mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2026-02-05 13:53:23 +02:00
Compare commits
130 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
b7a08fd5e0 | ||
|
|
7a11eb3a26 | ||
|
|
c8a0090922 | ||
|
|
afbbcf3c04 | ||
|
|
ed9d2854c9 | ||
|
|
398ede5efe | ||
|
|
44d28ddd5c | ||
|
|
268c566006 | ||
|
|
7e72aa74fd | ||
|
|
7c27a19b2e | ||
|
|
140074bb86 | ||
|
|
6e2b6000e5 | ||
|
|
c887d8b017 | ||
|
|
75af08c475 | ||
|
|
439b3fc75a | ||
|
|
0832de7236 | ||
|
|
6eeaeba126 | ||
|
|
4730faca61 | ||
|
|
4c676c85e5 | ||
|
|
e54c35e4fb | ||
|
|
5e2727fe03 | ||
|
|
56f20aa25d | ||
|
|
345c8c0c87 | ||
|
|
ae7985cd7b | ||
|
|
a05ca93697 | ||
|
|
9f77d899b7 | ||
|
|
203b7f1531 | ||
|
|
d2b851bfa1 | ||
|
|
c12b6e8ee7 | ||
|
|
b5e95468b1 | ||
|
|
92090eca21 | ||
|
|
9d03d085dd | ||
|
|
bfb4c74981 | ||
|
|
2b1f616b20 | ||
|
|
01245f5b16 | ||
|
|
01aec4a631 | ||
|
|
41cd47caab | ||
|
|
49ce0ab6d4 | ||
|
|
4226a8d10e | ||
|
|
bf5a81df37 | ||
|
|
88954f7fbd | ||
|
|
ed67bcb24f | ||
|
|
eddcb5238b | ||
|
|
be6d7c0791 | ||
|
|
4b0eff3df5 | ||
|
|
8a4bad50a8 | ||
|
|
68504f0970 | ||
|
|
f19bf99c01 | ||
|
|
3a7ac5300a | ||
|
|
96952e7181 | ||
|
|
79167d9e49 | ||
|
|
b115105f05 | ||
|
|
de280085e7 | ||
|
|
b841d07408 | ||
|
|
64cf50a0ed | ||
|
|
938943cdbf | ||
|
|
751fcfc6c3 | ||
|
|
46e47417aa | ||
|
|
e7e6487ba0 | ||
|
|
063d99ad11 | ||
|
|
081fe431aa | ||
|
|
d94c6e0ccb | ||
|
|
566daa5a5b | ||
|
|
6f11a83e4e | ||
|
|
e093dd2382 | ||
|
|
50e05353e8 | ||
|
|
628154492a | ||
|
|
04bab6b7da | ||
|
|
b7c11d36e6 | ||
|
|
45f2c19cc5 | ||
|
|
22f281aa16 | ||
|
|
328884f421 | ||
|
|
c69c63039c | ||
|
|
69c487f4ed | ||
|
|
07283b1a90 | ||
|
|
940362224d | ||
|
|
69b9945b44 | ||
|
|
c3776cacab | ||
|
|
87e397d00b | ||
|
|
57b1d4f9eb | ||
|
|
d197545530 | ||
|
|
be0cfb4175 | ||
|
|
b57eb9ca4f | ||
|
|
f299aa98ec | ||
|
|
3d0e4367d9 | ||
|
|
a15ef8f8a0 | ||
|
|
705b7ecf60 | ||
|
|
0d2c7321e9 | ||
|
|
672a6f1018 | ||
|
|
3807c3de04 | ||
|
|
e02b597be3 | ||
|
|
b3283448ce | ||
|
|
30f80ca0bc | ||
|
|
1bdd8ae19f | ||
|
|
da3913d8f9 | ||
|
|
d65a8361fe | ||
|
|
5e116e8dd5 | ||
|
|
1666f92dcd | ||
|
|
37b12f92ab | ||
|
|
0efec57787 | ||
|
|
7acfd4e8d5 | ||
|
|
97bdd26eee | ||
|
|
4db8f60fe7 | ||
|
|
8fac431b06 | ||
|
|
f17f39ff9c | ||
|
|
9104bc20ed | ||
|
|
fc690b018e | ||
|
|
16bdfa42ac | ||
|
|
3dfda05956 | ||
|
|
bda62d7999 | ||
|
|
090fca7a07 | ||
|
|
aaab2419ea | ||
|
|
73cf442e7b | ||
|
|
e236528e76 | ||
|
|
fa79495bb4 | ||
|
|
17eb6aa8a9 | ||
|
|
c917b67f06 | ||
|
|
4e24cffd8c | ||
|
|
6af51c0d96 | ||
|
|
f53226245f | ||
|
|
c3ebcfa148 | ||
|
|
8a4441ea1a | ||
|
|
5aefbce27a | ||
|
|
71c1121d11 | ||
|
|
370b1f7e7a | ||
|
|
b549a1bbef | ||
|
|
368645698a | ||
|
|
b078c619aa | ||
|
|
808aba3916 | ||
|
|
a977c11544 |
@@ -6,7 +6,7 @@ ARG CUDA_VERSION=11.7.1
|
||||
# Target the CUDA build image
|
||||
ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
|
||||
|
||||
FROM ${BASE_CUDA_DEV_CONTAINER} as build
|
||||
FROM ${BASE_CUDA_DEV_CONTAINER} AS build
|
||||
|
||||
# Unless otherwise specified, we make a fat build.
|
||||
ARG CUDA_DOCKER_ARCH=all
|
||||
|
||||
@@ -6,7 +6,7 @@ ARG ROCM_VERSION=5.6
|
||||
# Target the CUDA build image
|
||||
ARG BASE_ROCM_DEV_CONTAINER=rocm/dev-ubuntu-${UBUNTU_VERSION}:${ROCM_VERSION}-complete
|
||||
|
||||
FROM ${BASE_ROCM_DEV_CONTAINER} as build
|
||||
FROM ${BASE_ROCM_DEV_CONTAINER} AS build
|
||||
|
||||
# Unless otherwise specified, we make a fat build.
|
||||
# List from https://github.com/ggerganov/llama.cpp/pull/1087#issuecomment-1682807878
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
ARG UBUNTU_VERSION=22.04
|
||||
|
||||
FROM ubuntu:$UBUNTU_VERSION as build
|
||||
FROM ubuntu:$UBUNTU_VERSION AS build
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential python3 python3-pip git libcurl4-openssl-dev libgomp1
|
||||
|
||||
@@ -6,7 +6,7 @@ ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VER
|
||||
# Target the CUDA runtime image
|
||||
ARG BASE_CUDA_RUN_CONTAINER=nvidia/cuda:${CUDA_VERSION}-runtime-ubuntu${UBUNTU_VERSION}
|
||||
|
||||
FROM ${BASE_CUDA_DEV_CONTAINER} as build
|
||||
FROM ${BASE_CUDA_DEV_CONTAINER} AS build
|
||||
|
||||
# Unless otherwise specified, we make a fat build.
|
||||
ARG CUDA_DOCKER_ARCH=all
|
||||
@@ -25,7 +25,7 @@ ENV GGML_CUDA=1
|
||||
|
||||
RUN make -j$(nproc) llama-cli
|
||||
|
||||
FROM ${BASE_CUDA_RUN_CONTAINER} as runtime
|
||||
FROM ${BASE_CUDA_RUN_CONTAINER} AS runtime
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y libgomp1
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
ARG ONEAPI_VERSION=2024.1.1-devel-ubuntu22.04
|
||||
|
||||
FROM intel/oneapi-basekit:$ONEAPI_VERSION as build
|
||||
FROM intel/oneapi-basekit:$ONEAPI_VERSION AS build
|
||||
|
||||
ARG GGML_SYCL_F16=OFF
|
||||
RUN apt-get update && \
|
||||
@@ -14,10 +14,12 @@ RUN if [ "${GGML_SYCL_F16}" = "ON" ]; then \
|
||||
echo "GGML_SYCL_F16 is set" && \
|
||||
export OPT_SYCL_F16="-DGGML_SYCL_F16=ON"; \
|
||||
fi && \
|
||||
cmake -B build -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ${OPT_SYCL_F16} && \
|
||||
echo "Building with static libs" && \
|
||||
cmake -B build -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx \
|
||||
${OPT_SYCL_F16} -DBUILD_SHARED_LIBS=OFF && \
|
||||
cmake --build build --config Release --target llama-cli
|
||||
|
||||
FROM intel/oneapi-basekit:$ONEAPI_VERSION as runtime
|
||||
FROM intel/oneapi-basekit:$ONEAPI_VERSION AS runtime
|
||||
|
||||
COPY --from=build /app/build/bin/llama-cli /llama-cli
|
||||
|
||||
|
||||
@@ -6,7 +6,7 @@ ARG ROCM_VERSION=5.6
|
||||
# Target the CUDA build image
|
||||
ARG BASE_ROCM_DEV_CONTAINER=rocm/dev-ubuntu-${UBUNTU_VERSION}:${ROCM_VERSION}-complete
|
||||
|
||||
FROM ${BASE_ROCM_DEV_CONTAINER} as build
|
||||
FROM ${BASE_ROCM_DEV_CONTAINER} AS build
|
||||
|
||||
# Unless otherwise specified, we make a fat build.
|
||||
# List from https://github.com/ggerganov/llama.cpp/pull/1087#issuecomment-1682807878
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
ARG UBUNTU_VERSION=jammy
|
||||
|
||||
FROM ubuntu:$UBUNTU_VERSION as build
|
||||
FROM ubuntu:$UBUNTU_VERSION AS build
|
||||
|
||||
# Install build tools
|
||||
RUN apt update && apt install -y git build-essential cmake wget libgomp1
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
ARG UBUNTU_VERSION=22.04
|
||||
|
||||
FROM ubuntu:$UBUNTU_VERSION as build
|
||||
FROM ubuntu:$UBUNTU_VERSION AS build
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential git
|
||||
@@ -11,7 +11,7 @@ COPY . .
|
||||
|
||||
RUN make -j$(nproc) llama-cli
|
||||
|
||||
FROM ubuntu:$UBUNTU_VERSION as runtime
|
||||
FROM ubuntu:$UBUNTU_VERSION AS runtime
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y libgomp1
|
||||
|
||||
@@ -6,7 +6,7 @@ ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VER
|
||||
# Target the CUDA runtime image
|
||||
ARG BASE_CUDA_RUN_CONTAINER=nvidia/cuda:${CUDA_VERSION}-runtime-ubuntu${UBUNTU_VERSION}
|
||||
|
||||
FROM ${BASE_CUDA_DEV_CONTAINER} as build
|
||||
FROM ${BASE_CUDA_DEV_CONTAINER} AS build
|
||||
|
||||
# Unless otherwise specified, we make a fat build.
|
||||
ARG CUDA_DOCKER_ARCH=all
|
||||
@@ -27,7 +27,7 @@ ENV LLAMA_CURL=1
|
||||
|
||||
RUN make -j$(nproc) llama-server
|
||||
|
||||
FROM ${BASE_CUDA_RUN_CONTAINER} as runtime
|
||||
FROM ${BASE_CUDA_RUN_CONTAINER} AS runtime
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y libcurl4-openssl-dev libgomp1 curl
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
ARG ONEAPI_VERSION=2024.1.1-devel-ubuntu22.04
|
||||
|
||||
FROM intel/oneapi-basekit:$ONEAPI_VERSION as build
|
||||
FROM intel/oneapi-basekit:$ONEAPI_VERSION AS build
|
||||
|
||||
ARG GGML_SYCL_F16=OFF
|
||||
RUN apt-get update && \
|
||||
@@ -14,10 +14,11 @@ RUN if [ "${GGML_SYCL_F16}" = "ON" ]; then \
|
||||
echo "GGML_SYCL_F16 is set" && \
|
||||
export OPT_SYCL_F16="-DGGML_SYCL_F16=ON"; \
|
||||
fi && \
|
||||
echo "Building with dynamic libs" && \
|
||||
cmake -B build -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_CURL=ON ${OPT_SYCL_F16} && \
|
||||
cmake --build build --config Release --target llama-server
|
||||
|
||||
FROM intel/oneapi-basekit:$ONEAPI_VERSION as runtime
|
||||
FROM intel/oneapi-basekit:$ONEAPI_VERSION AS runtime
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y libcurl4-openssl-dev curl
|
||||
|
||||
@@ -6,7 +6,7 @@ ARG ROCM_VERSION=5.6
|
||||
# Target the CUDA build image
|
||||
ARG BASE_ROCM_DEV_CONTAINER=rocm/dev-ubuntu-${UBUNTU_VERSION}:${ROCM_VERSION}-complete
|
||||
|
||||
FROM ${BASE_ROCM_DEV_CONTAINER} as build
|
||||
FROM ${BASE_ROCM_DEV_CONTAINER} AS build
|
||||
|
||||
# Unless otherwise specified, we make a fat build.
|
||||
# List from https://github.com/ggerganov/llama.cpp/pull/1087#issuecomment-1682807878
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
ARG UBUNTU_VERSION=jammy
|
||||
|
||||
FROM ubuntu:$UBUNTU_VERSION as build
|
||||
FROM ubuntu:$UBUNTU_VERSION AS build
|
||||
|
||||
# Install build tools
|
||||
RUN apt update && apt install -y git build-essential cmake wget
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
ARG UBUNTU_VERSION=22.04
|
||||
|
||||
FROM ubuntu:$UBUNTU_VERSION as build
|
||||
FROM ubuntu:$UBUNTU_VERSION AS build
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential git libcurl4-openssl-dev curl
|
||||
@@ -13,7 +13,7 @@ ENV LLAMA_CURL=1
|
||||
|
||||
RUN make -j$(nproc) llama-server
|
||||
|
||||
FROM ubuntu:$UBUNTU_VERSION as runtime
|
||||
FROM ubuntu:$UBUNTU_VERSION AS runtime
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y libcurl4-openssl-dev libgomp1
|
||||
|
||||
@@ -10,7 +10,6 @@
|
||||
"llama-embedding"
|
||||
"llama-server"
|
||||
"llama-quantize"
|
||||
"llama-train-text-from-scratch"
|
||||
];
|
||||
mkApp = name: {
|
||||
type = "app";
|
||||
|
||||
@@ -18,6 +18,7 @@
|
||||
vulkan-headers,
|
||||
vulkan-loader,
|
||||
curl,
|
||||
shaderc,
|
||||
useBlas ? builtins.all (x: !x) [
|
||||
useCuda
|
||||
useMetalKit
|
||||
@@ -125,16 +126,9 @@ let
|
||||
++ optionals useMetalKit [ MetalKit ];
|
||||
|
||||
cudaBuildInputs = with cudaPackages; [
|
||||
cuda_cccl.dev # <nv/target>
|
||||
|
||||
# A temporary hack for reducing the closure size, remove once cudaPackages
|
||||
# have stopped using lndir: https://github.com/NixOS/nixpkgs/issues/271792
|
||||
cuda_cudart.dev
|
||||
cuda_cudart.lib
|
||||
cuda_cudart.static
|
||||
libcublas.dev
|
||||
libcublas.lib
|
||||
libcublas.static
|
||||
cuda_cudart
|
||||
cuda_cccl # <nv/target>
|
||||
libcublas
|
||||
];
|
||||
|
||||
rocmBuildInputs = with rocmPackages; [
|
||||
@@ -146,6 +140,7 @@ let
|
||||
vulkanBuildInputs = [
|
||||
vulkan-headers
|
||||
vulkan-loader
|
||||
shaderc
|
||||
];
|
||||
in
|
||||
|
||||
|
||||
@@ -8,13 +8,11 @@ arg1="$1"
|
||||
shift
|
||||
|
||||
if [[ "$arg1" == '--convert' || "$arg1" == '-c' ]]; then
|
||||
python3 ./convert-hf-to-gguf.py "$@"
|
||||
python3 ./convert_hf_to_gguf.py "$@"
|
||||
elif [[ "$arg1" == '--quantize' || "$arg1" == '-q' ]]; then
|
||||
./llama-quantize "$@"
|
||||
elif [[ "$arg1" == '--run' || "$arg1" == '-r' ]]; then
|
||||
./llama-cli "$@"
|
||||
elif [[ "$arg1" == '--finetune' || "$arg1" == '-f' ]]; then
|
||||
./llama-finetune "$@"
|
||||
elif [[ "$arg1" == '--all-in-one' || "$arg1" == '-a' ]]; then
|
||||
echo "Converting PTH to GGML..."
|
||||
for i in `ls $1/$2/ggml-model-f16.bin*`; do
|
||||
@@ -36,8 +34,6 @@ else
|
||||
echo " ex: --outtype f16 \"/models/7B/\" "
|
||||
echo " --quantize (-q): Optimize with quantization process ggml"
|
||||
echo " ex: \"/models/7B/ggml-model-f16.bin\" \"/models/7B/ggml-model-q4_0.bin\" 2"
|
||||
echo " --finetune (-f): Run finetune command to create a lora finetune of the model"
|
||||
echo " See documentation for finetune for command-line parameters"
|
||||
echo " --all-in-one (-a): Execute --convert & --quantize"
|
||||
echo " ex: \"/models/\" 7B"
|
||||
echo " --server (-s): Run a model on the server"
|
||||
|
||||
7
.github/workflows/build.yml
vendored
7
.github/workflows/build.yml
vendored
@@ -355,8 +355,10 @@ jobs:
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential libvulkan-dev
|
||||
wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | sudo apt-key add -
|
||||
sudo wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list
|
||||
sudo apt-get update -y
|
||||
sudo apt-get install -y build-essential vulkan-sdk
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
@@ -858,6 +860,7 @@ jobs:
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_CUDA=ON -DBUILD_SHARED_LIBS=ON
|
||||
cmake --build . --config Release -j $((${env:NUMBER_OF_PROCESSORS} - 1)) -t ggml
|
||||
cmake --build . --config Release -j ${env:NUMBER_OF_PROCESSORS}
|
||||
|
||||
- name: Determine tag name
|
||||
|
||||
6
.gitignore
vendored
6
.gitignore
vendored
@@ -50,6 +50,7 @@ build*
|
||||
!docs/build.md
|
||||
/libllama.so
|
||||
/llama-*
|
||||
/vulkan-shaders-gen
|
||||
android-ndk-*
|
||||
arm_neon.h
|
||||
cmake-build-*
|
||||
@@ -61,6 +62,11 @@ llama-batched-swift
|
||||
out/
|
||||
tmp/
|
||||
|
||||
# Deprecated
|
||||
|
||||
/main
|
||||
/server
|
||||
|
||||
# CI
|
||||
|
||||
!.github/workflows/*.yml
|
||||
|
||||
@@ -106,6 +106,7 @@ llama_option_depr(WARNING LLAMA_NATIVE GGML_NATIVE)
|
||||
llama_option_depr(WARNING LLAMA_RPC GGML_RPC)
|
||||
llama_option_depr(WARNING LLAMA_SYCL GGML_SYCL)
|
||||
llama_option_depr(WARNING LLAMA_SYCL_F16 GGML_SYCL_F16)
|
||||
llama_option_depr(WARNING LLAMA_CANN GGML_CANN)
|
||||
|
||||
#
|
||||
# build the library
|
||||
@@ -132,7 +133,17 @@ set(LLAMA_INCLUDE_INSTALL_DIR ${CMAKE_INSTALL_INCLUDEDIR} CACHE PATH "Location o
|
||||
set(LLAMA_LIB_INSTALL_DIR ${CMAKE_INSTALL_LIBDIR} CACHE PATH "Location of library files")
|
||||
set(LLAMA_BIN_INSTALL_DIR ${CMAKE_INSTALL_BINDIR} CACHE PATH "Location of binary files")
|
||||
|
||||
get_directory_property(LLAMA_TRANSIENT_DEFINES COMPILE_DEFINITIONS)
|
||||
|
||||
# At the moment some compile definitions are placed within the ggml/src
|
||||
# directory but not exported on the `ggml` target. This could be improved by
|
||||
# determining _precisely_ which defines are necessary for the llama-config
|
||||
# package.
|
||||
#
|
||||
get_target_property(GGML_DIRECTORY ggml SOURCE_DIR)
|
||||
get_directory_property(GGML_DIR_DEFINES DIRECTORY ${GGML_DIRECTORY} COMPILE_DEFINITIONS)
|
||||
get_target_property(GGML_TARGET_DEFINES ggml COMPILE_DEFINITIONS)
|
||||
set(GGML_TRANSIENT_DEFINES ${GGML_TARGET_DEFINES} ${GGML_DIR_DEFINES})
|
||||
get_target_property(GGML_LINK_LIBRARIES ggml LINK_LIBRARIES)
|
||||
|
||||
set_target_properties(llama PROPERTIES PUBLIC_HEADER ${CMAKE_CURRENT_SOURCE_DIR}/include/llama.h)
|
||||
install(TARGETS llama LIBRARY PUBLIC_HEADER)
|
||||
|
||||
@@ -1,13 +1,17 @@
|
||||
# Pull requests
|
||||
# Pull requests (for contributors)
|
||||
|
||||
- Always squash-merge the PR before merging
|
||||
- Use the following format for your final commit: `<module> : <commit title> (#<issue_number>)`. For example: `utils : fix typo in utils.py (#1234)`
|
||||
- Test your changes:
|
||||
- Using the commands in the [`tests`](tests) folder. For instance, running the `./tests/test-backend-ops` command tests different backend implementations of the GGML library
|
||||
- Execute [the full CI locally on your machine](ci/README.md) before publishing
|
||||
- If the pull request contains only documentation changes (e.g., updating READMEs, adding new wiki pages), please add `[no ci]` to the commit title. This will skip unnecessary CI checks and help reduce build times
|
||||
- Please rate the complexity of your PR (i.e. `Review Complexity : Low`, `Review Complexity : Medium`, `Review Complexity : High`). This makes it easier for maintainers to triage the PRs.
|
||||
- The PR template has a series of review complexity checkboxes `[ ]` that [you can mark as](https://docs.github.com/en/get-started/writing-on-github/working-with-advanced-formatting/about-task-lists) `[X]` for your conveience
|
||||
- The PR template has a series of review complexity checkboxes `[ ]` that [you can mark as](https://docs.github.com/en/get-started/writing-on-github/working-with-advanced-formatting/about-task-lists) `[X]` for your convenience
|
||||
- If your PR becomes stale, don't hesitate to ping the maintainers in the comments
|
||||
|
||||
# Pull requests (for collaborators)
|
||||
|
||||
- Squash-merge PRs
|
||||
- Use the following format for the squashed commit title: `<module> : <commit title> (#<issue_number>)`. For example: `utils : fix typo in utils.py (#1234)`
|
||||
- Optionally, pick a `<module>` from here: https://github.com/ggerganov/llama.cpp/wiki/Modules
|
||||
|
||||
# Coding guidelines
|
||||
|
||||
|
||||
207
Makefile
207
Makefile
@@ -11,7 +11,6 @@ BUILD_TARGETS = \
|
||||
llama-embedding \
|
||||
llama-eval-callback \
|
||||
llama-export-lora \
|
||||
llama-finetune \
|
||||
llama-gbnf-validator \
|
||||
llama-gguf \
|
||||
llama-gguf-hash \
|
||||
@@ -37,7 +36,6 @@ BUILD_TARGETS = \
|
||||
llama-simple \
|
||||
llama-speculative \
|
||||
llama-tokenize \
|
||||
llama-train-text-from-scratch \
|
||||
llama-vdot \
|
||||
llama-cvector-generator \
|
||||
tests/test-c.o
|
||||
@@ -64,13 +62,13 @@ TEST_TARGETS = \
|
||||
tests/test-tokenizer-1-spm
|
||||
|
||||
# Legacy build targets that were renamed in #7809, but should still be removed when the project is cleaned
|
||||
LEGACY_TARGETS_CLEAN = main quantize quantize-stats perplexity imatrix embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml \
|
||||
LEGACY_TARGETS_CLEAN = main quantize quantize-stats perplexity imatrix embedding vdot q8dot convert-llama2c-to-ggml \
|
||||
simple batched batched-bench save-load-state server gguf gguf-split eval-callback llama-bench libllava.a llava-cli baby-llama \
|
||||
retrieval speculative infill tokenize benchmark-matmult parallel finetune export-lora lookahead lookup passkey gritlm
|
||||
retrieval speculative infill tokenize benchmark-matmult parallel export-lora lookahead lookup passkey gritlm
|
||||
|
||||
# Legacy build targets that were renamed in #7809, but we want to build binaries that for them that output a deprecation warning if people try to use them.
|
||||
# We don't want to clutter things too much, so we only build replacements for the most commonly used binaries.
|
||||
LEGACY_TARGETS_BUILD = main quantize perplexity embedding server finetune
|
||||
LEGACY_TARGETS_BUILD = main quantize perplexity embedding server
|
||||
|
||||
# Deprecation aliases
|
||||
ifdef LLAMA_CUBLAS
|
||||
@@ -197,6 +195,10 @@ ifdef GGML_RPC
|
||||
BUILD_TARGETS += rpc-server
|
||||
endif
|
||||
|
||||
ifdef GGML_VULKAN
|
||||
BUILD_TARGETS += vulkan-shaders-gen
|
||||
endif
|
||||
|
||||
default: $(BUILD_TARGETS) $(LEGACY_TARGETS_BUILD)
|
||||
|
||||
test: $(TEST_TARGETS)
|
||||
@@ -323,9 +325,9 @@ ifdef LLAMA_DEBUG
|
||||
endif
|
||||
else
|
||||
MK_CPPFLAGS += -DNDEBUG
|
||||
MK_CFLAGS += -O3
|
||||
MK_CXXFLAGS += -O3
|
||||
MK_NVCCFLAGS += -O3
|
||||
MK_CFLAGS += -O3 -g
|
||||
MK_CXXFLAGS += -O3 -g
|
||||
MK_NVCCFLAGS += -O3 -g
|
||||
endif
|
||||
|
||||
ifdef LLAMA_SANITIZE_THREAD
|
||||
@@ -526,10 +528,21 @@ ifndef GGML_NO_ACCELERATE
|
||||
endif
|
||||
endif # GGML_NO_ACCELERATE
|
||||
|
||||
ifdef GGML_MUSA
|
||||
CC := clang
|
||||
CXX := clang++
|
||||
GGML_CUDA := 1
|
||||
MK_CPPFLAGS += -DGGML_USE_MUSA
|
||||
endif
|
||||
|
||||
ifndef GGML_NO_OPENMP
|
||||
MK_CPPFLAGS += -DGGML_USE_OPENMP
|
||||
MK_CFLAGS += -fopenmp
|
||||
MK_CXXFLAGS += -fopenmp
|
||||
ifdef GGML_MUSA
|
||||
MK_CPPFLAGS += -I/usr/lib/llvm-10/include/openmp
|
||||
MK_LDFLAGS += -L/usr/lib/llvm-10/lib
|
||||
endif # GGML_MUSA
|
||||
endif # GGML_NO_OPENMP
|
||||
|
||||
ifdef GGML_OPENBLAS
|
||||
@@ -547,11 +560,17 @@ ifdef GGML_OPENBLAS64
|
||||
endif # GGML_OPENBLAS64
|
||||
|
||||
ifdef GGML_BLIS
|
||||
MK_CPPFLAGS += -DGGML_USE_BLAS -I/usr/local/include/blis -I/usr/include/blis
|
||||
MK_CPPFLAGS += -DGGML_USE_BLAS -DGGML_BLAS_USE_BLIS -I/usr/local/include/blis -I/usr/include/blis
|
||||
MK_LDFLAGS += -lblis -L/usr/local/lib
|
||||
OBJ_GGML += ggml/src/ggml-blas.o
|
||||
endif # GGML_BLIS
|
||||
|
||||
ifdef GGML_NVPL
|
||||
MK_CPPFLAGS += -DGGML_USE_BLAS -DGGML_BLAS_USE_NVPL -DNVPL_ILP64 -I/usr/local/include/nvpl_blas -I/usr/include/nvpl_blas
|
||||
MK_LDFLAGS += -L/usr/local/lib -lnvpl_blas_core -lnvpl_blas_ilp64_gomp
|
||||
OBJ_GGML += ggml/src/ggml-blas.o
|
||||
endif # GGML_NVPL
|
||||
|
||||
ifndef GGML_NO_LLAMAFILE
|
||||
MK_CPPFLAGS += -DGGML_USE_LLAMAFILE
|
||||
OBJ_GGML += ggml/src/llamafile/sgemm.o
|
||||
@@ -574,15 +593,27 @@ else
|
||||
endif # GGML_CUDA_FA_ALL_QUANTS
|
||||
|
||||
ifdef GGML_CUDA
|
||||
ifneq ('', '$(wildcard /opt/cuda)')
|
||||
CUDA_PATH ?= /opt/cuda
|
||||
else
|
||||
CUDA_PATH ?= /usr/local/cuda
|
||||
endif
|
||||
ifdef GGML_MUSA
|
||||
ifneq ('', '$(wildcard /opt/musa)')
|
||||
CUDA_PATH ?= /opt/musa
|
||||
else
|
||||
CUDA_PATH ?= /usr/local/musa
|
||||
endif
|
||||
|
||||
MK_CPPFLAGS += -DGGML_USE_CUDA -I$(CUDA_PATH)/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include -DGGML_CUDA_USE_GRAPHS
|
||||
MK_LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L$(CUDA_PATH)/lib64 -L/usr/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib -L$(CUDA_PATH)/lib64/stubs -L/usr/lib/wsl/lib
|
||||
MK_NVCCFLAGS += -use_fast_math
|
||||
MK_CPPFLAGS += -DGGML_USE_CUDA -I$(CUDA_PATH)/include
|
||||
MK_LDFLAGS += -lmusa -lmublas -lmusart -lpthread -ldl -lrt -L$(CUDA_PATH)/lib -L/usr/lib64
|
||||
MK_NVCCFLAGS += -x musa -mtgpu --cuda-gpu-arch=mp_22
|
||||
else
|
||||
ifneq ('', '$(wildcard /opt/cuda)')
|
||||
CUDA_PATH ?= /opt/cuda
|
||||
else
|
||||
CUDA_PATH ?= /usr/local/cuda
|
||||
endif
|
||||
|
||||
MK_CPPFLAGS += -DGGML_USE_CUDA -I$(CUDA_PATH)/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include -DGGML_CUDA_USE_GRAPHS
|
||||
MK_LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L$(CUDA_PATH)/lib64 -L/usr/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib -L$(CUDA_PATH)/lib64/stubs -L/usr/lib/wsl/lib
|
||||
MK_NVCCFLAGS += -use_fast_math
|
||||
endif # GGML_MUSA
|
||||
|
||||
OBJ_GGML += ggml/src/ggml-cuda.o
|
||||
OBJ_GGML += $(patsubst %.cu,%.o,$(wildcard ggml/src/ggml-cuda/*.cu))
|
||||
@@ -592,9 +623,11 @@ ifdef LLAMA_FATAL_WARNINGS
|
||||
MK_NVCCFLAGS += -Werror all-warnings
|
||||
endif # LLAMA_FATAL_WARNINGS
|
||||
|
||||
ifndef GGML_MUSA
|
||||
ifndef JETSON_EOL_MODULE_DETECT
|
||||
MK_NVCCFLAGS += --forward-unknown-to-host-compiler
|
||||
endif # JETSON_EOL_MODULE_DETECT
|
||||
endif # GGML_MUSA
|
||||
|
||||
ifdef LLAMA_DEBUG
|
||||
MK_NVCCFLAGS += -lineinfo
|
||||
@@ -607,8 +640,12 @@ endif # GGML_CUDA_DEBUG
|
||||
ifdef GGML_CUDA_NVCC
|
||||
NVCC = $(CCACHE) $(GGML_CUDA_NVCC)
|
||||
else
|
||||
NVCC = $(CCACHE) nvcc
|
||||
endif #GGML_CUDA_NVCC
|
||||
ifdef GGML_MUSA
|
||||
NVCC = $(CCACHE) mcc
|
||||
else
|
||||
NVCC = $(CCACHE) nvcc
|
||||
endif # GGML_MUSA
|
||||
endif # GGML_CUDA_NVCC
|
||||
|
||||
ifdef CUDA_DOCKER_ARCH
|
||||
MK_NVCCFLAGS += -Wno-deprecated-gpu-targets -arch=$(CUDA_DOCKER_ARCH)
|
||||
@@ -679,9 +716,15 @@ define NVCC_COMPILE
|
||||
$(NVCC) -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUDA -I/usr/local/cuda/include -I/opt/cuda/include -I/usr/local/cuda/targets/aarch64-linux/include -std=c++11 -O3 $(NVCCFLAGS) $(CPPFLAGS) -Xcompiler "$(CUDA_CXXFLAGS)" -c $< -o $@
|
||||
endef # NVCC_COMPILE
|
||||
else
|
||||
ifdef GGML_MUSA
|
||||
define NVCC_COMPILE
|
||||
$(NVCC) $(NVCCFLAGS) $(CPPFLAGS) -c $< -o $@
|
||||
endef # NVCC_COMPILE
|
||||
else
|
||||
define NVCC_COMPILE
|
||||
$(NVCC) $(NVCCFLAGS) $(CPPFLAGS) -Xcompiler "$(CUDA_CXXFLAGS)" -c $< -o $@
|
||||
endef # NVCC_COMPILE
|
||||
endif # GGML_MUSA
|
||||
endif # JETSON_EOL_MODULE_DETECT
|
||||
|
||||
ggml/src/ggml-cuda/%.o: \
|
||||
@@ -704,8 +747,8 @@ endif # GGML_CUDA
|
||||
|
||||
ifdef GGML_VULKAN
|
||||
MK_CPPFLAGS += -DGGML_USE_VULKAN
|
||||
MK_LDFLAGS += -lvulkan
|
||||
OBJ_GGML += ggml/src/ggml-vulkan.o
|
||||
MK_LDFLAGS += $(shell pkg-config --libs vulkan)
|
||||
OBJ_GGML += ggml/src/ggml-vulkan.o ggml/src/ggml-vulkan-shaders.o
|
||||
|
||||
ifdef GGML_VULKAN_CHECK_RESULTS
|
||||
MK_CPPFLAGS += -DGGML_VULKAN_CHECK_RESULTS
|
||||
@@ -727,10 +770,28 @@ ifdef GGML_VULKAN_RUN_TESTS
|
||||
MK_CPPFLAGS += -DGGML_VULKAN_RUN_TESTS
|
||||
endif
|
||||
|
||||
ggml/src/ggml-vulkan.o: \
|
||||
ggml/src/ggml-vulkan.cpp \
|
||||
ggml/include/ggml-vulkan.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
GLSLC_CMD = glslc
|
||||
_ggml_vk_genshaders_cmd = $(shell pwd)/vulkan-shaders-gen
|
||||
_ggml_vk_header = ggml/src/ggml-vulkan-shaders.hpp
|
||||
_ggml_vk_source = ggml/src/ggml-vulkan-shaders.cpp
|
||||
_ggml_vk_input_dir = ggml/src/vulkan-shaders
|
||||
_ggml_vk_shader_deps = $(echo $(_ggml_vk_input_dir)/*.comp)
|
||||
|
||||
ggml/src/ggml-vulkan.o: ggml/src/ggml-vulkan.cpp ggml/include/ggml-vulkan.h $(_ggml_vk_header) $(_ggml_vk_source)
|
||||
$(CXX) $(CXXFLAGS) $(shell pkg-config --cflags vulkan) -c $< -o $@
|
||||
|
||||
$(_ggml_vk_header): $(_ggml_vk_source)
|
||||
|
||||
$(_ggml_vk_source): $(_ggml_vk_shader_deps) vulkan-shaders-gen
|
||||
$(_ggml_vk_genshaders_cmd) \
|
||||
--glslc $(GLSLC_CMD) \
|
||||
--input-dir $(_ggml_vk_input_dir) \
|
||||
--target-hpp $(_ggml_vk_header) \
|
||||
--target-cpp $(_ggml_vk_source)
|
||||
|
||||
vulkan-shaders-gen: ggml/src/vulkan-shaders/vulkan-shaders-gen.cpp
|
||||
$(CXX) $(CXXFLAGS) -o $@ $(LDFLAGS) ggml/src/vulkan-shaders/vulkan-shaders-gen.cpp
|
||||
|
||||
endif # GGML_VULKAN
|
||||
|
||||
ifdef GGML_HIPBLAS
|
||||
@@ -767,6 +828,14 @@ ifdef GGML_CUDA_FORCE_DMMV
|
||||
HIPFLAGS += -DGGML_CUDA_FORCE_DMMV
|
||||
endif # GGML_CUDA_FORCE_DMMV
|
||||
|
||||
ifdef GGML_CUDA_FORCE_MMQ
|
||||
HIPFLAGS += -DGGML_CUDA_FORCE_MMQ
|
||||
endif # GGML_CUDA_FORCE_MMQ
|
||||
|
||||
ifdef GGML_CUDA_FORCE_CUBLAS
|
||||
HIPFLAGS += -DGGML_CUDA_FORCE_CUBLAS
|
||||
endif # GGML_CUDA_FORCE_CUBLAS
|
||||
|
||||
ifdef GGML_CUDA_NO_PEER_COPY
|
||||
HIPFLAGS += -DGGML_CUDA_NO_PEER_COPY
|
||||
endif # GGML_CUDA_NO_PEER_COPY
|
||||
@@ -840,6 +909,9 @@ OBJ_GGML += \
|
||||
|
||||
OBJ_LLAMA = \
|
||||
src/llama.o \
|
||||
src/llama-vocab.o \
|
||||
src/llama-grammar.o \
|
||||
src/llama-sampling.o \
|
||||
src/unicode.o \
|
||||
src/unicode-data.o
|
||||
|
||||
@@ -907,6 +979,7 @@ $(info I CXX: $(shell $(CXX) --version | head -n 1))
|
||||
ifdef GGML_CUDA
|
||||
$(info I NVCC: $(shell $(NVCC) --version | tail -n 1))
|
||||
CUDA_VERSION := $(shell $(NVCC) --version | grep -oP 'release (\K[0-9]+\.[0-9])')
|
||||
ifndef GGML_MUSA
|
||||
ifeq ($(shell awk -v "v=$(CUDA_VERSION)" 'BEGIN { print (v < 11.7) }'),1)
|
||||
|
||||
ifndef CUDA_DOCKER_ARCH
|
||||
@@ -916,6 +989,7 @@ endif # CUDA_POWER_ARCH
|
||||
endif # CUDA_DOCKER_ARCH
|
||||
|
||||
endif # eq ($(shell echo "$(CUDA_VERSION) < 11.7" | bc),1)
|
||||
endif # GGML_MUSA
|
||||
endif # GGML_CUDA
|
||||
$(info )
|
||||
|
||||
@@ -1019,6 +1093,10 @@ src/unicode-data.o: \
|
||||
|
||||
src/llama.o: \
|
||||
src/llama.cpp \
|
||||
src/llama-impl.h \
|
||||
src/llama-vocab.h \
|
||||
src/llama-grammar.h \
|
||||
src/llama-sampling.h \
|
||||
src/unicode.h \
|
||||
include/llama.h \
|
||||
ggml/include/ggml-cuda.h \
|
||||
@@ -1028,6 +1106,29 @@ src/llama.o: \
|
||||
ggml/include/ggml-backend.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
src/llama-vocab.o: \
|
||||
src/llama-vocab.cpp \
|
||||
src/llama-vocab.h \
|
||||
src/llama-impl.h \
|
||||
include/llama.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
src/llama-grammar.o: \
|
||||
src/llama-grammar.cpp \
|
||||
src/llama-grammar.h \
|
||||
src/llama-impl.h \
|
||||
src/llama-vocab.h \
|
||||
src/llama-sampling.h \
|
||||
include/llama.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
src/llama-sampling.o: \
|
||||
src/llama-sampling.cpp \
|
||||
src/llama-sampling.h \
|
||||
src/llama-impl.h \
|
||||
include/llama.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
$(LIB_LLAMA): \
|
||||
$(OBJ_LLAMA) \
|
||||
$(LIB_GGML)
|
||||
@@ -1110,6 +1211,7 @@ clean:
|
||||
rm -vrf ggml/src/ggml-cuda/template-instances/*.o
|
||||
rm -rvf $(BUILD_TARGETS)
|
||||
rm -rvf $(TEST_TARGETS)
|
||||
rm -f vulkan-shaders-gen ggml/src/ggml-vulkan-shaders.hpp ggml/src/ggml-vulkan-shaders.cpp
|
||||
rm -rvf $(LEGACY_TARGETS_CLEAN)
|
||||
find examples pocs -type f -name "*.o" -delete
|
||||
|
||||
@@ -1229,11 +1331,6 @@ llama-cvector-generator: examples/cvector-generator/cvector-generator.cpp \
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-convert-llama2c-to-ggml: examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp \
|
||||
$(OBJ_GGML) $(OBJ_LLAMA)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
@@ -1249,13 +1346,8 @@ llama-baby-llama: examples/baby-llama/baby-llama.cpp \
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-finetune: examples/finetune/finetune.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-export-lora: examples/export-lora/export-lora.cpp \
|
||||
$(OBJ_GGML) common/log.h
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
@@ -1402,7 +1494,7 @@ run-benchmark-matmult: llama-benchmark-matmult
|
||||
.PHONY: run-benchmark-matmult swift
|
||||
|
||||
tests/test-llama-grammar: tests/test-llama-grammar.cpp \
|
||||
$(OBJ_GGML) $(OBJ_COMMON) src/unicode.o src/unicode-data.o
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
@@ -1511,56 +1603,45 @@ llama-q8dot: pocs/vdot/q8dot.cpp ggml/src/ggml.o \
|
||||
# Deprecated binaries that we want to keep around long enough for people to migrate to the new filenames, then these can be removed.
|
||||
#
|
||||
# Mark legacy binary targets as .PHONY so that they are always checked.
|
||||
.PHONY: main quantize perplexity embedding server finetune
|
||||
.PHONY: main quantize perplexity embedding server
|
||||
|
||||
# Define the object file target
|
||||
examples/deprecation-warning/deprecation-warning.o: examples/deprecation-warning/deprecation-warning.cpp
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
# NOTE: We currently will always build the deprecation-warning `main` and `server` binaries to help users migrate.
|
||||
# Eventually we will want to remove these target from building all the time.
|
||||
main: examples/deprecation-warning/deprecation-warning.cpp
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
main: examples/deprecation-warning/deprecation-warning.o
|
||||
$(CXX) $(CXXFLAGS) $< -o $@ $(LDFLAGS)
|
||||
@echo "NOTICE: The 'main' binary is deprecated. Please use 'llama-cli' instead."
|
||||
|
||||
server: examples/deprecation-warning/deprecation-warning.cpp
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
server: examples/deprecation-warning/deprecation-warning.o
|
||||
$(CXX) $(CXXFLAGS) $< -o $@ $(LDFLAGS)
|
||||
@echo "NOTICE: The 'server' binary is deprecated. Please use 'llama-server' instead."
|
||||
|
||||
quantize: examples/deprecation-warning/deprecation-warning.cpp
|
||||
quantize: examples/deprecation-warning/deprecation-warning.o
|
||||
ifneq (,$(wildcard quantize))
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) $< -o $@ $(LDFLAGS)
|
||||
@echo "#########"
|
||||
@echo "WARNING: The 'quantize' binary is deprecated. Please use 'llama-quantize' instead."
|
||||
@echo " Remove the 'quantize' binary to remove this warning."
|
||||
@echo "#########"
|
||||
endif
|
||||
|
||||
perplexity: examples/deprecation-warning/deprecation-warning.cpp
|
||||
perplexity: examples/deprecation-warning/deprecation-warning.o
|
||||
ifneq (,$(wildcard perplexity))
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) $< -o $@ $(LDFLAGS)
|
||||
@echo "#########"
|
||||
@echo "WARNING: The 'perplexity' binary is deprecated. Please use 'llama-perplexity' instead."
|
||||
@echo " Remove the 'perplexity' binary to remove this warning."
|
||||
@echo "#########"
|
||||
endif
|
||||
|
||||
embedding: examples/deprecation-warning/deprecation-warning.cpp
|
||||
embedding: examples/deprecation-warning/deprecation-warning.o
|
||||
ifneq (,$(wildcard embedding))
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
$(CXX) $(CXXFLAGS) $< -o $@ $(LDFLAGS)
|
||||
@echo "#########"
|
||||
@echo "WARNING: The 'embedding' binary is deprecated. Please use 'llama-embedding' instead."
|
||||
@echo " Remove the 'embedding' binary to remove this warning."
|
||||
@echo "#########"
|
||||
endif
|
||||
|
||||
finetune: examples/deprecation-warning/deprecation-warning.cpp
|
||||
ifneq (,$(wildcard finetune))
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
@echo "#########"
|
||||
@echo "WARNING: The 'finetune' binary is deprecated. Please use 'llama-finetune' instead."
|
||||
@echo " Remove the 'finetune' binary to remove this warning."
|
||||
@echo "#########"
|
||||
endif
|
||||
|
||||
@@ -4,6 +4,9 @@ import PackageDescription
|
||||
|
||||
var sources = [
|
||||
"src/llama.cpp",
|
||||
"src/llama-vocab.cpp",
|
||||
"src/llama-grammar.cpp",
|
||||
"src/llama-sampling.cpp",
|
||||
"src/unicode.cpp",
|
||||
"src/unicode-data.cpp",
|
||||
"ggml/src/ggml.c",
|
||||
|
||||
@@ -3,7 +3,7 @@
|
||||

|
||||
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
[](https://github.com/ggerganov/llama.cpp/actions/workflows/server.yml)
|
||||
[](https://github.com/ggerganov/llama.cpp/actions/workflows/server.yml)
|
||||
[](https://conan.io/center/llama-cpp)
|
||||
|
||||
[Roadmap](https://github.com/users/ggerganov/projects/7) / [Project status](https://github.com/ggerganov/llama.cpp/discussions/3471) / [Manifesto](https://github.com/ggerganov/llama.cpp/discussions/205) / [ggml](https://github.com/ggerganov/ggml)
|
||||
@@ -138,6 +138,7 @@ Typically finetunes of the base models below are supported as well.
|
||||
|
||||
Unless otherwise noted these projects are open-source with permissive licensing:
|
||||
|
||||
- [MindWorkAI/AI-Studio](https://github.com/MindWorkAI/AI-Studio) (FSL-1.1-MIT)
|
||||
- [iohub/collama](https://github.com/iohub/coLLaMA)
|
||||
- [janhq/jan](https://github.com/janhq/jan) (AGPL)
|
||||
- [nat/openplayground](https://github.com/nat/openplayground)
|
||||
@@ -181,6 +182,9 @@ Unless otherwise noted these projects are open-source with permissive licensing:
|
||||
|
||||
- [Paddler](https://github.com/distantmagic/paddler) - Stateful load balancer custom-tailored for llama.cpp
|
||||
|
||||
**Games:**
|
||||
- [Lucy's Labyrinth](https://github.com/MorganRO8/Lucys_Labyrinth) - A simple maze game where agents controlled by an AI model will try to trick you.
|
||||
|
||||
## Demo
|
||||
|
||||
<details>
|
||||
@@ -405,6 +409,7 @@ Please refer to [Build llama.cpp locally](./docs/build.md)
|
||||
| [BLAS](./docs/build.md#blas-build) | All |
|
||||
| [BLIS](./docs/backend/BLIS.md) | All |
|
||||
| [SYCL](./docs/backend/SYCL.md) | Intel and Nvidia GPU |
|
||||
| [MUSA](./docs/build.md#musa) | Moore Threads GPU |
|
||||
| [CUDA](./docs/build.md#cuda) | Nvidia GPU |
|
||||
| [hipBLAS](./docs/build.md#hipblas) | AMD GPU |
|
||||
| [Vulkan](./docs/build.md#vulkan) | GPU |
|
||||
|
||||
@@ -8,6 +8,13 @@ set(GGML_CUDA @GGML_CUDA@)
|
||||
set(GGML_METAL @GGML_METAL@)
|
||||
set(GGML_HIPBLAS @GGML_HIPBLAS@)
|
||||
set(GGML_ACCELERATE @GGML_ACCELERATE@)
|
||||
set(GGML_VULKAN @GGML_VULKAN@)
|
||||
set(GGML_VULKAN_CHECK_RESULTS @GGML_VULKAN_CHECK_RESULTS@)
|
||||
set(GGML_VULKAN_DEBUG @GGML_VULKAN_DEBUG@)
|
||||
set(GGML_VULKAN_MEMORY_DEBUG @GGML_VULKAN_MEMORY_DEBUG@)
|
||||
set(GGML_VULKAN_VALIDATE @GGML_VULKAN_VALIDATE@)
|
||||
set(GGML_SYCL @GGML_SYCL@)
|
||||
set(GGML_OPENMP @GGML_OPENMP@)
|
||||
|
||||
@PACKAGE_INIT@
|
||||
|
||||
@@ -37,18 +44,36 @@ if (GGML_METAL)
|
||||
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
|
||||
endif()
|
||||
|
||||
if (GGML_VULKAN)
|
||||
find_package(Vulkan REQUIRED)
|
||||
endif()
|
||||
|
||||
if (GGML_HIPBLAS)
|
||||
find_package(hip REQUIRED)
|
||||
find_package(hipblas REQUIRED)
|
||||
find_package(rocblas REQUIRED)
|
||||
endif()
|
||||
|
||||
if (GGML_SYCL)
|
||||
find_package(IntelSYCL REQUIRED)
|
||||
find_package(MKL REQUIRED)
|
||||
endif()
|
||||
|
||||
if (GGML_OPENMP)
|
||||
find_package(OpenMP REQUIRED)
|
||||
endif()
|
||||
|
||||
|
||||
find_library(ggml_LIBRARY ggml
|
||||
REQUIRED
|
||||
HINTS ${LLAMA_LIB_DIR})
|
||||
|
||||
find_library(llama_LIBRARY llama
|
||||
REQUIRED
|
||||
HINTS ${LLAMA_LIB_DIR})
|
||||
|
||||
set(_llama_link_deps "Threads::Threads" "@LLAMA_EXTRA_LIBS@")
|
||||
set(_llama_transient_defines "@LLAMA_TRANSIENT_DEFINES@")
|
||||
set(_llama_link_deps "${ggml_LIBRARY}" "@GGML_LINK_LIBRARIES@")
|
||||
set(_llama_transient_defines "@GGML_TRANSIENT_DEFINES@")
|
||||
|
||||
add_library(llama UNKNOWN IMPORTED)
|
||||
|
||||
|
||||
@@ -685,7 +685,6 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
|
||||
if (arg == "--lora") {
|
||||
CHECK_ARG
|
||||
params.lora_adapter.emplace_back(argv[i], 1.0f);
|
||||
params.use_mmap = false;
|
||||
return true;
|
||||
}
|
||||
if (arg == "--lora-scaled") {
|
||||
@@ -693,12 +692,6 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
|
||||
const char* lora_adapter = argv[i];
|
||||
CHECK_ARG
|
||||
params.lora_adapter.emplace_back(lora_adapter, std::stof(argv[i]));
|
||||
params.use_mmap = false;
|
||||
return true;
|
||||
}
|
||||
if (arg == "--lora-base") {
|
||||
CHECK_ARG
|
||||
params.lora_base = argv[i];
|
||||
return true;
|
||||
}
|
||||
if (arg == "--control-vector") {
|
||||
@@ -797,6 +790,10 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
|
||||
params.cont_batching = true;
|
||||
return true;
|
||||
}
|
||||
if (arg == "-nocb" || arg == "--no-cont-batching") {
|
||||
params.cont_batching = false;
|
||||
return true;
|
||||
}
|
||||
if (arg == "-fa" || arg == "--flash-attn") {
|
||||
params.flash_attn = true;
|
||||
return true;
|
||||
@@ -1272,6 +1269,7 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
|
||||
CHECK_ARG
|
||||
params.out_file = argv[i];
|
||||
params.cvector_outfile = argv[i];
|
||||
params.lora_outfile = argv[i];
|
||||
return true;
|
||||
}
|
||||
if (arg == "-ofreq" || arg == "--output-frequency") {
|
||||
@@ -1326,6 +1324,10 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
|
||||
else { invalid_param = true; }
|
||||
return true;
|
||||
}
|
||||
if (arg == "--no-warmup") {
|
||||
params.warmup = false;
|
||||
return true;
|
||||
}
|
||||
#ifndef LOG_DISABLE_LOGS
|
||||
// Parse args for logging parameters
|
||||
if (log_param_single_parse(argv[i])) {
|
||||
@@ -1448,6 +1450,7 @@ void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & param
|
||||
options.push_back({ "main infill", " --in-prefix-bos", "prefix BOS to user inputs, preceding the `--in-prefix` string" });
|
||||
options.push_back({ "main infill", " --in-prefix STRING", "string to prefix user inputs with (default: empty)" });
|
||||
options.push_back({ "main infill", " --in-suffix STRING", "string to suffix after user inputs with (default: empty)" });
|
||||
options.push_back({ "main", " --no-warmup", "skip warming up the model with an empty run" });
|
||||
options.push_back({ "server infill",
|
||||
" --spm-infill", "use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: %s)", params.spm_infill ? "enabled" : "disabled" });
|
||||
|
||||
@@ -1538,6 +1541,7 @@ void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & param
|
||||
options.push_back({ "*", "-np, --parallel N", "number of parallel sequences to decode (default: %d)", params.n_parallel });
|
||||
options.push_back({ "*", "-ns, --sequences N", "number of sequences to decode (default: %d)", params.n_sequences });
|
||||
options.push_back({ "*", "-cb, --cont-batching", "enable continuous batching (a.k.a dynamic batching) (default: %s)", params.cont_batching ? "enabled" : "disabled" });
|
||||
options.push_back({ "*", "-nocb, --no-cont-batching", "disable continuous batching" });
|
||||
|
||||
options.push_back({ "multi-modality" });
|
||||
options.push_back({ "*", " --mmproj FILE", "path to a multimodal projector file for LLaVA. see examples/llava/README.md" });
|
||||
@@ -1580,9 +1584,8 @@ void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & param
|
||||
options.push_back({ "*", " --override-kv KEY=TYPE:VALUE",
|
||||
"advanced option to override model metadata by key. may be specified multiple times.\n"
|
||||
"types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false" });
|
||||
options.push_back({ "*", " --lora FNAME", "apply LoRA adapter (implies --no-mmap)" });
|
||||
options.push_back({ "*", " --lora-scaled FNAME S", "apply LoRA adapter with user defined scaling S (implies --no-mmap)" });
|
||||
options.push_back({ "*", " --lora-base FNAME", "optional model to use as a base for the layers modified by the LoRA adapter" });
|
||||
options.push_back({ "*", " --lora FNAME", "apply LoRA adapter (can be repeated to use multiple adapters)" });
|
||||
options.push_back({ "*", " --lora-scaled FNAME S", "apply LoRA adapter with user defined scaling S (can be repeated to use multiple adapters)" });
|
||||
options.push_back({ "*", " --control-vector FNAME", "add a control vector\n"
|
||||
"note: this argument can be repeated to add multiple control vectors" });
|
||||
options.push_back({ "*", " --control-vector-scaled FNAME SCALE",
|
||||
@@ -1631,7 +1634,7 @@ void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & param
|
||||
options.push_back({ "server", " --host HOST", "ip address to listen (default: %s)", params.hostname.c_str() });
|
||||
options.push_back({ "server", " --port PORT", "port to listen (default: %d)", params.port });
|
||||
options.push_back({ "server", " --path PATH", "path to serve static files from (default: %s)", params.public_path.c_str() });
|
||||
options.push_back({ "server", " --embedding(s)", "enable embedding endpoint (default: %s)", params.embedding ? "enabled" : "disabled" });
|
||||
options.push_back({ "server", " --embedding(s)", "restrict to only support embedding use case; use only with dedicated embedding models (default: %s)", params.embedding ? "enabled" : "disabled" });
|
||||
options.push_back({ "server", " --api-key KEY", "API key to use for authentication (default: none)" });
|
||||
options.push_back({ "server", " --api-key-file FNAME", "path to file containing API keys (default: none)" });
|
||||
options.push_back({ "server", " --ssl-key-file FNAME", "path to file a PEM-encoded SSL private key" });
|
||||
@@ -1673,6 +1676,13 @@ void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & param
|
||||
options.push_back({ "cvector", " --pca-iter N", "number of iterations used for PCA (default: %d)", params.n_pca_iterations });
|
||||
options.push_back({ "cvector", " --method {pca,mean}", "dimensionality reduction method to be used (default: pca)" });
|
||||
|
||||
options.push_back({ "export-lora" });
|
||||
options.push_back({ "export-lora", "-m, --model", "model path from which to load base model (default '%s')", params.model.c_str() });
|
||||
options.push_back({ "export-lora", " --lora FNAME", "path to LoRA adapter (can be repeated to use multiple adapters)" });
|
||||
options.push_back({ "export-lora", " --lora-scaled FNAME S", "path to LoRA adapter with user defined scaling S (can be repeated to use multiple adapters)" });
|
||||
options.push_back({ "*", "-t, --threads N", "number of threads to use during computation (default: %d)", params.n_threads });
|
||||
options.push_back({ "export-lora", "-o, --output FNAME", "output file (default: '%s')", params.lora_outfile.c_str() });
|
||||
|
||||
printf("usage: %s [options]\n", argv[0]);
|
||||
|
||||
for (const auto & o : options) {
|
||||
@@ -2084,19 +2094,14 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
|
||||
for (unsigned int i = 0; i < params.lora_adapter.size(); ++i) {
|
||||
const std::string & lora_adapter = std::get<0>(params.lora_adapter[i]);
|
||||
float lora_scale = std::get<1>(params.lora_adapter[i]);
|
||||
int err = llama_model_apply_lora_from_file(model,
|
||||
lora_adapter.c_str(),
|
||||
lora_scale,
|
||||
((i > 0) || params.lora_base.empty())
|
||||
? NULL
|
||||
: params.lora_base.c_str(),
|
||||
params.n_threads);
|
||||
if (err != 0) {
|
||||
auto adapter = llama_lora_adapter_init(model, lora_adapter.c_str());
|
||||
if (adapter == nullptr) {
|
||||
fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
|
||||
llama_free(lctx);
|
||||
llama_free_model(model);
|
||||
return std::make_tuple(nullptr, nullptr);
|
||||
}
|
||||
llama_lora_adapter_set(lctx, adapter, lora_scale);
|
||||
}
|
||||
|
||||
if (params.ignore_eos) {
|
||||
@@ -2723,7 +2728,7 @@ std::string llama_chat_format_single(const struct llama_model * model,
|
||||
const llama_chat_msg & new_msg,
|
||||
bool add_ass) {
|
||||
std::ostringstream ss;
|
||||
auto fmt_past_msg = llama_chat_apply_template(model, tmpl, past_msg, false);
|
||||
auto fmt_past_msg = past_msg.empty() ? "" : llama_chat_apply_template(model, tmpl, past_msg, false);
|
||||
std::vector<llama_chat_msg> chat_new(past_msg);
|
||||
// if the past_msg ends with a newline, we must preserve it in the formatted version
|
||||
if (add_ass && !fmt_past_msg.empty() && fmt_past_msg.back() == '\n') {
|
||||
@@ -3168,7 +3173,6 @@ void yaml_dump_non_result_info(FILE * stream, const gpt_params & params, const l
|
||||
}
|
||||
fprintf(stream, " - %s: %f\n", std::get<0>(la).c_str(), std::get<1>(la));
|
||||
}
|
||||
fprintf(stream, "lora_base: %s\n", params.lora_base.c_str());
|
||||
fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu);
|
||||
fprintf(stream, "min_keep: %d # default: 0 (disabled)\n", sparams.min_keep);
|
||||
fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", sparams.mirostat);
|
||||
|
||||
@@ -128,7 +128,6 @@ struct gpt_params {
|
||||
|
||||
// TODO: avoid tuple, use struct
|
||||
std::vector<std::tuple<std::string, float>> lora_adapter; // lora adapter path with user defined scale
|
||||
std::string lora_base = ""; // base model path for the lora adapter
|
||||
|
||||
std::vector<llama_control_vector_load_info> control_vectors; // control vector with user defined scale
|
||||
|
||||
@@ -255,6 +254,8 @@ struct gpt_params {
|
||||
std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
|
||||
|
||||
bool spm_infill = false; // suffix/prefix/middle pattern for infill
|
||||
|
||||
std::string lora_outfile = "ggml-lora-merged-f16.gguf";
|
||||
};
|
||||
|
||||
void gpt_params_handle_hf_token(gpt_params & params);
|
||||
|
||||
@@ -37,11 +37,18 @@ struct llama_ngram {
|
||||
}
|
||||
};
|
||||
|
||||
struct llama_token_hash_function {
|
||||
size_t operator()(const llama_token token) const {
|
||||
// see https://probablydance.com/2018/06/16/fibonacci-hashing-the-optimization-that-the-world-forgot-or-a-better-alternative-to-integer-modulo/
|
||||
return token * 11400714819323198485llu;
|
||||
}
|
||||
};
|
||||
|
||||
struct llama_ngram_hash_function {
|
||||
size_t operator()(const llama_ngram & ngram) const {
|
||||
size_t hash = 0;
|
||||
for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
|
||||
hash ^= std::hash<llama_token>{}(ngram.tokens[i]);
|
||||
size_t hash = llama_token_hash_function{}(ngram.tokens[0]);
|
||||
for (int i = 1; i < LLAMA_NGRAM_MAX; ++i) {
|
||||
hash ^= llama_token_hash_function{}(ngram.tokens[i]);
|
||||
}
|
||||
return hash;
|
||||
}
|
||||
|
||||
@@ -330,7 +330,7 @@ static llama_token llama_sampling_sample_impl(
|
||||
llama_token_data_array single_token_data_array = { &single_token_data, 1, false };
|
||||
|
||||
// Apply grammar constraints to the single token
|
||||
llama_sample_grammar(ctx_main, &single_token_data_array, ctx_sampling->grammar);
|
||||
llama_grammar_sample(ctx_sampling->grammar, ctx_main, &single_token_data_array);
|
||||
|
||||
// Check if the token is valid according to the grammar by seeing if its logit has been set to -INFINITY
|
||||
bool is_valid = single_token_data_array.data[0].logit != -INFINITY;
|
||||
@@ -421,7 +421,7 @@ static llama_token_data_array llama_sampling_prepare_impl(
|
||||
|
||||
// apply grammar checks before sampling logic
|
||||
if (apply_grammar && ctx_sampling->grammar != NULL) {
|
||||
llama_sample_grammar(ctx_main, &cur_p, ctx_sampling->grammar);
|
||||
llama_grammar_sample(ctx_sampling->grammar, ctx_main, &cur_p);
|
||||
}
|
||||
|
||||
return cur_p;
|
||||
@@ -455,6 +455,6 @@ void llama_sampling_accept(
|
||||
ctx_sampling->prev.push_back(id);
|
||||
|
||||
if (ctx_sampling->grammar != NULL && apply_grammar) {
|
||||
llama_grammar_accept_token(ctx_main, ctx_sampling->grammar, id);
|
||||
llama_grammar_accept_token(ctx_sampling->grammar, ctx_main, id);
|
||||
}
|
||||
}
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -50,7 +50,7 @@ class TOKENIZER_TYPE(IntEnum):
|
||||
|
||||
# TODO: this string has to exercise as much pre-tokenizer functionality as possible
|
||||
# will be updated with time - contributions welcome
|
||||
chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````\"\"\"\"......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
|
||||
CHK_TXT = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````\"\"\"\"......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
|
||||
|
||||
if len(sys.argv) == 2:
|
||||
token = sys.argv[1]
|
||||
@@ -91,6 +91,9 @@ models = [
|
||||
{"name": "gemma-2", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/google/gemma-2-9b", },
|
||||
{"name": "jais", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/core42/jais-13b", },
|
||||
{"name": "t5", "tokt": TOKENIZER_TYPE.UGM, "repo": "https://huggingface.co/google-t5/t5-small", },
|
||||
{"name": "codeshell", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/WisdomShell/CodeShell-7B", },
|
||||
{"name": "tekken", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mistralai/Mistral-Nemo-Base-2407", },
|
||||
{"name": "smollm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/HuggingFaceTB/SmolLM-135M", },
|
||||
]
|
||||
|
||||
|
||||
@@ -99,8 +102,8 @@ def download_file_with_auth(url, token, save_path):
|
||||
response = sess.get(url, headers=headers)
|
||||
response.raise_for_status()
|
||||
os.makedirs(os.path.dirname(save_path), exist_ok=True)
|
||||
with open(save_path, 'wb') as f:
|
||||
f.write(response.content)
|
||||
with open(save_path, 'wb') as downloaded_file:
|
||||
downloaded_file.write(response.content)
|
||||
logger.info(f"File {save_path} downloaded successfully")
|
||||
|
||||
|
||||
@@ -159,7 +162,7 @@ for model in models:
|
||||
logger.error(f"Error loading tokenizer for model {name}. The model may not exist or is not accessible with the provided token. Error: {e}")
|
||||
continue # Skip to the next model if the tokenizer can't be loaded
|
||||
|
||||
chktok = tokenizer.encode(chktxt)
|
||||
chktok = tokenizer.encode(CHK_TXT)
|
||||
chkhsh = sha256(str(chktok).encode()).hexdigest()
|
||||
|
||||
logger.info(f"model: {name}")
|
||||
@@ -191,7 +194,7 @@ src_func = f"""
|
||||
# we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
|
||||
# use in llama.cpp to implement the same pre-tokenizer
|
||||
|
||||
chktxt = {repr(chktxt)}
|
||||
chktxt = {repr(CHK_TXT)}
|
||||
|
||||
chktok = tokenizer.encode(chktxt)
|
||||
chkhsh = sha256(str(chktok).encode()).hexdigest()
|
||||
@@ -287,7 +290,7 @@ tests = [
|
||||
"333333333",
|
||||
"Cửa Việt", # llama-bpe fails on this
|
||||
" discards",
|
||||
chktxt,
|
||||
CHK_TXT,
|
||||
]
|
||||
|
||||
# write the tests to ./models/ggml-vocab-{name}.gguf.inp
|
||||
|
||||
@@ -132,6 +132,10 @@ class Tensor:
|
||||
|
||||
|
||||
class GGMLModel:
|
||||
|
||||
file_format: GGMLFormat
|
||||
format_version: int
|
||||
|
||||
def __init__(self):
|
||||
self.hyperparameters = None
|
||||
self.vocab = None
|
||||
@@ -290,7 +294,7 @@ class GGMLToGGUF:
|
||||
if self.vocab_override is not None:
|
||||
vo = self.vocab_override
|
||||
logger.info('* Adding vocab item(s)')
|
||||
for (idx, (vbytes, score, ttype)) in enumerate(vo.all_tokens()):
|
||||
for (_, (vbytes, score, ttype)) in enumerate(vo.all_tokens()):
|
||||
tokens.append(vbytes)
|
||||
scores.append(score)
|
||||
toktypes.append(ttype)
|
||||
|
||||
393
convert_lora_to_gguf.py
Executable file
393
convert_lora_to_gguf.py
Executable file
@@ -0,0 +1,393 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from dataclasses import dataclass
|
||||
import logging
|
||||
import argparse
|
||||
import os
|
||||
import sys
|
||||
import json
|
||||
from math import prod
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, Any, Callable, Iterable, Iterator, Sequence, SupportsIndex, cast
|
||||
|
||||
import torch
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from torch import Tensor
|
||||
|
||||
if 'NO_LOCAL_GGUF' not in os.environ:
|
||||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
|
||||
import gguf
|
||||
|
||||
# reuse model definitions from convert_hf_to_gguf.py
|
||||
from convert_hf_to_gguf import LazyTorchTensor, Model
|
||||
|
||||
logger = logging.getLogger("lora-to-gguf")
|
||||
|
||||
|
||||
@dataclass
|
||||
class PartialLoraTensor:
|
||||
A: Tensor | None = None
|
||||
B: Tensor | None = None
|
||||
|
||||
|
||||
# magic to support tensor shape modifications and splitting
|
||||
class LoraTorchTensor:
|
||||
_lora_A: Tensor # (n_rank, row_size)
|
||||
_lora_B: Tensor # (col_size, n_rank)
|
||||
_rank: int
|
||||
|
||||
def __init__(self, A: Tensor, B: Tensor):
|
||||
assert len(A.shape) == len(B.shape)
|
||||
assert A.shape[-2] == B.shape[-1]
|
||||
if A.dtype != B.dtype:
|
||||
A = A.to(torch.float32)
|
||||
B = B.to(torch.float32)
|
||||
self._lora_A = A
|
||||
self._lora_B = B
|
||||
self._rank = B.shape[-1]
|
||||
|
||||
def get_lora_A_B(self) -> tuple[Tensor, Tensor]:
|
||||
return (self._lora_A, self._lora_B)
|
||||
|
||||
def __getitem__(
|
||||
self,
|
||||
indices: (
|
||||
SupportsIndex
|
||||
| slice
|
||||
| tuple[SupportsIndex | slice | Tensor, ...] # TODO: add ellipsis in the type signature
|
||||
),
|
||||
) -> LoraTorchTensor:
|
||||
shape = self.shape
|
||||
if isinstance(indices, SupportsIndex):
|
||||
if len(shape) > 2:
|
||||
return LoraTorchTensor(self._lora_A[indices], self._lora_B[indices])
|
||||
else:
|
||||
raise NotImplementedError # can't return a vector
|
||||
elif isinstance(indices, slice):
|
||||
if len(shape) > 2:
|
||||
return LoraTorchTensor(self._lora_A[indices], self._lora_B[indices])
|
||||
else:
|
||||
return LoraTorchTensor(self._lora_A, self._lora_B[indices])
|
||||
elif isinstance(indices, tuple):
|
||||
assert len(indices) > 0
|
||||
if indices[-1] is Ellipsis:
|
||||
return self[indices[:-1]]
|
||||
# expand ellipsis
|
||||
indices = tuple(
|
||||
u
|
||||
for v in (
|
||||
(
|
||||
(slice(None, None) for _ in range(len(indices) - 1))
|
||||
if i is Ellipsis
|
||||
else (i,)
|
||||
)
|
||||
for i in indices
|
||||
)
|
||||
for u in v
|
||||
)
|
||||
|
||||
if len(indices) < len(shape):
|
||||
indices = (*indices, *(slice(None, None) for _ in range(len(indices), len(shape))))
|
||||
|
||||
# TODO: make sure this is correct
|
||||
indices_A = (
|
||||
*(
|
||||
(
|
||||
j.__index__() % self._lora_A.shape[i]
|
||||
if isinstance(j, SupportsIndex)
|
||||
else slice(None, None)
|
||||
)
|
||||
for i, j in enumerate(indices[:-2])
|
||||
),
|
||||
slice(None, None),
|
||||
indices[-1],
|
||||
)
|
||||
indices_B = indices[:-1]
|
||||
return LoraTorchTensor(self._lora_A[indices_A], self._lora_B[indices_B])
|
||||
else:
|
||||
raise NotImplementedError # unknown indice type
|
||||
|
||||
@property
|
||||
def dtype(self) -> torch.dtype:
|
||||
assert self._lora_A.dtype == self._lora_B.dtype
|
||||
return self._lora_A.dtype
|
||||
|
||||
@property
|
||||
def shape(self) -> tuple[int, ...]:
|
||||
assert len(self._lora_A.shape) == len(self._lora_B.shape)
|
||||
return (*self._lora_B.shape[:-1], self._lora_A.shape[-1])
|
||||
|
||||
def size(self, dim=None):
|
||||
assert dim is None
|
||||
return self.shape
|
||||
|
||||
def reshape(self, *shape: int | tuple[int, ...]) -> LoraTorchTensor:
|
||||
if isinstance(shape[0], tuple):
|
||||
new_shape: tuple[int, ...] = shape[0]
|
||||
else:
|
||||
new_shape = cast(tuple[int, ...], shape)
|
||||
orig_shape = self.shape
|
||||
if len(new_shape) < 2:
|
||||
raise NotImplementedError # can't become a vector
|
||||
|
||||
# expand -1 in the shape
|
||||
if any(dim == -1 for dim in new_shape):
|
||||
n_elems = prod(orig_shape)
|
||||
n_new_elems = prod(dim if dim != -1 else 1 for dim in new_shape)
|
||||
assert n_elems % n_new_elems == 0
|
||||
new_shape = (*(dim if dim != -1 else n_elems // n_new_elems for dim in new_shape),)
|
||||
|
||||
if new_shape[-1] != orig_shape[-1]:
|
||||
raise NotImplementedError # can't reshape the row size trivially
|
||||
|
||||
shape_A = (*(1 for _ in new_shape[:-2]), self._rank, orig_shape[-1])
|
||||
shape_B = (*new_shape[:-1], self._rank)
|
||||
return LoraTorchTensor(
|
||||
self._lora_A.reshape(shape_A),
|
||||
self._lora_B.reshape(shape_B),
|
||||
)
|
||||
|
||||
def reshape_as(self, other: Tensor) -> LoraTorchTensor:
|
||||
return self.reshape(*other.shape)
|
||||
|
||||
def view(self, *size: int) -> LoraTorchTensor:
|
||||
return self.reshape(*size)
|
||||
|
||||
def permute(self, *dims: int) -> LoraTorchTensor:
|
||||
shape = self.shape
|
||||
dims = tuple(dim - len(shape) if dim >= 0 else dim for dim in dims)
|
||||
if dims[-1] == -1:
|
||||
# TODO: support higher dimensional A shapes bigger than 1
|
||||
assert all(dim == 1 for dim in self._lora_A.shape[:-2])
|
||||
return LoraTorchTensor(self._lora_A, self._lora_B.permute(*dims))
|
||||
if len(shape) == 2 and dims[-1] == -2 and dims[-2] == -1:
|
||||
return LoraTorchTensor(self._lora_B.permute(*dims), self._lora_A.permute(*dims))
|
||||
else:
|
||||
# TODO: compose the above two
|
||||
raise NotImplementedError
|
||||
|
||||
def transpose(self, dim0: int, dim1: int) -> LoraTorchTensor:
|
||||
shape = self.shape
|
||||
dims = [i for i in range(len(shape))]
|
||||
dims[dim0], dims[dim1] = dims[dim1], dims[dim0]
|
||||
return self.permute(*dims)
|
||||
|
||||
def swapaxes(self, axis0: int, axis1: int) -> LoraTorchTensor:
|
||||
return self.transpose(axis0, axis1)
|
||||
|
||||
def to(self, *args, **kwargs):
|
||||
return LoraTorchTensor(self._lora_A.to(*args, **kwargs), self._lora_B.to(*args, **kwargs))
|
||||
|
||||
@classmethod
|
||||
def __torch_function__(cls, func: Callable, types, args=(), kwargs=None):
|
||||
del types # unused
|
||||
|
||||
if kwargs is None:
|
||||
kwargs = {}
|
||||
|
||||
if func is torch.permute:
|
||||
return type(args[0]).permute(*args, **kwargs)
|
||||
elif func is torch.reshape:
|
||||
return type(args[0]).reshape(*args, **kwargs)
|
||||
elif func is torch.stack:
|
||||
assert isinstance(args[0], Sequence)
|
||||
dim = kwargs.get("dim", 0)
|
||||
assert dim == 0
|
||||
return LoraTorchTensor(
|
||||
torch.stack([a._lora_A for a in args[0]], dim),
|
||||
torch.stack([b._lora_B for b in args[0]], dim),
|
||||
)
|
||||
elif func is torch.cat:
|
||||
assert isinstance(args[0], Sequence)
|
||||
dim = kwargs.get("dim", 0)
|
||||
assert dim == 0
|
||||
if len(args[0][0].shape) > 2:
|
||||
return LoraTorchTensor(
|
||||
torch.cat([a._lora_A for a in args[0]], dim),
|
||||
torch.cat([b._lora_B for b in args[0]], dim),
|
||||
)
|
||||
elif all(torch.equal(args[0][0]._lora_A, t._lora_A) for t in args[0][1:]):
|
||||
return LoraTorchTensor(
|
||||
args[0][0]._lora_A,
|
||||
torch.cat([b._lora_B for b in args[0]], dim),
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
def get_base_tensor_name(lora_tensor_name: str) -> str:
|
||||
base_name = lora_tensor_name.replace("base_model.model.", "")
|
||||
base_name = base_name.replace(".lora_A.weight", ".weight")
|
||||
base_name = base_name.replace(".lora_B.weight", ".weight")
|
||||
return base_name
|
||||
|
||||
|
||||
def parse_args() -> argparse.Namespace:
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Convert a huggingface PEFT LoRA adapter to a GGML compatible file")
|
||||
parser.add_argument(
|
||||
"--outfile", type=Path,
|
||||
help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f16",
|
||||
help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--bigendian", action="store_true",
|
||||
help="model is executed on big endian machine",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--no-lazy", action="store_true",
|
||||
help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--verbose", action="store_true",
|
||||
help="increase output verbosity",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dry-run", action="store_true",
|
||||
help="only print out what will be done, without writing any new files",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--base", type=Path, required=True,
|
||||
help="directory containing base model file",
|
||||
)
|
||||
parser.add_argument(
|
||||
"lora_path", type=Path,
|
||||
help="directory containing LoRA adapter file",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = parse_args()
|
||||
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
|
||||
|
||||
ftype_map: dict[str, gguf.LlamaFileType] = {
|
||||
"f32": gguf.LlamaFileType.ALL_F32,
|
||||
"f16": gguf.LlamaFileType.MOSTLY_F16,
|
||||
"bf16": gguf.LlamaFileType.MOSTLY_BF16,
|
||||
"q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
|
||||
"auto": gguf.LlamaFileType.GUESSED,
|
||||
}
|
||||
|
||||
ftype = ftype_map[args.outtype]
|
||||
|
||||
dir_base_model: Path = args.base
|
||||
dir_lora: Path = args.lora_path
|
||||
lora_config = dir_lora / "adapter_config.json"
|
||||
input_model = dir_lora / "adapter_model.safetensors"
|
||||
|
||||
if args.outfile is not None:
|
||||
fname_out = args.outfile
|
||||
else:
|
||||
# output in the same directory as the model by default
|
||||
fname_out = dir_lora
|
||||
|
||||
if os.path.exists(input_model):
|
||||
# lazy import load_file only if lora is in safetensors format.
|
||||
from safetensors.torch import load_file
|
||||
|
||||
lora_model = load_file(input_model, device="cpu")
|
||||
else:
|
||||
input_model = os.path.join(dir_lora, "adapter_model.bin")
|
||||
lora_model = torch.load(input_model, map_location="cpu", weights_only=True)
|
||||
|
||||
# load base model
|
||||
logger.info(f"Loading base model: {dir_base_model.name}")
|
||||
hparams = Model.load_hparams(dir_base_model)
|
||||
with torch.inference_mode():
|
||||
try:
|
||||
model_class = Model.from_model_architecture(hparams["architectures"][0])
|
||||
except NotImplementedError:
|
||||
logger.error(f"Model {hparams['architectures'][0]} is not supported")
|
||||
sys.exit(1)
|
||||
|
||||
class LoraModel(model_class):
|
||||
model_arch = model_class.model_arch
|
||||
|
||||
lora_alpha: float
|
||||
|
||||
def __init__(self, *args, dir_lora_model: Path, lora_alpha: float, **kwargs):
|
||||
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
self.dir_model_card = dir_lora_model
|
||||
self.lora_alpha = float(lora_alpha)
|
||||
|
||||
def set_type(self):
|
||||
self.gguf_writer.add_type(gguf.GGUFType.ADAPTER)
|
||||
self.gguf_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
self.gguf_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, self.lora_alpha)
|
||||
super().set_gguf_parameters()
|
||||
|
||||
def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
|
||||
tensor_map: dict[str, PartialLoraTensor] = {}
|
||||
|
||||
for name, tensor in lora_model.items():
|
||||
if self.lazy:
|
||||
tensor = LazyTorchTensor.from_eager(tensor)
|
||||
base_name = get_base_tensor_name(name)
|
||||
is_lora_a = ".lora_A.weight" in name
|
||||
is_lora_b = ".lora_B.weight" in name
|
||||
if not is_lora_a and not is_lora_b:
|
||||
if ".base_layer.weight" in name:
|
||||
continue
|
||||
logger.error(f"Unexpected name '{name}': Not a lora_A or lora_B tensor")
|
||||
sys.exit(1)
|
||||
|
||||
if base_name in tensor_map:
|
||||
if is_lora_a:
|
||||
tensor_map[base_name].A = tensor
|
||||
else:
|
||||
tensor_map[base_name].B = tensor
|
||||
else:
|
||||
if is_lora_a:
|
||||
tensor_map[base_name] = PartialLoraTensor(A=tensor)
|
||||
else:
|
||||
tensor_map[base_name] = PartialLoraTensor(B=tensor)
|
||||
|
||||
for name, tensor in tensor_map.items():
|
||||
assert tensor.A is not None
|
||||
assert tensor.B is not None
|
||||
yield (name, cast(torch.Tensor, LoraTorchTensor(tensor.A, tensor.B)))
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
dest = super().modify_tensors(data_torch, name, bid)
|
||||
for dest_name, dest_data in dest:
|
||||
assert isinstance(dest_data, LoraTorchTensor)
|
||||
lora_a, lora_b = dest_data.get_lora_A_B()
|
||||
|
||||
yield (dest_name + ".lora_a", lora_a)
|
||||
yield (dest_name + ".lora_b", lora_b)
|
||||
|
||||
with open(lora_config, "r") as f:
|
||||
lparams: dict[str, Any] = json.load(f)
|
||||
|
||||
alpha: float = lparams["lora_alpha"]
|
||||
|
||||
model_instance = LoraModel(
|
||||
dir_base_model,
|
||||
ftype,
|
||||
fname_out,
|
||||
is_big_endian=args.bigendian,
|
||||
use_temp_file=False,
|
||||
eager=args.no_lazy,
|
||||
dry_run=args.dry_run,
|
||||
dir_lora_model=dir_lora,
|
||||
lora_alpha=alpha,
|
||||
)
|
||||
|
||||
logger.info("Exporting model...")
|
||||
model_instance.write()
|
||||
logger.info(f"Model successfully exported to {model_instance.fname_out}")
|
||||
@@ -293,31 +293,26 @@ Similar to the native `sycl-ls`, available SYCL devices can be queried as follow
|
||||
```sh
|
||||
./build/bin/llama-ls-sycl-device
|
||||
```
|
||||
A example of such log in a system with 1 *intel CPU* and 1 *intel GPU* can look like the following:
|
||||
This command will only display the selected backend that is supported by SYCL. The default backend is level_zero. For example, in a system with 2 *intel GPU* it would look like the following:
|
||||
```
|
||||
found 6 SYCL devices:
|
||||
found 2 SYCL devices:
|
||||
|
||||
| | | |Compute |Max compute|Max work|Max sub| |
|
||||
|ID| Device Type| Name|capability|units |group |group |Global mem size|
|
||||
|--|------------------|---------------------------------------------|----------|-----------|--------|-------|---------------|
|
||||
| 0|[level_zero:gpu:0]| Intel(R) Arc(TM) A770 Graphics| 1.3| 512| 1024| 32| 16225243136|
|
||||
| 1|[level_zero:gpu:1]| Intel(R) UHD Graphics 770| 1.3| 32| 512| 32| 53651849216|
|
||||
| 2| [opencl:gpu:0]| Intel(R) Arc(TM) A770 Graphics| 3.0| 512| 1024| 32| 16225243136|
|
||||
| 3| [opencl:gpu:1]| Intel(R) UHD Graphics 770| 3.0| 32| 512| 32| 53651849216|
|
||||
| 4| [opencl:cpu:0]| 13th Gen Intel(R) Core(TM) i7-13700K| 3.0| 24| 8192| 64| 67064815616|
|
||||
| 5| [opencl:acc:0]| Intel(R) FPGA Emulation Device| 1.2| 24|67108864| 64| 67064815616|
|
||||
```
|
||||
|
||||
| Attribute | Note |
|
||||
|------------------------|-------------------------------------------------------------|
|
||||
| compute capability 1.3 | Level-zero driver/runtime, recommended |
|
||||
| compute capability 3.0 | OpenCL driver/runtime, slower than level-zero in most cases |
|
||||
|
||||
4. Launch inference
|
||||
|
||||
There are two device selection modes:
|
||||
|
||||
- Single device: Use one device target specified by the user.
|
||||
- Multiple devices: Automatically select the devices with the same largest Max compute-units.
|
||||
- Multiple devices: Automatically choose the devices with the same backend.
|
||||
|
||||
In two device selection modes, the default SYCL backend is level_zero, you can choose other backend supported by SYCL by setting environment variable ONEAPI_DEVICE_SELECTOR.
|
||||
|
||||
| Device selection | Parameter |
|
||||
|------------------|----------------------------------------|
|
||||
@@ -474,33 +469,26 @@ Similar to the native `sycl-ls`, available SYCL devices can be queried as follow
|
||||
build\bin\ls-sycl-device.exe
|
||||
```
|
||||
|
||||
The output of this command in a system with 1 *intel CPU* and 1 *intel GPU* would look like the following:
|
||||
This command will only display the selected backend that is supported by SYCL. The default backend is level_zero. For example, in a system with 2 *intel GPU* it would look like the following:
|
||||
```
|
||||
found 6 SYCL devices:
|
||||
found 2 SYCL devices:
|
||||
| | | |Compute |Max compute|Max work|Max sub| |
|
||||
|ID| Device Type| Name|capability|units |group |group |Global mem size|
|
||||
|--|------------------|---------------------------------------------|----------|-----------|--------|-------|---------------|
|
||||
| 0|[level_zero:gpu:0]| Intel(R) Arc(TM) A770 Graphics| 1.3| 512| 1024| 32| 16225243136|
|
||||
| 1|[level_zero:gpu:1]| Intel(R) UHD Graphics 770| 1.3| 32| 512| 32| 53651849216|
|
||||
| 2| [opencl:gpu:0]| Intel(R) Arc(TM) A770 Graphics| 3.0| 512| 1024| 32| 16225243136|
|
||||
| 3| [opencl:gpu:1]| Intel(R) UHD Graphics 770| 3.0| 32| 512| 32| 53651849216|
|
||||
| 4| [opencl:cpu:0]| 13th Gen Intel(R) Core(TM) i7-13700K| 3.0| 24| 8192| 64| 67064815616|
|
||||
| 5| [opencl:acc:0]| Intel(R) FPGA Emulation Device| 1.2| 24|67108864| 64| 67064815616|
|
||||
|
||||
```
|
||||
|
||||
| Attribute | Note |
|
||||
|------------------------|-----------------------------------------------------------|
|
||||
| compute capability 1.3 | Level-zero running time, recommended |
|
||||
| compute capability 3.0 | OpenCL running time, slower than level-zero in most cases |
|
||||
|
||||
|
||||
4. Launch inference
|
||||
|
||||
There are two device selection modes:
|
||||
|
||||
- Single device: Use one device assigned by user.
|
||||
- Multiple devices: Automatically choose the devices with the same biggest Max compute units.
|
||||
- Single device: Use one device assigned by user. Default device id is 0.
|
||||
- Multiple devices: Automatically choose the devices with the same backend.
|
||||
|
||||
In two device selection modes, the default SYCL backend is level_zero, you can choose other backend supported by SYCL by setting environment variable ONEAPI_DEVICE_SELECTOR.
|
||||
|
||||
| Device selection | Parameter |
|
||||
|------------------|----------------------------------------|
|
||||
|
||||
@@ -16,7 +16,7 @@ In order to build llama.cpp you have four different options.
|
||||
make
|
||||
```
|
||||
|
||||
- On Windows:
|
||||
- On Windows (x86/x64 only, arm64 requires cmake):
|
||||
|
||||
1. Download the latest fortran version of [w64devkit](https://github.com/skeeto/w64devkit/releases).
|
||||
2. Extract `w64devkit` on your pc.
|
||||
@@ -60,6 +60,17 @@ In order to build llama.cpp you have four different options.
|
||||
cmake -B build -G "Xcode"
|
||||
cmake --build build --config Debug
|
||||
```
|
||||
- Building for Windows (x86, x64 and arm64) with MSVC or clang as compilers:
|
||||
- Install Visual Studio 2022, e.g. via the [Community Edition](https://visualstudio.microsoft.com/de/vs/community/). In the installer, select at least the following options (this also automatically installs the required additional tools like CMake,...):
|
||||
- Tab Workload: Desktop-development with C++
|
||||
- Tab Components (select quickly via search): C++-_CMake_ Tools for Windows, _Git_ for Windows, C++-_Clang_ Compiler for Windows, MS-Build Support for LLVM-Toolset (clang)
|
||||
- Please remember to always use a Developer Command Prompt / PowerShell for VS2022 for git, build, test
|
||||
- For Windows on ARM (arm64, WoA) build with:
|
||||
```bash
|
||||
cmake --preset arm64-windows-llvm-release -D GGML_OPENMP=OFF
|
||||
cmake --build build-arm64-windows-llvm-release
|
||||
```
|
||||
Note: Building for arm64 could also be done just with MSVC (with the build-arm64-windows-MSVC preset, or the standard CMake build instructions). But MSVC does not support inline ARM assembly-code, used e.g. for the accelerated Q4_0_4_8 CPU kernels.
|
||||
|
||||
- Using `gmake` (FreeBSD):
|
||||
|
||||
@@ -181,6 +192,19 @@ The environment variable [`CUDA_VISIBLE_DEVICES`](https://docs.nvidia.com/cuda/c
|
||||
| GGML_CUDA_PEER_MAX_BATCH_SIZE | Positive integer | 128 | Maximum batch size for which to enable peer access between multiple GPUs. Peer access requires either Linux or NVLink. When using NVLink enabling peer access for larger batch sizes is potentially beneficial. |
|
||||
| GGML_CUDA_FA_ALL_QUANTS | Boolean | false | Compile support for all KV cache quantization type (combinations) for the FlashAttention CUDA kernels. More fine-grained control over KV cache size but compilation takes much longer. |
|
||||
|
||||
### MUSA
|
||||
|
||||
- Using `make`:
|
||||
```bash
|
||||
make GGML_MUSA=1
|
||||
```
|
||||
- Using `CMake`:
|
||||
|
||||
```bash
|
||||
cmake -B build -DGGML_MUSA=ON
|
||||
cmake --build build --config Release
|
||||
```
|
||||
|
||||
### hipBLAS
|
||||
|
||||
This provides BLAS acceleration on HIP-supported AMD GPUs.
|
||||
@@ -242,6 +266,45 @@ The following compilation options are also available to tweak performance (yes,
|
||||
|
||||
### Vulkan
|
||||
|
||||
**Windows**
|
||||
|
||||
#### w64devkit
|
||||
|
||||
Download and extract [w64devkit](https://github.com/skeeto/w64devkit/releases).
|
||||
|
||||
Download and install the [Vulkan SDK](https://vulkan.lunarg.com/sdk/home#windows). When selecting components, only the Vulkan SDK Core is required.
|
||||
|
||||
Launch `w64devkit.exe` and run the following commands to copy Vulkan dependencies:
|
||||
```sh
|
||||
SDK_VERSION=1.3.283.0
|
||||
cp /VulkanSDK/$SDK_VERSION/Bin/glslc.exe $W64DEVKIT_HOME/bin/
|
||||
cp /VulkanSDK/$SDK_VERSION/Lib/vulkan-1.lib $W64DEVKIT_HOME/x86_64-w64-mingw32/lib/
|
||||
cp -r /VulkanSDK/$SDK_VERSION/Include/* $W64DEVKIT_HOME/x86_64-w64-mingw32/include/
|
||||
cat > $W64DEVKIT_HOME/x86_64-w64-mingw32/lib/pkgconfig/vulkan.pc <<EOF
|
||||
Name: Vulkan-Loader
|
||||
Description: Vulkan Loader
|
||||
Version: $SDK_VERSION
|
||||
Libs: -lvulkan-1
|
||||
EOF
|
||||
|
||||
```
|
||||
Switch into the `llama.cpp` directory and run `make GGML_VULKAN=1`.
|
||||
|
||||
#### MSYS2
|
||||
Install [MSYS2](https://www.msys2.org/) and then run the following commands in a UCRT terminal to install dependencies.
|
||||
```sh
|
||||
pacman -S git \
|
||||
mingw-w64-ucrt-x86_64-gcc \
|
||||
mingw-w64-ucrt-x86_64-cmake \
|
||||
mingw-w64-ucrt-x86_64-vulkan-devel \
|
||||
mingw-w64-ucrt-x86_64-shaderc
|
||||
```
|
||||
Switch into `llama.cpp` directory and build using CMake.
|
||||
```sh
|
||||
cmake -B build -DGGML_VULKAN=ON
|
||||
cmake --build build --config Release
|
||||
```
|
||||
|
||||
**With docker**:
|
||||
|
||||
You don't need to install Vulkan SDK. It will be installed inside the container.
|
||||
|
||||
@@ -9,15 +9,15 @@ Adding a model requires few steps:
|
||||
After following these steps, you can open PR.
|
||||
|
||||
Also, it is important to check that the examples and main ggml backends (CUDA, METAL, CPU) are working with the new architecture, especially:
|
||||
- [main](../examples/main)
|
||||
- [imatrix](../examples/imatrix)
|
||||
- [quantize](../examples/quantize)
|
||||
- [server](../examples/server)
|
||||
- [main](/examples/main/)
|
||||
- [imatrix](/examples/imatrix/)
|
||||
- [quantize](/examples/quantize/)
|
||||
- [server](/examples/server/)
|
||||
|
||||
### 1. Convert the model to GGUF
|
||||
|
||||
This step is done in python with a `convert` script using the [gguf](https://pypi.org/project/gguf/) library.
|
||||
Depending on the model architecture, you can use either [convert_hf_to_gguf.py](../convert_hf_to_gguf.py) or [examples/convert_legacy_llama.py](../examples/convert_legacy_llama.py) (for `llama/llama2` models in `.pth` format).
|
||||
Depending on the model architecture, you can use either [convert_hf_to_gguf.py](/convert_hf_to_gguf.py) or [examples/convert_legacy_llama.py](/examples/convert_legacy_llama.py) (for `llama/llama2` models in `.pth` format).
|
||||
|
||||
The convert script reads the model configuration, tokenizer, tensor names+data and converts them to GGUF metadata and tensors.
|
||||
|
||||
@@ -31,7 +31,7 @@ class MyModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.GROK
|
||||
```
|
||||
|
||||
2. Define the layout of the GGUF tensors in [constants.py](../gguf-py/gguf/constants.py)
|
||||
2. Define the layout of the GGUF tensors in [constants.py](/gguf-py/gguf/constants.py)
|
||||
|
||||
Add an enum entry in `MODEL_ARCH`, the model human friendly name in `MODEL_ARCH_NAMES` and the GGUF tensor names in `MODEL_TENSORS`.
|
||||
|
||||
@@ -54,7 +54,7 @@ Example for `falcon` model:
|
||||
|
||||
As a general rule, before adding a new tensor name to GGUF, be sure the equivalent naming does not already exist.
|
||||
|
||||
Once you have found the GGUF tensor name equivalent, add it to the [tensor_mapping.py](../gguf-py/gguf/tensor_mapping.py) file.
|
||||
Once you have found the GGUF tensor name equivalent, add it to the [tensor_mapping.py](/gguf-py/gguf/tensor_mapping.py) file.
|
||||
|
||||
If the tensor name is part of a repetitive layer/block, the key word `bid` substitutes it.
|
||||
|
||||
@@ -100,7 +100,7 @@ Have a look at existing implementation like `build_llama`, `build_dbrx` or `buil
|
||||
|
||||
When implementing a new graph, please note that the underlying `ggml` backends might not support them all, support for missing backend operations can be added in another PR.
|
||||
|
||||
Note: to debug the inference graph: you can use [llama-eval-callback](../examples/eval-callback).
|
||||
Note: to debug the inference graph: you can use [llama-eval-callback](/examples/eval-callback/).
|
||||
|
||||
## GGUF specification
|
||||
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
# Token generation performance troubleshooting
|
||||
|
||||
## Verifying that the model is running on the GPU with CUDA
|
||||
Make sure you compiled llama with the correct env variables according to [this guide](../README.md#CUDA), so that llama accepts the `-ngl N` (or `--n-gpu-layers N`) flag. When running llama, you may configure `N` to be very large, and llama will offload the maximum possible number of layers to the GPU, even if it's less than the number you configured. For example:
|
||||
Make sure you compiled llama with the correct env variables according to [this guide](/docs/build.md#cuda), so that llama accepts the `-ngl N` (or `--n-gpu-layers N`) flag. When running llama, you may configure `N` to be very large, and llama will offload the maximum possible number of layers to the GPU, even if it's less than the number you configured. For example:
|
||||
```shell
|
||||
./llama-cli -m "path/to/model.gguf" -ngl 200000 -p "Please sir, may I have some "
|
||||
```
|
||||
|
||||
@@ -21,7 +21,6 @@ else()
|
||||
add_subdirectory(embedding)
|
||||
add_subdirectory(eval-callback)
|
||||
add_subdirectory(export-lora)
|
||||
add_subdirectory(finetune)
|
||||
add_subdirectory(gbnf-validator)
|
||||
add_subdirectory(gguf-hash)
|
||||
add_subdirectory(gguf-split)
|
||||
@@ -53,5 +52,4 @@ else()
|
||||
add_subdirectory(simple)
|
||||
add_subdirectory(speculative)
|
||||
add_subdirectory(tokenize)
|
||||
add_subdirectory(train-text-from-scratch)
|
||||
endif()
|
||||
|
||||
@@ -31,7 +31,7 @@ int main(int argc, char ** argv) {
|
||||
int n_parallel = params.n_parallel;
|
||||
|
||||
// total length of the sequences including the prompt
|
||||
int n_predict = 32;
|
||||
int n_predict = params.n_predict;
|
||||
|
||||
// init LLM
|
||||
|
||||
|
||||
@@ -24,7 +24,7 @@ from abc import ABC, abstractmethod
|
||||
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, Any, Callable, IO, Iterable, Literal, TypeVar, Optional
|
||||
from typing import TYPE_CHECKING, Any, Callable, IO, Iterable, Literal, TypeVar
|
||||
|
||||
import numpy as np
|
||||
|
||||
@@ -346,42 +346,6 @@ class Params:
|
||||
return params
|
||||
|
||||
|
||||
@dataclass
|
||||
class Metadata:
|
||||
name: Optional[str] = None
|
||||
author: Optional[str] = None
|
||||
version: Optional[str] = None
|
||||
url: Optional[str] = None
|
||||
description: Optional[str] = None
|
||||
license: Optional[str] = None
|
||||
source_url: Optional[str] = None
|
||||
source_hf_repo: Optional[str] = None
|
||||
|
||||
@staticmethod
|
||||
def load(metadata_path: Path) -> Metadata:
|
||||
if metadata_path is None or not metadata_path.exists():
|
||||
return Metadata()
|
||||
|
||||
with open(metadata_path, 'r') as file:
|
||||
data = json.load(file)
|
||||
|
||||
# Create a new Metadata instance
|
||||
metadata = Metadata()
|
||||
|
||||
# Assigning values to Metadata attributes if they exist in the JSON file
|
||||
# This is based on LLM_KV_NAMES mapping in llama.cpp
|
||||
metadata.name = data.get("general.name")
|
||||
metadata.author = data.get("general.author")
|
||||
metadata.version = data.get("general.version")
|
||||
metadata.url = data.get("general.url")
|
||||
metadata.description = data.get("general.description")
|
||||
metadata.license = data.get("general.license")
|
||||
metadata.source_url = data.get("general.source.url")
|
||||
metadata.source_hf_repo = data.get("general.source.huggingface.repository")
|
||||
|
||||
return metadata
|
||||
|
||||
|
||||
#
|
||||
# data loading
|
||||
# TODO: reuse (probably move to gguf.py?)
|
||||
@@ -806,7 +770,7 @@ class OutputFile:
|
||||
def __init__(self, fname_out: Path, endianess:gguf.GGUFEndian = gguf.GGUFEndian.LITTLE):
|
||||
self.gguf = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess)
|
||||
|
||||
def add_meta_model(self, params: Params, metadata: Metadata | None) -> None:
|
||||
def add_meta_model(self, params: Params, metadata: gguf.Metadata | None) -> None:
|
||||
# Metadata About The Model And Its Provenence
|
||||
name = "LLaMA"
|
||||
if metadata is not None and metadata.name is not None:
|
||||
@@ -824,16 +788,73 @@ class OutputFile:
|
||||
self.gguf.add_author(metadata.author)
|
||||
if metadata.version is not None:
|
||||
self.gguf.add_version(metadata.version)
|
||||
if metadata.url is not None:
|
||||
self.gguf.add_url(metadata.url)
|
||||
if metadata.organization is not None:
|
||||
self.gguf.add_organization(metadata.organization)
|
||||
|
||||
if metadata.finetune is not None:
|
||||
self.gguf.add_finetune(metadata.finetune)
|
||||
if metadata.basename is not None:
|
||||
self.gguf.add_basename(metadata.basename)
|
||||
|
||||
if metadata.description is not None:
|
||||
self.gguf.add_description(metadata.description)
|
||||
if metadata.quantized_by is not None:
|
||||
self.gguf.add_quantized_by(metadata.quantized_by)
|
||||
|
||||
if metadata.size_label is not None:
|
||||
self.gguf.add_size_label(metadata.size_label)
|
||||
|
||||
if metadata.license is not None:
|
||||
self.gguf.add_licence(metadata.license)
|
||||
self.gguf.add_license(metadata.license)
|
||||
if metadata.license_name is not None:
|
||||
self.gguf.add_license_name(metadata.license_name)
|
||||
if metadata.license_link is not None:
|
||||
self.gguf.add_license_link(metadata.license_link)
|
||||
|
||||
if metadata.url is not None:
|
||||
self.gguf.add_url(metadata.url)
|
||||
if metadata.doi is not None:
|
||||
self.gguf.add_doi(metadata.doi)
|
||||
if metadata.uuid is not None:
|
||||
self.gguf.add_uuid(metadata.uuid)
|
||||
if metadata.repo_url is not None:
|
||||
self.gguf.add_repo_url(metadata.repo_url)
|
||||
|
||||
if metadata.source_url is not None:
|
||||
self.gguf.add_source_url(metadata.source_url)
|
||||
if metadata.source_hf_repo is not None:
|
||||
self.gguf.add_source_hf_repo(metadata.source_hf_repo)
|
||||
if metadata.source_doi is not None:
|
||||
self.gguf.add_source_doi(metadata.source_doi)
|
||||
if metadata.source_uuid is not None:
|
||||
self.gguf.add_source_uuid(metadata.source_uuid)
|
||||
if metadata.source_repo_url is not None:
|
||||
self.gguf.add_source_repo_url(metadata.source_repo_url)
|
||||
|
||||
if metadata.base_models is not None:
|
||||
self.gguf.add_base_model_count(len(metadata.base_models))
|
||||
for key, base_model_entry in enumerate(metadata.base_models):
|
||||
if "name" in base_model_entry:
|
||||
self.gguf.add_base_model_name(key, base_model_entry["name"])
|
||||
if "author" in base_model_entry:
|
||||
self.gguf.add_base_model_author(key, base_model_entry["author"])
|
||||
if "version" in base_model_entry:
|
||||
self.gguf.add_base_model_version(key, base_model_entry["version"])
|
||||
if "organization" in base_model_entry:
|
||||
self.gguf.add_base_model_organization(key, base_model_entry["organization"])
|
||||
if "url" in base_model_entry:
|
||||
self.gguf.add_base_model_url(key, base_model_entry["url"])
|
||||
if "doi" in base_model_entry:
|
||||
self.gguf.add_base_model_doi(key, base_model_entry["doi"])
|
||||
if "uuid" in base_model_entry:
|
||||
self.gguf.add_base_model_uuid(key, base_model_entry["uuid"])
|
||||
if "repo_url" in base_model_entry:
|
||||
self.gguf.add_base_model_repo_url(key, base_model_entry["repo_url"])
|
||||
|
||||
if metadata.tags is not None:
|
||||
self.gguf.add_tags(metadata.tags)
|
||||
if metadata.languages is not None:
|
||||
self.gguf.add_languages(metadata.languages)
|
||||
if metadata.datasets is not None:
|
||||
self.gguf.add_datasets(metadata.datasets)
|
||||
|
||||
def add_meta_arch(self, params: Params) -> None:
|
||||
# Metadata About The Neural Architecture Itself
|
||||
@@ -944,7 +965,7 @@ class OutputFile:
|
||||
@staticmethod
|
||||
def write_vocab_only(
|
||||
fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab,
|
||||
endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, pad_vocab: bool = False, metadata: Metadata | None = None,
|
||||
endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, pad_vocab: bool = False, metadata: gguf.Metadata | None = None,
|
||||
) -> None:
|
||||
check_vocab_size(params, vocab, pad_vocab=pad_vocab)
|
||||
|
||||
@@ -978,7 +999,7 @@ class OutputFile:
|
||||
fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: BaseVocab, svocab: gguf.SpecialVocab,
|
||||
concurrency: int = DEFAULT_CONCURRENCY, endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE,
|
||||
pad_vocab: bool = False,
|
||||
metadata: Metadata | None = None,
|
||||
metadata: gguf.Metadata | None = None,
|
||||
) -> None:
|
||||
check_vocab_size(params, vocab, pad_vocab=pad_vocab)
|
||||
|
||||
@@ -1021,35 +1042,32 @@ def pick_output_type(model: LazyModel, output_type_str: str | None) -> GGMLFileT
|
||||
raise ValueError(f"Unexpected combination of types: {name_to_type}")
|
||||
|
||||
|
||||
def model_parameter_count(model: LazyModel) -> int:
|
||||
total_model_parameters = 0
|
||||
for i, (name, lazy_tensor) in enumerate(model.items()):
|
||||
sum_weights_in_tensor = 1
|
||||
def per_model_weight_count_estimation(tensors: Iterable[tuple[str, LazyTensor]]) -> tuple[int, int, int]:
|
||||
total_params = 0
|
||||
shared_params = 0
|
||||
expert_params = 0
|
||||
|
||||
for name, lazy_tensor in tensors:
|
||||
# We don't need these
|
||||
if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
|
||||
continue
|
||||
|
||||
# Got A Tensor
|
||||
sum_weights_in_tensor: int = 1
|
||||
|
||||
# Tensor Volume
|
||||
for dim in lazy_tensor.shape:
|
||||
sum_weights_in_tensor *= dim
|
||||
total_model_parameters += sum_weights_in_tensor
|
||||
return total_model_parameters
|
||||
|
||||
if ".experts." in name:
|
||||
if ".experts.0." in name:
|
||||
expert_params += sum_weights_in_tensor
|
||||
else:
|
||||
shared_params += sum_weights_in_tensor
|
||||
|
||||
def model_parameter_count_rounded_notation(model_params_count: int) -> str:
|
||||
if model_params_count > 1e12 :
|
||||
# Trillions Of Parameters
|
||||
scaled_model_params = model_params_count * 1e-12
|
||||
scale_suffix = "T"
|
||||
elif model_params_count > 1e9 :
|
||||
# Billions Of Parameters
|
||||
scaled_model_params = model_params_count * 1e-9
|
||||
scale_suffix = "B"
|
||||
elif model_params_count > 1e6 :
|
||||
# Millions Of Parameters
|
||||
scaled_model_params = model_params_count * 1e-6
|
||||
scale_suffix = "M"
|
||||
else:
|
||||
# Thousands Of Parameters
|
||||
scaled_model_params = model_params_count * 1e-3
|
||||
scale_suffix = "K"
|
||||
total_params += sum_weights_in_tensor
|
||||
|
||||
return f"{round(scaled_model_params)}{scale_suffix}"
|
||||
return total_params, shared_params, expert_params
|
||||
|
||||
|
||||
def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyModel:
|
||||
@@ -1231,34 +1249,24 @@ class VocabFactory:
|
||||
return vocab, special_vocab
|
||||
|
||||
|
||||
def default_convention_outfile(file_type: GGMLFileType, params: Params, model_params_count: int, metadata: Metadata) -> str:
|
||||
quantization = {
|
||||
def default_convention_outfile(file_type: GGMLFileType, expert_count: int | None, model_params_count: tuple[int, int, int], metadata: gguf.Metadata) -> str:
|
||||
name = metadata.name if metadata.name is not None else None
|
||||
basename = metadata.basename if metadata.basename is not None else None
|
||||
finetune = metadata.finetune if metadata.finetune is not None else None
|
||||
version = metadata.version if metadata.version is not None else None
|
||||
size_label = metadata.size_label if metadata.size_label is not None else gguf.size_label(*model_params_count, expert_count=expert_count or 0)
|
||||
|
||||
output_type = {
|
||||
GGMLFileType.AllF32: "F32",
|
||||
GGMLFileType.MostlyF16: "F16",
|
||||
GGMLFileType.MostlyQ8_0: "Q8_0",
|
||||
}[file_type]
|
||||
|
||||
parameters = model_parameter_count_rounded_notation(model_params_count)
|
||||
|
||||
expert_count = ""
|
||||
if params.n_experts is not None:
|
||||
expert_count = f"{params.n_experts}x"
|
||||
|
||||
version = ""
|
||||
if metadata is not None and metadata.version is not None:
|
||||
version = f"-{metadata.version}"
|
||||
|
||||
name = "ggml-model"
|
||||
if metadata is not None and metadata.name is not None:
|
||||
name = metadata.name
|
||||
elif params.path_model is not None:
|
||||
name = params.path_model.name
|
||||
|
||||
return f"{name}{version}-{expert_count}{parameters}-{quantization}"
|
||||
return gguf.naming_convention(name, basename, finetune, version, size_label, output_type)
|
||||
|
||||
|
||||
def default_outfile(model_paths: list[Path], file_type: GGMLFileType, params: Params, model_params_count: int, metadata: Metadata) -> Path:
|
||||
default_filename = default_convention_outfile(file_type, params, model_params_count, metadata)
|
||||
def default_outfile(model_paths: list[Path], file_type: GGMLFileType, expert_count: int | None, model_params_count: tuple[int, int, int], metadata: gguf.Metadata) -> Path:
|
||||
default_filename = default_convention_outfile(file_type, expert_count, model_params_count, metadata)
|
||||
ret = model_paths[0].parent / f"{default_filename}.gguf"
|
||||
if ret in model_paths:
|
||||
logger.error(
|
||||
@@ -1297,8 +1305,9 @@ def main(args_in: list[str] | None = None) -> None:
|
||||
parser.add_argument("--pad-vocab", action="store_true", help="add pad tokens when model vocab expects more than tokenizer metadata provides")
|
||||
parser.add_argument("--skip-unknown", action="store_true", help="skip unknown tensor names instead of failing")
|
||||
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
|
||||
parser.add_argument("--metadata", type=Path, help="Specify the path for a metadata file")
|
||||
parser.add_argument("--metadata", type=Path, help="Specify the path for an authorship metadata override file")
|
||||
parser.add_argument("--get-outfile", action="store_true", help="get calculated default outfile name")
|
||||
parser.add_argument("--model-name", type=str, default=None, help="name of the model")
|
||||
|
||||
args = parser.parse_args(args_in)
|
||||
|
||||
@@ -1310,32 +1319,36 @@ def main(args_in: list[str] | None = None) -> None:
|
||||
else:
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
|
||||
metadata = Metadata.load(args.metadata)
|
||||
model_name = args.model_name
|
||||
dir_model = args.model
|
||||
|
||||
metadata = gguf.Metadata.load(args.metadata, dir_model, model_name)
|
||||
|
||||
if args.get_outfile:
|
||||
model_plus = load_some_model(args.model)
|
||||
model_plus = load_some_model(dir_model)
|
||||
params = Params.load(model_plus)
|
||||
model = convert_model_names(model_plus.model, params, args.skip_unknown)
|
||||
model_params_count = model_parameter_count(model_plus.model)
|
||||
ftype = pick_output_type(model, args.outtype)
|
||||
print(f"{default_convention_outfile(ftype, params, model_params_count, metadata)}") # noqa: NP100
|
||||
model = convert_model_names(model_plus.model, params, args.skip_unknown)
|
||||
model_params_count = per_model_weight_count_estimation(model_plus.model.items())
|
||||
ftype = pick_output_type(model, args.outtype)
|
||||
|
||||
if (metadata is None or metadata.name is None) and params.path_model is not None:
|
||||
metadata.name = params.path_model.name
|
||||
|
||||
print(f"{default_convention_outfile(ftype, params.n_experts, model_params_count, metadata)}") # noqa: NP100
|
||||
return
|
||||
|
||||
if args.no_vocab and args.vocab_only:
|
||||
raise ValueError("--vocab-only does not make sense with --no-vocab")
|
||||
|
||||
if args.dump_single:
|
||||
model_plus = lazy_load_file(args.model)
|
||||
model_plus = lazy_load_file(dir_model)
|
||||
do_dump_model(model_plus)
|
||||
return
|
||||
|
||||
if not args.vocab_only:
|
||||
model_plus = load_some_model(args.model)
|
||||
model_plus = load_some_model(dir_model)
|
||||
else:
|
||||
model_plus = ModelPlus(model = {}, paths = [args.model / 'dummy'], format = 'none', vocab = None)
|
||||
|
||||
model_params_count = model_parameter_count(model_plus.model)
|
||||
logger.info(f"model parameters count : {model_params_count} ({model_parameter_count_rounded_notation(model_params_count)})")
|
||||
model_plus = ModelPlus(model = {}, paths = [dir_model / 'dummy'], format = 'none', vocab = None)
|
||||
|
||||
if args.dump:
|
||||
do_dump_model(model_plus)
|
||||
@@ -1368,7 +1381,7 @@ def main(args_in: list[str] | None = None) -> None:
|
||||
logger.info(f"params = {params}")
|
||||
|
||||
model_parent_path = model_plus.paths[0].parent
|
||||
vocab_path = Path(args.vocab_dir or args.model or model_parent_path)
|
||||
vocab_path = Path(args.vocab_dir or dir_model or model_parent_path)
|
||||
vocab_factory = VocabFactory(vocab_path)
|
||||
vocab_types = None if args.no_vocab else args.vocab_type.split(",")
|
||||
vocab, special_vocab = vocab_factory.load_vocab(vocab_types, model_parent_path)
|
||||
@@ -1399,13 +1412,21 @@ def main(args_in: list[str] | None = None) -> None:
|
||||
|
||||
assert params is not None
|
||||
|
||||
if metadata.name is None and params.path_model is not None:
|
||||
metadata.name = params.path_model.name
|
||||
|
||||
model_params_count = per_model_weight_count_estimation(model_plus.model.items())
|
||||
logger.info(f"model parameters count : {model_params_count} ({gguf.model_weight_count_rounded_notation(model_params_count[0])})")
|
||||
|
||||
logger.info(f"Vocab info: {vocab}")
|
||||
logger.info(f"Special vocab info: {special_vocab}")
|
||||
model = model_plus.model
|
||||
model = convert_model_names(model, params, args.skip_unknown)
|
||||
ftype = pick_output_type(model, args.outtype)
|
||||
model = convert_to_output_type(model, ftype)
|
||||
outfile = args.outfile or default_outfile(model_plus.paths, ftype, params, model_params_count, metadata)
|
||||
outfile = args.outfile or default_outfile(model_plus.paths, ftype, params.n_experts, model_params_count, metadata=metadata)
|
||||
|
||||
metadata.size_label = gguf.size_label(*model_params_count, expert_count=params.n_experts or 0)
|
||||
|
||||
params.ftype = ftype
|
||||
logger.info(f"Writing {outfile}, format {ftype}")
|
||||
|
||||
@@ -13,7 +13,6 @@ Please update all scripts and workflows to use the new binary names.
|
||||
| server | llama-server |
|
||||
| llama-bench | llama-bench |
|
||||
| embedding | llama-embedding |
|
||||
| finetune | llama-finetune |
|
||||
| quantize | llama-quantize |
|
||||
| tokenize | llama-tokenize |
|
||||
| export-lora | llama-export-lora |
|
||||
@@ -45,7 +44,6 @@ Please update all scripts and workflows to use the new binary names.
|
||||
| save-load-state | llama-save-load-state |
|
||||
| simple | llama-simple |
|
||||
| speculative | llama-speculative |
|
||||
| train-text-from-scratch | llama-train-text-from-scratch |
|
||||
| vdot | llama-vdot |
|
||||
| tests/test-c.o | tests/test-c.o |
|
||||
|
||||
|
||||
@@ -62,7 +62,7 @@ static void ggml_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne
|
||||
} else if (type == GGML_TYPE_I8) {
|
||||
v = (float) *(int8_t *) &data[i];
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
printf("%12.4f", v);
|
||||
sum += v;
|
||||
@@ -99,7 +99,7 @@ static bool ggml_debug(struct ggml_tensor * t, bool ask, void * user_data) {
|
||||
|
||||
char src1_str[128] = {0};
|
||||
if (src1) {
|
||||
sprintf(src1_str, "%s{%s}", src1->name, ggml_ne_string(src1).c_str());
|
||||
snprintf(src1_str, sizeof(src1_str), "%s{%s}", src1->name, ggml_ne_string(src1).c_str());
|
||||
}
|
||||
|
||||
printf("%s: %24s = (%s) %10s(%s{%s}, %s}) = {%s}\n", __func__,
|
||||
|
||||
@@ -6,12 +6,11 @@ Apply LORA adapters to base model and export the resulting model.
|
||||
usage: llama-export-lora [options]
|
||||
|
||||
options:
|
||||
-h, --help show this help message and exit
|
||||
-m FNAME, --model-base FNAME model path from which to load base model (default '')
|
||||
-o FNAME, --model-out FNAME path to save exported model (default '')
|
||||
-l FNAME, --lora FNAME apply LoRA adapter
|
||||
-s FNAME S, --lora-scaled FNAME S apply LoRA adapter with user defined scaling S
|
||||
-t N, --threads N number of threads to use during computation (default: 4)
|
||||
-m, --model model path from which to load base model (default '')
|
||||
--lora FNAME path to LoRA adapter (can be repeated to use multiple adapters)
|
||||
--lora-scaled FNAME S path to LoRA adapter with user defined scaling S (can be repeated to use multiple adapters)
|
||||
-t, --threads N number of threads to use during computation (default: 4)
|
||||
-o, --output FNAME output file (default: 'ggml-lora-merged-f16.gguf')
|
||||
```
|
||||
|
||||
For example:
|
||||
@@ -20,7 +19,15 @@ For example:
|
||||
./bin/llama-export-lora \
|
||||
-m open-llama-3b-v2-q8_0.gguf \
|
||||
-o open-llama-3b-v2-q8_0-english2tokipona-chat.gguf \
|
||||
-l lora-open-llama-3b-v2-q8_0-english2tokipona-chat-LATEST.bin
|
||||
--lora lora-open-llama-3b-v2-q8_0-english2tokipona-chat-LATEST.gguf
|
||||
```
|
||||
|
||||
Multiple LORA adapters can be applied by passing multiple `-l FN` or `-s FN S` command line parameters.
|
||||
Multiple LORA adapters can be applied by passing multiple `--lora FNAME` or `--lora-scaled FNAME S` command line parameters:
|
||||
|
||||
```bash
|
||||
./bin/llama-export-lora \
|
||||
-m your_base_model.gguf \
|
||||
-o your_merged_model.gguf \
|
||||
--lora-scaled lora_task_A.gguf 0.5 \
|
||||
--lora-scaled lora_task_B.gguf 0.5
|
||||
```
|
||||
|
||||
@@ -1,462 +1,420 @@
|
||||
|
||||
#include "common.h"
|
||||
#include "ggml.h"
|
||||
#include "ggml-alloc.h"
|
||||
|
||||
#include <map>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
#include <fstream>
|
||||
|
||||
struct lora_info {
|
||||
std::string filename;
|
||||
static bool g_verbose = false;
|
||||
|
||||
static std::string get_kv_str(struct gguf_context * ctx_gguf, const std::string & key){
|
||||
int id = gguf_find_key(ctx_gguf, key.c_str());
|
||||
return id < 0 ? "" : std::string(gguf_get_val_str(ctx_gguf, id));
|
||||
}
|
||||
|
||||
static float get_kv_f32(struct gguf_context * ctx_gguf, const std::string & key) {
|
||||
int id = gguf_find_key(ctx_gguf, key.c_str());
|
||||
return id < 0 ? 0.0f : gguf_get_val_f32(ctx_gguf, id);
|
||||
}
|
||||
|
||||
static void zeros(std::ofstream & file, size_t n) {
|
||||
char zero = 0;
|
||||
for (size_t i = 0; i < n; ++i) {
|
||||
file.write(&zero, 1);
|
||||
}
|
||||
}
|
||||
|
||||
static std::string ggml_ne_string(const ggml_tensor * t) {
|
||||
std::string str;
|
||||
for (int i = 0; i < GGML_MAX_DIMS; ++i) {
|
||||
str += std::to_string(t->ne[i]);
|
||||
if (i + 1 < GGML_MAX_DIMS) {
|
||||
str += ", ";
|
||||
}
|
||||
}
|
||||
return str;
|
||||
}
|
||||
|
||||
static struct gguf_context * load_gguf(std::string & fname, struct ggml_context ** ctx_ggml) {
|
||||
struct gguf_init_params params = {
|
||||
/*.no_alloc = */ true,
|
||||
/*.ctx = */ ctx_ggml,
|
||||
};
|
||||
struct gguf_context * ctx_gguf = gguf_init_from_file(fname.c_str(), params);
|
||||
if (!ctx_gguf) {
|
||||
throw std::runtime_error("failed to load input GGUF from " + fname);
|
||||
}
|
||||
return ctx_gguf;
|
||||
}
|
||||
|
||||
static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
|
||||
std::string result;
|
||||
for (size_t pos = 0; ; pos += search.length()) {
|
||||
auto new_pos = s.find(search, pos);
|
||||
if (new_pos == std::string::npos) {
|
||||
result += s.substr(pos, s.size() - pos);
|
||||
break;
|
||||
}
|
||||
result += s.substr(pos, new_pos - pos) + replace;
|
||||
pos = new_pos;
|
||||
}
|
||||
s = std::move(result);
|
||||
}
|
||||
|
||||
struct file_input {
|
||||
struct ggml_context * ctx_meta = nullptr;
|
||||
struct gguf_context * ctx_gguf = nullptr;
|
||||
std::ifstream f_in;
|
||||
std::map<std::string, ggml_tensor *> tensors;
|
||||
float alpha;
|
||||
float scale;
|
||||
|
||||
file_input(std::string & fname, float scale): f_in(fname, std::ios::binary), scale(scale) {
|
||||
if (!f_in.is_open()) {
|
||||
throw std::runtime_error("failed to open input gguf from " + fname);
|
||||
}
|
||||
|
||||
ctx_gguf = load_gguf(fname, &ctx_meta);
|
||||
alpha = get_kv_f32(ctx_gguf, "adapter.lora.alpha");
|
||||
printf("%s: loaded gguf from %s\n", __func__, fname.c_str());
|
||||
|
||||
for (ggml_tensor * cur = ggml_get_first_tensor(ctx_meta); cur; cur = ggml_get_next_tensor(ctx_meta, cur)) {
|
||||
std::string name(cur->name);
|
||||
tensors[name] = cur;
|
||||
if (g_verbose) {
|
||||
printf("%s: %s\n", __func__, cur->name);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ggml_tensor * get_tensor(std::string name) {
|
||||
if (tensors.find(name) == tensors.end()) {
|
||||
return nullptr;
|
||||
}
|
||||
return tensors[name];
|
||||
}
|
||||
|
||||
void read_tensor_data(std::string name, std::vector<uint8_t> & buf) {
|
||||
if (tensors.find(name) == tensors.end()) {
|
||||
throw std::runtime_error("cannot find tensor with name: " + name);
|
||||
}
|
||||
auto len = ggml_nbytes(tensors[name]);
|
||||
if (buf.size() < len) {
|
||||
buf.resize(len);
|
||||
}
|
||||
auto i_tensor_in = gguf_find_tensor(ctx_gguf, name.c_str()); // idx of tensor in the input file
|
||||
auto offset = gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, i_tensor_in);
|
||||
f_in.seekg(offset);
|
||||
f_in.read((char* )buf.data(), len);
|
||||
}
|
||||
|
||||
~file_input() {
|
||||
gguf_free(ctx_gguf);
|
||||
ggml_free(ctx_meta);
|
||||
}
|
||||
};
|
||||
|
||||
struct export_lora_params {
|
||||
std::string fn_model_base;
|
||||
std::string fn_model_out;
|
||||
std::vector<struct lora_info> lora;
|
||||
struct lora_merge_ctx {
|
||||
// input base model + adapters
|
||||
file_input base_model;
|
||||
std::vector<std::unique_ptr<file_input>> adapters;
|
||||
|
||||
// for computing merged tensor
|
||||
int n_threads;
|
||||
};
|
||||
ggml_backend_t backend = nullptr;
|
||||
ggml_gallocr_t allocr = nullptr;
|
||||
std::vector<uint8_t> read_buf;
|
||||
|
||||
struct lora_data {
|
||||
struct lora_info info;
|
||||
std::vector<uint8_t> data;
|
||||
struct ggml_context * ctx;
|
||||
// output file
|
||||
struct gguf_context * ctx_out;
|
||||
struct ggml_context * ctx_out_ggml;
|
||||
std::ofstream fout;
|
||||
|
||||
uint32_t lora_r;
|
||||
uint32_t lora_alpha;
|
||||
};
|
||||
lora_merge_ctx(
|
||||
std::string & base_fname,
|
||||
std::vector<std::tuple<std::string, float>> & lora_files,
|
||||
std::string & outfile,
|
||||
int n_threads) : base_model(base_fname, 0), n_threads(n_threads), fout(outfile, std::ios::binary) {
|
||||
fout.exceptions(std::ofstream::failbit); // fail fast on write errors
|
||||
|
||||
struct llama_file {
|
||||
// use FILE * so we don't have to re-open the file to mmap
|
||||
FILE * fp;
|
||||
size_t size;
|
||||
if (gguf_find_key(base_model.ctx_gguf, LLM_KV_SPLIT_COUNT) >= 0) {
|
||||
throw std::runtime_error("split model is not yet supported");
|
||||
}
|
||||
|
||||
llama_file(const char * fname, const char * mode) {
|
||||
fp = std::fopen(fname, mode);
|
||||
if (fp == NULL) {
|
||||
size = 0;
|
||||
for (auto lora_inp : lora_files) {
|
||||
auto fname = std::get<0>(lora_inp);
|
||||
auto scale = std::get<1>(lora_inp);
|
||||
std::unique_ptr<file_input> adapter(new file_input(fname, scale));
|
||||
check_metadata_lora(adapter.get());
|
||||
adapters.push_back(std::move(adapter));
|
||||
}
|
||||
|
||||
ctx_out = gguf_init_empty();
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ gguf_get_n_tensors(base_model.ctx_gguf)*ggml_tensor_overhead(),
|
||||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ true,
|
||||
};
|
||||
ctx_out_ggml = ggml_init(params);
|
||||
backend = ggml_backend_cpu_init();
|
||||
allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(backend));
|
||||
}
|
||||
|
||||
void check_metadata_lora(file_input * adapter) {
|
||||
auto general_type = get_kv_str(adapter->ctx_gguf, "general.type");
|
||||
if (general_type != "adapter") {
|
||||
throw std::runtime_error("expect general.type to be 'adapter', but got: " + general_type);
|
||||
}
|
||||
|
||||
auto adapter_type = get_kv_str(adapter->ctx_gguf, "adapter.type");
|
||||
if (adapter_type != "lora") {
|
||||
throw std::runtime_error("expect adapter.type to be 'lora', but got: " + adapter_type);
|
||||
}
|
||||
|
||||
auto general_arch_base = get_kv_str(base_model.ctx_gguf, "general.architecture");
|
||||
auto general_arch_lora = get_kv_str(adapter->ctx_gguf, "general.architecture");
|
||||
if (general_arch_base != general_arch_lora) {
|
||||
throw std::runtime_error("model arch and LoRA arch mismatch");
|
||||
}
|
||||
}
|
||||
|
||||
ggml_type get_out_tensor_type(struct ggml_tensor * t) {
|
||||
if (t->type == GGML_TYPE_F32) {
|
||||
return GGML_TYPE_F32;
|
||||
} else {
|
||||
seek(0, SEEK_END);
|
||||
size = tell();
|
||||
seek(0, SEEK_SET);
|
||||
return GGML_TYPE_F16;
|
||||
}
|
||||
}
|
||||
|
||||
size_t tell() const {
|
||||
#ifdef _WIN32
|
||||
__int64 ret = _ftelli64(fp);
|
||||
#else
|
||||
long ret = std::ftell(fp);
|
||||
#endif
|
||||
GGML_ASSERT(ret != -1); // this really shouldn't fail
|
||||
return (size_t) ret;
|
||||
}
|
||||
void run_merge() {
|
||||
// prepare metadata
|
||||
gguf_set_kv(ctx_out, base_model.ctx_gguf);
|
||||
// output is forced to f16 for now
|
||||
gguf_set_val_u32(ctx_out, "general.file_type", LLAMA_FTYPE_MOSTLY_F16);
|
||||
|
||||
void seek(size_t offset, int whence) {
|
||||
#ifdef _WIN32
|
||||
int ret = _fseeki64(fp, (__int64) offset, whence);
|
||||
#else
|
||||
int ret = std::fseek(fp, (long) offset, whence);
|
||||
#endif
|
||||
GGML_ASSERT(ret == 0); // same
|
||||
}
|
||||
|
||||
void read_raw(void * ptr, size_t size) {
|
||||
if (size == 0) {
|
||||
return;
|
||||
// check if all lora adapters have the same tensors
|
||||
// TODO: remove this when we can support merging subset of adapters. Ref: https://github.com/ggerganov/llama.cpp/pull/8607#discussion_r1686027777
|
||||
static const char * err_no_subset_adapter = "Input adapters do not have the same list of tensors. This is not yet supported. Please merge the adapter one-by-one instead of merging all at once.";
|
||||
if (adapters.size() > 1) {
|
||||
for (size_t i = 1; i < adapters.size(); ++i) {
|
||||
if (adapters[0]->tensors.size() != adapters[i]->tensors.size()) {
|
||||
throw std::runtime_error(err_no_subset_adapter);
|
||||
}
|
||||
for (auto & it : adapters[i]->tensors) {
|
||||
if (adapters[0]->get_tensor(it.first) == nullptr) {
|
||||
throw std::runtime_error(err_no_subset_adapter);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
errno = 0;
|
||||
std::size_t ret = std::fread(ptr, size, 1, fp);
|
||||
if (ferror(fp)) {
|
||||
die_fmt("read error: %s", strerror(errno));
|
||||
|
||||
// mapping base tensor to out tensor (same shape with base, but different type)
|
||||
// if out_tensor == nullptr, we only copy it
|
||||
std::vector<std::pair<struct ggml_tensor *, struct ggml_tensor *>> base_to_out_tensors;
|
||||
for (auto & it : base_model.tensors) {
|
||||
bool t_a = true;
|
||||
bool t_b = true;
|
||||
for (auto & adapter : adapters) {
|
||||
t_a &= nullptr != adapter->get_tensor(it.first + ".lora_a");
|
||||
t_b &= nullptr != adapter->get_tensor(it.first + ".lora_b");
|
||||
}
|
||||
auto base_tensor = it.second;
|
||||
if (!t_a && !t_b) {
|
||||
// only copy
|
||||
struct ggml_tensor * cpy_tensor = ggml_dup_tensor(ctx_out_ggml, base_tensor);
|
||||
ggml_set_name(cpy_tensor, base_tensor->name);
|
||||
base_to_out_tensors.push_back(std::make_pair(cpy_tensor, nullptr));
|
||||
gguf_add_tensor(ctx_out, cpy_tensor);
|
||||
} else if (t_a && t_b) {
|
||||
// need merging
|
||||
struct ggml_tensor * out_tensor = ggml_new_tensor(
|
||||
ctx_out_ggml, get_out_tensor_type(base_tensor), GGML_MAX_DIMS, base_tensor->ne);
|
||||
ggml_set_name(out_tensor, base_tensor->name);
|
||||
base_to_out_tensors.push_back(std::make_pair(base_tensor, out_tensor));
|
||||
gguf_add_tensor(ctx_out, out_tensor);
|
||||
} else {
|
||||
throw std::runtime_error("tensor " + it.first + " missing either lora_a or lora_b");
|
||||
}
|
||||
}
|
||||
if (ret != 1) {
|
||||
die("unexpectedly reached end of file");
|
||||
|
||||
// placeholder for the meta data
|
||||
{
|
||||
size_t meta_size = gguf_get_meta_size(ctx_out);
|
||||
zeros(fout, meta_size);
|
||||
}
|
||||
}
|
||||
|
||||
std::uint32_t read_u32() {
|
||||
std::uint32_t ret;
|
||||
read_raw(&ret, sizeof(ret));
|
||||
return ret;
|
||||
}
|
||||
|
||||
std::string read_string(std::uint32_t len) {
|
||||
std::vector<char> chars(len);
|
||||
read_raw(chars.data(), len);
|
||||
return std::string(chars.data(), len);
|
||||
}
|
||||
|
||||
void write_raw(const void * ptr, size_t size) {
|
||||
if (size == 0) {
|
||||
return;
|
||||
// process base model tensors
|
||||
size_t n_merged = 0;
|
||||
for (auto & it : base_to_out_tensors) {
|
||||
if (it.second != nullptr) {
|
||||
merge_tensor(it.first, it.second);
|
||||
n_merged++;
|
||||
} else {
|
||||
copy_tensor(it.first);
|
||||
}
|
||||
}
|
||||
errno = 0;
|
||||
size_t ret = std::fwrite(ptr, size, 1, fp);
|
||||
if (ret != 1) {
|
||||
die_fmt("write error: %s", strerror(errno));
|
||||
|
||||
// write output metadata
|
||||
{
|
||||
std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
|
||||
gguf_get_meta_data(ctx_out, data.data());
|
||||
fout.seekp(0);
|
||||
fout.write((const char *)data.data(), data.size());
|
||||
}
|
||||
|
||||
printf("%s : merged %ld tensors with lora adapters\n", __func__, n_merged);
|
||||
printf("%s : wrote %ld tensors to output file\n", __func__, base_to_out_tensors.size());
|
||||
}
|
||||
|
||||
void write_u32(std::uint32_t val) {
|
||||
write_raw(&val, sizeof(val));
|
||||
void copy_tensor(struct ggml_tensor * base) {
|
||||
printf("%s : %s [%s]\n", __func__, base->name, ggml_ne_string(base).c_str());
|
||||
size_t len = ggml_nbytes(base);
|
||||
base_model.read_tensor_data(base->name, read_buf);
|
||||
fout.write((char* )read_buf.data(), len);
|
||||
zeros(fout, GGML_PAD(len, GGUF_DEFAULT_ALIGNMENT) - len);
|
||||
}
|
||||
|
||||
bool eof() {
|
||||
return tell() >= size;
|
||||
}
|
||||
void merge_tensor(struct ggml_tensor * base, struct ggml_tensor * out) {
|
||||
std::string name_base(base->name);
|
||||
std::string name_lora_a = name_base + ".lora_a";
|
||||
std::string name_lora_b = name_base + ".lora_b";
|
||||
|
||||
~llama_file() {
|
||||
if (fp) {
|
||||
std::fclose(fp);
|
||||
printf("%s : %s [%s]\n", __func__, base->name, ggml_ne_string(base).c_str());
|
||||
|
||||
// context for input tensor
|
||||
std::vector<struct ggml_tensor *> inp_a(adapters.size());
|
||||
std::vector<struct ggml_tensor *> inp_b(adapters.size());
|
||||
struct ggml_init_params params {
|
||||
/*.mem_size =*/ ggml_tensor_overhead()*(2+adapters.size()*2),
|
||||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ true,
|
||||
};
|
||||
struct ggml_context * ctx = ggml_init(params);
|
||||
|
||||
// alloc tensors
|
||||
struct ggml_tensor * inp_base = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, base->ne);
|
||||
for (size_t i = 0; i < adapters.size(); ++i) {
|
||||
auto t_a = adapters[i]->get_tensor(name_lora_a);
|
||||
auto t_b = adapters[i]->get_tensor(name_lora_b);
|
||||
inp_a[i] = ggml_dup_tensor(ctx, t_a);
|
||||
inp_b[i] = ggml_dup_tensor(ctx, t_b);
|
||||
}
|
||||
ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx, backend);
|
||||
|
||||
// load base tensor to backend buffer
|
||||
base_model.read_tensor_data(name_base, read_buf);
|
||||
if (base->type != GGML_TYPE_F32) {
|
||||
// optionally dequantize it
|
||||
printf("%s : + dequantize base tensor from %s to F32\n", __func__, ggml_type_name(base->type));
|
||||
auto nels = ggml_nelements(inp_base);
|
||||
ggml_type_traits_t qtype = ggml_internal_get_type_traits(base->type);
|
||||
std::vector<uint8_t> dequant_buf(nels * sizeof(float));
|
||||
qtype.to_float(read_buf.data(), (float *)dequant_buf.data(), nels);
|
||||
ggml_backend_tensor_set(inp_base, dequant_buf.data(), 0, dequant_buf.size());
|
||||
} else {
|
||||
ggml_backend_tensor_set(inp_base, read_buf.data(), 0, ggml_nbytes(inp_base));
|
||||
}
|
||||
|
||||
// load lora tensors to backend buffer
|
||||
for (size_t i = 0; i < adapters.size(); ++i) {
|
||||
adapters[i]->read_tensor_data(name_lora_a, read_buf);
|
||||
ggml_backend_tensor_set(inp_a[i], read_buf.data(), 0, ggml_nbytes(inp_a[i]));
|
||||
adapters[i]->read_tensor_data(name_lora_b, read_buf);
|
||||
ggml_backend_tensor_set(inp_b[i], read_buf.data(), 0, ggml_nbytes(inp_b[i]));
|
||||
}
|
||||
|
||||
// build graph
|
||||
struct ggml_cgraph * gf;
|
||||
{
|
||||
static size_t buf_size = ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead();
|
||||
static std::vector<uint8_t> buf(buf_size);
|
||||
struct ggml_init_params params0 = {
|
||||
/*.mem_size =*/ buf_size,
|
||||
/*.mem_buffer =*/ buf.data(),
|
||||
/*.no_alloc =*/ true,
|
||||
};
|
||||
struct ggml_context * ctx0 = ggml_init(params0);
|
||||
gf = ggml_new_graph(ctx0);
|
||||
struct ggml_tensor * cur = inp_base;
|
||||
for (size_t i = 0; i < adapters.size(); ++i) {
|
||||
struct ggml_tensor * a_T = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_cast(ctx0, inp_a[i], GGML_TYPE_F32)));
|
||||
struct ggml_tensor * delta = ggml_mul_mat(ctx0, a_T, ggml_cast(ctx0, inp_b[i], GGML_TYPE_F32));
|
||||
// scale
|
||||
const float alpha = adapters[i]->alpha;
|
||||
const float rank = (float) inp_b[i]->ne[0];
|
||||
const float scale = alpha ? adapters[i]->scale * alpha / rank : adapters[i]->scale;
|
||||
delta = ggml_scale(ctx0, delta, scale);
|
||||
cur = ggml_add(ctx0, delta, cur);
|
||||
printf("%s : + merging from adapter[%ld] type=%s\n", __func__, i, ggml_type_name(inp_a[i]->type));
|
||||
printf("%s : input_scale=%f calculated_scale=%f rank=%d\n", __func__, adapters[i]->scale, scale, (int) inp_b[i]->ne[0]);
|
||||
}
|
||||
cur = ggml_cast(ctx0, cur, out->type);
|
||||
printf("%s : + output type is %s\n", __func__, ggml_type_name(out->type));
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
ggml_free(ctx0);
|
||||
}
|
||||
|
||||
// compute
|
||||
{
|
||||
ggml_gallocr_alloc_graph(allocr, gf);
|
||||
ggml_backend_cpu_set_n_threads(backend, n_threads);
|
||||
ggml_backend_graph_compute(backend, gf);
|
||||
}
|
||||
|
||||
// write data to output file
|
||||
{
|
||||
auto result = gf->nodes[gf->n_nodes - 1];
|
||||
size_t len = ggml_nbytes(result);
|
||||
if (read_buf.size() < len) {
|
||||
read_buf.resize(len);
|
||||
}
|
||||
ggml_backend_tensor_get(result, read_buf.data(), 0, len);
|
||||
fout.write((char* )read_buf.data(), len);
|
||||
zeros(fout, GGML_PAD(len, GGUF_DEFAULT_ALIGNMENT) - len);
|
||||
}
|
||||
|
||||
ggml_free(ctx);
|
||||
ggml_backend_buffer_free(buffer);
|
||||
}
|
||||
|
||||
~lora_merge_ctx() {
|
||||
ggml_gallocr_free(allocr);
|
||||
ggml_backend_free(backend);
|
||||
gguf_free(ctx_out);
|
||||
ggml_free(ctx_out_ggml);
|
||||
}
|
||||
};
|
||||
|
||||
static struct export_lora_params get_default_export_lora_params() {
|
||||
struct export_lora_params result;
|
||||
result.fn_model_base = "";
|
||||
result.fn_model_out = "";
|
||||
result.n_threads = GGML_DEFAULT_N_THREADS;
|
||||
return result;
|
||||
}
|
||||
static void print_usage(int argc, char ** argv, const gpt_params & params) {
|
||||
gpt_params_print_usage(argc, argv, params);
|
||||
|
||||
static void export_lora_print_usage(int /*argc*/, char ** argv, const struct export_lora_params * params) {
|
||||
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "options:\n");
|
||||
fprintf(stderr, " -h, --help show this help message and exit\n");
|
||||
fprintf(stderr, " -m FNAME, --model-base FNAME model path from which to load base model (default '%s')\n", params->fn_model_base.c_str());
|
||||
fprintf(stderr, " -o FNAME, --model-out FNAME path to save exported model (default '%s')\n", params->fn_model_out.c_str());
|
||||
fprintf(stderr, " -l FNAME, --lora FNAME apply LoRA adapter\n");
|
||||
fprintf(stderr, " -s FNAME S, --lora-scaled FNAME S apply LoRA adapter with user defined scaling S\n");
|
||||
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params->n_threads);
|
||||
}
|
||||
|
||||
static bool export_lora_params_parse(int argc, char ** argv, struct export_lora_params * params) {
|
||||
bool invalid_param = false;
|
||||
std::string arg;
|
||||
struct export_lora_params default_params = get_default_export_lora_params();
|
||||
const std::string arg_prefix = "--";
|
||||
|
||||
for (int i = 1; i < argc; i++) {
|
||||
arg = argv[i];
|
||||
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
|
||||
std::replace(arg.begin(), arg.end(), '_', '-');
|
||||
}
|
||||
|
||||
if (arg == "-m" || arg == "--model-base") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params->fn_model_base = argv[i];
|
||||
} else if (arg == "-o" || arg == "--model-out") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params->fn_model_out = argv[i];
|
||||
} else if (arg == "-l" || arg == "--lora") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
struct lora_info lora;
|
||||
lora.filename = argv[i];
|
||||
lora.scale = 1.0f;
|
||||
params->lora.push_back(lora);
|
||||
} else if (arg == "-s" || arg == "--lora-scaled") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
struct lora_info lora;
|
||||
lora.filename = argv[i];
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
lora.scale = std::stof(argv[i]);
|
||||
params->lora.push_back(lora);
|
||||
} else if (arg == "-t" || arg == "--threads") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params->n_threads = std::stoi(argv[i]);
|
||||
if (params->n_threads <= 0) {
|
||||
params->n_threads = std::thread::hardware_concurrency();
|
||||
}
|
||||
} else {
|
||||
fprintf(stderr, "error: unknown argument: '%s'\n", arg.c_str());
|
||||
export_lora_print_usage(argc, argv, &default_params);
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
|
||||
if (params->fn_model_base == default_params.fn_model_base) {
|
||||
fprintf(stderr, "error: please specify a filename for model-base.\n");
|
||||
export_lora_print_usage(argc, argv, &default_params);
|
||||
exit(1);
|
||||
}
|
||||
if (params->fn_model_out == default_params.fn_model_out) {
|
||||
fprintf(stderr, "error: please specify a filename for model-out.\n");
|
||||
export_lora_print_usage(argc, argv, &default_params);
|
||||
exit(1);
|
||||
}
|
||||
if (invalid_param) {
|
||||
fprintf(stderr, "error: invalid parameter for argument: '%s'\n", arg.c_str());
|
||||
export_lora_print_usage(argc, argv, &default_params);
|
||||
exit(1);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
static void free_lora(struct lora_data * lora) {
|
||||
if (lora->ctx != NULL) {
|
||||
ggml_free(lora->ctx);
|
||||
}
|
||||
delete lora;
|
||||
}
|
||||
|
||||
static struct lora_data * load_lora(struct lora_info * info) {
|
||||
struct lora_data * result = new struct lora_data;
|
||||
result->info = *info;
|
||||
result->ctx = NULL;
|
||||
result->lora_r = 1;
|
||||
result->lora_alpha = 1;
|
||||
|
||||
struct llama_file file(info->filename.c_str(), "rb");
|
||||
if (file.fp == NULL) {
|
||||
fprintf(stderr, "warning: Could not open lora adapter '%s'. Ignoring this adapter.\n",
|
||||
info->filename.c_str());
|
||||
free_lora(result);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
struct ggml_init_params params_ggml;
|
||||
params_ggml.mem_size = ggml_tensor_overhead() * GGML_DEFAULT_GRAPH_SIZE;
|
||||
params_ggml.mem_buffer = NULL;
|
||||
params_ggml.no_alloc = true;
|
||||
result->ctx = ggml_init(params_ggml);
|
||||
|
||||
uint32_t magic = file.read_u32();
|
||||
if (magic != LLAMA_FILE_MAGIC_GGLA) {
|
||||
die_fmt("unexpected lora header file magic in '%s'", info->filename.c_str());
|
||||
}
|
||||
uint32_t version = file.read_u32();
|
||||
if (version != 1) {
|
||||
die_fmt("unexpected lora file version '%u' in '%s'", (unsigned) version, info->filename.c_str());
|
||||
}
|
||||
result->lora_r = file.read_u32();
|
||||
result->lora_alpha = file.read_u32();
|
||||
// read tensor infos from file
|
||||
std::vector<char> name_buf;
|
||||
std::vector<struct ggml_tensor *> tensors;
|
||||
std::vector<size_t> tensors_offset;
|
||||
size_t total_nbytes_pad = 0;
|
||||
while(!file.eof()) {
|
||||
int64_t ne[4] = {1,1,1,1};
|
||||
uint32_t n_dims = file.read_u32();
|
||||
uint32_t namelen = file.read_u32();
|
||||
uint32_t type = file.read_u32();
|
||||
for (uint32_t k = 0; k < n_dims; ++k) {
|
||||
ne[k] = (int64_t)file.read_u32();
|
||||
}
|
||||
name_buf.clear();
|
||||
name_buf.resize(namelen + 1, '\0');
|
||||
file.read_raw(name_buf.data(), namelen);
|
||||
file.seek((0-file.tell()) & 31, SEEK_CUR);
|
||||
size_t offset = file.tell();
|
||||
struct ggml_tensor * tensor = ggml_new_tensor(result->ctx, (enum ggml_type) type, n_dims, ne);
|
||||
ggml_set_name(tensor, name_buf.data());
|
||||
size_t nbytes = ggml_nbytes(tensor);
|
||||
size_t nbytes_pad = ggml_nbytes_pad(tensor);
|
||||
total_nbytes_pad += nbytes_pad;
|
||||
tensors.push_back(tensor);
|
||||
tensors_offset.push_back(offset);
|
||||
file.seek(nbytes, SEEK_CUR);
|
||||
}
|
||||
// read tensor data
|
||||
result->data.resize(total_nbytes_pad);
|
||||
size_t data_offset = 0;
|
||||
for (size_t i = 0; i < tensors.size(); ++i) {
|
||||
struct ggml_tensor * tensor = tensors[i];
|
||||
size_t offset = tensors_offset[i];
|
||||
size_t nbytes = ggml_nbytes(tensor);
|
||||
size_t nbytes_pad = ggml_nbytes_pad(tensor);
|
||||
file.seek(offset, SEEK_SET);
|
||||
tensor->data = result->data.data() + data_offset;
|
||||
file.read_raw(tensor->data, nbytes);
|
||||
data_offset += nbytes_pad;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
static struct ggml_cgraph * build_graph_lora(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * tensor,
|
||||
struct ggml_tensor * lora_a,
|
||||
struct ggml_tensor * lora_b,
|
||||
float scaling
|
||||
) {
|
||||
struct ggml_tensor * ab = ggml_mul_mat(ctx, lora_a, lora_b);
|
||||
if (scaling != 1.0f) {
|
||||
ab = ggml_scale(ctx, ab, scaling);
|
||||
}
|
||||
struct ggml_tensor * res = ggml_add_inplace(ctx, tensor, ab);
|
||||
|
||||
struct ggml_cgraph * gf = ggml_new_graph(ctx);
|
||||
ggml_build_forward_expand (gf, res);
|
||||
return gf;
|
||||
}
|
||||
|
||||
static bool apply_lora(struct ggml_tensor * tensor, struct lora_data * lora, int n_threads) {
|
||||
if (lora->ctx == NULL) {
|
||||
return false;
|
||||
}
|
||||
std::string name = ggml_get_name(tensor);
|
||||
std::string name_a = name + std::string(".loraA");
|
||||
std::string name_b = name + std::string(".loraB");
|
||||
struct ggml_tensor * lora_a = ggml_get_tensor(lora->ctx, name_a.c_str());
|
||||
struct ggml_tensor * lora_b = ggml_get_tensor(lora->ctx, name_b.c_str());
|
||||
if (lora_a == NULL || lora_b == NULL) {
|
||||
return false;
|
||||
}
|
||||
|
||||
float scaling = lora->info.scale * (float)lora->lora_alpha / (float)lora->lora_r;
|
||||
|
||||
struct ggml_init_params params;
|
||||
params.mem_size = GGML_OBJECT_SIZE + ggml_graph_overhead() + ggml_tensor_overhead()*4 + GGML_MEM_ALIGN*5;
|
||||
params.mem_buffer = NULL;
|
||||
params.no_alloc = true;
|
||||
struct ggml_context * ctx = NULL;
|
||||
struct ggml_gallocr * alloc = NULL;
|
||||
struct ggml_cgraph * gf = NULL;
|
||||
|
||||
ctx = ggml_init(params);
|
||||
alloc = ggml_gallocr_new(ggml_backend_cpu_buffer_type());
|
||||
gf = build_graph_lora(ctx, tensor, lora_a, lora_b, scaling);
|
||||
|
||||
ggml_gallocr_alloc_graph(alloc, gf);
|
||||
|
||||
struct ggml_cplan cplan = ggml_graph_plan(gf, n_threads);
|
||||
static std::vector<uint8_t> data_work;
|
||||
data_work.resize(cplan.work_size);
|
||||
cplan.work_data = data_work.data();
|
||||
|
||||
ggml_graph_compute(gf, &cplan);
|
||||
|
||||
ggml_gallocr_free(alloc);
|
||||
ggml_free(ctx);
|
||||
return true;
|
||||
}
|
||||
|
||||
static void export_lora(struct export_lora_params * params) {
|
||||
// load all loras
|
||||
std::vector<struct lora_data *> loras;
|
||||
for (size_t i = 0; i < params->lora.size(); ++i) {
|
||||
struct lora_data * lora = load_lora(¶ms->lora[i]);
|
||||
if (lora != NULL) {
|
||||
loras.push_back(lora);
|
||||
}
|
||||
}
|
||||
if (loras.size() == 0) {
|
||||
fprintf(stderr, "warning: no lora adapters will be applied.\n");
|
||||
}
|
||||
|
||||
// open input file
|
||||
struct llama_file fin(params->fn_model_base.c_str(), "rb");
|
||||
if (!fin.fp) {
|
||||
die_fmt("Could not open file '%s'\n", params->fn_model_base.c_str());
|
||||
}
|
||||
|
||||
// open base model gguf, read tensors without their data
|
||||
struct ggml_context * ctx_in;
|
||||
struct gguf_init_params params_gguf;
|
||||
params_gguf.no_alloc = true;
|
||||
params_gguf.ctx = &ctx_in;
|
||||
struct gguf_context * gguf_in = gguf_init_from_file(params->fn_model_base.c_str(), params_gguf);
|
||||
|
||||
// create new gguf
|
||||
struct gguf_context * gguf_out = gguf_init_empty();
|
||||
|
||||
// copy meta data from base model: kv and tensors
|
||||
gguf_set_kv(gguf_out, gguf_in);
|
||||
int n_tensors = gguf_get_n_tensors(gguf_in);
|
||||
for (int i=0; i < n_tensors; ++i) {
|
||||
const char * name = gguf_get_tensor_name(gguf_in, i);
|
||||
struct ggml_tensor * tensor = ggml_get_tensor(ctx_in, name);
|
||||
gguf_add_tensor(gguf_out, tensor);
|
||||
}
|
||||
|
||||
// create output file
|
||||
struct llama_file fout(params->fn_model_out.c_str(), "wb");
|
||||
if (!fout.fp) {
|
||||
die_fmt("Could not create file '%s'\n", params->fn_model_out.c_str());
|
||||
}
|
||||
|
||||
// write gguf meta data
|
||||
std::vector<uint8_t> meta;
|
||||
meta.resize(gguf_get_meta_size(gguf_out));
|
||||
gguf_get_meta_data(gguf_out, meta.data());
|
||||
fout.write_raw(meta.data(), meta.size());
|
||||
|
||||
std::vector<uint8_t> data;
|
||||
std::vector<uint8_t> padding;
|
||||
for (int i=0; i < n_tensors; ++i) {
|
||||
const char * name = gguf_get_tensor_name(gguf_in, i);
|
||||
struct ggml_tensor * tensor = ggml_get_tensor(ctx_in, name);
|
||||
|
||||
// read tensor data
|
||||
data.resize(ggml_nbytes(tensor));
|
||||
tensor->data = data.data();
|
||||
size_t offset = gguf_get_tensor_offset(gguf_in, i);
|
||||
fin.seek(offset + meta.size(), SEEK_SET);
|
||||
fin.read_raw(data.data(), data.size());
|
||||
|
||||
// apply all loras
|
||||
for (size_t k = 0; k < loras.size(); ++k) {
|
||||
apply_lora(tensor, loras[k], params->n_threads);
|
||||
}
|
||||
|
||||
// write tensor data + padding
|
||||
padding.clear();
|
||||
padding.resize(GGML_PAD(data.size(), gguf_get_alignment(gguf_out)) - data.size(), 0);
|
||||
|
||||
GGML_ASSERT(fout.tell() == offset + meta.size());
|
||||
// fout.seek(offset + meta.size(), SEEK_SET);
|
||||
fout.write_raw(data.data(), data.size());
|
||||
fout.write_raw(padding.data(), padding.size());
|
||||
|
||||
if (i % 2 == 0) {
|
||||
printf(".");
|
||||
}
|
||||
}
|
||||
printf("\nexample usage:\n");
|
||||
printf("\n %s -m base-model.gguf --lora lora-file.gguf -o merged-model-f16.gguf\n", argv[0]);
|
||||
printf("\nNOTE: output model is F16\n");
|
||||
printf("\n");
|
||||
|
||||
// close gguf
|
||||
gguf_free(gguf_out);
|
||||
gguf_free(gguf_in);
|
||||
|
||||
// free loras
|
||||
for (size_t i = 0; i < loras.size(); ++i) {
|
||||
free_lora(loras[i]);
|
||||
}
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
struct export_lora_params params = get_default_export_lora_params();
|
||||
gpt_params params;
|
||||
|
||||
if (!export_lora_params_parse(argc, argv, ¶ms)) {
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
print_usage(argc, argv, params);
|
||||
return 1;
|
||||
}
|
||||
|
||||
export_lora(¶ms);
|
||||
g_verbose = (params.verbosity == 1);
|
||||
try {
|
||||
lora_merge_ctx ctx(params.model, params.lora_adapter, params.lora_outfile, params.n_threads);
|
||||
ctx.run_merge();
|
||||
} catch (const std::exception & err) {
|
||||
fprintf(stderr, "%s\n", err.what());
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
printf("done, output file is %s\n", params.lora_outfile.c_str());
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -1,5 +0,0 @@
|
||||
set(TARGET llama-finetune)
|
||||
add_executable(${TARGET} finetune.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
@@ -1,90 +0,0 @@
|
||||
# finetune
|
||||
|
||||
Basic usage instructions:
|
||||
|
||||
```bash
|
||||
# get training data
|
||||
wget https://raw.githubusercontent.com/brunoklein99/deep-learning-notes/master/shakespeare.txt
|
||||
|
||||
# finetune LORA adapter
|
||||
./bin/llama-finetune \
|
||||
--model-base open-llama-3b-v2-q8_0.gguf \
|
||||
--checkpoint-in chk-lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.gguf \
|
||||
--checkpoint-out chk-lora-open-llama-3b-v2-q8_0-shakespeare-ITERATION.gguf \
|
||||
--lora-out lora-open-llama-3b-v2-q8_0-shakespeare-ITERATION.bin \
|
||||
--train-data "shakespeare.txt" \
|
||||
--save-every 10 \
|
||||
--threads 6 --adam-iter 30 --batch 4 --ctx 64 \
|
||||
--use-checkpointing
|
||||
|
||||
# predict
|
||||
./bin/llama-cli -m open-llama-3b-v2-q8_0.gguf --lora lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin
|
||||
```
|
||||
|
||||
**Only llama based models are supported!** The output files will be saved every N iterations (config with `--save-every N`).
|
||||
The pattern 'ITERATION' in the output filenames will be replaced with the iteration number and with 'LATEST' for the latest output.
|
||||
So in above example after 10 iterations these files will be written:
|
||||
- chk-lora-open-llama-3b-v2-q8_0-shakespeare-10.gguf
|
||||
- chk-lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.gguf
|
||||
- lora-open-llama-3b-v2-q8_0-shakespeare-10.bin
|
||||
- lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin
|
||||
|
||||
After 10 more iterations:
|
||||
- chk-lora-open-llama-3b-v2-q8_0-shakespeare-20.gguf
|
||||
- chk-lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.gguf
|
||||
- lora-open-llama-3b-v2-q8_0-shakespeare-20.bin
|
||||
- lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin
|
||||
|
||||
Checkpoint files (`--checkpoint-in FN`, `--checkpoint-out FN`) store the training process. When the input checkpoint file does not exist, it will begin finetuning a new randomly initialized adapter.
|
||||
|
||||
llama.cpp compatible LORA adapters will be saved with filename specified by `--lora-out FN`.
|
||||
These LORA adapters can then be used by `llama-cli` together with the base model, like in the 'predict' example command above.
|
||||
|
||||
In `llama-cli` you can also load multiple LORA adapters, which will then be mixed together.
|
||||
|
||||
For example if you have two LORA adapters `lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin` and `lora-open-llama-3b-v2-q8_0-bible-LATEST.bin`, you can mix them together like this:
|
||||
|
||||
```bash
|
||||
./bin/llama-cli -m open-llama-3b-v2-q8_0.gguf \
|
||||
--lora lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin \
|
||||
--lora lora-open-llama-3b-v2-q8_0-bible-LATEST.bin
|
||||
```
|
||||
|
||||
You can change how strong each LORA adapter is applied to the base model by using `--lora-scaled FN SCALE` instead of `--lora FN`.
|
||||
|
||||
For example to apply 40% of the 'shakespeare' LORA adapter, 80% of the 'bible' LORA adapter and 100% of yet another one:
|
||||
|
||||
```bash
|
||||
./bin/llama-cli -m open-llama-3b-v2-q8_0.gguf \
|
||||
--lora-scaled lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin 0.4 \
|
||||
--lora-scaled lora-open-llama-3b-v2-q8_0-bible-LATEST.bin 0.8 \
|
||||
--lora lora-open-llama-3b-v2-q8_0-yet-another-one-LATEST.bin
|
||||
```
|
||||
|
||||
The scale numbers don't need to add up to one, and you can also use numbers greater than 1 to further increase the influence of an adapter. But making the values too big will sometimes result in worse output. Play around to find good values.
|
||||
|
||||
Gradient checkpointing reduces the memory requirements by ~50% but increases the runtime.
|
||||
If you have enough RAM, you can make finetuning a bit faster by disabling checkpointing with `--no-checkpointing`.
|
||||
|
||||
The default LORA rank can be specified with `--lora-r N`.
|
||||
The LORA rank can be configured for each model tensor type separately with these command line options:
|
||||
|
||||
```bash
|
||||
--lora-r N LORA r: default rank. Also specifies resulting scaling together with lora-alpha. (default 4)
|
||||
--rank-att-norm N LORA rank for attention norm tensor (default 1)
|
||||
--rank-ffn-norm N LORA rank for feed-forward norm tensor (default 1)
|
||||
--rank-out-norm N LORA rank for output norm tensor (default 1)
|
||||
--rank-tok-embd N LORA rank for token embeddings tensor (default 4)
|
||||
--rank-out N LORA rank for output tensor (default 4)
|
||||
--rank-wq N LORA rank for wq tensor (default 4)
|
||||
--rank-wk N LORA rank for wk tensor (default 4)
|
||||
--rank-wv N LORA rank for wv tensor (default 4)
|
||||
--rank-wo N LORA rank for wo tensor (default 4)
|
||||
--rank-ffn_gate N LORA rank for ffn_gate tensor (default 4)
|
||||
--rank-ffn_down N LORA rank for ffn_down tensor (default 4)
|
||||
--rank-ffn_up N LORA rank for ffn_up tensor (default 4)
|
||||
```
|
||||
|
||||
The LORA rank of 'norm' tensors should always be 1.
|
||||
|
||||
To see all available options use `llama-finetune --help`.
|
||||
@@ -1,487 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# finetune checkpoint --> gguf conversion
|
||||
|
||||
import argparse
|
||||
import gguf
|
||||
import struct
|
||||
import numpy as np
|
||||
from pathlib import Path
|
||||
|
||||
# gguf constants
|
||||
LLM_KV_OPTIMIZER_TYPE = "optimizer.type"
|
||||
LLM_KV_OPTIMIZER_TYPE_ADAM = "adam"
|
||||
LLM_KV_OPTIMIZER_TYPE_LBFGS = "lbfgs"
|
||||
LLM_KV_OPTIMIZER_FILE_VERSION = "optimizer.file_version"
|
||||
LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT = "optimizer.convergence_past_count"
|
||||
LLM_KV_OPTIMIZER_PARAMETER_COUNT = "optimizer.parameter_count"
|
||||
LLM_KV_OPTIMIZER_ITERATION_COUNT = "optimizer.iteration_count"
|
||||
LLM_KV_OPTIMIZER_JUST_INITIALIZED = "optimizer.just_initialized"
|
||||
LLM_KV_OPTIMIZER_ADAM_BEST_LOSS = "optimizer.adam.best_loss"
|
||||
LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS = "optimizer.adam.previous_loss"
|
||||
LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT = "optimizer.adam.no_improvement_count"
|
||||
LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT = "optimizer.lbfgs.approx_hessian_count"
|
||||
LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS = "optimizer.lbfgs.best_loss"
|
||||
LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP = "optimizer.lbfgs.line_search_step"
|
||||
LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J = "optimizer.lbfgs.line_search_j"
|
||||
LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K = "optimizer.lbfgs.line_search_k"
|
||||
LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END = "optimizer.lbfgs.line_search_end"
|
||||
LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT = "optimizer.lbfgs.no_improvement_count"
|
||||
|
||||
LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS = "optimizer.adam.first_moments"
|
||||
LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS = "optimizer.adam.second_moments"
|
||||
LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES = "optimizer.adam.past_loss_values"
|
||||
|
||||
LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS = "optimizer.lbfgs.current_parameters"
|
||||
LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS = "optimizer.lbfgs.previous_parameters"
|
||||
LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS = "optimizer.lbfgs.current_gradients"
|
||||
LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS = "optimizer.lbfgs.previous_gradients"
|
||||
LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION = "optimizer.lbfgs.search_direction"
|
||||
LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES = "optimizer.lbfgs.past_loss_values"
|
||||
LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA = "optimizer.lbfgs.memory_alpha"
|
||||
LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS = "optimizer.lbfgs.memory_ys"
|
||||
LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S = "optimizer.lbfgs.memory_s"
|
||||
LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y = "optimizer.lbfgs.memory_y"
|
||||
|
||||
LLM_KV_TRAINING_TYPE_TRAIN_MODEL = "train_model"
|
||||
LLM_KV_TRAINING_TYPE_FINETUNE_LORA = "finetune_lora"
|
||||
LLM_KV_TRAINING_TYPE = "training.type"
|
||||
LLM_KV_TRAINING_FILE_VERSION = "training.file_version"
|
||||
LLM_KV_TRAINING_ITERATION_COUNT = "training.iteration_count"
|
||||
LLM_KV_TRAINING_SAMPLE_COUNT = "training.sample_count"
|
||||
LLM_KV_TRAINING_TOKEN_COUNT = "training.token_count"
|
||||
|
||||
LLM_KV_TRAINING_LORA_RANK_TOKEN_EMBD = "training.lora.rank.token_embd"
|
||||
LLM_KV_TRAINING_LORA_RANK_OUTPUT_NORM = "training.lora.rank.output_norm"
|
||||
LLM_KV_TRAINING_LORA_RANK_OUTPUT = "training.lora.rank.output"
|
||||
LLM_KV_TRAINING_LORA_RANK_ATTN_NORM = "training.lora.rank.attn_norm"
|
||||
LLM_KV_TRAINING_LORA_RANK_ATTN_Q = "training.lora.rank.attn_q"
|
||||
LLM_KV_TRAINING_LORA_RANK_ATTN_K = "training.lora.rank.attn_k"
|
||||
LLM_KV_TRAINING_LORA_RANK_ATTN_V = "training.lora.rank.attn_v"
|
||||
LLM_KV_TRAINING_LORA_RANK_ATTN_OUT = "training.lora.rank.attn_output"
|
||||
LLM_KV_TRAINING_LORA_RANK_FFN_NORM = "training.lora.rank.ffn_norm"
|
||||
LLM_KV_TRAINING_LORA_RANK_FFN_GATE = "training.lora.rank.ffn_gate"
|
||||
LLM_KV_TRAINING_LORA_RANK_FFN_DOWN = "training.lora.rank.ffn_down"
|
||||
LLM_KV_TRAINING_LORA_RANK_FFN_UP = "training.lora.rank.ffn_up"
|
||||
|
||||
class Tensor:
|
||||
def __init__(self, dtype='f', ne=None):
|
||||
if ne is None:
|
||||
ne = []
|
||||
self.dtype = dtype
|
||||
self.ne = ne
|
||||
self.nbytes = 0
|
||||
if self.dtype == 'f':
|
||||
if len(self.ne) == 0:
|
||||
self.nbytes = 0
|
||||
else:
|
||||
self.nbytes = int(np.prod(self.ne)) * 4
|
||||
else:
|
||||
raise ValueError(f"Unhandled data type '{self.dtype}'")
|
||||
|
||||
def load(self, data, offset):
|
||||
nd = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
namelen = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
dtype = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
|
||||
assert(nd == len(self.ne))
|
||||
ne = []
|
||||
for d in range(nd):
|
||||
n = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
ne.append(n)
|
||||
|
||||
if tuple(ne) != tuple(self.ne):
|
||||
raise ValueError(f"Tensor.load: Expected number of elements {str(self.ne)} does not match what is read from file {str(ne)}")
|
||||
|
||||
if self.dtype == 'f':
|
||||
assert(dtype == 0)
|
||||
else:
|
||||
raise ValueError(f"Unhandled data type '{self.dtype}'")
|
||||
|
||||
self.name = bytes(data[offset:offset+namelen]); offset += namelen
|
||||
# 32-byte alignment
|
||||
offset += (0 - offset) & 31
|
||||
self.data = data[offset:offset+self.nbytes]
|
||||
offset += self.nbytes
|
||||
return offset
|
||||
|
||||
def max_storage_size(self):
|
||||
result = 0
|
||||
result += 4 # nd
|
||||
result += 4 # namelen
|
||||
result += 4 # dtype
|
||||
result += len(self.ne)*8 # ne
|
||||
result += 48 # name (maximum as of commit 3b5515bbe0e2224425986ba24f1f5d84aa38dce9)
|
||||
result += 31 # 32-byte alignment
|
||||
result += self.nbytes
|
||||
return result
|
||||
|
||||
def save_gguf(self, gguf_writer, name):
|
||||
gguf_writer.add_tensor(
|
||||
name=name,
|
||||
tensor=self.data,
|
||||
raw_shape=np.array(list(reversed(self.ne))),
|
||||
raw_dtype=gguf.GGMLQuantizationType.F32)
|
||||
|
||||
class OptimizationContext:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def load(self, data, offset):
|
||||
self.version = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]
|
||||
offset += 4
|
||||
|
||||
if self.version != 1:
|
||||
raise ValueError('Invalid version of optimization context in checkpoint file')
|
||||
|
||||
self.past = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.lbfgs_m = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.nx = struct.unpack('N', bytes(data[offset:offset + 8]))[0]; offset += 8
|
||||
self.iter = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.just_initialized = bool(struct.unpack('<i', bytes(data[offset:offset + 4]))[0]); offset += 4
|
||||
|
||||
self.adam_m = Tensor('f', [self.nx])
|
||||
self.adam_v = Tensor('f', [self.nx])
|
||||
self.adam_pf = Tensor('f', [self.past] if self.past > 0 else [])
|
||||
|
||||
self.lbfgs_x = Tensor('f', [self.nx])
|
||||
self.lbfgs_xp = Tensor('f', [self.nx])
|
||||
self.lbfgs_g = Tensor('f', [self.nx])
|
||||
self.lbfgs_gp = Tensor('f', [self.nx])
|
||||
self.lbfgs_d = Tensor('f', [self.nx])
|
||||
self.lbfgs_pf = Tensor('f', [self.past] if self.past > 0 else [])
|
||||
self.lbfgs_lmal = Tensor('f', [self.lbfgs_m])
|
||||
self.lbfgs_lmys = Tensor('f', [self.lbfgs_m])
|
||||
self.lbfgs_lms = Tensor('f', [self.nx, self.lbfgs_m])
|
||||
self.lbfgs_lmy = Tensor('f', [self.nx, self.lbfgs_m])
|
||||
|
||||
# forgot to save type in version 1:
|
||||
# guess self.type from number of remaining bytes
|
||||
size_type_0 = 12 + sum([t.max_storage_size() for t in
|
||||
[self.adam_m, self.adam_v]
|
||||
+([self.adam_pf] if (self.past > 0) else [])])
|
||||
size_type_1 = 24 + sum([t.max_storage_size() for t in
|
||||
[self.lbfgs_x, self.lbfgs_xp, self.lbfgs_g,
|
||||
self.lbfgs_gp, self.lbfgs_d, self.lbfgs_pf,
|
||||
self.lbfgs_lmal, self.lbfgs_lmys,
|
||||
self.lbfgs_lms, self.lbfgs_lmy]
|
||||
+([self.lbfgs_pf] if (self.past > 0) else [])])
|
||||
# due to alignment padding the size might not by exact
|
||||
# but the difference in size for both types is significant,
|
||||
# so we can just use whichever is closest
|
||||
remaining = len(data) - offset
|
||||
if abs(remaining - size_type_0) < abs(remaining - size_type_1):
|
||||
self.type = 0
|
||||
else:
|
||||
self.type = 1
|
||||
|
||||
if self.type == 0:
|
||||
offset = self.adam_m.load(data, offset)
|
||||
offset = self.adam_v.load(data, offset)
|
||||
offset = self.adam_pf.load(data,offset)
|
||||
|
||||
self.adam_fx_best = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.adam_fx_prev = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.adam_n_no_improvement = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
|
||||
elif self.type == 1:
|
||||
offset = self.lbfgs_x.load(data, offset)
|
||||
offset = self.lbfgs_xp.load(data, offset)
|
||||
offset = self.lbfgs_g.load(data, offset)
|
||||
offset = self.lbfgs_gp.load(data, offset)
|
||||
offset = self.lbfgs_d.load(data, offset)
|
||||
offset = self.lbfgs_pf.load(data, offset)
|
||||
offset = self.lbfgs_lmal.load(data, offset)
|
||||
offset = self.lbfgs_lmys.load(data, offset)
|
||||
offset = self.lbfgs_lms.load(data, offset)
|
||||
offset = self.lbfgs_lmy.load(data, offset)
|
||||
|
||||
self.lbfgs_fx_best = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.lbfgs_step = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.lbfgs_j = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.lbfgs_k = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.lbfgs_end = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.lbfgs_n_no_improvement = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
|
||||
else:
|
||||
raise ValueError(f"Invalid optimizer type '{self.type}'")
|
||||
|
||||
return offset
|
||||
|
||||
def save_gguf(self, gguf_writer):
|
||||
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_FILE_VERSION, 0)
|
||||
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT, self.past)
|
||||
gguf_writer.add_uint64(LLM_KV_OPTIMIZER_PARAMETER_COUNT, self.nx)
|
||||
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_ITERATION_COUNT, self.iter)
|
||||
gguf_writer.add_bool(LLM_KV_OPTIMIZER_JUST_INITIALIZED, self.just_initialized)
|
||||
|
||||
if self.type == 0:
|
||||
gguf_writer.add_string(LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_ADAM)
|
||||
gguf_writer.add_float32(LLM_KV_OPTIMIZER_ADAM_BEST_LOSS, self.adam_fx_best)
|
||||
gguf_writer.add_float32(LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS, self.adam_fx_prev)
|
||||
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT, self.adam_n_no_improvement)
|
||||
|
||||
self.adam_m.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS)
|
||||
self.adam_v.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS)
|
||||
if self.past > 0:
|
||||
self.adam_pf.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES)
|
||||
|
||||
elif self.type == 1:
|
||||
gguf_writer.add_string(LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_LBFGS)
|
||||
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT, self.lbfgs_m)
|
||||
gguf_writer.add_float32(LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS, self.lbfgs_fx_best)
|
||||
gguf_writer.add_float32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP, self.lbfgs_step)
|
||||
gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J, self.lbfgs_j)
|
||||
gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K, self.lbfgs_k)
|
||||
gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END, self.lbfgs_end)
|
||||
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT, self.lbfgs_n_no_improvement)
|
||||
|
||||
self.lbfgs_x.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS)
|
||||
self.lbfgs_xp.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS)
|
||||
self.lbfgs_g.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS)
|
||||
self.lbfgs_gp.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS)
|
||||
self.lbfgs_d.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION)
|
||||
if self.past > 0:
|
||||
self.lbfgs_pf.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES)
|
||||
self.lbfgs_lmal.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA)
|
||||
self.lbfgs_lmys.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS)
|
||||
self.lbfgs_lms.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S)
|
||||
self.lbfgs_lmy.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y)
|
||||
else:
|
||||
raise ValueError('Unknown optimizer type')
|
||||
|
||||
class LoraParams:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def load(self, data, offset):
|
||||
self.n_rank_attention_norm = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_rank_wq = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_rank_wk = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_rank_wv = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_rank_wo = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_rank_ffn_norm = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_rank_w1 = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_rank_w2 = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_rank_w3 = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_rank_tok_embeddings = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_rank_norm = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_rank_output = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
return offset
|
||||
|
||||
def save_gguf(self, gguf_writer):
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_TOKEN_EMBD, self.n_rank_tok_embeddings)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_OUTPUT_NORM, self.n_rank_norm)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_OUTPUT, self.n_rank_output)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_ATTN_NORM, self.n_rank_attention_norm)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_ATTN_Q, self.n_rank_wq)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_ATTN_K, self.n_rank_wk)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_ATTN_V, self.n_rank_wv)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_ATTN_OUT, self.n_rank_wo)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_FFN_NORM, self.n_rank_ffn_norm)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_FFN_GATE, self.n_rank_w1)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_FFN_DOWN, self.n_rank_w2)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_FFN_UP, self.n_rank_w3)
|
||||
|
||||
class ModelParams:
|
||||
def __init__(self, n_ff = None):
|
||||
self.n_ff = n_ff
|
||||
|
||||
def load(self, data, offset):
|
||||
self.n_vocab = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_embd = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_mult = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_head = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_layer = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_rot = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
return offset
|
||||
|
||||
def get_n_ff(self):
|
||||
if self.n_ff is None:
|
||||
# struct my_llama_model::get_n_ff in train-text-from-scratch.cpp commit 3b5515bbe0e2224425986ba24f1f5d84aa38dce9
|
||||
return ((2*(4*self.n_embd)//3 + self.n_mult - 1)//self.n_mult)*self.n_mult
|
||||
else:
|
||||
return self.n_ff
|
||||
|
||||
def save_gguf(self, gguf_writer):
|
||||
# self.n_vocab not saved
|
||||
gguf_writer.add_embedding_length(self.n_embd)
|
||||
gguf_writer.add_head_count(self.n_head)
|
||||
gguf_writer.add_block_count(self.n_layer)
|
||||
gguf_writer.add_rope_dimension_count(self.n_rot)
|
||||
gguf_writer.add_feed_forward_length(self.get_n_ff())
|
||||
|
||||
def tensor_name(key, bid=None, suffix=".weight"):
|
||||
return gguf.TENSOR_NAMES[key].format(bid=bid) + suffix
|
||||
|
||||
class Layer:
|
||||
def __init__(self, params, lora_params, bid):
|
||||
self.bid = bid
|
||||
self.att_norm_a = Tensor('f', [lora_params.n_rank_attention_norm, params.n_embd])
|
||||
self.att_norm_b = Tensor('f', [lora_params.n_rank_attention_norm, 1])
|
||||
self.wq_a = Tensor('f', [lora_params.n_rank_wq, params.n_embd])
|
||||
self.wq_b = Tensor('f', [lora_params.n_rank_wq, params.n_embd])
|
||||
self.wk_a = Tensor('f', [lora_params.n_rank_wk, params.n_embd])
|
||||
self.wk_b = Tensor('f', [lora_params.n_rank_wk, params.n_embd])
|
||||
self.wv_a = Tensor('f', [lora_params.n_rank_wv, params.n_embd])
|
||||
self.wv_b = Tensor('f', [lora_params.n_rank_wv, params.n_embd])
|
||||
self.wo_a = Tensor('f', [lora_params.n_rank_wo, params.n_embd])
|
||||
self.wo_b = Tensor('f', [lora_params.n_rank_wo, params.n_embd])
|
||||
self.ffn_norm_a = Tensor('f', [lora_params.n_rank_ffn_norm, params.n_embd])
|
||||
self.ffn_norm_b = Tensor('f', [lora_params.n_rank_ffn_norm, 1])
|
||||
self.w1_a = Tensor('f', [lora_params.n_rank_w1, params.n_embd])
|
||||
self.w1_b = Tensor('f', [lora_params.n_rank_w1, params.get_n_ff()])
|
||||
self.w2_a = Tensor('f', [lora_params.n_rank_w2, params.get_n_ff()])
|
||||
self.w2_b = Tensor('f', [lora_params.n_rank_w2, params.n_embd])
|
||||
self.w3_a = Tensor('f', [lora_params.n_rank_w3, params.n_embd])
|
||||
self.w3_b = Tensor('f', [lora_params.n_rank_w3, params.get_n_ff()])
|
||||
|
||||
def load(self, data, offset):
|
||||
offset = self.att_norm_a.load(data, offset)
|
||||
offset = self.att_norm_b.load(data, offset)
|
||||
offset = self.wq_a.load(data, offset)
|
||||
offset = self.wq_b.load(data, offset)
|
||||
offset = self.wk_a.load(data, offset)
|
||||
offset = self.wk_b.load(data, offset)
|
||||
offset = self.wv_a.load(data, offset)
|
||||
offset = self.wv_b.load(data, offset)
|
||||
offset = self.wo_a.load(data, offset)
|
||||
offset = self.wo_b.load(data, offset)
|
||||
offset = self.ffn_norm_a.load(data, offset)
|
||||
offset = self.ffn_norm_b.load(data, offset)
|
||||
offset = self.w1_a.load(data, offset)
|
||||
offset = self.w1_b.load(data, offset)
|
||||
offset = self.w2_a.load(data, offset)
|
||||
offset = self.w2_b.load(data, offset)
|
||||
offset = self.w3_a.load(data, offset)
|
||||
offset = self.w3_b.load(data, offset)
|
||||
return offset
|
||||
|
||||
def save_gguf(self, gguf_writer):
|
||||
self.att_norm_a.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_NORM, self.bid, ".weight.lora_a"))
|
||||
self.att_norm_b.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_NORM, self.bid, ".weight.lora_b"))
|
||||
self.wq_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_Q, self.bid, ".weight.lora_a"))
|
||||
self.wq_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_Q, self.bid, ".weight.lora_b"))
|
||||
self.wk_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_K, self.bid, ".weight.lora_a"))
|
||||
self.wk_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_K, self.bid, ".weight.lora_b"))
|
||||
self.wv_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_V, self.bid, ".weight.lora_a"))
|
||||
self.wv_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_V, self.bid, ".weight.lora_b"))
|
||||
self.wo_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, self.bid, ".weight.lora_a"))
|
||||
self.wo_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, self.bid, ".weight.lora_b"))
|
||||
self.ffn_norm_a.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_NORM, self.bid, ".weight.lora_a"))
|
||||
self.ffn_norm_b.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_NORM, self.bid, ".weight.lora_b"))
|
||||
self.w1_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_GATE, self.bid, ".weight.lora_a"))
|
||||
self.w1_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_GATE, self.bid, ".weight.lora_b"))
|
||||
self.w2_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, self.bid, ".weight.lora_a"))
|
||||
self.w2_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, self.bid, ".weight.lora_b"))
|
||||
self.w3_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_UP, self.bid, ".weight.lora_a"))
|
||||
self.w3_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_UP, self.bid, ".weight.lora_b"))
|
||||
|
||||
class LoraModel:
|
||||
def __init__(self, n_ff = None):
|
||||
self.params = ModelParams(n_ff = n_ff)
|
||||
self.lora_params = LoraParams()
|
||||
self.layers = []
|
||||
|
||||
def load(self, data, offset):
|
||||
offset = self.params.load(data, offset)
|
||||
offset = self.lora_params.load(data, offset)
|
||||
|
||||
self.tok_embd_a = Tensor('f', [self.lora_params.n_rank_tok_embeddings, self.params.n_embd])
|
||||
self.tok_embd_b = Tensor('f', [self.lora_params.n_rank_tok_embeddings, self.params.n_vocab])
|
||||
self.norm_a = Tensor('f', [self.lora_params.n_rank_norm, self.params.n_embd])
|
||||
self.norm_b = Tensor('f', [self.lora_params.n_rank_norm, 1])
|
||||
self.output_a = Tensor('f', [self.lora_params.n_rank_output, self.params.n_embd])
|
||||
self.output_b = Tensor('f', [self.lora_params.n_rank_output, self.params.n_vocab])
|
||||
|
||||
offset = self.tok_embd_a.load(data, offset)
|
||||
offset = self.tok_embd_b.load(data, offset)
|
||||
offset = self.norm_a.load(data, offset)
|
||||
offset = self.norm_b.load(data, offset)
|
||||
offset = self.output_a.load(data, offset)
|
||||
offset = self.output_b.load(data, offset)
|
||||
|
||||
self.layers.clear()
|
||||
for bid in range(self.params.n_layer):
|
||||
layer = Layer(self.params, self.lora_params, bid)
|
||||
offset = layer.load(data, offset)
|
||||
self.layers.append(layer)
|
||||
|
||||
return offset
|
||||
|
||||
def save_gguf(self, gguf_writer):
|
||||
self.params.save_gguf(gguf_writer)
|
||||
self.lora_params.save_gguf(gguf_writer)
|
||||
|
||||
self.tok_embd_a.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD, suffix=".weight.lora_a"))
|
||||
self.tok_embd_b.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD, suffix=".weight.lora_b"))
|
||||
self.norm_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT_NORM, suffix=".weight.lora_a"))
|
||||
self.norm_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT_NORM, suffix=".weight.lora_b"))
|
||||
self.output_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT, suffix=".weight.lora_a"))
|
||||
self.output_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT, suffix=".weight.lora_b"))
|
||||
|
||||
for layer in self.layers:
|
||||
layer.save_gguf(gguf_writer)
|
||||
|
||||
class LoraCheckpoint:
|
||||
def __init__(self, n_ff = None):
|
||||
self.model = LoraModel(n_ff = n_ff)
|
||||
self.opt_ctx = OptimizationContext()
|
||||
|
||||
def load(self, data, offset):
|
||||
magic = bytes(reversed(data[offset:offset + 4])); offset += 4
|
||||
if magic != b'ggcl':
|
||||
raise ValueError(f"File header magic indicates, that this is no finetune-lora checkpoint file. Expected 'ggcl', Got '{str(magic)}'")
|
||||
|
||||
self.version = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
if self.version != 0:
|
||||
raise ValueError('Invalid version of checkpoint file')
|
||||
|
||||
self.train_its = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.train_samples = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.train_tokens = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
|
||||
offset = self.model.load(data, offset)
|
||||
offset = self.opt_ctx.load(data, offset)
|
||||
|
||||
return offset
|
||||
|
||||
def save_gguf(self, gguf_writer):
|
||||
gguf_writer.add_file_type(gguf.GGMLQuantizationType.F32)
|
||||
gguf_writer.add_layer_norm_rms_eps(1e-5)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_FILE_VERSION, 0)
|
||||
gguf_writer.add_string(LLM_KV_TRAINING_TYPE, LLM_KV_TRAINING_TYPE_FINETUNE_LORA)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_ITERATION_COUNT, self.train_its)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_SAMPLE_COUNT, self.train_samples)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_TOKEN_COUNT, self.train_tokens)
|
||||
self.model.save_gguf(gguf_writer)
|
||||
self.opt_ctx.save_gguf(gguf_writer)
|
||||
|
||||
def handle_args():
|
||||
parser = argparse.ArgumentParser(description = 'Convert finetune checkpoints to GGUF')
|
||||
parser.add_argument('--input', '-i', type = Path, help = 'Input finetune checkpoint filename', required=True)
|
||||
parser.add_argument('--output', '-o', type = Path, help = 'Output GGUF filename', required=True)
|
||||
parser.add_argument('--ff', type = int, help = "Feedforward size, if not provided compute from n_mult. Provide this if you get 'ValueError: Tensor.load: Expected number of elements does not match what is read from file'", required=False)
|
||||
return parser.parse_args()
|
||||
|
||||
def main():
|
||||
cfg = handle_args()
|
||||
print(cfg)
|
||||
data = np.memmap(cfg.input, mode = 'r')
|
||||
chk = LoraCheckpoint(n_ff = cfg.ff)
|
||||
offset = 0
|
||||
offset = chk.load(data, offset)
|
||||
# we should have read all available data
|
||||
assert(offset == len(data))
|
||||
|
||||
gguf_writer = gguf.GGUFWriter(cfg.output, gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA], use_temp_file = False)
|
||||
chk.save_gguf(gguf_writer)
|
||||
print(" gguf: write header")
|
||||
gguf_writer.write_header_to_file()
|
||||
print(" gguf: write metadata")
|
||||
gguf_writer.write_kv_data_to_file()
|
||||
print(" gguf: write tensors")
|
||||
gguf_writer.write_tensors_to_file()
|
||||
gguf_writer.close()
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,34 +0,0 @@
|
||||
#!/bin/bash
|
||||
cd `dirname $0`
|
||||
cd ../..
|
||||
|
||||
EXE="./llama-finetune"
|
||||
|
||||
if [[ ! $LLAMA_MODEL_DIR ]]; then LLAMA_MODEL_DIR="./models"; fi
|
||||
if [[ ! $LLAMA_TRAINING_DIR ]]; then LLAMA_TRAINING_DIR="."; fi
|
||||
|
||||
# MODEL="$LLAMA_MODEL_DIR/openllama-3b-v2-q8_0.gguf" # This is the model the readme uses.
|
||||
MODEL="$LLAMA_MODEL_DIR/openllama-3b-v2.gguf" # An f16 model. Note in this case with "-g", you get an f32-format .BIN file that isn't yet supported if you use it with "llama-cli --lora" with GPU inferencing.
|
||||
|
||||
while getopts "dg" opt; do
|
||||
case $opt in
|
||||
d)
|
||||
DEBUGGER="gdb --args"
|
||||
;;
|
||||
g)
|
||||
EXE="./build/bin/Release/finetune"
|
||||
GPUARG="--gpu-layers 25"
|
||||
;;
|
||||
esac
|
||||
done
|
||||
|
||||
$DEBUGGER $EXE \
|
||||
--model-base $MODEL \
|
||||
$GPUARG \
|
||||
--checkpoint-in chk-ol3b-shakespeare-LATEST.gguf \
|
||||
--checkpoint-out chk-ol3b-shakespeare-ITERATION.gguf \
|
||||
--lora-out lora-ol3b-shakespeare-ITERATION.bin \
|
||||
--train-data "$LLAMA_TRAINING_DIR\shakespeare.txt" \
|
||||
--save-every 10 \
|
||||
--threads 10 --adam-iter 30 --batch 4 --ctx 64 \
|
||||
--use-checkpointing
|
||||
@@ -16,20 +16,25 @@ static bool llama_sample_grammar_string(struct llama_grammar * grammar, const st
|
||||
auto decoded = decode_utf8(input_str, {});
|
||||
const auto & code_points = decoded.first;
|
||||
|
||||
const llama_grammar_rules & rules = llama_grammar_get_rules (grammar);
|
||||
llama_grammar_stacks & cur_stacks = llama_grammar_get_stacks(grammar);
|
||||
|
||||
size_t pos = 0;
|
||||
for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
|
||||
auto prev_stacks = grammar->stacks;
|
||||
llama_grammar_accept(grammar->rules, prev_stacks, *it, grammar->stacks);
|
||||
if (grammar->stacks.empty()) {
|
||||
const llama_grammar_stacks prev_stacks = llama_grammar_get_stacks(grammar); // copy
|
||||
|
||||
llama_grammar_accept(rules, prev_stacks, *it, cur_stacks);
|
||||
|
||||
if (cur_stacks.empty()) {
|
||||
error_pos = pos;
|
||||
error_msg = "Unexpected character '" + unicode_cpt_to_utf8(*it) + "'";
|
||||
grammar->stacks = prev_stacks;
|
||||
cur_stacks = prev_stacks;
|
||||
return false;
|
||||
}
|
||||
++pos;
|
||||
}
|
||||
|
||||
for (const auto & stack : grammar->stacks) {
|
||||
for (const auto & stack : cur_stacks) {
|
||||
if (stack.empty()) {
|
||||
return true;
|
||||
}
|
||||
|
||||
@@ -201,6 +201,6 @@ Verification results for test.gguf.manifest - Success
|
||||
|
||||
These micro c libraries dependencies was installed via the [clib c package manager](https://github.com/clibs)
|
||||
|
||||
- https://github.com/mofosyne/xxHash (From: https://github.com/Cyan4973/xxHash)
|
||||
- https://github.com/Cyan4973/xxHash
|
||||
- https://github.com/clibs/sha1/
|
||||
- https://github.com/jb55/sha256.c
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
{
|
||||
"name": "xxhash",
|
||||
"version": "0.8.2",
|
||||
"repo": "mofosyne/xxhash",
|
||||
"repo": "Cyan4973/xxhash",
|
||||
"description": "Extremely fast non-cryptographic hash algorithm",
|
||||
"keywords": ["xxhash", "hashing"],
|
||||
"license": "BSD-2-Clause",
|
||||
|
||||
@@ -347,7 +347,7 @@ static hash_exit_code_t gguf_hash(const hash_params & hash_params) {
|
||||
char hex_result[17];
|
||||
for (int offset = 0; offset < 8; offset++) {
|
||||
unsigned int shift_bits_by = (8 * (8 - offset - 1));
|
||||
sprintf( ( hex_result + (2*offset)), "%02x", (unsigned char) (hash >> shift_bits_by)&0xff);
|
||||
snprintf( ( hex_result + (2*offset)), sizeof(hex_result) - (2*offset), "%02x", (unsigned char) (hash >> shift_bits_by)&0xff);
|
||||
}
|
||||
|
||||
if (hash_params.manifest_is_usable) {
|
||||
@@ -384,7 +384,7 @@ static hash_exit_code_t gguf_hash(const hash_params & hash_params) {
|
||||
|
||||
char hex_result[41] = {0};
|
||||
for (int offset = 0; offset < 20; offset++) {
|
||||
sprintf( ( hex_result + (2*offset)), "%02x", result[offset]&0xff);
|
||||
snprintf( ( hex_result + (2*offset)), sizeof(hex_result) - (2*offset), "%02x", result[offset]&0xff);
|
||||
}
|
||||
|
||||
if (hash_params.manifest_is_usable) {
|
||||
@@ -421,7 +421,7 @@ static hash_exit_code_t gguf_hash(const hash_params & hash_params) {
|
||||
|
||||
char hex_result[SHA256_DIGEST_SIZE * 2 + 1] = {0};
|
||||
for (int offset = 0; offset < SHA256_DIGEST_SIZE; offset++) {
|
||||
sprintf( ( hex_result + (2*offset)), "%02x", result[offset]&0xff);
|
||||
snprintf( ( hex_result + (2*offset)), sizeof(hex_result) - (2*offset), "%02x", result[offset]&0xff);
|
||||
}
|
||||
|
||||
if (hash_params.manifest_is_usable) {
|
||||
@@ -460,7 +460,7 @@ static hash_exit_code_t gguf_hash(const hash_params & hash_params) {
|
||||
char hex_result[17];
|
||||
for (int offset = 0; offset < 8; offset++) {
|
||||
unsigned int shift_bits_by = (8 * (8 - offset - 1));
|
||||
sprintf( ( hex_result + (2*offset)), "%02x", (unsigned char) (hash >> shift_bits_by)&0xff);
|
||||
snprintf( ( hex_result + (2*offset)), sizeof(hex_result) - (2*offset), "%02x", (unsigned char) (hash >> shift_bits_by)&0xff);
|
||||
}
|
||||
|
||||
if (hash_params.manifest_is_usable) {
|
||||
@@ -490,7 +490,7 @@ static hash_exit_code_t gguf_hash(const hash_params & hash_params) {
|
||||
|
||||
char hex_result[41];
|
||||
for (int offset = 0; offset < 20; offset++) {
|
||||
sprintf( ( hex_result + (2*offset)), "%02x", result[offset]&0xff);
|
||||
snprintf( ( hex_result + (2*offset)), sizeof(hex_result) - (2*offset), "%02x", result[offset]&0xff);
|
||||
}
|
||||
|
||||
if (hash_params.manifest_is_usable) {
|
||||
@@ -520,7 +520,7 @@ static hash_exit_code_t gguf_hash(const hash_params & hash_params) {
|
||||
|
||||
char hex_result[SHA256_DIGEST_SIZE * 2 + 1] = {0};
|
||||
for (int offset = 0; offset < SHA256_DIGEST_SIZE; offset++) {
|
||||
sprintf( ( hex_result + (2*offset)), "%02x", result[offset]&0xff);
|
||||
snprintf( ( hex_result + (2*offset)), sizeof(hex_result) - (2*offset), "%02x", result[offset]&0xff);
|
||||
}
|
||||
|
||||
if (hash_params.manifest_is_usable) {
|
||||
@@ -552,7 +552,7 @@ static hash_exit_code_t gguf_hash(const hash_params & hash_params) {
|
||||
generate_uuidv5(result, uuid);
|
||||
|
||||
char string_buffer[37] = {0};
|
||||
sprintf(string_buffer, "%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-%02x%02x%02x%02x%02x%02x",
|
||||
snprintf(string_buffer, sizeof(string_buffer), "%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-%02x%02x%02x%02x%02x%02x",
|
||||
uuid[0], uuid[1], uuid[2], uuid[3],
|
||||
uuid[4], uuid[5], uuid[6], uuid[7],
|
||||
uuid[8], uuid[9], uuid[10], uuid[11],
|
||||
|
||||
@@ -92,6 +92,11 @@ static bool gguf_ex_read_0(const std::string & fname) {
|
||||
|
||||
struct gguf_context * ctx = gguf_init_from_file(fname.c_str(), params);
|
||||
|
||||
if (!ctx) {
|
||||
fprintf(stderr, "%s: failed to load '%s'\n", __func__, fname.c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
printf("%s: version: %d\n", __func__, gguf_get_version(ctx));
|
||||
printf("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx));
|
||||
printf("%s: data offset: %zu\n", __func__, gguf_get_data_offset(ctx));
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
# llama.cpp/examples/imatrix
|
||||
|
||||
Compute an importance matrix for a model and given text dataset. Can be used during quantization to enchance the quality of the quantum models.
|
||||
Compute an importance matrix for a model and given text dataset. Can be used during quantization to enchance the quality of the quantized models.
|
||||
More information is available here: https://github.com/ggerganov/llama.cpp/pull/4861
|
||||
|
||||
## Usage
|
||||
|
||||
@@ -127,7 +127,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
|
||||
}
|
||||
else if (e.values.size() != (size_t)src1->ne[0]*n_as) {
|
||||
fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]*n_as);
|
||||
exit(1); //GGML_ASSERT(false);
|
||||
exit(1); //GGML_ABORT("fatal error");
|
||||
}
|
||||
if (m_params.verbosity > 1) {
|
||||
printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[2], (int)src1->type);
|
||||
@@ -176,7 +176,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
|
||||
}
|
||||
else if (e.values.size() != (size_t)src1->ne[0]) {
|
||||
fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]);
|
||||
exit(1); //GGML_ASSERT(false);
|
||||
exit(1); //GGML_ABORT("fatal error");
|
||||
}
|
||||
++e.ncall;
|
||||
if (m_params.verbosity > 1) {
|
||||
|
||||
@@ -23,6 +23,10 @@
|
||||
#include "ggml-cuda.h"
|
||||
#include "ggml-sycl.h"
|
||||
|
||||
#ifdef GGML_USE_CANN
|
||||
#include "ggml-cann.h"
|
||||
#endif
|
||||
|
||||
// utils
|
||||
static uint64_t get_time_ns() {
|
||||
using clock = std::chrono::high_resolution_clock;
|
||||
@@ -120,6 +124,17 @@ static std::string get_gpu_info() {
|
||||
id += "/";
|
||||
}
|
||||
}
|
||||
#endif
|
||||
#ifdef GGML_USE_CANN
|
||||
uint32_t count = ggml_backend_cann_get_device_count();
|
||||
for (uint32_t i = 0; i < count; i++) {
|
||||
char buf[128];
|
||||
ggml_backend_cann_get_device_description(i, buf, sizeof(buf));
|
||||
id += buf;
|
||||
if (i < count - 1) {
|
||||
id += "/";
|
||||
}
|
||||
}
|
||||
#endif
|
||||
// TODO: other backends
|
||||
return id;
|
||||
@@ -135,7 +150,7 @@ static const char * output_format_str(output_formats format) {
|
||||
case JSON: return "json";
|
||||
case MARKDOWN: return "md";
|
||||
case SQL: return "sql";
|
||||
default: GGML_ASSERT(!"invalid output format");
|
||||
default: GGML_ABORT("invalid output format");
|
||||
}
|
||||
}
|
||||
|
||||
@@ -161,7 +176,7 @@ static const char * split_mode_str(llama_split_mode mode) {
|
||||
case LLAMA_SPLIT_MODE_NONE: return "none";
|
||||
case LLAMA_SPLIT_MODE_LAYER: return "layer";
|
||||
case LLAMA_SPLIT_MODE_ROW: return "row";
|
||||
default: GGML_ASSERT(!"invalid split mode");
|
||||
default: GGML_ABORT("invalid split mode");
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1311,7 +1326,7 @@ static std::unique_ptr<printer> create_printer(output_formats format) {
|
||||
case SQL:
|
||||
return std::unique_ptr<printer>(new sql_printer());
|
||||
}
|
||||
GGML_ASSERT(false);
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
|
||||
@@ -409,7 +409,7 @@ Java_android_llama_cpp_LLamaAndroid_completion_1loop(
|
||||
|
||||
const auto n_cur = env->CallIntMethod(intvar_ncur, la_int_var_value);
|
||||
if (llama_token_is_eog(model, new_token_id) || n_cur == n_len) {
|
||||
return env->NewStringUTF("");
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
auto new_token_chars = llama_token_to_piece(context, new_token_id);
|
||||
|
||||
@@ -26,11 +26,12 @@ actor LlamaContext {
|
||||
private var context: OpaquePointer
|
||||
private var batch: llama_batch
|
||||
private var tokens_list: [llama_token]
|
||||
var is_done: Bool = false
|
||||
|
||||
/// This variable is used to store temporarily invalid cchars
|
||||
private var temporary_invalid_cchars: [CChar]
|
||||
|
||||
var n_len: Int32 = 64
|
||||
var n_len: Int32 = 1024
|
||||
var n_cur: Int32 = 0
|
||||
|
||||
var n_decode: Int32 = 0
|
||||
@@ -160,6 +161,7 @@ actor LlamaContext {
|
||||
|
||||
if llama_token_is_eog(model, new_token_id) || n_cur == n_len {
|
||||
print("\n")
|
||||
is_done = true
|
||||
let new_token_str = String(cString: temporary_invalid_cchars + [0])
|
||||
temporary_invalid_cchars.removeAll()
|
||||
return new_token_str
|
||||
|
||||
@@ -132,7 +132,7 @@ class LlamaState: ObservableObject {
|
||||
messageLog += "\(text)"
|
||||
|
||||
Task.detached {
|
||||
while await llamaContext.n_cur < llamaContext.n_len {
|
||||
while await !llamaContext.is_done {
|
||||
let result = await llamaContext.completion_loop()
|
||||
await MainActor.run {
|
||||
self.messageLog += "\(result)"
|
||||
|
||||
@@ -16,6 +16,10 @@
|
||||
#include "ggml-metal.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_CANN
|
||||
#include "ggml-cann.h"
|
||||
#endif
|
||||
|
||||
#define STB_IMAGE_IMPLEMENTATION
|
||||
#include "stb_image.h"
|
||||
|
||||
@@ -865,7 +869,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
||||
embeddings = peg_0;
|
||||
}
|
||||
else {
|
||||
GGML_ASSERT(false);
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1001,6 +1005,11 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
LOG_TEE("%s: CLIP using Metal backend\n", __func__);
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_CANN
|
||||
new_clip->backend = ggml_backend_cann_init(0);
|
||||
LOG_TEE("%s: CLIP using CANN backend\n", __func__);
|
||||
#endif
|
||||
|
||||
|
||||
if (!new_clip->backend) {
|
||||
new_clip->backend = ggml_backend_cpu_init();
|
||||
|
||||
@@ -31,7 +31,6 @@ int main(int argc, char ** argv){
|
||||
|
||||
// load the model
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||
GGML_ASSERT(llama_n_vocab(model) < (1 << 16));
|
||||
|
||||
// tokenize the prompt
|
||||
std::vector<llama_token> inp;
|
||||
@@ -65,7 +64,7 @@ int main(int argc, char ** argv){
|
||||
}
|
||||
|
||||
const int n_input = inp.size();
|
||||
const int n_ctx = params.n_ctx;
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
int n_drafted = 0;
|
||||
int n_accept = 0;
|
||||
|
||||
@@ -39,7 +39,6 @@ int main(int argc, char ** argv){
|
||||
|
||||
// load the model
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||
GGML_ASSERT(llama_n_vocab(model) < (1 << 16));
|
||||
|
||||
// tokenize the prompt
|
||||
std::vector<llama_token> inp;
|
||||
|
||||
@@ -124,6 +124,7 @@ static std::string chat_add_and_format(struct llama_model * model, std::vector<l
|
||||
auto formatted = llama_chat_format_single(
|
||||
model, g_params->chat_template, chat_msgs, new_msg, role == "user");
|
||||
chat_msgs.push_back({role, content});
|
||||
LOG("formatted: %s\n", formatted.c_str());
|
||||
return formatted;
|
||||
}
|
||||
|
||||
@@ -289,8 +290,13 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// Should not run without any tokens
|
||||
if (embd_inp.empty()) {
|
||||
embd_inp.push_back(llama_token_bos(model));
|
||||
LOG("embd_inp was considered empty and bos was added: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str());
|
||||
if (add_bos) {
|
||||
embd_inp.push_back(llama_token_bos(model));
|
||||
LOG("embd_inp was considered empty and bos was added: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str());
|
||||
} else {
|
||||
LOG_TEE("error: input is empty\n");
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
// Tokenize negative prompt
|
||||
|
||||
@@ -6,7 +6,7 @@ import re
|
||||
from copy import copy
|
||||
from enum import Enum
|
||||
from inspect import getdoc, isclass
|
||||
from typing import TYPE_CHECKING, Any, Callable, List, Optional, Union, get_args, get_origin
|
||||
from typing import TYPE_CHECKING, Any, Callable, List, Optional, Union, get_args, get_origin, get_type_hints
|
||||
|
||||
from docstring_parser import parse
|
||||
from pydantic import BaseModel, create_model
|
||||
@@ -53,35 +53,38 @@ class PydanticDataType(Enum):
|
||||
|
||||
|
||||
def map_pydantic_type_to_gbnf(pydantic_type: type[Any]) -> str:
|
||||
if isclass(pydantic_type) and issubclass(pydantic_type, str):
|
||||
origin_type = get_origin(pydantic_type)
|
||||
origin_type = pydantic_type if origin_type is None else origin_type
|
||||
|
||||
if isclass(origin_type) and issubclass(origin_type, str):
|
||||
return PydanticDataType.STRING.value
|
||||
elif isclass(pydantic_type) and issubclass(pydantic_type, bool):
|
||||
elif isclass(origin_type) and issubclass(origin_type, bool):
|
||||
return PydanticDataType.BOOLEAN.value
|
||||
elif isclass(pydantic_type) and issubclass(pydantic_type, int):
|
||||
elif isclass(origin_type) and issubclass(origin_type, int):
|
||||
return PydanticDataType.INTEGER.value
|
||||
elif isclass(pydantic_type) and issubclass(pydantic_type, float):
|
||||
elif isclass(origin_type) and issubclass(origin_type, float):
|
||||
return PydanticDataType.FLOAT.value
|
||||
elif isclass(pydantic_type) and issubclass(pydantic_type, Enum):
|
||||
elif isclass(origin_type) and issubclass(origin_type, Enum):
|
||||
return PydanticDataType.ENUM.value
|
||||
|
||||
elif isclass(pydantic_type) and issubclass(pydantic_type, BaseModel):
|
||||
return format_model_and_field_name(pydantic_type.__name__)
|
||||
elif get_origin(pydantic_type) is list:
|
||||
elif isclass(origin_type) and issubclass(origin_type, BaseModel):
|
||||
return format_model_and_field_name(origin_type.__name__)
|
||||
elif origin_type is list:
|
||||
element_type = get_args(pydantic_type)[0]
|
||||
return f"{map_pydantic_type_to_gbnf(element_type)}-list"
|
||||
elif get_origin(pydantic_type) is set:
|
||||
elif origin_type is set:
|
||||
element_type = get_args(pydantic_type)[0]
|
||||
return f"{map_pydantic_type_to_gbnf(element_type)}-set"
|
||||
elif get_origin(pydantic_type) is Union:
|
||||
elif origin_type is Union:
|
||||
union_types = get_args(pydantic_type)
|
||||
union_rules = [map_pydantic_type_to_gbnf(ut) for ut in union_types]
|
||||
return f"union-{'-or-'.join(union_rules)}"
|
||||
elif get_origin(pydantic_type) is Optional:
|
||||
elif origin_type is Optional:
|
||||
element_type = get_args(pydantic_type)[0]
|
||||
return f"optional-{map_pydantic_type_to_gbnf(element_type)}"
|
||||
elif isclass(pydantic_type):
|
||||
return f"{PydanticDataType.CUSTOM_CLASS.value}-{format_model_and_field_name(pydantic_type.__name__)}"
|
||||
elif get_origin(pydantic_type) is dict:
|
||||
elif isclass(origin_type):
|
||||
return f"{PydanticDataType.CUSTOM_CLASS.value}-{format_model_and_field_name(origin_type.__name__)}"
|
||||
elif origin_type is dict:
|
||||
key_type, value_type = get_args(pydantic_type)
|
||||
return f"custom-dict-key-type-{format_model_and_field_name(map_pydantic_type_to_gbnf(key_type))}-value-type-{format_model_and_field_name(map_pydantic_type_to_gbnf(value_type))}"
|
||||
else:
|
||||
@@ -118,7 +121,7 @@ def get_members_structure(cls, rule_name):
|
||||
# Modify this comprehension
|
||||
members = [
|
||||
f' "\\"{name}\\"" ":" {map_pydantic_type_to_gbnf(param_type)}'
|
||||
for name, param_type in cls.__annotations__.items()
|
||||
for name, param_type in get_type_hints(cls).items()
|
||||
if name != "self"
|
||||
]
|
||||
|
||||
@@ -297,17 +300,20 @@ def generate_gbnf_rule_for_type(
|
||||
field_name = format_model_and_field_name(field_name)
|
||||
gbnf_type = map_pydantic_type_to_gbnf(field_type)
|
||||
|
||||
if isclass(field_type) and issubclass(field_type, BaseModel):
|
||||
origin_type = get_origin(field_type)
|
||||
origin_type = field_type if origin_type is None else origin_type
|
||||
|
||||
if isclass(origin_type) and issubclass(origin_type, BaseModel):
|
||||
nested_model_name = format_model_and_field_name(field_type.__name__)
|
||||
nested_model_rules, _ = generate_gbnf_grammar(field_type, processed_models, created_rules)
|
||||
rules.extend(nested_model_rules)
|
||||
gbnf_type, rules = nested_model_name, rules
|
||||
elif isclass(field_type) and issubclass(field_type, Enum):
|
||||
elif isclass(origin_type) and issubclass(origin_type, Enum):
|
||||
enum_values = [f'"\\"{e.value}\\""' for e in field_type] # Adding escaped quotes
|
||||
enum_rule = f"{model_name}-{field_name} ::= {' | '.join(enum_values)}"
|
||||
rules.append(enum_rule)
|
||||
gbnf_type, rules = model_name + "-" + field_name, rules
|
||||
elif get_origin(field_type) == list: # Array
|
||||
elif origin_type is list: # Array
|
||||
element_type = get_args(field_type)[0]
|
||||
element_rule_name, additional_rules = generate_gbnf_rule_for_type(
|
||||
model_name, f"{field_name}-element", element_type, is_optional, processed_models, created_rules
|
||||
@@ -317,7 +323,7 @@ def generate_gbnf_rule_for_type(
|
||||
rules.append(array_rule)
|
||||
gbnf_type, rules = model_name + "-" + field_name, rules
|
||||
|
||||
elif get_origin(field_type) == set or field_type == set: # Array
|
||||
elif origin_type is set: # Array
|
||||
element_type = get_args(field_type)[0]
|
||||
element_rule_name, additional_rules = generate_gbnf_rule_for_type(
|
||||
model_name, f"{field_name}-element", element_type, is_optional, processed_models, created_rules
|
||||
@@ -371,7 +377,7 @@ def generate_gbnf_rule_for_type(
|
||||
gbnf_type = f"{model_name}-{field_name}-optional"
|
||||
else:
|
||||
gbnf_type = f"{model_name}-{field_name}-union"
|
||||
elif isclass(field_type) and issubclass(field_type, str):
|
||||
elif isclass(origin_type) and issubclass(origin_type, str):
|
||||
if field_info and hasattr(field_info, "json_schema_extra") and field_info.json_schema_extra is not None:
|
||||
triple_quoted_string = field_info.json_schema_extra.get("triple_quoted_string", False)
|
||||
markdown_string = field_info.json_schema_extra.get("markdown_code_block", False)
|
||||
@@ -387,8 +393,8 @@ def generate_gbnf_rule_for_type(
|
||||
gbnf_type = PydanticDataType.STRING.value
|
||||
|
||||
elif (
|
||||
isclass(field_type)
|
||||
and issubclass(field_type, float)
|
||||
isclass(origin_type)
|
||||
and issubclass(origin_type, float)
|
||||
and field_info
|
||||
and hasattr(field_info, "json_schema_extra")
|
||||
and field_info.json_schema_extra is not None
|
||||
@@ -413,8 +419,8 @@ def generate_gbnf_rule_for_type(
|
||||
)
|
||||
|
||||
elif (
|
||||
isclass(field_type)
|
||||
and issubclass(field_type, int)
|
||||
isclass(origin_type)
|
||||
and issubclass(origin_type, int)
|
||||
and field_info
|
||||
and hasattr(field_info, "json_schema_extra")
|
||||
and field_info.json_schema_extra is not None
|
||||
@@ -462,7 +468,7 @@ def generate_gbnf_grammar(model: type[BaseModel], processed_models: set[type[Bas
|
||||
if not issubclass(model, BaseModel):
|
||||
# For non-Pydantic classes, generate model_fields from __annotations__ or __init__
|
||||
if hasattr(model, "__annotations__") and model.__annotations__:
|
||||
model_fields = {name: (typ, ...) for name, typ in model.__annotations__.items()} # pyright: ignore[reportGeneralTypeIssues]
|
||||
model_fields = {name: (typ, ...) for name, typ in get_type_hints(model).items()}
|
||||
else:
|
||||
init_signature = inspect.signature(model.__init__)
|
||||
parameters = init_signature.parameters
|
||||
@@ -470,7 +476,7 @@ def generate_gbnf_grammar(model: type[BaseModel], processed_models: set[type[Bas
|
||||
name != "self"}
|
||||
else:
|
||||
# For Pydantic models, use model_fields and check for ellipsis (required fields)
|
||||
model_fields = model.__annotations__
|
||||
model_fields = get_type_hints(model)
|
||||
|
||||
model_rule_parts = []
|
||||
nested_rules = []
|
||||
@@ -706,7 +712,7 @@ def generate_markdown_documentation(
|
||||
else:
|
||||
documentation += f" Fields:\n" # noqa: F541
|
||||
if isclass(model) and issubclass(model, BaseModel):
|
||||
for name, field_type in model.__annotations__.items():
|
||||
for name, field_type in get_type_hints(model).items():
|
||||
# if name == "markdown_code_block":
|
||||
# continue
|
||||
if get_origin(field_type) == list:
|
||||
@@ -754,14 +760,17 @@ def generate_field_markdown(
|
||||
field_info = model.model_fields.get(field_name)
|
||||
field_description = field_info.description if field_info and field_info.description else ""
|
||||
|
||||
if get_origin(field_type) == list:
|
||||
origin_type = get_origin(field_type)
|
||||
origin_type = field_type if origin_type is None else origin_type
|
||||
|
||||
if origin_type == list:
|
||||
element_type = get_args(field_type)[0]
|
||||
field_text = f"{indent}{field_name} ({format_model_and_field_name(field_type.__name__)} of {format_model_and_field_name(element_type.__name__)})"
|
||||
if field_description != "":
|
||||
field_text += ":\n"
|
||||
else:
|
||||
field_text += "\n"
|
||||
elif get_origin(field_type) == Union:
|
||||
elif origin_type == Union:
|
||||
element_types = get_args(field_type)
|
||||
types = []
|
||||
for element_type in element_types:
|
||||
@@ -792,9 +801,9 @@ def generate_field_markdown(
|
||||
example_text = f"'{field_example}'" if isinstance(field_example, str) else field_example
|
||||
field_text += f"{indent} Example: {example_text}\n"
|
||||
|
||||
if isclass(field_type) and issubclass(field_type, BaseModel):
|
||||
if isclass(origin_type) and issubclass(origin_type, BaseModel):
|
||||
field_text += f"{indent} Details:\n"
|
||||
for name, type_ in field_type.__annotations__.items():
|
||||
for name, type_ in get_type_hints(field_type).items():
|
||||
field_text += generate_field_markdown(name, type_, field_type, depth + 2)
|
||||
|
||||
return field_text
|
||||
@@ -855,7 +864,7 @@ def generate_text_documentation(
|
||||
|
||||
if isclass(model) and issubclass(model, BaseModel):
|
||||
documentation_fields = ""
|
||||
for name, field_type in model.__annotations__.items():
|
||||
for name, field_type in get_type_hints(model).items():
|
||||
# if name == "markdown_code_block":
|
||||
# continue
|
||||
if get_origin(field_type) == list:
|
||||
@@ -948,7 +957,7 @@ def generate_field_text(
|
||||
|
||||
if isclass(field_type) and issubclass(field_type, BaseModel):
|
||||
field_text += f"{indent} Details:\n"
|
||||
for name, type_ in field_type.__annotations__.items():
|
||||
for name, type_ in get_type_hints(field_type).items():
|
||||
field_text += generate_field_text(name, type_, field_type, depth + 2)
|
||||
|
||||
return field_text
|
||||
|
||||
343
examples/pydantic_models_to_grammar_examples.py
Normal file → Executable file
343
examples/pydantic_models_to_grammar_examples.py
Normal file → Executable file
@@ -1,8 +1,15 @@
|
||||
# Function calling example using pydantic models.
|
||||
#!/usr/bin/env python3
|
||||
|
||||
"""Function calling example using pydantic models."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import argparse
|
||||
import datetime
|
||||
import json
|
||||
import logging
|
||||
import textwrap
|
||||
import sys
|
||||
from enum import Enum
|
||||
from typing import Optional, Union
|
||||
|
||||
@@ -12,28 +19,54 @@ from pydantic_models_to_grammar import (add_run_method_to_dynamic_model, convert
|
||||
create_dynamic_model_from_function, generate_gbnf_grammar_and_documentation)
|
||||
|
||||
|
||||
# Function to get completion on the llama.cpp server with grammar.
|
||||
def create_completion(prompt, grammar):
|
||||
def create_completion(host, prompt, gbnf_grammar):
|
||||
"""Calls the /completion API on llama-server.
|
||||
|
||||
See
|
||||
https://github.com/ggerganov/llama.cpp/tree/HEAD/examples/server#api-endpoints
|
||||
"""
|
||||
print(f" Request:\n Grammar:\n{textwrap.indent(gbnf_grammar, ' ')}\n Prompt:\n{textwrap.indent(prompt.rstrip(), ' ')}")
|
||||
headers = {"Content-Type": "application/json"}
|
||||
data = {"prompt": prompt, "grammar": grammar}
|
||||
|
||||
response = requests.post("http://127.0.0.1:8080/completion", headers=headers, json=data)
|
||||
data = response.json()
|
||||
|
||||
print(data["content"])
|
||||
return data["content"]
|
||||
data = {"prompt": prompt, "grammar": gbnf_grammar}
|
||||
result = requests.post(f"http://{host}/completion", headers=headers, json=data).json()
|
||||
assert data.get("error") is None, data
|
||||
logging.info("Result: %s", result)
|
||||
content = result["content"]
|
||||
print(f" Model: {result['model']}")
|
||||
print(f" Result:\n{textwrap.indent(json.dumps(json.loads(content), indent=2), ' ')}")
|
||||
return content
|
||||
|
||||
|
||||
# A function for the agent to send a message to the user.
|
||||
class SendMessageToUser(BaseModel):
|
||||
"""
|
||||
Send a message to the User.
|
||||
"""
|
||||
"""Send a message to the User."""
|
||||
chain_of_thought: str = Field(..., description="Your chain of thought while sending the message.")
|
||||
message: str = Field(..., description="Message you want to send to the user.")
|
||||
|
||||
def run(self):
|
||||
print(self.message)
|
||||
print(f"SendMessageToUser: {self.message}")
|
||||
|
||||
|
||||
def example_rce(host):
|
||||
"""Minimal test case where the LLM call an arbitrary python function."""
|
||||
print("- example_rce")
|
||||
tools = [SendMessageToUser]
|
||||
gbnf_grammar, documentation = generate_gbnf_grammar_and_documentation(
|
||||
pydantic_model_list=tools, outer_object_name="function",
|
||||
outer_object_content="function_parameters", model_prefix="Function", fields_prefix="Parameters")
|
||||
system_message = "You are an advanced AI, tasked to assist the user by calling functions in JSON format. The following are the available functions and their parameters and types:\n\n" + documentation
|
||||
user_message = "What is 42 * 42?"
|
||||
prompt = f"<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{user_message}<|im_end|>\n<|im_start|>assistant"
|
||||
text = create_completion(host, prompt, gbnf_grammar)
|
||||
json_data = json.loads(text)
|
||||
tools_map = {tool.__name__:tool for tool in tools}
|
||||
# This finds "SendMessageToUser":
|
||||
tool = tools_map.get(json_data["function"])
|
||||
if not tool:
|
||||
print(f"Error: unknown tool {json_data['function']}")
|
||||
return 1
|
||||
tool(**json_data["function_parameters"]).run()
|
||||
return 0
|
||||
|
||||
|
||||
# Enum for the calculator tool.
|
||||
@@ -44,11 +77,11 @@ class MathOperation(Enum):
|
||||
DIVIDE = "divide"
|
||||
|
||||
|
||||
# Simple pydantic calculator tool for the agent that can add, subtract, multiply, and divide. Docstring and description of fields will be used in system prompt.
|
||||
# Simple pydantic calculator tool for the agent that can add, subtract,
|
||||
# multiply, and divide. Docstring and description of fields will be used in
|
||||
# system prompt.
|
||||
class Calculator(BaseModel):
|
||||
"""
|
||||
Perform a math operation on two numbers.
|
||||
"""
|
||||
"""Perform a math operation on two numbers."""
|
||||
number_one: Union[int, float] = Field(..., description="First number.")
|
||||
operation: MathOperation = Field(..., description="Math operation to perform.")
|
||||
number_two: Union[int, float] = Field(..., description="Second number.")
|
||||
@@ -66,55 +99,61 @@ class Calculator(BaseModel):
|
||||
raise ValueError("Unknown operation.")
|
||||
|
||||
|
||||
# Here the grammar gets generated by passing the available function models to generate_gbnf_grammar_and_documentation function. This also generates a documentation usable by the LLM.
|
||||
# pydantic_model_list is the list of pydanitc models
|
||||
# outer_object_name is an optional name for an outer object around the actual model object. Like a "function" object with "function_parameters" which contains the actual model object. If None, no outer object will be generated
|
||||
# outer_object_content is the name of outer object content.
|
||||
# model_prefix is the optional prefix for models in the documentation. (Default="Output Model")
|
||||
# fields_prefix is the prefix for the model fields in the documentation. (Default="Output Fields")
|
||||
gbnf_grammar, documentation = generate_gbnf_grammar_and_documentation(
|
||||
pydantic_model_list=[SendMessageToUser, Calculator], outer_object_name="function",
|
||||
outer_object_content="function_parameters", model_prefix="Function", fields_prefix="Parameters")
|
||||
def example_calculator(host):
|
||||
"""Have the LLM ask to get a calculation done.
|
||||
|
||||
print(gbnf_grammar)
|
||||
print(documentation)
|
||||
Here the grammar gets generated by passing the available function models to
|
||||
generate_gbnf_grammar_and_documentation function. This also generates a
|
||||
documentation usable by the LLM.
|
||||
|
||||
system_message = "You are an advanced AI, tasked to assist the user by calling functions in JSON format. The following are the available functions and their parameters and types:\n\n" + documentation
|
||||
pydantic_model_list is the list of pydantic models outer_object_name is an
|
||||
optional name for an outer object around the actual model object. Like a
|
||||
"function" object with "function_parameters" which contains the actual model
|
||||
object. If None, no outer object will be generated outer_object_content is
|
||||
the name of outer object content.
|
||||
|
||||
user_message = "What is 42 * 42?"
|
||||
prompt = f"<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{user_message}<|im_end|>\n<|im_start|>assistant"
|
||||
|
||||
text = create_completion(prompt=prompt, grammar=gbnf_grammar)
|
||||
# This should output something like this:
|
||||
# {
|
||||
# "function": "calculator",
|
||||
# "function_parameters": {
|
||||
# "number_one": 42,
|
||||
# "operation": "multiply",
|
||||
# "number_two": 42
|
||||
# }
|
||||
# }
|
||||
function_dictionary = json.loads(text)
|
||||
if function_dictionary["function"] == "calculator":
|
||||
function_parameters = {**function_dictionary["function_parameters"]}
|
||||
|
||||
print(Calculator(**function_parameters).run())
|
||||
# This should output: 1764
|
||||
model_prefix is the optional prefix for models in the documentation. (Default="Output Model")
|
||||
fields_prefix is the prefix for the model fields in the documentation. (Default="Output Fields")
|
||||
"""
|
||||
print("- example_calculator")
|
||||
tools = [SendMessageToUser, Calculator]
|
||||
gbnf_grammar, documentation = generate_gbnf_grammar_and_documentation(
|
||||
pydantic_model_list=tools, outer_object_name="function",
|
||||
outer_object_content="function_parameters", model_prefix="Function", fields_prefix="Parameters")
|
||||
system_message = "You are an advanced AI, tasked to assist the user by calling functions in JSON format. The following are the available functions and their parameters and types:\n\n" + documentation
|
||||
user_message1 = "What is 42 * 42?"
|
||||
prompt = f"<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{user_message1}<|im_end|>\n<|im_start|>assistant"
|
||||
text = create_completion(host, prompt, gbnf_grammar)
|
||||
json_data = json.loads(text)
|
||||
expected = {
|
||||
"function": "Calculator",
|
||||
"function_parameters": {
|
||||
"number_one": 42,
|
||||
"operation": "multiply",
|
||||
"number_two": 42
|
||||
}
|
||||
}
|
||||
if json_data != expected:
|
||||
print(" Result is not as expected!")
|
||||
tools_map = {tool.__name__:tool for tool in tools}
|
||||
# This finds "Calculator":
|
||||
tool = tools_map.get(json_data["function"])
|
||||
if not tool:
|
||||
print(f"Error: unknown tool {json_data['function']}")
|
||||
return 1
|
||||
result = tool(**json_data["function_parameters"]).run()
|
||||
print(f" Call {json_data['function']} gave result {result}")
|
||||
return 0
|
||||
|
||||
|
||||
# A example structured output based on pydantic models. The LLM will create an entry for a Book database out of an unstructured text.
|
||||
class Category(Enum):
|
||||
"""
|
||||
The category of the book.
|
||||
"""
|
||||
"""The category of the book."""
|
||||
Fiction = "Fiction"
|
||||
NonFiction = "Non-Fiction"
|
||||
|
||||
|
||||
class Book(BaseModel):
|
||||
"""
|
||||
Represents an entry about a book.
|
||||
"""
|
||||
"""Represents an entry about a book."""
|
||||
title: str = Field(..., description="Title of the book.")
|
||||
author: str = Field(..., description="Author of the book.")
|
||||
published_year: Optional[int] = Field(..., description="Publishing year of the book.")
|
||||
@@ -123,33 +162,42 @@ class Book(BaseModel):
|
||||
summary: str = Field(..., description="Summary of the book.")
|
||||
|
||||
|
||||
# We need no additional parameters other than our list of pydantic models.
|
||||
gbnf_grammar, documentation = generate_gbnf_grammar_and_documentation([Book])
|
||||
def example_struct(host):
|
||||
"""A example structured output based on pydantic models.
|
||||
|
||||
system_message = "You are an advanced AI, tasked to create a dataset entry in JSON for a Book. The following is the expected output model:\n\n" + documentation
|
||||
The LLM will create an entry for a Book database out of an unstructured
|
||||
text. We need no additional parameters other than our list of pydantic
|
||||
models.
|
||||
"""
|
||||
print("- example_struct")
|
||||
tools = [Book]
|
||||
gbnf_grammar, documentation = generate_gbnf_grammar_and_documentation(pydantic_model_list=tools)
|
||||
system_message = "You are an advanced AI, tasked to create a dataset entry in JSON for a Book. The following is the expected output model:\n\n" + documentation
|
||||
text = """The Feynman Lectures on Physics is a physics textbook based on some lectures by Richard Feynman, a Nobel laureate who has sometimes been called "The Great Explainer". The lectures were presented before undergraduate students at the California Institute of Technology (Caltech), during 1961–1963. The book's co-authors are Feynman, Robert B. Leighton, and Matthew Sands."""
|
||||
prompt = f"<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{text}<|im_end|>\n<|im_start|>assistant"
|
||||
text = create_completion(host, prompt, gbnf_grammar)
|
||||
json_data = json.loads(text)
|
||||
# In this case, there's no function nor function_parameters.
|
||||
# Here the result will vary based on the LLM used.
|
||||
keys = sorted(["title", "author", "published_year", "keywords", "category", "summary"])
|
||||
if keys != sorted(json_data.keys()):
|
||||
print(f"Unexpected result: {sorted(json_data.keys())}")
|
||||
return 1
|
||||
book = Book(**json_data)
|
||||
print(f" As a Book object: %s" % book)
|
||||
return 0
|
||||
|
||||
text = """The Feynman Lectures on Physics is a physics textbook based on some lectures by Richard Feynman, a Nobel laureate who has sometimes been called "The Great Explainer". The lectures were presented before undergraduate students at the California Institute of Technology (Caltech), during 1961–1963. The book's co-authors are Feynman, Robert B. Leighton, and Matthew Sands."""
|
||||
prompt = f"<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{text}<|im_end|>\n<|im_start|>assistant"
|
||||
|
||||
text = create_completion(prompt=prompt, grammar=gbnf_grammar)
|
||||
|
||||
json_data = json.loads(text)
|
||||
|
||||
print(Book(**json_data))
|
||||
# An example for parallel function calling with a Python function, a pydantic function model and an OpenAI like function definition.
|
||||
|
||||
def get_current_datetime(output_format: Optional[str] = None):
|
||||
"""
|
||||
Get the current date and time in the given format.
|
||||
"""Get the current date and time in the given format.
|
||||
|
||||
Args:
|
||||
output_format: formatting string for the date and time, defaults to '%Y-%m-%d %H:%M:%S'
|
||||
"""
|
||||
if output_format is None:
|
||||
output_format = '%Y-%m-%d %H:%M:%S'
|
||||
return datetime.datetime.now().strftime(output_format)
|
||||
return datetime.datetime.now().strftime(output_format or "%Y-%m-%d %H:%M:%S")
|
||||
|
||||
|
||||
# Example function to get the weather
|
||||
# Example function to get the weather.
|
||||
def get_current_weather(location, unit):
|
||||
"""Get the current weather in a given location"""
|
||||
if "London" in location:
|
||||
@@ -158,68 +206,107 @@ def get_current_weather(location, unit):
|
||||
return json.dumps({"location": "New York", "temperature": "24", "unit": unit.value})
|
||||
elif "North Pole" in location:
|
||||
return json.dumps({"location": "North Pole", "temperature": "-42", "unit": unit.value})
|
||||
else:
|
||||
return json.dumps({"location": location, "temperature": "unknown"})
|
||||
return json.dumps({"location": location, "temperature": "unknown"})
|
||||
|
||||
|
||||
# Here is a function definition in OpenAI style
|
||||
current_weather_tool = {
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_current_weather",
|
||||
"description": "Get the current weather in a given location",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"location": {
|
||||
"type": "string",
|
||||
"description": "The city and state, e.g. San Francisco, CA",
|
||||
def example_concurrent(host):
|
||||
"""An example for parallel function calling with a Python function, a pydantic
|
||||
function model and an OpenAI like function definition.
|
||||
"""
|
||||
print("- example_concurrent")
|
||||
# Function definition in OpenAI style.
|
||||
current_weather_tool = {
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_current_weather",
|
||||
"description": "Get the current weather in a given location",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"location": {
|
||||
"type": "string",
|
||||
"description": "The city and state, e.g. San Francisco, CA",
|
||||
},
|
||||
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
|
||||
},
|
||||
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
|
||||
"required": ["location"],
|
||||
},
|
||||
"required": ["location"],
|
||||
},
|
||||
},
|
||||
}
|
||||
}
|
||||
# Convert OpenAI function definition into pydantic model.
|
||||
current_weather_tool_model = convert_dictionary_to_pydantic_model(current_weather_tool)
|
||||
# Add the actual function to a pydantic model.
|
||||
current_weather_tool_model = add_run_method_to_dynamic_model(current_weather_tool_model, get_current_weather)
|
||||
|
||||
# Convert OpenAI function definition into pydantic model
|
||||
current_weather_tool_model = convert_dictionary_to_pydantic_model(current_weather_tool)
|
||||
# Add the actual function to a pydantic model
|
||||
current_weather_tool_model = add_run_method_to_dynamic_model(current_weather_tool_model, get_current_weather)
|
||||
# Convert normal Python function to a pydantic model.
|
||||
current_datetime_model = create_dynamic_model_from_function(get_current_datetime)
|
||||
|
||||
# Convert normal Python function to a pydantic model
|
||||
current_datetime_model = create_dynamic_model_from_function(get_current_datetime)
|
||||
|
||||
tool_list = [SendMessageToUser, Calculator, current_datetime_model, current_weather_tool_model]
|
||||
tools = [SendMessageToUser, Calculator, current_datetime_model, current_weather_tool_model]
|
||||
gbnf_grammar, documentation = generate_gbnf_grammar_and_documentation(
|
||||
pydantic_model_list=tools, outer_object_name="function",
|
||||
outer_object_content="params", model_prefix="Function", fields_prefix="Parameters", list_of_outputs=True)
|
||||
system_message = "You are an advanced AI assistant. You are interacting with the user and with your environment by calling functions. You call functions by writing JSON objects, which represent specific function calls.\nBelow is a list of your available function calls:\n\n" + documentation
|
||||
text = """Get the date and time, get the current weather in celsius in London and solve the following calculation: 42 * 42"""
|
||||
prompt = f"<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{text}<|im_end|>\n<|im_start|>assistant"
|
||||
text = create_completion(host, prompt, gbnf_grammar)
|
||||
json_data = json.loads(text)
|
||||
expected = [
|
||||
{
|
||||
"function": "get_current_datetime",
|
||||
"params": {
|
||||
"output_format": "%Y-%m-%d %H:%M:%S"
|
||||
}
|
||||
},
|
||||
{
|
||||
"function": "get_current_weather",
|
||||
"params": {
|
||||
"location": "London",
|
||||
"unit": "celsius"
|
||||
}
|
||||
},
|
||||
{
|
||||
"function": "Calculator",
|
||||
"params": {
|
||||
"number_one": 42,
|
||||
"operation": "multiply",
|
||||
"number_two": 42
|
||||
}
|
||||
}
|
||||
]
|
||||
res = 0
|
||||
if json_data != expected:
|
||||
print(" Result is not as expected!")
|
||||
print(" This can happen on highly quantized models")
|
||||
res = 1
|
||||
tools_map = {tool.__name__:tool for tool in tools}
|
||||
for call in json_data:
|
||||
tool = tools_map.get(call["function"])
|
||||
if not tool:
|
||||
print(f"Error: unknown tool {call['function']}")
|
||||
return 1
|
||||
result = tool(**call["params"]).run()
|
||||
print(f" Call {call['function']} returned {result}")
|
||||
# Should output something like this:
|
||||
# Call get_current_datetime returned 2024-07-15 09:50:38
|
||||
# Call get_current_weather returned {"location": "London", "temperature": "42", "unit": "celsius"}
|
||||
# Call Calculator returned 1764
|
||||
return res
|
||||
|
||||
|
||||
gbnf_grammar, documentation = generate_gbnf_grammar_and_documentation(
|
||||
pydantic_model_list=tool_list, outer_object_name="function",
|
||||
outer_object_content="params", model_prefix="Function", fields_prefix="Parameters", list_of_outputs=True)
|
||||
|
||||
system_message = "You are an advanced AI assistant. You are interacting with the user and with your environment by calling functions. You call functions by writing JSON objects, which represent specific function calls.\nBelow is a list of your available function calls:\n\n" + documentation
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description=sys.modules[__name__].__doc__)
|
||||
parser.add_argument("--host", default="localhost:8080", help="llama.cpp server")
|
||||
parser.add_argument("-v", "--verbose", action="store_true", help="enables logging")
|
||||
args = parser.parse_args()
|
||||
logging.basicConfig(level=logging.INFO if args.verbose else logging.ERROR)
|
||||
ret = 0
|
||||
# Comment out below to only run the example you want.
|
||||
ret = ret or example_rce(args.host)
|
||||
ret = ret or example_calculator(args.host)
|
||||
ret = ret or example_struct(args.host)
|
||||
ret = ret or example_concurrent(args.host)
|
||||
return ret
|
||||
|
||||
|
||||
text = """Get the date and time, get the current weather in celsius in London and solve the following calculation: 42 * 42"""
|
||||
prompt = f"<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{text}<|im_end|>\n<|im_start|>assistant"
|
||||
|
||||
text = create_completion(prompt=prompt, grammar=gbnf_grammar)
|
||||
|
||||
json_data = json.loads(text)
|
||||
|
||||
print(json_data)
|
||||
# Should output something like this:
|
||||
# [{'function': 'get_current_datetime', 'params': {'output_format': '%Y-%m-%d %H:%M:%S'}}, {'function': 'get_current_weather', 'params': {'location': 'London', 'unit': 'celsius'}}, {'function': 'Calculator', 'params': {'number_one': 42, 'operation': 'multiply', 'number_two': 42}}]
|
||||
|
||||
|
||||
for call in json_data:
|
||||
if call["function"] == "Calculator":
|
||||
print(Calculator(**call["params"]).run())
|
||||
elif call["function"] == "get_current_datetime":
|
||||
print(current_datetime_model(**call["params"]).run()) # pyright: ignore[reportAttributeAccessIssue]
|
||||
elif call["function"] == "get_current_weather":
|
||||
print(current_weather_tool_model(**call["params"]).run()) # pyright: ignore[reportAttributeAccessIssue]
|
||||
# Should output something like this:
|
||||
# 2024-01-14 13:36:06
|
||||
# {"location": "London", "temperature": "42", "unit": "celsius"}
|
||||
# 1764
|
||||
if __name__ == "__main__":
|
||||
sys.exit(main())
|
||||
|
||||
@@ -154,7 +154,7 @@ static void test_roundtrip_on_chunk(
|
||||
}
|
||||
|
||||
if (use_reference) {
|
||||
qfns.from_float_reference(input_scratch, quantized_scratch, chunk_size);
|
||||
qfns.from_float_ref(input_scratch, quantized_scratch, chunk_size);
|
||||
} else {
|
||||
qfns.from_float(input_scratch, quantized_scratch, chunk_size);
|
||||
}
|
||||
|
||||
@@ -16,44 +16,44 @@ struct quant_option {
|
||||
};
|
||||
|
||||
static const std::vector<struct quant_option> QUANT_OPTIONS = {
|
||||
{ "Q4_0", LLAMA_FTYPE_MOSTLY_Q4_0, " 4.34G, +0.4685 ppl @ Llama-3-8B", },
|
||||
{ "Q4_1", LLAMA_FTYPE_MOSTLY_Q4_1, " 4.78G, +0.4511 ppl @ Llama-3-8B", },
|
||||
{ "Q5_0", LLAMA_FTYPE_MOSTLY_Q5_0, " 5.21G, +0.1316 ppl @ Llama-3-8B", },
|
||||
{ "Q5_1", LLAMA_FTYPE_MOSTLY_Q5_1, " 5.65G, +0.1062 ppl @ Llama-3-8B", },
|
||||
{ "IQ2_XXS",LLAMA_FTYPE_MOSTLY_IQ2_XXS," 2.06 bpw quantization", },
|
||||
{ "IQ2_XS", LLAMA_FTYPE_MOSTLY_IQ2_XS, " 2.31 bpw quantization", },
|
||||
{ "IQ2_S", LLAMA_FTYPE_MOSTLY_IQ2_S, " 2.5 bpw quantization", },
|
||||
{ "IQ2_M", LLAMA_FTYPE_MOSTLY_IQ2_M, " 2.7 bpw quantization", },
|
||||
{ "IQ1_S", LLAMA_FTYPE_MOSTLY_IQ1_S, " 1.56 bpw quantization", },
|
||||
{ "IQ1_M", LLAMA_FTYPE_MOSTLY_IQ1_M, " 1.75 bpw quantization", },
|
||||
{ "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.96G, +3.5199 ppl @ Llama-3-8B", },
|
||||
{ "Q2_K_S", LLAMA_FTYPE_MOSTLY_Q2_K_S, " 2.96G, +3.1836 ppl @ Llama-3-8B", },
|
||||
{ "IQ3_XXS",LLAMA_FTYPE_MOSTLY_IQ3_XXS," 3.06 bpw quantization", },
|
||||
{ "IQ3_S", LLAMA_FTYPE_MOSTLY_IQ3_S, " 3.44 bpw quantization", },
|
||||
{ "IQ3_M", LLAMA_FTYPE_MOSTLY_IQ3_M, " 3.66 bpw quantization mix", },
|
||||
{ "Q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M, "alias for Q3_K_M" },
|
||||
{ "IQ3_XS", LLAMA_FTYPE_MOSTLY_IQ3_XS, " 3.3 bpw quantization", },
|
||||
{ "Q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S, " 3.41G, +1.6321 ppl @ Llama-3-8B", },
|
||||
{ "Q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M, " 3.74G, +0.6569 ppl @ Llama-3-8B", },
|
||||
{ "Q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L, " 4.03G, +0.5562 ppl @ Llama-3-8B", },
|
||||
{ "IQ4_NL", LLAMA_FTYPE_MOSTLY_IQ4_NL, " 4.50 bpw non-linear quantization", },
|
||||
{ "IQ4_XS", LLAMA_FTYPE_MOSTLY_IQ4_XS, " 4.25 bpw non-linear quantization", },
|
||||
{ "Q4_K", LLAMA_FTYPE_MOSTLY_Q4_K_M, "alias for Q4_K_M", },
|
||||
{ "Q4_K_S", LLAMA_FTYPE_MOSTLY_Q4_K_S, " 4.37G, +0.2689 ppl @ Llama-3-8B", },
|
||||
{ "Q4_K_M", LLAMA_FTYPE_MOSTLY_Q4_K_M, " 4.58G, +0.1754 ppl @ Llama-3-8B", },
|
||||
{ "Q5_K", LLAMA_FTYPE_MOSTLY_Q5_K_M, "alias for Q5_K_M", },
|
||||
{ "Q5_K_S", LLAMA_FTYPE_MOSTLY_Q5_K_S, " 5.21G, +0.1049 ppl @ Llama-3-8B", },
|
||||
{ "Q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M, " 5.33G, +0.0569 ppl @ Llama-3-8B", },
|
||||
{ "Q6_K", LLAMA_FTYPE_MOSTLY_Q6_K, " 6.14G, +0.0217 ppl @ Llama-3-8B", },
|
||||
{ "Q8_0", LLAMA_FTYPE_MOSTLY_Q8_0, " 7.96G, +0.0026 ppl @ Llama-3-8B", },
|
||||
{ "Q4_0_4_4", LLAMA_FTYPE_MOSTLY_Q4_0_4_4, " 4.34G, +0.4685 ppl @ Llama-3-8B", },
|
||||
{ "Q4_0_4_8", LLAMA_FTYPE_MOSTLY_Q4_0_4_8, " 4.34G, +0.4685 ppl @ Llama-3-8B", },
|
||||
{ "Q4_0_8_8", LLAMA_FTYPE_MOSTLY_Q4_0_8_8, " 4.34G, +0.4685 ppl @ Llama-3-8B", },
|
||||
{ "F16", LLAMA_FTYPE_MOSTLY_F16, "14.00G, +0.0020 ppl @ Mistral-7B", },
|
||||
{ "BF16", LLAMA_FTYPE_MOSTLY_BF16, "14.00G, -0.0050 ppl @ Mistral-7B", },
|
||||
{ "F32", LLAMA_FTYPE_ALL_F32, "26.00G @ 7B", },
|
||||
{ "Q4_0", LLAMA_FTYPE_MOSTLY_Q4_0, " 4.34G, +0.4685 ppl @ Llama-3-8B", },
|
||||
{ "Q4_1", LLAMA_FTYPE_MOSTLY_Q4_1, " 4.78G, +0.4511 ppl @ Llama-3-8B", },
|
||||
{ "Q5_0", LLAMA_FTYPE_MOSTLY_Q5_0, " 5.21G, +0.1316 ppl @ Llama-3-8B", },
|
||||
{ "Q5_1", LLAMA_FTYPE_MOSTLY_Q5_1, " 5.65G, +0.1062 ppl @ Llama-3-8B", },
|
||||
{ "IQ2_XXS", LLAMA_FTYPE_MOSTLY_IQ2_XXS, " 2.06 bpw quantization", },
|
||||
{ "IQ2_XS", LLAMA_FTYPE_MOSTLY_IQ2_XS, " 2.31 bpw quantization", },
|
||||
{ "IQ2_S", LLAMA_FTYPE_MOSTLY_IQ2_S, " 2.5 bpw quantization", },
|
||||
{ "IQ2_M", LLAMA_FTYPE_MOSTLY_IQ2_M, " 2.7 bpw quantization", },
|
||||
{ "IQ1_S", LLAMA_FTYPE_MOSTLY_IQ1_S, " 1.56 bpw quantization", },
|
||||
{ "IQ1_M", LLAMA_FTYPE_MOSTLY_IQ1_M, " 1.75 bpw quantization", },
|
||||
{ "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.96G, +3.5199 ppl @ Llama-3-8B", },
|
||||
{ "Q2_K_S", LLAMA_FTYPE_MOSTLY_Q2_K_S, " 2.96G, +3.1836 ppl @ Llama-3-8B", },
|
||||
{ "IQ3_XXS", LLAMA_FTYPE_MOSTLY_IQ3_XXS, " 3.06 bpw quantization", },
|
||||
{ "IQ3_S", LLAMA_FTYPE_MOSTLY_IQ3_S, " 3.44 bpw quantization", },
|
||||
{ "IQ3_M", LLAMA_FTYPE_MOSTLY_IQ3_M, " 3.66 bpw quantization mix", },
|
||||
{ "Q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M, "alias for Q3_K_M" },
|
||||
{ "IQ3_XS", LLAMA_FTYPE_MOSTLY_IQ3_XS, " 3.3 bpw quantization", },
|
||||
{ "Q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S, " 3.41G, +1.6321 ppl @ Llama-3-8B", },
|
||||
{ "Q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M, " 3.74G, +0.6569 ppl @ Llama-3-8B", },
|
||||
{ "Q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L, " 4.03G, +0.5562 ppl @ Llama-3-8B", },
|
||||
{ "IQ4_NL", LLAMA_FTYPE_MOSTLY_IQ4_NL, " 4.50 bpw non-linear quantization", },
|
||||
{ "IQ4_XS", LLAMA_FTYPE_MOSTLY_IQ4_XS, " 4.25 bpw non-linear quantization", },
|
||||
{ "Q4_K", LLAMA_FTYPE_MOSTLY_Q4_K_M, "alias for Q4_K_M", },
|
||||
{ "Q4_K_S", LLAMA_FTYPE_MOSTLY_Q4_K_S, " 4.37G, +0.2689 ppl @ Llama-3-8B", },
|
||||
{ "Q4_K_M", LLAMA_FTYPE_MOSTLY_Q4_K_M, " 4.58G, +0.1754 ppl @ Llama-3-8B", },
|
||||
{ "Q5_K", LLAMA_FTYPE_MOSTLY_Q5_K_M, "alias for Q5_K_M", },
|
||||
{ "Q5_K_S", LLAMA_FTYPE_MOSTLY_Q5_K_S, " 5.21G, +0.1049 ppl @ Llama-3-8B", },
|
||||
{ "Q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M, " 5.33G, +0.0569 ppl @ Llama-3-8B", },
|
||||
{ "Q6_K", LLAMA_FTYPE_MOSTLY_Q6_K, " 6.14G, +0.0217 ppl @ Llama-3-8B", },
|
||||
{ "Q8_0", LLAMA_FTYPE_MOSTLY_Q8_0, " 7.96G, +0.0026 ppl @ Llama-3-8B", },
|
||||
{ "Q4_0_4_4", LLAMA_FTYPE_MOSTLY_Q4_0_4_4, " 4.34G, +0.4685 ppl @ Llama-3-8B", },
|
||||
{ "Q4_0_4_8", LLAMA_FTYPE_MOSTLY_Q4_0_4_8, " 4.34G, +0.4685 ppl @ Llama-3-8B", },
|
||||
{ "Q4_0_8_8", LLAMA_FTYPE_MOSTLY_Q4_0_8_8, " 4.34G, +0.4685 ppl @ Llama-3-8B", },
|
||||
{ "F16", LLAMA_FTYPE_MOSTLY_F16, "14.00G, +0.0020 ppl @ Mistral-7B", },
|
||||
{ "BF16", LLAMA_FTYPE_MOSTLY_BF16, "14.00G, -0.0050 ppl @ Mistral-7B", },
|
||||
{ "F32", LLAMA_FTYPE_ALL_F32, "26.00G @ 7B", },
|
||||
// Note: Ensure COPY comes after F32 to avoid ftype 0 from matching.
|
||||
{ "COPY", LLAMA_FTYPE_ALL_F32, "only copy tensors, no quantizing", },
|
||||
{ "COPY", LLAMA_FTYPE_ALL_F32, "only copy tensors, no quantizing", },
|
||||
};
|
||||
|
||||
static const char * const LLM_KV_QUANTIZE_IMATRIX_FILE = "quantize.imatrix.file";
|
||||
|
||||
@@ -47,7 +47,7 @@ int main(int argc, char ** argv) {
|
||||
// save state (rng, logits, embedding and kv_cache) to file
|
||||
{
|
||||
std::vector<uint8_t> state_mem(llama_state_get_size(ctx));
|
||||
const size_t written = llama_state_get_data(ctx, state_mem.data());
|
||||
const size_t written = llama_state_get_data(ctx, state_mem.data(), state_mem.size());
|
||||
|
||||
FILE *fp_write = fopen("dump_state.bin", "wb");
|
||||
fwrite(state_mem.data(), 1, written, fp_write);
|
||||
@@ -99,13 +99,16 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// load state (rng, logits, embedding and kv_cache) from file
|
||||
{
|
||||
std::vector<uint8_t> state_mem(llama_state_get_size(ctx2));
|
||||
std::vector<uint8_t> state_mem;
|
||||
|
||||
FILE * fp_read = fopen("dump_state.bin", "rb");
|
||||
fseek(fp_read, 0, SEEK_END);
|
||||
state_mem.resize(ftell(fp_read));
|
||||
fseek(fp_read, 0, SEEK_SET);
|
||||
const size_t read = fread(state_mem.data(), 1, state_mem.size(), fp_read);
|
||||
fclose(fp_read);
|
||||
|
||||
if (read != llama_state_set_data(ctx2, state_mem.data())) {
|
||||
if (read != llama_state_set_data(ctx2, state_mem.data(), state_mem.size())) {
|
||||
fprintf(stderr, "\n%s : failed to read state\n", __func__);
|
||||
llama_free(ctx2);
|
||||
llama_free_model(model);
|
||||
@@ -159,13 +162,16 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// load state (rng, logits, embedding and kv_cache) from file
|
||||
{
|
||||
std::vector<uint8_t> state_mem(llama_state_get_size(ctx3));
|
||||
std::vector<uint8_t> state_mem;
|
||||
|
||||
FILE * fp_read = fopen("dump_state.bin", "rb");
|
||||
fseek(fp_read, 0, SEEK_END);
|
||||
state_mem.resize(ftell(fp_read));
|
||||
fseek(fp_read, 0, SEEK_SET);
|
||||
const size_t read = fread(state_mem.data(), 1, state_mem.size(), fp_read);
|
||||
fclose(fp_read);
|
||||
|
||||
if (read != llama_state_set_data(ctx3, state_mem.data())) {
|
||||
if (read != llama_state_set_data(ctx3, state_mem.data(), state_mem.size())) {
|
||||
fprintf(stderr, "\n%s : failed to read state\n", __func__);
|
||||
llama_free(ctx3);
|
||||
llama_free_model(model);
|
||||
@@ -182,7 +188,7 @@ int main(int argc, char ** argv) {
|
||||
{
|
||||
// save kv of seq 0
|
||||
std::vector<uint8_t> seq_store(llama_state_seq_get_size(ctx3, 0));
|
||||
const size_t ncopy = llama_state_seq_get_data(ctx3, seq_store.data(), 0);
|
||||
const size_t ncopy = llama_state_seq_get_data(ctx3, seq_store.data(), seq_store.size(), 0);
|
||||
if (ncopy != seq_store.size()) {
|
||||
fprintf(stderr, "\n%s : seq copy data length %zd does not match expected length %zd\n", __func__, ncopy, seq_store.size());
|
||||
llama_free(ctx3);
|
||||
@@ -196,7 +202,7 @@ int main(int argc, char ** argv) {
|
||||
fprintf(stderr, "%s : kv cache cleared\n", __func__);
|
||||
|
||||
// restore kv into seq 1
|
||||
const size_t nset = llama_state_seq_set_data(ctx3, seq_store.data(), 1);
|
||||
const size_t nset = llama_state_seq_set_data(ctx3, seq_store.data(), seq_store.size(), 1);
|
||||
if (nset != seq_store.size()) {
|
||||
fprintf(stderr, "\n%s : seq set data length %zd does not match expected length %zd\n", __func__, nset, seq_store.size());
|
||||
llama_free(ctx3);
|
||||
|
||||
@@ -5,7 +5,7 @@ Fast, lightweight, pure C/C++ HTTP server based on [httplib](https://github.com/
|
||||
Set of LLM REST APIs and a simple web front end to interact with llama.cpp.
|
||||
|
||||
**Features:**
|
||||
* LLM inference of F16 and quantum models on GPU and CPU
|
||||
* LLM inference of F16 and quantized models on GPU and CPU
|
||||
* [OpenAI API](https://github.com/openai/openai-openapi) compatible chat completions and embeddings routes
|
||||
* Parallel decoding with multi-user support
|
||||
* Continuous batching
|
||||
@@ -15,69 +15,281 @@ Set of LLM REST APIs and a simple web front end to interact with llama.cpp.
|
||||
|
||||
The project is under active development, and we are [looking for feedback and contributors](https://github.com/ggerganov/llama.cpp/issues/4216).
|
||||
|
||||
**Command line options:**
|
||||
## Usage
|
||||
|
||||
- `-v`, `--verbose`: Enable verbose server output. When using the `/completion` endpoint, this includes the tokenized prompt, the full request and the full response.
|
||||
- `-t N`, `--threads N`: Set the number of threads to use by CPU layers during generation. Not used by model layers that are offloaded to GPU. This option has no effect when using the maximum number of GPU layers. Default: `std::thread::hardware_concurrency()` (number of CPU cores).
|
||||
- `-tb N, --threads-batch N`: Set the number of threads to use by CPU layers during batch and prompt processing (>= 32 tokens). This option has no effect if a GPU is available. Default: `--threads`.
|
||||
- `--threads-http N`: Number of threads in the http server pool to process requests. Default: `max(std::thread::hardware_concurrency() - 1, --parallel N + 2)`
|
||||
- `-m FNAME`, `--model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.gguf`).
|
||||
- `-mu MODEL_URL --model-url MODEL_URL`: Specify a remote http url to download the file. Default: unused
|
||||
- `-hfr REPO, --hf-repo REPO`: Hugging Face model repository. Default: unused
|
||||
- `-hff FILE, --hf-file FILE`: Hugging Face model file. Default: unused
|
||||
- `-a ALIAS`, `--alias ALIAS`: Set an alias for the model. The alias will be returned in API responses.
|
||||
- `-c N`, `--ctx-size N`: Set the size of the prompt context. The default is `512`, but LLaMA models were built with a context of `2048`, which will provide better results for longer input/inference. The size may differ in other models, for example, baichuan models were build with a context of `4096`.
|
||||
- `-ngl N`, `--n-gpu-layers N`: When compiled with GPU support, this option allows offloading some layers to the GPU for computation. Generally results in increased performance.
|
||||
- `-mg i, --main-gpu i`: When using multiple GPUs, this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default, GPU `0` is used.
|
||||
- `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs, this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default, the data is split in proportion to VRAM, but this may not be optimal for performance.
|
||||
- `-b N`, `--batch-size N`: Set the batch size for prompt processing. Default: `2048`
|
||||
- `-ub N`, `--ubatch-size N`: Physical maximum batch size. Default: `512`
|
||||
- `--mlock`: Lock the model in memory, preventing it from being swapped out when memory-mapped.
|
||||
- `--no-mmap`: Do not memory-map the model. By default, models are mapped into memory, which allows the system to load only the necessary parts of the model as needed.
|
||||
- `--numa STRATEGY`: Attempt one of the below optimization strategies that may help on some NUMA systems
|
||||
- `--numa distribute`: Spread execution evenly over all nodes
|
||||
- `--numa isolate`: Only spawn threads on CPUs on the node that execution started on
|
||||
- `--numa numactl`: Use the CPU map provided by numactl. If run without this previously, it is recommended to drop the system page cache before using this. See https://github.com/ggerganov/llama.cpp/issues/1437
|
||||
- `--numa`: Attempt optimizations that may help on some NUMA systems.
|
||||
- `--lora FNAME`: Apply a LoRA (Low-Rank Adaptation) adapter to the model (implies --no-mmap). This allows you to adapt the pretrained model to specific tasks or domains.
|
||||
- `--lora-base FNAME`: Optional model to use as a base for the layers modified by the LoRA adapter. This flag is used in conjunction with the `--lora` flag, and specifies the base model for the adaptation.
|
||||
- `-to N`, `--timeout N`: Server read/write timeout in seconds. Default `600`
|
||||
- `--host`: Set the hostname or ip address to listen. Default `127.0.0.1`
|
||||
- `--port`: Set the port to listen. Default: `8080`
|
||||
- `--path`: Path from which to serve static files. Default: disabled
|
||||
- `--api-key`: Set an api key for request authorization. By default, the server responds to every request. With an api key set, the requests must have the Authorization header set with the api key as Bearer token. May be used multiple times to enable multiple valid keys.
|
||||
- `--api-key-file`: Path to file containing api keys delimited by new lines. If set, requests must include one of the keys for access. May be used in conjunction with `--api-key`s.
|
||||
- `--embeddings`: Enable embedding vector output and the OAI compatible endpoint /v1/embeddings. Physical batch size (`--ubatch-size`) must be carefully defined. Default: disabled
|
||||
- `-np N`, `--parallel N`: Set the number of slots for process requests. Default: `1`. Values > 1 will allow for higher throughput with multiple parallel requests but the results will **not** be deterministic due to differences in rounding error.
|
||||
- `-cb`, `--cont-batching`: Enable continuous batching (a.k.a dynamic batching). Default: disabled
|
||||
- `-spf FNAME`, `--system-prompt-file FNAME` Set a file to load a system prompt (initial prompt of all slots). This is useful for chat applications. [See more](#change-system-prompt-on-runtime)
|
||||
- `--mmproj MMPROJ_FILE`: Path to a multimodal projector file for LLaVA.
|
||||
- `--grp-attn-n`: Set the group attention factor to extend context size through self-extend. Used together with group attention width `--grp-attn-w`. Default: `1`, which is disabled.
|
||||
- `--grp-attn-w`: Set the group attention width to extend context size through self-extend. Used together with group attention factor `--grp-attn-n`. Default: `512`
|
||||
- `-n N, --n-predict N`: Set the maximum tokens to predict. Default: `-1`
|
||||
- `--slots-endpoint-disable`: To disable slots state monitoring endpoint. Slots state may contain user data, prompts included.
|
||||
- `--metrics`: enable prometheus `/metrics` compatible endpoint. Default: disabled
|
||||
- `--slot-save-path PATH`: Specifies the path where the state of slots (the prompt cache) can be stored. If not provided, the slot management endpoints will be disabled.
|
||||
- `--chat-template JINJA_TEMPLATE`: Set custom jinja chat template. This parameter accepts a string, not a file name. Default: template taken from model's metadata. We only support [some pre-defined templates](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template)
|
||||
- `--log-disable`: Output logs to stdout only, not to `llama.log`. Default: enabled
|
||||
- `--log-format FORMAT`: Define the log output to FORMAT: json or text Default: `json`
|
||||
- `--rope-scaling` : RoPE scaling method. Defaults to linear unless otherwise specified by the model. Options are `none`, `linear`, `yarn`
|
||||
- `--rope-freq-base N` : RoPE frequency base (default: loaded from model)
|
||||
- `--rope-freq-scale N`: RoPE frequency scaling factor, expands context by a factor of 1/N (e.g. 0.25)
|
||||
- `--yarn-ext-factor N` : YaRN: extrapolation mix factor (Default: 1.0, 0.0 = full interpolation)
|
||||
- `--yarn-attn-factor N` : YaRN: scale sqrt(t) or attention magnitude (default: 1.0)
|
||||
- `--yarn-beta-slow N`: YaRN: High correction dim or alpha (default: 1.0)
|
||||
- `--yarn-beta-fast N`: YaRN: low correction dim or beta (default: 32.0)
|
||||
- `--pooling` : Pooling type for embeddings, use model default if unspecified. Options are `none`, `mean`, `cls`
|
||||
- `-dt N`, `--defrag-thold N`: KV cache defragmentation threshold (default: -1.0, < 0 = disabled)
|
||||
- `-fa`, `--flash-attn` : enable flash attention (default: disabled).
|
||||
- `-ctk TYPE`, `--cache-type-k TYPE` : KV cache data type for K (default: `f16`, options `f32`, `f16`, `q8_0`, `q4_0`, `q4_1`, `iq4_nl`, `q5_0`, or `q5_1`)
|
||||
- `-ctv TYPE`, `--cache-type-v TYPE` : KV cache type for V (default `f16`, see `-ctk` for options)
|
||||
- `--spm-infill` : Use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this.
|
||||
```
|
||||
usage: ./llama-server [options]
|
||||
|
||||
general:
|
||||
|
||||
-h, --help, --usage print usage and exit
|
||||
--version show version and build info
|
||||
-v, --verbose print verbose information
|
||||
--verbosity N set specific verbosity level (default: 0)
|
||||
--verbose-prompt print a verbose prompt before generation (default: false)
|
||||
--no-display-prompt don't print prompt at generation (default: false)
|
||||
-co, --color colorise output to distinguish prompt and user input from generations (default: false)
|
||||
-s, --seed SEED RNG seed (default: -1, use random seed for < 0)
|
||||
-t, --threads N number of threads to use during generation (default: 8)
|
||||
-tb, --threads-batch N number of threads to use during batch and prompt processing (default: same as --threads)
|
||||
-td, --threads-draft N number of threads to use during generation (default: same as --threads)
|
||||
-tbd, --threads-batch-draft N number of threads to use during batch and prompt processing (default: same as --threads-draft)
|
||||
--draft N number of tokens to draft for speculative decoding (default: 5)
|
||||
-ps, --p-split N speculative decoding split probability (default: 0.1)
|
||||
-lcs, --lookup-cache-static FNAME
|
||||
path to static lookup cache to use for lookup decoding (not updated by generation)
|
||||
-lcd, --lookup-cache-dynamic FNAME
|
||||
path to dynamic lookup cache to use for lookup decoding (updated by generation)
|
||||
-c, --ctx-size N size of the prompt context (default: 0, 0 = loaded from model)
|
||||
-n, --predict N number of tokens to predict (default: -1, -1 = infinity, -2 = until context filled)
|
||||
-b, --batch-size N logical maximum batch size (default: 2048)
|
||||
-ub, --ubatch-size N physical maximum batch size (default: 512)
|
||||
--keep N number of tokens to keep from the initial prompt (default: 0, -1 = all)
|
||||
--chunks N max number of chunks to process (default: -1, -1 = all)
|
||||
-fa, --flash-attn enable Flash Attention (default: disabled)
|
||||
-p, --prompt PROMPT prompt to start generation with
|
||||
in conversation mode, this will be used as system prompt
|
||||
(default: '')
|
||||
-f, --file FNAME a file containing the prompt (default: none)
|
||||
--in-file FNAME an input file (repeat to specify multiple files)
|
||||
-bf, --binary-file FNAME binary file containing the prompt (default: none)
|
||||
-e, --escape process escapes sequences (\n, \r, \t, \', \", \\) (default: true)
|
||||
--no-escape do not process escape sequences
|
||||
-ptc, --print-token-count N print token count every N tokens (default: -1)
|
||||
--prompt-cache FNAME file to cache prompt state for faster startup (default: none)
|
||||
--prompt-cache-all if specified, saves user input and generations to cache as well
|
||||
not supported with --interactive or other interactive options
|
||||
--prompt-cache-ro if specified, uses the prompt cache but does not update it
|
||||
-r, --reverse-prompt PROMPT halt generation at PROMPT, return control in interactive mode
|
||||
can be specified more than once for multiple prompts
|
||||
-sp, --special special tokens output enabled (default: false)
|
||||
-cnv, --conversation run in conversation mode, does not print special tokens and suffix/prefix
|
||||
if suffix/prefix are not specified, default chat template will be used
|
||||
(default: false)
|
||||
-i, --interactive run in interactive mode (default: false)
|
||||
-if, --interactive-first run in interactive mode and wait for input right away (default: false)
|
||||
-mli, --multiline-input allows you to write or paste multiple lines without ending each in '\'
|
||||
--in-prefix-bos prefix BOS to user inputs, preceding the `--in-prefix` string
|
||||
--in-prefix STRING string to prefix user inputs with (default: empty)
|
||||
--in-suffix STRING string to suffix after user inputs with (default: empty)
|
||||
--spm-infill use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: disabled)
|
||||
|
||||
sampling:
|
||||
|
||||
--samplers SAMPLERS samplers that will be used for generation in the order, separated by ';'
|
||||
(default: top_k;tfs_z;typical_p;top_p;min_p;temperature)
|
||||
--sampling-seq SEQUENCE simplified sequence for samplers that will be used (default: kfypmt)
|
||||
--ignore-eos ignore end of stream token and continue generating (implies --logit-bias EOS-inf)
|
||||
--penalize-nl penalize newline tokens (default: false)
|
||||
--temp N temperature (default: 0.8)
|
||||
--top-k N top-k sampling (default: 40, 0 = disabled)
|
||||
--top-p N top-p sampling (default: 0.9, 1.0 = disabled)
|
||||
--min-p N min-p sampling (default: 0.1, 0.0 = disabled)
|
||||
--tfs N tail free sampling, parameter z (default: 1.0, 1.0 = disabled)
|
||||
--typical N locally typical sampling, parameter p (default: 1.0, 1.0 = disabled)
|
||||
--repeat-last-n N last n tokens to consider for penalize (default: 64, 0 = disabled, -1 = ctx_size)
|
||||
--repeat-penalty N penalize repeat sequence of tokens (default: 1.0, 1.0 = disabled)
|
||||
--presence-penalty N repeat alpha presence penalty (default: 0.0, 0.0 = disabled)
|
||||
--frequency-penalty N repeat alpha frequency penalty (default: 0.0, 0.0 = disabled)
|
||||
--dynatemp-range N dynamic temperature range (default: 0.0, 0.0 = disabled)
|
||||
--dynatemp-exp N dynamic temperature exponent (default: 1.0)
|
||||
--mirostat N use Mirostat sampling.
|
||||
Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.
|
||||
(default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)
|
||||
--mirostat-lr N Mirostat learning rate, parameter eta (default: 0.1)
|
||||
--mirostat-ent N Mirostat target entropy, parameter tau (default: 5.0)
|
||||
-l TOKEN_ID(+/-)BIAS modifies the likelihood of token appearing in the completion,
|
||||
i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',
|
||||
or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'
|
||||
--cfg-negative-prompt PROMPT
|
||||
negative prompt to use for guidance (default: '')
|
||||
--cfg-negative-prompt-file FNAME
|
||||
negative prompt file to use for guidance
|
||||
--cfg-scale N strength of guidance (default: 1.0, 1.0 = disable)
|
||||
--chat-template JINJA_TEMPLATE
|
||||
set custom jinja chat template (default: template taken from model's metadata)
|
||||
if suffix/prefix are specified, template will be disabled
|
||||
only commonly used templates are accepted:
|
||||
https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
|
||||
|
||||
grammar:
|
||||
|
||||
--grammar GRAMMAR BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '')
|
||||
--grammar-file FNAME file to read grammar from
|
||||
-j, --json-schema SCHEMA JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object
|
||||
For schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead
|
||||
|
||||
embedding:
|
||||
|
||||
--pooling {none,mean,cls,last}
|
||||
pooling type for embeddings, use model default if unspecified
|
||||
--attention {causal,non-causal}
|
||||
attention type for embeddings, use model default if unspecified
|
||||
|
||||
context hacking:
|
||||
|
||||
--rope-scaling {none,linear,yarn}
|
||||
RoPE frequency scaling method, defaults to linear unless specified by the model
|
||||
--rope-scale N RoPE context scaling factor, expands context by a factor of N
|
||||
--rope-freq-base N RoPE base frequency, used by NTK-aware scaling (default: loaded from model)
|
||||
--rope-freq-scale N RoPE frequency scaling factor, expands context by a factor of 1/N
|
||||
--yarn-orig-ctx N YaRN: original context size of model (default: 0 = model training context size)
|
||||
--yarn-ext-factor N YaRN: extrapolation mix factor (default: -1.0, 0.0 = full interpolation)
|
||||
--yarn-attn-factor N YaRN: scale sqrt(t) or attention magnitude (default: 1.0)
|
||||
--yarn-beta-slow N YaRN: high correction dim or alpha (default: 1.0)
|
||||
--yarn-beta-fast N YaRN: low correction dim or beta (default: 32.0)
|
||||
-gan, --grp-attn-n N group-attention factor (default: 1)
|
||||
-gaw, --grp-attn-w N group-attention width (default: 512.0)
|
||||
-dkvc, --dump-kv-cache verbose print of the KV cache
|
||||
-nkvo, --no-kv-offload disable KV offload
|
||||
-ctk, --cache-type-k TYPE KV cache data type for K (default: f16)
|
||||
-ctv, --cache-type-v TYPE KV cache data type for V (default: f16)
|
||||
|
||||
perplexity:
|
||||
|
||||
--all-logits return logits for all tokens in the batch (default: false)
|
||||
--hellaswag compute HellaSwag score over random tasks from datafile supplied with -f
|
||||
--hellaswag-tasks N number of tasks to use when computing the HellaSwag score (default: 400)
|
||||
--winogrande compute Winogrande score over random tasks from datafile supplied with -f
|
||||
--winogrande-tasks N number of tasks to use when computing the Winogrande score (default: 0)
|
||||
--multiple-choice compute multiple choice score over random tasks from datafile supplied with -f
|
||||
--multiple-choice-tasks N
|
||||
number of tasks to use when computing the multiple choice score (default: 0)
|
||||
--kl-divergence computes KL-divergence to logits provided via --kl-divergence-base
|
||||
--ppl-stride N stride for perplexity calculation (default: 0)
|
||||
--ppl-output-type {0,1} output type for perplexity calculation (default: 0)
|
||||
|
||||
parallel:
|
||||
|
||||
-dt, --defrag-thold N KV cache defragmentation threshold (default: -1.0, < 0 - disabled)
|
||||
-np, --parallel N number of parallel sequences to decode (default: 1)
|
||||
-ns, --sequences N number of sequences to decode (default: 1)
|
||||
-cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: enabled)
|
||||
|
||||
multi-modality:
|
||||
|
||||
--mmproj FILE path to a multimodal projector file for LLaVA. see examples/llava/README.md
|
||||
--image FILE path to an image file. use with multimodal models. Specify multiple times for batching
|
||||
|
||||
backend:
|
||||
|
||||
--rpc SERVERS comma separated list of RPC servers
|
||||
--mlock force system to keep model in RAM rather than swapping or compressing
|
||||
--no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)
|
||||
--numa TYPE attempt optimizations that help on some NUMA systems
|
||||
- distribute: spread execution evenly over all nodes
|
||||
- isolate: only spawn threads on CPUs on the node that execution started on
|
||||
- numactl: use the CPU map provided by numactl
|
||||
if run without this previously, it is recommended to drop the system page cache before using this
|
||||
see https://github.com/ggerganov/llama.cpp/issues/1437
|
||||
|
||||
model:
|
||||
|
||||
--check-tensors check model tensor data for invalid values (default: false)
|
||||
--override-kv KEY=TYPE:VALUE
|
||||
advanced option to override model metadata by key. may be specified multiple times.
|
||||
types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false
|
||||
--lora FNAME apply LoRA adapter (implies --no-mmap)
|
||||
--lora-scaled FNAME S apply LoRA adapter with user defined scaling S (implies --no-mmap)
|
||||
--lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter
|
||||
--control-vector FNAME add a control vector
|
||||
note: this argument can be repeated to add multiple control vectors
|
||||
--control-vector-scaled FNAME SCALE
|
||||
add a control vector with user defined scaling SCALE
|
||||
note: this argument can be repeated to add multiple scaled control vectors
|
||||
--control-vector-layer-range START END
|
||||
layer range to apply the control vector(s) to, start and end inclusive
|
||||
-m, --model FNAME model path (default: models/$filename with filename from --hf-file
|
||||
or --model-url if set, otherwise models/7B/ggml-model-f16.gguf)
|
||||
-md, --model-draft FNAME draft model for speculative decoding (default: unused)
|
||||
-mu, --model-url MODEL_URL model download url (default: unused)
|
||||
-hfr, --hf-repo REPO Hugging Face model repository (default: unused)
|
||||
-hff, --hf-file FILE Hugging Face model file (default: unused)
|
||||
-hft, --hf-token TOKEN Hugging Face access token (default: value from HF_TOKEN environment variable)
|
||||
|
||||
retrieval:
|
||||
|
||||
--context-file FNAME file to load context from (repeat to specify multiple files)
|
||||
--chunk-size N minimum length of embedded text chunks (default: 64)
|
||||
--chunk-separator STRING
|
||||
separator between chunks (default: '
|
||||
')
|
||||
|
||||
passkey:
|
||||
|
||||
--junk N number of times to repeat the junk text (default: 250)
|
||||
--pos N position of the passkey in the junk text (default: -1)
|
||||
|
||||
imatrix:
|
||||
|
||||
-o, --output FNAME output file (default: 'imatrix.dat')
|
||||
--output-frequency N output the imatrix every N iterations (default: 10)
|
||||
--save-frequency N save an imatrix copy every N iterations (default: 0)
|
||||
--process-output collect data for the output tensor (default: false)
|
||||
--no-ppl do not compute perplexity (default: true)
|
||||
--chunk N start processing the input from chunk N (default: 0)
|
||||
|
||||
bench:
|
||||
|
||||
-pps is the prompt shared across parallel sequences (default: false)
|
||||
-npp n0,n1,... number of prompt tokens
|
||||
-ntg n0,n1,... number of text generation tokens
|
||||
-npl n0,n1,... number of parallel prompts
|
||||
|
||||
embedding:
|
||||
|
||||
--embd-normalize normalisation for embendings (default: 2) (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
|
||||
--embd-output-format empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
|
||||
--embd-separator separator of embendings (default \n) for example "<#sep#>"
|
||||
|
||||
server:
|
||||
|
||||
--host HOST ip address to listen (default: 127.0.0.1)
|
||||
--port PORT port to listen (default: 8080)
|
||||
--path PATH path to serve static files from (default: )
|
||||
--embedding(s) restrict to only support embedding use case; use only with dedicated embedding models (default: disabled)
|
||||
--api-key KEY API key to use for authentication (default: none)
|
||||
--api-key-file FNAME path to file containing API keys (default: none)
|
||||
--ssl-key-file FNAME path to file a PEM-encoded SSL private key
|
||||
--ssl-cert-file FNAME path to file a PEM-encoded SSL certificate
|
||||
--timeout N server read/write timeout in seconds (default: 600)
|
||||
--threads-http N number of threads used to process HTTP requests (default: -1)
|
||||
--system-prompt-file FNAME
|
||||
set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications
|
||||
--log-format {text,json}
|
||||
log output format: json or text (default: json)
|
||||
--metrics enable prometheus compatible metrics endpoint (default: disabled)
|
||||
--no-slots disables slots monitoring endpoint (default: enabled)
|
||||
--slot-save-path PATH path to save slot kv cache (default: disabled)
|
||||
--chat-template JINJA_TEMPLATE
|
||||
set custom jinja chat template (default: template taken from model's metadata)
|
||||
only commonly used templates are accepted:
|
||||
https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
|
||||
-sps, --slot-prompt-similarity SIMILARITY
|
||||
how much the prompt of a request must match the prompt of a slot in order to use that slot (default: 0.50, 0.0 = disabled)
|
||||
|
||||
|
||||
logging:
|
||||
|
||||
--simple-io use basic IO for better compatibility in subprocesses and limited consoles
|
||||
-ld, --logdir LOGDIR path under which to save YAML logs (no logging if unset)
|
||||
--log-test Run simple logging test
|
||||
--log-disable Disable trace logs
|
||||
--log-enable Enable trace logs
|
||||
--log-file FNAME Specify a log filename (without extension)
|
||||
--log-new Create a separate new log file on start. Each log file will have unique name: "<name>.<ID>.log"
|
||||
--log-append Don't truncate the old log file.
|
||||
|
||||
cvector:
|
||||
|
||||
-o, --output FNAME output file (default: 'control_vector.gguf')
|
||||
--positive-file FNAME positive prompts file, one prompt per line (default: 'examples/cvector-generator/positive.txt')
|
||||
--negative-file FNAME negative prompts file, one prompt per line (default: 'examples/cvector-generator/negative.txt')
|
||||
--pca-batch N batch size used for PCA. Larger batch runs faster, but uses more memory (default: 100)
|
||||
--pca-iter N number of iterations used for PCA (default: 1000)
|
||||
--method {pca,mean} dimensionality reduction method to be used (default: pca)
|
||||
```
|
||||
|
||||
**If compiled with `LLAMA_SERVER_SSL=ON`**
|
||||
- `--ssl-key-file FNAME`: path to file a PEM-encoded SSL private key
|
||||
- `--ssl-cert-file FNAME`: path to file a PEM-encoded SSL certificate
|
||||
|
||||
## Build
|
||||
|
||||
@@ -232,7 +444,7 @@ node index.js
|
||||
|
||||
`n_predict`: Set the maximum number of tokens to predict when generating text. **Note:** May exceed the set limit slightly if the last token is a partial multibyte character. When 0, no tokens will be generated but the prompt is evaluated into the cache. Default: `-1`, where `-1` is infinity.
|
||||
|
||||
`n_keep`: Specify the number of tokens from the prompt to retain when the context size is exceeded and tokens need to be discarded.
|
||||
`n_keep`: Specify the number of tokens from the prompt to retain when the context size is exceeded and tokens need to be discarded. The number excludes the BOS token.
|
||||
By default, this value is set to `0`, meaning no tokens are kept. Use `-1` to retain all tokens from the prompt.
|
||||
|
||||
`stream`: It allows receiving each predicted token in real-time instead of waiting for the completion to finish. To enable this, set to `true`.
|
||||
|
||||
@@ -21,7 +21,7 @@ let generation_settings = null;
|
||||
//
|
||||
export async function* llama(prompt, params = {}, config = {}) {
|
||||
let controller = config.controller;
|
||||
const api_url = config.api_url || "";
|
||||
const api_url = config.api_url?.replace(/\/+$/, '') || "";
|
||||
|
||||
if (!controller) {
|
||||
controller = new AbortController();
|
||||
@@ -196,7 +196,7 @@ export const llamaComplete = async (params, controller, callback) => {
|
||||
// Get the model info from the server. This is useful for getting the context window and so on.
|
||||
export const llamaModelInfo = async (config = {}) => {
|
||||
if (!generation_settings) {
|
||||
const api_url = config.api_url || "";
|
||||
const api_url = config.api_url?.replace(/\/+$/, '') || "";
|
||||
const props = await fetch(`${api_url}/props`).then(r => r.json());
|
||||
generation_settings = props.default_generation_settings;
|
||||
}
|
||||
|
||||
@@ -14,10 +14,10 @@
|
||||
<script type="module">
|
||||
import {
|
||||
html, h, signal, effect, computed, render, useSignal, useEffect, useRef, Component
|
||||
} from '/index.js';
|
||||
} from './index.js';
|
||||
|
||||
import { llama } from '/completion.js';
|
||||
import { SchemaConverter } from '/json-schema-to-grammar.mjs';
|
||||
import { llama } from './completion.js';
|
||||
import { SchemaConverter } from './json-schema-to-grammar.mjs';
|
||||
import { promptFormats } from './prompt-formats.js';
|
||||
import { systemPrompts } from './system-prompts.js'; // multilingual is wip
|
||||
let selected_image = false;
|
||||
@@ -225,7 +225,7 @@
|
||||
throw new Error("already running");
|
||||
}
|
||||
controller.value = new AbortController();
|
||||
for await (const chunk of llama(prompt, llamaParams, { controller: controller.value })) {
|
||||
for await (const chunk of llama(prompt, llamaParams, { controller: controller.value, api_url: new URL('.', document.baseURI).href })) {
|
||||
const data = chunk.data;
|
||||
if (data.stop) {
|
||||
while (
|
||||
|
||||
@@ -1,5 +1,4 @@
|
||||
<html>
|
||||
|
||||
<head>
|
||||
<meta charset="UTF-8">
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1" />
|
||||
@@ -132,12 +131,20 @@
|
||||
align-items: stretch;
|
||||
}
|
||||
|
||||
.right {
|
||||
.message-controls {
|
||||
display: flex;
|
||||
flex-direction: row;
|
||||
gap: 0.5em;
|
||||
justify-content: flex-end;
|
||||
}
|
||||
.message-controls > div:nth-child(2) {
|
||||
display: flex;
|
||||
flex-direction: column;
|
||||
gap: 0.5em;
|
||||
}
|
||||
.message-controls > div:nth-child(2) > div {
|
||||
display: flex;
|
||||
margin-left: auto;
|
||||
gap: 0.5em;
|
||||
}
|
||||
|
||||
fieldset {
|
||||
border: none;
|
||||
@@ -276,6 +283,7 @@
|
||||
|
||||
import { llama } from './completion.js';
|
||||
import { SchemaConverter } from './json-schema-to-grammar.mjs';
|
||||
|
||||
let selected_image = false;
|
||||
var slot_id = -1;
|
||||
|
||||
@@ -447,6 +455,9 @@
|
||||
|
||||
/* END: Support for storing prompt templates and parameters in browsers LocalStorage */
|
||||
|
||||
const tts = window.speechSynthesis;
|
||||
const ttsVoice = signal(null)
|
||||
|
||||
const llamaStats = signal(null)
|
||||
const controller = signal(null)
|
||||
|
||||
@@ -479,7 +490,7 @@
|
||||
throw new Error("already running");
|
||||
}
|
||||
controller.value = new AbortController();
|
||||
for await (const chunk of llama(prompt, llamaParams, { controller: controller.value, api_url: location.pathname.replace(/\/+$/, '') })) {
|
||||
for await (const chunk of llama(prompt, llamaParams, { controller: controller.value, api_url: new URL('.', document.baseURI).href })) {
|
||||
const data = chunk.data;
|
||||
|
||||
if (data.stop) {
|
||||
@@ -596,8 +607,51 @@
|
||||
});
|
||||
}
|
||||
|
||||
const SpeechRecognition = window.SpeechRecognition || window.webkitSpeechRecognition;
|
||||
const talkRecognition = SpeechRecognition ? new SpeechRecognition() : null;
|
||||
function MessageInput() {
|
||||
const message = useSignal("")
|
||||
const message = useSignal("");
|
||||
|
||||
const talkActive = useSignal(false);
|
||||
const sendOnTalk = useSignal(false);
|
||||
const talkStop = (e) => {
|
||||
if (e) e.preventDefault();
|
||||
|
||||
talkActive.value = false;
|
||||
talkRecognition?.stop();
|
||||
}
|
||||
const talk = (e) => {
|
||||
e.preventDefault();
|
||||
|
||||
if (talkRecognition)
|
||||
talkRecognition.start();
|
||||
else
|
||||
alert("Speech recognition is not supported by this browser.");
|
||||
}
|
||||
if(talkRecognition) {
|
||||
talkRecognition.onstart = () => {
|
||||
talkActive.value = true;
|
||||
}
|
||||
talkRecognition.onresult = (e) => {
|
||||
if (event.results.length > 0) {
|
||||
message.value = event.results[0][0].transcript;
|
||||
if (sendOnTalk.value) {
|
||||
submit(e);
|
||||
}
|
||||
}
|
||||
}
|
||||
talkRecognition.onspeechend = () => {
|
||||
talkStop();
|
||||
}
|
||||
}
|
||||
|
||||
const ttsVoices = useSignal(tts?.getVoices() || []);
|
||||
const ttsVoiceDefault = computed(() => ttsVoices.value.find(v => v.default));
|
||||
if (tts) {
|
||||
tts.onvoiceschanged = () => {
|
||||
ttsVoices.value = tts.getVoices();
|
||||
}
|
||||
}
|
||||
|
||||
const submit = (e) => {
|
||||
stop(e);
|
||||
@@ -624,11 +678,45 @@
|
||||
value="${message}"
|
||||
/>
|
||||
</div>
|
||||
<div class="right">
|
||||
<button type="submit" disabled=${generating.value}>Send</button>
|
||||
<button onclick=${uploadImage}>Upload Image</button>
|
||||
<button onclick=${stop} disabled=${!generating.value}>Stop</button>
|
||||
<button onclick=${reset}>Reset</button>
|
||||
<div class="message-controls">
|
||||
<div> </div>
|
||||
<div>
|
||||
<div>
|
||||
<button type="submit" disabled=${generating.value || talkActive.value}>Send</button>
|
||||
<button disabled=${generating.value || talkActive.value} onclick=${uploadImage}>Upload Image</button>
|
||||
<button onclick=${stop} disabled=${!generating.value}>Stop</button>
|
||||
<button onclick=${reset}>Reset</button>
|
||||
</div>
|
||||
<div>
|
||||
<a href="#" style="cursor: help;" title="Help" onclick=${e => {
|
||||
e.preventDefault();
|
||||
alert(`STT supported by your browser: ${SpeechRecognition ? 'Yes' : 'No'}\n` +
|
||||
`(TTS and speech recognition are not provided by llama.cpp)\n` +
|
||||
`Note: STT requires HTTPS to work.`);
|
||||
}}>[?]</a>
|
||||
<button disabled=${generating.value} onclick=${talkActive.value ? talkStop : talk}>${talkActive.value ? "Stop Talking" : "Talk"}</button>
|
||||
<div>
|
||||
<input type="checkbox" id="send-on-talk" name="send-on-talk" checked="${sendOnTalk}" onchange=${(e) => sendOnTalk.value = e.target.checked} />
|
||||
<label for="send-on-talk" style="line-height: initial;">Send after talking</label>
|
||||
</div>
|
||||
</div>
|
||||
<div>
|
||||
<a href="#" style="cursor: help;" title="Help" onclick=${e => {
|
||||
e.preventDefault();
|
||||
alert(`TTS supported by your browser: ${tts ? 'Yes' : 'No'}\n(TTS and speech recognition are not provided by llama.cpp)`);
|
||||
}}>[?]</a>
|
||||
<label for="tts-voices" style="line-height: initial;">Bot Voice:</label>
|
||||
<select id="tts-voices" name="tts-voices" onchange=${(e) => ttsVoice.value = e.target.value} style="max-width: 100px;">
|
||||
<option value="" selected="${!ttsVoice.value}">None</option>
|
||||
${[
|
||||
...(ttsVoiceDefault.value ? [ttsVoiceDefault.value] : []),
|
||||
...ttsVoices.value.filter(v => !v.default),
|
||||
].map(
|
||||
v => html`<option value="${v.name}" selected="${ttsVoice.value === v.name}">${v.name} (${v.lang}) ${v.default ? '(default)' : ''}</option>`
|
||||
)}
|
||||
</select>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</form>
|
||||
`
|
||||
@@ -659,26 +747,86 @@
|
||||
}
|
||||
}, [messages])
|
||||
|
||||
const ttsChatLineActiveIx = useSignal(undefined);
|
||||
const ttsChatLine = (e, ix, msg) => {
|
||||
if (e) e.preventDefault();
|
||||
|
||||
if (!tts || !ttsVoice.value || !('SpeechSynthesisUtterance' in window)) return;
|
||||
|
||||
const ttsVoices = tts.getVoices();
|
||||
const voice = ttsVoices.find(v => v.name === ttsVoice.value);
|
||||
if (!voice) return;
|
||||
|
||||
if (ttsChatLineActiveIx.value !== undefined) {
|
||||
tts.cancel();
|
||||
if (ttsChatLineActiveIx.value === ix) {
|
||||
ttsChatLineActiveIx.value = undefined;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
ttsChatLineActiveIx.value = ix;
|
||||
let ttsUtter = new SpeechSynthesisUtterance(msg);
|
||||
ttsUtter.voice = voice;
|
||||
ttsUtter.onend = e => {
|
||||
ttsChatLineActiveIx.value = undefined;
|
||||
};
|
||||
tts.speak(ttsUtter);
|
||||
}
|
||||
|
||||
const isCompletionMode = session.value.type === 'completion'
|
||||
|
||||
// Try play the last bot message
|
||||
const lastCharChatLinesIxs = useSignal([]);
|
||||
const lastCharChatLinesIxsOld = useSignal([]);
|
||||
useEffect(() => {
|
||||
if (
|
||||
!isCompletionMode
|
||||
&& lastCharChatLinesIxs.value.length !== lastCharChatLinesIxsOld.value.length
|
||||
&& !generating.value
|
||||
) {
|
||||
const ix = lastCharChatLinesIxs.value[lastCharChatLinesIxs.value.length - 1];
|
||||
if (ix !== undefined) {
|
||||
const msg = messages[ix];
|
||||
ttsChatLine(null, ix, Array.isArray(msg) ? msg[1].map(m => m.content).join('') : msg);
|
||||
}
|
||||
|
||||
lastCharChatLinesIxsOld.value = structuredClone(lastCharChatLinesIxs.value);
|
||||
}
|
||||
}, [generating.value]);
|
||||
|
||||
const chatLine = ([user, data], index) => {
|
||||
let message
|
||||
const isArrayMessage = Array.isArray(data)
|
||||
const isArrayMessage = Array.isArray(data);
|
||||
const text = isArrayMessage ?
|
||||
data.map(msg => msg.content).join('') :
|
||||
data;
|
||||
if (params.value.n_probs > 0 && isArrayMessage) {
|
||||
message = html`<${Probabilities} data=${data} />`
|
||||
} else {
|
||||
const text = isArrayMessage ?
|
||||
data.map(msg => msg.content).join('') :
|
||||
data;
|
||||
message = isCompletionMode ?
|
||||
text :
|
||||
html`<${Markdownish} text=${template(text)} />`
|
||||
}
|
||||
|
||||
const fromBot = user && user === '{{char}}';
|
||||
if (fromBot && !lastCharChatLinesIxs.value.includes(index))
|
||||
lastCharChatLinesIxs.value.push(index);
|
||||
|
||||
if (user) {
|
||||
return html`<p key=${index}><strong>${template(user)}:</strong> ${message}</p>`
|
||||
return html`
|
||||
<div>
|
||||
<p key=${index}><strong>${template(user)}:</strong> ${message}</p>
|
||||
${
|
||||
fromBot && ttsVoice.value
|
||||
&& html`<button disabled=${generating.value} onclick=${e => ttsChatLine(e, index, text)} aria-label=${ttsChatLineActiveIx.value === index ? 'Pause' : 'Play'}>${ ttsChatLineActiveIx.value === index ? '⏸️' : '▶️' }</div>`
|
||||
}
|
||||
</div>
|
||||
`;
|
||||
} else {
|
||||
return isCompletionMode ?
|
||||
html`<span key=${index}>${message}</span>` :
|
||||
html`<p key=${index}>${message}</p>`
|
||||
html`<div><p key=${index}>${message}</p></div>`
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
@@ -1182,7 +1182,7 @@ struct server_context {
|
||||
|
||||
bool process_token(completion_token_output & result, server_slot & slot) {
|
||||
// remember which tokens were sampled - used for repetition penalties during sampling
|
||||
const std::string token_str = llama_token_to_piece(ctx, result.tok, false);
|
||||
const std::string token_str = llama_token_to_piece(ctx, result.tok, params.special);
|
||||
slot.sampled = result.tok;
|
||||
|
||||
// search stop word and delete it
|
||||
@@ -2005,6 +2005,11 @@ struct server_context {
|
||||
int32_t n_batch = llama_n_batch(ctx);
|
||||
int32_t n_ubatch = llama_n_ubatch(ctx);
|
||||
|
||||
// track if this is an embedding or non-embedding batch
|
||||
// if we've added sampled tokens above, we are in non-embedding mode
|
||||
// -1: none, 0: non-embedding, 1: embedding
|
||||
int32_t batch_type = batch.n_tokens > 0 ? 0 : -1;
|
||||
|
||||
// next, batch any pending prompts without exceeding n_batch
|
||||
if (params.cont_batching || batch.n_tokens == 0) {
|
||||
for (auto & slot : slots) {
|
||||
@@ -2175,6 +2180,14 @@ struct server_context {
|
||||
}
|
||||
}
|
||||
|
||||
// check that we are in the right batch_type, if not defer the slot
|
||||
bool slot_type = slot.embedding ? 1 : 0;
|
||||
if (batch_type == -1) {
|
||||
batch_type = slot_type;
|
||||
} else if (batch_type != slot_type) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// keep only the common part
|
||||
int p0 = (int) system_tokens.size() + slot.n_past;
|
||||
if (!llama_kv_cache_seq_rm(ctx, slot.id + 1, p0, -1)) {
|
||||
@@ -2276,6 +2289,9 @@ struct server_context {
|
||||
{"n_tokens", batch.n_tokens},
|
||||
});
|
||||
|
||||
// make sure we're in the right embedding mode
|
||||
llama_set_embeddings(ctx, batch_type == 1);
|
||||
|
||||
// process the created batch of tokens
|
||||
for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
|
||||
const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
|
||||
@@ -2990,6 +3006,11 @@ int main(int argc, char ** argv) {
|
||||
};
|
||||
|
||||
const auto handle_completions = [&ctx_server, &res_error](const httplib::Request & req, httplib::Response & res) {
|
||||
if (ctx_server.params.embedding) {
|
||||
res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
|
||||
return;
|
||||
}
|
||||
|
||||
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
||||
|
||||
json data = json::parse(req.body);
|
||||
@@ -3085,6 +3106,11 @@ int main(int argc, char ** argv) {
|
||||
};
|
||||
|
||||
const auto handle_chat_completions = [&ctx_server, ¶ms, &res_error](const httplib::Request & req, httplib::Response & res) {
|
||||
if (ctx_server.params.embedding) {
|
||||
res_error(res, format_error_response("This server does not support chat completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
|
||||
return;
|
||||
}
|
||||
|
||||
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
||||
json data = oaicompat_completion_params_parse(ctx_server.model, json::parse(req.body), params.chat_template);
|
||||
|
||||
@@ -3157,6 +3183,11 @@ int main(int argc, char ** argv) {
|
||||
};
|
||||
|
||||
const auto handle_infill = [&ctx_server, &res_error](const httplib::Request & req, httplib::Response & res) {
|
||||
if (ctx_server.params.embedding) {
|
||||
res_error(res, format_error_response("This server does not support infill. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
|
||||
return;
|
||||
}
|
||||
|
||||
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
||||
|
||||
json data = json::parse(req.body);
|
||||
@@ -3243,13 +3274,8 @@ int main(int argc, char ** argv) {
|
||||
return res.set_content(data.dump(), "application/json; charset=utf-8");
|
||||
};
|
||||
|
||||
const auto handle_embeddings = [¶ms, &ctx_server, &res_error](const httplib::Request & req, httplib::Response & res) {
|
||||
const auto handle_embeddings = [&ctx_server, &res_error](const httplib::Request & req, httplib::Response & res) {
|
||||
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
||||
if (!params.embedding) {
|
||||
res.status = 501;
|
||||
res.set_content("This server does not support embeddings. Start it with `--embeddings`", "text/plain; charset=utf-8");
|
||||
return;
|
||||
}
|
||||
|
||||
const json body = json::parse(req.body);
|
||||
bool is_openai = false;
|
||||
|
||||
@@ -122,8 +122,26 @@ inline std::string format_chat(const struct llama_model * model, const std::stri
|
||||
|
||||
for (size_t i = 0; i < messages.size(); ++i) {
|
||||
const auto & curr_msg = messages[i];
|
||||
std::string role = json_value(curr_msg, "role", std::string(""));
|
||||
std::string content = json_value(curr_msg, "content", std::string(""));
|
||||
|
||||
std::string role = json_value(curr_msg, "role", std::string(""));
|
||||
|
||||
std::string content;
|
||||
if (curr_msg.contains("content")) {
|
||||
if (curr_msg["content"].is_string()) {
|
||||
content = curr_msg["content"].get<std::string>();
|
||||
} else if (curr_msg["content"].is_array()) {
|
||||
for (const auto & part : curr_msg["content"]) {
|
||||
if (part.contains("text")) {
|
||||
content += "\n" + part["text"].get<std::string>();
|
||||
}
|
||||
}
|
||||
} else {
|
||||
throw std::runtime_error("Invalid 'content' type (ref: https://github.com/ggerganov/llama.cpp/issues/8367)");
|
||||
}
|
||||
} else {
|
||||
throw std::runtime_error("Missing 'content' (ref: https://github.com/ggerganov/llama.cpp/issues/8367)");
|
||||
}
|
||||
|
||||
chat.push_back({role, content});
|
||||
}
|
||||
|
||||
|
||||
@@ -163,7 +163,7 @@ static void write_utf8_cstr_to_stdout(const char * str, bool & invalid_utf8) {
|
||||
printf(">");
|
||||
return;
|
||||
}
|
||||
GGML_ASSERT(false && "MultiByteToWideChar() failed in an unexpected way.");
|
||||
GGML_ABORT("MultiByteToWideChar() failed in an unexpected way.");
|
||||
}
|
||||
|
||||
LPWSTR wstr = (LPWSTR) calloc(length_needed+1, sizeof(*wstr));
|
||||
|
||||
@@ -1,5 +0,0 @@
|
||||
set(TARGET llama-train-text-from-scratch)
|
||||
add_executable(${TARGET} train-text-from-scratch.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
@@ -1,27 +0,0 @@
|
||||
# train-text-from-scratch
|
||||
|
||||
Basic usage instructions:
|
||||
|
||||
```bash
|
||||
# get training data
|
||||
wget https://raw.githubusercontent.com/brunoklein99/deep-learning-notes/master/shakespeare.txt
|
||||
|
||||
# train
|
||||
./bin/llama-train-text-from-scratch \
|
||||
--vocab-model ../models/ggml-vocab-llama.gguf \
|
||||
--ctx 64 --embd 256 --head 8 --layer 16 \
|
||||
--checkpoint-in chk-shakespeare-256x16-LATEST.gguf \
|
||||
--checkpoint-out chk-shakespeare-256x16-ITERATION.gguf \
|
||||
--model-out ggml-shakespeare-256x16-f32-ITERATION.gguf \
|
||||
--train-data "shakespeare.txt" \
|
||||
-t 6 -b 16 --seed 1 --adam-iter 256 \
|
||||
--no-checkpointing
|
||||
|
||||
# predict
|
||||
./bin/llama-cli -m ggml-shakespeare-256x16-f32.gguf
|
||||
```
|
||||
|
||||
Output files will be saved every N iterations (config with `--save-every N`).
|
||||
The pattern "ITERATION" in the output filenames will be replaced with the iteration number and "LATEST" for the latest output.
|
||||
|
||||
To train GGUF models just pass them to `--checkpoint-in FN`.
|
||||
@@ -1,499 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# train-text-from-scratch checkpoint --> gguf conversion
|
||||
|
||||
import argparse
|
||||
import os
|
||||
import struct
|
||||
import sys
|
||||
import numpy as np
|
||||
from pathlib import Path
|
||||
|
||||
if 'NO_LOCAL_GGUF' not in os.environ:
|
||||
sys.path.insert(1, str(Path(__file__).parent / '..' / '..' / 'gguf-py'))
|
||||
import gguf
|
||||
|
||||
# gguf constants
|
||||
LLM_KV_OPTIMIZER_TYPE = "optimizer.type"
|
||||
LLM_KV_OPTIMIZER_TYPE_ADAM = "adam"
|
||||
LLM_KV_OPTIMIZER_TYPE_LBFGS = "lbfgs"
|
||||
LLM_KV_OPTIMIZER_FILE_VERSION = "optimizer.file_version"
|
||||
LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT = "optimizer.convergence_past_count"
|
||||
LLM_KV_OPTIMIZER_PARAMETER_COUNT = "optimizer.parameter_count"
|
||||
LLM_KV_OPTIMIZER_ITERATION_COUNT = "optimizer.iteration_count"
|
||||
LLM_KV_OPTIMIZER_JUST_INITIALIZED = "optimizer.just_initialized"
|
||||
LLM_KV_OPTIMIZER_ADAM_BEST_LOSS = "optimizer.adam.best_loss"
|
||||
LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS = "optimizer.adam.previous_loss"
|
||||
LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT = "optimizer.adam.no_improvement_count"
|
||||
LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT = "optimizer.lbfgs.approx_hessian_count"
|
||||
LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS = "optimizer.lbfgs.best_loss"
|
||||
LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP = "optimizer.lbfgs.line_search_step"
|
||||
LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J = "optimizer.lbfgs.line_search_j"
|
||||
LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K = "optimizer.lbfgs.line_search_k"
|
||||
LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END = "optimizer.lbfgs.line_search_end"
|
||||
LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT = "optimizer.lbfgs.no_improvement_count"
|
||||
|
||||
LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS = "optimizer.adam.first_moments"
|
||||
LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS = "optimizer.adam.second_moments"
|
||||
LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES = "optimizer.adam.past_loss_values"
|
||||
|
||||
LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS = "optimizer.lbfgs.current_parameters"
|
||||
LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS = "optimizer.lbfgs.previous_parameters"
|
||||
LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS = "optimizer.lbfgs.current_gradients"
|
||||
LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS = "optimizer.lbfgs.previous_gradients"
|
||||
LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION = "optimizer.lbfgs.search_direction"
|
||||
LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES = "optimizer.lbfgs.past_loss_values"
|
||||
LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA = "optimizer.lbfgs.memory_alpha"
|
||||
LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS = "optimizer.lbfgs.memory_ys"
|
||||
LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S = "optimizer.lbfgs.memory_s"
|
||||
LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y = "optimizer.lbfgs.memory_y"
|
||||
|
||||
LLM_KV_TRAINING_TYPE_TRAIN_MODEL = "train_model"
|
||||
LLM_KV_TRAINING_TYPE_FINETUNE_LORA = "finetune_lora"
|
||||
LLM_KV_TRAINING_TYPE = "training.type"
|
||||
LLM_KV_TRAINING_FILE_VERSION = "training.file_version"
|
||||
LLM_KV_TRAINING_ITERATION_COUNT = "training.iteration_count"
|
||||
LLM_KV_TRAINING_SAMPLE_COUNT = "training.sample_count"
|
||||
LLM_KV_TRAINING_TOKEN_COUNT = "training.token_count"
|
||||
|
||||
class Tensor:
|
||||
def __init__(self, dtype='f', ne=None):
|
||||
if ne is None:
|
||||
ne = []
|
||||
self.dtype = dtype
|
||||
self.ne = ne
|
||||
self.nbytes = 0
|
||||
if self.dtype == 'f':
|
||||
if len(self.ne) == 0:
|
||||
self.nbytes = 0
|
||||
else:
|
||||
self.nbytes = int(np.prod(self.ne)) * 4
|
||||
else:
|
||||
raise ValueError(f"Unhandled data type '{self.dtype}'")
|
||||
|
||||
def load(self, data, offset):
|
||||
nd = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
namelen = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
dtype = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
|
||||
assert(nd == len(self.ne))
|
||||
ne = []
|
||||
for d in range(nd):
|
||||
n = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
ne.append(n)
|
||||
|
||||
assert(tuple(ne) == tuple(self.ne))
|
||||
|
||||
if self.dtype == 'f':
|
||||
assert(dtype == 0)
|
||||
else:
|
||||
raise ValueError(f"Unhandled data type '{self.dtype}'")
|
||||
|
||||
self.name = bytes(data[offset:offset+namelen]); offset += namelen
|
||||
# 32-byte alignment
|
||||
offset += (0 - offset) & 31
|
||||
self.data = data[offset:offset+self.nbytes]
|
||||
offset += self.nbytes
|
||||
return offset
|
||||
|
||||
def max_storage_size(self):
|
||||
result = 0
|
||||
result += 4 # nd
|
||||
result += 4 # namelen
|
||||
result += 4 # dtype
|
||||
result += len(self.ne)*8 # ne
|
||||
result += 48 # name (maximum as of commit 3b5515bbe0e2224425986ba24f1f5d84aa38dce9)
|
||||
result += 31 # 32-byte alignment
|
||||
result += self.nbytes
|
||||
return result
|
||||
|
||||
def save_gguf(self, gguf_writer, name):
|
||||
gguf_writer.add_tensor(
|
||||
name=name,
|
||||
tensor=self.data,
|
||||
raw_shape=np.array(list(reversed(self.ne))),
|
||||
raw_dtype=gguf.GGMLQuantizationType.F32)
|
||||
|
||||
class OptimizationParamsV0:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def load(self, data, offset):
|
||||
self.type = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_threads = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.past = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.delta = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.print_forward_graph = struct.unpack('<?', bytes(data[offset:offset + 1]))[0]; offset += 4 # 32bit-aligned
|
||||
self.print_backward_graph = struct.unpack('<?', bytes(data[offset:offset + 1]))[0]; offset += 4 # 32bit-aligned
|
||||
self.adam_n_iter = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.adam_sched = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.adam_decay = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.adam_alpha = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.adam_beta1 = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.adam_beta2 = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.adam_eps = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.adam_eps_f = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.adam_eps_g = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.lbfgs_m = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.lbfgs_n_iter = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.lbfgs_max_linesearch = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.lbfgs_eps = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.lbfgs_ftol = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.lbfgs_wolfe = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.lbfgs_min_step = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.lbfgs_max_step = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.lbfgs_linesearch = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
return offset
|
||||
|
||||
class OptimizationContext:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def load(self, data, offset):
|
||||
self.version = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]
|
||||
offset += 4
|
||||
|
||||
if self.version == 0:
|
||||
params = OptimizationParamsV0()
|
||||
offset = params.load(data, offset)
|
||||
self.past = params.past
|
||||
self.lbfgs_m = params.lbfgs_m
|
||||
self.nx = struct.unpack('N', bytes(data[offset:offset + 8]))[0]; offset += 8
|
||||
self.iter = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.just_initialized = bool(struct.unpack('<i', bytes(data[offset:offset + 4]))[0]); offset += 4
|
||||
self.type = params.type
|
||||
|
||||
self.adam_m = Tensor('f', [self.nx])
|
||||
self.adam_v = Tensor('f', [self.nx])
|
||||
self.adam_pf = Tensor('f', [self.past] if self.past > 0 else [])
|
||||
|
||||
self.lbfgs_x = Tensor('f', [self.nx])
|
||||
self.lbfgs_xp = Tensor('f', [self.nx])
|
||||
self.lbfgs_g = Tensor('f', [self.nx])
|
||||
self.lbfgs_gp = Tensor('f', [self.nx])
|
||||
self.lbfgs_d = Tensor('f', [self.nx])
|
||||
self.lbfgs_pf = Tensor('f', [self.past] if self.past > 0 else [])
|
||||
self.lbfgs_lmal = Tensor('f', [self.lbfgs_m])
|
||||
self.lbfgs_lmys = Tensor('f', [self.lbfgs_m])
|
||||
self.lbfgs_lms = Tensor('f', [self.nx, self.lbfgs_m])
|
||||
self.lbfgs_lmy = Tensor('f', [self.nx, self.lbfgs_m])
|
||||
|
||||
if self.type == 0:
|
||||
# these tensors are stored, but we don't need their data
|
||||
x = Tensor('f', [self.nx])
|
||||
g = Tensor('f', [self.nx])
|
||||
g2 = Tensor('f', [self.nx])
|
||||
mh = Tensor('f', [self.nx])
|
||||
vh = Tensor('f', [self.nx])
|
||||
|
||||
offset = x.load(data, offset)
|
||||
offset = g.load(data, offset)
|
||||
offset = g2.load(data, offset)
|
||||
offset = self.adam_m.load(data, offset)
|
||||
offset = self.adam_v.load(data, offset)
|
||||
offset = mh.load(data, offset)
|
||||
offset = vh.load(data, offset)
|
||||
offset = self.adam_pf.load(data, offset)
|
||||
|
||||
self.adam_fx_best = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.adam_fx_prev = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.adam_n_no_improvement = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
|
||||
elif self.type == 1:
|
||||
offset = self.lbfgs_x.load(data, offset)
|
||||
offset = self.lbfgs_xp.load(data, offset)
|
||||
offset = self.lbfgs_g.load(data, offset)
|
||||
offset = self.lbfgs_gp.load(data, offset)
|
||||
offset = self.lbfgs_d.load(data, offset)
|
||||
offset = self.lbfgs_pf.load(data, offset)
|
||||
offset = self.lbfgs_lmal.load(data, offset)
|
||||
offset = self.lbfgs_lmys.load(data, offset)
|
||||
offset = self.lbfgs_lms.load(data, offset)
|
||||
offset = self.lbfgs_lmy.load(data, offset)
|
||||
|
||||
self.lbfgs_fx_best = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.lbfgs_step = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.lbfgs_j = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.lbfgs_k = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.lbfgs_end = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.lbfgs_n_no_improvement = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
|
||||
else:
|
||||
raise ValueError('Unknown optimizer type')
|
||||
|
||||
|
||||
elif self.version == 1:
|
||||
self.past = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.lbfgs_m = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.nx = struct.unpack('N', bytes(data[offset:offset + 8]))[0]; offset += 8
|
||||
self.iter = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.just_initialized = bool(struct.unpack('<i', bytes(data[offset:offset + 4]))[0]); offset += 4
|
||||
|
||||
self.adam_m = Tensor('f', [self.nx])
|
||||
self.adam_v = Tensor('f', [self.nx])
|
||||
self.adam_pf = Tensor('f', [self.past] if self.past > 0 else [])
|
||||
|
||||
self.lbfgs_x = Tensor('f', [self.nx])
|
||||
self.lbfgs_xp = Tensor('f', [self.nx])
|
||||
self.lbfgs_g = Tensor('f', [self.nx])
|
||||
self.lbfgs_gp = Tensor('f', [self.nx])
|
||||
self.lbfgs_d = Tensor('f', [self.nx])
|
||||
self.lbfgs_pf = Tensor('f', [self.past] if self.past > 0 else [])
|
||||
self.lbfgs_lmal = Tensor('f', [self.lbfgs_m])
|
||||
self.lbfgs_lmys = Tensor('f', [self.lbfgs_m])
|
||||
self.lbfgs_lms = Tensor('f', [self.nx, self.lbfgs_m])
|
||||
self.lbfgs_lmy = Tensor('f', [self.nx, self.lbfgs_m])
|
||||
|
||||
# forgot to save type in version 1:
|
||||
# guess self.type from number of remaining bytes
|
||||
size_type_0 = 12 + sum([t.max_storage_size() for t in
|
||||
[self.adam_m, self.adam_v]
|
||||
+([self.adam_pf] if (self.past > 0) else [])])
|
||||
size_type_1 = 24 + sum([t.max_storage_size() for t in
|
||||
[self.lbfgs_x, self.lbfgs_xp, self.lbfgs_g,
|
||||
self.lbfgs_gp, self.lbfgs_d, self.lbfgs_pf,
|
||||
self.lbfgs_lmal, self.lbfgs_lmys,
|
||||
self.lbfgs_lms, self.lbfgs_lmy]
|
||||
+([self.lbfgs_pf] if (self.past > 0) else [])])
|
||||
# due to alignment padding the size might not by exact
|
||||
# but the difference in size for both types is significant,
|
||||
# so we can just use whichever is closest
|
||||
remaining = len(data) - offset
|
||||
if abs(remaining - size_type_0) < abs(remaining - size_type_1):
|
||||
self.type = 0
|
||||
else:
|
||||
self.type = 1
|
||||
|
||||
if self.type == 0:
|
||||
offset = self.adam_m.load(data, offset)
|
||||
offset = self.adam_v.load(data, offset)
|
||||
offset = self.adam_pf.load(data,offset)
|
||||
|
||||
self.adam_fx_best = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.adam_fx_prev = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.adam_n_no_improvement = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
|
||||
elif self.type == 1:
|
||||
offset = self.lbfgs_x.load(data, offset)
|
||||
offset = self.lbfgs_xp.load(data, offset)
|
||||
offset = self.lbfgs_g.load(data, offset)
|
||||
offset = self.lbfgs_gp.load(data, offset)
|
||||
offset = self.lbfgs_d.load(data, offset)
|
||||
offset = self.lbfgs_pf.load(data, offset)
|
||||
offset = self.lbfgs_lmal.load(data, offset)
|
||||
offset = self.lbfgs_lmys.load(data, offset)
|
||||
offset = self.lbfgs_lms.load(data, offset)
|
||||
offset = self.lbfgs_lmy.load(data, offset)
|
||||
|
||||
self.lbfgs_fx_best = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.lbfgs_step = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.lbfgs_j = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.lbfgs_k = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.lbfgs_end = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.lbfgs_n_no_improvement = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
|
||||
else:
|
||||
raise ValueError('Invalid version of checkpoint file')
|
||||
|
||||
return offset
|
||||
|
||||
def save_gguf(self, gguf_writer):
|
||||
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_FILE_VERSION, 0)
|
||||
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT, self.past)
|
||||
gguf_writer.add_uint64(LLM_KV_OPTIMIZER_PARAMETER_COUNT, self.nx)
|
||||
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_ITERATION_COUNT, self.iter)
|
||||
gguf_writer.add_bool(LLM_KV_OPTIMIZER_JUST_INITIALIZED, self.just_initialized)
|
||||
|
||||
if self.type == 0:
|
||||
gguf_writer.add_string(LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_ADAM)
|
||||
gguf_writer.add_float32(LLM_KV_OPTIMIZER_ADAM_BEST_LOSS, self.adam_fx_best)
|
||||
gguf_writer.add_float32(LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS, self.adam_fx_prev)
|
||||
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT, self.adam_n_no_improvement)
|
||||
|
||||
self.adam_m.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS)
|
||||
self.adam_v.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS)
|
||||
if self.past > 0:
|
||||
self.adam_pf.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES)
|
||||
|
||||
elif self.type == 1:
|
||||
gguf_writer.add_string(LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_LBFGS)
|
||||
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT, self.lbfgs_m)
|
||||
gguf_writer.add_float32(LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS, self.lbfgs_fx_best)
|
||||
gguf_writer.add_float32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP, self.lbfgs_step)
|
||||
gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J, self.lbfgs_j)
|
||||
gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K, self.lbfgs_k)
|
||||
gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END, self.lbfgs_end)
|
||||
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT, self.lbfgs_n_no_improvement)
|
||||
|
||||
self.lbfgs_x.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS)
|
||||
self.lbfgs_xp.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS)
|
||||
self.lbfgs_g.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS)
|
||||
self.lbfgs_gp.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS)
|
||||
self.lbfgs_d.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION)
|
||||
if self.past > 0:
|
||||
self.lbfgs_pf.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES)
|
||||
self.lbfgs_lmal.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA)
|
||||
self.lbfgs_lmys.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS)
|
||||
self.lbfgs_lms.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S)
|
||||
self.lbfgs_lmy.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y)
|
||||
else:
|
||||
raise ValueError('Unknown optimizer type')
|
||||
|
||||
class ModelParams:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def load(self, data, offset):
|
||||
self.n_vocab = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_embd = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_mult = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_head = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_layer = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_rot = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
return offset
|
||||
|
||||
def get_n_ff(self):
|
||||
# struct my_llama_model::get_n_ff in train-text-from-scratch.cpp commit 3b5515bbe0e2224425986ba24f1f5d84aa38dce9
|
||||
return ((2*(4*self.n_embd)//3 + self.n_mult - 1)//self.n_mult)*self.n_mult
|
||||
|
||||
def save_gguf(self, gguf_writer):
|
||||
# self.n_vocab not saved
|
||||
gguf_writer.add_embedding_length(self.n_embd)
|
||||
gguf_writer.add_head_count(self.n_head)
|
||||
gguf_writer.add_block_count(self.n_layer)
|
||||
gguf_writer.add_rope_dimension_count(self.n_rot)
|
||||
gguf_writer.add_feed_forward_length(self.get_n_ff())
|
||||
|
||||
def tensor_name(key, bid=None):
|
||||
return gguf.TENSOR_NAMES[key].format(bid=bid) + ".weight"
|
||||
|
||||
class Layer:
|
||||
def __init__(self, params, bid):
|
||||
self.bid = bid
|
||||
self.att_norm = Tensor('f', [params.n_embd])
|
||||
self.wq = Tensor('f', [params.n_embd, params.n_embd])
|
||||
self.wk = Tensor('f', [params.n_embd, params.n_embd])
|
||||
self.wv = Tensor('f', [params.n_embd, params.n_embd])
|
||||
self.wo = Tensor('f', [params.n_embd, params.n_embd])
|
||||
self.ffn_norm = Tensor('f', [params.n_embd])
|
||||
self.w1 = Tensor('f', [params.n_embd, params.get_n_ff()])
|
||||
self.w2 = Tensor('f', [params.get_n_ff(), params.n_embd])
|
||||
self.w3 = Tensor('f', [params.n_embd, params.get_n_ff()])
|
||||
|
||||
def load(self, data, offset):
|
||||
offset = self.att_norm.load(data, offset)
|
||||
offset = self.wq.load(data, offset)
|
||||
offset = self.wk.load(data, offset)
|
||||
offset = self.wv.load(data, offset)
|
||||
offset = self.wo.load(data, offset)
|
||||
offset = self.ffn_norm.load(data, offset)
|
||||
offset = self.w1.load(data, offset)
|
||||
offset = self.w2.load(data, offset)
|
||||
offset = self.w3.load(data, offset)
|
||||
return offset
|
||||
|
||||
def save_gguf(self, gguf_writer):
|
||||
self.att_norm.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_NORM, self.bid))
|
||||
self.wq.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_Q, self.bid))
|
||||
self.wk.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_K, self.bid))
|
||||
self.wv.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_V, self.bid))
|
||||
self.wo.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, self.bid))
|
||||
self.ffn_norm.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_NORM, self.bid))
|
||||
self.w1.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_GATE, self.bid))
|
||||
self.w2.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, self.bid))
|
||||
self.w3.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_UP, self.bid))
|
||||
|
||||
class Model:
|
||||
def __init__(self):
|
||||
self.params = ModelParams()
|
||||
self.layers = []
|
||||
|
||||
def load(self, data, offset):
|
||||
offset = self.params.load(data, offset)
|
||||
|
||||
self.tok_embd = Tensor('f', [self.params.n_embd, self.params.n_vocab])
|
||||
self.norm = Tensor('f', [self.params.n_embd])
|
||||
self.output = Tensor('f', [self.params.n_embd, self.params.n_vocab])
|
||||
|
||||
offset = self.tok_embd.load(data, offset)
|
||||
offset = self.norm.load(data, offset)
|
||||
offset = self.output.load(data, offset)
|
||||
|
||||
self.layers.clear()
|
||||
for bid in range(self.params.n_layer):
|
||||
layer = Layer(self.params, bid)
|
||||
offset = layer.load(data, offset)
|
||||
self.layers.append(layer)
|
||||
|
||||
return offset
|
||||
|
||||
def save_gguf(self, gguf_writer):
|
||||
self.params.save_gguf(gguf_writer)
|
||||
|
||||
self.tok_embd.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD))
|
||||
self.norm.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT_NORM))
|
||||
self.output.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT))
|
||||
|
||||
for layer in self.layers:
|
||||
layer.save_gguf(gguf_writer)
|
||||
|
||||
class Checkpoint:
|
||||
def __init__(self):
|
||||
self.model = Model()
|
||||
self.opt_ctx = OptimizationContext()
|
||||
|
||||
def load(self, data, offset):
|
||||
magic = bytes(reversed(data[offset:offset + 4])); offset += 4
|
||||
if magic != b'ggcp':
|
||||
raise ValueError(f"File header magic indicates, that this is no checkpoint file. Expected 'ggcp', Got '{str(magic)}'")
|
||||
|
||||
self.version = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
if self.version != 0:
|
||||
raise ValueError('Invalid version of checkpoint file')
|
||||
|
||||
self.train_its = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.train_samples = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.train_tokens = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
|
||||
offset = self.model.load(data, offset)
|
||||
offset = self.opt_ctx.load(data, offset)
|
||||
|
||||
return offset
|
||||
|
||||
def save_gguf(self, gguf_writer):
|
||||
gguf_writer.add_file_type(gguf.GGMLQuantizationType.F32)
|
||||
gguf_writer.add_layer_norm_rms_eps(1e-5)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_FILE_VERSION, 0)
|
||||
gguf_writer.add_string(LLM_KV_TRAINING_TYPE, LLM_KV_TRAINING_TYPE_TRAIN_MODEL)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_ITERATION_COUNT, self.train_its)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_SAMPLE_COUNT, self.train_samples)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_TOKEN_COUNT, self.train_tokens)
|
||||
self.model.save_gguf(gguf_writer)
|
||||
self.opt_ctx.save_gguf(gguf_writer)
|
||||
|
||||
def handle_args():
|
||||
parser = argparse.ArgumentParser(description = 'Convert train-text-from-scratch checkpoints to GGUF')
|
||||
parser.add_argument('--input', '-i', type = Path, help = 'Input train checkpoint filename', required=True)
|
||||
parser.add_argument('--output', '-o', type = Path, help ='Output GGUF filename', required=True)
|
||||
return parser.parse_args()
|
||||
|
||||
def main():
|
||||
cfg = handle_args()
|
||||
data = np.memmap(cfg.input, mode = 'r')
|
||||
chk = Checkpoint()
|
||||
offset = 0
|
||||
offset = chk.load(data, offset)
|
||||
# we should have read all available data
|
||||
assert(offset == len(data))
|
||||
|
||||
gguf_writer = gguf.GGUFWriter(cfg.output, gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA], use_temp_file = False)
|
||||
chk.save_gguf(gguf_writer)
|
||||
print(" gguf: write header")
|
||||
gguf_writer.write_header_to_file()
|
||||
print(" gguf: write metadata")
|
||||
gguf_writer.write_kv_data_to_file()
|
||||
print(" gguf: write tensors")
|
||||
gguf_writer.write_tensors_to_file()
|
||||
gguf_writer.close()
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
File diff suppressed because it is too large
Load Diff
6
flake.lock
generated
6
flake.lock
generated
@@ -20,11 +20,11 @@
|
||||
},
|
||||
"nixpkgs": {
|
||||
"locked": {
|
||||
"lastModified": 1720031269,
|
||||
"narHash": "sha256-rwz8NJZV+387rnWpTYcXaRNvzUSnnF9aHONoJIYmiUQ=",
|
||||
"lastModified": 1722062969,
|
||||
"narHash": "sha256-QOS0ykELUmPbrrUGmegAUlpmUFznDQeR4q7rFhl8eQg=",
|
||||
"owner": "NixOS",
|
||||
"repo": "nixpkgs",
|
||||
"rev": "9f4128e00b0ae8ec65918efeba59db998750ead6",
|
||||
"rev": "b73c2221a46c13557b1b3be9c2070cc42cf01eb3",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
|
||||
2
ggml/.gitignore
vendored
Normal file
2
ggml/.gitignore
vendored
Normal file
@@ -0,0 +1,2 @@
|
||||
src/ggml-vulkan-shaders.hpp
|
||||
src/ggml-vulkan-shaders.cpp
|
||||
@@ -50,9 +50,15 @@ else()
|
||||
set(GGML_BLAS_VENDOR_DEFAULT "Generic")
|
||||
endif()
|
||||
|
||||
if (CMAKE_CROSSCOMPILING)
|
||||
set(GGML_NATIVE_DEFAULT OFF)
|
||||
else()
|
||||
set(GGML_NATIVE_DEFAULT ON)
|
||||
endif()
|
||||
|
||||
# general
|
||||
option(GGML_STATIC "ggml: static link libraries" OFF)
|
||||
option(GGML_NATIVE "ggml: enable -march=native flag" ON)
|
||||
option(GGML_NATIVE "ggml: enable -march=native flag" ${GGML_NATIVE_DEFAULT})
|
||||
option(GGML_LTO "ggml: enable link time optimization" OFF)
|
||||
option(GGML_CCACHE "ggml: use ccache if available" ON)
|
||||
|
||||
@@ -70,7 +76,7 @@ option(GGML_SANITIZE_ADDRESS "ggml: enable address sanitizer" OFF)
|
||||
option(GGML_SANITIZE_UNDEFINED "ggml: enable undefined sanitizer" OFF)
|
||||
|
||||
# instruction set specific
|
||||
if (GGML_NATIVE)
|
||||
if (GGML_NATIVE OR NOT GGML_NATIVE_DEFAULT)
|
||||
set(INS_ENB OFF)
|
||||
else()
|
||||
set(INS_ENB ON)
|
||||
@@ -107,6 +113,7 @@ set(GGML_BLAS_VENDOR ${GGML_BLAS_VENDOR_DEFAULT} CACHE STRING
|
||||
option(GGML_LLAMAFILE "ggml: use LLAMAFILE" OFF)
|
||||
|
||||
option(GGML_CUDA "ggml: use CUDA" OFF)
|
||||
option(GGML_MUSA "ggml: use MUSA" OFF)
|
||||
option(GGML_CUDA_FORCE_DMMV "ggml: use dmmv instead of mmvq CUDA kernels" OFF)
|
||||
option(GGML_CUDA_FORCE_MMQ "ggml: use mmq kernels instead of cuBLAS" OFF)
|
||||
option(GGML_CUDA_FORCE_CUBLAS "ggml: always use cuBLAS instead of mmq kernels" OFF)
|
||||
@@ -194,13 +201,20 @@ endif ()
|
||||
include(GNUInstallDirs)
|
||||
include(CMakePackageConfigHelpers)
|
||||
|
||||
# all public headers
|
||||
set(GGML_PUBLIC_HEADERS
|
||||
include/ggml.h
|
||||
include/ggml-alloc.h
|
||||
include/ggml-backend.h
|
||||
"${GGML_HEADERS_CUDA}"
|
||||
"${GGML_HEADERS_METAL}"
|
||||
"${GGML_HEADERS_EXTRA}")
|
||||
include/ggml-blas.h
|
||||
include/ggml-cann.h
|
||||
include/ggml-cuda.h
|
||||
include/ggml.h
|
||||
include/ggml-kompute.h
|
||||
include/ggml-metal.h
|
||||
include/ggml-rpc.h
|
||||
include/ggml-sycl.h
|
||||
include/ggml-vulkan.h)
|
||||
|
||||
set_target_properties(ggml PROPERTIES PUBLIC_HEADER "${GGML_PUBLIC_HEADERS}")
|
||||
#if (GGML_METAL)
|
||||
|
||||
@@ -1,220 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
import logging
|
||||
import argparse
|
||||
import asyncio
|
||||
import os
|
||||
from tempfile import gettempdir
|
||||
|
||||
logger = logging.getLogger("ggml-vk-generate-shaders")
|
||||
|
||||
GLSLC = "glslc"
|
||||
|
||||
type_names = [
|
||||
"f32",
|
||||
"f16",
|
||||
"q4_0",
|
||||
"q4_1",
|
||||
"q5_0",
|
||||
"q5_1",
|
||||
"q8_0",
|
||||
"q2_k",
|
||||
"q3_k",
|
||||
"q4_k",
|
||||
"q5_k",
|
||||
"q6_k",
|
||||
]
|
||||
|
||||
ASYNCIO_CONCURRENCY = 64
|
||||
|
||||
input_dir = "vulkan-shaders"
|
||||
output_dir = gettempdir()
|
||||
|
||||
lock = asyncio.Lock()
|
||||
shader_fnames = []
|
||||
|
||||
|
||||
async def string_to_spv(name, in_fname, defines, fp16=True):
|
||||
name = f"{name}{'_fp32' if not fp16 else ''}"
|
||||
out_fname = os.path.join(output_dir, f"{name}.spv")
|
||||
|
||||
in_path = os.path.join(input_dir, in_fname)
|
||||
|
||||
cmd = [GLSLC, "-fshader-stage=compute", "--target-env=vulkan1.2", "-O", in_path, "-o", out_fname]
|
||||
|
||||
cmd.extend([f"-D{key}={value}" for key, value in defines.items()])
|
||||
|
||||
proc = await asyncio.create_subprocess_exec(*cmd, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE)
|
||||
|
||||
stdout, stderr = await proc.communicate()
|
||||
|
||||
stdout = stdout.decode()
|
||||
error = stderr.decode()
|
||||
|
||||
if proc.returncode:
|
||||
cmd = " ".join(cmd)
|
||||
logger.error(f"cannot compile {name}\n\n{cmd}\n\n{error}")
|
||||
return
|
||||
|
||||
async with lock:
|
||||
shader_fnames.append((name, out_fname))
|
||||
|
||||
|
||||
def matmul_shaders(tasks, fp16, matmul_id):
|
||||
if fp16:
|
||||
load_vec = "8"
|
||||
aligned_b_type_f32 = "mat2x4"
|
||||
aligned_b_type_f16 = "f16mat2x4"
|
||||
else:
|
||||
load_vec = "4"
|
||||
aligned_b_type_f32 = "vec4"
|
||||
aligned_b_type_f16 = "f16vec4"
|
||||
|
||||
base_dict = {"FLOAT_TYPE": "float" if not fp16 else "float16_t"}
|
||||
shader_name = "matmul"
|
||||
|
||||
if matmul_id:
|
||||
base_dict["MUL_MAT_ID"] = "1"
|
||||
shader_name = "matmul_id"
|
||||
|
||||
if fp16:
|
||||
base_dict["FLOAT16"] = "1"
|
||||
|
||||
# Shaders with f16 B_TYPE
|
||||
tasks.append(string_to_spv(f"{shader_name}_f32_f16", "mul_mm.comp", base_dict | {"DATA_A_F32": "1", "B_TYPE": "float16_t", "D_TYPE": "float"}, fp16))
|
||||
tasks.append(string_to_spv(f"{shader_name}_f32_f16_aligned", "mul_mm.comp", base_dict | {"DATA_A_F32": "1", "LOAD_VEC_A": load_vec, "LOAD_VEC_B": load_vec, "B_TYPE": aligned_b_type_f16, "D_TYPE": "float"}, fp16))
|
||||
|
||||
tasks.append(string_to_spv(f"{shader_name}_f16", "mul_mm.comp", base_dict | {"DATA_A_F16": "1", "B_TYPE": "float16_t", "D_TYPE": "float"}, fp16))
|
||||
tasks.append(string_to_spv(f"{shader_name}_f16_aligned", "mul_mm.comp", base_dict | {"DATA_A_F16": "1", "LOAD_VEC_A": load_vec, "LOAD_VEC_B": load_vec, "B_TYPE": aligned_b_type_f16, "D_TYPE": "float"}, fp16))
|
||||
|
||||
for tname in type_names:
|
||||
data_a_key = f"DATA_A_{tname.upper()}"
|
||||
load_vec_a = load_vec if tname in ("f32", "f16") else "2"
|
||||
tasks.append(string_to_spv(f"{shader_name}_{tname}_f32", "mul_mm.comp", base_dict | {data_a_key: "1", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
|
||||
tasks.append(string_to_spv(f"{shader_name}_{tname}_f32_aligned", "mul_mm.comp", base_dict | {data_a_key: "2", "LOAD_VEC_A": load_vec_a, "LOAD_VEC_B": load_vec, "B_TYPE": aligned_b_type_f32, "D_TYPE": "float"}, fp16))
|
||||
|
||||
|
||||
async def main():
|
||||
logger.info("ggml_vulkan: Generating and compiling shaders to SPIR-V")
|
||||
|
||||
tasks = []
|
||||
|
||||
base_dict = {"FLOAT_TYPE": "float"}
|
||||
|
||||
for fp16 in (False, True):
|
||||
# MUL_MAT
|
||||
matmul_shaders(tasks, fp16, False)
|
||||
# MUL_MAT_ID
|
||||
matmul_shaders(tasks, fp16, True)
|
||||
|
||||
for tname in type_names:
|
||||
# mul mat vec
|
||||
data_a_key = f"DATA_A_{tname.upper()}"
|
||||
shader = f"mul_mat_vec_{tname}.comp" if tname.endswith("_k") else "mul_mat_vec.comp"
|
||||
|
||||
tasks.append(string_to_spv(f"mul_mat_vec_{tname}_f32_f32", shader, base_dict | {data_a_key: "1", "B_TYPE": "float", "D_TYPE": "float"}))
|
||||
tasks.append(string_to_spv(f"mul_mat_vec_{tname}_f16_f32", shader, base_dict | {data_a_key: "1", "B_TYPE": "float16_t", "D_TYPE": "float"}))
|
||||
|
||||
tasks.append(string_to_spv(f"mul_mat_vec_id_{tname}_f32", shader, base_dict | {"MUL_MAT_ID": "1", data_a_key: "1", "B_TYPE": "float", "D_TYPE": "float"}))
|
||||
|
||||
# Dequant shaders
|
||||
if tname != "f16":
|
||||
tasks.append(string_to_spv(f"dequant_{tname}", f"dequant_{tname}.comp", base_dict | {data_a_key: "1", "D_TYPE": "float16_t"}))
|
||||
|
||||
# get_rows
|
||||
if not tname.endswith("_k"):
|
||||
shader = "get_rows.comp" if tname in ("f32", "f16") else "get_rows_quant.comp"
|
||||
|
||||
if tname == "f16":
|
||||
tasks.append(string_to_spv(f"get_rows_{tname}", shader, {data_a_key: "1", "B_TYPE": "int", "D_TYPE": "float16_t", "OPTIMIZATION_ERROR_WORKAROUND": "1"}))
|
||||
else:
|
||||
tasks.append(string_to_spv(f"get_rows_{tname}", shader, {data_a_key: "1", "B_TYPE": "int", "D_TYPE": "float16_t"}))
|
||||
tasks.append(string_to_spv(f"get_rows_{tname}_f32", shader, {data_a_key: "1", "B_TYPE": "int", "D_TYPE": "float"}))
|
||||
|
||||
tasks.append(string_to_spv("mul_mat_vec_p021_f16_f32", "mul_mat_vec_p021.comp", {"A_TYPE": "float16_t", "B_TYPE": "float", "D_TYPE": "float"}))
|
||||
tasks.append(string_to_spv("mul_mat_vec_nc_f16_f32", "mul_mat_vec_nc.comp", {"A_TYPE": "float16_t", "B_TYPE": "float", "D_TYPE": "float"}))
|
||||
|
||||
# Norms
|
||||
tasks.append(string_to_spv("norm_f32", "norm.comp", base_dict | {"A_TYPE": "float", "D_TYPE": "float"}))
|
||||
tasks.append(string_to_spv("rms_norm_f32", "rms_norm.comp", base_dict | {"A_TYPE": "float", "D_TYPE": "float"}))
|
||||
|
||||
tasks.append(string_to_spv("cpy_f32_f32", "copy.comp", {"A_TYPE": "float", "D_TYPE": "float"}))
|
||||
tasks.append(string_to_spv("cpy_f32_f16", "copy.comp", {"A_TYPE": "float", "D_TYPE": "float16_t"}))
|
||||
tasks.append(string_to_spv("cpy_f16_f16", "copy.comp", {"A_TYPE": "float16_t", "D_TYPE": "float16_t", "OPTIMIZATION_ERROR_WORKAROUND": "1"}))
|
||||
|
||||
tasks.append(string_to_spv("add_f32", "add.comp", {"A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float", "FLOAT_TYPE": "float"}))
|
||||
|
||||
tasks.append(string_to_spv("split_k_reduce", "mul_mat_split_k_reduce.comp", {}))
|
||||
|
||||
tasks.append(string_to_spv("mul_f32", "mul.comp", {"A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float", "FLOAT_TYPE": "float"}))
|
||||
|
||||
tasks.append(string_to_spv("div_f32", "div.comp", {"A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float", "FLOAT_TYPE": "float"}))
|
||||
|
||||
tasks.append(string_to_spv("scale_f32", "scale.comp", {"A_TYPE": "float", "D_TYPE": "float", "FLOAT_TYPE": "float"}))
|
||||
|
||||
tasks.append(string_to_spv("sqr_f32", "square.comp", {"A_TYPE": "float", "D_TYPE": "float", "FLOAT_TYPE": "float"}))
|
||||
|
||||
tasks.append(string_to_spv("clamp_f32", "clamp.comp", {"A_TYPE": "float", "D_TYPE": "float", "FLOAT_TYPE": "float"}))
|
||||
|
||||
tasks.append(string_to_spv("gelu_f32", "gelu.comp", {"A_TYPE": "float", "D_TYPE": "float"}))
|
||||
tasks.append(string_to_spv("silu_f32", "silu.comp", {"A_TYPE": "float", "D_TYPE": "float"}))
|
||||
tasks.append(string_to_spv("relu_f32", "relu.comp", {"A_TYPE": "float", "D_TYPE": "float"}))
|
||||
|
||||
tasks.append(string_to_spv("diag_mask_inf_f32", "diag_mask_inf.comp", {"A_TYPE": "float", "D_TYPE": "float"}))
|
||||
|
||||
tasks.append(string_to_spv("soft_max_f32", "soft_max.comp", base_dict | {"A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float"}))
|
||||
tasks.append(string_to_spv("soft_max_f32_f16", "soft_max.comp", base_dict | {"A_TYPE": "float", "B_TYPE": "float16_t", "D_TYPE": "float"}))
|
||||
|
||||
tasks.append(string_to_spv("rope_norm_f32", "rope_norm.comp", {"A_TYPE": "float", "D_TYPE": "float"}))
|
||||
tasks.append(string_to_spv("rope_norm_f16", "rope_norm.comp", {"A_TYPE": "float16_t", "D_TYPE": "float16_t"}))
|
||||
|
||||
tasks.append(string_to_spv("rope_neox_f32", "rope_neox.comp", {"A_TYPE": "float", "D_TYPE": "float"}))
|
||||
tasks.append(string_to_spv("rope_neox_f16", "rope_neox.comp", {"A_TYPE": "float16_t", "D_TYPE": "float16_t"}))
|
||||
|
||||
tasks.append(string_to_spv("argsort_f32", "argsort.comp", {"A_TYPE": "float"}))
|
||||
|
||||
tasks.append(string_to_spv("sum_rows_f32", "sum_rows.comp", base_dict | {"A_TYPE": "float", "D_TYPE": "float"}))
|
||||
|
||||
# Helper to decorate tasks with semaphore acquisition.
|
||||
async def withSemaphore(sem, task):
|
||||
async with sem:
|
||||
return await task
|
||||
|
||||
# Run tasks concurrently guarded by a concurrency limit.
|
||||
sem = asyncio.Semaphore(ASYNCIO_CONCURRENCY)
|
||||
await asyncio.gather(*(withSemaphore(sem, task) for task in tasks))
|
||||
|
||||
with open("ggml-vulkan-shaders.hpp", "w") as f:
|
||||
f.write("#include <cstdint>\n\n")
|
||||
for name, path in sorted(shader_fnames):
|
||||
|
||||
with open(path, "rb") as spv:
|
||||
counter = 0
|
||||
newline_counter = 0
|
||||
f.write(f"unsigned char {name}_data[] = {{\n")
|
||||
for val in spv.read():
|
||||
f.write(f"0x{val:02x},")
|
||||
newline_counter += 1
|
||||
counter += 1
|
||||
if newline_counter >= 12:
|
||||
newline_counter = 0
|
||||
f.write("\n")
|
||||
f.write("\n};\n")
|
||||
f.write(f"const uint64_t {name}_len = {counter};\n\n")
|
||||
os.remove(path)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="GGML Vulkan Shader Generator")
|
||||
|
||||
parser.add_argument("--glslc", help="Path to glslc")
|
||||
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
|
||||
|
||||
if args.glslc:
|
||||
GLSLC = args.glslc
|
||||
|
||||
asyncio.run(main())
|
||||
@@ -29,21 +29,23 @@ extern "C" {
|
||||
enum ggml_backend_buffer_usage {
|
||||
GGML_BACKEND_BUFFER_USAGE_ANY = 0,
|
||||
GGML_BACKEND_BUFFER_USAGE_WEIGHTS = 1,
|
||||
GGML_BACKEND_BUFFER_USAGE_COMPUTE = 2,
|
||||
};
|
||||
|
||||
GGML_API const char * ggml_backend_buffer_name (ggml_backend_buffer_t buffer);
|
||||
GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer);
|
||||
GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer);
|
||||
GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer);
|
||||
GGML_API GGML_CALL void ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
|
||||
GGML_API size_t ggml_backend_buffer_get_max_size (ggml_backend_buffer_t buffer);
|
||||
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_backend_buffer_clear (ggml_backend_buffer_t buffer, uint8_t value);
|
||||
GGML_API bool ggml_backend_buffer_is_host (ggml_backend_buffer_t buffer);
|
||||
GGML_API void ggml_backend_buffer_set_usage (ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage);
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_buffer_get_type (ggml_backend_buffer_t buffer);
|
||||
GGML_API void ggml_backend_buffer_reset (ggml_backend_buffer_t buffer);
|
||||
GGML_API const char * ggml_backend_buffer_name (ggml_backend_buffer_t buffer);
|
||||
GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer);
|
||||
GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer);
|
||||
GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer);
|
||||
GGML_API GGML_CALL void ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
|
||||
GGML_API size_t ggml_backend_buffer_get_max_size (ggml_backend_buffer_t buffer);
|
||||
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_backend_buffer_clear (ggml_backend_buffer_t buffer, uint8_t value);
|
||||
GGML_API bool ggml_backend_buffer_is_host (ggml_backend_buffer_t buffer);
|
||||
GGML_API void ggml_backend_buffer_set_usage (ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage);
|
||||
GGML_API enum ggml_backend_buffer_usage ggml_backend_buffer_get_usage (ggml_backend_buffer_t buffer);
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_buffer_get_type (ggml_backend_buffer_t buffer);
|
||||
GGML_API void ggml_backend_buffer_reset (ggml_backend_buffer_t buffer);
|
||||
|
||||
//
|
||||
// Backend
|
||||
|
||||
125
ggml/include/ggml-cann.h
Normal file
125
ggml/include/ggml-cann.h
Normal file
@@ -0,0 +1,125 @@
|
||||
/*
|
||||
* Copyright (c) 2023-2024 The ggml authors
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to
|
||||
* deal in the Software without restriction, including without limitation the
|
||||
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
||||
* sell copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
||||
* IN THE SOFTWARE.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "ggml-backend.h"
|
||||
#include "ggml.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/**
|
||||
* @brief Maximum number of CANN devices supported.
|
||||
*/
|
||||
#define GGML_CANN_MAX_DEVICES 16
|
||||
|
||||
/**
|
||||
* @brief Initializes the CANN backend for a specified device.
|
||||
*
|
||||
* This function initializes the CANN backend for the given device.
|
||||
* It verifies the device index, allocates a context, and creates a backend
|
||||
* instance.
|
||||
*
|
||||
* @param device The index of the device to initialize.
|
||||
* @return A pointer to the initialized backend instance, or nullptr on failure.
|
||||
*/
|
||||
GGML_API GGML_CALL ggml_backend_t ggml_backend_cann_init(int32_t device);
|
||||
|
||||
/**
|
||||
* @brief Checks if a given backend is a CANN backend.
|
||||
*
|
||||
* This function verifies if the provided backend is a CANN backend by comparing
|
||||
* its GUID with the CANN backend's GUID.
|
||||
*
|
||||
* @param backend The backend instance to check.
|
||||
* @return True if the backend is a CANN backend, false otherwise.
|
||||
*/
|
||||
GGML_API GGML_CALL bool ggml_backend_is_cann(ggml_backend_t backend);
|
||||
|
||||
/**
|
||||
* @brief Retrieves the CANN buffer type for a specified device.
|
||||
*
|
||||
* This function initializes and returns the buffer type interface associated
|
||||
* with the given device. It ensures thread-safe access using a mutex.
|
||||
*
|
||||
* @param device The device index for which to retrieve the buffer type.
|
||||
* @return A pointer to the buffer type interface for the specified device, or
|
||||
* nullptr if the device index is out of range.
|
||||
*/
|
||||
GGML_API GGML_CALL ggml_backend_buffer_type_t
|
||||
ggml_backend_cann_buffer_type(int32_t device);
|
||||
|
||||
/**
|
||||
* @brief Retrieves the number of CANN devices available.
|
||||
*
|
||||
* This function returns the number of CANN devices available based on
|
||||
* information obtained from `ggml_cann_info()`.
|
||||
*
|
||||
* @return The number of CANN devices available.
|
||||
*/
|
||||
GGML_API GGML_CALL int32_t ggml_backend_cann_get_device_count(void);
|
||||
|
||||
/**
|
||||
* @brief Retrieves the description of a specific CANN device.
|
||||
*
|
||||
* This function sets the specified device, retrieves the SoC name,
|
||||
* and writes it into the provided description buffer.
|
||||
*
|
||||
* @param device The device index to retrieve the description for.
|
||||
* @param description Pointer to a buffer where the description will be written.
|
||||
* @param description_size Size of the description buffer.
|
||||
*/
|
||||
GGML_API GGML_CALL void ggml_backend_cann_get_device_description(
|
||||
int32_t device, char* description, size_t description_size);
|
||||
|
||||
/**
|
||||
* @brief Retrieves the memory information of a specific CANN device.
|
||||
*
|
||||
* This function sets the specified device, retrieves the free and total
|
||||
* memory information of the specified type (ACL_HBM_MEM), and stores them
|
||||
* in the provided pointers.
|
||||
*
|
||||
* @param device The device index to retrieve memory information for.
|
||||
* @param free Pointer to a variable where the free memory size will be stored.
|
||||
* @param total Pointer to a variable where the total memory size will be
|
||||
* stored.
|
||||
*/
|
||||
GGML_API GGML_CALL void ggml_backend_cann_get_device_memory(int32_t device,
|
||||
size_t* free,
|
||||
size_t* total);
|
||||
|
||||
/**
|
||||
* @brief Set the logging callback for GGML.
|
||||
*
|
||||
* This function sets the logging callback and user data for logging.
|
||||
*
|
||||
* @param log_callback The logging callback to set.
|
||||
* @param user_data User data to pass to the logging callback.
|
||||
*/
|
||||
GGML_API void ggml_backend_cann_log_set_callback(ggml_log_callback log_callback,
|
||||
void* user_data);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
@@ -6,6 +6,9 @@
|
||||
#ifdef GGML_USE_HIPBLAS
|
||||
#define GGML_CUDA_NAME "ROCm"
|
||||
#define GGML_CUBLAS_NAME "hipBLAS"
|
||||
#elif defined(GGML_USE_MUSA)
|
||||
#define GGML_CUDA_NAME "MUSA"
|
||||
#define GGML_CUBLAS_NAME "muBLAS"
|
||||
#else
|
||||
#define GGML_CUDA_NAME "CUDA"
|
||||
#define GGML_CUBLAS_NAME "cuBLAS"
|
||||
|
||||
@@ -254,18 +254,8 @@
|
||||
|
||||
#define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
|
||||
|
||||
#define GGML_ASSERT(x) \
|
||||
do { \
|
||||
if (!(x)) { \
|
||||
fflush(stdout); \
|
||||
fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
|
||||
ggml_print_backtrace(); \
|
||||
abort(); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#ifndef NDEBUG
|
||||
#define GGML_UNREACHABLE() GGML_ASSERT(!"statement should not be reached")
|
||||
#define GGML_UNREACHABLE() do { fprintf(stderr, "statement should be unreachable\n"); abort(); } while(0)
|
||||
#elif defined(__GNUC__)
|
||||
#define GGML_UNREACHABLE() __builtin_unreachable()
|
||||
#elif defined(_MSC_VER)
|
||||
@@ -274,6 +264,17 @@
|
||||
#define GGML_UNREACHABLE() ((void) 0)
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
#define GGML_NORETURN [[noreturn]]
|
||||
#elif defined(_MSC_VER)
|
||||
#define GGML_NORETURN __declspec(noreturn)
|
||||
#else
|
||||
#define GGML_NORETURN _Noreturn
|
||||
#endif
|
||||
|
||||
#define GGML_ABORT(...) ggml_abort(__FILE__, __LINE__, __VA_ARGS__)
|
||||
#define GGML_ASSERT(x) if (!(x)) GGML_ABORT("GGML_ASSERT(%s) failed", #x)
|
||||
|
||||
// used to copy the number of elements and stride in bytes of tensors into local variables.
|
||||
// main purpose is to reduce code duplication and improve readability.
|
||||
//
|
||||
@@ -322,6 +323,9 @@
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
GGML_NORETURN GGML_ATTRIBUTE_FORMAT(3, 4)
|
||||
GGML_API void ggml_abort(const char * file, int line, const char * fmt, ...);
|
||||
|
||||
enum ggml_status {
|
||||
GGML_STATUS_ALLOC_FAILED = -2,
|
||||
GGML_STATUS_FAILED = -1,
|
||||
@@ -636,8 +640,11 @@ extern "C" {
|
||||
GGML_CGRAPH_EVAL_ORDER_COUNT
|
||||
};
|
||||
|
||||
typedef uint32_t ggml_bitset_t;
|
||||
|
||||
struct ggml_hash_set {
|
||||
size_t size;
|
||||
ggml_bitset_t * used;
|
||||
struct ggml_tensor ** keys;
|
||||
};
|
||||
|
||||
@@ -651,7 +658,7 @@ extern "C" {
|
||||
struct ggml_tensor ** grads;
|
||||
struct ggml_tensor ** leafs;
|
||||
|
||||
struct ggml_hash_set visited_hash_table;
|
||||
struct ggml_hash_set visited_hash_set;
|
||||
|
||||
enum ggml_cgraph_eval_order order;
|
||||
};
|
||||
@@ -698,8 +705,6 @@ extern "C" {
|
||||
GGML_API int64_t ggml_cycles(void);
|
||||
GGML_API int64_t ggml_cycles_per_ms(void);
|
||||
|
||||
GGML_API void ggml_print_backtrace(void);
|
||||
|
||||
// accepts a UTF-8 path, even on Windows
|
||||
GGML_API FILE * ggml_fopen(const char * fname, const char * mode);
|
||||
|
||||
@@ -714,9 +719,9 @@ extern "C" {
|
||||
GGML_API GGML_CALL size_t ggml_nbytes (const struct ggml_tensor * tensor);
|
||||
GGML_API size_t ggml_nbytes_pad (const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
|
||||
|
||||
GGML_API GGML_CALL int ggml_blck_size(enum ggml_type type);
|
||||
GGML_API GGML_CALL size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block
|
||||
GGML_API GGML_CALL size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row
|
||||
GGML_API GGML_CALL int64_t ggml_blck_size(enum ggml_type type);
|
||||
GGML_API GGML_CALL size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block
|
||||
GGML_API GGML_CALL size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row
|
||||
|
||||
GGML_DEPRECATED(
|
||||
GGML_API double ggml_type_sizef(enum ggml_type type), // ggml_type_size()/ggml_blck_size() as float
|
||||
@@ -753,6 +758,8 @@ extern "C" {
|
||||
GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1);
|
||||
GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
|
||||
|
||||
GGML_API bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
|
||||
|
||||
// use this to compute the memory overhead of a tensor
|
||||
GGML_API size_t ggml_tensor_overhead(void);
|
||||
|
||||
@@ -2003,8 +2010,8 @@ extern "C" {
|
||||
|
||||
// ggml_graph_plan() has to be called before ggml_graph_compute()
|
||||
// when plan.work_size > 0, caller must allocate memory for plan.work_data
|
||||
GGML_API struct ggml_cplan ggml_graph_plan (const struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
|
||||
GGML_API enum ggml_status ggml_graph_compute ( struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
|
||||
GGML_API struct ggml_cplan ggml_graph_plan (const struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
|
||||
GGML_API enum ggml_status ggml_graph_compute( struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
|
||||
// same as ggml_graph_compute() but the work data is allocated as a part of the context
|
||||
// note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
|
||||
GGML_API enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
|
||||
@@ -2397,6 +2404,8 @@ extern "C" {
|
||||
GGML_API int ggml_cpu_has_rpc (void);
|
||||
GGML_API int ggml_cpu_has_vsx (void);
|
||||
GGML_API int ggml_cpu_has_matmul_int8(void);
|
||||
GGML_API int ggml_cpu_has_cann (void);
|
||||
GGML_API int ggml_cpu_has_llamafile (void);
|
||||
|
||||
//
|
||||
// Internal types and functions exposed for tests and benchmarks
|
||||
@@ -2410,31 +2419,31 @@ extern "C" {
|
||||
#endif
|
||||
typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
typedef void (*ggml_vec_dot_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x, size_t bx,
|
||||
const void * GGML_RESTRICT y, size_t by, int nrc);
|
||||
typedef void (*ggml_from_float_to_mat_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t nr,
|
||||
int64_t k, int64_t bx);
|
||||
typedef void (*ggml_gemv_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x,
|
||||
const void * GGML_RESTRICT y, int nr, int nc);
|
||||
typedef void (*ggml_gemm_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x,
|
||||
const void * GGML_RESTRICT y, int nr, int nc);
|
||||
typedef void (*ggml_from_float_to_mat_t)
|
||||
(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t nr, int64_t k, int64_t bs);
|
||||
typedef void (*ggml_vec_dot_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x, size_t bx,
|
||||
const void * GGML_RESTRICT y, size_t by, int nrc);
|
||||
typedef void (*ggml_gemv_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x,
|
||||
const void * GGML_RESTRICT y, int nr, int nc);
|
||||
typedef void (*ggml_gemm_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x,
|
||||
const void * GGML_RESTRICT y, int nr, int nc);
|
||||
|
||||
typedef struct {
|
||||
const char * type_name;
|
||||
int blck_size;
|
||||
size_t type_size;
|
||||
bool is_quantized;
|
||||
ggml_to_float_t to_float;
|
||||
ggml_from_float_t from_float;
|
||||
ggml_from_float_t from_float_reference;
|
||||
ggml_vec_dot_t vec_dot;
|
||||
enum ggml_type vec_dot_type;
|
||||
int64_t nrows; // number of rows to process simultaneously;
|
||||
int64_t ncols; // number of columns to process simultaneously;
|
||||
int64_t interleave_blcksize; // interleave elements in blocks of interleave_blcksize;
|
||||
const char * type_name;
|
||||
int64_t blck_size;
|
||||
int64_t blck_size_interleave; // interleave elements in blocks
|
||||
size_t type_size;
|
||||
bool is_quantized;
|
||||
ggml_to_float_t to_float;
|
||||
ggml_from_float_t from_float;
|
||||
ggml_from_float_t from_float_ref;
|
||||
ggml_from_float_to_mat_t from_float_to_mat;
|
||||
ggml_gemv_t gemv;
|
||||
ggml_gemm_t gemm;
|
||||
ggml_vec_dot_t vec_dot;
|
||||
enum ggml_type vec_dot_type;
|
||||
int64_t nrows; // number of rows to process simultaneously
|
||||
int64_t ncols; // number of columns to process simultaneously
|
||||
ggml_gemv_t gemv;
|
||||
ggml_gemm_t gemm;
|
||||
} ggml_type_traits_t;
|
||||
|
||||
GGML_API ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type);
|
||||
|
||||
@@ -139,6 +139,17 @@ if (GGML_METAL)
|
||||
)
|
||||
endif()
|
||||
|
||||
if (GGML_MUSA)
|
||||
set(CMAKE_C_COMPILER clang)
|
||||
set(CMAKE_C_EXTENSIONS OFF)
|
||||
set(CMAKE_CXX_COMPILER clang++)
|
||||
set(CMAKE_CXX_EXTENSIONS OFF)
|
||||
|
||||
set(GGML_CUDA ON)
|
||||
|
||||
list(APPEND GGML_CDEF_PUBLIC GGML_USE_MUSA)
|
||||
endif()
|
||||
|
||||
if (GGML_OPENMP)
|
||||
find_package(OpenMP)
|
||||
if (OpenMP_FOUND)
|
||||
@@ -147,6 +158,11 @@ if (GGML_OPENMP)
|
||||
add_compile_definitions(GGML_USE_OPENMP)
|
||||
|
||||
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} OpenMP::OpenMP_C OpenMP::OpenMP_CXX)
|
||||
|
||||
if (GGML_MUSA)
|
||||
set(GGML_EXTRA_INCLUDES ${GGML_EXTRA_INCLUDES} "/usr/lib/llvm-10/include/openmp")
|
||||
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} "/usr/lib/llvm-10/lib/libomp.so")
|
||||
endif()
|
||||
else()
|
||||
message(WARNING "OpenMP not found")
|
||||
endif()
|
||||
@@ -249,7 +265,13 @@ endif()
|
||||
if (GGML_CUDA)
|
||||
cmake_minimum_required(VERSION 3.18) # for CMAKE_CUDA_ARCHITECTURES
|
||||
|
||||
find_package(CUDAToolkit)
|
||||
if (GGML_MUSA)
|
||||
list(APPEND CMAKE_MODULE_PATH "/usr/local/musa/cmake/")
|
||||
find_package(MUSAToolkit)
|
||||
set(CUDAToolkit_FOUND ${MUSAToolkit_FOUND})
|
||||
else()
|
||||
find_package(CUDAToolkit)
|
||||
endif()
|
||||
|
||||
if (CUDAToolkit_FOUND)
|
||||
message(STATUS "CUDA found")
|
||||
@@ -268,7 +290,11 @@ if (GGML_CUDA)
|
||||
endif()
|
||||
message(STATUS "Using CUDA architectures: ${CMAKE_CUDA_ARCHITECTURES}")
|
||||
|
||||
enable_language(CUDA)
|
||||
if (GGML_MUSA)
|
||||
set(CMAKE_CUDA_COMPILER ${MUSAToolkit_MCC_EXECUTABLE})
|
||||
else()
|
||||
enable_language(CUDA)
|
||||
endif()
|
||||
|
||||
file(GLOB GGML_HEADERS_CUDA "ggml-cuda/*.cuh")
|
||||
list(APPEND GGML_HEADERS_CUDA "../include/ggml-cuda.h")
|
||||
@@ -332,21 +358,40 @@ if (GGML_CUDA)
|
||||
add_compile_definitions(GGML_CUDA_NO_PEER_COPY)
|
||||
endif()
|
||||
|
||||
if (GGML_MUSA)
|
||||
set_source_files_properties(${GGML_SOURCES_CUDA} PROPERTIES LANGUAGE CXX)
|
||||
foreach(SOURCE ${GGML_SOURCES_CUDA})
|
||||
set_property(SOURCE ${SOURCE} PROPERTY COMPILE_FLAGS "-x musa -mtgpu --cuda-gpu-arch=mp_22")
|
||||
endforeach()
|
||||
endif()
|
||||
|
||||
if (GGML_STATIC)
|
||||
if (WIN32)
|
||||
# As of 12.3.1 CUDA Toolkit for Windows does not offer a static cublas library
|
||||
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas CUDA::cublasLt)
|
||||
else ()
|
||||
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas_static CUDA::cublasLt_static)
|
||||
if (GGML_MUSA)
|
||||
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} MUSA::musart_static MUSA::mublas_static)
|
||||
else()
|
||||
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas_static CUDA::cublasLt_static)
|
||||
endif()
|
||||
endif()
|
||||
else()
|
||||
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} CUDA::cudart CUDA::cublas CUDA::cublasLt)
|
||||
if (GGML_MUSA)
|
||||
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} MUSA::musart MUSA::mublas)
|
||||
else()
|
||||
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} CUDA::cudart CUDA::cublas CUDA::cublasLt)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_NO_VMM)
|
||||
# No VMM requested, no need to link directly with the cuda driver lib (libcuda.so)
|
||||
else()
|
||||
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} CUDA::cuda_driver) # required by cuDeviceGetAttribute(), cuMemGetAllocationGranularity(...), ...
|
||||
if (GGML_MUSA)
|
||||
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} MUSA::musa_driver) # required by muDeviceGetAttribute(), muMemGetAllocationGranularity(...), ...
|
||||
else()
|
||||
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} CUDA::cuda_driver) # required by cuDeviceGetAttribute(), cuMemGetAllocationGranularity(...), ...
|
||||
endif()
|
||||
endif()
|
||||
else()
|
||||
message(WARNING "CUDA not found")
|
||||
@@ -440,6 +485,10 @@ if (GGML_HIPBLAS)
|
||||
add_compile_definitions(GGML_CUDA_FORCE_MMQ)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_FORCE_CUBLAS)
|
||||
add_compile_definitions(GGML_CUDA_FORCE_CUBLAS)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_NO_PEER_COPY)
|
||||
add_compile_definitions(GGML_CUDA_NO_PEER_COPY)
|
||||
endif()
|
||||
@@ -463,15 +512,18 @@ if (GGML_SYCL)
|
||||
message(FATAL_ERROR "Invalid backend chosen, supported options are INTEL or NVIDIA")
|
||||
endif()
|
||||
|
||||
if ( NOT DEFINED ENV{ONEAPI_ROOT})
|
||||
message(FATAL_ERROR "Not detect ENV {ONEAPI_ROOT}, please install oneAPI & source it, like: source /opt/intel/oneapi/setvars.sh")
|
||||
check_cxx_compiler_flag("-fsycl" SUPPORTS_SYCL)
|
||||
if ( DEFINED ENV{ONEAPI_ROOT})
|
||||
message(STATUS "Using oneAPI Release SYCL compiler (icpx).")
|
||||
elseif(SUPPORTS_SYCL)
|
||||
message(WARNING "Using open-source SYCL compiler (clang++). Didn't detect ENV {ONEAPI_ROOT}.
|
||||
If you expected the oneAPI Release compiler, please install oneAPI & source it, like:
|
||||
source /opt/intel/oneapi/setvars.sh")
|
||||
else()
|
||||
message(FATAL_ERROR, "C++ compiler lacks SYCL support.")
|
||||
endif()
|
||||
#todo: AOT
|
||||
|
||||
find_package(IntelSYCL REQUIRED)
|
||||
find_package(MKL REQUIRED)
|
||||
|
||||
message(STATUS "SYCL found")
|
||||
#todo: AOT
|
||||
|
||||
list(APPEND GGML_CDEF_PUBLIC GGML_USE_SYCL)
|
||||
|
||||
@@ -483,11 +535,9 @@ if (GGML_SYCL)
|
||||
add_compile_definitions(GGML_SYCL_FORCE_MMQ)
|
||||
endif()
|
||||
|
||||
add_compile_options(-I./) #include DPCT
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-narrowing -fsycl")
|
||||
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-narrowing")
|
||||
if (GGML_SYCL_TARGET STREQUAL "NVIDIA")
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl-targets=nvptx64-nvidia-cuda")
|
||||
add_compile_definitions(GGML_SYCL_WARP_SIZE=32)
|
||||
else()
|
||||
add_compile_definitions(GGML_SYCL_WARP_SIZE=16)
|
||||
@@ -500,14 +550,14 @@ if (GGML_SYCL)
|
||||
list(APPEND GGML_SOURCES_SYCL "ggml-sycl.cpp")
|
||||
|
||||
if (WIN32)
|
||||
find_package(IntelSYCL REQUIRED)
|
||||
find_package(MKL REQUIRED)
|
||||
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} IntelSYCL::SYCL_CXX MKL::MKL MKL::MKL_SYCL)
|
||||
else()
|
||||
add_compile_options(-I/${SYCL_INCLUDE_DIR})
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl -L${MKLROOT}/lib")
|
||||
|
||||
if (GGML_SYCL_TARGET STREQUAL "INTEL")
|
||||
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} -fsycl OpenCL mkl_core pthread m dl mkl_sycl_blas mkl_intel_ilp64 mkl_tbb_thread)
|
||||
elseif (GGML_SYCL_TARGET STREQUAL "NVIDIA")
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl-targets=nvptx64-nvidia-cuda")
|
||||
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} -fsycl pthread m dl onemkl)
|
||||
endif()
|
||||
endif()
|
||||
@@ -527,14 +577,11 @@ if (GGML_RPC)
|
||||
endif()
|
||||
|
||||
if (GGML_VULKAN)
|
||||
find_package(Vulkan)
|
||||
find_package(Vulkan COMPONENTS glslc REQUIRED)
|
||||
|
||||
if (Vulkan_FOUND)
|
||||
message(STATUS "Vulkan found")
|
||||
|
||||
set(GGML_HEADERS_VULKAN ../include/ggml-vulkan.h)
|
||||
set(GGML_SOURCES_VULKAN ggml-vulkan.cpp)
|
||||
|
||||
list(APPEND GGML_CDEF_PUBLIC GGML_USE_VULKAN)
|
||||
|
||||
# Workaround to the "can't dereference invalidated vector iterator" bug in clang-cl debug build
|
||||
@@ -563,7 +610,37 @@ if (GGML_VULKAN)
|
||||
add_compile_definitions(GGML_VULKAN_RUN_TESTS)
|
||||
endif()
|
||||
|
||||
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} Vulkan::Vulkan)
|
||||
add_subdirectory(vulkan-shaders)
|
||||
|
||||
set (_ggml_vk_genshaders_cmd vulkan-shaders-gen)
|
||||
set (_ggml_vk_header ${CMAKE_CURRENT_BINARY_DIR}/ggml-vulkan-shaders.hpp)
|
||||
set (_ggml_vk_source ${CMAKE_CURRENT_BINARY_DIR}/ggml-vulkan-shaders.cpp)
|
||||
set (_ggml_vk_input_dir ${CMAKE_CURRENT_SOURCE_DIR}/vulkan-shaders)
|
||||
set (_ggml_vk_output_dir ${CMAKE_CURRENT_BINARY_DIR}/vulkan-shaders.spv)
|
||||
|
||||
file(GLOB _ggml_vk_shader_deps "${_ggml_vk_input_dir}/*.comp")
|
||||
|
||||
add_custom_command(
|
||||
OUTPUT ${_ggml_vk_header}
|
||||
${_ggml_vk_source}
|
||||
|
||||
COMMAND ${_ggml_vk_genshaders_cmd}
|
||||
--glslc ${Vulkan_GLSLC_EXECUTABLE}
|
||||
--input-dir ${_ggml_vk_input_dir}
|
||||
--output-dir ${_ggml_vk_output_dir}
|
||||
--target-hpp ${_ggml_vk_header}
|
||||
--target-cpp ${_ggml_vk_source}
|
||||
--no-clean
|
||||
|
||||
DEPENDS ${_ggml_vk_shader_deps}
|
||||
COMMENT "Generate vulkan shaders"
|
||||
)
|
||||
|
||||
set(GGML_HEADERS_VULKAN ${CMAKE_CURRENT_SOURCE_DIR}/../include/ggml-vulkan.h ${_ggml_vk_header})
|
||||
set(GGML_SOURCES_VULKAN ggml-vulkan.cpp ${_ggml_vk_source})
|
||||
|
||||
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} Vulkan::Vulkan)
|
||||
set(GGML_EXTRA_INCLUDES ${GGML_EXTRA_INCLUDES} ${CMAKE_CURRENT_BINARY_DIR})
|
||||
else()
|
||||
message(WARNING "Vulkan not found")
|
||||
endif()
|
||||
@@ -739,6 +816,70 @@ if (GGML_CPU_HBM)
|
||||
target_link_libraries(ggml PUBLIC memkind)
|
||||
endif()
|
||||
|
||||
if (GGML_CANN)
|
||||
if ("cann${CANN_INSTALL_DIR}" STREQUAL "cann" AND DEFINED ENV{ASCEND_TOOLKIT_HOME})
|
||||
set(CANN_INSTALL_DIR $ENV{ASCEND_TOOLKIT_HOME})
|
||||
message(STATUS "CANN: updated CANN_INSTALL_DIR from ASCEND_TOOLKIT_HOME=$ENV{ASCEND_TOOLKIT_HOME}")
|
||||
endif()
|
||||
|
||||
if (CANN_INSTALL_DIR)
|
||||
# Only Support Linux.
|
||||
if (GGML_CANN)
|
||||
if (NOT UNIX)
|
||||
set(GGML_CANN OFF)
|
||||
message(WARNING "CANN: CANN toolkit supports unix but not ${CMAKE_SYSTEM_NAME}. Turning off GGML_CANN")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
# Supported platforms: x86-64, arm64
|
||||
if (GGML_CANN)
|
||||
if (CMAKE_SYSTEM_PROCESSOR STREQUAL "aarch64")
|
||||
elseif (CMAKE_SYSTEM_PROCESSOR STREQUAL "x86_64" OR CMAKE_SYSTEM_PROCESSOR STREQUAL "amd64")
|
||||
else()
|
||||
set(GGML_CANN OFF)
|
||||
message(WARNING "CANN: CANN toolkit supports x86-64 and arm64 but not ${CMAKE_SYSTEM_PROCESSOR}. Turning off GGML_CANN")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
# Set header and libs
|
||||
if(GGML_CANN)
|
||||
set(CANN_INCLUDE_DIRS
|
||||
${CANN_INSTALL_DIR}/include
|
||||
${CANN_INSTALL_DIR}/include/aclnn
|
||||
${CANN_INSTALL_DIR}/acllib/include
|
||||
)
|
||||
|
||||
add_subdirectory(ggml-cann/kernels)
|
||||
list(APPEND CANN_LIBRARIES
|
||||
ascendcl
|
||||
nnopbase
|
||||
opapi
|
||||
acl_op_compiler
|
||||
ascendc_kernels
|
||||
)
|
||||
|
||||
set(GGML_HEADERS_CANN "../include/ggml-cann.h")
|
||||
file(GLOB GGML_SOURCES_CANN "ggml-cann/*.cpp")
|
||||
list(APPEND GGML_SOURCES_CANN "ggml-cann.cpp")
|
||||
|
||||
message(STATUS "CANN: CANN_INCLUDE_DIRS = ${CANN_INCLUDE_DIRS}")
|
||||
message(STATUS "CANN: CANN_LIBRARIES = ${CANN_LIBRARIES}")
|
||||
|
||||
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} ${CANN_LIBRARIES} )
|
||||
set(GGML_EXTRA_INCLUDES ${GGML_EXTRA_INCLUDES} ${CANN_INCLUDE_DIRS})
|
||||
set(GGML_EXTRA_LIBDIRS ${GGML_EXTRA_LIBDIRS} ${CANN_INSTALL_DIR}/lib64)
|
||||
list(APPEND GGML_CDEF_PUBLIC GGML_USE_CANN)
|
||||
endif()
|
||||
else()
|
||||
set(GGML_CANN OFF)
|
||||
message(WARNING "CANN: Can't find CANN_INSTALL_DIR, do you forget to source set_var.sh. Turning off GGML_CANN")
|
||||
endif()
|
||||
|
||||
if(NOT GGML_CANN)
|
||||
message(WARNING "CANN: GGML_CANN is turned OFF, see above for details.")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
function(get_flags CCID CCVER)
|
||||
set(C_FLAGS "")
|
||||
set(CXX_FLAGS "")
|
||||
@@ -757,8 +898,10 @@ function(get_flags CCID CCVER)
|
||||
set(C_FLAGS -Wdouble-promotion)
|
||||
set(CXX_FLAGS -Wno-array-bounds)
|
||||
|
||||
if (CCVER VERSION_GREATER_EQUAL 7.1.0)
|
||||
list(APPEND CXX_FLAGS -Wno-format-truncation)
|
||||
if (NOT GGML_MUSA)
|
||||
if (CCVER VERSION_GREATER_EQUAL 7.1.0)
|
||||
list(APPEND CXX_FLAGS -Wno-format-truncation)
|
||||
endif()
|
||||
endif()
|
||||
if (CCVER VERSION_GREATER_EQUAL 8.1.0)
|
||||
list(APPEND CXX_FLAGS -Wextra-semi)
|
||||
@@ -1153,6 +1296,7 @@ add_library(ggml
|
||||
${GGML_SOURCES_ROCM} ${GGML_HEADERS_ROCM}
|
||||
${GGML_SOURCES_BLAS} ${GGML_HEADERS_BLAS}
|
||||
${GGML_SOURCES_LLAMAFILE} ${GGML_HEADERS_LLAMAFILE}
|
||||
${GGML_SOURCES_CANN} ${GGML_HEADERS_CANN}
|
||||
ggml-aarch64.c ggml-aarch64.h
|
||||
)
|
||||
|
||||
@@ -1163,6 +1307,7 @@ endif()
|
||||
target_compile_definitions(ggml PUBLIC ${GGML_CDEF_PUBLIC})
|
||||
target_include_directories(ggml PUBLIC ../include)
|
||||
target_include_directories(ggml PRIVATE . ${GGML_EXTRA_INCLUDES})
|
||||
target_link_directories(ggml PRIVATE ${GGML_EXTRA_LIBDIRS})
|
||||
target_compile_features (ggml PRIVATE c_std_11) # don't bump
|
||||
|
||||
target_link_libraries(ggml PRIVATE Threads::Threads ${GGML_EXTRA_LIBS})
|
||||
|
||||
@@ -14,25 +14,27 @@
|
||||
|
||||
#include "ggml-aarch64.h"
|
||||
|
||||
#if defined(__GNUC__)
|
||||
#pragma GCC diagnostic ignored "-Woverlength-strings"
|
||||
#endif
|
||||
|
||||
#define UNUSED GGML_UNUSED
|
||||
|
||||
// Functions to create the interleaved data layout formats
|
||||
|
||||
// interleave 4 block_q4_0s in blocks of interleave_blcksize
|
||||
// interleave 4 block_q4_0s in blocks of blck_size_interleave
|
||||
// returns an interleaved block_q4_0x4
|
||||
// in the interleaved block_q4_0x4, place deltas for 4 block_q4_0 blocks
|
||||
// first, then interleave quants from 4 block_q4_0s in blocks of interleave_blcksize
|
||||
// first, then interleave quants from 4 block_q4_0s in blocks of blck_size_interleave
|
||||
//
|
||||
// - in : an array of block_q4_0 pointers
|
||||
// - interleave_blcksize : the block_q4_0 quants bytes are interleaved in blocks of
|
||||
// interleave_blcksize bytes
|
||||
// - blck_size_interleave : the block_q4_0 quants bytes are interleaved in blocks of
|
||||
// blck_size_interleave bytes
|
||||
// - xor_mask : the mask to convert the nibbles in block_q4_0 quants bytes
|
||||
// from bias offset form to pure sign form (this saves subtract
|
||||
// operations durin unpacking)
|
||||
//
|
||||
static block_q4_0x4 make_block_q4_0x4(block_q4_0 * in, unsigned int interleave_blcksize, unsigned int xor_mask) {
|
||||
static block_q4_0x4 make_block_q4_0x4(block_q4_0 * in, unsigned int blck_size_interleave, unsigned int xor_mask) {
|
||||
block_q4_0x4 out;
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
@@ -40,9 +42,9 @@ static block_q4_0x4 make_block_q4_0x4(block_q4_0 * in, unsigned int interleave_b
|
||||
}
|
||||
|
||||
for (int i = 0; i < QK4_0 * 2; i++) {
|
||||
int src_offset = (i / (4 * interleave_blcksize)) * interleave_blcksize;
|
||||
int src_id = (i % (4 * interleave_blcksize)) / interleave_blcksize;
|
||||
src_offset += (i % interleave_blcksize);
|
||||
int src_offset = (i / (4 * blck_size_interleave)) * blck_size_interleave;
|
||||
int src_id = (i % (4 * blck_size_interleave)) / blck_size_interleave;
|
||||
src_offset += (i % blck_size_interleave);
|
||||
|
||||
out.qs[i] = in[src_id].qs[src_offset] ^ xor_mask;
|
||||
}
|
||||
@@ -50,11 +52,11 @@ static block_q4_0x4 make_block_q4_0x4(block_q4_0 * in, unsigned int interleave_b
|
||||
return out;
|
||||
}
|
||||
|
||||
// interleave 8 block_q4_0s in blocks of interleave_blcksize
|
||||
// interleave 8 block_q4_0s in blocks of blck_size_interleave
|
||||
// returns an interleaved block_q4_0x8
|
||||
// in the interleaved block_q4_0x8, place deltas for 8 block_q4_0 blocks
|
||||
// first, then interleave quants from 8 block_q4_0s in blocks of interleave_blcksize
|
||||
static block_q4_0x8 make_block_q4_0x8(block_q4_0 * in, unsigned int interleave_blcksize, unsigned int xor_mask) {
|
||||
// first, then interleave quants from 8 block_q4_0s in blocks of blck_size_interleave
|
||||
static block_q4_0x8 make_block_q4_0x8(block_q4_0 * in, unsigned int blck_size_interleave, unsigned int xor_mask) {
|
||||
block_q4_0x8 out;
|
||||
|
||||
for (int i = 0; i < 8; i++) {
|
||||
@@ -62,9 +64,9 @@ static block_q4_0x8 make_block_q4_0x8(block_q4_0 * in, unsigned int interleave_b
|
||||
}
|
||||
|
||||
for (int i = 0; i < QK4_0 * 4; i++) {
|
||||
int src_offset = (i / (8 * interleave_blcksize)) * interleave_blcksize;
|
||||
int src_id = (i % (8 * interleave_blcksize)) / interleave_blcksize;
|
||||
src_offset += (i % interleave_blcksize);
|
||||
int src_offset = (i / (8 * blck_size_interleave)) * blck_size_interleave;
|
||||
int src_id = (i % (8 * blck_size_interleave)) / blck_size_interleave;
|
||||
src_offset += (i % blck_size_interleave);
|
||||
|
||||
out.qs[i] = in[src_id].qs[src_offset] ^ xor_mask;
|
||||
}
|
||||
@@ -135,7 +137,7 @@ void quantize_q8_0_4x4(const float * restrict x, void * restrict vy, int64_t k)
|
||||
}
|
||||
#else
|
||||
// scalar
|
||||
const int interleave_blcksize = 4;
|
||||
const int blck_size_interleave = 4;
|
||||
float srcv[4][QK8_0];
|
||||
float id[4];
|
||||
|
||||
@@ -155,12 +157,12 @@ void quantize_q8_0_4x4(const float * restrict x, void * restrict vy, int64_t k)
|
||||
}
|
||||
|
||||
for (int j = 0; j < QK8_0 * 4; j++) {
|
||||
int src_offset = (j / (4 * interleave_blcksize)) * interleave_blcksize;
|
||||
int src_id = (j % (4 * interleave_blcksize)) / interleave_blcksize;
|
||||
src_offset += (j % interleave_blcksize);
|
||||
int src_offset = (j / (4 * blck_size_interleave)) * blck_size_interleave;
|
||||
int src_id = (j % (4 * blck_size_interleave)) / blck_size_interleave;
|
||||
src_offset += (j % blck_size_interleave);
|
||||
|
||||
float x0 = srcv[src_id][src_offset] * id[src_id];
|
||||
y[i].qs[j] = roundf(x0);;
|
||||
y[i].qs[j] = roundf(x0);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
@@ -253,7 +255,7 @@ void quantize_q8_0_4x8(const float * restrict x, void * restrict vy, int64_t k)
|
||||
}
|
||||
#else
|
||||
// scalar
|
||||
const int interleave_blcksize = 8;
|
||||
const int blck_size_interleave = 8;
|
||||
float srcv[4][QK8_0];
|
||||
float id[4];
|
||||
|
||||
@@ -273,26 +275,30 @@ void quantize_q8_0_4x8(const float * restrict x, void * restrict vy, int64_t k)
|
||||
}
|
||||
|
||||
for (int j = 0; j < QK8_0 * 4; j++) {
|
||||
int src_offset = (j / (4 * interleave_blcksize)) * interleave_blcksize;
|
||||
int src_id = (j % (4 * interleave_blcksize)) / interleave_blcksize;
|
||||
src_offset += (j % interleave_blcksize);
|
||||
int src_offset = (j / (4 * blck_size_interleave)) * blck_size_interleave;
|
||||
int src_id = (j % (4 * blck_size_interleave)) / blck_size_interleave;
|
||||
src_offset += (j % blck_size_interleave);
|
||||
|
||||
float x0 = srcv[src_id][src_offset] * id[src_id];
|
||||
y[i].qs[j] = roundf(x0);;
|
||||
y[i].qs[j] = roundf(x0);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
void quantize_mat_q8_0(const float * restrict x, void * restrict vy, int64_t nrow, int64_t n_per_row, int64_t interleave_blcksize) {
|
||||
void quantize_mat_q8_0(const float * restrict x, void * restrict vy, int64_t nrow, int64_t n_per_row, int64_t blck_size_interleave) {
|
||||
assert(nrow == 4);
|
||||
UNUSED(nrow);
|
||||
if (interleave_blcksize == 4) quantize_q8_0_4x4(x, vy, n_per_row);
|
||||
else if (interleave_blcksize == 8) quantize_q8_0_4x8(x, vy, n_per_row);
|
||||
else assert(false);
|
||||
if (blck_size_interleave == 4) {
|
||||
quantize_q8_0_4x4(x, vy, n_per_row);
|
||||
} else if (blck_size_interleave == 8) {
|
||||
quantize_q8_0_4x8(x, vy, n_per_row);
|
||||
} else {
|
||||
assert(false);
|
||||
}
|
||||
}
|
||||
|
||||
static size_t quantize_q4_0_nr_bl(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, int nrows_interleaved, int interleave_blcksize) {
|
||||
static size_t quantize_q4_0_nr_bl(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, int nrows_interleaved, int blck_size_interleave) {
|
||||
assert(n_per_row % QK4_0 == 0);
|
||||
const int nb = n_per_row / QK4_0;
|
||||
|
||||
@@ -311,15 +317,15 @@ static size_t quantize_q4_0_nr_bl(const float * restrict src, void * restrict ds
|
||||
for (int64_t x = 0; x < nb; x++) {
|
||||
|
||||
for (int i = 0; i < nrows_interleaved; i++ ) {
|
||||
quantize_row_q4_0_reference(src + b + i * n_per_row + x * QK4_0, (block_q4_0 *) dst_tmp + i, QK4_0);
|
||||
quantize_row_q4_0_ref(src + b + i * n_per_row + x * QK4_0, (block_q4_0 *) dst_tmp + i, QK4_0);
|
||||
}
|
||||
|
||||
if (nrows_interleaved == 8) {
|
||||
*(block_q4_0x8 *) out_ptr = make_block_q4_0x8(dst_tmp, interleave_blcksize, 0x88);
|
||||
*(block_q4_0x8 *) out_ptr = make_block_q4_0x8(dst_tmp, blck_size_interleave, 0x88);
|
||||
out_ptr = (block_q4_0x8 *) out_ptr + 1;
|
||||
}
|
||||
else if (nrows_interleaved == 4) {
|
||||
*(block_q4_0x4 *) out_ptr = make_block_q4_0x4(dst_tmp, interleave_blcksize, 0x88);
|
||||
*(block_q4_0x4 *) out_ptr = make_block_q4_0x4(dst_tmp, blck_size_interleave, 0x88);
|
||||
out_ptr = (block_q4_0x4 *) out_ptr + 1;
|
||||
}
|
||||
}
|
||||
@@ -386,7 +392,7 @@ void ggml_gemv_q4_0_4x4_q8_0(int n, float * restrict s, size_t bs, const void *
|
||||
#if defined(__ARM_NEON) && defined(__ARM_FEATURE_MATMUL_INT8)
|
||||
GGML_ASSERT(!(ggml_cpu_has_neon() && ggml_cpu_has_matmul_int8()) &&
|
||||
"__ARM_NEON and __ARM_FEATURE_MATMUL_INT8 defined, use the Q4_0_4_8 quantization format for optimal performance");
|
||||
#elif defined(__ARM_NEON) && defined(__aarch64__)
|
||||
#elif defined(__ARM_NEON) && defined(__aarch64__) && ! ((defined(_MSC_VER)) && ! defined(__clang__))
|
||||
const void * b_ptr = vx;
|
||||
const void * a_ptr = vy;
|
||||
float * res_ptr = s;
|
||||
@@ -495,7 +501,7 @@ void ggml_gemv_q4_0_4x8_q8_0(int n, float * restrict s, size_t bs, const void *
|
||||
"__ARM_FEATURE_SVE defined, use the Q4_0_8_8 quantization format for optimal performance");
|
||||
}
|
||||
#endif
|
||||
#if defined(__ARM_NEON) && defined(__ARM_FEATURE_MATMUL_INT8)
|
||||
#if defined(__ARM_NEON) && defined(__ARM_FEATURE_MATMUL_INT8) && ! ((defined(_MSC_VER)) && ! defined(__clang__))
|
||||
const void * b_ptr = vx;
|
||||
const void * a_ptr = vy;
|
||||
float * res_ptr = s;
|
||||
@@ -607,7 +613,7 @@ void ggml_gemv_q4_0_8x8_q8_0(int n, float * restrict s, size_t bs, const void *
|
||||
UNUSED(ncols_interleaved);
|
||||
UNUSED(blocklen);
|
||||
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
#if defined(__ARM_FEATURE_SVE) && ! ((defined(_MSC_VER)) && ! defined(__clang__))
|
||||
if (svcntw() == 8) {
|
||||
const void * b_ptr = vx;
|
||||
const void * a_ptr = vy;
|
||||
@@ -747,7 +753,7 @@ void ggml_gemm_q4_0_4x4_q8_0(int n, float * restrict s, size_t bs, const void *
|
||||
#if defined(__ARM_NEON) && defined(__ARM_FEATURE_MATMUL_INT8)
|
||||
GGML_ASSERT(!(ggml_cpu_has_neon() && ggml_cpu_has_matmul_int8()) &&
|
||||
"__ARM_NEON and __ARM_FEATURE_MATMUL_INT8 defined, use the Q4_0_4_8 quantization format for optimal performance");
|
||||
#elif defined(__ARM_NEON) && defined(__aarch64__)
|
||||
#elif defined(__ARM_NEON) && defined(__aarch64__) && ! ((defined(_MSC_VER)) && ! defined(__clang__))
|
||||
const void * b_ptr = vx;
|
||||
const void * a_ptr = vy;
|
||||
float * res_ptr = s;
|
||||
@@ -1265,7 +1271,7 @@ void ggml_gemm_q4_0_4x8_q8_0(int n, float * restrict s, size_t bs, const void *
|
||||
"__ARM_FEATURE_SVE defined, use the Q4_0_8_8 quantization format for optimal performance");
|
||||
}
|
||||
#endif
|
||||
#if defined(__ARM_NEON) && defined(__ARM_FEATURE_MATMUL_INT8)
|
||||
#if defined(__ARM_NEON) && defined(__ARM_FEATURE_MATMUL_INT8) && ! ((defined(_MSC_VER)) && ! defined(__clang__))
|
||||
const void * b_ptr = vx;
|
||||
const void * a_ptr = vy;
|
||||
float * res_ptr = s;
|
||||
@@ -1721,7 +1727,7 @@ void ggml_gemm_q4_0_8x8_q8_0(int n, float * restrict s, size_t bs, const void *
|
||||
UNUSED(ncols_interleaved);
|
||||
UNUSED(blocklen);
|
||||
|
||||
#if defined(__ARM_FEATURE_SVE) && defined(__ARM_FEATURE_MATMUL_INT8)
|
||||
#if defined(__ARM_FEATURE_SVE) && defined(__ARM_FEATURE_MATMUL_INT8) && ! ((defined(_MSC_VER)) && ! defined(__clang__))
|
||||
if (svcntw() == 8) {
|
||||
const void * b_ptr = vx;
|
||||
const void * a_ptr = vy;
|
||||
|
||||
@@ -16,7 +16,7 @@ extern "C" {
|
||||
void quantize_q8_0_4x4(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_q8_0_4x8(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void quantize_mat_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t nrows, int64_t n_per_row, int64_t interleave_blcksize);
|
||||
void quantize_mat_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t nrows, int64_t n_per_row, int64_t blck_size_interleave);
|
||||
|
||||
// Quantization utilizing an importance matrix (a.k.a. "Activation aWare Quantization")
|
||||
size_t quantize_q4_0_4x4(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
@@ -24,14 +24,14 @@ size_t quantize_q4_0_4x8(const float * GGML_RESTRICT src, void * GGML_RESTRICT d
|
||||
size_t quantize_q4_0_8x8(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
|
||||
// GEMV
|
||||
void ggml_gemv_q4_0_4x4_q8_0 (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q4_0_4x8_q8_0 (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q4_0_8x8_q8_0 (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
|
||||
// GEMM
|
||||
void ggml_gemm_q4_0_4x4_q8_0 (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_0_4x8_q8_0 (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_0_8x8_q8_0 (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
||||
@@ -91,8 +91,7 @@ void ggml_tallocr_alloc(struct ggml_tallocr * talloc, struct ggml_tensor * tenso
|
||||
if (talloc->offset + size > ggml_backend_buffer_get_size(talloc->buffer)) {
|
||||
fprintf(stderr, "%s: not enough space in the buffer to allocate %s (needed %zu, available %zu)\n",
|
||||
__func__, tensor->name, size, ggml_backend_buffer_get_size(talloc->buffer) - talloc->offset);
|
||||
GGML_ASSERT(!"not enough space in the buffer");
|
||||
return;
|
||||
GGML_ABORT("not enough space in the buffer");
|
||||
}
|
||||
|
||||
void * addr = (char *)ggml_backend_buffer_get_base(talloc->buffer) + talloc->offset;
|
||||
@@ -133,7 +132,7 @@ static void add_allocated_tensor(struct ggml_dyn_tallocr * alloc, size_t offset,
|
||||
return;
|
||||
}
|
||||
}
|
||||
GGML_ASSERT(!"out of allocated_tensors");
|
||||
GGML_ABORT("out of allocated_tensors");
|
||||
}
|
||||
static void remove_allocated_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, const struct ggml_tensor * tensor) {
|
||||
for (int i = 0; i < 1024; i++) {
|
||||
@@ -142,8 +141,7 @@ static void remove_allocated_tensor(struct ggml_dyn_tallocr * alloc, size_t offs
|
||||
return;
|
||||
}
|
||||
}
|
||||
fprintf(stderr, "tried to free tensor %s not found\n", tensor->name);
|
||||
GGML_ASSERT(!"tensor not found");
|
||||
GGML_ABORT("tried to free tensor %s not found\n", tensor->name);
|
||||
}
|
||||
#endif
|
||||
|
||||
@@ -176,8 +174,7 @@ static size_t ggml_dyn_tallocr_alloc(struct ggml_dyn_tallocr * alloc, size_t siz
|
||||
// this should never happen
|
||||
fprintf(stderr, "%s: not enough space in the buffer to allocate %zu bytes, largest block available %zu bytes\n",
|
||||
__func__, size, max_avail);
|
||||
GGML_ASSERT(!"not enough space in the buffer");
|
||||
GGML_UNREACHABLE();
|
||||
GGML_ABORT("not enough space in the buffer");
|
||||
}
|
||||
}
|
||||
|
||||
@@ -443,7 +440,7 @@ void ggml_gallocr_free(ggml_gallocr_t galloc) {
|
||||
}
|
||||
}
|
||||
|
||||
free(galloc->hash_set.keys);
|
||||
ggml_hash_set_free(&galloc->hash_set);
|
||||
free(galloc->hash_values);
|
||||
free(galloc->bufts);
|
||||
free(galloc->buffers);
|
||||
@@ -456,7 +453,7 @@ void ggml_gallocr_free(ggml_gallocr_t galloc) {
|
||||
typedef struct ggml_gallocr * ggml_gallocr_t;
|
||||
|
||||
static struct hash_node * ggml_gallocr_hash_get(ggml_gallocr_t galloc, struct ggml_tensor * t) {
|
||||
size_t i = ggml_hash_find_or_insert(galloc->hash_set, t);
|
||||
size_t i = ggml_hash_find_or_insert(&galloc->hash_set, t);
|
||||
return &galloc->hash_values[i];
|
||||
}
|
||||
|
||||
@@ -565,8 +562,8 @@ static int get_node_buffer_id(const int * node_buffer_ids, int i) {
|
||||
|
||||
static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids, const int * leaf_buffer_ids) {
|
||||
// clear hash tables
|
||||
memset(galloc->hash_set.keys, 0, galloc->hash_set.size * sizeof(struct ggml_tensor *));
|
||||
memset(galloc->hash_values, 0, galloc->hash_set.size * sizeof(struct hash_node));
|
||||
ggml_hash_set_reset(&galloc->hash_set);
|
||||
memset(galloc->hash_values, 0, sizeof(struct hash_node) * galloc->hash_set.size);
|
||||
|
||||
// allocate leafs
|
||||
// these may be tensors that the application is not using in the graph, but may still want to allocate for other purposes
|
||||
@@ -671,21 +668,19 @@ static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgr
|
||||
}
|
||||
|
||||
bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids, const int * leaf_buffer_ids) {
|
||||
size_t hash_size = graph->visited_hash_table.size;
|
||||
size_t min_hash_size = graph->n_nodes + graph->n_leafs;
|
||||
// add 25% margin to avoid hash collisions
|
||||
min_hash_size += min_hash_size / 4;
|
||||
|
||||
// initialize hash table
|
||||
if (galloc->hash_set.size < hash_size) {
|
||||
free(galloc->hash_set.keys);
|
||||
free(galloc->hash_values);
|
||||
galloc->hash_set.size = hash_size;
|
||||
galloc->hash_set.keys = calloc(hash_size, sizeof(struct ggml_tensor *));
|
||||
galloc->hash_values = calloc(hash_size, sizeof(struct hash_node));
|
||||
if (galloc->hash_set.size < min_hash_size) {
|
||||
ggml_hash_set_free(&galloc->hash_set);
|
||||
galloc->hash_set = ggml_hash_set_new(min_hash_size);
|
||||
GGML_ASSERT(galloc->hash_set.keys != NULL);
|
||||
|
||||
free(galloc->hash_values);
|
||||
galloc->hash_values = malloc(sizeof(struct hash_node) * galloc->hash_set.size);
|
||||
GGML_ASSERT(galloc->hash_values != NULL);
|
||||
} else {
|
||||
// reset hash table
|
||||
memset(galloc->hash_set.keys, 0, sizeof(struct ggml_tensor *) * galloc->hash_set.size);
|
||||
memset(galloc->hash_values, 0, sizeof(struct hash_node) * galloc->hash_set.size);
|
||||
}
|
||||
|
||||
// reset allocators
|
||||
@@ -776,6 +771,7 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
|
||||
fprintf(stderr, "%s: failed to allocate %s buffer of size %zu\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), new_size);
|
||||
return false;
|
||||
}
|
||||
ggml_backend_buffer_set_usage(galloc->buffers[i], GGML_BACKEND_BUFFER_USAGE_COMPUTE);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -816,8 +812,7 @@ static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor *
|
||||
}
|
||||
|
||||
static bool ggml_gallocr_node_needs_realloc(ggml_gallocr_t galloc, struct ggml_tensor * node, struct tensor_alloc * talloc) {
|
||||
ggml_backend_buffer_type_t buft = talloc->buffer_id != -1 ? galloc->bufts[talloc->buffer_id] : NULL;
|
||||
size_t node_size = (node->data || node->view_src) ? 0 : ggml_backend_buft_get_alloc_size(buft, node);
|
||||
size_t node_size = (node->data || node->view_src) ? 0 : ggml_backend_buft_get_alloc_size(galloc->bufts[talloc->buffer_id], node);
|
||||
return talloc->size_max >= node_size;
|
||||
}
|
||||
|
||||
|
||||
@@ -134,6 +134,10 @@ void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backe
|
||||
}
|
||||
}
|
||||
|
||||
enum ggml_backend_buffer_usage ggml_backend_buffer_get_usage(ggml_backend_buffer_t buffer) {
|
||||
return buffer->usage;
|
||||
}
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_buffer_get_type(ggml_backend_buffer_t buffer) {
|
||||
return buffer->buft;
|
||||
}
|
||||
@@ -394,7 +398,7 @@ void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event)
|
||||
|
||||
// backend registry
|
||||
|
||||
#define GGML_REG_MAX_BACKENDS 16
|
||||
#define GGML_REG_MAX_BACKENDS 64
|
||||
|
||||
struct ggml_backend_reg {
|
||||
char name[128];
|
||||
@@ -445,6 +449,11 @@ GGML_CALL static void ggml_backend_registry_init(void) {
|
||||
extern GGML_CALL void ggml_backend_kompute_reg_devices(void);
|
||||
ggml_backend_kompute_reg_devices();
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_CANN
|
||||
extern GGML_CALL int ggml_backend_cann_reg_devices(void);
|
||||
ggml_backend_cann_reg_devices();
|
||||
#endif
|
||||
}
|
||||
|
||||
GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data) {
|
||||
@@ -1046,11 +1055,10 @@ struct ggml_backend_sched {
|
||||
ggml_backend_buffer_type_t bufts[GGML_SCHED_MAX_BACKENDS];
|
||||
ggml_gallocr_t galloc;
|
||||
|
||||
// hash keys of the nodes in the graph
|
||||
struct ggml_hash_set hash_set;
|
||||
// hash values
|
||||
int * tensor_backend_id;
|
||||
struct ggml_tensor * (* tensor_copies)[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES];
|
||||
// hash map of the nodes in the graph
|
||||
struct ggml_hash_set hash_set;
|
||||
int * hv_tensor_backend_ids; // [hash_set.size]
|
||||
struct ggml_tensor ** hv_tensor_copies; // [hash_set.size][n_backends][n_copies]
|
||||
|
||||
int * node_backend_ids; // [graph_size]
|
||||
int * leaf_backend_ids; // [graph_size]
|
||||
@@ -1059,7 +1067,7 @@ struct ggml_backend_sched {
|
||||
int * prev_leaf_backend_ids; // [graph_size]
|
||||
|
||||
// copy of the graph with modified inputs
|
||||
struct ggml_cgraph * graph;
|
||||
struct ggml_cgraph graph;
|
||||
|
||||
// graph splits
|
||||
struct ggml_backend_sched_split * splits;
|
||||
@@ -1078,19 +1086,16 @@ struct ggml_backend_sched {
|
||||
ggml_backend_sched_eval_callback callback_eval;
|
||||
void * callback_eval_user_data;
|
||||
|
||||
bool debug;
|
||||
char * context_buffer;
|
||||
size_t context_buffer_size;
|
||||
|
||||
// align context_buffer to GGML_MEM_ALIGN
|
||||
#ifdef _MSC_VER
|
||||
__declspec(align(GGML_MEM_ALIGN))
|
||||
#else
|
||||
__attribute__((aligned(GGML_MEM_ALIGN)))
|
||||
#endif
|
||||
char context_buffer[GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + sizeof(struct ggml_cgraph)];
|
||||
bool debug;
|
||||
};
|
||||
|
||||
#define hash_id(tensor) ggml_hash_find_or_insert(sched->hash_set, tensor)
|
||||
#define tensor_backend_id(tensor) sched->tensor_backend_id[hash_id(tensor)]
|
||||
#define hash_id(tensor) ggml_hash_find_or_insert(&sched->hash_set, tensor)
|
||||
#define tensor_backend_id(tensor) sched->hv_tensor_backend_ids[hash_id(tensor)]
|
||||
#define tensor_id_copy(id, backend_id, copy_id) sched->hv_tensor_copies[(id) * sched->n_backends * sched->n_copies + (backend_id) * sched->n_copies + (copy_id)]
|
||||
#define tensor_copy(tensor, backend_id, copy_id) tensor_id_copy(hash_id(tensor), backend_id, copy_id)
|
||||
|
||||
// returns the priority of the backend, lower id is higher priority
|
||||
static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backend_t backend) {
|
||||
@@ -1160,7 +1165,6 @@ static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, st
|
||||
return cur_backend_id;
|
||||
}
|
||||
|
||||
// assign nodes that use weights to the backend of the weights
|
||||
// operations with weights are preferably run on the same backend as the weights
|
||||
for (int i = 0; i < GGML_MAX_SRC; i++) {
|
||||
const struct ggml_tensor * src = tensor->src[i];
|
||||
@@ -1266,7 +1270,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
sched->is_reset = false;
|
||||
|
||||
struct ggml_init_params params = {
|
||||
/* .mem_size = */ sizeof(sched->context_buffer),
|
||||
/* .mem_size = */ sched->context_buffer_size,
|
||||
/* .mem_buffer = */ sched->context_buffer,
|
||||
/* .no_alloc = */ true
|
||||
};
|
||||
@@ -1275,39 +1279,43 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
|
||||
sched->ctx = ggml_init(params);
|
||||
if (sched->ctx == NULL) {
|
||||
fprintf(stderr, "%s: failed to initialize context\n", __func__);
|
||||
GGML_ASSERT(false);
|
||||
GGML_ABORT("%s: failed to initialize context\n", __func__);
|
||||
}
|
||||
|
||||
// pass 1: assign backends to ops with pre-allocated inputs
|
||||
for (int i = 0; i < graph->n_leafs; i++) {
|
||||
struct ggml_tensor * leaf = graph->leafs[i];
|
||||
int * leaf_backend_id = &tensor_backend_id(leaf);
|
||||
if (*leaf_backend_id != -1) {
|
||||
// do not overwrite user assignments
|
||||
continue;
|
||||
// do not overwrite user assignments
|
||||
if (*leaf_backend_id == -1) {
|
||||
*leaf_backend_id = ggml_backend_sched_backend_id_from_cur(sched, leaf);
|
||||
}
|
||||
*leaf_backend_id = ggml_backend_sched_backend_id_from_cur(sched, leaf);
|
||||
}
|
||||
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
int * node_backend_id = &tensor_backend_id(node);
|
||||
if (*node_backend_id != -1) {
|
||||
// do not overwrite user assignments
|
||||
continue;
|
||||
}
|
||||
*node_backend_id = ggml_backend_sched_backend_id_from_cur(sched, node);
|
||||
// src
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * src = node->src[j];
|
||||
if (src == NULL) {
|
||||
// do not overwrite user assignments
|
||||
if (*node_backend_id == -1) {
|
||||
*node_backend_id = ggml_backend_sched_backend_id_from_cur(sched, node);
|
||||
|
||||
#if 0
|
||||
// src
|
||||
if (node->op == GGML_OP_NONE) {
|
||||
continue;
|
||||
}
|
||||
int * src_backend_id = &tensor_backend_id(src);
|
||||
if (*src_backend_id == -1) {
|
||||
*src_backend_id = ggml_backend_sched_backend_id_from_cur(sched, src);
|
||||
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * src = node->src[j];
|
||||
if (src == NULL) {
|
||||
continue;
|
||||
}
|
||||
int * src_backend_id = &tensor_backend_id(src);
|
||||
if (*src_backend_id == -1) {
|
||||
*src_backend_id = ggml_backend_sched_backend_id_from_cur(sched, src);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1479,12 +1487,13 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
}
|
||||
}
|
||||
|
||||
// pass 4: split graph, find tensors that need to be copied
|
||||
// pass 5: split graph, find tensors that need to be copied
|
||||
{
|
||||
int i_split = 0;
|
||||
struct ggml_backend_sched_split * split = &sched->splits[0];
|
||||
// find the backend of the first split, skipping view ops
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
int i = 0;
|
||||
for (; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
if (!ggml_is_view_op(node->op)) {
|
||||
split->backend_id = tensor_backend_id(node);
|
||||
@@ -1493,9 +1502,8 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
}
|
||||
split->i_start = 0;
|
||||
split->n_inputs = 0;
|
||||
memset(split->inputs, 0, sizeof(split->inputs)); //HACK
|
||||
int cur_backend_id = split->backend_id;
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
for (; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
|
||||
if (ggml_is_view_op(node->op)) {
|
||||
@@ -1504,7 +1512,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
|
||||
const int node_backend_id = tensor_backend_id(node);
|
||||
|
||||
GGML_ASSERT(node_backend_id != -1); // all nodes should be assigned by now
|
||||
assert(node_backend_id != -1); // all nodes should be assigned by now
|
||||
|
||||
// check if we should start a new split based on the sources of the current node
|
||||
bool need_new_split = false;
|
||||
@@ -1518,7 +1526,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
// by starting a new split, the memory of the previously offloaded weights can be reused
|
||||
if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
|
||||
int src_backend_id = tensor_backend_id(src);
|
||||
if (src_backend_id != -1 && src_backend_id != cur_backend_id) {
|
||||
if (src_backend_id != cur_backend_id) {
|
||||
need_new_split = true;
|
||||
break;
|
||||
}
|
||||
@@ -1527,9 +1535,9 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
// FIXME: count the number of inputs instead of only checking when full
|
||||
if (split->n_inputs == GGML_SCHED_MAX_SPLIT_INPUTS) {
|
||||
const size_t id = hash_id(src);
|
||||
int src_backend_id = sched->tensor_backend_id[id];
|
||||
int src_backend_id = sched->hv_tensor_backend_ids[id];
|
||||
bool supported = ggml_backend_sched_buffer_supported(sched, src, cur_backend_id);
|
||||
if (src_backend_id != cur_backend_id && sched->tensor_copies[hash_id(src)][cur_backend_id][0] == NULL && !supported) {
|
||||
if (src_backend_id != cur_backend_id && tensor_id_copy(id, cur_backend_id, 0) == NULL && !supported) {
|
||||
//printf("starting new split because of too many inputs: node %s, input %s\n", node->name, src->name);
|
||||
need_new_split = true;
|
||||
break;
|
||||
@@ -1561,12 +1569,12 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
continue;
|
||||
}
|
||||
|
||||
const int src_backend_id = tensor_backend_id(src);
|
||||
size_t src_id = hash_id(src);
|
||||
const int src_backend_id = sched->hv_tensor_backend_ids[src_id];
|
||||
assert(src_backend_id != -1); // all inputs should be assigned by now
|
||||
|
||||
if (src->flags & GGML_TENSOR_FLAG_INPUT && sched->n_copies > 1) {
|
||||
size_t id = hash_id(src);
|
||||
if (sched->tensor_copies[id][src_backend_id][0] == NULL) {
|
||||
if (tensor_id_copy(src_id, src_backend_id, 0) == NULL) {
|
||||
ggml_backend_t backend = sched->backends[src_backend_id];
|
||||
for (int c = 0; c < sched->n_copies; c++) {
|
||||
struct ggml_tensor * tensor_copy;
|
||||
@@ -1580,7 +1588,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
ggml_set_input(tensor_copy);
|
||||
ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
|
||||
}
|
||||
sched->tensor_copies[id][src_backend_id][c] = tensor_copy;
|
||||
tensor_id_copy(src_id, src_backend_id, c) = tensor_copy;
|
||||
SET_CAUSE(tensor_copy, "4.cpy");
|
||||
}
|
||||
int n_graph_inputs = sched->n_graph_inputs++;
|
||||
@@ -1589,11 +1597,9 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
}
|
||||
}
|
||||
|
||||
bool supported = ggml_backend_sched_buffer_supported(sched, src, cur_backend_id);
|
||||
if (src_backend_id != cur_backend_id && !supported) {
|
||||
if (src_backend_id != cur_backend_id && !ggml_backend_sched_buffer_supported(sched, src, cur_backend_id)) {
|
||||
// create a copy of the input in the split's backend
|
||||
const size_t id = hash_id(src);
|
||||
if (sched->tensor_copies[id][cur_backend_id][0] == NULL) {
|
||||
if (tensor_id_copy(src_id, cur_backend_id, 0) == NULL) {
|
||||
ggml_backend_t backend = sched->backends[cur_backend_id];
|
||||
for (int c = 0; c < sched->n_copies; c++) {
|
||||
struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
|
||||
@@ -1602,14 +1608,14 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
ggml_set_input(tensor_copy);
|
||||
ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
|
||||
}
|
||||
sched->tensor_copies[id][cur_backend_id][c] = tensor_copy;
|
||||
tensor_id_copy(src_id, cur_backend_id, c) = tensor_copy;
|
||||
SET_CAUSE(tensor_copy, "4.cpy");
|
||||
}
|
||||
int n_inputs = split->n_inputs++;
|
||||
GGML_ASSERT(n_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
|
||||
split->inputs[n_inputs] = src;
|
||||
}
|
||||
node->src[j] = sched->tensor_copies[id][cur_backend_id][sched->cur_copy];
|
||||
node->src[j] = tensor_id_copy(src_id, cur_backend_id, sched->cur_copy);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1621,7 +1627,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
ggml_backend_sched_print_assignments(sched, graph);
|
||||
}
|
||||
|
||||
// swap node_backend_ids and leaf_backend_ids and prevs
|
||||
// swap node_backend_ids and leaf _backend_ids with prevs
|
||||
{
|
||||
int * tmp = sched->node_backend_ids;
|
||||
sched->node_backend_ids = sched->prev_node_backend_ids;
|
||||
@@ -1632,9 +1638,19 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
sched->prev_leaf_backend_ids = tmp;
|
||||
}
|
||||
|
||||
// create copies of the graph for each split
|
||||
// TODO: avoid this copy
|
||||
struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2, false);
|
||||
int graph_size = graph->n_nodes + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2;
|
||||
if (sched->graph.size < graph_size) {
|
||||
sched->graph.size = graph_size;
|
||||
sched->graph.nodes = realloc(sched->graph.nodes, graph_size * sizeof(struct ggml_tensor *));
|
||||
sched->graph.leafs = realloc(sched->graph.leafs, graph_size * sizeof(struct ggml_tensor *));
|
||||
GGML_ASSERT(sched->graph.nodes != NULL);
|
||||
GGML_ASSERT(sched->graph.leafs != NULL);
|
||||
}
|
||||
sched->graph.n_nodes = 0;
|
||||
sched->graph.n_leafs = 0;
|
||||
|
||||
struct ggml_cgraph * graph_copy = &sched->graph;
|
||||
|
||||
for (int i = 0; i < sched->n_splits; i++) {
|
||||
struct ggml_backend_sched_split * split = &sched->splits[i];
|
||||
split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
|
||||
@@ -1645,12 +1661,12 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
|
||||
struct ggml_tensor * input = split->inputs[j];
|
||||
const size_t input_id = hash_id(input);
|
||||
struct ggml_tensor * input_cpy = sched->tensor_copies[input_id][split->backend_id][sched->cur_copy];
|
||||
struct ggml_tensor * input_cpy = tensor_id_copy(input_id, split->backend_id, sched->cur_copy);
|
||||
|
||||
// add a dependency to the input source so that it is not freed before the copy is done
|
||||
struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input);
|
||||
input_dep->src[0] = input;
|
||||
sched->node_backend_ids[graph_copy->n_nodes] = sched->tensor_backend_id[input_id];
|
||||
sched->node_backend_ids[graph_copy->n_nodes] = sched->hv_tensor_backend_ids[input_id];
|
||||
graph_copy->nodes[graph_copy->n_nodes++] = input_dep;
|
||||
|
||||
// add a dependency to the input copy so that it is allocated at the start of the split
|
||||
@@ -1672,7 +1688,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
size_t id = hash_id(input);
|
||||
int backend_id = tensor_backend_id(input);
|
||||
for (int c = 0; c < sched->n_copies; c++) {
|
||||
struct ggml_tensor * input_cpy = sched->tensor_copies[id][backend_id][c];
|
||||
struct ggml_tensor * input_cpy = tensor_id_copy(id, backend_id, c);
|
||||
sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
|
||||
graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
|
||||
}
|
||||
@@ -1685,7 +1701,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
struct ggml_tensor * input = split->inputs[j];
|
||||
size_t id = hash_id(input);
|
||||
for (int c = 0; c < sched->n_copies; c++) {
|
||||
struct ggml_tensor * input_cpy = sched->tensor_copies[id][backend_id][c];
|
||||
struct ggml_tensor * input_cpy = tensor_id_copy(id, backend_id, c);
|
||||
sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
|
||||
graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
|
||||
}
|
||||
@@ -1699,13 +1715,11 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
sched->leaf_backend_ids[graph_copy->n_leafs] = tensor_backend_id(leaf);
|
||||
graph_copy->leafs[graph_copy->n_leafs++] = leaf;
|
||||
}
|
||||
|
||||
sched->graph = graph_copy;
|
||||
}
|
||||
|
||||
static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
|
||||
bool backend_ids_changed = false;
|
||||
for (int i = 0; i < sched->graph->n_nodes; i++) {
|
||||
for (int i = 0; i < sched->graph.n_nodes; i++) {
|
||||
if (sched->node_backend_ids[i] != sched->prev_node_backend_ids[i] &&
|
||||
sched->bufts[sched->node_backend_ids[i]] != sched->bufts[sched->prev_node_backend_ids[i]]) {
|
||||
backend_ids_changed = true;
|
||||
@@ -1713,7 +1727,7 @@ static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
|
||||
}
|
||||
}
|
||||
if (!backend_ids_changed) {
|
||||
for (int i = 0; i < sched->graph->n_leafs; i++) {
|
||||
for (int i = 0; i < sched->graph.n_leafs; i++) {
|
||||
if (sched->leaf_backend_ids[i] != sched->prev_leaf_backend_ids[i] &&
|
||||
sched->bufts[sched->leaf_backend_ids[i]] != sched->bufts[sched->prev_leaf_backend_ids[i]]) {
|
||||
backend_ids_changed = true;
|
||||
@@ -1723,14 +1737,14 @@ static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
|
||||
}
|
||||
|
||||
// allocate graph
|
||||
if (backend_ids_changed || !ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) {
|
||||
if (backend_ids_changed || !ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
|
||||
// the re-allocation may cause the split inputs to be moved to a different address
|
||||
ggml_backend_sched_synchronize(sched);
|
||||
#ifndef NDEBUG
|
||||
fprintf(stderr, "%s: failed to allocate graph, reserving\n", __func__);
|
||||
fprintf(stderr, "%s: failed to allocate graph, reserving (backend_ids_changed = %d)\n", __func__, backend_ids_changed);
|
||||
#endif
|
||||
ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids, sched->leaf_backend_ids);
|
||||
if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) {
|
||||
ggml_gallocr_reserve_n(sched->galloc, &sched->graph, sched->node_backend_ids, sched->leaf_backend_ids);
|
||||
if (!ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
|
||||
fprintf(stderr, "%s: failed to allocate graph\n", __func__);
|
||||
return false;
|
||||
}
|
||||
@@ -1751,7 +1765,7 @@ static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t s
|
||||
for (int j = 0; j < split->n_inputs; j++) {
|
||||
ggml_backend_t input_backend = ggml_backend_sched_get_tensor_backend(sched, split->inputs[j]);
|
||||
struct ggml_tensor * input = split->inputs[j];
|
||||
struct ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split_backend_id][sched->cur_copy];
|
||||
struct ggml_tensor * input_cpy = tensor_copy(input, split_backend_id, sched->cur_copy);
|
||||
|
||||
if (input->flags & GGML_TENSOR_FLAG_INPUT) {
|
||||
// inputs from the user must be copied immediately to prevent the user overwriting the data before the copy is done
|
||||
@@ -1837,21 +1851,23 @@ ggml_backend_sched_t ggml_backend_sched_new(
|
||||
struct ggml_backend_sched * sched = calloc(1, sizeof(struct ggml_backend_sched));
|
||||
|
||||
sched->debug = getenv("GGML_SCHED_DEBUG") != NULL;
|
||||
sched->n_backends = n_backends;
|
||||
sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1;
|
||||
|
||||
// initialize hash table
|
||||
sched->hash_set = ggml_hash_set_new(graph_size);
|
||||
sched->tensor_backend_id = calloc(sched->hash_set.size, sizeof(sched->tensor_backend_id[0]));
|
||||
sched->tensor_copies = calloc(sched->hash_set.size, sizeof(sched->tensor_copies[0]));
|
||||
// FIXME: needs to be size*2 to account for leafs (do it in graph_split instead)
|
||||
sched->hash_set = ggml_hash_set_new(graph_size);
|
||||
sched->hv_tensor_backend_ids = malloc(sched->hash_set.size * sizeof(sched->hv_tensor_backend_ids[0]));
|
||||
sched->hv_tensor_copies = malloc(sched->hash_set.size * sched->n_backends * sched->n_copies * sizeof(struct ggml_tensor *));
|
||||
|
||||
const size_t nodes_size = graph_size + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2;
|
||||
sched->node_backend_ids = calloc(nodes_size, sizeof(sched->node_backend_ids[0]));
|
||||
sched->leaf_backend_ids = calloc(nodes_size, sizeof(sched->leaf_backend_ids[0]));
|
||||
sched->node_backend_ids = calloc(nodes_size, sizeof(sched->node_backend_ids[0]));
|
||||
sched->leaf_backend_ids = calloc(nodes_size, sizeof(sched->leaf_backend_ids[0]));
|
||||
sched->prev_node_backend_ids = calloc(nodes_size, sizeof(sched->prev_node_backend_ids[0]));
|
||||
sched->prev_leaf_backend_ids = calloc(nodes_size, sizeof(sched->prev_leaf_backend_ids[0]));
|
||||
|
||||
sched->n_backends = n_backends;
|
||||
|
||||
sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1;
|
||||
sched->context_buffer_size = GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + ggml_graph_overhead_custom(graph_size, false);
|
||||
sched->context_buffer = malloc(sched->context_buffer_size);
|
||||
|
||||
const int initial_splits_capacity = 16;
|
||||
sched->splits = calloc(initial_splits_capacity, sizeof(sched->splits[0]));
|
||||
@@ -1886,37 +1902,37 @@ void ggml_backend_sched_free(ggml_backend_sched_t sched) {
|
||||
}
|
||||
ggml_gallocr_free(sched->galloc);
|
||||
ggml_free(sched->ctx);
|
||||
ggml_hash_set_free(&sched->hash_set);
|
||||
free(sched->splits);
|
||||
free(sched->hash_set.keys);
|
||||
free(sched->tensor_backend_id);
|
||||
free(sched->tensor_copies);
|
||||
free(sched->hv_tensor_backend_ids);
|
||||
free(sched->hv_tensor_copies);
|
||||
free(sched->node_backend_ids);
|
||||
free(sched->leaf_backend_ids);
|
||||
free(sched->prev_node_backend_ids);
|
||||
free(sched->prev_leaf_backend_ids);
|
||||
free(sched->context_buffer);
|
||||
free(sched->graph.nodes);
|
||||
free(sched->graph.leafs);
|
||||
free(sched);
|
||||
}
|
||||
|
||||
void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
|
||||
// reset state for the next run
|
||||
if (!sched->is_reset) {
|
||||
size_t hash_size = sched->hash_set.size;
|
||||
memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size); // NOLINT
|
||||
memset(sched->tensor_backend_id, -1, sizeof(sched->tensor_backend_id[0]) * hash_size);
|
||||
memset(sched->tensor_copies, 0, sizeof(sched->tensor_copies[0]) * hash_size);
|
||||
|
||||
ggml_hash_set_reset(&sched->hash_set);
|
||||
memset(sched->hv_tensor_backend_ids, -1, sched->hash_set.size * sizeof(sched->hv_tensor_backend_ids[0]));
|
||||
memset(sched->hv_tensor_copies, 0, sched->hash_set.size * sched->n_backends * sched->n_copies * sizeof(struct ggml_tensor *));
|
||||
sched->is_reset = true;
|
||||
}
|
||||
sched->is_alloc = false;
|
||||
}
|
||||
|
||||
bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
|
||||
GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes);
|
||||
GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes + measure_graph->n_leafs);
|
||||
|
||||
ggml_backend_sched_split_graph(sched, measure_graph);
|
||||
|
||||
// TODO: extract this to a separate function
|
||||
if (!ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids, sched->leaf_backend_ids)) {
|
||||
if (!ggml_gallocr_reserve_n(sched->galloc, &sched->graph, sched->node_backend_ids, sched->leaf_backend_ids)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
@@ -1927,10 +1943,11 @@ bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph *
|
||||
}
|
||||
|
||||
bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
|
||||
GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes);
|
||||
GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + graph->n_leafs);
|
||||
|
||||
ggml_backend_sched_split_graph(sched, graph);
|
||||
|
||||
|
||||
if (!ggml_backend_sched_alloc_splits(sched)) {
|
||||
return false;
|
||||
}
|
||||
@@ -2000,6 +2017,7 @@ void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct gg
|
||||
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
|
||||
tensor_backend_id(node) = backend_index;
|
||||
SET_CAUSE(node, "usr");
|
||||
sched->is_reset = false;
|
||||
}
|
||||
|
||||
ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) {
|
||||
@@ -2042,9 +2060,9 @@ static struct ggml_tensor * graph_copy_dup_tensor(struct ggml_hash_set hash_set,
|
||||
GGML_ASSERT(src != NULL);
|
||||
GGML_ASSERT(src->data && "graph must be allocated");
|
||||
|
||||
size_t id = ggml_hash_insert(hash_set, src);
|
||||
if (id == GGML_HASHTABLE_ALREADY_EXISTS) {
|
||||
return node_copies[ggml_hash_find(hash_set, src)];
|
||||
size_t id = ggml_hash_insert(&hash_set, src);
|
||||
if (id == GGML_HASHSET_ALREADY_EXISTS) {
|
||||
return node_copies[ggml_hash_find(&hash_set, src)];
|
||||
}
|
||||
|
||||
struct ggml_tensor * dst = ggml_dup_tensor_layout(src->data && !src->view_src ? ctx_allocated : ctx_unallocated, src);
|
||||
@@ -2069,7 +2087,7 @@ static struct ggml_tensor * graph_copy_dup_tensor(struct ggml_hash_set hash_set,
|
||||
return dst;
|
||||
}
|
||||
|
||||
static void graph_copy_init_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) {
|
||||
static void graph_copy_init_tensor(struct ggml_hash_set * hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) {
|
||||
size_t id = ggml_hash_find(hash_set, src);
|
||||
if (node_init[id]) {
|
||||
return;
|
||||
@@ -2096,10 +2114,7 @@ static void graph_copy_init_tensor(struct ggml_hash_set hash_set, struct ggml_te
|
||||
}
|
||||
|
||||
struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
|
||||
struct ggml_hash_set hash_set = {
|
||||
/* .size = */ graph->visited_hash_table.size,
|
||||
/* .keys = */ calloc(graph->visited_hash_table.size, sizeof(hash_set.keys[0])) // NOLINT
|
||||
};
|
||||
struct ggml_hash_set hash_set = ggml_hash_set_new(graph->visited_hash_set.size);
|
||||
struct ggml_tensor ** node_copies = calloc(hash_set.size, sizeof(node_copies[0])); // NOLINT
|
||||
bool * node_init = calloc(hash_set.size, sizeof(node_init[0]));
|
||||
|
||||
@@ -2114,7 +2129,7 @@ struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, s
|
||||
|
||||
if (ctx_allocated == NULL || ctx_unallocated == NULL) {
|
||||
fprintf(stderr, "failed to allocate context for graph copy\n");
|
||||
free(hash_set.keys);
|
||||
ggml_hash_set_free(&hash_set);
|
||||
free(node_copies);
|
||||
free(node_init);
|
||||
ggml_free(ctx_allocated);
|
||||
@@ -2137,7 +2152,7 @@ struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, s
|
||||
ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx_allocated, backend);
|
||||
if (buffer == NULL) {
|
||||
fprintf(stderr, "failed to allocate buffer for graph copy\n");
|
||||
free(hash_set.keys);
|
||||
ggml_hash_set_free(&hash_set);
|
||||
free(node_copies);
|
||||
free(node_init);
|
||||
ggml_free(ctx_allocated);
|
||||
@@ -2155,19 +2170,19 @@ struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, s
|
||||
// copy data and init views
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
graph_copy_init_tensor(hash_set, node_copies, node_init, node);
|
||||
graph_copy_init_tensor(&hash_set, node_copies, node_init, node);
|
||||
}
|
||||
|
||||
// build graph copy
|
||||
struct ggml_cgraph * graph_copy = ggml_new_graph_custom(ctx_allocated, graph->size, false);
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
struct ggml_tensor * node_copy = node_copies[ggml_hash_find(hash_set, node)];
|
||||
struct ggml_tensor * node_copy = node_copies[ggml_hash_find(&hash_set, node)];
|
||||
graph_copy->nodes[i] = node_copy;
|
||||
}
|
||||
graph_copy->n_nodes = graph->n_nodes;
|
||||
|
||||
free(hash_set.keys);
|
||||
ggml_hash_set_free(&hash_set);
|
||||
free(node_copies);
|
||||
free(node_init);
|
||||
|
||||
|
||||
@@ -8,11 +8,12 @@
|
||||
# include <Accelerate/Accelerate.h>
|
||||
#elif defined(GGML_BLAS_USE_MKL)
|
||||
# include <mkl.h>
|
||||
#elif defined(GGML_BLAS_USE_BLIS)
|
||||
# include <blis.h>
|
||||
#elif defined(GGML_BLAS_USE_NVPL)
|
||||
# include <nvpl_blas.h>
|
||||
#else
|
||||
# include <cblas.h>
|
||||
# ifdef BLIS_ENABLE_CBLAS
|
||||
# include <blis.h>
|
||||
# endif
|
||||
#endif
|
||||
|
||||
struct ggml_backend_blas_context {
|
||||
@@ -140,10 +141,14 @@ static void ggml_backend_blas_mul_mat(ggml_backend_blas_context * ctx, struct gg
|
||||
openblas_set_num_threads(ctx->n_threads);
|
||||
#endif
|
||||
|
||||
#if defined(BLIS_ENABLE_CBLAS)
|
||||
#if defined(GGML_BLAS_USE_BLIS)
|
||||
bli_thread_set_num_threads(ctx->n_threads);
|
||||
#endif
|
||||
|
||||
#if defined(GGML_BLAS_USE_NVPL)
|
||||
nvpl_blas_set_num_threads(ctx->n_threads);
|
||||
#endif
|
||||
|
||||
for (int64_t i13 = 0; i13 < ne13; i13++) {
|
||||
for (int64_t i12 = 0; i12 < ne12; i12++) {
|
||||
const int64_t i03 = i13/r3;
|
||||
@@ -270,8 +275,7 @@ GGML_CALL static enum ggml_status ggml_backend_blas_graph_compute(ggml_backend_t
|
||||
break;
|
||||
|
||||
default:
|
||||
fprintf(stderr, "%s: unsupported op %s\n", __func__, ggml_op_desc(node));
|
||||
GGML_ASSERT(false);
|
||||
GGML_ABORT("%s: unsupported op %s\n", __func__, ggml_op_desc(node));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
2023
ggml/src/ggml-cann.cpp
Normal file
2023
ggml/src/ggml-cann.cpp
Normal file
File diff suppressed because it is too large
Load Diff
168
ggml/src/ggml-cann/.clang-format
Normal file
168
ggml/src/ggml-cann/.clang-format
Normal file
@@ -0,0 +1,168 @@
|
||||
---
|
||||
Language: Cpp
|
||||
# BasedOnStyle: Google
|
||||
AccessModifierOffset: -1
|
||||
AlignAfterOpenBracket: Align
|
||||
AlignConsecutiveMacros: false
|
||||
AlignConsecutiveAssignments: false
|
||||
AlignConsecutiveDeclarations: false
|
||||
AlignEscapedNewlines: Left
|
||||
AlignOperands: true
|
||||
AlignTrailingComments: true
|
||||
AllowAllArgumentsOnNextLine: true
|
||||
AllowAllConstructorInitializersOnNextLine: true
|
||||
AllowAllParametersOfDeclarationOnNextLine: true
|
||||
AllowShortBlocksOnASingleLine: Never
|
||||
AllowShortCaseLabelsOnASingleLine: false
|
||||
AllowShortFunctionsOnASingleLine: All
|
||||
AllowShortLambdasOnASingleLine: All
|
||||
AllowShortIfStatementsOnASingleLine: WithoutElse
|
||||
AllowShortLoopsOnASingleLine: true
|
||||
AlwaysBreakAfterDefinitionReturnType: None
|
||||
AlwaysBreakAfterReturnType: None
|
||||
AlwaysBreakBeforeMultilineStrings: true
|
||||
AlwaysBreakTemplateDeclarations: Yes
|
||||
BinPackArguments: true
|
||||
BinPackParameters: true
|
||||
BraceWrapping:
|
||||
AfterCaseLabel: false
|
||||
AfterClass: false
|
||||
AfterControlStatement: false
|
||||
AfterEnum: false
|
||||
AfterFunction: false
|
||||
AfterNamespace: false
|
||||
AfterObjCDeclaration: false
|
||||
AfterStruct: false
|
||||
AfterUnion: false
|
||||
AfterExternBlock: false
|
||||
BeforeCatch: false
|
||||
BeforeElse: false
|
||||
IndentBraces: false
|
||||
SplitEmptyFunction: true
|
||||
SplitEmptyRecord: true
|
||||
SplitEmptyNamespace: true
|
||||
BreakBeforeBinaryOperators: None
|
||||
BreakBeforeBraces: Attach
|
||||
BreakBeforeInheritanceComma: false
|
||||
BreakInheritanceList: BeforeColon
|
||||
BreakBeforeTernaryOperators: true
|
||||
BreakConstructorInitializersBeforeComma: false
|
||||
BreakConstructorInitializers: BeforeColon
|
||||
BreakAfterJavaFieldAnnotations: false
|
||||
BreakStringLiterals: true
|
||||
ColumnLimit: 80
|
||||
CommentPragmas: '^ IWYU pragma:'
|
||||
CompactNamespaces: false
|
||||
ConstructorInitializerAllOnOneLineOrOnePerLine: true
|
||||
ConstructorInitializerIndentWidth: 4
|
||||
ContinuationIndentWidth: 4
|
||||
Cpp11BracedListStyle: true
|
||||
DeriveLineEnding: true
|
||||
DerivePointerAlignment: true
|
||||
DisableFormat: false
|
||||
ExperimentalAutoDetectBinPacking: false
|
||||
FixNamespaceComments: true
|
||||
ForEachMacros:
|
||||
- foreach
|
||||
- Q_FOREACH
|
||||
- BOOST_FOREACH
|
||||
IncludeBlocks: Regroup
|
||||
IncludeCategories:
|
||||
- Regex: '^<ext/.*\.h>'
|
||||
Priority: 2
|
||||
SortPriority: 0
|
||||
- Regex: '^<.*\.h>'
|
||||
Priority: 1
|
||||
SortPriority: 0
|
||||
- Regex: '^<.*'
|
||||
Priority: 2
|
||||
SortPriority: 0
|
||||
- Regex: '.*'
|
||||
Priority: 3
|
||||
SortPriority: 0
|
||||
IncludeIsMainRegex: '([-_](test|unittest))?$'
|
||||
IncludeIsMainSourceRegex: ''
|
||||
IndentCaseLabels: true
|
||||
IndentGotoLabels: true
|
||||
IndentPPDirectives: None
|
||||
IndentWidth: 4
|
||||
IndentWrappedFunctionNames: false
|
||||
JavaScriptQuotes: Leave
|
||||
JavaScriptWrapImports: true
|
||||
KeepEmptyLinesAtTheStartOfBlocks: false
|
||||
MacroBlockBegin: ''
|
||||
MacroBlockEnd: ''
|
||||
MaxEmptyLinesToKeep: 1
|
||||
NamespaceIndentation: None
|
||||
ObjCBinPackProtocolList: Never
|
||||
ObjCBlockIndentWidth: 2
|
||||
ObjCSpaceAfterProperty: false
|
||||
ObjCSpaceBeforeProtocolList: true
|
||||
PenaltyBreakAssignment: 2
|
||||
PenaltyBreakBeforeFirstCallParameter: 1
|
||||
PenaltyBreakComment: 300
|
||||
PenaltyBreakFirstLessLess: 120
|
||||
PenaltyBreakString: 1000
|
||||
PenaltyBreakTemplateDeclaration: 10
|
||||
PenaltyExcessCharacter: 1000000
|
||||
PenaltyReturnTypeOnItsOwnLine: 200
|
||||
PointerAlignment: Left
|
||||
RawStringFormats:
|
||||
- Language: Cpp
|
||||
Delimiters:
|
||||
- cc
|
||||
- CC
|
||||
- cpp
|
||||
- Cpp
|
||||
- CPP
|
||||
- 'c++'
|
||||
- 'C++'
|
||||
CanonicalDelimiter: ''
|
||||
BasedOnStyle: google
|
||||
- Language: TextProto
|
||||
Delimiters:
|
||||
- pb
|
||||
- PB
|
||||
- proto
|
||||
- PROTO
|
||||
EnclosingFunctions:
|
||||
- EqualsProto
|
||||
- EquivToProto
|
||||
- PARSE_PARTIAL_TEXT_PROTO
|
||||
- PARSE_TEST_PROTO
|
||||
- PARSE_TEXT_PROTO
|
||||
- ParseTextOrDie
|
||||
- ParseTextProtoOrDie
|
||||
CanonicalDelimiter: ''
|
||||
BasedOnStyle: google
|
||||
ReflowComments: true
|
||||
SortIncludes: true
|
||||
SortUsingDeclarations: true
|
||||
SpaceAfterCStyleCast: false
|
||||
SpaceAfterLogicalNot: false
|
||||
SpaceAfterTemplateKeyword: true
|
||||
SpaceBeforeAssignmentOperators: true
|
||||
SpaceBeforeCpp11BracedList: false
|
||||
SpaceBeforeCtorInitializerColon: true
|
||||
SpaceBeforeInheritanceColon: true
|
||||
SpaceBeforeParens: ControlStatements
|
||||
SpaceBeforeRangeBasedForLoopColon: true
|
||||
SpaceInEmptyBlock: false
|
||||
SpaceInEmptyParentheses: false
|
||||
SpacesBeforeTrailingComments: 2
|
||||
SpacesInAngles: false
|
||||
SpacesInConditionalStatement: false
|
||||
SpacesInContainerLiterals: true
|
||||
SpacesInCStyleCastParentheses: false
|
||||
SpacesInParentheses: false
|
||||
SpacesInSquareBrackets: false
|
||||
SpaceBeforeSquareBrackets: false
|
||||
Standard: Auto
|
||||
StatementMacros:
|
||||
- Q_UNUSED
|
||||
- QT_REQUIRE_VERSION
|
||||
TabWidth: 8
|
||||
UseCRLF: false
|
||||
UseTab: Never
|
||||
...
|
||||
|
||||
2579
ggml/src/ggml-cann/Doxyfile
Normal file
2579
ggml/src/ggml-cann/Doxyfile
Normal file
File diff suppressed because it is too large
Load Diff
198
ggml/src/ggml-cann/acl_tensor.cpp
Normal file
198
ggml/src/ggml-cann/acl_tensor.cpp
Normal file
@@ -0,0 +1,198 @@
|
||||
/*
|
||||
* Copyright (c) 2023-2024 The ggml authors
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to
|
||||
* deal in the Software without restriction, including without limitation the
|
||||
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
||||
* sell copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
||||
* IN THE SOFTWARE.
|
||||
*/
|
||||
|
||||
#include "acl_tensor.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <cstring>
|
||||
|
||||
aclDataType ggml_cann_type_mapping(ggml_type type) {
|
||||
switch (type) {
|
||||
case GGML_TYPE_F32:
|
||||
return ACL_FLOAT;
|
||||
case GGML_TYPE_F16:
|
||||
return ACL_FLOAT16;
|
||||
case GGML_TYPE_I8:
|
||||
return ACL_INT8;
|
||||
case GGML_TYPE_I16:
|
||||
return ACL_INT16;
|
||||
case GGML_TYPE_I32:
|
||||
return ACL_INT32;
|
||||
default:
|
||||
return ACL_DT_UNDEFINED;
|
||||
}
|
||||
return ACL_DT_UNDEFINED;
|
||||
}
|
||||
|
||||
aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne,
|
||||
size_t* nb, int64_t dims, aclFormat format,
|
||||
size_t offset) {
|
||||
// If tensor is bcasted, Up to GGML_MAX_DIMS additional dimensions will be
|
||||
// added.
|
||||
int64_t acl_ne[GGML_MAX_DIMS * 2], acl_stride[GGML_MAX_DIMS * 2];
|
||||
|
||||
int64_t acl_storage_len = 0;
|
||||
if (ne == nullptr) {
|
||||
acl_storage_len = ggml_nbytes(tensor);
|
||||
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||||
acl_ne[i] = tensor->ne[i];
|
||||
// The step size of acl is in elements.
|
||||
acl_stride[i] = tensor->nb[i] / ggml_element_size(tensor);
|
||||
}
|
||||
} else {
|
||||
// With bcast
|
||||
for (int i = 0; i < dims; i++) {
|
||||
acl_storage_len += (ne[i] - 1) * nb[i];
|
||||
acl_ne[i] = ne[i];
|
||||
acl_stride[i] = nb[i] / ggml_element_size(tensor);
|
||||
}
|
||||
}
|
||||
|
||||
// Reverse ne and stride.
|
||||
int64_t final_dims = (dims == 0 ? GGML_MAX_DIMS : dims);
|
||||
std::reverse(acl_ne, acl_ne + final_dims);
|
||||
std::reverse(acl_stride, acl_stride + final_dims);
|
||||
|
||||
aclTensor* acl_tensor = aclCreateTensor(
|
||||
acl_ne, final_dims, ggml_cann_type_mapping(tensor->type), acl_stride,
|
||||
offset / ggml_element_size(tensor), format, &acl_storage_len, 1,
|
||||
tensor->data);
|
||||
|
||||
return acl_tensor;
|
||||
}
|
||||
|
||||
bool ggml_cann_need_bcast(const ggml_tensor* t0, const ggml_tensor* t1) {
|
||||
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||||
if (t1->ne[i] != t0->ne[i] && t1->ne[i] != 1) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
aclTensor* ggml_cann_create_tensor(void* data_ptr, aclDataType dtype,
|
||||
size_t type_size, int64_t* ne, size_t* nb,
|
||||
int64_t dims, aclFormat format,
|
||||
size_t offset) {
|
||||
int64_t tmp_ne[GGML_MAX_DIMS * 2];
|
||||
int64_t tmp_stride[GGML_MAX_DIMS * 2];
|
||||
|
||||
memcpy(tmp_ne, ne, dims * sizeof(int64_t));
|
||||
for (int i = 0; i < dims; i++) {
|
||||
tmp_stride[i] = nb[i] / type_size;
|
||||
}
|
||||
|
||||
std::reverse(tmp_ne, tmp_ne + dims);
|
||||
std::reverse(tmp_stride, tmp_stride + dims);
|
||||
|
||||
int64_t acl_storage_len = 0;
|
||||
for (int i = 0; i < dims; i++) {
|
||||
acl_storage_len += (ne[i] - 1) * nb[i];
|
||||
}
|
||||
|
||||
aclTensor* acl_tensor =
|
||||
aclCreateTensor(tmp_ne, dims, dtype, tmp_stride, offset / type_size,
|
||||
format, &acl_storage_len, 1, data_ptr);
|
||||
|
||||
return acl_tensor;
|
||||
}
|
||||
|
||||
int64_t ggml_cann_get_bcast_shape(const ggml_tensor* src0,
|
||||
const ggml_tensor* src1,
|
||||
int64_t* bcast_src0_ne,
|
||||
int64_t* bcast_src1_ne, size_t* bcast_src0_nb,
|
||||
size_t* bcast_src1_nb) {
|
||||
GGML_ASSERT(ggml_can_repeat(src1, src0));
|
||||
int bcast_dim_cnt = 0;
|
||||
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||||
int64_t nr = src0->ne[i] / src1->ne[i];
|
||||
bcast_src0_ne[bcast_dim_cnt] = src0->ne[i] / nr;
|
||||
bcast_src1_ne[bcast_dim_cnt] = src1->ne[i];
|
||||
bcast_src0_nb[bcast_dim_cnt] = src0->nb[i];
|
||||
bcast_src1_nb[bcast_dim_cnt] = src1->nb[i];
|
||||
bcast_dim_cnt++;
|
||||
if (nr != 1) {
|
||||
// Need to add an extra dim.
|
||||
bcast_src0_ne[bcast_dim_cnt] = nr;
|
||||
bcast_src1_ne[bcast_dim_cnt] = 1;
|
||||
bcast_src0_nb[bcast_dim_cnt] = bcast_src0_nb[bcast_dim_cnt - 1] *
|
||||
bcast_src0_ne[bcast_dim_cnt - 1];
|
||||
bcast_src1_nb[bcast_dim_cnt] = bcast_src1_nb[bcast_dim_cnt - 1] *
|
||||
bcast_src1_ne[bcast_dim_cnt - 1];
|
||||
bcast_dim_cnt++;
|
||||
}
|
||||
}
|
||||
return bcast_dim_cnt;
|
||||
}
|
||||
|
||||
int64_t ggml_cann_get_mulmat_bcast_shape(
|
||||
const int64_t* input_ne, const int64_t* weight_ne, const int64_t* dst_ne,
|
||||
const size_t* input_nb, const size_t* weight_nb, const size_t* dst_nb,
|
||||
int64_t* bcast_input_ne, int64_t* bcast_weight_ne, int64_t* bcast_dst_ne,
|
||||
size_t* bcast_input_nb, size_t* bcast_weight_nb, size_t* bcast_dst_nb) {
|
||||
// input and dst shoule in same shape, except first two dims.
|
||||
GGML_ASSERT(input_ne[2] == dst_ne[2]);
|
||||
GGML_ASSERT(input_ne[3] == dst_ne[3]);
|
||||
|
||||
int bcast_dim_cnt = 0;
|
||||
|
||||
// For mul_mat, a dimension needs to be added before the dimension that
|
||||
// weight needs to be expanded to satisfy the bcast rule of matrix
|
||||
// multiplication.
|
||||
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||||
int64_t nr = input_ne[i] / weight_ne[i];
|
||||
// Do not use bcast in the first two dimensions because we only support
|
||||
// the bcast batch dimension. Just copy them.
|
||||
if (i < 2 || nr == 1) {
|
||||
bcast_input_ne[bcast_dim_cnt] = input_ne[i];
|
||||
bcast_weight_ne[bcast_dim_cnt] = weight_ne[i];
|
||||
bcast_dst_ne[bcast_dim_cnt] = dst_ne[i];
|
||||
|
||||
bcast_input_nb[bcast_dim_cnt] = input_nb[i];
|
||||
bcast_weight_nb[bcast_dim_cnt] = weight_nb[i];
|
||||
bcast_dst_nb[bcast_dim_cnt] = dst_nb[i];
|
||||
bcast_dim_cnt++;
|
||||
} else {
|
||||
// Need to add an extra dim.
|
||||
bcast_input_ne[bcast_dim_cnt] = nr;
|
||||
bcast_dst_ne[bcast_dim_cnt] = nr;
|
||||
bcast_weight_ne[bcast_dim_cnt] = 1;
|
||||
bcast_input_nb[bcast_dim_cnt] = input_nb[i];
|
||||
bcast_dst_nb[bcast_dim_cnt] = dst_nb[i];
|
||||
bcast_weight_nb[bcast_dim_cnt] = weight_nb[i];
|
||||
bcast_dim_cnt++;
|
||||
|
||||
bcast_input_ne[bcast_dim_cnt] = input_ne[i] / nr;
|
||||
bcast_dst_ne[bcast_dim_cnt] = dst_ne[i] / nr;
|
||||
bcast_weight_ne[bcast_dim_cnt] = weight_ne[i];
|
||||
bcast_input_nb[bcast_dim_cnt] = bcast_input_nb[bcast_dim_cnt - 1] *
|
||||
bcast_input_ne[bcast_dim_cnt - 1];
|
||||
bcast_dst_nb[bcast_dim_cnt] = bcast_dst_nb[bcast_dim_cnt - 1] *
|
||||
bcast_dst_ne[bcast_dim_cnt - 1];
|
||||
bcast_weight_nb[bcast_dim_cnt] =
|
||||
bcast_weight_nb[bcast_dim_cnt - 1] *
|
||||
bcast_weight_ne[bcast_dim_cnt - 1];
|
||||
bcast_dim_cnt++;
|
||||
}
|
||||
}
|
||||
return bcast_dim_cnt;
|
||||
}
|
||||
230
ggml/src/ggml-cann/acl_tensor.h
Normal file
230
ggml/src/ggml-cann/acl_tensor.h
Normal file
@@ -0,0 +1,230 @@
|
||||
/*
|
||||
* Copyright (c) 2023-2024 The ggml authors
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to
|
||||
* deal in the Software without restriction, including without limitation the
|
||||
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
||||
* sell copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
||||
* IN THE SOFTWARE.
|
||||
*/
|
||||
|
||||
#ifndef CANN_ACL_TENSOR_H
|
||||
#define CANN_ACL_TENSOR_H
|
||||
|
||||
#include <aclnn/aclnn_base.h>
|
||||
#include "common.h"
|
||||
|
||||
/**
|
||||
* @brief Maps a ggml_type to its corresponding aclDataType.
|
||||
*
|
||||
* @details This function takes a ggml_type as input and returns the corresponding
|
||||
* aclDataType. It supports mapping for various ggml_types. If the input type
|
||||
* does not match any of the predefined ggml_types, the function returns
|
||||
* ACL_DT_UNDEFINED.
|
||||
*
|
||||
* @param type The ggml_type to be mapped.
|
||||
* @return The corresponding aclDataType. If the input type is not recognized,
|
||||
* ACL_DT_UNDEFINED is returned.
|
||||
*/
|
||||
aclDataType ggml_cann_type_mapping(ggml_type type);
|
||||
|
||||
/**
|
||||
* @brief Creates an ACL tensor from a ggml_tensor with optional shape.
|
||||
*
|
||||
* @details This function creates an ACL tensor based on the properties of the
|
||||
* provided ggml_tensor. It supports customer shape by adjusting dimensions
|
||||
* and strides accordingly. If customer shape is applied, additional
|
||||
* dimensions and strides are calculated based on the provided parameters.
|
||||
*
|
||||
* @param tensor Pointer to the ggml_tensor to be converted to ACL tensor.
|
||||
* @param ne Pointer to an array containing dimensions. Defaults to nullptr
|
||||
* if no customer shape is applied.
|
||||
* @param nb Pointer to an array containing strides. Defaults to nullptr
|
||||
* if no customer shape is applied.
|
||||
* @param dims Number of dimensions in the tensor. Defaults to 0 if no customer
|
||||
* shape is applied.
|
||||
* @param format ACL tensor format. Defaults to ACL_FORMAT_ND.
|
||||
* @param offset Offset in bytes for the ACL tensor data. Defaults to 0.
|
||||
* @return Pointer to the created ACL tensor.
|
||||
*/
|
||||
aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne = nullptr,
|
||||
size_t* nb = nullptr, int64_t dims = 0,
|
||||
aclFormat format = ACL_FORMAT_ND,
|
||||
size_t offset = 0);
|
||||
|
||||
/**
|
||||
* @brief Creates an ACL tensor from provided parameters.
|
||||
*
|
||||
* @details This function creates an ACL tensor using the provided data pointer,
|
||||
* data type, dimensions, strides, format, offset, and additional parameters.
|
||||
* It calculates necessary dimensions and strides based on the provided ne and nb
|
||||
* arrays, adjusting them for the ACL tensor creation. The ACL storage length
|
||||
* is also calculated based on the provided dimensions and strides.
|
||||
*
|
||||
* @param data_ptr Pointer to the data buffer for the ACL tensor.
|
||||
* @param dtype ACL data type of the tensor.
|
||||
* @param type_size Size of each element in the tensor data buffer.
|
||||
* @param ne Pointer to an array containing tensor dimensions.
|
||||
* @param nb Pointer to an array containing tensor strides.
|
||||
* @param dims Number of dimensions of the tensor.
|
||||
* @param format ACL tensor format. Defaults to ACL_FORMAT_ND.
|
||||
* @param offset Offset in bytes for the ACL tensor data. Defaults to 0.
|
||||
* @return Pointer to the created ACL tensor.
|
||||
*/
|
||||
aclTensor* ggml_cann_create_tensor(void* data_ptr, aclDataType dtype,
|
||||
size_t type_size, int64_t* ne, size_t* nb,
|
||||
int64_t dims, aclFormat format = ACL_FORMAT_ND,
|
||||
size_t offset = 0);
|
||||
|
||||
/**
|
||||
* @brief Checks if tensors require broadcasting based on their shapes.
|
||||
*
|
||||
* @details This function determines if two ggml_tensors need to be broadcasted for
|
||||
* element-wise operations. Broadcasting is necessary if the shapes of the
|
||||
* tensors are not identical and no dimension in either tensor equals 1.
|
||||
*
|
||||
* @param t0 Pointer to the first ggml_tensor.
|
||||
* @param t1 Pointer to the second ggml_tensor.
|
||||
* @return True if broadcasting is needed, False otherwise.
|
||||
*
|
||||
* @remarks This function iterates over the dimensions of t0 and t1. It checks if each
|
||||
* dimension in t1 differs from t0's corresponding dimension and is not equal
|
||||
* to 1. If such a dimension is found, broadcasting is required to align t1
|
||||
* with t0 for element-wise operations.
|
||||
*/
|
||||
bool ggml_cann_need_bcast(const ggml_tensor* t0, const ggml_tensor* t1);
|
||||
|
||||
/**
|
||||
* @brief Computes broadcast shapes and strides for two ggml_tensors.
|
||||
*
|
||||
* @details This function calculates the broadcast shapes and strides for two ggml_tensors,
|
||||
* following the broadcasting rules similar to numpy. It adjusts dimensions and
|
||||
* strides to ensure compatibility for element-wise operations where one tensor
|
||||
* can be broadcasted to match the shape of another tensor.
|
||||
*
|
||||
* @param src0 Pointer to the first ggml_tensor.
|
||||
* @param src1 Pointer to the second ggml_tensor.
|
||||
* @param bcast_ne_src0 Output array to store broadcasted dimensions for src0.
|
||||
* @param bcast_ne_src1 Output array to store broadcasted dimensions for src1.
|
||||
* @param bcast_nb_src0 Output array to store broadcasted strides for src0.
|
||||
* @param bcast_nb_src1 Output array to store broadcasted strides for src1.
|
||||
* @return Number of dimensions in the broadcasted shape.
|
||||
*
|
||||
* @pre ggml_can_repeat(src1, src0) must return true, indicating src1 can be broadcasted
|
||||
* to match src0.
|
||||
*
|
||||
* @remarks This function iterates over the dimensions of src0 and src1, calculating the
|
||||
* necessary broadcast dimensions and strides. If a dimension requires broadcasting
|
||||
* (i.e., its size in src1 is smaller than in src0), an additional dimension is
|
||||
* added with size calculated to match src0's dimension. This adjustment ensures
|
||||
* that src1 can be element-wise broadcasted to src0's shape.
|
||||
*
|
||||
* How it works:
|
||||
*
|
||||
* if dim0 has padding.
|
||||
* a -> (2, 2) padding = 2
|
||||
* a: [[1, 2, *, *]
|
||||
* [2, 3, *, *]]
|
||||
* nb = (8, 4, 2)
|
||||
*
|
||||
* if a should bcast with b -> (2, 4)
|
||||
* b' -> (2, 2, 2)
|
||||
* b : [[1, 2, 3, 4, *, *]
|
||||
* [5, 6, 7, 8, *, *]]
|
||||
* nb = (12, 6, 1)
|
||||
*
|
||||
* after bcast:
|
||||
* a' -> (2, 1, 2)
|
||||
* a': [[[1, 2], *, *]
|
||||
* [[2, 3], *, *]]
|
||||
* nb = (8, 4, 2, 1)
|
||||
*
|
||||
* b' : [[[1, 2], [3, 4], *, *]
|
||||
* [[5, 6], [7, 8], *, *]]
|
||||
* nb = (12, 6, 2, 1)
|
||||
* \endcode
|
||||
*
|
||||
* dim1 in a inserted dim, should add nb for dim1,
|
||||
* and all other nb moves to next in order.
|
||||
*/
|
||||
int64_t ggml_cann_get_bcast_shape(const ggml_tensor* src0, const ggml_tensor* src1,
|
||||
int64_t* bcast_ne_src0, int64_t* bcast_ne_src1,
|
||||
size_t* bcast_nb_src0, size_t* bcast_nb_src1);
|
||||
|
||||
// Bcast macro to avoid duplicate code.
|
||||
#define BCAST_SHAPE(src0, src1) \
|
||||
int64_t bcast_##src0##_ne[GGML_MAX_DIMS * 2]; \
|
||||
int64_t bcast_##src1##_ne[GGML_MAX_DIMS * 2]; \
|
||||
size_t bcast_##src0##_nb[GGML_MAX_DIMS * 2]; \
|
||||
size_t bcast_##src1##_nb[GGML_MAX_DIMS * 2]; \
|
||||
int64_t bcast_dims = ggml_cann_get_bcast_shape( \
|
||||
src0, src1, bcast_##src0##_ne, bcast_##src1##_ne, bcast_##src0##_nb, \
|
||||
bcast_##src1##_nb);
|
||||
|
||||
#define BCAST_PARAM(tensor) bcast_##tensor##_ne, bcast_##tensor##_nb, bcast_dims
|
||||
|
||||
/**
|
||||
* @brief Calculates broadcast shapes for matrix multiplication.
|
||||
*
|
||||
* @details This function computes the broadcast shapes required for matrix multiplication
|
||||
* based on the input, weight, and destination tensor shapes. It ensures that the
|
||||
* dimensions of weight tensors are expanded appropriately to satisfy matrix
|
||||
* multiplication broadcast rules.
|
||||
*
|
||||
* @param input_ne Array containing the dimensions of the input tensor.
|
||||
* @param weight_ne Array containing the dimensions of the weight tensor.
|
||||
* @param dst_ne Array containing the dimensions of the destination tensor.
|
||||
* @param input_nb Array containing the strides of the input tensor.
|
||||
* @param weight_nb Array containing the strides of the weight tensor.
|
||||
* @param dst_nb Array containing the strides of the destination tensor.
|
||||
* @param bcast_input_ne Output array for broadcasted input tensor dimensions.
|
||||
* @param bcast_weight_ne Output array for broadcasted weight tensor dimensions.
|
||||
* @param bcast_dst_ne Output array for broadcasted destination tensor dimensions.
|
||||
* @param bcast_input_nb Output array for broadcasted input tensor strides.
|
||||
* @param bcast_weight_nb Output array for broadcasted weight tensor strides.
|
||||
* @param bcast_dst_nb Output array for broadcasted destination tensor strides.
|
||||
* @return The number of dimensions in the broadcasted tensors.
|
||||
*
|
||||
* @remarks This function iterates over the tensor dimensions and calculates the broadcast
|
||||
* shapes needed for matrix multiplication. It ensures that dimensions where
|
||||
* weight tensor requires expansion are appropriately handled to conform with
|
||||
* broadcasting rules.
|
||||
* @note compare with ggml_cann_get_bcast_shape, mul_mat broadcast need add this new dim
|
||||
* before cast dim.
|
||||
* @sa ggml_cann_get_bcast_shape
|
||||
*/
|
||||
int64_t ggml_cann_get_mulmat_bcast_shape(
|
||||
const int64_t* input_ne, const int64_t* weight_ne, const int64_t* dst_ne,
|
||||
const size_t* input_nb, const size_t* weight_nb, const size_t* dst_nb,
|
||||
int64_t* bcast_input_ne, int64_t* bcast_weight_ne, int64_t* bcast_dst_ne,
|
||||
size_t* bcast_input_nb, size_t* bcast_weight_nb, size_t* bcast_dst_nb);
|
||||
|
||||
// Bcast macro to avoid duplicate code.
|
||||
#define BCAST_MUL_MAT_SHAPE(input, weight, dst) \
|
||||
int64_t bcast_##input##_ne[GGML_MAX_DIMS * 2]; \
|
||||
int64_t bcast_##weight##_ne[GGML_MAX_DIMS * 2]; \
|
||||
int64_t bcast_##dst##_ne[GGML_MAX_DIMS * 2]; \
|
||||
size_t bcast_##input##_nb[GGML_MAX_DIMS * 2]; \
|
||||
size_t bcast_##weight##_nb[GGML_MAX_DIMS * 2]; \
|
||||
size_t bcast_##dst##_nb[GGML_MAX_DIMS * 2]; \
|
||||
int64_t bcast_dims = ggml_cann_get_mulmat_bcast_shape( \
|
||||
input->ne, weight->ne, dst->ne, input->nb, weight->nb, dst->nb, \
|
||||
bcast_##input##_ne, bcast_##weight##_ne, bcast_##dst##_ne, \
|
||||
bcast_##input##_nb, bcast_##weight##_nb, bcast_##dst##_nb);
|
||||
|
||||
#define BCAST_MUL_MAT_PARAM(tensor) \
|
||||
bcast_##tensor##_ne, bcast_##tensor##_nb, bcast_dims
|
||||
|
||||
#endif // CANN_ACL_TENSOR_H
|
||||
2944
ggml/src/ggml-cann/aclnn_ops.cpp
Normal file
2944
ggml/src/ggml-cann/aclnn_ops.cpp
Normal file
File diff suppressed because it is too large
Load Diff
592
ggml/src/ggml-cann/aclnn_ops.h
Normal file
592
ggml/src/ggml-cann/aclnn_ops.h
Normal file
@@ -0,0 +1,592 @@
|
||||
#ifndef CANN_ACLNN_OPS
|
||||
#define CANN_ACLNN_OPS
|
||||
|
||||
/**
|
||||
* @file acl_tensor
|
||||
* @brief This file contains related functions of ggml_tensor and acl_tensor.
|
||||
* Contains conversion from ggml_tensor to acl_tensor, broadcast and other
|
||||
* functions.
|
||||
* @author hipudding <huafengchun@gmail.com>
|
||||
* @author wangshuai09 <391746016@qq.com>
|
||||
* @date July 15, 2024
|
||||
*
|
||||
* Copyright (c) 2023-2024 The ggml authors
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to
|
||||
* deal in the Software without restriction, including without limitation the
|
||||
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
||||
* sell copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
||||
* IN THE SOFTWARE.
|
||||
*/
|
||||
|
||||
#include <aclnnop/aclnn_add.h>
|
||||
#include <aclnnop/aclnn_arange.h>
|
||||
#include <aclnnop/aclnn_argsort.h>
|
||||
#include <aclnnop/aclnn_cat.h>
|
||||
#include <aclnnop/aclnn_clamp.h>
|
||||
#include <aclnnop/aclnn_div.h>
|
||||
#include <aclnnop/aclnn_gelu.h>
|
||||
#include <aclnnop/aclnn_hardsigmoid.h>
|
||||
#include <aclnnop/aclnn_hardswish.h>
|
||||
#include <aclnnop/aclnn_leaky_relu.h>
|
||||
#include <aclnnop/aclnn_mul.h>
|
||||
#include <aclnnop/aclnn_relu.h>
|
||||
#include <aclnnop/aclnn_silu.h>
|
||||
#include <aclnnop/aclnn_tanh.h>
|
||||
#include "acl_tensor.h"
|
||||
#include "common.h"
|
||||
|
||||
/**
|
||||
* @brief Repeats a ggml tensor along each dimension to match the dimensions
|
||||
* of another tensor.
|
||||
*
|
||||
* @details This function repeats the elements of a source ggml tensor along
|
||||
* each dimension to create a destination tensor with the specified
|
||||
* dimensions. The operation is performed using the ACL backend and
|
||||
* executed asynchronously on the device.
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The ggml tensor representing the destination, which op is
|
||||
* GGML_OP_REPEAT and specifies the desired dimensions.
|
||||
*/
|
||||
void ggml_cann_repeat(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Adds two ggml tensors using the CANN backend.
|
||||
*
|
||||
* @details This function performs an element-wise addition of two tensors. In
|
||||
* case the tensors do not have the same shape, one or both tensors
|
||||
* will be broadcasted to match the shape of the other before the
|
||||
* addition is performed.The formula for the operation is given by:
|
||||
* \f[
|
||||
* \text{dst} = \text{acl_src0} + \alpha \cdot \text{acl_src1}
|
||||
* \f]
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The ggml tensor representing the destination, result of the
|
||||
* addition is stored at dst->data, and dst->op is `GGML_OP_ADD`
|
||||
*/
|
||||
void ggml_cann_add(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Applies the Leaky ReLU activation function to a tensor using the CANN
|
||||
* backend.
|
||||
*
|
||||
* @details This function computes the Leaky ReLU activation for each element of
|
||||
* the input tensor. The Leaky ReLU function allows a small gradient
|
||||
* when the unit is not active (i.e., when the input is negative). The
|
||||
* Leaky ReLU function is defined as:
|
||||
* \f[
|
||||
* \text{dst} = \max(0, src) + \text{negativeSlope} \cdot \min(0,
|
||||
* src)
|
||||
* \f]
|
||||
* `negativeSlope` is in dst->params.
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the result of the Leaky ReLU
|
||||
* activation is stored, which op is `GGML_OP_LEAKY_RELU`
|
||||
*/
|
||||
void ggml_cann_leaky_relu(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Concatenates multiple tensors along a specified dimension using the
|
||||
* CANN backend.
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param tensorList A pointer to the list of tensors to be concatenated.
|
||||
* @param dst The destination tensor where the result of the
|
||||
* concatenation is stored. dst->op is `GGML_OP_CONCAT`.
|
||||
* @param concat_dim The dimension along which the tensors are concatenated.
|
||||
*
|
||||
* @attention tensorList length should be 2 and the dimension using for concat
|
||||
* default to 1.
|
||||
*/
|
||||
void ggml_cann_concat(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Generates a sequence of evenly spaced values within a specified
|
||||
* interval for a ggml tensor using the CANN backend.
|
||||
*
|
||||
* @details This function creates a sequence of numbers over a specified i
|
||||
* nterval, starting from `start`, ending before `stop`, and
|
||||
* incrementing by `step`. The sequence is stored in the destination
|
||||
* tensor `dst`.
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the generated sequence will be stored.
|
||||
* `start`, 'stop' and 'step' are in dst->op_params and dst->op is
|
||||
* `GGML_OP_ARANGE`.
|
||||
*/
|
||||
void ggml_cann_arange(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Computes the square of the elements of a ggml tensor using the CANN
|
||||
* backend.
|
||||
* @details The function sets the second source tensor of the destination
|
||||
* tensor `dst` to be equal to the first source tensor. This is
|
||||
* effectively squaring the elements since the multiplication becomes
|
||||
* `element * element`.
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the squared values will be stored,
|
||||
* which dst->op is `GGML_OP_SQR`.
|
||||
*/
|
||||
void ggml_cann_sqr(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Applies a clamp operation to the elements of a ggml tensor using the
|
||||
* CANN backend.
|
||||
*
|
||||
* @details This function clamps the elements of the input tensor `src` to a
|
||||
* specified range defined by `min` and `max` values. The result is
|
||||
* stored in the destination tensor `dst`. The operation is defined as:
|
||||
* \f[
|
||||
* y = \max(\min(x, max\_value), min\_value)
|
||||
* \f]
|
||||
* where `x` is an element of the input tensor, and `y` is the
|
||||
* corresponding element in the output tensor.
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the clamped values will be stored.
|
||||
* dst->op is `GGML_OP_CLAMP`, `min` and `max` value is in dst->params.
|
||||
*/
|
||||
void ggml_cann_clamp(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Scales the elements of a ggml tensor by a constant factor using the
|
||||
* CANN backend.
|
||||
*
|
||||
* @details This function multiplies each element of the input tensor `src` by
|
||||
* a scaling factor `scale`, storing the result in the destination
|
||||
* tensor `dst`. The operation is defined as:
|
||||
* \f[
|
||||
* dst = src \times scale
|
||||
* \f]
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the scaled values will be stored.
|
||||
* dst->op is `GGML_OP_SCALE` and `scale` value is in dst->params.
|
||||
*/
|
||||
void ggml_cann_scale(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Sorts the elements of a ggml tensor and returns the indices that
|
||||
* would sort the tensor using the CANN backend.
|
||||
*
|
||||
* @details This function performs an argsort operation on the input tensor
|
||||
* `src`. It sorts the elements of `src` in either ascending or
|
||||
* descending order, depending on the `GGML_SORT_ORDER_DESC`,
|
||||
* and returns the indices that would sort the original tensor.
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the sorted indices will be stored.
|
||||
* dst->op is `GGML_OP_ARGSORT`.
|
||||
*/
|
||||
void ggml_cann_argsort(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Computes the Layer Normalization for a ggml tensor using the CANN
|
||||
* backend.
|
||||
*
|
||||
* @details This function applies the Layer Normalization operation on the
|
||||
* input tensor `src` and stores the result in the destination tensor
|
||||
* `dst`. Layer Normalization normalizes the features at each sample in
|
||||
* a mini-batch independently. It is commonly used in neural networks
|
||||
* to normalize the activations of a layer by adjusting and scaling
|
||||
* the outputs.
|
||||
* The operation is defined as:
|
||||
* \f[
|
||||
* \text { out }=\frac{x-\mathrm{E}[x]}{\sqrt{\text{Var}[x]+eps}}
|
||||
* \f]
|
||||
* `Var` defaults dst->ne[0]. `eps` is in dst->params.
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the normalized values will be stored.
|
||||
* @attention `Var` defaults to dst->ne[0].
|
||||
*/
|
||||
void ggml_cann_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Computes the Group Normalization for a ggml tensor using the CANN
|
||||
* backend.
|
||||
*
|
||||
* @brief This function applies the Group Normalization operation on the input
|
||||
* tensor `src` and stores the result in the destination tensor `dst`.
|
||||
* Group Normalization divides the channels into groups and normalizes
|
||||
* the features within each group across spatial locations.
|
||||
* It is commonly used in convolutional neural networks to improve
|
||||
* training stability and performance.
|
||||
* The operation is defined as:
|
||||
* \f[
|
||||
* \text { out }=\frac{x-\mathrm{E}[x]}{\sqrt{\text{Var}[x]+eps}}
|
||||
* \f]
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the normalized values will be stored.
|
||||
* `n_groups` is in dst->params, which split C channel to `n_groups`.
|
||||
* dst->op is `GGML_OP_GROUP_NORM`.
|
||||
*
|
||||
* @attention eps defaults to 1e-6f.
|
||||
*/
|
||||
void ggml_cann_group_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Computes the accumulation of tensors using the CANN backend.
|
||||
*
|
||||
* @details This function performs an accumulation operation on two tensors.
|
||||
* Depending on the `inplace` flag, it either updates the destination
|
||||
* tensor `dst` in place by adding `alpha * src1` to it, or it creates
|
||||
* a new tensor as the result of `src0 + alpha * src1` and stores it in
|
||||
* `dst`.
|
||||
* The operation is defined as:
|
||||
* \f[
|
||||
* dst = src0 + alpha \times src1
|
||||
* \f]
|
||||
* if `inplace` is `true`, `src0` is equal to 'dst'.
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the accumulated values will be stored.
|
||||
* `inplace` is in dst->params, and dst->op is `GGML_OP_ACC`.
|
||||
*/
|
||||
void ggml_cann_acc(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Computes the sum of elements along the last dimension of a ggml tensor
|
||||
* using the CANN backend.
|
||||
*
|
||||
* @details This function performs a reduction sum operation along the last
|
||||
* dimension of the input tensor `src`. The result of the sum is stored
|
||||
* in the destination tensor `dst`.
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the reduced values will be stored。
|
||||
* dst->op is `GGML_OP_SUM_ROWS`.
|
||||
*
|
||||
* @attention `reduce_dims` defaults to 3, which means the last dimension.
|
||||
*/
|
||||
void ggml_cann_sum_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Upsamples a ggml tensor using nearest neighbor interpolation using
|
||||
* the CANN backend.
|
||||
*
|
||||
* @details This function performs upsampling of the input tensor `src` using
|
||||
* nearest neighbor interpolation. The upsampling is applied to the
|
||||
* height and width dimensions (last two dimensions) of the tensor. The
|
||||
* result is stored in the destination tensor `dst`, which must have
|
||||
* the appropriate dimensions for the upsampled output.
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the upsampled values will be stored.
|
||||
* dst->op is `GGML_OP_UPSCALE`.
|
||||
*/
|
||||
void ggml_cann_upsample_nearest2d(ggml_backend_cann_context& ctx,
|
||||
ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Pads a ggml tensor to match the dimensions of the destination tensor
|
||||
* using the CANN backend.
|
||||
*
|
||||
* @details This function pads the input tensor `src` so that it matches the
|
||||
* dimensions of the destination tensor `dst`. The amount of padding
|
||||
* is calculated based on the difference in sizes between `src` and
|
||||
* `dst` along each dimension. The padded tensor is stored in `dst`.
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor, which specifies the target dimensions for
|
||||
* padding. dst->op is `GGML_OP_PAD`.
|
||||
*/
|
||||
void ggml_cann_pad(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Executes a 2D pooling operation on a ggml tensor using the CANN
|
||||
* backend.
|
||||
*
|
||||
* @details This function dispatches the execution of a 2D pooling operation on
|
||||
* the input tensor `dst`. The type of pooling (average or max) is
|
||||
* determined by the `op` parameter, which is read from the operation
|
||||
* parameters of `dst`. The function supports average pooling
|
||||
* (`GGML_OP_POOL_AVG`) and max pooling (`GGML_OP_POOL_MAX`). If an
|
||||
* invalid operation is encountered, the function asserts a failure.
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor on which the pooling operation is to be
|
||||
* performed. dst->op is `GGML_OP_POOL_2D`.
|
||||
*/
|
||||
void ggml_cann_pool2d(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Duplicates a ggml tensor using the CANN backend.
|
||||
*
|
||||
* @details This function duplicates the contents of the source tensor `src` to
|
||||
* the destination tensor `dst`. The function supports various tensor
|
||||
* types and configurations, including handling of extra data, type
|
||||
* conversions, and special cases for contiguous and non-contiguous
|
||||
* tensors.
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the duplicated data will be stored.
|
||||
* dst->op is `GGML_OP_DUP`
|
||||
*
|
||||
* @attention Only support Fp16/FP32. Not support when src and dst have
|
||||
* different shape and dst is no-contiguous.
|
||||
* @note: This func need to simplify.
|
||||
*/
|
||||
void ggml_cann_dup(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Computes the Root Mean Square (RMS) normalization of a ggml tensor
|
||||
* using the CANN backend.
|
||||
*
|
||||
* @details This function applies RMS normalization to the input tensor `src`
|
||||
* and stores the result in the destination tensor `dst`. RMS
|
||||
* normalization involves computing the root mean square of the input
|
||||
* tensor along a specified dimension and then dividing each element of
|
||||
* the tensor by this value, adjusted by a small epsilon value to
|
||||
* prevent division by zero.
|
||||
* The operation is defined as:
|
||||
* \f[
|
||||
* \text{RmsNorm}\left(x_i\right)=\frac{x_i}{\text{Rms}(\mathbf{x})} g_i,
|
||||
* \quad \text { where } \text{Rms}(\mathbf{x})=\sqrt{\frac{1}{n} \sum_{i=1}^n x_i^2+e p s}
|
||||
* \f]
|
||||
* `eps` is in dst->op_params.
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the normalized values will be stored.
|
||||
* dst->op is `GGML_OP_RMS_NORM`.
|
||||
*/
|
||||
void ggml_cann_rms_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Applies a diagonal mask to the tensor with a specified value.
|
||||
*
|
||||
* @details This function creates a mask tensor filled with ones, then applies
|
||||
* an upper triangular and lower triangular operation to it based on
|
||||
* the number of past elements specified. Afterward, it adds the masked
|
||||
* tensor to the destination tensor in-place.
|
||||
*
|
||||
* @param ctx The backend CANN context used for operations.
|
||||
* @param dst The destination tensor where the result will be stored. dst->op is
|
||||
* `GGML_OP_DIAG_MASK`
|
||||
* @param value The value to use for masking.
|
||||
*/
|
||||
void ggml_cann_diag_mask(ggml_backend_cann_context& ctx, ggml_tensor* dst, float value);
|
||||
|
||||
/**
|
||||
* @brief Performs an image-to-column transformation on the input tensor.
|
||||
*
|
||||
* @details This function takes an input tensor and applies an image-to-column
|
||||
* operation, converting spatial dimensions into column-like
|
||||
* structures suitable for convolutional operations. It supports both
|
||||
* half-precision (F16) and single-precision (F32) floating-point data
|
||||
* types.
|
||||
*
|
||||
* @param ctx The backend CANN context for executing operations.
|
||||
* @param dst The destination tensor that stores the result of the operation.
|
||||
* dst->op is `GGML_OP_IM2COL`.
|
||||
*/
|
||||
void ggml_cann_im2col(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Computes time step embeddings using sine and cosine functions.
|
||||
*
|
||||
* @details This function calculates time step embeddings by applying sine and
|
||||
* cosine transformations to a given input tensor, which is typically
|
||||
* used in temporal models like diffusion models or transformers to
|
||||
* encode time information effectively.
|
||||
*
|
||||
* @param ctx The backend CANN context for executing operations.
|
||||
* @param dst The destination tensor where the result of the embedding operation
|
||||
* will be stored. dst->op is `GGML_OP_TIMESTEP_EMBEDDING`.
|
||||
*/
|
||||
void ggml_cann_timestep_embedding(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
// @see ggml_cann_dup.
|
||||
void ggml_cann_cpy(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Computes the softmax activation with optional masking.
|
||||
*
|
||||
* @details This function computes the softmax activation over the input tensor,
|
||||
* optionally applying a mask and scaling factor. It supports both FP16
|
||||
* and FP32 data types and can handle masking by broadcasting the mask
|
||||
* across rows if necessary.
|
||||
* The function performs the following steps:
|
||||
* 1. Multiplies the input tensor by a scale factor.
|
||||
* 2. Optionally casts the mask tensor to FP32 if it is in FP16 format.
|
||||
* 3. Broadcasts the mask tensor if its dimensions do not match the
|
||||
* input tensor's dimensions.
|
||||
* 4. Adds the mask to the scaled input tensor.
|
||||
* 5. Applies the softmax activation function along the specified
|
||||
* dimension.
|
||||
*
|
||||
* @param ctx The backend CANN context for executing operations.
|
||||
* @param dst The destination tensor where the result will be stored. dst->op is
|
||||
* `GGML_OP_SOFTMAX`.
|
||||
*/
|
||||
void ggml_cann_softmax(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Extracts specific rows from a tensor based on indices.
|
||||
*
|
||||
* @details This function retrieves rows from a source tensor src0 according to
|
||||
* the indices provided in another tensor src1 and stores the result in
|
||||
* a destination tensor (\p dst). It supports different data types
|
||||
* including F32, F16, Q4_0, and Q8_0.
|
||||
*
|
||||
* @param ctx The backend CANN context for executing operations.
|
||||
* @param dst The destination tensor where the extracted rows will be stored.
|
||||
* dst->op is `GGML_OP_GET_ROWS`.
|
||||
*/
|
||||
void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Executes matrix multiplication for the given tensor.
|
||||
*
|
||||
* @details This function performs matrix multiplication on the source tensors
|
||||
* associated with the destination tensor. It supports matrix
|
||||
* multiplication F32, F16, and Q8_0.
|
||||
*
|
||||
* @param ctx The backend CANN context for executing operations.
|
||||
* @param dst The destination tensor for storing the result of the matrix
|
||||
* multiplication. dst->op is `GGML_OP_MUL_MAT`.
|
||||
*/
|
||||
void ggml_cann_mul_mat(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Applies Rotary Positional Embedding (RoPE) to the input tensor.
|
||||
*
|
||||
* @details This function implements the RoPE mechanism, which is a method to
|
||||
* encode positional information into sequence data, particularly
|
||||
* useful in transformer models. It supports both F32 and F16 data
|
||||
* types.
|
||||
*
|
||||
* @param ctx The backend CANN context for executing operations.
|
||||
* @param dst The destination tensor where the RoPE-transformed data will be
|
||||
* stored. dst->op is `GGML_OP_ROPE`.
|
||||
*
|
||||
* @note The function currently does not support cases where the n_dims is less
|
||||
* than the input tensor's first dimension.
|
||||
* @note The function currently does not support cases where the freq_factors is
|
||||
* not NULL.
|
||||
* @note The function currently does not support cases where the ext_factor is
|
||||
* not equal 0.
|
||||
* @note The function currently does not support cases where the freq_scale is
|
||||
* not equal 1.
|
||||
*/
|
||||
void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
template <aclnnStatus getWorkspaceSize(const aclTensor*, const aclTensor*,
|
||||
aclTensor*, uint64_t*, aclOpExecutor**),
|
||||
aclnnStatus execute(void*, uint64_t, aclOpExecutor*, aclrtStream)>
|
||||
void ggml_cann_mul_div(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
ggml_tensor* src0 = dst->src[0];
|
||||
ggml_tensor* src1 = dst->src[1];
|
||||
GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
|
||||
|
||||
aclTensor* acl_src0;
|
||||
aclTensor* acl_src1;
|
||||
aclTensor* acl_dst;
|
||||
|
||||
// Need bcast
|
||||
if (!ggml_are_same_shape(src0, src1) && ggml_cann_need_bcast(src0, src1)) {
|
||||
BCAST_SHAPE(src0, src1)
|
||||
acl_src0 = ggml_cann_create_tensor(src0, BCAST_PARAM(src0));
|
||||
acl_src1 = ggml_cann_create_tensor(src1, BCAST_PARAM(src1));
|
||||
acl_dst = ggml_cann_create_tensor(dst, BCAST_PARAM(src0));
|
||||
} else {
|
||||
acl_src0 = ggml_cann_create_tensor(src0);
|
||||
acl_src1 = ggml_cann_create_tensor(src1);
|
||||
acl_dst = ggml_cann_create_tensor(dst);
|
||||
}
|
||||
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor* executor;
|
||||
void* workspaceAddr = nullptr;
|
||||
|
||||
ACL_CHECK(getWorkspaceSize(acl_src0, acl_src1, acl_dst, &workspaceSize,
|
||||
&executor));
|
||||
if (workspaceSize > 0) {
|
||||
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
|
||||
workspaceAddr = workspace_allocator.get();
|
||||
}
|
||||
|
||||
aclrtStream main_stream = ctx.stream();
|
||||
ACL_CHECK(execute(workspaceAddr, workspaceSize, executor, main_stream));
|
||||
|
||||
ACL_CHECK(aclDestroyTensor(acl_src0));
|
||||
ACL_CHECK(aclDestroyTensor(acl_src1));
|
||||
ACL_CHECK(aclDestroyTensor(acl_dst));
|
||||
}
|
||||
|
||||
// Activation functions template.
|
||||
template <aclnnStatus getWorkspaceSize(const aclTensor*, aclTensor*, uint64_t*,
|
||||
aclOpExecutor**),
|
||||
aclnnStatus execute(void*, uint64_t, aclOpExecutor*,
|
||||
const aclrtStream)>
|
||||
void ggml_cann_activation(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
ggml_tensor* src = dst->src[0];
|
||||
|
||||
GGML_ASSERT(src->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
|
||||
aclTensor* acl_src = ggml_cann_create_tensor(src);
|
||||
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
|
||||
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor* executor;
|
||||
void* workspaceAddr = nullptr;
|
||||
|
||||
ACL_CHECK(getWorkspaceSize(acl_src, acl_dst, &workspaceSize, &executor));
|
||||
if (workspaceSize > 0) {
|
||||
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
|
||||
workspaceAddr = workspace_allocator.get();
|
||||
}
|
||||
|
||||
aclrtStream main_stream = ctx.stream();
|
||||
ACL_CHECK(execute(workspaceAddr, workspaceSize, executor, main_stream));
|
||||
|
||||
ACL_CHECK(aclDestroyTensor(acl_src));
|
||||
ACL_CHECK(aclDestroyTensor(acl_dst));
|
||||
}
|
||||
|
||||
// Activation functions template for const aclTensors.
|
||||
template <aclnnStatus getWorkspaceSize(const aclTensor*, const aclTensor*,
|
||||
uint64_t*, aclOpExecutor**),
|
||||
aclnnStatus execute(void*, uint64_t, aclOpExecutor*,
|
||||
const aclrtStream)>
|
||||
void ggml_cann_activation(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
ggml_tensor* src = dst->src[0];
|
||||
|
||||
GGML_ASSERT(src->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
|
||||
aclTensor* acl_src = ggml_cann_create_tensor(src);
|
||||
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
|
||||
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor* executor;
|
||||
void* workspaceAddr = nullptr;
|
||||
|
||||
ACL_CHECK(getWorkspaceSize(acl_src, acl_dst, &workspaceSize, &executor));
|
||||
if (workspaceSize > 0) {
|
||||
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
|
||||
workspaceAddr = workspace_allocator.get();
|
||||
}
|
||||
|
||||
aclrtStream main_stream = ctx.stream();
|
||||
ACL_CHECK(execute(workspaceAddr, workspaceSize, executor, main_stream));
|
||||
|
||||
ACL_CHECK(aclDestroyTensor(acl_src));
|
||||
ACL_CHECK(aclDestroyTensor(acl_dst));
|
||||
}
|
||||
|
||||
#endif // CANN_ACLNN_OPS
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user