Compare commits
105 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
0f98acfac6 | ||
|
|
ca57e0f35e | ||
|
|
c1b295eea5 | ||
|
|
de73196344 | ||
|
|
b49a13dd2f | ||
|
|
05834841dc | ||
|
|
ef277de2ad | ||
|
|
b43272afa2 | ||
|
|
0fc1e820a9 | ||
|
|
82ca83db3c | ||
|
|
f4bd8b3d26 | ||
|
|
51e9d02599 | ||
|
|
d273c1402b | ||
|
|
27b040691c | ||
|
|
29c60d8cdd | ||
|
|
359cbe3f46 | ||
|
|
e18bc6aaf3 | ||
|
|
ee94172d33 | ||
|
|
934266c0e0 | ||
|
|
9c4fdcbec8 | ||
|
|
24ecb58168 | ||
|
|
9afdffe70e | ||
|
|
3b3963c55c | ||
|
|
dda64fc17c | ||
|
|
0350f58152 | ||
|
|
ad52d5c259 | ||
|
|
172b78210a | ||
|
|
13ad16af12 | ||
|
|
8f7080bf48 | ||
|
|
e1b40ac3b9 | ||
|
|
dc020985b8 | ||
|
|
344f9126cc | ||
|
|
9a17ab914b | ||
|
|
ea3b0590ee | ||
|
|
29499bb593 | ||
|
|
48aa8fd1f2 | ||
|
|
583fd6b000 | ||
|
|
9f773486ab | ||
|
|
e8a7fd4fb0 | ||
|
|
a5e3fde857 | ||
|
|
f308ea7059 | ||
|
|
c3c88f296a | ||
|
|
182adefcf3 | ||
|
|
0d26d8ccd8 | ||
|
|
4f0263633b | ||
|
|
1265c670fd | ||
|
|
5e31828d3e | ||
|
|
541600201e | ||
|
|
efc8f767c8 | ||
|
|
e0f556186b | ||
|
|
27f65d6267 | ||
|
|
ee52225067 | ||
|
|
614d3b914e | ||
|
|
30e70334f7 | ||
|
|
1c570d8bee | ||
|
|
948f4ec7c5 | ||
|
|
9aa672490c | ||
|
|
b1f8af1886 | ||
|
|
e586ee4259 | ||
|
|
cbf75894d2 | ||
|
|
0d5cef78ae | ||
|
|
dc685be466 | ||
|
|
6f1b63606f | ||
|
|
b228aba91a | ||
|
|
7bd4ffb780 | ||
|
|
1622ac023f | ||
|
|
6aeff24f8b | ||
|
|
325756d28d | ||
|
|
fed0108491 | ||
|
|
72c177c1f6 | ||
|
|
5a419926b0 | ||
|
|
fae9d234b6 | ||
|
|
f5ef34e428 | ||
|
|
ef0d5e3ec9 | ||
|
|
3292733f95 | ||
|
|
988631335a | ||
|
|
f99e1e456e | ||
|
|
5ae3426b0b | ||
|
|
b83cc3f5b3 | ||
|
|
9cb317f77e | ||
|
|
e849648888 | ||
|
|
18e437665c | ||
|
|
8c660242d7 | ||
|
|
25c6e82e7a | ||
|
|
4e3880978f | ||
|
|
f89fe2732c | ||
|
|
d11afd6652 | ||
|
|
8c570c9496 | ||
|
|
eaf4bd8b39 | ||
|
|
befddd0f15 | ||
|
|
d46dbc76f8 | ||
|
|
0961d86604 | ||
|
|
43248e5594 | ||
|
|
a743d76a01 | ||
|
|
f31ec120bc | ||
|
|
fd9f92b154 | ||
|
|
22842164bc | ||
|
|
4734524882 | ||
|
|
07cd41d096 | ||
|
|
4426e2987b | ||
|
|
f98eb31c51 | ||
|
|
bc4bba364f | ||
|
|
c12452c7ae | ||
|
|
9da243b36a | ||
|
|
bd1871fa2b |
@@ -227,20 +227,20 @@ effectiveStdenv.mkDerivation (
|
||||
)
|
||||
]
|
||||
++ optionals useRocm [
|
||||
(cmakeFeature "CMAKE_C_COMPILER" "hipcc")
|
||||
(cmakeFeature "CMAKE_CXX_COMPILER" "hipcc")
|
||||
|
||||
# Build all targets supported by rocBLAS. When updating search for TARGET_LIST_ROCM
|
||||
# in https://github.com/ROCmSoftwarePlatform/rocBLAS/blob/develop/CMakeLists.txt
|
||||
# and select the line that matches the current nixpkgs version of rocBLAS.
|
||||
# Should likely use `rocmPackages.clr.gpuTargets`.
|
||||
"-DAMDGPU_TARGETS=gfx803;gfx900;gfx906:xnack-;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102"
|
||||
(cmakeFeature "CMAKE_HIP_COMPILER" "${rocmPackages.llvm.clang}/bin/clang")
|
||||
(cmakeFeature "CMAKE_HIP_ARCHITECTURES" (builtins.concatStringsSep ";" rocmPackages.clr.gpuTargets))
|
||||
]
|
||||
++ optionals useMetalKit [
|
||||
(lib.cmakeFeature "CMAKE_C_FLAGS" "-D__ARM_FEATURE_DOTPROD=1")
|
||||
(cmakeBool "LLAMA_METAL_EMBED_LIBRARY" (!precompileMetalShaders))
|
||||
];
|
||||
|
||||
# Environment variables needed for ROCm
|
||||
env = optionals useRocm {
|
||||
ROCM_PATH = "${rocmPackages.clr}";
|
||||
HIP_DEVICE_LIB_PATH = "${rocmPackages.rocm-device-libs}/amdgcn/bitcode";
|
||||
};
|
||||
|
||||
# TODO(SomeoneSerge): It's better to add proper install targets at the CMake level,
|
||||
# if they haven't been added yet.
|
||||
postInstall = ''
|
||||
|
||||
73
.github/labeler.yml
vendored
Normal file
@@ -0,0 +1,73 @@
|
||||
# https://github.com/actions/labeler
|
||||
|
||||
SYCL:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- ggml-sycl.h
|
||||
- ggml-sycl.cpp
|
||||
- README-sycl.md
|
||||
Nvidia GPU:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- ggml-cuda/**
|
||||
Vulkan:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- ggml_vk_generate_shaders.py
|
||||
- ggml-vulkan*
|
||||
documentation:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- docs/**
|
||||
- media/**
|
||||
testing:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- tests/**
|
||||
build:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- cmake/**
|
||||
- CMakeLists.txt
|
||||
- CMakePresets.json
|
||||
- codecov.yml
|
||||
examples:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file: examples/**
|
||||
devops:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- .devops/**
|
||||
- .github/**
|
||||
- ci/**
|
||||
python:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "**/*.py"
|
||||
- requirements/**
|
||||
- gguf-py/**
|
||||
- .flake8
|
||||
script:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- scripts/**
|
||||
android:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- examples/llama.android/**
|
||||
server:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- examples/server/**
|
||||
ggml:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- ggml-*.c
|
||||
- ggml-*.h
|
||||
- ggml-cuda/**
|
||||
nix:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- "**/*.nix"
|
||||
- .github/workflows/nix-*.yml
|
||||
- .devops/nix/nixpkgs-instances.nix
|
||||
164
.github/workflows/build.yml
vendored
@@ -340,6 +340,36 @@ jobs:
|
||||
cd build
|
||||
ctest -L main --verbose
|
||||
|
||||
ubuntu-latest-cmake-rpc:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
continue-on-error: true
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -DLLAMA_RPC=ON ..
|
||||
cmake --build . --config Release -j $(nproc)
|
||||
|
||||
- name: Test
|
||||
id: cmake_test
|
||||
run: |
|
||||
cd build
|
||||
ctest -L main --verbose
|
||||
|
||||
ubuntu-22-cmake-vulkan:
|
||||
runs-on: ubuntu-22.04
|
||||
|
||||
@@ -362,6 +392,33 @@ jobs:
|
||||
cmake -DLLAMA_VULKAN=ON ..
|
||||
cmake --build . --config Release -j $(nproc)
|
||||
|
||||
ubuntu-22-cmake-hip:
|
||||
runs-on: ubuntu-22.04
|
||||
container: rocm/dev-ubuntu-22.04:6.0.2
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y build-essential git cmake rocblas-dev hipblas-dev
|
||||
|
||||
- name: Build with native CMake HIP support
|
||||
id: cmake_build
|
||||
run: |
|
||||
cmake -B build -S . -DCMAKE_HIP_COMPILER="$(hipconfig -l)/clang" -DLLAMA_HIPBLAS=ON
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
- name: Build with legacy HIP support
|
||||
id: cmake_build_legacy_hip
|
||||
run: |
|
||||
cmake -B build2 -S . -DCMAKE_C_COMPILER=hipcc -DCMAKE_CXX_COMPILER=hipcc -DLLAMA_HIPBLAS=ON
|
||||
cmake --build build2 --config Release -j $(nproc)
|
||||
|
||||
ubuntu-22-cmake-sycl:
|
||||
runs-on: ubuntu-22.04
|
||||
|
||||
@@ -663,24 +720,28 @@ jobs:
|
||||
strategy:
|
||||
matrix:
|
||||
include:
|
||||
- build: 'noavx'
|
||||
- build: 'rpc-x64'
|
||||
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_RPC=ON -DBUILD_SHARED_LIBS=ON'
|
||||
- build: 'noavx-x64'
|
||||
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX=OFF -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF -DBUILD_SHARED_LIBS=ON'
|
||||
- build: 'avx2'
|
||||
- build: 'avx2-x64'
|
||||
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DBUILD_SHARED_LIBS=ON'
|
||||
- build: 'avx'
|
||||
- build: 'avx-x64'
|
||||
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX2=OFF -DBUILD_SHARED_LIBS=ON'
|
||||
- build: 'avx512'
|
||||
- build: 'avx512-x64'
|
||||
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX512=ON -DBUILD_SHARED_LIBS=ON'
|
||||
- build: 'clblast'
|
||||
- build: 'clblast-x64'
|
||||
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_CLBLAST=ON -DBUILD_SHARED_LIBS=ON -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/clblast"'
|
||||
- build: 'openblas'
|
||||
- build: 'openblas-x64'
|
||||
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_BLAS=ON -DBUILD_SHARED_LIBS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"'
|
||||
- build: 'kompute'
|
||||
- build: 'kompute-x64'
|
||||
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_KOMPUTE=ON -DKOMPUTE_OPT_DISABLE_VULKAN_VERSION_CHECK=ON -DBUILD_SHARED_LIBS=ON'
|
||||
- build: 'vulkan'
|
||||
- build: 'vulkan-x64'
|
||||
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_VULKAN=ON -DBUILD_SHARED_LIBS=ON'
|
||||
- build: 'arm64'
|
||||
defines: '-A ARM64 -DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DBUILD_SHARED_LIBS=ON'
|
||||
- build: 'llvm-arm64'
|
||||
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DBUILD_SHARED_LIBS=ON'
|
||||
- build: 'msvc-arm64'
|
||||
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-msvc.cmake -DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DBUILD_SHARED_LIBS=ON'
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
@@ -691,13 +752,13 @@ jobs:
|
||||
|
||||
- name: Clone Kompute submodule
|
||||
id: clone_kompute
|
||||
if: ${{ matrix.build == 'kompute' }}
|
||||
if: ${{ matrix.build == 'kompute-x64' }}
|
||||
run: |
|
||||
git submodule update --init kompute
|
||||
|
||||
- name: Download OpenCL SDK
|
||||
id: get_opencl
|
||||
if: ${{ matrix.build == 'clblast' }}
|
||||
if: ${{ matrix.build == 'clblast-x64' }}
|
||||
run: |
|
||||
curl.exe -o $env:RUNNER_TEMP/opencl.zip -L "https://github.com/KhronosGroup/OpenCL-SDK/releases/download/v${env:OPENCL_VERSION}/OpenCL-SDK-v${env:OPENCL_VERSION}-Win-x64.zip"
|
||||
mkdir $env:RUNNER_TEMP/opencl
|
||||
@@ -705,7 +766,7 @@ jobs:
|
||||
|
||||
- name: Download CLBlast
|
||||
id: get_clblast
|
||||
if: ${{ matrix.build == 'clblast' }}
|
||||
if: ${{ matrix.build == 'clblast-x64' }}
|
||||
run: |
|
||||
curl.exe -o $env:RUNNER_TEMP/clblast.7z -L "https://github.com/CNugteren/CLBlast/releases/download/${env:CLBLAST_VERSION}/CLBlast-${env:CLBLAST_VERSION}-windows-x64.7z"
|
||||
curl.exe -o $env:RUNNER_TEMP/CLBlast.LICENSE.txt -L "https://github.com/CNugteren/CLBlast/raw/${env:CLBLAST_VERSION}/LICENSE"
|
||||
@@ -718,7 +779,7 @@ jobs:
|
||||
|
||||
- name: Download OpenBLAS
|
||||
id: get_openblas
|
||||
if: ${{ matrix.build == 'openblas' }}
|
||||
if: ${{ matrix.build == 'openblas-x64' }}
|
||||
run: |
|
||||
curl.exe -o $env:RUNNER_TEMP/openblas.zip -L "https://github.com/xianyi/OpenBLAS/releases/download/v${env:OPENBLAS_VERSION}/OpenBLAS-${env:OPENBLAS_VERSION}-x64.zip"
|
||||
curl.exe -o $env:RUNNER_TEMP/OpenBLAS.LICENSE.txt -L "https://github.com/xianyi/OpenBLAS/raw/v${env:OPENBLAS_VERSION}/LICENSE"
|
||||
@@ -731,38 +792,41 @@ jobs:
|
||||
|
||||
- name: Install Vulkan SDK
|
||||
id: get_vulkan
|
||||
if: ${{ matrix.build == 'kompute' || matrix.build == 'vulkan' }}
|
||||
if: ${{ matrix.build == 'kompute-x64' || matrix.build == 'vulkan-x64' }}
|
||||
run: |
|
||||
curl.exe -o $env:RUNNER_TEMP/VulkanSDK-Installer.exe -L "https://sdk.lunarg.com/sdk/download/${env:VULKAN_VERSION}/windows/VulkanSDK-${env:VULKAN_VERSION}-Installer.exe"
|
||||
& "$env:RUNNER_TEMP\VulkanSDK-Installer.exe" --accept-licenses --default-answer --confirm-command install
|
||||
Add-Content $env:GITHUB_ENV "VULKAN_SDK=C:\VulkanSDK\${env:VULKAN_VERSION}"
|
||||
Add-Content $env:GITHUB_PATH "C:\VulkanSDK\${env:VULKAN_VERSION}\bin"
|
||||
|
||||
- name: Install Ninja
|
||||
id: install_ninja
|
||||
run: |
|
||||
choco install ninja
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. ${{ matrix.defines }}
|
||||
cmake --build . --config Release -j ${env:NUMBER_OF_PROCESSORS}
|
||||
cmake -S . -B build ${{ matrix.defines }}
|
||||
cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS}
|
||||
|
||||
- name: Add clblast.dll
|
||||
id: add_clblast_dll
|
||||
if: ${{ matrix.build == 'clblast' }}
|
||||
if: ${{ matrix.build == 'clblast-x64' }}
|
||||
run: |
|
||||
cp $env:RUNNER_TEMP/clblast/lib/clblast.dll ./build/bin/Release
|
||||
cp $env:RUNNER_TEMP/CLBlast.LICENSE.txt ./build/bin/Release/CLBlast-${env:CLBLAST_VERSION}.txt
|
||||
|
||||
- name: Add libopenblas.dll
|
||||
id: add_libopenblas_dll
|
||||
if: ${{ matrix.build == 'openblas' }}
|
||||
if: ${{ matrix.build == 'openblas-x64' }}
|
||||
run: |
|
||||
cp $env:RUNNER_TEMP/openblas/bin/libopenblas.dll ./build/bin/Release/openblas.dll
|
||||
cp $env:RUNNER_TEMP/OpenBLAS.LICENSE.txt ./build/bin/Release/OpenBLAS-${env:OPENBLAS_VERSION}.txt
|
||||
|
||||
- name: Check AVX512F support
|
||||
id: check_avx512f
|
||||
if: ${{ matrix.build == 'avx512' }}
|
||||
if: ${{ matrix.build == 'avx512-x64' }}
|
||||
continue-on-error: true
|
||||
run: |
|
||||
cd build
|
||||
@@ -776,14 +840,14 @@ jobs:
|
||||
- name: Test
|
||||
id: cmake_test
|
||||
# not all machines have native AVX-512
|
||||
if: ${{ matrix.build != 'arm64' && matrix.build != 'clblast' && matrix.build != 'kompute' && matrix.build != 'vulkan' && (matrix.build != 'avx512' || env.HAS_AVX512F == '1') }}
|
||||
if: ${{ matrix.build != 'msvc-arm64' && matrix.build != 'llvm-arm64' && matrix.build != 'clblast-x64' && matrix.build != 'kompute-x64' && matrix.build != 'vulkan-x64' && (matrix.build != 'avx512-x64' || env.HAS_AVX512F == '1') }}
|
||||
run: |
|
||||
cd build
|
||||
ctest -L main -C Release --verbose --timeout 900
|
||||
|
||||
- name: Test (Intel SDE)
|
||||
id: cmake_test_sde
|
||||
if: ${{ matrix.build == 'avx512' && env.HAS_AVX512F == '0' }} # use Intel SDE for AVX-512 emulation
|
||||
if: ${{ matrix.build == 'avx512-x64' && env.HAS_AVX512F == '0' }} # use Intel SDE for AVX-512 emulation
|
||||
run: |
|
||||
curl.exe -o $env:RUNNER_TEMP/sde.tar.xz -L "https://downloadmirror.intel.com/813591/sde-external-${env:SDE_VERSION}-win.tar.xz"
|
||||
# for some weird reason windows tar doesn't like sde tar.xz
|
||||
@@ -811,14 +875,14 @@ jobs:
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
run: |
|
||||
Copy-Item LICENSE .\build\bin\Release\llama.cpp.txt
|
||||
7z a llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}-x64.zip .\build\bin\Release\*
|
||||
7z a llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}.zip .\build\bin\Release\*
|
||||
|
||||
- name: Upload artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}-x64.zip
|
||||
name: llama-bin-win-${{ matrix.build }}-x64.zip
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}.zip
|
||||
name: llama-bin-win-${{ matrix.build }}.zip
|
||||
|
||||
windows-latest-cmake-cuda:
|
||||
runs-on: windows-latest
|
||||
@@ -898,9 +962,9 @@ jobs:
|
||||
shell: bash
|
||||
|
||||
env:
|
||||
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/62641e01-1e8d-4ace-91d6-ae03f7f8a71f/w_BaseKit_p_2024.0.0.49563_offline.exe
|
||||
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/7dff44ba-e3af-4448-841c-0d616c8da6e7/w_BaseKit_p_2024.1.0.595_offline.exe
|
||||
WINDOWS_DPCPP_MKL: intel.oneapi.win.cpp-dpcpp-common:intel.oneapi.win.mkl.devel
|
||||
|
||||
ONEAPI_ROOT: "C:/Program Files (x86)/Intel/oneAPI"
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
@@ -932,6 +996,17 @@ jobs:
|
||||
id: pack_artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
run: |
|
||||
echo "cp oneAPI running time dll files in ${{ env.ONEAPI_ROOT }} to ./build/bin"
|
||||
cp "${{ env.ONEAPI_ROOT }}/mkl/latest/bin/mkl_sycl_blas.4.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/mkl/latest/bin/mkl_core.2.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/mkl/latest/bin/mkl_tbb_thread.2.dll" ./build/bin
|
||||
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/pi_win_proxy_loader.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/pi_level_zero.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/sycl7.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/svml_dispmd.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/libmmd.dll" ./build/bin
|
||||
echo "cp oneAPI running time dll files to ./build/bin done"
|
||||
7z a llama-${{ steps.tag.outputs.name }}-bin-win-sycl-x64.zip ./build/bin/*
|
||||
|
||||
- name: Upload artifacts
|
||||
@@ -941,6 +1016,37 @@ jobs:
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-win-sycl-x64.zip
|
||||
name: llama-bin-win-sycl-x64.zip
|
||||
|
||||
windows-latest-cmake-hip:
|
||||
runs-on: windows-latest
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Install
|
||||
id: depends
|
||||
run: |
|
||||
$ErrorActionPreference = "Stop"
|
||||
write-host "Downloading AMD HIP SDK Installer"
|
||||
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-23.Q4-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
|
||||
write-host "Installing AMD HIP SDK"
|
||||
Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
|
||||
write-host "Completed AMD HIP SDK installation"
|
||||
|
||||
- name: Verify ROCm
|
||||
id: verify
|
||||
run: |
|
||||
& 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' --version
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
|
||||
$env:CMAKE_PREFIX_PATH="${env:HIP_PATH}"
|
||||
cmake -G "Unix Makefiles" -B build -S . -DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" -DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" -DLLAMA_HIPBLAS=ON
|
||||
cmake --build build --config Release
|
||||
|
||||
ios-xcode-build:
|
||||
runs-on: macos-latest
|
||||
|
||||
|
||||
12
.github/workflows/labeler.yml
vendored
Normal file
@@ -0,0 +1,12 @@
|
||||
name: "Pull Request Labeler"
|
||||
on:
|
||||
- pull_request_target
|
||||
|
||||
jobs:
|
||||
labeler:
|
||||
permissions:
|
||||
contents: read
|
||||
pull-requests: write
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/labeler@v5
|
||||
@@ -123,6 +123,7 @@ set(LLAMA_METAL_MACOSX_VERSION_MIN "" CACHE STRING
|
||||
set(LLAMA_METAL_STD "" CACHE STRING "llama: metal standard version (-std flag)")
|
||||
option(LLAMA_KOMPUTE "llama: use Kompute" OFF)
|
||||
option(LLAMA_MPI "llama: use MPI" OFF)
|
||||
option(LLAMA_RPC "llama: use RPC" OFF)
|
||||
option(LLAMA_QKK_64 "llama: use super-block size of 64 for k-quants" OFF)
|
||||
option(LLAMA_SYCL "llama: use SYCL" OFF)
|
||||
option(LLAMA_SYCL_F16 "llama: use 16 bit floats for sycl calculations" OFF)
|
||||
@@ -296,7 +297,7 @@ if (LLAMA_BLAS)
|
||||
if (LLAMA_STATIC)
|
||||
set(BLA_STATIC ON)
|
||||
endif()
|
||||
if ($(CMAKE_VERSION) VERSION_GREATER_EQUAL 3.22)
|
||||
if (CMAKE_VERSION VERSION_GREATER_EQUAL 3.22)
|
||||
set(BLA_SIZEOF_INTEGER 8)
|
||||
endif()
|
||||
|
||||
@@ -405,6 +406,7 @@ if (LLAMA_CUDA)
|
||||
list(APPEND GGML_SOURCES_CUDA "ggml-cuda.cu")
|
||||
|
||||
add_compile_definitions(GGML_USE_CUDA)
|
||||
add_compile_definitions(GGML_CUDA_USE_GRAPHS)
|
||||
if (LLAMA_CUDA_FORCE_DMMV)
|
||||
add_compile_definitions(GGML_CUDA_FORCE_DMMV)
|
||||
endif()
|
||||
@@ -430,7 +432,7 @@ if (LLAMA_CUDA)
|
||||
|
||||
if (LLAMA_STATIC)
|
||||
if (WIN32)
|
||||
# As of 12.3.1 CUDA Tookit for Windows does not offer a static cublas library
|
||||
# As of 12.3.1 CUDA Toolkit for Windows does not offer a static cublas library
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas CUDA::cublasLt)
|
||||
else ()
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas_static CUDA::cublasLt_static)
|
||||
@@ -493,6 +495,17 @@ if (LLAMA_MPI)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (LLAMA_RPC)
|
||||
add_compile_definitions(GGML_USE_RPC)
|
||||
|
||||
if (WIN32)
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ws2_32)
|
||||
endif()
|
||||
|
||||
set(GGML_HEADERS_RPC ggml-rpc.h)
|
||||
set(GGML_SOURCES_RPC ggml-rpc.cpp)
|
||||
endif()
|
||||
|
||||
if (LLAMA_CLBLAST)
|
||||
find_package(CLBlast)
|
||||
if (CLBlast_FOUND)
|
||||
@@ -542,16 +555,37 @@ if (LLAMA_VULKAN)
|
||||
endif()
|
||||
|
||||
if (LLAMA_HIPBLAS)
|
||||
list(APPEND CMAKE_PREFIX_PATH /opt/rocm)
|
||||
if ($ENV{ROCM_PATH})
|
||||
set(ROCM_PATH $ENV{ROCM_PATH})
|
||||
else()
|
||||
set(ROCM_PATH /opt/rocm)
|
||||
endif()
|
||||
list(APPEND CMAKE_PREFIX_PATH ${ROCM_PATH})
|
||||
|
||||
if (NOT ${CMAKE_C_COMPILER_ID} MATCHES "Clang")
|
||||
message(WARNING "Only LLVM is supported for HIP, hint: CC=/opt/rocm/llvm/bin/clang")
|
||||
# CMake on Windows doesn't support the HIP language yet
|
||||
if(WIN32)
|
||||
set(CXX_IS_HIPCC TRUE)
|
||||
else()
|
||||
string(REGEX MATCH "hipcc(\.bat)?$" CXX_IS_HIPCC "${CMAKE_CXX_COMPILER}")
|
||||
endif()
|
||||
|
||||
if (NOT ${CMAKE_CXX_COMPILER_ID} MATCHES "Clang")
|
||||
message(WARNING "Only LLVM is supported for HIP, hint: CXX=/opt/rocm/llvm/bin/clang++")
|
||||
endif()
|
||||
if(CXX_IS_HIPCC)
|
||||
if(LINUX)
|
||||
if (NOT ${CMAKE_CXX_COMPILER_ID} MATCHES "Clang")
|
||||
message(WARNING "Only LLVM is supported for HIP, hint: CXX=/opt/rocm/llvm/bin/clang++")
|
||||
endif()
|
||||
|
||||
message(WARNING "Setting hipcc as the C++ compiler is legacy behavior."
|
||||
" Prefer setting the HIP compiler directly. See README for details.")
|
||||
endif()
|
||||
else()
|
||||
# Forward AMDGPU_TARGETS to CMAKE_HIP_ARCHITECTURES.
|
||||
if(AMDGPU_TARGETS AND NOT CMAKE_HIP_ARCHITECTURES)
|
||||
set(CMAKE_HIP_ARCHITECTURES ${AMDGPU_TARGETS})
|
||||
endif()
|
||||
cmake_minimum_required(VERSION 3.21)
|
||||
enable_language(HIP)
|
||||
endif()
|
||||
find_package(hip REQUIRED)
|
||||
find_package(hipblas REQUIRED)
|
||||
find_package(rocblas REQUIRED)
|
||||
@@ -585,13 +619,18 @@ if (LLAMA_HIPBLAS)
|
||||
add_compile_definitions(GGML_CUDA_MMV_Y=${LLAMA_CUDA_MMV_Y})
|
||||
add_compile_definitions(K_QUANTS_PER_ITERATION=${LLAMA_CUDA_KQUANTS_ITER})
|
||||
|
||||
set_source_files_properties(${GGML_SOURCES_ROCM} PROPERTIES LANGUAGE CXX)
|
||||
if (CXX_IS_HIPCC)
|
||||
set_source_files_properties(${GGML_SOURCES_ROCM} PROPERTIES LANGUAGE CXX)
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} hip::device)
|
||||
else()
|
||||
set_source_files_properties(${GGML_SOURCES_ROCM} PROPERTIES LANGUAGE HIP)
|
||||
endif()
|
||||
|
||||
if (LLAMA_STATIC)
|
||||
message(FATAL_ERROR "Static linking not supported for HIP/ROCm")
|
||||
endif()
|
||||
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} hip::device PUBLIC hip::host roc::rocblas roc::hipblas)
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} PUBLIC hip::host roc::rocblas roc::hipblas)
|
||||
endif()
|
||||
|
||||
if (LLAMA_SYCL)
|
||||
@@ -994,6 +1033,11 @@ if (CMAKE_OSX_ARCHITECTURES STREQUAL "arm64" OR CMAKE_GENERATOR_PLATFORM_LWR STR
|
||||
if (GGML_COMPILER_SUPPORT_DOTPROD)
|
||||
add_compile_definitions(__ARM_FEATURE_DOTPROD)
|
||||
endif ()
|
||||
check_cxx_source_compiles("#include <arm_neon.h>\nint main() { int8x16_t _a, _b; int32x4_t _s = vmlaq_f32(_s, _a, _b); return 0; }" GGML_COMPILER_SUPPORT_MATMUL_INT8)
|
||||
if (GGML_COMPILER_SUPPORT_MATMUL_INT8)
|
||||
add_compile_definitions(__ARM_FEATURE_MATMUL_INT8)
|
||||
endif ()
|
||||
|
||||
check_cxx_source_compiles("#include <arm_neon.h>\nint main() { float16_t _a; float16x8_t _s = vdupq_n_f16(_a); return 0; }" GGML_COMPILER_SUPPORT_FP16_VECTOR_ARITHMETIC)
|
||||
if (GGML_COMPILER_SUPPORT_FP16_VECTOR_ARITHMETIC)
|
||||
add_compile_definitions(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
|
||||
@@ -1175,6 +1219,7 @@ add_library(ggml OBJECT
|
||||
${GGML_SOURCES_OPENCL} ${GGML_HEADERS_OPENCL}
|
||||
${GGML_SOURCES_METAL} ${GGML_HEADERS_METAL}
|
||||
${GGML_SOURCES_MPI} ${GGML_HEADERS_MPI}
|
||||
${GGML_SOURCES_RPC} ${GGML_HEADERS_RPC}
|
||||
${GGML_SOURCES_EXTRA} ${GGML_HEADERS_EXTRA}
|
||||
${GGML_SOURCES_SYCL} ${GGML_HEADERS_SYCL}
|
||||
${GGML_SOURCES_KOMPUTE} ${GGML_HEADERS_KOMPUTE}
|
||||
@@ -1280,17 +1325,6 @@ install(
|
||||
WORLD_READ
|
||||
WORLD_EXECUTE
|
||||
DESTINATION ${CMAKE_INSTALL_BINDIR})
|
||||
install(
|
||||
FILES convert-lora-to-ggml.py
|
||||
PERMISSIONS
|
||||
OWNER_READ
|
||||
OWNER_WRITE
|
||||
OWNER_EXECUTE
|
||||
GROUP_READ
|
||||
GROUP_EXECUTE
|
||||
WORLD_READ
|
||||
WORLD_EXECUTE
|
||||
DESTINATION ${CMAKE_INSTALL_BINDIR})
|
||||
if (LLAMA_METAL)
|
||||
install(
|
||||
FILES ggml-metal.metal
|
||||
|
||||
45
CMakePresets.json
Normal file
@@ -0,0 +1,45 @@
|
||||
{
|
||||
"version": 4,
|
||||
"configurePresets": [
|
||||
{
|
||||
"name": "base",
|
||||
"hidden": true,
|
||||
"generator": "Ninja",
|
||||
"binaryDir": "${sourceDir}/build-${presetName}",
|
||||
"cacheVariables": {
|
||||
"CMAKE_EXPORT_COMPILE_COMMANDS": "ON",
|
||||
"CMAKE_INSTALL_RPATH": "$ORIGIN;$ORIGIN/.."
|
||||
}
|
||||
},
|
||||
|
||||
{ "name": "debug", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "Debug" } },
|
||||
{ "name": "release", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "RelWithDebInfo" } },
|
||||
{ "name": "static", "hidden": true, "cacheVariables": { "LLAMA_STATIC": "ON" } },
|
||||
|
||||
{
|
||||
"name": "arm64-windows-msvc", "hidden": true,
|
||||
"architecture": { "value": "arm64", "strategy": "external" },
|
||||
"toolset": { "value": "host=x86_64", "strategy": "external" },
|
||||
"cacheVariables": {
|
||||
"CMAKE_TOOLCHAIN_FILE": "${sourceDir}/cmake/arm64-windows-msvc.cmake"
|
||||
}
|
||||
},
|
||||
|
||||
{
|
||||
"name": "arm64-windows-llvm", "hidden": true,
|
||||
"architecture": { "value": "arm64", "strategy": "external" },
|
||||
"toolset": { "value": "host=x86_64", "strategy": "external" },
|
||||
"cacheVariables": {
|
||||
"CMAKE_TOOLCHAIN_FILE": "${sourceDir}/cmake/arm64-windows-llvm.cmake"
|
||||
}
|
||||
},
|
||||
|
||||
{ "name": "arm64-windows-llvm-debug" , "inherits": [ "base", "arm64-windows-llvm", "debug" ] },
|
||||
{ "name": "arm64-windows-llvm-release", "inherits": [ "base", "arm64-windows-llvm", "release" ] },
|
||||
{ "name": "arm64-windows-llvm+static-release", "inherits": [ "base", "arm64-windows-llvm", "release", "static" ] },
|
||||
|
||||
{ "name": "arm64-windows-msvc-debug" , "inherits": [ "base", "arm64-windows-msvc", "debug" ] },
|
||||
{ "name": "arm64-windows-msvc-release", "inherits": [ "base", "arm64-windows-msvc", "release" ] },
|
||||
{ "name": "arm64-windows-msvc+static-release", "inherits": [ "base", "arm64-windows-msvc", "release", "static" ] }
|
||||
]
|
||||
}
|
||||
8
Makefile
@@ -433,7 +433,7 @@ ifdef LLAMA_CUDA
|
||||
else
|
||||
CUDA_PATH ?= /usr/local/cuda
|
||||
endif
|
||||
MK_CPPFLAGS += -DGGML_USE_CUDA -I$(CUDA_PATH)/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include
|
||||
MK_CPPFLAGS += -DGGML_USE_CUDA -I$(CUDA_PATH)/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include -DGGML_CUDA_USE_GRAPHS
|
||||
MK_LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L$(CUDA_PATH)/lib64 -L/usr/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib -L/usr/lib/wsl/lib
|
||||
OBJS += ggml-cuda.o
|
||||
OBJS += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/*.cu))
|
||||
@@ -560,10 +560,10 @@ endif # LLAMA_VULKAN
|
||||
ifdef LLAMA_HIPBLAS
|
||||
ifeq ($(wildcard /opt/rocm),)
|
||||
ROCM_PATH ?= /usr
|
||||
GPU_TARGETS ?= $(shell $(shell which amdgpu-arch))
|
||||
AMDGPU_TARGETS ?= $(shell $(shell which amdgpu-arch))
|
||||
else
|
||||
ROCM_PATH ?= /opt/rocm
|
||||
GPU_TARGETS ?= $(shell $(ROCM_PATH)/llvm/bin/amdgpu-arch)
|
||||
AMDGPU_TARGETS ?= $(shell $(ROCM_PATH)/llvm/bin/amdgpu-arch)
|
||||
endif
|
||||
HIPCC ?= $(CCACHE) $(ROCM_PATH)/bin/hipcc
|
||||
LLAMA_CUDA_DMMV_X ?= 32
|
||||
@@ -575,7 +575,7 @@ ifdef LLAMA_HIP_UMA
|
||||
endif # LLAMA_HIP_UMA
|
||||
MK_LDFLAGS += -L$(ROCM_PATH)/lib -Wl,-rpath=$(ROCM_PATH)/lib
|
||||
MK_LDFLAGS += -lhipblas -lamdhip64 -lrocblas
|
||||
HIPFLAGS += $(addprefix --offload-arch=,$(GPU_TARGETS))
|
||||
HIPFLAGS += $(addprefix --offload-arch=,$(AMDGPU_TARGETS))
|
||||
HIPFLAGS += -DGGML_CUDA_DMMV_X=$(LLAMA_CUDA_DMMV_X)
|
||||
HIPFLAGS += -DGGML_CUDA_MMV_Y=$(LLAMA_CUDA_MMV_Y)
|
||||
HIPFLAGS += -DK_QUANTS_PER_ITERATION=$(LLAMA_CUDA_KQUANTS_ITER)
|
||||
|
||||
33
README.md
@@ -2,7 +2,7 @@
|
||||
|
||||

|
||||
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
[](https://opensource.org/licenses/MIT) [](https://github.com/ggerganov/llama.cpp/actions/workflows/server.yml)
|
||||
|
||||
[Roadmap](https://github.com/users/ggerganov/projects/7) / [Project status](https://github.com/ggerganov/llama.cpp/discussions/3471) / [Manifesto](https://github.com/ggerganov/llama.cpp/discussions/205) / [ggml](https://github.com/ggerganov/ggml)
|
||||
|
||||
@@ -176,6 +176,7 @@ Unless otherwise noted these projects are open-source with permissive licensing:
|
||||
- [nat/openplayground](https://github.com/nat/openplayground)
|
||||
- [Faraday](https://faraday.dev/) (proprietary)
|
||||
- [LMStudio](https://lmstudio.ai/) (proprietary)
|
||||
- [Layla](https://play.google.com/store/apps/details?id=com.laylalite) (proprietary)
|
||||
- [LocalAI](https://github.com/mudler/LocalAI) (MIT)
|
||||
- [LostRuins/koboldcpp](https://github.com/LostRuins/koboldcpp) (AGPL)
|
||||
- [Mozilla-Ocho/llamafile](https://github.com/Mozilla-Ocho/llamafile)
|
||||
@@ -527,13 +528,28 @@ Building the program with BLAS support may lead to some performance improvements
|
||||
```
|
||||
- Using `CMake` for Linux (assuming a gfx1030-compatible AMD GPU):
|
||||
```bash
|
||||
CC=/opt/rocm/llvm/bin/clang CXX=/opt/rocm/llvm/bin/clang++ \
|
||||
cmake -B build -DLLAMA_HIPBLAS=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
|
||||
HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" \
|
||||
cmake -S . -B build -DLLAMA_HIPBLAS=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
|
||||
&& cmake --build build --config Release -- -j 16
|
||||
```
|
||||
On Linux it is also possible to use unified memory architecture (UMA) to share main memory between the CPU and integrated GPU by setting `-DLLAMA_HIP_UMA=ON"`.
|
||||
On Linux it is also possible to use unified memory architecture (UMA) to share main memory between the CPU and integrated GPU by setting `-DLLAMA_HIP_UMA=ON`.
|
||||
However, this hurts performance for non-integrated GPUs (but enables working with integrated GPUs).
|
||||
|
||||
Note that if you get the following error:
|
||||
```
|
||||
clang: error: cannot find ROCm device library; provide its path via '--rocm-path' or '--rocm-device-lib-path', or pass '-nogpulib' to build without ROCm device library
|
||||
```
|
||||
Try searching for a directory under `HIP_PATH` that contains the file
|
||||
`oclc_abi_version_400.bc`. Then, add the following to the start of the
|
||||
command: `HIP_DEVICE_LIB_PATH=<directory-you-just-found>`, so something
|
||||
like:
|
||||
```bash
|
||||
HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -p)" \
|
||||
HIP_DEVICE_LIB_PATH=<directory-you-just-found> \
|
||||
cmake -S . -B build -DLLAMA_HIPBLAS=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
|
||||
&& cmake --build build -- -j 16
|
||||
```
|
||||
|
||||
- Using `make` (example for target gfx1030, build with 16 CPU threads):
|
||||
```bash
|
||||
make -j16 LLAMA_HIPBLAS=1 LLAMA_HIP_UMA=1 AMDGPU_TARGETS=gfx1030
|
||||
@@ -542,10 +558,8 @@ Building the program with BLAS support may lead to some performance improvements
|
||||
- Using `CMake` for Windows (using x64 Native Tools Command Prompt for VS, and assuming a gfx1100-compatible AMD GPU):
|
||||
```bash
|
||||
set PATH=%HIP_PATH%\bin;%PATH%
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -G Ninja -DAMDGPU_TARGETS=gfx1100 -DLLAMA_HIPBLAS=ON -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_BUILD_TYPE=Release ..
|
||||
cmake --build .
|
||||
cmake -S . -B build -G Ninja -DAMDGPU_TARGETS=gfx1100 -DLLAMA_HIPBLAS=ON -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_BUILD_TYPE=Release
|
||||
cmake --build build
|
||||
```
|
||||
Make sure that `AMDGPU_TARGETS` is set to the GPU arch you want to compile for. The above example uses `gfx1100` that corresponds to Radeon RX 7900XTX/XT/GRE. You can find a list of targets [here](https://llvm.org/docs/AMDGPUUsage.html#processors)
|
||||
Find your gpu version string by matching the most significant version information from `rocminfo | grep gfx | head -1 | awk '{print $2}'` with the list of processors, e.g. `gfx1035` maps to `gfx1030`.
|
||||
@@ -711,6 +725,9 @@ Building the program with BLAS support may lead to some performance improvements
|
||||
|
||||
### Prepare and Quantize
|
||||
|
||||
> [!NOTE]
|
||||
> You can use the [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space on Hugging Face to quantise your model weights without any setup too. It is synced from `llama.cpp` main every 6 hours.
|
||||
|
||||
To obtain the official LLaMA 2 weights please see the <a href="#obtaining-and-using-the-facebook-llama-2-model">Obtaining and using the Facebook LLaMA 2 model</a> section. There is also a large selection of pre-quantized `gguf` models available on Hugging Face.
|
||||
|
||||
Note: `convert.py` does not support LLaMA 3, you can use `convert-hf-to-gguf.py` with LLaMA 3 downloaded from Hugging Face.
|
||||
|
||||
95
ci/run.sh
@@ -365,47 +365,6 @@ function gg_run_open_llama_3b_v2 {
|
||||
|
||||
cat $OUT/${ci}-imatrix.log | grep "Final" >> $OUT/${ci}-imatrix-sum.log
|
||||
|
||||
# lora
|
||||
function compare_ppl {
|
||||
qnt="$1"
|
||||
ppl1=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
|
||||
ppl2=$(echo "$3" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
|
||||
|
||||
if [ $(echo "$ppl1 < $ppl2" | bc) -eq 1 ]; then
|
||||
printf ' - %s @ %s (FAIL: %s > %s)\n' "$qnt" "$ppl" "$ppl1" "$ppl2"
|
||||
return 20
|
||||
fi
|
||||
|
||||
printf ' - %s @ %s %s OK\n' "$qnt" "$ppl1" "$ppl2"
|
||||
return 0
|
||||
}
|
||||
|
||||
path_lora="../models-mnt/open-llama/3B-v2/lora"
|
||||
path_shakespeare="../models-mnt/shakespeare"
|
||||
|
||||
shakespeare="${path_shakespeare}/shakespeare.txt"
|
||||
lora_shakespeare="${path_lora}/ggml-adapter-model.bin"
|
||||
|
||||
gg_wget ${path_lora} https://huggingface.co/slaren/open_llama_3b_v2_shakespeare_lora/resolve/main/adapter_config.json
|
||||
gg_wget ${path_lora} https://huggingface.co/slaren/open_llama_3b_v2_shakespeare_lora/resolve/main/adapter_model.bin
|
||||
gg_wget ${path_shakespeare} https://huggingface.co/slaren/open_llama_3b_v2_shakespeare_lora/resolve/main/shakespeare.txt
|
||||
|
||||
python3 ../convert-lora-to-ggml.py ${path_lora}
|
||||
|
||||
# f16
|
||||
(time ./bin/perplexity --model ${model_f16} -f ${shakespeare} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-f16.log
|
||||
(time ./bin/perplexity --model ${model_f16} -f ${shakespeare} --lora ${lora_shakespeare} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-f16.log
|
||||
compare_ppl "f16 shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-f16.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log
|
||||
|
||||
# q8_0
|
||||
(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-q8_0.log
|
||||
(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} --lora ${lora_shakespeare} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-q8_0.log
|
||||
compare_ppl "q8_0 shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log
|
||||
|
||||
# q8_0 + f16 lora-base
|
||||
(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} --lora ${lora_shakespeare} --lora-base ${model_f16} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log
|
||||
compare_ppl "q8_0 / f16 base shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log
|
||||
|
||||
set +e
|
||||
}
|
||||
|
||||
@@ -416,7 +375,6 @@ function gg_sum_open_llama_3b_v2 {
|
||||
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
|
||||
gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)"
|
||||
gg_printf '- imatrix:\n```\n%s\n```\n' "$(cat $OUT/${ci}-imatrix-sum.log)"
|
||||
gg_printf '- lora:\n%s\n' "$(cat $OUT/${ci}-lora-ppl.log)"
|
||||
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
|
||||
gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
|
||||
gg_printf '- q4_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_0.log)"
|
||||
@@ -429,11 +387,6 @@ function gg_sum_open_llama_3b_v2 {
|
||||
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
|
||||
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
|
||||
gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)"
|
||||
gg_printf '- shakespeare (f16):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-f16.log)"
|
||||
gg_printf '- shakespeare (f16 lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log)"
|
||||
gg_printf '- shakespeare (q8_0):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log)"
|
||||
gg_printf '- shakespeare (q8_0 lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0.log)"
|
||||
gg_printf '- shakespeare (q8_0 / f16 base lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log)"
|
||||
}
|
||||
|
||||
# open_llama_7b_v2
|
||||
@@ -549,48 +502,6 @@ function gg_run_open_llama_7b_v2 {
|
||||
|
||||
cat $OUT/${ci}-imatrix.log | grep "Final" >> $OUT/${ci}-imatrix-sum.log
|
||||
|
||||
# lora
|
||||
function compare_ppl {
|
||||
qnt="$1"
|
||||
ppl1=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
|
||||
ppl2=$(echo "$3" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
|
||||
|
||||
if [ $(echo "$ppl1 < $ppl2" | bc) -eq 1 ]; then
|
||||
printf ' - %s @ %s (FAIL: %s > %s)\n' "$qnt" "$ppl" "$ppl1" "$ppl2"
|
||||
return 20
|
||||
fi
|
||||
|
||||
printf ' - %s @ %s %s OK\n' "$qnt" "$ppl1" "$ppl2"
|
||||
return 0
|
||||
}
|
||||
|
||||
path_lora="../models-mnt/open-llama/7B-v2/lora"
|
||||
path_shakespeare="../models-mnt/shakespeare"
|
||||
|
||||
shakespeare="${path_shakespeare}/shakespeare.txt"
|
||||
lora_shakespeare="${path_lora}/ggml-adapter-model.bin"
|
||||
|
||||
gg_wget ${path_lora} https://huggingface.co/slaren/open_llama_7b_v2_shakespeare_lora/resolve/main/adapter_config.json
|
||||
gg_wget ${path_lora} https://huggingface.co/slaren/open_llama_7b_v2_shakespeare_lora/resolve/main/adapter_model.bin
|
||||
gg_wget ${path_shakespeare} https://huggingface.co/slaren/open_llama_7b_v2_shakespeare_lora/resolve/main/shakespeare.txt
|
||||
|
||||
python3 ../convert-lora-to-ggml.py ${path_lora}
|
||||
|
||||
# f16
|
||||
(time ./bin/perplexity --model ${model_f16} -f ${shakespeare} -t 1 -ngl 999 -c 2048 -b 512 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-f16.log
|
||||
(time ./bin/perplexity --model ${model_f16} -f ${shakespeare} --lora ${lora_shakespeare} -t 1 -ngl 999 -c 2048 -b 512 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-f16.log
|
||||
compare_ppl "f16 shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-f16.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log
|
||||
|
||||
# currently not supported by the CUDA backend
|
||||
# q8_0
|
||||
#(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} -t 1 -ngl 999 -c 2048 -b 512 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-q8_0.log
|
||||
#(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} --lora ${lora_shakespeare} -t 1 -ngl 999 -c 2048 -b 512 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-q8_0.log
|
||||
#compare_ppl "q8_0 shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log
|
||||
|
||||
# q8_0 + f16 lora-base
|
||||
#(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} --lora ${lora_shakespeare} --lora-base ${model_f16} -t 1 -ngl 999 -c 2048 -b 512 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log
|
||||
#compare_ppl "q8_0 / f16 shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log
|
||||
|
||||
set +e
|
||||
}
|
||||
|
||||
@@ -601,7 +512,6 @@ function gg_sum_open_llama_7b_v2 {
|
||||
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
|
||||
gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)"
|
||||
gg_printf '- imatrix:\n```\n%s\n```\n' "$(cat $OUT/${ci}-imatrix-sum.log)"
|
||||
gg_printf '- lora:\n%s\n' "$(cat $OUT/${ci}-lora-ppl.log)"
|
||||
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
|
||||
gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
|
||||
gg_printf '- q4_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_0.log)"
|
||||
@@ -614,11 +524,6 @@ function gg_sum_open_llama_7b_v2 {
|
||||
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
|
||||
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
|
||||
gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)"
|
||||
gg_printf '- shakespeare (f16):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-f16.log)"
|
||||
gg_printf '- shakespeare (f16 lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log)"
|
||||
#gg_printf '- shakespeare (q8_0):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log)"
|
||||
#gg_printf '- shakespeare (q8_0 lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0.log)"
|
||||
#gg_printf '- shakespeare (q8_0 / f16 base lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log)"
|
||||
}
|
||||
|
||||
# bge-small
|
||||
|
||||
16
cmake/arm64-windows-llvm.cmake
Normal file
@@ -0,0 +1,16 @@
|
||||
set( CMAKE_SYSTEM_NAME Windows )
|
||||
set( CMAKE_SYSTEM_PROCESSOR arm64 )
|
||||
|
||||
set( target arm64-pc-windows-msvc )
|
||||
|
||||
set( CMAKE_C_COMPILER clang )
|
||||
set( CMAKE_CXX_COMPILER clang++ )
|
||||
|
||||
set( CMAKE_C_COMPILER_TARGET ${target} )
|
||||
set( CMAKE_CXX_COMPILER_TARGET ${target} )
|
||||
|
||||
set( arch_c_flags "-march=armv8.7-a -fvectorize -ffp-model=fast" )
|
||||
set( warn_c_flags "-Wno-format -Wno-unused-variable -Wno-unused-function -Wno-gnu-zero-variadic-macro-arguments" )
|
||||
|
||||
set( CMAKE_C_FLAGS_INIT "${arch_c_flags} ${warn_c_flags}" )
|
||||
set( CMAKE_CXX_FLAGS_INIT "${arch_c_flags} ${warn_c_flags}" )
|
||||
6
cmake/arm64-windows-msvc.cmake
Normal file
@@ -0,0 +1,6 @@
|
||||
set( CMAKE_SYSTEM_NAME Windows )
|
||||
set( CMAKE_SYSTEM_PROCESSOR arm64 )
|
||||
|
||||
set( target arm64-pc-windows-msvc )
|
||||
set( CMAKE_C_COMPILER_TARGET ${target} )
|
||||
set( CMAKE_CXX_COMPILER_TARGET ${target} )
|
||||
@@ -1,4 +1,6 @@
|
||||
#include "common.h"
|
||||
// Change JSON_ASSERT from assert() to GGML_ASSERT:
|
||||
#define JSON_ASSERT GGML_ASSERT
|
||||
#include "json.hpp"
|
||||
#include "json-schema-to-grammar.h"
|
||||
#include "llama.h"
|
||||
@@ -899,6 +901,10 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
|
||||
params.interactive = true;
|
||||
return true;
|
||||
}
|
||||
if (arg == "--interactive-specials") {
|
||||
params.interactive_specials = true;
|
||||
return true;
|
||||
}
|
||||
if (arg == "--embedding") {
|
||||
params.embedding = true;
|
||||
return true;
|
||||
@@ -1054,6 +1060,14 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
|
||||
#endif // GGML_USE_CUDA_SYCL_VULKAN
|
||||
return true;
|
||||
}
|
||||
if (arg == "--rpc") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
return true;
|
||||
}
|
||||
params.rpc_servers = argv[i];
|
||||
return true;
|
||||
}
|
||||
if (arg == "--no-mmap") {
|
||||
params.use_mmap = false;
|
||||
return true;
|
||||
@@ -1365,14 +1379,12 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
|
||||
std::replace(arg.begin(), arg.end(), '_', '-');
|
||||
}
|
||||
|
||||
if (!gpt_params_find_arg(argc, argv, arg, params, i, invalid_param)) {
|
||||
throw std::invalid_argument("error: unknown argument: " + arg);
|
||||
}
|
||||
}
|
||||
|
||||
if (invalid_param) {
|
||||
throw std::invalid_argument("error: invalid parameter for argument: " + arg);
|
||||
if (invalid_param) {
|
||||
throw std::invalid_argument("error: invalid parameter for argument: " + arg);
|
||||
}
|
||||
}
|
||||
|
||||
if (params.prompt_cache_all &&
|
||||
@@ -1420,6 +1432,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
printf(" -h, --help show this help message and exit\n");
|
||||
printf(" --version show version and build info\n");
|
||||
printf(" -i, --interactive run in interactive mode\n");
|
||||
printf(" --interactive-specials allow special tokens in user text, in interactive mode\n");
|
||||
printf(" --interactive-first run in interactive mode and wait for input right away\n");
|
||||
printf(" -cnv, --conversation run in conversation mode (does not print special tokens and suffix/prefix)\n");
|
||||
printf(" -ins, --instruct run in instruction mode (use with Alpaca models)\n");
|
||||
@@ -1552,6 +1565,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
|
||||
printf(" or for intermediate results and KV (with split-mode = row) (default: %d)\n", params.main_gpu);
|
||||
}
|
||||
printf(" --rpc SERVERS comma separated list of RPC servers\n");
|
||||
printf(" --verbose-prompt print a verbose prompt before generation (default: %s)\n", params.verbose_prompt ? "true" : "false");
|
||||
printf(" --no-display-prompt don't print prompt at generation (default: %s)\n", !params.display_prompt ? "true" : "false");
|
||||
printf(" -gan N, --grp-attn-n N\n");
|
||||
@@ -1825,6 +1839,7 @@ struct llama_model_params llama_model_params_from_gpt_params(const gpt_params &
|
||||
if (params.n_gpu_layers != -1) {
|
||||
mparams.n_gpu_layers = params.n_gpu_layers;
|
||||
}
|
||||
mparams.rpc_servers = params.rpc_servers.c_str();
|
||||
mparams.main_gpu = params.main_gpu;
|
||||
mparams.split_mode = params.split_mode;
|
||||
mparams.tensor_split = params.tensor_split;
|
||||
@@ -1969,18 +1984,18 @@ static bool llama_download_file(const std::string & url, const std::string & pat
|
||||
try {
|
||||
metadata_in >> metadata;
|
||||
fprintf(stderr, "%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str());
|
||||
if (metadata.contains("url") && metadata["url"].is_string()) {
|
||||
auto previous_url = metadata["url"].get<std::string>();
|
||||
if (metadata.contains("url") && metadata.at("url").is_string()) {
|
||||
auto previous_url = metadata.at("url").get<std::string>();
|
||||
if (previous_url != url) {
|
||||
fprintf(stderr, "%s: Model URL mismatch: %s != %s\n", __func__, url.c_str(), previous_url.c_str());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
if (metadata.contains("etag") && metadata["etag"].is_string()) {
|
||||
etag = metadata["etag"];
|
||||
if (metadata.contains("etag") && metadata.at("etag").is_string()) {
|
||||
etag = metadata.at("etag");
|
||||
}
|
||||
if (metadata.contains("lastModified") && metadata["lastModified"].is_string()) {
|
||||
last_modified = metadata["lastModified"];
|
||||
if (metadata.contains("lastModified") && metadata.at("lastModified").is_string()) {
|
||||
last_modified = metadata.at("lastModified");
|
||||
}
|
||||
} catch (const nlohmann::json::exception & e) {
|
||||
fprintf(stderr, "%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
|
||||
@@ -2538,7 +2553,7 @@ void dump_string_yaml_multiline(FILE * stream, const char * prop_name, const cha
|
||||
size_t pos_start = 0;
|
||||
size_t pos_found = 0;
|
||||
|
||||
if (!data_str.empty() && (std::isspace(data_str[0]) || std::isspace(data_str.back()))) {
|
||||
if (std::isspace(data_str[0]) || std::isspace(data_str.back())) {
|
||||
data_str = std::regex_replace(data_str, std::regex("\n"), "\\n");
|
||||
data_str = std::regex_replace(data_str, std::regex("\""), "\\\"");
|
||||
data_str = std::regex_replace(data_str, std::regex(R"(\\[^n"])"), R"(\$&)");
|
||||
@@ -2650,6 +2665,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
|
||||
dump_string_yaml_multiline(stream, "in_suffix", params.input_prefix.c_str());
|
||||
fprintf(stream, "instruct: %s # default: false\n", params.instruct ? "true" : "false");
|
||||
fprintf(stream, "interactive: %s # default: false\n", params.interactive ? "true" : "false");
|
||||
fprintf(stream, "interactive_specials: %s # default: false\n", params.interactive_specials ? "true" : "false");
|
||||
fprintf(stream, "interactive_first: %s # default: false\n", params.interactive_first ? "true" : "false");
|
||||
fprintf(stream, "keep: %d # default: 0\n", params.n_keep);
|
||||
fprintf(stream, "logdir: %s # default: unset (no logging)\n", params.logdir.c_str());
|
||||
|
||||
@@ -82,6 +82,7 @@ struct gpt_params {
|
||||
float yarn_beta_slow = 1.0f; // YaRN high correction dim
|
||||
int32_t yarn_orig_ctx = 0; // YaRN original context length
|
||||
float defrag_thold = -1.0f; // KV cache defragmentation threshold
|
||||
std::string rpc_servers = ""; // comma separated list of RPC servers
|
||||
|
||||
ggml_backend_sched_eval_callback cb_eval = nullptr;
|
||||
void * cb_eval_user_data = nullptr;
|
||||
@@ -140,6 +141,7 @@ struct gpt_params {
|
||||
bool random_prompt = false; // do not randomize prompt if none provided
|
||||
bool use_color = false; // use color to distinguish generations and inputs
|
||||
bool interactive = false; // interactive mode
|
||||
bool interactive_specials = false; // whether to allow special tokens from user, during interactive mode
|
||||
bool conversation = false; // conversation mode (does not print special tokens and suffix/prefix)
|
||||
bool chatml = false; // chatml mode (used for models trained on chatml syntax)
|
||||
bool prompt_cache_all = false; // save user input and generations to prompt cache
|
||||
|
||||
@@ -26,7 +26,7 @@ namespace grammar_parser {
|
||||
|
||||
static uint32_t get_symbol_id(parse_state & state, const char * src, size_t len) {
|
||||
uint32_t next_id = static_cast<uint32_t>(state.symbol_ids.size());
|
||||
auto result = state.symbol_ids.insert(std::make_pair(std::string(src, len), next_id));
|
||||
auto result = state.symbol_ids.emplace(std::string(src, len), next_id);
|
||||
return result.first->second;
|
||||
}
|
||||
|
||||
@@ -142,6 +142,9 @@ namespace grammar_parser {
|
||||
pos++;
|
||||
last_sym_start = out_elements.size();
|
||||
while (*pos != '"') {
|
||||
if (!*pos) {
|
||||
throw std::runtime_error("unexpected end of input");
|
||||
}
|
||||
auto char_pair = parse_char(pos);
|
||||
pos = char_pair.second;
|
||||
out_elements.push_back({LLAMA_GRETYPE_CHAR, char_pair.first});
|
||||
@@ -156,6 +159,9 @@ namespace grammar_parser {
|
||||
}
|
||||
last_sym_start = out_elements.size();
|
||||
while (*pos != ']') {
|
||||
if (!*pos) {
|
||||
throw std::runtime_error("unexpected end of input");
|
||||
}
|
||||
auto char_pair = parse_char(pos);
|
||||
pos = char_pair.second;
|
||||
enum llama_gretype type = last_sym_start < out_elements.size()
|
||||
@@ -164,6 +170,9 @@ namespace grammar_parser {
|
||||
|
||||
out_elements.push_back({type, char_pair.first});
|
||||
if (pos[0] == '-' && pos[1] != ']') {
|
||||
if (!pos[1]) {
|
||||
throw std::runtime_error("unexpected end of input");
|
||||
}
|
||||
auto endchar_pair = parse_char(pos + 1);
|
||||
pos = endchar_pair.second;
|
||||
out_elements.push_back({LLAMA_GRETYPE_CHAR_RNG_UPPER, endchar_pair.first});
|
||||
|
||||
@@ -272,7 +272,7 @@ private:
|
||||
if (literal.empty()) {
|
||||
return false;
|
||||
}
|
||||
ret.push_back(std::make_pair(literal, true));
|
||||
ret.emplace_back(literal, true);
|
||||
literal.clear();
|
||||
return true;
|
||||
};
|
||||
@@ -298,7 +298,7 @@ private:
|
||||
while (i < length) {
|
||||
char c = sub_pattern[i];
|
||||
if (c == '.') {
|
||||
seq.push_back(std::make_pair(get_dot(), false));
|
||||
seq.emplace_back(get_dot(), false);
|
||||
i++;
|
||||
} else if (c == '(') {
|
||||
i++;
|
||||
@@ -307,7 +307,7 @@ private:
|
||||
_warnings.push_back("Unsupported pattern syntax");
|
||||
}
|
||||
}
|
||||
seq.push_back(std::make_pair("(" + to_rule(transform()) + ")", false));
|
||||
seq.emplace_back("(" + to_rule(transform()) + ")", false);
|
||||
} else if (c == ')') {
|
||||
i++;
|
||||
if (start > 0 && sub_pattern[start - 1] != '(') {
|
||||
@@ -331,9 +331,9 @@ private:
|
||||
}
|
||||
square_brackets += ']';
|
||||
i++;
|
||||
seq.push_back(std::make_pair(square_brackets, false));
|
||||
seq.emplace_back(square_brackets, false);
|
||||
} else if (c == '|') {
|
||||
seq.push_back(std::make_pair("|", false));
|
||||
seq.emplace_back("|", false);
|
||||
i++;
|
||||
} else if (c == '*' || c == '+' || c == '?') {
|
||||
seq.back() = std::make_pair(to_rule(seq.back()) + c, false);
|
||||
@@ -417,7 +417,7 @@ private:
|
||||
}
|
||||
}
|
||||
if (!literal.empty()) {
|
||||
seq.push_back(std::make_pair(literal, true));
|
||||
seq.emplace_back(literal, true);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,4 +1,8 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
// Change JSON_ASSERT from assert() to GGML_ASSERT:
|
||||
#define JSON_ASSERT GGML_ASSERT
|
||||
#include "json.hpp"
|
||||
|
||||
std::string json_schema_to_grammar(const nlohmann::ordered_json& schema);
|
||||
|
||||
10
common/log.h
@@ -211,7 +211,7 @@ inline std::string log_filename_generator_impl(LogTriState multilog, const std::
|
||||
#define LOG_FLF_VAL , __FILE__, __LINE__, __FUNCTION__
|
||||
#else
|
||||
#define LOG_FLF_FMT "[%24s:%5ld][%24s] "
|
||||
#define LOG_FLF_VAL , __FILE__, __LINE__, __FUNCTION__
|
||||
#define LOG_FLF_VAL , __FILE__, (long)__LINE__, __FUNCTION__
|
||||
#endif
|
||||
#else
|
||||
#define LOG_FLF_FMT "%s"
|
||||
@@ -224,7 +224,7 @@ inline std::string log_filename_generator_impl(LogTriState multilog, const std::
|
||||
#define LOG_TEE_FLF_VAL , __FILE__, __LINE__, __FUNCTION__
|
||||
#else
|
||||
#define LOG_TEE_FLF_FMT "[%24s:%5ld][%24s] "
|
||||
#define LOG_TEE_FLF_VAL , __FILE__, __LINE__, __FUNCTION__
|
||||
#define LOG_TEE_FLF_VAL , __FILE__, (long)__LINE__, __FUNCTION__
|
||||
#endif
|
||||
#else
|
||||
#define LOG_TEE_FLF_FMT "%s"
|
||||
@@ -294,7 +294,7 @@ inline std::string log_filename_generator_impl(LogTriState multilog, const std::
|
||||
// Main LOG macro.
|
||||
// behaves like printf, and supports arguments the exact same way.
|
||||
//
|
||||
#ifndef _MSC_VER
|
||||
#if !defined(_MSC_VER) || defined(__clang__)
|
||||
#define LOG(...) LOG_IMPL(__VA_ARGS__, "")
|
||||
#else
|
||||
#define LOG(str, ...) LOG_IMPL("%s" str, "", ##__VA_ARGS__, "")
|
||||
@@ -308,14 +308,14 @@ inline std::string log_filename_generator_impl(LogTriState multilog, const std::
|
||||
// Secondary target can be changed just like LOG_TARGET
|
||||
// by defining LOG_TEE_TARGET
|
||||
//
|
||||
#ifndef _MSC_VER
|
||||
#if !defined(_MSC_VER) || defined(__clang__)
|
||||
#define LOG_TEE(...) LOG_TEE_IMPL(__VA_ARGS__, "")
|
||||
#else
|
||||
#define LOG_TEE(str, ...) LOG_TEE_IMPL("%s" str, "", ##__VA_ARGS__, "")
|
||||
#endif
|
||||
|
||||
// LOG macro variants with auto endline.
|
||||
#ifndef _MSC_VER
|
||||
#if !defined(_MSC_VER) || defined(__clang__)
|
||||
#define LOGLN(...) LOG_IMPL(__VA_ARGS__, "\n")
|
||||
#define LOG_TEELN(...) LOG_TEE_IMPL(__VA_ARGS__, "\n")
|
||||
#else
|
||||
|
||||
@@ -35,7 +35,7 @@ struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_
|
||||
|
||||
result->prev.resize(params.n_prev);
|
||||
|
||||
result->n_considered = 0;
|
||||
result->n_valid = 0;
|
||||
|
||||
llama_sampling_set_rng_seed(result, params.seed);
|
||||
|
||||
@@ -66,7 +66,7 @@ void llama_sampling_reset(llama_sampling_context * ctx) {
|
||||
|
||||
std::fill(ctx->prev.begin(), ctx->prev.end(), 0);
|
||||
ctx->cur.clear();
|
||||
ctx->n_considered = 0;
|
||||
ctx->n_valid = 0;
|
||||
}
|
||||
|
||||
void llama_sampling_set_rng_seed(struct llama_sampling_context * ctx, uint32_t seed) {
|
||||
@@ -256,7 +256,7 @@ static llama_token llama_sampling_sample_impl(
|
||||
}
|
||||
}
|
||||
|
||||
ctx_sampling->n_considered = cur_p.size;
|
||||
ctx_sampling->n_valid = temp == 0.0f ? 0 : cur_p.size;
|
||||
|
||||
return id;
|
||||
}
|
||||
|
||||
@@ -81,7 +81,7 @@ struct llama_sampling_context {
|
||||
// TODO: replace with ring-buffer
|
||||
std::vector<llama_token> prev;
|
||||
std::vector<llama_token_data> cur;
|
||||
size_t n_considered;
|
||||
size_t n_valid; // Number of correct top tokens with correct probabilities.
|
||||
|
||||
std::mt19937 rng;
|
||||
};
|
||||
|
||||
@@ -20,11 +20,13 @@
|
||||
# - Update llama.cpp with the new pre-tokenizer if necessary
|
||||
#
|
||||
# TODO: generate tokenizer tests for llama.cpp
|
||||
# TODO: automate the update of convert-hf-to-gguf.py
|
||||
#
|
||||
|
||||
import logging
|
||||
import os
|
||||
import pathlib
|
||||
import re
|
||||
|
||||
import requests
|
||||
import sys
|
||||
import json
|
||||
@@ -35,6 +37,7 @@ from transformers import AutoTokenizer
|
||||
|
||||
logging.basicConfig(level=logging.DEBUG)
|
||||
logger = logging.getLogger("convert-hf-to-gguf-update")
|
||||
sess = requests.Session()
|
||||
|
||||
|
||||
class TOKENIZER_TYPE(IntEnum):
|
||||
@@ -49,6 +52,10 @@ chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶
|
||||
|
||||
if len(sys.argv) == 2:
|
||||
token = sys.argv[1]
|
||||
if not token.startswith("hf_"):
|
||||
logger.info("Huggingface token seems invalid")
|
||||
logger.info("Usage: python convert-hf-to-gguf-update.py <huggingface_token>")
|
||||
sys.exit(1)
|
||||
else:
|
||||
logger.info("Usage: python convert-hf-to-gguf-update.py <huggingface_token>")
|
||||
sys.exit(1)
|
||||
@@ -70,65 +77,49 @@ models = [
|
||||
{"name": "qwen2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen1.5-7B", },
|
||||
{"name": "olmo", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/allenai/OLMo-1.7-7B-hf", },
|
||||
{"name": "dbrx", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/databricks/dbrx-base", },
|
||||
{"name": "jina-v2-en", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-en", }, # WPM!
|
||||
{"name": "jina-v2-es", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-es", },
|
||||
{"name": "jina-v2-de", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-de", },
|
||||
]
|
||||
|
||||
# make directory "models/tokenizers" if it doesn't exist
|
||||
if not os.path.exists("models/tokenizers"):
|
||||
os.makedirs("models/tokenizers")
|
||||
|
||||
|
||||
def download_file_with_auth(url, token, save_path):
|
||||
headers = {"Authorization": f"Bearer {token}"}
|
||||
response = requests.get(url, headers=headers)
|
||||
if response.status_code == 200:
|
||||
with open(save_path, 'wb') as f:
|
||||
f.write(response.content)
|
||||
logger.info(f"File {save_path} downloaded successfully")
|
||||
else:
|
||||
logger.info(f"Failed to download file. Status code: {response.status_code}")
|
||||
response = sess.get(url, headers=headers)
|
||||
response.raise_for_status()
|
||||
os.makedirs(os.path.dirname(save_path), exist_ok=True)
|
||||
with open(save_path, 'wb') as f:
|
||||
f.write(response.content)
|
||||
logger.info(f"File {save_path} downloaded successfully")
|
||||
|
||||
|
||||
# download the tokenizer models
|
||||
for model in models:
|
||||
def download_model(model):
|
||||
name = model["name"]
|
||||
repo = model["repo"]
|
||||
tokt = model["tokt"]
|
||||
|
||||
if not os.path.exists(f"models/tokenizers/{name}"):
|
||||
os.makedirs(f"models/tokenizers/{name}")
|
||||
else:
|
||||
logger.info(f"Directory models/tokenizers/{name} already exists - skipping")
|
||||
continue
|
||||
|
||||
logger.info(f"Downloading {name} to models/tokenizers/{name}")
|
||||
|
||||
url = f"{repo}/raw/main/config.json"
|
||||
save_path = f"models/tokenizers/{name}/config.json"
|
||||
download_file_with_auth(url, token, save_path)
|
||||
|
||||
url = f"{repo}/raw/main/tokenizer.json"
|
||||
save_path = f"models/tokenizers/{name}/tokenizer.json"
|
||||
download_file_with_auth(url, token, save_path)
|
||||
|
||||
# if downloaded file is less than 1KB, we likely need to download an LFS instead
|
||||
if os.path.getsize(save_path) < 1024:
|
||||
# remove the file
|
||||
os.remove(save_path)
|
||||
url = f"{repo}/resolve/main/tokenizer.json"
|
||||
save_path = f"models/tokenizers/{name}/tokenizer.json"
|
||||
download_file_with_auth(url, token, save_path)
|
||||
os.makedirs(f"models/tokenizers/{name}", exist_ok=True)
|
||||
|
||||
files = ["config.json", "tokenizer.json", "tokenizer_config.json"]
|
||||
if tokt == TOKENIZER_TYPE.SPM:
|
||||
url = f"{repo}/resolve/main/tokenizer.model"
|
||||
save_path = f"models/tokenizers/{name}/tokenizer.model"
|
||||
download_file_with_auth(url, token, save_path)
|
||||
files.append("tokenizer.model")
|
||||
|
||||
for file in files:
|
||||
save_path = f"models/tokenizers/{name}/{file}"
|
||||
if os.path.isfile(save_path):
|
||||
logger.info(f"{name}: File {save_path} already exists - skipping")
|
||||
continue
|
||||
download_file_with_auth(f"{repo}/resolve/main/{file}", token, save_path)
|
||||
|
||||
|
||||
for model in models:
|
||||
try:
|
||||
download_model(model)
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to download model {model['name']}. Error: {e}")
|
||||
|
||||
url = f"{repo}/raw/main/tokenizer_config.json"
|
||||
save_path = f"models/tokenizers/{name}/tokenizer_config.json"
|
||||
download_file_with_auth(url, token, save_path)
|
||||
|
||||
# generate the source code for the convert-hf-to-gguf.py:get_vocab_base_pre() function:
|
||||
# TODO: auto-update convert-hf-to-gguf.py with the generated function
|
||||
|
||||
src_ifs = ""
|
||||
for model in models:
|
||||
@@ -138,8 +129,17 @@ for model in models:
|
||||
if tokt == TOKENIZER_TYPE.SPM:
|
||||
continue
|
||||
|
||||
# Skip if the tokenizer folder does not exist or there are other download issues previously
|
||||
if not os.path.exists(f"models/tokenizers/{name}"):
|
||||
logger.warning(f"Directory for tokenizer {name} not found. Skipping...")
|
||||
continue
|
||||
|
||||
# create the tokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
|
||||
try:
|
||||
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
|
||||
except OSError as e:
|
||||
logger.error(f"Error loading tokenizer for model {name}. The model may not exist or is not accessible with the provided token. Error: {e}")
|
||||
continue # Skip to the next model if the tokenizer can't be loaded
|
||||
|
||||
chktok = tokenizer.encode(chktxt)
|
||||
chkhsh = sha256(str(chktok).encode()).hexdigest()
|
||||
@@ -157,6 +157,8 @@ for model in models:
|
||||
logger.info("normalizer: " + json.dumps(normalizer, indent=4))
|
||||
pre_tokenizer = cfg["pre_tokenizer"]
|
||||
logger.info("pre_tokenizer: " + json.dumps(pre_tokenizer, indent=4))
|
||||
if "ignore_merges" in cfg["model"]:
|
||||
logger.info("ignore_merges: " + json.dumps(cfg["model"]["ignore_merges"], indent=4))
|
||||
|
||||
logger.info("")
|
||||
|
||||
@@ -206,11 +208,18 @@ src_func = f"""
|
||||
return res
|
||||
"""
|
||||
|
||||
print(src_func) # noqa: NP100
|
||||
convert_py_pth = pathlib.Path("convert-hf-to-gguf.py")
|
||||
convert_py = convert_py_pth.read_text()
|
||||
convert_py = re.sub(
|
||||
r"(# Marker: Start get_vocab_base_pre)(.+?)( +# Marker: End get_vocab_base_pre)",
|
||||
lambda m: m.group(1) + src_func + m.group(3),
|
||||
convert_py,
|
||||
flags=re.DOTALL | re.MULTILINE,
|
||||
)
|
||||
|
||||
logger.info("\n")
|
||||
logger.info("!!! Copy-paste the function above into convert-hf-to-gguf.py !!!")
|
||||
logger.info("\n")
|
||||
convert_py_pth.write_text(convert_py)
|
||||
|
||||
logger.info("+++ convert-hf-to-gguf.py was updated")
|
||||
|
||||
# generate tests for each tokenizer model
|
||||
|
||||
@@ -257,6 +266,7 @@ tests = [
|
||||
"3333333",
|
||||
"33333333",
|
||||
"333333333",
|
||||
# "Cửa Việt", # llama-bpe fails on this
|
||||
chktxt,
|
||||
]
|
||||
|
||||
@@ -277,8 +287,17 @@ for model in models:
|
||||
name = model["name"]
|
||||
tokt = model["tokt"]
|
||||
|
||||
# Skip if the tokenizer folder does not exist or there are other download issues previously
|
||||
if not os.path.exists(f"models/tokenizers/{name}"):
|
||||
logger.warning(f"Directory for tokenizer {name} not found. Skipping...")
|
||||
continue
|
||||
|
||||
# create the tokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
|
||||
try:
|
||||
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
|
||||
except OSError as e:
|
||||
logger.error(f"Failed to load tokenizer for model {name}. Error: {e}")
|
||||
continue # Skip this model and continue with the next one in the loop
|
||||
|
||||
with open(f"models/ggml-vocab-{name}.gguf.inp", "w", encoding="utf-8") as f:
|
||||
for text in tests:
|
||||
|
||||
@@ -1,150 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
from __future__ import annotations
|
||||
|
||||
import logging
|
||||
import json
|
||||
import os
|
||||
import struct
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Any, BinaryIO, Sequence
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
if 'NO_LOCAL_GGUF' not in os.environ:
|
||||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
|
||||
import gguf
|
||||
|
||||
logging.basicConfig(level=logging.DEBUG)
|
||||
logger = logging.getLogger("lora-to-gguf")
|
||||
|
||||
NUMPY_TYPE_TO_FTYPE: dict[str, int] = {"float32": 0, "float16": 1}
|
||||
|
||||
|
||||
def write_file_header(fout: BinaryIO, params: dict[str, Any]) -> None:
|
||||
fout.write(b"ggla"[::-1]) # magic (ggml lora)
|
||||
fout.write(struct.pack("i", 1)) # file version
|
||||
fout.write(struct.pack("i", params["r"]))
|
||||
# https://opendelta.readthedocs.io/en/latest/modules/deltas.html says that `lora_alpha` is an int
|
||||
# but some models ship a float value instead
|
||||
# let's convert to int, but fail if lossless conversion is not possible
|
||||
assert (
|
||||
int(params["lora_alpha"]) == params["lora_alpha"]
|
||||
), "cannot convert float to int losslessly"
|
||||
fout.write(struct.pack("i", int(params["lora_alpha"])))
|
||||
|
||||
|
||||
def write_tensor_header(fout: BinaryIO, name: str, shape: Sequence[int], data_type: np.dtype[Any]) -> None:
|
||||
sname = name.encode("utf-8")
|
||||
fout.write(
|
||||
struct.pack(
|
||||
"iii",
|
||||
len(shape),
|
||||
len(sname),
|
||||
NUMPY_TYPE_TO_FTYPE[data_type.name],
|
||||
)
|
||||
)
|
||||
fout.write(struct.pack("i" * len(shape), *shape[::-1]))
|
||||
fout.write(sname)
|
||||
fout.seek((fout.tell() + 31) & -32)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if len(sys.argv) < 2:
|
||||
logger.info(f"Usage: python {sys.argv[0]} <path> [arch]")
|
||||
logger.info("Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'")
|
||||
logger.info(f"Arch must be one of {list(gguf.MODEL_ARCH_NAMES.values())} (default: llama)")
|
||||
sys.exit(1)
|
||||
|
||||
input_json = os.path.join(sys.argv[1], "adapter_config.json")
|
||||
input_model = os.path.join(sys.argv[1], "adapter_model.bin")
|
||||
output_path = os.path.join(sys.argv[1], "ggml-adapter-model.bin")
|
||||
|
||||
if os.path.exists(input_model):
|
||||
model = torch.load(input_model, map_location="cpu")
|
||||
else:
|
||||
input_model = os.path.join(sys.argv[1], "adapter_model.safetensors")
|
||||
# lazy import load_file only if lora is in safetensors format.
|
||||
from safetensors.torch import load_file
|
||||
model = load_file(input_model, device="cpu")
|
||||
|
||||
arch_name = sys.argv[2] if len(sys.argv) == 3 else "llama"
|
||||
|
||||
if arch_name not in gguf.MODEL_ARCH_NAMES.values():
|
||||
logger.error(f"Error: unsupported architecture {arch_name}")
|
||||
sys.exit(1)
|
||||
|
||||
arch = list(gguf.MODEL_ARCH_NAMES.keys())[list(gguf.MODEL_ARCH_NAMES.values()).index(arch_name)]
|
||||
name_map = gguf.TensorNameMap(arch, 200) # 200 layers ought to be enough for anyone
|
||||
|
||||
with open(input_json, "r") as f:
|
||||
params = json.load(f)
|
||||
|
||||
if params["peft_type"] != "LORA":
|
||||
logger.error(f"Error: unsupported adapter type {params['peft_type']}, expected LORA")
|
||||
sys.exit(1)
|
||||
|
||||
if params["fan_in_fan_out"] is True:
|
||||
logger.error("Error: param fan_in_fan_out is not supported")
|
||||
sys.exit(1)
|
||||
|
||||
if params["bias"] is not None and params["bias"] != "none":
|
||||
logger.error("Error: param bias is not supported")
|
||||
sys.exit(1)
|
||||
|
||||
# TODO: these seem to be layers that have been trained but without lora.
|
||||
# doesn't seem widely used but eventually should be supported
|
||||
if params["modules_to_save"] is not None and len(params["modules_to_save"]) > 0:
|
||||
logger.error("Error: param modules_to_save is not supported")
|
||||
sys.exit(1)
|
||||
|
||||
with open(output_path, "wb") as fout:
|
||||
fout.truncate()
|
||||
|
||||
write_file_header(fout, params)
|
||||
for k, v in model.items():
|
||||
orig_k = k
|
||||
if k.endswith(".default.weight"):
|
||||
k = k.replace(".default.weight", ".weight")
|
||||
if k in ["llama_proj.weight", "llama_proj.bias"]:
|
||||
continue
|
||||
if k.endswith("lora_A.weight"):
|
||||
if v.dtype != torch.float16 and v.dtype != torch.float32:
|
||||
v = v.float()
|
||||
v = v.T
|
||||
else:
|
||||
v = v.float()
|
||||
|
||||
t = v.detach().numpy()
|
||||
|
||||
prefix = "base_model.model."
|
||||
if k.startswith(prefix):
|
||||
k = k[len(prefix) :]
|
||||
|
||||
lora_suffixes = (".lora_A.weight", ".lora_B.weight")
|
||||
if k.endswith(lora_suffixes):
|
||||
suffix = k[-len(lora_suffixes[0]):]
|
||||
k = k[: -len(lora_suffixes[0])]
|
||||
else:
|
||||
logger.error(f"Error: unrecognized tensor name {orig_k}")
|
||||
sys.exit(1)
|
||||
|
||||
tname = name_map.get_name(k)
|
||||
if tname is None:
|
||||
logger.error(f"Error: could not map tensor name {orig_k}")
|
||||
logger.error(" Note: the arch parameter must be specified if the model is not llama")
|
||||
sys.exit(1)
|
||||
|
||||
if suffix == ".lora_A.weight":
|
||||
tname += ".weight.loraA"
|
||||
elif suffix == ".lora_B.weight":
|
||||
tname += ".weight.loraB"
|
||||
else:
|
||||
assert False
|
||||
|
||||
logger.info(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB")
|
||||
write_tensor_header(fout, tname, t.shape, t.dtype)
|
||||
t.tofile(fout)
|
||||
|
||||
logger.info(f"Converted {input_json} and {input_model} to {output_path}")
|
||||
198
convert.py
@@ -24,7 +24,7 @@ from abc import ABC, abstractmethod
|
||||
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, Any, Callable, ClassVar, IO, Iterable, Literal, Protocol, TypeVar, runtime_checkable
|
||||
from typing import TYPE_CHECKING, Any, Callable, ClassVar, IO, Iterable, Literal, Protocol, TypeVar, runtime_checkable, Optional
|
||||
|
||||
import numpy as np
|
||||
from sentencepiece import SentencePieceProcessor
|
||||
@@ -284,6 +284,7 @@ class Params:
|
||||
n_experts = None
|
||||
n_experts_used = None
|
||||
f_rope_freq_base = None
|
||||
n_ff = None
|
||||
|
||||
# hack to determine LLaMA v1 vs v2 vs CodeLlama
|
||||
if config.get("moe"):
|
||||
@@ -308,6 +309,8 @@ class Params:
|
||||
n_experts_used = config["moe"]["num_experts_per_tok"]
|
||||
f_rope_freq_base = 1e6
|
||||
|
||||
assert n_ff is not None
|
||||
|
||||
return Params(
|
||||
n_vocab = model["tok_embeddings.weight"].shape[0],
|
||||
n_embd = config["dim"],
|
||||
@@ -341,10 +344,47 @@ class Params:
|
||||
return params
|
||||
|
||||
|
||||
@dataclass
|
||||
class Metadata:
|
||||
name: Optional[str] = None
|
||||
author: Optional[str] = None
|
||||
version: Optional[str] = None
|
||||
url: Optional[str] = None
|
||||
description: Optional[str] = None
|
||||
licence: Optional[str] = None
|
||||
source_url: Optional[str] = None
|
||||
source_hf_repo: Optional[str] = None
|
||||
|
||||
@staticmethod
|
||||
def load(metadata_path: Path) -> Metadata:
|
||||
if metadata_path is None or not metadata_path.exists():
|
||||
return Metadata()
|
||||
|
||||
with open(metadata_path, 'r') as file:
|
||||
data = json.load(file)
|
||||
|
||||
# Create a new Metadata instance
|
||||
metadata = Metadata()
|
||||
|
||||
# Assigning values to Metadata attributes if they exist in the JSON file
|
||||
# This is based on LLM_KV_NAMES mapping in llama.cpp
|
||||
metadata.name = data.get("general.name")
|
||||
metadata.author = data.get("general.author")
|
||||
metadata.version = data.get("general.version")
|
||||
metadata.url = data.get("general.url")
|
||||
metadata.description = data.get("general.description")
|
||||
metadata.license = data.get("general.license")
|
||||
metadata.source_url = data.get("general.source.url")
|
||||
metadata.source_hf_repo = data.get("general.source.huggingface.repository")
|
||||
|
||||
return metadata
|
||||
|
||||
|
||||
#
|
||||
# vocab
|
||||
#
|
||||
|
||||
|
||||
@runtime_checkable
|
||||
class BaseVocab(Protocol):
|
||||
tokenizer_model: ClassVar[str]
|
||||
@@ -462,7 +502,8 @@ class SentencePieceVocab(Vocab):
|
||||
# not found in alternate location either
|
||||
raise FileNotFoundError('Cannot find tokenizer.model')
|
||||
|
||||
self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer))
|
||||
self.sentencepiece_tokenizer = SentencePieceProcessor()
|
||||
self.sentencepiece_tokenizer.LoadFromFile(str(fname_tokenizer))
|
||||
vocab_size = self.sentencepiece_tokenizer.vocab_size()
|
||||
|
||||
new_tokens = {id: piece for piece, id in added_tokens.items() if id >= vocab_size}
|
||||
@@ -482,23 +523,23 @@ class SentencePieceVocab(Vocab):
|
||||
def sentencepiece_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
tokenizer = self.sentencepiece_tokenizer
|
||||
for i in range(tokenizer.vocab_size()):
|
||||
piece = tokenizer.id_to_piece(i)
|
||||
piece = tokenizer.IdToPiece(i)
|
||||
text = piece.encode("utf-8")
|
||||
score: float = tokenizer.get_score(i)
|
||||
score: float = tokenizer.GetScore(i)
|
||||
|
||||
toktype = gguf.TokenType.NORMAL
|
||||
if tokenizer.is_unknown(i):
|
||||
if tokenizer.IsUnknown(i):
|
||||
toktype = gguf.TokenType.UNKNOWN
|
||||
if tokenizer.is_control(i):
|
||||
if tokenizer.IsControl(i):
|
||||
toktype = gguf.TokenType.CONTROL
|
||||
|
||||
# NOTE: I think added_tokens are user defined.
|
||||
# ref: https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto
|
||||
# if tokenizer.is_user_defined(i): toktype = gguf.TokenType.USER_DEFINED
|
||||
|
||||
if tokenizer.is_unused(i):
|
||||
if tokenizer.IsUnused(i):
|
||||
toktype = gguf.TokenType.UNUSED
|
||||
if tokenizer.is_byte(i):
|
||||
if tokenizer.IsByte(i):
|
||||
toktype = gguf.TokenType.BYTE
|
||||
|
||||
yield text, score, toktype
|
||||
@@ -906,7 +947,7 @@ class LazyUnpickler(pickle.Unpickler):
|
||||
def rebuild_from_type_v2(func, new_type, args, state):
|
||||
return func(*args)
|
||||
|
||||
CLASSES = {
|
||||
CLASSES: dict[tuple[str, str], type[LazyTensor] | LazyStorageKind] = {
|
||||
# getattr used here as a workaround for mypy not being smart enough to determine
|
||||
# the staticmethods have a __func__ attribute.
|
||||
('torch._tensor', '_rebuild_from_type_v2'): getattr(rebuild_from_type_v2, '__func__'),
|
||||
@@ -1062,21 +1103,42 @@ class OutputFile:
|
||||
def __init__(self, fname_out: Path, endianess:gguf.GGUFEndian = gguf.GGUFEndian.LITTLE):
|
||||
self.gguf = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess)
|
||||
|
||||
def add_meta_arch(self, params: Params) -> None:
|
||||
def add_meta_model(self, params: Params, metadata: Metadata) -> None:
|
||||
# Metadata About The Model And Its Provenence
|
||||
name = "LLaMA"
|
||||
|
||||
# TODO: better logic to determine model name
|
||||
if params.n_ctx == 4096:
|
||||
name = "LLaMA v2"
|
||||
if metadata is not None and metadata.name is not None:
|
||||
name = metadata.name
|
||||
elif params.path_model is not None:
|
||||
name = str(params.path_model.parent).split('/')[-1]
|
||||
name = params.path_model.name
|
||||
elif params.n_ctx == 4096:
|
||||
# Heuristic detection of LLaMA v2 model
|
||||
name = "LLaMA v2"
|
||||
|
||||
self.gguf.add_name (name)
|
||||
self.gguf.add_vocab_size (params.n_vocab)
|
||||
self.gguf.add_context_length (params.n_ctx)
|
||||
self.gguf.add_embedding_length (params.n_embd)
|
||||
self.gguf.add_block_count (params.n_layer)
|
||||
self.gguf.add_feed_forward_length (params.n_ff)
|
||||
self.gguf.add_name(name)
|
||||
|
||||
if metadata is not None:
|
||||
if metadata.author is not None:
|
||||
self.gguf.add_author(metadata.author)
|
||||
if metadata.version is not None:
|
||||
self.gguf.add_version(metadata.version)
|
||||
if metadata.url is not None:
|
||||
self.gguf.add_url(metadata.url)
|
||||
if metadata.description is not None:
|
||||
self.gguf.add_description(metadata.description)
|
||||
if metadata.licence is not None:
|
||||
self.gguf.add_licence(metadata.licence)
|
||||
if metadata.source_url is not None:
|
||||
self.gguf.add_source_url(metadata.source_url)
|
||||
if metadata.source_hf_repo is not None:
|
||||
self.gguf.add_source_hf_repo(metadata.source_hf_repo)
|
||||
|
||||
def add_meta_arch(self, params: Params) -> None:
|
||||
# Metadata About The Neural Architecture Itself
|
||||
self.gguf.add_vocab_size(params.n_vocab)
|
||||
self.gguf.add_context_length(params.n_ctx)
|
||||
self.gguf.add_embedding_length(params.n_embd)
|
||||
self.gguf.add_block_count(params.n_layer)
|
||||
self.gguf.add_feed_forward_length(params.n_ff)
|
||||
self.gguf.add_rope_dimension_count(params.n_embd // params.n_head)
|
||||
self.gguf.add_head_count (params.n_head)
|
||||
self.gguf.add_head_count_kv (params.n_head_kv)
|
||||
@@ -1179,13 +1241,14 @@ class OutputFile:
|
||||
@staticmethod
|
||||
def write_vocab_only(
|
||||
fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab,
|
||||
endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, pad_vocab: bool = False,
|
||||
endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, pad_vocab: bool = False, metadata: Metadata = None,
|
||||
) -> None:
|
||||
check_vocab_size(params, vocab, pad_vocab=pad_vocab)
|
||||
|
||||
of = OutputFile(fname_out, endianess=endianess)
|
||||
|
||||
# meta data
|
||||
of.add_meta_model(params, metadata)
|
||||
of.add_meta_arch(params)
|
||||
of.add_meta_vocab(vocab)
|
||||
of.add_meta_special_vocab(svocab)
|
||||
@@ -1212,12 +1275,14 @@ class OutputFile:
|
||||
fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: BaseVocab, svocab: gguf.SpecialVocab,
|
||||
concurrency: int = DEFAULT_CONCURRENCY, endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE,
|
||||
pad_vocab: bool = False,
|
||||
metadata: Metadata = None,
|
||||
) -> None:
|
||||
check_vocab_size(params, vocab, pad_vocab=pad_vocab)
|
||||
|
||||
of = OutputFile(fname_out, endianess=endianess)
|
||||
|
||||
# meta data
|
||||
of.add_meta_model(params, metadata)
|
||||
of.add_meta_arch(params)
|
||||
if isinstance(vocab, Vocab):
|
||||
of.add_meta_vocab(vocab)
|
||||
@@ -1253,6 +1318,37 @@ def pick_output_type(model: LazyModel, output_type_str: str | None) -> GGMLFileT
|
||||
raise ValueError(f"Unexpected combination of types: {name_to_type}")
|
||||
|
||||
|
||||
def model_parameter_count(model: LazyModel) -> int:
|
||||
total_model_parameters = 0
|
||||
for i, (name, lazy_tensor) in enumerate(model.items()):
|
||||
sum_weights_in_tensor = 1
|
||||
for dim in lazy_tensor.shape:
|
||||
sum_weights_in_tensor *= dim
|
||||
total_model_parameters += sum_weights_in_tensor
|
||||
return total_model_parameters
|
||||
|
||||
|
||||
def model_parameter_count_rounded_notation(model_params_count: int) -> str:
|
||||
if model_params_count > 1e12 :
|
||||
# Trillions Of Parameters
|
||||
scaled_model_params = model_params_count * 1e-12
|
||||
scale_suffix = "T"
|
||||
elif model_params_count > 1e9 :
|
||||
# Billions Of Parameters
|
||||
scaled_model_params = model_params_count * 1e-9
|
||||
scale_suffix = "B"
|
||||
elif model_params_count > 1e6 :
|
||||
# Millions Of Parameters
|
||||
scaled_model_params = model_params_count * 1e-6
|
||||
scale_suffix = "M"
|
||||
else:
|
||||
# Thousands Of Parameters
|
||||
scaled_model_params = model_params_count * 1e-3
|
||||
scale_suffix = "K"
|
||||
|
||||
return f"{round(scaled_model_params)}{scale_suffix}"
|
||||
|
||||
|
||||
def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyModel:
|
||||
return {name: tensor.astype(output_type.type_for_tensor(name, tensor))
|
||||
for (name, tensor) in model.items()}
|
||||
@@ -1432,13 +1528,35 @@ class VocabFactory:
|
||||
return vocab, special_vocab
|
||||
|
||||
|
||||
def default_outfile(model_paths: list[Path], file_type: GGMLFileType) -> Path:
|
||||
namestr = {
|
||||
GGMLFileType.AllF32: "f32",
|
||||
GGMLFileType.MostlyF16: "f16",
|
||||
GGMLFileType.MostlyQ8_0:"q8_0",
|
||||
def default_convention_outfile(file_type: GGMLFileType, params: Params, model_params_count: int, metadata: Metadata) -> str:
|
||||
quantization = {
|
||||
GGMLFileType.AllF32: "F32",
|
||||
GGMLFileType.MostlyF16: "F16",
|
||||
GGMLFileType.MostlyQ8_0: "Q8_0",
|
||||
}[file_type]
|
||||
ret = model_paths[0].parent / f"ggml-model-{namestr}.gguf"
|
||||
|
||||
parameters = model_parameter_count_rounded_notation(model_params_count)
|
||||
|
||||
expert_count = ""
|
||||
if params.n_experts is not None:
|
||||
expert_count = f"{params.n_experts}x"
|
||||
|
||||
version = ""
|
||||
if metadata is not None and metadata.version is not None:
|
||||
version = f"-{metadata.version}"
|
||||
|
||||
name = "ggml-model"
|
||||
if metadata is not None and metadata.name is not None:
|
||||
name = metadata.name
|
||||
elif params.path_model is not None:
|
||||
name = params.path_model.name
|
||||
|
||||
return f"{name}{version}-{expert_count}{parameters}-{quantization}"
|
||||
|
||||
|
||||
def default_outfile(model_paths: list[Path], file_type: GGMLFileType, params: Params, model_params_count: int, metadata: Metadata) -> Path:
|
||||
default_filename = default_convention_outfile(file_type, params, model_params_count, metadata)
|
||||
ret = model_paths[0].parent / f"{default_filename}.gguf"
|
||||
if ret in model_paths:
|
||||
logger.error(
|
||||
f"Error: Default output path ({ret}) would overwrite the input. "
|
||||
@@ -1476,17 +1594,30 @@ def main(args_in: list[str] | None = None) -> None:
|
||||
parser.add_argument("--pad-vocab", action="store_true", help="add pad tokens when model vocab expects more than tokenizer metadata provides")
|
||||
parser.add_argument("--skip-unknown", action="store_true", help="skip unknown tensor names instead of failing")
|
||||
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
|
||||
parser.add_argument("--metadata", type=Path, help="Specify the path for a metadata file")
|
||||
parser.add_argument("--get-outfile", action="store_true", help="get calculated default outfile name")
|
||||
|
||||
args = parser.parse_args(args_in)
|
||||
|
||||
if args.verbose:
|
||||
logging.basicConfig(level=logging.DEBUG)
|
||||
elif args.dump_single or args.dump:
|
||||
elif args.dump_single or args.dump or args.get_outfile:
|
||||
# Avoid printing anything besides the dump output
|
||||
logging.basicConfig(level=logging.WARNING)
|
||||
else:
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
|
||||
metadata = Metadata.load(args.metadata)
|
||||
|
||||
if args.get_outfile:
|
||||
model_plus = load_some_model(args.model)
|
||||
params = Params.load(model_plus)
|
||||
model = convert_model_names(model_plus.model, params, args.skip_unknown)
|
||||
model_params_count = model_parameter_count(model_plus.model)
|
||||
ftype = pick_output_type(model, args.outtype)
|
||||
print(f"{default_convention_outfile(ftype, params, model_params_count, metadata)}") # noqa: NP100
|
||||
return
|
||||
|
||||
if args.no_vocab and args.vocab_only:
|
||||
raise ValueError("--vocab-only does not make sense with --no-vocab")
|
||||
|
||||
@@ -1500,6 +1631,9 @@ def main(args_in: list[str] | None = None) -> None:
|
||||
else:
|
||||
model_plus = ModelPlus(model = {}, paths = [args.model / 'dummy'], format = 'none', vocab = None)
|
||||
|
||||
model_params_count = model_parameter_count(model_plus.model)
|
||||
logger.info(f"model parameters count : {model_params_count} ({model_parameter_count_rounded_notation(model_params_count)})")
|
||||
|
||||
if args.dump:
|
||||
do_dump_model(model_plus)
|
||||
return
|
||||
@@ -1553,7 +1687,7 @@ def main(args_in: list[str] | None = None) -> None:
|
||||
f_norm_eps = 1e-5,
|
||||
)
|
||||
OutputFile.write_vocab_only(outfile, params, vocab, special_vocab,
|
||||
endianess=endianess, pad_vocab=args.pad_vocab)
|
||||
endianess=endianess, pad_vocab=args.pad_vocab, metadata=metadata)
|
||||
logger.info(f"Wrote {outfile}")
|
||||
return
|
||||
|
||||
@@ -1566,13 +1700,13 @@ def main(args_in: list[str] | None = None) -> None:
|
||||
model = convert_model_names(model, params, args.skip_unknown)
|
||||
ftype = pick_output_type(model, args.outtype)
|
||||
model = convert_to_output_type(model, ftype)
|
||||
outfile = args.outfile or default_outfile(model_plus.paths, ftype)
|
||||
outfile = args.outfile or default_outfile(model_plus.paths, ftype, params, model_params_count, metadata)
|
||||
|
||||
params.ftype = ftype
|
||||
logger.info(f"Writing {outfile}, format {ftype}")
|
||||
|
||||
OutputFile.write_all(outfile, ftype, params, model, vocab, special_vocab,
|
||||
concurrency=args.concurrency, endianess=endianess, pad_vocab=args.pad_vocab)
|
||||
concurrency=args.concurrency, endianess=endianess, pad_vocab=args.pad_vocab, metadata=metadata)
|
||||
logger.info(f"Wrote {outfile}")
|
||||
|
||||
|
||||
|
||||
104
docs/debugging-tests.md
Normal file
@@ -0,0 +1,104 @@
|
||||
# Debugging Tests Tips
|
||||
|
||||
## How to run & execute or debug a specific test without anything else to keep the feedback loop short?
|
||||
|
||||
There is a script called debug-test.sh in the scripts folder whose parameter takes a REGEX and an optional test number.
|
||||
|
||||
For example, running the following command will output an interactive list from which you can select a test. It takes this form:
|
||||
|
||||
`debug-test.sh [OPTION]... <test_regex> <test_number>`
|
||||
|
||||
It will then build & run in the debugger for you.
|
||||
|
||||
To just execute a test and get back a PASS or FAIL message run:
|
||||
|
||||
```bash
|
||||
./scripts/debug-test.sh test-tokenizer
|
||||
```
|
||||
|
||||
To test in GDB use the `-g` flag to enable gdb test mode.
|
||||
|
||||
```bash
|
||||
./scripts/debug-test.sh -g test-tokenizer
|
||||
|
||||
# Once in the debugger, i.e. at the chevrons prompt, setting a breakpoint could be as follows:
|
||||
>>> b main
|
||||
```
|
||||
|
||||
To speed up the testing loop, if you know your test number you can just run it similar to below:
|
||||
|
||||
```bash
|
||||
./scripts/debug-test.sh test 23
|
||||
```
|
||||
|
||||
For further reference use `debug-test.sh -h` to print help.
|
||||
|
||||
|
||||
|
||||
### How does the script work?
|
||||
If you want to be able to use the concepts contained in the script separately, the important ones are briefly outlined below.
|
||||
|
||||
#### Step 1: Reset and Setup folder context
|
||||
|
||||
From base of this repository, let's create `build-ci-debug` as our build context.
|
||||
|
||||
```bash
|
||||
rm -rf build-ci-debug && mkdir build-ci-debug && cd build-ci-debug
|
||||
```
|
||||
|
||||
#### Step 2: Setup Build Environment and Compile Test Binaries
|
||||
|
||||
Setup and trigger a build under debug mode. You may adapt the arguments as needed, but in this case these are sane defaults.
|
||||
|
||||
```bash
|
||||
cmake -DCMAKE_BUILD_TYPE=Debug -DLLAMA_CUDA=1 -DLLAMA_FATAL_WARNINGS=ON ..
|
||||
make -j
|
||||
```
|
||||
|
||||
#### Step 3: Find all tests available that matches REGEX
|
||||
|
||||
The output of this command will give you the command & arguments needed to run GDB.
|
||||
|
||||
* `-R test-tokenizer` : looks for all the test files named `test-tokenizer*` (R=Regex)
|
||||
* `-N` : "show-only" disables test execution & shows test commands that you can feed to GDB.
|
||||
* `-V` : Verbose Mode
|
||||
|
||||
```bash
|
||||
ctest -R "test-tokenizer" -V -N
|
||||
```
|
||||
|
||||
This may return output similar to below (focusing on key lines to pay attention to):
|
||||
|
||||
```bash
|
||||
...
|
||||
1: Test command: ~/llama.cpp/build-ci-debug/bin/test-tokenizer-0 "~/llama.cpp/tests/../models/ggml-vocab-llama-spm.gguf"
|
||||
1: Working Directory: .
|
||||
Labels: main
|
||||
Test #1: test-tokenizer-0-llama-spm
|
||||
...
|
||||
4: Test command: ~/llama.cpp/build-ci-debug/bin/test-tokenizer-0 "~/llama.cpp/tests/../models/ggml-vocab-falcon.gguf"
|
||||
4: Working Directory: .
|
||||
Labels: main
|
||||
Test #4: test-tokenizer-0-falcon
|
||||
...
|
||||
```
|
||||
|
||||
#### Step 4: Identify Test Command for Debugging
|
||||
|
||||
So for test #1 above we can tell these two pieces of relevant information:
|
||||
* Test Binary: `~/llama.cpp/build-ci-debug/bin/test-tokenizer-0`
|
||||
* Test GGUF Model: `~/llama.cpp/tests/../models/ggml-vocab-llama-spm.gguf`
|
||||
|
||||
#### Step 5: Run GDB on test command
|
||||
|
||||
Based on the ctest 'test command' report above we can then run a gdb session via this command below:
|
||||
|
||||
```bash
|
||||
gdb --args ${Test Binary} ${Test GGUF Model}
|
||||
```
|
||||
|
||||
Example:
|
||||
|
||||
```bash
|
||||
gdb --args ~/llama.cpp/build-ci-debug/bin/test-tokenizer-0 "~/llama.cpp/tests/../models/ggml-vocab-llama-spm.gguf"
|
||||
```
|
||||
@@ -49,4 +49,7 @@ else()
|
||||
add_subdirectory(server)
|
||||
endif()
|
||||
add_subdirectory(export-lora)
|
||||
if (LLAMA_RPC)
|
||||
add_subdirectory(rpc)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
|
||||
This example reads weights from project [llama2.c](https://github.com/karpathy/llama2.c) and saves them in ggml compatible format. The vocab that is available in `models/ggml-vocab.bin` is used by default.
|
||||
|
||||
To convert the model first download the models from the [llma2.c](https://github.com/karpathy/llama2.c) repository:
|
||||
To convert the model first download the models from the [llama2.c](https://github.com/karpathy/llama2.c) repository:
|
||||
|
||||
`$ make -j`
|
||||
|
||||
|
||||
@@ -49,6 +49,12 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
|
||||
}
|
||||
|
||||
float * out = output + batch.seq_id[i][0] * n_embd;
|
||||
//TODO: I would also add a parameter here to enable normalization or not.
|
||||
/*fprintf(stdout, "unnormalized_embedding:");
|
||||
for (int hh = 0; hh < n_embd; hh++) {
|
||||
fprintf(stdout, "%9.6f ", embd[hh]);
|
||||
}
|
||||
fprintf(stdout, "\n");*/
|
||||
llama_embd_normalize(embd, out, n_embd);
|
||||
}
|
||||
}
|
||||
@@ -123,10 +129,12 @@ int main(int argc, char ** argv) {
|
||||
inputs.push_back(inp);
|
||||
}
|
||||
|
||||
// add SEP if not present
|
||||
// check if the last token is SEP
|
||||
// it should be automatically added by the tokenizer when 'tokenizer.ggml.add_eos_token' is set to 'true'
|
||||
for (auto & inp : inputs) {
|
||||
if (inp.empty() || inp.back() != llama_token_sep(model)) {
|
||||
inp.push_back(llama_token_sep(model));
|
||||
fprintf(stderr, "%s: warning: last token in the prompt is not SEP\n", __func__);
|
||||
fprintf(stderr, "%s: 'tokenizer.ggml.add_eos_token' should be set to 'true' in the GGUF header\n", __func__);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -203,6 +211,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// clean up
|
||||
llama_print_timings(ctx);
|
||||
llama_batch_free(batch);
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
llama_backend_free();
|
||||
|
||||
@@ -52,15 +52,15 @@ static void ggml_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne
|
||||
size_t i = i3 * nb[3] + i2 * nb[2] + i1 * nb[1] + i0 * nb[0];
|
||||
float v;
|
||||
if (type == GGML_TYPE_F16) {
|
||||
v = ggml_fp16_to_fp32(*(ggml_fp16_t *) data + i);
|
||||
v = ggml_fp16_to_fp32(*(ggml_fp16_t *) &data[i]);
|
||||
} else if (type == GGML_TYPE_F32) {
|
||||
v = *(float *) data + i;
|
||||
v = *(float *) &data[i];
|
||||
} else if (type == GGML_TYPE_I32) {
|
||||
v = (float) *(int32_t *) data + i;
|
||||
v = (float) *(int32_t *) &data[i];
|
||||
} else if (type == GGML_TYPE_I16) {
|
||||
v = (float) *(int16_t *) data + i;
|
||||
v = (float) *(int16_t *) &data[i];
|
||||
} else if (type == GGML_TYPE_I8) {
|
||||
v = (float) *(int8_t *) data + i;
|
||||
v = (float) *(int8_t *) &data[i];
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
|
||||
@@ -26,16 +26,21 @@ options:
|
||||
-m, --model <filename> (default: models/7B/ggml-model-q4_0.gguf)
|
||||
-p, --n-prompt <n> (default: 512)
|
||||
-n, --n-gen <n> (default: 128)
|
||||
-b, --batch-size <n> (default: 512)
|
||||
-ctk <t>, --cache-type-k <t> (default: f16)
|
||||
-ctv <t>, --cache-type-v <t> (default: f16)
|
||||
-t, --threads <n> (default: 112)
|
||||
-pg <pp,tg> (default: 512,128)
|
||||
-b, --batch-size <n> (default: 2048)
|
||||
-ub, --ubatch-size <n> (default: 512)
|
||||
-ctk, --cache-type-k <t> (default: f16)
|
||||
-ctv, --cache-type-v <t> (default: f16)
|
||||
-t, --threads <n> (default: 16)
|
||||
-ngl, --n-gpu-layers <n> (default: 99)
|
||||
-sm, --split-mode <none|layer|row> (default: layer)
|
||||
-mg, --main-gpu <i> (default: 0)
|
||||
-nkvo, --no-kv-offload <0|1> (default: 0)
|
||||
-fa, --flash-attn <0|1> (default: 0)
|
||||
-mmp, --mmap <0|1> (default: 1)
|
||||
-ts, --tensor_split <ts0/ts1/..> (default: 0)
|
||||
--numa <distribute|isolate|numactl> (default: disabled)
|
||||
-embd, --embeddings <0|1> (default: 0)
|
||||
-ts, --tensor-split <ts0/ts1/..> (default: 0)
|
||||
-r, --repetitions <n> (default: 5)
|
||||
-o, --output <csv|json|md|sql> (default: md)
|
||||
-v, --verbose (default: 0)
|
||||
@@ -43,10 +48,11 @@ options:
|
||||
Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.
|
||||
```
|
||||
|
||||
llama-bench can perform two types of tests:
|
||||
llama-bench can perform three types of tests:
|
||||
|
||||
- Prompt processing (pp): processing a prompt in batches (`-p`)
|
||||
- Text generation (tg): generating a sequence of tokens (`-n`)
|
||||
- Prompt processing + text generation (pg): processing a prompt followed by generating a sequence of tokens (`-pg`)
|
||||
|
||||
With the exception of `-r`, `-o` and `-v`, all options can be specified multiple times to run multiple tests. Each pp and tg test is run with all combinations of the specified options. To specify multiple values for an option, the values can be separated by commas (e.g. `-n 16,32`), or the option can be specified multiple times (e.g. `-n 16 -n 32`).
|
||||
|
||||
|
||||
@@ -161,10 +161,17 @@ static const char * split_mode_str(llama_split_mode mode) {
|
||||
}
|
||||
}
|
||||
|
||||
static std::string pair_str(const std::pair<int, int> & p) {
|
||||
static char buf[32];
|
||||
snprintf(buf, sizeof(buf), "%d,%d", p.first, p.second);
|
||||
return buf;
|
||||
}
|
||||
|
||||
struct cmd_params {
|
||||
std::vector<std::string> model;
|
||||
std::vector<int> n_prompt;
|
||||
std::vector<int> n_gen;
|
||||
std::vector<std::pair<int, int>> n_pg;
|
||||
std::vector<int> n_batch;
|
||||
std::vector<int> n_ubatch;
|
||||
std::vector<ggml_type> type_k;
|
||||
@@ -188,6 +195,7 @@ static const cmd_params cmd_params_defaults = {
|
||||
/* model */ {"models/7B/ggml-model-q4_0.gguf"},
|
||||
/* n_prompt */ {512},
|
||||
/* n_gen */ {128},
|
||||
/* n_pg */ {{512, 128}},
|
||||
/* n_batch */ {2048},
|
||||
/* n_ubatch */ {512},
|
||||
/* type_k */ {GGML_TYPE_F16},
|
||||
@@ -215,10 +223,11 @@ static void print_usage(int /* argc */, char ** argv) {
|
||||
printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
|
||||
printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
|
||||
printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
|
||||
printf(" -pg <pp,tg> (default: %s)\n", join(transform_to_str(cmd_params_defaults.n_pg, pair_str), ",").c_str());
|
||||
printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
|
||||
printf(" -ub N, --ubatch-size <n> (default: %s)\n", join(cmd_params_defaults.n_ubatch, ",").c_str());
|
||||
printf(" -ctk <t>, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
|
||||
printf(" -ctv <t>, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
|
||||
printf(" -ub, --ubatch-size <n> (default: %s)\n", join(cmd_params_defaults.n_ubatch, ",").c_str());
|
||||
printf(" -ctk, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
|
||||
printf(" -ctv, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
|
||||
printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
|
||||
printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
|
||||
printf(" -sm, --split-mode <none|layer|row> (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
|
||||
@@ -304,6 +313,17 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
||||
}
|
||||
auto p = split<int>(argv[i], split_delim);
|
||||
params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
|
||||
} else if (arg == "-pg") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
auto p = split<std::string>(argv[i], ',');
|
||||
if (p.size() != 2) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.n_pg.push_back({std::stoi(p[0]), std::stoi(p[1])});
|
||||
} else if (arg == "-b" || arg == "--batch-size") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@@ -493,6 +513,7 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
||||
if (params.model.empty()) { params.model = cmd_params_defaults.model; }
|
||||
if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
|
||||
if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
|
||||
if (params.n_pg.empty()) { params.n_pg = cmd_params_defaults.n_pg; }
|
||||
if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
|
||||
if (params.n_ubatch.empty()) { params.n_ubatch = cmd_params_defaults.n_ubatch; }
|
||||
if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; }
|
||||
@@ -632,6 +653,31 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
||||
};
|
||||
instances.push_back(instance);
|
||||
}
|
||||
|
||||
for (const auto & n_pg : params.n_pg) {
|
||||
if (n_pg.first == 0 && n_pg.second == 0) {
|
||||
continue;
|
||||
}
|
||||
cmd_params_instance instance = {
|
||||
/* .model = */ m,
|
||||
/* .n_prompt = */ n_pg.first,
|
||||
/* .n_gen = */ n_pg.second,
|
||||
/* .n_batch = */ nb,
|
||||
/* .n_ubatch = */ nub,
|
||||
/* .type_k = */ tk,
|
||||
/* .type_v = */ tv,
|
||||
/* .n_threads = */ nt,
|
||||
/* .n_gpu_layers = */ nl,
|
||||
/* .split_mode = */ sm,
|
||||
/* .main_gpu = */ mg,
|
||||
/* .no_kv_offload= */ nkvo,
|
||||
/* .flash_attn = */ fa,
|
||||
/* .tensor_split = */ ts,
|
||||
/* .use_mmap = */ mmp,
|
||||
/* .embeddings = */ embd,
|
||||
};
|
||||
instances.push_back(instance);
|
||||
}
|
||||
}
|
||||
|
||||
return instances;
|
||||
@@ -965,6 +1011,9 @@ struct markdown_printer : public printer {
|
||||
if (field == "n_gpu_layers") {
|
||||
return 3;
|
||||
}
|
||||
if (field == "test") {
|
||||
return 13;
|
||||
}
|
||||
|
||||
int width = std::max((int)field.length(), 10);
|
||||
|
||||
@@ -1091,12 +1140,11 @@ struct markdown_printer : public printer {
|
||||
value = test::get_backend();
|
||||
} else if (field == "test") {
|
||||
if (t.n_prompt > 0 && t.n_gen == 0) {
|
||||
snprintf(buf, sizeof(buf), "pp %d", t.n_prompt);
|
||||
snprintf(buf, sizeof(buf), "pp%d", t.n_prompt);
|
||||
} else if (t.n_gen > 0 && t.n_prompt == 0) {
|
||||
snprintf(buf, sizeof(buf), "tg %d", t.n_gen);
|
||||
snprintf(buf, sizeof(buf), "tg%d", t.n_gen);
|
||||
} else {
|
||||
assert(false);
|
||||
exit(1);
|
||||
snprintf(buf, sizeof(buf), "pp%d+tg%d", t.n_prompt, t.n_gen);
|
||||
}
|
||||
value = buf;
|
||||
} else if (field == "t/s") {
|
||||
@@ -1297,6 +1345,7 @@ int main(int argc, char ** argv) {
|
||||
llama_kv_cache_clear(ctx);
|
||||
|
||||
uint64_t t_start = get_time_ns();
|
||||
|
||||
if (t.n_prompt > 0) {
|
||||
test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
|
||||
}
|
||||
|
||||
@@ -573,13 +573,13 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
||||
struct ggml_tensor * embeddings = inp;
|
||||
if (ctx->has_class_embedding) {
|
||||
embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size);
|
||||
ggml_set_name(embeddings, "embeddings");
|
||||
ggml_set_input(embeddings);
|
||||
embeddings = ggml_acc(ctx0, embeddings, model.class_embedding,
|
||||
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0);
|
||||
embeddings = ggml_acc(ctx0, embeddings, inp,
|
||||
embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
|
||||
}
|
||||
ggml_set_name(embeddings, "embeddings");
|
||||
ggml_set_input(embeddings);
|
||||
|
||||
|
||||
struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions);
|
||||
@@ -1846,7 +1846,7 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
||||
const int image_size = hparams.image_size;
|
||||
const int patch_size = hparams.patch_size;
|
||||
const int num_patches = ((image_size / patch_size) * (image_size / patch_size));
|
||||
const int num_positions = num_patches + 1;
|
||||
const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0);
|
||||
|
||||
{
|
||||
struct ggml_tensor * inp_raw = ggml_graph_get_tensor(gf, "inp_raw");
|
||||
@@ -1874,12 +1874,14 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
||||
}
|
||||
|
||||
{
|
||||
struct ggml_tensor * embeddings = ggml_graph_get_tensor(gf, "embeddings");
|
||||
if (ctx->has_class_embedding) {
|
||||
struct ggml_tensor * embeddings = ggml_graph_get_tensor(gf, "embeddings");
|
||||
|
||||
void* zero_mem = malloc(ggml_nbytes(embeddings));
|
||||
memset(zero_mem, 0, ggml_nbytes(embeddings));
|
||||
ggml_backend_tensor_set(embeddings, zero_mem, 0, ggml_nbytes(embeddings));
|
||||
free(zero_mem);
|
||||
void* zero_mem = malloc(ggml_nbytes(embeddings));
|
||||
memset(zero_mem, 0, ggml_nbytes(embeddings));
|
||||
ggml_backend_tensor_set(embeddings, zero_mem, 0, ggml_nbytes(embeddings));
|
||||
free(zero_mem);
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
|
||||
@@ -189,6 +189,11 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
|
||||
LOG_TEE("\n");
|
||||
|
||||
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params->sparams);
|
||||
if (!ctx_sampling) {
|
||||
fprintf(stderr, "%s: failed to initialize sampling subsystem\n", __func__);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
std::string response = "";
|
||||
for (int i = 0; i < max_tgt_len; i++) {
|
||||
const char * tmp = sample(ctx_sampling, ctx_llava->ctx_llama, &n_past);
|
||||
@@ -295,14 +300,10 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
for (auto & image : params.image) {
|
||||
if (prompt_contains_image(params.prompt)) {
|
||||
auto ctx_llava = llava_init_context(¶ms, model);
|
||||
|
||||
auto image_embed = load_image(ctx_llava, ¶ms, image);
|
||||
if (!image_embed) {
|
||||
std::cerr << "error: failed to load image " << image << ". Terminating\n\n";
|
||||
return 1;
|
||||
}
|
||||
auto image_embed = load_image(ctx_llava, ¶ms, "");
|
||||
|
||||
// process the prompt
|
||||
process_prompt(ctx_llava, image_embed, ¶ms, params.prompt);
|
||||
@@ -311,7 +312,26 @@ int main(int argc, char ** argv) {
|
||||
llava_image_embed_free(image_embed);
|
||||
ctx_llava->model = NULL;
|
||||
llava_free(ctx_llava);
|
||||
} else {
|
||||
for (auto & image : params.image) {
|
||||
auto ctx_llava = llava_init_context(¶ms, model);
|
||||
|
||||
auto image_embed = load_image(ctx_llava, ¶ms, image);
|
||||
if (!image_embed) {
|
||||
std::cerr << "error: failed to load image " << image << ". Terminating\n\n";
|
||||
return 1;
|
||||
}
|
||||
|
||||
// process the prompt
|
||||
process_prompt(ctx_llava, image_embed, ¶ms, params.prompt);
|
||||
|
||||
llama_print_timings(ctx_llava->ctx_llama);
|
||||
llava_image_embed_free(image_embed);
|
||||
ctx_llava->model = NULL;
|
||||
llava_free(ctx_llava);
|
||||
}
|
||||
}
|
||||
|
||||
llama_free_model(model);
|
||||
|
||||
return 0;
|
||||
|
||||
@@ -88,7 +88,6 @@ static struct clip_image_grid_shape get_anyres_image_grid_shape(const std::pair<
|
||||
// Take the image segments in a grid configuration and return the embeddings and the number of embeddings into preallocated memory (image_embd_out)
|
||||
static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *> & image_embd_v, struct clip_image_grid_shape grid_shape, float * image_embd_out, int * n_img_pos_out) {
|
||||
struct {
|
||||
struct ggml_tensor * newline;
|
||||
struct ggml_context * ctx;
|
||||
} model;
|
||||
|
||||
@@ -150,20 +149,6 @@ static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *>
|
||||
|
||||
model.ctx = ggml_init(params);
|
||||
|
||||
ggml_tensor * newline_tmp = clip_get_newline_tensor(ctx_clip);
|
||||
model.newline = ggml_new_tensor_1d(model.ctx, GGML_TYPE_F32, newline_tmp->ne[0]);
|
||||
if (newline_tmp->backend != GGML_BACKEND_TYPE_CPU) {
|
||||
if (newline_tmp->buffer == NULL) {
|
||||
LOG_TEE("newline_tmp tensor buffer is NULL\n");
|
||||
}
|
||||
ggml_backend_tensor_get(newline_tmp, model.newline->data, 0, ggml_nbytes(newline_tmp));
|
||||
} else {
|
||||
model.newline->data = newline_tmp->data;
|
||||
if (model.newline->data == NULL) {
|
||||
LOG_TEE("newline_tmp tensor data is NULL\n");
|
||||
}
|
||||
}
|
||||
|
||||
struct ggml_tensor * image_features = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F32, clip_n_mmproj_embd(ctx_clip), clip_n_patches(ctx_clip), num_images - 1); // example: 4096 x 576 x 4
|
||||
// ggml_tensor_printf(image_features,"image_features",__LINE__,false,false);
|
||||
// fill it with the image embeddings, ignoring the base
|
||||
|
||||
@@ -523,6 +523,10 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
struct llama_sampling_context * ctx_sampling = llama_sampling_init(sparams);
|
||||
if (!ctx_sampling) {
|
||||
fprintf(stderr, "%s: failed to initialize sampling subsystem\n", __func__);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
while ((n_remain != 0 && !is_antiprompt) || params.interactive) {
|
||||
// predict
|
||||
@@ -879,7 +883,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
const auto line_pfx = ::llama_tokenize(ctx, params.input_prefix, false, true);
|
||||
const auto line_inp = ::llama_tokenize(ctx, buffer, false, false);
|
||||
const auto line_inp = ::llama_tokenize(ctx, buffer, false, params.interactive_specials);
|
||||
const auto line_sfx = ::llama_tokenize(ctx, params.input_suffix, false, true);
|
||||
|
||||
LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp).c_str());
|
||||
|
||||
@@ -7,6 +7,8 @@ Also note that finetunes typically result in a higher perplexity value even thou
|
||||
|
||||
Within llama.cpp the perplexity of base models is used primarily to judge the quality loss from e.g. quantized models vs. FP16.
|
||||
The convention among contributors is to use the Wikitext-2 test set for testing unless noted otherwise (can be obtained with `scripts/get-wikitext-2.sh`).
|
||||
When numbers are listed all command line arguments and compilation options are left at their defaults unless noted otherwise.
|
||||
llama.cpp numbers are **not** directly comparable to those of other projects because the exact values depend strongly on the implementation details.
|
||||
|
||||
By default only the mean perplexity value and the corresponding uncertainty is calculated.
|
||||
The uncertainty is determined empirically by assuming a Gaussian distribution of the "correct" logits per and then applying error propagation.
|
||||
@@ -32,7 +34,13 @@ In addition to the KL divergence the following statistics are calculated with `-
|
||||
|
||||
## LLaMA 3 8b Scoreboard
|
||||
|
||||
Results are sorted by Kullback-Leibler divergence relative to FP16.
|
||||
| Revision | f364eb6f |
|
||||
|:---------|:-------------------|
|
||||
| Backend | CUDA |
|
||||
| CPU | AMD Epyc 7742 |
|
||||
| GPU | 1x NVIDIA RTX 4090 |
|
||||
|
||||
Results were generated using the CUDA backend and are sorted by Kullback-Leibler divergence relative to FP16.
|
||||
The "WT" importance matrices were created using varying numbers of Wikitext tokens and can be found [here](https://huggingface.co/JohannesGaessler/llama.cpp_importance_matrices/blob/main/imatrix-llama_3-8b-f16-2.7m_tokens.dat).
|
||||
|
||||
| Quantization | imatrix | Model size [GiB] | PPL | ΔPPL | KLD | Mean Δp | RMS Δp |
|
||||
@@ -89,6 +97,12 @@ K-quants score better on mean Δp than the legacy quants than e.g. KL divergence
|
||||
|
||||
## LLaMA 2 vs. LLaMA 3 Quantization comparison
|
||||
|
||||
| Revision | f364eb6f |
|
||||
|:---------|:-------------------|
|
||||
| Backend | CUDA |
|
||||
| CPU | AMD Epyc 7742 |
|
||||
| GPU | 1x NVIDIA RTX 4090 |
|
||||
|
||||
| Metric | L2 7b q2_K | L3 8b q2_K | L2 7b q4_K_M | L3 8b q4_K_M | L2 7b q6_K | L3 8b q6_K | L2 7b q8_0 | L3 8b q8_0 |
|
||||
|-----------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
|
||||
| Mean PPL | 5.794552 ± 0.032298 | 9.751568 ± 0.063312 | 5.877078 ± 0.032781 | 6.407115 ± 0.039119 | 5.808494 ± 0.032425 | 6.253382 ± 0.038078 | 5.798542 ± 0.032366 | 6.234284 ± 0.037878 |
|
||||
@@ -107,6 +121,50 @@ K-quants score better on mean Δp than the legacy quants than e.g. KL divergence
|
||||
| RMS Δp | 9.762 ± 0.053 % | 21.421 ± 0.079 % | 3.252 ± 0.024 % | 5.519 ± 0.050 % | 1.339 ± 0.010 % | 2.295 ± 0.019 % | 0.618 ± 0.011 % | 1.198 ± 0.007 % |
|
||||
| Same top p | 85.584 ± 0.086 % | 71.138 ± 0.119 % | 94.665 ± 0.055 % | 91.901 ± 0.072 % | 97.520 ± 0.038 % | 96.031 ± 0.051 % | 98.846 ± 0.026 % | 97.674 ± 0.040 % |
|
||||
|
||||
## LLaMA 3 BF16 vs. FP16 comparison
|
||||
|
||||
| Revision | 83330d8c |
|
||||
|:---------|:--------------|
|
||||
| Backend | CPU |
|
||||
| CPU | AMD Epyc 7742 |
|
||||
| GPU | N/A |
|
||||
|
||||
Results were calculated with LLaMA 3 8b BF16 as `--kl-divergence-base` and LLaMA 3 8b FP16 as the `--model` for comparison.
|
||||
|
||||
| Metric | Value |
|
||||
|--------------------------------|--------------------------|
|
||||
| Mean PPL(Q) | 6.227711 ± 0.037833 |
|
||||
| Mean PPL(base) | 6.225194 ± 0.037771 |
|
||||
| Cor(ln(PPL(Q)), ln(PPL(base))) | 99.990% |
|
||||
| Mean ln(PPL(Q)/PPL(base)) | 0.000404 ± 0.000086 |
|
||||
| Mean PPL(Q)/PPL(base) | 1.000404 ± 0.000086 |
|
||||
| Mean PPL(Q)-PPL(base) | 0.002517 ± 0.000536 |
|
||||
| Mean KLD | 0.00002515 ± 0.00000020 |
|
||||
| Maximum KLD | 0.012206 |
|
||||
| 99.9% KLD | 0.000799 |
|
||||
| 99.0% KLD | 0.000222 |
|
||||
| 99.0% KLD | 0.000222 |
|
||||
| Median KLD | 0.000013 |
|
||||
| 10.0% KLD | -0.000002 |
|
||||
| 5.0% KLD | -0.000008 |
|
||||
| 1.0% KLD | -0.000023 |
|
||||
| Minimum KLD | -0.000059 |
|
||||
| Mean Δp | -0.0000745 ± 0.0003952 % |
|
||||
| Maximum Δp | 4.186% |
|
||||
| 99.9% Δp | 1.049% |
|
||||
| 99.0% Δp | 0.439% |
|
||||
| 95.0% Δp | 0.207% |
|
||||
| 90.0% Δp | 0.125% |
|
||||
| 75.0% Δp | 0.029% |
|
||||
| Median Δp | 0.000% |
|
||||
| 25.0% Δp | -0.030% |
|
||||
| 10.0% Δp | -0.126% |
|
||||
| 5.0% Δp | -0.207% |
|
||||
| 1.0% Δp | -0.434% |
|
||||
| 0.1% Δp | -1.016% |
|
||||
| Minimum Δp | -4.672% |
|
||||
| RMS Δp | 0.150 ± 0.001 % |
|
||||
| Same top p | 99.739 ± 0.013 % |
|
||||
|
||||
## Old Numbers
|
||||
|
||||
|
||||
@@ -1425,7 +1425,7 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
|
||||
// Use all tasks
|
||||
tasks.resize(n_task);
|
||||
printf("%s: reading tasks", __func__);
|
||||
int n_dot = n_task/100;
|
||||
int n_dot = std::max((int) n_task/100, 1);
|
||||
int i = 0;
|
||||
for (auto& task : tasks) {
|
||||
++i;
|
||||
@@ -1675,7 +1675,7 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
|
||||
|
||||
llama_batch_free(batch);
|
||||
|
||||
if (n_done < 100) return;
|
||||
if (n_done < 100 && (params.multiple_choice_tasks != 0 && params.multiple_choice_tasks < (size_t)n_task)) return;
|
||||
|
||||
float p = 1.f*n_correct/n_done;
|
||||
float sigma = sqrt(p*(1-p)/(n_done-1));
|
||||
|
||||
@@ -1,6 +1,8 @@
|
||||
# quantize
|
||||
|
||||
TODO
|
||||
You can also use the [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space on Hugging Face to build your own quants without any setup.
|
||||
|
||||
Note: It is synced from llama.cpp `main` every 6 hours.
|
||||
|
||||
## Llama 2 7B
|
||||
|
||||
|
||||
2
examples/rpc/CMakeLists.txt
Normal file
@@ -0,0 +1,2 @@
|
||||
add_executable(rpc-server rpc-server.cpp)
|
||||
target_link_libraries(rpc-server PRIVATE ggml llama)
|
||||
74
examples/rpc/README.md
Normal file
@@ -0,0 +1,74 @@
|
||||
## Overview
|
||||
|
||||
The `rpc-server` allows running `ggml` backend on a remote host.
|
||||
The RPC backend communicates with one or several instances of `rpc-server` and offloads computations to them.
|
||||
This can be used for distributed LLM inference with `llama.cpp` in the following way:
|
||||
|
||||
```mermaid
|
||||
flowchart TD
|
||||
rpcb---|TCP|srva
|
||||
rpcb---|TCP|srvb
|
||||
rpcb-.-|TCP|srvn
|
||||
subgraph hostn[Host N]
|
||||
srvn[rpc-server]-.-backend3["Backend (CUDA,Metal,etc.)"]
|
||||
end
|
||||
subgraph hostb[Host B]
|
||||
srvb[rpc-server]---backend2["Backend (CUDA,Metal,etc.)"]
|
||||
end
|
||||
subgraph hosta[Host A]
|
||||
srva[rpc-server]---backend["Backend (CUDA,Metal,etc.)"]
|
||||
end
|
||||
subgraph host[Main Host]
|
||||
ggml[llama.cpp]---rpcb[RPC backend]
|
||||
end
|
||||
style hostn stroke:#66,stroke-width:2px,stroke-dasharray: 5 5
|
||||
```
|
||||
|
||||
Each host can run a different backend, e.g. one with CUDA and another with Metal.
|
||||
You can also run multiple `rpc-server` instances on the same host, each with a different backend.
|
||||
|
||||
## Usage
|
||||
|
||||
On each host, build the corresponding backend with `cmake` and add `-DLLAMA_RPC=ON` to the build options.
|
||||
For example, to build the CUDA backend with RPC support:
|
||||
|
||||
```bash
|
||||
mkdir build-rpc-cuda
|
||||
cd build-rpc-cuda
|
||||
cmake .. -DLLAMA_CUDA=ON -DLLAMA_RPC=ON
|
||||
cmake --build . --config Release
|
||||
```
|
||||
|
||||
Then, start the `rpc-server` with the backend:
|
||||
|
||||
```bash
|
||||
$ bin/rpc-server -p 50052
|
||||
create_backend: using CUDA backend
|
||||
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
|
||||
ggml_cuda_init: CUDA_USE_TENSOR_CORES: yes
|
||||
ggml_cuda_init: found 1 CUDA devices:
|
||||
Device 0: NVIDIA T1200 Laptop GPU, compute capability 7.5, VMM: yes
|
||||
Starting RPC server on 0.0.0.0:50052
|
||||
```
|
||||
|
||||
When using the CUDA backend, you can specify the device with the `CUDA_VISIBLE_DEVICES` environment variable, e.g.:
|
||||
```bash
|
||||
$ CUDA_VISIBLE_DEVICES=0 bin/rpc-server -p 50052
|
||||
```
|
||||
This way you can run multiple `rpc-server` instances on the same host, each with a different CUDA device.
|
||||
|
||||
|
||||
On the main host build `llama.cpp` only with `-DLLAMA_RPC=ON`:
|
||||
|
||||
```bash
|
||||
mkdir build-rpc
|
||||
cd build-rpc
|
||||
cmake .. -DLLAMA_RPC=ON
|
||||
cmake --build . --config Release
|
||||
```
|
||||
|
||||
Finally, use the `--rpc` option to specify the host and port of each `rpc-server`:
|
||||
|
||||
```bash
|
||||
$ bin/main -m ../models/tinyllama-1b/ggml-model-f16.gguf -p "Hello, my name is" --repeat-penalty 1.0 -n 64 --rpc 192.168.88.10:50052,192.168.88.11:50052 -ngl 99
|
||||
```
|
||||
134
examples/rpc/rpc-server.cpp
Normal file
@@ -0,0 +1,134 @@
|
||||
#ifdef GGML_USE_CUDA
|
||||
#include "ggml-cuda.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_METAL
|
||||
#include "ggml-metal.h"
|
||||
#endif
|
||||
|
||||
#include "ggml-rpc.h"
|
||||
#ifdef _WIN32
|
||||
# include <windows.h>
|
||||
#else
|
||||
# include <unistd.h>
|
||||
#endif
|
||||
#include <string>
|
||||
#include <stdio.h>
|
||||
|
||||
struct rpc_server_params {
|
||||
std::string host = "0.0.0.0";
|
||||
int port = 50052;
|
||||
size_t backend_mem = 0;
|
||||
};
|
||||
|
||||
static void print_usage(int /*argc*/, char ** argv, rpc_server_params params) {
|
||||
fprintf(stderr, "Usage: %s [options]\n\n", argv[0]);
|
||||
fprintf(stderr, "options:\n");
|
||||
fprintf(stderr, " -h, --help show this help message and exit\n");
|
||||
fprintf(stderr, " -H HOST, --host HOST host to bind to (default: %s)\n", params.host.c_str());
|
||||
fprintf(stderr, " -p PORT, --port PORT port to bind to (default: %d)\n", params.port);
|
||||
fprintf(stderr, " -m MEM, --mem MEM backend memory size (in MB)\n");
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
static bool rpc_server_params_parse(int argc, char ** argv, rpc_server_params & params) {
|
||||
std::string arg;
|
||||
for (int i = 1; i < argc; i++) {
|
||||
arg = argv[i];
|
||||
if (arg == "-H" || arg == "--host") {
|
||||
if (++i >= argc) {
|
||||
return false;
|
||||
}
|
||||
params.host = argv[i];
|
||||
} else if (arg == "-p" || arg == "--port") {
|
||||
if (++i >= argc) {
|
||||
return false;
|
||||
}
|
||||
params.port = std::stoi(argv[i]);
|
||||
if (params.port <= 0 || params.port > 65535) {
|
||||
return false;
|
||||
}
|
||||
} else if (arg == "-m" || arg == "--mem") {
|
||||
if (++i >= argc) {
|
||||
return false;
|
||||
}
|
||||
params.backend_mem = std::stoul(argv[i]) * 1024 * 1024;
|
||||
} else if (arg == "-h" || arg == "--help") {
|
||||
print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
} else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
static ggml_backend_t create_backend() {
|
||||
ggml_backend_t backend = NULL;
|
||||
#ifdef GGML_USE_CUDA
|
||||
fprintf(stderr, "%s: using CUDA backend\n", __func__);
|
||||
backend = ggml_backend_cuda_init(0); // init device 0
|
||||
if (!backend) {
|
||||
fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__);
|
||||
}
|
||||
#elif GGML_USE_METAL
|
||||
fprintf(stderr, "%s: using Metal backend\n", __func__);
|
||||
backend = ggml_backend_metal_init();
|
||||
if (!backend) {
|
||||
fprintf(stderr, "%s: ggml_backend_metal_init() failed\n", __func__);
|
||||
}
|
||||
#endif
|
||||
|
||||
// if there aren't GPU Backends fallback to CPU backend
|
||||
if (!backend) {
|
||||
fprintf(stderr, "%s: using CPU backend\n", __func__);
|
||||
backend = ggml_backend_cpu_init();
|
||||
}
|
||||
return backend;
|
||||
}
|
||||
|
||||
static void get_backend_memory(size_t * free_mem, size_t * total_mem) {
|
||||
#ifdef GGML_USE_CUDA
|
||||
ggml_backend_cuda_get_device_memory(0, free_mem, total_mem);
|
||||
#else
|
||||
#ifdef _WIN32
|
||||
MEMORYSTATUSEX status;
|
||||
status.dwLength = sizeof(status);
|
||||
GlobalMemoryStatusEx(&status);
|
||||
*total_mem = status.ullTotalPhys;
|
||||
*free_mem = status.ullAvailPhys;
|
||||
#else
|
||||
long pages = sysconf(_SC_PHYS_PAGES);
|
||||
long page_size = sysconf(_SC_PAGE_SIZE);
|
||||
*total_mem = pages * page_size;
|
||||
*free_mem = *total_mem;
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
|
||||
int main(int argc, char * argv[]) {
|
||||
rpc_server_params params;
|
||||
if (!rpc_server_params_parse(argc, argv, params)) {
|
||||
fprintf(stderr, "Invalid parameters\n");
|
||||
return 1;
|
||||
}
|
||||
ggml_backend_t backend = create_backend();
|
||||
if (!backend) {
|
||||
fprintf(stderr, "Failed to create backend\n");
|
||||
return 1;
|
||||
}
|
||||
std::string endpoint = params.host + ":" + std::to_string(params.port);
|
||||
size_t free_mem, total_mem;
|
||||
if (params.backend_mem > 0) {
|
||||
free_mem = params.backend_mem;
|
||||
total_mem = params.backend_mem;
|
||||
} else {
|
||||
get_backend_memory(&free_mem, &total_mem);
|
||||
}
|
||||
printf("Starting RPC server on %s, backend memory: %zu MB\n", endpoint.c_str(), free_mem / (1024 * 1024));
|
||||
start_rpc_server(backend, endpoint.c_str(), free_mem, total_mem);
|
||||
ggml_backend_free(backend);
|
||||
return 0;
|
||||
}
|
||||
@@ -17,7 +17,8 @@ The project is under active development, and we are [looking for feedback and co
|
||||
|
||||
**Command line options:**
|
||||
|
||||
- `--threads N`, `-t N`: Set the number of threads to use during generation. Not used if model layers are offloaded to GPU. The server is using batching. This parameter is used only if one token is to be processed on CPU backend.
|
||||
- `-v`, `--verbose`: Enable verbose server output. When using the `/completion` endpoint, this includes the tokenized prompt, the full request and the full response.
|
||||
- `-t N`, `--threads N`: Set the number of threads to use during generation. Not used if model layers are offloaded to GPU. The server is using batching. This parameter is used only if one token is to be processed on CPU backend.
|
||||
- `-tb N, --threads-batch N`: Set the number of threads to use during batch and prompt processing. If not specified, the number of threads will be set to the number of threads used for generation. Not used if model layers are offloaded to GPU.
|
||||
- `--threads-http N`: Number of threads in the http server pool to process requests. Default: `max(std::thread::hardware_concurrency() - 1, --parallel N + 2)`
|
||||
- `-m FNAME`, `--model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.gguf`).
|
||||
@@ -36,9 +37,7 @@ The project is under active development, and we are [looking for feedback and co
|
||||
- `--numa STRATEGY`: Attempt one of the below optimization strategies that may help on some NUMA systems
|
||||
- `--numa distribute`: Spread execution evenly over all nodes
|
||||
- `--numa isolate`: Only spawn threads on CPUs on the node that execution started on
|
||||
- `--numa numactl`: Use the CPU map provided by numactl. If run without this previously, it is recommended to drop the system
|
||||
page cache before using this. See https://github.com/ggerganov/llama.cpp/issues/1437
|
||||
|
||||
- `--numa numactl`: Use the CPU map provided by numactl. If run without this previously, it is recommended to drop the system page cache before using this. See https://github.com/ggerganov/llama.cpp/issues/1437
|
||||
- `--numa`: Attempt optimizations that may help on some NUMA systems.
|
||||
- `--lora FNAME`: Apply a LoRA (Low-Rank Adaptation) adapter to the model (implies --no-mmap). This allows you to adapt the pretrained model to specific tasks or domains.
|
||||
- `--lora-base FNAME`: Optional model to use as a base for the layers modified by the LoRA adapter. This flag is used in conjunction with the `--lora` flag, and specifies the base model for the adaptation.
|
||||
@@ -48,7 +47,7 @@ page cache before using this. See https://github.com/ggerganov/llama.cpp/issues/
|
||||
- `--path`: Path from which to serve static files. Default: disabled
|
||||
- `--api-key`: Set an api key for request authorization. By default, the server responds to every request. With an api key set, the requests must have the Authorization header set with the api key as Bearer token. May be used multiple times to enable multiple valid keys.
|
||||
- `--api-key-file`: Path to file containing api keys delimited by new lines. If set, requests must include one of the keys for access. May be used in conjunction with `--api-key`s.
|
||||
- `--embedding`: Enable embedding extraction. Default: disabled
|
||||
- `--embeddings`: Enable embedding vector output and the OAI compatible endpoint /v1/embeddings. Physical batch size (`--ubatch-size`) must be carefully defined. Default: disabled
|
||||
- `-np N`, `--parallel N`: Set the number of slots for process requests. Default: `1`
|
||||
- `-cb`, `--cont-batching`: Enable continuous batching (a.k.a dynamic batching). Default: disabled
|
||||
- `-spf FNAME`, `--system-prompt-file FNAME` Set a file to load a system prompt (initial prompt of all slots). This is useful for chat applications. [See more](#change-system-prompt-on-runtime)
|
||||
|
||||
BIN
examples/server/public/favicon.ico
Normal file
|
After Width: | Height: | Size: 4.0 KiB |
@@ -12,6 +12,8 @@
|
||||
// increase max payload length to allow use of larger context size
|
||||
#define CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 1048576
|
||||
#include "httplib.h"
|
||||
// Change JSON_ASSERT from assert() to GGML_ASSERT:
|
||||
#define JSON_ASSERT GGML_ASSERT
|
||||
#include "json.hpp"
|
||||
|
||||
// auto generated files (update with ./deps.sh)
|
||||
@@ -649,9 +651,6 @@ struct server_context {
|
||||
std::string system_prompt;
|
||||
std::vector<llama_token> system_tokens;
|
||||
|
||||
std::string name_user; // this should be the antiprompt
|
||||
std::string name_assistant;
|
||||
|
||||
// slots / clients
|
||||
std::vector<server_slot> slots;
|
||||
json default_generation_settings_for_props;
|
||||
@@ -671,6 +670,15 @@ struct server_context {
|
||||
llama_free_model(model);
|
||||
model = nullptr;
|
||||
}
|
||||
|
||||
// Clear any sampling context
|
||||
for (server_slot & slot : slots) {
|
||||
if (slot.ctx_sampling != nullptr) {
|
||||
llama_sampling_free(slot.ctx_sampling);
|
||||
}
|
||||
}
|
||||
|
||||
llama_batch_free(batch);
|
||||
}
|
||||
|
||||
bool load_model(const gpt_params & params_) {
|
||||
@@ -859,7 +867,7 @@ struct server_context {
|
||||
slot.sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep);
|
||||
|
||||
// process "json_schema" and "grammar"
|
||||
if (data.contains("json_schema") && !data["json_schema"].is_null() && data.contains("grammar") && !data["grammar"].is_null()) {
|
||||
if (data.contains("json_schema") && !data.at("json_schema").is_null() && data.contains("grammar") && !data.at("grammar").is_null()) {
|
||||
send_error(task, "Either \"json_schema\" or \"grammar\" can be specified, but not both", ERROR_TYPE_INVALID_REQUEST);
|
||||
return false;
|
||||
} else if (data.contains("json_schema") && !data.contains("grammar")) {
|
||||
@@ -1096,15 +1104,11 @@ struct server_context {
|
||||
system_need_update = false;
|
||||
}
|
||||
|
||||
void system_prompt_set(const json & sys_props) {
|
||||
system_prompt = sys_props.value("prompt", "");
|
||||
name_user = sys_props.value("anti_prompt", "");
|
||||
name_assistant = sys_props.value("assistant_name", "");
|
||||
bool system_prompt_set(const std::string & sys_prompt) {
|
||||
system_prompt = sys_prompt;
|
||||
|
||||
LOG_VERBOSE("system prompt process", {
|
||||
{"system_prompt", system_prompt},
|
||||
{"name_user", name_user},
|
||||
{"name_assistant", name_assistant},
|
||||
});
|
||||
|
||||
// release all slots
|
||||
@@ -1113,6 +1117,7 @@ struct server_context {
|
||||
}
|
||||
|
||||
system_need_update = true;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool process_token(completion_token_output & result, server_slot & slot) {
|
||||
@@ -1512,7 +1517,7 @@ struct server_context {
|
||||
// add subtasks
|
||||
for (int i = 0; i < prompt_count; i++) {
|
||||
json subtask_data = multiprompt_task.data;
|
||||
subtask_data["prompt"] = subtask_data["prompt"][i];
|
||||
subtask_data["prompt"] = subtask_data.at("prompt")[i];
|
||||
|
||||
// subtasks inherit everything else (infill mode, embedding mode, etc.)
|
||||
request_completion(subtask_ids[i], id_multi, subtask_data, multiprompt_task.infill, multiprompt_task.embedding);
|
||||
@@ -1532,7 +1537,8 @@ struct server_context {
|
||||
}
|
||||
|
||||
if (task.data.contains("system_prompt")) {
|
||||
system_prompt_set(task.data["system_prompt"]);
|
||||
std::string sys_prompt = json_value(task.data, "system_prompt", std::string());
|
||||
system_prompt_set(sys_prompt);
|
||||
|
||||
for (server_slot & slot : slots) {
|
||||
slot.n_past = 0;
|
||||
@@ -1644,7 +1650,7 @@ struct server_context {
|
||||
} break;
|
||||
case SERVER_TASK_TYPE_SLOT_SAVE:
|
||||
{
|
||||
int id_slot = task.data["id_slot"];
|
||||
int id_slot = task.data.at("id_slot");
|
||||
server_slot * slot = get_slot(id_slot);
|
||||
if (slot == nullptr) {
|
||||
send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
|
||||
@@ -1654,8 +1660,8 @@ struct server_context {
|
||||
const size_t token_count = slot->cache_tokens.size();
|
||||
const int64_t t_start = ggml_time_us();
|
||||
|
||||
std::string filename = task.data["filename"];
|
||||
std::string filepath = task.data["filepath"];
|
||||
std::string filename = task.data.at("filename");
|
||||
std::string filepath = task.data.at("filepath");
|
||||
|
||||
const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id + 1, slot->cache_tokens.data(), token_count);
|
||||
|
||||
@@ -1679,7 +1685,7 @@ struct server_context {
|
||||
} break;
|
||||
case SERVER_TASK_TYPE_SLOT_RESTORE:
|
||||
{
|
||||
int id_slot = task.data["id_slot"];
|
||||
int id_slot = task.data.at("id_slot");
|
||||
server_slot * slot = get_slot(id_slot);
|
||||
if (slot == nullptr) {
|
||||
send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
|
||||
@@ -1688,8 +1694,8 @@ struct server_context {
|
||||
|
||||
const int64_t t_start = ggml_time_us();
|
||||
|
||||
std::string filename = task.data["filename"];
|
||||
std::string filepath = task.data["filepath"];
|
||||
std::string filename = task.data.at("filename");
|
||||
std::string filepath = task.data.at("filepath");
|
||||
|
||||
slot->cache_tokens.resize(slot->n_ctx);
|
||||
size_t token_count = 0;
|
||||
@@ -1721,7 +1727,7 @@ struct server_context {
|
||||
} break;
|
||||
case SERVER_TASK_TYPE_SLOT_ERASE:
|
||||
{
|
||||
int id_slot = task.data["id_slot"];
|
||||
int id_slot = task.data.at("id_slot");
|
||||
server_slot * slot = get_slot(id_slot);
|
||||
if (slot == nullptr) {
|
||||
send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
|
||||
@@ -2268,10 +2274,10 @@ struct server_context {
|
||||
|
||||
const size_t n_probs = std::min(cur_p.size, (size_t) slot.sparams.n_probs);
|
||||
if (n_probs > 0) {
|
||||
const size_t n_considered = slot.ctx_sampling->n_considered;
|
||||
const size_t n_valid = slot.ctx_sampling->n_valid;
|
||||
|
||||
// Make sure at least n_probs top tokens are at the front of the vector:
|
||||
if (slot.sparams.temp == 0.0f && n_probs > n_considered) {
|
||||
if (slot.sparams.temp == 0.0f && n_probs > n_valid) {
|
||||
llama_sample_top_k(ctx, &cur_p, n_probs, 0);
|
||||
}
|
||||
|
||||
@@ -2287,7 +2293,7 @@ struct server_context {
|
||||
for (size_t i = 0; i < n_probs; ++i) {
|
||||
result.probs.push_back({
|
||||
cur_p.data[i].id,
|
||||
i >= n_considered ? 0.0f : cur_p.data[i].p // Tokens filtered out due to e.g. top_k have 0 probability.
|
||||
i >= n_valid ? 0.0f : cur_p.data[i].p // Tokens filtered out due to e.g. top_k have 0 probability.
|
||||
});
|
||||
}
|
||||
}
|
||||
@@ -2381,6 +2387,7 @@ static void server_print_usage(const char * argv0, const gpt_params & params, co
|
||||
printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
|
||||
printf(" --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str());
|
||||
printf(" --port PORT port to listen (default (default: %d)\n", sparams.port);
|
||||
printf(" --rpc SERVERS comma separated list of RPC servers\n");
|
||||
printf(" --path PUBLIC_PATH path from which to serve static files (default: disabled)\n");
|
||||
printf(" --api-key API_KEY optional api key to enhance server security. If set, requests must include this key for access.\n");
|
||||
printf(" --api-key-file FNAME path to file containing api keys delimited by new lines. If set, requests must include one of the keys for access.\n");
|
||||
@@ -2433,6 +2440,12 @@ static void server_params_parse(int argc, char ** argv, server_params & sparams,
|
||||
break;
|
||||
}
|
||||
sparams.port = std::stoi(argv[i]);
|
||||
} else if (arg == "--rpc") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.rpc_servers = argv[i];
|
||||
} else if (arg == "--host") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@@ -2916,7 +2929,7 @@ int main(int argc, char ** argv) {
|
||||
server_params_parse(argc, argv, sparams, params);
|
||||
|
||||
if (!sparams.system_prompt.empty()) {
|
||||
ctx_server.system_prompt_set(json::parse(sparams.system_prompt));
|
||||
ctx_server.system_prompt_set(sparams.system_prompt);
|
||||
}
|
||||
|
||||
if (params.model_alias == "unknown") {
|
||||
@@ -3136,8 +3149,8 @@ int main(int argc, char ** argv) {
|
||||
server_task_result result = ctx_server.queue_results.recv(task.id);
|
||||
ctx_server.queue_results.remove_waiting_task_id(task.id);
|
||||
|
||||
const int n_idle_slots = result.data["idle"];
|
||||
const int n_processing_slots = result.data["processing"];
|
||||
const int n_idle_slots = result.data.at("idle");
|
||||
const int n_processing_slots = result.data.at("processing");
|
||||
|
||||
json health = {
|
||||
{"status", "ok"},
|
||||
@@ -3147,7 +3160,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
res.status = 200; // HTTP OK
|
||||
if (sparams.slots_endpoint && req.has_param("include_slots")) {
|
||||
health["slots"] = result.data["slots"];
|
||||
health["slots"] = result.data.at("slots");
|
||||
}
|
||||
|
||||
if (n_idle_slots == 0) {
|
||||
@@ -3191,7 +3204,7 @@ int main(int argc, char ** argv) {
|
||||
server_task_result result = ctx_server.queue_results.recv(task.id);
|
||||
ctx_server.queue_results.remove_waiting_task_id(task.id);
|
||||
|
||||
res.set_content(result.data["slots"].dump(), "application/json");
|
||||
res.set_content(result.data.at("slots").dump(), "application/json");
|
||||
res.status = 200; // HTTP OK
|
||||
};
|
||||
|
||||
@@ -3218,32 +3231,32 @@ int main(int argc, char ** argv) {
|
||||
|
||||
json data = result.data;
|
||||
|
||||
const uint64_t n_prompt_tokens_processed = data["n_prompt_tokens_processed"];
|
||||
const uint64_t t_prompt_processing = data["t_prompt_processing"];
|
||||
const uint64_t n_prompt_tokens_processed = data.at("n_prompt_tokens_processed");
|
||||
const uint64_t t_prompt_processing = data.at("t_prompt_processing");
|
||||
|
||||
const uint64_t n_tokens_predicted = data["n_tokens_predicted"];
|
||||
const uint64_t t_tokens_generation = data["t_tokens_generation"];
|
||||
const uint64_t n_tokens_predicted = data.at("n_tokens_predicted");
|
||||
const uint64_t t_tokens_generation = data.at("t_tokens_generation");
|
||||
|
||||
const int32_t kv_cache_used_cells = data["kv_cache_used_cells"];
|
||||
const int32_t kv_cache_used_cells = data.at("kv_cache_used_cells");
|
||||
|
||||
// metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
|
||||
json all_metrics_def = json {
|
||||
{"counter", {{
|
||||
{"name", "prompt_tokens_total"},
|
||||
{"help", "Number of prompt tokens processed."},
|
||||
{"value", (uint64_t) data["n_prompt_tokens_processed_total"]}
|
||||
{"value", (uint64_t) data.at("n_prompt_tokens_processed_total")}
|
||||
}, {
|
||||
{"name", "prompt_seconds_total"},
|
||||
{"help", "Prompt process time"},
|
||||
{"value", (uint64_t) data["t_prompt_processing_total"] / 1.e3}
|
||||
{"value", (uint64_t) data.at("t_prompt_processing_total") / 1.e3}
|
||||
}, {
|
||||
{"name", "tokens_predicted_total"},
|
||||
{"help", "Number of generation tokens processed."},
|
||||
{"value", (uint64_t) data["n_tokens_predicted_total"]}
|
||||
{"value", (uint64_t) data.at("n_tokens_predicted_total")}
|
||||
}, {
|
||||
{"name", "tokens_predicted_seconds_total"},
|
||||
{"help", "Predict process time"},
|
||||
{"value", (uint64_t) data["t_tokens_generation_total"] / 1.e3}
|
||||
{"value", (uint64_t) data.at("t_tokens_generation_total") / 1.e3}
|
||||
}}},
|
||||
{"gauge", {{
|
||||
{"name", "prompt_tokens_seconds"},
|
||||
@@ -3260,15 +3273,15 @@ int main(int argc, char ** argv) {
|
||||
},{
|
||||
{"name", "kv_cache_tokens"},
|
||||
{"help", "KV-cache tokens."},
|
||||
{"value", (uint64_t) data["kv_cache_tokens_count"]}
|
||||
{"value", (uint64_t) data.at("kv_cache_tokens_count")}
|
||||
},{
|
||||
{"name", "requests_processing"},
|
||||
{"help", "Number of request processing."},
|
||||
{"value", (uint64_t) data["processing"]}
|
||||
{"value", (uint64_t) data.at("processing")}
|
||||
},{
|
||||
{"name", "requests_deferred"},
|
||||
{"help", "Number of request deferred."},
|
||||
{"value", (uint64_t) data["deferred"]}
|
||||
{"value", (uint64_t) data.at("deferred")}
|
||||
}}}
|
||||
};
|
||||
|
||||
@@ -3279,8 +3292,8 @@ int main(int argc, char ** argv) {
|
||||
const auto & metrics_def = el.value();
|
||||
|
||||
for (const auto & metric_def : metrics_def) {
|
||||
const std::string name = metric_def["name"];
|
||||
const std::string help = metric_def["help"];
|
||||
const std::string name = metric_def.at("name");
|
||||
const std::string help = metric_def.at("help");
|
||||
|
||||
auto value = json_value(metric_def, "value", 0.);
|
||||
prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
|
||||
@@ -3289,7 +3302,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
|
||||
const int64_t t_start = data["t_start"];
|
||||
const int64_t t_start = data.at("t_start");
|
||||
res.set_header("Process-Start-Time-Unix", std::to_string(t_start));
|
||||
|
||||
res.set_content(prometheus.str(), "text/plain; version=0.0.4");
|
||||
@@ -3298,7 +3311,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
const auto handle_slots_save = [&ctx_server, &res_error, &sparams](const httplib::Request & req, httplib::Response & res, int id_slot) {
|
||||
json request_data = json::parse(req.body);
|
||||
std::string filename = request_data["filename"];
|
||||
std::string filename = request_data.at("filename");
|
||||
if (!validate_file_name(filename)) {
|
||||
res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
|
||||
return;
|
||||
@@ -3328,7 +3341,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
const auto handle_slots_restore = [&ctx_server, &res_error, &sparams](const httplib::Request & req, httplib::Response & res, int id_slot) {
|
||||
json request_data = json::parse(req.body);
|
||||
std::string filename = request_data["filename"];
|
||||
std::string filename = request_data.at("filename");
|
||||
if (!validate_file_name(filename)) {
|
||||
res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
|
||||
return;
|
||||
@@ -3405,8 +3418,7 @@ int main(int argc, char ** argv) {
|
||||
const auto handle_props = [&ctx_server](const httplib::Request & req, httplib::Response & res) {
|
||||
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
||||
json data = {
|
||||
{ "user_name", ctx_server.name_user.c_str() },
|
||||
{ "assistant_name", ctx_server.name_assistant.c_str() },
|
||||
{ "system_prompt", ctx_server.system_prompt.c_str() },
|
||||
{ "default_generation_settings", ctx_server.default_generation_settings_for_props },
|
||||
{ "total_slots", ctx_server.params.n_parallel }
|
||||
};
|
||||
@@ -3648,7 +3660,7 @@ int main(int argc, char ** argv) {
|
||||
std::vector<llama_token> tokens;
|
||||
if (body.count("content") != 0) {
|
||||
const bool add_special = json_value(body, "add_special", false);
|
||||
tokens = ctx_server.tokenize(body["content"], add_special);
|
||||
tokens = ctx_server.tokenize(body.at("content"), add_special);
|
||||
}
|
||||
const json data = format_tokenizer_response(tokens);
|
||||
return res.set_content(data.dump(), "application/json; charset=utf-8");
|
||||
@@ -3660,7 +3672,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
std::string content;
|
||||
if (body.count("tokens") != 0) {
|
||||
const std::vector<llama_token> tokens = body["tokens"];
|
||||
const std::vector<llama_token> tokens = body.at("tokens");
|
||||
content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend());
|
||||
}
|
||||
|
||||
@@ -3683,10 +3695,10 @@ int main(int argc, char ** argv) {
|
||||
json prompt;
|
||||
if (body.count("input") != 0) {
|
||||
is_openai = true;
|
||||
prompt = body["input"];
|
||||
prompt = body.at("input");
|
||||
} else if (body.count("content") != 0) {
|
||||
// with "content", we only support single prompt
|
||||
prompt = std::vector<std::string>{body["content"]};
|
||||
prompt = std::vector<std::string>{body.at("content")};
|
||||
} else {
|
||||
res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
|
||||
return;
|
||||
@@ -3705,7 +3717,7 @@ int main(int argc, char ** argv) {
|
||||
if (!result.error) {
|
||||
if (result.data.count("results")) {
|
||||
// result for multi-task
|
||||
responses = result.data["results"];
|
||||
responses = result.data.at("results");
|
||||
} else {
|
||||
// result for single task
|
||||
responses = std::vector<json>{result.data};
|
||||
|
||||
@@ -887,6 +887,7 @@ async def oai_chat_completions(user_prompt,
|
||||
base_path,
|
||||
async_client,
|
||||
debug=False,
|
||||
temperature=None,
|
||||
model=None,
|
||||
n_predict=None,
|
||||
enable_streaming=None,
|
||||
@@ -913,7 +914,8 @@ async def oai_chat_completions(user_prompt,
|
||||
"model": model,
|
||||
"max_tokens": n_predict,
|
||||
"stream": enable_streaming,
|
||||
"seed": seed
|
||||
"temperature": temperature if temperature is not None else 0.0,
|
||||
"seed": seed,
|
||||
}
|
||||
if response_format is not None:
|
||||
payload['response_format'] = response_format
|
||||
@@ -939,7 +941,7 @@ async def oai_chat_completions(user_prompt,
|
||||
while event_received:
|
||||
event_received = False
|
||||
async for line_in_bytes in response.content:
|
||||
line = line_in_bytes.decode('utf8')
|
||||
line = line_in_bytes.decode('utf-8')
|
||||
line = line.rstrip('\n').rstrip('\r')
|
||||
if line == '':
|
||||
continue
|
||||
@@ -978,7 +980,8 @@ async def oai_chat_completions(user_prompt,
|
||||
max_tokens=n_predict,
|
||||
stream=enable_streaming,
|
||||
response_format=payload.get('response_format'),
|
||||
seed=seed
|
||||
seed=seed,
|
||||
temperature=payload['temperature']
|
||||
)
|
||||
except openai.error.AuthenticationError as e:
|
||||
if expect_api_error is not None and expect_api_error:
|
||||
|
||||
5
examples/server/themes/README.md
Normal file
@@ -0,0 +1,5 @@
|
||||
# LLaMA.cpp Server Wild Theme
|
||||
|
||||
Simple themes directory of sample "public" directories. To try any of these add --path to your run like `server --path=wild`.
|
||||
|
||||

|
||||
7
examples/server/themes/buttons-top/README.md
Normal file
@@ -0,0 +1,7 @@
|
||||
# LLaMA.cpp Server Buttons Top Theme
|
||||
|
||||
Simple tweaks to the UI. Chat buttons at the top of the page instead of bottom so you can hit Stop instead of chasing it down the page.
|
||||
|
||||
To use simply run server with `--path=themes/buttons_top`
|
||||
|
||||

|
||||
BIN
examples/server/themes/buttons-top/buttons_top.png
Normal file
|
After Width: | Height: | Size: 117 KiB |
BIN
examples/server/themes/buttons-top/favicon.ico
Normal file
|
After Width: | Height: | Size: 4.0 KiB |
1057
examples/server/themes/buttons-top/index.html
Normal file
5
examples/server/themes/wild/README.md
Normal file
@@ -0,0 +1,5 @@
|
||||
# LLaMA.cpp Server Wild Theme
|
||||
|
||||
Simple tweaks to the UI. To use simply run server with `--path=themes/wild`
|
||||
|
||||

|
||||
BIN
examples/server/themes/wild/favicon.ico
Normal file
|
After Width: | Height: | Size: 4.0 KiB |
1061
examples/server/themes/wild/index.html
Normal file
BIN
examples/server/themes/wild/llama_cpp.png
Normal file
|
After Width: | Height: | Size: 75 KiB |
BIN
examples/server/themes/wild/llamapattern.png
Normal file
|
After Width: | Height: | Size: 254 KiB |
BIN
examples/server/themes/wild/wild.png
Normal file
|
After Width: | Height: | Size: 485 KiB |
@@ -3,6 +3,8 @@
|
||||
#include "llama.h"
|
||||
#include "common.h"
|
||||
|
||||
// Change JSON_ASSERT from assert() to GGML_ASSERT:
|
||||
#define JSON_ASSERT GGML_ASSERT
|
||||
#include "json.hpp"
|
||||
|
||||
#include <string>
|
||||
@@ -369,15 +371,15 @@ static json oaicompat_completion_params_parse(
|
||||
llama_params["presence_penalty"] = json_value(body, "presence_penalty", 0.0);
|
||||
llama_params["seed"] = json_value(body, "seed", LLAMA_DEFAULT_SEED);
|
||||
llama_params["stream"] = json_value(body, "stream", false);
|
||||
llama_params["temperature"] = json_value(body, "temperature", 0.0);
|
||||
llama_params["temperature"] = json_value(body, "temperature", 1.0);
|
||||
llama_params["top_p"] = json_value(body, "top_p", 1.0);
|
||||
|
||||
// Apply chat template to the list of messages
|
||||
llama_params["prompt"] = format_chat(model, chat_template, body["messages"]);
|
||||
llama_params["prompt"] = format_chat(model, chat_template, body.at("messages"));
|
||||
|
||||
// Handle "stop" field
|
||||
if (body.contains("stop") && body["stop"].is_string()) {
|
||||
llama_params["stop"] = json::array({body["stop"].get<std::string>()});
|
||||
if (body.contains("stop") && body.at("stop").is_string()) {
|
||||
llama_params["stop"] = json::array({body.at("stop").get<std::string>()});
|
||||
} else {
|
||||
llama_params["stop"] = json_value(body, "stop", json::array());
|
||||
}
|
||||
|
||||
@@ -1182,9 +1182,9 @@ static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, st
|
||||
static char * fmt_size(size_t size) {
|
||||
static char buffer[128];
|
||||
if (size >= 1024*1024) {
|
||||
sprintf(buffer, "%zuM", size/1024/1024);
|
||||
snprintf(buffer, sizeof(buffer), "%zuM", size/1024/1024);
|
||||
} else {
|
||||
sprintf(buffer, "%zuK", size/1024);
|
||||
snprintf(buffer, sizeof(buffer), "%zuK", size/1024);
|
||||
}
|
||||
return buffer;
|
||||
}
|
||||
@@ -1895,7 +1895,6 @@ void ggml_backend_view_init(ggml_backend_buffer_t buffer, struct ggml_tensor * t
|
||||
|
||||
tensor->buffer = buffer;
|
||||
tensor->data = (char *)tensor->view_src->data + tensor->view_offs;
|
||||
tensor->backend = tensor->view_src->backend;
|
||||
ggml_backend_buffer_init_tensor(buffer, tensor);
|
||||
}
|
||||
|
||||
|
||||
320
ggml-cuda.cu
@@ -4,7 +4,6 @@
|
||||
|
||||
#include "ggml-cuda/common.cuh"
|
||||
#include "ggml-cuda/acc.cuh"
|
||||
#include "ggml-cuda/alibi.cuh"
|
||||
#include "ggml-cuda/arange.cuh"
|
||||
#include "ggml-cuda/argsort.cuh"
|
||||
#include "ggml-cuda/binbcast.cuh"
|
||||
@@ -1647,7 +1646,7 @@ static void ggml_cuda_op_mul_mat(
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_cuda_mul_mat_vec_p021(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
|
||||
static void ggml_cuda_mul_mat_vec_p021(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
|
||||
GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
|
||||
GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
|
||||
@@ -1670,7 +1669,7 @@ static void ggml_cuda_mul_mat_vec_p021(ggml_backend_cuda_context & ctx, const gg
|
||||
ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, main_stream);
|
||||
}
|
||||
|
||||
static void ggml_cuda_mul_mat_vec_nc(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
|
||||
static void ggml_cuda_mul_mat_vec_nc(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
GGML_ASSERT(!ggml_is_transposed(src0));
|
||||
GGML_ASSERT(!ggml_is_transposed(src1));
|
||||
GGML_ASSERT(!ggml_is_permuted(src0));
|
||||
@@ -2205,6 +2204,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
||||
case GGML_UNARY_OP_RELU:
|
||||
ggml_cuda_op_relu(ctx, dst);
|
||||
break;
|
||||
case GGML_UNARY_OP_SIGMOID:
|
||||
ggml_cuda_op_sigmoid(ctx, dst);
|
||||
break;
|
||||
case GGML_UNARY_OP_HARDSIGMOID:
|
||||
ggml_cuda_op_hardsigmoid(ctx, dst);
|
||||
break;
|
||||
@@ -2277,9 +2279,6 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
||||
case GGML_OP_ROPE:
|
||||
ggml_cuda_op_rope(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_ALIBI:
|
||||
ggml_cuda_op_alibi(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_IM2COL:
|
||||
ggml_cuda_op_im2col(ctx, dst);
|
||||
break;
|
||||
@@ -2410,44 +2409,318 @@ GGML_CALL static void ggml_backend_cuda_synchronize(ggml_backend_t backend) {
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
static void set_ggml_graph_node_properties(ggml_tensor * node, ggml_graph_node_properties * graph_node_properties) {
|
||||
graph_node_properties->node_address = node->data;
|
||||
graph_node_properties->node_op = node->op;
|
||||
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||||
graph_node_properties->ne[i] = node->ne[i];
|
||||
graph_node_properties->nb[i] = node->nb[i];
|
||||
}
|
||||
for (int i = 0; i < GGML_MAX_SRC; i++) {
|
||||
graph_node_properties->src_address[i] = node->src[i] ? node->src[i]->data : nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_graph_node_properties * graph_node_properties) {
|
||||
if (node->data != graph_node_properties->node_address &&
|
||||
node->op != GGML_OP_CPY &&
|
||||
node->op != GGML_OP_VIEW) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (node->op != graph_node_properties->node_op) {
|
||||
return false;
|
||||
}
|
||||
|
||||
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||||
if (node->ne[i] != graph_node_properties->ne[i]) {
|
||||
return false;
|
||||
}
|
||||
if (node->nb[i] != graph_node_properties->nb[i]) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < GGML_MAX_SRC; i++) {
|
||||
if (node->src[i] &&
|
||||
node->src[i]->data != graph_node_properties->src_address[i] &&
|
||||
node->op != GGML_OP_CPY &&
|
||||
node->op != GGML_OP_VIEW
|
||||
) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
|
||||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
||||
|
||||
ggml_cuda_set_device(cuda_ctx->device);
|
||||
|
||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
ggml_tensor * node = cgraph->nodes[i];
|
||||
#ifdef USE_CUDA_GRAPH
|
||||
static const bool disable_cuda_graphs_due_to_env = (getenv("GGML_CUDA_DISABLE_GRAPHS") != nullptr);
|
||||
|
||||
if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
|
||||
continue;
|
||||
// Objects required for CUDA Graph
|
||||
if (cuda_ctx->cuda_graph == nullptr) {
|
||||
cuda_ctx->cuda_graph.reset(new ggml_cuda_graph());
|
||||
}
|
||||
|
||||
bool use_cuda_graph = true;
|
||||
bool cuda_graph_update_required = false;
|
||||
// pointer to CUDA cpy kernel, which is required to identify
|
||||
// kernel parameters which need updated in the graph for each token
|
||||
void * ggml_cuda_cpy_fn_ptr = nullptr;
|
||||
|
||||
if (cuda_ctx->cuda_graph->graph == nullptr) {
|
||||
if (ggml_cuda_info().devices[cuda_ctx->device].cc < CC_AMPERE) {
|
||||
cuda_ctx->cuda_graph->disable_due_to_gpu_arch = true;
|
||||
#ifndef NDEBUG
|
||||
fprintf(stderr, "%s: disabling CUDA graphs due to GPU architecture\n", __func__);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
// Disable CUDA graphs in presence of env var, old GPU, use-case which is changing too rapidly,
|
||||
// or previous graph capture failure.
|
||||
// Also disable for multi-gpu for now. TO DO investigate
|
||||
if (disable_cuda_graphs_due_to_env
|
||||
|| cuda_ctx->cuda_graph->disable_due_to_gpu_arch
|
||||
|| cuda_ctx->cuda_graph->disable_due_to_too_many_updates
|
||||
|| cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture) {
|
||||
use_cuda_graph = false;
|
||||
}
|
||||
|
||||
if (use_cuda_graph) {
|
||||
if (cuda_ctx->cuda_graph->instance == nullptr) {
|
||||
cuda_graph_update_required = true;
|
||||
}
|
||||
|
||||
// Check if the graph size has changed
|
||||
if (cuda_ctx->cuda_graph->ggml_graph_properties.size() != (size_t)cgraph->n_nodes) {
|
||||
cuda_graph_update_required = true;
|
||||
cuda_ctx->cuda_graph->ggml_graph_properties.resize(cgraph->n_nodes);
|
||||
}
|
||||
|
||||
// Loop over nodes in GGML graph to determine if CUDA graph update is required
|
||||
// and store properties to allow this comparison for the next token
|
||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
bool has_matching_properties = true;
|
||||
if (!cuda_graph_update_required) {
|
||||
has_matching_properties = ggml_graph_node_has_matching_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]);
|
||||
}
|
||||
if (!has_matching_properties) {
|
||||
cuda_graph_update_required = true;
|
||||
}
|
||||
set_ggml_graph_node_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]);
|
||||
}
|
||||
|
||||
// Loop over nodes in GGML graph to obtain info needed for CUDA graph
|
||||
cuda_ctx->cuda_graph->updated_kernel_arg.clear();
|
||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
ggml_tensor * node = cgraph->nodes[i];
|
||||
|
||||
if (node->src[0] && ggml_backend_buffer_is_cuda_split(node->src[0]->buffer)) {
|
||||
use_cuda_graph = false; // Split buffers are not supported by CUDA graph capture
|
||||
#ifndef NDEBUG
|
||||
assert(node->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device));
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
if (node->src[j] != nullptr) {
|
||||
assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) || ggml_backend_buffer_is_cuda_split(node->src[j]->buffer));
|
||||
fprintf(stderr, "%s: disabling CUDA graphs due to split buffer\n", __func__);
|
||||
#endif
|
||||
}
|
||||
|
||||
if (node->op == GGML_OP_MUL_MAT_ID) {
|
||||
use_cuda_graph = false; // This node type is not supported by CUDA graph capture
|
||||
#ifndef NDEBUG
|
||||
fprintf(stderr, "%s: disabling CUDA graphs due to mul_mat_id\n", __func__);
|
||||
#endif
|
||||
}
|
||||
|
||||
if (node->op == GGML_OP_ADD && node->src[1] && node->src[1]->ne[1] > 1) {
|
||||
// disable CUDA graphs for batch size > 1 for now.
|
||||
// Changes in batch size or context size can cause changes to the grid size of some kernels.
|
||||
use_cuda_graph = false;
|
||||
#ifndef NDEBUG
|
||||
fprintf(stderr, "%s: disabling CUDA graphs due to batch size > 1 [%s] [%ld %ld %ld %ld]\n", __func__, node->name, node->ne[0], node->ne[1], node->ne[2], node->ne[3]);
|
||||
#endif
|
||||
}
|
||||
|
||||
if (node->op == GGML_OP_CPY) {
|
||||
// store the copy op parameter which changes with each token.
|
||||
cuda_ctx->cuda_graph->updated_kernel_arg.push_back((char **) &(node->src[1]->data));
|
||||
if (ggml_cuda_cpy_fn_ptr == nullptr) {
|
||||
// store a pointer to the copy op CUDA kernel to identify it later
|
||||
ggml_cuda_cpy_fn_ptr = ggml_cuda_cpy_fn(node->src[0], node->src[1]);
|
||||
}
|
||||
}
|
||||
|
||||
if (!use_cuda_graph) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Disable CUDA graphs (from the next token) if the use-case is demanding too many consecutive graph updates.
|
||||
if (use_cuda_graph && cuda_graph_update_required) {
|
||||
cuda_ctx->cuda_graph->number_consecutive_updates++;
|
||||
} else {
|
||||
cuda_ctx->cuda_graph->number_consecutive_updates = 0;
|
||||
}
|
||||
|
||||
if (cuda_ctx->cuda_graph->number_consecutive_updates >= 4) {
|
||||
cuda_ctx->cuda_graph->disable_due_to_too_many_updates = true;
|
||||
#ifndef NDEBUG
|
||||
fprintf(stderr, "%s: disabling CUDA graphs due to too many consecutive updates\n", __func__);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
if (use_cuda_graph && cuda_graph_update_required) { // Start CUDA graph capture
|
||||
CUDA_CHECK(cudaStreamBeginCapture(cuda_ctx->stream(), cudaStreamCaptureModeRelaxed));
|
||||
}
|
||||
|
||||
#else
|
||||
bool use_cuda_graph = false;
|
||||
bool cuda_graph_update_required = false;
|
||||
#endif // USE_CUDA_GRAPH
|
||||
|
||||
bool graph_evaluated_or_captured = false;
|
||||
|
||||
while (!graph_evaluated_or_captured) {
|
||||
// Only perform the graph execution if CUDA graphs are not enabled, or we are capturing the graph.
|
||||
// With the use of CUDA graphs, the execution will be performed by the graph launch.
|
||||
if (!use_cuda_graph || cuda_graph_update_required) {
|
||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
ggml_tensor * node = cgraph->nodes[i];
|
||||
|
||||
if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
|
||||
continue;
|
||||
}
|
||||
|
||||
#ifndef NDEBUG
|
||||
assert(node->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device));
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
if (node->src[j] != nullptr) {
|
||||
assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) || ggml_backend_buffer_is_cuda_split(node->src[j]->buffer));
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
bool ok = ggml_cuda_compute_forward(*cuda_ctx, node);
|
||||
if (!ok) {
|
||||
fprintf(stderr, "%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
|
||||
bool ok = ggml_cuda_compute_forward(*cuda_ctx, node);
|
||||
if (!ok) {
|
||||
fprintf(stderr, "%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
|
||||
}
|
||||
GGML_ASSERT(ok);
|
||||
}
|
||||
}
|
||||
GGML_ASSERT(ok);
|
||||
|
||||
#ifdef USE_CUDA_GRAPH
|
||||
if (use_cuda_graph && cuda_graph_update_required) { // End CUDA graph capture
|
||||
if (cuda_ctx->cuda_graph->graph != nullptr) {
|
||||
CUDA_CHECK(cudaGraphDestroy(cuda_ctx->cuda_graph->graph));
|
||||
cuda_ctx->cuda_graph->graph = nullptr;
|
||||
}
|
||||
CUDA_CHECK(cudaStreamEndCapture(cuda_ctx->stream(), &cuda_ctx->cuda_graph->graph));
|
||||
|
||||
#if 0
|
||||
if (disable_cuda_graphs_due_to_failed_capture) {
|
||||
use_cuda_graph = false;
|
||||
cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture = true;
|
||||
#ifndef NDEBUG
|
||||
fprintf(stderr, "%s: disabling CUDA graphs due to failed graph capture\n", __func__);
|
||||
#endif
|
||||
} else {
|
||||
graph_evaluated_or_captured = true; // CUDA graph has been captured
|
||||
}
|
||||
#endif
|
||||
graph_evaluated_or_captured = true; // CUDA graph has been captured
|
||||
} else {
|
||||
graph_evaluated_or_captured = true; // ggml graph has been directly evaluated
|
||||
}
|
||||
}
|
||||
|
||||
if (use_cuda_graph) {
|
||||
if (cuda_ctx->cuda_graph->instance == nullptr) { // Create executable graph from captured graph.
|
||||
CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0));
|
||||
}
|
||||
|
||||
// Perform update to graph (if required for this token), and change copy parameter (required for every token)
|
||||
|
||||
if (cuda_graph_update_required) {
|
||||
// Extract nodes from graph
|
||||
if (cuda_ctx->cuda_graph->num_nodes == 0) {
|
||||
// First call with null argument gets number of nodes in graph
|
||||
CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, nullptr, &cuda_ctx->cuda_graph->num_nodes));
|
||||
}
|
||||
// Subsequent call with non-null argument gets nodes
|
||||
cuda_ctx->cuda_graph->nodes.resize(cuda_ctx->cuda_graph->num_nodes);
|
||||
cuda_ctx->cuda_graph->params.resize(cuda_ctx->cuda_graph->num_nodes);
|
||||
if (cuda_ctx->cuda_graph->num_nodes > 0) {
|
||||
CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, cuda_ctx->cuda_graph->nodes.data(), &cuda_ctx->cuda_graph->num_nodes));
|
||||
|
||||
// Loop over nodes, and extract kernel parameters from each node
|
||||
for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) {
|
||||
cudaGraphNodeType node_type;
|
||||
CUDA_CHECK(cudaGraphNodeGetType(cuda_ctx->cuda_graph->nodes[i], &node_type));
|
||||
if (node_type == cudaGraphNodeTypeKernel) {
|
||||
cudaError_t stat = cudaGraphKernelNodeGetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]); // Get params using runtime
|
||||
if (stat == cudaErrorInvalidDeviceFunction) {
|
||||
// Fails due to incorrect handling by CUDA runtime of CUDA BLAS node.
|
||||
// We don't need to update blas nodes, so clear error and move on.
|
||||
cudaGetLastError();
|
||||
} else {
|
||||
GGML_ASSERT(stat == cudaSuccess);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// One of the arguments to the copy kernel is updated for each token, hence we need to
|
||||
// replace that argument with the updated value in the CUDA graph
|
||||
if (!cuda_graph_update_required) { // on update steps, the live parameters will already be captured
|
||||
int k = 0;
|
||||
for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) {
|
||||
if (cuda_ctx->cuda_graph->params[i].func == ggml_cuda_cpy_fn_ptr) {
|
||||
char ** updated_kernel_arg_ptr = cuda_ctx->cuda_graph->updated_kernel_arg.at(k++);
|
||||
cuda_ctx->cuda_graph->params[i].kernelParams[1] = updated_kernel_arg_ptr;
|
||||
CUDA_CHECK(cudaGraphKernelNodeSetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Update graph executable
|
||||
cudaGraphExecUpdateResultInfo result_info;
|
||||
cudaError_t stat = cudaGraphExecUpdate(cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, &result_info);
|
||||
if (stat == cudaErrorGraphExecUpdateFailure) {
|
||||
#ifndef NDEBUG
|
||||
fprintf(stderr, "%s: CUDA graph update failed\n", __func__);
|
||||
#endif
|
||||
// The pre-existing graph exec cannot be updated due to violated constraints
|
||||
// so instead clear error and re-instantiate
|
||||
cudaGetLastError();
|
||||
CUDA_CHECK(cudaGraphExecDestroy(cuda_ctx->cuda_graph->instance));
|
||||
cuda_ctx->cuda_graph->instance = nullptr;
|
||||
CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0));
|
||||
} else {
|
||||
GGML_ASSERT(stat == cudaSuccess);
|
||||
}
|
||||
// Launch graph
|
||||
CUDA_CHECK(cudaGraphLaunch(cuda_ctx->cuda_graph->instance, cuda_ctx->stream()));
|
||||
#else
|
||||
graph_evaluated_or_captured = true;
|
||||
#endif // USE_CUDA_GRAPH
|
||||
}
|
||||
|
||||
return GGML_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
|
||||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *) backend->context;
|
||||
switch (op->op) {
|
||||
case GGML_OP_UNARY:
|
||||
switch (ggml_get_unary_op(op)) {
|
||||
case GGML_UNARY_OP_GELU:
|
||||
case GGML_UNARY_OP_SILU:
|
||||
case GGML_UNARY_OP_RELU:
|
||||
case GGML_UNARY_OP_SIGMOID:
|
||||
case GGML_UNARY_OP_HARDSIGMOID:
|
||||
case GGML_UNARY_OP_HARDSWISH:
|
||||
case GGML_UNARY_OP_GELU_QUICK:
|
||||
@@ -2557,7 +2830,6 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
|
||||
case GGML_OP_DIAG_MASK_INF:
|
||||
case GGML_OP_SOFT_MAX:
|
||||
case GGML_OP_ROPE:
|
||||
case GGML_OP_ALIBI:
|
||||
case GGML_OP_IM2COL:
|
||||
case GGML_OP_POOL_2D:
|
||||
case GGML_OP_SUM_ROWS:
|
||||
@@ -2569,8 +2841,16 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
|
||||
case GGML_OP_ARANGE:
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
case GGML_OP_LEAKY_RELU:
|
||||
case GGML_OP_FLASH_ATTN_EXT:
|
||||
return true;
|
||||
case GGML_OP_FLASH_ATTN_EXT:
|
||||
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
return op->src[0]->ne[0] == 64 || op->src[0]->ne[0] == 128;
|
||||
#else
|
||||
if (op->src[0]->ne[0] == 64 || op->src[0]->ne[0] == 128) {
|
||||
return true;
|
||||
}
|
||||
return ggml_cuda_info().devices[cuda_ctx->device].cc >= CC_VOLTA;
|
||||
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
|
||||
@@ -1,63 +0,0 @@
|
||||
#include "alibi.cuh"
|
||||
|
||||
static __global__ void alibi_f32(const float * x, float * dst, const int ncols, const int k_rows,
|
||||
const int n_heads_log2_floor, const float m0, const float m1) {
|
||||
const int col = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (col >= ncols) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int row = blockDim.y*blockIdx.y + threadIdx.y;
|
||||
const int i = row*ncols + col;
|
||||
|
||||
const int k = row/k_rows;
|
||||
|
||||
float m_k;
|
||||
if (k < n_heads_log2_floor) {
|
||||
m_k = powf(m0, k + 1);
|
||||
} else {
|
||||
m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
|
||||
}
|
||||
|
||||
dst[i] = col * m_k + x[i];
|
||||
}
|
||||
|
||||
static void alibi_f32_cuda(const float * x, float * dst, const int ncols, const int nrows,
|
||||
const int k_rows, const int n_heads_log2_floor, const float m0,
|
||||
const float m1, cudaStream_t stream) {
|
||||
const dim3 block_dims(CUDA_ALIBI_BLOCK_SIZE, 1, 1);
|
||||
const int num_blocks_x = (ncols + CUDA_ALIBI_BLOCK_SIZE - 1) / (CUDA_ALIBI_BLOCK_SIZE);
|
||||
const dim3 block_nums(num_blocks_x, nrows, 1);
|
||||
alibi_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, k_rows, n_heads_log2_floor, m0, m1);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_alibi(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
float * dst_d = (float *)dst->data;
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t ne01 = src0->ne[1];
|
||||
const int64_t ne02 = src0->ne[2];
|
||||
const int64_t nrows = ggml_nrows(src0);
|
||||
|
||||
//const int n_past = ((int32_t *) dst->op_params)[0];
|
||||
const int n_head = ((int32_t *) dst->op_params)[1];
|
||||
float max_bias;
|
||||
memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
|
||||
|
||||
//GGML_ASSERT(ne01 + n_past == ne00);
|
||||
GGML_ASSERT(n_head == ne02);
|
||||
|
||||
const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
|
||||
|
||||
const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
|
||||
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
|
||||
|
||||
alibi_f32_cuda(src0_d, dst_d, ne00, nrows, ne01, n_heads_log2_floor, m0, m1, stream);
|
||||
}
|
||||
@@ -1,5 +0,0 @@
|
||||
#include "common.cuh"
|
||||
|
||||
#define CUDA_ALIBI_BLOCK_SIZE 32
|
||||
|
||||
void ggml_cuda_op_alibi(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
@@ -31,5 +31,4 @@ void ggml_cuda_op_clamp(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
|
||||
|
||||
clamp_f32_cuda(src0_d, dst_d, min, max, ggml_nelements(src0), stream);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
}
|
||||
|
||||
@@ -19,6 +19,7 @@
|
||||
#include <cassert>
|
||||
#include <cfloat>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#if defined(GGML_USE_HIPBLAS)
|
||||
#include <hip/hip_runtime.h>
|
||||
@@ -233,122 +234,6 @@ typedef float dfloat; // dequantize float
|
||||
typedef float2 dfloat2;
|
||||
#endif //GGML_CUDA_F16
|
||||
|
||||
[[noreturn]]
|
||||
static __device__ void no_device_code(
|
||||
const char * file_name, const int line, const char * function_name, const int arch, const char * arch_list) {
|
||||
|
||||
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
printf("%s:%d: ERROR: HIP kernel %s has no device code compatible with HIP arch %d.\n",
|
||||
file_name, line, function_name, arch);
|
||||
GGML_UNUSED(arch_list);
|
||||
#else
|
||||
printf("%s:%d: ERROR: CUDA kernel %s has no device code compatible with CUDA arch %d. ggml-cuda.cu was compiled for: %s\n",
|
||||
file_name, line, function_name, arch, arch_list);
|
||||
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
__trap();
|
||||
|
||||
GGML_UNUSED(no_device_code); // suppress unused function warning
|
||||
}
|
||||
|
||||
#ifdef __CUDA_ARCH__
|
||||
#define NO_DEVICE_CODE no_device_code(__FILE__, __LINE__, __FUNCTION__, __CUDA_ARCH__, STRINGIZE(__CUDA_ARCH_LIST__))
|
||||
#else
|
||||
#define NO_DEVICE_CODE //GGML_ASSERT(false && "NO_DEVICE_CODE not valid in host code.")
|
||||
#endif // __CUDA_ARCH__
|
||||
|
||||
static __device__ __forceinline__ float warp_reduce_sum(float x) {
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
x += __shfl_xor_sync(0xffffffff, x, mask, 32);
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float2 warp_reduce_sum(float2 a) {
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
a.x += __shfl_xor_sync(0xffffffff, a.x, mask, 32);
|
||||
a.y += __shfl_xor_sync(0xffffffff, a.y, mask, 32);
|
||||
}
|
||||
return a;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) {
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
a = __hadd2(a, __shfl_xor_sync(0xffffffff, a, mask, 32));
|
||||
}
|
||||
return a;
|
||||
#else
|
||||
GGML_UNUSED(a);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float warp_reduce_max(float x) {
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
x = fmaxf(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ half ggml_cuda_hmax(const half a, const half b) {
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
|
||||
#if CUDART_VERSION >= CUDART_HMAX
|
||||
return __hmax(a, b);
|
||||
#else
|
||||
return __half2float(a) > __half2float(b) ? a : b;
|
||||
#endif // CUDART_VERSION >= CUDART_HMAX
|
||||
|
||||
#else
|
||||
GGML_UNUSED(a);
|
||||
GGML_UNUSED(b);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && CUDART_VERSION < CUDART_HMAX
|
||||
}
|
||||
static __device__ __forceinline__ half2 ggml_cuda_hmax2(const half2 a, const half2 b) {
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
|
||||
#if CUDART_VERSION >= CUDART_HMAX
|
||||
return __hmax2(a, b);
|
||||
#else
|
||||
half2 ret;
|
||||
reinterpret_cast<half&>(ret.x) = __low2float(a) > __low2float(b) ? __low2half(a) : __low2half(b);
|
||||
reinterpret_cast<half&>(ret.y) = __high2float(a) > __high2float(b) ? __high2half(a) : __high2half(b);
|
||||
return ret;
|
||||
#endif // CUDART_VERSION >= CUDART_HMAX
|
||||
|
||||
#else
|
||||
GGML_UNUSED(a);
|
||||
GGML_UNUSED(b);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && CUDART_VERSION < CUDART_HMAX
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ half2 warp_reduce_max(half2 x) {
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
x = ggml_cuda_hmax2(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
|
||||
}
|
||||
return x;
|
||||
#else
|
||||
GGML_UNUSED(x);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
|
||||
}
|
||||
|
||||
#if CUDART_VERSION < CUDART_HMASK
|
||||
static __device__ __forceinline__ uint32_t __hgt2_mask(const half2 a, const half2 b) {
|
||||
const uint32_t mask_low = 0x0000FFFF * (float( __low2half(a)) > float( __low2half(b)));
|
||||
const uint32_t mask_high = 0xFFFF0000 * (float(__high2half(a)) > float(__high2half(b)));
|
||||
return mask_low | mask_high;
|
||||
}
|
||||
#endif // CUDART_VERSION < 12000
|
||||
|
||||
#if defined(GGML_USE_HIPBLAS)
|
||||
#define __CUDA_ARCH__ 1300
|
||||
|
||||
@@ -432,11 +317,147 @@ static __device__ __forceinline__ int __dp4a(const int a, const int b, int c) {
|
||||
}
|
||||
#endif // defined(GGML_USE_HIPBLAS)
|
||||
|
||||
#define FP16_AVAILABLE defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) ? \
|
||||
defined(RDNA1) || defined(RDNA2) || defined(RDNA3) : __CUDA_ARCH__ >= CC_PASCAL
|
||||
#define FP16_AVAILABLE (defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= CC_PASCAL
|
||||
|
||||
#define FP16_MMA_AVAILABLE !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_VOLTA
|
||||
|
||||
static bool fast_fp16_available(const int cc) {
|
||||
return cc >= CC_PASCAL && cc != 610;
|
||||
}
|
||||
|
||||
static bool fp16_mma_available(const int cc) {
|
||||
return cc < CC_OFFSET_AMD && cc >= CC_VOLTA;
|
||||
}
|
||||
|
||||
[[noreturn]]
|
||||
static __device__ void no_device_code(
|
||||
const char * file_name, const int line, const char * function_name, const int arch, const char * arch_list) {
|
||||
|
||||
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
printf("%s:%d: ERROR: HIP kernel %s has no device code compatible with HIP arch %d.\n",
|
||||
file_name, line, function_name, arch);
|
||||
GGML_UNUSED(arch_list);
|
||||
#else
|
||||
printf("%s:%d: ERROR: CUDA kernel %s has no device code compatible with CUDA arch %d. ggml-cuda.cu was compiled for: %s\n",
|
||||
file_name, line, function_name, arch, arch_list);
|
||||
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
__trap();
|
||||
|
||||
GGML_UNUSED(no_device_code); // suppress unused function warning
|
||||
}
|
||||
|
||||
#ifdef __CUDA_ARCH__
|
||||
#define NO_DEVICE_CODE no_device_code(__FILE__, __LINE__, __FUNCTION__, __CUDA_ARCH__, STRINGIZE(__CUDA_ARCH_LIST__))
|
||||
#else
|
||||
#define NO_DEVICE_CODE //GGML_ASSERT(false && "NO_DEVICE_CODE not valid in host code.")
|
||||
#endif // __CUDA_ARCH__
|
||||
|
||||
static __device__ __forceinline__ float warp_reduce_sum(float x) {
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
x += __shfl_xor_sync(0xffffffff, x, mask, 32);
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float2 warp_reduce_sum(float2 a) {
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
a.x += __shfl_xor_sync(0xffffffff, a.x, mask, 32);
|
||||
a.y += __shfl_xor_sync(0xffffffff, a.y, mask, 32);
|
||||
}
|
||||
return a;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) {
|
||||
#if FP16_AVAILABLE
|
||||
|
||||
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
const half2 a_other = __shfl_xor_sync(0xffffffff, a, mask, 32);
|
||||
reinterpret_cast<half&>(a.x) += __low2half(a_other);
|
||||
reinterpret_cast<half&>(a.y) += __high2half(a_other);
|
||||
}
|
||||
return a;
|
||||
#else
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
a = __hadd2(a, __shfl_xor_sync(0xffffffff, a, mask, 32));
|
||||
}
|
||||
return a;
|
||||
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
||||
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
return a;
|
||||
#endif // FP16_AVAILABLE
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float warp_reduce_max(float x) {
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
x = fmaxf(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ half ggml_cuda_hmax(const half a, const half b) {
|
||||
#if FP16_AVAILABLE
|
||||
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && CUDART_VERSION < CUDART_HMAX
|
||||
return __float2half(fmaxf(__half2float(a), __half2float(b)));
|
||||
#else
|
||||
return __hmax(a, b);
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && CUDART_VERSION < CUDART_HMAX
|
||||
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
GGML_UNUSED(b);
|
||||
return a;
|
||||
#endif // FP16_AVAILABLE
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ half2 ggml_cuda_hmax2(const half2 a, const half2 b) {
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
|
||||
#if CUDART_VERSION >= CUDART_HMAX
|
||||
return __hmax2(a, b);
|
||||
#else
|
||||
half2 ret;
|
||||
reinterpret_cast<half&>(ret.x) = __float2half(fmaxf( __low2float(a), __low2float(b)));
|
||||
reinterpret_cast<half&>(ret.y) = __float2half(fmaxf(__high2float(a), __high2float(b)));
|
||||
return ret;
|
||||
#endif // CUDART_VERSION >= CUDART_HMAX
|
||||
|
||||
#else
|
||||
GGML_UNUSED(a);
|
||||
GGML_UNUSED(b);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ half2 warp_reduce_max(half2 x) {
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
x = ggml_cuda_hmax2(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
|
||||
}
|
||||
return x;
|
||||
#else
|
||||
GGML_UNUSED(x);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
|
||||
}
|
||||
|
||||
#if CUDART_VERSION < CUDART_HMASK
|
||||
static __device__ __forceinline__ uint32_t __hgt2_mask(const half2 a, const half2 b) {
|
||||
const uint32_t mask_low = 0x0000FFFF * (float( __low2half(a)) > float( __low2half(b)));
|
||||
const uint32_t mask_high = 0xFFFF0000 * (float(__high2half(a)) > float(__high2half(b)));
|
||||
return mask_low | mask_high;
|
||||
}
|
||||
#endif // CUDART_VERSION < 12000
|
||||
|
||||
// TODO: move to ggml-common.h
|
||||
static const __device__ int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
|
||||
|
||||
@@ -526,6 +547,43 @@ struct ggml_tensor_extra_gpu {
|
||||
cudaEvent_t events[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS]; // events for synchronizing multiple GPUs
|
||||
};
|
||||
|
||||
|
||||
#if (CUDART_VERSION >= 12000) && defined(GGML_CUDA_USE_GRAPHS)
|
||||
#define USE_CUDA_GRAPH
|
||||
#endif
|
||||
|
||||
struct ggml_graph_node_properties {
|
||||
void * node_address;
|
||||
ggml_op node_op;
|
||||
int64_t ne[GGML_MAX_DIMS];
|
||||
size_t nb[GGML_MAX_DIMS];
|
||||
void * src_address[GGML_MAX_SRC];
|
||||
};
|
||||
|
||||
struct ggml_cuda_graph {
|
||||
#ifdef USE_CUDA_GRAPH
|
||||
~ggml_cuda_graph() {
|
||||
if (instance != nullptr) {
|
||||
CUDA_CHECK(cudaGraphExecDestroy(instance));
|
||||
}
|
||||
if (graph != nullptr) {
|
||||
CUDA_CHECK(cudaGraphDestroy(graph));
|
||||
}
|
||||
}
|
||||
cudaGraph_t graph = nullptr;
|
||||
cudaGraphExec_t instance = nullptr;
|
||||
size_t num_nodes = 0;
|
||||
std::vector<cudaGraphNode_t> nodes;
|
||||
std::vector<cudaKernelNodeParams> params;
|
||||
bool disable_due_to_gpu_arch = false;
|
||||
bool disable_due_to_too_many_updates = false;
|
||||
bool disable_due_to_failed_graph_capture = false;
|
||||
int number_consecutive_updates = 0;
|
||||
std::vector<ggml_graph_node_properties> ggml_graph_properties;
|
||||
std::vector<char **> updated_kernel_arg;
|
||||
#endif
|
||||
};
|
||||
|
||||
struct ggml_backend_cuda_context {
|
||||
int device;
|
||||
std::string name;
|
||||
@@ -534,6 +592,8 @@ struct ggml_backend_cuda_context {
|
||||
cudaStream_t streams[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS] = { { nullptr } };
|
||||
cublasHandle_t cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};
|
||||
|
||||
std::unique_ptr<ggml_cuda_graph> cuda_graph;
|
||||
|
||||
explicit ggml_backend_cuda_context(int device) :
|
||||
device(device),
|
||||
name(GGML_CUDA_NAME + std::to_string(device)) {
|
||||
|
||||
@@ -727,7 +727,6 @@ static void convert_unary_cuda(const void * __restrict__ vx, dst_t * __restrict_
|
||||
}
|
||||
|
||||
to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) {
|
||||
int id;
|
||||
switch (type) {
|
||||
case GGML_TYPE_Q4_0:
|
||||
return dequantize_row_q4_0_cuda;
|
||||
@@ -738,8 +737,7 @@ to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) {
|
||||
case GGML_TYPE_Q5_1:
|
||||
return dequantize_block_cuda<QK5_1, QR5_1, dequantize_q5_1>;
|
||||
case GGML_TYPE_Q8_0:
|
||||
CUDA_CHECK(cudaGetDevice(&id));
|
||||
if (ggml_cuda_info().devices[id].cc >= CC_PASCAL) {
|
||||
if (ggml_cuda_info().devices[ggml_cuda_get_device()].cc >= CC_PASCAL) {
|
||||
return dequantize_block_q8_0_f16_cuda;
|
||||
}
|
||||
return dequantize_block_cuda<QK8_0, QR8_0, dequantize_q8_0>;
|
||||
|
||||
@@ -459,3 +459,32 @@ void ggml_cuda_dup(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
ggml_cuda_cpy(ctx, src0, dst);
|
||||
}
|
||||
|
||||
void* ggml_cuda_cpy_fn(const ggml_tensor * src0, ggml_tensor * src1) {
|
||||
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
|
||||
return (void*) cpy_f32_f16<cpy_1_f32_f32>;
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
|
||||
return (void*) cpy_f32_f16<cpy_1_f32_f16>;
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) {
|
||||
return (void*) cpy_f32_q<cpy_blck_f32_q8_0, QK8_0>;
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) {
|
||||
return (void*) cpy_f32_q<cpy_blck_f32_q4_0, QK4_0>;
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) {
|
||||
return (void*) cpy_f32_q<cpy_blck_f32_q4_1, QK4_1>;
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_0) {
|
||||
return (void*) cpy_f32_q<cpy_blck_f32_q5_0, QK5_0>;
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_IQ4_NL) {
|
||||
return (void*) cpy_f32_q<cpy_blck_f32_iq4_nl, QK4_NL>;
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_1) {
|
||||
return (void*) cpy_f32_q<cpy_blck_f32_q5_1, QK5_1>;
|
||||
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
|
||||
return (void*) cpy_f32_f16<cpy_1_f32_f16>;
|
||||
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
|
||||
return (void*) cpy_f32_f16<cpy_1_f16_f32>;
|
||||
} else {
|
||||
fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__,
|
||||
ggml_type_name(src0->type), ggml_type_name(src1->type));
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -5,3 +5,5 @@
|
||||
void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, ggml_tensor * src1);
|
||||
|
||||
void ggml_cuda_dup(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void* ggml_cuda_cpy_fn(const ggml_tensor * src0, ggml_tensor * src1);
|
||||
|
||||
47
ggml-cuda/fattn-common.cuh
Normal file
@@ -0,0 +1,47 @@
|
||||
#define FATTN_KQ_STRIDE 256
|
||||
#define HALF_MAX_HALF __float2half(65504.0f/2) // Use neg. of this instead of -INFINITY to initialize KQ max vals to avoid NaN upon subtraction.
|
||||
#define SOFTMAX_FTZ_THRESHOLD -20.0f // Softmax exp. of values smaller than this are flushed to zero to avoid NaNs.
|
||||
|
||||
template<int D, int parallel_blocks> // D == head size
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
__launch_bounds__(D, 1)
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
static __global__ void flash_attn_combine_results(
|
||||
const float * __restrict__ VKQ_parts,
|
||||
const float2 * __restrict__ VKQ_meta,
|
||||
float * __restrict__ dst) {
|
||||
VKQ_parts += parallel_blocks*D * gridDim.y*blockIdx.x;
|
||||
VKQ_meta += parallel_blocks * gridDim.y*blockIdx.x;
|
||||
dst += D * gridDim.y*blockIdx.x;
|
||||
|
||||
const int tid = threadIdx.x;
|
||||
__builtin_assume(tid < D);
|
||||
|
||||
__shared__ float2 meta[parallel_blocks];
|
||||
if (tid < 2*parallel_blocks) {
|
||||
((float *) meta)[threadIdx.x] = ((const float *)VKQ_meta) [blockIdx.y*(2*parallel_blocks) + tid];
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
float kqmax = meta[0].x;
|
||||
#pragma unroll
|
||||
for (int l = 1; l < parallel_blocks; ++l) {
|
||||
kqmax = max(kqmax, meta[l].x);
|
||||
}
|
||||
|
||||
float VKQ_numerator = 0.0f;
|
||||
float VKQ_denominator = 0.0f;
|
||||
#pragma unroll
|
||||
for (int l = 0; l < parallel_blocks; ++l) {
|
||||
const float diff = meta[l].x - kqmax;
|
||||
const float KQ_max_scale = expf(diff);
|
||||
const uint32_t ftz_mask = 0xFFFFFFFF * (diff > SOFTMAX_FTZ_THRESHOLD);
|
||||
*((uint32_t *) &KQ_max_scale) &= ftz_mask;
|
||||
|
||||
VKQ_numerator += KQ_max_scale * VKQ_parts[l*gridDim.y*D + blockIdx.y*D + tid];
|
||||
VKQ_denominator += KQ_max_scale * meta[l].y;
|
||||
}
|
||||
|
||||
dst[blockIdx.y*D + tid] = VKQ_numerator / VKQ_denominator;
|
||||
}
|
||||
395
ggml-cuda/fattn-tile-f16.cu
Normal file
@@ -0,0 +1,395 @@
|
||||
#include "common.cuh"
|
||||
#include "fattn-common.cuh"
|
||||
#include "fattn-tile-f16.cuh"
|
||||
|
||||
#define FATTN_KQ_STRIDE_TILE_F16 64
|
||||
|
||||
template<int D, int ncols, int nwarps, int parallel_blocks> // D == head size
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
__launch_bounds__(nwarps*WARP_SIZE, 1)
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
static __global__ void flash_attn_tile_ext_f16(
|
||||
const char * __restrict__ Q,
|
||||
const char * __restrict__ K,
|
||||
const char * __restrict__ V,
|
||||
const char * __restrict__ mask,
|
||||
float * __restrict__ dst,
|
||||
float2 * __restrict__ dst_meta,
|
||||
const float scale,
|
||||
const float max_bias,
|
||||
const float m0,
|
||||
const float m1,
|
||||
const uint32_t n_head_log2,
|
||||
const int ne00,
|
||||
const int ne01,
|
||||
const int ne02,
|
||||
const int ne03,
|
||||
const int ne10,
|
||||
const int ne11,
|
||||
const int ne12,
|
||||
const int ne13,
|
||||
const int ne31,
|
||||
const int nb31,
|
||||
const int nb01,
|
||||
const int nb02,
|
||||
const int nb03,
|
||||
const int nb11,
|
||||
const int nb12,
|
||||
const int nb13,
|
||||
const int ne0,
|
||||
const int ne1,
|
||||
const int ne2,
|
||||
const int ne3) {
|
||||
#if FP16_AVAILABLE
|
||||
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
||||
|
||||
const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
|
||||
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
|
||||
|
||||
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
||||
const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.y + nb01*ic0);
|
||||
const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.y / gqa_ratio));
|
||||
const half2 * V_h2 = (const half2 *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
|
||||
const half * maskh = (const half *) mask + ne11*ic0;
|
||||
|
||||
const int stride_KV2 = nb11 / sizeof(half2);
|
||||
|
||||
half slopeh = __float2half(1.0f);
|
||||
|
||||
// ALiBi
|
||||
if (max_bias > 0.0f) {
|
||||
const uint32_t h = blockIdx.y;
|
||||
|
||||
const float base = h < n_head_log2 ? m0 : m1;
|
||||
const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
||||
|
||||
slopeh = __float2half(powf(base, exph));
|
||||
}
|
||||
|
||||
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
|
||||
|
||||
__shared__ half KQ[ncols*FATTN_KQ_STRIDE_TILE_F16];
|
||||
half2 * KQ2 = (half2 *) KQ;
|
||||
|
||||
__shared__ half2 KV_tmp[FATTN_KQ_STRIDE_TILE_F16][D/2 + 1]; // Pad D to avoid memory bank conflicts.
|
||||
|
||||
half kqmax[ncols/nwarps];
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
kqmax[j0/nwarps] = -HALF_MAX_HALF;
|
||||
}
|
||||
half2 kqsum[ncols/nwarps] = {{0.0f, 0.0f}};
|
||||
|
||||
half2 VKQ[ncols/nwarps][(D/2)/WARP_SIZE] = {{{0.0f, 0.0f}}};
|
||||
|
||||
// Convert Q to half2 and store in registers:
|
||||
__shared__ half2 Q_h2[ncols][D/2];
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
const float2 tmp = Q_f2[j*(nb01/sizeof(float2)) + i];
|
||||
Q_h2[j][i] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
const int k_start = parallel_blocks == 1 ? 0 : ip*FATTN_KQ_STRIDE_TILE_F16;
|
||||
for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*FATTN_KQ_STRIDE_TILE_F16) {
|
||||
// Calculate KQ tile and keep track of new maximum KQ values:
|
||||
|
||||
half kqmax_new[ncols/nwarps];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols/nwarps; ++j) {
|
||||
kqmax_new[j] = kqmax[j];
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += nwarps) {
|
||||
const int i_KQ = i_KQ_0 + threadIdx.y;
|
||||
|
||||
#pragma unroll
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
|
||||
const int k_KQ = k_KQ_0 + threadIdx.x;
|
||||
|
||||
KV_tmp[i_KQ][k_KQ] = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ];
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
half2 sum2[FATTN_KQ_STRIDE_TILE_F16/WARP_SIZE][ncols/nwarps] = {{{0.0f, 0.0f}}};
|
||||
|
||||
#pragma unroll
|
||||
for (int k_KQ = 0; k_KQ < D/2; ++k_KQ) {
|
||||
half2 K_k[FATTN_KQ_STRIDE_TILE_F16/WARP_SIZE];
|
||||
half2 Q_k[ncols/nwarps];
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += WARP_SIZE) {
|
||||
const int i_KQ = i_KQ_0 + threadIdx.x;
|
||||
|
||||
K_k[i_KQ_0/WARP_SIZE] = KV_tmp[i_KQ][k_KQ];
|
||||
}
|
||||
#pragma unroll
|
||||
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
|
||||
const int j_KQ = j_KQ_0 + threadIdx.y;
|
||||
|
||||
Q_k[j_KQ_0/nwarps] = Q_h2[j_KQ][k_KQ];
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += WARP_SIZE) {
|
||||
#pragma unroll
|
||||
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
|
||||
sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += K_k[i_KQ_0/WARP_SIZE]*Q_k[j_KQ_0/nwarps];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += WARP_SIZE) {
|
||||
const int i_KQ = i_KQ_0 + threadIdx.x;
|
||||
|
||||
#pragma unroll
|
||||
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
|
||||
const int j_KQ = j_KQ_0 + threadIdx.y;
|
||||
|
||||
half sum = __low2half(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]) + __high2half(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
|
||||
sum += mask ? slopeh*maskh[j_KQ*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f);
|
||||
|
||||
kqmax_new[j_KQ_0/nwarps] = ggml_cuda_hmax(kqmax_new[j_KQ_0/nwarps], sum);
|
||||
|
||||
KQ[j_KQ*FATTN_KQ_STRIDE_TILE_F16 + i_KQ] = sum;
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
kqmax_new[j0/nwarps] = warp_reduce_max(kqmax_new[j0/nwarps]);
|
||||
const half2 KQ_max_scale = __half2half2(hexp(kqmax[j0/nwarps] - kqmax_new[j0/nwarps]));
|
||||
kqmax[j0/nwarps] = kqmax_new[j0/nwarps];
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < FATTN_KQ_STRIDE_TILE_F16/2; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
const half2 diff = KQ2[j*(FATTN_KQ_STRIDE_TILE_F16/2) + i] - __half2half2(kqmax[j0/nwarps]);
|
||||
const half2 val = h2exp(diff);
|
||||
kqsum[j0/nwarps] = kqsum[j0/nwarps]*KQ_max_scale + val;
|
||||
KQ2[j*(FATTN_KQ_STRIDE_TILE_F16/2) + i] = val;
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
VKQ[j0/nwarps][i0/WARP_SIZE] *= KQ_max_scale;
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE_TILE_F16; k0 += nwarps) {
|
||||
const int k = k0 + threadIdx.y;
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
KV_tmp[k][i] = V_h2[(k_VKQ_0 + k)*stride_KV2 + i];
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE_TILE_F16; k0 += 2) {
|
||||
half2 V_k[(D/2)/WARP_SIZE][2];
|
||||
half2 KQ_k[ncols/nwarps];
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
V_k[i0/WARP_SIZE][0] = KV_tmp[k0 + 0][i];
|
||||
V_k[i0/WARP_SIZE][1] = KV_tmp[k0 + 1][i];
|
||||
}
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
KQ_k[j0/nwarps] = KQ2[j*(FATTN_KQ_STRIDE_TILE_F16/2) + k0/2];
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
VKQ[j0/nwarps][i0/WARP_SIZE] += V_k[i0/WARP_SIZE][0]* __low2half2(KQ_k[j0/nwarps]);
|
||||
VKQ[j0/nwarps][i0/WARP_SIZE] += V_k[i0/WARP_SIZE][1]*__high2half2(KQ_k[j0/nwarps]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j_VKQ_0 = 0; j_VKQ_0 < ncols; j_VKQ_0 += nwarps) {
|
||||
const int j_VKQ = j_VKQ_0 + threadIdx.y;
|
||||
|
||||
half kqsum_j = __low2half(kqsum[j_VKQ_0/nwarps]) + __high2half(kqsum[j_VKQ_0/nwarps]);
|
||||
kqsum_j = warp_reduce_sum(kqsum_j);
|
||||
|
||||
#pragma unroll
|
||||
for (int i00 = 0; i00 < D; i00 += 2*WARP_SIZE) {
|
||||
const int i0 = i00 + 2*threadIdx.x;
|
||||
|
||||
half2 dst_val = VKQ[j_VKQ_0/nwarps][i0/(2*WARP_SIZE)];
|
||||
if (parallel_blocks == 1) {
|
||||
dst_val /= __half2half2(kqsum_j);
|
||||
}
|
||||
const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
|
||||
dst[j_dst*D*gridDim.y + D*blockIdx.y + i0 + 0] = __low2float(dst_val);
|
||||
dst[j_dst*D*gridDim.y + D*blockIdx.y + i0 + 1] = __high2float(dst_val);
|
||||
}
|
||||
|
||||
if (parallel_blocks != 1 && threadIdx.x == 0) {
|
||||
dst_meta[(ic0 + j_VKQ)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[j_VKQ_0/nwarps], kqsum_j);
|
||||
}
|
||||
}
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
#endif // FP16_AVAILABLE
|
||||
}
|
||||
|
||||
template <int D, int cols_per_block, int parallel_blocks> void launch_fattn_tile_f16(
|
||||
const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask,
|
||||
ggml_cuda_pool & pool, cudaStream_t main_stream
|
||||
) {
|
||||
ggml_cuda_pool_alloc<float> dst_tmp(pool);
|
||||
ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);
|
||||
|
||||
if (parallel_blocks > 1) {
|
||||
dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
|
||||
dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
|
||||
}
|
||||
|
||||
constexpr int nwarps = 8;
|
||||
const dim3 block_dim(WARP_SIZE, nwarps, 1);
|
||||
const dim3 blocks_num(parallel_blocks*((Q->ne[1] + cols_per_block - 1) / cols_per_block), Q->ne[2], Q->ne[3]);
|
||||
const int shmem = 0;
|
||||
|
||||
float scale = 1.0f;
|
||||
float max_bias = 0.0f;
|
||||
|
||||
memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float));
|
||||
memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float));
|
||||
|
||||
const uint32_t n_head = Q->ne[2];
|
||||
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
|
||||
|
||||
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
||||
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
||||
|
||||
flash_attn_tile_ext_f16<D, cols_per_block, nwarps, parallel_blocks>
|
||||
<<<blocks_num, block_dim, shmem, main_stream>>> (
|
||||
(const char *) Q->data,
|
||||
(const char *) K->data,
|
||||
(const char *) V->data,
|
||||
mask ? ((const char *) mask->data) : nullptr,
|
||||
parallel_blocks == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
|
||||
scale, max_bias, m0, m1, n_head_log2,
|
||||
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
|
||||
K->ne[0], K->ne[1], K->ne[2], K->ne[3],
|
||||
mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,
|
||||
Q->nb[1], Q->nb[2], Q->nb[3],
|
||||
K->nb[1], K->nb[2], K->nb[3],
|
||||
KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3]
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
if (parallel_blocks == 1) {
|
||||
return;
|
||||
}
|
||||
|
||||
const dim3 block_dim_combine(D, 1, 1);
|
||||
const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z);
|
||||
const int shmem_combine = 0;
|
||||
|
||||
flash_attn_combine_results<D, parallel_blocks>
|
||||
<<<blocks_num_combine, block_dim_combine, shmem_combine, main_stream>>>
|
||||
(dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
}
|
||||
|
||||
void ggml_cuda_flash_attn_ext_tile_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
const ggml_tensor * K = dst->src[1];
|
||||
const ggml_tensor * V = dst->src[2];
|
||||
|
||||
const ggml_tensor * mask = dst->src[3];
|
||||
|
||||
ggml_tensor * KQV = dst;
|
||||
|
||||
const int32_t precision = KQV->op_params[2];
|
||||
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
|
||||
GGML_ASSERT(Q->ne[0] == 64 || Q->ne[0] == 128 && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
|
||||
|
||||
if (Q->ne[1] <= 16) {
|
||||
constexpr int cols_per_block = 16;
|
||||
constexpr int parallel_blocks = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_tile_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_tile_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] <= 32) {
|
||||
constexpr int cols_per_block = 32;
|
||||
constexpr int parallel_blocks = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_tile_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_tile_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
constexpr int cols_per_block = 32;
|
||||
constexpr int parallel_blocks = 1;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_tile_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_tile_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
}
|
||||
3
ggml-cuda/fattn-tile-f16.cuh
Normal file
@@ -0,0 +1,3 @@
|
||||
#include "common.cuh"
|
||||
|
||||
void ggml_cuda_flash_attn_ext_tile_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
393
ggml-cuda/fattn-tile-f32.cu
Normal file
@@ -0,0 +1,393 @@
|
||||
#include "common.cuh"
|
||||
#include "fattn-common.cuh"
|
||||
#include "fattn-tile-f32.cuh"
|
||||
|
||||
#define FATTN_KQ_STRIDE_TILE_F32 32
|
||||
|
||||
template<int D, int ncols, int nwarps, int parallel_blocks> // D == head size
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
__launch_bounds__(nwarps*WARP_SIZE, 1)
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
static __global__ void flash_attn_tile_ext_f32(
|
||||
const char * __restrict__ Q,
|
||||
const char * __restrict__ K,
|
||||
const char * __restrict__ V,
|
||||
const char * __restrict__ mask,
|
||||
float * __restrict__ dst,
|
||||
float2 * __restrict__ dst_meta,
|
||||
const float scale,
|
||||
const float max_bias,
|
||||
const float m0,
|
||||
const float m1,
|
||||
const uint32_t n_head_log2,
|
||||
const int ne00,
|
||||
const int ne01,
|
||||
const int ne02,
|
||||
const int ne03,
|
||||
const int ne10,
|
||||
const int ne11,
|
||||
const int ne12,
|
||||
const int ne13,
|
||||
const int ne31,
|
||||
const int nb31,
|
||||
const int nb01,
|
||||
const int nb02,
|
||||
const int nb03,
|
||||
const int nb11,
|
||||
const int nb12,
|
||||
const int nb13,
|
||||
const int ne0,
|
||||
const int ne1,
|
||||
const int ne2,
|
||||
const int ne3) {
|
||||
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
||||
|
||||
const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
|
||||
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
|
||||
|
||||
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
||||
const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.y + nb01*ic0);
|
||||
const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.y / gqa_ratio));
|
||||
const half2 * V_h2 = (const half2 *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
|
||||
const half * maskh = (const half *) mask + ne11*ic0;
|
||||
|
||||
const int stride_KV2 = nb11 / sizeof(half2);
|
||||
|
||||
float slope = 1.0f;
|
||||
|
||||
// ALiBi
|
||||
if (max_bias > 0.0f) {
|
||||
const uint32_t h = blockIdx.y;
|
||||
|
||||
const float base = h < n_head_log2 ? m0 : m1;
|
||||
const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
||||
|
||||
slope = powf(base, exph);
|
||||
}
|
||||
|
||||
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
|
||||
|
||||
__shared__ float KQ[ncols*FATTN_KQ_STRIDE_TILE_F32];
|
||||
|
||||
__shared__ float KV_tmp[FATTN_KQ_STRIDE_TILE_F32][D + 1]; // Pad D to avoid memory bank conflicts.
|
||||
float2 * KV_tmp2 = (float2 *) KV_tmp;
|
||||
|
||||
float kqmax[ncols/nwarps];
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
kqmax[j0/nwarps] = -FLT_MAX/2.0f;
|
||||
}
|
||||
float kqsum[ncols/nwarps] = {0.0f};
|
||||
|
||||
float2 VKQ[ncols/nwarps][(D/2)/WARP_SIZE] = {{{0.0f, 0.0f}}};
|
||||
|
||||
// Convert Q to half2 and store in registers:
|
||||
__shared__ float Q_f[ncols][D];
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D; i0 += 2*WARP_SIZE) {
|
||||
float2 tmp = Q_f2[j*(nb01/sizeof(float2)) + i0/2 + threadIdx.x];
|
||||
Q_f[j][i0 + 0*WARP_SIZE + threadIdx.x] = tmp.x * scale;
|
||||
Q_f[j][i0 + 1*WARP_SIZE + threadIdx.x] = tmp.y * scale;
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
const int k_start = parallel_blocks == 1 ? 0 : ip*FATTN_KQ_STRIDE_TILE_F32;
|
||||
for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*FATTN_KQ_STRIDE_TILE_F32) {
|
||||
// Calculate KQ tile and keep track of new maximum KQ values:
|
||||
|
||||
float kqmax_new[ncols/nwarps];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols/nwarps; ++j) {
|
||||
kqmax_new[j] = kqmax[j];
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += nwarps) {
|
||||
const int i_KQ = i_KQ_0 + threadIdx.y;
|
||||
|
||||
#pragma unroll
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += 2*WARP_SIZE) {
|
||||
const half2 tmp = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ_0/2 + threadIdx.x];
|
||||
KV_tmp[i_KQ][k_KQ_0 + 0*WARP_SIZE + threadIdx.x] = __low2float(tmp);
|
||||
KV_tmp[i_KQ][k_KQ_0 + 1*WARP_SIZE + threadIdx.x] = __high2float(tmp);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
float sum[FATTN_KQ_STRIDE_TILE_F32/WARP_SIZE][ncols/nwarps] = {{0.0f}};
|
||||
|
||||
#pragma unroll
|
||||
for (int k_KQ = 0; k_KQ < D; ++k_KQ) {
|
||||
float K_k[FATTN_KQ_STRIDE_TILE_F32/WARP_SIZE];
|
||||
float Q_k[ncols/nwarps];
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += WARP_SIZE) {
|
||||
const int i_KQ = i_KQ_0 + threadIdx.x;
|
||||
|
||||
K_k[i_KQ_0/WARP_SIZE] = KV_tmp[i_KQ][k_KQ];
|
||||
}
|
||||
#pragma unroll
|
||||
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
|
||||
const int j_KQ = j_KQ_0 + threadIdx.y;
|
||||
|
||||
Q_k[j_KQ_0/nwarps] = Q_f[j_KQ][k_KQ];
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += WARP_SIZE) {
|
||||
#pragma unroll
|
||||
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
|
||||
sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += K_k[i_KQ_0/WARP_SIZE] * Q_k[j_KQ_0/nwarps];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += WARP_SIZE) {
|
||||
const int i_KQ = i_KQ_0 + threadIdx.x;
|
||||
|
||||
#pragma unroll
|
||||
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
|
||||
const int j_KQ = j_KQ_0 + threadIdx.y;
|
||||
|
||||
sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += mask ? slope*__half2float(maskh[j_KQ*ne11 + k_VKQ_0 + i_KQ]) : 0.0f;
|
||||
|
||||
kqmax_new[j_KQ_0/nwarps] = fmaxf(kqmax_new[j_KQ_0/nwarps], sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
|
||||
|
||||
KQ[j_KQ*FATTN_KQ_STRIDE_TILE_F32 + i_KQ] = sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps];
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
kqmax_new[j0/nwarps] = warp_reduce_max(kqmax_new[j0/nwarps]);
|
||||
const float KQ_max_scale = expf(kqmax[j0/nwarps] - kqmax_new[j0/nwarps]);
|
||||
kqmax[j0/nwarps] = kqmax_new[j0/nwarps];
|
||||
|
||||
float kqsum_add = 0.0f;
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < FATTN_KQ_STRIDE_TILE_F32; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
const float diff = KQ[j*FATTN_KQ_STRIDE_TILE_F32 + i] - kqmax[j0/nwarps];
|
||||
const float val = expf(diff);
|
||||
kqsum_add += val;
|
||||
KQ[j*FATTN_KQ_STRIDE_TILE_F32 + i] = val;
|
||||
}
|
||||
kqsum[j0/nwarps] = kqsum[j0/nwarps]*KQ_max_scale + kqsum_add;
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
VKQ[j0/nwarps][i0/WARP_SIZE].x *= KQ_max_scale;
|
||||
VKQ[j0/nwarps][i0/WARP_SIZE].y *= KQ_max_scale;
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE_TILE_F32; k0 += nwarps) {
|
||||
const int k = k0 + threadIdx.y;
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
KV_tmp2[k*(D/2) + i].x = __low2float(V_h2[(k_VKQ_0 + k)*stride_KV2 + i]);
|
||||
KV_tmp2[k*(D/2) + i].y = __high2float(V_h2[(k_VKQ_0 + k)*stride_KV2 + i]);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int k = 0; k < FATTN_KQ_STRIDE_TILE_F32; ++k) {
|
||||
float2 V_k[(D/2)/WARP_SIZE];
|
||||
float KQ_k[ncols/nwarps];
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
V_k[i0/WARP_SIZE] = KV_tmp2[k*(D/2) + i];
|
||||
}
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
KQ_k[j0/nwarps] = KQ[j*FATTN_KQ_STRIDE_TILE_F32 + k];
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
VKQ[j0/nwarps][i0/WARP_SIZE].x += V_k[i0/WARP_SIZE].x*KQ_k[j0/nwarps];
|
||||
VKQ[j0/nwarps][i0/WARP_SIZE].y += V_k[i0/WARP_SIZE].y*KQ_k[j0/nwarps];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j_VKQ_0 = 0; j_VKQ_0 < ncols; j_VKQ_0 += nwarps) {
|
||||
const int j_VKQ = j_VKQ_0 + threadIdx.y;
|
||||
|
||||
float kqsum_j = kqsum[j_VKQ_0/nwarps];
|
||||
kqsum_j = warp_reduce_sum(kqsum_j);
|
||||
|
||||
#pragma unroll
|
||||
for (int i00 = 0; i00 < D; i00 += 2*WARP_SIZE) {
|
||||
const int i0 = i00 + 2*threadIdx.x;
|
||||
|
||||
float2 dst_val = VKQ[j_VKQ_0/nwarps][i0/(2*WARP_SIZE)];
|
||||
if (parallel_blocks == 1) {
|
||||
dst_val.x /= kqsum_j;
|
||||
dst_val.y /= kqsum_j;
|
||||
}
|
||||
const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
|
||||
dst[j_dst*D*gridDim.y + D*blockIdx.y + i0 + 0] = dst_val.x;
|
||||
dst[j_dst*D*gridDim.y + D*blockIdx.y + i0 + 1] = dst_val.y;
|
||||
}
|
||||
|
||||
if (parallel_blocks != 1 && threadIdx.x == 0) {
|
||||
dst_meta[(ic0 + j_VKQ)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[j_VKQ_0/nwarps], kqsum_j);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <int D, int cols_per_block, int parallel_blocks> void launch_fattn_tile_f32(
|
||||
const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask,
|
||||
ggml_cuda_pool & pool, cudaStream_t main_stream
|
||||
) {
|
||||
ggml_cuda_pool_alloc<float> dst_tmp(pool);
|
||||
ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);
|
||||
|
||||
if (parallel_blocks > 1) {
|
||||
dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
|
||||
dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
|
||||
}
|
||||
|
||||
constexpr int nwarps = 8;
|
||||
const dim3 block_dim(WARP_SIZE, nwarps, 1);
|
||||
const dim3 blocks_num(parallel_blocks*((Q->ne[1] + cols_per_block - 1) / cols_per_block), Q->ne[2], Q->ne[3]);
|
||||
const int shmem = 0;
|
||||
|
||||
float scale = 1.0f;
|
||||
float max_bias = 0.0f;
|
||||
|
||||
memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float));
|
||||
memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float));
|
||||
|
||||
const uint32_t n_head = Q->ne[2];
|
||||
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
|
||||
|
||||
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
||||
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
||||
|
||||
flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks>
|
||||
<<<blocks_num, block_dim, shmem, main_stream>>> (
|
||||
(const char *) Q->data,
|
||||
(const char *) K->data,
|
||||
(const char *) V->data,
|
||||
mask ? ((const char *) mask->data) : nullptr,
|
||||
parallel_blocks == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
|
||||
scale, max_bias, m0, m1, n_head_log2,
|
||||
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
|
||||
K->ne[0], K->ne[1], K->ne[2], K->ne[3],
|
||||
mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,
|
||||
Q->nb[1], Q->nb[2], Q->nb[3],
|
||||
K->nb[1], K->nb[2], K->nb[3],
|
||||
KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3]
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
if (parallel_blocks == 1) {
|
||||
return;
|
||||
}
|
||||
|
||||
const dim3 block_dim_combine(D, 1, 1);
|
||||
const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z);
|
||||
const int shmem_combine = 0;
|
||||
|
||||
flash_attn_combine_results<D, parallel_blocks>
|
||||
<<<blocks_num_combine, block_dim_combine, shmem_combine, main_stream>>>
|
||||
(dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
}
|
||||
|
||||
void ggml_cuda_flash_attn_ext_tile_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
const ggml_tensor * K = dst->src[1];
|
||||
const ggml_tensor * V = dst->src[2];
|
||||
|
||||
const ggml_tensor * mask = dst->src[3];
|
||||
|
||||
ggml_tensor * KQV = dst;
|
||||
|
||||
const int32_t precision = KQV->op_params[2];
|
||||
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
|
||||
GGML_ASSERT(Q->ne[0] == 64 || Q->ne[0] == 128 && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
|
||||
|
||||
if (Q->ne[1] <= 16) {
|
||||
constexpr int cols_per_block = 16;
|
||||
constexpr int parallel_blocks = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_tile_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_tile_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] <= 32) {
|
||||
constexpr int cols_per_block = 32;
|
||||
constexpr int parallel_blocks = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_tile_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_tile_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
constexpr int cols_per_block = 32;
|
||||
constexpr int parallel_blocks = 1;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_tile_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_tile_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
}
|
||||
3
ggml-cuda/fattn-tile-f32.cuh
Normal file
@@ -0,0 +1,3 @@
|
||||
#include "common.cuh"
|
||||
|
||||
void ggml_cuda_flash_attn_ext_tile_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
427
ggml-cuda/fattn-vec-f16.cu
Normal file
@@ -0,0 +1,427 @@
|
||||
#include "common.cuh"
|
||||
#include "fattn-common.cuh"
|
||||
#include "fattn-vec-f16.cuh"
|
||||
|
||||
template<int D, int ncols, int parallel_blocks> // D == head size
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
__launch_bounds__(D, 1)
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
static __global__ void flash_attn_vec_ext_f16(
|
||||
const char * __restrict__ Q,
|
||||
const char * __restrict__ K,
|
||||
const char * __restrict__ V,
|
||||
const char * __restrict__ mask,
|
||||
float * __restrict__ dst,
|
||||
float2 * __restrict__ dst_meta,
|
||||
const float scale,
|
||||
const float max_bias,
|
||||
const float m0,
|
||||
const float m1,
|
||||
const uint32_t n_head_log2,
|
||||
const int ne00,
|
||||
const int ne01,
|
||||
const int ne02,
|
||||
const int ne03,
|
||||
const int ne10,
|
||||
const int ne11,
|
||||
const int ne12,
|
||||
const int ne13,
|
||||
const int ne31,
|
||||
const int nb31,
|
||||
const int nb01,
|
||||
const int nb02,
|
||||
const int nb03,
|
||||
const int nb11,
|
||||
const int nb12,
|
||||
const int nb13,
|
||||
const int ne0,
|
||||
const int ne1,
|
||||
const int ne2,
|
||||
const int ne3) {
|
||||
#if FP16_AVAILABLE
|
||||
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
||||
|
||||
const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
|
||||
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
|
||||
|
||||
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
||||
const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.y + nb01*ic0);
|
||||
const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.y / gqa_ratio));
|
||||
const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
|
||||
const half * maskh = (const half *) mask + ne11*ic0;
|
||||
|
||||
const int stride_KV = nb11 / sizeof(half);
|
||||
const int stride_KV2 = nb11 / sizeof(half2);
|
||||
|
||||
half slopeh = __float2half(1.0f);
|
||||
|
||||
// ALiBi
|
||||
if (max_bias > 0.0f) {
|
||||
const uint32_t h = blockIdx.y;
|
||||
|
||||
const float base = h < n_head_log2 ? m0 : m1;
|
||||
const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
||||
|
||||
slopeh = __float2half(powf(base, exph));
|
||||
}
|
||||
|
||||
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
|
||||
constexpr int nwarps = D / WARP_SIZE;
|
||||
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
|
||||
__builtin_assume(tid < D);
|
||||
|
||||
__shared__ half KQ[ncols*D];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
KQ[j*D + tid] = -HALF_MAX_HALF;
|
||||
}
|
||||
half2 * KQ2 = (half2 *) KQ;
|
||||
|
||||
half kqmax[ncols];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
kqmax[j] = -HALF_MAX_HALF;
|
||||
}
|
||||
half kqsum[ncols] = {0.0f};
|
||||
|
||||
__shared__ half kqmax_shared[ncols][WARP_SIZE];
|
||||
__shared__ half kqsum_shared[ncols][WARP_SIZE];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
if (threadIdx.y == 0) {
|
||||
kqmax_shared[j][threadIdx.x] = -HALF_MAX_HALF;
|
||||
kqsum_shared[j][threadIdx.x] = 0.0f;
|
||||
}
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
// Convert Q to half2 and store in registers:
|
||||
half2 Q_h2[ncols][D/(2*WARP_SIZE)];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
const float2 tmp = Q_f2[j*(nb01/sizeof(float2)) + i];
|
||||
Q_h2[j][i0/WARP_SIZE] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y);
|
||||
}
|
||||
}
|
||||
|
||||
half2 VKQ[ncols] = {{0.0f, 0.0f}};
|
||||
|
||||
const int k_start = parallel_blocks == 1 ? 0 : ip*D;
|
||||
for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*D) {
|
||||
// Calculate KQ tile and keep track of new maximum KQ values:
|
||||
|
||||
// For unknown reasons using a half array of size 1 for kqmax_new causes a performance regression,
|
||||
// see https://github.com/ggerganov/llama.cpp/pull/7061 .
|
||||
// Therefore this variable is defined twice but only used once (so that the compiler can optimize out the unused variable).
|
||||
half kqmax_new = kqmax[0];
|
||||
half kqmax_new_arr[ncols];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
kqmax_new_arr[j] = kqmax[j];
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) {
|
||||
const int i_KQ = i_KQ_0 + threadIdx.y;
|
||||
|
||||
if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) {
|
||||
break;
|
||||
}
|
||||
|
||||
half2 sum2[ncols] = {{0.0f, 0.0f}};
|
||||
#pragma unroll
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
|
||||
const int k_KQ = k_KQ_0 + threadIdx.x;
|
||||
|
||||
const half2 K_ik = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
sum2[j] += K_ik * Q_h2[j][k_KQ_0/WARP_SIZE];
|
||||
}
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
sum2[j] = warp_reduce_sum(sum2[j]);
|
||||
half sum = __low2half(sum2[j]) + __high2half(sum2[j]);
|
||||
sum += mask ? slopeh*maskh[j*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f);
|
||||
|
||||
if (ncols == 1) {
|
||||
kqmax_new = ggml_cuda_hmax(kqmax_new, sum);
|
||||
} else {
|
||||
kqmax_new_arr[j] = ggml_cuda_hmax(kqmax_new_arr[j], sum);
|
||||
}
|
||||
|
||||
if (threadIdx.x == 0) {
|
||||
KQ[j*D + i_KQ] = sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
half kqmax_new_j = ncols == 1 ? kqmax_new : kqmax_new_arr[j];
|
||||
|
||||
kqmax_new_j = warp_reduce_max(kqmax_new_j);
|
||||
if (threadIdx.x == 0) {
|
||||
kqmax_shared[j][threadIdx.y] = kqmax_new_j;
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
half kqmax_new_j = kqmax_shared[j][threadIdx.x];
|
||||
kqmax_new_j = warp_reduce_max(kqmax_new_j);
|
||||
|
||||
const half KQ_max_scale = hexp(kqmax[j] - kqmax_new_j);
|
||||
kqmax[j] = kqmax_new_j;
|
||||
|
||||
const half val = hexp(KQ[j*D + tid] - kqmax[j]);
|
||||
kqsum[j] = kqsum[j]*KQ_max_scale + val;
|
||||
KQ[j*D + tid] = val;
|
||||
|
||||
VKQ[j] *= __half2half2(KQ_max_scale);
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < D; k0 += 2) {
|
||||
if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k0 >= ne11) {
|
||||
break;
|
||||
}
|
||||
|
||||
half2 V_k;
|
||||
reinterpret_cast<half&>(V_k.x) = V_h[(k_VKQ_0 + k0 + 0)*stride_KV + tid];
|
||||
reinterpret_cast<half&>(V_k.y) = V_h[(k_VKQ_0 + k0 + 1)*stride_KV + tid];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
VKQ[j] += V_k*KQ2[j*(D/2) + k0/2];
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
kqsum[j] = warp_reduce_sum(kqsum[j]);
|
||||
if (threadIdx.x == 0) {
|
||||
kqsum_shared[j][threadIdx.y] = kqsum[j];
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
|
||||
kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x];
|
||||
kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]);
|
||||
|
||||
half dst_val = (__low2half(VKQ[j_VKQ]) + __high2half(VKQ[j_VKQ]));
|
||||
if (parallel_blocks == 1) {
|
||||
dst_val /= kqsum[j_VKQ];
|
||||
}
|
||||
const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
|
||||
dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val;
|
||||
}
|
||||
|
||||
if (parallel_blocks != 1 && threadIdx.x < ncols) {
|
||||
dst_meta[(ic0 + threadIdx.x)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[threadIdx.x], kqsum[threadIdx.x]);
|
||||
}
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
#endif // FP16_AVAILABLE
|
||||
}
|
||||
|
||||
template <int D, int cols_per_block, int parallel_blocks> void launch_fattn_vec_f16(
|
||||
const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask,
|
||||
ggml_cuda_pool & pool, cudaStream_t main_stream
|
||||
) {
|
||||
ggml_cuda_pool_alloc<float> dst_tmp(pool);
|
||||
ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);
|
||||
|
||||
if (parallel_blocks > 1) {
|
||||
dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
|
||||
dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
|
||||
}
|
||||
|
||||
constexpr int nwarps = (D + WARP_SIZE - 1) / WARP_SIZE;
|
||||
const dim3 block_dim(WARP_SIZE, nwarps, 1);
|
||||
const dim3 blocks_num(parallel_blocks*((Q->ne[1] + cols_per_block - 1) / cols_per_block), Q->ne[2], Q->ne[3]);
|
||||
const int shmem = 0;
|
||||
|
||||
float scale = 1.0f;
|
||||
float max_bias = 0.0f;
|
||||
|
||||
memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float));
|
||||
memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float));
|
||||
|
||||
const uint32_t n_head = Q->ne[2];
|
||||
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
|
||||
|
||||
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
||||
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
||||
|
||||
flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks>
|
||||
<<<blocks_num, block_dim, shmem, main_stream>>> (
|
||||
(const char *) Q->data,
|
||||
(const char *) K->data,
|
||||
(const char *) V->data,
|
||||
mask ? ((const char *) mask->data) : nullptr,
|
||||
parallel_blocks == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
|
||||
scale, max_bias, m0, m1, n_head_log2,
|
||||
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
|
||||
K->ne[0], K->ne[1], K->ne[2], K->ne[3],
|
||||
mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,
|
||||
Q->nb[1], Q->nb[2], Q->nb[3],
|
||||
K->nb[1], K->nb[2], K->nb[3],
|
||||
KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3]
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
if (parallel_blocks == 1) {
|
||||
return;
|
||||
}
|
||||
|
||||
const dim3 block_dim_combine(D, 1, 1);
|
||||
const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z);
|
||||
const int shmem_combine = 0;
|
||||
|
||||
flash_attn_combine_results<D, parallel_blocks>
|
||||
<<<blocks_num_combine, block_dim_combine, shmem_combine, main_stream>>>
|
||||
(dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
}
|
||||
|
||||
void ggml_cuda_flash_attn_ext_vec_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
const ggml_tensor * K = dst->src[1];
|
||||
const ggml_tensor * V = dst->src[2];
|
||||
|
||||
const ggml_tensor * mask = dst->src[3];
|
||||
|
||||
ggml_tensor * KQV = dst;
|
||||
|
||||
const int32_t precision = KQV->op_params[2];
|
||||
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
|
||||
|
||||
constexpr int cols_per_block = 1;
|
||||
constexpr int parallel_blocks = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 256:
|
||||
launch_fattn_vec_f16<256, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cuda_flash_attn_ext_vec_f16_no_mma(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
const ggml_tensor * K = dst->src[1];
|
||||
const ggml_tensor * V = dst->src[2];
|
||||
|
||||
const ggml_tensor * mask = dst->src[3];
|
||||
|
||||
ggml_tensor * KQV = dst;
|
||||
|
||||
const int32_t precision = KQV->op_params[2];
|
||||
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
|
||||
GGML_ASSERT(Q->ne[0] == 64 || Q->ne[0] == 128 && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
|
||||
|
||||
if (Q->ne[1] == 1) {
|
||||
constexpr int cols_per_block = 1;
|
||||
constexpr int parallel_blocks = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] == 2) {
|
||||
constexpr int cols_per_block = 2;
|
||||
constexpr int parallel_blocks = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] <= 4) {
|
||||
constexpr int cols_per_block = 4;
|
||||
constexpr int parallel_blocks = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] <= 8) {
|
||||
constexpr int cols_per_block = 8;
|
||||
constexpr int parallel_blocks = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
constexpr int cols_per_block = 8;
|
||||
constexpr int parallel_blocks = 1;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
}
|
||||
5
ggml-cuda/fattn-vec-f16.cuh
Normal file
@@ -0,0 +1,5 @@
|
||||
#include "common.cuh"
|
||||
|
||||
void ggml_cuda_flash_attn_ext_vec_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_flash_attn_ext_vec_f16_no_mma(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
381
ggml-cuda/fattn-vec-f32.cu
Normal file
@@ -0,0 +1,381 @@
|
||||
#include "common.cuh"
|
||||
#include "fattn-common.cuh"
|
||||
#include "fattn-vec-f32.cuh"
|
||||
|
||||
template<int D, int ncols, int parallel_blocks> // D == head size
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
__launch_bounds__(D, 1)
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
static __global__ void flash_attn_vec_ext_f32(
|
||||
const char * __restrict__ Q,
|
||||
const char * __restrict__ K,
|
||||
const char * __restrict__ V,
|
||||
const char * __restrict__ mask,
|
||||
float * __restrict__ dst,
|
||||
float2 * __restrict__ dst_meta,
|
||||
const float scale,
|
||||
const float max_bias,
|
||||
const float m0,
|
||||
const float m1,
|
||||
const uint32_t n_head_log2,
|
||||
const int ne00,
|
||||
const int ne01,
|
||||
const int ne02,
|
||||
const int ne03,
|
||||
const int ne10,
|
||||
const int ne11,
|
||||
const int ne12,
|
||||
const int ne13,
|
||||
const int ne31,
|
||||
const int nb31,
|
||||
const int nb01,
|
||||
const int nb02,
|
||||
const int nb03,
|
||||
const int nb11,
|
||||
const int nb12,
|
||||
const int nb13,
|
||||
const int ne0,
|
||||
const int ne1,
|
||||
const int ne2,
|
||||
const int ne3) {
|
||||
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
||||
|
||||
const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
|
||||
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
|
||||
|
||||
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
||||
const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.y + nb01*ic0);
|
||||
const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.y / gqa_ratio));
|
||||
const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
|
||||
const half * maskh = (const half *) mask + ne11*ic0;
|
||||
|
||||
const int stride_KV = nb11 / sizeof(half);
|
||||
const int stride_KV2 = nb11 / sizeof(half2);
|
||||
|
||||
float slope = 1.0f;
|
||||
|
||||
// ALiBi
|
||||
if (max_bias > 0.0f) {
|
||||
const uint32_t h = blockIdx.y;
|
||||
|
||||
const float base = h < n_head_log2 ? m0 : m1;
|
||||
const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
||||
|
||||
slope = powf(base, exph);
|
||||
}
|
||||
|
||||
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
|
||||
constexpr int nwarps = D / WARP_SIZE;
|
||||
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
|
||||
__builtin_assume(tid < D);
|
||||
|
||||
__shared__ float KQ[ncols*D];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
KQ[j*D + tid] = -FLT_MAX/2.0f;
|
||||
}
|
||||
|
||||
float kqmax[ncols];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
kqmax[j] = -FLT_MAX/2.0f;
|
||||
}
|
||||
float kqsum[ncols] = {0.0f};
|
||||
|
||||
__shared__ float kqmax_shared[ncols][WARP_SIZE];
|
||||
__shared__ float kqsum_shared[ncols][WARP_SIZE];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
if (threadIdx.y == 0) {
|
||||
kqmax_shared[j][threadIdx.x] = -FLT_MAX/2.0f;
|
||||
kqsum_shared[j][threadIdx.x] = 0.0f;
|
||||
}
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
// Convert Q to half2 and store in registers:
|
||||
float2 Q_h2[ncols][D/(2*WARP_SIZE)];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
Q_h2[j][i0/WARP_SIZE] = Q_f2[j*(nb01/sizeof(float2)) + i];
|
||||
Q_h2[j][i0/WARP_SIZE].x *= scale;
|
||||
Q_h2[j][i0/WARP_SIZE].y *= scale;
|
||||
}
|
||||
}
|
||||
|
||||
float VKQ[ncols] = {0.0f};
|
||||
|
||||
const int k_start = parallel_blocks == 1 ? 0 : ip*D;
|
||||
for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*D) {
|
||||
// Calculate KQ tile and keep track of new maximum KQ values:
|
||||
|
||||
float kqmax_new_arr[ncols];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
kqmax_new_arr[j] = kqmax[j];
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) {
|
||||
const int i_KQ = i_KQ_0 + threadIdx.y;
|
||||
|
||||
if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) {
|
||||
break;
|
||||
}
|
||||
|
||||
float sum[ncols] = {0.0f};
|
||||
#pragma unroll
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
|
||||
const int k_KQ = k_KQ_0 + threadIdx.x;
|
||||
|
||||
const half2 K_ik = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
sum[j] += __low2float(K_ik) * Q_h2[j][k_KQ_0/WARP_SIZE].x;
|
||||
sum[j] += __high2float(K_ik) * Q_h2[j][k_KQ_0/WARP_SIZE].y;
|
||||
}
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
sum[j] = warp_reduce_sum(sum[j]);
|
||||
sum[j] += mask ? slope*__half2float(maskh[j*ne11 + k_VKQ_0 + i_KQ]) : 0.0f;
|
||||
|
||||
kqmax_new_arr[j] = fmaxf(kqmax_new_arr[j], sum[j]);
|
||||
|
||||
if (threadIdx.x == 0) {
|
||||
KQ[j*D + i_KQ] = sum[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
float kqmax_new_j = kqmax_new_arr[j];
|
||||
|
||||
kqmax_new_j = warp_reduce_max(kqmax_new_j);
|
||||
if (threadIdx.x == 0) {
|
||||
kqmax_shared[j][threadIdx.y] = kqmax_new_j;
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
float kqmax_new_j = kqmax_shared[j][threadIdx.x];
|
||||
kqmax_new_j = warp_reduce_max(kqmax_new_j);
|
||||
|
||||
const float KQ_max_scale = expf(kqmax[j] - kqmax_new_j);
|
||||
kqmax[j] = kqmax_new_j;
|
||||
|
||||
const float val = expf(KQ[j*D + tid] - kqmax[j]);
|
||||
kqsum[j] = kqsum[j]*KQ_max_scale + val;
|
||||
KQ[j*D + tid] = val;
|
||||
|
||||
VKQ[j] *= KQ_max_scale;
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int k = 0; k < D; ++k) {
|
||||
if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k >= ne11) {
|
||||
break;
|
||||
}
|
||||
|
||||
const float V_ki = __half2float(V_h[(k_VKQ_0 + k)*stride_KV + tid]);
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
VKQ[j] += V_ki*KQ[j*D + k];
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
kqsum[j] = warp_reduce_sum(kqsum[j]);
|
||||
if (threadIdx.x == 0) {
|
||||
kqsum_shared[j][threadIdx.y] = kqsum[j];
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
|
||||
kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x];
|
||||
kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]);
|
||||
|
||||
float dst_val = VKQ[j_VKQ];
|
||||
if (parallel_blocks == 1) {
|
||||
dst_val /= kqsum[j_VKQ];
|
||||
}
|
||||
const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
|
||||
dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val;
|
||||
}
|
||||
|
||||
if (parallel_blocks != 1 && threadIdx.x < ncols) {
|
||||
dst_meta[(ic0 + threadIdx.x)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[threadIdx.x], kqsum[threadIdx.x]);
|
||||
}
|
||||
}
|
||||
|
||||
template <int D, int cols_per_block, int parallel_blocks> void launch_fattn_vec_f32(
|
||||
const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask,
|
||||
ggml_cuda_pool & pool, cudaStream_t main_stream
|
||||
) {
|
||||
ggml_cuda_pool_alloc<float> dst_tmp(pool);
|
||||
ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);
|
||||
|
||||
if (parallel_blocks > 1) {
|
||||
dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
|
||||
dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
|
||||
}
|
||||
|
||||
constexpr int nwarps = (D + WARP_SIZE - 1) / WARP_SIZE;
|
||||
const dim3 block_dim(WARP_SIZE, nwarps, 1);
|
||||
const dim3 blocks_num(parallel_blocks*((Q->ne[1] + cols_per_block - 1) / cols_per_block), Q->ne[2], Q->ne[3]);
|
||||
const int shmem = 0;
|
||||
|
||||
float scale = 1.0f;
|
||||
float max_bias = 0.0f;
|
||||
|
||||
memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float));
|
||||
memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float));
|
||||
|
||||
const uint32_t n_head = Q->ne[2];
|
||||
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
|
||||
|
||||
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
||||
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
||||
|
||||
flash_attn_vec_ext_f32<D, cols_per_block, parallel_blocks>
|
||||
<<<blocks_num, block_dim, shmem, main_stream>>> (
|
||||
(const char *) Q->data,
|
||||
(const char *) K->data,
|
||||
(const char *) V->data,
|
||||
mask ? ((const char *) mask->data) : nullptr,
|
||||
parallel_blocks == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
|
||||
scale, max_bias, m0, m1, n_head_log2,
|
||||
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
|
||||
K->ne[0], K->ne[1], K->ne[2], K->ne[3],
|
||||
mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,
|
||||
Q->nb[1], Q->nb[2], Q->nb[3],
|
||||
K->nb[1], K->nb[2], K->nb[3],
|
||||
KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3]
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
if (parallel_blocks == 1) {
|
||||
return;
|
||||
}
|
||||
|
||||
const dim3 block_dim_combine(D, 1, 1);
|
||||
const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z);
|
||||
const int shmem_combine = 0;
|
||||
|
||||
flash_attn_combine_results<D, parallel_blocks>
|
||||
<<<blocks_num_combine, block_dim_combine, shmem_combine, main_stream>>>
|
||||
(dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
}
|
||||
|
||||
void ggml_cuda_flash_attn_ext_vec_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
const ggml_tensor * K = dst->src[1];
|
||||
const ggml_tensor * V = dst->src[2];
|
||||
|
||||
const ggml_tensor * mask = dst->src[3];
|
||||
|
||||
ggml_tensor * KQV = dst;
|
||||
|
||||
GGML_ASSERT(Q->ne[0] == 64 || Q->ne[0] == 128 && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
|
||||
|
||||
if (Q->ne[1] == 1) {
|
||||
constexpr int cols_per_block = 1;
|
||||
constexpr int parallel_blocks = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_vec_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_vec_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] == 2) {
|
||||
constexpr int cols_per_block = 2;
|
||||
constexpr int parallel_blocks = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_vec_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_vec_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] <= 4) {
|
||||
constexpr int cols_per_block = 4;
|
||||
constexpr int parallel_blocks = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_vec_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_vec_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] <= 8) {
|
||||
constexpr int cols_per_block = 8;
|
||||
constexpr int parallel_blocks = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_vec_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_vec_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
constexpr int cols_per_block = 8;
|
||||
constexpr int parallel_blocks = 1;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_vec_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_vec_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
}
|
||||
3
ggml-cuda/fattn-vec-f32.cuh
Normal file
@@ -0,0 +1,3 @@
|
||||
#include "common.cuh"
|
||||
|
||||
void ggml_cuda_flash_attn_ext_vec_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
@@ -1,4 +1,9 @@
|
||||
#include "common.cuh"
|
||||
#include "fattn-common.cuh"
|
||||
#include "fattn-tile-f16.cuh"
|
||||
#include "fattn-tile-f32.cuh"
|
||||
#include "fattn-vec-f16.cuh"
|
||||
#include "fattn-vec-f32.cuh"
|
||||
#include "fattn.cuh"
|
||||
|
||||
#include <cstdint>
|
||||
@@ -7,191 +12,11 @@
|
||||
#include <mma.h>
|
||||
#endif
|
||||
|
||||
#define FATTN_KQ_STRIDE 256
|
||||
#define HALF_MAX_HALF __float2half(65504.0f/2) // Use neg. of this instead of -INFINITY to initialize KQ max vals to avoid NaN upon subtraction.
|
||||
#define SOFTMAX_FTZ_THRESHOLD -20.0f // Softmax exp. of values smaller than this are flushed to zero to avoid NaNs.
|
||||
|
||||
template<int D, int parallel_blocks> // D == head size
|
||||
__launch_bounds__(((D + WARP_SIZE - 1) / WARP_SIZE)*WARP_SIZE, 1)
|
||||
static __global__ void flash_attn_vec_ext_f16(
|
||||
const char * __restrict__ Q,
|
||||
const char * __restrict__ K,
|
||||
const char * __restrict__ V,
|
||||
const char * __restrict__ mask,
|
||||
float * __restrict__ dst,
|
||||
float2 * __restrict__ dst_meta,
|
||||
const float scale,
|
||||
const int ne00,
|
||||
const int ne01,
|
||||
const int ne02,
|
||||
const int ne03,
|
||||
const int ne10,
|
||||
const int ne11,
|
||||
const int ne12,
|
||||
const int ne13,
|
||||
const int ne31,
|
||||
const int nb31,
|
||||
const int nb01,
|
||||
const int nb02,
|
||||
const int nb03,
|
||||
const int nb11,
|
||||
const int nb12,
|
||||
const int nb13,
|
||||
const int ne0,
|
||||
const int ne1,
|
||||
const int ne2,
|
||||
const int ne3) {
|
||||
#if FP16_AVAILABLE
|
||||
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
||||
|
||||
const int ic = blockIdx.x / parallel_blocks; // Index of the Q/QKV column to work on.
|
||||
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
|
||||
|
||||
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
||||
const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.y + nb01*ic);
|
||||
const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.y / gqa_ratio));
|
||||
const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
|
||||
const half * maskh = (const half *) mask + ne11*ic;
|
||||
|
||||
const int stride_KV = nb11 / sizeof(half);
|
||||
const int stride_KV2 = nb11 / sizeof(half2);
|
||||
|
||||
constexpr int nwarps = (D + WARP_SIZE - 1) / WARP_SIZE;
|
||||
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
|
||||
__builtin_assume(tid < nwarps*WARP_SIZE);
|
||||
|
||||
__shared__ half KQ[nwarps*WARP_SIZE];
|
||||
KQ[tid] = -INFINITY;
|
||||
half2 * KQ2 = (half2 *) KQ;
|
||||
|
||||
half kqmax = -HALF_MAX_HALF;
|
||||
half kqsum = 0.0f;
|
||||
|
||||
__shared__ half kqmax_shared[WARP_SIZE];
|
||||
__shared__ half kqsum_shared[WARP_SIZE];
|
||||
if (threadIdx.y == 0) {
|
||||
kqmax_shared[threadIdx.x] = -HALF_MAX_HALF;
|
||||
kqsum_shared[threadIdx.x] = 0.0f;
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
// Convert Q to half2 and store in registers:
|
||||
half2 Q_h2[(D/2 + WARP_SIZE - 1) / WARP_SIZE];
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
if (i0 + WARP_SIZE > D/2 && i >= D/2) {
|
||||
break;
|
||||
}
|
||||
|
||||
Q_h2[i0/WARP_SIZE] = make_half2(scale, scale) * make_half2(Q_f2[i].x, Q_f2[i].y);
|
||||
}
|
||||
|
||||
half2 VKQ = make_half2(0.0f, 0.0f); // Each thread calculates a single VKQ value.
|
||||
|
||||
const int k_start = parallel_blocks == 1 ? 0 : ip*D;
|
||||
for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*D) {
|
||||
// Calculate KQ tile and keep track of new maximum KQ values:
|
||||
half kqmax_new = kqmax;
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) {
|
||||
const int i_KQ = i_KQ_0 + threadIdx.y;
|
||||
|
||||
if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) {
|
||||
break;
|
||||
}
|
||||
|
||||
half2 sum2 = make_half2(0.0f, 0.0f);
|
||||
#pragma unroll
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
|
||||
const int k_KQ = k_KQ_0 + threadIdx.x;
|
||||
if (k_KQ_0 + WARP_SIZE > D/2 && k_KQ >= D/2) {
|
||||
break;
|
||||
}
|
||||
|
||||
const half2 K_ik = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ];
|
||||
sum2 += K_ik * Q_h2[k_KQ_0/WARP_SIZE];
|
||||
}
|
||||
|
||||
sum2 = warp_reduce_sum(sum2);
|
||||
half sum = __low2half(sum2) + __high2half(sum2);
|
||||
sum += mask ? maskh[k_VKQ_0 + i_KQ] : __float2half(0.0f);
|
||||
kqmax_new = ggml_cuda_hmax(kqmax_new, sum);
|
||||
if (threadIdx.x == 0) {
|
||||
KQ[i_KQ] = sum;
|
||||
}
|
||||
}
|
||||
|
||||
kqmax_new = warp_reduce_max(kqmax_new);
|
||||
if (threadIdx.x == 0) {
|
||||
kqmax_shared[threadIdx.y] = kqmax_new;
|
||||
}
|
||||
__syncthreads();
|
||||
kqmax_new = kqmax_shared[threadIdx.x];
|
||||
kqmax_new = warp_reduce_max(kqmax_new);
|
||||
|
||||
const half KQ_max_scale = hexp(kqmax - kqmax_new);
|
||||
kqmax = kqmax_new;
|
||||
|
||||
const half val = hexp(KQ[tid] - kqmax);
|
||||
kqsum = kqsum*KQ_max_scale + val;
|
||||
KQ[tid] = val;
|
||||
|
||||
VKQ *= __half2half2(KQ_max_scale);
|
||||
|
||||
__syncthreads();
|
||||
|
||||
if (tid < D) {
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < D; k0 += 2) {
|
||||
if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k0 >= ne11) {
|
||||
break;
|
||||
}
|
||||
|
||||
half2 V_k;
|
||||
reinterpret_cast<half&>(V_k.x) = V_h[(k_VKQ_0 + k0 + 0)*stride_KV + tid];
|
||||
reinterpret_cast<half&>(V_k.y) = V_h[(k_VKQ_0 + k0 + 1)*stride_KV + tid];
|
||||
VKQ += V_k*KQ2[k0/2];
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
if (tid >= D) {
|
||||
kqsum = 0.0f;
|
||||
}
|
||||
|
||||
kqsum = warp_reduce_sum(kqsum);
|
||||
if (threadIdx.x == 0) {
|
||||
kqsum_shared[threadIdx.y] = kqsum;
|
||||
}
|
||||
__syncthreads();
|
||||
kqsum = kqsum_shared[threadIdx.x];
|
||||
kqsum = warp_reduce_sum(kqsum);
|
||||
|
||||
if (tid >= D) {
|
||||
return;
|
||||
}
|
||||
|
||||
half dst_val = (__low2half(VKQ) + __high2half(VKQ));
|
||||
if (parallel_blocks == 1) {
|
||||
dst_val /= kqsum;
|
||||
}
|
||||
dst[D*gridDim.y*blockIdx.x + D*blockIdx.y + tid] = dst_val;
|
||||
|
||||
if (parallel_blocks == 1 || tid != 0) {
|
||||
return;
|
||||
}
|
||||
dst_meta[ic*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax, kqsum);
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
#endif // FP16_AVAILABLE
|
||||
}
|
||||
|
||||
// D == head size, VKQ_stride == num VKQ rows calculated in parallel:
|
||||
template<int D, int ncols, int nwarps, int VKQ_stride, int parallel_blocks, typename KQ_acc_t>
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
__launch_bounds__(nwarps*WARP_SIZE, 1)
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
static __global__ void flash_attn_ext_f16(
|
||||
const char * __restrict__ Q,
|
||||
const char * __restrict__ K,
|
||||
@@ -200,6 +25,10 @@ static __global__ void flash_attn_ext_f16(
|
||||
float * __restrict__ dst,
|
||||
float2 * __restrict__ dst_meta,
|
||||
const float scale,
|
||||
const float max_bias,
|
||||
const float m0,
|
||||
const float m1,
|
||||
const uint32_t n_head_log2,
|
||||
const int ne00,
|
||||
const int ne01,
|
||||
const int ne02,
|
||||
@@ -256,6 +85,20 @@ static __global__ void flash_attn_ext_f16(
|
||||
const int stride_Q = nb01 / sizeof(float);
|
||||
const int stride_KV = nb11 / sizeof(half);
|
||||
|
||||
half slopeh = __float2half(1.0f);
|
||||
half2 slope2 = make_half2(1.0f, 1.0f);
|
||||
|
||||
// ALiBi
|
||||
if (max_bias > 0.0f) {
|
||||
const uint32_t h = blockIdx.y;
|
||||
|
||||
const float base = h < n_head_log2 ? m0 : m1;
|
||||
const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
||||
|
||||
slopeh = __float2half(powf(base, exph));
|
||||
slope2 = make_half2(slopeh, slopeh);
|
||||
}
|
||||
|
||||
frag_b Q_b[D/16][ncols/frag_n];
|
||||
|
||||
// A single buffer for temporarily holding tiles of KQ and VKQ parts:
|
||||
@@ -372,7 +215,7 @@ static __global__ void flash_attn_ext_f16(
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
|
||||
const int k = k0 + threadIdx.x;
|
||||
|
||||
KQ_f_tmp[k0/WARP_SIZE] += mask ? __half2float(maskh[j*(nb31/sizeof(half)) + k_VKQ_0 + k]) : 0.0f;
|
||||
KQ_f_tmp[k0/WARP_SIZE] += mask ? __half2float(slopeh*maskh[j*(nb31/sizeof(half)) + k_VKQ_0 + k]) : 0.0f;
|
||||
KQ_max_new = max(KQ_max_new, KQ_f_tmp[k0/WARP_SIZE]);
|
||||
}
|
||||
KQ_max_new = warp_reduce_max(KQ_max_new);
|
||||
@@ -415,7 +258,7 @@ static __global__ void flash_attn_ext_f16(
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
|
||||
const int k = k0 + threadIdx.x;
|
||||
|
||||
KQ2_tmp[k0/WARP_SIZE] += mask ? mask2[(j*ne11 + k_VKQ_0)/2 + k] : make_half2(0.0f, 0.0f);
|
||||
KQ2_tmp[k0/WARP_SIZE] += mask ? slope2*mask2[(j*ne11 + k_VKQ_0)/2 + k] : make_half2(0.0f, 0.0f);
|
||||
KQ_max_new = ggml_cuda_hmax2(KQ_max_new, KQ2_tmp[k0/WARP_SIZE]);
|
||||
}
|
||||
KQ_max_new = __half2half2(warp_reduce_max(ggml_cuda_hmax(__low2half(KQ_max_new), __high2half(KQ_max_new))));
|
||||
@@ -572,52 +415,6 @@ static __global__ void flash_attn_ext_f16(
|
||||
#endif // FP16_MMA_AVAILABLE
|
||||
}
|
||||
|
||||
template<int D, int parallel_blocks> // D == head size
|
||||
__launch_bounds__(D, 1)
|
||||
static __global__ void flash_attn_combine_results(
|
||||
const float * __restrict__ VKQ_parts,
|
||||
const float2 * __restrict__ VKQ_meta,
|
||||
float * __restrict__ dst) {
|
||||
#if FP16_AVAILABLE
|
||||
VKQ_parts += parallel_blocks*D * gridDim.y*blockIdx.x;
|
||||
VKQ_meta += parallel_blocks * gridDim.y*blockIdx.x;
|
||||
dst += D * gridDim.y*blockIdx.x;
|
||||
|
||||
const int tid = threadIdx.x;
|
||||
__builtin_assume(tid < D);
|
||||
|
||||
__shared__ float2 meta[parallel_blocks];
|
||||
if (tid < 2*parallel_blocks) {
|
||||
((float *) meta)[threadIdx.x] = ((const float *)VKQ_meta) [blockIdx.y*(2*parallel_blocks) + tid];
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
float kqmax = meta[0].x;
|
||||
#pragma unroll
|
||||
for (int l = 1; l < parallel_blocks; ++l) {
|
||||
kqmax = max(kqmax, meta[l].x);
|
||||
}
|
||||
|
||||
float VKQ_numerator = 0.0f;
|
||||
float VKQ_denominator = 0.0f;
|
||||
#pragma unroll
|
||||
for (int l = 0; l < parallel_blocks; ++l) {
|
||||
const float diff = meta[l].x - kqmax;
|
||||
const float KQ_max_scale = expf(diff);
|
||||
const uint32_t ftz_mask = 0xFFFFFFFF * (diff > SOFTMAX_FTZ_THRESHOLD);
|
||||
*((uint32_t *) &KQ_max_scale) &= ftz_mask;
|
||||
|
||||
VKQ_numerator += KQ_max_scale * VKQ_parts[l*gridDim.y*D + blockIdx.y*D + tid];
|
||||
VKQ_denominator += KQ_max_scale * meta[l].y;
|
||||
}
|
||||
|
||||
dst[blockIdx.y*D + tid] = VKQ_numerator / VKQ_denominator;
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
#endif // FP16_AVAILABLE
|
||||
}
|
||||
|
||||
constexpr int get_max_power_of_2(int x) {
|
||||
return x % 2 == 0 ? 2*get_max_power_of_2(x/2) : 1;
|
||||
}
|
||||
@@ -642,57 +439,6 @@ static_assert(get_VKQ_stride( 80, 1, 16) == 16, "Test failed.");
|
||||
static_assert(get_VKQ_stride( 80, 2, 16) == 16, "Test failed.");
|
||||
static_assert(get_VKQ_stride( 80, 4, 16) == 16, "Test failed.");
|
||||
|
||||
template <int D, int parallel_blocks> void launch_fattn_vec_f16(
|
||||
const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask,
|
||||
ggml_cuda_pool & pool, cudaStream_t main_stream
|
||||
) {
|
||||
ggml_cuda_pool_alloc<float> dst_tmp(pool);
|
||||
ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);
|
||||
|
||||
if (parallel_blocks > 1) {
|
||||
dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
|
||||
dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
|
||||
}
|
||||
|
||||
constexpr int nwarps = (D + WARP_SIZE - 1) / WARP_SIZE;
|
||||
const dim3 block_dim(WARP_SIZE, nwarps, 1);
|
||||
const dim3 blocks_num(parallel_blocks*Q->ne[1], Q->ne[2], Q->ne[3]);
|
||||
const int shmem = 0;
|
||||
|
||||
float scale;
|
||||
memcpy(&scale, KQV->op_params, sizeof(float));
|
||||
|
||||
flash_attn_vec_ext_f16<D, parallel_blocks>
|
||||
<<<blocks_num, block_dim, shmem, main_stream>>> (
|
||||
(const char *) Q->data,
|
||||
(const char *) K->data,
|
||||
(const char *) V->data,
|
||||
mask ? ((const char *) mask->data) : nullptr,
|
||||
parallel_blocks == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
|
||||
scale,
|
||||
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
|
||||
K->ne[0], K->ne[1], K->ne[2], K->ne[3],
|
||||
mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,
|
||||
Q->nb[1], Q->nb[2], Q->nb[3],
|
||||
K->nb[1], K->nb[2], K->nb[3],
|
||||
KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3]
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
if (parallel_blocks == 1) {
|
||||
return;
|
||||
}
|
||||
|
||||
const dim3 block_dim_combine(D, 1, 1);
|
||||
const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z);
|
||||
const int shmem_combine = 0;
|
||||
|
||||
flash_attn_combine_results<D, parallel_blocks>
|
||||
<<<blocks_num_combine, block_dim_combine, shmem_combine, main_stream>>>
|
||||
(dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
}
|
||||
|
||||
template <int D, int cols_per_block, int nwarps, int parallel_blocks, typename KQ_acc_t> void launch_fattn_f16_impl(
|
||||
const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask,
|
||||
ggml_cuda_pool & pool, cudaStream_t main_stream
|
||||
@@ -710,8 +456,17 @@ template <int D, int cols_per_block, int nwarps, int parallel_blocks, typename K
|
||||
const dim3 blocks_num(parallel_blocks*(Q->ne[1] + cols_per_block - 1) / cols_per_block, Q->ne[2], Q->ne[3]);
|
||||
const int shmem = 0;
|
||||
|
||||
float scale;
|
||||
memcpy(&scale, KQV->op_params, sizeof(float));
|
||||
float scale = 1.0f;
|
||||
float max_bias = 0.0f;
|
||||
|
||||
memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float));
|
||||
memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float));
|
||||
|
||||
const uint32_t n_head = Q->ne[2];
|
||||
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
|
||||
|
||||
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
||||
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
||||
|
||||
flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>
|
||||
<<<blocks_num, block_dim, shmem, main_stream>>> (
|
||||
@@ -720,7 +475,7 @@ template <int D, int cols_per_block, int nwarps, int parallel_blocks, typename K
|
||||
(const char *) V->data,
|
||||
mask ? ((const char *) mask->data) : nullptr,
|
||||
(parallel_blocks) == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
|
||||
scale,
|
||||
scale, max_bias, m0, m1, n_head_log2,
|
||||
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
|
||||
K->ne[0], K->ne[1], K->ne[2], K->ne[3],
|
||||
mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,
|
||||
@@ -783,11 +538,45 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
|
||||
|
||||
ggml_cuda_set_device(ctx.device);
|
||||
|
||||
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
|
||||
const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm;
|
||||
|
||||
const int32_t precision = KQV->op_params[1];
|
||||
const int32_t precision = KQV->op_params[2];
|
||||
|
||||
// On AMD the tile kernels perform poorly, use the vec kernel instead:
|
||||
if (cc >= CC_OFFSET_AMD) {
|
||||
if (precision == GGML_PREC_DEFAULT) {
|
||||
ggml_cuda_flash_attn_ext_vec_f16_no_mma(ctx, dst);
|
||||
} else {
|
||||
ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (!fast_fp16_available(cc)) {
|
||||
if (Q->ne[1] <= 8) {
|
||||
ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
|
||||
} else {
|
||||
ggml_cuda_flash_attn_ext_tile_f32(ctx, dst);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (!fp16_mma_available(cc)) {
|
||||
if (Q->ne[1] <= 8) {
|
||||
ggml_cuda_flash_attn_ext_vec_f16_no_mma(ctx, dst);
|
||||
} else {
|
||||
ggml_cuda_flash_attn_ext_tile_f16(ctx, dst);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (precision != GGML_PREC_DEFAULT) {
|
||||
if (Q->ne[1] == 1 && (Q->ne[0] == 64 || Q->ne[0] == 128)) {
|
||||
ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] <= 32 || Q->ne[0] > 128) {
|
||||
constexpr int cols_per_block = 16;
|
||||
constexpr int nwarps = 4;
|
||||
@@ -845,21 +634,7 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
|
||||
}
|
||||
|
||||
if (Q->ne[1] == 1 && Q->ne[0] % (2*WARP_SIZE) == 0) {
|
||||
constexpr int parallel_blocks = 4;
|
||||
switch (Q->ne[0]) {
|
||||
case 64:
|
||||
launch_fattn_vec_f16< 64, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 128:
|
||||
launch_fattn_vec_f16<128, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
case 256:
|
||||
launch_fattn_vec_f16<256, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
}
|
||||
ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
@@ -1735,8 +1735,7 @@ static void ggml_mul_mat_q4_0_q8_1_cuda(
|
||||
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
|
||||
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
||||
|
||||
int id;
|
||||
CUDA_CHECK(cudaGetDevice(&id));
|
||||
int id = ggml_cuda_get_device();
|
||||
const int compute_capability = ggml_cuda_info().devices[id].cc;
|
||||
|
||||
int mmq_x, mmq_y, nwarps;
|
||||
@@ -1780,8 +1779,7 @@ static void ggml_mul_mat_q4_1_q8_1_cuda(
|
||||
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
|
||||
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
||||
|
||||
int id;
|
||||
CUDA_CHECK(cudaGetDevice(&id));
|
||||
int id = ggml_cuda_get_device();
|
||||
const int compute_capability = ggml_cuda_info().devices[id].cc;
|
||||
|
||||
int mmq_x, mmq_y, nwarps;
|
||||
@@ -1825,8 +1823,7 @@ static void ggml_mul_mat_q5_0_q8_1_cuda(
|
||||
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
|
||||
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
||||
|
||||
int id;
|
||||
CUDA_CHECK(cudaGetDevice(&id));
|
||||
int id = ggml_cuda_get_device();
|
||||
const int compute_capability = ggml_cuda_info().devices[id].cc;
|
||||
|
||||
int mmq_x, mmq_y, nwarps;
|
||||
@@ -1870,8 +1867,7 @@ static void ggml_mul_mat_q5_1_q8_1_cuda(
|
||||
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
|
||||
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
||||
|
||||
int id;
|
||||
CUDA_CHECK(cudaGetDevice(&id));
|
||||
int id = ggml_cuda_get_device();
|
||||
const int compute_capability = ggml_cuda_info().devices[id].cc;
|
||||
|
||||
int mmq_x, mmq_y, nwarps;
|
||||
@@ -1915,8 +1911,7 @@ static void ggml_mul_mat_q8_0_q8_1_cuda(
|
||||
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
|
||||
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
||||
|
||||
int id;
|
||||
CUDA_CHECK(cudaGetDevice(&id));
|
||||
int id = ggml_cuda_get_device();
|
||||
const int compute_capability = ggml_cuda_info().devices[id].cc;
|
||||
|
||||
int mmq_x, mmq_y, nwarps;
|
||||
@@ -1960,8 +1955,7 @@ static void ggml_mul_mat_q2_K_q8_1_cuda(
|
||||
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
|
||||
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
||||
|
||||
int id;
|
||||
CUDA_CHECK(cudaGetDevice(&id));
|
||||
int id = ggml_cuda_get_device();
|
||||
const int compute_capability = ggml_cuda_info().devices[id].cc;
|
||||
|
||||
int mmq_x, mmq_y, nwarps;
|
||||
@@ -2007,8 +2001,7 @@ static void ggml_mul_mat_q3_K_q8_1_cuda(
|
||||
|
||||
#if QK_K == 256
|
||||
|
||||
int id;
|
||||
CUDA_CHECK(cudaGetDevice(&id));
|
||||
int id = ggml_cuda_get_device();
|
||||
const int compute_capability = ggml_cuda_info().devices[id].cc;
|
||||
|
||||
int mmq_x, mmq_y, nwarps;
|
||||
@@ -2053,8 +2046,7 @@ static void ggml_mul_mat_q4_K_q8_1_cuda(
|
||||
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
|
||||
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
||||
|
||||
int id;
|
||||
CUDA_CHECK(cudaGetDevice(&id));
|
||||
int id = ggml_cuda_get_device();
|
||||
const int compute_capability = ggml_cuda_info().devices[id].cc;
|
||||
|
||||
int mmq_x, mmq_y, nwarps;
|
||||
@@ -2098,8 +2090,7 @@ static void ggml_mul_mat_q5_K_q8_1_cuda(
|
||||
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
|
||||
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
||||
|
||||
int id;
|
||||
CUDA_CHECK(cudaGetDevice(&id));
|
||||
int id = ggml_cuda_get_device();
|
||||
const int compute_capability = ggml_cuda_info().devices[id].cc;
|
||||
|
||||
int mmq_x, mmq_y, nwarps;
|
||||
@@ -2143,8 +2134,7 @@ static void ggml_mul_mat_q6_K_q8_1_cuda(
|
||||
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
|
||||
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
||||
|
||||
int id;
|
||||
CUDA_CHECK(cudaGetDevice(&id));
|
||||
int id = ggml_cuda_get_device();
|
||||
const int compute_capability = ggml_cuda_info().devices[id].cc;
|
||||
|
||||
int mmq_x, mmq_y, nwarps;
|
||||
|
||||
@@ -89,8 +89,7 @@ static void mul_mat_vec_q_cuda(
|
||||
GGML_ASSERT(ncols_x % qk == 0);
|
||||
GGML_ASSERT(ncols_y <= MMVQ_MAX_BATCH_SIZE);
|
||||
|
||||
int id;
|
||||
CUDA_CHECK(cudaGetDevice(&id));
|
||||
int id = ggml_cuda_get_device();
|
||||
|
||||
int64_t nwarps = 1;
|
||||
int64_t rows_per_cuda_block = 1;
|
||||
@@ -328,8 +327,7 @@ void ggml_cuda_op_mul_mat_vec_q(
|
||||
|
||||
const int64_t ne0 = dst->ne[0];
|
||||
|
||||
int id;
|
||||
CUDA_CHECK(cudaGetDevice(&id));
|
||||
int id = ggml_cuda_get_device();
|
||||
|
||||
// the main device has a larger memory buffer to hold the results from all GPUs
|
||||
// nrows_dst == nrows of the matrix that the kernel writes into
|
||||
|
||||
@@ -28,5 +28,4 @@ void ggml_cuda_op_scale(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
memcpy(&scale, dst->op_params, sizeof(float));
|
||||
|
||||
scale_f32_cuda(src0_d, dst_d, scale, ggml_nelements(src0), stream);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
}
|
||||
|
||||
@@ -11,7 +11,7 @@ __device__ float __forceinline__ t2f32<half>(half val) {
|
||||
}
|
||||
|
||||
template <bool vals_smem, int ncols_template, int block_size_template, typename T>
|
||||
static __global__ void soft_max_f32(const float * x, const T * mask, const T * pos, float * dst, const int ncols_par, const int nrows_y, const float scale, const float max_bias, const float m0, const float m1, uint32_t n_head_log2) {
|
||||
static __global__ void soft_max_f32(const float * x, const T * mask, float * dst, const int ncols_par, const int nrows_y, const float scale, const float max_bias, const float m0, const float m1, uint32_t n_head_log2) {
|
||||
const int ncols = ncols_template == 0 ? ncols_par : ncols_template;
|
||||
|
||||
const int tid = threadIdx.x;
|
||||
@@ -23,16 +23,16 @@ static __global__ void soft_max_f32(const float * x, const T * mask, const T * p
|
||||
const int warp_id = threadIdx.x / WARP_SIZE;
|
||||
const int lane_id = threadIdx.x % WARP_SIZE;
|
||||
|
||||
float slope = 0.0f;
|
||||
float slope = 1.0f;
|
||||
|
||||
// ALiBi
|
||||
if (max_bias > 0.0f) {
|
||||
const int h = rowx/nrows_y; // head index
|
||||
|
||||
const float base = h < n_head_log2 ? m0 : m1;
|
||||
const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
||||
const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
||||
|
||||
slope = powf(base, exp);
|
||||
slope = powf(base, exph);
|
||||
}
|
||||
|
||||
extern __shared__ float data_soft_max_f32[];
|
||||
@@ -53,7 +53,7 @@ static __global__ void soft_max_f32(const float * x, const T * mask, const T * p
|
||||
const int64_t ix = (int64_t)rowx*ncols + col;
|
||||
const int64_t iy = (int64_t)rowy*ncols + col;
|
||||
|
||||
const float val = x[ix]*scale + (mask ? t2f32(mask[iy]) : 0.0f) + (pos ? slope*t2f32(pos[col]) : 0.0f);
|
||||
const float val = x[ix]*scale + (mask ? slope*t2f32(mask[iy]) : 0.0f);
|
||||
|
||||
vals[col] = val;
|
||||
max_val = max(max_val, val);
|
||||
@@ -125,7 +125,7 @@ static __global__ void soft_max_f32(const float * x, const T * mask, const T * p
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
static void soft_max_f32_cuda(const float * x, const T * mask, const T * pos, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const float scale, const float max_bias, cudaStream_t stream) {
|
||||
static void soft_max_f32_cuda(const float * x, const T * mask, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const float scale, const float max_bias, cudaStream_t stream) {
|
||||
int nth = WARP_SIZE;
|
||||
while (nth < ncols_x && nth < CUDA_SOFT_MAX_BLOCK_SIZE) nth *= 2;
|
||||
const dim3 block_dims(nth, 1, 1);
|
||||
@@ -133,8 +133,8 @@ static void soft_max_f32_cuda(const float * x, const T * mask, const T * pos, fl
|
||||
const size_t shmem = (GGML_PAD(ncols_x, WARP_SIZE) + WARP_SIZE)*sizeof(float);
|
||||
static_assert(CUDA_SOFT_MAX_BLOCK_SIZE == 1024, "These values need to be adjusted.");
|
||||
|
||||
const uint32_t n_head_kv = nrows_x/nrows_y;
|
||||
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv));
|
||||
const uint32_t n_head = nrows_x/nrows_y;
|
||||
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
|
||||
|
||||
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
||||
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
||||
@@ -142,43 +142,42 @@ static void soft_max_f32_cuda(const float * x, const T * mask, const T * pos, fl
|
||||
if (shmem < ggml_cuda_info().devices[ggml_cuda_get_device()].smpb) {
|
||||
switch (ncols_x) {
|
||||
case 32:
|
||||
soft_max_f32<true, 32, 32><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
soft_max_f32<true, 32, 32><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
break;
|
||||
case 64:
|
||||
soft_max_f32<true, 64, 64><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
soft_max_f32<true, 64, 64><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
break;
|
||||
case 128:
|
||||
soft_max_f32<true, 128, 128><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
soft_max_f32<true, 128, 128><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
break;
|
||||
case 256:
|
||||
soft_max_f32<true, 256, 256><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
soft_max_f32<true, 256, 256><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
break;
|
||||
case 512:
|
||||
soft_max_f32<true, 512, 512><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
soft_max_f32<true, 512, 512><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
break;
|
||||
case 1024:
|
||||
soft_max_f32<true, 1024, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
soft_max_f32<true, 1024, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
break;
|
||||
case 2048:
|
||||
soft_max_f32<true, 2048, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
soft_max_f32<true, 2048, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
break;
|
||||
case 4096:
|
||||
soft_max_f32<true, 4096, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
soft_max_f32<true, 4096, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
break;
|
||||
default:
|
||||
soft_max_f32<true, 0, 0><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
soft_max_f32<true, 0, 0><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
const size_t shmem_low = WARP_SIZE*sizeof(float);
|
||||
soft_max_f32<false, 0, 0><<<block_nums, block_dims, shmem_low, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
soft_max_f32<false, 0, 0><<<block_nums, block_dims, shmem_low, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cuda_op_soft_max(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
const ggml_tensor * src2 = dst->src[2];
|
||||
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
const void * src1_d = src1 ? (const void *)src1->data : nullptr;
|
||||
@@ -190,7 +189,6 @@ void ggml_cuda_op_soft_max(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F16 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional
|
||||
GGML_ASSERT(!src2 || src2->type == GGML_TYPE_F16 || src2->type == GGML_TYPE_F32); // src2 contains positions and it is optional
|
||||
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t nrows_x = ggml_nrows(src0);
|
||||
@@ -202,26 +200,15 @@ void ggml_cuda_op_soft_max(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
|
||||
memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
|
||||
|
||||
// positions tensor
|
||||
void * src2_d = nullptr;
|
||||
|
||||
const bool use_src2 = src2 != nullptr;
|
||||
|
||||
if (use_src2) {
|
||||
src2_d = (void *)src2->data;
|
||||
}
|
||||
|
||||
const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16) || (src2 && src2->type == GGML_TYPE_F16);
|
||||
const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
|
||||
|
||||
if (use_f16) {
|
||||
const half * src1_dd = (const half *)src1_d;
|
||||
const half * src2_dd = (const half *)src2_d;
|
||||
|
||||
soft_max_f32_cuda(src0_d, src1_dd, src2_dd, dst_d, ne00, nrows_x, nrows_y, scale, max_bias, stream);
|
||||
soft_max_f32_cuda(src0_d, src1_dd, dst_d, ne00, nrows_x, nrows_y, scale, max_bias, stream);
|
||||
} else {
|
||||
const float * src1_dd = (const float *)src1_d;
|
||||
const float * src2_dd = (const float *)src2_d;
|
||||
|
||||
soft_max_f32_cuda(src0_d, src1_dd, src2_dd, dst_d, ne00, nrows_x, nrows_y, scale, max_bias, stream);
|
||||
soft_max_f32_cuda(src0_d, src1_dd, dst_d, ne00, nrows_x, nrows_y, scale, max_bias, stream);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -48,6 +48,15 @@ static __global__ void relu_f32(const float * x, float * dst, const int k) {
|
||||
dst[i] = fmaxf(x[i], 0);
|
||||
}
|
||||
|
||||
static __global__ void sigmoid_f32(const float * x, float * dst, const int k) {
|
||||
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i >= k) {
|
||||
return;
|
||||
}
|
||||
dst[i] = 1.0f / (1.0f + expf(-x[i]));
|
||||
}
|
||||
|
||||
static __global__ void hardsigmoid_f32(const float * x, float * dst, const int k) {
|
||||
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
@@ -108,6 +117,11 @@ static void relu_f32_cuda(const float * x, float * dst, const int k, cudaStream_
|
||||
relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||
}
|
||||
|
||||
static void sigmoid_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_SIGMOID_BLOCK_SIZE - 1) / CUDA_SIGMOID_BLOCK_SIZE;
|
||||
sigmoid_f32<<<num_blocks, CUDA_SIGMOID_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||
}
|
||||
|
||||
static void hardsigmoid_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_HARDSIGMOID_BLOCK_SIZE - 1) / CUDA_HARDSIGMOID_BLOCK_SIZE;
|
||||
hardsigmoid_f32<<<num_blocks, CUDA_HARDSIGMOID_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||
@@ -188,6 +202,18 @@ void ggml_cuda_op_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
relu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_sigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
float * dst_d = (float *)dst->data;
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
sigmoid_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_hardsigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
|
||||
@@ -4,6 +4,7 @@
|
||||
#define CUDA_SILU_BLOCK_SIZE 256
|
||||
#define CUDA_TANH_BLOCK_SIZE 256
|
||||
#define CUDA_RELU_BLOCK_SIZE 256
|
||||
#define CUDA_SIGMOID_BLOCK_SIZE 256
|
||||
#define CUDA_HARDSIGMOID_BLOCK_SIZE 256
|
||||
#define CUDA_HARDSWISH_BLOCK_SIZE 256
|
||||
#define CUDA_SQR_BLOCK_SIZE 256
|
||||
@@ -18,6 +19,8 @@ void ggml_cuda_op_tanh(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_sigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_hardsigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_hardswish(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
@@ -1,35 +1,36 @@
|
||||
#include "upscale.cuh"
|
||||
|
||||
static __global__ void upscale_f32(const float * x, float * dst, const int ne00, const int ne00xne01, const int scale_factor) {
|
||||
// blockIdx.z: idx of ne02*ne03
|
||||
// blockIdx.y: idx of ne01*scale_factor, aka ne1
|
||||
// blockIDx.x: idx of ne00*scale_factor / BLOCK_SIZE
|
||||
// ne00xne01: ne00 * ne01
|
||||
int ne0 = ne00 * scale_factor;
|
||||
int nidx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
if (nidx >= ne0) {
|
||||
static __global__ void upscale_f32(const float * x, float * dst,
|
||||
const int nb00, const int nb01, const int nb02, const int nb03,
|
||||
const int ne10, const int ne11, const int ne12, const int ne13,
|
||||
const float sf0, const float sf1, const float sf2, const float sf3) {
|
||||
int index = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
if (index >= ne10 * ne11 * ne12 * ne13) {
|
||||
return;
|
||||
}
|
||||
// operation
|
||||
int i00 = nidx / scale_factor;
|
||||
int i01 = blockIdx.y / scale_factor;
|
||||
int offset_src =
|
||||
i00 +
|
||||
i01 * ne00 +
|
||||
blockIdx.z * ne00xne01;
|
||||
int offset_dst =
|
||||
nidx +
|
||||
blockIdx.y * ne0 +
|
||||
blockIdx.z * ne0 * gridDim.y;
|
||||
dst[offset_dst] = x[offset_src];
|
||||
|
||||
int i10 = index % ne10;
|
||||
int i11 = (index / ne10) % ne11;
|
||||
int i12 = (index / (ne10 * ne11)) % ne12;
|
||||
int i13 = (index / (ne10 * ne11 * ne12)) % ne13;
|
||||
|
||||
int i00 = i10 / sf0;
|
||||
int i01 = i11 / sf1;
|
||||
int i02 = i12 / sf2;
|
||||
int i03 = i13 / sf3;
|
||||
|
||||
dst[index] = *(float *)((char *)x + i03 * nb03 + i02 * nb02 + i01 * nb01 + i00 * nb00);
|
||||
}
|
||||
|
||||
static void upscale_f32_cuda(const float * x, float * dst, const int ne00, const int ne01, const int ne02, const int ne03,
|
||||
const int scale_factor, cudaStream_t stream) {
|
||||
int ne0 = (ne00 * scale_factor);
|
||||
int num_blocks = (ne0 + CUDA_UPSCALE_BLOCK_SIZE - 1) / CUDA_UPSCALE_BLOCK_SIZE;
|
||||
dim3 gridDim(num_blocks, (ne01 * scale_factor), ne02*ne03);
|
||||
upscale_f32<<<gridDim, CUDA_UPSCALE_BLOCK_SIZE, 0, stream>>>(x, dst, ne00, ne00 * ne01, scale_factor);
|
||||
static void upscale_f32_cuda(const float * x, float * dst,
|
||||
const int nb00, const int nb01, const int nb02, const int nb03,
|
||||
const int ne10, const int ne11, const int ne12, const int ne13,
|
||||
const float sf0, const float sf1, const float sf2, const float sf3,
|
||||
cudaStream_t stream) {
|
||||
int dst_size = ne10 * ne11 * ne12 * ne13;
|
||||
int num_blocks = (dst_size + CUDA_UPSCALE_BLOCK_SIZE - 1) / CUDA_UPSCALE_BLOCK_SIZE;
|
||||
|
||||
upscale_f32<<<num_blocks, CUDA_UPSCALE_BLOCK_SIZE,0,stream>>>(x, dst, nb00, nb01, nb02, nb03, ne10, ne11, ne12, ne13, sf0, sf1, sf2, sf3);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_upscale(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
@@ -39,10 +40,12 @@ void ggml_cuda_op_upscale(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
const int scale_factor = dst->op_params[0];
|
||||
const float sf0 = (float)dst->ne[0]/src0->ne[0];
|
||||
const float sf1 = (float)dst->ne[1]/src0->ne[1];
|
||||
const float sf2 = (float)dst->ne[2]/src0->ne[2];
|
||||
const float sf3 = (float)dst->ne[3]/src0->ne[3];
|
||||
|
||||
upscale_f32_cuda(src0_d, dst_d, src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3], scale_factor, stream);
|
||||
upscale_f32_cuda(src0_d, dst_d, src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3], dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], sf0, sf1, sf2, sf3, stream);
|
||||
}
|
||||
|
||||
@@ -120,9 +120,16 @@ extern "C" {
|
||||
#ifndef __F16C__
|
||||
#define __F16C__
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// __SSE3__ and __SSSE3__ are not defined in MSVC, but SSE3/SSSE3 are present when AVX/AVX2/AVX512 are available
|
||||
#if defined(_MSC_VER) && (defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__))
|
||||
#ifndef __SSE3__
|
||||
#define __SSE3__
|
||||
#endif
|
||||
#ifndef __SSSE3__
|
||||
#define __SSSE3__
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// 16-bit float
|
||||
|
||||
@@ -1559,12 +1559,18 @@ static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml
|
||||
case GGML_OP_SOFT_MAX:
|
||||
{
|
||||
float scale;
|
||||
memcpy(&scale, dst->op_params, sizeof(float));
|
||||
float max_bias;
|
||||
|
||||
#pragma message("TODO: add ggml_vk_soft_max() F16/F32 src1 and src2 support")
|
||||
memcpy(&scale, (float *)dst->op_params + 0, sizeof(float));
|
||||
memcpy(&max_bias, (float *)dst->op_params + 1, sizeof(float));
|
||||
|
||||
#pragma message("TODO: add ggml_vk_soft_max() F16 src1 support")
|
||||
#pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5021")
|
||||
GGML_ASSERT(!src1 || src1t == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src2 == nullptr);
|
||||
|
||||
#pragma message("TODO: add ALiBi support")
|
||||
#pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/7192")
|
||||
GGML_ASSERT(max_bias == 0.0f);
|
||||
|
||||
ggml_vk_soft_max(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, ne01, ne02, ne03, scale);
|
||||
} break;
|
||||
|
||||
239
ggml-metal.m
@@ -40,6 +40,7 @@ enum ggml_metal_kernel_type {
|
||||
GGML_METAL_KERNEL_TYPE_CLAMP,
|
||||
GGML_METAL_KERNEL_TYPE_TANH,
|
||||
GGML_METAL_KERNEL_TYPE_RELU,
|
||||
GGML_METAL_KERNEL_TYPE_SIGMOID,
|
||||
GGML_METAL_KERNEL_TYPE_GELU,
|
||||
GGML_METAL_KERNEL_TYPE_GELU_4,
|
||||
GGML_METAL_KERNEL_TYPE_GELU_QUICK,
|
||||
@@ -169,7 +170,6 @@ enum ggml_metal_kernel_type {
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_ROPE_F32,
|
||||
GGML_METAL_KERNEL_TYPE_ROPE_F16,
|
||||
GGML_METAL_KERNEL_TYPE_ALIBI_F32,
|
||||
GGML_METAL_KERNEL_TYPE_IM2COL_F16,
|
||||
GGML_METAL_KERNEL_TYPE_IM2COL_F32,
|
||||
GGML_METAL_KERNEL_TYPE_UPSCALE_F32,
|
||||
@@ -494,6 +494,7 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CLAMP, clamp, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TANH, tanh, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RELU, relu, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SIGMOID, sigmoid, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU, gelu, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_4, gelu_4, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK, gelu_quick, true);
|
||||
@@ -623,7 +624,6 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32, mul_mm_id_iq4_xs_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_F32, rope_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_F16, rope_f16, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ALIBI_F32, alibi_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F16, im2col_f16, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F32, im2col_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UPSCALE_F32, upscale_f32, true);
|
||||
@@ -633,14 +633,14 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC, argsort_f32_i32_asc, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC, argsort_f32_i32_desc, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32, leaky_relu_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H64, flash_attn_ext_f16_h64, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H80, flash_attn_ext_f16_h80, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H96, flash_attn_ext_f16_h96, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H112, flash_attn_ext_f16_h112, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H128, flash_attn_ext_f16_h128, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256, flash_attn_ext_f16_h256, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128, flash_attn_ext_vec_f16_h128, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256, flash_attn_ext_vec_f16_h256, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H64, flash_attn_ext_f16_h64, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H80, flash_attn_ext_f16_h80, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H96, flash_attn_ext_f16_h96, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H112, flash_attn_ext_f16_h112, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H128, flash_attn_ext_f16_h128, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256, flash_attn_ext_f16_h256, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128, flash_attn_ext_vec_f16_h128, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256, flash_attn_ext_vec_f16_h256, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F16, cpy_f32_f16, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F32, cpy_f32_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0, cpy_f32_q8_0, true);
|
||||
@@ -732,6 +732,7 @@ static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const
|
||||
switch (ggml_get_unary_op(op)) {
|
||||
case GGML_UNARY_OP_TANH:
|
||||
case GGML_UNARY_OP_RELU:
|
||||
case GGML_UNARY_OP_SIGMOID:
|
||||
case GGML_UNARY_OP_GELU:
|
||||
case GGML_UNARY_OP_GELU_QUICK:
|
||||
case GGML_UNARY_OP_SILU:
|
||||
@@ -759,7 +760,6 @@ static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const
|
||||
case GGML_OP_GROUP_NORM:
|
||||
return ctx->support_simdgroup_reduction;
|
||||
case GGML_OP_NORM:
|
||||
case GGML_OP_ALIBI:
|
||||
case GGML_OP_ROPE:
|
||||
case GGML_OP_IM2COL:
|
||||
return true;
|
||||
@@ -772,8 +772,9 @@ static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
case GGML_OP_ARGSORT:
|
||||
case GGML_OP_LEAKY_RELU:
|
||||
case GGML_OP_FLASH_ATTN_EXT:
|
||||
return true;
|
||||
case GGML_OP_FLASH_ATTN_EXT:
|
||||
return ctx->support_simdgroup_mm; // TODO: over-restricted for vec-kernels
|
||||
case GGML_OP_MUL_MAT:
|
||||
case GGML_OP_MUL_MAT_ID:
|
||||
return ctx->support_simdgroup_reduction &&
|
||||
@@ -1194,24 +1195,24 @@ static enum ggml_status ggml_metal_graph_compute(
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
} break;
|
||||
case GGML_OP_CLAMP:
|
||||
{
|
||||
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CLAMP].pipeline;
|
||||
{
|
||||
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CLAMP].pipeline;
|
||||
|
||||
float min;
|
||||
float max;
|
||||
memcpy(&min, ((int32_t *) dst->op_params) + 0, sizeof(float));
|
||||
memcpy(&max, ((int32_t *) dst->op_params) + 1, sizeof(float));
|
||||
float min;
|
||||
float max;
|
||||
memcpy(&min, ((int32_t *) dst->op_params) + 0, sizeof(float));
|
||||
memcpy(&max, ((int32_t *) dst->op_params) + 1, sizeof(float));
|
||||
|
||||
[encoder setComputePipelineState:pipeline];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
[encoder setBytes:&min length:sizeof(min) atIndex:2];
|
||||
[encoder setBytes:&max length:sizeof(max) atIndex:3];
|
||||
[encoder setComputePipelineState:pipeline];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
[encoder setBytes:&min length:sizeof(min) atIndex:2];
|
||||
[encoder setBytes:&max length:sizeof(max) atIndex:3];
|
||||
|
||||
const int64_t n = ggml_nelements(dst);
|
||||
const int64_t n = ggml_nelements(dst);
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
} break;
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
} break;
|
||||
case GGML_OP_UNARY:
|
||||
switch (ggml_get_unary_op(gf->nodes[i])) {
|
||||
// we are not taking into account the strides, so for now require contiguous tensors
|
||||
@@ -1239,6 +1240,18 @@ static enum ggml_status ggml_metal_graph_compute(
|
||||
|
||||
const int64_t n = ggml_nelements(dst);
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
} break;
|
||||
case GGML_UNARY_OP_SIGMOID:
|
||||
{
|
||||
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SIGMOID].pipeline;
|
||||
|
||||
[encoder setComputePipelineState:pipeline];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
|
||||
const int64_t n = ggml_nelements(dst);
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
} break;
|
||||
case GGML_UNARY_OP_GELU:
|
||||
@@ -1357,16 +1370,15 @@ static enum ggml_status ggml_metal_graph_compute(
|
||||
case GGML_OP_SOFT_MAX:
|
||||
{
|
||||
GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F16 || src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(!src2 || src2->type == GGML_TYPE_F16 || src2->type == GGML_TYPE_F32);
|
||||
|
||||
int nth = 32; // SIMD width
|
||||
|
||||
id<MTLComputePipelineState> pipeline = nil;
|
||||
|
||||
const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16) || (src2 && src2->type == GGML_TYPE_F16);
|
||||
const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
|
||||
|
||||
if (ne00%4 == 0) {
|
||||
while (nth < ne00/4 && nth < 256) {
|
||||
while (nth < ne00/4 && nth*ne01*ne02*ne03 < 256) {
|
||||
nth *= 2;
|
||||
}
|
||||
if (use_f16) {
|
||||
@@ -1375,7 +1387,7 @@ static enum ggml_status ggml_metal_graph_compute(
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32_4].pipeline;
|
||||
}
|
||||
} else {
|
||||
while (nth < ne00 && nth < 1024) {
|
||||
while (nth < ne00 && nth*ne01*ne02*ne03 < 256) {
|
||||
nth *= 2;
|
||||
}
|
||||
if (use_f16) {
|
||||
@@ -1394,8 +1406,8 @@ static enum ggml_status ggml_metal_graph_compute(
|
||||
const int64_t nrows_x = ggml_nrows(src0);
|
||||
const int64_t nrows_y = src0->ne[1];
|
||||
|
||||
const uint32_t n_head_kv = nrows_x/nrows_y;
|
||||
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv));
|
||||
const uint32_t n_head = nrows_x/nrows_y;
|
||||
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
|
||||
|
||||
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
||||
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
||||
@@ -1407,20 +1419,15 @@ static enum ggml_status ggml_metal_graph_compute(
|
||||
} else {
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
|
||||
}
|
||||
if (id_src2) {
|
||||
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:2];
|
||||
} else {
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:2];
|
||||
}
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:3];
|
||||
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:4];
|
||||
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:5];
|
||||
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:6];
|
||||
[encoder setBytes:&scale length:sizeof(scale) atIndex:7];
|
||||
[encoder setBytes:&max_bias length:sizeof(max_bias) atIndex:8];
|
||||
[encoder setBytes:&m0 length:sizeof(m0) atIndex:9];
|
||||
[encoder setBytes:&m1 length:sizeof(m1) atIndex:10];
|
||||
[encoder setBytes:&n_head_log2 length:sizeof(n_head_log2) atIndex:11];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
||||
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
|
||||
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
|
||||
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
|
||||
[encoder setBytes:&scale length:sizeof(scale) atIndex:6];
|
||||
[encoder setBytes:&max_bias length:sizeof(max_bias) atIndex:7];
|
||||
[encoder setBytes:&m0 length:sizeof(m0) atIndex:8];
|
||||
[encoder setBytes:&m1 length:sizeof(m1) atIndex:9];
|
||||
[encoder setBytes:&n_head_log2 length:sizeof(n_head_log2) atIndex:10];
|
||||
[encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01*ne02*ne03, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
||||
@@ -2225,49 +2232,6 @@ static enum ggml_status ggml_metal_graph_compute(
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
||||
} break;
|
||||
case GGML_OP_ALIBI:
|
||||
{
|
||||
GGML_ASSERT((src0t == GGML_TYPE_F32));
|
||||
|
||||
const int nth = MIN(1024, ne00);
|
||||
|
||||
//const int n_past = ((int32_t *) dst->op_params)[0];
|
||||
const int n_head = ((int32_t *) dst->op_params)[1];
|
||||
|
||||
float max_bias;
|
||||
memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
|
||||
|
||||
const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
|
||||
const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
|
||||
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
|
||||
|
||||
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ALIBI_F32].pipeline;
|
||||
|
||||
[encoder setComputePipelineState:pipeline];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
|
||||
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
|
||||
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
|
||||
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
|
||||
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
|
||||
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
|
||||
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
|
||||
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
|
||||
[encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10];
|
||||
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11];
|
||||
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12];
|
||||
[encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13];
|
||||
[encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14];
|
||||
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15];
|
||||
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
|
||||
[encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
|
||||
[encoder setBytes:&m0 length:sizeof( float) atIndex:18];
|
||||
[encoder setBytes:&m1 length:sizeof( float) atIndex:19];
|
||||
[encoder setBytes:&n_heads_log2_floor length:sizeof(int) atIndex:20];
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
||||
} break;
|
||||
case GGML_OP_ROPE:
|
||||
{
|
||||
GGML_ASSERT(ne10 == ne02);
|
||||
@@ -2389,7 +2353,10 @@ static enum ggml_status ggml_metal_graph_compute(
|
||||
{
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
|
||||
const int sf = dst->op_params[0];
|
||||
const float sf0 = (float)ne0/src0->ne[0];
|
||||
const float sf1 = (float)ne1/src0->ne[1];
|
||||
const float sf2 = (float)ne2/src0->ne[2];
|
||||
const float sf3 = (float)ne3/src0->ne[3];
|
||||
|
||||
const id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_UPSCALE_F32].pipeline;
|
||||
|
||||
@@ -2412,7 +2379,10 @@ static enum ggml_status ggml_metal_graph_compute(
|
||||
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:15];
|
||||
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:16];
|
||||
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:17];
|
||||
[encoder setBytes:&sf length:sizeof(sf) atIndex:18];
|
||||
[encoder setBytes:&sf0 length:sizeof(sf0) atIndex:18];
|
||||
[encoder setBytes:&sf1 length:sizeof(sf1) atIndex:19];
|
||||
[encoder setBytes:&sf2 length:sizeof(sf2) atIndex:20];
|
||||
[encoder setBytes:&sf3 length:sizeof(sf3) atIndex:21];
|
||||
|
||||
const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne0);
|
||||
|
||||
@@ -2548,13 +2518,14 @@ static enum ggml_status ggml_metal_graph_compute(
|
||||
} break;
|
||||
case GGML_OP_FLASH_ATTN_EXT:
|
||||
{
|
||||
GGML_ASSERT(ne00 % 4 == 0);
|
||||
GGML_ASSERT(ne00 % 4 == 0);
|
||||
GGML_ASSERT(ne11 % 32 == 0);
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
|
||||
struct ggml_tensor * src3 = gf->nodes[i]->src[3];
|
||||
GGML_ASSERT(ggml_are_same_shape (src1, src2));
|
||||
|
||||
GGML_ASSERT(ggml_are_same_shape(src1, src2));
|
||||
GGML_ASSERT(src3);
|
||||
struct ggml_tensor * src3 = gf->nodes[i]->src[3];
|
||||
|
||||
size_t offs_src3 = 0;
|
||||
|
||||
@@ -2564,8 +2535,13 @@ static enum ggml_status ggml_metal_graph_compute(
|
||||
GGML_ASSERT(!src3 || src3->ne[1] >= GGML_PAD(src0->ne[1], 8) &&
|
||||
"the Flash-Attention Metal kernel requires the mask to be padded to 8 and at least n_queries big");
|
||||
|
||||
const uint64_t nb20 = src2 ? src2->nb[0] : 0; GGML_UNUSED(nb20);
|
||||
const uint64_t nb21 = src2 ? src2->nb[1] : 0;
|
||||
const uint64_t nb22 = src2 ? src2->nb[2] : 0;
|
||||
const uint64_t nb23 = src2 ? src2->nb[3] : 0;
|
||||
|
||||
const int64_t ne30 = src3 ? src3->ne[0] : 0; GGML_UNUSED(ne30);
|
||||
const int64_t ne31 = src3 ? src3->ne[1] : 0;
|
||||
//const int64_t ne31 = src3 ? src3->ne[1] : 0;
|
||||
const int64_t ne32 = src3 ? src3->ne[2] : 0; GGML_UNUSED(ne32);
|
||||
const int64_t ne33 = src3 ? src3->ne[3] : 0; GGML_UNUSED(ne33);
|
||||
|
||||
@@ -2577,7 +2553,16 @@ static enum ggml_status ggml_metal_graph_compute(
|
||||
const enum ggml_type src2t = src2 ? src2->type : GGML_TYPE_COUNT; GGML_UNUSED(src2t);
|
||||
|
||||
float scale;
|
||||
memcpy(&scale, dst->op_params, sizeof(float));
|
||||
float max_bias;
|
||||
|
||||
memcpy(&scale, ((int32_t *) dst->op_params) + 0, sizeof(scale));
|
||||
memcpy(&max_bias, ((int32_t *) dst->op_params) + 1, sizeof(max_bias));
|
||||
|
||||
const uint32_t n_head = src0->ne[2];
|
||||
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
|
||||
|
||||
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
||||
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
||||
|
||||
id<MTLComputePipelineState> pipeline = nil;
|
||||
|
||||
@@ -2614,34 +2599,38 @@ static enum ggml_status ggml_metal_graph_compute(
|
||||
}
|
||||
|
||||
[encoder setComputePipelineState:pipeline];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
||||
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:2];
|
||||
[encoder setBuffer:id_src3 offset:offs_src3 atIndex:3];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:4];
|
||||
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:5];
|
||||
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:6];
|
||||
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:7];
|
||||
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:8];
|
||||
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:9];
|
||||
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:10];
|
||||
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:11];
|
||||
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:12];
|
||||
[encoder setBytes:&ne10 length:sizeof( int64_t) atIndex:13];
|
||||
[encoder setBytes:&ne11 length:sizeof( int64_t) atIndex:14];
|
||||
[encoder setBytes:&ne12 length:sizeof( int64_t) atIndex:15];
|
||||
[encoder setBytes:&ne13 length:sizeof( int64_t) atIndex:16];
|
||||
[encoder setBytes:&nb10 length:sizeof(uint64_t) atIndex:17];
|
||||
[encoder setBytes:&nb11 length:sizeof(uint64_t) atIndex:18];
|
||||
[encoder setBytes:&nb12 length:sizeof(uint64_t) atIndex:19];
|
||||
[encoder setBytes:&nb13 length:sizeof(uint64_t) atIndex:20];
|
||||
[encoder setBytes:&ne31 length:sizeof( int64_t) atIndex:21];
|
||||
[encoder setBytes:&nb31 length:sizeof(uint64_t) atIndex:22];
|
||||
[encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:23];
|
||||
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:24];
|
||||
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:25];
|
||||
[encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:26];
|
||||
[encoder setBytes:&scale length:sizeof( float) atIndex:27];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
||||
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:2];
|
||||
if (id_src3) {
|
||||
[encoder setBuffer:id_src3 offset:offs_src3 atIndex:3];
|
||||
} else {
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:3];
|
||||
}
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:4];
|
||||
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:5];
|
||||
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:6];
|
||||
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:7];
|
||||
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:8];
|
||||
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:9];
|
||||
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:10];
|
||||
[encoder setBytes:&ne11 length:sizeof( int64_t) atIndex:11];
|
||||
[encoder setBytes:&ne12 length:sizeof( int64_t) atIndex:12];
|
||||
[encoder setBytes:&ne13 length:sizeof( int64_t) atIndex:13];
|
||||
[encoder setBytes:&nb11 length:sizeof(uint64_t) atIndex:14];
|
||||
[encoder setBytes:&nb12 length:sizeof(uint64_t) atIndex:15];
|
||||
[encoder setBytes:&nb13 length:sizeof(uint64_t) atIndex:16];
|
||||
[encoder setBytes:&nb21 length:sizeof(uint64_t) atIndex:17];
|
||||
[encoder setBytes:&nb22 length:sizeof(uint64_t) atIndex:18];
|
||||
[encoder setBytes:&nb23 length:sizeof(uint64_t) atIndex:19];
|
||||
[encoder setBytes:&nb31 length:sizeof(uint64_t) atIndex:20];
|
||||
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:21];
|
||||
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:22];
|
||||
[encoder setBytes:&scale length:sizeof( float) atIndex:23];
|
||||
[encoder setBytes:&max_bias length:sizeof( float) atIndex:24];
|
||||
[encoder setBytes:&m0 length:sizeof(m0) atIndex:25];
|
||||
[encoder setBytes:&m1 length:sizeof(m1) atIndex:26];
|
||||
[encoder setBytes:&n_head_log2 length:sizeof(n_head_log2) atIndex:27];
|
||||
|
||||
if (!use_vec_kernel) {
|
||||
// half8x8 kernel
|
||||
|
||||
195
ggml-metal.metal
@@ -229,6 +229,13 @@ kernel void kernel_relu(
|
||||
dst[tpig] = max(0.0f, src0[tpig]);
|
||||
}
|
||||
|
||||
kernel void kernel_sigmoid(
|
||||
device const float * src0,
|
||||
device float * dst,
|
||||
uint tpig[[thread_position_in_grid]]) {
|
||||
dst[tpig] = 1.0f / (1.0f + exp(-src0[tpig]));
|
||||
}
|
||||
|
||||
kernel void kernel_tanh(
|
||||
device const float * src0,
|
||||
device float * dst,
|
||||
@@ -356,7 +363,6 @@ template<typename T>
|
||||
kernel void kernel_soft_max(
|
||||
device const char * src0,
|
||||
device const char * src1,
|
||||
device const char * src2,
|
||||
device char * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
@@ -378,10 +384,9 @@ kernel void kernel_soft_max(
|
||||
|
||||
device const float * psrc0 = (device const float *) src0 + (i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
|
||||
device const T * pmask = src1 != src0 ? (device const T *) src1 + i01*ne00 : nullptr;
|
||||
device const T * ppos = src2 != src0 ? (device const T *) src2 : nullptr;
|
||||
device float * pdst = (device float *) dst + (i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
|
||||
|
||||
float slope = 0.0f;
|
||||
float slope = 1.0f;
|
||||
|
||||
// ALiBi
|
||||
if (max_bias > 0.0f) {
|
||||
@@ -397,7 +402,7 @@ kernel void kernel_soft_max(
|
||||
float lmax = -INFINITY;
|
||||
|
||||
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
|
||||
lmax = MAX(lmax, psrc0[i00]*scale + (pmask ? pmask[i00] : 0.0f) + (ppos ? slope*ppos[i00] : 0.0f));
|
||||
lmax = MAX(lmax, psrc0[i00]*scale + (pmask ? slope*pmask[i00] : 0.0f));
|
||||
}
|
||||
|
||||
// find the max value in the block
|
||||
@@ -422,7 +427,7 @@ kernel void kernel_soft_max(
|
||||
// parallel sum
|
||||
float lsum = 0.0f;
|
||||
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
|
||||
const float exp_psrc0 = exp((psrc0[i00]*scale + (pmask ? pmask[i00] : 0.0f) + (ppos ? slope*ppos[i00] : 0.0f)) - max_val);
|
||||
const float exp_psrc0 = exp((psrc0[i00]*scale + (pmask ? slope*pmask[i00] : 0.0f)) - max_val);
|
||||
lsum += exp_psrc0;
|
||||
pdst[i00] = exp_psrc0;
|
||||
}
|
||||
@@ -461,7 +466,6 @@ template<typename T>
|
||||
kernel void kernel_soft_max_4(
|
||||
device const char * src0,
|
||||
device const char * src1,
|
||||
device const char * src2,
|
||||
device char * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
@@ -483,10 +487,9 @@ kernel void kernel_soft_max_4(
|
||||
|
||||
device const float4 * psrc4 = (device const float4 *) src0 + (i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00)/4;
|
||||
device const T * pmask = src1 != src0 ? (device const T *) src1 + i01*ne00/4 : nullptr;
|
||||
device const T * ppos = src2 != src0 ? (device const T *) src2 : nullptr;
|
||||
device float4 * pdst4 = (device float4 *) dst + (i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00)/4;
|
||||
|
||||
float slope = 0.0f;
|
||||
float slope = 1.0f;
|
||||
|
||||
if (max_bias > 0.0f) {
|
||||
const int64_t h = i02;
|
||||
@@ -501,7 +504,7 @@ kernel void kernel_soft_max_4(
|
||||
float4 lmax4 = -INFINITY;
|
||||
|
||||
for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
|
||||
lmax4 = fmax(lmax4, psrc4[i00]*scale + (float4)((pmask ? pmask[i00] : 0.0f) + (ppos ? slope*ppos[i00] : 0.0f)));
|
||||
lmax4 = fmax(lmax4, psrc4[i00]*scale + (float4)((pmask ? slope*pmask[i00] : 0.0f)));
|
||||
}
|
||||
|
||||
const float lmax = MAX(MAX(lmax4[0], lmax4[1]), MAX(lmax4[2], lmax4[3]));
|
||||
@@ -527,7 +530,7 @@ kernel void kernel_soft_max_4(
|
||||
// parallel sum
|
||||
float4 lsum4 = 0.0f;
|
||||
for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
|
||||
const float4 exp_psrc4 = exp((psrc4[i00]*scale + (float4)((pmask ? pmask[i00] : 0.0f) + (ppos ? slope*ppos[i00] : 0.0f))) - max_val);
|
||||
const float4 exp_psrc4 = exp((psrc4[i00]*scale + (float4)((pmask ? slope*pmask[i00] : 0.0f))) - max_val);
|
||||
lsum4 += exp_psrc4;
|
||||
pdst4[i00] = exp_psrc4;
|
||||
}
|
||||
@@ -1595,60 +1598,6 @@ kernel void kernel_mul_mv_f16_f32_l4(
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_alibi_f32(
|
||||
device const float * src0,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int64_t & ne02,
|
||||
constant int64_t & ne03,
|
||||
constant uint64_t & nb00,
|
||||
constant uint64_t & nb01,
|
||||
constant uint64_t & nb02,
|
||||
constant uint64_t & nb03,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
constant int64_t & ne2,
|
||||
constant int64_t & ne3,
|
||||
constant uint64_t & nb0,
|
||||
constant uint64_t & nb1,
|
||||
constant uint64_t & nb2,
|
||||
constant uint64_t & nb3,
|
||||
constant float & m0,
|
||||
constant float & m1,
|
||||
constant int & n_heads_log2_floor,
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint3 tpitg[[thread_position_in_threadgroup]],
|
||||
uint3 ntg[[threads_per_threadgroup]]) {
|
||||
const int64_t i03 = tgpig[2];
|
||||
const int64_t i02 = tgpig[1];
|
||||
const int64_t i01 = tgpig[0];
|
||||
|
||||
const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
|
||||
|
||||
const int64_t i3 = n / (ne2*ne1*ne0);
|
||||
const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
|
||||
const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
|
||||
//const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
|
||||
|
||||
const int64_t k = i3*ne3 + i2;
|
||||
|
||||
float m_k;
|
||||
if (k < n_heads_log2_floor) {
|
||||
m_k = pow(m0, k + 1);
|
||||
} else {
|
||||
m_k = pow(m1, 2 * (k - n_heads_log2_floor) + 1);
|
||||
}
|
||||
|
||||
device char * dst_row = (device char *) dst + i3*nb3 + i2*nb2 + i1*nb1;
|
||||
device const char * src_row = (device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01;
|
||||
for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
|
||||
const float src_v = *(device float *)(src_row + i00*nb00);
|
||||
device float * dst_v = (device float *)(dst_row + i00*nb0);
|
||||
*dst_v = i00 * m_k + src_v;
|
||||
}
|
||||
}
|
||||
|
||||
static float rope_yarn_ramp(const float low, const float high, const int i0) {
|
||||
const float y = (i0 / 2 - low) / max(0.001f, high - low);
|
||||
return 1.0f - min(1.0f, max(0.0f, y));
|
||||
@@ -1903,7 +1852,10 @@ kernel void kernel_upscale_f32(
|
||||
constant uint64_t & nb1,
|
||||
constant uint64_t & nb2,
|
||||
constant uint64_t & nb3,
|
||||
constant int32_t & sf,
|
||||
constant float & sf0,
|
||||
constant float & sf1,
|
||||
constant float & sf2,
|
||||
constant float & sf3,
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint3 tpitg[[thread_position_in_threadgroup]],
|
||||
uint3 ntg[[threads_per_threadgroup]]) {
|
||||
@@ -1912,15 +1864,17 @@ kernel void kernel_upscale_f32(
|
||||
const int64_t i2 = tgpig.y;
|
||||
const int64_t i1 = tgpig.x;
|
||||
|
||||
const int64_t i03 = i3;
|
||||
const int64_t i02 = i2;
|
||||
const int64_t i01 = i1/sf;
|
||||
|
||||
device const float * src0_ptr = (device const float *) (src0 + i03*nb03 + i02*nb02 + i01*nb01);
|
||||
device float * dst_ptr = (device float *) (dst + i3*nb3 + i2*nb2 + i1*nb1);
|
||||
const int64_t i03 = i3/sf3;
|
||||
const int64_t i02 = i2/sf2;
|
||||
const int64_t i01 = i1/sf1;
|
||||
|
||||
for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
|
||||
dst_ptr[i0] = src0_ptr[i0/sf];
|
||||
const int64_t i00 = i0/sf0;
|
||||
|
||||
device const float * src0_ptr = (device const float *) (src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
|
||||
device float * dst_ptr = (device float *) (dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||||
|
||||
dst_ptr[0] = src0_ptr[0];
|
||||
}
|
||||
}
|
||||
|
||||
@@ -2100,29 +2054,29 @@ typedef void (flash_attn_ext_f16_t)(
|
||||
device const char * v,
|
||||
device const char * mask,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int64_t & ne02,
|
||||
constant int64_t & ne03,
|
||||
constant uint64_t & nb00,
|
||||
constant uint64_t & nb01,
|
||||
constant uint64_t & nb02,
|
||||
constant uint64_t & nb03,
|
||||
constant int64_t & ne10,
|
||||
constant int64_t & ne11,
|
||||
constant int64_t & ne12,
|
||||
constant int64_t & ne13,
|
||||
constant uint64_t & nb10,
|
||||
constant uint64_t & nb11,
|
||||
constant uint64_t & nb12,
|
||||
constant uint64_t & nb13,
|
||||
constant int64_t & ne31,
|
||||
constant uint64_t & nb21,
|
||||
constant uint64_t & nb22,
|
||||
constant uint64_t & nb23,
|
||||
constant uint64_t & nb31,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
constant int64_t & ne2,
|
||||
constant int64_t & ne3,
|
||||
constant float & scale,
|
||||
constant float & max_bias,
|
||||
constant float & m0,
|
||||
constant float & m1,
|
||||
constant uint32_t & n_head_log2,
|
||||
threadgroup half * shared,
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint3 tpitg[[thread_position_in_threadgroup]],
|
||||
@@ -2138,29 +2092,29 @@ kernel void kernel_flash_attn_ext_f16(
|
||||
device const char * v,
|
||||
device const char * mask,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int64_t & ne02,
|
||||
constant int64_t & ne03,
|
||||
constant uint64_t & nb00,
|
||||
constant uint64_t & nb01,
|
||||
constant uint64_t & nb02,
|
||||
constant uint64_t & nb03,
|
||||
constant int64_t & ne10,
|
||||
constant int64_t & ne11,
|
||||
constant int64_t & ne12,
|
||||
constant int64_t & ne13,
|
||||
constant uint64_t & nb10,
|
||||
constant uint64_t & nb11,
|
||||
constant uint64_t & nb12,
|
||||
constant uint64_t & nb13,
|
||||
constant int64_t & ne31,
|
||||
constant uint64_t & nb21,
|
||||
constant uint64_t & nb22,
|
||||
constant uint64_t & nb23,
|
||||
constant uint64_t & nb31,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
constant int64_t & ne2,
|
||||
constant int64_t & ne3,
|
||||
constant float & scale,
|
||||
constant float & max_bias,
|
||||
constant float & m0,
|
||||
constant float & m1,
|
||||
constant uint32_t & n_head_log2,
|
||||
threadgroup half * shared [[threadgroup(0)]],
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint3 tpitg[[thread_position_in_threadgroup]],
|
||||
@@ -2225,10 +2179,6 @@ kernel void kernel_flash_attn_ext_f16(
|
||||
const short ne22 = ne12;
|
||||
const short ne23 = ne13;
|
||||
|
||||
const uint nb21 = nb11;
|
||||
const uint nb22 = nb12;
|
||||
const uint nb23 = nb13;
|
||||
|
||||
// broadcast
|
||||
const short rk2 = ne02/ne12;
|
||||
const short rk3 = ne03/ne13;
|
||||
@@ -2257,6 +2207,19 @@ kernel void kernel_flash_attn_ext_f16(
|
||||
// prepare diagonal scale matrix
|
||||
simdgroup_float8x8 mscale(scale);
|
||||
|
||||
// prepare diagonal slope matrix
|
||||
simdgroup_float8x8 mslope(1.0f);
|
||||
|
||||
// ALiBi
|
||||
if (max_bias > 0.0f) {
|
||||
const uint32_t h = iq2;
|
||||
|
||||
const float base = h < n_head_log2 ? m0 : m1;
|
||||
const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
||||
|
||||
mslope = simdgroup_float8x8(pow(base, exph));
|
||||
}
|
||||
|
||||
// loop over the KV cache
|
||||
// each simdgroup handles blocks of Q rows and C columns
|
||||
for (int ic0 = 0; ic0 < ne11; ic0 += C*nsg) {
|
||||
@@ -2279,10 +2242,16 @@ kernel void kernel_flash_attn_ext_f16(
|
||||
simdgroup_multiply_accumulate(mqk, mq[i], mk, mqk);
|
||||
}
|
||||
|
||||
// mqk = mqk*scale + mask
|
||||
simdgroup_half8x8 mm;
|
||||
simdgroup_load(mm, mp + ic + 8*cc, nb31/sizeof(half), 0, false);
|
||||
simdgroup_multiply_accumulate(mqk, mqk, mscale, mm);
|
||||
if (mask != q) {
|
||||
// mqk = mqk*scale + mask*slope
|
||||
simdgroup_half8x8 mm;
|
||||
simdgroup_load(mm, mp + ic + 8*cc, nb31/sizeof(half), 0, false);
|
||||
simdgroup_multiply(mm, mslope, mm);
|
||||
simdgroup_multiply_accumulate(mqk, mqk, mscale, mm);
|
||||
} else {
|
||||
// mqk = mqk*scale
|
||||
simdgroup_multiply(mqk, mscale, mqk);
|
||||
}
|
||||
|
||||
simdgroup_store(mqk, ss + 8*cc, TF, 0, false);
|
||||
}
|
||||
@@ -2456,29 +2425,29 @@ kernel void kernel_flash_attn_ext_vec_f16(
|
||||
device const char * v,
|
||||
device const char * mask,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int64_t & ne02,
|
||||
constant int64_t & ne03,
|
||||
constant uint64_t & nb00,
|
||||
constant uint64_t & nb01,
|
||||
constant uint64_t & nb02,
|
||||
constant uint64_t & nb03,
|
||||
constant int64_t & ne10,
|
||||
constant int64_t & ne11,
|
||||
constant int64_t & ne12,
|
||||
constant int64_t & ne13,
|
||||
constant uint64_t & nb10,
|
||||
constant uint64_t & nb11,
|
||||
constant uint64_t & nb12,
|
||||
constant uint64_t & nb13,
|
||||
constant int64_t & ne31,
|
||||
constant uint64_t & nb21,
|
||||
constant uint64_t & nb22,
|
||||
constant uint64_t & nb23,
|
||||
constant uint64_t & nb31,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
constant int64_t & ne2,
|
||||
constant int64_t & ne3,
|
||||
constant float & scale,
|
||||
constant float & max_bias,
|
||||
constant float & m0,
|
||||
constant float & m1,
|
||||
constant uint32_t & n_head_log2,
|
||||
threadgroup half * shared [[threadgroup(0)]],
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint3 tpitg[[thread_position_in_threadgroup]],
|
||||
@@ -2497,6 +2466,18 @@ kernel void kernel_flash_attn_ext_vec_f16(
|
||||
|
||||
const short T = D + 2*nsg*SH; // shared memory size per query in (half)
|
||||
|
||||
float slope = 1.0f;
|
||||
|
||||
// ALiBi
|
||||
if (max_bias > 0.0f) {
|
||||
const uint32_t h = iq2;
|
||||
|
||||
const float base = h < n_head_log2 ? m0 : m1;
|
||||
const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
||||
|
||||
slope = pow(base, exp);
|
||||
}
|
||||
|
||||
//threadgroup half * sq = (threadgroup half *) (shared + 0*D); // holds the query data
|
||||
threadgroup half4 * sq4 = (threadgroup half4 *) (shared + 0*D); // same as above but in half4
|
||||
threadgroup float * ss = (threadgroup float *) (shared + 2*sgitg*SH + 1*D); // scratch buffer for attention and diagonal matrix
|
||||
@@ -2537,10 +2518,6 @@ kernel void kernel_flash_attn_ext_vec_f16(
|
||||
const short ne22 = ne12;
|
||||
const short ne23 = ne13;
|
||||
|
||||
const uint nb21 = nb11;
|
||||
const uint nb22 = nb12;
|
||||
const uint nb23 = nb13;
|
||||
|
||||
// broadcast
|
||||
const short rk2 = ne02/ne12;
|
||||
const short rk3 = ne03/ne13;
|
||||
@@ -2603,10 +2580,9 @@ kernel void kernel_flash_attn_ext_vec_f16(
|
||||
mqk += simd_shuffle_down(mqk, 2);
|
||||
mqk += simd_shuffle_down(mqk, 1);
|
||||
|
||||
// mqk = mqk*scale + mask
|
||||
// mqk = mqk*scale + mask*slope
|
||||
if (tiisg == 0) {
|
||||
float4 mm = (float4) mp4[ic/4 + cc];
|
||||
mqk = mqk*scale + mm;
|
||||
mqk = mqk*scale + ((mask != q) ? ((float4) mp4[ic/4 + cc])*slope : (float4) 0.0f);
|
||||
|
||||
ss4[cc] = mqk;
|
||||
}
|
||||
@@ -2840,7 +2816,8 @@ kernel void kernel_cpy_f32_f16(
|
||||
for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
|
||||
device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
|
||||
|
||||
dst_data[i00] = src[0];
|
||||
// TODO: is there a better way to handle -INFINITY?
|
||||
dst_data[i00] = src[0] == -INFINITY ? -MAXHALF : src[0];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -2119,6 +2119,7 @@ static size_t ggml_backend_opencl_buffer_type_get_alignment(ggml_backend_buffer_
|
||||
if (alignment == (cl_uint)-1) {
|
||||
ggml_cl_init();
|
||||
clGetDeviceInfo(device, CL_DEVICE_MEM_BASE_ADDR_ALIGN, sizeof(cl_uint), &alignment, NULL);
|
||||
alignment /= 8; // bits to bytes
|
||||
}
|
||||
return alignment;
|
||||
|
||||
|
||||
2260
ggml-quants.c
1032
ggml-rpc.cpp
Normal file
24
ggml-rpc.h
Normal file
@@ -0,0 +1,24 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-backend.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define GGML_RPC_MAX_SERVERS 16
|
||||
|
||||
// backend API
|
||||
GGML_API GGML_CALL ggml_backend_t ggml_backend_rpc_init(const char * endpoint);
|
||||
GGML_API GGML_CALL bool ggml_backend_is_rpc(ggml_backend_t backend);
|
||||
|
||||
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint);
|
||||
|
||||
GGML_API GGML_CALL void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total);
|
||||
|
||||
GGML_API GGML_CALL void start_rpc_server(ggml_backend_t backend, const char * endpoint, size_t free_mem, size_t total_mem);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
187
ggml-sycl.cpp
@@ -3154,7 +3154,6 @@ typedef float (*vec_dot_q_mul_mat_sycl_t)(
|
||||
#define SYCL_SCALE_BLOCK_SIZE 256
|
||||
#define SYCL_CLAMP_BLOCK_SIZE 256
|
||||
#define SYCL_ROPE_BLOCK_SIZE 256
|
||||
#define SYCL_ALIBI_BLOCK_SIZE 32
|
||||
#define SYCL_DIAG_MASK_INF_BLOCK_SIZE 32
|
||||
#define SYCL_QUANTIZE_BLOCK_SIZE 256
|
||||
#define SYCL_DEQUANTIZE_BLOCK_SIZE 256
|
||||
@@ -8330,24 +8329,26 @@ static void mul_mat_vec_q(const void * __restrict__ vx, const void * __restrict_
|
||||
const int blocks_per_row = ncols / qk;
|
||||
const int blocks_per_warp = vdr * WARP_SIZE / qi;
|
||||
|
||||
// partial sum for each thread
|
||||
const int qi_vdr = (qi / vdr); // N_threads processing 1 qk block
|
||||
|
||||
// partial sum for each thread
|
||||
float tmp = 0.0f;
|
||||
|
||||
const block_q_t * x = (const block_q_t *) vx;
|
||||
const block_q8_1 * y = (const block_q8_1 *) vy;
|
||||
|
||||
for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row;
|
||||
for (int i = item_ct1.get_local_id(2) / qi_vdr; i < blocks_per_row;
|
||||
i += blocks_per_warp) {
|
||||
const int ibx = row*blocks_per_row + i; // x block index
|
||||
const int ibx = row * blocks_per_row + i; // x block index
|
||||
|
||||
const int iby = i * (qk/QK8_1); // y block index that aligns with ibx
|
||||
const int iby = i * (qk / QK8_1); // y block index that aligns with ibx
|
||||
|
||||
const int iqs =
|
||||
vdr *
|
||||
(item_ct1.get_local_id(2) %
|
||||
(qi / vdr)); // x block quant index when casting the quants to int
|
||||
const int iqs =
|
||||
vdr *
|
||||
(item_ct1.get_local_id(2) -
|
||||
i * qi_vdr); // x block quant index when casting the quants to int
|
||||
|
||||
tmp += vec_dot_q_sycl(&x[ibx], &y[iby], iqs);
|
||||
tmp += vec_dot_q_sycl(&x[ibx], &y[iby], iqs);
|
||||
}
|
||||
|
||||
// sum up partial sums and write back result
|
||||
@@ -9314,32 +9315,6 @@ static void rope_glm_f32(
|
||||
dst[i + half_n_dims * 3] = x2*sin_block_theta + x3*cos_block_theta;
|
||||
}
|
||||
|
||||
static void alibi_f32(const float * x, float * dst, const int ncols, const int k_rows,
|
||||
const int n_heads_log2_floor, const float m0, const float m1,
|
||||
const sycl::nd_item<3> &item_ct1) {
|
||||
const int col = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
||||
item_ct1.get_local_id(2);
|
||||
|
||||
if (col >= ncols) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int row = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
|
||||
item_ct1.get_local_id(1);
|
||||
const int i = row*ncols + col;
|
||||
|
||||
const int k = row/k_rows;
|
||||
|
||||
float m_k;
|
||||
if (k < n_heads_log2_floor) {
|
||||
m_k = dpct::pow(m0, k + 1);
|
||||
} else {
|
||||
m_k = dpct::pow(m1, 2 * (k - n_heads_log2_floor) + 1);
|
||||
}
|
||||
|
||||
dst[i] = col * m_k + x[i];
|
||||
}
|
||||
|
||||
static void k_sum_rows_f32(const float * x, float * dst, const int ncols,
|
||||
const sycl::nd_item<3> &item_ct1) {
|
||||
const int row = item_ct1.get_group(1);
|
||||
@@ -9441,7 +9416,7 @@ static void diag_mask_inf_f32(const float * x, float * dst, const int ncols, con
|
||||
|
||||
|
||||
template <bool vals_smem, int ncols_template, int block_size_template>
|
||||
static void soft_max_f32(const float * x, const float * mask, const float *pos, float * dst, const int ncols_par,
|
||||
static void soft_max_f32(const float * x, const float * mask, float * dst, const int ncols_par,
|
||||
const int nrows_y, const float scale, const float max_bias, const float m0,
|
||||
const float m1, uint32_t n_head_log2, const sycl::nd_item<3> &item_ct1, float *buf) {
|
||||
const int ncols = ncols_template == 0 ? ncols_par : ncols_template;
|
||||
@@ -9455,7 +9430,7 @@ static void soft_max_f32(const float * x, const float * mask, const float *pos,
|
||||
const int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
|
||||
const int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
|
||||
|
||||
float slope = 0.0f;
|
||||
float slope = 1.0f;
|
||||
|
||||
// ALiBi
|
||||
if (max_bias > 0.0f) {
|
||||
@@ -9480,7 +9455,7 @@ static void soft_max_f32(const float * x, const float * mask, const float *pos,
|
||||
const int ix = rowx*ncols + col;
|
||||
const int iy = rowy*ncols + col;
|
||||
|
||||
const float val = x[ix]*scale + (mask ? mask[iy] : 0.0f) + (pos ? slope*pos[col] : 0.0f);
|
||||
const float val = x[ix]*scale + (mask ? slope*mask[iy] : 0.0f);
|
||||
|
||||
vals[col] = val;
|
||||
max_val = sycl::max(max_val, val);
|
||||
@@ -12962,20 +12937,6 @@ static void rope_glm_f32_sycl(const float *x, float *dst, int ncols, int nrows,
|
||||
});
|
||||
}
|
||||
|
||||
static void alibi_f32_sycl(const float *x, float *dst, const int ncols,
|
||||
const int nrows, const int k_rows,
|
||||
const int n_heads_log2_floor, const float m0,
|
||||
const float m1, dpct::queue_ptr stream) {
|
||||
const sycl::range<3> block_dims(1, 1, SYCL_ALIBI_BLOCK_SIZE);
|
||||
const int num_blocks_x = (ncols + SYCL_ALIBI_BLOCK_SIZE - 1) / (SYCL_ALIBI_BLOCK_SIZE);
|
||||
const sycl::range<3> block_nums(1, nrows, num_blocks_x);
|
||||
stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
alibi_f32(x, dst, ncols, k_rows,
|
||||
n_heads_log2_floor, m0, m1, item_ct1);
|
||||
});
|
||||
}
|
||||
|
||||
static void sum_rows_f32_sycl(const float *x, float *dst, const int ncols,
|
||||
const int nrows, dpct::queue_ptr stream) {
|
||||
const sycl::range<3> block_dims(1, 1, WARP_SIZE);
|
||||
@@ -13056,7 +13017,7 @@ static void diag_mask_inf_f32_sycl(const float *x, float *dst,
|
||||
}
|
||||
|
||||
template <bool vals_smem, int ncols_template, int block_size_template>
|
||||
static void soft_max_f32_submitter(const float * x, const float * mask, const float *pos, float * dst, const int ncols_par,
|
||||
static void soft_max_f32_submitter(const float * x, const float * mask, float * dst, const int ncols_par,
|
||||
const int nrows_y, const float scale, const float max_bias, const float m0,
|
||||
const float m1, uint32_t n_head_log2, sycl::range<3> block_nums, sycl::range<3> block_dims,
|
||||
const size_t n_local_scratch, dpct::queue_ptr stream) {
|
||||
@@ -13066,7 +13027,7 @@ static void soft_max_f32_submitter(const float * x, const float * mask, const fl
|
||||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
|
||||
soft_max_f32<vals_smem, ncols_template, block_size_template>(x, mask, pos, dst, ncols_par,
|
||||
soft_max_f32<vals_smem, ncols_template, block_size_template>(x, mask, dst, ncols_par,
|
||||
nrows_y, scale, max_bias, m0,
|
||||
m1, n_head_log2, item_ct1,
|
||||
local_buf_acc.get_pointer());
|
||||
@@ -13074,7 +13035,7 @@ static void soft_max_f32_submitter(const float * x, const float * mask, const fl
|
||||
});
|
||||
}
|
||||
|
||||
static void soft_max_f32_sycl(const float * x, const float * mask, const float * pos,
|
||||
static void soft_max_f32_sycl(const float * x, const float * mask,
|
||||
float * dst, const int ncols_x, const int nrows_x,
|
||||
const int nrows_y, const float scale, const float max_bias,
|
||||
dpct::queue_ptr stream) {
|
||||
@@ -13096,60 +13057,60 @@ static void soft_max_f32_sycl(const float * x, const float * mask, const float *
|
||||
const size_t local_mem_size = stream->get_device().get_info<sycl::info::device::local_mem_size>();
|
||||
if (n_local_scratch*sizeof(float) < local_mem_size) {
|
||||
if (ncols_x > max_block_size) {
|
||||
soft_max_f32_submitter<true, 0, 0>(x, mask, pos, dst, ncols_x, nrows_y, scale,
|
||||
soft_max_f32_submitter<true, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale,
|
||||
max_bias, m0, m1, n_head_log2, block_nums,
|
||||
block_dims, n_local_scratch, stream);
|
||||
return;
|
||||
}
|
||||
switch (ncols_x) {
|
||||
case 32:
|
||||
soft_max_f32_submitter<true, 32, 32>(x, mask, pos, dst, ncols_x, nrows_y, scale,
|
||||
soft_max_f32_submitter<true, 32, 32>(x, mask, dst, ncols_x, nrows_y, scale,
|
||||
max_bias, m0, m1, n_head_log2, block_nums,
|
||||
block_dims, n_local_scratch, stream);
|
||||
break;
|
||||
case 64:
|
||||
soft_max_f32_submitter<true, 64, 64>(x, mask, pos, dst, ncols_x, nrows_y, scale,
|
||||
soft_max_f32_submitter<true, 64, 64>(x, mask, dst, ncols_x, nrows_y, scale,
|
||||
max_bias, m0, m1, n_head_log2, block_nums,
|
||||
block_dims, n_local_scratch, stream);
|
||||
break;
|
||||
case 128:
|
||||
soft_max_f32_submitter<true, 128, 128>(x, mask, pos, dst, ncols_x, nrows_y, scale,
|
||||
soft_max_f32_submitter<true, 128, 128>(x, mask, dst, ncols_x, nrows_y, scale,
|
||||
max_bias, m0, m1, n_head_log2, block_nums,
|
||||
block_dims, n_local_scratch, stream);
|
||||
break;
|
||||
case 256:
|
||||
soft_max_f32_submitter<true, 256, 256>(x, mask, pos, dst, ncols_x, nrows_y, scale,
|
||||
soft_max_f32_submitter<true, 256, 256>(x, mask, dst, ncols_x, nrows_y, scale,
|
||||
max_bias, m0, m1, n_head_log2, block_nums,
|
||||
block_dims, n_local_scratch, stream);
|
||||
break;
|
||||
case 512:
|
||||
soft_max_f32_submitter<true, 512, 512>(x, mask, pos, dst, ncols_x, nrows_y, scale,
|
||||
soft_max_f32_submitter<true, 512, 512>(x, mask, dst, ncols_x, nrows_y, scale,
|
||||
max_bias, m0, m1, n_head_log2, block_nums,
|
||||
block_dims, n_local_scratch, stream);
|
||||
break;
|
||||
case 1024:
|
||||
soft_max_f32_submitter<true, 1024, 1024>(x, mask, pos, dst, ncols_x, nrows_y, scale,
|
||||
soft_max_f32_submitter<true, 1024, 1024>(x, mask, dst, ncols_x, nrows_y, scale,
|
||||
max_bias, m0, m1, n_head_log2, block_nums,
|
||||
block_dims, n_local_scratch, stream);
|
||||
break;
|
||||
case 2048:
|
||||
soft_max_f32_submitter<true, 2048, 1024>(x, mask, pos, dst, ncols_x, nrows_y, scale,
|
||||
soft_max_f32_submitter<true, 2048, 1024>(x, mask, dst, ncols_x, nrows_y, scale,
|
||||
max_bias, m0, m1, n_head_log2, block_nums,
|
||||
block_dims, n_local_scratch, stream);
|
||||
break;
|
||||
case 4096:
|
||||
soft_max_f32_submitter<true, 4096, 1024>(x, mask, pos, dst, ncols_x, nrows_y, scale,
|
||||
soft_max_f32_submitter<true, 4096, 1024>(x, mask, dst, ncols_x, nrows_y, scale,
|
||||
max_bias, m0, m1, n_head_log2, block_nums,
|
||||
block_dims, n_local_scratch, stream);
|
||||
break;
|
||||
default:
|
||||
soft_max_f32_submitter<true, 0, 0>(x, mask, pos, dst, ncols_x, nrows_y, scale,
|
||||
soft_max_f32_submitter<true, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale,
|
||||
max_bias, m0, m1, n_head_log2, block_nums,
|
||||
block_dims, n_local_scratch, stream);
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
soft_max_f32_submitter<false, 0, 0>(x, mask, pos, dst, ncols_x, nrows_y, scale,
|
||||
soft_max_f32_submitter<false, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale,
|
||||
max_bias, m0, m1, n_head_log2, block_nums,
|
||||
block_dims, WARP_SIZE, stream);
|
||||
}
|
||||
@@ -14026,6 +13987,10 @@ inline void ggml_sycl_op_upscale(const ggml_tensor *src0,
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
|
||||
|
||||
#pragma message("TODO: generalize upscale operator")
|
||||
#pragma message(" https://github.com/ggerganov/ggml/pull/814")
|
||||
GGML_ASSERT(false && "TODO: generalize upscale operator");
|
||||
|
||||
const int scale_factor = dst->op_params[0];
|
||||
|
||||
upscale_f32_sycl(src0_dd, dst_dd, src0->ne[0], src0->ne[1], src0->ne[2], scale_factor, main_stream);
|
||||
@@ -14560,36 +14525,6 @@ inline void ggml_sycl_op_rope(const ggml_tensor *src0, const ggml_tensor *src1,
|
||||
(void) src1_dd;
|
||||
}
|
||||
|
||||
inline void ggml_sycl_op_alibi(const ggml_tensor *src0, const ggml_tensor *src1,
|
||||
ggml_tensor *dst, const float *src0_dd,
|
||||
const float *src1_dd, float *dst_dd,
|
||||
const dpct::queue_ptr &main_stream) {
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
GGML_TENSOR_LOCALS_3(int64_t, ne0, src0, ne);
|
||||
const int64_t nrows = ggml_nrows(src0);
|
||||
|
||||
//const int n_past = ((int32_t *) dst->op_params)[0];
|
||||
const int n_head = ((int32_t *) dst->op_params)[1];
|
||||
float max_bias;
|
||||
memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
|
||||
|
||||
//GGML_ASSERT(ne01 + n_past == ne00);
|
||||
GGML_ASSERT(n_head == ne02);
|
||||
|
||||
const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
|
||||
|
||||
const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
|
||||
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
|
||||
|
||||
alibi_f32_sycl(src0_dd, dst_dd, ne00, nrows, ne01, n_heads_log2_floor, m0, m1, main_stream);
|
||||
|
||||
(void) src1;
|
||||
(void) src1_dd;
|
||||
}
|
||||
|
||||
static void ggml_sycl_op_pool2d(const ggml_tensor *src0,
|
||||
const ggml_tensor *src1, ggml_tensor *dst,
|
||||
const float *src0_dd, const float *src1_dd,
|
||||
@@ -14744,12 +14679,9 @@ inline void ggml_sycl_op_soft_max(const ggml_tensor *src0,
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
const ggml_tensor * src2 = dst->src[2];
|
||||
|
||||
#pragma message("TODO: add ggml_sycl_op_soft_max() F16 src1 and src2 support")
|
||||
#pragma message("TODO: add ggml_sycl_op_soft_max() F16 src1 support")
|
||||
#pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5021")
|
||||
GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional
|
||||
GGML_ASSERT(!src2 || src2->type == GGML_TYPE_F32); // src2 contains positions and it is optional
|
||||
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t nrows_x = ggml_nrows(src0);
|
||||
@@ -14761,25 +14693,7 @@ inline void ggml_sycl_op_soft_max(const ggml_tensor *src0,
|
||||
memcpy(&scale, dst->op_params + 0, sizeof(float));
|
||||
memcpy(&max_bias, dst->op_params + 1, sizeof(float));
|
||||
|
||||
// positions tensor
|
||||
float * src2_dd = nullptr;
|
||||
sycl_pool_alloc<float> src2_f;
|
||||
|
||||
const bool use_src2 = src2 != nullptr;
|
||||
|
||||
if (use_src2) {
|
||||
const bool src2_on_device = src2->backend == GGML_BACKEND_TYPE_GPU;
|
||||
|
||||
if (src2_on_device) {
|
||||
ggml_tensor_extra_gpu * src2_extra = (ggml_tensor_extra_gpu *) src2->extra;
|
||||
src2_dd = (float *) src2_extra->data_device[g_main_device];
|
||||
} else {
|
||||
src2_dd = src2_f.alloc(ggml_nelements(src2));
|
||||
SYCL_CHECK(ggml_sycl_cpy_tensor_2d(src2_dd, src2, 0, 0, 0, 1, main_stream));
|
||||
}
|
||||
}
|
||||
|
||||
soft_max_f32_sycl(src0_dd, src1 ? src1_dd : nullptr, src2_dd, dst_dd, ne00,
|
||||
soft_max_f32_sycl(src0_dd, src1 ? src1_dd : nullptr, dst_dd, ne00,
|
||||
nrows_x, nrows_y, scale, max_bias, main_stream);
|
||||
}
|
||||
|
||||
@@ -15654,26 +15568,6 @@ static void ggml_sycl_mul_mat_batched_sycl(const ggml_tensor *src0,
|
||||
const int64_t r2 = ne12/ne02;
|
||||
const int64_t r3 = ne13/ne03;
|
||||
|
||||
#if 0
|
||||
// use syclGemmEx
|
||||
{
|
||||
for (int i13 = 0; i13 < ne13; ++i13) {
|
||||
for (int i12 = 0; i12 < ne12; ++i12) {
|
||||
int i03 = i13 / r3;
|
||||
int i02 = i12 / r2;
|
||||
|
||||
SYCL_CHECK(
|
||||
syclGemmEx(g_sycl_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
|
||||
ne01, ne11, ne10,
|
||||
alpha, (const char *) src0_as_f16 + i02*src0->nb[2] + i03*src0->nb[3] , SYCL_R_16F, nb01/sizeof(half),
|
||||
(const char *) src1_as_f16 + i12*src1->nb[2]/2 + i13*src1->nb[3]/2, SYCL_R_16F, nb11/sizeof(float),
|
||||
beta, ( char *) dst_t + i12*nbd2 + i13*nbd3, cu_data_type, ne01,
|
||||
cu_compute_type,
|
||||
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
|
||||
}
|
||||
}
|
||||
}
|
||||
#else
|
||||
if (r2 == 1 && r3 == 1 && src0->nb[2]*src0->ne[2] == src0->nb[3] && src1->nb[2]*src1->ne[2] == src1->nb[3]) {
|
||||
// there is no broadcast and src0, src1 are contiguous across dims 2, 3
|
||||
SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch(
|
||||
@@ -15685,7 +15579,6 @@ static void ggml_sycl_mul_mat_batched_sycl(const ggml_tensor *src0,
|
||||
nb11 / nb10, nb12 / nb10, beta,
|
||||
(char *)dst_t, cu_data_type, ne01, nb2 / nb0,
|
||||
ne12 * ne13, cu_compute_type)));
|
||||
g_sycl_handles[g_main_device]->wait();
|
||||
} else {
|
||||
const int ne23 = ne12*ne13;
|
||||
|
||||
@@ -15716,7 +15609,7 @@ static void ggml_sycl_mul_mat_batched_sycl(const ggml_tensor *src0,
|
||||
nb02, nb03, nb12_scaled, nb13_scaled,
|
||||
nbd2, nbd3, r2, r3, item_ct1);
|
||||
});
|
||||
}).wait();
|
||||
});
|
||||
}
|
||||
SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch(
|
||||
*g_sycl_handles[g_main_device], oneapi::mkl::transpose::trans,
|
||||
@@ -15727,9 +15620,7 @@ static void ggml_sycl_mul_mat_batched_sycl(const ggml_tensor *src0,
|
||||
dpct::library_data_t::real_half, nb11 / nb10, beta,
|
||||
(void **)(ptrs_dst.get() + 0 * ne23), cu_data_type, ne01, ne23,
|
||||
cu_compute_type)));
|
||||
g_sycl_handles[g_main_device]->wait();
|
||||
}
|
||||
#endif
|
||||
|
||||
if (no_mixed_dtypes) {
|
||||
const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(GGML_TYPE_F16);
|
||||
@@ -16230,10 +16121,6 @@ static void ggml_sycl_rope(const ggml_tensor * src0, const ggml_tensor * src1, g
|
||||
ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_rope);
|
||||
}
|
||||
|
||||
static void ggml_sycl_alibi(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_alibi);
|
||||
}
|
||||
|
||||
static void ggml_sycl_pool2d(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_pool2d);
|
||||
}
|
||||
@@ -16610,9 +16497,6 @@ bool ggml_sycl_compute_forward(struct ggml_compute_params * params, struct ggml_
|
||||
case GGML_OP_ROPE:
|
||||
func = ggml_sycl_rope;
|
||||
break;
|
||||
case GGML_OP_ALIBI:
|
||||
func = ggml_sycl_alibi;
|
||||
break;
|
||||
case GGML_OP_IM2COL:
|
||||
func = ggml_sycl_im2col;
|
||||
break;
|
||||
@@ -17742,7 +17626,6 @@ GGML_CALL static bool ggml_backend_sycl_supports_op(ggml_backend_t backend, cons
|
||||
case GGML_OP_DIAG_MASK_INF:
|
||||
case GGML_OP_SOFT_MAX:
|
||||
case GGML_OP_ROPE:
|
||||
case GGML_OP_ALIBI:
|
||||
case GGML_OP_IM2COL:
|
||||
case GGML_OP_POOL_2D:
|
||||
case GGML_OP_SUM_ROWS:
|
||||
|
||||
78055
ggml-vulkan-shaders.hpp
1349
ggml-vulkan.cpp
45
ggml.h
@@ -468,7 +468,6 @@ extern "C" {
|
||||
GGML_OP_SOFT_MAX_BACK,
|
||||
GGML_OP_ROPE,
|
||||
GGML_OP_ROPE_BACK,
|
||||
GGML_OP_ALIBI,
|
||||
GGML_OP_CLAMP,
|
||||
GGML_OP_CONV_TRANSPOSE_1D,
|
||||
GGML_OP_IM2COL,
|
||||
@@ -520,6 +519,7 @@ extern "C" {
|
||||
GGML_UNARY_OP_TANH,
|
||||
GGML_UNARY_OP_ELU,
|
||||
GGML_UNARY_OP_RELU,
|
||||
GGML_UNARY_OP_SIGMOID,
|
||||
GGML_UNARY_OP_GELU,
|
||||
GGML_UNARY_OP_GELU_QUICK,
|
||||
GGML_UNARY_OP_SILU,
|
||||
@@ -565,7 +565,8 @@ extern "C" {
|
||||
// n-dimensional tensor
|
||||
struct ggml_tensor {
|
||||
enum ggml_type type;
|
||||
enum ggml_backend_type backend;
|
||||
|
||||
GGML_DEPRECATED(enum ggml_backend_type backend, "use the buffer type to find the storage location of the tensor");
|
||||
|
||||
struct ggml_backend_buffer * buffer;
|
||||
|
||||
@@ -766,7 +767,8 @@ extern "C" {
|
||||
GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
|
||||
GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
|
||||
|
||||
GGML_API bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
|
||||
GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1);
|
||||
GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
|
||||
|
||||
// use this to compute the memory overhead of a tensor
|
||||
GGML_API size_t ggml_tensor_overhead(void);
|
||||
@@ -1074,6 +1076,14 @@ extern "C" {
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_sigmoid(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_sigmoid_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_gelu(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
@@ -1428,15 +1438,13 @@ extern "C" {
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
// fused soft_max(a*scale + mask + pos[i]*(ALiBi slope))
|
||||
// fused soft_max(a*scale + mask*(ALiBi slope))
|
||||
// mask is optional
|
||||
// pos is required when max_bias > 0.0f
|
||||
// max_bias = 0.0f for no ALiBi
|
||||
GGML_API struct ggml_tensor * ggml_soft_max_ext(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * mask,
|
||||
struct ggml_tensor * pos,
|
||||
float scale,
|
||||
float max_bias);
|
||||
|
||||
@@ -1538,16 +1546,6 @@ extern "C" {
|
||||
float xpos_base,
|
||||
bool xpos_down);
|
||||
|
||||
// alibi position embedding
|
||||
// in-place, returns view(a)
|
||||
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_alibi(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int n_past,
|
||||
int n_head,
|
||||
float bias_max),
|
||||
"use ggml_soft_max_ext instead (will be removed in Mar 2024)");
|
||||
|
||||
// clamp
|
||||
// in-place, returns view(a)
|
||||
GGML_API struct ggml_tensor * ggml_clamp(
|
||||
@@ -1677,12 +1675,24 @@ extern "C" {
|
||||
float p1);
|
||||
|
||||
// nearest interpolate
|
||||
// multiplies ne0 and ne1 by scale factor
|
||||
// used in stable-diffusion
|
||||
GGML_API struct ggml_tensor * ggml_upscale(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int scale_factor);
|
||||
|
||||
// nearest interpolate
|
||||
// nearest interpolate to specified dimensions
|
||||
// used in tortoise.cpp
|
||||
GGML_API struct ggml_tensor * ggml_upscale_ext(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int ne2,
|
||||
int ne3);
|
||||
|
||||
// pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
|
||||
GGML_API struct ggml_tensor * ggml_pad(
|
||||
struct ggml_context * ctx,
|
||||
@@ -1744,7 +1754,8 @@ extern "C" {
|
||||
struct ggml_tensor * k,
|
||||
struct ggml_tensor * v,
|
||||
struct ggml_tensor * mask,
|
||||
float scale);
|
||||
float scale,
|
||||
float max_bias);
|
||||
|
||||
GGML_API void ggml_flash_attn_ext_set_prec(
|
||||
struct ggml_tensor * a,
|
||||
|
||||
@@ -1,5 +1,7 @@
|
||||
from .constants import *
|
||||
from .lazy import *
|
||||
from .gguf_reader import *
|
||||
from .gguf_writer import *
|
||||
from .quants import *
|
||||
from .tensor_mapping import *
|
||||
from .vocab import *
|
||||
|
||||
@@ -10,6 +10,7 @@ from typing import Any
|
||||
GGUF_MAGIC = 0x46554747 # "GGUF"
|
||||
GGUF_VERSION = 3
|
||||
GGUF_DEFAULT_ALIGNMENT = 32
|
||||
GGML_QUANT_VERSION = 2 # GGML_QNT_VERSION from ggml.h
|
||||
|
||||
#
|
||||
# metadata keys
|
||||
@@ -118,6 +119,7 @@ class MODEL_ARCH(IntEnum):
|
||||
REFACT = auto()
|
||||
BERT = auto()
|
||||
NOMIC_BERT = auto()
|
||||
JINA_BERT_V2 = auto()
|
||||
BLOOM = auto()
|
||||
STABLELM = auto()
|
||||
QWEN = auto()
|
||||
@@ -195,6 +197,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||
MODEL_ARCH.REFACT: "refact",
|
||||
MODEL_ARCH.BERT: "bert",
|
||||
MODEL_ARCH.NOMIC_BERT: "nomic-bert",
|
||||
MODEL_ARCH.JINA_BERT_V2: "jina-bert-v2",
|
||||
MODEL_ARCH.BLOOM: "bloom",
|
||||
MODEL_ARCH.STABLELM: "stablelm",
|
||||
MODEL_ARCH.QWEN: "qwen",
|
||||
@@ -380,6 +383,22 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
MODEL_TENSOR.LAYER_OUT_NORM,
|
||||
],
|
||||
MODEL_ARCH.JINA_BERT_V2: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.TOKEN_EMBD_NORM,
|
||||
MODEL_TENSOR.TOKEN_TYPES,
|
||||
MODEL_TENSOR.ATTN_OUT_NORM,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_Q_NORM,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_K_NORM,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.LAYER_OUT_NORM,
|
||||
],
|
||||
MODEL_ARCH.MPT: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
@@ -820,6 +839,49 @@ class GGMLQuantizationType(IntEnum):
|
||||
BF16 = 30
|
||||
|
||||
|
||||
# TODO: add GGMLFileType from ggml_ftype in ggml.h
|
||||
|
||||
|
||||
# from llama_ftype in llama.h
|
||||
# ALL VALUES SHOULD BE THE SAME HERE AS THEY ARE OVER THERE.
|
||||
class LlamaFileType(IntEnum):
|
||||
ALL_F32 = 0
|
||||
MOSTLY_F16 = 1 # except 1d tensors
|
||||
MOSTLY_Q4_0 = 2 # except 1d tensors
|
||||
MOSTLY_Q4_1 = 3 # except 1d tensors
|
||||
MOSTLY_Q4_1_SOME_F16 = 4 # tok_embeddings.weight and output.weight are F16
|
||||
# MOSTLY_Q4_2 = 5 # support has been removed
|
||||
# MOSTLY_Q4_3 = 6 # support has been removed
|
||||
MOSTLY_Q8_0 = 7 # except 1d tensors
|
||||
MOSTLY_Q5_0 = 8 # except 1d tensors
|
||||
MOSTLY_Q5_1 = 9 # except 1d tensors
|
||||
MOSTLY_Q2_K = 10 # except 1d tensors
|
||||
MOSTLY_Q3_K_S = 11 # except 1d tensors
|
||||
MOSTLY_Q3_K_M = 12 # except 1d tensors
|
||||
MOSTLY_Q3_K_L = 13 # except 1d tensors
|
||||
MOSTLY_Q4_K_S = 14 # except 1d tensors
|
||||
MOSTLY_Q4_K_M = 15 # except 1d tensors
|
||||
MOSTLY_Q5_K_S = 16 # except 1d tensors
|
||||
MOSTLY_Q5_K_M = 17 # except 1d tensors
|
||||
MOSTLY_Q6_K = 18 # except 1d tensors
|
||||
MOSTLY_IQ2_XXS = 19 # except 1d tensors
|
||||
MOSTLY_IQ2_XS = 20 # except 1d tensors
|
||||
MOSTLY_Q2_K_S = 21 # except 1d tensors
|
||||
MOSTLY_IQ3_XS = 22 # except 1d tensors
|
||||
MOSTLY_IQ3_XXS = 23 # except 1d tensors
|
||||
MOSTLY_IQ1_S = 24 # except 1d tensors
|
||||
MOSTLY_IQ4_NL = 25 # except 1d tensors
|
||||
MOSTLY_IQ3_S = 26 # except 1d tensors
|
||||
MOSTLY_IQ3_M = 27 # except 1d tensors
|
||||
MOSTLY_IQ2_S = 28 # except 1d tensors
|
||||
MOSTLY_IQ2_M = 29 # except 1d tensors
|
||||
MOSTLY_IQ4_XS = 30 # except 1d tensors
|
||||
MOSTLY_IQ1_M = 31 # except 1d tensors
|
||||
MOSTLY_BF16 = 32 # except 1d tensors
|
||||
|
||||
GUESSED = 1024 # not specified in the model file
|
||||
|
||||
|
||||
class GGUFEndian(IntEnum):
|
||||
LITTLE = 0
|
||||
BIG = 1
|
||||
@@ -860,7 +922,7 @@ class GGUFValueType(IntEnum):
|
||||
# Note: Does not support GGML_QKK_64
|
||||
QK_K = 256
|
||||
# Items here are (block size, type size)
|
||||
GGML_QUANT_SIZES = {
|
||||
GGML_QUANT_SIZES: dict[GGMLQuantizationType, tuple[int, int]] = {
|
||||
GGMLQuantizationType.F32: (1, 4),
|
||||
GGMLQuantizationType.F16: (1, 2),
|
||||
GGMLQuantizationType.Q4_0: (32, 2 + 16),
|
||||
|
||||
@@ -65,7 +65,7 @@ class ReaderTensor(NamedTuple):
|
||||
|
||||
class GGUFReader:
|
||||
# I - same as host, S - swapped
|
||||
byte_order: Literal['I' | 'S'] = 'I'
|
||||
byte_order: Literal['I'] | Literal['S'] = 'I'
|
||||
alignment: int = GGUF_DEFAULT_ALIGNMENT
|
||||
|
||||
# Note: Internal helper, API may change.
|
||||
@@ -83,7 +83,7 @@ class GGUFReader:
|
||||
GGUFValueType.BOOL: np.bool_,
|
||||
}
|
||||
|
||||
def __init__(self, path: os.PathLike[str] | str, mode: Literal['r' | 'r+' | 'c'] = 'r'):
|
||||
def __init__(self, path: os.PathLike[str] | str, mode: Literal['r'] | Literal['r+'] | Literal['c'] = 'r'):
|
||||
self.data = np.memmap(path, mode = mode)
|
||||
offs = 0
|
||||
if self._get(offs, np.uint32, override_order = '<')[0] != GGUF_MAGIC:
|
||||
@@ -128,7 +128,7 @@ class GGUFReader:
|
||||
return self.tensors[idx]
|
||||
|
||||
def _get(
|
||||
self, offset: int, dtype: npt.DTypeLike, count: int = 1, override_order: None | Literal['I' | 'S' | '<'] = None,
|
||||
self, offset: int, dtype: npt.DTypeLike, count: int = 1, override_order: None | Literal['I'] | Literal['S'] | Literal['<'] = None,
|
||||
) -> npt.NDArray[Any]:
|
||||
count = int(count)
|
||||
itemsize = int(np.empty([], dtype = dtype).itemsize)
|
||||
@@ -250,7 +250,7 @@ class GGUFReader:
|
||||
raise ValueError(f'Found duplicated tensor with name {tensor_name}')
|
||||
tensor_names.add(tensor_name)
|
||||
ggml_type = GGMLQuantizationType(raw_dtype[0])
|
||||
n_elems = np.prod(dims)
|
||||
n_elems = int(np.prod(dims))
|
||||
block_size, type_size = GGML_QUANT_SIZES[ggml_type]
|
||||
n_bytes = n_elems * type_size // block_size
|
||||
data_offs = int(start_offs + offset_tensor[0])
|
||||
|
||||
@@ -13,6 +13,7 @@ from string import ascii_letters, digits
|
||||
import numpy as np
|
||||
|
||||
from .constants import (
|
||||
GGML_QUANT_SIZES,
|
||||
GGUF_DEFAULT_ALIGNMENT,
|
||||
GGUF_MAGIC,
|
||||
GGUF_VERSION,
|
||||
@@ -176,7 +177,7 @@ class GGUFWriter:
|
||||
if pack_fmt is not None:
|
||||
self.kv_data += self._pack(pack_fmt, val, skip_pack_prefix = vtype == GGUFValueType.BOOL)
|
||||
elif vtype == GGUFValueType.STRING:
|
||||
encoded_val = val.encode("utf8") if isinstance(val, str) else val
|
||||
encoded_val = val.encode("utf-8") if isinstance(val, str) else val
|
||||
self.kv_data += self._pack("Q", len(encoded_val))
|
||||
self.kv_data += encoded_val
|
||||
elif vtype == GGUFValueType.ARRAY and isinstance(val, Sequence) and val:
|
||||
@@ -195,7 +196,7 @@ class GGUFWriter:
|
||||
return ((x + n - 1) // n) * n
|
||||
|
||||
def add_tensor_info(
|
||||
self, name: str, tensor_shape: Sequence[int], tensor_dtype: np.dtype[np.float16] | np.dtype[np.float32],
|
||||
self, name: str, tensor_shape: Sequence[int], tensor_dtype: np.dtype,
|
||||
tensor_nbytes: int, raw_dtype: GGMLQuantizationType | None = None,
|
||||
) -> None:
|
||||
if self.state is not WriterState.EMPTY:
|
||||
@@ -205,13 +206,9 @@ class GGUFWriter:
|
||||
raise ValueError(f'Duplicated tensor name {name}')
|
||||
self.ti_names.add(name)
|
||||
|
||||
encoded_name = name.encode("utf8")
|
||||
encoded_name = name.encode("utf-8")
|
||||
self.ti_data += self._pack("Q", len(encoded_name))
|
||||
self.ti_data += encoded_name
|
||||
n_dims = len(tensor_shape)
|
||||
self.ti_data += self._pack("I", n_dims)
|
||||
for i in range(n_dims):
|
||||
self.ti_data += self._pack("Q", tensor_shape[n_dims - 1 - i])
|
||||
if raw_dtype is None:
|
||||
if tensor_dtype == np.float16:
|
||||
dtype = GGMLQuantizationType.F16
|
||||
@@ -231,6 +228,15 @@ class GGUFWriter:
|
||||
raise ValueError("Only F16, F32, F64, I8, I16, I32, I64 tensors are supported for now")
|
||||
else:
|
||||
dtype = raw_dtype
|
||||
if tensor_dtype == np.uint8:
|
||||
block_size, type_size = GGML_QUANT_SIZES[raw_dtype]
|
||||
if tensor_shape[-1] % type_size != 0:
|
||||
raise ValueError(f"Quantized tensor row size ({tensor_shape[-1]}) is not a multiple of {dtype.name} type size ({type_size})")
|
||||
tensor_shape = tuple(tensor_shape[:-1]) + (tensor_shape[-1] // type_size * block_size,)
|
||||
n_dims = len(tensor_shape)
|
||||
self.ti_data += self._pack("I", n_dims)
|
||||
for i in range(n_dims):
|
||||
self.ti_data += self._pack("Q", tensor_shape[n_dims - 1 - i])
|
||||
self.ti_data += self._pack("I", dtype)
|
||||
self.ti_data += self._pack("Q", self.offset_tensor)
|
||||
self.offset_tensor += GGUFWriter.ggml_pad(tensor_nbytes, self.data_alignment)
|
||||
@@ -272,15 +278,33 @@ class GGUFWriter:
|
||||
tensor.tofile(self.fout)
|
||||
self.write_padding(self.fout, tensor.nbytes)
|
||||
|
||||
def write_tensors_to_file(self) -> None:
|
||||
def write_tensors_to_file(self, *, progress: bool = False) -> None:
|
||||
self.write_ti_data_to_file()
|
||||
|
||||
self.write_padding(self.fout, self.fout.tell())
|
||||
|
||||
if self.temp_file is None:
|
||||
self.tensors.reverse() # to pop from the "beginning" in constant time
|
||||
|
||||
if progress:
|
||||
from tqdm import tqdm
|
||||
|
||||
total_bytes = sum(t.nbytes for t in self.tensors)
|
||||
|
||||
bar = tqdm(desc="Writing", total=total_bytes, unit="byte", unit_scale=True)
|
||||
|
||||
while True:
|
||||
try:
|
||||
tensor = self.tensors.pop()
|
||||
except IndexError:
|
||||
break
|
||||
tensor.tofile(self.fout)
|
||||
bar.update(tensor.nbytes)
|
||||
self.write_padding(self.fout, tensor.nbytes)
|
||||
return
|
||||
while True:
|
||||
try:
|
||||
tensor = self.tensors.pop(0)
|
||||
tensor = self.tensors.pop()
|
||||
except IndexError:
|
||||
break
|
||||
tensor.tofile(self.fout)
|
||||
@@ -332,7 +356,7 @@ class GGUFWriter:
|
||||
def add_name(self, name: str) -> None:
|
||||
self.add_string(Keys.General.NAME, name)
|
||||
|
||||
def add_quantization_version(self, quantization_version: GGMLQuantizationType) -> None:
|
||||
def add_quantization_version(self, quantization_version: int) -> None:
|
||||
self.add_uint32(
|
||||
Keys.General.QUANTIZATION_VERSION, quantization_version)
|
||||
|
||||
@@ -479,7 +503,7 @@ class GGUFWriter:
|
||||
self.add_bool(Keys.Tokenizer.ADD_PREFIX, value)
|
||||
|
||||
def add_chat_template(self, value: str | Sequence[Mapping[str, str]]) -> None:
|
||||
if isinstance(value, list):
|
||||
if not isinstance(value, str):
|
||||
template_default = None
|
||||
template_names = set()
|
||||
|
||||
|
||||