* kqmax_new_j in every thread within warp is same after operate at line 199,this reduce can be omit
* same problem in vec32
---------
Co-authored-by: ZhaoXiaoYu <zhao.xiaoyu@zte.com.cn>
* readme : document --no-display-prompt
* readme : update default prompt context size
* readme : remove unnecessary indentation
Indenting a line with four spaces makes Markdown treat that section as
plain text.
* readme : indent commands under bullets
* readme : indent commands in lettered list
* llama : add enum for supported chat templates
* use "built-in" instead of "supported"
* arg: print list of built-in templates
* fix test
* update server README
* Templates: `mistral-v1`, `mistral-v2`, `mistral-v3`, `mistral-v3-tekken`
* Changed system message logic and added tests for all 4
* Invalid `system_message` instead of `content` fixed
* Removed tab-indented lines
* Added template code and test for `mistral-v7`
* Added all tests. Fixed bug with `tmpl == "llama2"` test.
* Replaced tabs with spaces.
* Removed `'mistral-v2'` option as no (open) models ever used it
* Removed all references to 'v2' template from comments
* Update llama.cpp
Fixed `trim_assistant_message` bug
* subgroup 64 version with subgroup add. 15% faster
scalable version
tested for subgroup sizes 16-128
* check for subgroup multiple of 16 and greater than 16
* subgroup sizes are always a power of 2 (https://github.com/KhronosGroup/GLSL/issues/45)
* force 16 sequential threads per block
* make 16 subgroup size a constant
This is an incremental improvement over #9118 to get work to the GPU a bit
sooner. The first part is to start with a smaller number of nodes before
the first submit, and ramp it up to the current 100 nodes/submit. The
second part is to reduce the dryrun overhead for all the nodes that just
need to request descriptor space.
With these changes I get around 1-2% speedup on RTX 4070 combined with my
old Haswell-era CPU.
* CANN: Fix the bug build fail on Ascend310P under two cases:
1) Manual specify SOC_TYPE
2) Under some unusual compile environment
* Update the cann backend News content: Support F16 and F32 data type model for Ascend 310P NPU.
* fix CANN compile fail bug: the assert in ascend kernel function doesn't supportted on some CANN version
There have been reports of failure to compile on systems with <= 32KB
of shared memory (e.g. #10037). This change makes the large tile size
fall back to a smaller size if necessary, and makes mul_mat_id fall
back to CPU if there's only 16KB of shared memory.
* server : replace behave with pytest
* fix test on windows
* misc
* add more tests
* more tests
* styling
* log less, fix embd test
* added all sequential tests
* fix coding style
* fix save slot test
* add parallel completion test
* fix parallel test
* remove feature files
* update test docs
* no cache_prompt for some tests
* add test_cache_vs_nocache_prompt
* improve inferencing performance for ascend npu.
Co-authored-by: Frank Mai <thxCode@thxcode0824@gmail.com>
* some modification after review
* some modifications after review
* restore some modifications
* restore some modifications
---------
Co-authored-by: shanshan shen <shanshanshen333@gmail.com>
Co-authored-by: Frank Mai <thxCode@thxcode0824@gmail.com>
The vulkan-shaders-gen was not parsing the --no-clean argument correctly.
Because the previous code was parsing the arguments which have a value only
and the --no-clean argument does not have a value, it was not being parsed
correctly. This commit can now correctly parse arguments that don't have values.
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
Python check requirements.txt / check-requirements (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
It's like simple-chat but it uses smart pointers to avoid manual
memory cleanups. Less memory leaks in the code now. Avoid printing
multiple dots. Split code into smaller functions. Uses no exception
handling.
Signed-off-by: Eric Curtin <ecurtin@redhat.com>
* llama : accept a list of devices to use to offload a model
* accept `--dev none` to completely disable offloading
* fix dev list with dl backends
* rename env parameter to LLAMA_ARG_DEVICE for consistency
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-musa.Dockerfile platforms:linux/amd64 tag:full-musa]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-musa.Dockerfile platforms:linux/amd64 tag:light-musa]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-musa.Dockerfile platforms:linux/amd64 tag:server-musa]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Has been cancelled
* Add download chat feature to server chat
Add a download feature next to the delete chat feature in the server vue chat interface.
* code style
---------
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
This matches the key in common bert-based embedding models and may have a
value other than 1 in it.
Branch: XLMRobertaTypeVocabSize
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* GitHub: ask for more info in issues [no ci]
* refactor issue templates to be component-specific
* more understandable issue description
* add dropdown for llama.cpp module
* CANN Support Ascend310P to accelerate F32 and F16 Model
* Add compile option soc type macro ASCEND_310P to ggml-cann lib
* Remove unused code
* Remove the ascend soc_type hard code compile option in CMakelist.txt
* vulkan: Use pipeline_robustness to disable robustness in mul_mat_vec.
Add some early returns for nonexistent rows in mul_mat_vec shaders. These
can only be hit when dispatching a 2D grid of workgroups. Fix the logic
for the 2D grid of workgroups to round up.
Enable the pipeline robustness extension if it's available, and use it to
disable robustness for these pipelines. The instructions to do the bounds
checking contend for the same ALU resources as the bit twiddling dequant
instructions.
* vulkan: Add GLSL structure aliases for quant types to allow larger loads
In Vulkan it's not possible to cast pointer types, so instead you have to
declare an aliased binding for the memory with a different type. This
commit adds aliases for the quant formats using 16b ints, and in a few
places where the struct size is a multiple of 4 also using 32b ints.
Currently only q4_k's aliases are used, but others will be used in
subsequent commits.
* vulkan: use larger loads in q5_k and q6_k shaders.
Similar to the optimization I did in q4_k recently, this vectorizes some loads
and reduces the number of bit twiddling instructions.
* vulkan: use larger K step per iteration in mul_mat_vec.
Add vec4 dequantization functions, and use them to do K=8 per iteration in
mul_mat_vec. This uses 16b loads for the quant values and 128b loads for B
which helps reduce the load on the memory system.
The K_PER_ITER==2 logic is still there, just for F16/F32, and really only
because they support unaligned sizes.
Tweak the num_iters/unrolling logic to be simpler and catch a couple missed
unrolling opportunities.
* Add OLMo November 2024 constants
* Add OLMo November 2024 converter
* Add loading of OLMo November 2024 tensors and hyper parameters
* Add building of OLMo November 2024 model
* Add option to set the SYCL architecture for all targets
* Convert GGML_SYCL_HIP_TARGET to the more generic GGML_SYCL_ARCH option
* Document that setting GGML_SYCL_ARCH can improve the performance
* vulkan: Optimize soft_max
Large soft_max could already saturate memory, but small/medium sizes were
pretty slow. The bulk of the gains for them comes from using a smaller
workgroup size, and making the workgroup size match the subgroup size also
makes the barriers much cheaper.
Cache some values in locals to avoid refetching/recomputing. And stamp
out a few "template instantiations" so smaller cases will fully unroll.
Add a missing early return for OOB rows. This happens when there are more
than 512 rows and the dispatch is 512 x H.
* vulkan: Further soft_max optimizations
Restore the workgroup size of 512 case, use it for >1024.
Use unrollable loops for more iteration counts.
* metal : add kernel arg structs (wip)
* metal : fattn args
ggml-ci
* metal : cont + avoid potential int overflow [no ci]
* metal : mul mat struct (wip)
* cont : mul mat vec
* cont : pass by reference
* cont : args is first argument
* cont : use char ptr
* cont : shmem style
* cont : thread counters style
* cont : mul mm id
ggml-ci
* cont : int safety + register optimizations
ggml-ci
* metal : GGML_OP_CONCAT
ggml-ci
* metal : GGML_OP_ADD, GGML_OP_SUB, GGML_OP_MUL, GGML_OP_DIV
* metal : GGML_OP_REPEAT
* metal : GGML_OP_CPY
* metal : GGML_OP_RMS_NORM
* metal : GGML_OP_NORM
* metal : add TODOs for rest of ops
* ggml : add ggml-metal-impl.h
ggml-ci
* Samplers sequence: simplified and input field.
* Removed unused function
* Modify and use `settings-modal-short-input`
* rename "name" --> "label"
---------
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
Compute two result elements per workgroup (for Q{4,5}_{0,1}). This reuses
the B loads across the rows and also reuses some addressing calculations.
This required manually partially unrolling the loop, since the compiler
is less willing to unroll outer loops.
Add bounds-checking on the last iteration of the loop. I think this was at
least partly broken before.
Optimize the Q4_K shader to vectorize most loads and reduce the number of
bit twiddling instructions.
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-musa.Dockerfile platforms:linux/amd64 tag:full-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-musa.Dockerfile platforms:linux/amd64 tag:light-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-musa.Dockerfile platforms:linux/amd64 tag:server-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
* use 128 bit loads (i've tried 256->128 to death and its slower)
* double accumulator
* avx bf16 vec dot
* +3% q4_0 inference
* +7% tg +5% pp compared to master
* slower f16c version, kep for reference
* 256b version, also slow. i tried :)
* revert f16
* faster with madd
* split to functions
* Q8_0 and IQ4_NL, 5-7% faster
* fix potential overflow (performance reduced)
* 16 bit add for q4_0 only
* merge
* server : (web ui) add copy btn for code blocks
* fix problem with api key
* use settings-modal-short-input component
* always show copy btn for code snippet
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-musa.Dockerfile platforms:linux/amd64 tag:full-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-musa.Dockerfile platforms:linux/amd64 tag:light-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-musa.Dockerfile platforms:linux/amd64 tag:server-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
* sycl: Use syclcompat::dp4a
* Using the syclcompat version allow the compiler to optimize the
operation with native function
* Update news section
* Update CI Windows oneAPI version to 2025.0
* Reword doc
* Call syclcompat::dp4a inside dpct::dp4a
This reverts commit 90cb61d692.
Reuse the index calculations across all of src0/src1/dst. Add a shader
variant for when src0/src1 are the same dimensions and additional modulus
for src1 aren't needed. Div/mod are slow, so add "fast" div/mod that
have a fast path when the calculation isn't needed or can be done more
cheaply.
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-musa.Dockerfile platforms:linux/amd64 tag:full-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-musa.Dockerfile platforms:linux/amd64 tag:light-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-musa.Dockerfile platforms:linux/amd64 tag:server-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
* llama: propagating the results of `graph_compute` to the user interface
* llama: reverting kv_cache in case of failed compute
* llama: `llama_kv_cache_state` was removed, only the result of `llama_graph_compute` is returned
* llama: restore a kv_cache in case of failed computation
* llama: correct reverting of the entire batch.
also updates `llama_kv_cache_find_slot`, will correctly count the number of `used` cells for recurrent models
* llama: updated comments
* llama : add comments about KV cache state after error
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-musa.Dockerfile platforms:linux/amd64 tag:full-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-musa.Dockerfile platforms:linux/amd64 tag:light-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-musa.Dockerfile platforms:linux/amd64 tag:server-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Has been cancelled
Converter script can now read these two fields as a detailed base model and dataset source.
This was done so that it will be easier for Hugging Face to integrate detailed metadata as needed.
- base_model_sources (List[dict], optional)
- dataset_sources (List[dict], optional)
Dataset now represented as:
- general.dataset.count
- general.dataset.{id}.name
- general.dataset.{id}.author
- general.dataset.{id}.version
- general.dataset.{id}.organization
- general.dataset.{id}.description
- general.dataset.{id}.url
- general.dataset.{id}.doi
- general.dataset.{id}.uuid
- general.dataset.{id}.repo_url
This also adds to base model these metadata:
- general.base_model.{id}.description
* Fixes broken build for the SYCL CUDA backend caused by non-explicit gemm call in outprod (merged in with RWKV6 in
Optimize RWKV6 Operator Naming and Implement Multi-core CPU/ SYCL Acceleration #10133)
* Marks permuted MUL_MAT as unsupported to be able to run test-backend-ops
* Fixes asserts in norm to fix debug builds.
* tests: Fix memory bandwidth calculation for perf tests
Add a flops calculation for flash attention.
Add one GGML_OP_CPY perf test.
* vulkan: Optimize contiguous copies
Add a variant of the copy shader for when the tensors are contiguous. Avoid
the complex addressing calculations, and do four elements per invocation
to hide some other overhead.
Apply similar changes to the scale shader, since scale is always contiguous.
Add a "progress bar" for shader compiles.
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-musa.Dockerfile platforms:linux/amd64 tag:full-musa]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-musa.Dockerfile platforms:linux/amd64 tag:light-musa]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-musa.Dockerfile platforms:linux/amd64 tag:server-musa]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Has been cancelled
Nix CI / nix-eval (macos-latest) (push) Has been cancelled
Nix CI / nix-eval (ubuntu-latest) (push) Has been cancelled
Nix CI / nix-build (macos-latest) (push) Has been cancelled
Nix CI / nix-build (ubuntu-latest) (push) Has been cancelled
flake8 Lint / Lint (push) Has been cancelled
Fixes#9582
Spawning too many concurrent copies of glslc leads to "Failed to create pipes"
errors on Linux. This change applies the same throttling we use for
multithreaded pipeline creation.
* Add back samplers to server
* Added tooltips with basic information
* Fixed stretching of input fields.
* use component for settings input, move help msg to tooltips
---------
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
This change upstreams llamafile's cpu matrix
multiplication kernels for ppc64le using MMA
builtins for FP32 datatype.
This change results in a consistent 90%
improvement in input processing time, and 20%
to 80% improvement in output processing time,
across various batch sizes.
The patch is tested with Meta-Lllama-3-8B,
Mistral-7B, Llama-2-7B-chat-hf models on a
IBM POWER10 machine.
Signed-off-by: Amrita H S <amritahs@linux.vnet.ibm.com>
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-musa.Dockerfile platforms:linux/amd64 tag:full-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-musa.Dockerfile platforms:linux/amd64 tag:light-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-musa.Dockerfile platforms:linux/amd64 tag:server-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
* metal : opt-in compile flag for BF16
ggml-ci
* ci : use BF16
ggml-ci
* swift : switch back to v12
* metal : has_float -> use_float
ggml-ci
* metal : fix BF16 check in MSL
ggml-ci
* ggml : add ggml_flash_attn_ext_get_prec
* metal : use F16 precision in FA kernels
ggml-ci
* metal : minor clean-up
* metal : compile-guard bf16 FA kernels
ggml-ci
* build : remove obsolete compile flag [no ci]
* metal : prevent int overflows [no ci]
* cuda : disable BF16 FA
ggml-ci
* metal : fix BF16 requirement for FA kernels
ggml-ci
* make : clean-up [no ci]
* server : simple chat UI with vuejs and daisyui
* move old files to legacy folder
* embed deps into binary
* basic markdown support
* add conversation history, save to localStorage
* fix bg-base classes
* save theme preferences
* fix tests
* regenerate, edit, copy buttons
* small fixes
* docs: how to use legacy ui
* better error handling
* make CORS preflight more explicit
* add GET method for CORS
* fix tests
* clean up a bit
* better auto scroll
* small fixes
* use collapse-arrow
* fix closeAndSaveConfigDialog
* small fix
* remove console.log
* fix style for <pre> element
* lighter bubble color (less distract when reading)
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-musa.Dockerfile platforms:linux/amd64 tag:full-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-musa.Dockerfile platforms:linux/amd64 tag:light-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-musa.Dockerfile platforms:linux/amd64 tag:server-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
* rwkv6: rename to wkv6
* rwkv6: support avx2 avx512 armv8 armv9
* rwkv6: update cuda file name
* rwkv6: rename params
* wkv on sycl
* sycl: add some ops
* sycl: Enhance OP support judgment
* wkv6: drop armv9 and tranfer to GGML style
ggml-ci
* sync : ggml
* update the function to use appropriate types
* fix define error
* Update ggml/src/ggml-cpu.c
* add appropriate asserts
* move element-wise functions outside
* put the declaration outside the loop
* rewrite to be more inline with the common pattern for distributing threads
* use recommended way GGML_TENSOR_LOCALS
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Diego Devesa <slarengh@gmail.com>
Co-authored-by: Plamen Minev <pacominev@gmail.com>
Co-authored-by: Yuri Khrustalev <ykhrustalev@users.noreply.github.com>
Co-authored-by: Meng, Hengyu <airdldl@163.com>
* ggml : add initial BF16 support
ggml-ci
* metal : add mul_mat_id BF16 support
ggml-ci
* metal : check for bfloat support on the Metal device
ggml-ci
* metal : better var names [no ci]
* metal : do not build bfloat kernels when not supported
ggml-ci
* metal : try to fix BF16 support check
ggml-ci
* metal : this should correctly check bfloat support
* metal : add quantized FA (vec) support
ggml-ci
* metal : add quantized FA (non-vec) support
* metal : fix support check
ggml-ci
* metal : clean-up
* metal : clean-up (cont)
* metal : fix shared memory calc + reduce smem + comments
* metal : float-correctness
* metal : minor [no ci]
* q6_k instruction reordering attempt
* better subtract method
* should be theoretically faster
small improvement with shuffle lut, likely because all loads are already done at that stage
* optimize bit fiddling
* handle -32 offset separately. bsums exists for a reason!
* use shift
* Update ggml-quants.c
* have to update ci macos version to 13 as 12 doesnt work now. 13 is still x86
* convert-lora : make `--base` optional
* lint
* handle case where base_model_name_or_path is invalid
* do not include metadata from base model
* clarify unspecified --base
* add small comment [no ci]
* trigger ci
* llama : fix buffer checks for mamba and rwk
* llama : fix missing worst case flag during reserve
* cuda : fix supports_op for norm
* disable sched SET_CAUSE
* ggml : fix gguf string leak when reading kv pairs fails
* ggml : avoid crashing with GGML_ABORT when the KV has an invalid type
* ggml : avoid crashing on failed memory allocations when loading a gguf file
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-musa.Dockerfile platforms:linux/amd64 tag:full-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-musa.Dockerfile platforms:linux/amd64 tag:light-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-musa.Dockerfile platforms:linux/amd64 tag:server-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
* ggml: Add POOL2D OP for GPU ACC to the Vulkan.
- The MobileVLM model now supports inference acceleration through GPU by utilizing the Vulkan backend.
- A GGML_OP_POOL_2D shader has been added. (Pooling)
- The encoding performance of the CLIP model improved from 2.8s on the CPU to 0.7s on the GPU.
Signed-off-by: Changyeon Kim <cyzero.kim@samsung.com>
* [fix] Correct the incorrect order of the parameters.
fix casting to int.
Signed-off-by: Changyeon Kim <cyzero.kim@samsung.com>
---------
Signed-off-by: Changyeon Kim <cyzero.kim@samsung.com>
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-musa.Dockerfile platforms:linux/amd64 tag:full-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-musa.Dockerfile platforms:linux/amd64 tag:light-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-musa.Dockerfile platforms:linux/amd64 tag:server-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Nix aarch64 builds / nix-build-aarch64 (push) Has been cancelled
* Add granite template to llama.cpp
* Add granite template to test-chat-template.cpp
* Update src/llama.cpp
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
* Update tests/test-chat-template.cpp
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
* Added proper template and expected output
* Small change to \n
Small change to \n
* Add code space &
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
* Fix spacing
* Apply suggestions from code review
* Update src/llama.cpp
---------
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
* metal : support permuted matrix multiplicaions
ggml-ci
* cont : use nb01 directly for row steps
ggml-ci
* cont : add comments [no ci]
* metal : minor refactor
* metal : minor
* llama: Refactor string_split to use template specialization, fixes parsing strings with spaces
* llama: Add static_assert in the string_split template to ensure the correct template specialization is used for std::string
This commit removes the setting of the `used` field of the contexts in
the global state (g_state) in `ggml_init`.
The motivation for this change is that I believe that this additional
initialization might not be required after the changes in Commit
45fc4fed0b9fb5b1af4a8525cbebb95e11208732 ("sync : latest changes from
whisper.cpp"), which changed the initialization of the contexts field
from `{ 0 }` to `{ { 0 } }`:
```console
g_state = (struct ggml_state) {
- /*.contexts =*/ { 0 },
+ /*.contexts =*/ { { 0 } },
};
```
My understanding is that the `{0}` initialization might not have
zero-initialized all the nested fields in every array element because of
compiler differences, and might have been the reason for having the
explicit setting of the `used` fields to false.
* added classic vim support
* fixed ring update, removed blank line
* minor
* minor
* minor doc update
* removed uneeded var
* minor
* minor
* fixed job_start creating new scratch buffers
* fixed job_start creating new scratch buffers
* fixed ghost text indenting when expandtab is on
* removed unused code
* minor
* unified fim_on_exit
* minor
* vim ghost text rendering now uses pos_x and pos_y parameters
* renamed *_hlgroup to hlgroup_*
* renamed *_ghost_text to ghost_text_*, moved nvim/vim detection to llama#init()
* minor
---------
Co-authored-by: Michael Coppola <info@michaeljcoppola.com>
This commit renames the member field batch in llm_build_context to
ubatch, and also the parameter batch in llama_build_graph, and
llama_set_inputs to ubatch.
The motivation for this change is to make the code more readable
(considering there are the structs llama_batch and llama_sbatch), and
consistent with other parts of the code base where parameters/fields of
type llama_ubatch are named ubatch.
* [CANN] Adapt to dynamically loadable backends mechanism
* Fix the Bug: inference running result is garbled in debug running model for LM models who's type is Q4_0 class
* Handle the review comments of this pull request
This commit fixes two typos in the help text for the `--embd-normalize`
and `--embd-separator` arguments. It also updates common.h which contain
the same typo in two comments.
This commit updates the argument value hint for the `--attention`
argument to `non-causal`.
The motivation for this change is that the only values for this argument
are `causal` and `non-causal`.
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-musa.Dockerfile platforms:linux/amd64 tag:full-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-musa.Dockerfile platforms:linux/amd64 tag:light-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-musa.Dockerfile platforms:linux/amd64 tag:server-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
* llama : deprecate softmax sampler + fix dist sampler
ggml-ci
* tests : replace macros with functions
ggml-ci
* sampling : change temperature sampler logic
For t <= 0.0f, keep the max logit intact and set the rest to -inf
* cont : no need for special "greedy" logic
top-k == 1 is the same
* tests : init prob correctly
* llama : handle temp <= 0.0 in the temp_ext sampler too
ggml-ci
* cont : avoid extra loop in temperature sampler for sub-zero temp
ggml-ci
llama_cpp_canister allows you to run llama.cpp as a Smart Contract on the Internet Computer. The smart contract runs as WebAssembly in a so-called 'canister'.
add intel amx isa detection
add vnni kernel for gemv cases
add vnni and amx kernel support for block_q8_0
code cleanup
fix packing B issue
enable openmp
fine tune amx kernel
switch to aten parallel pattern
add error message for nested parallelism
code cleanup
add f16 support in ggml-amx
add amx kernels for QK_K quant formats: Q4_K, Q5_K, Q6_K and IQ4_XS
update CMakeList
update README
fix some compilation warning
fix compiler warning when amx is not enabled
minor change
ggml-ci
move ggml_amx_init from ggml.c to ggml-amx/mmq.cpp
ggml-ci
update CMakeLists with -mamx-tile, -mamx-int8 and -mamx-bf16
ggml-ci
add amx as an ggml-backend
update header file, the old path for immintrin.h has changed to ggml-cpu-impl.h
minor change
update CMakeLists.txt
minor change
apply weight prepacking in set_tensor method in ggml-backend
fix compile error
ggml-ci
minor change
ggml-ci
update CMakeLists.txt
ggml-ci
add march dependency
minor change
ggml-ci
change ggml_backend_buffer_is_host to return false for amx backend
ggml-ci
fix supports_op
use device reg for AMX backend
ggml-ci
minor change
ggml-ci
minor change
fix rebase
set .buffer_from_host_ptr to be false for AMX backend
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-musa.Dockerfile platforms:linux/amd64 tag:full-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-musa.Dockerfile platforms:linux/amd64 tag:light-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-musa.Dockerfile platforms:linux/amd64 tag:server-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Has been cancelled
* fix: use `vm_allocate` to allocate CPU backend buffer on macOS
* fix: switch to `posix_memalign` to keep existing `free()` usages work
* feat: move `GGML_ALIGNED_MALLOC` to `ggml-backend-impl.h`, add support for `vm_allocate` on macOS
* style: formatting
* fix: move const outside of `#ifndef`
* style: formatting
* fix: unused var
* fix: transform `GGML_ALIGNED_MALLOC` and `GGML_ALIGNED_FREE` into functions and add them to `ggml-impl.h`
* fix: unused var
* fix: page align to `GGUF_DEFAULT_ALIGNMENT`
* fix: page align to `TENSOR_ALIGNMENT`
* fix: convert `TENSOR_ALIGNMENT` to a macro
* fix: increase page size to `32` on iOS
* fix: iOS page size
* fix: `hbw_posix_memalign` alignment
* llama : suppress conversion from 'size_t' to 'int'
This commit updates llm_tokenizer_spm.tokenize to suppress/remove the
following warnings that are generated on Windows when using MSVC:
```console
src\llama-vocab.cpp(211,1): warning C4267: 'argument':
conversion from 'size_t' to 'int', possible loss of data
src\llama-vocab.cpp(517,1): warning C4267: 'argument':
conversion from 'size_t' to 'int', possible loss of data
```
This is done by adding a cast for the size_t returned from
symbols.size(). I believe this is safe as it seems unlikely that
symbols, which stores an entry for each UTF8 character, would become
larger than INT_MAX.
The motivation for this change is to reduce the number of warnings that
are currently generated when building on Windows.
* squash! llama : suppress conversion from 'size_t' to 'int'
Move cast into for loop.
Prior to this commit, using a JSON Schema containing a string
with `pattern` regular expression that uses top-level alternation
(e.g. `"pattern": "^A|B|C|D$"`) would result in invalid JSON
output from the constrained sampling grammar, because it
ended up creating a grammar rule like this for the string:
```
thing ::= "\"" "A" | "B" | "C" | "D" "\"" space
```
Note that this rule will only match a starting quote for the "A" case,
and will only match an ending quote for the "D" case,
so this rule will always produce invalid JSON when used for sampling
(that is, the JSON will always be lacking the starting quote,
the ending quote, or both).
This was fixed in a simple way by adding parentheses to the
generated rule (for all string pattern rules, to keep it simple),
such that the new generated rule looks like this (correct):
```
thing ::= "\"" ("A" | "B" | "C" | "D") "\"" space
```
This commit removes the buffer_id field from the leaf_alloc struct.
The motivation for is that this field is only written to and never
read/used as far as I can tell. Each tensor_alloc has a buffer_id field
and this is what caused me to look into this more closely, to
understand what the buffer_id in leaf_alloc was used for.
* Initial XTC commit
Adds XTC sampler, not activated by default, but recommended settings by default.
* Cleanup
* Simplified chances calculation
To be more inline with the original implementation, chance is calculated once at the beginning.
* First fixes by comments
Still need to look into sorting
* Fixed trailing backspaces
* Fixed RNG to be reproduceable
Thanks to @slaren for directions
* Fixed forgotten header
* Moved `min_keep`
Moved from conditions to a simple check at the end.
* Fixed broken randomization
Thanks to @slaren for explanation
* Swapped sorting for a custom algorithm
Shifts tokens to remove the penalized ones, then puts the penalized at the back. Should make `min_keep` still viable.
* Algorithm rework
1. Scan token from top till the first non-penalizable
2. Remove the last captured token (the least probable above threshold)
3. Shift all tokens to override the remaining penalizable
4. Penalize and put them at the the bottom.
* Added XTC to `test-sampling`
* Simplified algorithm and more tests
* Updated info in common and args
* Merged back lost commits in common and arg
* Update dump info in common
* Fixed incorrect min_keep check
* Added XTC to README
* Renamed parameters, fixed info and defaults
* probability is at 0 by default, but XTC is included in sampling queue
* threshold higher than 0.5 switches XTC off
* Initial server support
* Added XTC to server UIs
* Fixed labels in old server UI
* Made algorithm safer and more readable
* Removed xtc_threshold_max
* Fixed arg after update
* Quick fixes by comments
* Simplified algorithm since threshold_max is removed
* Renamed random distribution
* Fixed tests and outdated README
* Small fixes
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-musa.Dockerfile platforms:linux/amd64 tag:full-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-musa.Dockerfile platforms:linux/amd64 tag:light-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-musa.Dockerfile platforms:linux/amd64 tag:server-musa]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
* Vectorize load instructions in dmmv f16 CUDA kernel
Replaces scalar with vector load instructions, which substantially
improves performance on NVIDIA HBM GPUs, e.g. gives a 1.27X overall
speedup for Meta-Llama-3-8B-Instruct-F16 BS1 inference evaluation on
H100 SXM 80GB HBM3. On GDDR GPUs, there is a slight (1.01X) speedup.
* addressed comment
* Update ggml/src/ggml-cuda/dmmv.cu
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* server : accept extra_context for the infill endpoint
ggml-ci
* server : update readme [no ci]
* server : use repo-level FIM pattern if possible
ggml-ci
* llama : improve infill support
ggml-ci
* llama : add more FIM token strings
ggml-ci
* server : update prompt on slot restore (#9800)
* gguf : deprecate old FIM token KVs
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
* ggml : do not use BLAS with types without to_float
* ggml : return pointer from ggml_internal_get_type_traits to avoid unnecessary copies
* ggml : rename ggml_internal_get_type_traits -> ggml_get_type_traits
it's not really internal if everybody uses it
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Nix aarch64 builds / nix-build-aarch64 (push) Has been cancelled
* docs : clarify building Android on Termux
* docs : update building Android on Termux
* docs : add cross-compiling for Android
* cmake : link dl explicitly for Android
* ggml : add metal backend registry / device
ggml-ci
* metal : fix names [no ci]
* metal : global registry and device instances
ggml-ci
* cont : alternative initialization of global objects
ggml-ci
* llama : adapt to backend changes
ggml-ci
* fixes
* metal : fix indent
* metal : fix build when MTLGPUFamilyApple3 is not available
ggml-ci
* fix merge
* metal : avoid unnecessary singleton accesses
ggml-ci
* metal : minor fix [no ci]
* metal : g_state -> g_ggml_ctx_dev_main [no ci]
* metal : avoid reference of device context in the backend context
ggml-ci
* metal : minor [no ci]
* metal : fix maxTransferRate check
* metal : remove transfer rate stuff
---------
Co-authored-by: slaren <slarengh@gmail.com>
* Single allocation of encode_async block with non-ARC capture in ggml-metal.m
* Moving Block_release to the deallocation code
* Release encode block when re-setting encoding buffer count if needed
* Update ggml/src/ggml-metal.m
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
update-flake-lock / lockfile (push) Has been cancelled
* rerank : use [SEP] token instead of [BOS]
ggml-ci
* common : sanity check for non-NULL tokens
ggml-ci
* ci : adjust rank score interval
ggml-ci
* ci : add shebang to run.sh
ggml-ci
* Add scaffolding for ggml logging macros
* Metal backend now uses GGML logging
* Cuda backend now uses GGML logging
* Cann backend now uses GGML logging
* Add enum tag to parameters
* Use C memory allocation funcs
* Fix compile error
* Use GGML_LOG instead of GGML_PRINT
* Rename llama_state to llama_logger_state
* Prevent null format string
* Fix whitespace
* Remove log callbacks from ggml backends
* Remove cuda log statement
* vulkan : do not use tensor->extra
This patch allows using the Vulkan backend with the RPC backend as
tensor->extra is no longer used.
Ref: #8536
* Adapt GGML_VULKAN_CHECK_RESULTS to extra removal (#2)
---------
Co-authored-by: 0cc4m <picard12@live.de>
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
* make sure params --split and --merge are not specified at same time
* update gguf-split params parse logic
* Update examples/gguf-split/gguf-split.cpp
Co-authored-by: slaren <slarengh@gmail.com>
---------
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
When the device's warp size is less than 16,
it is possible for loadstride_a (mul_mm.comp:114)
and loadstride_b (mul_mm.comp:115) to be set to 0.
Because they are calculated as: the workgroup size,
multiplied by LOAD_VEC_* (which can be 1) and divided by 16.
And the workgroup size is set to be the same as the
warp/subgroup size.
The loadstride_* variables are used as increments in the
loops that populate the buffers used for the multiplication.
When they are 0 they cause an infinite loop.
But infinite loops without side-effects are UB and the
values of loadstride_* are known at compile time.
So, the compiler quietly optimizes all the loops away.
As a consequence, the buffers are not populated and
the multiplication result is just a matrix with all elements
set to 0.
We prevent the UB by making sure that the workgroup size
will never be less than 16, even if our device has a
smaller warp size (e.g. 8).
Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python check requirements.txt / check-requirements (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
* convert : refactor rope_freqs generation
This should also fix vocab-only conversion for Phi-3.
* convert : adapt MiniCPM3 to separate rope_freqs insertion
MiniCPM3's tokenizer is treated as a SentencePiece tokenizer to avoid
having to run its custom Python code which mixes tokenization
in the same file as tool calls.
gguf-py : add long and short RoPE factors to tensor mappings
Empty, but the key names are used to populate the mappings.
a return before a barrier (that happens only in some threads in
a workgroup) leads to UB.
While the old code actually works on some devices,
it fails on some others (i.e. "smaller" GPUs).
BTW, I think it would be better to set specialization constants
when the graph is built, in that way the local workgroup
could be sized appropriately.
But it would take a lot of work.
Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>
A crash was observed when the number of tokens added to a batch exceeds
llama_batch size. An assertion in llama_batch_add was added to protect
against llama_batch size overflow.
* test-backend-ops : use flops for some performance tests
- parallelize tensor quantization
- use a different set of cases for performance and correctness tests
- run each test for at least one second
* ggml: Added run-time detection of neon, i8mm and sve
Adds run-time detection of the Arm instructions set features
neon, i8mm and sve for Linux and Apple build targets.
* ggml: Extend feature detection to include non aarch64 Arm arch
* ggml: Move definition of ggml_arm_arch_features to the global data section
* ggml : remove assert for AArch64 GEMV and GEMM Q4 kernels
* added fallback mechanism when the offline re-quantized model is not
optimized for the underlying target.
* fix for build errors
* remove prints from the low-level code
* Rebase to the latest upstream
* feat(gguf-py): Add granitemoe architecture
This includes the addition of new tensor names for the new moe layers.
These may not be correct at this point due to the need for the hack in
gguf_writer.py to double-check the length of the shape for these layers.
Branch: GraniteMoE
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat(convert_hf_to_gguf): Add GraniteMoeModel
GraniteMoe has the same configuration deltas as Granite
Branch: GraniteMoE
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(granitemoe convert): Split the double-sized input layer into gate and up
After a lot of staring and squinting, it's clear that the standard mixtral
expert implementation is equivalent to the vectorized parallel experts in
granite. The difference is that in granite, the w1 and w3 are concatenated
into a single tensor "input_linear." Rather than reimplementing all of the
math on the llama.cpp side, the much simpler route is to just split this
tensor during conversion and follow the standard mixtral route.
Branch: GraniteMoE
Co-Authored-By: alex.brooks@ibm.com
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat(granitemoe): Implement granitemoe
GraniteMoE follows the mixtral architecture (once the input_linear layers
are split into gate_exps/up_exps). The main delta is the addition of the
same four multipliers used in Granite.
Branch: GraniteMoE
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* Typo fix in docstring
Co-Authored-By: ggerganov@gmail.com
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(conversion): Simplify tensor name mapping in conversion
Branch: GraniteMoE
Co-Authored-By: git@compilade.net
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(convert): Remove unused tensor name mappings
Branch: GraniteMoE
Co-Authored-By: git@compilade.net
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(convert): Sanity check on merged FFN tensor sizes
Branch: GraniteMoE
Co-Authored-By: git@compilade.net
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Allow "output" layer in granite moe architecture (convert and cpp)
Branch: GraniteMoE
Co-Authored-By: git@compilade.net
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(granite): Add missing 'output' tensor for Granite
This is a fix for the previous `granite` architecture PR. Recent snapshots
have included this (`lm_head.weights`) as part of the architecture
Branch: GraniteMoE
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
---------
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* server : add --no-context-shift option
* small fix
* Update examples/server/tests/features/embeddings.feature
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* tests : minor fix
* revert usage of GGML_ASSERT
* update server documentation
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Make sure n_barrier and n_barrier_passed do not share the cache line to avoid cache line bouncing.
This optimization shows performance improvements even for n_threads <= 8 cases.
Resurect TSAN (Thread Sanitizer) check so that we can avoid doing expensive read-modify-write
in the normal case and just use thread-fence as originally intended.
---
Here is the original description and suggestions from Willy Tarreau :
There's currently some false sharing between n_barrier and
n_barrier_passed that is amplified in ggml_barrier() by the fact that
all threads need to increment n_barrier when entering, while all
previous threads continue to read n_barrier_passed, waiting for the last
one to release them all. The side effect is that all these readers are
slowing down all new threads by making the cache line bounce back and
forth between readers and writers.
Just placing them in two distinct cache lines is sufficient to boost
the performance by 21% on a 80-core ARM server compared to the
no-openmp version, and by 3% compared to the openmp version.
Note that the variables could have been spread apart in the structure
as well, but it doesn't seem that the size of this threadpool struct is
critical so here we're simply aligning them.
Finally, the same issue was present when leaving the barrier since all
threads had to update the n_barrier_passed counter, though only one
would add a non-zero value. This alone is responsible for half of the
cost due to undesired serialization.
It might be possible that using a small array of n_barrier counters
could make things even faster on many-core systems, but it would likely
complicate the logic needed to detect the last thread.
Co-authored-by: Willy Tarreau <w@1wt.eu>
* AVX512 version of ggml_gemm_q4_0_8x8_q8_0
* Remove zero vector parameter passing
* Rename functions and rearrange order of macros
* Edit commments
* style : minor adjustments
* Update x to start from 0
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit updates the llama_sampler_sample function to use reserve and
emplace_back for the vector of llama_token_data structs.
The motivation for this change is to avoid the creation of n_vocab
default-constructed llama_token_data structs which are then
immediately overwritten.
* llama: fixed n_vocab for `no_vocab` models
* llama: updated error output for `llama_decode_internal` and `llama_encode_internal`
* llama: log warning if there's no vocab_size in metadata
* llama: correct vocab size for logging
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* threadpool: skip polling for unused threads
Currently all threads do N polling rounds even if only 1 thread is active (n_threads_cur == 1).
This commit adds a check to skip the polling for unused threads (ith >= n_threads_cur).
n_threads_cur is now an atomic_int to explicitly tell thread sanitizer that it is written
from one thread and read from other threads (not a race conditions).
* threadpool: further simplify and improve ggml_barrier
Avoid using strict memory order while polling, yet make sure that all threads go through
full memory barrier (memory fence) on ggml_barrier entrace and exit.
* threads: add simple barrier test
This test does lots of small, parallel matmul ops where the barriers in between dominate the overhead.
* threadpool: improve thread sync for new-graphs
Using the same tricks as ggml_barrier. All the polling is done with relaxed memory order
to keep it efficient, once the new graph is detected we do full fence using read-modify-write
with strict memory order.
* threadpool: improve abort handling
Do not use threadpool->ec (exit code) to decide whether to exit the compute loop.
threadpool->ec is not atomic which makes thread-sanitizer rightfully unhappy about it.
Instead introduce atomic threadpool->abort flag used for this. This is consistent with
how we handle threadpool->stop or pause.
While at it add an explicit atomic_load for n_threads_cur for consistency.
* test-barrier: release threadpool before releasing the context
fixes use-after-free detected by gcc thread-sanitizer on x86-64
for some reason llvm sanitizer is not detecting this issue.
* feat(gguf-py): Add Granite model and params to gguf-py
Branch: GraniteLM
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat(convert_hf_to_gguf): Add registration and param setup for Granite
Branch: GraniteLM
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat(llama.cpp): Add config parsing for Granite multiplier params
Branch: GraniteLM
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat(llama.cpp): First pass at full port of granite deviations from llama
Something is still not working right since the results are mostly terrible,
but on occasion it's producing relevant results at this point, so
_something_ is working.
Branch: GraniteLM
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama.cpp): Determine granite language 3b instruct by vocab size
Branch: GraniteLM
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(convert_hf_to_gguf): Use LlamaModel as base for GraniteModel
The defaults in LlamaModel are needed for Granite as well
Branch: GraniteLM
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama.cpp): Switch Granite param names to use _scale for consistency
Other scalar multipliers are called *_scale, so this provides a more
consistent naming convention.
Branch: GraniteLM
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(convert_hf_to_gguf/gguf-py): _multiplier -> _scale
The transformers names with _multiplier will now be converted to the _scale
equivalent during conversion.
Branch: GraniteLM
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama.cpp): Use separate switch clause for granite in llm_load_hparams
Branch: GraniteLM
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
---------
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
This commit renames n_embed to n_embd in llm_build_rwkv6_time_mix.
The motivation for this change is consistency with the other rwkv6
functions like build_rwkv6 (and other parts of the code base).
* added cli arg to disable context shift
* reverted precommit
* updated README.md for main
* white space
* allow disabling context shift in the server
* Update common/arg.cpp
no-context-shift only works for main example
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* added server example to --no-context-shift args
* removed server changes
* white space
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit makes the cell_id variable const in the inp_s_mask block.
The motivation for this change is consistency with the code in the
inp_s_copy block.
* Adding loading page for '/' server requests
* set content when model is loading
* removed loading html file
* updated cmakelist
* updated makefile
* cleaned up whitespace
* cleanup for PR removed error
* updated server test to handle 503 HTML
* updated server test to handle 503 HTML
* ca†ch 503 before parsing json
* revert test
* account for both api and web browser requests
* precommit corrections
* eol fix
* revert changes to pre-commit
* removed print statement
* made loading message more descriptive
* also support .html files
---------
Co-authored-by: VJHack <flymyplane21@gmail.com>
Co-authored-by: Vinesh Janarthanan <36610342+VJHack@users.noreply.github.com>
* llama : llama_perf + option to disable timings during decode
ggml-ci
* common : add llama_arg
* Update src/llama.cpp
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
* perf : separate functions in the API
ggml-ci
* perf : safer pointer handling + naming update
ggml-ci
* minor : better local var name
* perf : abort on invalid sampler pointer
ggml-ci
---------
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
* server : added with_pieces functionality to /tokenize endpoint
* server : Add tokenize with pieces tests to server.feature
* Handle case if tokenizer splits along utf8 continuation bytes
* Add example of token splitting
* Remove trailing ws
* Fix trailing ws
* Maybe fix ci
* maybe this fix windows ci?
---------
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
* feat: Implements retrying logic for downloading models using --model-url flag
* Update common/common.cpp
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
* Update common/common.cpp
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
* apply comments
* implements a retry function to avoid duplication
* fix editorconfig
* change function name
---------
Co-authored-by: farbod <farbod.bjary82@gmail.com>
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
This commit updates the comment, which seems to contain a typo or be an
outdated comment, in the copy_mask_state function changing the variable
n_rs to n_kv.
I believe this change is correct and what the comment wants to
convey is to copy the states that are not going to be used in the
upcoming processing, which are the tokens states from n_seqs up to
the number of possible token states n_kv.
* Arm AArch64: Documentation updates
* Update docs/build.md to include information on how to enable the Arm optimized gemm/gemv kernels
* Update examples/quantize/README.md with information on the Q4_0_4_4, Q4_0_4_8 and Q4_0_8_8 formats
* Add newline to the end of docs/build.md
* Overlap cmdbuffer creation and cmdbuffer execution in Vulkan backend by submitting smaller cmdbuffers early.
* fix compile issues
* Fix issues where the last submit wasn't executed or handled properly.
* remove trailing whitespace
* Repair GGML_VULKAN_CHECK_RESULTS
* Increase submit counter only if actual work has been submitted and increase submit count to 100.
* Fix some nodes are not checked with GGML_VULKAN_CHECK_RESULTS enabled.
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Has been cancelled
Nix CI / nix-eval (macos-latest) (push) Has been cancelled
Nix CI / nix-eval (ubuntu-latest) (push) Has been cancelled
Nix CI / nix-build (macos-latest) (push) Has been cancelled
Nix CI / nix-build (ubuntu-latest) (push) Has been cancelled
flake8 Lint / Lint (push) Has been cancelled
* add check malloc result on device
* update for review comments, check all malloc_device() result
---------
Co-authored-by: arthw <14088817+arthw@users.noreply.github.com>
sin and cos failed test-backend-ops because they
tried to dereference a context pointer that is null
on dry runs.
This commit prevents that segfault.
Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>
test-backend-ops fails because ggml_cont aborts
when invoked passing an unsupported type.
This commit makes ggml_cont tests pass
Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>
* tests: add gradient checking to test-backend-ops
* remove old comment
* reorder includes
* adjust SIN/COS parameters
* add documentation, use supports_op if possible
* ggml_cont: fix issue with transposed tensors when one dimension is 1
when using multiple threads, it is not enough
to check for the tensors to be contiguous for
ggml_compute_forward_dup_same_cont to work correctly.
The tensors strides also need to match.
Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>
* Add ggml_cont tests
Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>
* Remove dead code
it isn't possible to reach this code because
all these functions are invoked by ggml_compute_forward_dup
if and only if src0->type != dst->type
Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>
* Make ggml_compute_forward_dup_same_cont work with contiguous tensors
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>
---------
Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* common : do not add null tokens during warmup
ggml-ci
* llama : check that the input tokens are valid
ggml-ci
* tests : fix batch size of bert model
ggml-ci
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
update-flake-lock / lockfile (push) Has been cancelled
- Add `struct llama_sampler` and `struct llama_sampler_i`
- Add `llama_sampler_` API
- Add `llama_sampler_chain_` API for chaining multiple samplers
- Remove `LLAMA_API_INTERNAL`
- Add `llama_perf_` API and remove old `llama_print_timings` and `llama_reset_timings`
* Improve Vulkan shader builds system
- Add dependency to vulkan-shaders-gen to rebuild shaders when changing the shader compilation utility.
- Add option to generate debug info for Vulkan shaders to provide shader source to Vulkan shader profiling tools
* remove not required self dependency
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:light-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:server-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
Python check requirements.txt / check-requirements (push) Has been cancelled
* ggml-quants : 1.625 bpw ternary packing for BitNet 1.58b
* ggml-quants : faster 1.625 bpw AVX2 vec_dot
Not using a lookup table anymore makes it match q4_0 speed.
* gguf-py : fix formatting
* llama : remove spaces on empty line
* ggml-quants : subtract 1 when back in epi8
This makes the 1.625 bpw type go faster than q4_0. Still not the fastest.
* ggml-quants : Q2_2 now faster than Q4_K on with AVX2
* ggml-quants : cleanup Q1_3 code formatting
* ggml-quants : ARM NEON vec_dot for q2_2 and q1_3
* ggml-quants : use ceiling division when quantizing q1_3
* convert-hf : simplify BitNet pre-quantization
This still results in the exact same tensor weights and scales,
but it reveals some weirdness in the current algorithm.
* convert-hf : allow converting the weird BitNet 1.3B
Its FFN size is 5460 which is not convenient.
The offending tensors are kept in F16,
which makes the final model 5.01 bpw.
* bitnet : replace 1.58b with b1.58, as in the paper
* ggml-quants : fix build failure on Windows
* ggml-quants : attempt to fix Arm 32-bit support
* ggml : add some informative comments in q1_3 vec_dot
* ggml : add TQ1_0 and TQ2_0 ternary quantization types
* ggml : even faster TQ2_0
* ggml : also faster TQ1_0
Same optimization as for TQ2_0 by offsetting the sum instead of the weights.
This makes TQ1_0 almost as fast as Q8_0 on AVX2.
* ggml : fix build issues in certain environments
* ggml : add NEON vec_dot implementation for TQ1_0 and TQ2_0
* ggml : avoid directly using vmlal_high_s8, for 32-bit ARM compat
The compiler seems smart enough to use the same instruction
even when using vget_high_s8 instead.
* ggml : remove q1_3 and q2_2
No more 1.625 bpw and 2.000 bpw,
now instead using 1.6875 bpw and 2.0625 bpw
with TQ1_0 and TQ2_0, respectively.
* llama : remove the separate scale tensors of BitNet b1.58
They won't be needed, since the remaining ternary quant types have
built-in scales.
* ggml-quants : rename fields of TQ1_0 and TQ2_0 structs for consistency
* ggml-quants : allow using vdotq_s32 in TQ2_0 vec_dot
Not yet tested on hardware which supports it,
might not work or might not even compile. But also it might.
It should make the performance better on recent ARM CPUs.
* ggml-quants : remove comment about possible format change of TQ2_0
Making it slightly more convenient for AVX512
but less convenient for everything else is not worth the trouble.
* gguf-py : Numpy (de)quantization for TQ1_0 and TQ2_0
* ggml-quants : use roundf instead of nearest_int for TQ1_0 and TQ2_0
This does not change anything for ternary models,
since their values should never end up being in halfway cases anyway.
* convert : allow direct conversion to TQ1_0 and TQ2_0
The token embeddings and output tensors are kept in F16
to allow quantizing them to Q4_K and Q6_K with llama-quantize.
* llama : handle fallback for TQ1_0 and TQ2_0 with Q4_0
Q4_0 is not completely symmetric (so not lossless for ternary models),
but it should be good enough.
* ggml-quants : allow using ARM dot product instructions for TQ1_0
* ggml-quants : deduplicate TQ1_0 and TQ2_0 __ARM_FEATURE_DOTPROD support
* ggml : remove unused ggml_mul special case
It would otherwise conflict with the more general
optimization coming with Mamba-2.
* ggml : handle TQ1_0 and TQ2_0 in dequantization-based operators
* test-backend-ops : add TQ1_0 and TQ2_0 comments for later
Not yet adding uncommented, because some backends like SYCL and Metal
do not properly handle unknown types in supports_op for GGML_OP_MUL_MAT.
(and Metal also doesn't handle it with GGML_OP_GET_ROWS)
Support for TQ1_0 and TQ2_0 for other backends than CPU
will be added in follow-up pull requests.
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:light-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:server-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
* Add AVX2 based implementations for quantize_q8_0_4x8, ggml_gemv_q4_0_8x8_q8_0 and ggml_gemm_q4_0_8x8_q8_0 functions
* Update code to fix issues occuring due to non alignment of elements to be processed as multiple of 16 in MSVC
* Update comments and indentation
* Make updates to reduce number of load instructions
* server : remove multitask from server_task
* refactor completions handler
* fix embeddings
* use res_ok everywhere
* small change for handle_slots_action
* use unordered_set everywhere
* (try) fix test
* no more "mutable" lambda
* Apply suggestions from code review
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* use deque
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* style: format with nixfmt/rfc101-style
* build(nix): Package gguf-py
* build(nix): Refactor to new scope for gguf-py
* build(nix): Exclude gguf-py from devShells
* build(nix): Refactor gguf-py derivation to take in exact deps
* build(nix): Enable pytestCheckHook and pythonImportsCheck for gguf-py
* build(python): Package python scripts with pyproject.toml
* chore: Cleanup
* dev(nix): Break up python/C devShells
* build(python): Relax pytorch version constraint
Nix has an older version
* chore: Move cmake to nativeBuildInputs for devShell
* fmt: Reconcile formatting with rebase
* style: nix fmt
* cleanup: Remove unncessary __init__.py
* chore: Suggestions from review
- Filter out non-source files from llama-scripts flake derivation
- Clean up unused closure
- Remove scripts devShell
* revert: Bad changes
* dev: Simplify devShells, restore the -extra devShell
* build(nix): Add pyyaml for gguf-py
* chore: Remove some unused bindings
* dev: Add tiktoken to -extra devShells
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:light-rocm]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:server-rocm]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Has been cancelled
Nix aarch64 builds / nix-build-aarch64 (push) Has been cancelled
Nix CI / nix-eval (macos-latest) (push) Has been cancelled
Nix CI / nix-eval (ubuntu-latest) (push) Has been cancelled
Nix CI / nix-build (macos-latest) (push) Has been cancelled
Nix CI / nix-build (ubuntu-latest) (push) Has been cancelled
flake8 Lint / Lint (push) Has been cancelled
update-flake-lock / lockfile (push) Has been cancelled
The CUDA nix build broke when we updated nixpkgs in
8cd1bcfd3f. As far as I can tell all
that happened is cudaPackages.autoAddOpenGLRunpathHook got moved to
pkgs.autoAddDriverRunpath. This commit fixes it.
* Introduce ggml_compute_threadpool
- OpenMP functional: check
- Vanilla ggml functional: Check
- ggml w/threadpool functional: Check
- OpenMP no regression: No glaring problems
- Vanilla ggml no regression: No glaring problems
- ggml w/threadpool no regression: No glaring problems
* Minor fixes
* fixed use after release bug
* fixed a harmless race condition
* Fix Android bulid issue
* fix more race conditions
* fix deadlock for cases where cgraph.n_nodes == 1
and fix --poll case
* threadpool: use cpu_get_num_math to set the default number of threadpool threads
This way we avoid using E-Cores and Hyperthreaded siblings.
* bench: create fresh threadpool for each test
For benchmarking it's better to start a fresh pool for each test with the exact number of threads
needed for that test. Having larger pools is suboptimal (causes more load, etc).
* atomics: always use stdatomics with clang and use relaxed memory order when polling in ggml_barrier
This also removes sched_yield() calls from ggml_barrier() to match OpenMP behavior.
* threadpool: make polling the default to match openmp behavior
All command line args now allow for setting poll to 0 (false).
* threadpool: do not wakeup threads in already paused threadpool
* fix potential race condition in check_for_work
* threadpool: do not create two threadpools if their params are identical
* threadpool: reduce pause/resume/wakeup overhead in common cases
We now start threadpool in paused state only if we have two.
The resume is now implicit (ie new work) which allows for reduced locking and context-switch overhead.
* threadpool: add support for hybrid polling
poll params (--poll, ...) now specify "polling level", i.e. how aggresively we poll before waiting on cond.var.
poll=0 means no polling, 1 means poll for 128K rounds then wait, 2 for 256K rounds, ...
The default value of 50 (ie 50x128K rounds) seems like a decent default across modern platforms.
We can tune this further as things evolve.
* threadpool: reduce the number of barrier required
New work is now indicated with an atomic counter that is incremented for
each new graph that needs to be computed.
This removes the need for extra barrier for clearing the "new_work" and
removes the special case for trivial graphs.
* threadpool: remove special-casing for disposable threadpools
With the efficient hybrid polling there is no need to make disposable pools any different.
This simplifies the overall logic and reduces branching.
Include n_threads in debug print for disposable threadpool.
Declare pause and stop flags as atomic_bool
This doesn't actually generate any memory barriers and simply informs
the thread sanitizer that these flags can be written & read by different
threads without locking.
* threadpool: do not clear barrier counters between graphs computes (fixes race with small graphs)
This fixes the race condition with very small graphs where the main thread happens to
start a new graph while the workers are just about to exit from barriers.
* threadpool: use relaxed order for chunk sync
Full memory barrier is an overkill for this since each thread works on different chunk
* threadpool: remove abort_callback from threadpool state
* threadpool: better naming for thread/cpumask releated functions
* threadpool: consistent use of int type for n_threads params
* threadpool: add support for ggml_threadpool_params_default/init
Also removes the need for explicit mask_specified param.
all-zero cpumask means use default (usually inherited) cpu affinity mask.
* threadpool: move typedef into ggml.h
* threadpool: fix apply_priority() function name
* threadpool: fix swift wrapper errors due to n_threads int type cleanup
* threadpool: enable --cpu-mask and other threadpool related options only if threadpool is enabled
* threadpool: replace checks for compute_thread ret code with proper status check
* threadpool: simplify threadpool init logic and fix main thread affinity application
Most of the init code is now exactly the same between threadpool and openmp.
* threadpool: update threadpool resume/pause function names
* threadpool: enable openmp by default for now
* threadpool: don't forget to free workers state when omp is enabled
* threadpool: avoid updating process priority on the platforms that do not require it
On Windows we need to change overall process priority class in order to set thread priorities,
but on Linux, Mac, etc we do not need to touch the overall process settings.
* threadpool: update calling thread prio and affinity only at start/resume
This avoids extra syscalls for each graph_compute()
* llama-bench: turn threadpool params into vectors, add output headers, etc
* llama-bench: add support for cool off between tests --delay
This helps for long running tests on platforms that are thermally limited (phones, laptops, etc).
--delay (disabled by default) introduces the sleep for N seconds before starting each test.
* threadpool: move process priority setting into the apps (bench and cli)
This avoids changing the overall process priority on Windows for the apps
that use ggml/llama.cpp directy.
* threadpool: move all pause/resume logic into ggml
* threadpool: futher api cleanup and prep for future refactoring
All threadpool related functions and structs use ggml_threadpool prefix.
* threadpool: minor indent fixes
* threadpool: improve setprioty error message
* Update examples/llama-bench/llama-bench.cpp
Co-authored-by: slaren <slarengh@gmail.com>
* threadpool: fix indent in set_threadpool call
* use int32_t for n_thread type in public llama.cpp API
* threadpool: use _new and _free instead of _create and _release
* fix two more public APIs to use int32_t for n_threads
* build: set _GNU_SOURCE for Adroid
---------
Co-authored-by: Max Krasnyansky <quic_maxk@quicinc.com>
Co-authored-by: fmz <quic_fzaghlou@quic.com>
Co-authored-by: Max Krasnyansky <max.krasnyansky@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
This change fixes a bug where replacing text in a very long string could
cause llama.cpp to hang indefinitely. This is because the algorithm used
was quadratic, due to memmove() when s.replace() is called in a loop. It
seems most search results and LLM responses actually provide the O(n**2)
algorithm, which is a great tragedy. Using a builder string fixes things
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:light-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:server-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
* llama : advanced batch splits
This includes equal-sequence-length batch splits which are useful
to simplify recurrent model operators.
* llama : always make recurrent state slots contiguous
* ggml : simplify mamba operators
* llama : fix integer signedness mixing
* llama : logits_all has priority over batch->logits
Otherwise, the server embeddings tests failed.
This was likely an existing problem but was only detected here
because of an additional assertion.
* llama : apply suggestions
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : fix t5 segfault
* llama : fix Mamba session save and restore
* llama : minor cosmetic changes
* llama : rename llama_reorder_outputs to llama_output_reorder
Also move it closer to llama_output_reserve.
* llama : fix pooled embeddings when using batches with equal_seqs
* minor : add struct members for clarity
ggml-ci
* llama : fix T5 segfault again
* llama : fix Mamba pooled embeddings with multiple sequences
Until the pooled embeddings are refactored to allow splitting
across ubatches for causal embeddings,
recurrent models can only process a single sequence per ubatch
when calculating pooled embeddings.
* llama : add llama_model_is_recurrent to simplify figuring that out
This will make it easier to more cleanly support RWKV-v6 and Mamba-2.
* llama : fix simple splits when the batch contains embeddings
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama : std::move llm_bigram_bpe from work_queue
This commit updates the retrieval of llm_bigram_bpe objects from
work_queue.top() by using std::move.
The motivation for this is to avoid the copying of the std::string
`text` member of the llm_bigram_bpe struct.
* squash! llama : std::move llm_bigram_bpe from work_queue
Introduced a MovablePriorityQueue class to allow moving elements
out of the priority queue for llm_bigram_bpe.
* squash! llama : std::move llm_bigram_bpe from work_queue
Rename MovablePriorityQueue to lama_priority_queue.
* squash! llama : std::move llm_bigram_bpe from work_queue
Rename lama_priority_queue -> llama_priority_queue.
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:light-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:server-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
* llava: Add ACC OP for GPU acceleration to the Vulkan backend in the LLAVA CLIP model.
- The CLIP model now prioritizes the Vulkan backend over the CPU when vulkan available.
- A GGML_OP_ACC shader has been added.
- The encoding performance of the CLIP model improved from 4.2s on the CPU to 0.9s on the GPU.
Signed-off-by: Changyeon Kim <cyzero.kim@samsung.com>
* fix-up coding style.
Signed-off-by: Changyeon Kim <cyzero.kim@samsung.com>
* Fix-up the missing initial parameter to resolve the compilation warning.
Signed-off-by: Changyeon Kim <cyzero.kim@samsung.com>
* [fix] Add missing parameters.
Signed-off-by: Changyeon Kim <cyzero.kim@samsung.com>
* [fix] Use nb1 and nb2 for dst.
Signed-off-by: Changyeon Kim <cyzero.kim@samsung.com>
* Fix check results ggml_acc call
---------
Signed-off-by: Changyeon Kim <cyzero.kim@samsung.com>
Co-authored-by: 0cc4m <picard12@live.de>
* fallback mmvq to mul_mat
* mmvq in cuda path
* Update ggml/src/ggml-sycl.cpp
Co-authored-by: Alberto Cabrera Pérez <alberto.cabrera@codeplay.com>
---------
Co-authored-by: Alberto Cabrera Pérez <alberto.cabrera@codeplay.com>
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:light-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:server-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Has been cancelled
* server : refactor middleware and /health endpoint
* move "fail_on_no_slot" to /slots
* Update examples/server/server.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* fix server tests
* fix CI
* update server docs
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Add support for cpu_get_num_phsical_cores() on Windows
* fix build bug on msys2-clang64 and ucrt64
* avoid adding new function
* add new macros to avoid windows+mingw64
* Add error checking to return default value
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:light-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:server-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
* ggml : move rope type enum to ggml.h
This commit moves the `llama_rope_type` enum from `llama.h` to
`ggml.h` and changes its name to `ggml_rope_type`.
The motivation for this change is to address the TODO in `llama.h` and
use the enum in ggml.
Note: This commit does not change the `mode` parameter to be of type
`enum ggml_rope_type`. The name `mode` and its usage suggest that it
might be more generic and possibly used as a bit field for multiple
flags. Further investigation/discussion may be needed to determine
if `mode` should be restricted to RoPE types.
* squash! ggml : move rope type enum to ggml.h
This commit removes GGML_ROPE_TYPE_NONE and GGML_ROPE_TYPE_GLM from
ggml.h, and back the llama_rope_type enum.
I've kept the assert for GGML_ROPE_TYPE_GLM as I'm not sure if it is
safe to remove it yet.
* squash! ggml : move rope type enum to ggml.h
This commit removes the enum ggml_rope_type from ggml.h and replaces it
with a define (GGML_ROPE_TYPE_NEOX). This define is used in the code to
check if the mode is set to GPT-NeoX. Also the enum llama_rope_type has
been updated to reflect this change.
* squash! ggml : move rope type enum to ggml.h
This commit contains a suggestion enable the GGML_ROPE_TYPE_NEOX
macro/define to be passed to the shader compiler.
* squash! ggml : move rope type enum to ggml.h
This commit fixes the editorconfig-checker warnings.
* squash! ggml : move rope type enum to ggml.h
Update comment for ggml_rope function.
* Revert "squash! ggml : move rope type enum to ggml.h"
This reverts commit 6261222bd0.
* squash! ggml : move rope type enum to ggml.h
Add GGML_ROPE_TYPE_NEOX to rope_common.comp.
* remove extra line
---------
Co-authored-by: slaren <slarengh@gmail.com>
* readme: introduce gpustack
GPUStack is an open-source GPU cluster manager for running large
language models, which uses llama.cpp as the backend.
Signed-off-by: thxCode <thxcode0824@gmail.com>
* readme: introduce gguf-parser
GGUF Parser is a tool to review/check the GGUF file and estimate the
memory usage without downloading the whole model.
Signed-off-by: thxCode <thxcode0824@gmail.com>
---------
Signed-off-by: thxCode <thxcode0824@gmail.com>
2024-08-12 14:45:50 +02:00
602 changed files with 133109 additions and 82004 deletions
- Using the commands in the [`tests`](tests) folder. For instance, running the `./tests/test-backend-ops` command tests different backend implementations of the GGML library
- Execute [the full CI locally on your machine](ci/README.md) before publishing
-Please rate the complexity of your PR (i.e. `Review Complexity : Low`, `Review Complexity : Medium`, `Review Complexity : High`). This makes it easier for maintainers to triage the PRs.
-The PR template has a series of review complexity checkboxes `[ ]` that [you can mark as](https://docs.github.com/en/get-started/writing-on-github/working-with-advanced-formatting/about-task-lists) `[X]` for your convenience
-Consider allowing write access to your branch for faster review
-Verify that the perplexity and the performance are not affected negatively by your changes (use `llama-perplexity` and `llama-bench`)
-If you modified the `ggml` source, run the `test-backend-ops` tool to check whether different backend implementations of the `ggml` operators produce consistent results (this requires access to at least two different `ggml` backends)
-If you modified a `ggml` operator or added a new one, add the corresponding test cases to `test-backend-ops`
- Consider allowing write access to your branch for faster reviews, as reviewers can push commits directly
- If your PR becomes stale, don't hesitate to ping the maintainers in the comments
# Pull requests (for collaborators)
- Squash-merge PRs
- Use the following format for the squashed commit title: `<module> : <commit title> (#<issue_number>)`. For example: `utils : fix typo in utils.py (#1234)`
- Optionally, pick a `<module>` from here: https://github.com/ggerganov/llama.cpp/wiki/Modules
- Optionally pick a `<module>` from here: https://github.com/ggerganov/llama.cpp/wiki/Modules
- Consider adding yourself to [CODEOWNERS](CODEOWNERS)
# Coding guidelines
- Avoid adding third-party dependencies, extra files, extra headers, etc.
- Always consider cross-compatibility with other operating systems and architectures
- Avoid fancylooking modern STL constructs, use basic `for` loops, avoid templates, keep it simple
- Avoid fancy-looking modern STL constructs, use basic `for` loops, avoid templates, keep it simple
- There are no strict rules for the code style, but try to follow the patterns in the code (indentation, spaces, etc.). Vertical alignment makes things more readable and easier to batch edit
- Clean-up any trailing whitespaces, use 4 spaces for indentation, brackets on the same line, `void * ptr`, `int & a`
- Naming usually optimizes for common prefix (see https://github.com/ggerganov/ggml/pull/302#discussion_r1243240963)
@@ -27,3 +28,8 @@

# Resources
The Github issues, PRs and discussions contain a lot of information that can be useful to get familiar with the codebase. For convenience, some of the more important information is referenced from Github projects:
Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others) in pure C/C++
> [!IMPORTANT]
[2024 Jun 12] Binaries have been renamed w/ a `llama-` prefix. `main` is now `llama-cli`, `server` is `llama-server`, etc (https://github.com/ggerganov/llama.cpp/pull/7809)
## Recent API changes
- [2024 Jun 26] The source code and CMake build scripts have been restructured https://github.com/ggerganov/llama.cpp/pull/8006
- [2024 Apr 21] `llama_token_to_piece` can now optionally render special tokens https://github.com/ggerganov/llama.cpp/pull/6807
- [2024 Apr 4] State and session file functions reorganized under `llama_state_*` https://github.com/ggerganov/llama.cpp/pull/6341
- [2024 Mar 26] Logits and embeddings API updated for compactness https://github.com/ggerganov/llama.cpp/pull/6122
- [2024 Mar 13] Add `llama_synchronize()` + `llama_context_params.n_ubatch` https://github.com/ggerganov/llama.cpp/pull/6017
- [2024 Mar 8] `llama_kv_cache_seq_rm()` returns a `bool` instead of `void`, and new `llama_n_seq_max()` returns the upper limit of acceptable `seq_id` in batches (relevant when dealing with multiple sequences) https://github.com/ggerganov/llama.cpp/pull/5328
- [2024 Mar 4] Embeddings API updated https://github.com/ggerganov/llama.cpp/pull/5796
- [2024 Mar 3] `struct llama_context_params` https://github.com/ggerganov/llama.cpp/pull/5849
- [Changelog for `libllama` API](https://github.com/ggerganov/llama.cpp/issues/9289)
- [Changelog for `llama-server` REST API](https://github.com/ggerganov/llama.cpp/issues/9291)
## Hot topics
- **`convert.py` has been deprecated and moved to `examples/convert_legacy_llama.py`, please use `convert_hf_to_gguf.py`** https://github.com/ggerganov/llama.cpp/pull/7430
- PHP (API bindings and features built on top of llama.cpp): [distantmagic/resonance](https://github.com/distantmagic/resonance) [(more info)](https://github.com/ggerganov/llama.cpp/pull/6326)
- [akx/ggify](https://github.com/akx/ggify) – download PyTorch models from HuggingFace Hub and convert them to GGML
- [akx/ollama-dl](https://github.com/akx/ollama-dl) – download models from the Ollama library to be used directly with llama.cpp
- [crashr/gppm](https://github.com/crashr/gppm) – launch llama.cpp instances utilizing NVIDIA Tesla P40 or P100 GPUs with reduced idle power consumption
- [gpustack/gguf-parser](https://github.com/gpustack/gguf-parser-go/tree/main/cmd/gguf-parser) - review/check the GGUF file and estimate the memory usage
- [Styled Lines](https://marketplace.unity.com/packages/tools/generative-ai/styled-lines-llama-cpp-model-292902) (proprietary licensed, async wrapper of inference part for game development in Unity3d with pre-built Mobile and Web platform wrappers and a model example)
**Infrastructure:**
</details>
<details>
<summary>Infrastructure</summary>
- [Paddler](https://github.com/distantmagic/paddler) - Stateful load balancer custom-tailored for llama.cpp
- [GPUStack](https://github.com/gpustack/gpustack) - Manage GPU clusters for running LLMs
- [llama_cpp_canister](https://github.com/onicai/llama_cpp_canister) - llama.cpp as a smart contract on the Internet Computer, using WebAssembly
</details>
<details>
<summary>Games</summary>
**Games:**
- [Lucy's Labyrinth](https://github.com/MorganRO8/Lucys_Labyrinth) - A simple maze game where agents controlled by an AI model will try to trick you.
## Demo
<details>
<summary>Typical run using LLaMA v2 13B on M2 Ultra</summary>
```
$ make -j && ./llama-cli -m models/llama-13b-v2/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e
Building a website can be done in 10 simple steps:
Step 1: Find the right website platform.
Step 2: Choose your domain name and hosting plan.
Step 3: Design your website layout.
Step 4: Write your website content and add images.
Step 5: Install security features to protect your site from hackers or spammers
Step 6: Test your website on multiple browsers, mobile devices, operating systems etc…
Step 7: Test it again with people who are not related to you personally – friends or family members will work just fine!
Step 8: Start marketing and promoting the website via social media channels or paid ads
Step 9: Analyze how many visitors have come to your site so far, what type of people visit more often than others (e.g., men vs women) etc…
Step 10: Continue to improve upon all aspects mentioned above by following trends in web design and staying up-to-date on new technologies that can enhance user experience even further!
How does a Website Work?
A website works by having pages, which are made of HTML code. This code tells your computer how to display the content on each page you visit – whether it’s an image or text file (like PDFs). In order for someone else’s browser not only be able but also want those same results when accessing any given URL; some additional steps need taken by way of programming scripts that will add functionality such as making links clickable!
The most common type is called static HTML pages because they remain unchanged over time unless modified manually (either through editing files directly or using an interface such as WordPress). They are usually served up via HTTP protocols – this means anyone can access them without having any special privileges like being part of a group who is allowed into restricted areas online; however, there may still exist some limitations depending upon where one lives geographically speaking.
How to
llama_print_timings: load time = 576.45 ms
llama_print_timings: sample time = 283.10 ms / 400 runs ( 0.71 ms per token, 1412.91 tokens per second)
llama_print_timings: prompt eval time = 599.83 ms / 19 tokens ( 31.57 ms per token, 31.68 tokens per second)
llama_print_timings: eval time = 24513.59 ms / 399 runs ( 61.44 ms per token, 16.28 tokens per second)
llama_print_timings: total time = 25431.49 ms
```
</details>
<details>
<summary>Demo of running both LLaMA-7B and whisper.cpp on a single M1 Pro MacBook</summary>
And here is another demo of running both LLaMA-7B and [whisper.cpp](https://github.com/ggerganov/whisper.cpp) on a single M1 Pro MacBook:
Here are the end-to-end binary build and model conversion steps for most supported models.
### Basic usage
Firstly, you need to get the binary. There are different methods that you can follow:
- Method 1: Clone this repository and build locally, see [how to build](./docs/build.md)
- Method 2: If you are using MacOS or Linux, you can install llama.cpp via [brew, flox or nix](./docs/install.md)
- Method 3: Use a Docker image, see [documentation for Docker](./docs/docker.md)
- Method 4: Download pre-built binary from [releases](https://github.com/ggerganov/llama.cpp/releases)
You can run a basic completion using this command:
```bash
llama-cli -m your_model.gguf -p "I believe the meaning of life is" -n 128
# Output:
# I believe the meaning of life is to find your own truth and to live in accordance with it. For me, this means being true to myself and following my passions, even if they don't align with societal expectations. I think that's what I love about yoga – it's not just a physical practice, but a spiritual one too. It's about connecting with yourself, listening to your inner voice, and honoring your own unique journey.
```
See [this page](./examples/main/README.md) for a full list of parameters.
### Conversation mode
If you want a more ChatGPT-like experience, you can run in conversation mode by passing `-cnv` as a parameter:
```bash
llama-cli -m your_model.gguf -p "You are a helpful assistant" -cnv
# Output:
# > hi, who are you?
# Hi there! I'm your helpful assistant! I'm an AI-powered chatbot designed to assist and provide information to users like you. I'm here to help answer your questions, provide guidance, and offer support on a wide range of topics. I'm a friendly and knowledgeable AI, and I'm always happy to help with anything you need. What's on your mind, and how can I assist you today?
#
# > what is 1+1?
# Easy peasy! The answer to 1+1 is... 2!
```
By default, the chat template will be taken from the input model. If you want to use another chat template, pass `--chat-template NAME` as a parameter. See the list of [supported templates](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template)
```bash
./llama-cli -m your_model.gguf -p "You are a helpful assistant" -cnv --chat-template chatml
```
You can also use your own template via in-prefix, in-suffix and reverse-prompt parameters:
```bash
./llama-cli -m your_model.gguf -p "You are a helpful assistant" -cnv --in-prefix 'User: ' --reverse-prompt 'User:'
```
### Web server
[llama.cpp web server](./examples/server/README.md) is a lightweight [OpenAI API](https://github.com/openai/openai-openapi) compatible HTTP server that can be used to serve local models and easily connect them to existing clients.
Example usage:
```bash
./llama-server -m your_model.gguf --port 8080
# Basic web UI can be accessed via browser: http://localhost:8080
> If you prefer basic usage, please consider using conversation mode instead of interactive mode
In this mode, you can always interrupt generation by pressing Ctrl+C and entering one or more lines of text, which will be converted into tokens and appended to the current context. You can also specify a *reverse prompt* with the parameter `-r "reverse prompt string"`. This will result in user input being prompted whenever the exact tokens of the reverse prompt string are encountered in the generation. A typical use is to use a prompt that makes LLaMA emulate a chat between multiple users, say Alice and Bob, and pass `-r "Alice:"`.
Here is an example of a few-shot interaction, invoked with the command
Note the use of `--color` to distinguish between user input and generated text. Other parameters are explained in more detail in the [README](examples/main/README.md) for the `llama-cli` example program.
The prompt, user inputs, and model generations can be saved and resumed across calls to `./llama-cli` by leveraging `--prompt-cache` and `--prompt-cache-all`. The `./examples/chat-persistent.sh` script demonstrates this with support for long-running, resumable chat sessions. To use this example, you must provide a file to cache the initial chat prompt and a directory to save the chat session, and may optionally provide the same variables as `chat-13B.sh`. The same prompt cache can be reused for new chat sessions. Note that both prompt cache and chat directory are tied to the initial prompt (`PROMPT_TEMPLATE`) and the model file.
`llama.cpp` supports grammars to constrain model output. For example, you can force the model to output JSON only:
```bash
./llama-cli -m ./models/13B/ggml-model-q4_0.gguf -n 256 --grammar-file grammars/json.gbnf -p 'Request: schedule a call at 8pm; Command:'
```
The `grammars/` folder contains a handful of sample grammars. To write your own, check out the [GBNF Guide](./grammars/README.md).
For authoring more complex JSON grammars, you can also check out https://grammar.intrinsiclabs.ai/, a browser app that lets you write TypeScript interfaces which it compiles to GBNF grammars that you can save for local use. Note that the app is built and maintained by members of the community, please file any issues or FRs on [its repo](http://github.com/intrinsiclabsai/gbnfgen) and not this one.
## Build
Please refer to [Build llama.cpp locally](./docs/build.md)
## Supported backends
| Backend | Target devices |
| --- | --- |
| [Metal](./docs/build.md#metal-build) | Apple Silicon |
| [BLAS](./docs/build.md#blas-build) | All |
| [BLIS](./docs/backend/BLIS.md) | All |
| [SYCL](./docs/backend/SYCL.md) | Intel and Nvidia GPU |
| [MUSA](./docs/build.md#musa) | Moore Threads GPU |
| [CUDA](./docs/build.md#cuda) | Nvidia GPU |
| [hipBLAS](./docs/build.md#hipblas) | AMD GPU |
| [Vulkan](./docs/build.md#vulkan) | GPU |
| [Metal](docs/build.md#metal-build) | Apple Silicon |
| [BLAS](docs/build.md#blas-build) | All |
| [BLIS](docs/backend/BLIS.md) | All |
| [SYCL](docs/backend/SYCL.md) | Intel and Nvidia GPU |
| [MUSA](docs/build.md#musa) | Moore Threads MTT GPU |
| [CUDA](docs/build.md#cuda) | Nvidia GPU |
| [hipBLAS](docs/build.md#hipblas) | AMD GPU |
| [Vulkan](docs/build.md#vulkan) | GPU |
| [CANN](docs/build.md#cann) | Ascend NPU |
## Tools
## Building the project
### Prepare and Quantize
The main product of this project is the `llama` library. Its C-style interface can be found in [include/llama.h](include/llama.h).
The project also includes many example programs and tools using the `llama` library. The examples range from simple, minimal code snippets to sophisticated sub-projects such as an OpenAI-compatible HTTP server. Possible methods for obtaining the binaries:
> [!NOTE]
> You can use the [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space on Hugging Face to quantise your model weights without any setup too. It is synced from `llama.cpp` main every 6 hours.
- Clone this repository and build locally, see [how to build](docs/build.md)
- On MacOS or Linux, install `llama.cpp` via [brew, flox or nix](docs/install.md)
- Use a Docker image, see [documentation for Docker](docs/docker.md)
- Download pre-built binaries from [releases](https://github.com/ggerganov/llama.cpp/releases)
To obtain the official LLaMA 2 weights please see the <a href="#obtaining-and-using-the-facebook-llama-2-model">Obtaining and using the Facebook LLaMA 2 model</a> section. There is also a large selection of pre-quantized `gguf` models available on Hugging Face.
## Obtaining and quantizing models
Note: `convert.py` has been moved to `examples/convert_legacy_llama.py` and shouldn't be used for anything other than `Llama/Llama2/Mistral` models and their derivatives.
It does not support LLaMA 3, you can use `convert_hf_to_gguf.py` with LLaMA 3 downloaded from Hugging Face.
The [Hugging Face](https://huggingface.co) platform hosts a [number of LLMs](https://huggingface.co/models?library=gguf&sort=trending) compatible with `llama.cpp`:
To learn more about quantizing model, [read this documentation](./examples/quantize/README.md)
After downloading a model, use the CLI tools to run it locally - see below.
You can use the `perplexity` example to measure perplexity over a given prompt (lower perplexity is better).
For more information, see [https://huggingface.co/docs/transformers/perplexity](https://huggingface.co/docs/transformers/perplexity).
`llama.cpp` requires the model to be stored in the [GGUF](https://github.com/ggerganov/ggml/blob/master/docs/gguf.md) file format. Models in other data formats can be converted to GGUF using the `convert_*.py` Python scripts in this repo.
The Hugging Face platform provides a variety of online tools for converting, quantizing and hosting models with `llama.cpp`:
- Use the [GGUF-my-repo space](https://huggingface.co/spaces/ggml-org/gguf-my-repo) to convert to GGUF format and quantize model weights to smaller sizes
- Use the [GGUF-my-LoRA space](https://huggingface.co/spaces/ggml-org/gguf-my-lora) to convert LoRA adapters to GGUF format (more info: https://github.com/ggerganov/llama.cpp/discussions/10123)
- Use the [GGUF-editor space](https://huggingface.co/spaces/CISCai/gguf-editor) to edit GGUF meta data in the browser (more info: https://github.com/ggerganov/llama.cpp/discussions/9268)
- Use the [Inference Endpoints](https://ui.endpoints.huggingface.co/) to directly host `llama.cpp` in the cloud (more info: https://github.com/ggerganov/llama.cpp/discussions/9669)
To learn more about model quantization, [read this documentation](examples/quantize/README.md)
## [`llama-cli`](examples/main)
#### A CLI tool for accessing and experimenting with most of `llama.cpp`'s functionality.
- <details open>
<summary>Run simple text completion</summary>
```bash
llama-cli -m model.gguf -p "I believe the meaning of life is" -n 128
# I believe the meaning of life is to find your own truth and to live in accordance with it. For me, this means being true to myself and following my passions, even if they don't align with societal expectations. I think that's what I love about yoga – it's not just a physical practice, but a spiritual one too. It's about connecting with yourself, listening to your inner voice, and honoring your own unique journey.
```
</details>
- <details>
<summary>Run in conversation mode</summary>
```bash
llama-cli -m model.gguf -p "You are a helpful assistant" -cnv
# > hi, who are you?
# Hi there! I'm your helpful assistant! I'm an AI-powered chatbot designed to assist and provide information to users like you. I'm here to help answer your questions, provide guidance, and offer support on a wide range of topics. I'm a friendly and knowledgeable AI, and I'm always happy to help with anything you need. What's on your mind, and how can I assist you today?
#
# > what is 1+1?
# Easy peasy! The answer to 1+1 is... 2!
```
</details>
- <details>
<summary>Run with custom chat template</summary>
```bash
# use the "chatml" template
llama-cli -m model.gguf -p "You are a helpful assistant" -cnv --chat-template chatml
# use a custom template
llama-cli -m model.gguf -p "You are a helpful assistant" -cnv --in-prefix 'User: ' --reverse-prompt 'User:'
#### A minimal example for implementing apps with `llama.cpp`. Useful for developers.
- <details>
<summary>Basic text completion</summary>
```bash
llama-simple -m model.gguf
# Hello my name is Kaitlyn and I am a 16 year old girl. I am a junior in high school and I am currently taking a class called "The Art of
```
</details>
To learn more how to measure perplexity using llama.cpp, [read this documentation](./examples/perplexity/README.md)
## Contributing
- Contributors can open PRs
- Collaborators can push to branches in the `llama.cpp` repo and merge PRs into the `master` branch
- Collaborators will be invited based on contributions
- Any help with managing issues and PRs is very appreciated!
- Any help with managing issues, PRs and projects is very appreciated!
- See [good first issues](https://github.com/ggerganov/llama.cpp/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22) for tasks suitable for first contributions
- Read the [CONTRIBUTING.md](CONTRIBUTING.md) for more information
- Make sure to read this: [Inference at the edge](https://github.com/ggerganov/llama.cpp/discussions/205)
- A bit of backstory for those who are interested: [Changelog podcast](https://changelog.com/podcast/532)
If your issue is with model generation quality, then please at least scan the following links and papers to understand the limitations of LLaMA models. This is especially important when choosing an appropriate model size and appreciating both the significant and subtle differences between LLaMA models and ChatGPT:
- LLaMA:
@@ -481,3 +486,6 @@ If your issue is with model generation quality, then please at least scan the fo
- GPT-3.5 / InstructGPT / ChatGPT:
- [Aligning language models to follow instructions](https://openai.com/research/instruction-following)
- [Training language models to follow instructions with human feedback](https://arxiv.org/abs/2203.02155)
(time ./bin/llama-cli --model ${model_f16} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-cli --model ${model_q8_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-cli --model ${model_q4_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-cli --model ${model_q4_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-cli --model ${model_q5_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-cli --model ${model_q5_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-cli --model ${model_q2_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-cli --model ${model_q3_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-cli --model ${model_q4_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-cli --model ${model_q5_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-cli --model ${model_q6_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-cli --model ${model_f16} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-cli --model ${model_q8_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-cli --model ${model_q4_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-cli --model ${model_q4_1} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-cli --model ${model_q5_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-cli --model ${model_q5_1} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-cli --model ${model_q2_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-cli --model ${model_q3_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-cli --model ${model_q4_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-cli --model ${model_q5_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-cli --model ${model_q6_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-save-load-state -ngl 10--model ${model_q4_0}) 2>&1| tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state -fa -ngl 10--model ${model_q4_0}) 2>&1| tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state -ngl 99--model ${model_q4_0}) 2>&1| tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state -fa -ngl 99--model ${model_q4_0}) 2>&1| tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 10 -c 0) 2>&1| tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 10 -c 0 -fa) 2>&1| tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 99 -c 0) 2>&1| tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 99 -c 0 -fa) 2>&1| tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"
@@ -425,7 +431,7 @@ function gg_run_pythia_1_4b {
set -e
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1| tee -a $OUT/${ci}-cmake.log
(time make -j) 2>&1| tee -a $OUT/${ci}-make.log
(time make -j$(nproc)) 2>&1| tee -a $OUT/${ci}-make.log
(time ./bin/llama-cli --model ${model_f16} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-cli --model ${model_q8_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-cli --model ${model_q4_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-cli --model ${model_q4_1} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-cli --model ${model_q5_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-cli --model ${model_q5_1} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-cli --model ${model_q2_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-cli --model ${model_q3_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-cli --model ${model_q4_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-cli --model ${model_q5_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-cli --model ${model_q6_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-cli --model ${model_f16} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-cli --model ${model_q8_0} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-cli --model ${model_q4_0} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-cli --model ${model_q4_1} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-cli --model ${model_q5_0} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-cli --model ${model_q5_1} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-cli --model ${model_q2_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-cli --model ${model_q3_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-cli --model ${model_q4_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-cli --model ${model_q5_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-cli --model ${model_q6_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1) 2>&1| tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1) 2>&1| tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1) 2>&1| tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1) 2>&1| tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1) 2>&1| tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1) 2>&1| tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1) 2>&1| tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1) 2>&1| tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1) 2>&1| tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1) 2>&1| tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1) 2>&1| tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1) 2>&1| tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1) 2>&1| tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1) 2>&1| tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1) 2>&1| tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1) 2>&1| tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1) 2>&1| tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1) 2>&1| tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1) 2>&1| tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1) 2>&1| tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1) 2>&1| tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1) 2>&1| tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1) 2>&1| tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1) 2>&1| tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-save-load-state --model ${model_q4_0}) 2>&1| tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state -fa --model ${model_q4_0}) 2>&1| tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0) 2>&1| tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa) 2>&1| tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"
@@ -535,7 +541,6 @@ function gg_sum_pythia_1_4b {
}
# pythia_2_8b
# requires: GG_BUILD_CUDA
function gg_run_pythia_2_8b {
cd${SRC}
@@ -556,8 +561,8 @@ function gg_run_pythia_2_8b {
set -e
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DGGML_CUDA=1 .. ) 2>&1| tee -a $OUT/${ci}-cmake.log
(time make -j) 2>&1| tee -a $OUT/${ci}-make.log
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1| tee -a $OUT/${ci}-cmake.log
(time make -j$(nproc)) 2>&1| tee -a $OUT/${ci}-make.log
(time ./bin/llama-cli --model ${model_f16} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-cli --model ${model_q8_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-cli --model ${model_q4_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-cli --model ${model_q4_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-cli --model ${model_q5_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-cli --model ${model_q5_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-cli --model ${model_q2_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-cli --model ${model_q3_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-cli --model ${model_q4_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-cli --model ${model_q5_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-cli --model ${model_q6_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-cli --model ${model_f16} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-cli --model ${model_q8_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-cli --model ${model_q4_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-cli --model ${model_q4_1} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-cli --model ${model_q5_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-cli --model ${model_q5_1} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-cli --model ${model_q2_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-cli --model ${model_q3_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-cli --model ${model_q4_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-cli --model ${model_q5_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-cli --model ${model_q6_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-save-load-state -ngl 10 --model ${model_q4_0}) 2>&1| tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state -fa -ngl 10 --model ${model_q4_0}) 2>&1| tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state -ngl 99 --model ${model_q4_0}) 2>&1| tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state -fa -ngl 99 --model ${model_q4_0}) 2>&1| tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0) 2>&1| tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa) 2>&1| tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0) 2>&1| tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa) 2>&1| tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"
@@ -692,7 +697,7 @@ function gg_run_embd_bge_small {
set -e
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1| tee -a $OUT/${ci}-cmake.log
(time make -j) 2>&1| tee -a $OUT/${ci}-make.log
(time make -j$(nproc)) 2>&1| tee -a $OUT/${ci}-make.log
(time ./bin/llama-embedding --model ${model_f16} -p "what is panda?</s></s>hi\nwhat is panda?</s></s>it's a bear\nwhat is panda?</s></s>The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China." -ngl 99 -c 0 --pooling rank --embd-normalize -1 --verbose-prompt) 2>&1| tee -a $OUT/${ci}-rk-f16.log
enumllama_pooling_typepooling_type=LLAMA_POOLING_TYPE_UNSPECIFIED;// pooling type for embeddings
enumllama_attention_typeattention_type=LLAMA_ATTENTION_TYPE_UNSPECIFIED;// attention type for embeddings
// // sampling parameters
structllama_sampling_paramssparams;
structcommon_params_samplingsampling;
structcommon_params_speculativespeculative;
std::stringmodel="";// model path
std::stringmodel_draft="";// draft model for speculative decoding
std::stringmodel_alias="unknown";// model alias
std::stringmodel_url="";// model url to download
std::stringhf_token="";// HF token
std::stringhf_repo="";// HF repo
std::stringhf_file="";// HF file
std::stringprompt="";
std::stringprompt_file="";// store the external prompt file name
std::stringpath_prompt_cache="";// path to file for saving/loading prompt eval state
std::stringinput_prefix="";// string to prefix user inputs with
std::stringinput_suffix="";// string to suffix user inputs with
std::stringlogdir="";// directory in which to save YAML log files
std::stringlookup_cache_static="";// path of static ngram cache file for lookup decoding
std::stringlookup_cache_dynamic="";// path of dynamic ngram cache file for lookup decoding
std::stringlogits_file="";// file for saving *all* logits
std::stringrpc_servers="";// comma separated list of RPC servers
std::stringmodel="";// model path // NOLINT
std::stringmodel_alias="unknown";// model alias // NOLINT
std::stringmodel_url="";// model url to download // NOLINT
std::stringhf_token="";// HF token // NOLINT
std::stringhf_repo="";// HF repo // NOLINT
std::stringhf_file="";// HF file // NOLINT
std::stringprompt="";// NOLINT
std::stringprompt_file="";// store the external prompt file name // NOLINT
std::stringpath_prompt_cache="";// path to file for saving/loading prompt eval state // NOLINT
std::stringinput_prefix="";// string to prefix user inputs with // NOLINT
std::stringinput_suffix="";// string to suffix user inputs with // NOLINT
std::stringlookup_cache_static="";// path of static ngram cache file for lookup decoding // NOLINT
std::stringlookup_cache_dynamic="";// path of dynamic ngram cache file for lookup decoding // NOLINT
std::stringlogits_file="";// file for saving *all* logits // NOLINT
std::stringrpc_servers="";// comma separated list of RPC servers // NOLINT
std::vector<std::string>in_files;// all input files
std::vector<std::string>antiprompt;// strings upon which more user input is prompted (a.k.a. reverse prompts)
std::vector<llama_model_kv_override>kv_overrides;
boollora_init_without_apply=false;// only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_lora_adapter_apply)
std::vector<llama_lora_adapter_info>lora_adapters;// lora adapter path with user defined scale
std::vector<common_lora_adapter_info>lora_adapters;// lora adapter path with user defined scale
std::vector<llama_control_vector_load_info>control_vectors;// control vector with user defined scale
std::vector<common_control_vector_load_info>control_vectors;// control vector with user defined scale
int32_tverbosity=0;
int32_tcontrol_vector_layer_start=-1;// layer range for control vector
@@ -173,15 +272,15 @@ struct gpt_params {
boolsimple_io=false;// improves compatibility with subprocesses and limited consoles
boolcont_batching=true;// insert new sequences for decoding on-the-fly
boolflash_attn=false;// flash attention
boolno_perf=false;// disable performance metrics
boolctx_shift=true;// context shift on inifinite text generation
boolinput_prefix_bos=false;// prefix BOS to user inputs, preceding input_prefix
boolignore_eos=false;// ignore generated EOS tokens
boollogits_all=false;// return logits for all tokens in the batch
booluse_mmap=true;// use mmap for faster loads
booluse_mlock=false;// use mlock to keep model in memory
boolverbose_prompt=false;// print prompt tokens before generation
booldisplay_prompt=true;// print prompt before generation
boolinfill=false;// use infill mode
booldump_kv_cache=false;// dump the KV cache contents for debugging purposes
boolno_kv_offload=false;// disable KV offloading
boolwarmup=true;// warmup run
@@ -191,33 +290,37 @@ struct gpt_params {
std::stringcache_type_v="f16";// KV cache data type for the V
// multimodal models (see examples/llava)
std::stringmmproj="";// path to multimodal projector
std::stringmmproj="";// path to multimodal projector // NOLINT
std::vector<std::string>image;// path to image file(s)
// embedding
boolembedding=false;// get only sentence embedding
help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
help="only print out what will be done, without writing any new files",
)
parser.add_argument(
"--base",type=Path,required=True,
help="directory containing base model file",
"--base",type=Path,
help="directory containing Hugging Face model config files (config.json, tokenizer.json) for the base model that the adapter is based on - only config is needed, actual model weights are not required. If base model is unspecified, it will be loaded from Hugging Face hub based on the adapter config",
)
parser.add_argument(
"lora_path",type=Path,
help="directory containing LoRA adapter file",
help="directory containing Hugging Face PEFT LoRA config (adapter_model.json) and weights (adapter_model.safetensors or adapter_model.bin)",
[Termux](https://github.com/termux/termux-app#installation) is a method to execute `llama.cpp` on an Android device (no root required).
```
apt update && apt upgrade -y
apt install git make cmake
```
It's recommended to move your model inside the `~/` directory for best performance:
```
cd storage/downloads
mv model.gguf ~/
```
[Termux](https://termux.dev/en/) is an Android terminal emulator and Linux environment app (no root required). As of writing, Termux is available experimentally in the Google Play Store; otherwise, it may be obtained directly from the project repo or on F-Droid.
[Get the code](https://github.com/ggerganov/llama.cpp#get-the-code) & [follow the Linux build instructions](https://github.com/ggerganov/llama.cpp#build) to build `llama.cpp`.
## Building the Project using Android NDK
Obtain the [Android NDK](https://developer.android.com/ndk) and then build with CMake.
Execute the following commands on your computer to avoid downloading the NDK to your mobile. Alternatively, you can also do this in Termux:
Install [termux](https://github.com/termux/termux-app#installation) on your device and run `termux-setup-storage` to get access to your SD card (if Android 11+ then run the command twice).
Finally, copy these built `llama` binaries and the model file to your device storage. Because the file permissions in the Android sdcard cannot be changed, you can copy the executable files to the `/data/data/com.termux/files/home/bin` path, and then execute the following commands in Termux to add executable permission:
(Assumed that you have pushed the built executable files to the /sdcard/llama.cpp/bin path using `adb push`)
Download model [llama-2-7b-chat.Q4_K_M.gguf](https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF/blob/main/llama-2-7b-chat.Q4_K_M.gguf), and push it to `/sdcard/llama.cpp/`, then move it to `/data/data/com.termux/files/home/model/`
With Termux, you can install and run `llama.cpp` as if the environment were Linux. Once in the Termux shell:
Then, follow the [build instructions](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md), specifically for CMake.
Once the binaries are built, download your model of choice (e.g., from Hugging Face). It's recommended to place it in the `~/` directory for best performance:
Here, we show `llama-cli`, but any of the executables under `examples` should work, in theory. Be sure to set `context-size` to a reasonable number (say, 4096) to start with; otherwise, memory could spike and kill your terminal.
To see what it might look like visually, here's an old demo of an interactive session running on a Pixel 5 phone:
It's possible to build `llama.cpp` for Android on your host system via CMake and the Android NDK. If you are interested in this path, ensure you already have an environment prepared to cross-compile programs for Android (i.e., install the Android SDK). Note that, unlike desktop environments, the Android environment ships with a limited set of native libraries, and so only those libraries are available to CMake when building with the Android NDK (see: https://developer.android.com/ndk/guides/stable_apis.)
Once you're ready and have cloned `llama.cpp`, invoke the following in the project directory:
- While later versions of Android NDK ship with OpenMP, it must still be installed by CMake as a dependency, which is not supported at this time
-`llamafile` does not appear to support Android devices (see: https://github.com/Mozilla-Ocho/llamafile/issues/325)
The above command should configure `llama.cpp` with the most performant options for modern devices. Even if your device is not running `armv8.7a`, `llama.cpp` includes runtime checks for available CPU features it can use.
Feel free to adjust the Android ABI for your target. Once the project is configured:
Be aware that Android will not find the library path `lib` on its own, so we must specify `LD_LIBRARY_PATH` in order to run the installed executables. Android does support `RPATH` in later API levels, so this could change in the future. Refer to the previous section for information about `context-size` (very important!) and running other `examples`.
**Ascend NPU** is a range of AI processors using Neural Processing Unit. It will efficiently handle matrix-matrix multiplication, dot-product and scalars.
**CANN** (Compute Architecture for Neural Networks) is a heterogeneous computing architecture for AI scenarios, providing support for multiple AI frameworks on the top and serving AI processors and programming at the bottom. It plays a crucial role in bridging the gap between upper and lower layers, and is a key platform for improving the computing efficiency of Ascend AI processors. Meanwhile, it offers a highly efficient and easy-to-use programming interface for diverse application scenarios, allowing users to rapidly build AI applications and services based on the Ascend platform.
**Llama.cpp + CANN**
The llama.cpp CANN backend is designed to support Ascend NPU. It utilize the ability of AscendC and ACLNN which are intergrated to CANN Toolkit and kernels to using Ascend NPU directly.
## News
- 2024.11
- Support F16 and F32 data type model for Ascend 310P NPU.
- 2024.8
- Support `Q4_0` and `Q8_0` data type for Ascend NPU.
# download driver from https://www.hiascend.com/hardware/firmware-drivers/community according to your system
# and install driver.
sudo sh Ascend-hdk-910b-npu-firmware_x.x.x.x.X.run --full
```
If the following messaage appers, firmware is installed successfully.
```sh
Firmware package installed successfully!
```
3. **Install CANN toolkit and kernels**
CANN toolkit and kernels can be obtained from the official [CANN Toolkit](https://www.hiascend.com/zh/developer/download/community/result?module=cann) page.
Please download the corresponding version that satified your system. The minimum version required is 8.0.RC2.alpha002 and here is the install command.
**oneAPI** is an open ecosystem and a standard-based specification, supporting multiple architectures including but not limited to intel CPUs, GPUs and FPGAs. The key components of the oneAPI ecosystem include:
- **DPCPP** *(Data Parallel C++)*: The primary oneAPI SYCL implementation, which includes the icpx/icx Compilers.
- **oneAPI Libraries**: A set of highly optimized libraries targeting multiple domains *(e.g. oneMKL - Math Kernel Library)*.
- **oneAPI Libraries**: A set of highly optimized libraries targeting multiple domains *(e.g. oneMKL and oneDNN)*.
- **oneAPI LevelZero**: A high performance low level interface for fine-grained control over intel iGPUs and dGPUs.
- **Nvidia & AMD Plugins**: These are plugins extending oneAPI's DPCPP support to SYCL on Nvidia and AMD GPU targets.
### Llama.cpp + SYCL
The llama.cpp SYCL backend is designed to support **Intel GPU** firstly. Based on the cross-platform feature of SYCL, it could support other vendor GPUs: Nvidia GPU (*AMD GPU coming*).
When targeting **Intel CPU**, it is recommended to use llama.cpp for [Intel oneMKL](README.md#intel-onemkl) backend.
It has the similar design of other llama.cpp BLAS-based paths such as *OpenBLAS, cuBLAS, etc..*. In beginning work, the oneAPI's [SYCLomatic](https://github.com/oneapi-src/SYCLomatic) open-source migration tool (Commercial release [Intel® DPC++ Compatibility Tool](https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html)) was used for this purpose.
The llama.cpp SYCL backend is designed to support **Intel GPU** firstly. Based on the cross-platform feature of SYCL, it also supports other vendor GPUs: Nvidia and AMD.
## Recommended Release
@@ -38,13 +34,20 @@ The SYCL backend would be broken by some PRs due to no online CI.
The following release is verified with good quality:
Note: AMD GPU support is highly experimental and is incompatible with F16.
Additionally, it only supports GPUs with a sub_group_size (warp size) of 32.
## Docker
The docker build option is currently limited to *intel GPU* targets.
@@ -186,6 +197,10 @@ Platform #0: Intel(R) OpenCL HD Graphics
In order to target Nvidia GPUs through SYCL, please make sure the CUDA/CUBLAS native requirements *-found [here](README.md#cuda)-* are installed.
- **AMD GPU**
To target AMD GPUs with SYCL, the ROCm stack must be installed first.
2.**Install Intel® oneAPI Base toolkit**
- **For Intel GPU**
@@ -196,7 +211,7 @@ Please follow the instructions for downloading and installing the Toolkit for Li
Following guidelines/code snippets assume the default installation values. Otherwise, please make sure the necessary changes are reflected where applicable.
Upon a successful installation, SYCL is enabled for the available intel devices, along with relevant libraries such as oneAPI MKL for intel GPUs.
Upon a successful installation, SYCL is enabled for the available intel devices, along with relevant libraries such as oneAPI oneDNN for Intel GPUs.
**oneAPI Plugin**: In order to enable SYCL support on AMD GPUs, please install the [Codeplay oneAPI Plugin for AMD GPUs](https://developer.codeplay.com/products/oneapi/amd/download). As with Nvidia GPUs, the user should also make sure the plugin version matches the installed base toolkit.
**oneMKL for rocBlas**: The current oneMKL releases *(shipped with the oneAPI base-toolkit)* doesn't contain the rocBLAS backend. A build from source of the upstream [oneMKL](https://github.com/oneapi-src/oneMKL) with the *rocBLAS* backend enabled is thus required to run it on AMD GPUs.
```sh
git clone https://github.com/oneapi-src/oneMKL
cd oneMKL
# Find your HIPTARGET with rocminfo, under the key 'Name:'
When targeting an intel GPU, the user should expect one or more level-zero devices among the available SYCL devices. Please make sure that at least one GPU is present, for instance [`ext_oneapi_level_zero:gpu:0`] in the sample output below:
When targeting an intel GPU, the user should expect one or more level-zero devices among the available SYCL devices. Please make sure that at least one GPU is present, for instance [`level_zero:gpu`] in the sample output below:
| GGML_SYCL | ON (mandatory) | Enable build with SYCL code path.<br>FP32 path - recommended for better perforemance than FP16 on quantized model|
| GGML_SYCL_TARGET | INTEL *(default)* \| NVIDIA \| AMD | Set the SYCL target device type. |
| GGML_SYCL_DEVICE_ARCH | Optional (except for AMD) | Set the SYCL device architecture, optional except for AMD. Setting the device architecture can improve the performance. See the table [--offload-arch](https://github.com/intel/llvm/blob/sycl/sycl/doc/design/OffloadDesign.md#--offload-arch) for a list of valid architectures. |
| GGML_SYCL_F16 | OFF *(default)* \|ON *(optional)* | Enable FP16 build with SYCL code path. |
| CMAKE_C_COMPILER | `icx`*(Linux)*, `icx/cl`*(Windows)* | Set `icx` compiler for SYCL code path. |
| CMAKE_CXX_COMPILER | `icpx`*(Linux)*, `icx`*(Windows)* | Set `icpx/icx` compiler for SYCL code path. |
@@ -638,6 +697,14 @@ use 1 SYCL GPUs: [0] with Max compute units:512
It's same for other projects including llama.cpp SYCL backend.
- Meet issue: `Native API failed. Native API returns: -6 (PI_ERROR_OUT_OF_HOST_MEMORY) -6 (PI_ERROR_OUT_OF_HOST_MEMORY) -999 (UNKNOWN PI error)` or `failed to allocate SYCL0 buffer`
Device Memory is not enough.
|Reason|Solution|
|-|-|
|Default Context is too big. It leads to more memory usage.|Set `-c 8192` or smaller value.|
|Model is big and require more memory than device's.|Choose smaller quantized model, like Q5 -> Q4;<br>Use more than one devices to load model.|
### **GitHub contribution**:
Please add the **[SYCL]** prefix/tag in issues/PRs titles to help the SYCL-team check/address them without delay.
In order to build llama.cpp you have four different options.
The following sections describe how to build with different backends and options.
- Using `make`:
- On Linux or MacOS:
## CPU Build
```bash
make
```
Build llama.cpp using `CMake`:
- On Windows (x86/x64 only, arm64 requires cmake):
```bash
cmake -B build
cmake --build build --config Release
```
1. Download the latest fortran version of [w64devkit](https://github.com/skeeto/w64devkit/releases).
2. Extract `w64devkit` on your pc.
3. Run `w64devkit.exe`.
4. Use the `cd` command to reach the `llama.cpp` folder.
5. From here you can run:
```bash
make
```
**Notes**:
- Notes:
- For `Q4_0_4_4` quantization type build, add the `GGML_NO_LLAMAFILE=1` flag. For example, use `make GGML_NO_LLAMAFILE=1`.
- For faster compilation, add the `-j` argument to run multiple jobs in parallel. For example, `make -j 8` will run 8 jobs in parallel.
- For faster repeated compilation, install [ccache](https://ccache.dev/).
- For debug builds, run `make LLAMA_DEBUG=1`
- For faster compilation, add the `-j` argument to run multiple jobs in parallel, or use a generator that does this automatically such as Ninja. For example, `cmake --build build --config Release -j 8` will run 8 jobs in parallel.
- For faster repeated compilation, install [ccache](https://ccache.dev/)
- For debug builds, there are two cases:
- Using `CMake`:
1. Single-config generators (e.g. default = `Unix Makefiles`; note that they just ignore the `--config` flag):
```bash
cmake -B build
cmake --build build --config Release
```
```bash
cmake -B build -DCMAKE_BUILD_TYPE=Debug
cmake --build build
```
**Notes**:
2. Multi-config generators (`-G` param set to Visual Studio, XCode...):
- For `Q4_0_4_4` quantization type build, add the `-DGGML_LLAMAFILE=OFF` cmake option. For example, use `cmake -B build -DGGML_LLAMAFILE=OFF`.
- For faster compilation, add the `-j` argument to run multiple jobs in parallel. For example, `cmake --build build --config Release -j 8` will run 8 jobs in parallel.
- For faster repeated compilation, install [ccache](https://ccache.dev/).
- For debug builds, there are two cases:
```bash
cmake -B build -G "Xcode"
cmake --build build --config Debug
```
1. Single-config generators (e.g. default = `Unix Makefiles`; note that they just ignore the `--config` flag):
For more details and a list of supported generators, see the [CMake documentation](https://cmake.org/cmake/help/latest/manual/cmake-generators.7.html).
```bash
cmake -B build -DCMAKE_BUILD_TYPE=Debug
cmake --build build
```
2. Multi-config generators (`-G` param set to Visual Studio, XCode...):
```bash
cmake -B build -G "Xcode"
cmake --build build --config Debug
```
- Building for Windows (x86, x64 and arm64) with MSVC or clang as compilers:
- Install Visual Studio 2022, e.g. via the [Community Edition](https://visualstudio.microsoft.com/de/vs/community/). In the installer, select at least the following options (this also automatically installs the required additional tools like CMake,...):
- Tab Workload: Desktop-development with C++
- Tab Components (select quickly via search): C++-_CMake_ Tools for Windows, _Git_ for Windows, C++-_Clang_ Compiler for Windows, MS-Build Support for LLVM-Toolset (clang)
- Please remember to always use a Developer Command Prompt / PowerShell for VS2022 for git, build, test
Note: Building for arm64 could also be done just with MSVC (with the build-arm64-windows-MSVC preset, or the standard CMake build instructions). But MSVC does not support inline ARM assembly-code, used e.g. for the accelerated Q4_0_4_8 CPU kernels.
- Using `gmake` (FreeBSD):
1. Install and activate [DRM in FreeBSD](https://wiki.freebsd.org/Graphics)
On MacOS, Metal is enabled by default. Using Metal makes the computation run on the GPU.
To disable the Metal build at compile time use the `GGML_NO_METAL=1` flag or the `GGML_METAL=OFF` cmake option.
When built with Metal support, you can explicitly disable GPU inference with the `--n-gpu-layers|-ngl 0` command-line
argument.
- Building for Windows (x86, x64 and arm64) with MSVC or clang as compilers:
- Install Visual Studio 2022, e.g. via the [Community Edition](https://visualstudio.microsoft.com/de/vs/community/). In the installer, select at least the following options (this also automatically installs the required additional tools like CMake,...):
- Tab Workload: Desktop-development with C++
- Tab Components (select quickly via search): C++-_CMake_ Tools for Windows, _Git_ for Windows, C++-_Clang_ Compiler for Windows, MS-Build Support for LLVM-Toolset (clang)
- Please remember to always use a Developer Command Prompt / PowerShell for VS2022 for git, build, test
Building for arm64 can also be done with the MSVC compiler with the build-arm64-windows-MSVC preset, or the standard CMake build instructions. However, note that the MSVC compiler does not support inline ARM assembly code, used e.g. for the accelerated Q4_0_4_8 CPU kernels.
## BLAS Build
Building the program with BLAS support may lead to some performance improvements in prompt processing using batch sizes higher than 32 (the default is 512). Support with CPU-only BLAS implementations doesn't affect the normal generation performance. We may see generation performance improvements with GPU-involved BLAS implementations, e.g. cuBLAS, hipBLAS. There are currently several different BLAS implementations available for build and use:
Building the program with BLAS support may lead to some performance improvements in prompt processing using batch sizes higher than 32 (the default is 512). Using BLAS doesn't affect the generation performance. There are currently several different BLAS implementations available for build and use:
### Accelerate Framework:
### Accelerate Framework
This is only available on Mac PCs and it's enabled by default. You can just build using the normal instructions.
### OpenBLAS:
### OpenBLAS
This provides BLAS acceleration using only the CPU. Make sure to have OpenBLAS installed on your machine.
- Using `make`:
- On Linux:
```bash
make GGML_OPENBLAS=1
```
- On Windows:
1. Download the latest fortran version of [w64devkit](https://github.com/skeeto/w64devkit/releases).
2. Download the latest version of [OpenBLAS for Windows](https://github.com/xianyi/OpenBLAS/releases).
3. Extract `w64devkit` on your pc.
4. From the OpenBLAS zip that you just downloaded copy `libopenblas.a`, located inside the `lib` folder, inside `w64devkit\x86_64-w64-mingw32\lib`.
5. From the same OpenBLAS zip copy the content of the `include` folder inside `w64devkit\x86_64-w64-mingw32\include`.
6. Run `w64devkit.exe`.
7. Use the `cd` command to reach the `llama.cpp` folder.
8. From here you can run:
```bash
make GGML_OPENBLAS=1
```
- Using `CMake` on Linux:
```bash
@@ -136,14 +75,6 @@ This provides BLAS acceleration using only the CPU. Make sure to have OpenBLAS i
Check [BLIS.md](./backend/BLIS.md) for more information.
### SYCL
SYCL is a higher-level programming model to improve programming productivity on various hardware accelerators.
llama.cpp based on SYCL is used to **support Intel GPU** (Data Center Max series, Flex series, Arc series, Built-in GPU and iGPU).
For detailed info, please refer to [llama.cpp for SYCL](./backend/SYCL.md).
### Intel oneMKL
Building through oneAPI compilers will make avx_vnni instruction set available for intel processors that do not support avx512 and avx512_vnni. Please note that this build config **does not support Intel GPU**. For Intel GPU support, please refer to [llama.cpp for SYCL](./backend/SYCL.md).
@@ -161,16 +92,29 @@ Building through oneAPI compilers will make avx_vnni instruction set available f
Check [Optimizing and Running LLaMA2 on Intel® CPU](https://www.intel.com/content/www/us/en/content-details/791610/optimizing-and-running-llama2-on-intel-cpu.html) for more information.
### CUDA
### Other BLAS libraries
This provides GPU acceleration using the CUDA cores of your Nvidia GPU. Make sure to have the CUDA toolkit installed. You can download it from your Linux distro's package manager (e.g. `apt install nvidia-cuda-toolkit`) or from here: [CUDA Toolkit](https://developer.nvidia.com/cuda-downloads).
Any other BLAS library can be used by setting the `GGML_BLAS_VENDOR` option. See the [CMake documentation](https://cmake.org/cmake/help/latest/module/FindBLAS.html#blas-lapack-vendors) for a list of supported vendors.
For Jetson user, if you have Jetson Orin, you can try this: [Offical Support](https://www.jetson-ai-lab.com/tutorial_text-generation.html). If you are using an old model(nano/TX2), need some additional operations before compiling.
## Metal Build
On MacOS, Metal is enabled by default. Using Metal makes the computation run on the GPU.
To disable the Metal build at compile time use the `-DGGML_METAL=OFF` cmake option.
When built with Metal support, you can explicitly disable GPU inference with the `--n-gpu-layers 0` command-line argument.
## SYCL
SYCL is a higher-level programming model to improve programming productivity on various hardware accelerators.
llama.cpp based on SYCL is used to **support Intel GPU** (Data Center Max series, Flex series, Arc series, Built-in GPU and iGPU).
For detailed info, please refer to [llama.cpp for SYCL](./backend/SYCL.md).
## CUDA
This provides GPU acceleration using an NVIDIA GPU. Make sure to have the CUDA toolkit installed. You can download it from your Linux distro's package manager (e.g. `apt install nvidia-cuda-toolkit`) or from the [NVIDIA developer site](https://developer.nvidia.com/cuda-downloads).
- Using `make`:
```bash
make GGML_CUDA=1
```
- Using `CMake`:
```bash
@@ -186,22 +130,16 @@ The following compilation options are also available to tweak performance:
| GGML_CUDA_FORCE_DMMV | Boolean | false | Force the use of dequantization + matrix vector multiplication kernels instead of using kernels that do matrix vector multiplication on quantized data. By default the decision is made based on compute capability (MMVQ for 6.1/Pascal/GTX 1000 or higher). Does not affect k-quants. |
| GGML_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the CUDA dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. |
| GGML_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the CUDA mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. |
| GGML_CUDA_FORCE_MMQ | Boolean | false | Force the use of custom matrix multiplication kernels for quantized models instead of FP16 cuBLAS even if there is no int8 tensor core implementation available (affects V100, RDNA3). MMQ kernels are enabled by default on GPUs with int8 tensor core support. With MMQ force enabled, speed for large batch sizes will be worse but VRAM consumption will be lower. |
| GGML_CUDA_FORCE_CUBLAS | Boolean | false | Force the use of FP16 cuBLAS instead of custom matrix multiplication kernels for quantized models |
| GGML_CUDA_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels and for the q4_1 and q5_1 matrix matrix multiplication kernels. Can improve performance on relatively recent GPUs. |
| GGML_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per CUDA thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
| GGML_CUDA_PEER_MAX_BATCH_SIZE | Positive integer | 128 | Maximum batch size for which to enable peer access between multiple GPUs. Peer access requires either Linux or NVLink. When using NVLink enabling peer access for larger batch sizes is potentially beneficial. |
| GGML_CUDA_FA_ALL_QUANTS | Boolean | false | Compile support for all KV cache quantization type (combinations) for the FlashAttention CUDA kernels. More fine-grained control over KV cache size but compilation takes much longer. |
### MUSA
## MUSA
This provides GPU acceleration using the MUSA cores of your Moore Threads MTT GPU. Make sure to have the MUSA SDK installed. You can download it from here: [MUSA SDK](https://developer.mthreads.com/sdk/download/musa).
- Using `make`:
```bash
make GGML_MUSA=1
```
- Using `CMake`:
```bash
@@ -209,20 +147,22 @@ The following compilation options are also available to tweak performance:
cmake --build build --config Release
```
### hipBLAS
The environment variable [`MUSA_VISIBLE_DEVICES`](https://docs.mthreads.com/musa-sdk/musa-sdk-doc-online/programming_guide/Z%E9%99%84%E5%BD%95/) can be used to specify which GPU(s) will be used.
This provides BLAS acceleration on HIP-supported AMD GPUs.
The environment variable `GGML_CUDA_ENABLE_UNIFIED_MEMORY=1` can be used to enable unified memory in Linux. This allows swapping to system RAM instead of crashing when the GPU VRAM is exhausted.
Most of the compilation options available for CUDA should also be available for MUSA, though they haven't been thoroughly tested yet.
## HIP
This provides GPU acceleration on HIP-supported AMD GPUs.
Make sure to have ROCm installed.
You can download it from your Linux distro's package manager or from here: [ROCm Quick Start (Linux)](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/tutorial/quick-start.html#rocm-install-quick).
- Using `make`:
```bash
make GGML_HIPBLAS=1
```
- Using `CMake` for Linux (assuming a gfx1030-compatible AMD GPU):
On Linux it is also possible to use unified memory architecture (UMA) to share main memory between the CPU and integrated GPU by setting `-DGGML_HIP_UMA=ON`.
@@ -239,19 +179,14 @@ You can download it from your Linux distro's package manager or from here: [ROCm
Make sure that `AMDGPU_TARGETS` is set to the GPU arch you want to compile for. The above example uses `gfx1100` that corresponds to Radeon RX 7900XTX/XT/GRE. You can find a list of targets [here](https://llvm.org/docs/AMDGPUUsage.html#processors)
@@ -260,23 +195,16 @@ You can download it from your Linux distro's package manager or from here: [ROCm
The environment variable [`HIP_VISIBLE_DEVICES`](https://rocm.docs.amd.com/en/latest/understand/gpu_isolation.html#hip-visible-devices) can be used to specify which GPU(s) will be used.
If your GPU is not officially supported you can use the environment variable [`HSA_OVERRIDE_GFX_VERSION`] set to a similar GPU, for example 10.3.0 on RDNA2 (e.g. gfx1030, gfx1031, or gfx1035) or 11.0.0 on RDNA3.
The following compilation options are also available to tweak performance (yes, they refer to CUDA, not HIP, because it uses the same code as the cuBLAS version above):
| GGML_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the HIP dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. |
| GGML_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the HIP mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. Does not affect k-quants. |
| GGML_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per HIP thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
### Vulkan
## Vulkan
**Windows**
#### w64devkit
### w64devkit
Download and extract [w64devkit](https://github.com/skeeto/w64devkit/releases).
Download and extract [`w64devkit`](https://github.com/skeeto/w64devkit/releases).
Download and install the [Vulkan SDK](https://vulkan.lunarg.com/sdk/home#windows). When selecting components, only the Vulkan SDK Core is required.
Download and install the [`Vulkan SDK`](https://vulkan.lunarg.com/sdk/home#windows) with the default settings.
Launch `w64devkit.exe` and run the following commands to copy Vulkan dependencies:
```sh
@@ -292,18 +220,47 @@ Libs: -lvulkan-1
EOF
```
Switch into the `llama.cpp` directory and run `make GGML_VULKAN=1`.
#### MSYS2
Switch into the `llama.cpp` directory and build using CMake.
```sh
cmake -B build -DGGML_VULKAN=ON
cmake --build build --config Release
```
### Git Bash MINGW64
Download and install [`Git-SCM`](https://git-scm.com/downloads/win) with the default settings
Download and install [`Visual Studio Community Edition`](https://visualstudio.microsoft.com/) and make sure you select `C++`
Download and install [`CMake`](https://cmake.org/download/) with the default settings
Download and install the [`Vulkan SDK`](https://vulkan.lunarg.com/sdk/home#windows) with the default settings.
Go into your `llama.cpp` directory and right click, select `Open Git Bash Here` and then run the following commands
```
cmake -B build -DGGML_VULKAN=ON
cmake --build build --config Release
```
Now you can load the model in conversation mode using `Vulkan`
This provides NPU acceleration using the AI cores of your Ascend NPU. And [CANN](https://www.hiascend.com/en/software/cann) is a hierarchical APIs to help you to quickly build AI applications and service based on Ascend NPU.
For more information about Ascend NPU in [Ascend Community](https://www.hiascend.com/en/).
Make sure to have the CANN toolkit installed. You can download it from here: [CANN Toolkit](https://www.hiascend.com/developer/download/community/result?module=cann)
Go to `llama.cpp` directory and build using CMake.
For detailed info, such as model/device supports, CANN install, please refer to [llama.cpp for CANN](./backend/CANN.md).
## Android
To read documentation for how to build on Android, [click here](./android.md)
## Notes about GPU-accelerated backends
The GPU may still be used to accelerate some parts of the computation even when using the `-ngl 0` option. You can fully disable GPU acceleration by using `--device none`.
In most cases, it is possible to build and use multiple backends at the same time. For example, you can build llama.cpp with both CUDA and Vulkan support by using the `-DGGML_CUDA=ON -DGGML_VULKAN=ON` options with CMake. At runtime, you can specify which backend devices to use with the `--device` option. To see a list of available devices, use the `--list-devices` option.
Backends can be built as dynamic libraries that can be loaded dynamically at runtime. This allows you to use the same llama.cpp binary on different machines with different GPUs. To enable this feature, use the `GGML_BACKEND_DL` option when building.
@@ -19,8 +19,11 @@ Additionally, there the following images, similar to the above:
-`ghcr.io/ggerganov/llama.cpp:full-rocm`: Same as `full` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
-`ghcr.io/ggerganov/llama.cpp:light-rocm`: Same as `light` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
-`ghcr.io/ggerganov/llama.cpp:server-rocm`: Same as `server` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
-`ghcr.io/ggerganov/llama.cpp:full-musa`: Same as `full` but compiled with MUSA support. (platforms: `linux/amd64`)
-`ghcr.io/ggerganov/llama.cpp:light-musa`: Same as `light` but compiled with MUSA support. (platforms: `linux/amd64`)
-`ghcr.io/ggerganov/llama.cpp:server-musa`: Same as `server` but compiled with MUSA support. (platforms: `linux/amd64`)
The GPU enabled images are not currently tested by CI beyond being built. They are not built with any variation from the ones in the Dockerfiles defined in [.devops/](.devops/) and the GitHub Action defined in [.github/workflows/docker.yml](.github/workflows/docker.yml). If you need different settings (for example, a different CUDA or ROCm library, you'll need to build the images locally for now).
The GPU enabled images are not currently tested by CI beyond being built. They are not built with any variation from the ones in the Dockerfiles defined in [.devops/](../.devops/) and the GitHub Action defined in [.github/workflows/docker.yml](../.github/workflows/docker.yml). If you need different settings (for example, a different CUDA, ROCm or MUSA library, you'll need to build the images locally for now).
## Usage
@@ -66,8 +69,8 @@ You may want to pass in some different `ARGS`, depending on the CUDA environment
The defaults are:
-`CUDA_VERSION` set to `11.7.1`
-`CUDA_DOCKER_ARCH` set to `all`
-`CUDA_VERSION` set to `12.6.0`
-`CUDA_DOCKER_ARCH` set to the cmake build default, which includes all the supported architectures
The resulting images, are essentially the same as the non-CUDA images:
@@ -84,3 +87,37 @@ docker run --gpus all -v /path/to/models:/models local/llama.cpp:full-cuda --run
docker run --gpus all -v /path/to/models:/models local/llama.cpp:light-cuda -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
docker run --gpus all -v /path/to/models:/models local/llama.cpp:server-cuda -m /models/7B/ggml-model-q4_0.gguf --port 8000 --host 0.0.0.0 -n 512 --n-gpu-layers 1
```
## Docker With MUSA
Assuming one has the [mt-container-toolkit](https://developer.mthreads.com/musa/native) properly installed on Linux, `muBLAS` should be accessible inside the container.
You may want to pass in some different `ARGS`, depending on the MUSA environment supported by your container host, as well as the GPU architecture.
The defaults are:
-`MUSA_VERSION` set to `rc3.1.0`
The resulting images, are essentially the same as the non-MUSA images:
1.`local/llama.cpp:full-musa`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization.
2.`local/llama.cpp:light-musa`: This image only includes the main executable file.
3.`local/llama.cpp:server-musa`: This image only includes the server executable file.
## Usage
After building locally, Usage is similar to the non-MUSA examples, but you'll need to set `mthreads` as default Docker runtime. This can be done by executing `(cd /usr/bin/musa && sudo ./docker setup $PWD)` and verifying the changes by executing `docker info | grep mthreads` on the host machine. You will also want to use the `--n-gpu-layers` flag.
```bash
docker run -v /path/to/models:/models local/llama.cpp:full-musa --run -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
docker run -v /path/to/models:/models local/llama.cpp:light-musa -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
Some files were not shown because too many files have changed in this diff
Show More
Reference in New Issue
Block a user
Blocking a user prevents them from interacting with repositories, such as opening or commenting on pull requests or issues. Learn more about blocking a user.