Compare commits

..

15 Commits

Author SHA1 Message Date
Georgi Gerganov
0fc560fe96 ci : enable git lfs for build.yml 2024-05-08 10:53:02 +03:00
Georgi Gerganov
db5c2ad30e Revert "tmp : dummy change to trigger ci"
This reverts commit 97e40df5d6.
2024-05-08 10:42:25 +03:00
Georgi Gerganov
97e40df5d6 tmp : dummy change to trigger ci 2024-05-08 10:42:11 +03:00
Georgi Gerganov
837f426f19 ci : try lfs true 2024-05-08 10:30:25 +03:00
Georgi Gerganov
9d13776f34 ci : deps before checkout 2024-05-08 10:24:53 +03:00
Georgi Gerganov
2c7ff2c7ae ci : add git-lfs
ggml-ci
2024-05-08 10:18:47 +03:00
Georgi Gerganov
0dc0e9aa42 models : convert vocab files to LFS
ggml-ci
2024-05-08 09:54:38 +03:00
Justine Tunney
3855416027 ggml : introduce bfloat16 support (#6412)
* Introduce bfloat16 support

Many models on Hugging Face (e.g. Mistral, TinyLLaMA) use bfloat16 as
their canonical floating point format.

      ┌sign
      │
      │   ┌exponent
      │   │
      │   │      ┌mantissa
      │   │      │
      │┌──┴───┐┌─┴───┐
    0b0000000000000000 brain16

This encoding has the same number of exponent bits as float32. That
makes conversion relatively straightforward, even in the absence of
hardware support. For example, converting brain16 to binary32 means
simply shifting 16 bits to the left.

      ┌sign
      │
      │   ┌exponent
      │   │
      │   │      ┌mantissa
      │   │      │
      │┌──┴───┐┌─┴───────────────────┐
    0b00000000000000000000000000000000 IEEE binary32

The issue is that converting bf16 to fp16 can result in information
loss. Only 13% of bf16 numbers can be precisely represented in fp16
which in practice ends up being 99.71% of Mistral 7b v0.2's weights
however there is currently no way other than fp32 to get the others

      ┌sign
      │
      │  ┌exponent
      │  │
      │  │    ┌mantissa
      │  │    │
      │┌─┴─┐┌─┴──────┐
    0b0000000000000000 IEEE binary16

This change fixes that, by adding a bf16 data type to GGML. Support
for CPU inference has been implemented along with optimizations for
the AVX2, AVX512, and AVX512BF16 ISAs. Perplexity on Mistral 7b 0.2
improves somewhere around -0.0024 to -0.0046 compared to using fp16

* Remove GGML code that's not needed

* Minimize the GGML API surface area for BF16

* Remove bf16 luts

* Make the GGML header look nicer

* Fix documentation

* Apply ggerganov's fixes for test-backend-ops

* Add BF16 code for new ggml_validate_row_data() function
2024-05-08 09:30:09 +03:00
Georgi Gerganov
c0e6fbf8c3 metal : fix unused warning 2024-05-08 09:14:50 +03:00
Jeximo
c780e75305 Further tidy on Android instructions README.md (#7077)
* Further tidy on Android instructions README.md

Fixed some logic when following readme direction

* Clean up redundent information

A new user arriving will see simple directions on llama.cpp homepage

* corrected puncuation

Period after cmake, colon after termux

* re-word for clarity

method seems to be more correct, instead of alternative in this context

* Organized required packages per build type

building llama.cpp with NDK on a pc doesn't require installing clang, cmake, git, or wget in termux.

* README.md

corrected title

* fix trailing whitespace
2024-05-08 02:26:43 +02:00
jukofyork
48b2f9c1fc Fixed save_imatrix to match old behaviour for MoE (#7099)
* Fixed save_imatrix to match old behaviour for MoE

This fix is simple and clear, but unnecessarily doubles the memory overhead..

* Fixed missing idx variable

* Unconditionally increment ncall

Co-authored-by: slaren <slarengh@gmail.com>

* Fixed 2 bugs in save_imatrix()

- Fixed segfault bug because the counts vector needed to be created.
- Fixed pre-existing bug didn't actually add to the counts for "--combine" option.

* ncall needs summing too

* Trailing whitespace

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-05-08 02:24:16 +02:00
Johannes Gäßler
af0a5b6163 server: fix incorrectly reported token probabilities (#7125)
* server: normalize token probabilities

* fix temperature == 0.0f
2024-05-07 23:07:58 +02:00
nopperl
b6aa670203 Fix OLMo HF to GGUF conversion (#6910) 2024-05-07 21:39:43 +02:00
Kyle Mistele
260b7c6529 server : update readme with undocumented options (#7013) 2024-05-07 21:44:29 +03:00
Georgi Gerganov
53d6c52e22 readme : update hot topics 2024-05-07 21:43:13 +03:00
40 changed files with 1324 additions and 80 deletions

1
.gitattributes vendored Normal file
View File

@@ -0,0 +1 @@
models/ggml-vocab-*.gguf filter=lfs diff=lfs merge=lfs -text

View File

@@ -33,6 +33,7 @@ jobs:
id: checkout
uses: actions/checkout@v4
with:
lfs: true
fetch-depth: 0
- name: Dependencies
@@ -91,6 +92,7 @@ jobs:
id: checkout
uses: actions/checkout@v4
with:
lfs: true
fetch-depth: 0
- name: Dependencies
@@ -153,6 +155,8 @@ jobs:
- name: Clone
id: checkout
uses: actions/checkout@v4
with:
lfs: true
- name: Dependencies
id: depends
@@ -188,6 +192,8 @@ jobs:
- name: Clone
id: checkout
uses: actions/checkout@v4
with:
lfs: true
- name: Dependencies
id: depends
@@ -211,6 +217,7 @@ jobs:
id: checkout
uses: actions/checkout@v4
with:
lfs: true
fetch-depth: 0
- name: Dependencies
@@ -285,6 +292,8 @@ jobs:
# - name: Clone
# id: checkout
# uses: actions/checkout@v4
# with:
# lfs: true
#
# - name: Dependencies
# id: depends
@@ -319,6 +328,8 @@ jobs:
- name: Clone
id: checkout
uses: actions/checkout@v4
with:
lfs: true
- name: Dependencies
id: depends
@@ -347,6 +358,8 @@ jobs:
- name: Clone
id: checkout
uses: actions/checkout@v4
with:
lfs: true
- name: Dependencies
id: depends
@@ -369,6 +382,8 @@ jobs:
steps:
- uses: actions/checkout@v2
with:
lfs: true
- name: add oneAPI to apt
shell: bash
@@ -393,6 +408,8 @@ jobs:
- name: Clone
id: checkout
uses: actions/checkout@v4
with:
lfs: true
- name: Build
id: cmake_build
@@ -410,6 +427,8 @@ jobs:
steps:
- uses: actions/checkout@v2
with:
lfs: true
- name: add oneAPI to apt
shell: bash
@@ -434,6 +453,8 @@ jobs:
- name: Clone
id: checkout
uses: actions/checkout@v4
with:
lfs: true
- name: Build
id: cmake_build
@@ -454,6 +475,8 @@ jobs:
- name: Clone
id: checkout
uses: actions/checkout@v4
with:
lfs: true
- name: Dependencies
id: depends
@@ -485,6 +508,8 @@ jobs:
- name: Clone
id: checkout
uses: actions/checkout@v4
with:
lfs: true
- name: Dependencies
id: depends
@@ -514,6 +539,8 @@ jobs:
- name: Clone
id: checkout
uses: actions/checkout@v1
with:
lfs: true
- name: Dependencies
id: depends
@@ -543,6 +570,8 @@ jobs:
- name: Clone
id: checkout
uses: actions/checkout@v1
with:
lfs: true
- name: Dependencies
id: depends
@@ -576,6 +605,8 @@ jobs:
- name: Clone
id: checkout
uses: actions/checkout@v1
with:
lfs: true
- name: Dependencies
id: depends
@@ -606,6 +637,8 @@ jobs:
steps:
- name: Clone
uses: actions/checkout@v4
with:
lfs: true
- name: Setup ${{ matrix.sys }}
uses: msys2/setup-msys2@v2
@@ -687,6 +720,7 @@ jobs:
id: checkout
uses: actions/checkout@v4
with:
lfs: true
fetch-depth: 0
- name: Clone Kompute submodule
@@ -833,6 +867,7 @@ jobs:
id: checkout
uses: actions/checkout@v4
with:
lfs: true
fetch-depth: 0
- uses: Jimver/cuda-toolkit@v0.2.11
@@ -906,6 +941,7 @@ jobs:
id: checkout
uses: actions/checkout@v4
with:
lfs: true
fetch-depth: 0
- name: Install
@@ -947,6 +983,8 @@ jobs:
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
lfs: true
- name: Build Xcode project
run: xcodebuild -project examples/llama.swiftui/llama.swiftui.xcodeproj -scheme llama.swiftui -sdk iphoneos CODE_SIGNING_REQUIRED=NO CODE_SIGN_IDENTITY= -destination 'generic/platform=iOS' build
@@ -957,6 +995,8 @@ jobs:
steps:
- name: Clone
uses: actions/checkout@v4
with:
lfs: true
- name: Set up JDK
uses: actions/setup-java@v3
@@ -979,7 +1019,9 @@ jobs:
# runs-on: macos-12
# steps:
# - name: Clone
# uses: actions/checkout@v4
# uses: actions/checkout@#v4
# with:
# lfs: true
#
# - name: Build
# uses: cross-platform-actions/action@v0.19.0
@@ -1012,6 +1054,7 @@ jobs:
id: checkout
uses: actions/checkout@v4
with:
lfs: true
fetch-depth: 0
- name: Determine tag name
@@ -1077,6 +1120,8 @@ jobs:
# steps:
# - name: Clone
# uses: actions/checkout@v4
# with:
# lfs: true
#
# - name: Dependencies
# run: |
@@ -1101,6 +1146,8 @@ jobs:
# steps:
# - name: Clone
# uses: actions/checkout@v4
# with:
# lfs: true
#
# - name: Dependencies
# run: |
@@ -1125,6 +1172,8 @@ jobs:
# steps:
# - name: Clone
# uses: actions/checkout@v4
# with:
# lfs: true
#
# - name: Dependencies
# run: |
@@ -1155,6 +1204,8 @@ jobs:
# steps:
# - name: Clone
# uses: actions/checkout@v4
# with:
# lfs: true
#
# - name: Add msbuild to PATH
# uses: microsoft/setup-msbuild@v1
@@ -1194,6 +1245,8 @@ jobs:
# steps:
# - name: Clone
# uses: actions/checkout@v4
# with:
# lfs: true
#
# - name: Add msbuild to PATH
# uses: microsoft/setup-msbuild@v1
@@ -1240,6 +1293,8 @@ jobs:
# steps:
# - name: Clone
# uses: actions/checkout@v4
# with:
# lfs: true
#
# - name: Dependencies
# run: |

View File

@@ -13,14 +13,16 @@ jobs:
run:
runs-on: ubuntu-20.04
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential gcc-8 lcov
- name: Checkout
uses: actions/checkout@v4
with:
lfs: true
- name: Build
run: CC=gcc-8 make -j LLAMA_CODE_COVERAGE=1 tests

View File

@@ -20,7 +20,8 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
### Hot topics
- **BPE pre-tokenization support has been added: https://github.com/ggerganov/llama.cpp/pull/6920**
- **Initial Flash-Attention support: https://github.com/ggerganov/llama.cpp/pull/5021**
- BPE pre-tokenization support has been added: https://github.com/ggerganov/llama.cpp/pull/6920
- MoE memory layout has been updated - reconvert models for `mmap` support and regenerate `imatrix` https://github.com/ggerganov/llama.cpp/pull/6387
- Model sharding instructions using `gguf-split` https://github.com/ggerganov/llama.cpp/discussions/6404
- Fix major bug in Metal batched inference https://github.com/ggerganov/llama.cpp/pull/6225
@@ -935,17 +936,25 @@ If your issue is with model generation quality, then please at least scan the fo
### Android
#### Build on Android using Termux
[Termux](https://github.com/termux/termux-app#installation) is a method to execute `llama.cpp` on an Android device (no root required).
```
apt update && apt upgrade -y
apt install git make cmake
```
It's recommended to move your model inside the `~/` directory for best performance:
```
cd storage/downloads
mv model.gguf ~/
```
[Get the code](https://github.com/ggerganov/llama.cpp#get-the-code) & [follow the Linux build instructions](https://github.com/ggerganov/llama.cpp#build) to build `llama.cpp`.
#### Building the Project using Android NDK
You can easily run `llama.cpp` on Android device with [termux](https://termux.dev/).
First, install the essential packages for termux:
```
pkg install clang wget git cmake
```
Second, obtain the [Android NDK](https://developer.android.com/ndk) and then build with CMake:
You can execute the following commands on your computer to avoid downloading the NDK to your mobile. Of course, you can also do this in Termux.
Obtain the [Android NDK](https://developer.android.com/ndk) and then build with CMake.
Execute the following commands on your computer to avoid downloading the NDK to your mobile. Alternatively, you can also do this in Termux:
```
$ mkdir build-android
$ cd build-android
@@ -953,7 +962,9 @@ $ export NDK=<your_ndk_directory>
$ cmake -DCMAKE_TOOLCHAIN_FILE=$NDK/build/cmake/android.toolchain.cmake -DANDROID_ABI=arm64-v8a -DANDROID_PLATFORM=android-23 -DCMAKE_C_FLAGS=-march=armv8.4a+dotprod ..
$ make
```
Install [termux](https://termux.dev/) on your device and run `termux-setup-storage` to get access to your SD card.
Install [termux](https://github.com/termux/termux-app#installation) on your device and run `termux-setup-storage` to get access to your SD card (if Android 11+ then run the command twice).
Finally, copy these built `llama` binaries and the model file to your device storage. Because the file permissions in the Android sdcard cannot be changed, you can copy the executable files to the `/data/data/com.termux/files/home/bin` path, and then execute the following commands in Termux to add executable permission:
(Assumed that you have pushed the built executable files to the /sdcard/llama.cpp/bin path using `adb push`)
@@ -975,25 +986,10 @@ $cd /data/data/com.termux/files/home/bin
$./main -m ../model/llama-2-7b-chat.Q4_K_M.gguf -n 128 -cml
```
Here is a demo of an interactive session running on Pixel 5 phone:
Here's a demo of an interactive session running on Pixel 5 phone:
https://user-images.githubusercontent.com/271616/225014776-1d567049-ad71-4ef2-b050-55b0b3b9274c.mp4
#### Build on Android using Termux
[Termux](https://github.com/termux/termux-app#installation) is an alternative to execute `llama.cpp` on an Android device (no root required).
```
apt update && apt upgrade -y
apt install git
```
It's recommended to move your model inside the `~/` directory for best performance:
```
cd storage/downloads
mv model.gguf ~/
```
[Follow the Linux build instructions](https://github.com/ggerganov/llama.cpp#build) to build `llama.cpp`.
### Docker
#### Prerequisites

View File

@@ -35,6 +35,8 @@ struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_
result->prev.resize(params.n_prev);
result->n_considered = 0;
llama_sampling_set_rng_seed(result, params.seed);
return result;
@@ -64,6 +66,7 @@ void llama_sampling_reset(llama_sampling_context * ctx) {
std::fill(ctx->prev.begin(), ctx->prev.end(), 0);
ctx->cur.clear();
ctx->n_considered = 0;
}
void llama_sampling_set_rng_seed(struct llama_sampling_context * ctx, uint32_t seed) {
@@ -253,6 +256,8 @@ static llama_token llama_sampling_sample_impl(
}
}
ctx_sampling->n_considered = cur_p.size;
return id;
}

View File

@@ -81,6 +81,7 @@ struct llama_sampling_context {
// TODO: replace with ring-buffer
std::vector<llama_token> prev;
std::vector<llama_token_data> cur;
size_t n_considered;
std::mt19937 rng;
};

View File

@@ -67,6 +67,7 @@ models = [
{"name": "gpt-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/openai-community/gpt2", },
{"name": "refact", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/smallcloudai/Refact-1_6-base", },
{"name": "command-r", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/CohereForAI/c4ai-command-r-v01", },
{"name": "olmo", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/allenai/OLMo-1.7-7B-hf", },
]
# make directory "models/tokenizers" if it doesn't exist

View File

@@ -314,6 +314,9 @@ class Model(ABC):
if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
# ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
res = "command-r"
if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
# ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
res = "olmo"
if res is None:
logger.warning("\n")
@@ -2831,8 +2834,9 @@ class OlmoModel(Model):
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_layer_norm_eps(1e-5)
if "clip_qkv" in self.hparams is not None:
self.gguf_writer.add_clamp_kqv(self.hparams["clip_qkv"])
clip_qkv = self.hparams.get("clip_qkv")
if clip_qkv is not None:
self.gguf_writer.add_clamp_kqv(clip_qkv)
# Same as super class, but permuting q_proj, k_proj
# Copied from: LlamaModel

View File

@@ -575,7 +575,7 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
GGML_ASSERT(tokens_input->type == GGML_TYPE_I32);
auto add_to_f32 = [] (struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b) {
if (ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16) {
if (ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16 || a->type == GGML_TYPE_BF16) {
return ggml_add_cast(ctx, a, b, GGML_TYPE_F32);
} else if (a->type == GGML_TYPE_F32) {
return ggml_add(ctx, a, b);

View File

@@ -19,6 +19,7 @@
struct Stats {
std::vector<float> values;
std::vector<int> counts;
int ncall = 0;
};
@@ -121,12 +122,10 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
auto & e = m_stats[wname];
++e.ncall;
// NOTE: since we select top-k experts, the number of calls for the expert tensors will be k times larger
// using the following line, we can correct for that if needed by replacing the line above with:
//if (idx == t->src[0]->ne[0] - 1) ++e.ncall;
if (e.values.empty()) {
e.values.resize(src1->ne[0]*n_as, 0);
e.counts.resize(src1->ne[0]*n_as, 0);
}
else if (e.values.size() != (size_t)src1->ne[0]*n_as) {
fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]*n_as);
@@ -153,6 +152,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
for (int j = 0; j < (int)src1->ne[0]; ++j) {
e.values[e_start + j] += x[j]*x[j];
e.counts[e_start + j]++;
}
}
}
@@ -170,6 +170,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
auto& e = m_stats[wname];
if (e.values.empty()) {
e.values.resize(src1->ne[0], 0);
e.counts.resize(src1->ne[0], 0);
}
else if (e.values.size() != (size_t)src1->ne[0]) {
fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]);
@@ -183,6 +184,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
const float * x = data + row * src1->ne[0];
for (int j = 0; j < (int)src1->ne[0]; ++j) {
e.values[j] += x[j]*x[j];
e.counts[j]++;
}
}
if (e.ncall > m_last_call) {
@@ -222,7 +224,13 @@ void IMatrixCollector::save_imatrix(const char * fname, const char * dataset) co
out.write((const char *) &p.second.ncall, sizeof(p.second.ncall));
int nval = p.second.values.size();
out.write((const char *) &nval, sizeof(nval));
if (nval > 0) out.write((const char *) p.second.values.data(), nval * sizeof(float));
if (nval > 0) {
std::vector<float> tmp(nval);
for (int i = 0; i < nval; i++) {
tmp[i] = (p.second.values[i] / static_cast<float>(p.second.counts[i])) * static_cast<float>(p.second.ncall);
}
out.write((const char*)tmp.data(), nval*sizeof(float));
}
}
// Write the number of call the matrix was computed with
@@ -270,14 +278,28 @@ bool IMatrixCollector::load_imatrix(const char * imatrix_file, std::unordered_ma
imatrix_data = {};
return false;
}
e.values.resize(nval);
in.read((char*)e.values.data(), nval*sizeof(float));
// When re-called from load_imatrix() with add set, this will already be created.
if (e.values.empty()) {
e.values.resize(nval, 0);
e.counts.resize(nval, 0);
}
std::vector<float> tmp(nval);
in.read((char*)tmp.data(), nval*sizeof(float));
if (in.fail()) {
printf("%s: failed reading data for entry %d\n",__func__,i);
imatrix_data = {};
return false;
}
e.ncall = ncall;
// Recreate the state as expected by save_imatrix(), and corerct for weighted sum.
for (int i = 0; i < nval; i++) {
e.values[i] += tmp[i];
e.counts[i] += ncall;
}
e.ncall += ncall;
}
return true;
}

View File

@@ -46,7 +46,8 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = {
{ "Q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M, " 4.45G, +0.0122 ppl @ LLaMA-v1-7B", },
{ "Q6_K", LLAMA_FTYPE_MOSTLY_Q6_K, " 5.15G, +0.0008 ppl @ LLaMA-v1-7B", },
{ "Q8_0", LLAMA_FTYPE_MOSTLY_Q8_0, " 6.70G, +0.0004 ppl @ LLaMA-v1-7B", },
{ "F16", LLAMA_FTYPE_MOSTLY_F16, "13.00G @ 7B", },
{ "F16", LLAMA_FTYPE_MOSTLY_F16, "14.00G, -0.0020 ppl @ Mistral-7B", },
{ "BF16", LLAMA_FTYPE_MOSTLY_BF16, "14.00G, -0.0050 ppl @ Mistral-7B", },
{ "F32", LLAMA_FTYPE_ALL_F32, "26.00G @ 7B", },
// Note: Ensure COPY comes after F32 to avoid ftype 0 from matching.
{ "COPY", LLAMA_FTYPE_ALL_F32, "only copy tensors, no quantizing", },

View File

@@ -62,6 +62,18 @@ page cache before using this. See https://github.com/ggerganov/llama.cpp/issues/
- `--chat-template JINJA_TEMPLATE`: Set custom jinja chat template. This parameter accepts a string, not a file name. Default: template taken from model's metadata. We only support [some pre-defined templates](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template)
- `--log-disable`: Output logs to stdout only, not to `llama.log`. Default: enabled
- `--log-format FORMAT`: Define the log output to FORMAT: json or text Default: `json`
- `--rope-scaling` : RoPE scaling method. Defaults to linear unless otherwise specified by the model. Options are `none`, `linear`, `yarn`
- `--rope-freq-base N` : RoPE frequency base (default: loaded from model)
- `--rope-freq-scale N`: RoPE frequency scaling factor, expands context by a factor of 1/N (e.g. 0.25)
- `--yarn-ext-factor N` : YaRN: extrapolation mix factor (Default: 1.0, 0.0 = full interpolation)
- `--yarn-attn-factor N` : YaRN: scale sqrt(t) or attention magnitude (default: 1.0)
- `--yarn-beta-slow N`: YaRN: High correction dim or alpha (default: 1.0)
- `--yarn-beta-fast N`: YaRN: low correction dim or beta (default: 32.0)
- `--pooling` : Pooling type for embeddings, use model default if unspecified. Options are `none`, `mean`, `cls`
- `-dt N`, `--defrag-thold N`: KV cache defragmentation threshold (default: -1.0, < 0 = disabled)
- `-fa`, `--flash-attn` : enable flash attention (default: disabled).
- `-ctk TYPE`, `--cache-type-k TYPE` : KV cache data type for K (default: `f16`, options `f32`, `f16`, `q8_0`, `q4_0`, `q4_1`, `iq4_nl`, `q5_0`, or `q5_1`)
- `-ctv TYPE`, `--cache-type-v TYPE` : KV cache type for V (default `f16`, see `-ctk` for options)
**If compiled with `LLAMA_SERVER_SSL=ON`**
- `--ssl-key-file FNAME`: path to file a PEM-encoded SSL private key
@@ -260,7 +272,7 @@ node index.js
`logit_bias`: Modify the likelihood of a token appearing in the generated text completion. For example, use `"logit_bias": [[15043,1.0]]` to increase the likelihood of the token 'Hello', or `"logit_bias": [[15043,-1.0]]` to decrease its likelihood. Setting the value to false, `"logit_bias": [[15043,false]]` ensures that the token `Hello` is never produced. The tokens can also be represented as strings, e.g. `[["Hello, World!",-0.5]]` will reduce the likelihood of all the individual tokens that represent the string `Hello, World!`, just like the `presence_penalty` does. Default: `[]`
`n_probs`: If greater than 0, the response also contains the probabilities of top N tokens for each generated token. Default: `0`
`n_probs`: If greater than 0, the response also contains the probabilities of top N tokens for each generated token given the sampling settings. Note that for temperature < 0 the tokens are sampled greedily but token probabilities are still being calculated via a simple softmax of the logits without considering any other sampler settings. Default: `0`
`min_keep`: If greater than 0, force samplers to return N possible tokens at minimum. Default: `0`

View File

@@ -2266,17 +2266,31 @@ struct server_context {
llama_token_data_array cur_p = { slot.ctx_sampling->cur.data(), slot.ctx_sampling->cur.size(), false };
result.tok = id;
const int32_t n_probs = slot.sparams.n_probs;
if (slot.sparams.temp <= 0 && n_probs > 0) {
// for llama_sample_token_greedy we need to sort candidates
llama_sample_softmax(ctx, &cur_p);
}
const size_t n_probs = std::min(cur_p.size, (size_t) slot.sparams.n_probs);
if (n_probs > 0) {
const size_t n_considered = slot.ctx_sampling->n_considered;
for (size_t i = 0; i < std::min(cur_p.size, (size_t) n_probs); ++i) {
result.probs.push_back({
cur_p.data[i].id,
cur_p.data[i].p
});
// Make sure at least n_probs top tokens are at the front of the vector:
if (slot.sparams.temp == 0.0f && n_probs > n_considered) {
llama_sample_top_k(ctx, &cur_p, n_probs, 0);
}
if (slot.sparams.temp == 0.0f) {
// With greedy sampling the probabilities have possibly not been calculated.
for (size_t i = 0; i < n_probs; ++i) {
result.probs.push_back({
cur_p.data[i].id,
i == 0 ? 1.0f : 0.0f
});
}
} else {
for (size_t i = 0; i < n_probs; ++i) {
result.probs.push_back({
cur_p.data[i].id,
i >= n_considered ? 0.0f : cur_p.data[i].p // Tokens filtered out due to e.g. top_k have 0 probability.
});
}
}
}
if (!process_token(result, slot)) {

View File

@@ -17,6 +17,83 @@
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
/**
* Converts brain16 to float32.
*
* The bfloat16 floating point format has the following structure:
*
* ┌sign
* │
* │ ┌exponent
* │ │
* │ │ ┌mantissa
* │ │ │
* │┌──┴───┐┌─┴───┐
* 0b0000000000000000 brain16
*
* Since bf16 has the same number of exponent bits as a 32bit float,
* encoding and decoding numbers becomes relatively straightforward.
*
* ┌sign
* │
* │ ┌exponent
* │ │
* │ │ ┌mantissa
* │ │ │
* │┌──┴───┐┌─┴───────────────────┐
* 0b00000000000000000000000000000000 IEEE binary32
*
* For comparison, the standard fp16 format has fewer exponent bits.
*
* ┌sign
* │
* │ ┌exponent
* │ │
* │ │ ┌mantissa
* │ │ │
* │┌─┴─┐┌─┴──────┐
* 0b0000000000000000 IEEE binary16
*
* @see IEEE 754-2008
*/
static inline float ggml_compute_bf16_to_fp32(ggml_bf16_t h) {
union {
float f;
uint32_t i;
} u;
u.i = (uint32_t)h.bits << 16;
return u.f;
}
/**
* Converts float32 to brain16.
*
* This function is binary identical to AMD Zen4 VCVTNEPS2BF16.
* Subnormals shall be flushed to zero, and NANs will be quiet.
* This code should vectorize nicely if using modern compilers.
*/
static inline ggml_bf16_t ggml_compute_fp32_to_bf16(float s) {
ggml_bf16_t h;
union {
float f;
uint32_t i;
} u;
u.f = s;
if ((u.i & 0x7fffffff) > 0x7f800000) { /* nan */
h.bits = (u.i >> 16) | 64; /* force to quiet */
return h;
}
if (!(u.i & 0x7f800000)) { /* subnormal */
h.bits = (u.i & 0x80000000) >> 16; /* flush to zero */
return h;
}
h.bits = (u.i + (0x7fff + ((u.i >> 16) & 1))) >> 16;
return h;
}
#define GGML_FP32_TO_BF16(x) ggml_compute_fp32_to_bf16(x)
#define GGML_BF16_TO_FP32(x) ggml_compute_bf16_to_fp32(x)
#ifdef __cplusplus
extern "C" {
#endif

View File

@@ -803,7 +803,7 @@ static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_GET_ROWS:
{
return op->ne[3] == 1;
return op->src[0]->type != GGML_TYPE_BF16 && op->ne[3] == 1;
}
default:
return false;

View File

@@ -2175,7 +2175,7 @@ kernel void kernel_flash_attn_ext_f16(
const short D4 = D/4;
const short D8 = D/8;
const short Q8 = Q/8;
//const short Q8 = Q/8;
const short NW = N_SIMDWIDTH;
const short SH = (C + Q); // shared memory per simdgroup in (half)

View File

@@ -12450,6 +12450,24 @@ bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbyte
const size_t nb = nbytes/ggml_type_size(type);
switch (type) {
case GGML_TYPE_BF16:
{
int nans = 0;
int infs = 0;
const unsigned short * f = (const unsigned short *) data;
for (size_t i = 0; i < nb; ++i) {
nans += (f[i] & 0x7fff) > 0x7f80;
infs += (f[i] & 0x7fff) == 0x7f80;
}
if (nans) {
fprintf(stderr, "%s: found %d NaNs in row of %zu BF16 values\n", __func__, nans, nb);
return false;
}
if (infs) {
fprintf(stderr, "%s: found %d infinities in row of %zu BF16 values\n", __func__, infs, nb);
return false;
}
} break;
case GGML_TYPE_F16:
{
const ggml_fp16_t * f = (const ggml_fp16_t *) data;

1031
ggml.c

File diff suppressed because it is too large Load Diff

20
ggml.h
View File

@@ -326,14 +326,20 @@ extern "C" {
// get ggml_status name string
GGML_API GGML_CALL const char * ggml_status_to_string(enum ggml_status status);
// ieee 754-2008 half-precision float16
// todo: make this not an integral type
typedef uint16_t ggml_fp16_t;
GGML_API float ggml_fp16_to_fp32(ggml_fp16_t);
GGML_API ggml_fp16_t ggml_fp32_to_fp16(float);
GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t *, float *, int64_t);
GGML_API void ggml_fp32_to_fp16_row(const float *, ggml_fp16_t *, int64_t);
// convert FP16 <-> FP32
GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x);
GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x);
GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n);
GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n);
// google brain half-precision bfloat16
typedef struct { uint16_t bits; } ggml_bf16_t;
GGML_API ggml_bf16_t ggml_fp32_to_bf16(float);
GGML_API float ggml_bf16_to_fp32(ggml_bf16_t); // consider just doing << 16
GGML_API void ggml_bf16_to_fp32_row(const ggml_bf16_t *, float *, int64_t);
GGML_API void ggml_fp32_to_bf16_row(const float *, ggml_bf16_t *, int64_t);
struct ggml_object;
struct ggml_context;
@@ -370,6 +376,7 @@ extern "C" {
GGML_TYPE_I64 = 27,
GGML_TYPE_F64 = 28,
GGML_TYPE_IQ1_M = 29,
GGML_TYPE_BF16 = 30,
GGML_TYPE_COUNT,
};
@@ -410,6 +417,7 @@ extern "C" {
GGML_FTYPE_MOSTLY_IQ2_S = 21, // except 1d tensors
GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors
GGML_FTYPE_MOSTLY_IQ1_M = 23, // except 1d tensors
GGML_FTYPE_MOSTLY_BF16 = 24, // except 1d tensors
};
// available tensor operations:

View File

@@ -817,6 +817,7 @@ class GGMLQuantizationType(IntEnum):
I64 = 27
F64 = 28
IQ1_M = 29
BF16 = 30
class GGUFEndian(IntEnum):
@@ -888,6 +889,7 @@ GGML_QUANT_SIZES = {
GGMLQuantizationType.I64: (1, 8),
GGMLQuantizationType.F64: (1, 8),
GGMLQuantizationType.IQ1_M: (256, QK_K // 8 + QK_K // 16 + QK_K // 32),
GGMLQuantizationType.BF16: (1, 2),
}

View File

@@ -3175,6 +3175,7 @@ struct llama_model_loader {
switch (type_max) {
case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
case GGML_TYPE_BF16: ftype = LLAMA_FTYPE_MOSTLY_BF16; break;
case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
@@ -3666,6 +3667,7 @@ static std::string llama_model_ftype_name(llama_ftype ftype) {
switch (ftype) {
case LLAMA_FTYPE_ALL_F32: return "all F32";
case LLAMA_FTYPE_MOSTLY_F16: return "F16";
case LLAMA_FTYPE_MOSTLY_BF16: return "BF16";
case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
@@ -4389,6 +4391,9 @@ static void llm_load_vocab(
} else if (
tokenizer_pre == "command-r") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_COMMAND_R;
} else if (
tokenizer_pre == "olmo") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_OLMO;
} else {
throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
}
@@ -6126,6 +6131,7 @@ static int llama_model_load(const std::string & fname, llama_model & model, llam
|| !(
model.ftype == LLAMA_FTYPE_ALL_F32 ||
model.ftype == LLAMA_FTYPE_MOSTLY_F16 ||
model.ftype == LLAMA_FTYPE_MOSTLY_BF16 ||
model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1
)
@@ -12248,6 +12254,7 @@ struct llm_tokenizer_bpe {
});
break;
case LLAMA_VOCAB_PRE_TYPE_GPT2:
case LLAMA_VOCAB_PRE_TYPE_OLMO:
word_collection = unicode_regex_split(text, {
"'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
});
@@ -14154,13 +14161,16 @@ static void llama_tensor_dequantize_internal(
if (qtype.to_float == NULL) {
throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
}
} else if (tensor->type != GGML_TYPE_F16) {
} else if (tensor->type != GGML_TYPE_F16 &&
tensor->type != GGML_TYPE_BF16) {
throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
}
if (nthread < 2) {
if (tensor->type == GGML_TYPE_F16) {
ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
} else if (tensor->type == GGML_TYPE_BF16) {
ggml_bf16_to_fp32_row((ggml_bf16_t *)tensor->data, f32_output, nelements);
} else if (ggml_is_quantized(tensor->type)) {
qtype.to_float(tensor->data, f32_output, nelements);
} else {
@@ -14169,7 +14179,14 @@ static void llama_tensor_dequantize_internal(
return;
}
size_t block_size = tensor->type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor->type);
size_t block_size;
if (tensor->type == GGML_TYPE_F16 ||
tensor->type == GGML_TYPE_BF16) {
block_size = 1;
} else {
block_size = (size_t)ggml_blck_size(tensor->type);
}
size_t block_size_bytes = ggml_type_size(tensor->type);
GGML_ASSERT(nelements % block_size == 0);
@@ -14188,6 +14205,8 @@ static void llama_tensor_dequantize_internal(
auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
if (typ == GGML_TYPE_F16) {
ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
} else if (typ == GGML_TYPE_BF16) {
ggml_bf16_to_fp32_row((ggml_bf16_t *)inbuf, outbuf, nels);
} else {
qtype.to_float(inbuf, outbuf, nels);
}
@@ -14548,6 +14567,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break;
case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break;
case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break;
case LLAMA_FTYPE_MOSTLY_BF16: default_type = GGML_TYPE_BF16; break;
case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break;
// K-quants

View File

@@ -81,6 +81,7 @@ extern "C" {
LLAMA_VOCAB_PRE_TYPE_GPT2 = 7,
LLAMA_VOCAB_PRE_TYPE_REFACT = 8,
LLAMA_VOCAB_PRE_TYPE_COMMAND_R = 9,
LLAMA_VOCAB_PRE_TYPE_OLMO = 10,
};
// note: these values should be synchronized with ggml_rope
@@ -136,6 +137,7 @@ extern "C" {
LLAMA_FTYPE_MOSTLY_IQ2_M = 29, // except 1d tensors
LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors
LLAMA_FTYPE_MOSTLY_IQ1_M = 31, // except 1d tensors
LLAMA_FTYPE_MOSTLY_BF16 = 32, // except 1d tensors
LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
};

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@@ -50,7 +50,7 @@ static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float m
if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
ggml_backend_tensor_set(tensor, data.data(), 0, size * sizeof(float));
} else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16) {
} else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) {
GGML_ASSERT(size % ggml_blck_size(tensor->type) == 0);
std::vector<uint8_t> dataq(ggml_row_size(tensor->type, size));
std::vector<float> imatrix(tensor->ne[0], 1.0f); // dummy importance matrix
@@ -92,6 +92,8 @@ static std::vector<float> tensor_to_float(const ggml_tensor * t) {
size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
if (t->type == GGML_TYPE_F16) {
tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
} else if (t->type == GGML_TYPE_BF16) {
tv.push_back(ggml_bf16_to_fp32(*(ggml_bf16_t*)&buf[i]));
} else if (t->type == GGML_TYPE_F32) {
tv.push_back(*(float *) &buf[i]);
} else if (t->type == GGML_TYPE_I32) {
@@ -1898,7 +1900,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
std::default_random_engine rng(0);
const ggml_type all_types[] = {
GGML_TYPE_F32, GGML_TYPE_F16,
GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16,
GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
GGML_TYPE_Q8_0,