* server : remove multitask from server_task
* refactor completions handler
* fix embeddings
* use res_ok everywhere
* small change for handle_slots_action
* use unordered_set everywhere
* (try) fix test
* no more "mutable" lambda
* Apply suggestions from code review
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* use deque
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* style: format with nixfmt/rfc101-style
* build(nix): Package gguf-py
* build(nix): Refactor to new scope for gguf-py
* build(nix): Exclude gguf-py from devShells
* build(nix): Refactor gguf-py derivation to take in exact deps
* build(nix): Enable pytestCheckHook and pythonImportsCheck for gguf-py
* build(python): Package python scripts with pyproject.toml
* chore: Cleanup
* dev(nix): Break up python/C devShells
* build(python): Relax pytorch version constraint
Nix has an older version
* chore: Move cmake to nativeBuildInputs for devShell
* fmt: Reconcile formatting with rebase
* style: nix fmt
* cleanup: Remove unncessary __init__.py
* chore: Suggestions from review
- Filter out non-source files from llama-scripts flake derivation
- Clean up unused closure
- Remove scripts devShell
* revert: Bad changes
* dev: Simplify devShells, restore the -extra devShell
* build(nix): Add pyyaml for gguf-py
* chore: Remove some unused bindings
* dev: Add tiktoken to -extra devShells
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:light-rocm]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:server-rocm]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Has been cancelled
Nix aarch64 builds / nix-build-aarch64 (push) Has been cancelled
Nix CI / nix-eval (macos-latest) (push) Has been cancelled
Nix CI / nix-eval (ubuntu-latest) (push) Has been cancelled
Nix CI / nix-build (macos-latest) (push) Has been cancelled
Nix CI / nix-build (ubuntu-latest) (push) Has been cancelled
flake8 Lint / Lint (push) Has been cancelled
update-flake-lock / lockfile (push) Has been cancelled
The CUDA nix build broke when we updated nixpkgs in
8cd1bcfd3f. As far as I can tell all
that happened is cudaPackages.autoAddOpenGLRunpathHook got moved to
pkgs.autoAddDriverRunpath. This commit fixes it.
* Introduce ggml_compute_threadpool
- OpenMP functional: check
- Vanilla ggml functional: Check
- ggml w/threadpool functional: Check
- OpenMP no regression: No glaring problems
- Vanilla ggml no regression: No glaring problems
- ggml w/threadpool no regression: No glaring problems
* Minor fixes
* fixed use after release bug
* fixed a harmless race condition
* Fix Android bulid issue
* fix more race conditions
* fix deadlock for cases where cgraph.n_nodes == 1
and fix --poll case
* threadpool: use cpu_get_num_math to set the default number of threadpool threads
This way we avoid using E-Cores and Hyperthreaded siblings.
* bench: create fresh threadpool for each test
For benchmarking it's better to start a fresh pool for each test with the exact number of threads
needed for that test. Having larger pools is suboptimal (causes more load, etc).
* atomics: always use stdatomics with clang and use relaxed memory order when polling in ggml_barrier
This also removes sched_yield() calls from ggml_barrier() to match OpenMP behavior.
* threadpool: make polling the default to match openmp behavior
All command line args now allow for setting poll to 0 (false).
* threadpool: do not wakeup threads in already paused threadpool
* fix potential race condition in check_for_work
* threadpool: do not create two threadpools if their params are identical
* threadpool: reduce pause/resume/wakeup overhead in common cases
We now start threadpool in paused state only if we have two.
The resume is now implicit (ie new work) which allows for reduced locking and context-switch overhead.
* threadpool: add support for hybrid polling
poll params (--poll, ...) now specify "polling level", i.e. how aggresively we poll before waiting on cond.var.
poll=0 means no polling, 1 means poll for 128K rounds then wait, 2 for 256K rounds, ...
The default value of 50 (ie 50x128K rounds) seems like a decent default across modern platforms.
We can tune this further as things evolve.
* threadpool: reduce the number of barrier required
New work is now indicated with an atomic counter that is incremented for
each new graph that needs to be computed.
This removes the need for extra barrier for clearing the "new_work" and
removes the special case for trivial graphs.
* threadpool: remove special-casing for disposable threadpools
With the efficient hybrid polling there is no need to make disposable pools any different.
This simplifies the overall logic and reduces branching.
Include n_threads in debug print for disposable threadpool.
Declare pause and stop flags as atomic_bool
This doesn't actually generate any memory barriers and simply informs
the thread sanitizer that these flags can be written & read by different
threads without locking.
* threadpool: do not clear barrier counters between graphs computes (fixes race with small graphs)
This fixes the race condition with very small graphs where the main thread happens to
start a new graph while the workers are just about to exit from barriers.
* threadpool: use relaxed order for chunk sync
Full memory barrier is an overkill for this since each thread works on different chunk
* threadpool: remove abort_callback from threadpool state
* threadpool: better naming for thread/cpumask releated functions
* threadpool: consistent use of int type for n_threads params
* threadpool: add support for ggml_threadpool_params_default/init
Also removes the need for explicit mask_specified param.
all-zero cpumask means use default (usually inherited) cpu affinity mask.
* threadpool: move typedef into ggml.h
* threadpool: fix apply_priority() function name
* threadpool: fix swift wrapper errors due to n_threads int type cleanup
* threadpool: enable --cpu-mask and other threadpool related options only if threadpool is enabled
* threadpool: replace checks for compute_thread ret code with proper status check
* threadpool: simplify threadpool init logic and fix main thread affinity application
Most of the init code is now exactly the same between threadpool and openmp.
* threadpool: update threadpool resume/pause function names
* threadpool: enable openmp by default for now
* threadpool: don't forget to free workers state when omp is enabled
* threadpool: avoid updating process priority on the platforms that do not require it
On Windows we need to change overall process priority class in order to set thread priorities,
but on Linux, Mac, etc we do not need to touch the overall process settings.
* threadpool: update calling thread prio and affinity only at start/resume
This avoids extra syscalls for each graph_compute()
* llama-bench: turn threadpool params into vectors, add output headers, etc
* llama-bench: add support for cool off between tests --delay
This helps for long running tests on platforms that are thermally limited (phones, laptops, etc).
--delay (disabled by default) introduces the sleep for N seconds before starting each test.
* threadpool: move process priority setting into the apps (bench and cli)
This avoids changing the overall process priority on Windows for the apps
that use ggml/llama.cpp directy.
* threadpool: move all pause/resume logic into ggml
* threadpool: futher api cleanup and prep for future refactoring
All threadpool related functions and structs use ggml_threadpool prefix.
* threadpool: minor indent fixes
* threadpool: improve setprioty error message
* Update examples/llama-bench/llama-bench.cpp
Co-authored-by: slaren <slarengh@gmail.com>
* threadpool: fix indent in set_threadpool call
* use int32_t for n_thread type in public llama.cpp API
* threadpool: use _new and _free instead of _create and _release
* fix two more public APIs to use int32_t for n_threads
* build: set _GNU_SOURCE for Adroid
---------
Co-authored-by: Max Krasnyansky <quic_maxk@quicinc.com>
Co-authored-by: fmz <quic_fzaghlou@quic.com>
Co-authored-by: Max Krasnyansky <max.krasnyansky@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
This change fixes a bug where replacing text in a very long string could
cause llama.cpp to hang indefinitely. This is because the algorithm used
was quadratic, due to memmove() when s.replace() is called in a loop. It
seems most search results and LLM responses actually provide the O(n**2)
algorithm, which is a great tragedy. Using a builder string fixes things
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:light-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:server-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
* llama : advanced batch splits
This includes equal-sequence-length batch splits which are useful
to simplify recurrent model operators.
* llama : always make recurrent state slots contiguous
* ggml : simplify mamba operators
* llama : fix integer signedness mixing
* llama : logits_all has priority over batch->logits
Otherwise, the server embeddings tests failed.
This was likely an existing problem but was only detected here
because of an additional assertion.
* llama : apply suggestions
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : fix t5 segfault
* llama : fix Mamba session save and restore
* llama : minor cosmetic changes
* llama : rename llama_reorder_outputs to llama_output_reorder
Also move it closer to llama_output_reserve.
* llama : fix pooled embeddings when using batches with equal_seqs
* minor : add struct members for clarity
ggml-ci
* llama : fix T5 segfault again
* llama : fix Mamba pooled embeddings with multiple sequences
Until the pooled embeddings are refactored to allow splitting
across ubatches for causal embeddings,
recurrent models can only process a single sequence per ubatch
when calculating pooled embeddings.
* llama : add llama_model_is_recurrent to simplify figuring that out
This will make it easier to more cleanly support RWKV-v6 and Mamba-2.
* llama : fix simple splits when the batch contains embeddings
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : std::move llm_bigram_bpe from work_queue
This commit updates the retrieval of llm_bigram_bpe objects from
work_queue.top() by using std::move.
The motivation for this is to avoid the copying of the std::string
`text` member of the llm_bigram_bpe struct.
* squash! llama : std::move llm_bigram_bpe from work_queue
Introduced a MovablePriorityQueue class to allow moving elements
out of the priority queue for llm_bigram_bpe.
* squash! llama : std::move llm_bigram_bpe from work_queue
Rename MovablePriorityQueue to lama_priority_queue.
* squash! llama : std::move llm_bigram_bpe from work_queue
Rename lama_priority_queue -> llama_priority_queue.
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:light-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:server-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
* llava: Add ACC OP for GPU acceleration to the Vulkan backend in the LLAVA CLIP model.
- The CLIP model now prioritizes the Vulkan backend over the CPU when vulkan available.
- A GGML_OP_ACC shader has been added.
- The encoding performance of the CLIP model improved from 4.2s on the CPU to 0.9s on the GPU.
Signed-off-by: Changyeon Kim <cyzero.kim@samsung.com>
* fix-up coding style.
Signed-off-by: Changyeon Kim <cyzero.kim@samsung.com>
* Fix-up the missing initial parameter to resolve the compilation warning.
Signed-off-by: Changyeon Kim <cyzero.kim@samsung.com>
* [fix] Add missing parameters.
Signed-off-by: Changyeon Kim <cyzero.kim@samsung.com>
* [fix] Use nb1 and nb2 for dst.
Signed-off-by: Changyeon Kim <cyzero.kim@samsung.com>
* Fix check results ggml_acc call
---------
Signed-off-by: Changyeon Kim <cyzero.kim@samsung.com>
Co-authored-by: 0cc4m <picard12@live.de>
* fallback mmvq to mul_mat
* mmvq in cuda path
* Update ggml/src/ggml-sycl.cpp
Co-authored-by: Alberto Cabrera Pérez <alberto.cabrera@codeplay.com>
---------
Co-authored-by: Alberto Cabrera Pérez <alberto.cabrera@codeplay.com>
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:light-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:server-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Has been cancelled
* server : refactor middleware and /health endpoint
* move "fail_on_no_slot" to /slots
* Update examples/server/server.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* fix server tests
* fix CI
* update server docs
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Add support for cpu_get_num_phsical_cores() on Windows
* fix build bug on msys2-clang64 and ucrt64
* avoid adding new function
* add new macros to avoid windows+mingw64
* Add error checking to return default value
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:light-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:server-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
* ggml : move rope type enum to ggml.h
This commit moves the `llama_rope_type` enum from `llama.h` to
`ggml.h` and changes its name to `ggml_rope_type`.
The motivation for this change is to address the TODO in `llama.h` and
use the enum in ggml.
Note: This commit does not change the `mode` parameter to be of type
`enum ggml_rope_type`. The name `mode` and its usage suggest that it
might be more generic and possibly used as a bit field for multiple
flags. Further investigation/discussion may be needed to determine
if `mode` should be restricted to RoPE types.
* squash! ggml : move rope type enum to ggml.h
This commit removes GGML_ROPE_TYPE_NONE and GGML_ROPE_TYPE_GLM from
ggml.h, and back the llama_rope_type enum.
I've kept the assert for GGML_ROPE_TYPE_GLM as I'm not sure if it is
safe to remove it yet.
* squash! ggml : move rope type enum to ggml.h
This commit removes the enum ggml_rope_type from ggml.h and replaces it
with a define (GGML_ROPE_TYPE_NEOX). This define is used in the code to
check if the mode is set to GPT-NeoX. Also the enum llama_rope_type has
been updated to reflect this change.
* squash! ggml : move rope type enum to ggml.h
This commit contains a suggestion enable the GGML_ROPE_TYPE_NEOX
macro/define to be passed to the shader compiler.
* squash! ggml : move rope type enum to ggml.h
This commit fixes the editorconfig-checker warnings.
* squash! ggml : move rope type enum to ggml.h
Update comment for ggml_rope function.
* Revert "squash! ggml : move rope type enum to ggml.h"
This reverts commit 6261222bd0.
* squash! ggml : move rope type enum to ggml.h
Add GGML_ROPE_TYPE_NEOX to rope_common.comp.
* remove extra line
---------
Co-authored-by: slaren <slarengh@gmail.com>
* readme: introduce gpustack
GPUStack is an open-source GPU cluster manager for running large
language models, which uses llama.cpp as the backend.
Signed-off-by: thxCode <thxcode0824@gmail.com>
* readme: introduce gguf-parser
GGUF Parser is a tool to review/check the GGUF file and estimate the
memory usage without downloading the whole model.
Signed-off-by: thxCode <thxcode0824@gmail.com>
---------
Signed-off-by: thxCode <thxcode0824@gmail.com>
* Optimize Vulkan backend for better CPU performance and less GPU synchronization overhead.
- Allocation overhead for the temporary std::vectors was easily detectable with a sampling profiler and simple to remove.
- ggml_vk_sync_buffer introduce a full pipeline sync which has a significant cost on the GPU side, sometimes larger than the actual kernel execution. Adding only barriers for shader read/writes and transfers seems to be sufficient looking at the code which either launches compute kernels or copies tensors.
* Fix small typo
---------
Co-authored-by: 0cc4m <picard12@live.de>
* gguf-py : add T5ENCODER model architecture
* common : call llama_decode() during warmup only if the model has decoder
* convert-hf : add T5EncoderModel
* llama : add llama_model_has_decoder() API function
* llama : split build_t5() into build_t5_encoder() and build_t5_decoder()
* llama : add support for LLM_ARCH_T5ENCODER
* llama-embedding : add support for LLAMA_POOLING_TYPE_NONE
* llama-embedding : add support for encoder-only models
---------
Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
This commit adds the `--pooling` option to the README.md file in the
`examples/embedding` directory.
The motivation for adding this options is that currently if the model
used does not specify a pooling type the embedding example will fail
with the following error message:
```console
main: error: pooling type NONE not supported
```
This commit also updates the name of the executable in the examples
section.
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
Python check requirements.txt / check-requirements (push) Has been cancelled
* gguf-py : use classes for quants
* convert_hf : simplify internal quantization type selection
* gguf-py : fix flake8 lint
* gguf-py : fix BF16 numpy view type
* gguf-py : remove LlamaFileTypeMap
Too specific to 'llama.cpp', and would be a maintenance burden
to keep up to date.
* gguf-py : add generic quantize and dequantize functions
The quant classes no longer need to be known,
only the target or the source type,
for 'quantize' and 'dequantize', respectively.
When using CMake to build with Vulkan support, compiling
vulkan-shaders-gen fails due to missing a CMakeLists.txt specification
to link vulkan-shaders-gen with the threading library, resulting in the
following error.
[5/172] Linking CXX executable bin/vulkan-shaders-gen
FAILED: bin/vulkan-shaders-gen
: && /usr/bin/c++ ggml/src/vulkan-shaders/CMakeFiles/vulkan-shaders-gen.dir/vulkan-shaders-gen.cpp.o -o bin/vulkan-shaders-gen && :
ld: error: undefined symbol: pthread_create
>>> referenced by vulkan-shaders-gen.cpp
>>> ggml/src/vulkan-shaders/CMakeFiles/vulkan-shaders-gen.dir/vulkan-shaders-gen.cpp.o:(std::__1::__libcpp_thread_create[abi:se180100](pthread**,
>>> void* (*)(void*), void*))
c++: error: linker command failed with exit code 1 (use -v to see invocation)
[6/172] Generating build details from Git
-- Found Git: /usr/local/bin/git (found version "2.45.2")
ninja: build stopped: subcommand failed.
Add the CMakeLists.txt specification to link vulkan-shaders-gen with the
threading library and fix the above error.
Fixes#8834
* Fix compilation issue in `vulkan-shaders-gen`
e31a4f6797 broke compilation on w64devkit. Including `algorithm` seems to fix that.
* Guard it under `#ifdef _WIN32`
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:light-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:server-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
* common : Changed tuple to struct (TODO fix)
Use struct `llama_init_result` to replace the previous
std::tuple<struct llama_model *, struct llama_context *>
* delete llama_init_default_params()
* delete the extra whitespace
ramalama is a repo agnostic boring CLI tool that supports pulling from
ollama, huggingface and oci registries.
Signed-off-by: Eric Curtin <ecurtin@redhat.com>
* gguf-py, llama : add constants and methods related to Llama-3.1 <|eom_id|> token
* llama : find Llama-3.1 <|eom_id|> token id during vocab loading
* llama-vocab : add Llama-3.1 <|eom_id|> token to the set of tokens stopping the generation
---------
Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
* Fix Vulkan repeat op
* Implement Vulkan concat op
* Delete old Vulkan shader generator
* Implement Vulkan im2col op
* Implement Vulkan unary gelu_quick op
* Implement Vulkan group_norm op
* Implement Vulkan timestep_embedding op
* Implement Vulkan upscale op
* Fix Vulkan vk_context tensor extra index issue
* Fix Vulkan matmul shader parameter bug
* Properly fix Vulkan matmul shader parameter bug
* Add Vulkan ADD f16 + f32 -> f16 operator support
* Implement Vulkan tanh op
* Fix Vulkan group count too large Validation error on non-Nvidia GPUs
* Throw error when too much memory is requested
* Fix another Vulkan group count too large Validation error on non-Nvidia GPUs
* Fix matmul MMQ condition
* Implement Vulkan pad op
* Fix Vulkan crash when tensor is used multiple times in a compute graph
* Add Vulkan CONCAT f16 + f16 -> f16 op
* Add Vulkan LEAKY_RELU op
This commit moves the comment for the c parameter from ggml_rope to
ggml_rope_ext. The comment is currently incorrect as ggml_rope does not
have a c parameter (freq_factors tensor).
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:light-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:server-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
* [example] batched-bench "segmentation fault"
When `llama-batched-bench` is invoked _without_ setting `-npl`, "number
of parallel prompts", it segfaults.
The segfault is caused by invoking `max_element()` on a zero-length
vector, `n_pl`
This commit addresses that by first checking to see if the number of
parallel prompts is zero, and if so sets the maximum sequence size to 1;
otherwise, sets it to the original, the result of `max_element()`.
Fixes, when running `lldb build/bin/llama-batched-bench -- -m models/Meta-Llama-3-8B.gguf`
```
* thread #1, queue = 'com.apple.main-thread', stop reason = EXC_BAD_ACCESS (code=1, address=0x0)
frame #0: 0x000000010000366c llama-batched-bench`main(argc=3, argv=0x000000016fdff268) at batched-bench.cpp:72:28
69 llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
70
71 // ensure enough sequences are available
-> 72 ctx_params.n_seq_max = *std::max_element(n_pl.begin(), n_pl.end());
```
* Update examples/batched-bench/batched-bench.cpp
Co-authored-by: compilade <git@compilade.net>
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: compilade <git@compilade.net>
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:light-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:server-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
* ggml : reading the runtime sve config of the cpu
* change to one time init to prevent performance drop
* prefix variable to avoid possible conflicts
* revert xxhash fix and add brackets
---------
Co-authored-by: domke <673751-domke@users.noreply.gitlab.com>
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:light-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:server-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python check requirements.txt / check-requirements (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
update-flake-lock / lockfile (push) Has been cancelled
* add truncate_bf16
* truncate intermediate fp32 if converting bf16 to bf16
* fix masking in __compute_fp32_to_bf16
* np.int16 no longer used
* missing cast and additional numpy 2.x fix
* ggml-impl : do not flush bf16 subnormals to zero
* ggml : add reference fp32 to bf16 conversion
The fast version is no longer equivalent for all platforms
because of the handling of subnormal values.
* gguf-py : remove flush to zero for bf16 subnormals
* gguf-py : remove float32 truncation to bf16
Rounding achieves the same thing in the cases where this was used.
* missed prototype update in merge
* merge cleanup
---------
Co-authored-by: Francis Couture-Harpin <git@compilade.net>
* Adding support for unified memory
* adding again the documentation about unified memory
* refactoring: Moved the unified memory code in the correct location.
* Fixed compilation error when using hipblas
* cleaning up the documentation
* Updating the documentation
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* adding one more case where the PR should not be enabled
---------
Co-authored-by: matteo serva <matteo.serva@gmail.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:light-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:server-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
* Fix potential race condition as pointed out by @fairydreaming in #8776
* Reference the .o rather than rebuilding every time.
* Adding in CXXFLAGS and LDFLAGS
* Removing unnecessary linker flags.
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:light-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:server-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix aarch64 builds / nix-build-aarch64 (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Has been cancelled
* gguf_writer.py: add_array() should not add to kv store if empty
* Apply suggestions from code review
I was wondering if there was a specific reason for `if val` but good to hear we can safely use `len(val == 0`
Co-authored-by: compilade <git@compilade.net>
---------
Co-authored-by: compilade <git@compilade.net>
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:light-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:server-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
In these codes, we want to retain the value that they previously held
when mask[i] is false. So we should use undisturbed. With the default
agnostic policy of rvv intrinsic, these values can be held or be
written with 1s.
Co-authored-by: carter.li <carter.li@starfivetech.com>
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:light-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:server-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
* chore: Fix compiler warnings, add help text, improve CLI options
* Add prototypes for function definitions
* Invert logic of --no-clean option to be more intuitive
* Provide a new help prompt with clear instructions
* chore : Add ignore rule for vulkan shader generator
Signed-off-by: teleprint-me <77757836+teleprint-me@users.noreply.github.com>
* Update ggml/src/vulkan-shaders/vulkan-shaders-gen.cpp
Co-authored-by: 0cc4m <picard12@live.de>
* chore : Remove void and apply C++ style empty parameters
* chore : Remove void and apply C++ style empty parameters
---------
Signed-off-by: teleprint-me <77757836+teleprint-me@users.noreply.github.com>
Co-authored-by: 0cc4m <picard12@live.de>
* llama : refactor session file management
* llama : saving and restoring state checks for overflow
The size of the buffers should now be given to the functions working
with them, otherwise a truncated file could cause out of bound reads.
* llama : stream from session file instead of copying into a big buffer
Loading session files should no longer cause a memory usage spike.
* llama : llama_state_get_size returns the actual size instead of max
This is a breaking change, but makes that function *much* easier
to keep up to date, and it also makes it reflect the behavior
of llama_state_seq_get_size.
* llama : share code between whole and seq_id-specific state saving
Both session file types now use a more similar format.
* llama : no longer store all hparams in session files
Instead, the model arch name is stored.
The layer count and the embedding dimensions of the KV cache
are still verified when loading.
Storing all the hparams is not necessary.
* llama : fix uint64_t format type
* llama : various integer type cast and format string fixes
Some platforms use "%lu" and others "%llu" for uint64_t.
Not sure how to handle that, so casting to size_t when displaying errors.
* llama : remove _context suffix for llama_data_context
* llama : fix session file loading
llama_state_get_size cannot be used to get the max size anymore.
* llama : more graceful error handling of invalid session files
* llama : remove LLAMA_MAX_RNG_STATE
It's no longer necessary to limit the size of the RNG state,
because the max size of session files is not estimated anymore.
* llama : cast seq_id in comparison with unsigned n_seq_max
Apply a loop tiling technique to the generic path, which provides
performance upside for ISAs with enough registers to take advantage
of it. Also helps the compiler optimize this path.
* Add support for float16 tensors in 1d pooling operations
* Add support for float16 input tensors in 2d pooling operations
* code cleanup
remove unnecessary casting during srow ptr initialization
---------
Co-authored-by: vanaka11 <vanaka1189@gmail.com>
This prevents invalid frees when destroying a partially initialized
vk_buffer_struct. For example, this could happen in ggml_vk_create_buffer
when running out of device memory.
Co-authored-by: Tony Wasserka <neobrain@users.noreply.github.com>
This commit removes an UNUSED macro call that is not needed as the
variable n0 is used in the code and will not produce a warning.
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
* Add llama 3.1 rope scaling factors to llama conversion and inference
This commit generates the rope factors on conversion and adds them to the resulting model as a tensor. At inference time, these factors are passed to the `ggml_rope_ext` rope oepration, improving results for context windows above 8192
* Update convert_hf_to_gguf.py
Co-authored-by: compilade <git@compilade.net>
* address comments
* address comments
* Update src/llama.cpp
Co-authored-by: compilade <git@compilade.net>
* Update convert_hf_to_gguf.py
Co-authored-by: compilade <git@compilade.net>
---------
Co-authored-by: compilade <git@compilade.net>
This commit adds a --no-warmup option for llama-cli.
The motivation for this is that it can be convenient to skip the
warmup llama_decode call when debugging.
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
`ggml_init` can fail if no unused context is found. In that case, a NULL-pointer deref will happen later in the code during a call to `ggml_set_on_alloc`.
This fixes it by bailing out if no context is found.
* Improvements for Windows with Snapdragon X
* Revert "Improvements for Windows with Snapdragon X"
This reverts commit bf21397ae5.
* Improvements for Windows with Snapdragon X
* WOA build clarifications
* WIndows on ARM build clarifications
* cmake build for Windows clarifications
* Update docs/build.md
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
---------
Co-authored-by: AndreasKunar <andreaskmsn.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
The check gating the use of `__builtin_amdgc_sdot4` specifically checks for gfx1030. This causes a severe perf regression for anything gfx103? that's not gfx1030 and not using `HSA_OVERRIDE_GFX_VERSION` (if you've built ROCm to support it). We already have a generic RDNA2 define, let's use it.
* Superflous parens in conditionals were removed.
* Unused args in function were removed.
* Replaced unused `idx` var with `_`
* Initializing file_format and format_version attributes
* Renaming constant to capitals
* Preventing redefinition of the `f` var
Signed-off-by: Jiri Podivin <jpodivin@redhat.com>
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python check requirements.txt / check-requirements (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
Nix aarch64 builds / nix-build-aarch64 (push) Has been cancelled
Changes:
- Move each example into its own function. This makes the code much
easier to read and understand.
- Make the program easy to only run one test by commenting out function
calls in main().
- Make the output easy to parse by indenting the output for each example.
- Add shebang and +x bit to make it clear it's an executable.
- Make the host configurable via --host with a default 127.0.0.1:8080.
- Make the code look in the tools list to call the registered tool,
instead of hardcoding the returned values. This makes the code more
copy-pastable.
- Add error checking, so that the program exits 1 if the LLM didn't
returned expected values. It's super useful to check for correctness.
Testing:
- Tested with Mistral-7B-Instruct-v0.3 in F16 and Q5_K_M and
Meta-Llama-3-8B-Instruct in F16 and Q5_K_M.
- I did not observe a failure even once in Mistral-7B-Instruct-v0.3.
- Llama-3 failed about a third of the time in example_concurrent: it
only returned one call instead of 3. Even for F16.
Potential follow ups:
- Do not fix the prompt encoding yet. Surprisingly it mostly works even
if the prompt encoding is not model optimized.
- Add chained answer and response.
Test only change.
* gguf-py : fix some metadata name extraction edge cases
* convert_lora : use the lora dir for the model card path
* gguf-py : more metadata edge cases fixes
Multiple finetune versions are now joined together,
and the removal of the basename annotation on trailing versions
is more robust.
* gguf-py : add more name metadata extraction tests
* convert_lora : fix default filename
The default filename was previously hardcoded.
* convert_hf : Model.fname_out can no longer be None
* gguf-py : do not use title case for naming convention
Some models use acronyms in lowercase,
which can't be title-cased like other words,
so it's best to simply use the same case
as in the original model name.
Note that the size label still has an uppercased suffix
to make it distinguishable from the context size of a finetune.
* convert_hf : fix Gemma v1 conversion
* convert_hf : allow renaming tokens, but with a warning
* convert_hf : fix Gemma v1 not setting BOS and EOS tokens
* fix continuing generating blank lines after getting EOT token or EOS token from LLM
* change variable name to is_done (variable name suggested by ggerganov)
* minor : fix trailing whitespace
* minor : add space
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Main thing is that the default output filename will take this form
{name}{parameters}{finetune}{version}{encoding}{kind}
In addition this add and remove some entries in the KV store and adds a metadata class with automatic heuristics capability to derive some values based on model card content
* No Change:
- Internal GGUF Spec
- `general.architecture`
- `general.quantization_version`
- `general.alignment`
- `general.file_type`
- General Model Details
- `general.name`
- `general.author`
- `general.version`
- `general.description`
- Licensing details
- `general.license`
- Typically represents the converted GGUF repo (Unless made from scratch)
- `general.url`
- Model Source during conversion
- `general.source.url`
* Removed:
- Model Source during conversion
- `general.source.huggingface.repository`
* Added:
- General Model Details
- `general.organization`
- `general.finetune`
- `general.basename`
- `general.quantized_by`
- `general.size_label`
- Licensing details
- `general.license.name`
- `general.license.link`
- Typically represents the converted GGUF repo (Unless made from scratch)
- `general.doi`
- `general.uuid`
- `general.repo_url`
- Model Source during conversion
- `general.source.doi`
- `general.source.uuid`
- `general.source.repo_url`
- Base Model Source
- `general.base_model.count`
- `general.base_model.{id}.name`
- `general.base_model.{id}.author`
- `general.base_model.{id}.version`
- `general.base_model.{id}.organization`
- `general.base_model.{id}.url` (Model Website/Paper)
- `general.base_model.{id}.doi`
- `general.base_model.{id}.uuid`
- `general.base_model.{id}.repo_url` (Model Source Repository (git/svn/etc...))
- Array based KV stores
- `general.tags`
- `general.languages`
- `general.datasets`
---------
Co-authored-by: compilade <git@compilade.net>
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
* [CANN] Add Ascend NPU backend
Ascend is a full-stack AI computing infrastructure for industry
applications and services based on Huawei Ascend processors and
software.
CANN (Compute Architecture of Neural Networks), developped by
Huawei, is a heterogeneous computing architecture for AI.
Co-authored-by: wangshuai09 <391746016@qq.com>
* delete trailing whitespaces
* Modify the code based on review comment
* Rename LLAMA_CANN to GGML_CANN
* Make ggml-common.h private
* add ggml_cann prefix for acl funcs
* Add logging for CANN backend
* Delete Trailing whitespace
---------
Co-authored-by: wangshuai09 <391746016@qq.com>
* Update clib.json to point to Cyan4973 original xxhash
Convinced Cyan4973 to add clib.json directly to his repo, so can now point the clib package directly to him now. Previously pointed to my fork with the clib.json package metadata
https://github.com/Cyan4973/xxHash/pull/954
* gguf-hash: readme update to point to Cyan4973 xxHash repo [no ci]
The --help option on export-lora isn't accepted as valid. The help still gets displayed by default, but the script exits with an error message and nonzero status.
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python check requirements.txt / check-requirements (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
* convert_hf : faster lazy safetensors
This makes '--dry-run' much, much faster.
* convert_hf : fix memory leak in lazy MoE conversion
The '_lazy' queue was sometimes self-referential,
which caused reference cycles of objects old enough
to avoid garbage collection until potential memory exhaustion.
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
Python check requirements.txt / check-requirements (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:light-rocm]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:server-rocm]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Has been cancelled
* lora: load to devide buft
* add patch tensor function
* correct tensor patch
* llama_lora_adapter_apply
* correct ggml_backend_tensor_copy
* add llm_build_mm
* fix auto merge
* update based on review comments
* add convert script
* no more transpose A
* add f16 convert
* add metadata check
* add sanity check
* fix ftype
* add requirements
* fix requirements
* fix outfile
* conversion: only allow selected models
* fix types
* cuda : do not use dmmv if the tensor does not have enough cols
* llama : lora fixes
* do not disable mmap with lora
Co-authored-by: slaren <slarengh@gmail.com>
* llm_build_lora_mm_id
* convert_lora : MoE LoRA conversion support
* convert_lora : prefer safetensors, similarly to convert_hf
* convert_hf : simplify modify_tensors for InternLM2
* convert_lora : lazy conversion
* llama : load and use alpha from LoRA adapters
* llama : use llm_build_lora_mm in most model graphs
* auto scale
* Revert "auto scale"
This reverts commit 42415a4874.
* remove redundant params
* Apply suggestions from code review
Co-authored-by: slaren <slarengh@gmail.com>
* change kv metadata
* move add_type to __init__
* convert_hf : move add_type to main()
* convert_lora : use the GGUFWriter from Model instead of overwriting it
---------
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Francis Couture-Harpin <git@compilade.net>
This commit adds a macro guard to pragma GCC to avoid the following
warning on windows:
```console
C:\llama.cpp\ggml\src\ggml-aarch64.c(17,9): warning C4068:
unknown pragma 'GCC' [C:\lama.cpp\build\ggml\src\ggml.vcxproj]
```
The README.md had a stale information. In particular, the --ctx-size
"defaults to 512" confused me and I had to check the code to confirm
this was false. This the server is evolving rapidly, it's probably
better to keep the source of truth at a single place (in the source) and
generate the README.md based on that.
Did:
make llama-server
./llama-server --help > t.txt
vimdiff t.txt examples/server/README.md
I copied the content inside a backquote block. I would have preferred
proper text but it would require a fair amount of surgery to make the
current output compatible with markdown. A follow up could be to
automate this process with a script.
No functional change.
* 9B - query_pre_attn_scalar = 256 not 224
See 03e657582d
Gemma 9b should use 256 and not 224 (self.config.hidden_size // self.config.num_attention_heads)
* llama : fix Gemma-2 Query scaling factor
ggml-ci
---------
Co-authored-by: Daniel Han <danielhanchen@gmail.com>
* llama : fix mpt and olmo pre-tokenizer
* llama : pre-tokenize non-special user-defined tokens first
* llama : fix detection of control-like user-defined tokens
* convert_hf : identify which user-defined tokens are control tokens
Only used in _set_vocab_gpt2() for now.
* convert_hf : identify more added control tokens for SPM tokenziers
This makes Gemma and Gemma-2 tokenize pretty much EVERYTHING correctly,
including HTML tags and consecutive spaces,
but it unfortunately requires model re-conversion.
There seems to be a weird behavior of the HF tokenizer for Gemma,
which prefers to use the 16-space token over more lengthy space tokens,
while using the SentencePiece tokenizer does not do this.
(the implementation in llama.cpp has the same behavior as SentencePiece)
* llama : fix wrong pre-tokenization of byte tokens
* llama : fix Viking pre-tokenizer regex
The order was previously wrong, which caused errors in some tests.
* llama : fix command-r detokenization
* convert_hf : reduce usages of the UNKNOWN token type
* llama : add UNKNOWN tokens in the special tokens cache
* convert_hf : reduce usages of UNKNOWN for InternLM2
This makes the changes from #8321 more consistent
with the other changes made here.
* test-tokenizer-random : reduce potential confilcts with #8379
* test-tokenizer-random : add a failing edge case for falcon
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:light-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:server-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
* server : handle content array in chat API
* Update examples/server/utils.hpp
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
---------
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:light-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:server-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python check requirements.txt / check-requirements (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
This commit updates the _try_copy lambda and moves the unary minus
operator to after the cast to int32_t.
The motivation for this that currently the following warning is
generated on windows:
```console
llama.cpp\src\llama.cpp(21147,30): warning C4146: unary minus operator
applied to unsigned type, result still unsigned
```
Commit b0a4699 changed the name of this script from convert-hf-to-gguf.py to
convert_hf_to_gguf.py breaking how convert is called from within a Docker
container.
The <filename> token used by Refact doesn't serve
the same purpose as the <file_separator> from CodeGemma.
Signed-off-by: Jiri Podivin <jpodivin@redhat.com>
* cuda : suppress 'noreturn' warn in no_device_code
This commit adds a while(true) loop to the no_device_code function in
common.cuh. This is done to suppress the warning:
```console
/ggml/src/ggml-cuda/template-instances/../common.cuh:346:1: warning:
function declared 'noreturn' should not return [-Winvalid-noreturn]
346 | }
| ^
```
The motivation for this is to reduce the number of warnings when
compilng with GGML_HIPBLAS=ON.
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
* squash! cuda : suppress 'noreturn' warn in no_device_code
Update __trap macro instead of using a while loop to suppress the
warning.
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
---------
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:light-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:server-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python check requirements.txt / check-requirements (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
* Modify the deprecation-warning 'main' binary to build every time, instead of only when a legacy binary is present. This is to help users of tutorials and other instruction sets from knowing what to do when the 'main' binary is missing and they are trying to follow instructions.
* Adjusting 'server' name-deprecation binary to build all the time, similar to the 'main' legacy name binary.
- Use the following format for your final commit: `<module> : <commit title> (#<issue_number>)`. For example: `utils : fix typo in utils.py (#1234)`
- Test your changes:
- Using the commands in the [`tests`](tests) folder. For instance, running the `./tests/test-backend-ops` command tests different backend implementations of the GGML library
- Execute [the full CI locally on your machine](ci/README.md) before publishing
- If the pull request contains only documentation changes (e.g., updating READMEs, adding new wiki pages), please add `[no ci]` to the commit title. This will skip unnecessary CI checks and help reduce build times
- Please rate the complexity of your PR (i.e. `Review Complexity : Low`, `Review Complexity : Medium`, `Review Complexity : High`). This makes it easier for maintainers to triage the PRs.
- The PR template has a series of review complexity checkboxes `[ ]` that [you can mark as](https://docs.github.com/en/get-started/writing-on-github/working-with-advanced-formatting/about-task-lists) `[X]` for your conveience
- The PR template has a series of review complexity checkboxes `[ ]` that [you can mark as](https://docs.github.com/en/get-started/writing-on-github/working-with-advanced-formatting/about-task-lists) `[X]` for your convenience
- Consider allowing write access to your branch for faster review
- If your PR becomes stale, don't hesitate to ping the maintainers in the comments
# Pull requests (for collaborators)
- Squash-merge PRs
- Use the following format for the squashed commit title: `<module> : <commit title> (#<issue_number>)`. For example: `utils : fix typo in utils.py (#1234)`
- Optionally, pick a `<module>` from here: https://github.com/ggerganov/llama.cpp/wiki/Modules
# Legacy build targets that were renamed in #7809, but we want to build binaries that for them that output a deprecation warning if people try to use them.
# We don't want to clutter things too much, so we only build replacements for the most commonly used binaries.
LEGACY_TARGETS_BUILD= main quantize perplexity embedding server finetune
LEGACY_TARGETS_BUILD= main quantize perplexity embedding server
@@ -176,10 +188,15 @@ Unless otherwise noted these projects are open-source with permissive licensing:
- [akx/ggify](https://github.com/akx/ggify) – download PyTorch models from HuggingFace Hub and convert them to GGML
- [crashr/gppm](https://github.com/crashr/gppm) – launch llama.cpp instances utilizing NVIDIA Tesla P40 or P100 GPUs with reduced idle power consumption
- [gpustack/gguf-parser](https://github.com/gpustack/gguf-parser-go/tree/main/cmd/gguf-parser) - review/check the GGUF file and estimate the memory usage
**Infrastructure:**
- [Paddler](https://github.com/distantmagic/paddler) - Stateful load balancer custom-tailored for llama.cpp
- [GPUStack](https://github.com/gpustack/gpustack) - Manage GPU clusters for running LLMs
**Games:**
- [Lucy's Labyrinth](https://github.com/MorganRO8/Lucys_Labyrinth) - A simple maze game where agents controlled by an AI model will try to trick you.
## Demo
@@ -405,9 +422,11 @@ Please refer to [Build llama.cpp locally](./docs/build.md)
| [BLAS](./docs/build.md#blas-build) | All |
| [BLIS](./docs/backend/BLIS.md) | All |
| [SYCL](./docs/backend/SYCL.md) | Intel and Nvidia GPU |
| [MUSA](./docs/build.md#musa) | Moore Threads GPU |
options.push_back({"*"," --no-display-prompt","don't print prompt at generation (default: %s)",!params.display_prompt?"true":"false"});
options.push_back({"*","-co, --color","colorise output to distinguish prompt and user input from generations (default: %s)",params.use_color?"true":"false"});
options.push_back({"*","-s, --seed SEED","RNG seed (default: %d, use random seed for < 0)",params.seed});
options.push_back({"*","-t, --threads N","number of threads to use during generation (default: %d)",params.n_threads});
options.push_back({"*","-t, --threads N","number of threads to use during generation (default: %d)",params.cpuparams.n_threads});
options.push_back({"*","-tb, --threads-batch N","number of threads to use during batch and prompt processing (default: same as --threads)"});
options.push_back({"speculative","-td, --threads-draft N","number of threads to use during generation (default: same as --threads)"});
"number of threads to use during batch and prompt processing (default: same as --threads-draft)"});
options.push_back({"speculative","-tbd, --threads-batch-draft N","number of threads to use during batch and prompt processing (default: same as --threads-draft)"});
#ifndef GGML_USE_OPENMP
// these options are available only with the internal threadpool
options.push_back({"*"," --poll <0...100>","use polling level to wait for work (0 - no polling, default: %u)\n",(unsigned)params.cpuparams.poll});
options.push_back({"*","-Cb, --cpu-mask-batch M","CPU affinity mask: arbitrarily long hex. Complements cpu-range-batch (default: same as --cpu-mask)"});
options.push_back({"*","-Crb, --cpu-range-batch lo-hi","ranges of CPUs for affinity. Complements --cpu-mask-batch"});
options.push_back({"*"," --cpu-strict-batch <0|1>","use strict CPU placement (default: same as --cpu-strict)"});
options.push_back({"*"," --poll-batch <0|1>","use polling to wait for work (default: same as --poll"});
options.push_back({"speculative","-Cd, --cpu-mask-draft M","Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)"});
options.push_back({"speculative","-Crd, --cpu-range-draft lo-hi","Ranges of CPUs for affinity. Complements --cpu-mask-draft"});
options.push_back({"speculative"," --cpu-strict-draft <0|1>","Use strict CPU placement for draft model (default: same as --cpu-strict)"});
options.push_back({"speculative"," --priority-draft N","Set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: same as --priority)"});
options.push_back({"speculative"," --poll-draft <0|1>","Use polling to wait for draft model work (default: same as --poll])"});
options.push_back({"speculative","-Cbd, --cpu-mask-batch-draft M","Draft model CPU affinity mask. Complements cpu-range-draft-batch (default: same as --cpu-mask-draft)"});
options.push_back({"main infill"," --in-prefix-bos","prefix BOS to user inputs, preceding the `--in-prefix` string"});
options.push_back({"main infill"," --in-prefix STRING","string to prefix user inputs with (default: empty)"});
options.push_back({"main infill"," --in-suffix STRING","string to suffix after user inputs with (default: empty)"});
options.push_back({"main"," --no-warmup","skip warming up the model with an empty run"});
options.push_back({"server infill",
" --spm-infill","use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: %s)",params.spm_infill?"enabled":"disabled"});
options.push_back({"server"," --embedding(s)","restrict to only support embedding use case; use only with dedicated embedding models (default: %s)",params.embedding?"enabled":"disabled"});
options.push_back({"server"," --api-key KEY","API key to use for authentication (default: none)"});
options.push_back({"server"," --api-key-file FNAME","path to file containing API keys (default: none)"});
options.push_back({"server"," --ssl-key-file FNAME","path to file a PEM-encoded SSL private key"});
"how much the prompt of a request must match the prompt of a slot in order to use that slot (default: %.2f, 0.0 = disabled)\n",params.slot_prompt_similarity});
options.push_back({"server"," --lora-init-without-apply","load LoRA adapters without applying them (apply later via POST /lora-adapters) (default: %s)",params.lora_init_without_apply?"enabled":"disabled"});
options.push_back({"cvector"," --pca-iter N","number of iterations used for PCA (default: %d)",params.n_pca_iterations});
options.push_back({"cvector"," --method {pca,mean}","dimensionality reduction method to be used (default: pca)"});
options.push_back({"export-lora"});
options.push_back({"export-lora","-m, --model","model path from which to load base model (default '%s')",params.model.c_str()});
options.push_back({"export-lora"," --lora FNAME","path to LoRA adapter (can be repeated to use multiple adapters)"});
options.push_back({"export-lora"," --lora-scaled FNAME S","path to LoRA adapter with user defined scaling S (can be repeated to use multiple adapters)"});
std::vector<std::string>antiprompt;// strings upon which more user input is prompted (a.k.a. reverse prompts)
std::vector<llama_model_kv_override>kv_overrides;
// TODO: avoid tuple, use struct
std::vector<std::tuple<std::string,float>>lora_adapter;// lora adapter path with user defined scale
std::stringlora_base="";// base model path for the lora adapter
boollora_init_without_apply=false;// only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_lora_adapter_apply)
std::vector<llama_lora_adapter_info>lora_adapters;// lora adapter path with user defined scale
std::vector<llama_control_vector_load_info>control_vectors;// control vector with user defined scale
@@ -196,7 +214,7 @@ struct gpt_params {
int32_tport=8080;// server listens on this network port
int32_ttimeout_read=600;// http read timeout in seconds
int32_ttimeout_write=timeout_read;// http write timeout in seconds
int32_tn_threads_http=-1;// number of threads to process HTTP requests
intn_threads_http=-1;// number of threads to process HTTP requests (TODO: support threadpool)
# TODO: this string has to exercise as much pre-tokenizer functionality as possible
# will be updated with time - contributions welcome
chktxt='\n\n\n\n\n\n\t\t\t\t\n\n\n\n\n🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````\"\"\"\"......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
CHK_TXT='\n\n\n\n\n\n\t\t\t\t\n\n\n\n\n🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````\"\"\"\"......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
)
parser.add_argument(
"--bigendian",action="store_true",
help="model is executed on big endian machine",
)
parser.add_argument(
"--no-lazy",action="store_true",
help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
)
parser.add_argument(
"--verbose",action="store_true",
help="increase output verbosity",
)
parser.add_argument(
"--dry-run",action="store_true",
help="only print out what will be done, without writing any new files",
**Ascend NPU** is a range of AI processors using Neural Processing Unit. It will efficiently handle matrix-matrix multiplication, dot-product and scalars.
**CANN** (Compute Architecture for Neural Networks) is a heterogeneous computing architecture for AI scenarios, providing support for multiple AI frameworks on the top and serving AI processors and programming at the bottom. It plays a crucial role in bridging the gap between upper and lower layers, and is a key platform for improving the computing efficiency of Ascend AI processors. Meanwhile, it offers a highly efficient and easy-to-use programming interface for diverse application scenarios, allowing users to rapidly build AI applications and services based on the Ascend platform.
**Llama.cpp + CANN**
The llama.cpp CANN backend is designed to support Ascend NPU. It utilize the ability of AscendC and ACLNN which are intergrated to CANN Toolkit and kernels to using Ascend NPU directly.
## News
- 2024.8
- Support `Q4_0` and `Q8_0` data type for Ascend NPU.
# download driver from https://www.hiascend.com/hardware/firmware-drivers/community according to your system
# and install driver.
sudo sh Ascend-hdk-910b-npu-firmware_x.x.x.x.X.run --full
```
If the following messaage appers, firmware is installed successfully.
```sh
Firmware package installed successfully!
```
3. **Install CANN toolkit and kernels**
CANN toolkit and kernels can be obtained from the official [CANN Toolkit](https://www.hiascend.com/zh/developer/download/community/result?module=cann) page.
Please download the corresponding version that satified your system. The minimum version required is 8.0.RC2.alpha002 and here is the install command.
**oneAPI** is an open ecosystem and a standard-based specification, supporting multiple architectures including but not limited to intel CPUs, GPUs and FPGAs. The key components of the oneAPI ecosystem include:
- **DPCPP** *(Data Parallel C++)*: The primary oneAPI SYCL implementation, which includes the icpx/icx Compilers.
- **oneAPI Libraries**: A set of highly optimized libraries targeting multiple domains *(e.g. oneMKL - Math Kernel Library)*.
- **oneAPI Libraries**: A set of highly optimized libraries targeting multiple domains *(e.g. oneMKL and oneDNN)*.
- **oneAPI LevelZero**: A high performance low level interface for fine-grained control over intel iGPUs and dGPUs.
- **Nvidia & AMD Plugins**: These are plugins extending oneAPI's DPCPP support to SYCL on Nvidia and AMD GPU targets.
@@ -28,10 +28,6 @@
The llama.cpp SYCL backend is designed to support **Intel GPU** firstly. Based on the cross-platform feature of SYCL, it could support other vendor GPUs: Nvidia GPU (*AMD GPU coming*).
When targeting **Intel CPU**, it is recommended to use llama.cpp for [Intel oneMKL](README.md#intel-onemkl) backend.
It has the similar design of other llama.cpp BLAS-based paths such as *OpenBLAS, cuBLAS, etc..*. In beginning work, the oneAPI's [SYCLomatic](https://github.com/oneapi-src/SYCLomatic) open-source migration tool (Commercial release [Intel® DPC++ Compatibility Tool](https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html)) was used for this purpose.
## Recommended Release
The SYCL backend would be broken by some PRs due to no online CI.
@@ -45,6 +41,10 @@ The following release is verified with good quality:
## News
- 2024.8
- Use oneDNN as the default GEMM library, improve the compatibility for new Intel GPUs.
- 2024.5
- Performance is increased: 34 -> 37 tokens/s of llama-2-7b.Q4_0 on Arc770.
- Arch Linux is verified successfully.
@@ -80,7 +80,14 @@ The following release is verified with good quality:
### Intel GPU
**Verified devices**
SYCL backend supports Intel GPU Family:
- Intel Data Center Max Series
- Intel Flex Series, Arc Series
- Intel Built-in Arc GPU
- Intel iGPU in Core CPU (11th Generation Core CPU and newer, refer to [oneAPI supported GPU](https://www.intel.com/content/www/us/en/developer/articles/system-requirements/intel-oneapi-base-toolkit-system-requirements.html#inpage-nav-1-1)).
@@ -88,7 +95,7 @@ The following release is verified with good quality:
| Intel Data Center Flex Series | Support | Flex 170 |
| Intel Arc Series | Support | Arc 770, 730M, Arc A750 |
| Intel built-in Arc GPU | Support | built-in Arc GPU in Meteor Lake |
| Intel iGPU | Support | iGPU in i5-1250P, i7-1260P, i7-1165G7 |
| Intel iGPU | Support | iGPU in 13700k, i5-1250P, i7-1260P, i7-1165G7 |
*Notes:*
@@ -189,7 +196,7 @@ Please follow the instructions for downloading and installing the Toolkit for Li
Following guidelines/code snippets assume the default installation values. Otherwise, please make sure the necessary changes are reflected where applicable.
Upon a successful installation, SYCL is enabled for the available intel devices, along with relevant libraries such as oneAPI MKL for intel GPUs.
Upon a successful installation, SYCL is enabled for the available intel devices, along with relevant libraries such as oneAPI oneDNN for Intel GPUs.
- **Adding support to Nvidia GPUs**
@@ -237,12 +244,17 @@ Similarly, user targeting Nvidia GPUs should expect at least one SYCL-CUDA devic
### II. Build llama.cpp
#### Intel GPU
```
./examples/sycl/build.sh
```
or
```sh
# Export relevant ENV variables
source /opt/intel/oneapi/setvars.sh
# Build LLAMA with MKL BLAS acceleration for intel GPU
# Option 1: Use FP32 (recommended for better performance in most cases)
You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model prepration, or simply download [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) model as example.
2. Enable oneAPI running environment
##### Check device
1. Enable oneAPI running environment
```sh
source /opt/intel/oneapi/setvars.sh
```
3. List devices information
2. List devices information
Similar to the native `sycl-ls`, available SYCL devices can be queried as follow:
```sh
./build/bin/llama-ls-sycl-device
```
A example of such log in a system with 1 *intel CPU* and 1 *intel GPU* can look like the following:
This command will only display the selected backend that is supported by SYCL. The default backend is level_zero. For example, in a system with 2 *intel GPU* it would look like the following:
```
found 6 SYCL devices:
found 2 SYCL devices:
| | | |Compute |Max compute|Max work|Max sub| |
|ID| Device Type| Name|capability|units |group |group |Global mem size|
- Single device: Use one device target specified by the user.
- Multiple devices: Automatically select the devices with the same largest Max compute-units.
- Single device: Use one device assigned by user. Default device id is 0.
- Multiple devices: Automatically choose the devices with the same backend.
In two device selection modes, the default SYCL backend is level_zero, you can choose other backend supported by SYCL by setting environment variable ONEAPI_DEVICE_SELECTOR.
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm none -mg 0
```
or run by script:
```sh
./examples/sycl/run_llama2.sh 0
```
- Use multiple devices:
@@ -343,12 +373,6 @@ or run by script:
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm layer
```
Otherwise, you can run the script:
```sh
./examples/sycl/run_llama2.sh
```
*Notes:*
- Upon execution, verify the selected device(s) ID(s) in the output log, which can for instance be displayed as follow:
@@ -395,7 +419,7 @@ c. Verify installation
In the oneAPI command line, run the following to print the available SYCL devices:
```
sycl-ls
sycl-ls.exe
```
There should be one or more *level-zero* GPU devices displayed as **[ext_oneapi_level_zero:gpu]**. Below is example of such output detecting an *intel Iris Xe* GPU as a Level-zero SYCL device:
@@ -416,6 +440,18 @@ b. The new Visual Studio will install Ninja as default. (If not, please install
### II. Build llama.cpp
You could download the release package for Windows directly, which including binary files and depended oneAPI dll files.
Choose one of following methods to build from source code.
1. Script
```sh
.\examples\sycl\win-build-sycl.bat
```
2. CMake
On the oneAPI command line window, step into the llama.cpp main directory and run the following:
Or, you can use Visual Studio to open llama.cpp folder as a CMake project. Choose the sycl CMake presets (`x64-windows-sycl-release` or `x64-windows-sycl-debug`) before you compile the project.
3. Visual Studio
You can use Visual Studio to open llama.cpp folder as a CMake project. Choose the sycl CMake presets (`x64-windows-sycl-release` or `x64-windows-sycl-debug`) before you compile the project.
*Notes:*
@@ -455,52 +489,65 @@ Or, you can use Visual Studio to open llama.cpp folder as a CMake project. Choos
### III. Run the inference
1. Retrieve and prepare model
#### Retrieve and prepare model
You can refer to the general [*Prepare and Quantize*](README#prepare-and-quantize) guide for model prepration, or simply download [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) model as example.
You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model prepration, or simply download [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) model as example.
2. Enable oneAPI running environment
##### Check device
1. Enable oneAPI running environment
On the oneAPI command line window, run the following and step into the llama.cpp directory:
Similar to the native `sycl-ls`, available SYCL devices can be queried as follow:
```
build\bin\ls-sycl-device.exe
build\bin\llama-ls-sycl-device.exe
```
The output of this command in a system with 1*intel CPU*and 1 *intel GPU* would look like the following:
This command will only display the selected backend that is supported by SYCL. The default backend is level_zero. For example, in a system with 2*intel GPU*it would look like the following:
```
found 6 SYCL devices:
found 2 SYCL devices:
| | | |Compute |Max compute|Max work|Max sub| |
|ID| Device Type| Name|capability|units |group |group |Global mem size|
- Multiple devices: Automatically choose the devices with the same biggest Max compute units.
- Single device: Use one device assigned by user. Default device id is 0.
- Multiple devices: Automatically choose the devices with the same backend.
In two device selection modes, the default SYCL backend is level_zero, you can choose other backend supported by SYCL by setting environment variable ONEAPI_DEVICE_SELECTOR.
@@ -16,7 +16,7 @@ In order to build llama.cpp you have four different options.
make
```
- On Windows:
- On Windows (x86/x64 only, arm64 requires cmake):
1. Download the latest fortran version of [w64devkit](https://github.com/skeeto/w64devkit/releases).
2. Extract `w64devkit` on your pc.
@@ -60,6 +60,17 @@ In order to build llama.cpp you have four different options.
cmake -B build -G "Xcode"
cmake --build build --config Debug
```
- Building for Windows (x86, x64 and arm64) with MSVC or clang as compilers:
- Install Visual Studio 2022, e.g. via the [Community Edition](https://visualstudio.microsoft.com/de/vs/community/). In the installer, select at least the following options (this also automatically installs the required additional tools like CMake,...):
- Tab Workload: Desktop-development with C++
- Tab Components (select quickly via search): C++-_CMake_ Tools for Windows, _Git_ for Windows, C++-_Clang_ Compiler for Windows, MS-Build Support for LLVM-Toolset (clang)
- Please remember to always use a Developer Command Prompt / PowerShell for VS2022 for git, build, test
Note: Building for arm64 could also be done just with MSVC (with the build-arm64-windows-MSVC preset, or the standard CMake build instructions). But MSVC does not support inline ARM assembly-code, used e.g. for the accelerated Q4_0_4_8 CPU kernels.
- Using `gmake` (FreeBSD):
@@ -167,7 +178,11 @@ For Jetson user, if you have Jetson Orin, you can try this: [Offical Support](ht
cmake --build build --config Release
```
The environment variable [`CUDA_VISIBLE_DEVICES`](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars) can be used to specify which GPU(s) will be used. The following compilation options are also available to tweak performance:
The environment variable [`CUDA_VISIBLE_DEVICES`](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars) can be used to specify which GPU(s) will be used.
The environment variable `GGML_CUDA_ENABLE_UNIFIED_MEMORY=1` can be used to enable unified memory in Linux. This allows swapping to system RAM instead of crashing when the GPU VRAM is exhausted. In Windows this setting is available in the NVIDIA control panel as `System Memory Fallback`.
The following compilation options are also available to tweak performance:
@@ -181,6 +196,19 @@ The environment variable [`CUDA_VISIBLE_DEVICES`](https://docs.nvidia.com/cuda/c
| GGML_CUDA_PEER_MAX_BATCH_SIZE | Positive integer | 128 | Maximum batch size for which to enable peer access between multiple GPUs. Peer access requires either Linux or NVLink. When using NVLink enabling peer access for larger batch sizes is potentially beneficial. |
| GGML_CUDA_FA_ALL_QUANTS | Boolean | false | Compile support for all KV cache quantization type (combinations) for the FlashAttention CUDA kernels. More fine-grained control over KV cache size but compilation takes much longer. |
### MUSA
- Using `make`:
```bash
make GGML_MUSA=1
```
- Using `CMake`:
```bash
cmake -B build -DGGML_MUSA=ON
cmake --build build --config Release
```
### hipBLAS
This provides BLAS acceleration on HIP-supported AMD GPUs.
@@ -242,6 +270,45 @@ The following compilation options are also available to tweak performance (yes,
### Vulkan
**Windows**
#### w64devkit
Download and extract [w64devkit](https://github.com/skeeto/w64devkit/releases).
Download and install the [Vulkan SDK](https://vulkan.lunarg.com/sdk/home#windows). When selecting components, only the Vulkan SDK Core is required.
Launch `w64devkit.exe` and run the following commands to copy Vulkan dependencies:
This provides NPU acceleration using the AI cores of your Ascend NPU. And [CANN](https://www.hiascend.com/en/software/cann) is a hierarchical APIs to help you to quickly build AI applications and service based on Ascend NPU.
For more information about Ascend NPU in [Ascend Community](https://www.hiascend.com/en/).
Make sure to have the CANN toolkit installed. You can download it from here: [CANN Toolkit](https://www.hiascend.com/developer/download/community/result?module=cann)
Go to `llama.cpp` directory and build using CMake.
@@ -9,15 +9,15 @@ Adding a model requires few steps:
After following these steps, you can open PR.
Also, it is important to check that the examples and main ggml backends (CUDA, METAL, CPU) are working with the new architecture, especially:
- [main](../examples/main)
- [imatrix](../examples/imatrix)
- [quantize](../examples/quantize)
- [server](../examples/server)
- [main](/examples/main/)
- [imatrix](/examples/imatrix/)
- [quantize](/examples/quantize/)
- [server](/examples/server/)
### 1. Convert the model to GGUF
This step is done in python with a `convert` script using the [gguf](https://pypi.org/project/gguf/) library.
Depending on the model architecture, you can use either [convert_hf_to_gguf.py](../convert_hf_to_gguf.py) or [examples/convert_legacy_llama.py](../examples/convert_legacy_llama.py) (for `llama/llama2` models in `.pth` format).
Depending on the model architecture, you can use either [convert_hf_to_gguf.py](/convert_hf_to_gguf.py) or [examples/convert_legacy_llama.py](/examples/convert_legacy_llama.py) (for `llama/llama2` models in `.pth` format).
The convert script reads the model configuration, tokenizer, tensor names+data and converts them to GGUF metadata and tensors.
@@ -31,7 +31,7 @@ class MyModel(Model):
model_arch=gguf.MODEL_ARCH.GROK
```
2. Define the layout of the GGUF tensors in [constants.py](../gguf-py/gguf/constants.py)
2. Define the layout of the GGUF tensors in [constants.py](/gguf-py/gguf/constants.py)
Add an enum entry in `MODEL_ARCH`, the model human friendly name in `MODEL_ARCH_NAMES` and the GGUF tensor names in `MODEL_TENSORS`.
@@ -54,7 +54,7 @@ Example for `falcon` model:
As a general rule, before adding a new tensor name to GGUF, be sure the equivalent naming does not already exist.
Once you have found the GGUF tensor name equivalent, add it to the [tensor_mapping.py](../gguf-py/gguf/tensor_mapping.py) file.
Once you have found the GGUF tensor name equivalent, add it to the [tensor_mapping.py](/gguf-py/gguf/tensor_mapping.py) file.
If the tensor name is part of a repetitive layer/block, the key word `bid` substitutes it.
@@ -100,7 +100,7 @@ Have a look at existing implementation like `build_llama`, `build_dbrx` or `buil
When implementing a new graph, please note that the underlying `ggml` backends might not support them all, support for missing backend operations can be added in another PR.
Note: to debug the inference graph: you can use [llama-eval-callback](../examples/eval-callback).
Note: to debug the inference graph: you can use [llama-eval-callback](/examples/eval-callback/).
## Verifying that the model is running on the GPU with CUDA
Make sure you compiled llama with the correct env variables according to [this guide](../README.md#CUDA), so that llama accepts the `-ngl N` (or `--n-gpu-layers N`) flag. When running llama, you may configure `N` to be very large, and llama will offload the maximum possible number of layers to the GPU, even if it's less than the number you configured. For example:
Make sure you compiled llama with the correct env variables according to [this guide](/docs/build.md#cuda), so that llama accepts the `-ngl N` (or `--n-gpu-layers N`) flag. When running llama, you may configure `N` to be very large, and llama will offload the maximum possible number of layers to the GPU, even if it's less than the number you configured. For example:
```shell
./llama-cli -m "path/to/model.gguf" -ngl 200000 -p "Please sir, may I have some "
// check if all lora adapters have the same tensors
// TODO: remove this when we can support merging subset of adapters. Ref: https://github.com/ggerganov/llama.cpp/pull/8607#discussion_r1686027777
staticconstchar*err_no_subset_adapter="Input adapters do not have the same list of tensors. This is not yet supported. Please merge the adapter one-by-one instead of merging all at once.";
Checkpoint files (`--checkpoint-in FN`, `--checkpoint-out FN`) store the training process. When the input checkpoint file does not exist, it will begin finetuning a new randomly initialized adapter.
llama.cpp compatible LORA adapters will be saved with filename specified by `--lora-out FN`.
These LORA adapters can then be used by `llama-cli` together with the base model, like in the 'predict' example command above.
In `llama-cli` you can also load multiple LORA adapters, which will then be mixed together.
For example if you have two LORA adapters `lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin` and `lora-open-llama-3b-v2-q8_0-bible-LATEST.bin`, you can mix them together like this:
The scale numbers don't need to add up to one, and you can also use numbers greater than 1 to further increase the influence of an adapter. But making the values too big will sometimes result in worse output. Play around to find good values.
Gradient checkpointing reduces the memory requirements by ~50% but increases the runtime.
If you have enough RAM, you can make finetuning a bit faster by disabling checkpointing with `--no-checkpointing`.
The default LORA rank can be specified with `--lora-r N`.
The LORA rank can be configured for each model tensor type separately with these command line options:
```bash
--lora-r N LORA r: default rank. Also specifies resulting scaling together with lora-alpha. (default 4)
--rank-att-norm N LORA rank for attention norm tensor (default 1)
--rank-ffn-norm N LORA rank for feed-forward norm tensor (default 1)
--rank-out-norm N LORA rank for output norm tensor (default 1)
--rank-tok-embd N LORA rank for token embeddings tensor (default 4)
--rank-out N LORA rank for output tensor (default 4)
--rank-wq N LORA rank for wq tensor (default 4)
--rank-wk N LORA rank for wk tensor (default 4)
--rank-wv N LORA rank for wv tensor (default 4)
--rank-wo N LORA rank for wo tensor (default 4)
--rank-ffn_gate N LORA rank for ffn_gate tensor (default 4)
--rank-ffn_down N LORA rank for ffn_down tensor (default 4)
--rank-ffn_up N LORA rank for ffn_up tensor (default 4)
```
The LORA rank of 'norm' tensors should always be 1.
To see all available options use `llama-finetune --help`.
parser.add_argument('--ff',type=int,help="Feedforward size, if not provided compute from n_mult. Provide this if you get 'ValueError: Tensor.load: Expected number of elements does not match what is read from file'",required=False)
# MODEL="$LLAMA_MODEL_DIR/openllama-3b-v2-q8_0.gguf" # This is the model the readme uses.
MODEL="$LLAMA_MODEL_DIR/openllama-3b-v2.gguf"# An f16 model. Note in this case with "-g", you get an f32-format .BIN file that isn't yet supported if you use it with "llama-cli --lora" with GPU inferencing.
Install [termux](https://github.com/termux/termux-app#installation) on your device and run `termux-setup-storage` to get access to your SD card (if Android 11+ then run the command twice).
Finally, copy these built `llama` binaries and the model file to your device storage. Because the file permissions in the Android sdcard cannot be changed, you can copy the executable files to the `/data/data/com.termux/files/home/bin` path, and then execute the following commands in Termux to add executable permission:
(Assumed that you have pushed the built executable files to the /sdcard/llama.cpp/bin path using `adb push`)
Install [termux](https://github.com/termux/termux-app#installation) on your device and run `termux-setup-storage` to get access to your SD card (if Android 11+ then run the command twice).
Finally, copy these built `llama` binaries and the model file to your device storage. Because the file permissions in the Android sdcard cannot be changed, you can copy the executable files to the `/data/data/com.termux/files/home/bin` path, and then execute the following commands in Termux to add executable permission:
(Assumed that you have pushed the built executable files to the /sdcard/llama.cpp/bin path using `adb push`)
autobest_grid_size=uhd_find_best_resize(std::make_pair(grid_width,grid_height),scale_resolution,patch_size,allow_upscale);// (new line) => fixes conversion for make_tuple to make_pair
// returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
// res_imgs memory is being allocated here, previous allocations will be freed if found
// std::vector<clip_image_f32*> img_res_v; // format VectN x H x W x RGB (N x 336 x 336 x 3), so interleaved RGB - different to the python implementation which is N x 3 x 336 x 336
/** write the image represented by embed into the llama context with batch size n_batch, starting at context pos n_past. on completion, n_past points to the next position in the context after the image embed. */
// load the prompts from an external file if there are any
if(params.prompt.empty()){
Some files were not shown because too many files have changed in this diff
Show More
Reference in New Issue
Block a user
Blocking a user prevents them from interacting with repositories, such as opening or commenting on pull requests or issues. Learn more about blocking a user.