Compare commits

..

8 Commits

Author SHA1 Message Date
Georgi Gerganov
9862d59c05 llama : change starcoder2 rope type 2024-03-01 15:10:31 +02:00
Sourab Mangrulkar
b67b8f6451 handle rope-theta 2024-03-01 15:29:36 +05:30
Sourab Mangrulkar
fdd886f7b4 remove redundant changes 2024-03-01 15:14:26 +05:30
Sourab Mangrulkar
5c06625f58 Update llama.cpp 2024-03-01 12:35:18 +05:30
Sourab Mangrulkar
10aa6e927e resolve comments 2024-03-01 11:09:35 +05:30
Sourab Mangrulkar
d62ce1c6b4 skip rope freq and rotary embeddings from being serialized 2024-02-29 19:32:04 +05:30
Sourab Mangrulkar
6c108068b1 handle rope type 2024-02-29 17:56:32 +05:30
Sourab Mangrulkar
ab4eab3a82 Add support for starcoder2 2024-02-29 17:31:25 +05:30
123 changed files with 57713 additions and 61426 deletions

View File

@@ -1,6 +1,5 @@
{
lib,
glibc,
config,
stdenv,
mkShell,
@@ -31,11 +30,6 @@
useRocm ? config.rocmSupport,
useVulkan ? false,
llamaVersion ? "0.0.0", # Arbitrary version, substituted by the flake
# It's necessary to consistently use backendStdenv when building with CUDA support,
# otherwise we get libstdc++ errors downstream.
effectiveStdenv ? if useCuda then cudaPackages.backendStdenv else stdenv,
enableStatic ? effectiveStdenv.hostPlatform.isStatic
}@inputs:
let
@@ -47,7 +41,10 @@ let
versionOlder
;
# It's necessary to consistently use backendStdenv when building with CUDA support,
# otherwise we get libstdc++ errors downstream.
stdenv = throw "Use effectiveStdenv instead";
effectiveStdenv = if useCuda then cudaPackages.backendStdenv else inputs.stdenv;
suffices =
lib.optionals useBlas [ "BLAS" ]
@@ -170,9 +167,6 @@ effectiveStdenv.mkDerivation (
# TODO: Replace with autoAddDriverRunpath
# once https://github.com/NixOS/nixpkgs/pull/275241 has been merged
cudaPackages.autoAddOpenGLRunpathHook
]
++ optionals (effectiveStdenv.hostPlatform.isGnu && enableStatic) [
glibc.static
];
buildInputs =
@@ -187,7 +181,7 @@ effectiveStdenv.mkDerivation (
[
(cmakeBool "LLAMA_NATIVE" false)
(cmakeBool "LLAMA_BUILD_SERVER" true)
(cmakeBool "BUILD_SHARED_LIBS" (!enableStatic))
(cmakeBool "BUILD_SHARED_LIBS" true)
(cmakeBool "CMAKE_SKIP_BUILD_RPATH" true)
(cmakeBool "LLAMA_BLAS" useBlas)
(cmakeBool "LLAMA_CLBLAST" useOpenCL)
@@ -196,7 +190,6 @@ effectiveStdenv.mkDerivation (
(cmakeBool "LLAMA_METAL" useMetalKit)
(cmakeBool "LLAMA_MPI" useMpi)
(cmakeBool "LLAMA_VULKAN" useVulkan)
(cmakeBool "LLAMA_STATIC" enableStatic)
]
++ optionals useCuda [
(

View File

@@ -7,7 +7,7 @@
}:
let
optionalInt = cond: x: if cond then x else 0;
optionalInt = cond: x: if cond then x else 0;
in
singularity-tools.buildImage rec {
inherit (llama-cpp) name;

View File

@@ -145,28 +145,6 @@ jobs:
cd build
ctest -L main --verbose
ubuntu-22-cmake-vulkan:
runs-on: ubuntu-22.04
steps:
- name: Clone
id: checkout
uses: actions/checkout@v3
- name: Dependencies
id: depends
run: |
sudo apt-get update
sudo apt-get install build-essential libvulkan-dev
- name: Build
id: cmake_build
run: |
mkdir build
cd build
cmake -DLLAMA_VULKAN=ON ..
cmake --build . --config Release -j $(nproc)
ubuntu-22-cmake-sycl:
runs-on: ubuntu-22.04
@@ -333,7 +311,6 @@ jobs:
mkdir build
cd build
cmake -G Xcode .. \
-DLLAMA_METAL_EMBED_LIBRARY=ON \
-DLLAMA_BUILD_EXAMPLES=OFF \
-DLLAMA_BUILD_TESTS=OFF \
-DLLAMA_BUILD_SERVER=OFF \
@@ -362,7 +339,6 @@ jobs:
mkdir build
cd build
cmake -G Xcode .. \
-DLLAMA_METAL_EMBED_LIBRARY=ON \
-DLLAMA_BUILD_EXAMPLES=OFF \
-DLLAMA_BUILD_TESTS=OFF \
-DLLAMA_BUILD_SERVER=OFF \
@@ -427,8 +403,6 @@ jobs:
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_KOMPUTE=ON -DKOMPUTE_OPT_DISABLE_VULKAN_VERSION_CHECK=ON -DBUILD_SHARED_LIBS=ON'
- build: 'vulkan'
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_VULKAN=ON -DBUILD_SHARED_LIBS=ON'
- build: 'arm64'
defines: '-A ARM64 -DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DBUILD_SHARED_LIBS=ON'
steps:
- name: Clone
@@ -524,7 +498,7 @@ jobs:
- name: Test
id: cmake_test
# not all machines have native AVX-512
if: ${{ matrix.build != 'arm64' && matrix.build != 'clblast' && matrix.build != 'kompute' && matrix.build != 'vulkan' && (matrix.build != 'avx512' || env.HAS_AVX512F == '1') }}
if: ${{ matrix.build != 'clblast' && matrix.build != 'kompute' && matrix.build != 'vulkan' && (matrix.build != 'avx512' || env.HAS_AVX512F == '1') }}
run: |
cd build
ctest -L main -C Release --verbose --timeout 900

View File

@@ -1,22 +0,0 @@
name: Close inactive issues
on:
schedule:
- cron: "42 0 * * *"
jobs:
close-issues:
runs-on: ubuntu-latest
permissions:
issues: write
pull-requests: write
steps:
- uses: actions/stale@v5
with:
days-before-issue-stale: 30
days-before-issue-close: 14
stale-issue-label: "stale"
stale-issue-message: "This issue is stale because it has been open for 30 days with no activity."
close-issue-message: "This issue was closed because it has been inactive for 14 days since being marked as stale."
days-before-pr-stale: -1
days-before-pr-close: -1
repo-token: ${{ secrets.GITHUB_TOKEN }}

View File

@@ -3,14 +3,12 @@ name: Python check requirements.txt
on:
push:
paths:
- '.github/workflows/python-check-requirements.yml'
- 'scripts/check-requirements.sh'
- 'convert*.py'
- 'requirements.txt'
- 'requirements/*.txt'
pull_request:
paths:
- '.github/workflows/python-check-requirements.yml'
- 'scripts/check-requirements.sh'
- 'convert*.py'
- 'requirements.txt'
@@ -28,4 +26,4 @@ jobs:
with:
python-version: "3.11"
- name: Run check-requirements.sh script
run: bash scripts/check-requirements.sh
run: bash scripts/check-requirements.sh nocleanup

View File

@@ -3,11 +3,6 @@ name: Server
on:
workflow_dispatch: # allows manual triggering
inputs:
slow_tests:
description: 'Run slow tests'
required: true
type: boolean
push:
branches:
- master
@@ -15,8 +10,6 @@ on:
pull_request:
types: [opened, synchronize, reopened]
paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/tests/**.*']
schedule:
- cron: '0 0 * * *'
jobs:
server:
@@ -25,14 +18,17 @@ jobs:
strategy:
matrix:
sanitizer: [ADDRESS, THREAD, UNDEFINED]
build_type: [Debug]
build_type: [Debug, Release]
include:
- build_type: Release
sanitizer: ""
- build_type: Debug
exclude:
- build_type: Release
sanitizer: ADDRESS
- build_type: Release
sanitizer: THREAD
disabled_on_pr: true
fail-fast: false # While -DLLAMA_SANITIZE_THREAD=ON is broken
- build_type: Release
sanitizer: UNDEFINED
container:
image: ubuntu:latest
@@ -44,8 +40,6 @@ jobs:
- name: Clone
id: checkout
uses: actions/checkout@v3
with:
fetch-depth: 0
- name: Dependencies
id: depends
@@ -57,7 +51,7 @@ jobs:
cmake \
python3-pip \
wget \
language-pack-en
psmisc
- name: Build
id: cmake_build
@@ -76,60 +70,14 @@ jobs:
run: |
pip install -r examples/server/tests/requirements.txt
- name: Download models
id: download_models
run: |
cd examples/server/tests
../../../scripts/hf.sh --repo ggml-org/models --file tinyllamas/stories260K.gguf
- name: Tests
id: server_integration_tests
if: ${{ !matrix.disabled_on_pr || !github.event.pull_request }}
id: server_integration_test
run: |
cd examples/server/tests
PORT=8888 ./tests.sh
- name: Slow tests
id: server_integration_tests_slow
if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }}
run: |
cd examples/server/tests
PORT=8888 ./tests.sh --stop --no-skipped --no-capture --tags slow
server-windows:
runs-on: windows-latest
steps:
- name: Clone
id: checkout
uses: actions/checkout@v3
with:
fetch-depth: 0
- name: Build
id: cmake_build
run: |
mkdir build
cd build
cmake .. -DLLAMA_BUILD_SERVER=ON -DCMAKE_BUILD_TYPE=Release ;
cmake --build . --config Release -j ${env:NUMBER_OF_PROCESSORS} --target server
- name: Python setup
id: setup_python
uses: actions/setup-python@v5
with:
python-version: '3.11'
- name: Tests dependencies
id: test_dependencies
run: |
pip install -r examples/server/tests/requirements.txt
- name: Tests
id: server_integration_tests
if: ${{ !matrix.disabled_on_pr || !github.event.pull_request }}
run: |
cd examples/server/tests
behave.exe --summary --stop --no-capture --exclude 'issues|wrong_usages|passkey' --tags llama.cpp
- name: Slow tests
id: server_integration_tests_slow
if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }}
run: |
cd examples/server/tests
behave.exe --stop --no-skipped --no-capture --tags slow

20
.github/workflows/tidy-post.yml vendored Normal file
View File

@@ -0,0 +1,20 @@
name: clang-tidy review post comments
on:
workflow_dispatch:
workflows: ["clang-tidy-review"]
types:
- completed
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: ZedThree/clang-tidy-review/post@v0.13.0
# lgtm_comment_body, max_comments, and annotations need to be set on the posting workflow in a split setup
with:
# adjust options as necessary
lgtm_comment_body: ''
annotations: false
max_comments: 25

23
.github/workflows/tidy-review.yml vendored Normal file
View File

@@ -0,0 +1,23 @@
name: clang-tidy-review
on:
pull_request:
branches:
- master
jobs:
clang-tidy-review:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- uses: ZedThree/clang-tidy-review@v0.13.0
id: review
with:
lgtm_comment_body: ''
build_dir: build
cmake_command: cmake . -B build -DCMAKE_EXPORT_COMPILE_COMMANDS=on
split_workflow: true
- uses: ZedThree/clang-tidy-review/upload@v0.13.0

3
.gitignore vendored
View File

@@ -25,8 +25,6 @@
.vscode/
.idea/
ggml-metal-embed.metal
lcov-report/
gcovr-report/
@@ -47,7 +45,6 @@ models-mnt
/embedding
/gguf
/gguf-llama-simple
/gritlm
/imatrix
/infill
/libllama.so

View File

@@ -116,9 +116,7 @@ option(LLAMA_MPI "llama: use MPI"
option(LLAMA_QKK_64 "llama: use super-block size of 64 for k-quants" OFF)
option(LLAMA_SYCL "llama: use SYCL" OFF)
option(LLAMA_SYCL_F16 "llama: use 16 bit floats for sycl calculations" OFF)
set(LLAMA_SYCL_TARGET "INTEL" CACHE STRING "llama: sycl target device")
option(LLAMA_CPU_HBM "llama: use memkind for CPU HBM" OFF)
set(LLAMA_SCHED_MAX_COPIES "4" CACHE STRING "llama: max input copies for pipeline parallelism")
option(LLAMA_BUILD_TESTS "llama: build tests" ${LLAMA_STANDALONE})
option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
@@ -148,8 +146,6 @@ set(THREADS_PREFER_PTHREAD_FLAG ON)
find_package(Threads REQUIRED)
include(CheckCXXCompilerFlag)
add_compile_definitions(GGML_SCHED_MAX_COPIES=${LLAMA_SCHED_MAX_COPIES})
# enable libstdc++ assertions for debug builds
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
add_compile_definitions($<$<CONFIG:Debug>:_GLIBCXX_ASSERTIONS>)
@@ -200,70 +196,63 @@ if (LLAMA_METAL)
add_compile_definitions(GGML_METAL_NDEBUG)
endif()
# copy ggml-common.h and ggml-metal.metal to bin directory
configure_file(ggml-common.h ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-common.h COPYONLY)
# get full path to the file
#add_compile_definitions(GGML_METAL_DIR_KERNELS="${CMAKE_CURRENT_SOURCE_DIR}/")
# copy ggml-metal.metal to bin directory
configure_file(ggml-metal.metal ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.metal COPYONLY)
if (LLAMA_METAL_EMBED_LIBRARY)
enable_language(ASM)
add_compile_definitions(GGML_METAL_EMBED_LIBRARY)
set(METALLIB_COMMON "${CMAKE_CURRENT_SOURCE_DIR}/ggml-common.h")
set(METALLIB_SOURCE "${CMAKE_CURRENT_SOURCE_DIR}/ggml-metal.metal")
set(METALLIB_SOURCE "${CMAKE_SOURCE_DIR}/ggml-metal.metal")
file(MAKE_DIRECTORY "${CMAKE_BINARY_DIR}/autogenerated")
# merge ggml-common.h and ggml-metal.metal into a single file
set(METALLIB_EMBED_ASM "${CMAKE_BINARY_DIR}/autogenerated/ggml-metal-embed.s")
set(METALLIB_SOURCE_EMBED "${CMAKE_BINARY_DIR}/autogenerated/ggml-metal-embed.metal")
set(EMBED_METALLIB_ASSEMBLY "${CMAKE_BINARY_DIR}/autogenerated/ggml-embed-metallib.s")
add_custom_command(
OUTPUT ${METALLIB_EMBED_ASM}
COMMAND echo "Embedding Metal library"
COMMAND sed -e '/\#include \"ggml-common.h\"/r ${METALLIB_COMMON}' -e '/\#include \"ggml-common.h\"/d' < ${METALLIB_SOURCE} > ${METALLIB_SOURCE_EMBED}
COMMAND echo ".section __DATA,__ggml_metallib" > ${METALLIB_EMBED_ASM}
COMMAND echo ".globl _ggml_metallib_start" >> ${METALLIB_EMBED_ASM}
COMMAND echo "_ggml_metallib_start:" >> ${METALLIB_EMBED_ASM}
COMMAND echo ".incbin \\\"${METALLIB_SOURCE_EMBED}\\\"" >> ${METALLIB_EMBED_ASM}
COMMAND echo ".globl _ggml_metallib_end" >> ${METALLIB_EMBED_ASM}
COMMAND echo "_ggml_metallib_end:" >> ${METALLIB_EMBED_ASM}
DEPENDS ggml-metal.metal ggml-common.h
OUTPUT ${EMBED_METALLIB_ASSEMBLY}
COMMAND echo ".section __DATA,__ggml_metallib" > ${EMBED_METALLIB_ASSEMBLY}
COMMAND echo ".globl _ggml_metallib_start" >> ${EMBED_METALLIB_ASSEMBLY}
COMMAND echo "_ggml_metallib_start:" >> ${EMBED_METALLIB_ASSEMBLY}
COMMAND echo ".incbin \\\"${METALLIB_SOURCE}\\\"" >> ${EMBED_METALLIB_ASSEMBLY}
COMMAND echo ".globl _ggml_metallib_end" >> ${EMBED_METALLIB_ASSEMBLY}
COMMAND echo "_ggml_metallib_end:" >> ${EMBED_METALLIB_ASSEMBLY}
DEPENDS ${METALLIB_SOURCE}
COMMENT "Generate assembly for embedded Metal library"
)
set(GGML_SOURCES_METAL ${GGML_SOURCES_METAL} ${METALLIB_EMBED_ASM})
else()
if (LLAMA_METAL_SHADER_DEBUG)
# custom command to do the following:
# xcrun -sdk macosx metal -fno-fast-math -c ggml-metal.metal -o ggml-metal.air
# xcrun -sdk macosx metallib ggml-metal.air -o default.metallib
#
# note: this is the only way I found to disable fast-math in Metal. it's ugly, but at least it works
# disabling fast math is needed in order to pass tests/test-backend-ops
# note: adding -fno-inline fixes the tests when using MTL_SHADER_VALIDATION=1
# note: unfortunately, we have to call it default.metallib instead of ggml.metallib
# ref: https://github.com/ggerganov/whisper.cpp/issues/1720
set(XC_FLAGS -fno-fast-math -fno-inline -g)
else()
set(XC_FLAGS -O3)
set(GGML_SOURCES_METAL ${GGML_SOURCES_METAL} ${EMBED_METALLIB_ASSEMBLY})
endif()
if (LLAMA_METAL_SHADER_DEBUG)
# custom command to do the following:
# xcrun -sdk macosx metal -fno-fast-math -c ggml-metal.metal -o ggml-metal.air
# xcrun -sdk macosx metallib ggml-metal.air -o default.metallib
#
# note: this is the only way I found to disable fast-math in Metal. it's ugly, but at least it works
# disabling fast math is needed in order to pass tests/test-backend-ops
# note: adding -fno-inline fixes the tests when using MTL_SHADER_VALIDATION=1
# note: unfortunately, we have to call it default.metallib instead of ggml.metallib
# ref: https://github.com/ggerganov/whisper.cpp/issues/1720
set(XC_FLAGS -fno-fast-math -fno-inline -g)
if (LLAMA_QKK_64)
set(XC_FLAGS ${XC_FLAGS} -DQK_K=64)
endif()
add_custom_command(
OUTPUT ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/default.metallib
COMMAND xcrun -sdk macosx metal ${XC_FLAGS} -c ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.metal -o ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.air
COMMAND xcrun -sdk macosx metallib ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.air -o ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/default.metallib
COMMAND rm -f ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.air
COMMAND rm -f ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-common.h
COMMAND rm -f ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.metal
DEPENDS ggml-metal.metal ggml-common.h
DEPENDS ggml-metal.metal
COMMENT "Compiling Metal kernels"
)
)
add_custom_target(
ggml-metal ALL
DEPENDS ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/default.metallib
)
endif() # LLAMA_METAL_EMBED_LIBRARY
)
endif()
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS}
${FOUNDATION_LIBRARY}
@@ -544,10 +533,6 @@ if (LLAMA_HIPBLAS)
endif()
if (LLAMA_SYCL)
if (NOT LLAMA_SYCL_TARGET MATCHES "^(INTEL|NVIDIA)$")
message(FATAL_ERROR "Invalid backend chosen, supported options are INTEL or NVIDIA")
endif()
if ( NOT DEFINED ENV{ONEAPI_ROOT})
message(FATAL_ERROR "Not detect ENV {ONEAPI_ROOT}, please install oneAPI & source it, like: source /opt/intel/oneapi/setvars.sh")
endif()
@@ -569,9 +554,6 @@ if (LLAMA_SYCL)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-narrowing")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O3")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl -L${MKLROOT}/lib")
if (LLAMA_SYCL_TARGET STREQUAL "NVIDIA")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl-targets=nvptx64-nvidia-cuda")
endif()
set(GGML_HEADERS_SYCL ggml-sycl.h)
set(GGML_SOURCES_SYCL ggml-sycl.cpp)
@@ -579,11 +561,7 @@ if (LLAMA_SYCL)
if (WIN32)
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} -fsycl sycl7 OpenCL mkl_sycl_blas_dll.lib mkl_intel_ilp64_dll.lib mkl_sequential_dll.lib mkl_core_dll.lib)
else()
if (LLAMA_SYCL_TARGET STREQUAL "INTEL")
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} -fsycl OpenCL mkl_core pthread m dl mkl_sycl_blas mkl_intel_ilp64 mkl_tbb_thread)
elseif (LLAMA_SYCL_TARGET STREQUAL "NVIDIA")
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} -fsycl pthread m dl onemkl)
endif()
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} -fsycl OpenCL mkl_core pthread m dl mkl_sycl_blas mkl_intel_ilp64 mkl_tbb_thread)
endif()
endif()
@@ -1150,8 +1128,6 @@ endif()
add_library(llama
llama.cpp
llama.h
unicode.h
unicode.cpp
)
target_include_directories(llama PUBLIC .)

View File

@@ -2,7 +2,7 @@
BUILD_TARGETS = \
main quantize quantize-stats perplexity imatrix embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml \
simple batched batched-bench save-load-state server gguf llama-bench libllava.a llava-cli baby-llama beam-search \
speculative infill tokenize benchmark-matmult parallel finetune export-lora lookahead lookup passkey gritlm tests/test-c.o
speculative infill tokenize benchmark-matmult parallel finetune export-lora lookahead lookup passkey tests/test-c.o
# Binaries only useful for tests
TEST_TARGETS = \
@@ -167,10 +167,6 @@ ifeq ($(UNAME_S),OpenBSD)
MK_CPPFLAGS += -D_BSD_SOURCE
endif
ifdef LLAMA_SCHED_MAX_COPIES
MK_CPPFLAGS += -DGGML_SCHED_MAX_COPIES=$(LLAMA_SCHED_MAX_COPIES)
endif
ifdef LLAMA_DEBUG
MK_CFLAGS += -O0 -g
MK_CXXFLAGS += -O0 -g
@@ -205,10 +201,6 @@ ifdef LLAMA_SERVER_VERBOSE
MK_CPPFLAGS += -DSERVER_VERBOSE=$(LLAMA_SERVER_VERBOSE)
endif
ifdef LLAMA_SERVER_SSL
MK_CPPFLAGS += -DCPPHTTPLIB_OPENSSL_SUPPORT
MK_LDFLAGS += -lssl -lcrypto
endif
ifdef LLAMA_CODE_COVERAGE
MK_CXXFLAGS += -fprofile-arcs -ftest-coverage -dumpbase ''
@@ -457,7 +449,7 @@ endif # LLAMA_CUDA_PEER_MAX_BATCH_SIZE
ifdef LLAMA_CUDA_CCBIN
MK_NVCCFLAGS += -ccbin $(LLAMA_CUDA_CCBIN)
endif
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h ggml-common.h
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
ifdef JETSON_EOL_MODULE_DETECT
$(NVCC) -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/usr/local/cuda/targets/aarch64-linux/include -std=c++11 -O3 $(NVCCFLAGS) $(CPPFLAGS) -Xcompiler "$(CUDA_CXXFLAGS)" -c $< -o $@
else
@@ -553,20 +545,19 @@ endif
endif # LLAMA_METAL
ifdef LLAMA_METAL
ggml-metal.o: ggml-metal.m ggml-metal.h ggml.h
ggml-metal.o: ggml-metal.m ggml-metal.h
$(CC) $(CFLAGS) -c $< -o $@
ifdef LLAMA_METAL_EMBED_LIBRARY
ggml-metal-embed.o: ggml-metal.metal ggml-common.h
ggml-metal-embed.o: ggml-metal.metal
@echo "Embedding Metal library"
@sed -e '/#include "ggml-common.h"/r ggml-common.h' -e '/#include "ggml-common.h"/d' < ggml-metal.metal > ggml-metal-embed.metal
$(eval TEMP_ASSEMBLY=$(shell mktemp))
@echo ".section __DATA, __ggml_metallib" > $(TEMP_ASSEMBLY)
@echo ".globl _ggml_metallib_start" >> $(TEMP_ASSEMBLY)
@echo "_ggml_metallib_start:" >> $(TEMP_ASSEMBLY)
@echo ".incbin \"ggml-metal-embed.metal\"" >> $(TEMP_ASSEMBLY)
@echo ".globl _ggml_metallib_end" >> $(TEMP_ASSEMBLY)
@echo "_ggml_metallib_end:" >> $(TEMP_ASSEMBLY)
@echo ".section __DATA, __ggml_metallib" > $(TEMP_ASSEMBLY)
@echo ".globl _ggml_metallib_start" >> $(TEMP_ASSEMBLY)
@echo "_ggml_metallib_start:" >> $(TEMP_ASSEMBLY)
@echo ".incbin \"$<\"" >> $(TEMP_ASSEMBLY)
@echo ".globl _ggml_metallib_end" >> $(TEMP_ASSEMBLY)
@echo "_ggml_metallib_end:" >> $(TEMP_ASSEMBLY)
@$(AS) $(TEMP_ASSEMBLY) -o $@
@rm -f ${TEMP_ASSEMBLY}
endif
@@ -635,15 +626,12 @@ ggml-alloc.o: ggml-alloc.c ggml.h ggml-alloc.h
ggml-backend.o: ggml-backend.c ggml.h ggml-backend.h
$(CC) $(CFLAGS) -c $< -o $@
ggml-quants.o: ggml-quants.c ggml.h ggml-quants.h ggml-common.h
ggml-quants.o: ggml-quants.c ggml.h ggml-quants.h
$(CC) $(CFLAGS) -c $< -o $@
unicode.o: unicode.cpp unicode.h
$(CXX) $(CXXFLAGS) -c $< -o $@
OBJS += ggml-alloc.o ggml-backend.o ggml-quants.o
OBJS += ggml-alloc.o ggml-backend.o ggml-quants.o unicode.o
llama.o: llama.cpp unicode.h ggml.h ggml-alloc.h ggml-backend.h ggml-cuda.h ggml-metal.h llama.h
llama.o: llama.cpp ggml.h ggml-alloc.h ggml-backend.h ggml-cuda.h ggml-metal.h llama.h
$(CXX) $(CXXFLAGS) -c $< -o $@
COMMON_H_DEPS = common/common.h common/sampling.h common/log.h
@@ -732,17 +720,14 @@ embedding: examples/embedding/embedding.cpp ggml.o llama.o $(C
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
gritlm: examples/gritlm/gritlm.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
save-load-state: examples/save-load-state/save-load-state.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
server: examples/server/server.cpp examples/server/utils.hpp examples/server/httplib.h examples/server/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp common/stb_image.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
server: examples/server/server.cpp examples/server/oai.hpp examples/server/utils.hpp examples/server/httplib.h examples/server/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp examples/llava/clip.cpp examples/llava/clip.h examples/llava/llava.h examples/llava/llava.cpp common/stb_image.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h %.hpp $<,$^) -Iexamples/server $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(LWINSOCK2)
$(CXX) $(CXXFLAGS) -c examples/llava/clip.cpp -o $(call GET_OBJ_FILE, examples/llava/clip.cpp) -Wno-cast-qual
$(CXX) $(CXXFLAGS) -Iexamples/server $(filter-out %.h %.hpp $< examples/llava/clip.cpp,$^) $(call GET_OBJ_FILE, $<) $(call GET_OBJ_FILE, examples/llava/clip.cpp) -o $@ $(LDFLAGS) $(LWINSOCK2)
gguf: examples/gguf/gguf.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)

View File

@@ -31,7 +31,6 @@ let package = Package(
sources: [
"ggml.c",
"llama.cpp",
"unicode.cpp",
"ggml-alloc.c",
"ggml-backend.c",
"ggml-quants.c",

View File

@@ -1,7 +1,6 @@
# llama.cpp for SYCL
- [Background](#background)
- [News](#news)
- [OS](#os)
- [Intel GPU](#intel-gpu)
- [Docker](#docker)
@@ -26,21 +25,6 @@ The llama.cpp for SYCL is used to support Intel GPUs.
For Intel CPU, recommend to use llama.cpp for X86 (Intel MKL building).
## News
- 2024.3
- Support multiple cards: **--split-mode**: [none|layer]; not support [row], it's on developing.
- Support to assign main GPU by **--main-gpu**, replace $GGML_SYCL_DEVICE.
- Support detecting all GPUs with level-zero and same top **Max compute units**.
- Support OPs
- hardsigmoid
- hardswish
- pool2d
- 2024.1
- Create SYCL backend for Intel GPU.
- Support Windows build
## OS
|OS|Status|Verified|
@@ -73,29 +57,6 @@ For iGPU, please make sure the shared memory from host memory is enough. For lla
For dGPU, please make sure the device memory is enough. For llama-2-7b.Q4_0, recommend the device memory is 4GB+.
## Nvidia GPU
### Verified
|Intel GPU| Status | Verified Model|
|-|-|-|
|Ampere Series| Support| A100|
### oneMKL
The current oneMKL release does not contain the oneMKL cuBlas backend.
As a result for Nvidia GPU's oneMKL must be built from source.
```
git clone https://github.com/oneapi-src/oneMKL
cd oneMKL
mkdir build
cd build
cmake -G Ninja .. -DCMAKE_CXX_COMPILER=icpx -DCMAKE_C_COMPILER=icx -DENABLE_MKLGPU_BACKEND=OFF -DENABLE_MKLCPU_BACKEND=OFF -DENABLE_CUBLAS_BACKEND=ON
ninja
// Add paths as necessary
```
## Docker
Note:
@@ -209,9 +170,6 @@ source /opt/intel/oneapi/setvars.sh
# Or, for FP32:
cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
# For Nvidia GPUs
cmake .. -DLLAMA_SYCL=ON -DLLAMA_SYCL_TARGET=NVIDIA -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
# Build example/main only
#cmake --build . --config Release --target main
@@ -491,7 +449,6 @@ Using device **0** (Intel(R) Arc(TM) A770 Graphics) as main device
|-|-|-|
|GGML_SYCL_DEVICE|0 (default) or 1|Set the device id used. Check the device ids by default running output|
|GGML_SYCL_DEBUG|0 (default) or 1|Enable log function by macro: GGML_SYCL_DEBUG|
|ZES_ENABLE_SYSMAN| 0 (default) or 1|Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory.<br>Recommended to use when --split-mode = layer|
## Known Issue
@@ -501,10 +458,6 @@ Using device **0** (Intel(R) Arc(TM) A770 Graphics) as main device
Solution: add **--no-mmap** or **--mmap 0**.
- Split-mode: [row] is not supported
It's on developing.
## Q&A
- Error: `error while loading shared libraries: libsycl.so.7: cannot open shared object file: No such file or directory`.

View File

@@ -8,19 +8,12 @@
Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others) in pure C/C++
### Recent API changes
- [2024 Mar 13] Add `llama_synchronize()` + `llama_context_params.n_ubatch` https://github.com/ggerganov/llama.cpp/pull/6017
- [2024 Mar 8] `llama_kv_cache_seq_rm()` returns a `bool` instead of `void`, and new `llama_n_seq_max()` returns the upper limit of acceptable `seq_id` in batches (relevant when dealing with multiple sequences) https://github.com/ggerganov/llama.cpp/pull/5328
- [2024 Mar 4] Embeddings API updated https://github.com/ggerganov/llama.cpp/pull/5796
- [2024 Mar 3] `struct llama_context_params` https://github.com/ggerganov/llama.cpp/pull/5849
### Hot topics
- Multi-GPU pipeline parallelizm support https://github.com/ggerganov/llama.cpp/pull/6017
- Looking for contributions to add Deepseek support: https://github.com/ggerganov/llama.cpp/issues/5981
- Quantization blind testing: https://github.com/ggerganov/llama.cpp/discussions/5962
- Initial Mamba support has been added: https://github.com/ggerganov/llama.cpp/pull/5328
- Support for chat templates: [Wiki (contributions welcome)](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template)
- Support for Gemma models: https://github.com/ggerganov/llama.cpp/pull/5631
- Non-linear quantization IQ4_NL: https://github.com/ggerganov/llama.cpp/pull/5590
- Looking for contributions to improve and maintain the `server` example: https://github.com/ggerganov/llama.cpp/issues/4216
----
@@ -111,8 +104,6 @@ Typically finetunes of the base models below are supported as well.
- [x] [InternLM2](https://huggingface.co/models?search=internlm2)
- [x] [CodeShell](https://github.com/WisdomShell/codeshell)
- [x] [Gemma](https://ai.google.dev/gemma)
- [x] [Mamba](https://github.com/state-spaces/mamba)
- [x] [Command-R](https://huggingface.co/CohereForAI/c4ai-command-r-v01)
**Multimodal models:**
@@ -794,7 +785,7 @@ And after 4.45 hours, you will have the final perplexity.
### Interactive mode
If you want a more ChatGPT-like experience, you can run in interactive mode by passing `-i` as a parameter.
In this mode, you can always interrupt generation by pressing Ctrl+C and entering one or more lines of text, which will be converted into tokens and appended to the current context. You can also specify a *reverse prompt* with the parameter `-r "reverse prompt string"`. This will result in user input being prompted whenever the exact tokens of the reverse prompt string are encountered in the generation. A typical use is to use a prompt that makes LLaMA emulate a chat between multiple users, say Alice and Bob, and pass `-r "Alice:"`.
In this mode, you can always interrupt generation by pressing Ctrl+C and entering one or more lines of text, which will be converted into tokens and appended to the current context. You can also specify a *reverse prompt* with the parameter `-r "reverse prompt string"`. This will result in user input being prompted whenever the exact tokens of the reverse prompt string are encountered in the generation. A typical use is to use a prompt that makes LLaMa emulate a chat between multiple users, say Alice and Bob, and pass `-r "Alice:"`.
Here is an example of a few-shot interaction, invoked with the command
@@ -858,7 +849,7 @@ Sample run:
```
== Running in interactive mode. ==
- Press Ctrl+C to interject at any time.
- Press Return to return control to LLaMA.
- Press Return to return control to LLaMa.
- If you want to submit another line, end your input in '\'.
Below is an instruction that describes a task. Write a response that appropriately completes the request.
@@ -905,9 +896,6 @@ First, install the essential packages for termux:
pkg install clang wget git cmake
```
Second, obtain the [Android NDK](https://developer.android.com/ndk) and then build with CMake:
You can execute the following commands on your computer to avoid downloading the NDK to your mobile. Of course, you can also do this in Termux.
```
$ mkdir build-android
$ cd build-android
@@ -916,28 +904,7 @@ $ cmake -DCMAKE_TOOLCHAIN_FILE=$NDK/build/cmake/android.toolchain.cmake -DANDROI
$ make
```
Install [termux](https://termux.dev/) on your device and run `termux-setup-storage` to get access to your SD card.
Finally, copy these built `llama` binaries and the model file to your device storage. Because the file permissions in the Android sdcard cannot be changed, you can copy the executable files to the `/data/data/com.termux/files/home/bin` path, and then execute the following commands in Termux to add executable permission:
(Assumed that you have pushed the built executable files to the /sdcard/llama.cpp/bin path using `adb push`)
```
$cp -r /sdcard/llama.cpp/bin /data/data/com.termux/files/home/
$cd /data/data/com.termux/files/home/bin
$chmod +x ./*
```
Download model [llama-2-7b-chat.Q4_K_M.gguf](https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF/blob/main/llama-2-7b-chat.Q4_K_M.gguf), and push it to `/sdcard/llama.cpp/`, then move it to `/data/data/com.termux/files/home/model/`
```
$mv /sdcard/llama.cpp/llama-2-7b-chat.Q4_K_M.gguf /data/data/com.termux/files/home/model/
```
Now, you can start chatting:
```
$cd /data/data/com.termux/files/home/bin
$./main -m ../model/llama-2-7b-chat.Q4_K_M.gguf -n 128 -cml
```
Here is a demo of an interactive session running on Pixel 5 phone:
Finally, copy the `llama` binary and the model files to your device storage. Here is a demo of an interactive session running on Pixel 5 phone:
https://user-images.githubusercontent.com/271616/225014776-1d567049-ad71-4ef2-b050-55b0b3b9274c.mp4

View File

@@ -115,7 +115,6 @@ pub fn build(b: *std.build.Builder) !void {
const ggml_alloc = make.obj("ggml-alloc", "ggml-alloc.c");
const ggml_backend = make.obj("ggml-backend", "ggml-backend.c");
const ggml_quants = make.obj("ggml-quants", "ggml-quants.c");
const unicode = make.obj("unicode", "unicode.cpp");
const llama = make.obj("llama", "llama.cpp");
const buildinfo = make.obj("common", "common/build-info.cpp");
const common = make.obj("common", "common/common.cpp");
@@ -126,14 +125,14 @@ pub fn build(b: *std.build.Builder) !void {
const clip = make.obj("clip", "examples/llava/clip.cpp");
const llava = make.obj("llava", "examples/llava/llava.cpp");
_ = make.exe("main", "examples/main/main.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, common, buildinfo, sampling, console, grammar_parser });
_ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, common, buildinfo });
_ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, common, buildinfo });
_ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, common, buildinfo });
_ = make.exe("finetune", "examples/finetune/finetune.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, common, buildinfo, train });
_ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, common, buildinfo, train });
_ = make.exe("main", "examples/main/main.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo, sampling, console, grammar_parser });
_ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo });
_ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo });
_ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo });
_ = make.exe("finetune", "examples/finetune/finetune.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo, train });
_ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo, train });
const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, common, buildinfo, sampling, grammar_parser, clip, llava });
const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo, sampling, grammar_parser, clip, llava });
if (server.target.isWindows()) {
server.linkSystemLibrary("ws2_32");
}

View File

@@ -45,8 +45,7 @@ fi
if [ ! -z ${GG_BUILD_SYCL} ]; then
if [ -z ${ONEAPI_ROOT} ]; then
echo "Not detected ONEAPI_ROOT, please install oneAPI base toolkit and enable it by:"
echo "source /opt/intel/oneapi/setvars.sh"
echo "Not detected ONEAPI_ROOT, please install oneAPI base toolkit and enable it by:\n source /opt/intel/oneapi/setvars.sh"
exit 1
fi

View File

@@ -19,12 +19,7 @@ if(EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/../.git")
endif()
endif()
if(EXISTS "${GIT_DIR}/index")
set(GIT_INDEX "${GIT_DIR}/index")
else()
message(WARNING "Git index not found in git repository.")
set(GIT_INDEX "")
endif()
set(GIT_INDEX "${GIT_DIR}/index")
else()
message(WARNING "Git repository not found; to enable automatic generation of build info, make sure Git is installed and the project is a Git repository.")
set(GIT_INDEX "")

File diff suppressed because it is too large Load Diff

View File

@@ -37,16 +37,13 @@ extern char const *LLAMA_COMMIT;
extern char const *LLAMA_COMPILER;
extern char const *LLAMA_BUILD_TARGET;
struct llama_control_vector_load_info;
int32_t get_num_physical_cores();
//
// CLI argument parsing
//
int32_t get_num_physical_cores();
struct gpt_params {
uint32_t seed = LLAMA_DEFAULT_SEED; // RNG seed
uint32_t seed = -1; // RNG seed
int32_t n_threads = get_num_physical_cores();
int32_t n_threads_draft = -1;
@@ -54,13 +51,13 @@ struct gpt_params {
int32_t n_threads_batch_draft = -1;
int32_t n_predict = -1; // new tokens to predict
int32_t n_ctx = 512; // context size
int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_draft = 5; // number of tokens to draft during speculative decoding
int32_t n_draft = 8; // number of tokens to draft during speculative decoding
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
int32_t n_parallel = 1; // number of parallel sequences to decode
int32_t n_sequences = 1; // number of sequences to decode
float p_accept = 0.5f; // speculative decoding accept probability
float p_split = 0.1f; // speculative decoding split probability
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
@@ -79,11 +76,8 @@ struct gpt_params {
float yarn_beta_slow = 1.0f; // YaRN high correction dim
int32_t yarn_orig_ctx = 0; // YaRN original context length
float defrag_thold = -1.0f; // KV cache defragmentation threshold
ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
int32_t rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
// // sampling parameters
struct llama_sampling_params sparams;
@@ -106,11 +100,6 @@ struct gpt_params {
std::vector<std::tuple<std::string, float>> lora_adapter; // lora adapter path with user defined scale
std::string lora_base = ""; // base model path for the lora adapter
std::vector<llama_control_vector_load_info> control_vectors; // control vector with user defined scale
int32_t control_vector_layer_start = -1; // layer range for control vector
int32_t control_vector_layer_end = -1; // layer range for control vector
int ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
int ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
// (which is more convenient to use for plotting)
@@ -126,6 +115,7 @@ struct gpt_params {
bool kl_divergence = false; // compute KL-divergence
bool mul_mat_q = true; // if true, use mul_mat_q kernels instead of cuBLAS
bool random_prompt = false; // do not randomize prompt if none provided
bool use_color = false; // use color to distinguish generations and inputs
bool interactive = false; // interactive mode
@@ -269,32 +259,3 @@ void dump_kv_cache_view(const llama_kv_cache_view & view, int row_size = 80);
// Dump the KV cache view showing individual sequences in each cell (long output).
void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
//
// Embedding utils
//
void llama_embd_normalize(const float * inp, float * out, int n);
float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n);
//
// Control vector utils
//
struct llama_control_vector_data {
int n_embd;
// stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
std::vector<float> data;
};
struct llama_control_vector_load_info {
float strength;
std::string fname;
};
// Load control vectors, scale each by strength, and add them together.
// On error, returns {-1, empty}
llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos);

View File

@@ -278,22 +278,6 @@ namespace grammar_parser {
while (*pos) {
pos = parse_rule(state, pos);
}
// Validate the state to ensure that all rules are defined
for (const auto & rule : state.rules) {
for (const auto & elem : rule) {
if (elem.type == LLAMA_GRETYPE_RULE_REF) {
// Ensure that the rule at that location exists
if (elem.value >= state.rules.size() || state.rules[elem.value].empty()) {
// Get the name of the rule that is missing
for (const auto & kv : state.symbol_ids) {
if (kv.second == elem.value) {
throw std::runtime_error("Undefined rule identifier '" + kv.first + "'");
}
}
}
}
}
}
return state;
} catch (const std::exception & err) {
fprintf(stderr, "%s: error parsing grammar: %s\n", __func__, err.what());

View File

@@ -297,7 +297,7 @@ inline std::string log_filename_generator_impl(LogTriState multilog, const std::
#ifndef _MSC_VER
#define LOG(...) LOG_IMPL(__VA_ARGS__, "")
#else
#define LOG(str, ...) LOG_IMPL("%s" str, "", ##__VA_ARGS__, "")
#define LOG(str, ...) LOG_IMPL("%s" str, "", __VA_ARGS__, "")
#endif
// Main TEE macro.
@@ -311,7 +311,7 @@ inline std::string log_filename_generator_impl(LogTriState multilog, const std::
#ifndef _MSC_VER
#define LOG_TEE(...) LOG_TEE_IMPL(__VA_ARGS__, "")
#else
#define LOG_TEE(str, ...) LOG_TEE_IMPL("%s" str, "", ##__VA_ARGS__, "")
#define LOG_TEE(str, ...) LOG_TEE_IMPL("%s" str, "", __VA_ARGS__, "")
#endif
// LOG macro variants with auto endline.
@@ -319,8 +319,8 @@ inline std::string log_filename_generator_impl(LogTriState multilog, const std::
#define LOGLN(...) LOG_IMPL(__VA_ARGS__, "\n")
#define LOG_TEELN(...) LOG_TEE_IMPL(__VA_ARGS__, "\n")
#else
#define LOGLN(str, ...) LOG_IMPL("%s" str, "", ##__VA_ARGS__, "\n")
#define LOG_TEELN(str, ...) LOG_TEE_IMPL("%s" str, "", ##__VA_ARGS__, "\n")
#define LOGLN(str, ...) LOG_IMPL("%s" str, "", __VA_ARGS__, "\n")
#define LOG_TEELN(str, ...) LOG_TEE_IMPL("%s" str, "", __VA_ARGS__, "\n")
#endif
// INTERNAL, DO NOT USE

View File

@@ -17,13 +17,6 @@ struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_
return nullptr;
}
// Ensure that there is a "root" node.
if (result->parsed_grammar.symbol_ids.find("root") == result->parsed_grammar.symbol_ids.end()) {
fprintf(stderr, "%s: grammar does not contain a 'root' symbol\n", __func__);
delete result;
return nullptr;
}
std::vector<const llama_grammar_element *> grammar_rules(result->parsed_grammar.c_rules());
result->grammar = llama_grammar_init(
@@ -302,77 +295,6 @@ static llama_token llama_sampling_sample_impl(
return id;
}
static llama_token_data_array llama_sample_probability_distribution_impl(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
struct llama_context * ctx_cfg,
const int idx) {
const llama_sampling_params & params = ctx_sampling->params;
const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
const int32_t penalty_last_n = params.penalty_last_n < 0 ? params.n_prev : params.penalty_last_n;
const float penalty_repeat = params.penalty_repeat;
const float penalty_freq = params.penalty_freq;
const float penalty_present = params.penalty_present;
const bool penalize_nl = params.penalize_nl;
auto & prev = ctx_sampling->prev;
auto & cur = ctx_sampling->cur;
// Get a pointer to the logits
float * logits = llama_get_logits_ith(ctx_main, idx);
// Declare original_logits at the beginning of the function scope
std::vector<float> original_logits;
// apply params.logit_bias map
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
logits[it->first] += it->second;
}
if (ctx_cfg) {
float * logits_guidance = llama_get_logits_ith(ctx_cfg, idx);
llama_sample_apply_guidance(ctx_main, logits, logits_guidance, params.cfg_scale);
}
cur.clear();
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
cur.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
}
llama_token_data_array cur_p = { cur.data(), cur.size(), false };
// apply penalties
const auto& penalty_tokens = params.use_penalty_prompt_tokens ? params.penalty_prompt_tokens : prev;
const int penalty_tokens_used_size = std::min((int)penalty_tokens.size(), penalty_last_n);
if (penalty_tokens_used_size) {
const float nl_logit = logits[llama_token_nl(llama_get_model(ctx_main))];
llama_sample_repetition_penalties(ctx_main, &cur_p,
penalty_tokens.data() + penalty_tokens.size() - penalty_tokens_used_size,
penalty_tokens_used_size, penalty_repeat, penalty_freq, penalty_present);
if (!penalize_nl) {
for (size_t idx = 0; idx < cur_p.size; idx++) {
if (cur_p.data[idx].id == llama_token_nl(llama_get_model(ctx_main))) {
cur_p.data[idx].logit = nl_logit;
break;
}
}
}
}
// apply grammar checks
if (ctx_sampling->grammar != NULL) {
llama_sample_grammar(ctx_main, &cur_p, ctx_sampling->grammar);
}
llama_sample_softmax(ctx_main, &cur_p);
return cur_p;
}
llama_token llama_sampling_sample(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
@@ -382,14 +304,6 @@ llama_token llama_sampling_sample(
return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, false);
}
llama_token_data_array llama_sampling_probability_distribution(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
struct llama_context * ctx_cfg,
const int idx) {
return llama_sample_probability_distribution_impl(ctx_sampling,ctx_main, ctx_cfg, idx);
}
void llama_sampling_accept(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,

View File

@@ -131,13 +131,6 @@ llama_token llama_sampling_sample(
struct llama_context * ctx_cfg,
int idx = 0);
// returns the probability that token of given id will be sampled
llama_token_data_array llama_sampling_probability_distribution(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
struct llama_context * ctx_cfg,
int idx = 0);
void llama_sampling_accept(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,

View File

@@ -8,10 +8,9 @@ import json
import os
import re
import sys
from abc import ABC, abstractmethod
from enum import IntEnum
from pathlib import Path
from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterator, Sequence, TypeVar, cast
from typing import TYPE_CHECKING, Any, ContextManager, Iterator, Sequence, cast
import numpy as np
import torch
@@ -37,12 +36,7 @@ class SentencePieceTokenTypes(IntEnum):
BYTE = 6
AnyModel = TypeVar("AnyModel", bound="type[Model]")
class Model(ABC):
_model_classes: dict[str, type[Model]] = {}
class Model:
def __init__(self, dir_model: Path, ftype: int, fname_out: Path, is_big_endian: bool):
self.dir_model = dir_model
self.ftype = ftype
@@ -53,14 +47,10 @@ class Model(ABC):
self.num_parts = Model.count_model_parts(self.dir_model, ".safetensors" if self.is_safetensors else ".bin")
self.part_names = self._get_part_names()
self.hparams = Model.load_hparams(self.dir_model)
self.model_arch = self._get_model_architecture()
self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=False)
self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"])
@property
@abstractmethod
def model_arch(self) -> gguf.MODEL_ARCH:
pass
def find_hparam(self, keys: Sequence[str], optional: bool = False) -> Any:
key = next((k for k in keys if k in self.hparams), None)
if key is not None:
@@ -186,22 +176,53 @@ class Model(ABC):
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
return json.load(f)
@classmethod
def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
assert names
def func(modelcls: type[Model]):
for name in names:
cls._model_classes[name] = modelcls
return modelcls
return func
@classmethod
def from_model_architecture(cls, arch):
try:
return cls._model_classes[arch]
except KeyError:
raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
@staticmethod
def from_model_architecture(model_architecture):
if model_architecture == "GPTNeoXForCausalLM":
return GPTNeoXModel
if model_architecture == "BloomForCausalLM":
return BloomModel
if model_architecture == "MPTForCausalLM":
return MPTModel
if model_architecture in ("BaichuanForCausalLM", "BaiChuanForCausalLM"):
return BaichuanModel
if model_architecture in ("FalconForCausalLM", "RWForCausalLM"):
return FalconModel
if model_architecture == "GPTBigCodeForCausalLM":
return StarCoderModel
if model_architecture == "GPTRefactForCausalLM":
return RefactModel
if model_architecture == "PersimmonForCausalLM":
return PersimmonModel
if model_architecture in ("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM"):
return StableLMModel
if model_architecture == "QWenLMHeadModel":
return QwenModel
if model_architecture == "Qwen2ForCausalLM":
return Model
if model_architecture == "MixtralForCausalLM":
return MixtralModel
if model_architecture == "GPT2LMHeadModel":
return GPT2Model
if model_architecture == "PhiForCausalLM":
return Phi2Model
if model_architecture == "PlamoForCausalLM":
return PlamoModel
if model_architecture == "CodeShellForCausalLM":
return CodeShellModel
if model_architecture == "OrionForCausalLM":
return OrionModel
if model_architecture == "InternLM2ForCausalLM":
return InternLM2Model
if model_architecture == "MiniCPMForCausalLM":
return MiniCPMModel
if model_architecture == "BertModel":
return BertModel
if model_architecture == "NomicBertModel":
return NomicBertModel
if model_architecture == "GemmaForCausalLM":
return GemmaModel
return Model
def _is_model_safetensors(self) -> bool:
return Model.count_model_parts(self.dir_model, ".safetensors") > 0
@@ -216,6 +237,57 @@ class Model(ABC):
return ("pytorch_model.bin",)
return (f"pytorch_model-{n:05}-of-{self.num_parts:05}.bin" for n in range(1, self.num_parts + 1))
def _get_model_architecture(self) -> gguf.MODEL_ARCH:
arch = self.hparams["architectures"][0]
if arch == "GPTNeoXForCausalLM":
return gguf.MODEL_ARCH.GPTNEOX
if arch == "BloomForCausalLM":
return gguf.MODEL_ARCH.BLOOM
if arch == "MPTForCausalLM":
return gguf.MODEL_ARCH.MPT
if arch in ("BaichuanForCausalLM", "BaiChuanForCausalLM"):
return gguf.MODEL_ARCH.BAICHUAN
if arch in ("FalconForCausalLM", "RWForCausalLM"):
return gguf.MODEL_ARCH.FALCON
if arch == "GPTBigCodeForCausalLM":
return gguf.MODEL_ARCH.STARCODER
if arch == "GPTRefactForCausalLM":
return gguf.MODEL_ARCH.REFACT
if arch == "PersimmonForCausalLM":
return gguf.MODEL_ARCH.PERSIMMON
if arch in ("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM"):
return gguf.MODEL_ARCH.STABLELM
if arch == "QWenLMHeadModel":
return gguf.MODEL_ARCH.QWEN
if arch == "Qwen2ForCausalLM":
return gguf.MODEL_ARCH.QWEN2
if arch == "MixtralForCausalLM":
return gguf.MODEL_ARCH.LLAMA
if arch == "GPT2LMHeadModel":
return gguf.MODEL_ARCH.GPT2
if arch == "PhiForCausalLM":
return gguf.MODEL_ARCH.PHI2
if arch == "PlamoForCausalLM":
return gguf.MODEL_ARCH.PLAMO
if arch == "CodeShellForCausalLM":
return gguf.MODEL_ARCH.CODESHELL
if arch == "OrionForCausalLM":
return gguf.MODEL_ARCH.ORION
if arch == "InternLM2ForCausalLM":
return gguf.MODEL_ARCH.INTERNLM2
if arch == "MiniCPMForCausalLM":
return gguf.MODEL_ARCH.MINICPM
if arch == "BertModel":
return gguf.MODEL_ARCH.BERT
if arch == "NomicBertModel":
return gguf.MODEL_ARCH.NOMIC_BERT
if arch == "GemmaForCausalLM":
return gguf.MODEL_ARCH.GEMMA
if arch == "Starcoder2ForCausalLM":
return gguf.MODEL_ARCH.STARCODER2
raise NotImplementedError(f'Architecture "{arch}" not supported!')
def _set_vocab_gpt2(self):
dir_model = self.dir_model
hparams = self.hparams
@@ -383,10 +455,7 @@ class Model(ABC):
special_vocab.add_to_gguf(self.gguf_writer)
@Model.register("GPTNeoXForCausalLM")
class GPTNeoXModel(Model):
model_arch = gguf.MODEL_ARCH.GPTNEOX
def set_gguf_parameters(self):
block_count = self.hparams["num_hidden_layers"]
@@ -403,10 +472,7 @@ class GPTNeoXModel(Model):
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
@Model.register("BloomForCausalLM")
class BloomModel(Model):
model_arch = gguf.MODEL_ARCH.BLOOM
def set_gguf_parameters(self):
self.gguf_writer.add_name("Bloom")
n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
@@ -498,10 +564,7 @@ class BloomModel(Model):
print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
@Model.register("MPTForCausalLM")
class MPTModel(Model):
model_arch = gguf.MODEL_ARCH.MPT
def set_gguf_parameters(self):
block_count = self.hparams["n_layers"]
self.gguf_writer.add_name(self.dir_model.name)
@@ -564,10 +627,7 @@ class MPTModel(Model):
self.gguf_writer.add_tensor(new_name, data)
@Model.register("OrionForCausalLM")
class OrionModel(Model):
model_arch = gguf.MODEL_ARCH.ORION
def set_vocab(self):
self._set_vocab_sentencepiece()
@@ -646,10 +706,7 @@ class OrionModel(Model):
self.gguf_writer.add_tensor(new_name, data)
@Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
class BaichuanModel(Model):
model_arch = gguf.MODEL_ARCH.BAICHUAN
def set_vocab(self):
self._set_vocab_sentencepiece()
@@ -764,10 +821,7 @@ class BaichuanModel(Model):
return weights[r * n_part:r * n_part + r, ...]
@Model.register("FalconForCausalLM", "RWForCausalLM")
class FalconModel(Model):
model_arch = gguf.MODEL_ARCH.FALCON
def set_gguf_parameters(self):
block_count = self.hparams.get("num_hidden_layers")
if block_count is None:
@@ -860,10 +914,7 @@ class FalconModel(Model):
self.gguf_writer.add_tensor(new_name, data)
@Model.register("GPTBigCodeForCausalLM")
class StarCoderModel(Model):
model_arch = gguf.MODEL_ARCH.STARCODER
def set_gguf_parameters(self):
block_count = self.hparams["n_layer"]
@@ -878,10 +929,7 @@ class StarCoderModel(Model):
self.gguf_writer.add_file_type(self.ftype)
@Model.register("GPTRefactForCausalLM")
class RefactModel(Model):
model_arch = gguf.MODEL_ARCH.REFACT
def set_gguf_parameters(self):
hidden_dim = self.hparams["n_embd"]
inner_dim = 4 * hidden_dim
@@ -965,10 +1013,7 @@ class RefactModel(Model):
self.gguf_writer.add_tensor(new_name, data)
@Model.register("PersimmonForCausalLM")
class PersimmonModel(Model):
model_arch = gguf.MODEL_ARCH.PERSIMMON
def set_gguf_parameters(self):
block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
head_count = self.hparams["num_attention_heads"]
@@ -1016,10 +1061,7 @@ class PersimmonModel(Model):
self.gguf_writer.add_tensor(new_name, data)
@Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
class StableLMModel(Model):
model_arch = gguf.MODEL_ARCH.STABLELM
def set_vocab(self):
if (self.dir_model / "tokenizer.json").is_file():
self._set_vocab_gpt2()
@@ -1043,18 +1085,12 @@ class StableLMModel(Model):
self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
@Model.register("MixtralForCausalLM")
class MixtralModel(Model):
model_arch = gguf.MODEL_ARCH.LLAMA
def set_vocab(self):
self._set_vocab_sentencepiece()
@Model.register("MiniCPMForCausalLM")
class MiniCPMModel(Model):
model_arch = gguf.MODEL_ARCH.MINICPM
def set_gguf_parameters(self):
block_count = self.hparams["num_hidden_layers"]
self.gguf_writer.add_name("MiniCPM")
@@ -1131,10 +1167,7 @@ class MiniCPMModel(Model):
self.gguf_writer.add_tensor(new_name, data)
@Model.register("QWenLMHeadModel")
class QwenModel(Model):
model_arch = gguf.MODEL_ARCH.QWEN
@staticmethod
def token_bytes_to_string(b):
from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
@@ -1214,15 +1247,7 @@ class QwenModel(Model):
self.gguf_writer.add_tensor(new_name, data)
@Model.register("Qwen2ForCausalLM")
class Qwen2Model(Model):
model_arch = gguf.MODEL_ARCH.QWEN2
@Model.register("GPT2LMHeadModel")
class GPT2Model(Model):
model_arch = gguf.MODEL_ARCH.GPT2
def set_gguf_parameters(self):
self.gguf_writer.add_name(self.dir_model.name)
self.gguf_writer.add_block_count(self.hparams["n_layer"])
@@ -1284,10 +1309,7 @@ class GPT2Model(Model):
self.gguf_writer.add_tensor("output.weight", data)
@Model.register("PhiForCausalLM")
class Phi2Model(Model):
model_arch = gguf.MODEL_ARCH.PHI2
def set_gguf_parameters(self):
block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
@@ -1309,10 +1331,7 @@ class Phi2Model(Model):
self.gguf_writer.add_add_bos_token(False)
@Model.register("PlamoForCausalLM")
class PlamoModel(Model):
model_arch = gguf.MODEL_ARCH.PLAMO
def set_vocab(self):
self._set_vocab_sentencepiece()
@@ -1391,10 +1410,7 @@ class PlamoModel(Model):
self.gguf_writer.add_tensor(new_name, data)
@Model.register("CodeShellForCausalLM")
class CodeShellModel(Model):
model_arch = gguf.MODEL_ARCH.CODESHELL
def set_gguf_parameters(self):
block_count = self.hparams["n_layer"]
@@ -1459,10 +1475,7 @@ class CodeShellModel(Model):
print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
@Model.register("InternLM2ForCausalLM")
class InternLM2Model(Model):
model_arch = gguf.MODEL_ARCH.INTERNLM2
def set_vocab(self):
# (TODO): Is there a better way?
# Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
@@ -1634,10 +1647,7 @@ in chat mode so that the conversation can end normally.")
self.post_write_tensors(tensor_map, name, data_torch)
@Model.register("BertModel")
class BertModel(Model):
model_arch = gguf.MODEL_ARCH.BERT
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.vocab_size = None
@@ -1647,17 +1657,16 @@ class BertModel(Model):
self.gguf_writer.add_causal_attention(False)
# get pooling path
with open(self.dir_model / "modules.json", encoding="utf-8") as f:
modules = json.load(f)
pooling_path = None
module_path = self.dir_model / "modules.json"
if module_path.is_file():
with open(module_path, encoding="utf-8") as f:
modules = json.load(f)
for mod in modules:
if mod["type"] == "sentence_transformers.models.Pooling":
pooling_path = mod["path"]
break
for mod in modules:
if mod["type"] == "sentence_transformers.models.Pooling":
pooling_path = mod["path"]
break
# get pooling type
pooling_type = gguf.PoolingType.NONE
if pooling_path is not None:
with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
pooling = json.load(f)
@@ -1667,7 +1676,8 @@ class BertModel(Model):
pooling_type = gguf.PoolingType.CLS
else:
raise NotImplementedError("Only MEAN and CLS pooling types supported")
self.gguf_writer.add_pooling_type(pooling_type)
self.gguf_writer.add_pooling_type(pooling_type.value)
def set_vocab(self):
path = self.dir_model
@@ -1743,10 +1753,7 @@ class BertModel(Model):
self.gguf_writer.add_tensor(new_name, data)
@Model.register("NomicBertModel")
class NomicBertModel(BertModel):
model_arch = gguf.MODEL_ARCH.NOMIC_BERT
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
@@ -1783,10 +1790,7 @@ class NomicBertModel(BertModel):
yield name, data
@Model.register("GemmaForCausalLM")
class GemmaModel(Model):
model_arch = gguf.MODEL_ARCH.GEMMA
def set_vocab(self):
self._set_vocab_sentencepiece()
@@ -1811,15 +1815,16 @@ class GemmaModel(Model):
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
for name, data_torch in self.get_tensors():
# ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
if name.endswith("norm.weight"):
data_torch = data_torch + 1
old_dtype = data_torch.dtype
# convert any unsupported data types to float32
if data_torch.dtype not in (torch.float16, torch.float32):
data_torch = data_torch.to(torch.float32)
# ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
if name.endswith("norm.weight"):
data_torch = data_torch + 1
data = data_torch.squeeze().numpy()
# map tensor names
@@ -1842,146 +1847,6 @@ class GemmaModel(Model):
self.gguf_writer.add_tensor(new_name, data)
@Model.register("Starcoder2ForCausalLM")
class StarCoder2Model(Model):
model_arch = gguf.MODEL_ARCH.STARCODER2
@Model.register("MambaForCausalLM", "MambaLMHeadModel")
class MambaModel(Model):
model_arch = gguf.MODEL_ARCH.MAMBA
def set_vocab(self):
vocab_size = self.hparams["vocab_size"]
# Round vocab size to next multiple of 8
pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
# pad using ceiling division
# ref: https://stackoverflow.com/a/17511341/22827863
vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
self.hparams["vocab_size"] = vocab_size
if (self.dir_model / "tokenizer.json").is_file():
self._set_vocab_gpt2()
else:
# Use the GPT-NeoX tokenizer when no tokenizer files are present
tokenizer_path = Path(sys.path[0]) / "models" / "ggml-vocab-gpt-neox.gguf"
print(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
neox_reader = gguf.GGUFReader(tokenizer_path, "r")
field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL)
self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]))
field = neox_reader.get_field(gguf.Keys.Tokenizer.LIST)
self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
field = neox_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
field = neox_reader.get_field(gguf.Keys.Tokenizer.MERGES)
self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
field = neox_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)
self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
field = neox_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)
self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
field = neox_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)
self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
def set_gguf_parameters(self):
d_model = self.find_hparam(["hidden_size", "d_model"])
d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
# ceiling division
# ref: https://stackoverflow.com/a/17511341/22827863
# ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
# Fail early for models which don't have a block expansion factor of 2
assert d_inner == 2 * d_model
self.gguf_writer.add_name(self.dir_model.name)
self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
self.gguf_writer.add_embedding_length(d_model)
self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
self.gguf_writer.add_block_count(self.hparams["n_layer"])
self.gguf_writer.add_ssm_conv_kernel(d_conv)
self.gguf_writer.add_ssm_inner_size(d_inner)
self.gguf_writer.add_ssm_state_size(d_state)
self.gguf_writer.add_ssm_time_step_rank(dt_rank)
self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
self.gguf_writer.add_file_type(self.ftype)
def write_tensors(self):
block_count = self.hparams["n_layer"]
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
tok_embd = None
tok_embd_name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.TOKEN_EMBD] + ".weight"
output_name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.OUTPUT] + ".weight"
for name, data_torch in self.get_tensors():
old_dtype = data_torch.dtype
# convert any unsupported data types to float32
if data_torch.dtype not in (torch.float16, torch.float32):
data_torch = data_torch.to(torch.float32)
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
if new_name is None:
print(f"Can not map tensor {name!r}")
sys.exit()
if name.endswith(".A_log"):
print("A_log --> A ==> " + new_name)
data_torch = -torch.exp(data_torch)
# assuming token_embd.weight is seen before output.weight
if tok_embd is not None and new_name == output_name:
if torch.equal(tok_embd, data_torch):
print(f"{output_name} is equivalent to {tok_embd_name}, omitting")
continue
if new_name == tok_embd_name:
tok_embd = data_torch
data = data_torch.squeeze().numpy()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if self.ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert big float32 2-dim weight tensors to float16
if self.ftype == 1 and data_dtype == np.float32 and new_name.removesuffix(".weight").endswith((".ssm_in", ".ssm_out", "token_embd", "output")) and n_dims == 2:
data = data.astype(np.float16)
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
self.gguf_writer.add_tensor(new_name, data)
@Model.register("CohereForCausalLM")
class CommandR2Model(Model):
model_arch = gguf.MODEL_ARCH.COMMAND_R
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# max_position_embeddings = 8192 in config.json but model was actually
# trained on 128k context length
self.hparams["max_position_embeddings"] = self.hparams["model_max_length"]
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
###### CONVERSION LOGIC ######

View File

@@ -373,7 +373,7 @@ def handle_metadata(cfg, hp):
raise ValueError('Unable to load metadata')
vocab_path = Path(cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir)
vocab_factory = convert.VocabFactory(vocab_path)
vocab, special_vocab = vocab_factory.load_vocab(cfg.vocabtype.split(","), cfg.model_metadata_dir)
vocab, special_vocab = vocab_factory.load_vocab(cfg.vocabtype, cfg.model_metadata_dir)
convert.check_vocab_size(params, vocab)
return params, vocab, special_vocab
@@ -398,8 +398,8 @@ def handle_args():
help ='Load HuggingFace/.pth vocab and metadata from the specified directory')
parser.add_argument("--vocab-dir", type=Path,
help="directory containing tokenizer.model, if separate from model file - only meaningful with --model-metadata-dir")
parser.add_argument("--vocabtype", default="spm,hfft",
help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm,hfft)")
parser.add_argument("--vocabtype", choices=["spm", "bpe"], default="spm",
help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm)")
return parser.parse_args()

View File

@@ -332,9 +332,6 @@ class Params:
#
class BpeVocab:
tokenizer_model = "gpt2"
name = "bpe"
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None) -> None:
self.bpe_tokenizer = json.loads(open(str(fname_tokenizer), encoding="utf-8").read())
if isinstance(self.bpe_tokenizer.get('model'), dict):
@@ -393,9 +390,6 @@ class BpeVocab:
class SentencePieceVocab:
tokenizer_model = "llama"
name = "spm"
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None) -> None:
self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer))
added_tokens: dict[str, int]
@@ -459,9 +453,6 @@ class SentencePieceVocab:
class HfVocab:
tokenizer_model = "llama"
name = "hfft"
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None = None) -> None:
try:
from transformers import AutoTokenizer
@@ -562,15 +553,7 @@ class HfVocab:
return f"<HfVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
class NoVocab:
tokenizer_model = "no_vocab"
name = "no_vocab"
def __repr__(self) -> str:
return "<NoVocab for a model without integrated vocabulary>"
Vocab: TypeAlias = "BpeVocab | SentencePieceVocab | HfVocab | NoVocab"
Vocab: TypeAlias = "BpeVocab | SentencePieceVocab | HfVocab"
#
@@ -952,10 +935,8 @@ def check_vocab_size(params: Params, vocab: Vocab, pad_vocab: bool = False) -> N
# Handle special case where the model's vocab size is not set
if params.n_vocab == -1:
raise ValueError(
f"The model's vocab size is set to -1 in params.json. Please update it manually.{f' Maybe {vocab.vocab_size}?' if hasattr(vocab, 'vocab_size') else ''}"
f"The model's vocab size is set to -1 in params.json. Please update it manually. Maybe {vocab.vocab_size}?"
)
if isinstance(vocab, NoVocab):
return # model has no vocab
# Check for a vocab size mismatch
if params.n_vocab == vocab.vocab_size:
@@ -996,7 +977,6 @@ class OutputFile:
name = str(params.path_model.parent).split('/')[-1]
self.gguf.add_name (name)
self.gguf.add_vocab_size (params.n_vocab)
self.gguf.add_context_length (params.n_ctx)
self.gguf.add_embedding_length (params.n_embd)
self.gguf.add_block_count (params.n_layer)
@@ -1033,9 +1013,21 @@ class OutputFile:
if params.ftype is not None:
self.gguf.add_file_type(params.ftype)
def extract_vocabulary_from_model(self, vocab: Vocab) -> tuple[list[bytes], list[float], list[gguf.TokenType]]:
assert not isinstance(vocab, NoVocab)
def handle_tokenizer_model(self, vocab: Vocab) -> str:
# Map the vocab types to the supported tokenizer models
tokenizer_model = {
SentencePieceVocab: "llama",
HfVocab: "llama",
BpeVocab: "gpt2",
}.get(type(vocab))
# Block if vocab type is not predefined
if tokenizer_model is None:
raise ValueError("Unknown vocab type: Not supported")
return tokenizer_model
def extract_vocabulary_from_model(self, vocab: Vocab) -> tuple[list[bytes], list[float], list[gguf.TokenType]]:
tokens = []
scores = []
toktypes = []
@@ -1051,8 +1043,11 @@ class OutputFile:
return tokens, scores, toktypes
def add_meta_vocab(self, vocab: Vocab) -> None:
# Handle the tokenizer model
tokenizer_model = self.handle_tokenizer_model(vocab)
# Ensure that tokenizer_model is added to the GGUF model
self.gguf.add_tokenizer_model(vocab.tokenizer_model)
self.gguf.add_tokenizer_model(tokenizer_model)
# Extract model vocabulary for model conversion
tokens, scores, toktypes = self.extract_vocabulary_from_model(vocab)
@@ -1079,26 +1074,6 @@ class OutputFile:
def write_tensor_info(self) -> None:
self.gguf.write_ti_data_to_file()
def write_tensor_data(self, ftype: GGMLFileType, model: LazyModel, concurrency: int) -> None:
ndarrays_inner = bounded_parallel_map(OutputFile.do_item, model.items(), concurrency=concurrency)
if ftype == GGMLFileType.MostlyQ8_0:
ndarrays = bounded_parallel_map(
OutputFile.maybe_do_quantize, ndarrays_inner, concurrency=concurrency, max_workers=concurrency,
use_processpool_executor=True,
)
else:
ndarrays = map(OutputFile.maybe_do_quantize, ndarrays_inner)
start = time.time()
for i, ((name, lazy_tensor), ndarray) in enumerate(zip(model.items(), ndarrays)):
elapsed = time.time() - start
size = ' x '.join(f"{dim:6d}" for dim in lazy_tensor.shape)
padi = len(str(len(model)))
print(
f"[{i + 1:{padi}d}/{len(model)}] Writing tensor {name:38s} | size {size:16} | type {lazy_tensor.data_type.name:4} | T+{int(elapsed):4}"
)
self.gguf.write_tensor_data(ndarray)
def close(self) -> None:
self.gguf.close()
@@ -1107,7 +1082,7 @@ class OutputFile:
fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab,
endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, pad_vocab: bool = False,
) -> None:
check_vocab_size(params, vocab, pad_vocab=pad_vocab)
check_vocab_size(params, vocab, pad_vocab = pad_vocab)
of = OutputFile(fname_out, endianess=endianess)
@@ -1145,11 +1120,8 @@ class OutputFile:
# meta data
of.add_meta_arch(params)
if isinstance(vocab, NoVocab):
of.gguf.add_tokenizer_model(vocab.tokenizer_model)
else:
of.add_meta_vocab(vocab)
of.add_meta_special_vocab(svocab)
of.add_meta_vocab(vocab)
of.add_meta_special_vocab(svocab)
# tensor info
for name, lazy_tensor in model.items():
@@ -1159,7 +1131,24 @@ class OutputFile:
of.write_tensor_info()
# tensor data
of.write_tensor_data(ftype, model, concurrency)
ndarrays_inner = bounded_parallel_map(OutputFile.do_item, model.items(), concurrency = concurrency)
if ftype == GGMLFileType.MostlyQ8_0:
ndarrays = bounded_parallel_map(
OutputFile.maybe_do_quantize, ndarrays_inner, concurrency=concurrency, max_workers=concurrency,
use_processpool_executor=True,
)
else:
ndarrays = map(OutputFile.maybe_do_quantize, ndarrays_inner)
start = time.time()
for i, ((name, lazy_tensor), ndarray) in enumerate(zip(model.items(), ndarrays)):
elapsed = time.time() - start
size = ' x '.join(f"{dim:6d}" for dim in lazy_tensor.shape)
padi = len(str(len(model)))
print(
f"[{i+1:{padi}d}/{len(model)}] Writing tensor {name:38s} | size {size:16} | type {lazy_tensor.data_type.name:4} | T+{int(elapsed):4}"
)
of.gguf.write_tensor_data(ndarray)
of.close()
@@ -1293,35 +1282,38 @@ def load_some_model(path: Path) -> ModelPlus:
class VocabFactory:
_FILES = {"spm": "tokenizer.model", "bpe": "vocab.json", "hfft": "tokenizer.json"}
def __init__(self, path: Path):
self.path = path
self.file_paths = self._detect_files()
print(f"Found vocab files: {self.file_paths}")
self.files: dict[str, Path | None] = {
"tokenizer.model": None,
"vocab.json": None,
"tokenizer.json": None,
}
self._detect_files()
def _detect_files(self) -> dict[str, Path | None]:
def locate(file: str) -> Path | None:
if (path := self.path / file).exists():
return path
if (path := self.path.parent / file).exists():
return path
return None
def _detect_files(self):
for file in self.files.keys():
file_path = self.path / file
parent_file_path = self.path.parent / file
if file_path.exists():
self.files[file] = file_path
elif parent_file_path.exists():
self.files[file] = parent_file_path
print(f"Found vocab files: {self.files}")
return {vt: locate(f) for vt, f in self._FILES.items()}
def _select_file(self, vocabtype: str | None) -> Path:
if vocabtype in ["spm", "bpe"]:
for file_key in self.files.keys():
if (file := self.files[file_key]) is not None:
return file
raise FileNotFoundError(f"{vocabtype} vocab not found.")
if vocabtype == "hfft":
# For Hugging Face Fast Tokenizer, return the directory path instead of a specific file
return self.path
raise ValueError(f"Unsupported vocabulary type {vocabtype}")
def _select_file(self, vocab_types: list[str]) -> tuple[str, Path]:
for vtype in vocab_types:
try:
path = self.file_paths[vtype]
except KeyError:
raise ValueError(f"Unsupported vocabulary type {vtype}") from None
if path is not None:
return vtype, path
raise FileNotFoundError(f"Could not find any of {[self._FILES[vt] for vt in vocab_types]}")
def _create_special_vocab(self, vocab: Vocab, model_parent_path: Path) -> gguf.SpecialVocab:
load_merges = vocab.name == "bpe"
def _create_special_vocab(self, vocab: Vocab, vocabtype: str, model_parent_path: Path) -> gguf.SpecialVocab:
load_merges = vocabtype == "bpe"
n_vocab = vocab.vocab_size if hasattr(vocab, "vocab_size") else None
return gguf.SpecialVocab(
model_parent_path,
@@ -1330,34 +1322,30 @@ class VocabFactory:
n_vocab=n_vocab,
)
def _create_vocab_by_path(self, vocab_types: list[str]) -> Vocab:
vocab_type, path = self._select_file(vocab_types)
print(f"Loading vocab file {path!r}, type {vocab_type!r}")
def load_vocab(self, vocabtype: str, model_parent_path: Path) -> tuple[Vocab, gguf.SpecialVocab]:
path = self._select_file(vocabtype)
print(f"Loading vocab file '{path}', type '{vocabtype}'")
added_tokens_path = path.parent / "added_tokens.json"
if vocab_type == "bpe":
return BpeVocab(
path, added_tokens_path if added_tokens_path.exists() else None
)
if vocab_type == "spm":
return SentencePieceVocab(
path, added_tokens_path if added_tokens_path.exists() else None
)
if vocab_type == "hfft":
return HfVocab(
path.parent, added_tokens_path if added_tokens_path.exists() else None
)
raise ValueError(vocab_type)
def load_vocab(self, vocab_types: list[str], model_parent_path: Path) -> tuple[Vocab, gguf.SpecialVocab]:
vocab: Vocab
if len(vocab_types) == 1 and "no_vocab" in vocab_types:
vocab = NoVocab()
if vocabtype == "bpe":
vocab = BpeVocab(
path, added_tokens_path if added_tokens_path.exists() else None
)
elif vocabtype == "spm":
vocab = SentencePieceVocab(
path, added_tokens_path if added_tokens_path.exists() else None
)
elif vocabtype == "hfft":
vocab = HfVocab(
path, added_tokens_path if added_tokens_path.exists() else None
)
else:
vocab = self._create_vocab_by_path(vocab_types)
raise ValueError(f"Unsupported vocabulary type {vocabtype}")
# FIXME: Respect --vocab-dir?
special_vocab = self._create_special_vocab(
vocab,
vocabtype,
model_parent_path,
)
return vocab, special_vocab
@@ -1391,14 +1379,15 @@ def main(args_in: list[str] | None = None) -> None:
if np.uint32(1) == np.uint32(1).newbyteorder("<"):
# We currently only support Q8_0 output on little endian systems.
output_choices.append("q8_0")
parser = argparse.ArgumentParser(description="Convert a LLaMA model to a GGML compatible file")
vocab_types = ["spm", "bpe", "hfft"]
parser = argparse.ArgumentParser(description="Convert a LLaMa model to a GGML compatible file")
parser.add_argument("--awq-path", type=Path, help="Path to scale awq cache file", default=None)
parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model")
parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file")
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
parser.add_argument("--no-vocab", action="store_true", help="store model without the vocab")
parser.add_argument("--outtype", choices=output_choices, help="output format - note: q8_0 may be very slow (default: f16 or f32 based on input)")
parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file")
parser.add_argument("--vocab-type", help="vocab types to try in order, choose from 'spm', 'bpe', 'hfft' (default: spm,hfft)", default="spm,hfft")
parser.add_argument("--vocab-type", choices=vocab_types, help="The vocabulary format used to define the tokenizer model (default: spm)", default="spm")
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)")
parser.add_argument("--ctx", type=int, help="model training context (default: based on input)")
@@ -1408,10 +1397,18 @@ def main(args_in: list[str] | None = None) -> None:
parser.add_argument("--skip-unknown", action="store_true", help="skip unknown tensor names instead of failing")
args = parser.parse_args(args_in)
if args.no_vocab:
if args.vocab_only:
raise ValueError("no need to specify --vocab-only if using --no-vocab")
args.vocab_type = "no_vocab"
if args.awq_path:
sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
from awq.apply_awq import add_scale_weights # type: ignore[import-not-found]
tmp_model_path = args.model / "weighted_model"
if tmp_model_path.is_dir():
print(f"{tmp_model_path} exists as a weighted model.")
else:
tmp_model_path.mkdir(parents=True, exist_ok=True)
print("Saving new weighted model ...")
add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
print(f"Saved weighted model at {tmp_model_path}.")
args.model = tmp_model_path
if args.dump_single:
model_plus = lazy_load_file(args.model)
@@ -1451,7 +1448,7 @@ def main(args_in: list[str] | None = None) -> None:
model_parent_path = model_plus.paths[0].parent
vocab_path = Path(args.vocab_dir or args.model or model_parent_path)
vocab_factory = VocabFactory(vocab_path)
vocab, special_vocab = vocab_factory.load_vocab(args.vocab_type.split(","), model_parent_path)
vocab, special_vocab = vocab_factory.load_vocab(args.vocab_type, model_parent_path)
if args.vocab_only:
if not args.outfile:
@@ -1462,7 +1459,7 @@ def main(args_in: list[str] | None = None) -> None:
print(f"Wrote {outfile}")
return
if model_plus.vocab is not None and args.vocab_dir is None and not args.no_vocab:
if model_plus.vocab is not None and args.vocab_dir is None:
vocab = model_plus.vocab
print(f"Vocab info: {vocab}")

View File

@@ -20,7 +20,6 @@ else()
add_subdirectory(convert-llama2c-to-ggml)
add_subdirectory(embedding)
add_subdirectory(finetune)
add_subdirectory(gritlm)
add_subdirectory(infill)
add_subdirectory(llama-bench)
add_subdirectory(llava)

View File

@@ -32,15 +32,16 @@ int main(int argc, char ** argv) {
gpt_params params;
if (argc == 1 || argv[1][0] == '-') {
printf("usage: %s MODEL_PATH [N_KV_MAX] [IS_PP_SHARED] [NGL] <PP> <TG> <PL>\n" , argv[0]);
printf("usage: %s MODEL_PATH [N_KV_MAX] [IS_PP_SHARED] [NGL] [MMQ] <PP> <TG> <PL>\n" , argv[0]);
printf(" <PP>, <TG> and PL are comma-separated lists of numbers without spaces\n\n");
printf(" example: %s ggml-model-f16.gguf 2048 0 999 128,256,512 128,256 1,2,4,8,16,32\n\n", argv[0]);
printf(" example: %s ggml-model-f16.gguf 2048 0 999 0 128,256,512 128,256 1,2,4,8,16,32\n\n", argv[0]);
return 1 ;
}
int n_kv_max = 2048;
int is_pp_shared = 0;
int n_gpu_layers = 0;
int mmq = 0;
std::vector<int> n_pp = { 128, 256, 512, 1024, 2048, 3584, 7680, };
std::vector<int> n_tg = { 128, 256, };
@@ -64,15 +65,19 @@ int main(int argc, char ** argv) {
}
if (argc >= 6) {
n_pp = parse_list(argv[5]);
mmq = std::atoi(argv[5]);
}
if (argc >= 7) {
n_tg = parse_list(argv[6]);
n_pp = parse_list(argv[6]);
}
if (argc >= 8) {
n_pl = parse_list(argv[7]);
n_tg = parse_list(argv[7]);
}
if (argc >= 9) {
n_pl = parse_list(argv[8]);
}
// init LLM
@@ -101,13 +106,11 @@ int main(int argc, char ** argv) {
ctx_params.seed = 1234;
ctx_params.n_ctx = n_kv_max;
ctx_params.n_batch = 512;
ctx_params.mul_mat_q = mmq;
ctx_params.n_threads = params.n_threads;
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
// ensure enough sequences are available
ctx_params.n_seq_max = *std::max_element(n_pl.begin(), n_pl.end());
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
if (ctx == NULL) {
@@ -138,8 +141,6 @@ int main(int argc, char ** argv) {
LOG_TEE("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret);
return false;
}
llama_synchronize(ctx);
}
return true;
@@ -158,7 +159,7 @@ int main(int argc, char ** argv) {
}
LOG_TEE("\n");
LOG_TEE("%s: n_kv_max = %d, is_pp_shared = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, is_pp_shared, n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch);
LOG_TEE("%s: n_kv_max = %d, is_pp_shared = %d, n_gpu_layers = %d, mmq = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, is_pp_shared, n_gpu_layers, mmq, ctx_params.n_threads, ctx_params.n_threads_batch);
LOG_TEE("\n");
LOG_TEE("|%6s | %6s | %4s | %6s | %8s | %8s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "B", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s", "T s", "S t/s");
@@ -179,10 +180,10 @@ int main(int argc, char ** argv) {
llama_batch_clear(batch);
for (int i = 0; i < pp; ++i) {
for (int j = 0; j < (is_pp_shared ? 1 : pl); ++j) {
llama_batch_add(batch, 0, i, { j }, false);
}
const int n_tokens = is_pp_shared ? pp : pl*pp;
for (int i = 0; i < n_tokens; ++i) {
llama_batch_add(batch, 0, i, { 0 }, false);
}
batch.logits[batch.n_tokens - 1] = true;
@@ -197,7 +198,7 @@ int main(int argc, char ** argv) {
if (is_pp_shared) {
for (int32_t i = 1; i < pl; ++i) {
llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
llama_kv_cache_seq_cp(ctx, 0, i, 0, pp);
}
}

View File

@@ -80,7 +80,6 @@ int main(int argc, char ** argv) {
ctx_params.seed = 1234;
ctx_params.n_ctx = n_kv_req;
ctx_params.n_batch = std::max(n_len, n_parallel);
ctx_params.n_seq_max = n_parallel;
ctx_params.n_threads = params.n_threads;
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
@@ -133,7 +132,7 @@ int main(int argc, char ** argv) {
// assign the system KV cache to all parallel sequences
// this way, the parallel sequences will "reuse" the prompt tokens without having to copy them
for (int32_t i = 1; i < n_parallel; ++i) {
llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
llama_kv_cache_seq_cp(ctx, 0, i, 0, batch.n_tokens);
}
if (n_parallel > 1) {

View File

@@ -189,10 +189,12 @@ int main(int argc, char ** argv) {
int32_t nelements = sizex*sizey;
std::vector<int64_t> hist_cur(1 << 4, 0);
// Set up a the benchmark matrices
// printf("Creating new tensor q11 & Running quantize\n");
struct ggml_tensor * q11 = ggml_new_tensor_2d(ctx, qtype, sizex, sizey);
ggml_quantize_chunk(qtype, (const float *) m11->data, q11->data, 0, nelements/m11->ne[0], m11->ne[0], nullptr);
ggml_quantize_chunk(qtype, (const float *) m11->data, q11->data, 0, nelements/m11->ne[0], m11->ne[0], hist_cur.data(), nullptr);
// Set up a the compute graph
// printf("Creating new tensor q31\n");
@@ -205,7 +207,7 @@ int main(int argc, char ** argv) {
// Set up a second graph computation to make sure we override the CPU cache lines
// printf("Creating new tensor q12 & Running quantize\n");
struct ggml_tensor * q12 = ggml_new_tensor_2d(ctx, qtype, sizex, sizey);
ggml_quantize_chunk(qtype, (const float *) m12->data, q12->data, 0, nelements/m12->ne[0], m12->ne[0], nullptr);
ggml_quantize_chunk(qtype, (const float *) m12->data, q12->data, 0, nelements/m12->ne[0], m12->ne[0], hist_cur.data(), nullptr);
// printf("Creating new tensor q32\n");
struct ggml_tensor * q32 = ggml_mul_mat(ctx, q12, m2);

View File

@@ -19,7 +19,18 @@ static std::vector<std::string> split_lines(const std::string & s) {
static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, int seq_id) {
for (size_t i = 0; i < tokens.size(); i++) {
llama_batch_add(batch, tokens[i], i, { seq_id }, i == tokens.size() - 1);
llama_batch_add(batch, tokens[i], i, { seq_id }, false);
}
}
static void normalize(float * vec, float * out, int n) {
float norm = 0;
for (int i = 0; i < n; i++) {
norm += vec[i] * vec[i];
}
norm = sqrt(norm);
for (int i = 0; i < n; i++) {
out[i] = vec[i] / norm;
}
}
@@ -33,23 +44,11 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
fprintf(stderr, "%s : failed to decode\n", __func__);
}
for (int i = 0; i < batch.n_tokens; i++) {
if (!batch.logits[i]) {
continue;
}
// try to get sequence embeddings - supported only when pooling_type is not NONE
const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
if (embd == NULL) {
embd = llama_get_embeddings_ith(ctx, i);
if (embd == NULL) {
fprintf(stderr, "%s: failed to get embeddings for token %d\n", __func__, i);
continue;
}
}
float * out = output + batch.seq_id[i][0] * n_embd;
llama_embd_normalize(embd, out, n_embd);
// normalize on copy
for (int k = 0; k < n_seq; k++) {
float * emb = llama_get_embeddings_ith(ctx, k);
float * out = output + k * n_embd;
normalize(emb, out, n_embd);
}
}
@@ -107,25 +106,18 @@ int main(int argc, char ** argv) {
// max batch size
const uint64_t n_batch = params.n_batch;
GGML_ASSERT(params.n_batch >= params.n_ctx);
GGML_ASSERT(params.n_batch == params.n_ctx);
// tokenize the prompts and trim
std::vector<std::vector<int32_t>> inputs;
for (const auto & prompt : prompts) {
auto inp = ::llama_tokenize(ctx, prompt, true, false);
auto inp = ::llama_tokenize(ctx, prompt, true);
if (inp.size() > n_batch) {
inp.resize(n_batch);
}
inputs.push_back(inp);
}
// add eos if not present
for (auto & inp : inputs) {
if (inp.empty() || inp.back() != llama_token_eos(model)) {
inp.push_back(llama_token_eos(model));
}
}
// tokenization stats
if (params.verbose_prompt) {
for (int i = 0; i < (int) inputs.size(); i++) {
@@ -140,7 +132,7 @@ int main(int argc, char ** argv) {
// initialize batch
const int n_prompts = prompts.size();
struct llama_batch batch = llama_batch_init(n_batch, 0, 1);
struct llama_batch batch = llama_batch_init(n_batch, 0, n_prompts);
// allocate output
const int n_embd = llama_n_embd(model);
@@ -153,7 +145,6 @@ int main(int argc, char ** argv) {
for (int k = 0; k < n_prompts; k++) {
// clamp to n_batch tokens
auto & inp = inputs[k];
const uint64_t n_toks = inp.size();
// encode if at capacity
@@ -174,26 +165,15 @@ int main(int argc, char ** argv) {
float * out = emb + p * n_embd;
batch_decode(ctx, batch, out, s, n_embd);
// print the first part of the embeddings
fprintf(stdout, "\n");
for (int j = 0; j < n_prompts; j++) {
fprintf(stdout, "embedding %d: ", j);
for (int i = 0; i < std::min(16, n_embd); i++) {
fprintf(stdout, "%9.6f ", emb[j * n_embd + i]);
// print first 3 embeddings
for (int j = 0; j < std::min(3, n_prompts); j++) {
fprintf(stderr, "embedding %d: ", j);
for (int i = 0; i < n_embd; i++) {
fprintf(stderr, "%f ", emb[j * n_embd + i]);
}
fprintf(stdout, "\n");
}
// print cosine similarity matrix
fprintf(stdout, "\n");
printf("cosine similarity matrix:\n\n");
for (int i = 0; i < n_prompts; i++) {
for (int j = 0; j < n_prompts; j++) {
float sim = llama_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd);
fprintf(stdout, "%6.2f ", sim);
}
fprintf(stdout, "\n");
fprintf(stderr, "\n\n");
}
fprintf(stderr, "\n");
// clean up
llama_print_timings(ctx);

View File

@@ -211,7 +211,6 @@ static bool gguf_ex_read_1(const std::string & fname) {
for (int j = 0; j < ggml_nelements(cur); ++j) {
if (data[j] != 100 + i) {
fprintf(stderr, "%s: tensor[%d]: data[%d] = %f\n", __func__, i, j, data[j]);
gguf_free(ctx);
return false;
}
}

View File

@@ -1,5 +0,0 @@
set(TARGET gritlm)
add_executable(${TARGET} gritlm.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

View File

@@ -1,215 +0,0 @@
#include "common.h"
#include "llama.h"
#include <string>
#include <vector>
// #define GRIT_DEBUG
static std::vector<std::vector<float>> encode(llama_context * ctx, const std::vector<std::string> & sentences, const std::string & instruction) {
std::vector<std::vector<float>> result;
const llama_model * mdl = llama_get_model(ctx);
llama_batch batch = llama_batch_init(llama_n_batch(ctx), 0, 1);
for (uint64_t i = 0; i < sentences.size(); i++) {
llama_batch_clear(batch);
const std::string input_string = instruction + sentences[i];
std::vector<llama_token> inputs = llama_tokenize(mdl, input_string, true, false);
const int32_t n_toks = inputs.size();
// GritLM seems to have EOS = ""
// https://github.com/ContextualAI/gritlm/blob/92025b16534712b31b3c4aaaf069350e222bd5f8/gritlm/gritlm.py#L18
// inputs.push_back(llama_token_eos(mdl));
// we want to ignore instruction tokens for mean pooling
const int32_t n_inst = llama_tokenize(mdl, instruction, true, false).size();
#ifdef GRIT_DEBUG
// debug tokens - should be matching as referenced in the GritLM sample
std::for_each(inputs.begin(), inputs.end(), [&ctx](llama_token t) {
std::printf("[%u:%s]", t, llama_token_to_piece(ctx, t).c_str());
});
std::printf("\n");
#endif
// add input to batch (this increments n_tokens)
for (int32_t j = 0; j < n_toks; j++) {
llama_batch_add(batch, inputs[j], j, { 0 }, j >= n_inst);
}
// clear previous kv_cache values (irrelevant for embeddings)
llama_kv_cache_clear(ctx);
llama_set_causal_attn(ctx, false);
// run model
llama_decode(ctx, batch);
// get embedding dimensions
uint64_t n_embd = llama_n_embd(mdl);
// allocate embedding output
std::vector<float> emb_unorm(n_embd, 0.0f);
// sum up all token embeddings
for (int32_t k = n_inst; k < n_toks; k++) {
float * emb = llama_get_embeddings_ith(ctx, k);
for (uint64_t j = 0; j < n_embd; j++) {
emb_unorm[j] += emb[j];
}
}
// divide by number of tokens (mean pooling)
{
const uint64_t n_sent = n_toks - n_inst;
for (uint64_t j = 0; j < n_embd; j++) {
emb_unorm[j] /= n_sent;
}
}
std::vector<float> emb_norm(emb_unorm.size());
llama_embd_normalize(emb_unorm.data(), emb_norm.data(), n_embd);
result.push_back(emb_norm);
#ifdef GRIT_DEBUG
// print out emb_norm
std::printf("embedding %ld: ", i);
for (uint64_t j = 0; j < n_embd; j++) {
std::printf("%.5f ", emb_norm[j]);
}
std::printf("\n\n");
#endif
}
llama_batch_free(batch);
return result;
}
static std::string generate(llama_context * ctx, const std::string & prompt, bool stream) {
std::string result;
const llama_model * mdl = llama_get_model(ctx);
llama_token eos_token = llama_token_eos(mdl);
llama_kv_cache_clear(ctx);
llama_set_causal_attn(ctx, true);
llama_batch bat = llama_batch_init(llama_n_batch(ctx), 0, 1);
std::vector<llama_token> inputs = llama_tokenize(mdl, prompt, false, true);
int32_t i_current_token = 0;
while (true) {
llama_batch_clear(bat);
auto n_inputs = (int32_t)inputs.size();
for (int32_t i = 0; i < n_inputs; i++) {
llama_batch_add(bat, inputs[i], i_current_token++, { 0 }, i == n_inputs - 1);
}
inputs.clear();
llama_decode(ctx, bat);
auto logits = llama_get_logits_ith(ctx, bat.n_tokens - 1);
auto candidates = std::vector<llama_token_data>(llama_n_vocab(mdl));
auto n_candidates = (int32_t)candidates.size();
for (int32_t token = 0; token < n_candidates; token++) {
candidates[token] = llama_token_data{ token, logits[token], 0.0f };
}
auto candidates_p = llama_token_data_array{ candidates.data(), candidates.size(), false };
llama_token token = llama_sample_token_greedy(ctx, &candidates_p);
if (token == eos_token) {
break;
}
std::string piece = llama_token_to_piece(ctx, token);
if (stream) {
std::printf("%s", piece.c_str());
std::fflush(stdout);
}
inputs.push_back(token);
result += piece;
}
if (stream) {
std::printf("\n");
}
llama_batch_free(bat);
return result;
}
static std::string gritlm_instruction(const std::string & instruction) {
return !instruction.empty() ? "<|user|>\n" + instruction + "\n<|embed|>\n" : "<|embed|>\n";
}
int main(int argc, char * argv[]) {
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
return 1;
}
llama_model_params mparams = llama_model_params_from_gpt_params(params);
llama_context_params cparams = llama_context_params_from_gpt_params(params);
llama_backend_init();
llama_model * mdl = llama_load_model_from_file(params.model.c_str(), mparams);
// create new context - set to embedding mode
cparams.embeddings = true;
llama_context * ctx = llama_new_context_with_model(mdl, cparams);
// ### Embedding/Representation ###
// samples taken from: https://github.com/ContextualAI/gritlm#basic
{
const std::string instruction = "Given a scientific paper title, retrieve the paper's abstract";
const std::vector<std::string> queries = {
"Bitcoin: A Peer-to-Peer Electronic Cash System",
"Generative Representational Instruction Tuning",
};
const std::vector<std::string> documents = {
"A purely peer-to-peer version of electronic cash would allow online payments to be sent directly from one party to another without going through a financial institution. Digital signatures provide part of the solution, but the main benefits are lost if a trusted third party is still required to prevent double-spending. We propose a solution to the double-spending problem using a peer-to-peer network. The network timestamps transactions by hashing them into an ongoing chain of hash-based proof-of-work, forming a record that cannot be changed without redoing the proof-of-work. The longest chain not only serves as proof of the sequence of events witnessed, but proof that it came from the largest pool of CPU power. As long as a majority of CPU power is controlled by nodes that are not cooperating to attack the network, they'll generate the longest chain and outpace attackers. The network itself requires minimal structure. Messages are broadcast on a best effort basis, and nodes can leave and rejoin the network at will, accepting the longest proof-of-work chain as proof of what happened while they were gone.",
"All text-based language problems can be reduced to either generation or embedding. Current models only perform well at one or the other. We introduce generative representational instruction tuning (GRIT) whereby a large language model is trained to handle both generative and embedding tasks by distinguishing between them through instructions. Compared to other open models, our resulting GritLM 7B sets a new state of the art on the Massive Text Embedding Benchmark (MTEB) and outperforms all models up to its size on a range of generative tasks. By scaling up further, GritLM 8X7B outperforms all open generative language models that we tried while still being among the best embedding models. Notably, we find that GRIT matches training on only generative or embedding data, thus we can unify both at no performance loss. Among other benefits, the unification via GRIT speeds up Retrieval-Augmented Generation (RAG) by > 60% for long documents, by no longer requiring separate retrieval and generation models. Models, code, etc. are freely available at https://github.com/ContextualAI/gritlm.",
};
// No need to add instruction for retrieval documents
const std::vector<std::vector<float>> d_rep = encode(ctx, documents, gritlm_instruction(""));
const std::vector<std::vector<float>> q_rep = encode(ctx, queries, gritlm_instruction(instruction));
const int n_embd = llama_n_embd(mdl);
const float cosine_sim_q0_d0 = llama_embd_similarity_cos(q_rep[0].data(), d_rep[0].data(), n_embd);
const float cosine_sim_q0_d1 = llama_embd_similarity_cos(q_rep[0].data(), d_rep[1].data(), n_embd);
const float cosine_sim_q1_d0 = llama_embd_similarity_cos(q_rep[1].data(), d_rep[0].data(), n_embd);
const float cosine_sim_q1_d1 = llama_embd_similarity_cos(q_rep[1].data(), d_rep[1].data(), n_embd);
std::printf("Cosine similarity between \"%.50s\" and \"%.50s\" is: %.3f\n", queries[0].c_str(), documents[0].c_str(), cosine_sim_q0_d0);
std::printf("Cosine similarity between \"%.50s\" and \"%.50s\" is: %.3f\n", queries[0].c_str(), documents[1].c_str(), cosine_sim_q0_d1);
std::printf("Cosine similarity between \"%.50s\" and \"%.50s\" is: %.3f\n", queries[1].c_str(), documents[0].c_str(), cosine_sim_q1_d0);
std::printf("Cosine similarity between \"%.50s\" and \"%.50s\" is: %.3f\n", queries[1].c_str(), documents[1].c_str(), cosine_sim_q1_d1);
}
// ### Generation ###
// GritLM models are not finetuned with system prompts, as you can just include system-like instructions together with your user instruction
{
const std::string prompt = "<|user|>\nPlease write me a poem about my recent hike of Mt. Fuji at midnight in the style of Shakespeare.\n<|assistant|>\n";
std::string response = generate(ctx, prompt, true);
}
llama_free(ctx);
llama_free_model(mdl);
llama_backend_free();
return 0;
}

View File

@@ -378,10 +378,10 @@ int main(int argc, char ** argv) {
if (params.interactive) {
const char *control_message;
if (params.multiline_input) {
control_message = " - To return control to LLaMA, end your input with '\\'.\n"
control_message = " - To return control to LLaMa, end your input with '\\'.\n"
" - To return control without starting a new line, end your input with '/'.\n";
} else {
control_message = " - Press Return to return control to LLaMA.\n"
control_message = " - Press Return to return control to LLaMa.\n"
" - To return control without starting a new line, end your input with '/'.\n"
" - If you want to submit another line, end your input with '\\'.\n";
}

View File

@@ -35,6 +35,7 @@ options:
-mg, --main-gpu <i> (default: 0)
-nkvo, --no-kv-offload <0|1> (default: 0)
-mmp, --mmap <0|1> (default: 1)
-mmq, --mul-mat-q <0|1> (default: 1)
-ts, --tensor_split <ts0/ts1/..> (default: 0)
-r, --repetitions <n> (default: 5)
-o, --output <csv|json|md|sql> (default: md)

View File

@@ -8,7 +8,6 @@
#include <cstdio>
#include <cstring>
#include <ctime>
#include <cstdlib>
#include <iterator>
#include <map>
#include <numeric>
@@ -104,7 +103,6 @@ static std::string get_cpu_info() {
}
}
}
fclose(f);
}
#endif
// TODO: other platforms
@@ -125,15 +123,20 @@ static std::string get_gpu_info() {
}
#endif
#ifdef GGML_USE_SYCL
int count = ggml_backend_sycl_get_device_count();
for (int i = 0; i < count; i++) {
char buf[128];
ggml_sycl_get_device_description(i, buf, sizeof(buf));
id += buf;
if (i < count - 1) {
int device_list[GGML_SYCL_MAX_DEVICES];
ggml_sycl_get_gpu_list(device_list, GGML_SYCL_MAX_DEVICES);
for (int i = 0; i < GGML_SYCL_MAX_DEVICES; i++) {
if (device_list[i] >0 ){
char buf[128];
ggml_sycl_get_device_description(i, buf, sizeof(buf));
id += buf;
id += "/";
}
}
if (id.length() >2 ) {
id.pop_back();
}
#endif
// TODO: other backends
return id;
@@ -166,7 +169,6 @@ struct cmd_params {
std::vector<int> n_prompt;
std::vector<int> n_gen;
std::vector<int> n_batch;
std::vector<int> n_ubatch;
std::vector<ggml_type> type_k;
std::vector<ggml_type> type_v;
std::vector<int> n_threads;
@@ -174,9 +176,9 @@ struct cmd_params {
std::vector<llama_split_mode> split_mode;
std::vector<int> main_gpu;
std::vector<bool> no_kv_offload;
std::vector<bool> mul_mat_q;
std::vector<std::vector<float>> tensor_split;
std::vector<bool> use_mmap;
std::vector<bool> embeddings;
int reps;
bool verbose;
output_formats output_format;
@@ -186,8 +188,7 @@ static const cmd_params cmd_params_defaults = {
/* model */ {"models/7B/ggml-model-q4_0.gguf"},
/* n_prompt */ {512},
/* n_gen */ {128},
/* n_batch */ {2048},
/* n_ubatch */ {512},
/* n_batch */ {512},
/* type_k */ {GGML_TYPE_F16},
/* type_v */ {GGML_TYPE_F16},
/* n_threads */ {get_num_physical_cores()},
@@ -195,9 +196,9 @@ static const cmd_params cmd_params_defaults = {
/* split_mode */ {LLAMA_SPLIT_MODE_LAYER},
/* main_gpu */ {0},
/* no_kv_offload */ {false},
/* mul_mat_q */ {true},
/* tensor_split */ {std::vector<float>(llama_max_devices(), 0.0f)},
/* use_mmap */ {true},
/* embeddings */ {false},
/* reps */ 5,
/* verbose */ false,
/* output_format */ MARKDOWN
@@ -212,7 +213,6 @@ static void print_usage(int /* argc */, char ** argv) {
printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
printf(" -ub N, --ubatch-size <n> (default: %s)\n", join(cmd_params_defaults.n_ubatch, ",").c_str());
printf(" -ctk <t>, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
printf(" -ctv <t>, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
@@ -221,8 +221,8 @@ static void print_usage(int /* argc */, char ** argv) {
printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
printf(" -mmp, --mmap <0|1> (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str());
printf(" -embd, --embeddings <0|1> (default: %s)\n", join(cmd_params_defaults.embeddings, ",").c_str());
printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
printf(" -mmq, --mul-mat-q <0|1> (default: %s)\n", join(cmd_params_defaults.mul_mat_q, ",").c_str());
printf(" -ts, --tensor_split <ts0/ts1/..> (default: 0)\n");
printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
printf(" -o, --output <csv|json|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format));
printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
@@ -302,13 +302,6 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
}
auto p = split<int>(argv[i], split_delim);
params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
} else if (arg == "-ub" || arg == "--ubatch-size") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = split<int>(argv[i], split_delim);
params.n_ubatch.insert(params.n_ubatch.end(), p.begin(), p.end());
} else if (arg == "-ctk" || arg == "--cache-type-k") {
if (++i >= argc) {
invalid_param = true;
@@ -390,6 +383,13 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
}
auto p = split<bool>(argv[i], split_delim);
params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
} else if (arg == "-mmq" || arg == "--mul-mat-q") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = split<bool>(argv[i], split_delim);
params.mul_mat_q.insert(params.mul_mat_q.end(), p.begin(), p.end());
} else if (arg == "-mmp" || arg == "--mmap") {
if (++i >= argc) {
invalid_param = true;
@@ -397,13 +397,6 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
}
auto p = split<bool>(argv[i], split_delim);
params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end());
} else if (arg == "-embd" || arg == "--embeddings") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = split<bool>(argv[i], split_delim);
params.embeddings.insert(params.embeddings.end(), p.begin(), p.end());
} else if (arg == "-ts" || arg == "--tensor-split") {
if (++i >= argc) {
invalid_param = true;
@@ -467,16 +460,15 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
if (params.n_ubatch.empty()) { params.n_ubatch = cmd_params_defaults.n_ubatch; }
if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; }
if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; }
if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
if (params.split_mode.empty()) { params.split_mode = cmd_params_defaults.split_mode; }
if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
if (params.mul_mat_q.empty()) { params.mul_mat_q = cmd_params_defaults.mul_mat_q; }
if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
if (params.use_mmap.empty()) { params.use_mmap = cmd_params_defaults.use_mmap; }
if (params.embeddings.empty()) { params.embeddings = cmd_params_defaults.embeddings; }
if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
return params;
@@ -487,7 +479,6 @@ struct cmd_params_instance {
int n_prompt;
int n_gen;
int n_batch;
int n_ubatch;
ggml_type type_k;
ggml_type type_v;
int n_threads;
@@ -495,9 +486,9 @@ struct cmd_params_instance {
llama_split_mode split_mode;
int main_gpu;
bool no_kv_offload;
bool mul_mat_q;
std::vector<float> tensor_split;
bool use_mmap;
bool embeddings;
llama_model_params to_llama_mparams() const {
llama_model_params mparams = llama_model_default_params();
@@ -525,11 +516,10 @@ struct cmd_params_instance {
cparams.n_ctx = n_prompt + n_gen;
cparams.n_batch = n_batch;
cparams.n_ubatch = n_ubatch;
cparams.type_k = type_k;
cparams.type_v = type_v;
cparams.mul_mat_q = mul_mat_q;
cparams.offload_kqv = !no_kv_offload;
cparams.embeddings = embeddings;
return cparams;
}
@@ -545,11 +535,10 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
for (const auto & mg : params.main_gpu)
for (const auto & ts : params.tensor_split)
for (const auto & mmp : params.use_mmap)
for (const auto & embd : params.embeddings)
for (const auto & nb : params.n_batch)
for (const auto & nub : params.n_ubatch)
for (const auto & tk : params.type_k)
for (const auto & tv : params.type_v)
for (const auto & mmq : params.mul_mat_q)
for (const auto & nkvo : params.no_kv_offload)
for (const auto & nt : params.n_threads) {
for (const auto & n_prompt : params.n_prompt) {
@@ -561,7 +550,6 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
/* .n_prompt = */ n_prompt,
/* .n_gen = */ 0,
/* .n_batch = */ nb,
/* .n_ubatch = */ nub,
/* .type_k = */ tk,
/* .type_v = */ tv,
/* .n_threads = */ nt,
@@ -569,9 +557,9 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
/* .split_mode = */ sm,
/* .main_gpu = */ mg,
/* .no_kv_offload= */ nkvo,
/* .mul_mat_q = */ mmq,
/* .tensor_split = */ ts,
/* .use_mmap = */ mmp,
/* .embeddings = */ embd,
};
instances.push_back(instance);
}
@@ -585,7 +573,6 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
/* .n_prompt = */ 0,
/* .n_gen = */ n_gen,
/* .n_batch = */ nb,
/* .n_ubatch = */ nub,
/* .type_k = */ tk,
/* .type_v = */ tv,
/* .n_threads = */ nt,
@@ -593,9 +580,9 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
/* .split_mode = */ sm,
/* .main_gpu = */ mg,
/* .no_kv_offload= */ nkvo,
/* .mul_mat_q = */ mmq,
/* .tensor_split = */ ts,
/* .use_mmap = */ mmp,
/* .embeddings = */ embd,
};
instances.push_back(instance);
}
@@ -622,7 +609,6 @@ struct test {
uint64_t model_size;
uint64_t model_n_params;
int n_batch;
int n_ubatch;
int n_threads;
ggml_type type_k;
ggml_type type_v;
@@ -630,9 +616,9 @@ struct test {
llama_split_mode split_mode;
int main_gpu;
bool no_kv_offload;
bool mul_mat_q;
std::vector<float> tensor_split;
bool use_mmap;
bool embeddings;
int n_prompt;
int n_gen;
std::string test_time;
@@ -646,7 +632,6 @@ struct test {
model_size = llama_model_size(lmodel);
model_n_params = llama_model_n_params(lmodel);
n_batch = inst.n_batch;
n_ubatch = inst.n_ubatch;
n_threads = inst.n_threads;
type_k = inst.type_k;
type_v = inst.type_v;
@@ -654,9 +639,9 @@ struct test {
split_mode = inst.split_mode;
main_gpu = inst.main_gpu;
no_kv_offload = inst.no_kv_offload;
mul_mat_q = inst.mul_mat_q;
tensor_split = inst.tensor_split;
use_mmap = inst.use_mmap;
embeddings = inst.embeddings;
n_prompt = inst.n_prompt;
n_gen = inst.n_gen;
// RFC 3339 date-time format
@@ -725,11 +710,10 @@ struct test {
"cuda", "opencl", "vulkan", "kompute", "metal", "sycl", "gpu_blas", "blas",
"cpu_info", "gpu_info",
"model_filename", "model_type", "model_size", "model_n_params",
"n_batch", "n_ubatch",
"n_threads", "type_k", "type_v",
"n_batch", "n_threads", "type_k", "type_v",
"n_gpu_layers", "split_mode",
"main_gpu", "no_kv_offload",
"tensor_split", "use_mmap", "embeddings",
"mul_mat_q", "tensor_split", "use_mmap",
"n_prompt", "n_gen", "test_time",
"avg_ns", "stddev_ns",
"avg_ts", "stddev_ts"
@@ -740,8 +724,7 @@ struct test {
enum field_type {STRING, BOOL, INT, FLOAT};
static field_type get_field_type(const std::string & field) {
if (field == "build_number" || field == "n_batch" || field == "n_ubatch" ||
field == "n_threads" ||
if (field == "build_number" || field == "n_batch" || field == "n_threads" ||
field == "model_size" || field == "model_n_params" ||
field == "n_gpu_layers" || field == "main_gpu" ||
field == "n_prompt" || field == "n_gen" ||
@@ -750,7 +733,7 @@ struct test {
}
if (field == "cuda" || field == "opencl" || field == "vulkan" || field == "kompute" || field == "metal" ||
field == "gpu_blas" || field == "blas" || field == "sycl" ||field == "f16_kv" || field == "no_kv_offload" ||
field == "use_mmap" || field == "embeddings") {
field == "mul_mat_q" || field == "use_mmap") {
return BOOL;
}
if (field == "avg_ts" || field == "stddev_ts") {
@@ -781,11 +764,10 @@ struct test {
std::to_string(metal), std::to_string(sycl), std::to_string(gpu_blas), std::to_string(blas),
cpu_info, gpu_info,
model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
std::to_string(n_batch), std::to_string(n_ubatch),
std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v),
std::to_string(n_batch), std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v),
std::to_string(n_gpu_layers), split_mode_str(split_mode),
std::to_string(main_gpu), std::to_string(no_kv_offload),
tensor_split_str, std::to_string(use_mmap), std::to_string(embeddings),
std::to_string(mul_mat_q), tensor_split_str, std::to_string(use_mmap),
std::to_string(n_prompt), std::to_string(n_gen), test_time,
std::to_string(avg_ns()), std::to_string(stdev_ns()),
std::to_string(avg_ts()), std::to_string(stdev_ts())
@@ -949,15 +931,15 @@ struct markdown_printer : public printer {
if (field == "n_threads") {
return "threads";
}
if (field == "mul_mat_q") {
return "mmq";
}
if (field == "no_kv_offload") {
return "nkvo";
}
if (field == "use_mmap") {
return "mmap";
}
if (field == "embeddings") {
return "embd";
}
if (field == "tensor_split") {
return "ts";
}
@@ -980,9 +962,6 @@ struct markdown_printer : public printer {
if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
fields.emplace_back("n_batch");
}
if (params.n_ubatch.size() > 1 || params.n_ubatch != cmd_params_defaults.n_ubatch) {
fields.emplace_back("n_ubatch");
}
if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
fields.emplace_back("type_k");
}
@@ -995,6 +974,9 @@ struct markdown_printer : public printer {
if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
fields.emplace_back("split_mode");
}
if (params.mul_mat_q.size() > 1 || params.mul_mat_q != cmd_params_defaults.mul_mat_q) {
fields.emplace_back("mul_mat_q");
}
if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
fields.emplace_back("no_kv_offload");
}
@@ -1004,9 +986,6 @@ struct markdown_printer : public printer {
if (params.use_mmap.size() > 1 || params.use_mmap != cmd_params_defaults.use_mmap) {
fields.emplace_back("use_mmap");
}
if (params.embeddings.size() > 1 || params.embeddings != cmd_params_defaults.embeddings) {
fields.emplace_back("embeddings");
}
fields.emplace_back("test");
fields.emplace_back("t/s");
@@ -1122,40 +1101,25 @@ struct sql_printer : public printer {
};
static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
llama_set_n_threads(ctx, n_threads, n_threads);
const llama_model * model = llama_get_model(ctx);
const int32_t n_vocab = llama_n_vocab(model);
std::vector<llama_token> tokens(n_batch);
std::vector<llama_token> tokens(n_batch, llama_token_bos(llama_get_model(ctx)));
int n_processed = 0;
llama_set_n_threads(ctx, n_threads, n_threads);
while (n_processed < n_prompt) {
int n_tokens = std::min(n_prompt - n_processed, n_batch);
tokens[0] = n_processed == 0 && llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
for (int i = 1; i < n_tokens; i++) {
tokens[i] = std::rand() % n_vocab;
}
llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens, n_past + n_processed, 0));
n_processed += n_tokens;
}
llama_synchronize(ctx);
}
static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
llama_token token = llama_token_bos(llama_get_model(ctx));
llama_set_n_threads(ctx, n_threads, n_threads);
const llama_model * model = llama_get_model(ctx);
const int32_t n_vocab = llama_n_vocab(model);
llama_token token = llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
for (int i = 0; i < n_gen; i++) {
llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0));
llama_synchronize(ctx);
token = std::rand() % n_vocab;
}
}
@@ -1244,8 +1208,7 @@ int main(int argc, char ** argv) {
// warmup run
if (t.n_prompt > 0) {
//test_prompt(ctx, std::min(t.n_batch, std::min(t.n_prompt, 32)), 0, t.n_batch, t.n_threads);
test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
test_prompt(ctx, std::min(2, t.n_batch), 0, t.n_batch, t.n_threads);
}
if (t.n_gen > 0) {
test_gen(ctx, 1, 0, t.n_threads);
@@ -1261,7 +1224,6 @@ int main(int argc, char ** argv) {
if (t.n_gen > 0) {
test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads);
}
uint64_t t_ns = get_time_ns() - t_start;
t.samples_ns.push_back(t_ns);
}

View File

@@ -33,45 +33,6 @@ jclass la_int_var;
jmethodID la_int_var_value;
jmethodID la_int_var_inc;
std::string cached_token_chars;
bool is_valid_utf8(const char * string) {
if (!string) {
return true;
}
const unsigned char * bytes = (const unsigned char *)string;
int num;
while (*bytes != 0x00) {
if ((*bytes & 0x80) == 0x00) {
// U+0000 to U+007F
num = 1;
} else if ((*bytes & 0xE0) == 0xC0) {
// U+0080 to U+07FF
num = 2;
} else if ((*bytes & 0xF0) == 0xE0) {
// U+0800 to U+FFFF
num = 3;
} else if ((*bytes & 0xF8) == 0xF0) {
// U+10000 to U+10FFFF
num = 4;
} else {
return false;
}
bytes += 1;
for (int i = 1; i < num; ++i) {
if ((*bytes & 0xC0) != 0x80) {
return false;
}
bytes += 1;
}
}
return true;
}
static void log_callback(ggml_log_level level, const char * fmt, void * data) {
if (level == GGML_LOG_LEVEL_ERROR) __android_log_print(ANDROID_LOG_ERROR, TAG, fmt, data);
else if (level == GGML_LOG_LEVEL_INFO) __android_log_print(ANDROID_LOG_INFO, TAG, fmt, data);
@@ -334,8 +295,6 @@ Java_com_example_llama_Llm_completion_1init(
jint n_len
) {
cached_token_chars.clear();
const auto text = env->GetStringUTFChars(jtext, 0);
const auto context = reinterpret_cast<llama_context *>(context_pointer);
const auto batch = reinterpret_cast<llama_batch *>(batch_pointer);
@@ -413,16 +372,8 @@ Java_com_example_llama_Llm_completion_1loop(
}
auto new_token_chars = llama_token_to_piece(context, new_token_id);
cached_token_chars += new_token_chars;
jstring new_token = nullptr;
if (is_valid_utf8(cached_token_chars.c_str())) {
new_token = env->NewStringUTF(cached_token_chars.c_str());
LOGi("cached: %s, new_token_chars: `%s`, id: %d", cached_token_chars.c_str(), new_token_chars.c_str(), new_token_id);
cached_token_chars.clear();
} else {
new_token = env->NewStringUTF("");
}
LOGi("new_token_chars: `%s`", new_token_chars.c_str());
auto new_token = env->NewStringUTF(new_token_chars.c_str());
llama_batch_clear(*batch);
llama_batch_add(*batch, new_token_id, n_cur, { 0 }, true);

View File

@@ -71,7 +71,7 @@ class Llm {
batch: Long,
nLen: Int,
ncur: IntVar
): String?
): String
private external fun kv_cache_clear(context: Long)
@@ -115,7 +115,7 @@ class Llm {
val ncur = IntVar(completion_init(state.context, state.batch, message, nlen))
while (ncur.value <= nlen) {
val str = completion_loop(state.context, state.batch, nlen, ncur)
if (str == null) {
if (str.isEmpty()) {
break
}
emit(str)

View File

@@ -221,7 +221,6 @@ actor LlamaContext {
if llama_decode(context, batch) != 0 {
print("llama_decode() failed during prompt")
}
llama_synchronize(context)
let t_pp_end = ggml_time_us()
@@ -241,7 +240,6 @@ actor LlamaContext {
if llama_decode(context, batch) != 0 {
print("llama_decode() failed during text generation")
}
llama_synchronize(context)
}
let t_tg_end = ggml_time_us()

View File

@@ -63,20 +63,12 @@ Now both the LLaMA part and the image encoder is in the `llava-v1.5-7b` director
```console
git clone https://huggingface.co/liuhaotian/llava-v1.6-vicuna-7b
```
2) Install the required Python packages:
```sh
pip install -r examples/llava/requirements.txt
```
3) Use `llava-surgery-v2.py` which also supports llava-1.5 variants pytorch as well as safetensor models:
2) Use `llava-surgery-v2.py` which also supports llava-1.5 variants pytorch as well as safetensor models:
```console
python examples/llava/llava-surgery-v2.py -C -m ../llava-v1.6-vicuna-7b/
```
- you will find a llava.projector and a llava.clip file in your model directory
4) Copy the llava.clip file into a subdirectory (like vit), rename it to pytorch_model.bin and add a fitting vit configuration to the directory:
3) Copy the llava.clip file into a subdirectory (like vit), rename it to pytorch_model.bin and add a fitting vit configuration to the directory:
```console
mkdir vit
cp ../llava-v1.6-vicuna-7b/llava.clip vit/pytorch_model.bin
@@ -84,18 +76,18 @@ cp ../llava-v1.6-vicuna-7b/llava.projector vit/
curl -s -q https://huggingface.co/cmp-nct/llava-1.6-gguf/raw/main/config_vit.json -o vit/config.json
```
5) Create the visual gguf model:
4) Create the visual gguf model:
```console
python ./examples/llava/convert-image-encoder-to-gguf.py -m vit --llava-projector vit/llava.projector --output-dir vit --clip-model-is-vision
```
- This is similar to llava-1.5, the difference is that we tell the encoder that we are working with the pure vision model part of CLIP
6) Then convert the model to gguf format:
5) Then convert the model to gguf format:
```console
python ./convert.py ../llava-v1.6-vicuna-7b/ --skip-unknown
```
7) And finally we can run the llava-cli using the 1.6 model version:
6) And finally we can run the llava-cli using the 1.6 model version:
```console
./llava-cli -m ../llava-v1.6-vicuna-7b/ggml-model-f16.gguf --mmproj vit/mmproj-model-f16.gguf --image some-image.jpg -c 4096
```

View File

@@ -995,7 +995,6 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
if (!new_clip->ctx_data) {
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
clip_free(new_clip);
gguf_free(ctx);
return nullptr;
}
@@ -1003,7 +1002,6 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
if (!fin) {
printf("cannot open model file for loading tensors\n");
clip_free(new_clip);
gguf_free(ctx);
return nullptr;
}
@@ -1025,7 +1023,6 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
if (!fin) {
printf("%s: failed to seek for tensor %s\n", __func__, name);
clip_free(new_clip);
gguf_free(ctx);
return nullptr;
}
int num_bytes = ggml_nbytes(cur);
@@ -1235,16 +1232,16 @@ struct clip_image_f32 * clip_image_f32_init() {
void clip_image_u8_free(struct clip_image_u8 * img) { delete img; }
void clip_image_f32_free(struct clip_image_f32 * img) { delete img; }
void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) {
if (batch->size > 0) {
delete[] batch->data;
batch->size = 0;
void clip_image_u8_batch_free(struct clip_image_u8_batch & batch) {
if (batch.size > 0) {
delete[] batch.data;
batch.size = 0;
}
}
void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) {
if (batch->size > 0) {
delete[] batch->data;
batch->size = 0;
void clip_image_f32_batch_free(struct clip_image_f32_batch & batch) {
if (batch.size > 0) {
delete[] batch.data;
batch.size = 0;
}
}
@@ -1497,7 +1494,7 @@ static std::vector<clip_image_u8*> divide_to_patches_u8(const clip_image_u8 & im
// returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
// res_imgs memory is being allocated here, previous allocations will be freed if found
bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32_batch * res_imgs) {
bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32_batch & res_imgs) {
bool pad_to_square = true;
if (!ctx->has_vision_encoder) {
printf("This gguf file seems to have no vision encoder\n");
@@ -1509,11 +1506,11 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, cli
pad_to_square = false;
}
// free the previous res_imgs if any set
if (res_imgs->size > 0) {
if (res_imgs.size > 0) {
clip_image_f32_batch_free(res_imgs);
}
res_imgs->data = nullptr;
res_imgs->size = 0;
res_imgs.data = nullptr;
res_imgs.size = 0;
// the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
// see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
@@ -1568,11 +1565,11 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, cli
bicubic_resize(*img, *image_original_resize, params.image_size, params.image_size); // in python this is "shortest_edge", but all CLIP are square
patches.insert(patches.begin(), image_original_resize);
// clip_image_f32_batch_init(patches.size());
res_imgs->size = patches.size();
res_imgs->data = new clip_image_f32[res_imgs->size];
res_imgs.size = patches.size();
res_imgs.data = new clip_image_f32[res_imgs.size];
int num=0;
for (auto& patch : patches) {
normalize_image_u8_to_f32(patch, &res_imgs->data[num], ctx->image_mean, ctx->image_std);
normalize_image_u8_to_f32(patch, &res_imgs.data[num], ctx->image_mean, ctx->image_std);
num++;
}
@@ -1660,9 +1657,9 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, cli
// }
// res_imgs.push_back(res);
res_imgs->size = 1;
res_imgs->data = new clip_image_f32[res_imgs->size];
res_imgs->data[0] = *res;
res_imgs.size = 1;
res_imgs.data = new clip_image_f32[res_imgs.size];
res_imgs.data[0] = *res;
clip_image_f32_free(res);
return true;
@@ -1865,6 +1862,7 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
std::vector<uint8_t> work(512);
std::vector<float> conv_buf(512);
std::vector<int64_t> hist_all(1 << 4, 0);
size_t total_size_org = 0;
size_t total_size_new = 0;
@@ -1911,7 +1909,6 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
break;
default:
printf("Please use an input file in f32 or f16\n");
gguf_free(ctx_out);
return false;
}
@@ -1920,7 +1917,48 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
}
new_data = work.data();
new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, n_elms/cur->ne[0], cur->ne[0], nullptr);
std::vector<int64_t> hist_cur(1 << 4, 0);
switch (new_type) {
case GGML_TYPE_Q4_0: {
new_size = ggml_quantize_q4_0(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
} break;
case GGML_TYPE_Q4_1: {
new_size = ggml_quantize_q4_1(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
} break;
case GGML_TYPE_Q5_0: {
new_size = ggml_quantize_q5_0(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
} break;
case GGML_TYPE_Q5_1: {
new_size = ggml_quantize_q5_1(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
} break;
case GGML_TYPE_Q8_0: {
new_size = ggml_quantize_q8_0(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
} break;
case GGML_TYPE_Q2_K: {
new_size = ggml_quantize_q2_K(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
} break;
case GGML_TYPE_Q3_K: {
new_size = ggml_quantize_q3_K(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
} break;
case GGML_TYPE_Q4_K: {
new_size = ggml_quantize_q4_K(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
} break;
case GGML_TYPE_Q5_K: {
new_size = ggml_quantize_q5_K(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
} break;
case GGML_TYPE_Q6_K: {
new_size = ggml_quantize_q6_K(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
} break;
default: {
fprintf(stderr, "%s: unsupported quantization type %d\n", __func__, new_type);
return false;
}
}
for (size_t j = 0; j < hist_cur.size(); ++j) {
hist_all[j] += hist_cur[j];
}
} else {
new_type = cur->type;
new_data = cur->data;
@@ -1955,6 +1993,17 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
{
printf("%s: original size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0);
printf("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0);
int64_t sum_all = 0;
for (size_t i = 0; i < hist_all.size(); ++i) {
sum_all += hist_all[i];
}
printf("%s: hist: ", __func__);
for (size_t i = 0; i < hist_all.size(); ++i) {
printf("%5.3f ", hist_all[i] / (float)sum_all);
}
printf("\n");
}
return true;

View File

@@ -60,8 +60,8 @@ CLIP_API struct clip_image_f32 * clip_image_f32_init();
CLIP_API void clip_image_u8_free (struct clip_image_u8 * img);
CLIP_API void clip_image_f32_free(struct clip_image_f32 * img);
CLIP_API void clip_image_u8_batch_free (struct clip_image_u8_batch * batch);
CLIP_API void clip_image_f32_batch_free(struct clip_image_f32_batch * batch);
CLIP_API void clip_image_u8_batch_free (struct clip_image_u8_batch & batch);
CLIP_API void clip_image_f32_batch_free(struct clip_image_f32_batch & batch);
CLIP_API bool clip_image_load_from_file(const char * fname, struct clip_image_u8 * img);
@@ -69,7 +69,7 @@ CLIP_API bool clip_image_load_from_file(const char * fname, struct clip_image_u8
CLIP_API bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img);
/** preprocess img and store the result in res_imgs, pad_to_square may be overriden to false depending on model configuration */
CLIP_API bool clip_image_preprocess(struct clip_ctx * ctx, const struct clip_image_u8 * img, struct clip_image_f32_batch * res_imgs );
CLIP_API bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32_batch & res_imgs );
CLIP_API struct ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx);

View File

@@ -223,7 +223,7 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
clip_image_f32_batch img_res_v;
img_res_v.size = 0;
img_res_v.data = nullptr;
if (!clip_image_preprocess(ctx_clip, img, &img_res_v)) {
if (!clip_image_preprocess(ctx_clip, img, img_res_v)) {
fprintf(stderr, "%s: unable to preprocess image\n", __func__);
delete[] img_res_v.data;
return false;

View File

@@ -29,9 +29,9 @@ struct llava_image_embed {
};
/** sanity check for clip <-> llava embed size match */
LLAVA_API bool llava_validate_embed_size(const struct llama_context * ctx_llama, const struct clip_ctx * ctx_clip);
LLAVA_API bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx * ctx_clip);
LLAVA_API bool llava_image_embed_make_with_clip_img(struct clip_ctx * ctx_clip, int n_threads, const struct clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out);
LLAVA_API bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out);
/** build an image embed from image file bytes */
LLAVA_API struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length);

View File

@@ -511,14 +511,6 @@ int main(int argc, char ** argv) {
std::vector<llama_token> embd;
std::vector<llama_token> embd_guidance;
// tokenized antiprompts
std::vector<std::vector<llama_token>> antiprompt_ids;
antiprompt_ids.reserve(params.antiprompt.size());
for (const std::string & antiprompt : params.antiprompt) {
antiprompt_ids.emplace_back(::llama_tokenize(ctx, antiprompt, false, true));
}
struct llama_sampling_context * ctx_sampling = llama_sampling_init(sparams);
while ((n_remain != 0 && !is_antiprompt) || params.interactive) {
@@ -777,18 +769,6 @@ int main(int argc, char ** argv) {
}
}
// check for reverse prompt using special tokens
llama_token last_token = llama_sampling_last(ctx_sampling);
for (std::vector<llama_token> ids : antiprompt_ids) {
if (ids.size() == 1 && last_token == ids[0]) {
if (params.interactive) {
is_interacting = true;
}
is_antiprompt = true;
break;
}
}
if (is_antiprompt) {
LOG("found antiprompt: %s\n", last_output.c_str());
}
@@ -878,7 +858,6 @@ int main(int argc, char ** argv) {
const auto line_pfx = ::llama_tokenize(ctx, params.input_prefix, false, true);
const auto line_inp = ::llama_tokenize(ctx, buffer, false, false);
const auto line_sfx = ::llama_tokenize(ctx, params.input_suffix, false, true);
LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp).c_str());
embd_inp.insert(embd_inp.end(), line_pfx.begin(), line_pfx.end());

View File

@@ -107,9 +107,6 @@ int main(int argc, char ** argv) {
// number of simultaneous "clients" to simulate
const int32_t n_clients = params.n_parallel;
// dedicate one sequence to the system prompt
params.n_parallel += 1;
// requests to simulate
const int32_t n_seq = params.n_sequences;
@@ -199,8 +196,8 @@ int main(int argc, char ** argv) {
}
// assign the system KV cache to all parallel sequences
for (int32_t i = 1; i <= n_clients; ++i) {
llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
for (int32_t i = 1; i < n_clients; ++i) {
llama_kv_cache_seq_cp(ctx, 0, i, 0, n_tokens_system);
}
LOG_TEE("\n");
@@ -224,17 +221,15 @@ int main(int argc, char ** argv) {
client.i_batch = batch.n_tokens;
llama_batch_add(batch, client.sampled, n_tokens_system + client.n_prompt + client.n_decoded, { client.id + 1 }, true);
llama_batch_add(batch, client.sampled, n_tokens_system + client.n_prompt + client.n_decoded, { client.id }, true);
client.n_decoded += 1;
}
if (batch.n_tokens == 0) {
// all sequences have ended - clear the entire KV cache
for (int i = 1; i <= n_clients; ++i) {
llama_kv_cache_seq_rm(ctx, i, -1, -1);
// but keep the system prompt
llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
for (int i = 0; i < n_clients; ++i) {
llama_kv_cache_seq_rm(ctx, i, n_tokens_system, -1);
}
LOG_TEE("%s: clearing the KV cache\n", __func__);
@@ -260,7 +255,7 @@ int main(int argc, char ** argv) {
tokens_prompt = ::llama_tokenize(ctx, client.prompt, false);
for (size_t i = 0; i < tokens_prompt.size(); ++i) {
llama_batch_add(batch, tokens_prompt[i], i + n_tokens_system, { client.id + 1 }, false);
llama_batch_add(batch, tokens_prompt[i], i + n_tokens_system, { client.id }, false);
}
// extract the logits only for the last token
@@ -371,8 +366,7 @@ int main(int argc, char ** argv) {
}
// delete only the generated part of the sequence, i.e. keep the system prompt in the cache
llama_kv_cache_seq_rm(ctx, client.id + 1, -1, -1);
llama_kv_cache_seq_cp(ctx, 0, client.id + 1, -1, -1);
llama_kv_cache_seq_rm(ctx, client.id, n_tokens_system, -1);
const auto t_main_end = ggml_time_us();

View File

@@ -442,7 +442,7 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params &
return {tokens, std::exp(nll / count), logit_history, prob_history};
}
static results_perplexity perplexity(llama_context * ctx, const gpt_params & params, const int32_t n_ctx) {
static results_perplexity perplexity(llama_context * ctx, const gpt_params & params) {
if (params.ppl_stride > 0) {
return perplexity_v2(ctx, params);
}
@@ -453,6 +453,7 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
// BOS tokens will be added for each chunk before eval
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
const int n_ctx = llama_n_ctx(ctx);
std::ofstream logits_stream;
if (!params.logits_file.empty()) {
@@ -498,19 +499,13 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
double nll2 = 0.0;
const int num_batches = (n_ctx + n_batch - 1) / n_batch;
const int n_seq = std::max(1, n_batch / n_ctx);
GGML_ASSERT(n_batch < n_ctx || n_batch % n_ctx == 0);
GGML_ASSERT(params.n_ctx == n_seq * n_ctx);
llama_batch batch = llama_batch_init(std::min(n_batch, n_ctx*n_seq), 0, 1);
std::vector<float> logits;
if (num_batches > 1) {
logits.reserve((size_t)n_ctx * n_vocab);
}
fprintf(stderr, "%s: calculating perplexity over %d chunks, n_ctx=%d, batch_size=%d, n_seq=%d\n", __func__, n_chunk, n_ctx, n_batch, n_seq);
fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
@@ -523,26 +518,10 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
log_probs.resize(n_ctx * nv);
}
// We get the logits for all the tokens in the context window (params.n_ctx)
// from llama_eval above. Now, based on https://huggingface.co/docs/transformers/perplexity,
// calculate the perplexity over the last half of the window (so the model always has
// some context to predict the token).
//
// We rely on the fact that attention in the forward pass only looks at previous
// tokens here, so the logits returned for each token are an accurate representation
// of what the model would have predicted at that point.
//
// Example, we have a context window of 512, we will compute perplexity for each of the
// last 256 tokens. Then, we split the input up into context window size chunks to
// process the entire prompt.
const int first = n_ctx/2;
for (int i = 0; i < n_chunk; i += n_seq) {
for (int i = 0; i < n_chunk; ++i) {
const int start = i * n_ctx;
const int end = start + n_ctx;
const int n_seq_batch = std::min(n_seq, n_chunk - i);
const auto t_start = std::chrono::high_resolution_clock::now();
// clear the KV cache
@@ -552,50 +531,34 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
const int batch_start = start + j * n_batch;
const int batch_size = std::min(end - batch_start, n_batch);
batch.n_tokens = 0;
for (int seq = 0; seq < n_seq_batch; seq++) {
int seq_start = batch_start + seq*n_ctx;
// save original token and restore it after eval
const auto token_org = tokens[batch_start];
// save original token and restore it after eval
const auto token_org = tokens[seq_start];
// add BOS token for the first batch of each chunk
if (add_bos && j == 0) {
tokens[seq_start] = llama_token_bos(llama_get_model(ctx));
}
for (int k = 0; k < batch_size; ++k) {
const int idx = seq*n_ctx + k;
batch.token[idx] = tokens[seq_start + k];
batch.pos[idx] = j*n_batch + k;
batch.n_seq_id[idx] = 1;
batch.seq_id[idx][0] = seq;
batch.logits[idx] = batch.pos[idx] >= first ? 1 : 0;
}
batch.n_tokens += batch_size;
// restore the original token in case it was set to BOS
tokens[seq_start] = token_org;
// add BOS token for the first batch of each chunk
if (add_bos && j == 0) {
tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
}
if (llama_decode(ctx, batch)) {
if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return {tokens, -1, logit_history, prob_history};
}
// restore the original token in case it was set to BOS
tokens[batch_start] = token_org;
if (num_batches > 1) {
const auto * batch_logits = llama_get_logits(ctx);
logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
}
}
const auto t_end = std::chrono::high_resolution_clock::now();
if (i == 0) {
llama_synchronize(ctx);
const auto t_end = std::chrono::high_resolution_clock::now();
const float t_total = std::chrono::duration<float>(t_end - t_start).count();
fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
int total_seconds = (int)(t_total*n_chunk/n_seq);
int total_seconds = (int)(t_total * n_chunk);
if (total_seconds >= 60*60) {
fprintf(stderr, "%d hours ", total_seconds / (60*60));
total_seconds = total_seconds % (60*60);
@@ -603,31 +566,37 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0);
}
for (int seq = 0; seq < n_seq_batch; seq++) {
const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits_ith(ctx, seq*n_ctx);
llama_token * tokens_data = tokens.data() + start + seq*n_ctx + first;
if (!params.logits_file.empty()) {
process_logits(logits_stream, n_vocab, all_logits + first*n_vocab,
tokens_data, n_ctx - 1 - first,
workers, log_probs, nll, nll2);
} else {
process_logits(n_vocab, all_logits + first*n_vocab,
tokens_data, n_ctx - 1 - first,
workers, nll, nll2,
logit_history.data() + start + seq*n_ctx + first,
prob_history.data() + start + seq*n_ctx + first);
}
count += n_ctx - first - 1;
// We get the logits for all the tokens in the context window (params.n_ctx)
// from llama_eval above. Now, based on https://huggingface.co/docs/transformers/perplexity,
// calculate the perplexity over the last half of the window (so the model always has
// some context to predict the token).
//
// We rely on the fact that attention in the forward pass only looks at previous
// tokens here, so the logits returned for each token are an accurate representation
// of what the model would have predicted at that point.
//
// Example, we have a context window of 512, we will compute perplexity for each of the
// last 256 tokens. Then, we split the input up into context window size chunks to
// process the entire prompt.
const int first = n_ctx/2;
const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx);
if (!params.logits_file.empty()) {
process_logits(logits_stream, n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first,
workers, log_probs, nll, nll2);
} else {
process_logits(n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first,
workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first);
}
count += n_ctx - first - 1;
// perplexity is e^(average negative log-likelihood)
if (params.ppl_output_type == 0) {
printf("[%d]%.4lf,", i + seq + 1, std::exp(nll / count));
} else {
double av = nll/count;
double av2 = nll2/count - av*av;
if (av2 > 0) av2 = sqrt(av2/(count-1));
printf("%8d %.4lf %4lf %4lf\n", i*n_ctx, std::exp(nll / count), av, av2);
}
// perplexity is e^(average negative log-likelihood)
if (params.ppl_output_type == 0) {
printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
} else {
double av = nll/count;
double av2 = nll2/count - av*av;
if (av2 > 0) av2 = sqrt(av2/(count-1));
printf("%8d %.4lf %4lf %4lf\n", i*n_ctx, std::exp(nll / count), av, av2);
}
fflush(stdout);
@@ -646,8 +615,6 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
printf("Unexpected negative standard deviation of log(prob)\n");
}
llama_batch_free(batch);
return {tokens, ppl, logit_history, prob_history};
}
@@ -842,7 +809,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
const int n_batch = params.n_batch;
const int max_tasks_per_batch = 32;
const int max_seq = std::min(4*max_tasks_per_batch, (int) llama_n_seq_max(ctx));
const int max_seq = 4*max_tasks_per_batch;
llama_batch batch = llama_batch_init(n_ctx, 0, max_seq);
@@ -1119,7 +1086,7 @@ static void winogrande_score(llama_context * ctx, const gpt_params & params) {
const int n_batch = params.n_batch;
const int max_tasks_per_batch = 128;
const int max_seq = std::min(2*max_tasks_per_batch, (int) llama_n_seq_max(ctx));
const int max_seq = 2*max_tasks_per_batch;
llama_batch batch = llama_batch_init(n_ctx, 0, max_seq);
@@ -1471,7 +1438,7 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
const int n_batch = params.n_batch;
const int max_tasks_per_batch = 32;
const int max_seq = std::min(4*max_tasks_per_batch, (int) llama_n_seq_max(ctx));
const int max_seq = 4*max_tasks_per_batch;
llama_batch batch = llama_batch_init(n_ctx, 0, max_seq);
@@ -1815,24 +1782,13 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) {
int main(int argc, char ** argv) {
gpt_params params;
params.n_batch = 512;
if (!gpt_params_parse(argc, argv, params)) {
return 1;
}
params.logits_all = true;
const int32_t n_ctx = params.n_ctx;
const bool ppl = !params.hellaswag && !params.winogrande && !params.multiple_choice && !params.kl_divergence;
if (ppl) {
int n_seq = std::max(1, params.n_batch / n_ctx);
int32_t n_kv = n_seq * n_ctx;
params.n_parallel = n_seq;
params.n_ctx = n_kv;
params.n_batch = std::min(params.n_batch, n_kv);
} else {
params.n_batch = std::min(params.n_batch, params.n_ctx);
}
params.n_batch = std::min(params.n_batch, params.n_ctx);
if (params.ppl_stride > 0) {
fprintf(stderr, "Will perform strided perplexity calculation -> adjusting context size from %d to %d\n",
@@ -1859,9 +1815,6 @@ int main(int argc, char ** argv) {
llama_model * model;
llama_context * ctx;
// ensure there's at least enough seq_ids for HellaSwag
params.n_parallel = std::max(4, params.n_parallel);
// load the model and apply lora adapter, if any
std::tie(model, ctx) = llama_init_from_gpt_params(params);
if (model == NULL) {
@@ -1891,7 +1844,7 @@ int main(int argc, char ** argv) {
} else if (params.kl_divergence) {
kl_divergence(ctx, params);
} else {
results = perplexity(ctx, params, n_ctx);
results = perplexity(ctx, params);
}
llama_print_timings(ctx);

View File

@@ -1,34 +0,0 @@
import asyncio
import requests
import numpy as np
n = 8
result = []
async def requests_post_async(*args, **kwargs):
return await asyncio.to_thread(requests.post, *args, **kwargs)
async def main():
model_url = "http://127.0.0.1:6900"
responses: list[requests.Response] = await asyncio.gather(*[requests_post_async(
url= f"{model_url}/embedding",
json= {"content": str(0)*1024}
) for i in range(n)])
for response in responses:
embedding = response.json()["embedding"]
print(embedding[-8:])
result.append(embedding)
asyncio.run(main())
# compute cosine similarity
for i in range(n-1):
for j in range(i+1, n):
embedding1 = np.array(result[i])
embedding2 = np.array(result[j])
similarity = np.dot(embedding1, embedding2) / (np.linalg.norm(embedding1) * np.linalg.norm(embedding2))
print(f"Similarity between {i} and {j}: {similarity:.2f}")

View File

@@ -1,18 +1,12 @@
set(TARGET server)
option(LLAMA_SERVER_VERBOSE "Build verbose logging option for Server" ON)
option(LLAMA_SERVER_SSL "Build SSL support for the server" OFF)
include_directories(${CMAKE_CURRENT_SOURCE_DIR})
add_executable(${TARGET} server.cpp utils.hpp json.hpp httplib.h)
add_executable(${TARGET} server.cpp oai.hpp utils.hpp json.hpp httplib.h)
install(TARGETS ${TARGET} RUNTIME)
target_compile_definitions(${TARGET} PRIVATE
SERVER_VERBOSE=$<BOOL:${LLAMA_SERVER_VERBOSE}>
)
target_link_libraries(${TARGET} PRIVATE common ${CMAKE_THREAD_LIBS_INIT})
if (LLAMA_SERVER_SSL)
find_package(OpenSSL REQUIRED)
target_link_libraries(${TARGET} PRIVATE OpenSSL::SSL OpenSSL::Crypto)
target_compile_definitions(${TARGET} PRIVATE CPPHTTPLIB_OPENSSL_SUPPORT)
endif()
target_link_libraries(${TARGET} PRIVATE common llava ${CMAKE_THREAD_LIBS_INIT})
if (WIN32)
TARGET_LINK_LIBRARIES(${TARGET} PRIVATE ws2_32)
endif()

View File

@@ -18,7 +18,6 @@ The project is under active development, and we are [looking for feedback and co
- `--threads N`, `-t N`: Set the number of threads to use during generation.
- `-tb N, --threads-batch N`: Set the number of threads to use during batch and prompt processing. If not specified, the number of threads will be set to the number of threads used for generation.
- `--threads-http N`: number of threads in the http server pool to process requests (default: `max(std::thread::hardware_concurrency() - 1, --parallel N + 2)`)
- `-m FNAME`, `--model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.gguf`).
- `-a ALIAS`, `--alias ALIAS`: Set an alias for the model. The alias will be returned in API responses.
- `-c N`, `--ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference. The size may differ in other models, for example, baichuan models were build with a context of 4096.
@@ -42,7 +41,7 @@ see https://github.com/ggerganov/llama.cpp/issues/1437
- `-to N`, `--timeout N`: Server read/write timeout in seconds. Default `600`.
- `--host`: Set the hostname or ip address to listen. Default `127.0.0.1`.
- `--port`: Set the port to listen. Default: `8080`.
- `--path`: path from which to serve static files (default: disabled)
- `--path`: path from which to serve static files (default examples/server/public)
- `--api-key`: Set an api key for request authorization. By default the server responds to every request. With an api key set, the requests must have the Authorization header set with the api key as Bearer token. May be used multiple times to enable multiple valid keys.
- `--api-key-file`: path to file containing api keys delimited by new lines. If set, requests must include one of the keys for access. May be used in conjunction with `--api-key`'s.
- `--embedding`: Enable embedding extraction, Default: disabled.
@@ -59,10 +58,6 @@ see https://github.com/ggerganov/llama.cpp/issues/1437
- `--log-disable`: Output logs to stdout only, default: enabled.
- `--log-format FORMAT`: Define the log output to FORMAT: json or text (default: json)
**If compiled with `LLAMA_SERVER_SSL=ON`**
- `--ssl-key-file FNAME`: path to file a PEM-encoded SSL private key
- `--ssl-cert-file FNAME`: path to file a PEM-encoded SSL certificate
## Build
server is build alongside everything else from the root of the project
@@ -79,28 +74,6 @@ server is build alongside everything else from the root of the project
cmake --build . --config Release
```
## Build with SSL
server can also be built with SSL support using OpenSSL 3
- Using `make`:
```bash
# NOTE: For non-system openssl, use the following:
# CXXFLAGS="-I /path/to/openssl/include"
# LDFLAGS="-L /path/to/openssl/lib"
make LLAMA_SERVER_SSL=true server
```
- Using `CMake`:
```bash
mkdir build
cd build
cmake .. -DLLAMA_SERVER_SSL=ON
make server
```
## Quick Start
To get started right away, run the following command, making sure to use the correct path for the model you have:
@@ -123,10 +96,10 @@ You can consume the endpoints with Postman or NodeJS with axios library. You can
### Docker
```bash
docker run -p 8080:8080 -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:server -m models/7B/ggml-model.gguf -c 512 --host 0.0.0.0 --port 8080
docker run -p 8080:8080 -v /path/to/models:/models ggerganov/llama.cpp:server -m models/7B/ggml-model.gguf -c 512 --host 0.0.0.0 --port 8080
# or, with CUDA:
docker run -p 8080:8080 -v /path/to/models:/models --gpus all ghcr.io/ggerganov/llama.cpp:server-cuda -m models/7B/ggml-model.gguf -c 512 --host 0.0.0.0 --port 8080 --n-gpu-layers 99
docker run -p 8080:8080 -v /path/to/models:/models --gpus all ggerganov/llama.cpp:server-cuda -m models/7B/ggml-model.gguf -c 512 --host 0.0.0.0 --port 8080 --n-gpu-layers 99
```
## Testing with CURL
@@ -195,11 +168,7 @@ node index.js
*Options:*
`prompt`: Provide the prompt for this completion as a string or as an array of strings or numbers representing tokens. Internally, if `cache_prompt` is `true`, the prompt is compared to the previous completion and only the "unseen" suffix is evaluated. A `BOS` token is inserted at the start, if all of the following conditions are true:
- The prompt is a string or an array with the first element given as a string
- The model's `tokenizer.ggml.add_bos_token` metadata is `true`
- The system prompt is empty
`prompt`: Provide the prompt for this completion as a string or as an array of strings or numbers representing tokens. Internally, the prompt is compared to the previous completion and only the "unseen" suffix is evaluated. If the prompt is a string or an array with the first element given as a string, a `bos` token is inserted in the front like `main` does.
`temperature`: Adjust the randomness of the generated text (default: 0.8).
@@ -312,7 +281,7 @@ Notice that each `probs` is an array of length `n_probs`.
`content`: Set the text to tokenize.
Note that a special `BOS` token is never inserted.
Note that the special `BOS` token is not added in front of the text and also a space character is not inserted automatically as it is for `/completion`.
- **POST** `/detokenize`: Convert tokens to text.
@@ -356,7 +325,7 @@ Notice that each `probs` is an array of length `n_probs`.
- `default_generation_settings` - the default generation settings for the `/completion` endpoint, has the same fields as the `generation_settings` response object from the `/completion` endpoint.
- `total_slots` - the total number of slots for process requests (defined by `--parallel` option)
- **POST** `/v1/chat/completions`: OpenAI-compatible Chat Completions API. Given a ChatML-formatted json description in `messages`, it returns the predicted completion. Both synchronous and streaming mode are supported, so scripted and interactive applications work fine. While no strong claims of compatibility with OpenAI API spec is being made, in our experience it suffices to support many apps. Only ChatML-tuned models, such as Dolphin, OpenOrca, OpenHermes, OpenChat-3.5, etc can be used with this endpoint.
- **POST** `/v1/chat/completions`: OpenAI-compatible Chat Completions API. Given a ChatML-formatted json description in `messages`, it returns the predicted completion. Both synchronous and streaming mode are supported, so scripted and interactive applications work fine. While no strong claims of compatibility with OpenAI API spec is being made, in our experience it suffices to support many apps. Only ChatML-tuned models, such as Dolphin, OpenOrca, OpenHermes, OpenChat-3.5, etc can be used with this endpoint. Compared to `api_like_OAI.py` this API implementation does not require a wrapper to be served.
*Options:*
@@ -466,7 +435,7 @@ Notice that each `probs` is an array of length `n_probs`.
"next_token": {
"has_next_token": true,
"n_remain": -1,
"n_decoded": 0,
"num_tokens_predicted": 0,
"stopped_eos": false,
"stopped_limit": false,
"stopped_word": false,
@@ -556,55 +525,26 @@ Run with bash:
bash chat.sh
```
### OAI-like API
### API like OAI
The HTTP server supports OAI-like API: https://github.com/openai/openai-openapi
API example using Python Flask: [api_like_OAI.py](api_like_OAI.py)
This example must be used with server.cpp
### API errors
Server returns error in the same format as OAI: https://github.com/openai/openai-openapi
Example of an error:
```json
{
"error": {
"code": 401,
"message": "Invalid API Key",
"type": "authentication_error"
}
}
```sh
python api_like_OAI.py
```
Apart from error types supported by OAI, we also have custom types that are specific to functionalities of llama.cpp:
After running the API server, you can use it in Python by setting the API base URL.
**When /metrics or /slots endpoint is disabled**
```json
{
"error": {
"code": 501,
"message": "This server does not support metrics endpoint.",
"type": "not_supported_error"
}
}
```python
openai.api_base = "http://<Your api-server IP>:port"
```
**When the server receives invalid grammar via */completions endpoint**
```json
{
"error": {
"code": 400,
"message": "Failed to parse grammar",
"type": "invalid_request_error"
}
}
```
Then you can utilize llama.cpp as an OpenAI's **chat.completion** or **text_completion** API
### Extending or building alternative Web Front End
You can extend the front end by running the server binary with `--path` set to `./your-directory` and importing `/completion.js` to get access to the llamaComplete() method.
The default location for the static files is `examples/server/public`. You can extend the front end by running the server binary with `--path` set to `./your-directory` and importing `/completion.js` to get access to the llamaComplete() method.
Read the documentation in `/completion.js` to see convenient ways to access llama.

228
examples/server/api_like_OAI.py Executable file
View File

@@ -0,0 +1,228 @@
#!/usr/bin/env python3
import argparse
from flask import Flask, jsonify, request, Response
import urllib.parse
import requests
import time
import json
app = Flask(__name__)
slot_id = -1
parser = argparse.ArgumentParser(description="An example of using server.cpp with a similar API to OAI. It must be used together with server.cpp.")
parser.add_argument("--chat-prompt", type=str, help="the top prompt in chat completions(default: 'A chat between a curious user and an artificial intelligence assistant. The assistant follows the given rules no matter what.')", default='A chat between a curious user and an artificial intelligence assistant. The assistant follows the given rules no matter what.')
parser.add_argument("--user-name", type=str, help="USER name in chat completions(default: 'USER: ')", default="USER: ")
parser.add_argument("--ai-name", type=str, help="ASSISTANT name in chat completions(default: 'ASSISTANT: ')", default="ASSISTANT: ")
parser.add_argument("--system-name", type=str, help="SYSTEM name in chat completions(default: 'ASSISTANT's RULE: ')", default="ASSISTANT's RULE: ")
parser.add_argument("--stop", type=str, help="the end of response in chat completions(default: '</s>')", default="</s>")
parser.add_argument("--llama-api", type=str, help="Set the address of server.cpp in llama.cpp(default: http://127.0.0.1:8080)", default='http://127.0.0.1:8080')
parser.add_argument("--api-key", type=str, help="Set the api key to allow only few user(default: NULL)", default="")
parser.add_argument("--host", type=str, help="Set the ip address to listen.(default: 127.0.0.1)", default='127.0.0.1')
parser.add_argument("--port", type=int, help="Set the port to listen.(default: 8081)", default=8081)
args = parser.parse_args()
def is_present(json, key):
try:
buf = json[key]
except KeyError:
return False
if json[key] == None:
return False
return True
#convert chat to prompt
def convert_chat(messages):
system_n = args.system_name
user_n = args.user_name
ai_n = args.ai_name
stop = args.stop
prompt = "" + args.chat_prompt + stop
for line in messages:
if (line["role"] == "system"):
prompt += f"{system_n}{line['content']}{stop}"
if (line["role"] == "user"):
prompt += f"{user_n}{line['content']}{stop}"
if (line["role"] == "assistant"):
prompt += f"{ai_n}{line['content']}{stop}"
prompt += ai_n.rstrip()
return prompt
def make_postData(body, chat=False, stream=False):
postData = {}
if (chat):
postData["prompt"] = convert_chat(body["messages"])
else:
postData["prompt"] = body["prompt"]
if(is_present(body, "temperature")): postData["temperature"] = body["temperature"]
if(is_present(body, "top_k")): postData["top_k"] = body["top_k"]
if(is_present(body, "top_p")): postData["top_p"] = body["top_p"]
if(is_present(body, "max_tokens")): postData["n_predict"] = body["max_tokens"]
if(is_present(body, "presence_penalty")): postData["presence_penalty"] = body["presence_penalty"]
if(is_present(body, "frequency_penalty")): postData["frequency_penalty"] = body["frequency_penalty"]
if(is_present(body, "repeat_penalty")): postData["repeat_penalty"] = body["repeat_penalty"]
if(is_present(body, "mirostat")): postData["mirostat"] = body["mirostat"]
if(is_present(body, "mirostat_tau")): postData["mirostat_tau"] = body["mirostat_tau"]
if(is_present(body, "mirostat_eta")): postData["mirostat_eta"] = body["mirostat_eta"]
if(is_present(body, "seed")): postData["seed"] = body["seed"]
if(is_present(body, "grammar")): postData["grammar"] = body["grammar"]
if(is_present(body, "logit_bias")): postData["logit_bias"] = [[int(token), body["logit_bias"][token]] for token in body["logit_bias"].keys()]
if (args.stop != ""):
postData["stop"] = [args.stop]
else:
postData["stop"] = []
if(is_present(body, "stop")): postData["stop"] += body["stop"]
postData["n_keep"] = -1
postData["stream"] = stream
postData["cache_prompt"] = True
postData["slot_id"] = slot_id
return postData
def make_resData(data, chat=False, promptToken=[]):
resData = {
"id": "chatcmpl" if (chat) else "cmpl",
"object": "chat.completion" if (chat) else "text_completion",
"created": int(time.time()),
"truncated": data["truncated"],
"model": "LLaMA_CPP",
"usage": {
"prompt_tokens": data["tokens_evaluated"],
"completion_tokens": data["tokens_predicted"],
"total_tokens": data["tokens_evaluated"] + data["tokens_predicted"]
}
}
if (len(promptToken) != 0):
resData["promptToken"] = promptToken
if (chat):
#only one choice is supported
resData["choices"] = [{
"index": 0,
"message": {
"role": "assistant",
"content": data["content"],
},
"finish_reason": "stop" if (data["stopped_eos"] or data["stopped_word"]) else "length"
}]
else:
#only one choice is supported
resData["choices"] = [{
"text": data["content"],
"index": 0,
"logprobs": None,
"finish_reason": "stop" if (data["stopped_eos"] or data["stopped_word"]) else "length"
}]
return resData
def make_resData_stream(data, chat=False, time_now = 0, start=False):
resData = {
"id": "chatcmpl" if (chat) else "cmpl",
"object": "chat.completion.chunk" if (chat) else "text_completion.chunk",
"created": time_now,
"model": "LLaMA_CPP",
"choices": [
{
"finish_reason": None,
"index": 0
}
]
}
slot_id = data.get("slot_id")
if (chat):
if (start):
resData["choices"][0]["delta"] = {
"role": "assistant"
}
else:
resData["choices"][0]["delta"] = {
"content": data["content"]
}
if (data["stop"]):
resData["choices"][0]["finish_reason"] = "stop" if (data["stopped_eos"] or data["stopped_word"]) else "length"
else:
resData["choices"][0]["text"] = data["content"]
if (data["stop"]):
resData["choices"][0]["finish_reason"] = "stop" if (data["stopped_eos"] or data["stopped_word"]) else "length"
return resData
@app.route('/chat/completions', methods=['POST', 'OPTIONS'])
@app.route('/v1/chat/completions', methods=['POST', 'OPTIONS'])
def chat_completions():
if (args.api_key != "" and request.headers["Authorization"].split()[1] != args.api_key):
return Response(status=403)
if request.method == 'OPTIONS':
return Response(headers={"Access-Control-Allow-Origin": "*", "Access-Control-Allow-Headers": "*"})
body = request.get_json()
stream = False
tokenize = False
if(is_present(body, "stream")): stream = body["stream"]
if(is_present(body, "tokenize")): tokenize = body["tokenize"]
postData = make_postData(body, chat=True, stream=stream)
promptToken = []
if (tokenize):
tokenData = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/tokenize"), data=json.dumps({"content": postData["prompt"]})).json()
promptToken = tokenData["tokens"]
if (not stream):
data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData))
print(data.json())
resData = make_resData(data.json(), chat=True, promptToken=promptToken)
return jsonify(resData)
else:
def generate():
data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData), stream=True)
time_now = int(time.time())
resData = make_resData_stream({}, chat=True, time_now=time_now, start=True)
yield 'data: {}\n\n'.format(json.dumps(resData))
for line in data.iter_lines():
if line:
decoded_line = line.decode('utf-8')
resData = make_resData_stream(json.loads(decoded_line[6:]), chat=True, time_now=time_now)
yield 'data: {}\n\n'.format(json.dumps(resData))
return Response(generate(), mimetype='text/event-stream', headers={"Access-Control-Allow-Origin": "*", "Access-Control-Allow-Headers": "*"})
@app.route('/completions', methods=['POST', 'OPTIONS'])
@app.route('/v1/completions', methods=['POST', 'OPTIONS'])
def completion():
if (args.api_key != "" and request.headers["Authorization"].split()[1] != args.api_key):
return Response(status=403)
if request.method == 'OPTIONS':
return Response(headers={"Access-Control-Allow-Origin": "*", "Access-Control-Allow-Headers": "*"})
body = request.get_json()
stream = False
tokenize = False
if(is_present(body, "stream")): stream = body["stream"]
if(is_present(body, "tokenize")): tokenize = body["tokenize"]
postData = make_postData(body, chat=False, stream=stream)
promptToken = []
if (tokenize):
tokenData = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/tokenize"), data=json.dumps({"content": postData["prompt"]})).json()
promptToken = tokenData["tokens"]
if (not stream):
data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData))
print(data.json())
resData = make_resData(data.json(), chat=False, promptToken=promptToken)
return jsonify(resData)
else:
def generate():
data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData), stream=True)
time_now = int(time.time())
for line in data.iter_lines():
if line:
decoded_line = line.decode('utf-8')
resData = make_resData_stream(json.loads(decoded_line[6:]), chat=False, time_now=time_now)
yield 'data: {}\n\n'.format(json.dumps(resData))
return Response(generate(), mimetype='text/event-stream', headers={"Access-Control-Allow-Origin": "*", "Access-Control-Allow-Headers": "*"})
if __name__ == '__main__':
app.run(args.host, port=args.port)

View File

@@ -1,88 +0,0 @@
### Server benchmark tools
Benchmark is using [k6](https://k6.io/).
##### Install k6
Follow instruction from: https://k6.io/docs/get-started/installation/
Example for ubuntu:
```shell
snap install k6
```
#### Download a dataset
This dataset was originally proposed in [vLLM benchmarks](https://github.com/vllm-project/vllm/blob/main/benchmarks/README.md).
```shell
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
```
#### Download a model
Example for PHI-2
```shell
../../../scripts/hf.sh --repo ggml-org/models --file phi-2/ggml-model-q4_0.gguf
```
#### Start the server
The server must answer OAI Chat completion requests on `http://localhost:8080/v1` or according to the environment variable `SERVER_BENCH_URL`.
Example:
```shell
server --host localhost --port 8080 \
--model ggml-model-q4_0.gguf \
--cont-batching \
--metrics \
--parallel 8 \
--batch-size 512 \
--ctx-size 4096 \
--log-format text \
-ngl 33
```
#### Run the benchmark
For 500 chat completions request with 8 concurrent users during maximum 10 minutes, run:
```shell
k6 run script.js --duration 10m --iterations 500 --vus 8
```
The benchmark values can be overridden with:
- `SERVER_BENCH_URL` server url prefix for chat completions, default `http://localhost:8080/v1`
- `SERVER_BENCH_N_PROMPTS` total prompts to randomly select in the benchmark, default `480`
- `SERVER_BENCH_MODEL_ALIAS` model alias to pass in the completion request, default `my-model`
- `SERVER_BENCH_MAX_TOKENS` max tokens to predict, default: `512`
- `SERVER_BENCH_DATASET` path to the benchmark dataset file
- `SERVER_BENCH_MAX_PROMPT_TOKENS` maximum prompt tokens to filter out in the dataset: default `1024`
- `SERVER_BENCH_MAX_CONTEXT` maximum context size of the completions request to filter out in the dataset: prompt + predicted tokens, default `2048`
Note: the local tokenizer is just a string space split, real number of tokens will differ.
Or with [k6 options](https://k6.io/docs/using-k6/k6-options/reference/):
```shell
SERVER_BENCH_N_PROMPTS=500 k6 run script.js --duration 10m --iterations 500 --vus 8
```
To [debug http request](https://k6.io/docs/using-k6/http-debugging/) use `--http-debug="full"`.
#### Metrics
Following metrics are available computed from the OAI chat completions response `usage`:
- `llamacpp_tokens_second` Trend of `usage.total_tokens / request duration`
- `llamacpp_prompt_tokens` Trend of `usage.prompt_tokens`
- `llamacpp_prompt_tokens_total_counter` Counter of `usage.prompt_tokens`
- `llamacpp_completion_tokens` Trend of `usage.completion_tokens`
- `llamacpp_completion_tokens_total_counter` Counter of `usage.completion_tokens`
- `llamacpp_completions_truncated_rate` Rate of completions truncated, i.e. if `finish_reason === 'length'`
- `llamacpp_completions_stop_rate` Rate of completions stopped by the model, i.e. if `finish_reason === 'stop'`
The script will fail if too many completions are truncated, see `llamacpp_completions_truncated_rate`.
K6 metrics might be compared against [server metrics](../README.md), with:
```shell
curl http://localhost:8080/metrics
```

View File

@@ -1,120 +0,0 @@
import http from 'k6/http'
import {check, sleep} from 'k6'
import {SharedArray} from 'k6/data'
import {Counter, Rate, Trend} from 'k6/metrics'
import exec from 'k6/execution';
// Server chat completions prefix
const server_url = __ENV.SERVER_BENCH_URL ? __ENV.SERVER_BENCH_URL : 'http://localhost:8080/v1'
// Number of total prompts in the dataset - default 10m / 10 seconds/request * number of users
const n_prompt = __ENV.SERVER_BENCH_N_PROMPTS ? parseInt(__ENV.SERVER_BENCH_N_PROMPTS) : 600 / 10 * 8
// Model name to request
const model = __ENV.SERVER_BENCH_MODEL_ALIAS ? __ENV.SERVER_BENCH_MODEL_ALIAS : 'my-model'
// Dataset path
const dataset_path = __ENV.SERVER_BENCH_DATASET ? __ENV.SERVER_BENCH_DATASET : './ShareGPT_V3_unfiltered_cleaned_split.json'
// Max tokens to predict
const max_tokens = __ENV.SERVER_BENCH_MAX_TOKENS ? parseInt(__ENV.SERVER_BENCH_MAX_TOKENS) : 512
// Max prompt tokens
const n_prompt_tokens = __ENV.SERVER_BENCH_MAX_PROMPT_TOKENS ? parseInt(__ENV.SERVER_BENCH_MAX_PROMPT_TOKENS) : 1024
// Max slot context
const n_ctx_slot = __ENV.SERVER_BENCH_MAX_CONTEXT ? parseInt(__ENV.SERVER_BENCH_MAX_CONTEXT) : 2048
export function setup() {
console.info(`Benchmark config: server_url=${server_url} n_prompt=${n_prompt} model=${model} dataset_path=${dataset_path} max_tokens=${max_tokens}`)
}
const data = new SharedArray('conversations', function () {
const tokenizer = (message) => message.split(/[\s,'".?]/)
return JSON.parse(open(dataset_path))
// Filter out the conversations with less than 2 turns.
.filter(data => data["conversations"].length >= 2)
.filter(data => data["conversations"][0]["from"] === "human")
.map(data => {
return {
prompt: data["conversations"][0]["value"],
n_prompt_tokens: tokenizer(data["conversations"][0]["value"]).length,
n_completion_tokens: tokenizer(data["conversations"][1]["value"]).length,
}
})
// Filter out too short sequences
.filter(conv => conv.n_prompt_tokens >= 4 && conv.n_completion_tokens >= 4)
// Filter out too long sequences.
.filter(conv => conv.n_prompt_tokens <= n_prompt_tokens && conv.n_prompt_tokens + conv.n_completion_tokens <= n_ctx_slot)
// Keep only first n prompts
.slice(0, n_prompt)
})
const llamacpp_prompt_tokens = new Trend('llamacpp_prompt_tokens')
const llamacpp_completion_tokens = new Trend('llamacpp_completion_tokens')
const llamacpp_tokens_second = new Trend('llamacpp_tokens_second')
const llamacpp_prompt_tokens_total_counter = new Counter('llamacpp_prompt_tokens_total_counter')
const llamacpp_completion_tokens_total_counter = new Counter('llamacpp_completion_tokens_total_counter')
const llamacpp_completions_truncated_rate = new Rate('llamacpp_completions_truncated_rate')
const llamacpp_completions_stop_rate = new Rate('llamacpp_completions_stop_rate')
export const options = {
thresholds: {
llamacpp_completions_truncated_rate: [
// more than 80% of truncated input will abort the test
{threshold: 'rate < 0.8', abortOnFail: true, delayAbortEval: '1m'},
],
},
duration: '10m',
vus: 8,
}
export default function () {
const conversation = data[exec.scenario.iterationInInstance % data.length]
const payload = {
"messages": [
{
"role": "system",
"content": "You are ChatGPT, an AI assistant.",
},
{
"role": "user",
"content": conversation.prompt,
}
],
"model": model,
"stream": false,
"max_tokens": max_tokens
}
const body = JSON.stringify(payload)
let res = http.post(`${server_url}/chat/completions`, body, {
headers: {'Content-Type': 'application/json'},
timeout: '300s'
})
check(res, {'success completion': (r) => r.status === 200})
if (res.status === 200) {
const completions = res.json()
llamacpp_prompt_tokens.add(completions.usage.prompt_tokens)
llamacpp_prompt_tokens_total_counter.add(completions.usage.prompt_tokens)
llamacpp_completion_tokens.add(completions.usage.completion_tokens)
llamacpp_completion_tokens_total_counter.add(completions.usage.completion_tokens)
llamacpp_completions_truncated_rate.add(completions.choices[0].finish_reason === 'length')
llamacpp_completions_stop_rate.add(completions.choices[0].finish_reason === 'stop')
llamacpp_tokens_second.add(completions.usage.total_tokens / res.timings.duration * 1.e3)
} else {
console.error(`response: ${res.body} request=${payload}`)
}
sleep(0.3)
}

View File

@@ -231,256 +231,255 @@ unsigned char completion_js[] = {
0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74,
0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x72,
0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74,
0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x20, 0x3d, 0x20, 0x4a, 0x53, 0x4f,
0x4e, 0x2e, 0x70, 0x61, 0x72, 0x73, 0x65, 0x28, 0x72, 0x65, 0x73, 0x75,
0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x3b, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x69, 0x66, 0x20, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e,
0x65, 0x72, 0x72, 0x6f, 0x72, 0x2e, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67,
0x65, 0x2e, 0x69, 0x6e, 0x63, 0x6c, 0x75, 0x64, 0x65, 0x73, 0x28, 0x27,
0x73, 0x6c, 0x6f, 0x74, 0x20, 0x75, 0x6e, 0x61, 0x76, 0x61, 0x69, 0x6c,
0x61, 0x62, 0x6c, 0x65, 0x27, 0x29, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65,
0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x20, 0x3d,
0x20, 0x4a, 0x53, 0x4f, 0x4e, 0x2e, 0x70, 0x61, 0x72, 0x73, 0x65, 0x28,
0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72,
0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c,
0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x2e, 0x63, 0x6f, 0x6e, 0x74,
0x65, 0x6e, 0x74, 0x2e, 0x69, 0x6e, 0x63, 0x6c, 0x75, 0x64, 0x65, 0x73,
0x28, 0x27, 0x73, 0x6c, 0x6f, 0x74, 0x20, 0x75, 0x6e, 0x61, 0x76, 0x61,
0x69, 0x6c, 0x61, 0x62, 0x6c, 0x65, 0x27, 0x29, 0x29, 0x20, 0x7b, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x2f, 0x2f, 0x20, 0x54, 0x68, 0x72, 0x6f, 0x77, 0x20, 0x61,
0x6e, 0x20, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x20, 0x74, 0x6f, 0x20, 0x62,
0x65, 0x20, 0x63, 0x61, 0x75, 0x67, 0x68, 0x74, 0x20, 0x62, 0x79, 0x20,
0x75, 0x70, 0x73, 0x74, 0x72, 0x65, 0x61, 0x6d, 0x20, 0x63, 0x61, 0x6c,
0x6c, 0x65, 0x72, 0x73, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x68, 0x72,
0x6f, 0x77, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x45, 0x72, 0x72, 0x6f, 0x72,
0x28, 0x27, 0x73, 0x6c, 0x6f, 0x74, 0x20, 0x75, 0x6e, 0x61, 0x76, 0x61,
0x69, 0x6c, 0x61, 0x62, 0x6c, 0x65, 0x27, 0x29, 0x3b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x7d, 0x20, 0x65, 0x6c, 0x73, 0x65, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65, 0x2e, 0x65, 0x72, 0x72,
0x6f, 0x72, 0x28, 0x60, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2e, 0x63, 0x70,
0x70, 0x20, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x20, 0x5b, 0x24, 0x7b, 0x72,
0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x2e,
0x63, 0x6f, 0x64, 0x65, 0x7d, 0x20, 0x2d, 0x20, 0x24, 0x7b, 0x72, 0x65,
0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x2e, 0x74,
0x79, 0x70, 0x65, 0x7d, 0x5d, 0x3a, 0x20, 0x24, 0x7b, 0x72, 0x65, 0x73,
0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x2e, 0x6d, 0x65,
0x73, 0x73, 0x61, 0x67, 0x65, 0x7d, 0x60, 0x29, 0x3b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x7d, 0x20, 0x63, 0x61, 0x74, 0x63, 0x68, 0x28, 0x65, 0x29,
0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65,
0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x28, 0x60, 0x6c, 0x6c, 0x61, 0x6d,
0x61, 0x2e, 0x63, 0x70, 0x70, 0x20, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x20,
0x24, 0x7b, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72,
0x6f, 0x72, 0x7d, 0x60, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x68, 0x72, 0x6f, 0x77,
0x20, 0x6e, 0x65, 0x77, 0x20, 0x45, 0x72, 0x72, 0x6f, 0x72, 0x28, 0x27,
0x73, 0x6c, 0x6f, 0x74, 0x20, 0x75, 0x6e, 0x61, 0x76, 0x61, 0x69, 0x6c,
0x61, 0x62, 0x6c, 0x65, 0x27, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x20, 0x65, 0x6c,
0x73, 0x65, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f,
0x6c, 0x65, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x28, 0x60, 0x6c, 0x6c,
0x61, 0x6d, 0x61, 0x2e, 0x63, 0x70, 0x70, 0x20, 0x65, 0x72, 0x72, 0x6f,
0x72, 0x3a, 0x20, 0x24, 0x7b, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e,
0x65, 0x72, 0x72, 0x6f, 0x72, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e,
0x74, 0x7d, 0x60, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x72, 0x65,
0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x20,
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72,
0x6f, 0x72, 0x20, 0x3d, 0x20, 0x4a, 0x53, 0x4f, 0x4e, 0x2e, 0x70, 0x61,
0x72, 0x73, 0x65, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65,
0x72, 0x72, 0x6f, 0x72, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f,
0x6c, 0x65, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x28, 0x60, 0x6c, 0x6c,
0x61, 0x6d, 0x61, 0x2e, 0x63, 0x70, 0x70, 0x20, 0x65, 0x72, 0x72, 0x6f,
0x72, 0x3a, 0x20, 0x24, 0x7b, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e,
0x65, 0x72, 0x72, 0x6f, 0x72, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e,
0x74, 0x7d, 0x60, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x7d, 0x20,
0x63, 0x61, 0x74, 0x63, 0x68, 0x20, 0x28, 0x65, 0x29, 0x20, 0x7b, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x65, 0x2e, 0x6e, 0x61,
0x6d, 0x65, 0x20, 0x21, 0x3d, 0x3d, 0x20, 0x27, 0x41, 0x62, 0x6f, 0x72,
0x74, 0x45, 0x72, 0x72, 0x6f, 0x72, 0x27, 0x29, 0x20, 0x7b, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65,
0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x28, 0x22, 0x6c, 0x6c, 0x61, 0x6d,
0x61, 0x20, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x3a, 0x20, 0x22, 0x2c, 0x20,
0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x74, 0x68, 0x72, 0x6f, 0x77, 0x20, 0x65, 0x3b, 0x0a, 0x20,
0x20, 0x7d, 0x0a, 0x20, 0x20, 0x66, 0x69, 0x6e, 0x61, 0x6c, 0x6c, 0x79,
0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72,
0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2e, 0x61, 0x62, 0x6f, 0x72, 0x74, 0x28,
0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x72, 0x65,
0x74, 0x75, 0x72, 0x6e, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74,
0x3b, 0x0a, 0x7d, 0x0a, 0x0a, 0x2f, 0x2f, 0x20, 0x43, 0x61, 0x6c, 0x6c,
0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2c, 0x20, 0x72, 0x65, 0x74, 0x75,
0x72, 0x6e, 0x20, 0x61, 0x6e, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x20,
0x74, 0x61, 0x72, 0x67, 0x65, 0x74, 0x20, 0x74, 0x68, 0x61, 0x74, 0x20,
0x79, 0x6f, 0x75, 0x20, 0x63, 0x61, 0x6e, 0x20, 0x73, 0x75, 0x62, 0x73,
0x63, 0x72, 0x69, 0x62, 0x65, 0x20, 0x74, 0x6f, 0x0a, 0x2f, 0x2f, 0x0a,
0x2f, 0x2f, 0x20, 0x45, 0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65, 0x3a, 0x0a,
0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x69, 0x6d, 0x70,
0x6f, 0x72, 0x74, 0x20, 0x7b, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x45,
0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x20, 0x7d,
0x20, 0x66, 0x72, 0x6f, 0x6d, 0x20, 0x27, 0x2f, 0x63, 0x6f, 0x6d, 0x70,
0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x2e, 0x6a, 0x73, 0x27, 0x0a, 0x2f,
0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73,
0x74, 0x20, 0x63, 0x6f, 0x6e, 0x6e, 0x20, 0x3d, 0x20, 0x6c, 0x6c, 0x61,
0x6d, 0x61, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65,
0x74, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x29, 0x0a, 0x2f, 0x2f,
0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x6e, 0x2e, 0x61, 0x64, 0x64,
0x45, 0x76, 0x65, 0x6e, 0x74, 0x4c, 0x69, 0x73, 0x74, 0x65, 0x6e, 0x65,
0x72, 0x28, 0x22, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x22, 0x2c,
0x20, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x29, 0x20, 0x3d, 0x3e, 0x20,
0x7b, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x64, 0x6f,
0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x77, 0x72, 0x69, 0x74, 0x65,
0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x65, 0x74, 0x61, 0x69,
0x6c, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x0a, 0x2f,
0x2f, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x29, 0x0a, 0x2f, 0x2f, 0x0a, 0x65,
0x78, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20,
0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61,
0x72, 0x67, 0x65, 0x74, 0x20, 0x3d, 0x20, 0x28, 0x70, 0x72, 0x6f, 0x6d,
0x70, 0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d,
0x20, 0x7b, 0x7d, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x20,
0x3d, 0x20, 0x7b, 0x7d, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20,
0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74,
0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x20, 0x3d, 0x20, 0x6e, 0x65, 0x77,
0x20, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74,
0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x28, 0x61, 0x73, 0x79, 0x6e, 0x63,
0x20, 0x28, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x6c, 0x65, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74,
0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x66,
0x6f, 0x72, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x28, 0x63, 0x6f,
0x6e, 0x73, 0x74, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66,
0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70,
0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x63,
0x6f, 0x6e, 0x66, 0x69, 0x67, 0x29, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x63, 0x68, 0x75, 0x6e,
0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e,
0x74, 0x20, 0x2b, 0x3d, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64,
0x61, 0x74, 0x61, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3b,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x65, 0x76, 0x65,
0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x64, 0x69, 0x73,
0x70, 0x61, 0x74, 0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e,
0x65, 0x77, 0x20, 0x43, 0x75, 0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65,
0x6e, 0x74, 0x28, 0x22, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x22,
0x2c, 0x20, 0x7b, 0x20, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20,
0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x20, 0x7d,
0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x63, 0x68,
0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x67, 0x65, 0x6e,
0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74,
0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72,
0x67, 0x65, 0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, 0x74, 0x63, 0x68,
0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, 0x20, 0x43, 0x75,
0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x22, 0x67,
0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65,
0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x22, 0x2c, 0x20, 0x7b, 0x20, 0x64,
0x65, 0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b,
0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61,
0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67,
0x73, 0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20,
0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e,
0x74, 0x69, 0x6d, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20,
0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x7d, 0x20, 0x63, 0x61,
0x74, 0x63, 0x68, 0x20, 0x28, 0x65, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x65, 0x2e, 0x6e, 0x61, 0x6d, 0x65,
0x20, 0x21, 0x3d, 0x3d, 0x20, 0x27, 0x41, 0x62, 0x6f, 0x72, 0x74, 0x45,
0x72, 0x72, 0x6f, 0x72, 0x27, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65, 0x2e, 0x65,
0x72, 0x72, 0x6f, 0x72, 0x28, 0x22, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x20,
0x65, 0x72, 0x72, 0x6f, 0x72, 0x3a, 0x20, 0x22, 0x2c, 0x20, 0x65, 0x29,
0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x74, 0x68, 0x72, 0x6f, 0x77, 0x20, 0x65, 0x3b, 0x0a, 0x20, 0x20, 0x7d,
0x0a, 0x20, 0x20, 0x66, 0x69, 0x6e, 0x61, 0x6c, 0x6c, 0x79, 0x20, 0x7b,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c,
0x6c, 0x65, 0x72, 0x2e, 0x61, 0x62, 0x6f, 0x72, 0x74, 0x28, 0x29, 0x3b,
0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75,
0x72, 0x6e, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3b, 0x0a,
0x7d, 0x0a, 0x0a, 0x2f, 0x2f, 0x20, 0x43, 0x61, 0x6c, 0x6c, 0x20, 0x6c,
0x6c, 0x61, 0x6d, 0x61, 0x2c, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e,
0x20, 0x61, 0x6e, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x20, 0x74, 0x61,
0x72, 0x67, 0x65, 0x74, 0x20, 0x74, 0x68, 0x61, 0x74, 0x20, 0x79, 0x6f,
0x75, 0x20, 0x63, 0x61, 0x6e, 0x20, 0x73, 0x75, 0x62, 0x73, 0x63, 0x72,
0x69, 0x62, 0x65, 0x20, 0x74, 0x6f, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f,
0x20, 0x45, 0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65, 0x3a, 0x0a, 0x2f, 0x2f,
0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x69, 0x6d, 0x70, 0x6f, 0x72,
0x74, 0x20, 0x7b, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x45, 0x76, 0x65,
0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x20, 0x7d, 0x20, 0x66,
0x72, 0x6f, 0x6d, 0x20, 0x27, 0x2f, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65,
0x74, 0x69, 0x6f, 0x6e, 0x2e, 0x6a, 0x73, 0x27, 0x0a, 0x2f, 0x2f, 0x0a,
0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20,
0x63, 0x6f, 0x6e, 0x6e, 0x20, 0x3d, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61,
0x45, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x28,
0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x20, 0x20,
0x20, 0x20, 0x63, 0x6f, 0x6e, 0x6e, 0x2e, 0x61, 0x64, 0x64, 0x45, 0x76,
0x65, 0x6e, 0x74, 0x4c, 0x69, 0x73, 0x74, 0x65, 0x6e, 0x65, 0x72, 0x28,
0x22, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x22, 0x2c, 0x20, 0x28,
0x63, 0x68, 0x75, 0x6e, 0x6b, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a,
0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x64, 0x6f, 0x63, 0x75,
0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x77, 0x72, 0x69, 0x74, 0x65, 0x28, 0x63,
0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x2e,
0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x20,
0x20, 0x20, 0x20, 0x7d, 0x29, 0x0a, 0x2f, 0x2f, 0x0a, 0x65, 0x78, 0x70,
0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c, 0x6c,
0x61, 0x6d, 0x61, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67,
0x65, 0x74, 0x20, 0x3d, 0x20, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74,
0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d, 0x20, 0x7b,
0x7d, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x20, 0x3d, 0x20,
0x7b, 0x7d, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x63,
0x6f, 0x6e, 0x73, 0x74, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61,
0x72, 0x67, 0x65, 0x74, 0x20, 0x3d, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x45,
0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x28, 0x29,
0x3b, 0x0a, 0x20, 0x20, 0x28, 0x61, 0x73, 0x79, 0x6e, 0x63, 0x20, 0x28,
0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x6c,
0x65, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x3d,
0x20, 0x22, 0x22, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6f, 0x72,
0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73,
0x74, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x6c,
0x6c, 0x61, 0x6d, 0x61, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c,
0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x63, 0x6f, 0x6e,
0x66, 0x69, 0x67, 0x29, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e,
0x64, 0x61, 0x74, 0x61, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20,
0x2b, 0x3d, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74,
0x61, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3b, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74,
0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61,
0x74, 0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77,
0x20, 0x43, 0x75, 0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74,
0x28, 0x22, 0x74, 0x69, 0x6d, 0x69, 0x6e, 0x67, 0x73, 0x22, 0x2c, 0x20,
0x28, 0x22, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x22, 0x2c, 0x20,
0x7b, 0x20, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20, 0x63, 0x68,
0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x74, 0x69, 0x6d,
0x69, 0x6e, 0x67, 0x73, 0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72,
0x67, 0x65, 0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, 0x74, 0x63, 0x68,
0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, 0x20, 0x43, 0x75,
0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x22, 0x64,
0x6f, 0x6e, 0x65, 0x22, 0x2c, 0x20, 0x7b, 0x20, 0x64, 0x65, 0x74, 0x61,
0x69, 0x6c, 0x3a, 0x20, 0x7b, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e,
0x74, 0x20, 0x7d, 0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d,
0x29, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72,
0x6e, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65,
0x74, 0x3b, 0x0a, 0x7d, 0x0a, 0x0a, 0x2f, 0x2f, 0x20, 0x43, 0x61, 0x6c,
0x6c, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2c, 0x20, 0x72, 0x65, 0x74,
0x75, 0x72, 0x6e, 0x20, 0x61, 0x20, 0x70, 0x72, 0x6f, 0x6d, 0x69, 0x73,
0x65, 0x20, 0x74, 0x68, 0x61, 0x74, 0x20, 0x72, 0x65, 0x73, 0x6f, 0x6c,
0x76, 0x65, 0x73, 0x20, 0x74, 0x6f, 0x20, 0x74, 0x68, 0x65, 0x20, 0x63,
0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x65, 0x64, 0x20, 0x74, 0x65, 0x78,
0x74, 0x2e, 0x20, 0x54, 0x68, 0x69, 0x73, 0x20, 0x64, 0x6f, 0x65, 0x73,
0x20, 0x6e, 0x6f, 0x74, 0x20, 0x73, 0x75, 0x70, 0x70, 0x6f, 0x72, 0x74,
0x20, 0x73, 0x74, 0x72, 0x65, 0x61, 0x6d, 0x69, 0x6e, 0x67, 0x0a, 0x2f,
0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x45, 0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65,
0x3a, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20,
0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x50, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65,
0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x29, 0x2e, 0x74, 0x68, 0x65,
0x6e, 0x28, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x20,
0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x77,
0x72, 0x69, 0x74, 0x65, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74,
0x29, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x29, 0x0a,
0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6f, 0x72,
0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63,
0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74,
0x20, 0x3d, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x6c, 0x6c, 0x61,
0x6d, 0x61, 0x50, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x28, 0x70, 0x72,
0x6f, 0x6d, 0x70, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20,
0x20, 0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x77, 0x72,
0x69, 0x74, 0x65, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29,
0x0a, 0x2f, 0x2f, 0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x63,
0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x50, 0x72,
0x6f, 0x6d, 0x69, 0x73, 0x65, 0x20, 0x3d, 0x20, 0x28, 0x70, 0x72, 0x6f,
0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x20,
0x3d, 0x20, 0x7b, 0x7d, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67,
0x20, 0x3d, 0x20, 0x7b, 0x7d, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a,
0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x6e, 0x65, 0x77,
0x20, 0x50, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x28, 0x61, 0x73, 0x79,
0x6e, 0x63, 0x20, 0x28, 0x72, 0x65, 0x73, 0x6f, 0x6c, 0x76, 0x65, 0x2c,
0x20, 0x72, 0x65, 0x6a, 0x65, 0x63, 0x74, 0x29, 0x20, 0x3d, 0x3e, 0x20,
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63, 0x6f,
0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x74, 0x72, 0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x61, 0x77, 0x61, 0x69,
0x74, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68, 0x75,
0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x28,
0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61,
0x6d, 0x73, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x29, 0x29,
0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63,
0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x2b, 0x3d, 0x20, 0x63, 0x68,
0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x63, 0x6f, 0x6e,
0x74, 0x65, 0x6e, 0x74, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x73, 0x6f,
0x6c, 0x76, 0x65, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29,
0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x20, 0x63, 0x61, 0x74, 0x63,
0x68, 0x20, 0x28, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x20, 0x7b, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x6a, 0x65, 0x63, 0x74,
0x28, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x7d, 0x0a, 0x20, 0x20, 0x7d, 0x29, 0x3b, 0x0a, 0x7d, 0x3b, 0x0a,
0x0a, 0x2f, 0x2a, 0x2a, 0x0a, 0x20, 0x2a, 0x20, 0x28, 0x64, 0x65, 0x70,
0x72, 0x65, 0x63, 0x61, 0x74, 0x65, 0x64, 0x29, 0x0a, 0x20, 0x2a, 0x2f,
0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x73,
0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x43, 0x6f, 0x6d, 0x70, 0x6c,
0x65, 0x74, 0x65, 0x20, 0x3d, 0x20, 0x61, 0x73, 0x79, 0x6e, 0x63, 0x20,
0x28, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x63, 0x6f, 0x6e,
0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2c, 0x20, 0x63, 0x61, 0x6c,
0x6c, 0x62, 0x61, 0x63, 0x6b, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a,
0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x20, 0x7d, 0x29, 0x29,
0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x63, 0x68, 0x75, 0x6e,
0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x67, 0x65, 0x6e, 0x65, 0x72,
0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e,
0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65,
0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, 0x74, 0x63, 0x68, 0x45, 0x76,
0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, 0x20, 0x43, 0x75, 0x73, 0x74,
0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x22, 0x67, 0x65, 0x6e,
0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74,
0x69, 0x6e, 0x67, 0x73, 0x22, 0x2c, 0x20, 0x7b, 0x20, 0x64, 0x65, 0x74,
0x61, 0x69, 0x6c, 0x3a, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64,
0x61, 0x74, 0x61, 0x2e, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69,
0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x20,
0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x63,
0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x74, 0x69,
0x6d, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61,
0x72, 0x67, 0x65, 0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, 0x74, 0x63,
0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, 0x20, 0x43,
0x75, 0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x22,
0x74, 0x69, 0x6d, 0x69, 0x6e, 0x67, 0x73, 0x22, 0x2c, 0x20, 0x7b, 0x20,
0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20, 0x63, 0x68, 0x75, 0x6e,
0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x74, 0x69, 0x6d, 0x69, 0x6e,
0x67, 0x73, 0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65,
0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, 0x74, 0x63, 0x68, 0x45, 0x76,
0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, 0x20, 0x43, 0x75, 0x73, 0x74,
0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x22, 0x64, 0x6f, 0x6e,
0x65, 0x22, 0x2c, 0x20, 0x7b, 0x20, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c,
0x3a, 0x20, 0x7b, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20,
0x7d, 0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x29, 0x28,
0x29, 0x3b, 0x0a, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20,
0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x3b,
0x0a, 0x7d, 0x0a, 0x0a, 0x2f, 0x2f, 0x20, 0x43, 0x61, 0x6c, 0x6c, 0x20,
0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2c, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72,
0x6e, 0x20, 0x61, 0x20, 0x70, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x20,
0x74, 0x68, 0x61, 0x74, 0x20, 0x72, 0x65, 0x73, 0x6f, 0x6c, 0x76, 0x65,
0x73, 0x20, 0x74, 0x6f, 0x20, 0x74, 0x68, 0x65, 0x20, 0x63, 0x6f, 0x6d,
0x70, 0x6c, 0x65, 0x74, 0x65, 0x64, 0x20, 0x74, 0x65, 0x78, 0x74, 0x2e,
0x20, 0x54, 0x68, 0x69, 0x73, 0x20, 0x64, 0x6f, 0x65, 0x73, 0x20, 0x6e,
0x6f, 0x74, 0x20, 0x73, 0x75, 0x70, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x73,
0x74, 0x72, 0x65, 0x61, 0x6d, 0x69, 0x6e, 0x67, 0x0a, 0x2f, 0x2f, 0x0a,
0x2f, 0x2f, 0x20, 0x45, 0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65, 0x3a, 0x0a,
0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x6c,
0x61, 0x6d, 0x61, 0x50, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x28, 0x70,
0x72, 0x6f, 0x6d, 0x70, 0x74, 0x29, 0x2e, 0x74, 0x68, 0x65, 0x6e, 0x28,
0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x20, 0x3d, 0x3e,
0x20, 0x7b, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x77, 0x72, 0x69,
0x74, 0x65, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x0a,
0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x29, 0x0a, 0x2f, 0x2f,
0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6f, 0x72, 0x0a, 0x2f,
0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e,
0x73, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x3d,
0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61,
0x50, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x28, 0x70, 0x72, 0x6f, 0x6d,
0x70, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x64,
0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x77, 0x72, 0x69, 0x74,
0x65, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x0a, 0x2f,
0x2f, 0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f, 0x6e,
0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x50, 0x72, 0x6f, 0x6d,
0x69, 0x73, 0x65, 0x20, 0x3d, 0x20, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70,
0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d, 0x20,
0x7b, 0x7d, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x20, 0x3d,
0x20, 0x7b, 0x7d, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20,
0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x50,
0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x28, 0x61, 0x73, 0x79, 0x6e, 0x63,
0x20, 0x28, 0x72, 0x65, 0x73, 0x6f, 0x6c, 0x76, 0x65, 0x2c, 0x20, 0x72,
0x65, 0x6a, 0x65, 0x63, 0x74, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74,
0x65, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x74, 0x72, 0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20,
0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b,
0x20, 0x6f, 0x66, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x28, 0x70, 0x61,
0x72, 0x61, 0x6d, 0x73, 0x2e, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c,
0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x7b, 0x20, 0x63,
0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x20, 0x7d, 0x29,
0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x61, 0x6c, 0x6c,
0x62, 0x61, 0x63, 0x6b, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x29, 0x3b,
0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x7d, 0x0a, 0x0a, 0x2f, 0x2f, 0x20, 0x47,
0x65, 0x74, 0x20, 0x74, 0x68, 0x65, 0x20, 0x6d, 0x6f, 0x64, 0x65, 0x6c,
0x20, 0x69, 0x6e, 0x66, 0x6f, 0x20, 0x66, 0x72, 0x6f, 0x6d, 0x20, 0x74,
0x68, 0x65, 0x20, 0x73, 0x65, 0x72, 0x76, 0x65, 0x72, 0x2e, 0x20, 0x54,
0x68, 0x69, 0x73, 0x20, 0x69, 0x73, 0x20, 0x75, 0x73, 0x65, 0x66, 0x75,
0x6c, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x67, 0x65, 0x74, 0x74, 0x69, 0x6e,
0x67, 0x20, 0x74, 0x68, 0x65, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x78,
0x74, 0x20, 0x77, 0x69, 0x6e, 0x64, 0x6f, 0x77, 0x20, 0x61, 0x6e, 0x64,
0x20, 0x73, 0x6f, 0x20, 0x6f, 0x6e, 0x2e, 0x0a, 0x65, 0x78, 0x70, 0x6f,
0x72, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61,
0x6d, 0x61, 0x4d, 0x6f, 0x64, 0x65, 0x6c, 0x49, 0x6e, 0x66, 0x6f, 0x20,
0x3d, 0x20, 0x61, 0x73, 0x79, 0x6e, 0x63, 0x20, 0x28, 0x29, 0x20, 0x3d,
0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x21, 0x67,
0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65,
0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x70, 0x72, 0x6f, 0x70,
0x73, 0x20, 0x3d, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x66, 0x65,
0x74, 0x63, 0x68, 0x28, 0x22, 0x2f, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x22,
0x29, 0x2e, 0x74, 0x68, 0x65, 0x6e, 0x28, 0x72, 0x20, 0x3d, 0x3e, 0x20,
0x72, 0x2e, 0x6a, 0x73, 0x6f, 0x6e, 0x28, 0x29, 0x29, 0x3b, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f,
0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x20, 0x3d,
0x20, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x2e, 0x64, 0x65, 0x66, 0x61, 0x75,
0x6c, 0x74, 0x5f, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f,
0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x3b, 0x0a,
0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e,
0x20, 0x6f, 0x66, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x28, 0x70, 0x72,
0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73,
0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x29, 0x29, 0x20, 0x7b,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e,
0x74, 0x65, 0x6e, 0x74, 0x20, 0x2b, 0x3d, 0x20, 0x63, 0x68, 0x75, 0x6e,
0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65,
0x6e, 0x74, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x73, 0x6f, 0x6c, 0x76,
0x65, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x3b, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x7d, 0x20, 0x63, 0x61, 0x74, 0x63, 0x68, 0x20,
0x28, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x6a, 0x65, 0x63, 0x74, 0x28, 0x65,
0x72, 0x72, 0x6f, 0x72, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d,
0x0a, 0x20, 0x20, 0x7d, 0x29, 0x3b, 0x0a, 0x7d, 0x3b, 0x0a, 0x0a, 0x2f,
0x2a, 0x2a, 0x0a, 0x20, 0x2a, 0x20, 0x28, 0x64, 0x65, 0x70, 0x72, 0x65,
0x63, 0x61, 0x74, 0x65, 0x64, 0x29, 0x0a, 0x20, 0x2a, 0x2f, 0x0a, 0x65,
0x78, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20,
0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x43, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74,
0x65, 0x20, 0x3d, 0x20, 0x61, 0x73, 0x79, 0x6e, 0x63, 0x20, 0x28, 0x70,
0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72,
0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2c, 0x20, 0x63, 0x61, 0x6c, 0x6c, 0x62,
0x61, 0x63, 0x6b, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20,
0x66, 0x6f, 0x72, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x28, 0x63,
0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x20, 0x6f,
0x66, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x28, 0x70, 0x61, 0x72, 0x61,
0x6d, 0x73, 0x2e, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70,
0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x7b, 0x20, 0x63, 0x6f, 0x6e,
0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x20, 0x7d, 0x29, 0x29, 0x20,
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x61, 0x6c, 0x6c, 0x62, 0x61,
0x63, 0x6b, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x29, 0x3b, 0x0a, 0x20,
0x20, 0x7d, 0x0a, 0x7d, 0x0a, 0x0a, 0x2f, 0x2f, 0x20, 0x47, 0x65, 0x74,
0x20, 0x74, 0x68, 0x65, 0x20, 0x6d, 0x6f, 0x64, 0x65, 0x6c, 0x20, 0x69,
0x6e, 0x66, 0x6f, 0x20, 0x66, 0x72, 0x6f, 0x6d, 0x20, 0x74, 0x68, 0x65,
0x20, 0x73, 0x65, 0x72, 0x76, 0x65, 0x72, 0x2e, 0x20, 0x54, 0x68, 0x69,
0x73, 0x20, 0x69, 0x73, 0x20, 0x75, 0x73, 0x65, 0x66, 0x75, 0x6c, 0x20,
0x66, 0x6f, 0x72, 0x20, 0x67, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x20,
0x74, 0x68, 0x65, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x78, 0x74, 0x20,
0x77, 0x69, 0x6e, 0x64, 0x6f, 0x77, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x73,
0x6f, 0x20, 0x6f, 0x6e, 0x2e, 0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74,
0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61,
0x4d, 0x6f, 0x64, 0x65, 0x6c, 0x49, 0x6e, 0x66, 0x6f, 0x20, 0x3d, 0x20,
0x61, 0x73, 0x79, 0x6e, 0x63, 0x20, 0x28, 0x29, 0x20, 0x3d, 0x3e, 0x20,
0x7b, 0x0a, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x21, 0x67, 0x65, 0x6e,
0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74,
0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x20,
0x3d, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x66, 0x65, 0x74, 0x63,
0x68, 0x28, 0x22, 0x2f, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x22, 0x29, 0x2e,
0x74, 0x68, 0x65, 0x6e, 0x28, 0x72, 0x20, 0x3d, 0x3e, 0x20, 0x72, 0x2e,
0x6a, 0x73, 0x6f, 0x6e, 0x28, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f,
0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x3b, 0x0a, 0x7d, 0x0a
0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x20, 0x3d, 0x20, 0x70,
0x72, 0x6f, 0x70, 0x73, 0x2e, 0x64, 0x65, 0x66, 0x61, 0x75, 0x6c, 0x74,
0x5f, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f,
0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x3b, 0x0a, 0x20, 0x20,
0x7d, 0x0a, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x67,
0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65,
0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x3b, 0x0a, 0x7d, 0x0a
};
unsigned int completion_js_len = 5796;
unsigned int completion_js_len = 5782;

225
examples/server/oai.hpp Normal file
View File

@@ -0,0 +1,225 @@
#pragma once
#include <string>
#include <vector>
#include <set>
#include <mutex>
#include <condition_variable>
#include <unordered_map>
#include "json.hpp"
#include "utils.hpp"
#define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo-0613"
using json = nlohmann::json;
inline static json oaicompat_completion_params_parse(
const struct llama_model * model,
const json &body, /* openai api json semantics */
const std::string &chat_template)
{
json llama_params;
llama_params["__oaicompat"] = true;
// Map OpenAI parameters to llama.cpp parameters
//
// For parameters that are defined by the OpenAI documentation (e.g.
// temperature), we explicitly specify OpenAI's intended default; we
// need to do that because sometimes OpenAI disagrees with llama.cpp
//
// https://platform.openai.com/docs/api-reference/chat/create
llama_sampling_params default_sparams;
llama_params["model"] = json_value(body, "model", std::string("unknown"));
llama_params["prompt"] = format_chat(model, chat_template, body["messages"]);
llama_params["cache_prompt"] = json_value(body, "cache_prompt", false);
llama_params["temperature"] = json_value(body, "temperature", 0.0);
llama_params["top_k"] = json_value(body, "top_k", default_sparams.top_k);
llama_params["top_p"] = json_value(body, "top_p", 1.0);
llama_params["n_predict"] = json_value(body, "max_tokens", -1);
llama_params["logit_bias"] = json_value(body, "logit_bias",json::object());
llama_params["frequency_penalty"] = json_value(body, "frequency_penalty", 0.0);
llama_params["presence_penalty"] = json_value(body, "presence_penalty", 0.0);
llama_params["seed"] = json_value(body, "seed", LLAMA_DEFAULT_SEED);
llama_params["stream"] = json_value(body, "stream", false);
llama_params["mirostat"] = json_value(body, "mirostat", default_sparams.mirostat);
llama_params["mirostat_tau"] = json_value(body, "mirostat_tau", default_sparams.mirostat_tau);
llama_params["mirostat_eta"] = json_value(body, "mirostat_eta", default_sparams.mirostat_eta);
llama_params["penalize_nl"] = json_value(body, "penalize_nl", default_sparams.penalize_nl);
llama_params["typical_p"] = json_value(body, "typical_p", default_sparams.typical_p);
llama_params["repeat_last_n"] = json_value(body, "repeat_last_n", default_sparams.penalty_last_n);
llama_params["ignore_eos"] = json_value(body, "ignore_eos", false);
llama_params["tfs_z"] = json_value(body, "tfs_z", default_sparams.tfs_z);
if (body.count("grammar") != 0) {
llama_params["grammar"] = json_value(body, "grammar", json::object());
}
// Handle 'stop' field
if (body.contains("stop") && body["stop"].is_string()) {
llama_params["stop"] = json::array({body["stop"].get<std::string>()});
} else {
llama_params["stop"] = json_value(body, "stop", json::array());
}
// Ensure there is ChatML-specific end sequence among stop words
llama_params["stop"].push_back("<|im_end|>");
return llama_params;
}
inline static json format_final_response_oaicompat(const json &request, const task_result &response, bool streaming = false)
{
json result = response.result_json;
bool stopped_word = result.count("stopped_word") != 0;
bool stopped_eos = json_value(result, "stopped_eos", false);
int num_tokens_predicted = json_value(result, "tokens_predicted", 0);
int num_prompt_tokens = json_value(result, "tokens_evaluated", 0);
std::string content = json_value(result, "content", std::string(""));
std::string finish_reason = "length";
if (stopped_word || stopped_eos) {
finish_reason = "stop";
}
json choices =
streaming ? json::array({json{{"finish_reason", finish_reason},
{"index", 0},
{"delta", json::object()}}})
: json::array({json{{"finish_reason", finish_reason},
{"index", 0},
{"message", json{{"content", content},
{"role", "assistant"}}}}});
std::time_t t = std::time(0);
json res =
json{{"choices", choices},
{"created", t},
{"model",
json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
{"object", streaming ? "chat.completion.chunk" : "chat.completion"},
{"usage",
json{{"completion_tokens", num_tokens_predicted},
{"prompt_tokens", num_prompt_tokens},
{"total_tokens", num_tokens_predicted + num_prompt_tokens}}},
{"id", gen_chatcmplid()}};
if (server_verbose) {
res["__verbose"] = result;
}
if (result.contains("completion_probabilities")) {
res["completion_probabilities"] = json_value(result, "completion_probabilities", json::array());
}
return res;
}
// return value is vector as there is one case where we might need to generate two responses
inline static std::vector<json> format_partial_response_oaicompat(const task_result &response) {
json result = response.result_json;
if (!result.contains("model") || !result.contains("oaicompat_token_ctr")) {
return std::vector<json>({response.result_json});
}
bool first = json_value(result, "oaicompat_token_ctr", 0) == 0;
std::string modelname = json_value(result, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
bool stopped_word = json_value(result, "stopped_word", false);
bool stopped_eos = json_value(result, "stopped_eos", false);
bool stopped_limit = json_value(result, "stopped_limit", false);
std::string content = json_value(result, "content", std::string(""));
std::string finish_reason;
if (stopped_word || stopped_eos) {
finish_reason = "stop";
}
if (stopped_limit) {
finish_reason = "length";
}
std::time_t t = std::time(0);
json choices;
if (!finish_reason.empty()) {
choices = json::array({json{{"finish_reason", finish_reason},
{"index", 0},
{"delta", json::object()}}});
} else {
if (first) {
if (content.empty()) {
choices = json::array({json{{"finish_reason", nullptr},
{"index", 0},
{"delta", json{{"role", "assistant"}}}}});
} else {
// We have to send this as two updates to conform to openai behavior
json initial_ret = json{{"choices", json::array({json{
{"finish_reason", nullptr},
{"index", 0},
{"delta", json{
{"role", "assistant"}
}}}})},
{"created", t},
{"id", gen_chatcmplid()},
{"model", modelname},
{"object", "chat.completion.chunk"}};
json second_ret = json{
{"choices", json::array({json{{"finish_reason", nullptr},
{"index", 0},
{"delta", json{
{"content", content}}}
}})},
{"created", t},
{"id", gen_chatcmplid()},
{"model", modelname},
{"object", "chat.completion.chunk"}};
return std::vector<json>({initial_ret, second_ret});
}
} else {
// Some idiosyncrasy in task processing logic makes several trailing calls
// with empty content, we ignore these at the calee site.
if (content.empty()) {
return std::vector<json>({json::object()});
}
choices = json::array({json{
{"finish_reason", nullptr},
{"index", 0},
{"delta",
json{
{"content", content},
}},
}});
}
}
json ret = json{{"choices", choices},
{"created", t},
{"id", gen_chatcmplid()},
{"model", modelname},
{"object", "chat.completion.chunk"}};
return std::vector<json>({ret});
}
inline static json format_embeddings_response_oaicompat(const json &request, const json &embeddings)
{
json res =
json{
{"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
{"object", "list"},
{"usage",
json{{"prompt_tokens", 0},
{"total_tokens", 0}}},
{"data", embeddings}
};
return res;
}

View File

@@ -96,18 +96,18 @@ export async function* llama(prompt, params = {}, config = {}) {
}
}
if (result.error) {
try {
result.error = JSON.parse(result.error);
if (result.error.message.includes('slot unavailable')) {
// Throw an error to be caught by upstream callers
throw new Error('slot unavailable');
} else {
console.error(`llama.cpp error [${result.error.code} - ${result.error.type}]: ${result.error.message}`);
}
} catch(e) {
console.error(`llama.cpp error ${result.error}`)
result.error = JSON.parse(result.error);
if (result.error.content.includes('slot unavailable')) {
// Throw an error to be caught by upstream callers
throw new Error('slot unavailable');
} else {
console.error(`llama.cpp error: ${result.error.content}`);
}
}
if (result.error) {
result.error = JSON.parse(result.error);
console.error(`llama.cpp error: ${result.error.content}`);
}
}
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -1,30 +1,22 @@
# Server tests
Python based server tests scenario using [BDD](https://en.wikipedia.org/wiki/Behavior-driven_development)
and [behave](https://behave.readthedocs.io/en/latest/):
* [issues.feature](./features/issues.feature) Pending issues scenario
* [parallel.feature](./features/parallel.feature) Scenario involving multi slots and concurrent requests
* [security.feature](./features/security.feature) Security, CORS and API Key
* [server.feature](./features/server.feature) Server base scenario: completion, embedding, tokenization, etc...
Python based server tests scenario using [BDD](https://en.wikipedia.org/wiki/Behavior-driven_development) and [behave](https://behave.readthedocs.io/en/latest/):
* [issues.feature](./features/issues.feature) Pending issues scenario
* [parallel.feature](./features/parallel.feature) Scenario involving multi slots and concurrent requests
* [security.feature](./features/security.feature) Security, CORS and API Key
* [server.feature](./features/server.feature) Server base scenario: completion, embedding, tokenization, etc...
Tests target GitHub workflows job runners with 4 vCPU.
Requests are
using [aiohttp](https://docs.aiohttp.org/en/stable/client_reference.html), [asyncio](https://docs.python.org/fr/3/library/asyncio.html)
based http client.
Requests are using [aiohttp](https://docs.aiohttp.org/en/stable/client_reference.html), [asyncio](https://docs.python.org/fr/3/library/asyncio.html) based http client.
Note: If the host architecture inference speed is faster than GitHub runners one, parallel scenario may randomly fail.
To mitigate it, you can increase values in `n_predict`, `kv_size`.
Note: If the host architecture inference speed is faster than GitHub runners one, parallel scenario may randomly fail. To mitigate it, you can increase values in `n_predict`, `kv_size`.
### Install dependencies
`pip install -r requirements.txt`
### Run tests
1. Build the server
```shell
cd ../../..
mkdir build
@@ -32,36 +24,24 @@ cd build
cmake ../
cmake --build . --target server
```
2. Start the test: `./tests.sh`
2. download required models:
1. `../../../scripts/hf.sh --repo ggml-org/models --file tinyllamas/stories260K.gguf`
3. Start the test: `./tests.sh`
It's possible to override some scenario steps values with environment variables:
| variable | description |
|--------------------------|------------------------------------------------------------------------------------------------|
| `PORT` | `context.server_port` to set the listening port of the server during scenario, default: `8080` |
| `LLAMA_SERVER_BIN_PATH` | to change the server binary path, default: `../../../build/bin/server` |
| `DEBUG` | "ON" to enable steps and server verbose mode `--verbose` |
| `SERVER_LOG_FORMAT_JSON` | if set switch server logs to json format |
| `N_GPU_LAYERS` | number of model layers to offload to VRAM `-ngl --n-gpu-layers` |
- `PORT` -> `context.server_port` to set the listening port of the server during scenario, default: `8080`
- `LLAMA_SERVER_BIN_PATH` -> to change the server binary path, default: `../../../build/bin/server`
- `DEBUG` -> "ON" to enable steps and server verbose mode `--verbose`
- `SERVER_LOG_FORMAT_JSON` -> if set switch server logs to json format
### Run @bug, @wip or @wrong_usage annotated scenario
Feature or Scenario must be annotated with `@llama.cpp` to be included in the default scope.
- `@bug` annotation aims to link a scenario with a GitHub issue.
- `@wrong_usage` are meant to show user issue that are actually an expected behavior
- `@wip` to focus on a scenario working in progress
- `@slow` heavy test, disabled by default
To run a scenario annotated with `@bug`, start:
```shell
DEBUG=ON ./tests.sh --no-skipped --tags bug
```
`DEBUG=ON ./tests.sh --no-skipped --tags bug`
After changing logic in `steps.py`, ensure that `@bug` and `@wrong_usage` scenario are updated.
```shell
./tests.sh --no-skipped --tags bug,wrong_usage || echo "should failed but compile"
```

View File

@@ -1,95 +0,0 @@
@llama.cpp
@embeddings
Feature: llama.cpp server
Background: Server startup
Given a server listening on localhost:8080
And a model file bert-bge-small/ggml-model-f16.gguf from HF repo ggml-org/models
And a model alias bert-bge-small
And 42 as server seed
And 2 slots
And 1024 as batch size
And 1024 as ubatch size
And 2048 KV cache size
And embeddings extraction
Then the server is starting
Then the server is healthy
Scenario: Embedding
When embeddings are computed for:
"""
What is the capital of Bulgaria ?
"""
Then embeddings are generated
Scenario: OAI Embeddings compatibility
Given a model bert-bge-small
When an OAI compatible embeddings computation request for:
"""
What is the capital of Spain ?
"""
Then embeddings are generated
Scenario: OAI Embeddings compatibility with multiple inputs
Given a model bert-bge-small
Given a prompt:
"""
In which country Paris is located ?
"""
And a prompt:
"""
Is Madrid the capital of Spain ?
"""
When an OAI compatible embeddings computation request for multiple inputs
Then embeddings are generated
Scenario: Multi users embeddings
Given a prompt:
"""
Write a very long story about AI.
"""
And a prompt:
"""
Write another very long music lyrics.
"""
And a prompt:
"""
Write a very long poem.
"""
And a prompt:
"""
Write a very long joke.
"""
Given concurrent embedding requests
Then the server is busy
Then the server is idle
Then all embeddings are generated
Scenario: Multi users OAI compatibility embeddings
Given a prompt:
"""
In which country Paris is located ?
"""
And a prompt:
"""
Is Madrid the capital of Spain ?
"""
And a prompt:
"""
What is the biggest US city ?
"""
And a prompt:
"""
What is the capital of Bulgaria ?
"""
And a model bert-bge-small
Given concurrent OAI embedding requests
Then the server is busy
Then the server is idle
Then all embeddings are generated
Scenario: All embeddings should be the same
Given 10 fixed prompts
And a model bert-bge-small
Given concurrent OAI embedding requests
Then all embeddings are the same

View File

@@ -1,17 +1,13 @@
import errno
import os
import socket
import subprocess
import time
from contextlib import closing
import signal
from signal import SIGKILL
def before_scenario(context, scenario):
context.debug = 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON'
if context.debug:
print("DEBUG=ON\n")
print(f"\x1b[33;42mStarting new scenario: {scenario.name}!\x1b[0m\n")
print(f"\x1b[33;42mStarting new scenario: {scenario.name}!\x1b[0m")
port = 8080
if 'PORT' in os.environ:
port = int(os.environ['PORT'])
@@ -30,71 +26,44 @@ def after_scenario(context, scenario):
for line in f:
print(line)
if not is_server_listening(context.server_fqdn, context.server_port):
print("\x1b[33;101mERROR: Server stopped listening\x1b[0m\n")
print("\x1b[33;101mERROR: Server stopped listening\x1b[0m")
if not pid_exists(context.server_process.pid):
assert False, f"Server not running pid={context.server_process.pid} ..."
server_graceful_shutdown(context)
print(f"stopping server pid={context.server_process.pid} ...")
context.server_process.kill()
# Wait few for socket to free up
time.sleep(0.05)
attempts = 0
while pid_exists(context.server_process.pid) or is_server_listening(context.server_fqdn, context.server_port):
server_kill(context)
while is_server_listening(context.server_fqdn, context.server_port):
print(f"stopping server pid={context.server_process.pid} ...")
os.kill(context.server_process.pid, SIGKILL)
time.sleep(0.1)
attempts += 1
if attempts > 5:
server_kill_hard(context)
def server_graceful_shutdown(context):
print(f"shutting down server pid={context.server_process.pid} ...\n")
if os.name == 'nt':
os.kill(context.server_process.pid, signal.CTRL_C_EVENT)
else:
os.kill(context.server_process.pid, signal.SIGINT)
def server_kill(context):
print(f"killing server pid={context.server_process.pid} ...\n")
context.server_process.kill()
def server_kill_hard(context):
pid = context.server_process.pid
path = context.server_path
print(f"Server dangling exits, hard killing force {pid}={path}...\n")
if os.name == 'nt':
process = subprocess.check_output(['taskkill', '/F', '/pid', str(pid)]).decode()
print(process)
else:
os.kill(-pid, signal.SIGKILL)
print(f"Server dangling exits, killing all {context.server_path} ...")
process = subprocess.run(['killall', '-9', context.server_path],
stderr=subprocess.PIPE,
universal_newlines=True)
print(process)
def is_server_listening(server_fqdn, server_port):
with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
result = sock.connect_ex((server_fqdn, server_port))
_is_server_listening = result == 0
if _is_server_listening:
print(f"server is listening on {server_fqdn}:{server_port}...\n")
return _is_server_listening
return result == 0
def pid_exists(pid):
"""Check whether pid exists in the current process table."""
import errno
if pid < 0:
return False
if os.name == 'nt':
output = subprocess.check_output(['TASKLIST', '/FI', f'pid eq {pid}']).decode()
print(output)
return "No tasks are running" not in output
try:
os.kill(pid, 0)
except OSError as e:
return e.errno == errno.EPERM
else:
try:
os.kill(pid, 0)
except OSError as e:
return e.errno == errno.EPERM
else:
return True
return True

View File

@@ -1,5 +1,4 @@
# List of ongoing issues
# run with: DEBUG=ON ./tests.sh --no-skipped --tags bug
@bug
Feature: Issues
# No confirmed issue at the moment

View File

@@ -1,14 +1,14 @@
@llama.cpp
@parallel
Feature: Parallel
Background: Server startup
Given a server listening on localhost:8080
And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models
And a model file stories260K.gguf
And a model alias tinyllama-2
And 42 as server seed
And 128 as batch size
And 256 KV cache size
And 64 KV cache size
And 2 slots
And embeddings extraction
And continuous batching
Then the server is starting
Then the server is healthy
@@ -76,7 +76,6 @@ Feature: Parallel
| disabled | 128 |
| enabled | 64 |
Scenario: Multi users with total number of tokens to predict exceeds the KV Cache size #3969
Given a prompt:
"""
@@ -99,3 +98,48 @@ Feature: Parallel
Then the server is busy
Then the server is idle
Then all prompts are predicted
Scenario: Multi users embeddings
Given a prompt:
"""
Write a very long story about AI.
"""
And a prompt:
"""
Write another very long music lyrics.
"""
And a prompt:
"""
Write a very long poem.
"""
And a prompt:
"""
Write a very long joke.
"""
Given concurrent embedding requests
Then the server is busy
Then the server is idle
Then all embeddings are generated
Scenario: Multi users OAI compatibility embeddings
Given a prompt:
"""
In which country Paris is located ?
"""
And a prompt:
"""
Is Madrid the capital of Spain ?
"""
And a prompt:
"""
What is the biggest US city ?
"""
And a prompt:
"""
What is the capital of Bulgaria ?
"""
And a model tinyllama-2
Given concurrent OAI embedding requests
Then the server is busy
Then the server is idle
Then all embeddings are generated

View File

@@ -1,55 +0,0 @@
# run with: ./tests.sh --no-skipped --tags passkey
@passkey
@slow
Feature: Passkey / Self-extend with context shift
Background: Server startup
Given a server listening on localhost:8080
# Generates a long text of junk and inserts a secret passkey number inside it.
# Then we query the LLM for the secret passkey.
# see #3856 and #4810
Scenario Outline: Passkey
Given a model file <hf_file> from HF repo <hf_repo>
And <n_batch> as batch size
And <n_junk> as number of junk
And <n_predicted> server max tokens to predict
And 42 as seed
And <n_ctx> KV cache size
And 1 slots
And <n_ga> group attention factor to extend context size through self-extend
And <n_ga_w> group attention width to extend context size through self-extend
# Can be override with N_GPU_LAYERS
And <ngl> GPU offloaded layers
Then the server is starting
Then the server is healthy
Given available models
Then model 0 is trained on <n_ctx_train> tokens context
Given a prefix prompt:
"""
here is an important info hidden inside a lot of irrelevant text. Find it and memorize them. I will quiz you about the important information there.
"""
And a passkey prompt template:
"""
The pass key is <passkey> Remember it. <passkey> is the pass key.
"""
And a junk suffix prompt:
"""
The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.
"""
And a suffix prompt:
"""
What is the pass key? The pass key is
"""
Given a "<passkey>" passkey challenge prompt with the passkey inserted every <i_pos> junk
And a completion request with no api error
Then <n_predicted> tokens are predicted matching <re_content>
Examples:
| hf_repo | hf_file | n_ctx_train | ngl | n_ctx | n_batch | n_ga | n_ga_w | n_junk | i_pos | passkey | n_predicted | re_content |
| TheBloke/phi-2-GGUF | phi-2.Q4_K_M.gguf | 2048 | 5 | 8192 | 512 | 4 | 512 | 250 | 50 | 42 | 1 | 42 |
| TheBloke/phi-2-GGUF | phi-2.Q4_K_M.gguf | 2048 | 5 | 8192 | 512 | 2 | 512 | 250 | 50 | 42 | 1 | \b((?!42)\w)+\b |
#| TheBloke/Llama-2-7B-GGUF | llama-2-7b.Q2_K.gguf | 4096 | 3 | 16384 | 512 | 4 | 512 | 500 | 300 | 1234 | 5 | 1234 |
#| TheBloke/Mixtral-8x7B-v0.1-GGUF | mixtral-8x7b-v0.1.Q2_K.gguf | 32768 | 2 | 16384 | 512 | 4 | 512 | 500 | 100 | 0987 | 5 | 0
# 987 |

View File

@@ -1,10 +1,9 @@
@llama.cpp
@security
Feature: Security
Background: Server startup with an api key defined
Given a server listening on localhost:8080
And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models
And a model file stories260K.gguf
And a server api key llama.cpp
Then the server is starting
Then the server is healthy
@@ -39,9 +38,8 @@ Feature: Security
Scenario Outline: CORS Options
Given a user api key llama.cpp
When an OPTIONS request is sent from <origin>
Then CORS header <cors_header> is set to <cors_header_value>
When an OPTIONS request is sent from <origin>
Then CORS header <cors_header> is set to <cors_header_value>
Examples: Headers
| origin | cors_header | cors_header_value |

View File

@@ -1,19 +1,18 @@
@llama.cpp
@server
Feature: llama.cpp server
Background: Server startup
Given a server listening on localhost:8080
And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models
And a model file stories260K.gguf
And a model alias tinyllama-2
And 42 as server seed
# KV Cache corresponds to the total amount of tokens
# that can be stored across all independent sequences: #4130
# see --ctx-size and #5568
And 256 KV cache size
And 32 as batch size
And 2 slots
And 64 server max tokens to predict
And 32 KV cache size
And 1 slots
And embeddings extraction
And 32 server max tokens to predict
And prometheus compatible metrics exposed
Then the server is starting
Then the server is healthy
@@ -22,35 +21,17 @@ Feature: llama.cpp server
Then the server is ready
And all slots are idle
Scenario Outline: Completion
Given a prompt <prompt>
And <n_predict> max tokens to predict
And a completion request with no api error
Then <n_predicted> tokens are predicted matching <re_content>
And the completion is <truncated> truncated
And <n_prompt> prompt tokens are processed
And prometheus metrics are exposed
And metric llamacpp:tokens_predicted is <n_predicted>
Examples: Prompts
| prompt | n_predict | re_content | n_prompt | n_predicted | truncated |
| I believe the meaning of life is | 8 | (read\|going)+ | 18 | 8 | not |
| Write a joke about AI from a very long prompt which will not be truncated | 256 | (princesses\|everyone\|kids)+ | 46 | 64 | not |
Scenario: Completion prompt truncated
Given a prompt:
"""
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
"""
And a completion request with no api error
Then 64 tokens are predicted matching fun|Annaks|popcorns|pictry
And the completion is truncated
And 109 prompt tokens are processed
| prompt | n_predict | re_content | n_predicted |
| I believe the meaning of life is | 8 | (read<or>going)+ | 8 |
| Write a joke about AI | 64 | (park<or>friends<or>scared<or>always)+ | 32 |
Scenario Outline: OAI Compatibility
Given a model <model>
@@ -60,13 +41,39 @@ Feature: llama.cpp server
And streaming is <enable_streaming>
Given an OAI compatible chat completions request with no api error
Then <n_predicted> tokens are predicted matching <re_content>
And <n_prompt> prompt tokens are processed
And the completion is <truncated> truncated
Examples: Prompts
| model | system_prompt | user_prompt | max_tokens | re_content | n_prompt | n_predicted | enable_streaming | truncated |
| llama-2 | Book | What is the best book | 8 | (Here\|what)+ | 77 | 8 | disabled | not |
| codellama70b | You are a coding assistant. | Write the fibonacci function in c++. | 128 | (thanks\|happy\|bird)+ | -1 | 64 | enabled | |
| model | system_prompt | user_prompt | max_tokens | re_content | n_predicted | enable_streaming |
| llama-2 | Book | What is the best book | 8 | (Mom<or>what)+ | 8 | disabled |
| codellama70b | You are a coding assistant. | Write the fibonacci function in c++. | 64 | (thanks<or>happy<or>bird)+ | 32 | enabled |
Scenario: Embedding
When embeddings are computed for:
"""
What is the capital of Bulgaria ?
"""
Then embeddings are generated
Scenario: OAI Embeddings compatibility
Given a model tinyllama-2
When an OAI compatible embeddings computation request for:
"""
What is the capital of Spain ?
"""
Then embeddings are generated
Scenario: OAI Embeddings compatibility with multiple inputs
Given a model tinyllama-2
Given a prompt:
"""
In which country Paris is located ?
"""
And a prompt:
"""
Is Madrid the capital of Spain ?
"""
When an OAI compatible embeddings computation request for multiple inputs
Then embeddings are generated
Scenario: Tokenize / Detokenize
@@ -75,9 +82,3 @@ Feature: llama.cpp server
What is the capital of France ?
"""
Then tokens can be detokenize
Scenario: Models available
Given available models
Then 1 models are supported
Then model 0 is identified by tinyllama-2
Then model 0 is trained on 128 tokens context

View File

@@ -10,46 +10,33 @@ from contextlib import closing
from re import RegexFlag
import aiohttp
import numpy as np
import openai
from behave import step
from behave.api.async_step import async_run_until_complete
from huggingface_hub import hf_hub_download
from prometheus_client import parser
@step("a server listening on {server_fqdn}:{server_port}")
@step(u"a server listening on {server_fqdn}:{server_port}")
def step_server_config(context, server_fqdn, server_port):
context.server_fqdn = server_fqdn
context.server_port = int(server_port)
if 'PORT' in os.environ:
context.server_port = int(os.environ['PORT'])
print(f"$PORT set, overriding server port with to {context.server_port}")
if 'FQDN' in os.environ:
context.server_fqdn = os.environ['FQDN']
print(f"$FQDN set, overriding server fqdn with to {context.server_fqdn}")
context.base_url = f'http://{context.server_fqdn}:{context.server_port}'
context.debug = 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON'
context.model_alias = None
context.n_batch = None
context.n_ubatch = None
context.n_ctx = None
context.n_ga = None
context.n_ga_w = None
context.n_gpu_layer = None
context.n_predict = None
context.n_prompts = 0
context.n_server_predict = None
context.n_slots = None
context.prompt_prefix = None
context.prompt_suffix = None
context.server_api_key = None
context.server_continuous_batching = False
context.server_embeddings = False
context.server_metrics = False
context.server_process = None
context.seed = None
context.server_seed = None
context.user_api_key = None
@@ -58,71 +45,55 @@ def step_server_config(context, server_fqdn, server_port):
context.prompts = []
@step('a model file {hf_file} from HF repo {hf_repo}')
def step_download_hf_model(context, hf_file, hf_repo):
context.model_file = hf_hub_download(repo_id=hf_repo, filename=hf_file)
if context.debug:
print(f"model file: {context.model_file}\n")
@step(u'a model file {model_file}')
def step_model_file(context, model_file):
context.model_file = model_file
@step('a model alias {model_alias}')
@step(u'a model alias {model_alias}')
def step_model_alias(context, model_alias):
context.model_alias = model_alias
@step('{seed:d} as server seed')
@step(u'{seed} as server seed')
def step_seed(context, seed):
context.server_seed = seed
context.server_seed = int(seed)
@step('{ngl:d} GPU offloaded layers')
def step_n_gpu_layer(context, ngl):
if 'N_GPU_LAYERS' in os.environ:
new_ngl = int(os.environ['N_GPU_LAYERS'])
if context.debug:
print(f"-ngl upgraded from {ngl} to {new_ngl}")
ngl = new_ngl
context.n_gpu_layer = ngl
@step('{n_ctx:d} KV cache size')
@step(u'{n_ctx} KV cache size')
def step_n_ctx(context, n_ctx):
context.n_ctx = n_ctx
context.n_ctx = int(n_ctx)
@step('{n_slots:d} slots')
@step(u'{n_slots} slots')
def step_n_slots(context, n_slots):
context.n_slots = n_slots
context.n_slots = int(n_slots)
@step('{n_predict:d} server max tokens to predict')
@step(u'{n_predict} server max tokens to predict')
def step_server_n_predict(context, n_predict):
context.n_server_predict = n_predict
context.n_server_predict = int(n_predict)
@step('continuous batching')
@step(u'continuous batching')
def step_server_continuous_batching(context):
context.server_continuous_batching = True
@step('embeddings extraction')
@step(u'embeddings extraction')
def step_server_embeddings(context):
context.server_embeddings = True
@step('prometheus compatible metrics exposed')
@step(u'prometheus compatible metrics exposed')
def step_server_metrics(context):
context.server_metrics = True
@step("the server is starting")
@step(u"the server is starting")
def step_start_server(context):
start_server_background(context)
attempts = 0
max_attempts = 20
if 'GITHUB_ACTIONS' in os.environ:
max_attempts *= 2
while True:
with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
result = sock.connect_ex((context.server_fqdn, context.server_port))
@@ -130,13 +101,13 @@ def step_start_server(context):
print("\x1b[33;46mserver started!\x1b[0m")
return
attempts += 1
if attempts > max_attempts:
if attempts > 20:
assert False, "server not started"
print(f"waiting for server to start, connect error code = {result}...")
time.sleep(0.1)
@step("the server is {expecting_status}")
@step(u"the server is {expecting_status}")
@async_run_until_complete
async def step_wait_for_the_server_to_be_started(context, expecting_status):
match expecting_status:
@@ -145,13 +116,11 @@ async def step_wait_for_the_server_to_be_started(context, expecting_status):
case 'ready' | 'idle':
await wait_for_health_status(context, context.base_url, 200, 'ok',
timeout=10,
params={'fail_on_no_slot': 0, 'include_slots': 0},
slots_idle=context.n_slots,
slots_processing=0,
expected_slots=[{'id': slot_id, 'state': 0}
for slot_id in
range(context.n_slots if context.n_slots else 1)])
for slot_id in range(context.n_slots)])
case 'busy':
await wait_for_health_status(context, context.base_url, 503,
'no slot available',
@@ -159,13 +128,12 @@ async def step_wait_for_the_server_to_be_started(context, expecting_status):
slots_idle=0,
slots_processing=context.n_slots,
expected_slots=[{'id': slot_id, 'state': 1}
for slot_id in
range(context.n_slots if context.n_slots else 1)])
for slot_id in range(context.n_slots)])
case _:
assert False, "unknown status"
@step('all slots are {expected_slot_status_string}')
@step(u'all slots are {expected_slot_status_string}')
@async_run_until_complete
async def step_all_slots_status(context, expected_slot_status_string):
match expected_slot_status_string:
@@ -181,7 +149,7 @@ async def step_all_slots_status(context, expected_slot_status_string):
await request_slots_status(context, expected_slots)
@step('a completion request with {api_error} api error')
@step(u'a completion request with {api_error} api error')
@async_run_until_complete
async def step_request_completion(context, api_error):
expect_api_error = api_error == 'raised'
@@ -189,166 +157,76 @@ async def step_request_completion(context, api_error):
context.base_url,
debug=context.debug,
n_predict=context.n_predict,
seed=await completions_seed(context),
server_seed=context.server_seed,
expect_api_error=expect_api_error,
user_api_key=context.user_api_key)
context.tasks_result.append(completion)
if context.debug:
print(f"Completion response: {completion}\n")
print(f"Completion response: {completion}")
if expect_api_error:
assert completion == 401, f"completion must be an 401 status code: {completion}"
@step('{predicted_n:d} tokens are predicted matching {re_content}')
@step(u'{predicted_n} tokens are predicted matching {re_content}')
def step_n_tokens_predicted_with_content(context, predicted_n, re_content):
context.completion = context.tasks_result.pop()
assert_n_tokens_predicted(context.completion, predicted_n, re_content)
assert_n_tokens_predicted(context.tasks_result.pop(), int(predicted_n), re_content)
@step('{predicted_n:d} tokens are predicted')
@step(u'{predicted_n} tokens are predicted')
def step_n_tokens_predicted(context, predicted_n):
context.completion = context.tasks_result.pop()
assert_n_tokens_predicted(context.completion, predicted_n)
assert_n_tokens_predicted(context.tasks_result.pop(), int(predicted_n))
@step('the completion is truncated')
def step_assert_completion_truncated(context):
step_assert_completion_truncated(context, '')
@step('the completion is {truncated} truncated')
def step_assert_completion_truncated(context, truncated):
truncated = truncated != "not"
assert context.completion['truncated'] == truncated, f'{context.completion}'
@step('{n_prompt:d} prompt tokens are processed')
def step_impl(context, n_prompt):
assert n_prompt < 0 or n_prompt == context.completion['timings']['prompt_n'], f"n_prompt={context.completion['timings']['prompt_n']}"
@step('a user prompt {user_prompt}')
@step(u'a user prompt {user_prompt}')
def step_user_prompt(context, user_prompt):
context.prompts.append(user_prompt)
context.n_prompts = len(context.prompts)
@step('a system prompt {system_prompt}')
@step(u'a system prompt {system_prompt}')
def step_system_prompt(context, system_prompt):
context.system_prompt = system_prompt
@step('a model {model}')
@step(u'a model {model}')
def step_model(context, model):
context.model = model
@step('{max_tokens:d} max tokens to predict')
@step(u'{max_tokens} max tokens to predict')
def step_max_tokens(context, max_tokens):
context.n_predict = max_tokens
context.n_predict = int(max_tokens)
@step('streaming is {enable_streaming}')
@step(u'streaming is {enable_streaming}')
def step_streaming(context, enable_streaming):
context.enable_streaming = enable_streaming == 'enabled'
@step('a user api key {user_api_key}')
@step(u'a user api key {user_api_key}')
def step_user_api_key(context, user_api_key):
context.user_api_key = user_api_key
@step('no user api key')
@step(u'no user api key')
def step_no_user_api_key(context):
context.user_api_key = None
@step('a user api key ')
@step(u'a user api key ')
def step_no_user_api_key_space(context):
context.user_api_key = None
@step('a server api key {server_api_key}')
@step(u'a server api key {server_api_key}')
def step_server_api_key(context, server_api_key):
context.server_api_key = server_api_key
@step('{n_junk:d} as number of junk')
def step_n_junk(context, n_junk):
context.n_junk = n_junk
@step('{n_batch:d} as batch size')
def step_n_batch(context, n_batch):
context.n_batch = n_batch
@step('{n_ubatch:d} as ubatch size')
def step_n_ubatch(context, n_ubatch):
context.n_ubatch = n_ubatch
@step('{seed:d} as seed')
def step_seed(context, seed):
context.seed = seed
@step('a prefix prompt')
def step_prompt_prefix(context):
context.prompt_prefix = context_text(context)
@step('a junk suffix prompt')
def step_prompt_junk_suffix(context):
context.prompt_junk_suffix = context_text(context)
@step('a suffix prompt')
def step_prompt_suffix(context):
context.prompt_suffix = context_text(context)
@step('{n_ga:d} group attention factor'
' to extend context size through self-extend')
def step_impl(context, n_ga):
context.n_ga = n_ga
@step('{n_ga_w:d} group attention width to extend context size through self-extend')
def step_impl(context, n_ga_w):
context.n_ga_w = n_ga_w
@step('a passkey prompt template')
def step_prompt_passkey(context):
context.prompt_passkey = context_text(context)
@step('{n_prompts:d} fixed prompts')
def step_fixed_prompts(context, n_prompts):
context.prompts.extend([str(0)*(context.n_batch if context.n_batch is not None else 512) for i in range(n_prompts)])
context.n_prompts = n_prompts
@step('a "{passkey}" passkey challenge prompt with the passkey inserted every {i_pos:d} junk')
def step_prompt_passkey(context, passkey, i_pos):
prompt = ""
for i in range(context.n_junk):
if i % context.n_junk == i_pos:
prompt += context.prompt_passkey # the passkey is already substituted
prompt += context.prompt_junk_suffix
if context.debug:
passkey_highlight = "\x1b[33m" + passkey + "\x1b[0m"
print(f"Passkey challenge:\n```{prompt.replace(passkey, passkey_highlight)}```\n")
context.prompts.append(context.prompt_prefix + prompt + context.prompt_suffix)
context.n_prompts = len(context.prompts)
@step('an OAI compatible chat completions request with {api_error} api error')
@step(u'an OAI compatible chat completions request with {api_error} api error')
@async_run_until_complete
async def step_oai_chat_completions(context, api_error):
if context.debug:
print(f"Submitting OAI compatible completions request...\n")
print(f"Submitting OAI compatible completions request...")
expect_api_error = api_error == 'raised'
completion = await oai_chat_completions(context.prompts.pop(),
context.system_prompt,
@@ -363,7 +241,8 @@ async def step_oai_chat_completions(context, api_error):
enable_streaming=context.enable_streaming
if hasattr(context, 'enable_streaming') else None,
seed=await completions_seed(context),
server_seed=context.server_seed
if hasattr(context, 'server_seed') else None,
user_api_key=context.user_api_key
if hasattr(context, 'user_api_key') else None,
@@ -379,19 +258,17 @@ async def step_oai_chat_completions(context, api_error):
print(f"Completion response: {completion}")
@step('a prompt')
@step(u'a prompt')
def step_a_prompt(context):
context.prompts.append(context_text(context))
context.n_prompts = len(context.prompts)
context.prompts.append(context.text)
@step('a prompt {prompt}')
@step(u'a prompt {prompt}')
def step_a_prompt_prompt(context, prompt):
context.prompts.append(prompt)
context.n_prompts = len(context.prompts)
@step('concurrent completion requests')
@step(u'concurrent completion requests')
@async_run_until_complete()
async def step_concurrent_completion_requests(context):
await concurrent_requests(context,
@@ -399,15 +276,13 @@ async def step_concurrent_completion_requests(context):
# prompt is inserted automatically
context.base_url,
debug=context.debug,
prompt_prefix=context.prompt_prefix,
prompt_suffix=context.prompt_suffix,
n_predict=context.n_predict if hasattr(context, 'n_predict') else None,
seed=await completions_seed(context),
server_seed=context.server_seed if hasattr(context, 'server_seed') else None,
user_api_key=context.user_api_key if hasattr(context,
'user_api_key') else None)
@step('concurrent OAI completions requests')
@step(u'concurrent OAI completions requests')
@async_run_until_complete
async def step_oai_chat_completions(context):
await concurrent_requests(context, oai_chat_completions,
@@ -422,12 +297,13 @@ async def step_oai_chat_completions(context):
if hasattr(context, 'n_predict') else None,
enable_streaming=context.enable_streaming
if hasattr(context, 'enable_streaming') else None,
seed=await completions_seed(context),
server_seed=context.server_seed
if hasattr(context, 'server_seed') else None,
user_api_key=context.user_api_key
if hasattr(context, 'user_api_key') else None)
@step('concurrent OAI completions requests no v1')
@step(u'concurrent OAI completions requests no v1')
@async_run_until_complete
async def step_oai_chat_completions(context):
await concurrent_requests(context, oai_chat_completions,
@@ -442,24 +318,23 @@ async def step_oai_chat_completions(context):
if hasattr(context, 'n_predict') else None,
enable_streaming=context.enable_streaming
if hasattr(context, 'enable_streaming') else None,
seed=context.seed
if hasattr(context, 'seed') else
context.server_seed
server_seed=context.server_seed
if hasattr(context, 'server_seed') else None,
user_api_key=context.user_api_key
if hasattr(context, 'user_api_key') else None)
@step('all prompts are predicted')
@step(u'all prompts are predicted')
@async_run_until_complete
async def step_all_prompts_are_predicted(context):
await all_prompts_are_predicted(context)
@step('all prompts are predicted with {n_expected_predicted:d} tokens')
@step(u'all prompts are predicted with {n_predict} tokens')
@async_run_until_complete
async def step_all_prompts_are_predicted_with_n_tokens(context, n_expected_predicted):
await all_prompts_are_predicted(context, n_expected_predicted)
async def step_all_prompts_are_predicted_with_n_tokens(context, n_predict):
expected_predicted_n = int(n_predict)
await all_prompts_are_predicted(context, expected_predicted_n)
async def all_prompts_are_predicted(context, expected_predicted_n=None):
@@ -470,68 +345,44 @@ async def all_prompts_are_predicted(context, expected_predicted_n=None):
assert len(context.concurrent_tasks) == 0, f"{len(context.concurrent_tasks)} pending requests"
@step('embeddings are computed for')
@step(u'embeddings are computed for')
@async_run_until_complete
async def step_compute_embedding(context):
context.n_prompts = 1
context.embeddings = await request_embedding(context_text(context), base_url=context.base_url)
context.embeddings = await request_embedding(context.text, base_url=context.base_url)
@step('all embeddings are the same')
@async_run_until_complete
async def step_all_embeddings_are_the_same(context):
n_embedding_requests = await gather_tasks_results(context)
assert n_embedding_requests > 0
embeddings = []
for i in range(n_embedding_requests):
embedding = context.tasks_result.pop().pop()
embeddings.append(embedding)
assert_embeddings(embedding)
n = len(embeddings)
for i in range(n-1):
for j in range(i+1, n):
embedding1 = np.array(embeddings[i])
embedding2 = np.array(embeddings[j])
if context.debug:
print(f"embedding1: {embedding1[-8:]}\n")
print(f"embedding2: {embedding2[-8:]}\n")
similarity = np.dot(embedding1, embedding2) / (np.linalg.norm(embedding1) * np.linalg.norm(embedding2))
msg = f"Similarity between {i} and {j}: {similarity:.10f}"
if context.debug:
print(f"{msg}\n")
assert np.isclose(similarity, 1.0, rtol=1e-05, atol=1e-08, equal_nan=False), msg
@step('embeddings are generated')
@step(u'embeddings are generated')
def step_assert_embeddings(context):
assert context.n_prompts == len(context.embeddings), (f"unexpected response:\n"
f"context.n_prompts={context.n_prompts}\n"
f"context.embeddings={context.embeddings}")
for embedding in context.embeddings:
assert_embeddings(embedding)
if len(context.prompts) == 0:
assert_embeddings(context.embeddings)
else:
assert len(context.embeddings) == len(context.prompts), (f"unexpected response:\n"
f"context.prompts={context.prompts}\n"
f"context.embeddings={context.embeddings}")
for embedding in context.embeddings:
context.prompts.pop()
assert_embeddings(embedding)
@step('an OAI compatible embeddings computation request for')
@step(u'an OAI compatible embeddings computation request for')
@async_run_until_complete
async def step_oai_compute_embeddings(context):
context.n_prompts = 1
context.embeddings = await request_oai_embeddings(context_text(context),
context.embeddings = await request_oai_embeddings(context.text,
base_url=context.base_url,
user_api_key=context.user_api_key,
model=context.model)
@step('an OAI compatible embeddings computation request for multiple inputs')
@step(u'an OAI compatible embeddings computation request for multiple inputs')
@async_run_until_complete
async def step_oai_compute_embeddings_multiple_inputs(context):
context.embeddings = await request_oai_embeddings(context.prompts,
base_url=context.base_url,
user_api_key=context.user_api_key,
model=context.model)
context.prompts.clear()
@step('concurrent embedding requests')
@step(u'concurrent embedding requests')
@async_run_until_complete()
async def step_concurrent_embedding_requests(context):
await concurrent_requests(context,
@@ -540,7 +391,7 @@ async def step_concurrent_embedding_requests(context):
base_url=context.base_url)
@step('concurrent OAI embedding requests')
@step(u'concurrent OAI embedding requests')
@async_run_until_complete()
async def step_concurrent_oai_embedding_requests(context):
await concurrent_requests(context,
@@ -551,19 +402,19 @@ async def step_concurrent_oai_embedding_requests(context):
model=context.model)
@step('all embeddings are generated')
@step(u'all embeddings are generated')
@async_run_until_complete()
async def all_embeddings_are_generated(context):
n_embedding_requests = await gather_tasks_results(context)
assert n_embedding_requests == context.n_prompts
assert n_embedding_requests > 0
for i in range(n_embedding_requests):
assert_embeddings(context.tasks_result.pop().pop())
assert_embeddings(context.tasks_result.pop())
@step('tokenizing')
@step(u'tokenizing')
@async_run_until_complete
async def step_tokenize(context):
context.tokenized_text = context_text(context)
context.tokenized_text = context.text
async with aiohttp.ClientSession() as session:
async with session.post(f'{context.base_url}/tokenize',
json={
@@ -574,7 +425,7 @@ async def step_tokenize(context):
context.tokens = tokenize_json['tokens']
@step('tokens can be detokenize')
@step(u'tokens can be detokenize')
@async_run_until_complete
async def step_detokenize(context):
assert len(context.tokens) > 0
@@ -589,23 +440,22 @@ async def step_detokenize(context):
assert context.tokenized_text == detokenize_json['content'].strip()
@step('an OPTIONS request is sent from {origin}')
@step(u'an OPTIONS request is sent from {origin}')
@async_run_until_complete
async def step_options_request(context, origin):
async with aiohttp.ClientSession() as session:
headers = {'Authorization': f'Bearer {context.user_api_key}', 'Origin': origin}
async with session.options(f'{context.base_url}/v1/chat/completions',
headers=headers) as response:
headers={"Origin": origin}) as response:
assert response.status == 200
context.options_response = response
@step('CORS header {cors_header} is set to {cors_header_value}')
@step(u'CORS header {cors_header} is set to {cors_header_value}')
def step_check_options_header_value(context, cors_header, cors_header_value):
assert context.options_response.headers[cors_header] == cors_header_value
@step('prometheus metrics are exposed')
@step(u'prometheus metrics are exposed')
@async_run_until_complete
async def step_prometheus_metrics_exported(context):
async with aiohttp.ClientSession() as session:
@@ -614,63 +464,20 @@ async def step_prometheus_metrics_exported(context):
assert metrics_response.headers['Content-Type'] == "text/plain; version=0.0.4"
metrics_raw = await metrics_response.text()
metric_exported = False
if context.debug:
print(f"/metrics answer:\n{metrics_raw}\n")
context.metrics = {}
for metric in parser.text_string_to_metric_families(metrics_raw):
match metric.name:
case "llamacpp:kv_cache_usage_ratio":
assert len(metric.samples) > 0
metric_exported = True
context.metrics[metric.name] = metric
assert int(metrics_response.headers["Process-Start-Time-Unix"]) > 0, "no header process start time"
assert metric_exported, "No metrics exported"
@step('metric {metric_name} is {metric_value:d}')
def step_assert_metric_value(context, metric_name, metric_value):
if metric_name not in context.metrics:
assert False, f"no metric {metric_name} in {context.metrics.keys()}"
assert context.metrics[metric_name].samples[0].value == metric_value, f"metric: {context.metrics[metric_name]}"
@step('available models')
def step_available_models(context):
# openai client always expects an api_key
openai.api_key = context.user_api_key if context.user_api_key is not None else 'nope'
openai.api_base = f'{context.base_url}/v1'
context.models = openai.Model.list().data
@step('{n_model:d} models are supported')
def step_supported_models(context, n_model):
if context.debug:
print("server models available:", context.models)
assert len(context.models) == n_model
@step('model {i_model:d} is {param} {preposition} {param_value}')
def step_supported_models(context, i_model, param, preposition, param_value):
assert i_model < len(context.models)
model = context.models[i_model]
param_value = param_value.split(' ', 1)[0]
match param:
case 'identified':
value = model.id
case 'trained':
value = str(model.meta.n_ctx_train)
case _:
assert False, "param {param} not supported"
assert param_value == value, f"model param {param} {value} != {param_value}"
async def concurrent_requests(context, f_completion, *args, **kwargs):
context.n_prompts = len(context.prompts)
n_prompts = len(context.prompts)
if context.debug:
print(f"starting {context.n_prompts} concurrent completion requests...")
assert context.n_prompts > 0
for prompt_no in range(context.n_prompts):
print(f"starting {n_prompts} concurrent completion requests...")
assert n_prompts > 0
for prompt_no in range(n_prompts):
shifted_args = [context.prompts.pop(), *args]
context.concurrent_tasks.append(asyncio.create_task(f_completion(*shifted_args, **kwargs)))
await asyncio.sleep(0.1)
@@ -679,10 +486,8 @@ async def concurrent_requests(context, f_completion, *args, **kwargs):
async def request_completion(prompt,
base_url,
debug=False,
prompt_prefix=None,
prompt_suffix=None,
n_predict=None,
seed=None,
server_seed=None,
expect_api_error=None,
user_api_key=None):
if debug:
@@ -699,14 +504,11 @@ async def request_completion(prompt,
async with aiohttp.ClientSession() as session:
async with session.post(f'{base_url}/completion',
json={
"input_prefix": prompt_prefix,
"prompt": prompt,
"input_suffix": prompt_suffix,
"n_predict": n_predict if n_predict is not None else -1,
"seed": seed if seed is not None else 42
"n_predict": int(n_predict) if n_predict is not None else -1,
"seed": server_seed if server_seed is not None else 42
},
headers=headers,
timeout=3600) as response:
headers=headers) as response:
if expect_api_error is None or not expect_api_error:
assert response.status == 200
assert response.headers['Access-Control-Allow-Origin'] == origin
@@ -724,14 +526,14 @@ async def oai_chat_completions(user_prompt,
model=None,
n_predict=None,
enable_streaming=None,
seed=None,
server_seed=None,
user_api_key=None,
expect_api_error=None):
if debug:
print(f"Sending OAI Chat completions request: {user_prompt}")
# openai client always expects an api key
user_api_key = user_api_key if user_api_key is not None else 'nope'
seed = seed if seed is not None else 42
seed = server_seed if server_seed is not None else 42
enable_streaming = enable_streaming if enable_streaming is not None else False
payload = {
"messages": [
@@ -752,8 +554,7 @@ async def oai_chat_completions(user_prompt,
completion_response = {
'content': '',
'timings': {
'predicted_n': 0,
'prompt_n': 0
'predicted_n': 0
}
}
if async_client:
@@ -794,8 +595,7 @@ async def oai_chat_completions(user_prompt,
completion_response = {
'content': chat_completion_raw['choices'][0]['message'],
'timings': {
'predicted_n': chat_completion_raw['usage']['completion_tokens'],
'prompt_n': chat_completion_raw['usage']['prompt_tokens']
'predicted_n': chat_completion_raw['usage']['completion_tokens']
}
}
else:
@@ -811,7 +611,7 @@ async def oai_chat_completions(user_prompt,
stream=enable_streaming,
seed=seed
)
except openai.error.AuthenticationError as e:
except openai.error.APIError as e:
if expect_api_error is not None and expect_api_error:
return 401
else:
@@ -824,16 +624,13 @@ async def oai_chat_completions(user_prompt,
if 'content' in delta:
completion_response['content'] += delta['content']
completion_response['timings']['predicted_n'] += 1
completion_response['truncated'] = chunk.choices[0].finish_reason != 'stop'
else:
assert len(chat_completion.choices) == 1
completion_response = {
'content': chat_completion.choices[0].message.content,
'timings': {
'predicted_n': chat_completion.usage.completion_tokens,
'prompt_n': chat_completion.usage.prompt_tokens
},
'truncated': chat_completion.choices[0].finish_reason != 'stop'
'predicted_n': chat_completion.usage.completion_tokens
}
}
if debug:
print("OAI response formatted to llama.cpp:", completion_response)
@@ -848,7 +645,7 @@ async def request_embedding(content, base_url=None):
}) as response:
assert response.status == 200
response_json = await response.json()
return [response_json['embedding']]
return response_json['embedding']
async def request_oai_embeddings(input,
@@ -858,7 +655,6 @@ async def request_oai_embeddings(input,
user_api_key = user_api_key if user_api_key is not None else 'nope'
if async_client:
origin = 'llama.cpp'
headers=[]
if user_api_key is not None:
headers = {'Authorization': f'Bearer {user_api_key}', 'Origin': origin}
async with aiohttp.ClientSession() as session:
@@ -867,21 +663,14 @@ async def request_oai_embeddings(input,
"input": input,
"model": model,
},
headers=headers,
timeout=3600) as response:
headers=headers) as response:
assert response.status == 200, f"received status code not expected: {response.status}"
assert response.headers['Access-Control-Allow-Origin'] == origin
assert response.headers['Content-Type'] == "application/json; charset=utf-8"
response_json = await response.json()
assert response_json['model'] == model, f"invalid model received: {response_json['model']}"
assert response_json['object'] == 'list'
if isinstance(input, collections.abc.Sequence):
embeddings = []
for an_oai_embeddings in response_json['data']:
embeddings.append(an_oai_embeddings['embedding'])
else:
embeddings = [response_json['data']['embedding']]
return embeddings
return response_json['data']
else:
openai.api_key = user_api_key
openai.api_base = f'{base_url}/v1'
@@ -895,7 +684,7 @@ async def request_oai_embeddings(input,
for an_oai_embeddings in oai_embeddings.data:
embeddings.append(an_oai_embeddings.embedding)
else:
embeddings = [oai_embeddings.data.embedding]
embeddings = oai_embeddings.data.embedding
return embeddings
@@ -903,31 +692,20 @@ def assert_n_tokens_predicted(completion_response, expected_predicted_n=None, re
content = completion_response['content']
n_predicted = completion_response['timings']['predicted_n']
assert len(content) > 0, "no token predicted"
if re_content is not None:
p = re.compile(re_content, flags=RegexFlag.IGNORECASE | RegexFlag.MULTILINE | RegexFlag.DOTALL)
matches = p.finditer(content)
last_match = 0
highlighted = ''
for match in matches:
start, end = match.span()
highlighted += content[last_match: start]
highlighted += '\x1b[33m'
highlighted += content[start: end]
highlighted += '\x1b[0m'
last_match = end
highlighted += content[last_match:]
if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON':
print(f"Checking completion response: {highlighted}\n")
assert last_match > 0, f'/{re_content}/ must match ```{highlighted}```'
if expected_predicted_n and expected_predicted_n > 0:
if expected_predicted_n is not None:
assert n_predicted == expected_predicted_n, (f'invalid number of tokens predicted:'
f' {n_predicted} <> {expected_predicted_n}')
if re_content is not None:
re_content = '^.*' + re_content.replace('<or>', '|') + '.*$'
assert re.match(re_content, content, flags=RegexFlag.IGNORECASE | RegexFlag.MULTILINE | RegexFlag.DOTALL), (
f'invalid tokens predicted:'
f' ```\n{content}\n``` do not match /{re_content}/')
async def gather_tasks_results(context):
n_tasks = len(context.concurrent_tasks)
if context.debug:
print(f"Waiting for all {n_tasks} tasks results...\n")
print(f"Waiting for all {n_tasks} tasks results...")
for task_no in range(n_tasks):
context.tasks_result.append(await context.concurrent_tasks.pop())
n_completions = len(context.tasks_result)
@@ -938,18 +716,17 @@ async def wait_for_health_status(context,
base_url,
expected_http_status_code,
expected_health_status,
timeout=3,
params=None,
slots_idle=None,
slots_processing=None,
expected_slots=None):
if context.debug:
print(f"Starting checking for health for expected_health_status={expected_health_status}\n")
print(f"Starting checking for health for expected_health_status={expected_health_status}")
timeout = 3 # seconds
if expected_health_status == 'ok':
timeout = 10 # CI slow inference
interval = 0.5
counter = 0
if 'GITHUB_ACTIONS' in os.environ:
timeout *= 2
async with aiohttp.ClientSession() as session:
while True:
async with await session.get(f'{base_url}/health', params=params) as health_response:
@@ -957,7 +734,7 @@ async def wait_for_health_status(context,
health = await health_response.json()
if context.debug:
print(f"HEALTH - response for expected health status='{expected_health_status}' on "
f"'{base_url}/health'?{params} is {health}\n")
f"'{base_url}/health'?{params} is {health}")
if (status_code == expected_http_status_code
and health['status'] == expected_health_status
and (slots_idle is None or health['slots_idle'] == slots_idle)
@@ -980,7 +757,7 @@ async def wait_for_health_status(context,
if expected_http_status_code == 503:
if len(context.tasks_result) == 0:
print("\x1b[5;37;43mWARNING: forcing concurrent tasks,"
" busy health check missed, probably too fast inference\x1b[0m\n")
" busy health check missed, probably too fast inference\x1b[0m")
n_completions = await gather_tasks_results(context)
if n_completions > 0:
return
@@ -992,8 +769,6 @@ def assert_embeddings(embeddings):
assert len(embeddings) > 0
embeddings_computed = False
for emb in embeddings:
if not isinstance(emb, float):
assert False, f"Bad embeddings: {embeddings}"
if emb != 0:
embeddings_computed = True
assert embeddings_computed, f"Embeddings: {embeddings}"
@@ -1016,71 +791,37 @@ def assert_slots_status(slots, expected_slots):
f" = {expected[key]} != {slot[key]}")
async def completions_seed(context):
return context.seed if hasattr(context, 'seed') and context.seed is not None \
else context.server_seed if hasattr(context, 'server_seed') else None
def context_text(context):
return context.text.replace('\r', '')
def start_server_background(context):
if os.name == 'nt':
context.server_path = '../../../build/bin/Release/server.exe'
else:
context.server_path = '../../../build/bin/server'
context.server_path = '../../../build/bin/server'
if 'LLAMA_SERVER_BIN_PATH' in os.environ:
context.server_path = os.environ['LLAMA_SERVER_BIN_PATH']
server_listen_addr = context.server_fqdn
if os.name == 'nt':
server_listen_addr = '0.0.0.0'
server_args = [
'--host', server_listen_addr,
'--host', context.server_fqdn,
'--port', context.server_port,
'--model', context.model_file
]
if context.n_batch:
server_args.extend(['--batch-size', context.n_batch])
if context.n_ubatch:
server_args.extend(['--ubatch-size', context.n_ubatch])
if context.n_gpu_layer:
server_args.extend(['--n-gpu-layers', context.n_gpu_layer])
if context.server_continuous_batching:
server_args.append('--cont-batching')
if context.server_embeddings:
server_args.append('--embedding')
if context.server_metrics:
server_args.append('--metrics')
if context.model_alias:
if context.model_alias is not None:
server_args.extend(['--alias', context.model_alias])
if context.n_ctx:
if context.n_ctx is not None:
server_args.extend(['--ctx-size', context.n_ctx])
if context.n_slots:
if context.n_slots is not None:
server_args.extend(['--parallel', context.n_slots])
if context.n_server_predict:
if context.n_server_predict is not None:
server_args.extend(['--n-predict', context.n_server_predict])
if context.server_api_key:
if context.server_api_key is not None:
server_args.extend(['--api-key', context.server_api_key])
if context.n_ga:
server_args.extend(['--grp-attn-n', context.n_ga])
if context.n_ga_w:
server_args.extend(['--grp-attn-w', context.n_ga_w])
if context.debug:
server_args.append('--verbose')
if 'SERVER_LOG_FORMAT_JSON' not in os.environ:
server_args.extend(['--log-format', "text"])
print(f"starting server with: {context.server_path} {server_args}\n")
flags = 0
if 'nt' == os.name:
flags |= subprocess.DETACHED_PROCESS
flags |= subprocess.CREATE_NEW_PROCESS_GROUP
flags |= subprocess.CREATE_NO_WINDOW
pkwargs = {
'creationflags': flags,
}
print(f"starting server with: {context.server_path}", *server_args)
context.server_process = subprocess.Popen(
[str(arg) for arg in [context.server_path, *server_args]],
**pkwargs)
print(f"server pid={context.server_process.pid}, behave pid={os.getpid()}")
close_fds=True)
print(f"server pid={context.server_process.pid}")

View File

@@ -1,4 +1,4 @@
# run with: ./tests.sh --no-skipped --tags wrong_usage
# run with ./test.sh --tags wrong_usage
@wrong_usage
Feature: Wrong usage of llama.cpp server
@@ -7,7 +7,7 @@ Feature: Wrong usage of llama.cpp server
# or pass n_predict/max_tokens in the request.
Scenario: Infinite loop
Given a server listening on localhost:8080
And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models
And a model file stories260K.gguf
# Uncomment below to fix the issue
#And 64 server max tokens to predict
Then the server is starting
@@ -18,5 +18,4 @@ Feature: Wrong usage of llama.cpp server
# Uncomment below to fix the issue
#And 128 max tokens to predict
Given concurrent completion requests
Then the server is idle
Then all prompts are predicted

View File

@@ -1,6 +1,4 @@
aiohttp~=3.9.3
behave~=1.2.6
huggingface_hub~=0.20.3
numpy~=1.24.4
openai~=0.25.0
prometheus-client~=0.20.0

View File

@@ -5,7 +5,7 @@ set -eu
if [ $# -lt 1 ]
then
# Start @llama.cpp scenario
behave --summary --stop --no-capture --exclude 'issues|wrong_usages|passkey' --tags llama.cpp
behave --summary --stop --no-capture --exclude 'issues|wrong_usages' --tags llama.cpp
else
behave "$@"
fi

View File

@@ -1,30 +1,18 @@
#pragma once
#include "llama.h"
#include "common.h"
#include "json.hpp"
#include <string>
#include <vector>
#include <sstream>
#include <random>
#include <set>
#include <mutex>
#include <condition_variable>
#include <unordered_map>
#define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo-0613"
#include "json.hpp"
#include "../llava/clip.h"
using json = nlohmann::json;
// https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11
enum error_type {
ERROR_TYPE_INVALID_REQUEST,
ERROR_TYPE_AUTHENTICATION,
ERROR_TYPE_SERVER,
ERROR_TYPE_NOT_FOUND,
ERROR_TYPE_PERMISSION,
ERROR_TYPE_UNAVAILABLE, // custom error
ERROR_TYPE_NOT_SUPPORTED, // custom error
};
extern bool server_verbose;
extern bool server_log_json;
@@ -49,35 +37,125 @@ extern bool server_log_json;
#define LOG_WARNING(MSG, ...) server_log("WARN", __func__, __LINE__, MSG, __VA_ARGS__)
#define LOG_INFO( MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__)
template <typename T>
static T json_value(const json &body, const std::string &key, const T &default_value) {
// Fallback null to default value
return body.contains(key) && !body.at(key).is_null()
? body.value(key, default_value)
: default_value;
}
//
// parallel
//
static inline void server_log(const char *level, const char *function, int line, const char *message, const nlohmann::ordered_json &extra) {
enum server_state {
SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
SERVER_STATE_READY, // Server is ready and model is loaded
SERVER_STATE_ERROR // An error occurred, load_model failed
};
enum task_type {
TASK_TYPE_COMPLETION,
TASK_TYPE_CANCEL,
TASK_TYPE_NEXT_RESPONSE,
TASK_TYPE_METRICS
};
struct task_server {
int id = -1; // to be filled by llama_server_queue
int target_id;
task_type type;
json data;
bool infill_mode = false;
bool embedding_mode = false;
int multitask_id = -1;
};
struct task_result {
int id;
int multitask_id = -1;
bool stop;
bool error;
json result_json;
};
struct task_multi {
int id;
std::set<int> subtasks_remaining{};
std::vector<task_result> results{};
};
// TODO: can become bool if we can't find use of more states
enum slot_state
{
IDLE,
PROCESSING,
};
enum slot_command
{
NONE,
LOAD_PROMPT,
RELEASE,
};
struct slot_params
{
bool stream = true;
bool cache_prompt = false; // remember the prompt to avoid reprocessing all prompt
uint32_t seed = -1; // RNG seed
int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_predict = -1; // new tokens to predict
std::vector<std::string> antiprompt;
json input_prefix;
json input_suffix;
};
struct slot_image
{
int32_t id;
bool request_encode_image = false;
float * image_embedding = nullptr;
int32_t image_tokens = 0;
clip_image_u8 * img_data;
std::string prefix_prompt; // before of this image
};
// completion token output with probabilities
struct completion_token_output
{
struct token_prob
{
llama_token tok;
float prob;
};
std::vector<token_prob> probs;
llama_token tok;
std::string text_to_send;
};
static inline void server_log(const char *level, const char *function, int line, const char *message, const nlohmann::ordered_json &extra)
{
std::stringstream ss_tid;
ss_tid << std::this_thread::get_id();
json log = nlohmann::ordered_json{
{"tid", ss_tid.str()},
{"tid", ss_tid.str()},
{"timestamp", time(nullptr)},
};
if (server_log_json) {
log.merge_patch( {
{"level", level},
{"function", function},
{"line", line},
{"msg", message},
});
log.merge_patch(
{
{"level", level},
{"function", function},
{"line", line},
{"msg", message},
});
if (!extra.empty()) {
log.merge_patch(extra);
}
printf("%s\n", log.dump(-1, ' ', false, json::error_handler_t::replace).c_str());
std::cout << log.dump(-1, ' ', false, json::error_handler_t::replace) << "\n" << std::flush;
} else {
char buf[1024];
snprintf(buf, 1024, "%4s [%24s] %s", level, function, message);
@@ -90,7 +168,8 @@ static inline void server_log(const char *level, const char *function, int line,
for (const auto& el : log.items())
{
const std::string value = el.value().dump(-1, ' ', false, json::error_handler_t::replace);
ss << " " << el.key() << "=" << value;
snprintf(buf, 1024, " %s=%s", el.key().c_str(), value.c_str());
ss << buf;
}
const std::string str = ss.str();
@@ -100,25 +179,36 @@ static inline void server_log(const char *level, const char *function, int line,
}
//
// chat template utils
// server utils
//
template <typename T>
static T json_value(const json &body, const std::string &key, const T &default_value)
{
// Fallback null to default value
return body.contains(key) && !body.at(key).is_null()
? body.value(key, default_value)
: default_value;
}
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
inline bool verify_custom_template(const std::string & tmpl) {
llama_chat_message chat[] = {{"user", "test"}};
int res = llama_chat_apply_template(nullptr, tmpl.c_str(), chat, 1, true, nullptr, 0);
std::vector<char> buf(1);
int res = llama_chat_apply_template(nullptr, tmpl.c_str(), chat, 1, true, buf.data(), buf.size());
return res >= 0;
}
// Format given chat. If tmpl is empty, we take the template from model metadata
inline std::string format_chat(const struct llama_model * model, const std::string & tmpl, const std::vector<json> & messages) {
inline std::string format_chat(const struct llama_model * model, const std::string & tmpl, const std::vector<json> & messages)
{
size_t alloc_size = 0;
// vector holding all allocated string to be passed to llama_chat_apply_template
std::vector<std::string> str(messages.size() * 2);
std::vector<llama_chat_message> chat(messages.size());
for (size_t i = 0; i < messages.size(); ++i) {
const auto & curr_msg = messages[i];
auto &curr_msg = messages[i];
str[i*2 + 0] = json_value(curr_msg, "role", std::string(""));
str[i*2 + 1] = json_value(curr_msg, "content", std::string(""));
alloc_size += str[i*2 + 1].length();
@@ -138,13 +228,252 @@ inline std::string format_chat(const struct llama_model * model, const std::stri
res = llama_chat_apply_template(model, ptr_tmpl, chat.data(), chat.size(), true, buf.data(), buf.size());
}
const std::string formatted_chat(buf.data(), res);
std::string formatted_chat(buf.data(), res);
LOG_VERBOSE("formatted_chat", {{"text", formatted_chat.c_str()}});
return formatted_chat;
}
//
// work queue utils
//
struct llama_server_queue {
int id = 0;
std::mutex mutex_tasks;
bool running;
// queues
std::vector<task_server> queue_tasks;
std::vector<task_server> queue_tasks_deferred;
std::vector<task_multi> queue_multitasks;
std::condition_variable condition_tasks;
// callback functions
std::function<void(task_server&)> callback_new_task;
std::function<void(task_multi&)> callback_finish_multitask;
std::function<void(void)> callback_all_task_finished;
// Add a new task to the end of the queue
int post(task_server task) {
std::unique_lock<std::mutex> lock(mutex_tasks);
if (task.id == -1) {
task.id = id++;
LOG_VERBOSE("new task id", {{"new_id", task.id}});
}
queue_tasks.push_back(std::move(task));
condition_tasks.notify_one();
return task.id;
}
// Add a new task, but defer until one slot is available
void defer(task_server task) {
std::unique_lock<std::mutex> lock(mutex_tasks);
queue_tasks_deferred.push_back(std::move(task));
}
// Get the next id for creating anew task
int get_new_id() {
std::unique_lock<std::mutex> lock(mutex_tasks);
int new_id = id++;
LOG_VERBOSE("new task id", {{"new_id", new_id}});
return new_id;
}
// Register function to process a new task
void on_new_task(std::function<void(task_server&)> callback) {
callback_new_task = callback;
}
// Register function to process a multitask
void on_finish_multitask(std::function<void(task_multi&)> callback) {
callback_finish_multitask = callback;
}
// Register the function to be called when the batch of tasks is finished
void on_all_tasks_finished(std::function<void(void)> callback) {
callback_all_task_finished = callback;
}
// Call when the state of one slot is changed
void notify_slot_changed() {
// move deferred tasks back to main loop
std::unique_lock<std::mutex> lock(mutex_tasks);
for (auto & task : queue_tasks_deferred) {
queue_tasks.push_back(std::move(task));
}
queue_tasks_deferred.clear();
}
// end the start_loop routine
void terminate() {
{
std::unique_lock<std::mutex> lock(mutex_tasks);
running = false;
}
condition_tasks.notify_all();
}
// Start the main loop.
void start_loop() {
running = true;
while (true) {
LOG_VERBOSE("new task may arrive", {});
{
while (true)
{
std::unique_lock<std::mutex> lock(mutex_tasks);
if (queue_tasks.empty()) {
lock.unlock();
break;
}
task_server task = queue_tasks.front();
queue_tasks.erase(queue_tasks.begin());
lock.unlock();
LOG_VERBOSE("callback_new_task", {{"task_id", task.id}});
callback_new_task(task);
}
LOG_VERBOSE("callback_all_task_finished", {});
// process and update all the multitasks
auto queue_iterator = queue_multitasks.begin();
while (queue_iterator != queue_multitasks.end())
{
if (queue_iterator->subtasks_remaining.empty())
{
// all subtasks done == multitask is done
task_multi current_multitask = *queue_iterator;
callback_finish_multitask(current_multitask);
// remove this multitask
queue_iterator = queue_multitasks.erase(queue_iterator);
}
else
{
++queue_iterator;
}
}
// all tasks in the current loop is finished
callback_all_task_finished();
}
LOG_VERBOSE("wait for new task", {});
// wait for new task
{
std::unique_lock<std::mutex> lock(mutex_tasks);
if (queue_tasks.empty()) {
if (!running) {
LOG_VERBOSE("ending start_loop", {});
return;
}
condition_tasks.wait(lock, [&]{
return (!queue_tasks.empty() || !running);
});
}
}
}
}
//
// functions to manage multitasks
//
// add a multitask by specifying the id of all subtask (subtask is a task_server)
void add_multitask(int multitask_id, std::vector<int>& sub_ids)
{
std::lock_guard<std::mutex> lock(mutex_tasks);
task_multi multi;
multi.id = multitask_id;
std::copy(sub_ids.begin(), sub_ids.end(), std::inserter(multi.subtasks_remaining, multi.subtasks_remaining.end()));
queue_multitasks.push_back(multi);
}
// updatethe remaining subtasks, while appending results to multitask
void update_multitask(int multitask_id, int subtask_id, task_result& result)
{
std::lock_guard<std::mutex> lock(mutex_tasks);
for (auto& multitask : queue_multitasks)
{
if (multitask.id == multitask_id)
{
multitask.subtasks_remaining.erase(subtask_id);
multitask.results.push_back(result);
}
}
}
};
struct llama_server_response {
typedef std::function<void(int, int, task_result&)> callback_multitask_t;
callback_multitask_t callback_update_multitask;
// for keeping track of all tasks waiting for the result
std::set<int> waiting_task_ids;
// the main result queue
std::vector<task_result> queue_results;
std::mutex mutex_results;
std::condition_variable condition_results;
void add_waiting_task_id(int task_id) {
LOG_VERBOSE("waiting for task id", {{"task_id", task_id}});
std::unique_lock<std::mutex> lock(mutex_results);
waiting_task_ids.insert(task_id);
}
void remove_waiting_task_id(int task_id) {
LOG_VERBOSE("remove waiting for task id", {{"task_id", task_id}});
std::unique_lock<std::mutex> lock(mutex_results);
waiting_task_ids.erase(task_id);
}
// This function blocks the thread until there is a response for this task_id
task_result recv(int task_id) {
while (true)
{
std::unique_lock<std::mutex> lock(mutex_results);
condition_results.wait(lock, [&]{
return !queue_results.empty();
});
for (int i = 0; i < (int) queue_results.size(); i++)
{
if (queue_results[i].id == task_id)
{
assert(queue_results[i].multitask_id == -1);
task_result res = queue_results[i];
queue_results.erase(queue_results.begin() + i);
return res;
}
}
}
// should never reach here
}
// Register the function to update multitask
void on_multitask_update(callback_multitask_t callback) {
callback_update_multitask = callback;
}
// Send a new result to a waiting task_id
void send(task_result result) {
std::unique_lock<std::mutex> lock(mutex_results);
LOG_VERBOSE("send new result", {{"task_id", result.id}});
for (auto& task_id : waiting_task_ids) {
// LOG_TEE("waiting task id %i \n", task_id);
// for now, tasks that have associated parent multitasks just get erased once multitask picks up the result
if (result.multitask_id == task_id)
{
LOG_VERBOSE("callback_update_multitask", {{"task_id", task_id}});
callback_update_multitask(task_id, result.id, result);
continue;
}
if (result.id == task_id)
{
LOG_VERBOSE("queue_results.push_back", {{"task_id", task_id}});
queue_results.push_back(result);
condition_results.notify_all();
return;
}
}
}
};
//
// base64 utils (TODO: move to common in the future)
//
@@ -154,11 +483,13 @@ static const std::string base64_chars =
"abcdefghijklmnopqrstuvwxyz"
"0123456789+/";
static inline bool is_base64(uint8_t c) {
static inline bool is_base64(uint8_t c)
{
return (isalnum(c) || (c == '+') || (c == '/'));
}
static inline std::vector<uint8_t> base64_decode(const std::string & encoded_string) {
static inline std::vector<uint8_t> base64_decode(const std::string & encoded_string)
{
int i = 0;
int j = 0;
int in_ = 0;
@@ -170,10 +501,13 @@ static inline std::vector<uint8_t> base64_decode(const std::string & encoded_str
std::vector<uint8_t> ret;
while (in_len-- && (encoded_string[in_] != '=') && is_base64(encoded_string[in_])) {
while (in_len-- && (encoded_string[in_] != '=') && is_base64(encoded_string[in_]))
{
char_array_4[i++] = encoded_string[in_]; in_++;
if (i == 4) {
for (i = 0; i < 4; i++) {
if (i == 4)
{
for (i = 0; i <4; i++)
{
char_array_4[i] = base64_chars.find(char_array_4[i]);
}
@@ -181,20 +515,23 @@ static inline std::vector<uint8_t> base64_decode(const std::string & encoded_str
char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
for (i = 0; (i < 3); i++) {
for (i = 0; (i < 3); i++)
{
ret.push_back(char_array_3[i]);
}
i = 0;
}
}
if (i) {
for (j = i; j < 4; j++) {
if (i)
{
for (j = i; j <4; j++)
{
char_array_4[j] = 0;
}
for (j = 0; j < 4; j++) {
for (j = 0; j <4; j++)
{
char_array_4[j] = base64_chars.find(char_array_4[j]);
}
@@ -202,7 +539,8 @@ static inline std::vector<uint8_t> base64_decode(const std::string & encoded_str
char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
for (j = 0; j < i - 1; j++) {
for (j = 0; (j < i - 1); j++)
{
ret.push_back(char_array_3[j]);
}
}
@@ -214,7 +552,8 @@ static inline std::vector<uint8_t> base64_decode(const std::string & encoded_str
// random string / id
//
static std::string random_string() {
static std::string random_string()
{
static const std::string str("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz");
std::random_device rd;
@@ -229,377 +568,9 @@ static std::string random_string() {
return result;
}
static std::string gen_chatcmplid() {
static std::string gen_chatcmplid()
{
std::stringstream chatcmplid;
chatcmplid << "chatcmpl-" << random_string();
return chatcmplid.str();
}
//
// other common utils
//
static size_t common_part(const std::vector<llama_token> & a, const std::vector<llama_token> & b) {
size_t i;
for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) {}
return i;
}
static bool ends_with(const std::string & str, const std::string & suffix) {
return str.size() >= suffix.size() && 0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix);
}
static size_t find_partial_stop_string(const std::string &stop, const std::string &text) {
if (!text.empty() && !stop.empty()) {
const char text_last_char = text.back();
for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--) {
if (stop[char_index] == text_last_char) {
const std::string current_partial = stop.substr(0, char_index + 1);
if (ends_with(text, current_partial)) {
return text.size() - char_index - 1;
}
}
}
}
return std::string::npos;
}
// TODO: reuse llama_detokenize
template <class Iter>
static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) {
std::string ret;
for (; begin != end; ++begin) {
ret += llama_token_to_piece(ctx, *begin);
}
return ret;
}
// format incomplete utf-8 multibyte character for output
static std::string tokens_to_output_formatted_string(const llama_context * ctx, const llama_token token) {
std::string out = token == -1 ? "" : llama_token_to_piece(ctx, token);
// if the size is 1 and first bit is 1, meaning it's a partial character
// (size > 1 meaning it's already a known token)
if (out.size() == 1 && (out[0] & 0x80) == 0x80) {
std::stringstream ss;
ss << std::hex << (out[0] & 0xff);
std::string res(ss.str());
out = "byte: \\x" + res;
}
return out;
}
struct completion_token_output {
llama_token tok;
std::string text_to_send;
struct token_prob {
llama_token tok;
float prob;
};
std::vector<token_prob> probs;
};
// convert a vector of completion_token_output to json
static json probs_vector_to_json(const llama_context * ctx, const std::vector<completion_token_output> & probs) {
json out = json::array();
for (const auto & prob : probs) {
json probs_for_token = json::array();
for (const auto & p : prob.probs) {
const std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok);
probs_for_token.push_back(json {
{"tok_str", tok_str},
{"prob", p.prob},
});
}
const std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok);
out.push_back(json {
{"content", tok_str},
{"probs", probs_for_token},
});
}
return out;
}
//
// OAI utils
//
static json oaicompat_completion_params_parse(
const struct llama_model * model,
const json & body, /* openai api json semantics */
const std::string & chat_template) {
json llama_params;
llama_params["__oaicompat"] = true;
// Map OpenAI parameters to llama.cpp parameters
//
// For parameters that are defined by the OpenAI documentation (e.g.
// temperature), we explicitly specify OpenAI's intended default; we
// need to do that because sometimes OpenAI disagrees with llama.cpp
//
// https://platform.openai.com/docs/api-reference/chat/create
llama_sampling_params default_sparams;
llama_params["model"] = json_value(body, "model", std::string("unknown"));
llama_params["prompt"] = format_chat(model, chat_template, body["messages"]);
llama_params["cache_prompt"] = json_value(body, "cache_prompt", false);
llama_params["temperature"] = json_value(body, "temperature", 0.0);
llama_params["top_k"] = json_value(body, "top_k", default_sparams.top_k);
llama_params["top_p"] = json_value(body, "top_p", 1.0);
llama_params["n_predict"] = json_value(body, "max_tokens", -1);
llama_params["logit_bias"] = json_value(body, "logit_bias", json::object());
llama_params["frequency_penalty"] = json_value(body, "frequency_penalty", 0.0);
llama_params["presence_penalty"] = json_value(body, "presence_penalty", 0.0);
llama_params["seed"] = json_value(body, "seed", LLAMA_DEFAULT_SEED);
llama_params["stream"] = json_value(body, "stream", false);
llama_params["mirostat"] = json_value(body, "mirostat", default_sparams.mirostat);
llama_params["mirostat_tau"] = json_value(body, "mirostat_tau", default_sparams.mirostat_tau);
llama_params["mirostat_eta"] = json_value(body, "mirostat_eta", default_sparams.mirostat_eta);
llama_params["penalize_nl"] = json_value(body, "penalize_nl", default_sparams.penalize_nl);
llama_params["typical_p"] = json_value(body, "typical_p", default_sparams.typical_p);
llama_params["repeat_last_n"] = json_value(body, "repeat_last_n", default_sparams.penalty_last_n);
llama_params["ignore_eos"] = json_value(body, "ignore_eos", false);
llama_params["tfs_z"] = json_value(body, "tfs_z", default_sparams.tfs_z);
if (body.count("grammar") != 0) {
llama_params["grammar"] = json_value(body, "grammar", json::object());
}
// Handle 'stop' field
if (body.contains("stop") && body["stop"].is_string()) {
llama_params["stop"] = json::array({body["stop"].get<std::string>()});
} else {
llama_params["stop"] = json_value(body, "stop", json::array());
}
// Ensure there is ChatML-specific end sequence among stop words
llama_params["stop"].push_back("<|im_end|>");
return llama_params;
}
static json format_final_response_oaicompat(const json & request, json result, const std::string & completion_id, bool streaming = false) {
bool stopped_word = result.count("stopped_word") != 0;
bool stopped_eos = json_value(result, "stopped_eos", false);
int num_tokens_predicted = json_value(result, "tokens_predicted", 0);
int num_prompt_tokens = json_value(result, "tokens_evaluated", 0);
std::string content = json_value(result, "content", std::string(""));
std::string finish_reason = "length";
if (stopped_word || stopped_eos) {
finish_reason = "stop";
}
json choices =
streaming ? json::array({json{{"finish_reason", finish_reason},
{"index", 0},
{"delta", json::object()}}})
: json::array({json{{"finish_reason", finish_reason},
{"index", 0},
{"message", json{{"content", content},
{"role", "assistant"}}}}});
std::time_t t = std::time(0);
json res = json {
{"choices", choices},
{"created", t},
{"model",
json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
{"object", streaming ? "chat.completion.chunk" : "chat.completion"},
{"usage", json {
{"completion_tokens", num_tokens_predicted},
{"prompt_tokens", num_prompt_tokens},
{"total_tokens", num_tokens_predicted + num_prompt_tokens}
}},
{"id", completion_id}
};
if (server_verbose) {
res["__verbose"] = result;
}
if (result.contains("completion_probabilities")) {
res["completion_probabilities"] = json_value(result, "completion_probabilities", json::array());
}
return res;
}
// return value is vector as there is one case where we might need to generate two responses
static std::vector<json> format_partial_response_oaicompat(json result, const std::string & completion_id) {
if (!result.contains("model") || !result.contains("oaicompat_token_ctr")) {
return std::vector<json>({result});
}
bool first = json_value(result, "oaicompat_token_ctr", 0) == 0;
std::string modelname = json_value(result, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
bool stopped_word = json_value(result, "stopped_word", false);
bool stopped_eos = json_value(result, "stopped_eos", false);
bool stopped_limit = json_value(result, "stopped_limit", false);
std::string content = json_value(result, "content", std::string(""));
std::string finish_reason;
if (stopped_word || stopped_eos) {
finish_reason = "stop";
}
if (stopped_limit) {
finish_reason = "length";
}
std::time_t t = std::time(0);
json choices;
if (!finish_reason.empty()) {
choices = json::array({json{{"finish_reason", finish_reason},
{"index", 0},
{"delta", json::object()}}});
} else {
if (first) {
if (content.empty()) {
choices = json::array({json{{"finish_reason", nullptr},
{"index", 0},
{"delta", json{{"role", "assistant"}}}}});
} else {
// We have to send this as two updates to conform to openai behavior
json initial_ret = json{{"choices", json::array({json{
{"finish_reason", nullptr},
{"index", 0},
{"delta", json{
{"role", "assistant"}
}}}})},
{"created", t},
{"id", completion_id},
{"model", modelname},
{"object", "chat.completion.chunk"}};
json second_ret = json{
{"choices", json::array({json{{"finish_reason", nullptr},
{"index", 0},
{"delta", json{
{"content", content}}}
}})},
{"created", t},
{"id", completion_id},
{"model", modelname},
{"object", "chat.completion.chunk"}};
return std::vector<json>({initial_ret, second_ret});
}
} else {
// Some idiosyncrasy in task processing logic makes several trailing calls
// with empty content, we ignore these at the calee site.
if (content.empty()) {
return std::vector<json>({json::object()});
}
choices = json::array({json{
{"finish_reason", nullptr},
{"index", 0},
{"delta",
json{
{"content", content},
}},
}});
}
}
json ret = json {
{"choices", choices},
{"created", t},
{"id", completion_id},
{"model", modelname},
{"object", "chat.completion.chunk"}
};
return std::vector<json>({ret});
}
static json format_embeddings_response_oaicompat(const json & request, const json & embeddings) {
json data = json::array();
int i = 0;
for (auto & elem : embeddings) {
data.push_back(json{
{"embedding", json_value(elem, "embedding", json::array())},
{"index", i++},
{"object", "embedding"}
});
}
json res = json {
{"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
{"object", "list"},
{"usage", json {
{"prompt_tokens", 0},
{"total_tokens", 0}
}},
{"data", data}
};
return res;
}
static json format_tokenizer_response(const std::vector<llama_token> & tokens) {
return json {
{"tokens", tokens}
};
}
static json format_detokenized_response(const std::string & content) {
return json {
{"content", content}
};
}
static json format_error_response(const std::string & message, const enum error_type type) {
std::string type_str;
int code = 500;
switch (type) {
case ERROR_TYPE_INVALID_REQUEST:
type_str = "invalid_request_error";
code = 400;
break;
case ERROR_TYPE_AUTHENTICATION:
type_str = "authentication_error";
code = 401;
break;
case ERROR_TYPE_NOT_FOUND:
type_str = "not_found_error";
code = 404;
break;
case ERROR_TYPE_SERVER:
type_str = "server_error";
code = 500;
break;
case ERROR_TYPE_PERMISSION:
type_str = "permission_error";
code = 403;
break;
case ERROR_TYPE_NOT_SUPPORTED:
type_str = "not_supported_error";
code = 501;
break;
case ERROR_TYPE_UNAVAILABLE:
type_str = "unavailable_error";
code = 503;
break;
}
return json {
{"code", code},
{"message", message},
{"type", type_str},
};
}

View File

@@ -6,4 +6,3 @@ More info:
- https://github.com/ggerganov/llama.cpp/pull/2926
- https://github.com/ggerganov/llama.cpp/pull/3624
- https://github.com/ggerganov/llama.cpp/pull/5625

View File

@@ -5,7 +5,6 @@
#include <cstdio>
#include <string>
#include <vector>
#include <set>
#define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 100
#define SPEC_VOCAB_CHECK_START_TOKEN_ID 5
@@ -19,7 +18,6 @@ struct seq_draft {
std::vector<int> i_batch_tgt;
std::vector<llama_token> tokens;
std::vector<std::vector<llama_token_data>> dists;
struct llama_sampling_context * ctx_sampling;
};
@@ -39,15 +37,12 @@ int main(int argc, char ** argv) {
// max number of parallel drafting sequences (i.e. tree branches)
const int n_seq_dft = params.n_parallel;
// probability threshold for accepting a token from the draft model
const float p_accept = params.p_accept;
// probability threshold for splitting a draft branch (only for n_seq_dft > 1)
const float p_split = params.p_split;
if (params.seed == LLAMA_DEFAULT_SEED) {
params.seed = time(NULL);
}
std::default_random_engine rng(params.seed);
std::uniform_real_distribution<> u_dist;
#ifndef LOG_DISABLE_LOGS
log_set_target(log_filename_generator("speculative", "log"));
LOG_TEE("Log start\n");
@@ -171,9 +166,7 @@ int main(int argc, char ** argv) {
std::vector<seq_draft> drafts(n_seq_dft);
params.sparams.grammar.clear(); // the draft samplers will copy the target sampler's grammar
if (params.sparams.temp == 0) {
params.sparams.temp = -1.0f; // force greedy sampling with probs for the draft model
}
params.sparams.temp = -1.0f; // force greedy sampling with probs for the draft model
for (int s = 0; s < n_seq_dft; ++s) {
drafts[s].ctx_sampling = llama_sampling_init(params.sparams);
@@ -189,15 +182,12 @@ int main(int argc, char ** argv) {
drafts[0].i_batch_tgt[0] = 0;
while (true) {
std::set<int> active_seqs = {};
// print current draft sequences
for (int s = 0; s < n_seq_dft; ++s) {
if (!drafts[s].active) {
continue;
}
active_seqs.insert(s);
const auto & tokens = drafts[s].tokens;
LOG("draft %d: %s\n", s, LOG_TOKENS_TOSTR_PRETTY(ctx_dft, tokens).c_str());
@@ -206,156 +196,48 @@ int main(int argc, char ** argv) {
int i_dft = 0;
int s_keep = 0;
llama_token token_id;
std::string token_str;
// loop until we fail to accept a drafted token or we run out of drafted tokens
while (true) {
LOG("sampling target: s_keep = %3d, i_dft = %3d, i_batch_tgt = %3d\n", s_keep, i_dft, drafts[s_keep].i_batch_tgt[i_dft]);
// sample from the target model
llama_token id = llama_sampling_sample(ctx_sampling, ctx_tgt, NULL, drafts[s_keep].i_batch_tgt[i_dft]);
llama_sampling_accept(ctx_sampling, ctx_tgt, id, true);
//LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_tgt, ctx_sampling->prev).c_str());
const std::string token_str = llama_token_to_piece(ctx_tgt, id);
if (!params.use_color) {
printf("%s", token_str.c_str());
}
if (id == llama_token_eos(model_tgt)) {
has_eos = true;
}
++n_predict;
// check if the target token matches any of the drafts
// for stochastic sampling, attempt to match the token with the drafted tokens
{
bool accept = false;
if (params.sparams.temp > 0) {
// stochastic verification
bool matches = false;
llama_token_data_array dist_tgt = llama_sampling_probability_distribution(ctx_sampling, ctx_tgt, NULL, drafts[s_keep].i_batch_tgt[i_dft]);
float p_tgt = 0, p_dft = 0;
// GGML_ASSERT(dist_tgt.size() == dist_dft.size());
while (active_seqs.size() > 0) {
// randomly select a sequence to verify from active sequences
std::uniform_int_distribution<unsigned int> u_int_dist(0, active_seqs.size() - 1);
int s = *std::next(active_seqs.begin(), u_int_dist(rng));
if (i_dft >= (int) drafts[s].tokens.size()) {
drafts[s].active = false;
active_seqs.erase(s);
continue;
}
if (accept) {
// if we already accepted a token, we can skip the rest
if (drafts[s].tokens[i_dft] != drafts[s_keep].tokens[i_dft]) {
drafts[s].active = false;
active_seqs.erase(s);
}
continue;
}
LOG("verifying sequence #%d at pos #%d from %d active sequence(s)\n", s, i_dft, (int) active_seqs.size());
float r = u_dist(rng);
llama_token_data_array dist_dft = { drafts[s].dists[i_dft].data() , drafts[s].dists[i_dft].size(), true };
// acquire the token probabilities assigned by the draft and target models
for (size_t i = 0; i < dist_tgt.size; i++) {
if (dist_tgt.data[i].id == drafts[s].tokens[i_dft]) {
p_tgt = dist_tgt.data[i].p;
}
if (dist_dft.data[i].id == drafts[s].tokens[i_dft]) {
p_dft = dist_dft.data[i].p;
}
if (p_tgt && p_dft) {
break;
}
}
LOG("r = %f, p_dft = %f, p_tgt = %f\n", r, p_dft, p_tgt);
if (r <= p_tgt / p_dft) {
s_keep = s;
accept = true;
token_id = drafts[s].tokens[i_dft];
token_str = llama_token_to_piece(ctx_tgt, token_id);
llama_sampling_accept(ctx_sampling, ctx_tgt, token_id, true);
LOG("draft token %d of sequence %d (%d, '%s') accepted\n", i_dft, s, token_id, token_str.c_str());
break;
} else {
LOG("draft token %d of sequence %d (%d, '%s') rejected\n", i_dft, s, drafts[s].tokens[i_dft], llama_token_to_piece(ctx_tgt, drafts[s].tokens[i_dft]).c_str());
drafts[s].active = false;
// calculate residual probability
GGML_ASSERT(dist_tgt.sorted);
GGML_ASSERT(dist_dft.sorted);
float sum_probs = 0.0f;
// sort dist by id
std::sort(dist_tgt.data, dist_tgt.data + dist_tgt.size, [](const llama_token_data &a, const llama_token_data &b) {
return a.id < b.id;
});
std::sort(dist_dft.data, dist_dft.data + dist_dft.size, [](const llama_token_data &a, const llama_token_data &b) {
return a.id < b.id;
});
for (size_t i = 0; i < dist_tgt.size; i++) {
dist_tgt.data[i].p = std::max(0.0f, dist_tgt.data[i].p - dist_dft.data[i].p);
sum_probs += dist_tgt.data[i].p;
}
for (size_t i = 0; i < dist_tgt.size; i++) {
dist_tgt.data[i].p /= sum_probs;
}
// sort dist_tgt by p desc
std::sort(dist_tgt.data, dist_tgt.data + dist_tgt.size, [](const llama_token_data &a, const llama_token_data &b) {
return a.p > b.p;
});
}
active_seqs.erase(s);
for(int i = 0; i < n_seq_dft; i++) {
if (i == s) {
continue;
}
if (drafts[i].tokens[i_dft] == drafts[s].tokens[i_dft]) {
// synchronize active status for sequences with the same drafted token
drafts[i].active = drafts[i].active && accept;
if (!drafts[i].active) {
active_seqs.erase(s);
}
}
}
for (int s = 0; s < n_seq_dft; ++s) {
if (!drafts[s].active) {
continue;
}
if (!accept) {
// all drafted tokens were rejected
// sample from the target model
LOG("all drafted tokens were rejected, sampling from residual distribution\n");
token_id = llama_sample_token(ctx_tgt, &dist_tgt);
llama_sampling_accept(ctx_sampling, ctx_tgt, token_id, true);
token_str = llama_token_to_piece(ctx_tgt, token_id);
}
if (i_dft < (int) drafts[s].tokens.size() && id == drafts[s].tokens[i_dft]) {
LOG("the sampled target token matches the %dth drafted token of sequence %d (%d, '%s') - accepted\n", i_dft, s, id, token_str.c_str());
} else {
// greedy verification
// sample from the target model
LOG("sampling target: s_keep = %3d, i_dft = %3d, i_batch_tgt = %3d\n", s_keep, i_dft, drafts[s_keep].i_batch_tgt[i_dft]);
token_id = llama_sampling_sample(ctx_sampling, ctx_tgt, NULL, drafts[s_keep].i_batch_tgt[i_dft]);
llama_sampling_accept(ctx_sampling, ctx_tgt, token_id, true);
//LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_tgt, ctx_sampling->prev).c_str());
token_str = llama_token_to_piece(ctx_tgt, token_id);
for (int s = 0; s < n_seq_dft; ++s) {
if (!drafts[s].active) {
continue;
}
if (i_dft < (int) drafts[s].tokens.size() && token_id == drafts[s].tokens[i_dft]) {
LOG("the sampled target token matches the %dth drafted token of sequence %d (%d, '%s') - accepted\n", i_dft, s, token_id, token_str.c_str());
s_keep = s;
accept = true;
} else {
drafts[s].active = false;
}
s_keep = s;
matches = true;
} else {
drafts[s].active = false;
}
}
if (token_id == llama_token_eos(model_tgt)) {
has_eos = true;
}
++n_predict;
if (accept) {
if (matches) {
++n_accept;
++n_past_tgt;
++n_past_dft;
@@ -363,21 +245,17 @@ int main(int argc, char ** argv) {
if (params.use_color) {
// Color token according to its origin sequence
printf("\u001b[%dm%s\u001b[37m", (36 - s_keep % 6), token_str.c_str());
} else {
printf("%s", token_str.c_str());
fflush(stdout);
}
fflush(stdout);
continue;
} else {
printf("%s", token_str.c_str());
fflush(stdout);
break;
}
}
}
if (params.use_color) {
printf("%s", token_str.c_str());
}
fflush(stdout);
{
LOG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", token_id, token_str.c_str());
LOG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", id, token_str.c_str());
// TODO: simplify
{
@@ -397,21 +275,21 @@ int main(int argc, char ** argv) {
drafts[s].active = false;
drafts[s].tokens.clear();
drafts[s].i_batch_tgt.clear();
drafts[s].dists.clear();
}
// note: will be erased after the speculation phase
drafts[0].tokens.push_back(token_id);
drafts[0].dists.push_back(std::vector<llama_token_data>());
drafts[0].tokens.push_back(id);
drafts[0].i_batch_tgt.push_back(0);
llama_batch_clear(batch_dft);
llama_batch_add (batch_dft, token_id, n_past_dft, { 0 }, true);
llama_batch_add (batch_dft, id, n_past_dft, { 0 }, true);
llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, -1);
// LOG("dft batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_dft, batch_dft).c_str());
llama_decode(ctx_dft, batch_dft);
llama_decode (ctx_dft, batch_dft);
++n_past_dft;
break;
}
if (n_predict > params.n_predict || has_eos) {
@@ -456,6 +334,12 @@ int main(int argc, char ** argv) {
k, s, i, cur_p[k].id, cur_p[k].p, llama_token_to_piece(ctx_dft, cur_p[k].id).c_str());
}
if (cur_p[0].p < p_accept) {
LOG("stopping drafting for seq %3d, probability too low: %.3f < %.3f\n", s, cur_p[0].p, p_accept);
drafts[s].drafting = false;
continue;
}
std::vector<int> sa(1, s);
// attempt to split the branch if the probability is high enough
@@ -483,7 +367,6 @@ int main(int argc, char ** argv) {
drafts[n_seq_cur].skip = true;
drafts[n_seq_cur].tokens = drafts[s].tokens;
drafts[n_seq_cur].dists = drafts[s].dists;
drafts[n_seq_cur].i_batch_dft = drafts[s].i_batch_dft;
drafts[n_seq_cur].i_batch_tgt = drafts[s].i_batch_tgt;
@@ -506,8 +389,6 @@ int main(int argc, char ** argv) {
llama_sampling_accept(drafts[s].ctx_sampling, ctx_dft, id, true);
drafts[s].tokens.push_back(id);
// save cur_p.data into drafts[s].dists
drafts[s].dists.push_back(cur_p);
// add unique drafted tokens to the target batch
drafts[s].i_batch_tgt.push_back(batch_tgt.n_tokens);
@@ -559,7 +440,6 @@ int main(int argc, char ** argv) {
}
drafts[s].tokens.erase(drafts[s].tokens.begin());
drafts[s].dists.erase(drafts[s].dists.begin());
}
}

View File

@@ -13,11 +13,8 @@ source /opt/intel/oneapi/setvars.sh
#for FP32
cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
#build example/main
#build example/main only
#cmake --build . --config Release --target main
#build example/llama-bench
#cmake --build . --config Release --target llama-bench
#build all binary
cmake --build . --config Release -v

View File

@@ -7,7 +7,7 @@
#include "ggml-sycl.h"
int main() {
int main(int argc, char ** argv) {
ggml_backend_sycl_print_sycl_devices();
return 0;
}

View File

@@ -8,29 +8,12 @@ INPUT2="Building a website can be done in 10 simple steps:\nStep 1:"
source /opt/intel/oneapi/setvars.sh
if [ $# -gt 0 ]; then
GGML_SYCL_DEVICE=$1
GGML_SYCL_SINGLE_GPU=1
export GGML_SYCL_DEVICE=$1
else
GGML_SYCL_DEVICE=0
export GGML_SYCL_DEVICE=0
fi
echo GGML_SYCL_DEVICE=$GGML_SYCL_DEVICE
#export GGML_SYCL_DEBUG=1
#ZES_ENABLE_SYSMAN=1, Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory. Recommended to use when --split-mode = layer.
if [ $GGML_SYCL_SINGLE_GPU -eq 1 ]; then
echo "use $GGML_SYCL_DEVICE as main GPU"
#use signle GPU only
ZES_ENABLE_SYSMAN=1 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "${INPUT2}" -n 400 -e -ngl 33 -s 0 -mg $GGML_SYCL_DEVICE -sm none
else
#use multiple GPUs with same max compute units
ZES_ENABLE_SYSMAN=1 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "${INPUT2}" -n 400 -e -ngl 33 -s 0
fi
#use main GPU only
#ZES_ENABLE_SYSMAN=1 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "${INPUT2}" -n 400 -e -ngl 33 -s 0 -mg $GGML_SYCL_DEVICE -sm none
#use multiple GPUs with same max compute units
#ZES_ENABLE_SYSMAN=1 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "${INPUT2}" -n 400 -e -ngl 33 -s 0
./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "${INPUT2}" -n 400 -e -ngl 33 -s 0
#./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "${INPUT2}" -n 5 -e -ngl 33 -t 1 -s 0

View File

@@ -711,7 +711,6 @@ static bool load_checkpoint_file(const char * filename, struct my_llama_model *
load_checkpoint_gguf(fctx, f_ggml_ctx, model, train);
gguf_free(fctx);
return true;
}

18
flake.lock generated
View File

@@ -5,11 +5,11 @@
"nixpkgs-lib": "nixpkgs-lib"
},
"locked": {
"lastModified": 1709336216,
"narHash": "sha256-Dt/wOWeW6Sqm11Yh+2+t0dfEWxoMxGBvv3JpIocFl9E=",
"lastModified": 1706830856,
"narHash": "sha256-a0NYyp+h9hlb7ddVz4LUn1vT/PLwqfrWYcHMvFB1xYg=",
"owner": "hercules-ci",
"repo": "flake-parts",
"rev": "f7b3c975cf067e56e7cda6cb098ebe3fb4d74ca2",
"rev": "b253292d9c0a5ead9bc98c4e9a26c6312e27d69f",
"type": "github"
},
"original": {
@@ -20,11 +20,11 @@
},
"nixpkgs": {
"locked": {
"lastModified": 1709703039,
"narHash": "sha256-6hqgQ8OK6gsMu1VtcGKBxKQInRLHtzulDo9Z5jxHEFY=",
"lastModified": 1708655239,
"narHash": "sha256-ZrP/yACUvDB+zbqYJsln4iwotbH6CTZiTkANJ0AgDv4=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "9df3e30ce24fd28c7b3e2de0d986769db5d6225d",
"rev": "cbc4211f0afffe6dfd2478a62615dd5175a13f9a",
"type": "github"
},
"original": {
@@ -37,11 +37,11 @@
"nixpkgs-lib": {
"locked": {
"dir": "lib",
"lastModified": 1709237383,
"narHash": "sha256-cy6ArO4k5qTx+l5o+0mL9f5fa86tYUX3ozE1S+Txlds=",
"lastModified": 1706550542,
"narHash": "sha256-UcsnCG6wx++23yeER4Hg18CXWbgNpqNXcHIo5/1Y+hc=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "1536926ef5621b09bba54035ae2bb6d806d72ac8",
"rev": "97b17f32362e475016f942bbdfda4a4a72a8a652",
"type": "github"
},
"original": {

View File

@@ -107,12 +107,11 @@
# ```
#
# Cf. https://nixos.org/manual/nix/unstable/command-ref/new-cli/nix3-flake.html?highlight=flake#flake-format
flake.overlays.default = (
final: prev: {
flake.overlays.default =
(final: prev: {
llamaPackages = final.callPackage .devops/nix/scope.nix { inherit llamaVersion; };
inherit (final.llamaPackages) llama-cpp;
}
);
});
systems = [
"aarch64-darwin"
@@ -132,9 +131,6 @@
...
}:
{
# For standardised reproducible formatting with `nix fmt`
formatter = pkgs.nixfmt-rfc-style;
# Unlike `.#packages`, legacyPackages may contain values of
# arbitrary types (including nested attrsets) and may even throw
# exceptions. This attribute isn't recursed into by `nix flake

View File

@@ -61,6 +61,7 @@ static bool ggml_op_can_inplace(enum ggml_op op) {
}
}
// TODO: GGML_PAD ?
static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) {
assert(alignment && !(alignment & (alignment - 1))); // power of 2
size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment;
@@ -68,14 +69,25 @@ static size_t aligned_offset(const void * buffer, size_t offset, size_t alignmen
}
// tallocr
struct ggml_tallocr {
ggml_backend_buffer_t buffer;
void * base;
size_t alignment;
size_t offset;
};
ggml_tallocr_t ggml_tallocr_new(ggml_backend_buffer_t buffer) {
ggml_tallocr_t talloc = malloc(sizeof(struct ggml_tallocr));
if (talloc == NULL) {
return NULL;
}
struct ggml_tallocr ggml_tallocr_new(ggml_backend_buffer_t buffer) {
void * base = ggml_backend_buffer_get_base(buffer);
size_t align = ggml_backend_buffer_get_alignment(buffer);
assert(align && !(align & (align - 1))); // power of 2
struct ggml_tallocr talloc = (struct ggml_tallocr) {
*talloc = (struct ggml_tallocr) {
/*.buffer = */ buffer,
/*.base = */ base,
/*.alignment = */ align,
@@ -84,7 +96,11 @@ struct ggml_tallocr ggml_tallocr_new(ggml_backend_buffer_t buffer) {
return talloc;
}
void ggml_tallocr_alloc(struct ggml_tallocr * talloc, struct ggml_tensor * tensor) {
void ggml_tallocr_free(ggml_tallocr_t talloc) {
free(talloc);
}
void ggml_tallocr_alloc(ggml_tallocr_t talloc, struct ggml_tensor * tensor) {
size_t size = ggml_backend_buffer_get_alloc_size(talloc->buffer, tensor);
size = GGML_PAD(size, talloc->alignment);
@@ -338,16 +354,12 @@ struct hash_node {
bool allocated;
};
//
struct tensor_alloc {
size_t offset;
size_t size_max; // 0 = pre-allocated, unused, or view
};
struct leaf_alloc {
int buffer_id;
struct tensor_alloc leaf;
};
struct node_alloc {
int buffer_id;
struct tensor_alloc dst;
@@ -366,7 +378,7 @@ struct ggml_gallocr {
struct node_alloc * node_allocs; // [n_nodes]
int n_nodes;
struct leaf_alloc * leaf_allocs; // [n_leafs]
struct tensor_alloc * leaf_allocs; // [n_leafs]
int n_leafs;
};
@@ -531,20 +543,13 @@ static int get_node_buffer_id(const int * node_buffer_ids, int i) {
return node_buffer_ids ? node_buffer_ids[i] : 0;
}
static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids, const int * leaf_buffer_ids) {
static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids) {
// clear hash tables
memset(galloc->hash_set.keys, 0, galloc->hash_set.size * sizeof(struct ggml_tensor *));
memset(galloc->hash_values, 0, galloc->hash_set.size * sizeof(struct hash_node));
// allocate leafs
// these may be tensors that the application is not using in the graph, but may still want to allocate for other purposes
for (int i = 0; i < graph->n_leafs; i++) {
struct ggml_tensor * leaf = graph->leafs[i];
ggml_gallocr_allocate_node(galloc, leaf, get_node_buffer_id(leaf_buffer_ids, i));
}
// count number of children and views
// allocate other graph inputs and leafs first to avoid overwriting them
// allocate all graph inputs and leafs first to avoid overwriting them
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
@@ -572,6 +577,19 @@ static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgr
}
}
// allocate the remaining leafs that are unused on the graph
// these are effectively static tensors that the application is not using in the graph, but may still want to allocate for other purposes
for (int i = 0; i < graph->n_leafs; i++) {
struct ggml_tensor * leaf = graph->leafs[i];
struct hash_node * hn = ggml_gallocr_hash_get(galloc, leaf);
if (hn->n_children == 0) {
assert(!hn->allocated);
// since buffer ids are only given for nodes, these leafs are always allocated in the first buffer
ggml_gallocr_allocate_node(galloc, leaf, 0);
}
}
// allocate tensors
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
@@ -634,7 +652,7 @@ static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgr
}
}
bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids, const int * leaf_buffer_ids) {
bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids) {
size_t hash_size = graph->visited_hash_table.size;
// initialize hash table
@@ -658,7 +676,7 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
}
// allocate in hash table
ggml_gallocr_alloc_graph_impl(galloc, graph, node_buffer_ids, leaf_buffer_ids);
ggml_gallocr_alloc_graph_impl(galloc, graph, node_buffer_ids);
// set the node_allocs from the hash table
if (galloc->n_nodes < graph->n_nodes) {
@@ -693,16 +711,15 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
}
if (galloc->n_leafs < graph->n_leafs) {
free(galloc->leaf_allocs);
galloc->leaf_allocs = calloc(sizeof(galloc->leaf_allocs[0]), graph->n_leafs);
galloc->leaf_allocs = calloc(sizeof(struct tensor_alloc), graph->n_leafs);
GGML_ASSERT(galloc->leaf_allocs != NULL);
}
galloc->n_leafs = graph->n_leafs;
for (int i = 0; i < graph->n_leafs; i++) {
struct ggml_tensor * leaf = graph->leafs[i];
struct hash_node * hn = ggml_gallocr_hash_get(galloc, leaf);
galloc->leaf_allocs[i].buffer_id = hn->buffer_id;
galloc->leaf_allocs[i].leaf.offset = hn->offset;
galloc->leaf_allocs[i].leaf.size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], leaf);
galloc->leaf_allocs[i].offset = hn->offset;
galloc->leaf_allocs[i].size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], leaf);
}
// reallocate buffers if needed
@@ -710,8 +727,7 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
size_t cur_size = galloc->buffers[i] ? ggml_backend_buffer_get_size(galloc->buffers[i]) : 0;
size_t new_size = ggml_dyn_tallocr_max_size(galloc->buf_tallocs[i]);
// even if there are no tensors allocated in this buffer, we still need to allocate it to initialize views
if (new_size > cur_size || galloc->buffers[i] == NULL) {
if (new_size > cur_size) {
#ifndef NDEBUG
fprintf(stderr, "%s: reallocating %s buffer from size %.02f MiB to %.02f MiB\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), cur_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
#endif
@@ -728,30 +744,30 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
}
bool ggml_gallocr_reserve(ggml_gallocr_t galloc, struct ggml_cgraph *graph) {
return ggml_gallocr_reserve_n(galloc, graph, NULL, NULL);
return ggml_gallocr_reserve_n(galloc, graph, NULL);
}
static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor * tensor, int buffer_id, struct tensor_alloc * tensor_alloc) {
assert(tensor->data || tensor->view_src || ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], tensor) <= tensor_alloc->size_max);
static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id, struct tensor_alloc * tensor_alloc) {
assert(node->data || node->view_src || ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], node) <= tensor_alloc->size_max);
if (tensor->view_src != NULL) {
if (tensor->buffer == NULL) {
if (node->view_src != NULL) {
if (node->buffer == NULL) {
assert(tensor_alloc->offset == SIZE_MAX);
if (tensor->view_src->buffer == NULL) {
if (node->view_src->buffer == NULL) {
// this tensor was allocated without ggml-backend
return;
}
ggml_backend_view_init(galloc->buffers[buffer_id], tensor);
ggml_backend_view_init(galloc->buffers[buffer_id], node);
}
} else {
if (tensor->data == NULL) {
if (node->data == NULL) {
assert(tensor_alloc->offset != SIZE_MAX);
assert(ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], tensor) <= tensor_alloc->size_max);
assert(ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], node) <= tensor_alloc->size_max);
void * base = ggml_backend_buffer_get_base(galloc->buffers[buffer_id]);
void * addr = (char *)base + tensor_alloc->offset;
ggml_backend_tensor_alloc(galloc->buffers[buffer_id], tensor, addr);
ggml_backend_tensor_alloc(galloc->buffers[buffer_id], node, addr);
} else {
if (tensor->buffer == NULL) {
if (node->buffer == NULL) {
// this tensor was allocated without ggml-backend
return;
}
@@ -827,18 +843,13 @@ bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph * graph)
// reset buffers
for (int i = 0; i < galloc->n_buffers; i++) {
// zero size buffers are not allocated
if (galloc->buffers[i] != NULL) {
ggml_backend_buffer_reset(galloc->buffers[i]);
}
}
// allocate the graph tensors from the previous assignments
// leafs
for (int i = 0; i < graph->n_leafs; i++) {
struct ggml_tensor * leaf = graph->leafs[i];
struct leaf_alloc * leaf_alloc = &galloc->leaf_allocs[i];
ggml_gallocr_init_tensor(galloc, leaf, leaf_alloc->buffer_id, &leaf_alloc->leaf);
}
// nodes
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
@@ -852,6 +863,12 @@ bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph * graph)
}
ggml_gallocr_init_tensor(galloc, node, node_alloc->buffer_id, &node_alloc->dst);
}
// leafs
for (int i = 0; i < graph->n_leafs; i++) {
struct ggml_tensor * leaf = graph->leafs[i];
struct tensor_alloc * leaf_alloc = &galloc->leaf_allocs[i];
ggml_gallocr_init_tensor(galloc, leaf, 0, leaf_alloc);
}
return true;
}
@@ -883,12 +900,12 @@ static bool alloc_tensor_range(struct ggml_context * ctx,
return false;
}
struct ggml_tallocr tallocr = ggml_tallocr_new(buffer);
struct ggml_tallocr * tallocr = ggml_tallocr_new(buffer);
for (struct ggml_tensor * t = first; t != last; t = ggml_get_next_tensor(ctx, t)) {
if (t->data == NULL) {
if (t->view_src == NULL) {
ggml_tallocr_alloc(&tallocr, t);
ggml_tallocr_alloc(tallocr, t);
} else if (t->buffer == NULL) {
ggml_backend_view_init(buffer, t);
}
@@ -900,6 +917,8 @@ static bool alloc_tensor_range(struct ggml_context * ctx,
}
}
ggml_tallocr_free(tallocr);
*buffers = realloc(*buffers, sizeof(ggml_backend_buffer_t) * (*n_buffers + 1));
(*buffers)[(*n_buffers)++] = buffer;

View File

@@ -11,15 +11,11 @@ typedef struct ggml_backend_buffer * ggml_backend_buffer_t;
typedef struct ggml_backend * ggml_backend_t;
// Tensor allocator
struct ggml_tallocr {
ggml_backend_buffer_t buffer;
void * base;
size_t alignment;
size_t offset;
};
typedef struct ggml_tallocr * ggml_tallocr_t;
GGML_API struct ggml_tallocr ggml_tallocr_new(ggml_backend_buffer_t buffer);
GGML_API void ggml_tallocr_alloc(struct ggml_tallocr * talloc, struct ggml_tensor * tensor);
GGML_API ggml_tallocr_t ggml_tallocr_new(ggml_backend_buffer_t buffer);
GGML_API void ggml_tallocr_free(ggml_tallocr_t talloc);
GGML_API void ggml_tallocr_alloc(ggml_tallocr_t talloc, struct ggml_tensor * tensor);
// Graph allocator
/*
@@ -54,11 +50,7 @@ GGML_API void ggml_gallocr_free(ggml_gallocr_t galloc);
// not strictly required for single buffer usage: ggml_gallocr_alloc_graph will reallocate the buffers automatically if needed
// returns false if the buffer allocation failed
GGML_API bool ggml_gallocr_reserve(ggml_gallocr_t galloc, struct ggml_cgraph * graph);
GGML_API bool ggml_gallocr_reserve_n(
ggml_gallocr_t galloc,
struct ggml_cgraph * graph,
const int * node_buffer_ids,
const int * leaf_buffer_ids);
GGML_API bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids);
// automatic reallocation if the topology changes when using a single buffer
// returns false if using multiple buffers and a re-allocation is needed (call ggml_gallocr_reserve_n first to set the node buffers)

View File

@@ -86,41 +86,29 @@ extern "C" {
// (optional) asynchronous tensor data access
void (*GGML_CALL set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
void (*GGML_CALL get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
bool (*GGML_CALL cpy_tensor_async)(ggml_backend_t backend_src, ggml_backend_t backend_dst, const struct ggml_tensor * src, struct ggml_tensor * dst);
bool (*GGML_CALL cpy_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * src, struct ggml_tensor * dst);
// (optional) complete all pending operations
void (*GGML_CALL synchronize)(ggml_backend_t backend);
// compute graph with a plan (not used currently)
// compute graph with a plan
ggml_backend_graph_plan_t (*GGML_CALL graph_plan_create) (ggml_backend_t backend, const struct ggml_cgraph * cgraph);
void (*GGML_CALL graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
void (*GGML_CALL graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
// compute graph with a plan
enum ggml_status (*GGML_CALL graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
// compute graph without a plan (async)
enum ggml_status (*GGML_CALL graph_compute) (ggml_backend_t backend, struct ggml_cgraph * cgraph);
bool (*GGML_CALL graph_compute)(ggml_backend_t backend, struct ggml_cgraph * cgraph);
// check if the backend supports an operation
bool (*GGML_CALL supports_op)(ggml_backend_t backend, const struct ggml_tensor * op);
// (optional) event synchronization
ggml_backend_event_t (*GGML_CALL event_new) (ggml_backend_t backend);
void (*GGML_CALL event_free) (ggml_backend_event_t event);
void (*GGML_CALL event_record) (ggml_backend_event_t event);
void (*GGML_CALL event_wait) (ggml_backend_t backend, ggml_backend_event_t event);
void (*GGML_CALL event_synchronize) (ggml_backend_event_t event);
};
struct ggml_backend {
ggml_guid_t guid;
struct ggml_backend_i iface;
ggml_backend_context_t context;
};
struct ggml_backend_event {
ggml_backend_t backend;
void * context;
ggml_backend_context_t context;
};
//

View File

@@ -221,29 +221,29 @@ void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_ten
GGML_CALL void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
GGML_ASSERT(buf != NULL && "tensor buffer not set");
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
GGML_ASSERT(buf != NULL && "tensor buffer not set");
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
if (!size) {
return;
}
buf->iface.set_tensor(buf, tensor, data, offset, size);
tensor->buffer->iface.set_tensor(buf, tensor, data, offset, size);
}
GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
GGML_ASSERT(buf != NULL && "tensor buffer not set");
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
GGML_ASSERT(tensor->buffer != NULL && "tensor buffer not set");
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
if (!size) {
return;
}
buf->iface.get_tensor(buf, tensor, data, offset, size);
tensor->buffer->iface.get_tensor(buf, tensor, data, offset, size);
}
void ggml_backend_synchronize(ggml_backend_t backend) {
@@ -255,30 +255,18 @@ void ggml_backend_synchronize(ggml_backend_t backend) {
}
ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
GGML_ASSERT(backend->iface.graph_plan_create != NULL);
return backend->iface.graph_plan_create(backend, cgraph);
}
void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
GGML_ASSERT(backend->iface.graph_plan_free != NULL);
backend->iface.graph_plan_free(backend, plan);
}
enum ggml_status ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
GGML_ASSERT(backend->iface.graph_plan_compute != NULL);
return backend->iface.graph_plan_compute(backend, plan);
void ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
backend->iface.graph_plan_compute(backend, plan);
}
enum ggml_status ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
enum ggml_status err = ggml_backend_graph_compute_async(backend, cgraph);
ggml_backend_synchronize(backend);
return err;
}
bool ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
bool ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
return backend->iface.graph_compute(backend, cgraph);
}
@@ -326,68 +314,34 @@ void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst
}
}
void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst) {
void ggml_backend_tensor_copy_async(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) {
GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
if (src == dst) {
return;
}
if (backend_dst->iface.cpy_tensor_async != NULL) {
if (backend_dst->iface.cpy_tensor_async(backend_src, backend_dst, src, dst)) {
return;
if (ggml_backend_buft_supports_backend(src->buffer->buft, backend) && ggml_backend_buft_supports_backend(dst->buffer->buft, backend)) {
if (backend->iface.cpy_tensor_async != NULL) {
if (backend->iface.cpy_tensor_async(backend, src, dst)) {
return;
}
}
}
// an async copy would normally happen after all the queued operations on both backends are completed
// sync src, set_async dst
size_t nbytes = ggml_nbytes(src);
if (ggml_backend_buffer_is_host(src->buffer)) {
ggml_backend_synchronize(backend_src);
ggml_backend_tensor_set_async(backend_dst, dst, src->data, 0, ggml_nbytes(src));
} else {
ggml_backend_synchronize(backend_src);
ggml_backend_tensor_set_async(backend, dst, src->data, 0, nbytes);
}
else {
ggml_backend_tensor_copy(src, dst);
ggml_backend_synchronize(backend_dst);
}
}
// events
ggml_backend_event_t ggml_backend_event_new(ggml_backend_t backend) {
if (backend->iface.event_new == NULL) {
return NULL;
}
return backend->iface.event_new(backend);
}
void ggml_backend_event_free(ggml_backend_event_t event) {
if (event == NULL) {
return;
}
event->backend->iface.event_free(event);
}
void ggml_backend_event_record(ggml_backend_event_t event) {
GGML_ASSERT(event->backend->iface.event_record != NULL);
event->backend->iface.event_record(event);
}
void ggml_backend_event_synchronize(ggml_backend_event_t event) {
GGML_ASSERT(event->backend->iface.event_synchronize != NULL);
event->backend->iface.event_synchronize(event);
}
void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
GGML_ASSERT(backend->iface.event_wait != NULL);
backend->iface.event_wait(backend, event);
}
// backend registry
#define GGML_REG_MAX_BACKENDS 16
#define GGML_MAX_BACKENDS_REG 16
struct ggml_backend_reg {
char name[128];
@@ -396,7 +350,7 @@ struct ggml_backend_reg {
void * user_data;
};
static struct ggml_backend_reg ggml_backend_registry[GGML_REG_MAX_BACKENDS];
static struct ggml_backend_reg ggml_backend_registry[GGML_MAX_BACKENDS_REG];
static size_t ggml_backend_registry_count = 0;
GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data);
@@ -441,7 +395,7 @@ GGML_CALL static void ggml_backend_registry_init(void) {
}
GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data) {
GGML_ASSERT(ggml_backend_registry_count < GGML_REG_MAX_BACKENDS);
GGML_ASSERT(ggml_backend_registry_count < GGML_MAX_BACKENDS_REG);
size_t id = ggml_backend_registry_count;
@@ -778,26 +732,22 @@ GGML_CALL static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, g
GGML_UNUSED(backend);
}
GGML_CALL static enum ggml_status ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
GGML_CALL static void ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
return ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan);
ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan);
GGML_UNUSED(backend);
}
GGML_CALL static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
GGML_CALL static bool ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
if (cpu_ctx->work_size < cplan.work_size) {
free(cpu_ctx->work_data);
cpu_ctx->work_data = malloc(cplan.work_size);
if (cpu_ctx->work_data == NULL) {
cpu_ctx->work_size = 0;
return GGML_STATUS_ALLOC_FAILED;
}
// TODO: may be faster to free and use malloc to avoid the copy
cpu_ctx->work_data = realloc(cpu_ctx->work_data, cplan.work_size);
cpu_ctx->work_size = cplan.work_size;
}
cplan.work_data = cpu_ctx->work_data;
@@ -805,7 +755,8 @@ GGML_CALL static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t
cplan.abort_callback = cpu_ctx->abort_callback;
cplan.abort_callback_data = cpu_ctx->abort_callback_data;
return ggml_graph_compute(cgraph, &cplan);
ggml_graph_compute(cgraph, &cplan);
return true;
}
GGML_CALL static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
@@ -834,11 +785,6 @@ static struct ggml_backend_i cpu_backend_i = {
/* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
/* .graph_compute = */ ggml_backend_cpu_graph_compute,
/* .supports_op = */ ggml_backend_cpu_supports_op,
/* .event_new = */ NULL,
/* .event_free = */ NULL,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
/* .event_synchronize = */ NULL,
};
static ggml_guid_t ggml_backend_cpu_guid(void) {
@@ -994,27 +940,15 @@ static bool ggml_is_view_op(enum ggml_op op) {
// scheduler
#ifndef GGML_SCHED_MAX_BACKENDS
#define GGML_SCHED_MAX_BACKENDS 16
#endif
#ifndef GGML_SCHED_MAX_SPLITS
#define GGML_SCHED_MAX_SPLITS 256
#endif
#ifndef GGML_SCHED_MAX_SPLIT_INPUTS
#define GGML_SCHED_MAX_SPLIT_INPUTS 16
#endif
#ifndef GGML_SCHED_MAX_COPIES
#define GGML_SCHED_MAX_COPIES 4
#endif
#define GGML_MAX_BACKENDS 16
#define GGML_MAX_SPLITS 256
#define GGML_MAX_SPLIT_INPUTS 16
struct ggml_backend_sched_split {
int backend_id;
int i_start;
int i_end;
struct ggml_tensor * inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
struct ggml_tensor * inputs[GGML_MAX_SPLIT_INPUTS];
int n_inputs;
// graph view of this split
struct ggml_cgraph graph;
@@ -1022,53 +956,45 @@ struct ggml_backend_sched_split {
struct ggml_backend_sched {
bool is_reset; // true if the scheduler has been reset since the last graph split
bool is_alloc;
int n_backends;
ggml_backend_t backends[GGML_MAX_BACKENDS];
ggml_backend_buffer_type_t bufts[GGML_MAX_BACKENDS];
ggml_backend_t backends[GGML_SCHED_MAX_BACKENDS];
ggml_backend_buffer_type_t bufts[GGML_SCHED_MAX_BACKENDS];
ggml_gallocr_t galloc;
// hash keys of the nodes in the graph
struct ggml_hash_set hash_set;
// hash values
int * tensor_backend_id;
struct ggml_tensor * (* tensor_copies)[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES];
struct ggml_tensor * (* tensor_copies)[GGML_MAX_BACKENDS];
int * node_backend_ids; // [graph_size]
int * leaf_backend_ids; // [graph_size]
int * node_backend_ids; // [n_nodes]
int n_nodes;
// copy of the graph with modified inputs
struct ggml_cgraph * graph;
// graph splits
struct ggml_backend_sched_split splits[GGML_SCHED_MAX_SPLITS];
struct ggml_backend_sched_split splits[GGML_MAX_SPLITS];
int n_splits;
// pipeline parallelism support
int n_copies;
int cur_copy;
ggml_backend_event_t events[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES];
struct ggml_tensor * graph_inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
int n_graph_inputs;
struct ggml_context * ctx;
ggml_backend_sched_eval_callback callback_eval;
void * callback_eval_user_data;
// align context_buffer to GGML_MEM_ALIGN
#ifdef _MSC_VER
#ifdef _MSC_VER
__declspec(align(GGML_MEM_ALIGN))
#else
#else
__attribute__((aligned(GGML_MEM_ALIGN)))
#endif
char context_buffer[GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + sizeof(struct ggml_cgraph)];
#endif
char context_buffer[GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + sizeof(struct ggml_cgraph)];
};
#define hash_id(tensor) ggml_hash_find_or_insert(sched->hash_set, tensor)
#define tensor_backend_id(tensor) sched->tensor_backend_id[hash_id(tensor)]
#define hash_id(node) ggml_hash_find_or_insert(sched->hash_set, node)
#define tensor_backend_id(node) sched->tensor_backend_id[hash_id(node)]
#define tensor_backend(node) (tensor_backend_id(node) == -1 ? NULL : sched->backends[tensor_backend_id(node)])
// returns the priority of the backend, lower id is higher priority
static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backend_t backend) {
@@ -1080,8 +1006,7 @@ static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backen
return -1;
}
static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, const struct ggml_tensor * tensor) {
ggml_backend_buffer_t buffer = tensor->buffer;
static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, ggml_backend_buffer_t buffer) {
if (buffer == NULL) {
return -1;
}
@@ -1092,16 +1017,12 @@ static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, co
return i;
}
}
fprintf(stderr, "%s: error: no backend supports buffer type %s used in tensor %s\n",
__func__, ggml_backend_buffer_name(buffer), tensor->name);
GGML_ASSERT(false);
return -1;
GGML_ASSERT(false && "tensor buffer type not supported by any backend");
return -1; // silence warning
}
#if 0
static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS][128]; // debug only
static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS][128]; // debug only
#define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__)
#define GET_CAUSE(node) causes[hash_id(node)]
#else
@@ -1115,28 +1036,19 @@ static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, st
// assign pre-allocated nodes to their backend
// dst
int cur_backend = ggml_backend_sched_backend_from_buffer(sched, tensor);
int cur_backend = ggml_backend_sched_backend_from_buffer(sched, tensor->buffer);
if (cur_backend != -1) {
SET_CAUSE(tensor, "1.dst");
SET_CAUSE(node, "1.dst");
return cur_backend;
}
// view_src
if (tensor->view_src != NULL) {
cur_backend = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src);
cur_backend = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src->buffer);
if (cur_backend != -1) {
SET_CAUSE(tensor, "1.vsrc");
SET_CAUSE(node, "1.vsrc");
return cur_backend;
}
}
// input
if (tensor->flags & GGML_TENSOR_FLAG_INPUT) {
cur_backend = sched->n_backends - 1; // last backend (assumed CPU)
SET_CAUSE(tensor, "1.inp");
return cur_backend;
}
// assign nodes that use weights to the backend of the weights
for (int i = 0; i < GGML_MAX_SRC; i++) {
const struct ggml_tensor * src = tensor->src[i];
@@ -1144,9 +1056,9 @@ static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, st
continue;
}
if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
int src_backend = ggml_backend_sched_backend_from_buffer(sched, src);
int src_backend = ggml_backend_sched_backend_from_buffer(sched, src->buffer);
// operations with weights are always run on the same backend as the weights
SET_CAUSE(tensor, "1.wgt%d", i);
SET_CAUSE(node, "1.wgt%d", i);
return src_backend;
}
}
@@ -1182,7 +1094,7 @@ static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, str
if (ggml_is_view_op(node->op)) {
continue;
}
ggml_backend_t tensor_backend = ggml_backend_sched_get_tensor_backend(sched, node);
ggml_backend_t tensor_backend = tensor_backend(node);
fprintf(stderr, "node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s]:", i, ggml_op_name(node->op), node->name,
fmt_size(ggml_nbytes(node)), tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", GET_CAUSE(node));
for (int j = 0; j < GGML_MAX_SRC; j++) {
@@ -1190,7 +1102,7 @@ static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, str
if (src == NULL) {
continue;
}
ggml_backend_t src_backend = ggml_backend_sched_get_tensor_backend(sched, src);
ggml_backend_t src_backend = tensor_backend(src);
fprintf(stderr, " %20.20s (%5.5s) [%5.5s %8.8s]", src->name,
fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", GET_CAUSE(src));
}
@@ -1207,7 +1119,6 @@ static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, str
static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
// reset splits
sched->n_splits = 0;
sched->n_graph_inputs = 0;
sched->is_reset = false;
struct ggml_init_params params = {
@@ -1253,7 +1164,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
}
}
#ifdef DEBUG_PASS1
fprintf(stderr, "PASS 1 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
fprintf(stderr, "PASS 1 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
#endif
// pass 2: expand current backend assignments
@@ -1261,30 +1172,6 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
// expand gpu backends (i.e. non last prio) up and down, ignoring cpu (the lowest priority backend)
// thus, cpu will never be used unless weights are on cpu, or there are no gpu ops between cpu ops
// pass 2.2 expand gpu down
{
int cur_backend_id = -1;
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
if (ggml_is_view_op(node->op)) {
continue;
}
int tensor_backend_id = tensor_backend_id(node);
if (tensor_backend_id != -1) {
if (tensor_backend_id == sched->n_backends - 1) {
// skip cpu (lowest prio backend)
cur_backend_id = -1;
} else {
cur_backend_id = tensor_backend_id;
}
} else {
tensor_backend_id(node) = cur_backend_id;
SET_CAUSE(node, "2.2");
}
}
}
// pass 2.1 expand gpu up
{
int cur_backend_id = -1;
@@ -1308,6 +1195,46 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
}
}
// pass 2.2 expand gpu down
{
int cur_backend_id = -1;
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
if (ggml_is_view_op(node->op)) {
continue;
}
int tensor_backend_id = tensor_backend_id(node);
if (tensor_backend_id != -1) {
if (tensor_backend_id == sched->n_backends - 1) {
// skip cpu (lowest prio backend)
cur_backend_id = -1;
} else {
cur_backend_id = tensor_backend_id;
}
} else {
tensor_backend_id(node) = cur_backend_id;
SET_CAUSE(node, "2.2");
}
}
}
// pass 2.3 expand rest up
{
int cur_backend_id = -1;
for (int i = graph->n_nodes - 1; i >= 0; i--) {
struct ggml_tensor * node = graph->nodes[i];
if (ggml_is_view_op(node->op)) {
continue;
}
int tensor_backend_id = tensor_backend_id(node);
if (tensor_backend_id != -1) {
cur_backend_id = tensor_backend_id;
} else {
tensor_backend_id(node) = cur_backend_id;
SET_CAUSE(node, "2.3");
}
}
}
// pass 2.4 expand rest down
{
@@ -1326,26 +1253,8 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
}
}
}
// pass 2.3 expand rest up
{
int cur_backend_id = -1;
for (int i = graph->n_nodes - 1; i >= 0; i--) {
struct ggml_tensor * node = graph->nodes[i];
if (ggml_is_view_op(node->op)) {
continue;
}
int tensor_backend_id = tensor_backend_id(node);
if (tensor_backend_id != -1) {
cur_backend_id = tensor_backend_id;
} else {
tensor_backend_id(node) = cur_backend_id;
SET_CAUSE(node, "2.3");
}
}
}
#ifdef DEBUG_PASS2
fprintf(stderr, "PASS 2 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
fprintf(stderr, "PASS 2 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
#endif
// pass 3: assign backends to remaining src from dst and view_src
@@ -1375,7 +1284,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
}
}
#ifdef DEBUG_PASS3
fprintf(stderr, "PASS 3 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
fprintf(stderr, "PASS 3 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
#endif
// pass 4: split graph, find tensors that need to be copied
@@ -1407,7 +1316,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
if (tensor_backend_id != cur_backend_id) {
sched->splits[cur_split].i_end = i;
cur_split++;
GGML_ASSERT(cur_split < GGML_SCHED_MAX_SPLITS);
GGML_ASSERT(cur_split < GGML_MAX_SPLITS);
sched->splits[cur_split].backend_id = tensor_backend_id;
sched->splits[cur_split].i_start = i;
sched->splits[cur_split].n_inputs = 0;
@@ -1420,57 +1329,25 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
if (src == NULL) {
continue;
}
int src_backend_id = tensor_backend_id(src);
assert(src_backend_id != -1); // all inputs should be assigned by now
if (src->flags & GGML_TENSOR_FLAG_INPUT) {
size_t id = hash_id(src);
if (sched->tensor_copies[id][src_backend_id][0] == NULL) {
ggml_backend_t backend = sched->backends[src_backend_id];
for (int c = 0; c < sched->n_copies; c++) {
struct ggml_tensor * tensor_copy;
if (c == sched->cur_copy) {
tensor_copy = src; // use the original tensor as the current copy
} else {
tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
}
if (sched->n_copies > 1) {
ggml_set_input(tensor_copy);
ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
}
sched->tensor_copies[id][src_backend_id][c] = tensor_copy;
tensor_backend_id(tensor_copy) = src_backend_id;
SET_CAUSE(tensor_copy, "4.cpy");
}
int n_graph_inputs = sched->n_graph_inputs++;
GGML_ASSERT(n_graph_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
sched->graph_inputs[n_graph_inputs] = src;
}
}
if (src_backend_id != tensor_backend_id) {
// create a copy of the input in the split's backend
size_t id = hash_id(src);
if (sched->tensor_copies[id][cur_backend_id][0] == NULL) {
if (sched->tensor_copies[id][cur_backend_id] == NULL) {
ggml_backend_t backend = sched->backends[cur_backend_id];
for (int c = 0; c < sched->n_copies; c++) {
struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
if (sched->n_copies > 1) {
ggml_set_input(tensor_copy);
ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
}
sched->tensor_copies[id][cur_backend_id][c] = tensor_copy;
tensor_backend_id(tensor_copy) = cur_backend_id;
SET_CAUSE(tensor_copy, "4.cpy");
}
struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
ggml_format_name(tensor_copy, "%s#%s", ggml_backend_name(backend), src->name);
sched->tensor_copies[id][cur_backend_id] = tensor_copy;
tensor_backend_id(tensor_copy) = cur_backend_id;
SET_CAUSE(tensor_copy, "4.cpy");
int n_inputs = sched->splits[cur_split].n_inputs++;
GGML_ASSERT(n_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
GGML_ASSERT(n_inputs < GGML_MAX_SPLIT_INPUTS);
sched->splits[cur_split].inputs[n_inputs] = src;
}
node->src[j] = sched->tensor_copies[id][cur_backend_id][sched->cur_copy];
node->src[j] = sched->tensor_copies[id][cur_backend_id];
}
}
}
@@ -1478,39 +1355,37 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
sched->n_splits = cur_split + 1;
}
#ifdef DEBUG_PASS4
fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
#endif
#ifndef NDEBUG
// sanity check: all sources should have the same backend as the node
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
ggml_backend_t tensor_backend = ggml_backend_sched_get_tensor_backend(sched, node);
ggml_backend_t tensor_backend = tensor_backend(node);
if (tensor_backend == NULL) {
fprintf(stderr, "!!!!!!! %s has no backend\n", node->name);
}
if (node->view_src != NULL && tensor_backend != ggml_backend_sched_get_tensor_backend(sched, node->view_src)) {
if (node->view_src != NULL && tensor_backend != tensor_backend(node->view_src)) {
fprintf(stderr, "!!!!!!! %s has backend %s, view_src %s has backend %s\n",
node->name, tensor_backend ? ggml_backend_name(tensor_backend) : "NULL",
node->view_src->name, ggml_backend_sched_get_tensor_backend(sched, node->view_src) ?
ggml_backend_name(ggml_backend_sched_get_tensor_backend(sched, node->view_src)) : "NULL");
node->view_src->name, tensor_backend(node->view_src) ? ggml_backend_name(tensor_backend(node->view_src)) : "NULL");
}
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (src == NULL) {
continue;
}
ggml_backend_t src_backend = ggml_backend_sched_get_tensor_backend(sched, src);
ggml_backend_t src_backend = tensor_backend(src);
if (src_backend != tensor_backend /* && src_backend != NULL */) {
fprintf(stderr, "!!!! %s has backend %s, src %d (%s) has backend %s\n",
node->name, tensor_backend ? ggml_backend_name(tensor_backend) : "NULL",
j, src->name, src_backend ? ggml_backend_name(src_backend) : "NULL");
}
if (src->view_src != NULL && src_backend != ggml_backend_sched_get_tensor_backend(sched, src->view_src)) {
if (src->view_src != NULL && src_backend != tensor_backend(src->view_src)) {
fprintf(stderr, "!!!!!!! [src] %s has backend %s, view_src %s has backend %s\n",
src->name, src_backend ? ggml_backend_name(src_backend) : "NULL",
src->view_src->name, ggml_backend_sched_get_tensor_backend(sched, src->view_src) ?
ggml_backend_name(ggml_backend_sched_get_tensor_backend(sched, src->view_src)) : "NULL");
src->view_src->name, tensor_backend(src->view_src) ? ggml_backend_name(tensor_backend(src->view_src)) : "NULL");
}
}
}
@@ -1518,20 +1393,18 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
#endif
// create copies of the graph for each split
// TODO: avoid this copy
struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS, false);
// FIXME: avoid this copy, pass split inputs to ggml_gallocr_alloc_graph_n in some other way
struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_MAX_SPLIT_INPUTS, false);
for (int i = 0; i < sched->n_splits; i++) {
struct ggml_backend_sched_split * split = &sched->splits[i];
split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
// add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
for (int j = 0; j < split->n_inputs; j++) {
struct ggml_tensor * input = split->inputs[j];
struct ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split->backend_id][sched->cur_copy];
struct ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split->backend_id];
// add a dependency to the input source so that it is not freed before the copy is done
struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input);
input_dep->src[0] = input;
sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(input);
graph_copy->nodes[graph_copy->n_nodes++] = input_dep;
@@ -1545,56 +1418,18 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
}
}
if (sched->n_copies > 1) {
// add input copies as leafs so that they are allocated first
for (int i = 0; i < sched->n_graph_inputs; i++) {
struct ggml_tensor * input = sched->graph_inputs[i];
size_t id = hash_id(input);
int backend_id = tensor_backend_id(input);
for (int c = 0; c < sched->n_copies; c++) {
struct ggml_tensor * input_cpy = sched->tensor_copies[id][backend_id][c];
sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
}
}
for (int i = 0; i < sched->n_splits; i++) {
struct ggml_backend_sched_split * split = &sched->splits[i];
int backend_id = split->backend_id;
for (int j = 0; j < split->n_inputs; j++) {
struct ggml_tensor * input = split->inputs[j];
size_t id = hash_id(input);
for (int c = 0; c < sched->n_copies; c++) {
struct ggml_tensor * input_cpy = sched->tensor_copies[id][backend_id][c];
sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
}
}
}
}
// add leafs from the original graph
for (int i = 0; i < graph->n_leafs; i++) {
struct ggml_tensor * leaf = graph->leafs[i];
sched->leaf_backend_ids[graph_copy->n_leafs] = tensor_backend_id(leaf);
graph_copy->leafs[graph_copy->n_leafs++] = leaf;
}
sched->graph = graph_copy;
}
static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
// allocate graph
// ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids);
if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) {
// the re-allocation may cause the split inputs to be moved to a different address
ggml_backend_sched_synchronize(sched);
#ifndef NDEBUG
fprintf(stderr, "%s: failed to allocate graph, reserving\n", __func__);
fprintf(stderr, "ggml_backend_sched: failed to allocate graph, reserving\n");
#endif
ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids, sched->leaf_backend_ids);
ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids);
if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) {
fprintf(stderr, "%s: failed to allocate graph\n", __func__);
fprintf(stderr, "ggml_backend_sched: failed to allocate graph\n");
return false;
}
}
@@ -1602,7 +1437,10 @@ static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
return true;
}
static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) {
static bool ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) {
uint64_t copy_us[GGML_MAX_BACKENDS] = {0};
uint64_t compute_us[GGML_MAX_BACKENDS] = {0};
struct ggml_backend_sched_split * splits = sched->splits;
for (int i = 0; i < sched->n_splits; i++) {
@@ -1611,36 +1449,33 @@ static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t s
ggml_backend_t split_backend = sched->backends[split_backend_id];
// copy the input tensors to the split backend
uint64_t copy_start_us = ggml_time_us();
for (int j = 0; j < split->n_inputs; j++) {
ggml_backend_t input_backend = ggml_backend_sched_get_tensor_backend(sched, split->inputs[j]);
struct ggml_tensor * input = split->inputs[j];
struct ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split_backend_id][sched->cur_copy];
struct ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split_backend_id];
if (input->flags & GGML_TENSOR_FLAG_INPUT) {
// inputs from the user must be copied immediately to prevent the user overwriting the data before the copy is done
if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
} else {
ggml_backend_synchronize(split_backend);
}
ggml_backend_tensor_copy(input, input_cpy);
} else {
if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
ggml_backend_event_wait(split_backend, sched->events[split_backend_id][sched->cur_copy]);
} else {
ggml_backend_synchronize(split_backend);
ggml_backend_synchronize(input_backend);
}
GGML_ASSERT(input->buffer != NULL);
GGML_ASSERT(input_cpy->buffer != NULL);
ggml_backend_tensor_copy_async(input_backend, split_backend, input, input_cpy);
}
ggml_backend_tensor_copy_async(split_backend, input, input_cpy);
}
//ggml_backend_synchronize(split_backend); // necessary to measure copy time
int64_t copy_end_us = ggml_time_us();
copy_us[split_backend_id] += copy_end_us - copy_start_us;
#if 0
char split_filename[GGML_MAX_NAME];
snprintf(split_filename, GGML_MAX_NAME, "split_%i_%s.dot", i, ggml_backend_name(split_backend));
ggml_graph_dump_dot(split->graph, NULL, split_filename);
#endif
uint64_t compute_start_us = ggml_time_us();
if (!sched->callback_eval) {
enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &split->graph);
if (ec != GGML_STATUS_SUCCESS) {
return ec;
if (!ggml_backend_graph_compute(split_backend, &split->graph)) {
return false;
}
//ggml_backend_synchronize(split_backend); // necessary to measure compute time
} else {
// similar to ggml_backend_compare_graph_backend
for (int j0 = 0; j0 < split->graph.n_nodes; j0++) {
@@ -1659,14 +1494,10 @@ static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t s
struct ggml_cgraph gv = ggml_graph_view(&split->graph, j0, j1 + 1);
enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &gv);
if (ec != GGML_STATUS_SUCCESS) {
return ec;
if (!ggml_backend_graph_compute(split_backend, &gv)) {
return false;
}
// TODO: pass backend to the callback, then the user can decide if they want to synchronize
ggml_backend_synchronize(split_backend);
if (need && !sched->callback_eval(t, false, sched->callback_eval_user_data)) {
break;
}
@@ -1674,54 +1505,39 @@ static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t s
j0 = j1;
}
}
// record the event of this copy
if (split->n_inputs > 0) {
if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
ggml_backend_event_record(sched->events[split_backend_id][sched->cur_copy]);
}
}
uint64_t compute_end_us = ggml_time_us();
compute_us[split_backend_id] += compute_end_us - compute_start_us;
}
sched->cur_copy = (sched->cur_copy + 1) % sched->n_copies;
#if 0
// per-backend timings
fprintf(stderr, "sched_compute_splits times (%d splits):\n", sched->n_splits);
for (int i = 0; i < sched->n_backends; i++) {
if (copy_us[i] > 0 || compute_us[i] > 0) {
fprintf(stderr, "\t%5.5s: %lu us copy, %lu us compute\n", ggml_backend_name(sched->backends[i]), copy_us[i], compute_us[i]);
}
}
#endif
return GGML_STATUS_SUCCESS;
return true;
}
ggml_backend_sched_t ggml_backend_sched_new(
ggml_backend_t * backends,
ggml_backend_buffer_type_t * bufts,
int n_backends,
size_t graph_size,
bool parallel) {
ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size) {
GGML_ASSERT(n_backends > 0);
GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS);
GGML_ASSERT(ggml_backend_is_cpu(backends[n_backends - 1])); // last backend must be CPU
GGML_ASSERT(n_backends <= GGML_MAX_BACKENDS);
struct ggml_backend_sched * sched = calloc(sizeof(struct ggml_backend_sched), 1);
// initialize hash table
sched->hash_set = ggml_hash_set_new(graph_size + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS);
sched->hash_set = ggml_hash_set_new(graph_size + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS);
sched->tensor_backend_id = calloc(sizeof(sched->tensor_backend_id[0]), sched->hash_set.size);
sched->tensor_copies = calloc(sizeof(sched->tensor_copies[0]), sched->hash_set.size);
sched->node_backend_ids = calloc(sizeof(sched->node_backend_ids[0]), graph_size);
sched->leaf_backend_ids = calloc(sizeof(sched->leaf_backend_ids[0]), graph_size);
sched->n_backends = n_backends;
sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1;
GGML_ASSERT(sched->n_copies <= GGML_SCHED_MAX_COPIES);
for (int b = 0; b < n_backends; b++) {
sched->backends[b] = backends[b];
sched->bufts[b] = bufts ? bufts[b] : ggml_backend_get_default_buffer_type(backends[b]);
GGML_ASSERT(ggml_backend_buft_supports_backend(sched->bufts[b], backends[b]));
if (sched->n_copies > 1) {
for (int c = 0; c < sched->n_copies; c++) {
sched->events[b][c] = ggml_backend_event_new(backends[b]);
}
}
for (int i = 0; i < n_backends; i++) {
sched->backends[i] = backends[i];
sched->bufts[i] = bufts ? bufts[i] : ggml_backend_get_default_buffer_type(backends[i]);
}
sched->galloc = ggml_gallocr_new_n(sched->bufts, n_backends);
@@ -1735,18 +1551,12 @@ void ggml_backend_sched_free(ggml_backend_sched_t sched) {
if (sched == NULL) {
return;
}
for (int b = 0; b < sched->n_backends; b++) {
for (int c = 0; c < sched->n_copies; c++) {
ggml_backend_event_free(sched->events[b][c]);
}
}
ggml_gallocr_free(sched->galloc);
ggml_free(sched->ctx);
free(sched->hash_set.keys);
free(sched->tensor_backend_id);
free(sched->tensor_copies);
free(sched->node_backend_ids);
free(sched->leaf_backend_ids);
free(sched);
}
@@ -1758,63 +1568,38 @@ void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
memset(sched->tensor_copies, 0, sizeof(sched->tensor_copies[0]) * hash_size);
sched->is_reset = true;
sched->is_alloc = false;
}
bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
ggml_backend_sched_split_graph(sched, measure_graph);
// TODO: extract this to a separate function
if (!ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids, sched->leaf_backend_ids)) {
if (!ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids)) {
return false;
}
ggml_backend_sched_reset(sched);
ggml_backend_sched_synchronize(sched);
return true;
}
bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS);
bool ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS);
if (!sched->is_reset) {
ggml_backend_sched_reset(sched);
}
ggml_backend_sched_split_graph(sched, graph);
if (!ggml_backend_sched_alloc_splits(sched)) {
return false;
}
sched->is_alloc = true;
if (!ggml_backend_sched_compute_splits(sched)) {
return false;
}
return true;
}
enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
enum ggml_status err = ggml_backend_sched_graph_compute_async(sched, graph);
ggml_backend_sched_synchronize(sched);
return err;
}
enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
if (!sched->is_reset && !sched->is_alloc) {
ggml_backend_sched_reset(sched);
}
if (!sched->is_alloc) {
if (!ggml_backend_sched_alloc_graph(sched, graph)) {
return GGML_STATUS_ALLOC_FAILED;
}
}
return ggml_backend_sched_compute_splits(sched);
}
void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) {
for (int i = 0; i < sched->n_backends; i++) {
ggml_backend_synchronize(sched->backends[i]);
}
}
void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) {
sched->callback_eval = callback;
sched->callback_eval_user_data = user_data;
@@ -1824,24 +1609,19 @@ int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) {
return sched->n_splits;
}
int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched) {
return sched->n_copies;
}
size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
int backend_index = ggml_backend_sched_backend_id(sched, backend);
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
return ggml_gallocr_get_buffer_size(sched->galloc, backend_index);
}
void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
int backend_index = ggml_backend_sched_backend_id(sched, backend);
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
tensor_backend_id(node) = backend_index;
}
ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) {
ggml_backend_t ggml_backend_sched_get_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) {
int backend_index = tensor_backend_id(node);
if (backend_index == -1) {
return NULL;

View File

@@ -9,7 +9,6 @@ extern "C" {
typedef struct ggml_backend_buffer_type * ggml_backend_buffer_type_t;
typedef struct ggml_backend_buffer * ggml_backend_buffer_t;
typedef struct ggml_backend_event * ggml_backend_event_t;
typedef struct ggml_backend * ggml_backend_t;
typedef void * ggml_backend_graph_plan_t;
@@ -67,30 +66,16 @@ extern "C" {
GGML_API void ggml_backend_synchronize(ggml_backend_t backend);
GGML_API ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph);
GGML_API void ggml_backend_graph_plan_free (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
GGML_API ggml_backend_graph_plan_t ggml_backend_graph_plan_create (ggml_backend_t backend, struct ggml_cgraph * cgraph);
GGML_API enum ggml_status ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
GGML_API enum ggml_status ggml_backend_graph_compute (ggml_backend_t backend, struct ggml_cgraph * cgraph);
GGML_API bool ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph);
GGML_API bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op);
GGML_API void ggml_backend_graph_plan_free (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
GGML_API void ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
GGML_API bool ggml_backend_graph_compute (ggml_backend_t backend, struct ggml_cgraph * cgraph);
GGML_API bool ggml_backend_supports_op (ggml_backend_t backend, const struct ggml_tensor * op);
// tensor copy between different backends
GGML_API void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst);
// asynchronous copy
// the copy is performed after all the currently queued operations in backend_src
// backend_dst will wait for the copy to complete before performing other operations
// automatic fallback to sync copy if async is not supported
GGML_API void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst);
// events
GGML_API ggml_backend_event_t ggml_backend_event_new (ggml_backend_t backend);
GGML_API void ggml_backend_event_free (ggml_backend_event_t event);
GGML_API void ggml_backend_event_record (ggml_backend_event_t event);
GGML_API void ggml_backend_event_synchronize(ggml_backend_event_t event);
GGML_API void ggml_backend_event_wait (ggml_backend_t backend, ggml_backend_event_t event); // wait async on event
GGML_API void ggml_backend_tensor_copy_async(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst); // automatic fallback to sync copy
//
// CPU backend
@@ -137,31 +122,27 @@ extern "C" {
/*
Example usage:
// operations that use tensors allocated in a buffer with USAGE_WEIGHTS will be asigned
// preferrably to run on the same backend as the buffer
ggml_backend_buffer_set_usage(buf_weights, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
sched = ggml_backend_sched_new({backend_gpu, backend_gpu2, backend_cpu}, num_backends);
// sched is initialized with measure allocators and cannot be used until allocated with a measure graph
sched = ggml_backend_sched_new({backend_gpu, backend_gpu2, backend_cpu}, NULL, num_backends, GGML_DEFAULT_GRAPH_SIZE, false);
// initialize buffers from a measure graph
measure_graph = build_graph(sched); // use the allocr to allocate inputs as needed
// initialize buffers from a max size graph (optional)
reserve_graph = build_graph(sched, max_batch_size);
// in build_graph:
build_graph(...) {
// manually assign nodes to a backend (optional, should not be needed in most cases)
struct ggml_tensor * node = ggml_mul_mat(ctx, ...);
ggml_backend_sched_set_node_backend(sched, node, backend_gpu);
}
// manually assign nodes to a backend (optional, should not be needed in most cases)
struct ggml_tensor * node = ggml_mul_mat(ctx, ...);
ggml_backend_sched_set_tensor_backend(sched, node, backend_gpu);
// allocate backend buffers from measure graph
ggml_backend_sched_init_measure(sched, measure_graph);
ggml_backend_sched_reserve(sched, reserve_graph);
// the scheduler is now ready to compute graphs
// compute
graph = build_graph(sched);
ggml_backend_sched_graph_compute(sched, graph);
// if there are graph inputs:
ggml_backend_sched_reset(sched);
ggml_backend_sched_alloc_graph(sched, graph);
ggml_backend_tensor_set(input_tensor, ...);
ggml_backend_sched_graph_compute(sched, graph);
}
*/
struct ggml_backend_sched;
@@ -176,32 +157,26 @@ extern "C" {
typedef bool (*ggml_backend_sched_eval_callback)(struct ggml_tensor * t, bool ask, void * user_data);
// Initialize a backend scheduler
GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size, bool parallel);
GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched);
GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size);
GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched);
// Initialize backend buffers from a measure graph
GGML_API bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph);
GGML_API bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph);
// Get the number of splits of the last graph
GGML_API int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched);
GGML_API int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched);
GGML_API int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched);
GGML_API size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend);
GGML_API size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend);
GGML_API void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend);
GGML_API ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node);
GGML_API void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend);
GGML_API ggml_backend_t ggml_backend_sched_get_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node);
// Allocate and compute graph on the backend scheduler
GGML_API bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph);
GGML_API enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph);
GGML_API enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph);
GGML_API void ggml_backend_sched_synchronize(ggml_backend_sched_t sched);
GGML_API bool ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph);
// Reset all assignments and allocators - must be called before changing the node backends
GGML_API void ggml_backend_sched_reset(ggml_backend_sched_t sched);
GGML_API void ggml_backend_sched_reset(ggml_backend_sched_t sched);
// Set a callback to be called for each resulting node during graph compute
GGML_API void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data);
GGML_API void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data);
//
// Utils

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -53,30 +53,26 @@ extern "C" {
//
#include <arm_neon.h>
typedef __fp16 ggml_fp16_internal_t;
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
#define GGML_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
ggml_fp16_internal_t tmp;
__fp16 tmp;
memcpy(&tmp, &h, sizeof(ggml_fp16_t));
return (float)tmp;
}
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
ggml_fp16_t res;
ggml_fp16_internal_t tmp = f;
__fp16 tmp = f;
memcpy(&res, &tmp, sizeof(ggml_fp16_t));
return res;
}
#else
typedef uint16_t ggml_fp16_internal_t;
#ifdef __wasm_simd128__
#include <wasm_simd128.h>
#else

View File

@@ -1927,10 +1927,10 @@ static ggml_backend_buffer_type_t ggml_backend_kompute_get_default_buffer_type(g
return ggml_backend_kompute_buffer_type(ctx->device);
}
static ggml_status ggml_backend_kompute_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
static bool ggml_backend_kompute_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
auto * ctx = static_cast<ggml_kompute_context *>(backend->context);
ggml_vk_graph_compute(ctx, cgraph);
return GGML_STATUS_SUCCESS;
return true;
}
static bool ggml_backend_kompute_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
@@ -1951,11 +1951,6 @@ static struct ggml_backend_i kompute_backend_i = {
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_kompute_graph_compute,
/* .supports_op = */ ggml_backend_kompute_supports_op,
/* .event_new = */ NULL,
/* .event_free = */ NULL,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
/* .event_synchronize = */ NULL,
};
static ggml_guid_t ggml_backend_kompute_guid() {

View File

@@ -163,8 +163,6 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_IM2COL_F32,
GGML_METAL_KERNEL_TYPE_UPSCALE_F32,
GGML_METAL_KERNEL_TYPE_PAD_F32,
GGML_METAL_KERNEL_TYPE_ARANGE_F32,
GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32,
GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC,
GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC,
GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32,
@@ -280,11 +278,6 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
id<MTLLibrary> metal_library;
// load library
//
// - first check if the library is embedded
// - then check if the library is in the bundle
// - if not found, load the source and compile it
// - if that fails, return NULL
{
NSBundle * bundle = nil;
#ifdef SWIFT_PACKAGE
@@ -292,21 +285,12 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
#else
bundle = [NSBundle bundleForClass:[GGMLMetalClass class]];
#endif
NSError * error = nil;
#if GGML_METAL_EMBED_LIBRARY
const bool try_metallib = false;
#else
const bool try_metallib = true;
#endif
NSString * path_lib = [bundle pathForResource:@"default" ofType:@"metallib"];
if (try_metallib && path_lib != nil) {
NSString * libPath = [bundle pathForResource:@"default" ofType:@"metallib"];
if (libPath != nil) {
// pre-compiled library found
NSURL * libURL = [NSURL fileURLWithPath:path_lib];
GGML_METAL_LOG_INFO("%s: loading '%s'\n", __func__, [path_lib UTF8String]);
NSURL * libURL = [NSURL fileURLWithPath:libPath];
GGML_METAL_LOG_INFO("%s: loading '%s'\n", __func__, [libPath UTF8String]);
metal_library = [ctx->device newLibraryWithURL:libURL error:&error];
if (error) {
GGML_METAL_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
@@ -319,41 +303,38 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
extern const char ggml_metallib_start[];
extern const char ggml_metallib_end[];
NSString * src = [[NSString alloc] initWithBytes:ggml_metallib_start length:(ggml_metallib_end-ggml_metallib_start) encoding:NSUTF8StringEncoding];
NSString * src = [[NSString alloc] initWithBytes:ggml_metallib_start length:(ggml_metallib_end-ggml_metallib_start) encoding:NSUTF8StringEncoding];
#else
GGML_METAL_LOG_INFO("%s: default.metallib not found, loading from source\n", __func__);
NSString * path_source;
NSString * path_resource = [[NSProcessInfo processInfo].environment objectForKey:@"GGML_METAL_PATH_RESOURCES"];
NSString * sourcePath;
NSString * ggmlMetalPathResources = [[NSProcessInfo processInfo].environment objectForKey:@"GGML_METAL_PATH_RESOURCES"];
GGML_METAL_LOG_INFO("%s: GGML_METAL_PATH_RESOURCES = %s\n", __func__, path_resource ? [path_resource UTF8String] : "nil");
GGML_METAL_LOG_INFO("%s: GGML_METAL_PATH_RESOURCES = %s\n", __func__, ggmlMetalPathResources ? [ggmlMetalPathResources UTF8String] : "nil");
if (path_resource) {
path_source = [path_resource stringByAppendingPathComponent:@"ggml-metal.metal"];
if (ggmlMetalPathResources) {
sourcePath = [ggmlMetalPathResources stringByAppendingPathComponent:@"ggml-metal.metal"];
} else {
path_source = [bundle pathForResource:@"ggml-metal" ofType:@"metal"];
sourcePath = [bundle pathForResource:@"ggml-metal" ofType:@"metal"];
}
if (path_source == nil) {
if (sourcePath == nil) {
GGML_METAL_LOG_WARN("%s: error: could not use bundle path to find ggml-metal.metal, falling back to trying cwd\n", __func__);
path_source = @"ggml-metal.metal";
sourcePath = @"ggml-metal.metal";
}
GGML_METAL_LOG_INFO("%s: loading '%s'\n", __func__, [path_source UTF8String]);
NSString * src = [NSString stringWithContentsOfFile:path_source encoding:NSUTF8StringEncoding error:&error];
GGML_METAL_LOG_INFO("%s: loading '%s'\n", __func__, [sourcePath UTF8String]);
NSString * src = [NSString stringWithContentsOfFile:sourcePath encoding:NSUTF8StringEncoding error:&error];
if (error) {
GGML_METAL_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
return NULL;
}
#endif // GGML_METAL_EMBED_LIBRARY
#endif
@autoreleasepool {
// dictionary of preprocessor macros
NSMutableDictionary * prep = [NSMutableDictionary dictionary];
#ifdef GGML_QKK_64
prep[@"GGML_QKK_64"] = @(1);
prep[@"QK_K"] = @(64);
#endif
MTLCompileOptions* options = [MTLCompileOptions new];
@@ -588,8 +569,6 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F32, im2col_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UPSCALE_F32, upscale_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_PAD_F32, pad_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32, timestep_embedding_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARANGE_F32, arange_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC, argsort_f32_i32_asc, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC, argsort_f32_i32_desc, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32, leaky_relu_f32, true);
@@ -718,8 +697,6 @@ static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const
return false;
case GGML_OP_UPSCALE:
case GGML_OP_PAD:
case GGML_OP_ARANGE:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_ARGSORT:
case GGML_OP_LEAKY_RELU:
return true;
@@ -765,7 +742,7 @@ static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const
}
}
static enum ggml_status ggml_metal_graph_compute(
static bool ggml_metal_graph_compute(
struct ggml_metal_context * ctx,
struct ggml_cgraph * gf) {
@@ -1114,8 +1091,7 @@ static enum ggml_status ggml_metal_graph_compute(
{
GGML_ASSERT(ggml_is_contiguous(src0));
float scale;
memcpy(&scale, dst->op_params, sizeof(scale));
const float scale = *(const float *) dst->op_params;
int64_t n = ggml_nelements(dst);
@@ -1274,15 +1250,11 @@ static enum ggml_status ggml_metal_graph_compute(
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX].pipeline;
}
float scale;
float max_bias;
memcpy(&scale, ((int32_t *) dst->op_params) + 0, sizeof(scale));
memcpy(&max_bias, ((int32_t *) dst->op_params) + 1, sizeof(max_bias));
const float scale = ((float *) dst->op_params)[0];
const float max_bias = ((float *) dst->op_params)[1];
const int64_t nrows_x = ggml_nrows(src0);
const int64_t nrows_y = src0->ne[1];
const uint32_t n_head_kv = nrows_x/nrows_y;
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv));
@@ -1659,8 +1631,8 @@ static enum ggml_status ggml_metal_graph_compute(
// TODO: make this more general
GGML_ASSERT(n_as <= 8);
// max size of the src1ids array in the kernel shared buffer
GGML_ASSERT(ne11 <= 4096);
// max size of the src1ids array in the kernel stack
GGML_ASSERT(ne11 <= 512);
const int64_t ne20 = src2 ? src2->ne[0] : 0;
const int64_t ne21 = src2 ? src2->ne[1] : 0;
@@ -1758,7 +1730,7 @@ static enum ggml_status ggml_metal_graph_compute(
[encoder setBuffer:id_src_cur offset:offs_src_cur atIndex:19 + j];
}
[encoder setThreadgroupMemoryLength:GGML_PAD(8192 + 2*ne11, 16) atIndex:0];
[encoder setThreadgroupMemoryLength:8192 atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake((ne11 + 31)/32, (ne21 + 63)/64, n_as*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
} else {
@@ -2114,7 +2086,6 @@ static enum ggml_status ggml_metal_graph_compute(
//const int n_past = ((int32_t *) dst->op_params)[0];
const int n_head = ((int32_t *) dst->op_params)[1];
float max_bias;
memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
@@ -2329,50 +2300,6 @@ static enum ggml_status ggml_metal_graph_compute(
[encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_ARANGE:
{
GGML_ASSERT(dst->type == GGML_TYPE_F32);
float start;
float step;
memcpy(&start, ((int32_t *) dst->op_params) + 0, sizeof(float));
memcpy(&step, ((int32_t *) dst->op_params) + 2, sizeof(float));
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARANGE_F32].pipeline;
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_dst offset:offs_dst atIndex:0];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:1];
[encoder setBytes:&start length:sizeof(start) atIndex:2];
[encoder setBytes:&step length:sizeof(step) atIndex:3];
const int nth = MIN(1024, ne0);
[encoder dispatchThreadgroups:MTLSizeMake(1, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_TIMESTEP_EMBEDDING:
{
GGML_ASSERT(src0->type == GGML_TYPE_F32);
const int dim = dst->op_params[0];
const int max_period = dst->op_params[1];
const int half = dim / 2;
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32].pipeline;
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:2];
[encoder setBytes:&dim length:sizeof(dim) atIndex:3];
[encoder setBytes:&max_period length:sizeof(max_period) atIndex:4];
const int nth = MIN(1024, half);
[encoder dispatchThreadgroups:MTLSizeMake(ne00, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_ARGSORT:
{
GGML_ASSERT(src0->type == GGML_TYPE_F32);
@@ -2501,7 +2428,7 @@ static enum ggml_status ggml_metal_graph_compute(
MTLCommandBufferStatus status = [command_buffer status];
if (status != MTLCommandBufferStatusCompleted) {
GGML_METAL_LOG_INFO("%s: command buffer %d failed with status %lu\n", __func__, i, status);
return GGML_STATUS_FAILED;
return false;
}
}
@@ -2510,7 +2437,7 @@ static enum ggml_status ggml_metal_graph_compute(
}
}
return GGML_STATUS_SUCCESS;
return true;
}
////////////////////////////////////////////////////////////////////////////////
@@ -2812,7 +2739,7 @@ GGML_CALL static ggml_backend_buffer_type_t ggml_backend_metal_get_default_buffe
UNUSED(backend);
}
GGML_CALL static enum ggml_status ggml_backend_metal_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
GGML_CALL static bool ggml_backend_metal_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
struct ggml_metal_context * metal_ctx = (struct ggml_metal_context *)backend->context;
return ggml_metal_graph_compute(metal_ctx, cgraph);
@@ -2837,11 +2764,6 @@ static struct ggml_backend_i ggml_backend_metal_i = {
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_metal_graph_compute,
/* .supports_op = */ ggml_backend_metal_supports_op,
/* .event_new = */ NULL,
/* .event_free = */ NULL,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
/* .event_synchronize = */ NULL,
};
void ggml_backend_metal_log_set_callback(ggml_log_callback log_callback, void * user_data) {

File diff suppressed because it is too large Load Diff

View File

@@ -2231,7 +2231,7 @@ static ggml_backend_buffer_type_t ggml_backend_opencl_get_default_buffer_type(gg
GGML_UNUSED(backend);
}
static ggml_status ggml_backend_opencl_graph_compute(ggml_backend_t backend, ggml_cgraph * graph) {
static bool ggml_backend_opencl_graph_compute(ggml_backend_t backend, ggml_cgraph * graph) {
for (int i = 0; i < graph->n_nodes; ++i) {
ggml_tensor * node = graph->nodes[i];
switch (node->op) {
@@ -2246,7 +2246,7 @@ static ggml_status ggml_backend_opencl_graph_compute(ggml_backend_t backend, ggm
}
}
return GGML_STATUS_SUCCESS;
return true;
GGML_UNUSED(backend);
}

File diff suppressed because it is too large Load Diff

View File

@@ -1,12 +1,248 @@
#pragma once
#define GGML_COMMON_DECL_C
#include "ggml-common.h"
#include "ggml.h"
#include "ggml-impl.h"
// GGML internal header
#include <stdint.h>
#include <stddef.h>
#define QK4_0 32
typedef struct {
ggml_fp16_t d; // delta
uint8_t qs[QK4_0 / 2]; // nibbles / quants
} block_q4_0;
static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
#define QK4_1 32
typedef struct {
ggml_fp16_t d; // delta
ggml_fp16_t m; // min
uint8_t qs[QK4_1 / 2]; // nibbles / quants
} block_q4_1;
static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
#define QK5_0 32
typedef struct {
ggml_fp16_t d; // delta
uint8_t qh[4]; // 5-th bit of quants
uint8_t qs[QK5_0 / 2]; // nibbles / quants
} block_q5_0;
static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
#define QK5_1 32
typedef struct {
ggml_fp16_t d; // delta
ggml_fp16_t m; // min
uint8_t qh[4]; // 5-th bit of quants
uint8_t qs[QK5_1 / 2]; // nibbles / quants
} block_q5_1;
static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
#define QK8_0 32
typedef struct {
ggml_fp16_t d; // delta
int8_t qs[QK8_0]; // quants
} block_q8_0;
static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
#define QK8_1 32
typedef struct {
float d; // delta
float s; // d * sum(qs[i])
int8_t qs[QK8_1]; // quants
} block_q8_1;
static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
//
// Super-block quantization structures
//
// Super-block size
#ifdef GGML_QKK_64
#define QK_K 64
#define K_SCALE_SIZE 4
#else
#define QK_K 256
#define K_SCALE_SIZE 12
#endif
// 2-bit quantization
// weight is represented as x = a * q + b
// 16 blocks of 16 elements each
// Effectively 2.625 bits per weight
typedef struct {
uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
uint8_t qs[QK_K/4]; // quants
ggml_fp16_t d; // super-block scale for quantized scales
ggml_fp16_t dmin; // super-block scale for quantized mins
} block_q2_K;
static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_fp16_t) + QK_K/16 + QK_K/4, "wrong q2_K block size/padding");
// 3-bit quantization
// weight is represented as x = a * q
// 16 blocks of 16 elements each
// Effectively 3.4375 bits per weight
#ifdef GGML_QKK_64
typedef struct {
uint8_t hmask[QK_K/8]; // quants - high bit
uint8_t qs[QK_K/4]; // quants - low 2 bits
uint8_t scales[2];
ggml_fp16_t d; // super-block scale
} block_q3_K;
static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + QK_K / 8 + 2, "wrong q3_K block size/padding");
#else
typedef struct {
uint8_t hmask[QK_K/8]; // quants - high bit
uint8_t qs[QK_K/4]; // quants - low 2 bits
uint8_t scales[12]; // scales, quantized with 6 bits
ggml_fp16_t d; // super-block scale
} block_q3_K;
static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + QK_K / 8 + 12, "wrong q3_K block size/padding");
#endif
// 4-bit quantization
// 8 blocks of 32 elements each
// weight is represented as x = a * q + b
// Effectively 4.5 bits per weight
#ifdef GGML_QKK_64
typedef struct {
ggml_fp16_t d[2]; // super-block scales/mins
uint8_t scales[2]; // 4-bit block scales/mins
uint8_t qs[QK_K/2]; // 4--bit quants
} block_q4_K;
static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + QK_K/2 + 2, "wrong q4_K block size/padding");
#else
typedef struct {
ggml_fp16_t d; // super-block scale for quantized scales
ggml_fp16_t dmin; // super-block scale for quantized mins
uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
uint8_t qs[QK_K/2]; // 4--bit quants
} block_q4_K;
static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/2, "wrong q4_K block size/padding");
#endif
// 5-bit quantization
// 8 blocks of 32 elements each
// weight is represented as x = a * q + b
// Effectively 5.5 bits per weight
#ifdef GGML_QKK_64
typedef struct {
ggml_fp16_t d; // super-block scale
int8_t scales[QK_K/16]; // 8-bit block scales
uint8_t qh[QK_K/8]; // quants, high bit
uint8_t qs[QK_K/2]; // quants, low 4 bits
} block_q5_K;
static_assert(sizeof(block_q5_K) == sizeof(ggml_fp16_t) + QK_K/2 + QK_K/8 + QK_K/16, "wrong q5_K block size/padding");
#else
typedef struct {
ggml_fp16_t d; // super-block scale for quantized scales
ggml_fp16_t dmin; // super-block scale for quantized mins
uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
uint8_t qh[QK_K/8]; // quants, high bit
uint8_t qs[QK_K/2]; // quants, low 4 bits
} block_q5_K;
static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/2 + QK_K/8, "wrong q5_K block size/padding");
#endif
// 6-bit quantization
// weight is represented as x = a * q
// 16 blocks of 16 elements each
// Effectively 6.5625 bits per weight
typedef struct {
uint8_t ql[QK_K/2]; // quants, lower 4 bits
uint8_t qh[QK_K/4]; // quants, upper 2 bits
int8_t scales[QK_K/16]; // scales, quantized with 8 bits
ggml_fp16_t d; // super-block scale
} block_q6_K;
static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + QK_K / 16 + 3*QK_K/4, "wrong q6_K block size/padding");
// This is only used for intermediate quantization and dot products
typedef struct {
float d; // delta
int8_t qs[QK_K]; // quants
int16_t bsums[QK_K/16]; // sum of quants in groups of 16
} block_q8_K;
static_assert(sizeof(block_q8_K) == sizeof(float) + QK_K + QK_K/16*sizeof(int16_t), "wrong q8_K block size/padding");
// (Almost) "true" 2-bit quantization.
// Due to the need to use blocks as per ggml design, it ends up using
// 2.0625 bpw because of the 16-bit scale for each block of 256.
typedef struct {
ggml_fp16_t d;
uint16_t qs[QK_K/8];
} block_iq2_xxs;
static_assert(sizeof(block_iq2_xxs) == sizeof(ggml_fp16_t) + QK_K/8*sizeof(uint16_t), "wrong iq2_xxs block size/padding");
// 2.3125 bpw quants
typedef struct {
ggml_fp16_t d;
uint16_t qs[QK_K/8];
uint8_t scales[QK_K/32];
} block_iq2_xs;
static_assert(sizeof(block_iq2_xs) == sizeof(ggml_fp16_t) + QK_K/8*sizeof(uint16_t) + QK_K/32, "wrong iq2_xs block size/padding");
// 2.5625 bpw quants
typedef struct {
ggml_fp16_t d;
uint8_t qs[QK_K/4];
uint8_t qh[QK_K/32];
uint8_t scales[QK_K/32];
} block_iq2_s;
static_assert(sizeof(block_iq2_s) == sizeof(ggml_fp16_t) + QK_K/4 + QK_K/16, "wrong iq2_s block size/padding");
// (Almost) "true" 3-bit quantization.
// Due to the need to use blocks as per ggml design, it ends up using
// 3.0625 bpw because of the 16-bit scale for each block of 256.
typedef struct {
ggml_fp16_t d;
uint8_t qs[3*QK_K/8];
} block_iq3_xxs;
static_assert(sizeof(block_iq3_xxs) == sizeof(ggml_fp16_t) + 3*(QK_K/8), "wrong iq3_xxs block size/padding");
// 3.4375 bpw
#if QK_K == 64
#define IQ3S_N_SCALE 2
#else
#define IQ3S_N_SCALE QK_K/64
#endif
typedef struct {
ggml_fp16_t d;
uint8_t qs[QK_K/4];
uint8_t qh[QK_K/32];
uint8_t signs[QK_K/8];
uint8_t scales[IQ3S_N_SCALE];
} block_iq3_s;
static_assert(sizeof(block_iq3_s) == sizeof(ggml_fp16_t) + 13*(QK_K/32) + IQ3S_N_SCALE, "wrong iq3_s block size/padding");
typedef struct {
ggml_fp16_t d;
uint8_t qs[QK_K/8];
uint8_t scales[QK_K/16];
} block_iq1_s;
static_assert(sizeof(block_iq1_s) == sizeof(ggml_fp16_t) + QK_K/8 + QK_K/16, "wrong iq1_s block size/padding");
// Non-linear quants
#define QK4_NL 32
typedef struct {
ggml_fp16_t d;
uint8_t qs[QK4_NL/2];
} block_iq4_nl;
static_assert(sizeof(block_iq4_nl) == sizeof(ggml_fp16_t) + QK4_NL/2, "wrong iq4_nl block size/padding");
#if QK_K == 64
#define block_iq4_xs block_iq4_nl
//typedef struct block_iq4_nl block_iq4_xs;
#else
typedef struct {
ggml_fp16_t d;
uint16_t scales_h;
uint8_t scales_l[QK_K/64];
uint8_t qs[QK_K/2];
} block_iq4_xs;
static_assert(sizeof(block_iq4_xs) == sizeof(ggml_fp16_t) + sizeof(uint16_t) + QK_K/64 + QK_K/2, "wrong iq4_xs block size/padding");
#endif
#ifdef __cplusplus
extern "C" {
#endif
@@ -25,7 +261,6 @@ void quantize_row_q4_K_reference(const float * GGML_RESTRICT x, block_q4_K * GGM
void quantize_row_q5_K_reference(const float * GGML_RESTRICT x, block_q5_K * GGML_RESTRICT y, int k);
void quantize_row_q6_K_reference(const float * GGML_RESTRICT x, block_q6_K * GGML_RESTRICT y, int k);
void quantize_row_q8_K_reference(const float * GGML_RESTRICT x, block_q8_K * GGML_RESTRICT y, int k);
void quantize_row_iq3_xxs_reference(const float * GGML_RESTRICT x, block_iq3_xxs * GGML_RESTRICT y, int k);
void quantize_row_iq4_nl_reference (const float * GGML_RESTRICT x, block_iq4_nl * GGML_RESTRICT y, int k);
void quantize_row_iq4_xs_reference (const float * GGML_RESTRICT x, block_iq4_xs * GGML_RESTRICT y, int k);
@@ -45,7 +280,6 @@ void quantize_row_q4_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, in
void quantize_row_q5_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
void quantize_row_q6_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
void quantize_row_q8_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
void quantize_row_iq3_xxs(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
void quantize_row_iq4_nl (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
void quantize_row_iq4_xs (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
@@ -66,7 +300,6 @@ void dequantize_row_q4_K(const block_q4_K * GGML_RESTRICT x, float * GGML_RESTRI
void dequantize_row_q5_K(const block_q5_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
void dequantize_row_q6_K(const block_q6_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
void dequantize_row_q8_K(const block_q8_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
void dequantize_row_iq2_xxs(const block_iq2_xxs * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
void dequantize_row_iq2_xs (const block_iq2_xs * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
void dequantize_row_iq2_s (const block_iq2_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
@@ -88,7 +321,6 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_iq2_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_iq2_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_iq2_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
@@ -98,26 +330,26 @@ void ggml_vec_dot_iq4_nl_q8_0 (int n, float * GGML_RESTRICT s, size_t bs, const
void ggml_vec_dot_iq4_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_iq3_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
//
// Quantization utilizing an importance matrix (a.k.a. "Activation aWare Quantization")
size_t quantize_iq2_xxs(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
size_t quantize_iq2_xs (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
size_t quantize_iq2_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
size_t quantize_iq3_xxs(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
size_t quantize_iq1_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
size_t quantize_iq4_nl (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
size_t quantize_iq4_xs (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
size_t quantize_iq3_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
size_t quantize_q2_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
size_t quantize_q3_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
size_t quantize_q4_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
size_t quantize_q5_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
size_t quantize_q6_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
size_t quantize_q4_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
size_t quantize_q4_1(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
size_t quantize_q5_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
size_t quantize_q5_1(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
size_t quantize_q8_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
//
size_t quantize_iq2_xxs(const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
size_t quantize_iq2_xs (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
size_t quantize_iq2_s (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
size_t quantize_iq3_xxs(const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
size_t quantize_iq1_s (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
size_t quantize_iq4_nl (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
size_t quantize_iq4_xs (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
size_t quantize_iq3_s (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
size_t quantize_q2_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
size_t quantize_q3_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
size_t quantize_q4_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
size_t quantize_q5_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
size_t quantize_q6_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
size_t quantize_q4_0 (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
size_t quantize_q4_1 (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
size_t quantize_q5_0 (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
size_t quantize_q5_1 (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
void iq2xs_init_impl(enum ggml_type type);
void iq2xs_free_impl(enum ggml_type type);

File diff suppressed because it is too large Load Diff

View File

@@ -24,16 +24,6 @@ GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_host_buffer_type(void);
GGML_API void ggml_backend_sycl_print_sycl_devices(void);
GGML_API GGML_CALL void ggml_sycl_get_gpu_list(int *id_list, int max_len);
GGML_API GGML_CALL void ggml_sycl_get_device_description(int device, char *description, size_t description_size);
GGML_API GGML_CALL int ggml_backend_sycl_get_device_count();
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const float * tensor_split);
GGML_API GGML_CALL void ggml_backend_sycl_get_device_memory(int device, size_t *free, size_t *total);
GGML_API GGML_CALL int ggml_backend_sycl_get_device_index(int device_id);
// TODO: these are temporary
// ref: https://github.com/ggerganov/llama.cpp/pull/6022#issuecomment-1992615670
GGML_API GGML_CALL int ggml_backend_sycl_get_device_id(int device_index);
GGML_API GGML_CALL void ggml_backend_sycl_set_single_device_mode(int main_gpu_id);
GGML_API GGML_CALL void ggml_backend_sycl_set_mul_device_mode();
#ifdef __cplusplus
}
#endif

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -10,7 +10,6 @@ extern "C" {
#define GGML_VK_NAME "Vulkan"
#define GGML_VK_MAX_DEVICES 16
GGML_API void ggml_vk_instance_init(void);
GGML_API void ggml_vk_init_cpu_assist(void);
GGML_API void ggml_vk_preallocate_buffers_graph_cpu_assist(struct ggml_tensor * node);

1090
ggml.c

File diff suppressed because it is too large Load Diff

142
ggml.h
View File

@@ -315,16 +315,6 @@
extern "C" {
#endif
enum ggml_status {
GGML_STATUS_ALLOC_FAILED = -2,
GGML_STATUS_FAILED = -1,
GGML_STATUS_SUCCESS = 0,
GGML_STATUS_ABORTED = 1,
};
// get ggml_status name string
GGML_API GGML_CALL const char * ggml_status_to_string(enum ggml_status status);
typedef uint16_t ggml_fp16_t;
// convert FP16 <-> FP32
@@ -337,24 +327,24 @@ extern "C" {
struct ggml_object;
struct ggml_context;
// NOTE: always add types at the end of the enum to keep backward compatibility
enum ggml_type {
GGML_TYPE_F32 = 0,
GGML_TYPE_F16 = 1,
GGML_TYPE_Q4_0 = 2,
GGML_TYPE_Q4_1 = 3,
GGML_TYPE_F32 = 0,
GGML_TYPE_F16 = 1,
GGML_TYPE_Q4_0 = 2,
GGML_TYPE_Q4_1 = 3,
// GGML_TYPE_Q4_2 = 4, support has been removed
// GGML_TYPE_Q4_3 = 5, support has been removed
GGML_TYPE_Q5_0 = 6,
GGML_TYPE_Q5_1 = 7,
GGML_TYPE_Q8_0 = 8,
GGML_TYPE_Q8_1 = 9,
GGML_TYPE_Q2_K = 10,
GGML_TYPE_Q3_K = 11,
GGML_TYPE_Q4_K = 12,
GGML_TYPE_Q5_K = 13,
GGML_TYPE_Q6_K = 14,
GGML_TYPE_Q8_K = 15,
// GGML_TYPE_Q4_3 (5) support has been removed
GGML_TYPE_Q5_0 = 6,
GGML_TYPE_Q5_1 = 7,
GGML_TYPE_Q8_0 = 8,
GGML_TYPE_Q8_1 = 9,
// k-quantizations
GGML_TYPE_Q2_K = 10,
GGML_TYPE_Q3_K = 11,
GGML_TYPE_Q4_K = 12,
GGML_TYPE_Q5_K = 13,
GGML_TYPE_Q6_K = 14,
GGML_TYPE_Q8_K = 15,
GGML_TYPE_IQ2_XXS = 16,
GGML_TYPE_IQ2_XS = 17,
GGML_TYPE_IQ3_XXS = 18,
@@ -363,11 +353,9 @@ extern "C" {
GGML_TYPE_IQ3_S = 21,
GGML_TYPE_IQ2_S = 22,
GGML_TYPE_IQ4_XS = 23,
GGML_TYPE_I8 = 24,
GGML_TYPE_I16 = 25,
GGML_TYPE_I32 = 26,
GGML_TYPE_I64 = 27,
GGML_TYPE_F64 = 28,
GGML_TYPE_I8,
GGML_TYPE_I16,
GGML_TYPE_I32,
GGML_TYPE_COUNT,
};
@@ -385,20 +373,20 @@ extern "C" {
// model file types
enum ggml_ftype {
GGML_FTYPE_UNKNOWN = -1,
GGML_FTYPE_ALL_F32 = 0,
GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
GGML_FTYPE_UNKNOWN = -1,
GGML_FTYPE_ALL_F32 = 0,
GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
GGML_FTYPE_MOSTLY_IQ2_XXS = 15, // except 1d tensors
GGML_FTYPE_MOSTLY_IQ2_XS = 16, // except 1d tensors
GGML_FTYPE_MOSTLY_IQ3_XXS = 17, // except 1d tensors
@@ -466,16 +454,12 @@ extern "C" {
GGML_OP_POOL_2D,
GGML_OP_UPSCALE, // nearest interpolate
GGML_OP_PAD,
GGML_OP_ARANGE,
GGML_OP_TIMESTEP_EMBEDDING,
GGML_OP_ARGSORT,
GGML_OP_LEAKY_RELU,
GGML_OP_FLASH_ATTN,
GGML_OP_FLASH_FF,
GGML_OP_FLASH_ATTN_BACK,
GGML_OP_SSM_CONV,
GGML_OP_SSM_SCAN,
GGML_OP_WIN_PART,
GGML_OP_WIN_UNPART,
GGML_OP_GET_REL_POS,
@@ -1677,15 +1661,6 @@ extern "C" {
int p2,
int p3);
// Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
// timesteps: [N,]
// return: [N, dim]
GGML_API struct ggml_tensor * ggml_timestep_embedding(
struct ggml_context * ctx,
struct ggml_tensor * timesteps,
int dim,
int max_period);
// sort rows
enum ggml_sort_order {
GGML_SORT_ORDER_ASC,
@@ -1697,12 +1672,6 @@ extern "C" {
struct ggml_tensor * a,
enum ggml_sort_order order);
GGML_API struct ggml_tensor * ggml_arange(
struct ggml_context * ctx,
float start,
float stop,
float step);
// top k elements per row
GGML_API struct ggml_tensor * ggml_top_k(
struct ggml_context * ctx,
@@ -1732,23 +1701,6 @@ extern "C" {
struct ggml_tensor * c0,
struct ggml_tensor * c1);
GGML_API struct ggml_tensor * ggml_ssm_conv(
struct ggml_context * ctx,
struct ggml_tensor * s,
struct ggml_tensor * x,
struct ggml_tensor * c,
struct ggml_tensor * sq);
GGML_API struct ggml_tensor * ggml_ssm_scan(
struct ggml_context * ctx,
struct ggml_tensor * s,
struct ggml_tensor * x,
struct ggml_tensor * dt,
struct ggml_tensor * A,
struct ggml_tensor * B,
struct ggml_tensor * C,
struct ggml_tensor * sq);
// partition into non-overlapping windows with padding if needed
// example:
// a: 768 64 64 1
@@ -1971,11 +1923,12 @@ extern "C" {
// ggml_graph_plan() has to be called before ggml_graph_compute()
// when plan.work_size > 0, caller must allocate memory for plan.work_data
GGML_API struct ggml_cplan ggml_graph_plan (const struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
GGML_API enum ggml_status ggml_graph_compute ( struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
GGML_API struct ggml_cplan ggml_graph_plan (const struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
GGML_API int ggml_graph_compute( struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
// same as ggml_graph_compute() but the work data is allocated as a part of the context
// note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
GGML_API enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
GGML_API void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
@@ -2196,18 +2149,25 @@ extern "C" {
GGML_API void ggml_quantize_init(enum ggml_type type);
GGML_API void ggml_quantize_free(void);
// TODO: these would probably get removed in favor of the more general ggml_quantize_chunk
GGML_API size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_API size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_API size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_API size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_API size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_API size_t ggml_quantize_q2_K(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_API size_t ggml_quantize_q3_K(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_API size_t ggml_quantize_q4_K(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_API size_t ggml_quantize_q5_K(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_API size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist);
// some quantization type cannot be used without an importance matrix
GGML_API bool ggml_quantize_requires_imatrix(enum ggml_type type);
// calls ggml_quantize_init internally (i.e. can allocate memory)
GGML_API size_t ggml_quantize_chunk(
enum ggml_type type,
const float * src,
void * dst,
int start,
int nrows,
int n_per_row,
const float * imatrix);
GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst,
int start, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
//
// gguf

Some files were not shown because too many files have changed in this diff Show More