Compare commits

..

40 Commits
b3018 ... b3058

Author SHA1 Message Date
Daniele
30e238b246 Improve HIP compatibility (#7672) 2024-05-31 16:00:29 +02:00
Georgi Gerganov
16926dff92 readme : link homebrew discussion 2024-05-31 15:04:58 +03:00
Georgi Gerganov
0c27e6f62e ggml : fix loongson compile warnings (#7537)
* ggml : fix loongson compile warnings

ggml-ci

* Fix loongarch quantize test fail.

Fix unexpected error introduced during rebase code.

* tests : disable json test due to lack of python on the CI node

ggml-ci

---------

Co-authored-by: junchao-loongson <zhaojunchao@loongson.cn>
2024-05-31 14:17:10 +03:00
Galunid
2e32f874e6 Somehow '**' got lost (#7663) 2024-05-31 18:24:41 +10:00
Galunid
1af511fc22 Add convert.py removal to hot topics (#7662) 2024-05-31 10:09:20 +02:00
Sertaç Özercan
0541f06296 [no ci] docs: add aikit to readme (#7650)
Signed-off-by: Sertac Ozercan <sozercan@gmail.com>
2024-05-31 09:57:16 +10:00
JohnnyB
9022c33646 Fixed painfully slow single process builds. (#7326)
* Fixed painfully slow single process builds.

* Added nproc for systems that don't default to nproc
2024-05-30 22:32:38 +02:00
Georgi Gerganov
5921b8f089 llama : cache llama_token_to_piece (#7587)
* llama : cache llama_token_to_piece

ggml-ci

* llama : use vectors and avoid has_cache

ggml-ci

* llama : throw on unknown tokenizer types

ggml-ci

* llama : print a log of the total cache size
2024-05-31 02:01:41 +10:00
Martin Delille
5dcdf94676 Fix conan badge display [no ci] (#7645) 2024-05-31 01:07:39 +10:00
Manuel
2e2340de17 Add brew installation instruction to README [no ci] (#7616) 2024-05-31 00:58:15 +10:00
Martin Delille
7846540bd2 readme : add Conan badge (#7638) 2024-05-30 15:52:50 +03:00
Brian
e6157f94c8 github: add contact links to issues and convert question into research [no ci] (#7612) 2024-05-30 21:55:36 +10:00
Galunid
9c4c9cc83f Move convert.py to examples/convert-legacy-llama.py (#7430)
* Move convert.py to examples/convert-no-torch.py

* Fix CI, scripts, readme files

* convert-no-torch -> convert-legacy-llama

* Move vocab thing to vocab.py

* Fix convert-no-torch -> convert-legacy-llama

* Fix lost convert.py in ci/run.sh

* Fix imports

* Fix gguf not imported correctly

* Fix flake8 complaints

* Fix check-requirements.sh

* Get rid of ADDED_TOKENS_FILE, FAST_TOKENIZER_FILE

* Review fixes
2024-05-30 21:40:00 +10:00
Chris Elrod
59b0d07766 faster avx512 exp implementation (#7551)
* faster avx512 exp implementation

* x->r

* improve accuracy, handle special cases

* remove `e`
2024-05-30 21:32:55 +10:00
junchao-loongson
d5c05821f3 ggml : fix loongarch build (O2 issue) (#7636) 2024-05-30 12:30:10 +03:00
Johannes Gäßler
972b555ab9 README: explain parallel build [no ci] (#7618) 2024-05-30 09:52:39 +02:00
Meng, Hengyu
3854c9d07f [SYCL] fix intel docker (#7630)
* Update main-intel.Dockerfile

* workaround for https://github.com/intel/oneapi-containers/issues/70

* reset intel docker in CI

* add missed in server
2024-05-30 16:19:08 +10:00
Galunid
eb57fee51f gguf-py : Add tokenizer.ggml.pre to gguf-new-metadata.py (#7627) 2024-05-30 02:10:40 +02:00
Georgi Gerganov
55d62262a9 metal : remove invalid asserts (#7617) 2024-05-29 22:21:20 +03:00
Georgi Gerganov
975ec63ff2 metal : add missing asserts (#7617) 2024-05-29 20:45:25 +03:00
Georgi Gerganov
fb76ec31a9 ggml : fix YARN + add tests + add asserts (#7617)
* tests : add rope tests

ggml-ci

* ggml : fixes (hopefully)

ggml-ci

* tests : add non-cont tests

ggml-ci

* cuda : add asserts for rope/norm + fix DS2

ggml-ci

* ggml : assert contiguousness

* tests : reduce RoPE tests

ggml-ci
2024-05-29 20:17:31 +03:00
Georgi Gerganov
cce3dcffc5 cuda : non-cont concat support (#7610)
* tests : add non-cont concat tests

* cuda : non-cont concat support

ggml-ci
2024-05-29 15:38:26 +03:00
Radoslav Gerganov
210d99173d llama-bench : add support for the RPC backend (#7435) 2024-05-29 14:45:44 +03:00
slaren
87bdf2a199 ggml : use atomic_flag for critical section (#7598)
* ggml : use atomic_flag for critical section

* add windows shims
2024-05-29 13:36:39 +02:00
Georgi Gerganov
00281b7be3 scripts : remove mpi remnants 2024-05-29 14:31:18 +03:00
Georgi Gerganov
2ab977282b sync : ggml 2024-05-29 14:29:52 +03:00
Georgi Gerganov
72de268bec ggml : restore ggml_rope_xpos_inplace (ggml/0)
ggml-ci
2024-05-29 14:29:33 +03:00
Akarshan Biswas
0e8d8bfd6c Add Arc A750 and Arch linux to readme-sycl.md as verified GPU model and Linux distro (#7605) 2024-05-29 16:53:47 +10:00
zhouwg
504f0c340f ggml : fix typo in ggml.c (#7603) 2024-05-29 04:09:31 +02:00
Meng, Hengyu
b864b50ce5 [SYCL] Align GEMM dispatch (#7566)
* align GEMM dispatch
2024-05-29 07:00:24 +08:00
jaime-m-p
02c1ecad07 Tokenizer WPM fixes (#7500)
* Update random test: add_bos_token.
* Update random test: add WPM models for testing.
* Build vocab.special_tokens_cache using vocab token types.
* Fix and improve WPM preprocessing.
  - Fix unicode edge case combinations.
  - Split by whitspace in the same pass.
* Discard all tokens when no matching found.
2024-05-28 21:46:34 +02:00
Georgi Gerganov
6bd12ce409 sycl : fix assert (#7563) 2024-05-28 22:22:50 +03:00
Giuseppe Scrivano
5442939fcc llama : support small Granite models (#7481)
* Add optional MLP bias for Granite models

Add optional MLP bias for ARCH_LLAMA to support Granite models.
Partially addresses ggerganov/llama.cpp/issues/7116
Still needs some more changes to properly support Granite.

* llama: honor add_space_prefix from the model configuration

propagate the add_space_prefix configuration from the HF model
configuration to the gguf file and honor it with the gpt2 tokenizer.

Signed-off-by: Giuseppe Scrivano <gscrivan@redhat.com>

* llama: add support for small granite models

it works only for the small models 3b and 8b.

The convert-hf-to-gguf.py script uses the vocabulary size of the
granite models to detect granite and set the correct configuration.

Signed-off-by: Giuseppe Scrivano <gscrivan@redhat.com>

---------

Signed-off-by: Giuseppe Scrivano <gscrivan@redhat.com>
Co-authored-by: Steffen Roecker <sroecker@redhat.com>
2024-05-28 21:49:49 +03:00
k.h.lai
56411a950f vulkan: properly initialize vulkan devices for LLAMA_SPLIT_MODE_NONE (#7552) 2024-05-28 19:25:08 +02:00
Radoslav Gerganov
2b737caae1 rpc : resource management rework (#7562)
* rpc : resource management rework

* address review comments
2024-05-28 18:13:36 +03:00
fairydreaming
ee3dff6b8e Add support for DeepseekV2ForCausalLM (#7519)
* common : increase max number of experts to 160

* common : add tensors ATTN_Q_A, ATTN_Q_A_NORM, ATTN_Q_B, ATTN_KV_A_MQA, ATTN_KV_A_NORM, ATTN_KV_B needed by DeepSeek-V2 MLA (multi-head latent attention) architecture

* common : add model header parameters: leading_dense_block_count, expert_feed_forward_length, expert_shared_count, expert_weights_scale, attention.q_lora_rank, attention.kv_lora_rank, rope.scaling.yarn_log_multiplier

* convert-hf : add model conversion support for DeepseekV2ForCausalLM

* llama : add model types for DeepSeek-V2 and DeepSeek-V2-Lite models

* llama : add two new llm_build_moe_ffn() arguments: scale_w (whether to scale weights of selected MoE experts) and w_scale (numerical value of the scaling factor)

* llama : add inference support for LLM_ARCH_DEEPSEEK2

---------

Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
2024-05-28 17:07:05 +02:00
Georgi Gerganov
edc29433fa tests : fix test-tokenizer-0.sh 2024-05-28 15:04:09 +03:00
Georgi Gerganov
8b99e2aa66 llama : handle unknown utf8 bytes (#7588) 2024-05-28 13:55:35 +03:00
Brian
271ff3fc44 github: add refactor to issue template (#7561)
* github: add refactor issue template [no ci]

* Update 07-refactor.yml
2024-05-28 20:27:27 +10:00
Neo Zhang
e2b065071c [SYCL]fix ggml_sycl_mul_mat_id() to match the change of api (#7436)
* fix mul_mat_id to match the change of api

* rm comment

* rm unused or duplicated code, rename as review comment
2024-05-28 10:53:37 +01:00
67 changed files with 2094 additions and 1142 deletions

View File

@@ -31,6 +31,6 @@ ENV LLAMA_CUDA=1
# Enable cURL
ENV LLAMA_CURL=1
RUN make
RUN make -j$(nproc)
ENTRYPOINT ["/app/.devops/tools.sh"]

View File

@@ -45,6 +45,6 @@ ENV LLAMA_CURL=1
RUN apt-get update && \
apt-get install -y libcurl4-openssl-dev
RUN make
RUN make -j$(nproc)
ENTRYPOINT ["/app/.devops/tools.sh"]

View File

@@ -18,7 +18,7 @@ COPY . .
ENV LLAMA_CURL=1
RUN make
RUN make -j$(nproc)
ENV LC_ALL=C.utf8

View File

@@ -23,7 +23,7 @@ ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
# Enable CUDA
ENV LLAMA_CUDA=1
RUN make
RUN make -j$(nproc)
FROM ${BASE_CUDA_RUN_CONTAINER} as runtime

View File

@@ -2,6 +2,14 @@ ARG ONEAPI_VERSION=2024.0.1-devel-ubuntu22.04
FROM intel/oneapi-basekit:$ONEAPI_VERSION as build
RUN wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB | gpg --dearmor | tee /usr/share/keyrings/intel-oneapi-archive-keyring.gpg > /dev/null && \
echo "deb [signed-by=/usr/share/keyrings/intel-oneapi-archive-keyring.gpg] https://apt.repos.intel.com/oneapi all main " | tee /etc/apt/sources.list.d/oneAPI.list && \
chmod 644 /usr/share/keyrings/intel-oneapi-archive-keyring.gpg && \
rm /etc/apt/sources.list.d/intel-graphics.list && \
wget -O- https://repositories.intel.com/graphics/intel-graphics.key | gpg --dearmor | tee /usr/share/keyrings/intel-graphics.gpg > /dev/null && \
echo "deb [arch=amd64,i386 signed-by=/usr/share/keyrings/intel-graphics.gpg] https://repositories.intel.com/graphics/ubuntu jammy arc" | tee /etc/apt/sources.list.d/intel.gpu.jammy.list && \
chmod 644 /usr/share/keyrings/intel-graphics.gpg
ARG LLAMA_SYCL_F16=OFF
RUN apt-get update && \
apt-get install -y git

View File

@@ -40,6 +40,6 @@ ENV LLAMA_HIPBLAS=1
ENV CC=/opt/rocm/llvm/bin/clang
ENV CXX=/opt/rocm/llvm/bin/clang++
RUN make
RUN make -j$(nproc)
ENTRYPOINT [ "/app/main" ]

View File

@@ -9,7 +9,7 @@ WORKDIR /app
COPY . .
RUN make
RUN make -j$(nproc)
FROM ubuntu:$UBUNTU_VERSION as runtime

View File

@@ -25,7 +25,7 @@ ENV LLAMA_CUDA=1
# Enable cURL
ENV LLAMA_CURL=1
RUN make
RUN make -j$(nproc)
FROM ${BASE_CUDA_RUN_CONTAINER} as runtime

View File

@@ -2,6 +2,14 @@ ARG ONEAPI_VERSION=2024.0.1-devel-ubuntu22.04
FROM intel/oneapi-basekit:$ONEAPI_VERSION as build
RUN wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB | gpg --dearmor | tee /usr/share/keyrings/intel-oneapi-archive-keyring.gpg > /dev/null && \
echo "deb [signed-by=/usr/share/keyrings/intel-oneapi-archive-keyring.gpg] https://apt.repos.intel.com/oneapi all main " | tee /etc/apt/sources.list.d/oneAPI.list && \
chmod 644 /usr/share/keyrings/intel-oneapi-archive-keyring.gpg && \
rm /etc/apt/sources.list.d/intel-graphics.list && \
wget -O- https://repositories.intel.com/graphics/intel-graphics.key | gpg --dearmor | tee /usr/share/keyrings/intel-graphics.gpg > /dev/null && \
echo "deb [arch=amd64,i386 signed-by=/usr/share/keyrings/intel-graphics.gpg] https://repositories.intel.com/graphics/ubuntu jammy arc" | tee /etc/apt/sources.list.d/intel.gpu.jammy.list && \
chmod 644 /usr/share/keyrings/intel-graphics.gpg
ARG LLAMA_SYCL_F16=OFF
RUN apt-get update && \
apt-get install -y git libcurl4-openssl-dev
@@ -19,6 +27,14 @@ RUN if [ "${LLAMA_SYCL_F16}" = "ON" ]; then \
FROM intel/oneapi-basekit:$ONEAPI_VERSION as runtime
RUN wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB | gpg --dearmor | tee /usr/share/keyrings/intel-oneapi-archive-keyring.gpg > /dev/null && \
echo "deb [signed-by=/usr/share/keyrings/intel-oneapi-archive-keyring.gpg] https://apt.repos.intel.com/oneapi all main " | tee /etc/apt/sources.list.d/oneAPI.list && \
chmod 644 /usr/share/keyrings/intel-oneapi-archive-keyring.gpg && \
rm /etc/apt/sources.list.d/intel-graphics.list && \
wget -O- https://repositories.intel.com/graphics/intel-graphics.key | gpg --dearmor | tee /usr/share/keyrings/intel-graphics.gpg > /dev/null && \
echo "deb [arch=amd64,i386 signed-by=/usr/share/keyrings/intel-graphics.gpg] https://repositories.intel.com/graphics/ubuntu jammy arc" | tee /etc/apt/sources.list.d/intel.gpu.jammy.list && \
chmod 644 /usr/share/keyrings/intel-graphics.gpg
RUN apt-get update && \
apt-get install -y libcurl4-openssl-dev

View File

@@ -45,6 +45,6 @@ ENV LLAMA_CURL=1
RUN apt-get update && \
apt-get install -y libcurl4-openssl-dev
RUN make
RUN make -j$(nproc)
ENTRYPOINT [ "/app/server" ]

View File

@@ -11,7 +11,7 @@ COPY . .
ENV LLAMA_CURL=1
RUN make
RUN make -j$(nproc)
FROM ubuntu:$UBUNTU_VERSION as runtime

View File

@@ -8,7 +8,7 @@ arg1="$1"
shift
if [[ "$arg1" == '--convert' || "$arg1" == '-c' ]]; then
python3 ./convert.py "$@"
python3 ./convert-hf-to-gguf.py "$@"
elif [[ "$arg1" == '--quantize' || "$arg1" == '-q' ]]; then
./quantize "$@"
elif [[ "$arg1" == '--run' || "$arg1" == '-r' ]]; then

View File

@@ -1,4 +1,4 @@
name: Enhancement template
name: Enhancement
description: Used to request enhancements for llama.cpp
title: "Feature Request: "
labels: ["enhancement"]

View File

@@ -1,38 +0,0 @@
name: Question template
description: Used to ask questions about llama.cpp
title: "Question: "
labels: ["question"]
body:
- type: markdown
attributes:
value: |
[Please search your question first in Discussion if you got a common general question.](https://github.com/ggerganov/llama.cpp/discussions/categories/q-a)
- type: checkboxes
id: prerequisites
attributes:
label: Prerequisites
description: Please confirm the following before submitting your question.
options:
- label: I searched using keywords relevant to my issue to make sure that I am creating a new issue that is not already open (or closed).
required: true
- label: I reviewed the [Discussions](https://github.com/ggerganov/llama.cpp/discussions), and have a new useful question to share that cannot be answered within Discussions.
required: true
- type: textarea
id: background-description
attributes:
label: Background Description
description: Please provide a detailed written description of what you were trying to do, and what you expected `llama.cpp` to do as an question.
placeholder: Detailed description of your question
validations:
required: true
- type: textarea
id: possible-answer
attributes:
label: Possible Answer
description: If you have some idea of possible answers you want to confirm, that would also be appreciated.
placeholder: Your idea of possible answers
validations:
required: false

52
.github/ISSUE_TEMPLATE/06-research.yml vendored Normal file
View File

@@ -0,0 +1,52 @@
name: Research
description: Track new technical research area
title: "Research: "
labels: ["research 🔬"]
body:
- type: markdown
attributes:
value: |
Don't forget to check for any [duplicate research issue tickets](https://github.com/ggerganov/llama.cpp/issues?q=is%3Aopen+is%3Aissue+label%3A%22research+%F0%9F%94%AC%22)
- type: checkboxes
id: research-stage
attributes:
label: Research Stage
description: Track general state of this research ticket
options:
- label: Background Research (Let's try to avoid reinventing the wheel)
- label: Hypothesis Formed (How do you think this will work and it's effect?)
- label: Strategy / Implementation Forming
- label: Analysis of results
- label: Debrief / Documentation (So people in the future can learn from us)
- type: textarea
id: background
attributes:
label: Previous existing literature and research
description: Whats the current state of the art and whats the motivation for this research?
- type: textarea
id: hypothesis
attributes:
label: Hypothesis
description: How do you think this will work and it's effect?
- type: textarea
id: implementation
attributes:
label: Implementation
description: Got an approach? e.g. a PR ready to go?
- type: textarea
id: analysis
attributes:
label: Analysis
description: How does the proposed implementation behave?
- type: textarea
id: logs
attributes:
label: Relevant log output
description: Please copy and paste any relevant log output. This will be automatically formatted into code, so no need for backticks.
render: shell

28
.github/ISSUE_TEMPLATE/07-refactor.yml vendored Normal file
View File

@@ -0,0 +1,28 @@
name: Refactor (Maintainers)
description: Used to track refactoring opportunities
title: "Refactor: "
labels: ["refactor"]
body:
- type: markdown
attributes:
value: |
Don't forget to [check for existing refactor issue tickets](https://github.com/ggerganov/llama.cpp/issues?q=is%3Aopen+is%3Aissue+label%3Arefactoring) in case it's already covered.
Also you may want to check [Pull request refactor label as well](https://github.com/ggerganov/llama.cpp/pulls?q=is%3Aopen+is%3Apr+label%3Arefactoring) for duplicates too.
- type: textarea
id: background-description
attributes:
label: Background Description
description: Please provide a detailed written description of the pain points you are trying to solve.
placeholder: Detailed description behind your motivation to request refactor
validations:
required: true
- type: textarea
id: possible-approaches
attributes:
label: Possible Refactor Approaches
description: If you have some idea of possible approaches to solve this problem. You may want to make it a todo list.
placeholder: Your idea of possible refactoring opportunity/approaches
validations:
required: false

13
.github/ISSUE_TEMPLATE/config.yml vendored Normal file
View File

@@ -0,0 +1,13 @@
blank_issues_enabled: true
contact_links:
- name: Got an idea?
url: https://github.com/ggerganov/llama.cpp/discussions/categories/ideas
about: Pop it there. It may then become an enhancement ticket.
- name: Got a question?
url: https://github.com/ggerganov/llama.cpp/discussions/categories/q-a
about: Ask a question there!
- name: Want to contribute?
url: https://github.com/ggerganov/llama.cpp/wiki/contribute
about: Head to the contribution guide page of the wiki for areas you can help with

View File

@@ -42,9 +42,8 @@ jobs:
- { tag: "light-rocm", dockerfile: ".devops/main-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
- { tag: "full-rocm", dockerfile: ".devops/full-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
- { tag: "server-rocm", dockerfile: ".devops/server-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
# TODO: Disabled due to build issues https://github.com/ggerganov/llama.cpp/issues/7507
#- { tag: "light-intel", dockerfile: ".devops/main-intel.Dockerfile", platforms: "linux/amd64" }
#- { tag: "server-intel", dockerfile: ".devops/server-intel.Dockerfile", platforms: "linux/amd64" }
- { tag: "light-intel", dockerfile: ".devops/main-intel.Dockerfile", platforms: "linux/amd64" }
- { tag: "server-intel", dockerfile: ".devops/server-intel.Dockerfile", platforms: "linux/amd64" }
steps:
- name: Check out the repo
uses: actions/checkout@v4

View File

@@ -628,6 +628,10 @@ if (LLAMA_SYCL)
add_compile_definitions(GGML_SYCL_F16)
endif()
if (LLAMA_CUDA_FORCE_MMQ)
add_compile_definitions(GGML_SYCL_FORCE_MMQ)
endif()
add_compile_options(-I./) #include DPCT
add_compile_options(-I/${SYCL_INCLUDE_DIR})
@@ -1310,7 +1314,7 @@ set_target_properties(llama PROPERTIES PUBLIC_HEADER ${CMAKE_CURRENT_SOURCE_DIR}
install(TARGETS llama LIBRARY PUBLIC_HEADER)
install(
FILES convert.py
FILES convert-hf-to-gguf.py
PERMISSIONS
OWNER_READ
OWNER_WRITE

View File

@@ -571,6 +571,7 @@ ifdef LLAMA_HIP_UMA
MK_CPPFLAGS += -DGGML_HIP_UMA
endif # LLAMA_HIP_UMA
MK_LDFLAGS += -L$(ROCM_PATH)/lib -Wl,-rpath=$(ROCM_PATH)/lib
MK_LDFLAGS += -L$(ROCM_PATH)/lib64 -Wl,-rpath=$(ROCM_PATH)/lib64
MK_LDFLAGS += -lhipblas -lamdhip64 -lrocblas
HIPFLAGS += $(addprefix --offload-arch=,$(AMDGPU_TARGETS))
HIPFLAGS += -DGGML_CUDA_DMMV_X=$(LLAMA_CUDA_DMMV_X)

View File

@@ -54,10 +54,10 @@ It has the similar design of other llama.cpp BLAS-based paths such as *OpenBLAS,
## OS
| OS | Status | Verified |
|---------|---------|------------------------------------|
| Linux | Support | Ubuntu 22.04, Fedora Silverblue 39 |
| Windows | Support | Windows 11 |
| OS | Status | Verified |
|---------|---------|------------------------------------------------|
| Linux | Support | Ubuntu 22.04, Fedora Silverblue 39, Arch Linux |
| Windows | Support | Windows 11 |
## Hardware
@@ -70,7 +70,7 @@ It has the similar design of other llama.cpp BLAS-based paths such as *OpenBLAS,
|-------------------------------|---------|---------------------------------------|
| Intel Data Center Max Series | Support | Max 1550, 1100 |
| Intel Data Center Flex Series | Support | Flex 170 |
| Intel Arc Series | Support | Arc 770, 730M |
| Intel Arc Series | Support | Arc 770, 730M, Arc A750 |
| Intel built-in Arc GPU | Support | built-in Arc GPU in Meteor Lake |
| Intel iGPU | Support | iGPU in i5-1250P, i7-1260P, i7-1165G7 |

View File

@@ -2,7 +2,9 @@
![llama](https://user-images.githubusercontent.com/1991296/230134379-7181e485-c521-4d23-a0d6-f7b3b61ba524.png)
[![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT) [![Server](https://github.com/ggerganov/llama.cpp/actions/workflows/server.yml/badge.svg?branch=master&event=schedule)](https://github.com/ggerganov/llama.cpp/actions/workflows/server.yml)
[![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT)
[![Server](https://github.com/ggerganov/llama.cpp/actions/workflows/server.yml/badge.svg?branch=master&event=schedule)](https://github.com/ggerganov/llama.cpp/actions/workflows/server.yml)
[![Conan Center](https://shields.io/conan/v/llama-cpp)](https://conan.io/center/llama-cpp)
[Roadmap](https://github.com/users/ggerganov/projects/7) / [Project status](https://github.com/ggerganov/llama.cpp/discussions/3471) / [Manifesto](https://github.com/ggerganov/llama.cpp/discussions/205) / [ggml](https://github.com/ggerganov/ggml)
@@ -20,7 +22,8 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
### Hot topics
- **Initial Flash-Attention support: https://github.com/ggerganov/llama.cpp/pull/5021**
- **`convert.py` has been deprecated and moved to `examples/convert-legacy-llama.py`, please use `convert-hf-to-gguf.py`** https://github.com/ggerganov/llama.cpp/pull/7430
- Initial Flash-Attention support: https://github.com/ggerganov/llama.cpp/pull/5021
- BPE pre-tokenization support has been added: https://github.com/ggerganov/llama.cpp/pull/6920
- MoE memory layout has been updated - reconvert models for `mmap` support and regenerate `imatrix` https://github.com/ggerganov/llama.cpp/pull/6387
- Model sharding instructions using `gguf-split` https://github.com/ggerganov/llama.cpp/discussions/6404
@@ -200,6 +203,7 @@ Unless otherwise noted these projects are open-source with permissive licensing:
- [KodiBot](https://github.com/firatkiral/kodibot) (GPL)
- [eva](https://github.com/ylsdamxssjxxdd/eva) (MIT)
- [AI Sublime Text plugin](https://github.com/yaroslavyaroslav/OpenAI-sublime-text) (MIT)
- [AIKit](https://github.com/sozercan/aikit) (MIT)
*(to have a project listed here, it should clearly state that it depends on `llama.cpp`)*
@@ -315,8 +319,6 @@ In order to build llama.cpp you have four different options.
make
```
**Note**: for `Debug` builds, run `make LLAMA_DEBUG=1`
- On Windows:
1. Download the latest fortran version of [w64devkit](https://github.com/skeeto/w64devkit/releases).
@@ -328,23 +330,32 @@ In order to build llama.cpp you have four different options.
make
```
- Notes:
- For faster compilation, add the `-j` argument to run multiple jobs in parallel. For example, `make -j 8` will run 8 jobs in parallel.
- For faster repeated compilation, install [ccache](https://ccache.dev/).
- For debug builds, run `make LLAMA_DEBUG=1`
- Using `CMake`:
```bash
cmake -B build
cmake --build build --config Release
```
```bash
cmake -B build
cmake --build build --config Release
```
**Note**: for `Debug` builds, there are two cases:
**Notes**:
- Single-config generators (e.g. default = `Unix Makefiles`; note that they just ignore the `--config` flag):
- For faster compilation, add the `-j` argument to run multiple jobs in parallel. For example, `cmake --build build --config Release -j 8` will run 8 jobs in parallel.
- For faster repeated compilation, install [ccache](https://ccache.dev/).
- For debug builds, there are two cases:
1. Single-config generators (e.g. default = `Unix Makefiles`; note that they just ignore the `--config` flag):
```bash
cmake -B build -DCMAKE_BUILD_TYPE=Debug
cmake --build build
```
- Multi-config generators (`-G` param set to Visual Studio, XCode...):
2. Multi-config generators (`-G` param set to Visual Studio, XCode...):
```bash
cmake -B build -G "Xcode"
@@ -379,6 +390,14 @@ In order to build llama.cpp you have four different options.
CLBLAST support for use OpenCL GPU acceleration in FreeBSD. Please read
the instructions for use and activate this options in this document below.
### Homebrew
On Mac and Linux, the homebrew package manager can be used via
```
brew install llama.cpp
```
The formula is automatically updated with new `llama.cpp` releases. More info: https://github.com/ggerganov/llama.cpp/discussions/7668
### Metal Build
On MacOS, Metal is enabled by default. Using Metal makes the computation run on the GPU.
@@ -477,7 +496,8 @@ Building the program with BLAS support may lead to some performance improvements
|--------------------------------|------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LLAMA_CUDA_FORCE_DMMV | Boolean | false | Force the use of dequantization + matrix vector multiplication kernels instead of using kernels that do matrix vector multiplication on quantized data. By default the decision is made based on compute capability (MMVQ for 6.1/Pascal/GTX 1000 or higher). Does not affect k-quants. |
| LLAMA_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the CUDA dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. |
| LLAMA_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the CUDA mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. |
| LLAMA_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the CUDA mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. |
| LLAMA_CUDA_FORCE_MMQ | Boolean | false | Force the use of dequantization + matrix multiplication kernels instead of leveraging Math libraries. | |
| LLAMA_CUDA_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels and for the q4_1 and q5_1 matrix matrix multiplication kernels. Can improve performance on relatively recent GPUs. |
| LLAMA_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per CUDA thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
| LLAMA_CUDA_PEER_MAX_BATCH_SIZE | Positive integer | 128 | Maximum batch size for which to enable peer access between multiple GPUs. Peer access requires either Linux or NVLink. When using NVLink enabling peer access for larger batch sizes is potentially beneficial. |
@@ -696,7 +716,8 @@ Building the program with BLAS support may lead to some performance improvements
To obtain the official LLaMA 2 weights please see the <a href="#obtaining-and-using-the-facebook-llama-2-model">Obtaining and using the Facebook LLaMA 2 model</a> section. There is also a large selection of pre-quantized `gguf` models available on Hugging Face.
Note: `convert.py` does not support LLaMA 3, you can use `convert-hf-to-gguf.py` with LLaMA 3 downloaded from Hugging Face.
Note: `convert.py` has been moved to `examples/convert-legacy-llama.py` and shouldn't be used for anything other than `Llama/Llama2/Mistral` models and their derievatives.
It does not support LLaMA 3, you can use `convert-hf-to-gguf.py` with LLaMA 3 downloaded from Hugging Face.
```bash
# obtain the official LLaMA model weights and place them in ./models
@@ -713,10 +734,10 @@ ls ./models
python3 -m pip install -r requirements.txt
# convert the model to ggml FP16 format
python3 convert.py models/mymodel/
python3 convert-hf-to-gguf.py models/mymodel/
# [Optional] for models using BPE tokenizers
python convert.py models/mymodel/ --vocab-type bpe
python convert-hf-to-gguf.py models/mymodel/ --vocab-type bpe
# quantize the model to 4-bits (using Q4_K_M method)
./quantize ./models/mymodel/ggml-model-f16.gguf ./models/mymodel/ggml-model-Q4_K_M.gguf Q4_K_M

View File

@@ -287,7 +287,7 @@ function gg_run_open_llama_7b_v2 {
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DLLAMA_CUDA=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
python3 ../convert.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
python3 ../examples/convert-legacy-llama.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
model_f16="${path_models}/ggml-model-f16.gguf"
model_q8_0="${path_models}/ggml-model-q8_0.gguf"

View File

@@ -25,8 +25,6 @@ if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
import gguf
from convert import LlamaHfVocab
logger = logging.getLogger("hf-to-gguf")
@@ -634,7 +632,7 @@ class Model:
special_vocab.add_to_gguf(self.gguf_writer)
def _set_vocab_llama_hf(self):
vocab = LlamaHfVocab(self.dir_model)
vocab = gguf.LlamaHfVocab(self.dir_model)
tokens = []
scores = []
toktypes = []
@@ -1317,6 +1315,17 @@ class LlamaModel(Model):
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
if tokenizer_config_file.is_file():
with open(tokenizer_config_file, "r", encoding="utf-8") as f:
tokenizer_config_json = json.load(f)
if "add_prefix_space" in tokenizer_config_json:
self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
# Apply to granite small models only
if self.hparams.get("vocab_size", 32000) == 49152:
self.gguf_writer.add_add_bos_token(False)
@staticmethod
def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
if n_head_kv is not None and n_head != n_head_kv:
@@ -1331,9 +1340,9 @@ class LlamaModel(Model):
n_head = self.hparams["num_attention_heads"]
n_kv_head = self.hparams.get("num_key_value_heads")
if name.endswith("q_proj.weight"):
if name.endswith(("q_proj.weight", "q_proj.bias")):
data_torch = LlamaModel.permute(data_torch, n_head, n_head)
if name.endswith("k_proj.weight"):
if name.endswith(("k_proj.weight", "k_proj.bias")):
data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
# process the experts separately
@@ -2620,6 +2629,85 @@ class ArcticModel(Model):
raise ValueError(f"Unprocessed experts: {experts}")
@Model.register("DeepseekV2ForCausalLM")
class DeepseekV2Model(Model):
model_arch = gguf.MODEL_ARCH.DEEPSEEK2
def set_vocab(self):
self._set_vocab_gpt2()
def set_gguf_parameters(self):
super().set_gguf_parameters()
hparams = self.hparams
self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
self.gguf_writer.add_value_length(hparams["v_head_dim"])
self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
if self.hparams["rope_scaling"].get("type") == "yarn":
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
_experts: list[dict[str, Tensor]] | None = None
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
# process the experts separately
if name.find("mlp.experts") != -1:
n_experts = self.hparams["n_routed_experts"]
assert bid is not None
if self._experts is None:
self._experts = [{} for _ in range(self.block_count)]
self._experts[bid][name] = data_torch
if len(self._experts[bid]) >= n_experts * 3:
tensors: list[tuple[str, Tensor]] = []
# merge the experts into a single 3d tensor
for w_name in ["down_proj", "gate_proj", "up_proj"]:
datas: list[Tensor] = []
for xid in range(n_experts):
ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
datas.append(self._experts[bid][ename])
del self._experts[bid][ename]
data_torch = torch.stack(datas, dim=0)
merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
new_name = self.map_tensor_name(merged_name)
tensors.append((new_name, data_torch))
return tensors
else:
return []
return [(self.map_tensor_name(name), data_torch)]
def write_tensors(self):
super().write_tensors()
if self._experts is not None:
# flatten `list[dict[str, Tensor]]` into `list[str]`
experts = [k for d in self._experts for k in d.keys()]
if len(experts) > 0:
raise ValueError(f"Unprocessed experts: {experts}")
###### CONVERSION LOGIC ######

View File

@@ -17,7 +17,7 @@ Also, it is important to check that the examples and main ggml backends (CUDA, M
### 1. Convert the model to GGUF
This step is done in python with a `convert` script using the [gguf](https://pypi.org/project/gguf/) library.
Depending on the model architecture, you can use either [convert.py](../convert.py) or [convert-hf-to-gguf.py](../convert-hf-to-gguf.py).
Depending on the model architecture, you can use either [convert-hf-to-gguf.py](../convert-hf-to-gguf.py) or [examples/convert-legacy-llama.py](../examples/convert-legacy-llama.py) (for `llama/llama2` models in `.pth` format).
The convert script reads the model configuration, tokenizer, tensor names+data and converts them to GGUF metadata and tensors.

View File

@@ -24,14 +24,16 @@ from abc import ABC, abstractmethod
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
from dataclasses import dataclass
from pathlib import Path
from typing import TYPE_CHECKING, Any, Callable, ClassVar, IO, Iterable, Literal, Protocol, TypeVar, runtime_checkable, Optional
from typing import TYPE_CHECKING, Any, Callable, IO, Iterable, Literal, TypeVar, Optional
import numpy as np
from sentencepiece import SentencePieceProcessor
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
# use .parent.parent since we are in "examples" directory
sys.path.insert(1, str(Path(__file__).parent.parent / 'gguf-py'))
import gguf
from gguf import BaseVocab, Vocab, NoVocab, BpeVocab, SentencePieceVocab, LlamaHfVocab
if TYPE_CHECKING:
from typing_extensions import Self, TypeAlias
@@ -380,306 +382,6 @@ class Metadata:
return metadata
#
# vocab
#
@runtime_checkable
class BaseVocab(Protocol):
tokenizer_model: ClassVar[str]
name: ClassVar[str]
class NoVocab(BaseVocab):
tokenizer_model = "no_vocab"
name = "no_vocab"
def __repr__(self) -> str:
return "<NoVocab for a model without integrated vocabulary>"
@runtime_checkable
class Vocab(BaseVocab, Protocol):
vocab_size: int
added_tokens_dict: dict[str, int]
added_tokens_list: list[str]
fname_tokenizer: Path
def __init__(self, base_path: Path): ...
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: ...
class BpeVocab(Vocab):
tokenizer_model = "gpt2"
name = "bpe"
def __init__(self, base_path: Path):
added_tokens: dict[str, int] = {}
if (fname_tokenizer := base_path / 'vocab.json').exists():
# "slow" tokenizer
with open(fname_tokenizer, encoding="utf-8") as f:
self.vocab = json.load(f)
try:
# FIXME: Verify that added tokens here _cannot_ overlap with the main vocab.
with open(base_path / ADDED_TOKENS_FILE, encoding="utf-8") as f:
added_tokens = json.load(f)
except FileNotFoundError:
pass
else:
# "fast" tokenizer
fname_tokenizer = base_path / FAST_TOKENIZER_FILE
# if this fails, FileNotFoundError propagates to caller
with open(fname_tokenizer, encoding="utf-8") as f:
tokenizer_json = json.load(f)
tokenizer_model: dict[str, Any] = tokenizer_json['model']
if (
tokenizer_model['type'] != 'BPE' or tokenizer_model.get('byte_fallback', False)
or tokenizer_json['decoder']['type'] != 'ByteLevel'
):
raise FileNotFoundError('Cannot find GPT-2 BPE tokenizer')
self.vocab = tokenizer_model["vocab"]
if (added := tokenizer_json.get('added_tokens')) is not None:
# Added tokens here can be duplicates of the main vocabulary.
added_tokens = {item['content']: item['id']
for item in added
if item['content'] not in self.vocab}
vocab_size = len(self.vocab)
expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
actual_ids = sorted(added_tokens.values())
if expected_ids != actual_ids:
expected_end_id = vocab_size + len(actual_ids) - 1
raise ValueError(f"Expected the {len(actual_ids)} added token ID(s) to be sequential in the range "
f"{vocab_size} - {expected_end_id}; got {actual_ids}")
items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1])
self.added_tokens_dict = added_tokens
self.added_tokens_list = [text for (text, idx) in items]
self.vocab_size_base = vocab_size
self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
self.fname_tokenizer = fname_tokenizer
def bpe_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
reverse_vocab = {id: encoded_tok for encoded_tok, id in self.vocab.items()}
for i, _ in enumerate(self.vocab):
yield reverse_vocab[i], 0.0, gguf.TokenType.NORMAL
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
for text in self.added_tokens_list:
score = -1000.0
yield text.encode("utf-8"), score, gguf.TokenType.CONTROL
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
yield from self.bpe_tokens()
yield from self.added_tokens()
def __repr__(self) -> str:
return f"<BpeVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
class SentencePieceVocab(Vocab):
tokenizer_model = "llama"
name = "spm"
def __init__(self, base_path: Path):
added_tokens: dict[str, int] = {}
if (fname_tokenizer := base_path / 'tokenizer.model').exists():
# normal location
try:
with open(base_path / ADDED_TOKENS_FILE, encoding="utf-8") as f:
added_tokens = json.load(f)
except FileNotFoundError:
pass
elif not (fname_tokenizer := base_path.parent / 'tokenizer.model').exists():
# not found in alternate location either
raise FileNotFoundError('Cannot find tokenizer.model')
self.sentencepiece_tokenizer = SentencePieceProcessor()
self.sentencepiece_tokenizer.LoadFromFile(str(fname_tokenizer))
vocab_size = self.sentencepiece_tokenizer.vocab_size()
new_tokens = {id: piece for piece, id in added_tokens.items() if id >= vocab_size}
expected_new_ids = list(range(vocab_size, vocab_size + len(new_tokens)))
actual_new_ids = sorted(new_tokens.keys())
if expected_new_ids != actual_new_ids:
raise ValueError(f"Expected new token IDs {expected_new_ids} to be sequential; got {actual_new_ids}")
# Token pieces that were added to the base vocabulary.
self.added_tokens_dict = added_tokens
self.added_tokens_list = [new_tokens[id] for id in actual_new_ids]
self.vocab_size_base = vocab_size
self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
self.fname_tokenizer = fname_tokenizer
def sentencepiece_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
tokenizer = self.sentencepiece_tokenizer
for i in range(tokenizer.vocab_size()):
piece = tokenizer.IdToPiece(i)
text = piece.encode("utf-8")
score: float = tokenizer.GetScore(i)
toktype = gguf.TokenType.NORMAL
if tokenizer.IsUnknown(i):
toktype = gguf.TokenType.UNKNOWN
if tokenizer.IsControl(i):
toktype = gguf.TokenType.CONTROL
# NOTE: I think added_tokens are user defined.
# ref: https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto
# if tokenizer.is_user_defined(i): toktype = gguf.TokenType.USER_DEFINED
if tokenizer.IsUnused(i):
toktype = gguf.TokenType.UNUSED
if tokenizer.IsByte(i):
toktype = gguf.TokenType.BYTE
yield text, score, toktype
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
for text in self.added_tokens_list:
score = -1000.0
yield text.encode("utf-8"), score, gguf.TokenType.USER_DEFINED
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
yield from self.sentencepiece_tokens()
yield from self.added_tokens()
def __repr__(self) -> str:
return f"<SentencePieceVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
class LlamaHfVocab(Vocab):
tokenizer_model = "llama"
name = "hfft"
def __init__(self, base_path: Path):
fname_tokenizer = base_path / FAST_TOKENIZER_FILE
# if this fails, FileNotFoundError propagates to caller
with open(fname_tokenizer, encoding='utf-8') as f:
tokenizer_json = json.load(f)
# pre-check so we know if we need transformers
tokenizer_model: dict[str, Any] = tokenizer_json['model']
is_llama3 = (
tokenizer_model['type'] == 'BPE' and tokenizer_model.get('ignore_merges', False)
and not tokenizer_model.get('byte_fallback', True)
)
if is_llama3:
raise TypeError('Llama 3 must be converted with BpeVocab')
if not is_llama3 and (
tokenizer_model['type'] != 'BPE' or not tokenizer_model.get('byte_fallback', False)
or tokenizer_json['decoder']['type'] != 'Sequence'
):
raise FileNotFoundError('Cannot find Llama BPE tokenizer')
try:
from transformers import AutoTokenizer
except ImportError as e:
raise ImportError(
"To use LlamaHfVocab, please install the `transformers` package. "
"You can install it with `pip install transformers`."
) from e
# Allow the tokenizer to default to slow or fast versions.
# Explicitly set tokenizer to use local paths.
self.tokenizer = AutoTokenizer.from_pretrained(
base_path,
cache_dir=base_path,
local_files_only=True,
)
assert self.tokenizer.is_fast # assume tokenizer.json is used
# Initialize lists and dictionaries for added tokens
self.added_tokens_list = []
self.added_tokens_dict = dict()
self.added_tokens_ids = set()
# Process added tokens
for tok, tokidx in sorted(
self.tokenizer.get_added_vocab().items(), key=lambda x: x[1]
):
# Only consider added tokens that are not in the base vocabulary
if tokidx >= self.tokenizer.vocab_size:
self.added_tokens_list.append(tok)
self.added_tokens_dict[tok] = tokidx
self.added_tokens_ids.add(tokidx)
# Store special tokens and their IDs
self.specials = {
tok: self.tokenizer.get_vocab()[tok]
for tok in self.tokenizer.all_special_tokens
}
self.special_ids = set(self.tokenizer.all_special_ids)
# Set vocabulary sizes
self.vocab_size_base = self.tokenizer.vocab_size
self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
self.fname_tokenizer = fname_tokenizer
def hf_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
reverse_vocab = {
id: encoded_tok for encoded_tok, id in self.tokenizer.get_vocab().items()
}
for token_id in range(self.vocab_size_base):
# Skip processing added tokens here
if token_id in self.added_tokens_ids:
continue
# Convert token text to bytes
token_text = reverse_vocab[token_id].encode("utf-8")
# Yield token text, score, and type
yield token_text, self.get_token_score(token_id), self.get_token_type(
token_id, token_text, self.special_ids # Reuse already stored special IDs
)
def get_token_type(self, token_id: int, token_text: bytes, special_ids: set[int]) -> gguf.TokenType:
# Special case for byte tokens
if re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
return gguf.TokenType.BYTE
# Determine token type based on whether it's a special token
return gguf.TokenType.CONTROL if token_id in special_ids else gguf.TokenType.NORMAL
def get_token_score(self, token_id: int) -> float:
# Placeholder for actual logic to determine the token's score
# This needs to be implemented based on specific requirements
return -1000.0 # Default score
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
for text in self.added_tokens_list:
if text in self.specials:
toktype = self.get_token_type(self.specials[text], b'', self.special_ids)
score = self.get_token_score(self.specials[text])
else:
toktype = gguf.TokenType.USER_DEFINED
score = -1000.0
yield text.encode("utf-8"), score, toktype
def has_newline_token(self):
return "<0x0A>" in self.tokenizer.vocab or "\n" in self.tokenizer.vocab
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
yield from self.hf_tokens()
yield from self.added_tokens()
def __repr__(self) -> str:
return f"<LlamaHfVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
#
# data loading
# TODO: reuse (probably move to gguf.py?)

View File

@@ -178,6 +178,7 @@ struct cmd_params {
std::vector<ggml_type> type_v;
std::vector<int> n_threads;
std::vector<int> n_gpu_layers;
std::vector<std::string> rpc_servers;
std::vector<llama_split_mode> split_mode;
std::vector<int> main_gpu;
std::vector<bool> no_kv_offload;
@@ -202,6 +203,7 @@ static const cmd_params cmd_params_defaults = {
/* type_v */ {GGML_TYPE_F16},
/* n_threads */ {cpu_get_num_math()},
/* n_gpu_layers */ {99},
/* rpc_servers */ {""},
/* split_mode */ {LLAMA_SPLIT_MODE_LAYER},
/* main_gpu */ {0},
/* no_kv_offload */ {false},
@@ -230,6 +232,7 @@ static void print_usage(int /* argc */, char ** argv) {
printf(" -ctv, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
printf(" -rpc, --rpc <rpc_servers> (default: %s)\n", join(cmd_params_defaults.rpc_servers, ",").c_str());
printf(" -sm, --split-mode <none|layer|row> (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
@@ -384,6 +387,12 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
}
auto p = split<int>(argv[i], split_delim);
params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
} else if (arg == "-rpc" || arg == "--rpc") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.rpc_servers.push_back(argv[i]);
} else if (arg == "-sm" || arg == "--split-mode") {
if (++i >= argc) {
invalid_param = true;
@@ -519,6 +528,7 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; }
if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; }
if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
if (params.rpc_servers.empty()) { params.rpc_servers = cmd_params_defaults.rpc_servers; }
if (params.split_mode.empty()) { params.split_mode = cmd_params_defaults.split_mode; }
if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
@@ -541,6 +551,7 @@ struct cmd_params_instance {
ggml_type type_v;
int n_threads;
int n_gpu_layers;
std::string rpc_servers;
llama_split_mode split_mode;
int main_gpu;
bool no_kv_offload;
@@ -553,6 +564,9 @@ struct cmd_params_instance {
llama_model_params mparams = llama_model_default_params();
mparams.n_gpu_layers = n_gpu_layers;
if (!rpc_servers.empty()) {
mparams.rpc_servers = rpc_servers.c_str();
}
mparams.split_mode = split_mode;
mparams.main_gpu = main_gpu;
mparams.tensor_split = tensor_split.data();
@@ -564,6 +578,7 @@ struct cmd_params_instance {
bool equal_mparams(const cmd_params_instance & other) const {
return model == other.model &&
n_gpu_layers == other.n_gpu_layers &&
rpc_servers == other.rpc_servers &&
split_mode == other.split_mode &&
main_gpu == other.main_gpu &&
use_mmap == other.use_mmap &&
@@ -592,6 +607,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
// this ordering minimizes the number of times that each model needs to be reloaded
for (const auto & m : params.model)
for (const auto & nl : params.n_gpu_layers)
for (const auto & rpc : params.rpc_servers)
for (const auto & sm : params.split_mode)
for (const auto & mg : params.main_gpu)
for (const auto & ts : params.tensor_split)
@@ -618,6 +634,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
/* .type_v = */ tv,
/* .n_threads = */ nt,
/* .n_gpu_layers = */ nl,
/* .rpc_servers = */ rpc,
/* .split_mode = */ sm,
/* .main_gpu = */ mg,
/* .no_kv_offload= */ nkvo,
@@ -643,6 +660,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
/* .type_v = */ tv,
/* .n_threads = */ nt,
/* .n_gpu_layers = */ nl,
/* .rpc_servers = */ rpc,
/* .split_mode = */ sm,
/* .main_gpu = */ mg,
/* .no_kv_offload= */ nkvo,
@@ -668,6 +686,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
/* .type_v = */ tv,
/* .n_threads = */ nt,
/* .n_gpu_layers = */ nl,
/* .rpc_servers = */ rpc,
/* .split_mode = */ sm,
/* .main_gpu = */ mg,
/* .no_kv_offload= */ nkvo,
@@ -692,6 +711,7 @@ struct test {
static const bool kompute;
static const bool metal;
static const bool sycl;
static const bool rpc;
static const bool gpu_blas;
static const bool blas;
static const std::string cpu_info;
@@ -790,6 +810,9 @@ struct test {
if (sycl) {
return GGML_SYCL_NAME;
}
if (rpc) {
return "RPC";
}
if (gpu_blas) {
return "GPU BLAS";
}
@@ -803,7 +826,7 @@ struct test {
static const std::vector<std::string> & get_fields() {
static const std::vector<std::string> fields = {
"build_commit", "build_number",
"cuda", "opencl", "vulkan", "kompute", "metal", "sycl", "gpu_blas", "blas",
"cuda", "opencl", "vulkan", "kompute", "metal", "sycl", "rpc", "gpu_blas", "blas",
"cpu_info", "gpu_info",
"model_filename", "model_type", "model_size", "model_n_params",
"n_batch", "n_ubatch",
@@ -859,7 +882,7 @@ struct test {
std::vector<std::string> values = {
build_commit, std::to_string(build_number),
std::to_string(cuda), std::to_string(opencl), std::to_string(vulkan), std::to_string(vulkan),
std::to_string(metal), std::to_string(sycl), std::to_string(gpu_blas), std::to_string(blas),
std::to_string(metal), std::to_string(sycl), std::to_string(rpc), std::to_string(gpu_blas), std::to_string(blas),
cpu_info, gpu_info,
model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
std::to_string(n_batch), std::to_string(n_ubatch),
@@ -894,6 +917,7 @@ const bool test::metal = !!ggml_cpu_has_metal();
const bool test::gpu_blas = !!ggml_cpu_has_gpublas();
const bool test::blas = !!ggml_cpu_has_blas();
const bool test::sycl = !!ggml_cpu_has_sycl();
const bool test::rpc = !!ggml_cpu_has_rpc();
const std::string test::cpu_info = get_cpu_info();
const std::string test::gpu_info = get_gpu_info();

View File

@@ -54,10 +54,10 @@ python ./examples/llava/convert-image-encoder-to-gguf \
--projector-type ldpv2
```
4. Use `convert.py` to convert the LLaMA part of LLaVA to GGUF:
4. Use `examples/convert-legacy-llama.py` to convert the LLaMA part of LLaVA to GGUF:
```sh
python ./convert.py path/to/MobileVLM-1.7B
python ./examples/convert-legacy-llama.py path/to/MobileVLM-1.7B
```
5. Use `quantize` to convert LLaMA part's DataType from `fp16` to `q4_k`

View File

@@ -50,10 +50,10 @@ python ./examples/llava/llava-surgery.py -m ../llava-v1.5-7b
python ./examples/llava/convert-image-encoder-to-gguf.py -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
```
5. Use `convert.py` to convert the LLaMA part of LLaVA to GGUF:
5. Use `examples/convert-legacy-llama.py` to convert the LLaMA part of LLaVA to GGUF:
```sh
python ./convert.py ../llava-v1.5-7b --skip-unknown
python ./examples/convert-legacy-llama.py ../llava-v1.5-7b --skip-unknown
```
Now both the LLaMA part and the image encoder are in the `llava-v1.5-7b` directory.
@@ -92,7 +92,7 @@ python ./examples/llava/convert-image-encoder-to-gguf.py -m vit --llava-projecto
6) Then convert the model to gguf format:
```console
python ./convert.py ../llava-v1.6-vicuna-7b/ --skip-unknown
python ./examples/convert-legacy-llama.py ../llava-v1.6-vicuna-7b/ --skip-unknown
```
7) And finally we can run the llava-cli using the 1.6 model version:

View File

@@ -1,3 +1,3 @@
-r ../../requirements/requirements-convert.txt
-r ../../requirements/requirements-convert-legacy-llama.txt
pillow~=10.2.0
torch~=2.1.1

View File

@@ -1,98 +0,0 @@
#!/usr/bin/env python3
"""
This script converts Hugging Face Llama, StarCoder, Falcon, Baichuan, and GPT-NeoX models to GGUF and quantizes them.
Usage:
python make-ggml.py {model_dir_or_hf_repo_name} --model_type {model_type} [--outname {output_name} (Optional)] [--outdir {output_directory} (Optional)] [--quants {quant_types} (Optional)] [--keep_fp16 (Optional)]
Arguments:
- model: (Required) The directory of the downloaded Hugging Face model or the name of the Hugging Face model repository. If the model directory does not exist, it will be downloaded from the Hugging Face model hub.
- --model_type: (Required) The type of the model to be converted. Choose from llama, starcoder, falcon, baichuan, or gptneox.
- --outname: (Optional) The name of the output model. If not specified, the last part of the model directory path or the Hugging Face model repo name will be used.
- --outdir: (Optional) The directory where the output model(s) will be stored. If not specified, '../models/{outname}' will be used.
- --quants: (Optional) The types of quantization to apply. This should be a space-separated list. The default is 'Q4_K_M Q5_K_S'.
- --keep_fp16: (Optional) If specified, the FP16 model will not be deleted after the quantized models are created.
Old quant types (some base model types require these):
- Q4_0: small, very high quality loss - legacy, prefer using Q3_K_M
- Q4_1: small, substantial quality loss - legacy, prefer using Q3_K_L
- Q5_0: medium, balanced quality - legacy, prefer using Q4_K_M
- Q5_1: medium, low quality loss - legacy, prefer using Q5_K_M
New quant types (recommended):
- Q2_K: smallest, extreme quality loss - not recommended
- Q3_K: alias for Q3_K_M
- Q3_K_S: very small, very high quality loss
- Q3_K_M: very small, very high quality loss
- Q3_K_L: small, substantial quality loss
- Q4_K: alias for Q4_K_M
- Q4_K_S: small, significant quality loss
- Q4_K_M: medium, balanced quality - recommended
- Q5_K: alias for Q5_K_M
- Q5_K_S: large, low quality loss - recommended
- Q5_K_M: large, very low quality loss - recommended
- Q6_K: very large, extremely low quality loss
- Q8_0: very large, extremely low quality loss - not recommended
- F16: extremely large, virtually no quality loss - not recommended
- F32: absolutely huge, lossless - not recommended
"""
import subprocess
subprocess.run(f"pip install huggingface-hub==0.16.4", shell=True, check=True)
import argparse
import os
from huggingface_hub import snapshot_download
def main(model, model_type, outname, outdir, quants, keep_fp16):
if not os.path.isdir(model):
print(f"Model not found at {model}. Downloading...")
try:
if outname is None:
outname = model.split('/')[-1]
model = snapshot_download(repo_id=model, cache_dir='../models/hf_cache')
except Exception as e:
raise Exception(f"Could not download the model: {e}")
if outdir is None:
outdir = f'../models/{outname}'
if not os.path.isfile(f"{model}/config.json"):
raise Exception(f"Could not find config.json in {model}")
os.makedirs(outdir, exist_ok=True)
print("Building llama.cpp")
subprocess.run(f"cd .. && make quantize", shell=True, check=True)
fp16 = f"{outdir}/{outname}.gguf.fp16.bin"
print(f"Making unquantised GGUF at {fp16}")
if not os.path.isfile(fp16):
if model_type != "llama":
subprocess.run(f"python3 ../convert-{model_type}-hf-to-gguf.py {model} 1 --outfile {fp16}", shell=True, check=True)
else:
subprocess.run(f"python3 ../convert.py {model} --outtype f16 --outfile {fp16}", shell=True, check=True)
else:
print(f"Unquantised GGML already exists at: {fp16}")
print("Making quants")
for type in quants:
outfile = f"{outdir}/{outname}.gguf.{type}.bin"
print(f"Making {type} : {outfile}")
subprocess.run(f"../quantize {fp16} {outfile} {type}", shell=True, check=True)
if not keep_fp16:
os.remove(fp16)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Convert/Quantize HF models to GGUF. If you have the HF model downloaded already, pass the path to the model dir. Otherwise, pass the Hugging Face model repo name. You need to be in the /examples folder for it to work.')
parser.add_argument('model', help='Downloaded model dir or Hugging Face model repo name')
parser.add_argument('--model_type', required=True, choices=['llama', 'starcoder', 'falcon', 'baichuan', 'gptneox'], help='Type of the model to be converted. Choose from llama, starcoder, falcon, baichuan, or gptneox.')
parser.add_argument('--outname', default=None, help='Output model(s) name')
parser.add_argument('--outdir', default=None, help='Output directory')
parser.add_argument('--quants', nargs='*', default=["Q4_K_M", "Q5_K_S"], help='Quant types')
parser.add_argument('--keep_fp16', action='store_true', help='Keep fp16 model', default=False)
args = parser.parse_args()
main(args.model, args.model_type, args.outname, args.outdir, args.quants, args.keep_fp16)

View File

@@ -1870,7 +1870,7 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
}
}
#else
if (r2 == 1 && r3 == 1 && src0->nb[2]*src0->ne[2] == src0->nb[3] && src1->nb[2]*src1->ne[2] == src1->nb[3]) {
if (r2 == 1 && r3 == 1 && ggml_is_contiguous_2(src0) && ggml_is_contiguous_2(src1)) {
// there is no broadcast and src0, src1 are contiguous across dims 2, 3
// use cublasGemmStridedBatchedEx
CUBLAS_CHECK(
@@ -2886,7 +2886,9 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
case GGML_OP_CONT:
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_SOFT_MAX:
return true;
case GGML_OP_ROPE:
return ggml_is_contiguous(op->src[0]);
case GGML_OP_IM2COL:
case GGML_OP_POOL_2D:
case GGML_OP_SUM_ROWS:

View File

@@ -1,5 +1,6 @@
#include "concat.cuh"
// contiguous kernels
static __global__ void concat_f32_dim0(const float * x, const float * y, float * dst, const int ne0, const int ne00) {
int nidx = threadIdx.x + blockIdx.x * blockDim.x;
if (nidx >= ne0) {
@@ -92,39 +93,104 @@ static void concat_f32_cuda(const float * x, const float * y, float * dst, int n
concat_f32_dim2<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne02);
}
// non-contiguous kernel (slow)
static __global__ void concat_f32_non_cont(
const char * src0,
const char * src1,
char * dst,
int64_t ne00,
int64_t ne01,
int64_t ne02,
int64_t ne03,
uint64_t nb00,
uint64_t nb01,
uint64_t nb02,
uint64_t nb03,
int64_t /*ne10*/,
int64_t /*ne11*/,
int64_t /*ne12*/,
int64_t /*ne13*/,
uint64_t nb10,
uint64_t nb11,
uint64_t nb12,
uint64_t nb13,
int64_t ne0,
int64_t /*ne1*/,
int64_t /*ne2*/,
int64_t /*ne3*/,
uint64_t nb0,
uint64_t nb1,
uint64_t nb2,
uint64_t nb3,
int32_t dim) {
const int64_t i3 = blockIdx.z;
const int64_t i2 = blockIdx.y;
const int64_t i1 = blockIdx.x;
int64_t o[4] = {0, 0, 0, 0};
o[dim] = dim == 0 ? ne00 : (dim == 1 ? ne01 : (dim == 2 ? ne02 : ne03));
const float * x;
for (int i0 = threadIdx.x; i0 < ne0; i0 += blockDim.x) {
if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
x = (const float *)(src0 + (i3 )*nb03 + (i2 )*nb02 + (i1 )*nb01 + (i0 )*nb00);
} else {
x = (const float *)(src1 + (i3 - o[3])*nb13 + (i2 - o[2])*nb12 + (i1 - o[1])*nb11 + (i0 - o[0])*nb10);
}
float * y = (float *)(dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
*y = *x;
}
}
void ggml_cuda_op_concat(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
const float * src0_d = (const float *)src0->data;
const float * src1_d = (const float *)src1->data;
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
const int32_t dim = ((int32_t *) dst->op_params)[0];
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(src1));
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
if (dim != 3) {
for (int i3 = 0; i3 < dst->ne[3]; i3++) {
concat_f32_cuda(
src0_d + i3 * (src0->nb[3] / 4),
src1_d + i3 * (src1->nb[3] / 4),
dst_d + i3 * ( dst->nb[3] / 4),
src0->ne[0], src0->ne[1], src0->ne[2],
dst->ne[0], dst->ne[1], dst->ne[2], dim, stream);
if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1)) {
const float * src0_d = (const float *)src0->data;
const float * src1_d = (const float *)src1->data;
float * dst_d = (float *)dst->data;
if (dim != 3) {
for (int i3 = 0; i3 < dst->ne[3]; i3++) {
concat_f32_cuda(
src0_d + i3 * (src0->nb[3] / 4),
src1_d + i3 * (src1->nb[3] / 4),
dst_d + i3 * ( dst->nb[3] / 4),
src0->ne[0], src0->ne[1], src0->ne[2],
dst->ne[0], dst->ne[1], dst->ne[2], dim, stream);
}
} else {
const size_t size0 = ggml_nbytes(src0);
const size_t size1 = ggml_nbytes(src1);
CUDA_CHECK(cudaMemcpyAsync(dst_d, src0_d, size0, cudaMemcpyDeviceToDevice, stream));
CUDA_CHECK(cudaMemcpyAsync(dst_d + size0/4, src1_d, size1, cudaMemcpyDeviceToDevice, stream));
}
} else {
const size_t size0 = ggml_nbytes(src0);
const size_t size1 = ggml_nbytes(src1);
CUDA_CHECK(cudaMemcpyAsync(dst_d, src0_d, size0, cudaMemcpyDeviceToDevice, stream));
CUDA_CHECK(cudaMemcpyAsync(dst_d + size0/4, src1_d, size1, cudaMemcpyDeviceToDevice, stream));
dim3 grid_dim(dst->ne[1], dst->ne[2], dst->ne[3]);
concat_f32_non_cont<<<grid_dim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(
(const char *)src0->data,
(const char *)src1->data,
( char *)dst->data,
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3],
src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3],
src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3],
dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3],
dst->nb[0], dst->nb[1], dst->nb[2], dst->nb[3], dim);
}
}

View File

@@ -170,6 +170,8 @@ void ggml_cuda_op_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
@@ -188,6 +190,8 @@ void ggml_cuda_op_group_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst)
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
@@ -202,6 +206,8 @@ void ggml_cuda_op_rms_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);

View File

@@ -61,7 +61,7 @@ static __global__ void rope(
template<typename T, bool has_pos, bool has_freq_facs>
static __global__ void rope_neox(
const T * x, T * dst, int ncols, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, float inv_ndims, const float * freq_factors
float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, const float * freq_factors
) {
const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
@@ -85,15 +85,13 @@ static __global__ void rope_neox(
const int i = row*ncols + ib*n_dims + ic/2;
const int i2 = row/p_delta_rows;
float cur_rot = inv_ndims * ic - ib;
const int p = has_pos ? pos[i2] : 0;
const float freq_factor = has_freq_facs ? freq_factors[ic/2] : 1.0f;
const float theta_base = p*freq_scale*powf(theta_scale, col/2.0f)/freq_factor;
const float theta_base = p*powf(theta_scale, col/2.0f)/freq_factor;
float cos_theta, sin_theta;
rope_yarn(theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);
rope_yarn(theta_base, freq_scale, corr_dims, ic, ext_factor, attn_factor, &cos_theta, &sin_theta);
const float x0 = x[i + 0];
const float x1 = x[i + n_dims/2];
@@ -174,30 +172,29 @@ static void rope_neox_cuda(
const dim3 block_nums(nrows, num_blocks_x, 1);
const float theta_scale = powf(freq_base, -2.0f/n_dims);
const float inv_ndims = -1.0f / n_dims;
if (pos == nullptr) {
if (freq_factors == nullptr) {
rope_neox<T, false, false><<<block_nums, block_dims, 0, stream>>>(
x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
theta_scale, inv_ndims, freq_factors
theta_scale, freq_factors
);
} else {
rope_neox<T, false, true><<<block_nums, block_dims, 0, stream>>>(
x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
theta_scale, inv_ndims, freq_factors
theta_scale, freq_factors
);
}
} else {
if (freq_factors == nullptr) {
rope_neox<T, true, false><<<block_nums, block_dims, 0, stream>>>(
x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
theta_scale, inv_ndims, freq_factors
theta_scale, freq_factors
);
} else {
rope_neox<T, true, true><<<block_nums, block_dims, 0, stream>>>(
x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
theta_scale, inv_ndims, freq_factors
theta_scale, freq_factors
);
}
}
@@ -254,6 +251,7 @@ void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
GGML_ASSERT(src0->type == dst->type);

View File

@@ -1597,7 +1597,6 @@ static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml
{
GGML_ASSERT(ne00 == ne10);
// TODO: assert that dim2 and dim3 are contiguous
GGML_ASSERT(ne12 % ne02 == 0);
GGML_ASSERT(ne13 % ne03 == 0);

View File

@@ -1519,7 +1519,6 @@ static enum ggml_status ggml_metal_graph_compute(
{
GGML_ASSERT(ne00 == ne10);
// TODO: assert that dim2 and dim3 are contiguous
GGML_ASSERT(ne12 % ne02 == 0);
GGML_ASSERT(ne13 % ne03 == 0);
@@ -2187,6 +2186,7 @@ static enum ggml_status ggml_metal_graph_compute(
case GGML_OP_RMS_NORM:
{
GGML_ASSERT(ne00 % 4 == 0);
GGML_ASSERT(ggml_is_contiguous_1(src0));
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
@@ -2214,6 +2214,7 @@ static enum ggml_status ggml_metal_graph_compute(
case GGML_OP_GROUP_NORM:
{
GGML_ASSERT(ne00 % 4 == 0);
GGML_ASSERT(ggml_is_contiguous(src0));
//float eps;
//memcpy(&eps, dst->op_params, sizeof(float));
@@ -2247,6 +2248,8 @@ static enum ggml_status ggml_metal_graph_compute(
} break;
case GGML_OP_NORM:
{
GGML_ASSERT(ggml_is_contiguous_1(src0));
float eps;
memcpy(&eps, dst->op_params, sizeof(float));

View File

@@ -1767,13 +1767,13 @@ kernel void kernel_rope(
const int64_t p = pos[i2];
const float theta_0 = (float)p;
const float theta_base = (float)p;
const float inv_ndims = -1.f/n_dims;
if (!is_neox) {
for (int64_t i0 = 2*tiitg; i0 < ne0; i0 += 2*tptg.x) {
const float theta = theta_base * pow(freq_base, inv_ndims*i0);
const float theta = theta_0 * pow(freq_base, inv_ndims*i0);
float cos_theta, sin_theta;
rope_yarn(theta, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
@@ -1789,18 +1789,14 @@ kernel void kernel_rope(
} else {
for (int64_t ic = 2*tiitg; ic < ne0; ic += 2*tptg.x) {
if (ic < n_dims) {
const int64_t ib = 0;
const int64_t i0 = ic/2;
// simplified from `(ib * n_dims + ic) * inv_ndims`
const float cur_rot = inv_ndims*ic - ib;
const float freq_factor = src2 != src0 ? src2[ic/2] : 1.0f;
const float freq_factor = src2 != src0 ? src2[i0] : 1.0f;
const float theta = theta_0 * pow(freq_base, cur_rot) / freq_factor;
const float theta = theta_base * pow(freq_base, inv_ndims*ic);
float cos_theta, sin_theta;
rope_yarn(theta, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);
const int64_t i0 = ib*n_dims + ic/2;
rope_yarn(theta/freq_factor, freq_scale, corr_dims, ic, ext_factor, attn_factor, &cos_theta, &sin_theta);
device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);

View File

@@ -6088,6 +6088,7 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * r
const uint8_t * restrict q2 = x[i].qs;
const int8_t * restrict q8 = y[i].qs;
const __m128i mins_and_scales = __lsx_vld((const __m128i*)x[i].scales, 0);
const __m128i scales8 = __lsx_vand_v(mins_and_scales, m4);
const __m128i mins8 = __lsx_vand_v(__lsx_vsrli_h(mins_and_scales, 4), m4);
@@ -6807,6 +6808,8 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * r
for (int i = 0; i < nb; ++i) {
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
const uint8_t * restrict q3 = x[i].qs;
const int8_t * restrict q8 = y[i].qs;
// Set up scales
memcpy(aux, x[i].scales, 12);
__m128i scales128 = lsx_set_w(
@@ -6828,29 +6831,32 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * r
int bit = 0;
int is = 0;
__m256i xvbit;
const uint8_t * restrict q3 = x[i].qs;
const int8_t * restrict q8 = y[i].qs;
for (int j = 0; j < QK_K/128; ++j) {
// load low 2 bits
const __m256i q3bits = __lasx_xvld((const __m256i*)q3, 0); q3 += 32;
xvbit = __lasx_xvreplgr2vr_h(bit);
// prepare low and high bits
const __m256i q3l_0 = __lasx_xvand_v(q3bits, m3);
const __m256i q3h_0 = __lasx_xvslli_h(__lasx_xvsrli_h(__lasx_xvandn_v(hbits, __lasx_xvslli_h(mone, bit)), bit), 2);
const __m256i q3h_0 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvandn_v(hbits, __lasx_xvsll_h(mone, xvbit)), xvbit), 2);
++bit;
xvbit = __lasx_xvreplgr2vr_h(bit);
const __m256i q3l_1 = __lasx_xvand_v(__lasx_xvsrli_h(q3bits, 2), m3);
const __m256i q3h_1 = __lasx_xvslli_h(__lasx_xvsrli_h(__lasx_xvandn_v(hbits, __lasx_xvslli_h(mone, bit)), bit), 2);
const __m256i q3h_1 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvandn_v(hbits, __lasx_xvsll_h(mone, xvbit)), xvbit), 2);
++bit;
xvbit = __lasx_xvreplgr2vr_h(bit);
const __m256i q3l_2 = __lasx_xvand_v(__lasx_xvsrli_h(q3bits, 4), m3);
const __m256i q3h_2 = __lasx_xvslli_h(__lasx_xvsrli_h(__lasx_xvandn_v(hbits, __lasx_xvslli_h(mone, bit)), bit), 2);
const __m256i q3h_2 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvandn_v(hbits, __lasx_xvsll_h(mone, xvbit)), xvbit), 2);
++bit;
xvbit = __lasx_xvreplgr2vr_h(bit);
const __m256i q3l_3 = __lasx_xvand_v(__lasx_xvsrli_h(q3bits, 6), m3);
const __m256i q3h_3 = __lasx_xvslli_h(__lasx_xvsrli_h(__lasx_xvandn_v(hbits, __lasx_xvslli_h(mone, bit)), bit), 2);
const __m256i q3h_3 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvandn_v(hbits, __lasx_xvsll_h(mone, xvbit)), xvbit), 2);
++bit;
// load Q8 quants
@@ -7399,6 +7405,9 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * r
*s = vec_extract(vsumf0, 0);
#elif defined __loongarch_asx
GGML_UNUSED(kmask1);
GGML_UNUSED(kmask2);
GGML_UNUSED(kmask3);
const __m256i m4 = __lasx_xvreplgr2vr_b(0xF);
@@ -7411,6 +7420,11 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * r
const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
memcpy(utmp, x[i].scales, 12);
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
const uint32_t uaux = utmp[1] & kmask1;
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
utmp[2] = uaux;
utmp[0] &= kmask1;
const uint8_t * restrict q4 = x[i].qs;
const int8_t * restrict q8 = y[i].qs;
@@ -7450,16 +7464,17 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * r
__m256 vd = __lasx_xvreplfr2vr_s(d);
acc = __lasx_xvfmadd_s(vd, __lasx_xvffint_s_w(sumi), acc);
}
acc_m = __lsx_vfadd_s(acc_m, (__m128)__lsx_vpermi_w((__m128i)acc_m, (__m128i)acc_m, 0xee));
__m128i tmp1 = __lsx_vinsgr2vr_w(__lsx_vldi(0), __lsx_vpickve2gr_w((__m128i)acc_m, 1), 0);
acc_m = __lsx_vfadd_s(acc_m, (__m128)tmp1);
ft_union fi;
fi.i = __lsx_vpickve2gr_w(acc_m, 0);
*s = hsum_float_8(acc) + fi.f ;
#else
const uint8_t * scales = (const uint8_t*)&utmp[0];
@@ -7997,6 +8012,9 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * r
*s = vec_extract(vsumf0, 0);
#elif defined __loongarch_asx
GGML_UNUSED(kmask1);
GGML_UNUSED(kmask2);
GGML_UNUSED(kmask3);
const __m256i m4 = __lasx_xvreplgr2vr_b(0xF);
const __m128i mzero = __lsx_vldi(0);
@@ -8015,6 +8033,11 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * r
const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
memcpy(utmp, x[i].scales, 12);
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
const uint32_t uaux = utmp[1] & kmask1;
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
utmp[2] = uaux;
utmp[0] &= kmask1;
const __m256i mins_and_scales = lasx_extu8_16(lsx_set_w(utmp[3], utmp[2], utmp[1], utmp[0]));
@@ -8033,6 +8056,7 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * r
__m256i sumi = __lasx_xvldi(0);
int bit = 0;
__m256i xvbit;
for (int j = 0; j < QK_K/64; ++j) {
@@ -8041,13 +8065,15 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * r
const __m256i q5bits = __lasx_xvld((const __m256i*)q5, 0); q5 += 32;
xvbit = __lasx_xvreplgr2vr_h(bit++);
const __m256i q5l_0 = __lasx_xvand_v(q5bits, m4);
const __m256i q5h_0 = __lasx_xvslli_h(__lasx_xvsrli_h(__lasx_xvand_v(hbits, hmask), bit++), 4);
const __m256i q5h_0 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvand_v(hbits, hmask), xvbit), 4);
const __m256i q5_0 = __lasx_xvadd_b(q5l_0, q5h_0);
hmask = __lasx_xvslli_h(hmask, 1);
xvbit = __lasx_xvreplgr2vr_h(bit++);
const __m256i q5l_1 = __lasx_xvand_v(__lasx_xvsrli_h(q5bits, 4), m4);
const __m256i q5h_1 = __lasx_xvslli_h(__lasx_xvsrli_h(__lasx_xvand_v(hbits, hmask), bit++), 4);
const __m256i q5h_1 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvand_v(hbits, hmask), xvbit), 4);
const __m256i q5_1 = __lasx_xvadd_b(q5l_1, q5h_1);
hmask = __lasx_xvslli_h(hmask, 1);
@@ -8061,10 +8087,12 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * r
p16_1 = lasx_madd_h(scale_1, p16_1);
sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_0, p16_1));
}
__m256 vd = __lasx_xvreplfr2vr_s(d);
acc = __lasx_xvfmadd_s(vd, __lasx_xvffint_s_w(sumi), acc);
}
*s = hsum_float_8(acc) + summs;

View File

@@ -6,6 +6,7 @@
#include <string>
#include <vector>
#include <memory>
#include <mutex>
#include <unordered_map>
#include <unordered_set>
#ifdef _WIN32
@@ -47,6 +48,7 @@ struct socket_t {
sockfd_t fd;
socket_t(sockfd_t fd) : fd(fd) {}
~socket_t() {
GGML_PRINT_DEBUG("[%s] closing socket %d\n", __func__, this->fd);
#ifdef _WIN32
closesocket(this->fd);
#else
@@ -97,7 +99,7 @@ static ggml_guid_t ggml_backend_rpc_guid() {
}
struct ggml_backend_rpc_buffer_type_context {
std::shared_ptr<socket_t> sock;
std::string endpoint;
std::string name;
size_t alignment;
size_t max_size;
@@ -106,8 +108,6 @@ struct ggml_backend_rpc_buffer_type_context {
struct ggml_backend_rpc_context {
std::string endpoint;
std::string name;
std::shared_ptr<socket_t> sock;
ggml_backend_buffer_type_t buft;
};
struct ggml_backend_rpc_buffer_context {
@@ -231,14 +231,13 @@ static bool recv_data(sockfd_t sockfd, void * data, size_t size) {
return true;
}
static bool parse_endpoint(const char * endpoint, std::string & host, int & port) {
std::string str(endpoint);
size_t pos = str.find(':');
static bool parse_endpoint(const std::string & endpoint, std::string & host, int & port) {
size_t pos = endpoint.find(':');
if (pos == std::string::npos) {
return false;
}
host = str.substr(0, pos);
port = std::stoi(str.substr(pos + 1));
host = endpoint.substr(0, pos);
port = std::stoi(endpoint.substr(pos + 1));
return true;
}
@@ -273,6 +272,44 @@ static bool send_rpc_cmd(const std::shared_ptr<socket_t> & sock, enum rpc_cmd cm
// RPC client-side implementation
static std::shared_ptr<socket_t> get_socket(const std::string & endpoint) {
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
static std::unordered_map<std::string, std::weak_ptr<socket_t>> sockets;
static bool initialized = false;
auto it = sockets.find(endpoint);
if (it != sockets.end()) {
if (auto sock = it->second.lock()) {
return sock;
}
}
std::string host;
int port;
if (!parse_endpoint(endpoint, host, port)) {
return nullptr;
}
#ifdef _WIN32
if (!initialized) {
WSADATA wsaData;
int res = WSAStartup(MAKEWORD(2, 2), &wsaData);
if (res != 0) {
return nullptr;
}
initialized = true;
}
#else
UNUSED(initialized);
#endif
auto sock = socket_connect(host.c_str(), port);
if (sock == nullptr) {
return nullptr;
}
GGML_PRINT_DEBUG("[%s] connected to %s, sockfd=%d\n", __func__, endpoint.c_str(), sock->fd);
sockets[endpoint] = sock;
return sock;
}
GGML_CALL static const char * ggml_backend_rpc_buffer_get_name(ggml_backend_buffer_t buffer) {
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
return ctx->name.c_str();
@@ -442,7 +479,8 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_rpc_buffer_type_alloc_buffer
std::vector<uint8_t> input(input_size, 0);
memcpy(input.data(), &size, sizeof(size));
std::vector<uint8_t> output;
bool status = send_rpc_cmd(buft_ctx->sock, ALLOC_BUFFER, input, output);
auto sock = get_socket(buft_ctx->endpoint);
bool status = send_rpc_cmd(sock, ALLOC_BUFFER, input, output);
GGML_ASSERT(status);
GGML_ASSERT(output.size() == 2*sizeof(uint64_t));
// output serialization format: | remote_ptr (8 bytes) | remote_size (8 bytes) |
@@ -453,7 +491,7 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_rpc_buffer_type_alloc_buffer
if (remote_ptr != 0) {
ggml_backend_buffer_t buffer = ggml_backend_buffer_init(buft,
ggml_backend_rpc_buffer_interface,
new ggml_backend_rpc_buffer_context{buft_ctx->sock, {}, remote_ptr, "RPC"},
new ggml_backend_rpc_buffer_context{sock, {}, remote_ptr, "RPC"},
remote_size);
return buffer;
} else {
@@ -508,7 +546,7 @@ GGML_CALL static bool ggml_backend_rpc_buffer_type_supports_backend(ggml_backend
}
ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
return buft_ctx->sock == rpc_ctx->sock;
return buft_ctx->endpoint == rpc_ctx->endpoint;
}
static ggml_backend_buffer_type_i ggml_backend_rpc_buffer_type_interface = {
@@ -521,7 +559,6 @@ static ggml_backend_buffer_type_i ggml_backend_rpc_buffer_type_interface = {
/* .is_host = */ NULL,
};
GGML_CALL static const char * ggml_backend_rpc_name(ggml_backend_t backend) {
ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
@@ -530,16 +567,13 @@ GGML_CALL static const char * ggml_backend_rpc_name(ggml_backend_t backend) {
GGML_CALL static void ggml_backend_rpc_free(ggml_backend_t backend) {
ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)rpc_ctx->buft->context;
delete buft_ctx;
delete rpc_ctx->buft;
delete rpc_ctx;
delete backend;
}
GGML_CALL static ggml_backend_buffer_type_t ggml_backend_rpc_get_default_buffer_type(ggml_backend_t backend) {
ggml_backend_rpc_context * ctx = (ggml_backend_rpc_context *)backend->context;
return ctx->buft;
return ggml_backend_rpc_buffer_type(ctx->endpoint.c_str());
}
GGML_CALL static void ggml_backend_rpc_synchronize(ggml_backend_t backend) {
@@ -590,7 +624,8 @@ GGML_CALL static enum ggml_status ggml_backend_rpc_graph_compute(ggml_backend_t
std::vector<uint8_t> input;
serialize_graph(cgraph, input);
std::vector<uint8_t> output;
bool status = send_rpc_cmd(rpc_ctx->sock, GRAPH_COMPUTE, input, output);
auto sock = get_socket(rpc_ctx->endpoint);
bool status = send_rpc_cmd(sock, GRAPH_COMPUTE, input, output);
GGML_ASSERT(status);
GGML_ASSERT(output.size() == 1);
return (enum ggml_status)output[0];
@@ -624,65 +659,48 @@ static ggml_backend_i ggml_backend_rpc_interface = {
/* .event_synchronize = */ NULL,
};
static std::unordered_map<std::string, ggml_backend_t> instances;
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint) {
ggml_backend_t backend = ggml_backend_rpc_init(endpoint);
return backend != nullptr ? ggml_backend_rpc_get_default_buffer_type(backend) : nullptr;
}
GGML_CALL ggml_backend_t ggml_backend_rpc_init(const char * endpoint) {
std::string endpoint_str(endpoint);
if (instances.find(endpoint_str) != instances.end()) {
return instances[endpoint_str];
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
// NOTE: buffer types are allocated and never freed; this is by design
static std::unordered_map<std::string, ggml_backend_buffer_type_t> buft_map;
auto it = buft_map.find(endpoint);
if (it != buft_map.end()) {
return it->second;
}
#ifdef _WIN32
{
WSADATA wsaData;
int res = WSAStartup(MAKEWORD(2, 2), &wsaData);
if (res != 0) {
return nullptr;
}
}
#endif
fprintf(stderr, "Connecting to %s\n", endpoint);
std::string host;
int port;
if (!parse_endpoint(endpoint, host, port)) {
return nullptr;
}
auto sock = socket_connect(host.c_str(), port);
auto sock = get_socket(endpoint);
if (sock == nullptr) {
return nullptr;
}
size_t alignment = get_alignment(sock);
size_t max_size = get_max_size(sock);
ggml_backend_rpc_buffer_type_context * buft_ctx = new ggml_backend_rpc_buffer_type_context {
/* .sock = */ sock,
/* .name = */ "RPC" + std::to_string(sock->fd),
/* .endpoint = */ endpoint,
/* .name = */ "RPC[" + std::string(endpoint) + "]",
/* .alignment = */ alignment,
/* .max_size = */ max_size
/* .max_size = */ max_size
};
ggml_backend_buffer_type_t buft = new ggml_backend_buffer_type {
/* .iface = */ ggml_backend_rpc_buffer_type_interface,
/* .context = */ buft_ctx
};
buft_map[endpoint] = buft;
return buft;
}
GGML_CALL ggml_backend_t ggml_backend_rpc_init(const char * endpoint) {
ggml_backend_rpc_context * ctx = new ggml_backend_rpc_context {
/* .endpoint = */ endpoint,
/* .name = */ "RPC" + std::to_string(sock->fd),
/* .sock = */ sock,
/* .buft = */ buft
/* .endpoint = */ endpoint,
/* .name = */ "RPC",
};
instances[endpoint] = new ggml_backend {
ggml_backend_t backend = new ggml_backend {
/* .guid = */ ggml_backend_rpc_guid(),
/* .interface = */ ggml_backend_rpc_interface,
/* .context = */ ctx
};
return instances[endpoint];
return backend;
}
GGML_API GGML_CALL bool ggml_backend_is_rpc(ggml_backend_t backend) {
@@ -706,14 +724,13 @@ static void get_device_memory(const std::shared_ptr<socket_t> & sock, size_t * f
}
GGML_API GGML_CALL void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total) {
ggml_backend_t backend = ggml_backend_rpc_init(endpoint);
if (backend == nullptr) {
auto sock = get_socket(endpoint);
if (sock == nullptr) {
*free = 0;
*total = 0;
return;
}
ggml_backend_rpc_context * ctx = (ggml_backend_rpc_context *)backend->context;
get_device_memory(ctx->sock, free, total);
get_device_memory(sock, free, total);
}
// RPC server-side implementation

View File

@@ -2944,6 +2944,57 @@ namespace dpct
using shared_memory = detail::device_memory<T, shared, Dimension>;
template <typename T,
sycl::access::address_space addressSpace =
sycl::access::address_space::global_space,
sycl::memory_order memoryOrder = sycl::memory_order::relaxed,
sycl::memory_scope memoryScope = sycl::memory_scope::device>
inline T atomic_fetch_add(T *addr, T operand) {
auto atm =
sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]);
return atm.fetch_add(operand);
}
template <sycl::access::address_space addressSpace =
sycl::access::address_space::global_space,
sycl::memory_order memoryOrder = sycl::memory_order::relaxed,
sycl::memory_scope memoryScope = sycl::memory_scope::device,
typename T1, typename T2>
inline T1 atomic_fetch_add(T1 *addr, T2 operand) {
auto atm =
sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]);
return atm.fetch_add(operand);
}
template <typename T, sycl::access::address_space addressSpace =
sycl::access::address_space::global_space>
inline T atomic_fetch_add(T *addr, T operand,
sycl::memory_order memoryOrder) {
switch (memoryOrder) {
case sycl::memory_order::relaxed:
return atomic_fetch_add<T, addressSpace, sycl::memory_order::relaxed,
sycl::memory_scope::device>(addr, operand);
case sycl::memory_order::acq_rel:
return atomic_fetch_add<T, addressSpace, sycl::memory_order::acq_rel,
sycl::memory_scope::device>(addr, operand);
case sycl::memory_order::seq_cst:
return atomic_fetch_add<T, addressSpace, sycl::memory_order::seq_cst,
sycl::memory_scope::device>(addr, operand);
default:
assert(false && "Invalid memory_order for atomics. Valid memory_order for "
"atomics are: sycl::memory_order::relaxed, "
"sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!");
}
}
template <sycl::access::address_space addressSpace =
sycl::access::address_space::global_space,
typename T1, typename T2>
inline T1 atomic_fetch_add(T1 *addr, T2 operand,
sycl::memory_order memoryOrder) {
atomic_fetch_add<T1, addressSpace>(addr, operand, memoryOrder);
}
} // COPY from DPCT head files
#define GGML_COMMON_DECL_SYCL
@@ -2971,20 +3022,19 @@ static int g_work_group_size = 0;
// typedef sycl::half ggml_fp16_t;
#define __SYCL_ARCH__ DPCT_COMPATIBILITY_TEMP
#define VER_4VEC 610 //todo for hardward optimize.
#define VER_4VEC 130 //todo for hardward optimize.
#define VER_GEN9 700 //todo for hardward optimize.
#define VER_GEN12 1000000 //todo for hardward optimize.
#define VER_GEN13 (VER_GEN12 + 1030) //todo for hardward optimize.
#define GGML_SYCL_MAX_NODES 8192 //TODO: adapt to hardwares
//define for XMX in Intel GPU
//TODO: currently, it's not used for XMX really.
#define SYCL_USE_XMX
#if !defined(GGML_SYCL_FORCE_MMQ)
#define SYCL_USE_XMX
#endif
// max batch size to use MMQ kernels when tensor cores are available
#define XMX_MAX_BATCH_SIZE 32
#define MMQ_MAX_BATCH_SIZE 32
#if defined(_MSC_VER)
@@ -3060,6 +3110,7 @@ void ggml_sycl_get_device_description(int device, char * description, size_t d
bool ggml_backend_is_sycl(ggml_backend_t backend);
int ggml_backend_sycl_get_device(ggml_backend_t backend);
int get_main_device();
static bool ggml_backend_buffer_is_sycl_split(ggml_backend_buffer_t buffer);
void print_ggml_tensor(const char*name, struct ggml_tensor *src);
void log_tensor_with_cnt(const char* name, struct ggml_tensor * src, int stop_cnt);
@@ -13515,7 +13566,7 @@ inline void ggml_sycl_op_concat(const ggml_tensor *src0,
#pragma message("TODO: generalize concat kernel for dim != 2")
#pragma message(" https://github.com/ggerganov/llama.cpp/pull/7563")
int dim = dst->op_params[0];
GGML_ASSERT(dim != 2);
GGML_ASSERT(dim == 2);
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
@@ -15132,7 +15183,7 @@ static void ggml_sycl_mul_mat_batched_sycl(const ggml_tensor *src0,
const int64_t r2 = ne12/ne02;
const int64_t r3 = ne13/ne03;
if (r2 == 1 && r3 == 1 && src0->nb[2]*src0->ne[2] == src0->nb[3] && src1->nb[2]*src1->ne[2] == src1->nb[3]) {
if (r2 == 1 && r3 == 1 && ggml_is_contiguous_2(src0) && ggml_is_contiguous_2(src1)) {
// there is no broadcast and src0, src1 are contiguous across dims 2, 3
SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch(
*g_sycl_handles[g_main_device], oneapi::mkl::transpose::trans,
@@ -15197,6 +15248,29 @@ catch (sycl::exception const &exc) {
std::exit(1);
}
inline bool ggml_sycl_supports_mmq(enum ggml_type type) {
// TODO: accuracy issues in MMQ
return false;
}
bool ggml_sycl_supports_dmmv(enum ggml_type type) {
switch (type) {
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
case GGML_TYPE_F16:
return true;
default:
return false;
}
}
static void ggml_sycl_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
const bool all_on_device =
@@ -15213,76 +15287,42 @@ static void ggml_sycl_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1
}
}
// check data types and tensor shapes for custom matrix multiplication kernels:
bool use_dequantize_mul_mat_vec = ggml_sycl_supports_dmmv(src0->type)
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
&& src0->ne[0] % GGML_SYCL_DMMV_X == 0 && src1->ne[1] == 1;
bool use_mul_mat_vec_q = ggml_is_quantized(src0->type)
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
&& src1->ne[1] <= MMVQ_MAX_BATCH_SIZE;
bool use_mul_mat_q = ggml_sycl_supports_mmq(src0->type)
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
// mmvq and mmq need the __dp4a instruction which is available for gen12+
// Workaround in https://github.com/ggerganov/llama.cpp/commit/95f84d5ce8b449a9b16009434aca800df504a02e
use_mul_mat_q = use_mul_mat_q && (src0->type != GGML_TYPE_IQ2_XXS);
#ifdef SYCL_USE_XMX
const bool use_xmx = true;
#else
const bool use_xmx = false;
#endif
use_mul_mat_q = use_mul_mat_q && (src1->ne[1] <= MMQ_MAX_BATCH_SIZE);
#endif // SYCL_USE_XMX
// debug helpers
//printf("src0: %8d %8d %8d %8d\n", src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3]);
//printf(" %8d %8d %8d %8d\n", src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]);
//printf("src1: %8d %8d %8d %8d\n", src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3]);
//printf(" %8d %8d %8d %8d\n", src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3]);
//printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
//printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
if (!split && all_on_device && !use_xmx && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
if (!split && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
// KQ single-batch
// GGML_SYCL_DEBUG("ggml_sycl_mul_mat_vec_p021\n");
ggml_sycl_mul_mat_vec_p021(src0, src1, dst);
} else if (!split && all_on_device && !use_xmx && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
} else if (!split && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
// KQV single-batch
// GGML_SYCL_DEBUG("ggml_sycl_mul_mat_vec_nc\n");
ggml_sycl_mul_mat_vec_nc(src0, src1, dst);
} else if (!split && all_on_device && use_xmx && src0->type == GGML_TYPE_F16 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1)) {
} else if (!split && src0->type == GGML_TYPE_F16 && (src1->type == GGML_TYPE_F16) && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) {
// KQ + KQV multi-batch
// GGML_SYCL_DEBUG("ggml_sycl_mul_mat_batched_sycl\n");
ggml_sycl_mul_mat_batched_sycl(src0, src1, dst);
} else if (src0->type == GGML_TYPE_F32) {
// GGML_SYCL_DEBUG("ggml_sycl_op_mul_mat\n");
ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_mul_mat_sycl, false);
} else if (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16) {
// GGML_SYCL_DEBUG("ggml_is_quantized or GGML_TYPE_F16\n");
if (src1->ne[1] == 1 && src0->ne[0] % GGML_SYCL_DMMV_X == 0) {
#ifdef GGML_SYCL_FORCE_DMMV
const bool use_mul_mat_vec_q = false;
#else
bool use_mul_mat_vec_q = min_compute_capability >= VER_4VEC && ggml_is_quantized(src0->type);
use_mul_mat_vec_q = use_mul_mat_vec_q ||
(src0->type == GGML_TYPE_IQ2_XXS) || (src0->type == GGML_TYPE_IQ2_XS) || (src0->type == GGML_TYPE_IQ2_S) ||
(src0->type == GGML_TYPE_IQ3_XXS) || (src0->type == GGML_TYPE_IQ3_S) ||
(src0->type == GGML_TYPE_IQ4_NL) || (src0->type == GGML_TYPE_IQ4_XS) ||
(src0->type == GGML_TYPE_IQ1_S) || (src0->type == GGML_TYPE_IQ1_M);
#endif // GGML_SYCL_FORCE_DMMV
if (use_mul_mat_vec_q) {
// GGML_SYCL_DEBUG("ggml_sycl_mul_mat ggml_sycl_op_mul_mat_vec_q path\n");
ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_mul_mat_vec_q, true);
} else {
// GGML_SYCL_DEBUG("ggml_sycl_mul_mat ggml_sycl_op_dequantize_mul_mat_vec path\n");
ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_dequantize_mul_mat_vec, false);
}
} else {
bool use_mul_mat_q = min_compute_capability >= VER_4VEC && ggml_is_quantized(src0->type);
use_mul_mat_q = use_mul_mat_q && (src0->type != GGML_TYPE_IQ2_XXS);
if (use_xmx && min_compute_capability >= VER_GEN9 && src1->ne[1] > XMX_MAX_BATCH_SIZE) {
use_mul_mat_q = false;
}
if (use_mul_mat_q) {
// GGML_SYCL_DEBUG("ggml_sycl_mul_mat ggml_sycl_op_mul_mat_q path\n");
ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_mul_mat_q, true);
} else {
// GGML_SYCL_DEBUG("ggml_sycl_mul_mat ggml_sycl_op_mul_mat_sycl path\n");
ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_mul_mat_sycl, false);
}
}
} else if (use_dequantize_mul_mat_vec) {
ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_dequantize_mul_mat_vec, false);
} else if (use_mul_mat_vec_q) {
ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_mul_mat_vec_q, true);
} else if (use_mul_mat_q) {
ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_mul_mat_q, true);
} else {
GGML_ASSERT(false);
ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_mul_mat_sycl, false);
}
}
@@ -15459,22 +15499,86 @@ static void ggml_sycl_mul_mat_id_sycl(ggml_tensor * dst) {
}
#endif
struct mmid_row_mapping {
int32_t i1;
int32_t i2;
};
__dpct_inline__ static void k_copy_src1_to_contiguous(
const char *__restrict__ src1_original, char *__restrict__ src1_contiguous,
int *__restrict__ cur_src1_row, mmid_row_mapping *__restrict__ row_mapping,
const char *__restrict ids, int64_t i02, size_t ids_nb1, size_t ids_nb0,
int64_t ne11, int64_t ne10, size_t nb11, size_t nb12,
const sycl::nd_item<3> &item_ct1, int &src1_row) {
int32_t iid1 = item_ct1.get_group(2);
int32_t id = item_ct1.get_group(1);
const int32_t row_id_i = *(const int32_t *) (ids + iid1*ids_nb1 + id*ids_nb0);
if (row_id_i != i02) {
return;
}
const int64_t i11 = id % ne11;
const int64_t i12 = iid1;
if (item_ct1.get_local_id(2) == 0) {
src1_row =
dpct::atomic_fetch_add<sycl::access::address_space::generic_space>(
cur_src1_row, 1);
row_mapping[src1_row] = {id, iid1};
}
/*
DPCT1065:194: Consider replacing sycl::nd_item::barrier() with
sycl::nd_item::barrier(sycl::access::fence_space::local_space) for better
performance if there is no access to global memory.
*/
item_ct1.barrier();
const float * src1_row_original = (const float *)(src1_original + i11*nb11 + i12*nb12);
float * src1_row_contiguous = (float *)(src1_contiguous + src1_row*nb11);
#pragma unroll
for (int i = item_ct1.get_local_id(2); i < ne10;
i += item_ct1.get_local_range(2)) {
src1_row_contiguous[i] = src1_row_original[i];
}
}
__dpct_inline__ static void k_copy_dst_from_contiguous(
char *__restrict__ dst_original, const char *__restrict__ dst_contiguous,
const mmid_row_mapping *__restrict__ row_mapping, int64_t ne0, size_t nb1,
size_t nb2, const sycl::nd_item<3> &item_ct1) {
int32_t i = item_ct1.get_group(2);
const int32_t i1 = row_mapping[i].i1;
const int32_t i2 = row_mapping[i].i2;
const float * dst_row_contiguous = (const float *)(dst_contiguous + i*nb1);
float * dst_row_original = (float *)(dst_original + i1*nb1 + i2*nb2);
#pragma unroll
for (int j = item_ct1.get_local_id(2); j < ne0;
j += item_ct1.get_local_range(2)) {
dst_row_original[j] = dst_row_contiguous[j];
}
}
static void ggml_sycl_mul_mat_id(const ggml_tensor *src0,
const ggml_tensor *src1,
ggml_tensor *dst) try {
GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT &&
"mul_mat_id does not support split buffers");
GGML_ASSERT(!ggml_backend_buffer_is_sycl_split(src0->buffer) && "mul_mat_id does not support split buffers");
const ggml_tensor *ids = dst->src[2];
GGML_TENSOR_BINARY_OP_LOCALS
const dpct::queue_ptr stream = g_syclStreams[g_main_device][0];
const size_t nb11 = src1->nb[1];
const size_t nb1 = dst->nb[1];
const int32_t id = ((int32_t *)dst->op_params)[0];
const int32_t n_as = src0->ne[2];
const int64_t n_as = ne02;
const int64_t n_ids = ids->ne[0];
std::vector<char> ids_host(ggml_nbytes(ids));
const char *ids_dev = (const char *)ids->data;
const char * ids_dev = (const char *) ids->data;
SYCL_CHECK(CHECK_TRY_ERROR(
stream->memcpy(ids_host.data(), ids_dev, ggml_nbytes(ids))));
@@ -15514,24 +15618,40 @@ static void ggml_sycl_mul_mat_id(const ggml_tensor *src0,
src0_row.ne[2] = 1;
src0_row.ne[3] = 1;
src0_row.nb[3] = src0->nb[2];
src0_row.nb[3] = nb02;
if (src1->ne[1] == 1) {
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
const int32_t row_id =
*(const int32_t *)(ids_host.data() + i01 * ids->nb[1] +
id * ids->nb[0]);
src1_row.ne[1] = 1;
src1_row.ne[2] = 1;
src1_row.ne[3] = 1;
src1_row.nb[2] = nb11;
src1_row.nb[3] = nb11;
GGML_ASSERT(row_id >= 0 && row_id < n_as);
dst_row.ne[1] = 1;
dst_row.ne[2] = 1;
dst_row.ne[3] = 1;
dst_row.nb[2] = nb1;
dst_row.nb[3] = nb1;
if (ne12 == 1) {
for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
for (int64_t id = 0; id < n_ids; id++) {
const int32_t i02 = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
GGML_ASSERT(i02 >= 0 && i02 < n_as);
const int64_t i11 = id % ne11;
const int64_t i12 = iid1;
const int64_t i1 = id;
const int64_t i2 = i12;
src0_row_extra.data_device[g_main_device] =
src0_original + row_id * src0->nb[2];
src0_original + i02*nb02;
src1_row_extra.data_device[g_main_device] =
src1_original + i01 * src1->nb[1];
src1_original + + i11*nb11 + i12*nb12;
dst_row_extra.data_device[g_main_device] =
dst_original + i01 * dst->nb[1];
dst_original + i1*nb1 + i2*nb2;
ggml_sycl_mul_mat(&src0_row, &src1_row, &dst_row);
}
}
} else {
sycl_pool_alloc<char> src1_contiguous(sizeof(float)*ggml_nelements(src1));
@@ -15540,64 +15660,98 @@ static void ggml_sycl_mul_mat_id(const ggml_tensor *src0,
src1_row_extra.data_device[g_main_device] = src1_contiguous.get();
dst_row_extra.data_device[g_main_device] = dst_contiguous.get();
for (int32_t row_id = 0; row_id < n_as; ++row_id) {
for (int64_t i02 = 0; i02 < n_as; i02++) {
int64_t num_src1_rows = 0;
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
for (int64_t id = 0; id < n_ids; id++) {
const int32_t row_id_i = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
if (row_id_i != row_id) {
continue;
GGML_ASSERT(row_id_i >= 0 && row_id_i < n_as);
if (row_id_i != i02) {
continue;
}
num_src1_rows++;
}
GGML_ASSERT(row_id >= 0 && row_id < n_as);
SYCL_CHECK(CHECK_TRY_ERROR(
stream->memcpy(src1_contiguous.get() + num_src1_rows * nb11,
src1_original + i01 * nb11, nb11)));
num_src1_rows++;
}
if (num_src1_rows == 0) {
continue;
}
src0_row_extra.data_device[g_main_device] =
src0_original + row_id * src0->nb[2];
sycl_pool_alloc<int> dev_cur_src1_row(1);
sycl_pool_alloc<mmid_row_mapping> dev_row_mapping(num_src1_rows);
SYCL_CHECK(CHECK_TRY_ERROR(
stream->memset(dev_cur_src1_row.get(), 0, sizeof(int))));
{
sycl::range<3> block_dims(1, 1, std::min((unsigned int)ne10, 768u));
sycl::range<3> grid_dims(1, n_ids, ids->ne[1]);
stream->submit([&](sycl::handler &cgh) {
sycl::local_accessor<int, 0> src1_row_acc(cgh);
char *__restrict src1_contiguous_get =
src1_contiguous.get();
int *__restrict dev_cur_src1_row_get =
dev_cur_src1_row.get();
mmid_row_mapping *__restrict dev_row_mapping_get =
dev_row_mapping.get();
size_t ids_nb_ct6 = ids->nb[1];
size_t ids_nb_ct7 = ids->nb[0];
cgh.parallel_for(
sycl::nd_range<3>(grid_dims * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) {
k_copy_src1_to_contiguous(
src1_original, src1_contiguous_get,
dev_cur_src1_row_get,
dev_row_mapping_get, ids_dev, i02,
ids_nb_ct6, ids_nb_ct7, ne11, ne10, nb11, nb12,
item_ct1, src1_row_acc);
});
});
}
src0_row_extra.data_device[g_main_device] = src0_original + i02*nb02;
GGML_ASSERT(nb11 == sizeof(float)*ne10);
GGML_ASSERT(nb1 == sizeof(float)*ne0);
src1_row.ne[1] = num_src1_rows;
dst_row.ne[1] = num_src1_rows;
src1_row.nb[1] = nb11;
src1_row.nb[2] = num_src1_rows*nb11;
src1_row.nb[3] = num_src1_rows*nb11;
dst_row.ne[1] = num_src1_rows;
dst_row.nb[1] = nb1;
dst_row.nb[2] = num_src1_rows*nb1;
dst_row.nb[3] = num_src1_rows*nb1;
ggml_sycl_mul_mat(&src0_row, &src1_row, &dst_row);
num_src1_rows = 0;
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
{
sycl::range<3> block_dims(1, 1, std::min((unsigned int)ne0, 768u));
sycl::range<3> grid_dims(1, 1, num_src1_rows);
stream->submit([&](sycl::handler &cgh) {
const char *__restrict dst_contiguous_get =
dst_contiguous.get();
const mmid_row_mapping *__restrict dev_row_mapping_get =
dev_row_mapping.get();
if (row_id_i != row_id) {
continue;
}
GGML_ASSERT(row_id >= 0 && row_id < n_as);
SYCL_CHECK(CHECK_TRY_ERROR(stream->memcpy(
dst_original + i01 * nb1,
dst_contiguous.get() + num_src1_rows * nb1, nb1)));
num_src1_rows++;
cgh.parallel_for(
sycl::nd_range<3>(grid_dims * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) {
k_copy_dst_from_contiguous(dst_original,
dst_contiguous_get,
dev_row_mapping_get,
ne0, nb1, nb2, item_ct1);
});
});
}
}
}
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
SYCL_CHECK(CHECK_TRY_ERROR(stream->wait()));
}
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
@@ -16580,10 +16734,9 @@ GGML_CALL static const char * ggml_backend_sycl_split_buffer_get_name(ggml_backe
UNUSED(buffer);
}
// unused at the moment
//static bool ggml_backend_buffer_is_sycl_split(ggml_backend_buffer_t buffer) {
// return buffer->iface.get_name == ggml_backend_sycl_split_buffer_get_name;
//}
static bool ggml_backend_buffer_is_sycl_split(ggml_backend_buffer_t buffer) {
return buffer->iface.get_name == ggml_backend_sycl_split_buffer_get_name;
}
GGML_CALL static void ggml_backend_sycl_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_sycl_split_buffer_context * ctx = (ggml_backend_sycl_split_buffer_context *)buffer->context;

View File

@@ -6012,6 +6012,8 @@ static ggml_backend_buffer_type_i ggml_backend_vk_buffer_type_interface = {
};
GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_buffer_type(size_t dev_num) {
ggml_vk_instance_init();
#ifdef GGML_VULKAN_DEBUG
std::cerr << "ggml_backend_vk_buffer_type(" << dev_num << ")" << std::endl;
#endif

173
ggml.c
View File

@@ -60,6 +60,9 @@
typedef volatile LONG atomic_int;
typedef atomic_int atomic_bool;
typedef atomic_int atomic_flag;
#define ATOMIC_FLAG_INIT 0
static void atomic_store(atomic_int * ptr, LONG val) {
InterlockedExchange(ptr, val);
@@ -73,6 +76,12 @@ static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
return atomic_fetch_add(ptr, -(dec));
}
static atomic_bool atomic_flag_test_and_set(atomic_flag * ptr) {
return InterlockedExchange(ptr, 1);
}
static void atomic_flag_clear(atomic_flag * ptr) {
InterlockedExchange(ptr, 0);
}
typedef HANDLE pthread_t;
@@ -1567,11 +1576,11 @@ do { \
// F16 arithmetic is not supported by AVX, so we use F32 instead
#define GGML_F32Cx8 __m256
#define GGML_F32Cx8 __m256
#define GGML_F32Cx8_ZERO (__m256)__lasx_xvldi(0)
#define GGML_F32Cx8_SET1(x) (__m256)__lasx_xvreplgr2vr_w((x))
static inline __m256 __lasx_f32cx8_load(ggml_fp16_t *x) {
static inline __m256 __lasx_f32cx8_load(const ggml_fp16_t * x) {
float tmp[8];
for (int i = 0; i < 8; i++) {
@@ -1580,13 +1589,14 @@ static inline __m256 __lasx_f32cx8_load(ggml_fp16_t *x) {
return (__m256)__lasx_xvld(tmp, 0);
}
static inline void __lasx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
static inline void __lasx_f32cx8_store(ggml_fp16_t * x, __m256 y) {
float arr[8];
__lasx_xvst(y, arr, 0);
for (int i = 0; i < 8; i++)
for (int i = 0; i < 8; i++) {
x[i] = GGML_FP32_TO_FP16(arr[i]);
}
}
#define GGML_F32Cx8_LOAD(x) __lasx_f32cx8_load(x)
#define GGML_F32Cx8_STORE(x, y) __lasx_f32cx8_store(x, y)
@@ -1662,7 +1672,7 @@ static inline void __lasx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
#define GGML_F16_STEP 32
#define GGML_F16_EPR 4
static inline __m128 __lsx_f16x4_load(ggml_fp16_t *x) {
static inline __m128 __lsx_f16x4_load(const ggml_fp16_t * x) {
float tmp[4];
tmp[0] = GGML_FP16_TO_FP32(x[0]);
@@ -1673,7 +1683,7 @@ static inline __m128 __lsx_f16x4_load(ggml_fp16_t *x) {
return __lsx_vld(tmp, 0);
}
static inline void __lsx_f16x4_store(ggml_fp16_t *x, __m128 y) {
static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) {
float arr[4];
__lsx_vst(y, arr, 0);
@@ -2306,32 +2316,27 @@ inline static __m512 ggml_v_expf(__m512 x) {
const __m512 r = _mm512_set1_ps(0x1.8p23f);
const __m512 z = _mm512_fmadd_ps(x, _mm512_set1_ps(0x1.715476p+0f), r);
const __m512 n = _mm512_sub_ps(z, r);
const __m512 b = _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f),
_mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x));
const __m512i e = _mm512_slli_epi32(_mm512_castps_si512(z), 23);
const __m512 k = _mm512_castsi512_ps(_mm512_add_epi32(e, _mm512_castps_si512(_mm512_set1_ps(1))));
const __mmask16 c = _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(126), _CMP_GT_OQ);
const __m512 u = _mm512_mul_ps(b, b);
const __m512 j = _mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b,
_mm512_set1_ps(0x1.573e2ep-5f)), u,
_mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b,
_mm512_set1_ps(0x1.fffdb6p-2f))),
u, _mm512_mul_ps(_mm512_set1_ps(0x1.ffffecp-1f), b));
if (_mm512_kortestz(c, c))
return _mm512_fmadd_ps(j, k, k);
const __m512i g = _mm512_and_si512(
_mm512_movm_epi32(_mm512_cmp_ps_mask(n, _mm512_setzero_ps(), _CMP_LE_OQ)),
_mm512_set1_epi32(0x82000000u));
const __m512 s1 =
_mm512_castsi512_ps(_mm512_add_epi32(g, _mm512_set1_epi32(0x7f000000u)));
const __m512 s2 = _mm512_castsi512_ps(_mm512_sub_epi32(e, g));
const __m512 b =
_mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f),
_mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x));
const __mmask16 d =
_mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(192), _CMP_GT_OQ);
return _mm512_mask_blend_ps(
d, _mm512_mask_blend_ps(
c, _mm512_fmadd_ps(k, j, k),
_mm512_mul_ps(_mm512_fmadd_ps(s2, j, s2), s1)),
_mm512_mul_ps(s1, s1));
const __m512 u = _mm512_mul_ps(b, b);
const __m512 j = _mm512_fmadd_ps(
_mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b,
_mm512_set1_ps(0x1.573e2ep-5f)),
u,
_mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b,
_mm512_set1_ps(0x1.fffdb6p-2f))),
u,
_mm512_fmadd_ps(_mm512_set1_ps(0x1.ffffecp-1f), b, _mm512_set1_ps(1.0F)));
const __m512 res = _mm512_scalef_ps(j, n);
if (_mm512_kortestz(d, d))
return res;
const __m512 zero = _mm512_setzero_ps();
const __m512 alt = _mm512_mask_blend_ps(
_mm512_cmp_ps_mask(n, zero, _CMP_LE_OQ), _mm512_set1_ps(INFINITY), zero);
return _mm512_mask_blend_ps(d, res, alt);
}
// computes silu x/(1+exp(-x)) in single precision vector
@@ -2883,24 +2888,20 @@ struct ggml_state {
// global state
static struct ggml_state g_state;
static atomic_int g_state_barrier = 0;
static atomic_flag g_state_critical = ATOMIC_FLAG_INIT;
// barrier via spin lock
inline static void ggml_critical_section_start(void) {
int processing = atomic_fetch_add(&g_state_barrier, 1);
while (processing > 0) {
// wait for other threads to finish
atomic_fetch_sub(&g_state_barrier, 1);
sched_yield(); // TODO: reconsider this
processing = atomic_fetch_add(&g_state_barrier, 1);
while (atomic_flag_test_and_set(&g_state_critical)) {
// spin
sched_yield();
}
}
// TODO: make this somehow automatically executed
// some sort of "sentry" mechanism
inline static void ggml_critical_section_end(void) {
atomic_fetch_sub(&g_state_barrier, 1);
atomic_flag_clear(&g_state_critical);
}
#if defined(__gnu_linux__)
@@ -3216,7 +3217,11 @@ GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
}
static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
GGML_CALL bool ggml_is_contiguous_0(const struct ggml_tensor * tensor) {
return ggml_is_contiguous(tensor);
}
GGML_CALL bool ggml_is_contiguous_1(const struct ggml_tensor * tensor) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return
@@ -3225,6 +3230,14 @@ static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * te
tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
}
GGML_CALL bool ggml_is_contiguous_2(const struct ggml_tensor * tensor) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return
tensor->nb[0] == ggml_type_size(tensor->type) &&
tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
}
GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
@@ -6392,6 +6405,16 @@ struct ggml_tensor * ggml_rope_custom_inplace(
);
}
struct ggml_tensor * ggml_rope_xpos_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int n_dims,
float base,
bool down) {
return ggml_rope_impl(ctx, a, b, NULL, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
}
// ggml_rope_back
struct ggml_tensor * ggml_rope_back(
@@ -11012,7 +11035,7 @@ static void ggml_compute_forward_concat_f32(
static void ggml_compute_forward_concat(
const struct ggml_compute_params * params,
struct ggml_tensor* dst) {
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
@@ -11405,8 +11428,8 @@ static void ggml_compute_forward_gelu_f32(
const struct ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
GGML_ASSERT(ggml_is_contiguous_1(src0));
GGML_ASSERT(ggml_is_contiguous_1(dst));
GGML_ASSERT(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
@@ -11468,8 +11491,8 @@ static void ggml_compute_forward_gelu_quick_f32(
const struct ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
GGML_ASSERT(ggml_is_contiguous_1(src0));
GGML_ASSERT(ggml_is_contiguous_1(dst));
GGML_ASSERT(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
@@ -11531,8 +11554,8 @@ static void ggml_compute_forward_silu_f32(
const struct ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
GGML_ASSERT(ggml_is_contiguous_1(src0));
GGML_ASSERT(ggml_is_contiguous_1(dst));
GGML_ASSERT(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
@@ -11643,9 +11666,9 @@ static void ggml_compute_forward_silu_back_f32(
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * grad = dst->src[1];
GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
GGML_ASSERT(ggml_is_contiguous_1(grad));
GGML_ASSERT(ggml_is_contiguous_1(src0));
GGML_ASSERT(ggml_is_contiguous_1(dst));
GGML_ASSERT(ggml_are_same_shape(src0, dst));
GGML_ASSERT(ggml_are_same_shape(src0, grad));
@@ -14343,7 +14366,7 @@ static void ggml_compute_forward_rope_f32(
int ir = 0;
const float theta_scale = powf(freq_base, -2.0f/n_dims);
const float inv_ndims = -1.f/n_dims;
float corr_dims[2];
ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
@@ -14392,7 +14415,7 @@ static void ggml_compute_forward_rope_f32(
const float cos_block_theta = cosf(block_theta);
const float sin_block_theta = sinf(block_theta) * sin_sign;
theta_base *= theta_scale;
theta_base *= theta_scale;
block_theta *= theta_scale;
const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
@@ -14427,29 +14450,22 @@ static void ggml_compute_forward_rope_f32(
dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
}
} else {
// TODO: this might be wrong for ne0 != n_dims - need double check
// it seems we have to rope just the first n_dims elements and do nothing with the rest
// ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
theta_base *= freq_scale;
// ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
for (int64_t ic = 0; ic < ne0; ic += 2) {
if (ic < n_dims) {
const int64_t ib = 0;
const int64_t i0 = ic/2;
// simplified from `(ib * n_dims + ic) * inv_ndims`
float cur_rot = inv_ndims * ic - ib;
float freq_factor = freq_factors ? freq_factors[ic/2] : 1.0f;
const float freq_factor = freq_factors ? freq_factors[i0] : 1.0f;
float cos_theta, sin_theta;
rope_yarn(
theta_base/freq_factor, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
theta_base/freq_factor, freq_scale, corr_dims, ic, ext_factor, attn_factor,
&cos_theta, &sin_theta
);
sin_theta *= sin_sign;
sin_theta *= sin_sign;
theta_base *= theta_scale;
const int64_t i0 = ib*n_dims + ic/2;
const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
@@ -14528,7 +14544,7 @@ static void ggml_compute_forward_rope_f16(
int ir = 0;
const float theta_scale = powf(freq_base, -2.0f/n_dims);
const float inv_ndims = -1.f/n_dims;
float corr_dims[2];
ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
@@ -14577,7 +14593,7 @@ static void ggml_compute_forward_rope_f16(
const float cos_block_theta = cosf(block_theta);
const float sin_block_theta = sinf(block_theta) * sin_sign;
theta_base *= theta_scale;
theta_base *= theta_scale;
block_theta *= theta_scale;
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
@@ -14608,29 +14624,22 @@ static void ggml_compute_forward_rope_f16(
dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
}
} else {
// TODO: this might be wrong for ne0 != n_dims - need double check
// it seems we have to rope just the first n_dims elements and do nothing with the rest
// ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
theta_base *= freq_scale;
// ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
for (int64_t ic = 0; ic < ne0; ic += 2) {
if (ic < n_dims) {
const int64_t ib = 0;
const int64_t i0 = ic/2;
// simplified from `(ib * n_dims + ic) * inv_ndims`
float cur_rot = inv_ndims * ic - ib;
float freq_factor = freq_factors ? freq_factors[ic/2] : 1.0f;
const float freq_factor = freq_factors ? freq_factors[i0] : 1.0f;
float cos_theta, sin_theta;
rope_yarn(
theta_base/freq_factor, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
theta_base/freq_factor, freq_scale, corr_dims, ic, ext_factor, attn_factor,
&cos_theta, &sin_theta
);
sin_theta *= sin_sign;
sin_theta *= sin_sign;
theta_base *= theta_scale;
const int64_t i0 = ib*n_dims + ic/2;
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
@@ -22857,6 +22866,14 @@ int ggml_cpu_has_sycl(void) {
#endif
}
int ggml_cpu_has_rpc(void) {
#if defined(GGML_USE_RPC)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_gpublas(void) {
return ggml_cpu_has_cuda() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
ggml_cpu_has_sycl();

15
ggml.h
View File

@@ -756,7 +756,6 @@ extern "C" {
GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
GGML_API GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor);
GGML_API GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor);
GGML_API GGML_CALL bool ggml_is_permuted (const struct ggml_tensor * tensor);
GGML_API GGML_CALL bool ggml_is_empty (const struct ggml_tensor * tensor);
GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor);
@@ -765,6 +764,11 @@ extern "C" {
GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
GGML_API GGML_CALL bool ggml_is_contiguous (const struct ggml_tensor * tensor);
GGML_API GGML_CALL bool ggml_is_contiguous_0(const struct ggml_tensor * tensor); // same as ggml_is_contiguous()
GGML_API GGML_CALL bool ggml_is_contiguous_1(const struct ggml_tensor * tensor); // contiguous for dims >= 1
GGML_API GGML_CALL bool ggml_is_contiguous_2(const struct ggml_tensor * tensor); // contiguous for dims >= 2
GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1);
GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
@@ -1548,6 +1552,14 @@ extern "C" {
float beta_slow),
"use ggml_rope_ext_inplace instead");
struct ggml_tensor * ggml_rope_xpos_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int n_dims,
float base,
bool down);
// compute correction dims for YaRN RoPE scaling
GGML_CALL void ggml_rope_yarn_corr_dims(
int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]);
@@ -2420,6 +2432,7 @@ extern "C" {
GGML_API int ggml_cpu_has_sse3 (void);
GGML_API int ggml_cpu_has_ssse3 (void);
GGML_API int ggml_cpu_has_sycl (void);
GGML_API int ggml_cpu_has_rpc (void);
GGML_API int ggml_cpu_has_vsx (void);
GGML_API int ggml_cpu_has_matmul_int8(void);

View File

@@ -2670,14 +2670,12 @@ void main() {
const uint i = row*p.ncols + ib*p.ndims + ic/2;
const uint i2 = row/p.p_delta_rows;
const float cur_rot = p.inv_ndims * ic - ib;
const int pos = data_b[i2];
const float freq_factor = p.has_freq_facs != 0 ? data_freq_factors[ic/2] : 1.0f;
const float theta_base = pos*p.freq_scale*pow(p.theta_scale, col/2.0f) / freq_factor;
float cos_theta, sin_theta;
rope_yarn(theta_base, uint(cur_rot), cos_theta, sin_theta);
rope_yarn(theta_base, ic, cos_theta, sin_theta);
const float x0 = float(data_a[i + 0]);
const float x1 = float(data_a[i + p.ndims/2]);

View File

@@ -33,17 +33,21 @@ class Keys:
FILE_TYPE = "general.file_type"
class LLM:
VOCAB_SIZE = "{arch}.vocab_size"
CONTEXT_LENGTH = "{arch}.context_length"
EMBEDDING_LENGTH = "{arch}.embedding_length"
BLOCK_COUNT = "{arch}.block_count"
FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
EXPERT_COUNT = "{arch}.expert_count"
EXPERT_USED_COUNT = "{arch}.expert_used_count"
POOLING_TYPE = "{arch}.pooling_type"
LOGIT_SCALE = "{arch}.logit_scale"
VOCAB_SIZE = "{arch}.vocab_size"
CONTEXT_LENGTH = "{arch}.context_length"
EMBEDDING_LENGTH = "{arch}.embedding_length"
BLOCK_COUNT = "{arch}.block_count"
LEADING_DENSE_BLOCK_COUNT = "{arch}.leading_dense_block_count"
FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
EXPERT_FEED_FORWARD_LENGTH = "{arch}.expert_feed_forward_length"
USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
EXPERT_COUNT = "{arch}.expert_count"
EXPERT_USED_COUNT = "{arch}.expert_used_count"
EXPERT_SHARED_COUNT = "{arch}.expert_shared_count"
EXPERT_WEIGHTS_SCALE = "{arch}.expert_weights_scale"
POOLING_TYPE = "{arch}.pooling_type"
LOGIT_SCALE = "{arch}.logit_scale"
class Attention:
HEAD_COUNT = "{arch}.attention.head_count"
@@ -55,6 +59,8 @@ class Keys:
LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon"
LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
CAUSAL = "{arch}.attention.causal"
Q_LORA_RANK = "{arch}.attention.q_lora_rank"
KV_LORA_RANK = "{arch}.attention.kv_lora_rank"
class Rope:
DIMENSION_COUNT = "{arch}.rope.dimension_count"
@@ -64,6 +70,7 @@ class Keys:
SCALING_ATTN_FACTOR = "{arch}.rope.scaling.attn_factor"
SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length"
SCALING_FINETUNED = "{arch}.rope.scaling.finetuned"
SCALING_YARN_LOG_MUL = "{arch}.rope.scaling.yarn_log_multiplier"
class SSM:
CONV_KERNEL = "{arch}.ssm.conv_kernel"
@@ -140,6 +147,7 @@ class MODEL_ARCH(IntEnum):
DBRX = auto()
OLMO = auto()
ARCTIC = auto()
DEEPSEEK2 = auto()
class MODEL_TENSOR(IntEnum):
@@ -185,6 +193,12 @@ class MODEL_TENSOR(IntEnum):
SSM_A = auto()
SSM_D = auto()
SSM_OUT = auto()
ATTN_Q_A = auto()
ATTN_Q_B = auto()
ATTN_KV_A_MQA = auto()
ATTN_KV_B = auto()
ATTN_Q_A_NORM = auto()
ATTN_KV_A_NORM = auto()
MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
@@ -221,6 +235,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.DBRX: "dbrx",
MODEL_ARCH.OLMO: "olmo",
MODEL_ARCH.ARCTIC: "arctic",
MODEL_ARCH.DEEPSEEK2: "deepseek2",
}
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
@@ -266,6 +281,12 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.SSM_A: "blk.{bid}.ssm_a",
MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d",
MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out",
MODEL_TENSOR.ATTN_Q_A: "blk.{bid}.attn_q_a",
MODEL_TENSOR.ATTN_Q_B: "blk.{bid}.attn_q_b",
MODEL_TENSOR.ATTN_KV_A_MQA: "blk.{bid}.attn_kv_a_mqa",
MODEL_TENSOR.ATTN_KV_B: "blk.{bid}.attn_kv_b",
MODEL_TENSOR.ATTN_Q_A_NORM: "blk.{bid}.attn_q_a_norm",
MODEL_TENSOR.ATTN_KV_A_NORM: "blk.{bid}.attn_kv_a_norm",
}
MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
@@ -757,6 +778,33 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
],
MODEL_ARCH.DEEPSEEK2: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_Q_A,
MODEL_TENSOR.ATTN_Q_B,
MODEL_TENSOR.ATTN_KV_A_MQA,
MODEL_TENSOR.ATTN_KV_B,
MODEL_TENSOR.ATTN_Q_A_NORM,
MODEL_TENSOR.ATTN_KV_A_NORM,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_ROT_EMBD,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
MODEL_TENSOR.FFN_GATE_SHEXP,
MODEL_TENSOR.FFN_DOWN_SHEXP,
MODEL_TENSOR.FFN_UP_SHEXP,
],
# TODO
}
@@ -790,6 +838,10 @@ MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_ROT_EMBD,
],
MODEL_ARCH.DEEPSEEK2: [
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_ROT_EMBD,
],
}
#

View File

@@ -374,9 +374,15 @@ class GGUFWriter:
def add_block_count(self, length: int) -> None:
self.add_uint32(Keys.LLM.BLOCK_COUNT.format(arch=self.arch), length)
def add_leading_dense_block_count(self, length: int) -> None:
self.add_uint32(Keys.LLM.LEADING_DENSE_BLOCK_COUNT.format(arch=self.arch), length)
def add_feed_forward_length(self, length: int) -> None:
self.add_uint32(Keys.LLM.FEED_FORWARD_LENGTH.format(arch=self.arch), length)
def add_expert_feed_forward_length(self, length: int) -> None:
self.add_uint32(Keys.LLM.EXPERT_FEED_FORWARD_LENGTH.format(arch=self.arch), length)
def add_parallel_residual(self, use: bool) -> None:
self.add_bool(Keys.LLM.USE_PARALLEL_RESIDUAL.format(arch=self.arch), use)
@@ -407,6 +413,12 @@ class GGUFWriter:
def add_expert_used_count(self, count: int) -> None:
self.add_uint32(Keys.LLM.EXPERT_USED_COUNT.format(arch=self.arch), count)
def add_expert_shared_count(self, count: int) -> None:
self.add_uint32(Keys.LLM.EXPERT_SHARED_COUNT.format(arch=self.arch), count)
def add_expert_weights_scale(self, value: float) -> None:
self.add_float32(Keys.LLM.EXPERT_WEIGHTS_SCALE.format(arch=self.arch), value)
def add_layer_norm_eps(self, value: float) -> None:
self.add_float32(Keys.Attention.LAYERNORM_EPS.format(arch=self.arch), value)
@@ -416,6 +428,12 @@ class GGUFWriter:
def add_causal_attention(self, value: bool) -> None:
self.add_bool(Keys.Attention.CAUSAL.format(arch=self.arch), value)
def add_q_lora_rank(self, length: int) -> None:
self.add_uint32(Keys.Attention.Q_LORA_RANK.format(arch=self.arch), length)
def add_kv_lora_rank(self, length: int) -> None:
self.add_uint32(Keys.Attention.KV_LORA_RANK.format(arch=self.arch), length)
def add_pooling_type(self, value: PoolingType) -> None:
self.add_uint32(Keys.LLM.POOLING_TYPE.format(arch=self.arch), value.value)
@@ -440,6 +458,9 @@ class GGUFWriter:
def add_rope_scaling_finetuned(self, value: bool) -> None:
self.add_bool(Keys.Rope.SCALING_FINETUNED.format(arch=self.arch), value)
def add_rope_scaling_yarn_log_mul(self, value: float) -> None:
self.add_float32(Keys.Rope.SCALING_YARN_LOG_MUL.format(arch=self.arch), value)
def add_ssm_conv_kernel(self, value: int) -> None:
self.add_uint32(Keys.SSM.CONV_KERNEL.format(arch=self.arch), value)

View File

@@ -256,6 +256,7 @@ class TensorNameMap:
MODEL_TENSOR.FFN_UP_SHEXP: (
"model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
"model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek2
),
# AWQ-activation gate
@@ -285,6 +286,7 @@ class TensorNameMap:
MODEL_TENSOR.FFN_GATE_SHEXP: (
"model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
"model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek2
),
# Feed-forward down
@@ -320,6 +322,7 @@ class TensorNameMap:
MODEL_TENSOR.FFN_DOWN_SHEXP: (
"model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
"model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek2
),
MODEL_TENSOR.ATTN_Q_NORM: (
@@ -383,6 +386,30 @@ class TensorNameMap:
"model.layers.{bid}.out_proj",
"backbone.layers.{bid}.mixer.out_proj",
),
MODEL_TENSOR.ATTN_Q_A: (
"model.layers.{bid}.self_attn.q_a_proj", # deepseek2
),
MODEL_TENSOR.ATTN_Q_B: (
"model.layers.{bid}.self_attn.q_b_proj", # deepseek2
),
MODEL_TENSOR.ATTN_KV_A_MQA: (
"model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
),
MODEL_TENSOR.ATTN_KV_B: (
"model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
),
MODEL_TENSOR.ATTN_Q_A_NORM: (
"model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
),
MODEL_TENSOR.ATTN_KV_A_NORM: (
"model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
),
}
# architecture-specific block mappings
@@ -415,7 +442,7 @@ class TensorNameMap:
if tensor not in MODEL_TENSORS[arch]:
continue
# TODO: make this configurable
n_experts = 128
n_experts = 160
for xid in range(n_experts):
tensor_name = TENSOR_NAMES[tensor].format(bid = bid, xid = xid)
self.mapping[tensor_name] = (tensor, tensor_name)

View File

@@ -1,10 +1,15 @@
from __future__ import annotations
import re
import logging
import json
import os
from pathlib import Path
from typing import Any, Callable, Sequence, Mapping, Iterable
from typing import Any, Callable, Sequence, Mapping, Iterable, Protocol, ClassVar, runtime_checkable
from sentencepiece import SentencePieceProcessor
import gguf
from .gguf_writer import GGUFWriter
@@ -163,3 +168,298 @@ class SpecialVocab:
for typ in self.special_token_types:
self._set_special_token(typ, config.get(f'{typ}_token_id'))
return True
@runtime_checkable
class BaseVocab(Protocol):
tokenizer_model: ClassVar[str]
name: ClassVar[str]
@runtime_checkable
class Vocab(BaseVocab, Protocol):
vocab_size: int
added_tokens_dict: dict[str, int]
added_tokens_list: list[str]
fname_tokenizer: Path
def __init__(self, base_path: Path): ...
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: ...
class NoVocab(BaseVocab):
tokenizer_model = "no_vocab"
name = "no_vocab"
def __repr__(self) -> str:
return "<NoVocab for a model without integrated vocabulary>"
class BpeVocab(Vocab):
tokenizer_model = "gpt2"
name = "bpe"
def __init__(self, base_path: Path):
added_tokens: dict[str, int] = {}
if (fname_tokenizer := base_path / 'vocab.json').exists():
# "slow" tokenizer
with open(fname_tokenizer, encoding="utf-8") as f:
self.vocab = json.load(f)
try:
# FIXME: Verify that added tokens here _cannot_ overlap with the main vocab.
with open(base_path / 'added_tokens.json', encoding="utf-8") as f:
added_tokens = json.load(f)
except FileNotFoundError:
pass
else:
# "fast" tokenizer
fname_tokenizer = base_path / 'tokenizer.json'
# if this fails, FileNotFoundError propagates to caller
with open(fname_tokenizer, encoding="utf-8") as f:
tokenizer_json = json.load(f)
tokenizer_model: dict[str, Any] = tokenizer_json['model']
if (
tokenizer_model['type'] != 'BPE' or tokenizer_model.get('byte_fallback', False)
or tokenizer_json['decoder']['type'] != 'ByteLevel'
):
raise FileNotFoundError('Cannot find GPT-2 BPE tokenizer')
self.vocab = tokenizer_model["vocab"]
if (added := tokenizer_json.get('added_tokens')) is not None:
# Added tokens here can be duplicates of the main vocabulary.
added_tokens = {item['content']: item['id']
for item in added
if item['content'] not in self.vocab}
vocab_size = len(self.vocab)
expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
actual_ids = sorted(added_tokens.values())
if expected_ids != actual_ids:
expected_end_id = vocab_size + len(actual_ids) - 1
raise ValueError(f"Expected the {len(actual_ids)} added token ID(s) to be sequential in the range "
f"{vocab_size} - {expected_end_id}; got {actual_ids}")
items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1])
self.added_tokens_dict = added_tokens
self.added_tokens_list = [text for (text, idx) in items]
self.vocab_size_base = vocab_size
self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
self.fname_tokenizer = fname_tokenizer
def bpe_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
reverse_vocab = {id: encoded_tok for encoded_tok, id in self.vocab.items()}
for i, _ in enumerate(self.vocab):
yield reverse_vocab[i], 0.0, gguf.TokenType.NORMAL
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
for text in self.added_tokens_list:
score = -1000.0
yield text.encode("utf-8"), score, gguf.TokenType.CONTROL
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
yield from self.bpe_tokens()
yield from self.added_tokens()
def __repr__(self) -> str:
return f"<BpeVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
class SentencePieceVocab(Vocab):
tokenizer_model = "llama"
name = "spm"
def __init__(self, base_path: Path):
added_tokens: dict[str, int] = {}
if (fname_tokenizer := base_path / 'tokenizer.model').exists():
# normal location
try:
with open(base_path / 'added_tokens.json', encoding="utf-8") as f:
added_tokens = json.load(f)
except FileNotFoundError:
pass
elif not (fname_tokenizer := base_path.parent / 'tokenizer.model').exists():
# not found in alternate location either
raise FileNotFoundError('Cannot find tokenizer.model')
self.sentencepiece_tokenizer = SentencePieceProcessor()
self.sentencepiece_tokenizer.LoadFromFile(str(fname_tokenizer))
vocab_size = self.sentencepiece_tokenizer.vocab_size()
new_tokens = {id: piece for piece, id in added_tokens.items() if id >= vocab_size}
expected_new_ids = list(range(vocab_size, vocab_size + len(new_tokens)))
actual_new_ids = sorted(new_tokens.keys())
if expected_new_ids != actual_new_ids:
raise ValueError(f"Expected new token IDs {expected_new_ids} to be sequential; got {actual_new_ids}")
# Token pieces that were added to the base vocabulary.
self.added_tokens_dict = added_tokens
self.added_tokens_list = [new_tokens[id] for id in actual_new_ids]
self.vocab_size_base = vocab_size
self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
self.fname_tokenizer = fname_tokenizer
def sentencepiece_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
tokenizer = self.sentencepiece_tokenizer
for i in range(tokenizer.vocab_size()):
piece = tokenizer.IdToPiece(i)
text = piece.encode("utf-8")
score: float = tokenizer.GetScore(i)
toktype = gguf.TokenType.NORMAL
if tokenizer.IsUnknown(i):
toktype = gguf.TokenType.UNKNOWN
if tokenizer.IsControl(i):
toktype = gguf.TokenType.CONTROL
# NOTE: I think added_tokens are user defined.
# ref: https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto
# if tokenizer.is_user_defined(i): toktype = gguf.TokenType.USER_DEFINED
if tokenizer.IsUnused(i):
toktype = gguf.TokenType.UNUSED
if tokenizer.IsByte(i):
toktype = gguf.TokenType.BYTE
yield text, score, toktype
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
for text in self.added_tokens_list:
score = -1000.0
yield text.encode("utf-8"), score, gguf.TokenType.USER_DEFINED
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
yield from self.sentencepiece_tokens()
yield from self.added_tokens()
def __repr__(self) -> str:
return f"<SentencePieceVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
class LlamaHfVocab(Vocab):
tokenizer_model = "llama"
name = "hfft"
def __init__(self, base_path: Path):
fname_tokenizer = base_path / 'tokenizer.json'
# if this fails, FileNotFoundError propagates to caller
with open(fname_tokenizer, encoding='utf-8') as f:
tokenizer_json = json.load(f)
# pre-check so we know if we need transformers
tokenizer_model: dict[str, Any] = tokenizer_json['model']
is_llama3 = (
tokenizer_model['type'] == 'BPE' and tokenizer_model.get('ignore_merges', False)
and not tokenizer_model.get('byte_fallback', True)
)
if is_llama3:
raise TypeError('Llama 3 must be converted with BpeVocab')
if not is_llama3 and (
tokenizer_model['type'] != 'BPE' or not tokenizer_model.get('byte_fallback', False)
or tokenizer_json['decoder']['type'] != 'Sequence'
):
raise FileNotFoundError('Cannot find Llama BPE tokenizer')
try:
from transformers import AutoTokenizer
except ImportError as e:
raise ImportError(
"To use LlamaHfVocab, please install the `transformers` package. "
"You can install it with `pip install transformers`."
) from e
# Allow the tokenizer to default to slow or fast versions.
# Explicitly set tokenizer to use local paths.
self.tokenizer = AutoTokenizer.from_pretrained(
base_path,
cache_dir=base_path,
local_files_only=True,
)
assert self.tokenizer.is_fast # assume tokenizer.json is used
# Initialize lists and dictionaries for added tokens
self.added_tokens_list = []
self.added_tokens_dict = dict()
self.added_tokens_ids = set()
# Process added tokens
for tok, tokidx in sorted(
self.tokenizer.get_added_vocab().items(), key=lambda x: x[1]
):
# Only consider added tokens that are not in the base vocabulary
if tokidx >= self.tokenizer.vocab_size:
self.added_tokens_list.append(tok)
self.added_tokens_dict[tok] = tokidx
self.added_tokens_ids.add(tokidx)
# Store special tokens and their IDs
self.specials = {
tok: self.tokenizer.get_vocab()[tok]
for tok in self.tokenizer.all_special_tokens
}
self.special_ids = set(self.tokenizer.all_special_ids)
# Set vocabulary sizes
self.vocab_size_base = self.tokenizer.vocab_size
self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
self.fname_tokenizer = fname_tokenizer
def hf_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
reverse_vocab = {
id: encoded_tok for encoded_tok, id in self.tokenizer.get_vocab().items()
}
for token_id in range(self.vocab_size_base):
# Skip processing added tokens here
if token_id in self.added_tokens_ids:
continue
# Convert token text to bytes
token_text = reverse_vocab[token_id].encode("utf-8")
# Yield token text, score, and type
yield token_text, self.get_token_score(token_id), self.get_token_type(
token_id, token_text, self.special_ids # Reuse already stored special IDs
)
def get_token_type(self, token_id: int, token_text: bytes, special_ids: set[int]) -> gguf.TokenType:
# Special case for byte tokens
if re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
return gguf.TokenType.BYTE
# Determine token type based on whether it's a special token
return gguf.TokenType.CONTROL if token_id in special_ids else gguf.TokenType.NORMAL
def get_token_score(self, token_id: int) -> float:
# Placeholder for actual logic to determine the token's score
# This needs to be implemented based on specific requirements
return -1000.0 # Default score
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
for text in self.added_tokens_list:
if text in self.specials:
toktype = self.get_token_type(self.specials[text], b'', self.special_ids)
score = self.get_token_score(self.specials[text])
else:
toktype = gguf.TokenType.USER_DEFINED
score = -1000.0
yield text.encode("utf-8"), score, toktype
def has_newline_token(self):
return "<0x0A>" in self.tokenizer.vocab or "\n" in self.tokenizer.vocab
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
yield from self.hf_tokens()
yield from self.added_tokens()
def __repr__(self) -> str:
return f"<LlamaHfVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"

View File

@@ -144,6 +144,7 @@ def main() -> None:
parser.add_argument("--general-description", type=str, help="The models general.description", metavar='"Description ..."')
parser.add_argument("--chat-template", type=str, help="Chat template string (or JSON string containing templates)", metavar='"{% ... %} ..."')
parser.add_argument("--chat-template-config", type=Path, help="Config file containing chat template(s)", metavar='tokenizer_config.json')
parser.add_argument("--pre-tokenizer", type=str, help="The models tokenizer.ggml.pre", metavar='"pre tokenizer"')
parser.add_argument("--remove-metadata", action="append", type=str, help="Remove metadata (by key name) from output model", metavar='general.url')
parser.add_argument("--special-token", action="append", type=str, help="Special token by value", nargs=2, metavar=(' | '.join(token_names.keys()), '"<token>"'))
parser.add_argument("--special-token-by-id", action="append", type=str, help="Special token by id", nargs=2, metavar=(' | '.join(token_names.keys()), '0'))
@@ -172,6 +173,9 @@ def main() -> None:
if template:
new_metadata[gguf.Keys.Tokenizer.CHAT_TEMPLATE] = MetadataDetails(gguf.GGUFValueType.STRING, template)
if args.pre_tokenizer:
new_metadata[gguf.Keys.Tokenizer.PRE] = MetadataDetails(gguf.GGUFValueType.STRING, args.pre_tokenizer)
if remove_metadata:
logger.warning('*** Warning *** Warning *** Warning **')
logger.warning('* Most metadata is required for a fully functional GGUF file,')

885
llama.cpp

File diff suppressed because it is too large Load Diff

View File

@@ -424,8 +424,8 @@ extern "C" {
LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx);
LLAMA_API enum llama_vocab_type llama_vocab_type (const struct llama_model * model);
LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
LLAMA_API enum llama_vocab_type llama_vocab_type (const struct llama_model * model);
LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);

View File

@@ -4,7 +4,7 @@
# Package versions must stay compatible across all top-level python scripts.
#
-r ./requirements/requirements-convert.txt
-r ./requirements/requirements-convert-legacy-llama.txt
-r ./requirements/requirements-convert-hf-to-gguf.txt
-r ./requirements/requirements-convert-hf-to-gguf-update.txt

View File

@@ -1,2 +1,2 @@
-r ./requirements-convert.txt
-r ./requirements-convert-legacy-llama.txt
torch~=2.1.1

View File

@@ -1,2 +1,2 @@
-r ./requirements-convert.txt
-r ./requirements-convert-legacy-llama.txt
torch~=2.1.1

View File

@@ -1 +1 @@
-r ./requirements-convert.txt
-r ./requirements-convert-legacy-llama.txt

View File

@@ -166,7 +166,7 @@ if (( do_cleanup )); then
rm -rf -- "$all_venv"
fi
check_convert_script convert.py
check_convert_script examples/convert-legacy-llama.py
for py in convert-*.py; do
# skip convert-hf-to-gguf-update.py
# TODO: the check is failing for some reason:

View File

@@ -3,20 +3,20 @@
set -e
# LLaMA v1
python3 convert.py ../llama1/7B --outfile models/llama-7b/ggml-model-f16.gguf --outtype f16
python3 convert.py ../llama1/13B --outfile models/llama-13b/ggml-model-f16.gguf --outtype f16
python3 convert.py ../llama1/30B --outfile models/llama-30b/ggml-model-f16.gguf --outtype f16
python3 convert.py ../llama1/65B --outfile models/llama-65b/ggml-model-f16.gguf --outtype f16
python3 examples/convert-legacy-llama.py ../llama1/7B --outfile models/llama-7b/ggml-model-f16.gguf --outtype f16
python3 examples/convert-legacy-llama.py ../llama1/13B --outfile models/llama-13b/ggml-model-f16.gguf --outtype f16
python3 examples/convert-legacy-llama.py ../llama1/30B --outfile models/llama-30b/ggml-model-f16.gguf --outtype f16
python3 examples/convert-legacy-llama.py ../llama1/65B --outfile models/llama-65b/ggml-model-f16.gguf --outtype f16
# LLaMA v2
python3 convert.py ../llama2/llama-2-7b --outfile models/llama-7b-v2/ggml-model-f16.gguf --outtype f16
python3 convert.py ../llama2/llama-2-13b --outfile models/llama-13b-v2/ggml-model-f16.gguf --outtype f16
python3 convert.py ../llama2/llama-2-70b --outfile models/llama-70b-v2/ggml-model-f16.gguf --outtype f16
python3 examples/convert-legacy-llama.py ../llama2/llama-2-7b --outfile models/llama-7b-v2/ggml-model-f16.gguf --outtype f16
python3 examples/convert-legacy-llama.py ../llama2/llama-2-13b --outfile models/llama-13b-v2/ggml-model-f16.gguf --outtype f16
python3 examples/convert-legacy-llama.py ../llama2/llama-2-70b --outfile models/llama-70b-v2/ggml-model-f16.gguf --outtype f16
# Code Llama
python3 convert.py ../codellama/CodeLlama-7b/ --outfile models/codellama-7b/ggml-model-f16.gguf --outtype f16
python3 convert.py ../codellama/CodeLlama-13b/ --outfile models/codellama-13b/ggml-model-f16.gguf --outtype f16
python3 convert.py ../codellama/CodeLlama-34b/ --outfile models/codellama-34b/ggml-model-f16.gguf --outtype f16
python3 examples/convert-legacy-llama.py ../codellama/CodeLlama-7b/ --outfile models/codellama-7b/ggml-model-f16.gguf --outtype f16
python3 examples/convert-legacy-llama.py ../codellama/CodeLlama-13b/ --outfile models/codellama-13b/ggml-model-f16.gguf --outtype f16
python3 examples/convert-legacy-llama.py ../codellama/CodeLlama-34b/ --outfile models/codellama-34b/ggml-model-f16.gguf --outtype f16
# Falcon
python3 convert-falcon-hf-to-gguf.py ../falcon/falcon-7b 1

View File

@@ -75,7 +75,7 @@ if [ "$1" -eq "1" ]; then
cd /workspace/llama.cpp
python3 convert.py ./models/tinyllama-1b --outfile ./models/tinyllama-1b/ggml-model-f16.gguf --outtype f16
python3 examples/convert-legacy-llama.py ./models/tinyllama-1b --outfile ./models/tinyllama-1b/ggml-model-f16.gguf --outtype f16
./quantize ./models/tinyllama-1b/ggml-model-f16.gguf ./models/tinyllama-1b/ggml-model-q4_0.gguf q4_0
./quantize ./models/tinyllama-1b/ggml-model-f16.gguf ./models/tinyllama-1b/ggml-model-q4_k.gguf q4_k
@@ -90,7 +90,7 @@ if [ "$1" -eq "2" ]; then
cd /workspace/llama.cpp
python3 convert.py ./models/codellama-7b --outfile ./models/codellama-7b/ggml-model-f16.gguf --outtype f16
python3 examples/convert-legacy-llama.py ./models/codellama-7b --outfile ./models/codellama-7b/ggml-model-f16.gguf --outtype f16
./quantize ./models/codellama-7b/ggml-model-f16.gguf ./models/codellama-7b/ggml-model-q4_0.gguf q4_0
./quantize ./models/codellama-7b/ggml-model-f16.gguf ./models/codellama-7b/ggml-model-q4_k.gguf q4_k
@@ -105,7 +105,7 @@ if [ "$1" -eq "3" ]; then
cd /workspace/llama.cpp
python3 convert.py ./models/codellama-13b --outfile ./models/codellama-13b/ggml-model-f16.gguf --outtype f16
python3 examples/convert-legacy-llama.py ./models/codellama-13b --outfile ./models/codellama-13b/ggml-model-f16.gguf --outtype f16
./quantize ./models/codellama-13b/ggml-model-f16.gguf ./models/codellama-13b/ggml-model-q4_0.gguf q4_0
./quantize ./models/codellama-13b/ggml-model-f16.gguf ./models/codellama-13b/ggml-model-q4_k.gguf q4_k
@@ -120,7 +120,7 @@ if [ "$1" -eq "4" ]; then
cd /workspace/llama.cpp
python3 convert.py ./models/codellama-34b --outfile ./models/codellama-34b/ggml-model-f16.gguf --outtype f16
python3 examples/convert-legacy-llama.py ./models/codellama-34b --outfile ./models/codellama-34b/ggml-model-f16.gguf --outtype f16
./quantize ./models/codellama-34b/ggml-model-f16.gguf ./models/codellama-34b/ggml-model-q4_0.gguf q4_0
./quantize ./models/codellama-34b/ggml-model-f16.gguf ./models/codellama-34b/ggml-model-q4_k.gguf q4_k
@@ -135,7 +135,7 @@ if [ "$1" -eq "5" ]; then
cd /workspace/llama.cpp
python3 convert.py ./models/codellama-7b-instruct --outfile ./models/codellama-7b-instruct/ggml-model-f16.gguf --outtype f16
python3 examples/convert-legacy-llama.py ./models/codellama-7b-instruct --outfile ./models/codellama-7b-instruct/ggml-model-f16.gguf --outtype f16
./quantize ./models/codellama-7b-instruct/ggml-model-f16.gguf ./models/codellama-7b-instruct/ggml-model-q4_0.gguf q4_0
./quantize ./models/codellama-7b-instruct/ggml-model-f16.gguf ./models/codellama-7b-instruct/ggml-model-q4_k.gguf q4_k
@@ -150,7 +150,7 @@ if [ "$1" -eq "6" ]; then
cd /workspace/llama.cpp
python3 convert.py ./models/codellama-13b-instruct --outfile ./models/codellama-13b-instruct/ggml-model-f16.gguf --outtype f16
python3 examples/convert-legacy-llama.py ./models/codellama-13b-instruct --outfile ./models/codellama-13b-instruct/ggml-model-f16.gguf --outtype f16
./quantize ./models/codellama-13b-instruct/ggml-model-f16.gguf ./models/codellama-13b-instruct/ggml-model-q4_0.gguf q4_0
./quantize ./models/codellama-13b-instruct/ggml-model-f16.gguf ./models/codellama-13b-instruct/ggml-model-q4_k.gguf q4_k
@@ -165,7 +165,7 @@ if [ "$1" -eq "7" ]; then
cd /workspace/llama.cpp
python3 convert.py ./models/codellama-34b-instruct --outfile ./models/codellama-34b-instruct/ggml-model-f16.gguf --outtype f16
python3 examples/convert-legacy-llama.py ./models/codellama-34b-instruct --outfile ./models/codellama-34b-instruct/ggml-model-f16.gguf --outtype f16
./quantize ./models/codellama-34b-instruct/ggml-model-f16.gguf ./models/codellama-34b-instruct/ggml-model-q4_0.gguf q4_0
./quantize ./models/codellama-34b-instruct/ggml-model-f16.gguf ./models/codellama-34b-instruct/ggml-model-q4_k.gguf q4_k

View File

@@ -106,8 +106,6 @@ if [ -f $SRC_LLAMA/ggml-src.patch ]; then
# src/ggml-kompute.h -> ggml-kompute.h
# src/ggml-metal.h -> ggml-metal.h
# src/ggml-metal.m -> ggml-metal.m
# src/ggml-mpi.h -> ggml-mpi.h
# src/ggml-mpi.c -> ggml-mpi.c
# src/ggml-opencl.cpp -> ggml-opencl.cpp
# src/ggml-opencl.h -> ggml-opencl.h
# src/ggml-quants.c -> ggml-quants.c
@@ -145,8 +143,6 @@ if [ -f $SRC_LLAMA/ggml-src.patch ]; then
-e 's/src\/ggml-kompute\.h/ggml-kompute.h/g' \
-e 's/src\/ggml-metal\.h/ggml-metal.h/g' \
-e 's/src\/ggml-metal\.m/ggml-metal.m/g' \
-e 's/src\/ggml-mpi\.h/ggml-mpi.h/g' \
-e 's/src\/ggml-mpi\.c/ggml-mpi.c/g' \
-e 's/src\/ggml-opencl\.cpp/ggml-opencl.cpp/g' \
-e 's/src\/ggml-opencl\.h/ggml-opencl.h/g' \
-e 's/src\/ggml-quants\.c/ggml-quants.c/g' \

View File

@@ -1 +1 @@
126d34985705a5a2222723c145cb4e125ac689f3
2aae01fd9b8f9399f343cf18f46f38996ef52e2c

View File

@@ -14,8 +14,6 @@ cp -rpv ../ggml/src/ggml-kompute.h ./ggml-kompute.h
cp -rpv ../ggml/src/ggml-metal.h ./ggml-metal.h
cp -rpv ../ggml/src/ggml-metal.m ./ggml-metal.m
cp -rpv ../ggml/src/ggml-metal.metal ./ggml-metal.metal
cp -rpv ../ggml/src/ggml-mpi.h ./ggml-mpi.h
cp -rpv ../ggml/src/ggml-mpi.c ./ggml-mpi.c
cp -rpv ../ggml/src/ggml-opencl.cpp ./ggml-opencl.cpp
cp -rpv ../ggml/src/ggml-opencl.h ./ggml-opencl.h
cp -rpv ../ggml/src/ggml-quants.c ./ggml-quants.c

View File

@@ -129,8 +129,11 @@ llama_target_and_test(test-rope.cpp)
llama_target_and_test(test-model-load-cancel.cpp LABEL "model")
llama_target_and_test(test-autorelease.cpp LABEL "model")
llama_target_and_test(test-json-schema-to-grammar.cpp WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}/..)
target_include_directories(test-json-schema-to-grammar PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/../examples/server)
# TODO: disabled on loongarch64 because the ggml-ci node lacks Python 3.8
if (NOT ${CMAKE_SYSTEM_PROCESSOR} MATCHES "loongarch64")
llama_target_and_test(test-json-schema-to-grammar.cpp WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}/..)
target_include_directories(test-json-schema-to-grammar PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/../examples/server)
endif()
# dummy executable - not installed
get_filename_component(TEST_TARGET test-c.c NAME_WE)

View File

@@ -1138,26 +1138,37 @@ struct test_soft_max : public test_case {
// GGML_OP_ROPE
struct test_rope : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
const std::array<int64_t, 4> ne_a;
int n_dims;
int mode;
int n_ctx;
float fs; // freq_scale
float ef; // ext_factor
float af; // attn_factor
bool ff;
int v; // view (1 : non-contiguous a)
std::string vars() override {
return VARS_TO_STR6(type, ne, n_dims, mode, n_ctx, ff);
return VARS_TO_STR10(type, ne_a, n_dims, mode, n_ctx, fs, ef, af, ff, v);
}
test_rope(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {10, 10, 10, 1},
int n_dims = 10, int mode = 0, int n_ctx = 512, bool ff = false)
: type(type), ne(ne), n_dims(n_dims), mode(mode), n_ctx(n_ctx), ff(ff) {}
std::array<int64_t, 4> ne_a = {10, 10, 10, 1},
int n_dims = 10, int mode = 0, int n_ctx = 512, float fs = 1.0f, float ef = 0.0f, float af = 0.0f, bool ff = false, int v = 0)
: type(type), ne_a(ne_a), n_dims(n_dims), mode(mode), n_ctx(n_ctx), fs(fs), ef(ef), af(af), ff(ff), v(v) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne[2]);
ggml_tensor * a;
if (v & 1) {
auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
a = ggml_new_tensor(ctx, type, 4, ne.data());
a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
} else {
a = ggml_new_tensor(ctx, type, 4, ne_a.data());
}
ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2]);
ggml_tensor * freq = ff ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_dims/2) : nullptr;
ggml_tensor * out = ggml_rope_ext(ctx, a, pos, freq, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f);
ggml_tensor * out = ggml_rope_ext(ctx, a, pos, freq, n_dims, mode, n_ctx, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
return out;
}
@@ -1165,11 +1176,11 @@ struct test_rope : public test_case {
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
if (t->type == GGML_TYPE_I32) {
// pos
std::vector<int> data(ne[2]);
for (int i = 0; i < ne[2]; i++) {
std::vector<int> data(ne_a[2]);
for (int i = 0; i < ne_a[2]; i++) {
data[i] = rand() % n_ctx;
}
ggml_backend_tensor_set(t, data.data(), 0, ne[2] * sizeof(int));
ggml_backend_tensor_set(t, data.data(), 0, ne_a[2] * sizeof(int));
} else {
if (t->ne[0] == n_dims/2) {
// frequency factors in the range [0.9f, 1.1f]
@@ -1262,22 +1273,37 @@ struct test_concat : public test_case {
const std::array<int64_t, 4> ne_a;
const int64_t ne_b_d;
const int dim;
const int v; // view (1 << 0: non-cont a, 1 << 1: non-cont b)
std::string vars() override {
return VARS_TO_STR4(type, ne_a, ne_b_d, dim);
return VARS_TO_STR5(type, ne_a, ne_b_d, dim, v);
}
test_concat(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne_a = {10, 10, 10, 10},
int64_t ne_b_d = 10,
int dim = 2)
: type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim) {}
int dim = 2, int v = 0)
: type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim), v(v) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
auto ne_b = ne_a;
ne_b[dim] = ne_b_d;
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
ggml_tensor * a;
if (v & 1) {
auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
a = ggml_new_tensor(ctx, type, 4, ne.data());
a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
} else {
a = ggml_new_tensor(ctx, type, 4, ne_a.data());
}
ggml_tensor * b;
if (v & 2) {
auto ne = ne_b; ne[0] *= 3; ne[1] *= 2; ne[2] *= 4;
b = ggml_new_tensor(ctx, type, 4, ne.data());
b = ggml_view_4d(ctx, b, ne_b[0], ne_b[1], ne_b[2], ne_b[3], b->nb[1], b->nb[2], b->nb[3], 0);
} else {
b = ggml_new_tensor(ctx, type, 4, ne_b.data());
}
ggml_tensor * out = ggml_concat(ctx, a, b, dim);
return out;
}
@@ -2198,26 +2224,46 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, 0.1f, 0.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, 0.1f, 8.0f));
for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
// TODO: ff not supported yet for !neox
test_cases.emplace_back(new test_rope(type, {128, 32, 10, 1}, 128, 0, 512, false)); // llama 7B
test_cases.emplace_back(new test_rope(type, {128, 40, 10, 1}, 128, 0, 512, false)); // llama 13B
test_cases.emplace_back(new test_rope(type, {128, 52, 10, 1}, 128, 0, 512, false)); // llama 30B
test_cases.emplace_back(new test_rope(type, {128, 64, 10, 1}, 128, 0, 512, false)); // llama 65B
{
bool all = true;
for (bool ff : {false, true}) { // freq_factors
test_cases.emplace_back(new test_rope(type, { 64, 1, 10, 1}, 64, 2, 512, ff)); // neox (falcon 7B)
test_cases.emplace_back(new test_rope(type, { 64, 71, 10, 1}, 64, 2, 512, ff)); // neox (falcon 7B)
test_cases.emplace_back(new test_rope(type, { 64, 8, 10, 1}, 64, 2, 512, ff)); // neox (falcon 40B)
test_cases.emplace_back(new test_rope(type, { 64, 128, 10, 1}, 64, 2, 512, ff)); // neox (falcon 40B)
test_cases.emplace_back(new test_rope(type, { 80, 32, 10, 1}, 20, 2, 512, ff)); // neox (stablelm)
test_cases.emplace_back(new test_rope(type, { 80, 32, 10, 1}, 32, 2, 512, ff)); // neox (phi-2)
for (float v : { 0, 1 }) {
for (float fs : { 1.0f, 1.4245f }) {
for (float ef : { 0.0f, 0.7465f }) {
for (float af : { 1.0f, 1.4245f }) {
for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
// TODO: ff not supported yet for !neox
test_cases.emplace_back(new test_rope(type, {128, 32, 10, 1}, 128, 0, 512, fs, ef, af, false, v)); // llama 7B
if (all) {
test_cases.emplace_back(new test_rope(type, {128, 40, 10, 1}, 128, 0, 512, fs, ef, af, false, v)); // llama 13B
test_cases.emplace_back(new test_rope(type, {128, 52, 10, 1}, 128, 0, 512, fs, ef, af, false, v)); // llama 30B
test_cases.emplace_back(new test_rope(type, {128, 64, 10, 1}, 128, 0, 512, fs, ef, af, false, v)); // llama 65B
}
for (bool ff : {false, true}) { // freq_factors
if (all) {
test_cases.emplace_back(new test_rope(type, { 64, 1, 10, 1}, 64, 2, 512, fs, ef, af, ff, v)); // neox (falcon 7B)
test_cases.emplace_back(new test_rope(type, { 64, 71, 10, 1}, 64, 2, 512, fs, ef, af, ff, v)); // neox (falcon 7B)
test_cases.emplace_back(new test_rope(type, { 64, 8, 10, 1}, 64, 2, 512, fs, ef, af, ff, v)); // neox (falcon 40B)
test_cases.emplace_back(new test_rope(type, { 80, 32, 10, 1}, 20, 2, 512, fs, ef, af, ff, v)); // neox (stablelm)
test_cases.emplace_back(new test_rope(type, { 80, 32, 10, 1}, 32, 2, 512, fs, ef, af, ff, v)); // neox (phi-2)
}
test_cases.emplace_back(new test_rope(type, { 64, 128, 10, 1}, 64, 2, 512, fs, ef, af, ff, v)); // neox (falcon 40B)
}
}
all = false;
}
}
}
}
}
for (int dim : { 0, 1, 2, 3, }) {
test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim));
test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim));
for (int v : { 0, 1, 2, 3 }) {
for (int dim : { 0, 1, 2, 3, }) {
test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim, v));
test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim, v));
}
}
for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {

View File

@@ -28,6 +28,8 @@ printf "Tokenizing using (cpp) llama.cpp ...\n"
cat /tmp/test-tokenizer-0-$name-py.log | grep "tokenized in"
cat /tmp/test-tokenizer-0-$name-cpp.log | grep "tokenized in"
set +e
diff $input.tok $input.tokcpp > /dev/null 2>&1
if [ $? -eq 0 ]; then

View File

@@ -167,8 +167,10 @@ def generator_random_special_tokens(tokenizer, iterations=100) -> Iterator[str]:
for m in range(iterations):
rand.seed(m)
words = rand.choices(special_tokens, k=500)
if tokenizer.add_bos_token: # skip spam warning of double BOS
while words and words[0] == tokenizer.bos_token:
if words[0] == tokenizer.bos_token: # skip spam warning of double BOS
while len(words) > 1 and words[1] == tokenizer.bos_token: # leave one starting BOS
words.pop(0)
if tokenizer.add_bos_token: # drop all starting BOS
words.pop(0)
yield "".join(words)
@@ -293,15 +295,17 @@ def main(argv: list[str] = None):
model = LibLlamaModel(LibLlama(), args.vocab_file, mparams=dict(vocab_only=True), cparams=dict(n_ctx=4096))
tokenizer = AutoTokenizer.from_pretrained(args.dir_tokenizer)
tokenizer.add_bos_token = getattr(tokenizer, "add_bos_token", True)
tokenizer.add_eos_token = getattr(tokenizer, "add_eos_token", False)
def func_tokenize1(text: str):
return model.tokenize(text, add_special=True, parse_special=True)
def func_tokenize2(text: str):
return tokenizer.encode(text, add_special_tokens=True)
ids = func_tokenize2("a")
assert 1 <= len(ids) <= 3
add_bos_token = len(ids) > 1 and tokenizer.bos_token_id == ids[0]
tokenizer.add_bos_token = getattr(tokenizer, "add_bos_token", add_bos_token)
vocab = list(sorted(tokenizer.batch_decode(list(tokenizer.get_vocab().values()), skip_special_tokens=True)))
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_custom_text())
test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_custom_text_edge_cases())
@@ -324,8 +328,10 @@ if __name__ == "__main__":
# import os
# tokenizers = os.listdir(path_tokenizers)
tokenizers = [
"llama-spm", # SPM
"phi-3", # SPM
# "llama-spm", # SPM
# "phi-3", # SPM
"jina-v2-en", # WPM
"bert-bge", # WPM
]
for tokenizer in tokenizers: