mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2026-02-12 14:03:20 +02:00
Compare commits
180 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
c4a3a4ff47 | ||
|
|
400d5d722d | ||
|
|
5dc9dd7152 | ||
|
|
e11a8999b5 | ||
|
|
cc4a95426d | ||
|
|
cecd8d3c98 | ||
|
|
b73e564b16 | ||
|
|
e3c337d87c | ||
|
|
beea6e1b16 | ||
|
|
87fb5b4234 | ||
|
|
d752327c33 | ||
|
|
855f54402e | ||
|
|
b909236c0b | ||
|
|
e0717e751e | ||
|
|
c37247796b | ||
|
|
f77261a7c5 | ||
|
|
43e8995e75 | ||
|
|
9472bce308 | ||
|
|
d4f220a5cc | ||
|
|
54ea0698fb | ||
|
|
b66aec675c | ||
|
|
57dd02c44b | ||
|
|
75cd4c7729 | ||
|
|
a8bd14d557 | ||
|
|
d0f5deebf8 | ||
|
|
87e21bbacd | ||
|
|
1b496a745c | ||
|
|
a307375c02 | ||
|
|
b660a5729e | ||
|
|
0a1d889e27 | ||
|
|
7dda1b727e | ||
|
|
c666ba26c3 | ||
|
|
2e66913e5f | ||
|
|
8120efee1d | ||
|
|
a74401f0e5 | ||
|
|
7a2c92637a | ||
|
|
4bcd6b959c | ||
|
|
9b84ae1806 | ||
|
|
4399f13fb9 | ||
|
|
1a43c7254e | ||
|
|
72d73af651 | ||
|
|
5fb1574c81 | ||
|
|
60cdf40cc3 | ||
|
|
bb43cf7e9d | ||
|
|
9f62c0173d | ||
|
|
5d4f12e462 | ||
|
|
154d4ee39c | ||
|
|
e69945d953 | ||
|
|
db214fa578 | ||
|
|
1ff4d9f3d6 | ||
|
|
076b08649e | ||
|
|
08a0c02060 | ||
|
|
52604860f9 | ||
|
|
f87f7b8986 | ||
|
|
33a5244806 | ||
|
|
226e819371 | ||
|
|
c50a82ce0f | ||
|
|
37e7854c10 | ||
|
|
c342d070c6 | ||
|
|
f7fc5f6c6f | ||
|
|
ba0c7c70ab | ||
|
|
d48ccf3ad4 | ||
|
|
069574775c | ||
|
|
cfde806eb9 | ||
|
|
b910287954 | ||
|
|
8093987090 | ||
|
|
057400a3fd | ||
|
|
b75c38166c | ||
|
|
bfe7dafc9c | ||
|
|
5106ef482c | ||
|
|
be55134a53 | ||
|
|
66ba560256 | ||
|
|
0308f5e3d7 | ||
|
|
28cb9a09c4 | ||
|
|
cfc4d75df6 | ||
|
|
6902cb7f2e | ||
|
|
d2d8f38996 | ||
|
|
d39b308eaf | ||
|
|
c873976649 | ||
|
|
dbb03e2b9c | ||
|
|
e9f17dc3bf | ||
|
|
22a462cc1f | ||
|
|
f6a0f5c642 | ||
|
|
d0e2f6416b | ||
|
|
25f4a613c4 | ||
|
|
a016026a3a | ||
|
|
53c7ec53d5 | ||
|
|
e5b89a441a | ||
|
|
3a0345970e | ||
|
|
1e13987fba | ||
|
|
e82f9e2b83 | ||
|
|
cbc8343619 | ||
|
|
e562b9714b | ||
|
|
2ab4f00d25 | ||
|
|
1740d6dd4e | ||
|
|
0642b22cd1 | ||
|
|
a4f569e8a3 | ||
|
|
32c8486e1f | ||
|
|
557410b8f0 | ||
|
|
55c1b2a3bb | ||
|
|
e097633f63 | ||
|
|
d25b1c31b0 | ||
|
|
deb7240100 | ||
|
|
3d032ece8e | ||
|
|
e190f1fca6 | ||
|
|
280345968d | ||
|
|
b06c16ef9f | ||
|
|
1f2fd4e727 | ||
|
|
43139cc528 | ||
|
|
2f34b865b6 | ||
|
|
ae1f211ce2 | ||
|
|
ad3a0505e3 | ||
|
|
95ad616cdd | ||
|
|
64e7b47c69 | ||
|
|
7733f0c760 | ||
|
|
a32b77c4b2 | ||
|
|
a0e584defd | ||
|
|
7aed0ffe68 | ||
|
|
ea279d5609 | ||
|
|
586e7bc561 | ||
|
|
ddf6568510 | ||
|
|
d03224ac98 | ||
|
|
94d1b3b411 | ||
|
|
95562175f8 | ||
|
|
f482bb2e49 | ||
|
|
1997577d5e | ||
|
|
476b0251b2 | ||
|
|
21cad01b6e | ||
|
|
1b26aebe4d | ||
|
|
50ccaf5eac | ||
|
|
56a00f0a2f | ||
|
|
92397d87a4 | ||
|
|
1d0331c12a | ||
|
|
dba1af6129 | ||
|
|
ee804f6223 | ||
|
|
80bd33bc2c | ||
|
|
e80f06d2a1 | ||
|
|
f77a8ffd3b | ||
|
|
72114edf06 | ||
|
|
2f0e81e053 | ||
|
|
29ab270e65 | ||
|
|
6b8bb3a31d | ||
|
|
68e210b354 | ||
|
|
b3e94f26ba | ||
|
|
b2075fd6a5 | ||
|
|
95d576b48e | ||
|
|
59c17f02de | ||
|
|
fa046eafbc | ||
|
|
be07a03217 | ||
|
|
d0a71233fb | ||
|
|
f372c49ccd | ||
|
|
924ce1dce7 | ||
|
|
03a8f8fafe | ||
|
|
cfd3be76e3 | ||
|
|
5b7b0ac8df | ||
|
|
1943c01981 | ||
|
|
5e43ba8742 | ||
|
|
76aa30a263 | ||
|
|
c5b8595e3f | ||
|
|
42e21c6882 | ||
|
|
1c51f98adc | ||
|
|
f9c7ba3447 | ||
|
|
272935b281 | ||
|
|
ccf58aa3ec | ||
|
|
91f8ad167d | ||
|
|
6b7e76d28c | ||
|
|
bc0baab2ea | ||
|
|
d795988d9e | ||
|
|
f8c4e745e1 | ||
|
|
47cc7a7bf9 | ||
|
|
bd60d82d0c | ||
|
|
6c0b287748 | ||
|
|
d26e8b669d | ||
|
|
d8b009a945 | ||
|
|
d0d5de42e5 | ||
|
|
b80cf3b2d1 | ||
|
|
970a48060a | ||
|
|
4c28b82529 | ||
|
|
2d15886bb0 | ||
|
|
d199ca79f2 |
@@ -12,6 +12,7 @@ Checks: >
|
||||
-readability-implicit-bool-conversion,
|
||||
-readability-magic-numbers,
|
||||
-readability-uppercase-literal-suffix,
|
||||
-readability-simplify-boolean-expr,
|
||||
clang-analyzer-*,
|
||||
-clang-analyzer-security.insecureAPI.DeprecatedOrUnsafeBufferHandling,
|
||||
performance-*,
|
||||
|
||||
@@ -12,7 +12,7 @@ FROM ${BASE_CUDA_DEV_CONTAINER} as build
|
||||
ARG CUDA_DOCKER_ARCH=all
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential python3 python3-pip git
|
||||
apt-get install -y build-essential python3 python3-pip git libcurl4-openssl-dev
|
||||
|
||||
COPY requirements.txt requirements.txt
|
||||
COPY requirements requirements
|
||||
@@ -26,8 +26,10 @@ COPY . .
|
||||
|
||||
# Set nvcc architecture
|
||||
ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
|
||||
# Enable cuBLAS
|
||||
ENV LLAMA_CUBLAS=1
|
||||
# Enable CUDA
|
||||
ENV LLAMA_CUDA=1
|
||||
# Enable cURL
|
||||
ENV LLAMA_CURL=1
|
||||
|
||||
RUN make
|
||||
|
||||
|
||||
@@ -40,6 +40,11 @@ ENV LLAMA_HIPBLAS=1
|
||||
ENV CC=/opt/rocm/llvm/bin/clang
|
||||
ENV CXX=/opt/rocm/llvm/bin/clang++
|
||||
|
||||
# Enable cURL
|
||||
ENV LLAMA_CURL=1
|
||||
RUN apt-get update && \
|
||||
apt-get install -y libcurl4-openssl-dev
|
||||
|
||||
RUN make
|
||||
|
||||
ENTRYPOINT ["/app/.devops/tools.sh"]
|
||||
|
||||
@@ -3,7 +3,7 @@ ARG UBUNTU_VERSION=22.04
|
||||
FROM ubuntu:$UBUNTU_VERSION as build
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential python3 python3-pip git
|
||||
apt-get install -y build-essential python3 python3-pip git libcurl4-openssl-dev
|
||||
|
||||
COPY requirements.txt requirements.txt
|
||||
COPY requirements requirements
|
||||
@@ -15,6 +15,9 @@ WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
|
||||
ENV LLAMA_CURL=1
|
||||
|
||||
|
||||
RUN make
|
||||
|
||||
ENV LC_ALL=C.utf8
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
# SRPM for building from source and packaging an RPM for RPM-based distros.
|
||||
# https://fedoraproject.org/wiki/How_to_create_an_RPM_package
|
||||
# https://docs.fedoraproject.org/en-US/quick-docs/creating-rpm-packages
|
||||
# Built and maintained by John Boero - boeroboy@gmail.com
|
||||
# In honor of Seth Vidal https://www.redhat.com/it/blog/thank-you-seth-vidal
|
||||
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
# SRPM for building from source and packaging an RPM for RPM-based distros.
|
||||
# https://fedoraproject.org/wiki/How_to_create_an_RPM_package
|
||||
# https://docs.fedoraproject.org/en-US/quick-docs/creating-rpm-packages
|
||||
# Built and maintained by John Boero - boeroboy@gmail.com
|
||||
# In honor of Seth Vidal https://www.redhat.com/it/blog/thank-you-seth-vidal
|
||||
|
||||
@@ -12,7 +12,7 @@
|
||||
# 4. OpenCL/CLBLAST support simply requires the ICD loader and basic opencl libraries.
|
||||
# It is up to the user to install the correct vendor-specific support.
|
||||
|
||||
Name: llama.cpp-cublas
|
||||
Name: llama.cpp-cuda
|
||||
Version: %( date "+%%Y%%m%%d" )
|
||||
Release: 1%{?dist}
|
||||
Summary: CPU Inference of LLaMA model in pure C/C++ (no CUDA/OpenCL)
|
||||
@@ -32,16 +32,16 @@ CPU inference for Meta's Lllama2 models using default options.
|
||||
%setup -n llama.cpp-master
|
||||
|
||||
%build
|
||||
make -j LLAMA_CUBLAS=1
|
||||
make -j LLAMA_CUDA=1
|
||||
|
||||
%install
|
||||
mkdir -p %{buildroot}%{_bindir}/
|
||||
cp -p main %{buildroot}%{_bindir}/llamacppcublas
|
||||
cp -p server %{buildroot}%{_bindir}/llamacppcublasserver
|
||||
cp -p simple %{buildroot}%{_bindir}/llamacppcublassimple
|
||||
cp -p main %{buildroot}%{_bindir}/llamacppcuda
|
||||
cp -p server %{buildroot}%{_bindir}/llamacppcudaserver
|
||||
cp -p simple %{buildroot}%{_bindir}/llamacppcudasimple
|
||||
|
||||
mkdir -p %{buildroot}/usr/lib/systemd/system
|
||||
%{__cat} <<EOF > %{buildroot}/usr/lib/systemd/system/llamacublas.service
|
||||
%{__cat} <<EOF > %{buildroot}/usr/lib/systemd/system/llamacuda.service
|
||||
[Unit]
|
||||
Description=Llama.cpp server, CPU only (no GPU support in this build).
|
||||
After=syslog.target network.target local-fs.target remote-fs.target nss-lookup.target
|
||||
@@ -49,7 +49,7 @@ After=syslog.target network.target local-fs.target remote-fs.target nss-lookup.t
|
||||
[Service]
|
||||
Type=simple
|
||||
EnvironmentFile=/etc/sysconfig/llama
|
||||
ExecStart=/usr/bin/llamacppcublasserver $LLAMA_ARGS
|
||||
ExecStart=/usr/bin/llamacppcudaserver $LLAMA_ARGS
|
||||
ExecReload=/bin/kill -s HUP $MAINPID
|
||||
Restart=never
|
||||
|
||||
@@ -67,10 +67,10 @@ rm -rf %{buildroot}
|
||||
rm -rf %{_builddir}/*
|
||||
|
||||
%files
|
||||
%{_bindir}/llamacppcublas
|
||||
%{_bindir}/llamacppcublasserver
|
||||
%{_bindir}/llamacppcublassimple
|
||||
/usr/lib/systemd/system/llamacublas.service
|
||||
%{_bindir}/llamacppcuda
|
||||
%{_bindir}/llamacppcudaserver
|
||||
%{_bindir}/llamacppcudasimple
|
||||
/usr/lib/systemd/system/llamacuda.service
|
||||
%config /etc/sysconfig/llama
|
||||
|
||||
%pre
|
||||
@@ -1,5 +1,5 @@
|
||||
# SRPM for building from source and packaging an RPM for RPM-based distros.
|
||||
# https://fedoraproject.org/wiki/How_to_create_an_RPM_package
|
||||
# https://docs.fedoraproject.org/en-US/quick-docs/creating-rpm-packages
|
||||
# Built and maintained by John Boero - boeroboy@gmail.com
|
||||
# In honor of Seth Vidal https://www.redhat.com/it/blog/thank-you-seth-vidal
|
||||
|
||||
|
||||
@@ -20,8 +20,8 @@ COPY . .
|
||||
|
||||
# Set nvcc architecture
|
||||
ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
|
||||
# Enable cuBLAS
|
||||
ENV LLAMA_CUBLAS=1
|
||||
# Enable CUDA
|
||||
ENV LLAMA_CUDA=1
|
||||
|
||||
RUN make
|
||||
|
||||
|
||||
@@ -4,13 +4,14 @@
|
||||
config,
|
||||
stdenv,
|
||||
mkShell,
|
||||
runCommand,
|
||||
cmake,
|
||||
ninja,
|
||||
pkg-config,
|
||||
git,
|
||||
python3,
|
||||
mpi,
|
||||
openblas, # TODO: Use the generic `blas` so users could switch between alternative implementations
|
||||
blas,
|
||||
cudaPackages,
|
||||
darwin,
|
||||
rocmPackages,
|
||||
@@ -23,7 +24,7 @@
|
||||
useOpenCL
|
||||
useRocm
|
||||
useVulkan
|
||||
],
|
||||
] && blas.meta.available,
|
||||
useCuda ? config.cudaSupport,
|
||||
useMetalKit ? stdenv.isAarch64 && stdenv.isDarwin && !useOpenCL,
|
||||
useMpi ? false, # Increases the runtime closure size by ~700M
|
||||
@@ -35,7 +36,8 @@
|
||||
# It's necessary to consistently use backendStdenv when building with CUDA support,
|
||||
# otherwise we get libstdc++ errors downstream.
|
||||
effectiveStdenv ? if useCuda then cudaPackages.backendStdenv else stdenv,
|
||||
enableStatic ? effectiveStdenv.hostPlatform.isStatic
|
||||
enableStatic ? effectiveStdenv.hostPlatform.isStatic,
|
||||
precompileMetalShaders ? false
|
||||
}@inputs:
|
||||
|
||||
let
|
||||
@@ -65,10 +67,15 @@ let
|
||||
strings.optionalString (suffices != [ ])
|
||||
", accelerated with ${strings.concatStringsSep ", " suffices}";
|
||||
|
||||
executableSuffix = effectiveStdenv.hostPlatform.extensions.executable;
|
||||
|
||||
# TODO: package the Python in this repository in a Nix-like way.
|
||||
# It'd be nice to migrate to buildPythonPackage, as well as ensure this repo
|
||||
# is PEP 517-compatible, and ensure the correct .dist-info is generated.
|
||||
# https://peps.python.org/pep-0517/
|
||||
#
|
||||
# TODO: Package up each Python script or service appropriately, by making
|
||||
# them into "entrypoints"
|
||||
llama-python = python3.withPackages (
|
||||
ps: [
|
||||
ps.numpy
|
||||
@@ -87,6 +94,11 @@ let
|
||||
]
|
||||
);
|
||||
|
||||
xcrunHost = runCommand "xcrunHost" {} ''
|
||||
mkdir -p $out/bin
|
||||
ln -s /usr/bin/xcrun $out/bin
|
||||
'';
|
||||
|
||||
# apple_sdk is supposed to choose sane defaults, no need to handle isAarch64
|
||||
# separately
|
||||
darwinBuildInputs =
|
||||
@@ -150,13 +162,18 @@ effectiveStdenv.mkDerivation (
|
||||
postPatch = ''
|
||||
substituteInPlace ./ggml-metal.m \
|
||||
--replace '[bundle pathForResource:@"ggml-metal" ofType:@"metal"];' "@\"$out/bin/ggml-metal.metal\";"
|
||||
|
||||
# TODO: Package up each Python script or service appropriately.
|
||||
# If we were to migrate to buildPythonPackage and prepare the `pyproject.toml`,
|
||||
# we could make those *.py into setuptools' entrypoints
|
||||
substituteInPlace ./*.py --replace "/usr/bin/env python" "${llama-python}/bin/python"
|
||||
substituteInPlace ./ggml-metal.m \
|
||||
--replace '[bundle pathForResource:@"default" ofType:@"metallib"];' "@\"$out/bin/default.metallib\";"
|
||||
'';
|
||||
|
||||
# With PR#6015 https://github.com/ggerganov/llama.cpp/pull/6015,
|
||||
# `default.metallib` may be compiled with Metal compiler from XCode
|
||||
# and we need to escape sandbox on MacOS to access Metal compiler.
|
||||
# `xcrun` is used find the path of the Metal compiler, which is varible
|
||||
# and not on $PATH
|
||||
# see https://github.com/ggerganov/llama.cpp/pull/6118 for discussion
|
||||
__noChroot = effectiveStdenv.isDarwin && useMetalKit && precompileMetalShaders;
|
||||
|
||||
nativeBuildInputs =
|
||||
[
|
||||
cmake
|
||||
@@ -173,6 +190,8 @@ effectiveStdenv.mkDerivation (
|
||||
]
|
||||
++ optionals (effectiveStdenv.hostPlatform.isGnu && enableStatic) [
|
||||
glibc.static
|
||||
] ++ optionals (effectiveStdenv.isDarwin && useMetalKit && precompileMetalShaders) [
|
||||
xcrunHost
|
||||
];
|
||||
|
||||
buildInputs =
|
||||
@@ -181,6 +200,7 @@ effectiveStdenv.mkDerivation (
|
||||
++ optionals useMpi [ mpi ]
|
||||
++ optionals useOpenCL [ clblast ]
|
||||
++ optionals useRocm rocmBuildInputs
|
||||
++ optionals useBlas [ blas ]
|
||||
++ optionals useVulkan vulkanBuildInputs;
|
||||
|
||||
cmakeFlags =
|
||||
@@ -191,7 +211,7 @@ effectiveStdenv.mkDerivation (
|
||||
(cmakeBool "CMAKE_SKIP_BUILD_RPATH" true)
|
||||
(cmakeBool "LLAMA_BLAS" useBlas)
|
||||
(cmakeBool "LLAMA_CLBLAST" useOpenCL)
|
||||
(cmakeBool "LLAMA_CUBLAS" useCuda)
|
||||
(cmakeBool "LLAMA_CUDA" useCuda)
|
||||
(cmakeBool "LLAMA_HIPBLAS" useRocm)
|
||||
(cmakeBool "LLAMA_METAL" useMetalKit)
|
||||
(cmakeBool "LLAMA_MPI" useMpi)
|
||||
@@ -216,14 +236,16 @@ effectiveStdenv.mkDerivation (
|
||||
# Should likely use `rocmPackages.clr.gpuTargets`.
|
||||
"-DAMDGPU_TARGETS=gfx803;gfx900;gfx906:xnack-;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102"
|
||||
]
|
||||
++ optionals useMetalKit [ (lib.cmakeFeature "CMAKE_C_FLAGS" "-D__ARM_FEATURE_DOTPROD=1") ]
|
||||
++ optionals useBlas [ (lib.cmakeFeature "LLAMA_BLAS_VENDOR" "OpenBLAS") ];
|
||||
++ optionals useMetalKit [
|
||||
(lib.cmakeFeature "CMAKE_C_FLAGS" "-D__ARM_FEATURE_DOTPROD=1")
|
||||
(cmakeBool "LLAMA_METAL_EMBED_LIBRARY" (!precompileMetalShaders))
|
||||
];
|
||||
|
||||
# TODO(SomeoneSerge): It's better to add proper install targets at the CMake level,
|
||||
# if they haven't been added yet.
|
||||
postInstall = ''
|
||||
mv $out/bin/main $out/bin/llama
|
||||
mv $out/bin/server $out/bin/llama-server
|
||||
mv $out/bin/main${executableSuffix} $out/bin/llama${executableSuffix}
|
||||
mv $out/bin/server${executableSuffix} $out/bin/llama-server${executableSuffix}
|
||||
mkdir -p $out/include
|
||||
cp $src/llama.h $out/include/
|
||||
'';
|
||||
|
||||
@@ -12,7 +12,7 @@ FROM ${BASE_CUDA_DEV_CONTAINER} as build
|
||||
ARG CUDA_DOCKER_ARCH=all
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential git
|
||||
apt-get install -y build-essential git libcurl4-openssl-dev
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
@@ -20,13 +20,18 @@ COPY . .
|
||||
|
||||
# Set nvcc architecture
|
||||
ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
|
||||
# Enable cuBLAS
|
||||
ENV LLAMA_CUBLAS=1
|
||||
# Enable CUDA
|
||||
ENV LLAMA_CUDA=1
|
||||
# Enable cURL
|
||||
ENV LLAMA_CURL=1
|
||||
|
||||
RUN make
|
||||
|
||||
FROM ${BASE_CUDA_RUN_CONTAINER} as runtime
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y libcurl4-openssl-dev
|
||||
|
||||
COPY --from=build /app/server /server
|
||||
|
||||
ENTRYPOINT [ "/server" ]
|
||||
|
||||
@@ -4,7 +4,7 @@ FROM intel/oneapi-basekit:$ONEAPI_VERSION as build
|
||||
|
||||
ARG LLAMA_SYCL_F16=OFF
|
||||
RUN apt-get update && \
|
||||
apt-get install -y git
|
||||
apt-get install -y git libcurl4-openssl-dev
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
@@ -16,11 +16,14 @@ RUN mkdir build && \
|
||||
echo "LLAMA_SYCL_F16 is set" && \
|
||||
export OPT_SYCL_F16="-DLLAMA_SYCL_F16=ON"; \
|
||||
fi && \
|
||||
cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ${OPT_SYCL_F16} && \
|
||||
cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_CURL=ON ${OPT_SYCL_F16} && \
|
||||
cmake --build . --config Release --target server
|
||||
|
||||
FROM intel/oneapi-basekit:$ONEAPI_VERSION as runtime
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y libcurl4-openssl-dev
|
||||
|
||||
COPY --from=build /app/build/bin/server /server
|
||||
|
||||
ENV LC_ALL=C.utf8
|
||||
|
||||
@@ -40,6 +40,11 @@ ENV LLAMA_HIPBLAS=1
|
||||
ENV CC=/opt/rocm/llvm/bin/clang
|
||||
ENV CXX=/opt/rocm/llvm/bin/clang++
|
||||
|
||||
# Enable cURL
|
||||
ENV LLAMA_CURL=1
|
||||
RUN apt-get update && \
|
||||
apt-get install -y libcurl4-openssl-dev
|
||||
|
||||
RUN make
|
||||
|
||||
ENTRYPOINT [ "/app/server" ]
|
||||
|
||||
@@ -11,12 +11,16 @@ RUN wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key
|
||||
apt update -y && \
|
||||
apt-get install -y vulkan-sdk
|
||||
|
||||
# Install cURL
|
||||
RUN apt-get update && \
|
||||
apt-get install -y libcurl4-openssl-dev
|
||||
|
||||
# Build it
|
||||
WORKDIR /app
|
||||
COPY . .
|
||||
RUN mkdir build && \
|
||||
cd build && \
|
||||
cmake .. -DLLAMA_VULKAN=1 && \
|
||||
cmake .. -DLLAMA_VULKAN=1 -DLLAMA_CURL=1 && \
|
||||
cmake --build . --config Release --target server
|
||||
|
||||
# Clean up
|
||||
|
||||
@@ -3,16 +3,21 @@ ARG UBUNTU_VERSION=22.04
|
||||
FROM ubuntu:$UBUNTU_VERSION as build
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential git
|
||||
apt-get install -y build-essential git libcurl4-openssl-dev
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
|
||||
ENV LLAMA_CURL=1
|
||||
|
||||
RUN make
|
||||
|
||||
FROM ubuntu:$UBUNTU_VERSION as runtime
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y libcurl4-openssl-dev
|
||||
|
||||
COPY --from=build /app/server /server
|
||||
|
||||
ENV LC_ALL=C.utf8
|
||||
|
||||
300
.github/workflows/bench.yml
vendored
Normal file
300
.github/workflows/bench.yml
vendored
Normal file
@@ -0,0 +1,300 @@
|
||||
# Benchmark
|
||||
name: Benchmark
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
gpu-series:
|
||||
description: 'Azure GPU series to run with'
|
||||
required: true
|
||||
type: choice
|
||||
options:
|
||||
- Standard_NC4as_T4_v3
|
||||
- Standard_NC24ads_A100_v4
|
||||
- Standard_NC80adis_H100_v5
|
||||
sha:
|
||||
description: 'Commit SHA1 to build'
|
||||
required: false
|
||||
type: string
|
||||
duration:
|
||||
description: 'Duration of the bench'
|
||||
type: string
|
||||
default: 10m
|
||||
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
paths: ['llama.cpp', 'ggml.c', 'ggml-backend.c', 'ggml-quants.c', '**/*.cu', 'examples/server/*.h*', 'examples/server/*.cpp']
|
||||
pull_request_target:
|
||||
types: [opened, synchronize, reopened]
|
||||
paths: ['llama.cpp', 'ggml.c', 'ggml-backend.c', 'ggml-quants.c', '**/*.cu', 'examples/server/*.h*', 'examples/server/*.cpp']
|
||||
schedule:
|
||||
- cron: '04 2 * * *'
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}-${{ github.event.inputs.sha }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
bench-server-baseline:
|
||||
runs-on: Standard_NC4as_T4_v3
|
||||
env:
|
||||
RUNNER_LABEL: Standard_NC4as_T4_v3 # FIXME Do not find a way to not duplicate it
|
||||
N_USERS: 8
|
||||
DURATION: 10m
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
model: [phi-2]
|
||||
ftype: [q4_0, q8_0, f16]
|
||||
include:
|
||||
- model: phi-2
|
||||
ftype: q4_0
|
||||
pr_comment_enabled: "true"
|
||||
|
||||
if: ${{ github.event.inputs.gpu-series == 'Standard_NC4as_T4_v3' || github.event.schedule || github.event.pull_request || github.head_ref == 'master' || github.ref_name == 'master' || github.event.push.ref == 'refs/heads/master' }}
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
ref: ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha || github.head_ref || github.ref_name }}
|
||||
|
||||
- name: Install python env
|
||||
id: pipenv
|
||||
run: |
|
||||
cd examples/server/bench
|
||||
python3 -m venv venv
|
||||
source venv/bin/activate
|
||||
pip install -r requirements.txt
|
||||
|
||||
- name: Prometheus
|
||||
id: install_prometheus
|
||||
run: |
|
||||
wget --quiet https://github.com/prometheus/prometheus/releases/download/v2.51.0/prometheus-2.51.0.linux-amd64.tar.gz
|
||||
tar xzf prometheus*.tar.gz --strip-components=1
|
||||
./prometheus --config.file=examples/server/bench/prometheus.yml &
|
||||
while ! nc -z localhost 9090; do
|
||||
sleep 0.1
|
||||
done
|
||||
|
||||
- name: Set up Go
|
||||
uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version: '1.21'
|
||||
|
||||
- name: Install k6 and xk6-sse
|
||||
id: k6_installation
|
||||
run: |
|
||||
cd examples/server/bench
|
||||
go install go.k6.io/xk6/cmd/xk6@latest
|
||||
xk6 build master \
|
||||
--with github.com/phymbert/xk6-sse
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
set -eux
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. \
|
||||
-DLLAMA_NATIVE=OFF \
|
||||
-DLLAMA_BUILD_SERVER=ON \
|
||||
-DLLAMA_CURL=ON \
|
||||
-DLLAMA_CUBLAS=ON \
|
||||
-DCUDAToolkit_ROOT=/usr/local/cuda \
|
||||
-DCMAKE_CUDA_COMPILER=/usr/local/cuda/bin/nvcc \
|
||||
-DCMAKE_CUDA_ARCHITECTURES=75 \
|
||||
-DLLAMA_FATAL_WARNINGS=OFF \
|
||||
-DLLAMA_ALL_WARNINGS=OFF \
|
||||
-DCMAKE_BUILD_TYPE=Release;
|
||||
cmake --build . --config Release -j $(nproc) --target server
|
||||
|
||||
- name: Download the dataset
|
||||
id: download_dataset
|
||||
run: |
|
||||
cd examples/server/bench
|
||||
wget --quiet https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
|
||||
|
||||
- name: Server bench
|
||||
id: server_bench
|
||||
run: |
|
||||
set -eux
|
||||
|
||||
cd examples/server/bench
|
||||
source venv/bin/activate
|
||||
python bench.py \
|
||||
--runner-label ${{ env.RUNNER_LABEL }} \
|
||||
--name ${{ github.job }} \
|
||||
--branch ${{ github.head_ref || github.ref_name }} \
|
||||
--commit ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha }} \
|
||||
--scenario script.js \
|
||||
--duration ${{ github.event.inputs.duration || env.DURATION }} \
|
||||
--hf-repo ggml-org/models \
|
||||
--hf-file ${{ matrix.model }}/ggml-model-${{ matrix.ftype }}.gguf \
|
||||
--model-path-prefix /models \
|
||||
--parallel ${{ env.N_USERS }} \
|
||||
-ngl 33 \
|
||||
--batch-size 2048 \
|
||||
--ubatch-size 256 \
|
||||
--ctx-size 16384 \
|
||||
--n-prompts 1000 \
|
||||
--max-prompt-tokens 1024 \
|
||||
--max-tokens 2048
|
||||
|
||||
cat results.github.env >> $GITHUB_ENV
|
||||
|
||||
# Remove dataset as we do not want it in the artefact
|
||||
rm ShareGPT_V3_unfiltered_cleaned_split.json
|
||||
|
||||
- uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: bench-server-${{ github.job }}-${{ env.RUNNER_LABEL }}-${{ matrix.model }}-${{ matrix.ftype }}
|
||||
compression-level: 9
|
||||
path: |
|
||||
examples/server/bench/*.jpg
|
||||
examples/server/bench/*.json
|
||||
examples/server/bench/*.log
|
||||
|
||||
- name: Commit status
|
||||
uses: Sibz/github-status-action@v1
|
||||
with:
|
||||
authToken: ${{secrets.GITHUB_TOKEN}}
|
||||
sha: ${{ inputs.sha || github.event.pull_request.head.sha || github.sha }}
|
||||
context: bench-server-${{ github.job }}-${{ env.RUNNER_LABEL }}-${{ matrix.model }}-${{ matrix.ftype }}
|
||||
description: |
|
||||
${{ env.BENCH_RESULTS }}
|
||||
state: 'success'
|
||||
|
||||
- name: Upload benchmark images
|
||||
uses: devicons/public-upload-to-imgur@v2.2.2
|
||||
continue-on-error: true # Important as it looks unstable: 503
|
||||
id: imgur_step
|
||||
with:
|
||||
client_id: ${{secrets.IMGUR_CLIENT_ID}}
|
||||
path: |
|
||||
examples/server/bench/prompt_tokens_seconds.jpg
|
||||
examples/server/bench/predicted_tokens_seconds.jpg
|
||||
examples/server/bench/kv_cache_usage_ratio.jpg
|
||||
examples/server/bench/requests_processing.jpg
|
||||
|
||||
- name: Extract mermaid
|
||||
id: set_mermaid
|
||||
run: |
|
||||
set -eux
|
||||
|
||||
cd examples/server/bench
|
||||
PROMPT_TOKENS_SECONDS=$(cat prompt_tokens_seconds.mermaid)
|
||||
echo "PROMPT_TOKENS_SECONDS<<EOF" >> $GITHUB_ENV
|
||||
echo "$PROMPT_TOKENS_SECONDS" >> $GITHUB_ENV
|
||||
echo "EOF" >> $GITHUB_ENV
|
||||
|
||||
PREDICTED_TOKENS_SECONDS=$(cat predicted_tokens_seconds.mermaid)
|
||||
echo "PREDICTED_TOKENS_SECONDS<<EOF" >> $GITHUB_ENV
|
||||
echo "$PREDICTED_TOKENS_SECONDS" >> $GITHUB_ENV
|
||||
echo "EOF" >> $GITHUB_ENV
|
||||
|
||||
KV_CACHE_USAGE_RATIO=$(cat kv_cache_usage_ratio.mermaid)
|
||||
echo "KV_CACHE_USAGE_RATIO<<EOF" >> $GITHUB_ENV
|
||||
echo "$KV_CACHE_USAGE_RATIO" >> $GITHUB_ENV
|
||||
echo "EOF" >> $GITHUB_ENV
|
||||
|
||||
REQUESTS_PROCESSING=$(cat requests_processing.mermaid)
|
||||
echo "REQUESTS_PROCESSING<<EOF" >> $GITHUB_ENV
|
||||
echo "$REQUESTS_PROCESSING" >> $GITHUB_ENV
|
||||
echo "EOF" >> $GITHUB_ENV
|
||||
|
||||
- name: Extract image url
|
||||
id: extract_image_url
|
||||
continue-on-error: true
|
||||
run: |
|
||||
set -eux
|
||||
|
||||
echo "IMAGE_O=${{ fromJSON(steps.imgur_step.outputs.imgur_urls)[0] }}" >> $GITHUB_ENV
|
||||
echo "IMAGE_1=${{ fromJSON(steps.imgur_step.outputs.imgur_urls)[1] }}" >> $GITHUB_ENV
|
||||
echo "IMAGE_2=${{ fromJSON(steps.imgur_step.outputs.imgur_urls)[2] }}" >> $GITHUB_ENV
|
||||
echo "IMAGE_3=${{ fromJSON(steps.imgur_step.outputs.imgur_urls)[3] }}" >> $GITHUB_ENV
|
||||
|
||||
- name: Comment PR
|
||||
uses: mshick/add-pr-comment@v2
|
||||
id: comment_pr
|
||||
if: ${{ github.event.pull_request != '' && matrix.pr_comment_enabled == 'true' }}
|
||||
with:
|
||||
message-id: bench-server-${{ github.job }}-${{ env.RUNNER_LABEL }}-${{ matrix.model }}-${{ matrix.ftype }}
|
||||
message: |
|
||||
<p align="center">
|
||||
|
||||
📈 **llama.cpp server** for _${{ github.job }}_ on _${{ env.RUNNER_LABEL }}_ for `${{ matrix.model }}`-`${{ matrix.ftype }}`: **${{ env.BENCH_ITERATIONS}} iterations** 🚀
|
||||
|
||||
</p>
|
||||
|
||||
<details>
|
||||
|
||||
<summary>Expand details for performance related PR only</summary>
|
||||
|
||||
- Concurrent users: ${{ env.N_USERS }}, duration: ${{ github.event.inputs.duration || env.DURATION }}
|
||||
- HTTP request : avg=${{ env.HTTP_REQ_DURATION_AVG }}ms p(95)=${{ env.HTTP_REQ_DURATION_P_95_ }}ms fails=${{ env.HTTP_REQ_FAILED_PASSES }}, finish reason: stop=${{ env.LLAMACPP_COMPLETIONS_STOP_RATE_PASSES }} truncated=${{ env.LLAMACPP_COMPLETIONS_TRUNCATED_RATE_PASSES }}
|
||||
- Prompt processing (pp): avg=${{ env.LLAMACPP_PROMPT_PROCESSING_SECOND_AVG }}tk/s p(95)=${{ env.LLAMACPP_PROMPT_PROCESSING_SECOND_P_95_ }}tk/s
|
||||
- Token generation (tg): avg=${{ env.LLAMACPP_TOKENS_SECOND_AVG }}tk/s p(95)=${{ env.LLAMACPP_TOKENS_SECOND_P_95_ }}tk/s
|
||||
- ${{ env.BENCH_GRAPH_XLABEL }}
|
||||
|
||||
|
||||
<p align="center">
|
||||
|
||||
<img width="100%" height="100%" src="${{ env.IMAGE_O }}" alt="prompt_tokens_seconds" />
|
||||
|
||||
<details>
|
||||
|
||||
<summary>More</summary>
|
||||
|
||||
```mermaid
|
||||
${{ env.PROMPT_TOKENS_SECONDS }}
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<img width="100%" height="100%" src="${{ env.IMAGE_1 }}" alt="predicted_tokens_seconds"/>
|
||||
|
||||
<details>
|
||||
<summary>More</summary>
|
||||
|
||||
```mermaid
|
||||
${{ env.PREDICTED_TOKENS_SECONDS }}
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
</p>
|
||||
|
||||
<details>
|
||||
|
||||
<summary>Details</summary>
|
||||
|
||||
<p align="center">
|
||||
|
||||
<img width="100%" height="100%" src="${{ env.IMAGE_2 }}" alt="kv_cache_usage_ratio" />
|
||||
|
||||
<details>
|
||||
<summary>More</summary>
|
||||
|
||||
```mermaid
|
||||
${{ env.KV_CACHE_USAGE_RATIO }}
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<img width="100%" height="100%" src="${{ env.IMAGE_3 }}" alt="requests_processing"/>
|
||||
|
||||
<details>
|
||||
<summary>More</summary>
|
||||
|
||||
```mermaid
|
||||
${{ env.REQUESTS_PROCESSING }}
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
</p>
|
||||
</details>
|
||||
</details>
|
||||
250
.github/workflows/build.yml
vendored
250
.github/workflows/build.yml
vendored
@@ -15,19 +15,138 @@ on:
|
||||
types: [opened, synchronize, reopened]
|
||||
paths: ['**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m']
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
env:
|
||||
BRANCH_NAME: ${{ github.head_ref || github.ref_name }}
|
||||
GGML_NLOOP: 3
|
||||
GGML_N_THREADS: 1
|
||||
|
||||
jobs:
|
||||
ubuntu-focal-make:
|
||||
runs-on: ubuntu-20.04
|
||||
macOS-latest-cmake-arm64:
|
||||
runs-on: macos-14
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
continue-on-error: true
|
||||
run: |
|
||||
brew update
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
sysctl -a
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_METAL_EMBED_LIBRARY=ON -DLLAMA_CURL=ON ..
|
||||
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu)
|
||||
|
||||
- name: Test
|
||||
id: cmake_test
|
||||
run: |
|
||||
cd build
|
||||
ctest -L main --verbose --timeout 900
|
||||
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
shell: bash
|
||||
run: |
|
||||
BUILD_NUMBER="$(git rev-list --count HEAD)"
|
||||
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
|
||||
if [[ "${{ env.BRANCH_NAME }}" == "master" ]]; then
|
||||
echo "name=b${BUILD_NUMBER}" >> $GITHUB_OUTPUT
|
||||
else
|
||||
SAFE_NAME=$(echo "${{ env.BRANCH_NAME }}" | tr '/' '-')
|
||||
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
run: |
|
||||
cp LICENSE ./build/bin/
|
||||
zip -r llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.zip ./build/bin/*
|
||||
|
||||
- name: Upload artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.zip
|
||||
name: llama-bin-macos-arm64.zip
|
||||
|
||||
macOS-latest-cmake-x64:
|
||||
runs-on: macos-latest
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
continue-on-error: true
|
||||
run: |
|
||||
brew update
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
sysctl -a
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_METAL_EMBED_LIBRARY=ON -DLLAMA_CURL=ON ..
|
||||
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu)
|
||||
|
||||
- name: Test
|
||||
id: cmake_test
|
||||
run: |
|
||||
cd build
|
||||
ctest -L main --verbose --timeout 900
|
||||
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
shell: bash
|
||||
run: |
|
||||
BUILD_NUMBER="$(git rev-list --count HEAD)"
|
||||
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
|
||||
if [[ "${{ env.BRANCH_NAME }}" == "master" ]]; then
|
||||
echo "name=b${BUILD_NUMBER}" >> $GITHUB_OUTPUT
|
||||
else
|
||||
SAFE_NAME=$(echo "${{ env.BRANCH_NAME }}" | tr '/' '-')
|
||||
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
run: |
|
||||
cp LICENSE ./build/bin/
|
||||
zip -r llama-${{ steps.tag.outputs.name }}-bin-macos-x64.zip ./build/bin/*
|
||||
|
||||
- name: Upload artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-macos-x64.zip
|
||||
name: llama-bin-macos-x64.zip
|
||||
|
||||
ubuntu-focal-make:
|
||||
runs-on: ubuntu-20.04
|
||||
env:
|
||||
LLAMA_NODE_AVAILABLE: true
|
||||
LLAMA_PYTHON_AVAILABLE: true
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
@@ -35,6 +154,14 @@ jobs:
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential gcc-8
|
||||
|
||||
- uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: "20"
|
||||
|
||||
- uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.11"
|
||||
|
||||
- name: Build
|
||||
id: make_build
|
||||
env:
|
||||
@@ -54,7 +181,7 @@ jobs:
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
@@ -76,7 +203,7 @@ jobs:
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
@@ -98,6 +225,17 @@ jobs:
|
||||
cd build
|
||||
ctest -L main --verbose --timeout 900
|
||||
|
||||
- name: Test llama2c conversion
|
||||
id: llama2c_test
|
||||
run: |
|
||||
cd build
|
||||
echo "Fetch tokenizer"
|
||||
wget https://huggingface.co/karpathy/tinyllamas/resolve/main/stories260K/tok512.bin
|
||||
echo "Fetch llama2c model"
|
||||
wget https://huggingface.co/karpathy/tinyllamas/resolve/main/stories260K/stories260K.bin
|
||||
./bin/convert-llama2c-to-ggml --copy-vocab-from-model ./tok512.bin --llama2c-model stories260K.bin --llama2c-output-model stories260K.gguf
|
||||
./bin/main -m stories260K.gguf -p "One day, Lily met a Shoggoth" -n 500 -c 256
|
||||
|
||||
# ubuntu-latest-cmake-sanitizer:
|
||||
# runs-on: ubuntu-latest
|
||||
#
|
||||
@@ -111,7 +249,7 @@ jobs:
|
||||
# steps:
|
||||
# - name: Clone
|
||||
# id: checkout
|
||||
# uses: actions/checkout@v3
|
||||
# uses: actions/checkout@v4
|
||||
#
|
||||
# - name: Dependencies
|
||||
# id: depends
|
||||
@@ -145,7 +283,7 @@ jobs:
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
@@ -173,7 +311,7 @@ jobs:
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
@@ -219,7 +357,7 @@ jobs:
|
||||
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
@@ -260,7 +398,7 @@ jobs:
|
||||
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
@@ -280,7 +418,7 @@ jobs:
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
@@ -311,7 +449,7 @@ jobs:
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
@@ -455,7 +593,7 @@ jobs:
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
@@ -585,23 +723,23 @@ jobs:
|
||||
|
||||
- name: Upload artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: actions/upload-artifact@v3
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: |
|
||||
llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}-x64.zip
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}-x64.zip
|
||||
name: llama-bin-win-${{ matrix.build }}-x64.zip
|
||||
|
||||
windows-latest-cmake-cublas:
|
||||
windows-latest-cmake-cuda:
|
||||
runs-on: windows-latest
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
cuda: ['12.2.0', '11.7.1']
|
||||
build: ['cublas']
|
||||
build: ['cuda']
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
@@ -617,7 +755,7 @@ jobs:
|
||||
run: |
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_CUBLAS=ON -DBUILD_SHARED_LIBS=ON
|
||||
cmake .. -DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_CUDA=ON -DBUILD_SHARED_LIBS=ON
|
||||
cmake --build . --config Release -j ${env:NUMBER_OF_PROCESSORS}
|
||||
|
||||
- name: Determine tag name
|
||||
@@ -641,10 +779,10 @@ jobs:
|
||||
|
||||
- name: Upload artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: actions/upload-artifact@v3
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: |
|
||||
llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}-cu${{ matrix.cuda }}-x64.zip
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}-cu${{ matrix.cuda }}-x64.zip
|
||||
name: llama-bin-win-cu${{ matrix.cuda }}-x64.zip
|
||||
|
||||
- name: Copy and pack Cuda runtime
|
||||
run: |
|
||||
@@ -655,13 +793,14 @@ jobs:
|
||||
|
||||
- name: Upload Cuda runtime
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: actions/upload-artifact@v3
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: |
|
||||
cudart-llama-bin-win-cu${{ matrix.cuda }}-x64.zip
|
||||
path: cudart-llama-bin-win-cu${{ matrix.cuda }}-x64.zip
|
||||
name: cudart-llama-bin-win-cu${{ matrix.cuda }}-x64.zip
|
||||
|
||||
windows-latest-cmake-sycl:
|
||||
runs-on: windows-latest
|
||||
|
||||
defaults:
|
||||
run:
|
||||
shell: bash
|
||||
@@ -670,11 +809,10 @@ jobs:
|
||||
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/62641e01-1e8d-4ace-91d6-ae03f7f8a71f/w_BaseKit_p_2024.0.0.49563_offline.exe
|
||||
WINDOWS_DPCPP_MKL: intel.oneapi.win.cpp-dpcpp-common:intel.oneapi.win.mkl.devel
|
||||
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
@@ -685,12 +823,38 @@ jobs:
|
||||
id: cmake_build
|
||||
run: examples/sycl/win-build-sycl.bat
|
||||
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
shell: bash
|
||||
run: |
|
||||
BUILD_NUMBER="$(git rev-list --count HEAD)"
|
||||
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
|
||||
if [[ "${{ env.BRANCH_NAME }}" == "master" ]]; then
|
||||
echo "name=b${BUILD_NUMBER}" >> $GITHUB_OUTPUT
|
||||
else
|
||||
SAFE_NAME=$(echo "${{ env.BRANCH_NAME }}" | tr '/' '-')
|
||||
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
run: |
|
||||
7z a llama-${{ steps.tag.outputs.name }}-bin-win-sycl-x64.zip ./build/bin/*
|
||||
|
||||
- name: Upload artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-win-sycl-x64.zip
|
||||
name: llama-bin-win-sycl-x64.zip
|
||||
|
||||
ios-xcode-build:
|
||||
runs-on: macos-latest
|
||||
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Build Xcode project
|
||||
run: xcodebuild -project examples/llama.swiftui/llama.swiftui.xcodeproj -scheme llama.swiftui -sdk iphoneos CODE_SIGNING_REQUIRED=NO CODE_SIGN_IDENTITY= -destination 'generic/platform=iOS' build
|
||||
@@ -700,7 +864,7 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Set up JDK
|
||||
uses: actions/setup-java@v3
|
||||
@@ -723,7 +887,7 @@ jobs:
|
||||
# runs-on: macos-12
|
||||
# steps:
|
||||
# - name: Clone
|
||||
# uses: actions/checkout@v3
|
||||
# uses: actions/checkout@v4
|
||||
#
|
||||
# - name: Build
|
||||
# uses: cross-platform-actions/action@v0.19.0
|
||||
@@ -747,12 +911,14 @@ jobs:
|
||||
- macOS-latest-make
|
||||
- macOS-latest-cmake
|
||||
- windows-latest-cmake
|
||||
- windows-latest-cmake-cublas
|
||||
- windows-latest-cmake-cuda
|
||||
- macOS-latest-cmake-arm64
|
||||
- macOS-latest-cmake-x64
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
@@ -771,7 +937,7 @@ jobs:
|
||||
|
||||
- name: Download artifacts
|
||||
id: download-artifact
|
||||
uses: actions/download-artifact@v3
|
||||
uses: actions/download-artifact@v4
|
||||
|
||||
- name: Create release
|
||||
id: create_release
|
||||
@@ -812,7 +978,7 @@ jobs:
|
||||
#
|
||||
# steps:
|
||||
# - name: Clone
|
||||
# uses: actions/checkout@v3
|
||||
# uses: actions/checkout@v4
|
||||
#
|
||||
# - name: Dependencies
|
||||
# run: |
|
||||
@@ -836,7 +1002,7 @@ jobs:
|
||||
#
|
||||
# steps:
|
||||
# - name: Clone
|
||||
# uses: actions/checkout@v3
|
||||
# uses: actions/checkout@v4
|
||||
#
|
||||
# - name: Dependencies
|
||||
# run: |
|
||||
@@ -860,7 +1026,7 @@ jobs:
|
||||
#
|
||||
# steps:
|
||||
# - name: Clone
|
||||
# uses: actions/checkout@v3
|
||||
# uses: actions/checkout@v4
|
||||
#
|
||||
# - name: Dependencies
|
||||
# run: |
|
||||
@@ -890,7 +1056,7 @@ jobs:
|
||||
#
|
||||
# steps:
|
||||
# - name: Clone
|
||||
# uses: actions/checkout@v3
|
||||
# uses: actions/checkout@v4
|
||||
#
|
||||
# - name: Add msbuild to PATH
|
||||
# uses: microsoft/setup-msbuild@v1
|
||||
@@ -906,7 +1072,7 @@ jobs:
|
||||
# msbuild ALL_BUILD.vcxproj -t:build -p:configuration=${{ matrix.build }} -p:platform=${{ matrix.arch }}
|
||||
#
|
||||
# - name: Upload binaries
|
||||
# uses: actions/upload-artifact@v1
|
||||
# uses: actions/upload-artifact@v4
|
||||
# with:
|
||||
# name: llama-bin-${{ matrix.arch }}
|
||||
# path: build/bin/${{ matrix.build }}
|
||||
@@ -929,7 +1095,7 @@ jobs:
|
||||
#
|
||||
# steps:
|
||||
# - name: Clone
|
||||
# uses: actions/checkout@v3
|
||||
# uses: actions/checkout@v4
|
||||
#
|
||||
# - name: Add msbuild to PATH
|
||||
# uses: microsoft/setup-msbuild@v1
|
||||
@@ -961,7 +1127,7 @@ jobs:
|
||||
#
|
||||
# - name: Upload binaries
|
||||
# if: matrix.blas == 'ON'
|
||||
# uses: actions/upload-artifact@v1
|
||||
# uses: actions/upload-artifact@v4
|
||||
# with:
|
||||
# name: llama-blas-bin-${{ matrix.arch }}
|
||||
# path: build/bin/${{ matrix.build }}
|
||||
@@ -975,7 +1141,7 @@ jobs:
|
||||
#
|
||||
# steps:
|
||||
# - name: Clone
|
||||
# uses: actions/checkout@v3
|
||||
# uses: actions/checkout@v4
|
||||
#
|
||||
# - name: Dependencies
|
||||
# run: |
|
||||
|
||||
3
.github/workflows/close-issue.yml
vendored
3
.github/workflows/close-issue.yml
vendored
@@ -12,11 +12,12 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/stale@v5
|
||||
with:
|
||||
exempt-issue-labels: "refactor,help wanted,good first issue,research"
|
||||
days-before-issue-stale: 30
|
||||
days-before-issue-close: 14
|
||||
stale-issue-label: "stale"
|
||||
close-issue-message: "This issue was closed because it has been inactive for 14 days since being marked as stale."
|
||||
days-before-pr-stale: -1
|
||||
days-before-pr-close: -1
|
||||
operations-per-run: 1000
|
||||
operations-per-run: 10000
|
||||
repo-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
||||
6
.github/workflows/code-coverage.yml
vendored
6
.github/workflows/code-coverage.yml
vendored
@@ -5,12 +5,16 @@ env:
|
||||
GGML_NLOOP: 3
|
||||
GGML_N_THREADS: 1
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
run:
|
||||
runs-on: ubuntu-20.04
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Dependencies
|
||||
run: |
|
||||
|
||||
6
.github/workflows/docker.yml
vendored
6
.github/workflows/docker.yml
vendored
@@ -15,6 +15,10 @@ on:
|
||||
branches:
|
||||
- master
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
push_to_registry:
|
||||
name: Push Docker image to Docker Hub
|
||||
@@ -42,7 +46,7 @@ jobs:
|
||||
- { tag: "server-intel", dockerfile: ".devops/server-intel.Dockerfile", platforms: "linux/amd64" }
|
||||
steps:
|
||||
- name: Check out the repo
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Set up QEMU
|
||||
uses: docker/setup-qemu-action@v2
|
||||
|
||||
6
.github/workflows/editorconfig.yml
vendored
6
.github/workflows/editorconfig.yml
vendored
@@ -14,10 +14,14 @@ on:
|
||||
branches:
|
||||
- master
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
editorconfig:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
- uses: editorconfig-checker/action-editorconfig-checker@main
|
||||
- run: editorconfig-checker
|
||||
|
||||
4
.github/workflows/gguf-publish.yml
vendored
4
.github/workflows/gguf-publish.yml
vendored
@@ -24,9 +24,9 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v2
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: '3.9.x'
|
||||
- name: Install dependencies
|
||||
|
||||
4
.github/workflows/nix-ci-aarch64.yml
vendored
4
.github/workflows/nix-ci-aarch64.yml
vendored
@@ -17,6 +17,10 @@ on:
|
||||
types: [opened, synchronize, reopened]
|
||||
paths: ['**/*.nix', 'flake.lock']
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
nix-build-aarch64:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
4
.github/workflows/nix-ci.yml
vendored
4
.github/workflows/nix-ci.yml
vendored
@@ -8,6 +8,10 @@ on:
|
||||
pull_request:
|
||||
types: [opened, synchronize, reopened]
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
nix-eval:
|
||||
strategy:
|
||||
|
||||
@@ -16,15 +16,19 @@ on:
|
||||
- 'requirements.txt'
|
||||
- 'requirements/*.txt'
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
python-check-requirements:
|
||||
runs-on: ubuntu-latest
|
||||
name: check-requirements
|
||||
steps:
|
||||
- name: Check out source repository
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
- name: Set up Python environment
|
||||
uses: actions/setup-python@v4
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.11"
|
||||
- name: Run check-requirements.sh script
|
||||
|
||||
8
.github/workflows/python-lint.yml
vendored
8
.github/workflows/python-lint.yml
vendored
@@ -2,15 +2,19 @@ name: flake8 Lint
|
||||
|
||||
on: [push, pull_request]
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
flake8-lint:
|
||||
runs-on: ubuntu-latest
|
||||
name: Lint
|
||||
steps:
|
||||
- name: Check out source repository
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
- name: Set up Python environment
|
||||
uses: actions/setup-python@v4
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.11"
|
||||
- name: flake8 Lint
|
||||
|
||||
51
.github/workflows/server.yml
vendored
51
.github/workflows/server.yml
vendored
@@ -4,6 +4,10 @@ name: Server
|
||||
on:
|
||||
workflow_dispatch: # allows manual triggering
|
||||
inputs:
|
||||
sha:
|
||||
description: 'Commit SHA1 to build'
|
||||
required: false
|
||||
type: string
|
||||
slow_tests:
|
||||
description: 'Run slow tests'
|
||||
required: true
|
||||
@@ -11,12 +15,16 @@ on:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/tests/**.*']
|
||||
pull_request:
|
||||
paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/**.*']
|
||||
pull_request_target:
|
||||
types: [opened, synchronize, reopened]
|
||||
paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/tests/**.*']
|
||||
paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/**.*']
|
||||
schedule:
|
||||
- cron: '0 0 * * *'
|
||||
- cron: '2 4 * * *'
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
server:
|
||||
@@ -31,7 +39,6 @@ jobs:
|
||||
include:
|
||||
- build_type: Release
|
||||
sanitizer: ""
|
||||
disabled_on_pr: true
|
||||
fail-fast: false # While -DLLAMA_SANITIZE_THREAD=ON is broken
|
||||
|
||||
container:
|
||||
@@ -41,25 +48,45 @@ jobs:
|
||||
options: --cpus 4
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
run: |
|
||||
apt-get update
|
||||
apt-get -y install \
|
||||
build-essential \
|
||||
xxd \
|
||||
git \
|
||||
cmake \
|
||||
python3-pip \
|
||||
curl \
|
||||
wget \
|
||||
language-pack-en \
|
||||
libcurl4-openssl-dev
|
||||
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
ref: ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha || github.head_ref || github.ref_name }}
|
||||
|
||||
- name: Verify server deps
|
||||
id: verify_server_deps
|
||||
run: |
|
||||
git config --global --add safe.directory $(realpath .)
|
||||
cd examples/server
|
||||
git ls-files --others --modified
|
||||
git status
|
||||
./deps.sh
|
||||
git status
|
||||
not_ignored_files="$(git ls-files --others --modified)"
|
||||
echo "Modified files: ${not_ignored_files}"
|
||||
if [ -n "${not_ignored_files}" ]; then
|
||||
echo "Repository is dirty or server deps are not built as expected"
|
||||
echo "${not_ignored_files}"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
@@ -99,7 +126,7 @@ jobs:
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
|
||||
6
.github/workflows/zig-build.yml
vendored
6
.github/workflows/zig-build.yml
vendored
@@ -6,6 +6,10 @@ on:
|
||||
branches:
|
||||
- master
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
build:
|
||||
strategy:
|
||||
@@ -14,7 +18,7 @@ jobs:
|
||||
runs-on: [ubuntu-latest, macos-latest, windows-latest]
|
||||
runs-on: ${{ matrix.runs-on }}
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: recursive
|
||||
fetch-depth: 0
|
||||
|
||||
8
.gitignore
vendored
8
.gitignore
vendored
@@ -11,7 +11,10 @@
|
||||
*.gcda
|
||||
*.dot
|
||||
*.bat
|
||||
*.tmp
|
||||
*.metallib
|
||||
*.etag
|
||||
*.lastModified
|
||||
.DS_Store
|
||||
.build/
|
||||
.cache/
|
||||
@@ -47,6 +50,7 @@ models-mnt
|
||||
/embedding
|
||||
/gguf
|
||||
/gguf-llama-simple
|
||||
/gguf-split
|
||||
/gritlm
|
||||
/imatrix
|
||||
/infill
|
||||
@@ -55,6 +59,9 @@ models-mnt
|
||||
/llava-cli
|
||||
/lookahead
|
||||
/lookup
|
||||
/lookup-create
|
||||
/lookup-merge
|
||||
/lookup-stats
|
||||
/main
|
||||
/metal
|
||||
/passkey
|
||||
@@ -70,6 +77,7 @@ models-mnt
|
||||
/batched-bench
|
||||
/export-lora
|
||||
/finetune
|
||||
/retrieval
|
||||
/speculative
|
||||
/parallel
|
||||
/train-text-from-scratch
|
||||
|
||||
655
AUTHORS
Normal file
655
AUTHORS
Normal file
@@ -0,0 +1,655 @@
|
||||
# date: Tue Apr 9 09:17:14 EEST 2024
|
||||
# this file is auto-generated by scripts/gen-authors.sh
|
||||
|
||||
0cc4m <picard12@live.de>
|
||||
0xspringtime <110655352+0xspringtime@users.noreply.github.com>
|
||||
2f38b454 <dxf@protonmail.com>
|
||||
3ooabkhxtn <31479382+3ooabkhxtn@users.noreply.github.com>
|
||||
44670 <44670@users.noreply.github.com>
|
||||
AN Long <aisk@users.noreply.github.com>
|
||||
AT <manyoso@users.noreply.github.com>
|
||||
Aarni Koskela <akx@iki.fi>
|
||||
Aaron Miller <apage43@ninjawhale.com>
|
||||
Aaryaman Vasishta <aaryaman.vasishta@amd.com>
|
||||
Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
|
||||
Abhishek Gopinath K <31348521+overtunned@users.noreply.github.com>
|
||||
Adithya Balaji <adithya.b94@gmail.com>
|
||||
AdithyanI <adithyan.i4internet@gmail.com>
|
||||
Adrian <smith.adriane@gmail.com>
|
||||
Adrian Hesketh <a-h@users.noreply.github.com>
|
||||
AidanBeltonS <87009434+AidanBeltonS@users.noreply.github.com>
|
||||
Aisuko <urakiny@gmail.com>
|
||||
Alberto <57916483+albbus-stack@users.noreply.github.com>
|
||||
Alex <awhill19@icloud.com>
|
||||
Alex Azarov <alex@azarov.by>
|
||||
Alex Azarov <alexander.azarov@mapbox.com>
|
||||
Alex Klinkhamer <from.github.com.917@grencez.dev>
|
||||
Alex Klinkhamer <git@grencez.dev>
|
||||
Alex Nguyen <tiendung@users.noreply.github.com>
|
||||
Alex Petenchea <alex.petenchea@gmail.com>
|
||||
Alex Renda <alexrenda@users.noreply.github.com>
|
||||
Alex von Gluck IV <kallisti5@unixzen.com>
|
||||
Alexey Parfenov <zxed@alkatrazstudio.net>
|
||||
Ali Chraghi <63465728+alichraghi@users.noreply.github.com>
|
||||
Ali Nehzat <ali.nehzat@thanks.dev>
|
||||
Ali Tariq <ali.tariq@10xengineers.ai>
|
||||
Alon <alonfaraj@gmail.com>
|
||||
AlpinDale <52078762+AlpinDale@users.noreply.github.com>
|
||||
AmirAli Mirian <37371367+amiralimi@users.noreply.github.com>
|
||||
Ananta Bastola <anantarajbastola@gmail.com>
|
||||
Anas Ahouzi <112881240+aahouzi@users.noreply.github.com>
|
||||
András Salamon <ott2@users.noreply.github.com>
|
||||
Andrei <abetlen@gmail.com>
|
||||
Andrew Canis <andrew.canis@gmail.com>
|
||||
Andrew Duffy <a10y@users.noreply.github.com>
|
||||
Andrew Godfrey <AndrewGodfrey@users.noreply.github.com>
|
||||
Arik Poznanski <arikpoz@users.noreply.github.com>
|
||||
Artem <guinmoon@gmail.com>
|
||||
Artyom Lebedev <vagran.ast@gmail.com>
|
||||
Asbjørn Olling <asbjornolling@gmail.com>
|
||||
Ásgeir Bjarni Ingvarsson <asgeir@fundinn.org>
|
||||
Ashok Gelal <401055+ashokgelal@users.noreply.github.com>
|
||||
Ashraful Islam <ashraful.meche@gmail.com>
|
||||
Atsushi Tatsuma <yoshoku@outlook.com>
|
||||
Austin <77757836+teleprint-me@users.noreply.github.com>
|
||||
AustinMroz <austinmroz@utexas.edu>
|
||||
BADR <contact@pythops.com>
|
||||
Bach Le <bach@bullno1.com>
|
||||
Bailey Chittle <39804642+bachittle@users.noreply.github.com>
|
||||
BarfingLemurs <128182951+BarfingLemurs@users.noreply.github.com>
|
||||
Behnam M <58621210+ibehnam@users.noreply.github.com>
|
||||
Ben Garney <bengarney@users.noreply.github.com>
|
||||
Ben Siraphob <bensiraphob@gmail.com>
|
||||
Ben Williams <ben@719ben.com>
|
||||
Benjamin Lecaillon <84293038+blecaillon@users.noreply.github.com>
|
||||
Bernat Vadell <hounter.caza@gmail.com>
|
||||
Bodo Graumann <mail@bodograumann.de>
|
||||
Bono Lv <lvscar@users.noreply.github.com>
|
||||
Borislav Stanimirov <b.stanimirov@abv.bg>
|
||||
Branden Butler <bwtbutler@hotmail.com>
|
||||
Brian <mofosyne@gmail.com>
|
||||
Bruce MacDonald <brucewmacdonald@gmail.com>
|
||||
CJ Pais <cj@cjpais.com>
|
||||
CRD716 <crd716@gmail.com>
|
||||
Cameron <csteele@steelecameron.com>
|
||||
Cameron Kaiser <classilla@users.noreply.github.com>
|
||||
Casey Primozic <casey@cprimozic.net>
|
||||
Casey Primozic <me@ameo.link>
|
||||
CausalLM <148736309+CausalLM@users.noreply.github.com>
|
||||
Cebtenzzre <cebtenzzre@gmail.com>
|
||||
Chad Brewbaker <crb002@gmail.com>
|
||||
Cheng Shao <terrorjack@type.dance>
|
||||
Chris Kuehl <ckuehl@ckuehl.me>
|
||||
Christian Demsar <christian@github.email.demsar.us>
|
||||
Christian Demsar <crasm@git.vczf.us>
|
||||
Christian Falch <875252+chrfalch@users.noreply.github.com>
|
||||
Christian Kögler <ck3d@gmx.de>
|
||||
Clark Saben <76020733+csaben@users.noreply.github.com>
|
||||
Clint Herron <hanclinto@gmail.com>
|
||||
Cuong Trinh Manh <nguoithichkhampha@gmail.com>
|
||||
DAN™ <dranger003@gmail.com>
|
||||
Damian Stewart <d@damianstewart.com>
|
||||
Dane Madsen <dane_madsen@hotmail.com>
|
||||
DaniAndTheWeb <57776841+DaniAndTheWeb@users.noreply.github.com>
|
||||
Daniel Bevenius <daniel.bevenius@gmail.com>
|
||||
Daniel Drake <drake@endlessos.org>
|
||||
Daniel Hiltgen <dhiltgen@users.noreply.github.com>
|
||||
Daniel Illescas Romero <illescas.daniel@protonmail.com>
|
||||
DannyDaemonic <DannyDaemonic@gmail.com>
|
||||
Dat Quoc Nguyen <2412555+datquocnguyen@users.noreply.github.com>
|
||||
Dave Della Costa <ddellacosta+github@gmail.com>
|
||||
David Friehs <david@friehs.info>
|
||||
David Kennedy <dakennedyd@gmail.com>
|
||||
David Pflug <david@pflug.email>
|
||||
David Renshaw <dwrenshaw@gmail.com>
|
||||
David Sommers <12738+databyte@users.noreply.github.com>
|
||||
David Yang <davidyang6us@gmail.com>
|
||||
Dawid Wysocki <62249621+TortillaZHawaii@users.noreply.github.com>
|
||||
Dean <Dean.Sinaean@gmail.com>
|
||||
Deins <deinsegle@gmail.com>
|
||||
Didzis Gosko <didzis@users.noreply.github.com>
|
||||
Don Mahurin <dmahurin@users.noreply.github.com>
|
||||
DooWoong Lee (David) <manics99@naver.com>
|
||||
Doomsdayrs <38189170+Doomsdayrs@users.noreply.github.com>
|
||||
Douglas Hanley <thesecretaryofwar@gmail.com>
|
||||
Dr. Tom Murphy VII Ph.D <499244+tom7@users.noreply.github.com>
|
||||
Ebey Abraham <ebey97@gmail.com>
|
||||
Ed Lee <edilee@mozilla.com>
|
||||
Ed Lepedus <ed.lepedus@googlemail.com>
|
||||
Edward Taylor <edeetee@gmail.com>
|
||||
Elbios <141279586+Elbios@users.noreply.github.com>
|
||||
Engininja2 <139037756+Engininja2@users.noreply.github.com>
|
||||
Equim <sayaka@ekyu.moe>
|
||||
Eric Sommerlade <es0m@users.noreply.github.com>
|
||||
Eric Zhang <34133756+EZForever@users.noreply.github.com>
|
||||
Erik Garrison <erik.garrison@gmail.com>
|
||||
Erik Scholz <Green-Sky@users.noreply.github.com>
|
||||
Ettore Di Giacinto <mudler@users.noreply.github.com>
|
||||
Evan Jones <evan.q.jones@gmail.com>
|
||||
Evan Miller <emmiller@gmail.com>
|
||||
Eve <139727413+netrunnereve@users.noreply.github.com>
|
||||
Evgeny Kurnevsky <kurnevsky@gmail.com>
|
||||
Ewout ter Hoeven <E.M.terHoeven@student.tudelft.nl>
|
||||
ExtReMLapin <3909752+ExtReMLapin@users.noreply.github.com>
|
||||
FK <sozforex@gmail.com>
|
||||
Fabian <cmdrf@users.noreply.github.com>
|
||||
Fabio R. Sluzala <Fabio3rs@users.noreply.github.com>
|
||||
Faez Shakil <faez.shakil@gmail.com>
|
||||
FantasyGmm <16450052+FantasyGmm@users.noreply.github.com>
|
||||
Fattire <528174+fat-tire@users.noreply.github.com>
|
||||
Felix <stenbackfelix@gmail.com>
|
||||
Finn Voorhees <finnvoorhees@gmail.com>
|
||||
Firat <firatkiral@gmail.com>
|
||||
Folko-Ven <71110216+Folko-Ven@users.noreply.github.com>
|
||||
Foul-Tarnished <107711110+Foul-Tarnished@users.noreply.github.com>
|
||||
Francisco Melo <43780565+francis2tm@users.noreply.github.com>
|
||||
FrankHB <frankhb1989@gmail.com>
|
||||
Frederik Vogel <Schaltfehler@users.noreply.github.com>
|
||||
Gabe Goodhart <gabe.l.hart@gmail.com>
|
||||
GainLee <perfecter.gen@gmail.com>
|
||||
Galunid <karolek1231456@gmail.com>
|
||||
Gary Linscott <glinscott@gmail.com>
|
||||
Gary Mulder <gjmulder@gmail.com>
|
||||
Genkagaku.GPT <hlhr202@163.com>
|
||||
Georgi Gerganov <ggerganov@gmail.com>
|
||||
Gilad S <giladgd@users.noreply.github.com>
|
||||
GiviMAD <GiviMAD@users.noreply.github.com>
|
||||
Govlzkoy <gotope@users.noreply.github.com>
|
||||
Guillaume "Vermeille" Sanchez <Guillaume.V.Sanchez@gmail.com>
|
||||
Guillaume Wenzek <gwenzek@users.noreply.github.com>
|
||||
Guoteng <32697156+SolenoidWGT@users.noreply.github.com>
|
||||
Gustavo Rocha Dias <91472747+gustrd@users.noreply.github.com>
|
||||
Halalaluyafail3 <55773281+Halalaluyafail3@users.noreply.github.com>
|
||||
Haohui Mai <ricetons@gmail.com>
|
||||
Haoxiang Fei <tonyfettes@tonyfettes.com>
|
||||
Harald Fernengel <harald.fernengel@here.com>
|
||||
Hatsune Miku <129688334+at8u@users.noreply.github.com>
|
||||
Henk Poley <HenkPoley@gmail.com>
|
||||
Henri Vasserman <henv@hot.ee>
|
||||
Henrik Forstén <henrik.forsten@gmail.com>
|
||||
Herman Semenov <GermanAizek@yandex.ru>
|
||||
Hesen Peng <hesen.peng@gmail.com>
|
||||
Hoang Nguyen <hugo53@users.noreply.github.com>
|
||||
Hongyu Ouyang <96765450+casavaca@users.noreply.github.com>
|
||||
Howard Su <howard0su@gmail.com>
|
||||
Hua Jiang <allenhjiang@outlook.com>
|
||||
Huawei Lin <huaweilin.cs@gmail.com>
|
||||
Ian Bull <irbull@eclipsesource.com>
|
||||
Ian Bull <irbull@gmail.com>
|
||||
Ian Scrivener <github@zilogy.asia>
|
||||
Ido S <ido.pluto@gmail.com>
|
||||
IgnacioFDM <ignaciofdm@gmail.com>
|
||||
Igor Okulist <okigan@gmail.com>
|
||||
Ikko Eltociear Ashimine <eltociear@gmail.com>
|
||||
Ilya Kurdyukov <59548320+ilyakurdyukov@users.noreply.github.com>
|
||||
Ionoclast Laboratories <brigham@ionoclast.com>
|
||||
Isaac McFadyen <isaac@imcf.me>
|
||||
IsaacDynamo <61521674+IsaacDynamo@users.noreply.github.com>
|
||||
Ivan Komarov <Ivan.Komarov@dfyz.info>
|
||||
Ivan Stepanov <ivanstepanovftw@gmail.com>
|
||||
JH23X <165871467+JH23X@users.noreply.github.com>
|
||||
Jack Mousseau <jmousseau@users.noreply.github.com>
|
||||
JackJollimore <130917767+JackJollimore@users.noreply.github.com>
|
||||
Jag Chadha <jagtesh@gmail.com>
|
||||
Jakub N <jakubniemczyk97@gmail.com>
|
||||
James Reynolds <magnusviri@users.noreply.github.com>
|
||||
Jan Boon <jan.boon@kaetemi.be>
|
||||
Jan Boon <kaetemi@gmail.com>
|
||||
Jan Ploski <jpl@plosquare.com>
|
||||
Jannis Schönleber <joennlae@gmail.com>
|
||||
Jared Van Bortel <cebtenzzre@gmail.com>
|
||||
Jared Van Bortel <jared@nomic.ai>
|
||||
Jason McCartney <jmac@theroot.org>
|
||||
Jean-Christophe Hoelt <hoelt@fovea.cc>
|
||||
Jean-Michaël Celerier <jeanmichael.celerier+github@gmail.com>
|
||||
Jed Fox <git@jedfox.com>
|
||||
Jeffrey Quesnelle <emozilla@nousresearch.com>
|
||||
Jesse Jojo Johnson <williamsaintgeorge@gmail.com>
|
||||
Jhen-Jie Hong <iainst0409@gmail.com>
|
||||
Jiahao Li <liplus17@163.com>
|
||||
Jian Liao <jianliao@users.noreply.github.com>
|
||||
JidongZhang-THU <1119708529@qq.com>
|
||||
Jinwoo Jeong <33892306+williamjeong2@users.noreply.github.com>
|
||||
Jiří Podivín <66251151+jpodivin@users.noreply.github.com>
|
||||
Johannes Gäßler <johannesg@5d6.de>
|
||||
Johannes Rudolph <johannes.rudolph@gmail.com>
|
||||
John <78893154+cmp-nct@users.noreply.github.com>
|
||||
John Balis <phobossystems@gmail.com>
|
||||
John Smith <67539080+kingsidelee@users.noreply.github.com>
|
||||
JohnnyB <jboero@users.noreply.github.com>
|
||||
Jonas Wunderlich <32615971+jonas-w@users.noreply.github.com>
|
||||
Jorge A <161275481+jorgealias@users.noreply.github.com>
|
||||
Jose Maldonado <63384398+yukiteruamano@users.noreply.github.com>
|
||||
Joseph Stahl <1269177+josephst@users.noreply.github.com>
|
||||
Joyce <joycebrum@google.com>
|
||||
Juan Calderon-Perez <835733+gaby@users.noreply.github.com>
|
||||
Judd <foldl@users.noreply.github.com>
|
||||
Julius Arkenberg <arki05@users.noreply.github.com>
|
||||
Jun Jie <71215065+junnjiee16@users.noreply.github.com>
|
||||
Juraj Bednar <juraj@bednar.io>
|
||||
Justin Parker <jparkerweb@gmail.com>
|
||||
Justin Suess <justin.suess@westpoint.edu>
|
||||
Justine Tunney <jtunney@gmail.com>
|
||||
Juuso Alasuutari <juuso.alasuutari@gmail.com>
|
||||
KASR <karim.asrih@gmail.com>
|
||||
Kamil Tomšík <info@tomsik.cz>
|
||||
Karsten Weiss <knweiss@gmail.com>
|
||||
Karthick <j.karthic2004@gmail.com>
|
||||
Karthik Kumar Viswanathan <195178+guilt@users.noreply.github.com>
|
||||
Karthik Sethuraman <k.seth1993@gmail.com>
|
||||
Kasumi <90275229+kasumi-1@users.noreply.github.com>
|
||||
Kawrakow <48489457+ikawrakow@users.noreply.github.com>
|
||||
Keiichi Tabata <keiichi.tabata@outlook.com>
|
||||
Kenvix ⭐ <kenvixzure@live.com>
|
||||
Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com>
|
||||
Kevin Ji <1146876+kevinji@users.noreply.github.com>
|
||||
Kevin Kwok <antimatter15@gmail.com>
|
||||
Kevin Lo <kevlo@kevlo.org>
|
||||
Kolen Cheung <ickc@users.noreply.github.com>
|
||||
Konstantin Herud <konstantin.herud@denkbares.com>
|
||||
Konstantin Zhuravlyov <konstantin.zhuravlyov@amd.com>
|
||||
Kunshang Ji <kunshang.ji@intel.com>
|
||||
Kyle Liang <liangmanlai@gmail.com>
|
||||
Kyle Mistele <kyle@mistele.com>
|
||||
Kylin <56434533+KyL0N@users.noreply.github.com>
|
||||
Lars Grammel <lars.grammel@gmail.com>
|
||||
Laura <Tijntje_7@msn.com>
|
||||
Lee <44310445+lx200916@users.noreply.github.com>
|
||||
Lee Drake <b.lee.drake@gmail.com>
|
||||
Leng Yue <lengyue@lengyue.me>
|
||||
LeonEricsson <70749762+LeonEricsson@users.noreply.github.com>
|
||||
Leonardo Neumann <leonardo@neumann.dev.br>
|
||||
Li Tan <tanliboy@gmail.com>
|
||||
Linwei Wang <wanix1988@gmail.com>
|
||||
LoganDark <github@logandark.mozmail.com>
|
||||
LostRuins <39025047+LostRuins@users.noreply.github.com>
|
||||
Luciano <lucianostrika44@gmail.com>
|
||||
Luo Tian <lt@basecity.com>
|
||||
M. Yusuf Sarıgöz <yusufsarigoz@gmail.com>
|
||||
Maarten ter Huurne <maarten@treewalker.org>
|
||||
Mack Straight <eiz@users.noreply.github.com>
|
||||
Maël Kerbiriou <m431.kerbiriou@gmail.com>
|
||||
MaggotHATE <clay1326@gmail.com>
|
||||
Marc Köhlbrugge <subscriptions@marckohlbrugge.com>
|
||||
Marco Matthies <71844+marcom@users.noreply.github.com>
|
||||
Marcus Dunn <51931484+MarcusDunn@users.noreply.github.com>
|
||||
Marian Cepok <marian.cepok@gmail.com>
|
||||
Mark Fairbairn <thebaron88@gmail.com>
|
||||
Marko Tasic <mtasic85@gmail.com>
|
||||
Martin Krasser <krasserm@googlemail.com>
|
||||
Martin Schwaighofer <mschwaig@users.noreply.github.com>
|
||||
Marvin Gießing <marvin.giessing@gmail.com>
|
||||
Mateusz Charytoniuk <mateusz.charytoniuk@protonmail.com>
|
||||
Matheus C. França <matheus-catarino@hotmail.com>
|
||||
Matheus Gabriel Alves Silva <matheusgasource@gmail.com>
|
||||
Mathieu Nayrolles <MathieuNls@users.noreply.github.com>
|
||||
Mathijs de Bruin <mathijs@mathijsfietst.nl>
|
||||
Matt Clayton <156335168+mattjcly@users.noreply.github.com>
|
||||
Matt Pulver <matt.pulver@heavy.ai>
|
||||
Matteo Boschini <12133566+mbosc@users.noreply.github.com>
|
||||
Matthew Tejo <matthew.tejo@gmail.com>
|
||||
Matvey Soloviev <blackhole89@gmail.com>
|
||||
Maxime <672982+maximegmd@users.noreply.github.com>
|
||||
Maximilian Winter <maximilian.winter.91@gmail.com>
|
||||
Meng Zhang <meng@tabbyml.com>
|
||||
Meng, Hengyu <hengyu.meng@intel.com>
|
||||
Merrick Christensen <merrick.christensen@gmail.com>
|
||||
Michael Coppola <m18coppola@gmail.com>
|
||||
Michael Hueschen <m@mhueschen.dev>
|
||||
Michael Kesper <mkesper@schokokeks.org>
|
||||
Michael Klimenko <mklimenko29@gmail.com>
|
||||
Michael Podvitskiy <podvitskiymichael@gmail.com>
|
||||
Michael Potter <NanoTekGuy@Gmail.com>
|
||||
Michaël de Vries <vriesdemichael@gmail.com>
|
||||
Mihai <mihai.chirculescu@yahoo.com>
|
||||
Mike <ytianhui2004@gmail.com>
|
||||
Minsoo Cheong <54794500+mscheong01@users.noreply.github.com>
|
||||
Mirko185 <mirkosig@gmail.com>
|
||||
Mirror Azure <54669636+MirrorAzure@users.noreply.github.com>
|
||||
Miwa / Ensan <63481257+ensan-hcl@users.noreply.github.com>
|
||||
Mohammadreza Hendiani <hendiani.mohammadreza@gmail.com>
|
||||
Murilo Santana <mvrilo@gmail.com>
|
||||
Musab Gultekin <musabgultekin@users.noreply.github.com>
|
||||
Nam D. Tran <42194884+namtranase@users.noreply.github.com>
|
||||
NawafAlansari <72708095+NawafAlansari@users.noreply.github.com>
|
||||
Nebula <infinitewormhole@gmail.com>
|
||||
Neo Zhang Jianyu <jianyu.zhang@intel.com>
|
||||
Neuman Vong <neuman.vong@gmail.com>
|
||||
Nexesenex <124105151+Nexesenex@users.noreply.github.com>
|
||||
Niall Coates <1349685+Niall-@users.noreply.github.com>
|
||||
Nicolai Weitkemper <kontakt@nicolaiweitkemper.de>
|
||||
Nigel Bosch <pnigelb@gmail.com>
|
||||
Niklas Korz <niklas@niklaskorz.de>
|
||||
Nindaleth <Nindaleth@users.noreply.github.com>
|
||||
Oleksandr Nikitin <oleksandr@tvori.info>
|
||||
Oleksii Maryshchenko <oleksii.maryshchenko@gmail.com>
|
||||
Olivier Chafik <ochafik@users.noreply.github.com>
|
||||
Ondřej Čertík <ondrej@certik.us>
|
||||
Ouadie EL FAROUKI <ouadie.elfarouki@codeplay.com>
|
||||
Paul Tsochantaris <ptsochantaris@icloud.com>
|
||||
Pavol Rusnak <pavol@rusnak.io>
|
||||
Pedro Cuenca <pedro@huggingface.co>
|
||||
Peter Sugihara <peter@campsh.com>
|
||||
Phil H <5756783+phiharri@users.noreply.github.com>
|
||||
Philip Taron <philip.taron@gmail.com>
|
||||
Phillip Kravtsov <phillip@kravtsov.net>
|
||||
Pierre Alexandre SCHEMBRI <pa.schembri@gmail.com>
|
||||
Pierrick Hymbert <pierrick.hymbert@gmail.com>
|
||||
Przemysław Pawełczyk <przemoc@gmail.com>
|
||||
Qin Yue Chen <71813199+chenqiny@users.noreply.github.com>
|
||||
Qingyou Meng <meng.qingyou@gmail.com>
|
||||
Qu Zongfu <43257352+yancaoweidaode@users.noreply.github.com>
|
||||
RJ Adriaansen <adriaansen@eshcc.eur.nl>
|
||||
Radoslav Gerganov <rgerganov@gmail.com>
|
||||
Radosław Gryta <radek.gryta@gmail.com>
|
||||
Rahul Vivek Nair <68507071+RahulVivekNair@users.noreply.github.com>
|
||||
Rand Xie <randxiexyy29@gmail.com>
|
||||
Randall Fitzgerald <randall@dasaku.net>
|
||||
Reinforce-II <fate@eastal.com>
|
||||
Riceball LEE <snowyu.lee@gmail.com>
|
||||
Richard Kiss <him@richardkiss.com>
|
||||
Richard Roberson <richardr1126@gmail.com>
|
||||
Rick G <26732651+TheFlipbook@users.noreply.github.com>
|
||||
Rickard Edén <rickardeden@gmail.com>
|
||||
Rickard Hallerbäck <rickard.hallerback@gmail.com>
|
||||
Rickey Bowers Jr <bitRAKE@gmail.com>
|
||||
Riley Stewart <ristew@users.noreply.github.com>
|
||||
Rinne <AsakusaRinne@gmail.com>
|
||||
Rinne <liu_yaohui1998@126.com>
|
||||
Robert Brisita <986796+rbrisita@users.noreply.github.com>
|
||||
Robert Sung-wook Shin <edp1096@users.noreply.github.com>
|
||||
Robey Holderith <robey@flaminglunchbox.net>
|
||||
Robyn <robyngraf@users.noreply.github.com>
|
||||
Roger Meier <r.meier@siemens.com>
|
||||
Roland <14355895+rbur0425@users.noreply.github.com>
|
||||
Romain D <90720+Artefact2@users.noreply.github.com>
|
||||
Romain Neutron <romain@neutron.io>
|
||||
Roman Parykin <donderom@gmail.com>
|
||||
Ron Evans <ron@hybridgroup.com>
|
||||
Ron Jailall <rojailal@gmail.com>
|
||||
Ronny Brendel <ronnybrendel@gmail.com>
|
||||
Ronsor <ronsor@ronsor.pw>
|
||||
Rowan Hart <rowanbhart@gmail.com>
|
||||
Rune <43761327+Rune-AI@users.noreply.github.com>
|
||||
Ryan Landay <rlanday@gmail.com>
|
||||
Ryder Wishart <ryderwishart@gmail.com>
|
||||
Rőczey Barnabás <31726601+An0nie@users.noreply.github.com>
|
||||
SakuraUmi <yukinon244@gmail.com>
|
||||
Salvador E. Tropea <stropea@inti.gob.ar>
|
||||
Sam Spilsbury <smspillaz@gmail.com>
|
||||
Sami Farin <3876865+Safari77@users.noreply.github.com>
|
||||
Samuel Maynard <samwmaynard@gmail.com>
|
||||
Sang-Kil Park <sang.park@42dot.ai>
|
||||
Seb C <47074056+Sebby37@users.noreply.github.com>
|
||||
Sebastián A <sebastian.aedo29@gmail.com>
|
||||
SebastianApel <13675545+SebastianApel@users.noreply.github.com>
|
||||
Senemu <10880819+Senemu@users.noreply.github.com>
|
||||
Sergey Alirzaev <zl29ah@gmail.com>
|
||||
Sergio López <slp@sinrega.org>
|
||||
SeungWon Jeong <65549245+redlion0929@users.noreply.github.com>
|
||||
ShadovvBeast <ShadovvBeast@gmail.com>
|
||||
Shakhar Dasgupta <shakhardasgupta@gmail.com>
|
||||
Shangning Xu <32517059+xushangning@users.noreply.github.com>
|
||||
Shijie <821898965@qq.com>
|
||||
Shintarou Okada <kokuzen@gmail.com>
|
||||
Shouzheng Liu <61452103+lshzh-ww@users.noreply.github.com>
|
||||
Shouzheng Liu <lshzh.hi@gmail.com>
|
||||
Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
|
||||
Simon Willison <swillison@gmail.com>
|
||||
Siwen Yu <yusiwen@gmail.com>
|
||||
Sky Yan <skyan83@gmail.com>
|
||||
Slaren <2141330+slaren@users.noreply.github.com>
|
||||
Slava Primenko <primenko.s@gmail.com>
|
||||
SoftwareRenderer <138734813+SoftwareRenderer@users.noreply.github.com>
|
||||
Someone <sergei.kozlukov@aalto.fi>
|
||||
Someone Serge <sergei.kozlukov@aalto.fi>
|
||||
Sourab Mangrulkar <13534540+pacman100@users.noreply.github.com>
|
||||
Spencer Sutton <spencersutton@users.noreply.github.com>
|
||||
Srinivas Billa <nivibilla@gmail.com>
|
||||
Stefan Sydow <stefan@sydow.email>
|
||||
Stephan Walter <stephan@walter.name>
|
||||
Stephen Nichols <snichols@users.noreply.github.com>
|
||||
Steve Grubb <ausearch.1@gmail.com>
|
||||
Steven Roussey <sroussey@gmail.com>
|
||||
Steward Garcia <57494570+FSSRepo@users.noreply.github.com>
|
||||
Suaj Carrot <72162667+SuajCarrot@users.noreply.github.com>
|
||||
SuperUserNameMan <yoann@terminajones.com>
|
||||
Tai Duc Nguyen <taiducnguyen.drexel@gmail.com>
|
||||
Taikono-Himazin <kazu@po.harenet.ne.jp>
|
||||
Tameem <113388789+AhmadTameem@users.noreply.github.com>
|
||||
Tamotsu Takahashi <ttakah+github@gmail.com>
|
||||
Thái Hoàng Tâm <75922889+RoyalHeart@users.noreply.github.com>
|
||||
Thatcher Chamberlin <j.thatcher.c@gmail.com>
|
||||
Theia Vogel <theia@vgel.me>
|
||||
Thérence <13496987+Royalphax@users.noreply.github.com>
|
||||
Thibault Terrasson <thibault.terrasson@gmail.com>
|
||||
Thomas Klausner <wiz@gatalith.at>
|
||||
Tim Miller <drasticactions@users.noreply.github.com>
|
||||
Timmy Knight <r2d2fish@gmail.com>
|
||||
Timothy Cronin <40186632+4imothy@users.noreply.github.com>
|
||||
Ting Lou <ting.lou@gmail.com>
|
||||
Ting Sun <suntcrick@gmail.com>
|
||||
Tobias Lütke <tobi@shopify.com>
|
||||
Tom C <tom.corelis@gmail.com>
|
||||
Tom Jobbins <784313+TheBloke@users.noreply.github.com>
|
||||
Tomas <tom.tomas.36478119@gmail.com>
|
||||
Tomáš Pazdiora <tomas.pazdiora@gmail.com>
|
||||
Tristan Ross <rosscomputerguy@protonmail.com>
|
||||
Tungsten842 <886724vf@anonaddy.me>
|
||||
Tungsten842 <quantmint@protonmail.com>
|
||||
Tushar <ditsuke@protonmail.com>
|
||||
UEXTM.com <84163508+uextm@users.noreply.github.com>
|
||||
Uzo Nweke <uzoechi@gmail.com>
|
||||
Vaibhav Srivastav <vaibhavs10@gmail.com>
|
||||
Val Kharitonov <mail@kharvd.com>
|
||||
Valentin Konovalov <valle.ketsujin@gmail.com>
|
||||
Valentyn Bezshapkin <61702053+valentynbez@users.noreply.github.com>
|
||||
Victor Z. Peng <ziliangdotme@gmail.com>
|
||||
Vlad <spitfireage@gmail.com>
|
||||
Vladimir <bogdad@gmail.com>
|
||||
Vladimir Malyutin <first-leon@yandex.ru>
|
||||
Vladimir Zorin <vladimir@deviant.guru>
|
||||
Volodymyr Vitvitskyi <72226+signalpillar@users.noreply.github.com>
|
||||
WangHaoranRobin <56047610+WangHaoranRobin@users.noreply.github.com>
|
||||
Weird Constructor <weirdconstructor@gmail.com>
|
||||
Welby Seely <welbyseely@gmail.com>
|
||||
Wentai Zhang <rchardx@gmail.com>
|
||||
WillCorticesAI <150854901+WillCorticesAI@users.noreply.github.com>
|
||||
Willy Tarreau <w@1wt.eu>
|
||||
Wu Jian Ping <wujjpp@hotmail.com>
|
||||
Wu Jian Ping <wujp@greatld.com>
|
||||
Xiake Sun <xiake.sun@intel.com>
|
||||
Xiang (Kevin) Li <kevinli020508@gmail.com>
|
||||
Xiao-Yong Jin <jinxiaoyong@gmail.com>
|
||||
XiaotaoChen <chenxiaotao1234@gmail.com>
|
||||
Xiaoyi Chen <cxychina@gmail.com>
|
||||
Xingchen Song(宋星辰) <xingchensong1996@163.com>
|
||||
Xuan Son Nguyen <thichthat@gmail.com>
|
||||
Yann Follet <131855179+YannFollet@users.noreply.github.com>
|
||||
Yiming Cui <conandiy@vip.qq.com>
|
||||
Yishuo Wang <MeouSker77@outlook.com>
|
||||
Yueh-Po Peng <94939112+y10ab1@users.noreply.github.com>
|
||||
Yui <dev@sleepyyui.com>
|
||||
Yusuf Kağan Hanoğlu <hanoglu@yahoo.com>
|
||||
Yuval Peled <31162840+Yuval-Peled@users.noreply.github.com>
|
||||
ZHAOKAI WANG <sanxianwei@163.com>
|
||||
Zane Shannon <z@zcs.me>
|
||||
Zay <95888118+isaiahbjork@users.noreply.github.com>
|
||||
Zenix <zenixls2@gmail.com>
|
||||
Zhang Peiyuan <a1286225768@gmail.com>
|
||||
ZhouYuChen <zhouyuchen@naver.com>
|
||||
Ziad Ben Hadj-Alouane <zied.benhadjalouane@gmail.com>
|
||||
Ziang Wu <97337387+ZiangWu-77@users.noreply.github.com>
|
||||
Zsapi <martin1.zsapka@gmail.com>
|
||||
a-n-n-a-l-e-e <150648636+a-n-n-a-l-e-e@users.noreply.github.com>
|
||||
adel boussaken <netdur@gmail.com>
|
||||
afrideva <95653597+afrideva@users.noreply.github.com>
|
||||
akawrykow <142945436+akawrykow@users.noreply.github.com>
|
||||
alexpinel <93524949+alexpinel@users.noreply.github.com>
|
||||
alonfaraj <alonfaraj@gmail.com>
|
||||
andrijdavid <david@geek.mg>
|
||||
anon998 <131767832+anon998@users.noreply.github.com>
|
||||
anzz1 <anzz1@live.com>
|
||||
apaz <aarpazdera@gmail.com>
|
||||
apcameron <37645737+apcameron@users.noreply.github.com>
|
||||
arcrank <arcrank@gmail.com>
|
||||
arlo-phoenix <140345165+arlo-phoenix@users.noreply.github.com>
|
||||
at8u <129688334+at8u@users.noreply.github.com>
|
||||
automaticcat <daogiatuank54@gmail.com>
|
||||
bandoti <141645996+bandoti@users.noreply.github.com>
|
||||
beiller <beiller@gmail.com>
|
||||
bhubbb <79117352+bhubbb@users.noreply.github.com>
|
||||
bmwl <brian.marshall@tolko.com>
|
||||
bobqianic <129547291+bobqianic@users.noreply.github.com>
|
||||
bryanSwk <93190252+bryanSwk@users.noreply.github.com>
|
||||
bsilvereagle <bsilvereagle@users.noreply.github.com>
|
||||
bssrdf <merlintiger@hotmail.com>
|
||||
byte-6174 <88070277+byte-6174@users.noreply.github.com>
|
||||
cebtenzzre <cebtenzzre@gmail.com>
|
||||
chaihahaha <chai836275709@gmail.com>
|
||||
chiranko <96988916+chiranko@users.noreply.github.com>
|
||||
clibdev <52199778+clibdev@users.noreply.github.com>
|
||||
clyang <clyang@clyang.net>
|
||||
cocktailpeanut <121128867+cocktailpeanut@users.noreply.github.com>
|
||||
coezbek <c.oezbek@gmail.com>
|
||||
comex <comexk@gmail.com>
|
||||
compilade <113953597+compilade@users.noreply.github.com>
|
||||
crasm <crasm@git.vczf.net>
|
||||
crasm <crasm@git.vczf.us>
|
||||
daboe01 <daboe01@googlemail.com>
|
||||
david raistrick <keen99@users.noreply.github.com>
|
||||
ddpasa <112642920+ddpasa@users.noreply.github.com>
|
||||
deepdiffuser <112834445+deepdiffuser@users.noreply.github.com>
|
||||
divinity76 <divinity76@gmail.com>
|
||||
dotpy314 <33351922+dotpy314@users.noreply.github.com>
|
||||
drbh <david.richard.holtz@gmail.com>
|
||||
ds5t5 <145942675+ds5t5@users.noreply.github.com>
|
||||
dylan <canardleteer@users.noreply.github.com>
|
||||
eastriver <lee@eastriver.dev>
|
||||
ebraminio <ebraminio@gmail.com>
|
||||
eiery <19350831+eiery@users.noreply.github.com>
|
||||
eric8607242 <e0928021388@gmail.com>
|
||||
fraxy-v <65565042+fraxy-v@users.noreply.github.com>
|
||||
github-actions[bot] <github-actions[bot]@users.noreply.github.com>
|
||||
gliptic <gliptic@users.noreply.github.com>
|
||||
goerch <jhr.walter@t-online.de>
|
||||
grahameth <96447521+grahameth@users.noreply.github.com>
|
||||
gwjr <502526+gwjr@users.noreply.github.com>
|
||||
h-h-h-h <13482553+h-h-h-h@users.noreply.github.com>
|
||||
hankcs <cnhankmc@gmail.com>
|
||||
hoangmit <hoangmit@users.noreply.github.com>
|
||||
hongbo.mo <352280764@qq.com>
|
||||
howlger <eclipse@voormann.de>
|
||||
howlger <github@voormann.de>
|
||||
hutli <6594598+hutli@users.noreply.github.com>
|
||||
hutli <hutli@hutli.hu>
|
||||
hutli <jensstaermose@hotmail.com>
|
||||
hxer7963 <hxer7963@gmail.com>
|
||||
hydai <z54981220@gmail.com>
|
||||
iSma <ismail.senhaji@gmail.com>
|
||||
iacore <74560659+iacore@users.noreply.github.com>
|
||||
igarnier <igarnier@protonmail.com>
|
||||
iohub <rickyang.pro@gmail.com>
|
||||
jacobi petrucciani <8117202+jpetrucciani@users.noreply.github.com>
|
||||
jameswu2014 <545426914@qq.com>
|
||||
jneem <joeneeman@gmail.com>
|
||||
johnson442 <56517414+johnson442@users.noreply.github.com>
|
||||
jon-chuang <9093549+jon-chuang@users.noreply.github.com>
|
||||
jp-x-g <jpxg-dev@protonmail.com>
|
||||
jwj7140 <32943891+jwj7140@users.noreply.github.com>
|
||||
kaizau <kaizau@users.noreply.github.com>
|
||||
kalomaze <66376113+kalomaze@users.noreply.github.com>
|
||||
kang <tpdns9032100@gmail.com>
|
||||
katsu560 <118887472+katsu560@users.noreply.github.com>
|
||||
kchro3 <62481661+kchro3@users.noreply.github.com>
|
||||
khimaros <me@khimaros.com>
|
||||
kiltyj <kiltyj@gmail.com>
|
||||
klosax <131523366+klosax@users.noreply.github.com>
|
||||
kunal-vaishnavi <115581922+kunal-vaishnavi@users.noreply.github.com>
|
||||
kunnis <kunnis@users.noreply.github.com>
|
||||
kuronekosaiko <EvanChanJ@163.com>
|
||||
kuvaus <22169537+kuvaus@users.noreply.github.com>
|
||||
kwin1412 <42286931+kwin1412@users.noreply.github.com>
|
||||
l3utterfly <gc.pthzfoldr@gmail.com>
|
||||
ldwang <ftgreat@163.com>
|
||||
le.chang <cljs118@126.com>
|
||||
leejet <leejet714@gmail.com>
|
||||
limitedAtonement <limitedAtonement@users.noreply.github.com>
|
||||
lon <114724657+longregen@users.noreply.github.com>
|
||||
m3ndax <adrian.goessl@outlook.com>
|
||||
maddes8cht <55592906+maddes8cht@users.noreply.github.com>
|
||||
makomk <makosoft@googlemail.com>
|
||||
manikbhandari <mbbhandarimanik2@gmail.com>
|
||||
mdrokz <mohammadmunshi@gmail.com>
|
||||
mgroeber9110 <45620825+mgroeber9110@users.noreply.github.com>
|
||||
minarchist <minarchist@users.noreply.github.com>
|
||||
mj-shifu <77107165+mj-shifu@users.noreply.github.com>
|
||||
mmyjona <jonathan.gonse@gmail.com>
|
||||
momonga <115213907+mmnga@users.noreply.github.com>
|
||||
moritzbrantner <31051084+moritzbrantner@users.noreply.github.com>
|
||||
mzcu <milos.cubrilo@gmail.com>
|
||||
nanahi <130121847+na-na-hi@users.noreply.github.com>
|
||||
ngc92 <7938269+ngc92@users.noreply.github.com>
|
||||
nhamanasu <45545786+nhamanasu@users.noreply.github.com>
|
||||
niansa/tuxifan <anton-sa@web.de>
|
||||
niansa/tuxifan <tuxifan@posteo.de>
|
||||
ningshanwutuobang <ningshanwutuobang@gmail.com>
|
||||
nold <Nold360@users.noreply.github.com>
|
||||
nopperl <54780682+nopperl@users.noreply.github.com>
|
||||
nusu-github <29514220+nusu-github@users.noreply.github.com>
|
||||
olexiyb <olexiyb@gmail.com>
|
||||
oobabooga <112222186+oobabooga@users.noreply.github.com>
|
||||
opparco <parco.opaai@gmail.com>
|
||||
ostix360 <55257054+ostix360@users.noreply.github.com>
|
||||
perserk <perserk@gmail.com>
|
||||
postmasters <namnguyen@google.com>
|
||||
pudepiedj <pudepiedj@gmail.com>
|
||||
qingfengfenga <41416092+qingfengfenga@users.noreply.github.com>
|
||||
qouoq <qouoq@fastmail.com>
|
||||
qunash <anzoria@gmail.com>
|
||||
rabidcopy <rabidcopy@yahoo.com>
|
||||
rankaiyx <rankaiyx@rankaiyx.com>
|
||||
rhjdvsgsgks <26178113+rhjdvsgsgks@users.noreply.github.com>
|
||||
rhuddleston <ryan.huddleston@percona.com>
|
||||
rimoliga <53384203+rimoliga@users.noreply.github.com>
|
||||
runfuture <runfuture@users.noreply.github.com>
|
||||
sandyiscool <sandyiscool@gmail.com>
|
||||
semidark <me@semidark.net>
|
||||
sharpHL <132747147+sharpHL@users.noreply.github.com>
|
||||
shibe2 <shibe@tuta.io>
|
||||
singularity <12184989+singularity-s0@users.noreply.github.com>
|
||||
sjinzh <sjinzh@gmail.com>
|
||||
slaren <2141330+slaren@users.noreply.github.com>
|
||||
slaren <slarengh@gmail.com>
|
||||
snadampal <87143774+snadampal@users.noreply.github.com>
|
||||
staviq <staviq@gmail.com>
|
||||
stduhpf <stephduh@live.fr>
|
||||
swittk <switt1995@gmail.com>
|
||||
takov751 <40316768+takov751@users.noreply.github.com>
|
||||
tarcey <cey.tarik@gmail.com>
|
||||
texmex76 <40733439+texmex76@users.noreply.github.com>
|
||||
thement <40525767+thement@users.noreply.github.com>
|
||||
tjohnman <tjohnman@users.noreply.github.com>
|
||||
tslmy <tslmy@users.noreply.github.com>
|
||||
ubik2 <ubik2@users.noreply.github.com>
|
||||
uint256_t <konndennsa@gmail.com>
|
||||
uint256_t <maekawatoshiki1017@gmail.com>
|
||||
unbounded <haakon@likedan.net>
|
||||
valiray <133289098+valiray@users.noreply.github.com>
|
||||
vodkaslime <646329483@qq.com>
|
||||
vvhg1 <94630311+vvhg1@users.noreply.github.com>
|
||||
vxiiduu <73044267+vxiiduu@users.noreply.github.com>
|
||||
wbpxre150 <100937007+wbpxre150@users.noreply.github.com>
|
||||
whoreson <139810751+whoreson@users.noreply.github.com>
|
||||
wonjun Jang <strutive07@gmail.com>
|
||||
wzy <32936898+Freed-Wu@users.noreply.github.com>
|
||||
xaedes <xaedes@gmail.com>
|
||||
xaedes <xaedes@googlemail.com>
|
||||
xloem <0xloem@gmail.com>
|
||||
yangli2 <yangli2@gmail.com>
|
||||
yuiseki <yuiseki@gmail.com>
|
||||
zakkor <edward.partenie@gmail.com>
|
||||
zhouwg <6889919+zhouwg@users.noreply.github.com>
|
||||
zrm <trustiosity.zrm@gmail.com>
|
||||
源文雨 <41315874+fumiama@users.noreply.github.com>
|
||||
Нияз Гарифзянов <112617865+garrnizon@users.noreply.github.com>
|
||||
@@ -89,8 +89,8 @@ endif()
|
||||
option(LLAMA_ACCELERATE "llama: enable Accelerate framework" ON)
|
||||
option(LLAMA_BLAS "llama: use BLAS" OFF)
|
||||
set(LLAMA_BLAS_VENDOR "Generic" CACHE STRING "llama: BLAS library vendor")
|
||||
option(LLAMA_CUBLAS "llama: use CUDA" OFF)
|
||||
#option(LLAMA_CUDA_CUBLAS "llama: use cuBLAS for prompt processing" OFF)
|
||||
option(LLAMA_CUDA "llama: use CUDA" OFF)
|
||||
option(LLAMA_CUBLAS "llama: use CUDA (deprecated, use LLAMA_CUDA)" OFF)
|
||||
option(LLAMA_CUDA_FORCE_DMMV "llama: use dmmv instead of mmvq CUDA kernels" OFF)
|
||||
option(LLAMA_CUDA_FORCE_MMQ "llama: use mmq kernels instead of cuBLAS" OFF)
|
||||
set(LLAMA_CUDA_DMMV_X "32" CACHE STRING "llama: x stride for dmmv CUDA kernels")
|
||||
@@ -99,6 +99,7 @@ option(LLAMA_CUDA_F16 "llama: use 16 bit floats for some
|
||||
set(LLAMA_CUDA_KQUANTS_ITER "2" CACHE STRING "llama: iters./thread per block for Q2_K/Q6_K")
|
||||
set(LLAMA_CUDA_PEER_MAX_BATCH_SIZE "128" CACHE STRING
|
||||
"llama: max. batch size for using peer access")
|
||||
option(LLAMA_CUDA_NO_PEER_COPY "llama: do not use peer to peer copies" OFF)
|
||||
option(LLAMA_CURL "llama: use libcurl to download model from an URL" OFF)
|
||||
option(LLAMA_HIPBLAS "llama: use hipBLAS" OFF)
|
||||
option(LLAMA_HIP_UMA "llama: use HIP unified memory architecture" OFF)
|
||||
@@ -112,6 +113,9 @@ option(LLAMA_METAL "llama: use Metal"
|
||||
option(LLAMA_METAL_NDEBUG "llama: disable Metal debugging" OFF)
|
||||
option(LLAMA_METAL_SHADER_DEBUG "llama: compile Metal with -fno-fast-math" OFF)
|
||||
option(LLAMA_METAL_EMBED_LIBRARY "llama: embed Metal library" OFF)
|
||||
set(LLAMA_METAL_MACOSX_VERSION_MIN "" CACHE STRING
|
||||
"llama: metal minimum macOS version")
|
||||
set(LLAMA_METAL_STD "" CACHE STRING "llama: metal standard version (-std flag)")
|
||||
option(LLAMA_KOMPUTE "llama: use Kompute" OFF)
|
||||
option(LLAMA_MPI "llama: use MPI" OFF)
|
||||
option(LLAMA_QKK_64 "llama: use super-block size of 64 for k-quants" OFF)
|
||||
@@ -249,6 +253,16 @@ if (LLAMA_METAL)
|
||||
set(XC_FLAGS -O3)
|
||||
endif()
|
||||
|
||||
# Append macOS metal versioning flags
|
||||
if (LLAMA_METAL_MACOSX_VERSION_MIN)
|
||||
message(STATUS "Adding -mmacosx-version-min=${LLAMA_METAL_MACOSX_VERSION_MIN} flag to metal compilation")
|
||||
list(APPEND XC_FLAGS -mmacosx-version-min=${LLAMA_METAL_MACOSX_VERSION_MIN})
|
||||
endif()
|
||||
if (LLAMA_METAL_STD)
|
||||
message(STATUS "Adding -std=${LLAMA_METAL_STD} flag to metal compilation")
|
||||
list(APPEND XC_FLAGS -std=${LLAMA_METAL_STD})
|
||||
endif()
|
||||
|
||||
add_custom_command(
|
||||
OUTPUT ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/default.metallib
|
||||
COMMAND xcrun -sdk macosx metal ${XC_FLAGS} -c ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.metal -o ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.air
|
||||
@@ -359,18 +373,25 @@ if (LLAMA_QKK_64)
|
||||
endif()
|
||||
|
||||
if (LLAMA_CUBLAS)
|
||||
message(WARNING "LLAMA_CUBLAS is deprecated and will be removed in the future.\nUse LLAMA_CUDA instead")
|
||||
set(LLAMA_CUDA ON)
|
||||
endif()
|
||||
|
||||
if (LLAMA_CUDA)
|
||||
cmake_minimum_required(VERSION 3.17)
|
||||
|
||||
find_package(CUDAToolkit)
|
||||
if (CUDAToolkit_FOUND)
|
||||
message(STATUS "cuBLAS found")
|
||||
message(STATUS "CUDA found")
|
||||
|
||||
enable_language(CUDA)
|
||||
|
||||
set(GGML_HEADERS_CUDA ggml-cuda.h)
|
||||
set(GGML_SOURCES_CUDA ggml-cuda.cu)
|
||||
|
||||
add_compile_definitions(GGML_USE_CUBLAS)
|
||||
file(GLOB GGML_SOURCES_CUDA "ggml-cuda/*.cu")
|
||||
list(APPEND GGML_SOURCES_CUDA "ggml-cuda.cu")
|
||||
|
||||
add_compile_definitions(GGML_USE_CUDA)
|
||||
if (LLAMA_CUDA_FORCE_DMMV)
|
||||
add_compile_definitions(GGML_CUDA_FORCE_DMMV)
|
||||
endif()
|
||||
@@ -387,6 +408,9 @@ if (LLAMA_CUBLAS)
|
||||
endif()
|
||||
add_compile_definitions(K_QUANTS_PER_ITERATION=${LLAMA_CUDA_KQUANTS_ITER})
|
||||
add_compile_definitions(GGML_CUDA_PEER_MAX_BATCH_SIZE=${LLAMA_CUDA_PEER_MAX_BATCH_SIZE})
|
||||
if (LLAMA_CUDA_NO_PEER_COPY)
|
||||
add_compile_definitions(GGML_CUDA_NO_PEER_COPY)
|
||||
endif()
|
||||
|
||||
if (LLAMA_STATIC)
|
||||
if (WIN32)
|
||||
@@ -416,7 +440,7 @@ if (LLAMA_CUBLAS)
|
||||
message(STATUS "Using CUDA architectures: ${CMAKE_CUDA_ARCHITECTURES}")
|
||||
|
||||
else()
|
||||
message(WARNING "cuBLAS not found")
|
||||
message(WARNING "CUDA not found")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
@@ -515,9 +539,11 @@ if (LLAMA_HIPBLAS)
|
||||
message(STATUS "HIP and hipBLAS found")
|
||||
|
||||
set(GGML_HEADERS_ROCM ggml-cuda.h)
|
||||
set(GGML_SOURCES_ROCM ggml-cuda.cu)
|
||||
|
||||
add_compile_definitions(GGML_USE_HIPBLAS GGML_USE_CUBLAS)
|
||||
file(GLOB GGML_SOURCES_ROCM "ggml-cuda/*.cu")
|
||||
list(APPEND GGML_SOURCES_ROCM "ggml-cuda.cu")
|
||||
|
||||
add_compile_definitions(GGML_USE_HIPBLAS GGML_USE_CUDA)
|
||||
|
||||
if (LLAMA_HIP_UMA)
|
||||
add_compile_definitions(GGML_HIP_UMA)
|
||||
@@ -531,11 +557,15 @@ if (LLAMA_HIPBLAS)
|
||||
add_compile_definitions(GGML_CUDA_FORCE_MMQ)
|
||||
endif()
|
||||
|
||||
if (LLAMA_CUDA_NO_PEER_COPY)
|
||||
add_compile_definitions(GGML_CUDA_NO_PEER_COPY)
|
||||
endif()
|
||||
|
||||
add_compile_definitions(GGML_CUDA_DMMV_X=${LLAMA_CUDA_DMMV_X})
|
||||
add_compile_definitions(GGML_CUDA_MMV_Y=${LLAMA_CUDA_MMV_Y})
|
||||
add_compile_definitions(K_QUANTS_PER_ITERATION=${LLAMA_CUDA_KQUANTS_ITER})
|
||||
|
||||
set_source_files_properties(ggml-cuda.cu PROPERTIES LANGUAGE CXX)
|
||||
set_source_files_properties(${GGML_SOURCES_ROCM} PROPERTIES LANGUAGE CXX)
|
||||
|
||||
if (LLAMA_STATIC)
|
||||
message(FATAL_ERROR "Static linking not supported for HIP/ROCm")
|
||||
@@ -818,7 +848,7 @@ endif()
|
||||
|
||||
set(CUDA_CXX_FLAGS "")
|
||||
|
||||
if (LLAMA_CUBLAS)
|
||||
if (LLAMA_CUDA)
|
||||
set(CUDA_FLAGS -use_fast_math)
|
||||
|
||||
if (LLAMA_FATAL_WARNINGS)
|
||||
@@ -1043,7 +1073,7 @@ endif()
|
||||
add_compile_options("$<$<COMPILE_LANGUAGE:CXX>:${ARCH_FLAGS}>")
|
||||
add_compile_options("$<$<COMPILE_LANGUAGE:C>:${ARCH_FLAGS}>")
|
||||
|
||||
if (LLAMA_CUBLAS)
|
||||
if (LLAMA_CUDA)
|
||||
list(APPEND CUDA_CXX_FLAGS ${ARCH_FLAGS})
|
||||
list(JOIN CUDA_CXX_FLAGS " " CUDA_CXX_FLAGS_JOINED) # pass host compiler flags as a single argument
|
||||
if (NOT CUDA_CXX_FLAGS_JOINED STREQUAL "")
|
||||
@@ -1153,6 +1183,7 @@ add_library(llama
|
||||
llama.h
|
||||
unicode.h
|
||||
unicode.cpp
|
||||
unicode-data.cpp
|
||||
)
|
||||
|
||||
target_include_directories(llama PUBLIC .)
|
||||
@@ -1248,6 +1279,12 @@ if (LLAMA_METAL)
|
||||
GROUP_READ
|
||||
WORLD_READ
|
||||
DESTINATION ${CMAKE_INSTALL_BINDIR})
|
||||
if (NOT LLAMA_METAL_EMBED_LIBRARY)
|
||||
install(
|
||||
FILES ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/default.metallib
|
||||
DESTINATION ${CMAKE_INSTALL_BINDIR}
|
||||
)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
#
|
||||
|
||||
2
LICENSE
2
LICENSE
@@ -1,6 +1,6 @@
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2023 Georgi Gerganov
|
||||
Copyright (c) 2023-2024 The ggml authors
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
|
||||
111
Makefile
111
Makefile
@@ -1,15 +1,16 @@
|
||||
# Define the default target now so that it is always the first target
|
||||
BUILD_TARGETS = \
|
||||
main quantize quantize-stats perplexity imatrix embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml \
|
||||
simple batched batched-bench save-load-state server gguf llama-bench libllava.a llava-cli baby-llama beam-search \
|
||||
speculative infill tokenize benchmark-matmult parallel finetune export-lora lookahead lookup passkey gritlm tests/test-c.o
|
||||
simple batched batched-bench save-load-state server gguf gguf-split llama-bench libllava.a llava-cli baby-llama beam-search \
|
||||
retrieval speculative infill tokenize benchmark-matmult parallel finetune export-lora lookahead lookup passkey gritlm tests/test-c.o
|
||||
|
||||
# Binaries only useful for tests
|
||||
TEST_TARGETS = \
|
||||
tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt \
|
||||
tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama \
|
||||
tests/test-tokenizer-0-falcon tests/test-tokenizer-1-llama tests/test-tokenizer-1-bpe tests/test-rope \
|
||||
tests/test-backend-ops tests/test-model-load-cancel tests/test-autorelease
|
||||
tests/test-backend-ops tests/test-model-load-cancel tests/test-autorelease \
|
||||
tests/test-json-schema-to-grammar tests/test-grammar-integration
|
||||
|
||||
# Code coverage output files
|
||||
COV_TARGETS = *.gcno tests/*.gcno *.gcda tests/*.gcda *.gcov tests/*.gcov lcov-report gcovr-report
|
||||
@@ -389,14 +390,20 @@ ifdef LLAMA_BLIS
|
||||
endif # LLAMA_BLIS
|
||||
|
||||
ifdef LLAMA_CUBLAS
|
||||
# LLAMA_CUBLAS is deprecated and will be removed in the future
|
||||
LLAMA_CUDA := 1
|
||||
endif
|
||||
|
||||
ifdef LLAMA_CUDA
|
||||
ifneq ('', '$(wildcard /opt/cuda)')
|
||||
CUDA_PATH ?= /opt/cuda
|
||||
else
|
||||
CUDA_PATH ?= /usr/local/cuda
|
||||
endif
|
||||
MK_CPPFLAGS += -DGGML_USE_CUBLAS -I$(CUDA_PATH)/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include
|
||||
MK_CPPFLAGS += -DGGML_USE_CUDA -I$(CUDA_PATH)/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include
|
||||
MK_LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L$(CUDA_PATH)/lib64 -L/usr/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib -L/usr/lib/wsl/lib
|
||||
OBJS += ggml-cuda.o
|
||||
OBJS += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/*.cu))
|
||||
MK_NVCCFLAGS += -use_fast_math
|
||||
ifdef LLAMA_FATAL_WARNINGS
|
||||
MK_NVCCFLAGS += -Werror all-warnings
|
||||
@@ -451,19 +458,30 @@ ifdef LLAMA_CUDA_PEER_MAX_BATCH_SIZE
|
||||
else
|
||||
MK_NVCCFLAGS += -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128
|
||||
endif # LLAMA_CUDA_PEER_MAX_BATCH_SIZE
|
||||
#ifdef LLAMA_CUDA_CUBLAS
|
||||
# MK_NVCCFLAGS += -DGGML_CUDA_CUBLAS
|
||||
#endif # LLAMA_CUDA_CUBLAS
|
||||
ifdef LLAMA_CUDA_NO_PEER_COPY
|
||||
MK_NVCCFLAGS += -DGGML_CUDA_NO_PEER_COPY
|
||||
endif # LLAMA_CUDA_NO_PEER_COPY
|
||||
ifdef LLAMA_CUDA_CCBIN
|
||||
MK_NVCCFLAGS += -ccbin $(LLAMA_CUDA_CCBIN)
|
||||
endif
|
||||
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h ggml-common.h
|
||||
|
||||
ifdef JETSON_EOL_MODULE_DETECT
|
||||
$(NVCC) -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/usr/local/cuda/targets/aarch64-linux/include -std=c++11 -O3 $(NVCCFLAGS) $(CPPFLAGS) -Xcompiler "$(CUDA_CXXFLAGS)" -c $< -o $@
|
||||
define NVCC_COMPILE
|
||||
$(NVCC) -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUDA -I/usr/local/cuda/include -I/opt/cuda/include -I/usr/local/cuda/targets/aarch64-linux/include -std=c++11 -O3 $(NVCCFLAGS) $(CPPFLAGS) -Xcompiler "$(CUDA_CXXFLAGS)" -c $< -o $@
|
||||
endef # NVCC_COMPILE
|
||||
else
|
||||
define NVCC_COMPILE
|
||||
$(NVCC) $(NVCCFLAGS) $(CPPFLAGS) -Xcompiler "$(CUDA_CXXFLAGS)" -c $< -o $@
|
||||
endef # NVCC_COMPILE
|
||||
endif # JETSON_EOL_MODULE_DETECT
|
||||
endif # LLAMA_CUBLAS
|
||||
|
||||
ggml-cuda/%.o: ggml-cuda/%.cu ggml-cuda/%.cuh ggml.h ggml-common.h ggml-cuda/common.cuh
|
||||
$(NVCC_COMPILE)
|
||||
|
||||
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h ggml.h ggml-backend.h ggml-backend-impl.h ggml-common.h $(wildcard ggml-cuda/*.cuh)
|
||||
$(NVCC_COMPILE)
|
||||
|
||||
endif # LLAMA_CUDA
|
||||
|
||||
ifdef LLAMA_CLBLAST
|
||||
|
||||
@@ -509,7 +527,6 @@ ggml-vulkan.o: ggml-vulkan.cpp ggml-vulkan.h
|
||||
endif # LLAMA_VULKAN
|
||||
|
||||
ifdef LLAMA_HIPBLAS
|
||||
|
||||
ifeq ($(wildcard /opt/rocm),)
|
||||
ROCM_PATH ?= /usr
|
||||
GPU_TARGETS ?= $(shell $(shell which amdgpu-arch))
|
||||
@@ -521,7 +538,7 @@ ifdef LLAMA_HIPBLAS
|
||||
LLAMA_CUDA_DMMV_X ?= 32
|
||||
LLAMA_CUDA_MMV_Y ?= 1
|
||||
LLAMA_CUDA_KQUANTS_ITER ?= 2
|
||||
MK_CPPFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUBLAS
|
||||
MK_CPPFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUDA
|
||||
ifdef LLAMA_HIP_UMA
|
||||
MK_CPPFLAGS += -DGGML_HIP_UMA
|
||||
endif # LLAMA_HIP_UMA
|
||||
@@ -534,9 +551,18 @@ endif # LLAMA_HIP_UMA
|
||||
ifdef LLAMA_CUDA_FORCE_DMMV
|
||||
HIPFLAGS += -DGGML_CUDA_FORCE_DMMV
|
||||
endif # LLAMA_CUDA_FORCE_DMMV
|
||||
ifdef LLAMA_CUDA_NO_PEER_COPY
|
||||
HIPFLAGS += -DGGML_CUDA_NO_PEER_COPY
|
||||
endif # LLAMA_CUDA_NO_PEER_COPY
|
||||
OBJS += ggml-cuda.o
|
||||
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
|
||||
OBJS += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/*.cu))
|
||||
|
||||
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h ggml.h ggml-backend.h ggml-backend-impl.h ggml-common.h $(wildcard ggml-cuda/*.cuh)
|
||||
$(HIPCC) $(CXXFLAGS) $(HIPFLAGS) -x hip -c -o $@ $<
|
||||
|
||||
ggml-cuda/%.o: ggml-cuda/%.cu ggml-cuda/%.cuh ggml.h ggml-common.h ggml-cuda/common.cuh
|
||||
$(HIPCC) $(CXXFLAGS) $(HIPFLAGS) -x hip -c -o $@ $<
|
||||
|
||||
endif # LLAMA_HIPBLAS
|
||||
|
||||
ifdef LLAMA_METAL
|
||||
@@ -589,7 +615,7 @@ override NVCCFLAGS := $(MK_NVCCFLAGS) $(NVCCFLAGS)
|
||||
override LDFLAGS := $(MK_LDFLAGS) $(LDFLAGS)
|
||||
|
||||
# identify CUDA host compiler
|
||||
ifdef LLAMA_CUBLAS
|
||||
ifdef LLAMA_CUDA
|
||||
GF_CC := $(NVCC) $(NVCCFLAGS) 2>/dev/null .c -Xcompiler
|
||||
include scripts/get-flags.mk
|
||||
CUDA_CXXFLAGS := $(BASE_CXXFLAGS) $(GF_CXXFLAGS) -Wno-pedantic
|
||||
@@ -614,7 +640,7 @@ $(info I NVCCFLAGS: $(NVCCFLAGS))
|
||||
$(info I LDFLAGS: $(LDFLAGS))
|
||||
$(info I CC: $(shell $(CC) --version | head -n 1))
|
||||
$(info I CXX: $(shell $(CXX) --version | head -n 1))
|
||||
ifdef LLAMA_CUBLAS
|
||||
ifdef LLAMA_CUDA
|
||||
$(info I NVCC: $(shell $(NVCC) --version | tail -n 1))
|
||||
CUDA_VERSION := $(shell $(NVCC) --version | grep -oP 'release (\K[0-9]+\.[0-9])')
|
||||
ifeq ($(shell awk -v "v=$(CUDA_VERSION)" 'BEGIN { print (v < 11.7) }'),1)
|
||||
@@ -624,9 +650,16 @@ $(error I ERROR: For CUDA versions < 11.7 a target CUDA architecture must be exp
|
||||
endif # CUDA_POWER_ARCH
|
||||
endif # CUDA_DOCKER_ARCH
|
||||
endif # eq ($(shell echo "$(CUDA_VERSION) < 11.7" | bc),1)
|
||||
endif # LLAMA_CUBLAS
|
||||
endif # LLAMA_CUDA
|
||||
$(info )
|
||||
|
||||
ifdef LLAMA_CUBLAS
|
||||
$(info !!!!)
|
||||
$(info LLAMA_CUBLAS is deprecated and will be removed in the future. Use LLAMA_CUDA instead.)
|
||||
$(info !!!!)
|
||||
$(info )
|
||||
endif
|
||||
|
||||
#
|
||||
# Build library
|
||||
#
|
||||
@@ -646,7 +679,10 @@ ggml-quants.o: ggml-quants.c ggml.h ggml-quants.h ggml-common.h
|
||||
unicode.o: unicode.cpp unicode.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
OBJS += ggml-alloc.o ggml-backend.o ggml-quants.o unicode.o
|
||||
unicode-data.o: unicode-data.cpp unicode-data.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
OBJS += ggml-alloc.o ggml-backend.o ggml-quants.o unicode.o unicode-data.o
|
||||
|
||||
llama.o: llama.cpp unicode.h ggml.h ggml-alloc.h ggml-backend.h ggml-cuda.h ggml-metal.h llama.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
@@ -666,9 +702,15 @@ console.o: common/console.cpp common/console.h
|
||||
grammar-parser.o: common/grammar-parser.cpp common/grammar-parser.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
json-schema-to-grammar.o: common/json-schema-to-grammar.cpp common/json-schema-to-grammar.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
train.o: common/train.cpp common/train.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
ngram-cache.o: common/ngram-cache.cpp common/ngram-cache.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
libllama.so: llama.o ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS)
|
||||
|
||||
@@ -676,7 +718,8 @@ libllama.a: llama.o ggml.o $(OBJS) $(COMMON_DEPS)
|
||||
ar rcs libllama.a llama.o ggml.o $(OBJS) $(COMMON_DEPS)
|
||||
|
||||
clean:
|
||||
rm -vrf *.o tests/*.o *.so *.a *.dll benchmark-matmult common/build-info.cpp *.dot $(COV_TARGETS) $(BUILD_TARGETS) $(TEST_TARGETS)
|
||||
rm -vrf *.o tests/*.o *.so *.a *.dll benchmark-matmult lookup-create lookup-merge lookup-stats common/build-info.cpp *.dot $(COV_TARGETS) $(BUILD_TARGETS) $(TEST_TARGETS)
|
||||
rm -vrf ggml-cuda/*.o
|
||||
find examples pocs -type f -name "*.o" -delete
|
||||
|
||||
#
|
||||
@@ -745,7 +788,7 @@ save-load-state: examples/save-load-state/save-load-state.cpp ggml.o llama.o $(C
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
server: examples/server/server.cpp examples/server/utils.hpp examples/server/httplib.h examples/server/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp common/stb_image.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
|
||||
server: examples/server/server.cpp examples/server/utils.hpp examples/server/httplib.h common/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp json-schema-to-grammar.o common/stb_image.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h %.hpp $<,$^) -Iexamples/server $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(LWINSOCK2)
|
||||
|
||||
@@ -753,6 +796,10 @@ gguf: examples/gguf/gguf.cpp ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
gguf-split: examples/gguf-split/gguf-split.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
@@ -790,6 +837,10 @@ export-lora: examples/export-lora/export-lora.cpp ggml.o common/common.h $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
retrieval: examples/retrieval/retrieval.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
speculative: examples/speculative/speculative.cpp ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
@@ -802,11 +853,21 @@ lookahead: examples/lookahead/lookahead.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
lookup: examples/lookup/lookup.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
lookup: examples/lookup/lookup.cpp ggml.o llama.o ngram-cache.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c examples/lookup/lookup-create.cpp -o $(call GET_OBJ_FILE, examples/lookup/lookup-create.cpp)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, examples/lookup/lookup-create.cpp) -o lookup-create $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c examples/lookup/lookup-merge.cpp -o $(call GET_OBJ_FILE, examples/lookup/lookup-merge.cpp)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, examples/lookup/lookup-merge.cpp) -o lookup-merge $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) -c examples/lookup/lookup-stats.cpp -o $(call GET_OBJ_FILE, examples/lookup/lookup-stats.cpp)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, examples/lookup/lookup-stats.cpp) -o lookup-stats $(LDFLAGS)
|
||||
|
||||
passkey: examples/passkey/passkey.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
passkey: examples/passkey/passkey.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
gbnf-validator: examples/gbnf-validator/gbnf-validator.cpp ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
@@ -857,10 +918,18 @@ tests/test-grammar-parser: tests/test-grammar-parser.cpp ggml.o llama.o grammar-
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-grammar-integration: tests/test-grammar-integration.cpp ggml.o llama.o grammar-parser.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-double-float: tests/test-double-float.cpp ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-json-schema-to-grammar: tests/test-json-schema-to-grammar.cpp json-schema-to-grammar.o ggml.o llama.o grammar-parser.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -Iexamples/server -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-grad0: tests/test-grad0.cpp ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
@@ -32,6 +32,7 @@ let package = Package(
|
||||
"ggml.c",
|
||||
"llama.cpp",
|
||||
"unicode.cpp",
|
||||
"unicode-data.cpp",
|
||||
"ggml-alloc.c",
|
||||
"ggml-backend.c",
|
||||
"ggml-quants.c",
|
||||
|
||||
549
README-sycl.md
549
README-sycl.md
@@ -3,7 +3,7 @@
|
||||
- [Background](#background)
|
||||
- [News](#news)
|
||||
- [OS](#os)
|
||||
- [Intel GPU](#intel-gpu)
|
||||
- [Hardware](#hardware)
|
||||
- [Docker](#docker)
|
||||
- [Linux](#linux)
|
||||
- [Windows](#windows)
|
||||
@@ -14,21 +14,32 @@
|
||||
|
||||
## Background
|
||||
|
||||
SYCL is a higher-level programming model to improve programming productivity on various hardware accelerators—such as CPUs, GPUs, and FPGAs. It is a single-source embedded domain-specific language based on pure C++17.
|
||||
**SYCL** is a high-level parallel programming model designed to improve developers productivity writing code across various hardware accelerators such as CPUs, GPUs, and FPGAs. It is a single-source language designed for heterogeneous computing and based on standard C++17.
|
||||
|
||||
oneAPI is a specification that is open and standards-based, supporting multiple architecture types including but not limited to GPU, CPU, and FPGA. The spec has both direct programming and API-based programming paradigms.
|
||||
**oneAPI** is an open ecosystem and a standard-based specification, supporting multiple architectures including but not limited to intel CPUs, GPUs and FPGAs. The key components of the oneAPI ecosystem include:
|
||||
|
||||
Intel uses the SYCL as direct programming language to support CPU, GPUs and FPGAs.
|
||||
- **DPCPP** *(Data Parallel C++)*: The primary oneAPI SYCL implementation, which includes the icpx/icx Compilers.
|
||||
- **oneAPI Libraries**: A set of highly optimized libraries targeting multiple domains *(e.g. oneMKL - Math Kernel Library)*.
|
||||
- **oneAPI LevelZero**: A high performance low level interface for fine-grained control over intel iGPUs and dGPUs.
|
||||
- **Nvidia & AMD Plugins**: These are plugins extending oneAPI's DPCPP support to SYCL on Nvidia and AMD GPU targets.
|
||||
|
||||
To avoid to re-invent the wheel, this code refer other code paths in llama.cpp (like OpenBLAS, cuBLAS, CLBlast). We use a open-source tool [SYCLomatic](https://github.com/oneapi-src/SYCLomatic) (Commercial release [Intel® DPC++ Compatibility Tool](https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html)) migrate to SYCL.
|
||||
### Llama.cpp + SYCL
|
||||
|
||||
The llama.cpp for SYCL is used to support Intel GPUs.
|
||||
The llama.cpp SYCL backend is designed to support **Intel GPU** firstly. Based on the cross-platform feature of SYCL, it could support other vendor GPUs: Nvidia GPU (*AMD GPU coming*).
|
||||
|
||||
For Intel CPU, recommend to use llama.cpp for X86 (Intel MKL building).
|
||||
When targeting **Intel CPU**, it is recommended to use llama.cpp for [Intel oneMKL](README.md#intel-onemkl) backend.
|
||||
|
||||
It has the similar design of other llama.cpp BLAS-based paths such as *OpenBLAS, cuBLAS, CLBlast etc..*. In beginning work, the oneAPI's [SYCLomatic](https://github.com/oneapi-src/SYCLomatic) open-source migration tool (Commercial release [Intel® DPC++ Compatibility Tool](https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html)) was used for this purpose.
|
||||
|
||||
## News
|
||||
|
||||
- 2024.4
|
||||
- Support data types: GGML_TYPE_IQ4_NL, GGML_TYPE_IQ4_XS, GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ3_S, GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M.
|
||||
|
||||
- 2024.3
|
||||
- Release binary files of Windows.
|
||||
- A blog is published: **Run LLM on all Intel GPUs Using llama.cpp**: [intel.com](https://www.intel.com/content/www/us/en/developer/articles/technical/run-llm-on-all-gpus-using-llama-cpp-artical.html) or [medium.com](https://medium.com/@jianyu_neo/run-llm-on-all-intel-gpus-using-llama-cpp-fd2e2dcbd9bd).
|
||||
- New base line is ready: [tag b2437](https://github.com/ggerganov/llama.cpp/tree/b2437).
|
||||
- Support multiple cards: **--split-mode**: [none|layer]; not support [row], it's on developing.
|
||||
- Support to assign main GPU by **--main-gpu**, replace $GGML_SYCL_DEVICE.
|
||||
- Support detecting all GPUs with level-zero and same top **Max compute units**.
|
||||
@@ -49,9 +60,11 @@ For Intel CPU, recommend to use llama.cpp for X86 (Intel MKL building).
|
||||
|Windows|Support|Windows 11|
|
||||
|
||||
|
||||
## Intel GPU
|
||||
## Hardware
|
||||
|
||||
### Verified
|
||||
### Intel GPU
|
||||
|
||||
**Verified devices**
|
||||
|
||||
|Intel GPU| Status | Verified Model|
|
||||
|-|-|-|
|
||||
@@ -61,285 +74,338 @@ For Intel CPU, recommend to use llama.cpp for X86 (Intel MKL building).
|
||||
|Intel built-in Arc GPU| Support| built-in Arc GPU in Meteor Lake|
|
||||
|Intel iGPU| Support| iGPU in i5-1250P, i7-1260P, i7-1165G7|
|
||||
|
||||
Note: If the EUs (Execution Unit) in iGPU is less than 80, the inference speed will be too slow to use.
|
||||
*Notes:*
|
||||
|
||||
### Memory
|
||||
- **Memory**
|
||||
- The device memory is a limitation when running a large model. The loaded model size, *`llm_load_tensors: buffer_size`*, is displayed in the log when running `./bin/main`.
|
||||
|
||||
The memory is a limitation to run LLM on GPUs.
|
||||
- Please make sure the GPU shared memory from the host is large enough to account for the model's size. For e.g. the *llama-2-7b.Q4_0* requires at least 8.0GB for integrated GPU and 4.0GB for discrete GPU.
|
||||
|
||||
When run llama.cpp, there is print log to show the applied memory on GPU. You could know how much memory to be used in your case. Like `llm_load_tensors: buffer size = 3577.56 MiB`.
|
||||
- **Execution Unit (EU)**
|
||||
- If the iGPU has less than 80 EUs, the inference speed will likely be too slow for practical use.
|
||||
|
||||
For iGPU, please make sure the shared memory from host memory is enough. For llama-2-7b.Q4_0, recommend the host memory is 8GB+.
|
||||
### Nvidia GPU
|
||||
The BLAS acceleration on Nvidia GPU through oneAPI can be obtained using the Nvidia plugins for oneAPI and the cuBLAS backend of the upstream oneMKL library. Details and instructions on how to setup the runtime and library can be found in [this section](#i-setup-environment)
|
||||
|
||||
For dGPU, please make sure the device memory is enough. For llama-2-7b.Q4_0, recommend the device memory is 4GB+.
|
||||
**Verified devices**
|
||||
|
||||
## Nvidia GPU
|
||||
|
||||
### Verified
|
||||
|
||||
|Intel GPU| Status | Verified Model|
|
||||
|Nvidia GPU| Status | Verified Model|
|
||||
|-|-|-|
|
||||
|Ampere Series| Support| A100|
|
||||
|Ampere Series| Support| A100, A4000|
|
||||
|Ampere Series *(Mobile)*| Support| RTX 40 Series|
|
||||
|
||||
### oneMKL
|
||||
*Notes:*
|
||||
- Support for Nvidia targets through oneAPI is currently limited to Linux platforms.
|
||||
|
||||
The current oneMKL release does not contain the oneMKL cuBlas backend.
|
||||
As a result for Nvidia GPU's oneMKL must be built from source.
|
||||
- Please make sure the native oneAPI MKL *(dedicated to intel CPUs and GPUs)* is not "visible" at this stage to properly setup and use the built-from-source oneMKL with cuBLAS backend in llama.cpp for Nvidia GPUs.
|
||||
|
||||
```
|
||||
git clone https://github.com/oneapi-src/oneMKL
|
||||
cd oneMKL
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -G Ninja .. -DCMAKE_CXX_COMPILER=icpx -DCMAKE_C_COMPILER=icx -DENABLE_MKLGPU_BACKEND=OFF -DENABLE_MKLCPU_BACKEND=OFF -DENABLE_CUBLAS_BACKEND=ON
|
||||
ninja
|
||||
// Add paths as necessary
|
||||
```
|
||||
|
||||
## Docker
|
||||
|
||||
Note:
|
||||
- Only docker on Linux is tested. Docker on WSL may not work.
|
||||
- You may need to install Intel GPU driver on the host machine (See the [Linux](#linux) section to know how to do that)
|
||||
|
||||
### Build the image
|
||||
|
||||
You can choose between **F16** and **F32** build. F16 is faster for long-prompt inference.
|
||||
|
||||
|
||||
The docker build option is currently limited to *intel GPU* targets.
|
||||
### Build image
|
||||
```sh
|
||||
# For F16:
|
||||
#docker build -t llama-cpp-sycl --build-arg="LLAMA_SYCL_F16=ON" -f .devops/main-intel.Dockerfile .
|
||||
|
||||
# Or, for F32:
|
||||
docker build -t llama-cpp-sycl -f .devops/main-intel.Dockerfile .
|
||||
|
||||
# Note: you can also use the ".devops/main-server.Dockerfile", which compiles the "server" example
|
||||
# Using FP16
|
||||
docker build -t llama-cpp-sycl --build-arg="LLAMA_SYCL_F16=ON" -f .devops/main-intel.Dockerfile .
|
||||
```
|
||||
|
||||
### Run
|
||||
*Notes*:
|
||||
|
||||
To build in default FP32 *(Slower than FP16 alternative)*, you can remove the `--build-arg="LLAMA_SYCL_F16=ON"` argument from the previous command.
|
||||
|
||||
You can also use the `.devops/server-intel.Dockerfile`, which builds the *"server"* alternative.
|
||||
|
||||
### Run container
|
||||
|
||||
```sh
|
||||
# Firstly, find all the DRI cards:
|
||||
# First, find all the DRI cards
|
||||
ls -la /dev/dri
|
||||
# Then, pick the card that you want to use.
|
||||
|
||||
# For example with "/dev/dri/card1"
|
||||
# Then, pick the card that you want to use (here for e.g. /dev/dri/card1).
|
||||
docker run -it --rm -v "$(pwd):/app:Z" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card1:/dev/dri/card1 llama-cpp-sycl -m "/app/models/YOUR_MODEL_FILE" -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33
|
||||
```
|
||||
|
||||
*Notes:*
|
||||
- Docker has been tested successfully on native Linux. WSL support has not been verified yet.
|
||||
- You may need to install Intel GPU driver on the **host** machine *(Please refer to the [Linux configuration](#linux) for details)*.
|
||||
|
||||
## Linux
|
||||
|
||||
### Setup Environment
|
||||
### I. Setup Environment
|
||||
|
||||
1. Install Intel GPU driver.
|
||||
1. **Install GPU drivers**
|
||||
|
||||
a. Please install Intel GPU driver by official guide: [Install GPU Drivers](https://dgpu-docs.intel.com/driver/installation.html).
|
||||
- **Intel GPU**
|
||||
|
||||
Note: for iGPU, please install the client GPU driver.
|
||||
Intel data center GPUs drivers installation guide and download page can be found here: [Get intel dGPU Drivers](https://dgpu-docs.intel.com/driver/installation.html#ubuntu-install-steps).
|
||||
|
||||
b. Add user to group: video, render.
|
||||
*Note*: for client GPUs *(iGPU & Arc A-Series)*, please refer to the [client iGPU driver installation](https://dgpu-docs.intel.com/driver/client/overview.html).
|
||||
|
||||
Once installed, add the user(s) to the `video` and `render` groups.
|
||||
|
||||
```sh
|
||||
sudo usermod -aG render username
|
||||
sudo usermod -aG video username
|
||||
sudo usermod -aG render $USER
|
||||
sudo usermod -aG video $USER
|
||||
```
|
||||
|
||||
Note: re-login to enable it.
|
||||
*Note*: logout/re-login for the changes to take effect.
|
||||
|
||||
c. Check
|
||||
Verify installation through `clinfo`:
|
||||
|
||||
```sh
|
||||
sudo apt install clinfo
|
||||
sudo clinfo -l
|
||||
```
|
||||
|
||||
Output (example):
|
||||
Sample output:
|
||||
|
||||
```
|
||||
```sh
|
||||
Platform #0: Intel(R) OpenCL Graphics
|
||||
`-- Device #0: Intel(R) Arc(TM) A770 Graphics
|
||||
|
||||
|
||||
Platform #0: Intel(R) OpenCL HD Graphics
|
||||
`-- Device #0: Intel(R) Iris(R) Xe Graphics [0x9a49]
|
||||
```
|
||||
|
||||
2. Install Intel® oneAPI Base toolkit.
|
||||
- **Nvidia GPU**
|
||||
|
||||
a. Please follow the procedure in [Get the Intel® oneAPI Base Toolkit ](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html).
|
||||
In order to target Nvidia GPUs through SYCL, please make sure the CUDA/CUBLAS native requirements *-found [here](README.md#cublas)-* are installed.
|
||||
Installation can be verified by running the following:
|
||||
```sh
|
||||
nvidia-smi
|
||||
```
|
||||
Please make sure at least one CUDA device is available, which can be displayed like this *(here an A100-40GB Nvidia GPU)*:
|
||||
```
|
||||
+---------------------------------------------------------------------------------------+
|
||||
| NVIDIA-SMI 535.54.03 Driver Version: 535.54.03 CUDA Version: 12.2 |
|
||||
|-----------------------------------------+----------------------+----------------------+
|
||||
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
|
||||
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
|
||||
| | | MIG M. |
|
||||
|=========================================+======================+======================|
|
||||
| 0 NVIDIA A100-PCIE-40GB On | 00000000:8D:00.0 Off | 0 |
|
||||
| N/A 36C P0 57W / 250W | 4MiB / 40960MiB | 0% Default |
|
||||
| | | Disabled |
|
||||
+-----------------------------------------+----------------------+----------------------+
|
||||
```
|
||||
|
||||
Recommend to install to default folder: **/opt/intel/oneapi**.
|
||||
|
||||
Following guide use the default folder as example. If you use other folder, please modify the following guide info with your folder.
|
||||
2. **Install Intel® oneAPI Base toolkit**
|
||||
|
||||
b. Check
|
||||
- **Base installation**
|
||||
|
||||
The base toolkit can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page.
|
||||
|
||||
Please follow the instructions for downloading and installing the Toolkit for Linux, and preferably keep the default installation values unchanged, notably the installation path *(`/opt/intel/oneapi` by default)*.
|
||||
|
||||
Following guidelines/code snippets assume the default installation values. Otherwise, please make sure the necessary changes are reflected where applicable.
|
||||
|
||||
Upon a successful installation, SYCL is enabled for the available intel devices, along with relevant libraries such as oneAPI MKL for intel GPUs.
|
||||
|
||||
- **Adding support to Nvidia GPUs**
|
||||
|
||||
**oneAPI**: In order to enable SYCL support on Nvidia GPUs, please install the [Codeplay oneAPI Plugin for Nvidia GPUs](https://developer.codeplay.com/products/oneapi/nvidia/download). User should also make sure the plugin version matches the installed base toolkit one *(previous step)* for a seamless "oneAPI on Nvidia GPU" setup.
|
||||
|
||||
|
||||
**oneMKL**: The current oneMKL releases *(shipped with the oneAPI base-toolkit)* do not contain the cuBLAS backend. A build from source of the upstream [oneMKL](https://github.com/oneapi-src/oneMKL) with the *cuBLAS* backend enabled is thus required to run it on Nvidia GPUs.
|
||||
|
||||
```sh
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
git clone https://github.com/oneapi-src/oneMKL
|
||||
cd oneMKL
|
||||
mkdir -p buildWithCublas && cd buildWithCublas
|
||||
cmake ../ -DCMAKE_CXX_COMPILER=icpx -DCMAKE_C_COMPILER=icx -DENABLE_MKLGPU_BACKEND=OFF -DENABLE_MKLCPU_BACKEND=OFF -DENABLE_CUBLAS_BACKEND=ON -DTARGET_DOMAINS=blas
|
||||
make
|
||||
```
|
||||
|
||||
|
||||
3. **Verify installation and environment**
|
||||
|
||||
In order to check the available SYCL devices on the machine, please use the `sycl-ls` command.
|
||||
```sh
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
sycl-ls
|
||||
```
|
||||
|
||||
There should be one or more level-zero devices. Please confirm that at least one GPU is present, like **[ext_oneapi_level_zero:gpu:0]**.
|
||||
- **Intel GPU**
|
||||
|
||||
When targeting an intel GPU, the user should expect one or more level-zero devices among the available SYCL devices. Please make sure that at least one GPU is present, for instance [`ext_oneapi_level_zero:gpu:0`] in the sample output below:
|
||||
|
||||
Output (example):
|
||||
```
|
||||
[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.10.0.17_160000]
|
||||
[opencl:cpu:1] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i7-13700K OpenCL 3.0 (Build 0) [2023.16.10.0.17_160000]
|
||||
[opencl:gpu:2] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics OpenCL 3.0 NEO [23.30.26918.50]
|
||||
[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Arc(TM) A770 Graphics 1.3 [1.3.26918]
|
||||
|
||||
```
|
||||
|
||||
2. Build locally:
|
||||
- **Nvidia GPU**
|
||||
|
||||
Note:
|
||||
- You can choose between **F16** and **F32** build. F16 is faster for long-prompt inference.
|
||||
- By default, it will build for all binary files. It will take more time. To reduce the time, we recommend to build for **example/main** only.
|
||||
Similarly, user targetting Nvidia GPUs should expect at least one SYCL-CUDA device [`ext_oneapi_cuda:gpu`] as bellow:
|
||||
```
|
||||
[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.12.0.12_195853.xmain-hotfix]
|
||||
[opencl:cpu:1] Intel(R) OpenCL, Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz OpenCL 3.0 (Build 0) [2023.16.12.0.12_195853.xmain-hotfix]
|
||||
[ext_oneapi_cuda:gpu:0] NVIDIA CUDA BACKEND, NVIDIA A100-PCIE-40GB 8.0 [CUDA 12.2]
|
||||
```
|
||||
|
||||
### II. Build llama.cpp
|
||||
|
||||
#### Intel GPU
|
||||
```sh
|
||||
mkdir -p build
|
||||
cd build
|
||||
# Export relevant ENV variables
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
|
||||
# For FP16:
|
||||
#cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON
|
||||
# Build LLAMA with MKL BLAS acceleration for intel GPU
|
||||
mkdir -p build && cd build
|
||||
|
||||
# Or, for FP32:
|
||||
cmake .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||
# Option 1: Use FP16 for better performance in long-prompt inference
|
||||
cmake --build .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON
|
||||
# Or without "--build", run "make" next
|
||||
|
||||
# For Nvidia GPUs
|
||||
cmake .. -DLLAMA_SYCL=ON -DLLAMA_SYCL_TARGET=NVIDIA -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||
|
||||
# Build example/main only
|
||||
#cmake --build . --config Release --target main
|
||||
|
||||
# Or, build all binary
|
||||
cmake --build . --config Release -v
|
||||
|
||||
cd ..
|
||||
# Option 2: Use FP32 by default
|
||||
cmake --build .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||
```
|
||||
|
||||
or
|
||||
|
||||
#### Nvidia GPU
|
||||
```sh
|
||||
./examples/sycl/build.sh
|
||||
# Export relevant ENV variables
|
||||
export LD_LIBRARY_PATH=/path/to/oneMKL/buildWithCublas/lib:$LD_LIBRARY_PATH
|
||||
export LIBRARY_PATH=/path/to/oneMKL/buildWithCublas/lib:$LIBRARY_PATH
|
||||
export CPLUS_INCLUDE_DIR=/path/to/oneMKL/buildWithCublas/include:$CPLUS_INCLUDE_DIR
|
||||
export CPLUS_INCLUDE_DIR=/path/to/oneMKL/include:$CPLUS_INCLUDE_DIR
|
||||
|
||||
# Build LLAMA with Nvidia BLAS acceleration through SYCL
|
||||
mkdir -p build && cd build
|
||||
|
||||
# Option 1: Use FP16 for better performance in long-prompt inference
|
||||
cmake --build .. -DLLAMA_SYCL=ON -DLLAMA_SYCL_TARGET=NVIDIA -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON
|
||||
|
||||
# Option 2: Use FP32 by default
|
||||
cmake --build .. -DLLAMA_SYCL=ON -DLLAMA_SYCL_TARGET=NVIDIA -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||
```
|
||||
|
||||
### Run
|
||||
### III. Run the inference
|
||||
|
||||
1. Put model file to folder **models**
|
||||
1. Retrieve and prepare model
|
||||
|
||||
You could download [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) as example.
|
||||
You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model prepration, or simply download [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) model as example.
|
||||
|
||||
2. Enable oneAPI running environment
|
||||
|
||||
```
|
||||
```sh
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
```
|
||||
|
||||
3. List device ID
|
||||
3. List devices information
|
||||
|
||||
Run without parameter:
|
||||
Similar to the native `sycl-ls`, available SYCL devices can be queried as follow:
|
||||
|
||||
```sh
|
||||
./build/bin/ls-sycl-device
|
||||
|
||||
# or running the "main" executable and look at the output log:
|
||||
|
||||
./build/bin/main
|
||||
```
|
||||
|
||||
Check the ID in startup log, like:
|
||||
|
||||
A example of such log in a system with 1 *intel CPU* and 1 *intel GPU* can look like the following:
|
||||
```
|
||||
found 4 SYCL devices:
|
||||
Device 0: Intel(R) Arc(TM) A770 Graphics, compute capability 1.3,
|
||||
max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136
|
||||
Device 1: Intel(R) FPGA Emulation Device, compute capability 1.2,
|
||||
max compute_units 24, max work group size 67108864, max sub group size 64, global mem size 67065057280
|
||||
Device 2: 13th Gen Intel(R) Core(TM) i7-13700K, compute capability 3.0,
|
||||
max compute_units 24, max work group size 8192, max sub group size 64, global mem size 67065057280
|
||||
Device 3: Intel(R) Arc(TM) A770 Graphics, compute capability 3.0,
|
||||
max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136
|
||||
|
||||
found 6 SYCL devices:
|
||||
| | | |Compute |Max compute|Max work|Max sub| |
|
||||
|ID| Device Type| Name|capability|units |group |group |Global mem size|
|
||||
|--|------------------|---------------------------------------------|----------|-----------|--------|-------|---------------|
|
||||
| 0|[level_zero:gpu:0]| Intel(R) Arc(TM) A770 Graphics| 1.3| 512| 1024| 32| 16225243136|
|
||||
| 1|[level_zero:gpu:1]| Intel(R) UHD Graphics 770| 1.3| 32| 512| 32| 53651849216|
|
||||
| 2| [opencl:gpu:0]| Intel(R) Arc(TM) A770 Graphics| 3.0| 512| 1024| 32| 16225243136|
|
||||
| 3| [opencl:gpu:1]| Intel(R) UHD Graphics 770| 3.0| 32| 512| 32| 53651849216|
|
||||
| 4| [opencl:cpu:0]| 13th Gen Intel(R) Core(TM) i7-13700K| 3.0| 24| 8192| 64| 67064815616|
|
||||
| 5| [opencl:acc:0]| Intel(R) FPGA Emulation Device| 1.2| 24|67108864| 64| 67064815616|
|
||||
```
|
||||
|
||||
|Attribute|Note|
|
||||
|-|-|
|
||||
|compute capability 1.3|Level-zero running time, recommended |
|
||||
|compute capability 3.0|OpenCL running time, slower than level-zero in most cases|
|
||||
|compute capability 1.3|Level-zero driver/runtime, recommended |
|
||||
|compute capability 3.0|OpenCL driver/runtime, slower than level-zero in most cases|
|
||||
|
||||
4. Set device ID and execute llama.cpp
|
||||
4. Launch inference
|
||||
|
||||
Set device ID = 0 by **GGML_SYCL_DEVICE=0**
|
||||
There are two device selection modes:
|
||||
|
||||
- Single device: Use one device target specified by the user.
|
||||
- Multiple devices: Automatically select the devices with the same largest Max compute-units.
|
||||
|
||||
|Device selection|Parameter|
|
||||
|-|-|
|
||||
|Single device|--split-mode none --main-gpu DEVICE_ID |
|
||||
|Multiple devices|--split-mode layer (default)|
|
||||
|
||||
Examples:
|
||||
|
||||
- Use device 0:
|
||||
|
||||
```sh
|
||||
GGML_SYCL_DEVICE=0 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm none -mg 0
|
||||
```
|
||||
or run by script:
|
||||
|
||||
```sh
|
||||
./examples/sycl/run_llama2.sh 0
|
||||
```
|
||||
|
||||
- Use multiple devices:
|
||||
|
||||
```sh
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm layer
|
||||
```
|
||||
|
||||
Otherwise, you can run the script:
|
||||
|
||||
```sh
|
||||
./examples/sycl/run_llama2.sh
|
||||
```
|
||||
|
||||
Note:
|
||||
*Notes:*
|
||||
|
||||
- By default, mmap is used to read model file. In some cases, it leads to the hang issue. Recommend to use parameter **--no-mmap** to disable mmap() to skip this issue.
|
||||
- By default, `mmap` is used to read the model file. In some cases, it causes runtime hang issues. Please disable it by passing `--no-mmap` to the `/bin/main` if faced with the issue.
|
||||
- Upon execution, verify the selected device(s) ID(s) in the output log, which can for instance be displayed as follow:
|
||||
|
||||
|
||||
5. Check the device ID in output
|
||||
|
||||
Like:
|
||||
```sh
|
||||
detect 1 SYCL GPUs: [0] with top Max compute units:512
|
||||
```
|
||||
Using device **0** (Intel(R) Arc(TM) A770 Graphics) as main device
|
||||
Or
|
||||
```sh
|
||||
use 1 SYCL GPUs: [0] with Max compute units:512
|
||||
```
|
||||
|
||||
## Windows
|
||||
|
||||
### Setup Environment
|
||||
### I. Setup Environment
|
||||
|
||||
1. Install Intel GPU driver.
|
||||
1. Install GPU driver
|
||||
|
||||
Please install Intel GPU driver by official guide: [Install GPU Drivers](https://www.intel.com/content/www/us/en/products/docs/discrete-gpus/arc/software/drivers.html).
|
||||
Intel GPU drivers instructions guide and download page can be found here: [Get intel GPU Drivers](https://www.intel.com/content/www/us/en/products/docs/discrete-gpus/arc/software/drivers.html).
|
||||
|
||||
Note: **The driver is mandatory for compute function**.
|
||||
2. Install Visual Studio
|
||||
|
||||
2. Install Visual Studio.
|
||||
If you already have a recent version of Microsoft Visual Studio, you can skip this step. Otherwise, please refer to the official download page for [Microsoft Visual Studio](https://visualstudio.microsoft.com/).
|
||||
|
||||
Please install [Visual Studio](https://visualstudio.microsoft.com/) which impact oneAPI environment enabling in Windows.
|
||||
3. Install Intel® oneAPI Base toolkit
|
||||
|
||||
3. Install Intel® oneAPI Base toolkit.
|
||||
The base toolkit can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page.
|
||||
|
||||
a. Please follow the procedure in [Get the Intel® oneAPI Base Toolkit ](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html).
|
||||
Please follow the instructions for downloading and installing the Toolkit for Windows, and preferably keep the default installation values unchanged, notably the installation path *(`C:\Program Files (x86)\Intel\oneAPI` by default)*.
|
||||
|
||||
Recommend to install to default folder: **C:\Program Files (x86)\Intel\oneAPI**.
|
||||
|
||||
Following guide uses the default folder as example. If you use other folder, please modify the following guide info with your folder.
|
||||
Following guidelines/code snippets assume the default installation values. Otherwise, please make sure the necessary changes are reflected where applicable.
|
||||
|
||||
b. Enable oneAPI running environment:
|
||||
|
||||
- In Search, input 'oneAPI'.
|
||||
- Type "oneAPI" in the search bar, then open the `Intel oneAPI command prompt for Intel 64 for Visual Studio 2022` App.
|
||||
|
||||
Search & open "Intel oneAPI command prompt for Intel 64 for Visual Studio 2022"
|
||||
|
||||
- In Run:
|
||||
|
||||
In CMD:
|
||||
- On the command prompt, enable the runtime environment with the following:
|
||||
```
|
||||
"C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64
|
||||
```
|
||||
|
||||
c. Check GPU
|
||||
c. Verify installation
|
||||
|
||||
In oneAPI command line:
|
||||
In the oneAPI command line, run the following to print the available SYCL devices:
|
||||
|
||||
```
|
||||
sycl-ls
|
||||
```
|
||||
|
||||
There should be one or more level-zero devices. Please confirm that at least one GPU is present, like **[ext_oneapi_level_zero:gpu:0]**.
|
||||
There should be one or more *level-zero* GPU devices displayed as **[ext_oneapi_level_zero:gpu]**. Below is example of such output detecting an *intel Iris Xe* GPU as a Level-zero SYCL device:
|
||||
|
||||
Output (example):
|
||||
```
|
||||
@@ -349,96 +415,74 @@ Output (example):
|
||||
[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Iris(R) Xe Graphics 1.3 [1.3.28044]
|
||||
```
|
||||
|
||||
4. Install cmake & make
|
||||
4. Install build tools
|
||||
|
||||
a. Download & install cmake for Windows: https://cmake.org/download/
|
||||
|
||||
b. Download & install mingw-w64 make for Windows provided by w64devkit
|
||||
|
||||
- Download the latest fortran version of [w64devkit](https://github.com/skeeto/w64devkit/releases).
|
||||
- Download the 1.19.0 version of [w64devkit](https://github.com/skeeto/w64devkit/releases/download/v1.19.0/w64devkit-1.19.0.zip).
|
||||
|
||||
- Extract `w64devkit` on your pc.
|
||||
|
||||
- Add the **bin** folder path in the Windows system PATH environment, like `C:\xxx\w64devkit\bin\`.
|
||||
- Add the **bin** folder path in the Windows system PATH environment (for e.g. `C:\xxx\w64devkit\bin\`).
|
||||
|
||||
### Build locally:
|
||||
### II. Build llama.cpp
|
||||
|
||||
In oneAPI command line window:
|
||||
On the oneAPI command line window, step into the llama.cpp main directory and run the following:
|
||||
|
||||
```
|
||||
mkdir -p build
|
||||
cd build
|
||||
@call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force
|
||||
|
||||
:: for FP16
|
||||
:: faster for long-prompt inference
|
||||
:: cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release -DLLAMA_SYCL_F16=ON
|
||||
cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release -DLLAMA_SYCL_F16=ON
|
||||
|
||||
:: for FP32
|
||||
cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release
|
||||
|
||||
|
||||
:: build example/main only
|
||||
:: make main
|
||||
|
||||
:: build all binary
|
||||
make -j
|
||||
cd ..
|
||||
make
|
||||
```
|
||||
|
||||
or
|
||||
|
||||
```
|
||||
Otherwise, run the `win-build-sycl.bat` wrapper which encapsulates the former instructions:
|
||||
```sh
|
||||
.\examples\sycl\win-build-sycl.bat
|
||||
```
|
||||
|
||||
Note:
|
||||
*Notes:*
|
||||
|
||||
- By default, it will build for all binary files. It will take more time. To reduce the time, we recommend to build for **example/main** only.
|
||||
- By default, calling `make` will build all target binary files. In case of a minimal experimental setup, the user can build the inference executable only through `make main`.
|
||||
|
||||
### Run
|
||||
### III. Run the inference
|
||||
|
||||
1. Put model file to folder **models**
|
||||
1. Retrieve and prepare model
|
||||
|
||||
You could download [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) as example.
|
||||
You can refer to the general [*Prepare and Quantize*](README#prepare-and-quantize) guide for model prepration, or simply download [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) model as example.
|
||||
|
||||
2. Enable oneAPI running environment
|
||||
|
||||
- In Search, input 'oneAPI'.
|
||||
|
||||
Search & open "Intel oneAPI command prompt for Intel 64 for Visual Studio 2022"
|
||||
|
||||
- In Run:
|
||||
|
||||
In CMD:
|
||||
On the oneAPI command line window, run the following and step into the llama.cpp directory:
|
||||
```
|
||||
"C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64
|
||||
```
|
||||
|
||||
3. List device ID
|
||||
3. List devices information
|
||||
|
||||
Run without parameter:
|
||||
Similar to the native `sycl-ls`, available SYCL devices can be queried as follow:
|
||||
|
||||
```
|
||||
build\bin\ls-sycl-device.exe
|
||||
|
||||
or
|
||||
|
||||
build\bin\main.exe
|
||||
```
|
||||
|
||||
Check the ID in startup log, like:
|
||||
|
||||
The output of this command in a system with 1 *intel CPU* and 1 *intel GPU* would look like the following:
|
||||
```
|
||||
found 4 SYCL devices:
|
||||
Device 0: Intel(R) Arc(TM) A770 Graphics, compute capability 1.3,
|
||||
max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136
|
||||
Device 1: Intel(R) FPGA Emulation Device, compute capability 1.2,
|
||||
max compute_units 24, max work group size 67108864, max sub group size 64, global mem size 67065057280
|
||||
Device 2: 13th Gen Intel(R) Core(TM) i7-13700K, compute capability 3.0,
|
||||
max compute_units 24, max work group size 8192, max sub group size 64, global mem size 67065057280
|
||||
Device 3: Intel(R) Arc(TM) A770 Graphics, compute capability 3.0,
|
||||
max compute_units 512, max work group size 1024, max sub group size 32, global mem size 16225243136
|
||||
found 6 SYCL devices:
|
||||
| | | |Compute |Max compute|Max work|Max sub| |
|
||||
|ID| Device Type| Name|capability|units |group |group |Global mem size|
|
||||
|--|------------------|---------------------------------------------|----------|-----------|--------|-------|---------------|
|
||||
| 0|[level_zero:gpu:0]| Intel(R) Arc(TM) A770 Graphics| 1.3| 512| 1024| 32| 16225243136|
|
||||
| 1|[level_zero:gpu:1]| Intel(R) UHD Graphics 770| 1.3| 32| 512| 32| 53651849216|
|
||||
| 2| [opencl:gpu:0]| Intel(R) Arc(TM) A770 Graphics| 3.0| 512| 1024| 32| 16225243136|
|
||||
| 3| [opencl:gpu:1]| Intel(R) UHD Graphics 770| 3.0| 32| 512| 32| 53651849216|
|
||||
| 4| [opencl:cpu:0]| 13th Gen Intel(R) Core(TM) i7-13700K| 3.0| 24| 8192| 64| 67064815616|
|
||||
| 5| [opencl:acc:0]| Intel(R) FPGA Emulation Device| 1.2| 24|67108864| 64| 67064815616|
|
||||
|
||||
```
|
||||
|
||||
@@ -447,15 +491,33 @@ found 4 SYCL devices:
|
||||
|compute capability 1.3|Level-zero running time, recommended |
|
||||
|compute capability 3.0|OpenCL running time, slower than level-zero in most cases|
|
||||
|
||||
4. Set device ID and execute llama.cpp
|
||||
|
||||
Set device ID = 0 by **set GGML_SYCL_DEVICE=0**
|
||||
4. Launch inference
|
||||
|
||||
There are two device selection modes:
|
||||
|
||||
- Single device: Use one device assigned by user.
|
||||
- Multiple devices: Automatically choose the devices with the same biggest Max compute units.
|
||||
|
||||
|Device selection|Parameter|
|
||||
|-|-|
|
||||
|Single device|--split-mode none --main-gpu DEVICE_ID |
|
||||
|Multiple devices|--split-mode layer (default)|
|
||||
|
||||
Examples:
|
||||
|
||||
- Use device 0:
|
||||
|
||||
```
|
||||
set GGML_SYCL_DEVICE=0
|
||||
build\bin\main.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0
|
||||
build\bin\main.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm none -mg 0
|
||||
```
|
||||
or run by script:
|
||||
|
||||
- Use multiple devices:
|
||||
|
||||
```
|
||||
build\bin\main.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm layer
|
||||
```
|
||||
Otherwise, run the following wrapper script:
|
||||
|
||||
```
|
||||
.\examples\sycl\win-run-llama2.bat
|
||||
@@ -463,14 +525,15 @@ or run by script:
|
||||
|
||||
Note:
|
||||
|
||||
- By default, mmap is used to read model file. In some cases, it leads to the hang issue. Recommend to use parameter **--no-mmap** to disable mmap() to skip this issue.
|
||||
- By default, `mmap` is used to read the model file. In some cases, it causes runtime hang issues. Please disable it by passing `--no-mmap` to the `main.exe` if faced with the issue.
|
||||
- Upon execution, verify the selected device(s) ID(s) in the output log, which can for instance be displayed as follow:
|
||||
|
||||
|
||||
5. Check the device ID in output
|
||||
|
||||
Like:
|
||||
```sh
|
||||
detect 1 SYCL GPUs: [0] with top Max compute units:512
|
||||
```
|
||||
Using device **0** (Intel(R) Arc(TM) A770 Graphics) as main device
|
||||
Or
|
||||
```sh
|
||||
use 1 SYCL GPUs: [0] with Max compute units:512
|
||||
```
|
||||
|
||||
## Environment Variable
|
||||
@@ -479,63 +542,55 @@ Using device **0** (Intel(R) Arc(TM) A770 Graphics) as main device
|
||||
|
||||
|Name|Value|Function|
|
||||
|-|-|-|
|
||||
|LLAMA_SYCL|ON (mandatory)|Enable build with SYCL code path. <br>For FP32/FP16, LLAMA_SYCL=ON is mandatory.|
|
||||
|LLAMA_SYCL_F16|ON (optional)|Enable FP16 build with SYCL code path. Faster for long-prompt inference. <br>For FP32, not set it.|
|
||||
|CMAKE_C_COMPILER|icx|Use icx compiler for SYCL code path|
|
||||
|CMAKE_CXX_COMPILER|icpx (Linux), icx (Windows)|use icpx/icx for SYCL code path|
|
||||
|
||||
#### Running
|
||||
|LLAMA_SYCL|ON (mandatory)|Enable build with SYCL code path.|
|
||||
|LLAMA_SYCL_TARGET | INTEL *(default)* \| NVIDIA|Set the SYCL target device type.|
|
||||
|LLAMA_SYCL_F16|OFF *(default)* \|ON *(optional)*|Enable FP16 build with SYCL code path.|
|
||||
|CMAKE_C_COMPILER|icx|Set *icx* compiler for SYCL code path.|
|
||||
|CMAKE_CXX_COMPILER|icpx *(Linux)*, icx *(Windows)*|Set `icpx/icx` compiler for SYCL code path.|
|
||||
|
||||
#### Runtime
|
||||
|
||||
|Name|Value|Function|
|
||||
|-|-|-|
|
||||
|GGML_SYCL_DEVICE|0 (default) or 1|Set the device id used. Check the device ids by default running output|
|
||||
|GGML_SYCL_DEBUG|0 (default) or 1|Enable log function by macro: GGML_SYCL_DEBUG|
|
||||
|ZES_ENABLE_SYSMAN| 0 (default) or 1|Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory.<br>Recommended to use when --split-mode = layer|
|
||||
|
||||
## Known Issue
|
||||
## Known Issues
|
||||
|
||||
- Hang during startup
|
||||
- Hanging during startup
|
||||
|
||||
llama.cpp use mmap as default way to read model file and copy to GPU. In some system, memcpy will be abnormal and block.
|
||||
llama.cpp uses *mmap* as the default mode for reading the model file and copying it to the GPU. In some systems, `memcpy` might behave abnormally and therefore hang.
|
||||
|
||||
Solution: add **--no-mmap** or **--mmap 0**.
|
||||
- **Solution**: add `--no-mmap` or `--mmap 0` flag to the `main` executable.
|
||||
|
||||
- Split-mode: [row] is not supported
|
||||
|
||||
It's on developing.
|
||||
- `Split-mode:[row]` is not supported.
|
||||
|
||||
## Q&A
|
||||
|
||||
- Error: `error while loading shared libraries: libsycl.so.7: cannot open shared object file: No such file or directory`.
|
||||
|
||||
Miss to enable oneAPI running environment.
|
||||
- Potential cause: Unavailable oneAPI installation or not set ENV variables.
|
||||
- Solution: Install *oneAPI base toolkit* and enable its ENV through: `source /opt/intel/oneapi/setvars.sh`.
|
||||
|
||||
Install oneAPI base toolkit and enable it by: `source /opt/intel/oneapi/setvars.sh`.
|
||||
- General compiler error:
|
||||
|
||||
- In Windows, no result, not error.
|
||||
- Remove build folder or try a clean-build.
|
||||
|
||||
Miss to enable oneAPI running environment.
|
||||
- I can **not** see `[ext_oneapi_level_zero:gpu]` afer installing the GPU driver on Linux.
|
||||
|
||||
- Meet compile error.
|
||||
Please double-check with `sudo sycl-ls`.
|
||||
|
||||
Remove folder **build** and try again.
|
||||
|
||||
- I can **not** see **[ext_oneapi_level_zero:gpu:0]** afer install GPU driver in Linux.
|
||||
|
||||
Please run **sudo sycl-ls**.
|
||||
|
||||
If you see it in result, please add video/render group to your ID:
|
||||
If it's present in the list, please add video/render group to your user then **logout/login** or restart your system:
|
||||
|
||||
```
|
||||
sudo usermod -aG render username
|
||||
sudo usermod -aG video username
|
||||
sudo usermod -aG render $USER
|
||||
sudo usermod -aG video $USER
|
||||
```
|
||||
Otherwise, please double-check the GPU driver installation steps.
|
||||
|
||||
Then **relogin**.
|
||||
|
||||
If you do not see it, please check the installation GPU steps again.
|
||||
### **GitHub contribution**:
|
||||
Please add the **[SYCL]** prefix/tag in issues/PRs titles to help the SYCL-team check/address them without delay.
|
||||
|
||||
## Todo
|
||||
|
||||
- Support multiple cards.
|
||||
- Support row layer split for multiple card runs.
|
||||
|
||||
32
README.md
32
README.md
@@ -10,6 +10,8 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
|
||||
|
||||
### Recent API changes
|
||||
|
||||
- [2024 Apr 4] State and session file functions reorganized under `llama_state_*` https://github.com/ggerganov/llama.cpp/pull/6341
|
||||
- [2024 Mar 26] Logits and embeddings API updated for compactness https://github.com/ggerganov/llama.cpp/pull/6122
|
||||
- [2024 Mar 13] Add `llama_synchronize()` + `llama_context_params.n_ubatch` https://github.com/ggerganov/llama.cpp/pull/6017
|
||||
- [2024 Mar 8] `llama_kv_cache_seq_rm()` returns a `bool` instead of `void`, and new `llama_n_seq_max()` returns the upper limit of acceptable `seq_id` in batches (relevant when dealing with multiple sequences) https://github.com/ggerganov/llama.cpp/pull/5328
|
||||
- [2024 Mar 4] Embeddings API updated https://github.com/ggerganov/llama.cpp/pull/5796
|
||||
@@ -17,7 +19,10 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
|
||||
|
||||
### Hot topics
|
||||
|
||||
- Multi-GPU pipeline parallelizm support https://github.com/ggerganov/llama.cpp/pull/6017
|
||||
- **MoE memory layout has been updated - reconvert models for `mmap` support and regenerate `imatrix` https://github.com/ggerganov/llama.cpp/pull/6387**
|
||||
- Model sharding instructions using `gguf-split` https://github.com/ggerganov/llama.cpp/discussions/6404
|
||||
- Fix major bug in Metal batched inference https://github.com/ggerganov/llama.cpp/pull/6225
|
||||
- Multi-GPU pipeline parallelism support https://github.com/ggerganov/llama.cpp/pull/6017
|
||||
- Looking for contributions to add Deepseek support: https://github.com/ggerganov/llama.cpp/issues/5981
|
||||
- Quantization blind testing: https://github.com/ggerganov/llama.cpp/discussions/5962
|
||||
- Initial Mamba support has been added: https://github.com/ggerganov/llama.cpp/pull/5328
|
||||
@@ -112,7 +117,10 @@ Typically finetunes of the base models below are supported as well.
|
||||
- [x] [CodeShell](https://github.com/WisdomShell/codeshell)
|
||||
- [x] [Gemma](https://ai.google.dev/gemma)
|
||||
- [x] [Mamba](https://github.com/state-spaces/mamba)
|
||||
- [x] [Xverse](https://huggingface.co/models?search=xverse)
|
||||
- [x] [Command-R](https://huggingface.co/CohereForAI/c4ai-command-r-v01)
|
||||
- [x] [SEA-LION](https://huggingface.co/models?search=sea-lion)
|
||||
- [x] [GritLM-7B](https://huggingface.co/GritLM/GritLM-7B) + [GritLM-8x7B](https://huggingface.co/GritLM/GritLM-8x7B)
|
||||
|
||||
**Multimodal models:**
|
||||
|
||||
@@ -136,6 +144,7 @@ Typically finetunes of the base models below are supported as well.
|
||||
- JavaScript/Wasm (works in browser): [tangledgroup/llama-cpp-wasm](https://github.com/tangledgroup/llama-cpp-wasm)
|
||||
- Typescript/Wasm (nicer API, available on npm): [ngxson/wllama](https://github.com/ngxson/wllama)
|
||||
- Ruby: [yoshoku/llama_cpp.rb](https://github.com/yoshoku/llama_cpp.rb)
|
||||
- Rust (more features): [edgenai/llama_cpp-rs](https://github.com/edgenai/llama_cpp-rs)
|
||||
- Rust (nicer API): [mdrokz/rust-llama.cpp](https://github.com/mdrokz/rust-llama.cpp)
|
||||
- Rust (more direct bindings): [utilityai/llama-cpp-rs](https://github.com/utilityai/llama-cpp-rs)
|
||||
- C#/.NET: [SciSharp/LLamaSharp](https://github.com/SciSharp/LLamaSharp)
|
||||
@@ -145,6 +154,7 @@ Typically finetunes of the base models below are supported as well.
|
||||
- Java: [kherud/java-llama.cpp](https://github.com/kherud/java-llama.cpp)
|
||||
- Zig: [deins/llama.cpp.zig](https://github.com/Deins/llama.cpp.zig)
|
||||
- Flutter/Dart: [netdur/llama_cpp_dart](https://github.com/netdur/llama_cpp_dart)
|
||||
- PHP (API bindings and features built on top of llama.cpp): [distantmagic/resonance](https://github.com/distantmagic/resonance) [(more info)](https://github.com/ggerganov/llama.cpp/pull/6326)
|
||||
|
||||
**UI:**
|
||||
|
||||
@@ -165,11 +175,18 @@ Unless otherwise noted these projects are open-source with permissive licensing:
|
||||
- [cztomsik/ava](https://github.com/cztomsik/ava) (MIT)
|
||||
- [ptsochantaris/emeltal](https://github.com/ptsochantaris/emeltal)
|
||||
- [pythops/tenere](https://github.com/pythops/tenere) (AGPL)
|
||||
- [RecurseChat](https://recurse.chat/) (proprietary)
|
||||
- [semperai/amica](https://github.com/semperai/amica)
|
||||
- [withcatai/catai](https://github.com/withcatai/catai)
|
||||
- [Mobile-Artificial-Intelligence/maid](https://github.com/Mobile-Artificial-Intelligence/maid) (MIT)
|
||||
- [Msty](https://msty.app) (proprietary)
|
||||
- [LLMFarm](https://github.com/guinmoon/LLMFarm?tab=readme-ov-file) (MIT)
|
||||
- [KanTV](https://github.com/zhouwg/kantv?tab=readme-ov-file)(Apachev2.0 or later)
|
||||
- [Dot](https://github.com/alexpinel/Dot) (GPL)
|
||||
- [MindMac](https://mindmac.app) (proprietary)
|
||||
- [KodiBot](https://github.com/firatkiral/kodibot) (GPL)
|
||||
|
||||
*(to have a project listed here, it should clearly state that it depends on `llama.cpp`)*
|
||||
|
||||
---
|
||||
|
||||
@@ -445,30 +462,27 @@ Building the program with BLAS support may lead to some performance improvements
|
||||
|
||||
Check [Optimizing and Running LLaMA2 on Intel® CPU](https://www.intel.com/content/www/us/en/content-details/791610/optimizing-and-running-llama2-on-intel-cpu.html) for more information.
|
||||
|
||||
- #### cuBLAS
|
||||
- #### CUDA
|
||||
|
||||
This provides BLAS acceleration using the CUDA cores of your Nvidia GPU. Make sure to have the CUDA toolkit installed. You can download it from your Linux distro's package manager (e.g. `apt install nvidia-cuda-toolkit`) or from here: [CUDA Toolkit](https://developer.nvidia.com/cuda-downloads).
|
||||
This provides GPU acceleration using the CUDA cores of your Nvidia GPU. Make sure to have the CUDA toolkit installed. You can download it from your Linux distro's package manager (e.g. `apt install nvidia-cuda-toolkit`) or from here: [CUDA Toolkit](https://developer.nvidia.com/cuda-downloads).
|
||||
|
||||
For Jetson user, if you have Jetson Orin, you can try this: [Offical Support](https://www.jetson-ai-lab.com/tutorial_text-generation.html). If you are using an old model(nano/TX2), need some additional operations before compiling.
|
||||
|
||||
- Using `make`:
|
||||
```bash
|
||||
make LLAMA_CUBLAS=1
|
||||
make LLAMA_CUDA=1
|
||||
```
|
||||
- Using `CMake`:
|
||||
|
||||
```bash
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -DLLAMA_CUBLAS=ON
|
||||
cmake .. -DLLAMA_CUDA=ON
|
||||
cmake --build . --config Release
|
||||
```
|
||||
|
||||
The environment variable [`CUDA_VISIBLE_DEVICES`](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars) can be used to specify which GPU(s) will be used. The following compilation options are also available to tweak performance:
|
||||
|
||||
<!---
|
||||
| LLAMA_CUDA_CUBLAS | Boolean | false | Use cuBLAS instead of custom CUDA kernels for prompt processing. Faster for all quantization formats except for q4_0 and q8_0, especially for k-quants. Increases VRAM usage (700 MiB for 7b, 970 MiB for 13b, 1430 MiB for 33b). |
|
||||
--->
|
||||
| Option | Legal values | Default | Description |
|
||||
|--------------------------------|------------------------|---------|-------------|
|
||||
| LLAMA_CUDA_FORCE_DMMV | Boolean | false | Force the use of dequantization + matrix vector multiplication kernels instead of using kernels that do matrix vector multiplication on quantized data. By default the decision is made based on compute capability (MMVQ for 6.1/Pascal/GTX 1000 or higher). Does not affect k-quants. |
|
||||
@@ -507,7 +521,7 @@ Building the program with BLAS support may lead to some performance improvements
|
||||
set PATH=%HIP_PATH%\bin;%PATH%
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -G Ninja -DAMDGPU_TARGETS=gfx1100 -DLLAMA_HIPBLAS=ON -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ ..
|
||||
cmake -G Ninja -DAMDGPU_TARGETS=gfx1100 -DLLAMA_HIPBLAS=ON -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_BUILD_TYPE=Release ..
|
||||
cmake --build .
|
||||
```
|
||||
Make sure that `AMDGPU_TARGETS` is set to the GPU arch you want to compile for. The above example uses `gfx1100` that corresponds to Radeon RX 7900XTX/XT/GRE. You can find a list of targets [here](https://llvm.org/docs/AMDGPUUsage.html#processors)
|
||||
|
||||
67
SECURITY.md
Normal file
67
SECURITY.md
Normal file
@@ -0,0 +1,67 @@
|
||||
# Security Policy
|
||||
|
||||
- [**Using llama.cpp securely**](#using-llamacpp-securely)
|
||||
- [Untrusted models](#untrusted-models)
|
||||
- [Untrusted inputs](#untrusted-inputs)
|
||||
- [Data privacy](#data-privacy)
|
||||
- [Untrusted environments or networks](#untrusted-environments-or-networks)
|
||||
- [Multi-Tenant environments](#multi-tenant-environments)
|
||||
- [**Reporting a vulnerability**](#reporting-a-vulnerability)
|
||||
|
||||
## Using llama.cpp securely
|
||||
|
||||
### Untrusted models
|
||||
Be careful when running untrusted models. This classification includes models created by unknown developers or utilizing data obtained from unknown sources.
|
||||
|
||||
*Always execute untrusted models within a secure, isolated environment such as a sandbox* (e.g., containers, virtual machines). This helps protect your system from potentially malicious code.
|
||||
|
||||
> [!NOTE]
|
||||
> The trustworthiness of a model is not binary. You must always determine the proper level of caution depending on the specific model and how it matches your use case and risk tolerance.
|
||||
|
||||
### Untrusted inputs
|
||||
|
||||
Some models accept various input formats (text, images, audio, etc.). The libraries converting these inputs have varying security levels, so it's crucial to isolate the model and carefully pre-process inputs to mitigate script injection risks.
|
||||
|
||||
For maximum security when handling untrusted inputs, you may need to employ the following:
|
||||
|
||||
* Sandboxing: Isolate the environment where the inference happens.
|
||||
* Pre-analysis: Check how the model performs by default when exposed to prompt injection (e.g. using [fuzzing for prompt injection](https://github.com/FonduAI/awesome-prompt-injection?tab=readme-ov-file#tools)). This will give you leads on how hard you will have to work on the next topics.
|
||||
* Updates: Keep both LLaMA C++ and your libraries updated with the latest security patches.
|
||||
* Input Sanitation: Before feeding data to the model, sanitize inputs rigorously. This involves techniques such as:
|
||||
* Validation: Enforce strict rules on allowed characters and data types.
|
||||
* Filtering: Remove potentially malicious scripts or code fragments.
|
||||
* Encoding: Convert special characters into safe representations.
|
||||
* Verification: Run tooling that identifies potential script injections (e.g. [models that detect prompt injection attempts](https://python.langchain.com/docs/guides/safety/hugging_face_prompt_injection)).
|
||||
|
||||
### Data privacy
|
||||
|
||||
To protect sensitive data from potential leaks or unauthorized access, it is crucial to sandbox the model execution. This means running the model in a secure, isolated environment, which helps mitigate many attack vectors.
|
||||
|
||||
### Untrusted environments or networks
|
||||
|
||||
If you can't run your models in a secure and isolated environment or if it must be exposed to an untrusted network, make sure to take the following security precautions:
|
||||
* Confirm the hash of any downloaded artifact (e.g. pre-trained model weights) matches a known-good value
|
||||
* Encrypt your data if sending it over the network.
|
||||
|
||||
### Multi-Tenant environments
|
||||
|
||||
If you intend to run multiple models in parallel with shared memory, it is your responsibility to ensure the models do not interact or access each other's data. The primary areas of concern are tenant isolation, resource allocation, model sharing and hardware attacks.
|
||||
|
||||
1. Tenant Isolation: Models should run separately with strong isolation methods to prevent unwanted data access. Separating networks is crucial for isolation, as it prevents unauthorized access to data or models and malicious users from sending graphs to execute under another tenant's identity.
|
||||
|
||||
1. Resource Allocation: A denial of service caused by one model can impact the overall system health. Implement safeguards like rate limits, access controls, and health monitoring.
|
||||
|
||||
1. Model Sharing: In a multitenant model sharing design, tenants and users must understand the security risks of running code provided by others. Since there are no reliable methods to detect malicious models, sandboxing the model execution is the recommended approach to mitigate the risk.
|
||||
|
||||
1. Hardware Attacks: GPUs or TPUs can also be attacked. [Researches](https://scholar.google.com/scholar?q=gpu+side+channel) has shown that side channel attacks on GPUs are possible, which can make data leak from other models or processes running on the same system at the same time.
|
||||
|
||||
## Reporting a vulnerability
|
||||
|
||||
Beware that none of the topics under [Using llama.cpp securely](#using-llamacpp-securely) are considered vulnerabilities of LLaMA C++.
|
||||
|
||||
<!-- normal version -->
|
||||
However, If you have discovered a security vulnerability in this project, please report it privately. **Do not disclose it as a public issue.** This gives us time to work with you to fix the issue before public exposure, reducing the chance that the exploit will be used before a patch is released.
|
||||
|
||||
Please disclose it as a private [security advisory](https://github.com/ggerganov/llama.cpp/security/advisories/new).
|
||||
|
||||
A team of volunteers on a reasonable-effort basis maintains this project. As such, please give us at least 90 days to work on a fix before public exposure.
|
||||
16
build.zig
16
build.zig
@@ -116,24 +116,26 @@ pub fn build(b: *std.build.Builder) !void {
|
||||
const ggml_backend = make.obj("ggml-backend", "ggml-backend.c");
|
||||
const ggml_quants = make.obj("ggml-quants", "ggml-quants.c");
|
||||
const unicode = make.obj("unicode", "unicode.cpp");
|
||||
const unicode_data = make.obj("unicode-data", "unicode-data.cpp");
|
||||
const llama = make.obj("llama", "llama.cpp");
|
||||
const buildinfo = make.obj("common", "common/build-info.cpp");
|
||||
const common = make.obj("common", "common/common.cpp");
|
||||
const console = make.obj("console", "common/console.cpp");
|
||||
const sampling = make.obj("sampling", "common/sampling.cpp");
|
||||
const grammar_parser = make.obj("grammar-parser", "common/grammar-parser.cpp");
|
||||
const json_schema_to_grammar = make.obj("json-schema-to-grammar", "common/json-schema-to-grammar.cpp");
|
||||
const train = make.obj("train", "common/train.cpp");
|
||||
const clip = make.obj("clip", "examples/llava/clip.cpp");
|
||||
const llava = make.obj("llava", "examples/llava/llava.cpp");
|
||||
|
||||
_ = make.exe("main", "examples/main/main.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, common, buildinfo, sampling, console, grammar_parser });
|
||||
_ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, common, buildinfo });
|
||||
_ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, common, buildinfo });
|
||||
_ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, common, buildinfo });
|
||||
_ = make.exe("finetune", "examples/finetune/finetune.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, common, buildinfo, train });
|
||||
_ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, common, buildinfo, train });
|
||||
_ = make.exe("main", "examples/main/main.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, buildinfo, sampling, console, grammar_parser });
|
||||
_ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, buildinfo });
|
||||
_ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, buildinfo });
|
||||
_ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, buildinfo });
|
||||
_ = make.exe("finetune", "examples/finetune/finetune.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, buildinfo, train });
|
||||
_ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, buildinfo, train });
|
||||
|
||||
const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, common, buildinfo, sampling, grammar_parser, clip, llava });
|
||||
const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, buildinfo, sampling, grammar_parser, json_schema_to_grammar, clip, llava });
|
||||
if (server.target.isWindows()) {
|
||||
server.linkSystemLibrary("ws2_32");
|
||||
}
|
||||
|
||||
@@ -40,7 +40,7 @@ if [ ! -z ${GG_BUILD_METAL} ]; then
|
||||
fi
|
||||
|
||||
if [ ! -z ${GG_BUILD_CUDA} ]; then
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DLLAMA_CUBLAS=1"
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DLLAMA_CUDA=1"
|
||||
fi
|
||||
|
||||
if [ ! -z ${GG_BUILD_SYCL} ]; then
|
||||
@@ -412,8 +412,8 @@ function gg_run_open_llama_7b_v2 {
|
||||
|
||||
set -e
|
||||
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DLLAMA_CUBLAS=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DLLAMA_CUDA=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
|
||||
python3 ../convert.py ${path_models}
|
||||
|
||||
@@ -575,7 +575,7 @@ function gg_run_embd_bge_small {
|
||||
cd ${SRC}
|
||||
|
||||
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/config.json
|
||||
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/resolve/main/tokenizer.model
|
||||
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/tokenizer.json
|
||||
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/tokenizer_config.json
|
||||
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/special_tokens_map.json
|
||||
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/resolve/main/pytorch_model.bin
|
||||
|
||||
@@ -47,6 +47,8 @@ if (BUILD_SHARED_LIBS)
|
||||
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
endif()
|
||||
|
||||
set(TARGET json-schema-to-grammar)
|
||||
add_library(${TARGET} OBJECT json-schema-to-grammar.cpp json-schema-to-grammar.h)
|
||||
|
||||
set(TARGET common)
|
||||
|
||||
@@ -60,8 +62,11 @@ add_library(${TARGET} STATIC
|
||||
console.cpp
|
||||
grammar-parser.h
|
||||
grammar-parser.cpp
|
||||
json.hpp
|
||||
train.h
|
||||
train.cpp
|
||||
ngram-cache.h
|
||||
ngram-cache.cpp
|
||||
)
|
||||
|
||||
if (BUILD_SHARED_LIBS)
|
||||
|
||||
@@ -16,6 +16,7 @@
|
||||
#include <unordered_set>
|
||||
#include <vector>
|
||||
#include <cinttypes>
|
||||
#include <codecvt>
|
||||
|
||||
#if defined(__APPLE__) && defined(__MACH__)
|
||||
#include <sys/types.h>
|
||||
@@ -27,7 +28,6 @@
|
||||
#ifndef NOMINMAX
|
||||
# define NOMINMAX
|
||||
#endif
|
||||
#include <codecvt>
|
||||
#include <locale>
|
||||
#include <windows.h>
|
||||
#include <fcntl.h>
|
||||
@@ -39,18 +39,21 @@
|
||||
#endif
|
||||
#if defined(LLAMA_USE_CURL)
|
||||
#include <curl/curl.h>
|
||||
#include <curl/easy.h>
|
||||
#include <thread>
|
||||
#include <future>
|
||||
#endif
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
#if (defined(GGML_USE_CUBLAS) || defined(GGML_USE_SYCL))
|
||||
#define GGML_USE_CUBLAS_SYCL
|
||||
#if (defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL))
|
||||
#define GGML_USE_CUDA_SYCL
|
||||
#endif
|
||||
|
||||
#if (defined(GGML_USE_CUBLAS) || defined(GGML_USE_SYCL)) || defined(GGML_USE_VULKAN)
|
||||
#define GGML_USE_CUBLAS_SYCL_VULKAN
|
||||
#if (defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL)) || defined(GGML_USE_VULKAN)
|
||||
#define GGML_USE_CUDA_SYCL_VULKAN
|
||||
#endif
|
||||
|
||||
#if defined(LLAMA_USE_CURL)
|
||||
@@ -61,7 +64,7 @@
|
||||
#else
|
||||
#include <sys/syslimits.h>
|
||||
#endif
|
||||
#define LLAMA_CURL_MAX_PATH_LENGTH PATH_MAX
|
||||
#define LLAMA_CURL_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
|
||||
#define LLAMA_CURL_MAX_HEADER_LENGTH 256
|
||||
#endif // LLAMA_USE_CURL
|
||||
|
||||
@@ -101,7 +104,7 @@ int32_t get_num_physical_cores() {
|
||||
return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4;
|
||||
}
|
||||
|
||||
void process_escapes(std::string& input) {
|
||||
void process_escapes(std::string & input) {
|
||||
std::size_t input_len = input.length();
|
||||
std::size_t output_idx = 0;
|
||||
|
||||
@@ -154,8 +157,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
return result;
|
||||
}
|
||||
|
||||
static bool gpt_params_find_arg(int argc, char ** argv, gpt_params & params, int & i, bool & invalid_param) {
|
||||
std::string arg = argv[i];
|
||||
bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param) {
|
||||
llama_sampling_params& sparams = params.sparams;
|
||||
|
||||
if (arg == "-s" || arg == "--seed") {
|
||||
@@ -648,14 +650,6 @@ static bool gpt_params_find_arg(int argc, char ** argv, gpt_params & params, int
|
||||
params.model = argv[i];
|
||||
return true;
|
||||
}
|
||||
if (arg == "-mu" || arg == "--model-url") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
return true;
|
||||
}
|
||||
params.model_url = argv[i];
|
||||
return true;
|
||||
}
|
||||
if (arg == "-md" || arg == "--model-draft") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@@ -672,6 +666,30 @@ static bool gpt_params_find_arg(int argc, char ** argv, gpt_params & params, int
|
||||
params.model_alias = argv[i];
|
||||
return true;
|
||||
}
|
||||
if (arg == "-mu" || arg == "--model-url") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
return true;
|
||||
}
|
||||
params.model_url = argv[i];
|
||||
return true;
|
||||
}
|
||||
if (arg == "-hfr" || arg == "--hf-repo") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
return true;
|
||||
}
|
||||
params.hf_repo = argv[i];
|
||||
return true;
|
||||
}
|
||||
if (arg == "-hff" || arg == "--hf-file") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
return true;
|
||||
}
|
||||
params.hf_file = argv[i];
|
||||
return true;
|
||||
}
|
||||
if (arg == "--lora") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@@ -843,9 +861,9 @@ static bool gpt_params_find_arg(int argc, char ** argv, gpt_params & params, int
|
||||
return true;
|
||||
}
|
||||
params.main_gpu = std::stoi(argv[i]);
|
||||
#ifndef GGML_USE_CUBLAS_SYCL
|
||||
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS/SYCL. Setting the main GPU has no effect.\n");
|
||||
#endif // GGML_USE_CUBLAS_SYCL
|
||||
#ifndef GGML_USE_CUDA_SYCL
|
||||
fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL. Setting the main GPU has no effect.\n");
|
||||
#endif // GGML_USE_CUDA_SYCL
|
||||
return true;
|
||||
}
|
||||
if (arg == "--split-mode" || arg == "-sm") {
|
||||
@@ -871,9 +889,9 @@ static bool gpt_params_find_arg(int argc, char ** argv, gpt_params & params, int
|
||||
invalid_param = true;
|
||||
return true;
|
||||
}
|
||||
#ifndef GGML_USE_CUBLAS_SYCL
|
||||
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS/SYCL. Setting the split mode has no effect.\n");
|
||||
#endif // GGML_USE_CUBLAS_SYCL
|
||||
#ifndef GGML_USE_CUDA_SYCL
|
||||
fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL. Setting the split mode has no effect.\n");
|
||||
#endif // GGML_USE_CUDA_SYCL
|
||||
return true;
|
||||
}
|
||||
if (arg == "--tensor-split" || arg == "-ts") {
|
||||
@@ -899,9 +917,9 @@ static bool gpt_params_find_arg(int argc, char ** argv, gpt_params & params, int
|
||||
params.tensor_split[i] = 0.0f;
|
||||
}
|
||||
}
|
||||
#ifndef GGML_USE_CUBLAS_SYCL_VULKAN
|
||||
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS/SYCL/Vulkan. Setting a tensor split has no effect.\n");
|
||||
#endif // GGML_USE_CUBLAS_SYCL
|
||||
#ifndef GGML_USE_CUDA_SYCL_VULKAN
|
||||
fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL/Vulkan. Setting a tensor split has no effect.\n");
|
||||
#endif // GGML_USE_CUDA_SYCL_VULKAN
|
||||
return true;
|
||||
}
|
||||
if (arg == "--no-mmap") {
|
||||
@@ -948,6 +966,22 @@ static bool gpt_params_find_arg(int argc, char ** argv, gpt_params & params, int
|
||||
}
|
||||
return true;
|
||||
}
|
||||
if (arg == "-lcs" || arg == "--lookup-cache-static") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
return true;
|
||||
}
|
||||
params.lookup_cache_static = argv[i];
|
||||
return true;
|
||||
}
|
||||
if (arg == "-lcd" || arg == "--lookup-cache-dynamic") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
return true;
|
||||
}
|
||||
params.lookup_cache_dynamic = argv[i];
|
||||
return true;
|
||||
}
|
||||
if (arg == "--save-all-logits" || arg == "--kl-divergence-base") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@@ -1028,8 +1062,8 @@ static bool gpt_params_find_arg(int argc, char ** argv, gpt_params & params, int
|
||||
params.ignore_eos = true;
|
||||
return true;
|
||||
}
|
||||
if (arg == "--no-penalize-nl") {
|
||||
sparams.penalize_nl = false;
|
||||
if (arg == "--penalize-nl") {
|
||||
sparams.penalize_nl = true;
|
||||
return true;
|
||||
}
|
||||
if (arg == "-l" || arg == "--logit-bias") {
|
||||
@@ -1056,7 +1090,8 @@ static bool gpt_params_find_arg(int argc, char ** argv, gpt_params & params, int
|
||||
return true;
|
||||
}
|
||||
if (arg == "-h" || arg == "--help") {
|
||||
return false;
|
||||
gpt_print_usage(argc, argv, gpt_params());
|
||||
exit(0);
|
||||
}
|
||||
if (arg == "--version") {
|
||||
fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
|
||||
@@ -1200,13 +1235,15 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
std::replace(arg.begin(), arg.end(), '_', '-');
|
||||
}
|
||||
|
||||
if (!gpt_params_find_arg(argc, argv, params, i, invalid_param)) {
|
||||
if (!gpt_params_find_arg(argc, argv, arg, params, i, invalid_param)) {
|
||||
throw std::invalid_argument("error: unknown argument: " + arg);
|
||||
}
|
||||
}
|
||||
|
||||
if (invalid_param) {
|
||||
throw std::invalid_argument("error: invalid parameter for argument: " + arg);
|
||||
}
|
||||
|
||||
if (params.prompt_cache_all &&
|
||||
(params.interactive || params.interactive_first ||
|
||||
params.instruct)) {
|
||||
@@ -1214,6 +1251,11 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n");
|
||||
}
|
||||
|
||||
// short-hand to avoid specifying --hf-file -> default it to --model
|
||||
if (!params.hf_repo.empty() && params.hf_file.empty()) {
|
||||
params.hf_file = params.model;
|
||||
}
|
||||
|
||||
if (params.escape) {
|
||||
process_escapes(params.prompt);
|
||||
process_escapes(params.input_prefix);
|
||||
@@ -1331,7 +1373,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
printf(" -dt N, --defrag-thold N\n");
|
||||
printf(" KV cache defragmentation threshold (default: %.1f, < 0 - disabled)\n", params.defrag_thold);
|
||||
printf(" --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n");
|
||||
printf(" --no-penalize-nl do not penalize newline token\n");
|
||||
printf(" --penalize-nl penalize newline tokens\n");
|
||||
printf(" --temp N temperature (default: %.1f)\n", (double)sparams.temp);
|
||||
printf(" --all-logits return logits for all tokens in the batch (default: disabled)\n");
|
||||
printf(" --hellaswag compute HellaSwag score over random tasks from datafile supplied with -f\n");
|
||||
@@ -1403,12 +1445,20 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
printf(" layer range to apply the control vector(s) to, start and end inclusive\n");
|
||||
printf(" -m FNAME, --model FNAME\n");
|
||||
printf(" model path (default: %s)\n", params.model.c_str());
|
||||
printf(" -mu MODEL_URL, --model-url MODEL_URL\n");
|
||||
printf(" model download url (default: %s)\n", params.model_url.c_str());
|
||||
printf(" -md FNAME, --model-draft FNAME\n");
|
||||
printf(" draft model for speculative decoding\n");
|
||||
printf(" draft model for speculative decoding (default: unused)\n");
|
||||
printf(" -mu MODEL_URL, --model-url MODEL_URL\n");
|
||||
printf(" model download url (default: unused)\n");
|
||||
printf(" -hfr REPO, --hf-repo REPO\n");
|
||||
printf(" Hugging Face model repository (default: unused)\n");
|
||||
printf(" -hff FILE, --hf-file FILE\n");
|
||||
printf(" Hugging Face model file (default: unused)\n");
|
||||
printf(" -ld LOGDIR, --logdir LOGDIR\n");
|
||||
printf(" path under which to save YAML logs (no logging if unset)\n");
|
||||
printf(" -lcs FNAME, --lookup-cache-static FNAME\n");
|
||||
printf(" path to static lookup cache to use for lookup decoding (not updated by generation)\n");
|
||||
printf(" -lcd FNAME, --lookup-cache-dynamic FNAME\n");
|
||||
printf(" path to dynamic lookup cache to use for lookup decoding (updated by generation)\n");
|
||||
printf(" --override-kv KEY=TYPE:VALUE\n");
|
||||
printf(" advanced option to override model metadata by key. may be specified multiple times.\n");
|
||||
printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
|
||||
@@ -1450,6 +1500,77 @@ std::string gpt_random_prompt(std::mt19937 & rng) {
|
||||
GGML_UNREACHABLE();
|
||||
}
|
||||
|
||||
// Validate if a filename is safe to use
|
||||
// To validate a full path, split the path by the OS-specific path separator, and validate each part with this function
|
||||
bool validate_file_name(const std::string & filename) {
|
||||
if (!filename.length()) {
|
||||
// Empty filename invalid
|
||||
return false;
|
||||
}
|
||||
if (filename.length() > 255) {
|
||||
// Limit at common largest possible filename on Linux filesystems
|
||||
// to avoid unnecessary further validation
|
||||
// (On systems with smaller limits it will be caught by the OS)
|
||||
return false;
|
||||
}
|
||||
|
||||
std::u32string filename_utf32;
|
||||
try {
|
||||
std::wstring_convert<std::codecvt_utf8<char32_t>, char32_t> converter;
|
||||
filename_utf32 = converter.from_bytes(filename);
|
||||
|
||||
// If the reverse conversion mismatches, it means overlong UTF-8 sequences were used,
|
||||
// or invalid encodings were encountered. Reject such attempts
|
||||
std::string filename_reencoded = converter.to_bytes(filename_utf32);
|
||||
if (filename_reencoded != filename) {
|
||||
return false;
|
||||
}
|
||||
} catch (const std::exception &) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Check for forbidden codepoints:
|
||||
// - Control characters
|
||||
// - Unicode equivalents of illegal characters
|
||||
// - UTF-16 surrogate pairs
|
||||
// - UTF-8 replacement character
|
||||
// - Byte order mark (BOM)
|
||||
// - Illegal characters: / \ : * ? " < > |
|
||||
for (char32_t c : filename_utf32) {
|
||||
if (c <= 0x1F // Control characters (C0)
|
||||
|| c == 0x7F // Control characters (DEL)
|
||||
|| (c >= 0x80 && c <= 0x9F) // Control characters (C1)
|
||||
|| c == 0xFF0E // Fullwidth Full Stop (period equivalent)
|
||||
|| c == 0x2215 // Division Slash (forward slash equivalent)
|
||||
|| c == 0x2216 // Set Minus (backslash equivalent)
|
||||
|| (c >= 0xD800 && c <= 0xDFFF) // UTF-16 surrogate pairs
|
||||
|| c == 0xFFFD // Replacement Character (UTF-8)
|
||||
|| c == 0xFEFF // Byte Order Mark (BOM)
|
||||
|| c == '/' || c == '\\' || c == ':' || c == '*' // Illegal characters
|
||||
|| c == '?' || c == '"' || c == '<' || c == '>' || c == '|') {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// Reject any leading or trailing ' ', or any trailing '.', these are stripped on Windows and will cause a different filename
|
||||
// Unicode and other whitespace is not affected, only 0x20 space
|
||||
if (filename.front() == ' ' || filename.back() == ' ' || filename.back() == '.') {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Reject any ".." (currently stricter than necessary, it should be fine to just check for == ".." instead)
|
||||
if (filename.find("..") != std::string::npos) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Reject "."
|
||||
if (filename == ".") {
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
//
|
||||
// String utils
|
||||
//
|
||||
@@ -1589,6 +1710,9 @@ static ggml_type kv_cache_type_from_str(const std::string & s) {
|
||||
if (s == "q4_1") {
|
||||
return GGML_TYPE_Q4_1;
|
||||
}
|
||||
if (s == "iq4_nl") {
|
||||
return GGML_TYPE_IQ4_NL;
|
||||
}
|
||||
if (s == "q5_0") {
|
||||
return GGML_TYPE_Q5_0;
|
||||
}
|
||||
@@ -1652,25 +1776,13 @@ void llama_batch_add(
|
||||
|
||||
#ifdef LLAMA_USE_CURL
|
||||
|
||||
struct llama_model * llama_load_model_from_url(const char * model_url, const char * path_model,
|
||||
struct llama_model_params params) {
|
||||
// Basic validation of the model_url
|
||||
if (!model_url || strlen(model_url) == 0) {
|
||||
fprintf(stderr, "%s: invalid model_url\n", __func__);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// Initialize libcurl globally
|
||||
auto curl = curl_easy_init();
|
||||
|
||||
if (!curl) {
|
||||
fprintf(stderr, "%s: error initializing libcurl\n", __func__);
|
||||
return NULL;
|
||||
}
|
||||
static bool llama_download_file(CURL * curl, const char * url, const char * path) {
|
||||
bool force_download = false;
|
||||
|
||||
// Set the URL, allow to follow http redirection
|
||||
curl_easy_setopt(curl, CURLOPT_URL, model_url);
|
||||
curl_easy_setopt(curl, CURLOPT_URL, url);
|
||||
curl_easy_setopt(curl, CURLOPT_FOLLOWLOCATION, 1L);
|
||||
|
||||
#if defined(_WIN32)
|
||||
// CURLSSLOPT_NATIVE_CA tells libcurl to use standard certificate store of
|
||||
// operating system. Currently implemented under MS-Windows.
|
||||
@@ -1679,16 +1791,16 @@ struct llama_model * llama_load_model_from_url(const char * model_url, const cha
|
||||
|
||||
// Check if the file already exists locally
|
||||
struct stat model_file_info;
|
||||
auto file_exists = (stat(path_model, &model_file_info) == 0);
|
||||
auto file_exists = (stat(path, &model_file_info) == 0);
|
||||
|
||||
// If the file exists, check for ${path_model}.etag or ${path_model}.lastModified files
|
||||
char etag[LLAMA_CURL_MAX_HEADER_LENGTH] = {0};
|
||||
char etag_path[LLAMA_CURL_MAX_PATH_LENGTH] = {0};
|
||||
snprintf(etag_path, sizeof(etag_path), "%s.etag", path_model);
|
||||
char etag_path[PATH_MAX] = {0};
|
||||
snprintf(etag_path, sizeof(etag_path), "%s.etag", path);
|
||||
|
||||
char last_modified[LLAMA_CURL_MAX_HEADER_LENGTH] = {0};
|
||||
char last_modified_path[LLAMA_CURL_MAX_PATH_LENGTH] = {0};
|
||||
snprintf(last_modified_path, sizeof(last_modified_path), "%s.lastModified", path_model);
|
||||
char last_modified_path[PATH_MAX] = {0};
|
||||
snprintf(last_modified_path, sizeof(last_modified_path), "%s.lastModified", path);
|
||||
|
||||
if (file_exists) {
|
||||
auto * f_etag = fopen(etag_path, "r");
|
||||
@@ -1696,7 +1808,7 @@ struct llama_model * llama_load_model_from_url(const char * model_url, const cha
|
||||
if (!fgets(etag, sizeof(etag), f_etag)) {
|
||||
fprintf(stderr, "%s: unable to read file %s\n", __func__, etag_path);
|
||||
} else {
|
||||
fprintf(stderr, "%s: previous model file found %s: %s\n", __func__, etag_path, etag);
|
||||
fprintf(stderr, "%s: previous file found %s: %s\n", __func__, etag_path, etag);
|
||||
}
|
||||
fclose(f_etag);
|
||||
}
|
||||
@@ -1706,7 +1818,7 @@ struct llama_model * llama_load_model_from_url(const char * model_url, const cha
|
||||
if (!fgets(last_modified, sizeof(last_modified), f_last_modified)) {
|
||||
fprintf(stderr, "%s: unable to read file %s\n", __func__, last_modified_path);
|
||||
} else {
|
||||
fprintf(stderr, "%s: previous model file found %s: %s\n", __func__, last_modified_path,
|
||||
fprintf(stderr, "%s: previous file found %s: %s\n", __func__, last_modified_path,
|
||||
last_modified);
|
||||
}
|
||||
fclose(f_last_modified);
|
||||
@@ -1724,6 +1836,11 @@ struct llama_model * llama_load_model_from_url(const char * model_url, const cha
|
||||
auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
|
||||
llama_load_model_from_url_headers *headers = (llama_load_model_from_url_headers *) userdata;
|
||||
|
||||
// Convert header field name to lowercase
|
||||
for (size_t i = 0; i < n_items && buffer[i] != ':'; ++i) {
|
||||
buffer[i] = tolower(buffer[i]);
|
||||
}
|
||||
|
||||
const char * etag_prefix = "etag: ";
|
||||
if (strncmp(buffer, etag_prefix, strlen(etag_prefix)) == 0) {
|
||||
strncpy(headers->etag, buffer + strlen(etag_prefix), n_items - strlen(etag_prefix) - 2); // Remove CRLF
|
||||
@@ -1746,7 +1863,7 @@ struct llama_model * llama_load_model_from_url(const char * model_url, const cha
|
||||
if (res != CURLE_OK) {
|
||||
curl_easy_cleanup(curl);
|
||||
fprintf(stderr, "%s: curl_easy_perform() failed: %s\n", __func__, curl_easy_strerror(res));
|
||||
return NULL;
|
||||
return false;
|
||||
}
|
||||
|
||||
long http_code = 0;
|
||||
@@ -1754,30 +1871,34 @@ struct llama_model * llama_load_model_from_url(const char * model_url, const cha
|
||||
if (http_code != 200) {
|
||||
// HEAD not supported, we don't know if the file has changed
|
||||
// force trigger downloading
|
||||
file_exists = false;
|
||||
force_download = true;
|
||||
fprintf(stderr, "%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
|
||||
}
|
||||
}
|
||||
|
||||
// If the ETag or the Last-Modified headers are different: trigger a new download
|
||||
if (!file_exists || strcmp(etag, headers.etag) != 0 || strcmp(last_modified, headers.last_modified) != 0) {
|
||||
char path_model_temporary[LLAMA_CURL_MAX_PATH_LENGTH] = {0};
|
||||
snprintf(path_model_temporary, sizeof(path_model_temporary), "%s.downloadInProgress", path_model);
|
||||
bool should_download = !file_exists
|
||||
|| force_download
|
||||
|| (strlen(headers.etag) > 0 && strcmp(etag, headers.etag) != 0)
|
||||
|| (strlen(headers.last_modified) > 0 && strcmp(last_modified, headers.last_modified) != 0);
|
||||
if (should_download) {
|
||||
char path_temporary[PATH_MAX] = {0};
|
||||
snprintf(path_temporary, sizeof(path_temporary), "%s.downloadInProgress", path);
|
||||
if (file_exists) {
|
||||
fprintf(stderr, "%s: deleting previous downloaded model file: %s\n", __func__, path_model);
|
||||
if (remove(path_model) != 0) {
|
||||
fprintf(stderr, "%s: deleting previous downloaded file: %s\n", __func__, path);
|
||||
if (remove(path) != 0) {
|
||||
curl_easy_cleanup(curl);
|
||||
fprintf(stderr, "%s: unable to delete file: %s\n", __func__, path_model);
|
||||
return NULL;
|
||||
fprintf(stderr, "%s: unable to delete file: %s\n", __func__, path);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// Set the output file
|
||||
auto * outfile = fopen(path_model_temporary, "wb");
|
||||
auto * outfile = fopen(path_temporary, "wb");
|
||||
if (!outfile) {
|
||||
curl_easy_cleanup(curl);
|
||||
fprintf(stderr, "%s: error opening local file for writing: %s\n", __func__, path_model);
|
||||
return NULL;
|
||||
fprintf(stderr, "%s: error opening local file for writing: %s\n", __func__, path);
|
||||
return false;
|
||||
}
|
||||
|
||||
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * data, size_t size, size_t nmemb, void * fd);
|
||||
@@ -1791,15 +1912,30 @@ struct llama_model * llama_load_model_from_url(const char * model_url, const cha
|
||||
// display download progress
|
||||
curl_easy_setopt(curl, CURLOPT_NOPROGRESS, 0L);
|
||||
|
||||
// helper function to hide password in URL
|
||||
auto llama_download_hide_password_in_url = [](const std::string & url) -> std::string {
|
||||
std::size_t protocol_pos = url.find("://");
|
||||
if (protocol_pos == std::string::npos) {
|
||||
return url; // Malformed URL
|
||||
}
|
||||
|
||||
std::size_t at_pos = url.find('@', protocol_pos + 3);
|
||||
if (at_pos == std::string::npos) {
|
||||
return url; // No password in URL
|
||||
}
|
||||
|
||||
return url.substr(0, protocol_pos + 3) + "********" + url.substr(at_pos);
|
||||
};
|
||||
|
||||
// start the download
|
||||
fprintf(stderr, "%s: downloading model from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
|
||||
model_url, path_model, headers.etag, headers.last_modified);
|
||||
fprintf(stderr, "%s: downloading from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
|
||||
llama_download_hide_password_in_url(url).c_str(), path, headers.etag, headers.last_modified);
|
||||
auto res = curl_easy_perform(curl);
|
||||
if (res != CURLE_OK) {
|
||||
fclose(outfile);
|
||||
curl_easy_cleanup(curl);
|
||||
fprintf(stderr, "%s: curl_easy_perform() failed: %s\n", __func__, curl_easy_strerror(res));
|
||||
return NULL;
|
||||
return false;
|
||||
}
|
||||
|
||||
long http_code = 0;
|
||||
@@ -1808,7 +1944,7 @@ struct llama_model * llama_load_model_from_url(const char * model_url, const cha
|
||||
fclose(outfile);
|
||||
curl_easy_cleanup(curl);
|
||||
fprintf(stderr, "%s: invalid http status code received: %ld\n", __func__, http_code);
|
||||
return NULL;
|
||||
return false;
|
||||
}
|
||||
|
||||
// Clean up
|
||||
@@ -1820,7 +1956,7 @@ struct llama_model * llama_load_model_from_url(const char * model_url, const cha
|
||||
if (etag_file) {
|
||||
fputs(headers.etag, etag_file);
|
||||
fclose(etag_file);
|
||||
fprintf(stderr, "%s: model etag saved %s: %s\n", __func__, etag_path, headers.etag);
|
||||
fprintf(stderr, "%s: file etag saved %s: %s\n", __func__, etag_path, headers.etag);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1830,42 +1966,172 @@ struct llama_model * llama_load_model_from_url(const char * model_url, const cha
|
||||
if (last_modified_file) {
|
||||
fputs(headers.last_modified, last_modified_file);
|
||||
fclose(last_modified_file);
|
||||
fprintf(stderr, "%s: model last modified saved %s: %s\n", __func__, last_modified_path,
|
||||
fprintf(stderr, "%s: file last modified saved %s: %s\n", __func__, last_modified_path,
|
||||
headers.last_modified);
|
||||
}
|
||||
}
|
||||
|
||||
if (rename(path_model_temporary, path_model) != 0) {
|
||||
if (rename(path_temporary, path) != 0) {
|
||||
curl_easy_cleanup(curl);
|
||||
fprintf(stderr, "%s: unable to rename file: %s to %s\n", __func__, path_temporary, path);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
struct llama_model * llama_load_model_from_url(
|
||||
const char * model_url,
|
||||
const char * path_model,
|
||||
const struct llama_model_params & params) {
|
||||
// Basic validation of the model_url
|
||||
if (!model_url || strlen(model_url) == 0) {
|
||||
fprintf(stderr, "%s: invalid model_url\n", __func__);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// Initialize libcurl
|
||||
auto * curl = curl_easy_init();
|
||||
|
||||
if (!curl) {
|
||||
fprintf(stderr, "%s: error initializing libcurl\n", __func__);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if (!llama_download_file(curl, model_url, path_model)) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// check for additional GGUFs split to download
|
||||
int n_split = 0;
|
||||
{
|
||||
struct gguf_init_params gguf_params = {
|
||||
/*.no_alloc = */ true,
|
||||
/*.ctx = */ NULL,
|
||||
};
|
||||
auto * ctx_gguf = gguf_init_from_file(path_model, gguf_params);
|
||||
if (!ctx_gguf) {
|
||||
fprintf(stderr, "\n%s: failed to load input GGUF from %s\n", __func__, path_model);
|
||||
curl_easy_cleanup(curl);
|
||||
fprintf(stderr, "%s: unable to rename file: %s to %s\n", __func__, path_model_temporary, path_model);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT);
|
||||
if (key_n_split >= 0) {
|
||||
n_split = gguf_get_val_u16(ctx_gguf, key_n_split);
|
||||
}
|
||||
|
||||
gguf_free(ctx_gguf);
|
||||
}
|
||||
|
||||
curl_easy_cleanup(curl);
|
||||
|
||||
if (n_split > 1) {
|
||||
char split_prefix[PATH_MAX] = {0};
|
||||
char split_url_prefix[LLAMA_CURL_MAX_URL_LENGTH] = {0};
|
||||
|
||||
// Verify the first split file format
|
||||
// and extract split URL and PATH prefixes
|
||||
{
|
||||
if (!llama_split_prefix(split_prefix, sizeof(split_prefix), path_model, 0, n_split)) {
|
||||
fprintf(stderr, "\n%s: unexpected model file name: %s"
|
||||
" n_split=%d\n", __func__, path_model, n_split);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if (!llama_split_prefix(split_url_prefix, sizeof(split_url_prefix), model_url, 0, n_split)) {
|
||||
fprintf(stderr, "\n%s: unexpected model url: %s"
|
||||
" n_split=%d\n", __func__, model_url, n_split);
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
// Prepare download in parallel
|
||||
std::vector<std::future<bool>> futures_download;
|
||||
for (int idx = 1; idx < n_split; idx++) {
|
||||
futures_download.push_back(std::async(std::launch::async, [&split_prefix, &split_url_prefix, &n_split](int download_idx) -> bool {
|
||||
char split_path[PATH_MAX] = {0};
|
||||
llama_split_path(split_path, sizeof(split_path), split_prefix, download_idx, n_split);
|
||||
|
||||
char split_url[LLAMA_CURL_MAX_URL_LENGTH] = {0};
|
||||
llama_split_path(split_url, sizeof(split_url), split_url_prefix, download_idx, n_split);
|
||||
|
||||
auto * curl = curl_easy_init();
|
||||
bool res = llama_download_file(curl, split_url, split_path);
|
||||
curl_easy_cleanup(curl);
|
||||
|
||||
return res;
|
||||
}, idx));
|
||||
}
|
||||
|
||||
// Wait for all downloads to complete
|
||||
for (auto & f : futures_download) {
|
||||
if (!f.get()) {
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return llama_load_model_from_file(path_model, params);
|
||||
}
|
||||
|
||||
struct llama_model * llama_load_model_from_hf(
|
||||
const char * repo,
|
||||
const char * model,
|
||||
const char * path_model,
|
||||
const struct llama_model_params & params) {
|
||||
// construct hugging face model url:
|
||||
//
|
||||
// --repo ggml-org/models --file tinyllama-1.1b/ggml-model-f16.gguf
|
||||
// https://huggingface.co/ggml-org/models/resolve/main/tinyllama-1.1b/ggml-model-f16.gguf
|
||||
//
|
||||
// --repo TheBloke/Mixtral-8x7B-v0.1-GGUF --file mixtral-8x7b-v0.1.Q4_K_M.gguf
|
||||
// https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF/resolve/main/mixtral-8x7b-v0.1.Q4_K_M.gguf
|
||||
//
|
||||
|
||||
std::string model_url = "https://huggingface.co/";
|
||||
model_url += repo;
|
||||
model_url += "/resolve/main/";
|
||||
model_url += model;
|
||||
|
||||
return llama_load_model_from_url(model_url.c_str(), path_model, params);
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
struct llama_model * llama_load_model_from_url(const char * /*model_url*/, const char * /*path_model*/,
|
||||
struct llama_model_params /*params*/) {
|
||||
struct llama_model * llama_load_model_from_url(
|
||||
const char * /*model_url*/,
|
||||
const char * /*path_model*/,
|
||||
const struct llama_model_params & /*params*/) {
|
||||
fprintf(stderr, "%s: llama.cpp built without libcurl, downloading from an url not supported.\n", __func__);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
struct llama_model * llama_load_model_from_hf(
|
||||
const char * /*repo*/,
|
||||
const char * /*model*/,
|
||||
const char * /*path_model*/,
|
||||
const struct llama_model_params & /*params*/) {
|
||||
fprintf(stderr, "%s: llama.cpp built without libcurl, downloading from Hugging Face not supported.\n", __func__);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
#endif // LLAMA_USE_CURL
|
||||
|
||||
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params) {
|
||||
auto mparams = llama_model_params_from_gpt_params(params);
|
||||
|
||||
llama_model * model = nullptr;
|
||||
if (!params.model_url.empty()) {
|
||||
|
||||
if (!params.hf_repo.empty() && !params.hf_file.empty()) {
|
||||
model = llama_load_model_from_hf(params.hf_repo.c_str(), params.hf_file.c_str(), params.model.c_str(), mparams);
|
||||
} else if (!params.model_url.empty()) {
|
||||
model = llama_load_model_from_url(params.model_url.c_str(), params.model.c_str(), mparams);
|
||||
} else {
|
||||
model = llama_load_model_from_file(params.model.c_str(), mparams);
|
||||
}
|
||||
|
||||
if (model == NULL) {
|
||||
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
|
||||
return std::make_tuple(nullptr, nullptr);
|
||||
@@ -1905,7 +2171,7 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
|
||||
}
|
||||
|
||||
for (unsigned int i = 0; i < params.lora_adapter.size(); ++i) {
|
||||
const std::string& lora_adapter = std::get<0>(params.lora_adapter[i]);
|
||||
const std::string & lora_adapter = std::get<0>(params.lora_adapter[i]);
|
||||
float lora_scale = std::get<1>(params.lora_adapter[i]);
|
||||
int err = llama_model_apply_lora_from_file(model,
|
||||
lora_adapter.c_str(),
|
||||
@@ -2187,7 +2453,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
|
||||
fprintf(stream, "cpu_has_avx512: %s\n", ggml_cpu_has_avx512() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_cublas: %s\n", ggml_cpu_has_cublas() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_cuda: %s\n", ggml_cpu_has_cuda() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_vulkan: %s\n", ggml_cpu_has_vulkan() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_clblast: %s\n", ggml_cpu_has_clblast() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_kompute: %s\n", ggml_cpu_has_kompute() ? "true" : "false");
|
||||
@@ -2289,7 +2555,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
|
||||
fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict);
|
||||
fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", sparams.n_probs);
|
||||
fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false");
|
||||
fprintf(stream, "no_penalize_nl: %s # default: false\n", !sparams.penalize_nl ? "true" : "false");
|
||||
fprintf(stream, "penalize_nl: %s # default: false\n", sparams.penalize_nl ? "true" : "false");
|
||||
fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type);
|
||||
fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride);
|
||||
fprintf(stream, "presence_penalty: %f # default: 0.0\n", sparams.penalty_present);
|
||||
|
||||
@@ -88,18 +88,22 @@ struct gpt_params {
|
||||
// // sampling parameters
|
||||
struct llama_sampling_params sparams;
|
||||
|
||||
std::string model = "models/7B/ggml-model-f16.gguf"; // model path
|
||||
std::string model_url = ""; // model url to download
|
||||
std::string model_draft = ""; // draft model for speculative decoding
|
||||
std::string model_alias = "unknown"; // model alias
|
||||
std::string prompt = "";
|
||||
std::string prompt_file = ""; // store the external prompt file name
|
||||
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
|
||||
std::string input_prefix = ""; // string to prefix user inputs with
|
||||
std::string input_suffix = ""; // string to suffix user inputs with
|
||||
std::string model = "models/7B/ggml-model-f16.gguf"; // model path
|
||||
std::string model_draft = ""; // draft model for speculative decoding
|
||||
std::string model_alias = "unknown"; // model alias
|
||||
std::string model_url = ""; // model url to download
|
||||
std::string hf_repo = ""; // HF repo
|
||||
std::string hf_file = ""; // HF file
|
||||
std::string prompt = "";
|
||||
std::string prompt_file = ""; // store the external prompt file name
|
||||
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
|
||||
std::string input_prefix = ""; // string to prefix user inputs with
|
||||
std::string input_suffix = ""; // string to suffix user inputs with
|
||||
std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
|
||||
std::string logdir = ""; // directory in which to save YAML log files
|
||||
std::string logits_file = ""; // file for saving *all* logits
|
||||
std::string logdir = ""; // directory in which to save YAML log files
|
||||
std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding
|
||||
std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding
|
||||
std::string logits_file = ""; // file for saving *all* logits
|
||||
|
||||
std::vector<llama_model_kv_override> kv_overrides;
|
||||
|
||||
@@ -139,7 +143,7 @@ struct gpt_params {
|
||||
bool interactive_first = false; // wait for user input immediately
|
||||
bool multiline_input = false; // reverse the usage of `\`
|
||||
bool simple_io = false; // improves compatibility with subprocesses and limited consoles
|
||||
bool cont_batching = false; // insert new sequences for decoding on-the-fly
|
||||
bool cont_batching = true; // insert new sequences for decoding on-the-fly
|
||||
|
||||
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
|
||||
bool ignore_eos = false; // ignore generated EOS tokens
|
||||
@@ -167,12 +171,16 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
|
||||
|
||||
void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
|
||||
|
||||
bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param);
|
||||
|
||||
std::string get_system_info(const gpt_params & params);
|
||||
|
||||
std::string gpt_random_prompt(std::mt19937 & rng);
|
||||
|
||||
void process_escapes(std::string& input);
|
||||
|
||||
bool validate_file_name(const std::string & filename);
|
||||
|
||||
//
|
||||
// String utils
|
||||
//
|
||||
@@ -192,8 +200,8 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
|
||||
struct llama_model_params llama_model_params_from_gpt_params (const gpt_params & params);
|
||||
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params);
|
||||
|
||||
struct llama_model * llama_load_model_from_url(const char * model_url, const char * path_model,
|
||||
struct llama_model_params params);
|
||||
struct llama_model * llama_load_model_from_url(const char * model_url, const char * path_model, const struct llama_model_params & params);
|
||||
struct llama_model * llama_load_model_from_hf(const char * repo, const char * file, const char * path_model, const struct llama_model_params & params);
|
||||
|
||||
// Batch utils
|
||||
|
||||
@@ -302,3 +310,10 @@ struct llama_control_vector_load_info {
|
||||
// Load control vectors, scale each by strength, and add them together.
|
||||
// On error, returns {-1, empty}
|
||||
llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos);
|
||||
|
||||
//
|
||||
// Split utils
|
||||
//
|
||||
static const char * const LLM_KV_SPLIT_NO = "split.no";
|
||||
static const char * const LLM_KV_SPLIT_COUNT = "split.count";
|
||||
static const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
|
||||
|
||||
721
common/json-schema-to-grammar.cpp
Normal file
721
common/json-schema-to-grammar.cpp
Normal file
@@ -0,0 +1,721 @@
|
||||
#include "json-schema-to-grammar.h"
|
||||
#include <algorithm>
|
||||
#include <fstream>
|
||||
#include <map>
|
||||
#include <regex>
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <unordered_set>
|
||||
#include <vector>
|
||||
|
||||
using json = nlohmann::ordered_json;
|
||||
|
||||
const std::string SPACE_RULE = "\" \"?";
|
||||
|
||||
std::unordered_map<std::string, std::string> PRIMITIVE_RULES = {
|
||||
{"boolean", "(\"true\" | \"false\") space"},
|
||||
{"number", "(\"-\"? ([0-9] | [1-9] [0-9]*)) (\".\" [0-9]+)? ([eE] [-+]? [0-9]+)? space"},
|
||||
{"integer", "(\"-\"? ([0-9] | [1-9] [0-9]*)) space"},
|
||||
{"value", "object | array | string | number | boolean"},
|
||||
{"object", "\"{\" space ( string \":\" space value (\",\" space string \":\" space value)* )? \"}\" space"},
|
||||
{"array", "\"[\" space ( value (\",\" space value)* )? \"]\" space"},
|
||||
{"uuid", "\"\\\"\" [0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F] "
|
||||
"\"-\" [0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F] "
|
||||
"\"-\" [0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F] "
|
||||
"\"-\" [0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F] "
|
||||
"\"-\" [0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F] \"\\\"\" space"},
|
||||
{"string", " \"\\\"\" (\n"
|
||||
" [^\"\\\\] |\n"
|
||||
" \"\\\\\" ([\"\\\\/bfnrt] | \"u\" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F])\n"
|
||||
" )* \"\\\"\" space"},
|
||||
{"null", "\"null\" space"}
|
||||
};
|
||||
std::vector<std::string> OBJECT_RULE_NAMES = {"object", "array", "string", "number", "boolean", "null", "value"};
|
||||
|
||||
std::unordered_map<std::string, std::string> DATE_RULES = {
|
||||
{"date", "[0-9] [0-9] [0-9] [0-9] \"-\" ( \"0\" [1-9] | \"1\" [0-2] ) \"-\" ( \"0\" [1-9] | [1-2] [0-9] | \"3\" [0-1] )"},
|
||||
{"time", "([01] [0-9] | \"2\" [0-3]) \":\" [0-5] [0-9] \":\" [0-5] [0-9] ( \".\" [0-9] [0-9] [0-9] )? ( \"Z\" | ( \"+\" | \"-\" ) ( [01] [0-9] | \"2\" [0-3] ) \":\" [0-5] [0-9] )"},
|
||||
{"date-time", "date \"T\" time"},
|
||||
{"date-string", "\"\\\"\" date \"\\\"\" space"},
|
||||
{"time-string", "\"\\\"\" time \"\\\"\" space"},
|
||||
{"date-time-string", "\"\\\"\" date-time \"\\\"\" space"}
|
||||
};
|
||||
|
||||
static bool is_reserved_name(const std::string & name) {
|
||||
static std::unordered_set<std::string> RESERVED_NAMES;
|
||||
if (RESERVED_NAMES.empty()) {
|
||||
RESERVED_NAMES.insert("root");
|
||||
for (const auto &p : PRIMITIVE_RULES) RESERVED_NAMES.insert(p.first);
|
||||
for (const auto &p : DATE_RULES) RESERVED_NAMES.insert(p.first);
|
||||
}
|
||||
return RESERVED_NAMES.find(name) != RESERVED_NAMES.end();
|
||||
}
|
||||
|
||||
std::regex INVALID_RULE_CHARS_RE("[^a-zA-Z0-9-]+");
|
||||
std::regex GRAMMAR_LITERAL_ESCAPE_RE("[\r\n\"]");
|
||||
std::regex GRAMMAR_RANGE_LITERAL_ESCAPE_RE("[\r\n\"\\]\\-\\\\]");
|
||||
std::unordered_map<char, std::string> GRAMMAR_LITERAL_ESCAPES = {
|
||||
{'\r', "\\r"}, {'\n', "\\n"}, {'"', "\\\""}, {'-', "\\-"}, {']', "\\]"}
|
||||
};
|
||||
|
||||
std::unordered_set<char> NON_LITERAL_SET = {'|', '.', '(', ')', '[', ']', '{', '}', '*', '+', '?'};
|
||||
std::unordered_set<char> ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS = {'[', ']', '(', ')', '|', '{', '}', '*', '+', '?'};
|
||||
|
||||
template <typename Iterator>
|
||||
std::string join(Iterator begin, Iterator end, const std::string & separator) {
|
||||
std::ostringstream result;
|
||||
if (begin != end) {
|
||||
result << *begin;
|
||||
for (Iterator it = begin + 1; it != end; ++it) {
|
||||
result << separator << *it;
|
||||
}
|
||||
}
|
||||
return result.str();
|
||||
}
|
||||
|
||||
static std::vector<std::string> split(const std::string & str, const std::string & delimiter) {
|
||||
std::vector<std::string> tokens;
|
||||
size_t start = 0;
|
||||
size_t end = str.find(delimiter);
|
||||
|
||||
while (end != std::string::npos) {
|
||||
tokens.push_back(str.substr(start, end - start));
|
||||
start = end + delimiter.length();
|
||||
end = str.find(delimiter, start);
|
||||
}
|
||||
|
||||
tokens.push_back(str.substr(start));
|
||||
|
||||
return tokens;
|
||||
}
|
||||
|
||||
static std::string repeat(const std::string & str, size_t n) {
|
||||
if (n == 0) {
|
||||
return "";
|
||||
}
|
||||
|
||||
std::string result;
|
||||
result.reserve(str.length() * n);
|
||||
|
||||
for (size_t i = 0; i < n; ++i) {
|
||||
result += str;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
static std::string replacePattern(const std::string & input, const std::regex & regex, const std::function<std::string(const std::smatch &)> & replacement) {
|
||||
std::smatch match;
|
||||
std::string result;
|
||||
|
||||
std::string::const_iterator searchStart(input.cbegin());
|
||||
std::string::const_iterator searchEnd(input.cend());
|
||||
|
||||
while (std::regex_search(searchStart, searchEnd, match, regex)) {
|
||||
result.append(searchStart, searchStart + match.position());
|
||||
result.append(replacement(match));
|
||||
searchStart = match.suffix().first;
|
||||
}
|
||||
|
||||
result.append(searchStart, searchEnd);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
static std::string format_literal(const std::string & literal) {
|
||||
std::string escaped = replacePattern(literal, GRAMMAR_LITERAL_ESCAPE_RE, [&](const std::smatch & match) {
|
||||
char c = match.str()[0];
|
||||
return GRAMMAR_LITERAL_ESCAPES.at(c);
|
||||
});
|
||||
return "\"" + escaped + "\"";
|
||||
}
|
||||
|
||||
|
||||
class SchemaConverter {
|
||||
private:
|
||||
std::function<json(const std::string &)> _fetch_json;
|
||||
bool _dotall;
|
||||
std::map<std::string, std::string> _rules;
|
||||
std::unordered_map<std::string, json> _refs;
|
||||
std::unordered_set<std::string> _refs_being_resolved;
|
||||
std::vector<std::string> _errors;
|
||||
std::vector<std::string> _warnings;
|
||||
|
||||
std::string _add_rule(const std::string & name, const std::string & rule) {
|
||||
std::string esc_name = regex_replace(name, INVALID_RULE_CHARS_RE, "-");
|
||||
if (_rules.find(esc_name) == _rules.end() || _rules[esc_name] == rule) {
|
||||
_rules[esc_name] = rule;
|
||||
return esc_name;
|
||||
} else {
|
||||
int i = 0;
|
||||
while (_rules.find(esc_name + std::to_string(i)) != _rules.end() && _rules[esc_name + std::to_string(i)] != rule) {
|
||||
i++;
|
||||
}
|
||||
std::string key = esc_name + std::to_string(i);
|
||||
_rules[key] = rule;
|
||||
return key;
|
||||
}
|
||||
}
|
||||
|
||||
std::string _generate_union_rule(const std::string & name, const std::vector<json> & alt_schemas) {
|
||||
std::vector<std::string> rules;
|
||||
for (size_t i = 0; i < alt_schemas.size(); i++) {
|
||||
rules.push_back(visit(alt_schemas[i], name + (name.empty() ? "alternative-" : "-") + std::to_string(i)));
|
||||
}
|
||||
return join(rules.begin(), rules.end(), " | ");
|
||||
}
|
||||
|
||||
std::string _visit_pattern(const std::string & pattern, const std::string & name) {
|
||||
if (!(pattern.front() == '^' && pattern.back() == '$')) {
|
||||
_errors.push_back("Pattern must start with '^' and end with '$'");
|
||||
return "";
|
||||
}
|
||||
std::string sub_pattern = pattern.substr(1, pattern.length() - 2);
|
||||
std::unordered_map<std::string, std::string> sub_rule_ids;
|
||||
|
||||
size_t i = 0;
|
||||
size_t length = sub_pattern.length();
|
||||
|
||||
using literal_or_rule = std::pair<std::string, bool>;
|
||||
auto to_rule = [&](const literal_or_rule & ls) {
|
||||
auto is_literal = ls.second;
|
||||
auto s = ls.first;
|
||||
return is_literal ? "\"" + s + "\"" : s;
|
||||
};
|
||||
std::function<literal_or_rule()> transform = [&]() -> literal_or_rule {
|
||||
size_t start = i;
|
||||
std::vector<literal_or_rule> seq;
|
||||
|
||||
auto get_dot = [&]() {
|
||||
std::string rule;
|
||||
if (_dotall) {
|
||||
rule = "[\\U00000000-\\U0010FFFF]";
|
||||
} else {
|
||||
rule = "[\\U00000000-\\x09\\x0B\\x0C\\x0E-\\U0010FFFF]";
|
||||
}
|
||||
return _add_rule("dot", rule);
|
||||
};
|
||||
|
||||
// Joins the sequence, merging consecutive literals together.
|
||||
auto join_seq = [&]() {
|
||||
std::vector<literal_or_rule> ret;
|
||||
|
||||
std::string literal;
|
||||
auto flush_literal = [&]() {
|
||||
if (literal.empty()) {
|
||||
return false;
|
||||
}
|
||||
ret.push_back(std::make_pair(literal, true));
|
||||
literal.clear();
|
||||
return true;
|
||||
};
|
||||
|
||||
for (const auto & item : seq) {
|
||||
auto is_literal = item.second;
|
||||
if (is_literal) {
|
||||
literal += item.first;
|
||||
} else {
|
||||
flush_literal();
|
||||
ret.push_back(item);
|
||||
}
|
||||
}
|
||||
flush_literal();
|
||||
|
||||
std::vector<std::string> results;
|
||||
for (const auto & item : ret) {
|
||||
results.push_back(to_rule(item));
|
||||
}
|
||||
return std::make_pair(join(results.begin(), results.end(), " "), false);
|
||||
};
|
||||
|
||||
while (i < length) {
|
||||
char c = sub_pattern[i];
|
||||
if (c == '.') {
|
||||
seq.push_back(std::make_pair(get_dot(), false));
|
||||
i++;
|
||||
} else if (c == '(') {
|
||||
i++;
|
||||
if (i < length) {
|
||||
if (sub_pattern[i] == '?') {
|
||||
_warnings.push_back("Unsupported pattern syntax");
|
||||
}
|
||||
}
|
||||
seq.push_back(std::make_pair("(" + to_rule(transform()) + ")", false));
|
||||
} else if (c == ')') {
|
||||
i++;
|
||||
if (start > 0 && sub_pattern[start - 1] != '(') {
|
||||
_errors.push_back("Unbalanced parentheses");
|
||||
}
|
||||
return join_seq();
|
||||
} else if (c == '[') {
|
||||
std::string square_brackets = std::string(1, c);
|
||||
i++;
|
||||
while (i < length && sub_pattern[i] != ']') {
|
||||
if (sub_pattern[i] == '\\') {
|
||||
square_brackets += sub_pattern.substr(i, 2);
|
||||
i += 2;
|
||||
} else {
|
||||
square_brackets += sub_pattern[i];
|
||||
i++;
|
||||
}
|
||||
}
|
||||
if (i >= length) {
|
||||
_errors.push_back("Unbalanced square brackets");
|
||||
}
|
||||
square_brackets += ']';
|
||||
i++;
|
||||
seq.push_back(std::make_pair(square_brackets, false));
|
||||
} else if (c == '|') {
|
||||
seq.push_back(std::make_pair("|", false));
|
||||
i++;
|
||||
} else if (c == '*' || c == '+' || c == '?') {
|
||||
seq.back() = std::make_pair(to_rule(seq.back()) + c, false);
|
||||
i++;
|
||||
} else if (c == '{') {
|
||||
std::string curly_brackets = std::string(1, c);
|
||||
i++;
|
||||
while (i < length && sub_pattern[i] != '}') {
|
||||
curly_brackets += sub_pattern[i];
|
||||
i++;
|
||||
}
|
||||
if (i >= length) {
|
||||
_errors.push_back("Unbalanced curly brackets");
|
||||
}
|
||||
curly_brackets += '}';
|
||||
i++;
|
||||
auto nums = split(curly_brackets.substr(1, curly_brackets.length() - 2), ",");
|
||||
int min_times = 0;
|
||||
int max_times = std::numeric_limits<int>::max();
|
||||
try {
|
||||
if (nums.size() == 1) {
|
||||
min_times = max_times = std::stoi(nums[0]);
|
||||
} else if (nums.size() != 2) {
|
||||
_errors.push_back("Wrong number of values in curly brackets");
|
||||
} else {
|
||||
if (!nums[0].empty()) {
|
||||
min_times = std::stoi(nums[0]);
|
||||
}
|
||||
if (!nums[1].empty()) {
|
||||
max_times = std::stoi(nums[1]);
|
||||
}
|
||||
}
|
||||
} catch (const std::invalid_argument & e) {
|
||||
_errors.push_back("Invalid number in curly brackets");
|
||||
return std::make_pair("", false);
|
||||
}
|
||||
auto &last = seq.back();
|
||||
auto &sub = last.first;
|
||||
auto sub_is_literal = last.second;
|
||||
|
||||
if (min_times == 0 && max_times == std::numeric_limits<int>::max()) {
|
||||
sub += "*";
|
||||
} else if (min_times == 0 && max_times == 1) {
|
||||
sub += "?";
|
||||
} else if (min_times == 1 && max_times == std::numeric_limits<int>::max()) {
|
||||
sub += "+";
|
||||
} else {
|
||||
if (!sub_is_literal) {
|
||||
std::string & sub_id = sub_rule_ids[sub];
|
||||
if (sub_id.empty()) {
|
||||
sub_id = _add_rule(name + "-" + std::to_string(sub_rule_ids.size()), sub);
|
||||
}
|
||||
sub = sub_id;
|
||||
}
|
||||
std::string result;
|
||||
if (sub_is_literal && min_times > 0) {
|
||||
result = "\"" + repeat(sub.substr(1, sub.length() - 2), min_times) + "\"";
|
||||
} else {
|
||||
for (int j = 0; j < min_times; j++) {
|
||||
if (j > 0) {
|
||||
result += " ";
|
||||
}
|
||||
result += sub;
|
||||
}
|
||||
}
|
||||
if (min_times > 0 && min_times < max_times) {
|
||||
result += " ";
|
||||
}
|
||||
if (max_times == std::numeric_limits<int>::max()) {
|
||||
result += sub + "*";
|
||||
} else {
|
||||
for (int j = min_times; j < max_times; j++) {
|
||||
if (j > min_times) {
|
||||
result += " ";
|
||||
}
|
||||
result += sub + "?";
|
||||
}
|
||||
}
|
||||
seq.back().first = result;
|
||||
seq.back().second = false;
|
||||
}
|
||||
} else {
|
||||
std::string literal;
|
||||
auto is_non_literal = [&](char c) {
|
||||
return NON_LITERAL_SET.find(c) != NON_LITERAL_SET.end();
|
||||
};
|
||||
while (i < length) {
|
||||
if (sub_pattern[i] == '\\' && i < length - 1) {
|
||||
char next = sub_pattern[i + 1];
|
||||
if (ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS.find(next) != ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS.end()) {
|
||||
i++;
|
||||
literal += sub_pattern[i];
|
||||
i++;
|
||||
} else {
|
||||
literal += sub_pattern.substr(i, 2);
|
||||
i += 2;
|
||||
}
|
||||
} else if (sub_pattern[i] == '"') {
|
||||
literal += "\\\"";
|
||||
i++;
|
||||
} else if (!is_non_literal(sub_pattern[i]) &&
|
||||
(i == length - 1 || literal.empty() || sub_pattern[i + 1] == '.' || !is_non_literal(sub_pattern[i + 1]))) {
|
||||
literal += sub_pattern[i];
|
||||
i++;
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!literal.empty()) {
|
||||
seq.push_back(std::make_pair(literal, true));
|
||||
}
|
||||
}
|
||||
}
|
||||
return join_seq();
|
||||
};
|
||||
return _add_rule(name, "\"\\\"\" " + to_rule(transform()) + " \"\\\"\" space");
|
||||
}
|
||||
|
||||
std::string _resolve_ref(const std::string & ref) {
|
||||
std::string ref_name = ref.substr(ref.find_last_of('/') + 1);
|
||||
if (_rules.find(ref_name) == _rules.end() && _refs_being_resolved.find(ref) == _refs_being_resolved.end()) {
|
||||
_refs_being_resolved.insert(ref);
|
||||
json resolved = _refs[ref];
|
||||
ref_name = visit(resolved, ref_name);
|
||||
_refs_being_resolved.erase(ref);
|
||||
}
|
||||
return ref_name;
|
||||
}
|
||||
|
||||
std::string _build_object_rule(
|
||||
const std::vector<std::pair<std::string, json>> & properties,
|
||||
const std::unordered_set<std::string> & required,
|
||||
const std::string & name,
|
||||
const json & additional_properties)
|
||||
{
|
||||
std::vector<std::string> required_props;
|
||||
std::vector<std::string> optional_props;
|
||||
std::unordered_map<std::string, std::string> prop_kv_rule_names;
|
||||
for (const auto & kv : properties) {
|
||||
const auto &prop_name = kv.first;
|
||||
const auto &prop_schema = kv.second;
|
||||
|
||||
std::string prop_rule_name = visit(prop_schema, name + (name.empty() ? "" : "-") + prop_name);
|
||||
prop_kv_rule_names[prop_name] = _add_rule(
|
||||
name + (name.empty() ? "" : "-") + prop_name + "-kv",
|
||||
format_literal(json(prop_name).dump()) + " space \":\" space " + prop_rule_name
|
||||
);
|
||||
if (required.find(prop_name) != required.end()) {
|
||||
required_props.push_back(prop_name);
|
||||
} else {
|
||||
optional_props.push_back(prop_name);
|
||||
}
|
||||
}
|
||||
if (additional_properties.is_object() || (additional_properties.is_boolean() && additional_properties.get<bool>())) {
|
||||
std::string sub_name = name + (name.empty() ? "" : "-") + "additional";
|
||||
std::string value_rule = visit(additional_properties.is_object() ? additional_properties : json::object(), sub_name + "-value");
|
||||
std::string kv_rule = _add_rule(sub_name + "-kv", _add_rule("string", PRIMITIVE_RULES.at("string")) + " \":\" space " + value_rule);
|
||||
prop_kv_rule_names["*"] = kv_rule;
|
||||
optional_props.push_back("*");
|
||||
}
|
||||
|
||||
std::string rule = "\"{\" space ";
|
||||
for (size_t i = 0; i < required_props.size(); i++) {
|
||||
if (i > 0) {
|
||||
rule += " \",\" space ";
|
||||
}
|
||||
rule += prop_kv_rule_names[required_props[i]];
|
||||
}
|
||||
|
||||
if (!optional_props.empty()) {
|
||||
rule += " (";
|
||||
if (!required_props.empty()) {
|
||||
rule += " \",\" space ( ";
|
||||
}
|
||||
|
||||
std::function<std::string(const std::vector<std::string> &, bool)> get_recursive_refs = [&](const std::vector<std::string> & ks, bool first_is_optional) {
|
||||
std::string res;
|
||||
if (ks.empty()) {
|
||||
return res;
|
||||
}
|
||||
std::string k = ks[0];
|
||||
std::string kv_rule_name = prop_kv_rule_names[k];
|
||||
if (k == "*") {
|
||||
res = _add_rule(
|
||||
name + (name.empty() ? "" : "-") + "additional-kvs",
|
||||
kv_rule_name + " ( \",\" space " + kv_rule_name + " )*"
|
||||
);
|
||||
} else if (first_is_optional) {
|
||||
res = "( \",\" space " + kv_rule_name + " )?";
|
||||
} else {
|
||||
res = kv_rule_name;
|
||||
}
|
||||
if (ks.size() > 1) {
|
||||
res += " " + _add_rule(
|
||||
name + (name.empty() ? "" : "-") + k + "-rest",
|
||||
get_recursive_refs(std::vector<std::string>(ks.begin() + 1, ks.end()), true)
|
||||
);
|
||||
}
|
||||
return res;
|
||||
};
|
||||
|
||||
for (size_t i = 0; i < optional_props.size(); i++) {
|
||||
if (i > 0) {
|
||||
rule += " | ";
|
||||
}
|
||||
rule += get_recursive_refs(std::vector<std::string>(optional_props.begin() + i, optional_props.end()), false);
|
||||
}
|
||||
if (!required_props.empty()) {
|
||||
rule += " )";
|
||||
}
|
||||
rule += " )?";
|
||||
}
|
||||
|
||||
rule += " \"}\" space";
|
||||
|
||||
return rule;
|
||||
}
|
||||
|
||||
public:
|
||||
SchemaConverter(
|
||||
const std::function<json(const std::string &)> & fetch_json,
|
||||
bool dotall)
|
||||
: _fetch_json(fetch_json), _dotall(dotall)
|
||||
{
|
||||
_rules["space"] = SPACE_RULE;
|
||||
}
|
||||
|
||||
void resolve_refs(json & schema, const std::string & url) {
|
||||
/*
|
||||
* Resolves all $ref fields in the given schema, fetching any remote schemas,
|
||||
* replacing each $ref with absolute reference URL and populates _refs with the
|
||||
* respective referenced (sub)schema dictionaries.
|
||||
*/
|
||||
std::function<void(json &)> visit_refs = [&](json & n) {
|
||||
if (n.is_array()) {
|
||||
for (auto & x : n) {
|
||||
visit_refs(x);
|
||||
}
|
||||
} else if (n.is_object()) {
|
||||
if (n.contains("$ref")) {
|
||||
std::string ref = n["$ref"];
|
||||
if (_refs.find(ref) == _refs.end()) {
|
||||
json target;
|
||||
if (ref.find("https://") == 0) {
|
||||
std::string base_url = ref.substr(0, ref.find('#'));
|
||||
auto it = _refs.find(base_url);
|
||||
if (it != _refs.end()) {
|
||||
target = it->second;
|
||||
} else {
|
||||
// Fetch the referenced schema and resolve its refs
|
||||
auto referenced = _fetch_json(ref);
|
||||
resolve_refs(referenced, base_url);
|
||||
_refs[base_url] = referenced;
|
||||
}
|
||||
if (ref.find('#') == std::string::npos || ref.substr(ref.find('#') + 1).empty()) {
|
||||
return;
|
||||
}
|
||||
} else if (ref.find("#/") == 0) {
|
||||
target = schema;
|
||||
n["$ref"] = url + ref;
|
||||
ref = url + ref;
|
||||
} else {
|
||||
_errors.push_back("Unsupported ref: " + ref);
|
||||
return;
|
||||
}
|
||||
std::string pointer = ref.substr(ref.find('#') + 1);
|
||||
std::vector<std::string> tokens = split(pointer, "/");
|
||||
for (size_t i = 1; i < tokens.size(); ++i) {
|
||||
std::string sel = tokens[i];
|
||||
if (target.is_null() || !target.contains(sel)) {
|
||||
_errors.push_back("Error resolving ref " + ref + ": " + sel + " not in " + target.dump());
|
||||
return;
|
||||
}
|
||||
target = target[sel];
|
||||
}
|
||||
_refs[ref] = target;
|
||||
}
|
||||
} else {
|
||||
for (auto & kv : n.items()) {
|
||||
visit_refs(kv.value());
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
visit_refs(schema);
|
||||
}
|
||||
|
||||
std::string _generate_constant_rule(const json & value) {
|
||||
return format_literal(value.dump());
|
||||
}
|
||||
|
||||
std::string visit(const json & schema, const std::string & name) {
|
||||
json schema_type = schema.contains("type") ? schema["type"] : json();
|
||||
std::string schema_format = schema.contains("format") ? schema["format"].get<std::string>() : "";
|
||||
std::string rule_name = is_reserved_name(name) ? name + "-" : name.empty() ? "root" : name;
|
||||
|
||||
if (schema.contains("$ref")) {
|
||||
return _add_rule(rule_name, _resolve_ref(schema["$ref"]));
|
||||
} else if (schema.contains("oneOf") || schema.contains("anyOf")) {
|
||||
std::vector<json> alt_schemas = schema.contains("oneOf") ? schema["oneOf"].get<std::vector<json>>() : schema["anyOf"].get<std::vector<json>>();
|
||||
return _add_rule(rule_name, _generate_union_rule(name, alt_schemas));
|
||||
} else if (schema_type.is_array()) {
|
||||
std::vector<json> schema_types;
|
||||
for (const auto & t : schema_type) {
|
||||
schema_types.push_back({{"type", t}});
|
||||
}
|
||||
return _add_rule(rule_name, _generate_union_rule(name, schema_types));
|
||||
} else if (schema.contains("const")) {
|
||||
return _add_rule(rule_name, _generate_constant_rule(schema["const"]));
|
||||
} else if (schema.contains("enum")) {
|
||||
std::vector<std::string> enum_values;
|
||||
for (const auto & v : schema["enum"]) {
|
||||
enum_values.push_back(_generate_constant_rule(v));
|
||||
}
|
||||
return _add_rule(rule_name, join(enum_values.begin(), enum_values.end(), " | "));
|
||||
} else if ((schema_type.is_null() || schema_type == "object")
|
||||
&& (schema.contains("properties") ||
|
||||
(schema.contains("additionalProperties") && schema["additionalProperties"] != true))) {
|
||||
std::unordered_set<std::string> required;
|
||||
if (schema.contains("required") && schema["required"].is_array()) {
|
||||
for (const auto & item : schema["required"]) {
|
||||
if (item.is_string()) {
|
||||
required.insert(item.get<std::string>());
|
||||
}
|
||||
}
|
||||
}
|
||||
std::vector<std::pair<std::string, json>> properties;
|
||||
if (schema.contains("properties")) {
|
||||
for (const auto & prop : schema["properties"].items()) {
|
||||
properties.emplace_back(prop.key(), prop.value());
|
||||
}
|
||||
}
|
||||
return _add_rule(rule_name,
|
||||
_build_object_rule(
|
||||
properties, required, name,
|
||||
schema.contains("additionalProperties") ? schema["additionalProperties"] : json()));
|
||||
} else if ((schema_type.is_null() || schema_type == "object") && schema.contains("allOf")) {
|
||||
std::unordered_set<std::string> required;
|
||||
std::vector<std::pair<std::string, json>> properties;
|
||||
std::string hybrid_name = name;
|
||||
std::function<void(const json &, bool)> add_component = [&](const json & comp_schema, bool is_required) {
|
||||
if (comp_schema.contains("$ref")) {
|
||||
add_component(_refs[comp_schema["$ref"]], is_required);
|
||||
} else if (comp_schema.contains("properties")) {
|
||||
for (const auto & prop : comp_schema["properties"].items()) {
|
||||
properties.emplace_back(prop.key(), prop.value());
|
||||
if (is_required) {
|
||||
required.insert(prop.key());
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// todo warning
|
||||
}
|
||||
};
|
||||
for (auto & t : schema["allOf"]) {
|
||||
if (t.contains("anyOf")) {
|
||||
for (auto & tt : t["anyOf"]) {
|
||||
add_component(tt, false);
|
||||
}
|
||||
} else {
|
||||
add_component(t, true);
|
||||
}
|
||||
}
|
||||
return _add_rule(rule_name, _build_object_rule(properties, required, hybrid_name, json()));
|
||||
} else if ((schema_type.is_null() || schema_type == "array") && (schema.contains("items") || schema.contains("prefixItems"))) {
|
||||
json items = schema.contains("items") ? schema["items"] : schema["prefixItems"];
|
||||
if (items.is_array()) {
|
||||
std::string rule = "\"[\" space ";
|
||||
for (size_t i = 0; i < items.size(); i++) {
|
||||
if (i > 0) {
|
||||
rule += " \",\" space ";
|
||||
}
|
||||
rule += visit(items[i], name + (name.empty() ? "" : "-") + "tuple-" + std::to_string(i));
|
||||
}
|
||||
rule += " \"]\" space";
|
||||
return _add_rule(rule_name, rule);
|
||||
} else {
|
||||
std::string item_rule_name = visit(items, name + (name.empty() ? "" : "-") + "item");
|
||||
std::string list_item_operator = "( \",\" space " + item_rule_name + " )";
|
||||
std::string successive_items;
|
||||
int min_items = schema.contains("minItems") ? schema["minItems"].get<int>() : 0;
|
||||
json max_items_json = schema.contains("maxItems") ? schema["maxItems"] : json();
|
||||
int max_items = max_items_json.is_number_integer() ? max_items_json.get<int>() : -1;
|
||||
if (min_items > 0) {
|
||||
successive_items += repeat(list_item_operator, min_items - 1);
|
||||
min_items--;
|
||||
}
|
||||
if (max_items >= 0 && max_items > min_items) {
|
||||
successive_items += repeat(list_item_operator + "?", max_items - min_items - 1);
|
||||
} else {
|
||||
successive_items += list_item_operator + "*";
|
||||
}
|
||||
std::string rule;
|
||||
if (min_items == 0) {
|
||||
rule = "\"[\" space ( " + item_rule_name + " " + successive_items + " )? \"]\" space";
|
||||
} else {
|
||||
rule = "\"[\" space " + item_rule_name + " " + successive_items + " \"]\" space";
|
||||
}
|
||||
return _add_rule(rule_name, rule);
|
||||
}
|
||||
} else if ((schema_type.is_null() || schema_type == "string") && schema.contains("pattern")) {
|
||||
return _visit_pattern(schema["pattern"], rule_name);
|
||||
} else if ((schema_type.is_null() || schema_type == "string") && std::regex_match(schema_format, std::regex("^uuid[1-5]?$"))) {
|
||||
return _add_rule(rule_name == "root" ? "root" : schema_format, PRIMITIVE_RULES.at("uuid"));
|
||||
} else if ((schema_type.is_null() || schema_type == "string") && DATE_RULES.find(schema_format) != DATE_RULES.end()) {
|
||||
for (const auto & kv : DATE_RULES) {
|
||||
_add_rule(kv.first, kv.second);
|
||||
}
|
||||
return schema_format + "-string";
|
||||
} else if (schema.empty() || schema_type == "object") {
|
||||
for (const auto & n : OBJECT_RULE_NAMES) {
|
||||
_add_rule(n, PRIMITIVE_RULES.at(n));
|
||||
}
|
||||
return _add_rule(rule_name, "object");
|
||||
} else {
|
||||
if (!schema_type.is_string() || PRIMITIVE_RULES.find(schema_type.get<std::string>()) == PRIMITIVE_RULES.end()) {
|
||||
_errors.push_back("Unrecognized schema: " + schema.dump());
|
||||
return "";
|
||||
}
|
||||
// TODO: support minimum, maximum, exclusiveMinimum, exclusiveMaximum at least for zero
|
||||
return _add_rule(rule_name == "root" ? "root" : schema_type.get<std::string>(), PRIMITIVE_RULES.at(schema_type.get<std::string>()));
|
||||
}
|
||||
}
|
||||
|
||||
void check_errors() {
|
||||
if (!_errors.empty()) {
|
||||
throw std::runtime_error("JSON schema conversion failed:\n" + join(_errors.begin(), _errors.end(), "\n"));
|
||||
}
|
||||
if (!_warnings.empty()) {
|
||||
fprintf(stderr, "WARNING: JSON schema conversion was incomplete: %s\n", join(_warnings.begin(), _warnings.end(), "; ").c_str());
|
||||
}
|
||||
}
|
||||
|
||||
std::string format_grammar() {
|
||||
std::stringstream ss;
|
||||
for (const auto & kv : _rules) {
|
||||
ss << kv.first << " ::= " << kv.second << std::endl;
|
||||
}
|
||||
return ss.str();
|
||||
}
|
||||
};
|
||||
|
||||
std::string json_schema_to_grammar(const json & schema) {
|
||||
SchemaConverter converter([](const std::string &) { return json::object(); }, /* dotall= */ false);
|
||||
auto copy = schema;
|
||||
converter.resolve_refs(copy, "input");
|
||||
converter.visit(copy, "");
|
||||
converter.check_errors();
|
||||
return converter.format_grammar();
|
||||
}
|
||||
4
common/json-schema-to-grammar.h
Normal file
4
common/json-schema-to-grammar.h
Normal file
@@ -0,0 +1,4 @@
|
||||
#pragma once
|
||||
#include "json.hpp"
|
||||
|
||||
std::string json_schema_to_grammar(const nlohmann::ordered_json& schema);
|
||||
File diff suppressed because it is too large
Load Diff
@@ -234,7 +234,7 @@ inline std::string log_filename_generator_impl(LogTriState multilog, const std::
|
||||
// INTERNAL, DO NOT USE
|
||||
// USE LOG() INSTEAD
|
||||
//
|
||||
#ifndef _MSC_VER
|
||||
#if !defined(_MSC_VER) or defined(__INTEL_LLVM_COMPILER)
|
||||
#define LOG_IMPL(str, ...) \
|
||||
do { \
|
||||
if (LOG_TARGET != nullptr) \
|
||||
@@ -257,7 +257,7 @@ inline std::string log_filename_generator_impl(LogTriState multilog, const std::
|
||||
// INTERNAL, DO NOT USE
|
||||
// USE LOG_TEE() INSTEAD
|
||||
//
|
||||
#ifndef _MSC_VER
|
||||
#if !defined(_MSC_VER) or defined(__INTEL_LLVM_COMPILER)
|
||||
#define LOG_TEE_IMPL(str, ...) \
|
||||
do { \
|
||||
if (LOG_TARGET != nullptr) \
|
||||
@@ -566,6 +566,7 @@ inline void log_print_usage()
|
||||
printf(" --log-new Create a separate new log file on start. "
|
||||
"Each log file will have unique name: \"<name>.<ID>.log\"\n");
|
||||
printf(" --log-append Don't truncate the old log file.\n");
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
#define log_dump_cmdline(argc, argv) log_dump_cmdline_impl(argc, argv)
|
||||
|
||||
282
common/ngram-cache.cpp
Normal file
282
common/ngram-cache.cpp
Normal file
@@ -0,0 +1,282 @@
|
||||
#include "ngram-cache.h"
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
|
||||
#include <cstdint>
|
||||
#include <fstream>
|
||||
|
||||
void llama_ngram_cache_update(llama_ngram_cache & ngram_cache, int ngram_min, int ngram_max,
|
||||
std::vector<llama_token> & inp, int nnew, bool print_progress) {
|
||||
const int64_t t_start_ms = ggml_time_ms();
|
||||
const int64_t inp_size = inp.size();
|
||||
|
||||
const int64_t n_todo = inp_size * (ngram_max - ngram_min + 1);
|
||||
int64_t n_done = 0;
|
||||
|
||||
for (int64_t ngram_size = ngram_min; ngram_size <= ngram_max; ++ngram_size) {
|
||||
const int64_t i_start = std::max(inp_size - nnew, ngram_size);
|
||||
for (int64_t i = i_start; i < inp_size; ++i) {
|
||||
const int64_t ngram_start = i - ngram_size;
|
||||
llama_ngram ngram(&inp[ngram_start], ngram_size);
|
||||
const llama_token token = inp[i];
|
||||
|
||||
llama_ngram_cache::iterator part_it = ngram_cache.find(ngram);
|
||||
if (part_it == ngram_cache.end()) {
|
||||
llama_ngram_cache_part part;
|
||||
part.emplace(token, 1);
|
||||
ngram_cache.emplace(ngram, part);
|
||||
} else {
|
||||
llama_ngram_cache_part::iterator token_count_it = part_it->second.find(token);
|
||||
if (token_count_it == part_it->second.end()) {
|
||||
part_it->second.emplace(token, 1);
|
||||
} else {
|
||||
token_count_it->second++;
|
||||
}
|
||||
}
|
||||
++n_done;
|
||||
|
||||
if (print_progress && n_done % 10000000 == 0) {
|
||||
const int64_t t_now_ms = ggml_time_ms();
|
||||
const int64_t eta_ms = (inp_size*(ngram_max-ngram_min+1) - n_done) * (t_now_ms - t_start_ms) / n_done;
|
||||
const int64_t eta_min = eta_ms / (60*1000);
|
||||
const int64_t eta_s = (eta_ms - 60*1000*eta_min) / 1000;
|
||||
|
||||
fprintf(stderr, "%s: %" PRId64 "/%" PRId64 " done, ETA: %02" PRId64 ":%02" PRId64 "\n", __func__, n_done, n_todo, eta_min, eta_s);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Helper function to get a token from the combined, speculative sequence of inp and draft.
|
||||
static llama_token get_token(const std::vector<llama_token> & inp, const std::vector<llama_token> & draft, const size_t i) {
|
||||
return i < inp.size() ? inp[i] : draft[1 + i - inp.size()];
|
||||
}
|
||||
|
||||
// If sample size or percentage are below these thresholds the draft is aborted early:
|
||||
constexpr int draft_min_sample_size_lax[LLAMA_NGRAM_MAX] = { 2, 2, 1, 1};
|
||||
constexpr int draft_min_percent_lax[LLAMA_NGRAM_MAX] = {66, 50, 50, 50};
|
||||
constexpr int draft_min_sample_size_strict[LLAMA_NGRAM_MAX] = { 4, 3, 2, 2};
|
||||
constexpr int draft_min_percent_strict[LLAMA_NGRAM_MAX] = {75, 66, 66, 66};
|
||||
|
||||
// Helper function that tries to draft a token from only the static ngram cache:
|
||||
static llama_token try_draft(llama_ngram_cache & nc_static, const llama_ngram ngram_static) {
|
||||
llama_ngram_cache::iterator part_static_it = nc_static.find(ngram_static);
|
||||
if (part_static_it == nc_static.end()) {
|
||||
return -1;
|
||||
}
|
||||
const llama_ngram_cache_part part_static = part_static_it->second;
|
||||
|
||||
int max_count_static = 0;
|
||||
int sum_count_static = 0;
|
||||
llama_token max_token = -1;
|
||||
|
||||
for (std::pair<llama_token, int> token_count_static : part_static) {
|
||||
const llama_token token = token_count_static.first;
|
||||
const int32_t count_static = token_count_static.second;
|
||||
|
||||
if (count_static > max_count_static) {
|
||||
max_token = token;
|
||||
max_count_static = count_static;
|
||||
}
|
||||
sum_count_static += count_static;
|
||||
}
|
||||
|
||||
if (sum_count_static < draft_min_sample_size_lax[LLAMA_NGRAM_STATIC-1]) {
|
||||
return -1;
|
||||
}
|
||||
if (100*max_count_static < draft_min_percent_lax[LLAMA_NGRAM_STATIC-1]*sum_count_static) {
|
||||
return -1;
|
||||
}
|
||||
return max_token;
|
||||
}
|
||||
|
||||
// Try to draft a token from primary cache (context/dynamic), validate with static cache:
|
||||
static llama_token try_draft(
|
||||
llama_ngram_cache & nc_primary, const std::vector<llama_ngram> & ngrams_primary, llama_ngram_cache_part & part_static,
|
||||
const int * min_sample_size, const int * min_percent) {
|
||||
|
||||
llama_token drafted_token = -1;
|
||||
|
||||
for (int i = ngrams_primary.size()-1; i >= 0 && drafted_token == -1; --i) {
|
||||
const llama_ngram ngram_primary = ngrams_primary[i];
|
||||
|
||||
llama_ngram_cache::iterator part_primary_it = nc_primary.find(ngram_primary);
|
||||
if (part_primary_it == nc_primary.end()) {
|
||||
continue;
|
||||
}
|
||||
const llama_ngram_cache_part part_primary = part_primary_it->second;
|
||||
|
||||
int max_count_primary = 0;
|
||||
int max_count_static = 0;
|
||||
int sum_count_primary = 0;
|
||||
llama_token max_token = -1;
|
||||
|
||||
for (std::pair<llama_token, int> token_count_primary : part_primary) {
|
||||
const llama_token token = token_count_primary.first;
|
||||
|
||||
llama_ngram_cache_part::iterator token_count_static_it = part_static.find(token);
|
||||
|
||||
const int32_t count_primary = token_count_primary.second;
|
||||
const int32_t count_static = token_count_static_it != part_static.end() ? 100*token_count_static_it->second : 1;
|
||||
|
||||
if (count_primary*count_static > max_count_primary*max_count_static) {
|
||||
max_token = token;
|
||||
max_count_primary = count_primary;
|
||||
max_count_static = count_static;
|
||||
}
|
||||
sum_count_primary += count_primary;
|
||||
}
|
||||
|
||||
if (sum_count_primary < min_sample_size[i]) {
|
||||
continue;
|
||||
}
|
||||
if (100*max_count_primary < min_percent[i]*sum_count_primary) {
|
||||
continue;;
|
||||
}
|
||||
drafted_token = max_token;
|
||||
}
|
||||
|
||||
return drafted_token;
|
||||
}
|
||||
|
||||
void llama_ngram_cache_draft(
|
||||
std::vector<llama_token> & inp, std::vector<llama_token> & draft, int n_draft, int ngram_min, int ngram_max,
|
||||
llama_ngram_cache & nc_context, llama_ngram_cache & nc_dynamic, llama_ngram_cache & nc_static
|
||||
) {
|
||||
GGML_ASSERT(draft.size() == 1);
|
||||
const int inp_size = inp.size();
|
||||
|
||||
if (inp_size < LLAMA_NGRAM_STATIC) {
|
||||
return;
|
||||
}
|
||||
|
||||
while ((int) draft.size()-1 < n_draft) {
|
||||
llama_token drafted_token = -1;
|
||||
|
||||
const int ngram_start_static = inp_size-LLAMA_NGRAM_STATIC + draft.size()-1;
|
||||
llama_ngram ngram_static;
|
||||
for (int j = ngram_start_static; j < ngram_start_static + LLAMA_NGRAM_STATIC; ++j) {
|
||||
ngram_static.tokens[j-ngram_start_static] = get_token(inp, draft, j);
|
||||
}
|
||||
llama_ngram_cache::iterator part_static_it = nc_static.find(ngram_static);
|
||||
llama_ngram_cache_part part_static;
|
||||
if (part_static_it != nc_static.end()) {
|
||||
part_static = part_static_it->second;
|
||||
}
|
||||
|
||||
// cd = context + dynamic
|
||||
std::vector<llama_ngram> ngrams_cd;
|
||||
for (int ngram_size_cd = ngram_min; ngram_size_cd <= ngram_max; ++ngram_size_cd) {
|
||||
const int ngram_start_cd = inp_size-ngram_size_cd + draft.size()-1;
|
||||
llama_ngram ngram_cd;
|
||||
for (int j = ngram_start_cd; j < ngram_start_cd + ngram_size_cd; ++j) {
|
||||
ngram_cd.tokens[j-ngram_start_cd] = get_token(inp, draft, j);
|
||||
}
|
||||
ngrams_cd.push_back(ngram_cd);
|
||||
}
|
||||
if (drafted_token == -1) {
|
||||
drafted_token = try_draft(nc_context, ngrams_cd, part_static, draft_min_sample_size_lax, draft_min_percent_lax);
|
||||
}
|
||||
if (drafted_token == -1) {
|
||||
drafted_token = try_draft(nc_dynamic, ngrams_cd, part_static, draft_min_sample_size_strict, draft_min_percent_strict);
|
||||
}
|
||||
if (drafted_token == -1) {
|
||||
drafted_token = try_draft(nc_static, ngram_static);
|
||||
}
|
||||
|
||||
if (drafted_token == -1) {
|
||||
break;
|
||||
}
|
||||
|
||||
LOG(" - draft candidate: token=%d\n", drafted_token);
|
||||
draft.push_back(drafted_token);
|
||||
}
|
||||
}
|
||||
|
||||
void llama_ngram_cache_save(llama_ngram_cache & ngram_cache, std::string & filename) {
|
||||
std::ofstream file_out(filename, std::ios::binary);
|
||||
for (std::pair<llama_ngram, llama_ngram_cache_part> item : ngram_cache) {
|
||||
const llama_ngram ngram = item.first;
|
||||
llama_ngram_cache_part token_counts = item.second;
|
||||
GGML_ASSERT(!token_counts.empty());
|
||||
const int32_t ntokens = token_counts.size();
|
||||
GGML_ASSERT(ntokens > 0);
|
||||
|
||||
file_out.write(reinterpret_cast<const char *>(&ngram), sizeof(llama_ngram));
|
||||
file_out.write(reinterpret_cast<const char *>(&ntokens), sizeof(int32_t));
|
||||
for (std::pair<llama_token, int32_t> item2 : token_counts) {
|
||||
const llama_token token = item2.first;
|
||||
const int32_t count = item2.second;
|
||||
GGML_ASSERT(count > 0);
|
||||
|
||||
file_out.write(reinterpret_cast<const char *>(&token), sizeof(llama_token));
|
||||
file_out.write(reinterpret_cast<const char *>(&count), sizeof(int32_t));
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
llama_ngram_cache llama_ngram_cache_load(std::string & filename) {
|
||||
std::ifstream hashmap_file(filename, std::ios::binary);
|
||||
if (!hashmap_file) {
|
||||
throw std::ifstream::failure("Unable to open file " + filename);
|
||||
}
|
||||
llama_ngram_cache ngram_cache;
|
||||
|
||||
llama_ngram ngram;
|
||||
int32_t ntokens;
|
||||
llama_token token;
|
||||
int32_t count;
|
||||
|
||||
char * ngramc = reinterpret_cast<char*>(&ngram);
|
||||
char * ntokensc = reinterpret_cast<char*>(&ntokens);
|
||||
char * tokenc = reinterpret_cast<char*>(&token);
|
||||
char * countc = reinterpret_cast<char*>(&count);
|
||||
while(hashmap_file.read(ngramc, sizeof(llama_ngram))) {
|
||||
GGML_ASSERT(!hashmap_file.eof());
|
||||
GGML_ASSERT(hashmap_file.read(ntokensc, sizeof(int32_t)));
|
||||
GGML_ASSERT(ntokens > 0);
|
||||
llama_ngram_cache_part token_counts;
|
||||
|
||||
for (int i = 0; i < ntokens; ++i) {
|
||||
GGML_ASSERT(!hashmap_file.eof());
|
||||
GGML_ASSERT(hashmap_file.read(tokenc, sizeof(llama_token)));
|
||||
GGML_ASSERT(!hashmap_file.eof());
|
||||
GGML_ASSERT(hashmap_file.read(countc, sizeof(int32_t)));
|
||||
GGML_ASSERT(count > 0);
|
||||
token_counts.emplace(token, count);
|
||||
}
|
||||
|
||||
ngram_cache.emplace(ngram, token_counts);
|
||||
}
|
||||
GGML_ASSERT(hashmap_file.eof());
|
||||
|
||||
return ngram_cache;
|
||||
}
|
||||
|
||||
void llama_ngram_cache_merge(llama_ngram_cache & ngram_cache_target, llama_ngram_cache & ngram_cache_add) {
|
||||
for (std::pair<llama_ngram, llama_ngram_cache_part> ngram_part : ngram_cache_add) {
|
||||
const llama_ngram ngram = ngram_part.first;
|
||||
llama_ngram_cache_part part = ngram_part.second;
|
||||
|
||||
llama_ngram_cache::iterator part_merged_it = ngram_cache_target.find(ngram);
|
||||
if (part_merged_it == ngram_cache_target.end()) {
|
||||
ngram_cache_target.emplace(ngram, part);
|
||||
continue;
|
||||
}
|
||||
|
||||
for (std::pair<llama_token, int32_t> token_count : part) {
|
||||
const llama_token token = token_count.first;
|
||||
const int32_t count = token_count.second;
|
||||
GGML_ASSERT(count > 0);
|
||||
|
||||
llama_ngram_cache_part::iterator token_count_merged_it = part_merged_it->second.find(token);
|
||||
if (token_count_merged_it == part_merged_it->second.end()) {
|
||||
part_merged_it->second.emplace(token, count);
|
||||
continue;
|
||||
}
|
||||
|
||||
token_count_merged_it->second += count;
|
||||
}
|
||||
}
|
||||
}
|
||||
94
common/ngram-cache.h
Normal file
94
common/ngram-cache.h
Normal file
@@ -0,0 +1,94 @@
|
||||
#pragma once
|
||||
|
||||
#include "llama.h"
|
||||
|
||||
#include <unordered_map>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#define LLAMA_NGRAM_MIN 1
|
||||
#define LLAMA_NGRAM_MAX 4
|
||||
#define LLAMA_NGRAM_STATIC 2
|
||||
|
||||
// Data structures to map n-grams to empirical token probabilities:
|
||||
|
||||
struct llama_ngram {
|
||||
llama_token tokens[LLAMA_NGRAM_MAX];
|
||||
|
||||
llama_ngram() {
|
||||
for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
|
||||
tokens[i] = -1;
|
||||
}
|
||||
}
|
||||
|
||||
llama_ngram(const llama_token * input, const int ngram_size) {
|
||||
for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
|
||||
tokens[i] = i < ngram_size ? input[i] : -1;
|
||||
}
|
||||
}
|
||||
|
||||
bool operator==(const llama_ngram & other) const {
|
||||
for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
|
||||
if (tokens[i] != other.tokens[i]) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
};
|
||||
|
||||
struct llama_ngram_hash_function {
|
||||
size_t operator()(const llama_ngram & ngram) const {
|
||||
size_t hash = 0;
|
||||
for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
|
||||
hash ^= std::hash<llama_token>{}(ngram.tokens[i]);
|
||||
}
|
||||
return hash;
|
||||
}
|
||||
};
|
||||
|
||||
// token -> number of times token has been seen
|
||||
typedef std::unordered_map<llama_token, int32_t> llama_ngram_cache_part;
|
||||
|
||||
// n-gram -> empirical distribution of following tokens
|
||||
typedef std::unordered_map<llama_ngram, llama_ngram_cache_part, llama_ngram_hash_function> llama_ngram_cache;
|
||||
|
||||
|
||||
// Update an ngram cache with tokens.
|
||||
// ngram_cache: the cache to modify.
|
||||
// ngram_min/ngram_max: the min/max size of the ngrams to extract from inp_data.
|
||||
// inp_data: the token sequence with which to update ngram_cache.
|
||||
// nnew: how many new tokens have been appended to inp_data since the last call to this function.
|
||||
// print_progress: whether to print progress to stderr.
|
||||
//
|
||||
// In order to get correct results inp_data can ONLY BE APPENDED TO.
|
||||
// Changes in the middle need a complete rebuild.
|
||||
void llama_ngram_cache_update(
|
||||
llama_ngram_cache & ngram_cache, int ngram_min, int ngram_max, std::vector<llama_token> & inp_data, int nnew, bool print_progress);
|
||||
|
||||
// Try to draft tokens from ngram caches.
|
||||
// inp: the tokens generated so far.
|
||||
// draft: the token sequence to draft. Expected to initially contain the previously sampled token.
|
||||
// n_draft: maximum number of tokens to add to draft.
|
||||
// ngram_min/gram_max: the min/max size of the ngrams in nc_context and nc_dynamic.
|
||||
// nc_context: ngram cache based on current context.
|
||||
// nc_dynamic: ngram cache based on previous user generations.
|
||||
// nc_static: ngram cache generated from a large text corpus, used for validation.
|
||||
void llama_ngram_cache_draft(
|
||||
std::vector<llama_token> & inp, std::vector<llama_token> & draft, int n_draft, int ngram_min, int ngram_max,
|
||||
llama_ngram_cache & nc_context, llama_ngram_cache & nc_dynamic, llama_ngram_cache & nc_static);
|
||||
|
||||
// Save an ngram cache to a file.
|
||||
// ngram_cache: the ngram cache to save.
|
||||
// filename: the path under which to save the ngram cache.
|
||||
void llama_ngram_cache_save(llama_ngram_cache & ngram_cache, std::string & filename);
|
||||
|
||||
// Load an ngram cache saved with llama_ngram_cache_save.
|
||||
// filename: the path from which to load the ngram cache.
|
||||
// returns: an ngram cache containing the information saved to filename.
|
||||
llama_ngram_cache llama_ngram_cache_load(std::string & filename);
|
||||
|
||||
// Merge two ngram caches.
|
||||
// ngram_cache_target: the ngram cache to which to add the information from ngram_cache_add.
|
||||
// ngram_cache_add: the ngram cache to add to ngram_cache_target.
|
||||
void llama_ngram_cache_merge(llama_ngram_cache & ngram_cache_target, llama_ngram_cache & ngram_cache_add);
|
||||
@@ -168,77 +168,20 @@ static llama_token llama_sampling_sample_impl(
|
||||
bool is_resampling) { // Add a parameter to indicate if we are resampling
|
||||
const llama_sampling_params & params = ctx_sampling->params;
|
||||
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
|
||||
|
||||
const float temp = params.temp;
|
||||
const int32_t penalty_last_n = params.penalty_last_n < 0 ? params.n_prev : params.penalty_last_n;
|
||||
const float penalty_repeat = params.penalty_repeat;
|
||||
const float penalty_freq = params.penalty_freq;
|
||||
const float penalty_present = params.penalty_present;
|
||||
const int mirostat = params.mirostat;
|
||||
const float mirostat_tau = params.mirostat_tau;
|
||||
const float mirostat_eta = params.mirostat_eta;
|
||||
const bool penalize_nl = params.penalize_nl;
|
||||
|
||||
auto & prev = ctx_sampling->prev;
|
||||
auto & cur = ctx_sampling->cur;
|
||||
|
||||
std::vector<float> original_logits;
|
||||
auto cur_p = llama_sampling_prepare(ctx_sampling, ctx_main, ctx_cfg, idx, !is_resampling, &original_logits);
|
||||
if (!is_resampling) {
|
||||
GGML_ASSERT(!original_logits.empty());
|
||||
}
|
||||
llama_token id = 0;
|
||||
|
||||
// Get a pointer to the logits
|
||||
float * logits = llama_get_logits_ith(ctx_main, idx);
|
||||
|
||||
// Declare original_logits at the beginning of the function scope
|
||||
std::vector<float> original_logits;
|
||||
|
||||
if (!is_resampling) {
|
||||
// Only make a copy of the original logits if we are not in the resampling phase, not sure if I actually have to do this.
|
||||
original_logits = std::vector<float>(logits, logits + llama_n_vocab(llama_get_model(ctx_main)));
|
||||
}
|
||||
|
||||
// apply params.logit_bias map
|
||||
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
|
||||
logits[it->first] += it->second;
|
||||
}
|
||||
|
||||
if (ctx_cfg) {
|
||||
float * logits_guidance = llama_get_logits_ith(ctx_cfg, idx);
|
||||
llama_sample_apply_guidance(ctx_main, logits, logits_guidance, params.cfg_scale);
|
||||
}
|
||||
|
||||
cur.clear();
|
||||
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
cur.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
||||
}
|
||||
|
||||
llama_token_data_array cur_p = { cur.data(), cur.size(), false };
|
||||
|
||||
// apply penalties
|
||||
const auto& penalty_tokens = params.use_penalty_prompt_tokens ? params.penalty_prompt_tokens : prev;
|
||||
const int penalty_tokens_used_size = std::min((int)penalty_tokens.size(), penalty_last_n);
|
||||
if (penalty_tokens_used_size) {
|
||||
const float nl_logit = logits[llama_token_nl(llama_get_model(ctx_main))];
|
||||
|
||||
llama_sample_repetition_penalties(ctx_main, &cur_p,
|
||||
penalty_tokens.data() + penalty_tokens.size() - penalty_tokens_used_size,
|
||||
penalty_tokens_used_size, penalty_repeat, penalty_freq, penalty_present);
|
||||
|
||||
if (!penalize_nl) {
|
||||
for (size_t idx = 0; idx < cur_p.size; idx++) {
|
||||
if (cur_p.data[idx].id == llama_token_nl(llama_get_model(ctx_main))) {
|
||||
cur_p.data[idx].logit = nl_logit;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// If we are in the resampling phase, apply grammar checks before sampling logic
|
||||
if (is_resampling && ctx_sampling->grammar != NULL) {
|
||||
llama_sample_grammar(ctx_main, &cur_p, ctx_sampling->grammar);
|
||||
}
|
||||
|
||||
if (temp < 0.0) {
|
||||
// greedy sampling, with probs
|
||||
llama_sample_softmax(ctx_main, &cur_p);
|
||||
@@ -302,11 +245,13 @@ static llama_token llama_sampling_sample_impl(
|
||||
return id;
|
||||
}
|
||||
|
||||
static llama_token_data_array llama_sample_probability_distribution_impl(
|
||||
static llama_token_data_array llama_sampling_prepare_impl(
|
||||
struct llama_sampling_context * ctx_sampling,
|
||||
struct llama_context * ctx_main,
|
||||
struct llama_context * ctx_cfg,
|
||||
const int idx) {
|
||||
const int idx,
|
||||
bool apply_grammar,
|
||||
std::vector<float> * original_logits) {
|
||||
const llama_sampling_params & params = ctx_sampling->params;
|
||||
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
|
||||
@@ -315,6 +260,7 @@ static llama_token_data_array llama_sample_probability_distribution_impl(
|
||||
const float penalty_repeat = params.penalty_repeat;
|
||||
const float penalty_freq = params.penalty_freq;
|
||||
const float penalty_present = params.penalty_present;
|
||||
|
||||
const bool penalize_nl = params.penalize_nl;
|
||||
|
||||
auto & prev = ctx_sampling->prev;
|
||||
@@ -323,8 +269,10 @@ static llama_token_data_array llama_sample_probability_distribution_impl(
|
||||
// Get a pointer to the logits
|
||||
float * logits = llama_get_logits_ith(ctx_main, idx);
|
||||
|
||||
// Declare original_logits at the beginning of the function scope
|
||||
std::vector<float> original_logits;
|
||||
if (apply_grammar && original_logits != NULL) {
|
||||
// Only make a copy of the original logits if we are not applying grammar checks, not sure if I actually have to do this.
|
||||
*original_logits = {logits, logits + llama_n_vocab(llama_get_model(ctx_main))};
|
||||
}
|
||||
|
||||
// apply params.logit_bias map
|
||||
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
|
||||
@@ -364,12 +312,11 @@ static llama_token_data_array llama_sample_probability_distribution_impl(
|
||||
}
|
||||
}
|
||||
|
||||
// apply grammar checks
|
||||
if (ctx_sampling->grammar != NULL) {
|
||||
// apply grammar checks before sampling logic
|
||||
if (apply_grammar && ctx_sampling->grammar != NULL) {
|
||||
llama_sample_grammar(ctx_main, &cur_p, ctx_sampling->grammar);
|
||||
}
|
||||
|
||||
llama_sample_softmax(ctx_main, &cur_p);
|
||||
return cur_p;
|
||||
}
|
||||
|
||||
@@ -382,12 +329,14 @@ llama_token llama_sampling_sample(
|
||||
return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, false);
|
||||
}
|
||||
|
||||
llama_token_data_array llama_sampling_probability_distribution(
|
||||
llama_token_data_array llama_sampling_prepare(
|
||||
struct llama_sampling_context * ctx_sampling,
|
||||
struct llama_context * ctx_main,
|
||||
struct llama_context * ctx_cfg,
|
||||
const int idx) {
|
||||
return llama_sample_probability_distribution_impl(ctx_sampling,ctx_main, ctx_cfg, idx);
|
||||
const int idx,
|
||||
bool apply_grammar,
|
||||
std::vector<float> * original_logits) {
|
||||
return llama_sampling_prepare_impl(ctx_sampling,ctx_main, ctx_cfg, idx, apply_grammar, original_logits);
|
||||
}
|
||||
|
||||
void llama_sampling_accept(
|
||||
|
||||
@@ -32,13 +32,13 @@ typedef struct llama_sampling_params {
|
||||
float dynatemp_range = 0.00f; // 0.0 = disabled
|
||||
float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
|
||||
int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
|
||||
float penalty_repeat = 1.10f; // 1.0 = disabled
|
||||
float penalty_repeat = 1.00f; // 1.0 = disabled
|
||||
float penalty_freq = 0.00f; // 0.0 = disabled
|
||||
float penalty_present = 0.00f; // 0.0 = disabled
|
||||
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
|
||||
float mirostat_tau = 5.00f; // target entropy
|
||||
float mirostat_eta = 0.10f; // learning rate
|
||||
bool penalize_nl = true; // consider newlines as a repeatable token
|
||||
bool penalize_nl = false; // consider newlines as a repeatable token
|
||||
|
||||
std::vector<llama_sampler_type> samplers_sequence = {
|
||||
llama_sampler_type::TOP_K,
|
||||
@@ -129,14 +129,16 @@ llama_token llama_sampling_sample(
|
||||
struct llama_sampling_context * ctx_sampling,
|
||||
struct llama_context * ctx_main,
|
||||
struct llama_context * ctx_cfg,
|
||||
int idx = 0);
|
||||
int idx = -1);
|
||||
|
||||
// returns the probability that token of given id will be sampled
|
||||
llama_token_data_array llama_sampling_probability_distribution(
|
||||
// Prepares and adjusts the set of token candidates for sampling based on penalties, biases, and sampling parameters.
|
||||
llama_token_data_array llama_sampling_prepare(
|
||||
struct llama_sampling_context * ctx_sampling,
|
||||
struct llama_context * ctx_main,
|
||||
struct llama_context * ctx_cfg,
|
||||
int idx = 0);
|
||||
int idx = 0,
|
||||
bool apply_grammar = true,
|
||||
std::vector<float> * original_logits = nullptr);
|
||||
|
||||
void llama_sampling_accept(
|
||||
struct llama_sampling_context * ctx_sampling,
|
||||
|
||||
@@ -23,7 +23,7 @@ if 'NO_LOCAL_GGUF' not in os.environ:
|
||||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
|
||||
import gguf
|
||||
|
||||
from convert import HfVocab
|
||||
from convert import LlamaHfVocab, permute
|
||||
|
||||
|
||||
###### MODEL DEFINITIONS ######
|
||||
@@ -93,31 +93,42 @@ class Model(ABC):
|
||||
|
||||
if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
|
||||
self.gguf_writer.add_context_length(n_ctx)
|
||||
print(f"gguf: context length = {n_ctx}")
|
||||
|
||||
n_embd = self.find_hparam(["hidden_size", "n_embd"])
|
||||
self.gguf_writer.add_embedding_length(n_embd)
|
||||
print(f"gguf: embedding length = {n_embd}")
|
||||
|
||||
if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
|
||||
self.gguf_writer.add_feed_forward_length(n_ff)
|
||||
print(f"gguf: feed forward length = {n_ff}")
|
||||
|
||||
n_head = self.find_hparam(["num_attention_heads", "n_head"])
|
||||
self.gguf_writer.add_head_count(n_head)
|
||||
print(f"gguf: head count = {n_head}")
|
||||
|
||||
if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
|
||||
self.gguf_writer.add_head_count_kv(n_head_kv)
|
||||
print(f"gguf: key-value head count = {n_head_kv}")
|
||||
|
||||
if (rope_theta := self.hparams.get("rope_theta")) is not None:
|
||||
self.gguf_writer.add_rope_freq_base(rope_theta)
|
||||
print(f"gguf: rope theta = {rope_theta}")
|
||||
if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
|
||||
self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
|
||||
print(f"gguf: rms norm epsilon = {f_rms_eps}")
|
||||
if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
|
||||
self.gguf_writer.add_layer_norm_eps(f_norm_eps)
|
||||
print(f"gguf: layer norm epsilon = {f_norm_eps}")
|
||||
if (n_experts := self.hparams.get("num_local_experts")) is not None:
|
||||
self.gguf_writer.add_expert_count(n_experts)
|
||||
print(f"gguf: expert count = {n_experts}")
|
||||
if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
|
||||
self.gguf_writer.add_expert_used_count(n_experts_used)
|
||||
print(f"gguf: experts used count = {n_experts_used}")
|
||||
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
print(f"gguf: file type = {self.ftype}")
|
||||
|
||||
def write_tensors(self):
|
||||
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
|
||||
@@ -149,7 +160,7 @@ class Model(ABC):
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||||
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||||
if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||
@@ -219,7 +230,7 @@ class Model(ABC):
|
||||
def _set_vocab_gpt2(self):
|
||||
dir_model = self.dir_model
|
||||
hparams = self.hparams
|
||||
tokens: list[bytearray] = []
|
||||
tokens: list[str] = []
|
||||
toktypes: list[int] = []
|
||||
|
||||
from transformers import AutoTokenizer
|
||||
@@ -232,8 +243,7 @@ class Model(ABC):
|
||||
|
||||
for i in range(vocab_size):
|
||||
if i not in reverse_vocab:
|
||||
pad_token = f"[PAD{i}]".encode('utf-8')
|
||||
tokens.append(bytearray(pad_token))
|
||||
tokens.append(f"[PAD{i}]")
|
||||
toktypes.append(gguf.TokenType.USER_DEFINED)
|
||||
elif reverse_vocab[i] in added_vocab:
|
||||
tokens.append(reverse_vocab[i])
|
||||
@@ -255,7 +265,7 @@ class Model(ABC):
|
||||
def _set_vocab_qwen(self):
|
||||
dir_model = self.dir_model
|
||||
hparams = self.hparams
|
||||
tokens: list[bytearray] = []
|
||||
tokens: list[str] = []
|
||||
toktypes: list[int] = []
|
||||
|
||||
from transformers import AutoTokenizer
|
||||
@@ -280,8 +290,7 @@ class Model(ABC):
|
||||
|
||||
for i in range(vocab_size):
|
||||
if i not in reverse_vocab:
|
||||
pad_token = f"[PAD{i}]".encode("utf-8")
|
||||
tokens.append(bytearray(pad_token))
|
||||
tokens.append(f"[PAD{i}]")
|
||||
toktypes.append(gguf.TokenType.USER_DEFINED)
|
||||
elif reverse_vocab[i] in added_vocab:
|
||||
tokens.append(reverse_vocab[i])
|
||||
@@ -314,13 +323,12 @@ class Model(ABC):
|
||||
toktypes: list[int] = []
|
||||
|
||||
if not tokenizer_path.is_file():
|
||||
print(f'Error: Missing {tokenizer_path}', file=sys.stderr)
|
||||
sys.exit(1)
|
||||
raise FileNotFoundError(f"File not found: {tokenizer_path}")
|
||||
|
||||
tokenizer = SentencePieceProcessor(str(tokenizer_path))
|
||||
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
|
||||
|
||||
for token_id in range(vocab_size):
|
||||
for token_id in range(tokenizer.vocab_size()):
|
||||
piece = tokenizer.id_to_piece(token_id)
|
||||
text = piece.encode("utf-8")
|
||||
score = tokenizer.get_score(token_id)
|
||||
@@ -345,9 +353,13 @@ class Model(ABC):
|
||||
added_tokens_json = json.load(f)
|
||||
|
||||
for key in added_tokens_json:
|
||||
tokens.append(key.encode("utf-8"))
|
||||
scores.append(-1000.0)
|
||||
toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
|
||||
key = key.encode("utf-8")
|
||||
if key not in tokens:
|
||||
tokens.append(key)
|
||||
scores.append(-1000.0)
|
||||
toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
|
||||
|
||||
assert len(tokens) == vocab_size
|
||||
|
||||
self.gguf_writer.add_tokenizer_model("llama")
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
@@ -357,12 +369,8 @@ class Model(ABC):
|
||||
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
def _set_vocab_hf(self):
|
||||
path = self.dir_model
|
||||
added_tokens_path = self.dir_model
|
||||
vocab = HfVocab(
|
||||
path, added_tokens_path if added_tokens_path.exists() else None
|
||||
)
|
||||
def _set_vocab_llama_hf(self):
|
||||
vocab = LlamaHfVocab(self.dir_model)
|
||||
tokens = []
|
||||
scores = []
|
||||
toktypes = []
|
||||
@@ -502,6 +510,17 @@ class BloomModel(Model):
|
||||
class MPTModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.MPT
|
||||
|
||||
def set_vocab(self):
|
||||
try:
|
||||
self._set_vocab_gpt2()
|
||||
except Exception:
|
||||
# Fallback for SEA-LION model
|
||||
self._set_vocab_sentencepiece()
|
||||
self.gguf_writer.add_add_bos_token(False)
|
||||
self.gguf_writer.add_pad_token_id(3)
|
||||
self.gguf_writer.add_eos_token_id(1)
|
||||
self.gguf_writer.add_unk_token_id(0)
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.hparams["n_layers"]
|
||||
self.gguf_writer.add_name(self.dir_model.name)
|
||||
@@ -515,7 +534,10 @@ class MPTModel(Model):
|
||||
self.gguf_writer.add_layer_norm_eps(1e-5)
|
||||
if self.hparams["attn_config"]["clip_qkv"] is not None:
|
||||
self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
|
||||
self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
|
||||
if self.hparams["attn_config"]["alibi"]:
|
||||
self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
|
||||
else:
|
||||
self.gguf_writer.add_max_alibi_bias(0.0)
|
||||
|
||||
def write_tensors(self):
|
||||
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers"))
|
||||
@@ -764,6 +786,148 @@ class BaichuanModel(Model):
|
||||
return weights[r * n_part:r * n_part + r, ...]
|
||||
|
||||
|
||||
@Model.register("XverseForCausalLM")
|
||||
class XverseModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.XVERSE
|
||||
|
||||
def set_vocab(self):
|
||||
assert (self.dir_model / "tokenizer.json").is_file()
|
||||
dir_model = self.dir_model
|
||||
hparams = self.hparams
|
||||
|
||||
tokens: list[bytearray] = []
|
||||
toktypes: list[int] = []
|
||||
|
||||
from transformers import AutoTokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(dir_model)
|
||||
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
|
||||
assert max(tokenizer.vocab.values()) < vocab_size
|
||||
|
||||
reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
|
||||
added_vocab = tokenizer.get_added_vocab()
|
||||
|
||||
for token_id in range(vocab_size):
|
||||
token_text = reverse_vocab[token_id].encode('utf-8')
|
||||
# replace "\x00" to string with length > 0
|
||||
if token_text == b"\x00":
|
||||
toktype = gguf.TokenType.BYTE # special
|
||||
token_text = f"<{token_text}>".encode('utf-8')
|
||||
elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
|
||||
toktype = gguf.TokenType.BYTE # special
|
||||
elif reverse_vocab[token_id] in added_vocab:
|
||||
if tokenizer.added_tokens_decoder[token_id].special:
|
||||
toktype = gguf.TokenType.CONTROL
|
||||
else:
|
||||
toktype = gguf.TokenType.USER_DEFINED
|
||||
else:
|
||||
toktype = gguf.TokenType.NORMAL
|
||||
|
||||
tokens.append(token_text)
|
||||
toktypes.append(toktype)
|
||||
|
||||
self.gguf_writer.add_tokenizer_model("llama")
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
self.gguf_writer.add_token_types(toktypes)
|
||||
|
||||
special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.hparams["num_hidden_layers"]
|
||||
head_count = self.hparams["num_attention_heads"]
|
||||
head_count_kv = self.hparams.get("num_key_value_heads", head_count)
|
||||
hf_repo = self.hparams.get("_name_or_path", "")
|
||||
|
||||
ctx_length = 0
|
||||
if "max_sequence_length" in self.hparams:
|
||||
ctx_length = self.hparams["max_sequence_length"]
|
||||
elif "max_position_embeddings" in self.hparams:
|
||||
ctx_length = self.hparams["max_position_embeddings"]
|
||||
elif "model_max_length" in self.hparams:
|
||||
ctx_length = self.hparams["model_max_length"]
|
||||
else:
|
||||
print("gguf: can not find ctx length parameter.")
|
||||
sys.exit()
|
||||
|
||||
self.gguf_writer.add_name(self.dir_model.name)
|
||||
self.gguf_writer.add_source_hf_repo(hf_repo)
|
||||
self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
|
||||
self.gguf_writer.add_context_length(ctx_length)
|
||||
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
|
||||
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
|
||||
self.gguf_writer.add_head_count(head_count)
|
||||
self.gguf_writer.add_head_count_kv(head_count_kv)
|
||||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
|
||||
|
||||
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
|
||||
if self.hparams["rope_scaling"].get("type") == "linear":
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||||
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
|
||||
|
||||
def write_tensors(self):
|
||||
# Collect tensors from generator object
|
||||
model_kv = dict(self.get_tensors())
|
||||
block_count = self.hparams["num_hidden_layers"]
|
||||
head_count = self.hparams["num_attention_heads"]
|
||||
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||||
head_count_kv = self.hparams.get("num_key_value_heads", head_count)
|
||||
|
||||
for name, data_torch in model_kv.items():
|
||||
# we don't need these
|
||||
if name.endswith(".rotary_emb.inv_freq"):
|
||||
continue
|
||||
|
||||
old_dtype = data_torch.dtype
|
||||
|
||||
# convert any unsupported data types to float32
|
||||
if data_torch.dtype not in (torch.float16, torch.float32):
|
||||
data_torch = data_torch.to(torch.float32)
|
||||
|
||||
# HF models permute some of the tensors, so we need to undo that
|
||||
if name.endswith(("q_proj.weight")):
|
||||
data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
|
||||
if name.endswith(("k_proj.weight")):
|
||||
data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
|
||||
|
||||
data = data_torch.squeeze().numpy()
|
||||
|
||||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
||||
# if f32 desired, convert any float16 to float32
|
||||
if self.ftype == 0 and data_dtype == np.float16:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||||
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
|
||||
if n_kv_head is not None and n_head != n_kv_head:
|
||||
n_head //= n_kv_head
|
||||
|
||||
return (
|
||||
weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
||||
.swapaxes(1, 2)
|
||||
.reshape(weights.shape)
|
||||
)
|
||||
|
||||
|
||||
@Model.register("FalconForCausalLM", "RWForCausalLM")
|
||||
class FalconModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.FALCON
|
||||
@@ -1043,13 +1207,222 @@ class StableLMModel(Model):
|
||||
self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
|
||||
|
||||
|
||||
@Model.register("MixtralForCausalLM")
|
||||
class MixtralModel(Model):
|
||||
@Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
|
||||
class LlamaModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.LLAMA
|
||||
|
||||
def set_vocab(self):
|
||||
try:
|
||||
self. _set_vocab_sentencepiece()
|
||||
except FileNotFoundError:
|
||||
self._set_vocab_llama_hf()
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
hparams = self.hparams
|
||||
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
|
||||
self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
|
||||
|
||||
# Same as super class, but permuting q_proj, k_proj
|
||||
def write_tensors(self):
|
||||
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
|
||||
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||||
n_head = self.hparams.get("num_attention_heads")
|
||||
n_kv_head = self.hparams.get("num_key_value_heads")
|
||||
n_experts = self.hparams.get("num_local_experts")
|
||||
experts = dict()
|
||||
for name, data_torch in self.get_tensors():
|
||||
# we don't need these
|
||||
if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
|
||||
continue
|
||||
|
||||
old_dtype = data_torch.dtype
|
||||
|
||||
# convert any unsupported data types to float32
|
||||
if data_torch.dtype not in (torch.float16, torch.float32):
|
||||
data_torch = data_torch.to(torch.float32)
|
||||
|
||||
data = data_torch.numpy()
|
||||
|
||||
if name.endswith("q_proj.weight"):
|
||||
data = permute(data, n_head, n_head)
|
||||
if name.endswith("k_proj.weight"):
|
||||
data = permute(data, n_head, n_kv_head)
|
||||
|
||||
data = data.squeeze()
|
||||
|
||||
# process the experts separately
|
||||
if name.find("block_sparse_moe.experts") != -1:
|
||||
experts[name] = data
|
||||
if len(experts) >= n_experts:
|
||||
# merge the experts into a single 3d tensor
|
||||
for bid in range(block_count):
|
||||
for wid in range(1, 4):
|
||||
full = True
|
||||
for xid in range(n_experts):
|
||||
ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.w{wid}.weight"
|
||||
if ename not in experts:
|
||||
full = False
|
||||
break
|
||||
if not full:
|
||||
continue
|
||||
|
||||
datas = []
|
||||
for xid in range(n_experts):
|
||||
ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.w{wid}.weight"
|
||||
datas.append(experts[ename])
|
||||
del experts[ename]
|
||||
|
||||
data = np.stack(datas, axis=0)
|
||||
data_dtype = data.dtype
|
||||
|
||||
if self.ftype == 0 and data_dtype == np.float16:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
if self.ftype == 1 and data_dtype == np.float32:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
merged_name = f"layers.{bid}.feed_forward.experts.w{wid}.weight"
|
||||
|
||||
new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
|
||||
print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
continue
|
||||
|
||||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
||||
# if f32 desired, convert any float16 to float32
|
||||
if self.ftype == 0 and data_dtype == np.float16:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# 1d tensors need to be converted to float32
|
||||
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
if len(experts) > 0:
|
||||
raise ValueError(f"Unprocessed experts: {experts.keys()}")
|
||||
|
||||
|
||||
@Model.register("GrokForCausalLM")
|
||||
class GrokModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.GROK
|
||||
|
||||
def set_vocab(self):
|
||||
self._set_vocab_sentencepiece()
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
self.gguf_writer.add_name("Grok")
|
||||
|
||||
def write_tensors(self):
|
||||
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
|
||||
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||||
n_experts = self.hparams.get("num_local_experts")
|
||||
experts = dict()
|
||||
for name, data_torch in self.get_tensors():
|
||||
# we don't need these
|
||||
if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
|
||||
continue
|
||||
|
||||
old_dtype = data_torch.dtype
|
||||
|
||||
# convert any unsupported data types to float32
|
||||
if data_torch.dtype not in (torch.float16, torch.float32):
|
||||
data_torch = data_torch.to(torch.float32)
|
||||
|
||||
data = data_torch.squeeze().numpy()
|
||||
|
||||
# process the experts separately
|
||||
if name.find(".moe.") != -1:
|
||||
experts[name] = data
|
||||
if len(experts) >= n_experts:
|
||||
# merge the experts into a single 3d tensor
|
||||
for bid in range(block_count):
|
||||
for wid in ["linear", "linear_1", "linear_v"]:
|
||||
full = True
|
||||
for xid in range(n_experts):
|
||||
ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
|
||||
if ename not in experts:
|
||||
full = False
|
||||
break
|
||||
if not full:
|
||||
continue
|
||||
|
||||
datas = []
|
||||
for xid in range(n_experts):
|
||||
ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
|
||||
datas.append(experts[ename])
|
||||
del experts[ename]
|
||||
|
||||
data = np.stack(datas, axis=0)
|
||||
data_dtype = data.dtype
|
||||
|
||||
if self.ftype == 0 and data_dtype == np.float16:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
if self.ftype == 1 and data_dtype == np.float32:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
|
||||
|
||||
new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
|
||||
print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
continue
|
||||
|
||||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
||||
# if f32 desired, convert any float16 to float32
|
||||
if self.ftype == 0 and data_dtype == np.float16:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||||
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
||||
@Model.register("MiniCPMForCausalLM")
|
||||
class MiniCPMModel(Model):
|
||||
@@ -1069,7 +1442,7 @@ class MiniCPMModel(Model):
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
|
||||
def set_vocab(self):
|
||||
self._set_vocab_hf()
|
||||
self._set_vocab_llama_hf()
|
||||
|
||||
def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
|
||||
if n_kv_head is not None and n_head != n_kv_head:
|
||||
@@ -1670,11 +2043,8 @@ class BertModel(Model):
|
||||
self.gguf_writer.add_pooling_type(pooling_type)
|
||||
|
||||
def set_vocab(self):
|
||||
path = self.dir_model
|
||||
added_tokens_path = self.dir_model if self.dir_model.exists() else None
|
||||
|
||||
# use huggingface vocab to get all tokens
|
||||
vocab = HfVocab(path, added_tokens_path)
|
||||
vocab = LlamaHfVocab(self.dir_model, ignore_nonllama=True)
|
||||
tokens, scores, toktypes = zip(*vocab.all_tokens())
|
||||
assert len(tokens) == vocab.vocab_size
|
||||
self.vocab_size = vocab.vocab_size
|
||||
|
||||
@@ -106,12 +106,12 @@ def main():
|
||||
tensor_map = gguf.get_tensor_name_map(arch, block_count)
|
||||
print(tensor_map)
|
||||
for name in tensors.keys():
|
||||
data = tensors[name]
|
||||
data_torch = tensors[name]
|
||||
if name.endswith(".self_attention.rotary_emb.inv_freq"):
|
||||
continue
|
||||
old_dtype = data.dtype
|
||||
old_dtype = data_torch.dtype
|
||||
# TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
|
||||
data = data.to(torch.float32).squeeze().numpy()
|
||||
data = data_torch.to(torch.float32).squeeze().numpy()
|
||||
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print("Can not map tensor '" + name + "'")
|
||||
|
||||
369
convert.py
369
convert.py
@@ -16,13 +16,14 @@ import re
|
||||
import signal
|
||||
import struct
|
||||
import sys
|
||||
import textwrap
|
||||
import time
|
||||
import zipfile
|
||||
from abc import ABCMeta, abstractmethod
|
||||
from abc import ABC, abstractmethod
|
||||
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
from typing import IO, TYPE_CHECKING, Any, Callable, Iterable, Literal, TypeVar
|
||||
from typing import TYPE_CHECKING, Any, Callable, ClassVar, IO, Iterable, Literal, Protocol, TypeVar, runtime_checkable
|
||||
|
||||
import numpy as np
|
||||
from sentencepiece import SentencePieceProcessor
|
||||
@@ -43,6 +44,9 @@ ARCH = gguf.MODEL_ARCH.LLAMA
|
||||
|
||||
DEFAULT_CONCURRENCY = 8
|
||||
|
||||
ADDED_TOKENS_FILE = 'added_tokens.json'
|
||||
FAST_TOKENIZER_FILE = 'tokenizer.json'
|
||||
|
||||
#
|
||||
# data types
|
||||
#
|
||||
@@ -135,7 +139,8 @@ class GGMLFileType(enum.IntEnum):
|
||||
dt = GGML_FILE_TYPE_TO_DATA_TYPE.get(self)
|
||||
if dt is None:
|
||||
raise ValueError(self)
|
||||
# 1D tensors are always F32.
|
||||
# Convert all 1D tensors to F32. Most of the codebase that takes in 1D tensors only handles F32 tensors, and most of the outputs tensors are F32.
|
||||
# Also The 1d tensors aren't much of a performance/size issue. So instead of having to have separate F32 and F16 implementations of both, just convert everything to F32 for now.
|
||||
return dt if len(tensor.shape) > 1 else DT_F32
|
||||
|
||||
|
||||
@@ -188,8 +193,10 @@ class Params:
|
||||
n_layer = next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model)
|
||||
|
||||
if n_layer < 1:
|
||||
raise Exception("failed to guess 'n_layer'. This model is unknown or unsupported.\n"
|
||||
"Suggestion: provide 'config.json' of the model in the same directory containing model files.")
|
||||
msg = """\
|
||||
failed to guess 'n_layer'. This model is unknown or unsupported.
|
||||
Suggestion: provide 'config.json' of the model in the same directory containing model files."""
|
||||
raise KeyError(textwrap.dedent(msg))
|
||||
|
||||
n_head = n_embd // 128 # guessed
|
||||
n_mult = 256 # guessed
|
||||
@@ -211,7 +218,8 @@ class Params:
|
||||
|
||||
@staticmethod
|
||||
def loadHFTransformerJson(model: LazyModel, config_path: Path) -> Params:
|
||||
config = json.load(open(config_path))
|
||||
with open(config_path) as f:
|
||||
config = json.load(f)
|
||||
|
||||
rope_scaling_type = f_rope_scale = n_orig_ctx = rope_finetuned = None
|
||||
rope_scaling = config.get("rope_scaling")
|
||||
@@ -233,8 +241,10 @@ class Params:
|
||||
elif "max_position_embeddings" in config:
|
||||
n_ctx = config["max_position_embeddings"]
|
||||
else:
|
||||
raise Exception("failed to guess 'n_ctx'. This model is unknown or unsupported.\n"
|
||||
"Suggestion: provide 'config.json' of the model in the same directory containing model files.")
|
||||
msg = """\
|
||||
failed to guess 'n_ctx'. This model is unknown or unsupported.
|
||||
Suggestion: provide 'config.json' of the model in the same directory containing model files."""
|
||||
raise KeyError(textwrap.dedent(msg))
|
||||
|
||||
n_experts = None
|
||||
n_experts_used = None
|
||||
@@ -265,7 +275,8 @@ class Params:
|
||||
# {"dim": 8192, "multiple_of": 4096, "ffn_dim_multiplier": 1.3, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": -1}
|
||||
@staticmethod
|
||||
def loadOriginalParamsJson(model: LazyModel, config_path: Path) -> Params:
|
||||
config = json.load(open(config_path))
|
||||
with open(config_path) as f:
|
||||
config = json.load(f)
|
||||
|
||||
n_experts = None
|
||||
n_experts_used = None
|
||||
@@ -331,47 +342,86 @@ class Params:
|
||||
# vocab
|
||||
#
|
||||
|
||||
class BpeVocab:
|
||||
@runtime_checkable
|
||||
class BaseVocab(Protocol):
|
||||
tokenizer_model: ClassVar[str]
|
||||
name: ClassVar[str]
|
||||
|
||||
|
||||
class NoVocab(BaseVocab):
|
||||
tokenizer_model = "no_vocab"
|
||||
name = "no_vocab"
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return "<NoVocab for a model without integrated vocabulary>"
|
||||
|
||||
|
||||
@runtime_checkable
|
||||
class Vocab(BaseVocab, Protocol):
|
||||
vocab_size: int
|
||||
added_tokens_dict: dict[str, int]
|
||||
added_tokens_list: list[str]
|
||||
fname_tokenizer: Path
|
||||
|
||||
def __init__(self, base_path: Path): ...
|
||||
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: ...
|
||||
|
||||
|
||||
class BpeVocab(Vocab):
|
||||
tokenizer_model = "gpt2"
|
||||
name = "bpe"
|
||||
|
||||
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None) -> None:
|
||||
self.bpe_tokenizer = json.loads(open(str(fname_tokenizer), encoding="utf-8").read())
|
||||
if isinstance(self.bpe_tokenizer.get('model'), dict):
|
||||
self.vocab = self.bpe_tokenizer["model"]["vocab"]
|
||||
else:
|
||||
self.vocab = self.bpe_tokenizer
|
||||
added_tokens: dict[str, int]
|
||||
if fname_added_tokens is not None:
|
||||
# FIXME: Verify that added tokens here _cannot_ overlap with the main vocab.
|
||||
added_tokens = json.load(open(fname_added_tokens, encoding="utf-8"))
|
||||
else:
|
||||
# Fall back to trying to find the added tokens in tokenizer.json
|
||||
tokenizer_json_file = fname_tokenizer.parent / 'tokenizer.json'
|
||||
if not tokenizer_json_file.is_file():
|
||||
added_tokens = {}
|
||||
else:
|
||||
tokenizer_json = json.load(open(tokenizer_json_file, encoding="utf-8"))
|
||||
added_tokens = dict(
|
||||
(item['content'], item['id'])
|
||||
for item in tokenizer_json.get('added_tokens', [])
|
||||
# Added tokens here can be duplicates of the main vocabulary.
|
||||
if item['content'] not in self.bpe_tokenizer)
|
||||
def __init__(self, base_path: Path):
|
||||
added_tokens: dict[str, int] = {}
|
||||
|
||||
vocab_size: int = len(self.vocab)
|
||||
expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
|
||||
actual_ids = sorted(added_tokens.values())
|
||||
if (fname_tokenizer := base_path / 'vocab.json').exists():
|
||||
# "slow" tokenizer
|
||||
with open(fname_tokenizer, encoding="utf-8") as f:
|
||||
self.vocab = json.load(f)
|
||||
|
||||
try:
|
||||
# FIXME: Verify that added tokens here _cannot_ overlap with the main vocab.
|
||||
with open(base_path / ADDED_TOKENS_FILE, encoding="utf-8") as f:
|
||||
added_tokens = json.load(f)
|
||||
except FileNotFoundError:
|
||||
pass
|
||||
else:
|
||||
# "fast" tokenizer
|
||||
fname_tokenizer = base_path / FAST_TOKENIZER_FILE
|
||||
|
||||
# if this fails, FileNotFoundError propagates to caller
|
||||
with open(fname_tokenizer, encoding="utf-8") as f:
|
||||
tokenizer_json = json.load(f)
|
||||
|
||||
tokenizer_model: dict[str, Any] = tokenizer_json['model']
|
||||
if (
|
||||
tokenizer_model['type'] != 'BPE' or tokenizer_model.get('byte_fallback', False)
|
||||
or tokenizer_json['decoder']['type'] != 'ByteLevel'
|
||||
):
|
||||
raise FileNotFoundError('Cannot find GPT-2 BPE tokenizer')
|
||||
|
||||
self.vocab = tokenizer_model["vocab"]
|
||||
|
||||
if (added := tokenizer_json.get('added_tokens')) is not None:
|
||||
# Added tokens here can be duplicates of the main vocabulary.
|
||||
added_tokens = {item['content']: item['id']
|
||||
for item in added
|
||||
if item['content'] not in self.vocab}
|
||||
|
||||
vocab_size = len(self.vocab)
|
||||
expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
|
||||
actual_ids = sorted(added_tokens.values())
|
||||
if expected_ids != actual_ids:
|
||||
expected_end_id = vocab_size + len(actual_ids) - 1
|
||||
raise Exception(f"Expected the {len(actual_ids)} added token ID(s) to be sequential in the range {vocab_size} - {expected_end_id}; got {actual_ids}")
|
||||
raise ValueError(f"Expected the {len(actual_ids)} added token ID(s) to be sequential in the range "
|
||||
f"{vocab_size} - {expected_end_id}; got {actual_ids}")
|
||||
|
||||
items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1])
|
||||
self.added_tokens_dict = added_tokens
|
||||
self.added_tokens_list = [text for (text, idx) in items]
|
||||
self.vocab_size_base: int = vocab_size
|
||||
self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_list)
|
||||
self.vocab_size_base = vocab_size
|
||||
self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
|
||||
self.fname_tokenizer = fname_tokenizer
|
||||
self.fname_added_tokens = fname_added_tokens
|
||||
|
||||
def bpe_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
reverse_vocab = {id: encoded_tok for encoded_tok, id in self.vocab.items()}
|
||||
@@ -392,19 +442,25 @@ class BpeVocab:
|
||||
return f"<BpeVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
|
||||
|
||||
|
||||
class SentencePieceVocab:
|
||||
class SentencePieceVocab(Vocab):
|
||||
tokenizer_model = "llama"
|
||||
name = "spm"
|
||||
|
||||
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None) -> None:
|
||||
self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer))
|
||||
added_tokens: dict[str, int]
|
||||
if fname_added_tokens is not None:
|
||||
added_tokens = json.load(open(fname_added_tokens, encoding="utf-8"))
|
||||
else:
|
||||
added_tokens = {}
|
||||
def __init__(self, base_path: Path):
|
||||
added_tokens: dict[str, int] = {}
|
||||
if (fname_tokenizer := base_path / 'tokenizer.model').exists():
|
||||
# normal location
|
||||
try:
|
||||
with open(base_path / ADDED_TOKENS_FILE, encoding="utf-8") as f:
|
||||
added_tokens = json.load(f)
|
||||
except FileNotFoundError:
|
||||
pass
|
||||
elif not (fname_tokenizer := base_path.parent / 'tokenizer.model').exists():
|
||||
# not found in alternate location either
|
||||
raise FileNotFoundError('Cannot find tokenizer.model')
|
||||
|
||||
vocab_size: int = self.sentencepiece_tokenizer.vocab_size()
|
||||
self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer))
|
||||
vocab_size = self.sentencepiece_tokenizer.vocab_size()
|
||||
|
||||
new_tokens = {id: piece for piece, id in added_tokens.items() if id >= vocab_size}
|
||||
expected_new_ids = list(range(vocab_size, vocab_size + len(new_tokens)))
|
||||
@@ -414,18 +470,17 @@ class SentencePieceVocab:
|
||||
raise ValueError(f"Expected new token IDs {expected_new_ids} to be sequential; got {actual_new_ids}")
|
||||
|
||||
# Token pieces that were added to the base vocabulary.
|
||||
self.added_tokens_dict = added_tokens
|
||||
self.added_tokens_dict = added_tokens
|
||||
self.added_tokens_list = [new_tokens[id] for id in actual_new_ids]
|
||||
self.vocab_size_base = vocab_size
|
||||
self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
|
||||
self.fname_tokenizer = fname_tokenizer
|
||||
self.fname_added_tokens = fname_added_tokens
|
||||
|
||||
def sentencepiece_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
tokenizer = self.sentencepiece_tokenizer
|
||||
for i in range(tokenizer.vocab_size()):
|
||||
piece = tokenizer.id_to_piece(i)
|
||||
text: bytes = piece.encode("utf-8")
|
||||
text = piece.encode("utf-8")
|
||||
score: float = tokenizer.get_score(i)
|
||||
|
||||
toktype = gguf.TokenType.NORMAL
|
||||
@@ -458,27 +513,42 @@ class SentencePieceVocab:
|
||||
return f"<SentencePieceVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
|
||||
|
||||
|
||||
class HfVocab:
|
||||
class LlamaHfVocab(Vocab):
|
||||
tokenizer_model = "llama"
|
||||
name = "hfft"
|
||||
|
||||
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None = None) -> None:
|
||||
def __init__(self, base_path: Path, ignore_nonllama: bool = False):
|
||||
fname_tokenizer = base_path / FAST_TOKENIZER_FILE
|
||||
# if this fails, FileNotFoundError propagates to caller
|
||||
with open(fname_tokenizer, encoding='utf-8') as f:
|
||||
tokenizer_json = json.load(f)
|
||||
|
||||
# pre-check so we know if we need transformers
|
||||
tokenizer_model: dict[str, Any] = tokenizer_json['model']
|
||||
if ignore_nonllama:
|
||||
pass # workaround incorrect use of this class for WordPiece
|
||||
elif (
|
||||
tokenizer_model['type'] != 'BPE' or not tokenizer_model.get('byte_fallback', False)
|
||||
or tokenizer_json['decoder']['type'] != 'Sequence'
|
||||
):
|
||||
raise FileNotFoundError('Cannot find Llama BPE tokenizer')
|
||||
|
||||
try:
|
||||
from transformers import AutoTokenizer
|
||||
except ImportError as e:
|
||||
raise ImportError(
|
||||
"To use HfVocab, please install the `transformers` package. "
|
||||
"To use LlamaHfVocab, please install the `transformers` package. "
|
||||
"You can install it with `pip install transformers`."
|
||||
) from e
|
||||
|
||||
print("fname_tokenizer:", fname_tokenizer)
|
||||
# Allow the tokenizer to default to slow or fast versions.
|
||||
# Explicitly set tokenizer to use local paths.
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(
|
||||
fname_tokenizer,
|
||||
cache_dir=fname_tokenizer,
|
||||
base_path,
|
||||
cache_dir=base_path,
|
||||
local_files_only=True,
|
||||
)
|
||||
assert self.tokenizer.is_fast # assume tokenizer.json is used
|
||||
|
||||
# Initialize lists and dictionaries for added tokens
|
||||
self.added_tokens_list = []
|
||||
@@ -506,8 +576,7 @@ class HfVocab:
|
||||
self.vocab_size_base = self.tokenizer.vocab_size
|
||||
self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
|
||||
|
||||
self.fname_tokenizer = fname_tokenizer
|
||||
self.fname_added_tokens = fname_added_tokens
|
||||
self.fname_tokenizer = fname_tokenizer
|
||||
|
||||
def hf_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
reverse_vocab = {
|
||||
@@ -559,18 +628,7 @@ class HfVocab:
|
||||
yield from self.added_tokens()
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return f"<HfVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
|
||||
|
||||
|
||||
class NoVocab:
|
||||
tokenizer_model = "no_vocab"
|
||||
name = "no_vocab"
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return "<NoVocab for a model without integrated vocabulary>"
|
||||
|
||||
|
||||
Vocab: TypeAlias = "BpeVocab | SentencePieceVocab | HfVocab | NoVocab"
|
||||
return f"<LlamaHfVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
|
||||
|
||||
|
||||
#
|
||||
@@ -588,7 +646,7 @@ def permute(weights: NDArray, n_head: int, n_head_kv: int) -> NDArray:
|
||||
.reshape(weights.shape))
|
||||
|
||||
|
||||
class Tensor(metaclass=ABCMeta):
|
||||
class Tensor(ABC):
|
||||
data_type: DataType
|
||||
|
||||
@abstractmethod
|
||||
@@ -610,7 +668,7 @@ def bf16_to_fp32(bf16_arr: np.ndarray[Any, np.dtype[np.uint16]]) -> NDArray:
|
||||
|
||||
|
||||
class UnquantizedTensor(Tensor):
|
||||
def __init__(self, ndarray: NDArray) -> None:
|
||||
def __init__(self, ndarray: NDArray):
|
||||
assert isinstance(ndarray, np.ndarray)
|
||||
self.ndarray = ndarray
|
||||
self.data_type = NUMPY_TYPE_TO_DATA_TYPE[ndarray.dtype]
|
||||
@@ -689,7 +747,7 @@ class ModelPlus:
|
||||
model: LazyModel
|
||||
paths: list[Path] # Where this was read from.
|
||||
format: Literal['ggml', 'torch', 'safetensors', 'none']
|
||||
vocab: Vocab | None # For GGML models (which have vocab built in), the vocab.
|
||||
vocab: BaseVocab | None # For GGML models (which have vocab built in), the vocab.
|
||||
|
||||
|
||||
def merge_sharded(models: list[LazyModel]) -> LazyModel:
|
||||
@@ -698,7 +756,7 @@ def merge_sharded(models: list[LazyModel]) -> LazyModel:
|
||||
names = {name: None for model in models for name in model}
|
||||
|
||||
def convert(name: str) -> LazyTensor:
|
||||
lazy_tensors: list[LazyTensor] = [model[name] for model in models]
|
||||
lazy_tensors = [model[name] for model in models]
|
||||
if len(lazy_tensors) == 1:
|
||||
# only one file; don't go through this procedure since there might
|
||||
# be quantized tensors
|
||||
@@ -719,7 +777,7 @@ def merge_sharded(models: list[LazyModel]) -> LazyModel:
|
||||
|
||||
def load() -> UnquantizedTensor:
|
||||
ndarrays = [load_unquantized(tensor) for tensor in lazy_tensors]
|
||||
concatenated: NDArray = np.concatenate(ndarrays, axis=axis)
|
||||
concatenated = np.concatenate(ndarrays, axis=axis)
|
||||
return UnquantizedTensor(concatenated)
|
||||
description = 'concatenated[[' + '] | ['.join(lt.description for lt in lazy_tensors) + ']]'
|
||||
return LazyTensor(load, concatenated_shape, lazy_tensors[0].data_type, description)
|
||||
@@ -771,6 +829,15 @@ def part_lazy(lazy_tensor: LazyTensor, n_part: int) -> LazyTensor:
|
||||
return LazyTensor(load, s, lazy_tensor.data_type, 'part ' + lazy_tensor.description)
|
||||
|
||||
|
||||
def pack_experts_lazy(lazy_tensors: list[LazyTensor]) -> LazyTensor:
|
||||
def load() -> Tensor:
|
||||
tensors = [lazy_tensor.load() for lazy_tensor in lazy_tensors]
|
||||
return UnquantizedTensor(np.array([tensor.ndarray for tensor in tensors]))
|
||||
s = lazy_tensors[0].shape.copy()
|
||||
s.insert(0, len(lazy_tensors))
|
||||
return LazyTensor(load, s, lazy_tensors[0].data_type, 'pack_experts ' + ' | '.join(lt.description for lt in lazy_tensors))
|
||||
|
||||
|
||||
# Functionality that simulates `torch.load` but where individual tensors are
|
||||
# only loaded into memory on demand, not all at once.
|
||||
# PyTorch can't do this natively as of time of writing:
|
||||
@@ -807,10 +874,10 @@ class LazyUnpickler(pickle.Unpickler):
|
||||
|
||||
def load(offset: int, elm_count: int) -> NDArray:
|
||||
dtype = data_type.dtype
|
||||
fp = self.zip_file.open(info)
|
||||
fp.seek(offset * dtype.itemsize)
|
||||
size = elm_count * dtype.itemsize
|
||||
data = fp.read(size)
|
||||
with self.zip_file.open(info) as fp:
|
||||
fp.seek(offset * dtype.itemsize)
|
||||
size = elm_count * dtype.itemsize
|
||||
data = fp.read(size)
|
||||
assert len(data) == size
|
||||
return np.frombuffer(data, dtype)
|
||||
description = f'storage data_type={data_type} path-in-zip={filename} path={self.zip_file.filename}'
|
||||
@@ -831,7 +898,7 @@ class LazyUnpickler(pickle.Unpickler):
|
||||
def rebuild_from_type_v2(func, new_type, args, state):
|
||||
return func(*args)
|
||||
|
||||
CLASSES: dict[tuple[str, str], Any] = {
|
||||
CLASSES = {
|
||||
# getattr used here as a workaround for mypy not being smart enough to determine
|
||||
# the staticmethods have a __func__ attribute.
|
||||
('torch._tensor', '_rebuild_from_type_v2'): getattr(rebuild_from_type_v2, '__func__'),
|
||||
@@ -890,7 +957,7 @@ def lazy_load_safetensors_file(fp: IO[bytes], path: Path) -> ModelPlus:
|
||||
def must_read(fp: IO[bytes], length: int) -> bytes:
|
||||
ret = fp.read(length)
|
||||
if len(ret) < length:
|
||||
raise Exception("unexpectedly reached end of file")
|
||||
raise EOFError("unexpectedly reached end of file")
|
||||
return ret
|
||||
|
||||
|
||||
@@ -948,13 +1015,14 @@ def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], conc
|
||||
yield result
|
||||
|
||||
|
||||
def check_vocab_size(params: Params, vocab: Vocab, pad_vocab: bool = False) -> None:
|
||||
def check_vocab_size(params: Params, vocab: BaseVocab, pad_vocab: bool = False) -> None:
|
||||
# Handle special case where the model's vocab size is not set
|
||||
if params.n_vocab == -1:
|
||||
raise ValueError(
|
||||
f"The model's vocab size is set to -1 in params.json. Please update it manually.{f' Maybe {vocab.vocab_size}?' if hasattr(vocab, 'vocab_size') else ''}"
|
||||
"The model's vocab size is set to -1 in params.json. Please update it manually."
|
||||
+ (f" Maybe {vocab.vocab_size}?" if isinstance(vocab, Vocab) else ""),
|
||||
)
|
||||
if isinstance(vocab, NoVocab):
|
||||
if not isinstance(vocab, Vocab):
|
||||
return # model has no vocab
|
||||
|
||||
# Check for a vocab size mismatch
|
||||
@@ -979,11 +1047,11 @@ def check_vocab_size(params: Params, vocab: Vocab, pad_vocab: bool = False) -> N
|
||||
if vocab.vocab_size < params.n_vocab:
|
||||
msg += " Add the --pad-vocab option and try again."
|
||||
|
||||
raise Exception(msg)
|
||||
raise ValueError(msg)
|
||||
|
||||
|
||||
class OutputFile:
|
||||
def __init__(self, fname_out: Path, endianess:gguf.GGUFEndian = gguf.GGUFEndian.LITTLE) -> None:
|
||||
def __init__(self, fname_out: Path, endianess:gguf.GGUFEndian = gguf.GGUFEndian.LITTLE):
|
||||
self.gguf = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess)
|
||||
|
||||
def add_meta_arch(self, params: Params) -> None:
|
||||
@@ -1034,8 +1102,6 @@ class OutputFile:
|
||||
self.gguf.add_file_type(params.ftype)
|
||||
|
||||
def extract_vocabulary_from_model(self, vocab: Vocab) -> tuple[list[bytes], list[float], list[gguf.TokenType]]:
|
||||
assert not isinstance(vocab, NoVocab)
|
||||
|
||||
tokens = []
|
||||
scores = []
|
||||
toktypes = []
|
||||
@@ -1135,7 +1201,7 @@ class OutputFile:
|
||||
|
||||
@staticmethod
|
||||
def write_all(
|
||||
fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: Vocab, svocab: gguf.SpecialVocab,
|
||||
fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: BaseVocab, svocab: gguf.SpecialVocab,
|
||||
concurrency: int = DEFAULT_CONCURRENCY, endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE,
|
||||
pad_vocab: bool = False,
|
||||
) -> None:
|
||||
@@ -1145,11 +1211,11 @@ class OutputFile:
|
||||
|
||||
# meta data
|
||||
of.add_meta_arch(params)
|
||||
if isinstance(vocab, NoVocab):
|
||||
of.gguf.add_tokenizer_model(vocab.tokenizer_model)
|
||||
else:
|
||||
if isinstance(vocab, Vocab):
|
||||
of.add_meta_vocab(vocab)
|
||||
of.add_meta_special_vocab(svocab)
|
||||
else: # NoVocab
|
||||
of.gguf.add_tokenizer_model(vocab.tokenizer_model)
|
||||
|
||||
# tensor info
|
||||
for name, lazy_tensor in model.items():
|
||||
@@ -1176,7 +1242,7 @@ def pick_output_type(model: LazyModel, output_type_str: str | None) -> GGMLFileT
|
||||
|
||||
name_to_type = {name: lazy_tensor.data_type for (name, lazy_tensor) in model.items()}
|
||||
|
||||
raise Exception(f"Unexpected combination of types: {name_to_type}")
|
||||
raise ValueError(f"Unexpected combination of types: {name_to_type}")
|
||||
|
||||
|
||||
def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyModel:
|
||||
@@ -1186,10 +1252,26 @@ def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyM
|
||||
|
||||
def convert_model_names(model: LazyModel, params: Params, skip_unknown: bool) -> LazyModel:
|
||||
tmap = gguf.TensorNameMap(ARCH, params.n_layer)
|
||||
should_skip: set[gguf.MODEL_TENSOR] = set(gguf.MODEL_TENSOR_SKIP.get(ARCH, []))
|
||||
should_skip = set(gguf.MODEL_TENSOR_SKIP.get(ARCH, []))
|
||||
|
||||
tmp = model
|
||||
|
||||
# merge experts into one tensor
|
||||
if params.n_experts and params.n_experts > 0:
|
||||
for i_l in range(params.n_layer):
|
||||
for w in range(1, 4):
|
||||
experts = []
|
||||
for e in range(params.n_experts):
|
||||
if f"layers.{i_l}.feed_forward.experts.{e}.w{w}.weight" in model:
|
||||
experts.append(model[f"layers.{i_l}.feed_forward.experts.{e}.w{w}.weight"])
|
||||
del tmp[f"layers.{i_l}.feed_forward.experts.{e}.w{w}.weight"]
|
||||
elif f"model.layers.{i_l}.block_sparse_moe.experts.{e}.w{w}.weight" in model:
|
||||
experts.append(model[f"model.layers.{i_l}.block_sparse_moe.experts.{e}.w{w}.weight"])
|
||||
del tmp[f"model.layers.{i_l}.block_sparse_moe.experts.{e}.w{w}.weight"]
|
||||
else:
|
||||
raise ValueError(f"Expert tensor not found: layers.{i_l}.feed_forward.experts.{e}.w{w}.weight")
|
||||
tmp[f"layers.{i_l}.feed_forward.experts.w{w}.weight"] = pack_experts_lazy(experts)
|
||||
|
||||
# HF models permut or pack some of the tensors, so we need to undo that
|
||||
for i in itertools.count():
|
||||
if f"model.layers.{i}.self_attn.q_proj.weight" in model:
|
||||
@@ -1213,8 +1295,7 @@ def convert_model_names(model: LazyModel, params: Params, skip_unknown: bool) ->
|
||||
if skip_unknown:
|
||||
print(f"Unexpected tensor name: {name} - skipping")
|
||||
continue
|
||||
else:
|
||||
raise Exception(f"Unexpected tensor name: {name}. Use --skip-unknown to ignore it (e.g. LLaVA)")
|
||||
raise ValueError(f"Unexpected tensor name: {name}. Use --skip-unknown to ignore it (e.g. LLaVA)")
|
||||
|
||||
if tensor_type in should_skip:
|
||||
print(f"skipping tensor {name_new}")
|
||||
@@ -1231,7 +1312,7 @@ def nth_multifile_path(path: Path, n: int) -> Path | None:
|
||||
the nth path in the model.
|
||||
'''
|
||||
# Support the following patterns:
|
||||
patterns: list[tuple[str, str]] = [
|
||||
patterns = [
|
||||
# - x.00.pth, x.01.pth, etc.
|
||||
(r'\.[0-9]{2}\.pth$', f'.{n:02}.pth'),
|
||||
# - x-00001-of-00002.bin, x-00002-of-00002.bin, etc.
|
||||
@@ -1277,9 +1358,9 @@ def load_some_model(path: Path) -> ModelPlus:
|
||||
globs = ["consolidated.00.pth", "pytorch_model-00001-of-*.bin", "*.pt", "pytorch_model.bin"]
|
||||
files = [file for glob in globs for file in path.glob(glob)]
|
||||
if not files:
|
||||
raise Exception(f"Can't find model in directory {path}")
|
||||
raise FileNotFoundError(f"Can't find model in directory {path}")
|
||||
if len(files) > 1:
|
||||
raise Exception(f"Found multiple models in {path}, not sure which to pick: {files}")
|
||||
raise ValueError(f"Found multiple models in {path}, not sure which to pick: {files}")
|
||||
path = files[0]
|
||||
|
||||
paths = find_multifile_paths(path)
|
||||
@@ -1293,36 +1374,14 @@ def load_some_model(path: Path) -> ModelPlus:
|
||||
|
||||
|
||||
class VocabFactory:
|
||||
_FILES = {"spm": "tokenizer.model", "bpe": "vocab.json", "hfft": "tokenizer.json"}
|
||||
_VOCAB_CLASSES: list[type[Vocab]] = [SentencePieceVocab, BpeVocab, LlamaHfVocab]
|
||||
|
||||
def __init__(self, path: Path):
|
||||
self.path = path
|
||||
self.file_paths = self._detect_files()
|
||||
print(f"Found vocab files: {self.file_paths}")
|
||||
|
||||
def _detect_files(self) -> dict[str, Path | None]:
|
||||
def locate(file: str) -> Path | None:
|
||||
if (path := self.path / file).exists():
|
||||
return path
|
||||
if (path := self.path.parent / file).exists():
|
||||
return path
|
||||
return None
|
||||
|
||||
return {vt: locate(f) for vt, f in self._FILES.items()}
|
||||
|
||||
def _select_file(self, vocab_types: list[str]) -> tuple[str, Path]:
|
||||
for vtype in vocab_types:
|
||||
try:
|
||||
path = self.file_paths[vtype]
|
||||
except KeyError:
|
||||
raise ValueError(f"Unsupported vocabulary type {vtype}") from None
|
||||
if path is not None:
|
||||
return vtype, path
|
||||
raise FileNotFoundError(f"Could not find any of {[self._FILES[vt] for vt in vocab_types]}")
|
||||
|
||||
def _create_special_vocab(self, vocab: Vocab, model_parent_path: Path) -> gguf.SpecialVocab:
|
||||
def _create_special_vocab(self, vocab: BaseVocab, model_parent_path: Path) -> gguf.SpecialVocab:
|
||||
load_merges = vocab.name == "bpe"
|
||||
n_vocab = vocab.vocab_size if hasattr(vocab, "vocab_size") else None
|
||||
n_vocab = vocab.vocab_size if isinstance(vocab, Vocab) else None
|
||||
return gguf.SpecialVocab(
|
||||
model_parent_path,
|
||||
load_merges=load_merges,
|
||||
@@ -1331,27 +1390,29 @@ class VocabFactory:
|
||||
)
|
||||
|
||||
def _create_vocab_by_path(self, vocab_types: list[str]) -> Vocab:
|
||||
vocab_type, path = self._select_file(vocab_types)
|
||||
print(f"Loading vocab file {path!r}, type {vocab_type!r}")
|
||||
vocab_classes: dict[str, type[Vocab]] = {cls.name: cls for cls in self._VOCAB_CLASSES}
|
||||
selected_vocabs: dict[str, type[Vocab]] = {}
|
||||
for vtype in vocab_types:
|
||||
try:
|
||||
selected_vocabs[vtype] = vocab_classes[vtype]
|
||||
except KeyError:
|
||||
raise ValueError(f"Unsupported vocabulary type {vtype}") from None
|
||||
|
||||
added_tokens_path = path.parent / "added_tokens.json"
|
||||
if vocab_type == "bpe":
|
||||
return BpeVocab(
|
||||
path, added_tokens_path if added_tokens_path.exists() else None
|
||||
)
|
||||
if vocab_type == "spm":
|
||||
return SentencePieceVocab(
|
||||
path, added_tokens_path if added_tokens_path.exists() else None
|
||||
)
|
||||
if vocab_type == "hfft":
|
||||
return HfVocab(
|
||||
path.parent, added_tokens_path if added_tokens_path.exists() else None
|
||||
)
|
||||
raise ValueError(vocab_type)
|
||||
for vtype, cls in selected_vocabs.items():
|
||||
try:
|
||||
vocab = cls(self.path)
|
||||
break
|
||||
except FileNotFoundError:
|
||||
pass # ignore unavailable tokenizers
|
||||
else:
|
||||
raise FileNotFoundError(f"Could not find a tokenizer matching any of {vocab_types}")
|
||||
|
||||
def load_vocab(self, vocab_types: list[str], model_parent_path: Path) -> tuple[Vocab, gguf.SpecialVocab]:
|
||||
vocab: Vocab
|
||||
if len(vocab_types) == 1 and "no_vocab" in vocab_types:
|
||||
print(f"Loaded vocab file {vocab.fname_tokenizer!r}, type {vocab.name!r}")
|
||||
return vocab
|
||||
|
||||
def load_vocab(self, vocab_types: list[str] | None, model_parent_path: Path) -> tuple[BaseVocab, gguf.SpecialVocab]:
|
||||
vocab: BaseVocab
|
||||
if vocab_types is None:
|
||||
vocab = NoVocab()
|
||||
else:
|
||||
vocab = self._create_vocab_by_path(vocab_types)
|
||||
@@ -1408,10 +1469,8 @@ def main(args_in: list[str] | None = None) -> None:
|
||||
parser.add_argument("--skip-unknown", action="store_true", help="skip unknown tensor names instead of failing")
|
||||
|
||||
args = parser.parse_args(args_in)
|
||||
if args.no_vocab:
|
||||
if args.vocab_only:
|
||||
raise ValueError("no need to specify --vocab-only if using --no-vocab")
|
||||
args.vocab_type = "no_vocab"
|
||||
if args.no_vocab and args.vocab_only:
|
||||
raise ValueError("--vocab-only does not make sense with --no-vocab")
|
||||
|
||||
if args.dump_single:
|
||||
model_plus = lazy_load_file(args.model)
|
||||
@@ -1433,10 +1492,12 @@ def main(args_in: list[str] | None = None) -> None:
|
||||
params = Params.load(model_plus)
|
||||
if params.n_ctx == -1:
|
||||
if args.ctx is None:
|
||||
raise Exception("The model doesn't have a context size, and you didn't specify one with --ctx\n"
|
||||
"Please specify one with --ctx:\n"
|
||||
" - LLaMA v1: --ctx 2048\n"
|
||||
" - LLaMA v2: --ctx 4096\n")
|
||||
msg = """\
|
||||
The model doesn't have a context size, and you didn't specify one with --ctx
|
||||
Please specify one with --ctx:
|
||||
- LLaMA v1: --ctx 2048
|
||||
- LLaMA v2: --ctx 4096"""
|
||||
parser.error(textwrap.dedent(msg))
|
||||
params.n_ctx = args.ctx
|
||||
|
||||
if args.outtype:
|
||||
@@ -1451,9 +1512,11 @@ def main(args_in: list[str] | None = None) -> None:
|
||||
model_parent_path = model_plus.paths[0].parent
|
||||
vocab_path = Path(args.vocab_dir or args.model or model_parent_path)
|
||||
vocab_factory = VocabFactory(vocab_path)
|
||||
vocab, special_vocab = vocab_factory.load_vocab(args.vocab_type.split(","), model_parent_path)
|
||||
vocab_types = None if args.no_vocab else args.vocab_type.split(",")
|
||||
vocab, special_vocab = vocab_factory.load_vocab(vocab_types, model_parent_path)
|
||||
|
||||
if args.vocab_only:
|
||||
assert isinstance(vocab, Vocab)
|
||||
if not args.outfile:
|
||||
raise ValueError("need --outfile if using --vocab-only")
|
||||
outfile = args.outfile
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
# Token generation performance troubleshooting
|
||||
|
||||
## Verifying that the model is running on the GPU with cuBLAS
|
||||
Make sure you compiled llama with the correct env variables according to [this guide](../README.md#cublas), so that llama accepts the `-ngl N` (or `--n-gpu-layers N`) flag. When running llama, you may configure `N` to be very large, and llama will offload the maximum possible number of layers to the GPU, even if it's less than the number you configured. For example:
|
||||
## Verifying that the model is running on the GPU with CUDA
|
||||
Make sure you compiled llama with the correct env variables according to [this guide](../README.md#CUDA), so that llama accepts the `-ngl N` (or `--n-gpu-layers N`) flag. When running llama, you may configure `N` to be very large, and llama will offload the maximum possible number of layers to the GPU, even if it's less than the number you configured. For example:
|
||||
```shell
|
||||
./main -m "path/to/model.gguf" -ngl 200000 -p "Please sir, may I have some "
|
||||
```
|
||||
|
||||
@@ -21,6 +21,7 @@ else()
|
||||
add_subdirectory(embedding)
|
||||
add_subdirectory(finetune)
|
||||
add_subdirectory(gritlm)
|
||||
add_subdirectory(gguf-split)
|
||||
add_subdirectory(infill)
|
||||
add_subdirectory(llama-bench)
|
||||
add_subdirectory(llava)
|
||||
@@ -33,6 +34,7 @@ else()
|
||||
add_subdirectory(perplexity)
|
||||
add_subdirectory(quantize)
|
||||
add_subdirectory(quantize-stats)
|
||||
add_subdirectory(retrieval)
|
||||
add_subdirectory(save-load-state)
|
||||
add_subdirectory(simple)
|
||||
add_subdirectory(passkey)
|
||||
|
||||
@@ -10,16 +10,16 @@ There are 2 modes of operation:
|
||||
- `prompt is shared` - there is a common prompt of size `PP` used by all batches (i.e. `N_KV = PP + B*TG`)
|
||||
|
||||
```bash
|
||||
./batched-bench MODEL_PATH [N_KV_MAX] [IS_PP_SHARED] [NGL] [MMQ] <PP> <TG> <PL>
|
||||
./batched-bench MODEL_PATH [N_KV_MAX] [N_BATCH] [N_UBATCH] [IS_PP_SHARED] [NGL] [MMQ] <PP> <TG> <PL>
|
||||
|
||||
# LLaMA 7B, F16, N_KV_MAX = 16384 (8GB), prompt not shared
|
||||
./batched-bench ./models/llama-7b/ggml-model-f16.gguf 16384 0 99
|
||||
./batched-bench ./models/llama-7b/ggml-model-f16.gguf 16384 2048 512 0 99
|
||||
|
||||
# LLaMA 7B, Q8_0, N_KV_MAX = 16384 (8GB), prompt is shared
|
||||
./batched-bench ./models/llama-7b/ggml-model-q8_0.gguf 16384 1 99
|
||||
./batched-bench ./models/llama-7b/ggml-model-q8_0.gguf 16384 2048 512 1 99
|
||||
|
||||
# custom set of batches
|
||||
./batched-bench ./models/llama-7b/ggml-model-q8_0.gguf 2048 0 999 0 128,256,512 128,256 1,2,4,8,16,32
|
||||
./batched-bench ./models/llama-7b/ggml-model-q8_0.gguf 2048 512 512 0 999 0 128,256,512 128,256 1,2,4,8,16,32
|
||||
```
|
||||
|
||||
## Sample results
|
||||
|
||||
@@ -32,13 +32,15 @@ int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
|
||||
if (argc == 1 || argv[1][0] == '-') {
|
||||
printf("usage: %s MODEL_PATH [N_KV_MAX] [IS_PP_SHARED] [NGL] <PP> <TG> <PL>\n" , argv[0]);
|
||||
printf("usage: %s MODEL_PATH [N_KV_MAX] [N_BATCH] [N_UBATCH] [IS_PP_SHARED] [NGL] <PP> <TG> <PL>\n" , argv[0]);
|
||||
printf(" <PP>, <TG> and PL are comma-separated lists of numbers without spaces\n\n");
|
||||
printf(" example: %s ggml-model-f16.gguf 2048 0 999 128,256,512 128,256 1,2,4,8,16,32\n\n", argv[0]);
|
||||
printf(" example: %s ggml-model-f16.gguf 2048 2048 512 0 999 128,256,512 128,256 1,2,4,8,16,32\n\n", argv[0]);
|
||||
return 1 ;
|
||||
}
|
||||
|
||||
int n_kv_max = 2048;
|
||||
int n_batch = 2048;
|
||||
int n_ubatch = 512;
|
||||
int is_pp_shared = 0;
|
||||
int n_gpu_layers = 0;
|
||||
|
||||
@@ -56,23 +58,31 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
if (argc >= 4) {
|
||||
is_pp_shared = std::atoi(argv[3]);
|
||||
n_batch = std::atoi(argv[3]);
|
||||
}
|
||||
|
||||
if (argc >= 5) {
|
||||
n_gpu_layers = std::atoi(argv[4]);
|
||||
n_ubatch = std::atoi(argv[4]);
|
||||
}
|
||||
|
||||
if (argc >= 6) {
|
||||
n_pp = parse_list(argv[5]);
|
||||
is_pp_shared = std::atoi(argv[5]);
|
||||
}
|
||||
|
||||
if (argc >= 7) {
|
||||
n_tg = parse_list(argv[6]);
|
||||
n_gpu_layers = std::atoi(argv[6]);
|
||||
}
|
||||
|
||||
if (argc >= 8) {
|
||||
n_pl = parse_list(argv[7]);
|
||||
n_pp = parse_list(argv[7]);
|
||||
}
|
||||
|
||||
if (argc >= 9) {
|
||||
n_tg = parse_list(argv[8]);
|
||||
}
|
||||
|
||||
if (argc >= 10) {
|
||||
n_pl = parse_list(argv[9]);
|
||||
}
|
||||
|
||||
// init LLM
|
||||
@@ -100,7 +110,8 @@ int main(int argc, char ** argv) {
|
||||
|
||||
ctx_params.seed = 1234;
|
||||
ctx_params.n_ctx = n_kv_max;
|
||||
ctx_params.n_batch = 512;
|
||||
ctx_params.n_batch = n_batch;
|
||||
ctx_params.n_ubatch = n_ubatch;
|
||||
|
||||
ctx_params.n_threads = params.n_threads;
|
||||
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
|
||||
@@ -158,7 +169,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("%s: n_kv_max = %d, is_pp_shared = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, is_pp_shared, n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch);
|
||||
LOG_TEE("%s: n_kv_max = %d, n_batch = %d, n_ubatch = %d, is_pp_shared = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, n_batch, n_ubatch, is_pp_shared, n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch);
|
||||
LOG_TEE("\n");
|
||||
|
||||
LOG_TEE("|%6s | %6s | %4s | %6s | %8s | %8s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "B", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s", "T s", "S t/s");
|
||||
|
||||
@@ -48,6 +48,8 @@ int main(int argc, char ** argv) {
|
||||
params.prompt = "Hello my name is";
|
||||
}
|
||||
|
||||
process_escapes(params.prompt);
|
||||
|
||||
// init LLM
|
||||
|
||||
llama_backend_init();
|
||||
@@ -78,7 +80,7 @@ int main(int argc, char ** argv) {
|
||||
llama_context_params ctx_params = llama_context_default_params();
|
||||
|
||||
ctx_params.seed = 1234;
|
||||
ctx_params.n_ctx = n_kv_req;
|
||||
ctx_params.n_ctx = n_kv_req;
|
||||
ctx_params.n_batch = std::max(n_len, n_parallel);
|
||||
ctx_params.n_seq_max = n_parallel;
|
||||
ctx_params.n_threads = params.n_threads;
|
||||
|
||||
@@ -21,6 +21,8 @@ An example command using a model from [karpathy/tinyllamas](https://huggingface.
|
||||
|
||||
`$ ./convert-llama2c-to-ggml --copy-vocab-from-model llama-2-7b-chat.gguf.q2_K.bin --llama2c-model stories42M.bin --llama2c-output-model stories42M.gguf.bin`
|
||||
|
||||
Note: The vocabulary for `stories260K.bin` should be its own tokenizer `tok512.bin` found in [karpathy/tinyllamas/stories260K](https://huggingface.co/karpathy/tinyllamas/tree/main/stories260K).
|
||||
|
||||
Now you can use the model with a command like:
|
||||
|
||||
`$ ./main -m stories42M.gguf.bin -p "One day, Lily met a Shoggoth" -n 500 -c 256`
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
#include "ggml.h"
|
||||
#include "llama.h"
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
@@ -78,111 +79,101 @@ typedef struct {
|
||||
|
||||
struct TransformerWeights {
|
||||
// token embedding table
|
||||
float* token_embedding_table; // (vocab_size, dim)
|
||||
std::vector<float> token_embedding_table; // (vocab_size, dim)
|
||||
// weights for rmsnorms
|
||||
float* rms_att_weight; // (layer, dim) rmsnorm weights
|
||||
float* rms_ffn_weight; // (layer, dim)
|
||||
std::vector<float> rms_att_weight; // (layer, dim) rmsnorm weights
|
||||
std::vector<float> rms_ffn_weight; // (layer, dim)
|
||||
// weights for matmuls
|
||||
float* wq; // (layer, dim, dim)
|
||||
float* wk; // (layer, dim, dim)
|
||||
float* wv; // (layer, dim, dim)
|
||||
float* wo; // (layer, dim, dim)
|
||||
std::vector<float> wq; // (layer, dim, dim)
|
||||
std::vector<float> wk; // (layer, dim, dim)
|
||||
std::vector<float> wv; // (layer, dim, dim)
|
||||
std::vector<float> wo; // (layer, dim, dim)
|
||||
// weights for ffn
|
||||
float* w1; // (layer, hidden_dim, dim)
|
||||
float* w2; // (layer, dim, hidden_dim)
|
||||
float* w3; // (layer, hidden_dim, dim)
|
||||
std::vector<float> w1; // (layer, hidden_dim, dim)
|
||||
std::vector<float> w2; // (layer, dim, hidden_dim)
|
||||
std::vector<float> w3; // (layer, hidden_dim, dim)
|
||||
// final rmsnorm
|
||||
float* rms_final_weight; // (dim,)
|
||||
std::vector<float> rms_final_weight; // (dim,)
|
||||
// freq_cis for RoPE relatively positional embeddings
|
||||
// float* freq_cis_real; // (seq_len, dim/2)
|
||||
// float* freq_cis_imag; // (seq_len, dim/2)
|
||||
// std::vector<float> freq_cis_real; // (seq_len, dim/2)
|
||||
// std::vector<float> freq_cis_imag; // (seq_len, dim/2)
|
||||
// (optional) classifier weights for the logits, on the last layer
|
||||
float* wcls;
|
||||
|
||||
~TransformerWeights() {
|
||||
delete[] token_embedding_table;
|
||||
delete[] rms_att_weight;
|
||||
delete[] rms_ffn_weight;
|
||||
delete[] wq;
|
||||
delete[] wk;
|
||||
delete[] wv;
|
||||
delete[] wo;
|
||||
delete[] w1;
|
||||
delete[] w2;
|
||||
delete[] w3;
|
||||
delete[] rms_final_weight;
|
||||
delete[] wcls;
|
||||
}
|
||||
std::vector<float> wcls;
|
||||
};
|
||||
|
||||
static void malloc_weights(TransformerWeights* w, Config* p, bool shared_weights) {
|
||||
// we calloc instead of malloc to keep valgrind happy
|
||||
w->token_embedding_table = new float[p->vocab_size * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->token_embedding_table\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
|
||||
static void alloc_weights(TransformerWeights * w, const Config * p, bool shared_weights) {
|
||||
const int n_multiqueries = p->n_kv_heads <= 0 || p->n_kv_heads >= p->n_heads ? 1 : p->n_heads / p->n_kv_heads;
|
||||
try {
|
||||
w->token_embedding_table.resize(p->vocab_size * p->dim);
|
||||
LOG("%s: Allocating [%d] x [%d] = [%d] float space for w->token_embedding_table\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
|
||||
|
||||
w->rms_att_weight = new float[p->n_layers * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->rms_att_weight\n",__func__,p->n_layers, p->dim, p->n_layers * p->dim);
|
||||
w->rms_att_weight.resize(p->n_layers * p->dim);
|
||||
LOG("%s: Allocating [%d] x [%d] = [%d] float space for w->rms_att_weight\n",__func__,p->n_layers, p->dim, p->n_layers * p->dim);
|
||||
|
||||
w->rms_ffn_weight = new float[p->n_layers * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->rms_ffn_weight\n",__func__,p->n_layers , p->dim, p->n_layers * p->dim);
|
||||
w->rms_ffn_weight.resize(p->n_layers * p->dim);
|
||||
LOG("%s: Allocating [%d] x [%d] = [%d] float space for w->rms_ffn_weight\n",__func__,p->n_layers , p->dim, p->n_layers * p->dim);
|
||||
|
||||
w->wq = new float[p->n_layers * p->dim * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wq\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
||||
w->wq.resize(p->n_layers * p->dim * p->dim);
|
||||
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wq\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
||||
|
||||
w->wk = new float[p->n_layers * p->dim * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wk\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
||||
w->wk.resize(p->n_layers * p->dim * p->dim / n_multiqueries);
|
||||
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wk\n",__func__,p->n_layers, p->dim, p->dim / n_multiqueries, p->n_layers * p->dim * p->dim / n_multiqueries);
|
||||
|
||||
w->wv = new float[p->n_layers * p->dim * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wv\n",__func__, p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
||||
w->wv.resize(p->n_layers * p->dim * p->dim / n_multiqueries);
|
||||
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wv\n",__func__, p->n_layers, p->dim, p->dim / n_multiqueries, p->n_layers * p->dim * p->dim / n_multiqueries);
|
||||
|
||||
w->wo = new float[p->n_layers * p->dim * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wo\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
||||
w->wo.resize(p->n_layers * p->dim * p->dim);
|
||||
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wo\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
||||
|
||||
w->w1 = new float[p->n_layers * p->hidden_dim * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w1\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
|
||||
w->w1.resize(p->n_layers * p->hidden_dim * p->dim);
|
||||
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w1\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
|
||||
|
||||
w->w2 = new float[p->n_layers * p->hidden_dim * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w2\n",__func__,p->n_layers, p->dim, p->hidden_dim, p->n_layers * p->hidden_dim * p->dim);
|
||||
w->w2.resize(p->n_layers * p->hidden_dim * p->dim);
|
||||
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w2\n",__func__,p->n_layers, p->dim, p->hidden_dim, p->n_layers * p->hidden_dim * p->dim);
|
||||
|
||||
w->w3 = new float[p->n_layers * p->hidden_dim * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w3\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
|
||||
w->w3.resize(p->n_layers * p->hidden_dim * p->dim);
|
||||
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w3\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
|
||||
|
||||
w->rms_final_weight = new float[p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] float space for w->rms_final_weight\n",__func__,p->dim);
|
||||
w->rms_final_weight.resize(p->dim);
|
||||
LOG("%s: Allocating [%d] float space for w->rms_final_weight\n",__func__,p->dim);
|
||||
|
||||
if (shared_weights) {
|
||||
w->wcls = NULL;
|
||||
} else {
|
||||
w->wcls = new float[p->vocab_size * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->wcls\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
|
||||
if (shared_weights) {
|
||||
w->wcls = {};
|
||||
} else {
|
||||
w->wcls.resize(p->vocab_size * p->dim);
|
||||
LOG("%s: Allocating [%d] x [%d] = [%d] float space for w->wcls\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
|
||||
}
|
||||
}
|
||||
catch (std::length_error &) {
|
||||
die("Invalid configuration. Failed to allocate memory for weights");
|
||||
}
|
||||
}
|
||||
|
||||
static int checkpoint_init_weights(TransformerWeights *w, Config* p, FILE* f, bool shared_weights) {
|
||||
if (fread(w->token_embedding_table, sizeof(float), p->vocab_size * p->dim, f) != static_cast<size_t>(p->vocab_size * p->dim)) return 1;
|
||||
if (fread(w->rms_att_weight, sizeof(float), p->n_layers * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim)) return 1;
|
||||
if (fread(w->wq, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
|
||||
if (fread(w->wk, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
|
||||
if (fread(w->wv, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
|
||||
if (fread(w->wo, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
|
||||
if (fread(w->rms_ffn_weight, sizeof(float), p->n_layers * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim)) return 1;
|
||||
if (fread(w->w1, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->hidden_dim)) return 1;
|
||||
if (fread(w->w2, sizeof(float), p->n_layers * p->hidden_dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->hidden_dim * p->dim)) return 1;
|
||||
if (fread(w->w3, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->hidden_dim)) return 1;
|
||||
if (fread(w->rms_final_weight, sizeof(float), p->dim, f) != static_cast<size_t>(p->dim)) return 1;
|
||||
static int checkpoint_init_weights(TransformerWeights * w, const Config * p, FILE * f, bool shared_weights) {
|
||||
if (fread(w->token_embedding_table.data(), sizeof(float), w->token_embedding_table.size(), f) != w->token_embedding_table.size()) return 1;
|
||||
if (fread(w->rms_att_weight.data(), sizeof(float), w->rms_att_weight.size(), f) != w->rms_att_weight.size()) return 1;
|
||||
if (fread(w->wq.data(), sizeof(float), w->wq.size(), f) != w->wq.size()) return 1;
|
||||
if (fread(w->wk.data(), sizeof(float), w->wk.size(), f) != w->wk.size()) return 1;
|
||||
if (fread(w->wv.data(), sizeof(float), w->wv.size(), f) != w->wv.size()) return 1;
|
||||
if (fread(w->wo.data(), sizeof(float), w->wo.size(), f) != w->wo.size()) return 1;
|
||||
if (fread(w->rms_ffn_weight.data(), sizeof(float), w->rms_ffn_weight.size(), f) != w->rms_ffn_weight.size()) return 1;
|
||||
if (fread(w->w1.data(), sizeof(float), w->w1.size(), f) != w->w1.size()) return 1;
|
||||
if (fread(w->w2.data(), sizeof(float), w->w2.size(), f) != w->w2.size()) return 1;
|
||||
if (fread(w->w3.data(), sizeof(float), w->w3.size(), f) != w->w3.size()) return 1;
|
||||
if (fread(w->rms_final_weight.data(), sizeof(float), w->rms_final_weight.size(), f) != w->rms_final_weight.size()) return 1;
|
||||
|
||||
// Skip freq_cis_real & freq_cis_imag
|
||||
int head_size = p->dim / p->n_heads;
|
||||
fseek(f, p->seq_len * head_size * sizeof(float), SEEK_CUR);
|
||||
|
||||
if (!shared_weights && fread(w->wcls, sizeof(float), p->vocab_size * p->dim, f) != static_cast<size_t>(p->vocab_size * p->dim)) return 1;
|
||||
if (!shared_weights && fread(w->wcls.data(), sizeof(float), w->wcls.size(), f) != w->wcls.size()) return 1;
|
||||
|
||||
// Check we didn't forget to read anything
|
||||
auto curr = ftell(f);
|
||||
fseek(f, 0, SEEK_END);
|
||||
auto end = ftell(f);
|
||||
if (curr != end) {
|
||||
printf("Error: failed to read the checkpoint file to the end (curr = %ld, end = %ld)\n", curr, end);
|
||||
LOG("%s: Error: failed to read the checkpoint file to the end (curr = %ld, end = %ld)\n", __func__, curr, end);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@@ -190,20 +181,20 @@ static int checkpoint_init_weights(TransformerWeights *w, Config* p, FILE* f, bo
|
||||
}
|
||||
|
||||
static void print_sample_weights(TransformerWeights *w){
|
||||
printf("----- Quick print of first of the weight vales of all the variables\n");
|
||||
printf("%f\n", w->token_embedding_table[0]);
|
||||
printf("%f\n", w->rms_att_weight[0]);
|
||||
printf("%f\n", w->rms_ffn_weight[0]);
|
||||
LOG("----- Quick print of first of the weight vales of all the variables\n");
|
||||
LOG("%f\n", w->token_embedding_table[0]);
|
||||
LOG("%f\n", w->rms_att_weight[0]);
|
||||
LOG("%f\n", w->rms_ffn_weight[0]);
|
||||
|
||||
printf("%f\n", w->wq[0]);
|
||||
printf("%f\n", w->wk[0]);
|
||||
printf("%f\n", w->wv[0]);
|
||||
printf("%f\n", w->wo[0]);
|
||||
printf("%f\n", w->w1[0]);
|
||||
printf("%f\n", w->w2[0]);
|
||||
printf("%f\n", w->w3[0]);
|
||||
printf("%f\n", w->rms_att_weight[0]);
|
||||
if (w->wcls) printf("%f\n", w->wcls[0]);
|
||||
LOG("%f\n", w->wq[0]);
|
||||
LOG("%f\n", w->wk[0]);
|
||||
LOG("%f\n", w->wv[0]);
|
||||
LOG("%f\n", w->wo[0]);
|
||||
LOG("%f\n", w->w1[0]);
|
||||
LOG("%f\n", w->w2[0]);
|
||||
LOG("%f\n", w->w3[0]);
|
||||
LOG("%f\n", w->rms_att_weight[0]);
|
||||
if (!w->wcls.empty()) LOG("%f\n", w->wcls[0]);
|
||||
}
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
@@ -225,14 +216,16 @@ struct llama_vocab {
|
||||
};
|
||||
|
||||
struct my_llama_hparams {
|
||||
uint32_t n_vocab = 32000;
|
||||
uint32_t n_ctx = 512; // this is provided as user input?
|
||||
uint32_t n_embd = 4096;
|
||||
uint32_t n_ff = 11008;
|
||||
uint32_t n_mult = 4;
|
||||
uint32_t n_head = 32;
|
||||
uint32_t n_layer = 32;
|
||||
uint32_t n_rot = 64;
|
||||
uint32_t n_vocab = 32000;
|
||||
uint32_t n_ctx = 512; // this is provided as user input?
|
||||
uint32_t n_embd = 4096;
|
||||
uint32_t n_ff = 11008;
|
||||
uint32_t n_mult = 4;
|
||||
uint32_t n_head = 32;
|
||||
uint32_t n_head_kv = 32;
|
||||
uint32_t n_layer = 32;
|
||||
uint32_t n_rot = 64;
|
||||
|
||||
bool operator!=(const my_llama_hparams& other) const {
|
||||
return memcmp(this, &other, sizeof(my_llama_hparams));
|
||||
}
|
||||
@@ -325,14 +318,30 @@ struct train_params {
|
||||
};
|
||||
|
||||
static void print_params(struct my_llama_hparams * params) {
|
||||
printf("%s: n_vocab: %u\n", __func__, params->n_vocab);
|
||||
printf("%s: n_ctx: %u\n", __func__, params->n_ctx);
|
||||
printf("%s: n_embd: %u\n", __func__, params->n_embd);
|
||||
printf("%s: n_mult: %u\n", __func__, params->n_mult);
|
||||
printf("%s: n_head: %u\n", __func__, params->n_head);
|
||||
printf("%s: n_ff: %u\n", __func__, params->n_ff);
|
||||
printf("%s: n_layer: %u\n", __func__, params->n_layer);
|
||||
printf("%s: n_rot: %u\n", __func__, params->n_rot);
|
||||
LOG("%s: n_vocab: %u\n", __func__, params->n_vocab);
|
||||
LOG("%s: n_ctx: %u\n", __func__, params->n_ctx);
|
||||
LOG("%s: n_embd: %u\n", __func__, params->n_embd);
|
||||
LOG("%s: n_mult: %u\n", __func__, params->n_mult);
|
||||
LOG("%s: n_head: %u\n", __func__, params->n_head);
|
||||
LOG("%s: n_head_kv: %u\n", __func__, params->n_head_kv);
|
||||
LOG("%s: n_ff: %u\n", __func__, params->n_ff);
|
||||
LOG("%s: n_layer: %u\n", __func__, params->n_layer);
|
||||
LOG("%s: n_rot: %u\n", __func__, params->n_rot);
|
||||
}
|
||||
|
||||
static void print_tensor_info(const struct ggml_context * ctx) {
|
||||
for (auto t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||
LOG("%s: Allocating ", __func__);
|
||||
int64_t total = 1;
|
||||
int i = 0;
|
||||
for (; i < ggml_n_dims(t); ++i) {
|
||||
if (i > 0) LOG("x ");
|
||||
LOG("[%" PRId64 "] ", t->ne[i]);
|
||||
total *= t->ne[i];
|
||||
}
|
||||
if (i > 1) LOG("= [%" PRId64 "] ", total);
|
||||
LOG("float space for %s\n", ggml_get_name(t));
|
||||
}
|
||||
}
|
||||
|
||||
static void init_model(struct my_llama_model * model) {
|
||||
@@ -342,6 +351,8 @@ static void init_model(struct my_llama_model * model) {
|
||||
const uint32_t n_layer = hparams.n_layer;
|
||||
const uint32_t n_vocab = hparams.n_vocab;
|
||||
|
||||
const uint32_t n_multiqueries = hparams.n_head_kv <= 0 || hparams.n_head_kv >= hparams.n_head ? 1 : hparams.n_head / hparams.n_head_kv;
|
||||
|
||||
const uint32_t n_ff = hparams.n_ff;
|
||||
struct ggml_context * ctx = model->ctx;
|
||||
|
||||
@@ -350,25 +361,8 @@ static void init_model(struct my_llama_model * model) {
|
||||
model->train_tokens = 0;
|
||||
|
||||
model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
|
||||
printf("[%s:GG] Allocating [%u] x [%u] = [%u] float space for model->tok_embeddings\n",__func__,n_embd , n_vocab, n_embd * n_vocab);
|
||||
|
||||
model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
printf("[%s:GG] Allocating [%u] float space for model->norm\n",__func__,n_embd);
|
||||
|
||||
model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
|
||||
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for model->output\n",__func__,n_embd, n_vocab, n_embd * n_vocab);
|
||||
|
||||
// printing the per-layer allocations here so we dont print in the for loop.
|
||||
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.wq for [%u] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
|
||||
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.wk for [%u] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
|
||||
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.wv for [%u] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
|
||||
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.wo for [%u] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
|
||||
|
||||
printf("[%s:GG] Allocating [%u] float space for layer.ffn_norm for [%u] layers\n",__func__,n_embd, n_layer);
|
||||
|
||||
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.w1 for [%u] layers\n",__func__, n_ff, n_embd, n_embd * n_ff, n_layer);
|
||||
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.w2 for [%u] layers\n",__func__, n_embd, n_ff, n_ff * n_embd, n_layer);
|
||||
printf("[%s:GG] Allocating [%u] x[%u] = [%u] float space for layer.w3 for [%u] layers\n",__func__, n_ff, n_embd, n_embd * n_ff, n_layer);
|
||||
|
||||
ggml_set_name(model->tok_embeddings, "tok_embeddings.weight");
|
||||
ggml_set_name(model->norm, "norm.weight");
|
||||
@@ -383,8 +377,8 @@ static void init_model(struct my_llama_model * model) {
|
||||
layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
||||
layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
||||
layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
||||
layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd / n_multiqueries);
|
||||
layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd / n_multiqueries);
|
||||
layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
||||
|
||||
layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
@@ -406,6 +400,8 @@ static void init_model(struct my_llama_model * model) {
|
||||
ggml_format_name(layer.w2, "%s.feed_forward.w2.weight", layers_i.c_str());
|
||||
ggml_format_name(layer.w3, "%s.feed_forward.w3.weight", layers_i.c_str());
|
||||
}
|
||||
|
||||
print_tensor_info(ctx);
|
||||
}
|
||||
|
||||
static float get_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
|
||||
@@ -421,9 +417,9 @@ static int32_t get_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
|
||||
static void print_row(struct ggml_tensor * probs, int i) {
|
||||
for (int k = 0; k < probs->ne[0]; ++k) {
|
||||
float p = get_f32_2d(probs, k, i);
|
||||
printf(" %f", p);
|
||||
LOG(" %f", p);
|
||||
}
|
||||
printf("\n");
|
||||
LOG("\n");
|
||||
}
|
||||
|
||||
static void print_matrix(struct ggml_tensor * probs) {
|
||||
@@ -431,33 +427,12 @@ static void print_matrix(struct ggml_tensor * probs) {
|
||||
for (int i = 0; i < probs->ne[1]; ++i) {
|
||||
for (int k = 0; k < probs->ne[0]; ++k) {
|
||||
float p = get_f32_2d(probs, k, i);
|
||||
printf(" %.2f", p);
|
||||
LOG(" %.2f", p);
|
||||
}
|
||||
printf("\n");
|
||||
LOG("\n");
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef __GNUC__
|
||||
#ifdef __MINGW32__
|
||||
__attribute__((format(gnu_printf, 1, 2)))
|
||||
#else
|
||||
__attribute__((format(printf, 1, 2)))
|
||||
#endif
|
||||
#endif
|
||||
static std::string format(const char * fmt, ...) {
|
||||
va_list ap, ap2;
|
||||
va_start(ap, fmt);
|
||||
va_copy(ap2, ap);
|
||||
int size = vsnprintf(NULL, 0, fmt, ap);
|
||||
GGML_ASSERT(size >= 0 && size < INT_MAX);
|
||||
std::vector<char> buf(size + 1);
|
||||
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
|
||||
GGML_ASSERT(size2 == size);
|
||||
va_end(ap2);
|
||||
va_end(ap);
|
||||
return std::string(buf.data(), size);
|
||||
}
|
||||
|
||||
struct llama_file {
|
||||
// use FILE * so we don't have to re-open the file to mmap
|
||||
FILE * fp;
|
||||
@@ -549,8 +524,9 @@ static std::string llama_escape_whitespaces(const std::string & text) {
|
||||
return out.str();
|
||||
}
|
||||
|
||||
static void load_vocab(const char *filename, Config *config, struct llama_vocab *vocab) {
|
||||
static void load_vocab(const char * filename, const Config * config, struct llama_vocab * vocab) {
|
||||
if (is_ggml_file(filename)) {
|
||||
LOG("%s: Loading vocabulary from gguf file %s\n", __func__, filename);
|
||||
struct ggml_context * ctx_data = NULL;
|
||||
|
||||
struct gguf_init_params params = {
|
||||
@@ -578,6 +554,9 @@ static void load_vocab(const char *filename, Config *config, struct llama_vocab
|
||||
const int * toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
|
||||
|
||||
const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
|
||||
if (n_vocab != static_cast<uint32_t>(config->vocab_size)) {
|
||||
die_fmt("vocab size mismatch: (gguf) %u != (llama2c) %d", n_vocab, config->vocab_size);
|
||||
}
|
||||
|
||||
vocab->id_to_token.resize(n_vocab);
|
||||
|
||||
@@ -595,7 +574,7 @@ static void load_vocab(const char *filename, Config *config, struct llama_vocab
|
||||
gguf_free(ctx);
|
||||
} else {
|
||||
// assume llama2.c vocabulary
|
||||
printf("Assuming llama2.c vocabulary since %s is not a gguf file\n", filename);
|
||||
LOG("%s: Assuming llama2.c vocabulary since %s is not a gguf file\n", __func__, filename);
|
||||
llama_file file(filename, "rb");
|
||||
if (!file.fp) {
|
||||
die_fmt("%s: %s", strerror(errno), filename);
|
||||
@@ -638,38 +617,15 @@ static void load_vocab(const char *filename, Config *config, struct llama_vocab
|
||||
}
|
||||
|
||||
static void convert_weights_ak_to_gg(struct ggml_tensor * gg_weights, const float * karpathy_weights) {
|
||||
int ct;
|
||||
switch (ggml_n_dims(gg_weights)) {
|
||||
case 1:
|
||||
ct = 0;
|
||||
for (int i0 = 0; i0 < gg_weights->ne[0]; i0++){
|
||||
float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0]);
|
||||
*ptr = karpathy_weights[ct];
|
||||
ct++;
|
||||
}
|
||||
break;
|
||||
case 2:
|
||||
ct = 0;
|
||||
for (int i1 = 0; i1 < gg_weights->ne[1]; i1++) {
|
||||
for (int i0 = 0; i0 < gg_weights->ne[0]; i0++) {
|
||||
float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0] + i1*gg_weights->nb[1]);
|
||||
*ptr = karpathy_weights[ct];
|
||||
ct++;
|
||||
}
|
||||
}
|
||||
break;
|
||||
case 3:
|
||||
ct = 0;
|
||||
for (int i2 = 0; i2 < gg_weights->ne[2]; i2++) {
|
||||
for (int i1 = 0; i1 < gg_weights->ne[1]; i1++) {
|
||||
for (int i0 = 0; i0 < gg_weights->ne[0]; i0++) {
|
||||
float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0] + i1*gg_weights->nb[1] + i2*gg_weights->nb[2]);
|
||||
*ptr = karpathy_weights[ct];
|
||||
ct++;
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
int size = 1;
|
||||
for (int dim = 0; dim < ggml_n_dims(gg_weights); ++dim) {
|
||||
size *= gg_weights->ne[dim];
|
||||
}
|
||||
for (int ct = 0; ct < size; ++ct) {
|
||||
int64_t i0 = 0; int64_t i1 = 0;
|
||||
int64_t i2 = 0; int64_t i3 = 0;
|
||||
ggml_unravel_index(gg_weights, ct, &i0, &i1, &i2, &i3);
|
||||
ggml_set_f32_nd(gg_weights, i0, i1, i2, i3, karpathy_weights[ct]);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -679,16 +635,18 @@ static void save_as_llama_model(
|
||||
// convert AK weights into GG weights one by one.
|
||||
// w->token_embedding_table -> model->tok_embeddings
|
||||
// float* -> struct ggml_tensor
|
||||
convert_weights_ak_to_gg(model->tok_embeddings, w->token_embedding_table);
|
||||
convert_weights_ak_to_gg(model->output, w->wcls ? w->wcls : w->token_embedding_table);
|
||||
convert_weights_ak_to_gg(model->tok_embeddings, w->token_embedding_table.data());
|
||||
convert_weights_ak_to_gg(model->output, !w->wcls.empty() ? w->wcls.data() : w->token_embedding_table.data());
|
||||
|
||||
convert_weights_ak_to_gg(model->norm, w->rms_final_weight);
|
||||
convert_weights_ak_to_gg(model->norm, w->rms_final_weight.data());
|
||||
//print_row(model->norm, 0);
|
||||
|
||||
// for rms-att-weight
|
||||
int row_length = model->hparams.n_embd;
|
||||
int n_ff = model->hparams.n_ff;
|
||||
|
||||
const uint32_t n_multiqueries = model->hparams.n_head_kv <= 0 || model->hparams.n_head_kv >= model->hparams.n_head ? 1 : model->hparams.n_head / model->hparams.n_head_kv;
|
||||
|
||||
for (uint32_t i = 0; i < model->hparams.n_layer; ++i){
|
||||
auto & layer = model->layers[i];
|
||||
// 1d
|
||||
@@ -697,9 +655,10 @@ static void save_as_llama_model(
|
||||
|
||||
// from 3d matrix layer x dim x dim to 2d matrix dim x dim
|
||||
convert_weights_ak_to_gg(layer.wq , &w->wq[i*row_length*row_length]);
|
||||
convert_weights_ak_to_gg(layer.wk , &w->wk[i*row_length*row_length]);
|
||||
convert_weights_ak_to_gg(layer.wv , &w->wv[i*row_length*row_length]);
|
||||
convert_weights_ak_to_gg(layer.wo , &w->wo[i*row_length*row_length]);
|
||||
// from 3d matrix layer x dim x dim to 2d matrix dim x dim / n_multiqueries
|
||||
convert_weights_ak_to_gg(layer.wk , &w->wk[i*row_length*row_length/n_multiqueries]);
|
||||
convert_weights_ak_to_gg(layer.wv , &w->wv[i*row_length*row_length/n_multiqueries]);
|
||||
|
||||
convert_weights_ak_to_gg(layer.w1 , &w->w1[i*row_length*n_ff]);
|
||||
convert_weights_ak_to_gg(layer.w2 , &w->w2[i*n_ff*row_length]);
|
||||
@@ -736,8 +695,8 @@ static void save_as_llama_model(
|
||||
gguf_set_val_u32(ctx, KV_EMBEDDING_LENGTH, model->hparams.n_embd);
|
||||
gguf_set_val_u32(ctx, KV_FEED_FORWARD_LENGTH, model->hparams.n_ff);
|
||||
gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT, model->hparams.n_head);
|
||||
// n_head_kv is optional, default to n_head
|
||||
// gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT_KV, ...);
|
||||
gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT, model->hparams.n_head);
|
||||
gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT_KV, model->hparams.n_head_kv);
|
||||
gguf_set_val_u32(ctx, KV_BLOCK_COUNT, model->hparams.n_layer);
|
||||
gguf_set_val_u32(ctx, KV_ROPE_DIMENSION_COUNT, model->hparams.n_rot);
|
||||
gguf_set_val_f32(ctx, KV_ATTENTION_LAYERNORM_RMS_EPS, 1e-5f);
|
||||
@@ -789,12 +748,12 @@ static void save_as_llama_model(
|
||||
|
||||
static struct train_params get_default_train_params() {
|
||||
struct train_params params;
|
||||
params.fn_vocab_model = "models/7B/ggml-model-f16.gguf";
|
||||
params.fn_vocab_model = "models/7B/ggml-model-f16.gguf";
|
||||
params.fn_llama2c_output_model = "ak_llama_model.bin";
|
||||
params.fn_train_data = "shakespeare.txt";
|
||||
params.fn_checkpoint_in = "checkpoint.bin";
|
||||
params.fn_checkpoint_out = "checkpoint.bin";
|
||||
params.fn_model_out = "ggml-checkpoint-f32.bin";
|
||||
params.fn_train_data = "shakespeare.txt";
|
||||
params.fn_checkpoint_in = "checkpoint.bin";
|
||||
params.fn_checkpoint_out = "checkpoint.bin";
|
||||
params.fn_model_out = "ggml-checkpoint-f32.bin";
|
||||
|
||||
params.seed = -1;
|
||||
|
||||
@@ -829,8 +788,8 @@ static struct train_params get_default_train_params() {
|
||||
params.adam_alpha = 1e-3f;
|
||||
params.adam_decay = 1e-3f;
|
||||
|
||||
params.mem_model_gb = 2;
|
||||
params.mem_compute_gb = 24;
|
||||
params.mem_model_gb = 2;
|
||||
params.mem_compute_gb = 24;
|
||||
params.mem_compute0_gb = 8;
|
||||
params.mem_compute1_gb = 2;
|
||||
|
||||
@@ -916,19 +875,30 @@ int main(int argc, char ** argv) {
|
||||
if (!params_parse(argc, argv, ¶ms)) {
|
||||
return 1;
|
||||
}
|
||||
log_set_target(stdout);
|
||||
Config config;
|
||||
TransformerWeights weights = {};
|
||||
{
|
||||
FILE *file = fopen(params.fn_llama2c_model, "rb");
|
||||
if (!file) { printf("Unable to open the checkpoint file %s!\n", params.fn_llama2c_model); return 1; }
|
||||
LOG("%s: Loading llama2c model from %s\n", __func__, params.fn_llama2c_model);
|
||||
FILE * file = fopen(params.fn_llama2c_model, "rb");
|
||||
if (!file) {
|
||||
LOG("%s: Unable to open the checkpoint file %s!\n", __func__, params.fn_llama2c_model);
|
||||
return 1;
|
||||
}
|
||||
// read in the config header
|
||||
if(fread(&config, sizeof(Config), 1, file) != 1) { return 1; }
|
||||
if (fread(&config, sizeof(Config), 1, file) != 1) {
|
||||
LOG("%s: Unable to read llama2c config from %s!\n",__func__,params.fn_llama2c_model);
|
||||
return 1;
|
||||
}
|
||||
auto shared_weights = config.vocab_size > 0;
|
||||
config.vocab_size = abs(config.vocab_size);
|
||||
|
||||
// read in the Transformer weights
|
||||
malloc_weights(&weights, &config, shared_weights);
|
||||
if(checkpoint_init_weights(&weights, &config, file, shared_weights)) { return 1; }
|
||||
alloc_weights(&weights, &config, shared_weights);
|
||||
if (checkpoint_init_weights(&weights, &config, file, shared_weights)) {
|
||||
LOG("%s: Unable to initialize transformer weights from %s!",__func__,params.fn_llama2c_model);
|
||||
return 1;
|
||||
}
|
||||
fclose(file);
|
||||
}
|
||||
|
||||
@@ -936,15 +906,18 @@ int main(int argc, char ** argv) {
|
||||
load_vocab(params.fn_vocab_model, &config, &vocab);
|
||||
|
||||
struct my_llama_model model;
|
||||
model.hparams.n_vocab = config.vocab_size; //llama_n_vocab(lctx);
|
||||
model.hparams.n_ctx = params.n_ctx;
|
||||
model.hparams.n_embd = config.dim; //params.n_embd;
|
||||
model.hparams.n_ff = config.hidden_dim;
|
||||
model.hparams.n_mult = 32;//params.n_mult;
|
||||
model.hparams.n_head = config.n_heads; //params.n_head;
|
||||
model.hparams.n_layer = config.n_layers; //params.n_layer;
|
||||
model.hparams.n_rot = std::min((uint32_t)params.n_rotmax, model.hparams.n_embd / model.hparams.n_head);
|
||||
model.hparams.n_vocab = config.vocab_size; //llama_n_vocab(lctx);
|
||||
model.hparams.n_ctx = params.n_ctx;
|
||||
model.hparams.n_embd = config.dim; //params.n_embd;
|
||||
model.hparams.n_ff = config.hidden_dim;
|
||||
model.hparams.n_mult = 32;//params.n_mult;
|
||||
model.hparams.n_head = config.n_heads; //params.n_head;
|
||||
model.hparams.n_head_kv = config.n_kv_heads;
|
||||
model.hparams.n_layer = config.n_layers; //params.n_layer;
|
||||
model.hparams.n_rot = std::min((uint32_t)params.n_rotmax, model.hparams.n_embd / model.hparams.n_head);
|
||||
|
||||
print_params(&model.hparams);
|
||||
|
||||
struct ggml_init_params lcparams;
|
||||
lcparams.mem_size = 1024ll*1024ll*1024ll*((size_t) params.mem_model_gb);
|
||||
lcparams.mem_buffer = NULL;
|
||||
@@ -956,7 +929,7 @@ int main(int argc, char ** argv) {
|
||||
model.name = basename(params.fn_llama2c_model);
|
||||
save_as_llama_model(&vocab, &model, &weights, params.fn_llama2c_output_model);
|
||||
|
||||
printf("Saving llama.c model file %s in ggml format at %s\n", params.fn_llama2c_model, params.fn_llama2c_output_model);
|
||||
LOG("%s: Saving llama.c model file %s in ggml format at %s\n", __func__, params.fn_llama2c_model, params.fn_llama2c_output_model);
|
||||
|
||||
ggml_free(model.ctx);
|
||||
return 0;
|
||||
|
||||
@@ -61,6 +61,8 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
params.embedding = true;
|
||||
// For non-causal models, batch size must be equal to ubatch size
|
||||
params.n_ubatch = params.n_batch;
|
||||
|
||||
print_build_info();
|
||||
|
||||
@@ -114,7 +116,9 @@ int main(int argc, char ** argv) {
|
||||
for (const auto & prompt : prompts) {
|
||||
auto inp = ::llama_tokenize(ctx, prompt, true, false);
|
||||
if (inp.size() > n_batch) {
|
||||
inp.resize(n_batch);
|
||||
fprintf(stderr, "%s: error: number of tokens in input line (%lld) exceeds batch size (%lld), increase batch size and re-run\n",
|
||||
__func__, (long long int) inp.size(), (long long int) n_batch);
|
||||
return 1;
|
||||
}
|
||||
inputs.push_back(inp);
|
||||
}
|
||||
@@ -174,25 +178,27 @@ int main(int argc, char ** argv) {
|
||||
float * out = emb + p * n_embd;
|
||||
batch_decode(ctx, batch, out, s, n_embd);
|
||||
|
||||
// print the first part of the embeddings
|
||||
// print the first part of the embeddings or for a single prompt, the full embedding
|
||||
fprintf(stdout, "\n");
|
||||
for (int j = 0; j < n_prompts; j++) {
|
||||
fprintf(stdout, "embedding %d: ", j);
|
||||
for (int i = 0; i < std::min(16, n_embd); i++) {
|
||||
for (int i = 0; i < (n_prompts > 1 ? std::min(16, n_embd) : n_embd); i++) {
|
||||
fprintf(stdout, "%9.6f ", emb[j * n_embd + i]);
|
||||
}
|
||||
fprintf(stdout, "\n");
|
||||
}
|
||||
|
||||
// print cosine similarity matrix
|
||||
fprintf(stdout, "\n");
|
||||
printf("cosine similarity matrix:\n\n");
|
||||
for (int i = 0; i < n_prompts; i++) {
|
||||
for (int j = 0; j < n_prompts; j++) {
|
||||
float sim = llama_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd);
|
||||
fprintf(stdout, "%6.2f ", sim);
|
||||
}
|
||||
if (n_prompts > 1) {
|
||||
fprintf(stdout, "\n");
|
||||
printf("cosine similarity matrix:\n\n");
|
||||
for (int i = 0; i < n_prompts; i++) {
|
||||
for (int j = 0; j < n_prompts; j++) {
|
||||
float sim = llama_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd);
|
||||
fprintf(stdout, "%6.2f ", sim);
|
||||
}
|
||||
fprintf(stdout, "\n");
|
||||
}
|
||||
}
|
||||
|
||||
// clean up
|
||||
|
||||
5
examples/gbnf-validator/CMakeLists.txt
Normal file
5
examples/gbnf-validator/CMakeLists.txt
Normal file
@@ -0,0 +1,5 @@
|
||||
set(TARGET gbnf-validator)
|
||||
add_executable(${TARGET} gbnf-validator.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common grammar-parser llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
132
examples/gbnf-validator/gbnf-validator.cpp
Normal file
132
examples/gbnf-validator/gbnf-validator.cpp
Normal file
@@ -0,0 +1,132 @@
|
||||
#define LLAMA_API_INTERNAL
|
||||
|
||||
#include "grammar-parser.h"
|
||||
#include "ggml.h"
|
||||
#include "llama.h"
|
||||
#include "unicode.h"
|
||||
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
static bool llama_sample_grammar_string(struct llama_grammar * grammar, const std::string & input_str, size_t & error_pos, std::string & error_msg) {
|
||||
auto decoded = decode_utf8(input_str, {});
|
||||
const auto & code_points = decoded.first;
|
||||
|
||||
size_t pos = 0;
|
||||
for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
|
||||
auto prev_stacks = grammar->stacks;
|
||||
grammar->stacks = llama_grammar_accept(grammar->rules, grammar->stacks, *it);
|
||||
if (grammar->stacks.empty()) {
|
||||
error_pos = pos;
|
||||
error_msg = "Unexpected character '" + unicode_cpt_to_utf8(*it) + "'";
|
||||
grammar->stacks = prev_stacks;
|
||||
return false;
|
||||
}
|
||||
++pos;
|
||||
}
|
||||
|
||||
for (const auto & stack : grammar->stacks) {
|
||||
if (stack.empty()) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
error_pos = pos;
|
||||
error_msg = "Unexpected end of input";
|
||||
return false;
|
||||
}
|
||||
|
||||
static void print_error_message(const std::string & input_str, size_t error_pos, const std::string & error_msg) {
|
||||
fprintf(stdout, "Input string is invalid according to the grammar.\n");
|
||||
fprintf(stdout, "Error: %s at position %zu\n", error_msg.c_str(), error_pos);
|
||||
fprintf(stdout, "\n");
|
||||
fprintf(stdout, "Input string:\n");
|
||||
fprintf(stdout, "%s", input_str.substr(0, error_pos).c_str());
|
||||
if (error_pos < input_str.size()) {
|
||||
fprintf(stdout, "\033[1;31m%c", input_str[error_pos]);
|
||||
if (error_pos+1 < input_str.size()) {
|
||||
fprintf(stdout, "\033[0;31m%s", input_str.substr(error_pos+1).c_str());
|
||||
}
|
||||
fprintf(stdout, "\033[0m\n");
|
||||
}
|
||||
}
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
if (argc != 3) {
|
||||
fprintf(stdout, "Usage: %s <grammar_filename> <input_filename>\n", argv[0]);
|
||||
return 1;
|
||||
}
|
||||
|
||||
const std::string grammar_filename = argv[1];
|
||||
const std::string input_filename = argv[2];
|
||||
|
||||
// Read the GBNF grammar file
|
||||
FILE* grammar_file = fopen(grammar_filename.c_str(), "r");
|
||||
if (!grammar_file) {
|
||||
fprintf(stdout, "Failed to open grammar file: %s\n", grammar_filename.c_str());
|
||||
return 1;
|
||||
}
|
||||
|
||||
fseek(grammar_file, 0, SEEK_END);
|
||||
size_t grammar_size = ftell(grammar_file);
|
||||
fseek(grammar_file, 0, SEEK_SET);
|
||||
|
||||
std::string grammar_str(grammar_size, ' ');
|
||||
fread(&grammar_str[0], 1, grammar_size, grammar_file);
|
||||
fclose(grammar_file);
|
||||
|
||||
// Parse the GBNF grammar
|
||||
auto parsed_grammar = grammar_parser::parse(grammar_str.c_str());
|
||||
|
||||
// will be empty (default) if there are parse errors
|
||||
if (parsed_grammar.rules.empty()) {
|
||||
fprintf(stdout, "%s: failed to parse grammar\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// Ensure that there is a "root" node.
|
||||
if (parsed_grammar.symbol_ids.find("root") == parsed_grammar.symbol_ids.end()) {
|
||||
fprintf(stdout, "%s: grammar does not contain a 'root' symbol\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
|
||||
|
||||
// Create the LLAMA grammar
|
||||
auto grammar = llama_grammar_init(
|
||||
grammar_rules.data(),
|
||||
grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
|
||||
|
||||
// Read the input file
|
||||
FILE* input_file = fopen(input_filename.c_str(), "r");
|
||||
if (!input_file) {
|
||||
fprintf(stdout, "Failed to open input file: %s\n", input_filename.c_str());
|
||||
return 1;
|
||||
}
|
||||
|
||||
fseek(input_file, 0, SEEK_END);
|
||||
size_t input_size = ftell(input_file);
|
||||
fseek(input_file, 0, SEEK_SET);
|
||||
|
||||
std::string input_str(input_size, ' ');
|
||||
fread(&input_str[0], 1, input_size, input_file);
|
||||
fclose(input_file);
|
||||
|
||||
// Validate the input string against the grammar
|
||||
size_t error_pos;
|
||||
std::string error_msg;
|
||||
bool is_valid = llama_sample_grammar_string(grammar, input_str, error_pos, error_msg);
|
||||
|
||||
if (is_valid) {
|
||||
fprintf(stdout, "Input string is valid according to the grammar.\n");
|
||||
} else {
|
||||
print_error_message(input_str, error_pos, error_msg);
|
||||
}
|
||||
|
||||
// Clean up
|
||||
llama_grammar_free(grammar);
|
||||
|
||||
return 0;
|
||||
}
|
||||
5
examples/gguf-split/CMakeLists.txt
Normal file
5
examples/gguf-split/CMakeLists.txt
Normal file
@@ -0,0 +1,5 @@
|
||||
set(TARGET gguf-split)
|
||||
add_executable(${TARGET} gguf-split.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
9
examples/gguf-split/README.md
Normal file
9
examples/gguf-split/README.md
Normal file
@@ -0,0 +1,9 @@
|
||||
## GGUF split Example
|
||||
|
||||
CLI to split / merge GGUF files.
|
||||
|
||||
**Command line options:**
|
||||
|
||||
- `--split`: split GGUF to multiple GGUF, default operation.
|
||||
- `--split-max-tensors`: maximum tensors in each split: default(128)
|
||||
- `--merge`: merge multiple GGUF to a single GGUF.
|
||||
553
examples/gguf-split/gguf-split.cpp
Normal file
553
examples/gguf-split/gguf-split.cpp
Normal file
@@ -0,0 +1,553 @@
|
||||
#include "llama.h"
|
||||
#include "common.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <cstdlib>
|
||||
#include <fstream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <climits>
|
||||
#include <stdexcept>
|
||||
|
||||
#if defined(_WIN32)
|
||||
#include <windows.h>
|
||||
#ifndef PATH_MAX
|
||||
#define PATH_MAX MAX_PATH
|
||||
#endif
|
||||
#include <io.h>
|
||||
#endif
|
||||
|
||||
enum split_operation : uint8_t {
|
||||
SPLIT_OP_SPLIT,
|
||||
SPLIT_OP_MERGE,
|
||||
};
|
||||
|
||||
struct split_params {
|
||||
split_operation operation = SPLIT_OP_SPLIT;
|
||||
size_t n_bytes_split = 0;
|
||||
int n_split_tensors = 128;
|
||||
std::string input;
|
||||
std::string output;
|
||||
bool dry_run = false;
|
||||
};
|
||||
|
||||
static void split_print_usage(const char * executable) {
|
||||
const split_params default_params;
|
||||
printf("\n");
|
||||
printf("usage: %s [options] GGUF_IN GGUF_OUT\n", executable);
|
||||
printf("\n");
|
||||
printf("Apply a GGUF operation on IN to OUT.");
|
||||
printf("\n");
|
||||
printf("options:\n");
|
||||
printf(" -h, --help show this help message and exit\n");
|
||||
printf(" --version show version and build info\n");
|
||||
printf(" --split split GGUF to multiple GGUF (enabled by default)\n");
|
||||
printf(" --merge merge multiple GGUF to a single GGUF\n");
|
||||
printf(" --split-max-tensors max tensors in each split (default: %d)\n", default_params.n_split_tensors);
|
||||
printf(" --split-max-size N(M|G) max size per split\n");
|
||||
printf(" --dry-run only print out a split plan and exit, without writing any new files\n");
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
// return convert string, for example "128M" or "4G" to number of bytes
|
||||
static size_t split_str_to_n_bytes(std::string str) {
|
||||
size_t n_bytes = 0;
|
||||
int n;
|
||||
if (str.back() == 'M') {
|
||||
sscanf(str.c_str(), "%d", &n);
|
||||
n_bytes = n * 1024 * 1024; // megabytes
|
||||
} else if (str.back() == 'G') {
|
||||
sscanf(str.c_str(), "%d", &n);
|
||||
n_bytes = n * 1024 * 1024 * 1024; // gigabytes
|
||||
} else {
|
||||
throw std::invalid_argument("error: supported units are M (megabytes) or G (gigabytes), but got: " + std::string(1, str.back()));
|
||||
}
|
||||
if (n <= 0) {
|
||||
throw std::invalid_argument("error: size must be a positive value");
|
||||
}
|
||||
return n_bytes;
|
||||
}
|
||||
|
||||
static void split_params_parse_ex(int argc, const char ** argv, split_params & params) {
|
||||
std::string arg;
|
||||
const std::string arg_prefix = "--";
|
||||
bool invalid_param = false;
|
||||
|
||||
int arg_idx = 1;
|
||||
for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) {
|
||||
arg = argv[arg_idx];
|
||||
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
|
||||
std::replace(arg.begin(), arg.end(), '_', '-');
|
||||
}
|
||||
|
||||
bool arg_found = false;
|
||||
bool is_op_set = false;
|
||||
bool is_mode_set = false;
|
||||
if (arg == "-h" || arg == "--help") {
|
||||
split_print_usage(argv[0]);
|
||||
exit(0);
|
||||
}
|
||||
if (arg == "--version") {
|
||||
fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
|
||||
fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET);
|
||||
exit(0);
|
||||
}
|
||||
if (arg == "--dry-run") {
|
||||
arg_found = true;
|
||||
params.dry_run = true;
|
||||
}
|
||||
|
||||
if (is_op_set) {
|
||||
throw std::invalid_argument("error: either --split or --merge can be specified, but not both");
|
||||
}
|
||||
if (arg == "--merge") {
|
||||
arg_found = true;
|
||||
is_op_set = true;
|
||||
params.operation = SPLIT_OP_MERGE;
|
||||
}
|
||||
if (arg == "--split") {
|
||||
arg_found = true;
|
||||
is_op_set = true;
|
||||
params.operation = SPLIT_OP_SPLIT;
|
||||
}
|
||||
|
||||
if (is_mode_set) {
|
||||
throw std::invalid_argument("error: either --split-max-tensors or --split-max-size can be specified, but not both");
|
||||
}
|
||||
if (arg == "--split-max-tensors") {
|
||||
if (++arg_idx >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
arg_found = true;
|
||||
is_mode_set = true;
|
||||
params.n_split_tensors = atoi(argv[arg_idx]);
|
||||
}
|
||||
if (arg == "--split-max-size") {
|
||||
if (++arg_idx >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
arg_found = true;
|
||||
is_mode_set = true;
|
||||
params.n_bytes_split = split_str_to_n_bytes(argv[arg_idx]);
|
||||
}
|
||||
|
||||
if (!arg_found) {
|
||||
throw std::invalid_argument("error: unknown argument: " + arg);
|
||||
}
|
||||
}
|
||||
|
||||
if (invalid_param) {
|
||||
throw std::invalid_argument("error: invalid parameter for argument: " + arg);
|
||||
}
|
||||
|
||||
if (argc - arg_idx < 2) {
|
||||
throw std::invalid_argument("error: bad arguments");
|
||||
}
|
||||
|
||||
params.input = argv[arg_idx++];
|
||||
params.output = argv[arg_idx++];
|
||||
}
|
||||
|
||||
static bool split_params_parse(int argc, const char ** argv, split_params & params) {
|
||||
bool result = true;
|
||||
try {
|
||||
split_params_parse_ex(argc, argv, params);
|
||||
}
|
||||
catch (const std::invalid_argument & ex) {
|
||||
fprintf(stderr, "%s\n", ex.what());
|
||||
split_print_usage(argv[0]);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
static void zeros(std::ofstream & file, size_t n) {
|
||||
char zero = 0;
|
||||
for (size_t i = 0; i < n; ++i) {
|
||||
file.write(&zero, 1);
|
||||
}
|
||||
}
|
||||
|
||||
struct split_strategy {
|
||||
const split_params params;
|
||||
std::ifstream & f_input;
|
||||
struct gguf_context * ctx_gguf;
|
||||
struct ggml_context * ctx_meta = NULL;
|
||||
const int n_tensors;
|
||||
|
||||
// one ctx_out per one output file
|
||||
std::vector<struct gguf_context *> ctx_outs;
|
||||
|
||||
// temporary buffer for reading in tensor data
|
||||
std::vector<uint8_t> read_buf;
|
||||
|
||||
split_strategy(const split_params & params,
|
||||
std::ifstream & f_input,
|
||||
struct gguf_context * ctx_gguf,
|
||||
struct ggml_context * ctx_meta) :
|
||||
params(params),
|
||||
f_input(f_input),
|
||||
ctx_gguf(ctx_gguf),
|
||||
ctx_meta(ctx_meta),
|
||||
n_tensors(gguf_get_n_tensors(ctx_gguf)) {
|
||||
|
||||
// because we need to know list of tensors for each file in advance, we will build all the ctx_out for all output splits
|
||||
int i_split = -1;
|
||||
struct gguf_context * ctx_out = NULL;
|
||||
auto new_ctx_out = [&]() {
|
||||
i_split++;
|
||||
if (ctx_out != NULL) {
|
||||
if (gguf_get_n_tensors(ctx_out) == 0) {
|
||||
fprintf(stderr, "error: one of splits have 0 tensors. Maybe size or tensors limit is too small\n");
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
ctx_outs.push_back(ctx_out);
|
||||
}
|
||||
ctx_out = gguf_init_empty();
|
||||
// Save all metadata in first split only
|
||||
if (i_split == 0) {
|
||||
gguf_set_kv(ctx_out, ctx_gguf);
|
||||
}
|
||||
gguf_set_val_u16(ctx_out, LLM_KV_SPLIT_NO, i_split);
|
||||
gguf_set_val_u16(ctx_out, LLM_KV_SPLIT_COUNT, 0); // placeholder
|
||||
gguf_set_val_i32(ctx_out, LLM_KV_SPLIT_TENSORS_COUNT, n_tensors);
|
||||
};
|
||||
|
||||
// initialize ctx_out for the first split
|
||||
new_ctx_out();
|
||||
|
||||
// process tensors one by one
|
||||
size_t curr_tensors_size = 0; // current size by counting only tensors size (without metadata)
|
||||
for (int i = 0; i < n_tensors; ++i) {
|
||||
struct ggml_tensor * t = ggml_get_tensor(ctx_meta, gguf_get_tensor_name(ctx_gguf, i));
|
||||
// calculate the "imaginary" size = the current size + next tensor size
|
||||
size_t n_bytes = GGML_PAD(ggml_nbytes(t), GGUF_DEFAULT_ALIGNMENT);
|
||||
size_t next_tensors_size = curr_tensors_size + n_bytes;
|
||||
if (should_split(i, next_tensors_size)) {
|
||||
new_ctx_out();
|
||||
curr_tensors_size = n_bytes;
|
||||
} else {
|
||||
curr_tensors_size = next_tensors_size;
|
||||
}
|
||||
gguf_add_tensor(ctx_out, t);
|
||||
}
|
||||
|
||||
// push the last ctx_out
|
||||
ctx_outs.push_back(ctx_out);
|
||||
|
||||
// set the correct n_split for all ctx_out
|
||||
for (auto & ctx : ctx_outs) {
|
||||
gguf_set_val_u16(ctx, LLM_KV_SPLIT_COUNT, ctx_outs.size());
|
||||
}
|
||||
}
|
||||
|
||||
~split_strategy() {
|
||||
for (auto & ctx_out : ctx_outs) {
|
||||
gguf_free(ctx_out);
|
||||
}
|
||||
}
|
||||
|
||||
bool should_split(int i_tensor, size_t next_size) {
|
||||
if (params.n_bytes_split > 0) {
|
||||
// split by max size per file
|
||||
return next_size > params.n_bytes_split;
|
||||
} else {
|
||||
// split by number of tensors per file
|
||||
return i_tensor > 0 && i_tensor < n_tensors && i_tensor % params.n_split_tensors == 0;
|
||||
}
|
||||
}
|
||||
|
||||
void print_info() {
|
||||
printf("n_split: %ld\n", ctx_outs.size());
|
||||
int i_split = 0;
|
||||
for (auto & ctx_out : ctx_outs) {
|
||||
// re-calculate the real gguf size for each split (= metadata size + total size of all tensors)
|
||||
size_t total_size = gguf_get_meta_size(ctx_out);
|
||||
for (int i = 0; i < gguf_get_n_tensors(ctx_out); ++i) {
|
||||
struct ggml_tensor * t = ggml_get_tensor(ctx_meta, gguf_get_tensor_name(ctx_out, i));
|
||||
total_size += ggml_nbytes(t);
|
||||
}
|
||||
total_size = total_size / 1024 / 1024; // convert to megabytes
|
||||
printf("split %05d: n_tensors = %d, total_size = %ldM\n", i_split + 1, gguf_get_n_tensors(ctx_out), total_size);
|
||||
i_split++;
|
||||
}
|
||||
}
|
||||
|
||||
void write() {
|
||||
int i_split = 0;
|
||||
int n_split = ctx_outs.size();
|
||||
for (auto & ctx_out : ctx_outs) {
|
||||
// construct file path
|
||||
char split_path[PATH_MAX] = {0};
|
||||
llama_split_path(split_path, sizeof(split_path), params.output.c_str(), i_split, n_split);
|
||||
|
||||
// open the output file
|
||||
printf("Writing file %s ... ", split_path);
|
||||
fflush(stdout);
|
||||
std::ofstream fout = std::ofstream(split_path, std::ios::binary);
|
||||
fout.exceptions(std::ofstream::failbit); // fail fast on write errors
|
||||
|
||||
// write metadata
|
||||
std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
|
||||
gguf_get_meta_data(ctx_out, data.data());
|
||||
fout.write((const char *)data.data(), data.size());
|
||||
|
||||
// write tensors
|
||||
for (int i = 0; i < gguf_get_n_tensors(ctx_out); ++i) {
|
||||
// read tensor meta and prepare buffer
|
||||
const char * t_name = gguf_get_tensor_name(ctx_out, i);
|
||||
struct ggml_tensor * t = ggml_get_tensor(ctx_meta, t_name);
|
||||
auto n_bytes = ggml_nbytes(t);
|
||||
read_buf.resize(n_bytes);
|
||||
|
||||
// calculate offset
|
||||
auto i_tensor_in = gguf_find_tensor(ctx_gguf, t_name); // idx of tensor in the input file
|
||||
auto offset = gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, i_tensor_in);
|
||||
|
||||
// copy tensor from input to output file
|
||||
copy_file_to_file(f_input, fout, offset, n_bytes);
|
||||
zeros(fout, GGML_PAD(n_bytes, GGUF_DEFAULT_ALIGNMENT) - n_bytes);
|
||||
}
|
||||
|
||||
printf("done\n");
|
||||
// close the file
|
||||
fout.close();
|
||||
i_split++;
|
||||
}
|
||||
}
|
||||
|
||||
void copy_file_to_file(std::ifstream & f_in, std::ofstream & f_out, const size_t in_offset, const size_t len) {
|
||||
// TODO: detect OS and use copy_file_range() here for better performance
|
||||
if (read_buf.size() < len) {
|
||||
read_buf.resize(len);
|
||||
}
|
||||
f_in.seekg(in_offset);
|
||||
f_in.read((char *)read_buf.data(), len);
|
||||
f_out.write((const char *)read_buf.data(), len);
|
||||
}
|
||||
};
|
||||
|
||||
static void gguf_split(const split_params & split_params) {
|
||||
struct ggml_context * ctx_meta = NULL;
|
||||
|
||||
struct gguf_init_params params = {
|
||||
/*.no_alloc = */ true,
|
||||
/*.ctx = */ &ctx_meta,
|
||||
};
|
||||
|
||||
std::ifstream f_input(split_params.input.c_str(), std::ios::binary);
|
||||
if (!f_input.is_open()) {
|
||||
fprintf(stderr, "%s: failed to open input GGUF from %s\n", __func__, split_params.input.c_str());
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
auto * ctx_gguf = gguf_init_from_file(split_params.input.c_str(), params);
|
||||
if (!ctx_gguf) {
|
||||
fprintf(stderr, "%s: failed to load input GGUF from %s\n", __func__, split_params.input.c_str());
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
// prepare the strategy
|
||||
split_strategy strategy(split_params, f_input, ctx_gguf, ctx_meta);
|
||||
int n_split = strategy.ctx_outs.size();
|
||||
strategy.print_info();
|
||||
|
||||
if (!split_params.dry_run) {
|
||||
// write all output splits
|
||||
strategy.write();
|
||||
}
|
||||
|
||||
// done, clean up
|
||||
gguf_free(ctx_gguf);
|
||||
f_input.close();
|
||||
|
||||
fprintf(stderr, "%s: %d gguf split written with a total of %d tensors.\n",
|
||||
__func__, n_split, strategy.n_tensors);
|
||||
}
|
||||
|
||||
static void gguf_merge(const split_params & split_params) {
|
||||
fprintf(stderr, "%s: %s -> %s\n",
|
||||
__func__, split_params.input.c_str(),
|
||||
split_params.output.c_str());
|
||||
int n_split = 1;
|
||||
int total_tensors = 0;
|
||||
|
||||
auto * ctx_out = gguf_init_empty();
|
||||
std::ofstream fout(split_params.output.c_str(), std::ios::binary);
|
||||
fout.exceptions(std::ofstream::failbit); // fail fast on write errors
|
||||
|
||||
std::vector<uint8_t> read_data;
|
||||
std::vector<ggml_context *> ctx_metas;
|
||||
std::vector<gguf_context *> ctx_ggufs;
|
||||
|
||||
char split_path[PATH_MAX] = {0};
|
||||
strncpy(split_path, split_params.input.c_str(), sizeof(split_path) - 1);
|
||||
char split_prefix[PATH_MAX] = {0};
|
||||
|
||||
// First pass to find KV and tensors metadata
|
||||
for (int i_split = 0; i_split < n_split; i_split++) {
|
||||
struct ggml_context * ctx_meta = NULL;
|
||||
|
||||
struct gguf_init_params params = {
|
||||
/*.no_alloc = */ true,
|
||||
/*.ctx = */ &ctx_meta,
|
||||
};
|
||||
|
||||
if (i_split > 0) {
|
||||
llama_split_path(split_path, sizeof(split_path), split_prefix, i_split, n_split);
|
||||
}
|
||||
fprintf(stderr, "%s: reading metadata %s ...", __func__, split_path);
|
||||
|
||||
auto * ctx_gguf = gguf_init_from_file(split_path, params);
|
||||
if (!ctx_gguf) {
|
||||
fprintf(stderr, "\n%s: failed to load input GGUF from %s\n", __func__, split_params.input.c_str());
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
ctx_ggufs.push_back(ctx_gguf);
|
||||
ctx_metas.push_back(ctx_meta);
|
||||
|
||||
if (i_split == 0) {
|
||||
auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT);
|
||||
if (key_n_split < 0) {
|
||||
fprintf(stderr,
|
||||
"\n%s: input file does not contain %s metadata\n",
|
||||
__func__,
|
||||
LLM_KV_SPLIT_COUNT);
|
||||
gguf_free(ctx_gguf);
|
||||
ggml_free(ctx_meta);
|
||||
gguf_free(ctx_out);
|
||||
fout.close();
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
n_split = gguf_get_val_u16(ctx_gguf, key_n_split);
|
||||
if (n_split < 1) {
|
||||
fprintf(stderr,
|
||||
"\n%s: input file does not contain a valid split count %d\n",
|
||||
__func__,
|
||||
n_split);
|
||||
gguf_free(ctx_gguf);
|
||||
ggml_free(ctx_meta);
|
||||
gguf_free(ctx_out);
|
||||
fout.close();
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
// Verify the file naming and extract split_prefix
|
||||
if (!llama_split_prefix(split_prefix, sizeof (split_prefix), split_path, i_split, n_split)) {
|
||||
fprintf(stderr, "\n%s: unexpected input file name: %s"
|
||||
" i_split=%d"
|
||||
" n_split=%d\n", __func__,
|
||||
split_path, i_split, n_split);
|
||||
gguf_free(ctx_gguf);
|
||||
ggml_free(ctx_meta);
|
||||
gguf_free(ctx_out);
|
||||
fout.close();
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
// Do not trigger merge if we try to merge again the output
|
||||
gguf_set_val_u16(ctx_gguf, LLM_KV_SPLIT_COUNT, 0);
|
||||
|
||||
// Set metadata from the first split
|
||||
gguf_set_kv(ctx_out, ctx_gguf);
|
||||
}
|
||||
|
||||
auto n_tensors = gguf_get_n_tensors(ctx_gguf);
|
||||
for (int i_tensor = 0; i_tensor < n_tensors; i_tensor++) {
|
||||
const char * t_name = gguf_get_tensor_name(ctx_gguf, i_tensor);
|
||||
struct ggml_tensor * t = ggml_get_tensor(ctx_meta, t_name);
|
||||
gguf_add_tensor(ctx_out, t);
|
||||
}
|
||||
total_tensors += n_tensors;
|
||||
|
||||
fprintf(stderr, "\033[3Ddone\n");
|
||||
}
|
||||
|
||||
// placeholder for the meta data
|
||||
{
|
||||
auto meta_size = gguf_get_meta_size(ctx_out);
|
||||
::zeros(fout, meta_size);
|
||||
}
|
||||
|
||||
// Write tensors data
|
||||
for (int i_split = 0; i_split < n_split; i_split++) {
|
||||
llama_split_path(split_path, sizeof(split_path), split_prefix, i_split, n_split);
|
||||
std::ifstream f_input(split_path, std::ios::binary);
|
||||
if (!f_input.is_open()) {
|
||||
fprintf(stderr, "%s: failed to open input GGUF from %s\n", __func__, split_path);
|
||||
for (uint32_t i = 0; i < ctx_ggufs.size(); i++) {
|
||||
gguf_free(ctx_ggufs[i]);
|
||||
ggml_free(ctx_metas[i]);
|
||||
}
|
||||
gguf_free(ctx_out);
|
||||
fout.close();
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
fprintf(stderr, "%s: writing tensors %s ...", __func__, split_path);
|
||||
|
||||
auto * ctx_gguf = ctx_ggufs[i_split];
|
||||
auto * ctx_meta = ctx_metas[i_split];
|
||||
|
||||
auto n_tensors = gguf_get_n_tensors(ctx_gguf);
|
||||
for (int i_tensor = 0; i_tensor < n_tensors; i_tensor++) {
|
||||
const char * t_name = gguf_get_tensor_name(ctx_gguf, i_tensor);
|
||||
struct ggml_tensor * t = ggml_get_tensor(ctx_meta, t_name);
|
||||
|
||||
auto n_bytes = ggml_nbytes(t);
|
||||
|
||||
if (read_data.size() < n_bytes) {
|
||||
read_data.resize(n_bytes);
|
||||
}
|
||||
|
||||
auto offset = gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, i_tensor);
|
||||
f_input.seekg(offset);
|
||||
f_input.read((char *)read_data.data(), n_bytes);
|
||||
|
||||
// write tensor data + padding
|
||||
fout.write((const char *)read_data.data(), n_bytes);
|
||||
zeros(fout, GGML_PAD(n_bytes, GGUF_DEFAULT_ALIGNMENT) - n_bytes);
|
||||
}
|
||||
|
||||
gguf_free(ctx_gguf);
|
||||
ggml_free(ctx_meta);
|
||||
f_input.close();
|
||||
fprintf(stderr, "\033[3Ddone\n");
|
||||
}
|
||||
|
||||
{
|
||||
// go back to beginning of file and write the updated metadata
|
||||
fout.seekp(0);
|
||||
std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
|
||||
gguf_get_meta_data(ctx_out, data.data());
|
||||
fout.write((const char *)data.data(), data.size());
|
||||
|
||||
fout.close();
|
||||
gguf_free(ctx_out);
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: %s merged from %d split with %d tensors.\n",
|
||||
__func__, split_params.output.c_str(), n_split, total_tensors);
|
||||
}
|
||||
|
||||
int main(int argc, const char ** argv) {
|
||||
split_params params;
|
||||
split_params_parse(argc, argv, params);
|
||||
|
||||
switch (params.operation) {
|
||||
case SPLIT_OP_SPLIT: gguf_split(params);
|
||||
break;
|
||||
case SPLIT_OP_MERGE: gguf_merge(params);
|
||||
break;
|
||||
default: split_print_usage(argv[0]);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
@@ -22,7 +22,7 @@ For faster computation, make sure to use GPU offloading via the `-ngl` argument
|
||||
## Example
|
||||
|
||||
```bash
|
||||
LLAMA_CUBLAS=1 make -j
|
||||
LLAMA_CUDA=1 make -j
|
||||
|
||||
# generate importance matrix (imatrix.dat)
|
||||
./imatrix -m ggml-model-f16.gguf -f train-data.txt -ngl 99
|
||||
|
||||
@@ -50,29 +50,31 @@ private:
|
||||
void keep_imatrix(int ncall) const;
|
||||
};
|
||||
|
||||
// remove any prefix and suffixes from the name
|
||||
// CUDA0#blk.0.attn_k.weight#0 => blk.0.attn_k.weight
|
||||
static std::string filter_tensor_name(const char * name) {
|
||||
std::string wname;
|
||||
const char * p = strchr(name, '#');
|
||||
if (p != NULL) {
|
||||
p = p + 1;
|
||||
const char * q = strchr(p, '#');
|
||||
if (q != NULL) {
|
||||
wname = std::string(p, q - p);
|
||||
} else {
|
||||
wname = p;
|
||||
}
|
||||
} else {
|
||||
wname = name;
|
||||
}
|
||||
return wname;
|
||||
}
|
||||
|
||||
bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data) {
|
||||
GGML_UNUSED(user_data);
|
||||
|
||||
const struct ggml_tensor * src0 = t->src[0];
|
||||
const struct ggml_tensor * src1 = t->src[1];
|
||||
|
||||
std::string wname;
|
||||
{
|
||||
// remove any prefix and suffixes from the name
|
||||
// CUDA0#blk.0.attn_k.weight#0 => blk.0.attn_k.weight
|
||||
const char * p = strchr(src0->name, '#');
|
||||
if (p != NULL) {
|
||||
p = p + 1;
|
||||
const char * q = strchr(p, '#');
|
||||
if (q != NULL) {
|
||||
wname = std::string(p, q - p);
|
||||
} else {
|
||||
wname = p;
|
||||
}
|
||||
} else {
|
||||
wname = src0->name;
|
||||
}
|
||||
}
|
||||
std::string wname = filter_tensor_name(src0->name);
|
||||
|
||||
// when ask is true, the scheduler wants to know if we are interested in data from this tensor
|
||||
// if we return true, a follow-up call will be made with ask=false in which we can do the actual collection
|
||||
@@ -96,34 +98,38 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
|
||||
|
||||
const float * data = is_host ? (const float *) src1->data : m_src1_data.data();
|
||||
|
||||
// this has been adapted to the new format of storing merged experts in a single 3d tensor
|
||||
// ref: https://github.com/ggerganov/llama.cpp/pull/6387
|
||||
if (t->op == GGML_OP_MUL_MAT_ID) {
|
||||
const int idx = ((int32_t *) t->op_params)[0];
|
||||
const int n_as = ((int32_t *) t->op_params)[1];
|
||||
const ggml_tensor * ids = t->src[2];
|
||||
const int n_as = src0->ne[2];
|
||||
|
||||
// the top-k selected expert ids are stored in the src0 tensor
|
||||
// for simplicity, always copy src0 to host, because it is small
|
||||
// take into account that src0 is not contiguous!
|
||||
GGML_ASSERT(src0->ne[1] == src1->ne[1]);
|
||||
GGML_ASSERT(n_as*ggml_nrows(src0)*sizeof(int) == GGML_PAD(ggml_nbytes(src0), n_as*sizeof(int)));
|
||||
m_ids.resize(ggml_nbytes(src0)/sizeof(int));
|
||||
ggml_backend_tensor_get(src0, m_ids.data(), 0, ggml_nbytes(src0));
|
||||
// the top-k selected expert ids are stored in the ids tensor
|
||||
// for simplicity, always copy ids to host, because it is small
|
||||
// take into account that ids is not contiguous!
|
||||
GGML_ASSERT(ids->ne[1] == src1->ne[1]);
|
||||
GGML_ASSERT(n_as*ggml_nrows(ids)*sizeof(int) == GGML_PAD(ggml_nbytes(ids), n_as*sizeof(int)));
|
||||
m_ids.resize(ggml_nbytes(ids)/sizeof(int));
|
||||
ggml_backend_tensor_get(ids, m_ids.data(), 0, ggml_nbytes(ids));
|
||||
|
||||
auto & e = m_stats[wname];
|
||||
|
||||
++e.ncall;
|
||||
// NOTE: since we select top-k experts, the number of calls for the expert tensors will be k times larger
|
||||
// using the following line, we can correct for that if needed by replacing the line above with:
|
||||
//if (idx == t->src[0]->ne[0] - 1) ++e.ncall;
|
||||
|
||||
// loop over all possible experts, regardless if they are used or not in the batch
|
||||
// this is necessary to guarantee equal number of "ncall" for each tensor
|
||||
for (int ex = 0; ex < n_as; ++ex) {
|
||||
src0 = t->src[2 + ex];
|
||||
auto& e = m_stats[wname];
|
||||
size_t e_start = ex*src1->ne[0];
|
||||
if (e.values.empty()) {
|
||||
e.values.resize(src1->ne[0], 0);
|
||||
e.values.resize(src1->ne[0]*n_as, 0);
|
||||
}
|
||||
else if (e.values.size() != (size_t)src1->ne[0]) {
|
||||
fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]);
|
||||
else if (e.values.size() != (size_t)src1->ne[0]*n_as) {
|
||||
fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]*n_as);
|
||||
exit(1); //GGML_ASSERT(false);
|
||||
}
|
||||
// NOTE: since we select top-k experts, the number of calls for the expert tensors will be k times larger
|
||||
// using the following line, we can correct for that if needed
|
||||
//if (idx == t->src[0]->ne[0] - 1) ++e.ncall;
|
||||
++e.ncall;
|
||||
if (m_params.verbosity > 1) {
|
||||
printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type);
|
||||
}
|
||||
@@ -133,7 +139,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
|
||||
if (excur != ex) continue;
|
||||
const float * x = data + row * src1->ne[0];
|
||||
for (int j = 0; j < (int)src1->ne[0]; ++j) {
|
||||
e.values[j] += x[j]*x[j];
|
||||
e.values[e_start + j] += x[j]*x[j];
|
||||
}
|
||||
}
|
||||
if (e.ncall > m_last_call) {
|
||||
@@ -421,6 +427,7 @@ static bool compute_imatrix(llama_context * ctx, const gpt_params & params, bool
|
||||
tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
|
||||
}
|
||||
|
||||
// TODO: use batch.logits to save computations instead of relying on logits_all == true
|
||||
if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return false;
|
||||
|
||||
74
examples/json-schema-pydantic-example.py
Normal file
74
examples/json-schema-pydantic-example.py
Normal file
@@ -0,0 +1,74 @@
|
||||
# Usage:
|
||||
#! ./server -m some-model.gguf &
|
||||
#! pip install pydantic
|
||||
#! python json-schema-pydantic-example.py
|
||||
|
||||
from pydantic import BaseModel, TypeAdapter
|
||||
from annotated_types import MinLen
|
||||
from typing import Annotated, List, Optional
|
||||
import json, requests
|
||||
|
||||
if True:
|
||||
|
||||
def create_completion(*, response_model=None, endpoint="http://localhost:8080/v1/chat/completions", messages, **kwargs):
|
||||
'''
|
||||
Creates a chat completion using an OpenAI-compatible endpoint w/ JSON schema support
|
||||
(llama.cpp server, llama-cpp-python, Anyscale / Together...)
|
||||
|
||||
The response_model param takes a type (+ supports Pydantic) and behaves just as w/ Instructor (see below)
|
||||
'''
|
||||
if response_model:
|
||||
type_adapter = TypeAdapter(response_model)
|
||||
schema = type_adapter.json_schema()
|
||||
messages = [{
|
||||
"role": "system",
|
||||
"content": f"You respond in JSON format with the following schema: {json.dumps(schema, indent=2)}"
|
||||
}] + messages
|
||||
response_format={"type": "json_object", "schema": schema}
|
||||
|
||||
data = requests.post(endpoint, headers={"Content-Type": "application/json"},
|
||||
json=dict(messages=messages, response_format=response_format, **kwargs)).json()
|
||||
if 'error' in data:
|
||||
raise Exception(data['error']['message'])
|
||||
|
||||
content = data["choices"][0]["message"]["content"]
|
||||
return type_adapter.validate_json(content) if type_adapter else content
|
||||
|
||||
else:
|
||||
|
||||
# This alternative branch uses Instructor + OpenAI client lib.
|
||||
# Instructor support streamed iterable responses, retry & more.
|
||||
# (see https://python.useinstructor.com/)
|
||||
#! pip install instructor openai
|
||||
import instructor, openai
|
||||
client = instructor.patch(
|
||||
openai.OpenAI(api_key="123", base_url="http://localhost:8080"),
|
||||
mode=instructor.Mode.JSON_SCHEMA)
|
||||
create_completion = client.chat.completions.create
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
class QAPair(BaseModel):
|
||||
question: str
|
||||
concise_answer: str
|
||||
justification: str
|
||||
|
||||
class PyramidalSummary(BaseModel):
|
||||
title: str
|
||||
summary: str
|
||||
question_answers: Annotated[List[QAPair], MinLen(2)]
|
||||
sub_sections: Optional[Annotated[List['PyramidalSummary'], MinLen(2)]]
|
||||
|
||||
print("# Summary\n", create_completion(
|
||||
model="...",
|
||||
response_model=PyramidalSummary,
|
||||
messages=[{
|
||||
"role": "user",
|
||||
"content": f"""
|
||||
You are a highly efficient corporate document summarizer.
|
||||
Create a pyramidal summary of an imaginary internal document about our company processes
|
||||
(starting high-level, going down to each sub sections).
|
||||
Keep questions short, and answers even shorter (trivia / quizz style).
|
||||
"""
|
||||
}]))
|
||||
@@ -1,8 +1,10 @@
|
||||
#!/usr/bin/env python3
|
||||
import argparse
|
||||
import itertools
|
||||
import json
|
||||
import re
|
||||
import sys
|
||||
from typing import Any, Dict, List, Set, Tuple, Union
|
||||
|
||||
# whitespace is constrained to a single space char to prevent model "running away" in
|
||||
# whitespace. Also maybe improves generation quality?
|
||||
@@ -12,26 +14,54 @@ PRIMITIVE_RULES = {
|
||||
'boolean': '("true" | "false") space',
|
||||
'number': '("-"? ([0-9] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]? [0-9]+)? space',
|
||||
'integer': '("-"? ([0-9] | [1-9] [0-9]*)) space',
|
||||
'value' : 'object | array | string | number | boolean',
|
||||
'object' : '"{" space ( string ":" space value ("," space string ":" space value)* )? "}" space',
|
||||
'array' : '"[" space ( value ("," space value)* )? "]" space',
|
||||
'uuid' : '"\\"" ' + ' "-" '.join('[0-9a-fA-F]' * n for n in [8, 4, 4, 4, 12]) + ' "\\"" space',
|
||||
'string': r''' "\"" (
|
||||
[^"\\] |
|
||||
"\\" (["\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F])
|
||||
)* "\"" space ''',
|
||||
)* "\"" space''',
|
||||
'null': '"null" space',
|
||||
}
|
||||
OBJECT_RULE_NAMES = ['object', 'array', 'string', 'number', 'boolean', 'null', 'value']
|
||||
|
||||
# TODO: support "uri", "email" string formats
|
||||
DATE_RULES = {
|
||||
'date' : '[0-9] [0-9] [0-9] [0-9] "-" ( "0" [1-9] | "1" [0-2] ) "-" ( \"0\" [1-9] | [1-2] [0-9] | "3" [0-1] )',
|
||||
'time' : '([01] [0-9] | "2" [0-3]) ":" [0-5] [0-9] ":" [0-5] [0-9] ( "." [0-9] [0-9] [0-9] )? ( "Z" | ( "+" | "-" ) ( [01] [0-9] | "2" [0-3] ) ":" [0-5] [0-9] )',
|
||||
'date-time': 'date "T" time',
|
||||
'date-string': '"\\"" date "\\"" space',
|
||||
'time-string': '"\\"" time "\\"" space',
|
||||
'date-time-string': '"\\"" date-time "\\"" space',
|
||||
}
|
||||
|
||||
RESERVED_NAMES = set(["root", *PRIMITIVE_RULES.keys(), *DATE_RULES.keys()])
|
||||
|
||||
INVALID_RULE_CHARS_RE = re.compile(r'[^a-zA-Z0-9-]+')
|
||||
GRAMMAR_LITERAL_ESCAPE_RE = re.compile(r'[\r\n"]')
|
||||
GRAMMAR_LITERAL_ESCAPES = {'\r': '\\r', '\n': '\\n', '"': '\\"'}
|
||||
GRAMMAR_RANGE_LITERAL_ESCAPE_RE = re.compile(r'[\r\n"\]\-\\]')
|
||||
GRAMMAR_LITERAL_ESCAPES = {'\r': '\\r', '\n': '\\n', '"': '\\"', '-': '\\-', ']': '\\]'}
|
||||
|
||||
NON_LITERAL_SET = set('|.()[]{}*+?')
|
||||
ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS = set('[]()|{}*+?')
|
||||
|
||||
DATE_PATTERN = '[0-9]{4}-(0[1-9]|1[0-2])-([0-2][0-9]|3[0-1])'
|
||||
TIME_PATTERN = '([01][0-9]|2[0-3])(:[0-5][0-9]){2}(\\.[0-9]{1,3})?(Z|[+-](([01][0-9]|2[0-3]):[0-5][0-9]))' # Cap millisecond precision w/ 3 digits
|
||||
|
||||
class SchemaConverter:
|
||||
def __init__(self, prop_order):
|
||||
def __init__(self, *, prop_order, allow_fetch, dotall, raw_pattern):
|
||||
self._prop_order = prop_order
|
||||
self._allow_fetch = allow_fetch
|
||||
self._dotall = dotall
|
||||
self._raw_pattern = raw_pattern
|
||||
self._rules = {'space': SPACE_RULE}
|
||||
self._refs = {}
|
||||
self._refs_being_resolved = set()
|
||||
|
||||
def _format_literal(self, literal):
|
||||
escaped = GRAMMAR_LITERAL_ESCAPE_RE.sub(
|
||||
lambda m: GRAMMAR_LITERAL_ESCAPES.get(m.group(0)), json.dumps(literal)
|
||||
lambda m: GRAMMAR_LITERAL_ESCAPES.get(m.group(0)), literal
|
||||
)
|
||||
return f'"{escaped}"'
|
||||
|
||||
@@ -41,78 +71,420 @@ class SchemaConverter:
|
||||
key = esc_name
|
||||
else:
|
||||
i = 0
|
||||
while f'{esc_name}{i}' in self._rules:
|
||||
while f'{esc_name}{i}' in self._rules and self._rules[f'{esc_name}{i}'] != rule:
|
||||
i += 1
|
||||
key = f'{esc_name}{i}'
|
||||
self._rules[key] = rule
|
||||
return key
|
||||
|
||||
def resolve_refs(self, schema: dict, url: str):
|
||||
'''
|
||||
Resolves all $ref fields in the given schema, fetching any remote schemas,
|
||||
replacing $ref with absolute reference URL and populating self._refs with the
|
||||
respective referenced (sub)schema dictionaries.
|
||||
'''
|
||||
def visit(n: dict):
|
||||
if isinstance(n, list):
|
||||
return [visit(x) for x in n]
|
||||
elif isinstance(n, dict):
|
||||
ref = n.get('$ref')
|
||||
if ref is not None and ref not in self._refs:
|
||||
if ref.startswith('https://'):
|
||||
assert self._allow_fetch, 'Fetching remote schemas is not allowed (use --allow-fetch for force)'
|
||||
import requests
|
||||
|
||||
frag_split = ref.split('#')
|
||||
base_url = frag_split[0]
|
||||
|
||||
target = self._refs.get(base_url)
|
||||
if target is None:
|
||||
target = self.resolve_refs(requests.get(ref).json(), base_url)
|
||||
self._refs[base_url] = target
|
||||
|
||||
if len(frag_split) == 1 or frag_split[-1] == '':
|
||||
return target
|
||||
elif ref.startswith('#/'):
|
||||
target = schema
|
||||
ref = f'{url}{ref}'
|
||||
n['$ref'] = ref
|
||||
else:
|
||||
raise ValueError(f'Unsupported ref {ref}')
|
||||
|
||||
for sel in ref.split('#')[-1].split('/')[1:]:
|
||||
assert target is not None and sel in target, f'Error resolving ref {ref}: {sel} not in {target}'
|
||||
target = target[sel]
|
||||
|
||||
self._refs[ref] = target
|
||||
else:
|
||||
for v in n.values():
|
||||
visit(v)
|
||||
|
||||
return n
|
||||
return visit(schema)
|
||||
|
||||
def _generate_union_rule(self, name, alt_schemas):
|
||||
return ' | '.join((
|
||||
self.visit(alt_schema, f'{name}{"-" if name else "alternative-"}{i}')
|
||||
for i, alt_schema in enumerate(alt_schemas)
|
||||
))
|
||||
|
||||
def _visit_pattern(self, pattern, name):
|
||||
'''
|
||||
Transforms a regular expression pattern into a GBNF rule.
|
||||
|
||||
Input: https://json-schema.org/understanding-json-schema/reference/regular_expressions
|
||||
Output: https://github.com/ggerganov/llama.cpp/blob/master/grammars/README.md
|
||||
|
||||
Unsupported features: negative/positive lookaheads, greedy/non-greedy modifiers.
|
||||
|
||||
Mostly a 1:1 translation, except for {x} / {x,} / {x,y} quantifiers for which
|
||||
we define sub-rules to keep the output lean.
|
||||
'''
|
||||
|
||||
assert pattern.startswith('^') and pattern.endswith('$'), 'Pattern must start with "^" and end with "$"'
|
||||
pattern = pattern[1:-1]
|
||||
sub_rule_ids = {}
|
||||
|
||||
i = 0
|
||||
length = len(pattern)
|
||||
|
||||
def to_rule(s: Tuple[str, bool]) -> str:
|
||||
(txt, is_literal) = s
|
||||
return "\"" + txt + "\"" if is_literal else txt
|
||||
|
||||
def transform() -> Tuple[str, bool]:
|
||||
'''
|
||||
Parse a unit at index i (advancing it), and return its string representation + whether it's a literal.
|
||||
'''
|
||||
nonlocal i
|
||||
nonlocal pattern
|
||||
nonlocal sub_rule_ids
|
||||
|
||||
start = i
|
||||
# For each component of this sequence, store its string representation and whether it's a literal.
|
||||
# We only need a flat structure here to apply repetition operators to the last item, and
|
||||
# to merge literals at the and (we're parsing grouped ( sequences ) recursively and don't treat '|' specially
|
||||
# (GBNF's syntax is luckily very close to regular expressions!)
|
||||
seq: list[Tuple[str, bool]] = []
|
||||
|
||||
def get_dot():
|
||||
if self._dotall:
|
||||
rule = '[\\U00000000-\\U0010FFFF]'
|
||||
else:
|
||||
# Accept any character... except \n and \r line break chars (\x0A and \xOD)
|
||||
rule = '[\\U00000000-\\x09\\x0B\\x0C\\x0E-\\U0010FFFF]'
|
||||
return self._add_rule(f'dot', rule)
|
||||
|
||||
def join_seq():
|
||||
nonlocal seq
|
||||
ret = []
|
||||
for is_literal, g in itertools.groupby(seq, lambda x: x[1]):
|
||||
if is_literal:
|
||||
ret.append((''.join(x[0] for x in g), True))
|
||||
else:
|
||||
ret.extend(g)
|
||||
if len(ret) == 1:
|
||||
return ret[0]
|
||||
return (' '.join(to_rule(x) for x in seq), False)
|
||||
|
||||
while i < length:
|
||||
c = pattern[i]
|
||||
if c == '.':
|
||||
seq.append((get_dot(), False))
|
||||
i += 1
|
||||
elif c == '(':
|
||||
i += 1
|
||||
if i < length:
|
||||
assert pattern[i] != '?', f'Unsupported pattern syntax "{pattern[i]}" at index {i} of /{pattern}/'
|
||||
seq.append((f'({to_rule(transform())})', False))
|
||||
elif c == ')':
|
||||
i += 1
|
||||
assert start > 0 and pattern[start-1] == '(', f'Unbalanced parentheses; start = {start}, i = {i}, pattern = {pattern}'
|
||||
return join_seq()
|
||||
elif c == '[':
|
||||
square_brackets = c
|
||||
i += 1
|
||||
while i < length and pattern[i] != ']':
|
||||
if pattern[i] == '\\':
|
||||
square_brackets += pattern[i:i+2]
|
||||
i += 2
|
||||
else:
|
||||
square_brackets += pattern[i]
|
||||
i += 1
|
||||
assert i < length, f'Unbalanced square brackets; start = {start}, i = {i}, pattern = {pattern}'
|
||||
square_brackets += ']'
|
||||
i += 1
|
||||
seq.append((square_brackets, False))
|
||||
elif c == '|':
|
||||
seq.append(('|', False))
|
||||
i += 1
|
||||
elif c in ('*', '+', '?'):
|
||||
seq[-1] = (to_rule(seq[-1]) + c, False)
|
||||
i += 1
|
||||
elif c == '{':
|
||||
curly_brackets = c
|
||||
i += 1
|
||||
while i < length and pattern[i] != '}':
|
||||
curly_brackets += pattern[i]
|
||||
i += 1
|
||||
assert i < length, f'Unbalanced curly brackets; start = {start}, i = {i}, pattern = {pattern}'
|
||||
curly_brackets += '}'
|
||||
i += 1
|
||||
nums = [s.strip() for s in curly_brackets[1:-1].split(',')]
|
||||
min_times = 0
|
||||
max_times = None
|
||||
try:
|
||||
if len(nums) == 1:
|
||||
min_times = int(nums[0])
|
||||
max_times = min_times
|
||||
else:
|
||||
assert len(nums) == 2
|
||||
min_times = int(nums[0]) if nums[0] else 0
|
||||
max_times = int(nums[1]) if nums[1] else None
|
||||
except ValueError:
|
||||
raise ValueError(f'Invalid quantifier {curly_brackets} in /{pattern}/')
|
||||
|
||||
(sub, sub_is_literal) = seq[-1]
|
||||
|
||||
if min_times == 0 and max_times is None:
|
||||
seq[-1] = (f'{sub}*', False)
|
||||
elif min_times == 0 and max_times == 1:
|
||||
seq[-1] = (f'{sub}?', False)
|
||||
elif min_times == 1 and max_times is None:
|
||||
seq[-1] = (f'{sub}+', False)
|
||||
else:
|
||||
if not sub_is_literal:
|
||||
id = sub_rule_ids.get(sub)
|
||||
if id is None:
|
||||
id = self._add_rule(f'{name}-{len(sub_rule_ids) + 1}', sub)
|
||||
sub_rule_ids[sub] = id
|
||||
sub = id
|
||||
|
||||
seq[-1] = (
|
||||
' '.join(
|
||||
([f'"{sub[1:-1] * min_times}"'] if sub_is_literal else [sub] * min_times) +
|
||||
([f'{sub}?'] * (max_times - min_times) if max_times is not None else [f'{sub}*'])),
|
||||
False
|
||||
)
|
||||
else:
|
||||
literal = ''
|
||||
while i < length:
|
||||
if pattern[i] == '\\' and i < length - 1:
|
||||
next = pattern[i + 1]
|
||||
if next in ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS:
|
||||
i += 1
|
||||
literal += pattern[i]
|
||||
i += 1
|
||||
else:
|
||||
literal += pattern[i:i+2]
|
||||
i += 2
|
||||
elif pattern[i] == '"' and not self._raw_pattern:
|
||||
literal += '\\"'
|
||||
i += 1
|
||||
elif pattern[i] not in NON_LITERAL_SET and \
|
||||
(i == length - 1 or literal == '' or pattern[i+1] == '.' or pattern[i+1] not in NON_LITERAL_SET):
|
||||
literal += pattern[i]
|
||||
i += 1
|
||||
else:
|
||||
break
|
||||
if literal:
|
||||
seq.append((literal, True))
|
||||
|
||||
return join_seq()
|
||||
|
||||
return self._add_rule(
|
||||
name,
|
||||
to_rule(transform()) if self._raw_pattern \
|
||||
else "\"\\\"\" " + to_rule(transform()) + " \"\\\"\" space")
|
||||
|
||||
|
||||
def _resolve_ref(self, ref):
|
||||
ref_name = ref.split('/')[-1]
|
||||
if ref_name not in self._rules and ref not in self._refs_being_resolved:
|
||||
self._refs_being_resolved.add(ref)
|
||||
resolved = self._refs[ref]
|
||||
ref_name = self.visit(resolved, ref_name)
|
||||
self._refs_being_resolved.remove(ref)
|
||||
return ref_name
|
||||
|
||||
def _generate_constant_rule(self, value):
|
||||
return self._format_literal(json.dumps(value))
|
||||
|
||||
def visit(self, schema, name):
|
||||
schema_type = schema.get('type')
|
||||
rule_name = name or 'root'
|
||||
schema_format = schema.get('format')
|
||||
rule_name = name + '-' if name in RESERVED_NAMES else name or 'root'
|
||||
|
||||
if 'oneOf' in schema or 'anyOf' in schema:
|
||||
rule = ' | '.join((
|
||||
self.visit(alt_schema, f'{name}{"-" if name else ""}{i}')
|
||||
for i, alt_schema in enumerate(schema.get('oneOf') or schema['anyOf'])
|
||||
))
|
||||
return self._add_rule(rule_name, rule)
|
||||
if (ref := schema.get('$ref')) is not None:
|
||||
return self._add_rule(rule_name, self._resolve_ref(ref))
|
||||
|
||||
elif 'oneOf' in schema or 'anyOf' in schema:
|
||||
return self._add_rule(rule_name, self._generate_union_rule(name, schema.get('oneOf') or schema['anyOf']))
|
||||
|
||||
elif isinstance(schema_type, list):
|
||||
return self._add_rule(rule_name, self._generate_union_rule(name, [{'type': t} for t in schema_type]))
|
||||
|
||||
elif 'const' in schema:
|
||||
return self._add_rule(rule_name, self._format_literal(schema['const']))
|
||||
return self._add_rule(rule_name, self._generate_constant_rule(schema['const']))
|
||||
|
||||
elif 'enum' in schema:
|
||||
rule = ' | '.join((self._format_literal(v) for v in schema['enum']))
|
||||
rule = ' | '.join((self._generate_constant_rule(v) for v in schema['enum']))
|
||||
return self._add_rule(rule_name, rule)
|
||||
|
||||
elif schema_type == 'object' and 'properties' in schema:
|
||||
# TODO: `required` keyword
|
||||
prop_order = self._prop_order
|
||||
prop_pairs = sorted(
|
||||
schema['properties'].items(),
|
||||
# sort by position in prop_order (if specified) then by key
|
||||
key=lambda kv: (prop_order.get(kv[0], len(prop_order)), kv[0]),
|
||||
elif schema_type in (None, 'object') and \
|
||||
('properties' in schema or \
|
||||
('additionalProperties' in schema and schema['additionalProperties'] is not True)):
|
||||
required = set(schema.get('required', []))
|
||||
properties = list(schema.get('properties', {}).items())
|
||||
return self._add_rule(rule_name, self._build_object_rule(properties, required, name, schema.get('additionalProperties')))
|
||||
|
||||
elif schema_type in (None, 'object') and 'allOf' in schema:
|
||||
required = set()
|
||||
properties = []
|
||||
hybrid_name = name
|
||||
def add_component(comp_schema, is_required):
|
||||
if (ref := comp_schema.get('$ref')) is not None:
|
||||
comp_schema = self._refs[ref]
|
||||
|
||||
if 'properties' in comp_schema:
|
||||
for prop_name, prop_schema in comp_schema['properties'].items():
|
||||
properties.append((prop_name, prop_schema))
|
||||
if is_required:
|
||||
required.add(prop_name)
|
||||
|
||||
for t in schema['allOf']:
|
||||
if 'anyOf' in t:
|
||||
for tt in t['anyOf']:
|
||||
add_component(tt, is_required=False)
|
||||
else:
|
||||
add_component(t, is_required=True)
|
||||
|
||||
return self._add_rule(rule_name, self._build_object_rule(properties, required, hybrid_name, additional_properties=[]))
|
||||
|
||||
elif schema_type in (None, 'array') and ('items' in schema or 'prefixItems' in schema):
|
||||
items = schema.get('items') or schema['prefixItems']
|
||||
if isinstance(items, list):
|
||||
return self._add_rule(
|
||||
rule_name,
|
||||
'"[" space ' +
|
||||
' "," space '.join(
|
||||
self.visit(item, f'{name}{"-" if name else ""}tuple-{i}')
|
||||
for i, item in enumerate(items)) +
|
||||
' "]" space')
|
||||
else:
|
||||
item_rule_name = self.visit(items, f'{name}{"-" if name else ""}item')
|
||||
list_item_operator = f'( "," space {item_rule_name} )'
|
||||
successive_items = ""
|
||||
min_items = schema.get("minItems", 0)
|
||||
max_items = schema.get("maxItems")
|
||||
if min_items > 0:
|
||||
successive_items = list_item_operator * (min_items - 1)
|
||||
min_items -= 1
|
||||
if max_items is not None and max_items > min_items:
|
||||
successive_items += (list_item_operator + "?") * (max_items - min_items - 1)
|
||||
else:
|
||||
successive_items += list_item_operator + "*"
|
||||
if min_items == 0:
|
||||
rule = f'"[" space ( {item_rule_name} {successive_items} )? "]" space'
|
||||
else:
|
||||
rule = f'"[" space {item_rule_name} {successive_items} "]" space'
|
||||
return self._add_rule(rule_name, rule)
|
||||
|
||||
elif schema_type in (None, 'string') and 'pattern' in schema:
|
||||
return self._visit_pattern(schema['pattern'], rule_name)
|
||||
|
||||
elif schema_type in (None, 'string') and re.match(r'^uuid[1-5]?$', schema_format or ''):
|
||||
return self._add_rule(
|
||||
'root' if rule_name == 'root' else schema_format,
|
||||
PRIMITIVE_RULES['uuid']
|
||||
)
|
||||
|
||||
rule = '"{" space'
|
||||
for i, (prop_name, prop_schema) in enumerate(prop_pairs):
|
||||
prop_rule_name = self.visit(prop_schema, f'{name}{"-" if name else ""}{prop_name}')
|
||||
if i > 0:
|
||||
rule += ' "," space'
|
||||
rule += fr' {self._format_literal(prop_name)} space ":" space {prop_rule_name}'
|
||||
rule += ' "}" space'
|
||||
elif schema_type in (None, 'string') and schema_format in DATE_RULES:
|
||||
for t, r in DATE_RULES.items():
|
||||
self._add_rule(t, r)
|
||||
return schema_format + '-string'
|
||||
|
||||
return self._add_rule(rule_name, rule)
|
||||
|
||||
elif schema_type == 'array' and 'items' in schema:
|
||||
# TODO `prefixItems` keyword
|
||||
item_rule_name = self.visit(schema['items'], f'{name}{"-" if name else ""}item')
|
||||
list_item_operator = f'("," space {item_rule_name})'
|
||||
successive_items = ""
|
||||
min_items = schema.get("minItems", 0)
|
||||
if min_items > 0:
|
||||
first_item = f"({item_rule_name})"
|
||||
successive_items = list_item_operator * (min_items - 1)
|
||||
min_items -= 1
|
||||
else:
|
||||
first_item = f"({item_rule_name})?"
|
||||
max_items = schema.get("maxItems")
|
||||
if max_items is not None and max_items > min_items:
|
||||
successive_items += (list_item_operator + "?") * (max_items - min_items - 1)
|
||||
else:
|
||||
successive_items += list_item_operator + "*"
|
||||
rule = f'"[" space {first_item} {successive_items} "]" space'
|
||||
return self._add_rule(rule_name, rule)
|
||||
elif (schema_type == 'object') or (len(schema) == 0):
|
||||
for n in OBJECT_RULE_NAMES:
|
||||
self._add_rule(n, PRIMITIVE_RULES[n])
|
||||
return self._add_rule(rule_name, 'object')
|
||||
|
||||
else:
|
||||
assert schema_type in PRIMITIVE_RULES, f'Unrecognized schema: {schema}'
|
||||
# TODO: support minimum, maximum, exclusiveMinimum, exclusiveMaximum at least for zero
|
||||
return self._add_rule(
|
||||
'root' if rule_name == 'root' else schema_type,
|
||||
PRIMITIVE_RULES[schema_type]
|
||||
)
|
||||
|
||||
def _build_object_rule(self, properties: List[Tuple[str, Any]], required: Set[str], name: str, additional_properties: Union[bool, Any]):
|
||||
prop_order = self._prop_order
|
||||
# sort by position in prop_order (if specified) then by original order
|
||||
sorted_props = [kv[0] for _, kv in sorted(enumerate(properties), key=lambda ikv: (prop_order.get(ikv[1][0], len(prop_order)), ikv[0]))]
|
||||
|
||||
prop_kv_rule_names = {}
|
||||
for prop_name, prop_schema in properties:
|
||||
prop_rule_name = self.visit(prop_schema, f'{name}{"-" if name else ""}{prop_name}')
|
||||
prop_kv_rule_names[prop_name] = self._add_rule(
|
||||
f'{name}{"-" if name else ""}{prop_name}-kv',
|
||||
fr'{self._format_literal(json.dumps(prop_name))} space ":" space {prop_rule_name}'
|
||||
)
|
||||
required_props = [k for k in sorted_props if k in required]
|
||||
optional_props = [k for k in sorted_props if k not in required]
|
||||
|
||||
if additional_properties == True or isinstance(additional_properties, dict):
|
||||
sub_name = f'{name}{"-" if name else ""}additional'
|
||||
value_rule = self.visit({} if additional_properties == True else additional_properties, f'{sub_name}-value')
|
||||
prop_kv_rule_names["*"] = self._add_rule(
|
||||
f'{sub_name}-kv',
|
||||
self._add_rule('string', PRIMITIVE_RULES['string']) + f' ":" space {value_rule}'
|
||||
)
|
||||
optional_props.append("*")
|
||||
|
||||
rule = '"{" space '
|
||||
rule += ' "," space '.join(prop_kv_rule_names[k] for k in required_props)
|
||||
|
||||
if optional_props:
|
||||
rule += ' ('
|
||||
if required_props:
|
||||
rule += ' "," space ( '
|
||||
|
||||
def get_recursive_refs(ks, first_is_optional):
|
||||
[k, *rest] = ks
|
||||
kv_rule_name = prop_kv_rule_names[k]
|
||||
if k == '*':
|
||||
res = self._add_rule(
|
||||
f'{name}{"-" if name else ""}additional-kvs',
|
||||
f'{kv_rule_name} ( "," space ' + kv_rule_name + ' )*'
|
||||
)
|
||||
elif first_is_optional:
|
||||
res = f'( "," space {kv_rule_name} )?'
|
||||
else:
|
||||
res = kv_rule_name
|
||||
if len(rest) > 0:
|
||||
res += ' ' + self._add_rule(
|
||||
f'{name}{"-" if name else ""}{k}-rest',
|
||||
get_recursive_refs(rest, first_is_optional=True)
|
||||
)
|
||||
return res
|
||||
|
||||
rule += ' | '.join(
|
||||
get_recursive_refs(optional_props[i:], first_is_optional=False)
|
||||
for i in range(len(optional_props))
|
||||
)
|
||||
if required_props:
|
||||
rule += ' )'
|
||||
rule += ' )?'
|
||||
|
||||
rule += ' "}" space'
|
||||
|
||||
return rule
|
||||
|
||||
def format_grammar(self):
|
||||
return '\n'.join((f'{name} ::= {rule}' for name, rule in self._rules.items()))
|
||||
return '\n'.join(
|
||||
f'{name} ::= {rule}'
|
||||
for name, rule in sorted(self._rules.items(), key=lambda kv: kv[0])
|
||||
)
|
||||
|
||||
|
||||
def main(args_in = None):
|
||||
@@ -129,16 +501,47 @@ def main(args_in = None):
|
||||
type=lambda s: s.split(','),
|
||||
help='''
|
||||
comma-separated property names defining the order of precedence for object properties;
|
||||
properties not specified here are given lower precedence than those that are, and are
|
||||
sorted alphabetically
|
||||
properties not specified here are given lower precedence than those that are, and
|
||||
are kept in their original order from the schema. Required properties are always
|
||||
given precedence over optional properties.
|
||||
'''
|
||||
)
|
||||
parser.add_argument(
|
||||
'--allow-fetch',
|
||||
action='store_true',
|
||||
default=False,
|
||||
help='Whether to allow fetching referenced schemas over HTTPS')
|
||||
parser.add_argument(
|
||||
'--dotall',
|
||||
action='store_true',
|
||||
default=False,
|
||||
help='Whether to treat dot (".") as matching all chars including line breaks in regular expression patterns')
|
||||
parser.add_argument(
|
||||
'--raw-pattern',
|
||||
action='store_true',
|
||||
default=False,
|
||||
help='Treats string patterns as raw patterns w/o quotes (or quote escapes)')
|
||||
|
||||
parser.add_argument('schema', help='file containing JSON schema ("-" for stdin)')
|
||||
args = parser.parse_args(args_in)
|
||||
|
||||
schema = json.load(sys.stdin if args.schema == '-' else open(args.schema))
|
||||
prop_order = {name: idx for idx, name in enumerate(args.prop_order)}
|
||||
converter = SchemaConverter(prop_order)
|
||||
if args.schema.startswith('https://'):
|
||||
url = args.schema
|
||||
import requests
|
||||
schema = requests.get(url).json()
|
||||
elif args.schema == '-':
|
||||
url = 'stdin'
|
||||
schema = json.load(sys.stdin)
|
||||
else:
|
||||
url = f'file://{args.schema}'
|
||||
with open(args.schema) as f:
|
||||
schema = json.load(f)
|
||||
converter = SchemaConverter(
|
||||
prop_order={name: idx for idx, name in enumerate(args.prop_order)},
|
||||
allow_fetch=args.allow_fetch,
|
||||
dotall=args.dotall,
|
||||
raw_pattern=args.raw_pattern)
|
||||
schema = converter.resolve_refs(schema, url)
|
||||
converter.visit(schema, '')
|
||||
print(converter.format_grammar())
|
||||
|
||||
|
||||
@@ -113,7 +113,7 @@ static std::string get_cpu_info() {
|
||||
|
||||
static std::string get_gpu_info() {
|
||||
std::string id;
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
#ifdef GGML_USE_CUDA
|
||||
int count = ggml_backend_cuda_get_device_count();
|
||||
for (int i = 0; i < count; i++) {
|
||||
char buf[128];
|
||||
@@ -249,6 +249,9 @@ static ggml_type ggml_type_from_name(const std::string & s) {
|
||||
if (s == "q5_1") {
|
||||
return GGML_TYPE_Q5_1;
|
||||
}
|
||||
if (s == "iq4_nl") {
|
||||
return GGML_TYPE_IQ4_NL;
|
||||
}
|
||||
|
||||
return GGML_TYPE_COUNT;
|
||||
}
|
||||
@@ -805,7 +808,7 @@ struct test {
|
||||
|
||||
const std::string test::build_commit = LLAMA_COMMIT;
|
||||
const int test::build_number = LLAMA_BUILD_NUMBER;
|
||||
const bool test::cuda = !!ggml_cpu_has_cublas();
|
||||
const bool test::cuda = !!ggml_cpu_has_cuda();
|
||||
const bool test::opencl = !!ggml_cpu_has_clblast();
|
||||
const bool test::vulkan = !!ggml_cpu_has_vulkan();
|
||||
const bool test::kompute = !!ggml_cpu_has_kompute();
|
||||
|
||||
@@ -1,11 +1,13 @@
|
||||
# MobileVLM
|
||||
|
||||
Currently this implementation supports [MobileVLM-v1.7](https://huggingface.co/mtgv/MobileVLM-1.7B) variants.
|
||||
Currently this implementation supports [MobileVLM-1.7B](https://huggingface.co/mtgv/MobileVLM-1.7B) / [MobileVLM_V2-1.7B](https://huggingface.co/mtgv/MobileVLM_V2-1.7B) variants.
|
||||
|
||||
for more information, please go to [Meituan-AutoML/MobileVLM](https://github.com/Meituan-AutoML/MobileVLM)
|
||||
|
||||
The implementation is based on llava, and is compatible with llava and mobileVLM. The usage is basically same as llava.
|
||||
|
||||
Notice: The overall process of model inference for both **MobileVLM** and **MobileVLM_V2** models is the same, but the process of model conversion is a little different. Therefore, using **MobileVLM-1.7B** as an example, the different conversion step will be shown.
|
||||
|
||||
## Usage
|
||||
Build with cmake or run `make llava-cli` to build it.
|
||||
|
||||
@@ -34,7 +36,7 @@ git clone https://huggingface.co/openai/clip-vit-large-patch14-336
|
||||
python ./examples/llava/llava-surgery.py -m path/to/MobileVLM-1.7B
|
||||
```
|
||||
|
||||
3. Use `convert-image-encoder-to-gguf.py` with `--projector-type ldp` to convert the LLaVA image encoder to GGUF:
|
||||
3. Use `convert-image-encoder-to-gguf.py` with `--projector-type ldp` (for **V2** please use `--projector-type ldpv2`) to convert the LLaVA image encoder to GGUF:
|
||||
|
||||
```sh
|
||||
python ./examples/llava/convert-image-encoder-to-gguf \
|
||||
@@ -44,6 +46,14 @@ python ./examples/llava/convert-image-encoder-to-gguf \
|
||||
--projector-type ldp
|
||||
```
|
||||
|
||||
```sh
|
||||
python ./examples/llava/convert-image-encoder-to-gguf \
|
||||
-m path/to/clip-vit-large-patch14-336 \
|
||||
--llava-projector path/to/MobileVLM-1.7B_V2/llava.projector \
|
||||
--output-dir path/to/MobileVLM-1.7B_V2 \
|
||||
--projector-type ldpv2
|
||||
```
|
||||
|
||||
4. Use `convert.py` to convert the LLaMA part of LLaVA to GGUF:
|
||||
|
||||
```sh
|
||||
@@ -68,7 +78,7 @@ cd examples/llava/android/build_64
|
||||
### run on Android
|
||||
refer to `android/adb_run.sh`, modify resources' `name` and `path`
|
||||
|
||||
## some result on Android with `Snapdragon 888` chip
|
||||
## Some result on Android with `Snapdragon 888` chip
|
||||
### case 1
|
||||
**input**
|
||||
```sh
|
||||
@@ -99,7 +109,6 @@ llama_print_timings: total time = 34731.93 ms
|
||||
--image /data/local/tmp/cat.jpeg \
|
||||
-p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWhat is in the image? ASSISTANT:"
|
||||
```
|
||||
|
||||
**output**
|
||||
```sh
|
||||
encode_image_with_clip: image encoded in 21149.51 ms by CLIP ( 146.87 ms per image patch)
|
||||
@@ -111,12 +120,82 @@ llama_print_timings: eval time = 1279.03 ms / 18 runs ( 71.06 m
|
||||
llama_print_timings: total time = 34570.79 ms
|
||||
```
|
||||
|
||||
|
||||
## Some result on Android with `Snapdragon 778G` chip
|
||||
### MobileVLM-1.7B case
|
||||
#### llava-cli release-b2005
|
||||
**input**
|
||||
```sh
|
||||
/data/local/tmp/llava-cli \
|
||||
-m /data/local/tmp/ggml-model-q4_k.gguf \
|
||||
--mmproj /data/local/tmp/mmproj-model-f16.gguf \
|
||||
-t 4 \
|
||||
--image /data/local/tmp/many_llamas.jpeg \
|
||||
-p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWhat's that? ASSISTANT:"
|
||||
```
|
||||
**output**
|
||||
```sh
|
||||
encode_image_with_clip: image encoded in 18728.52 ms by CLIP ( 130.06 ms per image patch)
|
||||
system_prompt: A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER:
|
||||
user_prompt: \nWhat's that? ASSISTANT:
|
||||
|
||||
A group of llamas are standing in a green pasture.
|
||||
|
||||
llama_print_timings: load time = 20357.33 ms
|
||||
llama_print_timings: sample time = 2.96 ms / 14 runs ( 0.21 ms per token, 4734.53 tokens per second)
|
||||
llama_print_timings: prompt eval time = 8119.49 ms / 191 tokens ( 42.51 ms per token, 23.52 tokens per second)
|
||||
llama_print_timings: eval time = 1005.75 ms / 14 runs ( 71.84 ms per token, 13.92 tokens per second)
|
||||
llama_print_timings: total time = 28038.34 ms / 205 tokens
|
||||
```
|
||||
#### llava-cli latest-version
|
||||
**input**
|
||||
|
||||
Just the same as above.
|
||||
|
||||
**output**(seems to be much slower)
|
||||
```sh
|
||||
encode_image_with_clip: image embedding created: 144 tokens
|
||||
|
||||
encode_image_with_clip: image encoded in 288268.88 ms by CLIP ( 2001.87 ms per image patch)
|
||||
system_prompt: A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER:
|
||||
user_prompt: \nWhat's that? ASSISTANT:
|
||||
|
||||
It is a group of sheep standing together in a grass field.
|
||||
|
||||
llama_print_timings: load time = 818120.91 ms
|
||||
llama_print_timings: sample time = 3.44 ms / 14 runs ( 0.25 ms per token, 4067.40 tokens per second)
|
||||
llama_print_timings: prompt eval time = 529274.69 ms / 191 tokens ( 2771.07 ms per token, 0.36 tokens per second)
|
||||
llama_print_timings: eval time = 43894.02 ms / 13 runs ( 3376.46 ms per token, 0.30 tokens per second)
|
||||
llama_print_timings: total time = 865441.76 ms / 204 tokens
|
||||
```
|
||||
### MobileVLM_V2-1.7B case
|
||||
#### llava-cli release-2005b
|
||||
**input**
|
||||
|
||||
Just the same as above.
|
||||
|
||||
**output**
|
||||
```sh
|
||||
encode_image_with_clip: image encoded in 20609.61 ms by CLIP ( 143.12 ms per image patch)
|
||||
system_prompt: A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER:
|
||||
user_prompt: \nWhat's that? ASSISTANT:
|
||||
|
||||
This image captures a lively scene of 20 llamas in motion on an expansive, grassy field. The llama is scattered across the landscape with some standing and others sitting down as if taking rest or observing their surroundings from different vantage points within this verdant setting.
|
||||
|
||||
The background offers glimpses into a picturesque town nestled amidst hills under an overcast sky, adding depth to the scene while also emphasizing that distance between these llama and human-made structures like houses or roads in which they roam freely without any barriers around them. The image is framed by text at both right angles on white backgrounds against a contrasting blue backdrop with green foliage, further drawing attention to the llamas amidst their natural habitat while also inviting viewers into this picturesque landscape within town limits of Alta Llama
|
||||
|
||||
llama_print_timings: load time = 22406.77 ms
|
||||
llama_print_timings: sample time = 49.26 ms / 186 runs ( 0.26 ms per token, 3776.27 tokens per second)
|
||||
llama_print_timings: prompt eval time = 9044.54 ms / 191 tokens ( 47.35 ms per token, 21.12 tokens per second)
|
||||
llama_print_timings: eval time = 14497.49 ms / 186 runs ( 77.94 ms per token, 12.83 tokens per second)
|
||||
llama_print_timings: total time = 44411.01 ms / 377 tokens
|
||||
```
|
||||
|
||||
## Orin compile and run
|
||||
### compile
|
||||
```sh
|
||||
make LLAMA_CUBLAS=1 CUDA_DOCKER_ARCH=sm_87 LLAMA_CUDA_F16=1 -j 32
|
||||
make LLAMA_CUDA=1 CUDA_DOCKER_ARCH=sm_87 LLAMA_CUDA_F16=1 -j 32
|
||||
```
|
||||
|
||||
### run on Orin
|
||||
### case 1
|
||||
**input**
|
||||
@@ -165,8 +244,121 @@ llama_print_timings: eval time = 166.65 ms / 11 runs ( 15.15 m
|
||||
llama_print_timings: total time = 1365.47 ms / 243 tokens
|
||||
```
|
||||
|
||||
## Minor shortcomings
|
||||
The `n_patch` of output in `ldp` is 1/4 of the input. In order to implement quickly, we uniformly modified `clip_n_patches` function to a quarter. when counting the time consumption, the calculated time will be 4 times bigger than the real cost.
|
||||
## Running on Intel(R) Core(TM) i7-10750H
|
||||
### Operating system
|
||||
Ubuntu22.04
|
||||
### compile
|
||||
```sh
|
||||
make -j32
|
||||
```
|
||||
### MobileVLM-1.7B case
|
||||
**input**
|
||||
```sh
|
||||
-m /path/to/ggml-model-q4_k.gguf \
|
||||
--mmproj /path/to/mmproj-model-f16.gguf \
|
||||
--image /path/to/many_llamas.jpeg
|
||||
-p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWhat's that? ASSISTANT:" \
|
||||
```
|
||||
**output**
|
||||
```sh
|
||||
encode_image_with_clip: image embedding created: 144 tokens
|
||||
|
||||
encode_image_with_clip: image encoded in 2730.94 ms by CLIP ( 18.96 ms per image patch)
|
||||
system_prompt: A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER:
|
||||
user_prompt: \nWhat's that?ASSISTANT:
|
||||
|
||||
A group of llamas are walking together in a field.
|
||||
|
||||
llama_print_timings: load time = 5506.60 ms
|
||||
llama_print_timings: sample time = 0.44 ms / 13 runs ( 0.03 ms per token, 29545.45 tokens per second)
|
||||
llama_print_timings: prompt eval time = 2031.58 ms / 190 tokens ( 10.69 ms per token, 93.52 tokens per second)
|
||||
llama_print_timings: eval time = 438.92 ms / 12 runs ( 36.58 ms per token, 27.34 tokens per second)
|
||||
llama_print_timings: total time = 5990.25 ms / 202 tokens
|
||||
```
|
||||
|
||||
### MobileVLM_V2-1.7B case
|
||||
**input**
|
||||
|
||||
Just the same as above.
|
||||
|
||||
**ouput**
|
||||
```sh
|
||||
encode_image_with_clip: image embedding created: 144 tokens
|
||||
|
||||
encode_image_with_clip: image encoded in 3223.89 ms by CLIP ( 22.39 ms per image patch)
|
||||
system_prompt: A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER:
|
||||
user_prompt: \nWhat's that?ASSISTANT:
|
||||
|
||||
The image captures a tranquil scene in a park, where a group of approximately 20 llamas are gathered. The llamas, a mix of white and black, are standing in a line, their black and white patterns contrasting with the lush green grass of the park. The lamas are arranged in a line, suggesting a social order.
|
||||
|
||||
The park itself is lush and green, with trees dotting the landscape in the background. A sign reading "Llamas Tico Ana" is also visible in the image, possibly indicating the location or the breed of the llamas. The image seems to be taken from a distance, providing a wide view of the scene and the surrounding environment.
|
||||
|
||||
The llamas' positions relative to each other, the sign, and the trees create a harmonious composition. The image does not contain any discernible text. The overall scene is one of peace and natural beauty, with the llamas in their natural habitat, surrounded by the vibrant colors and lush greenery of the park.
|
||||
|
||||
llama_print_timings: load time = 6642.61 ms
|
||||
llama_print_timings: sample time = 8.15 ms / 223 runs ( 0.04 ms per token, 27358.61 tokens per second)
|
||||
llama_print_timings: prompt eval time = 2475.07 ms / 190 tokens ( 13.03 ms per token, 76.77 tokens per second)
|
||||
llama_print_timings: eval time = 8760.60 ms / 222 runs ( 39.46 ms per token, 25.34 tokens per second)
|
||||
llama_print_timings: total time = 15513.95 ms / 412 tokens
|
||||
```
|
||||
|
||||
## Run on Intel(R) Core(TM) Ultra7 115H
|
||||
### operation system
|
||||
Windows11
|
||||
### comiple
|
||||
```sh
|
||||
make -j32
|
||||
```
|
||||
### MobileVLM-1.7B case
|
||||
**input**
|
||||
```sh
|
||||
-m /path/to/ggml-model-q4_k.gguf \
|
||||
--mmproj /path/to/tmp/mmproj-model-f16.gguf \
|
||||
-p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWhat's that? ASSISTANT:" \
|
||||
```
|
||||
**output**
|
||||
```sh
|
||||
encode_image_with_clip: image encoded in 4902.81 ms by CLIP ( 34.05 ms per image patch)
|
||||
system_prompt: A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER:
|
||||
user_prompt: \nWhat's that? ASSISTANT:
|
||||
|
||||
The image features a group of brown and white llamas standing in a grassy field.
|
||||
|
||||
llama_print_timings: load time = 7441.06 ms
|
||||
llama_print_timings: sample time = 0.72 ms / 19 runs ( 0.04 ms per token, 26279.39 tokens per second)
|
||||
llama_print_timings: prompt eval time = 2090.71 ms / 191 tokens ( 10.95 ms per token, 91.36 tokens per second)
|
||||
llama_print_timings: eval time = 512.35 ms / 18 runs ( 28.46 ms per token, 35.13 tokens per second)
|
||||
llama_print_timings: total time = 7987.23 ms / 209 tokens
|
||||
```
|
||||
|
||||
### MobileVLM_V2-1.7B case
|
||||
**input**
|
||||
|
||||
Just the same as above.
|
||||
|
||||
**output**
|
||||
```sh
|
||||
encode_image_with_clip: image encoded in 4682.44 ms by CLIP ( 32.52 ms per image patch)
|
||||
system_prompt: A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER:
|
||||
user_prompt: \nWhat's that? ASSISTANT:
|
||||
|
||||
This image captures a lively scene of a group of 14 llamas in a grassy field. The llamas, with their distinctive black and white coats, are standing and walking in a line, seemingly engaged in a social activity. One
|
||||
of them, possibly the first in the line, has its back turned, perhaps observing something in the distance.
|
||||
|
||||
The llama in the front of the line stands out due to its black and white coloring, which is quite unusual for llama patterns. The llama in the front also seems to be more aware of its surroundings, as it faces the camera, giving a sense of engagement with the viewer.
|
||||
|
||||
The image is taken from the side of the llama, providing a clear view of the llama in the front and its companions. The lameness in the llama in
|
||||
front is not visible, indicating that it might not be the main focus of the photo.
|
||||
|
||||
The background of the image features a grassy field, with a fence and a tree visible in the distance. The tree appears to be bare, suggesting that it might be during a time of year when most trees are dormant or have shed their leaves.
|
||||
|
||||
|
||||
llama_print_timings: load time = 7015.35 ms
|
||||
llama_print_timings: sample time = 10.61 ms / 256 runs ( 0.04 ms per token, 24119.09 tokens per second)
|
||||
llama_print_timings: prompt eval time = 2052.45 ms / 191 tokens ( 10.75 ms per token, 93.06 tokens per second)
|
||||
llama_print_timings: eval time = 7259.43 ms / 255 runs ( 28.47 ms per token, 35.13 tokens per second)
|
||||
llama_print_timings: total time = 14371.19 ms / 446 tokens
|
||||
```
|
||||
|
||||
## TODO
|
||||
|
||||
@@ -181,5 +373,5 @@ The `n_patch` of output in `ldp` is 1/4 of the input. In order to implement quic
|
||||
|
||||
## contributor
|
||||
```sh
|
||||
zhangjidong05, yangyang260, huyiming03, chenxiaotao03
|
||||
zhangjidong05, yangyang260, huyiming03, chenxiaotao03, ZiangWu-77
|
||||
```
|
||||
|
||||
@@ -7,7 +7,7 @@
|
||||
#include "ggml-alloc.h"
|
||||
#include "ggml-backend.h"
|
||||
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
#ifdef GGML_USE_CUDA
|
||||
#include "ggml-cuda.h"
|
||||
#endif
|
||||
|
||||
@@ -119,6 +119,7 @@ static std::string format(const char * fmt, ...) {
|
||||
#define TN_LLAVA_PROJ "mm.%d.%s"
|
||||
#define TN_MVLM_PROJ_MLP "mm.model.mlp.%d.%s"
|
||||
#define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s"
|
||||
#define TN_MVLM_PROJ_PEG "mm.model.peg.%d.%s"
|
||||
#define TN_IMAGE_NEWLINE "model.image_newline"
|
||||
|
||||
|
||||
@@ -126,12 +127,14 @@ enum projector_type {
|
||||
PROJECTOR_TYPE_MLP,
|
||||
PROJECTOR_TYPE_MLP_NORM,
|
||||
PROJECTOR_TYPE_LDP,
|
||||
PROJECTOR_TYPE_LDPV2,
|
||||
PROJECTOR_TYPE_UNKNOWN,
|
||||
};
|
||||
|
||||
static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
|
||||
{ PROJECTOR_TYPE_MLP, "mlp" },
|
||||
{ PROJECTOR_TYPE_LDP, "ldp" },
|
||||
{ PROJECTOR_TYPE_LDPV2, "ldpv2"},
|
||||
};
|
||||
|
||||
|
||||
@@ -475,6 +478,14 @@ struct clip_vision_model {
|
||||
struct ggml_tensor * mm_model_block_2_block_2_0_w;
|
||||
struct ggml_tensor * mm_model_block_2_block_2_1_w;
|
||||
struct ggml_tensor * mm_model_block_2_block_2_1_b;
|
||||
|
||||
// MobileVLM_V2 projection
|
||||
struct ggml_tensor * mm_model_mlp_0_w;
|
||||
struct ggml_tensor * mm_model_mlp_0_b;
|
||||
struct ggml_tensor * mm_model_mlp_2_w;
|
||||
struct ggml_tensor * mm_model_mlp_2_b;
|
||||
struct ggml_tensor * mm_model_peg_0_w;
|
||||
struct ggml_tensor * mm_model_peg_0_b;
|
||||
};
|
||||
|
||||
struct clip_ctx {
|
||||
@@ -807,6 +818,30 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
||||
}
|
||||
embeddings = block_1;
|
||||
}
|
||||
else if (ctx->proj_type == PROJECTOR_TYPE_LDPV2)
|
||||
{
|
||||
int n_patch = 24;
|
||||
struct ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
|
||||
mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
|
||||
mlp_0 = ggml_gelu(ctx0, mlp_0);
|
||||
struct ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
|
||||
mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
|
||||
// mlp_2 ne = [2048, 576, 1, 1]
|
||||
// // AVG Pool Layer 2*2, strides = 2
|
||||
mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 0, 2, 3));
|
||||
// mlp_2 ne = [576, 2048, 1, 1]
|
||||
mlp_2 = ggml_reshape_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
|
||||
// mlp_2 ne [24, 24, 2048, 1]
|
||||
mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
|
||||
// weight ne = [3, 3, 2048, 1]
|
||||
struct ggml_tensor * peg_0 = ggml_conv_depthwise_2d(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
|
||||
peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
|
||||
peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
|
||||
mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
|
||||
peg_0 = ggml_add(ctx0, peg_0, mlp_2);
|
||||
peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
|
||||
embeddings = peg_0;
|
||||
}
|
||||
else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
@@ -934,7 +969,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
#ifdef GGML_USE_CUDA
|
||||
new_clip->backend = ggml_backend_cuda_init(0);
|
||||
printf("%s: CLIP using CUDA backend\n", __func__);
|
||||
#endif
|
||||
@@ -1177,7 +1212,18 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
vision_model.mm_model_block_2_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
|
||||
vision_model.mm_model_block_2_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
|
||||
vision_model.mm_model_block_2_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
|
||||
} else {
|
||||
}
|
||||
else if (new_clip->proj_type == PROJECTOR_TYPE_LDPV2)
|
||||
{
|
||||
// MobilVLM_V2 projection
|
||||
vision_model.mm_model_mlp_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 0, "weight"));
|
||||
vision_model.mm_model_mlp_0_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 0, "bias"));
|
||||
vision_model.mm_model_mlp_2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 2, "weight"));
|
||||
vision_model.mm_model_mlp_2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 2, "bias"));
|
||||
vision_model.mm_model_peg_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "weight"));
|
||||
vision_model.mm_model_peg_0_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "bias"));
|
||||
}
|
||||
else {
|
||||
std::string proj_type = PROJECTOR_TYPE_NAMES[new_clip->proj_type];
|
||||
throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
|
||||
}
|
||||
@@ -1710,7 +1756,7 @@ int clip_n_patches(const struct clip_ctx * ctx) {
|
||||
|
||||
int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size);
|
||||
|
||||
if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
|
||||
if (ctx->proj_type == PROJECTOR_TYPE_LDP || ctx->proj_type == PROJECTOR_TYPE_LDPV2) {
|
||||
n_patches /= 4;
|
||||
}
|
||||
|
||||
@@ -1966,6 +2012,9 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
|
||||
if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
|
||||
return ctx->vision_model.mm_model_block_1_block_2_1_b->ne[0];
|
||||
}
|
||||
if (ctx->proj_type == PROJECTOR_TYPE_LDPV2) {
|
||||
return ctx->vision_model.mm_model_peg_0_b->ne[0];
|
||||
}
|
||||
if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
|
||||
return ctx->vision_model.mm_2_b->ne[0];
|
||||
}
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import argparse
|
||||
import os
|
||||
import json
|
||||
import re
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
@@ -38,9 +39,11 @@ def should_skip_tensor(name: str, has_text: bool, has_vision: bool, has_llava: b
|
||||
def get_tensor_name(name: str) -> str:
|
||||
if "projection" in name:
|
||||
return name
|
||||
|
||||
if "mm_projector" in name:
|
||||
return name.replace("model.mm_projector", "mm")
|
||||
name = name.replace("model.mm_projector", "mm")
|
||||
name = re.sub(r'mm\.mlp\.mlp', 'mm.model.mlp', name, count=1)
|
||||
name = re.sub(r'mm\.peg\.peg', 'mm.model.peg', name, count=1)
|
||||
return name
|
||||
|
||||
return name.replace("text_model", "t").replace("vision_model", "v").replace("encoder.layers", "blk").replace("embeddings.", "").replace("_proj", "").replace("self_attn.", "attn_").replace("layer_norm", "ln").replace("layernorm", "ln").replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("embedding", "embd").replace("final", "post").replace("layrnorm", "ln")
|
||||
|
||||
@@ -83,7 +86,7 @@ ap.add_argument("--clip-model-is-vision", action="store_true", required=False,
|
||||
ap.add_argument("--clip-model-is-openclip", action="store_true", required=False,
|
||||
help="The clip model is from openclip (for ViT-SO400M type))")
|
||||
ap.add_argument("--llava-projector", help="Path to llava.projector file. If specified, save an image encoder for LLaVA models.")
|
||||
ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp", choices=["mlp", "ldp"], default="mlp")
|
||||
ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp, ldpv2", choices=["mlp", "ldp", "ldpv2"], default="mlp")
|
||||
ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None)
|
||||
# Example --image_mean 0.48145466 0.4578275 0.40821073 --image_std 0.26862954 0.26130258 0.27577711
|
||||
# Example --image_mean 0.5 0.5 0.5 --image_std 0.5 0.5 0.5
|
||||
|
||||
@@ -3,3 +3,21 @@ add_executable(${TARGET} lookup.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
|
||||
set(TARGET lookup-create)
|
||||
add_executable(${TARGET} lookup-create.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
|
||||
set(TARGET lookup-merge)
|
||||
add_executable(${TARGET} lookup-merge.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
|
||||
set(TARGET lookup-stats)
|
||||
add_executable(${TARGET} lookup-stats.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
|
||||
43
examples/lookup/lookup-create.cpp
Normal file
43
examples/lookup/lookup-create.cpp
Normal file
@@ -0,0 +1,43 @@
|
||||
#include "ggml.h"
|
||||
#include "llama.h"
|
||||
#include "common.h"
|
||||
#include "ngram-cache.h"
|
||||
|
||||
#include <cstdint>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
|
||||
int main(int argc, char ** argv){
|
||||
gpt_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
return 1;
|
||||
}
|
||||
// init llama.cpp
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
llama_model * model = NULL;
|
||||
llama_context * ctx = NULL;
|
||||
|
||||
// load the model
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||
GGML_ASSERT(model != nullptr);
|
||||
|
||||
// tokenize the prompt
|
||||
const bool add_bos = llama_should_add_bos_token(model);
|
||||
|
||||
std::vector<llama_token> inp;
|
||||
inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
|
||||
fprintf(stderr, "%s: tokenization done\n", __func__);
|
||||
|
||||
|
||||
llama_ngram_cache ngram_cache;
|
||||
llama_ngram_cache_update(ngram_cache, LLAMA_NGRAM_STATIC, LLAMA_NGRAM_STATIC, inp, inp.size(), true);
|
||||
fprintf(stderr, "%s: hashing done, writing file to %s\n", __func__, params.lookup_cache_static.c_str());
|
||||
|
||||
llama_ngram_cache_save(ngram_cache, params.lookup_cache_static);
|
||||
}
|
||||
47
examples/lookup/lookup-merge.cpp
Normal file
47
examples/lookup/lookup-merge.cpp
Normal file
@@ -0,0 +1,47 @@
|
||||
#include "ggml.h"
|
||||
#include "llama.h"
|
||||
#include "common.h"
|
||||
#include "ngram-cache.h"
|
||||
|
||||
#include <cstdint>
|
||||
#include <cstdio>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
|
||||
static void print_usage() {
|
||||
fprintf(stderr, "Merges multiple lookup cache files into a single one.\n");
|
||||
fprintf(stderr, "Usage: lookup-merge [--help] lookup_part_1.bin lookup_part_2.bin ... lookup_merged.bin\n");
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv){
|
||||
if (argc < 3) {
|
||||
print_usage();
|
||||
exit(1);
|
||||
}
|
||||
|
||||
std::vector<std::string> args;
|
||||
args.resize(argc-1);
|
||||
for (int i = 0; i < argc-1; ++i) {
|
||||
args[i] = argv[i+1];
|
||||
if (args[i] == "-h" || args[i] == "--help") {
|
||||
print_usage();
|
||||
exit(0);
|
||||
}
|
||||
}
|
||||
|
||||
fprintf(stderr, "lookup-merge: loading file %s\n", args[0].c_str());
|
||||
llama_ngram_cache ngram_cache_merged = llama_ngram_cache_load(args[0]);
|
||||
|
||||
for (size_t i = 1; i < args.size()-1; ++i) {
|
||||
fprintf(stderr, "lookup-merge: loading file %s\n", args[i].c_str());
|
||||
llama_ngram_cache ngram_cache = llama_ngram_cache_load(args[i]);
|
||||
|
||||
llama_ngram_cache_merge(ngram_cache_merged, ngram_cache);
|
||||
}
|
||||
|
||||
fprintf(stderr, "lookup-merge: saving file %s\n", args.back().c_str());
|
||||
llama_ngram_cache_save(ngram_cache_merged, args.back());
|
||||
}
|
||||
163
examples/lookup/lookup-stats.cpp
Normal file
163
examples/lookup/lookup-stats.cpp
Normal file
@@ -0,0 +1,163 @@
|
||||
#include "ggml.h"
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
#include "log.h"
|
||||
#include "ngram-cache.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <cstdint>
|
||||
#include <cstdio>
|
||||
#include <fstream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <unordered_map>
|
||||
|
||||
int main(int argc, char ** argv){
|
||||
gpt_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
const int n_draft = params.n_draft;
|
||||
|
||||
// init llama.cpp
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
llama_model * model = NULL;
|
||||
llama_context * ctx = NULL;
|
||||
|
||||
// load the model
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||
llama_set_rng_seed(ctx, params.seed);
|
||||
GGML_ASSERT(llama_n_vocab(model) < (1 << 16));
|
||||
|
||||
// tokenize the prompt
|
||||
const bool add_bos = llama_should_add_bos_token(model);
|
||||
LOG("add_bos tgt: %d\n", add_bos);
|
||||
|
||||
std::vector<llama_token> inp;
|
||||
inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
|
||||
|
||||
llama_ngram_cache ngram_cache_context;
|
||||
llama_ngram_cache ngram_cache_dynamic;
|
||||
llama_ngram_cache ngram_cache_static;
|
||||
int64_t t_draft_flat_us = 0;
|
||||
int64_t t_draft_us = 0;
|
||||
|
||||
{
|
||||
const int64_t t_start_draft_us = ggml_time_us();
|
||||
|
||||
if (!params.lookup_cache_static.empty()) {
|
||||
try {
|
||||
ngram_cache_static = llama_ngram_cache_load(params.lookup_cache_static);
|
||||
} catch (std::ifstream::failure const &) {
|
||||
fprintf(stderr, "error: failed to open static lookup cache: %s", params.lookup_cache_static.c_str());
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
|
||||
if (!params.lookup_cache_dynamic.empty()) {
|
||||
try {
|
||||
ngram_cache_dynamic = llama_ngram_cache_load(params.lookup_cache_dynamic);
|
||||
} catch (std::ifstream::failure const &) {} // if the file does not exist it will simply be created at the end of the program
|
||||
}
|
||||
|
||||
t_draft_flat_us += ggml_time_us() - t_start_draft_us;
|
||||
}
|
||||
|
||||
const int n_input = inp.size();
|
||||
const int n_ctx = params.n_ctx;
|
||||
|
||||
int n_drafted = 0;
|
||||
int n_accept = 0;
|
||||
|
||||
const int64_t t_start_ms = ggml_time_ms();
|
||||
|
||||
// Iterate over input tokens in chunks of size n_ctx.
|
||||
// Each chunk is treated as if a sequential generation but with pre-determined tokens to ensure reproducibility.
|
||||
for (int i_start = 0; i_start + n_ctx < n_input; i_start += n_ctx) {
|
||||
const std::vector<llama_token> inp_slice(inp.begin() + i_start, inp.begin() + i_start + n_ctx);
|
||||
std::vector<llama_token> pseudo_output;
|
||||
pseudo_output.push_back(inp_slice[0]);
|
||||
|
||||
while ((int) pseudo_output.size() < n_ctx) {
|
||||
// Simulate drafting and decoding from draft:
|
||||
std::vector<llama_token> draft;
|
||||
draft.push_back(pseudo_output.back());
|
||||
|
||||
{
|
||||
const int64_t t_start_draft_us = ggml_time_us();
|
||||
llama_ngram_cache_draft(pseudo_output, draft, n_draft, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, ngram_cache_context, ngram_cache_dynamic, ngram_cache_static);
|
||||
t_draft_us += ggml_time_us() - t_start_draft_us;
|
||||
}
|
||||
|
||||
n_drafted += draft.size() - 1;
|
||||
|
||||
for (size_t j = 1; j < draft.size() && (int) pseudo_output.size() < n_ctx; ++j) {
|
||||
const llama_token ground_truth = inp_slice[pseudo_output.size()];
|
||||
const llama_token drafted = draft[j];
|
||||
|
||||
if (ground_truth != drafted) {
|
||||
break;
|
||||
}
|
||||
|
||||
++n_accept;
|
||||
pseudo_output.push_back(ground_truth);
|
||||
|
||||
{
|
||||
const int64_t t_start_draft_us = ggml_time_us();
|
||||
llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, pseudo_output, 1, false);
|
||||
t_draft_us += ggml_time_us() - t_start_draft_us;
|
||||
}
|
||||
}
|
||||
|
||||
// After each simulated batch decoding simulate the sampling of a single token:
|
||||
if ((int) pseudo_output.size() < n_ctx) {
|
||||
pseudo_output.push_back(inp_slice[pseudo_output.size()]);
|
||||
{
|
||||
const int64_t t_start_draft_us = ggml_time_us();
|
||||
llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, pseudo_output, 1, false);
|
||||
t_draft_us += ggml_time_us() - t_start_draft_us;
|
||||
}
|
||||
}
|
||||
|
||||
draft.erase(draft.begin());
|
||||
|
||||
}
|
||||
if (i_start > 0 && i_start / 100000 != (i_start - n_ctx) / 100000) {
|
||||
const int64_t t_now_ms = ggml_time_ms();
|
||||
const int64_t eta_ms = (n_input - i_start) * (t_now_ms - t_start_ms) / i_start;
|
||||
const int64_t eta_min = eta_ms / (60*1000);
|
||||
const int64_t eta_s = (eta_ms - 60*1000*eta_min) / 1000;
|
||||
|
||||
LOG_TEE("lookup-stats: %d/%d done, ETA: %02" PRId64 ":%02" PRId64 "\n", i_start, n_input, eta_min, eta_s);
|
||||
}
|
||||
|
||||
// After each chunk, update the dynamic ngram cache with the context ngram cache:
|
||||
llama_ngram_cache_merge(ngram_cache_dynamic, ngram_cache_context);
|
||||
ngram_cache_context.clear();
|
||||
}
|
||||
|
||||
LOG_TEE("\n");
|
||||
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("n_draft = %d\n", n_draft);
|
||||
LOG_TEE("n_predict = %d\n", n_input - n_input % n_ctx);
|
||||
LOG_TEE("n_drafted = %d\n", n_drafted);
|
||||
LOG_TEE("t_draft_flat = %.2f ms\n", t_draft_flat_us*1e-3);
|
||||
LOG_TEE("t_draft = %.2f ms, %.2f us per token, %.2f tokens per second\n",
|
||||
t_draft_us*1e-3, 1.0f*t_draft_us/n_drafted, n_drafted/(1e-6*t_draft_us));
|
||||
LOG_TEE("n_accept = %d\n", n_accept);
|
||||
LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
|
||||
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
fprintf(stderr, "\n\n");
|
||||
|
||||
return 0;
|
||||
}
|
||||
@@ -1,12 +1,15 @@
|
||||
#include "common.h"
|
||||
#include "ggml.h"
|
||||
#include "llama.h"
|
||||
#include "common.h"
|
||||
#include "ngram-cache.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <cstdint>
|
||||
#include <cstdio>
|
||||
#include <fstream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <unordered_map>
|
||||
|
||||
int main(int argc, char ** argv){
|
||||
gpt_params params;
|
||||
@@ -15,11 +18,7 @@ int main(int argc, char ** argv){
|
||||
return 1;
|
||||
}
|
||||
|
||||
// max/min n-grams size to search for in prompt
|
||||
const int ngram_max = 4;
|
||||
const int ngram_min = 1;
|
||||
|
||||
// length of the candidate / draft sequence, if match is found
|
||||
// max. number of additional tokens to draft if match is found
|
||||
const int n_draft = params.n_draft;
|
||||
|
||||
const bool dump_kv_cache = params.dump_kv_cache;
|
||||
@@ -39,6 +38,8 @@ int main(int argc, char ** argv){
|
||||
|
||||
// load the model
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||
llama_set_rng_seed(ctx, params.seed);
|
||||
GGML_ASSERT(llama_n_vocab(model) < (1 << 16));
|
||||
|
||||
// tokenize the prompt
|
||||
const bool add_bos = llama_should_add_bos_token(model);
|
||||
@@ -47,6 +48,35 @@ int main(int argc, char ** argv){
|
||||
std::vector<llama_token> inp;
|
||||
inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
|
||||
|
||||
llama_ngram_cache ngram_cache_context;
|
||||
llama_ngram_cache ngram_cache_dynamic;
|
||||
llama_ngram_cache ngram_cache_static;
|
||||
int64_t t_draft_flat_us = 0;
|
||||
int64_t t_draft_us = 0;
|
||||
|
||||
{
|
||||
// Fill up context ngram cache with tokens from user input:
|
||||
const int64_t t_start_draft_us = ggml_time_us();
|
||||
llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, inp.size(), false);
|
||||
|
||||
if (!params.lookup_cache_static.empty()) {
|
||||
try {
|
||||
ngram_cache_static = llama_ngram_cache_load(params.lookup_cache_static);
|
||||
} catch (std::ifstream::failure const &) {
|
||||
fprintf(stderr, "error: failed to open static lookup cache: %s", params.lookup_cache_static.c_str());
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
|
||||
if (!params.lookup_cache_dynamic.empty()) {
|
||||
try {
|
||||
ngram_cache_dynamic = llama_ngram_cache_load(params.lookup_cache_dynamic);
|
||||
} catch (std::ifstream::failure const &) {} // if the file does not exist it will simply be created at the end of the program
|
||||
}
|
||||
|
||||
t_draft_flat_us += ggml_time_us() - t_start_draft_us;
|
||||
}
|
||||
|
||||
const int max_context_size = llama_n_ctx(ctx);
|
||||
const int max_tokens_list_size = max_context_size - 4;
|
||||
|
||||
@@ -76,8 +106,6 @@ int main(int argc, char ** argv){
|
||||
int n_drafted = 0;
|
||||
int n_accept = 0;
|
||||
|
||||
int64_t t_draft_us = 0;
|
||||
|
||||
int n_past = inp.size();
|
||||
|
||||
bool has_eos = false;
|
||||
@@ -129,6 +157,12 @@ int main(int argc, char ** argv){
|
||||
++n_past;
|
||||
++i_dft;
|
||||
inp.push_back(id);
|
||||
{
|
||||
// Update context ngram cache with the newly accepted token:
|
||||
const int64_t t_start_draft_us = ggml_time_us();
|
||||
llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, 1, false);
|
||||
t_draft_us += ggml_time_us() - t_start_draft_us;
|
||||
}
|
||||
|
||||
if (params.use_color) {
|
||||
// color accepted draft token
|
||||
@@ -149,6 +183,12 @@ int main(int argc, char ** argv){
|
||||
draft.clear();
|
||||
draft.push_back(id);
|
||||
inp.push_back(id);
|
||||
{
|
||||
// Update context ngram cache with the newly accepted token:
|
||||
const int64_t t_start_draft_us = ggml_time_us();
|
||||
llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, 1, false);
|
||||
t_draft_us += ggml_time_us() - t_start_draft_us;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
@@ -163,44 +203,19 @@ int main(int argc, char ** argv){
|
||||
llama_batch_clear(batch_tgt);
|
||||
llama_batch_add(batch_tgt, draft[0], n_past, { 0 }, true);
|
||||
|
||||
// generate n_pred tokens through prompt lookup
|
||||
auto prompt_lookup = [&]() -> void {
|
||||
const int inp_size = inp.size();
|
||||
for (int ngram_size = ngram_max ; ngram_size > ngram_min; --ngram_size){
|
||||
const llama_token * ngram = &inp[inp_size - ngram_size];
|
||||
|
||||
for (int i = 0; i <= (int) inp_size - (ngram_size * 2); ++i) {
|
||||
bool match = true;
|
||||
for (int j = 0; j < ngram_size; ++j) {
|
||||
if (inp[i + j] != ngram[j]) {
|
||||
match = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (match) {
|
||||
const int startIdx = i + ngram_size;
|
||||
const int endIdx = startIdx + n_draft;
|
||||
if (endIdx < inp_size) {
|
||||
for (int j = startIdx; j < endIdx; ++j) {
|
||||
LOG(" - draft candidate %d: %d\n", j, inp[j]);
|
||||
draft.push_back(inp[j]);
|
||||
llama_batch_add(batch_tgt, inp[j], n_past + (j - startIdx) + 1, { 0 }, true);
|
||||
++n_drafted;
|
||||
}
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return;
|
||||
};
|
||||
|
||||
// Draft already contains a single token sampled from the model:
|
||||
GGML_ASSERT(draft.size() == 1);
|
||||
GGML_ASSERT(draft[0] == inp.back());
|
||||
const int64_t t_start_draft_us = ggml_time_us();
|
||||
|
||||
prompt_lookup();
|
||||
llama_ngram_cache_draft(inp, draft, n_draft, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, ngram_cache_context, ngram_cache_dynamic, ngram_cache_static);
|
||||
|
||||
for (size_t i = 1; i < draft.size(); ++i) {
|
||||
llama_batch_add(batch_tgt, draft[i], n_past + i, { 0 }, true);
|
||||
}
|
||||
|
||||
t_draft_us += ggml_time_us() - t_start_draft_us;
|
||||
n_drafted += draft.size() - 1;
|
||||
|
||||
llama_decode(ctx, batch_tgt);
|
||||
++n_past;
|
||||
@@ -210,19 +225,24 @@ int main(int argc, char ** argv){
|
||||
|
||||
auto t_dec_end = ggml_time_us();
|
||||
|
||||
// Update dynamic ngram cache with context ngram cache and save it to disk:
|
||||
llama_ngram_cache_merge(ngram_cache_dynamic, ngram_cache_context);
|
||||
llama_ngram_cache_save(ngram_cache_dynamic, params.lookup_cache_dynamic);
|
||||
|
||||
LOG_TEE("\n\n");
|
||||
|
||||
LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
|
||||
LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
|
||||
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("n_draft = %d\n", n_draft);
|
||||
LOG_TEE("n_predict = %d\n", n_predict);
|
||||
LOG_TEE("n_drafted = %d\n", n_drafted);
|
||||
LOG_TEE("t_draft = %.2f ms, %.2f us per token, %.2f tokens per second\n",
|
||||
LOG_TEE("n_draft = %d\n", n_draft);
|
||||
LOG_TEE("n_predict = %d\n", n_predict);
|
||||
LOG_TEE("n_drafted = %d\n", n_drafted);
|
||||
LOG_TEE("t_draft_flat = %.2f ms\n", t_draft_flat_us*1e-3);
|
||||
LOG_TEE("t_draft = %.2f ms, %.2f us per token, %.2f tokens per second\n",
|
||||
t_draft_us*1e-3, 1.0f*t_draft_us/n_drafted, n_drafted/(1e-6*t_draft_us));
|
||||
LOG_TEE("n_accept = %d\n", n_accept);
|
||||
LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
|
||||
LOG_TEE("n_accept = %d\n", n_accept);
|
||||
LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
|
||||
|
||||
LOG_TEE("\ntarget:\n");
|
||||
llama_print_timings(ctx);
|
||||
|
||||
@@ -8,7 +8,7 @@ Because this example is "outside of the source tree", it is important to first b
|
||||
|
||||
### Considerations
|
||||
|
||||
When hardware acceleration libraries are used (e.g. CUBlas, Metal, CLBlast, etc.), CMake must be able to locate the associated CMake package. In the example below, when building _main-cmake-pkg_ notice the `CMAKE_PREFIX_PATH` includes the Llama CMake package location _in addition to_ the CLBlast package—which was used when compiling _llama.cpp_.
|
||||
When hardware acceleration libraries are used (e.g. CUDA, Metal, CLBlast, etc.), CMake must be able to locate the associated CMake package. In the example below, when building _main-cmake-pkg_ notice the `CMAKE_PREFIX_PATH` includes the Llama CMake package location _in addition to_ the CLBlast package—which was used when compiling _llama.cpp_.
|
||||
|
||||
### Build llama.cpp and install to C:\LlamaCPP directory
|
||||
|
||||
|
||||
@@ -296,7 +296,9 @@ These options help improve the performance and memory usage of the LLaMA models.
|
||||
|
||||
### Batch Size
|
||||
|
||||
- `-b N, --batch-size N`: Set the batch size for prompt processing (default: 512). This large batch size benefits users who have BLAS installed and enabled it during the build. If you don't have BLAS enabled ("BLAS=0"), you can use a smaller number, such as 8, to see the prompt progress as it's evaluated in some situations.
|
||||
- `-b N, --batch-size N`: Set the batch size for prompt processing (default: `2048`). This large batch size benefits users who have BLAS installed and enabled it during the build. If you don't have BLAS enabled ("BLAS=0"), you can use a smaller number, such as 8, to see the prompt progress as it's evaluated in some situations.
|
||||
|
||||
- `-ub N`, `--ubatch-size N`: physical maximum batch size. This is for pipeline parallelization. Default: `512`.
|
||||
|
||||
### Prompt Caching
|
||||
|
||||
@@ -316,8 +318,8 @@ These options provide extra functionality and customization when running the LLa
|
||||
|
||||
- `-h, --help`: Display a help message showing all available options and their default values. This is particularly useful for checking the latest options and default values, as they can change frequently, and the information in this document may become outdated.
|
||||
- `--verbose-prompt`: Print the prompt before generating text.
|
||||
- `-ngl N, --n-gpu-layers N`: When compiled with appropriate support (currently CLBlast or cuBLAS), this option allows offloading some layers to the GPU for computation. Generally results in increased performance.
|
||||
- `-mg i, --main-gpu i`: When using multiple GPUs this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default GPU 0 is used. Requires cuBLAS.
|
||||
- `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance. Requires cuBLAS.
|
||||
- `-ngl N, --n-gpu-layers N`: When compiled with GPU support, this option allows offloading some layers to the GPU for computation. Generally results in increased performance.
|
||||
- `-mg i, --main-gpu i`: When using multiple GPUs this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default GPU 0 is used.
|
||||
- `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance.
|
||||
- `--lora FNAME`: Apply a LoRA (Low-Rank Adaptation) adapter to the model (implies --no-mmap). This allows you to adapt the pretrained model to specific tasks or domains.
|
||||
- `--lora-base FNAME`: Optional model to use as a base for the layers modified by the LoRA adapter. This flag is used in conjunction with the `--lora` flag, and specifies the base model for the adaptation.
|
||||
|
||||
@@ -235,7 +235,7 @@ int main(int argc, char ** argv) {
|
||||
// The file exists and is not empty
|
||||
session_tokens.resize(n_ctx);
|
||||
size_t n_token_count_out = 0;
|
||||
if (!llama_load_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) {
|
||||
if (!llama_state_load_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) {
|
||||
LOG_TEE("%s: error: failed to load session file '%s'\n", __func__, path_session.c_str());
|
||||
return 1;
|
||||
}
|
||||
@@ -693,7 +693,7 @@ int main(int argc, char ** argv) {
|
||||
// optionally save the session on first sample (for faster prompt loading next time)
|
||||
if (!path_session.empty() && need_to_save_session && !params.prompt_cache_ro) {
|
||||
need_to_save_session = false;
|
||||
llama_save_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
|
||||
llama_state_save_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
|
||||
|
||||
LOG("saved session to %s\n", path_session.c_str());
|
||||
}
|
||||
@@ -935,7 +935,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
if (!path_session.empty() && params.prompt_cache_all && !params.prompt_cache_ro) {
|
||||
LOG_TEE("\n%s: saving final output to session file '%s'\n", __func__, path_session.c_str());
|
||||
llama_save_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
|
||||
llama_state_save_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
|
||||
}
|
||||
|
||||
llama_print_timings(ctx);
|
||||
|
||||
@@ -132,7 +132,6 @@ int main(int argc, char ** argv) {
|
||||
llama_context * ctx = NULL;
|
||||
|
||||
// load the target model
|
||||
params.logits_all = true;
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||
|
||||
// load the prompts from an external file if there are any
|
||||
|
||||
@@ -380,6 +380,7 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params &
|
||||
const int batch_size = std::min(end - batch_start, n_batch);
|
||||
|
||||
//fprintf(stderr, " Batch %d: starts at %d, size is %d, n_past is %d\n",j,batch_start,batch_size,j * n_batch);
|
||||
// TODO: use llama_batch.logits instead of relying on logits_all == true
|
||||
if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
|
||||
//fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return {tokens, -1, logit_history, prob_history};
|
||||
@@ -552,6 +553,8 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
||||
const int batch_start = start + j * n_batch;
|
||||
const int batch_size = std::min(end - batch_start, n_batch);
|
||||
|
||||
int n_outputs = 0;
|
||||
|
||||
batch.n_tokens = 0;
|
||||
for (int seq = 0; seq < n_seq_batch; seq++) {
|
||||
int seq_start = batch_start + seq*n_ctx;
|
||||
@@ -566,11 +569,13 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
||||
|
||||
for (int k = 0; k < batch_size; ++k) {
|
||||
const int idx = seq*n_ctx + k;
|
||||
batch.token[idx] = tokens[seq_start + k];
|
||||
batch.pos[idx] = j*n_batch + k;
|
||||
batch.n_seq_id[idx] = 1;
|
||||
batch.seq_id[idx][0] = seq;
|
||||
batch.logits[idx] = batch.pos[idx] >= first ? 1 : 0;
|
||||
batch.token [idx] = tokens[seq_start + k];
|
||||
batch.pos [idx] = j*n_batch + k;
|
||||
batch.n_seq_id[idx] = 1;
|
||||
batch.seq_id [idx][0] = seq;
|
||||
batch.logits [idx] = batch.pos[idx] >= first ? 1 : 0;
|
||||
|
||||
n_outputs += batch.logits[idx] != 0;
|
||||
}
|
||||
batch.n_tokens += batch_size;
|
||||
|
||||
@@ -583,9 +588,9 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
||||
return {tokens, -1, logit_history, prob_history};
|
||||
}
|
||||
|
||||
if (num_batches > 1) {
|
||||
if (num_batches > 1 && n_outputs > 0) {
|
||||
const auto * batch_logits = llama_get_logits(ctx);
|
||||
logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
|
||||
logits.insert(logits.end(), batch_logits, batch_logits + n_outputs * n_vocab);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -604,14 +609,15 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
||||
}
|
||||
|
||||
for (int seq = 0; seq < n_seq_batch; seq++) {
|
||||
const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits_ith(ctx, seq*n_ctx);
|
||||
const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits_ith(ctx, seq*n_ctx + first);
|
||||
|
||||
llama_token * tokens_data = tokens.data() + start + seq*n_ctx + first;
|
||||
if (!params.logits_file.empty()) {
|
||||
process_logits(logits_stream, n_vocab, all_logits + first*n_vocab,
|
||||
process_logits(logits_stream, n_vocab, all_logits,
|
||||
tokens_data, n_ctx - 1 - first,
|
||||
workers, log_probs, nll, nll2);
|
||||
} else {
|
||||
process_logits(n_vocab, all_logits + first*n_vocab,
|
||||
process_logits(n_vocab, all_logits,
|
||||
tokens_data, n_ctx - 1 - first,
|
||||
workers, nll, nll2,
|
||||
logit_history.data() + start + seq*n_ctx + first,
|
||||
@@ -652,6 +658,7 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
||||
}
|
||||
|
||||
static bool decode_helper(llama_context * ctx, llama_batch & batch, std::vector<float> & batch_logits, int32_t n_batch, int32_t n_vocab) {
|
||||
int prev_outputs = 0;
|
||||
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
|
||||
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
|
||||
|
||||
@@ -672,7 +679,14 @@ static bool decode_helper(llama_context * ctx, llama_batch & batch, std::vector<
|
||||
return false;
|
||||
}
|
||||
|
||||
memcpy(batch_logits.data() + i*n_vocab, llama_get_logits(ctx), n_tokens*n_vocab*sizeof(float));
|
||||
int n_outputs = 0;
|
||||
for (int i = 0; i < n_tokens; ++i) {
|
||||
n_outputs += batch_view.logits[i] != 0;
|
||||
}
|
||||
|
||||
memcpy(batch_logits.data() + prev_outputs*n_vocab, llama_get_logits(ctx), n_outputs*n_vocab*sizeof(float));
|
||||
|
||||
prev_outputs += n_outputs;
|
||||
}
|
||||
|
||||
return true;
|
||||
@@ -779,7 +793,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
||||
size_t ending_logprob_count[4];
|
||||
double ending_logprob[4];
|
||||
|
||||
size_t i_batch; // starting index in the llama_batch
|
||||
size_t i_logits; // starting index of logits in the llama_batch
|
||||
size_t common_prefix; // max number of initial tokens that are the same in all sentences
|
||||
size_t required_tokens; // needed number of tokens to evaluate all 4 endings
|
||||
std::vector<llama_token> seq_tokens[4];
|
||||
@@ -844,9 +858,10 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
||||
const int max_tasks_per_batch = 32;
|
||||
const int max_seq = std::min(4*max_tasks_per_batch, (int) llama_n_seq_max(ctx));
|
||||
|
||||
llama_batch batch = llama_batch_init(n_ctx, 0, max_seq);
|
||||
llama_batch batch = llama_batch_init(n_ctx, 0, 4);
|
||||
|
||||
std::vector<float> tok_logits(n_vocab);
|
||||
// TODO: this could be made smaller; it's currently the worst-case size
|
||||
std::vector<float> batch_logits(n_vocab*n_ctx);
|
||||
|
||||
std::vector<std::pair<size_t, llama_token>> eval_pairs;
|
||||
@@ -857,16 +872,17 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
||||
int n_cur = 0;
|
||||
|
||||
size_t i1 = i0;
|
||||
size_t i_batch = 0; // this tells us where in `llama_batch` we are currently
|
||||
size_t i_logits = 0; // this tells us how many logits were needed before this point in the batch
|
||||
|
||||
llama_batch_clear(batch);
|
||||
|
||||
// batch as much tasks as possible into the available context
|
||||
// each task has 4 unique seuqnce ids - one for each ending
|
||||
// each task has 4 unique sequence ids - one for each ending
|
||||
// the common prefix is shared among the 4 sequences to save tokens
|
||||
// we extract logits only from the last common token and from all ending tokens of each sequence
|
||||
while (n_cur + (int) hs_data[i1].required_tokens <= n_ctx) {
|
||||
auto & hs_cur = hs_data[i1];
|
||||
int n_logits = 0;
|
||||
|
||||
const int s0 = 4*(i1 - i0);
|
||||
if (s0 + 4 > max_seq) {
|
||||
@@ -874,18 +890,23 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < hs_cur.common_prefix; ++i) {
|
||||
llama_batch_add(batch, hs_cur.seq_tokens[0][i], i, { s0 + 0, s0 + 1, s0 + 2, s0 + 3}, false);
|
||||
llama_batch_add(batch, hs_cur.seq_tokens[0][i], i, { s0 + 0, s0 + 1, s0 + 2, s0 + 3 }, false);
|
||||
}
|
||||
batch.logits[batch.n_tokens - 1] = true; // we need logits for the last token of the common prefix
|
||||
n_logits += 1;
|
||||
|
||||
for (int s = 0; s < 4; ++s) {
|
||||
for (size_t i = hs_cur.common_prefix; i < hs_cur.seq_tokens[s].size(); ++i) {
|
||||
llama_batch_add(batch, hs_cur.seq_tokens[s][i], i, { s0 + s }, true);
|
||||
const size_t seq_tokens_size = hs_cur.seq_tokens[s].size();
|
||||
// TODO: don't evaluate the last token of each sequence
|
||||
for (size_t i = hs_cur.common_prefix; i < seq_tokens_size; ++i) {
|
||||
const bool needs_logits = i < seq_tokens_size - 1;
|
||||
llama_batch_add(batch, hs_cur.seq_tokens[s][i], i, { s0 + s }, needs_logits);
|
||||
n_logits += needs_logits;
|
||||
}
|
||||
}
|
||||
|
||||
hs_cur.i_batch = i_batch;
|
||||
i_batch += hs_cur.required_tokens;
|
||||
hs_cur.i_logits = i_logits;
|
||||
i_logits += n_logits;
|
||||
|
||||
n_cur += hs_data[i1].required_tokens;
|
||||
if (++i1 == hs_task_count) {
|
||||
@@ -911,12 +932,11 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
||||
eval_pairs.clear();
|
||||
for (size_t i = i0; i < i1; ++i) {
|
||||
auto & hs_cur = hs_data[i];
|
||||
size_t li = hs_cur.common_prefix;
|
||||
size_t li = 1; // skip the last logit of the common prefix (computed separately below)
|
||||
for (int s = 0; s < 4; ++s) {
|
||||
for (size_t j = hs_cur.common_prefix; j < hs_cur.seq_tokens[s].size() - 1; j++) {
|
||||
eval_pairs.emplace_back(hs_cur.i_batch + li++, hs_cur.seq_tokens[s][j + 1]);
|
||||
eval_pairs.emplace_back(hs_cur.i_logits + li++, hs_cur.seq_tokens[s][j + 1]);
|
||||
}
|
||||
++li;
|
||||
}
|
||||
}
|
||||
// Then we do the actual calculation
|
||||
@@ -928,7 +948,8 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
||||
for (size_t i = i0; i < i1; ++i) {
|
||||
auto & hs_cur = hs_data[i];
|
||||
|
||||
std::memcpy(tok_logits.data(), batch_logits.data() + n_vocab*(hs_cur.i_batch + hs_cur.common_prefix - 1), n_vocab*sizeof(float));
|
||||
// get the logits of the last token of the common prefix
|
||||
std::memcpy(tok_logits.data(), batch_logits.data() + n_vocab*hs_cur.i_logits, n_vocab*sizeof(float));
|
||||
|
||||
const auto first_probs = softmax(tok_logits);
|
||||
|
||||
@@ -978,7 +999,7 @@ struct winogrande_entry {
|
||||
std::array<std::string, 2> choices;
|
||||
int answer;
|
||||
|
||||
size_t i_batch;
|
||||
size_t i_logits;
|
||||
size_t common_prefix;
|
||||
size_t required_tokens;
|
||||
size_t n_base1; // number of tokens for context + choice 1
|
||||
@@ -1104,6 +1125,7 @@ static void winogrande_score(llama_context * ctx, const gpt_params & params) {
|
||||
task.common_prefix++;
|
||||
}
|
||||
|
||||
// TODO: the last token of each of the sequences don't need to be evaluated
|
||||
task.required_tokens = task.common_prefix +
|
||||
task.seq_tokens[0].size() - task.common_prefix +
|
||||
task.seq_tokens[1].size() - task.common_prefix;
|
||||
@@ -1121,9 +1143,10 @@ static void winogrande_score(llama_context * ctx, const gpt_params & params) {
|
||||
const int max_tasks_per_batch = 128;
|
||||
const int max_seq = std::min(2*max_tasks_per_batch, (int) llama_n_seq_max(ctx));
|
||||
|
||||
llama_batch batch = llama_batch_init(n_ctx, 0, max_seq);
|
||||
llama_batch batch = llama_batch_init(n_ctx, 0, 2);
|
||||
|
||||
std::vector<float> tok_logits(n_vocab);
|
||||
// TODO: this could be made smaller; it's currently the worst-case size
|
||||
std::vector<float> batch_logits(n_vocab*n_ctx);
|
||||
|
||||
std::vector<std::pair<size_t, llama_token>> eval_pairs;
|
||||
@@ -1137,29 +1160,33 @@ static void winogrande_score(llama_context * ctx, const gpt_params & params) {
|
||||
int n_cur = 0;
|
||||
|
||||
size_t i1 = i0;
|
||||
size_t i_batch = 0;
|
||||
size_t i_logits = 0;
|
||||
|
||||
llama_batch_clear(batch);
|
||||
|
||||
while (n_cur + (int) data[i1].required_tokens <= n_ctx) {
|
||||
int n_logits = 0;
|
||||
const int s0 = 2*(i1 - i0);
|
||||
if (s0 + 2 > max_seq) {
|
||||
break;
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < data[i1].common_prefix; ++i) {
|
||||
llama_batch_add(batch, data[i1].seq_tokens[0][i], i, { s0 + 0, s0 + 1}, false);
|
||||
llama_batch_add(batch, data[i1].seq_tokens[0][i], i, { s0 + 0, s0 + 1 }, false);
|
||||
}
|
||||
batch.logits[batch.n_tokens - 1] = true;
|
||||
n_logits += 1;
|
||||
|
||||
for (int s = 0; s < 2; ++s) {
|
||||
// TODO: end before the last token, no need to predict past the end of the sequences
|
||||
for (size_t i = data[i1].common_prefix; i < data[i1].seq_tokens[s].size(); ++i) {
|
||||
llama_batch_add(batch, data[i1].seq_tokens[s][i], i, { s0 + s }, true);
|
||||
n_logits += 1;
|
||||
}
|
||||
}
|
||||
|
||||
data[i1].i_batch = i_batch;
|
||||
i_batch += data[i1].required_tokens;
|
||||
data[i1].i_logits = i_logits;
|
||||
i_logits += n_logits;
|
||||
|
||||
n_cur += data[i1].required_tokens;
|
||||
if (++i1 == data.size()) {
|
||||
@@ -1190,15 +1217,16 @@ static void winogrande_score(llama_context * ctx, const gpt_params & params) {
|
||||
|
||||
const auto& n_base1 = skip_choice ? task.n_base1 : task.common_prefix;
|
||||
const int last_1st = task.seq_tokens[0].size() - n_base1 > 1 ? 1 : 0;
|
||||
size_t li = n_base1 - 1;
|
||||
size_t li = n_base1 - task.common_prefix;
|
||||
for (size_t j = n_base1-1; j < task.seq_tokens[0].size()-1-last_1st; ++j) {
|
||||
eval_pairs.emplace_back(task.i_batch + li++, task.seq_tokens[0][j+1]);
|
||||
eval_pairs.emplace_back(task.i_logits + li++, task.seq_tokens[0][j+1]);
|
||||
}
|
||||
const auto& n_base2 = skip_choice ? task.n_base2 : task.common_prefix;
|
||||
const int last_2nd = task.seq_tokens[1].size() - n_base2 > 1 ? 1 : 0;
|
||||
li = task.seq_tokens[0].size() - task.common_prefix + n_base2 - 1;
|
||||
// FIXME: this uses the wrong first logits when not skipping the choice word
|
||||
li = task.seq_tokens[0].size() - task.common_prefix + n_base2 - task.common_prefix;
|
||||
for (size_t j = n_base2-1; j < task.seq_tokens[1].size()-1-last_2nd; ++j) {
|
||||
eval_pairs.emplace_back(task.i_batch + li++, task.seq_tokens[1][j+1]);
|
||||
eval_pairs.emplace_back(task.i_logits + li++, task.seq_tokens[1][j+1]);
|
||||
}
|
||||
}
|
||||
compute_logprobs(batch_logits.data(), n_vocab, workers, eval_pairs, eval_results);
|
||||
@@ -1287,7 +1315,7 @@ struct multiple_choice_task {
|
||||
}
|
||||
|
||||
// For evaluation
|
||||
size_t i_batch; // starting index in the llama_batch
|
||||
size_t i_logits; // starting index of logits in the llama_batch
|
||||
size_t common_prefix; // max number of initial tokens that are the same in all sentences
|
||||
size_t required_tokens; // needed number of tokens to evaluate all answers
|
||||
std::vector<std::vector<llama_token>> seq_tokens;
|
||||
@@ -1366,7 +1394,7 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
|
||||
std::vector<uint32_t> task_pos(n_task);
|
||||
strstream.read((char *)task_pos.data(), task_pos.size()*sizeof(uint32_t));
|
||||
if (strstream.fail()) {
|
||||
printf("%s: failed to raad task positions from prompt\n", __func__);
|
||||
printf("%s: failed to read task positions from prompt\n", __func__);
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -1447,7 +1475,7 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
|
||||
return;
|
||||
}
|
||||
} else {
|
||||
int n_dot = n_task/100;
|
||||
int n_dot = std::max((int) n_task/100, 1);
|
||||
int i_task = 0;
|
||||
for (auto& task : tasks) {
|
||||
++i_task;
|
||||
@@ -1491,17 +1519,18 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
|
||||
int n_cur = 0;
|
||||
|
||||
size_t i1 = i0;
|
||||
size_t i_batch = 0; // this tells us where in `llama_batch` we are currently
|
||||
size_t i_logits = 0; // this tells us how many logits were needed before this point in the batch
|
||||
|
||||
llama_batch_clear(batch);
|
||||
|
||||
// batch as much tasks as possible into the available context
|
||||
// each task has 4 unique seuqnce ids - one for each ending
|
||||
// each task has 4 unique sequence ids - one for each ending
|
||||
// the common prefix is shared among the 4 sequences to save tokens
|
||||
// we extract logits only from the last common token and from all ending tokens of each sequence
|
||||
int s0 = 0;
|
||||
while (n_cur + (int) tasks[i1].required_tokens <= n_ctx) {
|
||||
auto& cur_task = tasks[i1];
|
||||
int n_logits = 0;
|
||||
|
||||
int num_answers = cur_task.seq_tokens.size();
|
||||
if (s0 + num_answers > max_seq) {
|
||||
@@ -1518,17 +1547,22 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
|
||||
llama_batch_add(batch, cur_task.seq_tokens[0][i], i, batch_indeces, false);
|
||||
}
|
||||
batch.logits[batch.n_tokens - 1] = true; // we need logits for the last token of the common prefix
|
||||
n_logits += 1;
|
||||
|
||||
for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) {
|
||||
for (size_t i = cur_task.common_prefix; i < cur_task.seq_tokens[s].size(); ++i) {
|
||||
llama_batch_add(batch, cur_task.seq_tokens[s][i], i, { s0 + s }, true);
|
||||
const size_t seq_tokens_size = cur_task.seq_tokens[s].size();
|
||||
// TODO: don't evaluate the last token of each sequence
|
||||
for (size_t i = cur_task.common_prefix; i < seq_tokens_size; ++i) {
|
||||
const bool needs_logits = i < seq_tokens_size - 1;
|
||||
llama_batch_add(batch, cur_task.seq_tokens[s][i], i, { s0 + s }, needs_logits);
|
||||
n_logits += needs_logits;
|
||||
}
|
||||
}
|
||||
|
||||
s0 += num_answers;
|
||||
|
||||
cur_task.i_batch = i_batch;
|
||||
i_batch += cur_task.required_tokens;
|
||||
cur_task.i_logits = i_logits;
|
||||
i_logits += n_logits;
|
||||
|
||||
n_cur += cur_task.required_tokens;
|
||||
if (++i1 == tasks.size()) {
|
||||
@@ -1554,12 +1588,11 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
|
||||
eval_pairs.clear();
|
||||
for (size_t i = i0; i < i1; ++i) {
|
||||
auto& cur_task = tasks[i];
|
||||
size_t li = cur_task.common_prefix;
|
||||
size_t li = 1; // skip the last logit of the common prefix (computed separately below)
|
||||
for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) {
|
||||
for (size_t j = cur_task.common_prefix; j < cur_task.seq_tokens[s].size() - 1; j++) {
|
||||
eval_pairs.emplace_back(cur_task.i_batch + li++, cur_task.seq_tokens[s][j + 1]);
|
||||
eval_pairs.emplace_back(cur_task.i_logits + li++, cur_task.seq_tokens[s][j + 1]);
|
||||
}
|
||||
++li;
|
||||
}
|
||||
}
|
||||
// Then we do the actual calculation
|
||||
@@ -1578,7 +1611,8 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
|
||||
//}
|
||||
//printf("\n common_prefix: %zu\n", cur_task.common_prefix);
|
||||
|
||||
std::memcpy(tok_logits.data(), batch_logits.data() + n_vocab*(cur_task.i_batch + cur_task.common_prefix - 1), n_vocab*sizeof(float));
|
||||
// get the logits of the last token of the common prefix
|
||||
std::memcpy(tok_logits.data(), batch_logits.data() + n_vocab*cur_task.i_logits, n_vocab*sizeof(float));
|
||||
|
||||
const auto first_probs = softmax(tok_logits);
|
||||
|
||||
@@ -1730,6 +1764,7 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) {
|
||||
tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
|
||||
}
|
||||
|
||||
// TODO: use llama_batch.logits instead of relying on logits_all == true
|
||||
if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return;
|
||||
|
||||
@@ -26,6 +26,7 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = {
|
||||
{ "IQ2_S", LLAMA_FTYPE_MOSTLY_IQ2_S, " 2.5 bpw quantization", },
|
||||
{ "IQ2_M", LLAMA_FTYPE_MOSTLY_IQ2_M, " 2.7 bpw quantization", },
|
||||
{ "IQ1_S", LLAMA_FTYPE_MOSTLY_IQ1_S, " 1.56 bpw quantization", },
|
||||
{ "IQ1_M", LLAMA_FTYPE_MOSTLY_IQ1_M, " 1.75 bpw quantization", },
|
||||
{ "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.63G, +0.6717 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q2_K_S", LLAMA_FTYPE_MOSTLY_Q2_K_S, " 2.16G, +9.0634 ppl @ LLaMA-v1-7B", },
|
||||
{ "IQ3_XXS",LLAMA_FTYPE_MOSTLY_IQ3_XXS," 3.06 bpw quantization", },
|
||||
@@ -87,13 +88,17 @@ static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftyp
|
||||
//
|
||||
[[noreturn]]
|
||||
static void usage(const char * executable) {
|
||||
printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] [--imatrix] [--include-weights] [--exclude-weights] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
|
||||
printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] [--imatrix] [--include-weights] [--exclude-weights] [--output-tensor-type] [--token-embedding-type] [--override-kv] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
|
||||
printf(" --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
|
||||
printf(" --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
|
||||
printf(" --pure: Disable k-quant mixtures and quantize all tensors to the same type\n");
|
||||
printf(" --imatrix file_name: use data in file_name as importance matrix for quant optimizations\n");
|
||||
printf(" --include-weights tensor_name: use importance matrix for this/these tensor(s)\n");
|
||||
printf(" --exclude-weights tensor_name: use importance matrix for this/these tensor(s)\n");
|
||||
printf(" --output-tensor-type ggml_type: use this ggml_type for the output.weight tensor\n");
|
||||
printf(" --token-embedding-type ggml_type: use this ggml_type for the token embeddings tensor\n");
|
||||
printf(" --override-kv KEY=TYPE:VALUE\n");
|
||||
printf(" Advanced option to override model metadata by key in the quantized model. May be specified multiple times.\n");
|
||||
printf("Note: --include-weights and --exclude-weights cannot be used together\n");
|
||||
printf("\nAllowed quantization types:\n");
|
||||
for (auto & it : QUANT_OPTIONS) {
|
||||
@@ -107,56 +112,60 @@ static void usage(const char * executable) {
|
||||
exit(1);
|
||||
}
|
||||
|
||||
static void load_imatrix(const std::string& imatrix_file, std::unordered_map<std::string, std::vector<float>>& imatrix_data) {
|
||||
static void load_imatrix(const std::string & imatrix_file, std::unordered_map<std::string, std::vector<float>> & imatrix_data) {
|
||||
std::ifstream in(imatrix_file.c_str(), std::ios::binary);
|
||||
if (!in) {
|
||||
printf("%s: failed to open %s\n",__func__,imatrix_file.c_str());
|
||||
return;
|
||||
printf("%s: failed to open %s\n",__func__, imatrix_file.c_str());
|
||||
exit(1);
|
||||
}
|
||||
int n_entries;
|
||||
in.read((char*)&n_entries, sizeof(n_entries));
|
||||
in.read((char *)&n_entries, sizeof(n_entries));
|
||||
if (in.fail() || n_entries < 1) {
|
||||
printf("%s: no data in file %s\n", __func__, imatrix_file.c_str());
|
||||
return;
|
||||
exit(1);
|
||||
}
|
||||
for (int i = 0; i < n_entries; ++i) {
|
||||
int len; in.read((char *)&len, sizeof(len));
|
||||
std::vector<char> name_as_vec(len+1);
|
||||
in.read((char *)name_as_vec.data(), len);
|
||||
if (in.fail()) {
|
||||
printf("%s: failed reading name for entry %d from %s\n",__func__,i+1,imatrix_file.c_str());
|
||||
return;
|
||||
printf("%s: failed reading name for entry %d from %s\n", __func__, i+1, imatrix_file.c_str());
|
||||
exit(1);
|
||||
}
|
||||
name_as_vec[len] = 0;
|
||||
std::string name{name_as_vec.data()};
|
||||
auto& e = imatrix_data[std::move(name)];
|
||||
auto & e = imatrix_data[name];
|
||||
int ncall;
|
||||
in.read((char*)&ncall, sizeof(ncall));
|
||||
in.read((char *)&ncall, sizeof(ncall));
|
||||
int nval;
|
||||
in.read((char *)&nval, sizeof(nval));
|
||||
if (in.fail() || nval < 1) {
|
||||
printf("%s: failed reading number of values for entry %d\n",__func__,i);
|
||||
printf("%s: failed reading number of values for entry %d\n", __func__, i);
|
||||
imatrix_data = {};
|
||||
return;
|
||||
exit(1);
|
||||
}
|
||||
e.resize(nval);
|
||||
in.read((char*)e.data(), nval*sizeof(float));
|
||||
in.read((char *)e.data(), nval*sizeof(float));
|
||||
if (in.fail()) {
|
||||
printf("%s: failed reading data for entry %d\n",__func__,i);
|
||||
printf("%s: failed reading data for entry %d\n", __func__, i);
|
||||
imatrix_data = {};
|
||||
return;
|
||||
exit(1);
|
||||
}
|
||||
if (ncall > 0) {
|
||||
for (auto& v : e) v /= ncall;
|
||||
}
|
||||
|
||||
if (getenv("LLAMA_TRACE")) {
|
||||
printf("%s: loaded data (size = %6d, ncall = %6d) for '%s'\n", __func__, int(e.size()), ncall, name.c_str());
|
||||
}
|
||||
}
|
||||
printf("%s: loaded %d importance matrix entries from %s\n",__func__,int(imatrix_data.size()),imatrix_file.c_str());
|
||||
printf("%s: loaded %d importance matrix entries from %s\n", __func__, int(imatrix_data.size()), imatrix_file.c_str());
|
||||
}
|
||||
|
||||
static void prepare_imatrix(const std::string& imatrix_file,
|
||||
const std::vector<std::string>& included_weights,
|
||||
const std::vector<std::string>& excluded_weights,
|
||||
std::unordered_map<std::string, std::vector<float>>& imatrix_data) {
|
||||
static void prepare_imatrix(const std::string & imatrix_file,
|
||||
const std::vector<std::string> & included_weights,
|
||||
const std::vector<std::string> & excluded_weights,
|
||||
std::unordered_map<std::string, std::vector<float>> & imatrix_data) {
|
||||
if (!imatrix_file.empty()) {
|
||||
load_imatrix(imatrix_file, imatrix_data);
|
||||
}
|
||||
@@ -189,6 +198,55 @@ static void prepare_imatrix(const std::string& imatrix_file,
|
||||
}
|
||||
}
|
||||
|
||||
static ggml_type parse_ggml_type(const char * arg) {
|
||||
ggml_type result = GGML_TYPE_COUNT;
|
||||
for (int j = 0; j < GGML_TYPE_COUNT; ++j) {
|
||||
auto type = ggml_type(j);
|
||||
const auto * name = ggml_type_name(type);
|
||||
if (name && strcmp(arg, name) == 0) {
|
||||
result = type; break;
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
static bool parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides) {
|
||||
const char* sep = strchr(data, '=');
|
||||
if (sep == nullptr || sep - data >= 128) {
|
||||
fprintf(stderr, "%s: malformed KV override '%s'\n", __func__, data);
|
||||
return false;
|
||||
}
|
||||
llama_model_kv_override kvo;
|
||||
std::strncpy(kvo.key, data, sep - data);
|
||||
kvo.key[sep - data] = 0;
|
||||
sep++;
|
||||
if (strncmp(sep, "int:", 4) == 0) {
|
||||
sep += 4;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
|
||||
kvo.int_value = std::atol(sep);
|
||||
} else if (strncmp(sep, "float:", 6) == 0) {
|
||||
sep += 6;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
|
||||
kvo.float_value = std::atof(sep);
|
||||
} else if (strncmp(sep, "bool:", 5) == 0) {
|
||||
sep += 5;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
|
||||
if (std::strcmp(sep, "true") == 0) {
|
||||
kvo.bool_value = true;
|
||||
} else if (std::strcmp(sep, "false") == 0) {
|
||||
kvo.bool_value = false;
|
||||
} else {
|
||||
fprintf(stderr, "%s: invalid boolean value for KV override '%s'\n", __func__, data);
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
fprintf(stderr, "%s: invalid type for KV override '%s'\n", __func__, data);
|
||||
return false;
|
||||
}
|
||||
overrides.emplace_back(std::move(kvo));
|
||||
return true;
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
if (argc < 3) {
|
||||
usage(argv[0]);
|
||||
@@ -199,10 +257,27 @@ int main(int argc, char ** argv) {
|
||||
int arg_idx = 1;
|
||||
std::string imatrix_file;
|
||||
std::vector<std::string> included_weights, excluded_weights;
|
||||
std::vector<llama_model_kv_override> kv_overrides;
|
||||
|
||||
for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) {
|
||||
if (strcmp(argv[arg_idx], "--leave-output-tensor") == 0) {
|
||||
params.quantize_output_tensor = false;
|
||||
} else if (strcmp(argv[arg_idx], "--output-tensor-type") == 0) {
|
||||
if (arg_idx < argc-1) {
|
||||
params.output_tensor_type = parse_ggml_type(argv[++arg_idx]);
|
||||
} else {
|
||||
usage(argv[0]);
|
||||
}
|
||||
} else if (strcmp(argv[arg_idx], "--token-embedding-type") == 0) {
|
||||
if (arg_idx < argc-1) {
|
||||
params.token_embedding_type = parse_ggml_type(argv[++arg_idx]);
|
||||
} else {
|
||||
usage(argv[0]);
|
||||
}
|
||||
} else if (strcmp(argv[arg_idx], "--override-kv") == 0) {
|
||||
if (arg_idx == argc-1 || !parse_kv_override(argv[++arg_idx], kv_overrides)) {
|
||||
usage(argv[0]);
|
||||
}
|
||||
} else if (strcmp(argv[arg_idx], "--allow-requantize") == 0) {
|
||||
params.allow_requantize = true;
|
||||
} else if (strcmp(argv[arg_idx], "--pure") == 0) {
|
||||
@@ -243,6 +318,11 @@ int main(int argc, char ** argv) {
|
||||
if (!imatrix_data.empty()) {
|
||||
params.imatrix = &imatrix_data;
|
||||
}
|
||||
if (!kv_overrides.empty()) {
|
||||
kv_overrides.emplace_back();
|
||||
kv_overrides.back().key[0] = 0;
|
||||
params.kv_overrides = &kv_overrides;
|
||||
}
|
||||
|
||||
llama_backend_init();
|
||||
|
||||
@@ -264,8 +344,7 @@ int main(int argc, char ** argv) {
|
||||
if (ftype_str == "COPY") {
|
||||
params.only_copy = true;
|
||||
}
|
||||
}
|
||||
else {
|
||||
} else {
|
||||
fname_out = argv[arg_idx];
|
||||
arg_idx++;
|
||||
|
||||
@@ -296,10 +375,12 @@ int main(int argc, char ** argv) {
|
||||
|
||||
if ((params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS ||
|
||||
params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_S ||
|
||||
params.ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S || params.ftype == LLAMA_FTYPE_MOSTLY_IQ1_S) && imatrix_data.empty()) {
|
||||
fprintf(stderr, "\n===============================================================================================\n");
|
||||
fprintf(stderr, "Please do not use IQ1_S, IQ2_XXS, IQ2_XS or Q2_K_S quantization without an importance matrix\n");
|
||||
fprintf(stderr, "===============================================================================================\n\n\n");
|
||||
params.ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S ||
|
||||
params.ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
|
||||
params.ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) && imatrix_data.empty()) {
|
||||
fprintf(stderr, "\n==========================================================================================================\n");
|
||||
fprintf(stderr, "Please do not use IQ1_S, IQ1_M, IQ2_S, IQ2_XXS, IQ2_XS or Q2_K_S quantization without an importance matrix\n");
|
||||
fprintf(stderr, "==========================================================================================================\n\n\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
20
examples/regex-to-grammar.py
Normal file
20
examples/regex-to-grammar.py
Normal file
@@ -0,0 +1,20 @@
|
||||
import json, subprocess, sys, os
|
||||
|
||||
assert len(sys.argv) >= 2
|
||||
[_, pattern, *rest] = sys.argv
|
||||
|
||||
print(subprocess.check_output(
|
||||
[
|
||||
"python",
|
||||
os.path.join(
|
||||
os.path.dirname(os.path.realpath(__file__)),
|
||||
"json-schema-to-grammar.py"),
|
||||
*rest,
|
||||
"-",
|
||||
"--raw-pattern",
|
||||
],
|
||||
text=True,
|
||||
input=json.dumps({
|
||||
"type": "string",
|
||||
"pattern": pattern,
|
||||
}, indent=2)))
|
||||
5
examples/retrieval/CMakeLists.txt
Normal file
5
examples/retrieval/CMakeLists.txt
Normal file
@@ -0,0 +1,5 @@
|
||||
set(TARGET retrieval)
|
||||
add_executable(${TARGET} retrieval.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
69
examples/retrieval/README.md
Normal file
69
examples/retrieval/README.md
Normal file
@@ -0,0 +1,69 @@
|
||||
# llama.cpp/examples/retrieval
|
||||
|
||||
Demonstration of simple retrieval technique based on cosine similarity
|
||||
|
||||
More info:
|
||||
https://github.com/ggerganov/llama.cpp/pull/6193
|
||||
|
||||
### How to use
|
||||
|
||||
`retieval.cpp` has parameters of its own:
|
||||
- `--context-file`: file to be embedded - state this option multiple times to embed multiple files
|
||||
- `--chunk-size`: minimum size of each text chunk to be embedded
|
||||
- `--chunk-separator`: STRING to divide chunks by. newline by default
|
||||
|
||||
`retrieval` example can be tested as follows:
|
||||
|
||||
```bash
|
||||
make -j && ./retrieval --model ./models/bge-base-en-v1.5-f16.gguf --top-k 3 --context-file README.md --context-file License --chunk-size 100 --chunk-separator .
|
||||
```
|
||||
|
||||
This chunks and embeds all given files and starts a loop requesting query inputs:
|
||||
|
||||
```
|
||||
Enter query:
|
||||
```
|
||||
|
||||
On each query input, top k chunks are shown along with file name, chunk position within file and original text:
|
||||
|
||||
```
|
||||
Enter query: describe the mit license
|
||||
batch_decode: n_tokens = 6, n_seq = 1
|
||||
Top 3 similar chunks:
|
||||
filename: README.md
|
||||
filepos: 119
|
||||
similarity: 0.762334
|
||||
textdata:
|
||||
png)
|
||||
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
|
||||
[Roadmap](https://github.
|
||||
--------------------
|
||||
filename: License
|
||||
filepos: 0
|
||||
similarity: 0.725146
|
||||
textdata:
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2023 Georgi Gerganov
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
--------------------
|
||||
filename: README.md
|
||||
filepos: 9178
|
||||
similarity: 0.621722
|
||||
textdata:
|
||||
com/cztomsik/ava) (MIT)
|
||||
- [ptsochantaris/emeltal](https://github.com/ptsochantaris/emeltal)
|
||||
- [pythops/tenere](https://github.
|
||||
--------------------
|
||||
```
|
||||
350
examples/retrieval/retrieval.cpp
Normal file
350
examples/retrieval/retrieval.cpp
Normal file
@@ -0,0 +1,350 @@
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <fstream>
|
||||
|
||||
struct retrieval_params {
|
||||
std::vector<std::string> context_files; // context files to embed
|
||||
int32_t chunk_size = 64; // chunk size for context embedding
|
||||
std::string chunk_separator = "\n"; // chunk separator for context embedding
|
||||
};
|
||||
|
||||
static void retrieval_params_print_usage(int argc, char ** argv, gpt_params & gpt_params, retrieval_params & params) {
|
||||
gpt_print_usage(argc, argv, gpt_params);
|
||||
printf("retrieval options:\n");
|
||||
printf(" --context-file FNAME file containing context to embed.\n");
|
||||
printf(" specify multiple files by providing --context-file option multiple times.\n");
|
||||
printf(" --chunk-size N minimum length of embedded text chunk (default:%d)\n", params.chunk_size);
|
||||
printf(" --chunk-separator STRING\n");
|
||||
printf(" string to separate chunks (default: \"\\n\")\n");
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
static void retrieval_params_parse(int argc, char ** argv, gpt_params & gpt_params, retrieval_params & retrieval_params) {
|
||||
int i = 1;
|
||||
std::string arg;
|
||||
while (i < argc) {
|
||||
arg = argv[i];
|
||||
bool invalid_gpt_param = false;
|
||||
if(gpt_params_find_arg(argc, argv, argv[i], gpt_params, i, invalid_gpt_param)) {
|
||||
if (invalid_gpt_param) {
|
||||
fprintf(stderr, "error: invalid argument: %s\n", arg.c_str());
|
||||
retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params);
|
||||
exit(1);
|
||||
}
|
||||
// option was parsed by gpt_params_find_arg
|
||||
} else if (arg == "--context-file") {
|
||||
if (++i >= argc) {
|
||||
fprintf(stderr, "error: missing argument for --context-file\n");
|
||||
retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params);
|
||||
exit(1);
|
||||
}
|
||||
std::ifstream file(argv[i]);
|
||||
if (!file) {
|
||||
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
|
||||
retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params);
|
||||
exit(1);
|
||||
}
|
||||
// store the external file name in params
|
||||
retrieval_params.context_files.push_back(argv[i]);
|
||||
} else if (arg == "--chunk-size") {
|
||||
if (++i >= argc) {
|
||||
fprintf(stderr, "error: missing argument for --chunk-size\n");
|
||||
retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params);
|
||||
exit(1);
|
||||
}
|
||||
retrieval_params.chunk_size = std::stoi(argv[i]);
|
||||
} else if (arg == "--chunk-separator") {
|
||||
if (++i >= argc) {
|
||||
fprintf(stderr, "error: missing argument for --chunk-separator\n");
|
||||
retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params);
|
||||
exit(1);
|
||||
}
|
||||
retrieval_params.chunk_separator = argv[i];
|
||||
} else {
|
||||
// unknown argument
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params);
|
||||
exit(1);
|
||||
}
|
||||
i++;
|
||||
}
|
||||
}
|
||||
|
||||
struct chunk {
|
||||
// filename
|
||||
std::string filename;
|
||||
// original file position
|
||||
size_t filepos;
|
||||
// original text data
|
||||
std::string textdata = "";
|
||||
// tokenized text data
|
||||
std::vector<llama_token> tokens;
|
||||
// embedding
|
||||
std::vector<float> embedding;
|
||||
};
|
||||
|
||||
// chunk file data to chunks of size >= chunk_size
|
||||
// chunk_separator is the separator between chunks
|
||||
static std::vector<chunk> chunk_file(const std::string & filename, int chunk_size, const std::string & chunk_separator) {
|
||||
std::vector<chunk> chunks;
|
||||
std::ifstream f(filename.c_str());
|
||||
|
||||
if (!f.is_open()) {
|
||||
fprintf(stderr, "Error: could not open file %s\n", filename.c_str());
|
||||
return chunks;
|
||||
}
|
||||
|
||||
chunk current_chunk;
|
||||
char buffer[1024];
|
||||
int64_t filepos = 0;
|
||||
std::string current = "";
|
||||
while (f.read(buffer, 1024)) {
|
||||
current += std::string(buffer, f.gcount());
|
||||
size_t pos;
|
||||
while ((pos = current.find(chunk_separator)) != std::string::npos) {
|
||||
current_chunk.textdata += current.substr(0, pos + chunk_separator.size());
|
||||
if ((int) current_chunk.textdata.size() > chunk_size) {
|
||||
// save chunk
|
||||
current_chunk.filepos = filepos;
|
||||
current_chunk.filename = filename;
|
||||
chunks.push_back(current_chunk);
|
||||
// update filepos
|
||||
filepos += (int) current_chunk.textdata.size();
|
||||
// reset current_chunk
|
||||
current_chunk = chunk();
|
||||
}
|
||||
current = current.substr(pos + chunk_separator.size());
|
||||
}
|
||||
|
||||
}
|
||||
// add leftover data to last chunk
|
||||
if (current_chunk.textdata.size() > 0) {
|
||||
if (chunks.empty()) {
|
||||
current_chunk.filepos = filepos;
|
||||
current_chunk.filename = filename;
|
||||
chunks.push_back(current_chunk);
|
||||
} else {
|
||||
chunks.back().textdata += current_chunk.textdata;
|
||||
}
|
||||
}
|
||||
f.close();
|
||||
return chunks;
|
||||
}
|
||||
|
||||
static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, int seq_id) {
|
||||
for (size_t i = 0; i < tokens.size(); i++) {
|
||||
llama_batch_add(batch, tokens[i], i, { seq_id }, i == tokens.size() - 1);
|
||||
}
|
||||
}
|
||||
|
||||
static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd) {
|
||||
// clear previous kv_cache values (irrelevant for embeddings)
|
||||
llama_kv_cache_clear(ctx);
|
||||
|
||||
// run model
|
||||
fprintf(stderr, "%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);
|
||||
if (llama_decode(ctx, batch) < 0) {
|
||||
fprintf(stderr, "%s : failed to decode\n", __func__);
|
||||
}
|
||||
|
||||
for (int i = 0; i < batch.n_tokens; i++) {
|
||||
if (!batch.logits[i]) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// try to get sequence embeddings - supported only when pooling_type is not NONE
|
||||
const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
|
||||
if (embd == NULL) {
|
||||
embd = llama_get_embeddings_ith(ctx, i);
|
||||
if (embd == NULL) {
|
||||
fprintf(stderr, "%s: failed to get embeddings for token %d\n", __func__, i);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
float * out = output + batch.seq_id[i][0] * n_embd;
|
||||
llama_embd_normalize(embd, out, n_embd);
|
||||
}
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
retrieval_params retrieval_params;
|
||||
|
||||
retrieval_params_parse(argc, argv, params, retrieval_params);
|
||||
|
||||
// For BERT models, batch size must be equal to ubatch size
|
||||
params.n_ubatch = params.n_batch;
|
||||
|
||||
if (retrieval_params.chunk_size <= 0) {
|
||||
fprintf(stderr, "chunk_size must be positive\n");
|
||||
return 1;
|
||||
}
|
||||
if (retrieval_params.context_files.empty()) {
|
||||
fprintf(stderr, "context_files must be specified\n");
|
||||
return 1;
|
||||
}
|
||||
params.embedding = true;
|
||||
|
||||
print_build_info();
|
||||
|
||||
printf("processing files:\n");
|
||||
for (auto & context_file : retrieval_params.context_files) {
|
||||
printf("%s\n", context_file.c_str());
|
||||
}
|
||||
|
||||
std::vector<chunk> chunks;
|
||||
for (auto & context_file : retrieval_params.context_files) {
|
||||
std::vector<chunk> file_chunk = chunk_file(context_file, retrieval_params.chunk_size, retrieval_params.chunk_separator);
|
||||
chunks.insert(chunks.end(), file_chunk.begin(), file_chunk.end());
|
||||
}
|
||||
printf("Number of chunks: %ld\n", chunks.size());
|
||||
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
llama_model * model;
|
||||
llama_context * ctx;
|
||||
|
||||
// load the model
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||
if (model == NULL) {
|
||||
fprintf(stderr, "%s: error: unable to load model\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
const int n_ctx_train = llama_n_ctx_train(model);
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
if (n_ctx > n_ctx_train) {
|
||||
fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
|
||||
__func__, n_ctx_train, n_ctx);
|
||||
}
|
||||
|
||||
// print system information
|
||||
{
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "%s\n", get_system_info(params).c_str());
|
||||
}
|
||||
|
||||
// max batch size
|
||||
const uint64_t n_batch = params.n_batch;
|
||||
GGML_ASSERT(params.n_batch >= params.n_ctx);
|
||||
|
||||
// tokenize the prompts and trim
|
||||
for (auto & chunk : chunks) {
|
||||
auto inp = ::llama_tokenize(ctx, chunk.textdata, true, false);
|
||||
if (inp.size() > n_batch) {
|
||||
fprintf(stderr, "%s: error: chunk size (%lld) exceeds batch size (%lld), increase batch size and re-run\n",
|
||||
__func__, (long long int) inp.size(), (long long int) n_batch);
|
||||
return 1;
|
||||
}
|
||||
// add eos if not present
|
||||
if (inp.empty() || inp.back() != llama_token_eos(model)) {
|
||||
inp.push_back(llama_token_eos(model));
|
||||
}
|
||||
chunk.tokens = inp;
|
||||
}
|
||||
|
||||
// tokenization stats
|
||||
if (params.verbose_prompt) {
|
||||
for (int i = 0; i < (int) chunks.size(); i++) {
|
||||
fprintf(stderr, "%s: prompt %d: '%s'\n", __func__, i, chunks[i].textdata.c_str());
|
||||
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, chunks[i].tokens.size());
|
||||
for (int j = 0; j < (int) chunks[i].tokens.size(); j++) {
|
||||
fprintf(stderr, "%6d -> '%s'\n", chunks[i].tokens[j], llama_token_to_piece(ctx, chunks[i].tokens[j]).c_str());
|
||||
}
|
||||
fprintf(stderr, "\n\n");
|
||||
}
|
||||
}
|
||||
|
||||
// initialize batch
|
||||
const int n_chunks = chunks.size();
|
||||
struct llama_batch batch = llama_batch_init(n_batch, 0, 1);
|
||||
|
||||
// allocate output
|
||||
const int n_embd = llama_n_embd(model);
|
||||
std::vector<float> embeddings(n_chunks * n_embd, 0);
|
||||
float * emb = embeddings.data();
|
||||
|
||||
// break into batches
|
||||
int p = 0; // number of prompts processed already
|
||||
int s = 0; // number of prompts in current batch
|
||||
for (int k = 0; k < n_chunks; k++) {
|
||||
// clamp to n_batch tokens
|
||||
auto & inp = chunks[k].tokens;
|
||||
|
||||
const uint64_t n_toks = inp.size();
|
||||
|
||||
// encode if at capacity
|
||||
if (batch.n_tokens + n_toks > n_batch) {
|
||||
float * out = emb + p * n_embd;
|
||||
batch_decode(ctx, batch, out, s, n_embd);
|
||||
llama_batch_clear(batch);
|
||||
p += s;
|
||||
s = 0;
|
||||
}
|
||||
|
||||
// add to batch
|
||||
batch_add_seq(batch, inp, s);
|
||||
s += 1;
|
||||
}
|
||||
|
||||
// final batch
|
||||
float * out = emb + p * n_embd;
|
||||
batch_decode(ctx, batch, out, s, n_embd);
|
||||
|
||||
// save embeddings to chunks
|
||||
for (int i = 0; i < n_chunks; i++) {
|
||||
chunks[i].embedding = std::vector<float>(emb + i * n_embd, emb + (i + 1) * n_embd);
|
||||
// clear tokens as they are no longer needed
|
||||
chunks[i].tokens.clear();
|
||||
}
|
||||
|
||||
// start loop, receive query and return top k similar chunks based on cosine similarity
|
||||
std::string query;
|
||||
while (true) {
|
||||
printf("Enter query: ");
|
||||
std::getline(std::cin, query);
|
||||
std::vector<int32_t> query_tokens = llama_tokenize(ctx, query, true);
|
||||
|
||||
struct llama_batch query_batch = llama_batch_init(n_batch, 0, 1);
|
||||
batch_add_seq(query_batch, query_tokens, 0);
|
||||
|
||||
std::vector<float> query_emb(n_embd, 0);
|
||||
batch_decode(ctx, query_batch, query_emb.data(), 1, n_embd);
|
||||
|
||||
llama_batch_clear(query_batch);
|
||||
|
||||
// compute cosine similarities
|
||||
{
|
||||
std::vector<std::pair<int, float>> similarities;
|
||||
for (int i = 0; i < n_chunks; i++) {
|
||||
float sim = llama_embd_similarity_cos(chunks[i].embedding.data(), query_emb.data(), n_embd);
|
||||
similarities.push_back(std::make_pair(i, sim));
|
||||
}
|
||||
|
||||
// sort similarities
|
||||
std::sort(similarities.begin(), similarities.end(), [](const std::pair<int, float> & a, const std::pair<int, float> & b) {
|
||||
return a.second > b.second;
|
||||
});
|
||||
|
||||
printf("Top %d similar chunks:\n", params.sparams.top_k);
|
||||
for (int i = 0; i < std::min(params.sparams.top_k, (int) chunks.size()); i++) {
|
||||
printf("filename: %s\n", chunks[similarities[i].first].filename.c_str());
|
||||
printf("filepos: %lld\n", (long long int) chunks[similarities[i].first].filepos);
|
||||
printf("similarity: %f\n", similarities[i].second);
|
||||
printf("textdata:\n%s\n", chunks[similarities[i].first].textdata.c_str());
|
||||
printf("--------------------\n");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// clean up
|
||||
llama_print_timings(ctx);
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
llama_backend_free();
|
||||
}
|
||||
@@ -24,6 +24,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
std::string result0;
|
||||
std::string result1;
|
||||
std::string result2;
|
||||
|
||||
// init
|
||||
llama_model * model;
|
||||
@@ -44,8 +45,8 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// save state (rng, logits, embedding and kv_cache) to file
|
||||
{
|
||||
std::vector<uint8_t> state_mem(llama_get_state_size(ctx));
|
||||
const size_t written = llama_copy_state_data(ctx, state_mem.data());
|
||||
std::vector<uint8_t> state_mem(llama_state_get_size(ctx));
|
||||
const size_t written = llama_state_get_data(ctx, state_mem.data());
|
||||
|
||||
FILE *fp_write = fopen("dump_state.bin", "wb");
|
||||
fwrite(state_mem.data(), 1, written, fp_write);
|
||||
@@ -97,13 +98,13 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// load state (rng, logits, embedding and kv_cache) from file
|
||||
{
|
||||
std::vector<uint8_t> state_mem(llama_get_state_size(ctx2));
|
||||
std::vector<uint8_t> state_mem(llama_state_get_size(ctx2));
|
||||
|
||||
FILE * fp_read = fopen("dump_state.bin", "rb");
|
||||
const size_t read = fread(state_mem.data(), 1, state_mem.size(), fp_read);
|
||||
fclose(fp_read);
|
||||
|
||||
if (read != llama_set_state_data(ctx2, state_mem.data())) {
|
||||
if (read != llama_state_set_data(ctx2, state_mem.data())) {
|
||||
fprintf(stderr, "\n%s : failed to read state\n", __func__);
|
||||
llama_free(ctx2);
|
||||
llama_free_model(model);
|
||||
@@ -141,16 +142,104 @@ int main(int argc, char ** argv) {
|
||||
n_past += 1;
|
||||
}
|
||||
|
||||
printf("\n");
|
||||
printf("\n\n");
|
||||
|
||||
llama_free(ctx2);
|
||||
llama_free_model(model);
|
||||
|
||||
if (result0 != result1) {
|
||||
fprintf(stderr, "\n%s : error : the 2 generations are different\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// make new context
|
||||
auto* ctx3 = llama_new_context_with_model(model, llama_context_params_from_gpt_params(params));
|
||||
|
||||
printf("\nsingle seq run: %s", params.prompt.c_str());
|
||||
|
||||
// load state (rng, logits, embedding and kv_cache) from file
|
||||
{
|
||||
std::vector<uint8_t> state_mem(llama_state_get_size(ctx3));
|
||||
|
||||
FILE * fp_read = fopen("dump_state.bin", "rb");
|
||||
const size_t read = fread(state_mem.data(), 1, state_mem.size(), fp_read);
|
||||
fclose(fp_read);
|
||||
|
||||
if (read != llama_state_set_data(ctx3, state_mem.data())) {
|
||||
fprintf(stderr, "\n%s : failed to read state\n", __func__);
|
||||
llama_free(ctx3);
|
||||
llama_free_model(model);
|
||||
return 1;
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s : deserialized state from %zd out of a maximum of %zd bytes\n", __func__, read, state_mem.size());
|
||||
}
|
||||
|
||||
// restore state (last tokens)
|
||||
n_past = n_past_saved;
|
||||
|
||||
// save seq 0 and load into seq 1
|
||||
{
|
||||
// save kv of seq 0
|
||||
std::vector<uint8_t> seq_store(llama_state_seq_get_size(ctx3, 0));
|
||||
const size_t ncopy = llama_state_seq_get_data(ctx3, seq_store.data(), 0);
|
||||
if (ncopy != seq_store.size()) {
|
||||
fprintf(stderr, "\n%s : seq copy data length %zd does not match expected length %zd\n", __func__, ncopy, seq_store.size());
|
||||
llama_free(ctx3);
|
||||
llama_free_model(model);
|
||||
return 1;
|
||||
}
|
||||
fprintf(stderr, "%s : seq 0 copied, %zd bytes\n", __func__, ncopy);
|
||||
|
||||
// erase whole kv
|
||||
llama_kv_cache_clear(ctx3);
|
||||
fprintf(stderr, "%s : kv cache cleared\n", __func__);
|
||||
|
||||
// restore kv into seq 1
|
||||
const size_t nset = llama_state_seq_set_data(ctx3, seq_store.data(), 1);
|
||||
if (nset != seq_store.size()) {
|
||||
fprintf(stderr, "\n%s : seq set data length %zd does not match expected length %zd\n", __func__, nset, seq_store.size());
|
||||
llama_free(ctx3);
|
||||
llama_free_model(model);
|
||||
return 1;
|
||||
}
|
||||
fprintf(stderr, "%s : seq 1 restored, %zd bytes\n", __func__, nset);
|
||||
}
|
||||
|
||||
// third run with seq 1 instead of 0
|
||||
for (auto i = 0; i < params.n_predict; i++) {
|
||||
auto * logits = llama_get_logits(ctx3);
|
||||
auto n_vocab = llama_n_vocab(model);
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
||||
}
|
||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||
auto next_token = llama_sample_token(ctx3, &candidates_p);
|
||||
auto next_token_str = llama_token_to_piece(ctx3, next_token);
|
||||
|
||||
printf("%s", next_token_str.c_str());
|
||||
result2 += next_token_str;
|
||||
|
||||
if (llama_decode(ctx3, llama_batch_get_one(&next_token, 1, n_past, 1))) {
|
||||
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
|
||||
llama_free(ctx3);
|
||||
llama_free_model(model);
|
||||
return 1;
|
||||
}
|
||||
n_past += 1;
|
||||
}
|
||||
|
||||
printf("\n");
|
||||
|
||||
llama_free(ctx3);
|
||||
llama_free_model(model);
|
||||
|
||||
if (result0 != result2) {
|
||||
fprintf(stderr, "\n%s : error : the seq restore generation is different\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
fprintf(stderr, "\n%s : success\n", __func__);
|
||||
|
||||
return 0;
|
||||
|
||||
@@ -2,12 +2,16 @@ set(TARGET server)
|
||||
option(LLAMA_SERVER_VERBOSE "Build verbose logging option for Server" ON)
|
||||
option(LLAMA_SERVER_SSL "Build SSL support for the server" OFF)
|
||||
include_directories(${CMAKE_CURRENT_SOURCE_DIR})
|
||||
add_executable(${TARGET} server.cpp utils.hpp json.hpp httplib.h)
|
||||
add_executable(${TARGET}
|
||||
server.cpp
|
||||
utils.hpp
|
||||
httplib.h
|
||||
)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_compile_definitions(${TARGET} PRIVATE
|
||||
SERVER_VERBOSE=$<BOOL:${LLAMA_SERVER_VERBOSE}>
|
||||
)
|
||||
target_link_libraries(${TARGET} PRIVATE common ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_link_libraries(${TARGET} PRIVATE common json-schema-to-grammar ${CMAKE_THREAD_LIBS_INIT})
|
||||
if (LLAMA_SERVER_SSL)
|
||||
find_package(OpenSSL REQUIRED)
|
||||
target_link_libraries(${TARGET} PRIVATE OpenSSL::SSL OpenSSL::Crypto)
|
||||
|
||||
@@ -16,49 +16,51 @@ The project is under active development, and we are [looking for feedback and co
|
||||
|
||||
**Command line options:**
|
||||
|
||||
- `--threads N`, `-t N`: Set the number of threads to use during generation.
|
||||
- `-tb N, --threads-batch N`: Set the number of threads to use during batch and prompt processing. If not specified, the number of threads will be set to the number of threads used for generation.
|
||||
- `--threads-http N`: number of threads in the http server pool to process requests (default: `max(std::thread::hardware_concurrency() - 1, --parallel N + 2)`)
|
||||
- `--threads N`, `-t N`: Set the number of threads to use during generation. Not used if model layers are offloaded to GPU. The server is using batching. This parameter is used only if one token is to be processed on CPU backend.
|
||||
- `-tb N, --threads-batch N`: Set the number of threads to use during batch and prompt processing. If not specified, the number of threads will be set to the number of threads used for generation. Not used if model layers are offloaded to GPU.
|
||||
- `--threads-http N`: Number of threads in the http server pool to process requests. Default: `max(std::thread::hardware_concurrency() - 1, --parallel N + 2)`
|
||||
- `-m FNAME`, `--model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.gguf`).
|
||||
- `-mu MODEL_URL --model-url MODEL_URL`: Specify a remote http url to download the file (e.g https://huggingface.co/ggml-org/models/resolve/main/phi-2/ggml-model-q4_0.gguf).
|
||||
- `-mu MODEL_URL --model-url MODEL_URL`: Specify a remote http url to download the file. Default: unused
|
||||
- `-hfr REPO, --hf-repo REPO`: Hugging Face model repository. Default: unused
|
||||
- `-hff FILE, --hf-file FILE`: Hugging Face model file. Default: unused
|
||||
- `-a ALIAS`, `--alias ALIAS`: Set an alias for the model. The alias will be returned in API responses.
|
||||
- `-c N`, `--ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference. The size may differ in other models, for example, baichuan models were build with a context of 4096.
|
||||
- `-ngl N`, `--n-gpu-layers N`: When compiled with appropriate support (currently CLBlast or cuBLAS), this option allows offloading some layers to the GPU for computation. Generally results in increased performance.
|
||||
- `-mg i, --main-gpu i`: When using multiple GPUs this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default GPU 0 is used. Requires cuBLAS.
|
||||
- `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance. Requires cuBLAS.
|
||||
- `-b N`, `--batch-size N`: Set the batch size for prompt processing. Default: `512`.
|
||||
- `--memory-f32`: Use 32-bit floats instead of 16-bit floats for memory key+value. Not recommended.
|
||||
- `-c N`, `--ctx-size N`: Set the size of the prompt context. The default is `512`, but LLaMA models were built with a context of `2048`, which will provide better results for longer input/inference. The size may differ in other models, for example, baichuan models were build with a context of `4096`.
|
||||
- `-ngl N`, `--n-gpu-layers N`: When compiled with GPU support, this option allows offloading some layers to the GPU for computation. Generally results in increased performance.
|
||||
- `-mg i, --main-gpu i`: When using multiple GPUs, this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default, GPU `0` is used.
|
||||
- `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs, this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default, the data is split in proportion to VRAM, but this may not be optimal for performance.
|
||||
- `-b N`, `--batch-size N`: Set the batch size for prompt processing. Default: `2048`
|
||||
- `-ub N`, `--ubatch-size N`: Physical maximum batch size. Default: `512`
|
||||
- `--mlock`: Lock the model in memory, preventing it from being swapped out when memory-mapped.
|
||||
- `--no-mmap`: Do not memory-map the model. By default, models are mapped into memory, which allows the system to load only the necessary parts of the model as needed.
|
||||
- `--numa STRATEGY`: Attempt one of the below optimization strategies that help on some NUMA systems
|
||||
- `--numa STRATEGY`: Attempt one of the below optimization strategies that may help on some NUMA systems
|
||||
- `--numa distribute`: Spread execution evenly over all nodes
|
||||
- `--numa isolate`: Only spawn threads on CPUs on the node that execution started on
|
||||
- `--numa numactl`: Use the CPU map provided by numactl
|
||||
if run without this previously, it is recommended to drop the system page cache before using this
|
||||
see https://github.com/ggerganov/llama.cpp/issues/1437
|
||||
- `--numa numactl`: Use the CPU map provided by numactl. If run without this previously, it is recommended to drop the system
|
||||
page cache before using this. See https://github.com/ggerganov/llama.cpp/issues/1437
|
||||
|
||||
- `--numa`: Attempt optimizations that help on some NUMA systems.
|
||||
- `--numa`: Attempt optimizations that may help on some NUMA systems.
|
||||
- `--lora FNAME`: Apply a LoRA (Low-Rank Adaptation) adapter to the model (implies --no-mmap). This allows you to adapt the pretrained model to specific tasks or domains.
|
||||
- `--lora-base FNAME`: Optional model to use as a base for the layers modified by the LoRA adapter. This flag is used in conjunction with the `--lora` flag, and specifies the base model for the adaptation.
|
||||
- `-to N`, `--timeout N`: Server read/write timeout in seconds. Default `600`.
|
||||
- `--host`: Set the hostname or ip address to listen. Default `127.0.0.1`.
|
||||
- `--port`: Set the port to listen. Default: `8080`.
|
||||
- `--path`: path from which to serve static files (default: disabled)
|
||||
- `--api-key`: Set an api key for request authorization. By default the server responds to every request. With an api key set, the requests must have the Authorization header set with the api key as Bearer token. May be used multiple times to enable multiple valid keys.
|
||||
- `--api-key-file`: path to file containing api keys delimited by new lines. If set, requests must include one of the keys for access. May be used in conjunction with `--api-key`'s.
|
||||
- `--embedding`: Enable embedding extraction, Default: disabled.
|
||||
- `-np N`, `--parallel N`: Set the number of slots for process requests (default: 1)
|
||||
- `-cb`, `--cont-batching`: enable continuous batching (a.k.a dynamic batching) (default: disabled)
|
||||
- `-spf FNAME`, `--system-prompt-file FNAME` Set a file to load "a system prompt (initial prompt of all slots), this is useful for chat applications. [See more](#change-system-prompt-on-runtime)
|
||||
- `-to N`, `--timeout N`: Server read/write timeout in seconds. Default `600`
|
||||
- `--host`: Set the hostname or ip address to listen. Default `127.0.0.1`
|
||||
- `--port`: Set the port to listen. Default: `8080`
|
||||
- `--path`: Path from which to serve static files. Default: disabled
|
||||
- `--api-key`: Set an api key for request authorization. By default, the server responds to every request. With an api key set, the requests must have the Authorization header set with the api key as Bearer token. May be used multiple times to enable multiple valid keys.
|
||||
- `--api-key-file`: Path to file containing api keys delimited by new lines. If set, requests must include one of the keys for access. May be used in conjunction with `--api-key`s.
|
||||
- `--embedding`: Enable embedding extraction. Default: disabled
|
||||
- `-np N`, `--parallel N`: Set the number of slots for process requests. Default: `1`
|
||||
- `-cb`, `--cont-batching`: Enable continuous batching (a.k.a dynamic batching). Default: disabled
|
||||
- `-spf FNAME`, `--system-prompt-file FNAME` Set a file to load a system prompt (initial prompt of all slots). This is useful for chat applications. [See more](#change-system-prompt-on-runtime)
|
||||
- `--mmproj MMPROJ_FILE`: Path to a multimodal projector file for LLaVA.
|
||||
- `--grp-attn-n`: Set the group attention factor to extend context size through self-extend(default: 1=disabled), used together with group attention width `--grp-attn-w`
|
||||
- `--grp-attn-w`: Set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n`
|
||||
- `-n N, --n-predict N`: Set the maximum tokens to predict (default: -1)
|
||||
- `--grp-attn-n`: Set the group attention factor to extend context size through self-extend. Used together with group attention width `--grp-attn-w`. Default: `1`, which is disabled.
|
||||
- `--grp-attn-w`: Set the group attention width to extend context size through self-extend. Used together with group attention factor `--grp-attn-n`. Default: `512`
|
||||
- `-n N, --n-predict N`: Set the maximum tokens to predict. Default: `-1`
|
||||
- `--slots-endpoint-disable`: To disable slots state monitoring endpoint. Slots state may contain user data, prompts included.
|
||||
- `--metrics`: enable prometheus `/metrics` compatible endpoint (default: disabled)
|
||||
- `--chat-template JINJA_TEMPLATE`: Set custom jinja chat template. This parameter accepts a string, not a file name (default: template taken from model's metadata). We only support [some pre-defined templates](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template)
|
||||
- `--log-disable`: Output logs to stdout only, default: enabled.
|
||||
- `--log-format FORMAT`: Define the log output to FORMAT: json or text (default: json)
|
||||
- `--metrics`: enable prometheus `/metrics` compatible endpoint. Default: disabled
|
||||
- `--slot-save-path PATH`: Specifies the path where the state of slots (the prompt cache) can be stored. If not provided, the slot management endpoints will be disabled.
|
||||
- `--chat-template JINJA_TEMPLATE`: Set custom jinja chat template. This parameter accepts a string, not a file name. Default: template taken from model's metadata. We only support [some pre-defined templates](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template)
|
||||
- `--log-disable`: Output logs to stdout only, not to `llama.log`. Default: enabled
|
||||
- `--log-format FORMAT`: Define the log output to FORMAT: json or text Default: `json`
|
||||
|
||||
**If compiled with `LLAMA_SERVER_SSL=ON`**
|
||||
- `--ssl-key-file FNAME`: path to file a PEM-encoded SSL private key
|
||||
@@ -66,7 +68,7 @@ see https://github.com/ggerganov/llama.cpp/issues/1437
|
||||
|
||||
## Build
|
||||
|
||||
server is build alongside everything else from the root of the project
|
||||
`server` is built alongside everything else from the root of the project
|
||||
|
||||
- Using `make`:
|
||||
|
||||
@@ -82,7 +84,7 @@ server is build alongside everything else from the root of the project
|
||||
|
||||
## Build with SSL
|
||||
|
||||
server can also be built with SSL support using OpenSSL 3
|
||||
`server` can also be built with SSL support using OpenSSL 3
|
||||
|
||||
- Using `make`:
|
||||
|
||||
@@ -132,7 +134,7 @@ docker run -p 8080:8080 -v /path/to/models:/models --gpus all ghcr.io/ggerganov/
|
||||
|
||||
## Testing with CURL
|
||||
|
||||
Using [curl](https://curl.se/). On Windows `curl.exe` should be available in the base OS.
|
||||
Using [curl](https://curl.se/). On Windows, `curl.exe` should be available in the base OS.
|
||||
|
||||
```sh
|
||||
curl --request POST \
|
||||
@@ -156,7 +158,7 @@ mkdir llama-client
|
||||
cd llama-client
|
||||
```
|
||||
|
||||
Create a index.js file and put inside this:
|
||||
Create a index.js file and put this inside:
|
||||
|
||||
```javascript
|
||||
const prompt = `Building a website can be done in 10 simple steps:`;
|
||||
@@ -187,8 +189,8 @@ node index.js
|
||||
- 503 -> `{"status": "loading model"}` if the model is still being loaded.
|
||||
- 500 -> `{"status": "error"}` if the model failed to load.
|
||||
- 200 -> `{"status": "ok", "slots_idle": 1, "slots_processing": 2 }` if the model is successfully loaded and the server is ready for further requests mentioned below.
|
||||
- 200 -> `{"status": "no slot available", "slots_idle": 0, "slots_processing": 32}` if no slot are currently available.
|
||||
- 503 -> `{"status": "no slot available", "slots_idle": 0, "slots_processing": 32}` if the query parameter `fail_on_no_slot` is provided and no slot are currently available.
|
||||
- 200 -> `{"status": "no slot available", "slots_idle": 0, "slots_processing": 32}` if no slots are currently available.
|
||||
- 503 -> `{"status": "no slot available", "slots_idle": 0, "slots_processing": 32}` if the query parameter `fail_on_no_slot` is provided and no slots are currently available.
|
||||
|
||||
If the query parameter `include_slots` is passed, `slots` field will contain internal slots data except if `--slots-endpoint-disable` is set.
|
||||
|
||||
@@ -202,75 +204,75 @@ node index.js
|
||||
- The model's `tokenizer.ggml.add_bos_token` metadata is `true`
|
||||
- The system prompt is empty
|
||||
|
||||
`temperature`: Adjust the randomness of the generated text (default: 0.8).
|
||||
`temperature`: Adjust the randomness of the generated text. Default: `0.8`
|
||||
|
||||
`dynatemp_range`: Dynamic temperature range. The final temperature will be in the range of `[temperature - dynatemp_range; temperature + dynatemp_range]` (default: 0.0, 0.0 = disabled).
|
||||
`dynatemp_range`: Dynamic temperature range. The final temperature will be in the range of `[temperature - dynatemp_range; temperature + dynatemp_range]` Default: `0.0`, which is disabled.
|
||||
|
||||
`dynatemp_exponent`: Dynamic temperature exponent (default: 1.0).
|
||||
`dynatemp_exponent`: Dynamic temperature exponent. Default: `1.0`
|
||||
|
||||
`top_k`: Limit the next token selection to the K most probable tokens (default: 40).
|
||||
`top_k`: Limit the next token selection to the K most probable tokens. Default: `40`
|
||||
|
||||
`top_p`: Limit the next token selection to a subset of tokens with a cumulative probability above a threshold P (default: 0.95).
|
||||
`top_p`: Limit the next token selection to a subset of tokens with a cumulative probability above a threshold P. Default: `0.95`
|
||||
|
||||
`min_p`: The minimum probability for a token to be considered, relative to the probability of the most likely token (default: 0.05).
|
||||
`min_p`: The minimum probability for a token to be considered, relative to the probability of the most likely token. Default: `0.05`
|
||||
|
||||
`n_predict`: Set the maximum number of tokens to predict when generating text. **Note:** May exceed the set limit slightly if the last token is a partial multibyte character. When 0, no tokens will be generated but the prompt is evaluated into the cache. (default: -1, -1 = infinity).
|
||||
`n_predict`: Set the maximum number of tokens to predict when generating text. **Note:** May exceed the set limit slightly if the last token is a partial multibyte character. When 0, no tokens will be generated but the prompt is evaluated into the cache. Default: `-1`, where `-1` is infinity.
|
||||
|
||||
`n_keep`: Specify the number of tokens from the prompt to retain when the context size is exceeded and tokens need to be discarded.
|
||||
By default, this value is set to 0 (meaning no tokens are kept). Use `-1` to retain all tokens from the prompt.
|
||||
By default, this value is set to `0`, meaning no tokens are kept. Use `-1` to retain all tokens from the prompt.
|
||||
|
||||
`stream`: It allows receiving each predicted token in real-time instead of waiting for the completion to finish. To enable this, set to `true`.
|
||||
|
||||
`stop`: Specify a JSON array of stopping strings.
|
||||
These words will not be included in the completion, so make sure to add them to the prompt for the next iteration (default: []).
|
||||
These words will not be included in the completion, so make sure to add them to the prompt for the next iteration. Default: `[]`
|
||||
|
||||
`tfs_z`: Enable tail free sampling with parameter z (default: 1.0, 1.0 = disabled).
|
||||
`tfs_z`: Enable tail free sampling with parameter z. Default: `1.0`, which is disabled.
|
||||
|
||||
`typical_p`: Enable locally typical sampling with parameter p (default: 1.0, 1.0 = disabled).
|
||||
`typical_p`: Enable locally typical sampling with parameter p. Default: `1.0`, which is disabled.
|
||||
|
||||
`repeat_penalty`: Control the repetition of token sequences in the generated text (default: 1.1).
|
||||
`repeat_penalty`: Control the repetition of token sequences in the generated text. Default: `1.1`
|
||||
|
||||
`repeat_last_n`: Last n tokens to consider for penalizing repetition (default: 64, 0 = disabled, -1 = ctx-size).
|
||||
`repeat_last_n`: Last n tokens to consider for penalizing repetition. Default: `64`, where `0` is disabled and `-1` is ctx-size.
|
||||
|
||||
`penalize_nl`: Penalize newline tokens when applying the repeat penalty (default: true).
|
||||
`penalize_nl`: Penalize newline tokens when applying the repeat penalty. Default: `true`
|
||||
|
||||
`presence_penalty`: Repeat alpha presence penalty (default: 0.0, 0.0 = disabled).
|
||||
`presence_penalty`: Repeat alpha presence penalty. Default: `0.0`, which is disabled.
|
||||
|
||||
`frequency_penalty`: Repeat alpha frequency penalty (default: 0.0, 0.0 = disabled);
|
||||
`frequency_penalty`: Repeat alpha frequency penalty. Default: `0.0`, which is disabled.
|
||||
|
||||
`penalty_prompt`: This will replace the `prompt` for the purpose of the penalty evaluation. Can be either `null`, a string or an array of numbers representing tokens (default: `null` = use the original `prompt`).
|
||||
`penalty_prompt`: This will replace the `prompt` for the purpose of the penalty evaluation. Can be either `null`, a string or an array of numbers representing tokens. Default: `null`, which is to use the original `prompt`.
|
||||
|
||||
`mirostat`: Enable Mirostat sampling, controlling perplexity during text generation (default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0).
|
||||
`mirostat`: Enable Mirostat sampling, controlling perplexity during text generation. Default: `0`, where `0` is disabled, `1` is Mirostat, and `2` is Mirostat 2.0.
|
||||
|
||||
`mirostat_tau`: Set the Mirostat target entropy, parameter tau (default: 5.0).
|
||||
`mirostat_tau`: Set the Mirostat target entropy, parameter tau. Default: `5.0`
|
||||
|
||||
`mirostat_eta`: Set the Mirostat learning rate, parameter eta (default: 0.1).
|
||||
`mirostat_eta`: Set the Mirostat learning rate, parameter eta. Default: `0.1`
|
||||
|
||||
`grammar`: Set grammar for grammar-based sampling (default: no grammar)
|
||||
`grammar`: Set grammar for grammar-based sampling. Default: no grammar
|
||||
|
||||
`seed`: Set the random number generator (RNG) seed (default: -1, -1 = random seed).
|
||||
`seed`: Set the random number generator (RNG) seed. Default: `-1`, which is a random seed.
|
||||
|
||||
`ignore_eos`: Ignore end of stream token and continue generating (default: false).
|
||||
`ignore_eos`: Ignore end of stream token and continue generating. Default: `false`
|
||||
|
||||
`logit_bias`: Modify the likelihood of a token appearing in the generated text completion. For example, use `"logit_bias": [[15043,1.0]]` to increase the likelihood of the token 'Hello', or `"logit_bias": [[15043,-1.0]]` to decrease its likelihood. Setting the value to false, `"logit_bias": [[15043,false]]` ensures that the token `Hello` is never produced. The tokens can also be represented as strings, e.g. `[["Hello, World!",-0.5]]` will reduce the likelihood of all the individual tokens that represent the string `Hello, World!`, just like the `presence_penalty` does. (default: []).
|
||||
`logit_bias`: Modify the likelihood of a token appearing in the generated text completion. For example, use `"logit_bias": [[15043,1.0]]` to increase the likelihood of the token 'Hello', or `"logit_bias": [[15043,-1.0]]` to decrease its likelihood. Setting the value to false, `"logit_bias": [[15043,false]]` ensures that the token `Hello` is never produced. The tokens can also be represented as strings, e.g. `[["Hello, World!",-0.5]]` will reduce the likelihood of all the individual tokens that represent the string `Hello, World!`, just like the `presence_penalty` does. Default: `[]`
|
||||
|
||||
`n_probs`: If greater than 0, the response also contains the probabilities of top N tokens for each generated token (default: 0)
|
||||
`n_probs`: If greater than 0, the response also contains the probabilities of top N tokens for each generated token. Default: `0`
|
||||
|
||||
`min_keep`: If greater than 0, force samplers to return N possible tokens at minimum (default: 0)
|
||||
`min_keep`: If greater than 0, force samplers to return N possible tokens at minimum. Default: `0`
|
||||
|
||||
`image_data`: An array of objects to hold base64-encoded image `data` and its `id`s to be reference in `prompt`. You can determine the place of the image in the prompt as in the following: `USER:[img-12]Describe the image in detail.\nASSISTANT:`. In this case, `[img-12]` will be replaced by the embeddings of the image with id `12` in the following `image_data` array: `{..., "image_data": [{"data": "<BASE64_STRING>", "id": 12}]}`. Use `image_data` only with multimodal models, e.g., LLaVA.
|
||||
|
||||
`slot_id`: Assign the completion task to an specific slot. If is -1 the task will be assigned to a Idle slot (default: -1)
|
||||
`id_slot`: Assign the completion task to an specific slot. If is -1 the task will be assigned to a Idle slot. Default: `-1`
|
||||
|
||||
`cache_prompt`: Re-use previously cached prompt from the last request if possible. This may prevent re-caching the prompt from scratch. (default: false)
|
||||
`cache_prompt`: Re-use previously cached prompt from the last request if possible. This may prevent re-caching the prompt from scratch. Default: `false`
|
||||
|
||||
`system_prompt`: Change the system prompt (initial prompt of all slots), this is useful for chat applications. [See more](#change-system-prompt-on-runtime)
|
||||
|
||||
`samplers`: The order the samplers should be applied in. An array of strings representing sampler type names. If a sampler is not set, it will not be used. If a sampler is specified more than once, it will be applied multiple times. (default: `["top_k", "tfs_z", "typical_p", "top_p", "min_p", "temperature"]` - these are all the available values)
|
||||
`samplers`: The order the samplers should be applied in. An array of strings representing sampler type names. If a sampler is not set, it will not be used. If a sampler is specified more than once, it will be applied multiple times. Default: `["top_k", "tfs_z", "typical_p", "top_p", "min_p", "temperature"]` - these are all the available values.
|
||||
|
||||
### Result JSON
|
||||
|
||||
- Note: When using streaming mode (`stream`) only `content` and `stop` will be returned until end of completion.
|
||||
- Note: When using streaming mode (`stream`), only `content` and `stop` will be returned until end of completion.
|
||||
|
||||
- `completion_probabilities`: An array of token probabilities for each completion. The array's length is `n_predict`. Each item in the array has the following structure:
|
||||
|
||||
@@ -284,7 +286,7 @@ node index.js
|
||||
},
|
||||
{
|
||||
"prob": float,
|
||||
"tok_str": "<second most likely tonen>"
|
||||
"tok_str": "<second most likely token>"
|
||||
},
|
||||
...
|
||||
]
|
||||
@@ -354,14 +356,14 @@ Notice that each `probs` is an array of length `n_probs`.
|
||||
|
||||
- `assistant_name` - the required assistant name to generate the prompt in case you have specified a system prompt for all slots.
|
||||
- `user_name` - the required anti-prompt to generate the prompt in case you have specified a system prompt for all slots.
|
||||
- `default_generation_settings` - the default generation settings for the `/completion` endpoint, has the same fields as the `generation_settings` response object from the `/completion` endpoint.
|
||||
- `default_generation_settings` - the default generation settings for the `/completion` endpoint, which has the same fields as the `generation_settings` response object from the `/completion` endpoint.
|
||||
- `total_slots` - the total number of slots for process requests (defined by `--parallel` option)
|
||||
|
||||
- **POST** `/v1/chat/completions`: OpenAI-compatible Chat Completions API. Given a ChatML-formatted json description in `messages`, it returns the predicted completion. Both synchronous and streaming mode are supported, so scripted and interactive applications work fine. While no strong claims of compatibility with OpenAI API spec is being made, in our experience it suffices to support many apps. Only ChatML-tuned models, such as Dolphin, OpenOrca, OpenHermes, OpenChat-3.5, etc can be used with this endpoint.
|
||||
- **POST** `/v1/chat/completions`: OpenAI-compatible Chat Completions API. Given a ChatML-formatted json description in `messages`, it returns the predicted completion. Both synchronous and streaming mode are supported, so scripted and interactive applications work fine. While no strong claims of compatibility with OpenAI API spec is being made, in our experience it suffices to support many apps. Only model with [supported chat template](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template) can be used optimally with this endpoint. By default, ChatML template will be used.
|
||||
|
||||
*Options:*
|
||||
|
||||
See [OpenAI Chat Completions API documentation](https://platform.openai.com/docs/api-reference/chat). While some OpenAI-specific features such as function calling aren't supported, llama.cpp `/completion`-specific features such are `mirostat` are supported.
|
||||
See [OpenAI Chat Completions API documentation](https://platform.openai.com/docs/api-reference/chat). While some OpenAI-specific features such as function calling aren't supported, llama.cpp `/completion`-specific features such as `mirostat` are supported.
|
||||
|
||||
*Examples:*
|
||||
|
||||
@@ -511,16 +513,67 @@ Available metrics:
|
||||
- `llamacpp:tokens_predicted_total`: Number of generation tokens processed.
|
||||
- `llamacpp:prompt_tokens_seconds`: Average prompt throughput in tokens/s.
|
||||
- `llamacpp:predicted_tokens_seconds`: Average generation throughput in tokens/s.
|
||||
- `llamacpp:kv_cache_usage_ratio`: KV-cache usage. 1 means 100 percent usage.
|
||||
- `llamacpp:kv_cache_usage_ratio`: KV-cache usage. `1` means 100 percent usage.
|
||||
- `llamacpp:kv_cache_tokens`: KV-cache tokens.
|
||||
- `llamacpp:requests_processing`: Number of request processing.
|
||||
- `llamacpp:requests_deferred`: Number of request deferred.
|
||||
- `llamacpp:requests_processing`: Number of requests processing.
|
||||
- `llamacpp:requests_deferred`: Number of requests deferred.
|
||||
|
||||
- **POST** `/slots/{id_slot}?action=save`: Save the prompt cache of the specified slot to a file.
|
||||
|
||||
*Options:*
|
||||
|
||||
`filename`: Name of the file to save the slot's prompt cache. The file will be saved in the directory specified by the `--slot-save-path` server parameter.
|
||||
|
||||
### Result JSON
|
||||
|
||||
```json
|
||||
{
|
||||
"id_slot": 0,
|
||||
"filename": "slot_save_file.bin",
|
||||
"n_saved": 1745,
|
||||
"n_written": 14309796,
|
||||
"timings": {
|
||||
"save_ms": 49.865
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
- **POST** `/slots/{id_slot}?action=restore`: Restore the prompt cache of the specified slot from a file.
|
||||
|
||||
*Options:*
|
||||
|
||||
`filename`: Name of the file to restore the slot's prompt cache from. The file should be located in the directory specified by the `--slot-save-path` server parameter.
|
||||
|
||||
### Result JSON
|
||||
|
||||
```json
|
||||
{
|
||||
"id_slot": 0,
|
||||
"filename": "slot_save_file.bin",
|
||||
"n_restored": 1745,
|
||||
"n_read": 14309796,
|
||||
"timings": {
|
||||
"restore_ms": 42.937
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
- **POST** `/slots/{id_slot}?action=erase`: Erase the prompt cache of the specified slot.
|
||||
|
||||
### Result JSON
|
||||
|
||||
```json
|
||||
{
|
||||
"id_slot": 0,
|
||||
"n_erased": 1745
|
||||
}
|
||||
```
|
||||
|
||||
## More examples
|
||||
|
||||
### Change system prompt on runtime
|
||||
|
||||
To use the server example to serve multiple chat-type clients while keeping the same system prompt, you can utilize the option `system_prompt` to achieve that. This only needs to be done once to establish it.
|
||||
To use the server example to serve multiple chat-type clients while keeping the same system prompt, you can utilize the option `system_prompt`. This only needs to be used once.
|
||||
|
||||
`prompt`: Specify a context that you want all connecting clients to respect.
|
||||
|
||||
@@ -559,11 +612,11 @@ bash chat.sh
|
||||
|
||||
### OAI-like API
|
||||
|
||||
The HTTP server supports OAI-like API: https://github.com/openai/openai-openapi
|
||||
The HTTP `server` supports an OAI-like API: https://github.com/openai/openai-openapi
|
||||
|
||||
### API errors
|
||||
|
||||
Server returns error in the same format as OAI: https://github.com/openai/openai-openapi
|
||||
`server` returns errors in the same format as OAI: https://github.com/openai/openai-openapi
|
||||
|
||||
Example of an error:
|
||||
|
||||
|
||||
@@ -2,13 +2,15 @@
|
||||
|
||||
Benchmark is using [k6](https://k6.io/).
|
||||
|
||||
##### Install k6
|
||||
##### Install k6 and sse extension
|
||||
|
||||
Follow instruction from: https://k6.io/docs/get-started/installation/
|
||||
SSE is not supported by default in k6, you have to build k6 with the [xk6-sse](https://github.com/phymbert/xk6-sse) extension.
|
||||
|
||||
Example for ubuntu:
|
||||
Example:
|
||||
```shell
|
||||
snap install k6
|
||||
go install go.k6.io/xk6/cmd/xk6@latest
|
||||
xk6 build master \
|
||||
--with github.com/phymbert/xk6-sse
|
||||
```
|
||||
|
||||
#### Download a dataset
|
||||
@@ -46,7 +48,7 @@ server --host localhost --port 8080 \
|
||||
|
||||
For 500 chat completions request with 8 concurrent users during maximum 10 minutes, run:
|
||||
```shell
|
||||
k6 run script.js --duration 10m --iterations 500 --vus 8
|
||||
./k6 run script.js --duration 10m --iterations 500 --vus 8
|
||||
```
|
||||
|
||||
The benchmark values can be overridden with:
|
||||
@@ -86,3 +88,33 @@ K6 metrics might be compared against [server metrics](../README.md), with:
|
||||
```shell
|
||||
curl http://localhost:8080/metrics
|
||||
```
|
||||
|
||||
### Using the CI python script
|
||||
The `bench.py` script does several steps:
|
||||
- start the server
|
||||
- define good variable for k6
|
||||
- run k6 script
|
||||
- extract metrics from prometheus
|
||||
|
||||
It aims to be used in the CI, but you can run it manually:
|
||||
|
||||
```shell
|
||||
LLAMA_SERVER_BIN_PATH=../../../cmake-build-release/bin/server python bench.py \
|
||||
--runner-label local \
|
||||
--name local \
|
||||
--branch `git rev-parse --abbrev-ref HEAD` \
|
||||
--commit `git rev-parse HEAD` \
|
||||
--scenario script.js \
|
||||
--duration 5m \
|
||||
--hf-repo ggml-org/models \
|
||||
--hf-file phi-2/ggml-model-q4_0.gguf \
|
||||
--model-path-prefix models \
|
||||
--parallel 4 \
|
||||
-ngl 33 \
|
||||
--batch-size 2048 \
|
||||
--ubatch-size 256 \
|
||||
--ctx-size 4096 \
|
||||
--n-prompts 200 \
|
||||
--max-prompt-tokens 256 \
|
||||
--max-tokens 256
|
||||
```
|
||||
|
||||
308
examples/server/bench/bench.py
Normal file
308
examples/server/bench/bench.py
Normal file
@@ -0,0 +1,308 @@
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
import signal
|
||||
import socket
|
||||
import subprocess
|
||||
import sys
|
||||
import threading
|
||||
import time
|
||||
import traceback
|
||||
from contextlib import closing
|
||||
from datetime import datetime
|
||||
|
||||
import matplotlib
|
||||
import matplotlib.dates
|
||||
import matplotlib.pyplot as plt
|
||||
import requests
|
||||
from statistics import mean
|
||||
|
||||
|
||||
def main(args_in: list[str] | None = None) -> None:
|
||||
parser = argparse.ArgumentParser(description="Start server benchmark scenario")
|
||||
parser.add_argument("--name", type=str, help="Bench name", required=True)
|
||||
parser.add_argument("--runner-label", type=str, help="Runner label", required=True)
|
||||
parser.add_argument("--branch", type=str, help="Branch name", default="detached")
|
||||
parser.add_argument("--commit", type=str, help="Commit name", default="dirty")
|
||||
parser.add_argument("--host", type=str, help="Server listen host", default="0.0.0.0")
|
||||
parser.add_argument("--port", type=int, help="Server listen host", default="8080")
|
||||
parser.add_argument("--model-path-prefix", type=str, help="Prefix where to store the model files", default="models")
|
||||
parser.add_argument("--n-prompts", type=int,
|
||||
help="SERVER_BENCH_N_PROMPTS: total prompts to randomly select in the benchmark", required=True)
|
||||
parser.add_argument("--max-prompt-tokens", type=int,
|
||||
help="SERVER_BENCH_MAX_PROMPT_TOKENS: maximum prompt tokens to filter out in the dataset",
|
||||
required=True)
|
||||
parser.add_argument("--max-tokens", type=int,
|
||||
help="SERVER_BENCH_MAX_CONTEXT: maximum context size of the completions request to filter out in the dataset: prompt + predicted tokens",
|
||||
required=True)
|
||||
parser.add_argument("--hf-repo", type=str, help="Hugging Face model repository", required=True)
|
||||
parser.add_argument("--hf-file", type=str, help="Hugging Face model file", required=True)
|
||||
parser.add_argument("-ngl", "--n-gpu-layers", type=int, help="layers to the GPU for computation", required=True)
|
||||
parser.add_argument("--ctx-size", type=int, help="Set the size of the prompt context", required=True)
|
||||
parser.add_argument("--parallel", type=int, help="Set the number of slots for process requests", required=True)
|
||||
parser.add_argument("--batch-size", type=int, help="Set the batch size for prompt processing", required=True)
|
||||
parser.add_argument("--ubatch-size", type=int, help="physical maximum batch size", required=True)
|
||||
parser.add_argument("--scenario", type=str, help="Scenario to run", required=True)
|
||||
parser.add_argument("--duration", type=str, help="Bench scenario", required=True)
|
||||
|
||||
args = parser.parse_args(args_in)
|
||||
|
||||
start_time = time.time()
|
||||
|
||||
# Start the server and performance scenario
|
||||
try:
|
||||
server_process = start_server(args)
|
||||
except Exception:
|
||||
print("bench: server start error :")
|
||||
traceback.print_exc(file=sys.stdout)
|
||||
sys.exit(1)
|
||||
|
||||
# start the benchmark
|
||||
try:
|
||||
start_benchmark(args)
|
||||
|
||||
iterations = 0
|
||||
with open("results.github.env", 'w') as github_env:
|
||||
# parse output
|
||||
with open('k6-results.json', 'r') as bench_results:
|
||||
# Load JSON data from file
|
||||
data = json.load(bench_results)
|
||||
for metric_name in data['metrics']:
|
||||
for metric_metric in data['metrics'][metric_name]:
|
||||
value = data['metrics'][metric_name][metric_metric]
|
||||
if isinstance(value, float) or isinstance(value, int):
|
||||
value = round(value, 2)
|
||||
data['metrics'][metric_name][metric_metric]=value
|
||||
github_env.write(
|
||||
f"{escape_metric_name(metric_name)}_{escape_metric_name(metric_metric)}={value}\n")
|
||||
iterations = data['root_group']['checks']['success completion']['passes']
|
||||
|
||||
except Exception:
|
||||
print("bench: error :")
|
||||
traceback.print_exc(file=sys.stdout)
|
||||
|
||||
# Stop the server
|
||||
if server_process:
|
||||
try:
|
||||
print(f"bench: shutting down server pid={server_process.pid} ...")
|
||||
if os.name == 'nt':
|
||||
interrupt = signal.CTRL_C_EVENT
|
||||
else:
|
||||
interrupt = signal.SIGINT
|
||||
server_process.send_signal(interrupt)
|
||||
server_process.wait(0.5)
|
||||
|
||||
except subprocess.TimeoutExpired:
|
||||
print(f"server still alive after 500ms, force-killing pid={server_process.pid} ...")
|
||||
server_process.kill() # SIGKILL
|
||||
server_process.wait()
|
||||
|
||||
while is_server_listening(args.host, args.port):
|
||||
time.sleep(0.1)
|
||||
|
||||
title = (f"llama.cpp {args.name} on {args.runner_label}\n "
|
||||
f"duration={args.duration} {iterations} iterations")
|
||||
xlabel = (f"{args.hf_repo}/{args.hf_file}\n"
|
||||
f"parallel={args.parallel} ctx-size={args.ctx_size} ngl={args.n_gpu_layers} batch-size={args.batch_size} ubatch-size={args.ubatch_size} pp={args.max_prompt_tokens} pp+tg={args.max_tokens}\n"
|
||||
f"branch={args.branch} commit={args.commit}")
|
||||
|
||||
# Prometheus
|
||||
end_time = time.time()
|
||||
prometheus_metrics = {}
|
||||
if is_server_listening("0.0.0.0", 9090):
|
||||
metrics = ['prompt_tokens_seconds', 'predicted_tokens_seconds',
|
||||
'kv_cache_usage_ratio', 'requests_processing', 'requests_deferred']
|
||||
|
||||
for metric in metrics:
|
||||
resp = requests.get(f"http://localhost:9090/api/v1/query_range",
|
||||
params={'query': 'llamacpp:' + metric, 'start': start_time, 'end': end_time, 'step': 2})
|
||||
|
||||
with open(f"{metric}.json", 'w') as metric_json:
|
||||
metric_json.write(resp.text)
|
||||
|
||||
if resp.status_code != 200:
|
||||
print(f"bench: unable to extract prometheus metric {metric}: {resp.text}")
|
||||
else:
|
||||
metric_data = resp.json()
|
||||
values = metric_data['data']['result'][0]['values']
|
||||
timestamps, metric_values = zip(*values)
|
||||
metric_values = [float(value) for value in metric_values]
|
||||
prometheus_metrics[metric] = metric_values
|
||||
timestamps_dt = [datetime.fromtimestamp(int(ts)) for ts in timestamps]
|
||||
plt.figure(figsize=(16, 10), dpi=80)
|
||||
plt.plot(timestamps_dt, metric_values, label=metric)
|
||||
plt.xticks(rotation=0, fontsize=14, horizontalalignment='center', alpha=.7)
|
||||
plt.yticks(fontsize=12, alpha=.7)
|
||||
|
||||
ylabel = f"llamacpp:{metric}"
|
||||
plt.title(title,
|
||||
fontsize=14, wrap=True)
|
||||
plt.grid(axis='both', alpha=.3)
|
||||
plt.ylabel(ylabel, fontsize=22)
|
||||
plt.xlabel(xlabel, fontsize=14, wrap=True)
|
||||
plt.gca().xaxis.set_major_locator(matplotlib.dates.MinuteLocator())
|
||||
plt.gca().xaxis.set_major_formatter(matplotlib.dates.DateFormatter("%Y-%m-%d %H:%M:%S"))
|
||||
plt.gcf().autofmt_xdate()
|
||||
|
||||
# Remove borders
|
||||
plt.gca().spines["top"].set_alpha(0.0)
|
||||
plt.gca().spines["bottom"].set_alpha(0.3)
|
||||
plt.gca().spines["right"].set_alpha(0.0)
|
||||
plt.gca().spines["left"].set_alpha(0.3)
|
||||
|
||||
# Save the plot as a jpg image
|
||||
plt.savefig(f'{metric}.jpg', dpi=60)
|
||||
plt.close()
|
||||
|
||||
# Mermaid format in case images upload failed
|
||||
with (open(f"{metric}.mermaid", 'w') as mermaid_f):
|
||||
mermaid = (
|
||||
f"""---
|
||||
config:
|
||||
xyChart:
|
||||
titleFontSize: 12
|
||||
width: 900
|
||||
height: 600
|
||||
themeVariables:
|
||||
xyChart:
|
||||
titleColor: "#000000"
|
||||
---
|
||||
xychart-beta
|
||||
title "{title}"
|
||||
y-axis "llamacpp:{metric}"
|
||||
x-axis "llamacpp:{metric}" {int(min(timestamps))} --> {int(max(timestamps))}
|
||||
line [{', '.join([str(round(float(value), 2)) for value in metric_values])}]
|
||||
""")
|
||||
mermaid_f.write(mermaid)
|
||||
|
||||
# 140 chars max for commit status description
|
||||
bench_results = {
|
||||
"i": iterations,
|
||||
"req": {
|
||||
"p95": round(data['metrics']["http_req_duration"]["p(95)"], 2),
|
||||
"avg": round(data['metrics']["http_req_duration"]["avg"], 2),
|
||||
},
|
||||
"pp": {
|
||||
"p95": round(data['metrics']["llamacpp_prompt_processing_second"]["p(95)"], 2),
|
||||
"avg": round(data['metrics']["llamacpp_prompt_processing_second"]["avg"], 2),
|
||||
"0": round(mean(prometheus_metrics['prompt_tokens_seconds']), 2),
|
||||
},
|
||||
"tg": {
|
||||
"p95": round(data['metrics']["llamacpp_tokens_second"]["p(95)"], 2),
|
||||
"avg": round(data['metrics']["llamacpp_tokens_second"]["avg"], 2),
|
||||
"0": round(mean(prometheus_metrics['predicted_tokens_seconds']), 2),
|
||||
},
|
||||
}
|
||||
with open("results.github.env", 'a') as github_env:
|
||||
github_env.write(f"BENCH_RESULTS={json.dumps(bench_results, indent=None, separators=(',', ':') )}\n")
|
||||
github_env.write(f"BENCH_ITERATIONS={iterations}\n")
|
||||
|
||||
title = title.replace('\n', ' ')
|
||||
xlabel = xlabel.replace('\n', ' ')
|
||||
github_env.write(f"BENCH_GRAPH_TITLE={title}\n")
|
||||
github_env.write(f"BENCH_GRAPH_XLABEL={xlabel}\n")
|
||||
|
||||
|
||||
def start_benchmark(args):
|
||||
k6_path = './k6'
|
||||
if 'BENCH_K6_BIN_PATH' in os.environ:
|
||||
k6_path = os.environ['BENCH_K6_BIN_PATH']
|
||||
k6_args = [
|
||||
'run', args.scenario,
|
||||
'--no-color',
|
||||
]
|
||||
k6_args.extend(['--duration', args.duration])
|
||||
k6_args.extend(['--iterations', args.n_prompts])
|
||||
k6_args.extend(['--vus', args.parallel])
|
||||
k6_args.extend(['--summary-export', 'k6-results.json'])
|
||||
args = f"SERVER_BENCH_N_PROMPTS={args.n_prompts} SERVER_BENCH_MAX_PROMPT_TOKENS={args.max_prompt_tokens} SERVER_BENCH_MAX_CONTEXT={args.max_tokens} "
|
||||
args = args + ' '.join([str(arg) for arg in [k6_path, *k6_args]])
|
||||
print(f"bench: starting k6 with: {args}")
|
||||
k6_completed = subprocess.run(args, shell=True, stdout=sys.stdout, stderr=sys.stderr)
|
||||
if k6_completed.returncode != 0:
|
||||
raise Exception("bench: unable to run k6")
|
||||
|
||||
|
||||
def start_server(args):
|
||||
server_process = start_server_background(args)
|
||||
|
||||
attempts = 0
|
||||
max_attempts = 20
|
||||
if 'GITHUB_ACTIONS' in os.environ:
|
||||
max_attempts *= 2
|
||||
|
||||
while not is_server_listening(args.host, args.port):
|
||||
attempts += 1
|
||||
if attempts > max_attempts:
|
||||
assert False, "server not started"
|
||||
print(f"bench: waiting for server to start ...")
|
||||
time.sleep(0.5)
|
||||
|
||||
print("bench: server started.")
|
||||
return server_process
|
||||
|
||||
|
||||
def start_server_background(args):
|
||||
# Start the server
|
||||
server_path = '../../../build/bin/server'
|
||||
if 'LLAMA_SERVER_BIN_PATH' in os.environ:
|
||||
server_path = os.environ['LLAMA_SERVER_BIN_PATH']
|
||||
server_args = [
|
||||
'--host', args.host,
|
||||
'--port', args.port,
|
||||
]
|
||||
model_file = args.model_path_prefix + os.path.sep + args.hf_file
|
||||
model_dir = os.path.dirname(model_file)
|
||||
if not os.path.exists(model_dir):
|
||||
os.makedirs(model_dir)
|
||||
server_args.extend(['--model', model_file])
|
||||
server_args.extend(['--hf-repo', args.hf_repo])
|
||||
server_args.extend(['--hf-file', args.hf_file])
|
||||
server_args.extend(['--n-gpu-layers', args.n_gpu_layers])
|
||||
server_args.extend(['--ctx-size', args.ctx_size])
|
||||
server_args.extend(['--parallel', args.parallel])
|
||||
server_args.extend(['--batch-size', args.batch_size])
|
||||
server_args.extend(['--ubatch-size', args.ubatch_size])
|
||||
server_args.extend(['--n-predict', args.max_tokens * 2])
|
||||
server_args.extend(['--defrag-thold', "0.1"])
|
||||
server_args.append('--cont-batching')
|
||||
server_args.append('--metrics')
|
||||
server_args.extend(['--log-format', "text"])
|
||||
args = [str(arg) for arg in [server_path, *server_args]]
|
||||
print(f"bench: starting server with: {' '.join(args)}")
|
||||
pkwargs = {
|
||||
'stdout': subprocess.PIPE,
|
||||
'stderr': subprocess.PIPE
|
||||
}
|
||||
server_process = subprocess.Popen(
|
||||
args,
|
||||
**pkwargs)
|
||||
|
||||
def server_log(in_stream, out_stream):
|
||||
for line in iter(in_stream.readline, b''):
|
||||
print(line.decode('utf-8'), end='', file=out_stream)
|
||||
|
||||
thread_stdout = threading.Thread(target=server_log, args=(server_process.stdout, sys.stdout))
|
||||
thread_stdout.start()
|
||||
thread_stderr = threading.Thread(target=server_log, args=(server_process.stderr, sys.stderr))
|
||||
thread_stderr.start()
|
||||
|
||||
return server_process
|
||||
|
||||
|
||||
def is_server_listening(server_fqdn, server_port):
|
||||
with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
|
||||
result = sock.connect_ex((server_fqdn, server_port))
|
||||
_is_server_listening = result == 0
|
||||
if _is_server_listening:
|
||||
print(f"server is listening on {server_fqdn}:{server_port}...")
|
||||
return _is_server_listening
|
||||
|
||||
|
||||
def escape_metric_name(metric_name):
|
||||
return re.sub('[^A-Z0-9]', '_', metric_name.upper())
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
9
examples/server/bench/prometheus.yml
Normal file
9
examples/server/bench/prometheus.yml
Normal file
@@ -0,0 +1,9 @@
|
||||
global:
|
||||
scrape_interval: 10s
|
||||
external_labels:
|
||||
llamacpp: 'server'
|
||||
|
||||
scrape_configs:
|
||||
- job_name: 'llama.cpp server'
|
||||
static_configs:
|
||||
- targets: ['localhost:8080']
|
||||
2
examples/server/bench/requirements.txt
Normal file
2
examples/server/bench/requirements.txt
Normal file
@@ -0,0 +1,2 @@
|
||||
matplotlib
|
||||
requests
|
||||
@@ -1,4 +1,4 @@
|
||||
import http from 'k6/http'
|
||||
import sse from 'k6/x/sse'
|
||||
import {check, sleep} from 'k6'
|
||||
import {SharedArray} from 'k6/data'
|
||||
import {Counter, Rate, Trend} from 'k6/metrics'
|
||||
@@ -53,7 +53,9 @@ const data = new SharedArray('conversations', function () {
|
||||
|
||||
const llamacpp_prompt_tokens = new Trend('llamacpp_prompt_tokens')
|
||||
const llamacpp_completion_tokens = new Trend('llamacpp_completion_tokens')
|
||||
|
||||
const llamacpp_tokens_second = new Trend('llamacpp_tokens_second')
|
||||
const llamacpp_prompt_processing_second = new Trend('llamacpp_prompt_processing_second')
|
||||
|
||||
const llamacpp_prompt_tokens_total_counter = new Counter('llamacpp_prompt_tokens_total_counter')
|
||||
const llamacpp_completion_tokens_total_counter = new Counter('llamacpp_completion_tokens_total_counter')
|
||||
@@ -86,35 +88,62 @@ export default function () {
|
||||
}
|
||||
],
|
||||
"model": model,
|
||||
"stream": false,
|
||||
"stream": true,
|
||||
"seed": 42,
|
||||
"max_tokens": max_tokens
|
||||
}
|
||||
|
||||
const body = JSON.stringify(payload)
|
||||
const params = {method: 'POST', body: JSON.stringify(payload)};
|
||||
|
||||
let res = http.post(`${server_url}/chat/completions`, body, {
|
||||
headers: {'Content-Type': 'application/json'},
|
||||
timeout: '300s'
|
||||
const startTime = new Date()
|
||||
let promptEvalEndTime = null
|
||||
let prompt_tokens = 0
|
||||
let completions_tokens = 0
|
||||
let finish_reason = null
|
||||
const res = sse.open(`${server_url}/chat/completions`, params, function (client) {
|
||||
client.on('event', function (event) {
|
||||
if (promptEvalEndTime == null) {
|
||||
promptEvalEndTime = new Date()
|
||||
}
|
||||
|
||||
let chunk = JSON.parse(event.data)
|
||||
let choice = chunk.choices[0]
|
||||
if (choice.finish_reason) {
|
||||
finish_reason = choice.finish_reason
|
||||
}
|
||||
|
||||
if (chunk.usage) {
|
||||
prompt_tokens = chunk.usage.prompt_tokens
|
||||
llamacpp_prompt_tokens.add(prompt_tokens)
|
||||
llamacpp_prompt_tokens_total_counter.add(prompt_tokens)
|
||||
|
||||
completions_tokens = chunk.usage.completion_tokens
|
||||
llamacpp_completion_tokens.add(completions_tokens)
|
||||
llamacpp_completion_tokens_total_counter.add(completions_tokens)
|
||||
}
|
||||
})
|
||||
|
||||
client.on('error', function (e) {
|
||||
console.log('An unexpected error occurred: ', e.error());
|
||||
throw e;
|
||||
})
|
||||
})
|
||||
|
||||
check(res, {'success completion': (r) => r.status === 200})
|
||||
|
||||
if (res.status === 200) {
|
||||
const completions = res.json()
|
||||
const endTime = new Date()
|
||||
|
||||
llamacpp_prompt_tokens.add(completions.usage.prompt_tokens)
|
||||
llamacpp_prompt_tokens_total_counter.add(completions.usage.prompt_tokens)
|
||||
|
||||
llamacpp_completion_tokens.add(completions.usage.completion_tokens)
|
||||
llamacpp_completion_tokens_total_counter.add(completions.usage.completion_tokens)
|
||||
|
||||
llamacpp_completions_truncated_rate.add(completions.choices[0].finish_reason === 'length')
|
||||
llamacpp_completions_stop_rate.add(completions.choices[0].finish_reason === 'stop')
|
||||
|
||||
llamacpp_tokens_second.add(completions.usage.total_tokens / res.timings.duration * 1.e3)
|
||||
} else {
|
||||
console.error(`response: ${res.body} request=${payload}`)
|
||||
const promptEvalTime = promptEvalEndTime - startTime
|
||||
if (promptEvalTime > 0) {
|
||||
llamacpp_prompt_processing_second.add(prompt_tokens / (promptEvalEndTime - startTime) * 1.e3)
|
||||
}
|
||||
|
||||
const completion_time = endTime - promptEvalEndTime
|
||||
if (completions_tokens > 0 && completion_time > 0) {
|
||||
llamacpp_tokens_second.add(completions_tokens / completion_time * 1.e3)
|
||||
}
|
||||
llamacpp_completions_truncated_rate.add(finish_reason === 'length')
|
||||
llamacpp_completions_stop_rate.add(finish_reason === 'stop')
|
||||
|
||||
sleep(0.3)
|
||||
}
|
||||
|
||||
@@ -26,8 +26,9 @@ const propOrder = grammarJsonSchemaPropOrder
|
||||
|
||||
let grammar = null
|
||||
if (grammarJsonSchemaFile) {
|
||||
const schema = JSON.parse(readFileSync(grammarJsonSchemaFile, 'utf-8'))
|
||||
const converter = new SchemaConverter(propOrder)
|
||||
let schema = JSON.parse(readFileSync(grammarJsonSchemaFile, 'utf-8'))
|
||||
const converter = new SchemaConverter({prop_order: propOrder, allow_fetch: true})
|
||||
schema = await converter.resolveRefs(schema, grammarJsonSchemaFile)
|
||||
converter.visit(schema, '')
|
||||
grammar = converter.formatGrammar()
|
||||
}
|
||||
|
||||
@@ -43,444 +43,454 @@ unsigned char completion_js[] = {
|
||||
0x7d, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63,
|
||||
0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x20, 0x3d, 0x20,
|
||||
0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x72,
|
||||
0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x69, 0x66,
|
||||
0x20, 0x28, 0x21, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65,
|
||||
0x72, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e,
|
||||
0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x6e, 0x65,
|
||||
0x77, 0x20, 0x41, 0x62, 0x6f, 0x72, 0x74, 0x43, 0x6f, 0x6e, 0x74, 0x72,
|
||||
0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d,
|
||||
0x0a, 0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x6f,
|
||||
0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x50, 0x61, 0x72, 0x61,
|
||||
0x6d, 0x73, 0x20, 0x3d, 0x20, 0x7b, 0x20, 0x2e, 0x2e, 0x2e, 0x70, 0x61,
|
||||
0x72, 0x61, 0x6d, 0x44, 0x65, 0x66, 0x61, 0x75, 0x6c, 0x74, 0x73, 0x2c,
|
||||
0x20, 0x2e, 0x2e, 0x2e, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20,
|
||||
0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x20, 0x7d, 0x3b, 0x0a, 0x0a, 0x20,
|
||||
0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72, 0x65, 0x73, 0x70, 0x6f,
|
||||
0x6e, 0x73, 0x65, 0x20, 0x3d, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20,
|
||||
0x66, 0x65, 0x74, 0x63, 0x68, 0x28, 0x22, 0x2f, 0x63, 0x6f, 0x6d, 0x70,
|
||||
0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x22, 0x2c, 0x20, 0x7b, 0x0a, 0x20,
|
||||
0x20, 0x20, 0x20, 0x6d, 0x65, 0x74, 0x68, 0x6f, 0x64, 0x3a, 0x20, 0x27,
|
||||
0x50, 0x4f, 0x53, 0x54, 0x27, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x62,
|
||||
0x6f, 0x64, 0x79, 0x3a, 0x20, 0x4a, 0x53, 0x4f, 0x4e, 0x2e, 0x73, 0x74,
|
||||
0x72, 0x69, 0x6e, 0x67, 0x69, 0x66, 0x79, 0x28, 0x63, 0x6f, 0x6d, 0x70,
|
||||
0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x50, 0x61, 0x72, 0x61, 0x6d, 0x73,
|
||||
0x29, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x68, 0x65, 0x61, 0x64, 0x65,
|
||||
0x72, 0x73, 0x3a, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x27, 0x43, 0x6f, 0x6e, 0x6e, 0x65, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x27,
|
||||
0x3a, 0x20, 0x27, 0x6b, 0x65, 0x65, 0x70, 0x2d, 0x61, 0x6c, 0x69, 0x76,
|
||||
0x65, 0x27, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x27, 0x43,
|
||||
0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x2d, 0x54, 0x79, 0x70, 0x65, 0x27,
|
||||
0x3a, 0x20, 0x27, 0x61, 0x70, 0x70, 0x6c, 0x69, 0x63, 0x61, 0x74, 0x69,
|
||||
0x6f, 0x6e, 0x2f, 0x6a, 0x73, 0x6f, 0x6e, 0x27, 0x2c, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x27, 0x41, 0x63, 0x63, 0x65, 0x70, 0x74, 0x27,
|
||||
0x3a, 0x20, 0x27, 0x74, 0x65, 0x78, 0x74, 0x2f, 0x65, 0x76, 0x65, 0x6e,
|
||||
0x74, 0x2d, 0x73, 0x74, 0x72, 0x65, 0x61, 0x6d, 0x27, 0x2c, 0x0a, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x2e, 0x2e, 0x28, 0x70, 0x61, 0x72,
|
||||
0x61, 0x6d, 0x73, 0x2e, 0x61, 0x70, 0x69, 0x5f, 0x6b, 0x65, 0x79, 0x20,
|
||||
0x3f, 0x20, 0x7b, 0x27, 0x41, 0x75, 0x74, 0x68, 0x6f, 0x72, 0x69, 0x7a,
|
||||
0x61, 0x74, 0x69, 0x6f, 0x6e, 0x27, 0x3a, 0x20, 0x60, 0x42, 0x65, 0x61,
|
||||
0x72, 0x65, 0x72, 0x20, 0x24, 0x7b, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73,
|
||||
0x2e, 0x61, 0x70, 0x69, 0x5f, 0x6b, 0x65, 0x79, 0x7d, 0x60, 0x7d, 0x20,
|
||||
0x3a, 0x20, 0x7b, 0x7d, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x2c,
|
||||
0x0a, 0x20, 0x20, 0x20, 0x20, 0x73, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x3a,
|
||||
0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2e,
|
||||
0x73, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x2c, 0x0a, 0x20, 0x20, 0x7d, 0x29,
|
||||
0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x3b, 0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e,
|
||||
0x73, 0x74, 0x20, 0x61, 0x70, 0x69, 0x5f, 0x75, 0x72, 0x6c, 0x20, 0x3d,
|
||||
0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x2e, 0x61, 0x70, 0x69, 0x5f,
|
||||
0x75, 0x72, 0x6c, 0x20, 0x7c, 0x7c, 0x20, 0x22, 0x22, 0x3b, 0x0a, 0x0a,
|
||||
0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x21, 0x63, 0x6f, 0x6e, 0x74, 0x72,
|
||||
0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x20,
|
||||
0x3d, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x41, 0x62, 0x6f, 0x72, 0x74, 0x43,
|
||||
0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x28, 0x29, 0x3b,
|
||||
0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73,
|
||||
0x74, 0x20, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e,
|
||||
0x50, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d, 0x20, 0x7b, 0x20, 0x2e,
|
||||
0x2e, 0x2e, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x44, 0x65, 0x66, 0x61, 0x75,
|
||||
0x6c, 0x74, 0x73, 0x2c, 0x20, 0x2e, 0x2e, 0x2e, 0x70, 0x61, 0x72, 0x61,
|
||||
0x6d, 0x73, 0x2c, 0x20, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x20, 0x7d,
|
||||
0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72,
|
||||
0x65, 0x61, 0x64, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x72, 0x65, 0x73, 0x70,
|
||||
0x6f, 0x6e, 0x73, 0x65, 0x2e, 0x62, 0x6f, 0x64, 0x79, 0x2e, 0x67, 0x65,
|
||||
0x74, 0x52, 0x65, 0x61, 0x64, 0x65, 0x72, 0x28, 0x29, 0x3b, 0x0a, 0x20,
|
||||
0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x64, 0x65, 0x63, 0x6f, 0x64,
|
||||
0x65, 0x72, 0x20, 0x3d, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x54, 0x65, 0x78,
|
||||
0x74, 0x44, 0x65, 0x63, 0x6f, 0x64, 0x65, 0x72, 0x28, 0x29, 0x3b, 0x0a,
|
||||
0x0a, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65,
|
||||
0x6e, 0x74, 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, 0x0a, 0x20, 0x20, 0x6c,
|
||||
0x65, 0x74, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72, 0x20,
|
||||
0x3d, 0x20, 0x22, 0x22, 0x3b, 0x20, 0x2f, 0x2f, 0x20, 0x42, 0x75, 0x66,
|
||||
0x66, 0x65, 0x72, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x70, 0x61, 0x72, 0x74,
|
||||
0x69, 0x61, 0x6c, 0x6c, 0x79, 0x20, 0x72, 0x65, 0x61, 0x64, 0x20, 0x6c,
|
||||
0x69, 0x6e, 0x65, 0x73, 0x0a, 0x0a, 0x20, 0x20, 0x74, 0x72, 0x79, 0x20,
|
||||
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63, 0x6f,
|
||||
0x6e, 0x74, 0x20, 0x3d, 0x20, 0x74, 0x72, 0x75, 0x65, 0x3b, 0x0a, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x77, 0x68, 0x69, 0x6c, 0x65, 0x20, 0x28, 0x63,
|
||||
0x6f, 0x6e, 0x74, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c,
|
||||
0x74, 0x20, 0x3d, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x72, 0x65,
|
||||
0x61, 0x64, 0x65, 0x72, 0x2e, 0x72, 0x65, 0x61, 0x64, 0x28, 0x29, 0x3b,
|
||||
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x72,
|
||||
0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x6f, 0x6e, 0x65, 0x29, 0x20,
|
||||
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x62, 0x72,
|
||||
0x65, 0x61, 0x6b, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d,
|
||||
0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x41,
|
||||
0x64, 0x64, 0x20, 0x61, 0x6e, 0x79, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f,
|
||||
0x76, 0x65, 0x72, 0x20, 0x64, 0x61, 0x74, 0x61, 0x20, 0x74, 0x6f, 0x20,
|
||||
0x74, 0x68, 0x65, 0x20, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e, 0x74, 0x20,
|
||||
0x63, 0x68, 0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x64, 0x61, 0x74,
|
||||
0x61, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73,
|
||||
0x74, 0x20, 0x74, 0x65, 0x78, 0x74, 0x20, 0x3d, 0x20, 0x6c, 0x65, 0x66,
|
||||
0x74, 0x6f, 0x76, 0x65, 0x72, 0x20, 0x2b, 0x20, 0x64, 0x65, 0x63, 0x6f,
|
||||
0x64, 0x65, 0x72, 0x2e, 0x64, 0x65, 0x63, 0x6f, 0x64, 0x65, 0x28, 0x72,
|
||||
0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x76, 0x61, 0x6c, 0x75, 0x65, 0x29,
|
||||
0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20,
|
||||
0x43, 0x68, 0x65, 0x63, 0x6b, 0x20, 0x69, 0x66, 0x20, 0x74, 0x68, 0x65,
|
||||
0x20, 0x6c, 0x61, 0x73, 0x74, 0x20, 0x63, 0x68, 0x61, 0x72, 0x61, 0x63,
|
||||
0x74, 0x65, 0x72, 0x20, 0x69, 0x73, 0x20, 0x61, 0x20, 0x6c, 0x69, 0x6e,
|
||||
0x65, 0x20, 0x62, 0x72, 0x65, 0x61, 0x6b, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x65, 0x6e, 0x64, 0x73,
|
||||
0x57, 0x69, 0x74, 0x68, 0x4c, 0x69, 0x6e, 0x65, 0x42, 0x72, 0x65, 0x61,
|
||||
0x6b, 0x20, 0x3d, 0x20, 0x74, 0x65, 0x78, 0x74, 0x2e, 0x65, 0x6e, 0x64,
|
||||
0x73, 0x57, 0x69, 0x74, 0x68, 0x28, 0x27, 0x5c, 0x6e, 0x27, 0x29, 0x3b,
|
||||
0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x53,
|
||||
0x70, 0x6c, 0x69, 0x74, 0x20, 0x74, 0x68, 0x65, 0x20, 0x74, 0x65, 0x78,
|
||||
0x74, 0x20, 0x69, 0x6e, 0x74, 0x6f, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x73,
|
||||
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x6c,
|
||||
0x69, 0x6e, 0x65, 0x73, 0x20, 0x3d, 0x20, 0x74, 0x65, 0x78, 0x74, 0x2e,
|
||||
0x73, 0x70, 0x6c, 0x69, 0x74, 0x28, 0x27, 0x5c, 0x6e, 0x27, 0x29, 0x3b,
|
||||
0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x49,
|
||||
0x66, 0x20, 0x74, 0x68, 0x65, 0x20, 0x74, 0x65, 0x78, 0x74, 0x20, 0x64,
|
||||
0x6f, 0x65, 0x73, 0x6e, 0x27, 0x74, 0x20, 0x65, 0x6e, 0x64, 0x20, 0x77,
|
||||
0x69, 0x74, 0x68, 0x20, 0x61, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x20, 0x62,
|
||||
0x72, 0x65, 0x61, 0x6b, 0x2c, 0x20, 0x74, 0x68, 0x65, 0x6e, 0x20, 0x74,
|
||||
0x68, 0x65, 0x20, 0x6c, 0x61, 0x73, 0x74, 0x20, 0x6c, 0x69, 0x6e, 0x65,
|
||||
0x20, 0x69, 0x73, 0x20, 0x69, 0x6e, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65,
|
||||
0x74, 0x65, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20,
|
||||
0x53, 0x74, 0x6f, 0x72, 0x65, 0x20, 0x69, 0x74, 0x20, 0x69, 0x6e, 0x20,
|
||||
0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72, 0x20, 0x74, 0x6f, 0x20,
|
||||
0x62, 0x65, 0x20, 0x61, 0x64, 0x64, 0x65, 0x64, 0x20, 0x74, 0x6f, 0x20,
|
||||
0x74, 0x68, 0x65, 0x20, 0x6e, 0x65, 0x78, 0x74, 0x20, 0x63, 0x68, 0x75,
|
||||
0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x64, 0x61, 0x74, 0x61, 0x0a, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x21, 0x65, 0x6e,
|
||||
0x65, 0x73, 0x70, 0x6f, 0x6e, 0x73, 0x65, 0x20, 0x3d, 0x20, 0x61, 0x77,
|
||||
0x61, 0x69, 0x74, 0x20, 0x66, 0x65, 0x74, 0x63, 0x68, 0x28, 0x60, 0x24,
|
||||
0x7b, 0x61, 0x70, 0x69, 0x5f, 0x75, 0x72, 0x6c, 0x7d, 0x2f, 0x63, 0x6f,
|
||||
0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x60, 0x2c, 0x20, 0x7b,
|
||||
0x0a, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x65, 0x74, 0x68, 0x6f, 0x64, 0x3a,
|
||||
0x20, 0x27, 0x50, 0x4f, 0x53, 0x54, 0x27, 0x2c, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x62, 0x6f, 0x64, 0x79, 0x3a, 0x20, 0x4a, 0x53, 0x4f, 0x4e, 0x2e,
|
||||
0x73, 0x74, 0x72, 0x69, 0x6e, 0x67, 0x69, 0x66, 0x79, 0x28, 0x63, 0x6f,
|
||||
0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x50, 0x61, 0x72, 0x61,
|
||||
0x6d, 0x73, 0x29, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x68, 0x65, 0x61,
|
||||
0x64, 0x65, 0x72, 0x73, 0x3a, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x27, 0x43, 0x6f, 0x6e, 0x6e, 0x65, 0x63, 0x74, 0x69, 0x6f,
|
||||
0x6e, 0x27, 0x3a, 0x20, 0x27, 0x6b, 0x65, 0x65, 0x70, 0x2d, 0x61, 0x6c,
|
||||
0x69, 0x76, 0x65, 0x27, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x27, 0x43, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x2d, 0x54, 0x79, 0x70,
|
||||
0x65, 0x27, 0x3a, 0x20, 0x27, 0x61, 0x70, 0x70, 0x6c, 0x69, 0x63, 0x61,
|
||||
0x74, 0x69, 0x6f, 0x6e, 0x2f, 0x6a, 0x73, 0x6f, 0x6e, 0x27, 0x2c, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x27, 0x41, 0x63, 0x63, 0x65, 0x70,
|
||||
0x74, 0x27, 0x3a, 0x20, 0x27, 0x74, 0x65, 0x78, 0x74, 0x2f, 0x65, 0x76,
|
||||
0x65, 0x6e, 0x74, 0x2d, 0x73, 0x74, 0x72, 0x65, 0x61, 0x6d, 0x27, 0x2c,
|
||||
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2e, 0x2e, 0x2e, 0x28, 0x70,
|
||||
0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x61, 0x70, 0x69, 0x5f, 0x6b, 0x65,
|
||||
0x79, 0x20, 0x3f, 0x20, 0x7b, 0x27, 0x41, 0x75, 0x74, 0x68, 0x6f, 0x72,
|
||||
0x69, 0x7a, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x27, 0x3a, 0x20, 0x60, 0x42,
|
||||
0x65, 0x61, 0x72, 0x65, 0x72, 0x20, 0x24, 0x7b, 0x70, 0x61, 0x72, 0x61,
|
||||
0x6d, 0x73, 0x2e, 0x61, 0x70, 0x69, 0x5f, 0x6b, 0x65, 0x79, 0x7d, 0x60,
|
||||
0x7d, 0x20, 0x3a, 0x20, 0x7b, 0x7d, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x7d, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x73, 0x69, 0x67, 0x6e, 0x61,
|
||||
0x6c, 0x3a, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65,
|
||||
0x72, 0x2e, 0x73, 0x69, 0x67, 0x6e, 0x61, 0x6c, 0x2c, 0x0a, 0x20, 0x20,
|
||||
0x7d, 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74,
|
||||
0x20, 0x72, 0x65, 0x61, 0x64, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x72, 0x65,
|
||||
0x73, 0x70, 0x6f, 0x6e, 0x73, 0x65, 0x2e, 0x62, 0x6f, 0x64, 0x79, 0x2e,
|
||||
0x67, 0x65, 0x74, 0x52, 0x65, 0x61, 0x64, 0x65, 0x72, 0x28, 0x29, 0x3b,
|
||||
0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x64, 0x65, 0x63,
|
||||
0x6f, 0x64, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x54,
|
||||
0x65, 0x78, 0x74, 0x44, 0x65, 0x63, 0x6f, 0x64, 0x65, 0x72, 0x28, 0x29,
|
||||
0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63, 0x6f, 0x6e,
|
||||
0x74, 0x65, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, 0x0a, 0x20,
|
||||
0x20, 0x6c, 0x65, 0x74, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65,
|
||||
0x72, 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, 0x20, 0x2f, 0x2f, 0x20, 0x42,
|
||||
0x75, 0x66, 0x66, 0x65, 0x72, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x70, 0x61,
|
||||
0x72, 0x74, 0x69, 0x61, 0x6c, 0x6c, 0x79, 0x20, 0x72, 0x65, 0x61, 0x64,
|
||||
0x20, 0x6c, 0x69, 0x6e, 0x65, 0x73, 0x0a, 0x0a, 0x20, 0x20, 0x74, 0x72,
|
||||
0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20,
|
||||
0x63, 0x6f, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x74, 0x72, 0x75, 0x65, 0x3b,
|
||||
0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x77, 0x68, 0x69, 0x6c, 0x65, 0x20,
|
||||
0x28, 0x63, 0x6f, 0x6e, 0x74, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72, 0x65, 0x73,
|
||||
0x75, 0x6c, 0x74, 0x20, 0x3d, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20,
|
||||
0x72, 0x65, 0x61, 0x64, 0x65, 0x72, 0x2e, 0x72, 0x65, 0x61, 0x64, 0x28,
|
||||
0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20,
|
||||
0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x6f, 0x6e, 0x65,
|
||||
0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x62, 0x72, 0x65, 0x61, 0x6b, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f,
|
||||
0x20, 0x41, 0x64, 0x64, 0x20, 0x61, 0x6e, 0x79, 0x20, 0x6c, 0x65, 0x66,
|
||||
0x74, 0x6f, 0x76, 0x65, 0x72, 0x20, 0x64, 0x61, 0x74, 0x61, 0x20, 0x74,
|
||||
0x6f, 0x20, 0x74, 0x68, 0x65, 0x20, 0x63, 0x75, 0x72, 0x72, 0x65, 0x6e,
|
||||
0x74, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x64,
|
||||
0x61, 0x74, 0x61, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f,
|
||||
0x6e, 0x73, 0x74, 0x20, 0x74, 0x65, 0x78, 0x74, 0x20, 0x3d, 0x20, 0x6c,
|
||||
0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72, 0x20, 0x2b, 0x20, 0x64, 0x65,
|
||||
0x63, 0x6f, 0x64, 0x65, 0x72, 0x2e, 0x64, 0x65, 0x63, 0x6f, 0x64, 0x65,
|
||||
0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x76, 0x61, 0x6c, 0x75,
|
||||
0x65, 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f,
|
||||
0x2f, 0x20, 0x43, 0x68, 0x65, 0x63, 0x6b, 0x20, 0x69, 0x66, 0x20, 0x74,
|
||||
0x68, 0x65, 0x20, 0x6c, 0x61, 0x73, 0x74, 0x20, 0x63, 0x68, 0x61, 0x72,
|
||||
0x61, 0x63, 0x74, 0x65, 0x72, 0x20, 0x69, 0x73, 0x20, 0x61, 0x20, 0x6c,
|
||||
0x69, 0x6e, 0x65, 0x20, 0x62, 0x72, 0x65, 0x61, 0x6b, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x65, 0x6e,
|
||||
0x64, 0x73, 0x57, 0x69, 0x74, 0x68, 0x4c, 0x69, 0x6e, 0x65, 0x42, 0x72,
|
||||
0x65, 0x61, 0x6b, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72, 0x20,
|
||||
0x3d, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x73, 0x2e, 0x70, 0x6f, 0x70, 0x28,
|
||||
0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x20, 0x65,
|
||||
0x6c, 0x73, 0x65, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72, 0x20, 0x3d,
|
||||
0x20, 0x22, 0x22, 0x3b, 0x20, 0x2f, 0x2f, 0x20, 0x52, 0x65, 0x73, 0x65,
|
||||
0x74, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72, 0x20, 0x69,
|
||||
0x66, 0x20, 0x77, 0x65, 0x20, 0x68, 0x61, 0x76, 0x65, 0x20, 0x61, 0x20,
|
||||
0x6c, 0x69, 0x6e, 0x65, 0x20, 0x62, 0x72, 0x65, 0x61, 0x6b, 0x20, 0x61,
|
||||
0x74, 0x20, 0x74, 0x68, 0x65, 0x20, 0x65, 0x6e, 0x64, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x2f, 0x2f, 0x20, 0x50, 0x61, 0x72, 0x73, 0x65, 0x20, 0x61, 0x6c,
|
||||
0x6c, 0x20, 0x73, 0x73, 0x65, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x73,
|
||||
0x20, 0x61, 0x6e, 0x64, 0x20, 0x61, 0x64, 0x64, 0x20, 0x74, 0x68, 0x65,
|
||||
0x6d, 0x20, 0x74, 0x6f, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20,
|
||||
0x72, 0x65, 0x67, 0x65, 0x78, 0x20, 0x3d, 0x20, 0x2f, 0x5e, 0x28, 0x5c,
|
||||
0x53, 0x2b, 0x29, 0x3a, 0x5c, 0x73, 0x28, 0x2e, 0x2a, 0x29, 0x24, 0x2f,
|
||||
0x67, 0x6d, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6f,
|
||||
0x72, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c, 0x69, 0x6e,
|
||||
0x65, 0x20, 0x6f, 0x66, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x73, 0x29, 0x20,
|
||||
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f,
|
||||
0x6e, 0x73, 0x74, 0x20, 0x6d, 0x61, 0x74, 0x63, 0x68, 0x20, 0x3d, 0x20,
|
||||
0x72, 0x65, 0x67, 0x65, 0x78, 0x2e, 0x65, 0x78, 0x65, 0x63, 0x28, 0x6c,
|
||||
0x69, 0x6e, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x6d, 0x61, 0x74, 0x63, 0x68, 0x29,
|
||||
0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x5b, 0x6d, 0x61, 0x74, 0x63,
|
||||
0x68, 0x5b, 0x31, 0x5d, 0x5d, 0x20, 0x3d, 0x20, 0x6d, 0x61, 0x74, 0x63,
|
||||
0x68, 0x5b, 0x32, 0x5d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x73, 0x69, 0x6e, 0x63, 0x65, 0x20,
|
||||
0x77, 0x65, 0x20, 0x6b, 0x6e, 0x6f, 0x77, 0x20, 0x74, 0x68, 0x69, 0x73,
|
||||
0x20, 0x69, 0x73, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2e, 0x63, 0x70,
|
||||
0x70, 0x2c, 0x20, 0x6c, 0x65, 0x74, 0x27, 0x73, 0x20, 0x6a, 0x75, 0x73,
|
||||
0x74, 0x20, 0x64, 0x65, 0x63, 0x6f, 0x64, 0x65, 0x20, 0x74, 0x68, 0x65,
|
||||
0x20, 0x6a, 0x73, 0x6f, 0x6e, 0x20, 0x69, 0x6e, 0x20, 0x64, 0x61, 0x74,
|
||||
0x61, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x69, 0x66, 0x20, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64,
|
||||
0x61, 0x74, 0x61, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c,
|
||||
0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x20, 0x3d, 0x20, 0x4a, 0x53, 0x4f,
|
||||
0x4e, 0x2e, 0x70, 0x61, 0x72, 0x73, 0x65, 0x28, 0x72, 0x65, 0x73, 0x75,
|
||||
0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x29, 0x3b, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f,
|
||||
0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x2b, 0x3d, 0x20, 0x72, 0x65, 0x73,
|
||||
0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x63, 0x6f, 0x6e,
|
||||
0x74, 0x65, 0x6e, 0x74, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x79, 0x69,
|
||||
0x65, 0x6c, 0x64, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x79, 0x69, 0x65, 0x6c, 0x64, 0x20, 0x72, 0x65,
|
||||
0x73, 0x75, 0x6c, 0x74, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x69, 0x66,
|
||||
0x20, 0x77, 0x65, 0x20, 0x67, 0x6f, 0x74, 0x20, 0x61, 0x20, 0x73, 0x74,
|
||||
0x6f, 0x70, 0x20, 0x74, 0x6f, 0x6b, 0x65, 0x6e, 0x20, 0x66, 0x72, 0x6f,
|
||||
0x6d, 0x20, 0x73, 0x65, 0x72, 0x76, 0x65, 0x72, 0x2c, 0x20, 0x77, 0x65,
|
||||
0x20, 0x77, 0x69, 0x6c, 0x6c, 0x20, 0x62, 0x72, 0x65, 0x61, 0x6b, 0x20,
|
||||
0x68, 0x65, 0x72, 0x65, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x72, 0x65, 0x73,
|
||||
0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x73, 0x74, 0x6f,
|
||||
0x70, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x65, 0x61, 0x6b, 0x20, 0x3d, 0x20, 0x74, 0x65, 0x78, 0x74, 0x2e, 0x65,
|
||||
0x6e, 0x64, 0x73, 0x57, 0x69, 0x74, 0x68, 0x28, 0x27, 0x5c, 0x6e, 0x27,
|
||||
0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f,
|
||||
0x20, 0x53, 0x70, 0x6c, 0x69, 0x74, 0x20, 0x74, 0x68, 0x65, 0x20, 0x74,
|
||||
0x65, 0x78, 0x74, 0x20, 0x69, 0x6e, 0x74, 0x6f, 0x20, 0x6c, 0x69, 0x6e,
|
||||
0x65, 0x73, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74,
|
||||
0x20, 0x6c, 0x69, 0x6e, 0x65, 0x73, 0x20, 0x3d, 0x20, 0x74, 0x65, 0x78,
|
||||
0x74, 0x2e, 0x73, 0x70, 0x6c, 0x69, 0x74, 0x28, 0x27, 0x5c, 0x6e, 0x27,
|
||||
0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f,
|
||||
0x20, 0x49, 0x66, 0x20, 0x74, 0x68, 0x65, 0x20, 0x74, 0x65, 0x78, 0x74,
|
||||
0x20, 0x64, 0x6f, 0x65, 0x73, 0x6e, 0x27, 0x74, 0x20, 0x65, 0x6e, 0x64,
|
||||
0x20, 0x77, 0x69, 0x74, 0x68, 0x20, 0x61, 0x20, 0x6c, 0x69, 0x6e, 0x65,
|
||||
0x20, 0x62, 0x72, 0x65, 0x61, 0x6b, 0x2c, 0x20, 0x74, 0x68, 0x65, 0x6e,
|
||||
0x20, 0x74, 0x68, 0x65, 0x20, 0x6c, 0x61, 0x73, 0x74, 0x20, 0x6c, 0x69,
|
||||
0x6e, 0x65, 0x20, 0x69, 0x73, 0x20, 0x69, 0x6e, 0x63, 0x6f, 0x6d, 0x70,
|
||||
0x6c, 0x65, 0x74, 0x65, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f,
|
||||
0x2f, 0x20, 0x53, 0x74, 0x6f, 0x72, 0x65, 0x20, 0x69, 0x74, 0x20, 0x69,
|
||||
0x6e, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72, 0x20, 0x74,
|
||||
0x6f, 0x20, 0x62, 0x65, 0x20, 0x61, 0x64, 0x64, 0x65, 0x64, 0x20, 0x74,
|
||||
0x6f, 0x20, 0x74, 0x68, 0x65, 0x20, 0x6e, 0x65, 0x78, 0x74, 0x20, 0x63,
|
||||
0x68, 0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x64, 0x61, 0x74, 0x61,
|
||||
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x21,
|
||||
0x65, 0x6e, 0x64, 0x73, 0x57, 0x69, 0x74, 0x68, 0x4c, 0x69, 0x6e, 0x65,
|
||||
0x42, 0x72, 0x65, 0x61, 0x6b, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65,
|
||||
0x72, 0x20, 0x3d, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x73, 0x2e, 0x70, 0x6f,
|
||||
0x70, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d,
|
||||
0x20, 0x65, 0x6c, 0x73, 0x65, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72,
|
||||
0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, 0x20, 0x2f, 0x2f, 0x20, 0x52, 0x65,
|
||||
0x73, 0x65, 0x74, 0x20, 0x6c, 0x65, 0x66, 0x74, 0x6f, 0x76, 0x65, 0x72,
|
||||
0x20, 0x69, 0x66, 0x20, 0x77, 0x65, 0x20, 0x68, 0x61, 0x76, 0x65, 0x20,
|
||||
0x61, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x20, 0x62, 0x72, 0x65, 0x61, 0x6b,
|
||||
0x20, 0x61, 0x74, 0x20, 0x74, 0x68, 0x65, 0x20, 0x65, 0x6e, 0x64, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x50, 0x61, 0x72, 0x73, 0x65, 0x20,
|
||||
0x61, 0x6c, 0x6c, 0x20, 0x73, 0x73, 0x65, 0x20, 0x65, 0x76, 0x65, 0x6e,
|
||||
0x74, 0x73, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x61, 0x64, 0x64, 0x20, 0x74,
|
||||
0x68, 0x65, 0x6d, 0x20, 0x74, 0x6f, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c,
|
||||
0x74, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73,
|
||||
0x74, 0x20, 0x72, 0x65, 0x67, 0x65, 0x78, 0x20, 0x3d, 0x20, 0x2f, 0x5e,
|
||||
0x28, 0x5c, 0x53, 0x2b, 0x29, 0x3a, 0x5c, 0x73, 0x28, 0x2e, 0x2a, 0x29,
|
||||
0x24, 0x2f, 0x67, 0x6d, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x66, 0x6f, 0x72, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c,
|
||||
0x69, 0x6e, 0x65, 0x20, 0x6f, 0x66, 0x20, 0x6c, 0x69, 0x6e, 0x65, 0x73,
|
||||
0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6d, 0x61, 0x74, 0x63, 0x68, 0x20,
|
||||
0x3d, 0x20, 0x72, 0x65, 0x67, 0x65, 0x78, 0x2e, 0x65, 0x78, 0x65, 0x63,
|
||||
0x28, 0x6c, 0x69, 0x6e, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x6d, 0x61, 0x74, 0x63,
|
||||
0x68, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x5b, 0x6d, 0x61,
|
||||
0x74, 0x63, 0x68, 0x5b, 0x31, 0x5d, 0x5d, 0x20, 0x3d, 0x20, 0x6d, 0x61,
|
||||
0x74, 0x63, 0x68, 0x5b, 0x32, 0x5d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x73, 0x69, 0x6e, 0x63,
|
||||
0x65, 0x20, 0x77, 0x65, 0x20, 0x6b, 0x6e, 0x6f, 0x77, 0x20, 0x74, 0x68,
|
||||
0x69, 0x73, 0x20, 0x69, 0x73, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2e,
|
||||
0x63, 0x70, 0x70, 0x2c, 0x20, 0x6c, 0x65, 0x74, 0x27, 0x73, 0x20, 0x6a,
|
||||
0x75, 0x73, 0x74, 0x20, 0x64, 0x65, 0x63, 0x6f, 0x64, 0x65, 0x20, 0x74,
|
||||
0x68, 0x65, 0x20, 0x6a, 0x73, 0x6f, 0x6e, 0x20, 0x69, 0x6e, 0x20, 0x64,
|
||||
0x61, 0x74, 0x61, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74,
|
||||
0x2e, 0x64, 0x61, 0x74, 0x61, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x73,
|
||||
0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x20, 0x3d, 0x20, 0x4a,
|
||||
0x53, 0x4f, 0x4e, 0x2e, 0x70, 0x61, 0x72, 0x73, 0x65, 0x28, 0x72, 0x65,
|
||||
0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x29, 0x3b, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x2b, 0x3d, 0x20, 0x72,
|
||||
0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x63,
|
||||
0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20,
|
||||
0x79, 0x69, 0x65, 0x6c, 0x64, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x79, 0x69, 0x65, 0x6c, 0x64, 0x20,
|
||||
0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20,
|
||||
0x69, 0x66, 0x20, 0x77, 0x65, 0x20, 0x67, 0x6f, 0x74, 0x20, 0x61, 0x20,
|
||||
0x73, 0x74, 0x6f, 0x70, 0x20, 0x74, 0x6f, 0x6b, 0x65, 0x6e, 0x20, 0x66,
|
||||
0x72, 0x6f, 0x6d, 0x20, 0x73, 0x65, 0x72, 0x76, 0x65, 0x72, 0x2c, 0x20,
|
||||
0x77, 0x65, 0x20, 0x77, 0x69, 0x6c, 0x6c, 0x20, 0x62, 0x72, 0x65, 0x61,
|
||||
0x6b, 0x20, 0x68, 0x65, 0x72, 0x65, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x72,
|
||||
0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x67,
|
||||
0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x73,
|
||||
0x74, 0x6f, 0x70, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20,
|
||||
0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61,
|
||||
0x2e, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f,
|
||||
0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69,
|
||||
0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x20,
|
||||
0x3d, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74,
|
||||
0x61, 0x2e, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e,
|
||||
0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x3b, 0x0a, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x20, 0x3d, 0x20,
|
||||
0x66, 0x61, 0x6c, 0x73, 0x65, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x62, 0x72, 0x65,
|
||||
0x61, 0x6b, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x72, 0x65, 0x73, 0x75,
|
||||
0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x20, 0x7b, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x74, 0x72, 0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x73, 0x75,
|
||||
0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x20, 0x3d, 0x20, 0x4a,
|
||||
0x53, 0x4f, 0x4e, 0x2e, 0x70, 0x61, 0x72, 0x73, 0x65, 0x28, 0x72, 0x65,
|
||||
0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x3b,
|
||||
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c,
|
||||
0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x2e, 0x6d, 0x65, 0x73, 0x73,
|
||||
0x61, 0x67, 0x65, 0x2e, 0x69, 0x6e, 0x63, 0x6c, 0x75, 0x64, 0x65, 0x73,
|
||||
0x28, 0x27, 0x73, 0x6c, 0x6f, 0x74, 0x20, 0x75, 0x6e, 0x61, 0x76, 0x61,
|
||||
0x69, 0x6c, 0x61, 0x62, 0x6c, 0x65, 0x27, 0x29, 0x29, 0x20, 0x7b, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x54, 0x68, 0x72, 0x6f, 0x77,
|
||||
0x20, 0x61, 0x6e, 0x20, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x20, 0x74, 0x6f,
|
||||
0x20, 0x62, 0x65, 0x20, 0x63, 0x61, 0x75, 0x67, 0x68, 0x74, 0x20, 0x62,
|
||||
0x79, 0x20, 0x75, 0x70, 0x73, 0x74, 0x72, 0x65, 0x61, 0x6d, 0x20, 0x63,
|
||||
0x61, 0x6c, 0x6c, 0x65, 0x72, 0x73, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74,
|
||||
0x68, 0x72, 0x6f, 0x77, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x45, 0x72, 0x72,
|
||||
0x6f, 0x72, 0x28, 0x27, 0x73, 0x6c, 0x6f, 0x74, 0x20, 0x75, 0x6e, 0x61,
|
||||
0x76, 0x61, 0x69, 0x6c, 0x61, 0x62, 0x6c, 0x65, 0x27, 0x29, 0x3b, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x7d, 0x20, 0x65, 0x6c, 0x73, 0x65, 0x20, 0x7b, 0x0a, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65, 0x2e, 0x65,
|
||||
0x72, 0x72, 0x6f, 0x72, 0x28, 0x60, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2e,
|
||||
0x63, 0x70, 0x70, 0x20, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x20, 0x5b, 0x24,
|
||||
0x7b, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f,
|
||||
0x72, 0x2e, 0x63, 0x6f, 0x64, 0x65, 0x7d, 0x20, 0x2d, 0x20, 0x24, 0x7b,
|
||||
0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72,
|
||||
0x2e, 0x74, 0x79, 0x70, 0x65, 0x7d, 0x5d, 0x3a, 0x20, 0x24, 0x7b, 0x72,
|
||||
0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x2e,
|
||||
0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x7d, 0x60, 0x29, 0x3b, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x7d, 0x20, 0x63, 0x61, 0x74, 0x63, 0x68, 0x28,
|
||||
0x65, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f,
|
||||
0x6c, 0x65, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x28, 0x60, 0x6c, 0x6c,
|
||||
0x61, 0x6d, 0x61, 0x2e, 0x63, 0x70, 0x70, 0x20, 0x65, 0x72, 0x72, 0x6f,
|
||||
0x72, 0x20, 0x24, 0x7b, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65,
|
||||
0x72, 0x72, 0x6f, 0x72, 0x7d, 0x60, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20,
|
||||
0x7d, 0x20, 0x63, 0x61, 0x74, 0x63, 0x68, 0x20, 0x28, 0x65, 0x29, 0x20,
|
||||
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x65, 0x2e,
|
||||
0x6e, 0x61, 0x6d, 0x65, 0x20, 0x21, 0x3d, 0x3d, 0x20, 0x27, 0x41, 0x62,
|
||||
0x6f, 0x72, 0x74, 0x45, 0x72, 0x72, 0x6f, 0x72, 0x27, 0x29, 0x20, 0x7b,
|
||||
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f,
|
||||
0x6c, 0x65, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x28, 0x22, 0x6c, 0x6c,
|
||||
0x61, 0x6d, 0x61, 0x20, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x3a, 0x20, 0x22,
|
||||
0x2c, 0x20, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x74, 0x68, 0x72, 0x6f, 0x77, 0x20, 0x65, 0x3b,
|
||||
0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x66, 0x69, 0x6e, 0x61, 0x6c,
|
||||
0x6c, 0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e,
|
||||
0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2e, 0x61, 0x62, 0x6f, 0x72,
|
||||
0x74, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20,
|
||||
0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65,
|
||||
0x6e, 0x74, 0x3b, 0x0a, 0x7d, 0x0a, 0x0a, 0x2f, 0x2f, 0x20, 0x43, 0x61,
|
||||
0x6c, 0x6c, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2c, 0x20, 0x72, 0x65,
|
||||
0x74, 0x75, 0x72, 0x6e, 0x20, 0x61, 0x6e, 0x20, 0x65, 0x76, 0x65, 0x6e,
|
||||
0x74, 0x20, 0x74, 0x61, 0x72, 0x67, 0x65, 0x74, 0x20, 0x74, 0x68, 0x61,
|
||||
0x74, 0x20, 0x79, 0x6f, 0x75, 0x20, 0x63, 0x61, 0x6e, 0x20, 0x73, 0x75,
|
||||
0x62, 0x73, 0x63, 0x72, 0x69, 0x62, 0x65, 0x20, 0x74, 0x6f, 0x0a, 0x2f,
|
||||
0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x45, 0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65,
|
||||
0x3a, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x69,
|
||||
0x6d, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x7b, 0x20, 0x6c, 0x6c, 0x61, 0x6d,
|
||||
0x61, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74,
|
||||
0x20, 0x7d, 0x20, 0x66, 0x72, 0x6f, 0x6d, 0x20, 0x27, 0x2f, 0x63, 0x6f,
|
||||
0x6d, 0x70, 0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x2e, 0x6a, 0x73, 0x27,
|
||||
0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f,
|
||||
0x6e, 0x73, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x6e, 0x20, 0x3d, 0x20, 0x6c,
|
||||
0x6c, 0x61, 0x6d, 0x61, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72,
|
||||
0x67, 0x65, 0x74, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x29, 0x0a,
|
||||
0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x6e, 0x2e, 0x61,
|
||||
0x64, 0x64, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x4c, 0x69, 0x73, 0x74, 0x65,
|
||||
0x6e, 0x65, 0x72, 0x28, 0x22, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65,
|
||||
0x22, 0x2c, 0x20, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x29, 0x20, 0x3d,
|
||||
0x3e, 0x20, 0x7b, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x77, 0x72, 0x69,
|
||||
0x74, 0x65, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x65, 0x74,
|
||||
0x61, 0x69, 0x6c, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29,
|
||||
0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x29, 0x0a, 0x2f, 0x2f,
|
||||
0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x73,
|
||||
0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x45, 0x76, 0x65, 0x6e, 0x74,
|
||||
0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x20, 0x3d, 0x20, 0x28, 0x70, 0x72,
|
||||
0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73,
|
||||
0x20, 0x3d, 0x20, 0x7b, 0x7d, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69,
|
||||
0x67, 0x20, 0x3d, 0x20, 0x7b, 0x7d, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b,
|
||||
0x0a, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x65, 0x76, 0x65,
|
||||
0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x20, 0x3d, 0x20, 0x6e,
|
||||
0x65, 0x77, 0x20, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67,
|
||||
0x65, 0x74, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x28, 0x61, 0x73, 0x79,
|
||||
0x6e, 0x63, 0x20, 0x28, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20,
|
||||
0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65,
|
||||
0x6e, 0x74, 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x66, 0x6f, 0x72, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x28,
|
||||
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x20,
|
||||
0x6f, 0x66, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x28, 0x70, 0x72, 0x6f,
|
||||
0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c,
|
||||
0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x29, 0x29, 0x20, 0x7b, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x63, 0x68,
|
||||
0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x29, 0x20, 0x7b, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74,
|
||||
0x65, 0x6e, 0x74, 0x20, 0x2b, 0x3d, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b,
|
||||
0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e,
|
||||
0x74, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x65,
|
||||
0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x64,
|
||||
0x69, 0x73, 0x70, 0x61, 0x74, 0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74,
|
||||
0x28, 0x6e, 0x65, 0x77, 0x20, 0x43, 0x75, 0x73, 0x74, 0x6f, 0x6d, 0x45,
|
||||
0x76, 0x65, 0x6e, 0x74, 0x28, 0x22, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67,
|
||||
0x65, 0x22, 0x2c, 0x20, 0x7b, 0x20, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c,
|
||||
0x3a, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61,
|
||||
0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28,
|
||||
0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x67,
|
||||
0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65,
|
||||
0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e,
|
||||
0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x20, 0x3d, 0x20,
|
||||
0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e,
|
||||
0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73,
|
||||
0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x3b, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d,
|
||||
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x66, 0x61,
|
||||
0x6c, 0x73, 0x65, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x62, 0x72, 0x65, 0x61, 0x6b,
|
||||
0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74,
|
||||
0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x72,
|
||||
0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74,
|
||||
0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x20, 0x3d, 0x20, 0x4a, 0x53, 0x4f,
|
||||
0x4e, 0x2e, 0x70, 0x61, 0x72, 0x73, 0x65, 0x28, 0x72, 0x65, 0x73, 0x75,
|
||||
0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x3b, 0x0a, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x69, 0x66, 0x20, 0x28, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e,
|
||||
0x65, 0x72, 0x72, 0x6f, 0x72, 0x2e, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67,
|
||||
0x65, 0x2e, 0x69, 0x6e, 0x63, 0x6c, 0x75, 0x64, 0x65, 0x73, 0x28, 0x27,
|
||||
0x73, 0x6c, 0x6f, 0x74, 0x20, 0x75, 0x6e, 0x61, 0x76, 0x61, 0x69, 0x6c,
|
||||
0x61, 0x62, 0x6c, 0x65, 0x27, 0x29, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x2f, 0x2f, 0x20, 0x54, 0x68, 0x72, 0x6f, 0x77, 0x20, 0x61,
|
||||
0x6e, 0x20, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x20, 0x74, 0x6f, 0x20, 0x62,
|
||||
0x65, 0x20, 0x63, 0x61, 0x75, 0x67, 0x68, 0x74, 0x20, 0x62, 0x79, 0x20,
|
||||
0x75, 0x70, 0x73, 0x74, 0x72, 0x65, 0x61, 0x6d, 0x20, 0x63, 0x61, 0x6c,
|
||||
0x6c, 0x65, 0x72, 0x73, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x68, 0x72,
|
||||
0x6f, 0x77, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x45, 0x72, 0x72, 0x6f, 0x72,
|
||||
0x28, 0x27, 0x73, 0x6c, 0x6f, 0x74, 0x20, 0x75, 0x6e, 0x61, 0x76, 0x61,
|
||||
0x69, 0x6c, 0x61, 0x62, 0x6c, 0x65, 0x27, 0x29, 0x3b, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x7d, 0x20, 0x65, 0x6c, 0x73, 0x65, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65, 0x2e, 0x65, 0x72, 0x72,
|
||||
0x6f, 0x72, 0x28, 0x60, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2e, 0x63, 0x70,
|
||||
0x70, 0x20, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x20, 0x5b, 0x24, 0x7b, 0x72,
|
||||
0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x2e,
|
||||
0x63, 0x6f, 0x64, 0x65, 0x7d, 0x20, 0x2d, 0x20, 0x24, 0x7b, 0x72, 0x65,
|
||||
0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x2e, 0x74,
|
||||
0x79, 0x70, 0x65, 0x7d, 0x5d, 0x3a, 0x20, 0x24, 0x7b, 0x72, 0x65, 0x73,
|
||||
0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x2e, 0x6d, 0x65,
|
||||
0x73, 0x73, 0x61, 0x67, 0x65, 0x7d, 0x60, 0x29, 0x3b, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x7d, 0x20, 0x63, 0x61, 0x74, 0x63, 0x68, 0x28, 0x65, 0x29,
|
||||
0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65,
|
||||
0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x28, 0x60, 0x6c, 0x6c, 0x61, 0x6d,
|
||||
0x61, 0x2e, 0x63, 0x70, 0x70, 0x20, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x20,
|
||||
0x24, 0x7b, 0x72, 0x65, 0x73, 0x75, 0x6c, 0x74, 0x2e, 0x65, 0x72, 0x72,
|
||||
0x6f, 0x72, 0x7d, 0x60, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x7d, 0x20,
|
||||
0x63, 0x61, 0x74, 0x63, 0x68, 0x20, 0x28, 0x65, 0x29, 0x20, 0x7b, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x65, 0x2e, 0x6e, 0x61,
|
||||
0x6d, 0x65, 0x20, 0x21, 0x3d, 0x3d, 0x20, 0x27, 0x41, 0x62, 0x6f, 0x72,
|
||||
0x74, 0x45, 0x72, 0x72, 0x6f, 0x72, 0x27, 0x29, 0x20, 0x7b, 0x0a, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x6f, 0x6c, 0x65,
|
||||
0x2e, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x28, 0x22, 0x6c, 0x6c, 0x61, 0x6d,
|
||||
0x61, 0x20, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x3a, 0x20, 0x22, 0x2c, 0x20,
|
||||
0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x74, 0x68, 0x72, 0x6f, 0x77, 0x20, 0x65, 0x3b, 0x0a, 0x20,
|
||||
0x20, 0x7d, 0x0a, 0x20, 0x20, 0x66, 0x69, 0x6e, 0x61, 0x6c, 0x6c, 0x79,
|
||||
0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72,
|
||||
0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2e, 0x61, 0x62, 0x6f, 0x72, 0x74, 0x28,
|
||||
0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x72, 0x65,
|
||||
0x74, 0x75, 0x72, 0x6e, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74,
|
||||
0x3b, 0x0a, 0x7d, 0x0a, 0x0a, 0x2f, 0x2f, 0x20, 0x43, 0x61, 0x6c, 0x6c,
|
||||
0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2c, 0x20, 0x72, 0x65, 0x74, 0x75,
|
||||
0x72, 0x6e, 0x20, 0x61, 0x6e, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x20,
|
||||
0x74, 0x61, 0x72, 0x67, 0x65, 0x74, 0x20, 0x74, 0x68, 0x61, 0x74, 0x20,
|
||||
0x79, 0x6f, 0x75, 0x20, 0x63, 0x61, 0x6e, 0x20, 0x73, 0x75, 0x62, 0x73,
|
||||
0x63, 0x72, 0x69, 0x62, 0x65, 0x20, 0x74, 0x6f, 0x0a, 0x2f, 0x2f, 0x0a,
|
||||
0x2f, 0x2f, 0x20, 0x45, 0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65, 0x3a, 0x0a,
|
||||
0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x69, 0x6d, 0x70,
|
||||
0x6f, 0x72, 0x74, 0x20, 0x7b, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x45,
|
||||
0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x20, 0x7d,
|
||||
0x20, 0x66, 0x72, 0x6f, 0x6d, 0x20, 0x27, 0x2f, 0x63, 0x6f, 0x6d, 0x70,
|
||||
0x6c, 0x65, 0x74, 0x69, 0x6f, 0x6e, 0x2e, 0x6a, 0x73, 0x27, 0x0a, 0x2f,
|
||||
0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73,
|
||||
0x74, 0x20, 0x63, 0x6f, 0x6e, 0x6e, 0x20, 0x3d, 0x20, 0x6c, 0x6c, 0x61,
|
||||
0x6d, 0x61, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65,
|
||||
0x74, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x29, 0x0a, 0x2f, 0x2f,
|
||||
0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x6e, 0x2e, 0x61, 0x64, 0x64,
|
||||
0x45, 0x76, 0x65, 0x6e, 0x74, 0x4c, 0x69, 0x73, 0x74, 0x65, 0x6e, 0x65,
|
||||
0x72, 0x28, 0x22, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x22, 0x2c,
|
||||
0x20, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x29, 0x20, 0x3d, 0x3e, 0x20,
|
||||
0x7b, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x64, 0x6f,
|
||||
0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x77, 0x72, 0x69, 0x74, 0x65,
|
||||
0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x65, 0x74, 0x61, 0x69,
|
||||
0x6c, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x0a, 0x2f,
|
||||
0x2f, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x29, 0x0a, 0x2f, 0x2f, 0x0a, 0x65,
|
||||
0x78, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20,
|
||||
0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61,
|
||||
0x72, 0x67, 0x65, 0x74, 0x20, 0x3d, 0x20, 0x28, 0x70, 0x72, 0x6f, 0x6d,
|
||||
0x70, 0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x20, 0x3d,
|
||||
0x20, 0x7b, 0x7d, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x20,
|
||||
0x3d, 0x20, 0x7b, 0x7d, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20,
|
||||
0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74,
|
||||
0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x20, 0x3d, 0x20, 0x6e, 0x65, 0x77,
|
||||
0x20, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74,
|
||||
0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x28, 0x61, 0x73, 0x79, 0x6e, 0x63,
|
||||
0x20, 0x28, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x6c, 0x65, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74,
|
||||
0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x66,
|
||||
0x6f, 0x72, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x28, 0x63, 0x6f,
|
||||
0x6e, 0x73, 0x74, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66,
|
||||
0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70,
|
||||
0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x63,
|
||||
0x6f, 0x6e, 0x66, 0x69, 0x67, 0x29, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x63, 0x68, 0x75, 0x6e,
|
||||
0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e,
|
||||
0x74, 0x20, 0x2b, 0x3d, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64,
|
||||
0x61, 0x74, 0x61, 0x2e, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3b,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54,
|
||||
0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, 0x74,
|
||||
0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, 0x20,
|
||||
0x43, 0x75, 0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28,
|
||||
0x22, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f,
|
||||
0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x22, 0x2c, 0x20, 0x7b,
|
||||
0x20, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20, 0x63, 0x68, 0x75,
|
||||
0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x67, 0x65, 0x6e, 0x65,
|
||||
0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69,
|
||||
0x6e, 0x67, 0x73, 0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69,
|
||||
0x66, 0x20, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74,
|
||||
0x61, 0x2e, 0x74, 0x69, 0x6d, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b,
|
||||
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x65, 0x76, 0x65,
|
||||
0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x64, 0x69, 0x73,
|
||||
0x70, 0x61, 0x74, 0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e,
|
||||
0x65, 0x77, 0x20, 0x43, 0x75, 0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65,
|
||||
0x6e, 0x74, 0x28, 0x22, 0x6d, 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x22,
|
||||
0x6e, 0x74, 0x28, 0x22, 0x74, 0x69, 0x6d, 0x69, 0x6e, 0x67, 0x73, 0x22,
|
||||
0x2c, 0x20, 0x7b, 0x20, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20,
|
||||
0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x20, 0x7d,
|
||||
0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x63, 0x68,
|
||||
0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x67, 0x65, 0x6e,
|
||||
0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74,
|
||||
0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72,
|
||||
0x67, 0x65, 0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, 0x74, 0x63, 0x68,
|
||||
0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, 0x20, 0x43, 0x75,
|
||||
0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x22, 0x67,
|
||||
0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65,
|
||||
0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x22, 0x2c, 0x20, 0x7b, 0x20, 0x64,
|
||||
0x65, 0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b,
|
||||
0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61,
|
||||
0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67,
|
||||
0x73, 0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20,
|
||||
0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e,
|
||||
0x74, 0x69, 0x6d, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74,
|
||||
0x54, 0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61,
|
||||
0x74, 0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77,
|
||||
0x20, 0x43, 0x75, 0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74,
|
||||
0x28, 0x22, 0x74, 0x69, 0x6d, 0x69, 0x6e, 0x67, 0x73, 0x22, 0x2c, 0x20,
|
||||
0x7b, 0x20, 0x64, 0x65, 0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20, 0x63, 0x68,
|
||||
0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x74, 0x69, 0x6d,
|
||||
0x69, 0x6e, 0x67, 0x73, 0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72,
|
||||
0x67, 0x65, 0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, 0x74, 0x63, 0x68,
|
||||
0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, 0x20, 0x43, 0x75,
|
||||
0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x22, 0x64,
|
||||
0x6f, 0x6e, 0x65, 0x22, 0x2c, 0x20, 0x7b, 0x20, 0x64, 0x65, 0x74, 0x61,
|
||||
0x69, 0x6c, 0x3a, 0x20, 0x7b, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e,
|
||||
0x74, 0x20, 0x7d, 0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d,
|
||||
0x29, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72,
|
||||
0x6e, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72, 0x67, 0x65,
|
||||
0x74, 0x3b, 0x0a, 0x7d, 0x0a, 0x0a, 0x2f, 0x2f, 0x20, 0x43, 0x61, 0x6c,
|
||||
0x6c, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2c, 0x20, 0x72, 0x65, 0x74,
|
||||
0x75, 0x72, 0x6e, 0x20, 0x61, 0x20, 0x70, 0x72, 0x6f, 0x6d, 0x69, 0x73,
|
||||
0x65, 0x20, 0x74, 0x68, 0x61, 0x74, 0x20, 0x72, 0x65, 0x73, 0x6f, 0x6c,
|
||||
0x76, 0x65, 0x73, 0x20, 0x74, 0x6f, 0x20, 0x74, 0x68, 0x65, 0x20, 0x63,
|
||||
0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x65, 0x64, 0x20, 0x74, 0x65, 0x78,
|
||||
0x74, 0x2e, 0x20, 0x54, 0x68, 0x69, 0x73, 0x20, 0x64, 0x6f, 0x65, 0x73,
|
||||
0x20, 0x6e, 0x6f, 0x74, 0x20, 0x73, 0x75, 0x70, 0x70, 0x6f, 0x72, 0x74,
|
||||
0x20, 0x73, 0x74, 0x72, 0x65, 0x61, 0x6d, 0x69, 0x6e, 0x67, 0x0a, 0x2f,
|
||||
0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x45, 0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65,
|
||||
0x3a, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x50, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65,
|
||||
0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x29, 0x2e, 0x74, 0x68, 0x65,
|
||||
0x6e, 0x28, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29, 0x20,
|
||||
0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x77,
|
||||
0x72, 0x69, 0x74, 0x65, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74,
|
||||
0x29, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x29, 0x0a,
|
||||
0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6f, 0x72,
|
||||
0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63,
|
||||
0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74,
|
||||
0x20, 0x3d, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x6c, 0x6c, 0x61,
|
||||
0x6d, 0x61, 0x50, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x28, 0x70, 0x72,
|
||||
0x6f, 0x6d, 0x70, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e, 0x77, 0x72,
|
||||
0x69, 0x74, 0x65, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29,
|
||||
0x0a, 0x2f, 0x2f, 0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x63,
|
||||
0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x50, 0x72,
|
||||
0x6f, 0x6d, 0x69, 0x73, 0x65, 0x20, 0x3d, 0x20, 0x28, 0x70, 0x72, 0x6f,
|
||||
0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x20,
|
||||
0x3d, 0x20, 0x7b, 0x7d, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67,
|
||||
0x20, 0x3d, 0x20, 0x7b, 0x7d, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a,
|
||||
0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x6e, 0x65, 0x77,
|
||||
0x20, 0x50, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x28, 0x61, 0x73, 0x79,
|
||||
0x6e, 0x63, 0x20, 0x28, 0x72, 0x65, 0x73, 0x6f, 0x6c, 0x76, 0x65, 0x2c,
|
||||
0x20, 0x72, 0x65, 0x6a, 0x65, 0x63, 0x74, 0x29, 0x20, 0x3d, 0x3e, 0x20,
|
||||
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x63, 0x6f,
|
||||
0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x22, 0x22, 0x3b, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x74, 0x72, 0x79, 0x20, 0x7b, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x61, 0x77, 0x61, 0x69,
|
||||
0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x74,
|
||||
0x69, 0x6d, 0x69, 0x6e, 0x67, 0x73, 0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54,
|
||||
0x61, 0x72, 0x67, 0x65, 0x74, 0x2e, 0x64, 0x69, 0x73, 0x70, 0x61, 0x74,
|
||||
0x63, 0x68, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28, 0x6e, 0x65, 0x77, 0x20,
|
||||
0x43, 0x75, 0x73, 0x74, 0x6f, 0x6d, 0x45, 0x76, 0x65, 0x6e, 0x74, 0x28,
|
||||
0x22, 0x64, 0x6f, 0x6e, 0x65, 0x22, 0x2c, 0x20, 0x7b, 0x20, 0x64, 0x65,
|
||||
0x74, 0x61, 0x69, 0x6c, 0x3a, 0x20, 0x7b, 0x20, 0x63, 0x6f, 0x6e, 0x74,
|
||||
0x65, 0x6e, 0x74, 0x20, 0x7d, 0x20, 0x7d, 0x29, 0x29, 0x3b, 0x0a, 0x20,
|
||||
0x20, 0x7d, 0x29, 0x28, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x72, 0x65, 0x74,
|
||||
0x75, 0x72, 0x6e, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x54, 0x61, 0x72,
|
||||
0x67, 0x65, 0x74, 0x3b, 0x0a, 0x7d, 0x0a, 0x0a, 0x2f, 0x2f, 0x20, 0x43,
|
||||
0x61, 0x6c, 0x6c, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x2c, 0x20, 0x72,
|
||||
0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x61, 0x20, 0x70, 0x72, 0x6f, 0x6d,
|
||||
0x69, 0x73, 0x65, 0x20, 0x74, 0x68, 0x61, 0x74, 0x20, 0x72, 0x65, 0x73,
|
||||
0x6f, 0x6c, 0x76, 0x65, 0x73, 0x20, 0x74, 0x6f, 0x20, 0x74, 0x68, 0x65,
|
||||
0x20, 0x63, 0x6f, 0x6d, 0x70, 0x6c, 0x65, 0x74, 0x65, 0x64, 0x20, 0x74,
|
||||
0x65, 0x78, 0x74, 0x2e, 0x20, 0x54, 0x68, 0x69, 0x73, 0x20, 0x64, 0x6f,
|
||||
0x65, 0x73, 0x20, 0x6e, 0x6f, 0x74, 0x20, 0x73, 0x75, 0x70, 0x70, 0x6f,
|
||||
0x72, 0x74, 0x20, 0x73, 0x74, 0x72, 0x65, 0x61, 0x6d, 0x69, 0x6e, 0x67,
|
||||
0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x45, 0x78, 0x61, 0x6d, 0x70,
|
||||
0x6c, 0x65, 0x3a, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x50, 0x72, 0x6f, 0x6d, 0x69,
|
||||
0x73, 0x65, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x29, 0x2e, 0x74,
|
||||
0x68, 0x65, 0x6e, 0x28, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74,
|
||||
0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x20, 0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74,
|
||||
0x2e, 0x77, 0x72, 0x69, 0x74, 0x65, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65,
|
||||
0x6e, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d,
|
||||
0x29, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x6f, 0x72, 0x0a, 0x2f, 0x2f, 0x0a, 0x2f, 0x2f, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65,
|
||||
0x6e, 0x74, 0x20, 0x3d, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x6c,
|
||||
0x6c, 0x61, 0x6d, 0x61, 0x50, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x28,
|
||||
0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x20, 0x20,
|
||||
0x20, 0x20, 0x20, 0x64, 0x6f, 0x63, 0x75, 0x6d, 0x65, 0x6e, 0x74, 0x2e,
|
||||
0x77, 0x72, 0x69, 0x74, 0x65, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e,
|
||||
0x74, 0x29, 0x0a, 0x2f, 0x2f, 0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74,
|
||||
0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61,
|
||||
0x50, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x20, 0x3d, 0x20, 0x28, 0x70,
|
||||
0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d,
|
||||
0x73, 0x20, 0x3d, 0x20, 0x7b, 0x7d, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66,
|
||||
0x69, 0x67, 0x20, 0x3d, 0x20, 0x7b, 0x7d, 0x29, 0x20, 0x3d, 0x3e, 0x20,
|
||||
0x7b, 0x0a, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x6e,
|
||||
0x65, 0x77, 0x20, 0x50, 0x72, 0x6f, 0x6d, 0x69, 0x73, 0x65, 0x28, 0x61,
|
||||
0x73, 0x79, 0x6e, 0x63, 0x20, 0x28, 0x72, 0x65, 0x73, 0x6f, 0x6c, 0x76,
|
||||
0x65, 0x2c, 0x20, 0x72, 0x65, 0x6a, 0x65, 0x63, 0x74, 0x29, 0x20, 0x3d,
|
||||
0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20,
|
||||
0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x3d, 0x20, 0x22, 0x22,
|
||||
0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x74, 0x72, 0x79, 0x20, 0x7b, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x61, 0x77,
|
||||
0x61, 0x69, 0x74, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63,
|
||||
0x68, 0x75, 0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x6c, 0x6c, 0x61, 0x6d,
|
||||
0x61, 0x28, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70, 0x61,
|
||||
0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67,
|
||||
0x29, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x2b, 0x3d, 0x20,
|
||||
0x63, 0x68, 0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x63,
|
||||
0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
|
||||
0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65,
|
||||
0x73, 0x6f, 0x6c, 0x76, 0x65, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e,
|
||||
0x74, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x20, 0x63, 0x61,
|
||||
0x74, 0x63, 0x68, 0x20, 0x28, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x20,
|
||||
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x6a, 0x65,
|
||||
0x63, 0x74, 0x28, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x3b, 0x0a, 0x20,
|
||||
0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x7d, 0x29, 0x3b, 0x0a, 0x7d,
|
||||
0x3b, 0x0a, 0x0a, 0x2f, 0x2a, 0x2a, 0x0a, 0x20, 0x2a, 0x20, 0x28, 0x64,
|
||||
0x65, 0x70, 0x72, 0x65, 0x63, 0x61, 0x74, 0x65, 0x64, 0x29, 0x0a, 0x20,
|
||||
0x2a, 0x2f, 0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f,
|
||||
0x6e, 0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x43, 0x6f, 0x6d,
|
||||
0x70, 0x6c, 0x65, 0x74, 0x65, 0x20, 0x3d, 0x20, 0x61, 0x73, 0x79, 0x6e,
|
||||
0x63, 0x20, 0x28, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x63,
|
||||
0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2c, 0x20, 0x63,
|
||||
0x61, 0x6c, 0x6c, 0x62, 0x61, 0x63, 0x6b, 0x29, 0x20, 0x3d, 0x3e, 0x20,
|
||||
0x7b, 0x0a, 0x20, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x61, 0x77, 0x61, 0x69,
|
||||
0x74, 0x20, 0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68, 0x75,
|
||||
0x6e, 0x6b, 0x20, 0x6f, 0x66, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x28,
|
||||
0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61,
|
||||
0x6d, 0x73, 0x2c, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x29, 0x29,
|
||||
0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63,
|
||||
0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x20, 0x2b, 0x3d, 0x20, 0x63, 0x68,
|
||||
0x75, 0x6e, 0x6b, 0x2e, 0x64, 0x61, 0x74, 0x61, 0x2e, 0x63, 0x6f, 0x6e,
|
||||
0x74, 0x65, 0x6e, 0x74, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
|
||||
0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x73, 0x6f,
|
||||
0x6c, 0x76, 0x65, 0x28, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x29,
|
||||
0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x20, 0x63, 0x61, 0x74, 0x63,
|
||||
0x68, 0x20, 0x28, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x20, 0x7b, 0x0a,
|
||||
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x6a, 0x65, 0x63, 0x74,
|
||||
0x28, 0x65, 0x72, 0x72, 0x6f, 0x72, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20,
|
||||
0x20, 0x7d, 0x0a, 0x20, 0x20, 0x7d, 0x29, 0x3b, 0x0a, 0x7d, 0x3b, 0x0a,
|
||||
0x0a, 0x2f, 0x2a, 0x2a, 0x0a, 0x20, 0x2a, 0x20, 0x28, 0x64, 0x65, 0x70,
|
||||
0x72, 0x65, 0x63, 0x61, 0x74, 0x65, 0x64, 0x29, 0x0a, 0x20, 0x2a, 0x2f,
|
||||
0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x73,
|
||||
0x74, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x43, 0x6f, 0x6d, 0x70, 0x6c,
|
||||
0x65, 0x74, 0x65, 0x20, 0x3d, 0x20, 0x61, 0x73, 0x79, 0x6e, 0x63, 0x20,
|
||||
0x28, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x63, 0x6f, 0x6e,
|
||||
0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x2c, 0x20, 0x63, 0x61, 0x6c,
|
||||
0x6c, 0x62, 0x61, 0x63, 0x6b, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a,
|
||||
0x20, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20,
|
||||
0x28, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x63, 0x68, 0x75, 0x6e, 0x6b,
|
||||
0x20, 0x6f, 0x66, 0x20, 0x6c, 0x6c, 0x61, 0x6d, 0x61, 0x28, 0x70, 0x61,
|
||||
0x72, 0x61, 0x6d, 0x73, 0x2e, 0x70, 0x72, 0x6f, 0x6d, 0x70, 0x74, 0x2c,
|
||||
0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x7b, 0x20, 0x63,
|
||||
0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x20, 0x7d, 0x29,
|
||||
0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x61, 0x6c, 0x6c,
|
||||
0x62, 0x61, 0x63, 0x6b, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b, 0x29, 0x3b,
|
||||
0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x7d, 0x0a, 0x0a, 0x2f, 0x2f, 0x20, 0x47,
|
||||
0x65, 0x74, 0x20, 0x74, 0x68, 0x65, 0x20, 0x6d, 0x6f, 0x64, 0x65, 0x6c,
|
||||
0x20, 0x69, 0x6e, 0x66, 0x6f, 0x20, 0x66, 0x72, 0x6f, 0x6d, 0x20, 0x74,
|
||||
0x68, 0x65, 0x20, 0x73, 0x65, 0x72, 0x76, 0x65, 0x72, 0x2e, 0x20, 0x54,
|
||||
0x68, 0x69, 0x73, 0x20, 0x69, 0x73, 0x20, 0x75, 0x73, 0x65, 0x66, 0x75,
|
||||
0x6c, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x67, 0x65, 0x74, 0x74, 0x69, 0x6e,
|
||||
0x67, 0x20, 0x74, 0x68, 0x65, 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x78,
|
||||
0x74, 0x20, 0x77, 0x69, 0x6e, 0x64, 0x6f, 0x77, 0x20, 0x61, 0x6e, 0x64,
|
||||
0x20, 0x73, 0x6f, 0x20, 0x6f, 0x6e, 0x2e, 0x0a, 0x65, 0x78, 0x70, 0x6f,
|
||||
0x72, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c, 0x6c, 0x61,
|
||||
0x6d, 0x61, 0x4d, 0x6f, 0x64, 0x65, 0x6c, 0x49, 0x6e, 0x66, 0x6f, 0x20,
|
||||
0x3d, 0x20, 0x61, 0x73, 0x79, 0x6e, 0x63, 0x20, 0x28, 0x29, 0x20, 0x3d,
|
||||
0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x21, 0x67,
|
||||
0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65,
|
||||
0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20,
|
||||
0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x70, 0x72, 0x6f, 0x70,
|
||||
0x73, 0x20, 0x3d, 0x20, 0x61, 0x77, 0x61, 0x69, 0x74, 0x20, 0x66, 0x65,
|
||||
0x74, 0x63, 0x68, 0x28, 0x22, 0x2f, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x22,
|
||||
0x29, 0x2e, 0x74, 0x68, 0x65, 0x6e, 0x28, 0x72, 0x20, 0x3d, 0x3e, 0x20,
|
||||
0x72, 0x2e, 0x6a, 0x73, 0x6f, 0x6e, 0x28, 0x29, 0x29, 0x3b, 0x0a, 0x20,
|
||||
0x20, 0x20, 0x20, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f,
|
||||
0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x20, 0x3d,
|
||||
0x20, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x2e, 0x64, 0x65, 0x66, 0x61, 0x75,
|
||||
0x6c, 0x74, 0x5f, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f,
|
||||
0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x3b, 0x0a,
|
||||
0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e,
|
||||
0x20, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f,
|
||||
0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x3b, 0x0a, 0x7d, 0x0a
|
||||
0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2e, 0x70, 0x72, 0x6f, 0x6d, 0x70,
|
||||
0x74, 0x2c, 0x20, 0x70, 0x61, 0x72, 0x61, 0x6d, 0x73, 0x2c, 0x20, 0x7b,
|
||||
0x20, 0x63, 0x6f, 0x6e, 0x74, 0x72, 0x6f, 0x6c, 0x6c, 0x65, 0x72, 0x20,
|
||||
0x7d, 0x29, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x61,
|
||||
0x6c, 0x6c, 0x62, 0x61, 0x63, 0x6b, 0x28, 0x63, 0x68, 0x75, 0x6e, 0x6b,
|
||||
0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x7d, 0x0a, 0x0a, 0x2f, 0x2f,
|
||||
0x20, 0x47, 0x65, 0x74, 0x20, 0x74, 0x68, 0x65, 0x20, 0x6d, 0x6f, 0x64,
|
||||
0x65, 0x6c, 0x20, 0x69, 0x6e, 0x66, 0x6f, 0x20, 0x66, 0x72, 0x6f, 0x6d,
|
||||
0x20, 0x74, 0x68, 0x65, 0x20, 0x73, 0x65, 0x72, 0x76, 0x65, 0x72, 0x2e,
|
||||
0x20, 0x54, 0x68, 0x69, 0x73, 0x20, 0x69, 0x73, 0x20, 0x75, 0x73, 0x65,
|
||||
0x66, 0x75, 0x6c, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x67, 0x65, 0x74, 0x74,
|
||||
0x69, 0x6e, 0x67, 0x20, 0x74, 0x68, 0x65, 0x20, 0x63, 0x6f, 0x6e, 0x74,
|
||||
0x65, 0x78, 0x74, 0x20, 0x77, 0x69, 0x6e, 0x64, 0x6f, 0x77, 0x20, 0x61,
|
||||
0x6e, 0x64, 0x20, 0x73, 0x6f, 0x20, 0x6f, 0x6e, 0x2e, 0x0a, 0x65, 0x78,
|
||||
0x70, 0x6f, 0x72, 0x74, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6c,
|
||||
0x6c, 0x61, 0x6d, 0x61, 0x4d, 0x6f, 0x64, 0x65, 0x6c, 0x49, 0x6e, 0x66,
|
||||
0x6f, 0x20, 0x3d, 0x20, 0x61, 0x73, 0x79, 0x6e, 0x63, 0x20, 0x28, 0x63,
|
||||
0x6f, 0x6e, 0x66, 0x69, 0x67, 0x20, 0x3d, 0x20, 0x7b, 0x7d, 0x29, 0x20,
|
||||
0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x21,
|
||||
0x67, 0x65, 0x6e, 0x65, 0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73,
|
||||
0x65, 0x74, 0x74, 0x69, 0x6e, 0x67, 0x73, 0x29, 0x20, 0x7b, 0x0a, 0x20,
|
||||
0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x61, 0x70, 0x69,
|
||||
0x5f, 0x75, 0x72, 0x6c, 0x20, 0x3d, 0x20, 0x63, 0x6f, 0x6e, 0x66, 0x69,
|
||||
0x67, 0x2e, 0x61, 0x70, 0x69, 0x5f, 0x75, 0x72, 0x6c, 0x20, 0x7c, 0x7c,
|
||||
0x20, 0x22, 0x22, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e,
|
||||
0x73, 0x74, 0x20, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x20, 0x3d, 0x20, 0x61,
|
||||
0x77, 0x61, 0x69, 0x74, 0x20, 0x66, 0x65, 0x74, 0x63, 0x68, 0x28, 0x60,
|
||||
0x24, 0x7b, 0x61, 0x70, 0x69, 0x5f, 0x75, 0x72, 0x6c, 0x7d, 0x2f, 0x70,
|
||||
0x72, 0x6f, 0x70, 0x73, 0x60, 0x29, 0x2e, 0x74, 0x68, 0x65, 0x6e, 0x28,
|
||||
0x72, 0x20, 0x3d, 0x3e, 0x20, 0x72, 0x2e, 0x6a, 0x73, 0x6f, 0x6e, 0x28,
|
||||
0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x67, 0x65, 0x6e, 0x65,
|
||||
0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69,
|
||||
0x6e, 0x67, 0x73, 0x20, 0x3d, 0x20, 0x70, 0x72, 0x6f, 0x70, 0x73, 0x2e,
|
||||
0x64, 0x65, 0x66, 0x61, 0x75, 0x6c, 0x74, 0x5f, 0x67, 0x65, 0x6e, 0x65,
|
||||
0x72, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69,
|
||||
0x6e, 0x67, 0x73, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x72,
|
||||
0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x67, 0x65, 0x6e, 0x65, 0x72, 0x61,
|
||||
0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x73, 0x65, 0x74, 0x74, 0x69, 0x6e, 0x67,
|
||||
0x73, 0x3b, 0x0a, 0x7d, 0x0a
|
||||
};
|
||||
unsigned int completion_js_len = 5796;
|
||||
unsigned int completion_js_len = 5909;
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user