mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2026-02-12 14:03:20 +02:00
Compare commits
127 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
ad3a0505e3 | ||
|
|
95ad616cdd | ||
|
|
64e7b47c69 | ||
|
|
7733f0c760 | ||
|
|
a32b77c4b2 | ||
|
|
a0e584defd | ||
|
|
7aed0ffe68 | ||
|
|
ea279d5609 | ||
|
|
586e7bc561 | ||
|
|
ddf6568510 | ||
|
|
d03224ac98 | ||
|
|
94d1b3b411 | ||
|
|
95562175f8 | ||
|
|
f482bb2e49 | ||
|
|
1997577d5e | ||
|
|
476b0251b2 | ||
|
|
21cad01b6e | ||
|
|
1b26aebe4d | ||
|
|
50ccaf5eac | ||
|
|
56a00f0a2f | ||
|
|
92397d87a4 | ||
|
|
1d0331c12a | ||
|
|
dba1af6129 | ||
|
|
ee804f6223 | ||
|
|
80bd33bc2c | ||
|
|
e80f06d2a1 | ||
|
|
f77a8ffd3b | ||
|
|
72114edf06 | ||
|
|
2f0e81e053 | ||
|
|
29ab270e65 | ||
|
|
6b8bb3a31d | ||
|
|
68e210b354 | ||
|
|
b3e94f26ba | ||
|
|
b2075fd6a5 | ||
|
|
95d576b48e | ||
|
|
59c17f02de | ||
|
|
fa046eafbc | ||
|
|
be07a03217 | ||
|
|
d0a71233fb | ||
|
|
f372c49ccd | ||
|
|
924ce1dce7 | ||
|
|
03a8f8fafe | ||
|
|
cfd3be76e3 | ||
|
|
5b7b0ac8df | ||
|
|
1943c01981 | ||
|
|
5e43ba8742 | ||
|
|
76aa30a263 | ||
|
|
c5b8595e3f | ||
|
|
42e21c6882 | ||
|
|
1c51f98adc | ||
|
|
f9c7ba3447 | ||
|
|
272935b281 | ||
|
|
ccf58aa3ec | ||
|
|
91f8ad167d | ||
|
|
6b7e76d28c | ||
|
|
bc0baab2ea | ||
|
|
d795988d9e | ||
|
|
f8c4e745e1 | ||
|
|
47cc7a7bf9 | ||
|
|
bd60d82d0c | ||
|
|
6c0b287748 | ||
|
|
d26e8b669d | ||
|
|
d8b009a945 | ||
|
|
d0d5de42e5 | ||
|
|
b80cf3b2d1 | ||
|
|
970a48060a | ||
|
|
4c28b82529 | ||
|
|
2d15886bb0 | ||
|
|
d199ca79f2 | ||
|
|
104f5e0fc1 | ||
|
|
5e1b7f94a0 | ||
|
|
ac9ee6a4ad | ||
|
|
4f6d1337ca | ||
|
|
2bf8d0f7c4 | ||
|
|
496bc79bc2 | ||
|
|
9b03719ad7 | ||
|
|
3a6efdd03c | ||
|
|
d01b3c4c32 | ||
|
|
cd776c37c9 | ||
|
|
dc0f612548 | ||
|
|
c47cf414ef | ||
|
|
b5f4ae09c3 | ||
|
|
dfbfdd60f9 | ||
|
|
15961ec04d | ||
|
|
a56d09a440 | ||
|
|
d84c48505f | ||
|
|
877b4d0c62 | ||
|
|
12247f4c69 | ||
|
|
4e9a7f7f7f | ||
|
|
3020327f6c | ||
|
|
46acb36767 | ||
|
|
131b058409 | ||
|
|
753e36f650 | ||
|
|
7ce2c77f88 | ||
|
|
aab606a11f | ||
|
|
b0bc9f4a9d | ||
|
|
4755afd1cb | ||
|
|
6e0438da3c | ||
|
|
727107707a | ||
|
|
69ff61397d | ||
|
|
044ec4b2a5 | ||
|
|
77178eedc8 | ||
|
|
15a333260a | ||
|
|
43241adf22 | ||
|
|
a44bc969e4 | ||
|
|
2c4fb69246 | ||
|
|
3ca23481dd | ||
|
|
3fe8d7a17f | ||
|
|
68265ebfc6 | ||
|
|
381da2d9f0 | ||
|
|
0fd6c1f015 | ||
|
|
19885d205e | ||
|
|
76a936c893 | ||
|
|
463628372d | ||
|
|
f30ea47a87 | ||
|
|
d8fd0ccf6a | ||
|
|
b3d978600f | ||
|
|
99b71c068f | ||
|
|
306d34be7a | ||
|
|
8030da7afe | ||
|
|
184215e783 | ||
|
|
48358b2e5b | ||
|
|
5cdb371731 | ||
|
|
44ca159faf | ||
|
|
05b06210c9 | ||
|
|
83796e62bc | ||
|
|
828defefb6 |
256
.github/workflows/build.yml
vendored
256
.github/workflows/build.yml
vendored
@@ -15,14 +15,133 @@ on:
|
||||
types: [opened, synchronize, reopened]
|
||||
paths: ['**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m']
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
env:
|
||||
BRANCH_NAME: ${{ github.head_ref || github.ref_name }}
|
||||
GGML_NLOOP: 3
|
||||
GGML_N_THREADS: 1
|
||||
|
||||
jobs:
|
||||
macOS-latest-cmake-arm64:
|
||||
runs-on: macos-14
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
continue-on-error: true
|
||||
run: |
|
||||
brew update
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
sysctl -a
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_METAL_EMBED_LIBRARY=ON -DLLAMA_CURL=ON ..
|
||||
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu)
|
||||
|
||||
- name: Test
|
||||
id: cmake_test
|
||||
run: |
|
||||
cd build
|
||||
ctest -L main --verbose --timeout 900
|
||||
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
shell: bash
|
||||
run: |
|
||||
BUILD_NUMBER="$(git rev-list --count HEAD)"
|
||||
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
|
||||
if [[ "${{ env.BRANCH_NAME }}" == "master" ]]; then
|
||||
echo "name=b${BUILD_NUMBER}" >> $GITHUB_OUTPUT
|
||||
else
|
||||
SAFE_NAME=$(echo "${{ env.BRANCH_NAME }}" | tr '/' '-')
|
||||
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
run: |
|
||||
cp LICENSE ./build/bin/
|
||||
zip -r llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.zip ./build/bin/*
|
||||
|
||||
- name: Upload artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: actions/upload-artifact@v3
|
||||
with:
|
||||
path: |
|
||||
llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.zip
|
||||
|
||||
macOS-latest-cmake-x64:
|
||||
runs-on: macos-latest
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
continue-on-error: true
|
||||
run: |
|
||||
brew update
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
sysctl -a
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_METAL_EMBED_LIBRARY=ON -DLLAMA_CURL=ON ..
|
||||
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu)
|
||||
|
||||
- name: Test
|
||||
id: cmake_test
|
||||
run: |
|
||||
cd build
|
||||
ctest -L main --verbose --timeout 900
|
||||
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
shell: bash
|
||||
run: |
|
||||
BUILD_NUMBER="$(git rev-list --count HEAD)"
|
||||
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
|
||||
if [[ "${{ env.BRANCH_NAME }}" == "master" ]]; then
|
||||
echo "name=b${BUILD_NUMBER}" >> $GITHUB_OUTPUT
|
||||
else
|
||||
SAFE_NAME=$(echo "${{ env.BRANCH_NAME }}" | tr '/' '-')
|
||||
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
run: |
|
||||
cp LICENSE ./build/bin/
|
||||
zip -r llama-${{ steps.tag.outputs.name }}-bin-macos-x64.zip ./build/bin/*
|
||||
|
||||
- name: Upload artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: actions/upload-artifact@v3
|
||||
with:
|
||||
path: |
|
||||
llama-${{ steps.tag.outputs.name }}-bin-macos-x64.zip
|
||||
|
||||
ubuntu-focal-make:
|
||||
runs-on: ubuntu-20.04
|
||||
env:
|
||||
LLAMA_NODE_AVAILABLE: true
|
||||
LLAMA_PYTHON_AVAILABLE: true
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
@@ -35,6 +154,14 @@ jobs:
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential gcc-8
|
||||
|
||||
- uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: "20"
|
||||
|
||||
- uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: "3.11"
|
||||
|
||||
- name: Build
|
||||
id: make_build
|
||||
env:
|
||||
@@ -48,6 +175,28 @@ jobs:
|
||||
CC=gcc-8 make tests -j $(nproc)
|
||||
make test -j $(nproc)
|
||||
|
||||
ubuntu-focal-make-curl:
|
||||
runs-on: ubuntu-20.04
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential gcc-8 libcurl4-openssl-dev
|
||||
|
||||
- name: Build
|
||||
id: make_build
|
||||
env:
|
||||
LLAMA_FATAL_WARNINGS: 1
|
||||
LLAMA_CURL: 1
|
||||
run: |
|
||||
CC=gcc-8 make -j $(nproc)
|
||||
|
||||
ubuntu-latest-cmake:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
@@ -76,40 +225,51 @@ jobs:
|
||||
cd build
|
||||
ctest -L main --verbose --timeout 900
|
||||
|
||||
ubuntu-latest-cmake-sanitizer:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
continue-on-error: true
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
sanitizer: [ADDRESS, THREAD, UNDEFINED]
|
||||
build_type: [Debug, Release]
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON -DCMAKE_BUILD_TYPE=${{ matrix.build_type }}
|
||||
cmake --build . --config ${{ matrix.build_type }} -j $(nproc)
|
||||
|
||||
- name: Test
|
||||
id: cmake_test
|
||||
- name: Test llama2c conversion
|
||||
id: llama2c_test
|
||||
run: |
|
||||
cd build
|
||||
ctest -L main --verbose --timeout 900
|
||||
echo "Fetch tokenizer"
|
||||
wget https://huggingface.co/karpathy/tinyllamas/resolve/main/stories260K/tok512.bin
|
||||
echo "Fetch llama2c model"
|
||||
wget https://huggingface.co/karpathy/tinyllamas/resolve/main/stories260K/stories260K.bin
|
||||
./bin/convert-llama2c-to-ggml --copy-vocab-from-model ./tok512.bin --llama2c-model stories260K.bin --llama2c-output-model stories260K.gguf
|
||||
./bin/main -m stories260K.gguf -p "One day, Lily met a Shoggoth" -n 500 -c 256
|
||||
|
||||
# ubuntu-latest-cmake-sanitizer:
|
||||
# runs-on: ubuntu-latest
|
||||
#
|
||||
# continue-on-error: true
|
||||
#
|
||||
# strategy:
|
||||
# matrix:
|
||||
# sanitizer: [ADDRESS, THREAD, UNDEFINED]
|
||||
# build_type: [Debug, Release]
|
||||
#
|
||||
# steps:
|
||||
# - name: Clone
|
||||
# id: checkout
|
||||
# uses: actions/checkout@v3
|
||||
#
|
||||
# - name: Dependencies
|
||||
# id: depends
|
||||
# run: |
|
||||
# sudo apt-get update
|
||||
# sudo apt-get install build-essential
|
||||
#
|
||||
# - name: Build
|
||||
# id: cmake_build
|
||||
# run: |
|
||||
# mkdir build
|
||||
# cd build
|
||||
# cmake .. -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON -DCMAKE_BUILD_TYPE=${{ matrix.build_type }}
|
||||
# cmake --build . --config ${{ matrix.build_type }} -j $(nproc)
|
||||
#
|
||||
# - name: Test
|
||||
# id: cmake_test
|
||||
# run: |
|
||||
# cd build
|
||||
# ctest -L main --verbose --timeout 900
|
||||
|
||||
ubuntu-latest-cmake-mpi:
|
||||
runs-on: ubuntu-latest
|
||||
@@ -333,6 +493,7 @@ jobs:
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -G Xcode .. \
|
||||
-DLLAMA_METAL_EMBED_LIBRARY=ON \
|
||||
-DLLAMA_BUILD_EXAMPLES=OFF \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DLLAMA_BUILD_SERVER=OFF \
|
||||
@@ -361,6 +522,7 @@ jobs:
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -G Xcode .. \
|
||||
-DLLAMA_METAL_EMBED_LIBRARY=ON \
|
||||
-DLLAMA_BUILD_EXAMPLES=OFF \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DLLAMA_BUILD_SERVER=OFF \
|
||||
@@ -638,6 +800,7 @@ jobs:
|
||||
|
||||
windows-latest-cmake-sycl:
|
||||
runs-on: windows-latest
|
||||
|
||||
defaults:
|
||||
run:
|
||||
shell: bash
|
||||
@@ -646,7 +809,6 @@ jobs:
|
||||
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/62641e01-1e8d-4ace-91d6-ae03f7f8a71f/w_BaseKit_p_2024.0.0.49563_offline.exe
|
||||
WINDOWS_DPCPP_MKL: intel.oneapi.win.cpp-dpcpp-common:intel.oneapi.win.mkl.devel
|
||||
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
@@ -661,6 +823,32 @@ jobs:
|
||||
id: cmake_build
|
||||
run: examples/sycl/win-build-sycl.bat
|
||||
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
shell: bash
|
||||
run: |
|
||||
BUILD_NUMBER="$(git rev-list --count HEAD)"
|
||||
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
|
||||
if [[ "${{ env.BRANCH_NAME }}" == "master" ]]; then
|
||||
echo "name=b${BUILD_NUMBER}" >> $GITHUB_OUTPUT
|
||||
else
|
||||
SAFE_NAME=$(echo "${{ env.BRANCH_NAME }}" | tr '/' '-')
|
||||
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
run: |
|
||||
7z a llama-${{ steps.tag.outputs.name }}-bin-win-sycl-x64.zip .\build\bin\*
|
||||
|
||||
- name: Upload artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: actions/upload-artifact@v3
|
||||
with:
|
||||
path: |
|
||||
llama-${{ steps.tag.outputs.name }}-bin-win-sycl-x64.zip
|
||||
|
||||
ios-xcode-build:
|
||||
runs-on: macos-latest
|
||||
|
||||
@@ -724,6 +912,8 @@ jobs:
|
||||
- macOS-latest-cmake
|
||||
- windows-latest-cmake
|
||||
- windows-latest-cmake-cublas
|
||||
- macOS-latest-cmake-arm64
|
||||
- macOS-latest-cmake-x64
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
|
||||
23
.github/workflows/close-issue.yml
vendored
Normal file
23
.github/workflows/close-issue.yml
vendored
Normal file
@@ -0,0 +1,23 @@
|
||||
name: Close inactive issues
|
||||
on:
|
||||
schedule:
|
||||
- cron: "42 0 * * *"
|
||||
|
||||
jobs:
|
||||
close-issues:
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
issues: write
|
||||
pull-requests: write
|
||||
steps:
|
||||
- uses: actions/stale@v5
|
||||
with:
|
||||
exempt-issue-labels: "refactor,help wanted,good first issue,research"
|
||||
days-before-issue-stale: 30
|
||||
days-before-issue-close: 14
|
||||
stale-issue-label: "stale"
|
||||
close-issue-message: "This issue was closed because it has been inactive for 14 days since being marked as stale."
|
||||
days-before-pr-stale: -1
|
||||
days-before-pr-close: -1
|
||||
operations-per-run: 10000
|
||||
repo-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
4
.github/workflows/code-coverage.yml
vendored
4
.github/workflows/code-coverage.yml
vendored
@@ -5,6 +5,10 @@ env:
|
||||
GGML_NLOOP: 3
|
||||
GGML_N_THREADS: 1
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
run:
|
||||
runs-on: ubuntu-20.04
|
||||
|
||||
4
.github/workflows/docker.yml
vendored
4
.github/workflows/docker.yml
vendored
@@ -15,6 +15,10 @@ on:
|
||||
branches:
|
||||
- master
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
push_to_registry:
|
||||
name: Push Docker image to Docker Hub
|
||||
|
||||
4
.github/workflows/editorconfig.yml
vendored
4
.github/workflows/editorconfig.yml
vendored
@@ -14,6 +14,10 @@ on:
|
||||
branches:
|
||||
- master
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
editorconfig:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
4
.github/workflows/nix-ci-aarch64.yml
vendored
4
.github/workflows/nix-ci-aarch64.yml
vendored
@@ -17,6 +17,10 @@ on:
|
||||
types: [opened, synchronize, reopened]
|
||||
paths: ['**/*.nix', 'flake.lock']
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
nix-build-aarch64:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
4
.github/workflows/nix-ci.yml
vendored
4
.github/workflows/nix-ci.yml
vendored
@@ -8,6 +8,10 @@ on:
|
||||
pull_request:
|
||||
types: [opened, synchronize, reopened]
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
nix-eval:
|
||||
strategy:
|
||||
|
||||
@@ -16,6 +16,10 @@ on:
|
||||
- 'requirements.txt'
|
||||
- 'requirements/*.txt'
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
python-check-requirements:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
4
.github/workflows/python-lint.yml
vendored
4
.github/workflows/python-lint.yml
vendored
@@ -2,6 +2,10 @@ name: flake8 Lint
|
||||
|
||||
on: [push, pull_request]
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
flake8-lint:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
44
.github/workflows/server.yml
vendored
44
.github/workflows/server.yml
vendored
@@ -18,24 +18,24 @@ on:
|
||||
schedule:
|
||||
- cron: '0 0 * * *'
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
server:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
sanitizer: [ADDRESS, THREAD, UNDEFINED]
|
||||
build_type: [Debug, Release]
|
||||
# TODO: temporary disabled due to linux kernel issues
|
||||
#sanitizer: [ADDRESS, THREAD, UNDEFINED]
|
||||
sanitizer: [UNDEFINED]
|
||||
build_type: [Debug]
|
||||
include:
|
||||
- build_type: Release
|
||||
sanitizer: ""
|
||||
exclude:
|
||||
- build_type: Release
|
||||
sanitizer: ADDRESS
|
||||
- build_type: Release
|
||||
sanitizer: THREAD
|
||||
- build_type: Release
|
||||
sanitizer: UNDEFINED
|
||||
fail-fast: false # While -DLLAMA_SANITIZE_THREAD=ON is broken
|
||||
|
||||
container:
|
||||
image: ubuntu:latest
|
||||
@@ -60,7 +60,8 @@ jobs:
|
||||
cmake \
|
||||
python3-pip \
|
||||
wget \
|
||||
language-pack-en
|
||||
language-pack-en \
|
||||
libcurl4-openssl-dev
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
@@ -70,6 +71,7 @@ jobs:
|
||||
cmake .. \
|
||||
-DLLAMA_NATIVE=OFF \
|
||||
-DLLAMA_BUILD_SERVER=ON \
|
||||
-DLLAMA_CURL=ON \
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
|
||||
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON ;
|
||||
cmake --build . --config ${{ matrix.build_type }} -j $(nproc) --target server
|
||||
@@ -81,13 +83,14 @@ jobs:
|
||||
|
||||
- name: Tests
|
||||
id: server_integration_tests
|
||||
if: ${{ !matrix.disabled_on_pr || !github.event.pull_request }}
|
||||
run: |
|
||||
cd examples/server/tests
|
||||
PORT=8888 ./tests.sh
|
||||
|
||||
- name: Slow tests
|
||||
id: server_integration_tests_slow
|
||||
if: ${{ github.event.schedule != '' && matrix.build_type == 'Release' || github.event.inputs.slow_tests == 'true' }}
|
||||
if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }}
|
||||
run: |
|
||||
cd examples/server/tests
|
||||
PORT=8888 ./tests.sh --stop --no-skipped --no-capture --tags slow
|
||||
@@ -103,12 +106,21 @@ jobs:
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: libCURL
|
||||
id: get_libcurl
|
||||
env:
|
||||
CURL_VERSION: 8.6.0_6
|
||||
run: |
|
||||
curl.exe -o $env:RUNNER_TEMP/curl.zip -L "https://curl.se/windows/dl-${env:CURL_VERSION}/curl-${env:CURL_VERSION}-win64-mingw.zip"
|
||||
mkdir $env:RUNNER_TEMP/libcurl
|
||||
tar.exe -xvf $env:RUNNER_TEMP/curl.zip --strip-components=1 -C $env:RUNNER_TEMP/libcurl
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -DLLAMA_BUILD_SERVER=ON -DCMAKE_BUILD_TYPE=Release ;
|
||||
cmake .. -DLLAMA_CURL=ON -DCURL_LIBRARY="$env:RUNNER_TEMP/libcurl/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:RUNNER_TEMP/libcurl/include"
|
||||
cmake --build . --config Release -j ${env:NUMBER_OF_PROCESSORS} --target server
|
||||
|
||||
- name: Python setup
|
||||
@@ -122,15 +134,21 @@ jobs:
|
||||
run: |
|
||||
pip install -r examples/server/tests/requirements.txt
|
||||
|
||||
- name: Copy Libcurl
|
||||
id: prepare_libcurl
|
||||
run: |
|
||||
cp $env:RUNNER_TEMP/libcurl/bin/libcurl-x64.dll ./build/bin/Release/libcurl-x64.dll
|
||||
|
||||
- name: Tests
|
||||
id: server_integration_tests
|
||||
if: ${{ !matrix.disabled_on_pr || !github.event.pull_request }}
|
||||
run: |
|
||||
cd examples/server/tests
|
||||
behave.exe --summary --stop --no-capture --exclude 'issues|wrong_usages|passkey' --tags llama.cpp
|
||||
|
||||
- name: Slow tests
|
||||
id: server_integration_tests_slow
|
||||
if: ${{ github.event.schedule != '' || github.event.inputs.slow_tests == 'true' }}
|
||||
if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }}
|
||||
run: |
|
||||
cd examples/server/tests
|
||||
behave.exe --stop --no-skipped --no-capture --tags slow
|
||||
|
||||
20
.github/workflows/tidy-post.yml
vendored
20
.github/workflows/tidy-post.yml
vendored
@@ -1,20 +0,0 @@
|
||||
name: clang-tidy review post comments
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
workflows: ["clang-tidy-review"]
|
||||
types:
|
||||
- completed
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: ZedThree/clang-tidy-review/post@v0.13.0
|
||||
# lgtm_comment_body, max_comments, and annotations need to be set on the posting workflow in a split setup
|
||||
with:
|
||||
# adjust options as necessary
|
||||
lgtm_comment_body: ''
|
||||
annotations: false
|
||||
max_comments: 25
|
||||
23
.github/workflows/tidy-review.yml
vendored
23
.github/workflows/tidy-review.yml
vendored
@@ -1,23 +0,0 @@
|
||||
name: clang-tidy-review
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
branches:
|
||||
- master
|
||||
|
||||
jobs:
|
||||
clang-tidy-review:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
|
||||
- uses: ZedThree/clang-tidy-review@v0.13.0
|
||||
id: review
|
||||
with:
|
||||
lgtm_comment_body: ''
|
||||
build_dir: build
|
||||
cmake_command: cmake . -B build -DCMAKE_EXPORT_COMPILE_COMMANDS=on
|
||||
split_workflow: true
|
||||
|
||||
- uses: ZedThree/clang-tidy-review/upload@v0.13.0
|
||||
4
.github/workflows/zig-build.yml
vendored
4
.github/workflows/zig-build.yml
vendored
@@ -6,6 +6,10 @@ on:
|
||||
branches:
|
||||
- master
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
build:
|
||||
strategy:
|
||||
|
||||
10
.gitignore
vendored
10
.gitignore
vendored
@@ -11,7 +11,10 @@
|
||||
*.gcda
|
||||
*.dot
|
||||
*.bat
|
||||
*.tmp
|
||||
*.metallib
|
||||
*.etag
|
||||
*.lastModified
|
||||
.DS_Store
|
||||
.build/
|
||||
.cache/
|
||||
@@ -25,6 +28,8 @@
|
||||
.vscode/
|
||||
.idea/
|
||||
|
||||
ggml-metal-embed.metal
|
||||
|
||||
lcov-report/
|
||||
gcovr-report/
|
||||
|
||||
@@ -45,6 +50,7 @@ models-mnt
|
||||
/embedding
|
||||
/gguf
|
||||
/gguf-llama-simple
|
||||
/gguf-split
|
||||
/gritlm
|
||||
/imatrix
|
||||
/infill
|
||||
@@ -53,6 +59,9 @@ models-mnt
|
||||
/llava-cli
|
||||
/lookahead
|
||||
/lookup
|
||||
/lookup-create
|
||||
/lookup-merge
|
||||
/lookup-stats
|
||||
/main
|
||||
/metal
|
||||
/passkey
|
||||
@@ -68,6 +77,7 @@ models-mnt
|
||||
/batched-bench
|
||||
/export-lora
|
||||
/finetune
|
||||
/retrieval
|
||||
/speculative
|
||||
/parallel
|
||||
/train-text-from-scratch
|
||||
|
||||
@@ -99,6 +99,8 @@ option(LLAMA_CUDA_F16 "llama: use 16 bit floats for some
|
||||
set(LLAMA_CUDA_KQUANTS_ITER "2" CACHE STRING "llama: iters./thread per block for Q2_K/Q6_K")
|
||||
set(LLAMA_CUDA_PEER_MAX_BATCH_SIZE "128" CACHE STRING
|
||||
"llama: max. batch size for using peer access")
|
||||
option(LLAMA_CUDA_NO_PEER_COPY "llama: do not use peer to peer copies" OFF)
|
||||
option(LLAMA_CURL "llama: use libcurl to download model from an URL" OFF)
|
||||
option(LLAMA_HIPBLAS "llama: use hipBLAS" OFF)
|
||||
option(LLAMA_HIP_UMA "llama: use HIP unified memory architecture" OFF)
|
||||
option(LLAMA_CLBLAST "llama: use CLBlast" OFF)
|
||||
@@ -118,6 +120,7 @@ option(LLAMA_SYCL "llama: use SYCL"
|
||||
option(LLAMA_SYCL_F16 "llama: use 16 bit floats for sycl calculations" OFF)
|
||||
set(LLAMA_SYCL_TARGET "INTEL" CACHE STRING "llama: sycl target device")
|
||||
option(LLAMA_CPU_HBM "llama: use memkind for CPU HBM" OFF)
|
||||
set(LLAMA_SCHED_MAX_COPIES "4" CACHE STRING "llama: max input copies for pipeline parallelism")
|
||||
|
||||
option(LLAMA_BUILD_TESTS "llama: build tests" ${LLAMA_STANDALONE})
|
||||
option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
|
||||
@@ -147,6 +150,8 @@ set(THREADS_PREFER_PTHREAD_FLAG ON)
|
||||
find_package(Threads REQUIRED)
|
||||
include(CheckCXXCompilerFlag)
|
||||
|
||||
add_compile_definitions(GGML_SCHED_MAX_COPIES=${LLAMA_SCHED_MAX_COPIES})
|
||||
|
||||
# enable libstdc++ assertions for debug builds
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
|
||||
add_compile_definitions($<$<CONFIG:Debug>:_GLIBCXX_ASSERTIONS>)
|
||||
@@ -197,9 +202,6 @@ if (LLAMA_METAL)
|
||||
add_compile_definitions(GGML_METAL_NDEBUG)
|
||||
endif()
|
||||
|
||||
# get full path to the file
|
||||
#add_compile_definitions(GGML_METAL_DIR_KERNELS="${CMAKE_CURRENT_SOURCE_DIR}/")
|
||||
|
||||
# copy ggml-common.h and ggml-metal.metal to bin directory
|
||||
configure_file(ggml-common.h ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-common.h COPYONLY)
|
||||
configure_file(ggml-metal.metal ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.metal COPYONLY)
|
||||
@@ -208,53 +210,62 @@ if (LLAMA_METAL)
|
||||
enable_language(ASM)
|
||||
add_compile_definitions(GGML_METAL_EMBED_LIBRARY)
|
||||
|
||||
set(METALLIB_COMMON "${CMAKE_CURRENT_SOURCE_DIR}/ggml-common.h")
|
||||
set(METALLIB_SOURCE "${CMAKE_CURRENT_SOURCE_DIR}/ggml-metal.metal")
|
||||
|
||||
file(MAKE_DIRECTORY "${CMAKE_BINARY_DIR}/autogenerated")
|
||||
set(EMBED_METALLIB_ASSEMBLY "${CMAKE_BINARY_DIR}/autogenerated/ggml-embed-metallib.s")
|
||||
|
||||
# merge ggml-common.h and ggml-metal.metal into a single file
|
||||
set(METALLIB_EMBED_ASM "${CMAKE_BINARY_DIR}/autogenerated/ggml-metal-embed.s")
|
||||
set(METALLIB_SOURCE_EMBED "${CMAKE_BINARY_DIR}/autogenerated/ggml-metal-embed.metal")
|
||||
|
||||
add_custom_command(
|
||||
OUTPUT ${EMBED_METALLIB_ASSEMBLY}
|
||||
COMMAND echo ".section __DATA,__ggml_metallib" > ${EMBED_METALLIB_ASSEMBLY}
|
||||
COMMAND echo ".globl _ggml_metallib_start" >> ${EMBED_METALLIB_ASSEMBLY}
|
||||
COMMAND echo "_ggml_metallib_start:" >> ${EMBED_METALLIB_ASSEMBLY}
|
||||
COMMAND echo ".incbin \\\"${METALLIB_SOURCE}\\\"" >> ${EMBED_METALLIB_ASSEMBLY}
|
||||
COMMAND echo ".globl _ggml_metallib_end" >> ${EMBED_METALLIB_ASSEMBLY}
|
||||
COMMAND echo "_ggml_metallib_end:" >> ${EMBED_METALLIB_ASSEMBLY}
|
||||
DEPENDS ${METALLIB_SOURCE}
|
||||
OUTPUT ${METALLIB_EMBED_ASM}
|
||||
COMMAND echo "Embedding Metal library"
|
||||
COMMAND sed -e '/\#include \"ggml-common.h\"/r ${METALLIB_COMMON}' -e '/\#include \"ggml-common.h\"/d' < ${METALLIB_SOURCE} > ${METALLIB_SOURCE_EMBED}
|
||||
COMMAND echo ".section __DATA,__ggml_metallib" > ${METALLIB_EMBED_ASM}
|
||||
COMMAND echo ".globl _ggml_metallib_start" >> ${METALLIB_EMBED_ASM}
|
||||
COMMAND echo "_ggml_metallib_start:" >> ${METALLIB_EMBED_ASM}
|
||||
COMMAND echo ".incbin \\\"${METALLIB_SOURCE_EMBED}\\\"" >> ${METALLIB_EMBED_ASM}
|
||||
COMMAND echo ".globl _ggml_metallib_end" >> ${METALLIB_EMBED_ASM}
|
||||
COMMAND echo "_ggml_metallib_end:" >> ${METALLIB_EMBED_ASM}
|
||||
DEPENDS ggml-metal.metal ggml-common.h
|
||||
COMMENT "Generate assembly for embedded Metal library"
|
||||
)
|
||||
|
||||
set(GGML_SOURCES_METAL ${GGML_SOURCES_METAL} ${EMBED_METALLIB_ASSEMBLY})
|
||||
endif()
|
||||
|
||||
if (LLAMA_METAL_SHADER_DEBUG)
|
||||
# custom command to do the following:
|
||||
# xcrun -sdk macosx metal -fno-fast-math -c ggml-metal.metal -o ggml-metal.air
|
||||
# xcrun -sdk macosx metallib ggml-metal.air -o default.metallib
|
||||
#
|
||||
# note: this is the only way I found to disable fast-math in Metal. it's ugly, but at least it works
|
||||
# disabling fast math is needed in order to pass tests/test-backend-ops
|
||||
# note: adding -fno-inline fixes the tests when using MTL_SHADER_VALIDATION=1
|
||||
# note: unfortunately, we have to call it default.metallib instead of ggml.metallib
|
||||
# ref: https://github.com/ggerganov/whisper.cpp/issues/1720
|
||||
set(XC_FLAGS -fno-fast-math -fno-inline -g)
|
||||
if (LLAMA_QKK_64)
|
||||
set(XC_FLAGS ${XC_FLAGS} -DQK_K=64)
|
||||
set(GGML_SOURCES_METAL ${GGML_SOURCES_METAL} ${METALLIB_EMBED_ASM})
|
||||
else()
|
||||
if (LLAMA_METAL_SHADER_DEBUG)
|
||||
# custom command to do the following:
|
||||
# xcrun -sdk macosx metal -fno-fast-math -c ggml-metal.metal -o ggml-metal.air
|
||||
# xcrun -sdk macosx metallib ggml-metal.air -o default.metallib
|
||||
#
|
||||
# note: this is the only way I found to disable fast-math in Metal. it's ugly, but at least it works
|
||||
# disabling fast math is needed in order to pass tests/test-backend-ops
|
||||
# note: adding -fno-inline fixes the tests when using MTL_SHADER_VALIDATION=1
|
||||
# note: unfortunately, we have to call it default.metallib instead of ggml.metallib
|
||||
# ref: https://github.com/ggerganov/whisper.cpp/issues/1720
|
||||
set(XC_FLAGS -fno-fast-math -fno-inline -g)
|
||||
else()
|
||||
set(XC_FLAGS -O3)
|
||||
endif()
|
||||
|
||||
add_custom_command(
|
||||
OUTPUT ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/default.metallib
|
||||
COMMAND xcrun -sdk macosx metal ${XC_FLAGS} -c ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.metal -o ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.air
|
||||
COMMAND xcrun -sdk macosx metallib ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.air -o ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/default.metallib
|
||||
DEPENDS ggml-metal.metal
|
||||
COMMAND rm -f ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.air
|
||||
COMMAND rm -f ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-common.h
|
||||
COMMAND rm -f ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.metal
|
||||
DEPENDS ggml-metal.metal ggml-common.h
|
||||
COMMENT "Compiling Metal kernels"
|
||||
)
|
||||
)
|
||||
|
||||
add_custom_target(
|
||||
ggml-metal ALL
|
||||
DEPENDS ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/default.metallib
|
||||
)
|
||||
endif()
|
||||
)
|
||||
endif() # LLAMA_METAL_EMBED_LIBRARY
|
||||
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS}
|
||||
${FOUNDATION_LIBRARY}
|
||||
@@ -377,6 +388,9 @@ if (LLAMA_CUBLAS)
|
||||
endif()
|
||||
add_compile_definitions(K_QUANTS_PER_ITERATION=${LLAMA_CUDA_KQUANTS_ITER})
|
||||
add_compile_definitions(GGML_CUDA_PEER_MAX_BATCH_SIZE=${LLAMA_CUDA_PEER_MAX_BATCH_SIZE})
|
||||
if (LLAMA_CUDA_NO_PEER_COPY)
|
||||
add_compile_definitions(GGML_CUDA_NO_PEER_COPY)
|
||||
endif()
|
||||
|
||||
if (LLAMA_STATIC)
|
||||
if (WIN32)
|
||||
@@ -521,6 +535,10 @@ if (LLAMA_HIPBLAS)
|
||||
add_compile_definitions(GGML_CUDA_FORCE_MMQ)
|
||||
endif()
|
||||
|
||||
if (LLAMA_CUDA_NO_PEER_COPY)
|
||||
add_compile_definitions(GGML_CUDA_NO_PEER_COPY)
|
||||
endif()
|
||||
|
||||
add_compile_definitions(GGML_CUDA_DMMV_X=${LLAMA_CUDA_DMMV_X})
|
||||
add_compile_definitions(GGML_CUDA_MMV_Y=${LLAMA_CUDA_MMV_Y})
|
||||
add_compile_definitions(K_QUANTS_PER_ITERATION=${LLAMA_CUDA_KQUANTS_ITER})
|
||||
@@ -1141,6 +1159,8 @@ endif()
|
||||
add_library(llama
|
||||
llama.cpp
|
||||
llama.h
|
||||
unicode.h
|
||||
unicode.cpp
|
||||
)
|
||||
|
||||
target_include_directories(llama PUBLIC .)
|
||||
|
||||
79
Makefile
79
Makefile
@@ -1,15 +1,16 @@
|
||||
# Define the default target now so that it is always the first target
|
||||
BUILD_TARGETS = \
|
||||
main quantize quantize-stats perplexity imatrix embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml \
|
||||
simple batched batched-bench save-load-state server gguf llama-bench libllava.a llava-cli baby-llama beam-search \
|
||||
speculative infill tokenize benchmark-matmult parallel finetune export-lora lookahead lookup passkey gritlm tests/test-c.o
|
||||
simple batched batched-bench save-load-state server gguf gguf-split llama-bench libllava.a llava-cli baby-llama beam-search \
|
||||
retrieval speculative infill tokenize benchmark-matmult parallel finetune export-lora lookahead lookup passkey gritlm tests/test-c.o
|
||||
|
||||
# Binaries only useful for tests
|
||||
TEST_TARGETS = \
|
||||
tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt \
|
||||
tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama \
|
||||
tests/test-tokenizer-0-falcon tests/test-tokenizer-1-llama tests/test-tokenizer-1-bpe tests/test-rope \
|
||||
tests/test-backend-ops tests/test-model-load-cancel tests/test-autorelease
|
||||
tests/test-backend-ops tests/test-model-load-cancel tests/test-autorelease \
|
||||
tests/test-json-schema-to-grammar
|
||||
|
||||
# Code coverage output files
|
||||
COV_TARGETS = *.gcno tests/*.gcno *.gcda tests/*.gcda *.gcov tests/*.gcov lcov-report gcovr-report
|
||||
@@ -167,6 +168,10 @@ ifeq ($(UNAME_S),OpenBSD)
|
||||
MK_CPPFLAGS += -D_BSD_SOURCE
|
||||
endif
|
||||
|
||||
ifdef LLAMA_SCHED_MAX_COPIES
|
||||
MK_CPPFLAGS += -DGGML_SCHED_MAX_COPIES=$(LLAMA_SCHED_MAX_COPIES)
|
||||
endif
|
||||
|
||||
ifdef LLAMA_DEBUG
|
||||
MK_CFLAGS += -O0 -g
|
||||
MK_CXXFLAGS += -O0 -g
|
||||
@@ -447,9 +452,9 @@ ifdef LLAMA_CUDA_PEER_MAX_BATCH_SIZE
|
||||
else
|
||||
MK_NVCCFLAGS += -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128
|
||||
endif # LLAMA_CUDA_PEER_MAX_BATCH_SIZE
|
||||
#ifdef LLAMA_CUDA_CUBLAS
|
||||
# MK_NVCCFLAGS += -DGGML_CUDA_CUBLAS
|
||||
#endif # LLAMA_CUDA_CUBLAS
|
||||
ifdef LLAMA_CUDA_NO_PEER_COPY
|
||||
MK_NVCCFLAGS += -DGGML_CUDA_NO_PEER_COPY
|
||||
endif # LLAMA_CUDA_NO_PEER_COPY
|
||||
ifdef LLAMA_CUDA_CCBIN
|
||||
MK_NVCCFLAGS += -ccbin $(LLAMA_CUDA_CCBIN)
|
||||
endif
|
||||
@@ -530,6 +535,9 @@ endif # LLAMA_HIP_UMA
|
||||
ifdef LLAMA_CUDA_FORCE_DMMV
|
||||
HIPFLAGS += -DGGML_CUDA_FORCE_DMMV
|
||||
endif # LLAMA_CUDA_FORCE_DMMV
|
||||
ifdef LLAMA_CUDA_NO_PEER_COPY
|
||||
HIPFLAGS += -DGGML_CUDA_NO_PEER_COPY
|
||||
endif # LLAMA_CUDA_NO_PEER_COPY
|
||||
OBJS += ggml-cuda.o
|
||||
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
|
||||
$(HIPCC) $(CXXFLAGS) $(HIPFLAGS) -x hip -c -o $@ $<
|
||||
@@ -549,19 +557,20 @@ endif
|
||||
endif # LLAMA_METAL
|
||||
|
||||
ifdef LLAMA_METAL
|
||||
ggml-metal.o: ggml-metal.m ggml-metal.h
|
||||
ggml-metal.o: ggml-metal.m ggml-metal.h ggml.h
|
||||
$(CC) $(CFLAGS) -c $< -o $@
|
||||
|
||||
ifdef LLAMA_METAL_EMBED_LIBRARY
|
||||
ggml-metal-embed.o: ggml-metal.metal
|
||||
ggml-metal-embed.o: ggml-metal.metal ggml-common.h
|
||||
@echo "Embedding Metal library"
|
||||
@sed -e '/#include "ggml-common.h"/r ggml-common.h' -e '/#include "ggml-common.h"/d' < ggml-metal.metal > ggml-metal-embed.metal
|
||||
$(eval TEMP_ASSEMBLY=$(shell mktemp))
|
||||
@echo ".section __DATA, __ggml_metallib" > $(TEMP_ASSEMBLY)
|
||||
@echo ".globl _ggml_metallib_start" >> $(TEMP_ASSEMBLY)
|
||||
@echo "_ggml_metallib_start:" >> $(TEMP_ASSEMBLY)
|
||||
@echo ".incbin \"$<\"" >> $(TEMP_ASSEMBLY)
|
||||
@echo ".globl _ggml_metallib_end" >> $(TEMP_ASSEMBLY)
|
||||
@echo "_ggml_metallib_end:" >> $(TEMP_ASSEMBLY)
|
||||
@echo ".section __DATA, __ggml_metallib" > $(TEMP_ASSEMBLY)
|
||||
@echo ".globl _ggml_metallib_start" >> $(TEMP_ASSEMBLY)
|
||||
@echo "_ggml_metallib_start:" >> $(TEMP_ASSEMBLY)
|
||||
@echo ".incbin \"ggml-metal-embed.metal\"" >> $(TEMP_ASSEMBLY)
|
||||
@echo ".globl _ggml_metallib_end" >> $(TEMP_ASSEMBLY)
|
||||
@echo "_ggml_metallib_end:" >> $(TEMP_ASSEMBLY)
|
||||
@$(AS) $(TEMP_ASSEMBLY) -o $@
|
||||
@rm -f ${TEMP_ASSEMBLY}
|
||||
endif
|
||||
@@ -590,6 +599,11 @@ include scripts/get-flags.mk
|
||||
CUDA_CXXFLAGS := $(BASE_CXXFLAGS) $(GF_CXXFLAGS) -Wno-pedantic
|
||||
endif
|
||||
|
||||
ifdef LLAMA_CURL
|
||||
override CXXFLAGS := $(CXXFLAGS) -DLLAMA_USE_CURL
|
||||
override LDFLAGS := $(LDFLAGS) -lcurl
|
||||
endif
|
||||
|
||||
#
|
||||
# Print build information
|
||||
#
|
||||
@@ -633,9 +647,12 @@ ggml-backend.o: ggml-backend.c ggml.h ggml-backend.h
|
||||
ggml-quants.o: ggml-quants.c ggml.h ggml-quants.h ggml-common.h
|
||||
$(CC) $(CFLAGS) -c $< -o $@
|
||||
|
||||
OBJS += ggml-alloc.o ggml-backend.o ggml-quants.o
|
||||
unicode.o: unicode.cpp unicode.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
llama.o: llama.cpp ggml.h ggml-alloc.h ggml-backend.h ggml-cuda.h ggml-metal.h llama.h
|
||||
OBJS += ggml-alloc.o ggml-backend.o ggml-quants.o unicode.o
|
||||
|
||||
llama.o: llama.cpp unicode.h ggml.h ggml-alloc.h ggml-backend.h ggml-cuda.h ggml-metal.h llama.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
COMMON_H_DEPS = common/common.h common/sampling.h common/log.h
|
||||
@@ -653,9 +670,15 @@ console.o: common/console.cpp common/console.h
|
||||
grammar-parser.o: common/grammar-parser.cpp common/grammar-parser.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
json-schema-to-grammar.o: common/json-schema-to-grammar.cpp common/json-schema-to-grammar.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
train.o: common/train.cpp common/train.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
ngram-cache.o: common/ngram-cache.cpp common/ngram-cache.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
libllama.so: llama.o ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS)
|
||||
|
||||
@@ -663,7 +686,7 @@ libllama.a: llama.o ggml.o $(OBJS) $(COMMON_DEPS)
|
||||
ar rcs libllama.a llama.o ggml.o $(OBJS) $(COMMON_DEPS)
|
||||
|
||||
clean:
|
||||
rm -vrf *.o tests/*.o *.so *.a *.dll benchmark-matmult common/build-info.cpp *.dot $(COV_TARGETS) $(BUILD_TARGETS) $(TEST_TARGETS)
|
||||
rm -vrf *.o tests/*.o *.so *.a *.dll benchmark-matmult lookup-create lookup-merge lookup-stats common/build-info.cpp *.dot $(COV_TARGETS) $(BUILD_TARGETS) $(TEST_TARGETS)
|
||||
find examples pocs -type f -name "*.o" -delete
|
||||
|
||||
#
|
||||
@@ -732,7 +755,7 @@ save-load-state: examples/save-load-state/save-load-state.cpp ggml.o llama.o $(C
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
server: examples/server/server.cpp examples/server/utils.hpp examples/server/httplib.h examples/server/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp common/stb_image.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
|
||||
server: examples/server/server.cpp examples/server/utils.hpp examples/server/httplib.h common/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp json-schema-to-grammar.o common/stb_image.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h %.hpp $<,$^) -Iexamples/server $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(LWINSOCK2)
|
||||
|
||||
@@ -740,6 +763,10 @@ gguf: examples/gguf/gguf.cpp ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
gguf-split: examples/gguf-split/gguf-split.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
@@ -777,6 +804,10 @@ export-lora: examples/export-lora/export-lora.cpp ggml.o common/common.h $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
retrieval: examples/retrieval/retrieval.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
speculative: examples/speculative/speculative.cpp ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
@@ -789,9 +820,15 @@ lookahead: examples/lookahead/lookahead.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
lookup: examples/lookup/lookup.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
lookup: examples/lookup/lookup.cpp ggml.o llama.o ngram-cache.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c examples/lookup/lookup-create.cpp -o $(call GET_OBJ_FILE, examples/lookup/lookup-create.cpp)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, examples/lookup/lookup-create.cpp) -o lookup-create $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c examples/lookup/lookup-merge.cpp -o $(call GET_OBJ_FILE, examples/lookup/lookup-merge.cpp)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, examples/lookup/lookup-merge.cpp) -o lookup-merge $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c examples/lookup/lookup-stats.cpp -o $(call GET_OBJ_FILE, examples/lookup/lookup-stats.cpp)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, examples/lookup/lookup-stats.cpp) -o lookup-stats $(LDFLAGS)
|
||||
|
||||
passkey: examples/passkey/passkey.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
@@ -848,6 +885,10 @@ tests/test-double-float: tests/test-double-float.cpp ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-json-schema-to-grammar: tests/test-json-schema-to-grammar.cpp json-schema-to-grammar.o ggml.o llama.o grammar-parser.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -Iexamples/server -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-grad0: tests/test-grad0.cpp ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
@@ -31,6 +31,7 @@ let package = Package(
|
||||
sources: [
|
||||
"ggml.c",
|
||||
"llama.cpp",
|
||||
"unicode.cpp",
|
||||
"ggml-alloc.c",
|
||||
"ggml-backend.c",
|
||||
"ggml-quants.c",
|
||||
|
||||
132
README-sycl.md
132
README-sycl.md
@@ -29,6 +29,8 @@ For Intel CPU, recommend to use llama.cpp for X86 (Intel MKL building).
|
||||
## News
|
||||
|
||||
- 2024.3
|
||||
- A blog is published: **Run LLM on all Intel GPUs Using llama.cpp**: [intel.com](https://www.intel.com/content/www/us/en/developer/articles/technical/run-llm-on-all-gpus-using-llama-cpp-artical.html) or [medium.com](https://medium.com/@jianyu_neo/run-llm-on-all-intel-gpus-using-llama-cpp-fd2e2dcbd9bd).
|
||||
- New base line is ready: [tag b2437](https://github.com/ggerganov/llama.cpp/tree/b2437).
|
||||
- Support multiple cards: **--split-mode**: [none|layer]; not support [row], it's on developing.
|
||||
- Support to assign main GPU by **--main-gpu**, replace $GGML_SYCL_DEVICE.
|
||||
- Support detecting all GPUs with level-zero and same top **Max compute units**.
|
||||
@@ -81,7 +83,7 @@ For dGPU, please make sure the device memory is enough. For llama-2-7b.Q4_0, rec
|
||||
|-|-|-|
|
||||
|Ampere Series| Support| A100|
|
||||
|
||||
### oneMKL
|
||||
### oneMKL for CUDA
|
||||
|
||||
The current oneMKL release does not contain the oneMKL cuBlas backend.
|
||||
As a result for Nvidia GPU's oneMKL must be built from source.
|
||||
@@ -114,7 +116,7 @@ You can choose between **F16** and **F32** build. F16 is faster for long-prompt
|
||||
# Or, for F32:
|
||||
docker build -t llama-cpp-sycl -f .devops/main-intel.Dockerfile .
|
||||
|
||||
# Note: you can also use the ".devops/main-server.Dockerfile", which compiles the "server" example
|
||||
# Note: you can also use the ".devops/server-intel.Dockerfile", which compiles the "server" example
|
||||
```
|
||||
|
||||
### Run
|
||||
@@ -254,16 +256,16 @@ Run without parameter:
|
||||
Check the ID in startup log, like:
|
||||
|
||||
```
|
||||
found 4 SYCL devices:
|
||||
Device 0: Intel(R) Arc(TM) A770 Graphics, compute capability 1.3,
|
||||
max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136
|
||||
Device 1: Intel(R) FPGA Emulation Device, compute capability 1.2,
|
||||
max compute_units 24, max work group size 67108864, max sub group size 64, global mem size 67065057280
|
||||
Device 2: 13th Gen Intel(R) Core(TM) i7-13700K, compute capability 3.0,
|
||||
max compute_units 24, max work group size 8192, max sub group size 64, global mem size 67065057280
|
||||
Device 3: Intel(R) Arc(TM) A770 Graphics, compute capability 3.0,
|
||||
max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136
|
||||
|
||||
found 6 SYCL devices:
|
||||
| | | |Compute |Max compute|Max work|Max sub| |
|
||||
|ID| Device Type| Name|capability|units |group |group |Global mem size|
|
||||
|--|------------------|---------------------------------------------|----------|-----------|--------|-------|---------------|
|
||||
| 0|[level_zero:gpu:0]| Intel(R) Arc(TM) A770 Graphics| 1.3| 512| 1024| 32| 16225243136|
|
||||
| 1|[level_zero:gpu:1]| Intel(R) UHD Graphics 770| 1.3| 32| 512| 32| 53651849216|
|
||||
| 2| [opencl:gpu:0]| Intel(R) Arc(TM) A770 Graphics| 3.0| 512| 1024| 32| 16225243136|
|
||||
| 3| [opencl:gpu:1]| Intel(R) UHD Graphics 770| 3.0| 32| 512| 32| 53651849216|
|
||||
| 4| [opencl:cpu:0]| 13th Gen Intel(R) Core(TM) i7-13700K| 3.0| 24| 8192| 64| 67064815616|
|
||||
| 5| [opencl:acc:0]| Intel(R) FPGA Emulation Device| 1.2| 24|67108864| 64| 67064815616|
|
||||
```
|
||||
|
||||
|Attribute|Note|
|
||||
@@ -271,12 +273,35 @@ found 4 SYCL devices:
|
||||
|compute capability 1.3|Level-zero running time, recommended |
|
||||
|compute capability 3.0|OpenCL running time, slower than level-zero in most cases|
|
||||
|
||||
4. Set device ID and execute llama.cpp
|
||||
4. Device selection and execution of llama.cpp
|
||||
|
||||
Set device ID = 0 by **GGML_SYCL_DEVICE=0**
|
||||
There are two device selection modes:
|
||||
|
||||
- Single device: Use one device assigned by user.
|
||||
- Multiple devices: Automatically choose the devices with the same biggest Max compute units.
|
||||
|
||||
|Device selection|Parameter|
|
||||
|-|-|
|
||||
|Single device|--split-mode none --main-gpu DEVICE_ID |
|
||||
|Multiple devices|--split-mode layer (default)|
|
||||
|
||||
Examples:
|
||||
|
||||
- Use device 0:
|
||||
|
||||
```sh
|
||||
GGML_SYCL_DEVICE=0 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm none -mg 0
|
||||
```
|
||||
or run by script:
|
||||
|
||||
```sh
|
||||
./examples/sycl/run_llama2.sh 0
|
||||
```
|
||||
|
||||
- Use multiple devices:
|
||||
|
||||
```sh
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm layer
|
||||
```
|
||||
or run by script:
|
||||
|
||||
@@ -289,12 +314,18 @@ Note:
|
||||
- By default, mmap is used to read model file. In some cases, it leads to the hang issue. Recommend to use parameter **--no-mmap** to disable mmap() to skip this issue.
|
||||
|
||||
|
||||
5. Check the device ID in output
|
||||
5. Verify the device ID in output
|
||||
|
||||
Verify to see if the selected GPU is shown in the output, like:
|
||||
|
||||
Like:
|
||||
```
|
||||
Using device **0** (Intel(R) Arc(TM) A770 Graphics) as main device
|
||||
detect 1 SYCL GPUs: [0] with top Max compute units:512
|
||||
```
|
||||
Or
|
||||
```
|
||||
use 1 SYCL GPUs: [0] with Max compute units:512
|
||||
```
|
||||
|
||||
|
||||
## Windows
|
||||
|
||||
@@ -355,7 +386,7 @@ a. Download & install cmake for Windows: https://cmake.org/download/
|
||||
|
||||
b. Download & install mingw-w64 make for Windows provided by w64devkit
|
||||
|
||||
- Download the latest fortran version of [w64devkit](https://github.com/skeeto/w64devkit/releases).
|
||||
- Download the 1.19.0 version of [w64devkit](https://github.com/skeeto/w64devkit/releases/download/v1.19.0/w64devkit-1.19.0.zip).
|
||||
|
||||
- Extract `w64devkit` on your pc.
|
||||
|
||||
@@ -430,15 +461,16 @@ build\bin\main.exe
|
||||
Check the ID in startup log, like:
|
||||
|
||||
```
|
||||
found 4 SYCL devices:
|
||||
Device 0: Intel(R) Arc(TM) A770 Graphics, compute capability 1.3,
|
||||
max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136
|
||||
Device 1: Intel(R) FPGA Emulation Device, compute capability 1.2,
|
||||
max compute_units 24, max work group size 67108864, max sub group size 64, global mem size 67065057280
|
||||
Device 2: 13th Gen Intel(R) Core(TM) i7-13700K, compute capability 3.0,
|
||||
max compute_units 24, max work group size 8192, max sub group size 64, global mem size 67065057280
|
||||
Device 3: Intel(R) Arc(TM) A770 Graphics, compute capability 3.0,
|
||||
max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136
|
||||
found 6 SYCL devices:
|
||||
| | | |Compute |Max compute|Max work|Max sub| |
|
||||
|ID| Device Type| Name|capability|units |group |group |Global mem size|
|
||||
|--|------------------|---------------------------------------------|----------|-----------|--------|-------|---------------|
|
||||
| 0|[level_zero:gpu:0]| Intel(R) Arc(TM) A770 Graphics| 1.3| 512| 1024| 32| 16225243136|
|
||||
| 1|[level_zero:gpu:1]| Intel(R) UHD Graphics 770| 1.3| 32| 512| 32| 53651849216|
|
||||
| 2| [opencl:gpu:0]| Intel(R) Arc(TM) A770 Graphics| 3.0| 512| 1024| 32| 16225243136|
|
||||
| 3| [opencl:gpu:1]| Intel(R) UHD Graphics 770| 3.0| 32| 512| 32| 53651849216|
|
||||
| 4| [opencl:cpu:0]| 13th Gen Intel(R) Core(TM) i7-13700K| 3.0| 24| 8192| 64| 67064815616|
|
||||
| 5| [opencl:acc:0]| Intel(R) FPGA Emulation Device| 1.2| 24|67108864| 64| 67064815616|
|
||||
|
||||
```
|
||||
|
||||
@@ -447,13 +479,31 @@ found 4 SYCL devices:
|
||||
|compute capability 1.3|Level-zero running time, recommended |
|
||||
|compute capability 3.0|OpenCL running time, slower than level-zero in most cases|
|
||||
|
||||
4. Set device ID and execute llama.cpp
|
||||
|
||||
Set device ID = 0 by **set GGML_SYCL_DEVICE=0**
|
||||
4. Device selection and execution of llama.cpp
|
||||
|
||||
There are two device selection modes:
|
||||
|
||||
- Single device: Use one device assigned by user.
|
||||
- Multiple devices: Automatically choose the devices with the same biggest Max compute units.
|
||||
|
||||
|Device selection|Parameter|
|
||||
|-|-|
|
||||
|Single device|--split-mode none --main-gpu DEVICE_ID |
|
||||
|Multiple devices|--split-mode layer (default)|
|
||||
|
||||
Examples:
|
||||
|
||||
- Use device 0:
|
||||
|
||||
```
|
||||
set GGML_SYCL_DEVICE=0
|
||||
build\bin\main.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0
|
||||
build\bin\main.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm none -mg 0
|
||||
```
|
||||
|
||||
- Use multiple devices:
|
||||
|
||||
```
|
||||
build\bin\main.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm layer
|
||||
```
|
||||
or run by script:
|
||||
|
||||
@@ -466,11 +516,17 @@ Note:
|
||||
- By default, mmap is used to read model file. In some cases, it leads to the hang issue. Recommend to use parameter **--no-mmap** to disable mmap() to skip this issue.
|
||||
|
||||
|
||||
5. Check the device ID in output
|
||||
|
||||
Like:
|
||||
5. Verify the device ID in output
|
||||
|
||||
Verify to see if the selected GPU is shown in the output, like:
|
||||
|
||||
```
|
||||
Using device **0** (Intel(R) Arc(TM) A770 Graphics) as main device
|
||||
detect 1 SYCL GPUs: [0] with top Max compute units:512
|
||||
```
|
||||
Or
|
||||
```
|
||||
use 1 SYCL GPUs: [0] with Max compute units:512
|
||||
```
|
||||
|
||||
## Environment Variable
|
||||
@@ -489,7 +545,6 @@ Using device **0** (Intel(R) Arc(TM) A770 Graphics) as main device
|
||||
|
||||
|Name|Value|Function|
|
||||
|-|-|-|
|
||||
|GGML_SYCL_DEVICE|0 (default) or 1|Set the device id used. Check the device ids by default running output|
|
||||
|GGML_SYCL_DEBUG|0 (default) or 1|Enable log function by macro: GGML_SYCL_DEBUG|
|
||||
|ZES_ENABLE_SYSMAN| 0 (default) or 1|Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory.<br>Recommended to use when --split-mode = layer|
|
||||
|
||||
@@ -507,6 +562,9 @@ Using device **0** (Intel(R) Arc(TM) A770 Graphics) as main device
|
||||
|
||||
## Q&A
|
||||
|
||||
Note: please add prefix **[SYCL]** in issue title, so that we will check it as soon as possible.
|
||||
|
||||
|
||||
- Error: `error while loading shared libraries: libsycl.so.7: cannot open shared object file: No such file or directory`.
|
||||
|
||||
Miss to enable oneAPI running environment.
|
||||
@@ -538,4 +596,4 @@ Using device **0** (Intel(R) Arc(TM) A770 Graphics) as main device
|
||||
|
||||
## Todo
|
||||
|
||||
- Support multiple cards.
|
||||
- Support row layer split for multiple card runs.
|
||||
|
||||
35
README.md
35
README.md
@@ -10,15 +10,19 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
|
||||
|
||||
### Recent API changes
|
||||
|
||||
- [2024 Mar 8] `llama_kv_cache_seq_rm()` returns a `bool` instead of `void`, and new `llama_n_max_seq()` returns the upper limit of acceptable `seq_id` in batches (relevant when dealing with multiple sequences) https://github.com/ggerganov/llama.cpp/pull/5328
|
||||
- [2024 Mar 13] Add `llama_synchronize()` + `llama_context_params.n_ubatch` https://github.com/ggerganov/llama.cpp/pull/6017
|
||||
- [2024 Mar 8] `llama_kv_cache_seq_rm()` returns a `bool` instead of `void`, and new `llama_n_seq_max()` returns the upper limit of acceptable `seq_id` in batches (relevant when dealing with multiple sequences) https://github.com/ggerganov/llama.cpp/pull/5328
|
||||
- [2024 Mar 4] Embeddings API updated https://github.com/ggerganov/llama.cpp/pull/5796
|
||||
- [2024 Mar 3] `struct llama_context_params` https://github.com/ggerganov/llama.cpp/pull/5849
|
||||
|
||||
### Hot topics
|
||||
|
||||
- Fix major bug in Metal batched inference https://github.com/ggerganov/llama.cpp/pull/6225
|
||||
- Multi-GPU pipeline parallelizm support https://github.com/ggerganov/llama.cpp/pull/6017
|
||||
- Looking for contributions to add Deepseek support: https://github.com/ggerganov/llama.cpp/issues/5981
|
||||
- Quantization blind testing: https://github.com/ggerganov/llama.cpp/discussions/5962
|
||||
- Initial Mamba support has been added: https://github.com/ggerganov/llama.cpp/pull/5328
|
||||
- Support loading sharded model, using `gguf-split` CLI https://github.com/ggerganov/llama.cpp/pull/6187
|
||||
|
||||
----
|
||||
|
||||
@@ -110,6 +114,7 @@ Typically finetunes of the base models below are supported as well.
|
||||
- [x] [CodeShell](https://github.com/WisdomShell/codeshell)
|
||||
- [x] [Gemma](https://ai.google.dev/gemma)
|
||||
- [x] [Mamba](https://github.com/state-spaces/mamba)
|
||||
- [x] [Command-R](https://huggingface.co/CohereForAI/c4ai-command-r-v01)
|
||||
|
||||
**Multimodal models:**
|
||||
|
||||
@@ -131,6 +136,7 @@ Typically finetunes of the base models below are supported as well.
|
||||
- Node.js: [withcatai/node-llama-cpp](https://github.com/withcatai/node-llama-cpp)
|
||||
- JS/TS (llama.cpp server client): [lgrammel/modelfusion](https://modelfusion.dev/integration/model-provider/llamacpp)
|
||||
- JavaScript/Wasm (works in browser): [tangledgroup/llama-cpp-wasm](https://github.com/tangledgroup/llama-cpp-wasm)
|
||||
- Typescript/Wasm (nicer API, available on npm): [ngxson/wllama](https://github.com/ngxson/wllama)
|
||||
- Ruby: [yoshoku/llama_cpp.rb](https://github.com/yoshoku/llama_cpp.rb)
|
||||
- Rust (nicer API): [mdrokz/rust-llama.cpp](https://github.com/mdrokz/rust-llama.cpp)
|
||||
- Rust (more direct bindings): [utilityai/llama-cpp-rs](https://github.com/utilityai/llama-cpp-rs)
|
||||
@@ -161,6 +167,7 @@ Unless otherwise noted these projects are open-source with permissive licensing:
|
||||
- [cztomsik/ava](https://github.com/cztomsik/ava) (MIT)
|
||||
- [ptsochantaris/emeltal](https://github.com/ptsochantaris/emeltal)
|
||||
- [pythops/tenere](https://github.com/pythops/tenere) (AGPL)
|
||||
- [RecurseChat](https://recurse.chat/) (proprietary)
|
||||
- [semperai/amica](https://github.com/semperai/amica)
|
||||
- [withcatai/catai](https://github.com/withcatai/catai)
|
||||
- [Mobile-Artificial-Intelligence/maid](https://github.com/Mobile-Artificial-Intelligence/maid) (MIT)
|
||||
@@ -902,6 +909,9 @@ First, install the essential packages for termux:
|
||||
pkg install clang wget git cmake
|
||||
```
|
||||
Second, obtain the [Android NDK](https://developer.android.com/ndk) and then build with CMake:
|
||||
|
||||
You can execute the following commands on your computer to avoid downloading the NDK to your mobile. Of course, you can also do this in Termux.
|
||||
|
||||
```
|
||||
$ mkdir build-android
|
||||
$ cd build-android
|
||||
@@ -910,7 +920,28 @@ $ cmake -DCMAKE_TOOLCHAIN_FILE=$NDK/build/cmake/android.toolchain.cmake -DANDROI
|
||||
$ make
|
||||
```
|
||||
Install [termux](https://termux.dev/) on your device and run `termux-setup-storage` to get access to your SD card.
|
||||
Finally, copy the `llama` binary and the model files to your device storage. Here is a demo of an interactive session running on Pixel 5 phone:
|
||||
Finally, copy these built `llama` binaries and the model file to your device storage. Because the file permissions in the Android sdcard cannot be changed, you can copy the executable files to the `/data/data/com.termux/files/home/bin` path, and then execute the following commands in Termux to add executable permission:
|
||||
|
||||
(Assumed that you have pushed the built executable files to the /sdcard/llama.cpp/bin path using `adb push`)
|
||||
```
|
||||
$cp -r /sdcard/llama.cpp/bin /data/data/com.termux/files/home/
|
||||
$cd /data/data/com.termux/files/home/bin
|
||||
$chmod +x ./*
|
||||
```
|
||||
|
||||
Download model [llama-2-7b-chat.Q4_K_M.gguf](https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF/blob/main/llama-2-7b-chat.Q4_K_M.gguf), and push it to `/sdcard/llama.cpp/`, then move it to `/data/data/com.termux/files/home/model/`
|
||||
|
||||
```
|
||||
$mv /sdcard/llama.cpp/llama-2-7b-chat.Q4_K_M.gguf /data/data/com.termux/files/home/model/
|
||||
```
|
||||
|
||||
Now, you can start chatting:
|
||||
```
|
||||
$cd /data/data/com.termux/files/home/bin
|
||||
$./main -m ../model/llama-2-7b-chat.Q4_K_M.gguf -n 128 -cml
|
||||
```
|
||||
|
||||
Here is a demo of an interactive session running on Pixel 5 phone:
|
||||
|
||||
https://user-images.githubusercontent.com/271616/225014776-1d567049-ad71-4ef2-b050-55b0b3b9274c.mp4
|
||||
|
||||
|
||||
16
build.zig
16
build.zig
@@ -115,24 +115,26 @@ pub fn build(b: *std.build.Builder) !void {
|
||||
const ggml_alloc = make.obj("ggml-alloc", "ggml-alloc.c");
|
||||
const ggml_backend = make.obj("ggml-backend", "ggml-backend.c");
|
||||
const ggml_quants = make.obj("ggml-quants", "ggml-quants.c");
|
||||
const unicode = make.obj("unicode", "unicode.cpp");
|
||||
const llama = make.obj("llama", "llama.cpp");
|
||||
const buildinfo = make.obj("common", "common/build-info.cpp");
|
||||
const common = make.obj("common", "common/common.cpp");
|
||||
const console = make.obj("console", "common/console.cpp");
|
||||
const sampling = make.obj("sampling", "common/sampling.cpp");
|
||||
const grammar_parser = make.obj("grammar-parser", "common/grammar-parser.cpp");
|
||||
const json_schema_to_grammar = make.obj("json-schema-to-grammar", "common/json-schema-to-grammar.cpp");
|
||||
const train = make.obj("train", "common/train.cpp");
|
||||
const clip = make.obj("clip", "examples/llava/clip.cpp");
|
||||
const llava = make.obj("llava", "examples/llava/llava.cpp");
|
||||
|
||||
_ = make.exe("main", "examples/main/main.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo, sampling, console, grammar_parser });
|
||||
_ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo });
|
||||
_ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo });
|
||||
_ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo });
|
||||
_ = make.exe("finetune", "examples/finetune/finetune.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo, train });
|
||||
_ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo, train });
|
||||
_ = make.exe("main", "examples/main/main.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, common, buildinfo, sampling, console, grammar_parser });
|
||||
_ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, common, buildinfo });
|
||||
_ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, common, buildinfo });
|
||||
_ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, common, buildinfo });
|
||||
_ = make.exe("finetune", "examples/finetune/finetune.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, common, buildinfo, train });
|
||||
_ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, common, buildinfo, train });
|
||||
|
||||
const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo, sampling, grammar_parser, clip, llava });
|
||||
const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, common, buildinfo, sampling, grammar_parser, json_schema_to_grammar, clip, llava });
|
||||
if (server.target.isWindows()) {
|
||||
server.linkSystemLibrary("ws2_32");
|
||||
}
|
||||
|
||||
@@ -47,6 +47,8 @@ if (BUILD_SHARED_LIBS)
|
||||
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
endif()
|
||||
|
||||
set(TARGET json-schema-to-grammar)
|
||||
add_library(${TARGET} OBJECT json-schema-to-grammar.cpp json-schema-to-grammar.h)
|
||||
|
||||
set(TARGET common)
|
||||
|
||||
@@ -60,14 +62,28 @@ add_library(${TARGET} STATIC
|
||||
console.cpp
|
||||
grammar-parser.h
|
||||
grammar-parser.cpp
|
||||
json.hpp
|
||||
train.h
|
||||
train.cpp
|
||||
ngram-cache.h
|
||||
ngram-cache.cpp
|
||||
)
|
||||
|
||||
if (BUILD_SHARED_LIBS)
|
||||
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
endif()
|
||||
|
||||
set(LLAMA_COMMON_EXTRA_LIBS build_info)
|
||||
|
||||
# Use curl to download model url
|
||||
if (LLAMA_CURL)
|
||||
find_package(CURL REQUIRED)
|
||||
add_definitions(-DLLAMA_USE_CURL)
|
||||
include_directories(${CURL_INCLUDE_DIRS})
|
||||
find_library(CURL_LIBRARY curl REQUIRED)
|
||||
set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} ${CURL_LIBRARY})
|
||||
endif ()
|
||||
|
||||
target_include_directories(${TARGET} PUBLIC .)
|
||||
target_compile_features(${TARGET} PUBLIC cxx_std_11)
|
||||
target_link_libraries(${TARGET} PRIVATE build_info PUBLIC llama)
|
||||
target_link_libraries(${TARGET} PRIVATE ${LLAMA_COMMON_EXTRA_LIBS} PUBLIC llama)
|
||||
|
||||
2440
common/common.cpp
2440
common/common.cpp
File diff suppressed because it is too large
Load Diff
@@ -37,10 +37,13 @@ extern char const *LLAMA_COMMIT;
|
||||
extern char const *LLAMA_COMPILER;
|
||||
extern char const *LLAMA_BUILD_TARGET;
|
||||
|
||||
struct llama_control_vector_load_info;
|
||||
|
||||
int32_t get_num_physical_cores();
|
||||
|
||||
//
|
||||
// CLI argument parsing
|
||||
//
|
||||
int32_t get_num_physical_cores();
|
||||
|
||||
struct gpt_params {
|
||||
uint32_t seed = LLAMA_DEFAULT_SEED; // RNG seed
|
||||
@@ -51,7 +54,8 @@ struct gpt_params {
|
||||
int32_t n_threads_batch_draft = -1;
|
||||
int32_t n_predict = -1; // new tokens to predict
|
||||
int32_t n_ctx = 512; // context size
|
||||
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
|
||||
int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
|
||||
int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
|
||||
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
||||
int32_t n_draft = 5; // number of tokens to draft during speculative decoding
|
||||
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
|
||||
@@ -84,17 +88,22 @@ struct gpt_params {
|
||||
// // sampling parameters
|
||||
struct llama_sampling_params sparams;
|
||||
|
||||
std::string model = "models/7B/ggml-model-f16.gguf"; // model path
|
||||
std::string model_draft = ""; // draft model for speculative decoding
|
||||
std::string model_alias = "unknown"; // model alias
|
||||
std::string prompt = "";
|
||||
std::string prompt_file = ""; // store the external prompt file name
|
||||
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
|
||||
std::string input_prefix = ""; // string to prefix user inputs with
|
||||
std::string input_suffix = ""; // string to suffix user inputs with
|
||||
std::string model = "models/7B/ggml-model-f16.gguf"; // model path
|
||||
std::string model_draft = ""; // draft model for speculative decoding
|
||||
std::string model_alias = "unknown"; // model alias
|
||||
std::string model_url = ""; // model url to download
|
||||
std::string hf_repo = ""; // HF repo
|
||||
std::string hf_file = ""; // HF file
|
||||
std::string prompt = "";
|
||||
std::string prompt_file = ""; // store the external prompt file name
|
||||
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
|
||||
std::string input_prefix = ""; // string to prefix user inputs with
|
||||
std::string input_suffix = ""; // string to suffix user inputs with
|
||||
std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
|
||||
std::string logdir = ""; // directory in which to save YAML log files
|
||||
std::string logits_file = ""; // file for saving *all* logits
|
||||
std::string logdir = ""; // directory in which to save YAML log files
|
||||
std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding
|
||||
std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding
|
||||
std::string logits_file = ""; // file for saving *all* logits
|
||||
|
||||
std::vector<llama_model_kv_override> kv_overrides;
|
||||
|
||||
@@ -102,6 +111,11 @@ struct gpt_params {
|
||||
std::vector<std::tuple<std::string, float>> lora_adapter; // lora adapter path with user defined scale
|
||||
std::string lora_base = ""; // base model path for the lora adapter
|
||||
|
||||
std::vector<llama_control_vector_load_info> control_vectors; // control vector with user defined scale
|
||||
|
||||
int32_t control_vector_layer_start = -1; // layer range for control vector
|
||||
int32_t control_vector_layer_end = -1; // layer range for control vector
|
||||
|
||||
int ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
|
||||
int ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
|
||||
// (which is more convenient to use for plotting)
|
||||
@@ -129,7 +143,7 @@ struct gpt_params {
|
||||
bool interactive_first = false; // wait for user input immediately
|
||||
bool multiline_input = false; // reverse the usage of `\`
|
||||
bool simple_io = false; // improves compatibility with subprocesses and limited consoles
|
||||
bool cont_batching = false; // insert new sequences for decoding on-the-fly
|
||||
bool cont_batching = true; // insert new sequences for decoding on-the-fly
|
||||
|
||||
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
|
||||
bool ignore_eos = false; // ignore generated EOS tokens
|
||||
@@ -157,6 +171,8 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
|
||||
|
||||
void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
|
||||
|
||||
bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param);
|
||||
|
||||
std::string get_system_info(const gpt_params & params);
|
||||
|
||||
std::string gpt_random_prompt(std::mt19937 & rng);
|
||||
@@ -182,6 +198,9 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
|
||||
struct llama_model_params llama_model_params_from_gpt_params (const gpt_params & params);
|
||||
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params);
|
||||
|
||||
struct llama_model * llama_load_model_from_url(const char * model_url, const char * path_model, const struct llama_model_params & params);
|
||||
struct llama_model * llama_load_model_from_hf(const char * repo, const char * file, const char * path_model, const struct llama_model_params & params);
|
||||
|
||||
// Batch utils
|
||||
|
||||
void llama_batch_clear(struct llama_batch & batch);
|
||||
@@ -267,3 +286,32 @@ void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size = 40
|
||||
|
||||
void llama_embd_normalize(const float * inp, float * out, int n);
|
||||
|
||||
float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n);
|
||||
|
||||
//
|
||||
// Control vector utils
|
||||
//
|
||||
|
||||
struct llama_control_vector_data {
|
||||
int n_embd;
|
||||
|
||||
// stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
|
||||
std::vector<float> data;
|
||||
};
|
||||
|
||||
struct llama_control_vector_load_info {
|
||||
float strength;
|
||||
|
||||
std::string fname;
|
||||
};
|
||||
|
||||
// Load control vectors, scale each by strength, and add them together.
|
||||
// On error, returns {-1, empty}
|
||||
llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos);
|
||||
|
||||
//
|
||||
// Split utils
|
||||
//
|
||||
static const char * const LLM_KV_SPLIT_NO = "split.no";
|
||||
static const char * const LLM_KV_SPLIT_COUNT = "split.count";
|
||||
static const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
|
||||
|
||||
721
common/json-schema-to-grammar.cpp
Normal file
721
common/json-schema-to-grammar.cpp
Normal file
@@ -0,0 +1,721 @@
|
||||
#include "json-schema-to-grammar.h"
|
||||
#include <algorithm>
|
||||
#include <fstream>
|
||||
#include <map>
|
||||
#include <regex>
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <unordered_set>
|
||||
#include <vector>
|
||||
|
||||
using json = nlohmann::ordered_json;
|
||||
|
||||
const std::string SPACE_RULE = "\" \"?";
|
||||
|
||||
std::unordered_map<std::string, std::string> PRIMITIVE_RULES = {
|
||||
{"boolean", "(\"true\" | \"false\") space"},
|
||||
{"number", "(\"-\"? ([0-9] | [1-9] [0-9]*)) (\".\" [0-9]+)? ([eE] [-+]? [0-9]+)? space"},
|
||||
{"integer", "(\"-\"? ([0-9] | [1-9] [0-9]*)) space"},
|
||||
{"value", "object | array | string | number | boolean"},
|
||||
{"object", "\"{\" space ( string \":\" space value (\",\" space string \":\" space value)* )? \"}\" space"},
|
||||
{"array", "\"[\" space ( value (\",\" space value)* )? \"]\" space"},
|
||||
{"uuid", "\"\\\"\" [0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F] "
|
||||
"\"-\" [0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F] "
|
||||
"\"-\" [0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F] "
|
||||
"\"-\" [0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F] "
|
||||
"\"-\" [0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F] \"\\\"\" space"},
|
||||
{"string", " \"\\\"\" (\n"
|
||||
" [^\"\\\\] |\n"
|
||||
" \"\\\\\" ([\"\\\\/bfnrt] | \"u\" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F])\n"
|
||||
" )* \"\\\"\" space"},
|
||||
{"null", "\"null\" space"}
|
||||
};
|
||||
std::vector<std::string> OBJECT_RULE_NAMES = {"object", "array", "string", "number", "boolean", "null", "value"};
|
||||
|
||||
std::unordered_map<std::string, std::string> DATE_RULES = {
|
||||
{"date", "[0-9] [0-9] [0-9] [0-9] \"-\" ( \"0\" [1-9] | \"1\" [0-2] ) \"-\" ( \"0\" [1-9] | [1-2] [0-9] | \"3\" [0-1] )"},
|
||||
{"time", "([01] [0-9] | \"2\" [0-3]) \":\" [0-5] [0-9] \":\" [0-5] [0-9] ( \".\" [0-9] [0-9] [0-9] )? ( \"Z\" | ( \"+\" | \"-\" ) ( [01] [0-9] | \"2\" [0-3] ) \":\" [0-5] [0-9] )"},
|
||||
{"date-time", "date \"T\" time"},
|
||||
{"date-string", "\"\\\"\" date \"\\\"\" space"},
|
||||
{"time-string", "\"\\\"\" time \"\\\"\" space"},
|
||||
{"date-time-string", "\"\\\"\" date-time \"\\\"\" space"}
|
||||
};
|
||||
|
||||
static bool is_reserved_name(const std::string & name) {
|
||||
static std::unordered_set<std::string> RESERVED_NAMES;
|
||||
if (RESERVED_NAMES.empty()) {
|
||||
RESERVED_NAMES.insert("root");
|
||||
for (const auto &p : PRIMITIVE_RULES) RESERVED_NAMES.insert(p.first);
|
||||
for (const auto &p : DATE_RULES) RESERVED_NAMES.insert(p.first);
|
||||
}
|
||||
return RESERVED_NAMES.find(name) != RESERVED_NAMES.end();
|
||||
}
|
||||
|
||||
std::regex INVALID_RULE_CHARS_RE("[^a-zA-Z0-9-]+");
|
||||
std::regex GRAMMAR_LITERAL_ESCAPE_RE("[\r\n\"]");
|
||||
std::regex GRAMMAR_RANGE_LITERAL_ESCAPE_RE("[\r\n\"\\]\\-\\\\]");
|
||||
std::unordered_map<char, std::string> GRAMMAR_LITERAL_ESCAPES = {
|
||||
{'\r', "\\r"}, {'\n', "\\n"}, {'"', "\\\""}, {'-', "\\-"}, {']', "\\]"}
|
||||
};
|
||||
|
||||
std::unordered_set<char> NON_LITERAL_SET = {'|', '.', '(', ')', '[', ']', '{', '}', '*', '+', '?'};
|
||||
std::unordered_set<char> ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS = {'[', ']', '(', ')', '|', '{', '}', '*', '+', '?'};
|
||||
|
||||
template <typename Iterator>
|
||||
std::string join(Iterator begin, Iterator end, const std::string & separator) {
|
||||
std::ostringstream result;
|
||||
if (begin != end) {
|
||||
result << *begin;
|
||||
for (Iterator it = begin + 1; it != end; ++it) {
|
||||
result << separator << *it;
|
||||
}
|
||||
}
|
||||
return result.str();
|
||||
}
|
||||
|
||||
static std::vector<std::string> split(const std::string & str, const std::string & delimiter) {
|
||||
std::vector<std::string> tokens;
|
||||
size_t start = 0;
|
||||
size_t end = str.find(delimiter);
|
||||
|
||||
while (end != std::string::npos) {
|
||||
tokens.push_back(str.substr(start, end - start));
|
||||
start = end + delimiter.length();
|
||||
end = str.find(delimiter, start);
|
||||
}
|
||||
|
||||
tokens.push_back(str.substr(start));
|
||||
|
||||
return tokens;
|
||||
}
|
||||
|
||||
static std::string repeat(const std::string & str, size_t n) {
|
||||
if (n == 0) {
|
||||
return "";
|
||||
}
|
||||
|
||||
std::string result;
|
||||
result.reserve(str.length() * n);
|
||||
|
||||
for (size_t i = 0; i < n; ++i) {
|
||||
result += str;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
static std::string replacePattern(const std::string & input, const std::regex & regex, const std::function<std::string(const std::smatch &)> & replacement) {
|
||||
std::smatch match;
|
||||
std::string result;
|
||||
|
||||
std::string::const_iterator searchStart(input.cbegin());
|
||||
std::string::const_iterator searchEnd(input.cend());
|
||||
|
||||
while (std::regex_search(searchStart, searchEnd, match, regex)) {
|
||||
result.append(searchStart, searchStart + match.position());
|
||||
result.append(replacement(match));
|
||||
searchStart = match.suffix().first;
|
||||
}
|
||||
|
||||
result.append(searchStart, searchEnd);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
static std::string format_literal(const std::string & literal) {
|
||||
std::string escaped = replacePattern(literal, GRAMMAR_LITERAL_ESCAPE_RE, [&](const std::smatch & match) {
|
||||
char c = match.str()[0];
|
||||
return GRAMMAR_LITERAL_ESCAPES.at(c);
|
||||
});
|
||||
return "\"" + escaped + "\"";
|
||||
}
|
||||
|
||||
|
||||
class SchemaConverter {
|
||||
private:
|
||||
std::function<json(const std::string &)> _fetch_json;
|
||||
bool _dotall;
|
||||
std::map<std::string, std::string> _rules;
|
||||
std::unordered_map<std::string, json> _refs;
|
||||
std::unordered_set<std::string> _refs_being_resolved;
|
||||
std::vector<std::string> _errors;
|
||||
std::vector<std::string> _warnings;
|
||||
|
||||
std::string _add_rule(const std::string & name, const std::string & rule) {
|
||||
std::string esc_name = regex_replace(name, INVALID_RULE_CHARS_RE, "-");
|
||||
if (_rules.find(esc_name) == _rules.end() || _rules[esc_name] == rule) {
|
||||
_rules[esc_name] = rule;
|
||||
return esc_name;
|
||||
} else {
|
||||
int i = 0;
|
||||
while (_rules.find(esc_name + std::to_string(i)) != _rules.end() && _rules[esc_name + std::to_string(i)] != rule) {
|
||||
i++;
|
||||
}
|
||||
std::string key = esc_name + std::to_string(i);
|
||||
_rules[key] = rule;
|
||||
return key;
|
||||
}
|
||||
}
|
||||
|
||||
std::string _generate_union_rule(const std::string & name, const std::vector<json> & alt_schemas) {
|
||||
std::vector<std::string> rules;
|
||||
for (size_t i = 0; i < alt_schemas.size(); i++) {
|
||||
rules.push_back(visit(alt_schemas[i], name + (name.empty() ? "alternative-" : "-") + std::to_string(i)));
|
||||
}
|
||||
return join(rules.begin(), rules.end(), " | ");
|
||||
}
|
||||
|
||||
std::string _visit_pattern(const std::string & pattern, const std::string & name) {
|
||||
if (!(pattern.front() == '^' && pattern.back() == '$')) {
|
||||
_errors.push_back("Pattern must start with '^' and end with '$'");
|
||||
return "";
|
||||
}
|
||||
std::string sub_pattern = pattern.substr(1, pattern.length() - 2);
|
||||
std::unordered_map<std::string, std::string> sub_rule_ids;
|
||||
|
||||
size_t i = 0;
|
||||
size_t length = sub_pattern.length();
|
||||
|
||||
using literal_or_rule = std::pair<std::string, bool>;
|
||||
auto to_rule = [&](const literal_or_rule & ls) {
|
||||
auto is_literal = ls.second;
|
||||
auto s = ls.first;
|
||||
return is_literal ? "\"" + s + "\"" : s;
|
||||
};
|
||||
std::function<literal_or_rule()> transform = [&]() -> literal_or_rule {
|
||||
size_t start = i;
|
||||
std::vector<literal_or_rule> seq;
|
||||
|
||||
auto get_dot = [&]() {
|
||||
std::string rule;
|
||||
if (_dotall) {
|
||||
rule = "[\\U00000000-\\U0010FFFF]";
|
||||
} else {
|
||||
rule = "[\\U00000000-\\x09\\x0B\\x0C\\x0E-\\U0010FFFF]";
|
||||
}
|
||||
return _add_rule("dot", rule);
|
||||
};
|
||||
|
||||
// Joins the sequence, merging consecutive literals together.
|
||||
auto join_seq = [&]() {
|
||||
std::vector<literal_or_rule> ret;
|
||||
|
||||
std::string literal;
|
||||
auto flush_literal = [&]() {
|
||||
if (literal.empty()) {
|
||||
return false;
|
||||
}
|
||||
ret.push_back(std::make_pair(literal, true));
|
||||
literal.clear();
|
||||
return true;
|
||||
};
|
||||
|
||||
for (const auto & item : seq) {
|
||||
auto is_literal = item.second;
|
||||
if (is_literal) {
|
||||
literal += item.first;
|
||||
} else {
|
||||
flush_literal();
|
||||
ret.push_back(item);
|
||||
}
|
||||
}
|
||||
flush_literal();
|
||||
|
||||
std::vector<std::string> results;
|
||||
for (const auto & item : ret) {
|
||||
results.push_back(to_rule(item));
|
||||
}
|
||||
return std::make_pair(join(results.begin(), results.end(), " "), false);
|
||||
};
|
||||
|
||||
while (i < length) {
|
||||
char c = sub_pattern[i];
|
||||
if (c == '.') {
|
||||
seq.push_back(std::make_pair(get_dot(), false));
|
||||
i++;
|
||||
} else if (c == '(') {
|
||||
i++;
|
||||
if (i < length) {
|
||||
if (sub_pattern[i] == '?') {
|
||||
_warnings.push_back("Unsupported pattern syntax");
|
||||
}
|
||||
}
|
||||
seq.push_back(std::make_pair("(" + to_rule(transform()) + ")", false));
|
||||
} else if (c == ')') {
|
||||
i++;
|
||||
if (start > 0 && sub_pattern[start - 1] != '(') {
|
||||
_errors.push_back("Unbalanced parentheses");
|
||||
}
|
||||
return join_seq();
|
||||
} else if (c == '[') {
|
||||
std::string square_brackets = std::string(1, c);
|
||||
i++;
|
||||
while (i < length && sub_pattern[i] != ']') {
|
||||
if (sub_pattern[i] == '\\') {
|
||||
square_brackets += sub_pattern.substr(i, 2);
|
||||
i += 2;
|
||||
} else {
|
||||
square_brackets += sub_pattern[i];
|
||||
i++;
|
||||
}
|
||||
}
|
||||
if (i >= length) {
|
||||
_errors.push_back("Unbalanced square brackets");
|
||||
}
|
||||
square_brackets += ']';
|
||||
i++;
|
||||
seq.push_back(std::make_pair(square_brackets, false));
|
||||
} else if (c == '|') {
|
||||
seq.push_back(std::make_pair("|", false));
|
||||
i++;
|
||||
} else if (c == '*' || c == '+' || c == '?') {
|
||||
seq.back() = std::make_pair(to_rule(seq.back()) + c, false);
|
||||
i++;
|
||||
} else if (c == '{') {
|
||||
std::string curly_brackets = std::string(1, c);
|
||||
i++;
|
||||
while (i < length && sub_pattern[i] != '}') {
|
||||
curly_brackets += sub_pattern[i];
|
||||
i++;
|
||||
}
|
||||
if (i >= length) {
|
||||
_errors.push_back("Unbalanced curly brackets");
|
||||
}
|
||||
curly_brackets += '}';
|
||||
i++;
|
||||
auto nums = split(curly_brackets.substr(1, curly_brackets.length() - 2), ",");
|
||||
int min_times = 0;
|
||||
int max_times = std::numeric_limits<int>::max();
|
||||
try {
|
||||
if (nums.size() == 1) {
|
||||
min_times = max_times = std::stoi(nums[0]);
|
||||
} else if (nums.size() != 2) {
|
||||
_errors.push_back("Wrong number of values in curly brackets");
|
||||
} else {
|
||||
if (!nums[0].empty()) {
|
||||
min_times = std::stoi(nums[0]);
|
||||
}
|
||||
if (!nums[1].empty()) {
|
||||
max_times = std::stoi(nums[1]);
|
||||
}
|
||||
}
|
||||
} catch (const std::invalid_argument & e) {
|
||||
_errors.push_back("Invalid number in curly brackets");
|
||||
return std::make_pair("", false);
|
||||
}
|
||||
auto &last = seq.back();
|
||||
auto &sub = last.first;
|
||||
auto sub_is_literal = last.second;
|
||||
|
||||
if (min_times == 0 && max_times == std::numeric_limits<int>::max()) {
|
||||
sub += "*";
|
||||
} else if (min_times == 0 && max_times == 1) {
|
||||
sub += "?";
|
||||
} else if (min_times == 1 && max_times == std::numeric_limits<int>::max()) {
|
||||
sub += "+";
|
||||
} else {
|
||||
if (!sub_is_literal) {
|
||||
std::string & sub_id = sub_rule_ids[sub];
|
||||
if (sub_id.empty()) {
|
||||
sub_id = _add_rule(name + "-" + std::to_string(sub_rule_ids.size()), sub);
|
||||
}
|
||||
sub = sub_id;
|
||||
}
|
||||
std::string result;
|
||||
if (sub_is_literal && min_times > 0) {
|
||||
result = "\"" + repeat(sub.substr(1, sub.length() - 2), min_times) + "\"";
|
||||
} else {
|
||||
for (int j = 0; j < min_times; j++) {
|
||||
if (j > 0) {
|
||||
result += " ";
|
||||
}
|
||||
result += sub;
|
||||
}
|
||||
}
|
||||
if (min_times > 0 && min_times < max_times) {
|
||||
result += " ";
|
||||
}
|
||||
if (max_times == std::numeric_limits<int>::max()) {
|
||||
result += sub + "*";
|
||||
} else {
|
||||
for (int j = min_times; j < max_times; j++) {
|
||||
if (j > min_times) {
|
||||
result += " ";
|
||||
}
|
||||
result += sub + "?";
|
||||
}
|
||||
}
|
||||
seq.back().first = result;
|
||||
seq.back().second = false;
|
||||
}
|
||||
} else {
|
||||
std::string literal;
|
||||
auto is_non_literal = [&](char c) {
|
||||
return NON_LITERAL_SET.find(c) != NON_LITERAL_SET.end();
|
||||
};
|
||||
while (i < length) {
|
||||
if (sub_pattern[i] == '\\' && i < length - 1) {
|
||||
char next = sub_pattern[i + 1];
|
||||
if (ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS.find(next) != ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS.end()) {
|
||||
i++;
|
||||
literal += sub_pattern[i];
|
||||
i++;
|
||||
} else {
|
||||
literal += sub_pattern.substr(i, 2);
|
||||
i += 2;
|
||||
}
|
||||
} else if (sub_pattern[i] == '"') {
|
||||
literal += "\\\"";
|
||||
i++;
|
||||
} else if (!is_non_literal(sub_pattern[i]) &&
|
||||
(i == length - 1 || literal.empty() || sub_pattern[i + 1] == '.' || !is_non_literal(sub_pattern[i + 1]))) {
|
||||
literal += sub_pattern[i];
|
||||
i++;
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!literal.empty()) {
|
||||
seq.push_back(std::make_pair(literal, true));
|
||||
}
|
||||
}
|
||||
}
|
||||
return join_seq();
|
||||
};
|
||||
return _add_rule(name, "\"\\\"\" " + to_rule(transform()) + " \"\\\"\" space");
|
||||
}
|
||||
|
||||
std::string _resolve_ref(const std::string & ref) {
|
||||
std::string ref_name = ref.substr(ref.find_last_of('/') + 1);
|
||||
if (_rules.find(ref_name) == _rules.end() && _refs_being_resolved.find(ref) == _refs_being_resolved.end()) {
|
||||
_refs_being_resolved.insert(ref);
|
||||
json resolved = _refs[ref];
|
||||
ref_name = visit(resolved, ref_name);
|
||||
_refs_being_resolved.erase(ref);
|
||||
}
|
||||
return ref_name;
|
||||
}
|
||||
|
||||
std::string _build_object_rule(
|
||||
const std::vector<std::pair<std::string, json>> & properties,
|
||||
const std::unordered_set<std::string> & required,
|
||||
const std::string & name,
|
||||
const json & additional_properties)
|
||||
{
|
||||
std::vector<std::string> required_props;
|
||||
std::vector<std::string> optional_props;
|
||||
std::unordered_map<std::string, std::string> prop_kv_rule_names;
|
||||
for (const auto & kv : properties) {
|
||||
const auto &prop_name = kv.first;
|
||||
const auto &prop_schema = kv.second;
|
||||
|
||||
std::string prop_rule_name = visit(prop_schema, name + (name.empty() ? "" : "-") + prop_name);
|
||||
prop_kv_rule_names[prop_name] = _add_rule(
|
||||
name + (name.empty() ? "" : "-") + prop_name + "-kv",
|
||||
format_literal(json(prop_name).dump()) + " space \":\" space " + prop_rule_name
|
||||
);
|
||||
if (required.find(prop_name) != required.end()) {
|
||||
required_props.push_back(prop_name);
|
||||
} else {
|
||||
optional_props.push_back(prop_name);
|
||||
}
|
||||
}
|
||||
if (additional_properties.is_object() || (additional_properties.is_boolean() && additional_properties.get<bool>())) {
|
||||
std::string sub_name = name + (name.empty() ? "" : "-") + "additional";
|
||||
std::string value_rule = visit(additional_properties.is_object() ? additional_properties : json::object(), sub_name + "-value");
|
||||
std::string kv_rule = _add_rule(sub_name + "-kv", _add_rule("string", PRIMITIVE_RULES.at("string")) + " \":\" space " + value_rule);
|
||||
prop_kv_rule_names["*"] = kv_rule;
|
||||
optional_props.push_back("*");
|
||||
}
|
||||
|
||||
std::string rule = "\"{\" space ";
|
||||
for (size_t i = 0; i < required_props.size(); i++) {
|
||||
if (i > 0) {
|
||||
rule += " \",\" space ";
|
||||
}
|
||||
rule += prop_kv_rule_names[required_props[i]];
|
||||
}
|
||||
|
||||
if (!optional_props.empty()) {
|
||||
rule += " (";
|
||||
if (!required_props.empty()) {
|
||||
rule += " \",\" space ( ";
|
||||
}
|
||||
|
||||
std::function<std::string(const std::vector<std::string> &, bool)> get_recursive_refs = [&](const std::vector<std::string> & ks, bool first_is_optional) {
|
||||
std::string res;
|
||||
if (ks.empty()) {
|
||||
return res;
|
||||
}
|
||||
std::string k = ks[0];
|
||||
std::string kv_rule_name = prop_kv_rule_names[k];
|
||||
if (k == "*") {
|
||||
res = _add_rule(
|
||||
name + (name.empty() ? "" : "-") + "additional-kvs",
|
||||
kv_rule_name + " ( \",\" space " + kv_rule_name + " )*"
|
||||
);
|
||||
} else if (first_is_optional) {
|
||||
res = "( \",\" space " + kv_rule_name + " )?";
|
||||
} else {
|
||||
res = kv_rule_name;
|
||||
}
|
||||
if (ks.size() > 1) {
|
||||
res += " " + _add_rule(
|
||||
name + (name.empty() ? "" : "-") + k + "-rest",
|
||||
get_recursive_refs(std::vector<std::string>(ks.begin() + 1, ks.end()), true)
|
||||
);
|
||||
}
|
||||
return res;
|
||||
};
|
||||
|
||||
for (size_t i = 0; i < optional_props.size(); i++) {
|
||||
if (i > 0) {
|
||||
rule += " | ";
|
||||
}
|
||||
rule += get_recursive_refs(std::vector<std::string>(optional_props.begin() + i, optional_props.end()), false);
|
||||
}
|
||||
if (!required_props.empty()) {
|
||||
rule += " )";
|
||||
}
|
||||
rule += " )?";
|
||||
}
|
||||
|
||||
rule += " \"}\" space";
|
||||
|
||||
return rule;
|
||||
}
|
||||
|
||||
public:
|
||||
SchemaConverter(
|
||||
const std::function<json(const std::string &)> & fetch_json,
|
||||
bool dotall)
|
||||
: _fetch_json(fetch_json), _dotall(dotall)
|
||||
{
|
||||
_rules["space"] = SPACE_RULE;
|
||||
}
|
||||
|
||||
void resolve_refs(json & schema, const std::string & url) {
|
||||
/*
|
||||
* Resolves all $ref fields in the given schema, fetching any remote schemas,
|
||||
* replacing each $ref with absolute reference URL and populates _refs with the
|
||||
* respective referenced (sub)schema dictionaries.
|
||||
*/
|
||||
std::function<void(json &)> visit_refs = [&](json & n) {
|
||||
if (n.is_array()) {
|
||||
for (auto & x : n) {
|
||||
visit_refs(x);
|
||||
}
|
||||
} else if (n.is_object()) {
|
||||
if (n.contains("$ref")) {
|
||||
std::string ref = n["$ref"];
|
||||
if (_refs.find(ref) == _refs.end()) {
|
||||
json target;
|
||||
if (ref.find("https://") == 0) {
|
||||
std::string base_url = ref.substr(0, ref.find('#'));
|
||||
auto it = _refs.find(base_url);
|
||||
if (it != _refs.end()) {
|
||||
target = it->second;
|
||||
} else {
|
||||
// Fetch the referenced schema and resolve its refs
|
||||
auto referenced = _fetch_json(ref);
|
||||
resolve_refs(referenced, base_url);
|
||||
_refs[base_url] = referenced;
|
||||
}
|
||||
if (ref.find('#') == std::string::npos || ref.substr(ref.find('#') + 1).empty()) {
|
||||
return;
|
||||
}
|
||||
} else if (ref.find("#/") == 0) {
|
||||
target = schema;
|
||||
n["$ref"] = url + ref;
|
||||
ref = url + ref;
|
||||
} else {
|
||||
_errors.push_back("Unsupported ref: " + ref);
|
||||
return;
|
||||
}
|
||||
std::string pointer = ref.substr(ref.find('#') + 1);
|
||||
std::vector<std::string> tokens = split(pointer, "/");
|
||||
for (size_t i = 1; i < tokens.size(); ++i) {
|
||||
std::string sel = tokens[i];
|
||||
if (target.is_null() || !target.contains(sel)) {
|
||||
_errors.push_back("Error resolving ref " + ref + ": " + sel + " not in " + target.dump());
|
||||
return;
|
||||
}
|
||||
target = target[sel];
|
||||
}
|
||||
_refs[ref] = target;
|
||||
}
|
||||
} else {
|
||||
for (auto & kv : n.items()) {
|
||||
visit_refs(kv.value());
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
visit_refs(schema);
|
||||
}
|
||||
|
||||
std::string _generate_constant_rule(const json & value) {
|
||||
return format_literal(value.dump());
|
||||
}
|
||||
|
||||
std::string visit(const json & schema, const std::string & name) {
|
||||
json schema_type = schema.contains("type") ? schema["type"] : json();
|
||||
std::string schema_format = schema.contains("format") ? schema["format"].get<std::string>() : "";
|
||||
std::string rule_name = is_reserved_name(name) ? name + "-" : name.empty() ? "root" : name;
|
||||
|
||||
if (schema.contains("$ref")) {
|
||||
return _add_rule(rule_name, _resolve_ref(schema["$ref"]));
|
||||
} else if (schema.contains("oneOf") || schema.contains("anyOf")) {
|
||||
std::vector<json> alt_schemas = schema.contains("oneOf") ? schema["oneOf"].get<std::vector<json>>() : schema["anyOf"].get<std::vector<json>>();
|
||||
return _add_rule(rule_name, _generate_union_rule(name, alt_schemas));
|
||||
} else if (schema_type.is_array()) {
|
||||
std::vector<json> schema_types;
|
||||
for (const auto & t : schema_type) {
|
||||
schema_types.push_back({{"type", t}});
|
||||
}
|
||||
return _add_rule(rule_name, _generate_union_rule(name, schema_types));
|
||||
} else if (schema.contains("const")) {
|
||||
return _add_rule(rule_name, _generate_constant_rule(schema["const"]));
|
||||
} else if (schema.contains("enum")) {
|
||||
std::vector<std::string> enum_values;
|
||||
for (const auto & v : schema["enum"]) {
|
||||
enum_values.push_back(_generate_constant_rule(v));
|
||||
}
|
||||
return _add_rule(rule_name, join(enum_values.begin(), enum_values.end(), " | "));
|
||||
} else if ((schema_type.is_null() || schema_type == "object")
|
||||
&& (schema.contains("properties") ||
|
||||
(schema.contains("additionalProperties") && schema["additionalProperties"] != true))) {
|
||||
std::unordered_set<std::string> required;
|
||||
if (schema.contains("required") && schema["required"].is_array()) {
|
||||
for (const auto & item : schema["required"]) {
|
||||
if (item.is_string()) {
|
||||
required.insert(item.get<std::string>());
|
||||
}
|
||||
}
|
||||
}
|
||||
std::vector<std::pair<std::string, json>> properties;
|
||||
if (schema.contains("properties")) {
|
||||
for (const auto & prop : schema["properties"].items()) {
|
||||
properties.emplace_back(prop.key(), prop.value());
|
||||
}
|
||||
}
|
||||
return _add_rule(rule_name,
|
||||
_build_object_rule(
|
||||
properties, required, name,
|
||||
schema.contains("additionalProperties") ? schema["additionalProperties"] : json()));
|
||||
} else if ((schema_type.is_null() || schema_type == "object") && schema.contains("allOf")) {
|
||||
std::unordered_set<std::string> required;
|
||||
std::vector<std::pair<std::string, json>> properties;
|
||||
std::string hybrid_name = name;
|
||||
std::function<void(const json &, bool)> add_component = [&](const json & comp_schema, bool is_required) {
|
||||
if (comp_schema.contains("$ref")) {
|
||||
add_component(_refs[comp_schema["$ref"]], is_required);
|
||||
} else if (comp_schema.contains("properties")) {
|
||||
for (const auto & prop : comp_schema["properties"].items()) {
|
||||
properties.emplace_back(prop.key(), prop.value());
|
||||
if (is_required) {
|
||||
required.insert(prop.key());
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// todo warning
|
||||
}
|
||||
};
|
||||
for (auto & t : schema["allOf"]) {
|
||||
if (t.contains("anyOf")) {
|
||||
for (auto & tt : t["anyOf"]) {
|
||||
add_component(tt, false);
|
||||
}
|
||||
} else {
|
||||
add_component(t, true);
|
||||
}
|
||||
}
|
||||
return _add_rule(rule_name, _build_object_rule(properties, required, hybrid_name, json()));
|
||||
} else if ((schema_type.is_null() || schema_type == "array") && (schema.contains("items") || schema.contains("prefixItems"))) {
|
||||
json items = schema.contains("items") ? schema["items"] : schema["prefixItems"];
|
||||
if (items.is_array()) {
|
||||
std::string rule = "\"[\" space ";
|
||||
for (size_t i = 0; i < items.size(); i++) {
|
||||
if (i > 0) {
|
||||
rule += " \",\" space ";
|
||||
}
|
||||
rule += visit(items[i], name + (name.empty() ? "" : "-") + "tuple-" + std::to_string(i));
|
||||
}
|
||||
rule += " \"]\" space";
|
||||
return _add_rule(rule_name, rule);
|
||||
} else {
|
||||
std::string item_rule_name = visit(items, name + (name.empty() ? "" : "-") + "item");
|
||||
std::string list_item_operator = "( \",\" space " + item_rule_name + " )";
|
||||
std::string successive_items;
|
||||
int min_items = schema.contains("minItems") ? schema["minItems"].get<int>() : 0;
|
||||
json max_items_json = schema.contains("maxItems") ? schema["maxItems"] : json();
|
||||
int max_items = max_items_json.is_number_integer() ? max_items_json.get<int>() : -1;
|
||||
if (min_items > 0) {
|
||||
successive_items += repeat(list_item_operator, min_items - 1);
|
||||
min_items--;
|
||||
}
|
||||
if (max_items >= 0 && max_items > min_items) {
|
||||
successive_items += repeat(list_item_operator + "?", max_items - min_items - 1);
|
||||
} else {
|
||||
successive_items += list_item_operator + "*";
|
||||
}
|
||||
std::string rule;
|
||||
if (min_items == 0) {
|
||||
rule = "\"[\" space ( " + item_rule_name + " " + successive_items + " )? \"]\" space";
|
||||
} else {
|
||||
rule = "\"[\" space " + item_rule_name + " " + successive_items + " \"]\" space";
|
||||
}
|
||||
return _add_rule(rule_name, rule);
|
||||
}
|
||||
} else if ((schema_type.is_null() || schema_type == "string") && schema.contains("pattern")) {
|
||||
return _visit_pattern(schema["pattern"], rule_name);
|
||||
} else if ((schema_type.is_null() || schema_type == "string") && std::regex_match(schema_format, std::regex("^uuid[1-5]?$"))) {
|
||||
return _add_rule(rule_name == "root" ? "root" : schema_format, PRIMITIVE_RULES.at("uuid"));
|
||||
} else if ((schema_type.is_null() || schema_type == "string") && DATE_RULES.find(schema_format) != DATE_RULES.end()) {
|
||||
for (const auto & kv : DATE_RULES) {
|
||||
_add_rule(kv.first, kv.second);
|
||||
}
|
||||
return schema_format + "-string";
|
||||
} else if (schema.empty() || schema_type == "object") {
|
||||
for (const auto & n : OBJECT_RULE_NAMES) {
|
||||
_add_rule(n, PRIMITIVE_RULES.at(n));
|
||||
}
|
||||
return _add_rule(rule_name, "object");
|
||||
} else {
|
||||
if (!schema_type.is_string() || PRIMITIVE_RULES.find(schema_type.get<std::string>()) == PRIMITIVE_RULES.end()) {
|
||||
_errors.push_back("Unrecognized schema: " + schema.dump());
|
||||
return "";
|
||||
}
|
||||
// TODO: support minimum, maximum, exclusiveMinimum, exclusiveMaximum at least for zero
|
||||
return _add_rule(rule_name == "root" ? "root" : schema_type.get<std::string>(), PRIMITIVE_RULES.at(schema_type.get<std::string>()));
|
||||
}
|
||||
}
|
||||
|
||||
void check_errors() {
|
||||
if (!_errors.empty()) {
|
||||
throw std::runtime_error("JSON schema conversion failed:\n" + join(_errors.begin(), _errors.end(), "\n"));
|
||||
}
|
||||
if (!_warnings.empty()) {
|
||||
fprintf(stderr, "WARNING: JSON schema conversion was incomplete: %s\n", join(_warnings.begin(), _warnings.end(), "; ").c_str());
|
||||
}
|
||||
}
|
||||
|
||||
std::string format_grammar() {
|
||||
std::stringstream ss;
|
||||
for (const auto & kv : _rules) {
|
||||
ss << kv.first << " ::= " << kv.second << std::endl;
|
||||
}
|
||||
return ss.str();
|
||||
}
|
||||
};
|
||||
|
||||
std::string json_schema_to_grammar(const json & schema) {
|
||||
SchemaConverter converter([](const std::string &) { return json::object(); }, /* dotall= */ false);
|
||||
auto copy = schema;
|
||||
converter.resolve_refs(copy, "input");
|
||||
converter.visit(copy, "");
|
||||
converter.check_errors();
|
||||
return converter.format_grammar();
|
||||
}
|
||||
4
common/json-schema-to-grammar.h
Normal file
4
common/json-schema-to-grammar.h
Normal file
@@ -0,0 +1,4 @@
|
||||
#pragma once
|
||||
#include "json.hpp"
|
||||
|
||||
std::string json_schema_to_grammar(const nlohmann::ordered_json& schema);
|
||||
File diff suppressed because it is too large
Load Diff
@@ -234,7 +234,7 @@ inline std::string log_filename_generator_impl(LogTriState multilog, const std::
|
||||
// INTERNAL, DO NOT USE
|
||||
// USE LOG() INSTEAD
|
||||
//
|
||||
#ifndef _MSC_VER
|
||||
#if !defined(_MSC_VER) or defined(__INTEL_LLVM_COMPILER)
|
||||
#define LOG_IMPL(str, ...) \
|
||||
do { \
|
||||
if (LOG_TARGET != nullptr) \
|
||||
@@ -257,7 +257,7 @@ inline std::string log_filename_generator_impl(LogTriState multilog, const std::
|
||||
// INTERNAL, DO NOT USE
|
||||
// USE LOG_TEE() INSTEAD
|
||||
//
|
||||
#ifndef _MSC_VER
|
||||
#if !defined(_MSC_VER) or defined(__INTEL_LLVM_COMPILER)
|
||||
#define LOG_TEE_IMPL(str, ...) \
|
||||
do { \
|
||||
if (LOG_TARGET != nullptr) \
|
||||
@@ -566,6 +566,7 @@ inline void log_print_usage()
|
||||
printf(" --log-new Create a separate new log file on start. "
|
||||
"Each log file will have unique name: \"<name>.<ID>.log\"\n");
|
||||
printf(" --log-append Don't truncate the old log file.\n");
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
#define log_dump_cmdline(argc, argv) log_dump_cmdline_impl(argc, argv)
|
||||
|
||||
282
common/ngram-cache.cpp
Normal file
282
common/ngram-cache.cpp
Normal file
@@ -0,0 +1,282 @@
|
||||
#include "ngram-cache.h"
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
|
||||
#include <cstdint>
|
||||
#include <fstream>
|
||||
|
||||
void llama_ngram_cache_update(llama_ngram_cache & ngram_cache, int ngram_min, int ngram_max,
|
||||
std::vector<llama_token> & inp, int nnew, bool print_progress) {
|
||||
const int64_t t_start_ms = ggml_time_ms();
|
||||
const int64_t inp_size = inp.size();
|
||||
|
||||
const int64_t n_todo = inp_size * (ngram_max - ngram_min + 1);
|
||||
int64_t n_done = 0;
|
||||
|
||||
for (int64_t ngram_size = ngram_min; ngram_size <= ngram_max; ++ngram_size) {
|
||||
const int64_t i_start = std::max(inp_size - nnew, ngram_size);
|
||||
for (int64_t i = i_start; i < inp_size; ++i) {
|
||||
const int64_t ngram_start = i - ngram_size;
|
||||
llama_ngram ngram(&inp[ngram_start], ngram_size);
|
||||
const llama_token token = inp[i];
|
||||
|
||||
llama_ngram_cache::iterator part_it = ngram_cache.find(ngram);
|
||||
if (part_it == ngram_cache.end()) {
|
||||
llama_ngram_cache_part part;
|
||||
part.emplace(token, 1);
|
||||
ngram_cache.emplace(ngram, part);
|
||||
} else {
|
||||
llama_ngram_cache_part::iterator token_count_it = part_it->second.find(token);
|
||||
if (token_count_it == part_it->second.end()) {
|
||||
part_it->second.emplace(token, 1);
|
||||
} else {
|
||||
token_count_it->second++;
|
||||
}
|
||||
}
|
||||
++n_done;
|
||||
|
||||
if (print_progress && n_done % 10000000 == 0) {
|
||||
const int64_t t_now_ms = ggml_time_ms();
|
||||
const int64_t eta_ms = (inp_size*(ngram_max-ngram_min+1) - n_done) * (t_now_ms - t_start_ms) / n_done;
|
||||
const int64_t eta_min = eta_ms / (60*1000);
|
||||
const int64_t eta_s = (eta_ms - 60*1000*eta_min) / 1000;
|
||||
|
||||
fprintf(stderr, "%s: %" PRId64 "/%" PRId64 " done, ETA: %02" PRId64 ":%02" PRId64 "\n", __func__, n_done, n_todo, eta_min, eta_s);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Helper function to get a token from the combined, speculative sequence of inp and draft.
|
||||
static llama_token get_token(const std::vector<llama_token> & inp, const std::vector<llama_token> & draft, const size_t i) {
|
||||
return i < inp.size() ? inp[i] : draft[1 + i - inp.size()];
|
||||
}
|
||||
|
||||
// If sample size or percentage are below these thresholds the draft is aborted early:
|
||||
constexpr int draft_min_sample_size_lax[LLAMA_NGRAM_MAX] = { 2, 2, 1, 1};
|
||||
constexpr int draft_min_percent_lax[LLAMA_NGRAM_MAX] = {66, 50, 50, 50};
|
||||
constexpr int draft_min_sample_size_strict[LLAMA_NGRAM_MAX] = { 4, 3, 2, 2};
|
||||
constexpr int draft_min_percent_strict[LLAMA_NGRAM_MAX] = {75, 66, 66, 66};
|
||||
|
||||
// Helper function that tries to draft a token from only the static ngram cache:
|
||||
static llama_token try_draft(llama_ngram_cache & nc_static, const llama_ngram ngram_static) {
|
||||
llama_ngram_cache::iterator part_static_it = nc_static.find(ngram_static);
|
||||
if (part_static_it == nc_static.end()) {
|
||||
return -1;
|
||||
}
|
||||
const llama_ngram_cache_part part_static = part_static_it->second;
|
||||
|
||||
int max_count_static = 0;
|
||||
int sum_count_static = 0;
|
||||
llama_token max_token = -1;
|
||||
|
||||
for (std::pair<llama_token, int> token_count_static : part_static) {
|
||||
const llama_token token = token_count_static.first;
|
||||
const int32_t count_static = token_count_static.second;
|
||||
|
||||
if (count_static > max_count_static) {
|
||||
max_token = token;
|
||||
max_count_static = count_static;
|
||||
}
|
||||
sum_count_static += count_static;
|
||||
}
|
||||
|
||||
if (sum_count_static < draft_min_sample_size_lax[LLAMA_NGRAM_STATIC-1]) {
|
||||
return -1;
|
||||
}
|
||||
if (100*max_count_static < draft_min_percent_lax[LLAMA_NGRAM_STATIC-1]*sum_count_static) {
|
||||
return -1;
|
||||
}
|
||||
return max_token;
|
||||
}
|
||||
|
||||
// Try to draft a token from primary cache (context/dynamic), validate with static cache:
|
||||
static llama_token try_draft(
|
||||
llama_ngram_cache & nc_primary, const std::vector<llama_ngram> & ngrams_primary, llama_ngram_cache_part & part_static,
|
||||
const int * min_sample_size, const int * min_percent) {
|
||||
|
||||
llama_token drafted_token = -1;
|
||||
|
||||
for (int i = ngrams_primary.size()-1; i >= 0 && drafted_token == -1; --i) {
|
||||
const llama_ngram ngram_primary = ngrams_primary[i];
|
||||
|
||||
llama_ngram_cache::iterator part_primary_it = nc_primary.find(ngram_primary);
|
||||
if (part_primary_it == nc_primary.end()) {
|
||||
continue;
|
||||
}
|
||||
const llama_ngram_cache_part part_primary = part_primary_it->second;
|
||||
|
||||
int max_count_primary = 0;
|
||||
int max_count_static = 0;
|
||||
int sum_count_primary = 0;
|
||||
llama_token max_token = -1;
|
||||
|
||||
for (std::pair<llama_token, int> token_count_primary : part_primary) {
|
||||
const llama_token token = token_count_primary.first;
|
||||
|
||||
llama_ngram_cache_part::iterator token_count_static_it = part_static.find(token);
|
||||
|
||||
const int32_t count_primary = token_count_primary.second;
|
||||
const int32_t count_static = token_count_static_it != part_static.end() ? 100*token_count_static_it->second : 1;
|
||||
|
||||
if (count_primary*count_static > max_count_primary*max_count_static) {
|
||||
max_token = token;
|
||||
max_count_primary = count_primary;
|
||||
max_count_static = count_static;
|
||||
}
|
||||
sum_count_primary += count_primary;
|
||||
}
|
||||
|
||||
if (sum_count_primary < min_sample_size[i]) {
|
||||
continue;
|
||||
}
|
||||
if (100*max_count_primary < min_percent[i]*sum_count_primary) {
|
||||
continue;;
|
||||
}
|
||||
drafted_token = max_token;
|
||||
}
|
||||
|
||||
return drafted_token;
|
||||
}
|
||||
|
||||
void llama_ngram_cache_draft(
|
||||
std::vector<llama_token> & inp, std::vector<llama_token> & draft, int n_draft, int ngram_min, int ngram_max,
|
||||
llama_ngram_cache & nc_context, llama_ngram_cache & nc_dynamic, llama_ngram_cache & nc_static
|
||||
) {
|
||||
GGML_ASSERT(draft.size() == 1);
|
||||
const int inp_size = inp.size();
|
||||
|
||||
if (inp_size < LLAMA_NGRAM_STATIC) {
|
||||
return;
|
||||
}
|
||||
|
||||
while ((int) draft.size()-1 < n_draft) {
|
||||
llama_token drafted_token = -1;
|
||||
|
||||
const int ngram_start_static = inp_size-LLAMA_NGRAM_STATIC + draft.size()-1;
|
||||
llama_ngram ngram_static;
|
||||
for (int j = ngram_start_static; j < ngram_start_static + LLAMA_NGRAM_STATIC; ++j) {
|
||||
ngram_static.tokens[j-ngram_start_static] = get_token(inp, draft, j);
|
||||
}
|
||||
llama_ngram_cache::iterator part_static_it = nc_static.find(ngram_static);
|
||||
llama_ngram_cache_part part_static;
|
||||
if (part_static_it != nc_static.end()) {
|
||||
part_static = part_static_it->second;
|
||||
}
|
||||
|
||||
// cd = context + dynamic
|
||||
std::vector<llama_ngram> ngrams_cd;
|
||||
for (int ngram_size_cd = ngram_min; ngram_size_cd <= ngram_max; ++ngram_size_cd) {
|
||||
const int ngram_start_cd = inp_size-ngram_size_cd + draft.size()-1;
|
||||
llama_ngram ngram_cd;
|
||||
for (int j = ngram_start_cd; j < ngram_start_cd + ngram_size_cd; ++j) {
|
||||
ngram_cd.tokens[j-ngram_start_cd] = get_token(inp, draft, j);
|
||||
}
|
||||
ngrams_cd.push_back(ngram_cd);
|
||||
}
|
||||
if (drafted_token == -1) {
|
||||
drafted_token = try_draft(nc_context, ngrams_cd, part_static, draft_min_sample_size_lax, draft_min_percent_lax);
|
||||
}
|
||||
if (drafted_token == -1) {
|
||||
drafted_token = try_draft(nc_dynamic, ngrams_cd, part_static, draft_min_sample_size_strict, draft_min_percent_strict);
|
||||
}
|
||||
if (drafted_token == -1) {
|
||||
drafted_token = try_draft(nc_static, ngram_static);
|
||||
}
|
||||
|
||||
if (drafted_token == -1) {
|
||||
break;
|
||||
}
|
||||
|
||||
LOG(" - draft candidate: token=%d\n", drafted_token);
|
||||
draft.push_back(drafted_token);
|
||||
}
|
||||
}
|
||||
|
||||
void llama_ngram_cache_save(llama_ngram_cache & ngram_cache, std::string & filename) {
|
||||
std::ofstream file_out(filename, std::ios::binary);
|
||||
for (std::pair<llama_ngram, llama_ngram_cache_part> item : ngram_cache) {
|
||||
const llama_ngram ngram = item.first;
|
||||
llama_ngram_cache_part token_counts = item.second;
|
||||
GGML_ASSERT(!token_counts.empty());
|
||||
const int32_t ntokens = token_counts.size();
|
||||
GGML_ASSERT(ntokens > 0);
|
||||
|
||||
file_out.write(reinterpret_cast<const char *>(&ngram), sizeof(llama_ngram));
|
||||
file_out.write(reinterpret_cast<const char *>(&ntokens), sizeof(int32_t));
|
||||
for (std::pair<llama_token, int32_t> item2 : token_counts) {
|
||||
const llama_token token = item2.first;
|
||||
const int32_t count = item2.second;
|
||||
GGML_ASSERT(count > 0);
|
||||
|
||||
file_out.write(reinterpret_cast<const char *>(&token), sizeof(llama_token));
|
||||
file_out.write(reinterpret_cast<const char *>(&count), sizeof(int32_t));
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
llama_ngram_cache llama_ngram_cache_load(std::string & filename) {
|
||||
std::ifstream hashmap_file(filename, std::ios::binary);
|
||||
if (!hashmap_file) {
|
||||
throw std::ifstream::failure("Unable to open file " + filename);
|
||||
}
|
||||
llama_ngram_cache ngram_cache;
|
||||
|
||||
llama_ngram ngram;
|
||||
int32_t ntokens;
|
||||
llama_token token;
|
||||
int32_t count;
|
||||
|
||||
char * ngramc = reinterpret_cast<char*>(&ngram);
|
||||
char * ntokensc = reinterpret_cast<char*>(&ntokens);
|
||||
char * tokenc = reinterpret_cast<char*>(&token);
|
||||
char * countc = reinterpret_cast<char*>(&count);
|
||||
while(hashmap_file.read(ngramc, sizeof(llama_ngram))) {
|
||||
GGML_ASSERT(!hashmap_file.eof());
|
||||
GGML_ASSERT(hashmap_file.read(ntokensc, sizeof(int32_t)));
|
||||
GGML_ASSERT(ntokens > 0);
|
||||
llama_ngram_cache_part token_counts;
|
||||
|
||||
for (int i = 0; i < ntokens; ++i) {
|
||||
GGML_ASSERT(!hashmap_file.eof());
|
||||
GGML_ASSERT(hashmap_file.read(tokenc, sizeof(llama_token)));
|
||||
GGML_ASSERT(!hashmap_file.eof());
|
||||
GGML_ASSERT(hashmap_file.read(countc, sizeof(int32_t)));
|
||||
GGML_ASSERT(count > 0);
|
||||
token_counts.emplace(token, count);
|
||||
}
|
||||
|
||||
ngram_cache.emplace(ngram, token_counts);
|
||||
}
|
||||
GGML_ASSERT(hashmap_file.eof());
|
||||
|
||||
return ngram_cache;
|
||||
}
|
||||
|
||||
void llama_ngram_cache_merge(llama_ngram_cache & ngram_cache_target, llama_ngram_cache & ngram_cache_add) {
|
||||
for (std::pair<llama_ngram, llama_ngram_cache_part> ngram_part : ngram_cache_add) {
|
||||
const llama_ngram ngram = ngram_part.first;
|
||||
llama_ngram_cache_part part = ngram_part.second;
|
||||
|
||||
llama_ngram_cache::iterator part_merged_it = ngram_cache_target.find(ngram);
|
||||
if (part_merged_it == ngram_cache_target.end()) {
|
||||
ngram_cache_target.emplace(ngram, part);
|
||||
continue;
|
||||
}
|
||||
|
||||
for (std::pair<llama_token, int32_t> token_count : part) {
|
||||
const llama_token token = token_count.first;
|
||||
const int32_t count = token_count.second;
|
||||
GGML_ASSERT(count > 0);
|
||||
|
||||
llama_ngram_cache_part::iterator token_count_merged_it = part_merged_it->second.find(token);
|
||||
if (token_count_merged_it == part_merged_it->second.end()) {
|
||||
part_merged_it->second.emplace(token, count);
|
||||
continue;
|
||||
}
|
||||
|
||||
token_count_merged_it->second += count;
|
||||
}
|
||||
}
|
||||
}
|
||||
94
common/ngram-cache.h
Normal file
94
common/ngram-cache.h
Normal file
@@ -0,0 +1,94 @@
|
||||
#pragma once
|
||||
|
||||
#include "llama.h"
|
||||
|
||||
#include <unordered_map>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#define LLAMA_NGRAM_MIN 1
|
||||
#define LLAMA_NGRAM_MAX 4
|
||||
#define LLAMA_NGRAM_STATIC 2
|
||||
|
||||
// Data structures to map n-grams to empirical token probabilities:
|
||||
|
||||
struct llama_ngram {
|
||||
llama_token tokens[LLAMA_NGRAM_MAX];
|
||||
|
||||
llama_ngram() {
|
||||
for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
|
||||
tokens[i] = -1;
|
||||
}
|
||||
}
|
||||
|
||||
llama_ngram(const llama_token * input, const int ngram_size) {
|
||||
for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
|
||||
tokens[i] = i < ngram_size ? input[i] : -1;
|
||||
}
|
||||
}
|
||||
|
||||
bool operator==(const llama_ngram & other) const {
|
||||
for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
|
||||
if (tokens[i] != other.tokens[i]) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
};
|
||||
|
||||
struct llama_ngram_hash_function {
|
||||
size_t operator()(const llama_ngram & ngram) const {
|
||||
size_t hash = 0;
|
||||
for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
|
||||
hash ^= std::hash<llama_token>{}(ngram.tokens[i]);
|
||||
}
|
||||
return hash;
|
||||
}
|
||||
};
|
||||
|
||||
// token -> number of times token has been seen
|
||||
typedef std::unordered_map<llama_token, int32_t> llama_ngram_cache_part;
|
||||
|
||||
// n-gram -> empirical distribution of following tokens
|
||||
typedef std::unordered_map<llama_ngram, llama_ngram_cache_part, llama_ngram_hash_function> llama_ngram_cache;
|
||||
|
||||
|
||||
// Update an ngram cache with tokens.
|
||||
// ngram_cache: the cache to modify.
|
||||
// ngram_min/ngram_max: the min/max size of the ngrams to extract from inp_data.
|
||||
// inp_data: the token sequence with which to update ngram_cache.
|
||||
// nnew: how many new tokens have been appended to inp_data since the last call to this function.
|
||||
// print_progress: whether to print progress to stderr.
|
||||
//
|
||||
// In order to get correct results inp_data can ONLY BE APPENDED TO.
|
||||
// Changes in the middle need a complete rebuild.
|
||||
void llama_ngram_cache_update(
|
||||
llama_ngram_cache & ngram_cache, int ngram_min, int ngram_max, std::vector<llama_token> & inp_data, int nnew, bool print_progress);
|
||||
|
||||
// Try to draft tokens from ngram caches.
|
||||
// inp: the tokens generated so far.
|
||||
// draft: the token sequence to draft. Expected to initially contain the previously sampled token.
|
||||
// n_draft: maximum number of tokens to add to draft.
|
||||
// ngram_min/gram_max: the min/max size of the ngrams in nc_context and nc_dynamic.
|
||||
// nc_context: ngram cache based on current context.
|
||||
// nc_dynamic: ngram cache based on previous user generations.
|
||||
// nc_static: ngram cache generated from a large text corpus, used for validation.
|
||||
void llama_ngram_cache_draft(
|
||||
std::vector<llama_token> & inp, std::vector<llama_token> & draft, int n_draft, int ngram_min, int ngram_max,
|
||||
llama_ngram_cache & nc_context, llama_ngram_cache & nc_dynamic, llama_ngram_cache & nc_static);
|
||||
|
||||
// Save an ngram cache to a file.
|
||||
// ngram_cache: the ngram cache to save.
|
||||
// filename: the path under which to save the ngram cache.
|
||||
void llama_ngram_cache_save(llama_ngram_cache & ngram_cache, std::string & filename);
|
||||
|
||||
// Load an ngram cache saved with llama_ngram_cache_save.
|
||||
// filename: the path from which to load the ngram cache.
|
||||
// returns: an ngram cache containing the information saved to filename.
|
||||
llama_ngram_cache llama_ngram_cache_load(std::string & filename);
|
||||
|
||||
// Merge two ngram caches.
|
||||
// ngram_cache_target: the ngram cache to which to add the information from ngram_cache_add.
|
||||
// ngram_cache_add: the ngram cache to add to ngram_cache_target.
|
||||
void llama_ngram_cache_merge(llama_ngram_cache & ngram_cache_target, llama_ngram_cache & ngram_cache_add);
|
||||
@@ -17,6 +17,13 @@ struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// Ensure that there is a "root" node.
|
||||
if (result->parsed_grammar.symbol_ids.find("root") == result->parsed_grammar.symbol_ids.end()) {
|
||||
fprintf(stderr, "%s: grammar does not contain a 'root' symbol\n", __func__);
|
||||
delete result;
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
std::vector<const llama_grammar_element *> grammar_rules(result->parsed_grammar.c_rules());
|
||||
|
||||
result->grammar = llama_grammar_init(
|
||||
@@ -161,77 +168,20 @@ static llama_token llama_sampling_sample_impl(
|
||||
bool is_resampling) { // Add a parameter to indicate if we are resampling
|
||||
const llama_sampling_params & params = ctx_sampling->params;
|
||||
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
|
||||
|
||||
const float temp = params.temp;
|
||||
const int32_t penalty_last_n = params.penalty_last_n < 0 ? params.n_prev : params.penalty_last_n;
|
||||
const float penalty_repeat = params.penalty_repeat;
|
||||
const float penalty_freq = params.penalty_freq;
|
||||
const float penalty_present = params.penalty_present;
|
||||
const int mirostat = params.mirostat;
|
||||
const float mirostat_tau = params.mirostat_tau;
|
||||
const float mirostat_eta = params.mirostat_eta;
|
||||
const bool penalize_nl = params.penalize_nl;
|
||||
|
||||
auto & prev = ctx_sampling->prev;
|
||||
auto & cur = ctx_sampling->cur;
|
||||
|
||||
std::vector<float> original_logits;
|
||||
auto cur_p = llama_sampling_prepare(ctx_sampling, ctx_main, ctx_cfg, idx, !is_resampling, &original_logits);
|
||||
if (!is_resampling) {
|
||||
GGML_ASSERT(!original_logits.empty());
|
||||
}
|
||||
llama_token id = 0;
|
||||
|
||||
// Get a pointer to the logits
|
||||
float * logits = llama_get_logits_ith(ctx_main, idx);
|
||||
|
||||
// Declare original_logits at the beginning of the function scope
|
||||
std::vector<float> original_logits;
|
||||
|
||||
if (!is_resampling) {
|
||||
// Only make a copy of the original logits if we are not in the resampling phase, not sure if I actually have to do this.
|
||||
original_logits = std::vector<float>(logits, logits + llama_n_vocab(llama_get_model(ctx_main)));
|
||||
}
|
||||
|
||||
// apply params.logit_bias map
|
||||
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
|
||||
logits[it->first] += it->second;
|
||||
}
|
||||
|
||||
if (ctx_cfg) {
|
||||
float * logits_guidance = llama_get_logits_ith(ctx_cfg, idx);
|
||||
llama_sample_apply_guidance(ctx_main, logits, logits_guidance, params.cfg_scale);
|
||||
}
|
||||
|
||||
cur.clear();
|
||||
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
cur.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
||||
}
|
||||
|
||||
llama_token_data_array cur_p = { cur.data(), cur.size(), false };
|
||||
|
||||
// apply penalties
|
||||
const auto& penalty_tokens = params.use_penalty_prompt_tokens ? params.penalty_prompt_tokens : prev;
|
||||
const int penalty_tokens_used_size = std::min((int)penalty_tokens.size(), penalty_last_n);
|
||||
if (penalty_tokens_used_size) {
|
||||
const float nl_logit = logits[llama_token_nl(llama_get_model(ctx_main))];
|
||||
|
||||
llama_sample_repetition_penalties(ctx_main, &cur_p,
|
||||
penalty_tokens.data() + penalty_tokens.size() - penalty_tokens_used_size,
|
||||
penalty_tokens_used_size, penalty_repeat, penalty_freq, penalty_present);
|
||||
|
||||
if (!penalize_nl) {
|
||||
for (size_t idx = 0; idx < cur_p.size; idx++) {
|
||||
if (cur_p.data[idx].id == llama_token_nl(llama_get_model(ctx_main))) {
|
||||
cur_p.data[idx].logit = nl_logit;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// If we are in the resampling phase, apply grammar checks before sampling logic
|
||||
if (is_resampling && ctx_sampling->grammar != NULL) {
|
||||
llama_sample_grammar(ctx_main, &cur_p, ctx_sampling->grammar);
|
||||
}
|
||||
|
||||
if (temp < 0.0) {
|
||||
// greedy sampling, with probs
|
||||
llama_sample_softmax(ctx_main, &cur_p);
|
||||
@@ -295,11 +245,13 @@ static llama_token llama_sampling_sample_impl(
|
||||
return id;
|
||||
}
|
||||
|
||||
static llama_token_data_array llama_sample_probability_distribution_impl(
|
||||
static llama_token_data_array llama_sampling_prepare_impl(
|
||||
struct llama_sampling_context * ctx_sampling,
|
||||
struct llama_context * ctx_main,
|
||||
struct llama_context * ctx_cfg,
|
||||
const int idx) {
|
||||
const int idx,
|
||||
bool apply_grammar,
|
||||
std::vector<float> * original_logits) {
|
||||
const llama_sampling_params & params = ctx_sampling->params;
|
||||
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
|
||||
@@ -308,6 +260,7 @@ static llama_token_data_array llama_sample_probability_distribution_impl(
|
||||
const float penalty_repeat = params.penalty_repeat;
|
||||
const float penalty_freq = params.penalty_freq;
|
||||
const float penalty_present = params.penalty_present;
|
||||
|
||||
const bool penalize_nl = params.penalize_nl;
|
||||
|
||||
auto & prev = ctx_sampling->prev;
|
||||
@@ -316,8 +269,10 @@ static llama_token_data_array llama_sample_probability_distribution_impl(
|
||||
// Get a pointer to the logits
|
||||
float * logits = llama_get_logits_ith(ctx_main, idx);
|
||||
|
||||
// Declare original_logits at the beginning of the function scope
|
||||
std::vector<float> original_logits;
|
||||
if (apply_grammar && original_logits != NULL) {
|
||||
// Only make a copy of the original logits if we are not applying grammar checks, not sure if I actually have to do this.
|
||||
*original_logits = {logits, logits + llama_n_vocab(llama_get_model(ctx_main))};
|
||||
}
|
||||
|
||||
// apply params.logit_bias map
|
||||
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
|
||||
@@ -357,12 +312,11 @@ static llama_token_data_array llama_sample_probability_distribution_impl(
|
||||
}
|
||||
}
|
||||
|
||||
// apply grammar checks
|
||||
if (ctx_sampling->grammar != NULL) {
|
||||
// apply grammar checks before sampling logic
|
||||
if (apply_grammar && ctx_sampling->grammar != NULL) {
|
||||
llama_sample_grammar(ctx_main, &cur_p, ctx_sampling->grammar);
|
||||
}
|
||||
|
||||
llama_sample_softmax(ctx_main, &cur_p);
|
||||
return cur_p;
|
||||
}
|
||||
|
||||
@@ -375,12 +329,14 @@ llama_token llama_sampling_sample(
|
||||
return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, false);
|
||||
}
|
||||
|
||||
llama_token_data_array llama_sampling_probability_distribution(
|
||||
llama_token_data_array llama_sampling_prepare(
|
||||
struct llama_sampling_context * ctx_sampling,
|
||||
struct llama_context * ctx_main,
|
||||
struct llama_context * ctx_cfg,
|
||||
const int idx) {
|
||||
return llama_sample_probability_distribution_impl(ctx_sampling,ctx_main, ctx_cfg, idx);
|
||||
const int idx,
|
||||
bool apply_grammar,
|
||||
std::vector<float> * original_logits) {
|
||||
return llama_sampling_prepare_impl(ctx_sampling,ctx_main, ctx_cfg, idx, apply_grammar, original_logits);
|
||||
}
|
||||
|
||||
void llama_sampling_accept(
|
||||
|
||||
@@ -32,13 +32,13 @@ typedef struct llama_sampling_params {
|
||||
float dynatemp_range = 0.00f; // 0.0 = disabled
|
||||
float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
|
||||
int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
|
||||
float penalty_repeat = 1.10f; // 1.0 = disabled
|
||||
float penalty_repeat = 1.00f; // 1.0 = disabled
|
||||
float penalty_freq = 0.00f; // 0.0 = disabled
|
||||
float penalty_present = 0.00f; // 0.0 = disabled
|
||||
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
|
||||
float mirostat_tau = 5.00f; // target entropy
|
||||
float mirostat_eta = 0.10f; // learning rate
|
||||
bool penalize_nl = true; // consider newlines as a repeatable token
|
||||
bool penalize_nl = false; // consider newlines as a repeatable token
|
||||
|
||||
std::vector<llama_sampler_type> samplers_sequence = {
|
||||
llama_sampler_type::TOP_K,
|
||||
@@ -131,12 +131,14 @@ llama_token llama_sampling_sample(
|
||||
struct llama_context * ctx_cfg,
|
||||
int idx = 0);
|
||||
|
||||
// returns the probability that token of given id will be sampled
|
||||
llama_token_data_array llama_sampling_probability_distribution(
|
||||
// Prepares and adjusts the set of token candidates for sampling based on penalties, biases, and sampling parameters.
|
||||
llama_token_data_array llama_sampling_prepare(
|
||||
struct llama_sampling_context * ctx_sampling,
|
||||
struct llama_context * ctx_main,
|
||||
struct llama_context * ctx_cfg,
|
||||
int idx = 0);
|
||||
int idx = 0,
|
||||
bool apply_grammar = true,
|
||||
std::vector<float> * original_logits = nullptr);
|
||||
|
||||
void llama_sampling_accept(
|
||||
struct llama_sampling_context * ctx_sampling,
|
||||
|
||||
@@ -93,31 +93,42 @@ class Model(ABC):
|
||||
|
||||
if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
|
||||
self.gguf_writer.add_context_length(n_ctx)
|
||||
print(f"gguf: context length = {n_ctx}")
|
||||
|
||||
n_embd = self.find_hparam(["hidden_size", "n_embd"])
|
||||
self.gguf_writer.add_embedding_length(n_embd)
|
||||
print(f"gguf: embedding length = {n_embd}")
|
||||
|
||||
if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
|
||||
self.gguf_writer.add_feed_forward_length(n_ff)
|
||||
print(f"gguf: feed forward length = {n_ff}")
|
||||
|
||||
n_head = self.find_hparam(["num_attention_heads", "n_head"])
|
||||
self.gguf_writer.add_head_count(n_head)
|
||||
print(f"gguf: head count = {n_head}")
|
||||
|
||||
if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
|
||||
self.gguf_writer.add_head_count_kv(n_head_kv)
|
||||
print(f"gguf: key-value head count = {n_head_kv}")
|
||||
|
||||
if (rope_theta := self.hparams.get("rope_theta")) is not None:
|
||||
self.gguf_writer.add_rope_freq_base(rope_theta)
|
||||
print(f"gguf: rope theta = {rope_theta}")
|
||||
if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
|
||||
self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
|
||||
print(f"gguf: rms norm epsilon = {f_rms_eps}")
|
||||
if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
|
||||
self.gguf_writer.add_layer_norm_eps(f_norm_eps)
|
||||
print(f"gguf: layer norm epsilon = {f_norm_eps}")
|
||||
if (n_experts := self.hparams.get("num_local_experts")) is not None:
|
||||
self.gguf_writer.add_expert_count(n_experts)
|
||||
print(f"gguf: expert count = {n_experts}")
|
||||
if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
|
||||
self.gguf_writer.add_expert_used_count(n_experts_used)
|
||||
print(f"gguf: experts used count = {n_experts_used}")
|
||||
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
print(f"gguf: file type = {self.ftype}")
|
||||
|
||||
def write_tensors(self):
|
||||
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
|
||||
@@ -1051,6 +1062,21 @@ class MixtralModel(Model):
|
||||
self._set_vocab_sentencepiece()
|
||||
|
||||
|
||||
@Model.register("GrokForCausalLM")
|
||||
class GrokModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.GROK
|
||||
|
||||
def set_vocab(self):
|
||||
self._set_vocab_sentencepiece()
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
self.gguf_writer.add_name("Grok")
|
||||
|
||||
|
||||
@Model.register("MiniCPMForCausalLM")
|
||||
class MiniCPMModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.MINICPM
|
||||
@@ -1634,7 +1660,7 @@ in chat mode so that the conversation can end normally.")
|
||||
self.post_write_tensors(tensor_map, name, data_torch)
|
||||
|
||||
|
||||
@Model.register("BertModel")
|
||||
@Model.register("BertModel", "CamembertModel")
|
||||
class BertModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.BERT
|
||||
|
||||
@@ -1965,6 +1991,23 @@ class MambaModel(Model):
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
||||
@Model.register("CohereForCausalLM")
|
||||
class CommandR2Model(Model):
|
||||
model_arch = gguf.MODEL_ARCH.COMMAND_R
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
# max_position_embeddings = 8192 in config.json but model was actually
|
||||
# trained on 128k context length
|
||||
self.hparams["max_position_embeddings"] = self.hparams["model_max_length"]
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
|
||||
|
||||
|
||||
###### CONVERSION LOGIC ######
|
||||
|
||||
|
||||
|
||||
130
convert.py
130
convert.py
@@ -332,6 +332,9 @@ class Params:
|
||||
#
|
||||
|
||||
class BpeVocab:
|
||||
tokenizer_model = "gpt2"
|
||||
name = "bpe"
|
||||
|
||||
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None) -> None:
|
||||
self.bpe_tokenizer = json.loads(open(str(fname_tokenizer), encoding="utf-8").read())
|
||||
if isinstance(self.bpe_tokenizer.get('model'), dict):
|
||||
@@ -390,6 +393,9 @@ class BpeVocab:
|
||||
|
||||
|
||||
class SentencePieceVocab:
|
||||
tokenizer_model = "llama"
|
||||
name = "spm"
|
||||
|
||||
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None) -> None:
|
||||
self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer))
|
||||
added_tokens: dict[str, int]
|
||||
@@ -453,6 +459,9 @@ class SentencePieceVocab:
|
||||
|
||||
|
||||
class HfVocab:
|
||||
tokenizer_model = "llama"
|
||||
name = "hfft"
|
||||
|
||||
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None = None) -> None:
|
||||
try:
|
||||
from transformers import AutoTokenizer
|
||||
@@ -553,7 +562,15 @@ class HfVocab:
|
||||
return f"<HfVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
|
||||
|
||||
|
||||
Vocab: TypeAlias = "BpeVocab | SentencePieceVocab | HfVocab"
|
||||
class NoVocab:
|
||||
tokenizer_model = "no_vocab"
|
||||
name = "no_vocab"
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return "<NoVocab for a model without integrated vocabulary>"
|
||||
|
||||
|
||||
Vocab: TypeAlias = "BpeVocab | SentencePieceVocab | HfVocab | NoVocab"
|
||||
|
||||
|
||||
#
|
||||
@@ -935,8 +952,10 @@ def check_vocab_size(params: Params, vocab: Vocab, pad_vocab: bool = False) -> N
|
||||
# Handle special case where the model's vocab size is not set
|
||||
if params.n_vocab == -1:
|
||||
raise ValueError(
|
||||
f"The model's vocab size is set to -1 in params.json. Please update it manually. Maybe {vocab.vocab_size}?"
|
||||
f"The model's vocab size is set to -1 in params.json. Please update it manually.{f' Maybe {vocab.vocab_size}?' if hasattr(vocab, 'vocab_size') else ''}"
|
||||
)
|
||||
if isinstance(vocab, NoVocab):
|
||||
return # model has no vocab
|
||||
|
||||
# Check for a vocab size mismatch
|
||||
if params.n_vocab == vocab.vocab_size:
|
||||
@@ -977,6 +996,7 @@ class OutputFile:
|
||||
name = str(params.path_model.parent).split('/')[-1]
|
||||
|
||||
self.gguf.add_name (name)
|
||||
self.gguf.add_vocab_size (params.n_vocab)
|
||||
self.gguf.add_context_length (params.n_ctx)
|
||||
self.gguf.add_embedding_length (params.n_embd)
|
||||
self.gguf.add_block_count (params.n_layer)
|
||||
@@ -1013,21 +1033,9 @@ class OutputFile:
|
||||
if params.ftype is not None:
|
||||
self.gguf.add_file_type(params.ftype)
|
||||
|
||||
def handle_tokenizer_model(self, vocab: Vocab) -> str:
|
||||
# Map the vocab types to the supported tokenizer models
|
||||
tokenizer_model = {
|
||||
SentencePieceVocab: "llama",
|
||||
HfVocab: "llama",
|
||||
BpeVocab: "gpt2",
|
||||
}.get(type(vocab))
|
||||
|
||||
# Block if vocab type is not predefined
|
||||
if tokenizer_model is None:
|
||||
raise ValueError("Unknown vocab type: Not supported")
|
||||
|
||||
return tokenizer_model
|
||||
|
||||
def extract_vocabulary_from_model(self, vocab: Vocab) -> tuple[list[bytes], list[float], list[gguf.TokenType]]:
|
||||
assert not isinstance(vocab, NoVocab)
|
||||
|
||||
tokens = []
|
||||
scores = []
|
||||
toktypes = []
|
||||
@@ -1043,11 +1051,8 @@ class OutputFile:
|
||||
return tokens, scores, toktypes
|
||||
|
||||
def add_meta_vocab(self, vocab: Vocab) -> None:
|
||||
# Handle the tokenizer model
|
||||
tokenizer_model = self.handle_tokenizer_model(vocab)
|
||||
|
||||
# Ensure that tokenizer_model is added to the GGUF model
|
||||
self.gguf.add_tokenizer_model(tokenizer_model)
|
||||
self.gguf.add_tokenizer_model(vocab.tokenizer_model)
|
||||
|
||||
# Extract model vocabulary for model conversion
|
||||
tokens, scores, toktypes = self.extract_vocabulary_from_model(vocab)
|
||||
@@ -1074,6 +1079,26 @@ class OutputFile:
|
||||
def write_tensor_info(self) -> None:
|
||||
self.gguf.write_ti_data_to_file()
|
||||
|
||||
def write_tensor_data(self, ftype: GGMLFileType, model: LazyModel, concurrency: int) -> None:
|
||||
ndarrays_inner = bounded_parallel_map(OutputFile.do_item, model.items(), concurrency=concurrency)
|
||||
if ftype == GGMLFileType.MostlyQ8_0:
|
||||
ndarrays = bounded_parallel_map(
|
||||
OutputFile.maybe_do_quantize, ndarrays_inner, concurrency=concurrency, max_workers=concurrency,
|
||||
use_processpool_executor=True,
|
||||
)
|
||||
else:
|
||||
ndarrays = map(OutputFile.maybe_do_quantize, ndarrays_inner)
|
||||
|
||||
start = time.time()
|
||||
for i, ((name, lazy_tensor), ndarray) in enumerate(zip(model.items(), ndarrays)):
|
||||
elapsed = time.time() - start
|
||||
size = ' x '.join(f"{dim:6d}" for dim in lazy_tensor.shape)
|
||||
padi = len(str(len(model)))
|
||||
print(
|
||||
f"[{i + 1:{padi}d}/{len(model)}] Writing tensor {name:38s} | size {size:16} | type {lazy_tensor.data_type.name:4} | T+{int(elapsed):4}"
|
||||
)
|
||||
self.gguf.write_tensor_data(ndarray)
|
||||
|
||||
def close(self) -> None:
|
||||
self.gguf.close()
|
||||
|
||||
@@ -1082,7 +1107,7 @@ class OutputFile:
|
||||
fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab,
|
||||
endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, pad_vocab: bool = False,
|
||||
) -> None:
|
||||
check_vocab_size(params, vocab, pad_vocab = pad_vocab)
|
||||
check_vocab_size(params, vocab, pad_vocab=pad_vocab)
|
||||
|
||||
of = OutputFile(fname_out, endianess=endianess)
|
||||
|
||||
@@ -1120,8 +1145,11 @@ class OutputFile:
|
||||
|
||||
# meta data
|
||||
of.add_meta_arch(params)
|
||||
of.add_meta_vocab(vocab)
|
||||
of.add_meta_special_vocab(svocab)
|
||||
if isinstance(vocab, NoVocab):
|
||||
of.gguf.add_tokenizer_model(vocab.tokenizer_model)
|
||||
else:
|
||||
of.add_meta_vocab(vocab)
|
||||
of.add_meta_special_vocab(svocab)
|
||||
|
||||
# tensor info
|
||||
for name, lazy_tensor in model.items():
|
||||
@@ -1131,24 +1159,7 @@ class OutputFile:
|
||||
of.write_tensor_info()
|
||||
|
||||
# tensor data
|
||||
ndarrays_inner = bounded_parallel_map(OutputFile.do_item, model.items(), concurrency = concurrency)
|
||||
if ftype == GGMLFileType.MostlyQ8_0:
|
||||
ndarrays = bounded_parallel_map(
|
||||
OutputFile.maybe_do_quantize, ndarrays_inner, concurrency=concurrency, max_workers=concurrency,
|
||||
use_processpool_executor=True,
|
||||
)
|
||||
else:
|
||||
ndarrays = map(OutputFile.maybe_do_quantize, ndarrays_inner)
|
||||
|
||||
start = time.time()
|
||||
for i, ((name, lazy_tensor), ndarray) in enumerate(zip(model.items(), ndarrays)):
|
||||
elapsed = time.time() - start
|
||||
size = ' x '.join(f"{dim:6d}" for dim in lazy_tensor.shape)
|
||||
padi = len(str(len(model)))
|
||||
print(
|
||||
f"[{i+1:{padi}d}/{len(model)}] Writing tensor {name:38s} | size {size:16} | type {lazy_tensor.data_type.name:4} | T+{int(elapsed):4}"
|
||||
)
|
||||
of.gguf.write_tensor_data(ndarray)
|
||||
of.write_tensor_data(ftype, model, concurrency)
|
||||
|
||||
of.close()
|
||||
|
||||
@@ -1156,9 +1167,9 @@ class OutputFile:
|
||||
def pick_output_type(model: LazyModel, output_type_str: str | None) -> GGMLFileType:
|
||||
wq_type = model[gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ATTN_Q].format(bid=0) + ".weight"].data_type
|
||||
|
||||
if output_type_str == "f32" or (output_type_str is None and wq_type == DT_F32):
|
||||
if output_type_str == "f32" or (output_type_str is None and wq_type in (DT_F32, DT_BF16)):
|
||||
return GGMLFileType.AllF32
|
||||
if output_type_str == "f16" or (output_type_str is None and wq_type in (DT_F16, DT_BF16)):
|
||||
if output_type_str == "f16" or (output_type_str is None and wq_type == DT_F16):
|
||||
return GGMLFileType.MostlyF16
|
||||
if output_type_str == "q8_0":
|
||||
return GGMLFileType.MostlyQ8_0
|
||||
@@ -1309,8 +1320,8 @@ class VocabFactory:
|
||||
return vtype, path
|
||||
raise FileNotFoundError(f"Could not find any of {[self._FILES[vt] for vt in vocab_types]}")
|
||||
|
||||
def _create_special_vocab(self, vocab: Vocab, vocabtype: str, model_parent_path: Path) -> gguf.SpecialVocab:
|
||||
load_merges = vocabtype == "bpe"
|
||||
def _create_special_vocab(self, vocab: Vocab, model_parent_path: Path) -> gguf.SpecialVocab:
|
||||
load_merges = vocab.name == "bpe"
|
||||
n_vocab = vocab.vocab_size if hasattr(vocab, "vocab_size") else None
|
||||
return gguf.SpecialVocab(
|
||||
model_parent_path,
|
||||
@@ -1319,30 +1330,34 @@ class VocabFactory:
|
||||
n_vocab=n_vocab,
|
||||
)
|
||||
|
||||
def load_vocab(self, vocab_types: list[str], model_parent_path: Path) -> tuple[Vocab, gguf.SpecialVocab]:
|
||||
def _create_vocab_by_path(self, vocab_types: list[str]) -> Vocab:
|
||||
vocab_type, path = self._select_file(vocab_types)
|
||||
print(f"Loading vocab file {path!r}, type {vocab_type!r}")
|
||||
|
||||
added_tokens_path = path.parent / "added_tokens.json"
|
||||
vocab: Vocab
|
||||
if vocab_type == "bpe":
|
||||
vocab = BpeVocab(
|
||||
return BpeVocab(
|
||||
path, added_tokens_path if added_tokens_path.exists() else None
|
||||
)
|
||||
elif vocab_type == "spm":
|
||||
vocab = SentencePieceVocab(
|
||||
if vocab_type == "spm":
|
||||
return SentencePieceVocab(
|
||||
path, added_tokens_path if added_tokens_path.exists() else None
|
||||
)
|
||||
elif vocab_type == "hfft":
|
||||
vocab = HfVocab(
|
||||
if vocab_type == "hfft":
|
||||
return HfVocab(
|
||||
path.parent, added_tokens_path if added_tokens_path.exists() else None
|
||||
)
|
||||
raise ValueError(vocab_type)
|
||||
|
||||
def load_vocab(self, vocab_types: list[str], model_parent_path: Path) -> tuple[Vocab, gguf.SpecialVocab]:
|
||||
vocab: Vocab
|
||||
if len(vocab_types) == 1 and "no_vocab" in vocab_types:
|
||||
vocab = NoVocab()
|
||||
else:
|
||||
raise ValueError(vocab_type)
|
||||
vocab = self._create_vocab_by_path(vocab_types)
|
||||
# FIXME: Respect --vocab-dir?
|
||||
special_vocab = self._create_special_vocab(
|
||||
vocab,
|
||||
vocab_type,
|
||||
model_parent_path,
|
||||
)
|
||||
return vocab, special_vocab
|
||||
@@ -1380,6 +1395,7 @@ def main(args_in: list[str] | None = None) -> None:
|
||||
parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model")
|
||||
parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file")
|
||||
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
|
||||
parser.add_argument("--no-vocab", action="store_true", help="store model without the vocab")
|
||||
parser.add_argument("--outtype", choices=output_choices, help="output format - note: q8_0 may be very slow (default: f16 or f32 based on input)")
|
||||
parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file")
|
||||
parser.add_argument("--vocab-type", help="vocab types to try in order, choose from 'spm', 'bpe', 'hfft' (default: spm,hfft)", default="spm,hfft")
|
||||
@@ -1392,6 +1408,10 @@ def main(args_in: list[str] | None = None) -> None:
|
||||
parser.add_argument("--skip-unknown", action="store_true", help="skip unknown tensor names instead of failing")
|
||||
|
||||
args = parser.parse_args(args_in)
|
||||
if args.no_vocab:
|
||||
if args.vocab_only:
|
||||
raise ValueError("no need to specify --vocab-only if using --no-vocab")
|
||||
args.vocab_type = "no_vocab"
|
||||
|
||||
if args.dump_single:
|
||||
model_plus = lazy_load_file(args.model)
|
||||
@@ -1442,7 +1462,7 @@ def main(args_in: list[str] | None = None) -> None:
|
||||
print(f"Wrote {outfile}")
|
||||
return
|
||||
|
||||
if model_plus.vocab is not None and args.vocab_dir is None:
|
||||
if model_plus.vocab is not None and args.vocab_dir is None and not args.no_vocab:
|
||||
vocab = model_plus.vocab
|
||||
|
||||
print(f"Vocab info: {vocab}")
|
||||
|
||||
@@ -21,6 +21,7 @@ else()
|
||||
add_subdirectory(embedding)
|
||||
add_subdirectory(finetune)
|
||||
add_subdirectory(gritlm)
|
||||
add_subdirectory(gguf-split)
|
||||
add_subdirectory(infill)
|
||||
add_subdirectory(llama-bench)
|
||||
add_subdirectory(llava)
|
||||
@@ -33,6 +34,7 @@ else()
|
||||
add_subdirectory(perplexity)
|
||||
add_subdirectory(quantize)
|
||||
add_subdirectory(quantize-stats)
|
||||
add_subdirectory(retrieval)
|
||||
add_subdirectory(save-load-state)
|
||||
add_subdirectory(simple)
|
||||
add_subdirectory(passkey)
|
||||
|
||||
@@ -106,7 +106,7 @@ int main(int argc, char ** argv) {
|
||||
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
|
||||
|
||||
// ensure enough sequences are available
|
||||
ctx_params.n_parallel = *std::max_element(n_pl.begin(), n_pl.end());
|
||||
ctx_params.n_seq_max = *std::max_element(n_pl.begin(), n_pl.end());
|
||||
|
||||
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
|
||||
|
||||
@@ -138,6 +138,8 @@ int main(int argc, char ** argv) {
|
||||
LOG_TEE("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret);
|
||||
return false;
|
||||
}
|
||||
|
||||
llama_synchronize(ctx);
|
||||
}
|
||||
|
||||
return true;
|
||||
|
||||
@@ -48,6 +48,8 @@ int main(int argc, char ** argv) {
|
||||
params.prompt = "Hello my name is";
|
||||
}
|
||||
|
||||
process_escapes(params.prompt);
|
||||
|
||||
// init LLM
|
||||
|
||||
llama_backend_init();
|
||||
@@ -78,9 +80,9 @@ int main(int argc, char ** argv) {
|
||||
llama_context_params ctx_params = llama_context_default_params();
|
||||
|
||||
ctx_params.seed = 1234;
|
||||
ctx_params.n_ctx = n_kv_req;
|
||||
ctx_params.n_ctx = n_kv_req;
|
||||
ctx_params.n_batch = std::max(n_len, n_parallel);
|
||||
ctx_params.n_parallel = n_parallel;
|
||||
ctx_params.n_seq_max = n_parallel;
|
||||
ctx_params.n_threads = params.n_threads;
|
||||
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
|
||||
|
||||
|
||||
@@ -21,6 +21,8 @@ An example command using a model from [karpathy/tinyllamas](https://huggingface.
|
||||
|
||||
`$ ./convert-llama2c-to-ggml --copy-vocab-from-model llama-2-7b-chat.gguf.q2_K.bin --llama2c-model stories42M.bin --llama2c-output-model stories42M.gguf.bin`
|
||||
|
||||
Note: The vocabulary for `stories260K.bin` should be its own tokenizer `tok512.bin` found in [karpathy/tinyllamas/stories260K](https://huggingface.co/karpathy/tinyllamas/tree/main/stories260K).
|
||||
|
||||
Now you can use the model with a command like:
|
||||
|
||||
`$ ./main -m stories42M.gguf.bin -p "One day, Lily met a Shoggoth" -n 500 -c 256`
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
#include "ggml.h"
|
||||
#include "llama.h"
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
@@ -78,111 +79,101 @@ typedef struct {
|
||||
|
||||
struct TransformerWeights {
|
||||
// token embedding table
|
||||
float* token_embedding_table; // (vocab_size, dim)
|
||||
std::vector<float> token_embedding_table; // (vocab_size, dim)
|
||||
// weights for rmsnorms
|
||||
float* rms_att_weight; // (layer, dim) rmsnorm weights
|
||||
float* rms_ffn_weight; // (layer, dim)
|
||||
std::vector<float> rms_att_weight; // (layer, dim) rmsnorm weights
|
||||
std::vector<float> rms_ffn_weight; // (layer, dim)
|
||||
// weights for matmuls
|
||||
float* wq; // (layer, dim, dim)
|
||||
float* wk; // (layer, dim, dim)
|
||||
float* wv; // (layer, dim, dim)
|
||||
float* wo; // (layer, dim, dim)
|
||||
std::vector<float> wq; // (layer, dim, dim)
|
||||
std::vector<float> wk; // (layer, dim, dim)
|
||||
std::vector<float> wv; // (layer, dim, dim)
|
||||
std::vector<float> wo; // (layer, dim, dim)
|
||||
// weights for ffn
|
||||
float* w1; // (layer, hidden_dim, dim)
|
||||
float* w2; // (layer, dim, hidden_dim)
|
||||
float* w3; // (layer, hidden_dim, dim)
|
||||
std::vector<float> w1; // (layer, hidden_dim, dim)
|
||||
std::vector<float> w2; // (layer, dim, hidden_dim)
|
||||
std::vector<float> w3; // (layer, hidden_dim, dim)
|
||||
// final rmsnorm
|
||||
float* rms_final_weight; // (dim,)
|
||||
std::vector<float> rms_final_weight; // (dim,)
|
||||
// freq_cis for RoPE relatively positional embeddings
|
||||
// float* freq_cis_real; // (seq_len, dim/2)
|
||||
// float* freq_cis_imag; // (seq_len, dim/2)
|
||||
// std::vector<float> freq_cis_real; // (seq_len, dim/2)
|
||||
// std::vector<float> freq_cis_imag; // (seq_len, dim/2)
|
||||
// (optional) classifier weights for the logits, on the last layer
|
||||
float* wcls;
|
||||
|
||||
~TransformerWeights() {
|
||||
delete[] token_embedding_table;
|
||||
delete[] rms_att_weight;
|
||||
delete[] rms_ffn_weight;
|
||||
delete[] wq;
|
||||
delete[] wk;
|
||||
delete[] wv;
|
||||
delete[] wo;
|
||||
delete[] w1;
|
||||
delete[] w2;
|
||||
delete[] w3;
|
||||
delete[] rms_final_weight;
|
||||
delete[] wcls;
|
||||
}
|
||||
std::vector<float> wcls;
|
||||
};
|
||||
|
||||
static void malloc_weights(TransformerWeights* w, Config* p, bool shared_weights) {
|
||||
// we calloc instead of malloc to keep valgrind happy
|
||||
w->token_embedding_table = new float[p->vocab_size * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->token_embedding_table\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
|
||||
static void alloc_weights(TransformerWeights * w, const Config * p, bool shared_weights) {
|
||||
const int n_multiqueries = p->n_kv_heads <= 0 || p->n_kv_heads >= p->n_heads ? 1 : p->n_heads / p->n_kv_heads;
|
||||
try {
|
||||
w->token_embedding_table.resize(p->vocab_size * p->dim);
|
||||
LOG("%s: Allocating [%d] x [%d] = [%d] float space for w->token_embedding_table\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
|
||||
|
||||
w->rms_att_weight = new float[p->n_layers * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->rms_att_weight\n",__func__,p->n_layers, p->dim, p->n_layers * p->dim);
|
||||
w->rms_att_weight.resize(p->n_layers * p->dim);
|
||||
LOG("%s: Allocating [%d] x [%d] = [%d] float space for w->rms_att_weight\n",__func__,p->n_layers, p->dim, p->n_layers * p->dim);
|
||||
|
||||
w->rms_ffn_weight = new float[p->n_layers * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->rms_ffn_weight\n",__func__,p->n_layers , p->dim, p->n_layers * p->dim);
|
||||
w->rms_ffn_weight.resize(p->n_layers * p->dim);
|
||||
LOG("%s: Allocating [%d] x [%d] = [%d] float space for w->rms_ffn_weight\n",__func__,p->n_layers , p->dim, p->n_layers * p->dim);
|
||||
|
||||
w->wq = new float[p->n_layers * p->dim * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wq\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
||||
w->wq.resize(p->n_layers * p->dim * p->dim);
|
||||
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wq\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
||||
|
||||
w->wk = new float[p->n_layers * p->dim * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wk\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
||||
w->wk.resize(p->n_layers * p->dim * p->dim / n_multiqueries);
|
||||
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wk\n",__func__,p->n_layers, p->dim, p->dim / n_multiqueries, p->n_layers * p->dim * p->dim / n_multiqueries);
|
||||
|
||||
w->wv = new float[p->n_layers * p->dim * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wv\n",__func__, p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
||||
w->wv.resize(p->n_layers * p->dim * p->dim / n_multiqueries);
|
||||
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wv\n",__func__, p->n_layers, p->dim, p->dim / n_multiqueries, p->n_layers * p->dim * p->dim / n_multiqueries);
|
||||
|
||||
w->wo = new float[p->n_layers * p->dim * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wo\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
||||
w->wo.resize(p->n_layers * p->dim * p->dim);
|
||||
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wo\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
||||
|
||||
w->w1 = new float[p->n_layers * p->hidden_dim * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w1\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
|
||||
w->w1.resize(p->n_layers * p->hidden_dim * p->dim);
|
||||
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w1\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
|
||||
|
||||
w->w2 = new float[p->n_layers * p->hidden_dim * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w2\n",__func__,p->n_layers, p->dim, p->hidden_dim, p->n_layers * p->hidden_dim * p->dim);
|
||||
w->w2.resize(p->n_layers * p->hidden_dim * p->dim);
|
||||
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w2\n",__func__,p->n_layers, p->dim, p->hidden_dim, p->n_layers * p->hidden_dim * p->dim);
|
||||
|
||||
w->w3 = new float[p->n_layers * p->hidden_dim * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w3\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
|
||||
w->w3.resize(p->n_layers * p->hidden_dim * p->dim);
|
||||
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w3\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
|
||||
|
||||
w->rms_final_weight = new float[p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] float space for w->rms_final_weight\n",__func__,p->dim);
|
||||
w->rms_final_weight.resize(p->dim);
|
||||
LOG("%s: Allocating [%d] float space for w->rms_final_weight\n",__func__,p->dim);
|
||||
|
||||
if (shared_weights) {
|
||||
w->wcls = NULL;
|
||||
} else {
|
||||
w->wcls = new float[p->vocab_size * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->wcls\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
|
||||
if (shared_weights) {
|
||||
w->wcls = {};
|
||||
} else {
|
||||
w->wcls.resize(p->vocab_size * p->dim);
|
||||
LOG("%s: Allocating [%d] x [%d] = [%d] float space for w->wcls\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
|
||||
}
|
||||
}
|
||||
catch (std::length_error &) {
|
||||
die("Invalid configuration. Failed to allocate memory for weights");
|
||||
}
|
||||
}
|
||||
|
||||
static int checkpoint_init_weights(TransformerWeights *w, Config* p, FILE* f, bool shared_weights) {
|
||||
if (fread(w->token_embedding_table, sizeof(float), p->vocab_size * p->dim, f) != static_cast<size_t>(p->vocab_size * p->dim)) return 1;
|
||||
if (fread(w->rms_att_weight, sizeof(float), p->n_layers * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim)) return 1;
|
||||
if (fread(w->wq, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
|
||||
if (fread(w->wk, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
|
||||
if (fread(w->wv, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
|
||||
if (fread(w->wo, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
|
||||
if (fread(w->rms_ffn_weight, sizeof(float), p->n_layers * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim)) return 1;
|
||||
if (fread(w->w1, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->hidden_dim)) return 1;
|
||||
if (fread(w->w2, sizeof(float), p->n_layers * p->hidden_dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->hidden_dim * p->dim)) return 1;
|
||||
if (fread(w->w3, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->hidden_dim)) return 1;
|
||||
if (fread(w->rms_final_weight, sizeof(float), p->dim, f) != static_cast<size_t>(p->dim)) return 1;
|
||||
static int checkpoint_init_weights(TransformerWeights * w, const Config * p, FILE * f, bool shared_weights) {
|
||||
if (fread(w->token_embedding_table.data(), sizeof(float), w->token_embedding_table.size(), f) != w->token_embedding_table.size()) return 1;
|
||||
if (fread(w->rms_att_weight.data(), sizeof(float), w->rms_att_weight.size(), f) != w->rms_att_weight.size()) return 1;
|
||||
if (fread(w->wq.data(), sizeof(float), w->wq.size(), f) != w->wq.size()) return 1;
|
||||
if (fread(w->wk.data(), sizeof(float), w->wk.size(), f) != w->wk.size()) return 1;
|
||||
if (fread(w->wv.data(), sizeof(float), w->wv.size(), f) != w->wv.size()) return 1;
|
||||
if (fread(w->wo.data(), sizeof(float), w->wo.size(), f) != w->wo.size()) return 1;
|
||||
if (fread(w->rms_ffn_weight.data(), sizeof(float), w->rms_ffn_weight.size(), f) != w->rms_ffn_weight.size()) return 1;
|
||||
if (fread(w->w1.data(), sizeof(float), w->w1.size(), f) != w->w1.size()) return 1;
|
||||
if (fread(w->w2.data(), sizeof(float), w->w2.size(), f) != w->w2.size()) return 1;
|
||||
if (fread(w->w3.data(), sizeof(float), w->w3.size(), f) != w->w3.size()) return 1;
|
||||
if (fread(w->rms_final_weight.data(), sizeof(float), w->rms_final_weight.size(), f) != w->rms_final_weight.size()) return 1;
|
||||
|
||||
// Skip freq_cis_real & freq_cis_imag
|
||||
int head_size = p->dim / p->n_heads;
|
||||
fseek(f, p->seq_len * head_size * sizeof(float), SEEK_CUR);
|
||||
|
||||
if (!shared_weights && fread(w->wcls, sizeof(float), p->vocab_size * p->dim, f) != static_cast<size_t>(p->vocab_size * p->dim)) return 1;
|
||||
if (!shared_weights && fread(w->wcls.data(), sizeof(float), w->wcls.size(), f) != w->wcls.size()) return 1;
|
||||
|
||||
// Check we didn't forget to read anything
|
||||
auto curr = ftell(f);
|
||||
fseek(f, 0, SEEK_END);
|
||||
auto end = ftell(f);
|
||||
if (curr != end) {
|
||||
printf("Error: failed to read the checkpoint file to the end (curr = %ld, end = %ld)\n", curr, end);
|
||||
LOG("%s: Error: failed to read the checkpoint file to the end (curr = %ld, end = %ld)\n", __func__, curr, end);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@@ -190,20 +181,20 @@ static int checkpoint_init_weights(TransformerWeights *w, Config* p, FILE* f, bo
|
||||
}
|
||||
|
||||
static void print_sample_weights(TransformerWeights *w){
|
||||
printf("----- Quick print of first of the weight vales of all the variables\n");
|
||||
printf("%f\n", w->token_embedding_table[0]);
|
||||
printf("%f\n", w->rms_att_weight[0]);
|
||||
printf("%f\n", w->rms_ffn_weight[0]);
|
||||
LOG("----- Quick print of first of the weight vales of all the variables\n");
|
||||
LOG("%f\n", w->token_embedding_table[0]);
|
||||
LOG("%f\n", w->rms_att_weight[0]);
|
||||
LOG("%f\n", w->rms_ffn_weight[0]);
|
||||
|
||||
printf("%f\n", w->wq[0]);
|
||||
printf("%f\n", w->wk[0]);
|
||||
printf("%f\n", w->wv[0]);
|
||||
printf("%f\n", w->wo[0]);
|
||||
printf("%f\n", w->w1[0]);
|
||||
printf("%f\n", w->w2[0]);
|
||||
printf("%f\n", w->w3[0]);
|
||||
printf("%f\n", w->rms_att_weight[0]);
|
||||
if (w->wcls) printf("%f\n", w->wcls[0]);
|
||||
LOG("%f\n", w->wq[0]);
|
||||
LOG("%f\n", w->wk[0]);
|
||||
LOG("%f\n", w->wv[0]);
|
||||
LOG("%f\n", w->wo[0]);
|
||||
LOG("%f\n", w->w1[0]);
|
||||
LOG("%f\n", w->w2[0]);
|
||||
LOG("%f\n", w->w3[0]);
|
||||
LOG("%f\n", w->rms_att_weight[0]);
|
||||
if (!w->wcls.empty()) LOG("%f\n", w->wcls[0]);
|
||||
}
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
@@ -225,14 +216,16 @@ struct llama_vocab {
|
||||
};
|
||||
|
||||
struct my_llama_hparams {
|
||||
uint32_t n_vocab = 32000;
|
||||
uint32_t n_ctx = 512; // this is provided as user input?
|
||||
uint32_t n_embd = 4096;
|
||||
uint32_t n_ff = 11008;
|
||||
uint32_t n_mult = 4;
|
||||
uint32_t n_head = 32;
|
||||
uint32_t n_layer = 32;
|
||||
uint32_t n_rot = 64;
|
||||
uint32_t n_vocab = 32000;
|
||||
uint32_t n_ctx = 512; // this is provided as user input?
|
||||
uint32_t n_embd = 4096;
|
||||
uint32_t n_ff = 11008;
|
||||
uint32_t n_mult = 4;
|
||||
uint32_t n_head = 32;
|
||||
uint32_t n_head_kv = 32;
|
||||
uint32_t n_layer = 32;
|
||||
uint32_t n_rot = 64;
|
||||
|
||||
bool operator!=(const my_llama_hparams& other) const {
|
||||
return memcmp(this, &other, sizeof(my_llama_hparams));
|
||||
}
|
||||
@@ -325,14 +318,30 @@ struct train_params {
|
||||
};
|
||||
|
||||
static void print_params(struct my_llama_hparams * params) {
|
||||
printf("%s: n_vocab: %u\n", __func__, params->n_vocab);
|
||||
printf("%s: n_ctx: %u\n", __func__, params->n_ctx);
|
||||
printf("%s: n_embd: %u\n", __func__, params->n_embd);
|
||||
printf("%s: n_mult: %u\n", __func__, params->n_mult);
|
||||
printf("%s: n_head: %u\n", __func__, params->n_head);
|
||||
printf("%s: n_ff: %u\n", __func__, params->n_ff);
|
||||
printf("%s: n_layer: %u\n", __func__, params->n_layer);
|
||||
printf("%s: n_rot: %u\n", __func__, params->n_rot);
|
||||
LOG("%s: n_vocab: %u\n", __func__, params->n_vocab);
|
||||
LOG("%s: n_ctx: %u\n", __func__, params->n_ctx);
|
||||
LOG("%s: n_embd: %u\n", __func__, params->n_embd);
|
||||
LOG("%s: n_mult: %u\n", __func__, params->n_mult);
|
||||
LOG("%s: n_head: %u\n", __func__, params->n_head);
|
||||
LOG("%s: n_head_kv: %u\n", __func__, params->n_head_kv);
|
||||
LOG("%s: n_ff: %u\n", __func__, params->n_ff);
|
||||
LOG("%s: n_layer: %u\n", __func__, params->n_layer);
|
||||
LOG("%s: n_rot: %u\n", __func__, params->n_rot);
|
||||
}
|
||||
|
||||
static void print_tensor_info(const struct ggml_context * ctx) {
|
||||
for (auto t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||
LOG("%s: Allocating ", __func__);
|
||||
int64_t total = 1;
|
||||
int i = 0;
|
||||
for (; i < ggml_n_dims(t); ++i) {
|
||||
if (i > 0) LOG("x ");
|
||||
LOG("[%" PRId64 "] ", t->ne[i]);
|
||||
total *= t->ne[i];
|
||||
}
|
||||
if (i > 1) LOG("= [%" PRId64 "] ", total);
|
||||
LOG("float space for %s\n", ggml_get_name(t));
|
||||
}
|
||||
}
|
||||
|
||||
static void init_model(struct my_llama_model * model) {
|
||||
@@ -342,6 +351,8 @@ static void init_model(struct my_llama_model * model) {
|
||||
const uint32_t n_layer = hparams.n_layer;
|
||||
const uint32_t n_vocab = hparams.n_vocab;
|
||||
|
||||
const uint32_t n_multiqueries = hparams.n_head_kv <= 0 || hparams.n_head_kv >= hparams.n_head ? 1 : hparams.n_head / hparams.n_head_kv;
|
||||
|
||||
const uint32_t n_ff = hparams.n_ff;
|
||||
struct ggml_context * ctx = model->ctx;
|
||||
|
||||
@@ -350,25 +361,8 @@ static void init_model(struct my_llama_model * model) {
|
||||
model->train_tokens = 0;
|
||||
|
||||
model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
|
||||
printf("[%s:GG] Allocating [%u] x [%u] = [%u] float space for model->tok_embeddings\n",__func__,n_embd , n_vocab, n_embd * n_vocab);
|
||||
|
||||
model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
printf("[%s:GG] Allocating [%u] float space for model->norm\n",__func__,n_embd);
|
||||
|
||||
model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
|
||||
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for model->output\n",__func__,n_embd, n_vocab, n_embd * n_vocab);
|
||||
|
||||
// printing the per-layer allocations here so we dont print in the for loop.
|
||||
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.wq for [%u] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
|
||||
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.wk for [%u] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
|
||||
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.wv for [%u] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
|
||||
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.wo for [%u] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
|
||||
|
||||
printf("[%s:GG] Allocating [%u] float space for layer.ffn_norm for [%u] layers\n",__func__,n_embd, n_layer);
|
||||
|
||||
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.w1 for [%u] layers\n",__func__, n_ff, n_embd, n_embd * n_ff, n_layer);
|
||||
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.w2 for [%u] layers\n",__func__, n_embd, n_ff, n_ff * n_embd, n_layer);
|
||||
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.w3 for [%u] layers\n",__func__, n_ff, n_embd, n_embd * n_ff, n_layer);
|
||||
|
||||
ggml_set_name(model->tok_embeddings, "tok_embeddings.weight");
|
||||
ggml_set_name(model->norm, "norm.weight");
|
||||
@@ -383,8 +377,8 @@ static void init_model(struct my_llama_model * model) {
|
||||
layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
||||
layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
||||
layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
||||
layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd / n_multiqueries);
|
||||
layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd / n_multiqueries);
|
||||
layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
||||
|
||||
layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
@@ -406,6 +400,8 @@ static void init_model(struct my_llama_model * model) {
|
||||
ggml_format_name(layer.w2, "%s.feed_forward.w2.weight", layers_i.c_str());
|
||||
ggml_format_name(layer.w3, "%s.feed_forward.w3.weight", layers_i.c_str());
|
||||
}
|
||||
|
||||
print_tensor_info(ctx);
|
||||
}
|
||||
|
||||
static float get_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
|
||||
@@ -421,9 +417,9 @@ static int32_t get_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
|
||||
static void print_row(struct ggml_tensor * probs, int i) {
|
||||
for (int k = 0; k < probs->ne[0]; ++k) {
|
||||
float p = get_f32_2d(probs, k, i);
|
||||
printf(" %f", p);
|
||||
LOG(" %f", p);
|
||||
}
|
||||
printf("\n");
|
||||
LOG("\n");
|
||||
}
|
||||
|
||||
static void print_matrix(struct ggml_tensor * probs) {
|
||||
@@ -431,33 +427,12 @@ static void print_matrix(struct ggml_tensor * probs) {
|
||||
for (int i = 0; i < probs->ne[1]; ++i) {
|
||||
for (int k = 0; k < probs->ne[0]; ++k) {
|
||||
float p = get_f32_2d(probs, k, i);
|
||||
printf(" %.2f", p);
|
||||
LOG(" %.2f", p);
|
||||
}
|
||||
printf("\n");
|
||||
LOG("\n");
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef __GNUC__
|
||||
#ifdef __MINGW32__
|
||||
__attribute__((format(gnu_printf, 1, 2)))
|
||||
#else
|
||||
__attribute__((format(printf, 1, 2)))
|
||||
#endif
|
||||
#endif
|
||||
static std::string format(const char * fmt, ...) {
|
||||
va_list ap, ap2;
|
||||
va_start(ap, fmt);
|
||||
va_copy(ap2, ap);
|
||||
int size = vsnprintf(NULL, 0, fmt, ap);
|
||||
GGML_ASSERT(size >= 0 && size < INT_MAX);
|
||||
std::vector<char> buf(size + 1);
|
||||
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
|
||||
GGML_ASSERT(size2 == size);
|
||||
va_end(ap2);
|
||||
va_end(ap);
|
||||
return std::string(buf.data(), size);
|
||||
}
|
||||
|
||||
struct llama_file {
|
||||
// use FILE * so we don't have to re-open the file to mmap
|
||||
FILE * fp;
|
||||
@@ -549,8 +524,9 @@ static std::string llama_escape_whitespaces(const std::string & text) {
|
||||
return out.str();
|
||||
}
|
||||
|
||||
static void load_vocab(const char *filename, Config *config, struct llama_vocab *vocab) {
|
||||
static void load_vocab(const char * filename, const Config * config, struct llama_vocab * vocab) {
|
||||
if (is_ggml_file(filename)) {
|
||||
LOG("%s: Loading vocabulary from gguf file %s\n", __func__, filename);
|
||||
struct ggml_context * ctx_data = NULL;
|
||||
|
||||
struct gguf_init_params params = {
|
||||
@@ -578,6 +554,9 @@ static void load_vocab(const char *filename, Config *config, struct llama_vocab
|
||||
const int * toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
|
||||
|
||||
const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
|
||||
if (n_vocab != static_cast<uint32_t>(config->vocab_size)) {
|
||||
die_fmt("vocab size mismatch: (gguf) %u != (llama2c) %d", n_vocab, config->vocab_size);
|
||||
}
|
||||
|
||||
vocab->id_to_token.resize(n_vocab);
|
||||
|
||||
@@ -595,7 +574,7 @@ static void load_vocab(const char *filename, Config *config, struct llama_vocab
|
||||
gguf_free(ctx);
|
||||
} else {
|
||||
// assume llama2.c vocabulary
|
||||
printf("Assuming llama2.c vocabulary since %s is not a gguf file\n", filename);
|
||||
LOG("%s: Assuming llama2.c vocabulary since %s is not a gguf file\n", __func__, filename);
|
||||
llama_file file(filename, "rb");
|
||||
if (!file.fp) {
|
||||
die_fmt("%s: %s", strerror(errno), filename);
|
||||
@@ -638,38 +617,15 @@ static void load_vocab(const char *filename, Config *config, struct llama_vocab
|
||||
}
|
||||
|
||||
static void convert_weights_ak_to_gg(struct ggml_tensor * gg_weights, const float * karpathy_weights) {
|
||||
int ct;
|
||||
switch (ggml_n_dims(gg_weights)) {
|
||||
case 1:
|
||||
ct = 0;
|
||||
for (int i0 = 0; i0 < gg_weights->ne[0]; i0++){
|
||||
float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0]);
|
||||
*ptr = karpathy_weights[ct];
|
||||
ct++;
|
||||
}
|
||||
break;
|
||||
case 2:
|
||||
ct = 0;
|
||||
for (int i1 = 0; i1 < gg_weights->ne[1]; i1++) {
|
||||
for (int i0 = 0; i0 < gg_weights->ne[0]; i0++) {
|
||||
float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0] + i1*gg_weights->nb[1]);
|
||||
*ptr = karpathy_weights[ct];
|
||||
ct++;
|
||||
}
|
||||
}
|
||||
break;
|
||||
case 3:
|
||||
ct = 0;
|
||||
for (int i2 = 0; i2 < gg_weights->ne[2]; i2++) {
|
||||
for (int i1 = 0; i1 < gg_weights->ne[1]; i1++) {
|
||||
for (int i0 = 0; i0 < gg_weights->ne[0]; i0++) {
|
||||
float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0] + i1*gg_weights->nb[1] + i2*gg_weights->nb[2]);
|
||||
*ptr = karpathy_weights[ct];
|
||||
ct++;
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
int size = 1;
|
||||
for (int dim = 0; dim < ggml_n_dims(gg_weights); ++dim) {
|
||||
size *= gg_weights->ne[dim];
|
||||
}
|
||||
for (int ct = 0; ct < size; ++ct) {
|
||||
int64_t i0 = 0; int64_t i1 = 0;
|
||||
int64_t i2 = 0; int64_t i3 = 0;
|
||||
ggml_unravel_index(gg_weights, ct, &i0, &i1, &i2, &i3);
|
||||
ggml_set_f32_nd(gg_weights, i0, i1, i2, i3, karpathy_weights[ct]);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -679,16 +635,18 @@ static void save_as_llama_model(
|
||||
// convert AK weights into GG weights one by one.
|
||||
// w->token_embedding_table -> model->tok_embeddings
|
||||
// float* -> struct ggml_tensor
|
||||
convert_weights_ak_to_gg(model->tok_embeddings, w->token_embedding_table);
|
||||
convert_weights_ak_to_gg(model->output, w->wcls ? w->wcls : w->token_embedding_table);
|
||||
convert_weights_ak_to_gg(model->tok_embeddings, w->token_embedding_table.data());
|
||||
convert_weights_ak_to_gg(model->output, !w->wcls.empty() ? w->wcls.data() : w->token_embedding_table.data());
|
||||
|
||||
convert_weights_ak_to_gg(model->norm, w->rms_final_weight);
|
||||
convert_weights_ak_to_gg(model->norm, w->rms_final_weight.data());
|
||||
//print_row(model->norm, 0);
|
||||
|
||||
// for rms-att-weight
|
||||
int row_length = model->hparams.n_embd;
|
||||
int n_ff = model->hparams.n_ff;
|
||||
|
||||
const uint32_t n_multiqueries = model->hparams.n_head_kv <= 0 || model->hparams.n_head_kv >= model->hparams.n_head ? 1 : model->hparams.n_head / model->hparams.n_head_kv;
|
||||
|
||||
for (uint32_t i = 0; i < model->hparams.n_layer; ++i){
|
||||
auto & layer = model->layers[i];
|
||||
// 1d
|
||||
@@ -697,9 +655,10 @@ static void save_as_llama_model(
|
||||
|
||||
// from 3d matrix layer x dim x dim to 2d matrix dim x dim
|
||||
convert_weights_ak_to_gg(layer.wq , &w->wq[i*row_length*row_length]);
|
||||
convert_weights_ak_to_gg(layer.wk , &w->wk[i*row_length*row_length]);
|
||||
convert_weights_ak_to_gg(layer.wv , &w->wv[i*row_length*row_length]);
|
||||
convert_weights_ak_to_gg(layer.wo , &w->wo[i*row_length*row_length]);
|
||||
// from 3d matrix layer x dim x dim to 2d matrix dim x dim / n_multiqueries
|
||||
convert_weights_ak_to_gg(layer.wk , &w->wk[i*row_length*row_length/n_multiqueries]);
|
||||
convert_weights_ak_to_gg(layer.wv , &w->wv[i*row_length*row_length/n_multiqueries]);
|
||||
|
||||
convert_weights_ak_to_gg(layer.w1 , &w->w1[i*row_length*n_ff]);
|
||||
convert_weights_ak_to_gg(layer.w2 , &w->w2[i*n_ff*row_length]);
|
||||
@@ -736,8 +695,8 @@ static void save_as_llama_model(
|
||||
gguf_set_val_u32(ctx, KV_EMBEDDING_LENGTH, model->hparams.n_embd);
|
||||
gguf_set_val_u32(ctx, KV_FEED_FORWARD_LENGTH, model->hparams.n_ff);
|
||||
gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT, model->hparams.n_head);
|
||||
// n_head_kv is optional, default to n_head
|
||||
// gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT_KV, ...);
|
||||
gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT, model->hparams.n_head);
|
||||
gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT_KV, model->hparams.n_head_kv);
|
||||
gguf_set_val_u32(ctx, KV_BLOCK_COUNT, model->hparams.n_layer);
|
||||
gguf_set_val_u32(ctx, KV_ROPE_DIMENSION_COUNT, model->hparams.n_rot);
|
||||
gguf_set_val_f32(ctx, KV_ATTENTION_LAYERNORM_RMS_EPS, 1e-5f);
|
||||
@@ -789,12 +748,12 @@ static void save_as_llama_model(
|
||||
|
||||
static struct train_params get_default_train_params() {
|
||||
struct train_params params;
|
||||
params.fn_vocab_model = "models/7B/ggml-model-f16.gguf";
|
||||
params.fn_vocab_model = "models/7B/ggml-model-f16.gguf";
|
||||
params.fn_llama2c_output_model = "ak_llama_model.bin";
|
||||
params.fn_train_data = "shakespeare.txt";
|
||||
params.fn_checkpoint_in = "checkpoint.bin";
|
||||
params.fn_checkpoint_out = "checkpoint.bin";
|
||||
params.fn_model_out = "ggml-checkpoint-f32.bin";
|
||||
params.fn_train_data = "shakespeare.txt";
|
||||
params.fn_checkpoint_in = "checkpoint.bin";
|
||||
params.fn_checkpoint_out = "checkpoint.bin";
|
||||
params.fn_model_out = "ggml-checkpoint-f32.bin";
|
||||
|
||||
params.seed = -1;
|
||||
|
||||
@@ -829,8 +788,8 @@ static struct train_params get_default_train_params() {
|
||||
params.adam_alpha = 1e-3f;
|
||||
params.adam_decay = 1e-3f;
|
||||
|
||||
params.mem_model_gb = 2;
|
||||
params.mem_compute_gb = 24;
|
||||
params.mem_model_gb = 2;
|
||||
params.mem_compute_gb = 24;
|
||||
params.mem_compute0_gb = 8;
|
||||
params.mem_compute1_gb = 2;
|
||||
|
||||
@@ -916,19 +875,30 @@ int main(int argc, char ** argv) {
|
||||
if (!params_parse(argc, argv, ¶ms)) {
|
||||
return 1;
|
||||
}
|
||||
log_set_target(stdout);
|
||||
Config config;
|
||||
TransformerWeights weights = {};
|
||||
{
|
||||
FILE *file = fopen(params.fn_llama2c_model, "rb");
|
||||
if (!file) { printf("Unable to open the checkpoint file %s!\n", params.fn_llama2c_model); return 1; }
|
||||
LOG("%s: Loading llama2c model from %s\n", __func__, params.fn_llama2c_model);
|
||||
FILE *file = fopen(params.fn_llama2c_model, "r");
|
||||
if (!file) {
|
||||
LOG("%s: Unable to open the checkpoint file %s!\n", __func__, params.fn_llama2c_model);
|
||||
return 1;
|
||||
}
|
||||
// read in the config header
|
||||
if(fread(&config, sizeof(Config), 1, file) != 1) { return 1; }
|
||||
if (fread(&config, sizeof(Config), 1, file) != 1) {
|
||||
LOG("%s: Unable to read llama2c config from %s!\n",__func__,params.fn_llama2c_model);
|
||||
return 1;
|
||||
}
|
||||
auto shared_weights = config.vocab_size > 0;
|
||||
config.vocab_size = abs(config.vocab_size);
|
||||
|
||||
// read in the Transformer weights
|
||||
malloc_weights(&weights, &config, shared_weights);
|
||||
if(checkpoint_init_weights(&weights, &config, file, shared_weights)) { return 1; }
|
||||
alloc_weights(&weights, &config, shared_weights);
|
||||
if (checkpoint_init_weights(&weights, &config, file, shared_weights)) {
|
||||
LOG("%s: Unable to initialize transformer weights from %s!",__func__,params.fn_llama2c_model);
|
||||
return 1;
|
||||
}
|
||||
fclose(file);
|
||||
}
|
||||
|
||||
@@ -936,15 +906,18 @@ int main(int argc, char ** argv) {
|
||||
load_vocab(params.fn_vocab_model, &config, &vocab);
|
||||
|
||||
struct my_llama_model model;
|
||||
model.hparams.n_vocab = config.vocab_size; //llama_n_vocab(lctx);
|
||||
model.hparams.n_ctx = params.n_ctx;
|
||||
model.hparams.n_embd = config.dim; //params.n_embd;
|
||||
model.hparams.n_ff = config.hidden_dim;
|
||||
model.hparams.n_mult = 32;//params.n_mult;
|
||||
model.hparams.n_head = config.n_heads; //params.n_head;
|
||||
model.hparams.n_layer = config.n_layers; //params.n_layer;
|
||||
model.hparams.n_rot = std::min((uint32_t)params.n_rotmax, model.hparams.n_embd / model.hparams.n_head);
|
||||
model.hparams.n_vocab = config.vocab_size; //llama_n_vocab(lctx);
|
||||
model.hparams.n_ctx = params.n_ctx;
|
||||
model.hparams.n_embd = config.dim; //params.n_embd;
|
||||
model.hparams.n_ff = config.hidden_dim;
|
||||
model.hparams.n_mult = 32;//params.n_mult;
|
||||
model.hparams.n_head = config.n_heads; //params.n_head;
|
||||
model.hparams.n_head_kv = config.n_kv_heads;
|
||||
model.hparams.n_layer = config.n_layers; //params.n_layer;
|
||||
model.hparams.n_rot = std::min((uint32_t)params.n_rotmax, model.hparams.n_embd / model.hparams.n_head);
|
||||
|
||||
print_params(&model.hparams);
|
||||
|
||||
struct ggml_init_params lcparams;
|
||||
lcparams.mem_size = 1024ll*1024ll*1024ll*((size_t) params.mem_model_gb);
|
||||
lcparams.mem_buffer = NULL;
|
||||
@@ -956,7 +929,7 @@ int main(int argc, char ** argv) {
|
||||
model.name = basename(params.fn_llama2c_model);
|
||||
save_as_llama_model(&vocab, &model, &weights, params.fn_llama2c_output_model);
|
||||
|
||||
printf("Saving llama.c model file %s in ggml format at %s\n", params.fn_llama2c_model, params.fn_llama2c_output_model);
|
||||
LOG("%s: Saving llama.c model file %s in ggml format at %s\n", __func__, params.fn_llama2c_model, params.fn_llama2c_output_model);
|
||||
|
||||
ggml_free(model.ctx);
|
||||
return 0;
|
||||
|
||||
@@ -107,18 +107,25 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// max batch size
|
||||
const uint64_t n_batch = params.n_batch;
|
||||
GGML_ASSERT(params.n_batch == params.n_ctx);
|
||||
GGML_ASSERT(params.n_batch >= params.n_ctx);
|
||||
|
||||
// tokenize the prompts and trim
|
||||
std::vector<std::vector<int32_t>> inputs;
|
||||
for (const auto & prompt : prompts) {
|
||||
auto inp = ::llama_tokenize(ctx, prompt, true);
|
||||
auto inp = ::llama_tokenize(ctx, prompt, true, false);
|
||||
if (inp.size() > n_batch) {
|
||||
inp.resize(n_batch);
|
||||
}
|
||||
inputs.push_back(inp);
|
||||
}
|
||||
|
||||
// add eos if not present
|
||||
for (auto & inp : inputs) {
|
||||
if (inp.empty() || inp.back() != llama_token_eos(model)) {
|
||||
inp.push_back(llama_token_eos(model));
|
||||
}
|
||||
}
|
||||
|
||||
// tokenization stats
|
||||
if (params.verbose_prompt) {
|
||||
for (int i = 0; i < (int) inputs.size(); i++) {
|
||||
@@ -167,15 +174,26 @@ int main(int argc, char ** argv) {
|
||||
float * out = emb + p * n_embd;
|
||||
batch_decode(ctx, batch, out, s, n_embd);
|
||||
|
||||
// print first 3 embeddings
|
||||
for (int j = 0; j < std::min(3, n_prompts); j++) {
|
||||
fprintf(stderr, "embedding %d: ", j);
|
||||
for (int i = 0; i < n_embd; i++) {
|
||||
fprintf(stderr, "%f ", emb[j * n_embd + i]);
|
||||
// print the first part of the embeddings
|
||||
fprintf(stdout, "\n");
|
||||
for (int j = 0; j < n_prompts; j++) {
|
||||
fprintf(stdout, "embedding %d: ", j);
|
||||
for (int i = 0; i < std::min(16, n_embd); i++) {
|
||||
fprintf(stdout, "%9.6f ", emb[j * n_embd + i]);
|
||||
}
|
||||
fprintf(stderr, "\n\n");
|
||||
fprintf(stdout, "\n");
|
||||
}
|
||||
|
||||
// print cosine similarity matrix
|
||||
fprintf(stdout, "\n");
|
||||
printf("cosine similarity matrix:\n\n");
|
||||
for (int i = 0; i < n_prompts; i++) {
|
||||
for (int j = 0; j < n_prompts; j++) {
|
||||
float sim = llama_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd);
|
||||
fprintf(stdout, "%6.2f ", sim);
|
||||
}
|
||||
fprintf(stdout, "\n");
|
||||
}
|
||||
fprintf(stderr, "\n");
|
||||
|
||||
// clean up
|
||||
llama_print_timings(ctx);
|
||||
|
||||
5
examples/gguf-split/CMakeLists.txt
Normal file
5
examples/gguf-split/CMakeLists.txt
Normal file
@@ -0,0 +1,5 @@
|
||||
set(TARGET gguf-split)
|
||||
add_executable(${TARGET} gguf-split.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
9
examples/gguf-split/README.md
Normal file
9
examples/gguf-split/README.md
Normal file
@@ -0,0 +1,9 @@
|
||||
## GGUF split Example
|
||||
|
||||
CLI to split / merge GGUF files.
|
||||
|
||||
**Command line options:**
|
||||
|
||||
- `--split`: split GGUF to multiple GGUF, default operation.
|
||||
- `--split-max-tensors`: maximum tensors in each split: default(128)
|
||||
- `--merge`: merge multiple GGUF to a single GGUF.
|
||||
468
examples/gguf-split/gguf-split.cpp
Normal file
468
examples/gguf-split/gguf-split.cpp
Normal file
@@ -0,0 +1,468 @@
|
||||
#include "llama.h"
|
||||
#include "common.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <cstdlib>
|
||||
#include <fstream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <climits>
|
||||
#include <stdexcept>
|
||||
|
||||
#if defined(_WIN32)
|
||||
#include <windows.h>
|
||||
#ifndef PATH_MAX
|
||||
#define PATH_MAX MAX_PATH
|
||||
#endif
|
||||
#include <io.h>
|
||||
#endif
|
||||
|
||||
enum split_operation : uint8_t {
|
||||
SPLIT_OP_SPLIT,
|
||||
SPLIT_OP_MERGE,
|
||||
};
|
||||
|
||||
struct split_params {
|
||||
split_operation operation = SPLIT_OP_SPLIT;
|
||||
int n_split_tensors = 128;
|
||||
std::string input;
|
||||
std::string output;
|
||||
};
|
||||
|
||||
static void split_print_usage(const char * executable) {
|
||||
const split_params default_params;
|
||||
printf("\n");
|
||||
printf("usage: %s [options] GGUF_IN GGUF_OUT\n", executable);
|
||||
printf("\n");
|
||||
printf("Apply a GGUF operation on IN to OUT.");
|
||||
printf("\n");
|
||||
printf("options:\n");
|
||||
printf(" -h, --help show this help message and exit\n");
|
||||
printf(" --version show version and build info\n");
|
||||
printf(" --split split GGUF to multiple GGUF (default)\n");
|
||||
printf(" --split-max-tensors max tensors in each split: default(%d)\n", default_params.n_split_tensors);
|
||||
printf(" --merge merge multiple GGUF to a single GGUF\n");
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
static bool split_params_parse_ex(int argc, const char ** argv, split_params & params) {
|
||||
std::string arg;
|
||||
const std::string arg_prefix = "--";
|
||||
bool invalid_param = false;
|
||||
|
||||
int arg_idx = 1;
|
||||
for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) {
|
||||
arg = argv[arg_idx];
|
||||
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
|
||||
std::replace(arg.begin(), arg.end(), '_', '-');
|
||||
}
|
||||
|
||||
bool arg_found = false;
|
||||
if (arg == "-h" || arg == "--help") {
|
||||
split_print_usage(argv[0]);
|
||||
exit(0);
|
||||
}
|
||||
if (arg == "--version") {
|
||||
fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
|
||||
fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET);
|
||||
exit(0);
|
||||
}
|
||||
|
||||
if (arg == "--merge") {
|
||||
arg_found = true;
|
||||
params.operation = SPLIT_OP_MERGE;
|
||||
}
|
||||
if (arg == "--split") {
|
||||
arg_found = true;
|
||||
params.operation = SPLIT_OP_SPLIT;
|
||||
}
|
||||
if (arg == "--split-max-tensors") {
|
||||
if (++arg_idx >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
arg_found = true;
|
||||
params.n_split_tensors = atoi(argv[arg_idx]);
|
||||
}
|
||||
|
||||
if (!arg_found) {
|
||||
throw std::invalid_argument("error: unknown argument: " + arg);
|
||||
}
|
||||
}
|
||||
|
||||
if (invalid_param) {
|
||||
throw std::invalid_argument("error: invalid parameter for argument: " + arg);
|
||||
}
|
||||
|
||||
if (argc - arg_idx < 2) {
|
||||
printf("%s: bad arguments\n", argv[0]);
|
||||
split_print_usage(argv[0]);
|
||||
return false;
|
||||
}
|
||||
|
||||
params.input = argv[arg_idx++];
|
||||
params.output = argv[arg_idx++];
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool split_params_parse(int argc, const char ** argv, split_params & params) {
|
||||
bool result = true;
|
||||
try {
|
||||
if (!split_params_parse_ex(argc, argv, params)) {
|
||||
split_print_usage(argv[0]);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
}
|
||||
catch (const std::invalid_argument & ex) {
|
||||
fprintf(stderr, "%s\n", ex.what());
|
||||
split_print_usage(argv[0]);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
static void zeros(std::ofstream & file, size_t n) {
|
||||
char zero = 0;
|
||||
for (size_t i = 0; i < n; ++i) {
|
||||
file.write(&zero, 1);
|
||||
}
|
||||
}
|
||||
|
||||
struct split_strategy {
|
||||
const split_params params;
|
||||
std::ifstream & f_input;
|
||||
struct gguf_context * ctx_gguf;
|
||||
struct ggml_context * ctx_meta = NULL;
|
||||
const int n_tensors;
|
||||
|
||||
const int n_split;
|
||||
int i_split = 0;
|
||||
|
||||
int i_tensor = 0;
|
||||
|
||||
std::vector<uint8_t> read_data;
|
||||
|
||||
struct gguf_context * ctx_out;
|
||||
std::ofstream fout;
|
||||
|
||||
split_strategy(const split_params & params,
|
||||
std::ifstream & f_input,
|
||||
struct gguf_context * ctx_gguf,
|
||||
struct ggml_context * ctx_meta) :
|
||||
params(params),
|
||||
f_input(f_input),
|
||||
ctx_gguf(ctx_gguf),
|
||||
ctx_meta(ctx_meta),
|
||||
n_tensors(gguf_get_n_tensors(ctx_gguf)),
|
||||
n_split(std::ceil(1. * n_tensors / params.n_split_tensors)) {
|
||||
}
|
||||
|
||||
bool should_split() const {
|
||||
return i_tensor < n_tensors && i_tensor % params.n_split_tensors == 0;
|
||||
}
|
||||
|
||||
void split_start() {
|
||||
ctx_out = gguf_init_empty();
|
||||
|
||||
// Save all metadata in first split only
|
||||
if (i_split == 0) {
|
||||
gguf_set_kv(ctx_out, ctx_gguf);
|
||||
}
|
||||
gguf_set_val_u16(ctx_out, LLM_KV_SPLIT_NO, i_split);
|
||||
gguf_set_val_u16(ctx_out, LLM_KV_SPLIT_COUNT, n_split);
|
||||
gguf_set_val_i32(ctx_out, LLM_KV_SPLIT_TENSORS_COUNT, n_tensors);
|
||||
|
||||
// populate the original tensors, so we get an initial metadata
|
||||
for (int i = i_split * params.n_split_tensors; i < n_tensors && i < (i_split + 1) * params.n_split_tensors; ++i) {
|
||||
struct ggml_tensor * meta = ggml_get_tensor(ctx_meta, gguf_get_tensor_name(ctx_gguf, i));
|
||||
gguf_add_tensor(ctx_out, meta);
|
||||
}
|
||||
|
||||
char split_path[PATH_MAX] = {0};
|
||||
llama_split_path(split_path, sizeof(split_path), params.output.c_str(), i_split, n_split);
|
||||
|
||||
fprintf(stderr, "%s: %s ...", __func__, split_path);
|
||||
fout = std::ofstream(split_path, std::ios::binary);
|
||||
fout.exceptions(std::ofstream::failbit); // fail fast on write errors
|
||||
|
||||
auto meta_size = gguf_get_meta_size(ctx_out);
|
||||
|
||||
// placeholder for the meta data
|
||||
::zeros(fout, meta_size);
|
||||
|
||||
i_split++;
|
||||
}
|
||||
|
||||
void next_tensor() {
|
||||
const char * t_name = gguf_get_tensor_name(ctx_gguf, i_tensor);
|
||||
struct ggml_tensor * t = ggml_get_tensor(ctx_meta, t_name);
|
||||
auto n_bytes = ggml_nbytes(t);
|
||||
|
||||
if (read_data.size() < n_bytes) {
|
||||
read_data.resize(n_bytes);
|
||||
}
|
||||
|
||||
auto offset = gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, i_tensor);
|
||||
f_input.seekg(offset);
|
||||
f_input.read((char *)read_data.data(), n_bytes);
|
||||
|
||||
t->data = read_data.data();
|
||||
|
||||
// write tensor data + padding
|
||||
fout.write((const char *)t->data, n_bytes);
|
||||
zeros(fout, GGML_PAD(n_bytes, GGUF_DEFAULT_ALIGNMENT) - n_bytes);
|
||||
|
||||
i_tensor++;
|
||||
}
|
||||
|
||||
void split_end() {
|
||||
// go back to beginning of file and write the updated metadata
|
||||
fout.seekp(0);
|
||||
std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
|
||||
gguf_get_meta_data(ctx_out, data.data());
|
||||
fout.write((const char *)data.data(), data.size());
|
||||
|
||||
fout.close();
|
||||
gguf_free(ctx_out);
|
||||
|
||||
fprintf(stderr, "\033[3Ddone\n");
|
||||
}
|
||||
};
|
||||
|
||||
static void gguf_split(const split_params & split_params) {
|
||||
struct ggml_context * ctx_meta = NULL;
|
||||
|
||||
struct gguf_init_params params = {
|
||||
/*.no_alloc = */ true,
|
||||
/*.ctx = */ &ctx_meta,
|
||||
};
|
||||
|
||||
std::ifstream f_input(split_params.input.c_str(), std::ios::binary);
|
||||
if (!f_input.is_open()) {
|
||||
fprintf(stderr, "%s: failed to open input GGUF from %s\n", __func__, split_params.input.c_str());
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
auto * ctx_gguf = gguf_init_from_file(split_params.input.c_str(), params);
|
||||
if (!ctx_gguf) {
|
||||
fprintf(stderr, "%s: failed to load input GGUF from %s\n", __func__, split_params.input.c_str());
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
split_strategy strategy(split_params, f_input, ctx_gguf, ctx_meta);
|
||||
|
||||
char first_split_path[PATH_MAX] = {0};
|
||||
llama_split_path(first_split_path, sizeof(first_split_path),
|
||||
split_params.output.c_str(), strategy.i_split, strategy.n_split);
|
||||
fprintf(stderr, "%s: %s -> %s (%d tensors per file)\n",
|
||||
__func__, split_params.input.c_str(),
|
||||
first_split_path,
|
||||
split_params.n_split_tensors);
|
||||
|
||||
strategy.split_start();
|
||||
|
||||
while (strategy.i_tensor < strategy.n_tensors) {
|
||||
strategy.next_tensor();
|
||||
if (strategy.should_split()) {
|
||||
strategy.split_end();
|
||||
strategy.split_start();
|
||||
}
|
||||
}
|
||||
strategy.split_end();
|
||||
|
||||
gguf_free(ctx_gguf);
|
||||
f_input.close();
|
||||
|
||||
fprintf(stderr, "%s: %d gguf split written with a total of %d tensors.\n",
|
||||
__func__, strategy.n_split, strategy.n_tensors);
|
||||
}
|
||||
|
||||
static void gguf_merge(const split_params & split_params) {
|
||||
fprintf(stderr, "%s: %s -> %s\n",
|
||||
__func__, split_params.input.c_str(),
|
||||
split_params.output.c_str());
|
||||
int n_split = 1;
|
||||
int total_tensors = 0;
|
||||
|
||||
auto * ctx_out = gguf_init_empty();
|
||||
std::ofstream fout(split_params.output.c_str(), std::ios::binary);
|
||||
fout.exceptions(std::ofstream::failbit); // fail fast on write errors
|
||||
|
||||
std::vector<uint8_t> read_data;
|
||||
std::vector<ggml_context *> ctx_metas;
|
||||
std::vector<gguf_context *> ctx_ggufs;
|
||||
|
||||
char split_path[PATH_MAX] = {0};
|
||||
strncpy(split_path, split_params.input.c_str(), sizeof(split_path) - 1);
|
||||
char split_prefix[PATH_MAX] = {0};
|
||||
|
||||
// First pass to find KV and tensors metadata
|
||||
for (int i_split = 0; i_split < n_split; i_split++) {
|
||||
struct ggml_context * ctx_meta = NULL;
|
||||
|
||||
struct gguf_init_params params = {
|
||||
/*.no_alloc = */ true,
|
||||
/*.ctx = */ &ctx_meta,
|
||||
};
|
||||
|
||||
if (i_split > 0) {
|
||||
llama_split_path(split_path, sizeof(split_path), split_prefix, i_split, n_split);
|
||||
}
|
||||
fprintf(stderr, "%s: reading metadata %s ...", __func__, split_path);
|
||||
|
||||
auto * ctx_gguf = gguf_init_from_file(split_path, params);
|
||||
if (!ctx_gguf) {
|
||||
fprintf(stderr, "\n%s: failed to load input GGUF from %s\n", __func__, split_params.input.c_str());
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
ctx_ggufs.push_back(ctx_gguf);
|
||||
ctx_metas.push_back(ctx_meta);
|
||||
|
||||
if (i_split == 0) {
|
||||
auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT);
|
||||
if (key_n_split < 0) {
|
||||
fprintf(stderr,
|
||||
"\n%s: input file does not contain %s metadata\n",
|
||||
__func__,
|
||||
LLM_KV_SPLIT_COUNT);
|
||||
gguf_free(ctx_gguf);
|
||||
ggml_free(ctx_meta);
|
||||
gguf_free(ctx_out);
|
||||
fout.close();
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
n_split = gguf_get_val_u16(ctx_gguf, key_n_split);
|
||||
if (n_split < 1) {
|
||||
fprintf(stderr,
|
||||
"\n%s: input file does not contain a valid split count %d\n",
|
||||
__func__,
|
||||
n_split);
|
||||
gguf_free(ctx_gguf);
|
||||
ggml_free(ctx_meta);
|
||||
gguf_free(ctx_out);
|
||||
fout.close();
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
// Verify the file naming and extract split_prefix
|
||||
if (!llama_split_prefix(split_prefix, sizeof (split_prefix), split_path, i_split, n_split)) {
|
||||
fprintf(stderr, "\n%s: unexpected input file name: %s"
|
||||
" i_split=%d"
|
||||
" n_split=%d\n", __func__,
|
||||
split_path, i_split, n_split);
|
||||
gguf_free(ctx_gguf);
|
||||
ggml_free(ctx_meta);
|
||||
gguf_free(ctx_out);
|
||||
fout.close();
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
// Do not trigger merge if we try to merge again the output
|
||||
gguf_set_val_u16(ctx_gguf, LLM_KV_SPLIT_COUNT, 0);
|
||||
|
||||
// Set metadata from the first split
|
||||
gguf_set_kv(ctx_out, ctx_gguf);
|
||||
}
|
||||
|
||||
auto n_tensors = gguf_get_n_tensors(ctx_gguf);
|
||||
for (int i_tensor = 0; i_tensor < n_tensors; i_tensor++) {
|
||||
const char * t_name = gguf_get_tensor_name(ctx_gguf, i_tensor);
|
||||
struct ggml_tensor * t = ggml_get_tensor(ctx_meta, t_name);
|
||||
gguf_add_tensor(ctx_out, t);
|
||||
}
|
||||
total_tensors += n_tensors;
|
||||
|
||||
fprintf(stderr, "\033[3Ddone\n");
|
||||
}
|
||||
|
||||
// placeholder for the meta data
|
||||
{
|
||||
auto meta_size = gguf_get_meta_size(ctx_out);
|
||||
::zeros(fout, meta_size);
|
||||
}
|
||||
|
||||
// Write tensors data
|
||||
for (int i_split = 0; i_split < n_split; i_split++) {
|
||||
llama_split_path(split_path, sizeof(split_path), split_prefix, i_split, n_split);
|
||||
std::ifstream f_input(split_path, std::ios::binary);
|
||||
if (!f_input.is_open()) {
|
||||
fprintf(stderr, "%s: failed to open input GGUF from %s\n", __func__, split_path);
|
||||
for (uint32_t i = 0; i < ctx_ggufs.size(); i++) {
|
||||
gguf_free(ctx_ggufs[i]);
|
||||
ggml_free(ctx_metas[i]);
|
||||
}
|
||||
gguf_free(ctx_out);
|
||||
fout.close();
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
fprintf(stderr, "%s: writing tensors %s ...", __func__, split_path);
|
||||
|
||||
auto * ctx_gguf = ctx_ggufs[i_split];
|
||||
auto * ctx_meta = ctx_metas[i_split];
|
||||
|
||||
auto n_tensors = gguf_get_n_tensors(ctx_gguf);
|
||||
for (int i_tensor = 0; i_tensor < n_tensors; i_tensor++) {
|
||||
const char * t_name = gguf_get_tensor_name(ctx_gguf, i_tensor);
|
||||
struct ggml_tensor * t = ggml_get_tensor(ctx_meta, t_name);
|
||||
|
||||
auto n_bytes = ggml_nbytes(t);
|
||||
|
||||
if (read_data.size() < n_bytes) {
|
||||
read_data.resize(n_bytes);
|
||||
}
|
||||
|
||||
auto offset = gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, i_tensor);
|
||||
f_input.seekg(offset);
|
||||
f_input.read((char *)read_data.data(), n_bytes);
|
||||
|
||||
// write tensor data + padding
|
||||
fout.write((const char *)read_data.data(), n_bytes);
|
||||
zeros(fout, GGML_PAD(n_bytes, GGUF_DEFAULT_ALIGNMENT) - n_bytes);
|
||||
}
|
||||
|
||||
gguf_free(ctx_gguf);
|
||||
ggml_free(ctx_meta);
|
||||
f_input.close();
|
||||
fprintf(stderr, "\033[3Ddone\n");
|
||||
}
|
||||
|
||||
{
|
||||
// go back to beginning of file and write the updated metadata
|
||||
fout.seekp(0);
|
||||
std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
|
||||
gguf_get_meta_data(ctx_out, data.data());
|
||||
fout.write((const char *)data.data(), data.size());
|
||||
|
||||
fout.close();
|
||||
gguf_free(ctx_out);
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: %s merged from %d split with %d tensors.\n",
|
||||
__func__, split_params.output.c_str(), n_split, total_tensors);
|
||||
}
|
||||
|
||||
int main(int argc, const char ** argv) {
|
||||
if (argc < 3) {
|
||||
split_print_usage(argv[0]);
|
||||
}
|
||||
|
||||
split_params params;
|
||||
split_params_parse(argc, argv, params);
|
||||
|
||||
switch (params.operation) {
|
||||
case SPLIT_OP_SPLIT: gguf_split(params);
|
||||
break;
|
||||
case SPLIT_OP_MERGE: gguf_merge(params);
|
||||
break;
|
||||
default: split_print_usage(argv[0]);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
@@ -211,6 +211,7 @@ static bool gguf_ex_read_1(const std::string & fname) {
|
||||
for (int j = 0; j < ggml_nelements(cur); ++j) {
|
||||
if (data[j] != 100 + i) {
|
||||
fprintf(stderr, "%s: tensor[%d]: data[%d] = %f\n", __func__, i, j, data[j]);
|
||||
gguf_free(ctx);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
62
examples/gritlm/README.md
Normal file
62
examples/gritlm/README.md
Normal file
@@ -0,0 +1,62 @@
|
||||
## Generative Representational Instruction Tuning (GRIT) Example
|
||||
[gritlm] a model which can generate embeddings as well as "normal" text
|
||||
generation depending on the instructions in the prompt.
|
||||
|
||||
* Paper: https://arxiv.org/pdf/2402.09906.pdf
|
||||
|
||||
### Retrieval-Augmented Generation (RAG) use case
|
||||
One use case for `gritlm` is to use it with RAG. If we recall how RAG works is
|
||||
that we take documents that we want to use as context, to ground the large
|
||||
language model (LLM), and we create token embeddings for them. We then store
|
||||
these token embeddings in a vector database.
|
||||
|
||||
When we perform a query, prompt the LLM, we will first create token embeddings
|
||||
for the query and then search the vector database to retrieve the most
|
||||
similar vectors, and return those documents so they can be passed to the LLM as
|
||||
context. Then the query and the context will be passed to the LLM which will
|
||||
have to _again_ create token embeddings for the query. But because gritlm is used
|
||||
the first query can be cached and the second query tokenization generation does
|
||||
not have to be performed at all.
|
||||
|
||||
### Running the example
|
||||
Download a Grit model:
|
||||
```console
|
||||
$ scripts/hf.sh --repo cohesionet/GritLM-7B_gguf --file gritlm-7b_q4_1.gguf
|
||||
```
|
||||
|
||||
Run the example using the downloaded model:
|
||||
```console
|
||||
$ ./gritlm -m gritlm-7b_q4_1.gguf
|
||||
|
||||
Cosine similarity between "Bitcoin: A Peer-to-Peer Electronic Cash System" and "A purely peer-to-peer version of electronic cash w" is: 0.605
|
||||
Cosine similarity between "Bitcoin: A Peer-to-Peer Electronic Cash System" and "All text-based language problems can be reduced to" is: 0.103
|
||||
Cosine similarity between "Generative Representational Instruction Tuning" and "A purely peer-to-peer version of electronic cash w" is: 0.112
|
||||
Cosine similarity between "Generative Representational Instruction Tuning" and "All text-based language problems can be reduced to" is: 0.547
|
||||
|
||||
Oh, brave adventurer, who dared to climb
|
||||
The lofty peak of Mt. Fuji in the night,
|
||||
When shadows lurk and ghosts do roam,
|
||||
And darkness reigns, a fearsome sight.
|
||||
|
||||
Thou didst set out, with heart aglow,
|
||||
To conquer this mountain, so high,
|
||||
And reach the summit, where the stars do glow,
|
||||
And the moon shines bright, up in the sky.
|
||||
|
||||
Through the mist and fog, thou didst press on,
|
||||
With steadfast courage, and a steadfast will,
|
||||
Through the darkness, thou didst not be gone,
|
||||
But didst climb on, with a steadfast skill.
|
||||
|
||||
At last, thou didst reach the summit's crest,
|
||||
And gazed upon the world below,
|
||||
And saw the beauty of the night's best,
|
||||
And felt the peace, that only nature knows.
|
||||
|
||||
Oh, brave adventurer, who dared to climb
|
||||
The lofty peak of Mt. Fuji in the night,
|
||||
Thou art a hero, in the eyes of all,
|
||||
For thou didst conquer this mountain, so bright.
|
||||
```
|
||||
|
||||
[gritlm]: https://github.com/ContextualAI/gritlm
|
||||
@@ -6,22 +6,6 @@
|
||||
|
||||
// #define GRIT_DEBUG
|
||||
|
||||
static float dot_product(const std::vector<float> & v1, const std::vector<float> & v2) {
|
||||
float dot = 0.0f;
|
||||
for (uint64_t i = 0; i < v1.size(); ++i) {
|
||||
dot += v1[i] * v2[i];
|
||||
}
|
||||
return dot;
|
||||
}
|
||||
|
||||
static float norm(const std::vector<float> & v) {
|
||||
return std::sqrt(dot_product(v, v));
|
||||
}
|
||||
|
||||
static float cosine_similarity(const std::vector<float> & v1, const std::vector<float> & v2) {
|
||||
return dot_product(v1, v2) / (norm(v1) * norm(v2));
|
||||
}
|
||||
|
||||
static std::vector<std::vector<float>> encode(llama_context * ctx, const std::vector<std::string> & sentences, const std::string & instruction) {
|
||||
std::vector<std::vector<float>> result;
|
||||
|
||||
@@ -203,10 +187,12 @@ int main(int argc, char * argv[]) {
|
||||
const std::vector<std::vector<float>> d_rep = encode(ctx, documents, gritlm_instruction(""));
|
||||
const std::vector<std::vector<float>> q_rep = encode(ctx, queries, gritlm_instruction(instruction));
|
||||
|
||||
const float cosine_sim_q0_d0 = cosine_similarity(q_rep[0], d_rep[0]);
|
||||
const float cosine_sim_q0_d1 = cosine_similarity(q_rep[0], d_rep[1]);
|
||||
const float cosine_sim_q1_d0 = cosine_similarity(q_rep[1], d_rep[0]);
|
||||
const float cosine_sim_q1_d1 = cosine_similarity(q_rep[1], d_rep[1]);
|
||||
const int n_embd = llama_n_embd(mdl);
|
||||
|
||||
const float cosine_sim_q0_d0 = llama_embd_similarity_cos(q_rep[0].data(), d_rep[0].data(), n_embd);
|
||||
const float cosine_sim_q0_d1 = llama_embd_similarity_cos(q_rep[0].data(), d_rep[1].data(), n_embd);
|
||||
const float cosine_sim_q1_d0 = llama_embd_similarity_cos(q_rep[1].data(), d_rep[0].data(), n_embd);
|
||||
const float cosine_sim_q1_d1 = llama_embd_similarity_cos(q_rep[1].data(), d_rep[1].data(), n_embd);
|
||||
|
||||
std::printf("Cosine similarity between \"%.50s\" and \"%.50s\" is: %.3f\n", queries[0].c_str(), documents[0].c_str(), cosine_sim_q0_d0);
|
||||
std::printf("Cosine similarity between \"%.50s\" and \"%.50s\" is: %.3f\n", queries[0].c_str(), documents[1].c_str(), cosine_sim_q0_d1);
|
||||
|
||||
@@ -50,11 +50,31 @@ private:
|
||||
void keep_imatrix(int ncall) const;
|
||||
};
|
||||
|
||||
// remove any prefix and suffixes from the name
|
||||
// CUDA0#blk.0.attn_k.weight#0 => blk.0.attn_k.weight
|
||||
static std::string filter_tensor_name(const char * name) {
|
||||
std::string wname;
|
||||
const char * p = strchr(name, '#');
|
||||
if (p != NULL) {
|
||||
p = p + 1;
|
||||
const char * q = strchr(p, '#');
|
||||
if (q != NULL) {
|
||||
wname = std::string(p, q - p);
|
||||
} else {
|
||||
wname = p;
|
||||
}
|
||||
} else {
|
||||
wname = name;
|
||||
}
|
||||
return wname;
|
||||
}
|
||||
|
||||
bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data) {
|
||||
GGML_UNUSED(user_data);
|
||||
|
||||
const struct ggml_tensor * src0 = t->src[0];
|
||||
const struct ggml_tensor * src1 = t->src[1];
|
||||
std::string wname = filter_tensor_name(src0->name);
|
||||
|
||||
// when ask is true, the scheduler wants to know if we are interested in data from this tensor
|
||||
// if we return true, a follow-up call will be made with ask=false in which we can do the actual collection
|
||||
@@ -62,7 +82,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
|
||||
if (t->op == GGML_OP_MUL_MAT_ID) return true; // collect all indirect matrix multiplications
|
||||
if (t->op != GGML_OP_MUL_MAT) return false;
|
||||
if (src1->ne[1] < 16 || src1->type != GGML_TYPE_F32) return false;
|
||||
if (!(strncmp(src0->name, "blk.", 4) == 0 || (m_params.collect_output_weight && strcmp(src0->name, "output.weight") == 0))) return false;
|
||||
if (!(wname.substr(0, 4) == "blk." || (m_params.collect_output_weight && wname == "output.weight"))) return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
@@ -94,12 +114,13 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
|
||||
// this is necessary to guarantee equal number of "ncall" for each tensor
|
||||
for (int ex = 0; ex < n_as; ++ex) {
|
||||
src0 = t->src[2 + ex];
|
||||
auto& e = m_stats[src0->name];
|
||||
wname = filter_tensor_name(src0->name);
|
||||
auto& e = m_stats[wname];
|
||||
if (e.values.empty()) {
|
||||
e.values.resize(src1->ne[0], 0);
|
||||
}
|
||||
else if (e.values.size() != (size_t)src1->ne[0]) {
|
||||
fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", src0->name, (int)e.values.size(), (int)src1->ne[0]);
|
||||
fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]);
|
||||
exit(1); //GGML_ASSERT(false);
|
||||
}
|
||||
// NOTE: since we select top-k experts, the number of calls for the expert tensors will be k times larger
|
||||
@@ -107,7 +128,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
|
||||
//if (idx == t->src[0]->ne[0] - 1) ++e.ncall;
|
||||
++e.ncall;
|
||||
if (m_params.verbosity > 1) {
|
||||
printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, src0->name, ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type);
|
||||
printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type);
|
||||
}
|
||||
for (int row = 0; row < (int)src1->ne[1]; ++row) {
|
||||
const int excur = m_ids[row*n_as + idx];
|
||||
@@ -129,17 +150,17 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
|
||||
}
|
||||
}
|
||||
} else {
|
||||
auto& e = m_stats[src0->name];
|
||||
auto& e = m_stats[wname];
|
||||
if (e.values.empty()) {
|
||||
e.values.resize(src1->ne[0], 0);
|
||||
}
|
||||
else if (e.values.size() != (size_t)src1->ne[0]) {
|
||||
fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", src0->name, (int)e.values.size(), (int)src1->ne[0]);
|
||||
fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]);
|
||||
exit(1); //GGML_ASSERT(false);
|
||||
}
|
||||
++e.ncall;
|
||||
if (m_params.verbosity > 1) {
|
||||
printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, src0->name, ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type);
|
||||
printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type);
|
||||
}
|
||||
for (int row = 0; row < (int)src1->ne[1]; ++row) {
|
||||
const float * x = data + row * src1->ne[0];
|
||||
|
||||
74
examples/json-schema-pydantic-example.py
Normal file
74
examples/json-schema-pydantic-example.py
Normal file
@@ -0,0 +1,74 @@
|
||||
# Usage:
|
||||
#! ./server -m some-model.gguf &
|
||||
#! pip install pydantic
|
||||
#! python json-schema-pydantic-example.py
|
||||
|
||||
from pydantic import BaseModel, TypeAdapter
|
||||
from annotated_types import MinLen
|
||||
from typing import Annotated, List, Optional
|
||||
import json, requests
|
||||
|
||||
if True:
|
||||
|
||||
def create_completion(*, response_model=None, endpoint="http://localhost:8080/v1/chat/completions", messages, **kwargs):
|
||||
'''
|
||||
Creates a chat completion using an OpenAI-compatible endpoint w/ JSON schema support
|
||||
(llama.cpp server, llama-cpp-python, Anyscale / Together...)
|
||||
|
||||
The response_model param takes a type (+ supports Pydantic) and behaves just as w/ Instructor (see below)
|
||||
'''
|
||||
if response_model:
|
||||
type_adapter = TypeAdapter(response_model)
|
||||
schema = type_adapter.json_schema()
|
||||
messages = [{
|
||||
"role": "system",
|
||||
"content": f"You respond in JSON format with the following schema: {json.dumps(schema, indent=2)}"
|
||||
}] + messages
|
||||
response_format={"type": "json_object", "schema": schema}
|
||||
|
||||
data = requests.post(endpoint, headers={"Content-Type": "application/json"},
|
||||
json=dict(messages=messages, response_format=response_format, **kwargs)).json()
|
||||
if 'error' in data:
|
||||
raise Exception(data['error']['message'])
|
||||
|
||||
content = data["choices"][0]["message"]["content"]
|
||||
return type_adapter.validate_json(content) if type_adapter else content
|
||||
|
||||
else:
|
||||
|
||||
# This alternative branch uses Instructor + OpenAI client lib.
|
||||
# Instructor support streamed iterable responses, retry & more.
|
||||
# (see https://python.useinstructor.com/)
|
||||
#! pip install instructor openai
|
||||
import instructor, openai
|
||||
client = instructor.patch(
|
||||
openai.OpenAI(api_key="123", base_url="http://localhost:8080"),
|
||||
mode=instructor.Mode.JSON_SCHEMA)
|
||||
create_completion = client.chat.completions.create
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
class QAPair(BaseModel):
|
||||
question: str
|
||||
concise_answer: str
|
||||
justification: str
|
||||
|
||||
class PyramidalSummary(BaseModel):
|
||||
title: str
|
||||
summary: str
|
||||
question_answers: Annotated[List[QAPair], MinLen(2)]
|
||||
sub_sections: Optional[Annotated[List['PyramidalSummary'], MinLen(2)]]
|
||||
|
||||
print("# Summary\n", create_completion(
|
||||
model="...",
|
||||
response_model=PyramidalSummary,
|
||||
messages=[{
|
||||
"role": "user",
|
||||
"content": f"""
|
||||
You are a highly efficient corporate document summarizer.
|
||||
Create a pyramidal summary of an imaginary internal document about our company processes
|
||||
(starting high-level, going down to each sub sections).
|
||||
Keep questions short, and answers even shorter (trivia / quizz style).
|
||||
"""
|
||||
}]))
|
||||
@@ -1,8 +1,10 @@
|
||||
#!/usr/bin/env python3
|
||||
import argparse
|
||||
import itertools
|
||||
import json
|
||||
import re
|
||||
import sys
|
||||
from typing import Any, Dict, List, Set, Tuple, Union
|
||||
|
||||
# whitespace is constrained to a single space char to prevent model "running away" in
|
||||
# whitespace. Also maybe improves generation quality?
|
||||
@@ -12,26 +14,54 @@ PRIMITIVE_RULES = {
|
||||
'boolean': '("true" | "false") space',
|
||||
'number': '("-"? ([0-9] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]? [0-9]+)? space',
|
||||
'integer': '("-"? ([0-9] | [1-9] [0-9]*)) space',
|
||||
'value' : 'object | array | string | number | boolean',
|
||||
'object' : '"{" space ( string ":" space value ("," space string ":" space value)* )? "}" space',
|
||||
'array' : '"[" space ( value ("," space value)* )? "]" space',
|
||||
'uuid' : '"\\"" ' + ' "-" '.join('[0-9a-fA-F]' * n for n in [8, 4, 4, 4, 12]) + ' "\\"" space',
|
||||
'string': r''' "\"" (
|
||||
[^"\\] |
|
||||
"\\" (["\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F])
|
||||
)* "\"" space ''',
|
||||
)* "\"" space''',
|
||||
'null': '"null" space',
|
||||
}
|
||||
OBJECT_RULE_NAMES = ['object', 'array', 'string', 'number', 'boolean', 'null', 'value']
|
||||
|
||||
# TODO: support "uri", "email" string formats
|
||||
DATE_RULES = {
|
||||
'date' : '[0-9] [0-9] [0-9] [0-9] "-" ( "0" [1-9] | "1" [0-2] ) "-" ( \"0\" [1-9] | [1-2] [0-9] | "3" [0-1] )',
|
||||
'time' : '([01] [0-9] | "2" [0-3]) ":" [0-5] [0-9] ":" [0-5] [0-9] ( "." [0-9] [0-9] [0-9] )? ( "Z" | ( "+" | "-" ) ( [01] [0-9] | "2" [0-3] ) ":" [0-5] [0-9] )',
|
||||
'date-time': 'date "T" time',
|
||||
'date-string': '"\\"" date "\\"" space',
|
||||
'time-string': '"\\"" time "\\"" space',
|
||||
'date-time-string': '"\\"" date-time "\\"" space',
|
||||
}
|
||||
|
||||
RESERVED_NAMES = set(["root", *PRIMITIVE_RULES.keys(), *DATE_RULES.keys()])
|
||||
|
||||
INVALID_RULE_CHARS_RE = re.compile(r'[^a-zA-Z0-9-]+')
|
||||
GRAMMAR_LITERAL_ESCAPE_RE = re.compile(r'[\r\n"]')
|
||||
GRAMMAR_LITERAL_ESCAPES = {'\r': '\\r', '\n': '\\n', '"': '\\"'}
|
||||
GRAMMAR_RANGE_LITERAL_ESCAPE_RE = re.compile(r'[\r\n"\]\-\\]')
|
||||
GRAMMAR_LITERAL_ESCAPES = {'\r': '\\r', '\n': '\\n', '"': '\\"', '-': '\\-', ']': '\\]'}
|
||||
|
||||
NON_LITERAL_SET = set('|.()[]{}*+?')
|
||||
ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS = set('[]()|{}*+?')
|
||||
|
||||
DATE_PATTERN = '[0-9]{4}-(0[1-9]|1[0-2])-([0-2][0-9]|3[0-1])'
|
||||
TIME_PATTERN = '([01][0-9]|2[0-3])(:[0-5][0-9]){2}(\\.[0-9]{1,3})?(Z|[+-](([01][0-9]|2[0-3]):[0-5][0-9]))' # Cap millisecond precision w/ 3 digits
|
||||
|
||||
class SchemaConverter:
|
||||
def __init__(self, prop_order):
|
||||
def __init__(self, *, prop_order, allow_fetch, dotall, raw_pattern):
|
||||
self._prop_order = prop_order
|
||||
self._allow_fetch = allow_fetch
|
||||
self._dotall = dotall
|
||||
self._raw_pattern = raw_pattern
|
||||
self._rules = {'space': SPACE_RULE}
|
||||
self._refs = {}
|
||||
self._refs_being_resolved = set()
|
||||
|
||||
def _format_literal(self, literal):
|
||||
escaped = GRAMMAR_LITERAL_ESCAPE_RE.sub(
|
||||
lambda m: GRAMMAR_LITERAL_ESCAPES.get(m.group(0)), json.dumps(literal)
|
||||
lambda m: GRAMMAR_LITERAL_ESCAPES.get(m.group(0)), literal
|
||||
)
|
||||
return f'"{escaped}"'
|
||||
|
||||
@@ -41,78 +71,420 @@ class SchemaConverter:
|
||||
key = esc_name
|
||||
else:
|
||||
i = 0
|
||||
while f'{esc_name}{i}' in self._rules:
|
||||
while f'{esc_name}{i}' in self._rules and self._rules[f'{esc_name}{i}'] != rule:
|
||||
i += 1
|
||||
key = f'{esc_name}{i}'
|
||||
self._rules[key] = rule
|
||||
return key
|
||||
|
||||
def resolve_refs(self, schema: dict, url: str):
|
||||
'''
|
||||
Resolves all $ref fields in the given schema, fetching any remote schemas,
|
||||
replacing $ref with absolute reference URL and populating self._refs with the
|
||||
respective referenced (sub)schema dictionaries.
|
||||
'''
|
||||
def visit(n: dict):
|
||||
if isinstance(n, list):
|
||||
return [visit(x) for x in n]
|
||||
elif isinstance(n, dict):
|
||||
ref = n.get('$ref')
|
||||
if ref is not None and ref not in self._refs:
|
||||
if ref.startswith('https://'):
|
||||
assert self._allow_fetch, 'Fetching remote schemas is not allowed (use --allow-fetch for force)'
|
||||
import requests
|
||||
|
||||
frag_split = ref.split('#')
|
||||
base_url = frag_split[0]
|
||||
|
||||
target = self._refs.get(base_url)
|
||||
if target is None:
|
||||
target = self.resolve_refs(requests.get(ref).json(), base_url)
|
||||
self._refs[base_url] = target
|
||||
|
||||
if len(frag_split) == 1 or frag_split[-1] == '':
|
||||
return target
|
||||
elif ref.startswith('#/'):
|
||||
target = schema
|
||||
ref = f'{url}{ref}'
|
||||
n['$ref'] = ref
|
||||
else:
|
||||
raise ValueError(f'Unsupported ref {ref}')
|
||||
|
||||
for sel in ref.split('#')[-1].split('/')[1:]:
|
||||
assert target is not None and sel in target, f'Error resolving ref {ref}: {sel} not in {target}'
|
||||
target = target[sel]
|
||||
|
||||
self._refs[ref] = target
|
||||
else:
|
||||
for v in n.values():
|
||||
visit(v)
|
||||
|
||||
return n
|
||||
return visit(schema)
|
||||
|
||||
def _generate_union_rule(self, name, alt_schemas):
|
||||
return ' | '.join((
|
||||
self.visit(alt_schema, f'{name}{"-" if name else "alternative-"}{i}')
|
||||
for i, alt_schema in enumerate(alt_schemas)
|
||||
))
|
||||
|
||||
def _visit_pattern(self, pattern, name):
|
||||
'''
|
||||
Transforms a regular expression pattern into a GBNF rule.
|
||||
|
||||
Input: https://json-schema.org/understanding-json-schema/reference/regular_expressions
|
||||
Output: https://github.com/ggerganov/llama.cpp/blob/master/grammars/README.md
|
||||
|
||||
Unsupported features: negative/positive lookaheads, greedy/non-greedy modifiers.
|
||||
|
||||
Mostly a 1:1 translation, except for {x} / {x,} / {x,y} quantifiers for which
|
||||
we define sub-rules to keep the output lean.
|
||||
'''
|
||||
|
||||
assert pattern.startswith('^') and pattern.endswith('$'), 'Pattern must start with "^" and end with "$"'
|
||||
pattern = pattern[1:-1]
|
||||
sub_rule_ids = {}
|
||||
|
||||
i = 0
|
||||
length = len(pattern)
|
||||
|
||||
def to_rule(s: Tuple[str, bool]) -> str:
|
||||
(txt, is_literal) = s
|
||||
return "\"" + txt + "\"" if is_literal else txt
|
||||
|
||||
def transform() -> Tuple[str, bool]:
|
||||
'''
|
||||
Parse a unit at index i (advancing it), and return its string representation + whether it's a literal.
|
||||
'''
|
||||
nonlocal i
|
||||
nonlocal pattern
|
||||
nonlocal sub_rule_ids
|
||||
|
||||
start = i
|
||||
# For each component of this sequence, store its string representation and whether it's a literal.
|
||||
# We only need a flat structure here to apply repetition operators to the last item, and
|
||||
# to merge literals at the and (we're parsing grouped ( sequences ) recursively and don't treat '|' specially
|
||||
# (GBNF's syntax is luckily very close to regular expressions!)
|
||||
seq: list[Tuple[str, bool]] = []
|
||||
|
||||
def get_dot():
|
||||
if self._dotall:
|
||||
rule = '[\\U00000000-\\U0010FFFF]'
|
||||
else:
|
||||
# Accept any character... except \n and \r line break chars (\x0A and \xOD)
|
||||
rule = '[\\U00000000-\\x09\\x0B\\x0C\\x0E-\\U0010FFFF]'
|
||||
return self._add_rule(f'dot', rule)
|
||||
|
||||
def join_seq():
|
||||
nonlocal seq
|
||||
ret = []
|
||||
for is_literal, g in itertools.groupby(seq, lambda x: x[1]):
|
||||
if is_literal:
|
||||
ret.append((''.join(x[0] for x in g), True))
|
||||
else:
|
||||
ret.extend(g)
|
||||
if len(ret) == 1:
|
||||
return ret[0]
|
||||
return (' '.join(to_rule(x) for x in seq), False)
|
||||
|
||||
while i < length:
|
||||
c = pattern[i]
|
||||
if c == '.':
|
||||
seq.append((get_dot(), False))
|
||||
i += 1
|
||||
elif c == '(':
|
||||
i += 1
|
||||
if i < length:
|
||||
assert pattern[i] != '?', f'Unsupported pattern syntax "{pattern[i]}" at index {i} of /{pattern}/'
|
||||
seq.append((f'({to_rule(transform())})', False))
|
||||
elif c == ')':
|
||||
i += 1
|
||||
assert start > 0 and pattern[start-1] == '(', f'Unbalanced parentheses; start = {start}, i = {i}, pattern = {pattern}'
|
||||
return join_seq()
|
||||
elif c == '[':
|
||||
square_brackets = c
|
||||
i += 1
|
||||
while i < length and pattern[i] != ']':
|
||||
if pattern[i] == '\\':
|
||||
square_brackets += pattern[i:i+2]
|
||||
i += 2
|
||||
else:
|
||||
square_brackets += pattern[i]
|
||||
i += 1
|
||||
assert i < length, f'Unbalanced square brackets; start = {start}, i = {i}, pattern = {pattern}'
|
||||
square_brackets += ']'
|
||||
i += 1
|
||||
seq.append((square_brackets, False))
|
||||
elif c == '|':
|
||||
seq.append(('|', False))
|
||||
i += 1
|
||||
elif c in ('*', '+', '?'):
|
||||
seq[-1] = (to_rule(seq[-1]) + c, False)
|
||||
i += 1
|
||||
elif c == '{':
|
||||
curly_brackets = c
|
||||
i += 1
|
||||
while i < length and pattern[i] != '}':
|
||||
curly_brackets += pattern[i]
|
||||
i += 1
|
||||
assert i < length, f'Unbalanced curly brackets; start = {start}, i = {i}, pattern = {pattern}'
|
||||
curly_brackets += '}'
|
||||
i += 1
|
||||
nums = [s.strip() for s in curly_brackets[1:-1].split(',')]
|
||||
min_times = 0
|
||||
max_times = None
|
||||
try:
|
||||
if len(nums) == 1:
|
||||
min_times = int(nums[0])
|
||||
max_times = min_times
|
||||
else:
|
||||
assert len(nums) == 2
|
||||
min_times = int(nums[0]) if nums[0] else 0
|
||||
max_times = int(nums[1]) if nums[1] else None
|
||||
except ValueError:
|
||||
raise ValueError(f'Invalid quantifier {curly_brackets} in /{pattern}/')
|
||||
|
||||
(sub, sub_is_literal) = seq[-1]
|
||||
|
||||
if min_times == 0 and max_times is None:
|
||||
seq[-1] = (f'{sub}*', False)
|
||||
elif min_times == 0 and max_times == 1:
|
||||
seq[-1] = (f'{sub}?', False)
|
||||
elif min_times == 1 and max_times is None:
|
||||
seq[-1] = (f'{sub}+', False)
|
||||
else:
|
||||
if not sub_is_literal:
|
||||
id = sub_rule_ids.get(sub)
|
||||
if id is None:
|
||||
id = self._add_rule(f'{name}-{len(sub_rule_ids) + 1}', sub)
|
||||
sub_rule_ids[sub] = id
|
||||
sub = id
|
||||
|
||||
seq[-1] = (
|
||||
' '.join(
|
||||
([f'"{sub[1:-1] * min_times}"'] if sub_is_literal else [sub] * min_times) +
|
||||
([f'{sub}?'] * (max_times - min_times) if max_times is not None else [f'{sub}*'])),
|
||||
False
|
||||
)
|
||||
else:
|
||||
literal = ''
|
||||
while i < length:
|
||||
if pattern[i] == '\\' and i < length - 1:
|
||||
next = pattern[i + 1]
|
||||
if next in ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS:
|
||||
i += 1
|
||||
literal += pattern[i]
|
||||
i += 1
|
||||
else:
|
||||
literal += pattern[i:i+2]
|
||||
i += 2
|
||||
elif pattern[i] == '"' and not self._raw_pattern:
|
||||
literal += '\\"'
|
||||
i += 1
|
||||
elif pattern[i] not in NON_LITERAL_SET and \
|
||||
(i == length - 1 or literal == '' or pattern[i+1] == '.' or pattern[i+1] not in NON_LITERAL_SET):
|
||||
literal += pattern[i]
|
||||
i += 1
|
||||
else:
|
||||
break
|
||||
if literal:
|
||||
seq.append((literal, True))
|
||||
|
||||
return join_seq()
|
||||
|
||||
return self._add_rule(
|
||||
name,
|
||||
to_rule(transform()) if self._raw_pattern \
|
||||
else "\"\\\"\" " + to_rule(transform()) + " \"\\\"\" space")
|
||||
|
||||
|
||||
def _resolve_ref(self, ref):
|
||||
ref_name = ref.split('/')[-1]
|
||||
if ref_name not in self._rules and ref not in self._refs_being_resolved:
|
||||
self._refs_being_resolved.add(ref)
|
||||
resolved = self._refs[ref]
|
||||
ref_name = self.visit(resolved, ref_name)
|
||||
self._refs_being_resolved.remove(ref)
|
||||
return ref_name
|
||||
|
||||
def _generate_constant_rule(self, value):
|
||||
return self._format_literal(json.dumps(value))
|
||||
|
||||
def visit(self, schema, name):
|
||||
schema_type = schema.get('type')
|
||||
rule_name = name or 'root'
|
||||
schema_format = schema.get('format')
|
||||
rule_name = name + '-' if name in RESERVED_NAMES else name or 'root'
|
||||
|
||||
if 'oneOf' in schema or 'anyOf' in schema:
|
||||
rule = ' | '.join((
|
||||
self.visit(alt_schema, f'{name}{"-" if name else ""}{i}')
|
||||
for i, alt_schema in enumerate(schema.get('oneOf') or schema['anyOf'])
|
||||
))
|
||||
return self._add_rule(rule_name, rule)
|
||||
if (ref := schema.get('$ref')) is not None:
|
||||
return self._add_rule(rule_name, self._resolve_ref(ref))
|
||||
|
||||
elif 'oneOf' in schema or 'anyOf' in schema:
|
||||
return self._add_rule(rule_name, self._generate_union_rule(name, schema.get('oneOf') or schema['anyOf']))
|
||||
|
||||
elif isinstance(schema_type, list):
|
||||
return self._add_rule(rule_name, self._generate_union_rule(name, [{'type': t} for t in schema_type]))
|
||||
|
||||
elif 'const' in schema:
|
||||
return self._add_rule(rule_name, self._format_literal(schema['const']))
|
||||
return self._add_rule(rule_name, self._generate_constant_rule(schema['const']))
|
||||
|
||||
elif 'enum' in schema:
|
||||
rule = ' | '.join((self._format_literal(v) for v in schema['enum']))
|
||||
rule = ' | '.join((self._generate_constant_rule(v) for v in schema['enum']))
|
||||
return self._add_rule(rule_name, rule)
|
||||
|
||||
elif schema_type == 'object' and 'properties' in schema:
|
||||
# TODO: `required` keyword
|
||||
prop_order = self._prop_order
|
||||
prop_pairs = sorted(
|
||||
schema['properties'].items(),
|
||||
# sort by position in prop_order (if specified) then by key
|
||||
key=lambda kv: (prop_order.get(kv[0], len(prop_order)), kv[0]),
|
||||
elif schema_type in (None, 'object') and \
|
||||
('properties' in schema or \
|
||||
('additionalProperties' in schema and schema['additionalProperties'] is not True)):
|
||||
required = set(schema.get('required', []))
|
||||
properties = list(schema.get('properties', {}).items())
|
||||
return self._add_rule(rule_name, self._build_object_rule(properties, required, name, schema.get('additionalProperties')))
|
||||
|
||||
elif schema_type in (None, 'object') and 'allOf' in schema:
|
||||
required = set()
|
||||
properties = []
|
||||
hybrid_name = name
|
||||
def add_component(comp_schema, is_required):
|
||||
if (ref := comp_schema.get('$ref')) is not None:
|
||||
comp_schema = self._refs[ref]
|
||||
|
||||
if 'properties' in comp_schema:
|
||||
for prop_name, prop_schema in comp_schema['properties'].items():
|
||||
properties.append((prop_name, prop_schema))
|
||||
if is_required:
|
||||
required.add(prop_name)
|
||||
|
||||
for t in schema['allOf']:
|
||||
if 'anyOf' in t:
|
||||
for tt in t['anyOf']:
|
||||
add_component(tt, is_required=False)
|
||||
else:
|
||||
add_component(t, is_required=True)
|
||||
|
||||
return self._add_rule(rule_name, self._build_object_rule(properties, required, hybrid_name, additional_properties=[]))
|
||||
|
||||
elif schema_type in (None, 'array') and ('items' in schema or 'prefixItems' in schema):
|
||||
items = schema.get('items') or schema['prefixItems']
|
||||
if isinstance(items, list):
|
||||
return self._add_rule(
|
||||
rule_name,
|
||||
'"[" space ' +
|
||||
' "," space '.join(
|
||||
self.visit(item, f'{name}{"-" if name else ""}tuple-{i}')
|
||||
for i, item in enumerate(items)) +
|
||||
' "]" space')
|
||||
else:
|
||||
item_rule_name = self.visit(items, f'{name}{"-" if name else ""}item')
|
||||
list_item_operator = f'( "," space {item_rule_name} )'
|
||||
successive_items = ""
|
||||
min_items = schema.get("minItems", 0)
|
||||
max_items = schema.get("maxItems")
|
||||
if min_items > 0:
|
||||
successive_items = list_item_operator * (min_items - 1)
|
||||
min_items -= 1
|
||||
if max_items is not None and max_items > min_items:
|
||||
successive_items += (list_item_operator + "?") * (max_items - min_items - 1)
|
||||
else:
|
||||
successive_items += list_item_operator + "*"
|
||||
if min_items == 0:
|
||||
rule = f'"[" space ( {item_rule_name} {successive_items} )? "]" space'
|
||||
else:
|
||||
rule = f'"[" space {item_rule_name} {successive_items} "]" space'
|
||||
return self._add_rule(rule_name, rule)
|
||||
|
||||
elif schema_type in (None, 'string') and 'pattern' in schema:
|
||||
return self._visit_pattern(schema['pattern'], rule_name)
|
||||
|
||||
elif schema_type in (None, 'string') and re.match(r'^uuid[1-5]?$', schema_format or ''):
|
||||
return self._add_rule(
|
||||
'root' if rule_name == 'root' else schema_format,
|
||||
PRIMITIVE_RULES['uuid']
|
||||
)
|
||||
|
||||
rule = '"{" space'
|
||||
for i, (prop_name, prop_schema) in enumerate(prop_pairs):
|
||||
prop_rule_name = self.visit(prop_schema, f'{name}{"-" if name else ""}{prop_name}')
|
||||
if i > 0:
|
||||
rule += ' "," space'
|
||||
rule += fr' {self._format_literal(prop_name)} space ":" space {prop_rule_name}'
|
||||
rule += ' "}" space'
|
||||
elif schema_type in (None, 'string') and schema_format in DATE_RULES:
|
||||
for t, r in DATE_RULES.items():
|
||||
self._add_rule(t, r)
|
||||
return schema_format + '-string'
|
||||
|
||||
return self._add_rule(rule_name, rule)
|
||||
|
||||
elif schema_type == 'array' and 'items' in schema:
|
||||
# TODO `prefixItems` keyword
|
||||
item_rule_name = self.visit(schema['items'], f'{name}{"-" if name else ""}item')
|
||||
list_item_operator = f'("," space {item_rule_name})'
|
||||
successive_items = ""
|
||||
min_items = schema.get("minItems", 0)
|
||||
if min_items > 0:
|
||||
first_item = f"({item_rule_name})"
|
||||
successive_items = list_item_operator * (min_items - 1)
|
||||
min_items -= 1
|
||||
else:
|
||||
first_item = f"({item_rule_name})?"
|
||||
max_items = schema.get("maxItems")
|
||||
if max_items is not None and max_items > min_items:
|
||||
successive_items += (list_item_operator + "?") * (max_items - min_items - 1)
|
||||
else:
|
||||
successive_items += list_item_operator + "*"
|
||||
rule = f'"[" space {first_item} {successive_items} "]" space'
|
||||
return self._add_rule(rule_name, rule)
|
||||
elif (schema_type == 'object') or (len(schema) == 0):
|
||||
for n in OBJECT_RULE_NAMES:
|
||||
self._add_rule(n, PRIMITIVE_RULES[n])
|
||||
return self._add_rule(rule_name, 'object')
|
||||
|
||||
else:
|
||||
assert schema_type in PRIMITIVE_RULES, f'Unrecognized schema: {schema}'
|
||||
# TODO: support minimum, maximum, exclusiveMinimum, exclusiveMaximum at least for zero
|
||||
return self._add_rule(
|
||||
'root' if rule_name == 'root' else schema_type,
|
||||
PRIMITIVE_RULES[schema_type]
|
||||
)
|
||||
|
||||
def _build_object_rule(self, properties: List[Tuple[str, Any]], required: Set[str], name: str, additional_properties: Union[bool, Any]):
|
||||
prop_order = self._prop_order
|
||||
# sort by position in prop_order (if specified) then by original order
|
||||
sorted_props = [kv[0] for _, kv in sorted(enumerate(properties), key=lambda ikv: (prop_order.get(ikv[1][0], len(prop_order)), ikv[0]))]
|
||||
|
||||
prop_kv_rule_names = {}
|
||||
for prop_name, prop_schema in properties:
|
||||
prop_rule_name = self.visit(prop_schema, f'{name}{"-" if name else ""}{prop_name}')
|
||||
prop_kv_rule_names[prop_name] = self._add_rule(
|
||||
f'{name}{"-" if name else ""}{prop_name}-kv',
|
||||
fr'{self._format_literal(json.dumps(prop_name))} space ":" space {prop_rule_name}'
|
||||
)
|
||||
required_props = [k for k in sorted_props if k in required]
|
||||
optional_props = [k for k in sorted_props if k not in required]
|
||||
|
||||
if additional_properties == True or isinstance(additional_properties, dict):
|
||||
sub_name = f'{name}{"-" if name else ""}additional'
|
||||
value_rule = self.visit({} if additional_properties == True else additional_properties, f'{sub_name}-value')
|
||||
prop_kv_rule_names["*"] = self._add_rule(
|
||||
f'{sub_name}-kv',
|
||||
self._add_rule('string', PRIMITIVE_RULES['string']) + f' ":" space {value_rule}'
|
||||
)
|
||||
optional_props.append("*")
|
||||
|
||||
rule = '"{" space '
|
||||
rule += ' "," space '.join(prop_kv_rule_names[k] for k in required_props)
|
||||
|
||||
if optional_props:
|
||||
rule += ' ('
|
||||
if required_props:
|
||||
rule += ' "," space ( '
|
||||
|
||||
def get_recursive_refs(ks, first_is_optional):
|
||||
[k, *rest] = ks
|
||||
kv_rule_name = prop_kv_rule_names[k]
|
||||
if k == '*':
|
||||
res = self._add_rule(
|
||||
f'{name}{"-" if name else ""}additional-kvs',
|
||||
f'{kv_rule_name} ( "," space ' + kv_rule_name + ' )*'
|
||||
)
|
||||
elif first_is_optional:
|
||||
res = f'( "," space {kv_rule_name} )?'
|
||||
else:
|
||||
res = kv_rule_name
|
||||
if len(rest) > 0:
|
||||
res += ' ' + self._add_rule(
|
||||
f'{name}{"-" if name else ""}{k}-rest',
|
||||
get_recursive_refs(rest, first_is_optional=True)
|
||||
)
|
||||
return res
|
||||
|
||||
rule += ' | '.join(
|
||||
get_recursive_refs(optional_props[i:], first_is_optional=False)
|
||||
for i in range(len(optional_props))
|
||||
)
|
||||
if required_props:
|
||||
rule += ' )'
|
||||
rule += ' )?'
|
||||
|
||||
rule += ' "}" space'
|
||||
|
||||
return rule
|
||||
|
||||
def format_grammar(self):
|
||||
return '\n'.join((f'{name} ::= {rule}' for name, rule in self._rules.items()))
|
||||
return '\n'.join(
|
||||
f'{name} ::= {rule}'
|
||||
for name, rule in sorted(self._rules.items(), key=lambda kv: kv[0])
|
||||
)
|
||||
|
||||
|
||||
def main(args_in = None):
|
||||
@@ -129,16 +501,47 @@ def main(args_in = None):
|
||||
type=lambda s: s.split(','),
|
||||
help='''
|
||||
comma-separated property names defining the order of precedence for object properties;
|
||||
properties not specified here are given lower precedence than those that are, and are
|
||||
sorted alphabetically
|
||||
properties not specified here are given lower precedence than those that are, and
|
||||
are kept in their original order from the schema. Required properties are always
|
||||
given precedence over optional properties.
|
||||
'''
|
||||
)
|
||||
parser.add_argument(
|
||||
'--allow-fetch',
|
||||
action='store_true',
|
||||
default=False,
|
||||
help='Whether to allow fetching referenced schemas over HTTPS')
|
||||
parser.add_argument(
|
||||
'--dotall',
|
||||
action='store_true',
|
||||
default=False,
|
||||
help='Whether to treat dot (".") as matching all chars including line breaks in regular expression patterns')
|
||||
parser.add_argument(
|
||||
'--raw-pattern',
|
||||
action='store_true',
|
||||
default=False,
|
||||
help='Treats string patterns as raw patterns w/o quotes (or quote escapes)')
|
||||
|
||||
parser.add_argument('schema', help='file containing JSON schema ("-" for stdin)')
|
||||
args = parser.parse_args(args_in)
|
||||
|
||||
schema = json.load(sys.stdin if args.schema == '-' else open(args.schema))
|
||||
prop_order = {name: idx for idx, name in enumerate(args.prop_order)}
|
||||
converter = SchemaConverter(prop_order)
|
||||
if args.schema.startswith('https://'):
|
||||
url = args.schema
|
||||
import requests
|
||||
schema = requests.get(url).json()
|
||||
elif args.schema == '-':
|
||||
url = 'stdin'
|
||||
schema = json.load(sys.stdin)
|
||||
else:
|
||||
url = f'file://{args.schema}'
|
||||
with open(args.schema) as f:
|
||||
schema = json.load(f)
|
||||
converter = SchemaConverter(
|
||||
prop_order={name: idx for idx, name in enumerate(args.prop_order)},
|
||||
allow_fetch=args.allow_fetch,
|
||||
dotall=args.dotall,
|
||||
raw_pattern=args.raw_pattern)
|
||||
schema = converter.resolve_refs(schema, url)
|
||||
converter.visit(schema, '')
|
||||
print(converter.format_grammar())
|
||||
|
||||
|
||||
@@ -8,6 +8,7 @@
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <ctime>
|
||||
#include <cstdlib>
|
||||
#include <iterator>
|
||||
#include <map>
|
||||
#include <numeric>
|
||||
@@ -103,6 +104,7 @@ static std::string get_cpu_info() {
|
||||
}
|
||||
}
|
||||
}
|
||||
fclose(f);
|
||||
}
|
||||
#endif
|
||||
// TODO: other platforms
|
||||
@@ -112,10 +114,10 @@ static std::string get_cpu_info() {
|
||||
static std::string get_gpu_info() {
|
||||
std::string id;
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
int count = ggml_cuda_get_device_count();
|
||||
int count = ggml_backend_cuda_get_device_count();
|
||||
for (int i = 0; i < count; i++) {
|
||||
char buf[128];
|
||||
ggml_cuda_get_device_description(i, buf, sizeof(buf));
|
||||
ggml_backend_cuda_get_device_description(i, buf, sizeof(buf));
|
||||
id += buf;
|
||||
if (i < count - 1) {
|
||||
id += "/";
|
||||
@@ -164,6 +166,7 @@ struct cmd_params {
|
||||
std::vector<int> n_prompt;
|
||||
std::vector<int> n_gen;
|
||||
std::vector<int> n_batch;
|
||||
std::vector<int> n_ubatch;
|
||||
std::vector<ggml_type> type_k;
|
||||
std::vector<ggml_type> type_v;
|
||||
std::vector<int> n_threads;
|
||||
@@ -183,7 +186,8 @@ static const cmd_params cmd_params_defaults = {
|
||||
/* model */ {"models/7B/ggml-model-q4_0.gguf"},
|
||||
/* n_prompt */ {512},
|
||||
/* n_gen */ {128},
|
||||
/* n_batch */ {512},
|
||||
/* n_batch */ {2048},
|
||||
/* n_ubatch */ {512},
|
||||
/* type_k */ {GGML_TYPE_F16},
|
||||
/* type_v */ {GGML_TYPE_F16},
|
||||
/* n_threads */ {get_num_physical_cores()},
|
||||
@@ -208,6 +212,7 @@ static void print_usage(int /* argc */, char ** argv) {
|
||||
printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
|
||||
printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
|
||||
printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
|
||||
printf(" -ub N, --ubatch-size <n> (default: %s)\n", join(cmd_params_defaults.n_ubatch, ",").c_str());
|
||||
printf(" -ctk <t>, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
|
||||
printf(" -ctv <t>, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
|
||||
printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
|
||||
@@ -217,7 +222,7 @@ static void print_usage(int /* argc */, char ** argv) {
|
||||
printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
|
||||
printf(" -mmp, --mmap <0|1> (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str());
|
||||
printf(" -embd, --embeddings <0|1> (default: %s)\n", join(cmd_params_defaults.embeddings, ",").c_str());
|
||||
printf(" -ts, --tensor_split <ts0/ts1/..> (default: 0)\n");
|
||||
printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
|
||||
printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
|
||||
printf(" -o, --output <csv|json|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format));
|
||||
printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
|
||||
@@ -244,6 +249,9 @@ static ggml_type ggml_type_from_name(const std::string & s) {
|
||||
if (s == "q5_1") {
|
||||
return GGML_TYPE_Q5_1;
|
||||
}
|
||||
if (s == "iq4_nl") {
|
||||
return GGML_TYPE_IQ4_NL;
|
||||
}
|
||||
|
||||
return GGML_TYPE_COUNT;
|
||||
}
|
||||
@@ -297,6 +305,13 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
||||
}
|
||||
auto p = split<int>(argv[i], split_delim);
|
||||
params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
|
||||
} else if (arg == "-ub" || arg == "--ubatch-size") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
auto p = split<int>(argv[i], split_delim);
|
||||
params.n_ubatch.insert(params.n_ubatch.end(), p.begin(), p.end());
|
||||
} else if (arg == "-ctk" || arg == "--cache-type-k") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@@ -455,6 +470,7 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
||||
if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
|
||||
if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
|
||||
if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
|
||||
if (params.n_ubatch.empty()) { params.n_ubatch = cmd_params_defaults.n_ubatch; }
|
||||
if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; }
|
||||
if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; }
|
||||
if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
|
||||
@@ -474,6 +490,7 @@ struct cmd_params_instance {
|
||||
int n_prompt;
|
||||
int n_gen;
|
||||
int n_batch;
|
||||
int n_ubatch;
|
||||
ggml_type type_k;
|
||||
ggml_type type_v;
|
||||
int n_threads;
|
||||
@@ -511,6 +528,7 @@ struct cmd_params_instance {
|
||||
|
||||
cparams.n_ctx = n_prompt + n_gen;
|
||||
cparams.n_batch = n_batch;
|
||||
cparams.n_ubatch = n_ubatch;
|
||||
cparams.type_k = type_k;
|
||||
cparams.type_v = type_v;
|
||||
cparams.offload_kqv = !no_kv_offload;
|
||||
@@ -532,6 +550,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
||||
for (const auto & mmp : params.use_mmap)
|
||||
for (const auto & embd : params.embeddings)
|
||||
for (const auto & nb : params.n_batch)
|
||||
for (const auto & nub : params.n_ubatch)
|
||||
for (const auto & tk : params.type_k)
|
||||
for (const auto & tv : params.type_v)
|
||||
for (const auto & nkvo : params.no_kv_offload)
|
||||
@@ -545,6 +564,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
||||
/* .n_prompt = */ n_prompt,
|
||||
/* .n_gen = */ 0,
|
||||
/* .n_batch = */ nb,
|
||||
/* .n_ubatch = */ nub,
|
||||
/* .type_k = */ tk,
|
||||
/* .type_v = */ tv,
|
||||
/* .n_threads = */ nt,
|
||||
@@ -568,6 +588,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
||||
/* .n_prompt = */ 0,
|
||||
/* .n_gen = */ n_gen,
|
||||
/* .n_batch = */ nb,
|
||||
/* .n_ubatch = */ nub,
|
||||
/* .type_k = */ tk,
|
||||
/* .type_v = */ tv,
|
||||
/* .n_threads = */ nt,
|
||||
@@ -604,6 +625,7 @@ struct test {
|
||||
uint64_t model_size;
|
||||
uint64_t model_n_params;
|
||||
int n_batch;
|
||||
int n_ubatch;
|
||||
int n_threads;
|
||||
ggml_type type_k;
|
||||
ggml_type type_v;
|
||||
@@ -627,6 +649,7 @@ struct test {
|
||||
model_size = llama_model_size(lmodel);
|
||||
model_n_params = llama_model_n_params(lmodel);
|
||||
n_batch = inst.n_batch;
|
||||
n_ubatch = inst.n_ubatch;
|
||||
n_threads = inst.n_threads;
|
||||
type_k = inst.type_k;
|
||||
type_v = inst.type_v;
|
||||
@@ -705,7 +728,8 @@ struct test {
|
||||
"cuda", "opencl", "vulkan", "kompute", "metal", "sycl", "gpu_blas", "blas",
|
||||
"cpu_info", "gpu_info",
|
||||
"model_filename", "model_type", "model_size", "model_n_params",
|
||||
"n_batch", "n_threads", "type_k", "type_v",
|
||||
"n_batch", "n_ubatch",
|
||||
"n_threads", "type_k", "type_v",
|
||||
"n_gpu_layers", "split_mode",
|
||||
"main_gpu", "no_kv_offload",
|
||||
"tensor_split", "use_mmap", "embeddings",
|
||||
@@ -719,7 +743,8 @@ struct test {
|
||||
enum field_type {STRING, BOOL, INT, FLOAT};
|
||||
|
||||
static field_type get_field_type(const std::string & field) {
|
||||
if (field == "build_number" || field == "n_batch" || field == "n_threads" ||
|
||||
if (field == "build_number" || field == "n_batch" || field == "n_ubatch" ||
|
||||
field == "n_threads" ||
|
||||
field == "model_size" || field == "model_n_params" ||
|
||||
field == "n_gpu_layers" || field == "main_gpu" ||
|
||||
field == "n_prompt" || field == "n_gen" ||
|
||||
@@ -759,7 +784,8 @@ struct test {
|
||||
std::to_string(metal), std::to_string(sycl), std::to_string(gpu_blas), std::to_string(blas),
|
||||
cpu_info, gpu_info,
|
||||
model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
|
||||
std::to_string(n_batch), std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v),
|
||||
std::to_string(n_batch), std::to_string(n_ubatch),
|
||||
std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v),
|
||||
std::to_string(n_gpu_layers), split_mode_str(split_mode),
|
||||
std::to_string(main_gpu), std::to_string(no_kv_offload),
|
||||
tensor_split_str, std::to_string(use_mmap), std::to_string(embeddings),
|
||||
@@ -957,6 +983,9 @@ struct markdown_printer : public printer {
|
||||
if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
|
||||
fields.emplace_back("n_batch");
|
||||
}
|
||||
if (params.n_ubatch.size() > 1 || params.n_ubatch != cmd_params_defaults.n_ubatch) {
|
||||
fields.emplace_back("n_ubatch");
|
||||
}
|
||||
if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
|
||||
fields.emplace_back("type_k");
|
||||
}
|
||||
@@ -1096,25 +1125,40 @@ struct sql_printer : public printer {
|
||||
};
|
||||
|
||||
static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
|
||||
std::vector<llama_token> tokens(n_batch, llama_token_bos(llama_get_model(ctx)));
|
||||
int n_processed = 0;
|
||||
|
||||
llama_set_n_threads(ctx, n_threads, n_threads);
|
||||
|
||||
const llama_model * model = llama_get_model(ctx);
|
||||
const int32_t n_vocab = llama_n_vocab(model);
|
||||
|
||||
std::vector<llama_token> tokens(n_batch);
|
||||
|
||||
int n_processed = 0;
|
||||
|
||||
while (n_processed < n_prompt) {
|
||||
int n_tokens = std::min(n_prompt - n_processed, n_batch);
|
||||
tokens[0] = n_processed == 0 && llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
|
||||
for (int i = 1; i < n_tokens; i++) {
|
||||
tokens[i] = std::rand() % n_vocab;
|
||||
}
|
||||
llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens, n_past + n_processed, 0));
|
||||
n_processed += n_tokens;
|
||||
}
|
||||
|
||||
llama_synchronize(ctx);
|
||||
}
|
||||
|
||||
static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
|
||||
llama_token token = llama_token_bos(llama_get_model(ctx));
|
||||
|
||||
llama_set_n_threads(ctx, n_threads, n_threads);
|
||||
|
||||
const llama_model * model = llama_get_model(ctx);
|
||||
const int32_t n_vocab = llama_n_vocab(model);
|
||||
|
||||
llama_token token = llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
|
||||
|
||||
for (int i = 0; i < n_gen; i++) {
|
||||
llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0));
|
||||
llama_synchronize(ctx);
|
||||
token = std::rand() % n_vocab;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1203,7 +1247,8 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// warmup run
|
||||
if (t.n_prompt > 0) {
|
||||
test_prompt(ctx, std::min(2, t.n_batch), 0, t.n_batch, t.n_threads);
|
||||
//test_prompt(ctx, std::min(t.n_batch, std::min(t.n_prompt, 32)), 0, t.n_batch, t.n_threads);
|
||||
test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
|
||||
}
|
||||
if (t.n_gen > 0) {
|
||||
test_gen(ctx, 1, 0, t.n_threads);
|
||||
@@ -1219,6 +1264,7 @@ int main(int argc, char ** argv) {
|
||||
if (t.n_gen > 0) {
|
||||
test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads);
|
||||
}
|
||||
|
||||
uint64_t t_ns = get_time_ns() - t_start;
|
||||
t.samples_ns.push_back(t_ns);
|
||||
}
|
||||
|
||||
@@ -221,6 +221,7 @@ actor LlamaContext {
|
||||
if llama_decode(context, batch) != 0 {
|
||||
print("llama_decode() failed during prompt")
|
||||
}
|
||||
llama_synchronize(context)
|
||||
|
||||
let t_pp_end = ggml_time_us()
|
||||
|
||||
@@ -240,6 +241,7 @@ actor LlamaContext {
|
||||
if llama_decode(context, batch) != 0 {
|
||||
print("llama_decode() failed during text generation")
|
||||
}
|
||||
llama_synchronize(context)
|
||||
}
|
||||
|
||||
let t_tg_end = ggml_time_us()
|
||||
|
||||
@@ -1,11 +1,13 @@
|
||||
# MobileVLM
|
||||
|
||||
Currently this implementation supports [MobileVLM-v1.7](https://huggingface.co/mtgv/MobileVLM-1.7B) variants.
|
||||
Currently this implementation supports [MobileVLM-1.7B](https://huggingface.co/mtgv/MobileVLM-1.7B) / [MobileVLM_V2-1.7B](https://huggingface.co/mtgv/MobileVLM_V2-1.7B) variants.
|
||||
|
||||
for more information, please go to [Meituan-AutoML/MobileVLM](https://github.com/Meituan-AutoML/MobileVLM)
|
||||
|
||||
The implementation is based on llava, and is compatible with llava and mobileVLM. The usage is basically same as llava.
|
||||
|
||||
Notice: The overall process of model inference for both **MobileVLM** and **MobileVLM_V2** models is the same, but the process of model conversion is a little different. Therefore, using MobiVLM as an example, the different conversion step will be shown.
|
||||
|
||||
## Usage
|
||||
Build with cmake or run `make llava-cli` to build it.
|
||||
|
||||
@@ -34,7 +36,7 @@ git clone https://huggingface.co/openai/clip-vit-large-patch14-336
|
||||
python ./examples/llava/llava-surgery.py -m path/to/MobileVLM-1.7B
|
||||
```
|
||||
|
||||
3. Use `convert-image-encoder-to-gguf.py` with `--projector-type ldp` to convert the LLaVA image encoder to GGUF:
|
||||
3. Use `convert-image-encoder-to-gguf.py` with `--projector-type ldp` (for **V2** the arg is `--projector-type ldpv2`) to convert the LLaVA image encoder to GGUF:
|
||||
|
||||
```sh
|
||||
python ./examples/llava/convert-image-encoder-to-gguf \
|
||||
@@ -44,6 +46,14 @@ python ./examples/llava/convert-image-encoder-to-gguf \
|
||||
--projector-type ldp
|
||||
```
|
||||
|
||||
```sh
|
||||
python ./examples/llava/convert-image-encoder-to-gguf \
|
||||
-m path/to/clip-vit-large-patch14-336 \
|
||||
--llava-projector path/to/MobileVLM-1.7B_V2/llava.projector \
|
||||
--output-dir path/to/MobileVLM-1.7B_V2 \
|
||||
--projector-type ldpv2
|
||||
```
|
||||
|
||||
4. Use `convert.py` to convert the LLaMA part of LLaVA to GGUF:
|
||||
|
||||
```sh
|
||||
|
||||
@@ -63,12 +63,20 @@ Now both the LLaMA part and the image encoder is in the `llava-v1.5-7b` director
|
||||
```console
|
||||
git clone https://huggingface.co/liuhaotian/llava-v1.6-vicuna-7b
|
||||
```
|
||||
2) Use `llava-surgery-v2.py` which also supports llava-1.5 variants pytorch as well as safetensor models:
|
||||
|
||||
2) Install the required Python packages:
|
||||
|
||||
```sh
|
||||
pip install -r examples/llava/requirements.txt
|
||||
```
|
||||
|
||||
3) Use `llava-surgery-v2.py` which also supports llava-1.5 variants pytorch as well as safetensor models:
|
||||
```console
|
||||
python examples/llava/llava-surgery-v2.py -C -m ../llava-v1.6-vicuna-7b/
|
||||
```
|
||||
- you will find a llava.projector and a llava.clip file in your model directory
|
||||
3) Copy the llava.clip file into a subdirectory (like vit), rename it to pytorch_model.bin and add a fitting vit configuration to the directory:
|
||||
|
||||
4) Copy the llava.clip file into a subdirectory (like vit), rename it to pytorch_model.bin and add a fitting vit configuration to the directory:
|
||||
```console
|
||||
mkdir vit
|
||||
cp ../llava-v1.6-vicuna-7b/llava.clip vit/pytorch_model.bin
|
||||
@@ -76,18 +84,18 @@ cp ../llava-v1.6-vicuna-7b/llava.projector vit/
|
||||
curl -s -q https://huggingface.co/cmp-nct/llava-1.6-gguf/raw/main/config_vit.json -o vit/config.json
|
||||
```
|
||||
|
||||
4) Create the visual gguf model:
|
||||
5) Create the visual gguf model:
|
||||
```console
|
||||
python ./examples/llava/convert-image-encoder-to-gguf.py -m vit --llava-projector vit/llava.projector --output-dir vit --clip-model-is-vision
|
||||
```
|
||||
- This is similar to llava-1.5, the difference is that we tell the encoder that we are working with the pure vision model part of CLIP
|
||||
|
||||
5) Then convert the model to gguf format:
|
||||
6) Then convert the model to gguf format:
|
||||
```console
|
||||
python ./convert.py ../llava-v1.6-vicuna-7b/ --skip-unknown
|
||||
```
|
||||
|
||||
6) And finally we can run the llava-cli using the 1.6 model version:
|
||||
7) And finally we can run the llava-cli using the 1.6 model version:
|
||||
```console
|
||||
./llava-cli -m ../llava-v1.6-vicuna-7b/ggml-model-f16.gguf --mmproj vit/mmproj-model-f16.gguf --image some-image.jpg -c 4096
|
||||
```
|
||||
|
||||
@@ -119,6 +119,7 @@ static std::string format(const char * fmt, ...) {
|
||||
#define TN_LLAVA_PROJ "mm.%d.%s"
|
||||
#define TN_MVLM_PROJ_MLP "mm.model.mlp.%d.%s"
|
||||
#define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s"
|
||||
#define TN_MVLM_PROJ_PEG "mm.model.peg.%d.%s"
|
||||
#define TN_IMAGE_NEWLINE "model.image_newline"
|
||||
|
||||
|
||||
@@ -126,12 +127,14 @@ enum projector_type {
|
||||
PROJECTOR_TYPE_MLP,
|
||||
PROJECTOR_TYPE_MLP_NORM,
|
||||
PROJECTOR_TYPE_LDP,
|
||||
PROJECTOR_TYPE_LDPV2,
|
||||
PROJECTOR_TYPE_UNKNOWN,
|
||||
};
|
||||
|
||||
static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
|
||||
{ PROJECTOR_TYPE_MLP, "mlp" },
|
||||
{ PROJECTOR_TYPE_LDP, "ldp" },
|
||||
{ PROJECTOR_TYPE_LDPV2, "ldpv2"},
|
||||
};
|
||||
|
||||
|
||||
@@ -475,6 +478,14 @@ struct clip_vision_model {
|
||||
struct ggml_tensor * mm_model_block_2_block_2_0_w;
|
||||
struct ggml_tensor * mm_model_block_2_block_2_1_w;
|
||||
struct ggml_tensor * mm_model_block_2_block_2_1_b;
|
||||
|
||||
// MobileVLM_V2 projection
|
||||
struct ggml_tensor * mm_model_mlp_0_w;
|
||||
struct ggml_tensor * mm_model_mlp_0_b;
|
||||
struct ggml_tensor * mm_model_mlp_2_w;
|
||||
struct ggml_tensor * mm_model_mlp_2_b;
|
||||
struct ggml_tensor * mm_model_peg_0_w;
|
||||
struct ggml_tensor * mm_model_peg_0_b;
|
||||
};
|
||||
|
||||
struct clip_ctx {
|
||||
@@ -497,7 +508,6 @@ struct clip_ctx {
|
||||
|
||||
// memory buffers to evaluate the model
|
||||
ggml_backend_buffer_t params_buffer = NULL;
|
||||
ggml_backend_buffer_t compute_buffer = NULL;
|
||||
|
||||
ggml_backend_t backend = NULL;
|
||||
ggml_gallocr_t compute_alloc = NULL;
|
||||
@@ -808,6 +818,29 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
||||
}
|
||||
embeddings = block_1;
|
||||
}
|
||||
else if (ctx->proj_type == PROJECTOR_TYPE_LDPV2)
|
||||
{
|
||||
int n_patch = 24;
|
||||
struct ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
|
||||
mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
|
||||
mlp_0 = ggml_gelu(ctx0, mlp_0);
|
||||
struct ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
|
||||
mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
|
||||
// mlp_2 ne = [2048, 576, 1, 1]
|
||||
// // AVG Pool Layer 2*2, strides = 2
|
||||
mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 0, 2, 3));
|
||||
// mlp_2 ne = [576, 2048, 1, 1]
|
||||
mlp_2 = ggml_reshape_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
|
||||
// mlp_2 ne [24, 24, 2048, 1]
|
||||
mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
|
||||
// weight ne = [3, 3, 2048, 1]
|
||||
struct ggml_tensor * peg_0 = ggml_conv_depthwise_2d(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
|
||||
peg_0 = ggml_add(ctx0, peg_0, mlp_2);
|
||||
peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
|
||||
peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
|
||||
peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
|
||||
embeddings = peg_0;
|
||||
}
|
||||
else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
@@ -995,6 +1028,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
if (!new_clip->ctx_data) {
|
||||
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
|
||||
clip_free(new_clip);
|
||||
gguf_free(ctx);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
@@ -1002,6 +1036,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
if (!fin) {
|
||||
printf("cannot open model file for loading tensors\n");
|
||||
clip_free(new_clip);
|
||||
gguf_free(ctx);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
@@ -1023,6 +1058,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
if (!fin) {
|
||||
printf("%s: failed to seek for tensor %s\n", __func__, name);
|
||||
clip_free(new_clip);
|
||||
gguf_free(ctx);
|
||||
return nullptr;
|
||||
}
|
||||
int num_bytes = ggml_nbytes(cur);
|
||||
@@ -1175,7 +1211,18 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
vision_model.mm_model_block_2_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
|
||||
vision_model.mm_model_block_2_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
|
||||
vision_model.mm_model_block_2_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
|
||||
} else {
|
||||
}
|
||||
else if (new_clip->proj_type == PROJECTOR_TYPE_LDPV2)
|
||||
{
|
||||
// MobilVLM_V2 projection
|
||||
vision_model.mm_model_mlp_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 0, "weight"));
|
||||
vision_model.mm_model_mlp_0_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 0, "bias"));
|
||||
vision_model.mm_model_mlp_2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 2, "weight"));
|
||||
vision_model.mm_model_mlp_2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 2, "bias"));
|
||||
vision_model.mm_model_peg_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "weight"));
|
||||
vision_model.mm_model_peg_0_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "bias"));
|
||||
}
|
||||
else {
|
||||
std::string proj_type = PROJECTOR_TYPE_NAMES[new_clip->proj_type];
|
||||
throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
|
||||
}
|
||||
@@ -1232,16 +1279,16 @@ struct clip_image_f32 * clip_image_f32_init() {
|
||||
|
||||
void clip_image_u8_free(struct clip_image_u8 * img) { delete img; }
|
||||
void clip_image_f32_free(struct clip_image_f32 * img) { delete img; }
|
||||
void clip_image_u8_batch_free(struct clip_image_u8_batch & batch) {
|
||||
if (batch.size > 0) {
|
||||
delete[] batch.data;
|
||||
batch.size = 0;
|
||||
void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) {
|
||||
if (batch->size > 0) {
|
||||
delete[] batch->data;
|
||||
batch->size = 0;
|
||||
}
|
||||
}
|
||||
void clip_image_f32_batch_free(struct clip_image_f32_batch & batch) {
|
||||
if (batch.size > 0) {
|
||||
delete[] batch.data;
|
||||
batch.size = 0;
|
||||
void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) {
|
||||
if (batch->size > 0) {
|
||||
delete[] batch->data;
|
||||
batch->size = 0;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1494,7 +1541,7 @@ static std::vector<clip_image_u8*> divide_to_patches_u8(const clip_image_u8 & im
|
||||
|
||||
// returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
|
||||
// res_imgs memory is being allocated here, previous allocations will be freed if found
|
||||
bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32_batch & res_imgs) {
|
||||
bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32_batch * res_imgs) {
|
||||
bool pad_to_square = true;
|
||||
if (!ctx->has_vision_encoder) {
|
||||
printf("This gguf file seems to have no vision encoder\n");
|
||||
@@ -1506,11 +1553,11 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, cli
|
||||
pad_to_square = false;
|
||||
}
|
||||
// free the previous res_imgs if any set
|
||||
if (res_imgs.size > 0) {
|
||||
if (res_imgs->size > 0) {
|
||||
clip_image_f32_batch_free(res_imgs);
|
||||
}
|
||||
res_imgs.data = nullptr;
|
||||
res_imgs.size = 0;
|
||||
res_imgs->data = nullptr;
|
||||
res_imgs->size = 0;
|
||||
|
||||
// the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
|
||||
// see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
|
||||
@@ -1565,11 +1612,11 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, cli
|
||||
bicubic_resize(*img, *image_original_resize, params.image_size, params.image_size); // in python this is "shortest_edge", but all CLIP are square
|
||||
patches.insert(patches.begin(), image_original_resize);
|
||||
// clip_image_f32_batch_init(patches.size());
|
||||
res_imgs.size = patches.size();
|
||||
res_imgs.data = new clip_image_f32[res_imgs.size];
|
||||
res_imgs->size = patches.size();
|
||||
res_imgs->data = new clip_image_f32[res_imgs->size];
|
||||
int num=0;
|
||||
for (auto& patch : patches) {
|
||||
normalize_image_u8_to_f32(patch, &res_imgs.data[num], ctx->image_mean, ctx->image_std);
|
||||
normalize_image_u8_to_f32(patch, &res_imgs->data[num], ctx->image_mean, ctx->image_std);
|
||||
num++;
|
||||
}
|
||||
|
||||
@@ -1657,9 +1704,9 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, cli
|
||||
// }
|
||||
// res_imgs.push_back(res);
|
||||
|
||||
res_imgs.size = 1;
|
||||
res_imgs.data = new clip_image_f32[res_imgs.size];
|
||||
res_imgs.data[0] = *res;
|
||||
res_imgs->size = 1;
|
||||
res_imgs->data = new clip_image_f32[res_imgs->size];
|
||||
res_imgs->data[0] = *res;
|
||||
clip_image_f32_free(res);
|
||||
|
||||
return true;
|
||||
@@ -1673,6 +1720,9 @@ void clip_free(clip_ctx * ctx) {
|
||||
ggml_free(ctx->ctx_data);
|
||||
gguf_free(ctx->ctx_gguf);
|
||||
|
||||
ggml_backend_buffer_free(ctx->params_buffer);
|
||||
ggml_backend_free(ctx->backend);
|
||||
ggml_gallocr_free(ctx->compute_alloc);
|
||||
delete ctx;
|
||||
}
|
||||
|
||||
@@ -1908,6 +1958,7 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
|
||||
break;
|
||||
default:
|
||||
printf("Please use an input file in f32 or f16\n");
|
||||
gguf_free(ctx_out);
|
||||
return false;
|
||||
}
|
||||
|
||||
@@ -1960,6 +2011,9 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
|
||||
if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
|
||||
return ctx->vision_model.mm_model_block_1_block_2_1_b->ne[0];
|
||||
}
|
||||
if (ctx->proj_type == PROJECTOR_TYPE_LDPV2) {
|
||||
return ctx->vision_model.mm_model_peg_0_b->ne[0];
|
||||
}
|
||||
if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
|
||||
return ctx->vision_model.mm_2_b->ne[0];
|
||||
}
|
||||
|
||||
@@ -60,8 +60,8 @@ CLIP_API struct clip_image_f32 * clip_image_f32_init();
|
||||
|
||||
CLIP_API void clip_image_u8_free (struct clip_image_u8 * img);
|
||||
CLIP_API void clip_image_f32_free(struct clip_image_f32 * img);
|
||||
CLIP_API void clip_image_u8_batch_free (struct clip_image_u8_batch & batch);
|
||||
CLIP_API void clip_image_f32_batch_free(struct clip_image_f32_batch & batch);
|
||||
CLIP_API void clip_image_u8_batch_free (struct clip_image_u8_batch * batch);
|
||||
CLIP_API void clip_image_f32_batch_free(struct clip_image_f32_batch * batch);
|
||||
|
||||
CLIP_API bool clip_image_load_from_file(const char * fname, struct clip_image_u8 * img);
|
||||
|
||||
@@ -69,7 +69,7 @@ CLIP_API bool clip_image_load_from_file(const char * fname, struct clip_image_u8
|
||||
CLIP_API bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img);
|
||||
|
||||
/** preprocess img and store the result in res_imgs, pad_to_square may be overriden to false depending on model configuration */
|
||||
CLIP_API bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32_batch & res_imgs );
|
||||
CLIP_API bool clip_image_preprocess(struct clip_ctx * ctx, const struct clip_image_u8 * img, struct clip_image_f32_batch * res_imgs );
|
||||
|
||||
CLIP_API struct ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx);
|
||||
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import argparse
|
||||
import os
|
||||
import json
|
||||
import re
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
@@ -38,9 +39,11 @@ def should_skip_tensor(name: str, has_text: bool, has_vision: bool, has_llava: b
|
||||
def get_tensor_name(name: str) -> str:
|
||||
if "projection" in name:
|
||||
return name
|
||||
|
||||
if "mm_projector" in name:
|
||||
return name.replace("model.mm_projector", "mm")
|
||||
name = name.replace("model.mm_projector", "mm")
|
||||
name = re.sub(r'mm\.mlp\.mlp', 'mm.model.mlp', name, count=1)
|
||||
name = re.sub(r'mm\.peg\.peg', 'mm.model.peg', name, count=1)
|
||||
return name
|
||||
|
||||
return name.replace("text_model", "t").replace("vision_model", "v").replace("encoder.layers", "blk").replace("embeddings.", "").replace("_proj", "").replace("self_attn.", "attn_").replace("layer_norm", "ln").replace("layernorm", "ln").replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("embedding", "embd").replace("final", "post").replace("layrnorm", "ln")
|
||||
|
||||
@@ -83,7 +86,7 @@ ap.add_argument("--clip-model-is-vision", action="store_true", required=False,
|
||||
ap.add_argument("--clip-model-is-openclip", action="store_true", required=False,
|
||||
help="The clip model is from openclip (for ViT-SO400M type))")
|
||||
ap.add_argument("--llava-projector", help="Path to llava.projector file. If specified, save an image encoder for LLaVA models.")
|
||||
ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp", choices=["mlp", "ldp"], default="mlp")
|
||||
ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp, ldpv2", choices=["mlp", "ldp", "ldpv2"], default="mlp")
|
||||
ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None)
|
||||
# Example --image_mean 0.48145466 0.4578275 0.40821073 --image_std 0.26862954 0.26130258 0.27577711
|
||||
# Example --image_mean 0.5 0.5 0.5 --image_std 0.5 0.5 0.5
|
||||
|
||||
@@ -223,7 +223,7 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
|
||||
clip_image_f32_batch img_res_v;
|
||||
img_res_v.size = 0;
|
||||
img_res_v.data = nullptr;
|
||||
if (!clip_image_preprocess(ctx_clip, img, img_res_v)) {
|
||||
if (!clip_image_preprocess(ctx_clip, img, &img_res_v)) {
|
||||
fprintf(stderr, "%s: unable to preprocess image\n", __func__);
|
||||
delete[] img_res_v.data;
|
||||
return false;
|
||||
|
||||
@@ -29,9 +29,9 @@ struct llava_image_embed {
|
||||
};
|
||||
|
||||
/** sanity check for clip <-> llava embed size match */
|
||||
LLAVA_API bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx * ctx_clip);
|
||||
LLAVA_API bool llava_validate_embed_size(const struct llama_context * ctx_llama, const struct clip_ctx * ctx_clip);
|
||||
|
||||
LLAVA_API bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out);
|
||||
LLAVA_API bool llava_image_embed_make_with_clip_img(struct clip_ctx * ctx_clip, int n_threads, const struct clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out);
|
||||
|
||||
/** build an image embed from image file bytes */
|
||||
LLAVA_API struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length);
|
||||
|
||||
@@ -3,3 +3,21 @@ add_executable(${TARGET} lookup.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
|
||||
set(TARGET lookup-create)
|
||||
add_executable(${TARGET} lookup-create.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
|
||||
set(TARGET lookup-merge)
|
||||
add_executable(${TARGET} lookup-merge.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
|
||||
set(TARGET lookup-stats)
|
||||
add_executable(${TARGET} lookup-stats.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
|
||||
43
examples/lookup/lookup-create.cpp
Normal file
43
examples/lookup/lookup-create.cpp
Normal file
@@ -0,0 +1,43 @@
|
||||
#include "ggml.h"
|
||||
#include "llama.h"
|
||||
#include "common.h"
|
||||
#include "ngram-cache.h"
|
||||
|
||||
#include <cstdint>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
|
||||
int main(int argc, char ** argv){
|
||||
gpt_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
return 1;
|
||||
}
|
||||
// init llama.cpp
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
llama_model * model = NULL;
|
||||
llama_context * ctx = NULL;
|
||||
|
||||
// load the model
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||
GGML_ASSERT(model != nullptr);
|
||||
|
||||
// tokenize the prompt
|
||||
const bool add_bos = llama_should_add_bos_token(model);
|
||||
|
||||
std::vector<llama_token> inp;
|
||||
inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
|
||||
fprintf(stderr, "%s: tokenization done\n", __func__);
|
||||
|
||||
|
||||
llama_ngram_cache ngram_cache;
|
||||
llama_ngram_cache_update(ngram_cache, LLAMA_NGRAM_STATIC, LLAMA_NGRAM_STATIC, inp, inp.size(), true);
|
||||
fprintf(stderr, "%s: hashing done, writing file to %s\n", __func__, params.lookup_cache_static.c_str());
|
||||
|
||||
llama_ngram_cache_save(ngram_cache, params.lookup_cache_static);
|
||||
}
|
||||
47
examples/lookup/lookup-merge.cpp
Normal file
47
examples/lookup/lookup-merge.cpp
Normal file
@@ -0,0 +1,47 @@
|
||||
#include "ggml.h"
|
||||
#include "llama.h"
|
||||
#include "common.h"
|
||||
#include "ngram-cache.h"
|
||||
|
||||
#include <cstdint>
|
||||
#include <cstdio>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
|
||||
static void print_usage() {
|
||||
fprintf(stderr, "Merges multiple lookup cache files into a single one.\n");
|
||||
fprintf(stderr, "Usage: lookup-merge [--help] lookup_part_1.bin lookup_part_2.bin ... lookup_merged.bin\n");
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv){
|
||||
if (argc < 3) {
|
||||
print_usage();
|
||||
exit(1);
|
||||
}
|
||||
|
||||
std::vector<std::string> args;
|
||||
args.resize(argc-1);
|
||||
for (int i = 0; i < argc-1; ++i) {
|
||||
args[i] = argv[i+1];
|
||||
if (args[i] == "-h" || args[i] == "--help") {
|
||||
print_usage();
|
||||
exit(0);
|
||||
}
|
||||
}
|
||||
|
||||
fprintf(stderr, "lookup-merge: loading file %s\n", args[0].c_str());
|
||||
llama_ngram_cache ngram_cache_merged = llama_ngram_cache_load(args[0]);
|
||||
|
||||
for (size_t i = 1; i < args.size()-1; ++i) {
|
||||
fprintf(stderr, "lookup-merge: loading file %s\n", args[i].c_str());
|
||||
llama_ngram_cache ngram_cache = llama_ngram_cache_load(args[i]);
|
||||
|
||||
llama_ngram_cache_merge(ngram_cache_merged, ngram_cache);
|
||||
}
|
||||
|
||||
fprintf(stderr, "lookup-merge: saving file %s\n", args.back().c_str());
|
||||
llama_ngram_cache_save(ngram_cache_merged, args.back());
|
||||
}
|
||||
163
examples/lookup/lookup-stats.cpp
Normal file
163
examples/lookup/lookup-stats.cpp
Normal file
@@ -0,0 +1,163 @@
|
||||
#include "ggml.h"
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
#include "log.h"
|
||||
#include "ngram-cache.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <cstdint>
|
||||
#include <cstdio>
|
||||
#include <fstream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <unordered_map>
|
||||
|
||||
int main(int argc, char ** argv){
|
||||
gpt_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
const int n_draft = params.n_draft;
|
||||
|
||||
// init llama.cpp
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
llama_model * model = NULL;
|
||||
llama_context * ctx = NULL;
|
||||
|
||||
// load the model
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||
llama_set_rng_seed(ctx, params.seed);
|
||||
GGML_ASSERT(llama_n_vocab(model) < (1 << 16));
|
||||
|
||||
// tokenize the prompt
|
||||
const bool add_bos = llama_should_add_bos_token(model);
|
||||
LOG("add_bos tgt: %d\n", add_bos);
|
||||
|
||||
std::vector<llama_token> inp;
|
||||
inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
|
||||
|
||||
llama_ngram_cache ngram_cache_context;
|
||||
llama_ngram_cache ngram_cache_dynamic;
|
||||
llama_ngram_cache ngram_cache_static;
|
||||
int64_t t_draft_flat_us = 0;
|
||||
int64_t t_draft_us = 0;
|
||||
|
||||
{
|
||||
const int64_t t_start_draft_us = ggml_time_us();
|
||||
|
||||
if (!params.lookup_cache_static.empty()) {
|
||||
try {
|
||||
ngram_cache_static = llama_ngram_cache_load(params.lookup_cache_static);
|
||||
} catch (std::ifstream::failure const &) {
|
||||
fprintf(stderr, "error: failed to open static lookup cache: %s", params.lookup_cache_static.c_str());
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
|
||||
if (!params.lookup_cache_dynamic.empty()) {
|
||||
try {
|
||||
ngram_cache_dynamic = llama_ngram_cache_load(params.lookup_cache_dynamic);
|
||||
} catch (std::ifstream::failure const &) {} // if the file does not exist it will simply be created at the end of the program
|
||||
}
|
||||
|
||||
t_draft_flat_us += ggml_time_us() - t_start_draft_us;
|
||||
}
|
||||
|
||||
const int n_input = inp.size();
|
||||
const int n_ctx = params.n_ctx;
|
||||
|
||||
int n_drafted = 0;
|
||||
int n_accept = 0;
|
||||
|
||||
const int64_t t_start_ms = ggml_time_ms();
|
||||
|
||||
// Iterate over input tokens in chunks of size n_ctx.
|
||||
// Each chunk is treated as if a sequential generation but with pre-determined tokens to ensure reproducibility.
|
||||
for (int i_start = 0; i_start + n_ctx < n_input; i_start += n_ctx) {
|
||||
const std::vector<llama_token> inp_slice(inp.begin() + i_start, inp.begin() + i_start + n_ctx);
|
||||
std::vector<llama_token> pseudo_output;
|
||||
pseudo_output.push_back(inp_slice[0]);
|
||||
|
||||
while ((int) pseudo_output.size() < n_ctx) {
|
||||
// Simulate drafting and decoding from draft:
|
||||
std::vector<llama_token> draft;
|
||||
draft.push_back(pseudo_output.back());
|
||||
|
||||
{
|
||||
const int64_t t_start_draft_us = ggml_time_us();
|
||||
llama_ngram_cache_draft(pseudo_output, draft, n_draft, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, ngram_cache_context, ngram_cache_dynamic, ngram_cache_static);
|
||||
t_draft_us += ggml_time_us() - t_start_draft_us;
|
||||
}
|
||||
|
||||
n_drafted += draft.size() - 1;
|
||||
|
||||
for (size_t j = 1; j < draft.size() && (int) pseudo_output.size() < n_ctx; ++j) {
|
||||
const llama_token ground_truth = inp_slice[pseudo_output.size()];
|
||||
const llama_token drafted = draft[j];
|
||||
|
||||
if (ground_truth != drafted) {
|
||||
break;
|
||||
}
|
||||
|
||||
++n_accept;
|
||||
pseudo_output.push_back(ground_truth);
|
||||
|
||||
{
|
||||
const int64_t t_start_draft_us = ggml_time_us();
|
||||
llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, pseudo_output, 1, false);
|
||||
t_draft_us += ggml_time_us() - t_start_draft_us;
|
||||
}
|
||||
}
|
||||
|
||||
// After each simulated batch decoding simulate the sampling of a single token:
|
||||
if ((int) pseudo_output.size() < n_ctx) {
|
||||
pseudo_output.push_back(inp_slice[pseudo_output.size()]);
|
||||
{
|
||||
const int64_t t_start_draft_us = ggml_time_us();
|
||||
llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, pseudo_output, 1, false);
|
||||
t_draft_us += ggml_time_us() - t_start_draft_us;
|
||||
}
|
||||
}
|
||||
|
||||
draft.erase(draft.begin());
|
||||
|
||||
}
|
||||
if (i_start > 0 && i_start / 100000 != (i_start - n_ctx) / 100000) {
|
||||
const int64_t t_now_ms = ggml_time_ms();
|
||||
const int64_t eta_ms = (n_input - i_start) * (t_now_ms - t_start_ms) / i_start;
|
||||
const int64_t eta_min = eta_ms / (60*1000);
|
||||
const int64_t eta_s = (eta_ms - 60*1000*eta_min) / 1000;
|
||||
|
||||
LOG_TEE("lookup-stats: %d/%d done, ETA: %02" PRId64 ":%02" PRId64 "\n", i_start, n_input, eta_min, eta_s);
|
||||
}
|
||||
|
||||
// After each chunk, update the dynamic ngram cache with the context ngram cache:
|
||||
llama_ngram_cache_merge(ngram_cache_dynamic, ngram_cache_context);
|
||||
ngram_cache_context.clear();
|
||||
}
|
||||
|
||||
LOG_TEE("\n");
|
||||
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("n_draft = %d\n", n_draft);
|
||||
LOG_TEE("n_predict = %d\n", n_input - n_input % n_ctx);
|
||||
LOG_TEE("n_drafted = %d\n", n_drafted);
|
||||
LOG_TEE("t_draft_flat = %.2f ms\n", t_draft_flat_us*1e-3);
|
||||
LOG_TEE("t_draft = %.2f ms, %.2f us per token, %.2f tokens per second\n",
|
||||
t_draft_us*1e-3, 1.0f*t_draft_us/n_drafted, n_drafted/(1e-6*t_draft_us));
|
||||
LOG_TEE("n_accept = %d\n", n_accept);
|
||||
LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
|
||||
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
fprintf(stderr, "\n\n");
|
||||
|
||||
return 0;
|
||||
}
|
||||
@@ -1,12 +1,15 @@
|
||||
#include "common.h"
|
||||
#include "ggml.h"
|
||||
#include "llama.h"
|
||||
#include "common.h"
|
||||
#include "ngram-cache.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <cstdint>
|
||||
#include <cstdio>
|
||||
#include <fstream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <unordered_map>
|
||||
|
||||
int main(int argc, char ** argv){
|
||||
gpt_params params;
|
||||
@@ -15,11 +18,7 @@ int main(int argc, char ** argv){
|
||||
return 1;
|
||||
}
|
||||
|
||||
// max/min n-grams size to search for in prompt
|
||||
const int ngram_max = 4;
|
||||
const int ngram_min = 1;
|
||||
|
||||
// length of the candidate / draft sequence, if match is found
|
||||
// max. number of additional tokens to draft if match is found
|
||||
const int n_draft = params.n_draft;
|
||||
|
||||
const bool dump_kv_cache = params.dump_kv_cache;
|
||||
@@ -39,6 +38,8 @@ int main(int argc, char ** argv){
|
||||
|
||||
// load the model
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||
llama_set_rng_seed(ctx, params.seed);
|
||||
GGML_ASSERT(llama_n_vocab(model) < (1 << 16));
|
||||
|
||||
// tokenize the prompt
|
||||
const bool add_bos = llama_should_add_bos_token(model);
|
||||
@@ -47,6 +48,35 @@ int main(int argc, char ** argv){
|
||||
std::vector<llama_token> inp;
|
||||
inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
|
||||
|
||||
llama_ngram_cache ngram_cache_context;
|
||||
llama_ngram_cache ngram_cache_dynamic;
|
||||
llama_ngram_cache ngram_cache_static;
|
||||
int64_t t_draft_flat_us = 0;
|
||||
int64_t t_draft_us = 0;
|
||||
|
||||
{
|
||||
// Fill up context ngram cache with tokens from user input:
|
||||
const int64_t t_start_draft_us = ggml_time_us();
|
||||
llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, inp.size(), false);
|
||||
|
||||
if (!params.lookup_cache_static.empty()) {
|
||||
try {
|
||||
ngram_cache_static = llama_ngram_cache_load(params.lookup_cache_static);
|
||||
} catch (std::ifstream::failure const &) {
|
||||
fprintf(stderr, "error: failed to open static lookup cache: %s", params.lookup_cache_static.c_str());
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
|
||||
if (!params.lookup_cache_dynamic.empty()) {
|
||||
try {
|
||||
ngram_cache_dynamic = llama_ngram_cache_load(params.lookup_cache_dynamic);
|
||||
} catch (std::ifstream::failure const &) {} // if the file does not exist it will simply be created at the end of the program
|
||||
}
|
||||
|
||||
t_draft_flat_us += ggml_time_us() - t_start_draft_us;
|
||||
}
|
||||
|
||||
const int max_context_size = llama_n_ctx(ctx);
|
||||
const int max_tokens_list_size = max_context_size - 4;
|
||||
|
||||
@@ -76,8 +106,6 @@ int main(int argc, char ** argv){
|
||||
int n_drafted = 0;
|
||||
int n_accept = 0;
|
||||
|
||||
int64_t t_draft_us = 0;
|
||||
|
||||
int n_past = inp.size();
|
||||
|
||||
bool has_eos = false;
|
||||
@@ -129,6 +157,12 @@ int main(int argc, char ** argv){
|
||||
++n_past;
|
||||
++i_dft;
|
||||
inp.push_back(id);
|
||||
{
|
||||
// Update context ngram cache with the newly accepted token:
|
||||
const int64_t t_start_draft_us = ggml_time_us();
|
||||
llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, 1, false);
|
||||
t_draft_us += ggml_time_us() - t_start_draft_us;
|
||||
}
|
||||
|
||||
if (params.use_color) {
|
||||
// color accepted draft token
|
||||
@@ -149,6 +183,12 @@ int main(int argc, char ** argv){
|
||||
draft.clear();
|
||||
draft.push_back(id);
|
||||
inp.push_back(id);
|
||||
{
|
||||
// Update context ngram cache with the newly accepted token:
|
||||
const int64_t t_start_draft_us = ggml_time_us();
|
||||
llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, 1, false);
|
||||
t_draft_us += ggml_time_us() - t_start_draft_us;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
@@ -163,44 +203,19 @@ int main(int argc, char ** argv){
|
||||
llama_batch_clear(batch_tgt);
|
||||
llama_batch_add(batch_tgt, draft[0], n_past, { 0 }, true);
|
||||
|
||||
// generate n_pred tokens through prompt lookup
|
||||
auto prompt_lookup = [&]() -> void {
|
||||
const int inp_size = inp.size();
|
||||
for (int ngram_size = ngram_max ; ngram_size > ngram_min; --ngram_size){
|
||||
const llama_token * ngram = &inp[inp_size - ngram_size];
|
||||
|
||||
for (int i = 0; i <= (int) inp_size - (ngram_size * 2); ++i) {
|
||||
bool match = true;
|
||||
for (int j = 0; j < ngram_size; ++j) {
|
||||
if (inp[i + j] != ngram[j]) {
|
||||
match = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (match) {
|
||||
const int startIdx = i + ngram_size;
|
||||
const int endIdx = startIdx + n_draft;
|
||||
if (endIdx < inp_size) {
|
||||
for (int j = startIdx; j < endIdx; ++j) {
|
||||
LOG(" - draft candidate %d: %d\n", j, inp[j]);
|
||||
draft.push_back(inp[j]);
|
||||
llama_batch_add(batch_tgt, inp[j], n_past + (j - startIdx) + 1, { 0 }, true);
|
||||
++n_drafted;
|
||||
}
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return;
|
||||
};
|
||||
|
||||
// Draft already contains a single token sampled from the model:
|
||||
GGML_ASSERT(draft.size() == 1);
|
||||
GGML_ASSERT(draft[0] == inp.back());
|
||||
const int64_t t_start_draft_us = ggml_time_us();
|
||||
|
||||
prompt_lookup();
|
||||
llama_ngram_cache_draft(inp, draft, n_draft, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, ngram_cache_context, ngram_cache_dynamic, ngram_cache_static);
|
||||
|
||||
for (size_t i = 1; i < draft.size(); ++i) {
|
||||
llama_batch_add(batch_tgt, draft[i], n_past + i, { 0 }, true);
|
||||
}
|
||||
|
||||
t_draft_us += ggml_time_us() - t_start_draft_us;
|
||||
n_drafted += draft.size() - 1;
|
||||
|
||||
llama_decode(ctx, batch_tgt);
|
||||
++n_past;
|
||||
@@ -210,19 +225,24 @@ int main(int argc, char ** argv){
|
||||
|
||||
auto t_dec_end = ggml_time_us();
|
||||
|
||||
// Update dynamic ngram cache with context ngram cache and save it to disk:
|
||||
llama_ngram_cache_merge(ngram_cache_dynamic, ngram_cache_context);
|
||||
llama_ngram_cache_save(ngram_cache_dynamic, params.lookup_cache_dynamic);
|
||||
|
||||
LOG_TEE("\n\n");
|
||||
|
||||
LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
|
||||
LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
|
||||
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("n_draft = %d\n", n_draft);
|
||||
LOG_TEE("n_predict = %d\n", n_predict);
|
||||
LOG_TEE("n_drafted = %d\n", n_drafted);
|
||||
LOG_TEE("t_draft = %.2f ms, %.2f us per token, %.2f tokens per second\n",
|
||||
LOG_TEE("n_draft = %d\n", n_draft);
|
||||
LOG_TEE("n_predict = %d\n", n_predict);
|
||||
LOG_TEE("n_drafted = %d\n", n_drafted);
|
||||
LOG_TEE("t_draft_flat = %.2f ms\n", t_draft_flat_us*1e-3);
|
||||
LOG_TEE("t_draft = %.2f ms, %.2f us per token, %.2f tokens per second\n",
|
||||
t_draft_us*1e-3, 1.0f*t_draft_us/n_drafted, n_drafted/(1e-6*t_draft_us));
|
||||
LOG_TEE("n_accept = %d\n", n_accept);
|
||||
LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
|
||||
LOG_TEE("n_accept = %d\n", n_accept);
|
||||
LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
|
||||
|
||||
LOG_TEE("\ntarget:\n");
|
||||
llama_print_timings(ctx);
|
||||
|
||||
@@ -67,6 +67,7 @@ main.exe -m models\7B\ggml-model.bin --ignore-eos -n -1 --random-prompt
|
||||
In this section, we cover the most commonly used options for running the `main` program with the LLaMA models:
|
||||
|
||||
- `-m FNAME, --model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.bin`).
|
||||
- `-mu MODEL_URL --model-url MODEL_URL`: Specify a remote http url to download the file (e.g https://huggingface.co/ggml-org/models/resolve/main/phi-2/ggml-model-q4_0.gguf).
|
||||
- `-i, --interactive`: Run the program in interactive mode, allowing you to provide input directly and receive real-time responses.
|
||||
- `-ins, --instruct`: Run the program in instruction mode, which is particularly useful when working with Alpaca models.
|
||||
- `-n N, --n-predict N`: Set the number of tokens to predict when generating text. Adjusting this value can influence the length of the generated text.
|
||||
|
||||
@@ -878,6 +878,7 @@ int main(int argc, char ** argv) {
|
||||
const auto line_pfx = ::llama_tokenize(ctx, params.input_prefix, false, true);
|
||||
const auto line_inp = ::llama_tokenize(ctx, buffer, false, false);
|
||||
const auto line_sfx = ::llama_tokenize(ctx, params.input_suffix, false, true);
|
||||
|
||||
LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp).c_str());
|
||||
|
||||
embd_inp.insert(embd_inp.end(), line_pfx.begin(), line_pfx.end());
|
||||
|
||||
@@ -589,9 +589,10 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
||||
}
|
||||
}
|
||||
|
||||
const auto t_end = std::chrono::high_resolution_clock::now();
|
||||
|
||||
if (i == 0) {
|
||||
llama_synchronize(ctx);
|
||||
const auto t_end = std::chrono::high_resolution_clock::now();
|
||||
const float t_total = std::chrono::duration<float>(t_end - t_start).count();
|
||||
fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
|
||||
int total_seconds = (int)(t_total*n_chunk/n_seq);
|
||||
@@ -841,7 +842,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
||||
const int n_batch = params.n_batch;
|
||||
|
||||
const int max_tasks_per_batch = 32;
|
||||
const int max_seq = std::min(4*max_tasks_per_batch, (int) llama_n_max_seq(ctx));
|
||||
const int max_seq = std::min(4*max_tasks_per_batch, (int) llama_n_seq_max(ctx));
|
||||
|
||||
llama_batch batch = llama_batch_init(n_ctx, 0, max_seq);
|
||||
|
||||
@@ -1118,7 +1119,7 @@ static void winogrande_score(llama_context * ctx, const gpt_params & params) {
|
||||
const int n_batch = params.n_batch;
|
||||
|
||||
const int max_tasks_per_batch = 128;
|
||||
const int max_seq = std::min(2*max_tasks_per_batch, (int) llama_n_max_seq(ctx));
|
||||
const int max_seq = std::min(2*max_tasks_per_batch, (int) llama_n_seq_max(ctx));
|
||||
|
||||
llama_batch batch = llama_batch_init(n_ctx, 0, max_seq);
|
||||
|
||||
@@ -1470,7 +1471,7 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
|
||||
const int n_batch = params.n_batch;
|
||||
|
||||
const int max_tasks_per_batch = 32;
|
||||
const int max_seq = std::min(4*max_tasks_per_batch, (int) llama_n_max_seq(ctx));
|
||||
const int max_seq = std::min(4*max_tasks_per_batch, (int) llama_n_seq_max(ctx));
|
||||
|
||||
llama_batch batch = llama_batch_init(n_ctx, 0, max_seq);
|
||||
|
||||
|
||||
@@ -189,6 +189,18 @@ static void prepare_imatrix(const std::string& imatrix_file,
|
||||
}
|
||||
}
|
||||
|
||||
static ggml_type parse_ggml_type(const char * arg) {
|
||||
ggml_type result = GGML_TYPE_COUNT;
|
||||
for (int j = 0; j < GGML_TYPE_COUNT; ++j) {
|
||||
auto type = ggml_type(j);
|
||||
const auto * name = ggml_type_name(type);
|
||||
if (name && strcmp(arg, name) == 0) {
|
||||
result = type; break;
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
if (argc < 3) {
|
||||
usage(argv[0]);
|
||||
@@ -203,6 +215,18 @@ int main(int argc, char ** argv) {
|
||||
for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) {
|
||||
if (strcmp(argv[arg_idx], "--leave-output-tensor") == 0) {
|
||||
params.quantize_output_tensor = false;
|
||||
} else if (strcmp(argv[arg_idx], "--output-tensor-type") == 0) {
|
||||
if (arg_idx < argc-1) {
|
||||
params.output_tensor_type = parse_ggml_type(argv[++arg_idx]);
|
||||
} else {
|
||||
usage(argv[0]);
|
||||
}
|
||||
} else if (strcmp(argv[arg_idx], "--token-embedding-type") == 0) {
|
||||
if (arg_idx < argc-1) {
|
||||
params.token_embedding_type = parse_ggml_type(argv[++arg_idx]);
|
||||
} else {
|
||||
usage(argv[0]);
|
||||
}
|
||||
} else if (strcmp(argv[arg_idx], "--allow-requantize") == 0) {
|
||||
params.allow_requantize = true;
|
||||
} else if (strcmp(argv[arg_idx], "--pure") == 0) {
|
||||
|
||||
20
examples/regex-to-grammar.py
Normal file
20
examples/regex-to-grammar.py
Normal file
@@ -0,0 +1,20 @@
|
||||
import json, subprocess, sys, os
|
||||
|
||||
assert len(sys.argv) >= 2
|
||||
[_, pattern, *rest] = sys.argv
|
||||
|
||||
print(subprocess.check_output(
|
||||
[
|
||||
"python",
|
||||
os.path.join(
|
||||
os.path.dirname(os.path.realpath(__file__)),
|
||||
"json-schema-to-grammar.py"),
|
||||
*rest,
|
||||
"-",
|
||||
"--raw-pattern",
|
||||
],
|
||||
text=True,
|
||||
input=json.dumps({
|
||||
"type": "string",
|
||||
"pattern": pattern,
|
||||
}, indent=2)))
|
||||
5
examples/retrieval/CMakeLists.txt
Normal file
5
examples/retrieval/CMakeLists.txt
Normal file
@@ -0,0 +1,5 @@
|
||||
set(TARGET retrieval)
|
||||
add_executable(${TARGET} retrieval.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
69
examples/retrieval/README.md
Normal file
69
examples/retrieval/README.md
Normal file
@@ -0,0 +1,69 @@
|
||||
# llama.cpp/examples/retrieval
|
||||
|
||||
Demonstration of simple retrieval technique based on cosine similarity
|
||||
|
||||
More info:
|
||||
https://github.com/ggerganov/llama.cpp/pull/6193
|
||||
|
||||
### How to use
|
||||
|
||||
`retieval.cpp` has parameters of its own:
|
||||
- `--context-file`: file to be embedded - state this option multiple times to embed multiple files
|
||||
- `--chunk-size`: minimum size of each text chunk to be embedded
|
||||
- `--chunk-separator`: STRING to divide chunks by. newline by default
|
||||
|
||||
`retrieval` example can be tested as follows:
|
||||
|
||||
```bash
|
||||
make -j && ./retrieval --model ./models/bge-base-en-v1.5-f16.gguf --top-k 3 --context-file README.md --context-file License --chunk-size 100 --chunk-separator .
|
||||
```
|
||||
|
||||
This chunks and embeds all given files and starts a loop requesting query inputs:
|
||||
|
||||
```
|
||||
Enter query:
|
||||
```
|
||||
|
||||
On each query input, top k chunks are shown along with file name, chunk position within file and original text:
|
||||
|
||||
```
|
||||
Enter query: describe the mit license
|
||||
batch_decode: n_tokens = 6, n_seq = 1
|
||||
Top 3 similar chunks:
|
||||
filename: README.md
|
||||
filepos: 119
|
||||
similarity: 0.762334
|
||||
textdata:
|
||||
png)
|
||||
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
|
||||
[Roadmap](https://github.
|
||||
--------------------
|
||||
filename: License
|
||||
filepos: 0
|
||||
similarity: 0.725146
|
||||
textdata:
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2023 Georgi Gerganov
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
--------------------
|
||||
filename: README.md
|
||||
filepos: 9178
|
||||
similarity: 0.621722
|
||||
textdata:
|
||||
com/cztomsik/ava) (MIT)
|
||||
- [ptsochantaris/emeltal](https://github.com/ptsochantaris/emeltal)
|
||||
- [pythops/tenere](https://github.
|
||||
--------------------
|
||||
```
|
||||
350
examples/retrieval/retrieval.cpp
Normal file
350
examples/retrieval/retrieval.cpp
Normal file
@@ -0,0 +1,350 @@
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <fstream>
|
||||
|
||||
struct retrieval_params {
|
||||
std::vector<std::string> context_files; // context files to embed
|
||||
int32_t chunk_size = 64; // chunk size for context embedding
|
||||
std::string chunk_separator = "\n"; // chunk separator for context embedding
|
||||
};
|
||||
|
||||
static void retrieval_params_print_usage(int argc, char ** argv, gpt_params & gpt_params, retrieval_params & params) {
|
||||
gpt_print_usage(argc, argv, gpt_params);
|
||||
printf("retrieval options:\n");
|
||||
printf(" --context-file FNAME file containing context to embed.\n");
|
||||
printf(" specify multiple files by providing --context-file option multiple times.\n");
|
||||
printf(" --chunk-size N minimum length of embedded text chunk (default:%d)\n", params.chunk_size);
|
||||
printf(" --chunk-separator STRING\n");
|
||||
printf(" string to separate chunks (default: \"\\n\")\n");
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
static void retrieval_params_parse(int argc, char ** argv, gpt_params & gpt_params, retrieval_params & retrieval_params) {
|
||||
int i = 1;
|
||||
std::string arg;
|
||||
while (i < argc) {
|
||||
arg = argv[i];
|
||||
bool invalid_gpt_param = false;
|
||||
if(gpt_params_find_arg(argc, argv, argv[i], gpt_params, i, invalid_gpt_param)) {
|
||||
if (invalid_gpt_param) {
|
||||
fprintf(stderr, "error: invalid argument: %s\n", arg.c_str());
|
||||
retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params);
|
||||
exit(1);
|
||||
}
|
||||
// option was parsed by gpt_params_find_arg
|
||||
} else if (arg == "--context-file") {
|
||||
if (++i >= argc) {
|
||||
fprintf(stderr, "error: missing argument for --context-file\n");
|
||||
retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params);
|
||||
exit(1);
|
||||
}
|
||||
std::ifstream file(argv[i]);
|
||||
if (!file) {
|
||||
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
|
||||
retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params);
|
||||
exit(1);
|
||||
}
|
||||
// store the external file name in params
|
||||
retrieval_params.context_files.push_back(argv[i]);
|
||||
} else if (arg == "--chunk-size") {
|
||||
if (++i >= argc) {
|
||||
fprintf(stderr, "error: missing argument for --chunk-size\n");
|
||||
retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params);
|
||||
exit(1);
|
||||
}
|
||||
retrieval_params.chunk_size = std::stoi(argv[i]);
|
||||
} else if (arg == "--chunk-separator") {
|
||||
if (++i >= argc) {
|
||||
fprintf(stderr, "error: missing argument for --chunk-separator\n");
|
||||
retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params);
|
||||
exit(1);
|
||||
}
|
||||
retrieval_params.chunk_separator = argv[i];
|
||||
} else {
|
||||
// unknown argument
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params);
|
||||
exit(1);
|
||||
}
|
||||
i++;
|
||||
}
|
||||
}
|
||||
|
||||
struct chunk {
|
||||
// filename
|
||||
std::string filename;
|
||||
// original file position
|
||||
size_t filepos;
|
||||
// original text data
|
||||
std::string textdata = "";
|
||||
// tokenized text data
|
||||
std::vector<llama_token> tokens;
|
||||
// embedding
|
||||
std::vector<float> embedding;
|
||||
};
|
||||
|
||||
// chunk file data to chunks of size >= chunk_size
|
||||
// chunk_separator is the separator between chunks
|
||||
static std::vector<chunk> chunk_file(const std::string & filename, int chunk_size, const std::string & chunk_separator) {
|
||||
std::vector<chunk> chunks;
|
||||
std::ifstream f(filename.c_str());
|
||||
|
||||
if (!f.is_open()) {
|
||||
fprintf(stderr, "Error: could not open file %s\n", filename.c_str());
|
||||
return chunks;
|
||||
}
|
||||
|
||||
chunk current_chunk;
|
||||
char buffer[1024];
|
||||
int64_t filepos = 0;
|
||||
std::string current = "";
|
||||
while (f.read(buffer, 1024)) {
|
||||
current += std::string(buffer, f.gcount());
|
||||
size_t pos;
|
||||
while ((pos = current.find(chunk_separator)) != std::string::npos) {
|
||||
current_chunk.textdata += current.substr(0, pos + chunk_separator.size());
|
||||
if ((int) current_chunk.textdata.size() > chunk_size) {
|
||||
// save chunk
|
||||
current_chunk.filepos = filepos;
|
||||
current_chunk.filename = filename;
|
||||
chunks.push_back(current_chunk);
|
||||
// update filepos
|
||||
filepos += (int) current_chunk.textdata.size();
|
||||
// reset current_chunk
|
||||
current_chunk = chunk();
|
||||
}
|
||||
current = current.substr(pos + chunk_separator.size());
|
||||
}
|
||||
|
||||
}
|
||||
// add leftover data to last chunk
|
||||
if (current_chunk.textdata.size() > 0) {
|
||||
if (chunks.empty()) {
|
||||
current_chunk.filepos = filepos;
|
||||
current_chunk.filename = filename;
|
||||
chunks.push_back(current_chunk);
|
||||
} else {
|
||||
chunks.back().textdata += current_chunk.textdata;
|
||||
}
|
||||
}
|
||||
f.close();
|
||||
return chunks;
|
||||
}
|
||||
|
||||
static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, int seq_id) {
|
||||
for (size_t i = 0; i < tokens.size(); i++) {
|
||||
llama_batch_add(batch, tokens[i], i, { seq_id }, i == tokens.size() - 1);
|
||||
}
|
||||
}
|
||||
|
||||
static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd) {
|
||||
// clear previous kv_cache values (irrelevant for embeddings)
|
||||
llama_kv_cache_clear(ctx);
|
||||
|
||||
// run model
|
||||
fprintf(stderr, "%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);
|
||||
if (llama_decode(ctx, batch) < 0) {
|
||||
fprintf(stderr, "%s : failed to decode\n", __func__);
|
||||
}
|
||||
|
||||
for (int i = 0; i < batch.n_tokens; i++) {
|
||||
if (!batch.logits[i]) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// try to get sequence embeddings - supported only when pooling_type is not NONE
|
||||
const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
|
||||
if (embd == NULL) {
|
||||
embd = llama_get_embeddings_ith(ctx, i);
|
||||
if (embd == NULL) {
|
||||
fprintf(stderr, "%s: failed to get embeddings for token %d\n", __func__, i);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
float * out = output + batch.seq_id[i][0] * n_embd;
|
||||
llama_embd_normalize(embd, out, n_embd);
|
||||
}
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
retrieval_params retrieval_params;
|
||||
|
||||
retrieval_params_parse(argc, argv, params, retrieval_params);
|
||||
|
||||
// For BERT models, batch size must be equal to ubatch size
|
||||
params.n_ubatch = params.n_batch;
|
||||
|
||||
if (retrieval_params.chunk_size <= 0) {
|
||||
fprintf(stderr, "chunk_size must be positive\n");
|
||||
return 1;
|
||||
}
|
||||
if (retrieval_params.context_files.empty()) {
|
||||
fprintf(stderr, "context_files must be specified\n");
|
||||
return 1;
|
||||
}
|
||||
params.embedding = true;
|
||||
|
||||
print_build_info();
|
||||
|
||||
printf("processing files:\n");
|
||||
for (auto & context_file : retrieval_params.context_files) {
|
||||
printf("%s\n", context_file.c_str());
|
||||
}
|
||||
|
||||
std::vector<chunk> chunks;
|
||||
for (auto & context_file : retrieval_params.context_files) {
|
||||
std::vector<chunk> file_chunk = chunk_file(context_file, retrieval_params.chunk_size, retrieval_params.chunk_separator);
|
||||
chunks.insert(chunks.end(), file_chunk.begin(), file_chunk.end());
|
||||
}
|
||||
printf("Number of chunks: %ld\n", chunks.size());
|
||||
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
llama_model * model;
|
||||
llama_context * ctx;
|
||||
|
||||
// load the model
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||
if (model == NULL) {
|
||||
fprintf(stderr, "%s: error: unable to load model\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
const int n_ctx_train = llama_n_ctx_train(model);
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
if (n_ctx > n_ctx_train) {
|
||||
fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
|
||||
__func__, n_ctx_train, n_ctx);
|
||||
}
|
||||
|
||||
// print system information
|
||||
{
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "%s\n", get_system_info(params).c_str());
|
||||
}
|
||||
|
||||
// max batch size
|
||||
const uint64_t n_batch = params.n_batch;
|
||||
GGML_ASSERT(params.n_batch >= params.n_ctx);
|
||||
|
||||
// tokenize the prompts and trim
|
||||
for (auto & chunk : chunks) {
|
||||
auto inp = ::llama_tokenize(ctx, chunk.textdata, true, false);
|
||||
if (inp.size() > n_batch) {
|
||||
fprintf(stderr, "%s: error: chunk size (%lld) exceeds batch size (%lld), increase batch size and re-run\n",
|
||||
__func__, (long long int) inp.size(), (long long int) n_batch);
|
||||
return 1;
|
||||
}
|
||||
// add eos if not present
|
||||
if (inp.empty() || inp.back() != llama_token_eos(model)) {
|
||||
inp.push_back(llama_token_eos(model));
|
||||
}
|
||||
chunk.tokens = inp;
|
||||
}
|
||||
|
||||
// tokenization stats
|
||||
if (params.verbose_prompt) {
|
||||
for (int i = 0; i < (int) chunks.size(); i++) {
|
||||
fprintf(stderr, "%s: prompt %d: '%s'\n", __func__, i, chunks[i].textdata.c_str());
|
||||
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, chunks[i].tokens.size());
|
||||
for (int j = 0; j < (int) chunks[i].tokens.size(); j++) {
|
||||
fprintf(stderr, "%6d -> '%s'\n", chunks[i].tokens[j], llama_token_to_piece(ctx, chunks[i].tokens[j]).c_str());
|
||||
}
|
||||
fprintf(stderr, "\n\n");
|
||||
}
|
||||
}
|
||||
|
||||
// initialize batch
|
||||
const int n_chunks = chunks.size();
|
||||
struct llama_batch batch = llama_batch_init(n_batch, 0, 1);
|
||||
|
||||
// allocate output
|
||||
const int n_embd = llama_n_embd(model);
|
||||
std::vector<float> embeddings(n_chunks * n_embd, 0);
|
||||
float * emb = embeddings.data();
|
||||
|
||||
// break into batches
|
||||
int p = 0; // number of prompts processed already
|
||||
int s = 0; // number of prompts in current batch
|
||||
for (int k = 0; k < n_chunks; k++) {
|
||||
// clamp to n_batch tokens
|
||||
auto & inp = chunks[k].tokens;
|
||||
|
||||
const uint64_t n_toks = inp.size();
|
||||
|
||||
// encode if at capacity
|
||||
if (batch.n_tokens + n_toks > n_batch) {
|
||||
float * out = emb + p * n_embd;
|
||||
batch_decode(ctx, batch, out, s, n_embd);
|
||||
llama_batch_clear(batch);
|
||||
p += s;
|
||||
s = 0;
|
||||
}
|
||||
|
||||
// add to batch
|
||||
batch_add_seq(batch, inp, s);
|
||||
s += 1;
|
||||
}
|
||||
|
||||
// final batch
|
||||
float * out = emb + p * n_embd;
|
||||
batch_decode(ctx, batch, out, s, n_embd);
|
||||
|
||||
// save embeddings to chunks
|
||||
for (int i = 0; i < n_chunks; i++) {
|
||||
chunks[i].embedding = std::vector<float>(emb + i * n_embd, emb + (i + 1) * n_embd);
|
||||
// clear tokens as they are no longer needed
|
||||
chunks[i].tokens.clear();
|
||||
}
|
||||
|
||||
// start loop, receive query and return top k similar chunks based on cosine similarity
|
||||
std::string query;
|
||||
while (true) {
|
||||
printf("Enter query: ");
|
||||
std::getline(std::cin, query);
|
||||
std::vector<int32_t> query_tokens = llama_tokenize(ctx, query, true);
|
||||
|
||||
struct llama_batch query_batch = llama_batch_init(n_batch, 0, 1);
|
||||
batch_add_seq(query_batch, query_tokens, 0);
|
||||
|
||||
std::vector<float> query_emb(n_embd, 0);
|
||||
batch_decode(ctx, query_batch, query_emb.data(), 1, n_embd);
|
||||
|
||||
llama_batch_clear(query_batch);
|
||||
|
||||
// compute cosine similarities
|
||||
{
|
||||
std::vector<std::pair<int, float>> similarities;
|
||||
for (int i = 0; i < n_chunks; i++) {
|
||||
float sim = llama_embd_similarity_cos(chunks[i].embedding.data(), query_emb.data(), n_embd);
|
||||
similarities.push_back(std::make_pair(i, sim));
|
||||
}
|
||||
|
||||
// sort similarities
|
||||
std::sort(similarities.begin(), similarities.end(), [](const std::pair<int, float> & a, const std::pair<int, float> & b) {
|
||||
return a.second > b.second;
|
||||
});
|
||||
|
||||
printf("Top %d similar chunks:\n", params.sparams.top_k);
|
||||
for (int i = 0; i < std::min(params.sparams.top_k, (int) chunks.size()); i++) {
|
||||
printf("filename: %s\n", chunks[similarities[i].first].filename.c_str());
|
||||
printf("filepos: %lld\n", (long long int) chunks[similarities[i].first].filepos);
|
||||
printf("similarity: %f\n", similarities[i].second);
|
||||
printf("textdata:\n%s\n", chunks[similarities[i].first].textdata.c_str());
|
||||
printf("--------------------\n");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// clean up
|
||||
llama_print_timings(ctx);
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
llama_backend_free();
|
||||
}
|
||||
@@ -2,12 +2,16 @@ set(TARGET server)
|
||||
option(LLAMA_SERVER_VERBOSE "Build verbose logging option for Server" ON)
|
||||
option(LLAMA_SERVER_SSL "Build SSL support for the server" OFF)
|
||||
include_directories(${CMAKE_CURRENT_SOURCE_DIR})
|
||||
add_executable(${TARGET} server.cpp utils.hpp json.hpp httplib.h)
|
||||
add_executable(${TARGET}
|
||||
server.cpp
|
||||
utils.hpp
|
||||
httplib.h
|
||||
)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_compile_definitions(${TARGET} PRIVATE
|
||||
SERVER_VERBOSE=$<BOOL:${LLAMA_SERVER_VERBOSE}>
|
||||
)
|
||||
target_link_libraries(${TARGET} PRIVATE common ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_link_libraries(${TARGET} PRIVATE common json-schema-to-grammar ${CMAKE_THREAD_LIBS_INIT})
|
||||
if (LLAMA_SERVER_SSL)
|
||||
find_package(OpenSSL REQUIRED)
|
||||
target_link_libraries(${TARGET} PRIVATE OpenSSL::SSL OpenSSL::Crypto)
|
||||
|
||||
@@ -16,16 +16,20 @@ The project is under active development, and we are [looking for feedback and co
|
||||
|
||||
**Command line options:**
|
||||
|
||||
- `--threads N`, `-t N`: Set the number of threads to use during generation.
|
||||
- `-tb N, --threads-batch N`: Set the number of threads to use during batch and prompt processing. If not specified, the number of threads will be set to the number of threads used for generation.
|
||||
- `--threads N`, `-t N`: Set the number of threads to use during generation. Not used if model layers are offloaded to GPU. The server is using batching, this parameter is used only if one token is to be processed on CPU backend.
|
||||
- `-tb N, --threads-batch N`: Set the number of threads to use during batch and prompt processing. If not specified, the number of threads will be set to the number of threads used for generation. Not used if model layers are offloaded to GPU.
|
||||
- `--threads-http N`: number of threads in the http server pool to process requests (default: `max(std::thread::hardware_concurrency() - 1, --parallel N + 2)`)
|
||||
- `-m FNAME`, `--model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.gguf`).
|
||||
- `-mu MODEL_URL --model-url MODEL_URL`: Specify a remote http url to download the file (default: unused).
|
||||
- `-hfr REPO, --hf-repo REPO`: Hugging Face model repository (default: unused).
|
||||
- `-hff FILE, --hf-file FILE`: Hugging Face model file (default: unused).
|
||||
- `-a ALIAS`, `--alias ALIAS`: Set an alias for the model. The alias will be returned in API responses.
|
||||
- `-c N`, `--ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference. The size may differ in other models, for example, baichuan models were build with a context of 4096.
|
||||
- `-ngl N`, `--n-gpu-layers N`: When compiled with appropriate support (currently CLBlast or cuBLAS), this option allows offloading some layers to the GPU for computation. Generally results in increased performance.
|
||||
- `-mg i, --main-gpu i`: When using multiple GPUs this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default GPU 0 is used. Requires cuBLAS.
|
||||
- `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance. Requires cuBLAS.
|
||||
- `-b N`, `--batch-size N`: Set the batch size for prompt processing. Default: `512`.
|
||||
- `-b N`, `--batch-size N`: Set the batch size for prompt processing. Default: `2048`.
|
||||
- `-ub N`, `--ubatch-size N`: physical maximum batch size. Default: `512`.
|
||||
- `--memory-f32`: Use 32-bit floats instead of 16-bit floats for memory key+value. Not recommended.
|
||||
- `--mlock`: Lock the model in memory, preventing it from being swapped out when memory-mapped.
|
||||
- `--no-mmap`: Do not memory-map the model. By default, models are mapped into memory, which allows the system to load only the necessary parts of the model as needed.
|
||||
@@ -56,7 +60,7 @@ see https://github.com/ggerganov/llama.cpp/issues/1437
|
||||
- `--slots-endpoint-disable`: To disable slots state monitoring endpoint. Slots state may contain user data, prompts included.
|
||||
- `--metrics`: enable prometheus `/metrics` compatible endpoint (default: disabled)
|
||||
- `--chat-template JINJA_TEMPLATE`: Set custom jinja chat template. This parameter accepts a string, not a file name (default: template taken from model's metadata). We only support [some pre-defined templates](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template)
|
||||
- `--log-disable`: Output logs to stdout only, default: enabled.
|
||||
- `--log-disable`: Output logs to stdout only, not to `llama.log`. default: enabled.
|
||||
- `--log-format FORMAT`: Define the log output to FORMAT: json or text (default: json)
|
||||
|
||||
**If compiled with `LLAMA_SERVER_SSL=ON`**
|
||||
@@ -123,10 +127,10 @@ You can consume the endpoints with Postman or NodeJS with axios library. You can
|
||||
### Docker
|
||||
|
||||
```bash
|
||||
docker run -p 8080:8080 -v /path/to/models:/models ggerganov/llama.cpp:server -m models/7B/ggml-model.gguf -c 512 --host 0.0.0.0 --port 8080
|
||||
docker run -p 8080:8080 -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:server -m models/7B/ggml-model.gguf -c 512 --host 0.0.0.0 --port 8080
|
||||
|
||||
# or, with CUDA:
|
||||
docker run -p 8080:8080 -v /path/to/models:/models --gpus all ggerganov/llama.cpp:server-cuda -m models/7B/ggml-model.gguf -c 512 --host 0.0.0.0 --port 8080 --n-gpu-layers 99
|
||||
docker run -p 8080:8080 -v /path/to/models:/models --gpus all ghcr.io/ggerganov/llama.cpp:server-cuda -m models/7B/ggml-model.gguf -c 512 --host 0.0.0.0 --port 8080 --n-gpu-layers 99
|
||||
```
|
||||
|
||||
## Testing with CURL
|
||||
@@ -259,7 +263,7 @@ node index.js
|
||||
|
||||
`image_data`: An array of objects to hold base64-encoded image `data` and its `id`s to be reference in `prompt`. You can determine the place of the image in the prompt as in the following: `USER:[img-12]Describe the image in detail.\nASSISTANT:`. In this case, `[img-12]` will be replaced by the embeddings of the image with id `12` in the following `image_data` array: `{..., "image_data": [{"data": "<BASE64_STRING>", "id": 12}]}`. Use `image_data` only with multimodal models, e.g., LLaVA.
|
||||
|
||||
`slot_id`: Assign the completion task to an specific slot. If is -1 the task will be assigned to a Idle slot (default: -1)
|
||||
`id_slot`: Assign the completion task to an specific slot. If is -1 the task will be assigned to a Idle slot (default: -1)
|
||||
|
||||
`cache_prompt`: Re-use previously cached prompt from the last request if possible. This may prevent re-caching the prompt from scratch. (default: false)
|
||||
|
||||
@@ -356,7 +360,7 @@ Notice that each `probs` is an array of length `n_probs`.
|
||||
- `default_generation_settings` - the default generation settings for the `/completion` endpoint, has the same fields as the `generation_settings` response object from the `/completion` endpoint.
|
||||
- `total_slots` - the total number of slots for process requests (defined by `--parallel` option)
|
||||
|
||||
- **POST** `/v1/chat/completions`: OpenAI-compatible Chat Completions API. Given a ChatML-formatted json description in `messages`, it returns the predicted completion. Both synchronous and streaming mode are supported, so scripted and interactive applications work fine. While no strong claims of compatibility with OpenAI API spec is being made, in our experience it suffices to support many apps. Only ChatML-tuned models, such as Dolphin, OpenOrca, OpenHermes, OpenChat-3.5, etc can be used with this endpoint.
|
||||
- **POST** `/v1/chat/completions`: OpenAI-compatible Chat Completions API. Given a ChatML-formatted json description in `messages`, it returns the predicted completion. Both synchronous and streaming mode are supported, so scripted and interactive applications work fine. While no strong claims of compatibility with OpenAI API spec is being made, in our experience it suffices to support many apps. Only model with [supported chat template](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template) can be used optimally with this endpoint. By default, ChatML template will be used.
|
||||
|
||||
*Options:*
|
||||
|
||||
|
||||
@@ -26,8 +26,9 @@ const propOrder = grammarJsonSchemaPropOrder
|
||||
|
||||
let grammar = null
|
||||
if (grammarJsonSchemaFile) {
|
||||
const schema = JSON.parse(readFileSync(grammarJsonSchemaFile, 'utf-8'))
|
||||
const converter = new SchemaConverter(propOrder)
|
||||
let schema = JSON.parse(readFileSync(grammarJsonSchemaFile, 'utf-8'))
|
||||
const converter = new SchemaConverter({prop_order: propOrder, allow_fetch: true})
|
||||
schema = await converter.resolveRefs(schema, grammarJsonSchemaFile)
|
||||
converter.visit(schema, '')
|
||||
grammar = converter.formatGrammar()
|
||||
}
|
||||
|
||||
@@ -483,4 +483,4 @@ unsigned char completion_js[] = {
|
||||
0x20, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f,
|
||||
0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x3b, 0x0a, 0x7d, 0x0a
|
||||
};
|
||||
unsigned int completion_js_len = 5796;
|
||||
size_t completion_js_len = 5796;
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@@ -630,14 +630,16 @@
|
||||
|
||||
const grammarJsonSchemaPropOrder = signal('')
|
||||
const updateGrammarJsonSchemaPropOrder = (el) => grammarJsonSchemaPropOrder.value = el.target.value
|
||||
const convertJSONSchemaGrammar = () => {
|
||||
const convertJSONSchemaGrammar = async () => {
|
||||
try {
|
||||
const schema = JSON.parse(params.value.grammar)
|
||||
const converter = new SchemaConverter(
|
||||
grammarJsonSchemaPropOrder.value
|
||||
let schema = JSON.parse(params.value.grammar)
|
||||
const converter = new SchemaConverter({
|
||||
prop_order: grammarJsonSchemaPropOrder.value
|
||||
.split(',')
|
||||
.reduce((acc, cur, i) => ({ ...acc, [cur.trim()]: i }), {})
|
||||
)
|
||||
.reduce((acc, cur, i) => ({ ...acc, [cur.trim()]: i }), {}),
|
||||
allow_fetch: true,
|
||||
})
|
||||
schema = await converter.resolveRefs(schema, 'input')
|
||||
converter.visit(schema, '')
|
||||
params.value = {
|
||||
...params.value,
|
||||
|
||||
File diff suppressed because one or more lines are too long
@@ -1,112 +1,538 @@
|
||||
// WARNING: This file was ported from json-schema-to-grammar.py, please fix bugs / add features there first.
|
||||
const SPACE_RULE = '" "?';
|
||||
|
||||
const PRIMITIVE_RULES = {
|
||||
boolean: '("true" | "false") space',
|
||||
number: '("-"? ([0-9] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]? [0-9]+)? space',
|
||||
integer: '("-"? ([0-9] | [1-9] [0-9]*)) space',
|
||||
value: 'object | array | string | number | boolean',
|
||||
object: '"{" space ( string ":" space value ("," space string ":" space value)* )? "}" space',
|
||||
array: '"[" space ( value ("," space value)* )? "]" space',
|
||||
uuid: '"\\"" ' + [8, 4, 4, 4, 12].map(n => [...new Array(n)].map(_ => '[0-9a-fA-F]').join('')).join(' "-" ') + ' "\\"" space',
|
||||
string: ` "\\"" (
|
||||
[^"\\\\] |
|
||||
"\\\\" (["\\\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F])
|
||||
)* "\\"" space`,
|
||||
null: '"null" space',
|
||||
};
|
||||
const OBJECT_RULE_NAMES = ['object', 'array', 'string', 'number', 'boolean', 'null', 'value'];
|
||||
|
||||
// TODO: support "uri", "email" string formats
|
||||
const DATE_RULES = {
|
||||
'date' : '[0-9] [0-9] [0-9] [0-9] "-" ( "0" [1-9] | "1" [0-2] ) "-" ( \"0\" [1-9] | [1-2] [0-9] | "3" [0-1] )',
|
||||
'time' : '([01] [0-9] | "2" [0-3]) ":" [0-5] [0-9] ":" [0-5] [0-9] ( "." [0-9] [0-9] [0-9] )? ( "Z" | ( "+" | "-" ) ( [01] [0-9] | "2" [0-3] ) ":" [0-5] [0-9] )',
|
||||
'date-time': 'date "T" time',
|
||||
'date-string': '"\\"" date "\\"" space',
|
||||
'time-string': '"\\"" time "\\"" space',
|
||||
'date-time-string': '"\\"" date-time "\\"" space',
|
||||
};
|
||||
|
||||
const RESERVED_NAMES = {'root': true, ...PRIMITIVE_RULES, ...DATE_RULES};
|
||||
|
||||
const INVALID_RULE_CHARS_RE = /[^\dA-Za-z-]+/g;
|
||||
const GRAMMAR_LITERAL_ESCAPE_RE = /[\n\r"]/g;
|
||||
const GRAMMAR_LITERAL_ESCAPES = {'\r': '\\r', '\n': '\\n', '"': '\\"'};
|
||||
const GRAMMAR_RANGE_LITERAL_ESCAPE_RE = /[\n\r"\]\-\\]/g;
|
||||
const GRAMMAR_LITERAL_ESCAPES = { '\r': '\\r', '\n': '\\n', '"': '\\"', '-': '\\-', ']': '\\]' };
|
||||
|
||||
const NON_LITERAL_SET = new Set('|.()[]{}*+?');
|
||||
const ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS = new Set('[]()|{}*+?');
|
||||
|
||||
export class SchemaConverter {
|
||||
constructor(propOrder) {
|
||||
this._propOrder = propOrder || {};
|
||||
this._rules = new Map();
|
||||
this._rules.set('space', SPACE_RULE);
|
||||
constructor(options) {
|
||||
this._propOrder = options.prop_order || {};
|
||||
this._allowFetch = options.allow_fetch || false;
|
||||
this._dotall = options.dotall || false;
|
||||
this._rules = {'space': SPACE_RULE};
|
||||
this._refs = {};
|
||||
this._refsBeingResolved = new Set();
|
||||
}
|
||||
|
||||
_formatLiteral(literal) {
|
||||
const escaped = JSON.stringify(literal).replace(
|
||||
const escaped = literal.replace(
|
||||
GRAMMAR_LITERAL_ESCAPE_RE,
|
||||
m => GRAMMAR_LITERAL_ESCAPES[m]
|
||||
);
|
||||
return `"${escaped}"`;
|
||||
}
|
||||
|
||||
_formatRangeChar(literal) {
|
||||
return JSON.stringify(literal).slice(1, -1).replace(
|
||||
GRAMMAR_RANGE_LITERAL_ESCAPE_RE,
|
||||
m => GRAMMAR_LITERAL_ESCAPES[m]
|
||||
);
|
||||
}
|
||||
|
||||
_addRule(name, rule) {
|
||||
let escName = name.replace(INVALID_RULE_CHARS_RE, '-');
|
||||
let key = escName;
|
||||
|
||||
if (this._rules.has(escName)) {
|
||||
if (this._rules.get(escName) === rule) {
|
||||
if (escName in this._rules) {
|
||||
if (this._rules[escName] === rule) {
|
||||
return key;
|
||||
}
|
||||
|
||||
let i = 0;
|
||||
while (this._rules.has(`${escName}${i}`)) {
|
||||
while ((`${escName}${i}` in this._rules) && (this._rules[`${escName}${i}`] !== rule)) {
|
||||
i += 1;
|
||||
}
|
||||
key = `${escName}${i}`;
|
||||
}
|
||||
|
||||
this._rules.set(key, rule);
|
||||
this._rules[key] = rule;
|
||||
return key;
|
||||
}
|
||||
|
||||
async resolveRefs(schema, url) {
|
||||
const visit = async (n) => {
|
||||
if (Array.isArray(n)) {
|
||||
return Promise.all(n.map(visit));
|
||||
} else if (typeof n === 'object' && n !== null) {
|
||||
let ref = n.$ref;
|
||||
let target;
|
||||
if (ref !== undefined && !this._refs[ref]) {
|
||||
if (ref.startsWith('https://')) {
|
||||
if (!this._allowFetch) {
|
||||
throw new Error('Fetching remote schemas is not allowed (use --allow-fetch for force)');
|
||||
}
|
||||
const fetch = (await import('node-fetch')).default;
|
||||
|
||||
const fragSplit = ref.split('#');
|
||||
const baseUrl = fragSplit[0];
|
||||
|
||||
target = this._refs[baseUrl];
|
||||
if (!target) {
|
||||
target = await this.resolveRefs(await fetch(ref).then(res => res.json()), baseUrl);
|
||||
this._refs[baseUrl] = target;
|
||||
}
|
||||
|
||||
if (fragSplit.length === 1 || fragSplit[fragSplit.length - 1] === '') {
|
||||
return target;
|
||||
}
|
||||
} else if (ref.startsWith('#/')) {
|
||||
target = schema;
|
||||
ref = `${url}${ref}`;
|
||||
n.$ref = ref;
|
||||
} else {
|
||||
throw new Error(`Unsupported ref ${ref}`);
|
||||
}
|
||||
|
||||
const selectors = ref.split('#')[1].split('/').slice(1);
|
||||
for (const sel of selectors) {
|
||||
if (!target || !(sel in target)) {
|
||||
throw new Error(`Error resolving ref ${ref}: ${sel} not in ${JSON.stringify(target)}`);
|
||||
}
|
||||
target = target[sel];
|
||||
}
|
||||
|
||||
this._refs[ref] = target;
|
||||
} else {
|
||||
await Promise.all(Object.values(n).map(visit));
|
||||
}
|
||||
}
|
||||
|
||||
return n;
|
||||
};
|
||||
|
||||
return visit(schema);
|
||||
}
|
||||
|
||||
_generateUnionRule(name, altSchemas) {
|
||||
return altSchemas
|
||||
.map((altSchema, i) => this.visit(altSchema, `${name ?? ''}${name ? '-' : 'alternative-'}${i}`))
|
||||
.join(' | ');
|
||||
}
|
||||
|
||||
_visitPattern(pattern, name) {
|
||||
if (!pattern.startsWith('^') || !pattern.endsWith('$')) {
|
||||
throw new Error('Pattern must start with "^" and end with "$"');
|
||||
}
|
||||
pattern = pattern.slice(1, -1);
|
||||
const subRuleIds = {};
|
||||
|
||||
let i = 0;
|
||||
const length = pattern.length;
|
||||
|
||||
const getDot = () => {
|
||||
let rule;
|
||||
if (this._dotall) {
|
||||
rule = '[\\U00000000-\\U0010FFFF]';
|
||||
} else {
|
||||
// Accept any character... except \n and \r line break chars (\x0A and \xOD)
|
||||
rule = '[\\U00000000-\\x09\\x0B\\x0C\\x0E-\\U0010FFFF]';
|
||||
}
|
||||
return this._addRule('dot', rule);
|
||||
};
|
||||
|
||||
|
||||
const toRule = ([s, isLiteral]) => isLiteral ? "\"" + s + "\"" : s;
|
||||
|
||||
const transform = () => {
|
||||
const start = i;
|
||||
// For each component of this sequence, store its string representation and whether it's a literal.
|
||||
// We only need a flat structure here to apply repetition operators to the last item, and
|
||||
// to merge literals at the and (we're parsing grouped ( sequences ) recursively and don't treat '|' specially
|
||||
// (GBNF's syntax is luckily very close to regular expressions!)
|
||||
const seq = [];
|
||||
|
||||
const joinSeq = () => {
|
||||
const ret = [];
|
||||
for (const [isLiteral, g] of groupBy(seq, x => x[1])) {
|
||||
if (isLiteral) {
|
||||
ret.push([[...g].map(x => x[0]).join(''), true]);
|
||||
} else {
|
||||
ret.push(...g);
|
||||
}
|
||||
}
|
||||
if (ret.length === 1) {
|
||||
return ret[0];
|
||||
}
|
||||
return [ret.map(x => toRule(x)).join(' '), false];
|
||||
};
|
||||
|
||||
while (i < length) {
|
||||
const c = pattern[i];
|
||||
if (c === '.') {
|
||||
seq.push([getDot(), false]);
|
||||
i += 1;
|
||||
} else if (c === '(') {
|
||||
i += 1;
|
||||
if (i < length) {
|
||||
if (pattern[i] === '?') {
|
||||
throw new Error(`Unsupported pattern syntax "${pattern[i]}" at index ${i} of /${pattern}/`);
|
||||
}
|
||||
}
|
||||
seq.push([`(${toRule(transform())})`, false]);
|
||||
} else if (c === ')') {
|
||||
i += 1;
|
||||
if (start <= 0 || pattern[start - 1] !== '(') {
|
||||
throw new Error(`Unbalanced parentheses; start = ${start}, i = ${i}, pattern = ${pattern}`);
|
||||
}
|
||||
return joinSeq();
|
||||
} else if (c === '[') {
|
||||
let squareBrackets = c;
|
||||
i += 1;
|
||||
while (i < length && pattern[i] !== ']') {
|
||||
if (pattern[i] === '\\') {
|
||||
squareBrackets += pattern.slice(i, i + 2);
|
||||
i += 2;
|
||||
} else {
|
||||
squareBrackets += pattern[i];
|
||||
i += 1;
|
||||
}
|
||||
}
|
||||
if (i >= length) {
|
||||
throw new Error(`Unbalanced square brackets; start = ${start}, i = ${i}, pattern = ${pattern}`);
|
||||
}
|
||||
squareBrackets += ']';
|
||||
i += 1;
|
||||
seq.push([squareBrackets, false]);
|
||||
} else if (c === '|') {
|
||||
seq.push(['|', false]);
|
||||
i += 1;
|
||||
} else if (c === '*' || c === '+' || c === '?') {
|
||||
seq[seq.length - 1] = [toRule(seq[seq.length - 1]) + c, false];
|
||||
i += 1;
|
||||
} else if (c === '{') {
|
||||
let curlyBrackets = c;
|
||||
i += 1;
|
||||
while (i < length && pattern[i] !== '}') {
|
||||
curlyBrackets += pattern[i];
|
||||
i += 1;
|
||||
}
|
||||
if (i >= length) {
|
||||
throw new Error(`Unbalanced curly brackets; start = ${start}, i = ${i}, pattern = ${pattern}`);
|
||||
}
|
||||
curlyBrackets += '}';
|
||||
i += 1;
|
||||
const nums = curlyBrackets.slice(1, -1).split(',').map(s => s.trim());
|
||||
let minTimes, maxTimes;
|
||||
if (nums.length === 1) {
|
||||
minTimes = parseInt(nums[0], 10);
|
||||
maxTimes = minTimes;
|
||||
} else {
|
||||
if (nums.length !== 2) {
|
||||
throw new Error(`Invalid quantifier ${curlyBrackets}`);
|
||||
}
|
||||
minTimes = nums[0] ? parseInt(nums[0], 10) : 0;
|
||||
maxTimes = nums[1] ? parseInt(nums[1], 10) : Infinity;
|
||||
}
|
||||
|
||||
let [sub, subIsLiteral] = seq[seq.length - 1];
|
||||
|
||||
if (minTimes === 0 && maxTimes === Infinity) {
|
||||
seq[seq.length - 1] = [`${sub}*`, false];
|
||||
} else if (minTimes === 0 && maxTimes === 1) {
|
||||
seq[seq.length - 1] = [`${sub}?`, false];
|
||||
} else if (minTimes === 1 && maxTimes === Infinity) {
|
||||
seq[seq.length - 1] = [`${sub}+`, false];
|
||||
} else {
|
||||
if (!subIsLiteral) {
|
||||
let id = subRuleIds[sub];
|
||||
if (id === undefined) {
|
||||
id = this._addRule(`${name}-${Object.keys(subRuleIds).length + 1}`, sub);
|
||||
subRuleIds[sub] = id;
|
||||
}
|
||||
sub = id;
|
||||
}
|
||||
|
||||
const repeatedSub = Array.from({ length: minTimes }, () => subIsLiteral ? `"${sub.slice(1, -1).repeat(minTimes)}"` : sub);
|
||||
const optionalSub = maxTimes !== undefined ? Array.from({ length: maxTimes - minTimes }, () => `${sub}?`) : [`${sub}*`];
|
||||
seq[seq.length - 1] = [repeatedSub.concat(optionalSub).join(' '), false];
|
||||
}
|
||||
} else {
|
||||
let literal = '';
|
||||
while (i < length) {
|
||||
if (pattern[i] === '\\' && i < length - 1) {
|
||||
const next = pattern[i + 1];
|
||||
if (ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS.has(next)) {
|
||||
i += 1;
|
||||
literal += pattern[i];
|
||||
i += 1;
|
||||
} else {
|
||||
literal += pattern.slice(i, i + 2);
|
||||
i += 2;
|
||||
}
|
||||
} else if (pattern[i] === '"') {
|
||||
literal += '\\"';
|
||||
i += 1;
|
||||
} else if (!NON_LITERAL_SET.has(pattern[i]) &&
|
||||
(i === length - 1 || literal === '' || pattern[i + 1] === '.' || !NON_LITERAL_SET.has(pattern[i+1]))) {
|
||||
literal += pattern[i];
|
||||
i += 1;
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (literal !== '') {
|
||||
seq.push([literal, true]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return joinSeq();
|
||||
};
|
||||
|
||||
return this._addRule(name, "\"\\\"\" " + toRule(transform()) + " \"\\\"\" space")
|
||||
}
|
||||
|
||||
_resolveRef(ref) {
|
||||
let refName = ref.split('/').pop();
|
||||
if (!(refName in this._rules) && !this._refsBeingResolved.has(ref)) {
|
||||
this._refsBeingResolved.add(ref);
|
||||
const resolved = this._refs[ref];
|
||||
refName = this.visit(resolved, refName);
|
||||
this._refsBeingResolved.delete(ref);
|
||||
}
|
||||
return refName;
|
||||
}
|
||||
|
||||
_generateConstantRule(value) {
|
||||
return this._formatLiteral(JSON.stringify(value));
|
||||
}
|
||||
|
||||
visit(schema, name) {
|
||||
const schemaType = schema.type;
|
||||
const ruleName = name || 'root';
|
||||
const schemaFormat = schema.format;
|
||||
const ruleName = name in RESERVED_NAMES ? name + '-' : name == '' ? 'root' : name;
|
||||
|
||||
if (schema.oneOf || schema.anyOf) {
|
||||
const rule = (schema.oneOf || schema.anyOf).map((altSchema, i) =>
|
||||
this.visit(altSchema, `${name}${name ? "-" : ""}${i}`)
|
||||
).join(' | ');
|
||||
|
||||
return this._addRule(ruleName, rule);
|
||||
const ref = schema.$ref;
|
||||
if (ref !== undefined) {
|
||||
return this._addRule(ruleName, this._resolveRef(ref));
|
||||
} else if (schema.oneOf || schema.anyOf) {
|
||||
return this._addRule(ruleName, this._generateUnionRule(name, schema.oneOf || schema.anyOf));
|
||||
} else if (Array.isArray(schemaType)) {
|
||||
return this._addRule(ruleName, this._generateUnionRule(name, schemaType.map(t => ({ type: t }))));
|
||||
} else if ('const' in schema) {
|
||||
return this._addRule(ruleName, this._formatLiteral(schema.const));
|
||||
return this._addRule(ruleName, this._generateConstantRule(schema.const));
|
||||
} else if ('enum' in schema) {
|
||||
const rule = schema.enum.map(v => this._formatLiteral(v)).join(' | ');
|
||||
const rule = schema.enum.map(v => this._generateConstantRule(v)).join(' | ');
|
||||
return this._addRule(ruleName, rule);
|
||||
} else if (schemaType === 'object' && 'properties' in schema) {
|
||||
// TODO: `required` keyword (from python implementation)
|
||||
const propOrder = this._propOrder;
|
||||
const propPairs = Object.entries(schema.properties).sort((a, b) => {
|
||||
// sort by position in prop_order (if specified) then by key
|
||||
const orderA = typeof propOrder[a[0]] === 'number' ? propOrder[a[0]] : Infinity;
|
||||
const orderB = typeof propOrder[b[0]] === 'number' ? propOrder[b[0]] : Infinity;
|
||||
return orderA - orderB || a[0].localeCompare(b[0]);
|
||||
});
|
||||
|
||||
let rule = '"{" space';
|
||||
propPairs.forEach(([propName, propSchema], i) => {
|
||||
const propRuleName = this.visit(propSchema, `${name}${name ? "-" : ""}${propName}`);
|
||||
if (i > 0) {
|
||||
rule += ' "," space';
|
||||
} else if ((schemaType === undefined || schemaType === 'object') &&
|
||||
('properties' in schema ||
|
||||
('additionalProperties' in schema && schema.additionalProperties !== true))) {
|
||||
const required = new Set(schema.required || []);
|
||||
const properties = Object.entries(schema.properties ?? {});
|
||||
return this._addRule(ruleName, this._buildObjectRule(properties, required, name, schema.additionalProperties));
|
||||
} else if ((schemaType === undefined || schemaType === 'object') && 'allOf' in schema) {
|
||||
const required = new Set();
|
||||
const properties = [];
|
||||
const addComponent = (compSchema, isRequired) => {
|
||||
const ref = compSchema.$ref;
|
||||
if (ref !== undefined) {
|
||||
compSchema = this._refs[ref];
|
||||
}
|
||||
rule += ` ${this._formatLiteral(propName)} space ":" space ${propRuleName}`;
|
||||
});
|
||||
rule += ' "}" space';
|
||||
|
||||
return this._addRule(ruleName, rule);
|
||||
} else if (schemaType === 'array' && 'items' in schema) {
|
||||
// TODO `prefixItems` keyword (from python implementation)
|
||||
const itemRuleName = this.visit(schema.items, `${name}${name ? "-" : ""}item`);
|
||||
const rule = `"[" space (${itemRuleName} ("," space ${itemRuleName})*)? "]" space`;
|
||||
return this._addRule(ruleName, rule);
|
||||
if ('properties' in compSchema) {
|
||||
for (const [propName, propSchema] of Object.entries(compSchema.properties)) {
|
||||
properties.push([propName, propSchema]);
|
||||
if (isRequired) {
|
||||
required.add(propName);
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
for (const t of schema.allOf) {
|
||||
if ('anyOf' in t) {
|
||||
for (const tt of t.anyOf) {
|
||||
addComponent(tt, false);
|
||||
}
|
||||
} else {
|
||||
addComponent(t, true);
|
||||
}
|
||||
}
|
||||
|
||||
return this._addRule(ruleName, this._buildObjectRule(properties, required, name, /* additionalProperties= */ false));
|
||||
} else if ((schemaType === undefined || schemaType === 'array') && ('items' in schema || 'prefixItems' in schema)) {
|
||||
const items = schema.items ?? schema.prefixItems;
|
||||
if (Array.isArray(items)) {
|
||||
return this._addRule(
|
||||
ruleName,
|
||||
'"[" space ' +
|
||||
items.map((item, i) => this.visit(item, `${name ?? ''}${name ? '-' : ''}tuple-${i}`)).join(' "," space ') +
|
||||
' "]" space'
|
||||
);
|
||||
} else {
|
||||
const itemRuleName = this.visit(items, `${name ?? ''}${name ? '-' : ''}item`);
|
||||
const listItemOperator = `( "," space ${itemRuleName} )`;
|
||||
let successiveItems = '';
|
||||
let minItems = schema.minItems || 0;
|
||||
const maxItems = schema.maxItems;
|
||||
if (minItems > 0) {
|
||||
successiveItems = listItemOperator.repeat(minItems - 1);
|
||||
minItems--;
|
||||
}
|
||||
if (maxItems !== undefined && maxItems > minItems) {
|
||||
successiveItems += `${listItemOperator}?`.repeat(maxItems - minItems - 1);
|
||||
} else {
|
||||
successiveItems += `${listItemOperator}*`;
|
||||
}
|
||||
const rule = minItems === 0
|
||||
? `"[" space ( ${itemRuleName} ${successiveItems} )? "]" space`
|
||||
: `"[" space ${itemRuleName} ${successiveItems} "]" space`;
|
||||
return this._addRule(ruleName, rule);
|
||||
}
|
||||
} else if ((schemaType === undefined || schemaType === 'string') && 'pattern' in schema) {
|
||||
return this._visitPattern(schema.pattern, ruleName);
|
||||
} else if ((schemaType === undefined || schemaType === 'string') && /^uuid[1-5]?$/.test(schema.format || '')) {
|
||||
return this._addRule(
|
||||
ruleName === 'root' ? 'root' : schemaFormat,
|
||||
PRIMITIVE_RULES['uuid'])
|
||||
} else if ((schemaType === undefined || schemaType === 'string') && schema.format in DATE_RULES) {
|
||||
for (const [t, r] of Object.entries(DATE_RULES)) {
|
||||
this._addRule(t, r);
|
||||
}
|
||||
return schemaFormat + '-string';
|
||||
} else if ((schemaType === 'object') || (Object.keys(schema).length === 0)) {
|
||||
for (const n of OBJECT_RULE_NAMES) {
|
||||
this._addRule(n, PRIMITIVE_RULES[n]);
|
||||
}
|
||||
return this._addRule(ruleName, 'object');
|
||||
} else {
|
||||
if (!PRIMITIVE_RULES[schemaType]) {
|
||||
if (!(schemaType in PRIMITIVE_RULES)) {
|
||||
throw new Error(`Unrecognized schema: ${JSON.stringify(schema)}`);
|
||||
}
|
||||
return this._addRule(
|
||||
ruleName === 'root' ? 'root' : schemaType,
|
||||
PRIMITIVE_RULES[schemaType]
|
||||
// TODO: support minimum, maximum, exclusiveMinimum, exclusiveMaximum at least for zero
|
||||
return this._addRule(ruleName === 'root' ? 'root' : schemaType, PRIMITIVE_RULES[schemaType]);
|
||||
}
|
||||
}
|
||||
|
||||
_buildObjectRule(properties, required, name, additionalProperties) {
|
||||
const propOrder = this._propOrder;
|
||||
// sort by position in prop_order (if specified) then by original order
|
||||
const sortedProps = properties.map(([k]) => k).sort((a, b) => {
|
||||
const orderA = propOrder[a] || Infinity;
|
||||
const orderB = propOrder[b] || Infinity;
|
||||
return orderA - orderB || properties.findIndex(([k]) => k === a) - properties.findIndex(([k]) => k === b);
|
||||
});
|
||||
|
||||
const propKvRuleNames = {};
|
||||
for (const [propName, propSchema] of properties) {
|
||||
const propRuleName = this.visit(propSchema, `${name ?? ''}${name ? '-' : ''}${propName}`);
|
||||
propKvRuleNames[propName] = this._addRule(
|
||||
`${name ?? ''}${name ? '-' : ''}${propName}-kv`,
|
||||
`${this._formatLiteral(JSON.stringify(propName))} space ":" space ${propRuleName}`
|
||||
);
|
||||
}
|
||||
const requiredProps = sortedProps.filter(k => required.has(k));
|
||||
const optionalProps = sortedProps.filter(k => !required.has(k));
|
||||
|
||||
if (typeof additionalProperties === 'object' || additionalProperties === true) {
|
||||
const subName = `${name ?? ''}${name ? '-' : ''}additional`;
|
||||
const valueRule = this.visit(additionalProperties === true ? {} : additionalProperties, `${subName}-value`);
|
||||
propKvRuleNames['*'] = this._addRule(
|
||||
`${subName}-kv`,
|
||||
`${this._addRule('string', PRIMITIVE_RULES['string'])} ":" space ${valueRule}`);
|
||||
optionalProps.push('*');
|
||||
}
|
||||
|
||||
let rule = '"{" space ';
|
||||
rule += requiredProps.map(k => propKvRuleNames[k]).join(' "," space ');
|
||||
|
||||
if (optionalProps.length > 0) {
|
||||
rule += ' (';
|
||||
if (requiredProps.length > 0) {
|
||||
rule += ' "," space ( ';
|
||||
}
|
||||
|
||||
const getRecursiveRefs = (ks, firstIsOptional) => {
|
||||
const [k, ...rest] = ks;
|
||||
const kvRuleName = propKvRuleNames[k];
|
||||
let res;
|
||||
if (k === '*') {
|
||||
res = this._addRule(
|
||||
`${name ?? ''}${name ? '-' : ''}additional-kvs`,
|
||||
`${kvRuleName} ( "," space ` + kvRuleName + ` )*`
|
||||
)
|
||||
} else if (firstIsOptional) {
|
||||
res = `( "," space ${kvRuleName} )?`;
|
||||
} else {
|
||||
res = kvRuleName;
|
||||
}
|
||||
if (rest.length > 0) {
|
||||
res += ' ' + this._addRule(
|
||||
`${name ?? ''}${name ? '-' : ''}${k}-rest`,
|
||||
getRecursiveRefs(rest, true)
|
||||
);
|
||||
}
|
||||
return res;
|
||||
};
|
||||
|
||||
rule += optionalProps.map((_, i) => getRecursiveRefs(optionalProps.slice(i), false)).join(' | ');
|
||||
if (requiredProps.length > 0) {
|
||||
rule += ' )';
|
||||
}
|
||||
rule += ' )?';
|
||||
}
|
||||
|
||||
rule += ' "}" space';
|
||||
|
||||
return rule;
|
||||
}
|
||||
|
||||
formatGrammar() {
|
||||
let grammar = '';
|
||||
this._rules.forEach((rule, name) => {
|
||||
for (const [name, rule] of Object.entries(this._rules).sort(([a], [b]) => a.localeCompare(b))) {
|
||||
grammar += `${name} ::= ${rule}\n`;
|
||||
});
|
||||
}
|
||||
return grammar;
|
||||
}
|
||||
}
|
||||
|
||||
// Helper function to group elements by a key function
|
||||
function* groupBy(iterable, keyFn) {
|
||||
let lastKey = null;
|
||||
let group = [];
|
||||
for (const element of iterable) {
|
||||
const key = keyFn(element);
|
||||
if (lastKey !== null && key !== lastKey) {
|
||||
yield [lastKey, group];
|
||||
group = [];
|
||||
}
|
||||
group.push(element);
|
||||
lastKey = key;
|
||||
}
|
||||
if (group.length > 0) {
|
||||
yield [lastKey, group];
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
#include "utils.hpp"
|
||||
|
||||
#include "common.h"
|
||||
#include "json-schema-to-grammar.h"
|
||||
#include "llama.h"
|
||||
#include "grammar-parser.h"
|
||||
|
||||
@@ -29,7 +30,7 @@
|
||||
#include <signal.h>
|
||||
#include <memory>
|
||||
|
||||
using json = nlohmann::json;
|
||||
using json = nlohmann::ordered_json;
|
||||
|
||||
bool server_verbose = false;
|
||||
bool server_log_json = true;
|
||||
@@ -147,7 +148,7 @@ struct server_slot {
|
||||
int32_t n_decoded = 0;
|
||||
int32_t n_remaining = -1;
|
||||
int32_t i_batch = -1;
|
||||
int32_t n_predict = -1;
|
||||
int32_t n_predict = -1; // TODO: disambiguate from params.n_predict
|
||||
|
||||
int32_t n_prompt_tokens = 0;
|
||||
int32_t n_prompt_tokens_processed = 0;
|
||||
@@ -178,6 +179,7 @@ struct server_slot {
|
||||
llama_token sampled;
|
||||
struct llama_sampling_params sparams;
|
||||
llama_sampling_context * ctx_sampling = nullptr;
|
||||
json json_schema;
|
||||
|
||||
int32_t ga_i = 0; // group-attention state
|
||||
int32_t ga_n = 1; // group-attention factor
|
||||
@@ -739,7 +741,13 @@ struct server_context {
|
||||
default_generation_settings_for_props = get_formated_generation(slots.front());
|
||||
default_generation_settings_for_props["seed"] = -1;
|
||||
|
||||
batch = llama_batch_init(n_ctx, 0, params.n_parallel);
|
||||
// the update_slots() logic will always submit a maximum of n_batch tokens
|
||||
// note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
|
||||
{
|
||||
const int32_t n_batch = llama_n_batch(ctx);
|
||||
|
||||
batch = llama_batch_init(n_batch, 0, params.n_parallel);
|
||||
}
|
||||
|
||||
metrics.init();
|
||||
}
|
||||
@@ -839,10 +847,25 @@ struct server_context {
|
||||
slot.sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl);
|
||||
slot.params.n_keep = json_value(data, "n_keep", slot.params.n_keep);
|
||||
slot.params.seed = json_value(data, "seed", default_params.seed);
|
||||
slot.sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
|
||||
slot.sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
|
||||
slot.sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep);
|
||||
|
||||
// process "json_schema" and "grammar"
|
||||
if (data.contains("json_schema") && data.contains("grammar")) {
|
||||
send_error(task, "Either \"json_schema\" or \"grammar\" can be specified, but not both", ERROR_TYPE_INVALID_REQUEST);
|
||||
return false;
|
||||
} else if (data.contains("json_schema") && !data.contains("grammar")) {
|
||||
try {
|
||||
auto schema = json_value(data, "json_schema", json::object());
|
||||
slot.sparams.grammar = json_schema_to_grammar(schema);
|
||||
} catch (const std::exception & e) {
|
||||
send_error(task, std::string("\"json_schema\": ") + e.what(), ERROR_TYPE_INVALID_REQUEST);
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
slot.sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
|
||||
}
|
||||
|
||||
if (slot.params.cache_prompt && slot.ga_n != 1) {
|
||||
LOG_WARNING("cache_prompt is not supported with group-attention", {});
|
||||
slot.params.cache_prompt = false;
|
||||
@@ -1036,8 +1059,10 @@ struct server_context {
|
||||
llama_batch_add(batch, system_tokens[i], i, { 0 }, false);
|
||||
}
|
||||
|
||||
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += params.n_batch) {
|
||||
const int32_t n_tokens = std::min(params.n_batch, (int32_t) (batch.n_tokens - i));
|
||||
const int32_t n_batch = llama_n_batch(ctx);
|
||||
|
||||
for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
|
||||
const int32_t n_tokens = std::min(params.n_batch, batch.n_tokens - i);
|
||||
llama_batch batch_view = {
|
||||
n_tokens,
|
||||
batch.token + i,
|
||||
@@ -1226,8 +1251,8 @@ struct server_context {
|
||||
{"mirostat_eta", slot.sparams.mirostat_eta},
|
||||
{"penalize_nl", slot.sparams.penalize_nl},
|
||||
{"stop", slot.params.antiprompt},
|
||||
{"n_predict", slot.params.n_predict},
|
||||
{"n_keep", params.n_keep},
|
||||
{"n_predict", slot.params.n_predict}, // TODO: fix duplicate key n_predict
|
||||
{"n_keep", slot.params.n_keep},
|
||||
{"ignore_eos", ignore_eos},
|
||||
{"stream", slot.params.stream},
|
||||
{"logit_bias", slot.sparams.logit_bias},
|
||||
@@ -1738,7 +1763,8 @@ struct server_context {
|
||||
}
|
||||
|
||||
// process in chunks of params.n_batch
|
||||
int32_t n_batch = params.n_batch;
|
||||
int32_t n_batch = llama_n_batch(ctx);
|
||||
int32_t n_ubatch = llama_n_ubatch(ctx);
|
||||
|
||||
// next, batch any pending prompts without exceeding n_batch
|
||||
if (params.cont_batching || batch.n_tokens == 0) {
|
||||
@@ -1811,7 +1837,7 @@ struct server_context {
|
||||
|
||||
if (slot.embedding) {
|
||||
// this prompt is too large to process - discard it
|
||||
if (slot.n_prompt_tokens > n_batch) {
|
||||
if (slot.n_prompt_tokens > n_ubatch) {
|
||||
slot.state = SLOT_STATE_PROCESSING;
|
||||
slot.command = SLOT_COMMAND_NONE;
|
||||
slot.release();
|
||||
@@ -2157,7 +2183,8 @@ static void server_print_usage(const char * argv0, const gpt_params & params, co
|
||||
printf(" --pooling {none,mean,cls} pooling type for embeddings, use model default if unspecified\n");
|
||||
printf(" -dt N, --defrag-thold N\n");
|
||||
printf(" KV cache defragmentation threshold (default: %.1f, < 0 - disabled)\n", params.defrag_thold);
|
||||
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
||||
printf(" -b N, --batch-size N logical maximum batch size (default: %d)\n", params.n_batch);
|
||||
printf(" -ub N, --ubatch-size N physical maximum batch size (default: %d)\n", params.n_ubatch);
|
||||
printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
|
||||
printf(" not recommended: doubles context memory required and no measurable increase in quality\n");
|
||||
if (llama_supports_mlock()) {
|
||||
@@ -2185,6 +2212,12 @@ static void server_print_usage(const char * argv0, const gpt_params & params, co
|
||||
}
|
||||
printf(" -m FNAME, --model FNAME\n");
|
||||
printf(" model path (default: %s)\n", params.model.c_str());
|
||||
printf(" -mu MODEL_URL, --model-url MODEL_URL\n");
|
||||
printf(" model download url (default: unused)\n");
|
||||
printf(" -hfr REPO, --hf-repo REPO\n");
|
||||
printf(" Hugging Face model repository (default: unused)\n");
|
||||
printf(" -hff FILE, --hf-file FILE\n");
|
||||
printf(" Hugging Face model file (default: unused)\n");
|
||||
printf(" -a ALIAS, --alias ALIAS\n");
|
||||
printf(" set an alias for the model, will be added as `model` field in completion response\n");
|
||||
printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
|
||||
@@ -2201,7 +2234,7 @@ static void server_print_usage(const char * argv0, const gpt_params & params, co
|
||||
printf(" -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout);
|
||||
printf(" --embeddings enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled");
|
||||
printf(" -np N, --parallel N number of slots for process requests (default: %d)\n", params.n_parallel);
|
||||
printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
|
||||
printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: enabled)\n");
|
||||
printf(" -spf FNAME, --system-prompt-file FNAME\n");
|
||||
printf(" set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications.\n");
|
||||
printf(" -ctk TYPE, --cache-type-k TYPE\n");
|
||||
@@ -2307,6 +2340,24 @@ static void server_params_parse(int argc, char ** argv, server_params & sparams,
|
||||
break;
|
||||
}
|
||||
params.model = argv[i];
|
||||
} else if (arg == "-mu" || arg == "--model-url") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.model_url = argv[i];
|
||||
} else if (arg == "-hfr" || arg == "--hf-repo") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.hf_repo = argv[i];
|
||||
} else if (arg == "-hff" || arg == "--hf-file") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.hf_file = argv[i];
|
||||
} else if (arg == "-a" || arg == "--alias") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@@ -2424,6 +2475,12 @@ static void server_params_parse(int argc, char ** argv, server_params & sparams,
|
||||
break;
|
||||
}
|
||||
params.n_batch = std::stoi(argv[i]);
|
||||
} else if (arg == "-ub" || arg == "--ubatch-size") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.n_ubatch = std::stoi(argv[i]);
|
||||
} else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@@ -2763,6 +2820,7 @@ int main(int argc, char ** argv) {
|
||||
res.set_header("Access-Control-Allow-Credentials", "true");
|
||||
res.set_header("Access-Control-Allow-Methods", "POST");
|
||||
res.set_header("Access-Control-Allow-Headers", "*");
|
||||
return res.set_content("", "application/json; charset=utf-8");
|
||||
});
|
||||
|
||||
svr->set_logger(log_server_request);
|
||||
@@ -3371,44 +3429,37 @@ int main(int argc, char ** argv) {
|
||||
const json body = json::parse(req.body);
|
||||
bool is_openai = false;
|
||||
|
||||
// an input prompt can string or a list of tokens (integer)
|
||||
std::vector<json> prompts;
|
||||
// an input prompt can be a string or a list of tokens (integer)
|
||||
json prompt;
|
||||
if (body.count("input") != 0) {
|
||||
is_openai = true;
|
||||
if (body["input"].is_array()) {
|
||||
// support multiple prompts
|
||||
for (const json & elem : body["input"]) {
|
||||
prompts.push_back(elem);
|
||||
}
|
||||
} else {
|
||||
// single input prompt
|
||||
prompts.push_back(body["input"]);
|
||||
}
|
||||
prompt = body["input"];
|
||||
} else if (body.count("content") != 0) {
|
||||
// only support single prompt here
|
||||
std::string content = body["content"];
|
||||
prompts.push_back(content);
|
||||
// with "content", we only support single prompt
|
||||
prompt = std::vector<std::string>{body["content"]};
|
||||
} else {
|
||||
res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
|
||||
return;
|
||||
}
|
||||
|
||||
// process all prompts
|
||||
json responses = json::array();
|
||||
for (auto & prompt : prompts) {
|
||||
// TODO @ngxson : maybe support multitask for this endpoint?
|
||||
// create and queue the task
|
||||
// create and queue the task
|
||||
json responses;
|
||||
{
|
||||
const int id_task = ctx_server.queue_tasks.get_new_id();
|
||||
|
||||
ctx_server.queue_results.add_waiting_task_id(id_task);
|
||||
ctx_server.request_completion(id_task, -1, { {"prompt", prompt}, { "n_predict", 0}}, false, true);
|
||||
ctx_server.request_completion(id_task, -1, {{"prompt", prompt}}, false, true);
|
||||
|
||||
// get the result
|
||||
server_task_result result = ctx_server.queue_results.recv(id_task);
|
||||
ctx_server.queue_results.remove_waiting_task_id(id_task);
|
||||
if (!result.error) {
|
||||
// append to the responses
|
||||
responses.push_back(result.data);
|
||||
if (result.data.count("results")) {
|
||||
// result for multi-task
|
||||
responses = result.data["results"];
|
||||
} else {
|
||||
// result for single task
|
||||
responses = std::vector<json>{result.data};
|
||||
}
|
||||
} else {
|
||||
// error received, ignore everything else
|
||||
res_error(res, result.data);
|
||||
@@ -3417,24 +3468,19 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// write JSON response
|
||||
json root;
|
||||
if (is_openai) {
|
||||
json res_oai = json::array();
|
||||
int i = 0;
|
||||
for (auto & elem : responses) {
|
||||
res_oai.push_back(json{
|
||||
{"embedding", json_value(elem, "embedding", json::array())},
|
||||
{"index", i++},
|
||||
{"object", "embedding"}
|
||||
});
|
||||
}
|
||||
root = format_embeddings_response_oaicompat(body, res_oai);
|
||||
} else {
|
||||
root = responses[0];
|
||||
}
|
||||
json root = is_openai
|
||||
? format_embeddings_response_oaicompat(body, responses)
|
||||
: responses[0];
|
||||
return res.set_content(root.dump(), "application/json; charset=utf-8");
|
||||
};
|
||||
|
||||
auto handle_static_file = [](unsigned char * content, size_t len, const char * mime_type) {
|
||||
return [content, len, mime_type](const httplib::Request &, httplib::Response & res) {
|
||||
res.set_content(reinterpret_cast<const char*>(content), len, mime_type);
|
||||
return false;
|
||||
};
|
||||
};
|
||||
|
||||
//
|
||||
// Router
|
||||
//
|
||||
@@ -3446,17 +3492,6 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// using embedded static files
|
||||
auto handle_static_file = [](unsigned char * content, size_t len, const char * mime_type) {
|
||||
return [content, len, mime_type](const httplib::Request &, httplib::Response & res) {
|
||||
res.set_content(reinterpret_cast<const char*>(content), len, mime_type);
|
||||
return false;
|
||||
};
|
||||
};
|
||||
|
||||
svr->Options(R"(/.*)", [](const httplib::Request &, httplib::Response & res) {
|
||||
// TODO @ngxson : I have no idea what it is... maybe this is redundant?
|
||||
return res.set_content("", "application/json; charset=utf-8");
|
||||
});
|
||||
svr->Get("/", handle_static_file(index_html, index_html_len, "text/html; charset=utf-8"));
|
||||
svr->Get("/index.js", handle_static_file(index_js, index_js_len, "text/javascript; charset=utf-8"));
|
||||
svr->Get("/completion.js", handle_static_file(completion_js, completion_js_len, "text/javascript; charset=utf-8"));
|
||||
|
||||
@@ -57,7 +57,7 @@ Feature or Scenario must be annotated with `@llama.cpp` to be included in the de
|
||||
To run a scenario annotated with `@bug`, start:
|
||||
|
||||
```shell
|
||||
DEBUG=ON ./tests.sh --no-skipped --tags bug
|
||||
DEBUG=ON ./tests.sh --no-skipped --tags bug --stop
|
||||
```
|
||||
|
||||
After changing logic in `steps.py`, ensure that `@bug` and `@wrong_usage` scenario are updated.
|
||||
|
||||
@@ -4,11 +4,13 @@ Feature: llama.cpp server
|
||||
|
||||
Background: Server startup
|
||||
Given a server listening on localhost:8080
|
||||
And a model file bert-bge-small/ggml-model-f16.gguf from HF repo ggml-org/models
|
||||
And a model url https://huggingface.co/ggml-org/models/resolve/main/bert-bge-small/ggml-model-f16.gguf
|
||||
And a model file ggml-model-f16.gguf
|
||||
And a model alias bert-bge-small
|
||||
And 42 as server seed
|
||||
And 2 slots
|
||||
And 1024 as batch size
|
||||
And 1024 as ubatch size
|
||||
And 2048 KV cache size
|
||||
And embeddings extraction
|
||||
Then the server is starting
|
||||
|
||||
@@ -1,17 +1,18 @@
|
||||
import errno
|
||||
import os
|
||||
import socket
|
||||
import subprocess
|
||||
import time
|
||||
from contextlib import closing
|
||||
import signal
|
||||
import socket
|
||||
import sys
|
||||
import time
|
||||
import traceback
|
||||
from contextlib import closing
|
||||
from subprocess import TimeoutExpired
|
||||
|
||||
|
||||
def before_scenario(context, scenario):
|
||||
context.debug = 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON'
|
||||
if context.debug:
|
||||
print("DEBUG=ON\n")
|
||||
print(f"\x1b[33;42mStarting new scenario: {scenario.name}!\x1b[0m\n")
|
||||
print("DEBUG=ON")
|
||||
print(f"\x1b[33;42mStarting new scenario: {scenario.name}!\x1b[0m")
|
||||
port = 8080
|
||||
if 'PORT' in os.environ:
|
||||
port = int(os.environ['PORT'])
|
||||
@@ -20,58 +21,45 @@ def before_scenario(context, scenario):
|
||||
|
||||
|
||||
def after_scenario(context, scenario):
|
||||
if context.server_process is None:
|
||||
return
|
||||
if scenario.status == "failed":
|
||||
if 'GITHUB_ACTIONS' in os.environ:
|
||||
print(f"\x1b[33;101mSCENARIO FAILED: {scenario.name} server logs:\x1b[0m\n\n")
|
||||
if os.path.isfile('llama.log'):
|
||||
with closing(open('llama.log', 'r')) as f:
|
||||
for line in f:
|
||||
print(line)
|
||||
if not is_server_listening(context.server_fqdn, context.server_port):
|
||||
print("\x1b[33;101mERROR: Server stopped listening\x1b[0m\n")
|
||||
try:
|
||||
if 'server_process' not in context or context.server_process is None:
|
||||
return
|
||||
if scenario.status == "failed":
|
||||
if 'GITHUB_ACTIONS' in os.environ:
|
||||
print(f"\x1b[33;101mSCENARIO FAILED: {scenario.name} server logs:\x1b[0m\n")
|
||||
if os.path.isfile('llama.log'):
|
||||
with closing(open('llama.log', 'r')) as f:
|
||||
for line in f:
|
||||
print(line)
|
||||
if not is_server_listening(context.server_fqdn, context.server_port):
|
||||
print("\x1b[33;101mERROR: Server stopped listening\x1b[0m")
|
||||
|
||||
if not pid_exists(context.server_process.pid):
|
||||
assert False, f"Server not running pid={context.server_process.pid} ..."
|
||||
if context.server_process.poll() is not None:
|
||||
assert False, f"Server not running pid={context.server_process.pid} ..."
|
||||
|
||||
server_graceful_shutdown(context)
|
||||
server_graceful_shutdown(context) # SIGINT
|
||||
|
||||
# Wait few for socket to free up
|
||||
time.sleep(0.05)
|
||||
try:
|
||||
context.server_process.wait(0.5)
|
||||
except TimeoutExpired:
|
||||
print(f"server still alive after 500ms, force-killing pid={context.server_process.pid} ...")
|
||||
context.server_process.kill() # SIGKILL
|
||||
context.server_process.wait()
|
||||
|
||||
attempts = 0
|
||||
while pid_exists(context.server_process.pid) or is_server_listening(context.server_fqdn, context.server_port):
|
||||
server_kill(context)
|
||||
time.sleep(0.1)
|
||||
attempts += 1
|
||||
if attempts > 5:
|
||||
server_kill_hard(context)
|
||||
while is_server_listening(context.server_fqdn, context.server_port):
|
||||
time.sleep(0.1)
|
||||
except Exception:
|
||||
print("ignoring error in after_scenario:")
|
||||
traceback.print_exc(file=sys.stdout)
|
||||
|
||||
|
||||
def server_graceful_shutdown(context):
|
||||
print(f"shutting down server pid={context.server_process.pid} ...\n")
|
||||
print(f"shutting down server pid={context.server_process.pid} ...")
|
||||
if os.name == 'nt':
|
||||
os.kill(context.server_process.pid, signal.CTRL_C_EVENT)
|
||||
interrupt = signal.CTRL_C_EVENT
|
||||
else:
|
||||
os.kill(context.server_process.pid, signal.SIGINT)
|
||||
|
||||
|
||||
def server_kill(context):
|
||||
print(f"killing server pid={context.server_process.pid} ...\n")
|
||||
context.server_process.kill()
|
||||
|
||||
|
||||
def server_kill_hard(context):
|
||||
pid = context.server_process.pid
|
||||
path = context.server_path
|
||||
|
||||
print(f"Server dangling exits, hard killing force {pid}={path}...\n")
|
||||
if os.name == 'nt':
|
||||
process = subprocess.check_output(['taskkill', '/F', '/pid', str(pid)]).decode()
|
||||
print(process)
|
||||
else:
|
||||
os.kill(-pid, signal.SIGKILL)
|
||||
interrupt = signal.SIGINT
|
||||
context.server_process.send_signal(interrupt)
|
||||
|
||||
|
||||
def is_server_listening(server_fqdn, server_port):
|
||||
@@ -79,22 +67,5 @@ def is_server_listening(server_fqdn, server_port):
|
||||
result = sock.connect_ex((server_fqdn, server_port))
|
||||
_is_server_listening = result == 0
|
||||
if _is_server_listening:
|
||||
print(f"server is listening on {server_fqdn}:{server_port}...\n")
|
||||
print(f"server is listening on {server_fqdn}:{server_port}...")
|
||||
return _is_server_listening
|
||||
|
||||
|
||||
def pid_exists(pid):
|
||||
"""Check whether pid exists in the current process table."""
|
||||
if pid < 0:
|
||||
return False
|
||||
if os.name == 'nt':
|
||||
output = subprocess.check_output(['TASKLIST', '/FI', f'pid eq {pid}']).decode()
|
||||
print(output)
|
||||
return "No tasks are running" not in output
|
||||
else:
|
||||
try:
|
||||
os.kill(pid, 0)
|
||||
except OSError as e:
|
||||
return e.errno == errno.EPERM
|
||||
else:
|
||||
return True
|
||||
|
||||
@@ -4,7 +4,8 @@ Feature: Parallel
|
||||
|
||||
Background: Server startup
|
||||
Given a server listening on localhost:8080
|
||||
And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models
|
||||
And a model file tinyllamas/split/stories15M-00001-of-00003.gguf from HF repo ggml-org/models
|
||||
And a model file test-model-00001-of-00003.gguf
|
||||
And 42 as server seed
|
||||
And 128 as batch size
|
||||
And 256 KV cache size
|
||||
|
||||
@@ -37,6 +37,22 @@ Feature: Security
|
||||
| llama.cpp | no |
|
||||
| hackme | raised |
|
||||
|
||||
Scenario Outline: OAI Compatibility (invalid response formats)
|
||||
Given a system prompt test
|
||||
And a user prompt test
|
||||
And a response format <response_format>
|
||||
And a model test
|
||||
And 2 max tokens to predict
|
||||
And streaming is disabled
|
||||
Given an OAI compatible chat completions request with raised api error
|
||||
|
||||
Examples: Prompts
|
||||
| response_format |
|
||||
| {"type": "sound"} |
|
||||
| {"type": "json_object", "schema": 123} |
|
||||
| {"type": "json_object", "schema": {"type": 123}} |
|
||||
| {"type": "json_object", "schema": {"type": "hiccup"}} |
|
||||
|
||||
|
||||
Scenario Outline: CORS Options
|
||||
Given a user api key llama.cpp
|
||||
|
||||
@@ -5,6 +5,7 @@ Feature: llama.cpp server
|
||||
Background: Server startup
|
||||
Given a server listening on localhost:8080
|
||||
And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models
|
||||
And a model file test-model.gguf
|
||||
And a model alias tinyllama-2
|
||||
And 42 as server seed
|
||||
# KV Cache corresponds to the total amount of tokens
|
||||
@@ -34,9 +35,9 @@ Feature: llama.cpp server
|
||||
And metric llamacpp:tokens_predicted is <n_predicted>
|
||||
|
||||
Examples: Prompts
|
||||
| prompt | n_predict | re_content | n_prompt | n_predicted | truncated |
|
||||
| I believe the meaning of life is | 8 | (read\|going)+ | 18 | 8 | not |
|
||||
| Write a joke about AI from a very long prompt which will not be truncated | 256 | (princesses\|everyone\|kids)+ | 46 | 64 | not |
|
||||
| prompt | n_predict | re_content | n_prompt | n_predicted | truncated |
|
||||
| I believe the meaning of life is | 8 | (read\|going)+ | 18 | 8 | not |
|
||||
| Write a joke about AI from a very long prompt which will not be truncated | 256 | (princesses\|everyone\|kids\|Anna\|forest)+ | 46 | 64 | not |
|
||||
|
||||
Scenario: Completion prompt truncated
|
||||
Given a prompt:
|
||||
@@ -47,7 +48,7 @@ Feature: llama.cpp server
|
||||
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
|
||||
"""
|
||||
And a completion request with no api error
|
||||
Then 64 tokens are predicted matching fun|Annaks|popcorns|pictry
|
||||
Then 64 tokens are predicted matching fun|Annaks|popcorns|pictry|bowl
|
||||
And the completion is truncated
|
||||
And 109 prompt tokens are processed
|
||||
|
||||
@@ -64,9 +65,25 @@ Feature: llama.cpp server
|
||||
And the completion is <truncated> truncated
|
||||
|
||||
Examples: Prompts
|
||||
| model | system_prompt | user_prompt | max_tokens | re_content | n_prompt | n_predicted | enable_streaming | truncated |
|
||||
| llama-2 | Book | What is the best book | 8 | (Here\|what)+ | 77 | 8 | disabled | not |
|
||||
| codellama70b | You are a coding assistant. | Write the fibonacci function in c++. | 128 | (thanks\|happy\|bird)+ | -1 | 64 | enabled | |
|
||||
| model | system_prompt | user_prompt | max_tokens | re_content | n_prompt | n_predicted | enable_streaming | truncated |
|
||||
| llama-2 | Book | What is the best book | 8 | (Here\|what)+ | 77 | 8 | disabled | not |
|
||||
| codellama70b | You are a coding assistant. | Write the fibonacci function in c++. | 128 | (thanks\|happy\|bird\|Annabyear)+ | -1 | 64 | enabled | |
|
||||
|
||||
|
||||
Scenario Outline: OAI Compatibility w/ response format
|
||||
Given a model test
|
||||
And a system prompt test
|
||||
And a user prompt test
|
||||
And a response format <response_format>
|
||||
And 10 max tokens to predict
|
||||
Given an OAI compatible chat completions request with no api error
|
||||
Then <n_predicted> tokens are predicted matching <re_content>
|
||||
|
||||
Examples: Prompts
|
||||
| response_format | n_predicted | re_content |
|
||||
| {"type": "json_object", "schema": {"const": "42"}} | 5 | "42" |
|
||||
| {"type": "json_object", "schema": {"items": [{"type": "integer"}]}} | 10 | \[ -300 \] |
|
||||
| {"type": "json_object"} | 10 | \{ " Jacky. |
|
||||
|
||||
|
||||
Scenario: Tokenize / Detokenize
|
||||
|
||||
@@ -5,6 +5,8 @@ import os
|
||||
import re
|
||||
import socket
|
||||
import subprocess
|
||||
import sys
|
||||
import threading
|
||||
import time
|
||||
from contextlib import closing
|
||||
from re import RegexFlag
|
||||
@@ -14,7 +16,6 @@ import numpy as np
|
||||
import openai
|
||||
from behave import step
|
||||
from behave.api.async_step import async_run_until_complete
|
||||
from huggingface_hub import hf_hub_download
|
||||
from prometheus_client import parser
|
||||
|
||||
|
||||
@@ -22,21 +23,29 @@ from prometheus_client import parser
|
||||
def step_server_config(context, server_fqdn, server_port):
|
||||
context.server_fqdn = server_fqdn
|
||||
context.server_port = int(server_port)
|
||||
context.n_gpu_layer = None
|
||||
if 'PORT' in os.environ:
|
||||
context.server_port = int(os.environ['PORT'])
|
||||
print(f"$PORT set, overriding server port with to {context.server_port}")
|
||||
if 'FQDN' in os.environ:
|
||||
context.server_fqdn = os.environ['FQDN']
|
||||
print(f"$FQDN set, overriding server fqdn with to {context.server_fqdn}")
|
||||
if 'N_GPU_LAYERS' in os.environ:
|
||||
context.n_gpu_layer = int(os.environ['N_GPU_LAYERS'])
|
||||
print(f"$N_GPU_LAYERS set, overriding n_gpu_layer with to {context.n_gpu_layer}")
|
||||
|
||||
context.base_url = f'http://{context.server_fqdn}:{context.server_port}'
|
||||
|
||||
context.model_alias = None
|
||||
context.model_file = None
|
||||
context.model_hf_repo = None
|
||||
context.model_hf_file = None
|
||||
context.model_url = None
|
||||
context.n_batch = None
|
||||
context.n_ubatch = None
|
||||
context.n_ctx = None
|
||||
context.n_ga = None
|
||||
context.n_ga_w = None
|
||||
context.n_gpu_layer = None
|
||||
context.n_predict = None
|
||||
context.n_prompts = 0
|
||||
context.n_server_predict = None
|
||||
@@ -51,6 +60,7 @@ def step_server_config(context, server_fqdn, server_port):
|
||||
context.seed = None
|
||||
context.server_seed = None
|
||||
context.user_api_key = None
|
||||
context.response_format = None
|
||||
|
||||
context.tasks_result = []
|
||||
context.concurrent_tasks = []
|
||||
@@ -59,9 +69,19 @@ def step_server_config(context, server_fqdn, server_port):
|
||||
|
||||
@step('a model file {hf_file} from HF repo {hf_repo}')
|
||||
def step_download_hf_model(context, hf_file, hf_repo):
|
||||
context.model_file = hf_hub_download(repo_id=hf_repo, filename=hf_file)
|
||||
if context.debug:
|
||||
print(f"model file: {context.model_file}\n")
|
||||
context.model_hf_repo = hf_repo
|
||||
context.model_hf_file = hf_file
|
||||
context.model_file = os.path.basename(hf_file)
|
||||
|
||||
|
||||
@step('a model file {model_file}')
|
||||
def step_model_file(context, model_file):
|
||||
context.model_file = model_file
|
||||
|
||||
|
||||
@step('a model url {model_url}')
|
||||
def step_model_url(context, model_url):
|
||||
context.model_url = model_url
|
||||
|
||||
|
||||
@step('a model alias {model_alias}')
|
||||
@@ -118,14 +138,21 @@ def step_server_metrics(context):
|
||||
def step_start_server(context):
|
||||
start_server_background(context)
|
||||
attempts = 0
|
||||
max_attempts = 20
|
||||
if 'GITHUB_ACTIONS' in os.environ:
|
||||
max_attempts *= 2
|
||||
|
||||
addrs = socket.getaddrinfo(context.server_fqdn, context.server_port, type=socket.SOCK_STREAM)
|
||||
family, typ, proto, _, sockaddr = addrs[0]
|
||||
|
||||
while True:
|
||||
with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
|
||||
result = sock.connect_ex((context.server_fqdn, context.server_port))
|
||||
with closing(socket.socket(family, typ, proto)) as sock:
|
||||
result = sock.connect_ex(sockaddr)
|
||||
if result == 0:
|
||||
print("\x1b[33;46mserver started!\x1b[0m")
|
||||
return
|
||||
attempts += 1
|
||||
if attempts > 20:
|
||||
if attempts > max_attempts:
|
||||
assert False, "server not started"
|
||||
print(f"waiting for server to start, connect error code = {result}...")
|
||||
time.sleep(0.1)
|
||||
@@ -136,7 +163,8 @@ def step_start_server(context):
|
||||
async def step_wait_for_the_server_to_be_started(context, expecting_status):
|
||||
match expecting_status:
|
||||
case 'healthy':
|
||||
await wait_for_health_status(context, context.base_url, 200, 'ok')
|
||||
await wait_for_health_status(context, context.base_url, 200, 'ok',
|
||||
timeout=30)
|
||||
|
||||
case 'ready' | 'idle':
|
||||
await wait_for_health_status(context, context.base_url, 200, 'ok',
|
||||
@@ -189,7 +217,7 @@ async def step_request_completion(context, api_error):
|
||||
user_api_key=context.user_api_key)
|
||||
context.tasks_result.append(completion)
|
||||
if context.debug:
|
||||
print(f"Completion response: {completion}\n")
|
||||
print(f"Completion response: {completion}")
|
||||
if expect_api_error:
|
||||
assert completion == 401, f"completion must be an 401 status code: {completion}"
|
||||
|
||||
@@ -243,6 +271,11 @@ def step_max_tokens(context, max_tokens):
|
||||
context.n_predict = max_tokens
|
||||
|
||||
|
||||
@step('a response format {response_format}')
|
||||
def step_response_format(context, response_format):
|
||||
context.response_format = json.loads(response_format)
|
||||
|
||||
|
||||
@step('streaming is {enable_streaming}')
|
||||
def step_streaming(context, enable_streaming):
|
||||
context.enable_streaming = enable_streaming == 'enabled'
|
||||
@@ -278,6 +311,11 @@ def step_n_batch(context, n_batch):
|
||||
context.n_batch = n_batch
|
||||
|
||||
|
||||
@step('{n_ubatch:d} as ubatch size')
|
||||
def step_n_ubatch(context, n_ubatch):
|
||||
context.n_ubatch = n_ubatch
|
||||
|
||||
|
||||
@step('{seed:d} as seed')
|
||||
def step_seed(context, seed):
|
||||
context.seed = seed
|
||||
@@ -329,7 +367,7 @@ def step_prompt_passkey(context, passkey, i_pos):
|
||||
prompt += context.prompt_junk_suffix
|
||||
if context.debug:
|
||||
passkey_highlight = "\x1b[33m" + passkey + "\x1b[0m"
|
||||
print(f"Passkey challenge:\n```{prompt.replace(passkey, passkey_highlight)}```\n")
|
||||
print(f"Passkey challenge:\n```{prompt.replace(passkey, passkey_highlight)}```")
|
||||
context.prompts.append(context.prompt_prefix + prompt + context.prompt_suffix)
|
||||
context.n_prompts = len(context.prompts)
|
||||
|
||||
@@ -338,7 +376,7 @@ def step_prompt_passkey(context, passkey, i_pos):
|
||||
@async_run_until_complete
|
||||
async def step_oai_chat_completions(context, api_error):
|
||||
if context.debug:
|
||||
print(f"Submitting OAI compatible completions request...\n")
|
||||
print(f"Submitting OAI compatible completions request...")
|
||||
expect_api_error = api_error == 'raised'
|
||||
completion = await oai_chat_completions(context.prompts.pop(),
|
||||
context.system_prompt,
|
||||
@@ -353,6 +391,9 @@ async def step_oai_chat_completions(context, api_error):
|
||||
enable_streaming=context.enable_streaming
|
||||
if hasattr(context, 'enable_streaming') else None,
|
||||
|
||||
response_format=context.response_format
|
||||
if hasattr(context, 'response_format') else None,
|
||||
|
||||
seed=await completions_seed(context),
|
||||
|
||||
user_api_key=context.user_api_key
|
||||
@@ -412,6 +453,8 @@ async def step_oai_chat_completions(context):
|
||||
if hasattr(context, 'n_predict') else None,
|
||||
enable_streaming=context.enable_streaming
|
||||
if hasattr(context, 'enable_streaming') else None,
|
||||
response_format=context.response_format
|
||||
if hasattr(context, 'response_format') else None,
|
||||
seed=await completions_seed(context),
|
||||
user_api_key=context.user_api_key
|
||||
if hasattr(context, 'user_api_key') else None)
|
||||
@@ -432,6 +475,8 @@ async def step_oai_chat_completions(context):
|
||||
if hasattr(context, 'n_predict') else None,
|
||||
enable_streaming=context.enable_streaming
|
||||
if hasattr(context, 'enable_streaming') else None,
|
||||
response_format=context.response_format
|
||||
if hasattr(context, 'response_format') else None,
|
||||
seed=context.seed
|
||||
if hasattr(context, 'seed') else
|
||||
context.server_seed
|
||||
@@ -483,12 +528,12 @@ async def step_all_embeddings_are_the_same(context):
|
||||
embedding1 = np.array(embeddings[i])
|
||||
embedding2 = np.array(embeddings[j])
|
||||
if context.debug:
|
||||
print(f"embedding1: {embedding1[-8:]}\n")
|
||||
print(f"embedding2: {embedding2[-8:]}\n")
|
||||
print(f"embedding1: {embedding1[-8:]}")
|
||||
print(f"embedding2: {embedding2[-8:]}")
|
||||
similarity = np.dot(embedding1, embedding2) / (np.linalg.norm(embedding1) * np.linalg.norm(embedding2))
|
||||
msg = f"Similarity between {i} and {j}: {similarity:.10f}"
|
||||
if context.debug:
|
||||
print(f"{msg}\n")
|
||||
print(f"{msg}")
|
||||
assert np.isclose(similarity, 1.0, rtol=1e-05, atol=1e-08, equal_nan=False), msg
|
||||
|
||||
|
||||
@@ -605,7 +650,7 @@ async def step_prometheus_metrics_exported(context):
|
||||
metrics_raw = await metrics_response.text()
|
||||
metric_exported = False
|
||||
if context.debug:
|
||||
print(f"/metrics answer:\n{metrics_raw}\n")
|
||||
print(f"/metrics answer:\n{metrics_raw}")
|
||||
context.metrics = {}
|
||||
for metric in parser.text_string_to_metric_families(metrics_raw):
|
||||
match metric.name:
|
||||
@@ -714,6 +759,7 @@ async def oai_chat_completions(user_prompt,
|
||||
model=None,
|
||||
n_predict=None,
|
||||
enable_streaming=None,
|
||||
response_format=None,
|
||||
seed=None,
|
||||
user_api_key=None,
|
||||
expect_api_error=None):
|
||||
@@ -739,6 +785,8 @@ async def oai_chat_completions(user_prompt,
|
||||
"stream": enable_streaming,
|
||||
"seed": seed
|
||||
}
|
||||
if response_format is not None:
|
||||
payload['response_format'] = response_format
|
||||
completion_response = {
|
||||
'content': '',
|
||||
'timings': {
|
||||
@@ -799,6 +847,7 @@ async def oai_chat_completions(user_prompt,
|
||||
model=model,
|
||||
max_tokens=n_predict,
|
||||
stream=enable_streaming,
|
||||
response_format=payload.get('response_format'),
|
||||
seed=seed
|
||||
)
|
||||
except openai.error.AuthenticationError as e:
|
||||
@@ -907,7 +956,7 @@ def assert_n_tokens_predicted(completion_response, expected_predicted_n=None, re
|
||||
last_match = end
|
||||
highlighted += content[last_match:]
|
||||
if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON':
|
||||
print(f"Checking completion response: {highlighted}\n")
|
||||
print(f"Checking completion response: {highlighted}")
|
||||
assert last_match > 0, f'/{re_content}/ must match ```{highlighted}```'
|
||||
if expected_predicted_n and expected_predicted_n > 0:
|
||||
assert n_predicted == expected_predicted_n, (f'invalid number of tokens predicted:'
|
||||
@@ -917,7 +966,7 @@ def assert_n_tokens_predicted(completion_response, expected_predicted_n=None, re
|
||||
async def gather_tasks_results(context):
|
||||
n_tasks = len(context.concurrent_tasks)
|
||||
if context.debug:
|
||||
print(f"Waiting for all {n_tasks} tasks results...\n")
|
||||
print(f"Waiting for all {n_tasks} tasks results...")
|
||||
for task_no in range(n_tasks):
|
||||
context.tasks_result.append(await context.concurrent_tasks.pop())
|
||||
n_completions = len(context.tasks_result)
|
||||
@@ -934,9 +983,12 @@ async def wait_for_health_status(context,
|
||||
slots_processing=None,
|
||||
expected_slots=None):
|
||||
if context.debug:
|
||||
print(f"Starting checking for health for expected_health_status={expected_health_status}\n")
|
||||
print(f"Starting checking for health for expected_health_status={expected_health_status}")
|
||||
interval = 0.5
|
||||
counter = 0
|
||||
if 'GITHUB_ACTIONS' in os.environ:
|
||||
timeout *= 2
|
||||
|
||||
async with aiohttp.ClientSession() as session:
|
||||
while True:
|
||||
async with await session.get(f'{base_url}/health', params=params) as health_response:
|
||||
@@ -1020,15 +1072,22 @@ def start_server_background(context):
|
||||
if 'LLAMA_SERVER_BIN_PATH' in os.environ:
|
||||
context.server_path = os.environ['LLAMA_SERVER_BIN_PATH']
|
||||
server_listen_addr = context.server_fqdn
|
||||
if os.name == 'nt':
|
||||
server_listen_addr = '0.0.0.0'
|
||||
server_args = [
|
||||
'--host', server_listen_addr,
|
||||
'--port', context.server_port,
|
||||
'--model', context.model_file
|
||||
]
|
||||
if context.model_file:
|
||||
server_args.extend(['--model', context.model_file])
|
||||
if context.model_url:
|
||||
server_args.extend(['--model-url', context.model_url])
|
||||
if context.model_hf_repo:
|
||||
server_args.extend(['--hf-repo', context.model_hf_repo])
|
||||
if context.model_hf_file:
|
||||
server_args.extend(['--hf-file', context.model_hf_file])
|
||||
if context.n_batch:
|
||||
server_args.extend(['--batch-size', context.n_batch])
|
||||
if context.n_ubatch:
|
||||
server_args.extend(['--ubatch-size', context.n_ubatch])
|
||||
if context.n_gpu_layer:
|
||||
server_args.extend(['--n-gpu-layers', context.n_gpu_layer])
|
||||
if context.server_continuous_batching:
|
||||
@@ -1055,7 +1114,7 @@ def start_server_background(context):
|
||||
server_args.append('--verbose')
|
||||
if 'SERVER_LOG_FORMAT_JSON' not in os.environ:
|
||||
server_args.extend(['--log-format', "text"])
|
||||
print(f"starting server with: {context.server_path} {server_args}\n")
|
||||
print(f"starting server with: {context.server_path} {server_args}")
|
||||
flags = 0
|
||||
if 'nt' == os.name:
|
||||
flags |= subprocess.DETACHED_PROCESS
|
||||
@@ -1064,8 +1123,23 @@ def start_server_background(context):
|
||||
|
||||
pkwargs = {
|
||||
'creationflags': flags,
|
||||
'stdout': subprocess.PIPE,
|
||||
'stderr': subprocess.PIPE
|
||||
}
|
||||
context.server_process = subprocess.Popen(
|
||||
[str(arg) for arg in [context.server_path, *server_args]],
|
||||
**pkwargs)
|
||||
|
||||
def log_stdout(process):
|
||||
for line in iter(process.stdout.readline, b''):
|
||||
print(line.decode('utf-8'), end='')
|
||||
thread_stdout = threading.Thread(target=log_stdout, args=(context.server_process,))
|
||||
thread_stdout.start()
|
||||
|
||||
def log_stderr(process):
|
||||
for line in iter(process.stderr.readline, b''):
|
||||
print(line.decode('utf-8'), end='', file=sys.stderr)
|
||||
thread_stderr = threading.Thread(target=log_stderr, args=(context.server_process,))
|
||||
thread_stderr.start()
|
||||
|
||||
print(f"server pid={context.server_process.pid}, behave pid={os.getpid()}")
|
||||
|
||||
@@ -12,7 +12,7 @@
|
||||
|
||||
#define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo-0613"
|
||||
|
||||
using json = nlohmann::json;
|
||||
using json = nlohmann::ordered_json;
|
||||
|
||||
// https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11
|
||||
enum error_type {
|
||||
@@ -95,8 +95,8 @@ static inline void server_log(const char *level, const char *function, int line,
|
||||
|
||||
const std::string str = ss.str();
|
||||
printf("%.*s\n", (int)str.size(), str.data());
|
||||
fflush(stdout);
|
||||
}
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
//
|
||||
@@ -352,39 +352,71 @@ static json oaicompat_completion_params_parse(
|
||||
// https://platform.openai.com/docs/api-reference/chat/create
|
||||
llama_sampling_params default_sparams;
|
||||
llama_params["model"] = json_value(body, "model", std::string("unknown"));
|
||||
llama_params["prompt"] = format_chat(model, chat_template, body["messages"]);
|
||||
llama_params["cache_prompt"] = json_value(body, "cache_prompt", false);
|
||||
llama_params["temperature"] = json_value(body, "temperature", 0.0);
|
||||
llama_params["top_k"] = json_value(body, "top_k", default_sparams.top_k);
|
||||
llama_params["top_p"] = json_value(body, "top_p", 1.0);
|
||||
llama_params["n_predict"] = json_value(body, "max_tokens", -1);
|
||||
llama_params["logit_bias"] = json_value(body, "logit_bias", json::object());
|
||||
llama_params["frequency_penalty"] = json_value(body, "frequency_penalty", 0.0);
|
||||
llama_params["logit_bias"] = json_value(body, "logit_bias", json::object());
|
||||
llama_params["n_predict"] = json_value(body, "max_tokens", -1);
|
||||
llama_params["presence_penalty"] = json_value(body, "presence_penalty", 0.0);
|
||||
llama_params["seed"] = json_value(body, "seed", LLAMA_DEFAULT_SEED);
|
||||
llama_params["stream"] = json_value(body, "stream", false);
|
||||
llama_params["mirostat"] = json_value(body, "mirostat", default_sparams.mirostat);
|
||||
llama_params["mirostat_tau"] = json_value(body, "mirostat_tau", default_sparams.mirostat_tau);
|
||||
llama_params["mirostat_eta"] = json_value(body, "mirostat_eta", default_sparams.mirostat_eta);
|
||||
llama_params["penalize_nl"] = json_value(body, "penalize_nl", default_sparams.penalize_nl);
|
||||
llama_params["typical_p"] = json_value(body, "typical_p", default_sparams.typical_p);
|
||||
llama_params["repeat_last_n"] = json_value(body, "repeat_last_n", default_sparams.penalty_last_n);
|
||||
llama_params["ignore_eos"] = json_value(body, "ignore_eos", false);
|
||||
llama_params["tfs_z"] = json_value(body, "tfs_z", default_sparams.tfs_z);
|
||||
llama_params["temperature"] = json_value(body, "temperature", 0.0);
|
||||
llama_params["top_p"] = json_value(body, "top_p", 1.0);
|
||||
|
||||
if (body.count("grammar") != 0) {
|
||||
llama_params["grammar"] = json_value(body, "grammar", json::object());
|
||||
}
|
||||
// Apply chat template to the list of messages
|
||||
llama_params["prompt"] = format_chat(model, chat_template, body["messages"]);
|
||||
|
||||
// Handle 'stop' field
|
||||
// Handle "stop" field
|
||||
if (body.contains("stop") && body["stop"].is_string()) {
|
||||
llama_params["stop"] = json::array({body["stop"].get<std::string>()});
|
||||
} else {
|
||||
llama_params["stop"] = json_value(body, "stop", json::array());
|
||||
}
|
||||
// Some chat templates don't use EOS token to stop generation
|
||||
// We must add their end sequences to list of stop words
|
||||
llama_params["stop"].push_back("<|im_end|>"); // chatml
|
||||
llama_params["stop"].push_back("<end_of_turn>"); // gemma
|
||||
|
||||
// Ensure there is ChatML-specific end sequence among stop words
|
||||
llama_params["stop"].push_back("<|im_end|>");
|
||||
// Handle "response_format" field
|
||||
if (body.contains("response_format")) {
|
||||
json response_format = json_value(body, "response_format", json::object());
|
||||
std::string response_type = json_value(response_format, "type", std::string());
|
||||
if (response_type == "json_object") {
|
||||
llama_params["json_schema"] = json_value(response_format, "schema", json::object());
|
||||
} else if (!response_type.empty() && response_type != "text") {
|
||||
throw std::runtime_error("response_format type must be one of \"text\" or \"json_object\", but got: " + response_type);
|
||||
}
|
||||
}
|
||||
|
||||
// Handle "n" field
|
||||
int n_choices = json_value(body, "n", 1);
|
||||
if (n_choices != 1) {
|
||||
throw std::runtime_error("Only one completion choice is allowed");
|
||||
}
|
||||
|
||||
// Handle "logprobs" field
|
||||
// TODO: The response format of this option is not yet OAI-compatible, but seems like no one really using it; We may need to fix it in the future
|
||||
if (body.contains("logprobs")) {
|
||||
llama_params["n_probs"] = json_value(body, "top_logprobs", 20);
|
||||
} else if (body.contains("top_logprobs")) {
|
||||
throw std::runtime_error("top_logprobs requires logprobs to be set to true");
|
||||
}
|
||||
|
||||
// Params supported by OAI but unsupported by llama.cpp
|
||||
static const std::vector<std::string> unsupported_params { "tools", "tool_choice" };
|
||||
for (auto & param : unsupported_params) {
|
||||
if (body.contains(param)) {
|
||||
throw std::runtime_error("Unsupported param: " + param);
|
||||
}
|
||||
}
|
||||
|
||||
// Copy remaining properties to llama_params
|
||||
// This allows user to use llama.cpp-specific params like "mirostat", "tfs_z",... via OAI endpoint.
|
||||
// See "launch_slot_with_task()" for a complete list of params supported by llama.cpp
|
||||
for (const auto & item : body.items()) {
|
||||
// Exception: if "n_predict" is present, we overwrite the value specified earlier by "max_tokens"
|
||||
if (!llama_params.contains(item.key()) || item.key() == "n_predict") {
|
||||
llama_params[item.key()] = item.value();
|
||||
}
|
||||
}
|
||||
|
||||
return llama_params;
|
||||
}
|
||||
@@ -529,6 +561,16 @@ static std::vector<json> format_partial_response_oaicompat(json result, const st
|
||||
}
|
||||
|
||||
static json format_embeddings_response_oaicompat(const json & request, const json & embeddings) {
|
||||
json data = json::array();
|
||||
int i = 0;
|
||||
for (auto & elem : embeddings) {
|
||||
data.push_back(json{
|
||||
{"embedding", json_value(elem, "embedding", json::array())},
|
||||
{"index", i++},
|
||||
{"object", "embedding"}
|
||||
});
|
||||
}
|
||||
|
||||
json res = json {
|
||||
{"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
|
||||
{"object", "list"},
|
||||
@@ -536,7 +578,7 @@ static json format_embeddings_response_oaicompat(const json & request, const jso
|
||||
{"prompt_tokens", 0},
|
||||
{"total_tokens", 0}
|
||||
}},
|
||||
{"data", embeddings}
|
||||
{"data", data}
|
||||
};
|
||||
|
||||
return res;
|
||||
|
||||
@@ -219,7 +219,8 @@ int main(int argc, char ** argv) {
|
||||
if (params.sparams.temp > 0) {
|
||||
// stochastic verification
|
||||
|
||||
llama_token_data_array dist_tgt = llama_sampling_probability_distribution(ctx_sampling, ctx_tgt, NULL, drafts[s_keep].i_batch_tgt[i_dft]);
|
||||
llama_token_data_array dist_tgt = llama_sampling_prepare(ctx_sampling, ctx_tgt, NULL, drafts[s_keep].i_batch_tgt[i_dft], true, NULL);
|
||||
llama_sample_softmax(ctx_tgt, &dist_tgt);
|
||||
float p_tgt = 0, p_dft = 0;
|
||||
|
||||
// GGML_ASSERT(dist_tgt.size() == dist_dft.size());
|
||||
|
||||
@@ -13,8 +13,11 @@ source /opt/intel/oneapi/setvars.sh
|
||||
#for FP32
|
||||
cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||
|
||||
#build example/main only
|
||||
#build example/main
|
||||
#cmake --build . --config Release --target main
|
||||
|
||||
#build example/llama-bench
|
||||
#cmake --build . --config Release --target llama-bench
|
||||
|
||||
#build all binary
|
||||
cmake --build . --config Release -v
|
||||
|
||||
@@ -9,18 +9,28 @@ source /opt/intel/oneapi/setvars.sh
|
||||
|
||||
if [ $# -gt 0 ]; then
|
||||
GGML_SYCL_DEVICE=$1
|
||||
GGML_SYCL_SINGLE_GPU=1
|
||||
else
|
||||
GGML_SYCL_DEVICE=0
|
||||
fi
|
||||
echo "use $GGML_SYCL_DEVICE as main GPU"
|
||||
|
||||
#export GGML_SYCL_DEBUG=1
|
||||
|
||||
|
||||
#ZES_ENABLE_SYSMAN=1, Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory. Recommended to use when --split-mode = layer.
|
||||
|
||||
#use all GPUs with same max compute units
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "${INPUT2}" -n 400 -e -ngl 33 -s 0
|
||||
if [ $GGML_SYCL_SINGLE_GPU -eq 1 ]; then
|
||||
echo "use $GGML_SYCL_DEVICE as main GPU"
|
||||
#use signle GPU only
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "${INPUT2}" -n 400 -e -ngl 33 -s 0 -mg $GGML_SYCL_DEVICE -sm none
|
||||
else
|
||||
#use multiple GPUs with same max compute units
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "${INPUT2}" -n 400 -e -ngl 33 -s 0
|
||||
fi
|
||||
|
||||
#use main GPU only
|
||||
#ZES_ENABLE_SYSMAN=1 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "${INPUT2}" -n 400 -e -ngl 33 -s 0 -mg $GGML_SYCL_DEVICE -sm none
|
||||
|
||||
#use multiple GPUs with same max compute units
|
||||
#ZES_ENABLE_SYSMAN=1 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "${INPUT2}" -n 400 -e -ngl 33 -s 0
|
||||
|
||||
|
||||
@@ -3,9 +3,13 @@
|
||||
:: Copyright (C) 2024 Intel Corporation
|
||||
:: SPDX-License-Identifier: MIT
|
||||
|
||||
mkdir -p build
|
||||
|
||||
IF not exist build (mkdir build)
|
||||
cd build
|
||||
if %errorlevel% neq 0 goto ERROR
|
||||
|
||||
@call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force
|
||||
if %errorlevel% neq 0 goto ERROR
|
||||
|
||||
:: for FP16
|
||||
:: faster for long-prompt inference
|
||||
@@ -13,11 +17,18 @@ cd build
|
||||
|
||||
:: for FP32
|
||||
cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release
|
||||
|
||||
|
||||
if %errorlevel% neq 0 goto ERROR
|
||||
:: build example/main only
|
||||
:: make main
|
||||
|
||||
:: build all binary
|
||||
make -j
|
||||
if %errorlevel% neq 0 goto ERROR
|
||||
|
||||
cd ..
|
||||
exit /B 0
|
||||
|
||||
:ERROR
|
||||
echo comomand error: %errorlevel%
|
||||
exit /B %errorlevel%
|
||||
|
||||
|
||||
@@ -6,8 +6,6 @@ set INPUT2="Building a website can be done in 10 simple steps:\nStep 1:"
|
||||
@call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force
|
||||
|
||||
|
||||
set GGML_SYCL_DEVICE=0
|
||||
rem set GGML_SYCL_DEBUG=1
|
||||
.\build\bin\main.exe -m models\llama-2-7b.Q4_0.gguf -p %INPUT2% -n 400 -e -ngl 33 -s 0
|
||||
|
||||
|
||||
|
||||
@@ -711,6 +711,7 @@ static bool load_checkpoint_file(const char * filename, struct my_llama_model *
|
||||
|
||||
load_checkpoint_gguf(fctx, f_ggml_ctx, model, train);
|
||||
|
||||
gguf_free(fctx);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
28
examples/ts-type-to-grammar.sh
Executable file
28
examples/ts-type-to-grammar.sh
Executable file
@@ -0,0 +1,28 @@
|
||||
#!/bin/bash
|
||||
#
|
||||
# ./examples/ts-type-to-grammar.sh "{a:string,b:string,c?:string}"
|
||||
# python examples/json-schema-to-grammar.py https://json.schemastore.org/tsconfig.json
|
||||
#
|
||||
set -euo pipefail
|
||||
|
||||
readonly type="$1"
|
||||
|
||||
# Create a temporary directory
|
||||
TMPDIR=""
|
||||
trap 'rm -fR "$TMPDIR"' EXIT
|
||||
TMPDIR=$(mktemp -d)
|
||||
|
||||
DTS_FILE="$TMPDIR/type.d.ts"
|
||||
SCHEMA_FILE="$TMPDIR/schema.json"
|
||||
|
||||
echo "export type MyType = $type" > "$DTS_FILE"
|
||||
|
||||
# This is a fork of typescript-json-schema, actively maintained as of March 2024:
|
||||
# https://github.com/vega/ts-json-schema-generator
|
||||
npx ts-json-schema-generator --unstable --no-top-ref --path "$DTS_FILE" --type MyType -e none > "$SCHEMA_FILE"
|
||||
|
||||
# Alternative, not actively maintained as of March 2024:
|
||||
# https://github.com/YousefED/typescript-json-schema
|
||||
# npx typescript-json-schema --defaultProps --required "$DTS_FILE" MyType | tee "$SCHEMA_FILE" >&2
|
||||
|
||||
./examples/json-schema-to-grammar.py "$SCHEMA_FILE"
|
||||
6
flake.lock
generated
6
flake.lock
generated
@@ -20,11 +20,11 @@
|
||||
},
|
||||
"nixpkgs": {
|
||||
"locked": {
|
||||
"lastModified": 1709703039,
|
||||
"narHash": "sha256-6hqgQ8OK6gsMu1VtcGKBxKQInRLHtzulDo9Z5jxHEFY=",
|
||||
"lastModified": 1710451336,
|
||||
"narHash": "sha256-pP86Pcfu3BrAvRO7R64x7hs+GaQrjFes+mEPowCfkxY=",
|
||||
"owner": "NixOS",
|
||||
"repo": "nixpkgs",
|
||||
"rev": "9df3e30ce24fd28c7b3e2de0d986769db5d6225d",
|
||||
"rev": "d691274a972b3165335d261cc4671335f5c67de9",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
|
||||
119
ggml-alloc.c
119
ggml-alloc.c
@@ -61,7 +61,6 @@ static bool ggml_op_can_inplace(enum ggml_op op) {
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: GGML_PAD ?
|
||||
static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) {
|
||||
assert(alignment && !(alignment & (alignment - 1))); // power of 2
|
||||
size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment;
|
||||
@@ -69,25 +68,14 @@ static size_t aligned_offset(const void * buffer, size_t offset, size_t alignmen
|
||||
}
|
||||
|
||||
// tallocr
|
||||
struct ggml_tallocr {
|
||||
ggml_backend_buffer_t buffer;
|
||||
void * base;
|
||||
size_t alignment;
|
||||
size_t offset;
|
||||
};
|
||||
|
||||
ggml_tallocr_t ggml_tallocr_new(ggml_backend_buffer_t buffer) {
|
||||
ggml_tallocr_t talloc = malloc(sizeof(struct ggml_tallocr));
|
||||
if (talloc == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
struct ggml_tallocr ggml_tallocr_new(ggml_backend_buffer_t buffer) {
|
||||
void * base = ggml_backend_buffer_get_base(buffer);
|
||||
size_t align = ggml_backend_buffer_get_alignment(buffer);
|
||||
|
||||
assert(align && !(align & (align - 1))); // power of 2
|
||||
|
||||
*talloc = (struct ggml_tallocr) {
|
||||
struct ggml_tallocr talloc = (struct ggml_tallocr) {
|
||||
/*.buffer = */ buffer,
|
||||
/*.base = */ base,
|
||||
/*.alignment = */ align,
|
||||
@@ -96,11 +84,7 @@ ggml_tallocr_t ggml_tallocr_new(ggml_backend_buffer_t buffer) {
|
||||
return talloc;
|
||||
}
|
||||
|
||||
void ggml_tallocr_free(ggml_tallocr_t talloc) {
|
||||
free(talloc);
|
||||
}
|
||||
|
||||
void ggml_tallocr_alloc(ggml_tallocr_t talloc, struct ggml_tensor * tensor) {
|
||||
void ggml_tallocr_alloc(struct ggml_tallocr * talloc, struct ggml_tensor * tensor) {
|
||||
size_t size = ggml_backend_buffer_get_alloc_size(talloc->buffer, tensor);
|
||||
size = GGML_PAD(size, talloc->alignment);
|
||||
|
||||
@@ -354,12 +338,16 @@ struct hash_node {
|
||||
bool allocated;
|
||||
};
|
||||
|
||||
//
|
||||
struct tensor_alloc {
|
||||
size_t offset;
|
||||
size_t size_max; // 0 = pre-allocated, unused, or view
|
||||
};
|
||||
|
||||
struct leaf_alloc {
|
||||
int buffer_id;
|
||||
struct tensor_alloc leaf;
|
||||
};
|
||||
|
||||
struct node_alloc {
|
||||
int buffer_id;
|
||||
struct tensor_alloc dst;
|
||||
@@ -378,7 +366,7 @@ struct ggml_gallocr {
|
||||
struct node_alloc * node_allocs; // [n_nodes]
|
||||
int n_nodes;
|
||||
|
||||
struct tensor_alloc * leaf_allocs; // [n_leafs]
|
||||
struct leaf_alloc * leaf_allocs; // [n_leafs]
|
||||
int n_leafs;
|
||||
};
|
||||
|
||||
@@ -543,17 +531,28 @@ static int get_node_buffer_id(const int * node_buffer_ids, int i) {
|
||||
return node_buffer_ids ? node_buffer_ids[i] : 0;
|
||||
}
|
||||
|
||||
static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids) {
|
||||
static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids, const int * leaf_buffer_ids) {
|
||||
// clear hash tables
|
||||
memset(galloc->hash_set.keys, 0, galloc->hash_set.size * sizeof(struct ggml_tensor *));
|
||||
memset(galloc->hash_values, 0, galloc->hash_set.size * sizeof(struct hash_node));
|
||||
|
||||
// allocate leafs
|
||||
// these may be tensors that the application is not using in the graph, but may still want to allocate for other purposes
|
||||
for (int i = 0; i < graph->n_leafs; i++) {
|
||||
struct ggml_tensor * leaf = graph->leafs[i];
|
||||
ggml_gallocr_allocate_node(galloc, leaf, get_node_buffer_id(leaf_buffer_ids, i));
|
||||
}
|
||||
|
||||
// count number of children and views
|
||||
// allocate all graph inputs and leafs first to avoid overwriting them
|
||||
// allocate other graph inputs and leafs first to avoid overwriting them
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
|
||||
if (ggml_is_view(node)) {
|
||||
// TODO: better way to add external dependencies
|
||||
// GGML_OP_NONE does not appear normally in the graph nodes, but is used by ggml-backend to add dependencies to
|
||||
// control when some tensors are allocated and freed. in this case, the dependencies are in `src`, but the node
|
||||
// itself is never used and should not be considered a dependency
|
||||
if (ggml_is_view(node) && node->op != GGML_OP_NONE) {
|
||||
struct ggml_tensor * view_src = node->view_src;
|
||||
ggml_gallocr_hash_get(galloc, view_src)->n_views += 1;
|
||||
}
|
||||
@@ -570,26 +569,13 @@ static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgr
|
||||
|
||||
ggml_gallocr_hash_get(galloc, src)->n_children += 1;
|
||||
|
||||
// allocate explicit inputs and leafs
|
||||
if (src->flags & GGML_TENSOR_FLAG_INPUT || src->op == GGML_OP_NONE) {
|
||||
// allocate explicit inputs
|
||||
if (src->flags & GGML_TENSOR_FLAG_INPUT) {
|
||||
ggml_gallocr_allocate_node(galloc, src, get_node_buffer_id(node_buffer_ids, i));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// allocate the remaining leafs that are unused on the graph
|
||||
// these are effectively static tensors that the application is not using in the graph, but may still want to allocate for other purposes
|
||||
for (int i = 0; i < graph->n_leafs; i++) {
|
||||
struct ggml_tensor * leaf = graph->leafs[i];
|
||||
struct hash_node * hn = ggml_gallocr_hash_get(galloc, leaf);
|
||||
|
||||
if (hn->n_children == 0) {
|
||||
assert(!hn->allocated);
|
||||
// since buffer ids are only given for nodes, these leafs are always allocated in the first buffer
|
||||
ggml_gallocr_allocate_node(galloc, leaf, 0);
|
||||
}
|
||||
}
|
||||
|
||||
// allocate tensors
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
@@ -652,7 +638,7 @@ static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgr
|
||||
}
|
||||
}
|
||||
|
||||
bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids) {
|
||||
bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids, const int * leaf_buffer_ids) {
|
||||
size_t hash_size = graph->visited_hash_table.size;
|
||||
|
||||
// initialize hash table
|
||||
@@ -676,7 +662,7 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
|
||||
}
|
||||
|
||||
// allocate in hash table
|
||||
ggml_gallocr_alloc_graph_impl(galloc, graph, node_buffer_ids);
|
||||
ggml_gallocr_alloc_graph_impl(galloc, graph, node_buffer_ids, leaf_buffer_ids);
|
||||
|
||||
// set the node_allocs from the hash table
|
||||
if (galloc->n_nodes < graph->n_nodes) {
|
||||
@@ -711,15 +697,16 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
|
||||
}
|
||||
if (galloc->n_leafs < graph->n_leafs) {
|
||||
free(galloc->leaf_allocs);
|
||||
galloc->leaf_allocs = calloc(sizeof(struct tensor_alloc), graph->n_leafs);
|
||||
galloc->leaf_allocs = calloc(sizeof(galloc->leaf_allocs[0]), graph->n_leafs);
|
||||
GGML_ASSERT(galloc->leaf_allocs != NULL);
|
||||
}
|
||||
galloc->n_leafs = graph->n_leafs;
|
||||
for (int i = 0; i < graph->n_leafs; i++) {
|
||||
struct ggml_tensor * leaf = graph->leafs[i];
|
||||
struct hash_node * hn = ggml_gallocr_hash_get(galloc, leaf);
|
||||
galloc->leaf_allocs[i].offset = hn->offset;
|
||||
galloc->leaf_allocs[i].size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], leaf);
|
||||
galloc->leaf_allocs[i].buffer_id = hn->buffer_id;
|
||||
galloc->leaf_allocs[i].leaf.offset = hn->offset;
|
||||
galloc->leaf_allocs[i].leaf.size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], leaf);
|
||||
}
|
||||
|
||||
// reallocate buffers if needed
|
||||
@@ -727,7 +714,8 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
|
||||
size_t cur_size = galloc->buffers[i] ? ggml_backend_buffer_get_size(galloc->buffers[i]) : 0;
|
||||
size_t new_size = ggml_dyn_tallocr_max_size(galloc->buf_tallocs[i]);
|
||||
|
||||
if (new_size > cur_size) {
|
||||
// even if there are no tensors allocated in this buffer, we still need to allocate it to initialize views
|
||||
if (new_size > cur_size || galloc->buffers[i] == NULL) {
|
||||
#ifndef NDEBUG
|
||||
fprintf(stderr, "%s: reallocating %s buffer from size %.02f MiB to %.02f MiB\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), cur_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
|
||||
#endif
|
||||
@@ -744,30 +732,30 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
|
||||
}
|
||||
|
||||
bool ggml_gallocr_reserve(ggml_gallocr_t galloc, struct ggml_cgraph *graph) {
|
||||
return ggml_gallocr_reserve_n(galloc, graph, NULL);
|
||||
return ggml_gallocr_reserve_n(galloc, graph, NULL, NULL);
|
||||
}
|
||||
|
||||
static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id, struct tensor_alloc * tensor_alloc) {
|
||||
assert(node->data || node->view_src || ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], node) <= tensor_alloc->size_max);
|
||||
static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor * tensor, int buffer_id, struct tensor_alloc * tensor_alloc) {
|
||||
assert(tensor->data || tensor->view_src || ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], tensor) <= tensor_alloc->size_max);
|
||||
|
||||
if (node->view_src != NULL) {
|
||||
if (node->buffer == NULL) {
|
||||
if (tensor->view_src != NULL) {
|
||||
if (tensor->buffer == NULL) {
|
||||
assert(tensor_alloc->offset == SIZE_MAX);
|
||||
if (node->view_src->buffer == NULL) {
|
||||
if (tensor->view_src->buffer == NULL) {
|
||||
// this tensor was allocated without ggml-backend
|
||||
return;
|
||||
}
|
||||
ggml_backend_view_init(galloc->buffers[buffer_id], node);
|
||||
ggml_backend_view_init(galloc->buffers[buffer_id], tensor);
|
||||
}
|
||||
} else {
|
||||
if (node->data == NULL) {
|
||||
if (tensor->data == NULL) {
|
||||
assert(tensor_alloc->offset != SIZE_MAX);
|
||||
assert(ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], node) <= tensor_alloc->size_max);
|
||||
assert(ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], tensor) <= tensor_alloc->size_max);
|
||||
void * base = ggml_backend_buffer_get_base(galloc->buffers[buffer_id]);
|
||||
void * addr = (char *)base + tensor_alloc->offset;
|
||||
ggml_backend_tensor_alloc(galloc->buffers[buffer_id], node, addr);
|
||||
ggml_backend_tensor_alloc(galloc->buffers[buffer_id], tensor, addr);
|
||||
} else {
|
||||
if (node->buffer == NULL) {
|
||||
if (tensor->buffer == NULL) {
|
||||
// this tensor was allocated without ggml-backend
|
||||
return;
|
||||
}
|
||||
@@ -843,13 +831,18 @@ bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph * graph)
|
||||
|
||||
// reset buffers
|
||||
for (int i = 0; i < galloc->n_buffers; i++) {
|
||||
// zero size buffers are not allocated
|
||||
if (galloc->buffers[i] != NULL) {
|
||||
ggml_backend_buffer_reset(galloc->buffers[i]);
|
||||
}
|
||||
}
|
||||
|
||||
// allocate the graph tensors from the previous assignments
|
||||
// leafs
|
||||
for (int i = 0; i < graph->n_leafs; i++) {
|
||||
struct ggml_tensor * leaf = graph->leafs[i];
|
||||
struct leaf_alloc * leaf_alloc = &galloc->leaf_allocs[i];
|
||||
ggml_gallocr_init_tensor(galloc, leaf, leaf_alloc->buffer_id, &leaf_alloc->leaf);
|
||||
}
|
||||
// nodes
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
@@ -863,12 +856,6 @@ bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph * graph)
|
||||
}
|
||||
ggml_gallocr_init_tensor(galloc, node, node_alloc->buffer_id, &node_alloc->dst);
|
||||
}
|
||||
// leafs
|
||||
for (int i = 0; i < graph->n_leafs; i++) {
|
||||
struct ggml_tensor * leaf = graph->leafs[i];
|
||||
struct tensor_alloc * leaf_alloc = &galloc->leaf_allocs[i];
|
||||
ggml_gallocr_init_tensor(galloc, leaf, 0, leaf_alloc);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
@@ -900,12 +887,12 @@ static bool alloc_tensor_range(struct ggml_context * ctx,
|
||||
return false;
|
||||
}
|
||||
|
||||
struct ggml_tallocr * tallocr = ggml_tallocr_new(buffer);
|
||||
struct ggml_tallocr tallocr = ggml_tallocr_new(buffer);
|
||||
|
||||
for (struct ggml_tensor * t = first; t != last; t = ggml_get_next_tensor(ctx, t)) {
|
||||
if (t->data == NULL) {
|
||||
if (t->view_src == NULL) {
|
||||
ggml_tallocr_alloc(tallocr, t);
|
||||
ggml_tallocr_alloc(&tallocr, t);
|
||||
} else if (t->buffer == NULL) {
|
||||
ggml_backend_view_init(buffer, t);
|
||||
}
|
||||
@@ -917,8 +904,6 @@ static bool alloc_tensor_range(struct ggml_context * ctx,
|
||||
}
|
||||
}
|
||||
|
||||
ggml_tallocr_free(tallocr);
|
||||
|
||||
*buffers = realloc(*buffers, sizeof(ggml_backend_buffer_t) * (*n_buffers + 1));
|
||||
(*buffers)[(*n_buffers)++] = buffer;
|
||||
|
||||
|
||||
18
ggml-alloc.h
18
ggml-alloc.h
@@ -11,11 +11,15 @@ typedef struct ggml_backend_buffer * ggml_backend_buffer_t;
|
||||
typedef struct ggml_backend * ggml_backend_t;
|
||||
|
||||
// Tensor allocator
|
||||
typedef struct ggml_tallocr * ggml_tallocr_t;
|
||||
struct ggml_tallocr {
|
||||
ggml_backend_buffer_t buffer;
|
||||
void * base;
|
||||
size_t alignment;
|
||||
size_t offset;
|
||||
};
|
||||
|
||||
GGML_API ggml_tallocr_t ggml_tallocr_new(ggml_backend_buffer_t buffer);
|
||||
GGML_API void ggml_tallocr_free(ggml_tallocr_t talloc);
|
||||
GGML_API void ggml_tallocr_alloc(ggml_tallocr_t talloc, struct ggml_tensor * tensor);
|
||||
GGML_API struct ggml_tallocr ggml_tallocr_new(ggml_backend_buffer_t buffer);
|
||||
GGML_API void ggml_tallocr_alloc(struct ggml_tallocr * talloc, struct ggml_tensor * tensor);
|
||||
|
||||
// Graph allocator
|
||||
/*
|
||||
@@ -50,7 +54,11 @@ GGML_API void ggml_gallocr_free(ggml_gallocr_t galloc);
|
||||
// not strictly required for single buffer usage: ggml_gallocr_alloc_graph will reallocate the buffers automatically if needed
|
||||
// returns false if the buffer allocation failed
|
||||
GGML_API bool ggml_gallocr_reserve(ggml_gallocr_t galloc, struct ggml_cgraph * graph);
|
||||
GGML_API bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids);
|
||||
GGML_API bool ggml_gallocr_reserve_n(
|
||||
ggml_gallocr_t galloc,
|
||||
struct ggml_cgraph * graph,
|
||||
const int * node_buffer_ids,
|
||||
const int * leaf_buffer_ids);
|
||||
|
||||
// automatic reallocation if the topology changes when using a single buffer
|
||||
// returns false if using multiple buffers and a re-allocation is needed (call ggml_gallocr_reserve_n first to set the node buffers)
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user