mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2026-02-19 14:13:22 +02:00
Compare commits
19 Commits
b3760
...
compilade/
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
8062650343 | ||
|
|
80d9d2a551 | ||
|
|
1be5ea7d97 | ||
|
|
b264eddbb2 | ||
|
|
652e9b0d61 | ||
|
|
702e1995a1 | ||
|
|
0596a99f09 | ||
|
|
cfd5a113e1 | ||
|
|
5679a3bdbb | ||
|
|
952ed35ba8 | ||
|
|
704a303323 | ||
|
|
0dea4263aa | ||
|
|
9c0a61f8c3 | ||
|
|
1725de768e | ||
|
|
1fb5d4fdee | ||
|
|
7b7db0bbee | ||
|
|
2e4adb47ec | ||
|
|
22504ec67e | ||
|
|
c51daefc32 |
@@ -1,16 +1,18 @@
|
||||
ARG UBUNTU_VERSION=22.04
|
||||
|
||||
# This needs to generally match the container host's environment.
|
||||
ARG CUDA_VERSION=12.6.0
|
||||
ARG CUDA_VERSION=11.7.1
|
||||
|
||||
# Target the CUDA build image
|
||||
ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
|
||||
|
||||
FROM ${BASE_CUDA_DEV_CONTAINER} AS build
|
||||
|
||||
# CUDA architecture to build for (defaults to all supported archs)
|
||||
ARG CUDA_DOCKER_ARCH=default
|
||||
# Unless otherwise specified, we make a fat build.
|
||||
ARG CUDA_DOCKER_ARCH=all
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential cmake python3 python3-pip git libcurl4-openssl-dev libgomp1
|
||||
apt-get install -y build-essential python3 python3-pip git libcurl4-openssl-dev libgomp1
|
||||
|
||||
COPY requirements.txt requirements.txt
|
||||
COPY requirements requirements
|
||||
@@ -22,12 +24,13 @@ WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
|
||||
# Use the default CUDA archs if not specified
|
||||
RUN if [ "${CUDA_DOCKER_ARCH}" != "default" ]; then \
|
||||
export CMAKE_ARGS="-DCMAKE_CUDA_ARCHITECTURES=${CUDA_DOCKER_ARCH}"; \
|
||||
fi && \
|
||||
cmake -B build -DGGML_CUDA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
cmake --build build --config Release -j$(nproc) && \
|
||||
cp build/bin/* .
|
||||
# Set nvcc architecture
|
||||
ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
|
||||
# Enable CUDA
|
||||
ENV GGML_CUDA=1
|
||||
# Enable cURL
|
||||
ENV LLAMA_CURL=1
|
||||
|
||||
RUN make -j$(nproc)
|
||||
|
||||
ENTRYPOINT ["/app/.devops/tools.sh"]
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
ARG UBUNTU_VERSION=22.04
|
||||
# This needs to generally match the container host's environment.
|
||||
ARG CUDA_VERSION=12.6.0
|
||||
ARG CUDA_VERSION=11.7.1
|
||||
# Target the CUDA build image
|
||||
ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
|
||||
# Target the CUDA runtime image
|
||||
@@ -8,30 +8,28 @@ ARG BASE_CUDA_RUN_CONTAINER=nvidia/cuda:${CUDA_VERSION}-runtime-ubuntu${UBUNTU_V
|
||||
|
||||
FROM ${BASE_CUDA_DEV_CONTAINER} AS build
|
||||
|
||||
# CUDA architecture to build for (defaults to all supported archs)
|
||||
ARG CUDA_DOCKER_ARCH=default
|
||||
# Unless otherwise specified, we make a fat build.
|
||||
ARG CUDA_DOCKER_ARCH=all
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential git cmake
|
||||
apt-get install -y build-essential git
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
|
||||
# Use the default CUDA archs if not specified
|
||||
RUN if [ "${CUDA_DOCKER_ARCH}" != "default" ]; then \
|
||||
export CMAKE_ARGS="-DCMAKE_CUDA_ARCHITECTURES=${CUDA_DOCKER_ARCH}"; \
|
||||
fi && \
|
||||
cmake -B build -DGGML_CUDA=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
cmake --build build --config Release --target llama-cli -j$(nproc)
|
||||
# Set nvcc architecture
|
||||
ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
|
||||
# Enable CUDA
|
||||
ENV GGML_CUDA=1
|
||||
|
||||
RUN make -j$(nproc) llama-cli
|
||||
|
||||
FROM ${BASE_CUDA_RUN_CONTAINER} AS runtime
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y libgomp1
|
||||
|
||||
COPY --from=build /app/build/ggml/src/libggml.so /libggml.so
|
||||
COPY --from=build /app/build/src/libllama.so /libllama.so
|
||||
COPY --from=build /app/build/bin/llama-cli /llama-cli
|
||||
COPY --from=build /app/llama-cli /llama-cli
|
||||
|
||||
ENTRYPOINT [ "/llama-cli" ]
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
ARG UBUNTU_VERSION=22.04
|
||||
# This needs to generally match the container host's environment.
|
||||
ARG CUDA_VERSION=12.6.0
|
||||
ARG CUDA_VERSION=11.7.1
|
||||
# Target the CUDA build image
|
||||
ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
|
||||
# Target the CUDA runtime image
|
||||
@@ -8,34 +8,31 @@ ARG BASE_CUDA_RUN_CONTAINER=nvidia/cuda:${CUDA_VERSION}-runtime-ubuntu${UBUNTU_V
|
||||
|
||||
FROM ${BASE_CUDA_DEV_CONTAINER} AS build
|
||||
|
||||
# CUDA architecture to build for (defaults to all supported archs)
|
||||
ARG CUDA_DOCKER_ARCH=default
|
||||
# Unless otherwise specified, we make a fat build.
|
||||
ARG CUDA_DOCKER_ARCH=all
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential git cmake libcurl4-openssl-dev
|
||||
apt-get install -y build-essential git libcurl4-openssl-dev
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
|
||||
# Use the default CUDA archs if not specified
|
||||
RUN if [ "${CUDA_DOCKER_ARCH}" != "default" ]; then \
|
||||
export CMAKE_ARGS="-DCMAKE_CUDA_ARCHITECTURES=${CUDA_DOCKER_ARCH}"; \
|
||||
fi && \
|
||||
cmake -B build -DGGML_CUDA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
cmake --build build --config Release --target llama-server -j$(nproc)
|
||||
# Set nvcc architecture
|
||||
ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
|
||||
# Enable CUDA
|
||||
ENV GGML_CUDA=1
|
||||
# Enable cURL
|
||||
ENV LLAMA_CURL=1
|
||||
|
||||
RUN make -j$(nproc) llama-server
|
||||
|
||||
FROM ${BASE_CUDA_RUN_CONTAINER} AS runtime
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y libcurl4-openssl-dev libgomp1 curl
|
||||
|
||||
COPY --from=build /app/build/ggml/src/libggml.so /libggml.so
|
||||
COPY --from=build /app/build/src/libllama.so /libllama.so
|
||||
COPY --from=build /app/build/bin/llama-server /llama-server
|
||||
|
||||
# Must be set to 0.0.0.0 so it can listen to requests from host machine
|
||||
ENV LLAMA_ARG_HOST=0.0.0.0
|
||||
COPY --from=build /app/llama-server /llama-server
|
||||
|
||||
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
|
||||
|
||||
|
||||
@@ -26,8 +26,6 @@ RUN apt-get update && \
|
||||
COPY --from=build /app/build/bin/llama-server /llama-server
|
||||
|
||||
ENV LC_ALL=C.utf8
|
||||
# Must be set to 0.0.0.0 so it can listen to requests from host machine
|
||||
ENV LLAMA_ARG_HOST=0.0.0.0
|
||||
|
||||
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
|
||||
|
||||
|
||||
@@ -39,8 +39,6 @@ ENV GPU_TARGETS=${ROCM_DOCKER_ARCH}
|
||||
ENV GGML_HIPBLAS=1
|
||||
ENV CC=/opt/rocm/llvm/bin/clang
|
||||
ENV CXX=/opt/rocm/llvm/bin/clang++
|
||||
# Must be set to 0.0.0.0 so it can listen to requests from host machine
|
||||
ENV LLAMA_ARG_HOST=0.0.0.0
|
||||
|
||||
# Enable cURL
|
||||
ENV LLAMA_CURL=1
|
||||
|
||||
@@ -23,8 +23,6 @@ RUN cp /app/build/bin/llama-server /llama-server && \
|
||||
rm -rf /app
|
||||
|
||||
ENV LC_ALL=C.utf8
|
||||
# Must be set to 0.0.0.0 so it can listen to requests from host machine
|
||||
ENV LLAMA_ARG_HOST=0.0.0.0
|
||||
|
||||
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
|
||||
|
||||
|
||||
@@ -21,8 +21,6 @@ RUN apt-get update && \
|
||||
COPY --from=build /app/llama-server /llama-server
|
||||
|
||||
ENV LC_ALL=C.utf8
|
||||
# Must be set to 0.0.0.0 so it can listen to requests from host machine
|
||||
ENV LLAMA_ARG_HOST=0.0.0.0
|
||||
|
||||
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
|
||||
|
||||
|
||||
@@ -1,52 +1,13 @@
|
||||
{ inputs, ... }:
|
||||
|
||||
{
|
||||
perSystem =
|
||||
{
|
||||
config,
|
||||
lib,
|
||||
system,
|
||||
...
|
||||
}:
|
||||
{ config, lib, ... }:
|
||||
{
|
||||
devShells =
|
||||
let
|
||||
pkgs = import inputs.nixpkgs { inherit system; };
|
||||
stdenv = pkgs.stdenv;
|
||||
scripts = config.packages.python-scripts;
|
||||
in
|
||||
lib.pipe (config.packages) [
|
||||
(lib.concatMapAttrs (
|
||||
name: package: {
|
||||
${name} = pkgs.mkShell {
|
||||
name = "${name}";
|
||||
inputsFrom = [ package ];
|
||||
shellHook = ''
|
||||
echo "Entering ${name} devShell"
|
||||
'';
|
||||
};
|
||||
"${name}-extra" =
|
||||
if (name == "python-scripts") then
|
||||
null
|
||||
else
|
||||
pkgs.mkShell {
|
||||
name = "${name}-extra";
|
||||
inputsFrom = [
|
||||
package
|
||||
scripts
|
||||
];
|
||||
# Extra packages that *may* be used by some scripts
|
||||
packages = [
|
||||
pkgs.python3Packages.tiktoken
|
||||
];
|
||||
shellHook = ''
|
||||
echo "Entering ${name} devShell"
|
||||
addToSearchPath "LD_LIBRARY_PATH" "${lib.getLib stdenv.cc.cc}/lib"
|
||||
'';
|
||||
};
|
||||
}
|
||||
))
|
||||
(lib.filterAttrs (name: value: value != null))
|
||||
];
|
||||
lib.concatMapAttrs
|
||||
(name: package: {
|
||||
${name} = package.passthru.shell;
|
||||
${name + "-extra"} = package.passthru.shell-extra;
|
||||
})
|
||||
config.packages;
|
||||
};
|
||||
}
|
||||
|
||||
@@ -26,14 +26,16 @@
|
||||
config.cudaSupport = true;
|
||||
config.allowUnfreePredicate =
|
||||
p:
|
||||
builtins.all (
|
||||
license:
|
||||
license.free
|
||||
|| builtins.elem license.shortName [
|
||||
"CUDA EULA"
|
||||
"cuDNN EULA"
|
||||
]
|
||||
) (p.meta.licenses or [ p.meta.license ]);
|
||||
builtins.all
|
||||
(
|
||||
license:
|
||||
license.free
|
||||
|| builtins.elem license.shortName [
|
||||
"CUDA EULA"
|
||||
"cuDNN EULA"
|
||||
]
|
||||
)
|
||||
(p.meta.licenses or [ p.meta.license ]);
|
||||
};
|
||||
# Ensure dependencies use ROCm consistently
|
||||
pkgsRocm = import inputs.nixpkgs {
|
||||
|
||||
@@ -1,36 +0,0 @@
|
||||
{
|
||||
lib,
|
||||
llamaVersion,
|
||||
numpy,
|
||||
tqdm,
|
||||
sentencepiece,
|
||||
pyyaml,
|
||||
poetry-core,
|
||||
buildPythonPackage,
|
||||
pytestCheckHook,
|
||||
}:
|
||||
|
||||
buildPythonPackage {
|
||||
pname = "gguf";
|
||||
version = llamaVersion;
|
||||
pyproject = true;
|
||||
nativeBuildInputs = [ poetry-core ];
|
||||
propagatedBuildInputs = [
|
||||
numpy
|
||||
tqdm
|
||||
sentencepiece
|
||||
pyyaml
|
||||
];
|
||||
src = lib.cleanSource ../../gguf-py;
|
||||
pythonImportsCheck = [
|
||||
"numpy"
|
||||
"gguf"
|
||||
];
|
||||
nativeCheckInputs = [ pytestCheckHook ];
|
||||
doCheck = true;
|
||||
meta = with lib; {
|
||||
description = "Python package for writing binary files in the GGUF format";
|
||||
license = licenses.mit;
|
||||
maintainers = [ maintainers.ditsuke ];
|
||||
};
|
||||
}
|
||||
@@ -3,33 +3,31 @@
|
||||
glibc,
|
||||
config,
|
||||
stdenv,
|
||||
mkShell,
|
||||
runCommand,
|
||||
cmake,
|
||||
ninja,
|
||||
pkg-config,
|
||||
git,
|
||||
python3,
|
||||
mpi,
|
||||
blas,
|
||||
cudaPackages,
|
||||
autoAddDriverRunpath,
|
||||
darwin,
|
||||
rocmPackages,
|
||||
vulkan-headers,
|
||||
vulkan-loader,
|
||||
curl,
|
||||
shaderc,
|
||||
useBlas ?
|
||||
builtins.all (x: !x) [
|
||||
useCuda
|
||||
useMetalKit
|
||||
useRocm
|
||||
useVulkan
|
||||
]
|
||||
&& blas.meta.available,
|
||||
useBlas ? builtins.all (x: !x) [
|
||||
useCuda
|
||||
useMetalKit
|
||||
useRocm
|
||||
useVulkan
|
||||
] && blas.meta.available,
|
||||
useCuda ? config.cudaSupport,
|
||||
useMetalKit ? stdenv.isAarch64 && stdenv.isDarwin,
|
||||
# Increases the runtime closure size by ~700M
|
||||
useMpi ? false,
|
||||
useMpi ? false, # Increases the runtime closure size by ~700M
|
||||
useRocm ? config.rocmSupport,
|
||||
enableCurl ? true,
|
||||
useVulkan ? false,
|
||||
@@ -39,8 +37,8 @@
|
||||
# otherwise we get libstdc++ errors downstream.
|
||||
effectiveStdenv ? if useCuda then cudaPackages.backendStdenv else stdenv,
|
||||
enableStatic ? effectiveStdenv.hostPlatform.isStatic,
|
||||
precompileMetalShaders ? false,
|
||||
}:
|
||||
precompileMetalShaders ? false
|
||||
}@inputs:
|
||||
|
||||
let
|
||||
inherit (lib)
|
||||
@@ -48,6 +46,7 @@ let
|
||||
cmakeFeature
|
||||
optionals
|
||||
strings
|
||||
versionOlder
|
||||
;
|
||||
|
||||
stdenv = throw "Use effectiveStdenv instead";
|
||||
@@ -63,11 +62,54 @@ let
|
||||
pnameSuffix =
|
||||
strings.optionalString (suffices != [ ])
|
||||
"-${strings.concatMapStringsSep "-" strings.toLower suffices}";
|
||||
descriptionSuffix = strings.optionalString (
|
||||
suffices != [ ]
|
||||
) ", accelerated with ${strings.concatStringsSep ", " suffices}";
|
||||
descriptionSuffix =
|
||||
strings.optionalString (suffices != [ ])
|
||||
", accelerated with ${strings.concatStringsSep ", " suffices}";
|
||||
|
||||
xcrunHost = runCommand "xcrunHost" { } ''
|
||||
executableSuffix = effectiveStdenv.hostPlatform.extensions.executable;
|
||||
|
||||
# TODO: package the Python in this repository in a Nix-like way.
|
||||
# It'd be nice to migrate to buildPythonPackage, as well as ensure this repo
|
||||
# is PEP 517-compatible, and ensure the correct .dist-info is generated.
|
||||
# https://peps.python.org/pep-0517/
|
||||
#
|
||||
# TODO: Package up each Python script or service appropriately, by making
|
||||
# them into "entrypoints"
|
||||
llama-python = python3.withPackages (
|
||||
ps: [
|
||||
ps.numpy
|
||||
ps.sentencepiece
|
||||
]
|
||||
);
|
||||
|
||||
# TODO(Green-Sky): find a better way to opt-into the heavy ml python runtime
|
||||
llama-python-extra = python3.withPackages (
|
||||
ps: [
|
||||
ps.numpy
|
||||
ps.sentencepiece
|
||||
ps.tiktoken
|
||||
ps.torchWithoutCuda
|
||||
ps.transformers
|
||||
|
||||
# server bench
|
||||
ps.matplotlib
|
||||
|
||||
# server tests
|
||||
ps.openai
|
||||
ps.behave
|
||||
ps.prometheus-client
|
||||
|
||||
# for examples/pydantic-models-to-grammar-examples.py
|
||||
ps.docstring-parser
|
||||
ps.pydantic
|
||||
|
||||
# for scripts/compare-llama-bench.py
|
||||
ps.gitpython
|
||||
ps.tabulate
|
||||
]
|
||||
);
|
||||
|
||||
xcrunHost = runCommand "xcrunHost" {} ''
|
||||
mkdir -p $out/bin
|
||||
ln -s /usr/bin/xcrun $out/bin
|
||||
'';
|
||||
@@ -102,145 +144,181 @@ let
|
||||
];
|
||||
in
|
||||
|
||||
effectiveStdenv.mkDerivation (finalAttrs: {
|
||||
pname = "llama-cpp${pnameSuffix}";
|
||||
version = llamaVersion;
|
||||
effectiveStdenv.mkDerivation (
|
||||
finalAttrs: {
|
||||
pname = "llama-cpp${pnameSuffix}";
|
||||
version = llamaVersion;
|
||||
|
||||
# Note: none of the files discarded here are visible in the sandbox or
|
||||
# affect the output hash. This also means they can be modified without
|
||||
# triggering a rebuild.
|
||||
src = lib.cleanSourceWith {
|
||||
filter =
|
||||
name: type:
|
||||
let
|
||||
noneOf = builtins.all (x: !x);
|
||||
baseName = baseNameOf name;
|
||||
in
|
||||
noneOf [
|
||||
(lib.hasSuffix ".nix" name) # Ignore *.nix files when computing outPaths
|
||||
(lib.hasSuffix ".md" name) # Ignore *.md changes whe computing outPaths
|
||||
(lib.hasPrefix "." baseName) # Skip hidden files and directories
|
||||
(baseName == "flake.lock")
|
||||
# Note: none of the files discarded here are visible in the sandbox or
|
||||
# affect the output hash. This also means they can be modified without
|
||||
# triggering a rebuild.
|
||||
src = lib.cleanSourceWith {
|
||||
filter =
|
||||
name: type:
|
||||
let
|
||||
noneOf = builtins.all (x: !x);
|
||||
baseName = baseNameOf name;
|
||||
in
|
||||
noneOf [
|
||||
(lib.hasSuffix ".nix" name) # Ignore *.nix files when computing outPaths
|
||||
(lib.hasSuffix ".md" name) # Ignore *.md changes whe computing outPaths
|
||||
(lib.hasPrefix "." baseName) # Skip hidden files and directories
|
||||
(baseName == "flake.lock")
|
||||
];
|
||||
src = lib.cleanSource ../../.;
|
||||
};
|
||||
|
||||
postPatch = ''
|
||||
substituteInPlace ./ggml/src/ggml-metal.m \
|
||||
--replace '[bundle pathForResource:@"ggml-metal" ofType:@"metal"];' "@\"$out/bin/ggml-metal.metal\";"
|
||||
substituteInPlace ./ggml/src/ggml-metal.m \
|
||||
--replace '[bundle pathForResource:@"default" ofType:@"metallib"];' "@\"$out/bin/default.metallib\";"
|
||||
'';
|
||||
|
||||
# With PR#6015 https://github.com/ggerganov/llama.cpp/pull/6015,
|
||||
# `default.metallib` may be compiled with Metal compiler from XCode
|
||||
# and we need to escape sandbox on MacOS to access Metal compiler.
|
||||
# `xcrun` is used find the path of the Metal compiler, which is varible
|
||||
# and not on $PATH
|
||||
# see https://github.com/ggerganov/llama.cpp/pull/6118 for discussion
|
||||
__noChroot = effectiveStdenv.isDarwin && useMetalKit && precompileMetalShaders;
|
||||
|
||||
nativeBuildInputs =
|
||||
[
|
||||
cmake
|
||||
ninja
|
||||
pkg-config
|
||||
git
|
||||
]
|
||||
++ optionals useCuda [
|
||||
cudaPackages.cuda_nvcc
|
||||
|
||||
# TODO: Replace with autoAddDriverRunpath
|
||||
# once https://github.com/NixOS/nixpkgs/pull/275241 has been merged
|
||||
cudaPackages.autoAddOpenGLRunpathHook
|
||||
]
|
||||
++ optionals (effectiveStdenv.hostPlatform.isGnu && enableStatic) [
|
||||
glibc.static
|
||||
] ++ optionals (effectiveStdenv.isDarwin && useMetalKit && precompileMetalShaders) [
|
||||
xcrunHost
|
||||
];
|
||||
src = lib.cleanSource ../../.;
|
||||
};
|
||||
|
||||
postPatch = ''
|
||||
substituteInPlace ./ggml/src/ggml-metal.m \
|
||||
--replace '[bundle pathForResource:@"ggml-metal" ofType:@"metal"];' "@\"$out/bin/ggml-metal.metal\";"
|
||||
substituteInPlace ./ggml/src/ggml-metal.m \
|
||||
--replace '[bundle pathForResource:@"default" ofType:@"metallib"];' "@\"$out/bin/default.metallib\";"
|
||||
'';
|
||||
buildInputs =
|
||||
optionals effectiveStdenv.isDarwin darwinBuildInputs
|
||||
++ optionals useCuda cudaBuildInputs
|
||||
++ optionals useMpi [ mpi ]
|
||||
++ optionals useRocm rocmBuildInputs
|
||||
++ optionals useBlas [ blas ]
|
||||
++ optionals useVulkan vulkanBuildInputs
|
||||
++ optionals enableCurl [ curl ];
|
||||
|
||||
# With PR#6015 https://github.com/ggerganov/llama.cpp/pull/6015,
|
||||
# `default.metallib` may be compiled with Metal compiler from XCode
|
||||
# and we need to escape sandbox on MacOS to access Metal compiler.
|
||||
# `xcrun` is used find the path of the Metal compiler, which is varible
|
||||
# and not on $PATH
|
||||
# see https://github.com/ggerganov/llama.cpp/pull/6118 for discussion
|
||||
__noChroot = effectiveStdenv.isDarwin && useMetalKit && precompileMetalShaders;
|
||||
|
||||
nativeBuildInputs =
|
||||
[
|
||||
cmake
|
||||
ninja
|
||||
pkg-config
|
||||
git
|
||||
]
|
||||
++ optionals useCuda [
|
||||
cudaPackages.cuda_nvcc
|
||||
|
||||
autoAddDriverRunpath
|
||||
]
|
||||
++ optionals (effectiveStdenv.hostPlatform.isGnu && enableStatic) [ glibc.static ]
|
||||
++ optionals (effectiveStdenv.isDarwin && useMetalKit && precompileMetalShaders) [ xcrunHost ];
|
||||
|
||||
buildInputs =
|
||||
optionals effectiveStdenv.isDarwin darwinBuildInputs
|
||||
++ optionals useCuda cudaBuildInputs
|
||||
++ optionals useMpi [ mpi ]
|
||||
++ optionals useRocm rocmBuildInputs
|
||||
++ optionals useBlas [ blas ]
|
||||
++ optionals useVulkan vulkanBuildInputs
|
||||
++ optionals enableCurl [ curl ];
|
||||
|
||||
cmakeFlags =
|
||||
[
|
||||
(cmakeBool "LLAMA_BUILD_SERVER" true)
|
||||
(cmakeBool "BUILD_SHARED_LIBS" (!enableStatic))
|
||||
(cmakeBool "CMAKE_SKIP_BUILD_RPATH" true)
|
||||
(cmakeBool "LLAMA_CURL" enableCurl)
|
||||
(cmakeBool "GGML_NATIVE" false)
|
||||
(cmakeBool "GGML_BLAS" useBlas)
|
||||
(cmakeBool "GGML_CUDA" useCuda)
|
||||
(cmakeBool "GGML_HIPBLAS" useRocm)
|
||||
(cmakeBool "GGML_METAL" useMetalKit)
|
||||
(cmakeBool "GGML_VULKAN" useVulkan)
|
||||
(cmakeBool "GGML_STATIC" enableStatic)
|
||||
]
|
||||
++ optionals useCuda [
|
||||
(
|
||||
with cudaPackages.flags;
|
||||
cmakeFeature "CMAKE_CUDA_ARCHITECTURES" (
|
||||
builtins.concatStringsSep ";" (map dropDot cudaCapabilities)
|
||||
cmakeFlags =
|
||||
[
|
||||
(cmakeBool "LLAMA_BUILD_SERVER" true)
|
||||
(cmakeBool "BUILD_SHARED_LIBS" (!enableStatic))
|
||||
(cmakeBool "CMAKE_SKIP_BUILD_RPATH" true)
|
||||
(cmakeBool "LLAMA_CURL" enableCurl)
|
||||
(cmakeBool "GGML_NATIVE" false)
|
||||
(cmakeBool "GGML_BLAS" useBlas)
|
||||
(cmakeBool "GGML_CUDA" useCuda)
|
||||
(cmakeBool "GGML_HIPBLAS" useRocm)
|
||||
(cmakeBool "GGML_METAL" useMetalKit)
|
||||
(cmakeBool "GGML_VULKAN" useVulkan)
|
||||
(cmakeBool "GGML_STATIC" enableStatic)
|
||||
]
|
||||
++ optionals useCuda [
|
||||
(
|
||||
with cudaPackages.flags;
|
||||
cmakeFeature "CMAKE_CUDA_ARCHITECTURES" (
|
||||
builtins.concatStringsSep ";" (map dropDot cudaCapabilities)
|
||||
)
|
||||
)
|
||||
)
|
||||
]
|
||||
++ optionals useRocm [
|
||||
(cmakeFeature "CMAKE_HIP_COMPILER" "${rocmPackages.llvm.clang}/bin/clang")
|
||||
(cmakeFeature "CMAKE_HIP_ARCHITECTURES" (builtins.concatStringsSep ";" rocmPackages.clr.gpuTargets))
|
||||
]
|
||||
++ optionals useMetalKit [
|
||||
(lib.cmakeFeature "CMAKE_C_FLAGS" "-D__ARM_FEATURE_DOTPROD=1")
|
||||
(cmakeBool "GGML_METAL_EMBED_LIBRARY" (!precompileMetalShaders))
|
||||
];
|
||||
]
|
||||
++ optionals useRocm [
|
||||
(cmakeFeature "CMAKE_HIP_COMPILER" "${rocmPackages.llvm.clang}/bin/clang")
|
||||
(cmakeFeature "CMAKE_HIP_ARCHITECTURES" (builtins.concatStringsSep ";" rocmPackages.clr.gpuTargets))
|
||||
]
|
||||
++ optionals useMetalKit [
|
||||
(lib.cmakeFeature "CMAKE_C_FLAGS" "-D__ARM_FEATURE_DOTPROD=1")
|
||||
(cmakeBool "GGML_METAL_EMBED_LIBRARY" (!precompileMetalShaders))
|
||||
];
|
||||
|
||||
# Environment variables needed for ROCm
|
||||
env = optionals useRocm {
|
||||
ROCM_PATH = "${rocmPackages.clr}";
|
||||
HIP_DEVICE_LIB_PATH = "${rocmPackages.rocm-device-libs}/amdgcn/bitcode";
|
||||
};
|
||||
# Environment variables needed for ROCm
|
||||
env = optionals useRocm {
|
||||
ROCM_PATH = "${rocmPackages.clr}";
|
||||
HIP_DEVICE_LIB_PATH = "${rocmPackages.rocm-device-libs}/amdgcn/bitcode";
|
||||
};
|
||||
|
||||
# TODO(SomeoneSerge): It's better to add proper install targets at the CMake level,
|
||||
# if they haven't been added yet.
|
||||
postInstall = ''
|
||||
mkdir -p $out/include
|
||||
cp $src/include/llama.h $out/include/
|
||||
'';
|
||||
# TODO(SomeoneSerge): It's better to add proper install targets at the CMake level,
|
||||
# if they haven't been added yet.
|
||||
postInstall = ''
|
||||
mkdir -p $out/include
|
||||
cp $src/include/llama.h $out/include/
|
||||
'';
|
||||
|
||||
meta = {
|
||||
# Configurations we don't want even the CI to evaluate. Results in the
|
||||
# "unsupported platform" messages. This is mostly a no-op, because
|
||||
# cudaPackages would've refused to evaluate anyway.
|
||||
badPlatforms = optionals useCuda lib.platforms.darwin;
|
||||
# Define the shells here, but don't add in the inputsFrom to avoid recursion.
|
||||
passthru = {
|
||||
inherit
|
||||
useBlas
|
||||
useCuda
|
||||
useMetalKit
|
||||
useMpi
|
||||
useRocm
|
||||
useVulkan
|
||||
;
|
||||
|
||||
# Configurations that are known to result in build failures. Can be
|
||||
# overridden by importing Nixpkgs with `allowBroken = true`.
|
||||
broken = (useMetalKit && !effectiveStdenv.isDarwin);
|
||||
shell = mkShell {
|
||||
name = "shell-${finalAttrs.finalPackage.name}";
|
||||
description = "contains numpy and sentencepiece";
|
||||
buildInputs = [ llama-python ];
|
||||
inputsFrom = [ finalAttrs.finalPackage ];
|
||||
shellHook = ''
|
||||
addToSearchPath "LD_LIBRARY_PATH" "${lib.getLib effectiveStdenv.cc.cc}/lib"
|
||||
'';
|
||||
};
|
||||
|
||||
description = "Inference of LLaMA model in pure C/C++${descriptionSuffix}";
|
||||
homepage = "https://github.com/ggerganov/llama.cpp/";
|
||||
license = lib.licenses.mit;
|
||||
shell-extra = mkShell {
|
||||
name = "shell-extra-${finalAttrs.finalPackage.name}";
|
||||
description = "contains numpy, sentencepiece, torchWithoutCuda, and transformers";
|
||||
buildInputs = [ llama-python-extra ];
|
||||
inputsFrom = [ finalAttrs.finalPackage ];
|
||||
};
|
||||
};
|
||||
|
||||
# Accommodates `nix run` and `lib.getExe`
|
||||
mainProgram = "llama-cli";
|
||||
meta = {
|
||||
# Configurations we don't want even the CI to evaluate. Results in the
|
||||
# "unsupported platform" messages. This is mostly a no-op, because
|
||||
# cudaPackages would've refused to evaluate anyway.
|
||||
badPlatforms = optionals useCuda lib.platforms.darwin;
|
||||
|
||||
# These people might respond, on the best effort basis, if you ping them
|
||||
# in case of Nix-specific regressions or for reviewing Nix-specific PRs.
|
||||
# Consider adding yourself to this list if you want to ensure this flake
|
||||
# stays maintained and you're willing to invest your time. Do not add
|
||||
# other people without their consent. Consider removing people after
|
||||
# they've been unreachable for long periods of time.
|
||||
# Configurations that are known to result in build failures. Can be
|
||||
# overridden by importing Nixpkgs with `allowBroken = true`.
|
||||
broken = (useMetalKit && !effectiveStdenv.isDarwin);
|
||||
|
||||
# Note that lib.maintainers is defined in Nixpkgs, but you may just add
|
||||
# an attrset following the same format as in
|
||||
# https://github.com/NixOS/nixpkgs/blob/f36a80e54da29775c78d7eff0e628c2b4e34d1d7/maintainers/maintainer-list.nix
|
||||
maintainers = with lib.maintainers; [
|
||||
philiptaron
|
||||
SomeoneSerge
|
||||
];
|
||||
description = "Inference of LLaMA model in pure C/C++${descriptionSuffix}";
|
||||
homepage = "https://github.com/ggerganov/llama.cpp/";
|
||||
license = lib.licenses.mit;
|
||||
|
||||
# Extend `badPlatforms` instead
|
||||
platforms = lib.platforms.all;
|
||||
};
|
||||
})
|
||||
# Accommodates `nix run` and `lib.getExe`
|
||||
mainProgram = "llama-cli";
|
||||
|
||||
# These people might respond, on the best effort basis, if you ping them
|
||||
# in case of Nix-specific regressions or for reviewing Nix-specific PRs.
|
||||
# Consider adding yourself to this list if you want to ensure this flake
|
||||
# stays maintained and you're willing to invest your time. Do not add
|
||||
# other people without their consent. Consider removing people after
|
||||
# they've been unreachable for long periods of time.
|
||||
|
||||
# Note that lib.maintainers is defined in Nixpkgs, but you may just add
|
||||
# an attrset following the same format as in
|
||||
# https://github.com/NixOS/nixpkgs/blob/f36a80e54da29775c78d7eff0e628c2b4e34d1d7/maintainers/maintainer-list.nix
|
||||
maintainers = with lib.maintainers; [
|
||||
philiptaron
|
||||
SomeoneSerge
|
||||
];
|
||||
|
||||
# Extend `badPlatforms` instead
|
||||
platforms = lib.platforms.all;
|
||||
};
|
||||
}
|
||||
)
|
||||
|
||||
@@ -1,66 +0,0 @@
|
||||
{
|
||||
lib,
|
||||
stdenv,
|
||||
buildPythonPackage,
|
||||
poetry-core,
|
||||
mkShell,
|
||||
python3Packages,
|
||||
gguf-py,
|
||||
}@inputs:
|
||||
|
||||
let
|
||||
llama-python-deps = with python3Packages; [
|
||||
numpy
|
||||
sentencepiece
|
||||
transformers
|
||||
protobuf
|
||||
torchWithoutCuda
|
||||
gguf-py
|
||||
tqdm
|
||||
|
||||
# for scripts/compare-llama-bench.py
|
||||
gitpython
|
||||
tabulate
|
||||
|
||||
# for examples/pydantic-models-to-grammar-examples.py
|
||||
docstring-parser
|
||||
pydantic
|
||||
|
||||
];
|
||||
|
||||
llama-python-test-deps = with python3Packages; [
|
||||
# Server bench
|
||||
matplotlib
|
||||
|
||||
# server tests
|
||||
openai
|
||||
behave
|
||||
prometheus-client
|
||||
];
|
||||
in
|
||||
|
||||
buildPythonPackage ({
|
||||
pname = "llama-scripts";
|
||||
version = "0.0.0";
|
||||
pyproject = true;
|
||||
|
||||
# NOTE: The files filtered out here are not visible in the build sandbox, neither
|
||||
# do they affect the output hash. They can be modified without triggering a rebuild.
|
||||
src = lib.cleanSourceWith {
|
||||
filter =
|
||||
name: type:
|
||||
let
|
||||
any = builtins.any (x: x);
|
||||
baseName = builtins.baseNameOf name;
|
||||
in
|
||||
any [
|
||||
(lib.hasSuffix ".py" name)
|
||||
(baseName == "README.md")
|
||||
(baseName == "pyproject.toml")
|
||||
];
|
||||
src = lib.cleanSource ../../.;
|
||||
};
|
||||
nativeBuildInputs = [ poetry-core ];
|
||||
nativeCheckInputs = llama-python-test-deps;
|
||||
dependencies = llama-python-deps;
|
||||
})
|
||||
@@ -1,41 +1,19 @@
|
||||
{
|
||||
lib,
|
||||
newScope,
|
||||
python3,
|
||||
llamaVersion ? "0.0.0",
|
||||
}:
|
||||
|
||||
let
|
||||
pythonPackages = python3.pkgs;
|
||||
buildPythonPackage = pythonPackages.buildPythonPackage;
|
||||
numpy = pythonPackages.numpy;
|
||||
tqdm = pythonPackages.tqdm;
|
||||
sentencepiece = pythonPackages.sentencepiece;
|
||||
pyyaml = pythonPackages.pyyaml;
|
||||
poetry-core = pythonPackages.poetry-core;
|
||||
pytestCheckHook = pythonPackages.pytestCheckHook;
|
||||
in
|
||||
|
||||
# We're using `makeScope` instead of just writing out an attrset
|
||||
# because it allows users to apply overlays later using `overrideScope'`.
|
||||
# Cf. https://noogle.dev/f/lib/makeScope
|
||||
|
||||
lib.makeScope newScope (self: {
|
||||
inherit llamaVersion;
|
||||
gguf-py = self.callPackage ./package-gguf-py.nix {
|
||||
inherit
|
||||
buildPythonPackage
|
||||
numpy
|
||||
tqdm
|
||||
sentencepiece
|
||||
poetry-core
|
||||
pyyaml
|
||||
pytestCheckHook
|
||||
;
|
||||
};
|
||||
python-scripts = self.callPackage ./python-scripts.nix { inherit buildPythonPackage poetry-core; };
|
||||
llama-cpp = self.callPackage ./package.nix { };
|
||||
docker = self.callPackage ./docker.nix { };
|
||||
docker-min = self.callPackage ./docker.nix { interactive = false; };
|
||||
sif = self.callPackage ./sif.nix { };
|
||||
})
|
||||
lib.makeScope newScope (
|
||||
self: {
|
||||
inherit llamaVersion;
|
||||
llama-cpp = self.callPackage ./package.nix { };
|
||||
docker = self.callPackage ./docker.nix { };
|
||||
docker-min = self.callPackage ./docker.nix { interactive = false; };
|
||||
sif = self.callPackage ./sif.nix { };
|
||||
}
|
||||
)
|
||||
|
||||
2
.ecrc
2
.ecrc
@@ -1,5 +1,5 @@
|
||||
{
|
||||
"Exclude": ["^\\.gitmodules$", "stb_image\\.h"],
|
||||
"Exclude": ["^\\.gitmodules$"],
|
||||
"Disable": {
|
||||
"IndentSize": true
|
||||
}
|
||||
|
||||
18
.github/workflows/build.yml
vendored
18
.github/workflows/build.yml
vendored
@@ -375,7 +375,7 @@ jobs:
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
@@ -401,7 +401,7 @@ jobs:
|
||||
continue-on-error: true
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/checkout@v2
|
||||
|
||||
- name: add oneAPI to apt
|
||||
shell: bash
|
||||
@@ -442,7 +442,7 @@ jobs:
|
||||
continue-on-error: true
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/checkout@v2
|
||||
|
||||
- name: add oneAPI to apt
|
||||
shell: bash
|
||||
@@ -546,7 +546,7 @@ jobs:
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
@@ -576,7 +576,7 @@ jobs:
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
@@ -610,7 +610,7 @@ jobs:
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
@@ -857,7 +857,7 @@ jobs:
|
||||
run: |
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_CUDA=ON -DBUILD_SHARED_LIBS=ON -DGGML_RPC=ON
|
||||
cmake .. -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_CUDA=ON -DBUILD_SHARED_LIBS=ON
|
||||
cmake --build . --config Release -j $((${env:NUMBER_OF_PROCESSORS} - 1)) -t ggml
|
||||
cmake --build . --config Release -j ${env:NUMBER_OF_PROCESSORS}
|
||||
|
||||
@@ -969,14 +969,14 @@ jobs:
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Install
|
||||
id: depends
|
||||
run: |
|
||||
$ErrorActionPreference = "Stop"
|
||||
write-host "Downloading AMD HIP SDK Installer"
|
||||
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
|
||||
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-23.Q4-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
|
||||
write-host "Installing AMD HIP SDK"
|
||||
Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
|
||||
write-host "Completed AMD HIP SDK installation"
|
||||
|
||||
21
.github/workflows/docker.yml
vendored
21
.github/workflows/docker.yml
vendored
@@ -37,9 +37,9 @@ jobs:
|
||||
- { tag: "light-cuda", dockerfile: ".devops/llama-cli-cuda.Dockerfile", platforms: "linux/amd64" }
|
||||
- { tag: "server-cuda", dockerfile: ".devops/llama-server-cuda.Dockerfile", platforms: "linux/amd64" }
|
||||
- { tag: "full-cuda", dockerfile: ".devops/full-cuda.Dockerfile", platforms: "linux/amd64" }
|
||||
# Note: the rocm images are failing due to a compiler error and are disabled until this is fixed to allow the workflow to complete
|
||||
#- { tag: "light-rocm", dockerfile: ".devops/llama-cli-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
||||
#- { tag: "server-rocm", dockerfile: ".devops/llama-server-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
||||
- { tag: "light-rocm", dockerfile: ".devops/llama-cli-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
||||
- { tag: "server-rocm", dockerfile: ".devops/llama-server-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
||||
# Note: the full-rocm image is failing due to a "no space left on device" error. It is disabled for now to allow the workflow to complete.
|
||||
#- { tag: "full-rocm", dockerfile: ".devops/full-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
||||
- { tag: "light-intel", dockerfile: ".devops/llama-cli-intel.Dockerfile", platforms: "linux/amd64" }
|
||||
- { tag: "server-intel", dockerfile: ".devops/llama-server-intel.Dockerfile", platforms: "linux/amd64" }
|
||||
@@ -96,12 +96,21 @@ jobs:
|
||||
env:
|
||||
GITHUB_REPOSITORY_OWNER: '${{ github.repository_owner }}'
|
||||
|
||||
- name: Build and push Docker image (tagged + versioned)
|
||||
- name: Build and push Docker image (versioned)
|
||||
if: github.event_name == 'push'
|
||||
uses: docker/build-push-action@v6
|
||||
uses: docker/build-push-action@v4
|
||||
with:
|
||||
context: .
|
||||
push: true
|
||||
platforms: ${{ matrix.config.platforms }}
|
||||
tags: "ghcr.io/${{ env.repository_owner_lowercase }}/llama.cpp:${{ matrix.config.tag }}-${{ env.COMMIT_SHA }},ghcr.io/${{ env.repository_owner_lowercase }}/llama.cpp:${{ matrix.config.tag }},ghcr.io/${{ env.repository_owner_lowercase }}/llama.cpp:${{ matrix.config.tag }}-${{ steps.tag.outputs.name }}"
|
||||
tags: "ghcr.io/${{ env.repository_owner_lowercase }}/llama.cpp:${{ matrix.config.tag }}-${{ env.COMMIT_SHA }}"
|
||||
file: ${{ matrix.config.dockerfile }}
|
||||
|
||||
- name: Build and push Docker image (tagged)
|
||||
uses: docker/build-push-action@v4
|
||||
with:
|
||||
context: .
|
||||
push: ${{ github.event_name == 'push' }}
|
||||
platforms: ${{ matrix.config.platforms }}
|
||||
tags: "ghcr.io/${{ env.repository_owner_lowercase }}/llama.cpp:${{ matrix.config.tag }},ghcr.io/${{ env.repository_owner_lowercase }}/llama.cpp:${{ matrix.config.tag }}-${{ steps.tag.outputs.name }}"
|
||||
file: ${{ matrix.config.dockerfile }}
|
||||
|
||||
1
.github/workflows/server.yml
vendored
1
.github/workflows/server.yml
vendored
@@ -173,7 +173,6 @@ jobs:
|
||||
if: ${{ !matrix.disabled_on_pr || !github.event.pull_request }}
|
||||
run: |
|
||||
cd examples/server/tests
|
||||
$env:PYTHONIOENCODING = ":replace"
|
||||
behave.exe --summary --stop --no-capture --exclude 'issues|wrong_usages|passkey' --tags llama.cpp
|
||||
|
||||
- name: Slow tests
|
||||
|
||||
1
.gitignore
vendored
1
.gitignore
vendored
@@ -61,7 +61,6 @@ llama-batched-swift
|
||||
/rpc-server
|
||||
out/
|
||||
tmp/
|
||||
autogen-*.md
|
||||
|
||||
# Deprecated
|
||||
|
||||
|
||||
@@ -139,16 +139,10 @@ set(LLAMA_BIN_INSTALL_DIR ${CMAKE_INSTALL_BINDIR} CACHE PATH "Location o
|
||||
# determining _precisely_ which defines are necessary for the llama-config
|
||||
# package.
|
||||
#
|
||||
set(GGML_TRANSIENT_DEFINES)
|
||||
get_target_property(GGML_DIRECTORY ggml SOURCE_DIR)
|
||||
get_directory_property(GGML_DIR_DEFINES DIRECTORY ${GGML_DIRECTORY} COMPILE_DEFINITIONS)
|
||||
if (GGML_DIR_DEFINES)
|
||||
list(APPEND GGML_TRANSIENT_DEFINES ${GGML_DIR_DEFINES})
|
||||
endif()
|
||||
get_target_property(GGML_TARGET_DEFINES ggml COMPILE_DEFINITIONS)
|
||||
if (GGML_TARGET_DEFINES)
|
||||
list(APPEND GGML_TRANSIENT_DEFINES ${GGML_TARGET_DEFINES})
|
||||
endif()
|
||||
set(GGML_TRANSIENT_DEFINES ${GGML_TARGET_DEFINES} ${GGML_DIR_DEFINES})
|
||||
get_target_property(GGML_LINK_LIBRARIES ggml LINK_LIBRARIES)
|
||||
|
||||
set_target_properties(llama PROPERTIES PUBLIC_HEADER ${CMAKE_CURRENT_SOURCE_DIR}/include/llama.h)
|
||||
|
||||
@@ -28,12 +28,11 @@
|
||||
{ "name": "release", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "Release" } },
|
||||
{ "name": "reldbg", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "RelWithDebInfo" } },
|
||||
{ "name": "static", "hidden": true, "cacheVariables": { "GGML_STATIC": "ON" } },
|
||||
{ "name": "sycl_f16", "hidden": true, "cacheVariables": { "GGML_SYCL_F16": "ON" } },
|
||||
|
||||
{
|
||||
"name": "arm64-windows-msvc", "hidden": true,
|
||||
"architecture": { "value": "arm64", "strategy": "external" },
|
||||
"toolset": { "value": "host=x64", "strategy": "external" },
|
||||
"architecture": { "value": "arm64", "strategy": "external" },
|
||||
"toolset": { "value": "host=x86_64", "strategy": "external" },
|
||||
"cacheVariables": {
|
||||
"CMAKE_TOOLCHAIN_FILE": "${sourceDir}/cmake/arm64-windows-msvc.cmake"
|
||||
}
|
||||
@@ -41,8 +40,8 @@
|
||||
|
||||
{
|
||||
"name": "arm64-windows-llvm", "hidden": true,
|
||||
"architecture": { "value": "arm64", "strategy": "external" },
|
||||
"toolset": { "value": "host=x64", "strategy": "external" },
|
||||
"architecture": { "value": "arm64", "strategy": "external" },
|
||||
"toolset": { "value": "host=x86_64", "strategy": "external" },
|
||||
"cacheVariables": {
|
||||
"CMAKE_TOOLCHAIN_FILE": "${sourceDir}/cmake/arm64-windows-llvm.cmake"
|
||||
}
|
||||
@@ -61,8 +60,6 @@
|
||||
{ "name": "x64-windows-msvc+static-release", "inherits": [ "base", "reldbg", "static" ] },
|
||||
|
||||
{ "name": "x64-windows-sycl-debug" , "inherits": [ "sycl-base", "debug" ] },
|
||||
{ "name": "x64-windows-sycl-debug-f16", "inherits": [ "sycl-base", "debug", "sycl_f16" ] },
|
||||
{ "name": "x64-windows-sycl-release", "inherits": [ "sycl-base", "release" ] },
|
||||
{ "name": "x64-windows-sycl-release-f16", "inherits": [ "sycl-base", "release", "sycl_f16" ] }
|
||||
{ "name": "x64-windows-sycl-release", "inherits": [ "sycl-base", "release" ] }
|
||||
]
|
||||
}
|
||||
|
||||
34
Makefile
34
Makefile
@@ -39,12 +39,10 @@ BUILD_TARGETS = \
|
||||
llama-tokenize \
|
||||
llama-vdot \
|
||||
llama-cvector-generator \
|
||||
llama-gen-docs \
|
||||
tests/test-c.o
|
||||
|
||||
# Binaries only useful for tests
|
||||
TEST_TARGETS = \
|
||||
tests/test-arg-parser \
|
||||
tests/test-autorelease \
|
||||
tests/test-backend-ops \
|
||||
tests/test-chat-template \
|
||||
@@ -434,7 +432,7 @@ endif
|
||||
# TODO: probably these flags need to be tweaked on some architectures
|
||||
# feel free to update the Makefile for your architecture and send a pull request or issue
|
||||
|
||||
ifndef RISCV_CROSS_COMPILE
|
||||
ifndef RISCV
|
||||
|
||||
ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686 amd64))
|
||||
# Use all CPU extensions that are available:
|
||||
@@ -514,12 +512,7 @@ ifneq ($(filter loongarch64%,$(UNAME_M)),)
|
||||
MK_CXXFLAGS += -mlasx
|
||||
endif
|
||||
|
||||
ifneq ($(filter riscv64%,$(UNAME_M)),)
|
||||
MK_CFLAGS += -march=rv64gcv -mabi=lp64d
|
||||
MK_CXXFLAGS += -march=rv64gcv -mabi=lp64d
|
||||
endif
|
||||
|
||||
else # RISC-V CROSS COMPILATION
|
||||
else
|
||||
MK_CFLAGS += -march=rv64gcv -mabi=lp64d
|
||||
MK_CXXFLAGS += -march=rv64gcv -mabi=lp64d
|
||||
endif
|
||||
@@ -930,11 +923,11 @@ OBJ_LLAMA = \
|
||||
|
||||
OBJ_COMMON = \
|
||||
common/common.o \
|
||||
common/arg.o \
|
||||
common/console.o \
|
||||
common/ngram-cache.o \
|
||||
common/sampling.o \
|
||||
common/train.o \
|
||||
common/grammar-parser.o \
|
||||
common/build-info.o \
|
||||
common/json-schema-to-grammar.o
|
||||
|
||||
@@ -1163,11 +1156,6 @@ common/common.o: \
|
||||
include/llama.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
common/arg.o: \
|
||||
common/arg.cpp \
|
||||
common/arg.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
common/sampling.o: \
|
||||
common/sampling.cpp \
|
||||
common/sampling.h \
|
||||
@@ -1179,6 +1167,11 @@ common/console.o: \
|
||||
common/console.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
common/grammar-parser.o: \
|
||||
common/grammar-parser.cpp \
|
||||
common/grammar-parser.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
common/json-schema-to-grammar.o: \
|
||||
common/json-schema-to-grammar.cpp \
|
||||
common/json-schema-to-grammar.h
|
||||
@@ -1440,7 +1433,6 @@ llama-server: \
|
||||
examples/server/system-prompts.js.hpp \
|
||||
examples/server/prompt-formats.js.hpp \
|
||||
examples/server/json-schema-to-grammar.mjs.hpp \
|
||||
examples/server/loading.html.hpp \
|
||||
common/json.hpp \
|
||||
common/stb_image.h \
|
||||
$(OBJ_ALL)
|
||||
@@ -1456,11 +1448,6 @@ examples/server/%.hpp: examples/server/public/% Makefile
|
||||
echo "unsigned int $${NAME}_len = $(shell cat $< | wc -c );" \
|
||||
) > $@
|
||||
|
||||
llama-gen-docs: examples/gen-docs/gen-docs.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
libllava.a: examples/llava/llava.cpp \
|
||||
examples/llava/llava.h \
|
||||
examples/llava/clip.cpp \
|
||||
@@ -1518,11 +1505,6 @@ run-benchmark-matmult: llama-benchmark-matmult
|
||||
|
||||
.PHONY: run-benchmark-matmult swift
|
||||
|
||||
tests/test-arg-parser: tests/test-arg-parser.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-llama-grammar: tests/test-llama-grammar.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
|
||||
27
README.md
27
README.md
@@ -10,14 +10,32 @@
|
||||
|
||||
Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others) in pure C/C++
|
||||
|
||||
> [!IMPORTANT]
|
||||
[2024 Jun 12] Binaries have been renamed w/ a `llama-` prefix. `main` is now `llama-cli`, `server` is `llama-server`, etc (https://github.com/ggerganov/llama.cpp/pull/7809)
|
||||
|
||||
## Recent API changes
|
||||
|
||||
- [Changelog for `libllama` API](https://github.com/ggerganov/llama.cpp/issues/9289)
|
||||
- [Changelog for `llama-server` REST API](https://github.com/ggerganov/llama.cpp/issues/9291)
|
||||
- [2024 Jun 26] The source code and CMake build scripts have been restructured https://github.com/ggerganov/llama.cpp/pull/8006
|
||||
- [2024 Apr 21] `llama_token_to_piece` can now optionally render special tokens https://github.com/ggerganov/llama.cpp/pull/6807
|
||||
- [2024 Apr 4] State and session file functions reorganized under `llama_state_*` https://github.com/ggerganov/llama.cpp/pull/6341
|
||||
- [2024 Mar 26] Logits and embeddings API updated for compactness https://github.com/ggerganov/llama.cpp/pull/6122
|
||||
- [2024 Mar 13] Add `llama_synchronize()` + `llama_context_params.n_ubatch` https://github.com/ggerganov/llama.cpp/pull/6017
|
||||
- [2024 Mar 8] `llama_kv_cache_seq_rm()` returns a `bool` instead of `void`, and new `llama_n_seq_max()` returns the upper limit of acceptable `seq_id` in batches (relevant when dealing with multiple sequences) https://github.com/ggerganov/llama.cpp/pull/5328
|
||||
- [2024 Mar 4] Embeddings API updated https://github.com/ggerganov/llama.cpp/pull/5796
|
||||
- [2024 Mar 3] `struct llama_context_params` https://github.com/ggerganov/llama.cpp/pull/5849
|
||||
|
||||
## Hot topics
|
||||
|
||||
- Huggingface GGUF editor: [discussion](https://github.com/ggerganov/llama.cpp/discussions/9268) | [tool](https://huggingface.co/spaces/CISCai/gguf-editor)
|
||||
- **`convert.py` has been deprecated and moved to `examples/convert_legacy_llama.py`, please use `convert_hf_to_gguf.py`** https://github.com/ggerganov/llama.cpp/pull/7430
|
||||
- Initial Flash-Attention support: https://github.com/ggerganov/llama.cpp/pull/5021
|
||||
- BPE pre-tokenization support has been added: https://github.com/ggerganov/llama.cpp/pull/6920
|
||||
- MoE memory layout has been updated - reconvert models for `mmap` support and regenerate `imatrix` https://github.com/ggerganov/llama.cpp/pull/6387
|
||||
- Model sharding instructions using `gguf-split` https://github.com/ggerganov/llama.cpp/discussions/6404
|
||||
- Fix major bug in Metal batched inference https://github.com/ggerganov/llama.cpp/pull/6225
|
||||
- Multi-GPU pipeline parallelism support https://github.com/ggerganov/llama.cpp/pull/6017
|
||||
- Looking for contributions to add Deepseek support: https://github.com/ggerganov/llama.cpp/issues/5981
|
||||
- Quantization blind testing: https://github.com/ggerganov/llama.cpp/discussions/5962
|
||||
- Initial Mamba support has been added: https://github.com/ggerganov/llama.cpp/pull/5328
|
||||
|
||||
----
|
||||
|
||||
@@ -89,7 +107,6 @@ Typically finetunes of the base models below are supported as well.
|
||||
- [x] [SmolLM](https://huggingface.co/collections/HuggingFaceTB/smollm-6695016cad7167254ce15966)
|
||||
- [x] [EXAONE-3.0-7.8B-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct)
|
||||
- [x] [FalconMamba Models](https://huggingface.co/collections/tiiuae/falconmamba-7b-66b9a580324dd1598b0f6d4a)
|
||||
- [x] [Jais](https://huggingface.co/inceptionai/jais-13b-chat)
|
||||
|
||||
(instructions for supporting more models: [HOWTO-add-model.md](./docs/development/HOWTO-add-model.md))
|
||||
|
||||
@@ -164,7 +181,6 @@ Unless otherwise noted these projects are open-source with permissive licensing:
|
||||
- [AI Sublime Text plugin](https://github.com/yaroslavyaroslav/OpenAI-sublime-text) (MIT)
|
||||
- [AIKit](https://github.com/sozercan/aikit) (MIT)
|
||||
- [LARS - The LLM & Advanced Referencing Solution](https://github.com/abgulati/LARS) (AGPL)
|
||||
- [LLMUnity](https://github.com/undreamai/LLMUnity) (MIT)
|
||||
|
||||
*(to have a project listed here, it should clearly state that it depends on `llama.cpp`)*
|
||||
|
||||
@@ -173,7 +189,6 @@ Unless otherwise noted these projects are open-source with permissive licensing:
|
||||
- [akx/ggify](https://github.com/akx/ggify) – download PyTorch models from HuggingFace Hub and convert them to GGML
|
||||
- [crashr/gppm](https://github.com/crashr/gppm) – launch llama.cpp instances utilizing NVIDIA Tesla P40 or P100 GPUs with reduced idle power consumption
|
||||
- [gpustack/gguf-parser](https://github.com/gpustack/gguf-parser-go/tree/main/cmd/gguf-parser) - review/check the GGUF file and estimate the memory usage
|
||||
- [Styled Lines](https://marketplace.unity.com/packages/tools/generative-ai/styled-lines-llama-cpp-model-292902) (proprietary licensed, async wrapper of inference part for game development in Unity3d with prebuild Mobile and Web platform wrappers and a model example)
|
||||
|
||||
**Infrastructure:**
|
||||
|
||||
|
||||
29
ci/run.sh
29
ci/run.sh
@@ -13,9 +13,6 @@
|
||||
# # with SYCL support
|
||||
# GG_BUILD_SYCL=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
||||
#
|
||||
# # with VULKAN support
|
||||
# GG_BUILD_VULKAN=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
||||
#
|
||||
|
||||
if [ -z "$2" ]; then
|
||||
echo "usage: $0 <output-dir> <mnt-dir>"
|
||||
@@ -43,7 +40,7 @@ if [ ! -z ${GG_BUILD_METAL} ]; then
|
||||
fi
|
||||
|
||||
if [ ! -z ${GG_BUILD_CUDA} ]; then
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_CUDA=ON -DCMAKE_CUDA_ARCHITECTURES=native"
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_CUDA=1"
|
||||
fi
|
||||
|
||||
if [ ! -z ${GG_BUILD_SYCL} ]; then
|
||||
@@ -55,10 +52,6 @@ if [ ! -z ${GG_BUILD_SYCL} ]; then
|
||||
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_SYCL=1 DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON"
|
||||
fi
|
||||
|
||||
if [ ! -z ${GG_BUILD_VULKAN} ]; then
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_VULKAN=1"
|
||||
fi
|
||||
## helpers
|
||||
|
||||
# download a file if it does not exist or if it is outdated
|
||||
@@ -114,7 +107,7 @@ function gg_run_ctest_debug {
|
||||
gg_check_build_requirements
|
||||
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Debug ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
|
||||
(time ctest --output-on-failure -L main -E test-opt ) 2>&1 | tee -a $OUT/${ci}-ctest.log
|
||||
|
||||
@@ -145,7 +138,7 @@ function gg_run_ctest_release {
|
||||
gg_check_build_requirements
|
||||
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
|
||||
if [ -z ${GG_BUILD_LOW_PERF} ]; then
|
||||
(time ctest --output-on-failure -L main ) 2>&1 | tee -a $OUT/${ci}-ctest.log
|
||||
@@ -273,6 +266,7 @@ function gg_sum_ctest_with_model_release {
|
||||
}
|
||||
|
||||
# open_llama_7b_v2
|
||||
# requires: GG_BUILD_CUDA
|
||||
|
||||
function gg_run_open_llama_7b_v2 {
|
||||
cd ${SRC}
|
||||
@@ -296,8 +290,8 @@ function gg_run_open_llama_7b_v2 {
|
||||
|
||||
set -e
|
||||
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DGGML_CUDA=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
|
||||
python3 ../examples/convert_legacy_llama.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
|
||||
|
||||
@@ -431,7 +425,7 @@ function gg_run_pythia_1_4b {
|
||||
set -e
|
||||
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
|
||||
python3 ../convert_hf_to_gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
|
||||
|
||||
@@ -541,6 +535,7 @@ function gg_sum_pythia_1_4b {
|
||||
}
|
||||
|
||||
# pythia_2_8b
|
||||
# requires: GG_BUILD_CUDA
|
||||
|
||||
function gg_run_pythia_2_8b {
|
||||
cd ${SRC}
|
||||
@@ -561,8 +556,8 @@ function gg_run_pythia_2_8b {
|
||||
|
||||
set -e
|
||||
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DGGML_CUDA=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
|
||||
python3 ../convert_hf_to_gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
|
||||
|
||||
@@ -697,7 +692,7 @@ function gg_run_embd_bge_small {
|
||||
set -e
|
||||
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
|
||||
python3 ../convert_hf_to_gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
|
||||
|
||||
@@ -766,7 +761,7 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
|
||||
fi
|
||||
|
||||
if [ -z ${GG_BUILD_VRAM_GB} ] || [ ${GG_BUILD_VRAM_GB} -ge 8 ]; then
|
||||
if [ -z ${GG_BUILD_CUDA} ] && [ -z ${GG_BUILD_VULKAN} ]; then
|
||||
if [ -z ${GG_BUILD_CUDA} ]; then
|
||||
test $ret -eq 0 && gg_run pythia_1_4b
|
||||
else
|
||||
test $ret -eq 0 && gg_run pythia_2_8b
|
||||
|
||||
@@ -54,12 +54,12 @@ add_library(${TARGET} STATIC
|
||||
base64.hpp
|
||||
common.h
|
||||
common.cpp
|
||||
arg.h
|
||||
arg.cpp
|
||||
sampling.h
|
||||
sampling.cpp
|
||||
console.h
|
||||
console.cpp
|
||||
grammar-parser.h
|
||||
grammar-parser.cpp
|
||||
json.hpp
|
||||
json-schema-to-grammar.cpp
|
||||
train.h
|
||||
|
||||
1995
common/arg.cpp
1995
common/arg.cpp
File diff suppressed because it is too large
Load Diff
77
common/arg.h
77
common/arg.h
@@ -1,77 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "common.h"
|
||||
|
||||
#include <set>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
//
|
||||
// CLI argument parsing
|
||||
//
|
||||
|
||||
struct llama_arg {
|
||||
std::set<enum llama_example> examples = {LLAMA_EXAMPLE_COMMON};
|
||||
std::vector<const char *> args;
|
||||
const char * value_hint = nullptr; // help text or example for arg value
|
||||
const char * value_hint_2 = nullptr; // for second arg value
|
||||
const char * env = nullptr;
|
||||
std::string help;
|
||||
bool is_sparam = false; // is current arg a sampling param?
|
||||
void (*handler_void) (gpt_params & params) = nullptr;
|
||||
void (*handler_string) (gpt_params & params, const std::string &) = nullptr;
|
||||
void (*handler_str_str)(gpt_params & params, const std::string &, const std::string &) = nullptr;
|
||||
void (*handler_int) (gpt_params & params, int) = nullptr;
|
||||
|
||||
llama_arg(
|
||||
const std::initializer_list<const char *> & args,
|
||||
const char * value_hint,
|
||||
const std::string & help,
|
||||
void (*handler)(gpt_params & params, const std::string &)
|
||||
) : args(args), value_hint(value_hint), help(help), handler_string(handler) {}
|
||||
|
||||
llama_arg(
|
||||
const std::initializer_list<const char *> & args,
|
||||
const char * value_hint,
|
||||
const std::string & help,
|
||||
void (*handler)(gpt_params & params, int)
|
||||
) : args(args), value_hint(value_hint), help(help), handler_int(handler) {}
|
||||
|
||||
llama_arg(
|
||||
const std::initializer_list<const char *> & args,
|
||||
const std::string & help,
|
||||
void (*handler)(gpt_params & params)
|
||||
) : args(args), help(help), handler_void(handler) {}
|
||||
|
||||
// support 2 values for arg
|
||||
llama_arg(
|
||||
const std::initializer_list<const char *> & args,
|
||||
const char * value_hint,
|
||||
const char * value_hint_2,
|
||||
const std::string & help,
|
||||
void (*handler)(gpt_params & params, const std::string &, const std::string &)
|
||||
) : args(args), value_hint(value_hint), value_hint_2(value_hint_2), help(help), handler_str_str(handler) {}
|
||||
|
||||
llama_arg & set_examples(std::initializer_list<enum llama_example> examples);
|
||||
llama_arg & set_env(const char * env);
|
||||
llama_arg & set_sparam();
|
||||
bool in_example(enum llama_example ex);
|
||||
bool get_value_from_env(std::string & output);
|
||||
bool has_value_from_env();
|
||||
std::string to_string();
|
||||
};
|
||||
|
||||
struct gpt_params_context {
|
||||
enum llama_example ex = LLAMA_EXAMPLE_COMMON;
|
||||
gpt_params & params;
|
||||
std::vector<llama_arg> options;
|
||||
void(*print_usage)(int, char **) = nullptr;
|
||||
gpt_params_context(gpt_params & params) : params(params) {}
|
||||
};
|
||||
|
||||
// parse input arguments from CLI
|
||||
// if one argument has invalid value, it will automatically display usage of the specific argument (and not the full usage message)
|
||||
bool gpt_params_parse(int argc, char ** argv, gpt_params & params, llama_example ex, void(*print_usage)(int, char **) = nullptr);
|
||||
|
||||
// function to be used by test-arg-parser
|
||||
gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex, void(*print_usage)(int, char **) = nullptr);
|
||||
1766
common/common.cpp
1766
common/common.cpp
File diff suppressed because it is too large
Load Diff
178
common/common.h
178
common/common.h
@@ -4,11 +4,18 @@
|
||||
|
||||
#include "llama.h"
|
||||
|
||||
#include "sampling.h"
|
||||
|
||||
#define LOG_NO_FILE_LINE_FUNCTION
|
||||
#include "log.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <random>
|
||||
#include <thread>
|
||||
#include <unordered_map>
|
||||
#include <tuple>
|
||||
|
||||
#ifdef _WIN32
|
||||
#define DIRECTORY_SEPARATOR '\\'
|
||||
@@ -47,103 +54,26 @@ struct llama_control_vector_load_info;
|
||||
// CPU utils
|
||||
//
|
||||
|
||||
struct cpu_params {
|
||||
int n_threads = -1;
|
||||
bool cpumask[GGML_MAX_N_THREADS] = {false}; // CPU affinity mask.
|
||||
bool mask_valid = false; // Default: any CPU
|
||||
enum ggml_sched_priority priority = GGML_SCHED_PRIO_NORMAL; // Scheduling prio : (0 - normal, 1 - medium, 2 - high, 3 - realtime)
|
||||
bool strict_cpu = false; // Use strict CPU placement
|
||||
uint32_t poll = 50; // Polling (busywait) level (0 - no polling, 100 - mostly polling)
|
||||
};
|
||||
|
||||
int32_t cpu_get_num_physical_cores();
|
||||
int32_t cpu_get_num_math();
|
||||
|
||||
//
|
||||
// Common params
|
||||
// CLI argument parsing
|
||||
//
|
||||
|
||||
enum llama_example {
|
||||
LLAMA_EXAMPLE_COMMON,
|
||||
LLAMA_EXAMPLE_SPECULATIVE,
|
||||
LLAMA_EXAMPLE_MAIN,
|
||||
LLAMA_EXAMPLE_INFILL,
|
||||
LLAMA_EXAMPLE_EMBEDDING,
|
||||
LLAMA_EXAMPLE_PERPLEXITY,
|
||||
LLAMA_EXAMPLE_RETRIEVAL,
|
||||
LLAMA_EXAMPLE_PASSKEY,
|
||||
LLAMA_EXAMPLE_IMATRIX,
|
||||
LLAMA_EXAMPLE_BENCH,
|
||||
LLAMA_EXAMPLE_SERVER,
|
||||
LLAMA_EXAMPLE_CVECTOR_GENERATOR,
|
||||
LLAMA_EXAMPLE_EXPORT_LORA,
|
||||
LLAMA_EXAMPLE_LLAVA,
|
||||
LLAMA_EXAMPLE_LOOKUP,
|
||||
LLAMA_EXAMPLE_PARALLEL,
|
||||
|
||||
LLAMA_EXAMPLE_COUNT,
|
||||
};
|
||||
|
||||
enum gpt_sampler_type {
|
||||
GPT_SAMPLER_TYPE_NONE = 0,
|
||||
GPT_SAMPLER_TYPE_TOP_K = 1,
|
||||
GPT_SAMPLER_TYPE_TOP_P = 2,
|
||||
GPT_SAMPLER_TYPE_MIN_P = 3,
|
||||
GPT_SAMPLER_TYPE_TFS_Z = 4,
|
||||
GPT_SAMPLER_TYPE_TYPICAL_P = 5,
|
||||
GPT_SAMPLER_TYPE_TEMPERATURE = 6,
|
||||
};
|
||||
|
||||
// dimensionality reduction methods, used by cvector-generator
|
||||
enum dimre_method {
|
||||
DIMRE_METHOD_PCA,
|
||||
DIMRE_METHOD_MEAN,
|
||||
};
|
||||
|
||||
// sampler parameters
|
||||
struct gpt_sampler_params {
|
||||
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
|
||||
|
||||
int32_t n_prev = 64; // number of previous tokens to remember
|
||||
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
|
||||
int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens
|
||||
int32_t top_k = 40; // <= 0 to use vocab size
|
||||
float top_p = 0.95f; // 1.0 = disabled
|
||||
float min_p = 0.05f; // 0.0 = disabled
|
||||
float tfs_z = 1.00f; // 1.0 = disabled
|
||||
float typ_p = 1.00f; // typical_p, 1.0 = disabled
|
||||
float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
|
||||
float dynatemp_range = 0.00f; // 0.0 = disabled
|
||||
float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
|
||||
int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
|
||||
float penalty_repeat = 1.00f; // 1.0 = disabled
|
||||
float penalty_freq = 0.00f; // 0.0 = disabled
|
||||
float penalty_present = 0.00f; // 0.0 = disabled
|
||||
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
|
||||
float mirostat_tau = 5.00f; // target entropy
|
||||
float mirostat_eta = 0.10f; // learning rate
|
||||
bool penalize_nl = false; // consider newlines as a repeatable token
|
||||
bool ignore_eos = false;
|
||||
bool no_perf = false; // disable performance metrics
|
||||
|
||||
std::vector<enum gpt_sampler_type> samplers = {
|
||||
GPT_SAMPLER_TYPE_TOP_K,
|
||||
GPT_SAMPLER_TYPE_TFS_Z,
|
||||
GPT_SAMPLER_TYPE_TYPICAL_P,
|
||||
GPT_SAMPLER_TYPE_TOP_P,
|
||||
GPT_SAMPLER_TYPE_MIN_P,
|
||||
GPT_SAMPLER_TYPE_TEMPERATURE
|
||||
};
|
||||
|
||||
std::string grammar; // optional BNF-like grammar to constrain sampling
|
||||
|
||||
std::vector<llama_logit_bias> logit_bias; // logit biases to apply
|
||||
|
||||
// print the parameters into a string
|
||||
std::string print() const;
|
||||
};
|
||||
|
||||
struct gpt_params {
|
||||
uint32_t seed = LLAMA_DEFAULT_SEED; // RNG seed
|
||||
|
||||
int32_t n_threads = cpu_get_num_math();
|
||||
int32_t n_threads_draft = -1;
|
||||
int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
|
||||
int32_t n_threads_batch_draft = -1;
|
||||
int32_t n_predict = -1; // new tokens to predict
|
||||
int32_t n_ctx = 0; // context size
|
||||
int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
|
||||
@@ -170,11 +100,6 @@ struct gpt_params {
|
||||
int32_t yarn_orig_ctx = 0; // YaRN original context length
|
||||
float defrag_thold = -1.0f; // KV cache defragmentation threshold
|
||||
|
||||
struct cpu_params cpuparams;
|
||||
struct cpu_params cpuparams_batch;
|
||||
struct cpu_params draft_cpuparams;
|
||||
struct cpu_params draft_cpuparams_batch;
|
||||
|
||||
ggml_backend_sched_eval_callback cb_eval = nullptr;
|
||||
void * cb_eval_user_data = nullptr;
|
||||
|
||||
@@ -185,25 +110,26 @@ struct gpt_params {
|
||||
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
|
||||
enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
|
||||
|
||||
struct gpt_sampler_params sparams;
|
||||
// // sampling parameters
|
||||
struct llama_sampling_params sparams;
|
||||
|
||||
std::string model = ""; // model path // NOLINT
|
||||
std::string model_draft = ""; // draft model for speculative decoding // NOLINT
|
||||
std::string model_alias = "unknown"; // model alias // NOLINT
|
||||
std::string model_url = ""; // model url to download // NOLINT
|
||||
std::string hf_token = ""; // HF token // NOLINT
|
||||
std::string hf_repo = ""; // HF repo // NOLINT
|
||||
std::string hf_file = ""; // HF file // NOLINT
|
||||
std::string prompt = ""; // NOLINT
|
||||
std::string prompt_file = ""; // store the external prompt file name // NOLINT
|
||||
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state // NOLINT
|
||||
std::string input_prefix = ""; // string to prefix user inputs with // NOLINT
|
||||
std::string input_suffix = ""; // string to suffix user inputs with // NOLINT
|
||||
std::string logdir = ""; // directory in which to save YAML log files // NOLINT
|
||||
std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding // NOLINT
|
||||
std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding // NOLINT
|
||||
std::string logits_file = ""; // file for saving *all* logits // NOLINT
|
||||
std::string rpc_servers = ""; // comma separated list of RPC servers // NOLINT
|
||||
std::string model = ""; // model path
|
||||
std::string model_draft = ""; // draft model for speculative decoding
|
||||
std::string model_alias = "unknown"; // model alias
|
||||
std::string model_url = ""; // model url to download
|
||||
std::string hf_token = ""; // HF token
|
||||
std::string hf_repo = ""; // HF repo
|
||||
std::string hf_file = ""; // HF file
|
||||
std::string prompt = "";
|
||||
std::string prompt_file = ""; // store the external prompt file name
|
||||
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
|
||||
std::string input_prefix = ""; // string to prefix user inputs with
|
||||
std::string input_suffix = ""; // string to suffix user inputs with
|
||||
std::string logdir = ""; // directory in which to save YAML log files
|
||||
std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding
|
||||
std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding
|
||||
std::string logits_file = ""; // file for saving *all* logits
|
||||
std::string rpc_servers = ""; // comma separated list of RPC servers
|
||||
|
||||
std::vector<std::string> in_files; // all input files
|
||||
std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
|
||||
@@ -247,14 +173,15 @@ struct gpt_params {
|
||||
bool simple_io = false; // improves compatibility with subprocesses and limited consoles
|
||||
bool cont_batching = true; // insert new sequences for decoding on-the-fly
|
||||
bool flash_attn = false; // flash attention
|
||||
bool no_perf = false; // disable performance metrics
|
||||
|
||||
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
|
||||
bool ignore_eos = false; // ignore generated EOS tokens
|
||||
bool logits_all = false; // return logits for all tokens in the batch
|
||||
bool use_mmap = true; // use mmap for faster loads
|
||||
bool use_mlock = false; // use mlock to keep model in memory
|
||||
bool verbose_prompt = false; // print prompt tokens before generation
|
||||
bool display_prompt = true; // print prompt before generation
|
||||
bool infill = false; // use infill mode
|
||||
bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
|
||||
bool no_kv_offload = false; // disable KV offloading
|
||||
bool warmup = true; // warmup run
|
||||
@@ -264,7 +191,7 @@ struct gpt_params {
|
||||
std::string cache_type_v = "f16"; // KV cache data type for the V
|
||||
|
||||
// multimodal models (see examples/llava)
|
||||
std::string mmproj = ""; // path to multimodal projector // NOLINT
|
||||
std::string mmproj = ""; // path to multimodal projector
|
||||
std::vector<std::string> image; // path to image file(s)
|
||||
|
||||
// embedding
|
||||
@@ -277,18 +204,18 @@ struct gpt_params {
|
||||
int32_t port = 8080; // server listens on this network port
|
||||
int32_t timeout_read = 600; // http read timeout in seconds
|
||||
int32_t timeout_write = timeout_read; // http write timeout in seconds
|
||||
int n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
|
||||
int32_t n_threads_http = -1; // number of threads to process HTTP requests
|
||||
|
||||
std::string hostname = "127.0.0.1";
|
||||
std::string public_path = ""; // NOLINT
|
||||
std::string chat_template = ""; // NOLINT
|
||||
std::string system_prompt = ""; // NOLINT
|
||||
std::string public_path = "";
|
||||
std::string chat_template = "";
|
||||
std::string system_prompt = "";
|
||||
bool enable_chat_template = true;
|
||||
|
||||
std::vector<std::string> api_keys;
|
||||
|
||||
std::string ssl_file_key = ""; // NOLINT
|
||||
std::string ssl_file_cert = ""; // NOLINT
|
||||
std::string ssl_file_key = "";
|
||||
std::string ssl_file_cert = "";
|
||||
|
||||
bool endpoint_slots = true;
|
||||
bool endpoint_metrics = false;
|
||||
@@ -338,17 +265,17 @@ struct gpt_params {
|
||||
bool spm_infill = false; // suffix/prefix/middle pattern for infill
|
||||
|
||||
std::string lora_outfile = "ggml-lora-merged-f16.gguf";
|
||||
|
||||
// batched-bench params
|
||||
bool batched_bench_output_jsonl = false;
|
||||
};
|
||||
|
||||
std::string gpt_params_get_system_info(const gpt_params & params);
|
||||
void gpt_params_handle_hf_token(gpt_params & params);
|
||||
void gpt_params_handle_model_default(gpt_params & params);
|
||||
|
||||
bool parse_cpu_range(const std::string& range, bool(&boolmask)[GGML_MAX_N_THREADS]);
|
||||
bool parse_cpu_mask(const std::string& mask, bool(&boolmask)[GGML_MAX_N_THREADS]);
|
||||
void postprocess_cpu_params(cpu_params& cpuparams, const cpu_params* role_model = nullptr);
|
||||
bool set_process_priority(enum ggml_sched_priority prio);
|
||||
bool gpt_params_parse_ex (int argc, char ** argv, gpt_params & params);
|
||||
bool gpt_params_parse (int argc, char ** argv, gpt_params & params);
|
||||
bool gpt_params_find_arg (int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param);
|
||||
void gpt_params_print_usage(int argc, char ** argv, const gpt_params & params);
|
||||
|
||||
std::string gpt_params_get_system_info(const gpt_params & params);
|
||||
|
||||
//
|
||||
// String utils
|
||||
@@ -400,9 +327,8 @@ struct llama_init_result {
|
||||
|
||||
struct llama_init_result llama_init_from_gpt_params(gpt_params & params);
|
||||
|
||||
struct llama_model_params llama_model_params_from_gpt_params (const gpt_params & params);
|
||||
struct llama_context_params llama_context_params_from_gpt_params (const gpt_params & params);
|
||||
struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
|
||||
struct llama_model_params llama_model_params_from_gpt_params (const gpt_params & params);
|
||||
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params);
|
||||
|
||||
struct llama_model * llama_load_model_from_url(const char * model_url, const char * path_model, const char * hf_token, const struct llama_model_params & params);
|
||||
struct llama_model * llama_load_model_from_hf(const char * repo, const char * file, const char * path_model, const char * hf_token, const struct llama_model_params & params);
|
||||
|
||||
539
common/grammar-parser.cpp
Normal file
539
common/grammar-parser.cpp
Normal file
@@ -0,0 +1,539 @@
|
||||
#include "grammar-parser.h"
|
||||
#include <cstdint>
|
||||
#include <cwchar>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
#include <stdexcept>
|
||||
#include <exception>
|
||||
|
||||
namespace grammar_parser {
|
||||
// NOTE: assumes valid utf8 (but checks for overrun)
|
||||
// copied from llama.cpp
|
||||
static std::pair<uint32_t, const char *> decode_utf8(const char * src) {
|
||||
static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
|
||||
uint8_t first_byte = static_cast<uint8_t>(*src);
|
||||
uint8_t highbits = first_byte >> 4;
|
||||
int len = lookup[highbits];
|
||||
uint8_t mask = (1 << (8 - len)) - 1;
|
||||
uint32_t value = first_byte & mask;
|
||||
const char * end = src + len; // may overrun!
|
||||
const char * pos = src + 1;
|
||||
for ( ; pos < end && *pos; pos++) {
|
||||
value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
|
||||
}
|
||||
return std::make_pair(value, pos);
|
||||
}
|
||||
|
||||
static uint32_t get_symbol_id(parse_state & state, const char * src, size_t len) {
|
||||
uint32_t next_id = static_cast<uint32_t>(state.symbol_ids.size());
|
||||
auto result = state.symbol_ids.emplace(std::string(src, len), next_id);
|
||||
return result.first->second;
|
||||
}
|
||||
|
||||
static uint32_t generate_symbol_id(parse_state & state, const std::string & base_name) {
|
||||
uint32_t next_id = static_cast<uint32_t>(state.symbol_ids.size());
|
||||
state.symbol_ids[base_name + '_' + std::to_string(next_id)] = next_id;
|
||||
return next_id;
|
||||
}
|
||||
|
||||
static void add_rule(
|
||||
parse_state & state,
|
||||
uint32_t rule_id,
|
||||
const std::vector<llama_grammar_element> & rule) {
|
||||
if (state.rules.size() <= rule_id) {
|
||||
state.rules.resize(rule_id + 1);
|
||||
}
|
||||
state.rules[rule_id] = rule;
|
||||
}
|
||||
|
||||
static bool is_digit_char(char c) {
|
||||
return '0' <= c && c <= '9';
|
||||
}
|
||||
|
||||
static bool is_word_char(char c) {
|
||||
return ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || c == '-' || is_digit_char(c);
|
||||
}
|
||||
|
||||
static std::pair<uint32_t, const char *> parse_hex(const char * src, int size) {
|
||||
const char * pos = src;
|
||||
const char * end = src + size;
|
||||
uint32_t value = 0;
|
||||
for ( ; pos < end && *pos; pos++) {
|
||||
value <<= 4;
|
||||
char c = *pos;
|
||||
if ('a' <= c && c <= 'f') {
|
||||
value += c - 'a' + 10;
|
||||
} else if ('A' <= c && c <= 'F') {
|
||||
value += c - 'A' + 10;
|
||||
} else if ('0' <= c && c <= '9') {
|
||||
value += c - '0';
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (pos != end) {
|
||||
throw std::runtime_error("expecting " + std::to_string(size) + " hex chars at " + src);
|
||||
}
|
||||
return std::make_pair(value, pos);
|
||||
}
|
||||
|
||||
static const char * parse_space(const char * src, bool newline_ok) {
|
||||
const char * pos = src;
|
||||
while (*pos == ' ' || *pos == '\t' || *pos == '#' ||
|
||||
(newline_ok && (*pos == '\r' || *pos == '\n'))) {
|
||||
if (*pos == '#') {
|
||||
while (*pos && *pos != '\r' && *pos != '\n') {
|
||||
pos++;
|
||||
}
|
||||
} else {
|
||||
pos++;
|
||||
}
|
||||
}
|
||||
return pos;
|
||||
}
|
||||
|
||||
static const char * parse_name(const char * src) {
|
||||
const char * pos = src;
|
||||
while (is_word_char(*pos)) {
|
||||
pos++;
|
||||
}
|
||||
if (pos == src) {
|
||||
throw std::runtime_error(std::string("expecting name at ") + src);
|
||||
}
|
||||
return pos;
|
||||
}
|
||||
|
||||
static const char * parse_int(const char * src) {
|
||||
const char * pos = src;
|
||||
while (is_digit_char(*pos)) {
|
||||
pos++;
|
||||
}
|
||||
if (pos == src) {
|
||||
throw std::runtime_error(std::string("expecting integer at ") + src);
|
||||
}
|
||||
return pos;
|
||||
}
|
||||
|
||||
static std::pair<uint32_t, const char *> parse_char(const char * src) {
|
||||
if (*src == '\\') {
|
||||
switch (src[1]) {
|
||||
case 'x': return parse_hex(src + 2, 2);
|
||||
case 'u': return parse_hex(src + 2, 4);
|
||||
case 'U': return parse_hex(src + 2, 8);
|
||||
case 't': return std::make_pair('\t', src + 2);
|
||||
case 'r': return std::make_pair('\r', src + 2);
|
||||
case 'n': return std::make_pair('\n', src + 2);
|
||||
case '\\':
|
||||
case '"':
|
||||
case '[':
|
||||
case ']':
|
||||
return std::make_pair(src[1], src + 2);
|
||||
default:
|
||||
throw std::runtime_error(std::string("unknown escape at ") + src);
|
||||
}
|
||||
} else if (*src) {
|
||||
return decode_utf8(src);
|
||||
}
|
||||
throw std::runtime_error("unexpected end of input");
|
||||
}
|
||||
|
||||
const char * parse_alternates(
|
||||
parse_state & state,
|
||||
const char * src,
|
||||
const std::string & rule_name,
|
||||
uint32_t rule_id,
|
||||
bool is_nested);
|
||||
|
||||
static const char * parse_sequence(
|
||||
parse_state & state,
|
||||
const char * src,
|
||||
const std::string & rule_name,
|
||||
std::vector<llama_grammar_element> & out_elements,
|
||||
bool is_nested) {
|
||||
size_t last_sym_start = out_elements.size();
|
||||
const char * pos = src;
|
||||
|
||||
auto handle_repetitions = [&](int min_times, int max_times) {
|
||||
|
||||
if (last_sym_start == out_elements.size()) {
|
||||
throw std::runtime_error(std::string("expecting preceding item to */+/?/{ at ") + pos);
|
||||
}
|
||||
|
||||
// apply transformation to previous symbol (last_sym_start to end) according to
|
||||
// the following rewrite rules:
|
||||
// S{m,n} --> S S S (m times) S'(n-m)
|
||||
// S'(x) ::= S S'(x-1) |
|
||||
// (... n-m definitions of these S' rules ...)
|
||||
// S'(1) ::= S |
|
||||
// S{m,} --> S S S (m times) S'
|
||||
// S' ::= S S' |
|
||||
// S* --> S{0,}
|
||||
// --> S' ::= S S' |
|
||||
// S+ --> S{1,}
|
||||
// --> S S'
|
||||
// S' ::= S S' |
|
||||
// S? --> S{0,1}
|
||||
// --> S'
|
||||
// S' ::= S |
|
||||
|
||||
std::vector<llama_grammar_element> previous_elements(out_elements.begin() + last_sym_start, out_elements.end());
|
||||
if (min_times == 0) {
|
||||
out_elements.resize(last_sym_start);
|
||||
} else {
|
||||
// Repeat the previous elements (min_times - 1) times
|
||||
for (int i = 1; i < min_times; i++) {
|
||||
out_elements.insert(out_elements.end(), previous_elements.begin(), previous_elements.end());
|
||||
}
|
||||
}
|
||||
|
||||
uint32_t last_rec_rule_id = 0;
|
||||
auto n_opt = max_times < 0 ? 1 : max_times - min_times;
|
||||
|
||||
std::vector<llama_grammar_element> rec_rule(previous_elements);
|
||||
for (int i = 0; i < n_opt; i++) {
|
||||
rec_rule.resize(previous_elements.size());
|
||||
uint32_t rec_rule_id = generate_symbol_id(state, rule_name);
|
||||
if (i > 0 || max_times < 0) {
|
||||
rec_rule.push_back({LLAMA_GRETYPE_RULE_REF, max_times < 0 ? rec_rule_id : last_rec_rule_id});
|
||||
}
|
||||
rec_rule.push_back({LLAMA_GRETYPE_ALT, 0});
|
||||
rec_rule.push_back({LLAMA_GRETYPE_END, 0});
|
||||
add_rule(state, rec_rule_id, rec_rule);
|
||||
last_rec_rule_id = rec_rule_id;
|
||||
}
|
||||
if (n_opt > 0) {
|
||||
out_elements.push_back({LLAMA_GRETYPE_RULE_REF, last_rec_rule_id});
|
||||
}
|
||||
};
|
||||
|
||||
while (*pos) {
|
||||
if (*pos == '"') { // literal string
|
||||
pos++;
|
||||
last_sym_start = out_elements.size();
|
||||
while (*pos != '"') {
|
||||
if (!*pos) {
|
||||
throw std::runtime_error("unexpected end of input");
|
||||
}
|
||||
auto char_pair = parse_char(pos);
|
||||
pos = char_pair.second;
|
||||
out_elements.push_back({LLAMA_GRETYPE_CHAR, char_pair.first});
|
||||
}
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
} else if (*pos == '[') { // char range(s)
|
||||
pos++;
|
||||
enum llama_gretype start_type = LLAMA_GRETYPE_CHAR;
|
||||
if (*pos == '^') {
|
||||
pos++;
|
||||
start_type = LLAMA_GRETYPE_CHAR_NOT;
|
||||
}
|
||||
last_sym_start = out_elements.size();
|
||||
while (*pos != ']') {
|
||||
if (!*pos) {
|
||||
throw std::runtime_error("unexpected end of input");
|
||||
}
|
||||
auto char_pair = parse_char(pos);
|
||||
pos = char_pair.second;
|
||||
enum llama_gretype type = last_sym_start < out_elements.size()
|
||||
? LLAMA_GRETYPE_CHAR_ALT
|
||||
: start_type;
|
||||
|
||||
out_elements.push_back({type, char_pair.first});
|
||||
if (pos[0] == '-' && pos[1] != ']') {
|
||||
if (!pos[1]) {
|
||||
throw std::runtime_error("unexpected end of input");
|
||||
}
|
||||
auto endchar_pair = parse_char(pos + 1);
|
||||
pos = endchar_pair.second;
|
||||
out_elements.push_back({LLAMA_GRETYPE_CHAR_RNG_UPPER, endchar_pair.first});
|
||||
}
|
||||
}
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
} else if (is_word_char(*pos)) { // rule reference
|
||||
const char * name_end = parse_name(pos);
|
||||
uint32_t ref_rule_id = get_symbol_id(state, pos, name_end - pos);
|
||||
pos = parse_space(name_end, is_nested);
|
||||
last_sym_start = out_elements.size();
|
||||
out_elements.push_back({LLAMA_GRETYPE_RULE_REF, ref_rule_id});
|
||||
} else if (*pos == '(') { // grouping
|
||||
// parse nested alternates into synthesized rule
|
||||
pos = parse_space(pos + 1, true);
|
||||
uint32_t sub_rule_id = generate_symbol_id(state, rule_name);
|
||||
pos = parse_alternates(state, pos, rule_name, sub_rule_id, true);
|
||||
last_sym_start = out_elements.size();
|
||||
// output reference to synthesized rule
|
||||
out_elements.push_back({LLAMA_GRETYPE_RULE_REF, sub_rule_id});
|
||||
if (*pos != ')') {
|
||||
throw std::runtime_error(std::string("expecting ')' at ") + pos);
|
||||
}
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
} else if (*pos == '.') { // any char
|
||||
last_sym_start = out_elements.size();
|
||||
out_elements.push_back({LLAMA_GRETYPE_CHAR_ANY, 0});
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
} else if (*pos == '*') {
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
handle_repetitions(0, -1);
|
||||
} else if (*pos == '+') {
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
handle_repetitions(1, -1);
|
||||
} else if (*pos == '?') {
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
handle_repetitions(0, 1);
|
||||
} else if (*pos == '{') {
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
|
||||
if (!is_digit_char(*pos)) {
|
||||
throw std::runtime_error(std::string("expecting an int at ") + pos);
|
||||
}
|
||||
const char * int_end = parse_int(pos);
|
||||
int min_times = std::stoul(std::string(pos, int_end - pos));
|
||||
pos = parse_space(int_end, is_nested);
|
||||
|
||||
int max_times = -1;
|
||||
|
||||
if (*pos == '}') {
|
||||
max_times = min_times;
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
} else if (*pos == ',') {
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
|
||||
if (is_digit_char(*pos)) {
|
||||
const char * int_end = parse_int(pos);
|
||||
max_times = std::stoul(std::string(pos, int_end - pos));
|
||||
pos = parse_space(int_end, is_nested);
|
||||
}
|
||||
|
||||
if (*pos != '}') {
|
||||
throw std::runtime_error(std::string("expecting '}' at ") + pos);
|
||||
}
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
} else {
|
||||
throw std::runtime_error(std::string("expecting ',' at ") + pos);
|
||||
}
|
||||
handle_repetitions(min_times, max_times);
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
return pos;
|
||||
}
|
||||
|
||||
const char * parse_alternates(
|
||||
parse_state & state,
|
||||
const char * src,
|
||||
const std::string & rule_name,
|
||||
uint32_t rule_id,
|
||||
bool is_nested) {
|
||||
std::vector<llama_grammar_element> rule;
|
||||
const char * pos = parse_sequence(state, src, rule_name, rule, is_nested);
|
||||
while (*pos == '|') {
|
||||
rule.push_back({LLAMA_GRETYPE_ALT, 0});
|
||||
pos = parse_space(pos + 1, true);
|
||||
pos = parse_sequence(state, pos, rule_name, rule, is_nested);
|
||||
}
|
||||
rule.push_back({LLAMA_GRETYPE_END, 0});
|
||||
add_rule(state, rule_id, rule);
|
||||
return pos;
|
||||
}
|
||||
|
||||
static const char * parse_rule(parse_state & state, const char * src) {
|
||||
const char * name_end = parse_name(src);
|
||||
const char * pos = parse_space(name_end, false);
|
||||
size_t name_len = name_end - src;
|
||||
uint32_t rule_id = get_symbol_id(state, src, name_len);
|
||||
const std::string name(src, name_len);
|
||||
|
||||
if (!(pos[0] == ':' && pos[1] == ':' && pos[2] == '=')) {
|
||||
throw std::runtime_error(std::string("expecting ::= at ") + pos);
|
||||
}
|
||||
pos = parse_space(pos + 3, true);
|
||||
|
||||
pos = parse_alternates(state, pos, name, rule_id, false);
|
||||
|
||||
if (*pos == '\r') {
|
||||
pos += pos[1] == '\n' ? 2 : 1;
|
||||
} else if (*pos == '\n') {
|
||||
pos++;
|
||||
} else if (*pos) {
|
||||
throw std::runtime_error(std::string("expecting newline or end at ") + pos);
|
||||
}
|
||||
return parse_space(pos, true);
|
||||
}
|
||||
|
||||
parse_state parse(const char * src) {
|
||||
try {
|
||||
parse_state state;
|
||||
const char * pos = parse_space(src, true);
|
||||
while (*pos) {
|
||||
pos = parse_rule(state, pos);
|
||||
}
|
||||
// Validate the state to ensure that all rules are defined
|
||||
for (const auto & rule : state.rules) {
|
||||
if (rule.empty()) {
|
||||
throw std::runtime_error("Undefined rule");
|
||||
}
|
||||
for (const auto & elem : rule) {
|
||||
if (elem.type == LLAMA_GRETYPE_RULE_REF) {
|
||||
// Ensure that the rule at that location exists
|
||||
if (elem.value >= state.rules.size() || state.rules[elem.value].empty()) {
|
||||
// Get the name of the rule that is missing
|
||||
for (const auto & kv : state.symbol_ids) {
|
||||
if (kv.second == elem.value) {
|
||||
throw std::runtime_error("Undefined rule identifier '" + kv.first + "'");
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return state;
|
||||
} catch (const std::exception & err) {
|
||||
fprintf(stderr, "%s: error parsing grammar: %s\n", __func__, err.what());
|
||||
return parse_state();
|
||||
}
|
||||
}
|
||||
|
||||
static void print_grammar_char(FILE * file, uint32_t c) {
|
||||
if (0x20 <= c && c <= 0x7f) {
|
||||
fprintf(file, "%c", static_cast<char>(c));
|
||||
} else {
|
||||
// cop out of encoding UTF-8
|
||||
fprintf(file, "<U+%04X>", c);
|
||||
}
|
||||
}
|
||||
|
||||
static bool is_char_element(llama_grammar_element elem) {
|
||||
switch (elem.type) {
|
||||
case LLAMA_GRETYPE_CHAR: return true;
|
||||
case LLAMA_GRETYPE_CHAR_NOT: return true;
|
||||
case LLAMA_GRETYPE_CHAR_ALT: return true;
|
||||
case LLAMA_GRETYPE_CHAR_RNG_UPPER: return true;
|
||||
case LLAMA_GRETYPE_CHAR_ANY: return true;
|
||||
default: return false;
|
||||
}
|
||||
}
|
||||
|
||||
static void print_rule_binary(FILE * file, const std::vector<llama_grammar_element> & rule) {
|
||||
for (auto elem : rule) {
|
||||
switch (elem.type) {
|
||||
case LLAMA_GRETYPE_END: fprintf(file, "END"); break;
|
||||
case LLAMA_GRETYPE_ALT: fprintf(file, "ALT"); break;
|
||||
case LLAMA_GRETYPE_RULE_REF: fprintf(file, "RULE_REF"); break;
|
||||
case LLAMA_GRETYPE_CHAR: fprintf(file, "CHAR"); break;
|
||||
case LLAMA_GRETYPE_CHAR_NOT: fprintf(file, "CHAR_NOT"); break;
|
||||
case LLAMA_GRETYPE_CHAR_RNG_UPPER: fprintf(file, "CHAR_RNG_UPPER"); break;
|
||||
case LLAMA_GRETYPE_CHAR_ALT: fprintf(file, "CHAR_ALT"); break;
|
||||
case LLAMA_GRETYPE_CHAR_ANY: fprintf(file, "CHAR_ANY"); break;
|
||||
}
|
||||
switch (elem.type) {
|
||||
case LLAMA_GRETYPE_END:
|
||||
case LLAMA_GRETYPE_ALT:
|
||||
case LLAMA_GRETYPE_RULE_REF:
|
||||
fprintf(file, "(%u) ", elem.value);
|
||||
break;
|
||||
case LLAMA_GRETYPE_CHAR:
|
||||
case LLAMA_GRETYPE_CHAR_NOT:
|
||||
case LLAMA_GRETYPE_CHAR_RNG_UPPER:
|
||||
case LLAMA_GRETYPE_CHAR_ALT:
|
||||
case LLAMA_GRETYPE_CHAR_ANY:
|
||||
fprintf(file, "(\"");
|
||||
print_grammar_char(file, elem.value);
|
||||
fprintf(file, "\") ");
|
||||
break;
|
||||
}
|
||||
}
|
||||
fprintf(file, "\n");
|
||||
}
|
||||
|
||||
static void print_rule(
|
||||
FILE * file,
|
||||
uint32_t rule_id,
|
||||
const std::vector<llama_grammar_element> & rule,
|
||||
const std::map<uint32_t, std::string> & symbol_id_names) {
|
||||
if (rule.empty() || rule.back().type != LLAMA_GRETYPE_END) {
|
||||
throw std::runtime_error(
|
||||
"malformed rule, does not end with LLAMA_GRETYPE_END: " + std::to_string(rule_id));
|
||||
}
|
||||
fprintf(file, "%s ::= ", symbol_id_names.at(rule_id).c_str());
|
||||
for (size_t i = 0, end = rule.size() - 1; i < end; i++) {
|
||||
llama_grammar_element elem = rule[i];
|
||||
switch (elem.type) {
|
||||
case LLAMA_GRETYPE_END:
|
||||
throw std::runtime_error(
|
||||
"unexpected end of rule: " + std::to_string(rule_id) + "," +
|
||||
std::to_string(i));
|
||||
case LLAMA_GRETYPE_ALT:
|
||||
fprintf(file, "| ");
|
||||
break;
|
||||
case LLAMA_GRETYPE_RULE_REF:
|
||||
fprintf(file, "%s ", symbol_id_names.at(elem.value).c_str());
|
||||
break;
|
||||
case LLAMA_GRETYPE_CHAR:
|
||||
fprintf(file, "[");
|
||||
print_grammar_char(file, elem.value);
|
||||
break;
|
||||
case LLAMA_GRETYPE_CHAR_NOT:
|
||||
fprintf(file, "[^");
|
||||
print_grammar_char(file, elem.value);
|
||||
break;
|
||||
case LLAMA_GRETYPE_CHAR_RNG_UPPER:
|
||||
if (i == 0 || !is_char_element(rule[i - 1])) {
|
||||
throw std::runtime_error(
|
||||
"LLAMA_GRETYPE_CHAR_RNG_UPPER without preceding char: " +
|
||||
std::to_string(rule_id) + "," + std::to_string(i));
|
||||
}
|
||||
fprintf(file, "-");
|
||||
print_grammar_char(file, elem.value);
|
||||
break;
|
||||
case LLAMA_GRETYPE_CHAR_ALT:
|
||||
if (i == 0 || !is_char_element(rule[i - 1])) {
|
||||
throw std::runtime_error(
|
||||
"LLAMA_GRETYPE_CHAR_ALT without preceding char: " +
|
||||
std::to_string(rule_id) + "," + std::to_string(i));
|
||||
}
|
||||
print_grammar_char(file, elem.value);
|
||||
break;
|
||||
case LLAMA_GRETYPE_CHAR_ANY:
|
||||
fprintf(file, ".");
|
||||
break;
|
||||
}
|
||||
if (is_char_element(elem)) {
|
||||
switch (rule[i + 1].type) {
|
||||
case LLAMA_GRETYPE_CHAR_ALT:
|
||||
case LLAMA_GRETYPE_CHAR_RNG_UPPER:
|
||||
case LLAMA_GRETYPE_CHAR_ANY:
|
||||
break;
|
||||
default:
|
||||
fprintf(file, "] ");
|
||||
}
|
||||
}
|
||||
}
|
||||
fprintf(file, "\n");
|
||||
}
|
||||
|
||||
void print_grammar(FILE * file, const parse_state & state) {
|
||||
try {
|
||||
std::map<uint32_t, std::string> symbol_id_names;
|
||||
for (const auto & kv : state.symbol_ids) {
|
||||
symbol_id_names[kv.second] = kv.first;
|
||||
}
|
||||
for (size_t i = 0, end = state.rules.size(); i < end; i++) {
|
||||
// fprintf(file, "%zu: ", i);
|
||||
// print_rule_binary(file, state.rules[i]);
|
||||
print_rule(file, uint32_t(i), state.rules[i], symbol_id_names);
|
||||
// fprintf(file, "\n");
|
||||
}
|
||||
} catch (const std::exception & err) {
|
||||
fprintf(stderr, "\n%s: error printing grammar: %s\n", __func__, err.what());
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<const llama_grammar_element *> parse_state::c_rules() {
|
||||
std::vector<const llama_grammar_element *> ret;
|
||||
ret.reserve(rules.size());
|
||||
for (const auto & rule : rules) {
|
||||
ret.push_back(rule.data());
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
29
common/grammar-parser.h
Normal file
29
common/grammar-parser.h
Normal file
@@ -0,0 +1,29 @@
|
||||
// Implements a parser for an extended Backus-Naur form (BNF), producing the
|
||||
// binary context-free grammar format specified by llama.h. Supports character
|
||||
// ranges, grouping, and repetition operators. As an example, a grammar for
|
||||
// arithmetic might look like:
|
||||
//
|
||||
// root ::= expr
|
||||
// expr ::= term ([-+*/] term)*
|
||||
// term ::= num | "(" space expr ")" space
|
||||
// num ::= [0-9]+ space
|
||||
// space ::= [ \t\n]*
|
||||
|
||||
#pragma once
|
||||
#include "llama.h"
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <cstdint>
|
||||
#include <string>
|
||||
|
||||
namespace grammar_parser {
|
||||
struct parse_state {
|
||||
std::map<std::string, uint32_t> symbol_ids;
|
||||
std::vector<std::vector<llama_grammar_element>> rules;
|
||||
|
||||
std::vector<const llama_grammar_element *> c_rules();
|
||||
};
|
||||
|
||||
parse_state parse(const char * src);
|
||||
void print_grammar(FILE * file, const parse_state & state);
|
||||
}
|
||||
@@ -1,450 +1,460 @@
|
||||
#define LLAMA_API_INTERNAL
|
||||
#include "sampling.h"
|
||||
#include <random>
|
||||
|
||||
#include "common.h"
|
||||
struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_params & params) {
|
||||
struct llama_sampling_context * result = new llama_sampling_context();
|
||||
|
||||
#include <cmath>
|
||||
#include <unordered_map>
|
||||
result->params = params;
|
||||
result->grammar = nullptr;
|
||||
|
||||
// the ring buffer works similarly to std::deque, but with a fixed capacity
|
||||
// TODO: deduplicate with llama-impl.h
|
||||
template<typename T>
|
||||
struct ring_buffer {
|
||||
ring_buffer(size_t cap) : capacity(cap), data(cap) {}
|
||||
// if there is a grammar, parse it
|
||||
if (!params.grammar.empty()) {
|
||||
result->parsed_grammar = grammar_parser::parse(params.grammar.c_str());
|
||||
|
||||
T & front() {
|
||||
if (sz == 0) {
|
||||
throw std::runtime_error("ring buffer is empty");
|
||||
}
|
||||
return data[first];
|
||||
}
|
||||
|
||||
const T & front() const {
|
||||
if (sz == 0) {
|
||||
throw std::runtime_error("ring buffer is empty");
|
||||
}
|
||||
return data[first];
|
||||
}
|
||||
|
||||
T & back() {
|
||||
if (sz == 0) {
|
||||
throw std::runtime_error("ring buffer is empty");
|
||||
}
|
||||
return data[pos];
|
||||
}
|
||||
|
||||
const T & back() const {
|
||||
if (sz == 0) {
|
||||
throw std::runtime_error("ring buffer is empty");
|
||||
}
|
||||
return data[pos];
|
||||
}
|
||||
|
||||
void push_back(const T & value) {
|
||||
if (sz == capacity) {
|
||||
// advance the start when buffer is full
|
||||
first = (first + 1) % capacity;
|
||||
} else {
|
||||
sz++;
|
||||
}
|
||||
data[pos] = value;
|
||||
pos = (pos + 1) % capacity;
|
||||
}
|
||||
|
||||
T pop_front() {
|
||||
if (sz == 0) {
|
||||
throw std::runtime_error("ring buffer is empty");
|
||||
}
|
||||
T value = data[first];
|
||||
first = (first + 1) % capacity;
|
||||
sz--;
|
||||
return value;
|
||||
}
|
||||
|
||||
const T & rat(size_t i) const {
|
||||
if (i >= sz) {
|
||||
throw std::runtime_error("ring buffer: index out of bounds");
|
||||
}
|
||||
return data[(first + sz - i - 1) % capacity];
|
||||
}
|
||||
|
||||
std::vector<T> to_vector() const {
|
||||
std::vector<T> result;
|
||||
result.reserve(sz);
|
||||
for (size_t i = 0; i < sz; i++) {
|
||||
result.push_back(data[(first + i) % capacity]);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
void clear() {
|
||||
// here only reset the status of the buffer
|
||||
sz = 0;
|
||||
first = 0;
|
||||
pos = 0;
|
||||
}
|
||||
|
||||
bool empty() const {
|
||||
return sz == 0;
|
||||
}
|
||||
|
||||
size_t size() const {
|
||||
return sz;
|
||||
}
|
||||
|
||||
size_t capacity = 0;
|
||||
size_t sz = 0;
|
||||
size_t first = 0;
|
||||
size_t pos = 0;
|
||||
std::vector<T> data;
|
||||
};
|
||||
|
||||
struct gpt_sampler {
|
||||
gpt_sampler_params params;
|
||||
|
||||
struct llama_sampler * grmr;
|
||||
struct llama_sampler * chain;
|
||||
|
||||
ring_buffer<llama_token> prev;
|
||||
|
||||
std::vector<llama_token_data> cur;
|
||||
|
||||
llama_token_data_array cur_p;
|
||||
|
||||
void set_logits(struct llama_context * ctx, int idx) {
|
||||
const auto * logits = llama_get_logits_ith(ctx, idx);
|
||||
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
|
||||
cur.resize(n_vocab);
|
||||
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
|
||||
// will be empty (default) if there are parse errors
|
||||
if (result->parsed_grammar.rules.empty()) {
|
||||
fprintf(stderr, "%s: failed to parse grammar\n", __func__);
|
||||
delete result;
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
cur_p = { cur.data(), cur.size(), -1, false };
|
||||
}
|
||||
};
|
||||
// Ensure that there is a "root" node.
|
||||
if (result->parsed_grammar.symbol_ids.find("root") == result->parsed_grammar.symbol_ids.end()) {
|
||||
fprintf(stderr, "%s: grammar does not contain a 'root' symbol\n", __func__);
|
||||
delete result;
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
std::string gpt_sampler_params::print() const {
|
||||
std::vector<const llama_grammar_element *> grammar_rules(result->parsed_grammar.c_rules());
|
||||
|
||||
struct llama_grammar * grammar = llama_grammar_init(
|
||||
grammar_rules.data(),
|
||||
grammar_rules.size(), result->parsed_grammar.symbol_ids.at("root"));
|
||||
if (grammar == nullptr) {
|
||||
throw std::runtime_error("Failed to initialize llama_grammar");
|
||||
}
|
||||
result->grammar = grammar;
|
||||
}
|
||||
|
||||
result->prev.resize(params.n_prev);
|
||||
|
||||
result->n_valid = 0;
|
||||
|
||||
llama_sampling_set_rng_seed(result, params.seed);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
void llama_sampling_free(struct llama_sampling_context * ctx) {
|
||||
if (ctx->grammar != NULL) {
|
||||
llama_grammar_free(ctx->grammar);
|
||||
}
|
||||
|
||||
delete ctx;
|
||||
}
|
||||
|
||||
void llama_sampling_reset(llama_sampling_context * ctx) {
|
||||
if (ctx->grammar != NULL) {
|
||||
llama_grammar_free(ctx->grammar);
|
||||
ctx->grammar = NULL;
|
||||
}
|
||||
|
||||
if (!ctx->parsed_grammar.rules.empty()) {
|
||||
std::vector<const llama_grammar_element *> grammar_rules(ctx->parsed_grammar.c_rules());
|
||||
|
||||
struct llama_grammar * grammar = llama_grammar_init(
|
||||
grammar_rules.data(),
|
||||
grammar_rules.size(), ctx->parsed_grammar.symbol_ids.at("root"));
|
||||
if (grammar == nullptr) {
|
||||
throw std::runtime_error("Failed to initialize llama_grammar");
|
||||
}
|
||||
ctx->grammar = grammar;
|
||||
}
|
||||
|
||||
std::fill(ctx->prev.begin(), ctx->prev.end(), 0);
|
||||
ctx->cur.clear();
|
||||
ctx->n_valid = 0;
|
||||
}
|
||||
|
||||
void llama_sampling_set_rng_seed(struct llama_sampling_context * ctx, uint32_t seed) {
|
||||
if (seed == LLAMA_DEFAULT_SEED) {
|
||||
seed = std::random_device{}();
|
||||
}
|
||||
ctx->rng.seed(seed);
|
||||
}
|
||||
|
||||
void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst) {
|
||||
if (dst->grammar) {
|
||||
llama_grammar_free(dst->grammar);
|
||||
dst->grammar = nullptr;
|
||||
}
|
||||
|
||||
if (src->grammar) {
|
||||
dst->grammar = llama_grammar_copy(src->grammar);
|
||||
}
|
||||
|
||||
dst->prev = src->prev;
|
||||
}
|
||||
|
||||
llama_token llama_sampling_last(llama_sampling_context * ctx) {
|
||||
return ctx->prev.back();
|
||||
}
|
||||
|
||||
std::string llama_sampling_prev_str(llama_sampling_context * ctx_sampling, llama_context * ctx_main, int n) {
|
||||
const int size = ctx_sampling->prev.size();
|
||||
|
||||
n = std::min(n, size);
|
||||
|
||||
std::string result;
|
||||
|
||||
for (int i = size - n; i < size; i++) {
|
||||
result += llama_token_to_piece(ctx_main, ctx_sampling->prev[i]);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
std::string llama_sampling_print(const llama_sampling_params & params) {
|
||||
char result[1024];
|
||||
|
||||
snprintf(result, sizeof(result),
|
||||
"\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
|
||||
"\ttop_k = %d, tfs_z = %.3f, top_p = %.3f, min_p = %.3f, typical_p = %.3f, temp = %.3f\n"
|
||||
"\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
|
||||
penalty_last_n, penalty_repeat, penalty_freq, penalty_present,
|
||||
top_k, tfs_z, top_p, min_p, typ_p, temp,
|
||||
mirostat, mirostat_eta, mirostat_tau);
|
||||
params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present,
|
||||
params.top_k, params.tfs_z, params.top_p, params.min_p, params.typical_p, params.temp,
|
||||
params.mirostat, params.mirostat_eta, params.mirostat_tau);
|
||||
|
||||
return std::string(result);
|
||||
}
|
||||
|
||||
struct gpt_sampler * gpt_sampler_init(const struct llama_model * model, const struct gpt_sampler_params & params) {
|
||||
llama_sampler_chain_params lparams = llama_sampler_chain_default_params();
|
||||
|
||||
lparams.no_perf = params.no_perf;
|
||||
|
||||
auto * result = new gpt_sampler {
|
||||
/* .params = */ params,
|
||||
/* .grmr = */ llama_sampler_init_grammar(model, params.grammar.c_str(), "root"),
|
||||
/* .chain = */ llama_sampler_chain_init(lparams),
|
||||
/* .prev = */ ring_buffer<llama_token>(std::max(32, params.n_prev)),
|
||||
/* .cur = */ {},
|
||||
/* .cur_p = */ {},
|
||||
};
|
||||
|
||||
llama_sampler_chain_add(result->chain,
|
||||
llama_sampler_init_logit_bias(
|
||||
llama_n_vocab(model),
|
||||
params.logit_bias.size(),
|
||||
params.logit_bias.data()));
|
||||
|
||||
llama_sampler_chain_add(result->chain,
|
||||
llama_sampler_init_penalties(
|
||||
llama_n_vocab (model),
|
||||
llama_token_eos(model),
|
||||
llama_token_nl (model),
|
||||
params.penalty_last_n,
|
||||
params.penalty_repeat,
|
||||
params.penalty_freq,
|
||||
params.penalty_present,
|
||||
params.penalize_nl,
|
||||
params.ignore_eos));
|
||||
|
||||
if (params.temp > 0.0f) {
|
||||
if (params.mirostat == 0) {
|
||||
for (const auto & cnstr : params.samplers) {
|
||||
switch (cnstr) {
|
||||
case GPT_SAMPLER_TYPE_TOP_K:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
|
||||
break;
|
||||
case GPT_SAMPLER_TYPE_TOP_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
|
||||
break;
|
||||
case GPT_SAMPLER_TYPE_MIN_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
|
||||
break;
|
||||
case GPT_SAMPLER_TYPE_TFS_Z:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_tail_free(params.tfs_z, params.min_keep));
|
||||
break;
|
||||
case GPT_SAMPLER_TYPE_TYPICAL_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
|
||||
break;
|
||||
case GPT_SAMPLER_TYPE_TEMPERATURE:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false && "unknown sampler type");
|
||||
}
|
||||
std::string llama_sampling_order_print(const llama_sampling_params & params) {
|
||||
std::string result = "CFG -> Penalties ";
|
||||
if (params.mirostat == 0) {
|
||||
for (auto sampler_type : params.samplers_sequence) {
|
||||
const auto sampler_type_name = llama_sampling_type_to_str(sampler_type);
|
||||
if (!sampler_type_name.empty()) {
|
||||
result += "-> " + sampler_type_name + " ";
|
||||
}
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_softmax());
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));
|
||||
} else if (params.mirostat == 1) {
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat(llama_n_vocab(model), params.seed, params.mirostat_tau, params.mirostat_eta, 100));
|
||||
} else if (params.mirostat == 2) {
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat_v2(params.seed, params.mirostat_tau, params.mirostat_eta));
|
||||
} else {
|
||||
GGML_ASSERT(false && "unknown mirostat version");
|
||||
}
|
||||
} else {
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_softmax());
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_greedy());
|
||||
result += "-> mirostat ";
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
void gpt_sampler_free(struct gpt_sampler * gsmpl) {
|
||||
if (gsmpl) {
|
||||
llama_sampler_free(gsmpl->grmr);
|
||||
|
||||
llama_sampler_free(gsmpl->chain);
|
||||
|
||||
delete gsmpl;
|
||||
}
|
||||
}
|
||||
|
||||
void gpt_sampler_accept(struct gpt_sampler * gsmpl, llama_token token, bool accept_grammar) {
|
||||
if (accept_grammar) {
|
||||
llama_sampler_accept(gsmpl->grmr, token);
|
||||
}
|
||||
|
||||
llama_sampler_accept(gsmpl->chain, token);
|
||||
|
||||
gsmpl->prev.push_back(token);
|
||||
}
|
||||
|
||||
void gpt_sampler_reset(struct gpt_sampler * gsmpl) {
|
||||
llama_sampler_reset(gsmpl->grmr);
|
||||
|
||||
llama_sampler_reset(gsmpl->chain);
|
||||
}
|
||||
|
||||
struct gpt_sampler * gpt_sampler_clone(gpt_sampler * gsmpl) {
|
||||
return new gpt_sampler {
|
||||
/* .params = */ gsmpl->params,
|
||||
/* .grmr = */ llama_sampler_clone(gsmpl->grmr),
|
||||
/* .chain = */ llama_sampler_clone(gsmpl->chain),
|
||||
/* .prev = */ gsmpl->prev,
|
||||
/* .cur = */ gsmpl->cur,
|
||||
/* .cur_p = */ gsmpl->cur_p,
|
||||
};
|
||||
}
|
||||
|
||||
void gpt_perf_print(const struct llama_context * ctx, const struct gpt_sampler * gsmpl) {
|
||||
// TODO: measure grammar performance
|
||||
|
||||
if (gsmpl) {
|
||||
llama_perf_sampler_print(gsmpl->chain);
|
||||
}
|
||||
if (ctx) {
|
||||
llama_perf_context_print(ctx);
|
||||
}
|
||||
}
|
||||
|
||||
llama_token gpt_sampler_sample(struct gpt_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first) {
|
||||
gsmpl->set_logits(ctx, idx);
|
||||
|
||||
auto & grmr = gsmpl->grmr;
|
||||
auto & chain = gsmpl->chain;
|
||||
auto & cur_p = gsmpl->cur_p; // initialized by set_logits
|
||||
|
||||
if (grammar_first) {
|
||||
llama_sampler_apply(grmr, &cur_p);
|
||||
}
|
||||
|
||||
llama_sampler_apply(chain, &cur_p);
|
||||
|
||||
GGML_ASSERT(cur_p.selected != -1 && "no selected token during sampling - check your sampling configuration");
|
||||
|
||||
const llama_token id = cur_p.data[cur_p.selected].id;
|
||||
|
||||
if (grammar_first) {
|
||||
return id;
|
||||
}
|
||||
|
||||
// check if it the sampled token fits the grammar
|
||||
{
|
||||
llama_token_data single_token_data = { id, 1.0f, 0.0f };
|
||||
llama_token_data_array single_token_data_array = { &single_token_data, 1, -1, false };
|
||||
|
||||
llama_sampler_apply(grmr, &single_token_data_array);
|
||||
|
||||
const bool is_valid = single_token_data_array.data[0].logit != -INFINITY;
|
||||
if (is_valid) {
|
||||
return id;
|
||||
}
|
||||
}
|
||||
|
||||
// resampling:
|
||||
// if the token is not valid, sample again, but first apply the grammar sampler and then the sampling chain
|
||||
gsmpl->set_logits(ctx, idx);
|
||||
|
||||
llama_sampler_apply(grmr, &cur_p);
|
||||
llama_sampler_apply(chain, &cur_p);
|
||||
|
||||
GGML_ASSERT(cur_p.selected != -1 && "no selected token during re-sampling - check your sampling configuration");
|
||||
|
||||
return cur_p.data[cur_p.selected].id;
|
||||
}
|
||||
|
||||
uint32_t gpt_sampler_get_seed(const struct gpt_sampler * gsmpl) {
|
||||
return llama_sampler_get_seed(gsmpl->chain);
|
||||
}
|
||||
|
||||
// helpers
|
||||
|
||||
llama_token_data_array * gpt_sampler_get_candidates(struct gpt_sampler * gsmpl) {
|
||||
return &gsmpl->cur_p;
|
||||
}
|
||||
|
||||
llama_token gpt_sampler_last(const struct gpt_sampler * gsmpl) {
|
||||
return gsmpl->prev.rat(0);
|
||||
}
|
||||
|
||||
std::string gpt_sampler_print(const struct gpt_sampler * gsmpl) {
|
||||
std::string result = "\tlogits ";
|
||||
|
||||
for (int i = 0; i < llama_sampler_chain_n(gsmpl->chain); i++) {
|
||||
const auto * smpl = llama_sampler_chain_get(gsmpl->chain, i);
|
||||
result += std::string("-> ") + llama_sampler_name(smpl) + " ";
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
std::string gpt_sampler_prev_str(gpt_sampler * gsmpl, llama_context * ctx_main, int n) {
|
||||
n = std::min(n, (int) gsmpl->prev.size());
|
||||
|
||||
if (n <= 0) {
|
||||
return "";
|
||||
}
|
||||
|
||||
std::string result;
|
||||
result.reserve(8*n); // 8 is the average length of a token [citation needed], TODO: compute this from the vocab
|
||||
|
||||
for (int i = n - 1; i >= 0; i--) {
|
||||
const llama_token id = gsmpl->prev.rat(i);
|
||||
|
||||
GGML_ASSERT(id != LLAMA_TOKEN_NULL && "null token in the sampling history - should not happen");
|
||||
|
||||
result += llama_token_to_piece(ctx_main, id);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
char gpt_sampler_type_to_chr(enum gpt_sampler_type cnstr) {
|
||||
switch (cnstr) {
|
||||
case GPT_SAMPLER_TYPE_TOP_K: return 'k';
|
||||
case GPT_SAMPLER_TYPE_TFS_Z: return 'f';
|
||||
case GPT_SAMPLER_TYPE_TYPICAL_P: return 'y';
|
||||
case GPT_SAMPLER_TYPE_TOP_P: return 'p';
|
||||
case GPT_SAMPLER_TYPE_MIN_P: return 'm';
|
||||
case GPT_SAMPLER_TYPE_TEMPERATURE: return 't';
|
||||
default : return '?';
|
||||
}
|
||||
}
|
||||
|
||||
std::string gpt_sampler_type_to_str(enum gpt_sampler_type cnstr) {
|
||||
switch (cnstr) {
|
||||
case GPT_SAMPLER_TYPE_TOP_K: return "top_k";
|
||||
case GPT_SAMPLER_TYPE_TFS_Z: return "tfs_z";
|
||||
case GPT_SAMPLER_TYPE_TYPICAL_P: return "typ_p";
|
||||
case GPT_SAMPLER_TYPE_TOP_P: return "top_p";
|
||||
case GPT_SAMPLER_TYPE_MIN_P: return "min_p";
|
||||
case GPT_SAMPLER_TYPE_TEMPERATURE: return "temperature";
|
||||
std::string llama_sampling_type_to_str(llama_sampler_type sampler_type) {
|
||||
switch (sampler_type) {
|
||||
case llama_sampler_type::TOP_K: return "top_k";
|
||||
case llama_sampler_type::TFS_Z: return "tfs_z";
|
||||
case llama_sampler_type::TYPICAL_P: return "typical_p";
|
||||
case llama_sampler_type::TOP_P: return "top_p";
|
||||
case llama_sampler_type::MIN_P: return "min_p";
|
||||
case llama_sampler_type::TEMPERATURE: return "temperature";
|
||||
default : return "";
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<gpt_sampler_type> gpt_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
|
||||
std::unordered_map<std::string, gpt_sampler_type> sampler_canonical_name_map {
|
||||
{ "top_k", GPT_SAMPLER_TYPE_TOP_K },
|
||||
{ "top_p", GPT_SAMPLER_TYPE_TOP_P },
|
||||
{ "typ_p", GPT_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "min_p", GPT_SAMPLER_TYPE_MIN_P },
|
||||
{ "tfs_z", GPT_SAMPLER_TYPE_TFS_Z },
|
||||
{ "temperature", GPT_SAMPLER_TYPE_TEMPERATURE },
|
||||
std::vector<llama_sampler_type> llama_sampling_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
|
||||
std::unordered_map<std::string, llama_sampler_type> sampler_canonical_name_map {
|
||||
{"top_k", llama_sampler_type::TOP_K},
|
||||
{"top_p", llama_sampler_type::TOP_P},
|
||||
{"typical_p", llama_sampler_type::TYPICAL_P},
|
||||
{"min_p", llama_sampler_type::MIN_P},
|
||||
{"tfs_z", llama_sampler_type::TFS_Z},
|
||||
{"temperature", llama_sampler_type::TEMPERATURE}
|
||||
};
|
||||
|
||||
// since samplers names are written multiple ways
|
||||
// make it ready for both system names and input names
|
||||
std::unordered_map<std::string, gpt_sampler_type> sampler_alt_name_map {
|
||||
{ "top-k", GPT_SAMPLER_TYPE_TOP_K },
|
||||
{ "top-p", GPT_SAMPLER_TYPE_TOP_P },
|
||||
{ "nucleus", GPT_SAMPLER_TYPE_TOP_P },
|
||||
{ "typical-p", GPT_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "typical", GPT_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "typ-p", GPT_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "typ", GPT_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "min-p", GPT_SAMPLER_TYPE_MIN_P },
|
||||
{ "tfs-z", GPT_SAMPLER_TYPE_TFS_Z },
|
||||
{ "tfs", GPT_SAMPLER_TYPE_TFS_Z },
|
||||
{ "temp", GPT_SAMPLER_TYPE_TEMPERATURE },
|
||||
std::unordered_map<std::string, llama_sampler_type> sampler_alt_name_map {
|
||||
{"top-k", llama_sampler_type::TOP_K},
|
||||
{"top-p", llama_sampler_type::TOP_P},
|
||||
{"nucleus", llama_sampler_type::TOP_P},
|
||||
{"typical-p", llama_sampler_type::TYPICAL_P},
|
||||
{"typical", llama_sampler_type::TYPICAL_P},
|
||||
{"min-p", llama_sampler_type::MIN_P},
|
||||
{"tfs-z", llama_sampler_type::TFS_Z},
|
||||
{"tfs", llama_sampler_type::TFS_Z},
|
||||
{"temp", llama_sampler_type::TEMPERATURE}
|
||||
};
|
||||
|
||||
std::vector<gpt_sampler_type> samplers;
|
||||
samplers.reserve(names.size());
|
||||
std::vector<llama_sampler_type> sampler_types;
|
||||
sampler_types.reserve(names.size());
|
||||
for (const auto & name : names)
|
||||
{
|
||||
auto sampler_item = sampler_canonical_name_map.find(name);
|
||||
if (sampler_item != sampler_canonical_name_map.end())
|
||||
{
|
||||
sampler_types.push_back(sampler_item->second);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (allow_alt_names)
|
||||
{
|
||||
sampler_item = sampler_alt_name_map.find(name);
|
||||
if (sampler_item != sampler_alt_name_map.end())
|
||||
{
|
||||
sampler_types.push_back(sampler_item->second);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return sampler_types;
|
||||
}
|
||||
|
||||
for (const auto & name : names) {
|
||||
auto sampler = sampler_canonical_name_map.find(name);
|
||||
if (sampler != sampler_canonical_name_map.end()) {
|
||||
samplers.push_back(sampler->second);
|
||||
std::vector<llama_sampler_type> llama_sampling_types_from_chars(const std::string & names_string) {
|
||||
std::unordered_map<char, llama_sampler_type> sampler_name_map {
|
||||
{'k', llama_sampler_type::TOP_K},
|
||||
{'p', llama_sampler_type::TOP_P},
|
||||
{'y', llama_sampler_type::TYPICAL_P},
|
||||
{'m', llama_sampler_type::MIN_P},
|
||||
{'f', llama_sampler_type::TFS_Z},
|
||||
{'t', llama_sampler_type::TEMPERATURE}
|
||||
};
|
||||
|
||||
std::vector<llama_sampler_type> sampler_types;
|
||||
sampler_types.reserve(names_string.size());
|
||||
for (const auto & c : names_string) {
|
||||
const auto sampler_item = sampler_name_map.find(c);
|
||||
if (sampler_item != sampler_name_map.end()) {
|
||||
sampler_types.push_back(sampler_item->second);
|
||||
}
|
||||
}
|
||||
return sampler_types;
|
||||
}
|
||||
|
||||
// no reasons to expose this function in header
|
||||
static void sampler_queue(
|
||||
struct llama_context * ctx_main,
|
||||
const llama_sampling_params & params,
|
||||
llama_token_data_array & cur_p,
|
||||
size_t min_keep) {
|
||||
const float temp = params.temp;
|
||||
const float dynatemp_range = params.dynatemp_range;
|
||||
const float dynatemp_exponent = params.dynatemp_exponent;
|
||||
const int32_t top_k = params.top_k;
|
||||
const float top_p = params.top_p;
|
||||
const float min_p = params.min_p;
|
||||
const float tfs_z = params.tfs_z;
|
||||
const float typical_p = params.typical_p;
|
||||
const std::vector<llama_sampler_type> & samplers_sequence = params.samplers_sequence;
|
||||
|
||||
for (auto sampler_type : samplers_sequence) {
|
||||
switch (sampler_type) {
|
||||
case llama_sampler_type::TOP_K : llama_sample_top_k (ctx_main, &cur_p, top_k, min_keep); break;
|
||||
case llama_sampler_type::TFS_Z : llama_sample_tail_free(ctx_main, &cur_p, tfs_z, min_keep); break;
|
||||
case llama_sampler_type::TYPICAL_P: llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep); break;
|
||||
case llama_sampler_type::TOP_P : llama_sample_top_p (ctx_main, &cur_p, top_p, min_keep); break;
|
||||
case llama_sampler_type::MIN_P : llama_sample_min_p (ctx_main, &cur_p, min_p, min_keep); break;
|
||||
case llama_sampler_type::TEMPERATURE:
|
||||
if (dynatemp_range > 0) {
|
||||
float dynatemp_min = std::max(0.0f, temp - dynatemp_range);
|
||||
float dynatemp_max = std::max(0.0f, temp + dynatemp_range);
|
||||
llama_sample_entropy(ctx_main, &cur_p, dynatemp_min, dynatemp_max, dynatemp_exponent);
|
||||
} else {
|
||||
llama_sample_temp(ctx_main, &cur_p, temp);
|
||||
}
|
||||
break;
|
||||
default : break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static llama_token llama_sampling_sample_impl(
|
||||
struct llama_sampling_context * ctx_sampling,
|
||||
struct llama_context * ctx_main,
|
||||
struct llama_context * ctx_cfg,
|
||||
const int idx,
|
||||
bool is_resampling) {
|
||||
const llama_sampling_params & params = ctx_sampling->params;
|
||||
|
||||
const float temp = params.temp;
|
||||
const int mirostat = params.mirostat;
|
||||
const float mirostat_tau = params.mirostat_tau;
|
||||
const float mirostat_eta = params.mirostat_eta;
|
||||
|
||||
std::vector<float> original_logits;
|
||||
auto cur_p = llama_sampling_prepare(ctx_sampling, ctx_main, ctx_cfg, idx, /* apply_grammar= */ is_resampling, &original_logits);
|
||||
if (ctx_sampling->grammar != NULL && !is_resampling) {
|
||||
GGML_ASSERT(!original_logits.empty());
|
||||
}
|
||||
llama_token id = 0;
|
||||
|
||||
if (temp < 0.0) {
|
||||
// greedy sampling, with probs
|
||||
llama_sample_softmax(ctx_main, &cur_p);
|
||||
id = cur_p.data[0].id;
|
||||
} else if (temp == 0.0) {
|
||||
// greedy sampling, no probs
|
||||
id = llama_sample_token_greedy(ctx_main, &cur_p);
|
||||
} else {
|
||||
if (mirostat == 1) {
|
||||
const int mirostat_m = 100;
|
||||
llama_sample_temp(ctx_main, &cur_p, temp);
|
||||
id = llama_sample_token_mirostat(ctx_main, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &ctx_sampling->mirostat_mu);
|
||||
} else if (mirostat == 2) {
|
||||
llama_sample_temp(ctx_main, &cur_p, temp);
|
||||
id = llama_sample_token_mirostat_v2(ctx_main, &cur_p, mirostat_tau, mirostat_eta, &ctx_sampling->mirostat_mu);
|
||||
} else {
|
||||
if (allow_alt_names) {
|
||||
sampler = sampler_alt_name_map.find(name);
|
||||
if (sampler != sampler_alt_name_map.end()) {
|
||||
samplers.push_back(sampler->second);
|
||||
// temperature sampling
|
||||
size_t min_keep = std::max(1, params.min_keep);
|
||||
|
||||
sampler_queue(ctx_main, params, cur_p, min_keep);
|
||||
|
||||
id = llama_sample_token_with_rng(ctx_main, &cur_p, ctx_sampling->rng);
|
||||
|
||||
//{
|
||||
// const int n_top = 10;
|
||||
// LOG("top %d candidates:\n", n_top);
|
||||
|
||||
// for (int i = 0; i < n_top; i++) {
|
||||
// const llama_token id = cur_p.data[i].id;
|
||||
// (void)id; // To avoid a warning that id is unused when logging is disabled.
|
||||
// LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx_main, id).c_str(), cur_p.data[i].p);
|
||||
// }
|
||||
//}
|
||||
|
||||
//LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx_main, id).c_str());
|
||||
}
|
||||
}
|
||||
|
||||
if (ctx_sampling->grammar != NULL && !is_resampling) {
|
||||
// Get a pointer to the logits
|
||||
float * logits = llama_get_logits_ith(ctx_main, idx);
|
||||
|
||||
// Create an array with a single token data element for the sampled id
|
||||
llama_token_data single_token_data = {id, logits[id], 0.0f};
|
||||
llama_token_data_array single_token_data_array = { &single_token_data, 1, false };
|
||||
|
||||
// Apply grammar constraints to the single token
|
||||
llama_grammar_sample(ctx_sampling->grammar, ctx_main, &single_token_data_array);
|
||||
|
||||
// Check if the token is valid according to the grammar by seeing if its logit has been set to -INFINITY
|
||||
bool is_valid = single_token_data_array.data[0].logit != -INFINITY;
|
||||
|
||||
// If the token is not valid according to the grammar, perform resampling
|
||||
if (!is_valid) {
|
||||
LOG("Resampling because token %d: '%s' does not meet grammar rules\n", id, llama_token_to_piece(ctx_main, id).c_str());
|
||||
|
||||
// Restore logits from the copy
|
||||
std::copy(original_logits.begin(), original_logits.end(), logits);
|
||||
|
||||
return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, /* is_resampling= */ true);
|
||||
}
|
||||
}
|
||||
|
||||
ctx_sampling->n_valid = temp == 0.0f ? 0 : cur_p.size;
|
||||
|
||||
return id;
|
||||
}
|
||||
|
||||
static llama_token_data_array llama_sampling_prepare_impl(
|
||||
struct llama_sampling_context * ctx_sampling,
|
||||
struct llama_context * ctx_main,
|
||||
struct llama_context * ctx_cfg,
|
||||
const int idx,
|
||||
bool apply_grammar,
|
||||
std::vector<float> * original_logits) {
|
||||
const llama_sampling_params & params = ctx_sampling->params;
|
||||
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
|
||||
|
||||
const int32_t penalty_last_n = params.penalty_last_n < 0 ? params.n_prev : params.penalty_last_n;
|
||||
const float penalty_repeat = params.penalty_repeat;
|
||||
const float penalty_freq = params.penalty_freq;
|
||||
const float penalty_present = params.penalty_present;
|
||||
|
||||
const bool penalize_nl = params.penalize_nl;
|
||||
|
||||
auto & prev = ctx_sampling->prev;
|
||||
auto & cur = ctx_sampling->cur;
|
||||
|
||||
// Get a pointer to the logits
|
||||
float * logits = llama_get_logits_ith(ctx_main, idx);
|
||||
|
||||
if (ctx_sampling->grammar != NULL && !apply_grammar) {
|
||||
GGML_ASSERT(original_logits != NULL);
|
||||
// Only make a copy of the original logits if we are not applying grammar checks, not sure if I actually have to do this.
|
||||
*original_logits = {logits, logits + n_vocab};
|
||||
}
|
||||
|
||||
// apply params.logit_bias map
|
||||
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
|
||||
logits[it->first] += it->second;
|
||||
}
|
||||
|
||||
if (ctx_cfg) {
|
||||
float * logits_guidance = llama_get_logits_ith(ctx_cfg, idx);
|
||||
llama_sample_apply_guidance(ctx_main, logits, logits_guidance, params.cfg_scale);
|
||||
}
|
||||
|
||||
cur.resize(n_vocab);
|
||||
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
|
||||
}
|
||||
|
||||
llama_token_data_array cur_p = { cur.data(), cur.size(), false };
|
||||
|
||||
// apply penalties
|
||||
const auto& penalty_tokens = params.use_penalty_prompt_tokens ? params.penalty_prompt_tokens : prev;
|
||||
const int penalty_tokens_used_size = std::min((int)penalty_tokens.size(), penalty_last_n);
|
||||
if (penalty_tokens_used_size) {
|
||||
const float nl_logit = logits[llama_token_nl(llama_get_model(ctx_main))];
|
||||
|
||||
llama_sample_repetition_penalties(ctx_main, &cur_p,
|
||||
penalty_tokens.data() + penalty_tokens.size() - penalty_tokens_used_size,
|
||||
penalty_tokens_used_size, penalty_repeat, penalty_freq, penalty_present);
|
||||
|
||||
if (!penalize_nl) {
|
||||
for (size_t idx = 0; idx < cur_p.size; idx++) {
|
||||
if (cur_p.data[idx].id == llama_token_nl(llama_get_model(ctx_main))) {
|
||||
cur_p.data[idx].logit = nl_logit;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return samplers;
|
||||
}
|
||||
|
||||
std::vector<gpt_sampler_type> gpt_sampler_types_from_chars(const std::string & chars) {
|
||||
std::unordered_map<char, gpt_sampler_type> sampler_name_map = {
|
||||
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TOP_K), GPT_SAMPLER_TYPE_TOP_K },
|
||||
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TFS_Z), GPT_SAMPLER_TYPE_TFS_Z },
|
||||
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TYPICAL_P), GPT_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TOP_P), GPT_SAMPLER_TYPE_TOP_P },
|
||||
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_MIN_P), GPT_SAMPLER_TYPE_MIN_P },
|
||||
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TEMPERATURE), GPT_SAMPLER_TYPE_TEMPERATURE }
|
||||
};
|
||||
|
||||
std::vector<gpt_sampler_type> samplers;
|
||||
samplers.reserve(chars.size());
|
||||
|
||||
for (const auto & c : chars) {
|
||||
const auto sampler = sampler_name_map.find(c);
|
||||
if (sampler != sampler_name_map.end()) {
|
||||
samplers.push_back(sampler->second);
|
||||
}
|
||||
// apply grammar checks before sampling logic
|
||||
if (apply_grammar && ctx_sampling->grammar != NULL) {
|
||||
llama_grammar_sample(ctx_sampling->grammar, ctx_main, &cur_p);
|
||||
}
|
||||
|
||||
return samplers;
|
||||
return cur_p;
|
||||
}
|
||||
|
||||
llama_token llama_sampling_sample(
|
||||
struct llama_sampling_context * ctx_sampling,
|
||||
struct llama_context * ctx_main,
|
||||
struct llama_context * ctx_cfg,
|
||||
const int idx) {
|
||||
// Call the implementation function with is_resampling set to false by default
|
||||
return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, /* is_resampling= */ false);
|
||||
}
|
||||
|
||||
llama_token_data_array llama_sampling_prepare(
|
||||
struct llama_sampling_context * ctx_sampling,
|
||||
struct llama_context * ctx_main,
|
||||
struct llama_context * ctx_cfg,
|
||||
const int idx,
|
||||
bool apply_grammar,
|
||||
std::vector<float> * original_logits) {
|
||||
return llama_sampling_prepare_impl(ctx_sampling,ctx_main, ctx_cfg, idx, apply_grammar, original_logits);
|
||||
}
|
||||
|
||||
void llama_sampling_accept(
|
||||
struct llama_sampling_context * ctx_sampling,
|
||||
struct llama_context * ctx_main,
|
||||
llama_token id,
|
||||
bool apply_grammar) {
|
||||
ctx_sampling->prev.erase(ctx_sampling->prev.begin());
|
||||
ctx_sampling->prev.push_back(id);
|
||||
|
||||
if (ctx_sampling->grammar != NULL && apply_grammar) {
|
||||
llama_grammar_accept_token(ctx_sampling->grammar, ctx_main, id);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -2,82 +2,159 @@
|
||||
|
||||
#include "llama.h"
|
||||
|
||||
#include "common.h"
|
||||
#include "grammar-parser.h"
|
||||
|
||||
#include <random>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
|
||||
// gpt_sampler extends llama_sampler with additional functionality:
|
||||
// sampler types
|
||||
enum class llama_sampler_type : char {
|
||||
TOP_K = 'k',
|
||||
TOP_P = 'p',
|
||||
MIN_P = 'm',
|
||||
TFS_Z = 'f',
|
||||
TYPICAL_P = 'y',
|
||||
TEMPERATURE = 't'
|
||||
};
|
||||
|
||||
// sampling parameters
|
||||
typedef struct llama_sampling_params {
|
||||
int32_t n_prev = 64; // number of previous tokens to remember
|
||||
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
|
||||
int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens
|
||||
int32_t top_k = 40; // <= 0 to use vocab size
|
||||
float top_p = 0.95f; // 1.0 = disabled
|
||||
float min_p = 0.05f; // 0.0 = disabled
|
||||
float tfs_z = 1.00f; // 1.0 = disabled
|
||||
float typical_p = 1.00f; // 1.0 = disabled
|
||||
float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
|
||||
float dynatemp_range = 0.00f; // 0.0 = disabled
|
||||
float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
|
||||
int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
|
||||
float penalty_repeat = 1.00f; // 1.0 = disabled
|
||||
float penalty_freq = 0.00f; // 0.0 = disabled
|
||||
float penalty_present = 0.00f; // 0.0 = disabled
|
||||
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
|
||||
float mirostat_tau = 5.00f; // target entropy
|
||||
float mirostat_eta = 0.10f; // learning rate
|
||||
bool penalize_nl = false; // consider newlines as a repeatable token
|
||||
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampling_context
|
||||
|
||||
std::vector<llama_sampler_type> samplers_sequence = {
|
||||
llama_sampler_type::TOP_K,
|
||||
llama_sampler_type::TFS_Z,
|
||||
llama_sampler_type::TYPICAL_P,
|
||||
llama_sampler_type::TOP_P,
|
||||
llama_sampler_type::MIN_P,
|
||||
llama_sampler_type::TEMPERATURE
|
||||
};
|
||||
|
||||
std::string grammar; // optional BNF-like grammar to constrain sampling
|
||||
|
||||
// Classifier-Free Guidance
|
||||
// https://arxiv.org/abs/2306.17806
|
||||
std::string cfg_negative_prompt; // string to help guidance
|
||||
float cfg_scale = 1.f; // how strong is guidance
|
||||
|
||||
std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
|
||||
|
||||
std::vector<llama_token> penalty_prompt_tokens;
|
||||
bool use_penalty_prompt_tokens = false;
|
||||
} llama_sampling_params;
|
||||
|
||||
// general sampler context
|
||||
// TODO: move to llama.h
|
||||
struct llama_sampling_context {
|
||||
// parameters that will be used for sampling
|
||||
llama_sampling_params params;
|
||||
|
||||
// mirostat sampler state
|
||||
float mirostat_mu;
|
||||
|
||||
llama_grammar * grammar;
|
||||
|
||||
// internal
|
||||
grammar_parser::parse_state parsed_grammar;
|
||||
|
||||
// TODO: replace with ring-buffer
|
||||
std::vector<llama_token> prev;
|
||||
std::vector<llama_token_data> cur;
|
||||
size_t n_valid; // Number of correct top tokens with correct probabilities.
|
||||
|
||||
std::mt19937 rng;
|
||||
};
|
||||
|
||||
#include "common.h"
|
||||
|
||||
// Create a new sampling context instance.
|
||||
struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_params & params);
|
||||
|
||||
void llama_sampling_free(struct llama_sampling_context * ctx);
|
||||
|
||||
// Reset the sampler context
|
||||
// - clear prev tokens
|
||||
// - reset grammar
|
||||
void llama_sampling_reset(llama_sampling_context * ctx);
|
||||
|
||||
// Set the sampler seed
|
||||
void llama_sampling_set_rng_seed(struct llama_sampling_context * ctx, uint32_t seed);
|
||||
|
||||
// Copy the sampler context
|
||||
void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst);
|
||||
|
||||
// Get the last sampled token
|
||||
llama_token llama_sampling_last(llama_sampling_context * ctx);
|
||||
|
||||
// Get a string representation of the last sampled tokens
|
||||
std::string llama_sampling_prev_str(llama_sampling_context * ctx_sampling, llama_context * ctx_main, int n);
|
||||
|
||||
// Print sampling parameters into a string
|
||||
std::string llama_sampling_print(const llama_sampling_params & params);
|
||||
|
||||
// Print sampling order into a string
|
||||
std::string llama_sampling_order_print(const llama_sampling_params & params);
|
||||
|
||||
std::string llama_sampling_type_to_str(llama_sampler_type sampler_type);
|
||||
|
||||
std::vector<llama_sampler_type> llama_sampling_types_from_names(const std::vector<std::string> & names, bool allow_alt_names);
|
||||
std::vector<llama_sampler_type> llama_sampling_types_from_chars(const std::string & names_string);
|
||||
|
||||
// this is a common sampling function used across the examples for convenience
|
||||
// it can serve as a starting point for implementing your own sampling function
|
||||
// Note: When using multiple sequences, it is the caller's responsibility to call
|
||||
// llama_sampling_reset when a sequence ends
|
||||
//
|
||||
// - grammar support
|
||||
// - custom sampler logic based on the parameters
|
||||
// - history of the last accepted tokens
|
||||
// - performance metrics
|
||||
// required:
|
||||
// - ctx_main: context to use for sampling
|
||||
// - ctx_sampling: sampling-specific context
|
||||
//
|
||||
// This goal is to have a common implementation of the sampling logic shared across the examples.
|
||||
// For example, depending on the temperature, the sampling chain can be very simple (greedy) or more
|
||||
// complex (top-k, top-p, etc).
|
||||
// optional:
|
||||
// - ctx_cfg: context to use for classifier-free guidance
|
||||
// - idx: sample from llama_get_logits_ith(ctx, idx)
|
||||
//
|
||||
// Another example is related to the grammar. In general, the grammar constraints applied on the full
|
||||
// vocabulary can be very taxing. To improve performance, the grammar can be applied only to the sampled
|
||||
// token in order to verify if it fits the grammar. And only if the token doesn't fit the grammar, the
|
||||
// grammar constraints are applied to the full vocabulary and the token is resampled.
|
||||
//
|
||||
// The gpt_sampler also maintains a container with the last accepted tokens. In the future, this can
|
||||
// be moved into the core llama library.
|
||||
//
|
||||
// For convenience, the gpt_sampler also maintains a container with the current candidate tokens.
|
||||
// This can be used to access the probabilities of the rest of the non-sampled tokens.
|
||||
//
|
||||
// TODO: measure grammar performance
|
||||
// returns:
|
||||
// - token: sampled token
|
||||
// - candidates: vector of candidate tokens
|
||||
//
|
||||
llama_token llama_sampling_sample(
|
||||
struct llama_sampling_context * ctx_sampling,
|
||||
struct llama_context * ctx_main,
|
||||
struct llama_context * ctx_cfg,
|
||||
int idx = -1);
|
||||
|
||||
struct gpt_sampler;
|
||||
// Prepares and adjusts the set of token candidates for sampling based on penalties, biases, and sampling parameters.
|
||||
llama_token_data_array llama_sampling_prepare(
|
||||
struct llama_sampling_context * ctx_sampling,
|
||||
struct llama_context * ctx_main,
|
||||
struct llama_context * ctx_cfg,
|
||||
int idx = 0,
|
||||
bool apply_grammar = true,
|
||||
std::vector<float> * original_logits = nullptr);
|
||||
|
||||
// llama_sampler API overloads
|
||||
|
||||
struct gpt_sampler * gpt_sampler_init(const struct llama_model * model, const struct gpt_sampler_params & params);
|
||||
|
||||
void gpt_sampler_free(struct gpt_sampler * gsmpl);
|
||||
|
||||
// if accept_grammar is true, the token is accepted both by the sampling chain and the grammar
|
||||
void gpt_sampler_accept(struct gpt_sampler * gsmpl, llama_token token, bool accept_grammar);
|
||||
void gpt_sampler_reset (struct gpt_sampler * gsmpl);
|
||||
struct gpt_sampler * gpt_sampler_clone (struct gpt_sampler * gsmpl);
|
||||
|
||||
// arguments can be nullptr to skip printing
|
||||
void gpt_perf_print(const struct llama_context * ctx, const struct gpt_sampler * gsmpl);
|
||||
|
||||
// extended sampling implementation:
|
||||
//
|
||||
// - set logits
|
||||
// - apply the configured sampler chain
|
||||
// - check if the token fits the grammar (if any)
|
||||
// - if not: resample by first applying the grammar constraints and then sampling again (slower path)
|
||||
//
|
||||
// if grammar_first is true, the grammar is applied before the samplers (slower)
|
||||
// useful in cases where all the resulting candidates (not just the sampled one) must fit the grammar
|
||||
//
|
||||
llama_token gpt_sampler_sample(struct gpt_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first = false);
|
||||
|
||||
uint32_t gpt_sampler_get_seed(const struct gpt_sampler * gsmpl);
|
||||
|
||||
// helpers
|
||||
|
||||
// access the internal list of current candidate tokens
|
||||
llama_token_data_array * gpt_sampler_get_candidates(struct gpt_sampler * gsmpl);
|
||||
|
||||
// get the last accepted token
|
||||
llama_token gpt_sampler_last(const struct gpt_sampler * gsmpl);
|
||||
|
||||
// print the sampler chain into a string
|
||||
std::string gpt_sampler_print(const struct gpt_sampler * gsmpl);
|
||||
|
||||
// get a string representation of the last accepted tokens
|
||||
std::string gpt_sampler_prev_str(gpt_sampler * gsmpl, llama_context * ctx, int n);
|
||||
|
||||
char gpt_sampler_type_to_chr(enum gpt_sampler_type cnstr);
|
||||
std::string gpt_sampler_type_to_str(enum gpt_sampler_type cnstr);
|
||||
|
||||
std::vector<enum gpt_sampler_type> gpt_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names);
|
||||
std::vector<enum gpt_sampler_type> gpt_sampler_types_from_chars(const std::string & chars);
|
||||
void llama_sampling_accept(
|
||||
struct llama_sampling_context * ctx_sampling,
|
||||
struct llama_context * ctx_main,
|
||||
llama_token id,
|
||||
bool apply_grammar);
|
||||
|
||||
11644
common/stb_image.h
11644
common/stb_image.h
File diff suppressed because it is too large
Load Diff
@@ -3,7 +3,6 @@
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import ast
|
||||
import logging
|
||||
import argparse
|
||||
import contextlib
|
||||
@@ -64,7 +63,6 @@ class Model:
|
||||
model_name: str | None
|
||||
metadata_override: Path | None
|
||||
dir_model_card: Path
|
||||
is_lora: bool
|
||||
|
||||
# subclasses should define this!
|
||||
model_arch: gguf.MODEL_ARCH
|
||||
@@ -72,7 +70,7 @@ class Model:
|
||||
def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
|
||||
use_temp_file: bool = False, eager: bool = False,
|
||||
metadata_override: Path | None = None, model_name: str | None = None,
|
||||
split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False, is_lora: bool = False):
|
||||
split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False):
|
||||
if type(self) is Model:
|
||||
raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
|
||||
|
||||
@@ -94,7 +92,6 @@ class Model:
|
||||
self.metadata_override = metadata_override
|
||||
self.model_name = model_name
|
||||
self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
|
||||
self.is_lora = is_lora # true if model is used inside convert_lora_to_gguf.py
|
||||
|
||||
# Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
|
||||
if self.ftype == gguf.LlamaFileType.GUESSED:
|
||||
@@ -299,31 +296,12 @@ class Model:
|
||||
gguf.MODEL_TENSOR.POS_EMBD,
|
||||
gguf.MODEL_TENSOR.TOKEN_TYPES,
|
||||
gguf.MODEL_TENSOR.SSM_CONV1D,
|
||||
gguf.MODEL_TENSOR.TIME_MIX_FIRST,
|
||||
gguf.MODEL_TENSOR.TIME_MIX_W1,
|
||||
gguf.MODEL_TENSOR.TIME_MIX_W2,
|
||||
gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
|
||||
gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
|
||||
)
|
||||
)
|
||||
or not new_name.endswith(".weight")
|
||||
or not name.endswith(".weight")
|
||||
):
|
||||
data_qtype = gguf.GGMLQuantizationType.F32
|
||||
|
||||
if data_qtype is False and any(
|
||||
self.match_model_tensor_name(new_name, key, bid)
|
||||
for key in (
|
||||
gguf.MODEL_TENSOR.TOKEN_EMBD,
|
||||
gguf.MODEL_TENSOR.OUTPUT,
|
||||
)
|
||||
):
|
||||
if self.ftype in (
|
||||
gguf.LlamaFileType.MOSTLY_TQ1_0,
|
||||
gguf.LlamaFileType.MOSTLY_TQ2_0,
|
||||
):
|
||||
# TODO: use Q4_K and Q6_K
|
||||
data_qtype = gguf.GGMLQuantizationType.F16
|
||||
|
||||
# No override (data_qtype is False), or wants to be quantized (data_qtype is True)
|
||||
if isinstance(data_qtype, bool):
|
||||
if self.ftype == gguf.LlamaFileType.ALL_F32:
|
||||
@@ -334,10 +312,6 @@ class Model:
|
||||
data_qtype = gguf.GGMLQuantizationType.BF16
|
||||
elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
|
||||
data_qtype = gguf.GGMLQuantizationType.Q8_0
|
||||
elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
|
||||
data_qtype = gguf.GGMLQuantizationType.TQ1_0
|
||||
elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
|
||||
data_qtype = gguf.GGMLQuantizationType.TQ2_0
|
||||
else:
|
||||
raise ValueError(f"Unknown file type: {self.ftype.name}")
|
||||
|
||||
@@ -626,9 +600,6 @@ class Model:
|
||||
if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
|
||||
# ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
|
||||
res = "exaone"
|
||||
if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
|
||||
# ref: https://huggingface.co/microsoft/phi-2
|
||||
res = "phi-2"
|
||||
|
||||
if res is None:
|
||||
logger.warning("\n")
|
||||
@@ -1487,7 +1458,7 @@ class StableLMModel(Model):
|
||||
raise ValueError(f"Unprocessed norms: {norms}")
|
||||
|
||||
|
||||
@Model.register("LLaMAForCausalLM", "LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
|
||||
@Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
|
||||
class LlamaModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.LLAMA
|
||||
|
||||
@@ -1599,7 +1570,7 @@ class LlamaModel(Model):
|
||||
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
|
||||
if rope_scaling.get("rope_type", '').lower() == "llama3":
|
||||
base = self.hparams.get("rope_theta", 10000.0)
|
||||
dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
|
||||
dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
|
||||
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
|
||||
|
||||
factor = rope_scaling.get("factor", 8.0)
|
||||
@@ -1622,8 +1593,7 @@ class LlamaModel(Model):
|
||||
smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
|
||||
rope_factors.append(1 / ((1 - smooth) / factor + smooth))
|
||||
|
||||
if not self.is_lora:
|
||||
self.gguf_writer.add_tensor(self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), np.array(rope_factors, dtype=np.float32))
|
||||
self.gguf_writer.add_tensor(self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), np.array(rope_factors, dtype=np.float32))
|
||||
|
||||
super().prepare_tensors()
|
||||
|
||||
@@ -1646,16 +1616,15 @@ class BitnetModel(Model):
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||||
self.gguf_writer.add_rope_scaling_factor(1.0)
|
||||
|
||||
def weight_quant(self, weight: Tensor) -> Tensor:
|
||||
def weight_quant(self, weight):
|
||||
dtype = weight.dtype
|
||||
weight = weight.float()
|
||||
scale = weight.abs().mean().clamp(min=1e-5)
|
||||
iscale = 1 / scale
|
||||
# TODO: multiply by the scale directly instead of inverting it twice
|
||||
# (this is also unnecessarily doubly inverted upstream)
|
||||
# ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
|
||||
result = (weight * iscale).round().clamp(-1, 1) / iscale
|
||||
return result.type(dtype)
|
||||
s = 1 / weight.abs().mean().clamp(min=1e-5)
|
||||
weight = (weight * s).round().clamp(-1, 1) / s
|
||||
scale = weight.abs().max().unsqueeze(0)
|
||||
weight = torch.where(weight.abs().less(1e-6), 0, weight).type(dtype)
|
||||
weight = torch.sign(weight).type(dtype)
|
||||
return weight.type(dtype), scale.type(torch.float32)
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
new_name = self.map_tensor_name(name)
|
||||
@@ -1670,9 +1639,11 @@ class BitnetModel(Model):
|
||||
gguf.MODEL_TENSOR.FFN_GATE,
|
||||
]):
|
||||
# transform weight into 1/0/-1 (in fp32)
|
||||
data_torch = self.weight_quant(data_torch)
|
||||
|
||||
yield (new_name, data_torch)
|
||||
weight_torch, scale_torch = self.weight_quant(data_torch)
|
||||
yield (new_name, weight_torch)
|
||||
yield (new_name.removesuffix(".weight") + ".scale", scale_torch)
|
||||
else:
|
||||
yield (new_name, data_torch)
|
||||
|
||||
|
||||
@Model.register("GrokForCausalLM")
|
||||
@@ -2169,9 +2140,8 @@ class Phi3MiniModel(Model):
|
||||
if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
|
||||
raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
|
||||
|
||||
if not self.is_lora:
|
||||
self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_LONG] + ".weight", np.array(long_factors, dtype=np.float32))
|
||||
self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT] + ".weight", np.array(short_factors, dtype=np.float32))
|
||||
self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_LONG] + ".weight", np.array(long_factors, dtype=np.float32))
|
||||
self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT] + ".weight", np.array(short_factors, dtype=np.float32))
|
||||
|
||||
|
||||
@Model.register("PlamoForCausalLM")
|
||||
@@ -2742,86 +2712,6 @@ class StarCoder2Model(Model):
|
||||
model_arch = gguf.MODEL_ARCH.STARCODER2
|
||||
|
||||
|
||||
@Model.register("Rwkv6ForCausalLM")
|
||||
class Rwkv6Model(Model):
|
||||
model_arch = gguf.MODEL_ARCH.RWKV6
|
||||
|
||||
def set_vocab(self):
|
||||
assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
|
||||
vocab_size = self.hparams.get("vocab_size", 65536)
|
||||
|
||||
tokens: list[bytes] = ['<s>'.encode("utf-8")]
|
||||
toktypes: list[int] = [gguf.TokenType.CONTROL]
|
||||
|
||||
with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
|
||||
lines = f.readlines()
|
||||
for line in lines:
|
||||
parts = line.split(' ')
|
||||
assert len(parts) >= 3
|
||||
token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
|
||||
token = token.encode("utf-8") if isinstance(token, str) else token
|
||||
assert isinstance(token, bytes)
|
||||
assert len(token) == token_len
|
||||
token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
|
||||
tokens.append(token_text.encode("utf-8"))
|
||||
toktypes.append(gguf.TokenType.NORMAL)
|
||||
remainder = vocab_size - len(tokens)
|
||||
assert remainder >= 0
|
||||
for i in range(len(tokens), vocab_size):
|
||||
tokens.append(f"[PAD{i}]".encode("utf-8"))
|
||||
toktypes.append(gguf.TokenType.UNUSED)
|
||||
|
||||
self.gguf_writer.add_tokenizer_model("rwkv")
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
self.gguf_writer.add_token_types(toktypes)
|
||||
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.hparams["num_hidden_layers"]
|
||||
head_size = self.hparams["head_size"]
|
||||
hidden_size = self.hparams["hidden_size"]
|
||||
layer_norm_eps = self.hparams["layer_norm_epsilon"]
|
||||
rescale_every_n_layers = self.hparams["rescale_every"]
|
||||
intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
|
||||
time_mix_extra_dim = 64 if hidden_size == 4096 else 32
|
||||
time_decay_extra_dim = 128 if hidden_size == 4096 else 64
|
||||
|
||||
# RWKV isn't context limited
|
||||
self.gguf_writer.add_context_length(1048576)
|
||||
self.gguf_writer.add_embedding_length(hidden_size)
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
|
||||
self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
|
||||
self.gguf_writer.add_wkv_head_size(head_size)
|
||||
self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
|
||||
self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
|
||||
self.gguf_writer.add_feed_forward_length(intermediate_size)
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
|
||||
# required by llama.cpp, unused
|
||||
self.gguf_writer.add_head_count(0)
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
new_name = self.map_tensor_name(name)
|
||||
|
||||
if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
|
||||
new_name += ".weight"
|
||||
|
||||
if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
|
||||
data_torch = data_torch.transpose(0, 1)
|
||||
|
||||
if new_name.endswith("time_mix_w2.weight"):
|
||||
data_torch = data_torch.permute(0, 2, 1)
|
||||
|
||||
rescale_every_n_layers = self.hparams["rescale_every"]
|
||||
if rescale_every_n_layers > 0:
|
||||
if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
|
||||
data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
|
||||
|
||||
yield (new_name, data_torch)
|
||||
|
||||
|
||||
@Model.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
|
||||
class MambaModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.MAMBA
|
||||
@@ -3926,7 +3816,7 @@ class ExaoneModel(Model):
|
||||
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
|
||||
if rope_scaling.get("rope_type", '').lower() == "llama3":
|
||||
base = self.hparams.get("rope_theta", 10000.0)
|
||||
dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
|
||||
dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
|
||||
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
|
||||
|
||||
factor = rope_scaling.get("factor", 8.0)
|
||||
@@ -3949,8 +3839,7 @@ class ExaoneModel(Model):
|
||||
smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
|
||||
rope_factors.append(1 / ((1 - smooth) / factor + smooth))
|
||||
|
||||
if not self.is_lora:
|
||||
self.gguf_writer.add_tensor(self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), np.array(rope_factors, dtype=np.float32))
|
||||
self.gguf_writer.add_tensor(self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), np.array(rope_factors, dtype=np.float32))
|
||||
|
||||
super().prepare_tensors()
|
||||
|
||||
@@ -4035,8 +3924,8 @@ def parse_args() -> argparse.Namespace:
|
||||
help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
|
||||
help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
|
||||
"--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f16",
|
||||
help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--bigendian", action="store_true",
|
||||
@@ -4123,8 +4012,6 @@ def main() -> None:
|
||||
"f16": gguf.LlamaFileType.MOSTLY_F16,
|
||||
"bf16": gguf.LlamaFileType.MOSTLY_BF16,
|
||||
"q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
|
||||
"tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
|
||||
"tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
|
||||
"auto": gguf.LlamaFileType.GUESSED,
|
||||
}
|
||||
|
||||
|
||||
@@ -31,7 +31,6 @@ import re
|
||||
import requests
|
||||
import sys
|
||||
import json
|
||||
import shutil
|
||||
|
||||
from hashlib import sha256
|
||||
from enum import IntEnum, auto
|
||||
@@ -98,7 +97,6 @@ models = [
|
||||
{'name': "bloom", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigscience/bloom", },
|
||||
{'name': "gpt3-finnish", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/TurkuNLP/gpt3-finnish-small", },
|
||||
{"name": "exaone", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct", },
|
||||
{"name": "phi-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/microsoft/phi-2", },
|
||||
]
|
||||
|
||||
|
||||
@@ -127,27 +125,12 @@ def download_model(model):
|
||||
if tokt == TOKENIZER_TYPE.UGM:
|
||||
files.append("spiece.model")
|
||||
|
||||
if os.path.isdir(repo):
|
||||
# If repo is a path on the file system, copy the directory
|
||||
for file in files:
|
||||
src_path = os.path.join(repo, file)
|
||||
dst_path = f"models/tokenizers/{name}/{file}"
|
||||
if os.path.isfile(dst_path):
|
||||
logger.info(f"{name}: File {dst_path} already exists - skipping")
|
||||
continue
|
||||
if os.path.isfile(src_path):
|
||||
shutil.copy2(src_path, dst_path)
|
||||
logger.info(f"{name}: Copied {src_path} to {dst_path}")
|
||||
else:
|
||||
logger.warning(f"{name}: Source file {src_path} does not exist")
|
||||
else:
|
||||
# If repo is a URL, download the files
|
||||
for file in files:
|
||||
save_path = f"models/tokenizers/{name}/{file}"
|
||||
if os.path.isfile(save_path):
|
||||
logger.info(f"{name}: File {save_path} already exists - skipping")
|
||||
continue
|
||||
download_file_with_auth(f"{repo}/resolve/main/{file}", token, save_path)
|
||||
for file in files:
|
||||
save_path = f"models/tokenizers/{name}/{file}"
|
||||
if os.path.isfile(save_path):
|
||||
logger.info(f"{name}: File {save_path} already exists - skipping")
|
||||
continue
|
||||
download_file_with_auth(f"{repo}/resolve/main/{file}", token, save_path)
|
||||
|
||||
|
||||
for model in models:
|
||||
|
||||
@@ -363,13 +363,7 @@ if __name__ == '__main__':
|
||||
yield (name, cast(torch.Tensor, LoraTorchTensor(tensor.A, tensor.B)))
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
dest = list(super().modify_tensors(data_torch, name, bid))
|
||||
# some archs may have the same tensor for lm_head and output (tie word embeddings)
|
||||
# in this case, adapters targeting lm_head will fail when using llama-export-lora
|
||||
# therefore, we ignore them for now
|
||||
# see: https://github.com/ggerganov/llama.cpp/issues/9065
|
||||
if name == "lm_head.weight" and len(dest) == 0:
|
||||
raise ValueError("lm_head is present in adapter, but is ignored in base model")
|
||||
dest = super().modify_tensors(data_torch, name, bid)
|
||||
for dest_name, dest_data in dest:
|
||||
assert isinstance(dest_data, LoraTorchTensor)
|
||||
lora_a, lora_b = dest_data.get_lora_A_B()
|
||||
@@ -392,7 +386,6 @@ if __name__ == '__main__':
|
||||
dry_run=args.dry_run,
|
||||
dir_lora_model=dir_lora,
|
||||
lora_alpha=alpha,
|
||||
is_lora=True,
|
||||
)
|
||||
|
||||
logger.info("Exporting model...")
|
||||
|
||||
@@ -20,7 +20,7 @@
|
||||
**oneAPI** is an open ecosystem and a standard-based specification, supporting multiple architectures including but not limited to intel CPUs, GPUs and FPGAs. The key components of the oneAPI ecosystem include:
|
||||
|
||||
- **DPCPP** *(Data Parallel C++)*: The primary oneAPI SYCL implementation, which includes the icpx/icx Compilers.
|
||||
- **oneAPI Libraries**: A set of highly optimized libraries targeting multiple domains *(e.g. oneMKL and oneDNN)*.
|
||||
- **oneAPI Libraries**: A set of highly optimized libraries targeting multiple domains *(e.g. oneMKL - Math Kernel Library)*.
|
||||
- **oneAPI LevelZero**: A high performance low level interface for fine-grained control over intel iGPUs and dGPUs.
|
||||
- **Nvidia & AMD Plugins**: These are plugins extending oneAPI's DPCPP support to SYCL on Nvidia and AMD GPU targets.
|
||||
|
||||
@@ -28,6 +28,10 @@
|
||||
|
||||
The llama.cpp SYCL backend is designed to support **Intel GPU** firstly. Based on the cross-platform feature of SYCL, it could support other vendor GPUs: Nvidia GPU (*AMD GPU coming*).
|
||||
|
||||
When targeting **Intel CPU**, it is recommended to use llama.cpp for [Intel oneMKL](README.md#intel-onemkl) backend.
|
||||
|
||||
It has the similar design of other llama.cpp BLAS-based paths such as *OpenBLAS, cuBLAS, etc..*. In beginning work, the oneAPI's [SYCLomatic](https://github.com/oneapi-src/SYCLomatic) open-source migration tool (Commercial release [Intel® DPC++ Compatibility Tool](https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html)) was used for this purpose.
|
||||
|
||||
## Recommended Release
|
||||
|
||||
The SYCL backend would be broken by some PRs due to no online CI.
|
||||
@@ -41,10 +45,6 @@ The following release is verified with good quality:
|
||||
|
||||
## News
|
||||
|
||||
|
||||
- 2024.8
|
||||
- Use oneDNN as the default GEMM library, improve the compatibility for new Intel GPUs.
|
||||
|
||||
- 2024.5
|
||||
- Performance is increased: 34 -> 37 tokens/s of llama-2-7b.Q4_0 on Arc770.
|
||||
- Arch Linux is verified successfully.
|
||||
@@ -196,7 +196,7 @@ Please follow the instructions for downloading and installing the Toolkit for Li
|
||||
|
||||
Following guidelines/code snippets assume the default installation values. Otherwise, please make sure the necessary changes are reflected where applicable.
|
||||
|
||||
Upon a successful installation, SYCL is enabled for the available intel devices, along with relevant libraries such as oneAPI oneDNN for Intel GPUs.
|
||||
Upon a successful installation, SYCL is enabled for the available intel devices, along with relevant libraries such as oneAPI MKL for intel GPUs.
|
||||
|
||||
- **Adding support to Nvidia GPUs**
|
||||
|
||||
@@ -255,6 +255,8 @@ or
|
||||
# Export relevant ENV variables
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
|
||||
# Build LLAMA with MKL BLAS acceleration for intel GPU
|
||||
|
||||
# Option 1: Use FP32 (recommended for better performance in most cases)
|
||||
cmake -B build -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||
|
||||
@@ -336,12 +338,12 @@ Choose one of following methods to run.
|
||||
- Use device 0:
|
||||
|
||||
```sh
|
||||
./examples/sycl/run-llama2.sh 0
|
||||
./examples/sycl/run_llama2.sh 0
|
||||
```
|
||||
- Use multiple devices:
|
||||
|
||||
```sh
|
||||
./examples/sycl/run-llama2.sh
|
||||
./examples/sycl/run_llama2.sh
|
||||
```
|
||||
|
||||
2. Command line
|
||||
|
||||
@@ -380,9 +380,3 @@ For detailed info, such as model/device supports, CANN install, please refer to
|
||||
### Android
|
||||
|
||||
To read documentation for how to build on Android, [click here](./android.md)
|
||||
|
||||
### Arm CPU optimized mulmat kernels
|
||||
|
||||
Llama.cpp includes a set of optimized mulmat kernels for the Arm architecture, leveraging Arm® Neon™, int8mm and SVE instructions. These kernels are enabled at build time through the appropriate compiler cpu-type flags, such as `-DCMAKE_C_FLAGS=-march=armv8.2a+i8mm+sve`. Note that these optimized kernels require the model to be quantized into one of the formats: `Q4_0_4_4` (Arm Neon), `Q4_0_4_8` (int8mm) or `Q4_0_8_8` (SVE). The SVE mulmat kernel specifically requires a vector width of 256 bits. When running on devices with a different vector width, it is recommended to use the `Q4_0_4_8` (int8mm) or `Q4_0_4_4` (Arm Neon) formats for better performance. Refer to [examples/quantize/README.md](../examples/quantize/README.md) for more information on the quantization formats.
|
||||
|
||||
To support `Q4_0_4_4`, you must build with `GGML_NO_LLAMAFILE=1` (`make`) or `-DGGML_LLAMAFILE=OFF` (`cmake`).
|
||||
|
||||
@@ -20,7 +20,7 @@ Additionally, there the following images, similar to the above:
|
||||
- `ghcr.io/ggerganov/llama.cpp:light-rocm`: Same as `light` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
- `ghcr.io/ggerganov/llama.cpp:server-rocm`: Same as `server` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
|
||||
The GPU enabled images are not currently tested by CI beyond being built. They are not built with any variation from the ones in the Dockerfiles defined in [.devops/](../.devops/) and the GitHub Action defined in [.github/workflows/docker.yml](../.github/workflows/docker.yml). If you need different settings (for example, a different CUDA or ROCm library, you'll need to build the images locally for now).
|
||||
The GPU enabled images are not currently tested by CI beyond being built. They are not built with any variation from the ones in the Dockerfiles defined in [.devops/](.devops/) and the GitHub Action defined in [.github/workflows/docker.yml](.github/workflows/docker.yml). If you need different settings (for example, a different CUDA or ROCm library, you'll need to build the images locally for now).
|
||||
|
||||
## Usage
|
||||
|
||||
@@ -66,8 +66,8 @@ You may want to pass in some different `ARGS`, depending on the CUDA environment
|
||||
|
||||
The defaults are:
|
||||
|
||||
- `CUDA_VERSION` set to `12.6.0`
|
||||
- `CUDA_DOCKER_ARCH` set to the cmake build default, which includes all the supported architectures
|
||||
- `CUDA_VERSION` set to `11.7.1`
|
||||
- `CUDA_DOCKER_ARCH` set to `all`
|
||||
|
||||
The resulting images, are essentially the same as the non-CUDA images:
|
||||
|
||||
|
||||
@@ -18,7 +18,7 @@ constexpr float rms_norm_eps = 5e-6f;
|
||||
#endif
|
||||
|
||||
static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
|
||||
struct ggml_cplan plan = ggml_graph_plan(graph, n_threads, nullptr);
|
||||
struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
|
||||
|
||||
if (plan.work_size > 0) {
|
||||
buf.resize(plan.work_size);
|
||||
|
||||
@@ -49,12 +49,3 @@ There are 2 modes of operation:
|
||||
| 128 | 256 | 8 | 3072 | 0.751 | 1363.92 | 15.110 | 135.54 | 15.861 | 193.69 |
|
||||
| 128 | 256 | 16 | 6144 | 1.569 | 1304.93 | 18.073 | 226.64 | 19.642 | 312.80 |
|
||||
| 128 | 256 | 32 | 12288 | 3.409 | 1201.35 | 19.223 | 426.15 | 22.633 | 542.93 |
|
||||
|
||||
### JSONL output
|
||||
|
||||
Pass `--output-format jsonl` to output JSONL instead of Markdown, á la
|
||||
|
||||
```json lines
|
||||
{"n_kv_max": 2048, "n_batch": 2048, "n_ubatch": 512, "flash_attn": 0, "is_pp_shared": 0, "n_gpu_layers": 99, "n_threads": 8, "n_threads_batch": 8, "pp": 128, "tg": 128, "pl": 1, "n_kv": 256, "t_pp": 0.233810, "speed_pp": 547.453064, "t_tg": 3.503684, "speed_tg": 36.532974, "t": 3.737494, "speed": 68.495094}
|
||||
{"n_kv_max": 2048, "n_batch": 2048, "n_ubatch": 512, "flash_attn": 0, "is_pp_shared": 0, "n_gpu_layers": 99, "n_threads": 8, "n_threads_batch": 8, "pp": 128, "tg": 128, "pl": 2, "n_kv": 512, "t_pp": 0.422602, "speed_pp": 605.770935, "t_tg": 11.106112, "speed_tg": 23.050371, "t": 11.528713, "speed": 44.410854}
|
||||
```
|
||||
|
||||
@@ -1,13 +1,36 @@
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
static void print_usage(int, char ** argv) {
|
||||
// mutates the input string
|
||||
static std::vector<int> parse_list(char * p) {
|
||||
std::vector<int> ret;
|
||||
|
||||
char * q = p;
|
||||
|
||||
while (*p) {
|
||||
if (*p == ',') {
|
||||
*p = '\0';
|
||||
ret.push_back(std::atoi(q));
|
||||
q = p + 1;
|
||||
}
|
||||
|
||||
++p;
|
||||
}
|
||||
|
||||
ret.push_back(std::atoi(q));
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void print_usage(int argc, char ** argv, const gpt_params & params) {
|
||||
gpt_params_print_usage(argc, argv, params);
|
||||
|
||||
LOG_TEE("\nexample usage:\n");
|
||||
LOG_TEE("\n %s -m model.gguf -c 2048 -b 2048 -ub 512 -npp 128,256,512 -ntg 128,256 -npl 1,2,4,8,16,32 [-pps]\n", argv[0]);
|
||||
LOG_TEE("\n");
|
||||
@@ -16,7 +39,8 @@ static void print_usage(int, char ** argv) {
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_BENCH, print_usage)) {
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
print_usage(argc, argv, params);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@@ -98,13 +122,12 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
|
||||
if (!params.batched_bench_output_jsonl) {
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("%s: n_kv_max = %d, n_batch = %d, n_ubatch = %d, flash_attn = %d, is_pp_shared = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, params.n_batch, params.n_ubatch, params.flash_attn, params.is_pp_shared, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch);
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("|%6s | %6s | %4s | %6s | %8s | %8s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "B", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s", "T s", "S t/s");
|
||||
LOG_TEE("|%6s-|-%6s-|-%4s-|-%6s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|\n", "------", "------", "----", "------", "--------", "--------", "--------", "--------", "--------", "--------");
|
||||
}
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("%s: n_kv_max = %d, n_batch = %d, n_ubatch = %d, flash_attn = %d, is_pp_shared = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, params.n_batch, params.n_ubatch, params.flash_attn, params.is_pp_shared, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch);
|
||||
LOG_TEE("\n");
|
||||
|
||||
LOG_TEE("|%6s | %6s | %4s | %6s | %8s | %8s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "B", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s", "T s", "S t/s");
|
||||
LOG_TEE("|%6s-|-%6s-|-%4s-|-%6s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|\n", "------", "------", "----", "------", "--------", "--------", "--------", "--------", "--------", "--------");
|
||||
|
||||
for ( int i_pp = 0; i_pp < (int) n_pp.size(); ++i_pp) {
|
||||
for ( int i_tg = 0; i_tg < (int) n_tg.size(); ++i_tg) {
|
||||
@@ -172,22 +195,12 @@ int main(int argc, char ** argv) {
|
||||
const float speed_tg = pl*tg / t_tg;
|
||||
const float speed = n_kv / t;
|
||||
|
||||
if(params.batched_bench_output_jsonl) {
|
||||
LOG_TEE(
|
||||
"{\"n_kv_max\": %d, \"n_batch\": %d, \"n_ubatch\": %d, \"flash_attn\": %d, \"is_pp_shared\": %d, \"n_gpu_layers\": %d, \"n_threads\": %u, \"n_threads_batch\": %u, "
|
||||
"\"pp\": %d, \"tg\": %d, \"pl\": %d, \"n_kv\": %d, \"t_pp\": %f, \"speed_pp\": %f, \"t_tg\": %f, \"speed_tg\": %f, \"t\": %f, \"speed\": %f}\n",
|
||||
n_kv_max, params.n_batch, params.n_ubatch, params.flash_attn, params.is_pp_shared, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch,
|
||||
pp, tg, pl, n_kv, t_pp, speed_pp, t_tg, speed_tg, t, speed
|
||||
);
|
||||
} else {
|
||||
LOG_TEE("|%6d | %6d | %4d | %6d | %8.3f | %8.2f | %8.3f | %8.2f | %8.3f | %8.2f |\n", pp, tg, pl, n_kv, t_pp, speed_pp, t_tg, speed_tg, t, speed);
|
||||
}
|
||||
LOG_TEE("|%6d | %6d | %4d | %6d | %8.3f | %8.2f | %8.3f | %8.2f | %8.3f | %8.2f |\n", pp, tg, pl, n_kv, t_pp, speed_pp, t_tg, speed_tg, t, speed);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
LOG_TEE("\n");
|
||||
llama_perf_context_print(ctx);
|
||||
llama_print_timings(ctx);
|
||||
|
||||
llama_batch_free(batch);
|
||||
|
||||
|
||||
@@ -27,6 +27,7 @@ guard let model = llama_load_model_from_file(modelPath.cString(using: .utf8), mo
|
||||
print("Failed to load model")
|
||||
exit(1)
|
||||
}
|
||||
|
||||
defer {
|
||||
llama_free_model(model)
|
||||
}
|
||||
@@ -36,6 +37,7 @@ var tokens = tokenize(text: prompt, add_bos: true)
|
||||
let n_kv_req = UInt32(tokens.count) + UInt32((n_len - Int(tokens.count)) * n_parallel)
|
||||
|
||||
var context_params = llama_context_default_params()
|
||||
context_params.seed = 1234
|
||||
context_params.n_ctx = n_kv_req
|
||||
context_params.n_batch = UInt32(max(n_len, n_parallel))
|
||||
context_params.n_threads = 8
|
||||
@@ -46,26 +48,11 @@ guard context != nil else {
|
||||
print("Failed to initialize context")
|
||||
exit(1)
|
||||
}
|
||||
|
||||
defer {
|
||||
llama_free(context)
|
||||
}
|
||||
|
||||
var sparams = llama_sampler_chain_default_params()
|
||||
|
||||
let smpl = llama_sampler_chain_init(sparams)
|
||||
guard smpl != nil else {
|
||||
print("Failed to initialize sampling")
|
||||
exit(1)
|
||||
}
|
||||
defer {
|
||||
llama_sampler_free(smpl)
|
||||
}
|
||||
|
||||
llama_sampler_chain_add(smpl, llama_sampler_init_top_k(40));
|
||||
llama_sampler_chain_add(smpl, llama_sampler_init_top_p(0.9, 1));
|
||||
llama_sampler_chain_add(smpl, llama_sampler_init_temp (0.4));
|
||||
llama_sampler_chain_add(smpl, llama_sampler_init_dist (1234));
|
||||
|
||||
let n_ctx = llama_n_ctx(context)
|
||||
|
||||
print("\nn_len = \(n_len), n_ctx = \(n_ctx), n_batch = \(context_params.n_batch), n_parallel = \(n_parallel), n_kv_req = \(n_kv_req)\n")
|
||||
@@ -138,7 +125,32 @@ while n_cur <= n_len {
|
||||
continue
|
||||
}
|
||||
|
||||
let new_token_id = llama_sampler_sample(smpl, context, i_batch[i])
|
||||
var n_vocab = llama_n_vocab(model)
|
||||
var logits = llama_get_logits_ith(context, i_batch[i])
|
||||
|
||||
var candidates: [llama_token_data] = .init(repeating: llama_token_data(), count: Int(n_vocab))
|
||||
|
||||
for token_id in 0 ..< n_vocab {
|
||||
candidates.append(llama_token_data(id: token_id, logit: logits![Int(token_id)], p: 0.0))
|
||||
}
|
||||
|
||||
var candidates_p: llama_token_data_array = .init(
|
||||
data: &candidates,
|
||||
size: candidates.count,
|
||||
sorted: false
|
||||
)
|
||||
|
||||
let top_k: Int32 = 40
|
||||
let top_p: Float = 0.9
|
||||
let temp: Float = 0.4
|
||||
|
||||
llama_sample_top_k(context, &candidates_p, top_k, 1)
|
||||
llama_sample_top_p(context, &candidates_p, top_p, 1)
|
||||
llama_sample_temp(context, &candidates_p, temp)
|
||||
|
||||
let new_token_id = llama_sample_token(context, &candidates_p)
|
||||
|
||||
// const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
|
||||
|
||||
// is it an end of stream? -> mark the stream as finished
|
||||
if llama_token_is_eog(model, new_token_id) || n_cur == n_len {
|
||||
@@ -198,10 +210,9 @@ if n_parallel > 1 {
|
||||
|
||||
let t_main_end = ggml_time_us()
|
||||
|
||||
print("decoded \(n_decode) tokens in \(String(format: "%.2f", Double(t_main_end - t_main_start) / 1_000_000.0)) s, speed: \(String(format: "%.2f", Double(n_decode) / (Double(t_main_end - t_main_start) / 1_000_000.0))) t/s\n\n")
|
||||
print("decoded \(n_decode) tokens in \(String(format: "%.2f", Double(t_main_end - t_main_start) / 1_000_000.0)) s, speed: \(String(format: "%.2f", Double(n_decode) / (Double(t_main_end - t_main_start) / 1_000_000.0))) t/s\n")
|
||||
|
||||
llama_perf_sampler_print(smpl)
|
||||
llama_perf_context_print(context)
|
||||
llama_print_timings(context)
|
||||
|
||||
private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
|
||||
let utf8Count = text.utf8.count
|
||||
|
||||
@@ -1,13 +1,15 @@
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
static void print_usage(int, char ** argv) {
|
||||
static void print_usage(int argc, char ** argv, const gpt_params & params) {
|
||||
gpt_params_print_usage(argc, argv, params);
|
||||
|
||||
LOG_TEE("\nexample usage:\n");
|
||||
LOG_TEE("\n %s -m model.gguf -p \"Hello my name is\" -n 32 -np 4\n", argv[0]);
|
||||
LOG_TEE("\n");
|
||||
@@ -19,7 +21,8 @@ int main(int argc, char ** argv) {
|
||||
params.prompt = "Hello my name is";
|
||||
params.n_predict = 32;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON, print_usage)) {
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
print_usage(argc, argv, params);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@@ -62,15 +65,6 @@ int main(int argc, char ** argv) {
|
||||
|
||||
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
|
||||
|
||||
auto sparams = llama_sampler_chain_default_params();
|
||||
|
||||
llama_sampler * smpl = llama_sampler_chain_init(sparams);
|
||||
|
||||
llama_sampler_chain_add(smpl, llama_sampler_init_top_k(params.sparams.top_k));
|
||||
llama_sampler_chain_add(smpl, llama_sampler_init_top_p(params.sparams.top_p, params.sparams.min_keep));
|
||||
llama_sampler_chain_add(smpl, llama_sampler_init_temp (params.sparams.temp));
|
||||
llama_sampler_chain_add(smpl, llama_sampler_init_dist (params.sparams.seed));
|
||||
|
||||
if (ctx == NULL) {
|
||||
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
|
||||
return 1;
|
||||
@@ -170,7 +164,29 @@ int main(int argc, char ** argv) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const llama_token new_token_id = llama_sampler_sample(smpl, ctx, i_batch[i]);
|
||||
auto n_vocab = llama_n_vocab(model);
|
||||
auto * logits = llama_get_logits_ith(ctx, i_batch[i]);
|
||||
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
|
||||
}
|
||||
|
||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||
|
||||
const int top_k = 40;
|
||||
const float top_p = 0.9f;
|
||||
const float temp = 0.4f;
|
||||
|
||||
llama_sample_top_k(ctx, &candidates_p, top_k, 1);
|
||||
llama_sample_top_p(ctx, &candidates_p, top_p, 1);
|
||||
llama_sample_temp (ctx, &candidates_p, temp);
|
||||
|
||||
const llama_token new_token_id = llama_sample_token(ctx, &candidates_p);
|
||||
|
||||
//const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
|
||||
|
||||
// is it an end of generation? -> mark the stream as finished
|
||||
if (llama_token_is_eog(model, new_token_id) || n_cur == n_predict) {
|
||||
@@ -228,15 +244,12 @@ int main(int argc, char ** argv) {
|
||||
LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
|
||||
__func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
|
||||
|
||||
LOG_TEE("\n");
|
||||
llama_perf_sampler_print(smpl);
|
||||
llama_perf_context_print(ctx);
|
||||
llama_print_timings(ctx);
|
||||
|
||||
fprintf(stderr, "\n");
|
||||
|
||||
llama_batch_free(batch);
|
||||
|
||||
llama_sampler_free(smpl);
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
||||
|
||||
@@ -21,7 +21,7 @@
|
||||
#endif
|
||||
|
||||
static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
|
||||
struct ggml_cplan plan = ggml_graph_plan(graph, n_threads, nullptr);
|
||||
struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
|
||||
|
||||
if (plan.work_size > 0) {
|
||||
buf.resize(plan.work_size);
|
||||
@@ -54,7 +54,7 @@ static void tensor_dump(const ggml_tensor * tensor, const char * name) {
|
||||
#define TENSOR_DUMP(tensor) tensor_dump(tensor, #tensor)
|
||||
|
||||
struct benchmark_params_struct {
|
||||
int n_threads = 1;
|
||||
int32_t n_threads = 1;
|
||||
int32_t n_iterations = 10;
|
||||
};
|
||||
|
||||
@@ -183,7 +183,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
ggml_graph_compute_helper(work_buffer, gf, benchmark_params.n_threads);
|
||||
|
||||
TENSOR_DUMP(ggml_graph_node(gf, 0));
|
||||
TENSOR_DUMP(gf->nodes[0]);
|
||||
|
||||
printf("\n------ Test 2 - Matrix Mult via %s code\n", ggml_type_name(qtype));
|
||||
|
||||
@@ -224,7 +224,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
|
||||
// Let's use the F32 result from above as a reference for the quantized multiplication
|
||||
float sum_of_F32_reference = tensor_sum_elements(ggml_graph_node(gf, 0));
|
||||
float sum_of_F32_reference = tensor_sum_elements(gf->nodes[0]);
|
||||
|
||||
printf("Iteration;NThreads; SizeX; SizeY; SizeZ; Required_FLOPS; Elapsed_u_Seconds; gigaFLOPS\n");
|
||||
printf("=====================================================================================\n");
|
||||
@@ -252,7 +252,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// Check that the matrix multiplication result is in the right ballpark
|
||||
// We cannot use the exact value from the F32 multiplication because the quantizuation will be slightly different
|
||||
float sum_of_Q4_result = tensor_sum_elements(ggml_graph_node(gf31, 0));
|
||||
float sum_of_Q4_result = tensor_sum_elements(gf31->nodes[0]);
|
||||
float delta = std::abs(sum_of_Q4_result - sum_of_F32_reference);
|
||||
float allowed_delta = (sum_of_F32_reference) / 1000 / 1000; // Let's accept an epsilon of 10^-6
|
||||
|
||||
|
||||
@@ -1,4 +1,3 @@
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
#include "ggml.h"
|
||||
@@ -36,7 +35,9 @@ static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void print_usage(int, char ** argv) {
|
||||
static void print_usage(int argc, char ** argv, const gpt_params & params) {
|
||||
gpt_params_print_usage(argc, argv, params);
|
||||
|
||||
printf("\nexample usage:\n");
|
||||
printf("\n CPU only: %s -m ./llama-3.Q4_K_M.gguf\n", argv[0]);
|
||||
printf("\n with GPU: %s -m ./llama-3.Q4_K_M.gguf -ngl 99\n", argv[0]);
|
||||
@@ -389,7 +390,8 @@ static int prepare_entries(gpt_params & params, train_context & ctx_train) {
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_CVECTOR_GENERATOR, print_usage)) {
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
print_usage(argc, argv, params);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@@ -484,8 +486,8 @@ int main(int argc, char ** argv) {
|
||||
if (use_pca) {
|
||||
// run PCA
|
||||
PCA::pca_params pca_params;
|
||||
pca_params.n_threads = params.cpuparams.n_threads;
|
||||
pca_params.n_batch = params.n_pca_batch;
|
||||
pca_params.n_threads = params.n_threads;
|
||||
pca_params.n_batch = params.n_pca_batch;
|
||||
pca_params.n_iterations = params.n_pca_iterations;
|
||||
PCA::run_pca(pca_params, ctx_train.v_diff, ctx_train.v_final);
|
||||
} else {
|
||||
|
||||
@@ -12,9 +12,12 @@
|
||||
|
||||
#include <cstdio>
|
||||
#include <ctime>
|
||||
#include <random>
|
||||
#include <string>
|
||||
#include <tuple>
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
|
||||
#define DEBUG_POS 5
|
||||
|
||||
@@ -226,8 +229,8 @@ static ggml_status compute_piter(
|
||||
result.eigenvectors.resize(params.n_batch);
|
||||
result.distances.resize(params.n_batch);
|
||||
// get output nodes
|
||||
for (int i = 0; i < ggml_graph_n_nodes(gf); ++i) {
|
||||
auto node = ggml_graph_node(gf, i);
|
||||
for (int i = 0; i < gf->n_nodes; ++i) {
|
||||
auto node = gf->nodes[i];
|
||||
int iter = -1;
|
||||
// find b_tensor (without copying data from device)
|
||||
if ((iter = extract_i("b_tensor_norm_", node->name)) > -1) {
|
||||
|
||||
@@ -1,4 +1,3 @@
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
|
||||
@@ -80,7 +79,8 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_EMBEDDING)) {
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
gpt_params_print_usage(argc, argv, params);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@@ -90,6 +90,14 @@ int main(int argc, char ** argv) {
|
||||
|
||||
print_build_info();
|
||||
|
||||
if (params.seed == LLAMA_DEFAULT_SEED) {
|
||||
params.seed = time(NULL);
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
|
||||
|
||||
std::mt19937 rng(params.seed);
|
||||
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
@@ -305,10 +313,8 @@ int main(int argc, char ** argv) {
|
||||
if (notArray) fprintf(stdout, "\n}\n");
|
||||
}
|
||||
|
||||
LOG_TEE("\n");
|
||||
llama_perf_context_print(ctx);
|
||||
|
||||
// clean up
|
||||
llama_print_timings(ctx);
|
||||
llama_batch_free(batch);
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
||||
@@ -1,4 +1,3 @@
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
#include "ggml.h"
|
||||
@@ -145,12 +144,15 @@ int main(int argc, char ** argv) {
|
||||
|
||||
gpt_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
gpt_params_print_usage(argc, argv, params);
|
||||
return 1;
|
||||
}
|
||||
|
||||
print_build_info();
|
||||
|
||||
std::mt19937 rng(params.seed);
|
||||
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
@@ -181,8 +183,7 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
LOG_TEE("\n");
|
||||
llama_perf_context_print(ctx);
|
||||
llama_print_timings(ctx);
|
||||
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
||||
@@ -1,4 +1,3 @@
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "ggml.h"
|
||||
#include "ggml-alloc.h"
|
||||
@@ -370,7 +369,7 @@ struct lora_merge_ctx {
|
||||
|
||||
// write data to output file
|
||||
{
|
||||
auto * result = ggml_graph_node(gf, -1);
|
||||
auto result = gf->nodes[gf->n_nodes - 1];
|
||||
size_t len = ggml_nbytes(result);
|
||||
if (read_buf.size() < len) {
|
||||
read_buf.resize(len);
|
||||
@@ -392,7 +391,9 @@ struct lora_merge_ctx {
|
||||
}
|
||||
};
|
||||
|
||||
static void print_usage(int, char ** argv) {
|
||||
static void print_usage(int argc, char ** argv, const gpt_params & params) {
|
||||
gpt_params_print_usage(argc, argv, params);
|
||||
|
||||
printf("\nexample usage:\n");
|
||||
printf("\n %s -m base-model.gguf --lora lora-file.gguf -o merged-model-f16.gguf\n", argv[0]);
|
||||
printf("\nNOTE: output model is F16\n");
|
||||
@@ -402,13 +403,14 @@ static void print_usage(int, char ** argv) {
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_EXPORT_LORA, print_usage)) {
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
print_usage(argc, argv, params);
|
||||
return 1;
|
||||
}
|
||||
|
||||
g_verbose = (params.verbosity == 1);
|
||||
try {
|
||||
lora_merge_ctx ctx(params.model, params.lora_adapters, params.lora_outfile, params.cpuparams.n_threads);
|
||||
lora_merge_ctx ctx(params.model, params.lora_adapters, params.lora_outfile, params.n_threads);
|
||||
ctx.run_merge();
|
||||
} catch (const std::exception & err) {
|
||||
fprintf(stderr, "%s\n", err.what());
|
||||
|
||||
@@ -1,5 +1,9 @@
|
||||
#define LLAMA_API_INTERNAL
|
||||
|
||||
#include "grammar-parser.h"
|
||||
#include "ggml.h"
|
||||
#include "llama.h"
|
||||
#include "unicode.h"
|
||||
#include "llama-grammar.h"
|
||||
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
@@ -8,28 +12,29 @@
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
static bool llama_grammar_validate(struct llama_grammar * grammar, const std::string & input_str, size_t & error_pos, std::string & error_msg) {
|
||||
const auto cpts = unicode_cpts_from_utf8(input_str);
|
||||
static bool llama_sample_grammar_string(struct llama_grammar * grammar, const std::string & input_str, size_t & error_pos, std::string & error_msg) {
|
||||
auto decoded = decode_utf8(input_str, {});
|
||||
const auto & code_points = decoded.first;
|
||||
|
||||
const llama_grammar_rules & rules = llama_grammar_get_rules (grammar);
|
||||
llama_grammar_stacks & stacks_cur = llama_grammar_get_stacks(grammar);
|
||||
llama_grammar_stacks & cur_stacks = llama_grammar_get_stacks(grammar);
|
||||
|
||||
size_t pos = 0;
|
||||
for (const auto & cpt : cpts) {
|
||||
const llama_grammar_stacks stacks_prev = llama_grammar_get_stacks(grammar); // copy
|
||||
for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
|
||||
const llama_grammar_stacks prev_stacks = llama_grammar_get_stacks(grammar); // copy
|
||||
|
||||
llama_grammar_accept(rules, stacks_prev, cpt, stacks_cur);
|
||||
llama_grammar_accept(rules, prev_stacks, *it, cur_stacks);
|
||||
|
||||
if (stacks_cur.empty()) {
|
||||
if (cur_stacks.empty()) {
|
||||
error_pos = pos;
|
||||
error_msg = "Unexpected character '" + unicode_cpt_to_utf8(cpt) + "'";
|
||||
stacks_cur = stacks_prev;
|
||||
error_msg = "Unexpected character '" + unicode_cpt_to_utf8(*it) + "'";
|
||||
cur_stacks = prev_stacks;
|
||||
return false;
|
||||
}
|
||||
++pos;
|
||||
}
|
||||
|
||||
for (const auto & stack : stacks_cur) {
|
||||
for (const auto & stack : cur_stacks) {
|
||||
if (stack.empty()) {
|
||||
return true;
|
||||
}
|
||||
@@ -80,7 +85,27 @@ int main(int argc, char** argv) {
|
||||
grammar_str = buffer.str();
|
||||
}
|
||||
|
||||
llama_grammar * grammar = llama_grammar_init_impl(nullptr, grammar_str.c_str(), "root");
|
||||
// Parse the GBNF grammar
|
||||
auto parsed_grammar = grammar_parser::parse(grammar_str.c_str());
|
||||
|
||||
// will be empty (default) if there are parse errors
|
||||
if (parsed_grammar.rules.empty()) {
|
||||
fprintf(stdout, "%s: failed to parse grammar\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// Ensure that there is a "root" node.
|
||||
if (parsed_grammar.symbol_ids.find("root") == parsed_grammar.symbol_ids.end()) {
|
||||
fprintf(stdout, "%s: grammar does not contain a 'root' symbol\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
|
||||
|
||||
// Create the LLAMA grammar
|
||||
auto grammar = llama_grammar_init(
|
||||
grammar_rules.data(),
|
||||
grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
|
||||
if (grammar == nullptr) {
|
||||
throw std::runtime_error("Failed to initialize llama_grammar");
|
||||
}
|
||||
@@ -97,7 +122,7 @@ int main(int argc, char** argv) {
|
||||
// Validate the input string against the grammar
|
||||
size_t error_pos;
|
||||
std::string error_msg;
|
||||
bool is_valid = llama_grammar_validate(grammar, input_str, error_pos, error_msg);
|
||||
bool is_valid = llama_sample_grammar_string(grammar, input_str, error_pos, error_msg);
|
||||
|
||||
if (is_valid) {
|
||||
fprintf(stdout, "Input string is valid according to the grammar.\n");
|
||||
@@ -106,7 +131,7 @@ int main(int argc, char** argv) {
|
||||
}
|
||||
|
||||
// Clean up
|
||||
llama_grammar_free_impl(grammar);
|
||||
llama_grammar_free(grammar);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -1,5 +0,0 @@
|
||||
set(TARGET llama-gen-docs)
|
||||
add_executable(${TARGET} gen-docs.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
@@ -1,52 +0,0 @@
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
|
||||
#include <fstream>
|
||||
#include <string>
|
||||
|
||||
// Export usage message (-h) to markdown format
|
||||
|
||||
static void export_md(std::string fname, llama_example ex) {
|
||||
std::ofstream file(fname, std::ofstream::out | std::ofstream::trunc);
|
||||
|
||||
gpt_params params;
|
||||
auto ctx_arg = gpt_params_parser_init(params, ex);
|
||||
|
||||
file << "| Argument | Explanation |\n";
|
||||
file << "| -------- | ----------- |\n";
|
||||
for (auto & opt : ctx_arg.options) {
|
||||
file << "| `";
|
||||
// args
|
||||
for (const auto & arg : opt.args) {
|
||||
if (arg == opt.args.front()) {
|
||||
file << arg;
|
||||
if (opt.args.size() > 1) file << ", ";
|
||||
} else {
|
||||
file << arg << (arg != opt.args.back() ? ", " : "");
|
||||
}
|
||||
}
|
||||
// value hint
|
||||
if (opt.value_hint) {
|
||||
std::string md_value_hint(opt.value_hint);
|
||||
string_replace_all(md_value_hint, "|", "\\|");
|
||||
file << " " << md_value_hint;
|
||||
}
|
||||
if (opt.value_hint_2) {
|
||||
std::string md_value_hint_2(opt.value_hint_2);
|
||||
string_replace_all(md_value_hint_2, "|", "\\|");
|
||||
file << " " << md_value_hint_2;
|
||||
}
|
||||
// help text
|
||||
std::string md_help(opt.help);
|
||||
string_replace_all(md_help, "\n", "<br/>");
|
||||
string_replace_all(md_help, "|", "\\|");
|
||||
file << "` | " << md_help << " |\n";
|
||||
}
|
||||
}
|
||||
|
||||
int main(int, char **) {
|
||||
export_md("autogen-main.md", LLAMA_EXAMPLE_MAIN);
|
||||
export_md("autogen-server.md", LLAMA_EXAMPLE_SERVER);
|
||||
|
||||
return 0;
|
||||
}
|
||||
@@ -152,7 +152,7 @@ static void split_params_parse_ex(int argc, const char ** argv, split_params & p
|
||||
throw std::invalid_argument("error: invalid parameter for argument: " + arg);
|
||||
}
|
||||
|
||||
if (argc - arg_idx != 2) {
|
||||
if (argc - arg_idx < 2) {
|
||||
throw std::invalid_argument("error: bad arguments");
|
||||
}
|
||||
|
||||
@@ -389,17 +389,10 @@ static void gguf_merge(const split_params & split_params) {
|
||||
int n_split = 1;
|
||||
int total_tensors = 0;
|
||||
|
||||
// avoid overwriting existing output file
|
||||
if (std::ifstream(split_params.output.c_str())) {
|
||||
fprintf(stderr, "%s: output file %s already exists\n", __func__, split_params.output.c_str());
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
auto * ctx_out = gguf_init_empty();
|
||||
std::ofstream fout(split_params.output.c_str(), std::ios::binary);
|
||||
fout.exceptions(std::ofstream::failbit); // fail fast on write errors
|
||||
|
||||
auto * ctx_out = gguf_init_empty();
|
||||
|
||||
std::vector<uint8_t> read_data;
|
||||
std::vector<ggml_context *> ctx_metas;
|
||||
std::vector<gguf_context *> ctx_ggufs;
|
||||
|
||||
@@ -1,4 +1,3 @@
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
|
||||
@@ -10,7 +9,7 @@
|
||||
static std::vector<std::vector<float>> encode(llama_context * ctx, const std::vector<std::string> & sentences, const std::string & instruction) {
|
||||
std::vector<std::vector<float>> result;
|
||||
|
||||
const llama_model * model = llama_get_model(ctx);
|
||||
const llama_model * mdl = llama_get_model(ctx);
|
||||
|
||||
llama_batch batch = llama_batch_init(llama_n_batch(ctx), 0, 1);
|
||||
|
||||
@@ -19,16 +18,16 @@ static std::vector<std::vector<float>> encode(llama_context * ctx, const std::ve
|
||||
|
||||
const std::string input_string = instruction + sentences[i];
|
||||
|
||||
std::vector<llama_token> inputs = llama_tokenize(model, input_string, true, false);
|
||||
std::vector<llama_token> inputs = llama_tokenize(mdl, input_string, true, false);
|
||||
|
||||
const int32_t n_toks = inputs.size();
|
||||
|
||||
// GritLM seems to have EOS = ""
|
||||
// https://github.com/ContextualAI/gritlm/blob/92025b16534712b31b3c4aaaf069350e222bd5f8/gritlm/gritlm.py#L18
|
||||
// inputs.push_back(llama_token_eos(model));
|
||||
// inputs.push_back(llama_token_eos(mdl));
|
||||
|
||||
// we want to ignore instruction tokens for mean pooling
|
||||
const int32_t n_inst = llama_tokenize(model, instruction, true, false).size();
|
||||
const int32_t n_inst = llama_tokenize(mdl, instruction, true, false).size();
|
||||
|
||||
#ifdef GRIT_DEBUG
|
||||
// debug tokens - should be matching as referenced in the GritLM sample
|
||||
@@ -52,7 +51,7 @@ static std::vector<std::vector<float>> encode(llama_context * ctx, const std::ve
|
||||
llama_decode(ctx, batch);
|
||||
|
||||
// get embedding dimensions
|
||||
uint64_t n_embd = llama_n_embd(model);
|
||||
uint64_t n_embd = llama_n_embd(mdl);
|
||||
|
||||
// allocate embedding output
|
||||
std::vector<float> emb_unorm(n_embd, 0.0f);
|
||||
@@ -93,11 +92,11 @@ static std::vector<std::vector<float>> encode(llama_context * ctx, const std::ve
|
||||
return result;
|
||||
}
|
||||
|
||||
static std::string generate(llama_context * ctx, llama_sampler * smpl, const std::string & prompt, bool stream) {
|
||||
static std::string generate(llama_context * ctx, const std::string & prompt, bool stream) {
|
||||
std::string result;
|
||||
|
||||
const llama_model * model = llama_get_model(ctx);
|
||||
llama_token eos_token = llama_token_eos(model);
|
||||
const llama_model * mdl = llama_get_model(ctx);
|
||||
llama_token eos_token = llama_token_eos(mdl);
|
||||
|
||||
llama_kv_cache_clear(ctx);
|
||||
llama_set_embeddings(ctx, false);
|
||||
@@ -105,24 +104,28 @@ static std::string generate(llama_context * ctx, llama_sampler * smpl, const std
|
||||
|
||||
llama_batch bat = llama_batch_init(llama_n_batch(ctx), 0, 1);
|
||||
|
||||
std::vector<llama_token> inputs = llama_tokenize(model, prompt, false, true);
|
||||
std::vector<llama_token> inputs = llama_tokenize(mdl, prompt, false, true);
|
||||
int32_t i_current_token = 0;
|
||||
|
||||
while (true) {
|
||||
llama_batch_clear(bat);
|
||||
{
|
||||
const int32_t n_inputs = inputs.size();
|
||||
|
||||
for (int32_t i = 0; i < n_inputs; i++) {
|
||||
llama_batch_add(bat, inputs[i], i_current_token++, { 0 }, i == n_inputs - 1);
|
||||
}
|
||||
auto n_inputs = (int32_t)inputs.size();
|
||||
for (int32_t i = 0; i < n_inputs; i++) {
|
||||
llama_batch_add(bat, inputs[i], i_current_token++, { 0 }, i == n_inputs - 1);
|
||||
}
|
||||
inputs.clear();
|
||||
|
||||
llama_decode(ctx, bat);
|
||||
auto logits = llama_get_logits_ith(ctx, bat.n_tokens - 1);
|
||||
|
||||
llama_token token = llama_sampler_sample(smpl, ctx, bat.n_tokens - 1);
|
||||
auto candidates = std::vector<llama_token_data>(llama_n_vocab(mdl));
|
||||
auto n_candidates = (int32_t)candidates.size();
|
||||
for (int32_t token = 0; token < n_candidates; token++) {
|
||||
candidates[token] = llama_token_data{ token, logits[token], 0.0f };
|
||||
}
|
||||
auto candidates_p = llama_token_data_array{ candidates.data(), candidates.size(), false };
|
||||
|
||||
llama_token token = llama_sample_token_greedy(ctx, &candidates_p);
|
||||
if (token == eos_token) {
|
||||
break;
|
||||
}
|
||||
@@ -154,7 +157,8 @@ static std::string gritlm_instruction(const std::string & instruction) {
|
||||
int main(int argc, char * argv[]) {
|
||||
gpt_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
gpt_params_print_usage(argc, argv, params);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@@ -163,18 +167,10 @@ int main(int argc, char * argv[]) {
|
||||
|
||||
llama_backend_init();
|
||||
|
||||
llama_model * model = llama_load_model_from_file(params.model.c_str(), mparams);
|
||||
llama_model * mdl = llama_load_model_from_file(params.model.c_str(), mparams);
|
||||
|
||||
// create generation context
|
||||
llama_context * ctx = llama_new_context_with_model(model, cparams);
|
||||
|
||||
auto sparams = llama_sampler_chain_default_params();
|
||||
|
||||
sparams.no_perf = false;
|
||||
|
||||
llama_sampler * smpl = llama_sampler_chain_init(sparams);
|
||||
|
||||
llama_sampler_chain_add(smpl, llama_sampler_init_greedy());
|
||||
llama_context * ctx = llama_new_context_with_model(mdl, cparams);
|
||||
|
||||
// ### Embedding/Representation ###
|
||||
// samples taken from: https://github.com/ContextualAI/gritlm#basic
|
||||
@@ -195,7 +191,7 @@ int main(int argc, char * argv[]) {
|
||||
const std::vector<std::vector<float>> d_rep = encode(ctx, documents, gritlm_instruction(""));
|
||||
const std::vector<std::vector<float>> q_rep = encode(ctx, queries, gritlm_instruction(instruction));
|
||||
|
||||
const int n_embd = llama_n_embd(model);
|
||||
const int n_embd = llama_n_embd(mdl);
|
||||
|
||||
const float cosine_sim_q0_d0 = llama_embd_similarity_cos(q_rep[0].data(), d_rep[0].data(), n_embd);
|
||||
const float cosine_sim_q0_d1 = llama_embd_similarity_cos(q_rep[0].data(), d_rep[1].data(), n_embd);
|
||||
@@ -212,12 +208,11 @@ int main(int argc, char * argv[]) {
|
||||
// GritLM models are not finetuned with system prompts, as you can just include system-like instructions together with your user instruction
|
||||
{
|
||||
const std::string prompt = "<|user|>\nPlease write me a poem about my recent hike of Mt. Fuji at midnight in the style of Shakespeare.\n<|assistant|>\n";
|
||||
std::string response = generate(ctx, smpl, prompt, true);
|
||||
std::string response = generate(ctx, prompt, true);
|
||||
}
|
||||
|
||||
llama_sampler_free(smpl);
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
llama_free_model(mdl);
|
||||
llama_backend_free();
|
||||
|
||||
return 0;
|
||||
|
||||
@@ -1,4 +1,3 @@
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
|
||||
@@ -18,7 +17,9 @@
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
static void print_usage(int, char ** argv) {
|
||||
static void print_usage(int argc, char ** argv, const gpt_params & params) {
|
||||
gpt_params_print_usage(argc, argv, params);
|
||||
|
||||
LOG_TEE("\nexample usage:\n");
|
||||
LOG_TEE("\n %s \\\n"
|
||||
" -m model.gguf -f some-text.txt [-o imatrix.dat] [--process-output] [--verbosity 1] \\\n"
|
||||
@@ -578,7 +579,8 @@ int main(int argc, char ** argv) {
|
||||
params.logits_all = true;
|
||||
params.verbosity = 1;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_IMATRIX, print_usage)) {
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
print_usage(argc, argv, params);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@@ -636,8 +638,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
g_collector.save_imatrix();
|
||||
|
||||
LOG_TEE("\n");
|
||||
llama_perf_context_print(ctx);
|
||||
llama_print_timings(ctx);
|
||||
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
|
||||
#include "console.h"
|
||||
#include "sampling.h"
|
||||
#include "llama.h"
|
||||
#include "grammar-parser.h"
|
||||
|
||||
#include <cassert>
|
||||
#include <cinttypes>
|
||||
@@ -34,7 +34,6 @@
|
||||
|
||||
static llama_context ** g_ctx;
|
||||
static llama_model ** g_model;
|
||||
static gpt_sampler ** g_smpl;
|
||||
static gpt_params * g_params;
|
||||
static std::vector<llama_token> * g_input_tokens;
|
||||
static std::ostringstream * g_output_ss;
|
||||
@@ -82,7 +81,7 @@ static void write_logfile(
|
||||
yaml_dump_string_multiline(logfile, "output", output.c_str());
|
||||
yaml_dump_vector_int(logfile, "output_tokens", output_tokens);
|
||||
|
||||
llama_perf_dump_yaml(logfile, ctx);
|
||||
llama_dump_timing_info_yaml(logfile, ctx);
|
||||
fclose(logfile);
|
||||
}
|
||||
|
||||
@@ -94,7 +93,7 @@ static void sigint_handler(int signo) {
|
||||
} else {
|
||||
console::cleanup();
|
||||
printf("\n");
|
||||
gpt_perf_print(*g_ctx, *g_smpl);
|
||||
llama_print_timings(*g_ctx);
|
||||
write_logfile(*g_ctx, *g_params, *g_model, *g_input_tokens, g_output_ss->str(), *g_output_tokens);
|
||||
_exit(130);
|
||||
}
|
||||
@@ -104,14 +103,14 @@ static void sigint_handler(int signo) {
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
llama_sampling_params & sparams = params.sparams;
|
||||
g_params = ¶ms;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_INFILL)) {
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
gpt_params_print_usage(argc, argv, params);
|
||||
return 1;
|
||||
}
|
||||
|
||||
auto & sparams = params.sparams;
|
||||
|
||||
#ifndef LOG_DISABLE_LOGS
|
||||
log_set_target(log_filename_generator("infill", "log"));
|
||||
LOG_TEE("Log start\n");
|
||||
@@ -157,19 +156,26 @@ int main(int argc, char ** argv) {
|
||||
LOG_TEE("%s: warning: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale);
|
||||
}
|
||||
|
||||
print_build_info();
|
||||
LOG_TEE("%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
|
||||
LOG_TEE("%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET);
|
||||
|
||||
if (params.seed == LLAMA_DEFAULT_SEED) {
|
||||
params.seed = time(NULL);
|
||||
}
|
||||
|
||||
LOG_TEE("%s: seed = %u\n", __func__, params.seed);
|
||||
|
||||
std::mt19937 rng(params.seed);
|
||||
|
||||
LOG("%s: llama backend init\n", __func__);
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
llama_model * model = nullptr;
|
||||
llama_context * ctx = nullptr;
|
||||
gpt_sampler * smpl = nullptr;
|
||||
llama_model * model;
|
||||
llama_context * ctx;
|
||||
|
||||
g_model = &model;
|
||||
g_ctx = &ctx;
|
||||
g_smpl = &smpl;
|
||||
|
||||
// load the model and apply lora adapter, if any
|
||||
LOG("%s: load the model and apply lora adapter, if any\n", __func__);
|
||||
@@ -299,14 +305,16 @@ int main(int argc, char ** argv) {
|
||||
LOG_TEE("Input suffix: '%s'\n", params.input_suffix.c_str());
|
||||
}
|
||||
}
|
||||
smpl = gpt_sampler_init(model, sparams);
|
||||
|
||||
LOG_TEE("sampling seed: %u\n", gpt_sampler_get_seed(smpl));
|
||||
LOG_TEE("sampling: \n%s\n", sparams.print().c_str());
|
||||
LOG_TEE("sampling: \n%s\n", llama_sampling_print(sparams).c_str());
|
||||
LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
||||
LOG_TEE("\n\n");
|
||||
|
||||
LOG_TEE("\n##### Infill mode #####\n\n");
|
||||
if (params.infill) {
|
||||
printf("\n************\n");
|
||||
printf("no need to specify '--infill', always running infill\n");
|
||||
printf("************\n\n");
|
||||
}
|
||||
if (params.interactive) {
|
||||
const char *control_message;
|
||||
if (params.multiline_input) {
|
||||
@@ -341,6 +349,8 @@ int main(int argc, char ** argv) {
|
||||
|
||||
std::vector<llama_token> embd;
|
||||
|
||||
struct llama_sampling_context * ctx_sampling = llama_sampling_init(sparams);
|
||||
|
||||
while (n_remain != 0 || params.interactive) {
|
||||
// predict
|
||||
if (!embd.empty()) {
|
||||
@@ -411,11 +421,11 @@ int main(int argc, char ** argv) {
|
||||
embd.clear();
|
||||
|
||||
if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
|
||||
const llama_token id = gpt_sampler_sample(smpl, ctx, -1);
|
||||
const llama_token id = llama_sampling_sample(ctx_sampling, ctx, nullptr);
|
||||
|
||||
gpt_sampler_accept(smpl, id, true);
|
||||
llama_sampling_accept(ctx_sampling, ctx, id, true);
|
||||
|
||||
// LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, smpl->prev.to_vector()).c_str());
|
||||
LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, ctx_sampling->prev).c_str());
|
||||
|
||||
embd.push_back(id);
|
||||
|
||||
@@ -434,7 +444,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// push the prompt in the sampling context in order to apply repetition penalties later
|
||||
// for the prompt, we don't apply grammar rules
|
||||
gpt_sampler_accept(smpl, embd_inp[n_consumed], false);
|
||||
llama_sampling_accept(ctx_sampling, ctx, embd_inp[n_consumed], false);
|
||||
|
||||
++n_consumed;
|
||||
if ((int) embd.size() >= params.n_batch) {
|
||||
@@ -466,7 +476,7 @@ int main(int argc, char ** argv) {
|
||||
// if not currently processing queued inputs;
|
||||
if ((int) embd_inp.size() <= n_consumed) {
|
||||
// deal with eot token in infill mode
|
||||
if ((gpt_sampler_last(smpl) == llama_token_eot(model) || is_interacting) && params.interactive){
|
||||
if ((llama_sampling_last(ctx_sampling) == llama_token_eot(model) || is_interacting) && params.interactive){
|
||||
if (is_interacting && !params.interactive_first) {
|
||||
// print an eot token
|
||||
printf("%s", llama_token_to_piece(ctx, llama_token_eot(model)).c_str());
|
||||
@@ -532,7 +542,7 @@ int main(int argc, char ** argv) {
|
||||
is_interacting = false;
|
||||
}
|
||||
// deal with end of generation tokens in interactive mode
|
||||
else if (llama_token_is_eog(model, gpt_sampler_last(smpl))) {
|
||||
else if (llama_token_is_eog(model, llama_sampling_last(ctx_sampling))) {
|
||||
LOG("found EOS token\n");
|
||||
|
||||
if (params.interactive) {
|
||||
@@ -605,7 +615,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
if (n_past > 0) {
|
||||
if (is_interacting) {
|
||||
gpt_sampler_reset(smpl);
|
||||
llama_sampling_reset(ctx_sampling);
|
||||
}
|
||||
is_interacting = false;
|
||||
}
|
||||
@@ -628,14 +638,13 @@ int main(int argc, char ** argv) {
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
LOG_TEE("\n");
|
||||
gpt_perf_print(ctx, smpl);
|
||||
llama_print_timings(ctx);
|
||||
write_logfile(ctx, params, model, input_tokens, output_ss.str(), output_tokens);
|
||||
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
||||
gpt_sampler_free(smpl);
|
||||
llama_sampling_free(ctx_sampling);
|
||||
llama_backend_free();
|
||||
|
||||
#ifndef LOG_DISABLE_LOGS
|
||||
|
||||
@@ -14,8 +14,7 @@ Performance testing tool for llama.cpp.
|
||||
1. [Markdown](#markdown)
|
||||
2. [CSV](#csv)
|
||||
3. [JSON](#json)
|
||||
4. [JSONL](#jsonl)
|
||||
5. [SQL](#sql)
|
||||
4. [SQL](#sql)
|
||||
|
||||
## Syntax
|
||||
|
||||
@@ -24,34 +23,27 @@ usage: ./llama-bench [options]
|
||||
|
||||
options:
|
||||
-h, --help
|
||||
-m, --model <filename> (default: models/7B/ggml-model-q4_0.gguf)
|
||||
-p, --n-prompt <n> (default: 512)
|
||||
-n, --n-gen <n> (default: 128)
|
||||
-pg <pp,tg> (default: )
|
||||
-b, --batch-size <n> (default: 2048)
|
||||
-ub, --ubatch-size <n> (default: 512)
|
||||
-ctk, --cache-type-k <t> (default: f16)
|
||||
-ctv, --cache-type-v <t> (default: f16)
|
||||
-t, --threads <n> (default: 8)
|
||||
-C, --cpu-mask <hex,hex> (default: 0x0)
|
||||
--cpu-strict <0|1> (default: 0)
|
||||
--poll <0...100> (default: 50)
|
||||
-ngl, --n-gpu-layers <n> (default: 99)
|
||||
-rpc, --rpc <rpc_servers> (default: )
|
||||
-sm, --split-mode <none|layer|row> (default: layer)
|
||||
-mg, --main-gpu <i> (default: 0)
|
||||
-nkvo, --no-kv-offload <0|1> (default: 0)
|
||||
-fa, --flash-attn <0|1> (default: 0)
|
||||
-mmp, --mmap <0|1> (default: 1)
|
||||
--numa <distribute|isolate|numactl> (default: disabled)
|
||||
-embd, --embeddings <0|1> (default: 0)
|
||||
-ts, --tensor-split <ts0/ts1/..> (default: 0)
|
||||
-r, --repetitions <n> (default: 5)
|
||||
--prio <0|1|2|3> (default: 0)
|
||||
--delay <0...N> (seconds) (default: 0)
|
||||
-o, --output <csv|json|jsonl|md|sql> (default: md)
|
||||
-oe, --output-err <csv|json|jsonl|md|sql> (default: none)
|
||||
-v, --verbose (default: 0)
|
||||
-m, --model <filename> (default: models/7B/ggml-model-q4_0.gguf)
|
||||
-p, --n-prompt <n> (default: 512)
|
||||
-n, --n-gen <n> (default: 128)
|
||||
-pg <pp,tg> (default: 512,128)
|
||||
-b, --batch-size <n> (default: 2048)
|
||||
-ub, --ubatch-size <n> (default: 512)
|
||||
-ctk, --cache-type-k <t> (default: f16)
|
||||
-ctv, --cache-type-v <t> (default: f16)
|
||||
-t, --threads <n> (default: 16)
|
||||
-ngl, --n-gpu-layers <n> (default: 99)
|
||||
-sm, --split-mode <none|layer|row> (default: layer)
|
||||
-mg, --main-gpu <i> (default: 0)
|
||||
-nkvo, --no-kv-offload <0|1> (default: 0)
|
||||
-fa, --flash-attn <0|1> (default: 0)
|
||||
-mmp, --mmap <0|1> (default: 1)
|
||||
--numa <distribute|isolate|numactl> (default: disabled)
|
||||
-embd, --embeddings <0|1> (default: 0)
|
||||
-ts, --tensor-split <ts0/ts1/..> (default: 0)
|
||||
-r, --repetitions <n> (default: 5)
|
||||
-o, --output <csv|json|md|sql> (default: md)
|
||||
-v, --verbose (default: 0)
|
||||
|
||||
Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.
|
||||
```
|
||||
@@ -246,19 +238,6 @@ $ ./llama-bench -o json
|
||||
]
|
||||
```
|
||||
|
||||
|
||||
### JSONL
|
||||
|
||||
```sh
|
||||
$ ./llama-bench -o jsonl
|
||||
```
|
||||
|
||||
```json lines
|
||||
{"build_commit":"3469684","build_number":1275,"cuda":true,"metal":false,"gpu_blas":true,"blas":true,"cpu_info":"13th Gen Intel(R) Core(TM) i9-13900K","gpu_info":"NVIDIA GeForce RTX 3090 Ti","model_filename":"models/7B/ggml-model-q4_0.gguf","model_type":"llama 7B mostly Q4_0","model_size":3825065984,"model_n_params":6738415616,"n_batch":512,"n_threads":16,"f16_kv":true,"n_gpu_layers":99,"main_gpu":0,"mul_mat_q":true,"tensor_split":"0.00","n_prompt":512,"n_gen":0,"test_time":"2023-09-23T12:09:57Z","avg_ns":212365953,"stddev_ns":985423,"avg_ts":2410.974041,"stddev_ts":11.163766,"samples_ns":[213837238,211635853,212328053,211329715,212698907],"samples_ts":[2394.34,2419.25,2411.36,2422.75,2407.16]}
|
||||
{"build_commit":"3469684","build_number":1275,"cuda":true,"metal":false,"gpu_blas":true,"blas":true,"cpu_info":"13th Gen Intel(R) Core(TM) i9-13900K","gpu_info":"NVIDIA GeForce RTX 3090 Ti","model_filename":"models/7B/ggml-model-q4_0.gguf","model_type":"llama 7B mostly Q4_0","model_size":3825065984,"model_n_params":6738415616,"n_batch":512,"n_threads":16,"f16_kv":true,"n_gpu_layers":99,"main_gpu":0,"mul_mat_q":true,"tensor_split":"0.00","n_prompt":0,"n_gen":128,"test_time":"2023-09-23T12:09:59Z","avg_ns":977425219,"stddev_ns":9268593,"avg_ts":130.965708,"stddev_ts":1.238924,"samples_ns":[984472709,974901233,989474741,970729355,967548060],"samples_ts":[130.019,131.295,129.362,131.86,132.293]}
|
||||
```
|
||||
|
||||
|
||||
### SQL
|
||||
|
||||
SQL output is suitable for importing into a SQLite database. The output can be piped into the `sqlite3` command line tool to add the results to a database.
|
||||
|
||||
@@ -16,7 +16,6 @@
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <thread>
|
||||
|
||||
#include "ggml.h"
|
||||
#include "llama.h"
|
||||
@@ -124,9 +123,6 @@ static std::string get_cpu_info() {
|
||||
(LPBYTE)cpu_brand,
|
||||
&cpu_brand_size) == ERROR_SUCCESS) {
|
||||
id.assign(cpu_brand, cpu_brand_size);
|
||||
if (id.find('\0') != std::string::npos) {
|
||||
id.resize(id.find('\0'));
|
||||
}
|
||||
}
|
||||
RegCloseKey(hKey);
|
||||
#endif
|
||||
@@ -174,14 +170,13 @@ static std::string get_gpu_info() {
|
||||
}
|
||||
|
||||
// command line params
|
||||
enum output_formats {NONE, CSV, JSON, JSONL, MARKDOWN, SQL};
|
||||
enum output_formats {NONE, CSV, JSON, MARKDOWN, SQL};
|
||||
|
||||
static const char * output_format_str(output_formats format) {
|
||||
switch (format) {
|
||||
case NONE: return "none";
|
||||
case CSV: return "csv";
|
||||
case JSON: return "json";
|
||||
case JSONL: return "jsonl";
|
||||
case MARKDOWN: return "md";
|
||||
case SQL: return "sql";
|
||||
default: GGML_ABORT("invalid output format");
|
||||
@@ -195,8 +190,6 @@ static bool output_format_from_str(const std::string & s, output_formats & forma
|
||||
format = CSV;
|
||||
} else if (s == "json") {
|
||||
format = JSON;
|
||||
} else if (s == "jsonl") {
|
||||
format = JSONL;
|
||||
} else if (s == "md") {
|
||||
format = MARKDOWN;
|
||||
} else if (s == "sql") {
|
||||
@@ -232,9 +225,6 @@ struct cmd_params {
|
||||
std::vector<ggml_type> type_k;
|
||||
std::vector<ggml_type> type_v;
|
||||
std::vector<int> n_threads;
|
||||
std::vector<std::string> cpu_mask;
|
||||
std::vector<bool> cpu_strict;
|
||||
std::vector<int> poll;
|
||||
std::vector<int> n_gpu_layers;
|
||||
std::vector<std::string> rpc_servers;
|
||||
std::vector<llama_split_mode> split_mode;
|
||||
@@ -246,10 +236,7 @@ struct cmd_params {
|
||||
std::vector<bool> embeddings;
|
||||
ggml_numa_strategy numa;
|
||||
int reps;
|
||||
ggml_sched_priority prio;
|
||||
int delay;
|
||||
bool verbose;
|
||||
bool progress;
|
||||
output_formats output_format;
|
||||
output_formats output_format_stderr;
|
||||
};
|
||||
@@ -264,9 +251,6 @@ static const cmd_params cmd_params_defaults = {
|
||||
/* type_k */ {GGML_TYPE_F16},
|
||||
/* type_v */ {GGML_TYPE_F16},
|
||||
/* n_threads */ {cpu_get_num_math()},
|
||||
/* cpu_mask */ {"0x0"},
|
||||
/* cpu_strict */ {false},
|
||||
/* poll */ {50},
|
||||
/* n_gpu_layers */ {99},
|
||||
/* rpc_servers */ {""},
|
||||
/* split_mode */ {LLAMA_SPLIT_MODE_LAYER},
|
||||
@@ -278,10 +262,7 @@ static const cmd_params cmd_params_defaults = {
|
||||
/* embeddings */ {false},
|
||||
/* numa */ GGML_NUMA_STRATEGY_DISABLED,
|
||||
/* reps */ 5,
|
||||
/* prio */ GGML_SCHED_PRIO_NORMAL,
|
||||
/* delay */ 0,
|
||||
/* verbose */ false,
|
||||
/* progress */ false,
|
||||
/* output_format */ MARKDOWN,
|
||||
/* output_format_stderr */ NONE,
|
||||
};
|
||||
@@ -291,37 +272,29 @@ static void print_usage(int /* argc */, char ** argv) {
|
||||
printf("\n");
|
||||
printf("options:\n");
|
||||
printf(" -h, --help\n");
|
||||
printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
|
||||
printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
|
||||
printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
|
||||
printf(" -pg <pp,tg> (default: %s)\n", join(transform_to_str(cmd_params_defaults.n_pg, pair_str), ",").c_str());
|
||||
printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
|
||||
printf(" -ub, --ubatch-size <n> (default: %s)\n", join(cmd_params_defaults.n_ubatch, ",").c_str());
|
||||
printf(" -ctk, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
|
||||
printf(" -ctv, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
|
||||
printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
|
||||
printf(" -C, --cpu-mask <hex,hex> (default: %s)\n", join(cmd_params_defaults.cpu_mask, ",").c_str());
|
||||
printf(" --cpu-strict <0|1> (default: %s)\n", join(cmd_params_defaults.cpu_strict, ",").c_str());
|
||||
printf(" --poll <0...100> (default: %s)\n", join(cmd_params_defaults.poll, ",").c_str());
|
||||
printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
|
||||
#ifdef GGML_USE_RPC
|
||||
printf(" -rpc, --rpc <rpc_servers> (default: %s)\n", join(cmd_params_defaults.rpc_servers, ",").c_str());
|
||||
#endif
|
||||
printf(" -sm, --split-mode <none|layer|row> (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
|
||||
printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
|
||||
printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
|
||||
printf(" -fa, --flash-attn <0|1> (default: %s)\n", join(cmd_params_defaults.flash_attn, ",").c_str());
|
||||
printf(" -mmp, --mmap <0|1> (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str());
|
||||
printf(" --numa <distribute|isolate|numactl> (default: disabled)\n");
|
||||
printf(" -embd, --embeddings <0|1> (default: %s)\n", join(cmd_params_defaults.embeddings, ",").c_str());
|
||||
printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
|
||||
printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
|
||||
printf(" --prio <0|1|2|3> (default: %d)\n", cmd_params_defaults.prio);
|
||||
printf(" --delay <0...N> (seconds) (default: %d)\n", cmd_params_defaults.delay);
|
||||
printf(" -o, --output <csv|json|jsonl|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format));
|
||||
printf(" -oe, --output-err <csv|json|jsonl|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format_stderr));
|
||||
printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
|
||||
printf(" --progress (default: %s)\n", cmd_params_defaults.progress ? "1" : "0");
|
||||
printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
|
||||
printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
|
||||
printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
|
||||
printf(" -pg <pp,tg> (default: %s)\n", join(transform_to_str(cmd_params_defaults.n_pg, pair_str), ",").c_str());
|
||||
printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
|
||||
printf(" -ub, --ubatch-size <n> (default: %s)\n", join(cmd_params_defaults.n_ubatch, ",").c_str());
|
||||
printf(" -ctk, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
|
||||
printf(" -ctv, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
|
||||
printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
|
||||
printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
|
||||
printf(" -rpc, --rpc <rpc_servers> (default: %s)\n", join(cmd_params_defaults.rpc_servers, ",").c_str());
|
||||
printf(" -sm, --split-mode <none|layer|row> (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
|
||||
printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
|
||||
printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
|
||||
printf(" -fa, --flash-attn <0|1> (default: %s)\n", join(cmd_params_defaults.flash_attn, ",").c_str());
|
||||
printf(" -mmp, --mmap <0|1> (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str());
|
||||
printf(" --numa <distribute|isolate|numactl> (default: disabled)\n");
|
||||
printf(" -embd, --embeddings <0|1> (default: %s)\n", join(cmd_params_defaults.embeddings, ",").c_str());
|
||||
printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
|
||||
printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
|
||||
printf(" -o, --output <csv|json|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format));
|
||||
printf(" -oe, --output-err <csv|json|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format_stderr));
|
||||
printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
|
||||
printf("\n");
|
||||
printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
|
||||
}
|
||||
@@ -365,9 +338,6 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
||||
params.output_format_stderr = cmd_params_defaults.output_format_stderr;
|
||||
params.reps = cmd_params_defaults.reps;
|
||||
params.numa = cmd_params_defaults.numa;
|
||||
params.prio = cmd_params_defaults.prio;
|
||||
params.delay = cmd_params_defaults.delay;
|
||||
params.progress = cmd_params_defaults.progress;
|
||||
|
||||
for (int i = 1; i < argc; i++) {
|
||||
arg = argv[i];
|
||||
@@ -463,27 +433,6 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
||||
}
|
||||
auto p = string_split<int>(argv[i], split_delim);
|
||||
params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
|
||||
} else if (arg == "-C" || arg == "--cpu-mask") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
auto p = string_split<std::string>(argv[i], split_delim);
|
||||
params.cpu_mask.insert(params.cpu_mask.end(), p.begin(), p.end());
|
||||
} else if (arg == "--cpu-strict") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
auto p = string_split<bool>(argv[i], split_delim);
|
||||
params.cpu_strict.insert(params.cpu_strict.end(), p.begin(), p.end());
|
||||
} else if (arg == "--poll") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
auto p = string_split<int>(argv[i], split_delim);
|
||||
params.poll.insert(params.poll.end(), p.begin(), p.end());
|
||||
} else if (arg == "-ngl" || arg == "--n-gpu-layers") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@@ -491,14 +440,12 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
||||
}
|
||||
auto p = string_split<int>(argv[i], split_delim);
|
||||
params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
|
||||
#ifdef GGML_USE_RPC
|
||||
} else if (arg == "-rpc" || arg == "--rpc") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.rpc_servers.push_back(argv[i]);
|
||||
#endif
|
||||
} else if (arg == "-sm" || arg == "--split-mode") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@@ -594,18 +541,6 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
||||
break;
|
||||
}
|
||||
params.reps = std::stoi(argv[i]);
|
||||
} else if (arg == "--prio") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.prio = (enum ggml_sched_priority) std::stoi(argv[i]);
|
||||
} else if (arg == "--delay") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.delay = std::stoi(argv[i]);
|
||||
} else if (arg == "-o" || arg == "--output") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@@ -620,8 +555,6 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
||||
invalid_param = !output_format_from_str(argv[i], params.output_format_stderr);
|
||||
} else if (arg == "-v" || arg == "--verbose") {
|
||||
params.verbose = true;
|
||||
} else if (arg == "--progress") {
|
||||
params.progress = true;
|
||||
} else {
|
||||
invalid_param = true;
|
||||
break;
|
||||
@@ -652,9 +585,6 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
||||
if (params.use_mmap.empty()) { params.use_mmap = cmd_params_defaults.use_mmap; }
|
||||
if (params.embeddings.empty()) { params.embeddings = cmd_params_defaults.embeddings; }
|
||||
if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
|
||||
if (params.cpu_mask.empty()) { params.cpu_mask = cmd_params_defaults.cpu_mask; }
|
||||
if (params.cpu_strict.empty()) { params.cpu_strict = cmd_params_defaults.cpu_strict; }
|
||||
if (params.poll.empty()) { params.poll = cmd_params_defaults.poll; }
|
||||
|
||||
return params;
|
||||
}
|
||||
@@ -668,9 +598,6 @@ struct cmd_params_instance {
|
||||
ggml_type type_k;
|
||||
ggml_type type_v;
|
||||
int n_threads;
|
||||
std::string cpu_mask;
|
||||
bool cpu_strict;
|
||||
int poll;
|
||||
int n_gpu_layers;
|
||||
std::string rpc_servers;
|
||||
llama_split_mode split_mode;
|
||||
@@ -740,10 +667,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
||||
for (const auto & tv : params.type_v)
|
||||
for (const auto & nkvo : params.no_kv_offload)
|
||||
for (const auto & fa : params.flash_attn)
|
||||
for (const auto & nt : params.n_threads)
|
||||
for (const auto & cm : params.cpu_mask)
|
||||
for (const auto & cs : params.cpu_strict)
|
||||
for (const auto & pl : params.poll) {
|
||||
for (const auto & nt : params.n_threads) {
|
||||
for (const auto & n_prompt : params.n_prompt) {
|
||||
if (n_prompt == 0) {
|
||||
continue;
|
||||
@@ -757,9 +681,6 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
||||
/* .type_k = */ tk,
|
||||
/* .type_v = */ tv,
|
||||
/* .n_threads = */ nt,
|
||||
/* .cpu_mask = */ cm,
|
||||
/* .cpu_strict = */ cs,
|
||||
/* .poll = */ pl,
|
||||
/* .n_gpu_layers = */ nl,
|
||||
/* .rpc_servers = */ rpc,
|
||||
/* .split_mode = */ sm,
|
||||
@@ -786,9 +707,6 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
||||
/* .type_k = */ tk,
|
||||
/* .type_v = */ tv,
|
||||
/* .n_threads = */ nt,
|
||||
/* .cpu_mask = */ cm,
|
||||
/* .cpu_strict = */ cs,
|
||||
/* .poll = */ pl,
|
||||
/* .n_gpu_layers = */ nl,
|
||||
/* .rpc_servers = */ rpc,
|
||||
/* .split_mode = */ sm,
|
||||
@@ -815,9 +733,6 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
||||
/* .type_k = */ tk,
|
||||
/* .type_v = */ tv,
|
||||
/* .n_threads = */ nt,
|
||||
/* .cpu_mask = */ cm,
|
||||
/* .cpu_strict = */ cs,
|
||||
/* .poll = */ pl,
|
||||
/* .n_gpu_layers = */ nl,
|
||||
/* .rpc_servers = */ rpc,
|
||||
/* .split_mode = */ sm,
|
||||
@@ -854,9 +769,6 @@ struct test {
|
||||
int n_batch;
|
||||
int n_ubatch;
|
||||
int n_threads;
|
||||
std::string cpu_mask;
|
||||
bool cpu_strict;
|
||||
int poll;
|
||||
bool has_rpc;
|
||||
ggml_type type_k;
|
||||
ggml_type type_v;
|
||||
@@ -883,9 +795,6 @@ struct test {
|
||||
n_batch = inst.n_batch;
|
||||
n_ubatch = inst.n_ubatch;
|
||||
n_threads = inst.n_threads;
|
||||
cpu_mask = inst.cpu_mask;
|
||||
cpu_strict = inst.cpu_strict;
|
||||
poll = inst.poll;
|
||||
has_rpc = !inst.rpc_servers.empty();
|
||||
type_k = inst.type_k;
|
||||
type_v = inst.type_v;
|
||||
@@ -963,14 +872,13 @@ struct test {
|
||||
"cpu_info", "gpu_info",
|
||||
"model_filename", "model_type", "model_size", "model_n_params",
|
||||
"n_batch", "n_ubatch",
|
||||
"n_threads", "cpu_mask", "cpu_strict", "poll",
|
||||
"type_k", "type_v",
|
||||
"n_threads", "type_k", "type_v",
|
||||
"n_gpu_layers", "split_mode",
|
||||
"main_gpu", "no_kv_offload", "flash_attn",
|
||||
"tensor_split", "use_mmap", "embeddings",
|
||||
"n_prompt", "n_gen", "test_time",
|
||||
"avg_ns", "stddev_ns",
|
||||
"avg_ts", "stddev_ts",
|
||||
"avg_ts", "stddev_ts"
|
||||
};
|
||||
return fields;
|
||||
}
|
||||
@@ -979,7 +887,7 @@ struct test {
|
||||
|
||||
static field_type get_field_type(const std::string & field) {
|
||||
if (field == "build_number" || field == "n_batch" || field == "n_ubatch" ||
|
||||
field == "n_threads" || field == "poll" ||
|
||||
field == "n_threads" ||
|
||||
field == "model_size" || field == "model_n_params" ||
|
||||
field == "n_gpu_layers" || field == "main_gpu" ||
|
||||
field == "n_prompt" || field == "n_gen" ||
|
||||
@@ -988,7 +896,6 @@ struct test {
|
||||
}
|
||||
if (field == "cuda" || field == "vulkan" || field == "kompute" || field == "metal" ||
|
||||
field == "gpu_blas" || field == "blas" || field == "sycl" ||field == "f16_kv" || field == "no_kv_offload" ||
|
||||
field == "cpu_strict" ||
|
||||
field == "flash_attn" || field == "use_mmap" || field == "embeddings") {
|
||||
return BOOL;
|
||||
}
|
||||
@@ -1021,8 +928,7 @@ struct test {
|
||||
cpu_info, gpu_info,
|
||||
model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
|
||||
std::to_string(n_batch), std::to_string(n_ubatch),
|
||||
std::to_string(n_threads), cpu_mask, std::to_string(cpu_strict), std::to_string(poll),
|
||||
ggml_type_name(type_k), ggml_type_name(type_v),
|
||||
std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v),
|
||||
std::to_string(n_gpu_layers), split_mode_str(split_mode),
|
||||
std::to_string(main_gpu), std::to_string(no_kv_offload), std::to_string(flash_attn),
|
||||
tensor_split_str, std::to_string(use_mmap), std::to_string(embeddings),
|
||||
@@ -1090,39 +996,38 @@ struct csv_printer : public printer {
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
static std::string escape_json(const std::string & value) {
|
||||
std::string escaped;
|
||||
for (auto c : value) {
|
||||
if (c == '"') {
|
||||
escaped += "\\\"";
|
||||
} else if (c == '\\') {
|
||||
escaped += "\\\\";
|
||||
} else if (c <= 0x1f) {
|
||||
char buf[8];
|
||||
snprintf(buf, sizeof(buf), "\\u%04x", c);
|
||||
escaped += buf;
|
||||
} else {
|
||||
escaped += c;
|
||||
}
|
||||
}
|
||||
return escaped;
|
||||
}
|
||||
|
||||
static std::string format_json_value(const std::string & field, const std::string & value) {
|
||||
switch (test::get_field_type(field)) {
|
||||
case test::STRING:
|
||||
return "\"" + escape_json(value) + "\"";
|
||||
case test::BOOL:
|
||||
return value == "0" ? "false" : "true";
|
||||
default:
|
||||
return value;
|
||||
}
|
||||
}
|
||||
|
||||
struct json_printer : public printer {
|
||||
bool first = true;
|
||||
|
||||
static std::string escape_json(const std::string & value) {
|
||||
std::string escaped;
|
||||
for (auto c : value) {
|
||||
if (c == '"') {
|
||||
escaped += "\\\"";
|
||||
} else if (c == '\\') {
|
||||
escaped += "\\\\";
|
||||
} else if (c <= 0x1f) {
|
||||
char buf[8];
|
||||
snprintf(buf, sizeof(buf), "\\u%04x", c);
|
||||
escaped += buf;
|
||||
} else {
|
||||
escaped += c;
|
||||
}
|
||||
}
|
||||
return escaped;
|
||||
}
|
||||
|
||||
static std::string format_value(const std::string & field, const std::string & value) {
|
||||
switch (test::get_field_type(field)) {
|
||||
case test::STRING:
|
||||
return "\"" + escape_json(value) + "\"";
|
||||
case test::BOOL:
|
||||
return value == "0" ? "false" : "true";
|
||||
default:
|
||||
return value;
|
||||
}
|
||||
}
|
||||
|
||||
void print_header(const cmd_params & params) override {
|
||||
fprintf(fout, "[\n");
|
||||
(void) params;
|
||||
@@ -1131,7 +1036,7 @@ struct json_printer : public printer {
|
||||
void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
|
||||
assert(fields.size() == values.size());
|
||||
for (size_t i = 0; i < fields.size(); i++) {
|
||||
fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_json_value(fields.at(i), values.at(i)).c_str());
|
||||
fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_value(fields.at(i), values.at(i)).c_str());
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1154,25 +1059,6 @@ struct json_printer : public printer {
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
struct jsonl_printer : public printer {
|
||||
void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
|
||||
assert(fields.size() == values.size());
|
||||
for (size_t i = 0; i < fields.size(); i++) {
|
||||
fprintf(fout, "\"%s\": %s, ", fields.at(i).c_str(), format_json_value(fields.at(i), values.at(i)).c_str());
|
||||
}
|
||||
}
|
||||
|
||||
void print_test(const test & t) override {
|
||||
fprintf(fout, "{");
|
||||
print_fields(test::get_fields(), t.get_values());
|
||||
fprintf(fout, "\"samples_ns\": [ %s ],", join(t.samples_ns, ", ").c_str());
|
||||
fprintf(fout, "\"samples_ts\": [ %s ]", join(t.get_ts(), ", ").c_str());
|
||||
fprintf(fout, "}\n");
|
||||
fflush(fout);
|
||||
}
|
||||
};
|
||||
|
||||
struct markdown_printer : public printer {
|
||||
std::vector<std::string> fields;
|
||||
|
||||
@@ -1181,7 +1067,7 @@ struct markdown_printer : public printer {
|
||||
return -30;
|
||||
}
|
||||
if (field == "t/s") {
|
||||
return 20;
|
||||
return 16;
|
||||
}
|
||||
if (field == "size" || field == "params") {
|
||||
return 10;
|
||||
@@ -1263,15 +1149,6 @@ struct markdown_printer : public printer {
|
||||
if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
|
||||
fields.emplace_back("n_threads");
|
||||
}
|
||||
if (params.cpu_mask.size() > 1 || params.cpu_mask != cmd_params_defaults.cpu_mask) {
|
||||
fields.emplace_back("cpu_mask");
|
||||
}
|
||||
if (params.cpu_strict.size() > 1 || params.cpu_strict != cmd_params_defaults.cpu_strict) {
|
||||
fields.emplace_back("cpu_strict");
|
||||
}
|
||||
if (params.poll.size() > 1 || params.poll != cmd_params_defaults.poll) {
|
||||
fields.emplace_back("poll");
|
||||
}
|
||||
if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
|
||||
fields.emplace_back("n_batch");
|
||||
}
|
||||
@@ -1473,8 +1350,6 @@ static std::unique_ptr<printer> create_printer(output_formats format) {
|
||||
return std::unique_ptr<printer>(new csv_printer());
|
||||
case JSON:
|
||||
return std::unique_ptr<printer>(new json_printer());
|
||||
case JSONL:
|
||||
return std::unique_ptr<printer>(new jsonl_printer());
|
||||
case MARKDOWN:
|
||||
return std::unique_ptr<printer>(new markdown_printer());
|
||||
case SQL:
|
||||
@@ -1508,8 +1383,6 @@ int main(int argc, char ** argv) {
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
set_process_priority(params.prio);
|
||||
|
||||
// initialize printer
|
||||
std::unique_ptr<printer> p = create_printer(params.output_format);
|
||||
std::unique_ptr<printer> p_err = create_printer(params.output_format_stderr);
|
||||
@@ -1529,13 +1402,7 @@ int main(int argc, char ** argv) {
|
||||
llama_model * lmodel = nullptr;
|
||||
const cmd_params_instance * prev_inst = nullptr;
|
||||
|
||||
int params_idx = 0;
|
||||
auto params_count = params_instances.size();
|
||||
for (const auto & inst : params_instances) {
|
||||
params_idx ++;
|
||||
if (params.progress) {
|
||||
fprintf(stderr, "llama-bench: benchmark %d/%ld: starting\n", params_idx, params_count);
|
||||
}
|
||||
// keep the same model between tests when possible
|
||||
if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
|
||||
if (lmodel) {
|
||||
@@ -1561,40 +1428,12 @@ int main(int argc, char ** argv) {
|
||||
|
||||
llama_kv_cache_clear(ctx);
|
||||
|
||||
// cool off before the test
|
||||
if (params.delay) {
|
||||
std::this_thread::sleep_for(std::chrono::seconds(params.delay));
|
||||
}
|
||||
|
||||
struct ggml_threadpool_params tpp = ggml_threadpool_params_default(t.n_threads);
|
||||
if (!parse_cpu_mask(t.cpu_mask, tpp.cpumask)) {
|
||||
fprintf(stderr, "%s: failed to parse cpu-mask: %s\n", __func__, t.cpu_mask.c_str());
|
||||
exit(1);
|
||||
}
|
||||
tpp.strict_cpu = t.cpu_strict;
|
||||
tpp.poll = t.poll;
|
||||
tpp.prio = params.prio;
|
||||
|
||||
struct ggml_threadpool* threadpool = ggml_threadpool_new(&tpp);
|
||||
if (!threadpool) {
|
||||
fprintf(stderr, "%s: threadpool create failed : n_threads %d\n", __func__, tpp.n_threads);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
llama_attach_threadpool(ctx, threadpool, NULL);
|
||||
|
||||
// warmup run
|
||||
if (t.n_prompt > 0) {
|
||||
if (params.progress) {
|
||||
fprintf(stderr, "llama-bench: benchmark %d/%ld: warmup prompt run\n", params_idx, params_count);
|
||||
}
|
||||
//test_prompt(ctx, std::min(t.n_batch, std::min(t.n_prompt, 32)), 0, t.n_batch, t.n_threads);
|
||||
test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
|
||||
}
|
||||
if (t.n_gen > 0) {
|
||||
if (params.progress) {
|
||||
fprintf(stderr, "llama-bench: benchmark %d/%ld: warmup generation run\n", params_idx, params_count);
|
||||
}
|
||||
test_gen(ctx, 1, 0, t.n_threads);
|
||||
}
|
||||
|
||||
@@ -1604,15 +1443,9 @@ int main(int argc, char ** argv) {
|
||||
uint64_t t_start = get_time_ns();
|
||||
|
||||
if (t.n_prompt > 0) {
|
||||
if (params.progress) {
|
||||
fprintf(stderr, "llama-bench: benchmark %d/%ld: prompt run %d/%d\n", params_idx, params_count, i + 1, params.reps);
|
||||
}
|
||||
test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
|
||||
}
|
||||
if (t.n_gen > 0) {
|
||||
if (params.progress) {
|
||||
fprintf(stderr, "llama-bench: benchmark %d/%ld: generation run %d/%d\n", params_idx, params_count, i + 1, params.reps);
|
||||
}
|
||||
test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads);
|
||||
}
|
||||
|
||||
@@ -1630,11 +1463,9 @@ int main(int argc, char ** argv) {
|
||||
fflush(p_err->fout);
|
||||
}
|
||||
|
||||
llama_perf_context_print(ctx);
|
||||
llama_print_timings(ctx);
|
||||
|
||||
llama_free(ctx);
|
||||
|
||||
ggml_threadpool_free(threadpool);
|
||||
}
|
||||
|
||||
llama_free_model(lmodel);
|
||||
|
||||
@@ -120,8 +120,8 @@ Java_android_llama_cpp_LLamaAndroid_new_1context(JNIEnv *env, jobject, jlong jmo
|
||||
LOGi("Using %d threads", n_threads);
|
||||
|
||||
llama_context_params ctx_params = llama_context_default_params();
|
||||
|
||||
ctx_params.n_ctx = 2048;
|
||||
ctx_params.seed = 1234;
|
||||
ctx_params.n_ctx = 2048;
|
||||
ctx_params.n_threads = n_threads;
|
||||
ctx_params.n_threads_batch = n_threads;
|
||||
|
||||
@@ -269,6 +269,12 @@ Java_android_llama_cpp_LLamaAndroid_bench_1model(
|
||||
return env->NewStringUTF(result.str().c_str());
|
||||
}
|
||||
|
||||
extern "C"
|
||||
JNIEXPORT void JNICALL
|
||||
Java_android_llama_cpp_LLamaAndroid_free_1batch(JNIEnv *, jobject, jlong batch_pointer) {
|
||||
llama_batch_free(*reinterpret_cast<llama_batch *>(batch_pointer));
|
||||
}
|
||||
|
||||
extern "C"
|
||||
JNIEXPORT jlong JNICALL
|
||||
Java_android_llama_cpp_LLamaAndroid_new_1batch(JNIEnv *, jobject, jint n_tokens, jint embd, jint n_seq_max) {
|
||||
@@ -305,29 +311,6 @@ Java_android_llama_cpp_LLamaAndroid_new_1batch(JNIEnv *, jobject, jint n_tokens,
|
||||
return reinterpret_cast<jlong>(batch);
|
||||
}
|
||||
|
||||
extern "C"
|
||||
JNIEXPORT void JNICALL
|
||||
Java_android_llama_cpp_LLamaAndroid_free_1batch(JNIEnv *, jobject, jlong batch_pointer) {
|
||||
llama_batch_free(*reinterpret_cast<llama_batch *>(batch_pointer));
|
||||
}
|
||||
|
||||
extern "C"
|
||||
JNIEXPORT jlong JNICALL
|
||||
Java_android_llama_cpp_LLamaAndroid_new_1sampler(JNIEnv *, jobject) {
|
||||
auto sparams = llama_sampler_chain_default_params();
|
||||
sparams.no_perf = true;
|
||||
llama_sampler * smpl = llama_sampler_chain_init(sparams);
|
||||
llama_sampler_chain_add(smpl, llama_sampler_init_greedy());
|
||||
|
||||
return reinterpret_cast<jlong>(smpl);
|
||||
}
|
||||
|
||||
extern "C"
|
||||
JNIEXPORT void JNICALL
|
||||
Java_android_llama_cpp_LLamaAndroid_free_1sampler(JNIEnv *, jobject, jlong sampler_pointer) {
|
||||
llama_sampler_free(reinterpret_cast<llama_sampler *>(sampler_pointer));
|
||||
}
|
||||
|
||||
extern "C"
|
||||
JNIEXPORT void JNICALL
|
||||
Java_android_llama_cpp_LLamaAndroid_backend_1init(JNIEnv *, jobject) {
|
||||
@@ -398,21 +381,31 @@ Java_android_llama_cpp_LLamaAndroid_completion_1loop(
|
||||
jobject,
|
||||
jlong context_pointer,
|
||||
jlong batch_pointer,
|
||||
jlong sampler_pointer,
|
||||
jint n_len,
|
||||
jobject intvar_ncur
|
||||
) {
|
||||
const auto context = reinterpret_cast<llama_context *>(context_pointer);
|
||||
const auto batch = reinterpret_cast<llama_batch *>(batch_pointer);
|
||||
const auto sampler = reinterpret_cast<llama_sampler *>(sampler_pointer);
|
||||
const auto batch = reinterpret_cast<llama_batch *>(batch_pointer);
|
||||
const auto model = llama_get_model(context);
|
||||
|
||||
if (!la_int_var) la_int_var = env->GetObjectClass(intvar_ncur);
|
||||
if (!la_int_var_value) la_int_var_value = env->GetMethodID(la_int_var, "getValue", "()I");
|
||||
if (!la_int_var_inc) la_int_var_inc = env->GetMethodID(la_int_var, "inc", "()V");
|
||||
|
||||
auto n_vocab = llama_n_vocab(model);
|
||||
auto logits = llama_get_logits_ith(context, batch->n_tokens - 1);
|
||||
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
|
||||
}
|
||||
|
||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||
|
||||
// sample the most likely token
|
||||
const auto new_token_id = llama_sampler_sample(sampler, context, -1);
|
||||
const auto new_token_id = llama_sample_token_greedy(context, &candidates_p);
|
||||
|
||||
const auto n_cur = env->CallIntMethod(intvar_ncur, la_int_var_value);
|
||||
if (llama_token_is_eog(model, new_token_id) || n_cur == n_len) {
|
||||
|
||||
@@ -45,10 +45,8 @@ class LLamaAndroid {
|
||||
private external fun free_context(context: Long)
|
||||
private external fun backend_init(numa: Boolean)
|
||||
private external fun backend_free()
|
||||
private external fun new_batch(nTokens: Int, embd: Int, nSeqMax: Int): Long
|
||||
private external fun free_batch(batch: Long)
|
||||
private external fun new_sampler(): Long
|
||||
private external fun free_sampler(sampler: Long)
|
||||
private external fun new_batch(nTokens: Int, embd: Int, nSeqMax: Int): Long
|
||||
private external fun bench_model(
|
||||
context: Long,
|
||||
model: Long,
|
||||
@@ -71,7 +69,6 @@ class LLamaAndroid {
|
||||
private external fun completion_loop(
|
||||
context: Long,
|
||||
batch: Long,
|
||||
sampler: Long,
|
||||
nLen: Int,
|
||||
ncur: IntVar
|
||||
): String?
|
||||
@@ -104,11 +101,8 @@ class LLamaAndroid {
|
||||
val batch = new_batch(512, 0, 1)
|
||||
if (batch == 0L) throw IllegalStateException("new_batch() failed")
|
||||
|
||||
val sampler = new_sampler()
|
||||
if (sampler == 0L) throw IllegalStateException("new_sampler() failed")
|
||||
|
||||
Log.i(tag, "Loaded model $pathToModel")
|
||||
threadLocalState.set(State.Loaded(model, context, batch, sampler))
|
||||
threadLocalState.set(State.Loaded(model, context, batch))
|
||||
}
|
||||
else -> throw IllegalStateException("Model already loaded")
|
||||
}
|
||||
@@ -120,7 +114,7 @@ class LLamaAndroid {
|
||||
is State.Loaded -> {
|
||||
val ncur = IntVar(completion_init(state.context, state.batch, message, nlen))
|
||||
while (ncur.value <= nlen) {
|
||||
val str = completion_loop(state.context, state.batch, state.sampler, nlen, ncur)
|
||||
val str = completion_loop(state.context, state.batch, nlen, ncur)
|
||||
if (str == null) {
|
||||
break
|
||||
}
|
||||
@@ -144,7 +138,6 @@ class LLamaAndroid {
|
||||
free_context(state.context)
|
||||
free_model(state.model)
|
||||
free_batch(state.batch)
|
||||
free_sampler(state.sampler);
|
||||
|
||||
threadLocalState.set(State.Idle)
|
||||
}
|
||||
@@ -168,7 +161,7 @@ class LLamaAndroid {
|
||||
|
||||
private sealed interface State {
|
||||
data object Idle: State
|
||||
data class Loaded(val model: Long, val context: Long, val batch: Long, val sampler: Long): State
|
||||
data class Loaded(val model: Long, val context: Long, val batch: Long): State
|
||||
}
|
||||
|
||||
// Enforce only one instance of Llm.
|
||||
|
||||
@@ -24,7 +24,6 @@ func llama_batch_add(_ batch: inout llama_batch, _ id: llama_token, _ pos: llama
|
||||
actor LlamaContext {
|
||||
private var model: OpaquePointer
|
||||
private var context: OpaquePointer
|
||||
private var sampling: UnsafeMutablePointer<llama_sampler>
|
||||
private var batch: llama_batch
|
||||
private var tokens_list: [llama_token]
|
||||
var is_done: Bool = false
|
||||
@@ -43,15 +42,9 @@ actor LlamaContext {
|
||||
self.tokens_list = []
|
||||
self.batch = llama_batch_init(512, 0, 1)
|
||||
self.temporary_invalid_cchars = []
|
||||
let sparams = llama_sampler_chain_default_params()
|
||||
self.sampling = llama_sampler_chain_init(sparams)
|
||||
llama_sampler_chain_add(self.sampling, llama_sampler_init_temp(0.4))
|
||||
llama_sampler_chain_add(self.sampling, llama_sampler_init_softmax())
|
||||
llama_sampler_chain_add(self.sampling, llama_sampler_init_dist(1234))
|
||||
}
|
||||
|
||||
deinit {
|
||||
llama_sampler_free(sampling)
|
||||
llama_batch_free(batch)
|
||||
llama_free(context)
|
||||
llama_free_model(model)
|
||||
@@ -76,9 +69,10 @@ actor LlamaContext {
|
||||
print("Using \(n_threads) threads")
|
||||
|
||||
var ctx_params = llama_context_default_params()
|
||||
ctx_params.seed = 1234
|
||||
ctx_params.n_ctx = 2048
|
||||
ctx_params.n_threads = Int32(n_threads)
|
||||
ctx_params.n_threads_batch = Int32(n_threads)
|
||||
ctx_params.n_threads = UInt32(n_threads)
|
||||
ctx_params.n_threads_batch = UInt32(n_threads)
|
||||
|
||||
let context = llama_new_context_with_model(model, ctx_params)
|
||||
guard let context else {
|
||||
@@ -150,7 +144,20 @@ actor LlamaContext {
|
||||
func completion_loop() -> String {
|
||||
var new_token_id: llama_token = 0
|
||||
|
||||
new_token_id = llama_sampler_sample(sampling, context, batch.n_tokens - 1)
|
||||
let n_vocab = llama_n_vocab(model)
|
||||
let logits = llama_get_logits_ith(context, batch.n_tokens - 1)
|
||||
|
||||
var candidates = Array<llama_token_data>()
|
||||
candidates.reserveCapacity(Int(n_vocab))
|
||||
|
||||
for token_id in 0..<n_vocab {
|
||||
candidates.append(llama_token_data(id: token_id, logit: logits![Int(token_id)], p: 0.0))
|
||||
}
|
||||
candidates.withUnsafeMutableBufferPointer() { buffer in
|
||||
var candidates_p = llama_token_data_array(data: buffer.baseAddress, size: buffer.count, sorted: false)
|
||||
|
||||
new_token_id = llama_sample_token_greedy(context, &candidates_p)
|
||||
}
|
||||
|
||||
if llama_token_is_eog(model, new_token_id) || n_cur == n_len {
|
||||
print("\n")
|
||||
|
||||
@@ -39,7 +39,7 @@ python ./examples/llava/llava_surgery.py -m path/to/MobileVLM-1.7B
|
||||
3. Use `convert_image_encoder_to_gguf.py` with `--projector-type ldp` (for **V2** please use `--projector-type ldpv2`) to convert the LLaVA image encoder to GGUF:
|
||||
|
||||
```sh
|
||||
python ./examples/llava/convert_image_encoder_to_gguf.py \
|
||||
python ./examples/llava/convert_image_encoder_to_gguf \
|
||||
-m path/to/clip-vit-large-patch14-336 \
|
||||
--llava-projector path/to/MobileVLM-1.7B/llava.projector \
|
||||
--output-dir path/to/MobileVLM-1.7B \
|
||||
@@ -47,7 +47,7 @@ python ./examples/llava/convert_image_encoder_to_gguf.py \
|
||||
```
|
||||
|
||||
```sh
|
||||
python ./examples/llava/convert_image_encoder_to_gguf.py \
|
||||
python ./examples/llava/convert_image_encoder_to_gguf \
|
||||
-m path/to/clip-vit-large-patch14-336 \
|
||||
--llava-projector path/to/MobileVLM-1.7B_V2/llava.projector \
|
||||
--output-dir path/to/MobileVLM-1.7B_V2 \
|
||||
@@ -57,12 +57,12 @@ python ./examples/llava/convert_image_encoder_to_gguf.py \
|
||||
4. Use `examples/convert_legacy_llama.py` to convert the LLaMA part of LLaVA to GGUF:
|
||||
|
||||
```sh
|
||||
python ./examples/convert_legacy_llama.py path/to/MobileVLM-1.7B --skip-unknown
|
||||
python ./examples/convert_legacy_llama.py path/to/MobileVLM-1.7B
|
||||
```
|
||||
|
||||
5. Use `quantize` to convert LLaMA part's DataType from `fp32` to `q4_k`
|
||||
5. Use `quantize` to convert LLaMA part's DataType from `fp16` to `q4_k`
|
||||
```sh
|
||||
./llama-quantize path/to/MobileVLM-1.7B/ggml-model-F32.gguf path/to/MobileVLM-1.7B/ggml-model-q4_k.gguf q4_k_s
|
||||
./llama-quantize path/to/MobileVLM-1.7B/ggml-model-f16.gguf path/to/MobileVLM-1.7B/ggml-model-q4_k.gguf q4_k_s
|
||||
```
|
||||
|
||||
Now both the LLaMA part and the image encoder is in the `MobileVLM-1.7B` directory.
|
||||
|
||||
@@ -15,8 +15,8 @@ cd llama.cpp
|
||||
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf) by us)
|
||||
|
||||
```bash
|
||||
python ./examples/llava/minicpmv-surgery.py -m ../MiniCPM-Llama3-V-2_5
|
||||
python ./examples/llava/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-Llama3-V-2_5 --minicpmv-projector ../MiniCPM-Llama3-V-2_5/minicpmv.projector --output-dir ../MiniCPM-Llama3-V-2_5/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 2
|
||||
python ./examples/minicpmv/minicpmv-surgery.py -m ../MiniCPM-Llama3-V-2_5
|
||||
python ./examples/minicpmv/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-Llama3-V-2_5 --minicpmv-projector ../MiniCPM-Llama3-V-2_5/minicpmv.projector --output-dir ../MiniCPM-Llama3-V-2_5/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 2
|
||||
python ./convert_hf_to_gguf.py ../MiniCPM-Llama3-V-2_5/model
|
||||
|
||||
# quantize int4 version
|
||||
|
||||
@@ -216,19 +216,13 @@ static std::string gguf_data_to_str(enum gguf_type type, const void * data, int
|
||||
|
||||
static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
|
||||
if (search.empty()) {
|
||||
return;
|
||||
return; // Avoid infinite loop if 'search' is an empty string
|
||||
}
|
||||
std::string builder;
|
||||
builder.reserve(s.length());
|
||||
size_t pos = 0;
|
||||
size_t last_pos = 0;
|
||||
while ((pos = s.find(search, last_pos)) != std::string::npos) {
|
||||
builder.append(s, last_pos, pos - last_pos);
|
||||
builder.append(replace);
|
||||
last_pos = pos + search.length();
|
||||
while ((pos = s.find(search, pos)) != std::string::npos) {
|
||||
s.replace(pos, search.length(), replace);
|
||||
pos += replace.length();
|
||||
}
|
||||
builder.append(s, last_pos, std::string::npos);
|
||||
s = std::move(builder);
|
||||
}
|
||||
|
||||
static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
|
||||
@@ -1623,7 +1617,7 @@ static void normalize_image_u8_to_f32(const clip_image_u8* src, clip_image_f32*
|
||||
}
|
||||
}
|
||||
|
||||
inline int clip(int x, int lower, int upper) {
|
||||
inline float clip(float x, float lower, float upper) {
|
||||
return std::max(lower, std::min(x, upper));
|
||||
}
|
||||
|
||||
@@ -1827,6 +1821,10 @@ static std::pair<int, int> uhd_get_refine_size(std::pair<int, int> original_size
|
||||
return refine_size;
|
||||
}
|
||||
|
||||
inline int clip(int x, int lower, int upper) {
|
||||
return std::max(lower, std::min(x, upper));
|
||||
}
|
||||
|
||||
static std::pair<int, int> uhd_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
|
||||
std::vector<int> candidate_split_grids_nums;
|
||||
for (int i : {multiple - 1, multiple, multiple + 1}) {
|
||||
@@ -2449,7 +2447,7 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
||||
ggml_backend_graph_compute(ctx->backend, gf);
|
||||
|
||||
// the last node is the embedding tensor
|
||||
struct ggml_tensor * embeddings = ggml_graph_node(gf, -1);
|
||||
struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 1];
|
||||
|
||||
// copy the embeddings to the location passed by the user
|
||||
ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
|
||||
|
||||
@@ -1,12 +1,11 @@
|
||||
#include "arg.h"
|
||||
#include "base64.hpp"
|
||||
#include "ggml.h"
|
||||
#include "log.h"
|
||||
#include "common.h"
|
||||
#include "sampling.h"
|
||||
#include "clip.h"
|
||||
#include "llava.h"
|
||||
#include "llama.h"
|
||||
#include "ggml.h"
|
||||
|
||||
#include "base64.hpp"
|
||||
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
@@ -41,11 +40,11 @@ static bool eval_string(struct llama_context * ctx_llama, const char* str, int n
|
||||
return true;
|
||||
}
|
||||
|
||||
static const char * sample(struct gpt_sampler * smpl,
|
||||
static const char * sample(struct llama_sampling_context * ctx_sampling,
|
||||
struct llama_context * ctx_llama,
|
||||
int * n_past) {
|
||||
const llama_token id = gpt_sampler_sample(smpl, ctx_llama, -1);
|
||||
gpt_sampler_accept(smpl, id, true);
|
||||
const llama_token id = llama_sampling_sample(ctx_sampling, ctx_llama, NULL);
|
||||
llama_sampling_accept(ctx_sampling, ctx_llama, id, true);
|
||||
static std::string ret;
|
||||
if (llama_token_is_eog(llama_get_model(ctx_llama), id)) {
|
||||
ret = "</s>";
|
||||
@@ -113,7 +112,9 @@ struct llava_context {
|
||||
struct llama_model * model = NULL;
|
||||
};
|
||||
|
||||
static void print_usage(int, char ** argv) {
|
||||
static void print_usage(int argc, char ** argv, const gpt_params & params) {
|
||||
gpt_params_print_usage(argc, argv, params);
|
||||
|
||||
LOG_TEE("\n example usage:\n");
|
||||
LOG_TEE("\n %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
|
||||
LOG_TEE("\n note: a lower temperature value like 0.1 is recommended for better quality.\n");
|
||||
@@ -128,14 +129,14 @@ static struct llava_image_embed * load_image(llava_context * ctx_llava, gpt_para
|
||||
if (!params->image.empty()) {
|
||||
LOG_TEE("using base64 encoded image instead of command line image path\n");
|
||||
}
|
||||
embed = llava_image_embed_make_with_prompt_base64(ctx_llava->ctx_clip, params->cpuparams.n_threads, prompt);
|
||||
embed = llava_image_embed_make_with_prompt_base64(ctx_llava->ctx_clip, params->n_threads, prompt);
|
||||
if (!embed) {
|
||||
LOG_TEE("%s: can't load image from prompt\n", __func__);
|
||||
return NULL;
|
||||
}
|
||||
params->prompt = remove_image_from_prompt(prompt);
|
||||
} else {
|
||||
embed = llava_image_embed_make_with_filename(ctx_llava->ctx_clip, params->cpuparams.n_threads, fname.c_str());
|
||||
embed = llava_image_embed_make_with_filename(ctx_llava->ctx_clip, params->n_threads, fname.c_str());
|
||||
if (!embed) {
|
||||
fprintf(stderr, "%s: is %s really an image file?\n", __func__, fname.c_str());
|
||||
return NULL;
|
||||
@@ -190,15 +191,15 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
|
||||
|
||||
LOG_TEE("\n");
|
||||
|
||||
struct gpt_sampler * smpl = gpt_sampler_init(ctx_llava->model, params->sparams);
|
||||
if (!smpl) {
|
||||
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params->sparams);
|
||||
if (!ctx_sampling) {
|
||||
fprintf(stderr, "%s: failed to initialize sampling subsystem\n", __func__);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
std::string response = "";
|
||||
for (int i = 0; i < max_tgt_len; i++) {
|
||||
const char * tmp = sample(smpl, ctx_llava->ctx_llama, &n_past);
|
||||
const char * tmp = sample(ctx_sampling, ctx_llava->ctx_llama, &n_past);
|
||||
response += tmp;
|
||||
if (strcmp(tmp, "</s>") == 0) break;
|
||||
if (strstr(tmp, "###")) break; // Yi-VL behavior
|
||||
@@ -210,7 +211,7 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
gpt_sampler_free(smpl);
|
||||
llama_sampling_free(ctx_sampling);
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
@@ -279,7 +280,8 @@ int main(int argc, char ** argv) {
|
||||
|
||||
gpt_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_LLAVA, print_usage)) {
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
print_usage(argc, argv, params);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@@ -291,7 +293,7 @@ int main(int argc, char ** argv) {
|
||||
#endif // LOG_DISABLE_LOGS
|
||||
|
||||
if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
|
||||
print_usage(argc, argv);
|
||||
print_usage(argc, argv, {});
|
||||
return 1;
|
||||
}
|
||||
auto model = llava_init(¶ms);
|
||||
@@ -308,7 +310,7 @@ int main(int argc, char ** argv) {
|
||||
// process the prompt
|
||||
process_prompt(ctx_llava, image_embed, ¶ms, params.prompt);
|
||||
|
||||
llama_perf_context_print(ctx_llava->ctx_llama);
|
||||
llama_print_timings(ctx_llava->ctx_llama);
|
||||
llava_image_embed_free(image_embed);
|
||||
ctx_llava->model = NULL;
|
||||
llava_free(ctx_llava);
|
||||
@@ -325,7 +327,7 @@ int main(int argc, char ** argv) {
|
||||
// process the prompt
|
||||
process_prompt(ctx_llava, image_embed, ¶ms, params.prompt);
|
||||
|
||||
llama_perf_context_print(ctx_llava->ctx_llama);
|
||||
llama_print_timings(ctx_llava->ctx_llama);
|
||||
llava_image_embed_free(image_embed);
|
||||
ctx_llava->model = NULL;
|
||||
llava_free(ctx_llava);
|
||||
|
||||
@@ -184,7 +184,7 @@ static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *>
|
||||
// ggml_tensor_printf(flatten,"flatten",__LINE__,false,false);
|
||||
ggml_build_forward_expand(gf, flatten);
|
||||
ggml_graph_compute_with_ctx(model.ctx, gf, 1);
|
||||
struct ggml_tensor* result = ggml_graph_node(gf, -1);
|
||||
struct ggml_tensor* result = gf->nodes[gf->n_nodes - 1];
|
||||
|
||||
memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as global context
|
||||
// append without newline tokens (default behavior in llava_arch when not using unpad ):
|
||||
|
||||
@@ -1,11 +1,9 @@
|
||||
#include "arg.h"
|
||||
#include "ggml.h"
|
||||
#include "log.h"
|
||||
#include "common.h"
|
||||
#include "sampling.h"
|
||||
#include "clip.h"
|
||||
#include "llava.h"
|
||||
#include "llama.h"
|
||||
#include "ggml.h"
|
||||
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
@@ -18,8 +16,8 @@ struct llava_context {
|
||||
};
|
||||
|
||||
static void show_additional_info(int /*argc*/, char ** argv) {
|
||||
LOG_TEE("\nexample usage:\n\n%s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
|
||||
LOG_TEE("\nnote: a lower temperature value like 0.1 is recommended for better quality.\n");
|
||||
LOG_TEE("\n example usage: %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
|
||||
LOG_TEE(" note: a lower temperature value like 0.1 is recommended for better quality.\n");
|
||||
}
|
||||
|
||||
static void llama_log_callback_logTee(ggml_log_level level, const char * text, void * user_data) {
|
||||
@@ -165,11 +163,11 @@ static void process_image(struct llava_context * ctx_llava, struct llava_image_e
|
||||
LOG_TEE("%s: image token past: %d\n", __func__, n_past);
|
||||
}
|
||||
|
||||
static const char * sample(struct gpt_sampler * smpl,
|
||||
static const char * sample(struct llama_sampling_context * ctx_sampling,
|
||||
struct llama_context * ctx_llama,
|
||||
int * n_past) {
|
||||
const llama_token id = gpt_sampler_sample(smpl, ctx_llama, -1);
|
||||
gpt_sampler_accept(smpl, id, true);
|
||||
const llama_token id = llama_sampling_sample(ctx_sampling, ctx_llama, NULL);
|
||||
llama_sampling_accept(ctx_sampling, ctx_llama, id, true);
|
||||
static std::string ret;
|
||||
if (llama_token_is_eog(llama_get_model(ctx_llama), id)) {
|
||||
ret = "</s>";
|
||||
@@ -182,7 +180,7 @@ static const char * sample(struct gpt_sampler * smpl,
|
||||
|
||||
static struct llava_context * minicpmv_init(gpt_params * params, const std::string & fname, int &n_past){
|
||||
auto ctx_clip = clip_init_context(params);
|
||||
auto embeds = llava_image_embed_make_with_filename(ctx_clip, params->cpuparams.n_threads, fname.c_str());
|
||||
auto embeds = llava_image_embed_make_with_filename(ctx_clip, params->n_threads, fname.c_str());
|
||||
if (!embeds) {
|
||||
std::cerr << "error: failed to load image " << fname << ". Terminating\n\n";
|
||||
return NULL;
|
||||
@@ -216,7 +214,7 @@ static struct llava_context * minicpmv_init(gpt_params * params, const std::stri
|
||||
return ctx_llava;
|
||||
}
|
||||
|
||||
static struct gpt_sampler * llama_init(struct llava_context * ctx_llava, gpt_params * params, std::string prompt, int &n_past, bool is_first = false){
|
||||
static struct llama_sampling_context * llama_init(struct llava_context * ctx_llava, gpt_params * params, std::string prompt, int &n_past, bool is_first = false){
|
||||
std::string user_prompt = prompt;
|
||||
int has_minicpmv_projector = clip_is_minicpmv(ctx_llava->ctx_clip);
|
||||
if (!is_first) {
|
||||
@@ -240,13 +238,13 @@ static struct gpt_sampler * llama_init(struct llava_context * ctx_llava, gpt_par
|
||||
|
||||
LOG_TEE("\n");
|
||||
|
||||
struct gpt_sampler * smpl = gpt_sampler_init(ctx_llava->model, params->sparams);
|
||||
return smpl;
|
||||
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params->sparams);
|
||||
return ctx_sampling;
|
||||
}
|
||||
|
||||
static const char * llama_loop(struct llava_context * ctx_llava,struct gpt_sampler * smpl, int &n_past){
|
||||
static const char * llama_loop(struct llava_context * ctx_llava,struct llama_sampling_context * ctx_sampling, int &n_past){
|
||||
|
||||
const char * tmp = sample(smpl, ctx_llava->ctx_llama, &n_past);
|
||||
const char * tmp = sample(ctx_sampling, ctx_llava->ctx_llama, &n_past);
|
||||
return tmp;
|
||||
}
|
||||
|
||||
@@ -255,7 +253,8 @@ int main(int argc, char ** argv) {
|
||||
|
||||
gpt_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_LLAVA, show_additional_info)) {
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
show_additional_info(argc, argv);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@@ -267,6 +266,7 @@ int main(int argc, char ** argv) {
|
||||
#endif // LOG_DISABLE_LOGS
|
||||
|
||||
if (params.mmproj.empty() || (params.image.empty())) {
|
||||
gpt_params_print_usage(argc, argv, params);
|
||||
show_additional_info(argc, argv);
|
||||
return 1;
|
||||
}
|
||||
@@ -278,12 +278,12 @@ int main(int argc, char ** argv) {
|
||||
if (!params.prompt.empty()) {
|
||||
LOG_TEE("<user>%s\n", params.prompt.c_str());
|
||||
LOG_TEE("<assistant>");
|
||||
auto smpl = llama_init(ctx_llava, ¶ms, params.prompt.c_str(), n_past, true);
|
||||
auto ctx_sampling = llama_init(ctx_llava, ¶ms, params.prompt.c_str(), n_past, true);
|
||||
const int max_tgt_len = params.n_predict < 0 ? 256 : params.n_predict;
|
||||
std::string response = "";
|
||||
bool have_tmp = false;
|
||||
for (int i = 0; i < max_tgt_len; i++) {
|
||||
auto tmp = llama_loop(ctx_llava, smpl, n_past);
|
||||
auto tmp = llama_loop(ctx_llava, ctx_sampling, n_past);
|
||||
response += tmp;
|
||||
if (strcmp(tmp, "</s>") == 0){
|
||||
if(!have_tmp)continue;
|
||||
@@ -296,18 +296,18 @@ int main(int argc, char ** argv) {
|
||||
|
||||
fflush(stdout);
|
||||
}
|
||||
gpt_sampler_free(smpl);
|
||||
llama_sampling_free(ctx_sampling);
|
||||
}else {
|
||||
while (true) {
|
||||
LOG_TEE("<user>");
|
||||
std::string prompt;
|
||||
std::getline(std::cin, prompt);
|
||||
LOG_TEE("<assistant>");
|
||||
auto smpl = llama_init(ctx_llava, ¶ms, prompt, n_past, true);
|
||||
auto ctx_sampling = llama_init(ctx_llava, ¶ms, prompt, n_past, true);
|
||||
const int max_tgt_len = params.n_predict < 0 ? 256 : params.n_predict;
|
||||
std::string response = "";
|
||||
for (int i = 0; i < max_tgt_len; i++) {
|
||||
auto tmp = llama_loop(ctx_llava, smpl, n_past);
|
||||
auto tmp = llama_loop(ctx_llava, ctx_sampling, n_past);
|
||||
response += tmp;
|
||||
if (strcmp(tmp, "</s>") == 0) break;
|
||||
if (strstr(tmp, "###")) break; // Yi-VL behavior
|
||||
@@ -315,11 +315,11 @@ int main(int argc, char ** argv) {
|
||||
if (strstr(response.c_str(), "<user>")) break; // minicpm-v
|
||||
fflush(stdout);
|
||||
}
|
||||
gpt_sampler_free(smpl);
|
||||
llama_sampling_free(ctx_sampling);
|
||||
}
|
||||
}
|
||||
printf("\n");
|
||||
llama_perf_context_print(ctx_llava->ctx_llama);
|
||||
llama_print_timings(ctx_llava->ctx_llama);
|
||||
|
||||
ctx_llava->model = NULL;
|
||||
llava_free(ctx_llava);
|
||||
|
||||
@@ -1,8 +1,7 @@
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "sampling.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
@@ -38,7 +37,8 @@ struct ngram_container {
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
gpt_params_print_usage(argc, argv, params);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@@ -118,7 +118,7 @@ int main(int argc, char ** argv) {
|
||||
llama_batch batch = llama_batch_init(params.n_ctx, 0, W + G + 1);
|
||||
|
||||
// target model sampling context
|
||||
struct gpt_sampler * smpl = gpt_sampler_init(model, params.sparams);
|
||||
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams);
|
||||
|
||||
// verification n-grams
|
||||
std::vector<ngram_data> ngrams_cur(G);
|
||||
@@ -159,9 +159,9 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// sample first token
|
||||
{
|
||||
id = gpt_sampler_sample(smpl, ctx, 0);
|
||||
id = llama_sampling_sample(ctx_sampling, ctx, NULL, 0);
|
||||
|
||||
gpt_sampler_accept(smpl, id, true);
|
||||
llama_sampling_accept(ctx_sampling, ctx, id, true);
|
||||
|
||||
{
|
||||
const std::string token_str = llama_token_to_piece(ctx, id);
|
||||
@@ -284,9 +284,9 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// sample the next token
|
||||
id = gpt_sampler_sample(smpl, ctx, i_batch);
|
||||
id = llama_sampling_sample(ctx_sampling, ctx, NULL, i_batch);
|
||||
|
||||
gpt_sampler_accept(smpl, id, true);
|
||||
llama_sampling_accept(ctx_sampling, ctx, id, true);
|
||||
|
||||
// print
|
||||
{
|
||||
@@ -361,7 +361,7 @@ int main(int argc, char ** argv) {
|
||||
if (v == 0) {
|
||||
// sample from the last level
|
||||
for (int i = 0; i < W; i++) {
|
||||
tokens_j[N - 2][i] = gpt_sampler_sample(smpl, ctx, ngrams_cur.size()*(N-1) + W*(N - 2) + i);
|
||||
tokens_j[N - 2][i] = llama_sampling_sample(ctx_sampling, ctx, NULL, ngrams_cur.size()*(N-1) + W*(N - 2) + i);
|
||||
}
|
||||
} else {
|
||||
for (int i = 0; i < W; i++) {
|
||||
@@ -468,12 +468,10 @@ int main(int argc, char ** argv) {
|
||||
LOG_TEE("n_predict = %d\n", n_predict);
|
||||
LOG_TEE("n_accept = %d\n", n_accept);
|
||||
|
||||
LOG_TEE("\n");
|
||||
gpt_perf_print(ctx, smpl);
|
||||
|
||||
gpt_sampler_free(smpl);
|
||||
llama_print_timings(ctx);
|
||||
|
||||
llama_kv_cache_view_free(&kvc_view);
|
||||
llama_sampling_free(ctx_sampling);
|
||||
|
||||
llama_batch_free(batch);
|
||||
|
||||
|
||||
@@ -1,8 +1,7 @@
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "ngram-cache.h"
|
||||
#include "ggml.h"
|
||||
#include "llama.h"
|
||||
#include "common.h"
|
||||
#include "ngram-cache.h"
|
||||
|
||||
#include <cstdint>
|
||||
#include <fstream>
|
||||
@@ -14,7 +13,8 @@
|
||||
int main(int argc, char ** argv){
|
||||
gpt_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_LOOKUP)) {
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
gpt_params_print_usage(argc, argv, params);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@@ -40,6 +40,4 @@ int main(int argc, char ** argv){
|
||||
fprintf(stderr, "%s: hashing done, writing file to %s\n", __func__, params.lookup_cache_static.c_str());
|
||||
|
||||
llama_ngram_cache_save(ngram_cache, params.lookup_cache_static);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -1,9 +1,8 @@
|
||||
#include "arg.h"
|
||||
#include "ggml.h"
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
#include "log.h"
|
||||
#include "ngram-cache.h"
|
||||
#include "llama.h"
|
||||
#include "ggml.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <cstdint>
|
||||
@@ -16,7 +15,8 @@
|
||||
int main(int argc, char ** argv){
|
||||
gpt_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_LOOKUP)) {
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
gpt_params_print_usage(argc, argv, params);
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
@@ -1,20 +1,21 @@
|
||||
#include "arg.h"
|
||||
#include "ggml.h"
|
||||
#include "llama.h"
|
||||
#include "common.h"
|
||||
#include "ngram-cache.h"
|
||||
#include "sampling.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <cstdint>
|
||||
#include <cstdio>
|
||||
#include <fstream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <unordered_map>
|
||||
|
||||
int main(int argc, char ** argv){
|
||||
gpt_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_LOOKUP)) {
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
gpt_params_print_usage(argc, argv, params);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@@ -105,7 +106,7 @@ int main(int argc, char ** argv){
|
||||
|
||||
bool has_eos = false;
|
||||
|
||||
struct gpt_sampler * smpl = gpt_sampler_init(model, params.sparams);
|
||||
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams);
|
||||
|
||||
std::vector<llama_token> draft;
|
||||
|
||||
@@ -129,9 +130,9 @@ int main(int argc, char ** argv){
|
||||
int i_dft = 0;
|
||||
while (true) {
|
||||
// sample from the target model
|
||||
llama_token id = gpt_sampler_sample(smpl, ctx, i_dft);
|
||||
llama_token id = llama_sampling_sample(ctx_sampling, ctx, NULL, i_dft);
|
||||
|
||||
gpt_sampler_accept(smpl, id, true);
|
||||
llama_sampling_accept(ctx_sampling, ctx, id, true);
|
||||
|
||||
const std::string token_str = llama_token_to_piece(ctx, id);
|
||||
|
||||
@@ -239,11 +240,10 @@ int main(int argc, char ** argv){
|
||||
LOG_TEE("n_accept = %d\n", n_accept);
|
||||
LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
|
||||
|
||||
LOG_TEE("\ntarget:\n\n");
|
||||
gpt_perf_print(ctx, smpl);
|
||||
|
||||
gpt_sampler_free(smpl);
|
||||
LOG_TEE("\ntarget:\n");
|
||||
llama_print_timings(ctx);
|
||||
|
||||
llama_sampling_free(ctx_sampling);
|
||||
llama_batch_free(batch_tgt);
|
||||
|
||||
llama_free(ctx);
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
|
||||
#include "console.h"
|
||||
#include "sampling.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cassert>
|
||||
@@ -34,7 +33,6 @@
|
||||
|
||||
static llama_context ** g_ctx;
|
||||
static llama_model ** g_model;
|
||||
static gpt_sampler ** g_smpl;
|
||||
static gpt_params * g_params;
|
||||
static std::vector<llama_token> * g_input_tokens;
|
||||
static std::ostringstream * g_output_ss;
|
||||
@@ -42,13 +40,6 @@ static std::vector<llama_token> * g_output_tokens;
|
||||
static bool is_interacting = false;
|
||||
static bool need_insert_eot = false;
|
||||
|
||||
static void print_usage(int, char ** argv) {
|
||||
printf("\nexample usage:\n");
|
||||
printf("\n text generation: %s -m your_model.gguf -p \"I believe the meaning of life is\" -n 128\n", argv[0]);
|
||||
printf("\n chat (conversation): %s -m your_model.gguf -p \"You are a helpful assistant\" -cnv\n", argv[0]);
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
static bool file_exists(const std::string & path) {
|
||||
std::ifstream f(path.c_str());
|
||||
return f.good();
|
||||
@@ -101,7 +92,7 @@ static void write_logfile(
|
||||
yaml_dump_string_multiline(logfile, "output", output.c_str());
|
||||
yaml_dump_vector_int(logfile, "output_tokens", output_tokens);
|
||||
|
||||
llama_perf_dump_yaml(logfile, ctx);
|
||||
llama_dump_timing_info_yaml(logfile, ctx);
|
||||
fclose(logfile);
|
||||
}
|
||||
|
||||
@@ -114,7 +105,7 @@ static void sigint_handler(int signo) {
|
||||
} else {
|
||||
console::cleanup();
|
||||
printf("\n");
|
||||
gpt_perf_print(*g_ctx, *g_smpl);
|
||||
llama_print_timings(*g_ctx);
|
||||
write_logfile(*g_ctx, *g_params, *g_model, *g_input_tokens, g_output_ss->str(), *g_output_tokens);
|
||||
_exit(130);
|
||||
}
|
||||
@@ -130,7 +121,8 @@ static void llama_log_callback_logTee(ggml_log_level level, const char * text, v
|
||||
|
||||
static std::string chat_add_and_format(struct llama_model * model, std::vector<llama_chat_msg> & chat_msgs, std::string role, std::string content) {
|
||||
llama_chat_msg new_msg{role, content};
|
||||
auto formatted = llama_chat_format_single(model, g_params->chat_template, chat_msgs, new_msg, role == "user");
|
||||
auto formatted = llama_chat_format_single(
|
||||
model, g_params->chat_template, chat_msgs, new_msg, role == "user");
|
||||
chat_msgs.push_back({role, content});
|
||||
LOG("formatted: %s\n", formatted.c_str());
|
||||
return formatted;
|
||||
@@ -139,11 +131,13 @@ static std::string chat_add_and_format(struct llama_model * model, std::vector<l
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
g_params = ¶ms;
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_MAIN, print_usage)) {
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
gpt_params_print_usage(argc, argv, params);
|
||||
return 1;
|
||||
}
|
||||
|
||||
auto & sparams = params.sparams;
|
||||
llama_sampling_params & sparams = params.sparams;
|
||||
|
||||
#ifndef LOG_DISABLE_LOGS
|
||||
log_set_target(log_filename_generator("main", "log"));
|
||||
@@ -189,21 +183,27 @@ int main(int argc, char ** argv) {
|
||||
LOG_TEE("%s: warning: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale);
|
||||
}
|
||||
|
||||
print_build_info();
|
||||
LOG_TEE("%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
|
||||
LOG_TEE("%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET);
|
||||
|
||||
if (params.seed == LLAMA_DEFAULT_SEED) {
|
||||
params.seed = time(NULL);
|
||||
}
|
||||
|
||||
LOG_TEE("%s: seed = %u\n", __func__, params.seed);
|
||||
|
||||
std::mt19937 rng(params.seed);
|
||||
|
||||
LOG("%s: llama backend init\n", __func__);
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
llama_model * model = nullptr;
|
||||
llama_context * ctx = nullptr;
|
||||
gpt_sampler * smpl = nullptr;
|
||||
|
||||
llama_model * model;
|
||||
llama_context * ctx;
|
||||
llama_context * ctx_guidance = NULL;
|
||||
std::vector<llama_chat_msg> chat_msgs;
|
||||
|
||||
g_model = &model;
|
||||
g_ctx = &ctx;
|
||||
g_smpl = &smpl;
|
||||
|
||||
// load the model and apply lora adapter, if any
|
||||
LOG("%s: load the model and apply lora adapter, if any\n", __func__);
|
||||
@@ -211,43 +211,16 @@ int main(int argc, char ** argv) {
|
||||
|
||||
model = llama_init.model;
|
||||
ctx = llama_init.context;
|
||||
if (sparams.cfg_scale > 1.f) {
|
||||
struct llama_context_params lparams = llama_context_params_from_gpt_params(params);
|
||||
ctx_guidance = llama_new_context_with_model(model, lparams);
|
||||
}
|
||||
|
||||
if (model == NULL) {
|
||||
LOG_TEE("%s: error: unable to load model\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
LOG("%s: llama threadpool init = n_threads = %d\n",
|
||||
__func__,
|
||||
(int) params.cpuparams.n_threads
|
||||
);
|
||||
struct ggml_threadpool_params tpp_batch =
|
||||
ggml_threadpool_params_from_cpu_params(params.cpuparams_batch);
|
||||
struct ggml_threadpool_params tpp =
|
||||
ggml_threadpool_params_from_cpu_params(params.cpuparams);
|
||||
|
||||
set_process_priority(params.cpuparams.priority);
|
||||
|
||||
struct ggml_threadpool * threadpool_batch = NULL;
|
||||
if (!ggml_threadpool_params_match(&tpp, &tpp_batch)) {
|
||||
threadpool_batch = ggml_threadpool_new(&tpp_batch);
|
||||
if (!threadpool_batch) {
|
||||
LOG_TEE("%s: batch threadpool create failed : n_threads %d\n", __func__, tpp_batch.n_threads);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
// Start the non-batch threadpool in the paused state
|
||||
tpp.paused = true;
|
||||
}
|
||||
|
||||
struct ggml_threadpool * threadpool = ggml_threadpool_new(&tpp);
|
||||
if (!threadpool) {
|
||||
LOG_TEE("%s: threadpool create failed : n_threads %d\n", __func__, tpp.n_threads);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
llama_attach_threadpool(ctx, threadpool, threadpool_batch);
|
||||
|
||||
const int n_ctx_train = llama_n_ctx_train(model);
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
LOG("n_ctx: %d\n", n_ctx);
|
||||
@@ -330,6 +303,24 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// Tokenize negative prompt
|
||||
std::vector<llama_token> guidance_inp;
|
||||
int guidance_offset = 0;
|
||||
int original_prompt_len = 0;
|
||||
if (ctx_guidance) {
|
||||
LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(sparams.cfg_negative_prompt));
|
||||
|
||||
guidance_inp = ::llama_tokenize(ctx_guidance, sparams.cfg_negative_prompt, true, true);
|
||||
LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp).c_str());
|
||||
|
||||
std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, true, true);
|
||||
LOG("original_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, original_inp).c_str());
|
||||
|
||||
original_prompt_len = original_inp.size();
|
||||
guidance_offset = (int)guidance_inp.size() - original_prompt_len;
|
||||
LOG("original_prompt_len: %s", log_tostr(original_prompt_len));
|
||||
LOG("guidance_offset: %s", log_tostr(guidance_offset));
|
||||
}
|
||||
|
||||
if ((int) embd_inp.size() > n_ctx - 4) {
|
||||
LOG_TEE("%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
|
||||
return 1;
|
||||
@@ -361,8 +352,8 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
LOGLN(
|
||||
"recalculate the cached logits (check): embd_inp.empty() %s, n_matching_session_tokens %zu, embd_inp.size() %zu, session_tokens.size() %zu",
|
||||
log_tostr(embd_inp.empty()), n_matching_session_tokens, embd_inp.size(), session_tokens.size());
|
||||
"recalculate the cached logits (check): embd_inp.empty() %s, n_matching_session_tokens %zu, embd_inp.size() %zu, session_tokens.size() %zu, embd_inp.size() %zu",
|
||||
log_tostr(embd_inp.empty()), n_matching_session_tokens, embd_inp.size(), session_tokens.size(), embd_inp.size());
|
||||
|
||||
// if we will use the cache for the full prompt without reaching the end of the cache, force
|
||||
// reevaluation of the last token to recalculate the cached logits
|
||||
@@ -396,6 +387,15 @@ int main(int argc, char ** argv) {
|
||||
LOG_TEE("%6d -> '%s'\n", embd_inp[i], llama_token_to_piece(ctx, embd_inp[i]).c_str());
|
||||
}
|
||||
|
||||
if (ctx_guidance) {
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("%s: negative prompt: '%s'\n", __func__, sparams.cfg_negative_prompt.c_str());
|
||||
LOG_TEE("%s: number of tokens in negative prompt = %zu\n", __func__, guidance_inp.size());
|
||||
for (int i = 0; i < (int) guidance_inp.size(); i++) {
|
||||
LOG_TEE("%6d -> '%s'\n", guidance_inp[i], llama_token_to_piece(ctx, guidance_inp[i]).c_str());
|
||||
}
|
||||
}
|
||||
|
||||
if (params.n_keep > add_bos) {
|
||||
LOG_TEE("%s: static prompt based on n_keep: '", __func__);
|
||||
for (int i = 0; i < params.n_keep; i++) {
|
||||
@@ -461,17 +461,8 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
smpl = gpt_sampler_init(model, sparams);
|
||||
if (!smpl) {
|
||||
fprintf(stderr, "%s: failed to initialize sampling subsystem\n", __func__);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
LOG_TEE("sampling seed: %u\n", gpt_sampler_get_seed(smpl));
|
||||
LOG_TEE("sampling params: \n%s\n", sparams.print().c_str());
|
||||
LOG_TEE("sampler constr: \n%s\n", gpt_sampler_print(smpl).c_str());
|
||||
|
||||
LOG_TEE("sampling: \n%s\n", llama_sampling_print(sparams).c_str());
|
||||
LOG_TEE("sampling order: \n%s\n", llama_sampling_order_print(sparams).c_str());
|
||||
LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
||||
|
||||
// group-attention state
|
||||
@@ -518,6 +509,7 @@ int main(int argc, char ** argv) {
|
||||
int n_remain = params.n_predict;
|
||||
int n_consumed = 0;
|
||||
int n_session_consumed = 0;
|
||||
int n_past_guidance = 0;
|
||||
|
||||
std::vector<int> input_tokens; g_input_tokens = &input_tokens;
|
||||
std::vector<int> output_tokens; g_output_tokens = &output_tokens;
|
||||
@@ -529,6 +521,7 @@ int main(int argc, char ** argv) {
|
||||
display = params.display_prompt;
|
||||
|
||||
std::vector<llama_token> embd;
|
||||
std::vector<llama_token> embd_guidance;
|
||||
|
||||
// tokenized antiprompts
|
||||
std::vector<std::vector<llama_token>> antiprompt_ids;
|
||||
@@ -538,6 +531,12 @@ int main(int argc, char ** argv) {
|
||||
antiprompt_ids.emplace_back(::llama_tokenize(ctx, antiprompt, false, true));
|
||||
}
|
||||
|
||||
struct llama_sampling_context * ctx_sampling = llama_sampling_init(sparams);
|
||||
if (!ctx_sampling) {
|
||||
fprintf(stderr, "%s: failed to initialize sampling subsystem\n", __func__);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
if (llama_model_has_encoder(model)) {
|
||||
int enc_input_size = embd_inp.size();
|
||||
llama_token * enc_input_buf = embd_inp.data();
|
||||
@@ -579,7 +578,7 @@ int main(int argc, char ** argv) {
|
||||
// if we run out of context:
|
||||
// - take the n_keep first tokens from the original prompt (via n_past)
|
||||
// - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
|
||||
if (n_past + (int) embd.size() >= n_ctx) {
|
||||
if (n_past + (int) embd.size() + std::max<int>(0, guidance_offset) >= n_ctx) {
|
||||
if (params.n_predict == -2) {
|
||||
LOG_TEE("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict);
|
||||
break;
|
||||
@@ -596,7 +595,11 @@ int main(int argc, char ** argv) {
|
||||
|
||||
n_past -= n_discard;
|
||||
|
||||
LOG("after swap: n_past = %d\n", n_past);
|
||||
if (ctx_guidance) {
|
||||
n_past_guidance -= n_discard;
|
||||
}
|
||||
|
||||
LOG("after swap: n_past = %d, n_past_guidance = %d\n", n_past, n_past_guidance);
|
||||
|
||||
LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str());
|
||||
|
||||
@@ -649,6 +652,46 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
|
||||
// evaluate tokens in batches
|
||||
// embd is typically prepared beforehand to fit within a batch, but not always
|
||||
if (ctx_guidance) {
|
||||
int input_size = 0;
|
||||
llama_token * input_buf = NULL;
|
||||
|
||||
if (n_past_guidance < (int) guidance_inp.size()) {
|
||||
// Guidance context should have the same data with these modifications:
|
||||
//
|
||||
// * Replace the initial prompt
|
||||
// * Shift everything by guidance_offset
|
||||
embd_guidance = guidance_inp;
|
||||
if (embd.begin() + original_prompt_len < embd.end()) {
|
||||
embd_guidance.insert(
|
||||
embd_guidance.end(),
|
||||
embd.begin() + original_prompt_len,
|
||||
embd.end()
|
||||
);
|
||||
}
|
||||
|
||||
input_buf = embd_guidance.data();
|
||||
input_size = embd_guidance.size();
|
||||
|
||||
LOG("guidance context: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_guidance).c_str());
|
||||
} else {
|
||||
input_buf = embd.data();
|
||||
input_size = embd.size();
|
||||
}
|
||||
|
||||
for (int i = 0; i < input_size; i += params.n_batch) {
|
||||
int n_eval = std::min(input_size - i, params.n_batch);
|
||||
if (llama_decode(ctx_guidance, llama_batch_get_one(input_buf + i, n_eval, n_past_guidance, 0))) {
|
||||
LOG_TEE("%s : failed to eval\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
n_past_guidance += n_eval;
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < (int) embd.size(); i += params.n_batch) {
|
||||
int n_eval = (int) embd.size() - i;
|
||||
if (n_eval > params.n_batch) {
|
||||
@@ -678,6 +721,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
embd.clear();
|
||||
embd_guidance.clear();
|
||||
|
||||
if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
|
||||
// optionally save the session on first sample (for faster prompt loading next time)
|
||||
@@ -688,11 +732,11 @@ int main(int argc, char ** argv) {
|
||||
LOG("saved session to %s\n", path_session.c_str());
|
||||
}
|
||||
|
||||
const llama_token id = gpt_sampler_sample(smpl, ctx, -1);
|
||||
const llama_token id = llama_sampling_sample(ctx_sampling, ctx, ctx_guidance);
|
||||
|
||||
gpt_sampler_accept(smpl, id, /* apply_grammar= */ true);
|
||||
llama_sampling_accept(ctx_sampling, ctx, id, /* apply_grammar= */ true);
|
||||
|
||||
// LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, smpl->prev.to_vector()).c_str());
|
||||
LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, ctx_sampling->prev).c_str());
|
||||
|
||||
embd.push_back(id);
|
||||
|
||||
@@ -711,7 +755,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// push the prompt in the sampling context in order to apply repetition penalties later
|
||||
// for the prompt, we don't apply grammar rules
|
||||
gpt_sampler_accept(smpl, embd_inp[n_consumed], /* apply_grammar= */ false);
|
||||
llama_sampling_accept(ctx_sampling, ctx, embd_inp[n_consumed], /* apply_grammar= */ false);
|
||||
|
||||
++n_consumed;
|
||||
if ((int) embd.size() >= params.n_batch) {
|
||||
@@ -754,7 +798,7 @@ int main(int argc, char ** argv) {
|
||||
// check for reverse prompt in the last n_prev tokens
|
||||
if (!params.antiprompt.empty()) {
|
||||
const int n_prev = 32;
|
||||
const std::string last_output = gpt_sampler_prev_str(smpl, ctx, n_prev);
|
||||
const std::string last_output = llama_sampling_prev_str(ctx_sampling, ctx, n_prev);
|
||||
|
||||
is_antiprompt = false;
|
||||
// Check if each of the reverse prompts appears at the end of the output.
|
||||
@@ -776,7 +820,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// check for reverse prompt using special tokens
|
||||
llama_token last_token = gpt_sampler_last(smpl);
|
||||
llama_token last_token = llama_sampling_last(ctx_sampling);
|
||||
for (std::vector<llama_token> ids : antiprompt_ids) {
|
||||
if (ids.size() == 1 && last_token == ids[0]) {
|
||||
if (params.interactive) {
|
||||
@@ -793,7 +837,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// deal with end of generation tokens in interactive mode
|
||||
if (llama_token_is_eog(model, gpt_sampler_last(smpl))) {
|
||||
if (llama_token_is_eog(model, llama_sampling_last(ctx_sampling))) {
|
||||
LOG("found an EOG token\n");
|
||||
|
||||
if (params.interactive) {
|
||||
@@ -814,7 +858,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// if current token is not EOG, we add it to current assistant message
|
||||
if (params.conversation) {
|
||||
const auto id = gpt_sampler_last(smpl);
|
||||
auto id = llama_sampling_last(ctx_sampling);
|
||||
assistant_ss << llama_token_to_piece(ctx, id, false);
|
||||
}
|
||||
|
||||
@@ -910,7 +954,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
if (n_past > 0) {
|
||||
if (is_interacting) {
|
||||
gpt_sampler_reset(smpl);
|
||||
llama_sampling_reset(ctx_sampling);
|
||||
}
|
||||
is_interacting = false;
|
||||
}
|
||||
@@ -935,20 +979,16 @@ int main(int argc, char ** argv) {
|
||||
llama_state_save_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
|
||||
}
|
||||
|
||||
LOG_TEE("\n");
|
||||
gpt_perf_print(ctx, smpl);
|
||||
llama_print_timings(ctx);
|
||||
write_logfile(ctx, params, model, input_tokens, output_ss.str(), output_tokens);
|
||||
|
||||
gpt_sampler_free(smpl);
|
||||
|
||||
if (ctx_guidance) { llama_free(ctx_guidance); }
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
||||
llama_sampling_free(ctx_sampling);
|
||||
llama_backend_free();
|
||||
|
||||
ggml_threadpool_free(threadpool);
|
||||
ggml_threadpool_free(threadpool_batch);
|
||||
|
||||
#ifndef LOG_DISABLE_LOGS
|
||||
LOG_TEE("Log end\n");
|
||||
#endif // LOG_DISABLE_LOGS
|
||||
|
||||
@@ -1,9 +1,7 @@
|
||||
// A basic application simulating a server with multiple clients.
|
||||
// The clients submit requests to the server and they are processed in parallel.
|
||||
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "sampling.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cmath>
|
||||
@@ -52,8 +50,8 @@ static std::vector<std::string> k_prompts = {
|
||||
|
||||
struct client {
|
||||
~client() {
|
||||
if (smpl) {
|
||||
gpt_sampler_free(smpl);
|
||||
if (ctx_sampling) {
|
||||
llama_sampling_free(ctx_sampling);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -74,7 +72,7 @@ struct client {
|
||||
std::string prompt;
|
||||
std::string response;
|
||||
|
||||
struct gpt_sampler * smpl = nullptr;
|
||||
struct llama_sampling_context * ctx_sampling = nullptr;
|
||||
};
|
||||
|
||||
static void print_date_time() {
|
||||
@@ -102,7 +100,8 @@ int main(int argc, char ** argv) {
|
||||
|
||||
gpt_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_PARALLEL)) {
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
gpt_params_print_usage(argc, argv, params);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@@ -162,7 +161,7 @@ int main(int argc, char ** argv) {
|
||||
for (size_t i = 0; i < clients.size(); ++i) {
|
||||
auto & client = clients[i];
|
||||
client.id = i;
|
||||
client.smpl = gpt_sampler_init(model, params.sparams);
|
||||
client.ctx_sampling = llama_sampling_init(params.sparams);
|
||||
}
|
||||
|
||||
std::vector<llama_token> tokens_system;
|
||||
@@ -254,7 +253,7 @@ int main(int argc, char ** argv) {
|
||||
client.prompt = client.input + "\nAssistant:";
|
||||
client.response = "";
|
||||
|
||||
gpt_sampler_reset(client.smpl);
|
||||
llama_sampling_reset(client.ctx_sampling);
|
||||
|
||||
// do not prepend BOS because we have a system prompt!
|
||||
std::vector<llama_token> tokens_prompt;
|
||||
@@ -342,9 +341,9 @@ int main(int argc, char ** argv) {
|
||||
//printf("client %d, seq %d, token %d, pos %d, batch %d\n",
|
||||
// client.id, client.seq_id, client.sampled, client.n_decoded, client.i_batch);
|
||||
|
||||
const llama_token id = gpt_sampler_sample(client.smpl, ctx, client.i_batch - i);
|
||||
const llama_token id = llama_sampling_sample(client.ctx_sampling, ctx, NULL, client.i_batch - i);
|
||||
|
||||
gpt_sampler_accept(client.smpl, id, true);
|
||||
llama_sampling_accept(client.ctx_sampling, ctx, id, true);
|
||||
|
||||
if (client.n_decoded == 1) {
|
||||
// start measuring generation time after the first token to make sure all concurrent clients
|
||||
@@ -372,7 +371,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// delete only the generated part of the sequence, i.e. keep the system prompt in the cache
|
||||
llama_kv_cache_seq_rm(ctx, client.id + 1, -1, -1);
|
||||
llama_kv_cache_seq_rm(ctx, client.id + 1, -1, -1);
|
||||
llama_kv_cache_seq_cp(ctx, 0, client.id + 1, -1, -1);
|
||||
|
||||
const auto t_main_end = ggml_time_us();
|
||||
@@ -414,8 +413,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
LOG_TEE("\n");
|
||||
|
||||
// TODO: print sampling/grammar timings for all clients
|
||||
llama_perf_context_print(ctx);
|
||||
llama_print_timings(ctx);
|
||||
|
||||
llama_batch_free(batch);
|
||||
|
||||
|
||||
@@ -1,4 +1,3 @@
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
|
||||
@@ -7,7 +6,9 @@
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
static void print_usage(int, char ** argv) {
|
||||
static void print_usage(int argc, char ** argv, const gpt_params & params) {
|
||||
gpt_params_print_usage(argc, argv, params);
|
||||
|
||||
LOG_TEE("\nexample usage:\n");
|
||||
LOG_TEE("\n %s -m model.gguf --junk 250 --pos 90 --keep 32 --grp-attn-n 2 [--seed 1234]\n", argv[0]);
|
||||
LOG_TEE("\n");
|
||||
@@ -20,10 +21,13 @@ int main(int argc, char ** argv) {
|
||||
params.n_keep = 32;
|
||||
params.i_pos = -1;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_PASSKEY, print_usage)) {
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
print_usage(argc, argv, params);
|
||||
return 1;
|
||||
}
|
||||
|
||||
srand(params.seed == LLAMA_DEFAULT_SEED ? time(NULL) : params.seed);
|
||||
|
||||
int n_junk = params.n_junk;
|
||||
int n_keep = params.n_keep;
|
||||
int n_grp = params.grp_attn_n;
|
||||
@@ -76,17 +80,12 @@ int main(int argc, char ** argv) {
|
||||
GGML_ASSERT(ctx_params.n_batch % n_grp == 0 && "n_batch must be divisible by n_grp");
|
||||
|
||||
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
|
||||
|
||||
if (ctx == NULL) {
|
||||
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
auto sparams = llama_sampler_chain_default_params();
|
||||
|
||||
llama_sampler * smpl = llama_sampler_chain_init(sparams);
|
||||
|
||||
llama_sampler_chain_add(smpl, llama_sampler_init_greedy());
|
||||
|
||||
// tokenize the prompt
|
||||
std::vector<llama_token> tokens_list;
|
||||
tokens_list = ::llama_tokenize(ctx, params.prompt, true);
|
||||
@@ -218,7 +217,20 @@ int main(int argc, char ** argv) {
|
||||
while (n_cur <= n_len) {
|
||||
// sample the next token
|
||||
{
|
||||
const llama_token new_token_id = llama_sampler_sample(smpl, ctx, batch.n_tokens - 1);
|
||||
auto n_vocab = llama_n_vocab(model);
|
||||
auto * logits = llama_get_logits_ith(ctx, batch.n_tokens - 1);
|
||||
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
|
||||
}
|
||||
|
||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||
|
||||
// sample the most likely token
|
||||
const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
|
||||
|
||||
// is it an end of generation?
|
||||
if (llama_token_is_eog(model, new_token_id) || n_cur == n_len) {
|
||||
@@ -255,13 +267,10 @@ int main(int argc, char ** argv) {
|
||||
LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
|
||||
__func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
|
||||
|
||||
LOG_TEE("\n");
|
||||
llama_perf_context_print(ctx);
|
||||
llama_print_timings(ctx);
|
||||
|
||||
fprintf(stderr, "\n");
|
||||
|
||||
llama_sampler_free(smpl);
|
||||
|
||||
llama_batch_free(batch);
|
||||
|
||||
llama_free(ctx);
|
||||
|
||||
@@ -1,19 +1,18 @@
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <array>
|
||||
#include <atomic>
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <ctime>
|
||||
#include <fstream>
|
||||
#include <mutex>
|
||||
#include <random>
|
||||
#include <sstream>
|
||||
#include <thread>
|
||||
#include <mutex>
|
||||
#include <atomic>
|
||||
#include <vector>
|
||||
#include <array>
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
@@ -77,7 +76,7 @@ static void write_logfile(
|
||||
fprintf(logfile, "ppl_value: %f\n", results.ppl_value);
|
||||
yaml_dump_vector_float(logfile, "probs", results.probs);
|
||||
|
||||
llama_perf_dump_yaml(logfile, ctx);
|
||||
llama_dump_timing_info_yaml(logfile, ctx);
|
||||
fclose(logfile);
|
||||
}
|
||||
|
||||
@@ -1968,7 +1967,8 @@ int main(int argc, char ** argv) {
|
||||
params.n_ctx = 512;
|
||||
params.logits_all = true;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_PERPLEXITY)) {
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
gpt_params_print_usage(argc, argv, params);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@@ -2007,6 +2007,14 @@ int main(int argc, char ** argv) {
|
||||
|
||||
print_build_info();
|
||||
|
||||
if (params.seed == LLAMA_DEFAULT_SEED) {
|
||||
params.seed = time(NULL);
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
|
||||
|
||||
std::mt19937 rng(params.seed);
|
||||
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
@@ -2046,8 +2054,7 @@ int main(int argc, char ** argv) {
|
||||
results = perplexity(ctx, params, n_ctx);
|
||||
}
|
||||
|
||||
LOG_TEE("\n");
|
||||
llama_perf_context_print(ctx);
|
||||
llama_print_timings(ctx);
|
||||
write_logfile(ctx, params, model, results);
|
||||
|
||||
llama_free(ctx);
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
#define LLAMA_API_INTERNAL
|
||||
#include "common.h"
|
||||
#include "ggml.h"
|
||||
#include "llama.h"
|
||||
#include "llama-impl.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
@@ -319,7 +319,8 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
auto cparams = llama_context_default_params();
|
||||
cparams.n_ctx = 256;
|
||||
cparams.n_ctx = 256;
|
||||
cparams.seed = 1;
|
||||
|
||||
ctx = llama_new_context_with_model(model, cparams);
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
set(TARGET llama-quantize)
|
||||
add_executable(${TARGET} quantize.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_link_libraries(${TARGET} PRIVATE llama common ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_include_directories(${TARGET} PRIVATE ../../common)
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
|
||||
@@ -54,8 +54,6 @@ As the models are currently fully loaded into memory, you will need adequate dis
|
||||
|
||||
Several quantization methods are supported. They differ in the resulting model disk size and inference speed.
|
||||
|
||||
The quantization formats `Q4_0_4_4`, `Q4_0_4_8` and `Q4_0_8_8` are block interleaved variants of the `Q4_0` format, providing a data layout that is better suited for specific implementations of optimized mulmat kernels. Since these formats differ only in data layout, they have the same quantized size as the `Q4_0` format.
|
||||
|
||||
*(outdated)*
|
||||
|
||||
| Model | Measure | F16 | Q4_0 | Q4_1 | Q5_0 | Q5_1 | Q8_0 |
|
||||
|
||||
@@ -26,8 +26,6 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = {
|
||||
{ "IQ2_M", LLAMA_FTYPE_MOSTLY_IQ2_M, " 2.7 bpw quantization", },
|
||||
{ "IQ1_S", LLAMA_FTYPE_MOSTLY_IQ1_S, " 1.56 bpw quantization", },
|
||||
{ "IQ1_M", LLAMA_FTYPE_MOSTLY_IQ1_M, " 1.75 bpw quantization", },
|
||||
{ "TQ1_0", LLAMA_FTYPE_MOSTLY_TQ1_0, " 1.69 bpw ternarization", },
|
||||
{ "TQ2_0", LLAMA_FTYPE_MOSTLY_TQ2_0, " 2.06 bpw ternarization", },
|
||||
{ "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.96G, +3.5199 ppl @ Llama-3-8B", },
|
||||
{ "Q2_K_S", LLAMA_FTYPE_MOSTLY_Q2_K_S, " 2.96G, +3.1836 ppl @ Llama-3-8B", },
|
||||
{ "IQ3_XXS", LLAMA_FTYPE_MOSTLY_IQ3_XXS, " 3.06 bpw quantization", },
|
||||
@@ -106,7 +104,7 @@ static void usage(const char * executable) {
|
||||
printf(" --exclude-weights tensor_name: use importance matrix for this/these tensor(s)\n");
|
||||
printf(" --output-tensor-type ggml_type: use this ggml_type for the output.weight tensor\n");
|
||||
printf(" --token-embedding-type ggml_type: use this ggml_type for the token embeddings tensor\n");
|
||||
printf(" --keep-split: will generate quantized model in the same shards as input\n");
|
||||
printf(" --keep-split: will generate quatized model in the same shards as input");
|
||||
printf(" --override-kv KEY=TYPE:VALUE\n");
|
||||
printf(" Advanced option to override model metadata by key in the quantized model. May be specified multiple times.\n");
|
||||
printf("Note: --include-weights and --exclude-weights cannot be used together\n");
|
||||
|
||||
@@ -1,11 +1,12 @@
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <fstream>
|
||||
|
||||
static void print_usage(int, char ** argv) {
|
||||
static void print_usage(int argc, char ** argv, const gpt_params & params) {
|
||||
gpt_params_print_usage(argc, argv, params);
|
||||
|
||||
LOG_TEE("\nexample usage:\n");
|
||||
LOG_TEE("\n %s --model ./models/bge-base-en-v1.5-f16.gguf --top-k 3 --context-file README.md --context-file License --chunk-size 100 --chunk-separator .\n", argv[0]);
|
||||
LOG_TEE("\n");
|
||||
@@ -112,7 +113,8 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_RETRIEVAL, print_usage)) {
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
print_usage(argc, argv, params);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@@ -291,11 +293,9 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
|
||||
LOG_TEE("\n");
|
||||
llama_perf_context_print(ctx);
|
||||
|
||||
// clean up
|
||||
llama_batch_free(query_batch);
|
||||
llama_print_timings(ctx);
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
llama_backend_free();
|
||||
|
||||
@@ -10,21 +10,20 @@ This can be used for distributed LLM inference with `llama.cpp` in the following
|
||||
|
||||
```mermaid
|
||||
flowchart TD
|
||||
rpcb<-->|TCP|srva
|
||||
rpcb<-->|TCP|srvb
|
||||
rpcb<-.->|TCP|srvn
|
||||
rpcb---|TCP|srva
|
||||
rpcb---|TCP|srvb
|
||||
rpcb-.-|TCP|srvn
|
||||
subgraph hostn[Host N]
|
||||
srvn[rpc-server]<-.->backend3["Backend (CUDA,Metal,etc.)"]
|
||||
srvn[rpc-server]-.-backend3["Backend (CUDA,Metal,etc.)"]
|
||||
end
|
||||
subgraph hostb[Host B]
|
||||
srvb[rpc-server]<-->backend2["Backend (CUDA,Metal,etc.)"]
|
||||
srvb[rpc-server]---backend2["Backend (CUDA,Metal,etc.)"]
|
||||
end
|
||||
subgraph hosta[Host A]
|
||||
srva[rpc-server]<-->backend["Backend (CUDA,Metal,etc.)"]
|
||||
srva[rpc-server]---backend["Backend (CUDA,Metal,etc.)"]
|
||||
end
|
||||
subgraph host[Main Host]
|
||||
local["Backend (CUDA,Metal,etc.)"]<-->ggml[llama-cli]
|
||||
ggml[llama-cli]<-->rpcb[RPC backend]
|
||||
ggml[llama.cpp]---rpcb[RPC backend]
|
||||
end
|
||||
style hostn stroke:#66,stroke-width:2px,stroke-dasharray: 5 5
|
||||
```
|
||||
@@ -63,12 +62,17 @@ $ CUDA_VISIBLE_DEVICES=0 bin/rpc-server -p 50052
|
||||
This way you can run multiple `rpc-server` instances on the same host, each with a different CUDA device.
|
||||
|
||||
|
||||
On the main host build `llama.cpp` for the local backend and add `-DGGML_RPC=ON` to the build options.
|
||||
Finally, when running `llama-cli`, use the `--rpc` option to specify the host and port of each `rpc-server`:
|
||||
On the main host build `llama.cpp` only with `-DGGML_RPC=ON`:
|
||||
|
||||
```bash
|
||||
mkdir build-rpc
|
||||
cd build-rpc
|
||||
cmake .. -DGGML_RPC=ON
|
||||
cmake --build . --config Release
|
||||
```
|
||||
|
||||
Finally, use the `--rpc` option to specify the host and port of each `rpc-server`:
|
||||
|
||||
```bash
|
||||
$ bin/llama-cli -m ../models/tinyllama-1b/ggml-model-f16.gguf -p "Hello, my name is" --repeat-penalty 1.0 -n 64 --rpc 192.168.88.10:50052,192.168.88.11:50052 -ngl 99
|
||||
```
|
||||
|
||||
This way you can offload model layers to both local and remote devices.
|
||||
|
||||
|
||||
@@ -1,17 +1,17 @@
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <vector>
|
||||
#include <cstdio>
|
||||
#include <chrono>
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
|
||||
params.prompt = "The quick brown fox";
|
||||
params.sparams.seed = 1234;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
gpt_params_print_usage(argc, argv, params);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@@ -38,13 +38,6 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
auto sparams = llama_sampler_chain_default_params();
|
||||
|
||||
llama_sampler * smpl = llama_sampler_chain_init(sparams);
|
||||
|
||||
llama_sampler_chain_add(smpl, llama_sampler_init_softmax());
|
||||
llama_sampler_chain_add(smpl, llama_sampler_init_dist(params.sparams.seed));
|
||||
|
||||
// tokenize prompt
|
||||
auto tokens = llama_tokenize(ctx, params.prompt, true);
|
||||
|
||||
@@ -71,7 +64,16 @@ int main(int argc, char ** argv) {
|
||||
printf("\nfirst run: %s", params.prompt.c_str());
|
||||
|
||||
for (auto i = 0; i < params.n_predict; i++) {
|
||||
auto next_token = llama_sampler_sample(smpl, ctx, -1);
|
||||
auto * logits = llama_get_logits(ctx);
|
||||
auto n_vocab = llama_n_vocab(model);
|
||||
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
||||
}
|
||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||
auto next_token = llama_sample_token(ctx, &candidates_p);
|
||||
auto next_token_str = llama_token_to_piece(ctx, next_token);
|
||||
|
||||
printf("%s", next_token_str.c_str());
|
||||
@@ -94,11 +96,6 @@ int main(int argc, char ** argv) {
|
||||
// make new context
|
||||
auto * ctx2 = llama_new_context_with_model(model, llama_context_params_from_gpt_params(params));
|
||||
|
||||
llama_sampler * smpl2 = llama_sampler_chain_init(sparams);
|
||||
|
||||
llama_sampler_chain_add(smpl2, llama_sampler_init_softmax());
|
||||
llama_sampler_chain_add(smpl2, llama_sampler_init_dist(params.sparams.seed));
|
||||
|
||||
printf("\nsecond run: %s", params.prompt.c_str());
|
||||
|
||||
// load state (rng, logits, embedding and kv_cache) from file
|
||||
@@ -127,7 +124,15 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// second run
|
||||
for (auto i = 0; i < params.n_predict; i++) {
|
||||
auto next_token = llama_sampler_sample(smpl2, ctx2, -1);
|
||||
auto * logits = llama_get_logits(ctx2);
|
||||
auto n_vocab = llama_n_vocab(model);
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
||||
}
|
||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||
auto next_token = llama_sample_token(ctx2, &candidates_p);
|
||||
auto next_token_str = llama_token_to_piece(ctx2, next_token);
|
||||
|
||||
printf("%s", next_token_str.c_str());
|
||||
@@ -152,12 +157,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// make new context
|
||||
auto * ctx3 = llama_new_context_with_model(model, llama_context_params_from_gpt_params(params));
|
||||
|
||||
llama_sampler * smpl3 = llama_sampler_chain_init(sparams);
|
||||
|
||||
llama_sampler_chain_add(smpl3, llama_sampler_init_softmax());
|
||||
llama_sampler_chain_add(smpl3, llama_sampler_init_dist(params.sparams.seed));
|
||||
auto* ctx3 = llama_new_context_with_model(model, llama_context_params_from_gpt_params(params));
|
||||
|
||||
printf("\nsingle seq run: %s", params.prompt.c_str());
|
||||
|
||||
@@ -215,7 +215,15 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// third run with seq 1 instead of 0
|
||||
for (auto i = 0; i < params.n_predict; i++) {
|
||||
auto next_token = llama_sampler_sample(smpl3, ctx3, -1);
|
||||
auto * logits = llama_get_logits(ctx3);
|
||||
auto n_vocab = llama_n_vocab(model);
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
||||
}
|
||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||
auto next_token = llama_sample_token(ctx3, &candidates_p);
|
||||
auto next_token_str = llama_token_to_piece(ctx3, next_token);
|
||||
|
||||
printf("%s", next_token_str.c_str());
|
||||
@@ -232,10 +240,6 @@ int main(int argc, char ** argv) {
|
||||
|
||||
printf("\n");
|
||||
|
||||
llama_sampler_free(smpl);
|
||||
llama_sampler_free(smpl2);
|
||||
llama_sampler_free(smpl3);
|
||||
|
||||
llama_free(ctx3);
|
||||
llama_free_model(model);
|
||||
|
||||
|
||||
@@ -30,7 +30,6 @@ set(PUBLIC_ASSETS
|
||||
system-prompts.js
|
||||
prompt-formats.js
|
||||
json-schema-to-grammar.mjs
|
||||
loading.html
|
||||
)
|
||||
|
||||
foreach(asset ${PUBLIC_ASSETS})
|
||||
|
||||
@@ -17,145 +17,236 @@ The project is under active development, and we are [looking for feedback and co
|
||||
|
||||
## Usage
|
||||
|
||||
| Argument | Explanation |
|
||||
| -------- | ----------- |
|
||||
| `-h, --help, --usage` | print usage and exit |
|
||||
| `--version` | show version and build info |
|
||||
| `-v, --verbose` | print verbose information |
|
||||
| `--verbosity N` | set specific verbosity level (default: 0) |
|
||||
| `-t, --threads N` | number of threads to use during generation (default: -1)<br/>(env: LLAMA_ARG_THREADS) |
|
||||
| `-tb, --threads-batch N` | number of threads to use during batch and prompt processing (default: same as --threads) |
|
||||
| `-C, --cpu-mask M` | CPU affinity mask: arbitrarily long hex. Complements cpu-range (default: "") |
|
||||
| `-Cr, --cpu-range lo-hi` | range of CPUs for affinity. Complements --cpu-mask |
|
||||
| `--cpu-strict <0\|1>` | use strict CPU placement (default: 0)<br/> |
|
||||
| `--prio N` | set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: 0)<br/> |
|
||||
| `--poll <0...100>` | use polling level to wait for work (0 - no polling, default: 50)<br/> |
|
||||
| `-Cb, --cpu-mask-batch M` | CPU affinity mask: arbitrarily long hex. Complements cpu-range-batch (default: same as --cpu-mask) |
|
||||
| `-Crb, --cpu-range-batch lo-hi` | ranges of CPUs for affinity. Complements --cpu-mask-batch |
|
||||
| `--cpu-strict-batch <0\|1>` | use strict CPU placement (default: same as --cpu-strict) |
|
||||
| `--prio-batch N` | set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: 0)<br/> |
|
||||
| `--poll-batch <0\|1>` | use polling to wait for work (default: same as --poll) |
|
||||
| `-c, --ctx-size N` | size of the prompt context (default: 0, 0 = loaded from model)<br/>(env: LLAMA_ARG_CTX_SIZE) |
|
||||
| `-n, --predict, --n-predict N` | number of tokens to predict (default: -1, -1 = infinity, -2 = until context filled)<br/>(env: LLAMA_ARG_N_PREDICT) |
|
||||
| `-b, --batch-size N` | logical maximum batch size (default: 2048)<br/>(env: LLAMA_ARG_BATCH) |
|
||||
| `-ub, --ubatch-size N` | physical maximum batch size (default: 512)<br/>(env: LLAMA_ARG_UBATCH) |
|
||||
| `--keep N` | number of tokens to keep from the initial prompt (default: 0, -1 = all) |
|
||||
| `-fa, --flash-attn` | enable Flash Attention (default: disabled)<br/>(env: LLAMA_ARG_FLASH_ATTN) |
|
||||
| `-p, --prompt PROMPT` | prompt to start generation with |
|
||||
| `-f, --file FNAME` | a file containing the prompt (default: none) |
|
||||
| `-bf, --binary-file FNAME` | binary file containing the prompt (default: none) |
|
||||
| `-e, --escape` | process escapes sequences (\n, \r, \t, \', \", \\) (default: true) |
|
||||
| `--no-escape` | do not process escape sequences |
|
||||
| `--spm-infill` | use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: disabled) |
|
||||
| `--samplers SAMPLERS` | samplers that will be used for generation in the order, separated by ';'<br/>(default: top_k;tfs_z;typ_p;top_p;min_p;temperature) |
|
||||
| `-s, --seed SEED` | RNG seed (default: -1, use random seed for < 0) |
|
||||
| `--sampling-seq SEQUENCE` | simplified sequence for samplers that will be used (default: kfypmt) |
|
||||
| `--ignore-eos` | ignore end of stream token and continue generating (implies --logit-bias EOS-inf) |
|
||||
| `--penalize-nl` | penalize newline tokens (default: false) |
|
||||
| `--temp N` | temperature (default: 0.8) |
|
||||
| `--top-k N` | top-k sampling (default: 40, 0 = disabled) |
|
||||
| `--top-p N` | top-p sampling (default: 0.9, 1.0 = disabled) |
|
||||
| `--min-p N` | min-p sampling (default: 0.1, 0.0 = disabled) |
|
||||
| `--tfs N` | tail free sampling, parameter z (default: 1.0, 1.0 = disabled) |
|
||||
| `--typical N` | locally typical sampling, parameter p (default: 1.0, 1.0 = disabled) |
|
||||
| `--repeat-last-n N` | last n tokens to consider for penalize (default: 64, 0 = disabled, -1 = ctx_size) |
|
||||
| `--repeat-penalty N` | penalize repeat sequence of tokens (default: 1.0, 1.0 = disabled) |
|
||||
| `--presence-penalty N` | repeat alpha presence penalty (default: 0.0, 0.0 = disabled) |
|
||||
| `--frequency-penalty N` | repeat alpha frequency penalty (default: 0.0, 0.0 = disabled) |
|
||||
| `--dynatemp-range N` | dynamic temperature range (default: 0.0, 0.0 = disabled) |
|
||||
| `--dynatemp-exp N` | dynamic temperature exponent (default: 1.0) |
|
||||
| `--mirostat N` | use Mirostat sampling.<br/>Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.<br/>(default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0) |
|
||||
| `--mirostat-lr N` | Mirostat learning rate, parameter eta (default: 0.1) |
|
||||
| `--mirostat-ent N` | Mirostat target entropy, parameter tau (default: 5.0) |
|
||||
| `-l, --logit-bias TOKEN_ID(+/-)BIAS` | modifies the likelihood of token appearing in the completion,<br/>i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',<br/>or `--logit-bias 15043-1` to decrease likelihood of token ' Hello' |
|
||||
| `--grammar GRAMMAR` | BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '') |
|
||||
| `--grammar-file FNAME` | file to read grammar from |
|
||||
| `-j, --json-schema SCHEMA` | JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object<br/>For schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead |
|
||||
| `--rope-scaling {none,linear,yarn}` | RoPE frequency scaling method, defaults to linear unless specified by the model |
|
||||
| `--rope-scale N` | RoPE context scaling factor, expands context by a factor of N |
|
||||
| `--rope-freq-base N` | RoPE base frequency, used by NTK-aware scaling (default: loaded from model) |
|
||||
| `--rope-freq-scale N` | RoPE frequency scaling factor, expands context by a factor of 1/N |
|
||||
| `--yarn-orig-ctx N` | YaRN: original context size of model (default: 0 = model training context size) |
|
||||
| `--yarn-ext-factor N` | YaRN: extrapolation mix factor (default: -1.0, 0.0 = full interpolation) |
|
||||
| `--yarn-attn-factor N` | YaRN: scale sqrt(t) or attention magnitude (default: 1.0) |
|
||||
| `--yarn-beta-slow N` | YaRN: high correction dim or alpha (default: 1.0) |
|
||||
| `--yarn-beta-fast N` | YaRN: low correction dim or beta (default: 32.0) |
|
||||
| `-gan, --grp-attn-n N` | group-attention factor (default: 1) |
|
||||
| `-gaw, --grp-attn-w N` | group-attention width (default: 512.0) |
|
||||
| `-dkvc, --dump-kv-cache` | verbose print of the KV cache |
|
||||
| `-nkvo, --no-kv-offload` | disable KV offload |
|
||||
| `-ctk, --cache-type-k TYPE` | KV cache data type for K (default: f16) |
|
||||
| `-ctv, --cache-type-v TYPE` | KV cache data type for V (default: f16) |
|
||||
| `-dt, --defrag-thold N` | KV cache defragmentation threshold (default: -1.0, < 0 - disabled)<br/>(env: LLAMA_ARG_DEFRAG_THOLD) |
|
||||
| `-np, --parallel N` | number of parallel sequences to decode (default: 1) |
|
||||
| `-cb, --cont-batching` | enable continuous batching (a.k.a dynamic batching) (default: enabled)<br/>(env: LLAMA_ARG_CONT_BATCHING) |
|
||||
| `-nocb, --no-cont-batching` | disable continuous batching<br/>(env: LLAMA_ARG_NO_CONT_BATCHING) |
|
||||
| `--mlock` | force system to keep model in RAM rather than swapping or compressing |
|
||||
| `--no-mmap` | do not memory-map model (slower load but may reduce pageouts if not using mlock) |
|
||||
| `--numa TYPE` | attempt optimizations that help on some NUMA systems<br/>- distribute: spread execution evenly over all nodes<br/>- isolate: only spawn threads on CPUs on the node that execution started on<br/>- numactl: use the CPU map provided by numactl<br/>if run without this previously, it is recommended to drop the system page cache before using this<br/>see https://github.com/ggerganov/llama.cpp/issues/1437 |
|
||||
| `-ngl, --gpu-layers, --n-gpu-layers N` | number of layers to store in VRAM<br/>(env: LLAMA_ARG_N_GPU_LAYERS) |
|
||||
| `-sm, --split-mode {none,layer,row}` | how to split the model across multiple GPUs, one of:<br/>- none: use one GPU only<br/>- layer (default): split layers and KV across GPUs<br/>- row: split rows across GPUs |
|
||||
| `-ts, --tensor-split N0,N1,N2,...` | fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1 |
|
||||
| `-mg, --main-gpu INDEX` | the GPU to use for the model (with split-mode = none), or for intermediate results and KV (with split-mode = row) (default: 0) |
|
||||
| `--check-tensors` | check model tensor data for invalid values (default: false) |
|
||||
| `--override-kv KEY=TYPE:VALUE` | advanced option to override model metadata by key. may be specified multiple times.<br/>types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false |
|
||||
| `--lora FNAME` | path to LoRA adapter (can be repeated to use multiple adapters) |
|
||||
| `--lora-scaled FNAME SCALE` | path to LoRA adapter with user defined scaling (can be repeated to use multiple adapters) |
|
||||
| `--control-vector FNAME` | add a control vector<br/>note: this argument can be repeated to add multiple control vectors |
|
||||
| `--control-vector-scaled FNAME SCALE` | add a control vector with user defined scaling SCALE<br/>note: this argument can be repeated to add multiple scaled control vectors |
|
||||
| `--control-vector-layer-range START END` | layer range to apply the control vector(s) to, start and end inclusive |
|
||||
| `-a, --alias STRING` | set alias for model name (to be used by REST API) |
|
||||
| `-m, --model FNAME` | model path (default: `models/$filename` with filename from `--hf-file` or `--model-url` if set, otherwise models/7B/ggml-model-f16.gguf)<br/>(env: LLAMA_ARG_MODEL) |
|
||||
| `-mu, --model-url MODEL_URL` | model download url (default: unused)<br/>(env: LLAMA_ARG_MODEL_URL) |
|
||||
| `-hfr, --hf-repo REPO` | Hugging Face model repository (default: unused)<br/>(env: LLAMA_ARG_HF_REPO) |
|
||||
| `-hff, --hf-file FILE` | Hugging Face model file (default: unused)<br/>(env: LLAMA_ARG_HF_FILE) |
|
||||
| `-hft, --hf-token TOKEN` | Hugging Face access token (default: value from HF_TOKEN environment variable)<br/>(env: HF_TOKEN) |
|
||||
| `--host HOST` | ip address to listen (default: 127.0.0.1)<br/>(env: LLAMA_ARG_HOST) |
|
||||
| `--port PORT` | port to listen (default: 8080)<br/>(env: LLAMA_ARG_PORT) |
|
||||
| `--path PATH` | path to serve static files from (default: ) |
|
||||
| `--embedding, --embeddings` | restrict to only support embedding use case; use only with dedicated embedding models (default: disabled)<br/>(env: LLAMA_ARG_EMBEDDINGS) |
|
||||
| `--api-key KEY` | API key to use for authentication (default: none)<br/>(env: LLAMA_API_KEY) |
|
||||
| `--api-key-file FNAME` | path to file containing API keys (default: none) |
|
||||
| `--ssl-key-file FNAME` | path to file a PEM-encoded SSL private key |
|
||||
| `--ssl-cert-file FNAME` | path to file a PEM-encoded SSL certificate |
|
||||
| `-to, --timeout N` | server read/write timeout in seconds (default: 600) |
|
||||
| `--threads-http N` | number of threads used to process HTTP requests (default: -1)<br/>(env: LLAMA_ARG_THREADS_HTTP) |
|
||||
| `-spf, --system-prompt-file FNAME` | set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications |
|
||||
| `--log-format {text, json}` | log output format: json or text (default: json) |
|
||||
| `--metrics` | enable prometheus compatible metrics endpoint (default: disabled)<br/>(env: LLAMA_ARG_ENDPOINT_METRICS) |
|
||||
| `--no-slots` | disables slots monitoring endpoint (default: enabled)<br/>(env: LLAMA_ARG_NO_ENDPOINT_SLOTS) |
|
||||
| `--slot-save-path PATH` | path to save slot kv cache (default: disabled) |
|
||||
| `--chat-template JINJA_TEMPLATE` | set custom jinja chat template (default: template taken from model's metadata)<br/>if suffix/prefix are specified, template will be disabled<br/>only commonly used templates are accepted:<br/>https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template<br/>(env: LLAMA_ARG_CHAT_TEMPLATE) |
|
||||
| `-sps, --slot-prompt-similarity SIMILARITY` | how much the prompt of a request must match the prompt of a slot in order to use that slot (default: 0.50, 0.0 = disabled)<br/> |
|
||||
| `--lora-init-without-apply` | load LoRA adapters without applying them (apply later via POST /lora-adapters) (default: disabled) |
|
||||
| `-ld, --logdir LOGDIR` | path under which to save YAML logs (no logging if unset) |
|
||||
| `--log-test` | Log test |
|
||||
| `--log-disable` | Log disable |
|
||||
| `--log-enable` | Log enable |
|
||||
| `--log-new` | Log new |
|
||||
| `--log-append` | Log append |
|
||||
| `--log-file FNAME` | Log file |
|
||||
|
||||
Note: If both command line argument and environment variable are both set for the same param, the argument will take precedence over env var.
|
||||
|
||||
Example usage of docker compose with environment variables:
|
||||
|
||||
```yml
|
||||
services:
|
||||
llamacpp-server:
|
||||
image: ghcr.io/ggerganov/llama.cpp:server
|
||||
ports:
|
||||
- 8080:8080
|
||||
volumes:
|
||||
- ./models:/models
|
||||
environment:
|
||||
# alternatively, you can use "LLAMA_ARG_MODEL_URL" to download the model
|
||||
LLAMA_ARG_MODEL: /models/my_model.gguf
|
||||
LLAMA_ARG_CTX_SIZE: 4096
|
||||
LLAMA_ARG_N_PARALLEL: 2
|
||||
LLAMA_ARG_ENDPOINT_METRICS: 1
|
||||
LLAMA_ARG_PORT: 8080
|
||||
```
|
||||
usage: ./llama-server [options]
|
||||
|
||||
general:
|
||||
|
||||
-h, --help, --usage print usage and exit
|
||||
--version show version and build info
|
||||
-v, --verbose print verbose information
|
||||
--verbosity N set specific verbosity level (default: 0)
|
||||
--verbose-prompt print a verbose prompt before generation (default: false)
|
||||
--no-display-prompt don't print prompt at generation (default: false)
|
||||
-co, --color colorise output to distinguish prompt and user input from generations (default: false)
|
||||
-s, --seed SEED RNG seed (default: -1, use random seed for < 0)
|
||||
-t, --threads N number of threads to use during generation (default: 8)
|
||||
-tb, --threads-batch N number of threads to use during batch and prompt processing (default: same as --threads)
|
||||
-td, --threads-draft N number of threads to use during generation (default: same as --threads)
|
||||
-tbd, --threads-batch-draft N number of threads to use during batch and prompt processing (default: same as --threads-draft)
|
||||
--draft N number of tokens to draft for speculative decoding (default: 5)
|
||||
-ps, --p-split N speculative decoding split probability (default: 0.1)
|
||||
-lcs, --lookup-cache-static FNAME
|
||||
path to static lookup cache to use for lookup decoding (not updated by generation)
|
||||
-lcd, --lookup-cache-dynamic FNAME
|
||||
path to dynamic lookup cache to use for lookup decoding (updated by generation)
|
||||
-c, --ctx-size N size of the prompt context (default: 0, 0 = loaded from model)
|
||||
-n, --predict N number of tokens to predict (default: -1, -1 = infinity, -2 = until context filled)
|
||||
-b, --batch-size N logical maximum batch size (default: 2048)
|
||||
-ub, --ubatch-size N physical maximum batch size (default: 512)
|
||||
--keep N number of tokens to keep from the initial prompt (default: 0, -1 = all)
|
||||
--chunks N max number of chunks to process (default: -1, -1 = all)
|
||||
-fa, --flash-attn enable Flash Attention (default: disabled)
|
||||
-p, --prompt PROMPT prompt to start generation with
|
||||
in conversation mode, this will be used as system prompt
|
||||
(default: '')
|
||||
-f, --file FNAME a file containing the prompt (default: none)
|
||||
--in-file FNAME an input file (repeat to specify multiple files)
|
||||
-bf, --binary-file FNAME binary file containing the prompt (default: none)
|
||||
-e, --escape process escapes sequences (\n, \r, \t, \', \", \\) (default: true)
|
||||
--no-escape do not process escape sequences
|
||||
-ptc, --print-token-count N print token count every N tokens (default: -1)
|
||||
--prompt-cache FNAME file to cache prompt state for faster startup (default: none)
|
||||
--prompt-cache-all if specified, saves user input and generations to cache as well
|
||||
not supported with --interactive or other interactive options
|
||||
--prompt-cache-ro if specified, uses the prompt cache but does not update it
|
||||
-r, --reverse-prompt PROMPT halt generation at PROMPT, return control in interactive mode
|
||||
can be specified more than once for multiple prompts
|
||||
-sp, --special special tokens output enabled (default: false)
|
||||
-cnv, --conversation run in conversation mode, does not print special tokens and suffix/prefix
|
||||
if suffix/prefix are not specified, default chat template will be used
|
||||
(default: false)
|
||||
-i, --interactive run in interactive mode (default: false)
|
||||
-if, --interactive-first run in interactive mode and wait for input right away (default: false)
|
||||
-mli, --multiline-input allows you to write or paste multiple lines without ending each in '\'
|
||||
--in-prefix-bos prefix BOS to user inputs, preceding the `--in-prefix` string
|
||||
--in-prefix STRING string to prefix user inputs with (default: empty)
|
||||
--in-suffix STRING string to suffix after user inputs with (default: empty)
|
||||
--spm-infill use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: disabled)
|
||||
|
||||
sampling:
|
||||
|
||||
--samplers SAMPLERS samplers that will be used for generation in the order, separated by ';'
|
||||
(default: top_k;tfs_z;typical_p;top_p;min_p;temperature)
|
||||
--sampling-seq SEQUENCE simplified sequence for samplers that will be used (default: kfypmt)
|
||||
--ignore-eos ignore end of stream token and continue generating (implies --logit-bias EOS-inf)
|
||||
--penalize-nl penalize newline tokens (default: false)
|
||||
--temp N temperature (default: 0.8)
|
||||
--top-k N top-k sampling (default: 40, 0 = disabled)
|
||||
--top-p N top-p sampling (default: 0.9, 1.0 = disabled)
|
||||
--min-p N min-p sampling (default: 0.1, 0.0 = disabled)
|
||||
--tfs N tail free sampling, parameter z (default: 1.0, 1.0 = disabled)
|
||||
--typical N locally typical sampling, parameter p (default: 1.0, 1.0 = disabled)
|
||||
--repeat-last-n N last n tokens to consider for penalize (default: 64, 0 = disabled, -1 = ctx_size)
|
||||
--repeat-penalty N penalize repeat sequence of tokens (default: 1.0, 1.0 = disabled)
|
||||
--presence-penalty N repeat alpha presence penalty (default: 0.0, 0.0 = disabled)
|
||||
--frequency-penalty N repeat alpha frequency penalty (default: 0.0, 0.0 = disabled)
|
||||
--dynatemp-range N dynamic temperature range (default: 0.0, 0.0 = disabled)
|
||||
--dynatemp-exp N dynamic temperature exponent (default: 1.0)
|
||||
--mirostat N use Mirostat sampling.
|
||||
Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.
|
||||
(default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)
|
||||
--mirostat-lr N Mirostat learning rate, parameter eta (default: 0.1)
|
||||
--mirostat-ent N Mirostat target entropy, parameter tau (default: 5.0)
|
||||
-l TOKEN_ID(+/-)BIAS modifies the likelihood of token appearing in the completion,
|
||||
i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',
|
||||
or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'
|
||||
--cfg-negative-prompt PROMPT
|
||||
negative prompt to use for guidance (default: '')
|
||||
--cfg-negative-prompt-file FNAME
|
||||
negative prompt file to use for guidance
|
||||
--cfg-scale N strength of guidance (default: 1.0, 1.0 = disable)
|
||||
--chat-template JINJA_TEMPLATE
|
||||
set custom jinja chat template (default: template taken from model's metadata)
|
||||
if suffix/prefix are specified, template will be disabled
|
||||
only commonly used templates are accepted:
|
||||
https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
|
||||
|
||||
grammar:
|
||||
|
||||
--grammar GRAMMAR BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '')
|
||||
--grammar-file FNAME file to read grammar from
|
||||
-j, --json-schema SCHEMA JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object
|
||||
For schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead
|
||||
|
||||
embedding:
|
||||
|
||||
--pooling {none,mean,cls,last}
|
||||
pooling type for embeddings, use model default if unspecified
|
||||
--attention {causal,non-causal}
|
||||
attention type for embeddings, use model default if unspecified
|
||||
|
||||
context hacking:
|
||||
|
||||
--rope-scaling {none,linear,yarn}
|
||||
RoPE frequency scaling method, defaults to linear unless specified by the model
|
||||
--rope-scale N RoPE context scaling factor, expands context by a factor of N
|
||||
--rope-freq-base N RoPE base frequency, used by NTK-aware scaling (default: loaded from model)
|
||||
--rope-freq-scale N RoPE frequency scaling factor, expands context by a factor of 1/N
|
||||
--yarn-orig-ctx N YaRN: original context size of model (default: 0 = model training context size)
|
||||
--yarn-ext-factor N YaRN: extrapolation mix factor (default: -1.0, 0.0 = full interpolation)
|
||||
--yarn-attn-factor N YaRN: scale sqrt(t) or attention magnitude (default: 1.0)
|
||||
--yarn-beta-slow N YaRN: high correction dim or alpha (default: 1.0)
|
||||
--yarn-beta-fast N YaRN: low correction dim or beta (default: 32.0)
|
||||
-gan, --grp-attn-n N group-attention factor (default: 1)
|
||||
-gaw, --grp-attn-w N group-attention width (default: 512.0)
|
||||
-dkvc, --dump-kv-cache verbose print of the KV cache
|
||||
-nkvo, --no-kv-offload disable KV offload
|
||||
-ctk, --cache-type-k TYPE KV cache data type for K (default: f16)
|
||||
-ctv, --cache-type-v TYPE KV cache data type for V (default: f16)
|
||||
|
||||
perplexity:
|
||||
|
||||
--all-logits return logits for all tokens in the batch (default: false)
|
||||
--hellaswag compute HellaSwag score over random tasks from datafile supplied with -f
|
||||
--hellaswag-tasks N number of tasks to use when computing the HellaSwag score (default: 400)
|
||||
--winogrande compute Winogrande score over random tasks from datafile supplied with -f
|
||||
--winogrande-tasks N number of tasks to use when computing the Winogrande score (default: 0)
|
||||
--multiple-choice compute multiple choice score over random tasks from datafile supplied with -f
|
||||
--multiple-choice-tasks N
|
||||
number of tasks to use when computing the multiple choice score (default: 0)
|
||||
--kl-divergence computes KL-divergence to logits provided via --kl-divergence-base
|
||||
--ppl-stride N stride for perplexity calculation (default: 0)
|
||||
--ppl-output-type {0,1} output type for perplexity calculation (default: 0)
|
||||
|
||||
parallel:
|
||||
|
||||
-dt, --defrag-thold N KV cache defragmentation threshold (default: -1.0, < 0 - disabled)
|
||||
-np, --parallel N number of parallel sequences to decode (default: 1)
|
||||
-ns, --sequences N number of sequences to decode (default: 1)
|
||||
-cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: enabled)
|
||||
|
||||
multi-modality:
|
||||
|
||||
--mmproj FILE path to a multimodal projector file for LLaVA. see examples/llava/README.md
|
||||
--image FILE path to an image file. use with multimodal models. Specify multiple times for batching
|
||||
|
||||
backend:
|
||||
|
||||
--rpc SERVERS comma separated list of RPC servers
|
||||
--mlock force system to keep model in RAM rather than swapping or compressing
|
||||
--no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)
|
||||
--numa TYPE attempt optimizations that help on some NUMA systems
|
||||
- distribute: spread execution evenly over all nodes
|
||||
- isolate: only spawn threads on CPUs on the node that execution started on
|
||||
- numactl: use the CPU map provided by numactl
|
||||
if run without this previously, it is recommended to drop the system page cache before using this
|
||||
see https://github.com/ggerganov/llama.cpp/issues/1437
|
||||
|
||||
model:
|
||||
|
||||
--check-tensors check model tensor data for invalid values (default: false)
|
||||
--override-kv KEY=TYPE:VALUE
|
||||
advanced option to override model metadata by key. may be specified multiple times.
|
||||
types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false
|
||||
--lora FNAME apply LoRA adapter (implies --no-mmap)
|
||||
--lora-scaled FNAME S apply LoRA adapter with user defined scaling S (implies --no-mmap)
|
||||
--lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter
|
||||
--control-vector FNAME add a control vector
|
||||
note: this argument can be repeated to add multiple control vectors
|
||||
--control-vector-scaled FNAME SCALE
|
||||
add a control vector with user defined scaling SCALE
|
||||
note: this argument can be repeated to add multiple scaled control vectors
|
||||
--control-vector-layer-range START END
|
||||
layer range to apply the control vector(s) to, start and end inclusive
|
||||
-m, --model FNAME model path (default: models/$filename with filename from --hf-file
|
||||
or --model-url if set, otherwise models/7B/ggml-model-f16.gguf)
|
||||
-md, --model-draft FNAME draft model for speculative decoding (default: unused)
|
||||
-mu, --model-url MODEL_URL model download url (default: unused)
|
||||
-hfr, --hf-repo REPO Hugging Face model repository (default: unused)
|
||||
-hff, --hf-file FILE Hugging Face model file (default: unused)
|
||||
-hft, --hf-token TOKEN Hugging Face access token (default: value from HF_TOKEN environment variable)
|
||||
|
||||
server:
|
||||
|
||||
--host HOST ip address to listen (default: 127.0.0.1)
|
||||
--port PORT port to listen (default: 8080)
|
||||
--path PATH path to serve static files from (default: )
|
||||
--embedding(s) restrict to only support embedding use case; use only with dedicated embedding models (default: disabled)
|
||||
--api-key KEY API key to use for authentication (default: none)
|
||||
--api-key-file FNAME path to file containing API keys (default: none)
|
||||
--ssl-key-file FNAME path to file a PEM-encoded SSL private key
|
||||
--ssl-cert-file FNAME path to file a PEM-encoded SSL certificate
|
||||
--timeout N server read/write timeout in seconds (default: 600)
|
||||
--threads-http N number of threads used to process HTTP requests (default: -1)
|
||||
--system-prompt-file FNAME
|
||||
set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications
|
||||
--log-format {text,json}
|
||||
log output format: json or text (default: json)
|
||||
--metrics enable prometheus compatible metrics endpoint (default: disabled)
|
||||
--no-slots disables slots monitoring endpoint (default: enabled)
|
||||
--slot-save-path PATH path to save slot kv cache (default: disabled)
|
||||
--chat-template JINJA_TEMPLATE
|
||||
set custom jinja chat template (default: template taken from model's metadata)
|
||||
only commonly used templates are accepted:
|
||||
https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
|
||||
-sps, --slot-prompt-similarity SIMILARITY
|
||||
how much the prompt of a request must match the prompt of a slot in order to use that slot (default: 0.50, 0.0 = disabled)
|
||||
--lora-init-without-apply
|
||||
load LoRA adapters without applying them (apply later via POST /lora-adapters) (default: disabled)
|
||||
|
||||
logging:
|
||||
|
||||
--simple-io use basic IO for better compatibility in subprocesses and limited consoles
|
||||
-ld, --logdir LOGDIR path under which to save YAML logs (no logging if unset)
|
||||
--log-test Run simple logging test
|
||||
--log-disable Disable trace logs
|
||||
--log-enable Enable trace logs
|
||||
--log-file FNAME Specify a log filename (without extension)
|
||||
--log-new Create a separate new log file on start. Each log file will have unique name: "<name>.<ID>.log"
|
||||
--log-append Don't truncate the old log file.
|
||||
```
|
||||
|
||||
|
||||
## Build
|
||||
|
||||
@@ -334,6 +425,8 @@ node index.js
|
||||
|
||||
`frequency_penalty`: Repeat alpha frequency penalty. Default: `0.0`, which is disabled.
|
||||
|
||||
`penalty_prompt`: This will replace the `prompt` for the purpose of the penalty evaluation. Can be either `null`, a string or an array of numbers representing tokens. Default: `null`, which is to use the original `prompt`.
|
||||
|
||||
`mirostat`: Enable Mirostat sampling, controlling perplexity during text generation. Default: `0`, where `0` is disabled, `1` is Mirostat, and `2` is Mirostat 2.0.
|
||||
|
||||
`mirostat_tau`: Set the Mirostat target entropy, parameter tau. Default: `5.0`
|
||||
@@ -407,44 +500,9 @@ Notice that each `probs` is an array of length `n_probs`.
|
||||
|
||||
*Options:*
|
||||
|
||||
`content`: (Required) The text to tokenize.
|
||||
`content`: Set the text to tokenize.
|
||||
|
||||
`add_special`: (Optional) Boolean indicating if special tokens, i.e. `BOS`, should be inserted. Default: `false`
|
||||
|
||||
`with_pieces`: (Optional) Boolean indicating whether to return token pieces along with IDs. Default: `false`
|
||||
|
||||
**Response:**
|
||||
|
||||
Returns a JSON object with a `tokens` field containing the tokenization result. The `tokens` array contains either just token IDs or objects with `id` and `piece` fields, depending on the `with_pieces` parameter. The piece field is a string if the piece is valid unicode or a list of bytes otherwise.
|
||||
|
||||
|
||||
If `with_pieces` is `false`:
|
||||
```json
|
||||
{
|
||||
"tokens": [123, 456, 789]
|
||||
}
|
||||
```
|
||||
|
||||
If `with_pieces` is `true`:
|
||||
```json
|
||||
{
|
||||
"tokens": [
|
||||
{"id": 123, "piece": "Hello"},
|
||||
{"id": 456, "piece": " world"},
|
||||
{"id": 789, "piece": "!"}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
With input 'á' (utf8 hex: C3 A1) on tinyllama/stories260k
|
||||
```json
|
||||
{
|
||||
"tokens": [
|
||||
{"id": 198, "piece": [195]}, // hex C3
|
||||
{"id": 164, "piece": [161]} // hex A1
|
||||
]
|
||||
}
|
||||
```
|
||||
`add_special`: Boolean indicating if special tokens, i.e. `BOS`, should be inserted. Default: `false`
|
||||
|
||||
### POST `/detokenize`: Convert tokens to text
|
||||
|
||||
@@ -621,6 +679,7 @@ Example:
|
||||
"stopping_word": ""
|
||||
},
|
||||
"penalize_nl": true,
|
||||
"penalty_prompt_tokens": [],
|
||||
"presence_penalty": 0.0,
|
||||
"prompt": "Say hello to llama.cpp",
|
||||
"repeat_last_n": 64,
|
||||
@@ -644,7 +703,8 @@ Example:
|
||||
"tfs_z": 1.0,
|
||||
"top_k": 40,
|
||||
"top_p": 0.949999988079071,
|
||||
"typical_p": 1.0
|
||||
"typical_p": 1.0,
|
||||
"use_penalty_prompt_tokens": false
|
||||
}
|
||||
]
|
||||
```
|
||||
|
||||
File diff suppressed because one or more lines are too long
@@ -1,12 +0,0 @@
|
||||
<!DOCTYPE html>
|
||||
<html>
|
||||
<head>
|
||||
<meta http-equiv="refresh" content="5">
|
||||
</head>
|
||||
<body>
|
||||
<div id="loading">
|
||||
The model is loading. Please wait.<br/>
|
||||
The user interface will appear soon.
|
||||
</div>
|
||||
</body>
|
||||
</html>
|
||||
File diff suppressed because it is too large
Load Diff
@@ -9,11 +9,8 @@ Feature: llama.cpp server
|
||||
And a model alias bert-bge-small
|
||||
And 42 as server seed
|
||||
And 2 slots
|
||||
# the bert-bge-small model has context size of 512
|
||||
# since the generated prompts are as big as the batch size, we need to set the batch size to 512
|
||||
# ref: https://huggingface.co/BAAI/bge-small-en-v1.5/blob/5c38ec7c405ec4b44b94cc5a9bb96e735b38267a/config.json#L20
|
||||
And 512 as batch size
|
||||
And 512 as ubatch size
|
||||
And 1024 as batch size
|
||||
And 1024 as ubatch size
|
||||
And 2048 KV cache size
|
||||
And embeddings extraction
|
||||
Then the server is starting
|
||||
|
||||
@@ -77,35 +77,6 @@ Feature: Parallel
|
||||
| disabled | 128 |
|
||||
| enabled | 64 |
|
||||
|
||||
Scenario Outline: Multi users with number of prompts exceeding number of slots
|
||||
Given a system prompt You are a writer.
|
||||
And a model tinyllama-2
|
||||
Given a prompt:
|
||||
"""
|
||||
Write a very long book.
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
Write another a poem.
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
What is LLM?
|
||||
"""
|
||||
And a prompt:
|
||||
"""
|
||||
The sky is blue and I love it.
|
||||
"""
|
||||
And <n_predict> max tokens to predict
|
||||
And streaming is <streaming>
|
||||
Given concurrent OAI completions requests
|
||||
Then the server is busy
|
||||
Then the server is idle
|
||||
Then all prompts are predicted with <n_predict> tokens
|
||||
Examples:
|
||||
| streaming | n_predict |
|
||||
| disabled | 128 |
|
||||
| enabled | 64 |
|
||||
|
||||
Scenario: Multi users with total number of tokens to predict exceeds the KV Cache size #3969
|
||||
Given a prompt:
|
||||
|
||||
@@ -15,7 +15,6 @@ Feature: Passkey / Self-extend with context shift
|
||||
And <n_junk> as number of junk
|
||||
And <n_predicted> server max tokens to predict
|
||||
And 42 as seed
|
||||
And 0.0 temperature
|
||||
And <n_ctx> KV cache size
|
||||
And 1 slots
|
||||
And <n_ga> group attention factor to extend context size through self-extend
|
||||
@@ -23,8 +22,7 @@ Feature: Passkey / Self-extend with context shift
|
||||
# Can be override with N_GPU_LAYERS
|
||||
And <ngl> GPU offloaded layers
|
||||
Then the server is starting
|
||||
# Higher timeout because the model may need to be downloaded from the internet
|
||||
Then the server is healthy with timeout 120 seconds
|
||||
Then the server is healthy
|
||||
Given available models
|
||||
Then model 0 is trained on <n_ctx_train> tokens context
|
||||
Given a prefix prompt:
|
||||
|
||||
@@ -105,14 +105,6 @@ Feature: llama.cpp server
|
||||
Given first token is removed
|
||||
Then tokens can be detokenized
|
||||
|
||||
Scenario: Tokenize with pieces
|
||||
When tokenizing with pieces:
|
||||
"""
|
||||
What is the capital of Germany?
|
||||
媽
|
||||
"""
|
||||
Then tokens are given with pieces
|
||||
|
||||
Scenario: Models available
|
||||
Given available models
|
||||
Then 1 models are supported
|
||||
|
||||
@@ -1,6 +1,3 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import asyncio
|
||||
import json
|
||||
import os
|
||||
@@ -26,8 +23,6 @@ from prometheus_client import parser
|
||||
|
||||
# pyright: reportRedeclaration=false
|
||||
|
||||
DEFAULT_TIMEOUT_SECONDS = aiohttp.ClientTimeout(total=600)
|
||||
|
||||
@step("a server listening on {server_fqdn}:{server_port}")
|
||||
def step_server_config(context, server_fqdn: str, server_port: str):
|
||||
context.server_fqdn = server_fqdn
|
||||
@@ -205,15 +200,17 @@ def step_start_server(context):
|
||||
time.sleep(0.1)
|
||||
|
||||
|
||||
async def wait_for_server_status_with_timeout(context, expecting_status: Literal['healthy', 'ready', 'idle', 'busy'] | str, timeout: int):
|
||||
@step("the server is {expecting_status}")
|
||||
@async_run_until_complete
|
||||
async def step_wait_for_the_server_to_be_started(context, expecting_status: Literal['healthy', 'ready', 'idle', 'busy'] | str):
|
||||
match expecting_status:
|
||||
case 'healthy':
|
||||
await wait_for_slots_status(context, context.base_url, 200,
|
||||
timeout=timeout)
|
||||
timeout=30)
|
||||
|
||||
case 'ready' | 'idle':
|
||||
await wait_for_slots_status(context, context.base_url, 200,
|
||||
timeout=timeout,
|
||||
timeout=30,
|
||||
params={'fail_on_no_slot': 1},
|
||||
slots_idle=context.n_slots,
|
||||
slots_processing=0)
|
||||
@@ -226,18 +223,6 @@ async def wait_for_server_status_with_timeout(context, expecting_status: Literal
|
||||
assert False, "unknown status"
|
||||
|
||||
|
||||
@step("the server is {expecting_status} with timeout {timeout:d} seconds")
|
||||
@async_run_until_complete
|
||||
async def step_wait_for_server_status_with_timeout(context, expecting_status: Literal['healthy', 'ready', 'idle', 'busy'] | str, timeout: int):
|
||||
await wait_for_server_status_with_timeout(context, expecting_status, timeout)
|
||||
|
||||
|
||||
@step("the server is {expecting_status}")
|
||||
@async_run_until_complete
|
||||
async def step_wait_for_server_status(context, expecting_status: Literal['healthy', 'ready', 'idle', 'busy'] | str):
|
||||
await wait_for_server_status_with_timeout(context, expecting_status, 30)
|
||||
|
||||
|
||||
@step('all slots are {expected_slot_status_string}')
|
||||
@async_run_until_complete
|
||||
async def step_all_slots_status(context, expected_slot_status_string: Literal['idle', 'busy'] | str):
|
||||
@@ -700,37 +685,11 @@ def step_tokenize_set_add_special(context):
|
||||
context.tokenize_add_special = True
|
||||
|
||||
|
||||
@step("tokenizing with pieces")
|
||||
@async_run_until_complete
|
||||
async def step_tokenize_with_pieces(context):
|
||||
context.tokenized_text = context_text(context)
|
||||
async with aiohttp.ClientSession() as session:
|
||||
tokenize_args = {"content": context.tokenized_text, "with_pieces": True}
|
||||
if getattr(context, "tokenize_add_special", None) is not None:
|
||||
tokenize_args["add_special"] = context.tokenize_add_special
|
||||
|
||||
async with session.post(
|
||||
f"{context.base_url}/tokenize", json=tokenize_args
|
||||
) as response:
|
||||
assert response.status == 200
|
||||
tokenize_json = await response.json()
|
||||
context.tokens_with_pieces = tokenize_json["tokens"]
|
||||
|
||||
|
||||
@step("tokens are given with pieces")
|
||||
@async_run_until_complete
|
||||
async def step_tokenize_with_pieces(context):
|
||||
# Verify that the response contains both token IDs and pieces
|
||||
assert all(
|
||||
"id" in token and "piece" in token for token in context.tokens_with_pieces
|
||||
)
|
||||
|
||||
|
||||
@step('tokenizing')
|
||||
@async_run_until_complete
|
||||
async def step_tokenize(context):
|
||||
context.tokenized_text = context_text(context)
|
||||
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
|
||||
async with aiohttp.ClientSession() as session:
|
||||
tokenize_args = {
|
||||
"content": context.tokenized_text,
|
||||
}
|
||||
@@ -747,7 +706,7 @@ async def step_tokenize(context):
|
||||
@async_run_until_complete
|
||||
async def step_detokenize(context):
|
||||
assert len(context.tokens) > 0
|
||||
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.post(f'{context.base_url}/detokenize',
|
||||
json={
|
||||
"tokens": context.tokens,
|
||||
@@ -776,7 +735,7 @@ def step_strings_for_tokenization(context):
|
||||
@step('an OPTIONS request is sent from {origin}')
|
||||
@async_run_until_complete
|
||||
async def step_options_request(context, origin):
|
||||
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
|
||||
async with aiohttp.ClientSession() as session:
|
||||
headers = {'Authorization': f'Bearer {context.user_api_key}', 'Origin': origin}
|
||||
async with session.options(f'{context.base_url}/v1/chat/completions',
|
||||
headers=headers) as response:
|
||||
@@ -792,7 +751,7 @@ def step_check_options_header_value(context, cors_header, cors_header_value):
|
||||
@step('prometheus metrics are exposed')
|
||||
@async_run_until_complete
|
||||
async def step_prometheus_metrics_exported(context):
|
||||
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with await session.get(f'{context.base_url}/metrics') as metrics_response:
|
||||
assert metrics_response.status == 200
|
||||
assert metrics_response.headers['Content-Type'] == "text/plain; version=0.0.4"
|
||||
@@ -859,13 +818,13 @@ async def concurrent_requests(context, f_completion, *args, **kwargs):
|
||||
for prompt_no in range(context.n_prompts):
|
||||
shifted_args = [context.prompts.pop(), seeds[prompt_no], *args]
|
||||
context.concurrent_tasks.append(asyncio.create_task(f_completion(*shifted_args, **kwargs)))
|
||||
await asyncio.sleep(0.01)
|
||||
await asyncio.sleep(0.1)
|
||||
|
||||
|
||||
@step('the slot {slot_id:d} is saved with filename "{filename}"')
|
||||
@async_run_until_complete
|
||||
async def step_save_slot(context, slot_id, filename):
|
||||
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.post(f'{context.base_url}/slots/{slot_id}?action=save',
|
||||
json={"filename": filename},
|
||||
headers={"Content-Type": "application/json"}) as response:
|
||||
@@ -875,7 +834,7 @@ async def step_save_slot(context, slot_id, filename):
|
||||
@step('the slot {slot_id:d} is restored with filename "{filename}"')
|
||||
@async_run_until_complete
|
||||
async def step_restore_slot(context, slot_id, filename):
|
||||
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.post(f'{context.base_url}/slots/{slot_id}?action=restore',
|
||||
json={"filename": filename},
|
||||
headers={"Content-Type": "application/json"}) as response:
|
||||
@@ -885,7 +844,7 @@ async def step_restore_slot(context, slot_id, filename):
|
||||
@step('the slot {slot_id:d} is erased')
|
||||
@async_run_until_complete
|
||||
async def step_erase_slot(context, slot_id):
|
||||
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.post(f'{context.base_url}/slots/{slot_id}?action=erase',
|
||||
headers={"Content-Type": "application/json"}) as response:
|
||||
context.response = response
|
||||
@@ -894,7 +853,7 @@ async def step_erase_slot(context, slot_id):
|
||||
@step('switch {on_or_off} lora adapter {lora_id:d}')
|
||||
@async_run_until_complete
|
||||
async def toggle_lora_adapter(context, on_or_off: str, lora_id: int):
|
||||
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.post(f'{context.base_url}/lora-adapters',
|
||||
json=[{'id': lora_id, 'scale': 1 if on_or_off == 'on' else 0}],
|
||||
headers={"Content-Type": "application/json"}) as response:
|
||||
@@ -930,7 +889,7 @@ async def request_completion(prompt,
|
||||
print(f"Set user_api_key: {user_api_key}")
|
||||
headers['Authorization'] = f'Bearer {user_api_key}'
|
||||
|
||||
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.post(f'{base_url}/completion',
|
||||
json={
|
||||
"input_prefix": prompt_prefix,
|
||||
@@ -943,7 +902,8 @@ async def request_completion(prompt,
|
||||
"temperature": temperature if temperature is not None else 0.8,
|
||||
"n_probs": 2,
|
||||
},
|
||||
headers=headers) as response:
|
||||
headers=headers,
|
||||
timeout=3600) as response:
|
||||
if expect_api_error is None or not expect_api_error:
|
||||
assert response.status == 200
|
||||
assert response.headers['Access-Control-Allow-Origin'] == origin
|
||||
@@ -1001,7 +961,7 @@ async def oai_chat_completions(user_prompt,
|
||||
if async_client:
|
||||
origin = 'llama.cpp'
|
||||
headers = {'Authorization': f'Bearer {user_api_key}', 'Origin': origin}
|
||||
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.post(f'{base_url}{base_path}',
|
||||
json=payload,
|
||||
headers=headers) as response:
|
||||
@@ -1020,8 +980,6 @@ async def oai_chat_completions(user_prompt,
|
||||
event_data = line.split(': ', 1)
|
||||
assert event_data[0] == 'data', f'Bad event code received: ```{event_data}```'
|
||||
chunk_raw = event_data[1]
|
||||
if chunk_raw == '[DONE]':
|
||||
break
|
||||
|
||||
chunk = json.loads(chunk_raw)
|
||||
assert len(chunk['choices']) == 1, f"no choices provided, line ```{line}```"
|
||||
@@ -1090,7 +1048,7 @@ async def oai_chat_completions(user_prompt,
|
||||
|
||||
|
||||
async def request_embedding(content, seed, base_url=None) -> list[list[float]]:
|
||||
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.post(f'{base_url}/embedding',
|
||||
json={
|
||||
"content": content,
|
||||
@@ -1110,13 +1068,14 @@ async def request_oai_embeddings(input, seed,
|
||||
headers=[]
|
||||
if user_api_key is not None:
|
||||
headers = {'Authorization': f'Bearer {user_api_key}', 'Origin': origin}
|
||||
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.post(f'{base_url}/v1/embeddings',
|
||||
json={
|
||||
"input": input,
|
||||
"model": model,
|
||||
},
|
||||
headers=headers) as response:
|
||||
headers=headers,
|
||||
timeout=3600) as response:
|
||||
assert response.status == 200, f"received status code not expected: {response.status}"
|
||||
assert response.headers['Access-Control-Allow-Origin'] == origin
|
||||
assert response.headers['Content-Type'] == "application/json; charset=utf-8"
|
||||
@@ -1235,7 +1194,7 @@ async def wait_for_slots_status(context,
|
||||
if 'GITHUB_ACTIONS' in os.environ:
|
||||
timeout *= 2
|
||||
|
||||
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
|
||||
async with aiohttp.ClientSession() as session:
|
||||
while True:
|
||||
async with await session.get(f'{base_url}/slots', params=params) as slots_response:
|
||||
status_code = slots_response.status
|
||||
@@ -1278,7 +1237,7 @@ def assert_embeddings(embeddings):
|
||||
|
||||
|
||||
async def request_slots_status(context, expected_slots):
|
||||
async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with await session.get(f'{context.base_url}/slots') as slots_response:
|
||||
assert slots_response.status == 200
|
||||
slots = await slots_response.json()
|
||||
|
||||
@@ -8,12 +8,9 @@ Feature: Wrong usage of llama.cpp server
|
||||
Scenario: Infinite loop
|
||||
Given a server listening on localhost:8080
|
||||
And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models
|
||||
And 42 as server seed
|
||||
And 2048 KV cache size
|
||||
# Uncomment below to fix the issue
|
||||
#And 64 server max tokens to predict
|
||||
Then the server is starting
|
||||
Then the server is healthy
|
||||
Given a prompt:
|
||||
"""
|
||||
Go to: infinite loop
|
||||
|
||||
@@ -3,14 +3,6 @@
|
||||
#include "llama.h"
|
||||
#include "common.h"
|
||||
|
||||
#ifndef NDEBUG
|
||||
// crash the server in debug mode, otherwise send an http 500 error
|
||||
#define CPPHTTPLIB_NO_EXCEPTIONS 1
|
||||
#endif
|
||||
// increase max payload length to allow use of larger context size
|
||||
#define CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 1048576
|
||||
#include "httplib.h"
|
||||
|
||||
// Change JSON_ASSERT from assert() to GGML_ASSERT:
|
||||
#define JSON_ASSERT GGML_ASSERT
|
||||
#include "json.hpp"
|
||||
@@ -287,18 +279,6 @@ static size_t find_partial_stop_string(const std::string &stop, const std::strin
|
||||
return std::string::npos;
|
||||
}
|
||||
|
||||
static bool json_is_array_of_numbers(json data) {
|
||||
if (data.is_array()) {
|
||||
for (const auto & e : data) {
|
||||
if (!e.is_number()) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// TODO: reuse llama_detokenize
|
||||
template <class Iter>
|
||||
static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) {
|
||||
@@ -363,19 +343,6 @@ static json probs_vector_to_json(const llama_context * ctx, const std::vector<co
|
||||
return out;
|
||||
}
|
||||
|
||||
static bool server_sent_event(httplib::DataSink & sink, const char * event, json & data) {
|
||||
const std::string str =
|
||||
std::string(event) + ": " +
|
||||
data.dump(-1, ' ', false, json::error_handler_t::replace) +
|
||||
"\n\n";
|
||||
|
||||
LOG_VERBOSE("data stream", {
|
||||
{ "to_send", str }
|
||||
});
|
||||
|
||||
return sink.write(str.c_str(), str.size());
|
||||
}
|
||||
|
||||
//
|
||||
// OAI utils
|
||||
//
|
||||
@@ -616,40 +583,7 @@ static json format_embeddings_response_oaicompat(const json & request, const jso
|
||||
return res;
|
||||
}
|
||||
|
||||
static bool is_valid_utf8(const std::string & str) {
|
||||
const unsigned char* bytes = reinterpret_cast<const unsigned char*>(str.data());
|
||||
const unsigned char* end = bytes + str.length();
|
||||
|
||||
while (bytes < end) {
|
||||
if (*bytes <= 0x7F) {
|
||||
// 1-byte sequence (0xxxxxxx)
|
||||
bytes++;
|
||||
} else if ((*bytes & 0xE0) == 0xC0) {
|
||||
// 2-byte sequence (110xxxxx 10xxxxxx)
|
||||
if (end - bytes < 2 || (bytes[1] & 0xC0) != 0x80)
|
||||
return false;
|
||||
bytes += 2;
|
||||
} else if ((*bytes & 0xF0) == 0xE0) {
|
||||
// 3-byte sequence (1110xxxx 10xxxxxx 10xxxxxx)
|
||||
if (end - bytes < 3 || (bytes[1] & 0xC0) != 0x80 || (bytes[2] & 0xC0) != 0x80)
|
||||
return false;
|
||||
bytes += 3;
|
||||
} else if ((*bytes & 0xF8) == 0xF0) {
|
||||
// 4-byte sequence (11110xxx 10xxxxxx 10xxxxxx 10xxxxxx)
|
||||
if (end - bytes < 4 || (bytes[1] & 0xC0) != 0x80 ||
|
||||
(bytes[2] & 0xC0) != 0x80 || (bytes[3] & 0xC0) != 0x80)
|
||||
return false;
|
||||
bytes += 4;
|
||||
} else {
|
||||
// Invalid UTF-8 lead byte
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static json format_tokenizer_response(const json & tokens) {
|
||||
static json format_tokenizer_response(const std::vector<llama_token> & tokens) {
|
||||
return json {
|
||||
{"tokens", tokens}
|
||||
};
|
||||
|
||||
@@ -1,4 +1,3 @@
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
|
||||
@@ -7,7 +6,9 @@
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
static void print_usage(int, char ** argv) {
|
||||
static void print_usage(int argc, char ** argv, const gpt_params & params) {
|
||||
gpt_params_print_usage(argc, argv, params);
|
||||
|
||||
LOG_TEE("\nexample usage:\n");
|
||||
LOG_TEE("\n %s -m model.gguf -p \"Hello my name is\" -n 32\n", argv[0]);
|
||||
LOG_TEE("\n");
|
||||
@@ -19,7 +20,8 @@ int main(int argc, char ** argv) {
|
||||
params.prompt = "Hello my name is";
|
||||
params.n_predict = 32;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON, print_usage)) {
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
print_usage(argc, argv, params);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@@ -53,14 +55,6 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
auto sparams = llama_sampler_chain_default_params();
|
||||
|
||||
sparams.no_perf = false;
|
||||
|
||||
llama_sampler * smpl = llama_sampler_chain_init(sparams);
|
||||
|
||||
llama_sampler_chain_add(smpl, llama_sampler_init_greedy());
|
||||
|
||||
// tokenize the prompt
|
||||
|
||||
std::vector<llama_token> tokens_list;
|
||||
@@ -116,7 +110,20 @@ int main(int argc, char ** argv) {
|
||||
while (n_cur <= n_predict) {
|
||||
// sample the next token
|
||||
{
|
||||
const llama_token new_token_id = llama_sampler_sample(smpl, ctx, batch.n_tokens - 1);
|
||||
auto n_vocab = llama_n_vocab(model);
|
||||
auto * logits = llama_get_logits_ith(ctx, batch.n_tokens - 1);
|
||||
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
|
||||
}
|
||||
|
||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||
|
||||
// sample the most likely token
|
||||
const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
|
||||
|
||||
// is it an end of generation?
|
||||
if (llama_token_is_eog(model, new_token_id) || n_cur == n_predict) {
|
||||
@@ -153,14 +160,12 @@ int main(int argc, char ** argv) {
|
||||
LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
|
||||
__func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
|
||||
|
||||
LOG_TEE("\n");
|
||||
llama_perf_sampler_print(smpl);
|
||||
llama_perf_context_print(ctx);
|
||||
llama_print_timings(ctx);
|
||||
|
||||
fprintf(stderr, "\n");
|
||||
|
||||
llama_batch_free(batch);
|
||||
llama_sampler_free(smpl);
|
||||
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
||||
|
||||
@@ -1,13 +1,11 @@
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "sampling.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <set>
|
||||
#include <random>
|
||||
|
||||
#define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 100
|
||||
#define SPEC_VOCAB_CHECK_START_TOKEN_ID 5
|
||||
@@ -23,13 +21,14 @@ struct seq_draft {
|
||||
std::vector<llama_token> tokens;
|
||||
std::vector<std::vector<llama_token_data>> dists;
|
||||
|
||||
struct gpt_sampler * smpl = nullptr;
|
||||
struct llama_sampling_context * ctx_sampling;
|
||||
};
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_SPECULATIVE)) {
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
gpt_params_print_usage(argc, argv, params);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@@ -44,7 +43,10 @@ int main(int argc, char ** argv) {
|
||||
// probability threshold for splitting a draft branch (only for n_seq_dft > 1)
|
||||
const float p_split = params.p_split;
|
||||
|
||||
std::default_random_engine rng(params.sparams.seed);
|
||||
if (params.seed == LLAMA_DEFAULT_SEED) {
|
||||
params.seed = time(NULL);
|
||||
}
|
||||
std::default_random_engine rng(params.seed);
|
||||
std::uniform_real_distribution<> u_dist;
|
||||
|
||||
#ifndef LOG_DISABLE_LOGS
|
||||
@@ -71,11 +73,10 @@ int main(int argc, char ** argv) {
|
||||
// load the draft model
|
||||
params.model = params.model_draft;
|
||||
params.n_gpu_layers = params.n_gpu_layers_draft;
|
||||
if (params.draft_cpuparams.n_threads > 0) {
|
||||
params.cpuparams.n_threads = params.draft_cpuparams.n_threads;
|
||||
if (params.n_threads_draft > 0) {
|
||||
params.n_threads = params.n_threads_draft;
|
||||
}
|
||||
|
||||
params.cpuparams_batch.n_threads = params.draft_cpuparams_batch.n_threads;
|
||||
params.n_threads_batch = params.n_threads_batch_draft;
|
||||
llama_init_result llama_init_dft = llama_init_from_gpt_params(params);
|
||||
model_dft = llama_init_dft.model;
|
||||
ctx_dft = llama_init_dft.context;
|
||||
@@ -177,17 +178,19 @@ int main(int argc, char ** argv) {
|
||||
// used to determine end of generation
|
||||
bool has_eos = false;
|
||||
|
||||
// target model sampling context (reuse the llama_context's sampling instance)
|
||||
struct gpt_sampler * smpl = gpt_sampler_init(model_tgt, params.sparams);
|
||||
|
||||
struct llama_sampler * softmax = llama_sampler_init_softmax();
|
||||
// target model sampling context
|
||||
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams);
|
||||
|
||||
// draft sequence data
|
||||
std::vector<seq_draft> drafts(n_seq_dft);
|
||||
|
||||
params.sparams.grammar.clear(); // the draft samplers will copy the target sampler's grammar
|
||||
if (params.sparams.temp == 0) {
|
||||
params.sparams.temp = -1.0f; // force greedy sampling with probs for the draft model
|
||||
}
|
||||
|
||||
for (int s = 0; s < n_seq_dft; ++s) {
|
||||
// allocate gpt_sampler for each draft sequence
|
||||
drafts[s].smpl = gpt_sampler_init(model_dft, params.sparams);
|
||||
drafts[s].ctx_sampling = llama_sampling_init(params.sparams);
|
||||
}
|
||||
|
||||
llama_batch batch_dft = llama_batch_init(params.n_ctx, 0, 1);
|
||||
@@ -229,12 +232,12 @@ int main(int argc, char ** argv) {
|
||||
bool accept = false;
|
||||
if (params.sparams.temp > 0) {
|
||||
// stochastic verification
|
||||
gpt_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft], true);
|
||||
|
||||
auto & dist_tgt = *gpt_sampler_get_candidates(smpl);
|
||||
llama_token_data_array dist_tgt = llama_sampling_prepare(ctx_sampling, ctx_tgt, NULL, drafts[s_keep].i_batch_tgt[i_dft], true, NULL);
|
||||
llama_sample_softmax(ctx_tgt, &dist_tgt);
|
||||
float p_tgt = 0, p_dft = 0;
|
||||
|
||||
float p_tgt = 0.0f;
|
||||
float p_dft = 0.0f;
|
||||
// GGML_ASSERT(dist_tgt.size() == dist_dft.size());
|
||||
|
||||
while (active_seqs.size() > 0) {
|
||||
// randomly select a sequence to verify from active sequences
|
||||
@@ -253,13 +256,9 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
LOG("verifying sequence #%d at pos #%d from %d active sequence(s)\n", s, i_dft, (int) active_seqs.size());
|
||||
float r = u_dist(rng);
|
||||
llama_token_data_array dist_dft = { drafts[s].dists[i_dft].data() , drafts[s].dists[i_dft].size(), LLAMA_TOKEN_NULL, true };
|
||||
|
||||
//GGML_ASSERT(dist_tgt.size <= dist_dft.size);
|
||||
|
||||
llama_token_data_array dist_dft = { drafts[s].dists[i_dft].data() , drafts[s].dists[i_dft].size(), true };
|
||||
// acquire the token probabilities assigned by the draft and target models
|
||||
for (size_t i = 0; i < dist_tgt.size; i++) {
|
||||
if (dist_tgt.data[i].id == drafts[s].tokens[i_dft]) {
|
||||
@@ -278,7 +277,7 @@ int main(int argc, char ** argv) {
|
||||
accept = true;
|
||||
token_id = drafts[s].tokens[i_dft];
|
||||
token_str = llama_token_to_piece(ctx_tgt, token_id);
|
||||
gpt_sampler_accept(smpl, token_id, true);
|
||||
llama_sampling_accept(ctx_sampling, ctx_tgt, token_id, true);
|
||||
|
||||
LOG("draft token %d of sequence %d (%d, '%s') accepted\n", i_dft, s, token_id, token_str.c_str());
|
||||
break;
|
||||
@@ -289,6 +288,7 @@ int main(int argc, char ** argv) {
|
||||
// calculate residual probability
|
||||
GGML_ASSERT(dist_tgt.sorted);
|
||||
GGML_ASSERT(dist_dft.sorted);
|
||||
float sum_probs = 0.0f;
|
||||
|
||||
// sort dist by id
|
||||
std::sort(dist_tgt.data, dist_tgt.data + dist_tgt.size, [](const llama_token_data &a, const llama_token_data &b) {
|
||||
@@ -298,18 +298,10 @@ int main(int argc, char ** argv) {
|
||||
return a.id < b.id;
|
||||
});
|
||||
|
||||
float sum_probs = 0.0f;
|
||||
|
||||
for (size_t i = 0; i < dist_tgt.size; i++) {
|
||||
if (i < dist_dft.size) {
|
||||
dist_tgt.data[i].p = std::max(0.0f, dist_tgt.data[i].p - dist_dft.data[i].p);
|
||||
} else {
|
||||
dist_tgt.data[i].p = std::max(0.0f, dist_tgt.data[i].p);
|
||||
}
|
||||
|
||||
dist_tgt.data[i].p = std::max(0.0f, dist_tgt.data[i].p - dist_dft.data[i].p);
|
||||
sum_probs += dist_tgt.data[i].p;
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < dist_tgt.size; i++) {
|
||||
dist_tgt.data[i].p /= sum_probs;
|
||||
}
|
||||
@@ -339,29 +331,21 @@ int main(int argc, char ** argv) {
|
||||
// all drafted tokens were rejected
|
||||
// sample from the target model
|
||||
LOG("all drafted tokens were rejected, sampling from residual distribution\n");
|
||||
std::vector<float> probs(dist_tgt.size);
|
||||
for (size_t i = 0; i < dist_tgt.size; ++i) {
|
||||
probs[i] = dist_tgt.data[i].p;
|
||||
}
|
||||
|
||||
std::discrete_distribution<> dist(probs.begin(), probs.end());
|
||||
|
||||
const int idx = dist(rng);
|
||||
|
||||
token_id = dist_tgt.data[idx].id;
|
||||
gpt_sampler_accept(smpl, token_id, true);
|
||||
token_id = llama_sample_token(ctx_tgt, &dist_tgt);
|
||||
llama_sampling_accept(ctx_sampling, ctx_tgt, token_id, true);
|
||||
token_str = llama_token_to_piece(ctx_tgt, token_id);
|
||||
}
|
||||
|
||||
} else {
|
||||
// greedy verification
|
||||
|
||||
// sample from the target model
|
||||
LOG("sampling target: s_keep = %3d, i_dft = %3d, i_batch_tgt = %3d\n", s_keep, i_dft, drafts[s_keep].i_batch_tgt[i_dft]);
|
||||
token_id = gpt_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft]);
|
||||
token_id = llama_sampling_sample(ctx_sampling, ctx_tgt, NULL, drafts[s_keep].i_batch_tgt[i_dft]);
|
||||
|
||||
gpt_sampler_accept(smpl, token_id, true);
|
||||
llama_sampling_accept(ctx_sampling, ctx_tgt, token_id, true);
|
||||
|
||||
//LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_tgt, smpl->prev).c_str());
|
||||
//LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_tgt, ctx_sampling->prev).c_str());
|
||||
|
||||
token_str = llama_token_to_piece(ctx_tgt, token_id);
|
||||
|
||||
@@ -449,10 +433,7 @@ int main(int argc, char ** argv) {
|
||||
break;
|
||||
}
|
||||
|
||||
if (drafts[0].smpl) {
|
||||
gpt_sampler_free(drafts[0].smpl);
|
||||
}
|
||||
drafts[0].smpl = gpt_sampler_clone(smpl);
|
||||
llama_sampling_cp(ctx_sampling, drafts[0].ctx_sampling);
|
||||
|
||||
int n_seq_cur = 1;
|
||||
int n_past_cur = n_past_dft;
|
||||
@@ -481,20 +462,20 @@ int main(int argc, char ** argv) {
|
||||
continue;
|
||||
}
|
||||
|
||||
gpt_sampler_sample(drafts[s].smpl, ctx_dft, drafts[s].i_batch_dft, true);
|
||||
llama_sampling_sample(drafts[s].ctx_sampling, ctx_dft, NULL, drafts[s].i_batch_dft);
|
||||
|
||||
const auto * cur_p = gpt_sampler_get_candidates(drafts[s].smpl);
|
||||
const auto & cur_p = drafts[s].ctx_sampling->cur;
|
||||
|
||||
for (int k = 0; k < std::min(n_seq_dft + 3, (int) cur_p->size); ++k) {
|
||||
for (int k = 0; k < std::min(n_seq_dft + 3, (int) cur_p.size()); ++k) {
|
||||
LOG(" - draft candidate %3d for seq %3d, pos %3d: %6d (%8.3f) '%s'\n",
|
||||
k, s, i, cur_p->data[k].id, cur_p->data[k].p, llama_token_to_piece(ctx_dft, cur_p->data[k].id).c_str());
|
||||
k, s, i, cur_p[k].id, cur_p[k].p, llama_token_to_piece(ctx_dft, cur_p[k].id).c_str());
|
||||
}
|
||||
|
||||
std::vector<int> sa(1, s);
|
||||
|
||||
// attempt to split the branch if the probability is high enough
|
||||
for (int f = 1; f < 8; ++f) {
|
||||
if (n_seq_cur < n_seq_dft && cur_p->data[f].p > p_split) {
|
||||
if (n_seq_cur < n_seq_dft && cur_p[f].p > p_split) {
|
||||
LOG("splitting seq %3d into %3d\n", s, n_seq_cur);
|
||||
|
||||
llama_kv_cache_seq_rm(ctx_dft, n_seq_cur, -1, -1);
|
||||
@@ -521,10 +502,7 @@ int main(int argc, char ** argv) {
|
||||
drafts[n_seq_cur].i_batch_dft = drafts[s].i_batch_dft;
|
||||
drafts[n_seq_cur].i_batch_tgt = drafts[s].i_batch_tgt;
|
||||
|
||||
if (drafts[n_seq_cur].smpl) {
|
||||
gpt_sampler_free(drafts[n_seq_cur].smpl);
|
||||
}
|
||||
drafts[n_seq_cur].smpl = gpt_sampler_clone(drafts[s].smpl);
|
||||
llama_sampling_cp(drafts[s].ctx_sampling, drafts[n_seq_cur].ctx_sampling);
|
||||
|
||||
sa.push_back(n_seq_cur);
|
||||
|
||||
@@ -536,15 +514,15 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// add drafted token for each sequence
|
||||
for (int is = 0; is < (int) sa.size(); ++is) {
|
||||
const llama_token id = cur_p->data[is].id;
|
||||
const llama_token id = cur_p[is].id;
|
||||
|
||||
const int s = sa[is];
|
||||
|
||||
gpt_sampler_accept(drafts[s].smpl, id, true);
|
||||
llama_sampling_accept(drafts[s].ctx_sampling, ctx_dft, id, true);
|
||||
|
||||
drafts[s].tokens.push_back(id);
|
||||
// save cur_p.data into drafts[s].dists
|
||||
drafts[s].dists.push_back({cur_p->data, cur_p->data + cur_p->size});
|
||||
drafts[s].dists.push_back(cur_p);
|
||||
|
||||
// add unique drafted tokens to the target batch
|
||||
drafts[s].i_batch_tgt.push_back(batch_tgt.n_tokens);
|
||||
@@ -614,19 +592,17 @@ int main(int argc, char ** argv) {
|
||||
LOG_TEE("n_accept = %d\n", n_accept);
|
||||
LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
|
||||
|
||||
LOG_TEE("\ndraft:\n\n");
|
||||
// TODO: print sampling/grammar timings for all drafts
|
||||
llama_perf_context_print(ctx_dft);
|
||||
LOG_TEE("\ndraft:\n");
|
||||
llama_print_timings(ctx_dft);
|
||||
|
||||
LOG_TEE("\ntarget:\n\n");
|
||||
gpt_perf_print(ctx_tgt, smpl);
|
||||
LOG_TEE("\ntarget:\n");
|
||||
llama_print_timings(ctx_tgt);
|
||||
|
||||
gpt_sampler_free(smpl);
|
||||
llama_sampling_free(ctx_sampling);
|
||||
for (int s = 0; s < n_seq_dft; ++s) {
|
||||
gpt_sampler_free(drafts[s].smpl);
|
||||
llama_sampling_free(drafts[s].ctx_sampling);
|
||||
}
|
||||
|
||||
llama_sampler_free(softmax);
|
||||
llama_batch_free(batch_dft);
|
||||
|
||||
llama_free(ctx_tgt);
|
||||
|
||||
@@ -4,23 +4,33 @@
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: MIT
|
||||
|
||||
INPUT2="Building a website can be done in 10 simple steps:\nStep 1:"
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
|
||||
#export GGML_SYCL_DEBUG=1
|
||||
|
||||
#ZES_ENABLE_SYSMAN=1, Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory. Recommended to use when --split-mode = layer.
|
||||
|
||||
INPUT_PROMPT="Building a website can be done in 10 simple steps:\nStep 1:"
|
||||
MODEL_FILE=llama-2-7b.Q4_0.gguf
|
||||
NGL=33
|
||||
|
||||
if [ $# -gt 0 ]; then
|
||||
GGML_SYCL_DEVICE=$1
|
||||
GGML_SYCL_SINGLE_GPU=1
|
||||
else
|
||||
GGML_SYCL_DEVICE=0
|
||||
GGML_SYCL_SINGLE_GPU=0
|
||||
fi
|
||||
|
||||
#export GGML_SYCL_DEBUG=1
|
||||
|
||||
|
||||
#ZES_ENABLE_SYSMAN=1, Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory. Recommended to use when --split-mode = layer.
|
||||
|
||||
if [ $GGML_SYCL_SINGLE_GPU -eq 1 ]; then
|
||||
echo "use $GGML_SYCL_DEVICE as main GPU"
|
||||
#use signle GPU only
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/${MODEL_FILE} -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -mg $GGML_SYCL_DEVICE -sm none
|
||||
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/llama-2-7b.Q4_0.gguf -p "${INPUT2}" -n 400 -e -ngl 33 -s 0 -mg $GGML_SYCL_DEVICE -sm none
|
||||
else
|
||||
#use multiple GPUs with same max compute units
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/${MODEL_FILE} -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/llama-2-7b.Q4_0.gguf -p "${INPUT2}" -n 400 -e -ngl 33 -s 0
|
||||
fi
|
||||
|
||||
#use main GPU only
|
||||
#ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/llama-2-7b.Q4_0.gguf -p "${INPUT2}" -n 400 -e -ngl 33 -s 0 -mg $GGML_SYCL_DEVICE -sm none
|
||||
|
||||
#use multiple GPUs with same max compute units
|
||||
#ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/llama-2-7b.Q4_0.gguf -p "${INPUT2}" -n 400 -e -ngl 33 -s 0
|
||||
|
||||
20
flake.lock
generated
20
flake.lock
generated
@@ -5,11 +5,11 @@
|
||||
"nixpkgs-lib": "nixpkgs-lib"
|
||||
},
|
||||
"locked": {
|
||||
"lastModified": 1725234343,
|
||||
"narHash": "sha256-+ebgonl3NbiKD2UD0x4BszCZQ6sTfL4xioaM49o5B3Y=",
|
||||
"lastModified": 1722555600,
|
||||
"narHash": "sha256-XOQkdLafnb/p9ij77byFQjDf5m5QYl9b2REiVClC+x4=",
|
||||
"owner": "hercules-ci",
|
||||
"repo": "flake-parts",
|
||||
"rev": "567b938d64d4b4112ee253b9274472dc3a346eb6",
|
||||
"rev": "8471fe90ad337a8074e957b69ca4d0089218391d",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
@@ -20,11 +20,11 @@
|
||||
},
|
||||
"nixpkgs": {
|
||||
"locked": {
|
||||
"lastModified": 1725634671,
|
||||
"narHash": "sha256-v3rIhsJBOMLR8e/RNWxr828tB+WywYIoajrZKFM+0Gg=",
|
||||
"lastModified": 1723637854,
|
||||
"narHash": "sha256-med8+5DSWa2UnOqtdICndjDAEjxr5D7zaIiK4pn0Q7c=",
|
||||
"owner": "NixOS",
|
||||
"repo": "nixpkgs",
|
||||
"rev": "574d1eac1c200690e27b8eb4e24887f8df7ac27c",
|
||||
"rev": "c3aa7b8938b17aebd2deecf7be0636000d62a2b9",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
@@ -36,14 +36,14 @@
|
||||
},
|
||||
"nixpkgs-lib": {
|
||||
"locked": {
|
||||
"lastModified": 1725233747,
|
||||
"narHash": "sha256-Ss8QWLXdr2JCBPcYChJhz4xJm+h/xjl4G0c0XlP6a74=",
|
||||
"lastModified": 1722555339,
|
||||
"narHash": "sha256-uFf2QeW7eAHlYXuDktm9c25OxOyCoUOQmh5SZ9amE5Q=",
|
||||
"type": "tarball",
|
||||
"url": "https://github.com/NixOS/nixpkgs/archive/356624c12086a18f2ea2825fed34523d60ccc4e3.tar.gz"
|
||||
"url": "https://github.com/NixOS/nixpkgs/archive/a5d394176e64ab29c852d03346c1fc9b0b7d33eb.tar.gz"
|
||||
},
|
||||
"original": {
|
||||
"type": "tarball",
|
||||
"url": "https://github.com/NixOS/nixpkgs/archive/356624c12086a18f2ea2825fed34523d60ccc4e3.tar.gz"
|
||||
"url": "https://github.com/NixOS/nixpkgs/archive/a5d394176e64ab29c852d03346c1fc9b0b7d33eb.tar.gz"
|
||||
}
|
||||
},
|
||||
"root": {
|
||||
|
||||
@@ -145,9 +145,7 @@
|
||||
# the same path you would with an overlay.
|
||||
legacyPackages = {
|
||||
llamaPackages = pkgs.callPackage .devops/nix/scope.nix { inherit llamaVersion; };
|
||||
llamaPackagesWindows = pkgs.pkgsCross.mingwW64.callPackage .devops/nix/scope.nix {
|
||||
inherit llamaVersion;
|
||||
};
|
||||
llamaPackagesWindows = pkgs.pkgsCross.mingwW64.callPackage .devops/nix/scope.nix { inherit llamaVersion; };
|
||||
llamaPackagesCuda = pkgsCuda.callPackage .devops/nix/scope.nix { inherit llamaVersion; };
|
||||
llamaPackagesRocm = pkgsRocm.callPackage .devops/nix/scope.nix { inherit llamaVersion; };
|
||||
};
|
||||
@@ -159,7 +157,6 @@
|
||||
default = config.legacyPackages.llamaPackages.llama-cpp;
|
||||
vulkan = config.packages.default.override { useVulkan = true; };
|
||||
windows = config.legacyPackages.llamaPackagesWindows.llama-cpp;
|
||||
python-scripts = config.legacyPackages.llamaPackages.python-scripts;
|
||||
}
|
||||
// lib.optionalAttrs pkgs.stdenv.isLinux {
|
||||
cuda = config.legacyPackages.llamaPackagesCuda.llama-cpp;
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user