml_backend_cpu_buffer_type());
size_t max_input_size = ggml_backend_buffer_get_size(input_data);
printf("%s: input_size = %zu bytes (%.1f MB)\n", __func__, max_input_size, (float) max_input_size / (1024.0f*1024.0f));
// context for compute tensors without their data
const size_t estimated_compute_size_wo_data = (
@@ -1127,7 +1078,7 @@ int main(int argc, char ** argv) {
// find best evaluation order
for (unsigned order = 0; order < (unsigned) GGML_CGRAPH_EVAL_ORDER_COUNT; ++order) {
ctx_compute = ggml_init(ctx_compute_params);
alloc = ggml_allocr_new_measure(tensor_alignment);
ggml_gallocr_t alloc = ggml_gallocr_new(ggml_backend_cpu_buffer_type());
gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
gf->order = (enum ggml_cgraph_eval_order) order;
gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
@@ -1140,9 +1091,10 @@ int main(int argc, char ** argv) {
&logits, tokens_input, target_probs,
n_tokens, n_batch,
params.common.use_flash,
params.common.use_checkpointing
params.common.use_checkpointing,
true
);
size_t max_compute_size = ggml_allocr_max_size(alloc) + tensor_alignment;
size_t max_compute_size = ggml_gallocr_get_buffer_size(alloc, 0); // FIXME: this will still allocate the buffer
if (max_compute_size < best_compute_size) {
best_compute_size = max_compute_size;
best_order = gf->order;
@@ -1157,9 +1109,8 @@ int main(int argc, char ** argv) {
"invalid");
// allocate compute tensors
mem_compute_data.resize(max_compute_size);
ctx_compute = ggml_init(ctx_compute_params);
alloc = ggml_allocr_new(mem_compute_data.data(), mem_compute_data.size(), tensor_alignment);
ggml_gallocr_t alloc = ggml_gallocr_new(ggml_backend_cpu_buffer_type());
gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
gf->order = best_order;
gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
@@ -1172,7 +1123,8 @@ int main(int argc, char ** argv) {
&logits, tokens_input, target_probs,
n_tokens, n_batch,
params.common.use_flash,
params.common.use_checkpointing
params.common.use_checkpointing,
false
);
std::vector<llama_token> train_tokens;

18
flake.lock generated
View File

@@ -5,11 +5,11 @@
"nixpkgs-lib": "nixpkgs-lib"
},
"locked": {
"lastModified": 1704982712,
"narHash": "sha256-2Ptt+9h8dczgle2Oo6z5ni5rt/uLMG47UFTR1ry/wgg=",
"lastModified": 1706830856,
"narHash": "sha256-a0NYyp+h9hlb7ddVz4LUn1vT/PLwqfrWYcHMvFB1xYg=",
"owner": "hercules-ci",
"repo": "flake-parts",
"rev": "07f6395285469419cf9d078f59b5b49993198c00",
"rev": "b253292d9c0a5ead9bc98c4e9a26c6312e27d69f",
"type": "github"
},
"original": {
@@ -20,11 +20,11 @@
},
"nixpkgs": {
"locked": {
"lastModified": 1706191920,
"narHash": "sha256-eLihrZAPZX0R6RyM5fYAWeKVNuQPYjAkCUBr+JNvtdE=",
"lastModified": 1707268954,
"narHash": "sha256-2en1kvde3cJVc3ZnTy8QeD2oKcseLFjYPLKhIGDanQ0=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "ae5c332cbb5827f6b1f02572496b141021de335f",
"rev": "f8e2ebd66d097614d51a56a755450d4ae1632df1",
"type": "github"
},
"original": {
@@ -37,11 +37,11 @@
"nixpkgs-lib": {
"locked": {
"dir": "lib",
"lastModified": 1703961334,
"narHash": "sha256-M1mV/Cq+pgjk0rt6VxoyyD+O8cOUiai8t9Q6Yyq4noY=",
"lastModified": 1706550542,
"narHash": "sha256-UcsnCG6wx++23yeER4Hg18CXWbgNpqNXcHIo5/1Y+hc=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "b0d36bd0a420ecee3bc916c91886caca87c894e9",
"rev": "97b17f32362e475016f942bbdfda4a4a72a8a652",
"type": "github"
},
"original": {

View File

@@ -157,6 +157,7 @@
mpi-cpu = config.packages.default.override { useMpi = true; };
mpi-cuda = config.packages.default.override { useMpi = true; };
vulkan = config.packages.default.override { useVulkan = true; };
}
// lib.optionalAttrs (system == "x86_64-linux") {
rocm = config.legacyPackages.llamaPackagesRocm.llama-cpp;

File diff suppressed because it is too large Load Diff

View File

@@ -6,88 +6,62 @@
extern "C" {
#endif
struct ggml_backend;
struct ggml_backend_buffer;
struct ggml_backend_buffer_type;
//
// Legacy API
//
typedef struct ggml_allocr * ggml_allocr_t;
// initialize allocator for use with CPU backend only
GGML_API ggml_allocr_t ggml_allocr_new(void * data, size_t size, size_t alignment);
GGML_API ggml_allocr_t ggml_allocr_new_measure(size_t alignment);
// initialize allocator for use with ggml-backend
GGML_API ggml_allocr_t ggml_allocr_new_from_buffer(struct ggml_backend_buffer * buffer);
GGML_API ggml_allocr_t ggml_allocr_new_from_backend(struct ggml_backend * backend, size_t size); // allocates an owned buffer
GGML_API ggml_allocr_t ggml_allocr_new_measure_from_backend(struct ggml_backend * backend);
GGML_API struct ggml_backend_buffer * ggml_allocr_get_buffer(ggml_allocr_t alloc);
// tell the allocator to parse nodes following the order described in the list
// you should call this if your graph are optimized to execute out-of-order
GGML_API void ggml_allocr_set_parse_seq(ggml_allocr_t alloc, const int * list, int n);
GGML_API void ggml_allocr_free (ggml_allocr_t alloc);
GGML_API bool ggml_allocr_is_measure (ggml_allocr_t alloc);
GGML_API void ggml_allocr_reset (ggml_allocr_t alloc);
GGML_API void ggml_allocr_alloc (ggml_allocr_t alloc, struct ggml_tensor * tensor);
GGML_API size_t ggml_allocr_max_size (ggml_allocr_t alloc);
GGML_API size_t ggml_allocr_alloc_graph(ggml_allocr_t alloc, struct ggml_cgraph * graph);
//
// ggml-backend v2 API
//
// Separate tensor and graph allocator objects
// This is necessary for multi-backend allocation because the graph allocator needs to use multiple tensor allocators
// The original API is kept as a wrapper around the new API
typedef struct ggml_backend_buffer_type * ggml_backend_buffer_type_t;
typedef struct ggml_backend_buffer * ggml_backend_buffer_t;
typedef struct ggml_backend * ggml_backend_t;
// Tensor allocator
typedef struct ggml_tallocr * ggml_tallocr_t;
GGML_API ggml_tallocr_t ggml_tallocr_new(void * data, size_t size, size_t alignment);
GGML_API ggml_tallocr_t ggml_tallocr_new_measure(size_t alignment);
GGML_API ggml_tallocr_t ggml_tallocr_new_from_buft(struct ggml_backend_buffer_type * buft, size_t size);
GGML_API ggml_tallocr_t ggml_tallocr_new_from_backend(struct ggml_backend * backend, size_t size); // allocates an owned buffer
GGML_API ggml_tallocr_t ggml_tallocr_new_from_buffer(struct ggml_backend_buffer * buffer);
GGML_API ggml_tallocr_t ggml_tallocr_new_measure_from_buft(struct ggml_backend_buffer_type * buft);
GGML_API ggml_tallocr_t ggml_tallocr_new_measure_from_backend(struct ggml_backend * backend);
GGML_API struct ggml_backend_buffer * ggml_tallocr_get_buffer(ggml_tallocr_t talloc);
GGML_API void ggml_tallocr_free (ggml_tallocr_t talloc);
GGML_API bool ggml_tallocr_is_measure (ggml_tallocr_t talloc);
GGML_API void ggml_tallocr_reset (ggml_tallocr_t talloc);
GGML_API void ggml_tallocr_alloc (ggml_tallocr_t talloc, struct ggml_tensor * tensor);
GGML_API size_t ggml_tallocr_max_size (ggml_tallocr_t talloc);
GGML_API ggml_tallocr_t ggml_tallocr_new(ggml_backend_buffer_t buffer);
GGML_API void ggml_tallocr_free(ggml_tallocr_t talloc);
GGML_API void ggml_tallocr_alloc(ggml_tallocr_t talloc, struct ggml_tensor * tensor);
// Graph allocator
/*
Example usage:
ggml_gallocr_t galloc = ggml_gallocr_new(ggml_bacckend_cpu_buffer_type());
// optional: create a worst-case graph and reserve the buffers to avoid reallocations
ggml_gallocr_reserve(galloc, build_graph(max_batch));
// allocate the graph
struct ggml_cgraph * graph = build_graph(batch);
ggml_gallocr_alloc_graph(galloc, graph);
printf("compute buffer size: %zu bytes\n", ggml_gallocr_get_buffer_size(galloc, 0));
// evaluate the graph
ggml_backend_graph_compute(backend, graph);
*/
// special tensor flags for use with the graph allocator:
// ggml_set_input(): all input tensors are allocated at the beginning of the graph in non-overlapping addresses
// ggml_set_output(): output tensors are never freed and never overwritten
typedef struct ggml_gallocr * ggml_gallocr_t;
GGML_API ggml_gallocr_t ggml_gallocr_new(void);
GGML_API void ggml_gallocr_free(ggml_gallocr_t galloc);
GGML_API ggml_gallocr_t ggml_gallocr_new(ggml_backend_buffer_type_t buft);
GGML_API ggml_gallocr_t ggml_gallocr_new_n(ggml_backend_buffer_type_t * bufts, int n_bufs);
GGML_API void ggml_gallocr_free(ggml_gallocr_t galloc);
GGML_API void ggml_gallocr_set_parse_seq(ggml_gallocr_t galloc, const int * list, int n);
GGML_API size_t ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, ggml_tallocr_t talloc, struct ggml_cgraph * graph);
// pre-allocate buffers from a measure graph - does not allocate or modify the graph
// call with a worst-case graph to avoid buffer reallocations
// not strictly required for single buffer usage: ggml_gallocr_alloc_graph will reallocate the buffers automatically if needed
// returns false if the buffer allocation failed
GGML_API bool ggml_gallocr_reserve(ggml_gallocr_t galloc, struct ggml_cgraph * graph);
GGML_API bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids);
// Allocate tensors from the allocators given by the hash table
GGML_API void ggml_gallocr_alloc_graph_n(
ggml_gallocr_t galloc,
struct ggml_cgraph * graph,
struct ggml_hash_set hash_set,
ggml_tallocr_t * hash_node_talloc);
// automatic reallocation if the topology changes when using a single buffer
// returns false if using multiple buffers and a re-allocation is needed (call ggml_gallocr_reserve_n first to set the node buffers)
GGML_API bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph * graph);
GGML_API size_t ggml_gallocr_get_buffer_size(ggml_gallocr_t galloc, int buffer_id);
// Utils
// Create a buffer and allocate all the tensors in a ggml_context
GGML_API struct ggml_backend_buffer * ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_context * ctx, struct ggml_backend_buffer_type * buft);
GGML_API struct ggml_backend_buffer * ggml_backend_alloc_ctx_tensors(struct ggml_context * ctx, struct ggml_backend * backend);
GGML_API struct ggml_backend_buffer * ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_context * ctx, ggml_backend_buffer_type_t buft);
GGML_API struct ggml_backend_buffer * ggml_backend_alloc_ctx_tensors(struct ggml_context * ctx, ggml_backend_t backend);
#ifdef __cplusplus
}

File diff suppressed because it is too large Load Diff

View File

@@ -83,8 +83,9 @@ extern "C" {
GGML_API ggml_backend_t ggml_backend_cpu_init(void);
GGML_API GGML_CALL bool ggml_backend_is_cpu (ggml_backend_t backend);
GGML_API void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads);
GGML_API GGML_CALL bool ggml_backend_is_cpu (ggml_backend_t backend);
GGML_API void ggml_backend_cpu_set_n_threads (ggml_backend_t backend_cpu, int n_threads);
GGML_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data);
// Create a backend buffer from an existing pointer
GGML_API GGML_CALL ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size);
@@ -129,11 +130,7 @@ extern "C" {
// in build_graph:
build_graph(...) {
// allocating tensors in a specific backend (optional, recommended: pre-allocate inputs in a different buffer)
alloc_cpu = ggml_backend_sched_get_allocr(sched, backend_cpu);
ggml_allocr_alloc(alloc_cpu, tensor);
// manually assigning nodes to a backend (optional, shouldn't be needed in most cases)
// manually assign nodes to a backend (optional, should not be needed in most cases)
struct ggml_tensor * node = ggml_mul_mat(ctx, ...);
ggml_backend_sched_set_node_backend(sched, node, backend_gpu);
}
@@ -163,20 +160,19 @@ extern "C" {
GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size);
GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched);
// Initialize backend buffers from a measure graph
GGML_API void ggml_backend_sched_init_measure(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph);
GGML_API bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph);
// Get the number of splits of the last graph
GGML_API int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched);
GGML_API ggml_tallocr_t ggml_backend_sched_get_tallocr(ggml_backend_sched_t sched, ggml_backend_t backend);
GGML_API ggml_backend_buffer_t ggml_backend_sched_get_buffer (ggml_backend_sched_t sched, ggml_backend_t backend);
GGML_API size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend);
GGML_API void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend);
GGML_API ggml_backend_t ggml_backend_sched_get_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node);
// Allocate and compute graph on the backend scheduler
GGML_API void ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph);
GGML_API bool ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph);
// Reset all assignments and allocators - must be called before using the sched allocators to allocate inputs
// Reset all assignments and allocators - must be called before changing the node backends
GGML_API void ggml_backend_sched_reset(ggml_backend_sched_t sched);
// Set a callback to be called for each resulting node during graph compute

File diff suppressed because it is too large Load Diff

View File

@@ -19,6 +19,7 @@ extern "C" {
// fall back to the _Static_assert C11 keyword.
// if C99 - static_assert is noop
// ref: https://stackoverflow.com/a/53923785/4039976
#ifndef __cplusplus
#ifndef static_assert
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
#define static_assert(cond, msg) _Static_assert(cond, msg)
@@ -26,6 +27,7 @@ extern "C" {
#define static_assert(cond, msg) struct global_scope_noop_trick
#endif
#endif
#endif
// __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
#if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))

View File

@@ -57,6 +57,9 @@ GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(voi
// ref: https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf
GGML_API bool ggml_backend_metal_supports_family(ggml_backend_t backend, int family);
// capture all command buffers committed the next time `ggml_backend_graph_compute` is called
GGML_API void ggml_backend_metal_capture_next_compute(ggml_backend_t backend);
#ifdef __cplusplus
}
#endif

View File

@@ -135,6 +135,7 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_ROPE_F16,
GGML_METAL_KERNEL_TYPE_ALIBI_F32,
GGML_METAL_KERNEL_TYPE_IM2COL_F16,
GGML_METAL_KERNEL_TYPE_IM2COL_F32,
GGML_METAL_KERNEL_TYPE_UPSCALE_F32,
GGML_METAL_KERNEL_TYPE_PAD_F32,
GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC,
@@ -168,6 +169,8 @@ struct ggml_metal_context {
bool support_simdgroup_reduction;
bool support_simdgroup_mm;
bool should_capture_next_compute;
};
// MSL code
@@ -354,6 +357,8 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
GGML_METAL_LOG_INFO("%s: simdgroup matrix mul. support = %s\n", __func__, ctx->support_simdgroup_mm ? "true" : "false");
GGML_METAL_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
ctx->should_capture_next_compute = false;
#if TARGET_OS_OSX || (TARGET_OS_IOS && __clang_major__ >= 15)
if (@available(macOS 10.12, iOS 16.0, *)) {
GGML_METAL_LOG_INFO("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1e6);
@@ -502,6 +507,7 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_F16, rope_f16, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ALIBI_F32, alibi_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F16, im2col_f16, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F32, im2col_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UPSCALE_F32, upscale_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_PAD_F32, pad_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC, argsort_f32_i32_asc, true);
@@ -626,6 +632,10 @@ static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const
case GGML_OP_ALIBI:
case GGML_OP_ROPE:
case GGML_OP_IM2COL:
return true;
case GGML_OP_POOL_1D:
case GGML_OP_POOL_2D:
return false;
case GGML_OP_UPSCALE:
case GGML_OP_PAD:
case GGML_OP_ARGSORT:
@@ -677,6 +687,7 @@ static bool ggml_metal_graph_compute(
struct ggml_metal_context * ctx,
struct ggml_cgraph * gf) {
@autoreleasepool {
MTLComputePassDescriptor * edesc = MTLComputePassDescriptor.computePassDescriptor;
edesc.dispatchType = MTLDispatchTypeSerial;
@@ -687,6 +698,20 @@ static bool ggml_metal_graph_compute(
const int n_cb = ctx->n_cb;
const int n_nodes_per_cb = (n_nodes + n_cb - 1) / n_cb;
const bool should_capture = ctx->should_capture_next_compute;
if (should_capture) {
ctx->should_capture_next_compute = false;
MTLCaptureDescriptor * descriptor = [MTLCaptureDescriptor new];
descriptor.captureObject = ctx->queue;
NSError * error = nil;
if (![[MTLCaptureManager sharedCaptureManager] startCaptureWithDescriptor:descriptor error:&error]) {
GGML_METAL_LOG_ERROR("%s: error: unable to start capture '%s'\n", __func__, [[error localizedDescription] UTF8String]);
GGML_ASSERT(!"capture failed");
}
}
id<MTLCommandBuffer> command_buffer_builder[n_cb];
for (int cb_idx = 0; cb_idx < n_cb; ++cb_idx) {
id<MTLCommandBuffer> command_buffer = [ctx->queue commandBufferWithUnretainedReferences];
@@ -695,6 +720,7 @@ static bool ggml_metal_graph_compute(
// enqueue the command buffers in order to specify their execution order
[command_buffer enqueue];
}
const id<MTLCommandBuffer> *command_buffers = command_buffer_builder;
dispatch_apply(n_cb, ctx->d_queue, ^(size_t iter) {
@@ -741,9 +767,9 @@ static bool ggml_metal_graph_compute(
GGML_ASSERT(!"unsupported op");
}
#ifndef GGML_METAL_NDEBUG
[encoder pushDebugGroup:[NSString stringWithCString:ggml_op_desc(dst) encoding:NSUTF8StringEncoding]];
#endif
if (should_capture) {
[encoder pushDebugGroup:[NSString stringWithCString:ggml_op_desc(dst) encoding:NSUTF8StringEncoding]];
}
const int64_t ne00 = src0 ? src0->ne[0] : 0;
const int64_t ne01 = src0 ? src0->ne[1] : 0;
@@ -1996,7 +2022,7 @@ static bool ggml_metal_graph_compute(
{
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F16);
GGML_ASSERT( dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
@@ -2004,6 +2030,7 @@ static bool ggml_metal_graph_compute(
const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
const int32_t N = src1->ne[is_2D ? 3 : 2];
@@ -2024,8 +2051,8 @@ static bool ggml_metal_graph_compute(
id<MTLComputePipelineState> pipeline = nil;
switch (src0->type) {
case GGML_TYPE_F32: GGML_ASSERT(false && "not implemented"); break;
switch (dst->type) {
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_IM2COL_F32].pipeline; break;
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_IM2COL_F16].pipeline; break;
default: GGML_ASSERT(false);
};
@@ -2218,9 +2245,9 @@ static bool ggml_metal_graph_compute(
}
}
#ifndef GGML_METAL_NDEBUG
[encoder popDebugGroup];
#endif
if (should_capture) {
[encoder popDebugGroup];
}
}
[encoder endEncoding];
@@ -2242,6 +2269,11 @@ static bool ggml_metal_graph_compute(
}
}
if (should_capture) {
[[MTLCaptureManager sharedCaptureManager] stopCapture];
}
}
return true;
}
@@ -2613,6 +2645,13 @@ bool ggml_backend_metal_supports_family(ggml_backend_t backend, int family) {
return [ctx->device supportsFamily:(MTLGPUFamilyApple1 + family - 1)];
}
void ggml_backend_metal_capture_next_compute(ggml_backend_t backend) {
GGML_ASSERT(ggml_backend_is_metal(backend));
struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context;
ctx->should_capture_next_compute = true;
}
GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data); // silence warning
GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data) {

View File

@@ -1775,9 +1775,29 @@ kernel void kernel_rope(
template [[host_name("kernel_rope_f32")]] kernel rope_t kernel_rope<float>;
template [[host_name("kernel_rope_f16")]] kernel rope_t kernel_rope<half>;
kernel void kernel_im2col_f16(
typedef void (im2col_t)(
device const float * x,
device half * dst,
device char * dst,
constant int32_t & ofs0,
constant int32_t & ofs1,
constant int32_t & IW,
constant int32_t & IH,
constant int32_t & CHW,
constant int32_t & s0,
constant int32_t & s1,
constant int32_t & p0,
constant int32_t & p1,
constant int32_t & d0,
constant int32_t & d1,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tgpg[[threadgroups_per_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]);
template <typename T>
kernel void kernel_im2col(
device const float * x,
device char * dst,
constant int32_t & ofs0,
constant int32_t & ofs1,
constant int32_t & IW,
@@ -1800,14 +1820,19 @@ kernel void kernel_im2col_f16(
(tpitg[0] * tgpg[1] * tgpg[2] + tgpig[1] * tgpg[2] + tgpig[2]) * CHW +
(tgpig[0] * (ntg[1] * ntg[2]) + tpitg[1] * ntg[2] + tpitg[2]);
device T * pdst = (device T *) (dst);
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
dst[offset_dst] = 0.0f;
pdst[offset_dst] = 0.0f;
} else {
const int32_t offset_src = tpitg[0] * ofs0 + tgpig[0] * ofs1;
dst[offset_dst] = x[offset_src + iih * IW + iiw];
pdst[offset_dst] = x[offset_src + iih * IW + iiw];
}
}
template [[host_name("kernel_im2col_f32")]] kernel im2col_t kernel_im2col<float>;
template [[host_name("kernel_im2col_f16")]] kernel im2col_t kernel_im2col<half>;
kernel void kernel_upscale_f32(
device const char * src0,
device char * dst,
@@ -3688,38 +3713,38 @@ constexpr constant static uint64_t iq2xs_grid[512] = {
};
constexpr constant static uint32_t iq3xxs_grid[256] = {
0x04040404, 0x04040414, 0x04040424, 0x04040c0c, 0x04040c1c, 0x04040c3c, 0x04041404, 0x04041414,
0x04041c0c, 0x04042414, 0x04043c1c, 0x04043c2c, 0x040c040c, 0x040c041c, 0x040c0c04, 0x040c0c14,
0x040c140c, 0x040c142c, 0x040c1c04, 0x040c1c14, 0x040c240c, 0x040c2c24, 0x040c3c04, 0x04140404,
0x04140414, 0x04140424, 0x04140c0c, 0x04141404, 0x04141414, 0x04141c0c, 0x04141c1c, 0x04141c3c,
0x04142c0c, 0x04142c3c, 0x04143c2c, 0x041c040c, 0x041c043c, 0x041c0c04, 0x041c0c14, 0x041c142c,
0x041c3c04, 0x04240c1c, 0x04241c3c, 0x04242424, 0x04242c3c, 0x04243c1c, 0x04243c2c, 0x042c040c,
0x042c043c, 0x042c1c14, 0x042c2c14, 0x04341c2c, 0x04343424, 0x043c0c04, 0x043c0c24, 0x043c0c34,
0x043c241c, 0x043c340c, 0x0c04040c, 0x0c04041c, 0x0c040c04, 0x0c040c14, 0x0c04140c, 0x0c04141c,
0x0c041c04, 0x0c041c14, 0x0c041c24, 0x0c04243c, 0x0c042c04, 0x0c0c0404, 0x0c0c0414, 0x0c0c0c0c,
0x04040404, 0x04040414, 0x04040424, 0x04040c0c, 0x04040c1c, 0x04040c3e, 0x04041404, 0x04041414,
0x04041c0c, 0x04042414, 0x04043e1c, 0x04043e2c, 0x040c040c, 0x040c041c, 0x040c0c04, 0x040c0c14,
0x040c140c, 0x040c142c, 0x040c1c04, 0x040c1c14, 0x040c240c, 0x040c2c24, 0x040c3e04, 0x04140404,
0x04140414, 0x04140424, 0x04140c0c, 0x04141404, 0x04141414, 0x04141c0c, 0x04141c1c, 0x04141c3e,
0x04142c0c, 0x04142c3e, 0x04143e2c, 0x041c040c, 0x041c043e, 0x041c0c04, 0x041c0c14, 0x041c142c,
0x041c3e04, 0x04240c1c, 0x04241c3e, 0x04242424, 0x04242c3e, 0x04243e1c, 0x04243e2c, 0x042c040c,
0x042c043e, 0x042c1c14, 0x042c2c14, 0x04341c2c, 0x04343424, 0x043e0c04, 0x043e0c24, 0x043e0c34,
0x043e241c, 0x043e340c, 0x0c04040c, 0x0c04041c, 0x0c040c04, 0x0c040c14, 0x0c04140c, 0x0c04141c,
0x0c041c04, 0x0c041c14, 0x0c041c24, 0x0c04243e, 0x0c042c04, 0x0c0c0404, 0x0c0c0414, 0x0c0c0c0c,
0x0c0c1404, 0x0c0c1414, 0x0c14040c, 0x0c14041c, 0x0c140c04, 0x0c140c14, 0x0c14140c, 0x0c141c04,
0x0c143c14, 0x0c1c0404, 0x0c1c0414, 0x0c1c1404, 0x0c1c1c0c, 0x0c1c2434, 0x0c1c3434, 0x0c24040c,
0x0c24042c, 0x0c242c04, 0x0c2c1404, 0x0c2c1424, 0x0c2c2434, 0x0c2c3c0c, 0x0c34042c, 0x0c3c1414,
0x0c3c2404, 0x14040404, 0x14040414, 0x14040c0c, 0x14040c1c, 0x14041404, 0x14041414, 0x14041434,
0x0c143e14, 0x0c1c0404, 0x0c1c0414, 0x0c1c1404, 0x0c1c1c0c, 0x0c1c2434, 0x0c1c3434, 0x0c24040c,
0x0c24042c, 0x0c242c04, 0x0c2c1404, 0x0c2c1424, 0x0c2c2434, 0x0c2c3e0c, 0x0c34042c, 0x0c3e1414,
0x0c3e2404, 0x14040404, 0x14040414, 0x14040c0c, 0x14040c1c, 0x14041404, 0x14041414, 0x14041434,
0x14041c0c, 0x14042414, 0x140c040c, 0x140c041c, 0x140c042c, 0x140c0c04, 0x140c0c14, 0x140c140c,
0x140c1c04, 0x140c341c, 0x140c343c, 0x140c3c04, 0x14140404, 0x14140414, 0x14140c0c, 0x14140c3c,
0x14141404, 0x14141414, 0x14141c3c, 0x14142404, 0x14142c2c, 0x141c040c, 0x141c0c04, 0x141c0c24,
0x141c3c04, 0x141c3c24, 0x14241c2c, 0x14242c1c, 0x142c041c, 0x142c143c, 0x142c240c, 0x142c3c24,
0x143c040c, 0x143c041c, 0x143c0c34, 0x143c242c, 0x1c04040c, 0x1c040c04, 0x1c040c14, 0x1c04140c,
0x1c04141c, 0x1c042c04, 0x1c04342c, 0x1c043c14, 0x1c0c0404, 0x1c0c0414, 0x1c0c1404, 0x1c0c1c0c,
0x1c0c2424, 0x1c0c2434, 0x1c14040c, 0x1c14041c, 0x1c140c04, 0x1c14142c, 0x1c142c14, 0x1c143c14,
0x1c1c0c0c, 0x1c1c1c1c, 0x1c241c04, 0x1c24243c, 0x1c243c14, 0x1c2c0404, 0x1c2c0434, 0x1c2c1414,
0x1c2c2c2c, 0x1c340c24, 0x1c341c34, 0x1c34341c, 0x1c3c1c1c, 0x1c3c3404, 0x24040424, 0x24040c3c,
0x24041c2c, 0x24041c3c, 0x24042c1c, 0x24042c3c, 0x240c3c24, 0x24141404, 0x24141c3c, 0x24142404,
0x24143404, 0x24143434, 0x241c043c, 0x241c242c, 0x24240424, 0x24242c0c, 0x24243424, 0x242c142c,
0x242c241c, 0x242c3c04, 0x243c042c, 0x243c0c04, 0x243c0c14, 0x243c1c04, 0x2c040c14, 0x2c04240c,
0x2c043c04, 0x2c0c0404, 0x2c0c0434, 0x2c0c1434, 0x2c0c2c2c, 0x2c140c24, 0x2c141c14, 0x2c143c14,
0x2c1c0414, 0x2c1c2c1c, 0x2c240c04, 0x2c24141c, 0x2c24143c, 0x2c243c14, 0x2c2c0414, 0x2c2c1c0c,
0x2c342c04, 0x2c3c1424, 0x2c3c2414, 0x34041424, 0x34042424, 0x34042434, 0x34043424, 0x340c140c,
0x340c340c, 0x34140c3c, 0x34143424, 0x341c1c04, 0x341c1c34, 0x34242424, 0x342c042c, 0x342c2c14,
0x34341c1c, 0x343c041c, 0x343c140c, 0x3c04041c, 0x3c04042c, 0x3c04043c, 0x3c040c04, 0x3c041c14,
0x3c042c14, 0x3c0c1434, 0x3c0c2404, 0x3c140c14, 0x3c14242c, 0x3c142c14, 0x3c1c0404, 0x3c1c0c2c,
0x3c1c1c1c, 0x3c1c3404, 0x3c24140c, 0x3c24240c, 0x3c2c0404, 0x3c2c0414, 0x3c2c1424, 0x3c341c04,
0x140c1c04, 0x140c341c, 0x140c343e, 0x140c3e04, 0x14140404, 0x14140414, 0x14140c0c, 0x14140c3e,
0x14141404, 0x14141414, 0x14141c3e, 0x14142404, 0x14142c2c, 0x141c040c, 0x141c0c04, 0x141c0c24,
0x141c3e04, 0x141c3e24, 0x14241c2c, 0x14242c1c, 0x142c041c, 0x142c143e, 0x142c240c, 0x142c3e24,
0x143e040c, 0x143e041c, 0x143e0c34, 0x143e242c, 0x1c04040c, 0x1c040c04, 0x1c040c14, 0x1c04140c,
0x1c04141c, 0x1c042c04, 0x1c04342c, 0x1c043e14, 0x1c0c0404, 0x1c0c0414, 0x1c0c1404, 0x1c0c1c0c,
0x1c0c2424, 0x1c0c2434, 0x1c14040c, 0x1c14041c, 0x1c140c04, 0x1c14142c, 0x1c142c14, 0x1c143e14,
0x1c1c0c0c, 0x1c1c1c1c, 0x1c241c04, 0x1c24243e, 0x1c243e14, 0x1c2c0404, 0x1c2c0434, 0x1c2c1414,
0x1c2c2c2c, 0x1c340c24, 0x1c341c34, 0x1c34341c, 0x1c3e1c1c, 0x1c3e3404, 0x24040424, 0x24040c3e,
0x24041c2c, 0x24041c3e, 0x24042c1c, 0x24042c3e, 0x240c3e24, 0x24141404, 0x24141c3e, 0x24142404,
0x24143404, 0x24143434, 0x241c043e, 0x241c242c, 0x24240424, 0x24242c0c, 0x24243424, 0x242c142c,
0x242c241c, 0x242c3e04, 0x243e042c, 0x243e0c04, 0x243e0c14, 0x243e1c04, 0x2c040c14, 0x2c04240c,
0x2c043e04, 0x2c0c0404, 0x2c0c0434, 0x2c0c1434, 0x2c0c2c2c, 0x2c140c24, 0x2c141c14, 0x2c143e14,
0x2c1c0414, 0x2c1c2c1c, 0x2c240c04, 0x2c24141c, 0x2c24143e, 0x2c243e14, 0x2c2c0414, 0x2c2c1c0c,
0x2c342c04, 0x2c3e1424, 0x2c3e2414, 0x34041424, 0x34042424, 0x34042434, 0x34043424, 0x340c140c,
0x340c340c, 0x34140c3e, 0x34143424, 0x341c1c04, 0x341c1c34, 0x34242424, 0x342c042c, 0x342c2c14,
0x34341c1c, 0x343e041c, 0x343e140c, 0x3e04041c, 0x3e04042c, 0x3e04043e, 0x3e040c04, 0x3e041c14,
0x3e042c14, 0x3e0c1434, 0x3e0c2404, 0x3e140c14, 0x3e14242c, 0x3e142c14, 0x3e1c0404, 0x3e1c0c2c,
0x3e1c1c1c, 0x3e1c3404, 0x3e24140c, 0x3e24240c, 0x3e2c0404, 0x3e2c0414, 0x3e2c1424, 0x3e341c04,
};

View File

@@ -49,6 +49,8 @@
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define UNUSED GGML_UNUSED
#define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
@@ -268,6 +270,17 @@ static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128
#endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
#if defined(__ARM_NEON)
#ifdef _MSC_VER
#define ggml_vld1q_u32(w,x,y,z) { ((w) + ((uint64_t)(x) << 32)), ((y) + ((uint64_t)(z) << 32)) }
#else
#define ggml_vld1q_u32(w,x,y,z) { (w), (x), (y), (z) }
#endif
#if !defined(__aarch64__)
// 64-bit compatibility
@@ -2381,19 +2394,20 @@ static void quantize_row_q4_K_impl(const float * restrict x, block_q4_K * restri
uint8_t L[QK_K];
uint8_t Laux[32];
uint8_t Ls[QK_K/32];
uint8_t Lm[QK_K/32];
float weights[32];
float mins[QK_K/32];
float scales[QK_K/32];
float sw[QK_K/32];
float mins[QK_K/32];
float scales[QK_K/32];
for (int i = 0; i < nb; i++) {
float sum_x2 = 0;
for (int l = 0; l < QK_K; ++l) sum_x2 += x[l] * x[l];
float sigma2 = sum_x2/QK_K;
float sigma2 = 2*sum_x2/QK_K;
float av_x = sqrtf(sigma2);
float max_scale = 0; // as we are deducting the min, scales are always positive
float max_min = 0;
for (int j = 0; j < QK_K/32; ++j) {
if (quant_weights) {
const float * qw = quant_weights + QK_K*i + 32*j;
@@ -2401,25 +2415,17 @@ static void quantize_row_q4_K_impl(const float * restrict x, block_q4_K * restri
} else {
for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
}
float sumw = 0;
for (int l = 0; l < 32; ++l) sumw += weights[l];
sw[j] = sumw;
scales[j] = make_qkx3_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
//scales[j] = make_qkx2_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -1.f, 0.1f, 20, false);
float scale = scales[j];
if (scale > max_scale) {
max_scale = scale;
}
float min = mins[j];
if (min > max_min) {
max_min = min;
}
}
float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
float d_block = make_qp_quants(QK_K/32, 63, scales, Ls, sw);
float m_block = make_qp_quants(QK_K/32, 63, mins, Lm, sw);
for (int j = 0; j < QK_K/32; ++j) {
uint8_t ls = nearest_int(inv_scale*scales[j]);
uint8_t lm = nearest_int(inv_min*mins[j]);
ls = MIN(63, ls);
lm = MIN(63, lm);
uint8_t ls = Ls[j];
uint8_t lm = Lm[j];
if (j < 4) {
y[i].scales[j] = ls;
y[i].scales[j+4] = lm;
@@ -2429,8 +2435,8 @@ static void quantize_row_q4_K_impl(const float * restrict x, block_q4_K * restri
y[i].scales[j-0] |= ((lm >> 4) << 6);
}
}
y[i].d = GGML_FP32_TO_FP16(max_scale/63.f);
y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f);
y[i].d = GGML_FP32_TO_FP16(d_block);
y[i].dmin = GGML_FP32_TO_FP16(m_block);
uint8_t sc, m;
for (int j = 0; j < QK_K/32; ++j) {
@@ -2688,20 +2694,21 @@ static void quantize_row_q5_K_impl(const float * restrict x, block_q5_K * restri
const int nb = n_per_row / QK_K;
uint8_t L[QK_K];
float mins[QK_K/32];
float scales[QK_K/32];
float weights[32];
uint8_t Laux[32];
uint8_t Ls[QK_K/32];
uint8_t Lm[QK_K/32];
float mins[QK_K/32];
float scales[QK_K/32];
float sw[QK_K/32];
float weights[32];
for (int i = 0; i < nb; i++) {
float sum_x2 = 0;
for (int l = 0; l < QK_K; ++l) sum_x2 += x[l] * x[l];
float sigma2 = sum_x2/QK_K;
float sigma2 = 2*sum_x2/QK_K;
float av_x = sqrtf(sigma2);
float max_scale = 0; // as we are deducting the min, scales are always positive
float max_min = 0;
for (int j = 0; j < QK_K/32; ++j) {
if (quant_weights) {
const float * qw = quant_weights + QK_K*i + 32*j;
@@ -2709,22 +2716,19 @@ static void quantize_row_q5_K_impl(const float * restrict x, block_q5_K * restri
} else {
for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
}
float sumw = 0;
for (int l = 0; l < 32; ++l) sumw += weights[l];
sw[j] = sumw;
scales[j] = make_qkx3_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
float scale = scales[j];
if (scale > max_scale) {
max_scale = scale;
}
float min = mins[j];
if (min > max_min) {
max_min = min;
}
}
float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
float d_block = make_qp_quants(QK_K/32, 63, scales, Ls, sw);
float m_block = make_qp_quants(QK_K/32, 63, mins, Lm, sw);
for (int j = 0; j < QK_K/32; ++j) {
uint8_t ls = nearest_int(inv_scale*scales[j]);
uint8_t lm = nearest_int(inv_min*mins[j]);
uint8_t ls = Ls[j];
uint8_t lm = Lm[j];
ls = MIN(63, ls);
lm = MIN(63, lm);
if (j < 4) {
@@ -2736,8 +2740,8 @@ static void quantize_row_q5_K_impl(const float * restrict x, block_q5_K * restri
y[i].scales[j-0] |= ((lm >> 4) << 6);
}
}
y[i].d = GGML_FP32_TO_FP16(max_scale/63.f);
y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f);
y[i].d = GGML_FP32_TO_FP16(d_block);
y[i].dmin = GGML_FP32_TO_FP16(m_block);
uint8_t sc, m;
for (int j = 0; j < QK_K/32; ++j) {
@@ -3675,15 +3679,92 @@ static inline __m128i get_scale_shuffle(int i) {
}
#endif
void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
const int qk = QK8_0;
const int nb = n / qk;
assert(n % qk == 0);
#if defined(__ARM_FEATURE_MATMUL_INT8)
assert((nrc == 2) || (nrc == 1));
#else
assert(nrc == 1);
#endif
UNUSED(nrc);
UNUSED(bx);
UNUSED(by);
UNUSED(bs);
const block_q4_0 * restrict x = vx;
const block_q8_0 * restrict y = vy;
#if defined(__ARM_FEATURE_MATMUL_INT8)
if (nrc == 2) {
const block_q4_0 * restrict vx0 = vx;
const block_q4_0 * restrict vx1 = vx + bx;
const block_q8_0 * restrict vy0 = vy;
const block_q8_0 * restrict vy1 = vy + by;
float32x4_t sumv0 = vdupq_n_f32(0.0f);
for (int i = 0; i < nb; i++) {
const block_q4_0 * restrict b_x0 = &vx0[i];
const block_q4_0 * restrict b_x1 = &vx1[i];
const block_q8_0 * restrict b_y0 = &vy0[i];
const block_q8_0 * restrict b_y1 = &vy1[i];
const uint8x16_t m4b = vdupq_n_u8(0x0F);
const int8x16_t s8b = vdupq_n_s8(0x8);
const uint8x16_t v0_0 = vld1q_u8(b_x0->qs);
const uint8x16_t v0_1 = vld1q_u8(b_x1->qs);
// 4-bit -> 8-bit
const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
// sub 8
const int8x16_t x0_l = vsubq_s8(v0_0l, s8b);
const int8x16_t x0_h = vsubq_s8(v0_0h, s8b);
const int8x16_t x1_l = vsubq_s8(v0_1l, s8b);
const int8x16_t x1_h = vsubq_s8(v0_1h, s8b);
// load y
const int8x16_t y0_l = vld1q_s8(b_y0->qs);
const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
const int8x16_t y1_l = vld1q_s8(b_y1->qs);
const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
float32x4_t scale = {GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)};
int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
l1, r1)), l2, r2)), l3, r3))), scale);
}
float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
vst1_f32(s, vget_low_f32(sumv2));
vst1_f32(s + bs, vget_high_f32(sumv2));
return;
}
#endif
#if defined(__ARM_NEON)
float32x4_t sumv0 = vdupq_n_f32(0.0f);
float32x4_t sumv1 = vdupq_n_f32(0.0f);
@@ -3738,15 +3819,15 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, const void * restrict vx,
/* Compute combined scale for the block */
const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
__m256i bx = bytes_from_nibbles_32(x[i].qs);
__m256i qx = bytes_from_nibbles_32(x[i].qs);
// Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
const __m256i off = _mm256_set1_epi8( 8 );
bx = _mm256_sub_epi8( bx, off );
qx = _mm256_sub_epi8( qx, off );
__m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
__m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
const __m256 q = mul_sum_i8_pairs_float(bx, by);
const __m256 q = mul_sum_i8_pairs_float(qx, qy);
/* Multiply q with scale and accumulate */
acc = _mm256_fmadd_ps( d, q, acc );
@@ -3965,15 +4046,93 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, const void * restrict vx,
#endif
}
void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
void ggml_vec_dot_q4_1_q8_1(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
const int qk = QK8_1;
const int nb = n / qk;
assert(n % qk == 0);
#if defined(__ARM_FEATURE_MATMUL_INT8)
assert((nrc == 2) || (nrc == 1));
#else
assert(nrc == 1);
#endif
UNUSED(nrc);
UNUSED(bx);
UNUSED(by);
UNUSED(bs);
const block_q4_1 * restrict x = vx;
const block_q8_1 * restrict y = vy;
#if defined(__ARM_FEATURE_MATMUL_INT8)
if (nrc == 2) {
const block_q4_1 * restrict vx0 = vx;
const block_q4_1 * restrict vx1 = vx + bx;
const block_q8_1 * restrict vy0 = vy;
const block_q8_1 * restrict vy1 = vy + by;
float32x4_t sumv0 = vdupq_n_f32(0.0f);
float32x4_t summs0 = vdupq_n_f32(0.0f);
for (int i = 0; i < nb; i++) {
const block_q4_1 * restrict b_x0 = &vx0[i];
const block_q4_1 * restrict b_x1 = &vx1[i];
const block_q8_1 * restrict b_y0 = &vy0[i];
const block_q8_1 * restrict b_y1 = &vy1[i];
float32x4_t summs_t = {GGML_FP16_TO_FP32(b_x0->m) * b_y0->s,
GGML_FP16_TO_FP32(b_x1->m) * b_y0->s,
GGML_FP16_TO_FP32(b_x0->m) * b_y1->s,
GGML_FP16_TO_FP32(b_x1->m) * b_y1->s};
summs0 += summs_t;
const uint8x16_t m4b = vdupq_n_u8(0x0F);
const uint8x16_t v0_0 = vld1q_u8(b_x0->qs);
const uint8x16_t v0_1 = vld1q_u8(b_x1->qs);
// 4-bit -> 8-bit
const int8x16_t x0_l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
const int8x16_t x0_h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
const int8x16_t x1_l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
const int8x16_t x1_h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
// load y
const int8x16_t y0_l = vld1q_s8(b_y0->qs);
const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
const int8x16_t y1_l = vld1q_s8(b_y1->qs);
const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
// mmla into int32x4_t
float32x4_t scale = {GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)};
int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
l1, r1)), l2, r2)), l3, r3))), scale);
}
float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
sumv2 = sumv2 + summs0;
vst1_f32(s, vget_low_f32(sumv2));
vst1_f32(s + bs, vget_high_f32(sumv2));
return;
}
#endif
// TODO: add WASM SIMD
#if defined(__ARM_NEON)
float32x4_t sumv0 = vdupq_n_f32(0.0f);
@@ -4037,10 +4196,10 @@ void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restri
const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
// Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
const __m256i bx = bytes_from_nibbles_32(x[i].qs);
const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
const __m256i qx = bytes_from_nibbles_32(x[i].qs);
const __m256i qy = _mm256_loadu_si256( (const __m256i *)y[i].qs );
const __m256 xy = mul_sum_us8_pairs_float(bx, by);
const __m256 xy = mul_sum_us8_pairs_float(qx, qy);
// Accumulate d0*d1*x*y
#if defined(__AVX2__)
@@ -4105,12 +4264,17 @@ void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restri
#endif
}
void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
void ggml_vec_dot_q5_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
const int qk = QK8_0;
const int nb = n / qk;
assert(n % qk == 0);
assert(qk == QK5_0);
assert(nrc == 1);
UNUSED(nrc);
UNUSED(bx);
UNUSED(by);
UNUSED(bs);
const block_q5_0 * restrict x = vx;
const block_q8_0 * restrict y = vy;
@@ -4254,14 +4418,14 @@ void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restri
/* Compute combined scale for the block */
const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
__m256i bx = bytes_from_nibbles_32(x[i].qs);
__m256i qx = bytes_from_nibbles_32(x[i].qs);
__m256i bxhi = bytes_from_bits_32(x[i].qh);
bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
bx = _mm256_or_si256(bx, bxhi);
qx = _mm256_or_si256(qx, bxhi);
__m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
__m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
const __m256 q = mul_sum_i8_pairs_float(bx, by);
const __m256 q = mul_sum_i8_pairs_float(qx, qy);
/* Multiply q with scale and accumulate */
acc = _mm256_fmadd_ps(d, q, acc);
@@ -4391,12 +4555,17 @@ void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restri
#endif
}
void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
void ggml_vec_dot_q5_1_q8_1(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
const int qk = QK8_1;
const int nb = n / qk;
assert(n % qk == 0);
assert(qk == QK5_1);
assert(nrc == 1);
UNUSED(nrc);
UNUSED(bx);
UNUSED(by);
UNUSED(bs);
const block_q5_1 * restrict x = vx;
const block_q8_1 * restrict y = vy;
@@ -4553,15 +4722,15 @@ void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restri
summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
__m256i bx = bytes_from_nibbles_32(x[i].qs);
__m256i qx = bytes_from_nibbles_32(x[i].qs);
__m256i bxhi = bytes_from_bits_32(x[i].qh);
bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
bx = _mm256_or_si256(bx, bxhi);
qx = _mm256_or_si256(qx, bxhi);
const __m256 dy = _mm256_set1_ps(y[i].d);
const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
const __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
const __m256 q = mul_sum_us8_pairs_float(bx, by);
const __m256 q = mul_sum_us8_pairs_float(qx, qy);
acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
}
@@ -4690,15 +4859,79 @@ void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restri
#endif
}
void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
void ggml_vec_dot_q8_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
const int qk = QK8_0;
const int nb = n / qk;
assert(n % qk == 0);
#if defined(__ARM_FEATURE_MATMUL_INT8)
assert((nrc == 2) || (nrc == 1));
#else
assert(nrc == 1);
#endif
UNUSED(nrc);
UNUSED(bx);
UNUSED(by);
UNUSED(bs);
const block_q8_0 * restrict x = vx;
const block_q8_0 * restrict y = vy;
#if defined(__ARM_FEATURE_MATMUL_INT8)
if (nrc == 2) {
const block_q8_0 * restrict vx0 = vx;
const block_q8_0 * restrict vx1 = vx + bx;
const block_q8_0 * restrict vy0 = vy;
const block_q8_0 * restrict vy1 = vy + by;
float32x4_t sumv0 = vdupq_n_f32(0.0f);
for (int i = 0; i < nb; i++) {
const block_q8_0 * restrict b_x0 = &vx0[i];
const block_q8_0 * restrict b_y0 = &vy0[i];
const block_q8_0 * restrict b_x1 = &vx1[i];
const block_q8_0 * restrict b_y1 = &vy1[i];
const int8x16_t x0_l = vld1q_s8(b_x0->qs);
const int8x16_t x0_h = vld1q_s8(b_x0->qs + 16);
const int8x16_t x1_l = vld1q_s8(b_x1->qs);
const int8x16_t x1_h = vld1q_s8(b_x1->qs + 16);
// load y
const int8x16_t y0_l = vld1q_s8(b_y0->qs);
const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
const int8x16_t y1_l = vld1q_s8(b_y1->qs);
const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
float32x4_t scale = {GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)};
int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
l1, r1)), l2, r2)), l3, r3))), scale);
}
float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
vst1_f32(s, vget_low_f32(sumv2));
vst1_f32(s + bs, vget_high_f32(sumv2));
return;
}
#endif
#if defined(__ARM_NEON)
float32x4_t sumv0 = vdupq_n_f32(0.0f);
float32x4_t sumv1 = vdupq_n_f32(0.0f);
@@ -4740,10 +4973,10 @@ void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restri
for (int i = 0; i < nb; ++i) {
// Compute combined scale for the block
const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
__m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
__m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
__m256i qx = _mm256_loadu_si256((const __m256i *)x[i].qs);
__m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
const __m256 q = mul_sum_i8_pairs_float(bx, by);
const __m256 q = mul_sum_i8_pairs_float(qx, qy);
// Multiply q with scale and accumulate
#if defined(__AVX2__)
@@ -4793,7 +5026,12 @@ void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restri
}
#if QK_K == 256
void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
assert(nrc == 1);
UNUSED(nrc);
UNUSED(bx);
UNUSED(by);
UNUSED(bs);
const block_q2_K * restrict x = vx;
const block_q8_K * restrict y = vy;
@@ -5169,7 +5407,12 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
#else
void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
assert(nrc == 1);
UNUSED(nrc);
UNUSED(bx);
UNUSED(by);
UNUSED(bs);
const block_q2_K * restrict x = vx;
const block_q8_K * restrict y = vy;
@@ -5427,8 +5670,13 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
#endif
#if QK_K == 256
void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
assert(n % QK_K == 0);
assert(nrc == 1);
UNUSED(nrc);
UNUSED(bx);
UNUSED(by);
UNUSED(bs);
const uint32_t kmask1 = 0x03030303;
const uint32_t kmask2 = 0x0f0f0f0f;
@@ -5947,8 +6195,13 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
#else
void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
assert(n % QK_K == 0);
assert(nrc == 1);
UNUSED(nrc);
UNUSED(bx);
UNUSED(by);
UNUSED(bs);
const block_q3_K * restrict x = vx;
const block_q8_K * restrict y = vy;
@@ -6290,8 +6543,13 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
#endif
#if QK_K == 256
void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
assert(n % QK_K == 0);
assert(nrc == 1);
UNUSED(nrc);
UNUSED(bx);
UNUSED(by);
UNUSED(bs);
const block_q4_K * restrict x = vx;
const block_q8_K * restrict y = vy;
@@ -6646,8 +6904,13 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
#endif
}
#else
void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
assert(n % QK_K == 0);
assert(nrc == 1);
UNUSED(nrc);
UNUSED(bx);
UNUSED(by);
UNUSED(bs);
const block_q4_K * restrict x = vx;
const block_q8_K * restrict y = vy;
@@ -6889,8 +7152,13 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
#endif
#if QK_K == 256
void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
assert(n % QK_K == 0);
assert(nrc == 1);
UNUSED(nrc);
UNUSED(bx);
UNUSED(by);
UNUSED(bs);
const block_q5_K * restrict x = vx;
const block_q8_K * restrict y = vy;
@@ -7309,8 +7577,13 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
#else
void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
assert(n % QK_K == 0);
assert(nrc == 1);
UNUSED(nrc);
UNUSED(bx);
UNUSED(by);
UNUSED(bs);
const block_q5_K * restrict x = vx;
const block_q8_K * restrict y = vy;
@@ -7575,8 +7848,13 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
#if QK_K == 256
void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
assert(n % QK_K == 0);
assert(nrc == 1);
UNUSED(nrc);
UNUSED(bx);
UNUSED(by);
UNUSED(bs);
const block_q6_K * restrict x = vx;
const block_q8_K * restrict y = vy;
@@ -8007,8 +8285,13 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
#else
void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
assert(n % QK_K == 0);
assert(nrc == 1);
UNUSED(nrc);
UNUSED(bx);
UNUSED(by);
UNUSED(bs);
const block_q6_K * restrict x = vx;
const block_q8_K * restrict y = vy;
@@ -8337,8 +8620,13 @@ static const int8_t keven_signs_q2xs[1024] = {
1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1,
};
void ggml_vec_dot_iq2_xxs_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
void ggml_vec_dot_iq2_xxs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
assert(n % QK_K == 0);
assert(nrc == 1);
UNUSED(nrc);
UNUSED(bx);
UNUSED(by);
UNUSED(bs);
const block_iq2_xxs * restrict x = vx;
const block_q8_K * restrict y = vy;
@@ -8460,8 +8748,13 @@ void ggml_vec_dot_iq2_xxs_q8_K(const int n, float * restrict s, const void * res
#endif
}
void ggml_vec_dot_iq2_xs_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
void ggml_vec_dot_iq2_xs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
assert(n % QK_K == 0);
assert(nrc == 1);
UNUSED(nrc);
UNUSED(bx);
UNUSED(by);
UNUSED(bs);
const block_iq2_xs * restrict x = vx;
const block_q8_K * restrict y = vy;
@@ -8680,8 +8973,13 @@ void ggml_vec_dot_iq2_xs_q8_K(const int n, float * restrict s, const void * rest
}
// TODO
void ggml_vec_dot_iq3_xxs_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
void ggml_vec_dot_iq3_xxs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
assert(n % QK_K == 0);
assert(nrc == 1);
UNUSED(nrc);
UNUSED(bx);
UNUSED(by);
UNUSED(bs);
const block_iq3_xxs * restrict x = vx;
const block_q8_K * restrict y = vy;
@@ -8707,10 +9005,10 @@ void ggml_vec_dot_iq3_xxs_q8_K(const int n, float * restrict s, const void * res
for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
memcpy(aux32, gas, 2*sizeof(uint32_t)); gas += 2*sizeof(uint32_t);
const uint32x4_t aux32x4_0 = {iq3xxs_grid[q3[ 0]], iq3xxs_grid[q3[ 1]], iq3xxs_grid[q3[ 2]], iq3xxs_grid[q3[ 3]]};
const uint32x4_t aux32x4_1 = {iq3xxs_grid[q3[ 4]], iq3xxs_grid[q3[ 5]], iq3xxs_grid[q3[ 6]], iq3xxs_grid[q3[ 7]]};
const uint32x4_t aux32x4_2 = {iq3xxs_grid[q3[ 8]], iq3xxs_grid[q3[ 9]], iq3xxs_grid[q3[10]], iq3xxs_grid[q3[11]]};
const uint32x4_t aux32x4_3 = {iq3xxs_grid[q3[12]], iq3xxs_grid[q3[13]], iq3xxs_grid[q3[14]], iq3xxs_grid[q3[15]]};
const uint32x4_t aux32x4_0 = ggml_vld1q_u32(iq3xxs_grid[q3[ 0]], iq3xxs_grid[q3[ 1]], iq3xxs_grid[q3[ 2]], iq3xxs_grid[q3[ 3]]);
const uint32x4_t aux32x4_1 = ggml_vld1q_u32(iq3xxs_grid[q3[ 4]], iq3xxs_grid[q3[ 5]], iq3xxs_grid[q3[ 6]], iq3xxs_grid[q3[ 7]]);
const uint32x4_t aux32x4_2 = ggml_vld1q_u32(iq3xxs_grid[q3[ 8]], iq3xxs_grid[q3[ 9]], iq3xxs_grid[q3[10]], iq3xxs_grid[q3[11]]);
const uint32x4_t aux32x4_3 = ggml_vld1q_u32(iq3xxs_grid[q3[12]], iq3xxs_grid[q3[13]], iq3xxs_grid[q3[14]], iq3xxs_grid[q3[15]]);
q3 += 16;
q3s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[0] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[0] >> 7) & 127))));
q3s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[0] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[0] >> 21) & 127))));
@@ -9048,8 +9346,6 @@ static void quantize_row_iq2_xxs_impl(const float * restrict x, void * restrict
int8_t L[32];
int8_t Laux[32];
float waux[32];
bool is_on_grid[4];
bool is_on_grid_aux[4];
uint8_t block_signs[4];
uint32_t q2[2*(QK_K/32)];
@@ -9099,10 +9395,11 @@ static void quantize_row_iq2_xxs_impl(const float * restrict x, void * restrict
memset(L, 0, 32);
continue;
}
float scale = make_qp_quants(32, kMaxQ+1, xval, (uint8_t*)L, weight);
float eff_max = scale*kMaxQ;
float best = 0;
float scale = max/(2*kMaxQ-1);
for (int is = -9; is <= 9; ++is) {
float id = (2*kMaxQ-1+is*0.1f)/max;
for (int is = -6; is <= 6; ++is) {
float id = (2*kMaxQ-1+is*0.1f)/eff_max;
float this_scale = 1/id;
for (int k = 0; k < 4; ++k) {
for (int i = 0; i < 8; ++i) {
@@ -9112,9 +9409,7 @@ static void quantize_row_iq2_xxs_impl(const float * restrict x, void * restrict
uint16_t u = 0;
for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i);
int grid_index = kmap_q2xs[u];
is_on_grid_aux[k] = true;
if (grid_index < 0) {
is_on_grid_aux[k] = false;
const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k);
}
@@ -9128,16 +9423,12 @@ static void quantize_row_iq2_xxs_impl(const float * restrict x, void * restrict
}
if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
scale = sumqx/sumq2; best = scale*sumqx;
for (int i = 0; i < 32; ++i) L[i] = Laux[i];
for (int k = 0; k < 4; ++k) is_on_grid[k] = is_on_grid_aux[k];
memcpy(L, Laux, 32);
}
}
int n_not_ongrid = 0;
for (int k = 0; k < 4; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
if (n_not_ongrid > 0 && scale > 0) {
if (scale > 0) {
float id = 1/scale;
for (int k = 0; k < 4; ++k) {
if (is_on_grid[k]) continue;
uint16_t u = 0;
for (int i = 0; i < 8; ++i) {
int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
@@ -9193,49 +9484,10 @@ static void quantize_row_iq2_xxs_impl(const float * restrict x, void * restrict
float d = max_scale/31;
y[ibl].d = GGML_FP32_TO_FP16(d);
float id = 1/d;
float sumqx = 0, sumq2 = 0;
for (int ib = 0; ib < QK_K/32; ++ib) {
int l = nearest_int(0.5f*(id*scales[ib]-1));
l = MAX(0, MIN(15, l));
q2[2*ib+1] |= ((uint32_t)l << 28);
const float * xb = xbl + 32*ib;
const float * qw = quant_weights + QK_K*ibl + 32*ib;
for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
const uint8_t * aux8 = (const uint8_t *)(q2 + 2*ib);
const float db = d * (1 + 2*l);
uint32_t u = 0;
for (int k = 0; k < 4; ++k) {
const int8_t * signs = keven_signs_q2xs + 8*((q2[2*ib+1] >> 7*k) & 127);
const float * xk = xb + 8*k;
const float * wk = weight + 8*k;
const uint8_t * grid = (const uint8_t *)(kgrid_q2xs + aux8[k]);
float best_mse = 0; int best_index = aux8[k];
for (int j = 0; j < 8; ++j) {
float diff = db * grid[j] * signs[j] - xk[j];
best_mse += wk[j] * diff * diff;
}
for (int idx = 0; idx < 256; ++idx) {
grid = (const uint8_t *)(kgrid_q2xs + idx);
float mse = 0;
for (int j = 0; j < 8; ++j) {
float diff = db * grid[j] * signs[j] - xk[j];
mse += wk[j] * diff * diff;
}
if (mse < best_mse) {
best_mse = mse; best_index = idx;
}
}
u |= (best_index << 8*k);
grid = (const uint8_t *)(kgrid_q2xs + best_index);
//grid = (const uint8_t *)(kgrid_q2xs + aux8[k]);
for (int j = 0; j < 8; ++j) {
float q = db * grid[j] * signs[j];
sumqx += wk[j] * q * xk[j];
sumq2 += wk[j] * q * q;
}
}
q2[2*ib] = u;
if (sumq2 > 0) y[ibl].d = GGML_FP32_TO_FP16(d*sumqx/sumq2);
}
memcpy(y[ibl].qs, q2, QK_K/4);
}

View File

@@ -191,70 +191,74 @@ typedef struct {
} block_iq3_xxs;
static_assert(sizeof(block_iq3_xxs) == sizeof(ggml_fp16_t) + 3*(QK_K/8), "wrong iq3_xxs block size/padding");
#ifdef __cplusplus
extern "C" {
#endif
// Quantization
void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k);
void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k);
void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k);
void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k);
void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k);
void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k);
void quantize_row_q4_0_reference(const float * GGML_RESTRICT x, block_q4_0 * GGML_RESTRICT y, int k);
void quantize_row_q4_1_reference(const float * GGML_RESTRICT x, block_q4_1 * GGML_RESTRICT y, int k);
void quantize_row_q5_0_reference(const float * GGML_RESTRICT x, block_q5_0 * GGML_RESTRICT y, int k);
void quantize_row_q5_1_reference(const float * GGML_RESTRICT x, block_q5_1 * GGML_RESTRICT y, int k);
void quantize_row_q8_0_reference(const float * GGML_RESTRICT x, block_q8_0 * GGML_RESTRICT y, int k);
void quantize_row_q8_1_reference(const float * GGML_RESTRICT x, block_q8_1 * GGML_RESTRICT y, int k);
void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict y, int k);
void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int k);
void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int k);
void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int k);
void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k);
void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k);
void quantize_row_iq3_xxs_reference(const float * restrict x, block_iq3_xxs * restrict y, int k);
void quantize_row_q2_K_reference(const float * GGML_RESTRICT x, block_q2_K * GGML_RESTRICT y, int k);
void quantize_row_q3_K_reference(const float * GGML_RESTRICT x, block_q3_K * GGML_RESTRICT y, int k);
void quantize_row_q4_K_reference(const float * GGML_RESTRICT x, block_q4_K * GGML_RESTRICT y, int k);
void quantize_row_q5_K_reference(const float * GGML_RESTRICT x, block_q5_K * GGML_RESTRICT y, int k);
void quantize_row_q6_K_reference(const float * GGML_RESTRICT x, block_q6_K * GGML_RESTRICT y, int k);
void quantize_row_q8_K_reference(const float * GGML_RESTRICT x, block_q8_K * GGML_RESTRICT y, int k);
void quantize_row_iq3_xxs_reference(const float * GGML_RESTRICT x, block_iq3_xxs * GGML_RESTRICT y, int k);
void quantize_row_q4_0(const float * restrict x, void * restrict y, int k);
void quantize_row_q4_1(const float * restrict x, void * restrict y, int k);
void quantize_row_q5_0(const float * restrict x, void * restrict y, int k);
void quantize_row_q5_1(const float * restrict x, void * restrict y, int k);
void quantize_row_q8_0(const float * restrict x, void * restrict y, int k);
void quantize_row_q8_1(const float * restrict x, void * restrict y, int k);
void quantize_row_q4_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
void quantize_row_q4_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
void quantize_row_q5_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
void quantize_row_q5_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
void quantize_row_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
void quantize_row_q2_K(const float * restrict x, void * restrict y, int k);
void quantize_row_q3_K(const float * restrict x, void * restrict y, int k);
void quantize_row_q4_K(const float * restrict x, void * restrict y, int k);
void quantize_row_q5_K(const float * restrict x, void * restrict y, int k);
void quantize_row_q6_K(const float * restrict x, void * restrict y, int k);
void quantize_row_q8_K(const float * restrict x, void * restrict y, int k);
void quantize_row_iq3_xxs(const float * restrict x, void * restrict y, int k);
void quantize_row_q2_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
void quantize_row_q3_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
void quantize_row_q4_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
void quantize_row_q5_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
void quantize_row_q6_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
void quantize_row_q8_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
void quantize_row_iq3_xxs(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
// Dequantization
void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k);
void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k);
void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k);
void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k);
void dequantize_row_q8_0(const block_q8_0 * restrict x, float * restrict y, int k);
//void dequantize_row_q8_1(const block_q8_1 * restrict x, float * restrict y, int k);
void dequantize_row_q4_0(const block_q4_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
void dequantize_row_q4_1(const block_q4_1 * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
void dequantize_row_q5_0(const block_q5_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
void dequantize_row_q5_1(const block_q5_1 * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
void dequantize_row_q8_0(const block_q8_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
//void dequantize_row_q8_1(const block_q8_1 * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int k);
void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k);
void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int k);
void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int k);
void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int k);
void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int k);
void dequantize_row_iq2_xxs(const block_iq2_xxs * restrict x, float * restrict y, int k);
void dequantize_row_iq2_xs (const block_iq2_xs * restrict x, float * restrict y, int k);
void dequantize_row_iq3_xxs(const block_iq3_xxs * restrict x, float * restrict y, int k);
void dequantize_row_q2_K(const block_q2_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
void dequantize_row_q3_K(const block_q3_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
void dequantize_row_q4_K(const block_q4_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
void dequantize_row_q5_K(const block_q5_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
void dequantize_row_q6_K(const block_q6_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
void dequantize_row_q8_K(const block_q8_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
void dequantize_row_iq2_xxs(const block_iq2_xxs * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
void dequantize_row_iq2_xs (const block_iq2_xs * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
void dequantize_row_iq3_xxs(const block_iq3_xxs * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
// Dot product
void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q4_1_q8_1(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q5_0_q8_0(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q5_1_q8_1(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q8_0_q8_0(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_iq2_xxs_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_iq2_xs_q8_K (int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_iq3_xxs_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_iq2_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_iq2_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_iq3_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
//
// Quantization utilizing an importance matrix (a.k.a. "Activation aWare Quantization")
@@ -276,3 +280,8 @@ void iq2xs_init_impl(int grid_size);
void iq2xs_free_impl(int grid_size);
void iq3xs_init_impl(int grid_size);
void iq3xs_free_impl(int grid_size);
#ifdef __cplusplus
}
#endif

View File

@@ -1,7 +1,14 @@
/*MIT license
Copyright (C) 2024 Intel Corporation
SPDX-License-Identifier: MIT
*/
//
// MIT license
// Copyright (C) 2024 Intel Corporation
// SPDX-License-Identifier: MIT
//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
#include <algorithm>
#include <assert.h>
@@ -330,6 +337,7 @@ namespace dpct
}
size_t get_global_mem_size() const { return _global_mem_size; }
size_t get_local_mem_size() const { return _local_mem_size; }
size_t get_max_mem_alloc_size() const { return _max_mem_alloc_size; }
/// Returns the maximum clock rate of device's global memory in kHz. If
/// compiler does not support this API then returns default value 3200000 kHz.
unsigned int get_memory_clock_rate() const { return _memory_clock_rate; }
@@ -391,6 +399,10 @@ namespace dpct
{
_local_mem_size = local_mem_size;
}
void set_max_mem_alloc_size(size_t max_mem_alloc_size)
{
_max_mem_alloc_size = max_mem_alloc_size;
}
void set_max_work_group_size(int max_work_group_size)
{
_max_work_group_size = max_work_group_size;
@@ -458,6 +470,7 @@ namespace dpct
int _max_register_size_per_work_group;
size_t _global_mem_size;
size_t _local_mem_size;
size_t _max_mem_alloc_size;
size_t _max_nd_range_size[3];
int _max_nd_range_size_i[3];
uint32_t _device_id;
@@ -509,6 +522,7 @@ namespace dpct
dev.get_info<sycl::info::device::max_work_group_size>());
prop.set_global_mem_size(dev.get_info<sycl::info::device::global_mem_size>());
prop.set_local_mem_size(dev.get_info<sycl::info::device::local_mem_size>());
prop.set_max_mem_alloc_size(dev.get_info<sycl::info::device::max_mem_alloc_size>());
#if (defined(SYCL_EXT_INTEL_DEVICE_INFO) && SYCL_EXT_INTEL_DEVICE_INFO >= 6)
if (dev.has(sycl::aspect::ext_intel_memory_clock_rate))
@@ -637,6 +651,11 @@ namespace dpct
return get_device_info().get_global_mem_size();
}
size_t get_max_mem_alloc_size() const
{
return get_device_info().get_max_mem_alloc_size();
}
/// Get the number of bytes of free and total memory on the SYCL device.
/// \param [out] free_memory The number of bytes of free memory on the SYCL device.
/// \param [out] total_memory The number of bytes of total memory on the SYCL device.
@@ -1347,6 +1366,7 @@ namespace dpct
}
#else
return q.memcpy(to_ptr, from_ptr, size, dep_events);
GGML_UNUSED(direction);
#endif // DPCT_USM_LEVEL_NONE
}
@@ -1648,7 +1668,7 @@ namespace dpct
using Ty = typename DataType<T>::T2;
Ty s_h;
if (get_pointer_attribute(q, s) == pointer_access_attribute::device_only)
detail::dpct_memcpy(q, (void *)&s_h, (void *)s, sizeof(T), device_to_host)
detail::dpct_memcpy(q, (void *)&s_h, (const void *)s, sizeof(T), device_to_host)
.wait();
else
s_h = *reinterpret_cast<const Ty *>(s);
@@ -1672,6 +1692,20 @@ namespace dpct
int ldb, const void *beta, void *c, int ldc)
{
#ifndef __INTEL_MKL__
GGML_UNUSED(q);
GGML_UNUSED(a_trans);
GGML_UNUSED(b_trans);
GGML_UNUSED(m);
GGML_UNUSED(n);
GGML_UNUSED(k);
GGML_UNUSED(alpha);
GGML_UNUSED(a);
GGML_UNUSED(lda);
GGML_UNUSED(b);
GGML_UNUSED(ldb);
GGML_UNUSED(beta);
GGML_UNUSED(c);
GGML_UNUSED(ldc);
throw std::runtime_error("The oneAPI Math Kernel Library (oneMKL) Interfaces "
"Project does not support this API.");
#else
@@ -1811,7 +1845,7 @@ namespace dpct
template <typename T>
T permute_sub_group_by_xor(sycl::sub_group g, T x, unsigned int mask,
int logical_sub_group_size = 32)
unsigned int logical_sub_group_size = 32)
{
unsigned int id = g.get_local_linear_id();
unsigned int start_index =
@@ -2141,6 +2175,7 @@ namespace dpct
}
#else
return q.memcpy(to_ptr, from_ptr, size, dep_events);
GGML_UNUSED(direction);
#endif // DPCT_USM_LEVEL_NONE
}
@@ -2921,7 +2956,6 @@ void ggml_sycl_set_main_device(int main_device);
void ggml_sycl_set_mul_mat_q(bool mul_mat_q);
void ggml_sycl_set_scratch_size(size_t scratch_size);
void ggml_sycl_free_scratch(void);
int ggml_sycl_get_device_count(void);
void ggml_sycl_get_device_description(int device, char * description, size_t description_size);
bool ggml_backend_is_sycl(ggml_backend_t backend);
int ggml_backend_sycl_get_device(ggml_backend_t backend);
@@ -3284,7 +3318,7 @@ void log_ggml_var_device(const char*name, float *src, size_t total_elements, boo
std::ofstream logfile;
logfile.open(filename);
// printf("local buf element %d\n", total_elements);
for(int i=0; i<total_elements; i++){
for(size_t i=0; i<total_elements; i++){
if((i+1)%20 ==0) logfile <<std::endl;
else logfile << local_buf[i] <<" ";
}
@@ -3378,6 +3412,7 @@ static __dpct_inline__ float warp_reduce_max(float x,
static __dpct_inline__ float op_repeat(const float a, const float b) {
return b;
GGML_UNUSED(a);
}
static __dpct_inline__ float op_add(const float a, const float b) {
@@ -7658,6 +7693,13 @@ static void cpy_1_f16_f16(const char * cxi, char * cdsti) {
*dsti = *xi;
}
static void cpy_1_f16_f32(const char * cxi, char * cdsti) {
const sycl::half *xi = (const sycl::half *)cxi;
float *dsti = (float *)cdsti;
*dsti = *xi;
}
static void cpy_1_i16_i16(const char * cxi, char * cdsti) {
const int16_t *xi = (const int16_t *)cxi;
int16_t *dsti = (int16_t *)cdsti;
@@ -7674,9 +7716,9 @@ static void cpy_1_i32_i32(const char * cxi, char * cdsti) {
template <cpy_kernel_t cpy_1>
static void cpy_f32_f16(const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
const int ne10, const int ne11, const int nb10, const int nb11, const int nb12,
const sycl::nd_item<3> &item_ct1) {
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
const int nb12, const int nb13, const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
@@ -7686,15 +7728,17 @@ static void cpy_f32_f16(const char * cx, char * cdst, const int ne,
// determine indices i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
// then combine those indices with the corresponding byte offsets to get the total offsets
const int i02 = i / (ne00*ne01);
const int i01 = (i - i02*ne01*ne00) / ne00;
const int i00 = i - i02*ne01*ne00 - i01*ne00;
const int x_offset = i00*nb00 + i01*nb01 + i02*nb02;
const int i03 = i/(ne00 * ne01 * ne02);
const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
const int i12 = i / (ne10*ne11);
const int i11 = (i - i12*ne10*ne11) / ne10;
const int i10 = i - i12*ne10*ne11 - i11*ne10;
const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12;
const int i13 = i/(ne10 * ne11 * ne12);
const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13 * nb13;
cpy_1(cx + x_offset, cdst + dst_offset);
}
@@ -7788,9 +7832,9 @@ static void cpy_blck_f32_q4_1(const char * cxi, char * cdsti) {
template <cpy_kernel_t cpy_blck, int qk>
static void cpy_f32_q(const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
const int ne10, const int ne11, const int nb10, const int nb11, const int nb12,
const sycl::nd_item<3> &item_ct1) {
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
const int nb12, const int nb13, const sycl::nd_item<3> &item_ct1) {
const int i = (item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2)) *
qk;
@@ -7799,15 +7843,17 @@ static void cpy_f32_q(const char * cx, char * cdst, const int ne,
return;
}
const int i02 = i / (ne00*ne01);
const int i01 = (i - i02*ne01*ne00) / ne00;
const int i00 = (i - i02*ne01*ne00 - i01*ne00);
const int x_offset = i00*nb00 + i01*nb01 + i02*nb02;
const int i03 = i/(ne00 * ne01 * ne02);
const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
const int i12 = i / (ne10*ne11);
const int i11 = (i - i12*ne10*ne11) / ne10;
const int i10 = (i - i12*ne10*ne11 - i11*ne10)/qk;
const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12;
const int i13 = i/(ne10 * ne11 * ne12);
const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
const int dst_offset = (i10/qk)*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
cpy_blck(cx + x_offset, cdst + dst_offset);
}
@@ -8212,7 +8258,8 @@ static void clamp_f32(const float * x, float * dst, const float min, const float
dst[i] = x[i] < min ? min : (x[i] > max ? max : x[i]);
}
static void im2col_f32_f16(const float *x, sycl::half *dst, int offset_delta,
template <typename T>
static void im2col_kernel(const float *x, T *dst, int offset_delta,
int IW, int IH, int OW, int KW, int KH,
int pelements, int CHW, int s0, int s1, int p0,
int p1, int d0, int d1,
@@ -10563,10 +10610,12 @@ static void ggml_mul_mat_vec_nc_f16_f32_sycl(
static void ggml_cpy_f32_f32_sycl(const char *cx, char *cdst, const int ne,
const int ne00, const int ne01,
const int nb00, const int nb01,
const int nb02, const int ne10,
const int ne11, const int nb10,
const int nb11, const int nb12,
const int ne02, const int nb00,
const int nb01, const int nb02,
const int nb03, const int ne10,
const int ne11, const int ne12,
const int nb10, const int nb11,
const int nb12, const int nb13,
dpct::queue_ptr stream) {
const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
@@ -10579,8 +10628,8 @@ static void ggml_cpy_f32_f32_sycl(const char *cx, char *cdst, const int ne,
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
[=](sycl::nd_item<3> item_ct1) {
cpy_f32_f16<cpy_1_f32_f32>(cx, cdst, ne, ne00, ne01, nb00, nb01,
nb02, ne10, ne11, nb10, nb11, nb12,
cpy_f32_f16<cpy_1_f32_f32>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
item_ct1);
});
}
@@ -10588,10 +10637,12 @@ static void ggml_cpy_f32_f32_sycl(const char *cx, char *cdst, const int ne,
static void ggml_cpy_f32_f16_sycl(const char *cx, char *cdst, const int ne,
const int ne00, const int ne01,
const int nb00, const int nb01,
const int nb02, const int ne10,
const int ne11, const int nb10,
const int nb11, const int nb12,
const int ne02, const int nb00,
const int nb01, const int nb02,
const int nb03, const int ne10,
const int ne11, const int ne12,
const int nb10, const int nb11,
const int nb12, const int nb13,
dpct::queue_ptr stream) {
const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
@@ -10604,8 +10655,8 @@ static void ggml_cpy_f32_f16_sycl(const char *cx, char *cdst, const int ne,
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
[=](sycl::nd_item<3> item_ct1) {
cpy_f32_f16<cpy_1_f32_f16>(cx, cdst, ne, ne00, ne01, nb00, nb01,
nb02, ne10, ne11, nb10, nb11, nb12,
cpy_f32_f16<cpy_1_f32_f16>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
item_ct1);
});
}
@@ -10613,10 +10664,12 @@ static void ggml_cpy_f32_f16_sycl(const char *cx, char *cdst, const int ne,
static void ggml_cpy_f32_q8_0_sycl(const char *cx, char *cdst, const int ne,
const int ne00, const int ne01,
const int nb00, const int nb01,
const int nb02, const int ne10,
const int ne11, const int nb10,
const int nb11, const int nb12,
const int ne02, const int nb00,
const int nb01, const int nb02,
const int nb03, const int ne10,
const int ne11, const int ne12,
const int nb10, const int nb11,
const int nb12, const int nb13,
dpct::queue_ptr stream) {
GGML_ASSERT(ne % QK8_0 == 0);
@@ -10625,17 +10678,20 @@ static void ggml_cpy_f32_q8_0_sycl(const char *cx, char *cdst, const int ne,
sycl::range<3>(1, 1, 1)),
[=](sycl::nd_item<3> item_ct1) {
cpy_f32_q<cpy_blck_f32_q8_0, QK8_0>(
cx, cdst, ne, ne00, ne01, nb00, nb01, nb02,
ne10, ne11, nb10, nb11, nb12, item_ct1);
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
item_ct1);
});
}
static void ggml_cpy_f32_q4_0_sycl(const char *cx, char *cdst, const int ne,
const int ne00, const int ne01,
const int nb00, const int nb01,
const int nb02, const int ne10,
const int ne11, const int nb10,
const int nb11, const int nb12,
const int ne02, const int nb00,
const int nb01, const int nb02,
const int nb03, const int ne10,
const int ne11, const int ne12,
const int nb10, const int nb11,
const int nb12, const int nb13,
dpct::queue_ptr stream) {
GGML_ASSERT(ne % QK4_0 == 0);
@@ -10644,17 +10700,20 @@ static void ggml_cpy_f32_q4_0_sycl(const char *cx, char *cdst, const int ne,
sycl::range<3>(1, 1, 1)),
[=](sycl::nd_item<3> item_ct1) {
cpy_f32_q<cpy_blck_f32_q4_0, QK4_0>(
cx, cdst, ne, ne00, ne01, nb00, nb01, nb02,
ne10, ne11, nb10, nb11, nb12, item_ct1);
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
item_ct1);
});
}
static void ggml_cpy_f32_q4_1_sycl(const char *cx, char *cdst, const int ne,
const int ne00, const int ne01,
const int nb00, const int nb01,
const int nb02, const int ne10,
const int ne11, const int nb10,
const int nb11, const int nb12,
const int ne02, const int nb00,
const int nb01, const int nb02,
const int nb03, const int ne10,
const int ne11, const int ne12,
const int nb10, const int nb11,
const int nb12, const int nb13,
dpct::queue_ptr stream) {
GGML_ASSERT(ne % QK4_1 == 0);
@@ -10663,17 +10722,20 @@ static void ggml_cpy_f32_q4_1_sycl(const char *cx, char *cdst, const int ne,
sycl::range<3>(1, 1, 1)),
[=](sycl::nd_item<3> item_ct1) {
cpy_f32_q<cpy_blck_f32_q4_1, QK4_1>(
cx, cdst, ne, ne00, ne01, nb00, nb01, nb02,
ne10, ne11, nb10, nb11, nb12, item_ct1);
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
item_ct1);
});
}
static void ggml_cpy_f16_f16_sycl(const char *cx, char *cdst, const int ne,
const int ne00, const int ne01,
const int nb00, const int nb01,
const int nb02, const int ne10,
const int ne11, const int nb10,
const int nb11, const int nb12,
const int ne02, const int nb00,
const int nb01, const int nb02,
const int nb03, const int ne10,
const int ne11, const int ne12,
const int nb10, const int nb11,
const int nb12, const int nb13,
dpct::queue_ptr stream) {
const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
@@ -10686,8 +10748,8 @@ static void ggml_cpy_f16_f16_sycl(const char *cx, char *cdst, const int ne,
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
[=](sycl::nd_item<3> item_ct1) {
cpy_f32_f16<cpy_1_f16_f16>(cx, cdst, ne, ne00, ne01, nb00, nb01,
nb02, ne10, ne11, nb10, nb11, nb12,
cpy_f32_f16<cpy_1_f16_f16>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
item_ct1);
});
}
@@ -10695,10 +10757,12 @@ static void ggml_cpy_f16_f16_sycl(const char *cx, char *cdst, const int ne,
static void ggml_cpy_i16_i16_sycl(const char *cx, char *cdst, const int ne,
const int ne00, const int ne01,
const int nb00, const int nb01,
const int nb02, const int ne10,
const int ne11, const int nb10,
const int nb11, const int nb12,
const int ne02, const int nb00,
const int nb01, const int nb02,
const int nb03, const int ne10,
const int ne11, const int ne12,
const int nb10, const int nb11,
const int nb12, const int nb13,
dpct::queue_ptr stream) {
const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
@@ -10711,8 +10775,8 @@ static void ggml_cpy_i16_i16_sycl(const char *cx, char *cdst, const int ne,
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
[=](sycl::nd_item<3> item_ct1) {
cpy_f32_f16<cpy_1_i16_i16>(cx, cdst, ne, ne00, ne01, nb00, nb01,
nb02, ne10, ne11, nb10, nb11, nb12,
cpy_f32_f16<cpy_1_i16_i16>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
item_ct1);
});
}
@@ -10720,10 +10784,12 @@ static void ggml_cpy_i16_i16_sycl(const char *cx, char *cdst, const int ne,
static void ggml_cpy_i32_i32_sycl(const char *cx, char *cdst, const int ne,
const int ne00, const int ne01,
const int nb00, const int nb01,
const int nb02, const int ne10,
const int ne11, const int nb10,
const int nb11, const int nb12,
const int ne02, const int nb00,
const int nb01, const int nb02,
const int nb03, const int ne10,
const int ne11, const int ne12,
const int nb10, const int nb11,
const int nb12, const int nb13,
dpct::queue_ptr stream) {
const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
@@ -10736,8 +10802,8 @@ static void ggml_cpy_i32_i32_sycl(const char *cx, char *cdst, const int ne,
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
[=](sycl::nd_item<3> item_ct1) {
cpy_f32_f16<cpy_1_i32_i32>(cx, cdst, ne, ne00, ne01, nb00, nb01,
nb02, ne10, ne11, nb10, nb11, nb12,
cpy_f32_f16<cpy_1_i32_i32>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
item_ct1);
});
}
@@ -10984,7 +11050,8 @@ static void soft_max_f32_sycl(const float *x, const float *y, float *dst,
});
}
static void im2col_f32_f16_sycl(const float *x, sycl::half *dst, int IW, int IH,
template <typename T>
static void im2col_sycl(const float *x, T *dst, int IW, int IH,
int OW, int OH, int KW, int KH, int IC,
int offset_delta, int s0, int s1, int p0,
int p1, int d0, int d1,
@@ -11001,7 +11068,7 @@ static void im2col_f32_f16_sycl(const float *x, sycl::half *dst, int IW, int IH,
sycl::range<3>(1, 1, SYCL_IM2COL_BLOCK_SIZE),
sycl::range<3>(1, 1, SYCL_IM2COL_BLOCK_SIZE)),
[=](sycl::nd_item<3> item_ct1) {
im2col_f32_f16(x, dst, offset_delta, IW, IH, OW, KW, KH,
im2col_kernel(x, dst, offset_delta, IW, IH, OW, KW, KH,
parallel_elements, (IC * KH * KW), s0, s1, p0,
p1, d0, d1, item_ct1);
});
@@ -11138,10 +11205,10 @@ DPCT1082:64: Migration of CUmemGenericAllocationHandle type is not supported.
// g_sycl_pool_handles[GGML_SYCL_MAX_DEVICES];
static dpct::device_ptr g_sycl_pool_addr[GGML_SYCL_MAX_DEVICES] = {0};
static size_t g_sycl_pool_used[GGML_SYCL_MAX_DEVICES] = {0};
static const size_t SYCL_POOL_VMM_MAX_SIZE = 1ull << 36; // 64 GB
static void *ggml_sycl_pool_malloc_vmm(size_t size, size_t *actual_size) try {
GGML_UNUSED(size);
GGML_UNUSED(actual_size);
return NULL;
}
catch (sycl::exception const &exc) {
@@ -11305,10 +11372,10 @@ void ggml_init_sycl() try {
GGML_ASSERT(g_all_sycl_device_count <= GGML_SYCL_MAX_DEVICES);
int64_t total_vram = 0;
#if defined(GGML_SYCL_FP16)
fprintf(stderr, "%s: GGML_SYCL_FP16: yes\n", __func__);
#if defined(GGML_SYCL_F16)
fprintf(stderr, "%s: GGML_SYCL_F16: yes\n", __func__);
#else
fprintf(stderr, "%s: GGML_SYCL_FP16: no\n", __func__);
fprintf(stderr, "%s: GGML_SYCL_F16: no\n", __func__);
#endif
@@ -11331,9 +11398,8 @@ void ggml_init_sycl() try {
if(id!=user_device_id) continue;
device_inx++;
int device_vmm = 0;
g_device_caps[device_inx].vmm = !!device_vmm;
g_device_caps[device_inx].vmm = 0;
g_device_caps[device_inx].device_id = id;
g_sycl_device_id2index[id].index = device_inx;
@@ -11341,18 +11407,12 @@ void ggml_init_sycl() try {
SYCL_CHECK(CHECK_TRY_ERROR(dpct::get_device_info(
prop, dpct::dev_mgr::instance().get_device(id))));
// fprintf(stderr,
// " Device %d: %s, compute capability %d.%d, VMM: %s\n", id,
// prop.get_name(), prop.get_major_version(),
// prop.get_minor_version(), device_vmm ? "yes" : "no");
g_tensor_split[device_inx] = total_vram;
total_vram += prop.get_global_mem_size();
g_device_caps[device_inx].cc =
100 * prop.get_major_version() + 10 * prop.get_minor_version();
// printf("g_device_caps[%d].cc=%d\n", device_inx, g_device_caps[device_inx].cc);
}
device_inx = -1;
for (int id = 0; id < g_all_sycl_device_count; ++id) {
@@ -11518,11 +11578,8 @@ static dpct::err0 ggml_sycl_cpy_tensor_2d(void *dst,
}
char * dst_ptr = (char *) dst;
const int64_t ne0 = src->ne[0];
const int64_t nb0 = src->nb[0];
const int64_t nb1 = src->nb[1];
const int64_t nb2 = src->nb[2];
const int64_t nb3 = src->nb[3];
GGML_TENSOR_LOCALS_1(int64_t, ne, src, ne);
GGML_TENSOR_LOCALS(int64_t, nb, src, nb);
const enum ggml_type type = src->type;
const int64_t ts = ggml_type_size(type);
const int64_t bs = ggml_blck_size(type);
@@ -12088,7 +12145,8 @@ inline void ggml_sycl_op_dequantize_mul_mat_vec(
const int64_t src1_ncols, const int64_t src1_padded_row_size,
const dpct::queue_ptr &stream) {
const int64_t ne00 = src0->ne[0];
GGML_TENSOR_BINARY_OP_LOCALS
const int64_t row_diff = row_high - row_low;
// on some GPUs it is faster to convert src1 to half and to use half precision intrinsics
@@ -12107,8 +12165,9 @@ inline void ggml_sycl_op_dequantize_mul_mat_vec(
} else {
src1_dfloat = src1_dfloat_a.alloc(ne00);
ggml_cpy_f32_f16_sycl((const char *)src1_ddf_i, (char *)src1_dfloat,
ne00, ne00, 1, sizeof(float), 0, 0, ne00, 1,
sizeof(sycl::half), 0, 0, stream);
ne00, ne00, ne01, ne02, nb00, nb01, nb02,
nb03, ne10, ne11, ne12, nb10, nb11, nb12,
nb13, stream);
}
}
#else
@@ -12188,7 +12247,6 @@ inline void ggml_sycl_op_mul_mat_sycl(
// ldc == nrows of the matrix that cuBLAS writes into
int ldc = dst->backend == GGML_BACKEND_GPU && device_id == g_main_device ? ne0 : row_diff;
const int compute_capability = g_device_caps[id].cc;
#ifdef GGML_SYCL_F16
bool use_fp16 = true; // TODO(Yu) SYCL capability check
#else
@@ -12365,9 +12423,7 @@ inline void ggml_sycl_op_alibi(const ggml_tensor *src0, const ggml_tensor *src1,
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const int64_t ne02 = src0->ne[2];
GGML_TENSOR_LOCALS_3(int64_t, ne0, src0, ne);
const int64_t nrows = ggml_nrows(src0);
//const int n_past = ((int32_t *) dst->op_params)[0];
@@ -12397,7 +12453,7 @@ inline void ggml_sycl_op_im2col(const ggml_tensor *src0,
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F16);
GGML_ASSERT( dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
@@ -12420,8 +12476,11 @@ inline void ggml_sycl_op_im2col(const ggml_tensor *src0,
const size_t delta_offset = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32
im2col_f32_f16_sycl(src1_dd, (sycl::half *)dst_dd, IW, IH, OW, OH, KW, KH,
IC, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
if (dst->type == GGML_TYPE_F16) {
im2col_sycl(src1_dd, (sycl::half *)dst_dd, IW, IH, OW, OH, KW, KH, IC, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
} else {
im2col_sycl(src1_dd, (float *)dst_dd, IW, IH, OW, OH, KW, KH, IC, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
}
(void) src0;
(void) src0_dd;
@@ -12673,7 +12732,7 @@ static void ggml_sycl_set_peer_access(const int n_tokens) {
continue;
}
int can_access_peer;
// int can_access_peer;
// SYCL_CHECK(syclDeviceCanAccessPeer(&can_access_peer, id, id_other));
// if (can_access_peer) {
// if (enable_peer_access) {
@@ -12694,16 +12753,9 @@ static void ggml_sycl_op_mul_mat(const ggml_tensor *src0,
ggml_sycl_op_mul_mat_t op,
const bool convert_src1_to_q8_1) try {
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const int64_t ne02 = src0->ne[2];
const int64_t ne03 = src0->ne[3];
const int64_t nrows0 = ggml_nrows(src0);
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
const int64_t ne10 = src1->ne[0];
const int64_t ne11 = src1->ne[1];
const int64_t ne12 = src1->ne[2];
const int64_t ne13 = src1->ne[3];
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
const int64_t nrows1 = ggml_nrows(src1);
GGML_ASSERT(ne03 == ne13);
@@ -13274,23 +13326,13 @@ static void ggml_sycl_mul_mat_mat_batched_sycl(const ggml_tensor *src0,
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
const int64_t ne00 = src0->ne[0]; GGML_UNUSED(ne00);
const int64_t ne01 = src0->ne[1];
const int64_t ne02 = src0->ne[2];
const int64_t ne03 = src0->ne[3];
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
const int64_t nb01 = src0->nb[1];
const int64_t nb02 = src0->nb[2]; GGML_UNUSED(nb02);
const int64_t nb03 = src0->nb[3]; GGML_UNUSED(nb03);
GGML_TENSOR_LOCALS(int64_t, nb0, src0, nb);
const int64_t ne10 = src1->ne[0];
const int64_t ne11 = src1->ne[1];
const int64_t ne12 = src1->ne[2];
const int64_t ne13 = src1->ne[3];
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
const int64_t nb11 = src1->nb[1];
const int64_t nb12 = src1->nb[2]; GGML_UNUSED(nb12);
const int64_t nb13 = src1->nb[3]; GGML_UNUSED(nb13);
GGML_TENSOR_LOCALS(int64_t, nb1, src1, nb);
const int64_t ne1 = ggml_nelements(src1);
const int64_t ne = ggml_nelements(dst);
@@ -13592,23 +13634,15 @@ static void ggml_sycl_mul_mat_id_sycl(ggml_tensor * dst) {
GGML_ASSERT(src00->backend != GGML_BACKEND_GPU_SPLIT);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
const int64_t ne00 = src00->ne[0]; GGML_UNUSED(ne00);
const int64_t ne01 = src00->ne[1];
const int64_t ne02 = src00->ne[2];
const int64_t ne03 = src00->ne[3];
GGML_TENSOR_LOCALS(int64_t, ne0, src00, ne);
//const int64_t nb01 = src00->nb[1];
const int64_t nb02 = src00->nb[2]; GGML_UNUSED(nb02);
const int64_t nb03 = src00->nb[3]; GGML_UNUSED(nb03);
GGML_TENSOR_LOCALS(int64_t, nb0, src00, nb);
const int64_t ne10 = src1->ne[0];
const int64_t ne11 = src1->ne[1];
const int64_t ne12 = src1->ne[2];
const int64_t ne13 = src1->ne[3];
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
GGML_TENSOR_LOCALS(int64_t, nb1, src1, nb);
//const int64_t nb11 = src1->nb[1];
const int64_t nb12 = src1->nb[2]; GGML_UNUSED(nb12);
const int64_t nb13 = src1->nb[3]; GGML_UNUSED(nb13);
const int64_t ne1 = ggml_nelements(src1);
const int64_t ne = ggml_nelements(dst);
@@ -13794,13 +13828,6 @@ static void ggml_sycl_mul_mat_id(const ggml_tensor *src0,
src1_row_extra.data_device[g_main_device_index] = src1_contiguous.get();
dst_row_extra.data_device[g_main_device_index] = dst_contiguous.get();
const dpct::memcpy_direction src1_kind =
src1->backend == GGML_BACKEND_CPU ? dpct::host_to_device
: dpct::device_to_device;
const dpct::memcpy_direction dst_kind = dst->backend == GGML_BACKEND_CPU
? dpct::device_to_host
: dpct::device_to_device;
for (int32_t row_id = 0; row_id < n_as; ++row_id) {
const struct ggml_tensor * src0_row = dst->src[row_id + 2];
@@ -13884,21 +13911,7 @@ static void ggml_sycl_cpy(const ggml_tensor *src0, const ggml_tensor *src1,
GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
GGML_ASSERT(src0->ne[3] == 1);
const int64_t nb00 = src0->nb[0];
const int64_t nb01 = src0->nb[1];
const int64_t nb02 = src0->nb[2];
const int64_t ne10 = src1->ne[0];
const int64_t ne11 = src1->ne[1];
GGML_ASSERT(src1->ne[3] == 1);
const int64_t nb10 = src1->nb[0];
const int64_t nb11 = src1->nb[1];
const int64_t nb12 = src1->nb[2];
GGML_TENSOR_BINARY_OP_LOCALS;
SYCL_CHECK(ggml_sycl_set_device(g_main_device));
dpct::queue_ptr main_stream = g_syclStreams[g_main_device_index][0];
@@ -13910,21 +13923,21 @@ static void ggml_sycl_cpy(const ggml_tensor *src0, const ggml_tensor *src1,
char * src1_ddc = (char *) src1_extra->data_device[g_main_device_index];
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
ggml_cpy_f32_f32_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream);
ggml_cpy_f32_f32_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
ggml_cpy_f32_f16_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream);
ggml_cpy_f32_f16_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) {
ggml_cpy_f32_q8_0_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream);
ggml_cpy_f32_q8_0_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) {
ggml_cpy_f32_q4_0_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream);
ggml_cpy_f32_q4_0_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) {
ggml_cpy_f32_q4_1_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream);
ggml_cpy_f32_q4_1_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
ggml_cpy_f16_f16_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream);
ggml_cpy_f16_f16_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_I16 && src1->type == GGML_TYPE_I16) {
ggml_cpy_i16_i16_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream);
ggml_cpy_i16_i16_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_I32 && src1->type == GGML_TYPE_I32) {
ggml_cpy_i32_i32_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream);
ggml_cpy_i32_i32_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else {
fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__,
ggml_type_name(src0->type), ggml_type_name(src1->type));
@@ -14486,6 +14499,37 @@ bool ggml_sycl_compute_forward(struct ggml_compute_params * params, struct ggml_
return true;
}
GGML_API GGML_CALL void ggml_sycl_get_gpu_list(int *id_list, int max_len) try {
int max_compute_units = -1;
for(int i=0;i<max_len;i++) id_list[i] = 0;
int device_count = dpct::dev_mgr::instance().device_count();
for(int id=0; id< device_count; id++){
sycl::device device = dpct::dev_mgr::instance().get_device(id);
if (!device.is_gpu()) continue;
dpct::device_info prop;
dpct::get_device_info(prop, device);
if(max_compute_units < prop.get_max_compute_units()) max_compute_units = prop.get_max_compute_units();
}
for(int id=0;id< device_count;id++){
sycl::device device = dpct::dev_mgr::instance().get_device(id);
if (!device.is_gpu()) continue;
dpct::device_info prop;
dpct::get_device_info(prop, device);
if(max_compute_units == prop.get_max_compute_units() && prop.get_major_version() == 1 ){
id_list[id] = 1;
}
}
return;
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
int ggml_sycl_get_device_count() try {
int device_count;
if (CHECK_TRY_ERROR(device_count =
@@ -14500,7 +14544,7 @@ catch (sycl::exception const &exc) {
std::exit(1);
}
void ggml_sycl_get_device_description(int device, char *description,
GGML_API GGML_CALL void ggml_sycl_get_device_description(int device, char *description,
size_t description_size) try {
dpct::device_info prop;
SYCL_CHECK(CHECK_TRY_ERROR(dpct::get_device_info(
@@ -14751,6 +14795,12 @@ static size_t ggml_backend_sycl_buffer_type_get_alignment(ggml_backend_buffer_ty
UNUSED(buft);
}
static size_t ggml_backend_sycl_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
return dpct::get_current_device().get_max_mem_alloc_size();
UNUSED(buft);
}
static size_t ggml_backend_sycl_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
int64_t row_low = 0;
int64_t row_high = ggml_nrows(tensor);
@@ -14781,7 +14831,7 @@ static ggml_backend_buffer_type_i ggml_backend_sycl_buffer_type_interface = {
/* .get_name = */ ggml_backend_sycl_buffer_type_name,
/* .alloc_buffer = */ ggml_backend_sycl_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_sycl_buffer_type_get_alignment,
/* .get_max_size = */ NULL, // TODO: return device.maxBufferLength
/* .get_max_size = */ ggml_backend_sycl_buffer_type_get_max_size,
/* .get_alloc_size = */ ggml_backend_sycl_buffer_type_get_alloc_size,
/* .supports_backend = */ ggml_backend_sycl_buffer_type_supports_backend,
/* .is_host = */ nullptr,

View File

@@ -1,7 +1,8 @@
/*MIT license
Copyright (C) 2024 Intel Corporation
SPDX-License-Identifier: MIT
*/
//
// MIT license
// Copyright (C) 2024 Intel Corporation
// SPDX-License-Identifier: MIT
//
#pragma once
@@ -21,7 +22,8 @@ GGML_API ggml_backend_t ggml_backend_sycl_init(int device);
GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(int device);
GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_host_buffer_type(void);
GGML_API void ggml_backend_sycl_print_sycl_devices(void);
GGML_API GGML_CALL void ggml_sycl_get_gpu_list(int *id_list, int max_len);
GGML_API GGML_CALL void ggml_sycl_get_device_description(int device, char *description, size_t description_size);
#ifdef __cplusplus
}
#endif

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -8,24 +8,29 @@ extern "C" {
#endif
#define GGML_VK_NAME "Vulkan"
#define GGML_VK_MAX_DEVICES 16
GGML_API void ggml_vk_init(void);
GGML_API void ggml_vk_init_cpu_assist(void);
GGML_API void ggml_vk_preallocate_buffers_graph(struct ggml_tensor * node);
GGML_API void ggml_vk_preallocate_buffers(void);
GGML_API void ggml_vk_build_graph(struct ggml_tensor * node, bool last_node);
GGML_API bool ggml_vk_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor);
GGML_API void ggml_vk_preallocate_buffers_graph_cpu_assist(struct ggml_tensor * node);
GGML_API void ggml_vk_preallocate_buffers_cpu_assist(void);
GGML_API void ggml_vk_build_graph_cpu_assist(struct ggml_tensor * node, bool last_node);
GGML_API bool ggml_vk_compute_forward_cpu_assist(struct ggml_compute_params * params, struct ggml_tensor * tensor);
#ifdef GGML_VULKAN_CHECK_RESULTS
void ggml_vk_check_results_1(struct ggml_compute_params * params, struct ggml_tensor * tensor);
void ggml_vk_check_results_1_cpu_assist(struct ggml_compute_params * params, struct ggml_tensor * tensor);
#endif
GGML_API void ggml_vk_graph_cleanup(void);
GGML_API void ggml_vk_graph_cleanup_cpu_assist(void);
GGML_API void ggml_vk_free_cpu_assist(void);
// backend API
GGML_API GGML_CALL ggml_backend_t ggml_backend_vk_init(void);
GGML_API GGML_CALL ggml_backend_t ggml_backend_vk_init(size_t dev_num);
GGML_API GGML_CALL bool ggml_backend_is_vk(ggml_backend_t backend);
GGML_API GGML_CALL int ggml_backend_vk_get_device_count(void);
GGML_API GGML_CALL void ggml_backend_vk_get_device_description(int device, char * description, size_t description_size);
GGML_API GGML_CALL void ggml_backend_vk_get_device_memory(int device, size_t * free, size_t * total);
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_buffer_type(void);
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_buffer_type(size_t dev_num);
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_host_buffer_type(void);

511
ggml.c

File diff suppressed because it is too large Load Diff

36
ggml.h
View File

@@ -505,11 +505,17 @@ extern "C" {
enum ggml_log_level {
GGML_LOG_LEVEL_ERROR = 2,
GGML_LOG_LEVEL_WARN = 3,
GGML_LOG_LEVEL_INFO = 4,
GGML_LOG_LEVEL_WARN = 3,
GGML_LOG_LEVEL_INFO = 4,
GGML_LOG_LEVEL_DEBUG = 5
};
enum ggml_tensor_flag {
GGML_TENSOR_FLAG_INPUT = 1,
GGML_TENSOR_FLAG_OUTPUT = 2,
GGML_TENSOR_FLAG_PARAM = 4,
};
// ggml object
struct ggml_object {
size_t offs;
@@ -543,7 +549,7 @@ extern "C" {
// op params - allocated as int32_t for alignment
int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
bool is_param;
int32_t flags;
struct ggml_tensor * grad;
struct ggml_tensor * src[GGML_MAX_SRC];
@@ -567,6 +573,11 @@ extern "C" {
static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
// Abort callback
// If not NULL, called before ggml computation
// If it returns true, the computation is aborted
typedef bool (*ggml_abort_callback)(void * data);
// the compute plan that needs to be prepared for ggml_graph_compute()
// since https://github.com/ggerganov/ggml/issues/287
struct ggml_cplan {
@@ -576,8 +587,8 @@ extern "C" {
int n_threads;
// abort ggml_graph_compute when true
bool (*abort_callback)(void * data);
void * abort_callback_data;
ggml_abort_callback abort_callback;
void * abort_callback_data;
};
enum ggml_cgraph_eval_order {
@@ -1495,7 +1506,8 @@ extern "C" {
int p1,
int d0,
int d1,
bool is_2D);
bool is_2D,
enum ggml_type dst_type);
GGML_API struct ggml_tensor * ggml_conv_depthwise_2d(
struct ggml_context * ctx,
@@ -2086,6 +2098,12 @@ extern "C" {
ggml_opt_callback callback,
void * callback_data);
//
// tensor flags
//
GGML_API void ggml_set_input(struct ggml_tensor * tensor);
GGML_API void ggml_set_output(struct ggml_tensor * tensor);
//
// quantization
//
@@ -2266,11 +2284,13 @@ extern "C" {
GGML_API int ggml_cpu_has_cublas (void);
GGML_API int ggml_cpu_has_clblast (void);
GGML_API int ggml_cpu_has_vulkan (void);
GGML_API int ggml_cpu_has_kompute (void);
GGML_API int ggml_cpu_has_gpublas (void);
GGML_API int ggml_cpu_has_sse3 (void);
GGML_API int ggml_cpu_has_ssse3 (void);
GGML_API int ggml_cpu_has_sycl (void);
GGML_API int ggml_cpu_has_vsx (void);
GGML_API int ggml_cpu_has_matmul_int8(void);
//
// Internal types and functions exposed for tests and benchmarks
@@ -2284,7 +2304,8 @@ extern "C" {
#endif
typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
typedef void (*ggml_vec_dot_t) (const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y);
typedef void (*ggml_vec_dot_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x, size_t bx,
const void * GGML_RESTRICT y, size_t by, int nrc);
typedef struct {
const char * type_name;
@@ -2296,6 +2317,7 @@ extern "C" {
ggml_from_float_t from_float_reference;
ggml_vec_dot_t vec_dot;
enum ggml_type vec_dot_type;
int64_t nrows; // number of rows to process simultaneously;
} ggml_type_traits_t;
GGML_API ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type);

View File

@@ -19,8 +19,8 @@ shader_int8_ext = """
# Type-specific defines
shader_f16_defines = """
#define QUANT_K 32
#define QUANT_R 2
#define QUANT_K 1
#define QUANT_R 1
#define A_TYPE float16_t
"""
@@ -157,19 +157,10 @@ struct block_q6_K
# Dequant functions
shader_f16_dequant_func = """
#define DEQUANT_FUNC f16vec2 v = f16vec2(data_a[ib + 0], data_a[ib + 1]);
"""
shader_f16_dequant_func_compat = """
#define DEQUANT_FUNC vec2 v = vec2(data_a[ib + 0], data_a[ib + 1]);
"""
shader_q4_0_dequant_func = """
#define DEQUANT_FUNC const float16_t d = data_a[ib].d; \
const uint8_t vui = data_a[ib].qs[iqs]; \
f16vec2 v = f16vec2(vui & 0xF, vui >> 4); \
v = (v - 8.0hf)*d;
"""
shader_q4_0_dequant_func_compat = """
#define DEQUANT_FUNC const float d = float(data_a[ib].d); \
const uint vui = uint(data_a[ib].qs[iqs]); \
vec2 v = vec2(vui & 0xF, vui >> 4); \
@@ -177,13 +168,6 @@ v = (v - 8.0f)*d;
"""
shader_q4_1_dequant_func = """
#define DEQUANT_FUNC const float16_t d = data_a[ib].d; \
const float16_t m = data_a[ib].m; \
const uint8_t vui = data_a[ib].qs[iqs]; \
f16vec2 v = f16vec2(vui & 0xF, vui >> 4); \
v = v*d + m;
"""
shader_q4_1_dequant_func_compat = """
#define DEQUANT_FUNC const float d = float(data_a[ib].d); \
const float m = float(data_a[ib].m); \
const uint vui = uint(data_a[ib].qs[iqs]); \
@@ -192,14 +176,6 @@ v = v*d + m;
"""
shader_q5_0_dequant_func = """
#define DEQUANT_FUNC const float16_t d = data_a[ib].d; \
const uint uint_qh = uint(data_a[ib].qh[1]) << 16 | data_a[ib].qh[0]; \
const ivec2 qh = ivec2(((uint_qh >> iqs) << 4) & 0x10, (uint_qh >> (iqs + 12)) & 0x10); \
const uint8_t vui = data_a[ib].qs[iqs]; \
f16vec2 v = f16vec2((vui & 0xF) | qh.x, (vui >> 4) | qh.y); \
v = (v - 16.0hf) * d;
"""
shader_q5_0_dequant_func_compat = """
#define DEQUANT_FUNC const float d = float(data_a[ib].d); \
const uint uint_qh = uint(data_a[ib].qh[1]) << 16 | data_a[ib].qh[0]; \
const ivec2 qh = ivec2(((uint_qh >> iqs) << 4) & 0x10, (uint_qh >> (iqs + 12)) & 0x10); \
@@ -209,14 +185,6 @@ v = (v - 16.0f) * d;
"""
shader_q5_1_dequant_func = """
#define DEQUANT_FUNC const float16_t d = data_a[ib].d; \
const float16_t m = data_a[ib].m; \
const ivec2 qh = ivec2(((data_a[ib].qh >> iqs) << 4) & 0x10, (data_a[ib].qh >> (iqs + 12)) & 0x10); \
const uint8_t vui = data_a[ib].qs[iqs]; \
f16vec2 v = f16vec2((vui & 0xF) | qh.x, (vui >> 4) | qh.y); \
v = v*d + m;
"""
shader_q5_1_dequant_func_compat = """
#define DEQUANT_FUNC const float d = float(data_a[ib].d); \
const float m = float(data_a[ib].m); \
const ivec2 qh = ivec2(((data_a[ib].qh >> iqs) << 4) & 0x10, (data_a[ib].qh >> (iqs + 12)) & 0x10); \
@@ -226,11 +194,6 @@ v = v*d + m;
"""
shader_q8_0_dequant_func = """
#define DEQUANT_FUNC const float16_t d = data_a[ib].d; \
f16vec2 v = f16vec2(data_a[ib].qs[iqs], data_a[ib].qs[iqs + 1]); \
v = v * d;
"""
shader_q8_0_dequant_func_compat = """
#define DEQUANT_FUNC const float d = float(data_a[ib].d); \
vec2 v = vec2(int(data_a[ib].qs[iqs]), int(data_a[ib].qs[iqs + 1])); \
v = v * d;
@@ -1689,7 +1652,8 @@ void main() {
}
const float xi = float(data_a[i]);
data_d[i] = D_TYPE(0.5f*xi*(1.0f + tanh(SQRT_2_OVER_PI*xi*(1.0f + GELU_COEF_A*xi*xi))));
const float val = SQRT_2_OVER_PI*xi*(1.0f + GELU_COEF_A*xi*xi);
data_d[i] = D_TYPE(0.5f*xi*(2.0f - 2.0f / (exp(2 * val) + 1)));
}
"""
@@ -2103,13 +2067,15 @@ type_names = {
K_QUANTS_PER_ITERATION = 2
ASYNCIO_CONCURRENCY = 64
output_dir = gettempdir()
lock = asyncio.Lock()
shader_fnames = []
async def string_to_spv(name, code, defines, fp16):
async def string_to_spv(name, code, defines, fp16=True):
f = NamedTemporaryFile(mode="w", delete=False)
f.write(code)
f.flush()
@@ -2199,64 +2165,6 @@ async def main():
tasks.append(string_to_spv("matmul_f16_f32_aligned_m", "".join(stream), {"LOAD_VEC": load_vec, "A_TYPE": vec_type_f16, "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
tasks.append(string_to_spv("matmul_f16_f32_aligned_s", "".join(stream), {"LOAD_VEC": load_vec, "A_TYPE": vec_type_f16, "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
# Build dequant shaders
tasks.append(string_to_spv("f32_to_f16", f32_to_f16_src, {}, fp16))
for i in range(0, VK_NUM_TYPES):
stream.clear()
stream.extend((dequant_head, shader_int8_ext, shader_float_type))
if i == GGML_TYPE_F16:
stream.extend((shader_f16_defines, shader_f16_dequant_func_compat if not fp16 else shader_f16_dequant_func, dequant_body))
elif i == GGML_TYPE_Q4_0:
stream.extend((shader_q4_0_defines, shader_q4_0_dequant_func_compat if not fp16 else shader_q4_0_dequant_func, dequant_body))
elif i == GGML_TYPE_Q4_1:
stream.extend((shader_q4_1_defines, shader_q4_1_dequant_func_compat if not fp16 else shader_q4_1_dequant_func, dequant_body))
elif i == GGML_TYPE_Q5_0:
stream.extend((shader_q5_0_defines, shader_q5_0_dequant_func_compat if not fp16 else shader_q5_0_dequant_func, dequant_body))
elif i == GGML_TYPE_Q5_1:
stream.extend((shader_q5_1_defines, shader_q5_1_dequant_func_compat if not fp16 else shader_q5_1_dequant_func, dequant_body))
elif i == GGML_TYPE_Q8_0:
stream.extend((shader_q8_0_defines, shader_q8_0_dequant_func_compat if not fp16 else shader_q8_0_dequant_func, dequant_body))
elif i == GGML_TYPE_Q2_K:
stream.extend((shader_q2_K_defines, dequant_q2_K_body))
elif i == GGML_TYPE_Q3_K:
stream.extend((shader_q3_K_defines, dequant_q3_K_body))
elif i == GGML_TYPE_Q4_K:
stream.extend((shader_q4_K_defines, dequant_q4_K_body))
elif i == GGML_TYPE_Q5_K:
stream.extend((shader_q5_K_defines, dequant_q5_K_body))
elif i == GGML_TYPE_Q6_K:
stream.extend((shader_q6_K_defines, dequant_q6_K_body))
else:
continue
tasks.append(string_to_spv(f"dequant_{type_names[i]}", "".join(stream), {"D_TYPE": "float16_t"}, fp16))
# get_rows
for i in range(0, VK_NUM_TYPES):
stream.clear()
stream.extend((generic_head, shader_int8_ext, shader_float_type))
if i == GGML_TYPE_F16:
stream.extend((shader_f16_defines, shader_f16_dequant_func_compat if not fp16 else shader_f16_dequant_func, get_rows_body))
elif i == GGML_TYPE_Q4_0:
stream.extend((shader_q4_0_defines, shader_q4_0_dequant_func_compat if not fp16 else shader_q4_0_dequant_func, get_rows_body))
elif i == GGML_TYPE_Q4_1:
stream.extend((shader_q4_1_defines, shader_q4_1_dequant_func_compat if not fp16 else shader_q4_1_dequant_func, get_rows_body))
elif i == GGML_TYPE_Q5_0:
stream.extend((shader_q5_0_defines, shader_q5_0_dequant_func_compat if not fp16 else shader_q5_0_dequant_func, get_rows_body))
elif i == GGML_TYPE_Q5_1:
stream.extend((shader_q5_1_defines, shader_q5_1_dequant_func_compat if not fp16 else shader_q5_1_dequant_func, get_rows_body))
elif i == GGML_TYPE_Q8_0:
stream.extend((shader_q8_0_defines, shader_q8_0_dequant_func_compat if not fp16 else shader_q8_0_dequant_func, get_rows_body))
else:
continue
tasks.append(string_to_spv(f"get_rows_{type_names[i]}", "".join(stream), {"B_TYPE": "float", "D_TYPE": "float16_t"}, fp16))
tasks.append(string_to_spv(f"get_rows_{type_names[i]}_f32", "".join(stream), {"B_TYPE": "float", "D_TYPE": "float"}, fp16))
# Shaders where precision is needed, so no fp16 version
# mul mat vec
@@ -2265,17 +2173,17 @@ async def main():
stream.extend((mul_mat_vec_head, shader_int8_ext, shader_f32))
if i == GGML_TYPE_F16:
stream.extend((shader_f16_defines, shader_f16_dequant_func_compat, mul_mat_vec_body))
stream.extend((shader_f16_defines, shader_f16_dequant_func, mul_mat_vec_body))
elif i == GGML_TYPE_Q4_0:
stream.extend((shader_q4_0_defines, shader_q4_0_dequant_func_compat, mul_mat_vec_body))
stream.extend((shader_q4_0_defines, shader_q4_0_dequant_func, mul_mat_vec_body))
elif i == GGML_TYPE_Q4_1:
stream.extend((shader_q4_1_defines, shader_q4_1_dequant_func_compat, mul_mat_vec_body))
stream.extend((shader_q4_1_defines, shader_q4_1_dequant_func, mul_mat_vec_body))
elif i == GGML_TYPE_Q5_0:
stream.extend((shader_q5_0_defines, shader_q5_0_dequant_func_compat, mul_mat_vec_body))
stream.extend((shader_q5_0_defines, shader_q5_0_dequant_func, mul_mat_vec_body))
elif i == GGML_TYPE_Q5_1:
stream.extend((shader_q5_1_defines, shader_q5_1_dequant_func_compat, mul_mat_vec_body))
stream.extend((shader_q5_1_defines, shader_q5_1_dequant_func, mul_mat_vec_body))
elif i == GGML_TYPE_Q8_0:
stream.extend((shader_q8_0_defines, shader_q8_0_dequant_func_compat, mul_mat_vec_body))
stream.extend((shader_q8_0_defines, shader_q8_0_dequant_func, mul_mat_vec_body))
elif i == GGML_TYPE_Q2_K:
stream.extend((shader_q2_K_defines, mul_mat_vec_q2_K_body))
elif i == GGML_TYPE_Q3_K:
@@ -2289,45 +2197,110 @@ async def main():
else:
continue
tasks.append(string_to_spv(f"mul_mat_vec_{type_names[i]}_f32", "".join(stream), {"B_TYPE": "float", "D_TYPE": "float", "K_QUANTS_PER_ITERATION": K_QUANTS_PER_ITERATION}, fp16))
tasks.append(string_to_spv(f"mul_mat_vec_{type_names[i]}_f32", "".join(stream), {"B_TYPE": "float", "D_TYPE": "float", "K_QUANTS_PER_ITERATION": K_QUANTS_PER_ITERATION}))
tasks.append(string_to_spv("mul_mat_vec_p021_f16_f32", mul_mat_p021_src, {"A_TYPE": "float16_t", "B_TYPE": "float", "D_TYPE": "float"}, True))
tasks.append(string_to_spv("mul_mat_vec_nc_f16_f32", mul_mat_nc_src, {"A_TYPE": "float16_t", "B_TYPE": "float", "D_TYPE": "float"}, True))
# Dequant shaders
for i in range(0, VK_NUM_TYPES):
stream.clear()
stream.extend((dequant_head, shader_int8_ext, shader_f32))
if i == GGML_TYPE_F16:
stream.extend((shader_f16_defines, shader_f16_dequant_func, dequant_body))
elif i == GGML_TYPE_Q4_0:
stream.extend((shader_q4_0_defines, shader_q4_0_dequant_func, dequant_body))
elif i == GGML_TYPE_Q4_1:
stream.extend((shader_q4_1_defines, shader_q4_1_dequant_func, dequant_body))
elif i == GGML_TYPE_Q5_0:
stream.extend((shader_q5_0_defines, shader_q5_0_dequant_func, dequant_body))
elif i == GGML_TYPE_Q5_1:
stream.extend((shader_q5_1_defines, shader_q5_1_dequant_func, dequant_body))
elif i == GGML_TYPE_Q8_0:
stream.extend((shader_q8_0_defines, shader_q8_0_dequant_func, dequant_body))
elif i == GGML_TYPE_Q2_K:
stream.extend((shader_q2_K_defines, dequant_q2_K_body))
elif i == GGML_TYPE_Q3_K:
stream.extend((shader_q3_K_defines, dequant_q3_K_body))
elif i == GGML_TYPE_Q4_K:
stream.extend((shader_q4_K_defines, dequant_q4_K_body))
elif i == GGML_TYPE_Q5_K:
stream.extend((shader_q5_K_defines, dequant_q5_K_body))
elif i == GGML_TYPE_Q6_K:
stream.extend((shader_q6_K_defines, dequant_q6_K_body))
else:
continue
tasks.append(string_to_spv(f"dequant_{type_names[i]}", "".join(stream), {"D_TYPE": "float16_t"}))
tasks.append(string_to_spv("f32_to_f16", f32_to_f16_src, {}))
# get_rows
for i in range(0, VK_NUM_TYPES):
stream.clear()
stream.extend((generic_head, shader_int8_ext, shader_f32))
if i == GGML_TYPE_F16:
stream.extend((shader_f16_defines, shader_f16_dequant_func, get_rows_body))
elif i == GGML_TYPE_Q4_0:
stream.extend((shader_q4_0_defines, shader_q4_0_dequant_func, get_rows_body))
elif i == GGML_TYPE_Q4_1:
stream.extend((shader_q4_1_defines, shader_q4_1_dequant_func, get_rows_body))
elif i == GGML_TYPE_Q5_0:
stream.extend((shader_q5_0_defines, shader_q5_0_dequant_func, get_rows_body))
elif i == GGML_TYPE_Q5_1:
stream.extend((shader_q5_1_defines, shader_q5_1_dequant_func, get_rows_body))
elif i == GGML_TYPE_Q8_0:
stream.extend((shader_q8_0_defines, shader_q8_0_dequant_func, get_rows_body))
else:
continue
tasks.append(string_to_spv(f"get_rows_{type_names[i]}", "".join(stream), {"B_TYPE": "float", "D_TYPE": "float16_t"}))
tasks.append(string_to_spv(f"get_rows_{type_names[i]}_f32", "".join(stream), {"B_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("mul_mat_vec_p021_f16_f32", mul_mat_p021_src, {"A_TYPE": "float16_t", "B_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("mul_mat_vec_nc_f16_f32", mul_mat_nc_src, {"A_TYPE": "float16_t", "B_TYPE": "float", "D_TYPE": "float"}))
# Norms
tasks.append(string_to_spv("norm_f32", f"{generic_head}\n{shader_f32}\n{norm_body}", {"A_TYPE": "float", "D_TYPE": "float"}, True))
tasks.append(string_to_spv("rms_norm_f32", f"{generic_head}\n{shader_f32}\n{rms_norm_body}", {"A_TYPE": "float", "D_TYPE": "float"}, True))
tasks.append(string_to_spv("norm_f32", f"{generic_head}\n{shader_f32}\n{norm_body}", {"A_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("rms_norm_f32", f"{generic_head}\n{shader_f32}\n{rms_norm_body}", {"A_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("cpy_f32_f32", f"{cpy_src}\n{cpy_end}", {"A_TYPE": "float", "D_TYPE": "float"}, True))
tasks.append(string_to_spv("cpy_f32_f16", f"{cpy_src}\n{cpy_end}", {"A_TYPE": "float", "D_TYPE": "float16_t"}, True))
tasks.append(string_to_spv("cpy_f16_f16", f"{cpy_src}\n{cpy_f16_f16_end}", {"A_TYPE": "float16_t", "D_TYPE": "float16_t"}, True))
tasks.append(string_to_spv("cpy_f32_f32", f"{cpy_src}\n{cpy_end}", {"A_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("cpy_f32_f16", f"{cpy_src}\n{cpy_end}", {"A_TYPE": "float", "D_TYPE": "float16_t"}))
tasks.append(string_to_spv("cpy_f16_f16", f"{cpy_src}\n{cpy_f16_f16_end}", {"A_TYPE": "float16_t", "D_TYPE": "float16_t"}))
tasks.append(string_to_spv("add_f32", f"{generic_head}\n{shader_f32}\n{add_body}", {"A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float"}, True))
tasks.append(string_to_spv("add_f32", f"{generic_head}\n{shader_f32}\n{add_body}", {"A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("split_k_reduce", mulmat_split_k_reduce_src, {}, True))
tasks.append(string_to_spv("mul_f32", f"{generic_head}\n{shader_f32}\n{mul_body}", {"A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float"}, True))
tasks.append(string_to_spv("split_k_reduce", mulmat_split_k_reduce_src, {}))
tasks.append(string_to_spv("mul_f32", f"{generic_head}\n{shader_f32}\n{mul_body}", {"A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("scale_f32", f"{generic_head}\n{shader_f32}\n{scale_body}", {"A_TYPE": "float", "D_TYPE": "float"}, True))
tasks.append(string_to_spv("scale_f32", f"{generic_head}\n{shader_f32}\n{scale_body}", {"A_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("sqr_f32", f"{generic_head}\n{shader_f32}\n{sqr_body}", {"A_TYPE": "float", "D_TYPE": "float"}, True))
tasks.append(string_to_spv("sqr_f32", f"{generic_head}\n{shader_f32}\n{sqr_body}", {"A_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("clamp_f32", f"{generic_head}\n{shader_f32}\n{clamp_body}", {"A_TYPE": "float", "D_TYPE": "float"}, True))
tasks.append(string_to_spv("clamp_f32", f"{generic_head}\n{shader_f32}\n{clamp_body}", {"A_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("gelu_f32", f"{generic_head}\n{shader_f32}\n{gelu_body}", {"A_TYPE": "float", "D_TYPE": "float"}, True))
tasks.append(string_to_spv("silu_f32", f"{generic_head}\n{shader_f32}\n{silu_body}", {"A_TYPE": "float", "D_TYPE": "float"}, True))
tasks.append(string_to_spv("relu_f32", f"{generic_head}\n{shader_f32}\n{relu_body}", {"A_TYPE": "float", "D_TYPE": "float"}, True))
tasks.append(string_to_spv("gelu_f32", f"{generic_head}\n{shader_f32}\n{gelu_body}", {"A_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("silu_f32", f"{generic_head}\n{shader_f32}\n{silu_body}", {"A_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("relu_f32", f"{generic_head}\n{shader_f32}\n{relu_body}", {"A_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("diag_mask_inf_f32", f"{diag_mask_inf_head}\n{shader_f32}\n{diag_mask_inf_body}", {"A_TYPE": "float", "D_TYPE": "float"}, True))
tasks.append(string_to_spv("diag_mask_inf_f32", f"{diag_mask_inf_head}\n{shader_f32}\n{diag_mask_inf_body}", {"A_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("soft_max_f32", f"{generic_head}\n{shader_f32}\n{soft_max_body}", {"A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float"}, True))
tasks.append(string_to_spv("soft_max_f32", f"{generic_head}\n{shader_f32}\n{soft_max_body}", {"A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("rope_f32", rope_src, {"A_TYPE": "float", "D_TYPE": "float"}, True))
tasks.append(string_to_spv("rope_f16", rope_src, {"A_TYPE": "float16_t", "D_TYPE": "float16_t"}, True))
tasks.append(string_to_spv("rope_f32", rope_src, {"A_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("rope_f16", rope_src, {"A_TYPE": "float16_t", "D_TYPE": "float16_t"}))
tasks.append(string_to_spv("rope_neox_f32", rope_neox_src, {"A_TYPE": "float", "D_TYPE": "float"}, True))
tasks.append(string_to_spv("rope_neox_f16", rope_neox_src, {"A_TYPE": "float16_t", "D_TYPE": "float16_t"}, True))
tasks.append(string_to_spv("rope_neox_f32", rope_neox_src, {"A_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("rope_neox_f16", rope_neox_src, {"A_TYPE": "float16_t", "D_TYPE": "float16_t"}))
await asyncio.gather(*tasks)
# Helper to decorate tasks with semaphore acquisition.
async def withSemaphore(sem, task):
async with sem:
return await task
# Run tasks concurrently guarded by a concurrency limit.
sem = asyncio.Semaphore(ASYNCIO_CONCURRENCY)
await asyncio.gather(*(withSemaphore(sem, task) for task in tasks))
with open("ggml-vulkan-shaders.hpp", "w") as f:
f.write("#include <cstdint>\n\n")

View File

@@ -40,6 +40,7 @@ class Keys:
TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
EXPERT_COUNT = "{arch}.expert_count"
EXPERT_USED_COUNT = "{arch}.expert_used_count"
POOLING_LAYER = "{arch}.pooling_layer"
class Attention:
HEAD_COUNT = "{arch}.attention.head_count"
@@ -50,6 +51,7 @@ class Keys:
VALUE_LENGTH = "{arch}.attention.value_length"
LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon"
LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
CAUSAL = "{arch}.attention.causal"
class Rope:
DIMENSION_COUNT = "{arch}.rope.dimension_count"
@@ -60,21 +62,23 @@ class Keys:
SCALING_FINETUNED = "{arch}.rope.scaling.finetuned"
class Tokenizer:
MODEL = "tokenizer.ggml.model"
LIST = "tokenizer.ggml.tokens"
TOKEN_TYPE = "tokenizer.ggml.token_type"
SCORES = "tokenizer.ggml.scores"
MERGES = "tokenizer.ggml.merges"
BOS_ID = "tokenizer.ggml.bos_token_id"
EOS_ID = "tokenizer.ggml.eos_token_id"
UNK_ID = "tokenizer.ggml.unknown_token_id"
SEP_ID = "tokenizer.ggml.seperator_token_id"
PAD_ID = "tokenizer.ggml.padding_token_id"
ADD_BOS = "tokenizer.ggml.add_bos_token"
ADD_EOS = "tokenizer.ggml.add_eos_token"
HF_JSON = "tokenizer.huggingface.json"
RWKV = "tokenizer.rwkv.world"
CHAT_TEMPLATE = "tokenizer.chat_template"
MODEL = "tokenizer.ggml.model"
LIST = "tokenizer.ggml.tokens"
TOKEN_TYPE = "tokenizer.ggml.token_type"
TOKEN_TYPE_COUNT = "tokenizer.ggml.token_type_count" # for BERT-style token types
SCORES = "tokenizer.ggml.scores"
MERGES = "tokenizer.ggml.merges"
BOS_ID = "tokenizer.ggml.bos_token_id"
EOS_ID = "tokenizer.ggml.eos_token_id"
UNK_ID = "tokenizer.ggml.unknown_token_id"
SEP_ID = "tokenizer.ggml.seperator_token_id"
PAD_ID = "tokenizer.ggml.padding_token_id"
ADD_BOS = "tokenizer.ggml.add_bos_token"
ADD_EOS = "tokenizer.ggml.add_eos_token"
ADD_PREFIX = "tokenizer.ggml.add_space_prefix"
HF_JSON = "tokenizer.huggingface.json"
RWKV = "tokenizer.rwkv.world"
CHAT_TEMPLATE = "tokenizer.chat_template"
#
@@ -102,6 +106,8 @@ class MODEL_ARCH(IntEnum):
PLAMO = auto()
CODESHELL = auto()
ORION = auto()
INTERNLM2 = auto()
MINICPM = auto()
class MODEL_TENSOR(IntEnum):
@@ -119,6 +125,7 @@ class MODEL_TENSOR(IntEnum):
ATTN_OUT = auto()
ATTN_NORM = auto()
ATTN_NORM_2 = auto()
ATTN_OUT_NORM = auto()
ATTN_ROT_EMBD = auto()
FFN_GATE_INP = auto()
FFN_NORM = auto()
@@ -131,6 +138,7 @@ class MODEL_TENSOR(IntEnum):
FFN_UP_EXP = auto()
ATTN_Q_NORM = auto()
ATTN_K_NORM = auto()
LAYER_OUT_NORM = auto()
MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
@@ -153,6 +161,8 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.PLAMO: "plamo",
MODEL_ARCH.CODESHELL: "codeshell",
MODEL_ARCH.ORION: "orion",
MODEL_ARCH.INTERNLM2: "internlm2",
MODEL_ARCH.MINICPM: "minicpm",
}
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
@@ -173,6 +183,7 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm",
MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm",
MODEL_TENSOR.ATTN_OUT_NORM: "blk.{bid}.attn_output_norm",
MODEL_TENSOR.FFN_GATE_INP: "blk.{bid}.ffn_gate_inp",
MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
@@ -182,6 +193,7 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate.{xid}",
MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down.{xid}",
MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up.{xid}",
MODEL_TENSOR.LAYER_OUT_NORM: "blk.{bid}.layer_output_norm",
}
MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
@@ -257,17 +269,18 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
],
MODEL_ARCH.BERT: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.TOKEN_EMBD_NORM,
MODEL_TENSOR.TOKEN_TYPES,
MODEL_TENSOR.POS_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_OUT_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.LAYER_OUT_NORM,
],
MODEL_ARCH.MPT: [
MODEL_TENSOR.TOKEN_EMBD,
@@ -446,6 +459,40 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.INTERNLM2: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_ROT_EMBD,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.MINICPM: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_ROT_EMBD,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
],
# TODO
}

View File

@@ -357,6 +357,12 @@ class GGUFWriter:
def add_layer_norm_rms_eps(self, value: float) -> None:
self.add_float32(Keys.Attention.LAYERNORM_RMS_EPS.format(arch=self.arch), value)
def add_causal_attention(self, value: bool) -> None:
self.add_bool(Keys.Attention.CAUSAL.format(arch=self.arch), value)
def add_pooling_layer(self, value: bool) -> None:
self.add_bool(Keys.LLM.POOLING_LAYER.format(arch=self.arch), value)
def add_rope_dimension_count(self, count: int) -> None:
self.add_uint32(Keys.Rope.DIMENSION_COUNT.format(arch=self.arch), count)
@@ -387,6 +393,9 @@ class GGUFWriter:
def add_token_types(self, types: Sequence[TokenType] | Sequence[int]) -> None:
self.add_array(Keys.Tokenizer.TOKEN_TYPE, types)
def add_token_type_count(self, value: int) -> None:
self.add_uint32(Keys.Tokenizer.TOKEN_TYPE_COUNT, value)
def add_token_scores(self, scores: Sequence[float]) -> None:
self.add_array(Keys.Tokenizer.SCORES, scores)
@@ -411,6 +420,9 @@ class GGUFWriter:
def add_add_eos_token(self, value: bool) -> None:
self.add_bool(Keys.Tokenizer.ADD_EOS, value)
def add_add_space_prefix(self, value: bool) -> None:
self.add_bool(Keys.Tokenizer.ADD_PREFIX, value)
def add_chat_template(self, value: str) -> None:
self.add_string(Keys.Tokenizer.CHAT_TEMPLATE, value)

View File

@@ -19,6 +19,7 @@ class TensorNameMap:
"language_model.embedding.word_embeddings", # persimmon
"wte", # gpt2
"transformer.embd.wte", # phi2
"model.tok_embeddings", # internlm2
),
# Token type embeddings
@@ -29,6 +30,7 @@ class TensorNameMap:
# Normalization of token embeddings
MODEL_TENSOR.TOKEN_EMBD_NORM: (
"word_embeddings_layernorm", # bloom
"embeddings.LayerNorm", # bert
),
# Position embeddings
@@ -42,7 +44,7 @@ class TensorNameMap:
MODEL_TENSOR.OUTPUT: (
"embed_out", # gptneox
"lm_head", # gpt2 mpt falcon llama-hf baichuan qwen
"output", # llama-pth bloom
"output", # llama-pth bloom internlm2
"word_embeddings_for_head", # persimmon
"lm_head.linear", # phi2
),
@@ -51,9 +53,8 @@ class TensorNameMap:
MODEL_TENSOR.OUTPUT_NORM: (
"gpt_neox.final_layer_norm", # gptneox
"transformer.ln_f", # gpt2 gpt-j falcon
"model.norm", # llama-hf baichuan
"model.norm", # llama-hf baichuan internlm2
"norm", # llama-pth
"embeddings.LayerNorm", # bert
"transformer.norm_f", # mpt
"ln_f", # refact bloom qwen gpt2
"language_model.encoder.final_layernorm", # persimmon
@@ -78,12 +79,12 @@ class TensorNameMap:
"transformer.h.{bid}.ln_mlp", # falcon40b
"model.layers.{bid}.input_layernorm", # llama-hf
"layers.{bid}.attention_norm", # llama-pth
"encoder.layer.{bid}.attention.output.LayerNorm", # bert
"language_model.encoder.layers.{bid}.input_layernorm", # persimmon
"model.layers.{bid}.ln1", # yi
"h.{bid}.ln_1", # gpt2
"transformer.h.{bid}.ln", # phi2
"model.layers.layers.{bid}.norm", # plamo
"model.layers.{bid}.attention_norm", # internlm2
),
# Attention norm 2
@@ -111,6 +112,7 @@ class TensorNameMap:
"encoder.layer.{bid}.attention.self.query", # bert
"transformer.h.{bid}.attn.q_proj", # gpt-j
"model.layers.layers.{bid}.self_attn.q_proj", # plamo
"model.layers.{bid}.attention.wq" # internlm2
),
# Attention key
@@ -120,6 +122,7 @@ class TensorNameMap:
"encoder.layer.{bid}.attention.self.key", # bert
"transformer.h.{bid}.attn.k_proj", # gpt-j
"model.layers.layers.{bid}.self_attn.k_proj", # plamo
"model.layers.{bid}.attention.wk" # internlm2
),
# Attention value
@@ -129,6 +132,7 @@ class TensorNameMap:
"encoder.layer.{bid}.attention.self.value", # bert
"transformer.h.{bid}.attn.v_proj", # gpt-j
"model.layers.layers.{bid}.self_attn.v_proj", # plamo
"model.layers.{bid}.attention.wv" # internlm2
),
# Attention output
@@ -147,6 +151,12 @@ class TensorNameMap:
"h.{bid}.attn.c_proj", # gpt2
"transformer.h.{bid}.mixer.out_proj", # phi2
"model.layers.layers.{bid}.self_attn.o_proj", # plamo
"model.layers.{bid}.attention.wo", # internlm2
),
# Attention output norm
MODEL_TENSOR.ATTN_OUT_NORM: (
"encoder.layer.{bid}.attention.output.LayerNorm", # bert
),
# Rotary embeddings
@@ -165,10 +175,10 @@ class TensorNameMap:
"transformer.blocks.{bid}.norm_2", # mpt
"model.layers.{bid}.post_attention_layernorm", # llama-hf
"layers.{bid}.ffn_norm", # llama-pth
"encoder.layer.{bid}.output.LayerNorm", # bert
"language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
"model.layers.{bid}.ln2", # yi
"h.{bid}.ln_2", # gpt2
"model.layers.{bid}.ffn_norm", # internlm2
),
MODEL_TENSOR.FFN_GATE_INP: (
@@ -194,6 +204,7 @@ class TensorNameMap:
"transformer.h.{bid}.mlp.fc1", # phi2
"model.layers.{bid}.mlp.fc1", # phi2
"model.layers.layers.{bid}.mlp.up_proj", # plamo
"model.layers.{bid}.feed_forward.w3", # internlm2
),
MODEL_TENSOR.FFN_UP_EXP: (
@@ -212,6 +223,7 @@ class TensorNameMap:
"layers.{bid}.feed_forward.w1", # llama-pth
"transformer.h.{bid}.mlp.w2", # qwen
"model.layers.layers.{bid}.mlp.gate_proj", # plamo
"model.layers.{bid}.feed_forward.w1", # internlm2
),
MODEL_TENSOR.FFN_GATE_EXP: (
@@ -236,6 +248,7 @@ class TensorNameMap:
"transformer.h.{bid}.mlp.fc2", # phi2
"model.layers.{bid}.mlp.fc2", # phi2
"model.layers.layers.{bid}.mlp.down_proj", # plamo
"model.layers.{bid}.feed_forward.w2", # internlm2
),
MODEL_TENSOR.FFN_DOWN_EXP: (
@@ -256,6 +269,10 @@ class TensorNameMap:
MODEL_TENSOR.ROPE_FREQS: (
"language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
),
MODEL_TENSOR.LAYER_OUT_NORM: (
"encoder.layer.{bid}.output.LayerNorm", # bert
)
}
mapping: dict[str, tuple[MODEL_TENSOR, str]]

1554
llama.cpp

File diff suppressed because it is too large Load Diff

37
llama.h
View File

@@ -3,15 +3,7 @@
#include "ggml.h"
#include "ggml-backend.h"
#ifdef GGML_USE_CUBLAS
#include "ggml-cuda.h"
#define LLAMA_MAX_DEVICES GGML_CUDA_MAX_DEVICES
#elif defined(GGML_USE_SYCL)
#include "ggml-sycl.h"
#define LLAMA_MAX_DEVICES GGML_SYCL_MAX_DEVICES
#else
#define LLAMA_MAX_DEVICES 1
#endif // GGML_USE_CUBLAS
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
@@ -49,12 +41,6 @@
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
#define LLAMA_SESSION_VERSION 4
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE)
// Defined when llama.cpp is compiled with support for offloading model layers to GPU.
#define LLAMA_SUPPORTS_GPU_OFFLOAD
#endif
#ifdef __cplusplus
extern "C" {
#endif
@@ -75,6 +61,7 @@ extern "C" {
enum llama_vocab_type {
LLAMA_VOCAB_TYPE_SPM = 0, // SentencePiece
LLAMA_VOCAB_TYPE_BPE = 1, // Byte Pair Encoding
LLAMA_VOCAB_TYPE_WPM = 2, // WordPiece
};
enum llama_token_type {
@@ -201,7 +188,7 @@ extern "C" {
// LLAMA_SPLIT_LAYER: ignored
int32_t main_gpu;
// proportion of the model (layers or rows) to offload to each GPU, size: LLAMA_MAX_DEVICES
// proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
const float * tensor_split;
// Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
@@ -227,7 +214,7 @@ extern "C" {
uint32_t n_batch; // prompt processing maximum batch size
uint32_t n_threads; // number of threads to use for generation
uint32_t n_threads_batch; // number of threads to use for batch processing
int8_t rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
int32_t rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
// ref: https://github.com/ggerganov/llama.cpp/pull/2054
float rope_freq_base; // RoPE base frequency, 0 = from model
@@ -249,6 +236,7 @@ extern "C" {
bool logits_all; // the llama_eval() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
bool embedding; // embedding mode only
bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
bool do_pooling; // whether to pool (sum) embedding results by sequence id (ignored if no pooling layer)
};
// model quantization parameters
@@ -338,9 +326,14 @@ extern "C" {
LLAMA_API int64_t llama_time_us(void);
LLAMA_API int32_t llama_max_devices(void);
LLAMA_API bool llama_mmap_supported (void);
LLAMA_API bool llama_mlock_supported(void);
LLAMA_API size_t llama_max_devices(void);
LLAMA_API bool llama_supports_mmap (void);
LLAMA_API bool llama_supports_mlock (void);
LLAMA_API bool llama_supports_gpu_offload(void);
LLAMA_API DEPRECATED(bool llama_mmap_supported (void), "use llama_supports_mmap() instead");
LLAMA_API DEPRECATED(bool llama_mlock_supported(void), "use llama_supports_mlock() instead");
LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
@@ -636,6 +629,10 @@ extern "C" {
// shape: [n_embd] (1-dimensional)
LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
// Get the embeddings for the ith sequence
// llama_get_embeddings(ctx) + i*n_embd
LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i);
//
// Vocab
//

View File

@@ -156,8 +156,8 @@ int main(int argc, char** argv) {
t1 = std::chrono::high_resolution_clock::now();
float fs;
if (type == 0) funcs.vec_dot(kVecSize * QK4_1, &fs, x40.data(), y.data());
else funcs.vec_dot(kVecSize * QK4_1, &fs, x41.data(), y.data());
if (type == 0) funcs.vec_dot(kVecSize * QK4_1, &fs, 0, x40.data(), 0, y.data(), 0, 1);
else funcs.vec_dot(kVecSize * QK4_1, &fs, 0, x41.data(), 0, y.data(), 0, 1);
t2 = std::chrono::high_resolution_clock::now();
t = 1e-3*std::chrono::duration_cast<std::chrono::nanoseconds>(t2-t1).count();
if (iloop > 3) ggml.addResult(fs, t);

View File

@@ -284,8 +284,8 @@ int main(int argc, char** argv) {
else {
auto vdot = ggml_internal_get_type_traits(funcs.vec_dot_type);
vdot.from_float(y1.data(), q8.data(), kVecSize);
if (useQ4_1) funcs.vec_dot(kVecSize, &result, q41.data(), q8.data());
else funcs.vec_dot(kVecSize, &result, q40.data(), q8.data());
if (useQ4_1) funcs.vec_dot(kVecSize, &result, 0, q41.data(), 0, q8.data(), 0, 1);
else funcs.vec_dot(kVecSize, &result, 0, q40.data(), 0, q8.data(), 0, 1);
}
sumq += result;
t2 = std::chrono::high_resolution_clock::now();

View File

@@ -0,0 +1,19 @@
:: MIT license
:: Copyright (C) 2024 Intel Corporation
:: SPDX-License-Identifier: MIT
set URL=%1
set COMPONENTS=%2
curl.exe --output %TEMP%\webimage.exe --url %URL% --retry 5 --retry-delay 5
start /b /wait %TEMP%\webimage.exe -s -x -f webimage_extracted --log extract.log
del %TEMP%\webimage.exe
if "%COMPONENTS%"=="" (
webimage_extracted\bootstrapper.exe -s --action install --eula=accept -p=NEED_VS2017_INTEGRATION=0 -p=NEED_VS2019_INTEGRATION=0 -p=NEED_VS2022_INTEGRATION=0 --log-dir=.
) else (
webimage_extracted\bootstrapper.exe -s --action install --components=%COMPONENTS% --eula=accept -p=NEED_VS2017_INTEGRATION=0 -p=NEED_VS2019_INTEGRATION=0 -p=NEED_VS2022_INTEGRATION=0 --log-dir=.
)
set installer_exit_code=%ERRORLEVEL%
rd /s/q "webimage_extracted"
exit /b %installer_exit_code%

View File

@@ -14,16 +14,17 @@
# - Might be unstable!
#
# Usage:
# ./server-llm.sh [--port] [--repo] [--wtype] [--backend] [--gpu-id] [--n-parallel] [--n-kv] [--verbose]
# ./server-llm.sh [--port] [--repo] [--wtype] [--backend] [--gpu-id] [--n-parallel] [--n-kv] [--verbose] [-non-interactive]
#
# --port: port number, default is 8888
# --repo: path to a repo containing GGUF model files
# --wtype: weights type (f16, q8_0, q4_0, q4_1), default is user-input
# --backend: cpu, cuda, metal, opencl, depends on the OS
# --gpu-id: gpu id, default is 0
# --n-parallel: number of parallel requests, default is 8
# --n-kv: KV cache size, default is 4096
# --verbose: verbose output
# --port: port number, default is 8888
# --repo: path to a repo containing GGUF model files
# --wtype: weights type (f16, q8_0, q4_0, q4_1), default is user-input
# --backend: cpu, cuda, metal, opencl, depends on the OS
# --gpu-id: gpu id, default is 0
# --n-parallel: number of parallel requests, default is 8
# --n-kv: KV cache size, default is 4096
# --verbose: verbose output
# --non-interactive: run without asking a permission to run
#
# Example:
#
@@ -47,6 +48,7 @@ if ! command -v make &> /dev/null; then
fi
# parse arguments
is_interactive=1
port=8888
repo=""
wtype=""
@@ -66,15 +68,16 @@ verbose=0
function print_usage {
printf "Usage:\n"
printf " ./server-llm.sh [--port] [--repo] [--wtype] [--backend] [--gpu-id] [--n-parallel] [--n-kv] [--verbose]\n\n"
printf " --port: port number, default is 8888\n"
printf " --repo: path to a repo containing GGUF model files\n"
printf " --wtype: weights type (f16, q8_0, q4_0, q4_1), default is user-input\n"
printf " --backend: cpu, cuda, metal, opencl, depends on the OS\n"
printf " --gpu-id: gpu id, default is 0\n"
printf " --n-parallel: number of parallel requests, default is 8\n"
printf " --n-kv: KV cache size, default is 4096\n"
printf " --verbose: verbose output\n\n"
printf " ./server-llm.sh [--port] [--repo] [--wtype] [--backend] [--gpu-id] [--n-parallel] [--n-kv] [--verbose] [-non-interactive]\n\n"
printf " --port: port number, default is 8888\n"
printf " --repo: path to a repo containing GGUF model files\n"
printf " --wtype: weights type (f16, q8_0, q4_0, q4_1), default is user-input\n"
printf " --backend: cpu, cuda, metal, opencl, depends on the OS\n"
printf " --gpu-id: gpu id, default is 0\n"
printf " --n-parallel: number of parallel requests, default is 8\n"
printf " --n-kv: KV cache size, default is 4096\n"
printf " --verbose: verbose output\n\n"
printf " --non-interactive: run without asking a permission to run\n"
printf "Example:\n\n"
printf ' bash -c "$(curl -s https://ggml.ai/server-llm.sh)"\n\n'
}
@@ -82,6 +85,10 @@ function print_usage {
while [[ $# -gt 0 ]]; do
key="$1"
case $key in
--non-interactive)
is_interactive=0
shift
;;
--port)
port="$2"
shift
@@ -141,6 +148,28 @@ for wt in "${wtypes[@]}"; do
wfiles+=("")
done
# map wtype input to index
if [[ ! -z "$wtype" ]]; then
iw=-1
is=0
for wt in "${wtypes[@]}"; do
# uppercase
uwt=$(echo "$wt" | tr '[:lower:]' '[:upper:]')
if [[ "$uwt" == "$wtype" ]]; then
iw=$is
break
fi
is=$((is+1))
done
if [[ $iw -eq -1 ]]; then
printf "[-] Invalid weight type: %s\n" "$wtype"
exit 1
fi
wtype="$iw"
fi
# sample repos
repos=(
"https://huggingface.co/TheBloke/Llama-2-7B-GGUF"
@@ -154,31 +183,32 @@ repos=(
"https://huggingface.co/TheBloke/OpenHermes-2-Mistral-7B-GGUF"
"https://huggingface.co/TheBloke/CausalLM-7B-GGUF"
)
if [ $is_interactive -eq 1 ]; then
printf "\n"
printf "[I] This is a helper script for deploying llama.cpp's server on this machine.\n\n"
printf " Based on the options that follow, the script might download a model file\n"
printf " from the internet, which can be a few GBs in size. The script will also\n"
printf " build the latest llama.cpp source code from GitHub, which can be unstable.\n"
printf "\n"
printf " Upon success, an HTTP server will be started and it will serve the selected\n"
printf " model using llama.cpp for demonstration purposes.\n"
printf "\n"
printf " Please note:\n"
printf "\n"
printf " - All new data will be stored in the current folder\n"
printf " - The server will be listening on all network interfaces\n"
printf " - The server will run with default settings which are not always optimal\n"
printf " - Do not judge the quality of a model based on the results from this script\n"
printf " - Do not use this script to benchmark llama.cpp\n"
printf " - Do not use this script in production\n"
printf " - This script is only for demonstration purposes\n"
printf "\n"
printf " If you don't know what you are doing, please press Ctrl-C to abort now\n"
printf "\n"
printf " Press Enter to continue ...\n\n"
printf "\n"
printf "[I] This is a helper script for deploying llama.cpp's server on this machine.\n\n"
printf " Based on the options that follow, the script might download a model file\n"
printf " from the internet, which can be a few GBs in size. The script will also\n"
printf " build the latest llama.cpp source code from GitHub, which can be unstable.\n"
printf "\n"
printf " Upon success, an HTTP server will be started and it will serve the selected\n"
printf " model using llama.cpp for demonstration purposes.\n"
printf "\n"
printf " Please note:\n"
printf "\n"
printf " - All new data will be stored in the current folder\n"
printf " - The server will be listening on all network interfaces\n"
printf " - The server will run with default settings which are not always optimal\n"
printf " - Do not judge the quality of a model based on the results from this script\n"
printf " - Do not use this script to benchmark llama.cpp\n"
printf " - Do not use this script in production\n"
printf " - This script is only for demonstration purposes\n"
printf "\n"
printf " If you don't know what you are doing, please press Ctrl-C to abort now\n"
printf "\n"
printf " Press Enter to continue ...\n\n"
read
read
fi
if [[ -z "$repo" ]]; then
printf "[+] No repo provided from the command line\n"
@@ -252,8 +282,10 @@ for file in $model_files; do
printf " %2d) %s %s\n" $iw "$have" "$file"
done
wfile="${wfiles[$wtype]}"
# ask for weights type until provided and available
while [[ -z "$wtype" ]]; do
while [[ -z "$wfile" ]]; do
printf "\n"
read -p "[+] Select weight type: " wtype
wfile="${wfiles[$wtype]}"

View File

@@ -97,6 +97,8 @@ if [ -f $SRC_LLAMA/ggml-src.patch ]; then
# src/ggml-cuda.cu -> ggml-cuda.cu
# src/ggml-cuda.h -> ggml-cuda.h
# src/ggml-impl.h -> ggml-impl.h
# src/ggml-kompute.cpp -> ggml-kompute.cpp
# src/ggml-kompute.h -> ggml-kompute.h
# src/ggml-metal.h -> ggml-metal.h
# src/ggml-metal.m -> ggml-metal.m
# src/ggml-mpi.h -> ggml-mpi.h
@@ -105,6 +107,10 @@ if [ -f $SRC_LLAMA/ggml-src.patch ]; then
# src/ggml-opencl.h -> ggml-opencl.h
# src/ggml-quants.c -> ggml-quants.c
# src/ggml-quants.h -> ggml-quants.h
# src/ggml-sycl.cpp -> ggml-sycl.cpp
# src/ggml-sycl.h -> ggml-sycl.h
# src/ggml-vulkan.cpp -> ggml-vulkan.cpp
# src/ggml-vulkan.h -> ggml-vulkan.h
# include/ggml/ggml.h -> ggml.h
# include/ggml/ggml-alloc.h -> ggml-alloc.h
# include/ggml/ggml-backend.h -> ggml-backend.h
@@ -123,6 +129,8 @@ if [ -f $SRC_LLAMA/ggml-src.patch ]; then
-e 's/src\/ggml-cuda\.cu/ggml-cuda.cu/g' \
-e 's/src\/ggml-cuda\.h/ggml-cuda.h/g' \
-e 's/src\/ggml-impl\.h/ggml-impl.h/g' \
-e 's/src\/ggml-kompute\.cpp/ggml-kompute.cpp/g' \
-e 's/src\/ggml-kompute\.h/ggml-kompute.h/g' \
-e 's/src\/ggml-metal\.h/ggml-metal.h/g' \
-e 's/src\/ggml-metal\.m/ggml-metal.m/g' \
-e 's/src\/ggml-mpi\.h/ggml-mpi.h/g' \
@@ -131,6 +139,10 @@ if [ -f $SRC_LLAMA/ggml-src.patch ]; then
-e 's/src\/ggml-opencl\.h/ggml-opencl.h/g' \
-e 's/src\/ggml-quants\.c/ggml-quants.c/g' \
-e 's/src\/ggml-quants\.h/ggml-quants.h/g' \
-e 's/src\/ggml-sycl\.cpp/ggml-sycl.cpp/g' \
-e 's/src\/ggml-sycl\.h/ggml-sycl.h/g' \
-e 's/src\/ggml-vulkan\.cpp/ggml-vulkan.cpp/g' \
-e 's/src\/ggml-vulkan\.h/ggml-vulkan.h/g' \
-e 's/include\/ggml\/ggml\.h/ggml.h/g' \
-e 's/include\/ggml\/ggml-alloc\.h/ggml-alloc.h/g' \
-e 's/include\/ggml\/ggml-backend\.h/ggml-backend.h/g' \

View File

@@ -1 +1 @@
f2a9472b23cf27e672ed70a2a6eb078f7b060f18
5070f078a67c18c11736e78316ab715ca9afde16

View File

@@ -7,6 +7,8 @@ cp -rpv ../ggml/src/ggml-backend.c ./ggml-backend.c
cp -rpv ../ggml/src/ggml-cuda.cu ./ggml-cuda.cu
cp -rpv ../ggml/src/ggml-cuda.h ./ggml-cuda.h
cp -rpv ../ggml/src/ggml-impl.h ./ggml-impl.h
cp -rpv ../ggml/src/ggml-kompute.cpp ./ggml-kompute.cpp
cp -rpv ../ggml/src/ggml-kompute.h ./ggml-kompute.h
cp -rpv ../ggml/src/ggml-metal.h ./ggml-metal.h
cp -rpv ../ggml/src/ggml-metal.m ./ggml-metal.m
cp -rpv ../ggml/src/ggml-metal.metal ./ggml-metal.metal
@@ -16,6 +18,10 @@ cp -rpv ../ggml/src/ggml-opencl.cpp ./ggml-opencl.cpp
cp -rpv ../ggml/src/ggml-opencl.h ./ggml-opencl.h
cp -rpv ../ggml/src/ggml-quants.c ./ggml-quants.c
cp -rpv ../ggml/src/ggml-quants.h ./ggml-quants.h
cp -rpv ../ggml/src/ggml-sycl.cpp ./ggml-sycl.cpp
cp -rpv ../ggml/src/ggml-sycl.h ./ggml-sycl.h
cp -rpv ../ggml/src/ggml-vulkan.cpp ./ggml-vulkan.cpp
cp -rpv ../ggml/src/ggml-vulkan.h ./ggml-vulkan.h
cp -rpv ../ggml/include/ggml/ggml.h ./ggml.h
cp -rpv ../ggml/include/ggml/ggml-alloc.h ./ggml-alloc.h
cp -rpv ../ggml/include/ggml/ggml-backend.h ./ggml-backend.h

1
spm-headers/ggml-alloc.h Symbolic link
View File

@@ -0,0 +1 @@
../ggml-alloc.h

1
spm-headers/ggml-backend.h Symbolic link
View File

@@ -0,0 +1 @@
../ggml-backend.h

1
spm-headers/ggml.h Symbolic link
View File

@@ -0,0 +1 @@
../ggml.h

2
tests/.gitignore vendored
View File

@@ -1,3 +1,3 @@
*
!*.*
test-c.o
*.o

View File

@@ -227,6 +227,14 @@ static std::string var_to_str(ggml_type type) {
return ggml_type_name(type);
}
static std::string var_to_str(ggml_op_pool pool) {
switch (pool) {
case GGML_OP_POOL_AVG: return "avg";
case GGML_OP_POOL_MAX: return "max";
default: return std::to_string(pool);
}
}
#define VARS_TO_STR1(a) VAR_TO_STR(a)
#define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
#define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
@@ -238,6 +246,7 @@ static std::string var_to_str(ggml_type type) {
#define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
#define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
#define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
#define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l)
#ifdef GGML_USE_SYCL
static bool inline _isinf(float f) {
@@ -1162,10 +1171,45 @@ struct test_alibi : public test_case {
}
};
// GGML_OP_POOL2D
struct test_pool2d : public test_case {
enum ggml_op_pool pool_type;
const ggml_type type_input;
const std::array<int64_t, 4> ne_input;
// kernel size
const int k0;
const int k1;
// stride
const int s0;
const int s1;
// padding
const int p0;
const int p1;
std::string vars() override {
return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1);
}
test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG,
ggml_type type_input = GGML_TYPE_F32,
std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
int k0 = 3, int k1 = 3,
int s0 = 1, int s1 = 1,
int p0 = 1, int p1 = 1)
: pool_type(pool_type), type_input(type_input), ne_input(ne_input), k0(k0), k1(k1), s0(s0), s1(s1), p0(p0), p1(p1) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
ggml_tensor * out = ggml_pool_2d(ctx, input, pool_type, k0, k1, s0, s1, p0, p1);
return out;
}
};
// GGML_OP_IM2COL
struct test_im2col : public test_case {
const ggml_type type_input;
const ggml_type type_kernel;
const ggml_type dst_type;
const std::array<int64_t, 4> ne_input;
const std::array<int64_t, 4> ne_kernel;
// stride
@@ -1181,22 +1225,22 @@ struct test_im2col : public test_case {
const bool is_2D;
std::string vars() override {
return VARS_TO_STR11(type_input, type_kernel, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
return VARS_TO_STR12(type_input, type_kernel, dst_type, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
}
test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16,
test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
int s0 = 1, int s1 = 1,
int p0 = 1, int p1 = 1,
int d0 = 1, int d1 = 1,
bool is_2D = true)
: type_input(type_input), type_kernel(type_kernel), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}
: type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D);
ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D, dst_type);
return out;
}
};
@@ -1912,6 +1956,27 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
}
}
for (ggml_type type_input : {GGML_TYPE_F32}) {
for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) {
for (int k0 : {1, 3}) {
for (int k1 : {1, 3}) {
for (int s0 : {1, 2}) {
for (int s1 : {1, 2}) {
for (int p0 : {0, 1}) {
for (int p1 : {0, 1}) {
test_cases.emplace_back(new test_pool2d(pool_type, type_input, {10, 10, 3, 1}, k0, k1, s0, s1, p0, p1));
}
}
}
}
}
}
}
}
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 1, 1}));
test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {2, 1, 1, 1}));
test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 2, 1, 1}));
@@ -1927,8 +1992,10 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3}));
test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));
for (ggml_type type : all_types) {
test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, type, {256, 10, 10, 1}));
for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
for (ggml_type type_dst : all_types) {
test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
}
}
test_cases.emplace_back(new test_cont());
@@ -2047,7 +2114,6 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
}
test_cases.emplace_back(new test_alibi());
test_cases.emplace_back(new test_im2col());
test_cases.emplace_back(new test_concat(GGML_TYPE_F32));
test_cases.emplace_back(new test_concat(GGML_TYPE_I32));
@@ -2063,14 +2129,13 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
test_cases.emplace_back(new test_pad());
test_cases.emplace_back(new test_leaky_relu());
// these tests are disabled to save execution time, but they can be handy for debugging
#if 0
#if !defined(__SANITIZE_THREAD__)
// FIXME: these tests use too much memory with thread sanitizer
test_cases.emplace_back(new test_moe(8, 2, 1, 4096, 8*1024));
//test_cases.emplace_back(new test_moe(8, 2, 8, 4096, 14336));
#endif
// these tests are disabled to save execution time, but they can be handy for debugging
#if 0
test_cases.emplace_back(new test_llama(1));
test_cases.emplace_back(new test_llama(2));
test_cases.emplace_back(new test_falcon(1));

View File

@@ -105,7 +105,7 @@ int main()
for (auto rule : expected_rules)
{
parsed_grammar.rules.push_back({});
parsed_grammar.rules.emplace_back();
for (auto element : rule)
{
parsed_grammar.rules.back().push_back(element);

View File

@@ -87,7 +87,7 @@ static float dot_product_error(
vdot.from_float(test_data2, tmp_q2.data(), test_size);
float result = INFINITY;
qfns.vec_dot(test_size, &result, tmp_q1.data(), tmp_q2.data());
qfns.vec_dot(test_size, &result, 0, tmp_q1.data(), 0, tmp_q2.data(), 0, 1);
const float dot_ref = dot_product(test_data1, test_data2, test_size);

View File

@@ -346,7 +346,7 @@ int main(int argc, char * argv[]) {
printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
auto quantize_fn = [&](void) -> float {
float result;
qfns.vec_dot(size, &result, test_q1, test_q2);
qfns.vec_dot(size, &result, 0, test_q1, 0, test_q2, 0, 1);
return result;
};
size_t quantized_size = ggml_row_size(type, size);

View File

@@ -235,6 +235,8 @@ int main(void) {
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f}, 1);
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f}, 3);
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 4);
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 0);
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f}, 0);
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f}, 0.7f);