mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2026-02-05 13:53:23 +02:00
Compare commits
264 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
c18610b4ee | ||
|
|
a5e47592b6 | ||
|
|
1bb30bf28c | ||
|
|
87a533be57 | ||
|
|
59b9172822 | ||
|
|
02e4eaf22f | ||
|
|
9abe9eeae9 | ||
|
|
f95caa7954 | ||
|
|
fab5d30ff6 | ||
|
|
8fd4b7fa29 | ||
|
|
1bacb9f625 | ||
|
|
ad21c9e1f1 | ||
|
|
3952a221af | ||
|
|
42ae10bbcd | ||
|
|
9fe0fb0626 | ||
|
|
611fabd792 | ||
|
|
12b0ad953a | ||
|
|
342397dc7e | ||
|
|
2a11b6b094 | ||
|
|
3ee6382d48 | ||
|
|
8e752a777b | ||
|
|
a88ad007de | ||
|
|
2a1507c162 | ||
|
|
b3e585988f | ||
|
|
557924f222 | ||
|
|
d3481e6316 | ||
|
|
531cb1c233 | ||
|
|
f139d2ea61 | ||
|
|
2eb76b2a5e | ||
|
|
9b75f03cd2 | ||
|
|
75207b3a88 | ||
|
|
76e9e58b78 | ||
|
|
ce2e59ba10 | ||
|
|
be5caccef9 | ||
|
|
20a780c7b6 | ||
|
|
cf32a9b93a | ||
|
|
a43178299c | ||
|
|
c3ea58aca4 | ||
|
|
467576b6cc | ||
|
|
eda7e1d4f5 | ||
|
|
24203e9dd7 | ||
|
|
5d9e59979c | ||
|
|
a4200cafad | ||
|
|
84274a10c3 | ||
|
|
68fcb4759c | ||
|
|
8a43e940ab | ||
|
|
5c9a8b22b1 | ||
|
|
0fff7fd798 | ||
|
|
4e54be0ec6 | ||
|
|
db4cfd5dbc | ||
|
|
8ee0d09ae6 | ||
|
|
bcdb7a2386 | ||
|
|
f245cc28d4 | ||
|
|
772703c8ff | ||
|
|
dd3a6ce9f8 | ||
|
|
1e58ee1318 | ||
|
|
89e4caaaf0 | ||
|
|
74d73dc85c | ||
|
|
4047be74da | ||
|
|
883d206fbd | ||
|
|
09ecbcb596 | ||
|
|
3225008973 | ||
|
|
cbf5541a82 | ||
|
|
18429220bd | ||
|
|
f0204a0ec7 | ||
|
|
57f8355b29 | ||
|
|
9901068ac7 | ||
|
|
231f9360d9 | ||
|
|
4802ad350b | ||
|
|
5a54af4d4f | ||
|
|
1607a5e5b0 | ||
|
|
ae8de6d50a | ||
|
|
4a8ccb37ad | ||
|
|
2a82891a85 | ||
|
|
af148c9386 | ||
|
|
66798e42fb | ||
|
|
fb4a0ec083 | ||
|
|
5ea926dad7 | ||
|
|
1ee9eea094 | ||
|
|
ff7fb670d0 | ||
|
|
0e712a5acb | ||
|
|
a0ec17b32e | ||
|
|
2e82ffa4af | ||
|
|
80dd7ff22f | ||
|
|
54ef9cfc72 | ||
|
|
b0cefea58a | ||
|
|
b141e5f6ef | ||
|
|
4b3a9212b6 | ||
|
|
505f33274d | ||
|
|
160687b3ed | ||
|
|
6423c65aa8 | ||
|
|
39a334a9aa | ||
|
|
bb38cdd8ba | ||
|
|
f018acba22 | ||
|
|
46323fa9ef | ||
|
|
5b359bb1e3 | ||
|
|
e89213492d | ||
|
|
8fc393f246 | ||
|
|
ec450d3bbf | ||
|
|
695ad752b2 | ||
|
|
841f27abdb | ||
|
|
d05b3127bd | ||
|
|
76c6e7f105 | ||
|
|
a71d81cf8c | ||
|
|
eec4d71737 | ||
|
|
3b08828674 | ||
|
|
a2c6fd747c | ||
|
|
97404c4a03 | ||
|
|
60e17ce23c | ||
|
|
5107e8cea3 | ||
|
|
2319126a70 | ||
|
|
3bcd40b3c5 | ||
|
|
5c333e0140 | ||
|
|
b11f9ba9b8 | ||
|
|
94d8cb8be1 | ||
|
|
1dc04b2dee | ||
|
|
a1eaf6a960 | ||
|
|
b8deef0ec0 | ||
|
|
a9e8a9a030 | ||
|
|
3407364776 | ||
|
|
d5a409e57f | ||
|
|
401558b7ba | ||
|
|
9e0ecfb697 | ||
|
|
6a066b9978 | ||
|
|
ea02c753eb | ||
|
|
05697f670b | ||
|
|
f8e58135cf | ||
|
|
329ed914c9 | ||
|
|
ce027adfb3 | ||
|
|
284e5b0275 | ||
|
|
e2292aaa17 | ||
|
|
9f40989351 | ||
|
|
08828a6d7d | ||
|
|
1839f69130 | ||
|
|
9830b6923b | ||
|
|
42cadc74bd | ||
|
|
45950415ed | ||
|
|
1926d6e39d | ||
|
|
b634f8a26f | ||
|
|
7554aa4655 | ||
|
|
a6744e43e8 | ||
|
|
e991e3127f | ||
|
|
418f5eef26 | ||
|
|
ba6f62eb79 | ||
|
|
d865d1478c | ||
|
|
1804adb0cf | ||
|
|
815fe72adc | ||
|
|
f221d56220 | ||
|
|
e597e50794 | ||
|
|
85679d37f3 | ||
|
|
1e9f94994e | ||
|
|
c02e5ab2a6 | ||
|
|
ab3d71f97f | ||
|
|
0a683e8088 | ||
|
|
dea5e86051 | ||
|
|
1329c0a75e | ||
|
|
61408e7fad | ||
|
|
b9e02e8184 | ||
|
|
6763f713bb | ||
|
|
79a2bc042d | ||
|
|
fc83a9e584 | ||
|
|
c5b0f4b5d9 | ||
|
|
8f275a7c45 | ||
|
|
8d8ff71536 | ||
|
|
61715d5cc8 | ||
|
|
07028f9d74 | ||
|
|
524afeec9d | ||
|
|
8125e6cbfc | ||
|
|
8841ce3f43 | ||
|
|
cc2983d375 | ||
|
|
8c60a8a462 | ||
|
|
9e4a2563ea | ||
|
|
668750357e | ||
|
|
ff252ea48e | ||
|
|
d80fb71f8b | ||
|
|
2f8bd2b901 | ||
|
|
bc5ba007b2 | ||
|
|
958367bf53 | ||
|
|
40f2555797 | ||
|
|
167a515651 | ||
|
|
c39665f589 | ||
|
|
0a1c750c80 | ||
|
|
190a37d797 | ||
|
|
2d3aba9ee8 | ||
|
|
80273a306d | ||
|
|
c19af0acb1 | ||
|
|
ac113a0fee | ||
|
|
4c9388fb96 | ||
|
|
873279b159 | ||
|
|
c8c07d658a | ||
|
|
19d900a756 | ||
|
|
11d47057a5 | ||
|
|
c421ac072d | ||
|
|
4ff7fe1fb3 | ||
|
|
6b8447352d | ||
|
|
674804a996 | ||
|
|
e94a138d64 | ||
|
|
e01c67affe | ||
|
|
994cfb1acb | ||
|
|
94008cc760 | ||
|
|
dbd5f2f573 | ||
|
|
f594bc80ba | ||
|
|
d5ebd79c76 | ||
|
|
55e47786e3 | ||
|
|
bc21975084 | ||
|
|
1db8c84fc6 | ||
|
|
45f097645e | ||
|
|
7cab2083c7 | ||
|
|
cda0e4b648 | ||
|
|
afd9909a64 | ||
|
|
87421a23e8 | ||
|
|
60ce97c9d8 | ||
|
|
8901755ba3 | ||
|
|
6f55bccbb8 | ||
|
|
17bb928080 | ||
|
|
9f45fc1e99 | ||
|
|
99bd4ac28c | ||
|
|
3752217ed5 | ||
|
|
f010b77a37 | ||
|
|
2194200278 | ||
|
|
73afe681aa | ||
|
|
9e04102448 | ||
|
|
dbf18e4de9 | ||
|
|
66c2c93082 | ||
|
|
10433e8b45 | ||
|
|
1f66b699c4 | ||
|
|
0e41b300ed | ||
|
|
cd60b88bf7 | ||
|
|
becfd387f6 | ||
|
|
755a9b2bf0 | ||
|
|
223c25a72f | ||
|
|
fbc98b748e | ||
|
|
dcdd535302 | ||
|
|
4c42f93b22 | ||
|
|
a89f75e1b7 | ||
|
|
13dca2a54a | ||
|
|
d4c19c0f5c | ||
|
|
c7181bd294 | ||
|
|
92be9f1216 | ||
|
|
edc265661c | ||
|
|
1bde94dd02 | ||
|
|
95c76e8e92 | ||
|
|
11ac9800af | ||
|
|
943d20b411 | ||
|
|
96776405a1 | ||
|
|
7eee341bee | ||
|
|
0e9f760eb1 | ||
|
|
cf8e0a3bb9 | ||
|
|
c7499c557c | ||
|
|
c81f3bbb05 | ||
|
|
e7022064ab | ||
|
|
3dc48fe75a | ||
|
|
dca1d4b58a | ||
|
|
458367a906 | ||
|
|
fa42aa6d89 | ||
|
|
6374743747 | ||
|
|
f1af42fa8c | ||
|
|
6279dac039 | ||
|
|
d5ac8cf2f2 | ||
|
|
96b6912103 | ||
|
|
d5cb86844f | ||
|
|
f4b2dcdf49 | ||
|
|
b6d6c5289f | ||
|
|
b0915d5b51 |
161
.clang-format
Normal file
161
.clang-format
Normal file
@@ -0,0 +1,161 @@
|
||||
---
|
||||
Language: Cpp
|
||||
AlignAfterOpenBracket: Align
|
||||
AlignArrayOfStructures: Left
|
||||
AlignConsecutiveAssignments: AcrossComments
|
||||
AlignConsecutiveBitFields: AcrossComments
|
||||
AlignConsecutiveDeclarations: AcrossComments
|
||||
AlignConsecutiveMacros: AcrossComments
|
||||
# AlignConsecutiveShortCaseStatements: AcrossComments
|
||||
AlignEscapedNewlines: Left # LeftWithLastLine
|
||||
AlignOperands: Align
|
||||
AlignTrailingComments:
|
||||
Kind: Always
|
||||
OverEmptyLines: 1
|
||||
AllowAllArgumentsOnNextLine: true
|
||||
AllowAllParametersOfDeclarationOnNextLine: false
|
||||
# AllowBreakBeforeNoexceptSpecifier: OnlyWithParen
|
||||
AllowShortBlocksOnASingleLine: Never
|
||||
AllowShortCaseLabelsOnASingleLine: false
|
||||
AllowShortFunctionsOnASingleLine: Inline
|
||||
AllowShortIfStatementsOnASingleLine: Never
|
||||
AllowShortLambdasOnASingleLine: Inline
|
||||
AllowShortLoopsOnASingleLine: false
|
||||
AlwaysBreakBeforeMultilineStrings: true
|
||||
BinPackArguments: true
|
||||
BinPackParameters: true # OnePerLine
|
||||
BitFieldColonSpacing: Both
|
||||
BreakBeforeBraces: Custom # Attach
|
||||
BraceWrapping:
|
||||
AfterCaseLabel: true
|
||||
AfterClass: false
|
||||
AfterControlStatement: false
|
||||
AfterEnum: false
|
||||
AfterFunction: false
|
||||
AfterNamespace: false
|
||||
AfterObjCDeclaration: false
|
||||
AfterStruct: false
|
||||
AfterUnion: false
|
||||
AfterExternBlock: false
|
||||
BeforeCatch: false
|
||||
BeforeElse: false
|
||||
BeforeLambdaBody: false
|
||||
BeforeWhile: false
|
||||
IndentBraces: false
|
||||
SplitEmptyFunction: false
|
||||
SplitEmptyRecord: false
|
||||
SplitEmptyNamespace: false
|
||||
# BreakAdjacentStringLiterals: true
|
||||
BreakAfterAttributes: Never
|
||||
BreakBeforeBinaryOperators: None
|
||||
BreakBeforeInlineASMColon: OnlyMultiline
|
||||
BreakBeforeTernaryOperators: false
|
||||
# BreakBinaryOperations: Never
|
||||
BreakConstructorInitializers: AfterColon
|
||||
# BreakFunctionDefinitionParameters: false
|
||||
BreakInheritanceList: AfterComma
|
||||
BreakStringLiterals: true
|
||||
# BreakTemplateDeclarations: Yes
|
||||
ColumnLimit: 120
|
||||
CommentPragmas: '^ IWYU pragma:'
|
||||
CompactNamespaces: false
|
||||
ConstructorInitializerIndentWidth: 4
|
||||
ContinuationIndentWidth: 4
|
||||
Cpp11BracedListStyle: false
|
||||
DerivePointerAlignment: false
|
||||
DisableFormat: false
|
||||
EmptyLineBeforeAccessModifier: Leave
|
||||
EmptyLineAfterAccessModifier: Never
|
||||
ExperimentalAutoDetectBinPacking: false
|
||||
FixNamespaceComments: true
|
||||
IncludeBlocks: Regroup
|
||||
IncludeCategories:
|
||||
- Regex: '^<.*\.h>'
|
||||
Priority: 1
|
||||
SortPriority: 0
|
||||
- Regex: '^<.*'
|
||||
Priority: 2
|
||||
SortPriority: 0
|
||||
- Regex: '.*'
|
||||
Priority: 3
|
||||
SortPriority: 0
|
||||
IncludeIsMainRegex: '([-_](test|unittest))?$'
|
||||
IncludeIsMainSourceRegex: ''
|
||||
IndentAccessModifiers: false
|
||||
IndentCaseBlocks: true
|
||||
IndentCaseLabels: true
|
||||
IndentExternBlock: NoIndent
|
||||
IndentGotoLabels: false
|
||||
IndentPPDirectives: AfterHash
|
||||
IndentWidth: 4
|
||||
IndentWrappedFunctionNames: false
|
||||
InsertBraces: true # NOTE: may lead to incorrect formatting
|
||||
InsertNewlineAtEOF: true
|
||||
JavaScriptQuotes: Leave
|
||||
JavaScriptWrapImports: true
|
||||
KeepEmptyLinesAtTheStartOfBlocks: false
|
||||
LambdaBodyIndentation: Signature
|
||||
LineEnding: LF
|
||||
MacroBlockBegin: ''
|
||||
MacroBlockEnd: ''
|
||||
MaxEmptyLinesToKeep: 1
|
||||
NamespaceIndentation: None
|
||||
ObjCBinPackProtocolList: Auto
|
||||
ObjCBlockIndentWidth: 4
|
||||
ObjCSpaceAfterProperty: true
|
||||
ObjCSpaceBeforeProtocolList: true
|
||||
PPIndentWidth: -1
|
||||
PackConstructorInitializers: CurrentLine
|
||||
PenaltyBreakAssignment: 2
|
||||
PenaltyBreakBeforeFirstCallParameter: 1
|
||||
PenaltyBreakComment: 300
|
||||
PenaltyBreakFirstLessLess: 120
|
||||
PenaltyBreakString: 1000
|
||||
PenaltyBreakTemplateDeclaration: 10
|
||||
PenaltyExcessCharacter: 1000000
|
||||
PenaltyReturnTypeOnItsOwnLine: 200
|
||||
PointerAlignment: Middle
|
||||
QualifierAlignment: Left
|
||||
#QualifierOrder: ['static', 'inline', 'friend', 'constexpr', 'const', 'volatile', 'type', 'restrict']
|
||||
RawStringFormats:
|
||||
- Language: Cpp
|
||||
Delimiters:
|
||||
- cc
|
||||
- CC
|
||||
- cpp
|
||||
- Cpp
|
||||
- CPP
|
||||
- 'c++'
|
||||
- 'C++'
|
||||
CanonicalDelimiter: ''
|
||||
ReferenceAlignment: Middle
|
||||
ReflowComments: false # IndentOnly
|
||||
SeparateDefinitionBlocks: Always
|
||||
SortIncludes: CaseInsensitive
|
||||
SortUsingDeclarations: LexicographicNumeric
|
||||
SpaceAfterCStyleCast: true
|
||||
SpaceAfterLogicalNot: false
|
||||
SpaceAfterTemplateKeyword: true
|
||||
SpaceBeforeAssignmentOperators: true
|
||||
SpaceBeforeCpp11BracedList: false
|
||||
SpaceBeforeCtorInitializerColon: true
|
||||
SpaceBeforeInheritanceColon: true
|
||||
SpaceBeforeParens: ControlStatements
|
||||
SpaceBeforeRangeBasedForLoopColon: true
|
||||
SpaceInEmptyBlock: false
|
||||
SpaceInEmptyParentheses: false
|
||||
SpacesBeforeTrailingComments: 2
|
||||
SpacesInAngles: Never
|
||||
SpacesInContainerLiterals: true
|
||||
SpacesInLineCommentPrefix:
|
||||
Minimum: 1
|
||||
Maximum: -1
|
||||
SpacesInParentheses: false
|
||||
SpacesInSquareBrackets: false
|
||||
SpaceBeforeSquareBrackets: false
|
||||
Standard: c++17
|
||||
TabWidth: 4
|
||||
UseTab: Never
|
||||
WhitespaceSensitiveMacros: ['STRINGIZE']
|
||||
...
|
||||
|
||||
@@ -26,7 +26,7 @@ COPY . .
|
||||
RUN if [ "${CUDA_DOCKER_ARCH}" != "default" ]; then \
|
||||
export CMAKE_ARGS="-DCMAKE_CUDA_ARCHITECTURES=${CUDA_DOCKER_ARCH}"; \
|
||||
fi && \
|
||||
cmake -B build -DGGML_CUDA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_CUDA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
cmake --build build --config Release -j$(nproc) && \
|
||||
cp build/bin/* .
|
||||
|
||||
|
||||
26
.devops/full-musa.Dockerfile
Normal file
26
.devops/full-musa.Dockerfile
Normal file
@@ -0,0 +1,26 @@
|
||||
ARG UBUNTU_VERSION=22.04
|
||||
# This needs to generally match the container host's environment.
|
||||
ARG MUSA_VERSION=rc3.1.0
|
||||
# Target the MUSA build image
|
||||
ARG BASE_MUSA_DEV_CONTAINER=mthreads/musa:${MUSA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
|
||||
|
||||
FROM ${BASE_MUSA_DEV_CONTAINER} AS build
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential cmake python3 python3-pip git libcurl4-openssl-dev libgomp1
|
||||
|
||||
COPY requirements.txt requirements.txt
|
||||
COPY requirements requirements
|
||||
|
||||
RUN pip install --upgrade pip setuptools wheel \
|
||||
&& pip install -r requirements.txt
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
|
||||
RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
cmake --build build --config Release -j$(nproc) && \
|
||||
cp build/bin/* .
|
||||
|
||||
ENTRYPOINT ["/app/.devops/tools.sh"]
|
||||
@@ -1,6 +1,6 @@
|
||||
ARG ASCEND_VERSION=8.0.rc2.alpha003-910b-openeuler22.03-py3.8
|
||||
|
||||
FROM cosdt/cann:$ASCEND_VERSION AS build
|
||||
FROM ascendai/cann:$ASCEND_VERSION AS build
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
@@ -22,11 +22,11 @@ ENV LD_LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/runtime/lib64/stub:$LD_LIBRARY_PATH
|
||||
|
||||
RUN echo "Building with static libs" && \
|
||||
source /usr/local/Ascend/ascend-toolkit/set_env.sh --force && \
|
||||
cmake -B build -DGGML_CANN=ON -DBUILD_SHARED_LIBS=OFF && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_CANN=ON -DBUILD_SHARED_LIBS=OFF && \
|
||||
cmake --build build --config Release --target llama-cli
|
||||
|
||||
# TODO: use image with NNRT
|
||||
FROM cosdt/cann:$ASCEND_VERSION AS runtime
|
||||
FROM ascendai/cann:$ASCEND_VERSION AS runtime
|
||||
COPY --from=build /app/build/bin/llama-cli /llama-cli
|
||||
|
||||
ENV LC_ALL=C.utf8
|
||||
|
||||
@@ -22,16 +22,17 @@ COPY . .
|
||||
RUN if [ "${CUDA_DOCKER_ARCH}" != "default" ]; then \
|
||||
export CMAKE_ARGS="-DCMAKE_CUDA_ARCHITECTURES=${CUDA_DOCKER_ARCH}"; \
|
||||
fi && \
|
||||
cmake -B build -DGGML_CUDA=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
cmake --build build --config Release --target llama-cli -j$(nproc)
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_CUDA=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
cmake --build build --config Release --target llama-cli -j$(nproc) && \
|
||||
mkdir -p /app/lib && \
|
||||
find build -name "*.so" -exec cp {} /app/lib \;
|
||||
|
||||
FROM ${BASE_CUDA_RUN_CONTAINER} AS runtime
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y libgomp1
|
||||
|
||||
COPY --from=build /app/build/ggml/src/libggml.so /libggml.so
|
||||
COPY --from=build /app/build/src/libllama.so /libllama.so
|
||||
COPY --from=build /app/build/bin/llama-cli /llama-cli
|
||||
COPY --from=build /app/lib/ /
|
||||
COPY --from=build /app/build/bin/llama-cli /
|
||||
|
||||
ENTRYPOINT [ "/llama-cli" ]
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
ARG ONEAPI_VERSION=2024.1.1-devel-ubuntu22.04
|
||||
ARG ONEAPI_VERSION=2025.0.0-0-devel-ubuntu22.04
|
||||
|
||||
FROM intel/oneapi-basekit:$ONEAPI_VERSION AS build
|
||||
|
||||
@@ -15,7 +15,7 @@ RUN if [ "${GGML_SYCL_F16}" = "ON" ]; then \
|
||||
export OPT_SYCL_F16="-DGGML_SYCL_F16=ON"; \
|
||||
fi && \
|
||||
echo "Building with static libs" && \
|
||||
cmake -B build -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx \
|
||||
${OPT_SYCL_F16} -DBUILD_SHARED_LIBS=OFF && \
|
||||
cmake --build build --config Release --target llama-cli
|
||||
|
||||
|
||||
31
.devops/llama-cli-musa.Dockerfile
Normal file
31
.devops/llama-cli-musa.Dockerfile
Normal file
@@ -0,0 +1,31 @@
|
||||
ARG UBUNTU_VERSION=22.04
|
||||
# This needs to generally match the container host's environment.
|
||||
ARG MUSA_VERSION=rc3.1.0
|
||||
# Target the MUSA build image
|
||||
ARG BASE_MUSA_DEV_CONTAINER=mthreads/musa:${MUSA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
|
||||
# Target the MUSA runtime image
|
||||
ARG BASE_MUSA_RUN_CONTAINER=mthreads/musa:${MUSA_VERSION}-runtime-ubuntu${UBUNTU_VERSION}
|
||||
|
||||
FROM ${BASE_MUSA_DEV_CONTAINER} AS build
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential git cmake
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
|
||||
RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
cmake --build build --config Release --target llama-cli -j$(nproc) && \
|
||||
mkdir -p /app/lib && \
|
||||
find build -name "*.so" -exec cp {} /app/lib \;
|
||||
|
||||
FROM ${BASE_MUSA_RUN_CONTAINER} AS runtime
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y libgomp1
|
||||
|
||||
COPY --from=build /app/lib/ /
|
||||
COPY --from=build /app/build/bin/llama-cli /llama-cli
|
||||
|
||||
ENTRYPOINT [ "/llama-cli" ]
|
||||
@@ -14,7 +14,7 @@ RUN wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key
|
||||
# Build it
|
||||
WORKDIR /app
|
||||
COPY . .
|
||||
RUN cmake -B build -DGGML_VULKAN=1 && \
|
||||
RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_VULKAN=1 && \
|
||||
cmake --build build --config Release --target llama-cli
|
||||
|
||||
# Clean up
|
||||
|
||||
@@ -22,16 +22,17 @@ COPY . .
|
||||
RUN if [ "${CUDA_DOCKER_ARCH}" != "default" ]; then \
|
||||
export CMAKE_ARGS="-DCMAKE_CUDA_ARCHITECTURES=${CUDA_DOCKER_ARCH}"; \
|
||||
fi && \
|
||||
cmake -B build -DGGML_CUDA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
cmake --build build --config Release --target llama-server -j$(nproc)
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_CUDA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
cmake --build build --config Release --target llama-server -j$(nproc) && \
|
||||
mkdir -p /app/lib && \
|
||||
find build -name "*.so" -exec cp {} /app/lib \;
|
||||
|
||||
FROM ${BASE_CUDA_RUN_CONTAINER} AS runtime
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y libcurl4-openssl-dev libgomp1 curl
|
||||
|
||||
COPY --from=build /app/build/ggml/src/libggml.so /libggml.so
|
||||
COPY --from=build /app/build/src/libllama.so /libllama.so
|
||||
COPY --from=build /app/lib/ /
|
||||
COPY --from=build /app/build/bin/llama-server /llama-server
|
||||
|
||||
# Must be set to 0.0.0.0 so it can listen to requests from host machine
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
ARG ONEAPI_VERSION=2024.1.1-devel-ubuntu22.04
|
||||
ARG ONEAPI_VERSION=2025.0.0-0-devel-ubuntu22.04
|
||||
|
||||
FROM intel/oneapi-basekit:$ONEAPI_VERSION AS build
|
||||
|
||||
@@ -15,7 +15,7 @@ RUN if [ "${GGML_SYCL_F16}" = "ON" ]; then \
|
||||
export OPT_SYCL_F16="-DGGML_SYCL_F16=ON"; \
|
||||
fi && \
|
||||
echo "Building with dynamic libs" && \
|
||||
cmake -B build -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_CURL=ON ${OPT_SYCL_F16} && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_CURL=ON ${OPT_SYCL_F16} && \
|
||||
cmake --build build --config Release --target llama-server
|
||||
|
||||
FROM intel/oneapi-basekit:$ONEAPI_VERSION AS runtime
|
||||
|
||||
36
.devops/llama-server-musa.Dockerfile
Normal file
36
.devops/llama-server-musa.Dockerfile
Normal file
@@ -0,0 +1,36 @@
|
||||
ARG UBUNTU_VERSION=22.04
|
||||
# This needs to generally match the container host's environment.
|
||||
ARG MUSA_VERSION=rc3.1.0
|
||||
# Target the MUSA build image
|
||||
ARG BASE_MUSA_DEV_CONTAINER=mthreads/musa:${MUSA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
|
||||
# Target the MUSA runtime image
|
||||
ARG BASE_MUSA_RUN_CONTAINER=mthreads/musa:${MUSA_VERSION}-runtime-ubuntu${UBUNTU_VERSION}
|
||||
|
||||
FROM ${BASE_MUSA_DEV_CONTAINER} AS build
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential git cmake libcurl4-openssl-dev
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
|
||||
RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
cmake --build build --config Release --target llama-server -j$(nproc) && \
|
||||
mkdir -p /app/lib && \
|
||||
find build -name "*.so" -exec cp {} /app/lib \;
|
||||
|
||||
FROM ${BASE_MUSA_RUN_CONTAINER} AS runtime
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y libcurl4-openssl-dev libgomp1 curl
|
||||
|
||||
COPY --from=build /app/lib/ /
|
||||
COPY --from=build /app/build/bin/llama-server /llama-server
|
||||
|
||||
# Must be set to 0.0.0.0 so it can listen to requests from host machine
|
||||
ENV LLAMA_ARG_HOST=0.0.0.0
|
||||
|
||||
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
|
||||
|
||||
ENTRYPOINT [ "/llama-server" ]
|
||||
@@ -14,7 +14,7 @@ RUN wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key
|
||||
# Build it
|
||||
WORKDIR /app
|
||||
COPY . .
|
||||
RUN cmake -B build -DGGML_VULKAN=1 -DLLAMA_CURL=1 && \
|
||||
RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_VULKAN=1 -DLLAMA_CURL=1 && \
|
||||
cmake --build build --config Release --target llama-server
|
||||
|
||||
# Clean up
|
||||
|
||||
@@ -126,9 +126,9 @@ effectiveStdenv.mkDerivation (finalAttrs: {
|
||||
};
|
||||
|
||||
postPatch = ''
|
||||
substituteInPlace ./ggml/src/ggml-metal.m \
|
||||
substituteInPlace ./ggml/src/ggml-metal/ggml-metal.m \
|
||||
--replace '[bundle pathForResource:@"ggml-metal" ofType:@"metal"];' "@\"$out/bin/ggml-metal.metal\";"
|
||||
substituteInPlace ./ggml/src/ggml-metal.m \
|
||||
substituteInPlace ./ggml/src/ggml-metal/ggml-metal.m \
|
||||
--replace '[bundle pathForResource:@"default" ofType:@"metallib"];' "@\"$out/bin/default.metallib\";"
|
||||
'';
|
||||
|
||||
@@ -173,7 +173,7 @@ effectiveStdenv.mkDerivation (finalAttrs: {
|
||||
(cmakeBool "GGML_NATIVE" false)
|
||||
(cmakeBool "GGML_BLAS" useBlas)
|
||||
(cmakeBool "GGML_CUDA" useCuda)
|
||||
(cmakeBool "GGML_HIPBLAS" useRocm)
|
||||
(cmakeBool "GGML_HIP" useRocm)
|
||||
(cmakeBool "GGML_METAL" useMetalKit)
|
||||
(cmakeBool "GGML_VULKAN" useVulkan)
|
||||
(cmakeBool "GGML_STATIC" enableStatic)
|
||||
|
||||
@@ -24,6 +24,16 @@ insert_final_newline = unset
|
||||
[examples/server/public/*]
|
||||
indent_size = 2
|
||||
|
||||
[examples/server/public/deps_*]
|
||||
trim_trailing_whitespace = unset
|
||||
indent_style = unset
|
||||
indent_size = unset
|
||||
|
||||
[examples/server/deps_*]
|
||||
trim_trailing_whitespace = unset
|
||||
indent_style = unset
|
||||
indent_size = unset
|
||||
|
||||
[examples/llama.swiftui/llama.swiftui.xcodeproj/*]
|
||||
indent_style = tab
|
||||
|
||||
|
||||
52
.github/workflows/build.yml
vendored
52
.github/workflows/build.yml
vendored
@@ -55,7 +55,13 @@ jobs:
|
||||
sysctl -a
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -DLLAMA_FATAL_WARNINGS=ON -DGGML_METAL_EMBED_LIBRARY=ON -DLLAMA_CURL=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF ..
|
||||
cmake .. \
|
||||
-DLLAMA_FATAL_WARNINGS=ON \
|
||||
-DLLAMA_CURL=ON \
|
||||
-DGGML_METAL_USE_BF16=ON \
|
||||
-DGGML_METAL_EMBED_LIBRARY=ON \
|
||||
-DGGML_RPC=ON \
|
||||
-DBUILD_SHARED_LIBS=OFF
|
||||
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu)
|
||||
|
||||
- name: Test
|
||||
@@ -92,7 +98,7 @@ jobs:
|
||||
name: llama-bin-macos-arm64.zip
|
||||
|
||||
macOS-latest-cmake-x64:
|
||||
runs-on: macos-12
|
||||
runs-on: macos-13
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
@@ -113,7 +119,12 @@ jobs:
|
||||
sysctl -a
|
||||
# Metal is disabled due to intermittent failures with Github runners not having a GPU:
|
||||
# https://github.com/ggerganov/llama.cpp/actions/runs/8635935781/job/23674807267#step:5:2313
|
||||
cmake -B build -DLLAMA_FATAL_WARNINGS=ON -DGGML_METAL=OFF -DLLAMA_CURL=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF
|
||||
cmake -B build \
|
||||
-DLLAMA_FATAL_WARNINGS=ON \
|
||||
-DLLAMA_CURL=ON \
|
||||
-DGGML_METAL=OFF \
|
||||
-DGGML_RPC=ON \
|
||||
-DBUILD_SHARED_LIBS=OFF
|
||||
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu)
|
||||
|
||||
- name: Test
|
||||
@@ -394,15 +405,36 @@ jobs:
|
||||
- name: Build with native CMake HIP support
|
||||
id: cmake_build
|
||||
run: |
|
||||
cmake -B build -S . -DCMAKE_HIP_COMPILER="$(hipconfig -l)/clang" -DGGML_HIPBLAS=ON
|
||||
cmake -B build -S . -DCMAKE_HIP_COMPILER="$(hipconfig -l)/clang" -DGGML_HIP=ON
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
- name: Build with legacy HIP support
|
||||
id: cmake_build_legacy_hip
|
||||
run: |
|
||||
cmake -B build2 -S . -DCMAKE_C_COMPILER=hipcc -DCMAKE_CXX_COMPILER=hipcc -DGGML_HIPBLAS=ON
|
||||
cmake -B build2 -S . -DCMAKE_C_COMPILER=hipcc -DCMAKE_CXX_COMPILER=hipcc -DGGML_HIP=ON
|
||||
cmake --build build2 --config Release -j $(nproc)
|
||||
|
||||
ubuntu-22-cmake-musa:
|
||||
runs-on: ubuntu-22.04
|
||||
container: mthreads/musa:rc3.1.0-devel-ubuntu22.04
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
run: |
|
||||
apt-get update
|
||||
apt-get install -y build-essential git cmake libcurl4-openssl-dev
|
||||
|
||||
- name: Build with native CMake MUSA support
|
||||
id: cmake_build
|
||||
run: |
|
||||
cmake -B build -S . -DGGML_MUSA=ON
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
ubuntu-22-cmake-sycl:
|
||||
runs-on: ubuntu-22.04
|
||||
|
||||
@@ -569,6 +601,7 @@ jobs:
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -G Xcode .. \
|
||||
-DGGML_METAL_USE_BF16=ON \
|
||||
-DGGML_METAL_EMBED_LIBRARY=ON \
|
||||
-DLLAMA_BUILD_EXAMPLES=OFF \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
@@ -599,6 +632,7 @@ jobs:
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -G Xcode .. \
|
||||
-DGGML_METAL_USE_BF16=ON \
|
||||
-DGGML_METAL_EMBED_LIBRARY=ON \
|
||||
-DLLAMA_BUILD_EXAMPLES=OFF \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
@@ -734,7 +768,7 @@ jobs:
|
||||
id: clone_kompute
|
||||
if: ${{ matrix.build == 'kompute-x64' }}
|
||||
run: |
|
||||
git submodule update --init ggml/src/kompute
|
||||
git submodule update --init ggml/src/ggml-kompute/kompute
|
||||
|
||||
- name: Download OpenBLAS
|
||||
id: get_openblas
|
||||
@@ -917,7 +951,7 @@ jobs:
|
||||
shell: bash
|
||||
|
||||
env:
|
||||
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/7dff44ba-e3af-4448-841c-0d616c8da6e7/w_BaseKit_p_2024.1.0.595_offline.exe
|
||||
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/b380d914-366b-4b77-a74a-05e3c38b3514/intel-oneapi-base-toolkit-2025.0.0.882_offline.exe
|
||||
WINDOWS_DPCPP_MKL: intel.oneapi.win.cpp-dpcpp-common:intel.oneapi.win.mkl.devel
|
||||
ONEAPI_ROOT: "C:/Program Files (x86)/Intel/oneAPI"
|
||||
steps:
|
||||
@@ -1001,7 +1035,7 @@ jobs:
|
||||
run: |
|
||||
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
|
||||
$env:CMAKE_PREFIX_PATH="${env:HIP_PATH}"
|
||||
cmake -G "Unix Makefiles" -B build -S . -DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" -DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" -DGGML_HIPBLAS=ON -DCMAKE_BUILD_TYPE=Release -DGGML_RPC=ON
|
||||
cmake -G "Unix Makefiles" -B build -S . -DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" -DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" -DGGML_HIP=ON -DCMAKE_BUILD_TYPE=Release -DGGML_RPC=ON
|
||||
cmake --build build -j ${env:NUMBER_OF_PROCESSORS}
|
||||
|
||||
windows-latest-cmake-hip-release:
|
||||
@@ -1037,7 +1071,7 @@ jobs:
|
||||
run: |
|
||||
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
|
||||
$env:CMAKE_PREFIX_PATH="${env:HIP_PATH}"
|
||||
cmake -G "Unix Makefiles" -B build -S . -DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" -DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" -DGGML_HIPBLAS=ON -DCMAKE_BUILD_TYPE=Release -DAMDGPU_TARGETS=${{ matrix.gpu_target }} -DGGML_RPC=ON
|
||||
cmake -G "Unix Makefiles" -B build -S . -DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" -DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" -DGGML_HIP=ON -DCMAKE_BUILD_TYPE=Release -DAMDGPU_TARGETS=${{ matrix.gpu_target }} -DGGML_RPC=ON
|
||||
cmake --build build -j ${env:NUMBER_OF_PROCESSORS}
|
||||
md "build\bin\rocblas\library\"
|
||||
cp "${env:HIP_PATH}\bin\hipblas.dll" "build\bin\"
|
||||
|
||||
3
.github/workflows/docker.yml
vendored
3
.github/workflows/docker.yml
vendored
@@ -43,6 +43,9 @@ jobs:
|
||||
- { tag: "light-cuda", dockerfile: ".devops/llama-cli-cuda.Dockerfile", platforms: "linux/amd64" }
|
||||
- { tag: "server-cuda", dockerfile: ".devops/llama-server-cuda.Dockerfile", platforms: "linux/amd64" }
|
||||
- { tag: "full-cuda", dockerfile: ".devops/full-cuda.Dockerfile", platforms: "linux/amd64" }
|
||||
- { tag: "light-musa", dockerfile: ".devops/llama-cli-musa.Dockerfile", platforms: "linux/amd64" }
|
||||
- { tag: "server-musa", dockerfile: ".devops/llama-server-musa.Dockerfile", platforms: "linux/amd64" }
|
||||
- { tag: "full-musa", dockerfile: ".devops/full-musa.Dockerfile", platforms: "linux/amd64" }
|
||||
# Note: the rocm images are failing due to a compiler error and are disabled until this is fixed to allow the workflow to complete
|
||||
#- { tag: "light-rocm", dockerfile: ".devops/llama-cli-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
||||
#- { tag: "server-rocm", dockerfile: ".devops/llama-server-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
||||
|
||||
5
.gitignore
vendored
5
.gitignore
vendored
@@ -3,6 +3,7 @@
|
||||
*.a
|
||||
*.bat
|
||||
*.bin
|
||||
*.d
|
||||
*.dll
|
||||
*.dot
|
||||
*.etag
|
||||
@@ -133,3 +134,7 @@ poetry.toml
|
||||
|
||||
# Test models for lora adapters
|
||||
/lora-tests
|
||||
|
||||
# Local scripts
|
||||
/run-vim.sh
|
||||
/run-chat.sh
|
||||
|
||||
2
.gitmodules
vendored
2
.gitmodules
vendored
@@ -1,3 +1,3 @@
|
||||
[submodule "kompute"]
|
||||
path = ggml/src/kompute
|
||||
path = ggml/src/ggml-kompute/kompute
|
||||
url = https://github.com/nomic-ai/kompute.git
|
||||
|
||||
@@ -46,6 +46,13 @@ if (WIN32)
|
||||
add_compile_definitions(_CRT_SECURE_NO_WARNINGS)
|
||||
endif()
|
||||
|
||||
if ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "MSVC")
|
||||
add_compile_options("$<$<COMPILE_LANGUAGE:C>:/source-charset:utf-8>")
|
||||
add_compile_options("$<$<COMPILE_LANGUAGE:CXX>:/source-charset:utf-8>")
|
||||
add_compile_options("$<$<COMPILE_LANGUAGE:C>:/execution-charset:utf-8>")
|
||||
add_compile_options("$<$<COMPILE_LANGUAGE:CXX>:/execution-charset:utf-8>")
|
||||
endif()
|
||||
|
||||
#
|
||||
# option list
|
||||
#
|
||||
@@ -63,7 +70,7 @@ option(LLAMA_SANITIZE_ADDRESS "llama: enable address sanitizer" OFF)
|
||||
option(LLAMA_SANITIZE_UNDEFINED "llama: enable undefined sanitizer" OFF)
|
||||
|
||||
# utils
|
||||
option(LLAMA_BUILD_COMMON "llama: build common utils library" ON)
|
||||
option(LLAMA_BUILD_COMMON "llama: build common utils library" ${LLAMA_STANDALONE})
|
||||
|
||||
# extra artifacts
|
||||
option(LLAMA_BUILD_TESTS "llama: build tests" ${LLAMA_STANDALONE})
|
||||
@@ -88,6 +95,10 @@ if (NOT DEFINED GGML_LLAMAFILE)
|
||||
set(GGML_LLAMAFILE_DEFAULT ON)
|
||||
endif()
|
||||
|
||||
if (NOT DEFINED GGML_AMX)
|
||||
set(GGML_AMX ON)
|
||||
endif()
|
||||
|
||||
if (NOT DEFINED GGML_CUDA_GRAPHS)
|
||||
set(GGML_CUDA_GRAPHS_DEFAULT ON)
|
||||
endif()
|
||||
@@ -136,7 +147,6 @@ set(LLAMA_INCLUDE_INSTALL_DIR ${CMAKE_INSTALL_INCLUDEDIR} CACHE PATH "Location o
|
||||
set(LLAMA_LIB_INSTALL_DIR ${CMAKE_INSTALL_LIBDIR} CACHE PATH "Location of library files")
|
||||
set(LLAMA_BIN_INSTALL_DIR ${CMAKE_INSTALL_BINDIR} CACHE PATH "Location of binary files")
|
||||
|
||||
|
||||
# At the moment some compile definitions are placed within the ggml/src
|
||||
# directory but not exported on the `ggml` target. This could be improved by
|
||||
# determining _precisely_ which defines are necessary for the llama-config
|
||||
@@ -201,12 +211,12 @@ if (LLAMA_BUILD_COMMON)
|
||||
add_subdirectory(common)
|
||||
endif()
|
||||
|
||||
if (LLAMA_BUILD_TESTS AND NOT CMAKE_JS_VERSION)
|
||||
if (LLAMA_BUILD_COMMON AND LLAMA_BUILD_TESTS AND NOT CMAKE_JS_VERSION)
|
||||
include(CTest)
|
||||
add_subdirectory(tests)
|
||||
endif()
|
||||
|
||||
if (LLAMA_BUILD_EXAMPLES)
|
||||
if (LLAMA_BUILD_COMMON AND LLAMA_BUILD_EXAMPLES)
|
||||
add_subdirectory(examples)
|
||||
add_subdirectory(pocs)
|
||||
endif()
|
||||
|
||||
@@ -24,11 +24,12 @@
|
||||
"CMAKE_INSTALL_RPATH": "$ORIGIN;$ORIGIN/.."
|
||||
}
|
||||
},
|
||||
{ "name": "debug", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "Debug" } },
|
||||
{ "name": "release", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "Release" } },
|
||||
{ "name": "reldbg", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "RelWithDebInfo" } },
|
||||
{ "name": "static", "hidden": true, "cacheVariables": { "GGML_STATIC": "ON" } },
|
||||
{ "name": "sycl_f16", "hidden": true, "cacheVariables": { "GGML_SYCL_F16": "ON" } },
|
||||
{ "name": "debug", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "Debug" } },
|
||||
{ "name": "release", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "Release" } },
|
||||
{ "name": "reldbg", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "RelWithDebInfo" } },
|
||||
{ "name": "static", "hidden": true, "cacheVariables": { "GGML_STATIC": "ON" } },
|
||||
{ "name": "sycl_f16", "hidden": true, "cacheVariables": { "GGML_SYCL_F16": "ON" } },
|
||||
{ "name": "vulkan", "hidden": true, "cacheVariables": { "GGML_VULKAN": "ON" } },
|
||||
|
||||
{
|
||||
"name": "arm64-windows-msvc", "hidden": true,
|
||||
@@ -48,21 +49,37 @@
|
||||
}
|
||||
},
|
||||
|
||||
{ "name": "arm64-windows-llvm-debug" , "inherits": [ "base", "arm64-windows-llvm", "debug" ] },
|
||||
{ "name": "arm64-windows-llvm-release", "inherits": [ "base", "arm64-windows-llvm", "reldbg" ] },
|
||||
{ "name": "arm64-windows-llvm+static-release", "inherits": [ "base", "arm64-windows-llvm", "reldbg", "static" ] },
|
||||
{
|
||||
"name": "arm64-apple-clang", "hidden": true,
|
||||
"architecture": { "value": "arm64", "strategy": "external" },
|
||||
"toolset": { "value": "host=x64", "strategy": "external" },
|
||||
"cacheVariables": {
|
||||
"CMAKE_TOOLCHAIN_FILE": "${sourceDir}/cmake/arm64-apple-clang.cmake"
|
||||
}
|
||||
},
|
||||
|
||||
{ "name": "arm64-windows-msvc-debug" , "inherits": [ "base", "arm64-windows-msvc", "debug" ] },
|
||||
{ "name": "arm64-windows-llvm-debug", "inherits": [ "base", "arm64-windows-llvm", "debug" ] },
|
||||
{ "name": "arm64-windows-llvm-release", "inherits": [ "base", "arm64-windows-llvm", "reldbg" ] },
|
||||
{ "name": "arm64-windows-llvm+static-release", "inherits": [ "base", "arm64-windows-llvm", "reldbg", "static" ] },
|
||||
|
||||
{ "name": "arm64-apple-clang-debug", "inherits": [ "base", "arm64-apple-clang", "debug" ] },
|
||||
{ "name": "arm64-apple-clang-release", "inherits": [ "base", "arm64-apple-clang", "reldbg" ] },
|
||||
{ "name": "arm64-apple-clang+static-release", "inherits": [ "base", "arm64-apple-clang", "reldbg", "static" ] },
|
||||
|
||||
{ "name": "arm64-windows-msvc-debug", "inherits": [ "base", "arm64-windows-msvc", "debug" ] },
|
||||
{ "name": "arm64-windows-msvc-release", "inherits": [ "base", "arm64-windows-msvc", "reldbg" ] },
|
||||
{ "name": "arm64-windows-msvc+static-release", "inherits": [ "base", "arm64-windows-msvc", "reldbg", "static" ] },
|
||||
|
||||
{ "name": "x64-windows-msvc-debug" , "inherits": [ "base", "debug" ] },
|
||||
{ "name": "x64-windows-msvc-debug", "inherits": [ "base", "debug" ] },
|
||||
{ "name": "x64-windows-msvc-release", "inherits": [ "base", "reldbg" ] },
|
||||
{ "name": "x64-windows-msvc+static-release", "inherits": [ "base", "reldbg", "static" ] },
|
||||
|
||||
{ "name": "x64-windows-sycl-debug" , "inherits": [ "sycl-base", "debug" ] },
|
||||
{ "name": "x64-windows-sycl-debug", "inherits": [ "sycl-base", "debug" ] },
|
||||
{ "name": "x64-windows-sycl-debug-f16", "inherits": [ "sycl-base", "debug", "sycl_f16" ] },
|
||||
{ "name": "x64-windows-sycl-release", "inherits": [ "sycl-base", "release" ] },
|
||||
{ "name": "x64-windows-sycl-release-f16", "inherits": [ "sycl-base", "release", "sycl_f16" ] }
|
||||
{ "name": "x64-windows-sycl-release-f16", "inherits": [ "sycl-base", "release", "sycl_f16" ] },
|
||||
|
||||
{ "name": "x64-windows-vulkan-debug", "inherits": [ "base", "vulkan", "debug" ] },
|
||||
{ "name": "x64-windows-vulkan-release", "inherits": [ "base", "vulkan", "release" ] }
|
||||
]
|
||||
}
|
||||
|
||||
@@ -1,24 +1,23 @@
|
||||
# Pull requests (for contributors)
|
||||
|
||||
- Test your changes:
|
||||
- Using the commands in the [`tests`](tests) folder. For instance, running the `./tests/test-backend-ops` command tests different backend implementations of the GGML library
|
||||
- Using the commands in the [`tests`](tests) folder. For instance, running the `./tests/test-backend-ops` command tests different backend implementations of the `ggml` library
|
||||
- Execute [the full CI locally on your machine](ci/README.md) before publishing
|
||||
- Please rate the complexity of your PR (i.e. `Review Complexity : Low`, `Review Complexity : Medium`, `Review Complexity : High`). This makes it easier for maintainers to triage the PRs.
|
||||
- The PR template has a series of review complexity checkboxes `[ ]` that [you can mark as](https://docs.github.com/en/get-started/writing-on-github/working-with-advanced-formatting/about-task-lists) `[X]` for your convenience
|
||||
- Consider allowing write access to your branch for faster review
|
||||
- Optionally rate the complexity of your PR (i.e. `Review Complexity : Low`, `Review Complexity : Medium`, `Review Complexity : High`). This makes it easier for maintainers to triage the PRs
|
||||
- Consider allowing write access to your branch for faster reviews, as reviewers can push commits directly
|
||||
- If your PR becomes stale, don't hesitate to ping the maintainers in the comments
|
||||
|
||||
# Pull requests (for collaborators)
|
||||
|
||||
- Squash-merge PRs
|
||||
- Use the following format for the squashed commit title: `<module> : <commit title> (#<issue_number>)`. For example: `utils : fix typo in utils.py (#1234)`
|
||||
- Optionally, pick a `<module>` from here: https://github.com/ggerganov/llama.cpp/wiki/Modules
|
||||
- Optionally pick a `<module>` from here: https://github.com/ggerganov/llama.cpp/wiki/Modules
|
||||
|
||||
# Coding guidelines
|
||||
|
||||
- Avoid adding third-party dependencies, extra files, extra headers, etc.
|
||||
- Always consider cross-compatibility with other operating systems and architectures
|
||||
- Avoid fancy looking modern STL constructs, use basic `for` loops, avoid templates, keep it simple
|
||||
- Avoid fancy-looking modern STL constructs, use basic `for` loops, avoid templates, keep it simple
|
||||
- There are no strict rules for the code style, but try to follow the patterns in the code (indentation, spaces, etc.). Vertical alignment makes things more readable and easier to batch edit
|
||||
- Clean-up any trailing whitespaces, use 4 spaces for indentation, brackets on the same line, `void * ptr`, `int & a`
|
||||
- Naming usually optimizes for common prefix (see https://github.com/ggerganov/ggml/pull/302#discussion_r1243240963)
|
||||
|
||||
623
Makefile
623
Makefile
@@ -1,7 +1,6 @@
|
||||
# Define the default target now so that it is always the first target
|
||||
BUILD_TARGETS = \
|
||||
libllava.a \
|
||||
llama-baby-llama \
|
||||
llama-batched \
|
||||
llama-batched-bench \
|
||||
llama-bench \
|
||||
@@ -34,6 +33,7 @@ BUILD_TARGETS = \
|
||||
llama-save-load-state \
|
||||
llama-server \
|
||||
llama-simple \
|
||||
llama-simple-chat \
|
||||
llama-speculative \
|
||||
llama-tokenize \
|
||||
llama-vdot \
|
||||
@@ -48,14 +48,12 @@ TEST_TARGETS = \
|
||||
tests/test-backend-ops \
|
||||
tests/test-chat-template \
|
||||
tests/test-double-float \
|
||||
tests/test-grad0 \
|
||||
tests/test-grammar-integration \
|
||||
tests/test-grammar-parser \
|
||||
tests/test-json-schema-to-grammar \
|
||||
tests/test-llama-grammar \
|
||||
tests/test-log \
|
||||
tests/test-model-load-cancel \
|
||||
tests/test-opt \
|
||||
tests/test-quantize-fns \
|
||||
tests/test-quantize-perf \
|
||||
tests/test-rope \
|
||||
@@ -63,6 +61,7 @@ TEST_TARGETS = \
|
||||
tests/test-tokenizer-0 \
|
||||
tests/test-tokenizer-1-bpe \
|
||||
tests/test-tokenizer-1-spm
|
||||
# tests/test-opt \
|
||||
|
||||
# Legacy build targets that were renamed in #7809, but should still be removed when the project is cleaned
|
||||
LEGACY_TARGETS_CLEAN = main quantize quantize-stats perplexity imatrix embedding vdot q8dot convert-llama2c-to-ggml \
|
||||
@@ -93,11 +92,6 @@ GGML_METAL := 1
|
||||
DEPRECATE_WARNING := 1
|
||||
endif
|
||||
|
||||
ifdef LLAMA_OPENMP
|
||||
GGML_OPENMP := 1
|
||||
DEPRECATE_WARNING := 1
|
||||
endif
|
||||
|
||||
ifdef LLAMA_RPC
|
||||
GGML_RPC := 1
|
||||
DEPRECATE_WARNING := 1
|
||||
@@ -364,6 +358,10 @@ ifdef LLAMA_SERVER_SSL
|
||||
MK_LDFLAGS += -lssl -lcrypto
|
||||
endif
|
||||
|
||||
ifndef GGML_NO_CPU_AARCH64
|
||||
MK_CPPFLAGS += -DGGML_USE_CPU_AARCH64
|
||||
endif
|
||||
|
||||
# warnings
|
||||
WARN_FLAGS = \
|
||||
-Wall \
|
||||
@@ -528,65 +526,59 @@ ifndef GGML_NO_ACCELERATE
|
||||
# Mac OS - include Accelerate framework.
|
||||
# `-framework Accelerate` works both with Apple Silicon and Mac Intel
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
MK_CPPFLAGS += -DGGML_USE_ACCELERATE -DGGML_USE_BLAS
|
||||
MK_CPPFLAGS += -DACCELERATE_NEW_LAPACK
|
||||
MK_CPPFLAGS += -DACCELERATE_LAPACK_ILP64
|
||||
MK_LDFLAGS += -framework Accelerate
|
||||
OBJ_GGML += ggml/src/ggml-blas.o
|
||||
MK_CPPFLAGS += -DGGML_USE_ACCELERATE -DGGML_USE_BLAS -DGGML_BLAS_USE_ACCELERATE
|
||||
MK_CPPFLAGS += -DACCELERATE_NEW_LAPACK
|
||||
MK_CPPFLAGS += -DACCELERATE_LAPACK_ILP64
|
||||
MK_LDFLAGS += -framework Accelerate
|
||||
OBJ_GGML_EXT += ggml/src/ggml-blas/ggml-blas.o
|
||||
endif
|
||||
endif # GGML_NO_ACCELERATE
|
||||
|
||||
ifdef GGML_MUSA
|
||||
CC := clang
|
||||
CXX := clang++
|
||||
GGML_CUDA := 1
|
||||
MK_CPPFLAGS += -DGGML_USE_MUSA
|
||||
endif
|
||||
|
||||
ifndef GGML_NO_OPENMP
|
||||
MK_CPPFLAGS += -DGGML_USE_OPENMP
|
||||
MK_CFLAGS += -fopenmp
|
||||
MK_CXXFLAGS += -fopenmp
|
||||
ifdef GGML_MUSA
|
||||
MK_CPPFLAGS += -I/usr/lib/llvm-10/include/openmp
|
||||
MK_LDFLAGS += -L/usr/lib/llvm-10/lib
|
||||
endif # GGML_MUSA
|
||||
endif # GGML_NO_OPENMP
|
||||
|
||||
ifdef GGML_OPENBLAS
|
||||
MK_CPPFLAGS += -DGGML_USE_BLAS $(shell pkg-config --cflags-only-I openblas)
|
||||
MK_CFLAGS += $(shell pkg-config --cflags-only-other openblas)
|
||||
MK_LDFLAGS += $(shell pkg-config --libs openblas)
|
||||
OBJ_GGML += ggml/src/ggml-blas.o
|
||||
MK_CPPFLAGS += -DGGML_USE_BLAS $(shell pkg-config --cflags-only-I openblas)
|
||||
MK_CFLAGS += $(shell pkg-config --cflags-only-other openblas)
|
||||
MK_LDFLAGS += $(shell pkg-config --libs openblas)
|
||||
OBJ_GGML_EXT += ggml/src/ggml-blas/ggml-blas.o
|
||||
endif # GGML_OPENBLAS
|
||||
|
||||
ifdef GGML_OPENBLAS64
|
||||
MK_CPPFLAGS += -DGGML_USE_BLAS $(shell pkg-config --cflags-only-I openblas64)
|
||||
MK_CFLAGS += $(shell pkg-config --cflags-only-other openblas64)
|
||||
MK_LDFLAGS += $(shell pkg-config --libs openblas64)
|
||||
OBJ_GGML += ggml/src/ggml-blas.o
|
||||
MK_CPPFLAGS += -DGGML_USE_BLAS $(shell pkg-config --cflags-only-I openblas64)
|
||||
MK_CFLAGS += $(shell pkg-config --cflags-only-other openblas64)
|
||||
MK_LDFLAGS += $(shell pkg-config --libs openblas64)
|
||||
OBJ_GGML_EXT += ggml/src/ggml-blas/ggml-blas.o
|
||||
endif # GGML_OPENBLAS64
|
||||
|
||||
ifdef GGML_BLIS
|
||||
MK_CPPFLAGS += -DGGML_USE_BLAS -DGGML_BLAS_USE_BLIS -I/usr/local/include/blis -I/usr/include/blis
|
||||
MK_LDFLAGS += -lblis -L/usr/local/lib
|
||||
OBJ_GGML += ggml/src/ggml-blas.o
|
||||
MK_CPPFLAGS += -DGGML_USE_BLAS -DGGML_BLAS_USE_BLIS -I/usr/local/include/blis -I/usr/include/blis
|
||||
MK_LDFLAGS += -lblis -L/usr/local/lib
|
||||
OBJ_GGML_EXT += ggml/src/ggml-blas/ggml-blas.o
|
||||
endif # GGML_BLIS
|
||||
|
||||
ifdef GGML_NVPL
|
||||
MK_CPPFLAGS += -DGGML_USE_BLAS -DGGML_BLAS_USE_NVPL -DNVPL_ILP64 -I/usr/local/include/nvpl_blas -I/usr/include/nvpl_blas
|
||||
MK_LDFLAGS += -L/usr/local/lib -lnvpl_blas_core -lnvpl_blas_ilp64_gomp
|
||||
OBJ_GGML += ggml/src/ggml-blas.o
|
||||
MK_CPPFLAGS += -DGGML_USE_BLAS -DGGML_BLAS_USE_NVPL -DNVPL_ILP64 -I/usr/local/include/nvpl_blas -I/usr/include/nvpl_blas
|
||||
MK_LDFLAGS += -L/usr/local/lib -lnvpl_blas_core -lnvpl_blas_ilp64_gomp
|
||||
OBJ_GGML_EXT += ggml/src/ggml-blas/ggml-blas.o
|
||||
endif # GGML_NVPL
|
||||
|
||||
ifndef GGML_NO_LLAMAFILE
|
||||
MK_CPPFLAGS += -DGGML_USE_LLAMAFILE
|
||||
OBJ_GGML += ggml/src/llamafile/sgemm.o
|
||||
MK_CPPFLAGS += -DGGML_USE_LLAMAFILE
|
||||
OBJ_GGML_EXT += ggml/src/ggml-cpu/llamafile/sgemm.o
|
||||
endif
|
||||
|
||||
ifndef GGML_NO_AMX
|
||||
MK_CPPFLAGS += -DGGML_USE_AMX
|
||||
OBJ_GGML_EXT += ggml/src/ggml-amx/ggml-amx.o ggml/src/ggml-amx/mmq.o
|
||||
endif
|
||||
|
||||
ifdef GGML_RPC
|
||||
MK_CPPFLAGS += -DGGML_USE_RPC
|
||||
OBJ_GGML += ggml/src/ggml-rpc.o
|
||||
MK_CPPFLAGS += -DGGML_USE_RPC
|
||||
OBJ_GGML_EXT += ggml/src/ggml-rpc.o
|
||||
endif # GGML_RPC
|
||||
|
||||
OBJ_CUDA_TMPL = $(patsubst %.cu,%.o,$(wildcard ggml/src/ggml-cuda/template-instances/fattn-wmma*.cu))
|
||||
@@ -601,41 +593,27 @@ else
|
||||
endif # GGML_CUDA_FA_ALL_QUANTS
|
||||
|
||||
ifdef GGML_CUDA
|
||||
ifdef GGML_MUSA
|
||||
ifneq ('', '$(wildcard /opt/musa)')
|
||||
CUDA_PATH ?= /opt/musa
|
||||
else
|
||||
CUDA_PATH ?= /usr/local/musa
|
||||
endif
|
||||
|
||||
MK_CPPFLAGS += -DGGML_USE_CUDA -I$(CUDA_PATH)/include
|
||||
MK_LDFLAGS += -lmusa -lmublas -lmusart -lpthread -ldl -lrt -L$(CUDA_PATH)/lib -L/usr/lib64
|
||||
MK_NVCCFLAGS += -x musa -mtgpu --cuda-gpu-arch=mp_21 --cuda-gpu-arch=mp_22
|
||||
ifneq ('', '$(wildcard /opt/cuda)')
|
||||
CUDA_PATH ?= /opt/cuda
|
||||
else
|
||||
ifneq ('', '$(wildcard /opt/cuda)')
|
||||
CUDA_PATH ?= /opt/cuda
|
||||
else
|
||||
CUDA_PATH ?= /usr/local/cuda
|
||||
endif
|
||||
CUDA_PATH ?= /usr/local/cuda
|
||||
endif
|
||||
|
||||
MK_CPPFLAGS += -DGGML_USE_CUDA -DGGML_CUDA_USE_GRAPHS -I$(CUDA_PATH)/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include
|
||||
MK_LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L$(CUDA_PATH)/lib64 -L/usr/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib -L$(CUDA_PATH)/lib64/stubs -L/usr/lib/wsl/lib
|
||||
MK_NVCCFLAGS += -use_fast_math
|
||||
endif # GGML_MUSA
|
||||
MK_CPPFLAGS += -DGGML_USE_CUDA -DGGML_CUDA_USE_GRAPHS -I$(CUDA_PATH)/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include
|
||||
MK_LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L$(CUDA_PATH)/lib64 -L/usr/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib -L$(CUDA_PATH)/lib64/stubs -L/usr/lib/wsl/lib
|
||||
MK_NVCCFLAGS += -use_fast_math
|
||||
|
||||
OBJ_GGML += ggml/src/ggml-cuda.o
|
||||
OBJ_GGML += $(patsubst %.cu,%.o,$(wildcard ggml/src/ggml-cuda/*.cu))
|
||||
OBJ_GGML += $(OBJ_CUDA_TMPL)
|
||||
OBJ_GGML_EXT += ggml/src/ggml-cuda/ggml-cuda.o
|
||||
OBJ_GGML_EXT += $(patsubst %.cu,%.o,$(wildcard ggml/src/ggml-cuda/*.cu))
|
||||
OBJ_GGML_EXT += $(OBJ_CUDA_TMPL)
|
||||
|
||||
ifdef LLAMA_FATAL_WARNINGS
|
||||
MK_NVCCFLAGS += -Werror all-warnings
|
||||
endif # LLAMA_FATAL_WARNINGS
|
||||
|
||||
ifndef GGML_MUSA
|
||||
ifndef JETSON_EOL_MODULE_DETECT
|
||||
MK_NVCCFLAGS += --forward-unknown-to-host-compiler
|
||||
endif # JETSON_EOL_MODULE_DETECT
|
||||
endif # GGML_MUSA
|
||||
|
||||
ifdef LLAMA_DEBUG
|
||||
MK_NVCCFLAGS += -lineinfo
|
||||
@@ -648,11 +626,7 @@ endif # GGML_CUDA_DEBUG
|
||||
ifdef GGML_CUDA_NVCC
|
||||
NVCC = $(CCACHE) $(GGML_CUDA_NVCC)
|
||||
else
|
||||
ifdef GGML_MUSA
|
||||
NVCC = $(CCACHE) mcc
|
||||
else
|
||||
NVCC = $(CCACHE) nvcc
|
||||
endif # GGML_MUSA
|
||||
NVCC = $(CCACHE) nvcc
|
||||
endif # GGML_CUDA_NVCC
|
||||
|
||||
ifdef CUDA_DOCKER_ARCH
|
||||
@@ -661,10 +635,6 @@ else ifndef CUDA_POWER_ARCH
|
||||
MK_NVCCFLAGS += -arch=native
|
||||
endif # CUDA_DOCKER_ARCH
|
||||
|
||||
ifdef GGML_CUDA_FORCE_DMMV
|
||||
MK_NVCCFLAGS += -DGGML_CUDA_FORCE_DMMV
|
||||
endif # GGML_CUDA_FORCE_DMMV
|
||||
|
||||
ifdef GGML_CUDA_FORCE_MMQ
|
||||
MK_NVCCFLAGS += -DGGML_CUDA_FORCE_MMQ
|
||||
endif # GGML_CUDA_FORCE_MMQ
|
||||
@@ -673,20 +643,6 @@ ifdef GGML_CUDA_FORCE_CUBLAS
|
||||
MK_NVCCFLAGS += -DGGML_CUDA_FORCE_CUBLAS
|
||||
endif # GGML_CUDA_FORCE_CUBLAS
|
||||
|
||||
ifdef GGML_CUDA_DMMV_X
|
||||
MK_NVCCFLAGS += -DGGML_CUDA_DMMV_X=$(GGML_CUDA_DMMV_X)
|
||||
else
|
||||
MK_NVCCFLAGS += -DGGML_CUDA_DMMV_X=32
|
||||
endif # GGML_CUDA_DMMV_X
|
||||
|
||||
ifdef GGML_CUDA_MMV_Y
|
||||
MK_NVCCFLAGS += -DGGML_CUDA_MMV_Y=$(GGML_CUDA_MMV_Y)
|
||||
else ifdef GGML_CUDA_DMMV_Y
|
||||
MK_NVCCFLAGS += -DGGML_CUDA_MMV_Y=$(GGML_CUDA_DMMV_Y) # for backwards compatibility
|
||||
else
|
||||
MK_NVCCFLAGS += -DGGML_CUDA_MMV_Y=1
|
||||
endif # GGML_CUDA_MMV_Y
|
||||
|
||||
ifdef GGML_CUDA_F16
|
||||
MK_NVCCFLAGS += -DGGML_CUDA_F16
|
||||
endif # GGML_CUDA_F16
|
||||
@@ -695,12 +651,6 @@ ifdef GGML_CUDA_DMMV_F16
|
||||
MK_NVCCFLAGS += -DGGML_CUDA_F16
|
||||
endif # GGML_CUDA_DMMV_F16
|
||||
|
||||
ifdef GGML_CUDA_KQUANTS_ITER
|
||||
MK_NVCCFLAGS += -DK_QUANTS_PER_ITERATION=$(GGML_CUDA_KQUANTS_ITER)
|
||||
else
|
||||
MK_NVCCFLAGS += -DK_QUANTS_PER_ITERATION=2
|
||||
endif
|
||||
|
||||
ifdef GGML_CUDA_PEER_MAX_BATCH_SIZE
|
||||
MK_NVCCFLAGS += -DGGML_CUDA_PEER_MAX_BATCH_SIZE=$(GGML_CUDA_PEER_MAX_BATCH_SIZE)
|
||||
else
|
||||
@@ -724,15 +674,9 @@ define NVCC_COMPILE
|
||||
$(NVCC) -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUDA -I/usr/local/cuda/include -I/opt/cuda/include -I/usr/local/cuda/targets/aarch64-linux/include -std=c++11 -O3 $(NVCCFLAGS) $(CPPFLAGS) -Xcompiler "$(CUDA_CXXFLAGS)" -c $< -o $@
|
||||
endef # NVCC_COMPILE
|
||||
else
|
||||
ifdef GGML_MUSA
|
||||
define NVCC_COMPILE
|
||||
$(NVCC) $(NVCCFLAGS) $(CPPFLAGS) -c $< -o $@
|
||||
endef # NVCC_COMPILE
|
||||
else
|
||||
define NVCC_COMPILE
|
||||
$(NVCC) $(NVCCFLAGS) $(CPPFLAGS) -Xcompiler "$(CUDA_CXXFLAGS)" -c $< -o $@
|
||||
endef # NVCC_COMPILE
|
||||
endif # GGML_MUSA
|
||||
endif # JETSON_EOL_MODULE_DETECT
|
||||
|
||||
ggml/src/ggml-cuda/%.o: \
|
||||
@@ -742,8 +686,8 @@ ggml/src/ggml-cuda/%.o: \
|
||||
ggml/src/ggml-cuda/common.cuh
|
||||
$(NVCC_COMPILE)
|
||||
|
||||
ggml/src/ggml-cuda.o: \
|
||||
ggml/src/ggml-cuda.cu \
|
||||
ggml/src/ggml-cuda/ggml-cuda.o: \
|
||||
ggml/src/ggml-cuda/ggml-cuda.cu \
|
||||
ggml/include/ggml-cuda.h \
|
||||
ggml/include/ggml.h \
|
||||
ggml/include/ggml-backend.h \
|
||||
@@ -754,9 +698,9 @@ ggml/src/ggml-cuda.o: \
|
||||
endif # GGML_CUDA
|
||||
|
||||
ifdef GGML_VULKAN
|
||||
MK_CPPFLAGS += -DGGML_USE_VULKAN
|
||||
MK_LDFLAGS += $(shell pkg-config --libs vulkan)
|
||||
OBJ_GGML += ggml/src/ggml-vulkan.o ggml/src/ggml-vulkan-shaders.o
|
||||
MK_CPPFLAGS += -DGGML_USE_VULKAN
|
||||
MK_LDFLAGS += $(shell pkg-config --libs vulkan)
|
||||
OBJ_GGML_EXT += ggml/src/ggml-vulkan.o ggml/src/ggml-vulkan-shaders.o
|
||||
|
||||
ifdef GGML_VULKAN_CHECK_RESULTS
|
||||
MK_CPPFLAGS += -DGGML_VULKAN_CHECK_RESULTS
|
||||
@@ -786,10 +730,10 @@ GLSLC_CMD = glslc
|
||||
_ggml_vk_genshaders_cmd = $(shell pwd)/vulkan-shaders-gen
|
||||
_ggml_vk_header = ggml/src/ggml-vulkan-shaders.hpp
|
||||
_ggml_vk_source = ggml/src/ggml-vulkan-shaders.cpp
|
||||
_ggml_vk_input_dir = ggml/src/vulkan-shaders
|
||||
_ggml_vk_input_dir = ggml/src/ggml-vulkan/vulkan-shaders
|
||||
_ggml_vk_shader_deps = $(echo $(_ggml_vk_input_dir)/*.comp)
|
||||
|
||||
ggml/src/ggml-vulkan.o: ggml/src/ggml-vulkan.cpp ggml/include/ggml-vulkan.h $(_ggml_vk_header) $(_ggml_vk_source)
|
||||
ggml/src/ggml-vulkan.o: ggml/src/ggml-vulkan/ggml-vulkan.cpp ggml/include/ggml-vulkan.h $(_ggml_vk_header) $(_ggml_vk_source)
|
||||
$(CXX) $(CXXFLAGS) $(shell pkg-config --cflags vulkan) -c $< -o $@
|
||||
|
||||
$(_ggml_vk_header): $(_ggml_vk_source)
|
||||
@@ -801,8 +745,8 @@ $(_ggml_vk_source): $(_ggml_vk_shader_deps) vulkan-shaders-gen
|
||||
--target-hpp $(_ggml_vk_header) \
|
||||
--target-cpp $(_ggml_vk_source)
|
||||
|
||||
vulkan-shaders-gen: ggml/src/vulkan-shaders/vulkan-shaders-gen.cpp
|
||||
$(CXX) $(CXXFLAGS) -o $@ $(LDFLAGS) ggml/src/vulkan-shaders/vulkan-shaders-gen.cpp
|
||||
vulkan-shaders-gen: ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp
|
||||
$(CXX) $(CXXFLAGS) -o $@ $(LDFLAGS) ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp
|
||||
|
||||
endif # GGML_VULKAN
|
||||
|
||||
@@ -815,11 +759,7 @@ ifdef GGML_HIPBLAS
|
||||
AMDGPU_TARGETS ?= $(shell $(ROCM_PATH)/llvm/bin/amdgpu-arch)
|
||||
endif
|
||||
|
||||
GGML_CUDA_DMMV_X ?= 32
|
||||
GGML_CUDA_MMV_Y ?= 1
|
||||
GGML_CUDA_KQUANTS_ITER ?= 2
|
||||
|
||||
MK_CPPFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUDA
|
||||
MK_CPPFLAGS += -DGGML_USE_HIP -DGGML_USE_CUDA
|
||||
|
||||
ifdef GGML_HIP_UMA
|
||||
MK_CPPFLAGS += -DGGML_HIP_UMA
|
||||
@@ -832,13 +772,6 @@ endif # GGML_HIP_UMA
|
||||
HIPCC ?= $(CCACHE) $(ROCM_PATH)/bin/hipcc
|
||||
|
||||
HIPFLAGS += $(addprefix --offload-arch=,$(AMDGPU_TARGETS))
|
||||
HIPFLAGS += -DGGML_CUDA_DMMV_X=$(GGML_CUDA_DMMV_X)
|
||||
HIPFLAGS += -DGGML_CUDA_MMV_Y=$(GGML_CUDA_MMV_Y)
|
||||
HIPFLAGS += -DK_QUANTS_PER_ITERATION=$(GGML_CUDA_KQUANTS_ITER)
|
||||
|
||||
ifdef GGML_CUDA_FORCE_DMMV
|
||||
HIPFLAGS += -DGGML_CUDA_FORCE_DMMV
|
||||
endif # GGML_CUDA_FORCE_DMMV
|
||||
|
||||
ifdef GGML_CUDA_FORCE_MMQ
|
||||
HIPFLAGS += -DGGML_CUDA_FORCE_MMQ
|
||||
@@ -852,12 +785,12 @@ ifdef GGML_CUDA_NO_PEER_COPY
|
||||
HIPFLAGS += -DGGML_CUDA_NO_PEER_COPY
|
||||
endif # GGML_CUDA_NO_PEER_COPY
|
||||
|
||||
OBJ_GGML += ggml/src/ggml-cuda.o
|
||||
OBJ_GGML += $(patsubst %.cu,%.o,$(wildcard ggml/src/ggml-cuda/*.cu))
|
||||
OBJ_GGML += $(OBJ_CUDA_TMPL)
|
||||
OBJ_GGML_EXT += ggml/src/ggml-cuda/ggml-cuda.o
|
||||
OBJ_GGML_EXT += $(patsubst %.cu,%.o,$(wildcard ggml/src/ggml-cuda/*.cu))
|
||||
OBJ_GGML_EXT += $(OBJ_CUDA_TMPL)
|
||||
|
||||
ggml/src/ggml-cuda.o: \
|
||||
ggml/src/ggml-cuda.cu \
|
||||
ggml/src/ggml-cuda/ggml-cuda.o: \
|
||||
ggml/src/ggml-cuda/ggml-cuda.cu \
|
||||
ggml/include/ggml-cuda.h \
|
||||
ggml/include/ggml.h \
|
||||
ggml/include/ggml-backend.h \
|
||||
@@ -874,70 +807,167 @@ ggml/src/ggml-cuda/%.o: \
|
||||
$(HIPCC) $(CXXFLAGS) $(HIPFLAGS) -x hip -c -o $@ $<
|
||||
endif # GGML_HIPBLAS
|
||||
|
||||
ifdef GGML_MUSA
|
||||
ifeq ($(wildcard /opt/musa),)
|
||||
MUSA_PATH ?= /usr/local/musa
|
||||
else
|
||||
MUSA_PATH ?= /opt/musa
|
||||
endif
|
||||
MTGPU_TARGETS ?= mp_21 mp_22
|
||||
|
||||
MK_CPPFLAGS += -DGGML_USE_MUSA -DGGML_USE_CUDA
|
||||
MK_LDFLAGS += -L$(MUSA_PATH)/lib -Wl,-rpath=$(MUSA_PATH)/lib
|
||||
MK_LDFLAGS += -lmusa -lmusart -lmublas
|
||||
|
||||
ifndef GGML_NO_OPENMP
|
||||
# For Ubuntu Focal
|
||||
MK_CPPFLAGS += -I/usr/lib/llvm-10/include/openmp
|
||||
MK_LDFLAGS += -L/usr/lib/llvm-10/lib
|
||||
# For Ubuntu Jammy
|
||||
MK_CPPFLAGS += -I/usr/lib/llvm-14/lib/clang/14.0.0/include
|
||||
MK_LDFLAGS += -L/usr/lib/llvm-14/lib
|
||||
endif # GGML_NO_OPENMP
|
||||
|
||||
CC := $(MUSA_PATH)/bin/clang
|
||||
CXX := $(MUSA_PATH)/bin/clang++
|
||||
MCC := $(CCACHE) $(MUSA_PATH)/bin/mcc
|
||||
|
||||
MUSAFLAGS += $(addprefix --cuda-gpu-arch=, $(MTGPU_TARGETS))
|
||||
|
||||
ifdef GGML_CUDA_FORCE_MMQ
|
||||
MUSAFLAGS += -DGGML_CUDA_FORCE_MMQ
|
||||
endif # GGML_CUDA_FORCE_MMQ
|
||||
|
||||
ifdef GGML_CUDA_FORCE_CUBLAS
|
||||
MUSAFLAGS += -DGGML_CUDA_FORCE_CUBLAS
|
||||
endif # GGML_CUDA_FORCE_CUBLAS
|
||||
|
||||
ifdef GGML_CUDA_F16
|
||||
MUSAFLAGS += -DGGML_CUDA_F16
|
||||
endif # GGML_CUDA_F16
|
||||
|
||||
ifdef GGML_CUDA_DMMV_F16
|
||||
MUSAFLAGS += -DGGML_CUDA_F16
|
||||
endif # GGML_CUDA_DMMV_F16
|
||||
|
||||
ifdef GGML_CUDA_PEER_MAX_BATCH_SIZE
|
||||
MUSAFLAGS += -DGGML_CUDA_PEER_MAX_BATCH_SIZE=$(GGML_CUDA_PEER_MAX_BATCH_SIZE)
|
||||
else
|
||||
MUSAFLAGS += -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128
|
||||
endif # GGML_CUDA_PEER_MAX_BATCH_SIZE
|
||||
|
||||
ifdef GGML_CUDA_NO_PEER_COPY
|
||||
MUSAFLAGS += -DGGML_CUDA_NO_PEER_COPY
|
||||
endif # GGML_CUDA_NO_PEER_COPY
|
||||
|
||||
ifdef GGML_CUDA_FA_ALL_QUANTS
|
||||
MUSAFLAGS += -DGGML_CUDA_FA_ALL_QUANTS
|
||||
endif # GGML_CUDA_FA_ALL_QUANTS
|
||||
|
||||
OBJ_GGML_EXT += ggml/src/ggml-cuda/ggml-cuda.o
|
||||
OBJ_GGML_EXT += $(patsubst %.cu,%.o,$(wildcard ggml/src/ggml-cuda/*.cu))
|
||||
OBJ_GGML_EXT += $(OBJ_CUDA_TMPL)
|
||||
|
||||
ggml/src/ggml-cuda/ggml-cuda.o: \
|
||||
ggml/src/ggml-cuda/ggml-cuda.cu \
|
||||
ggml/include/ggml-cuda.h \
|
||||
ggml/include/ggml.h \
|
||||
ggml/include/ggml-backend.h \
|
||||
ggml/src/ggml-backend-impl.h \
|
||||
ggml/src/ggml-common.h \
|
||||
$(wildcard ggml/src/ggml-cuda/*.cuh)
|
||||
$(MCC) $(CXXFLAGS) $(MUSAFLAGS) -x musa -mtgpu -c -o $@ $<
|
||||
|
||||
ggml/src/ggml-cuda/%.o: \
|
||||
ggml/src/ggml-cuda/%.cu \
|
||||
ggml/include/ggml.h \
|
||||
ggml/src/ggml-common.h \
|
||||
ggml/src/ggml-cuda/common.cuh
|
||||
$(MCC) $(CXXFLAGS) $(MUSAFLAGS) -x musa -mtgpu -c -o $@ $<
|
||||
endif # GGML_MUSA
|
||||
|
||||
ifdef GGML_METAL
|
||||
MK_CPPFLAGS += -DGGML_USE_METAL
|
||||
MK_LDFLAGS += -framework Foundation -framework Metal -framework MetalKit
|
||||
OBJ_GGML += ggml/src/ggml-metal.o
|
||||
MK_CPPFLAGS += -DGGML_USE_METAL
|
||||
MK_LDFLAGS += -framework Foundation -framework Metal -framework MetalKit
|
||||
OBJ_GGML_EXT += ggml/src/ggml-metal/ggml-metal.o
|
||||
|
||||
ifdef GGML_METAL_USE_BF16
|
||||
MK_CPPFLAGS += -DGGML_METAL_USE_BF16
|
||||
endif # GGML_METAL_USE_BF16
|
||||
ifdef GGML_METAL_NDEBUG
|
||||
MK_CPPFLAGS += -DGGML_METAL_NDEBUG
|
||||
endif
|
||||
ifdef GGML_METAL_EMBED_LIBRARY
|
||||
MK_CPPFLAGS += -DGGML_METAL_EMBED_LIBRARY
|
||||
OBJ_GGML += ggml/src/ggml-metal-embed.o
|
||||
MK_CPPFLAGS += -DGGML_METAL_EMBED_LIBRARY
|
||||
OBJ_GGML_EXT += ggml/src/ggml-metal-embed.o
|
||||
endif
|
||||
endif # GGML_METAL
|
||||
|
||||
ifdef GGML_METAL
|
||||
ggml/src/ggml-metal.o: \
|
||||
ggml/src/ggml-metal.m \
|
||||
ggml/src/ggml-metal/ggml-metal.o: \
|
||||
ggml/src/ggml-metal/ggml-metal.m \
|
||||
ggml/src/ggml-metal/ggml-metal-impl.h \
|
||||
ggml/include/ggml-metal.h \
|
||||
ggml/include/ggml.h
|
||||
$(CC) $(CFLAGS) -c $< -o $@
|
||||
|
||||
ifdef GGML_METAL_EMBED_LIBRARY
|
||||
ggml/src/ggml-metal-embed.o: \
|
||||
ggml/src/ggml-metal.metal \
|
||||
ggml/src/ggml-metal/ggml-metal.metal \
|
||||
ggml/src/ggml-metal/ggml-metal-impl.h \
|
||||
ggml/src/ggml-common.h
|
||||
@echo "Embedding Metal library"
|
||||
@sed -e '/#include "ggml-common.h"/r ggml/src/ggml-common.h' -e '/#include "ggml-common.h"/d' < ggml/src/ggml-metal.metal > ggml/src/ggml-metal-embed.metal
|
||||
@sed -e '/__embed_ggml-common.h__/r ggml/src/ggml-common.h' -e '/__embed_ggml-common.h__/d' < ggml/src/ggml-metal/ggml-metal.metal > ggml/src/ggml-metal/ggml-metal-embed.metal.tmp
|
||||
@sed -e '/#include "ggml-metal-impl.h"/r ggml/src/ggml-metal/ggml-metal-impl.h' -e '/#include "ggml-metal-impl.h"/d' < ggml/src/ggml-metal/ggml-metal-embed.metal.tmp > ggml/src/ggml-metal/ggml-metal-embed.metal
|
||||
$(eval TEMP_ASSEMBLY=$(shell mktemp -d))
|
||||
@echo ".section __DATA, __ggml_metallib" > $(TEMP_ASSEMBLY)/ggml-metal-embed.s
|
||||
@echo ".globl _ggml_metallib_start" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s
|
||||
@echo "_ggml_metallib_start:" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s
|
||||
@echo ".incbin \"ggml/src/ggml-metal-embed.metal\"" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s
|
||||
@echo ".globl _ggml_metallib_end" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s
|
||||
@echo "_ggml_metallib_end:" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s
|
||||
@echo ".section __DATA, __ggml_metallib" > $(TEMP_ASSEMBLY)/ggml-metal-embed.s
|
||||
@echo ".globl _ggml_metallib_start" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s
|
||||
@echo "_ggml_metallib_start:" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s
|
||||
@echo ".incbin \"ggml/src/ggml-metal/ggml-metal-embed.metal\"" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s
|
||||
@echo ".globl _ggml_metallib_end" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s
|
||||
@echo "_ggml_metallib_end:" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s
|
||||
$(CC) $(CFLAGS) -c $(TEMP_ASSEMBLY)/ggml-metal-embed.s -o $@
|
||||
@rm -f ${TEMP_ASSEMBLY}/ggml-metal-embed.s
|
||||
@rmdir ${TEMP_ASSEMBLY}
|
||||
endif
|
||||
endif # GGML_METAL
|
||||
|
||||
OBJ_GGML += \
|
||||
ggml/src/ggml.o \
|
||||
ggml/src/ggml-alloc.o \
|
||||
ggml/src/ggml-backend.o \
|
||||
ggml/src/ggml-quants.o \
|
||||
ggml/src/ggml-aarch64.o
|
||||
DIR_GGML = ggml
|
||||
DIR_LLAMA = src
|
||||
DIR_COMMON = common
|
||||
|
||||
OBJ_GGML = \
|
||||
$(DIR_GGML)/src/ggml.o \
|
||||
$(DIR_GGML)/src/ggml-aarch64.o \
|
||||
$(DIR_GGML)/src/ggml-alloc.o \
|
||||
$(DIR_GGML)/src/ggml-backend.o \
|
||||
$(DIR_GGML)/src/ggml-backend-reg.o \
|
||||
$(DIR_GGML)/src/ggml-opt.o \
|
||||
$(DIR_GGML)/src/ggml-quants.o \
|
||||
$(DIR_GGML)/src/ggml-threading.o \
|
||||
$(DIR_GGML)/src/ggml-cpu/ggml-cpu.o \
|
||||
$(DIR_GGML)/src/ggml-cpu/ggml-cpu-cpp.o \
|
||||
$(DIR_GGML)/src/ggml-cpu/ggml-cpu-aarch64.o \
|
||||
$(DIR_GGML)/src/ggml-cpu/ggml-cpu-quants.o \
|
||||
$(OBJ_GGML_EXT)
|
||||
|
||||
OBJ_LLAMA = \
|
||||
src/llama.o \
|
||||
src/llama-vocab.o \
|
||||
src/llama-grammar.o \
|
||||
src/llama-sampling.o \
|
||||
src/unicode.o \
|
||||
src/unicode-data.o
|
||||
$(DIR_LLAMA)/llama.o \
|
||||
$(DIR_LLAMA)/llama-vocab.o \
|
||||
$(DIR_LLAMA)/llama-grammar.o \
|
||||
$(DIR_LLAMA)/llama-sampling.o \
|
||||
$(DIR_LLAMA)/unicode.o \
|
||||
$(DIR_LLAMA)/unicode-data.o
|
||||
|
||||
OBJ_COMMON = \
|
||||
common/common.o \
|
||||
common/arg.o \
|
||||
common/log.o \
|
||||
common/console.o \
|
||||
common/ngram-cache.o \
|
||||
common/sampling.o \
|
||||
common/train.o \
|
||||
common/build-info.o \
|
||||
common/json-schema-to-grammar.o
|
||||
$(DIR_COMMON)/common.o \
|
||||
$(DIR_COMMON)/arg.o \
|
||||
$(DIR_COMMON)/log.o \
|
||||
$(DIR_COMMON)/console.o \
|
||||
$(DIR_COMMON)/ngram-cache.o \
|
||||
$(DIR_COMMON)/sampling.o \
|
||||
$(DIR_COMMON)/build-info.o \
|
||||
$(DIR_COMMON)/json-schema-to-grammar.o
|
||||
|
||||
OBJ_ALL = $(OBJ_GGML) $(OBJ_LLAMA) $(OBJ_COMMON)
|
||||
|
||||
@@ -993,7 +1023,6 @@ $(info I CXX: $(shell $(CXX) --version | head -n 1))
|
||||
ifdef GGML_CUDA
|
||||
$(info I NVCC: $(shell $(NVCC) --version | tail -n 1))
|
||||
CUDA_VERSION := $(shell $(NVCC) --version | grep -oP 'release (\K[0-9]+\.[0-9])')
|
||||
ifndef GGML_MUSA
|
||||
ifeq ($(shell awk -v "v=$(CUDA_VERSION)" 'BEGIN { print (v < 11.7) }'),1)
|
||||
|
||||
ifndef CUDA_DOCKER_ARCH
|
||||
@@ -1003,7 +1032,6 @@ endif # CUDA_POWER_ARCH
|
||||
endif # CUDA_DOCKER_ARCH
|
||||
|
||||
endif # eq ($(shell echo "$(CUDA_VERSION) < 11.7" | bc),1)
|
||||
endif # GGML_MUSA
|
||||
endif # GGML_CUDA
|
||||
$(info )
|
||||
|
||||
@@ -1040,209 +1068,78 @@ endif
|
||||
# Build libraries
|
||||
#
|
||||
|
||||
# ggml
|
||||
# Libraries
|
||||
LIB_GGML = libggml.so
|
||||
LIB_GGML_S = libggml.a
|
||||
|
||||
ggml/src/ggml.o: \
|
||||
ggml/src/ggml.c \
|
||||
ggml/include/ggml.h
|
||||
$(CC) $(CFLAGS) -c $< -o $@
|
||||
LIB_LLAMA = libllama.so
|
||||
LIB_LLAMA_S = libllama.a
|
||||
|
||||
ggml/src/ggml-alloc.o: \
|
||||
ggml/src/ggml-alloc.c \
|
||||
ggml/include/ggml.h \
|
||||
ggml/include/ggml-alloc.h
|
||||
$(CC) $(CFLAGS) -c $< -o $@
|
||||
LIB_COMMON = libcommon.so
|
||||
LIB_COMMON_S = libcommon.a
|
||||
|
||||
ggml/src/ggml-backend.o: \
|
||||
ggml/src/ggml-backend.cpp \
|
||||
ggml/src/ggml-backend-impl.h \
|
||||
ggml/include/ggml.h \
|
||||
ggml/include/ggml-backend.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
# Targets
|
||||
BUILD_TARGETS += $(LIB_GGML) $(LIB_GGML_S) $(LIB_LLAMA) $(LIB_LLAMA_S) $(LIB_COMMON) $(LIB_COMMON_S)
|
||||
|
||||
ggml/src/ggml-quants.o: \
|
||||
ggml/src/ggml-quants.c \
|
||||
ggml/include/ggml.h \
|
||||
ggml/src/ggml-quants.h \
|
||||
ggml/src/ggml-common.h
|
||||
$(CC) $(CFLAGS) -c $< -o $@
|
||||
# Dependency files
|
||||
DEP_FILES = $(OBJ_GGML:.o=.d) $(OBJ_LLAMA:.o=.d) $(OBJ_COMMON:.o=.d)
|
||||
|
||||
ggml/src/ggml-aarch64.o: \
|
||||
ggml/src/ggml-aarch64.c \
|
||||
ggml/include/ggml.h \
|
||||
ggml/src/ggml-aarch64.h \
|
||||
ggml/src/ggml-common.h
|
||||
$(CC) $(CFLAGS) -c $< -o $@
|
||||
# Default target
|
||||
all: $(BUILD_TARGETS)
|
||||
|
||||
ggml/src/ggml-blas.o: \
|
||||
ggml/src/ggml-blas.cpp \
|
||||
ggml/include/ggml-blas.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
ifndef GGML_NO_LLAMAFILE
|
||||
ggml/src/llamafile/sgemm.o: \
|
||||
ggml/src/llamafile/sgemm.cpp \
|
||||
ggml/src/llamafile/sgemm.h \
|
||||
ggml/include/ggml.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
endif # GGML_NO_LLAMAFILE
|
||||
|
||||
ifdef GGML_RPC
|
||||
ggml/src/ggml-rpc.o: \
|
||||
ggml/src/ggml-rpc.cpp \
|
||||
ggml/include/ggml-rpc.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
endif # GGML_RPC
|
||||
|
||||
$(LIB_GGML): \
|
||||
$(OBJ_GGML)
|
||||
$(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS)
|
||||
|
||||
$(LIB_GGML_S): \
|
||||
$(OBJ_GGML)
|
||||
ar rcs $(LIB_GGML_S) $^
|
||||
|
||||
# llama
|
||||
|
||||
src/unicode.o: \
|
||||
src/unicode.cpp \
|
||||
src/unicode.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
src/unicode-data.o: \
|
||||
src/unicode-data.cpp \
|
||||
src/unicode-data.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
src/llama.o: \
|
||||
src/llama.cpp \
|
||||
src/llama-impl.h \
|
||||
src/llama-vocab.h \
|
||||
src/llama-grammar.h \
|
||||
src/llama-sampling.h \
|
||||
src/unicode.h \
|
||||
include/llama.h \
|
||||
ggml/include/ggml-cuda.h \
|
||||
ggml/include/ggml-metal.h \
|
||||
# Note: need this exception because `ggml-cpu.c` and `ggml-cpu.cpp` both produce the same obj/dep files
|
||||
# g++ -M -I ./ggml/include/ -I ./ggml/src ggml/src/ggml-cpu/ggml-cpu.cpp | grep ggml
|
||||
$(DIR_GGML)/src/ggml-cpu/ggml-cpu-cpp.o: \
|
||||
ggml/src/ggml-cpu/ggml-cpu.cpp \
|
||||
ggml/include/ggml-backend.h \
|
||||
ggml/include/ggml.h \
|
||||
ggml/include/ggml-alloc.h \
|
||||
ggml/include/ggml-backend.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
ggml/src/ggml-backend-impl.h \
|
||||
ggml/include/ggml-cpu.h \
|
||||
ggml/src/ggml-impl.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
src/llama-vocab.o: \
|
||||
src/llama-vocab.cpp \
|
||||
src/llama-vocab.h \
|
||||
src/llama-impl.h \
|
||||
include/llama.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
# Rules for building object files
|
||||
$(DIR_GGML)/%.o: $(DIR_GGML)/%.c
|
||||
$(CC) $(CFLAGS) -MMD -c $< -o $@
|
||||
|
||||
src/llama-grammar.o: \
|
||||
src/llama-grammar.cpp \
|
||||
src/llama-grammar.h \
|
||||
src/llama-impl.h \
|
||||
src/llama-vocab.h \
|
||||
src/llama-sampling.h \
|
||||
include/llama.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
$(DIR_GGML)/%.o: $(DIR_GGML)/%.cpp
|
||||
$(CXX) $(CXXFLAGS) -MMD -c $< -o $@
|
||||
|
||||
src/llama-sampling.o: \
|
||||
src/llama-sampling.cpp \
|
||||
src/llama-sampling.h \
|
||||
src/llama-impl.h \
|
||||
include/llama.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
$(DIR_LLAMA)/%.o: $(DIR_LLAMA)/%.cpp
|
||||
$(CXX) $(CXXFLAGS) -MMD -c $< -o $@
|
||||
|
||||
$(LIB_LLAMA): \
|
||||
$(OBJ_LLAMA) \
|
||||
$(LIB_GGML)
|
||||
$(DIR_COMMON)/%.o: $(DIR_COMMON)/%.cpp
|
||||
$(CXX) $(CXXFLAGS) -MMD -c $< -o $@
|
||||
|
||||
# Rules for building libraries
|
||||
$(LIB_GGML): $(OBJ_GGML)
|
||||
$(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS)
|
||||
|
||||
$(LIB_LLAMA_S): \
|
||||
$(OBJ_LLAMA)
|
||||
$(LIB_GGML_S): $(OBJ_GGML)
|
||||
ar rcs $(LIB_GGML_S) $^
|
||||
|
||||
$(LIB_LLAMA): $(OBJ_LLAMA) $(LIB_GGML)
|
||||
$(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS)
|
||||
|
||||
$(LIB_LLAMA_S): $(OBJ_LLAMA)
|
||||
ar rcs $(LIB_LLAMA_S) $^
|
||||
|
||||
# common
|
||||
|
||||
common/common.o: \
|
||||
common/common.cpp \
|
||||
common/common.h \
|
||||
common/console.h \
|
||||
common/sampling.h \
|
||||
common/json.hpp \
|
||||
common/json-schema-to-grammar.h \
|
||||
include/llama.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
common/arg.o: \
|
||||
common/arg.cpp \
|
||||
common/arg.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
common/log.o: \
|
||||
common/log.cpp \
|
||||
common/log.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
common/sampling.o: \
|
||||
common/sampling.cpp \
|
||||
common/sampling.h \
|
||||
include/llama.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
common/console.o: \
|
||||
common/console.cpp \
|
||||
common/console.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
common/json-schema-to-grammar.o: \
|
||||
common/json-schema-to-grammar.cpp \
|
||||
common/json-schema-to-grammar.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
common/train.o: \
|
||||
common/train.cpp \
|
||||
common/train.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
common/ngram-cache.o: \
|
||||
common/ngram-cache.cpp \
|
||||
common/ngram-cache.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
$(LIB_COMMON): \
|
||||
$(OBJ_COMMON) \
|
||||
$(LIB_LLAMA) \
|
||||
$(LIB_GGML)
|
||||
$(LIB_COMMON): $(OBJ_COMMON) $(LIB_LLAMA) $(LIB_GGML)
|
||||
$(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS)
|
||||
|
||||
$(LIB_COMMON_S): \
|
||||
$(OBJ_COMMON)
|
||||
$(LIB_COMMON_S): $(OBJ_COMMON)
|
||||
ar rcs $(LIB_COMMON_S) $^
|
||||
|
||||
# Include dependency files
|
||||
-include $(DEP_FILES)
|
||||
|
||||
# Clean rule
|
||||
clean:
|
||||
rm -vrf *.dot $(BUILD_TARGETS) $(TEST_TARGETS)
|
||||
rm -rvf src/*.o
|
||||
rm -rvf tests/*.o
|
||||
rm -rvf examples/*.o
|
||||
rm -rvf common/*.o
|
||||
rm -rvf *.a
|
||||
rm -rvf *.dll
|
||||
rm -rvf *.so
|
||||
rm -rvf *.dot
|
||||
rm -rvf ggml/*.a
|
||||
rm -rvf ggml/*.dll
|
||||
rm -rvf ggml/*.so
|
||||
rm -vrf ggml/src/*.o
|
||||
rm -rvf ggml/src/llamafile/*.o
|
||||
rm -rvf common/build-info.cpp
|
||||
rm -vrf ggml/src/ggml-metal-embed.metal
|
||||
rm -vrf ggml/src/ggml-cuda/*.o
|
||||
rm -vrf ggml/src/ggml-cuda/template-instances/*.o
|
||||
rm -rvf $(BUILD_TARGETS)
|
||||
rm -rvf $(TEST_TARGETS)
|
||||
rm -f vulkan-shaders-gen ggml/src/ggml-vulkan-shaders.hpp ggml/src/ggml-vulkan-shaders.cpp
|
||||
rm -rvf $(LEGACY_TARGETS_CLEAN)
|
||||
find examples pocs -type f -name "*.o" -delete
|
||||
rm -vrf $(BUILD_TARGETS) $(TEST_TARGETS)
|
||||
rm -rvf *.a *.dll *.so *.dot
|
||||
find ggml src common tests examples pocs -type f -name "*.o" -delete
|
||||
find ggml src common tests examples pocs -type f -name "*.d" -delete
|
||||
|
||||
#
|
||||
# Examples
|
||||
@@ -1273,6 +1170,11 @@ llama-simple: examples/simple/simple.cpp \
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-simple-chat: examples/simple-chat/simple-chat.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-tokenize: examples/tokenize/tokenize.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
@@ -1370,11 +1272,6 @@ llama-bench: examples/llama-bench/llama-bench.cpp \
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-baby-llama: examples/baby-llama/baby-llama.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-export-lora: examples/export-lora/export-lora.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
@@ -1440,22 +1337,13 @@ llama-server: \
|
||||
examples/server/server.cpp \
|
||||
examples/server/utils.hpp \
|
||||
examples/server/httplib.h \
|
||||
examples/server/colorthemes.css.hpp \
|
||||
examples/server/style.css.hpp \
|
||||
examples/server/theme-beeninorder.css.hpp \
|
||||
examples/server/theme-ketivah.css.hpp \
|
||||
examples/server/theme-mangotango.css.hpp \
|
||||
examples/server/theme-playground.css.hpp \
|
||||
examples/server/theme-polarnight.css.hpp \
|
||||
examples/server/theme-snowstorm.css.hpp \
|
||||
examples/server/index.html.hpp \
|
||||
examples/server/index-new.html.hpp \
|
||||
examples/server/index.js.hpp \
|
||||
examples/server/completion.js.hpp \
|
||||
examples/server/system-prompts.js.hpp \
|
||||
examples/server/prompt-formats.js.hpp \
|
||||
examples/server/json-schema-to-grammar.mjs.hpp \
|
||||
examples/server/loading.html.hpp \
|
||||
examples/server/deps_daisyui.min.css.hpp \
|
||||
examples/server/deps_markdown-it.js.hpp \
|
||||
examples/server/deps_tailwindcss.js.hpp \
|
||||
examples/server/deps_vue.esm-browser.js.hpp \
|
||||
common/json.hpp \
|
||||
common/stb_image.h \
|
||||
$(OBJ_ALL)
|
||||
@@ -1557,11 +1445,6 @@ tests/test-json-schema-to-grammar: tests/test-json-schema-to-grammar.cpp \
|
||||
$(CXX) $(CXXFLAGS) -Iexamples/server -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-grad0: tests/test-grad0.cpp \
|
||||
$(OBJ_GGML)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-opt: tests/test-opt.cpp \
|
||||
$(OBJ_GGML)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
|
||||
@@ -10,10 +10,16 @@ var sources = [
|
||||
"src/unicode.cpp",
|
||||
"src/unicode-data.cpp",
|
||||
"ggml/src/ggml.c",
|
||||
"ggml/src/ggml-aarch64.c",
|
||||
"ggml/src/ggml-alloc.c",
|
||||
"ggml/src/ggml-backend.cpp",
|
||||
"ggml/src/ggml-backend-reg.cpp",
|
||||
"ggml/src/ggml-cpu/ggml-cpu.c",
|
||||
"ggml/src/ggml-cpu/ggml-cpu.cpp",
|
||||
"ggml/src/ggml-cpu/ggml-cpu-aarch64.c",
|
||||
"ggml/src/ggml-cpu/ggml-cpu-quants.c",
|
||||
"ggml/src/ggml-threading.cpp",
|
||||
"ggml/src/ggml-quants.c",
|
||||
"ggml/src/ggml-aarch64.c",
|
||||
]
|
||||
|
||||
var resources: [Resource] = []
|
||||
@@ -21,6 +27,7 @@ var linkerSettings: [LinkerSetting] = []
|
||||
var cSettings: [CSetting] = [
|
||||
.unsafeFlags(["-Wno-shorten-64-to-32", "-O3", "-DNDEBUG"]),
|
||||
.unsafeFlags(["-fno-objc-arc"]),
|
||||
.headerSearchPath("ggml/src"),
|
||||
// NOTE: NEW_LAPACK will required iOS version 16.4+
|
||||
// We should consider add this in the future when we drop support for iOS 14
|
||||
// (ref: ref: https://developer.apple.com/documentation/accelerate/1513264-cblas_sgemm?language=objc)
|
||||
@@ -29,8 +36,9 @@ var cSettings: [CSetting] = [
|
||||
]
|
||||
|
||||
#if canImport(Darwin)
|
||||
sources.append("ggml/src/ggml-metal.m")
|
||||
resources.append(.process("ggml/src/ggml-metal.metal"))
|
||||
sources.append("ggml/src/ggml-common.h")
|
||||
sources.append("ggml/src/ggml-metal/ggml-metal.m")
|
||||
resources.append(.process("ggml/src/ggml-metal/ggml-metal.metal"))
|
||||
linkerSettings.append(.linkedFramework("Accelerate"))
|
||||
cSettings.append(
|
||||
contentsOf: [
|
||||
@@ -60,13 +68,15 @@ let package = Package(
|
||||
name: "llama",
|
||||
path: ".",
|
||||
exclude: [
|
||||
"build",
|
||||
"cmake",
|
||||
"examples",
|
||||
"scripts",
|
||||
"models",
|
||||
"tests",
|
||||
"CMakeLists.txt",
|
||||
"Makefile"
|
||||
"Makefile",
|
||||
"ggml/src/ggml-metal-embed.metal"
|
||||
],
|
||||
sources: sources,
|
||||
resources: resources,
|
||||
|
||||
20
README.md
20
README.md
@@ -17,7 +17,8 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
|
||||
|
||||
## Hot topics
|
||||
|
||||
- **Hugging Face Inference Endpoints now support GGUF out of the box! https://github.com/ggerganov/llama.cpp/discussions/9669**
|
||||
- **Introducing GGUF-my-LoRA** https://github.com/ggerganov/llama.cpp/discussions/10123
|
||||
- Hugging Face Inference Endpoints now support GGUF out of the box! https://github.com/ggerganov/llama.cpp/discussions/9669
|
||||
- Hugging Face GGUF editor: [discussion](https://github.com/ggerganov/llama.cpp/discussions/9268) | [tool](https://huggingface.co/spaces/CISCai/gguf-editor)
|
||||
|
||||
----
|
||||
@@ -29,9 +30,9 @@ variety of hardware - locally and in the cloud.
|
||||
|
||||
- Plain C/C++ implementation without any dependencies
|
||||
- Apple silicon is a first-class citizen - optimized via ARM NEON, Accelerate and Metal frameworks
|
||||
- AVX, AVX2 and AVX512 support for x86 architectures
|
||||
- AVX, AVX2, AVX512 and AMX support for x86 architectures
|
||||
- 1.5-bit, 2-bit, 3-bit, 4-bit, 5-bit, 6-bit, and 8-bit integer quantization for faster inference and reduced memory use
|
||||
- Custom CUDA kernels for running LLMs on NVIDIA GPUs (support for AMD GPUs via HIP)
|
||||
- Custom CUDA kernels for running LLMs on NVIDIA GPUs (support for AMD GPUs via HIP and Moore Threads MTT GPUs via MUSA)
|
||||
- Vulkan and SYCL backend support
|
||||
- CPU+GPU hybrid inference to partially accelerate models larger than the total VRAM capacity
|
||||
|
||||
@@ -93,6 +94,7 @@ Typically finetunes of the base models below are supported as well.
|
||||
- [x] [FalconMamba Models](https://huggingface.co/collections/tiiuae/falconmamba-7b-66b9a580324dd1598b0f6d4a)
|
||||
- [x] [Jais](https://huggingface.co/inceptionai/jais-13b-chat)
|
||||
- [x] [Bielik-11B-v2.3](https://huggingface.co/collections/speakleash/bielik-11b-v23-66ee813238d9b526a072408a)
|
||||
- [x] [RWKV-6](https://github.com/BlinkDL/RWKV-LM)
|
||||
|
||||
(instructions for supporting more models: [HOWTO-add-model.md](./docs/development/HOWTO-add-model.md))
|
||||
|
||||
@@ -122,14 +124,18 @@ Typically finetunes of the base models below are supported as well.
|
||||
- Rust (nicer API): [mdrokz/rust-llama.cpp](https://github.com/mdrokz/rust-llama.cpp)
|
||||
- Rust (more direct bindings): [utilityai/llama-cpp-rs](https://github.com/utilityai/llama-cpp-rs)
|
||||
- C#/.NET: [SciSharp/LLamaSharp](https://github.com/SciSharp/LLamaSharp)
|
||||
- C#/VB.NET (more features - community license): [LM-Kit.NET](https://docs.lm-kit.com/lm-kit-net/index.html)
|
||||
- Scala 3: [donderom/llm4s](https://github.com/donderom/llm4s)
|
||||
- Clojure: [phronmophobic/llama.clj](https://github.com/phronmophobic/llama.clj)
|
||||
- React Native: [mybigday/llama.rn](https://github.com/mybigday/llama.rn)
|
||||
- Java: [kherud/java-llama.cpp](https://github.com/kherud/java-llama.cpp)
|
||||
- Zig: [deins/llama.cpp.zig](https://github.com/Deins/llama.cpp.zig)
|
||||
- Flutter/Dart: [netdur/llama_cpp_dart](https://github.com/netdur/llama_cpp_dart)
|
||||
- Flutter: [xuegao-tzx/Fllama](https://github.com/xuegao-tzx/Fllama)
|
||||
- PHP (API bindings and features built on top of llama.cpp): [distantmagic/resonance](https://github.com/distantmagic/resonance) [(more info)](https://github.com/ggerganov/llama.cpp/pull/6326)
|
||||
- Guile Scheme: [guile_llama_cpp](https://savannah.nongnu.org/projects/guile-llama-cpp)
|
||||
- Swift [srgtuszy/llama-cpp-swift](https://github.com/srgtuszy/llama-cpp-swift)
|
||||
- Swift [ShenghaiWang/SwiftLlama](https://github.com/ShenghaiWang/SwiftLlama)
|
||||
|
||||
**UI:**
|
||||
|
||||
@@ -170,6 +176,7 @@ Unless otherwise noted these projects are open-source with permissive licensing:
|
||||
- [LARS - The LLM & Advanced Referencing Solution](https://github.com/abgulati/LARS) (AGPL)
|
||||
- [LLMUnity](https://github.com/undreamai/LLMUnity) (MIT)
|
||||
- [Llama Assistant](https://github.com/vietanhdev/llama-assistant) (GPL)
|
||||
- [PocketPal AI - An iOS and Android App](https://github.com/a-ghorbani/pocketpal-ai) (MIT)
|
||||
|
||||
*(to have a project listed here, it should clearly state that it depends on `llama.cpp`)*
|
||||
|
||||
@@ -185,6 +192,7 @@ Unless otherwise noted these projects are open-source with permissive licensing:
|
||||
|
||||
- [Paddler](https://github.com/distantmagic/paddler) - Stateful load balancer custom-tailored for llama.cpp
|
||||
- [GPUStack](https://github.com/gpustack/gpustack) - Manage GPU clusters for running LLMs
|
||||
- [llama_cpp_canister](https://github.com/onicai/llama_cpp_canister) - llama.cpp as a smart contract on the Internet Computer, using WebAssembly
|
||||
|
||||
**Games:**
|
||||
- [Lucy's Labyrinth](https://github.com/MorganRO8/Lucys_Labyrinth) - A simple maze game where agents controlled by an AI model will try to trick you.
|
||||
@@ -413,7 +421,7 @@ Please refer to [Build llama.cpp locally](./docs/build.md)
|
||||
| [BLAS](./docs/build.md#blas-build) | All |
|
||||
| [BLIS](./docs/backend/BLIS.md) | All |
|
||||
| [SYCL](./docs/backend/SYCL.md) | Intel and Nvidia GPU |
|
||||
| [MUSA](./docs/build.md#musa) | Moore Threads GPU |
|
||||
| [MUSA](./docs/build.md#musa) | Moore Threads MTT GPU |
|
||||
| [CUDA](./docs/build.md#cuda) | Nvidia GPU |
|
||||
| [hipBLAS](./docs/build.md#hipblas) | AMD GPU |
|
||||
| [Vulkan](./docs/build.md#vulkan) | GPU |
|
||||
@@ -451,14 +459,14 @@ To learn more how to measure perplexity using llama.cpp, [read this documentatio
|
||||
- Make sure to read this: [Inference at the edge](https://github.com/ggerganov/llama.cpp/discussions/205)
|
||||
- A bit of backstory for those who are interested: [Changelog podcast](https://changelog.com/podcast/532)
|
||||
|
||||
## Other documentations
|
||||
## Other documentation
|
||||
|
||||
- [main (cli)](./examples/main/README.md)
|
||||
- [server](./examples/server/README.md)
|
||||
- [jeopardy](./examples/jeopardy/README.md)
|
||||
- [GBNF grammars](./grammars/README.md)
|
||||
|
||||
**Development documentations**
|
||||
**Development documentation**
|
||||
|
||||
- [How to build](./docs/build.md)
|
||||
- [Running on Docker](./docs/docker.md)
|
||||
|
||||
168
ci/run.sh
168
ci/run.sh
@@ -39,7 +39,7 @@ SRC=`pwd`
|
||||
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=ON"
|
||||
|
||||
if [ ! -z ${GG_BUILD_METAL} ]; then
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_METAL=ON"
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_METAL=ON -DGGML_METAL_USE_BF16=ON"
|
||||
fi
|
||||
|
||||
if [ ! -z ${GG_BUILD_CUDA} ]; then
|
||||
@@ -53,7 +53,7 @@ if [ ! -z ${GG_BUILD_SYCL} ]; then
|
||||
exit 1
|
||||
fi
|
||||
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_SYCL=1 DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON"
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_SYCL=1 -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON"
|
||||
fi
|
||||
|
||||
if [ ! -z ${GG_BUILD_VULKAN} ]; then
|
||||
@@ -326,36 +326,36 @@ function gg_run_open_llama_7b_v2 {
|
||||
./bin/llama-quantize ${model_f16} ${model_q5_k} q5_k
|
||||
./bin/llama-quantize ${model_f16} ${model_q6_k} q6_k
|
||||
|
||||
(time ./bin/llama-cli --model ${model_f16} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/llama-cli --model ${model_q8_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/llama-cli --model ${model_q4_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/llama-cli --model ${model_q4_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/llama-cli --model ${model_q5_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/llama-cli --model ${model_q5_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/llama-cli --model ${model_q2_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/llama-cli --model ${model_q3_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/llama-cli --model ${model_q4_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/llama-cli --model ${model_q5_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/llama-cli --model ${model_q6_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
(time ./bin/llama-cli --model ${model_f16} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/llama-cli --model ${model_q8_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/llama-cli --model ${model_q4_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/llama-cli --model ${model_q4_1} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/llama-cli --model ${model_q5_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/llama-cli --model ${model_q5_1} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/llama-cli --model ${model_q2_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/llama-cli --model ${model_q3_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/llama-cli --model ${model_q4_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/llama-cli --model ${model_q5_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/llama-cli --model ${model_q6_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
|
||||
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
|
||||
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
|
||||
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
|
||||
|
||||
(time ./bin/llama-save-load-state -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state -fa -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state -fa -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 10 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 10 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
|
||||
function check_ppl {
|
||||
qnt="$1"
|
||||
@@ -460,34 +460,34 @@ function gg_run_pythia_1_4b {
|
||||
./bin/llama-quantize ${model_f16} ${model_q5_k} q5_k
|
||||
./bin/llama-quantize ${model_f16} ${model_q6_k} q6_k
|
||||
|
||||
(time ./bin/llama-cli --model ${model_f16} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/llama-cli --model ${model_q8_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/llama-cli --model ${model_q4_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/llama-cli --model ${model_q4_1} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/llama-cli --model ${model_q5_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/llama-cli --model ${model_q5_1} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/llama-cli --model ${model_q2_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/llama-cli --model ${model_q3_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/llama-cli --model ${model_q4_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/llama-cli --model ${model_q5_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/llama-cli --model ${model_q6_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
(time ./bin/llama-cli --model ${model_f16} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/llama-cli --model ${model_q8_0} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/llama-cli --model ${model_q4_0} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/llama-cli --model ${model_q4_1} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/llama-cli --model ${model_q5_0} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/llama-cli --model ${model_q5_1} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/llama-cli --model ${model_q2_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/llama-cli --model ${model_q3_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/llama-cli --model ${model_q4_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/llama-cli --model ${model_q5_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/llama-cli --model ${model_q6_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
|
||||
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
|
||||
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
|
||||
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
|
||||
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state -fa --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
|
||||
function check_ppl {
|
||||
qnt="$1"
|
||||
@@ -591,36 +591,36 @@ function gg_run_pythia_2_8b {
|
||||
./bin/llama-quantize ${model_f16} ${model_q5_k} q5_k
|
||||
./bin/llama-quantize ${model_f16} ${model_q6_k} q6_k
|
||||
|
||||
(time ./bin/llama-cli --model ${model_f16} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/llama-cli --model ${model_q8_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/llama-cli --model ${model_q4_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/llama-cli --model ${model_q4_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/llama-cli --model ${model_q5_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/llama-cli --model ${model_q5_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/llama-cli --model ${model_q2_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/llama-cli --model ${model_q3_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/llama-cli --model ${model_q4_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/llama-cli --model ${model_q5_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/llama-cli --model ${model_q6_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
(time ./bin/llama-cli --model ${model_f16} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/llama-cli --model ${model_q8_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/llama-cli --model ${model_q4_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/llama-cli --model ${model_q4_1} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/llama-cli --model ${model_q5_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/llama-cli --model ${model_q5_1} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/llama-cli --model ${model_q2_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/llama-cli --model ${model_q3_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/llama-cli --model ${model_q4_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/llama-cli --model ${model_q5_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/llama-cli --model ${model_q6_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
|
||||
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
|
||||
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
|
||||
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
|
||||
|
||||
(time ./bin/llama-save-load-state -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state -fa -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state -fa -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
|
||||
function check_ppl {
|
||||
qnt="$1"
|
||||
@@ -706,8 +706,8 @@ function gg_run_embd_bge_small {
|
||||
|
||||
./bin/llama-quantize ${model_f16} ${model_q8_0} q8_0
|
||||
|
||||
(time ./bin/llama-embedding --model ${model_f16} -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/llama-embedding --model ${model_q8_0} -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/llama-embedding --model ${model_f16} -p "I believe the meaning of life is" -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/llama-embedding --model ${model_q8_0} -p "I believe the meaning of life is" -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
|
||||
set +e
|
||||
}
|
||||
@@ -752,7 +752,7 @@ function gg_run_rerank_tiny {
|
||||
model_f16="${path_models}/ggml-model-f16.gguf"
|
||||
|
||||
# for this model, the SEP token is "</s>"
|
||||
(time ./bin/llama-embedding --model ${model_f16} -p "what is panda?</s></s>hi\nwhat is panda?</s></s>it's a bear\nwhat is panda?</s></s>The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China." --pooling rank --embd-normalize -1 --verbose-prompt) 2>&1 | tee -a $OUT/${ci}-rk-f16.log
|
||||
(time ./bin/llama-embedding --model ${model_f16} -p "what is panda?</s></s>hi\nwhat is panda?</s></s>it's a bear\nwhat is panda?</s></s>The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China." -ngl 99 -c 0 --pooling rank --embd-normalize -1 --verbose-prompt) 2>&1 | tee -a $OUT/${ci}-rk-f16.log
|
||||
|
||||
# sample output
|
||||
# rerank score 0: 0.029
|
||||
|
||||
16
cmake/arm64-apple-clang.cmake
Normal file
16
cmake/arm64-apple-clang.cmake
Normal file
@@ -0,0 +1,16 @@
|
||||
set( CMAKE_SYSTEM_NAME Darwin )
|
||||
set( CMAKE_SYSTEM_PROCESSOR arm64 )
|
||||
|
||||
set( target arm64-apple-darwin-macho )
|
||||
|
||||
set( CMAKE_C_COMPILER clang )
|
||||
set( CMAKE_CXX_COMPILER clang++ )
|
||||
|
||||
set( CMAKE_C_COMPILER_TARGET ${target} )
|
||||
set( CMAKE_CXX_COMPILER_TARGET ${target} )
|
||||
|
||||
set( arch_c_flags "-march=armv8.4-a -fvectorize -ffp-model=fast -fno-finite-math-only" )
|
||||
set( warn_c_flags "-Wno-format -Wno-unused-variable -Wno-unused-function" )
|
||||
|
||||
set( CMAKE_C_FLAGS_INIT "${arch_c_flags} ${warn_c_flags}" )
|
||||
set( CMAKE_CXX_FLAGS_INIT "${arch_c_flags} ${warn_c_flags}" )
|
||||
@@ -3,18 +3,60 @@ set(LLAMA_BUILD_COMMIT @LLAMA_BUILD_COMMIT@)
|
||||
set(LLAMA_BUILD_NUMBER @LLAMA_BUILD_NUMBER@)
|
||||
set(LLAMA_SHARED_LIB @BUILD_SHARED_LIBS@)
|
||||
|
||||
set(GGML_BLAS @GGML_BLAS@)
|
||||
set(GGML_CUDA @GGML_CUDA@)
|
||||
set(GGML_METAL @GGML_METAL@)
|
||||
set(GGML_HIPBLAS @GGML_HIPBLAS@)
|
||||
set(GGML_STATIC @GGML_STATIC@)
|
||||
set(GGML_NATIVE @GGML_NATIVE@)
|
||||
set(GGML_LTO @GGML_LTO@)
|
||||
set(GGML_CCACHE @GGML_CCACHE@)
|
||||
set(GGML_AVX @GGML_AVX@)
|
||||
set(GGML_AVX2 @GGML_AVX2@)
|
||||
set(GGML_AVX512 @GGML_AVX512@)
|
||||
set(GGML_AVX512_VBMI @GGML_AVX512_VBMI@)
|
||||
set(GGML_AVX512_VNNI @GGML_AVX512_VNNI@)
|
||||
set(GGML_AVX512_BF16 @GGML_AVX512_BF16@)
|
||||
set(GGML_AMX_TILE @GGML_AMX_TILE@)
|
||||
set(GGML_AMX_INT8 @GGML_AMX_INT8@)
|
||||
set(GGML_AMX_BF16 @GGML_AMX_BF16@)
|
||||
set(GGML_FMA @GGML_FMA@)
|
||||
set(GGML_LASX @GGML_LASX@)
|
||||
set(GGML_LSX @GGML_LSX@)
|
||||
set(GGML_RVV @GGML_RVV@)
|
||||
set(GGML_SVE @GGML_SVE@)
|
||||
|
||||
set(GGML_ACCELERATE @GGML_ACCELERATE@)
|
||||
set(GGML_VULKAN @GGML_VULKAN@)
|
||||
set(GGML_OPENMP @GGML_OPENMP@)
|
||||
set(GGML_CPU_HBM @GGML_CPU_HBM@)
|
||||
set(GGML_BLAS_VENDOR @GGML_BLAS_VENDOR@)
|
||||
|
||||
set(GGML_CUDA_FORCE_MMQ @GGML_CUDA_FORCE_MMQ@)
|
||||
set(GGML_CUDA_FORCE_CUBLAS @GGML_CUDA_FORCE_CUBLAS@)
|
||||
set(GGML_CUDA_F16 @GGML_CUDA_F16@)
|
||||
set(GGML_CUDA_PEER_MAX_BATCH_SIZE @GGML_CUDA_PEER_MAX_BATCH_SIZE@)
|
||||
set(GGML_CUDA_NO_PEER_COPY @GGML_CUDA_NO_PEER_COPY@)
|
||||
set(GGML_CUDA_NO_VMM @GGML_CUDA_NO_VMM@)
|
||||
set(GGML_CUDA_FA_ALL_QUANTS @GGML_CUDA_FA_ALL_QUANTS@)
|
||||
set(GGML_CUDA_GRAPHS @GGML_CUDA_GRAPHS@)
|
||||
|
||||
set(GGML_HIP_UMA @GGML_HIP_UMA@)
|
||||
|
||||
set(GGML_VULKAN_CHECK_RESULTS @GGML_VULKAN_CHECK_RESULTS@)
|
||||
set(GGML_VULKAN_DEBUG @GGML_VULKAN_DEBUG@)
|
||||
set(GGML_VULKAN_MEMORY_DEBUG @GGML_VULKAN_MEMORY_DEBUG@)
|
||||
set(GGML_VULKAN_VALIDATE @GGML_VULKAN_VALIDATE@)
|
||||
set(GGML_SYCL @GGML_SYCL@)
|
||||
set(GGML_OPENMP @GGML_OPENMP@)
|
||||
set(GGML_VULKAN_DEBUG @GGML_VULKAN_DEBUG@)
|
||||
set(GGML_VULKAN_MEMORY_DEBUG @GGML_VULKAN_MEMORY_DEBUG@)
|
||||
set(GGML_VULKAN_SHADER_DEBUG_INFO @GGML_VULKAN_SHADER_DEBUG_INFO@)
|
||||
set(GGML_VULKAN_PERF @GGML_VULKAN_PERF@)
|
||||
set(GGML_VULKAN_VALIDATE @GGML_VULKAN_VALIDATE@)
|
||||
set(GGML_VULKAN_RUN_TESTS @GGML_VULKAN_RUN_TESTS@)
|
||||
|
||||
set(GGML_METAL_USE_BF16 @GGML_METAL_USE_BF16@)
|
||||
set(GGML_METAL_NDEBUG @GGML_METAL_NDEBUG@)
|
||||
set(GGML_METAL_SHADER_DEBUG @GGML_METAL_SHADER_DEBUG@)
|
||||
set(GGML_METAL_EMBED_LIBRARY @GGML_METAL_EMBED_LIBRARY@)
|
||||
set(GGML_METAL_MACOSX_VERSION_MIN @GGML_METAL_MACOSX_VERSION_MIN@)
|
||||
set(GGML_METAL_STD @GGML_METAL_STD@)
|
||||
|
||||
set(GGML_SYCL_F16 @GGML_SYCL_F16@)
|
||||
set(GGML_SYCL_TARGET @GGML_SYCL_TARGET@)
|
||||
set(GGML_SYCL_DEVICE_ARCH @GGML_SYCL_DEVICE_ARCH@)
|
||||
|
||||
|
||||
@PACKAGE_INIT@
|
||||
|
||||
@@ -22,65 +64,111 @@ set_and_check(LLAMA_INCLUDE_DIR "@PACKAGE_LLAMA_INCLUDE_INSTALL_DIR@")
|
||||
set_and_check(LLAMA_LIB_DIR "@PACKAGE_LLAMA_LIB_INSTALL_DIR@")
|
||||
set_and_check(LLAMA_BIN_DIR "@PACKAGE_LLAMA_BIN_INSTALL_DIR@")
|
||||
|
||||
# Ensure transient dependencies satisfied
|
||||
|
||||
find_package(Threads REQUIRED)
|
||||
|
||||
if (APPLE AND GGML_ACCELERATE)
|
||||
find_library(ACCELERATE_FRAMEWORK Accelerate REQUIRED)
|
||||
set(_llama_transient_defines "@GGML_TRANSIENT_DEFINES@")
|
||||
set(_llama_link_deps "")
|
||||
set(_llama_link_opts "")
|
||||
foreach(_ggml_lib ggml ggml-base)
|
||||
string(REPLACE "-" "_" _ggml_lib_var "${_ggml_lib}_LIBRARY")
|
||||
find_library(${_ggml_lib_var} ${_ggml_lib}
|
||||
REQUIRED
|
||||
HINTS ${LLAMA_LIB_DIR}
|
||||
NO_CMAKE_FIND_ROOT_PATH
|
||||
)
|
||||
list(APPEND _llama_link_deps "${${_ggml_lib_var}}")
|
||||
message(STATUS "Found ${${_ggml_lib_var}}")
|
||||
endforeach()
|
||||
|
||||
foreach(backend amx blas cann cpu cuda hip kompute metal musa rpc sycl vulkan)
|
||||
string(TOUPPER "GGML_${backend}" backend_id)
|
||||
set(_ggml_lib "ggml-${backend}")
|
||||
string(REPLACE "-" "_" _ggml_lib_var "${_ggml_lib}_LIBRARY")
|
||||
|
||||
find_library(${_ggml_lib_var} ${_ggml_lib}
|
||||
HINTS ${LLAMA_LIB_DIR}
|
||||
NO_CMAKE_FIND_ROOT_PATH
|
||||
)
|
||||
if(${_ggml_lib_var})
|
||||
list(APPEND _llama_link_deps "${${_ggml_lib_var}}")
|
||||
set(${backend_id} ON)
|
||||
message(STATUS "Found backend ${${_ggml_lib_var}}")
|
||||
else()
|
||||
set(${backend_id} OFF)
|
||||
endif()
|
||||
endforeach()
|
||||
|
||||
if (NOT LLAMA_SHARED_LIB)
|
||||
if (APPLE AND GGML_ACCELERATE)
|
||||
find_library(ACCELERATE_FRAMEWORK Accelerate REQUIRED)
|
||||
list(APPEND _llama_link_deps ${ACCELERATE_FRAMEWORK})
|
||||
endif()
|
||||
|
||||
if (GGML_OPENMP)
|
||||
find_package(OpenMP REQUIRED)
|
||||
list(APPEND _llama_link_deps OpenMP::OpenMP_C OpenMP::OpenMP_CXX)
|
||||
endif()
|
||||
|
||||
if (GGML_CPU_HBM)
|
||||
find_library(memkind memkind REQUIRED)
|
||||
list(APPEND _llama_link_deps memkind)
|
||||
endif()
|
||||
|
||||
if (GGML_BLAS)
|
||||
find_package(BLAS REQUIRED)
|
||||
list(APPEND _llama_link_deps ${BLAS_LIBRARIES})
|
||||
list(APPEND _llama_link_opts ${BLAS_LINKER_FLAGS})
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA)
|
||||
find_package(CUDAToolkit REQUIRED)
|
||||
endif()
|
||||
|
||||
if (GGML_METAL)
|
||||
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
|
||||
find_library(METAL_FRAMEWORK Metal REQUIRED)
|
||||
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
|
||||
list(APPEND _llama_link_deps ${FOUNDATION_LIBRARY}
|
||||
${METAL_FRAMEWORK} ${METALKIT_FRAMEWORK})
|
||||
endif()
|
||||
|
||||
if (GGML_VULKAN)
|
||||
find_package(Vulkan REQUIRED)
|
||||
list(APPEND _llama_link_deps Vulkan::Vulkan)
|
||||
endif()
|
||||
|
||||
if (GGML_HIP)
|
||||
find_package(hip REQUIRED)
|
||||
find_package(hipblas REQUIRED)
|
||||
find_package(rocblas REQUIRED)
|
||||
list(APPEND _llama_link_deps hip::host roc::rocblas roc::hipblas)
|
||||
endif()
|
||||
|
||||
if (GGML_SYCL)
|
||||
find_package(DNNL)
|
||||
if (${DNNL_FOUND} AND GGML_SYCL_TARGET STREQUAL "INTEL")
|
||||
list(APPEND _llama_link_deps DNNL::dnnl)
|
||||
endif()
|
||||
if (WIN32)
|
||||
find_package(IntelSYCL REQUIRED)
|
||||
find_package(MKL REQUIRED)
|
||||
list(APPEND _llama_link_deps IntelSYCL::SYCL_CXX MKL::MKL MKL::MKL_SYCL)
|
||||
endif()
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (GGML_BLAS)
|
||||
find_package(BLAS REQUIRED)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA)
|
||||
find_package(CUDAToolkit REQUIRED)
|
||||
endif()
|
||||
|
||||
if (GGML_METAL)
|
||||
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
|
||||
find_library(METAL_FRAMEWORK Metal REQUIRED)
|
||||
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
|
||||
endif()
|
||||
|
||||
if (GGML_VULKAN)
|
||||
find_package(Vulkan REQUIRED)
|
||||
endif()
|
||||
|
||||
if (GGML_HIPBLAS)
|
||||
find_package(hip REQUIRED)
|
||||
find_package(hipblas REQUIRED)
|
||||
find_package(rocblas REQUIRED)
|
||||
endif()
|
||||
|
||||
if (GGML_SYCL)
|
||||
find_package(IntelSYCL REQUIRED)
|
||||
find_package(MKL REQUIRED)
|
||||
endif()
|
||||
|
||||
if (GGML_OPENMP)
|
||||
find_package(OpenMP REQUIRED)
|
||||
endif()
|
||||
|
||||
|
||||
find_library(ggml_LIBRARY ggml
|
||||
REQUIRED
|
||||
HINTS ${LLAMA_LIB_DIR})
|
||||
|
||||
find_library(llama_LIBRARY llama
|
||||
REQUIRED
|
||||
HINTS ${LLAMA_LIB_DIR})
|
||||
|
||||
set(_llama_link_deps "${ggml_LIBRARY}" "@GGML_LINK_LIBRARIES@")
|
||||
set(_llama_transient_defines "@GGML_TRANSIENT_DEFINES@")
|
||||
HINTS ${LLAMA_LIB_DIR}
|
||||
NO_CMAKE_FIND_ROOT_PATH
|
||||
)
|
||||
|
||||
add_library(llama UNKNOWN IMPORTED)
|
||||
|
||||
set_target_properties(llama
|
||||
PROPERTIES
|
||||
INTERFACE_INCLUDE_DIRECTORIES "${LLAMA_INCLUDE_DIR}"
|
||||
INTERFACE_LINK_LIBRARIES "${_llama_link_deps}"
|
||||
INTERFACE_LINK_OPTIONS "${_llama_link_opts}"
|
||||
INTERFACE_COMPILE_DEFINITIONS "${_llama_transient_defines}"
|
||||
IMPORTED_LINK_INTERFACE_LANGUAGES "CXX"
|
||||
IMPORTED_LOCATION "${llama_LIBRARY}"
|
||||
|
||||
@@ -66,8 +66,6 @@ add_library(${TARGET} STATIC
|
||||
ngram-cache.h
|
||||
sampling.cpp
|
||||
sampling.h
|
||||
train.cpp
|
||||
train.h
|
||||
)
|
||||
|
||||
if (BUILD_SHARED_LIBS)
|
||||
|
||||
1247
common/arg.cpp
1247
common/arg.cpp
File diff suppressed because it is too large
Load Diff
44
common/arg.h
44
common/arg.h
@@ -10,7 +10,7 @@
|
||||
// CLI argument parsing
|
||||
//
|
||||
|
||||
struct llama_arg {
|
||||
struct common_arg {
|
||||
std::set<enum llama_example> examples = {LLAMA_EXAMPLE_COMMON};
|
||||
std::vector<const char *> args;
|
||||
const char * value_hint = nullptr; // help text or example for arg value
|
||||
@@ -18,60 +18,60 @@ struct llama_arg {
|
||||
const char * env = nullptr;
|
||||
std::string help;
|
||||
bool is_sparam = false; // is current arg a sampling param?
|
||||
void (*handler_void) (gpt_params & params) = nullptr;
|
||||
void (*handler_string) (gpt_params & params, const std::string &) = nullptr;
|
||||
void (*handler_str_str)(gpt_params & params, const std::string &, const std::string &) = nullptr;
|
||||
void (*handler_int) (gpt_params & params, int) = nullptr;
|
||||
void (*handler_void) (common_params & params) = nullptr;
|
||||
void (*handler_string) (common_params & params, const std::string &) = nullptr;
|
||||
void (*handler_str_str)(common_params & params, const std::string &, const std::string &) = nullptr;
|
||||
void (*handler_int) (common_params & params, int) = nullptr;
|
||||
|
||||
llama_arg(
|
||||
common_arg(
|
||||
const std::initializer_list<const char *> & args,
|
||||
const char * value_hint,
|
||||
const std::string & help,
|
||||
void (*handler)(gpt_params & params, const std::string &)
|
||||
void (*handler)(common_params & params, const std::string &)
|
||||
) : args(args), value_hint(value_hint), help(help), handler_string(handler) {}
|
||||
|
||||
llama_arg(
|
||||
common_arg(
|
||||
const std::initializer_list<const char *> & args,
|
||||
const char * value_hint,
|
||||
const std::string & help,
|
||||
void (*handler)(gpt_params & params, int)
|
||||
void (*handler)(common_params & params, int)
|
||||
) : args(args), value_hint(value_hint), help(help), handler_int(handler) {}
|
||||
|
||||
llama_arg(
|
||||
common_arg(
|
||||
const std::initializer_list<const char *> & args,
|
||||
const std::string & help,
|
||||
void (*handler)(gpt_params & params)
|
||||
void (*handler)(common_params & params)
|
||||
) : args(args), help(help), handler_void(handler) {}
|
||||
|
||||
// support 2 values for arg
|
||||
llama_arg(
|
||||
common_arg(
|
||||
const std::initializer_list<const char *> & args,
|
||||
const char * value_hint,
|
||||
const char * value_hint_2,
|
||||
const std::string & help,
|
||||
void (*handler)(gpt_params & params, const std::string &, const std::string &)
|
||||
void (*handler)(common_params & params, const std::string &, const std::string &)
|
||||
) : args(args), value_hint(value_hint), value_hint_2(value_hint_2), help(help), handler_str_str(handler) {}
|
||||
|
||||
llama_arg & set_examples(std::initializer_list<enum llama_example> examples);
|
||||
llama_arg & set_env(const char * env);
|
||||
llama_arg & set_sparam();
|
||||
common_arg & set_examples(std::initializer_list<enum llama_example> examples);
|
||||
common_arg & set_env(const char * env);
|
||||
common_arg & set_sparam();
|
||||
bool in_example(enum llama_example ex);
|
||||
bool get_value_from_env(std::string & output);
|
||||
bool has_value_from_env();
|
||||
std::string to_string();
|
||||
};
|
||||
|
||||
struct gpt_params_context {
|
||||
struct common_params_context {
|
||||
enum llama_example ex = LLAMA_EXAMPLE_COMMON;
|
||||
gpt_params & params;
|
||||
std::vector<llama_arg> options;
|
||||
common_params & params;
|
||||
std::vector<common_arg> options;
|
||||
void(*print_usage)(int, char **) = nullptr;
|
||||
gpt_params_context(gpt_params & params) : params(params) {}
|
||||
common_params_context(common_params & params) : params(params) {}
|
||||
};
|
||||
|
||||
// parse input arguments from CLI
|
||||
// if one argument has invalid value, it will automatically display usage of the specific argument (and not the full usage message)
|
||||
bool gpt_params_parse(int argc, char ** argv, gpt_params & params, llama_example ex, void(*print_usage)(int, char **) = nullptr);
|
||||
bool common_params_parse(int argc, char ** argv, common_params & params, llama_example ex, void(*print_usage)(int, char **) = nullptr);
|
||||
|
||||
// function to be used by test-arg-parser
|
||||
gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex, void(*print_usage)(int, char **) = nullptr);
|
||||
common_params_context common_params_parser_init(common_params & params, llama_example ex, void(*print_usage)(int, char **) = nullptr);
|
||||
|
||||
@@ -12,6 +12,7 @@
|
||||
|
||||
#include <algorithm>
|
||||
#include <cinttypes>
|
||||
#include <climits>
|
||||
#include <cmath>
|
||||
#include <codecvt>
|
||||
#include <cstdarg>
|
||||
@@ -23,10 +24,10 @@
|
||||
#include <regex>
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
#include <unordered_map>
|
||||
#include <unordered_set>
|
||||
#include <vector>
|
||||
#include <thread>
|
||||
|
||||
#if defined(__APPLE__) && defined(__MACH__)
|
||||
#include <sys/types.h>
|
||||
@@ -362,10 +363,10 @@ bool parse_cpu_mask(const std::string & mask, bool (&boolmask)[GGML_MAX_N_THREAD
|
||||
return true;
|
||||
}
|
||||
|
||||
void gpt_init() {
|
||||
void common_init() {
|
||||
llama_log_set([](ggml_log_level level, const char * text, void * /*user_data*/) {
|
||||
if (LOG_DEFAULT_LLAMA <= gpt_log_verbosity_thold) {
|
||||
gpt_log_add(gpt_log_main(), level, "%s", text);
|
||||
if (LOG_DEFAULT_LLAMA <= common_log_verbosity_thold) {
|
||||
common_log_add(common_log_main(), level, "%s", text);
|
||||
}
|
||||
}, NULL);
|
||||
|
||||
@@ -378,7 +379,7 @@ void gpt_init() {
|
||||
LOG_INF("build: %d (%s) with %s for %s%s\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT, LLAMA_COMPILER, LLAMA_BUILD_TARGET, build_type);
|
||||
}
|
||||
|
||||
std::string gpt_params_get_system_info(const gpt_params & params) {
|
||||
std::string common_params_get_system_info(const common_params & params) {
|
||||
std::ostringstream os;
|
||||
|
||||
os << "system_info: n_threads = " << params.cpuparams.n_threads;
|
||||
@@ -400,17 +401,19 @@ std::string gpt_params_get_system_info(const gpt_params & params) {
|
||||
// String utils
|
||||
//
|
||||
|
||||
std::vector<std::string> string_split(std::string input, char separator) {
|
||||
std::vector<std::string> parts;
|
||||
size_t separator_pos = input.find(separator);
|
||||
while (separator_pos != std::string::npos) {
|
||||
std::string part = input.substr(0, separator_pos);
|
||||
parts.emplace_back(part);
|
||||
input = input.substr(separator_pos + 1);
|
||||
separator_pos = input.find(separator);
|
||||
}
|
||||
parts.emplace_back(input);
|
||||
return parts;
|
||||
std::string string_format(const char * fmt, ...) {
|
||||
va_list ap;
|
||||
va_list ap2;
|
||||
va_start(ap, fmt);
|
||||
va_copy(ap2, ap);
|
||||
int size = vsnprintf(NULL, 0, fmt, ap);
|
||||
GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
|
||||
std::vector<char> buf(size + 1);
|
||||
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
|
||||
GGML_ASSERT(size2 == size);
|
||||
va_end(ap2);
|
||||
va_end(ap);
|
||||
return std::string(buf.data(), size);
|
||||
}
|
||||
|
||||
std::string string_strip(const std::string & str) {
|
||||
@@ -493,7 +496,7 @@ std::string string_from(const struct llama_context * ctx, const std::vector<llam
|
||||
first = false;
|
||||
}
|
||||
|
||||
auto detokenized = llama_token_to_piece(ctx, token);
|
||||
auto detokenized = common_token_to_piece(ctx, token);
|
||||
|
||||
detokenized.erase(
|
||||
std::remove_if(
|
||||
@@ -524,7 +527,7 @@ std::string string_from(const struct llama_context * ctx, const struct llama_bat
|
||||
first = false;
|
||||
}
|
||||
|
||||
auto detokenized = llama_token_to_piece(ctx, batch.token[i]);
|
||||
auto detokenized = common_token_to_piece(ctx, batch.token[i]);
|
||||
|
||||
detokenized.erase(
|
||||
std::remove_if(
|
||||
@@ -819,16 +822,16 @@ std::string fs_get_cache_file(const std::string & filename) {
|
||||
//
|
||||
// Model utils
|
||||
//
|
||||
struct llama_init_result llama_init_from_gpt_params(gpt_params & params) {
|
||||
llama_init_result iparams;
|
||||
auto mparams = llama_model_params_from_gpt_params(params);
|
||||
struct common_init_result common_init_from_params(common_params & params) {
|
||||
common_init_result iparams;
|
||||
auto mparams = common_model_params_to_llama(params);
|
||||
|
||||
llama_model * model = nullptr;
|
||||
|
||||
if (!params.hf_repo.empty() && !params.hf_file.empty()) {
|
||||
model = llama_load_model_from_hf(params.hf_repo.c_str(), params.hf_file.c_str(), params.model.c_str(), params.hf_token.c_str(), mparams);
|
||||
model = common_load_model_from_hf(params.hf_repo.c_str(), params.hf_file.c_str(), params.model.c_str(), params.hf_token.c_str(), mparams);
|
||||
} else if (!params.model_url.empty()) {
|
||||
model = llama_load_model_from_url(params.model_url.c_str(), params.model.c_str(), params.hf_token.c_str(), mparams);
|
||||
model = common_load_model_from_url(params.model_url.c_str(), params.model.c_str(), params.hf_token.c_str(), mparams);
|
||||
} else {
|
||||
model = llama_load_model_from_file(params.model.c_str(), mparams);
|
||||
}
|
||||
@@ -863,7 +866,7 @@ struct llama_init_result llama_init_from_gpt_params(gpt_params & params) {
|
||||
}
|
||||
}
|
||||
|
||||
auto cparams = llama_context_params_from_gpt_params(params);
|
||||
auto cparams = common_context_params_to_llama(params);
|
||||
|
||||
llama_context * lctx = llama_new_context_with_model(model, cparams);
|
||||
if (lctx == NULL) {
|
||||
@@ -872,11 +875,17 @@ struct llama_init_result llama_init_from_gpt_params(gpt_params & params) {
|
||||
return iparams;
|
||||
}
|
||||
|
||||
if (params.ctx_shift && !llama_kv_cache_can_shift(lctx)) {
|
||||
LOG_ERR("%s: KV cache shifting is not supported for this model (--no-context-shift to disable)'\n", __func__);
|
||||
llama_free_model(model);
|
||||
return iparams;
|
||||
}
|
||||
|
||||
if (!params.control_vectors.empty()) {
|
||||
if (params.control_vector_layer_start <= 0) params.control_vector_layer_start = 1;
|
||||
if (params.control_vector_layer_end <= 0) params.control_vector_layer_end = llama_n_layer(model);
|
||||
|
||||
const auto cvec = llama_control_vector_load(params.control_vectors);
|
||||
const auto cvec = common_control_vector_load(params.control_vectors);
|
||||
if (cvec.n_embd == -1) {
|
||||
llama_free(lctx);
|
||||
llama_free_model(model);
|
||||
@@ -900,7 +909,7 @@ struct llama_init_result llama_init_from_gpt_params(gpt_params & params) {
|
||||
|
||||
// load and optionally apply lora adapters
|
||||
for (auto & la : params.lora_adapters) {
|
||||
llama_lora_adapter_container loaded_la;
|
||||
common_lora_adapter_container loaded_la;
|
||||
loaded_la.path = la.path;
|
||||
loaded_la.scale = la.scale;
|
||||
loaded_la.adapter = llama_lora_adapter_init(model, la.path.c_str());
|
||||
@@ -913,7 +922,7 @@ struct llama_init_result llama_init_from_gpt_params(gpt_params & params) {
|
||||
iparams.lora_adapters.push_back(loaded_la); // copy to list of loaded adapters
|
||||
}
|
||||
if (!params.lora_init_without_apply) {
|
||||
llama_lora_adapters_apply(lctx, iparams.lora_adapters);
|
||||
common_lora_adapters_apply(lctx, iparams.lora_adapters);
|
||||
}
|
||||
|
||||
if (params.sparams.ignore_eos && llama_token_eos(model) == LLAMA_TOKEN_NULL) {
|
||||
@@ -939,7 +948,7 @@ struct llama_init_result llama_init_from_gpt_params(gpt_params & params) {
|
||||
}
|
||||
|
||||
if (llama_model_has_encoder(model)) {
|
||||
llama_encode(lctx, llama_batch_get_one(tmp.data(), tmp.size(), 0, 0));
|
||||
llama_encode(lctx, llama_batch_get_one(tmp.data(), tmp.size()));
|
||||
llama_token decoder_start_token_id = llama_model_decoder_start_token(model);
|
||||
if (decoder_start_token_id == -1) {
|
||||
decoder_start_token_id = bos;
|
||||
@@ -948,7 +957,7 @@ struct llama_init_result llama_init_from_gpt_params(gpt_params & params) {
|
||||
tmp.push_back(decoder_start_token_id);
|
||||
}
|
||||
if (llama_model_has_decoder(model)) {
|
||||
llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0));
|
||||
llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch)));
|
||||
}
|
||||
llama_kv_cache_clear(lctx);
|
||||
llama_synchronize(lctx);
|
||||
@@ -961,7 +970,7 @@ struct llama_init_result llama_init_from_gpt_params(gpt_params & params) {
|
||||
return iparams;
|
||||
}
|
||||
|
||||
void llama_lora_adapters_apply(struct llama_context * ctx, std::vector<llama_lora_adapter_container> & lora_adapters) {
|
||||
void common_lora_adapters_apply(struct llama_context * ctx, std::vector<common_lora_adapter_container> & lora_adapters) {
|
||||
llama_lora_adapter_clear(ctx);
|
||||
for (auto & la : lora_adapters) {
|
||||
if (la.scale != 0.0f) {
|
||||
@@ -970,7 +979,7 @@ void llama_lora_adapters_apply(struct llama_context * ctx, std::vector<llama_lor
|
||||
}
|
||||
}
|
||||
|
||||
struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & params) {
|
||||
struct llama_model_params common_model_params_to_llama(const common_params & params) {
|
||||
auto mparams = llama_model_default_params();
|
||||
|
||||
if (params.n_gpu_layers != -1) {
|
||||
@@ -1000,6 +1009,9 @@ static ggml_type kv_cache_type_from_str(const std::string & s) {
|
||||
if (s == "f16") {
|
||||
return GGML_TYPE_F16;
|
||||
}
|
||||
if (s == "bf16") {
|
||||
return GGML_TYPE_BF16;
|
||||
}
|
||||
if (s == "q8_0") {
|
||||
return GGML_TYPE_Q8_0;
|
||||
}
|
||||
@@ -1019,10 +1031,10 @@ static ggml_type kv_cache_type_from_str(const std::string & s) {
|
||||
return GGML_TYPE_Q5_1;
|
||||
}
|
||||
|
||||
throw std::runtime_error("Invalid cache type: " + s);
|
||||
throw std::runtime_error("Unsupported cache type: " + s);
|
||||
}
|
||||
|
||||
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) {
|
||||
struct llama_context_params common_context_params_to_llama(const common_params & params) {
|
||||
auto cparams = llama_context_default_params();
|
||||
|
||||
cparams.n_ctx = params.n_ctx;
|
||||
@@ -1031,7 +1043,7 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
|
||||
cparams.n_ubatch = params.n_ubatch;
|
||||
cparams.n_threads = params.cpuparams.n_threads;
|
||||
cparams.n_threads_batch = params.cpuparams_batch.n_threads == -1 ?
|
||||
params.cpuparams.n_threads : params.cpuparams_batch.n_threads;
|
||||
params.cpuparams.n_threads : params.cpuparams_batch.n_threads;
|
||||
cparams.logits_all = params.logits_all;
|
||||
cparams.embeddings = params.embedding;
|
||||
cparams.rope_scaling_type = params.rope_scaling_type;
|
||||
@@ -1112,7 +1124,7 @@ static bool curl_perform_with_retry(const std::string& url, CURL* curl, int max_
|
||||
return false;
|
||||
}
|
||||
|
||||
static bool llama_download_file(const std::string & url, const std::string & path, const std::string & hf_token) {
|
||||
static bool common_download_file(const std::string & url, const std::string & path, const std::string & hf_token) {
|
||||
|
||||
// Initialize libcurl
|
||||
std::unique_ptr<CURL, decltype(&curl_easy_cleanup)> curl(curl_easy_init(), &curl_easy_cleanup);
|
||||
@@ -1182,15 +1194,15 @@ static bool llama_download_file(const std::string & url, const std::string & pat
|
||||
}
|
||||
|
||||
// Send a HEAD request to retrieve the etag and last-modified headers
|
||||
struct llama_load_model_from_url_headers {
|
||||
struct common_load_model_from_url_headers {
|
||||
std::string etag;
|
||||
std::string last_modified;
|
||||
};
|
||||
llama_load_model_from_url_headers headers;
|
||||
common_load_model_from_url_headers headers;
|
||||
{
|
||||
typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
|
||||
auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
|
||||
llama_load_model_from_url_headers *headers = (llama_load_model_from_url_headers *) userdata;
|
||||
common_load_model_from_url_headers *headers = (common_load_model_from_url_headers *) userdata;
|
||||
|
||||
static std::regex header_regex("([^:]+): (.*)\r\n");
|
||||
static std::regex etag_regex("ETag", std::regex_constants::icase);
|
||||
@@ -1326,7 +1338,7 @@ static bool llama_download_file(const std::string & url, const std::string & pat
|
||||
return true;
|
||||
}
|
||||
|
||||
struct llama_model * llama_load_model_from_url(
|
||||
struct llama_model * common_load_model_from_url(
|
||||
const char * model_url,
|
||||
const char * path_model,
|
||||
const char * hf_token,
|
||||
@@ -1337,7 +1349,7 @@ struct llama_model * llama_load_model_from_url(
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if (!llama_download_file(model_url, path_model, hf_token)) {
|
||||
if (!common_download_file(model_url, path_model, hf_token)) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
@@ -1390,7 +1402,7 @@ struct llama_model * llama_load_model_from_url(
|
||||
char split_url[LLAMA_CURL_MAX_URL_LENGTH] = {0};
|
||||
llama_split_path(split_url, sizeof(split_url), split_url_prefix, download_idx, n_split);
|
||||
|
||||
return llama_download_file(split_url, split_path, hf_token);
|
||||
return common_download_file(split_url, split_path, hf_token);
|
||||
}, idx));
|
||||
}
|
||||
|
||||
@@ -1405,7 +1417,7 @@ struct llama_model * llama_load_model_from_url(
|
||||
return llama_load_model_from_file(path_model, params);
|
||||
}
|
||||
|
||||
struct llama_model * llama_load_model_from_hf(
|
||||
struct llama_model * common_load_model_from_hf(
|
||||
const char * repo,
|
||||
const char * model,
|
||||
const char * path_model,
|
||||
@@ -1425,12 +1437,12 @@ struct llama_model * llama_load_model_from_hf(
|
||||
model_url += "/resolve/main/";
|
||||
model_url += model;
|
||||
|
||||
return llama_load_model_from_url(model_url.c_str(), path_model, hf_token, params);
|
||||
return common_load_model_from_url(model_url.c_str(), path_model, hf_token, params);
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
struct llama_model * llama_load_model_from_url(
|
||||
struct llama_model * common_load_model_from_url(
|
||||
const char * /*model_url*/,
|
||||
const char * /*path_model*/,
|
||||
const char * /*hf_token*/,
|
||||
@@ -1439,7 +1451,7 @@ struct llama_model * llama_load_model_from_url(
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
struct llama_model * llama_load_model_from_hf(
|
||||
struct llama_model * common_load_model_from_hf(
|
||||
const char * /*repo*/,
|
||||
const char * /*model*/,
|
||||
const char * /*path_model*/,
|
||||
@@ -1455,11 +1467,11 @@ struct llama_model * llama_load_model_from_hf(
|
||||
// Batch utils
|
||||
//
|
||||
|
||||
void llama_batch_clear(struct llama_batch & batch) {
|
||||
void common_batch_clear(struct llama_batch & batch) {
|
||||
batch.n_tokens = 0;
|
||||
}
|
||||
|
||||
void llama_batch_add(
|
||||
void common_batch_add(
|
||||
struct llama_batch & batch,
|
||||
llama_token id,
|
||||
llama_pos pos,
|
||||
@@ -1482,15 +1494,15 @@ void llama_batch_add(
|
||||
// Vocab utils
|
||||
//
|
||||
|
||||
std::vector<llama_token> llama_tokenize(
|
||||
std::vector<llama_token> common_tokenize(
|
||||
const struct llama_context * ctx,
|
||||
const std::string & text,
|
||||
bool add_special,
|
||||
bool parse_special) {
|
||||
return llama_tokenize(llama_get_model(ctx), text, add_special, parse_special);
|
||||
return common_tokenize(llama_get_model(ctx), text, add_special, parse_special);
|
||||
}
|
||||
|
||||
std::vector<llama_token> llama_tokenize(
|
||||
std::vector<llama_token> common_tokenize(
|
||||
const struct llama_model * model,
|
||||
const std::string & text,
|
||||
bool add_special,
|
||||
@@ -1509,7 +1521,7 @@ std::vector<llama_token> llama_tokenize(
|
||||
return result;
|
||||
}
|
||||
|
||||
std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
|
||||
std::string common_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
|
||||
std::string piece;
|
||||
piece.resize(piece.capacity()); // using string internal cache, 15 bytes + '\n'
|
||||
const int n_chars = llama_token_to_piece(llama_get_model(ctx), token, &piece[0], piece.size(), 0, special);
|
||||
@@ -1525,7 +1537,7 @@ std::string llama_token_to_piece(const struct llama_context * ctx, llama_token t
|
||||
return piece;
|
||||
}
|
||||
|
||||
std::string llama_detokenize(llama_context * ctx, const std::vector<llama_token> & tokens, bool special) {
|
||||
std::string common_detokenize(llama_context * ctx, const std::vector<llama_token> & tokens, bool special) {
|
||||
std::string text;
|
||||
text.resize(std::max(text.capacity(), tokens.size()));
|
||||
int32_t n_chars = llama_detokenize(llama_get_model(ctx), tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
|
||||
@@ -1545,15 +1557,15 @@ std::string llama_detokenize(llama_context * ctx, const std::vector<llama_token>
|
||||
// Chat template utils
|
||||
//
|
||||
|
||||
bool llama_chat_verify_template(const std::string & tmpl) {
|
||||
bool common_chat_verify_template(const std::string & tmpl) {
|
||||
llama_chat_message chat[] = {{"user", "test"}};
|
||||
int res = llama_chat_apply_template(nullptr, tmpl.c_str(), chat, 1, true, nullptr, 0);
|
||||
return res >= 0;
|
||||
}
|
||||
|
||||
std::string llama_chat_apply_template(const struct llama_model * model,
|
||||
std::string common_chat_apply_template(const struct llama_model * model,
|
||||
const std::string & tmpl,
|
||||
const std::vector<llama_chat_msg> & msgs,
|
||||
const std::vector<common_chat_msg> & msgs,
|
||||
bool add_ass) {
|
||||
int alloc_size = 0;
|
||||
bool fallback = false; // indicate if we must fallback to default chatml
|
||||
@@ -1595,42 +1607,42 @@ std::string llama_chat_apply_template(const struct llama_model * model,
|
||||
return formatted_chat;
|
||||
}
|
||||
|
||||
std::string llama_chat_format_single(const struct llama_model * model,
|
||||
std::string common_chat_format_single(const struct llama_model * model,
|
||||
const std::string & tmpl,
|
||||
const std::vector<llama_chat_msg> & past_msg,
|
||||
const llama_chat_msg & new_msg,
|
||||
const std::vector<common_chat_msg> & past_msg,
|
||||
const common_chat_msg & new_msg,
|
||||
bool add_ass) {
|
||||
std::ostringstream ss;
|
||||
auto fmt_past_msg = past_msg.empty() ? "" : llama_chat_apply_template(model, tmpl, past_msg, false);
|
||||
std::vector<llama_chat_msg> chat_new(past_msg);
|
||||
auto fmt_past_msg = past_msg.empty() ? "" : common_chat_apply_template(model, tmpl, past_msg, false);
|
||||
std::vector<common_chat_msg> chat_new(past_msg);
|
||||
// if the past_msg ends with a newline, we must preserve it in the formatted version
|
||||
if (add_ass && !fmt_past_msg.empty() && fmt_past_msg.back() == '\n') {
|
||||
ss << "\n";
|
||||
};
|
||||
// format chat with new_msg
|
||||
chat_new.push_back(new_msg);
|
||||
auto fmt_new_msg = llama_chat_apply_template(model, tmpl, chat_new, add_ass);
|
||||
auto fmt_new_msg = common_chat_apply_template(model, tmpl, chat_new, add_ass);
|
||||
// get the diff part
|
||||
ss << fmt_new_msg.substr(fmt_past_msg.size(), fmt_new_msg.size() - fmt_past_msg.size());
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
std::string llama_chat_format_example(const struct llama_model * model,
|
||||
std::string common_chat_format_example(const struct llama_model * model,
|
||||
const std::string & tmpl) {
|
||||
std::vector<llama_chat_msg> msgs = {
|
||||
std::vector<common_chat_msg> msgs = {
|
||||
{"system", "You are a helpful assistant"},
|
||||
{"user", "Hello"},
|
||||
{"assistant", "Hi there"},
|
||||
{"user", "How are you?"},
|
||||
};
|
||||
return llama_chat_apply_template(model, tmpl, msgs, true);
|
||||
return common_chat_apply_template(model, tmpl, msgs, true);
|
||||
}
|
||||
|
||||
//
|
||||
// KV cache utils
|
||||
//
|
||||
|
||||
void llama_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size) {
|
||||
void common_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size) {
|
||||
static const char slot_chars[] = ".123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+";
|
||||
|
||||
printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d",
|
||||
@@ -1653,7 +1665,7 @@ void llama_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size) {
|
||||
printf("\n=== Done dumping\n");
|
||||
}
|
||||
|
||||
void llama_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size) {
|
||||
void common_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size) {
|
||||
static const char slot_chars[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
|
||||
|
||||
printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d\n",
|
||||
@@ -1705,7 +1717,7 @@ void llama_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_siz
|
||||
// Embedding utils
|
||||
//
|
||||
|
||||
void llama_embd_normalize(const float * inp, float * out, int n, int embd_norm) {
|
||||
void common_embd_normalize(const float * inp, float * out, int n, int embd_norm) {
|
||||
double sum = 0.0;
|
||||
|
||||
switch (embd_norm) {
|
||||
@@ -1739,7 +1751,7 @@ void llama_embd_normalize(const float * inp, float * out, int n, int embd_norm)
|
||||
}
|
||||
}
|
||||
|
||||
float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n){
|
||||
float common_embd_similarity_cos(const float * embd1, const float * embd2, int n){
|
||||
double sum = 0.0;
|
||||
double sum1 = 0.0;
|
||||
double sum2 = 0.0;
|
||||
@@ -1765,8 +1777,8 @@ float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n)
|
||||
// Control vector utils
|
||||
//
|
||||
|
||||
static llama_control_vector_data llama_control_vector_load_one(const llama_control_vector_load_info & load_info) {
|
||||
llama_control_vector_data result = { -1, {} };
|
||||
static common_control_vector_data common_control_vector_load_one(const common_control_vector_load_info & load_info) {
|
||||
common_control_vector_data result = { -1, {} };
|
||||
|
||||
ggml_context * ctx = nullptr;
|
||||
struct gguf_init_params meta_gguf_params = {
|
||||
@@ -1850,11 +1862,11 @@ static llama_control_vector_data llama_control_vector_load_one(const llama_contr
|
||||
return result;
|
||||
}
|
||||
|
||||
llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos) {
|
||||
llama_control_vector_data result = { -1, {} };
|
||||
common_control_vector_data common_control_vector_load(const std::vector<common_control_vector_load_info> & load_infos) {
|
||||
common_control_vector_data result = { -1, {} };
|
||||
|
||||
for (const auto & info : load_infos) {
|
||||
auto cur = llama_control_vector_load_one(info);
|
||||
auto cur = common_control_vector_load_one(info);
|
||||
|
||||
if (cur.n_embd == -1) {
|
||||
result.n_embd = -1;
|
||||
@@ -1884,211 +1896,3 @@ llama_control_vector_data llama_control_vector_load(const std::vector<llama_cont
|
||||
return result;
|
||||
}
|
||||
|
||||
//
|
||||
// YAML utils
|
||||
//
|
||||
|
||||
void yaml_dump_vector_float(FILE * stream, const char * prop_name, const std::vector<float> & data) {
|
||||
if (data.empty()) {
|
||||
fprintf(stream, "%s:\n", prop_name);
|
||||
return;
|
||||
}
|
||||
|
||||
fprintf(stream, "%s: [", prop_name);
|
||||
for (size_t i = 0; i < data.size() - 1; ++i) {
|
||||
fprintf(stream, "%e, ", data[i]);
|
||||
}
|
||||
fprintf(stream, "%e]\n", data.back());
|
||||
}
|
||||
|
||||
void yaml_dump_vector_int(FILE * stream, const char * prop_name, const std::vector<int> & data) {
|
||||
if (data.empty()) {
|
||||
fprintf(stream, "%s:\n", prop_name);
|
||||
return;
|
||||
}
|
||||
|
||||
fprintf(stream, "%s: [", prop_name);
|
||||
for (size_t i = 0; i < data.size() - 1; ++i) {
|
||||
fprintf(stream, "%d, ", data[i]);
|
||||
}
|
||||
fprintf(stream, "%d]\n", data.back());
|
||||
}
|
||||
|
||||
void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data) {
|
||||
std::string data_str(data == NULL ? "" : data);
|
||||
|
||||
if (data_str.empty()) {
|
||||
fprintf(stream, "%s:\n", prop_name);
|
||||
return;
|
||||
}
|
||||
|
||||
size_t pos_start = 0;
|
||||
size_t pos_found = 0;
|
||||
|
||||
if (std::isspace(data_str[0]) || std::isspace(data_str.back())) {
|
||||
data_str = std::regex_replace(data_str, std::regex("\n"), "\\n");
|
||||
data_str = std::regex_replace(data_str, std::regex("\""), "\\\"");
|
||||
data_str = std::regex_replace(data_str, std::regex(R"(\\[^n"])"), R"(\$&)");
|
||||
data_str = "\"" + data_str + "\"";
|
||||
fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
|
||||
return;
|
||||
}
|
||||
|
||||
if (data_str.find('\n') == std::string::npos) {
|
||||
fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
|
||||
return;
|
||||
}
|
||||
|
||||
fprintf(stream, "%s: |\n", prop_name);
|
||||
while ((pos_found = data_str.find('\n', pos_start)) != std::string::npos) {
|
||||
fprintf(stream, " %s\n", data_str.substr(pos_start, pos_found-pos_start).c_str());
|
||||
pos_start = pos_found + 1;
|
||||
}
|
||||
}
|
||||
|
||||
void yaml_dump_non_result_info(FILE * stream, const gpt_params & params, const llama_context * lctx,
|
||||
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc) {
|
||||
const auto & sparams = params.sparams;
|
||||
|
||||
fprintf(stream, "build_commit: %s\n", LLAMA_COMMIT);
|
||||
fprintf(stream, "build_number: %d\n", LLAMA_BUILD_NUMBER);
|
||||
fprintf(stream, "cpu_has_arm_fma: %s\n", ggml_cpu_has_arm_fma() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_avx: %s\n", ggml_cpu_has_avx() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_avx_vnni: %s\n", ggml_cpu_has_avx_vnni() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_avx2: %s\n", ggml_cpu_has_avx2() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_avx512: %s\n", ggml_cpu_has_avx512() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_cuda: %s\n", ggml_cpu_has_cuda() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_vulkan: %s\n", ggml_cpu_has_vulkan() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_kompute: %s\n", ggml_cpu_has_kompute() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_gpublas: %s\n", ggml_cpu_has_gpublas() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_neon: %s\n", ggml_cpu_has_neon() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_sve: %s\n", ggml_cpu_has_sve() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_f16c: %s\n", ggml_cpu_has_f16c() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_fp16_va: %s\n", ggml_cpu_has_fp16_va() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_riscv_v: %s\n", ggml_cpu_has_riscv_v() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_wasm_simd: %s\n", ggml_cpu_has_wasm_simd() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_sse3: %s\n", ggml_cpu_has_sse3() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_vsx: %s\n", ggml_cpu_has_vsx() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_matmul_int8: %s\n", ggml_cpu_has_matmul_int8() ? "true" : "false");
|
||||
|
||||
#ifdef NDEBUG
|
||||
fprintf(stream, "debug: false\n");
|
||||
#else
|
||||
fprintf(stream, "debug: true\n");
|
||||
#endif // NDEBUG
|
||||
|
||||
fprintf(stream, "model_desc: %s\n", model_desc);
|
||||
fprintf(stream, "n_vocab: %d # output size of the final layer, 32001 for some models\n", llama_n_vocab(llama_get_model(lctx)));
|
||||
|
||||
#ifdef __OPTIMIZE__
|
||||
fprintf(stream, "optimize: true\n");
|
||||
#else
|
||||
fprintf(stream, "optimize: false\n");
|
||||
#endif // __OPTIMIZE__
|
||||
|
||||
fprintf(stream, "time: %s\n", timestamp.c_str());
|
||||
|
||||
fprintf(stream, "\n");
|
||||
fprintf(stream, "###############\n");
|
||||
fprintf(stream, "# User Inputs #\n");
|
||||
fprintf(stream, "###############\n");
|
||||
fprintf(stream, "\n");
|
||||
|
||||
fprintf(stream, "alias: %s # default: unknown\n", params.model_alias.c_str());
|
||||
fprintf(stream, "batch_size: %d # default: 512\n", params.n_batch);
|
||||
fprintf(stream, "chunks: %d # default: -1 (unlimited)\n", params.n_chunks);
|
||||
fprintf(stream, "color: %s # default: false\n", params.use_color ? "true" : "false");
|
||||
fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx);
|
||||
fprintf(stream, "escape: %s # default: false\n", params.escape ? "true" : "false");
|
||||
fprintf(stream, "file: # never logged, see prompt instead. Can still be specified for input.\n");
|
||||
fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", sparams.penalty_freq);
|
||||
yaml_dump_string_multiline(stream, "grammar", sparams.grammar.c_str());
|
||||
fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n");
|
||||
fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false");
|
||||
fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks);
|
||||
fprintf(stream, "ignore_eos: %s # default: false\n", sparams.ignore_eos ? "true" : "false");
|
||||
|
||||
yaml_dump_string_multiline(stream, "in_prefix", params.input_prefix.c_str());
|
||||
fprintf(stream, "in_prefix_bos: %s # default: false\n", params.input_prefix_bos ? "true" : "false");
|
||||
yaml_dump_string_multiline(stream, "in_suffix", params.input_prefix.c_str());
|
||||
fprintf(stream, "interactive: %s # default: false\n", params.interactive ? "true" : "false");
|
||||
fprintf(stream, "interactive_first: %s # default: false\n", params.interactive_first ? "true" : "false");
|
||||
fprintf(stream, "keep: %d # default: 0\n", params.n_keep);
|
||||
fprintf(stream, "logdir: %s # default: unset (no logging)\n", params.logdir.c_str());
|
||||
|
||||
fprintf(stream, "logit_bias:\n");
|
||||
for (const auto & logit_bias : sparams.logit_bias) {
|
||||
fprintf(stream, " %d: %f", logit_bias.token, logit_bias.bias);
|
||||
}
|
||||
|
||||
fprintf(stream, "lora:\n");
|
||||
for (auto & la : params.lora_adapters) {
|
||||
if (la.scale == 1.0f) {
|
||||
fprintf(stream, " - %s\n", la.path.c_str());
|
||||
}
|
||||
}
|
||||
fprintf(stream, "lora_scaled:\n");
|
||||
for (auto & la : params.lora_adapters) {
|
||||
if (la.scale != 1.0f) {
|
||||
fprintf(stream, " - %s: %f\n", la.path.c_str(), la.scale);
|
||||
}
|
||||
}
|
||||
fprintf(stream, "lora_init_without_apply: %s # default: false\n", params.lora_init_without_apply ? "true" : "false");
|
||||
fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu);
|
||||
fprintf(stream, "min_keep: %d # default: 0 (disabled)\n", sparams.min_keep);
|
||||
fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", sparams.mirostat);
|
||||
fprintf(stream, "mirostat_ent: %f # default: 5.0\n", sparams.mirostat_tau);
|
||||
fprintf(stream, "mirostat_lr: %f # default: 0.1\n", sparams.mirostat_eta);
|
||||
fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false");
|
||||
fprintf(stream, "model: %s # default: %s\n", params.model.c_str(), DEFAULT_MODEL_PATH);
|
||||
fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str());
|
||||
fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false");
|
||||
fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers);
|
||||
fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict);
|
||||
fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", sparams.n_probs);
|
||||
fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false");
|
||||
fprintf(stream, "penalize_nl: %s # default: false\n", sparams.penalize_nl ? "true" : "false");
|
||||
fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type);
|
||||
fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride);
|
||||
fprintf(stream, "presence_penalty: %f # default: 0.0\n", sparams.penalty_present);
|
||||
yaml_dump_string_multiline(stream, "prompt", params.prompt.c_str());
|
||||
fprintf(stream, "prompt_cache: %s\n", params.path_prompt_cache.c_str());
|
||||
fprintf(stream, "prompt_cache_all: %s # default: false\n", params.prompt_cache_all ? "true" : "false");
|
||||
fprintf(stream, "prompt_cache_ro: %s # default: false\n", params.prompt_cache_ro ? "true" : "false");
|
||||
yaml_dump_vector_int(stream, "prompt_tokens", prompt_tokens);
|
||||
fprintf(stream, "repeat_penalty: %f # default: 1.1\n", sparams.penalty_repeat);
|
||||
|
||||
fprintf(stream, "reverse_prompt:\n");
|
||||
for (std::string ap : params.antiprompt) {
|
||||
size_t pos = 0;
|
||||
while ((pos = ap.find('\n', pos)) != std::string::npos) {
|
||||
ap.replace(pos, 1, "\\n");
|
||||
pos += 1;
|
||||
}
|
||||
|
||||
fprintf(stream, " - %s\n", ap.c_str());
|
||||
}
|
||||
|
||||
fprintf(stream, "rope_freq_base: %f # default: 10000.0\n", params.rope_freq_base);
|
||||
fprintf(stream, "rope_freq_scale: %f # default: 1.0\n", params.rope_freq_scale);
|
||||
fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false");
|
||||
fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false");
|
||||
fprintf(stream, "flash_attn: %s # default: false\n", params.flash_attn ? "true" : "false");
|
||||
fprintf(stream, "temp: %f # default: 0.8\n", sparams.temp);
|
||||
|
||||
const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + llama_max_devices());
|
||||
yaml_dump_vector_float(stream, "tensor_split", tensor_split_vector);
|
||||
|
||||
fprintf(stream, "tfs: %f # default: 1.0\n", sparams.tfs_z);
|
||||
fprintf(stream, "threads: %d # default: %u\n", params.cpuparams.n_threads, std::thread::hardware_concurrency());
|
||||
fprintf(stream, "top_k: %d # default: 40\n", sparams.top_k);
|
||||
fprintf(stream, "top_p: %f # default: 0.95\n", sparams.top_p);
|
||||
fprintf(stream, "min_p: %f # default: 0.0\n", sparams.min_p);
|
||||
fprintf(stream, "typ_p: %f # default: 1.0\n", sparams.typ_p);
|
||||
fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false");
|
||||
fprintf(stream, "display_prompt: %s # default: true\n", params.display_prompt ? "true" : "false");
|
||||
}
|
||||
|
||||
228
common/common.h
228
common/common.h
@@ -24,12 +24,12 @@
|
||||
|
||||
#define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
|
||||
|
||||
struct llama_lora_adapter_info {
|
||||
struct common_lora_adapter_info {
|
||||
std::string path;
|
||||
float scale;
|
||||
};
|
||||
|
||||
struct llama_lora_adapter_container : llama_lora_adapter_info {
|
||||
struct common_lora_adapter_container : common_lora_adapter_info {
|
||||
struct llama_lora_adapter * adapter;
|
||||
};
|
||||
|
||||
@@ -39,7 +39,7 @@ extern char const * LLAMA_COMMIT;
|
||||
extern char const * LLAMA_COMPILER;
|
||||
extern char const * LLAMA_BUILD_TARGET;
|
||||
|
||||
struct llama_control_vector_load_info;
|
||||
struct common_control_vector_load_info;
|
||||
|
||||
//
|
||||
// CPU utils
|
||||
@@ -82,14 +82,17 @@ enum llama_example {
|
||||
LLAMA_EXAMPLE_COUNT,
|
||||
};
|
||||
|
||||
enum gpt_sampler_type {
|
||||
GPT_SAMPLER_TYPE_NONE = 0,
|
||||
GPT_SAMPLER_TYPE_TOP_K = 1,
|
||||
GPT_SAMPLER_TYPE_TOP_P = 2,
|
||||
GPT_SAMPLER_TYPE_MIN_P = 3,
|
||||
GPT_SAMPLER_TYPE_TFS_Z = 4,
|
||||
GPT_SAMPLER_TYPE_TYPICAL_P = 5,
|
||||
GPT_SAMPLER_TYPE_TEMPERATURE = 6,
|
||||
enum common_sampler_type {
|
||||
COMMON_SAMPLER_TYPE_NONE = 0,
|
||||
COMMON_SAMPLER_TYPE_DRY = 1,
|
||||
COMMON_SAMPLER_TYPE_TOP_K = 2,
|
||||
COMMON_SAMPLER_TYPE_TOP_P = 3,
|
||||
COMMON_SAMPLER_TYPE_MIN_P = 4,
|
||||
//COMMON_SAMPLER_TYPE_TFS_Z = 5,
|
||||
COMMON_SAMPLER_TYPE_TYPICAL_P = 6,
|
||||
COMMON_SAMPLER_TYPE_TEMPERATURE = 7,
|
||||
COMMON_SAMPLER_TYPE_XTC = 8,
|
||||
COMMON_SAMPLER_TYPE_INFILL = 9,
|
||||
};
|
||||
|
||||
// dimensionality reduction methods, used by cvector-generator
|
||||
@@ -99,38 +102,47 @@ enum dimre_method {
|
||||
};
|
||||
|
||||
// sampler parameters
|
||||
struct gpt_sampler_params {
|
||||
struct common_sampler_params {
|
||||
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
|
||||
|
||||
int32_t n_prev = 64; // number of previous tokens to remember
|
||||
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
|
||||
int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens
|
||||
int32_t top_k = 40; // <= 0 to use vocab size
|
||||
float top_p = 0.95f; // 1.0 = disabled
|
||||
float min_p = 0.05f; // 0.0 = disabled
|
||||
float tfs_z = 1.00f; // 1.0 = disabled
|
||||
float typ_p = 1.00f; // typical_p, 1.0 = disabled
|
||||
float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
|
||||
float dynatemp_range = 0.00f; // 0.0 = disabled
|
||||
float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
|
||||
int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
|
||||
float penalty_repeat = 1.00f; // 1.0 = disabled
|
||||
float penalty_freq = 0.00f; // 0.0 = disabled
|
||||
float penalty_present = 0.00f; // 0.0 = disabled
|
||||
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
|
||||
float mirostat_tau = 5.00f; // target entropy
|
||||
float mirostat_eta = 0.10f; // learning rate
|
||||
bool penalize_nl = false; // consider newlines as a repeatable token
|
||||
bool ignore_eos = false;
|
||||
bool no_perf = false; // disable performance metrics
|
||||
int32_t n_prev = 64; // number of previous tokens to remember
|
||||
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
|
||||
int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens
|
||||
int32_t top_k = 40; // <= 0 to use vocab size
|
||||
float top_p = 0.95f; // 1.0 = disabled
|
||||
float min_p = 0.05f; // 0.0 = disabled
|
||||
float xtc_probability = 0.00f; // 0.0 = disabled
|
||||
float xtc_threshold = 0.10f; // > 0.5 disables XTC
|
||||
float typ_p = 1.00f; // typical_p, 1.0 = disabled
|
||||
float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
|
||||
float dynatemp_range = 0.00f; // 0.0 = disabled
|
||||
float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
|
||||
int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
|
||||
float penalty_repeat = 1.00f; // 1.0 = disabled
|
||||
float penalty_freq = 0.00f; // 0.0 = disabled
|
||||
float penalty_present = 0.00f; // 0.0 = disabled
|
||||
float dry_multiplier = 0.0f; // 0.0 = disabled; DRY repetition penalty for tokens extending repetition:
|
||||
float dry_base = 1.75f; // 0.0 = disabled; multiplier * base ^ (length of sequence before token - allowed length)
|
||||
int32_t dry_allowed_length = 2; // tokens extending repetitions beyond this receive penalty
|
||||
int32_t dry_penalty_last_n = -1; // how many tokens to scan for repetitions (0 = disable penalty, -1 = context size)
|
||||
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
|
||||
float mirostat_tau = 5.00f; // target entropy
|
||||
float mirostat_eta = 0.10f; // learning rate
|
||||
bool penalize_nl = false; // consider newlines as a repeatable token
|
||||
bool ignore_eos = false;
|
||||
bool no_perf = false; // disable performance metrics
|
||||
|
||||
std::vector<enum gpt_sampler_type> samplers = {
|
||||
GPT_SAMPLER_TYPE_TOP_K,
|
||||
GPT_SAMPLER_TYPE_TFS_Z,
|
||||
GPT_SAMPLER_TYPE_TYPICAL_P,
|
||||
GPT_SAMPLER_TYPE_TOP_P,
|
||||
GPT_SAMPLER_TYPE_MIN_P,
|
||||
GPT_SAMPLER_TYPE_TEMPERATURE
|
||||
std::vector<std::string> dry_sequence_breakers = {"\n", ":", "\"", "*"}; // default sequence breakers for DRY
|
||||
|
||||
|
||||
std::vector<enum common_sampler_type> samplers = {
|
||||
COMMON_SAMPLER_TYPE_DRY,
|
||||
COMMON_SAMPLER_TYPE_TOP_K,
|
||||
COMMON_SAMPLER_TYPE_TYPICAL_P,
|
||||
COMMON_SAMPLER_TYPE_TOP_P,
|
||||
COMMON_SAMPLER_TYPE_MIN_P,
|
||||
COMMON_SAMPLER_TYPE_XTC,
|
||||
COMMON_SAMPLER_TYPE_TEMPERATURE,
|
||||
};
|
||||
|
||||
std::string grammar; // optional BNF-like grammar to constrain sampling
|
||||
@@ -141,9 +153,9 @@ struct gpt_sampler_params {
|
||||
std::string print() const;
|
||||
};
|
||||
|
||||
struct gpt_params {
|
||||
struct common_params {
|
||||
int32_t n_predict = -1; // new tokens to predict
|
||||
int32_t n_ctx = 0; // context size
|
||||
int32_t n_ctx = 4096; // context size
|
||||
int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
|
||||
int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
|
||||
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
||||
@@ -166,7 +178,7 @@ struct gpt_params {
|
||||
float yarn_beta_fast = 32.0f; // YaRN low correction dim
|
||||
float yarn_beta_slow = 1.0f; // YaRN high correction dim
|
||||
int32_t yarn_orig_ctx = 0; // YaRN original context length
|
||||
float defrag_thold = -1.0f; // KV cache defragmentation threshold
|
||||
float defrag_thold = 0.1f; // KV cache defragmentation threshold
|
||||
|
||||
struct cpu_params cpuparams;
|
||||
struct cpu_params cpuparams_batch;
|
||||
@@ -183,7 +195,7 @@ struct gpt_params {
|
||||
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
|
||||
enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
|
||||
|
||||
struct gpt_sampler_params sparams;
|
||||
struct common_sampler_params sparams;
|
||||
|
||||
std::string model = ""; // model path // NOLINT
|
||||
std::string model_draft = ""; // draft model for speculative decoding // NOLINT
|
||||
@@ -197,7 +209,6 @@ struct gpt_params {
|
||||
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state // NOLINT
|
||||
std::string input_prefix = ""; // string to prefix user inputs with // NOLINT
|
||||
std::string input_suffix = ""; // string to suffix user inputs with // NOLINT
|
||||
std::string logdir = ""; // directory in which to save YAML log files // NOLINT
|
||||
std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding // NOLINT
|
||||
std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding // NOLINT
|
||||
std::string logits_file = ""; // file for saving *all* logits // NOLINT
|
||||
@@ -208,9 +219,9 @@ struct gpt_params {
|
||||
std::vector<llama_model_kv_override> kv_overrides;
|
||||
|
||||
bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_lora_adapter_apply)
|
||||
std::vector<llama_lora_adapter_info> lora_adapters; // lora adapter path with user defined scale
|
||||
std::vector<common_lora_adapter_info> lora_adapters; // lora adapter path with user defined scale
|
||||
|
||||
std::vector<llama_control_vector_load_info> control_vectors; // control vector with user defined scale
|
||||
std::vector<common_control_vector_load_info> control_vectors; // control vector with user defined scale
|
||||
|
||||
int32_t verbosity = 0;
|
||||
int32_t control_vector_layer_start = -1; // layer range for control vector
|
||||
@@ -268,21 +279,21 @@ struct gpt_params {
|
||||
|
||||
// embedding
|
||||
bool embedding = false; // get only sentence embedding
|
||||
int32_t embd_normalize = 2; // normalisation for embendings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
|
||||
int32_t embd_normalize = 2; // normalisation for embeddings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
|
||||
std::string embd_out = ""; // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
|
||||
std::string embd_sep = "\n"; // separator of embendings
|
||||
std::string embd_sep = "\n"; // separator of embeddings
|
||||
bool reranking = false; // enable reranking support on server
|
||||
|
||||
// server params
|
||||
int32_t port = 8080; // server listens on this network port
|
||||
int32_t timeout_read = 600; // http read timeout in seconds
|
||||
int32_t timeout_write = timeout_read; // http write timeout in seconds
|
||||
int n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
|
||||
int32_t n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
|
||||
int32_t n_cache_reuse = 0; // min chunk size to reuse from the cache via KV shifting
|
||||
|
||||
std::string hostname = "127.0.0.1";
|
||||
std::string public_path = ""; // NOLINT
|
||||
std::string chat_template = ""; // NOLINT
|
||||
std::string system_prompt = ""; // NOLINT
|
||||
bool enable_chat_template = true;
|
||||
|
||||
std::vector<std::string> api_keys;
|
||||
@@ -290,7 +301,10 @@ struct gpt_params {
|
||||
std::string ssl_file_key = ""; // NOLINT
|
||||
std::string ssl_file_cert = ""; // NOLINT
|
||||
|
||||
bool endpoint_slots = true;
|
||||
// "advanced" endpoints are disabled by default for better security
|
||||
bool webui = true;
|
||||
bool endpoint_slots = false;
|
||||
bool endpoint_props = false; // only control POST requests, not GET
|
||||
bool endpoint_metrics = false;
|
||||
|
||||
bool log_json = false;
|
||||
@@ -345,20 +359,31 @@ struct gpt_params {
|
||||
|
||||
// call once at the start of a program if it uses libcommon
|
||||
// initializes the logging system and prints info about the build
|
||||
void gpt_init();
|
||||
void common_init();
|
||||
|
||||
std::string gpt_params_get_system_info(const gpt_params & params);
|
||||
std::string common_params_get_system_info(const common_params & params);
|
||||
|
||||
bool parse_cpu_range(const std::string& range, bool(&boolmask)[GGML_MAX_N_THREADS]);
|
||||
bool parse_cpu_mask(const std::string& mask, bool(&boolmask)[GGML_MAX_N_THREADS]);
|
||||
void postprocess_cpu_params(cpu_params& cpuparams, const cpu_params* role_model = nullptr);
|
||||
bool parse_cpu_range(const std::string & range, bool(&boolmask)[GGML_MAX_N_THREADS]);
|
||||
bool parse_cpu_mask(const std::string & mask, bool(&boolmask)[GGML_MAX_N_THREADS]);
|
||||
void postprocess_cpu_params(cpu_params & cpuparams, const cpu_params * role_model = nullptr);
|
||||
bool set_process_priority(enum ggml_sched_priority prio);
|
||||
|
||||
//
|
||||
// String utils
|
||||
//
|
||||
|
||||
std::vector<std::string> string_split(std::string input, char separator);
|
||||
#ifdef __GNUC__
|
||||
#ifdef __MINGW32__
|
||||
#define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
|
||||
#else
|
||||
#define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
|
||||
#endif
|
||||
#else
|
||||
#define LLAMA_COMMON_ATTRIBUTE_FORMAT(...)
|
||||
#endif
|
||||
|
||||
LLAMA_COMMON_ATTRIBUTE_FORMAT(1, 2)
|
||||
std::string string_format(const char * fmt, ...);
|
||||
|
||||
std::string string_strip(const std::string & str);
|
||||
std::string string_get_sortable_timestamp();
|
||||
@@ -367,6 +392,7 @@ void string_replace_all(std::string & s, const std::string & search, const std::
|
||||
|
||||
template<class T>
|
||||
static std::vector<T> string_split(const std::string & str, char delim) {
|
||||
static_assert(!std::is_same<T, std::string>::value, "Please use the specialized version for std::string");
|
||||
std::vector<T> values;
|
||||
std::istringstream str_stream(str);
|
||||
std::string token;
|
||||
@@ -379,6 +405,22 @@ static std::vector<T> string_split(const std::string & str, char delim) {
|
||||
return values;
|
||||
}
|
||||
|
||||
template<>
|
||||
std::vector<std::string> string_split<std::string>(const std::string & input, char separator)
|
||||
{
|
||||
std::vector<std::string> parts;
|
||||
size_t begin_pos = 0;
|
||||
size_t separator_pos = input.find(separator);
|
||||
while (separator_pos != std::string::npos) {
|
||||
std::string part = input.substr(begin_pos, separator_pos - begin_pos);
|
||||
parts.emplace_back(part);
|
||||
begin_pos = separator_pos + 1;
|
||||
separator_pos = input.find(separator, begin_pos);
|
||||
}
|
||||
parts.emplace_back(input.substr(begin_pos, separator_pos - begin_pos));
|
||||
return parts;
|
||||
}
|
||||
|
||||
bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
|
||||
void string_process_escapes(std::string & input);
|
||||
|
||||
@@ -401,29 +443,29 @@ std::string fs_get_cache_file(const std::string & filename);
|
||||
// Model utils
|
||||
//
|
||||
|
||||
struct llama_init_result {
|
||||
struct common_init_result {
|
||||
struct llama_model * model = nullptr;
|
||||
struct llama_context * context = nullptr;
|
||||
std::vector<llama_lora_adapter_container> lora_adapters;
|
||||
std::vector<common_lora_adapter_container> lora_adapters;
|
||||
};
|
||||
|
||||
struct llama_init_result llama_init_from_gpt_params(gpt_params & params);
|
||||
struct common_init_result common_init_from_params(common_params & params);
|
||||
|
||||
struct llama_model_params llama_model_params_from_gpt_params (const gpt_params & params);
|
||||
struct llama_context_params llama_context_params_from_gpt_params (const gpt_params & params);
|
||||
struct llama_model_params common_model_params_to_llama (const common_params & params);
|
||||
struct llama_context_params common_context_params_to_llama(const common_params & params);
|
||||
struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
|
||||
|
||||
struct llama_model * llama_load_model_from_url(const char * model_url, const char * path_model, const char * hf_token, const struct llama_model_params & params);
|
||||
struct llama_model * llama_load_model_from_hf(const char * repo, const char * file, const char * path_model, const char * hf_token, const struct llama_model_params & params);
|
||||
struct llama_model * common_load_model_from_url(const char * model_url, const char * path_model, const char * hf_token, const struct llama_model_params & params);
|
||||
struct llama_model * common_load_model_from_hf(const char * repo, const char * file, const char * path_model, const char * hf_token, const struct llama_model_params & params);
|
||||
|
||||
// clear LoRA adapters from context, then apply new list of adapters
|
||||
void llama_lora_adapters_apply(struct llama_context * ctx, std::vector<llama_lora_adapter_container> & lora_adapters);
|
||||
void common_lora_adapters_apply(struct llama_context * ctx, std::vector<common_lora_adapter_container> & lora_adapters);
|
||||
|
||||
// Batch utils
|
||||
|
||||
void llama_batch_clear(struct llama_batch & batch);
|
||||
void common_batch_clear(struct llama_batch & batch);
|
||||
|
||||
void llama_batch_add(
|
||||
void common_batch_add(
|
||||
struct llama_batch & batch,
|
||||
llama_token id,
|
||||
llama_pos pos,
|
||||
@@ -436,13 +478,13 @@ void llama_batch_add(
|
||||
|
||||
// tokenizes a string into a vector of tokens
|
||||
// should work similar to Python's `tokenizer.encode`
|
||||
std::vector<llama_token> llama_tokenize(
|
||||
std::vector<llama_token> common_tokenize(
|
||||
const struct llama_context * ctx,
|
||||
const std::string & text,
|
||||
bool add_special,
|
||||
bool parse_special = false);
|
||||
|
||||
std::vector<llama_token> llama_tokenize(
|
||||
std::vector<llama_token> common_tokenize(
|
||||
const struct llama_model * model,
|
||||
const std::string & text,
|
||||
bool add_special,
|
||||
@@ -450,7 +492,7 @@ std::vector<llama_token> llama_tokenize(
|
||||
|
||||
// tokenizes a token into a piece, optionally renders special/control tokens
|
||||
// should work similar to Python's `tokenizer.id_to_piece`
|
||||
std::string llama_token_to_piece(
|
||||
std::string common_token_to_piece(
|
||||
const struct llama_context * ctx,
|
||||
llama_token token,
|
||||
bool special = true);
|
||||
@@ -458,7 +500,7 @@ std::string llama_token_to_piece(
|
||||
// detokenizes a vector of tokens into a string
|
||||
// should work similar to Python's `tokenizer.decode`
|
||||
// optionally renders special/control tokens
|
||||
std::string llama_detokenize(
|
||||
std::string common_detokenize(
|
||||
llama_context * ctx,
|
||||
const std::vector<llama_token> & tokens,
|
||||
bool special = true);
|
||||
@@ -468,31 +510,31 @@ std::string llama_detokenize(
|
||||
//
|
||||
|
||||
// same with llama_chat_message, but uses std::string
|
||||
struct llama_chat_msg {
|
||||
struct common_chat_msg {
|
||||
std::string role;
|
||||
std::string content;
|
||||
};
|
||||
|
||||
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
|
||||
bool llama_chat_verify_template(const std::string & tmpl);
|
||||
bool common_chat_verify_template(const std::string & tmpl);
|
||||
|
||||
// CPP wrapper for llama_chat_apply_template
|
||||
// If the built-in template is not supported, we default to chatml
|
||||
// If the custom "tmpl" is not supported, we throw an error
|
||||
std::string llama_chat_apply_template(const struct llama_model * model,
|
||||
std::string common_chat_apply_template(const struct llama_model * model,
|
||||
const std::string & tmpl,
|
||||
const std::vector<llama_chat_msg> & chat,
|
||||
const std::vector<common_chat_msg> & chat,
|
||||
bool add_ass);
|
||||
|
||||
// Format single message, while taking into account the position of that message in chat history
|
||||
std::string llama_chat_format_single(const struct llama_model * model,
|
||||
std::string common_chat_format_single(const struct llama_model * model,
|
||||
const std::string & tmpl,
|
||||
const std::vector<llama_chat_msg> & past_msg,
|
||||
const llama_chat_msg & new_msg,
|
||||
const std::vector<common_chat_msg> & past_msg,
|
||||
const common_chat_msg & new_msg,
|
||||
bool add_ass);
|
||||
|
||||
// Returns an example of formatted chat
|
||||
std::string llama_chat_format_example(const struct llama_model * model,
|
||||
std::string common_chat_format_example(const struct llama_model * model,
|
||||
const std::string & tmpl);
|
||||
|
||||
//
|
||||
@@ -500,31 +542,31 @@ std::string llama_chat_format_example(const struct llama_model * model,
|
||||
//
|
||||
|
||||
// Dump the KV cache view with the number of sequences per cell.
|
||||
void llama_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80);
|
||||
void common_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80);
|
||||
|
||||
// Dump the KV cache view showing individual sequences in each cell (long output).
|
||||
void llama_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
|
||||
void common_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
|
||||
|
||||
//
|
||||
// Embedding utils
|
||||
//
|
||||
|
||||
void llama_embd_normalize(const float * inp, float * out, int n, int embd_norm = 2);
|
||||
void common_embd_normalize(const float * inp, float * out, int n, int embd_norm = 2);
|
||||
|
||||
float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n);
|
||||
float common_embd_similarity_cos(const float * embd1, const float * embd2, int n);
|
||||
|
||||
//
|
||||
// Control vector utils
|
||||
//
|
||||
|
||||
struct llama_control_vector_data {
|
||||
struct common_control_vector_data {
|
||||
int n_embd;
|
||||
|
||||
// stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
|
||||
std::vector<float> data;
|
||||
};
|
||||
|
||||
struct llama_control_vector_load_info {
|
||||
struct common_control_vector_load_info {
|
||||
float strength;
|
||||
|
||||
std::string fname;
|
||||
@@ -532,7 +574,7 @@ struct llama_control_vector_load_info {
|
||||
|
||||
// Load control vectors, scale each by strength, and add them together.
|
||||
// On error, returns {-1, empty}
|
||||
llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos);
|
||||
common_control_vector_data common_control_vector_load(const std::vector<common_control_vector_load_info> & load_infos);
|
||||
|
||||
//
|
||||
// Split utils
|
||||
@@ -541,15 +583,3 @@ llama_control_vector_data llama_control_vector_load(const std::vector<llama_cont
|
||||
static const char * const LLM_KV_SPLIT_NO = "split.no";
|
||||
static const char * const LLM_KV_SPLIT_COUNT = "split.count";
|
||||
static const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
|
||||
|
||||
//
|
||||
// YAML utils
|
||||
//
|
||||
|
||||
void yaml_dump_vector_float (FILE * stream, const char * prop_name, const std::vector<float> & data);
|
||||
void yaml_dump_vector_int (FILE * stream, const char * prop_name, const std::vector<int> & data);
|
||||
void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data);
|
||||
|
||||
void yaml_dump_non_result_info(
|
||||
FILE * stream, const gpt_params & params, const llama_context * lctx,
|
||||
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);
|
||||
|
||||
@@ -611,7 +611,7 @@ private:
|
||||
}
|
||||
return join_seq();
|
||||
};
|
||||
return _add_rule(name, "\"\\\"\" " + to_rule(transform()) + " \"\\\"\" space");
|
||||
return _add_rule(name, "\"\\\"\" (" + to_rule(transform()) + ") \"\\\"\" space");
|
||||
}
|
||||
|
||||
/*
|
||||
|
||||
100
common/log.cpp
100
common/log.cpp
@@ -8,10 +8,10 @@
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
|
||||
int gpt_log_verbosity_thold = LOG_DEFAULT_LLAMA;
|
||||
int common_log_verbosity_thold = LOG_DEFAULT_LLAMA;
|
||||
|
||||
void gpt_log_set_verbosity_thold(int verbosity) {
|
||||
gpt_log_verbosity_thold = verbosity;
|
||||
void common_log_set_verbosity_thold(int verbosity) {
|
||||
common_log_verbosity_thold = verbosity;
|
||||
}
|
||||
|
||||
#define LOG_COL_DEFAULT "\033[0m"
|
||||
@@ -29,16 +29,16 @@ static int64_t t_us() {
|
||||
}
|
||||
|
||||
// colors
|
||||
enum gpt_log_col : int {
|
||||
GPT_LOG_COL_DEFAULT = 0,
|
||||
GPT_LOG_COL_BOLD,
|
||||
GPT_LOG_COL_RED,
|
||||
GPT_LOG_COL_GREEN,
|
||||
GPT_LOG_COL_YELLOW,
|
||||
GPT_LOG_COL_BLUE,
|
||||
GPT_LOG_COL_MAGENTA,
|
||||
GPT_LOG_COL_CYAN,
|
||||
GPT_LOG_COL_WHITE,
|
||||
enum common_log_col : int {
|
||||
COMMON_LOG_COL_DEFAULT = 0,
|
||||
COMMON_LOG_COL_BOLD,
|
||||
COMMON_LOG_COL_RED,
|
||||
COMMON_LOG_COL_GREEN,
|
||||
COMMON_LOG_COL_YELLOW,
|
||||
COMMON_LOG_COL_BLUE,
|
||||
COMMON_LOG_COL_MAGENTA,
|
||||
COMMON_LOG_COL_CYAN,
|
||||
COMMON_LOG_COL_WHITE,
|
||||
};
|
||||
|
||||
// disable colors by default
|
||||
@@ -54,7 +54,7 @@ static std::vector<const char *> g_col = {
|
||||
"",
|
||||
};
|
||||
|
||||
struct gpt_log_entry {
|
||||
struct common_log_entry {
|
||||
enum ggml_log_level level;
|
||||
|
||||
bool prefix;
|
||||
@@ -71,7 +71,7 @@ struct gpt_log_entry {
|
||||
if (!fcur) {
|
||||
// stderr displays DBG messages only when their verbosity level is not higher than the threshold
|
||||
// these messages will still be logged to a file
|
||||
if (level == GGML_LOG_LEVEL_DEBUG && gpt_log_verbosity_thold < LOG_DEFAULT_DEBUG) {
|
||||
if (level == GGML_LOG_LEVEL_DEBUG && common_log_verbosity_thold < LOG_DEFAULT_DEBUG) {
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -86,19 +86,19 @@ struct gpt_log_entry {
|
||||
if (timestamp) {
|
||||
// [M.s.ms.us]
|
||||
fprintf(fcur, "%s%d.%02d.%03d.%03d%s ",
|
||||
g_col[GPT_LOG_COL_BLUE],
|
||||
g_col[COMMON_LOG_COL_BLUE],
|
||||
(int) (timestamp / 1000000 / 60),
|
||||
(int) (timestamp / 1000000 % 60),
|
||||
(int) (timestamp / 1000 % 1000),
|
||||
(int) (timestamp % 1000),
|
||||
g_col[GPT_LOG_COL_DEFAULT]);
|
||||
g_col[COMMON_LOG_COL_DEFAULT]);
|
||||
}
|
||||
|
||||
switch (level) {
|
||||
case GGML_LOG_LEVEL_INFO: fprintf(fcur, "%sI %s", g_col[GPT_LOG_COL_GREEN], g_col[GPT_LOG_COL_DEFAULT]); break;
|
||||
case GGML_LOG_LEVEL_WARN: fprintf(fcur, "%sW %s", g_col[GPT_LOG_COL_MAGENTA], "" ); break;
|
||||
case GGML_LOG_LEVEL_ERROR: fprintf(fcur, "%sE %s", g_col[GPT_LOG_COL_RED], "" ); break;
|
||||
case GGML_LOG_LEVEL_DEBUG: fprintf(fcur, "%sD %s", g_col[GPT_LOG_COL_YELLOW], "" ); break;
|
||||
case GGML_LOG_LEVEL_INFO: fprintf(fcur, "%sI %s", g_col[COMMON_LOG_COL_GREEN], g_col[COMMON_LOG_COL_DEFAULT]); break;
|
||||
case GGML_LOG_LEVEL_WARN: fprintf(fcur, "%sW %s", g_col[COMMON_LOG_COL_MAGENTA], "" ); break;
|
||||
case GGML_LOG_LEVEL_ERROR: fprintf(fcur, "%sE %s", g_col[COMMON_LOG_COL_RED], "" ); break;
|
||||
case GGML_LOG_LEVEL_DEBUG: fprintf(fcur, "%sD %s", g_col[COMMON_LOG_COL_YELLOW], "" ); break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
@@ -107,18 +107,18 @@ struct gpt_log_entry {
|
||||
fprintf(fcur, "%s", msg.data());
|
||||
|
||||
if (level == GGML_LOG_LEVEL_WARN || level == GGML_LOG_LEVEL_ERROR || level == GGML_LOG_LEVEL_DEBUG) {
|
||||
fprintf(fcur, "%s", g_col[GPT_LOG_COL_DEFAULT]);
|
||||
fprintf(fcur, "%s", g_col[COMMON_LOG_COL_DEFAULT]);
|
||||
}
|
||||
|
||||
fflush(fcur);
|
||||
}
|
||||
};
|
||||
|
||||
struct gpt_log {
|
||||
struct common_log {
|
||||
// default capacity - will be expanded if needed
|
||||
gpt_log() : gpt_log(256) {}
|
||||
common_log() : common_log(256) {}
|
||||
|
||||
gpt_log(size_t capacity) {
|
||||
common_log(size_t capacity) {
|
||||
file = nullptr;
|
||||
prefix = false;
|
||||
timestamps = false;
|
||||
@@ -137,7 +137,7 @@ struct gpt_log {
|
||||
resume();
|
||||
}
|
||||
|
||||
~gpt_log() {
|
||||
~common_log() {
|
||||
pause();
|
||||
if (file) {
|
||||
fclose(file);
|
||||
@@ -158,12 +158,12 @@ private:
|
||||
int64_t t_start;
|
||||
|
||||
// ring buffer of entries
|
||||
std::vector<gpt_log_entry> entries;
|
||||
std::vector<common_log_entry> entries;
|
||||
size_t head;
|
||||
size_t tail;
|
||||
|
||||
// worker thread copies into this
|
||||
gpt_log_entry cur;
|
||||
common_log_entry cur;
|
||||
|
||||
public:
|
||||
void add(enum ggml_log_level level, const char * fmt, va_list args) {
|
||||
@@ -219,7 +219,7 @@ public:
|
||||
tail = (tail + 1) % entries.size();
|
||||
if (tail == head) {
|
||||
// expand the buffer
|
||||
std::vector<gpt_log_entry> new_entries(2*entries.size());
|
||||
std::vector<common_log_entry> new_entries(2*entries.size());
|
||||
|
||||
size_t new_tail = 0;
|
||||
|
||||
@@ -320,15 +320,15 @@ public:
|
||||
pause();
|
||||
|
||||
if (colors) {
|
||||
g_col[GPT_LOG_COL_DEFAULT] = LOG_COL_DEFAULT;
|
||||
g_col[GPT_LOG_COL_BOLD] = LOG_COL_BOLD;
|
||||
g_col[GPT_LOG_COL_RED] = LOG_COL_RED;
|
||||
g_col[GPT_LOG_COL_GREEN] = LOG_COL_GREEN;
|
||||
g_col[GPT_LOG_COL_YELLOW] = LOG_COL_YELLOW;
|
||||
g_col[GPT_LOG_COL_BLUE] = LOG_COL_BLUE;
|
||||
g_col[GPT_LOG_COL_MAGENTA] = LOG_COL_MAGENTA;
|
||||
g_col[GPT_LOG_COL_CYAN] = LOG_COL_CYAN;
|
||||
g_col[GPT_LOG_COL_WHITE] = LOG_COL_WHITE;
|
||||
g_col[COMMON_LOG_COL_DEFAULT] = LOG_COL_DEFAULT;
|
||||
g_col[COMMON_LOG_COL_BOLD] = LOG_COL_BOLD;
|
||||
g_col[COMMON_LOG_COL_RED] = LOG_COL_RED;
|
||||
g_col[COMMON_LOG_COL_GREEN] = LOG_COL_GREEN;
|
||||
g_col[COMMON_LOG_COL_YELLOW] = LOG_COL_YELLOW;
|
||||
g_col[COMMON_LOG_COL_BLUE] = LOG_COL_BLUE;
|
||||
g_col[COMMON_LOG_COL_MAGENTA] = LOG_COL_MAGENTA;
|
||||
g_col[COMMON_LOG_COL_CYAN] = LOG_COL_CYAN;
|
||||
g_col[COMMON_LOG_COL_WHITE] = LOG_COL_WHITE;
|
||||
} else {
|
||||
for (size_t i = 0; i < g_col.size(); i++) {
|
||||
g_col[i] = "";
|
||||
@@ -355,47 +355,47 @@ public:
|
||||
// public API
|
||||
//
|
||||
|
||||
struct gpt_log * gpt_log_init() {
|
||||
return new gpt_log;
|
||||
struct common_log * common_log_init() {
|
||||
return new common_log;
|
||||
}
|
||||
|
||||
struct gpt_log * gpt_log_main() {
|
||||
static struct gpt_log log;
|
||||
struct common_log * common_log_main() {
|
||||
static struct common_log log;
|
||||
|
||||
return &log;
|
||||
}
|
||||
|
||||
void gpt_log_pause(struct gpt_log * log) {
|
||||
void common_log_pause(struct common_log * log) {
|
||||
log->pause();
|
||||
}
|
||||
|
||||
void gpt_log_resume(struct gpt_log * log) {
|
||||
void common_log_resume(struct common_log * log) {
|
||||
log->resume();
|
||||
}
|
||||
|
||||
void gpt_log_free(struct gpt_log * log) {
|
||||
void common_log_free(struct common_log * log) {
|
||||
delete log;
|
||||
}
|
||||
|
||||
void gpt_log_add(struct gpt_log * log, enum ggml_log_level level, const char * fmt, ...) {
|
||||
void common_log_add(struct common_log * log, enum ggml_log_level level, const char * fmt, ...) {
|
||||
va_list args;
|
||||
va_start(args, fmt);
|
||||
log->add(level, fmt, args);
|
||||
va_end(args);
|
||||
}
|
||||
|
||||
void gpt_log_set_file(struct gpt_log * log, const char * file) {
|
||||
void common_log_set_file(struct common_log * log, const char * file) {
|
||||
log->set_file(file);
|
||||
}
|
||||
|
||||
void gpt_log_set_colors(struct gpt_log * log, bool colors) {
|
||||
void common_log_set_colors(struct common_log * log, bool colors) {
|
||||
log->set_colors(colors);
|
||||
}
|
||||
|
||||
void gpt_log_set_prefix(struct gpt_log * log, bool prefix) {
|
||||
void common_log_set_prefix(struct common_log * log, bool prefix) {
|
||||
log->set_prefix(prefix);
|
||||
}
|
||||
|
||||
void gpt_log_set_timestamps(struct gpt_log * log, bool timestamps) {
|
||||
void common_log_set_timestamps(struct common_log * log, bool timestamps) {
|
||||
log->set_timestamps(timestamps);
|
||||
}
|
||||
|
||||
36
common/log.h
36
common/log.h
@@ -14,23 +14,23 @@
|
||||
#define LOG_DEFAULT_LLAMA 0
|
||||
|
||||
// needed by the LOG_TMPL macro to avoid computing log arguments if the verbosity lower
|
||||
// set via gpt_log_set_verbosity()
|
||||
extern int gpt_log_verbosity_thold;
|
||||
// set via common_log_set_verbosity()
|
||||
extern int common_log_verbosity_thold;
|
||||
|
||||
void gpt_log_set_verbosity_thold(int verbosity); // not thread-safe
|
||||
void common_log_set_verbosity_thold(int verbosity); // not thread-safe
|
||||
|
||||
// the gpt_log uses an internal worker thread to print/write log messages
|
||||
// the common_log uses an internal worker thread to print/write log messages
|
||||
// when the worker thread is paused, incoming log messages are discarded
|
||||
struct gpt_log;
|
||||
struct common_log;
|
||||
|
||||
struct gpt_log * gpt_log_init();
|
||||
struct gpt_log * gpt_log_main(); // singleton, automatically destroys itself on exit
|
||||
void gpt_log_pause (struct gpt_log * log); // pause the worker thread, not thread-safe
|
||||
void gpt_log_resume(struct gpt_log * log); // resume the worker thread, not thread-safe
|
||||
void gpt_log_free (struct gpt_log * log);
|
||||
struct common_log * common_log_init();
|
||||
struct common_log * common_log_main(); // singleton, automatically destroys itself on exit
|
||||
void common_log_pause (struct common_log * log); // pause the worker thread, not thread-safe
|
||||
void common_log_resume(struct common_log * log); // resume the worker thread, not thread-safe
|
||||
void common_log_free (struct common_log * log);
|
||||
|
||||
LOG_ATTRIBUTE_FORMAT(3, 4)
|
||||
void gpt_log_add(struct gpt_log * log, enum ggml_log_level level, const char * fmt, ...);
|
||||
void common_log_add(struct common_log * log, enum ggml_log_level level, const char * fmt, ...);
|
||||
|
||||
// defaults: file = NULL, colors = false, prefix = false, timestamps = false
|
||||
//
|
||||
@@ -54,10 +54,10 @@ void gpt_log_add(struct gpt_log * log, enum ggml_log_level level, const char * f
|
||||
// D - debug (stderr, V = LOG_DEFAULT_DEBUG)
|
||||
//
|
||||
|
||||
void gpt_log_set_file (struct gpt_log * log, const char * file); // not thread-safe
|
||||
void gpt_log_set_colors (struct gpt_log * log, bool colors); // not thread-safe
|
||||
void gpt_log_set_prefix (struct gpt_log * log, bool prefix); // whether to output prefix to each log
|
||||
void gpt_log_set_timestamps(struct gpt_log * log, bool timestamps); // whether to output timestamps in the prefix
|
||||
void common_log_set_file (struct common_log * log, const char * file); // not thread-safe
|
||||
void common_log_set_colors (struct common_log * log, bool colors); // not thread-safe
|
||||
void common_log_set_prefix (struct common_log * log, bool prefix); // whether to output prefix to each log
|
||||
void common_log_set_timestamps(struct common_log * log, bool timestamps); // whether to output timestamps in the prefix
|
||||
|
||||
// helper macros for logging
|
||||
// use these to avoid computing log arguments if the verbosity of the log is higher than the threshold
|
||||
@@ -66,13 +66,13 @@ void gpt_log_set_timestamps(struct gpt_log * log, bool timestamps); // w
|
||||
//
|
||||
// LOG_DBG("this is a debug message: %d\n", expensive_function());
|
||||
//
|
||||
// this will avoid calling expensive_function() if LOG_DEFAULT_DEBUG > gpt_log_verbosity_thold
|
||||
// this will avoid calling expensive_function() if LOG_DEFAULT_DEBUG > common_log_verbosity_thold
|
||||
//
|
||||
|
||||
#define LOG_TMPL(level, verbosity, ...) \
|
||||
do { \
|
||||
if ((verbosity) <= gpt_log_verbosity_thold) { \
|
||||
gpt_log_add(gpt_log_main(), (level), __VA_ARGS__); \
|
||||
if ((verbosity) <= common_log_verbosity_thold) { \
|
||||
common_log_add(common_log_main(), (level), __VA_ARGS__); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
|
||||
@@ -8,7 +8,7 @@
|
||||
#include <fstream>
|
||||
#include <thread>
|
||||
|
||||
void llama_ngram_cache_update(llama_ngram_cache & ngram_cache, int ngram_min, int ngram_max,
|
||||
void common_ngram_cache_update(common_ngram_cache & ngram_cache, int ngram_min, int ngram_max,
|
||||
std::vector<llama_token> & inp, int nnew, bool print_progress) {
|
||||
const int64_t t_start_ms = ggml_time_ms();
|
||||
const int64_t inp_size = inp.size();
|
||||
@@ -20,16 +20,16 @@ void llama_ngram_cache_update(llama_ngram_cache & ngram_cache, int ngram_min, in
|
||||
const int64_t i_start = std::max(inp_size - nnew, ngram_size);
|
||||
for (int64_t i = i_start; i < inp_size; ++i) {
|
||||
const int64_t ngram_start = i - ngram_size;
|
||||
llama_ngram ngram(&inp[ngram_start], ngram_size);
|
||||
common_ngram ngram(&inp[ngram_start], ngram_size);
|
||||
const llama_token token = inp[i];
|
||||
|
||||
llama_ngram_cache::iterator part_it = ngram_cache.find(ngram);
|
||||
common_ngram_cache::iterator part_it = ngram_cache.find(ngram);
|
||||
if (part_it == ngram_cache.end()) {
|
||||
llama_ngram_cache_part part;
|
||||
common_ngram_cache_part part;
|
||||
part.emplace(token, 1);
|
||||
ngram_cache.emplace(ngram, part);
|
||||
} else {
|
||||
llama_ngram_cache_part::iterator token_count_it = part_it->second.find(token);
|
||||
common_ngram_cache_part::iterator token_count_it = part_it->second.find(token);
|
||||
if (token_count_it == part_it->second.end()) {
|
||||
part_it->second.emplace(token, 1);
|
||||
} else {
|
||||
@@ -62,12 +62,12 @@ constexpr int draft_min_sample_size_strict[LLAMA_NGRAM_MAX] = { 4, 3, 2, 2};
|
||||
constexpr int draft_min_percent_strict[LLAMA_NGRAM_MAX] = {75, 66, 66, 66};
|
||||
|
||||
// Helper function that tries to draft a token from only the static ngram cache:
|
||||
static llama_token try_draft(llama_ngram_cache & nc_static, const llama_ngram ngram_static) {
|
||||
llama_ngram_cache::iterator part_static_it = nc_static.find(ngram_static);
|
||||
static llama_token try_draft(common_ngram_cache & nc_static, const common_ngram ngram_static) {
|
||||
common_ngram_cache::iterator part_static_it = nc_static.find(ngram_static);
|
||||
if (part_static_it == nc_static.end()) {
|
||||
return -1;
|
||||
}
|
||||
const llama_ngram_cache_part part_static = part_static_it->second;
|
||||
const common_ngram_cache_part part_static = part_static_it->second;
|
||||
|
||||
int max_count_static = 0;
|
||||
int sum_count_static = 0;
|
||||
@@ -95,19 +95,19 @@ static llama_token try_draft(llama_ngram_cache & nc_static, const llama_ngram ng
|
||||
|
||||
// Try to draft a token from primary cache (context/dynamic), validate with static cache:
|
||||
static llama_token try_draft(
|
||||
llama_ngram_cache & nc_primary, const std::vector<llama_ngram> & ngrams_primary, llama_ngram_cache_part & part_static,
|
||||
common_ngram_cache & nc_primary, const std::vector<common_ngram> & ngrams_primary, common_ngram_cache_part & part_static,
|
||||
const int * min_sample_size, const int * min_percent) {
|
||||
|
||||
llama_token drafted_token = -1;
|
||||
|
||||
for (int i = ngrams_primary.size()-1; i >= 0 && drafted_token == -1; --i) {
|
||||
const llama_ngram ngram_primary = ngrams_primary[i];
|
||||
const common_ngram ngram_primary = ngrams_primary[i];
|
||||
|
||||
llama_ngram_cache::iterator part_primary_it = nc_primary.find(ngram_primary);
|
||||
common_ngram_cache::iterator part_primary_it = nc_primary.find(ngram_primary);
|
||||
if (part_primary_it == nc_primary.end()) {
|
||||
continue;
|
||||
}
|
||||
const llama_ngram_cache_part part_primary = part_primary_it->second;
|
||||
const common_ngram_cache_part part_primary = part_primary_it->second;
|
||||
|
||||
int max_count_primary = 0;
|
||||
int max_count_static = 0;
|
||||
@@ -117,7 +117,7 @@ static llama_token try_draft(
|
||||
for (std::pair<llama_token, int> token_count_primary : part_primary) {
|
||||
const llama_token token = token_count_primary.first;
|
||||
|
||||
llama_ngram_cache_part::iterator token_count_static_it = part_static.find(token);
|
||||
common_ngram_cache_part::iterator token_count_static_it = part_static.find(token);
|
||||
|
||||
const int32_t count_primary = token_count_primary.second;
|
||||
const int32_t count_static = token_count_static_it != part_static.end() ? 100*token_count_static_it->second : 1;
|
||||
@@ -142,9 +142,9 @@ static llama_token try_draft(
|
||||
return drafted_token;
|
||||
}
|
||||
|
||||
void llama_ngram_cache_draft(
|
||||
void common_ngram_cache_draft(
|
||||
std::vector<llama_token> & inp, std::vector<llama_token> & draft, int n_draft, int ngram_min, int ngram_max,
|
||||
llama_ngram_cache & nc_context, llama_ngram_cache & nc_dynamic, llama_ngram_cache & nc_static
|
||||
common_ngram_cache & nc_context, common_ngram_cache & nc_dynamic, common_ngram_cache & nc_static
|
||||
) {
|
||||
GGML_ASSERT(draft.size() == 1);
|
||||
const int inp_size = inp.size();
|
||||
@@ -157,21 +157,21 @@ void llama_ngram_cache_draft(
|
||||
llama_token drafted_token = -1;
|
||||
|
||||
const int ngram_start_static = inp_size-LLAMA_NGRAM_STATIC + draft.size()-1;
|
||||
llama_ngram ngram_static;
|
||||
common_ngram ngram_static;
|
||||
for (int j = ngram_start_static; j < ngram_start_static + LLAMA_NGRAM_STATIC; ++j) {
|
||||
ngram_static.tokens[j-ngram_start_static] = get_token(inp, draft, j);
|
||||
}
|
||||
llama_ngram_cache::iterator part_static_it = nc_static.find(ngram_static);
|
||||
llama_ngram_cache_part part_static;
|
||||
common_ngram_cache::iterator part_static_it = nc_static.find(ngram_static);
|
||||
common_ngram_cache_part part_static;
|
||||
if (part_static_it != nc_static.end()) {
|
||||
part_static = part_static_it->second;
|
||||
}
|
||||
|
||||
// cd = context + dynamic
|
||||
std::vector<llama_ngram> ngrams_cd;
|
||||
std::vector<common_ngram> ngrams_cd;
|
||||
for (int ngram_size_cd = ngram_min; ngram_size_cd <= ngram_max; ++ngram_size_cd) {
|
||||
const int ngram_start_cd = inp_size-ngram_size_cd + draft.size()-1;
|
||||
llama_ngram ngram_cd;
|
||||
common_ngram ngram_cd;
|
||||
for (int j = ngram_start_cd; j < ngram_start_cd + ngram_size_cd; ++j) {
|
||||
ngram_cd.tokens[j-ngram_start_cd] = get_token(inp, draft, j);
|
||||
}
|
||||
@@ -196,16 +196,16 @@ void llama_ngram_cache_draft(
|
||||
}
|
||||
}
|
||||
|
||||
void llama_ngram_cache_save(llama_ngram_cache & ngram_cache, std::string & filename) {
|
||||
void common_ngram_cache_save(common_ngram_cache & ngram_cache, std::string & filename) {
|
||||
std::ofstream file_out(filename, std::ios::binary);
|
||||
for (std::pair<llama_ngram, llama_ngram_cache_part> item : ngram_cache) {
|
||||
const llama_ngram ngram = item.first;
|
||||
llama_ngram_cache_part token_counts = item.second;
|
||||
for (std::pair<common_ngram, common_ngram_cache_part> item : ngram_cache) {
|
||||
const common_ngram ngram = item.first;
|
||||
common_ngram_cache_part token_counts = item.second;
|
||||
GGML_ASSERT(!token_counts.empty());
|
||||
const int32_t ntokens = token_counts.size();
|
||||
GGML_ASSERT(ntokens > 0);
|
||||
|
||||
file_out.write(reinterpret_cast<const char *>(&ngram), sizeof(llama_ngram));
|
||||
file_out.write(reinterpret_cast<const char *>(&ngram), sizeof(common_ngram));
|
||||
file_out.write(reinterpret_cast<const char *>(&ntokens), sizeof(int32_t));
|
||||
for (std::pair<llama_token, int32_t> item2 : token_counts) {
|
||||
const llama_token token = item2.first;
|
||||
@@ -219,14 +219,14 @@ void llama_ngram_cache_save(llama_ngram_cache & ngram_cache, std::string & filen
|
||||
|
||||
}
|
||||
|
||||
llama_ngram_cache llama_ngram_cache_load(std::string & filename) {
|
||||
common_ngram_cache common_ngram_cache_load(std::string & filename) {
|
||||
std::ifstream hashmap_file(filename, std::ios::binary);
|
||||
if (!hashmap_file) {
|
||||
throw std::ifstream::failure("Unable to open file " + filename);
|
||||
}
|
||||
llama_ngram_cache ngram_cache;
|
||||
common_ngram_cache ngram_cache;
|
||||
|
||||
llama_ngram ngram;
|
||||
common_ngram ngram;
|
||||
int32_t ntokens;
|
||||
llama_token token;
|
||||
int32_t count;
|
||||
@@ -235,11 +235,11 @@ llama_ngram_cache llama_ngram_cache_load(std::string & filename) {
|
||||
char * ntokensc = reinterpret_cast<char*>(&ntokens);
|
||||
char * tokenc = reinterpret_cast<char*>(&token);
|
||||
char * countc = reinterpret_cast<char*>(&count);
|
||||
while(hashmap_file.read(ngramc, sizeof(llama_ngram))) {
|
||||
while(hashmap_file.read(ngramc, sizeof(common_ngram))) {
|
||||
GGML_ASSERT(!hashmap_file.eof());
|
||||
GGML_ASSERT(hashmap_file.read(ntokensc, sizeof(int32_t)));
|
||||
GGML_ASSERT(ntokens > 0);
|
||||
llama_ngram_cache_part token_counts;
|
||||
common_ngram_cache_part token_counts;
|
||||
|
||||
for (int i = 0; i < ntokens; ++i) {
|
||||
GGML_ASSERT(!hashmap_file.eof());
|
||||
@@ -257,12 +257,12 @@ llama_ngram_cache llama_ngram_cache_load(std::string & filename) {
|
||||
return ngram_cache;
|
||||
}
|
||||
|
||||
void llama_ngram_cache_merge(llama_ngram_cache & ngram_cache_target, llama_ngram_cache & ngram_cache_add) {
|
||||
for (std::pair<llama_ngram, llama_ngram_cache_part> ngram_part : ngram_cache_add) {
|
||||
const llama_ngram ngram = ngram_part.first;
|
||||
llama_ngram_cache_part part = ngram_part.second;
|
||||
void common_ngram_cache_merge(common_ngram_cache & ngram_cache_target, common_ngram_cache & ngram_cache_add) {
|
||||
for (std::pair<common_ngram, common_ngram_cache_part> ngram_part : ngram_cache_add) {
|
||||
const common_ngram ngram = ngram_part.first;
|
||||
common_ngram_cache_part part = ngram_part.second;
|
||||
|
||||
llama_ngram_cache::iterator part_merged_it = ngram_cache_target.find(ngram);
|
||||
common_ngram_cache::iterator part_merged_it = ngram_cache_target.find(ngram);
|
||||
if (part_merged_it == ngram_cache_target.end()) {
|
||||
ngram_cache_target.emplace(ngram, part);
|
||||
continue;
|
||||
@@ -273,7 +273,7 @@ void llama_ngram_cache_merge(llama_ngram_cache & ngram_cache_target, llama_ngram
|
||||
const int32_t count = token_count.second;
|
||||
GGML_ASSERT(count > 0);
|
||||
|
||||
llama_ngram_cache_part::iterator token_count_merged_it = part_merged_it->second.find(token);
|
||||
common_ngram_cache_part::iterator token_count_merged_it = part_merged_it->second.find(token);
|
||||
if (token_count_merged_it == part_merged_it->second.end()) {
|
||||
part_merged_it->second.emplace(token, count);
|
||||
continue;
|
||||
|
||||
@@ -12,22 +12,22 @@
|
||||
|
||||
// Data structures to map n-grams to empirical token probabilities:
|
||||
|
||||
struct llama_ngram {
|
||||
struct common_ngram {
|
||||
llama_token tokens[LLAMA_NGRAM_MAX];
|
||||
|
||||
llama_ngram() {
|
||||
common_ngram() {
|
||||
for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
|
||||
tokens[i] = -1;
|
||||
}
|
||||
}
|
||||
|
||||
llama_ngram(const llama_token * input, const int ngram_size) {
|
||||
common_ngram(const llama_token * input, const int ngram_size) {
|
||||
for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
|
||||
tokens[i] = i < ngram_size ? input[i] : -1;
|
||||
}
|
||||
}
|
||||
|
||||
bool operator==(const llama_ngram & other) const {
|
||||
bool operator==(const common_ngram & other) const {
|
||||
for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
|
||||
if (tokens[i] != other.tokens[i]) {
|
||||
return false;
|
||||
@@ -37,28 +37,28 @@ struct llama_ngram {
|
||||
}
|
||||
};
|
||||
|
||||
struct llama_token_hash_function {
|
||||
struct common_token_hash_function {
|
||||
size_t operator()(const llama_token token) const {
|
||||
// see https://probablydance.com/2018/06/16/fibonacci-hashing-the-optimization-that-the-world-forgot-or-a-better-alternative-to-integer-modulo/
|
||||
return token * 11400714819323198485llu;
|
||||
}
|
||||
};
|
||||
|
||||
struct llama_ngram_hash_function {
|
||||
size_t operator()(const llama_ngram & ngram) const {
|
||||
size_t hash = llama_token_hash_function{}(ngram.tokens[0]);
|
||||
struct common_ngram_hash_function {
|
||||
size_t operator()(const common_ngram & ngram) const {
|
||||
size_t hash = common_token_hash_function{}(ngram.tokens[0]);
|
||||
for (int i = 1; i < LLAMA_NGRAM_MAX; ++i) {
|
||||
hash ^= llama_token_hash_function{}(ngram.tokens[i]);
|
||||
hash ^= common_token_hash_function{}(ngram.tokens[i]);
|
||||
}
|
||||
return hash;
|
||||
}
|
||||
};
|
||||
|
||||
// token -> number of times token has been seen
|
||||
typedef std::unordered_map<llama_token, int32_t> llama_ngram_cache_part;
|
||||
typedef std::unordered_map<llama_token, int32_t> common_ngram_cache_part;
|
||||
|
||||
// n-gram -> empirical distribution of following tokens
|
||||
typedef std::unordered_map<llama_ngram, llama_ngram_cache_part, llama_ngram_hash_function> llama_ngram_cache;
|
||||
typedef std::unordered_map<common_ngram, common_ngram_cache_part, common_ngram_hash_function> common_ngram_cache;
|
||||
|
||||
|
||||
// Update an ngram cache with tokens.
|
||||
@@ -70,8 +70,8 @@ typedef std::unordered_map<llama_ngram, llama_ngram_cache_part, llama_ngram_hash
|
||||
//
|
||||
// In order to get correct results inp_data can ONLY BE APPENDED TO.
|
||||
// Changes in the middle need a complete rebuild.
|
||||
void llama_ngram_cache_update(
|
||||
llama_ngram_cache & ngram_cache, int ngram_min, int ngram_max, std::vector<llama_token> & inp_data, int nnew, bool print_progress);
|
||||
void common_ngram_cache_update(
|
||||
common_ngram_cache & ngram_cache, int ngram_min, int ngram_max, std::vector<llama_token> & inp_data, int nnew, bool print_progress);
|
||||
|
||||
// Try to draft tokens from ngram caches.
|
||||
// inp: the tokens generated so far.
|
||||
@@ -81,21 +81,21 @@ void llama_ngram_cache_update(
|
||||
// nc_context: ngram cache based on current context.
|
||||
// nc_dynamic: ngram cache based on previous user generations.
|
||||
// nc_static: ngram cache generated from a large text corpus, used for validation.
|
||||
void llama_ngram_cache_draft(
|
||||
void common_ngram_cache_draft(
|
||||
std::vector<llama_token> & inp, std::vector<llama_token> & draft, int n_draft, int ngram_min, int ngram_max,
|
||||
llama_ngram_cache & nc_context, llama_ngram_cache & nc_dynamic, llama_ngram_cache & nc_static);
|
||||
common_ngram_cache & nc_context, common_ngram_cache & nc_dynamic, common_ngram_cache & nc_static);
|
||||
|
||||
// Save an ngram cache to a file.
|
||||
// ngram_cache: the ngram cache to save.
|
||||
// filename: the path under which to save the ngram cache.
|
||||
void llama_ngram_cache_save(llama_ngram_cache & ngram_cache, std::string & filename);
|
||||
void common_ngram_cache_save(common_ngram_cache & ngram_cache, std::string & filename);
|
||||
|
||||
// Load an ngram cache saved with llama_ngram_cache_save.
|
||||
// Load an ngram cache saved with common_ngram_cache_save.
|
||||
// filename: the path from which to load the ngram cache.
|
||||
// returns: an ngram cache containing the information saved to filename.
|
||||
llama_ngram_cache llama_ngram_cache_load(std::string & filename);
|
||||
common_ngram_cache common_ngram_cache_load(std::string & filename);
|
||||
|
||||
// Merge two ngram caches.
|
||||
// ngram_cache_target: the ngram cache to which to add the information from ngram_cache_add.
|
||||
// ngram_cache_add: the ngram cache to add to ngram_cache_target.
|
||||
void llama_ngram_cache_merge(llama_ngram_cache & ngram_cache_target, llama_ngram_cache & ngram_cache_add);
|
||||
void common_ngram_cache_merge(common_ngram_cache & ngram_cache_target, common_ngram_cache & ngram_cache_add);
|
||||
|
||||
@@ -98,8 +98,8 @@ struct ring_buffer {
|
||||
std::vector<T> data;
|
||||
};
|
||||
|
||||
struct gpt_sampler {
|
||||
gpt_sampler_params params;
|
||||
struct common_sampler {
|
||||
common_sampler_params params;
|
||||
|
||||
struct llama_sampler * grmr;
|
||||
struct llama_sampler * chain;
|
||||
@@ -125,26 +125,28 @@ struct gpt_sampler {
|
||||
}
|
||||
};
|
||||
|
||||
std::string gpt_sampler_params::print() const {
|
||||
std::string common_sampler_params::print() const {
|
||||
char result[1024];
|
||||
|
||||
snprintf(result, sizeof(result),
|
||||
"\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
|
||||
"\ttop_k = %d, tfs_z = %.3f, top_p = %.3f, min_p = %.3f, typical_p = %.3f, temp = %.3f\n"
|
||||
"\tdry_multiplier = %.3f, dry_base = %.3f, dry_allowed_length = %d, dry_penalty_last_n = %d\n"
|
||||
"\ttop_k = %d, top_p = %.3f, min_p = %.3f, xtc_probability = %.3f, xtc_threshold = %.3f, typical_p = %.3f, temp = %.3f\n"
|
||||
"\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
|
||||
penalty_last_n, penalty_repeat, penalty_freq, penalty_present,
|
||||
top_k, tfs_z, top_p, min_p, typ_p, temp,
|
||||
dry_multiplier, dry_base, dry_allowed_length, dry_penalty_last_n,
|
||||
top_k, top_p, min_p, xtc_probability, xtc_threshold, typ_p, temp,
|
||||
mirostat, mirostat_eta, mirostat_tau);
|
||||
|
||||
return std::string(result);
|
||||
}
|
||||
|
||||
struct gpt_sampler * gpt_sampler_init(const struct llama_model * model, const struct gpt_sampler_params & params) {
|
||||
struct common_sampler * common_sampler_init(const struct llama_model * model, const struct common_sampler_params & params) {
|
||||
llama_sampler_chain_params lparams = llama_sampler_chain_default_params();
|
||||
|
||||
lparams.no_perf = params.no_perf;
|
||||
|
||||
auto * result = new gpt_sampler {
|
||||
auto * result = new common_sampler {
|
||||
/* .params = */ params,
|
||||
/* .grmr = */ llama_sampler_init_grammar(model, params.grammar.c_str(), "root"),
|
||||
/* .chain = */ llama_sampler_chain_init(lparams),
|
||||
@@ -171,60 +173,60 @@ struct gpt_sampler * gpt_sampler_init(const struct llama_model * model, const st
|
||||
params.penalize_nl,
|
||||
params.ignore_eos));
|
||||
|
||||
if (params.temp > 0.0f) {
|
||||
if (params.mirostat == 0) {
|
||||
for (const auto & cnstr : params.samplers) {
|
||||
switch (cnstr) {
|
||||
case GPT_SAMPLER_TYPE_TOP_K:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
|
||||
if (params.mirostat == 0) {
|
||||
for (const auto & cnstr : params.samplers) {
|
||||
switch (cnstr) {
|
||||
case COMMON_SAMPLER_TYPE_DRY:
|
||||
{
|
||||
std::vector<const char*> c_breakers;
|
||||
c_breakers.reserve(params.dry_sequence_breakers.size());
|
||||
for (const auto& str : params.dry_sequence_breakers) {
|
||||
c_breakers.push_back(str.c_str());
|
||||
}
|
||||
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_dry (model, params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
|
||||
}
|
||||
break;
|
||||
case GPT_SAMPLER_TYPE_TOP_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
|
||||
break;
|
||||
case GPT_SAMPLER_TYPE_MIN_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
|
||||
break;
|
||||
case GPT_SAMPLER_TYPE_TFS_Z:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_tail_free(params.tfs_z, params.min_keep));
|
||||
break;
|
||||
case GPT_SAMPLER_TYPE_TYPICAL_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
|
||||
break;
|
||||
case GPT_SAMPLER_TYPE_TEMPERATURE:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false && "unknown sampler type");
|
||||
}
|
||||
case COMMON_SAMPLER_TYPE_TOP_K:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TOP_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_MIN_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_XTC:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TYPICAL_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TEMPERATURE:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_INFILL:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_infill (model));
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false && "unknown sampler type");
|
||||
}
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_softmax());
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));
|
||||
} else if (params.mirostat == 1) {
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat(llama_n_vocab(model), params.seed, params.mirostat_tau, params.mirostat_eta, 100));
|
||||
} else if (params.mirostat == 2) {
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat_v2(params.seed, params.mirostat_tau, params.mirostat_eta));
|
||||
} else {
|
||||
GGML_ASSERT(false && "unknown mirostat version");
|
||||
}
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));
|
||||
} else if (params.mirostat == 1) {
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat(llama_n_vocab(model), params.seed, params.mirostat_tau, params.mirostat_eta, 100));
|
||||
} else if (params.mirostat == 2) {
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat_v2(params.seed, params.mirostat_tau, params.mirostat_eta));
|
||||
} else {
|
||||
if (params.n_probs > 0) {
|
||||
// some use cases require to sample greedily, but still obtain the probabilities of the top tokens
|
||||
// ref: https://github.com/ggerganov/llama.cpp/pull/9605
|
||||
//
|
||||
// the following will not produce exactly the same probs as applyging softmax to the full vocabulary, but
|
||||
// it is much faster, since we avoid sorting all tokens and should give a good approximation
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k(params.n_probs));
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_softmax());
|
||||
}
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_greedy());
|
||||
GGML_ASSERT(false && "unknown mirostat version");
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
void gpt_sampler_free(struct gpt_sampler * gsmpl) {
|
||||
void common_sampler_free(struct common_sampler * gsmpl) {
|
||||
if (gsmpl) {
|
||||
llama_sampler_free(gsmpl->grmr);
|
||||
|
||||
@@ -234,7 +236,7 @@ void gpt_sampler_free(struct gpt_sampler * gsmpl) {
|
||||
}
|
||||
}
|
||||
|
||||
void gpt_sampler_accept(struct gpt_sampler * gsmpl, llama_token token, bool accept_grammar) {
|
||||
void common_sampler_accept(struct common_sampler * gsmpl, llama_token token, bool accept_grammar) {
|
||||
if (accept_grammar) {
|
||||
llama_sampler_accept(gsmpl->grmr, token);
|
||||
}
|
||||
@@ -244,14 +246,14 @@ void gpt_sampler_accept(struct gpt_sampler * gsmpl, llama_token token, bool acce
|
||||
gsmpl->prev.push_back(token);
|
||||
}
|
||||
|
||||
void gpt_sampler_reset(struct gpt_sampler * gsmpl) {
|
||||
void common_sampler_reset(struct common_sampler * gsmpl) {
|
||||
llama_sampler_reset(gsmpl->grmr);
|
||||
|
||||
llama_sampler_reset(gsmpl->chain);
|
||||
}
|
||||
|
||||
struct gpt_sampler * gpt_sampler_clone(gpt_sampler * gsmpl) {
|
||||
return new gpt_sampler {
|
||||
struct common_sampler * common_sampler_clone(common_sampler * gsmpl) {
|
||||
return new common_sampler {
|
||||
/* .params = */ gsmpl->params,
|
||||
/* .grmr = */ llama_sampler_clone(gsmpl->grmr),
|
||||
/* .chain = */ llama_sampler_clone(gsmpl->chain),
|
||||
@@ -261,7 +263,7 @@ struct gpt_sampler * gpt_sampler_clone(gpt_sampler * gsmpl) {
|
||||
};
|
||||
}
|
||||
|
||||
void gpt_perf_print(const struct llama_context * ctx, const struct gpt_sampler * gsmpl) {
|
||||
void common_perf_print(const struct llama_context * ctx, const struct common_sampler * gsmpl) {
|
||||
// TODO: measure grammar performance
|
||||
|
||||
if (gsmpl) {
|
||||
@@ -272,7 +274,7 @@ void gpt_perf_print(const struct llama_context * ctx, const struct gpt_sampler *
|
||||
}
|
||||
}
|
||||
|
||||
llama_token gpt_sampler_sample(struct gpt_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first) {
|
||||
llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first) {
|
||||
gsmpl->set_logits(ctx, idx);
|
||||
|
||||
auto & grmr = gsmpl->grmr;
|
||||
@@ -318,21 +320,21 @@ llama_token gpt_sampler_sample(struct gpt_sampler * gsmpl, struct llama_context
|
||||
return cur_p.data[cur_p.selected].id;
|
||||
}
|
||||
|
||||
uint32_t gpt_sampler_get_seed(const struct gpt_sampler * gsmpl) {
|
||||
uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl) {
|
||||
return llama_sampler_get_seed(gsmpl->chain);
|
||||
}
|
||||
|
||||
// helpers
|
||||
|
||||
llama_token_data_array * gpt_sampler_get_candidates(struct gpt_sampler * gsmpl) {
|
||||
llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl) {
|
||||
return &gsmpl->cur_p;
|
||||
}
|
||||
|
||||
llama_token gpt_sampler_last(const struct gpt_sampler * gsmpl) {
|
||||
llama_token common_sampler_last(const struct common_sampler * gsmpl) {
|
||||
return gsmpl->prev.rat(0);
|
||||
}
|
||||
|
||||
std::string gpt_sampler_print(const struct gpt_sampler * gsmpl) {
|
||||
std::string common_sampler_print(const struct common_sampler * gsmpl) {
|
||||
std::string result = "logits ";
|
||||
|
||||
for (int i = 0; i < llama_sampler_chain_n(gsmpl->chain); i++) {
|
||||
@@ -343,7 +345,7 @@ std::string gpt_sampler_print(const struct gpt_sampler * gsmpl) {
|
||||
return result;
|
||||
}
|
||||
|
||||
std::string gpt_sampler_prev_str(gpt_sampler * gsmpl, llama_context * ctx_main, int n) {
|
||||
std::string common_sampler_prev_str(common_sampler * gsmpl, llama_context * ctx_main, int n) {
|
||||
n = std::min(n, (int) gsmpl->prev.size());
|
||||
|
||||
if (n <= 0) {
|
||||
@@ -358,63 +360,67 @@ std::string gpt_sampler_prev_str(gpt_sampler * gsmpl, llama_context * ctx_main,
|
||||
|
||||
GGML_ASSERT(id != LLAMA_TOKEN_NULL && "null token in the sampling history - should not happen");
|
||||
|
||||
result += llama_token_to_piece(ctx_main, id);
|
||||
result += common_token_to_piece(ctx_main, id);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
char gpt_sampler_type_to_chr(enum gpt_sampler_type cnstr) {
|
||||
char common_sampler_type_to_chr(enum common_sampler_type cnstr) {
|
||||
switch (cnstr) {
|
||||
case GPT_SAMPLER_TYPE_TOP_K: return 'k';
|
||||
case GPT_SAMPLER_TYPE_TFS_Z: return 'f';
|
||||
case GPT_SAMPLER_TYPE_TYPICAL_P: return 'y';
|
||||
case GPT_SAMPLER_TYPE_TOP_P: return 'p';
|
||||
case GPT_SAMPLER_TYPE_MIN_P: return 'm';
|
||||
case GPT_SAMPLER_TYPE_TEMPERATURE: return 't';
|
||||
case COMMON_SAMPLER_TYPE_DRY: return 'd';
|
||||
case COMMON_SAMPLER_TYPE_TOP_K: return 'k';
|
||||
case COMMON_SAMPLER_TYPE_TYPICAL_P: return 'y';
|
||||
case COMMON_SAMPLER_TYPE_TOP_P: return 'p';
|
||||
case COMMON_SAMPLER_TYPE_MIN_P: return 'm';
|
||||
case COMMON_SAMPLER_TYPE_TEMPERATURE: return 't';
|
||||
case COMMON_SAMPLER_TYPE_XTC: return 'x';
|
||||
case COMMON_SAMPLER_TYPE_INFILL: return 'i';
|
||||
default : return '?';
|
||||
}
|
||||
}
|
||||
|
||||
std::string gpt_sampler_type_to_str(enum gpt_sampler_type cnstr) {
|
||||
std::string common_sampler_type_to_str(enum common_sampler_type cnstr) {
|
||||
switch (cnstr) {
|
||||
case GPT_SAMPLER_TYPE_TOP_K: return "top_k";
|
||||
case GPT_SAMPLER_TYPE_TFS_Z: return "tfs_z";
|
||||
case GPT_SAMPLER_TYPE_TYPICAL_P: return "typ_p";
|
||||
case GPT_SAMPLER_TYPE_TOP_P: return "top_p";
|
||||
case GPT_SAMPLER_TYPE_MIN_P: return "min_p";
|
||||
case GPT_SAMPLER_TYPE_TEMPERATURE: return "temperature";
|
||||
case COMMON_SAMPLER_TYPE_DRY: return "dry";
|
||||
case COMMON_SAMPLER_TYPE_TOP_K: return "top_k";
|
||||
case COMMON_SAMPLER_TYPE_TYPICAL_P: return "typ_p";
|
||||
case COMMON_SAMPLER_TYPE_TOP_P: return "top_p";
|
||||
case COMMON_SAMPLER_TYPE_MIN_P: return "min_p";
|
||||
case COMMON_SAMPLER_TYPE_TEMPERATURE: return "temperature";
|
||||
case COMMON_SAMPLER_TYPE_XTC: return "xtc";
|
||||
case COMMON_SAMPLER_TYPE_INFILL: return "infill";
|
||||
default : return "";
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<gpt_sampler_type> gpt_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
|
||||
std::unordered_map<std::string, gpt_sampler_type> sampler_canonical_name_map {
|
||||
{ "top_k", GPT_SAMPLER_TYPE_TOP_K },
|
||||
{ "top_p", GPT_SAMPLER_TYPE_TOP_P },
|
||||
{ "typ_p", GPT_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "min_p", GPT_SAMPLER_TYPE_MIN_P },
|
||||
{ "tfs_z", GPT_SAMPLER_TYPE_TFS_Z },
|
||||
{ "temperature", GPT_SAMPLER_TYPE_TEMPERATURE },
|
||||
std::vector<common_sampler_type> common_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
|
||||
std::unordered_map<std::string, common_sampler_type> sampler_canonical_name_map {
|
||||
{ "dry", COMMON_SAMPLER_TYPE_DRY },
|
||||
{ "top_k", COMMON_SAMPLER_TYPE_TOP_K },
|
||||
{ "top_p", COMMON_SAMPLER_TYPE_TOP_P },
|
||||
{ "typ_p", COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "min_p", COMMON_SAMPLER_TYPE_MIN_P },
|
||||
{ "temperature", COMMON_SAMPLER_TYPE_TEMPERATURE },
|
||||
{ "xtc", COMMON_SAMPLER_TYPE_XTC },
|
||||
{ "infill", COMMON_SAMPLER_TYPE_INFILL },
|
||||
};
|
||||
|
||||
// since samplers names are written multiple ways
|
||||
// make it ready for both system names and input names
|
||||
std::unordered_map<std::string, gpt_sampler_type> sampler_alt_name_map {
|
||||
{ "top-k", GPT_SAMPLER_TYPE_TOP_K },
|
||||
{ "top-p", GPT_SAMPLER_TYPE_TOP_P },
|
||||
{ "nucleus", GPT_SAMPLER_TYPE_TOP_P },
|
||||
{ "typical-p", GPT_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "typical", GPT_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "typ-p", GPT_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "typ", GPT_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "min-p", GPT_SAMPLER_TYPE_MIN_P },
|
||||
{ "tfs-z", GPT_SAMPLER_TYPE_TFS_Z },
|
||||
{ "tfs", GPT_SAMPLER_TYPE_TFS_Z },
|
||||
{ "temp", GPT_SAMPLER_TYPE_TEMPERATURE },
|
||||
std::unordered_map<std::string, common_sampler_type> sampler_alt_name_map {
|
||||
{ "top-k", COMMON_SAMPLER_TYPE_TOP_K },
|
||||
{ "top-p", COMMON_SAMPLER_TYPE_TOP_P },
|
||||
{ "nucleus", COMMON_SAMPLER_TYPE_TOP_P },
|
||||
{ "typical-p", COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "typical", COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "typ-p", COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "typ", COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "min-p", COMMON_SAMPLER_TYPE_MIN_P },
|
||||
{ "temp", COMMON_SAMPLER_TYPE_TEMPERATURE },
|
||||
};
|
||||
|
||||
std::vector<gpt_sampler_type> samplers;
|
||||
std::vector<common_sampler_type> samplers;
|
||||
samplers.reserve(names.size());
|
||||
|
||||
for (const auto & name : names) {
|
||||
@@ -434,17 +440,19 @@ std::vector<gpt_sampler_type> gpt_sampler_types_from_names(const std::vector<std
|
||||
return samplers;
|
||||
}
|
||||
|
||||
std::vector<gpt_sampler_type> gpt_sampler_types_from_chars(const std::string & chars) {
|
||||
std::unordered_map<char, gpt_sampler_type> sampler_name_map = {
|
||||
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TOP_K), GPT_SAMPLER_TYPE_TOP_K },
|
||||
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TFS_Z), GPT_SAMPLER_TYPE_TFS_Z },
|
||||
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TYPICAL_P), GPT_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TOP_P), GPT_SAMPLER_TYPE_TOP_P },
|
||||
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_MIN_P), GPT_SAMPLER_TYPE_MIN_P },
|
||||
{ gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TEMPERATURE), GPT_SAMPLER_TYPE_TEMPERATURE }
|
||||
std::vector<common_sampler_type> common_sampler_types_from_chars(const std::string & chars) {
|
||||
std::unordered_map<char, common_sampler_type> sampler_name_map = {
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_DRY), COMMON_SAMPLER_TYPE_DRY },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_K), COMMON_SAMPLER_TYPE_TOP_K },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TYPICAL_P), COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_P), COMMON_SAMPLER_TYPE_TOP_P },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_MIN_P), COMMON_SAMPLER_TYPE_MIN_P },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TEMPERATURE), COMMON_SAMPLER_TYPE_TEMPERATURE },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_XTC), COMMON_SAMPLER_TYPE_XTC },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_INFILL), COMMON_SAMPLER_TYPE_INFILL },
|
||||
};
|
||||
|
||||
std::vector<gpt_sampler_type> samplers;
|
||||
std::vector<common_sampler_type> samplers;
|
||||
samplers.reserve(chars.size());
|
||||
|
||||
for (const auto & c : chars) {
|
||||
|
||||
@@ -7,7 +7,7 @@
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
// gpt_sampler extends llama_sampler with additional functionality:
|
||||
// common_sampler extends llama_sampler with additional functionality:
|
||||
//
|
||||
// - grammar support
|
||||
// - custom sampler logic based on the parameters
|
||||
@@ -23,30 +23,30 @@
|
||||
// token in order to verify if it fits the grammar. And only if the token doesn't fit the grammar, the
|
||||
// grammar constraints are applied to the full vocabulary and the token is resampled.
|
||||
//
|
||||
// The gpt_sampler also maintains a container with the last accepted tokens. In the future, this can
|
||||
// The common_sampler also maintains a container with the last accepted tokens. In the future, this can
|
||||
// be moved into the core llama library.
|
||||
//
|
||||
// For convenience, the gpt_sampler also maintains a container with the current candidate tokens.
|
||||
// For convenience, the common_sampler also maintains a container with the current candidate tokens.
|
||||
// This can be used to access the probabilities of the rest of the non-sampled tokens.
|
||||
//
|
||||
// TODO: measure grammar performance
|
||||
//
|
||||
|
||||
struct gpt_sampler;
|
||||
struct common_sampler;
|
||||
|
||||
// llama_sampler API overloads
|
||||
|
||||
struct gpt_sampler * gpt_sampler_init(const struct llama_model * model, const struct gpt_sampler_params & params);
|
||||
struct common_sampler * common_sampler_init(const struct llama_model * model, const struct common_sampler_params & params);
|
||||
|
||||
void gpt_sampler_free(struct gpt_sampler * gsmpl);
|
||||
void common_sampler_free(struct common_sampler * gsmpl);
|
||||
|
||||
// if accept_grammar is true, the token is accepted both by the sampling chain and the grammar
|
||||
void gpt_sampler_accept(struct gpt_sampler * gsmpl, llama_token token, bool accept_grammar);
|
||||
void gpt_sampler_reset (struct gpt_sampler * gsmpl);
|
||||
struct gpt_sampler * gpt_sampler_clone (struct gpt_sampler * gsmpl);
|
||||
void common_sampler_accept(struct common_sampler * gsmpl, llama_token token, bool accept_grammar);
|
||||
void common_sampler_reset (struct common_sampler * gsmpl);
|
||||
struct common_sampler * common_sampler_clone (struct common_sampler * gsmpl);
|
||||
|
||||
// arguments can be nullptr to skip printing
|
||||
void gpt_perf_print(const struct llama_context * ctx, const struct gpt_sampler * gsmpl);
|
||||
void common_perf_print(const struct llama_context * ctx, const struct common_sampler * gsmpl);
|
||||
|
||||
// extended sampling implementation:
|
||||
//
|
||||
@@ -58,26 +58,26 @@ void gpt_perf_print(const struct llama_context * ctx, const struct gpt_sampler *
|
||||
// if grammar_first is true, the grammar is applied before the samplers (slower)
|
||||
// useful in cases where all the resulting candidates (not just the sampled one) must fit the grammar
|
||||
//
|
||||
llama_token gpt_sampler_sample(struct gpt_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first = false);
|
||||
llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first = false);
|
||||
|
||||
uint32_t gpt_sampler_get_seed(const struct gpt_sampler * gsmpl);
|
||||
uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl);
|
||||
|
||||
// helpers
|
||||
|
||||
// access the internal list of current candidate tokens
|
||||
llama_token_data_array * gpt_sampler_get_candidates(struct gpt_sampler * gsmpl);
|
||||
llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl);
|
||||
|
||||
// get the last accepted token
|
||||
llama_token gpt_sampler_last(const struct gpt_sampler * gsmpl);
|
||||
llama_token common_sampler_last(const struct common_sampler * gsmpl);
|
||||
|
||||
// print the sampler chain into a string
|
||||
std::string gpt_sampler_print(const struct gpt_sampler * gsmpl);
|
||||
std::string common_sampler_print(const struct common_sampler * gsmpl);
|
||||
|
||||
// get a string representation of the last accepted tokens
|
||||
std::string gpt_sampler_prev_str(gpt_sampler * gsmpl, llama_context * ctx, int n);
|
||||
std::string common_sampler_prev_str(common_sampler * gsmpl, llama_context * ctx, int n);
|
||||
|
||||
char gpt_sampler_type_to_chr(enum gpt_sampler_type cnstr);
|
||||
std::string gpt_sampler_type_to_str(enum gpt_sampler_type cnstr);
|
||||
char common_sampler_type_to_chr(enum common_sampler_type cnstr);
|
||||
std::string common_sampler_type_to_str(enum common_sampler_type cnstr);
|
||||
|
||||
std::vector<enum gpt_sampler_type> gpt_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names);
|
||||
std::vector<enum gpt_sampler_type> gpt_sampler_types_from_chars(const std::string & chars);
|
||||
std::vector<enum common_sampler_type> common_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names);
|
||||
std::vector<enum common_sampler_type> common_sampler_types_from_chars(const std::string & chars);
|
||||
|
||||
1515
common/train.cpp
1515
common/train.cpp
File diff suppressed because it is too large
Load Diff
233
common/train.h
233
common/train.h
@@ -1,233 +0,0 @@
|
||||
// Various helper functions and utilities for training
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <string>
|
||||
#include <random>
|
||||
#include <vector>
|
||||
|
||||
#include "ggml.h"
|
||||
#include "llama.h"
|
||||
|
||||
#define LLAMA_TRAIN_MAX_NODES 16384
|
||||
|
||||
typedef std::string mt19937_state;
|
||||
|
||||
struct train_state {
|
||||
struct ggml_opt_context * opt;
|
||||
|
||||
uint64_t train_its;
|
||||
uint64_t train_samples;
|
||||
uint64_t train_tokens;
|
||||
uint64_t train_epochs;
|
||||
|
||||
size_t shuffle_samples_hash; // fn, sample_count, *zip(sample_begins, sample_sizes)
|
||||
mt19937_state shuffle_rng_state_current;
|
||||
mt19937_state shuffle_rng_state_next;
|
||||
size_t shuffle_sample_count;
|
||||
size_t shuffle_next_sample;
|
||||
};
|
||||
|
||||
struct train_params_common {
|
||||
const char * fn_train_data;
|
||||
const char * fn_checkpoint_in;
|
||||
const char * fn_checkpoint_out;
|
||||
const char * pattern_fn_it;
|
||||
const char * fn_latest;
|
||||
|
||||
bool print_usage;
|
||||
|
||||
int save_every;
|
||||
|
||||
uint32_t seed;
|
||||
|
||||
int n_ctx;
|
||||
int n_threads;
|
||||
int n_batch;
|
||||
int n_gradient_accumulation;
|
||||
int n_epochs;
|
||||
int n_gpu_layers;
|
||||
|
||||
bool custom_n_ctx;
|
||||
|
||||
bool use_flash;
|
||||
bool use_checkpointing;
|
||||
|
||||
std::string sample_start;
|
||||
bool include_sample_start;
|
||||
bool escape;
|
||||
bool overlapping_samples;
|
||||
bool fill_with_next_samples;
|
||||
bool separate_with_eos;
|
||||
bool separate_with_bos;
|
||||
bool sample_random_offsets;
|
||||
|
||||
bool force_reshuffle;
|
||||
|
||||
int warmup;
|
||||
int cos_decay_steps;
|
||||
float cos_decay_restart;
|
||||
float cos_decay_min;
|
||||
bool enable_restart;
|
||||
|
||||
int opt_past;
|
||||
float opt_delta;
|
||||
int opt_max_no_improvement;
|
||||
|
||||
int adam_n_iter;
|
||||
float adam_alpha;
|
||||
float adam_min_alpha;
|
||||
float adam_decay;
|
||||
int adam_decay_min_ndim;
|
||||
float adam_beta1;
|
||||
float adam_beta2;
|
||||
float adam_gclip;
|
||||
float adam_eps_f;
|
||||
};
|
||||
|
||||
typedef void (*save_train_files_callback)(void * data, struct train_state * train);
|
||||
|
||||
struct train_opt_callback_data {
|
||||
struct train_params_common * params;
|
||||
struct train_state * train;
|
||||
save_train_files_callback save_cb;
|
||||
void * save_data;
|
||||
struct llama_context * lctx;
|
||||
int last_save_iter;
|
||||
llama_token * tokens_data;
|
||||
size_t tokens_size;
|
||||
size_t * samples_begin;
|
||||
size_t * samples_size;
|
||||
size_t * shuffled_samples_offs;
|
||||
size_t * shuffled_samples_begin;
|
||||
size_t * shuffled_samples_size;
|
||||
size_t samples_count;
|
||||
struct ggml_tensor * tokens_input;
|
||||
struct ggml_tensor * target_probs;
|
||||
int first_iter;
|
||||
int first_epoch;
|
||||
int iter_at_last_epoch;
|
||||
int64_t last_time;
|
||||
double millis_per_iter;
|
||||
};
|
||||
|
||||
struct train_state * init_train_state();
|
||||
void free_train_state(struct train_state * state);
|
||||
|
||||
struct train_params_common get_default_train_params_common();
|
||||
void print_common_train_usage(int /*argc*/, char ** argv, const struct train_params_common * params);
|
||||
|
||||
bool consume_common_train_arg(int argc, char ** argv, int * idx, struct train_params_common * params, bool * invalid_param);
|
||||
void finish_processing_train_args(struct train_params_common * params);
|
||||
|
||||
struct random_normal_distribution;
|
||||
struct random_uniform_distribution;
|
||||
|
||||
struct random_normal_distribution * init_random_normal_distribution (int seed, float mean, float std, float min, float max);
|
||||
struct random_uniform_distribution * init_random_uniform_distribution(int seed, float min, float max);
|
||||
|
||||
void free_random_normal_distribution (struct random_normal_distribution * rnd);
|
||||
void free_random_uniform_distribution(struct random_uniform_distribution * rnd);
|
||||
|
||||
struct ggml_tensor * randomize_tensor_normal (struct ggml_tensor * tensor, struct random_normal_distribution * rnd);
|
||||
struct ggml_tensor * randomize_tensor_uniform(struct ggml_tensor * tensor, struct random_uniform_distribution * rnd);
|
||||
|
||||
// generate random float in interval [0,1)
|
||||
float frand();
|
||||
float frand_normal (struct random_normal_distribution * rnd);
|
||||
float frand_uniform(struct random_uniform_distribution * rnd);
|
||||
|
||||
int clamp (const int v, const int min, const int max);
|
||||
float fclamp(const float v, const float min, const float max);
|
||||
|
||||
void assert_shape_1d(struct ggml_tensor * tensor, int64_t ne0);
|
||||
void assert_shape_2d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1);
|
||||
void assert_shape_3d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2);
|
||||
void assert_shape_4d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3);
|
||||
|
||||
size_t tokenize_file(
|
||||
struct llama_context * lctx,
|
||||
const char * filename,
|
||||
const std::string & sample_start,
|
||||
bool include_sample_start,
|
||||
bool overlapping_samples,
|
||||
unsigned context_length,
|
||||
std::vector<llama_token> & out_tokens,
|
||||
std::vector<size_t> & out_samples_begin,
|
||||
std::vector<size_t> & out_samples_size);
|
||||
|
||||
int64_t get_example_targets_batch(
|
||||
struct llama_context * lctx,
|
||||
struct ggml_tensor * tokens_input,
|
||||
struct ggml_tensor * target_probs,
|
||||
int64_t example_id,
|
||||
const size_t * samples_offs,
|
||||
const size_t * samples_begin,
|
||||
const size_t * samples_size,
|
||||
size_t samples_count,
|
||||
const llama_token * train_data,
|
||||
size_t n_train_data,
|
||||
bool separate_with_eos,
|
||||
bool separate_with_bos,
|
||||
bool fill_with_next_samples,
|
||||
bool sample_random_offsets);
|
||||
|
||||
|
||||
void mt19937_set_state(std::mt19937& rng, const mt19937_state& rng_state);
|
||||
mt19937_state mt19937_get_state(const std::mt19937& rng);
|
||||
mt19937_state mt19937_seed_to_state(unsigned seed);
|
||||
|
||||
mt19937_state shuffle_samples(
|
||||
const mt19937_state & rng_state,
|
||||
size_t * shuffled_offs,
|
||||
size_t * shuffled_begins,
|
||||
size_t * shuffled_sizes,
|
||||
const size_t * begins,
|
||||
const size_t * sizes,
|
||||
size_t count);
|
||||
|
||||
size_t hash_combine(size_t h1, size_t h2);
|
||||
|
||||
size_t compute_samples_hash(
|
||||
const char* fn,
|
||||
const size_t* samples_begin,
|
||||
const size_t* samples_size,
|
||||
size_t sample_count);
|
||||
|
||||
|
||||
std::string replace_str(const char * s, const char * needle, const char * replacement);
|
||||
|
||||
void print_duration(double milliseconds);
|
||||
|
||||
float cosine_decay(
|
||||
int64_t step,
|
||||
int64_t decay_steps,
|
||||
float minimum);
|
||||
|
||||
float cosine_decay_restart(
|
||||
int64_t step,
|
||||
int64_t decay_steps,
|
||||
float minimum,
|
||||
float restart_step_mult);
|
||||
|
||||
float learning_schedule(
|
||||
int64_t step,
|
||||
int64_t warmup_steps,
|
||||
int64_t decay_steps,
|
||||
float learning_rate,
|
||||
float overall_minimum,
|
||||
float cos_decay_minimum,
|
||||
float cos_decay_restart_step_mult,
|
||||
bool enable_restart);
|
||||
|
||||
void copy_tensor_by_name(struct ggml_tensor * dst, struct ggml_context * ctx, const char * name);
|
||||
|
||||
void load_opt_context_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct ggml_opt_context * opt);
|
||||
void save_opt_context_gguf(struct gguf_context * fctx, struct ggml_opt_context * opt);
|
||||
|
||||
bool load_train_state_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct train_state * train);
|
||||
void save_train_state_gguf(struct gguf_context * fctx, struct train_state * train);
|
||||
|
||||
std::string get_train_filename(const char * filename, const char * pattern_it, const char * latest, int64_t iteration);
|
||||
|
||||
void train_opt_callback(void * vdata, int accum_step, float * sched, bool * cancel);
|
||||
@@ -72,7 +72,8 @@ class Model:
|
||||
def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
|
||||
use_temp_file: bool = False, eager: bool = False,
|
||||
metadata_override: Path | None = None, model_name: str | None = None,
|
||||
split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False):
|
||||
split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
|
||||
small_first_shard: bool = False, hparams: dict[str, Any] | None = None):
|
||||
if type(self) is Model:
|
||||
raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
|
||||
|
||||
@@ -87,7 +88,7 @@ class Model:
|
||||
self.is_safetensors = len(self.part_names) > 0
|
||||
if not self.is_safetensors:
|
||||
self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
|
||||
self.hparams = Model.load_hparams(self.dir_model)
|
||||
self.hparams = Model.load_hparams(self.dir_model) if hparams is None else hparams
|
||||
self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
|
||||
self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
|
||||
self.tensor_names = None
|
||||
@@ -573,6 +574,9 @@ class Model:
|
||||
if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
|
||||
# ref: https://huggingface.co/BAAI/bge-small-en-v1.5
|
||||
res = "bert-bge"
|
||||
if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
|
||||
# ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
|
||||
res = "bert-bge-large"
|
||||
if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
|
||||
# ref: https://huggingface.co/mosaicml/mpt-7b
|
||||
res = "mpt"
|
||||
@@ -1538,6 +1542,17 @@ class LlamaModel(Model):
|
||||
special_vocab._set_special_token("eot", 32010)
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
|
||||
if tokenizer_config_file.is_file():
|
||||
with open(tokenizer_config_file, "r", encoding="utf-8") as f:
|
||||
tokenizer_config_json = json.load(f)
|
||||
if "add_prefix_space" in tokenizer_config_json:
|
||||
self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
|
||||
|
||||
# Apply to granite small models only
|
||||
if self.hparams.get("vocab_size", 32000) == 49152:
|
||||
self.gguf_writer.add_add_bos_token(False)
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
hparams = self.hparams
|
||||
@@ -1554,17 +1569,6 @@ class LlamaModel(Model):
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||||
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
|
||||
|
||||
tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
|
||||
if tokenizer_config_file.is_file():
|
||||
with open(tokenizer_config_file, "r", encoding="utf-8") as f:
|
||||
tokenizer_config_json = json.load(f)
|
||||
if "add_prefix_space" in tokenizer_config_json:
|
||||
self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
|
||||
|
||||
# Apply to granite small models only
|
||||
if self.hparams.get("vocab_size", 32000) == 49152:
|
||||
self.gguf_writer.add_add_bos_token(False)
|
||||
|
||||
@staticmethod
|
||||
def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
|
||||
if n_head_kv is not None and n_head != n_head_kv:
|
||||
@@ -2864,6 +2868,9 @@ class Rwkv6Model(Model):
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
self.gguf_writer.add_token_types(toktypes)
|
||||
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
|
||||
special_vocab.chat_template = "rwkv-world"
|
||||
# hack: Add '\n\n' as the EOT token to make it chat normally
|
||||
special_vocab._set_special_token("eot", 261)
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
@@ -3033,6 +3040,11 @@ class OlmoModel(Model):
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
|
||||
@Model.register("Olmo1124ForCausalLM")
|
||||
class Olmo1124Model(Model):
|
||||
model_arch = gguf.MODEL_ARCH.OLMO_1124
|
||||
|
||||
|
||||
@Model.register("OlmoeForCausalLM")
|
||||
class OlmoeModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.OLMOE
|
||||
@@ -3741,10 +3753,7 @@ class JaisModel(Model):
|
||||
|
||||
# Embeddings scale
|
||||
self.embeddings_scale = 1.0
|
||||
# note: For some JAIS flavors, output is tied to (same as) wte in original model
|
||||
self.output_is_wte = False
|
||||
if 'mup_embeddings_scale' in self.hparams:
|
||||
self.output_is_wte = True # Hack (?)
|
||||
self.embeddings_scale = self.hparams['mup_embeddings_scale']
|
||||
elif 'embeddings_scale' in self.hparams:
|
||||
self.embeddings_scale = self.hparams['embeddings_scale']
|
||||
@@ -3801,10 +3810,7 @@ class JaisModel(Model):
|
||||
|
||||
if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
|
||||
tensors.append((new_name, data_torch * self.embeddings_scale))
|
||||
if self.output_is_wte:
|
||||
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch * self.width_scale))
|
||||
elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
|
||||
assert not self.output_is_wte
|
||||
tensors.append((new_name, data_torch * self.width_scale))
|
||||
else:
|
||||
tensors.append((new_name, data_torch))
|
||||
|
||||
@@ -72,6 +72,7 @@ models = [
|
||||
{"name": "deepseek-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base", },
|
||||
{"name": "falcon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/falcon-7b", },
|
||||
{"name": "bert-bge", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/BAAI/bge-small-en-v1.5", },
|
||||
{"name": "bert-bge-large", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/BAAI/bge-large-zh-v1.5", },
|
||||
{"name": "mpt", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mosaicml/mpt-7b", },
|
||||
{"name": "starcoder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigcode/starcoder2-3b", },
|
||||
{"name": "gpt-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/openai-community/gpt2", },
|
||||
|
||||
@@ -12,6 +12,7 @@ import json
|
||||
from math import prod
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, Any, Callable, Iterable, Iterator, Sequence, SupportsIndex, cast
|
||||
from transformers import AutoConfig
|
||||
|
||||
import torch
|
||||
|
||||
@@ -230,7 +231,7 @@ def get_base_tensor_name(lora_tensor_name: str) -> str:
|
||||
|
||||
def parse_args() -> argparse.Namespace:
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Convert a huggingface PEFT LoRA adapter to a GGML compatible file")
|
||||
description="Convert a Hugging Face PEFT LoRA adapter to a GGUF file")
|
||||
parser.add_argument(
|
||||
"--outfile", type=Path,
|
||||
help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
|
||||
@@ -256,17 +257,23 @@ def parse_args() -> argparse.Namespace:
|
||||
help="only print out what will be done, without writing any new files",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--base", type=Path, required=True,
|
||||
help="directory containing base model file",
|
||||
"--base", type=Path,
|
||||
help="directory containing Hugging Face model config files (config.json, tokenizer.json) for the base model that the adapter is based on - only config is needed, actual model weights are not required. If base model is unspecified, it will be loaded from Hugging Face hub based on the adapter config",
|
||||
)
|
||||
parser.add_argument(
|
||||
"lora_path", type=Path,
|
||||
help="directory containing LoRA adapter file",
|
||||
help="directory containing Hugging Face PEFT LoRA config (adapter_model.json) and weights (adapter_model.safetensors or adapter_model.bin)",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def load_hparams_from_hf(hf_model_id: str) -> dict[str, Any]:
|
||||
# normally, adapter does not come with base model config, we need to load it from AutoConfig
|
||||
config = AutoConfig.from_pretrained(hf_model_id)
|
||||
return config.to_dict()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = parse_args()
|
||||
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
|
||||
@@ -281,7 +288,7 @@ if __name__ == '__main__':
|
||||
|
||||
ftype = ftype_map[args.outtype]
|
||||
|
||||
dir_base_model: Path = args.base
|
||||
dir_base_model: Path | None = args.base
|
||||
dir_lora: Path = args.lora_path
|
||||
lora_config = dir_lora / "adapter_config.json"
|
||||
input_model = dir_lora / "adapter_model.safetensors"
|
||||
@@ -301,9 +308,29 @@ if __name__ == '__main__':
|
||||
input_model = os.path.join(dir_lora, "adapter_model.bin")
|
||||
lora_model = torch.load(input_model, map_location="cpu", weights_only=True)
|
||||
|
||||
# load LoRA config
|
||||
with open(lora_config, "r") as f:
|
||||
lparams: dict[str, Any] = json.load(f)
|
||||
|
||||
# load base model
|
||||
logger.info(f"Loading base model: {dir_base_model.name}")
|
||||
hparams = Model.load_hparams(dir_base_model)
|
||||
if dir_base_model is None:
|
||||
if "base_model_name_or_path" in lparams:
|
||||
model_id = lparams["base_model_name_or_path"]
|
||||
logger.info(f"Loading base model from Hugging Face: {model_id}")
|
||||
try:
|
||||
hparams = load_hparams_from_hf(model_id)
|
||||
except OSError as e:
|
||||
logger.error(f"Failed to load base model config: {e}")
|
||||
logger.error("Please try downloading the base model and add its path to --base")
|
||||
sys.exit(1)
|
||||
else:
|
||||
logger.error("'base_model_name_or_path' is not found in adapter_config.json")
|
||||
logger.error("Base model config is required. Please download the base model and add its path to --base")
|
||||
sys.exit(1)
|
||||
else:
|
||||
logger.info(f"Loading base model: {dir_base_model.name}")
|
||||
hparams = Model.load_hparams(dir_base_model)
|
||||
|
||||
with torch.inference_mode():
|
||||
try:
|
||||
model_class = Model.from_model_architecture(hparams["architectures"][0])
|
||||
@@ -323,13 +350,15 @@ if __name__ == '__main__':
|
||||
self.dir_model_card = dir_lora_model
|
||||
self.lora_alpha = float(lora_alpha)
|
||||
|
||||
def set_vocab(self):
|
||||
pass
|
||||
|
||||
def set_type(self):
|
||||
self.gguf_writer.add_type(gguf.GGUFType.ADAPTER)
|
||||
self.gguf_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
self.gguf_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, self.lora_alpha)
|
||||
super().set_gguf_parameters()
|
||||
|
||||
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
|
||||
# Never add extra tensors (e.g. rope_freqs) for LoRA adapters
|
||||
@@ -348,6 +377,9 @@ if __name__ == '__main__':
|
||||
if ".base_layer.weight" in name:
|
||||
continue
|
||||
logger.error(f"Unexpected name '{name}': Not a lora_A or lora_B tensor")
|
||||
if ".embed_tokens.weight" in name or ".lm_head.weight" in name:
|
||||
logger.error("Embeddings is present in the adapter. This can be due to new tokens added during fine tuning")
|
||||
logger.error("Please refer to https://github.com/ggerganov/llama.cpp/pull/9948")
|
||||
sys.exit(1)
|
||||
|
||||
if base_name in tensor_map:
|
||||
@@ -381,9 +413,6 @@ if __name__ == '__main__':
|
||||
yield (dest_name + ".lora_a", lora_a)
|
||||
yield (dest_name + ".lora_b", lora_b)
|
||||
|
||||
with open(lora_config, "r") as f:
|
||||
lparams: dict[str, Any] = json.load(f)
|
||||
|
||||
alpha: float = lparams["lora_alpha"]
|
||||
|
||||
model_instance = LoraModel(
|
||||
@@ -396,6 +425,7 @@ if __name__ == '__main__':
|
||||
dry_run=args.dry_run,
|
||||
dir_lora_model=dir_lora,
|
||||
lora_alpha=alpha,
|
||||
hparams=hparams,
|
||||
)
|
||||
|
||||
logger.info("Exporting model...")
|
||||
|
||||
109
docs/android.md
109
docs/android.md
@@ -2,55 +2,82 @@
|
||||
# Android
|
||||
|
||||
## Build on Android using Termux
|
||||
[Termux](https://github.com/termux/termux-app#installation) is a method to execute `llama.cpp` on an Android device (no root required).
|
||||
```
|
||||
apt update && apt upgrade -y
|
||||
apt install git make cmake
|
||||
```
|
||||
|
||||
It's recommended to move your model inside the `~/` directory for best performance:
|
||||
```
|
||||
cd storage/downloads
|
||||
mv model.gguf ~/
|
||||
```
|
||||
[Termux](https://termux.dev/en/) is an Android terminal emulator and Linux environment app (no root required). As of writing, Termux is available experimentally in the Google Play Store; otherwise, it may be obtained directly from the project repo or on F-Droid.
|
||||
|
||||
[Get the code](https://github.com/ggerganov/llama.cpp#get-the-code) & [follow the Linux build instructions](https://github.com/ggerganov/llama.cpp#build) to build `llama.cpp`.
|
||||
|
||||
## Building the Project using Android NDK
|
||||
Obtain the [Android NDK](https://developer.android.com/ndk) and then build with CMake.
|
||||
|
||||
Execute the following commands on your computer to avoid downloading the NDK to your mobile. Alternatively, you can also do this in Termux:
|
||||
```
|
||||
$ mkdir build-android
|
||||
$ cd build-android
|
||||
$ export NDK=<your_ndk_directory>
|
||||
$ cmake -DCMAKE_TOOLCHAIN_FILE=$NDK/build/cmake/android.toolchain.cmake -DANDROID_ABI=arm64-v8a -DANDROID_PLATFORM=android-23 -DCMAKE_C_FLAGS=-march=armv8.4a+dotprod ..
|
||||
$ make
|
||||
```
|
||||
|
||||
Install [termux](https://github.com/termux/termux-app#installation) on your device and run `termux-setup-storage` to get access to your SD card (if Android 11+ then run the command twice).
|
||||
|
||||
Finally, copy these built `llama` binaries and the model file to your device storage. Because the file permissions in the Android sdcard cannot be changed, you can copy the executable files to the `/data/data/com.termux/files/home/bin` path, and then execute the following commands in Termux to add executable permission:
|
||||
|
||||
(Assumed that you have pushed the built executable files to the /sdcard/llama.cpp/bin path using `adb push`)
|
||||
```
|
||||
$cp -r /sdcard/llama.cpp/bin /data/data/com.termux/files/home/
|
||||
$cd /data/data/com.termux/files/home/bin
|
||||
$chmod +x ./*
|
||||
```
|
||||
|
||||
Download model [llama-2-7b-chat.Q4_K_M.gguf](https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF/blob/main/llama-2-7b-chat.Q4_K_M.gguf), and push it to `/sdcard/llama.cpp/`, then move it to `/data/data/com.termux/files/home/model/`
|
||||
With Termux, you can install and run `llama.cpp` as if the environment were Linux. Once in the Termux shell:
|
||||
|
||||
```
|
||||
$mv /sdcard/llama.cpp/llama-2-7b-chat.Q4_K_M.gguf /data/data/com.termux/files/home/model/
|
||||
$ apt update && apt upgrade -y
|
||||
$ apt install git cmake
|
||||
```
|
||||
|
||||
Now, you can start chatting:
|
||||
Then, follow the [build instructions](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md), specifically for CMake.
|
||||
|
||||
Once the binaries are built, download your model of choice (e.g., from Hugging Face). It's recommended to place it in the `~/` directory for best performance:
|
||||
|
||||
```
|
||||
$cd /data/data/com.termux/files/home/bin
|
||||
$./llama-cli -m ../model/llama-2-7b-chat.Q4_K_M.gguf -n 128 -cml
|
||||
$ curl -L {model-url} -o ~/{model}.gguf
|
||||
```
|
||||
|
||||
Here's a demo of an interactive session running on Pixel 5 phone:
|
||||
Then, if you are not already in the repo directory, `cd` into `llama.cpp` and:
|
||||
|
||||
```
|
||||
$ ./build/bin/llama-simple -m ~/{model}.gguf -c {context-size} -p "{your-prompt}"
|
||||
```
|
||||
|
||||
Here, we show `llama-simple`, but any of the executables under `examples` should work, in theory. Be sure to set `context-size` to a reasonable number (say, 4096) to start with; otherwise, memory could spike and kill your terminal.
|
||||
|
||||
To see what it might look like visually, here's an old demo of an interactive session running on a Pixel 5 phone:
|
||||
|
||||
https://user-images.githubusercontent.com/271616/225014776-1d567049-ad71-4ef2-b050-55b0b3b9274c.mp4
|
||||
|
||||
## Cross-compile using Android NDK
|
||||
It's possible to build `llama.cpp` for Android on your host system via CMake and the Android NDK. If you are interested in this path, ensure you already have an environment prepared to cross-compile programs for Android (i.e., install the Android SDK). Note that, unlike desktop environments, the Android environment ships with a limited set of native libraries, and so only those libraries are available to CMake when building with the Android NDK (see: https://developer.android.com/ndk/guides/stable_apis.)
|
||||
|
||||
Once you're ready and have cloned `llama.cpp`, invoke the following in the project directory:
|
||||
|
||||
```
|
||||
$ cmake \
|
||||
-DCMAKE_TOOLCHAIN_FILE=$ANDROID_NDK/build/cmake/android.toolchain.cmake \
|
||||
-DANDROID_ABI=arm64-v8a \
|
||||
-DANDROID_PLATFORM=android-28 \
|
||||
-DCMAKE_C_FLAGS="-march=armv8.7a" \
|
||||
-DCMAKE_CXX_FLAGS="-march=armv8.7a" \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DGGML_LLAMAFILE=OFF \
|
||||
-B build-android
|
||||
```
|
||||
|
||||
Notes:
|
||||
- While later versions of Android NDK ship with OpenMP, it must still be installed by CMake as a dependency, which is not supported at this time
|
||||
- `llamafile` does not appear to support Android devices (see: https://github.com/Mozilla-Ocho/llamafile/issues/325)
|
||||
|
||||
The above command should configure `llama.cpp` with the most performant options for modern devices. Even if your device is not running `armv8.7a`, `llama.cpp` includes runtime checks for available CPU features it can use.
|
||||
|
||||
Feel free to adjust the Android ABI for your target. Once the project is configured:
|
||||
|
||||
```
|
||||
$ cmake --build build-android --config Release -j{n}
|
||||
$ cmake --install build-android --prefix {install-dir} --config Release
|
||||
```
|
||||
|
||||
After installing, go ahead and download the model of your choice to your host system. Then:
|
||||
|
||||
```
|
||||
$ adb shell "mkdir /data/local/tmp/llama.cpp"
|
||||
$ adb push {install-dir} /data/local/tmp/llama.cpp/
|
||||
$ adb push {model}.gguf /data/local/tmp/llama.cpp/
|
||||
$ adb shell
|
||||
```
|
||||
|
||||
In the `adb shell`:
|
||||
|
||||
```
|
||||
$ cd /data/local/tmp/llama.cpp
|
||||
$ LD_LIBRARY_PATH=lib ./bin/llama-simple -m {model}.gguf -c {context-size} -p "{your-prompt}"
|
||||
```
|
||||
|
||||
That's it!
|
||||
|
||||
Be aware that Android will not find the library path `lib` on its own, so we must specify `LD_LIBRARY_PATH` in order to run the installed executables. Android does support `RPATH` in later API levels, so this could change in the future. Refer to the previous section for information about `context-size` (very important!) and running other `examples`.
|
||||
|
||||
@@ -34,13 +34,16 @@ The SYCL backend would be broken by some PRs due to no online CI.
|
||||
|
||||
The following release is verified with good quality:
|
||||
|
||||
|Commit ID|Tag|Release|Verified Platform|
|
||||
|-|-|-|-|
|
||||
|fb76ec31a9914b7761c1727303ab30380fd4f05c|b3038 |[llama-b3038-bin-win-sycl-x64.zip](https://github.com/ggerganov/llama.cpp/releases/download/b3038/llama-b3038-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1|
|
||||
|Commit ID|Tag|Release|Verified Platform| Update date|
|
||||
|-|-|-|-|-|
|
||||
|3bcd40b3c593d14261fb2abfabad3c0fb5b9e318|b4040 |[llama-b4040-bin-win-sycl-x64.zip](https://github.com/ggerganov/llama.cpp/releases/download/b4040/llama-b4040-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1| 2024-11-19|
|
||||
|fb76ec31a9914b7761c1727303ab30380fd4f05c|b3038 |[llama-b3038-bin-win-sycl-x64.zip](https://github.com/ggerganov/llama.cpp/releases/download/b3038/llama-b3038-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1||
|
||||
|
||||
|
||||
## News
|
||||
|
||||
- 2024.11
|
||||
- Use syclcompat to improve the performance on some platforms. This requires to use oneAPI 2025.0 or newer.
|
||||
|
||||
- 2024.8
|
||||
- Use oneDNN as the default GEMM library, improve the compatibility for new Intel GPUs.
|
||||
@@ -310,12 +313,14 @@ export CPLUS_INCLUDE_DIR=/path/to/oneMKL/buildWithCublas/include:$CPLUS_INCLUDE_
|
||||
export CPLUS_INCLUDE_DIR=/path/to/oneMKL/include:$CPLUS_INCLUDE_DIR
|
||||
|
||||
# Build LLAMA with Nvidia BLAS acceleration through SYCL
|
||||
# Setting GGML_SYCL_DEVICE_ARCH is optional but can improve performance
|
||||
GGML_SYCL_DEVICE_ARCH=sm_80 # Example architecture
|
||||
|
||||
# Option 1: Use FP32 (recommended for better performance in most cases)
|
||||
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||
|
||||
# Option 2: Use FP16
|
||||
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON
|
||||
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON
|
||||
|
||||
# build all binary
|
||||
cmake --build build --config Release -j -v
|
||||
@@ -333,8 +338,9 @@ export CPLUS_INCLUDE_DIR=/path/to/oneMKL/buildWithrocBLAS/include:$CPLUS_INCLUDE
|
||||
|
||||
## AMD
|
||||
# Use FP32, FP16 is not supported
|
||||
# Find your GGML_SYCL_HIP_TARGET with rocminfo, under the key 'Name:'
|
||||
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=AMD -DGGML_SYCL_HIP_TARGET=${GGML_SYCL_HIP_TARGET} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||
# Find your GGML_SYCL_DEVICE_ARCH with rocminfo, under the key 'Name:'
|
||||
GGML_SYCL_DEVICE_ARCH=gfx90a # Example architecture
|
||||
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=AMD -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||
|
||||
# build all binary
|
||||
cmake --build build --config Release -j -v
|
||||
@@ -377,7 +383,7 @@ found 2 SYCL devices:
|
||||
|
||||
|Chosen Device ID|Setting|
|
||||
|-|-|
|
||||
|0|`export ONEAPI_DEVICE_SELECTOR="level_zero:1"` or no action|
|
||||
|0|`export ONEAPI_DEVICE_SELECTOR="level_zero:0"` or no action|
|
||||
|1|`export ONEAPI_DEVICE_SELECTOR="level_zero:1"`|
|
||||
|0 & 1|`export ONEAPI_DEVICE_SELECTOR="level_zero:0;level_zero:1"`|
|
||||
|
||||
@@ -644,6 +650,7 @@ use 1 SYCL GPUs: [0] with Max compute units:512
|
||||
|--------------------|---------------------------------------|---------------------------------------------|
|
||||
| GGML_SYCL | ON (mandatory) | Enable build with SYCL code path.<br>FP32 path - recommended for better perforemance than FP16 on quantized model|
|
||||
| GGML_SYCL_TARGET | INTEL *(default)* \| NVIDIA \| AMD | Set the SYCL target device type. |
|
||||
| GGML_SYCL_DEVICE_ARCH | Optional (except for AMD) | Set the SYCL device architecture, optional except for AMD. Setting the device architecture can improve the performance. See the table [--offload-arch](https://github.com/intel/llvm/blob/sycl/sycl/doc/design/OffloadDesign.md#--offload-arch) for a list of valid architectures. |
|
||||
| GGML_SYCL_F16 | OFF *(default)* \|ON *(optional)* | Enable FP16 build with SYCL code path. |
|
||||
| CMAKE_C_COMPILER | `icx` *(Linux)*, `icx/cl` *(Windows)* | Set `icx` compiler for SYCL code path. |
|
||||
| CMAKE_CXX_COMPILER | `icpx` *(Linux)*, `icx` *(Windows)* | Set `icpx/icx` compiler for SYCL code path. |
|
||||
|
||||
@@ -186,18 +186,16 @@ The following compilation options are also available to tweak performance:
|
||||
|
||||
| Option | Legal values | Default | Description |
|
||||
|-------------------------------|------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| GGML_CUDA_FORCE_DMMV | Boolean | false | Force the use of dequantization + matrix vector multiplication kernels instead of using kernels that do matrix vector multiplication on quantized data. By default the decision is made based on compute capability (MMVQ for 6.1/Pascal/GTX 1000 or higher). Does not affect k-quants. |
|
||||
| GGML_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the CUDA dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. |
|
||||
| GGML_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the CUDA mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. |
|
||||
| GGML_CUDA_FORCE_MMQ | Boolean | false | Force the use of custom matrix multiplication kernels for quantized models instead of FP16 cuBLAS even if there is no int8 tensor core implementation available (affects V100, RDNA3). MMQ kernels are enabled by default on GPUs with int8 tensor core support. With MMQ force enabled, speed for large batch sizes will be worse but VRAM consumption will be lower. |
|
||||
| GGML_CUDA_FORCE_CUBLAS | Boolean | false | Force the use of FP16 cuBLAS instead of custom matrix multiplication kernels for quantized models |
|
||||
| GGML_CUDA_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels and for the q4_1 and q5_1 matrix matrix multiplication kernels. Can improve performance on relatively recent GPUs. |
|
||||
| GGML_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per CUDA thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
|
||||
| GGML_CUDA_PEER_MAX_BATCH_SIZE | Positive integer | 128 | Maximum batch size for which to enable peer access between multiple GPUs. Peer access requires either Linux or NVLink. When using NVLink enabling peer access for larger batch sizes is potentially beneficial. |
|
||||
| GGML_CUDA_FA_ALL_QUANTS | Boolean | false | Compile support for all KV cache quantization type (combinations) for the FlashAttention CUDA kernels. More fine-grained control over KV cache size but compilation takes much longer. |
|
||||
|
||||
### MUSA
|
||||
|
||||
This provides GPU acceleration using the MUSA cores of your Moore Threads MTT GPU. Make sure to have the MUSA SDK installed. You can download it from here: [MUSA SDK](https://developer.mthreads.com/sdk/download/musa).
|
||||
|
||||
- Using `make`:
|
||||
```bash
|
||||
make GGML_MUSA=1
|
||||
@@ -209,6 +207,12 @@ The following compilation options are also available to tweak performance:
|
||||
cmake --build build --config Release
|
||||
```
|
||||
|
||||
The environment variable [`MUSA_VISIBLE_DEVICES`](https://docs.mthreads.com/musa-sdk/musa-sdk-doc-online/programming_guide/Z%E9%99%84%E5%BD%95/) can be used to specify which GPU(s) will be used.
|
||||
|
||||
The environment variable `GGML_CUDA_ENABLE_UNIFIED_MEMORY=1` can be used to enable unified memory in Linux. This allows swapping to system RAM instead of crashing when the GPU VRAM is exhausted.
|
||||
|
||||
Most of the compilation options available for CUDA should also be available for MUSA, though they haven't been thoroughly tested yet.
|
||||
|
||||
### hipBLAS
|
||||
|
||||
This provides BLAS acceleration on HIP-supported AMD GPUs.
|
||||
@@ -222,7 +226,7 @@ You can download it from your Linux distro's package manager or from here: [ROCm
|
||||
- Using `CMake` for Linux (assuming a gfx1030-compatible AMD GPU):
|
||||
```bash
|
||||
HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" \
|
||||
cmake -S . -B build -DGGML_HIPBLAS=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
|
||||
cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
|
||||
&& cmake --build build --config Release -- -j 16
|
||||
```
|
||||
On Linux it is also possible to use unified memory architecture (UMA) to share main memory between the CPU and integrated GPU by setting `-DGGML_HIP_UMA=ON`.
|
||||
@@ -239,7 +243,7 @@ You can download it from your Linux distro's package manager or from here: [ROCm
|
||||
```bash
|
||||
HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -p)" \
|
||||
HIP_DEVICE_LIB_PATH=<directory-you-just-found> \
|
||||
cmake -S . -B build -DGGML_HIPBLAS=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
|
||||
cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
|
||||
&& cmake --build build -- -j 16
|
||||
```
|
||||
|
||||
@@ -251,7 +255,7 @@ You can download it from your Linux distro's package manager or from here: [ROCm
|
||||
- Using `CMake` for Windows (using x64 Native Tools Command Prompt for VS, and assuming a gfx1100-compatible AMD GPU):
|
||||
```bash
|
||||
set PATH=%HIP_PATH%\bin;%PATH%
|
||||
cmake -S . -B build -G Ninja -DAMDGPU_TARGETS=gfx1100 -DGGML_HIPBLAS=ON -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_BUILD_TYPE=Release
|
||||
cmake -S . -B build -G Ninja -DAMDGPU_TARGETS=gfx1100 -DGGML_HIP=ON -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_BUILD_TYPE=Release
|
||||
cmake --build build
|
||||
```
|
||||
Make sure that `AMDGPU_TARGETS` is set to the GPU arch you want to compile for. The above example uses `gfx1100` that corresponds to Radeon RX 7900XTX/XT/GRE. You can find a list of targets [here](https://llvm.org/docs/AMDGPUUsage.html#processors)
|
||||
@@ -260,13 +264,6 @@ You can download it from your Linux distro's package manager or from here: [ROCm
|
||||
|
||||
The environment variable [`HIP_VISIBLE_DEVICES`](https://rocm.docs.amd.com/en/latest/understand/gpu_isolation.html#hip-visible-devices) can be used to specify which GPU(s) will be used.
|
||||
If your GPU is not officially supported you can use the environment variable [`HSA_OVERRIDE_GFX_VERSION`] set to a similar GPU, for example 10.3.0 on RDNA2 (e.g. gfx1030, gfx1031, or gfx1035) or 11.0.0 on RDNA3.
|
||||
The following compilation options are also available to tweak performance (yes, they refer to CUDA, not HIP, because it uses the same code as the cuBLAS version above):
|
||||
|
||||
| Option | Legal values | Default | Description |
|
||||
|------------------------|------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| GGML_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the HIP dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. |
|
||||
| GGML_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the HIP mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. Does not affect k-quants. |
|
||||
| GGML_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per HIP thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
|
||||
|
||||
### Vulkan
|
||||
|
||||
@@ -274,9 +271,9 @@ The following compilation options are also available to tweak performance (yes,
|
||||
|
||||
#### w64devkit
|
||||
|
||||
Download and extract [w64devkit](https://github.com/skeeto/w64devkit/releases).
|
||||
Download and extract [`w64devkit`](https://github.com/skeeto/w64devkit/releases).
|
||||
|
||||
Download and install the [Vulkan SDK](https://vulkan.lunarg.com/sdk/home#windows). When selecting components, only the Vulkan SDK Core is required.
|
||||
Download and install the [`Vulkan SDK`](https://vulkan.lunarg.com/sdk/home#windows) with the default settings.
|
||||
|
||||
Launch `w64devkit.exe` and run the following commands to copy Vulkan dependencies:
|
||||
```sh
|
||||
@@ -294,6 +291,29 @@ EOF
|
||||
```
|
||||
Switch into the `llama.cpp` directory and run `make GGML_VULKAN=1`.
|
||||
|
||||
#### Git Bash MINGW64
|
||||
|
||||
Download and install [`Git-SCM`](https://git-scm.com/downloads/win) with the default settings
|
||||
|
||||
Download and install [`Visual Studio Community Edition`](https://visualstudio.microsoft.com/) and make sure you select `C++`
|
||||
|
||||
Download and install [`CMake`](https://cmake.org/download/) with the default settings
|
||||
|
||||
Download and install the [`Vulkan SDK`](https://vulkan.lunarg.com/sdk/home#windows) with the default settings.
|
||||
|
||||
Go into your `llama.cpp` directory and right click, select `Open Git Bash Here` and then run the following commands
|
||||
|
||||
```
|
||||
cmake -B build -DGGML_VULKAN=ON
|
||||
cmake --build build --config Release
|
||||
```
|
||||
|
||||
Now you can load the model in conversation mode using `Vulkan`
|
||||
|
||||
```
|
||||
build/bin/release/llama-cli -m "[PATH TO MODEL]" -ngl 100 -c 16384 -t 10 -n -2 -cnv
|
||||
```
|
||||
|
||||
#### MSYS2
|
||||
Install [MSYS2](https://www.msys2.org/) and then run the following commands in a UCRT terminal to install dependencies.
|
||||
```sh
|
||||
@@ -367,7 +387,7 @@ cmake --build build --config release
|
||||
|
||||
You can test with:
|
||||
|
||||
`./build/llama-cli -m PATH_TO_MODEL -p "Building a website can be done in 10 steps:" -ngl 32`
|
||||
`./build/bin/llama-cli -m PATH_TO_MODEL -p "Building a website can be done in 10 steps:" -ngl 32`
|
||||
|
||||
If the fllowing info is output on screen, you are using `llama.cpp by CANN backend`:
|
||||
```bash
|
||||
|
||||
@@ -19,8 +19,11 @@ Additionally, there the following images, similar to the above:
|
||||
- `ghcr.io/ggerganov/llama.cpp:full-rocm`: Same as `full` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
- `ghcr.io/ggerganov/llama.cpp:light-rocm`: Same as `light` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
- `ghcr.io/ggerganov/llama.cpp:server-rocm`: Same as `server` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
- `ghcr.io/ggerganov/llama.cpp:full-musa`: Same as `full` but compiled with MUSA support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggerganov/llama.cpp:light-musa`: Same as `light` but compiled with MUSA support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggerganov/llama.cpp:server-musa`: Same as `server` but compiled with MUSA support. (platforms: `linux/amd64`)
|
||||
|
||||
The GPU enabled images are not currently tested by CI beyond being built. They are not built with any variation from the ones in the Dockerfiles defined in [.devops/](../.devops/) and the GitHub Action defined in [.github/workflows/docker.yml](../.github/workflows/docker.yml). If you need different settings (for example, a different CUDA or ROCm library, you'll need to build the images locally for now).
|
||||
The GPU enabled images are not currently tested by CI beyond being built. They are not built with any variation from the ones in the Dockerfiles defined in [.devops/](../.devops/) and the GitHub Action defined in [.github/workflows/docker.yml](../.github/workflows/docker.yml). If you need different settings (for example, a different CUDA, ROCm or MUSA library, you'll need to build the images locally for now).
|
||||
|
||||
## Usage
|
||||
|
||||
@@ -84,3 +87,37 @@ docker run --gpus all -v /path/to/models:/models local/llama.cpp:full-cuda --run
|
||||
docker run --gpus all -v /path/to/models:/models local/llama.cpp:light-cuda -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
|
||||
docker run --gpus all -v /path/to/models:/models local/llama.cpp:server-cuda -m /models/7B/ggml-model-q4_0.gguf --port 8000 --host 0.0.0.0 -n 512 --n-gpu-layers 1
|
||||
```
|
||||
|
||||
## Docker With MUSA
|
||||
|
||||
Assuming one has the [mt-container-toolkit](https://developer.mthreads.com/musa/native) properly installed on Linux, `muBLAS` should be accessible inside the container.
|
||||
|
||||
## Building Docker locally
|
||||
|
||||
```bash
|
||||
docker build -t local/llama.cpp:full-musa -f .devops/full-musa.Dockerfile .
|
||||
docker build -t local/llama.cpp:light-musa -f .devops/llama-cli-musa.Dockerfile .
|
||||
docker build -t local/llama.cpp:server-musa -f .devops/llama-server-musa.Dockerfile .
|
||||
```
|
||||
|
||||
You may want to pass in some different `ARGS`, depending on the MUSA environment supported by your container host, as well as the GPU architecture.
|
||||
|
||||
The defaults are:
|
||||
|
||||
- `MUSA_VERSION` set to `rc3.1.0`
|
||||
|
||||
The resulting images, are essentially the same as the non-MUSA images:
|
||||
|
||||
1. `local/llama.cpp:full-musa`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization.
|
||||
2. `local/llama.cpp:light-musa`: This image only includes the main executable file.
|
||||
3. `local/llama.cpp:server-musa`: This image only includes the server executable file.
|
||||
|
||||
## Usage
|
||||
|
||||
After building locally, Usage is similar to the non-MUSA examples, but you'll need to set `mthreads` as default Docker runtime. This can be done by executing `(cd /usr/bin/musa && sudo ./docker setup $PWD)` and verifying the changes by executing `docker info | grep mthreads` on the host machine. You will also want to use the `--n-gpu-layers` flag.
|
||||
|
||||
```bash
|
||||
docker run -v /path/to/models:/models local/llama.cpp:full-musa --run -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
|
||||
docker run -v /path/to/models:/models local/llama.cpp:light-musa -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
|
||||
docker run -v /path/to/models:/models local/llama.cpp:server-musa -m /models/7B/ggml-model-q4_0.gguf --port 8000 --host 0.0.0.0 -n 512 --n-gpu-layers 1
|
||||
```
|
||||
|
||||
@@ -13,7 +13,6 @@ include_directories(${CMAKE_CURRENT_SOURCE_DIR})
|
||||
if (EMSCRIPTEN)
|
||||
else()
|
||||
add_subdirectory(cvector-generator)
|
||||
add_subdirectory(baby-llama)
|
||||
add_subdirectory(batched-bench)
|
||||
add_subdirectory(batched)
|
||||
add_subdirectory(convert-llama2c-to-ggml)
|
||||
@@ -49,6 +48,7 @@ else()
|
||||
endif()
|
||||
add_subdirectory(save-load-state)
|
||||
add_subdirectory(simple)
|
||||
add_subdirectory(simple-chat)
|
||||
add_subdirectory(speculative)
|
||||
add_subdirectory(tokenize)
|
||||
endif()
|
||||
|
||||
@@ -1,5 +0,0 @@
|
||||
set(TARGET llama-baby-llama)
|
||||
add_executable(${TARGET} baby-llama.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
File diff suppressed because it is too large
Load Diff
@@ -15,13 +15,13 @@ static void print_usage(int, char ** argv) {
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_BENCH, print_usage)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_BENCH, print_usage)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
common_init();
|
||||
|
||||
int is_pp_shared = params.is_pp_shared;
|
||||
|
||||
@@ -36,7 +36,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// initialize the model
|
||||
|
||||
llama_model_params model_params = llama_model_params_from_gpt_params(params);
|
||||
llama_model_params model_params = common_model_params_to_llama(params);
|
||||
|
||||
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
|
||||
|
||||
@@ -45,7 +45,7 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
|
||||
llama_context_params ctx_params = common_context_params_to_llama(params);
|
||||
|
||||
// ensure enough sequences are available
|
||||
ctx_params.n_seq_max = n_pl.empty() ? 1 : *std::max_element(n_pl.begin(), n_pl.end());
|
||||
@@ -74,7 +74,6 @@ int main(int argc, char ** argv) {
|
||||
batch.n_seq_id + i,
|
||||
batch.seq_id + i,
|
||||
batch.logits + i,
|
||||
0, 0, 0, // unused
|
||||
};
|
||||
|
||||
const int ret = llama_decode(ctx, batch_view);
|
||||
@@ -92,7 +91,7 @@ int main(int argc, char ** argv) {
|
||||
// warm up
|
||||
{
|
||||
for (int i = 0; i < 16; ++i) {
|
||||
llama_batch_add(batch, 0, i, { 0 }, false);
|
||||
common_batch_add(batch, 0, i, { 0 }, false);
|
||||
}
|
||||
|
||||
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
|
||||
@@ -122,11 +121,11 @@ int main(int argc, char ** argv) {
|
||||
continue;
|
||||
}
|
||||
|
||||
llama_batch_clear(batch);
|
||||
common_batch_clear(batch);
|
||||
|
||||
for (int i = 0; i < pp; ++i) {
|
||||
for (int j = 0; j < (is_pp_shared ? 1 : pl); ++j) {
|
||||
llama_batch_add(batch, 0, i, { j }, false);
|
||||
common_batch_add(batch, 0, i, { j }, false);
|
||||
}
|
||||
}
|
||||
batch.logits[batch.n_tokens - 1] = true;
|
||||
@@ -151,10 +150,10 @@ int main(int argc, char ** argv) {
|
||||
const auto t_tg_start = ggml_time_us();
|
||||
|
||||
for (int i = 0; i < tg; ++i) {
|
||||
llama_batch_clear(batch);
|
||||
common_batch_clear(batch);
|
||||
|
||||
for (int j = 0; j < pl; ++j) {
|
||||
llama_batch_add(batch, 0, pp + i, { j }, true);
|
||||
common_batch_add(batch, 0, pp + i, { j }, true);
|
||||
}
|
||||
|
||||
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
|
||||
|
||||
@@ -15,16 +15,16 @@ static void print_usage(int, char ** argv) {
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
|
||||
params.prompt = "Hello my name is";
|
||||
params.n_predict = 32;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON, print_usage)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON, print_usage)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
common_init();
|
||||
|
||||
// number of parallel batches
|
||||
int n_parallel = params.n_parallel;
|
||||
@@ -39,7 +39,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// initialize the model
|
||||
|
||||
llama_model_params model_params = llama_model_params_from_gpt_params(params);
|
||||
llama_model_params model_params = common_model_params_to_llama(params);
|
||||
|
||||
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
|
||||
|
||||
@@ -51,13 +51,13 @@ int main(int argc, char ** argv) {
|
||||
// tokenize the prompt
|
||||
|
||||
std::vector<llama_token> tokens_list;
|
||||
tokens_list = ::llama_tokenize(model, params.prompt, true);
|
||||
tokens_list = common_tokenize(model, params.prompt, true);
|
||||
|
||||
const int n_kv_req = tokens_list.size() + (n_predict - tokens_list.size())*n_parallel;
|
||||
|
||||
// initialize the context
|
||||
|
||||
llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
|
||||
llama_context_params ctx_params = common_context_params_to_llama(params);
|
||||
|
||||
ctx_params.n_ctx = n_kv_req;
|
||||
ctx_params.n_batch = std::max(n_predict, n_parallel);
|
||||
@@ -94,7 +94,7 @@ int main(int argc, char ** argv) {
|
||||
LOG("\n");
|
||||
|
||||
for (auto id : tokens_list) {
|
||||
LOG("%s", llama_token_to_piece(ctx, id).c_str());
|
||||
LOG("%s", common_token_to_piece(ctx, id).c_str());
|
||||
}
|
||||
|
||||
// create a llama_batch
|
||||
@@ -108,7 +108,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// evaluate the initial prompt
|
||||
for (size_t i = 0; i < tokens_list.size(); ++i) {
|
||||
llama_batch_add(batch, tokens_list[i], i, seq_ids, false);
|
||||
common_batch_add(batch, tokens_list[i], i, seq_ids, false);
|
||||
}
|
||||
GGML_ASSERT(batch.n_tokens == (int) tokens_list.size());
|
||||
|
||||
@@ -123,8 +123,8 @@ int main(int argc, char ** argv) {
|
||||
decoder_start_token_id = llama_token_bos(model);
|
||||
}
|
||||
|
||||
llama_batch_clear(batch);
|
||||
llama_batch_add(batch, decoder_start_token_id, 0, seq_ids, false);
|
||||
common_batch_clear(batch);
|
||||
common_batch_add(batch, decoder_start_token_id, 0, seq_ids, false);
|
||||
}
|
||||
|
||||
// llama_decode will output logits only for the last token of the prompt
|
||||
@@ -161,7 +161,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
while (n_cur <= n_predict) {
|
||||
// prepare the next batch
|
||||
llama_batch_clear(batch);
|
||||
common_batch_clear(batch);
|
||||
|
||||
// sample the next token for each parallel sequence / stream
|
||||
for (int32_t i = 0; i < n_parallel; ++i) {
|
||||
@@ -185,15 +185,15 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// if there is only one stream, we print immediately to stdout
|
||||
if (n_parallel == 1) {
|
||||
LOG("%s", llama_token_to_piece(ctx, new_token_id).c_str());
|
||||
LOG("%s", common_token_to_piece(ctx, new_token_id).c_str());
|
||||
}
|
||||
|
||||
streams[i] += llama_token_to_piece(ctx, new_token_id);
|
||||
streams[i] += common_token_to_piece(ctx, new_token_id);
|
||||
|
||||
i_batch[i] = batch.n_tokens;
|
||||
|
||||
// push this new token for next evaluation
|
||||
llama_batch_add(batch, new_token_id, n_cur, { i }, true);
|
||||
common_batch_add(batch, new_token_id, n_cur, { i }, true);
|
||||
|
||||
n_decode += 1;
|
||||
}
|
||||
|
||||
@@ -23,8 +23,9 @@ CUR_PROMPT_CACHE="${CHAT_SAVE_DIR}/current-cache.bin"
|
||||
NEXT_PROMPT_FILE="${CHAT_SAVE_DIR}/next-prompt.txt"
|
||||
NEXT_PROMPT_CACHE="${CHAT_SAVE_DIR}/next-cache.bin"
|
||||
|
||||
SESSION_SIZE_MSG_PATTERN='main: session file matches [[:digit:]]+ / [[:digit:]]+'
|
||||
SAMPLE_TIME_MSG_PATTERN='sample time =[[:space:]]+[[:digit:]]+.[[:digit:]]+ ms /[[:space:]]+[[:digit:]]+'
|
||||
SESSION_AND_SAMPLE_PATTERN='main: session file matches [[:digit:]]+ / [[:digit:]]+'\
|
||||
'|'\
|
||||
'sampling time =[[:space:]]+[[:digit:]]+.[[:digit:]]+ ms /[[:space:]]+[[:digit:]]+'
|
||||
SED_DELETE_MESSAGES="/^(${USER_NAME}:|${AI_NAME}:|\\.\\.\\.)/,\$d"
|
||||
|
||||
CTX_SIZE=2048
|
||||
@@ -129,15 +130,12 @@ while read -e line; do
|
||||
|
||||
printf ' '
|
||||
|
||||
# HACK get num tokens from debug message
|
||||
# TODO get both messages in one go
|
||||
if ! session_size_msg="$(tail -n30 "$LOG" | grep -oE "$SESSION_SIZE_MSG_PATTERN")" ||
|
||||
! sample_time_msg="$(tail -n10 "$LOG" | grep -oE "$SAMPLE_TIME_MSG_PATTERN")"; then
|
||||
if ! session_and_sample_msg=$(tail -n30 "$LOG" | grep -oE "$SESSION_AND_SAMPLE_PATTERN"); then
|
||||
echo >&2 "Couldn't get number of tokens from ./llama-cli output!"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
n_tokens=$(($(cut -d/ -f2 <<<"$session_size_msg") + $(cut -d/ -f2 <<<"$sample_time_msg")))
|
||||
n_tokens=$(awk '{sum+=$1} END {print sum}' <<< "$(cut -d/ -f2 <<< "$session_and_sample_msg")")
|
||||
|
||||
if ((n_tokens > CTX_ROTATE_POINT)); then
|
||||
tail -c+$((n_prompt_len_pre + 1)) "$CUR_PROMPT_FILE" >>"$NEXT_PROMPT_FILE"
|
||||
|
||||
@@ -872,7 +872,7 @@ static std::string basename(const std::string &path) {
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_init();
|
||||
common_init();
|
||||
|
||||
struct train_params params = get_default_train_params();
|
||||
if (!params_parse(argc, argv, ¶ms)) {
|
||||
|
||||
@@ -840,6 +840,8 @@ class OutputFile:
|
||||
self.gguf.add_base_model_version(key, base_model_entry["version"])
|
||||
if "organization" in base_model_entry:
|
||||
self.gguf.add_base_model_organization(key, base_model_entry["organization"])
|
||||
if "description" in base_model_entry:
|
||||
self.gguf.add_base_model_description(key, base_model_entry["description"])
|
||||
if "url" in base_model_entry:
|
||||
self.gguf.add_base_model_url(key, base_model_entry["url"])
|
||||
if "doi" in base_model_entry:
|
||||
@@ -849,12 +851,32 @@ class OutputFile:
|
||||
if "repo_url" in base_model_entry:
|
||||
self.gguf.add_base_model_repo_url(key, base_model_entry["repo_url"])
|
||||
|
||||
if metadata.datasets is not None:
|
||||
self.gguf.add_dataset_count(len(metadata.datasets))
|
||||
for key, dataset_entry in enumerate(metadata.datasets):
|
||||
if "name" in dataset_entry:
|
||||
self.gguf.add_dataset_name(key, dataset_entry["name"])
|
||||
if "author" in dataset_entry:
|
||||
self.gguf.add_dataset_author(key, dataset_entry["author"])
|
||||
if "version" in dataset_entry:
|
||||
self.gguf.add_dataset_version(key, dataset_entry["version"])
|
||||
if "organization" in dataset_entry:
|
||||
self.gguf.add_dataset_organization(key, dataset_entry["organization"])
|
||||
if "description" in dataset_entry:
|
||||
self.gguf.add_dataset_description(key, dataset_entry["description"])
|
||||
if "url" in dataset_entry:
|
||||
self.gguf.add_dataset_url(key, dataset_entry["url"])
|
||||
if "doi" in dataset_entry:
|
||||
self.gguf.add_dataset_doi(key, dataset_entry["doi"])
|
||||
if "uuid" in dataset_entry:
|
||||
self.gguf.add_dataset_uuid(key, dataset_entry["uuid"])
|
||||
if "repo_url" in dataset_entry:
|
||||
self.gguf.add_dataset_repo_url(key, dataset_entry["repo_url"])
|
||||
|
||||
if metadata.tags is not None:
|
||||
self.gguf.add_tags(metadata.tags)
|
||||
if metadata.languages is not None:
|
||||
self.gguf.add_languages(metadata.languages)
|
||||
if metadata.datasets is not None:
|
||||
self.gguf.add_datasets(metadata.datasets)
|
||||
|
||||
def add_meta_arch(self, params: Params) -> None:
|
||||
# Metadata About The Neural Architecture Itself
|
||||
|
||||
@@ -31,7 +31,7 @@ template <class Iter>
|
||||
static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) {
|
||||
std::string ret;
|
||||
for (; begin != end; ++begin) {
|
||||
ret += llama_token_to_piece(ctx, *begin);
|
||||
ret += common_token_to_piece(ctx, *begin);
|
||||
}
|
||||
|
||||
return ret;
|
||||
@@ -272,8 +272,8 @@ struct tokenized_prompt {
|
||||
|
||||
tokenized_prompt(llama_context * ctx, std::string pos, std::string neg) {
|
||||
const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
|
||||
tokens_pos = ::llama_tokenize(ctx, pos, add_bos, true);
|
||||
tokens_neg = ::llama_tokenize(ctx, neg, add_bos, true);
|
||||
tokens_pos = common_tokenize(ctx, pos, add_bos, true);
|
||||
tokens_neg = common_tokenize(ctx, neg, add_bos, true);
|
||||
max_seq_len = std::max(tokens_pos.size(), tokens_neg.size());
|
||||
padding_seq(ctx, tokens_pos, max_seq_len);
|
||||
padding_seq(ctx, tokens_neg, max_seq_len);
|
||||
@@ -281,7 +281,7 @@ struct tokenized_prompt {
|
||||
|
||||
void padding_seq(llama_context * ctx, std::vector<llama_token> & tokens, size_t len) {
|
||||
// TODO: customize padding token
|
||||
std::vector<llama_token> pad_tokens = ::llama_tokenize(ctx, " ", false);
|
||||
std::vector<llama_token> pad_tokens = common_tokenize(ctx, " ", false);
|
||||
llama_token pad_tok = pad_tokens.back();
|
||||
while (tokens.size() < len) {
|
||||
tokens.push_back(pad_tok);
|
||||
@@ -339,7 +339,7 @@ static bool cb_eval(struct ggml_tensor * t, bool ask, void * user_data) {
|
||||
|
||||
static bool get_hidden_layers(llama_context * ctx, std::vector<llama_token> & tokens) {
|
||||
llama_kv_cache_clear(ctx);
|
||||
if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size(), 0, 0))) {
|
||||
if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size()))) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return false;
|
||||
}
|
||||
@@ -370,7 +370,7 @@ static void export_gguf(const std::vector<struct ggml_tensor *> & v_ctrl, const
|
||||
* Load prompt files and completion file.
|
||||
* Then format each pair of prompt + completion to make an entry.
|
||||
*/
|
||||
static int prepare_entries(gpt_params & params, train_context & ctx_train) {
|
||||
static int prepare_entries(common_params & params, train_context & ctx_train) {
|
||||
// load prompts
|
||||
std::vector<std::string> positive_prompts = ctrlvec_load_prompt_file(params.cvector_positive_file, true);
|
||||
std::vector<std::string> negative_prompts = ctrlvec_load_prompt_file(params.cvector_negative_file, true);
|
||||
@@ -388,9 +388,9 @@ static int prepare_entries(gpt_params & params, train_context & ctx_train) {
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_CVECTOR_GENERATOR, print_usage)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_CVECTOR_GENERATOR, print_usage)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
@@ -413,7 +413,7 @@ int main(int argc, char ** argv) {
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
// load the model to get hparams
|
||||
llama_init_result llama_init = llama_init_from_gpt_params(params);
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
llama_model * model = llama_init.model;
|
||||
llama_context * ctx = llama_init.context;
|
||||
|
||||
@@ -28,7 +28,7 @@ static std::vector<std::string> split_lines(const std::string & s, const std::st
|
||||
static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, llama_seq_id seq_id) {
|
||||
size_t n_tokens = tokens.size();
|
||||
for (size_t i = 0; i < n_tokens; i++) {
|
||||
llama_batch_add(batch, tokens[i], i, { seq_id }, true);
|
||||
common_batch_add(batch, tokens[i], i, { seq_id }, true);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -74,18 +74,18 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
|
||||
}
|
||||
|
||||
float * out = output + embd_pos * n_embd;
|
||||
llama_embd_normalize(embd, out, n_embd, embd_norm);
|
||||
common_embd_normalize(embd, out, n_embd, embd_norm);
|
||||
}
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_EMBEDDING)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_EMBEDDING)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
common_init();
|
||||
|
||||
params.embedding = true;
|
||||
// For non-causal models, batch size must be equal to ubatch size
|
||||
@@ -95,7 +95,7 @@ int main(int argc, char ** argv) {
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
// load the model
|
||||
llama_init_result llama_init = llama_init_from_gpt_params(params);
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
llama_model * model = llama_init.model;
|
||||
llama_context * ctx = llama_init.context;
|
||||
@@ -122,7 +122,7 @@ int main(int argc, char ** argv) {
|
||||
// print system information
|
||||
{
|
||||
LOG_INF("\n");
|
||||
LOG_INF("%s\n", gpt_params_get_system_info(params).c_str());
|
||||
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
|
||||
}
|
||||
|
||||
// split the prompt into lines
|
||||
@@ -135,7 +135,7 @@ int main(int argc, char ** argv) {
|
||||
// tokenize the prompts and trim
|
||||
std::vector<std::vector<int32_t>> inputs;
|
||||
for (const auto & prompt : prompts) {
|
||||
auto inp = ::llama_tokenize(ctx, prompt, true, true);
|
||||
auto inp = common_tokenize(ctx, prompt, true, true);
|
||||
if (inp.size() > n_batch) {
|
||||
LOG_ERR("%s: number of tokens in input line (%lld) exceeds batch size (%lld), increase batch size and re-run\n",
|
||||
__func__, (long long int) inp.size(), (long long int) n_batch);
|
||||
@@ -159,7 +159,7 @@ int main(int argc, char ** argv) {
|
||||
LOG_INF("%s: prompt %d: '%s'\n", __func__, i, prompts[i].c_str());
|
||||
LOG_INF("%s: number of tokens in prompt = %zu\n", __func__, inputs[i].size());
|
||||
for (int j = 0; j < (int) inputs[i].size(); j++) {
|
||||
LOG("%6d -> '%s'\n", inputs[i][j], llama_token_to_piece(ctx, inputs[i][j]).c_str());
|
||||
LOG("%6d -> '%s'\n", inputs[i][j], common_token_to_piece(ctx, inputs[i][j]).c_str());
|
||||
}
|
||||
LOG("\n\n");
|
||||
}
|
||||
@@ -199,7 +199,7 @@ int main(int argc, char ** argv) {
|
||||
batch_decode(ctx, batch, out, s, n_embd, params.embd_normalize);
|
||||
e += pooling_type == LLAMA_POOLING_TYPE_NONE ? batch.n_tokens : s;
|
||||
s = 0;
|
||||
llama_batch_clear(batch);
|
||||
common_batch_clear(batch);
|
||||
}
|
||||
|
||||
// add to batch
|
||||
@@ -263,7 +263,7 @@ int main(int argc, char ** argv) {
|
||||
LOG("\n");
|
||||
for (int i = 0; i < n_prompts; i++) {
|
||||
for (int j = 0; j < n_prompts; j++) {
|
||||
float sim = llama_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd);
|
||||
float sim = common_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd);
|
||||
LOG("%6.2f ", sim);
|
||||
}
|
||||
LOG("%1.10s", prompts[i].c_str());
|
||||
@@ -296,7 +296,7 @@ int main(int argc, char ** argv) {
|
||||
for (int i = 0;;) { // at least two iteration (n_embd_count > 1)
|
||||
LOG(" [");
|
||||
for (int j = 0;;) { // at least two iteration (n_embd_count > 1)
|
||||
float sim = llama_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd);
|
||||
float sim = common_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd);
|
||||
LOG("%6.2f", sim);
|
||||
j++;
|
||||
if (j < n_embd_count) LOG(", "); else break;
|
||||
|
||||
@@ -126,12 +126,12 @@ static bool ggml_debug(struct ggml_tensor * t, bool ask, void * user_data) {
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool run(llama_context * ctx, const gpt_params & params) {
|
||||
static bool run(llama_context * ctx, const common_params & params) {
|
||||
const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
|
||||
|
||||
std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
|
||||
std::vector<llama_token> tokens = common_tokenize(ctx, params.prompt, add_bos);
|
||||
|
||||
if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size(), 0, 0))) {
|
||||
if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size()))) {
|
||||
LOG_ERR("%s : failed to eval\n", __func__);
|
||||
return false;
|
||||
}
|
||||
@@ -142,13 +142,13 @@ static bool run(llama_context * ctx, const gpt_params & params) {
|
||||
int main(int argc, char ** argv) {
|
||||
callback_data cb_data;
|
||||
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
common_init();
|
||||
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
@@ -160,7 +160,7 @@ int main(int argc, char ** argv) {
|
||||
params.warmup = false;
|
||||
|
||||
// init
|
||||
llama_init_result llama_init = llama_init_from_gpt_params(params);
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
llama_model * model = llama_init.model;
|
||||
llama_context * ctx = llama_init.context;
|
||||
@@ -172,7 +172,7 @@ int main(int argc, char ** argv) {
|
||||
// print system information
|
||||
{
|
||||
LOG_INF("\n");
|
||||
LOG_INF("%s\n", gpt_params_get_system_info(params).c_str());
|
||||
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
|
||||
LOG_INF("\n");
|
||||
}
|
||||
|
||||
|
||||
@@ -128,7 +128,7 @@ struct lora_merge_ctx {
|
||||
|
||||
lora_merge_ctx(
|
||||
std::string & base_fname,
|
||||
std::vector<llama_lora_adapter_info> & lora_files,
|
||||
std::vector<common_lora_adapter_info> & lora_files,
|
||||
std::string & outfile,
|
||||
int n_threads) : base_model(base_fname, 0), n_threads(n_threads), fout(outfile, std::ios::binary) {
|
||||
fout.exceptions(std::ofstream::failbit); // fail fast on write errors
|
||||
@@ -314,9 +314,9 @@ struct lora_merge_ctx {
|
||||
// optionally dequantize it
|
||||
printf("%s : + dequantize base tensor from %s to F32\n", __func__, ggml_type_name(base->type));
|
||||
auto nels = ggml_nelements(inp_base);
|
||||
ggml_type_traits_t qtype = ggml_internal_get_type_traits(base->type);
|
||||
const auto * qtype = ggml_get_type_traits(base->type);
|
||||
std::vector<uint8_t> dequant_buf(nels * sizeof(float));
|
||||
qtype.to_float(read_buf.data(), (float *)dequant_buf.data(), nels);
|
||||
qtype->to_float(read_buf.data(), (float *)dequant_buf.data(), nels);
|
||||
ggml_backend_tensor_set(inp_base, dequant_buf.data(), 0, dequant_buf.size());
|
||||
} else {
|
||||
ggml_backend_tensor_set(inp_base, read_buf.data(), 0, ggml_nbytes(inp_base));
|
||||
@@ -400,9 +400,9 @@ static void print_usage(int, char ** argv) {
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_EXPORT_LORA, print_usage)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_EXPORT_LORA, print_usage)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
@@ -11,7 +11,7 @@ static void write_table_header(std::ofstream & file) {
|
||||
file << "| -------- | ----------- |\n";
|
||||
}
|
||||
|
||||
static void write_table_entry(std::ofstream & file, const llama_arg & opt) {
|
||||
static void write_table_entry(std::ofstream & file, const common_arg & opt) {
|
||||
file << "| `";
|
||||
// args
|
||||
for (const auto & arg : opt.args) {
|
||||
@@ -40,7 +40,7 @@ static void write_table_entry(std::ofstream & file, const llama_arg & opt) {
|
||||
file << "` | " << md_help << " |\n";
|
||||
}
|
||||
|
||||
static void write_table(std::ofstream & file, std::vector<llama_arg *> & opts) {
|
||||
static void write_table(std::ofstream & file, std::vector<common_arg *> & opts) {
|
||||
write_table_header(file);
|
||||
for (const auto & opt : opts) {
|
||||
write_table_entry(file, *opt);
|
||||
@@ -50,12 +50,12 @@ static void write_table(std::ofstream & file, std::vector<llama_arg *> & opts) {
|
||||
static void export_md(std::string fname, llama_example ex) {
|
||||
std::ofstream file(fname, std::ofstream::out | std::ofstream::trunc);
|
||||
|
||||
gpt_params params;
|
||||
auto ctx_arg = gpt_params_parser_init(params, ex);
|
||||
common_params params;
|
||||
auto ctx_arg = common_params_parser_init(params, ex);
|
||||
|
||||
std::vector<llama_arg *> common_options;
|
||||
std::vector<llama_arg *> sparam_options;
|
||||
std::vector<llama_arg *> specific_options;
|
||||
std::vector<common_arg *> common_options;
|
||||
std::vector<common_arg *> sparam_options;
|
||||
std::vector<common_arg *> specific_options;
|
||||
for (auto & opt : ctx_arg.options) {
|
||||
// in case multiple LLAMA_EXAMPLE_* are set, we prioritize the LLAMA_EXAMPLE_* matching current example
|
||||
if (opt.is_sparam) {
|
||||
|
||||
@@ -15,11 +15,11 @@ static std::vector<std::vector<float>> encode(llama_context * ctx, const std::ve
|
||||
llama_batch batch = llama_batch_init(llama_n_batch(ctx), 0, 1);
|
||||
|
||||
for (uint64_t i = 0; i < sentences.size(); i++) {
|
||||
llama_batch_clear(batch);
|
||||
common_batch_clear(batch);
|
||||
|
||||
const std::string input_string = instruction + sentences[i];
|
||||
|
||||
std::vector<llama_token> inputs = llama_tokenize(model, input_string, true, false);
|
||||
std::vector<llama_token> inputs = common_tokenize(model, input_string, true, false);
|
||||
|
||||
const int32_t n_toks = inputs.size();
|
||||
|
||||
@@ -28,7 +28,7 @@ static std::vector<std::vector<float>> encode(llama_context * ctx, const std::ve
|
||||
// inputs.push_back(llama_token_eos(model));
|
||||
|
||||
// we want to ignore instruction tokens for mean pooling
|
||||
const int32_t n_inst = llama_tokenize(model, instruction, true, false).size();
|
||||
const int32_t n_inst = common_tokenize(model, instruction, true, false).size();
|
||||
|
||||
#ifdef GRIT_DEBUG
|
||||
// debug tokens - should be matching as referenced in the GritLM sample
|
||||
@@ -40,7 +40,7 @@ static std::vector<std::vector<float>> encode(llama_context * ctx, const std::ve
|
||||
|
||||
// add input to batch (this increments n_tokens)
|
||||
for (int32_t j = 0; j < n_toks; j++) {
|
||||
llama_batch_add(batch, inputs[j], j, { 0 }, j >= n_inst);
|
||||
common_batch_add(batch, inputs[j], j, { 0 }, j >= n_inst);
|
||||
}
|
||||
|
||||
// clear previous kv_cache values (irrelevant for embeddings)
|
||||
@@ -75,7 +75,7 @@ static std::vector<std::vector<float>> encode(llama_context * ctx, const std::ve
|
||||
}
|
||||
|
||||
std::vector<float> emb_norm(emb_unorm.size());
|
||||
llama_embd_normalize(emb_unorm.data(), emb_norm.data(), n_embd);
|
||||
common_embd_normalize(emb_unorm.data(), emb_norm.data(), n_embd);
|
||||
result.push_back(emb_norm);
|
||||
|
||||
#ifdef GRIT_DEBUG
|
||||
@@ -105,16 +105,16 @@ static std::string generate(llama_context * ctx, llama_sampler * smpl, const std
|
||||
|
||||
llama_batch bat = llama_batch_init(llama_n_batch(ctx), 0, 1);
|
||||
|
||||
std::vector<llama_token> inputs = llama_tokenize(model, prompt, false, true);
|
||||
std::vector<llama_token> inputs = common_tokenize(model, prompt, false, true);
|
||||
int32_t i_current_token = 0;
|
||||
|
||||
while (true) {
|
||||
llama_batch_clear(bat);
|
||||
common_batch_clear(bat);
|
||||
{
|
||||
const int32_t n_inputs = inputs.size();
|
||||
|
||||
for (int32_t i = 0; i < n_inputs; i++) {
|
||||
llama_batch_add(bat, inputs[i], i_current_token++, { 0 }, i == n_inputs - 1);
|
||||
common_batch_add(bat, inputs[i], i_current_token++, { 0 }, i == n_inputs - 1);
|
||||
}
|
||||
}
|
||||
inputs.clear();
|
||||
@@ -127,7 +127,7 @@ static std::string generate(llama_context * ctx, llama_sampler * smpl, const std
|
||||
break;
|
||||
}
|
||||
|
||||
std::string piece = llama_token_to_piece(ctx, token);
|
||||
std::string piece = common_token_to_piece(ctx, token);
|
||||
if (stream) {
|
||||
std::printf("%s", piece.c_str());
|
||||
std::fflush(stdout);
|
||||
@@ -152,16 +152,16 @@ static std::string gritlm_instruction(const std::string & instruction) {
|
||||
}
|
||||
|
||||
int main(int argc, char * argv[]) {
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
common_init();
|
||||
|
||||
llama_model_params mparams = llama_model_params_from_gpt_params(params);
|
||||
llama_context_params cparams = llama_context_params_from_gpt_params(params);
|
||||
llama_model_params mparams = common_model_params_to_llama(params);
|
||||
llama_context_params cparams = common_context_params_to_llama(params);
|
||||
|
||||
llama_backend_init();
|
||||
|
||||
@@ -199,10 +199,10 @@ int main(int argc, char * argv[]) {
|
||||
|
||||
const int n_embd = llama_n_embd(model);
|
||||
|
||||
const float cosine_sim_q0_d0 = llama_embd_similarity_cos(q_rep[0].data(), d_rep[0].data(), n_embd);
|
||||
const float cosine_sim_q0_d1 = llama_embd_similarity_cos(q_rep[0].data(), d_rep[1].data(), n_embd);
|
||||
const float cosine_sim_q1_d0 = llama_embd_similarity_cos(q_rep[1].data(), d_rep[0].data(), n_embd);
|
||||
const float cosine_sim_q1_d1 = llama_embd_similarity_cos(q_rep[1].data(), d_rep[1].data(), n_embd);
|
||||
const float cosine_sim_q0_d0 = common_embd_similarity_cos(q_rep[0].data(), d_rep[0].data(), n_embd);
|
||||
const float cosine_sim_q0_d1 = common_embd_similarity_cos(q_rep[0].data(), d_rep[1].data(), n_embd);
|
||||
const float cosine_sim_q1_d0 = common_embd_similarity_cos(q_rep[1].data(), d_rep[0].data(), n_embd);
|
||||
const float cosine_sim_q1_d1 = common_embd_similarity_cos(q_rep[1].data(), d_rep[1].data(), n_embd);
|
||||
|
||||
std::printf("Cosine similarity between \"%.50s\" and \"%.50s\" is: %.3f\n", queries[0].c_str(), documents[0].c_str(), cosine_sim_q0_d0);
|
||||
std::printf("Cosine similarity between \"%.50s\" and \"%.50s\" is: %.3f\n", queries[0].c_str(), documents[1].c_str(), cosine_sim_q0_d1);
|
||||
|
||||
@@ -37,13 +37,13 @@ struct Stats {
|
||||
class IMatrixCollector {
|
||||
public:
|
||||
IMatrixCollector() = default;
|
||||
void set_params(gpt_params params) { m_params = std::move(params); }
|
||||
void set_params(common_params params) { m_params = std::move(params); }
|
||||
bool collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data);
|
||||
void save_imatrix(int ncall = -1) const;
|
||||
bool load_imatrix(const char * file_name);
|
||||
private:
|
||||
std::unordered_map<std::string, Stats> m_stats;
|
||||
gpt_params m_params;
|
||||
common_params m_params;
|
||||
std::mutex m_mutex;
|
||||
int m_last_call = 0;
|
||||
std::vector<float> m_src1_data;
|
||||
@@ -428,7 +428,7 @@ static void process_logits(
|
||||
}
|
||||
}
|
||||
|
||||
static bool compute_imatrix(llama_context * ctx, const gpt_params & params) {
|
||||
static bool compute_imatrix(llama_context * ctx, const common_params & params) {
|
||||
const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
|
||||
GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx)));
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
@@ -436,7 +436,7 @@ static bool compute_imatrix(llama_context * ctx, const gpt_params & params) {
|
||||
auto tim1 = std::chrono::high_resolution_clock::now();
|
||||
LOG_INF("%s: tokenizing the input ..\n", __func__);
|
||||
|
||||
std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, true);
|
||||
std::vector<llama_token> tokens = common_tokenize(ctx, params.prompt, true);
|
||||
|
||||
auto tim2 = std::chrono::high_resolution_clock::now();
|
||||
LOG_INF("%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());
|
||||
@@ -496,6 +496,8 @@ static bool compute_imatrix(llama_context * ctx, const gpt_params & params) {
|
||||
// clear the KV cache
|
||||
llama_kv_cache_clear(ctx);
|
||||
|
||||
llama_batch batch = llama_batch_init(n_batch, 0, 1);
|
||||
|
||||
for (int j = 0; j < num_batches; ++j) {
|
||||
const int batch_start = start + j * n_batch;
|
||||
const int batch_size = std::min(end - batch_start, n_batch);
|
||||
@@ -508,9 +510,14 @@ static bool compute_imatrix(llama_context * ctx, const gpt_params & params) {
|
||||
tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
|
||||
}
|
||||
|
||||
// TODO: use batch.logits to save computations instead of relying on logits_all == true
|
||||
if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
|
||||
common_batch_clear(batch);
|
||||
for (int i = 0; i < batch_size; i++) {
|
||||
common_batch_add(batch, tokens[batch_start + i], j*n_batch + i, {0}, true);
|
||||
}
|
||||
|
||||
if (llama_decode(ctx, batch)) {
|
||||
LOG_ERR("%s : failed to eval\n", __func__);
|
||||
llama_batch_free(batch);
|
||||
return false;
|
||||
}
|
||||
|
||||
@@ -523,6 +530,8 @@ static bool compute_imatrix(llama_context * ctx, const gpt_params & params) {
|
||||
}
|
||||
}
|
||||
|
||||
llama_batch_free(batch);
|
||||
|
||||
const auto t_end = std::chrono::high_resolution_clock::now();
|
||||
|
||||
if (i == 0) {
|
||||
@@ -568,17 +577,17 @@ static bool compute_imatrix(llama_context * ctx, const gpt_params & params) {
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
|
||||
params.n_ctx = 512;
|
||||
params.logits_all = true;
|
||||
params.escape = false;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_IMATRIX, print_usage)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_IMATRIX, print_usage)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
common_init();
|
||||
|
||||
params.n_batch = std::min(params.n_batch, params.n_ctx);
|
||||
|
||||
@@ -607,7 +616,7 @@ int main(int argc, char ** argv) {
|
||||
params.warmup = false;
|
||||
|
||||
// init
|
||||
llama_init_result llama_init = llama_init_from_gpt_params(params);
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
llama_model * model = llama_init.model;
|
||||
llama_context * ctx = llama_init.context;
|
||||
@@ -625,7 +634,7 @@ int main(int argc, char ** argv) {
|
||||
// print system information
|
||||
{
|
||||
LOG_INF("\n");
|
||||
LOG_INF("%s\n", gpt_params_get_system_info(params).c_str());
|
||||
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
|
||||
}
|
||||
|
||||
if (!compute_imatrix(ctx, params)) {
|
||||
|
||||
@@ -35,58 +35,14 @@
|
||||
|
||||
static llama_context ** g_ctx;
|
||||
static llama_model ** g_model;
|
||||
static gpt_sampler ** g_smpl;
|
||||
static gpt_params * g_params;
|
||||
static common_sampler ** g_smpl;
|
||||
static common_params * g_params;
|
||||
static std::vector<llama_token> * g_input_tokens;
|
||||
static std::ostringstream * g_output_ss;
|
||||
static std::vector<llama_token> * g_output_tokens;
|
||||
|
||||
static bool is_interacting = false;
|
||||
|
||||
static void write_logfile(
|
||||
const llama_context * ctx, const gpt_params & params, const llama_model * model,
|
||||
const std::vector<llama_token> & input_tokens, const std::string & output,
|
||||
const std::vector<llama_token> & output_tokens
|
||||
) {
|
||||
if (params.logdir.empty()) {
|
||||
return;
|
||||
}
|
||||
|
||||
const std::string timestamp = string_get_sortable_timestamp();
|
||||
|
||||
const bool success = fs_create_directory_with_parents(params.logdir);
|
||||
if (!success) {
|
||||
LOG_ERR("%s: warning: failed to create logdir %s, cannot write logfile\n",
|
||||
__func__, params.logdir.c_str());
|
||||
return;
|
||||
}
|
||||
|
||||
const std::string logfile_path = params.logdir + timestamp + ".yml";
|
||||
FILE * logfile = fopen(logfile_path.c_str(), "w");
|
||||
|
||||
if (logfile == NULL) {
|
||||
LOG_ERR("%s: failed to open logfile %s\n", __func__, logfile_path.c_str());
|
||||
return;
|
||||
}
|
||||
|
||||
fprintf(logfile, "binary: infill\n");
|
||||
char model_desc[128];
|
||||
llama_model_desc(model, model_desc, sizeof(model_desc));
|
||||
yaml_dump_non_result_info(logfile, params, ctx, timestamp, input_tokens, model_desc);
|
||||
|
||||
fprintf(logfile, "\n");
|
||||
fprintf(logfile, "######################\n");
|
||||
fprintf(logfile, "# Generation Results #\n");
|
||||
fprintf(logfile, "######################\n");
|
||||
fprintf(logfile, "\n");
|
||||
|
||||
yaml_dump_string_multiline(logfile, "output", output.c_str());
|
||||
yaml_dump_vector_int(logfile, "output_tokens", output_tokens);
|
||||
|
||||
llama_perf_dump_yaml(logfile, ctx);
|
||||
fclose(logfile);
|
||||
}
|
||||
|
||||
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
|
||||
static void sigint_handler(int signo) {
|
||||
if (signo == SIGINT) {
|
||||
@@ -95,12 +51,11 @@ static void sigint_handler(int signo) {
|
||||
} else {
|
||||
console::cleanup();
|
||||
LOG("\n");
|
||||
gpt_perf_print(*g_ctx, *g_smpl);
|
||||
write_logfile(*g_ctx, *g_params, *g_model, *g_input_tokens, g_output_ss->str(), *g_output_tokens);
|
||||
common_perf_print(*g_ctx, *g_smpl);
|
||||
|
||||
// make sure all logs are flushed
|
||||
LOG("Interrupted by user\n");
|
||||
gpt_log_pause(gpt_log_main());
|
||||
common_log_pause(common_log_main());
|
||||
|
||||
_exit(130);
|
||||
}
|
||||
@@ -109,14 +64,14 @@ static void sigint_handler(int signo) {
|
||||
#endif
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
g_params = ¶ms;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_INFILL)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_INFILL)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
common_init();
|
||||
|
||||
auto & sparams = params.sparams;
|
||||
|
||||
@@ -166,7 +121,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
llama_model * model = nullptr;
|
||||
llama_context * ctx = nullptr;
|
||||
gpt_sampler * smpl = nullptr;
|
||||
common_sampler * smpl = nullptr;
|
||||
|
||||
g_model = &model;
|
||||
g_ctx = &ctx;
|
||||
@@ -174,7 +129,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// load the model and apply lora adapter, if any
|
||||
LOG_INF("%s: load the model and apply lora adapter, if any\n", __func__);
|
||||
llama_init_result llama_init = llama_init_from_gpt_params(params);
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
model = llama_init.model;
|
||||
ctx = llama_init.context;
|
||||
@@ -195,21 +150,21 @@ int main(int argc, char ** argv) {
|
||||
// print system information
|
||||
{
|
||||
LOG_INF("\n");
|
||||
LOG_INF("%s\n", gpt_params_get_system_info(params).c_str());
|
||||
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
|
||||
}
|
||||
const bool add_bos = llama_add_bos_token(model);
|
||||
GGML_ASSERT(!llama_add_eos_token(model));
|
||||
|
||||
std::vector<llama_token> embd_inp;
|
||||
std::vector<llama_token> embd_end;
|
||||
std::vector<llama_token> inp_pfx = ::llama_tokenize(ctx, params.input_prefix, false);
|
||||
std::vector<llama_token> inp_sfx = ::llama_tokenize(ctx, params.input_suffix, false);
|
||||
std::vector<llama_token> inp_pfx = common_tokenize(ctx, params.input_prefix, false);
|
||||
std::vector<llama_token> inp_sfx = common_tokenize(ctx, params.input_suffix, false);
|
||||
|
||||
GGML_ASSERT(llama_token_prefix(model) >= 0);
|
||||
GGML_ASSERT(llama_token_suffix(model) >= 0);
|
||||
GGML_ASSERT(llama_token_fim_pre(model) >= 0);
|
||||
GGML_ASSERT(llama_token_fim_suf(model) >= 0);
|
||||
|
||||
inp_pfx.insert(inp_pfx.begin(), llama_token_prefix(model));
|
||||
inp_sfx.insert(inp_sfx.begin(), llama_token_suffix(model));
|
||||
inp_pfx.insert(inp_pfx.begin(), llama_token_fim_pre(model));
|
||||
inp_sfx.insert(inp_sfx.begin(), llama_token_fim_suf(model));
|
||||
|
||||
embd_inp = params.spm_infill ? inp_sfx : inp_pfx;
|
||||
embd_end = params.spm_infill ? inp_pfx : inp_sfx;
|
||||
@@ -218,7 +173,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end());
|
||||
|
||||
const llama_token middle_token = llama_token_middle(model);
|
||||
const llama_token middle_token = llama_token_fim_mid(model);
|
||||
if (middle_token >= 0) {
|
||||
embd_inp.push_back(middle_token);
|
||||
}
|
||||
@@ -257,13 +212,13 @@ int main(int argc, char ** argv) {
|
||||
LOG_INF("%s: prompt: '%s'\n", __func__, params.prompt.c_str());
|
||||
LOG_INF("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
|
||||
for (int i = 0; i < (int) embd_inp.size(); i++) {
|
||||
LOG_INF("%6d -> '%s'\n", embd_inp[i], llama_token_to_piece(ctx, embd_inp[i]).c_str());
|
||||
LOG_INF("%6d -> '%s'\n", embd_inp[i], common_token_to_piece(ctx, embd_inp[i]).c_str());
|
||||
}
|
||||
|
||||
if (params.n_keep > 0) {
|
||||
LOG_INF("%s: static prompt based on n_keep: '", __func__);
|
||||
for (int i = 0; i < params.n_keep; i++) {
|
||||
LOG_CNT("%s", llama_token_to_piece(ctx, embd_inp[i]).c_str());
|
||||
LOG_CNT("%s", common_token_to_piece(ctx, embd_inp[i]).c_str());
|
||||
}
|
||||
LOG_CNT("'\n");
|
||||
}
|
||||
@@ -298,11 +253,11 @@ int main(int argc, char ** argv) {
|
||||
LOG_INF("Input suffix: '%s'\n", params.input_suffix.c_str());
|
||||
}
|
||||
}
|
||||
smpl = gpt_sampler_init(model, sparams);
|
||||
smpl = common_sampler_init(model, sparams);
|
||||
|
||||
LOG_INF("sampler seed: %u\n", gpt_sampler_get_seed(smpl));
|
||||
LOG_INF("sampler seed: %u\n", common_sampler_get_seed(smpl));
|
||||
LOG_INF("sampler params: \n%s\n", sparams.print().c_str());
|
||||
LOG_INF("sampler chain: %s\n", gpt_sampler_print(smpl).c_str());
|
||||
LOG_INF("sampler chain: %s\n", common_sampler_print(smpl).c_str());
|
||||
|
||||
LOG_INF("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
||||
|
||||
@@ -396,7 +351,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
LOG_DBG("eval: %s\n", string_from(ctx, embd).c_str());
|
||||
|
||||
if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval, n_past, 0))) {
|
||||
if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval))) {
|
||||
LOG_ERR("%s : failed to eval\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
@@ -411,9 +366,9 @@ int main(int argc, char ** argv) {
|
||||
embd.clear();
|
||||
|
||||
if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
|
||||
const llama_token id = gpt_sampler_sample(smpl, ctx, -1);
|
||||
const llama_token id = common_sampler_sample(smpl, ctx, -1);
|
||||
|
||||
gpt_sampler_accept(smpl, id, true);
|
||||
common_sampler_accept(smpl, id, true);
|
||||
|
||||
// LOG_DBG("last: %s\n", string_from(ctx, smpl->prev.to_vector()).c_str());
|
||||
|
||||
@@ -434,7 +389,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// push the prompt in the sampling context in order to apply repetition penalties later
|
||||
// for the prompt, we don't apply grammar rules
|
||||
gpt_sampler_accept(smpl, embd_inp[n_consumed], false);
|
||||
common_sampler_accept(smpl, embd_inp[n_consumed], false);
|
||||
|
||||
++n_consumed;
|
||||
if ((int) embd.size() >= params.n_batch) {
|
||||
@@ -446,7 +401,7 @@ int main(int argc, char ** argv) {
|
||||
// display text
|
||||
if (input_echo) {
|
||||
for (auto id : embd) {
|
||||
const std::string token_str = llama_token_to_piece(ctx, id);
|
||||
const std::string token_str = common_token_to_piece(ctx, id);
|
||||
LOG("%s", token_str.c_str());
|
||||
|
||||
if (embd.size() > 1) {
|
||||
@@ -465,10 +420,10 @@ int main(int argc, char ** argv) {
|
||||
// if not currently processing queued inputs;
|
||||
if ((int) embd_inp.size() <= n_consumed) {
|
||||
// deal with eot token in infill mode
|
||||
if ((gpt_sampler_last(smpl) == llama_token_eot(model) || is_interacting) && params.interactive){
|
||||
if ((common_sampler_last(smpl) == llama_token_eot(model) || is_interacting) && params.interactive){
|
||||
if (is_interacting && !params.interactive_first) {
|
||||
// print an eot token
|
||||
LOG("%s", llama_token_to_piece(ctx, llama_token_eot(model)).c_str());
|
||||
LOG("%s", common_token_to_piece(ctx, llama_token_eot(model)).c_str());
|
||||
}
|
||||
LOG("\n");
|
||||
console::set_display(console::user_input);
|
||||
@@ -505,11 +460,11 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// tokenize new prefix and suffix
|
||||
std::vector<llama_token> inp_pfx = ::llama_tokenize(ctx, params.input_prefix, false);
|
||||
std::vector<llama_token> inp_sfx = ::llama_tokenize(ctx, params.input_suffix, false);
|
||||
std::vector<llama_token> inp_pfx = common_tokenize(ctx, params.input_prefix, false);
|
||||
std::vector<llama_token> inp_sfx = common_tokenize(ctx, params.input_suffix, false);
|
||||
|
||||
inp_pfx.insert(inp_pfx.begin(), llama_token_prefix(model));
|
||||
inp_sfx.insert(inp_sfx.begin(), llama_token_suffix(model));
|
||||
inp_pfx.insert(inp_pfx.begin(), llama_token_fim_pre(model));
|
||||
inp_sfx.insert(inp_sfx.begin(), llama_token_fim_suf(model));
|
||||
|
||||
embd_inp = params.spm_infill ? inp_sfx : inp_pfx;
|
||||
embd_end = params.spm_infill ? inp_pfx : inp_sfx;
|
||||
@@ -529,7 +484,7 @@ int main(int argc, char ** argv) {
|
||||
is_interacting = false;
|
||||
}
|
||||
// deal with end of generation tokens in interactive mode
|
||||
else if (llama_token_is_eog(model, gpt_sampler_last(smpl))) {
|
||||
else if (llama_token_is_eog(model, common_sampler_last(smpl))) {
|
||||
LOG_DBG("found EOS token\n");
|
||||
|
||||
if (params.interactive) {
|
||||
@@ -579,7 +534,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
const size_t original_size = embd_inp.size();
|
||||
|
||||
const auto line_inp = ::llama_tokenize(ctx, buffer, false);
|
||||
const auto line_inp = common_tokenize(ctx, buffer, false);
|
||||
LOG_DBG("input tokens: %s\n", string_from(ctx, line_inp).c_str());
|
||||
|
||||
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
|
||||
@@ -587,7 +542,7 @@ int main(int argc, char ** argv) {
|
||||
for (size_t i = original_size; i < embd_inp.size(); ++i) {
|
||||
const llama_token token = embd_inp[i];
|
||||
output_tokens.push_back(token);
|
||||
output_ss << llama_token_to_piece(ctx, token);
|
||||
output_ss << common_token_to_piece(ctx, token);
|
||||
}
|
||||
|
||||
n_remain -= line_inp.size();
|
||||
@@ -601,7 +556,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
if (n_past > 0) {
|
||||
if (is_interacting) {
|
||||
gpt_sampler_reset(smpl);
|
||||
common_sampler_reset(smpl);
|
||||
}
|
||||
is_interacting = false;
|
||||
}
|
||||
@@ -620,17 +575,16 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
if (!params.interactive && n_remain <= 0) {
|
||||
LOG("%s", llama_token_to_piece(ctx, llama_token_eot(model)).c_str());
|
||||
LOG("%s", common_token_to_piece(ctx, llama_token_eot(model)).c_str());
|
||||
}
|
||||
|
||||
LOG("\n");
|
||||
gpt_perf_print(ctx, smpl);
|
||||
write_logfile(ctx, params, model, input_tokens, output_ss.str(), output_tokens);
|
||||
common_perf_print(ctx, smpl);
|
||||
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
||||
gpt_sampler_free(smpl);
|
||||
common_sampler_free(smpl);
|
||||
llama_backend_free();
|
||||
|
||||
return 0;
|
||||
|
||||
@@ -540,7 +540,7 @@ class SchemaConverter:
|
||||
return self._add_rule(
|
||||
name,
|
||||
to_rule(transform()) if self._raw_pattern \
|
||||
else "\"\\\"\" " + to_rule(transform()) + " \"\\\"\" space")
|
||||
else "\"\\\"\" (" + to_rule(transform()) + ") \"\\\"\" space")
|
||||
|
||||
|
||||
def _resolve_ref(self, ref):
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -18,6 +18,7 @@ android {
|
||||
}
|
||||
externalNativeBuild {
|
||||
cmake {
|
||||
arguments += "-DLLAMA_BUILD_COMMON=ON"
|
||||
arguments += "-DCMAKE_BUILD_TYPE=Release"
|
||||
cppFlags += listOf()
|
||||
arguments += listOf()
|
||||
|
||||
@@ -186,11 +186,11 @@ Java_android_llama_cpp_LLamaAndroid_bench_1model(
|
||||
for (nri = 0; nri < nr; nri++) {
|
||||
LOGi("Benchmark prompt processing (pp)");
|
||||
|
||||
llama_batch_clear(*batch);
|
||||
common_batch_clear(*batch);
|
||||
|
||||
const int n_tokens = pp;
|
||||
for (i = 0; i < n_tokens; i++) {
|
||||
llama_batch_add(*batch, 0, i, { 0 }, false);
|
||||
common_batch_add(*batch, 0, i, { 0 }, false);
|
||||
}
|
||||
|
||||
batch->logits[batch->n_tokens - 1] = true;
|
||||
@@ -210,9 +210,9 @@ Java_android_llama_cpp_LLamaAndroid_bench_1model(
|
||||
const auto t_tg_start = ggml_time_us();
|
||||
for (i = 0; i < tg; i++) {
|
||||
|
||||
llama_batch_clear(*batch);
|
||||
common_batch_clear(*batch);
|
||||
for (j = 0; j < pl; j++) {
|
||||
llama_batch_add(*batch, 0, i, { j }, true);
|
||||
common_batch_add(*batch, 0, i, { j }, true);
|
||||
}
|
||||
|
||||
LOGi("llama_decode() text generation: %d", i);
|
||||
@@ -283,9 +283,6 @@ Java_android_llama_cpp_LLamaAndroid_new_1batch(JNIEnv *, jobject, jint n_tokens,
|
||||
nullptr,
|
||||
nullptr,
|
||||
nullptr,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
};
|
||||
|
||||
if (embd) {
|
||||
@@ -357,7 +354,7 @@ Java_android_llama_cpp_LLamaAndroid_completion_1init(
|
||||
const auto context = reinterpret_cast<llama_context *>(context_pointer);
|
||||
const auto batch = reinterpret_cast<llama_batch *>(batch_pointer);
|
||||
|
||||
const auto tokens_list = llama_tokenize(context, text, 1);
|
||||
const auto tokens_list = common_tokenize(context, text, 1);
|
||||
|
||||
auto n_ctx = llama_n_ctx(context);
|
||||
auto n_kv_req = tokens_list.size() + (n_len - tokens_list.size());
|
||||
@@ -369,14 +366,14 @@ Java_android_llama_cpp_LLamaAndroid_completion_1init(
|
||||
}
|
||||
|
||||
for (auto id : tokens_list) {
|
||||
LOGi("%s", llama_token_to_piece(context, id).c_str());
|
||||
LOGi("%s", common_token_to_piece(context, id).c_str());
|
||||
}
|
||||
|
||||
llama_batch_clear(*batch);
|
||||
common_batch_clear(*batch);
|
||||
|
||||
// evaluate the initial prompt
|
||||
for (auto i = 0; i < tokens_list.size(); i++) {
|
||||
llama_batch_add(*batch, tokens_list[i], i, { 0 }, false);
|
||||
common_batch_add(*batch, tokens_list[i], i, { 0 }, false);
|
||||
}
|
||||
|
||||
// llama_decode will output logits only for the last token of the prompt
|
||||
@@ -419,7 +416,7 @@ Java_android_llama_cpp_LLamaAndroid_completion_1loop(
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
auto new_token_chars = llama_token_to_piece(context, new_token_id);
|
||||
auto new_token_chars = common_token_to_piece(context, new_token_id);
|
||||
cached_token_chars += new_token_chars;
|
||||
|
||||
jstring new_token = nullptr;
|
||||
@@ -431,8 +428,8 @@ Java_android_llama_cpp_LLamaAndroid_completion_1loop(
|
||||
new_token = env->NewStringUTF("");
|
||||
}
|
||||
|
||||
llama_batch_clear(*batch);
|
||||
llama_batch_add(*batch, new_token_id, n_cur, { 0 }, true);
|
||||
common_batch_clear(*batch);
|
||||
common_batch_add(*batch, new_token_id, n_cur, { 0 }, true);
|
||||
|
||||
env->CallVoidMethod(intvar_ncur, la_int_var_inc);
|
||||
|
||||
|
||||
@@ -46,7 +46,6 @@ actor LlamaContext {
|
||||
let sparams = llama_sampler_chain_default_params()
|
||||
self.sampling = llama_sampler_chain_init(sparams)
|
||||
llama_sampler_chain_add(self.sampling, llama_sampler_init_temp(0.4))
|
||||
llama_sampler_chain_add(self.sampling, llama_sampler_init_softmax())
|
||||
llama_sampler_chain_add(self.sampling, llama_sampler_init_dist(1234))
|
||||
}
|
||||
|
||||
|
||||
@@ -1,135 +1,783 @@
|
||||
" Requires an already running llama.cpp server
|
||||
" To install either copy or symlink to ~/.vim/autoload/llama.vim
|
||||
" Then start with either :call llama#doLlamaGen(),
|
||||
" or add a keybind to your vimrc such as
|
||||
" nnoremap Z :call llama#doLlamaGen()<CR>
|
||||
" Similarly, you could add an insert mode keybind with
|
||||
" inoremap <C-B> <Cmd>call llama#doLlamaGen()<CR>
|
||||
" LLM-based text completion using llama.cpp
|
||||
"
|
||||
" g:llama_api_url, g:llama_api_key and g:llama_overrides can be configured in your .vimrc
|
||||
" let g:llama_api_url = "192.168.1.10:8080"
|
||||
" llama_overrides can also be set through buffer/window scopes. For instance
|
||||
" autocmd filetype python let b:llama_overrides = {"temp": 0.2}
|
||||
" Could be added to your .vimrc to automatically set a lower temperature when
|
||||
" editing a python script
|
||||
" Additionally, an override dict can be stored at the top of a file
|
||||
" !*{"stop": ["User:"]}
|
||||
" Could be added to the start of your chatlog.txt to set the stopping token
|
||||
" These parameter dicts are merged together from lowest to highest priority:
|
||||
" server default -> g:llama_overrides -> w:llama_overrides ->
|
||||
" b:llama_overrides -> in file (!*) overrides
|
||||
" requires:
|
||||
"
|
||||
" - neovim or vim
|
||||
" - curl
|
||||
" - llama.cpp server instance
|
||||
" - FIM-compatible model
|
||||
"
|
||||
" sample config:
|
||||
"
|
||||
" - Tab - accept the current suggestion
|
||||
" - Shift+Tab - accept just the first line of the suggestion
|
||||
" - Ctrl+F - toggle FIM completion manually
|
||||
"
|
||||
" make symlink or copy this file to ~/.config/nvim/autoload/llama.vim
|
||||
"
|
||||
" start the llama.cpp server with a FIM-compatible model. for example:
|
||||
"
|
||||
" $ llama-server -m {model.gguf} --port 8012 -ngl 99 -fa -dt 0.1 --ubatch-size 512 --batch-size 1024 --cache-reuse 256
|
||||
"
|
||||
" --batch-size [512, model max context]
|
||||
"
|
||||
" adjust the batch size to control how much of the provided local context will be used during the inference
|
||||
" lower values will use smaller part of the context around the cursor, which will result in faster processing
|
||||
"
|
||||
" --ubatch-size [64, 2048]
|
||||
"
|
||||
" chunks the batch into smaller chunks for faster processing
|
||||
" depends on the specific hardware. use llama-bench to profile and determine the best size
|
||||
"
|
||||
" --cache-reuse (ge:llama_config.n_predict, 1024]
|
||||
"
|
||||
" this should be either 0 (disabled) or strictly larger than g:llama_config.n_predict
|
||||
" using non-zero value enables context reuse on the server side which dramatically improves the performance at
|
||||
" large contexts. a value of 256 should be good for all cases
|
||||
"
|
||||
" run this once to initialise llama.vim:
|
||||
"
|
||||
" :call llama#init()
|
||||
"
|
||||
" more info: https://github.com/ggerganov/llama.cpp/pull/9787
|
||||
"
|
||||
" Sublists (like logit_bias and stop) are overridden, not merged
|
||||
" Example override:
|
||||
" !*{"logit_bias": [[13, -5], [2, false]], "temperature": 1, "top_k": 5, "top_p": 0.5, "n_predict": 256, "repeat_last_n": 256, "repeat_penalty": 1.17647}
|
||||
if !exists("g:llama_api_url")
|
||||
let g:llama_api_url= "127.0.0.1:8080"
|
||||
endif
|
||||
if !exists("g:llama_overrides")
|
||||
let g:llama_overrides = {}
|
||||
endif
|
||||
const s:querydata = {"n_predict": 256, "stop": [ "\n" ], "stream": v:true }
|
||||
const s:curlcommand = ['curl','--data-raw', "{\"prompt\":\"### System:\"}", '--silent', '--no-buffer', '--request', 'POST', '--url', g:llama_api_url .. '/completion', '--header', "Content-Type: application/json"]
|
||||
let s:linedict = {}
|
||||
|
||||
func s:callbackHandler(bufn, channel, msg)
|
||||
if len(a:msg) < 3
|
||||
return
|
||||
elseif a:msg[0] == "d"
|
||||
let l:msg = a:msg[6:-1]
|
||||
else
|
||||
let l:msg = a:msg
|
||||
endif
|
||||
let l:decoded_msg = json_decode(l:msg)
|
||||
let l:newtext = split(l:decoded_msg['content'], "\n", 1)
|
||||
if len(l:newtext) > 0
|
||||
call setbufline(a:bufn, s:linedict[a:bufn], getbufline(a:bufn, s:linedict[a:bufn])[0] .. newtext[0])
|
||||
else
|
||||
echo "nothing genned"
|
||||
endif
|
||||
if len(newtext) > 1
|
||||
let l:failed = appendbufline(a:bufn, s:linedict[a:bufn], newtext[1:-1])
|
||||
let s:linedict[a:bufn] = s:linedict[a:bufn] + len(newtext)-1
|
||||
endif
|
||||
if has_key(l:decoded_msg, "stop") && l:decoded_msg.stop
|
||||
echo "Finished generation"
|
||||
endif
|
||||
endfunction
|
||||
" colors (adjust to your liking)
|
||||
highlight llama_hl_hint guifg=#ff772f ctermfg=202
|
||||
highlight llama_hl_info guifg=#77ff2f ctermfg=119
|
||||
|
||||
func llama#doLlamaGen()
|
||||
if exists("b:job")
|
||||
if job_status(b:job) == "run"
|
||||
call job_stop(b:job)
|
||||
return
|
||||
endif
|
||||
endif
|
||||
" general parameters:
|
||||
"
|
||||
" endpoint: llama.cpp server endpoint
|
||||
" n_prefix: number of lines before the cursor location to include in the local prefix
|
||||
" n_suffix: number of lines after the cursor location to include in the local suffix
|
||||
" n_predict: max number of tokens to predict
|
||||
" t_max_prompt_ms: max alloted time for the prompt processing (TODO: not yet supported)
|
||||
" t_max_predict_ms: max alloted time for the prediction
|
||||
" show_info: show extra info about the inference (0 - disabled, 1 - statusline, 2 - inline)
|
||||
" auto_fim: trigger FIM completion automatically on cursor movement
|
||||
" max_line_suffix: do not auto-trigger FIM completion if there are more than this number of characters to the right of the cursor
|
||||
"
|
||||
" ring buffer of chunks, accumulated with time upon:
|
||||
"
|
||||
" - completion request
|
||||
" - yank
|
||||
" - entering a buffer
|
||||
" - leaving a buffer
|
||||
" - writing a file
|
||||
"
|
||||
" parameters for the ring-buffer with extra context:
|
||||
"
|
||||
" ring_n_chunks: max number of chunks to pass as extra context to the server (0 to disable)
|
||||
" ring_chunk_size: max size of the chunks (in number of lines)
|
||||
" note: adjust these numbers so that you don't overrun your context
|
||||
" at ring_n_chunks = 64 and ring_chunk_size = 64 you need ~32k context
|
||||
" ring_scope: the range around the cursor position (in number of lines) for gathering chunks after FIM
|
||||
" ring_update_ms: how often to process queued chunks in normal mode
|
||||
"
|
||||
let s:default_config = {
|
||||
\ 'endpoint': 'http://127.0.0.1:8012/infill',
|
||||
\ 'n_prefix': 256,
|
||||
\ 'n_suffix': 64,
|
||||
\ 'n_predict': 128,
|
||||
\ 't_max_prompt_ms': 500,
|
||||
\ 't_max_predict_ms': 3000,
|
||||
\ 'show_info': 2,
|
||||
\ 'auto_fim': v:true,
|
||||
\ 'max_line_suffix': 8,
|
||||
\ 'ring_n_chunks': 64,
|
||||
\ 'ring_chunk_size': 64,
|
||||
\ 'ring_scope': 1024,
|
||||
\ 'ring_update_ms': 1000,
|
||||
\ }
|
||||
|
||||
let l:cbuffer = bufnr("%")
|
||||
let s:linedict[l:cbuffer] = line('$')
|
||||
let l:buflines = getbufline(l:cbuffer, 1, 1000)
|
||||
let l:querydata = copy(s:querydata)
|
||||
call extend(l:querydata, g:llama_overrides)
|
||||
if exists("w:llama_overrides")
|
||||
call extend(l:querydata, w:llama_overrides)
|
||||
endif
|
||||
if exists("b:llama_overrides")
|
||||
call extend(l:querydata, b:llama_overrides)
|
||||
endif
|
||||
if l:buflines[0][0:1] == '!*'
|
||||
let l:userdata = json_decode(l:buflines[0][2:-1])
|
||||
call extend(l:querydata, l:userdata)
|
||||
let l:buflines = l:buflines[1:-1]
|
||||
endif
|
||||
let l:querydata.prompt = join(l:buflines, "\n")
|
||||
let l:curlcommand = copy(s:curlcommand)
|
||||
if exists("g:llama_api_key")
|
||||
call extend(l:curlcommand, ['--header', 'Authorization: Bearer ' .. g:llama_api_key])
|
||||
endif
|
||||
let l:curlcommand[2] = json_encode(l:querydata)
|
||||
let b:job = job_start(l:curlcommand, {"callback": function("s:callbackHandler", [l:cbuffer])})
|
||||
endfunction
|
||||
let g:llama_config = get(g:, 'llama_config', s:default_config)
|
||||
|
||||
" Echos the tokkenization of the provided string , or cursor to end of word
|
||||
" Onus is placed on the user to include the preceding space
|
||||
func llama#tokenizeWord(...)
|
||||
if (a:0 > 0)
|
||||
let l:input = a:1
|
||||
else
|
||||
exe "normal \"*ye"
|
||||
let l:input = @*
|
||||
endif
|
||||
let l:querydata = {"content": l:input}
|
||||
let l:curlcommand = copy(s:curlcommand)
|
||||
let l:curlcommand[2] = json_encode(l:querydata)
|
||||
let l:curlcommand[8] = g:llama_api_url .. "/tokenize"
|
||||
let s:token_job = job_start(l:curlcommand, {"callback": function("s:tokenizeWordCallback", [l:input])})
|
||||
endfunction
|
||||
|
||||
func s:tokenizeWordCallback(plaintext, channel, msg)
|
||||
echo '"' .. a:plaintext ..'" - ' .. string(json_decode(a:msg).tokens)
|
||||
endfunction
|
||||
|
||||
|
||||
" Echos the token count of the entire buffer (or provided string)
|
||||
" Example usage :echo llama#tokenCount()
|
||||
func llama#tokenCount(...)
|
||||
if (a:0 > 0)
|
||||
let l:buflines = a:1
|
||||
else
|
||||
let l:buflines = getline(1,1000)
|
||||
if l:buflines[0][0:1] == '!*'
|
||||
let l:buflines = l:buflines[1:-1]
|
||||
function! s:get_indent(str)
|
||||
let l:count = 0
|
||||
for i in range(len(a:str))
|
||||
if a:str[i] == "\t"
|
||||
let l:count += &tabstop - 1
|
||||
else
|
||||
break
|
||||
endif
|
||||
let l:buflines = join(l:buflines, "\n")
|
||||
endif
|
||||
let l:querydata = {"content": l:buflines}
|
||||
let l:curlcommand = copy(s:curlcommand)
|
||||
let l:curlcommand[2] = json_encode(l:querydata)
|
||||
let l:curlcommand[8] = g:llama_api_url .. "/tokenize"
|
||||
let s:token_job = job_start(l:curlcommand, {"callback": "s:tokenCountCallback"})
|
||||
endfor
|
||||
return l:count
|
||||
endfunction
|
||||
|
||||
func s:tokenCountCallback(channel, msg)
|
||||
let resp = json_decode(a:msg)
|
||||
echo len(resp.tokens)
|
||||
function! s:rand(i0, i1) abort
|
||||
return a:i0 + rand() % (a:i1 - a:i0 + 1)
|
||||
endfunction
|
||||
|
||||
function! llama#init()
|
||||
if !executable('curl')
|
||||
echohl WarningMsg
|
||||
echo 'llama.vim requires the "curl" command to be available'
|
||||
echohl None
|
||||
return
|
||||
endif
|
||||
|
||||
let s:pos_x = 0 " cursor position upon start of completion
|
||||
let s:pos_y = 0
|
||||
|
||||
let s:line_cur = ''
|
||||
|
||||
let s:line_cur_prefix = ''
|
||||
let s:line_cur_suffix = ''
|
||||
|
||||
let s:ring_chunks = [] " current set of chunks used as extra context
|
||||
let s:ring_queued = [] " chunks that are queued to be sent for processing
|
||||
let s:ring_n_evict = 0
|
||||
|
||||
let s:hint_shown = v:false
|
||||
let s:pos_y_pick = -9999 " last y where we picked a chunk
|
||||
let s:pos_dx = 0
|
||||
let s:content = []
|
||||
let s:can_accept = v:false
|
||||
|
||||
let s:timer_fim = -1
|
||||
let s:t_fim_start = reltime() " used to measure total FIM time
|
||||
let s:t_last_move = reltime() " last time the cursor moved
|
||||
|
||||
let s:current_job = v:null
|
||||
|
||||
let s:ghost_text_nvim = exists('*nvim_buf_get_mark')
|
||||
let s:ghost_text_vim = has('textprop')
|
||||
|
||||
if s:ghost_text_vim
|
||||
let s:hlgroup_hint = 'llama_hl_hint'
|
||||
let s:hlgroup_info = 'llama_hl_info'
|
||||
|
||||
if empty(prop_type_get(s:hlgroup_hint))
|
||||
call prop_type_add(s:hlgroup_hint, {'highlight': s:hlgroup_hint})
|
||||
endif
|
||||
if empty(prop_type_get(s:hlgroup_info))
|
||||
call prop_type_add(s:hlgroup_info, {'highlight': s:hlgroup_info})
|
||||
endif
|
||||
endif
|
||||
|
||||
augroup llama
|
||||
autocmd!
|
||||
autocmd InsertEnter * inoremap <expr> <silent> <C-F> llama#fim_inline(v:false)
|
||||
autocmd InsertLeavePre * call llama#fim_cancel()
|
||||
|
||||
autocmd CursorMoved * call s:on_move()
|
||||
autocmd CursorMovedI * call s:on_move()
|
||||
autocmd CompleteChanged * call llama#fim_cancel()
|
||||
|
||||
if g:llama_config.auto_fim
|
||||
autocmd CursorMovedI * call llama#fim(v:true)
|
||||
endif
|
||||
|
||||
" gather chunks upon yanking
|
||||
autocmd TextYankPost * if v:event.operator ==# 'y' | call s:pick_chunk(v:event.regcontents, v:false, v:true) | endif
|
||||
|
||||
" gather chunks upon entering/leaving a buffer
|
||||
autocmd BufEnter * call timer_start(100, {-> s:pick_chunk(getline(max([1, line('.') - g:llama_config.ring_chunk_size/2]), min([line('.') + g:llama_config.ring_chunk_size/2, line('$')])), v:true, v:true)})
|
||||
autocmd BufLeave * call s:pick_chunk(getline(max([1, line('.') - g:llama_config.ring_chunk_size/2]), min([line('.') + g:llama_config.ring_chunk_size/2, line('$')])), v:true, v:true)
|
||||
|
||||
" gather chunk upon saving the file
|
||||
autocmd BufWritePost * call s:pick_chunk(getline(max([1, line('.') - g:llama_config.ring_chunk_size/2]), min([line('.') + g:llama_config.ring_chunk_size/2, line('$')])), v:true, v:true)
|
||||
augroup END
|
||||
|
||||
silent! call llama#fim_cancel()
|
||||
|
||||
" init background update of the ring buffer
|
||||
if g:llama_config.ring_n_chunks > 0
|
||||
call s:ring_update()
|
||||
endif
|
||||
endfunction
|
||||
|
||||
" compute how similar two chunks of text are
|
||||
" 0 - no similarity, 1 - high similarity
|
||||
" TODO: figure out something better
|
||||
function! s:chunk_sim(c0, c1)
|
||||
let l:lines0 = len(a:c0)
|
||||
let l:lines1 = len(a:c1)
|
||||
|
||||
let l:common = 0
|
||||
|
||||
for l:line0 in a:c0
|
||||
for l:line1 in a:c1
|
||||
if l:line0 == l:line1
|
||||
let l:common += 1
|
||||
break
|
||||
endif
|
||||
endfor
|
||||
endfor
|
||||
|
||||
return 2.0 * l:common / (l:lines0 + l:lines1)
|
||||
endfunction
|
||||
|
||||
" pick a random chunk of size g:llama_config.ring_chunk_size from the provided text and queue it for processing
|
||||
"
|
||||
" no_mod - do not pick chunks from buffers with pending changes
|
||||
" do_evict - evict chunks that are very similar to the new one
|
||||
"
|
||||
function! s:pick_chunk(text, no_mod, do_evict)
|
||||
" do not pick chunks from buffers with pending changes or buffers that are not files
|
||||
if a:no_mod && (getbufvar(bufnr('%'), '&modified') || !buflisted(bufnr('%')) || !filereadable(expand('%')))
|
||||
return
|
||||
endif
|
||||
|
||||
" if the extra context option is disabled - do nothing
|
||||
if g:llama_config.ring_n_chunks <= 0
|
||||
return
|
||||
endif
|
||||
|
||||
" don't pick very small chunks
|
||||
if len(a:text) < 3
|
||||
return
|
||||
endif
|
||||
|
||||
if len(a:text) + 1 < g:llama_config.ring_chunk_size
|
||||
let l:chunk = a:text
|
||||
else
|
||||
let l:l0 = s:rand(0, max([0, len(a:text) - g:llama_config.ring_chunk_size/2]))
|
||||
let l:l1 = min([l:l0 + g:llama_config.ring_chunk_size/2, len(a:text)])
|
||||
|
||||
let l:chunk = a:text[l:l0:l:l1]
|
||||
endif
|
||||
|
||||
let l:chunk_str = join(l:chunk, "\n") . "\n"
|
||||
|
||||
" check if this chunk is already added
|
||||
let l:exist = v:false
|
||||
|
||||
for i in range(len(s:ring_chunks))
|
||||
if s:ring_chunks[i].data == l:chunk
|
||||
let l:exist = v:true
|
||||
break
|
||||
endif
|
||||
endfor
|
||||
|
||||
for i in range(len(s:ring_queued))
|
||||
if s:ring_queued[i].data == l:chunk
|
||||
let l:exist = v:true
|
||||
break
|
||||
endif
|
||||
endfor
|
||||
|
||||
if l:exist
|
||||
return
|
||||
endif
|
||||
|
||||
" evict queued chunks that are very similar to the new one
|
||||
for i in range(len(s:ring_queued) - 1, 0, -1)
|
||||
if s:chunk_sim(s:ring_queued[i].data, l:chunk) > 0.9
|
||||
if a:do_evict
|
||||
call remove(s:ring_queued, i)
|
||||
let s:ring_n_evict += 1
|
||||
else
|
||||
return
|
||||
endif
|
||||
endif
|
||||
endfor
|
||||
|
||||
" also from s:ring_chunks
|
||||
for i in range(len(s:ring_chunks) - 1, 0, -1)
|
||||
if s:chunk_sim(s:ring_chunks[i].data, l:chunk) > 0.9
|
||||
if a:do_evict
|
||||
call remove(s:ring_chunks, i)
|
||||
let s:ring_n_evict += 1
|
||||
else
|
||||
return
|
||||
endif
|
||||
endif
|
||||
endfor
|
||||
|
||||
" TODO: become parameter ?
|
||||
if len(s:ring_queued) == 16
|
||||
call remove(s:ring_queued, 0)
|
||||
endif
|
||||
|
||||
call add(s:ring_queued, {'data': l:chunk, 'str': l:chunk_str, 'time': reltime(), 'filename': expand('%')})
|
||||
|
||||
"let &statusline = 'extra context: ' . len(s:ring_chunks) . ' / ' . len(s:ring_queued)
|
||||
endfunction
|
||||
|
||||
" picks a queued chunk, sends it for processing and adds it to s:ring_chunks
|
||||
" called every g:llama_config.ring_update_ms
|
||||
function! s:ring_update()
|
||||
call timer_start(g:llama_config.ring_update_ms, {-> s:ring_update()})
|
||||
|
||||
" update only if in normal mode or if the cursor hasn't moved for a while
|
||||
if mode() !=# 'n' && reltimefloat(reltime(s:t_last_move)) < 3.0
|
||||
return
|
||||
endif
|
||||
|
||||
if len(s:ring_queued) == 0
|
||||
return
|
||||
endif
|
||||
|
||||
" move the first queued chunk to the ring buffer
|
||||
if len(s:ring_chunks) == g:llama_config.ring_n_chunks
|
||||
call remove(s:ring_chunks, 0)
|
||||
endif
|
||||
|
||||
call add(s:ring_chunks, remove(s:ring_queued, 0))
|
||||
|
||||
"let &statusline = 'updated context: ' . len(s:ring_chunks) . ' / ' . len(s:ring_queued)
|
||||
|
||||
" send asynchronous job with the new extra context so that it is ready for the next FIM
|
||||
let l:extra_context = []
|
||||
for l:chunk in s:ring_chunks
|
||||
call add(l:extra_context, {
|
||||
\ 'text': l:chunk.str,
|
||||
\ 'time': l:chunk.time,
|
||||
\ 'filename': l:chunk.filename
|
||||
\ })
|
||||
endfor
|
||||
|
||||
" no samplers needed here
|
||||
let l:request = json_encode({
|
||||
\ 'input_prefix': "",
|
||||
\ 'input_suffix': "",
|
||||
\ 'input_extra': l:extra_context,
|
||||
\ 'prompt': "",
|
||||
\ 'n_predict': 1,
|
||||
\ 'temperature': 0.0,
|
||||
\ 'stream': v:false,
|
||||
\ 'samplers': ["temperature"],
|
||||
\ 'cache_prompt': v:true,
|
||||
\ 't_max_prompt_ms': 1,
|
||||
\ 't_max_predict_ms': 1
|
||||
\ })
|
||||
|
||||
let l:curl_command = [
|
||||
\ "curl",
|
||||
\ "--silent",
|
||||
\ "--no-buffer",
|
||||
\ "--request", "POST",
|
||||
\ "--url", g:llama_config.endpoint,
|
||||
\ "--header", "Content-Type: application/json",
|
||||
\ "--data", l:request
|
||||
\ ]
|
||||
|
||||
" no callbacks because we don't need to process the response
|
||||
if s:ghost_text_nvim
|
||||
call jobstart(l:curl_command, {})
|
||||
elseif s:ghost_text_vim
|
||||
call job_start(l:curl_command, {})
|
||||
endif
|
||||
endfunction
|
||||
|
||||
" necessary for 'inoremap <expr>'
|
||||
function! llama#fim_inline(is_auto) abort
|
||||
call llama#fim(a:is_auto)
|
||||
return ''
|
||||
endfunction
|
||||
|
||||
" the main FIM call
|
||||
" takes local context around the cursor and sends it together with the extra context to the server for completion
|
||||
function! llama#fim(is_auto) abort
|
||||
" we already have a suggestion for the current cursor position
|
||||
if s:hint_shown && !a:is_auto
|
||||
call llama#fim_cancel()
|
||||
return
|
||||
endif
|
||||
|
||||
call llama#fim_cancel()
|
||||
|
||||
" avoid sending repeated requests too fast
|
||||
if reltimefloat(reltime(s:t_fim_start)) < 0.6
|
||||
if s:timer_fim != -1
|
||||
call timer_stop(s:timer_fim)
|
||||
let s:timer_fim = -1
|
||||
endif
|
||||
|
||||
let s:t_fim_start = reltime()
|
||||
let s:timer_fim = timer_start(600, {-> llama#fim(v:true)})
|
||||
return
|
||||
endif
|
||||
|
||||
let s:t_fim_start = reltime()
|
||||
|
||||
let s:content = []
|
||||
let s:can_accept = v:false
|
||||
|
||||
let s:pos_x = col('.') - 1
|
||||
let s:pos_y = line('.')
|
||||
let l:max_y = line('$')
|
||||
|
||||
let l:lines_prefix = getline(max([1, s:pos_y - g:llama_config.n_prefix]), s:pos_y - 1)
|
||||
let l:lines_suffix = getline(s:pos_y + 1, min([l:max_y, s:pos_y + g:llama_config.n_suffix]))
|
||||
|
||||
let s:line_cur = getline('.')
|
||||
|
||||
let s:line_cur_prefix = strpart(s:line_cur, 0, s:pos_x)
|
||||
let s:line_cur_suffix = strpart(s:line_cur, s:pos_x)
|
||||
|
||||
if a:is_auto && len(s:line_cur_suffix) > g:llama_config.max_line_suffix
|
||||
return
|
||||
endif
|
||||
|
||||
let l:prefix = ""
|
||||
\ . join(l:lines_prefix, "\n")
|
||||
\ . "\n"
|
||||
|
||||
let l:prompt = ""
|
||||
\ . s:line_cur_prefix
|
||||
|
||||
let l:suffix = ""
|
||||
\ . s:line_cur_suffix
|
||||
\ . "\n"
|
||||
\ . join(l:lines_suffix, "\n")
|
||||
\ . "\n"
|
||||
|
||||
" prepare the extra context data
|
||||
let l:extra_context = []
|
||||
for l:chunk in s:ring_chunks
|
||||
call add(l:extra_context, {
|
||||
\ 'text': l:chunk.str,
|
||||
\ 'time': l:chunk.time,
|
||||
\ 'filename': l:chunk.filename
|
||||
\ })
|
||||
endfor
|
||||
|
||||
" the indentation of the current line
|
||||
let l:indent = strlen(matchstr(s:line_cur_prefix, '^\s*'))
|
||||
|
||||
let l:request = json_encode({
|
||||
\ 'input_prefix': l:prefix,
|
||||
\ 'input_suffix': l:suffix,
|
||||
\ 'input_extra': l:extra_context,
|
||||
\ 'prompt': l:prompt,
|
||||
\ 'n_predict': g:llama_config.n_predict,
|
||||
\ 'n_indent': l:indent,
|
||||
\ 'top_k': 40,
|
||||
\ 'top_p': 0.99,
|
||||
\ 'stream': v:false,
|
||||
\ 'samplers': ["top_k", "top_p", "infill"],
|
||||
\ 'cache_prompt': v:true,
|
||||
\ 't_max_prompt_ms': g:llama_config.t_max_prompt_ms,
|
||||
\ 't_max_predict_ms': g:llama_config.t_max_predict_ms
|
||||
\ })
|
||||
|
||||
let l:curl_command = [
|
||||
\ "curl",
|
||||
\ "--silent",
|
||||
\ "--no-buffer",
|
||||
\ "--request", "POST",
|
||||
\ "--url", g:llama_config.endpoint,
|
||||
\ "--header", "Content-Type: application/json",
|
||||
\ "--data", l:request
|
||||
\ ]
|
||||
|
||||
if s:current_job != v:null
|
||||
if s:ghost_text_nvim
|
||||
call jobstop(s:current_job)
|
||||
elseif s:ghost_text_vim
|
||||
call job_stop(s:current_job)
|
||||
endif
|
||||
endif
|
||||
|
||||
" send the request asynchronously
|
||||
if s:ghost_text_nvim
|
||||
let s:current_job = jobstart(l:curl_command, {
|
||||
\ 'on_stdout': function('s:fim_on_stdout', [s:pos_x, s:pos_y, a:is_auto]),
|
||||
\ 'on_exit': function('s:fim_on_exit'),
|
||||
\ 'stdout_buffered': v:true
|
||||
\ })
|
||||
elseif s:ghost_text_vim
|
||||
let s:current_job = job_start(l:curl_command, {
|
||||
\ 'out_cb': function('s:fim_on_stdout', [s:pos_x, s:pos_y, a:is_auto]),
|
||||
\ 'exit_cb': function('s:fim_on_exit')
|
||||
\ })
|
||||
endif
|
||||
|
||||
" TODO: per-file location
|
||||
let l:delta_y = abs(s:pos_y - s:pos_y_pick)
|
||||
|
||||
" gather some extra context nearby and process it in the background
|
||||
" only gather chunks if the cursor has moved a lot
|
||||
" TODO: something more clever? reranking?
|
||||
if a:is_auto && l:delta_y > 32
|
||||
" expand the prefix even further
|
||||
call s:pick_chunk(getline(max([1, s:pos_y - g:llama_config.ring_scope]), max([1, s:pos_y - g:llama_config.n_prefix])), v:false, v:false)
|
||||
|
||||
" pick a suffix chunk
|
||||
call s:pick_chunk(getline(min([l:max_y, s:pos_y + g:llama_config.n_suffix]), min([l:max_y, s:pos_y + g:llama_config.n_suffix + g:llama_config.ring_chunk_size])), v:false, v:false)
|
||||
|
||||
let s:pos_y_pick = s:pos_y
|
||||
endif
|
||||
endfunction
|
||||
|
||||
" if first_line == v:true accept only the first line of the response
|
||||
function! llama#fim_accept(first_line)
|
||||
" insert the suggestion at the cursor location
|
||||
if s:can_accept && len(s:content) > 0
|
||||
call setline(s:pos_y, s:line_cur[:(s:pos_x - 1)] . s:content[0])
|
||||
if len(s:content) > 1
|
||||
if !a:first_line
|
||||
call append(s:pos_y, s:content[1:-1])
|
||||
endif
|
||||
endif
|
||||
|
||||
" move the cursor to the end of the accepted text
|
||||
if !a:first_line && len(s:content) > 1
|
||||
call cursor(s:pos_y + len(s:content) - 1, s:pos_x + s:pos_dx + 1)
|
||||
else
|
||||
call cursor(s:pos_y, s:pos_x + len(s:content[0]))
|
||||
endif
|
||||
endif
|
||||
|
||||
call llama#fim_cancel()
|
||||
endfunction
|
||||
|
||||
function! llama#fim_cancel()
|
||||
let s:hint_shown = v:false
|
||||
|
||||
" clear the virtual text
|
||||
let l:bufnr = bufnr('%')
|
||||
|
||||
if s:ghost_text_nvim
|
||||
let l:id_vt_fim = nvim_create_namespace('vt_fim')
|
||||
call nvim_buf_clear_namespace(l:bufnr, l:id_vt_fim, 0, -1)
|
||||
elseif s:ghost_text_vim
|
||||
call prop_remove({'type': s:hlgroup_hint, 'all': v:true})
|
||||
call prop_remove({'type': s:hlgroup_info, 'all': v:true})
|
||||
endif
|
||||
|
||||
" remove the mappings
|
||||
silent! iunmap <buffer> <Tab>
|
||||
silent! iunmap <buffer> <S-Tab>
|
||||
silent! iunmap <buffer> <Esc>
|
||||
endfunction
|
||||
|
||||
function! s:on_move()
|
||||
let s:t_last_move = reltime()
|
||||
|
||||
call llama#fim_cancel()
|
||||
endfunction
|
||||
|
||||
" callback that processes the FIM result from the server and displays the suggestion
|
||||
function! s:fim_on_stdout(pos_x, pos_y, is_auto, job_id, data, event = v:null)
|
||||
if s:ghost_text_nvim
|
||||
let l:raw = join(a:data, "\n")
|
||||
elseif s:ghost_text_vim
|
||||
let l:raw = a:data
|
||||
endif
|
||||
|
||||
if len(l:raw) == 0
|
||||
return
|
||||
endif
|
||||
|
||||
if a:pos_x != col('.') - 1 || a:pos_y != line('.')
|
||||
return
|
||||
endif
|
||||
|
||||
" show the suggestion only in insert mode
|
||||
if mode() !=# 'i'
|
||||
return
|
||||
endif
|
||||
|
||||
let s:pos_x = a:pos_x
|
||||
let s:pos_y = a:pos_y
|
||||
|
||||
let s:can_accept = v:true
|
||||
let l:has_info = v:false
|
||||
|
||||
if s:can_accept && v:shell_error
|
||||
if !a:is_auto
|
||||
call add(s:content, "<| curl error: is the server on? |>")
|
||||
endif
|
||||
let s:can_accept = v:false
|
||||
endif
|
||||
|
||||
let l:n_prompt = 0
|
||||
let l:t_prompt_ms = 1.0
|
||||
let l:s_prompt = 0
|
||||
|
||||
let l:n_predict = 0
|
||||
let l:t_predict_ms = 1.0
|
||||
let l:s_predict = 0
|
||||
|
||||
" get the generated suggestion
|
||||
if s:can_accept
|
||||
let l:response = json_decode(l:raw)
|
||||
|
||||
for l:part in split(get(l:response, 'content', ''), "\n", 1)
|
||||
call add(s:content, l:part)
|
||||
endfor
|
||||
|
||||
" remove trailing new lines
|
||||
while len(s:content) > 0 && s:content[-1] == ""
|
||||
call remove(s:content, -1)
|
||||
endwhile
|
||||
|
||||
let l:generation_settings = get(l:response, 'generation_settings', {})
|
||||
let l:n_ctx = get(l:generation_settings, 'n_ctx', 0)
|
||||
|
||||
let l:n_cached = get(l:response, 'tokens_cached', 0)
|
||||
let l:truncated = get(l:response, 'truncated', v:false)
|
||||
|
||||
" if response.timings is available
|
||||
if len(get(l:response, 'timings', {})) > 0
|
||||
let l:has_info = v:true
|
||||
let l:timings = get(l:response, 'timings', {})
|
||||
|
||||
let l:n_prompt = get(l:timings, 'prompt_n', 0)
|
||||
let l:t_prompt_ms = get(l:timings, 'prompt_ms', 1)
|
||||
let l:s_prompt = get(l:timings, 'prompt_per_second', 0)
|
||||
|
||||
let l:n_predict = get(l:timings, 'predicted_n', 0)
|
||||
let l:t_predict_ms = get(l:timings, 'predicted_ms', 1)
|
||||
let l:s_predict = get(l:timings, 'predicted_per_second', 0)
|
||||
endif
|
||||
endif
|
||||
|
||||
if len(s:content) == 0
|
||||
call add(s:content, "")
|
||||
let s:can_accept = v:false
|
||||
endif
|
||||
|
||||
if len(s:content) == 0
|
||||
return
|
||||
endif
|
||||
|
||||
" NOTE: the following is logic for discarding predictions that repeat existing text
|
||||
" the code is quite ugly and there is very likely a simpler and more canonical way to implement this
|
||||
"
|
||||
" still, I wonder if there is some better way that avoids having to do these special hacks?
|
||||
" on one hand, the LLM 'sees' the contents of the file before we start editing, so it is normal that it would
|
||||
" start generating whatever we have given it via the extra context. but on the other hand, it's not very
|
||||
" helpful to re-generate the same code that is already there
|
||||
|
||||
" truncate the suggestion if the first line is empty
|
||||
if len(s:content) == 1 && s:content[0] == ""
|
||||
let s:content = [""]
|
||||
endif
|
||||
|
||||
" ... and the next lines are repeated
|
||||
if len(s:content) > 1 && s:content[0] == "" && s:content[1:] == getline(s:pos_y + 1, s:pos_y + len(s:content) - 1)
|
||||
let s:content = [""]
|
||||
endif
|
||||
|
||||
" truncate the suggestion if it repeats the suffix
|
||||
if len(s:content) == 1 && s:content[0] == s:line_cur_suffix
|
||||
let s:content = [""]
|
||||
endif
|
||||
|
||||
" find the first non-empty line (strip whitespace)
|
||||
let l:cmp_y = s:pos_y + 1
|
||||
while l:cmp_y < line('$') && getline(l:cmp_y) =~? '^\s*$'
|
||||
let l:cmp_y += 1
|
||||
endwhile
|
||||
|
||||
if (s:line_cur_prefix . s:content[0]) == getline(l:cmp_y)
|
||||
" truncate the suggestion if it repeats the next line
|
||||
if len(s:content) == 1
|
||||
let s:content = [""]
|
||||
endif
|
||||
|
||||
" ... or if the second line of the suggestion is the prefix of line l:cmp_y + 1
|
||||
if len(s:content) == 2 && s:content[-1] == getline(l:cmp_y + 1)[:len(s:content[-1]) - 1]
|
||||
let s:content = [""]
|
||||
endif
|
||||
|
||||
" ... or if the middle chunk of lines of the suggestion is the same as [l:cmp_y + 1, l:cmp_y + len(s:content) - 1)
|
||||
if len(s:content) > 2 && join(s:content[1:-1], "\n") == join(getline(l:cmp_y + 1, l:cmp_y + len(s:content) - 1), "\n")
|
||||
let s:content = [""]
|
||||
endif
|
||||
endif
|
||||
|
||||
" keep only lines that have the same or larger whitespace prefix as s:line_cur_prefix
|
||||
"let l:indent = strlen(matchstr(s:line_cur_prefix, '^\s*'))
|
||||
"for i in range(1, len(s:content) - 1)
|
||||
" if strlen(matchstr(s:content[i], '^\s*')) < l:indent
|
||||
" let s:content = s:content[:i - 1]
|
||||
" break
|
||||
" endif
|
||||
"endfor
|
||||
|
||||
let s:pos_dx = len(s:content[-1])
|
||||
|
||||
let s:content[-1] .= s:line_cur_suffix
|
||||
|
||||
call llama#fim_cancel()
|
||||
|
||||
" display virtual text with the suggestion
|
||||
let l:bufnr = bufnr('%')
|
||||
|
||||
if s:ghost_text_nvim
|
||||
let l:id_vt_fim = nvim_create_namespace('vt_fim')
|
||||
endif
|
||||
|
||||
" construct the info message
|
||||
if g:llama_config.show_info > 0 && l:has_info
|
||||
let l:prefix = ' '
|
||||
|
||||
if l:truncated
|
||||
let l:info = printf("%s | WARNING: the context is full: %d / %d, increase the server context size or reduce g:llama_config.ring_n_chunks",
|
||||
\ g:llama_config.show_info == 2 ? l:prefix : 'llama.vim',
|
||||
\ l:n_cached, l:n_ctx
|
||||
\ )
|
||||
else
|
||||
let l:info = printf("%s | c: %d / %d, r: %d / %d, e: %d, q: %d / 16 | p: %d (%.2f ms, %.2f t/s) | g: %d (%.2f ms, %.2f t/s) | t: %.2f ms",
|
||||
\ g:llama_config.show_info == 2 ? l:prefix : 'llama.vim',
|
||||
\ l:n_cached, l:n_ctx, len(s:ring_chunks), g:llama_config.ring_n_chunks, s:ring_n_evict, len(s:ring_queued),
|
||||
\ l:n_prompt, l:t_prompt_ms, l:s_prompt,
|
||||
\ l:n_predict, l:t_predict_ms, l:s_predict,
|
||||
\ 1000.0 * reltimefloat(reltime(s:t_fim_start))
|
||||
\ )
|
||||
endif
|
||||
|
||||
if g:llama_config.show_info == 1
|
||||
" display the info in the statusline
|
||||
let &statusline = l:info
|
||||
let l:info = ''
|
||||
endif
|
||||
endif
|
||||
|
||||
" display the suggestion and append the info to the end of the first line
|
||||
if s:ghost_text_nvim
|
||||
call nvim_buf_set_extmark(l:bufnr, l:id_vt_fim, s:pos_y - 1, s:pos_x - 1, {
|
||||
\ 'virt_text': [[s:content[0], 'llama_hl_hint'], [l:info, 'llama_hl_info']],
|
||||
\ 'virt_text_win_col': virtcol('.') - 1
|
||||
\ })
|
||||
|
||||
call nvim_buf_set_extmark(l:bufnr, l:id_vt_fim, s:pos_y - 1, 0, {
|
||||
\ 'virt_lines': map(s:content[1:], {idx, val -> [[val, 'llama_hl_hint']]}),
|
||||
\ 'virt_text_win_col': virtcol('.')
|
||||
\ })
|
||||
elseif s:ghost_text_vim
|
||||
let l:new_suffix = s:content[0]
|
||||
if !empty(l:new_suffix)
|
||||
call prop_add(s:pos_y, s:pos_x + 1, {
|
||||
\ 'type': s:hlgroup_hint,
|
||||
\ 'text': l:new_suffix
|
||||
\ })
|
||||
endif
|
||||
for line in s:content[1:]
|
||||
call prop_add(s:pos_y, 0, {
|
||||
\ 'type': s:hlgroup_hint,
|
||||
\ 'text': line,
|
||||
\ 'text_padding_left': s:get_indent(line),
|
||||
\ 'text_align': 'below'
|
||||
\ })
|
||||
endfor
|
||||
if !empty(l:info)
|
||||
call prop_add(s:pos_y, 0, {
|
||||
\ 'type': s:hlgroup_info,
|
||||
\ 'text': l:info,
|
||||
\ 'text_padding_left': col('$'),
|
||||
\ 'text_wrap': 'truncate'
|
||||
\ })
|
||||
endif
|
||||
endif
|
||||
|
||||
" setup accept shortcuts
|
||||
inoremap <buffer> <Tab> <C-O>:call llama#fim_accept(v:false)<CR>
|
||||
inoremap <buffer> <S-Tab> <C-O>:call llama#fim_accept(v:true)<CR>
|
||||
|
||||
let s:hint_shown = v:true
|
||||
endfunction
|
||||
|
||||
function! s:fim_on_exit(job_id, exit_code, event = v:null)
|
||||
if a:exit_code != 0
|
||||
echom "Job failed with exit code: " . a:exit_code
|
||||
endif
|
||||
|
||||
let s:current_job = v:null
|
||||
endfunction
|
||||
|
||||
@@ -4,6 +4,7 @@
|
||||
// Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
|
||||
#include "clip.h"
|
||||
#include "ggml.h"
|
||||
#include "ggml-cpu.h"
|
||||
#include "ggml-alloc.h"
|
||||
#include "ggml-backend.h"
|
||||
|
||||
|
||||
@@ -20,7 +20,7 @@ static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_toke
|
||||
if (n_eval > n_batch) {
|
||||
n_eval = n_batch;
|
||||
}
|
||||
if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval, *n_past, 0))) {
|
||||
if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval))) {
|
||||
LOG_ERR("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past);
|
||||
return false;
|
||||
}
|
||||
@@ -37,21 +37,21 @@ static bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) {
|
||||
|
||||
static bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){
|
||||
std::string str2 = str;
|
||||
std::vector<llama_token> embd_inp = ::llama_tokenize(ctx_llama, str2, add_bos, true);
|
||||
std::vector<llama_token> embd_inp = common_tokenize(ctx_llama, str2, add_bos, true);
|
||||
eval_tokens(ctx_llama, embd_inp, n_batch, n_past);
|
||||
return true;
|
||||
}
|
||||
|
||||
static const char * sample(struct gpt_sampler * smpl,
|
||||
static const char * sample(struct common_sampler * smpl,
|
||||
struct llama_context * ctx_llama,
|
||||
int * n_past) {
|
||||
const llama_token id = gpt_sampler_sample(smpl, ctx_llama, -1);
|
||||
gpt_sampler_accept(smpl, id, true);
|
||||
const llama_token id = common_sampler_sample(smpl, ctx_llama, -1);
|
||||
common_sampler_accept(smpl, id, true);
|
||||
static std::string ret;
|
||||
if (llama_token_is_eog(llama_get_model(ctx_llama), id)) {
|
||||
ret = "</s>";
|
||||
} else {
|
||||
ret = llama_token_to_piece(ctx_llama, id);
|
||||
ret = common_token_to_piece(ctx_llama, id);
|
||||
}
|
||||
eval_id(ctx_llama, id, n_past);
|
||||
return ret.c_str();
|
||||
@@ -120,7 +120,7 @@ static void print_usage(int, char ** argv) {
|
||||
LOG("\n note: a lower temperature value like 0.1 is recommended for better quality.\n");
|
||||
}
|
||||
|
||||
static struct llava_image_embed * load_image(llava_context * ctx_llava, gpt_params * params, const std::string & fname) {
|
||||
static struct llava_image_embed * load_image(llava_context * ctx_llava, common_params * params, const std::string & fname) {
|
||||
|
||||
// load and preprocess the image
|
||||
llava_image_embed * embed = NULL;
|
||||
@@ -146,7 +146,7 @@ static struct llava_image_embed * load_image(llava_context * ctx_llava, gpt_para
|
||||
return embed;
|
||||
}
|
||||
|
||||
static void process_prompt(struct llava_context * ctx_llava, struct llava_image_embed * image_embed, gpt_params * params, const std::string & prompt) {
|
||||
static void process_prompt(struct llava_context * ctx_llava, struct llava_image_embed * image_embed, common_params * params, const std::string & prompt) {
|
||||
int n_past = 0;
|
||||
|
||||
const int max_tgt_len = params->n_predict < 0 ? 256 : params->n_predict;
|
||||
@@ -159,16 +159,16 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
|
||||
user_prompt = prompt.substr(image_pos + std::string("<image>").length());
|
||||
LOG_INF("system_prompt: %s\n", system_prompt.c_str());
|
||||
if (params->verbose_prompt) {
|
||||
auto tmp = ::llama_tokenize(ctx_llava->ctx_llama, system_prompt, true, true);
|
||||
auto tmp = common_tokenize(ctx_llava->ctx_llama, system_prompt, true, true);
|
||||
for (int i = 0; i < (int) tmp.size(); i++) {
|
||||
LOG_INF("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
|
||||
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
|
||||
}
|
||||
}
|
||||
LOG_INF("user_prompt: %s\n", user_prompt.c_str());
|
||||
if (params->verbose_prompt) {
|
||||
auto tmp = ::llama_tokenize(ctx_llava->ctx_llama, user_prompt, true, true);
|
||||
auto tmp = common_tokenize(ctx_llava->ctx_llama, user_prompt, true, true);
|
||||
for (int i = 0; i < (int) tmp.size(); i++) {
|
||||
LOG_INF("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
|
||||
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
|
||||
}
|
||||
}
|
||||
} else {
|
||||
@@ -176,9 +176,9 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
|
||||
system_prompt = "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\nUSER:";
|
||||
user_prompt = prompt + "\nASSISTANT:";
|
||||
if (params->verbose_prompt) {
|
||||
auto tmp = ::llama_tokenize(ctx_llava->ctx_llama, user_prompt, true, true);
|
||||
auto tmp = common_tokenize(ctx_llava->ctx_llama, user_prompt, true, true);
|
||||
for (int i = 0; i < (int) tmp.size(); i++) {
|
||||
LOG_INF("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
|
||||
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -191,7 +191,7 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
|
||||
|
||||
LOG("\n");
|
||||
|
||||
struct gpt_sampler * smpl = gpt_sampler_init(ctx_llava->model, params->sparams);
|
||||
struct common_sampler * smpl = common_sampler_init(ctx_llava->model, params->sparams);
|
||||
if (!smpl) {
|
||||
LOG_ERR("%s: failed to initialize sampling subsystem\n", __func__);
|
||||
exit(1);
|
||||
@@ -211,15 +211,15 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
gpt_sampler_free(smpl);
|
||||
common_sampler_free(smpl);
|
||||
LOG("\n");
|
||||
}
|
||||
|
||||
static struct llama_model * llava_init(gpt_params * params) {
|
||||
static struct llama_model * llava_init(common_params * params) {
|
||||
llama_backend_init();
|
||||
llama_numa_init(params->numa);
|
||||
|
||||
llama_model_params model_params = llama_model_params_from_gpt_params(*params);
|
||||
llama_model_params model_params = common_model_params_to_llama(*params);
|
||||
|
||||
llama_model * model = llama_load_model_from_file(params->model.c_str(), model_params);
|
||||
if (model == NULL) {
|
||||
@@ -229,7 +229,7 @@ static struct llama_model * llava_init(gpt_params * params) {
|
||||
return model;
|
||||
}
|
||||
|
||||
static struct llava_context * llava_init_context(gpt_params * params, llama_model * model) {
|
||||
static struct llava_context * llava_init_context(common_params * params, llama_model * model) {
|
||||
const char * clip_path = params->mmproj.c_str();
|
||||
|
||||
auto prompt = params->prompt;
|
||||
@@ -240,7 +240,7 @@ static struct llava_context * llava_init_context(gpt_params * params, llama_mode
|
||||
auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
|
||||
|
||||
|
||||
llama_context_params ctx_params = llama_context_params_from_gpt_params(*params);
|
||||
llama_context_params ctx_params = common_context_params_to_llama(*params);
|
||||
ctx_params.n_ctx = params->n_ctx < 2048 ? 2048 : params->n_ctx; // we need a longer context size to process image embeddings
|
||||
|
||||
llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params);
|
||||
@@ -272,13 +272,13 @@ static void llava_free(struct llava_context * ctx_llava) {
|
||||
int main(int argc, char ** argv) {
|
||||
ggml_time_init();
|
||||
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_LLAVA, print_usage)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_LLAVA, print_usage)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
common_init();
|
||||
|
||||
if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
|
||||
print_usage(argc, argv);
|
||||
|
||||
@@ -401,6 +401,39 @@ bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, co
|
||||
return true;
|
||||
}
|
||||
|
||||
struct llava_embd_batch {
|
||||
std::vector<llama_pos> pos;
|
||||
std::vector<int32_t> n_seq_id;
|
||||
std::vector<llama_seq_id> seq_id_0;
|
||||
std::vector<llama_seq_id *> seq_ids;
|
||||
std::vector<int8_t> logits;
|
||||
llama_batch batch;
|
||||
llava_embd_batch(float * embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) {
|
||||
pos .resize(n_tokens);
|
||||
n_seq_id.resize(n_tokens);
|
||||
seq_ids .resize(n_tokens + 1);
|
||||
logits .resize(n_tokens);
|
||||
seq_id_0.resize(1);
|
||||
seq_id_0[0] = seq_id;
|
||||
seq_ids [n_tokens] = nullptr;
|
||||
batch = {
|
||||
/*n_tokens =*/ n_tokens,
|
||||
/*tokens =*/ nullptr,
|
||||
/*embd =*/ embd,
|
||||
/*pos =*/ pos.data(),
|
||||
/*n_seq_id =*/ n_seq_id.data(),
|
||||
/*seq_id =*/ seq_ids.data(),
|
||||
/*logits =*/ logits.data(),
|
||||
};
|
||||
for (int i = 0; i < n_tokens; i++) {
|
||||
batch.pos [i] = pos_0 + i;
|
||||
batch.n_seq_id[i] = 1;
|
||||
batch.seq_id [i] = seq_id_0.data();
|
||||
batch.logits [i] = false;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_embed * image_embed, int n_batch, int * n_past) {
|
||||
int n_embd = llama_n_embd(llama_get_model(ctx_llama));
|
||||
|
||||
@@ -409,8 +442,9 @@ bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_
|
||||
if (n_eval > n_batch) {
|
||||
n_eval = n_batch;
|
||||
}
|
||||
llama_batch batch = {int32_t(n_eval), nullptr, (image_embed->embed+i*n_embd), nullptr, nullptr, nullptr, nullptr, *n_past, 1, 0, };
|
||||
if (llama_decode(ctx_llama, batch)) {
|
||||
float * embd = image_embed->embed+i*n_embd;
|
||||
llava_embd_batch llava_batch = llava_embd_batch(embd, n_eval, *n_past, 0);
|
||||
if (llama_decode(ctx_llama, llava_batch.batch)) {
|
||||
LOG_ERR("%s : failed to eval\n", __func__);
|
||||
return false;
|
||||
}
|
||||
@@ -432,7 +466,7 @@ struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * c
|
||||
bool image_embed_result = llava_image_embed_make_with_clip_img(ctx_clip, n_threads, img, &image_embed, &n_image_pos);
|
||||
if (!image_embed_result) {
|
||||
clip_image_u8_free(img);
|
||||
LOG_ERR("%s: coulnd't embed the image\n", __func__);
|
||||
LOG_ERR("%s: couldn't embed the image\n", __func__);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
|
||||
@@ -25,11 +25,11 @@ static void show_additional_info(int /*argc*/, char ** argv) {
|
||||
LOG("\nnote: a lower temperature value like 0.1 is recommended for better quality.\n");
|
||||
}
|
||||
|
||||
static struct llama_model * llava_init(gpt_params * params) {
|
||||
static struct llama_model * llava_init(common_params * params) {
|
||||
llama_backend_init();
|
||||
llama_numa_init(params->numa);
|
||||
|
||||
llama_model_params model_params = llama_model_params_from_gpt_params(*params);
|
||||
llama_model_params model_params = common_model_params_to_llama(*params);
|
||||
|
||||
llama_model * model = llama_load_model_from_file(params->model.c_str(), model_params);
|
||||
if (model == NULL) {
|
||||
@@ -39,13 +39,13 @@ static struct llama_model * llava_init(gpt_params * params) {
|
||||
return model;
|
||||
}
|
||||
|
||||
static struct llava_context * llava_init_context(gpt_params * params, llama_model * model) {
|
||||
static struct llava_context * llava_init_context(common_params * params, llama_model * model) {
|
||||
auto prompt = params->prompt;
|
||||
if (prompt.empty()) {
|
||||
prompt = "describe the image in detail.";
|
||||
}
|
||||
|
||||
llama_context_params ctx_params = llama_context_params_from_gpt_params(*params);
|
||||
llama_context_params ctx_params = common_context_params_to_llama(*params);
|
||||
if (params->n_ctx < 2048) {
|
||||
// warn user here, "Image processing requires at least 2048 context, setting context to 2048"
|
||||
LOG_WRN("%s: Image processing requires at least 2048 context, setting context to 2048\n" , __func__);
|
||||
@@ -79,7 +79,7 @@ static void llava_free(struct llava_context * ctx_llava) {
|
||||
llama_backend_free();
|
||||
}
|
||||
|
||||
static struct clip_ctx * clip_init_context(gpt_params * params) {
|
||||
static struct clip_ctx * clip_init_context(common_params * params) {
|
||||
const char * clip_path = params->mmproj.c_str();
|
||||
|
||||
auto prompt = params->prompt;
|
||||
@@ -97,7 +97,7 @@ static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_toke
|
||||
if (n_eval > n_batch) {
|
||||
n_eval = n_batch;
|
||||
}
|
||||
if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval, *n_past, 0))) {
|
||||
if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval))) {
|
||||
LOG_ERR("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past);
|
||||
return false;
|
||||
}
|
||||
@@ -114,7 +114,7 @@ static bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) {
|
||||
|
||||
static bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){
|
||||
std::string str2 = str;
|
||||
std::vector<llama_token> embd_inp = ::llama_tokenize(ctx_llama, str2, add_bos, true);
|
||||
std::vector<llama_token> embd_inp = common_tokenize(ctx_llama, str2, add_bos, true);
|
||||
return eval_tokens(ctx_llama, embd_inp, n_batch, n_past);
|
||||
}
|
||||
|
||||
@@ -129,7 +129,7 @@ static void process_eval_image_embed(struct llava_context * ctx_llava, const str
|
||||
llava_image_embed_free(slice_embed);
|
||||
}
|
||||
|
||||
static void process_image(struct llava_context * ctx_llava, struct llava_image_embed * embeds, gpt_params * params, int &n_past) {
|
||||
static void process_image(struct llava_context * ctx_llava, struct llava_image_embed * embeds, common_params * params, int &n_past) {
|
||||
std::string system_prompt;
|
||||
int idx = 0;
|
||||
int num_image_embeds = embeds->n_image_pos / clip_n_patches(ctx_llava->ctx_clip);
|
||||
@@ -162,22 +162,22 @@ static void process_image(struct llava_context * ctx_llava, struct llava_image_e
|
||||
LOG_INF("%s: image token past: %d\n", __func__, n_past);
|
||||
}
|
||||
|
||||
static const char * sample(struct gpt_sampler * smpl,
|
||||
static const char * sample(struct common_sampler * smpl,
|
||||
struct llama_context * ctx_llama,
|
||||
int * n_past) {
|
||||
const llama_token id = gpt_sampler_sample(smpl, ctx_llama, -1);
|
||||
gpt_sampler_accept(smpl, id, true);
|
||||
const llama_token id = common_sampler_sample(smpl, ctx_llama, -1);
|
||||
common_sampler_accept(smpl, id, true);
|
||||
static std::string ret;
|
||||
if (llama_token_is_eog(llama_get_model(ctx_llama), id)) {
|
||||
ret = "</s>";
|
||||
} else {
|
||||
ret = llama_token_to_piece(ctx_llama, id);
|
||||
ret = common_token_to_piece(ctx_llama, id);
|
||||
}
|
||||
eval_id(ctx_llama, id, n_past);
|
||||
return ret.c_str();
|
||||
}
|
||||
|
||||
static struct llava_context * minicpmv_init(gpt_params * params, const std::string & fname, int &n_past){
|
||||
static struct llava_context * minicpmv_init(common_params * params, const std::string & fname, int &n_past){
|
||||
auto * ctx_clip = clip_init_context(params);
|
||||
auto * embeds = llava_image_embed_make_with_filename(ctx_clip, params->cpuparams.n_threads, fname.c_str());
|
||||
if (!embeds) {
|
||||
@@ -213,7 +213,7 @@ static struct llava_context * minicpmv_init(gpt_params * params, const std::stri
|
||||
return ctx_llava;
|
||||
}
|
||||
|
||||
static struct gpt_sampler * llama_init(struct llava_context * ctx_llava, gpt_params * params, const std::string & prompt, int & n_past, bool is_first = false){
|
||||
static struct common_sampler * llama_init(struct llava_context * ctx_llava, common_params * params, const std::string & prompt, int & n_past, bool is_first = false){
|
||||
std::string user_prompt = prompt;
|
||||
int has_minicpmv_projector = clip_is_minicpmv(ctx_llava->ctx_clip);
|
||||
if (!is_first) {
|
||||
@@ -237,11 +237,11 @@ static struct gpt_sampler * llama_init(struct llava_context * ctx_llava, gpt_par
|
||||
|
||||
LOG_INF("\n");
|
||||
|
||||
struct gpt_sampler * smpl = gpt_sampler_init(ctx_llava->model, params->sparams);
|
||||
struct common_sampler * smpl = common_sampler_init(ctx_llava->model, params->sparams);
|
||||
return smpl;
|
||||
}
|
||||
|
||||
static const char * llama_loop(struct llava_context * ctx_llava,struct gpt_sampler * smpl, int &n_past){
|
||||
static const char * llama_loop(struct llava_context * ctx_llava,struct common_sampler * smpl, int &n_past){
|
||||
|
||||
const char * tmp = sample(smpl, ctx_llava->ctx_llama, &n_past);
|
||||
return tmp;
|
||||
@@ -250,13 +250,13 @@ static const char * llama_loop(struct llava_context * ctx_llava,struct gpt_sampl
|
||||
int main(int argc, char ** argv) {
|
||||
ggml_time_init();
|
||||
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_LLAVA, show_additional_info)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_LLAVA, show_additional_info)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
common_init();
|
||||
|
||||
if (params.mmproj.empty() || (params.image.empty())) {
|
||||
show_additional_info(argc, argv);
|
||||
@@ -290,7 +290,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
fflush(stdout);
|
||||
}
|
||||
gpt_sampler_free(smpl);
|
||||
common_sampler_free(smpl);
|
||||
}else {
|
||||
while (true) {
|
||||
LOG("<user>");
|
||||
@@ -309,7 +309,7 @@ int main(int argc, char ** argv) {
|
||||
if (strstr(response.c_str(), "<user>")) break; // minicpm-v
|
||||
fflush(stdout);
|
||||
}
|
||||
gpt_sampler_free(smpl);
|
||||
common_sampler_free(smpl);
|
||||
}
|
||||
}
|
||||
printf("\n");
|
||||
|
||||
@@ -37,13 +37,13 @@ struct ngram_container {
|
||||
};
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
common_init();
|
||||
|
||||
const int W = 15; // lookahead window
|
||||
const int N = 5; // n-gram size
|
||||
@@ -56,7 +56,7 @@ int main(int argc, char ** argv) {
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
// load the target model
|
||||
llama_init_result llama_init = llama_init_from_gpt_params(params);
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
llama_model * model = llama_init.model;
|
||||
llama_context * ctx = llama_init.context;
|
||||
@@ -65,7 +65,7 @@ int main(int argc, char ** argv) {
|
||||
std::vector<llama_token> inp;
|
||||
std::vector<llama_token> all;
|
||||
|
||||
inp = ::llama_tokenize(ctx, params.prompt, true, true);
|
||||
inp = common_tokenize(ctx, params.prompt, true, true);
|
||||
all = inp;
|
||||
|
||||
const int max_context_size = llama_n_ctx(ctx);
|
||||
@@ -79,7 +79,7 @@ int main(int argc, char ** argv) {
|
||||
LOG("\n\n");
|
||||
|
||||
for (auto id : inp) {
|
||||
LOG("%s", llama_token_to_piece(ctx, id).c_str());
|
||||
LOG("%s", common_token_to_piece(ctx, id).c_str());
|
||||
}
|
||||
|
||||
fflush(stderr);
|
||||
@@ -89,8 +89,8 @@ int main(int argc, char ** argv) {
|
||||
const auto t_enc_start = ggml_time_us();
|
||||
|
||||
// eval the prompt
|
||||
llama_decode(ctx, llama_batch_get_one( inp.data(), n_input - 1, 0, 0));
|
||||
llama_decode(ctx, llama_batch_get_one(&inp.back(), 1, n_input - 1, 0));
|
||||
llama_decode(ctx, llama_batch_get_one( inp.data(), n_input - 1));
|
||||
llama_decode(ctx, llama_batch_get_one(&inp.back(), 1));
|
||||
|
||||
for (int s = 1; s < W + G + 1; ++s) {
|
||||
llama_kv_cache_seq_cp(ctx, 0, s, -1, -1);
|
||||
@@ -115,7 +115,7 @@ int main(int argc, char ** argv) {
|
||||
llama_batch batch = llama_batch_init(params.n_ctx, 0, W + G + 1);
|
||||
|
||||
// target model sampling context
|
||||
struct gpt_sampler * smpl = gpt_sampler_init(model, params.sparams);
|
||||
struct common_sampler * smpl = common_sampler_init(model, params.sparams);
|
||||
|
||||
// verification n-grams
|
||||
std::vector<ngram_data> ngrams_cur(G);
|
||||
@@ -156,12 +156,12 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// sample first token
|
||||
{
|
||||
id = gpt_sampler_sample(smpl, ctx, 0);
|
||||
id = common_sampler_sample(smpl, ctx, 0);
|
||||
|
||||
gpt_sampler_accept(smpl, id, true);
|
||||
common_sampler_accept(smpl, id, true);
|
||||
|
||||
{
|
||||
const std::string token_str = llama_token_to_piece(ctx, id);
|
||||
const std::string token_str = common_token_to_piece(ctx, id);
|
||||
|
||||
LOG("%s", token_str.c_str());
|
||||
fflush(stdout);
|
||||
@@ -172,7 +172,7 @@ int main(int argc, char ** argv) {
|
||||
// debug
|
||||
if (dump_kv_cache) {
|
||||
llama_kv_cache_view_update(ctx, &kvc_view);
|
||||
llama_kv_cache_dump_view_seqs(kvc_view, 40);
|
||||
common_kv_cache_dump_view_seqs(kvc_view, 40);
|
||||
}
|
||||
|
||||
// build the mask from https://lmsys.org/blog/2023-11-21-lookahead-decoding/
|
||||
@@ -201,10 +201,10 @@ int main(int argc, char ** argv) {
|
||||
// V V V V V V
|
||||
// id
|
||||
{
|
||||
llama_batch_clear(batch);
|
||||
common_batch_clear(batch);
|
||||
|
||||
// current token - first token of the first level
|
||||
llama_batch_add(batch, id, n_past, seq_id_all, true);
|
||||
common_batch_add(batch, id, n_past, seq_id_all, true);
|
||||
|
||||
// verification n-grams - queue this before the lookahead tokens for less KV cache fragmentation
|
||||
{
|
||||
@@ -229,7 +229,7 @@ int main(int argc, char ** argv) {
|
||||
ngrams_cur[g].tokens [j + 1] = t;
|
||||
ngrams_cur[g].i_batch[j + 1] = batch.n_tokens;
|
||||
|
||||
llama_batch_add(batch, t, n_past + j + 1, { W + 1 + g }, true);
|
||||
common_batch_add(batch, t, n_past + j + 1, { W + 1 + g }, true);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -241,13 +241,13 @@ int main(int argc, char ** argv) {
|
||||
seq_id_look[j] = i + j + 1;
|
||||
}
|
||||
|
||||
llama_batch_add(batch, tokens_j[0][i], n_past + i, seq_id_look, false);
|
||||
common_batch_add(batch, tokens_j[0][i], n_past + i, seq_id_look, false);
|
||||
}
|
||||
|
||||
// fill the rest of the levels
|
||||
for (int j = 1; j < N - 1; j++) {
|
||||
for (int i = 0; i < W; i++) {
|
||||
llama_batch_add(batch, tokens_j[j][i], n_past + j + i, { i + 1 }, j == N - 2);
|
||||
common_batch_add(batch, tokens_j[j][i], n_past + j + i, { i + 1 }, j == N - 2);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -281,13 +281,13 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// sample the next token
|
||||
id = gpt_sampler_sample(smpl, ctx, i_batch);
|
||||
id = common_sampler_sample(smpl, ctx, i_batch);
|
||||
|
||||
gpt_sampler_accept(smpl, id, true);
|
||||
common_sampler_accept(smpl, id, true);
|
||||
|
||||
// print
|
||||
{
|
||||
const std::string token_str = llama_token_to_piece(ctx, id);
|
||||
const std::string token_str = common_token_to_piece(ctx, id);
|
||||
|
||||
if (v == 0) {
|
||||
LOG("%s", token_str.c_str());
|
||||
@@ -327,7 +327,7 @@ int main(int argc, char ** argv) {
|
||||
// print known n-grams starting with token id (debug)
|
||||
if (0 && v == 0) {
|
||||
if (ngrams_observed.cnt[id] > 0) {
|
||||
LOG("\n - %d n-grams starting with '%s'\n", ngrams_observed.cnt[id], llama_token_to_piece(ctx, id).c_str());
|
||||
LOG("\n - %d n-grams starting with '%s'\n", ngrams_observed.cnt[id], common_token_to_piece(ctx, id).c_str());
|
||||
}
|
||||
|
||||
for (int i = 0; i < ngrams_observed.cnt[id]; i++) {
|
||||
@@ -336,7 +336,7 @@ int main(int argc, char ** argv) {
|
||||
const int idx = id*(N - 1)*G + i*(N - 1);
|
||||
|
||||
for (int j = 0; j < N - 1; j++) {
|
||||
const std::string token_str = llama_token_to_piece(ctx, ngrams_observed.tokens[idx + j]);
|
||||
const std::string token_str = common_token_to_piece(ctx, ngrams_observed.tokens[idx + j]);
|
||||
|
||||
LOG("%s", token_str.c_str());
|
||||
}
|
||||
@@ -358,7 +358,7 @@ int main(int argc, char ** argv) {
|
||||
if (v == 0) {
|
||||
// sample from the last level
|
||||
for (int i = 0; i < W; i++) {
|
||||
tokens_j[N - 2][i] = gpt_sampler_sample(smpl, ctx, ngrams_cur.size()*(N-1) + W*(N - 2) + i);
|
||||
tokens_j[N - 2][i] = common_sampler_sample(smpl, ctx, ngrams_cur.size()*(N-1) + W*(N - 2) + i);
|
||||
}
|
||||
} else {
|
||||
for (int i = 0; i < W; i++) {
|
||||
@@ -466,9 +466,9 @@ int main(int argc, char ** argv) {
|
||||
LOG_INF("n_accept = %d\n", n_accept);
|
||||
|
||||
LOG_INF("\n");
|
||||
gpt_perf_print(ctx, smpl);
|
||||
common_perf_print(ctx, smpl);
|
||||
|
||||
gpt_sampler_free(smpl);
|
||||
common_sampler_free(smpl);
|
||||
|
||||
llama_kv_cache_view_free(&kvc_view);
|
||||
|
||||
|
||||
@@ -12,9 +12,9 @@
|
||||
#include <vector>
|
||||
|
||||
int main(int argc, char ** argv){
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_LOOKUP)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_LOOKUP)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
@@ -23,7 +23,7 @@ int main(int argc, char ** argv){
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
// load the model
|
||||
llama_init_result llama_init = llama_init_from_gpt_params(params);
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
llama_model * model = llama_init.model;
|
||||
llama_context * ctx = llama_init.context;
|
||||
@@ -31,15 +31,15 @@ int main(int argc, char ** argv){
|
||||
|
||||
// tokenize the prompt
|
||||
std::vector<llama_token> inp;
|
||||
inp = ::llama_tokenize(ctx, params.prompt, true, true);
|
||||
inp = common_tokenize(ctx, params.prompt, true, true);
|
||||
fprintf(stderr, "%s: tokenization done\n", __func__);
|
||||
|
||||
|
||||
llama_ngram_cache ngram_cache;
|
||||
llama_ngram_cache_update(ngram_cache, LLAMA_NGRAM_STATIC, LLAMA_NGRAM_STATIC, inp, inp.size(), true);
|
||||
common_ngram_cache ngram_cache;
|
||||
common_ngram_cache_update(ngram_cache, LLAMA_NGRAM_STATIC, LLAMA_NGRAM_STATIC, inp, inp.size(), true);
|
||||
fprintf(stderr, "%s: hashing done, writing file to %s\n", __func__, params.lookup_cache_static.c_str());
|
||||
|
||||
llama_ngram_cache_save(ngram_cache, params.lookup_cache_static);
|
||||
common_ngram_cache_save(ngram_cache, params.lookup_cache_static);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -33,15 +33,15 @@ int main(int argc, char ** argv){
|
||||
}
|
||||
|
||||
fprintf(stderr, "lookup-merge: loading file %s\n", args[0].c_str());
|
||||
llama_ngram_cache ngram_cache_merged = llama_ngram_cache_load(args[0]);
|
||||
common_ngram_cache ngram_cache_merged = common_ngram_cache_load(args[0]);
|
||||
|
||||
for (size_t i = 1; i < args.size()-1; ++i) {
|
||||
fprintf(stderr, "lookup-merge: loading file %s\n", args[i].c_str());
|
||||
llama_ngram_cache ngram_cache = llama_ngram_cache_load(args[i]);
|
||||
common_ngram_cache ngram_cache = common_ngram_cache_load(args[i]);
|
||||
|
||||
llama_ngram_cache_merge(ngram_cache_merged, ngram_cache);
|
||||
common_ngram_cache_merge(ngram_cache_merged, ngram_cache);
|
||||
}
|
||||
|
||||
fprintf(stderr, "lookup-merge: saving file %s\n", args.back().c_str());
|
||||
llama_ngram_cache_save(ngram_cache_merged, args.back());
|
||||
common_ngram_cache_save(ngram_cache_merged, args.back());
|
||||
}
|
||||
|
||||
@@ -13,13 +13,13 @@
|
||||
#include <vector>
|
||||
|
||||
int main(int argc, char ** argv){
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_LOOKUP)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_LOOKUP)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
common_init();
|
||||
|
||||
const int n_draft = params.n_draft;
|
||||
|
||||
@@ -28,18 +28,18 @@ int main(int argc, char ** argv){
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
// load the model
|
||||
llama_init_result llama_init = llama_init_from_gpt_params(params);
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
llama_model * model = llama_init.model;
|
||||
llama_context * ctx = llama_init.context;
|
||||
|
||||
// tokenize the prompt
|
||||
std::vector<llama_token> inp;
|
||||
inp = ::llama_tokenize(ctx, params.prompt, true, true);
|
||||
inp = common_tokenize(ctx, params.prompt, true, true);
|
||||
|
||||
llama_ngram_cache ngram_cache_context;
|
||||
llama_ngram_cache ngram_cache_dynamic;
|
||||
llama_ngram_cache ngram_cache_static;
|
||||
common_ngram_cache ngram_cache_context;
|
||||
common_ngram_cache ngram_cache_dynamic;
|
||||
common_ngram_cache ngram_cache_static;
|
||||
int64_t t_draft_flat_us = 0;
|
||||
int64_t t_draft_us = 0;
|
||||
|
||||
@@ -48,7 +48,7 @@ int main(int argc, char ** argv){
|
||||
|
||||
if (!params.lookup_cache_static.empty()) {
|
||||
try {
|
||||
ngram_cache_static = llama_ngram_cache_load(params.lookup_cache_static);
|
||||
ngram_cache_static = common_ngram_cache_load(params.lookup_cache_static);
|
||||
} catch (std::ifstream::failure const &) {
|
||||
LOG_ERR("failed to open static lookup cache: %s", params.lookup_cache_static.c_str());
|
||||
exit(1);
|
||||
@@ -57,7 +57,7 @@ int main(int argc, char ** argv){
|
||||
|
||||
if (!params.lookup_cache_dynamic.empty()) {
|
||||
try {
|
||||
ngram_cache_dynamic = llama_ngram_cache_load(params.lookup_cache_dynamic);
|
||||
ngram_cache_dynamic = common_ngram_cache_load(params.lookup_cache_dynamic);
|
||||
} catch (std::ifstream::failure const &) {} // if the file does not exist it will simply be created at the end of the program
|
||||
}
|
||||
|
||||
@@ -86,7 +86,7 @@ int main(int argc, char ** argv){
|
||||
|
||||
{
|
||||
const int64_t t_start_draft_us = ggml_time_us();
|
||||
llama_ngram_cache_draft(pseudo_output, draft, n_draft, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, ngram_cache_context, ngram_cache_dynamic, ngram_cache_static);
|
||||
common_ngram_cache_draft(pseudo_output, draft, n_draft, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, ngram_cache_context, ngram_cache_dynamic, ngram_cache_static);
|
||||
t_draft_us += ggml_time_us() - t_start_draft_us;
|
||||
}
|
||||
|
||||
@@ -105,7 +105,7 @@ int main(int argc, char ** argv){
|
||||
|
||||
{
|
||||
const int64_t t_start_draft_us = ggml_time_us();
|
||||
llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, pseudo_output, 1, false);
|
||||
common_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, pseudo_output, 1, false);
|
||||
t_draft_us += ggml_time_us() - t_start_draft_us;
|
||||
}
|
||||
}
|
||||
@@ -115,7 +115,7 @@ int main(int argc, char ** argv){
|
||||
pseudo_output.push_back(inp_slice[pseudo_output.size()]);
|
||||
{
|
||||
const int64_t t_start_draft_us = ggml_time_us();
|
||||
llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, pseudo_output, 1, false);
|
||||
common_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, pseudo_output, 1, false);
|
||||
t_draft_us += ggml_time_us() - t_start_draft_us;
|
||||
}
|
||||
}
|
||||
@@ -133,7 +133,7 @@ int main(int argc, char ** argv){
|
||||
}
|
||||
|
||||
// After each chunk, update the dynamic ngram cache with the context ngram cache:
|
||||
llama_ngram_cache_merge(ngram_cache_dynamic, ngram_cache_context);
|
||||
common_ngram_cache_merge(ngram_cache_dynamic, ngram_cache_context);
|
||||
ngram_cache_context.clear();
|
||||
}
|
||||
|
||||
|
||||
@@ -13,13 +13,13 @@
|
||||
#include <vector>
|
||||
|
||||
int main(int argc, char ** argv){
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_LOOKUP)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_LOOKUP)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
common_init();
|
||||
|
||||
// max. number of additional tokens to draft if match is found
|
||||
const int n_draft = params.n_draft;
|
||||
@@ -31,29 +31,29 @@ int main(int argc, char ** argv){
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
// load the model
|
||||
llama_init_result llama_init = llama_init_from_gpt_params(params);
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
llama_model * model = llama_init.model;
|
||||
llama_context * ctx = llama_init.context;
|
||||
|
||||
// tokenize the prompt
|
||||
std::vector<llama_token> inp;
|
||||
inp = ::llama_tokenize(ctx, params.prompt, true, true);
|
||||
inp = common_tokenize(ctx, params.prompt, true, true);
|
||||
|
||||
llama_ngram_cache ngram_cache_context;
|
||||
llama_ngram_cache ngram_cache_dynamic;
|
||||
llama_ngram_cache ngram_cache_static;
|
||||
common_ngram_cache ngram_cache_context;
|
||||
common_ngram_cache ngram_cache_dynamic;
|
||||
common_ngram_cache ngram_cache_static;
|
||||
int64_t t_draft_flat_us = 0;
|
||||
int64_t t_draft_us = 0;
|
||||
|
||||
{
|
||||
// Fill up context ngram cache with tokens from user input:
|
||||
const int64_t t_start_draft_us = ggml_time_us();
|
||||
llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, inp.size(), false);
|
||||
common_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, inp.size(), false);
|
||||
|
||||
if (!params.lookup_cache_static.empty()) {
|
||||
try {
|
||||
ngram_cache_static = llama_ngram_cache_load(params.lookup_cache_static);
|
||||
ngram_cache_static = common_ngram_cache_load(params.lookup_cache_static);
|
||||
} catch (std::ifstream::failure const &) {
|
||||
LOG_ERR("failed to open static lookup cache: %s", params.lookup_cache_static.c_str());
|
||||
exit(1);
|
||||
@@ -62,7 +62,7 @@ int main(int argc, char ** argv){
|
||||
|
||||
if (!params.lookup_cache_dynamic.empty()) {
|
||||
try {
|
||||
ngram_cache_dynamic = llama_ngram_cache_load(params.lookup_cache_dynamic);
|
||||
ngram_cache_dynamic = common_ngram_cache_load(params.lookup_cache_dynamic);
|
||||
} catch (std::ifstream::failure const &) {} // if the file does not exist it will simply be created at the end of the program
|
||||
}
|
||||
|
||||
@@ -80,7 +80,7 @@ int main(int argc, char ** argv){
|
||||
LOG("\n\n");
|
||||
|
||||
for (auto id : inp) {
|
||||
LOG("%s", llama_token_to_piece(ctx, id).c_str());
|
||||
LOG("%s", common_token_to_piece(ctx, id).c_str());
|
||||
}
|
||||
|
||||
fflush(stderr);
|
||||
@@ -89,8 +89,8 @@ int main(int argc, char ** argv){
|
||||
|
||||
const auto t_enc_start = ggml_time_us();
|
||||
|
||||
llama_decode(ctx, llama_batch_get_one( inp.data(), n_input - 1, 0, 0));
|
||||
llama_decode(ctx, llama_batch_get_one(&inp.back(), 1, n_input - 1, 0));
|
||||
llama_decode(ctx, llama_batch_get_one( inp.data(), n_input - 1));
|
||||
llama_decode(ctx, llama_batch_get_one(&inp.back(), 1));
|
||||
|
||||
const auto t_enc_end = ggml_time_us();
|
||||
|
||||
@@ -102,7 +102,7 @@ int main(int argc, char ** argv){
|
||||
|
||||
bool has_eos = false;
|
||||
|
||||
struct gpt_sampler * smpl = gpt_sampler_init(model, params.sparams);
|
||||
struct common_sampler * smpl = common_sampler_init(model, params.sparams);
|
||||
|
||||
std::vector<llama_token> draft;
|
||||
|
||||
@@ -117,7 +117,7 @@ int main(int argc, char ** argv){
|
||||
// debug
|
||||
if (dump_kv_cache) {
|
||||
llama_kv_cache_view_update(ctx, &kvc_view);
|
||||
llama_kv_cache_dump_view_seqs(kvc_view, 40);
|
||||
common_kv_cache_dump_view_seqs(kvc_view, 40);
|
||||
}
|
||||
|
||||
// print current draft sequence
|
||||
@@ -126,11 +126,11 @@ int main(int argc, char ** argv){
|
||||
int i_dft = 0;
|
||||
while (true) {
|
||||
// sample from the target model
|
||||
llama_token id = gpt_sampler_sample(smpl, ctx, i_dft);
|
||||
llama_token id = common_sampler_sample(smpl, ctx, i_dft);
|
||||
|
||||
gpt_sampler_accept(smpl, id, true);
|
||||
common_sampler_accept(smpl, id, true);
|
||||
|
||||
const std::string token_str = llama_token_to_piece(ctx, id);
|
||||
const std::string token_str = common_token_to_piece(ctx, id);
|
||||
|
||||
if (!params.use_color) {
|
||||
LOG("%s", token_str.c_str());
|
||||
@@ -152,7 +152,7 @@ int main(int argc, char ** argv){
|
||||
{
|
||||
// Update context ngram cache with the newly accepted token:
|
||||
const int64_t t_start_draft_us = ggml_time_us();
|
||||
llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, 1, false);
|
||||
common_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, 1, false);
|
||||
t_draft_us += ggml_time_us() - t_start_draft_us;
|
||||
}
|
||||
|
||||
@@ -178,7 +178,7 @@ int main(int argc, char ** argv){
|
||||
{
|
||||
// Update context ngram cache with the newly accepted token:
|
||||
const int64_t t_start_draft_us = ggml_time_us();
|
||||
llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, 1, false);
|
||||
common_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, 1, false);
|
||||
t_draft_us += ggml_time_us() - t_start_draft_us;
|
||||
}
|
||||
break;
|
||||
@@ -192,18 +192,18 @@ int main(int argc, char ** argv){
|
||||
// clean the cache of draft tokens that weren't accepted
|
||||
llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
|
||||
|
||||
llama_batch_clear(batch_tgt);
|
||||
llama_batch_add(batch_tgt, draft[0], n_past, { 0 }, true);
|
||||
common_batch_clear(batch_tgt);
|
||||
common_batch_add(batch_tgt, draft[0], n_past, { 0 }, true);
|
||||
|
||||
// Draft already contains a single token sampled from the model:
|
||||
GGML_ASSERT(draft.size() == 1);
|
||||
GGML_ASSERT(draft[0] == inp.back());
|
||||
const int64_t t_start_draft_us = ggml_time_us();
|
||||
|
||||
llama_ngram_cache_draft(inp, draft, n_draft, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, ngram_cache_context, ngram_cache_dynamic, ngram_cache_static);
|
||||
common_ngram_cache_draft(inp, draft, n_draft, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, ngram_cache_context, ngram_cache_dynamic, ngram_cache_static);
|
||||
|
||||
for (size_t i = 1; i < draft.size(); ++i) {
|
||||
llama_batch_add(batch_tgt, draft[i], n_past + i, { 0 }, true);
|
||||
common_batch_add(batch_tgt, draft[i], n_past + i, { 0 }, true);
|
||||
}
|
||||
|
||||
t_draft_us += ggml_time_us() - t_start_draft_us;
|
||||
@@ -218,8 +218,8 @@ int main(int argc, char ** argv){
|
||||
auto t_dec_end = ggml_time_us();
|
||||
|
||||
// Update dynamic ngram cache with context ngram cache and save it to disk:
|
||||
llama_ngram_cache_merge(ngram_cache_dynamic, ngram_cache_context);
|
||||
llama_ngram_cache_save(ngram_cache_dynamic, params.lookup_cache_dynamic);
|
||||
common_ngram_cache_merge(ngram_cache_dynamic, ngram_cache_context);
|
||||
common_ngram_cache_save(ngram_cache_dynamic, params.lookup_cache_dynamic);
|
||||
|
||||
LOG("\n\n");
|
||||
|
||||
@@ -237,9 +237,9 @@ int main(int argc, char ** argv){
|
||||
LOG_INF("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
|
||||
|
||||
LOG_INF("\ntarget:\n\n");
|
||||
gpt_perf_print(ctx, smpl);
|
||||
common_perf_print(ctx, smpl);
|
||||
|
||||
gpt_sampler_free(smpl);
|
||||
common_sampler_free(smpl);
|
||||
|
||||
llama_batch_free(batch_tgt);
|
||||
|
||||
|
||||
@@ -69,7 +69,7 @@ In this section, we cover the most commonly used options for running the `llama-
|
||||
- `-c N, --ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference.
|
||||
- `-mli, --multiline-input`: Allows you to write or paste multiple lines without ending each in '\'
|
||||
- `-t N, --threads N`: Set the number of threads to use during generation. For optimal performance, it is recommended to set this value to the number of physical CPU cores your system has.
|
||||
- - `-ngl N, --n-gpu-layers N`: When compiled with GPU support, this option allows offloading some layers to the GPU for computation. Generally results in increased performance.
|
||||
- `-ngl N, --n-gpu-layers N`: When compiled with GPU support, this option allows offloading some layers to the GPU for computation. Generally results in increased performance.
|
||||
|
||||
## Input Prompts
|
||||
|
||||
@@ -187,6 +187,30 @@ Use the `--no-penalize-nl` option to disable newline penalization when applying
|
||||
|
||||
Example usage: `--repeat-penalty 1.15 --repeat-last-n 128 --no-penalize-nl`
|
||||
|
||||
### DRY Repetition Penalty
|
||||
|
||||
DRY (Don't Repeat Yourself) sampling is an effective technique for reducing repetition in generated text even across long contexts by penalizing tokens based on their recent usage patterns (original [PR link](https://github.com/oobabooga/text-generation-webui/pull/5677)).
|
||||
|
||||
- `--dry-multiplier N`: Set the DRY sampling multiplier (default: 0.0, 0.0 = disabled).
|
||||
- `--dry-base N`: Set the DRY sampling base value (default: 1.75).
|
||||
- `--dry-allowed-length N`: Set the allowed length for DRY sampling (default: 2).
|
||||
- `--dry-penalty-last-n N`: Set DRY penalty for the last n tokens (default: -1, 0 = disable, -1 = context size).
|
||||
- `--dry-sequence-breaker STRING`: Add a sequence breaker for DRY sampling. Can be used more than once to add multiple sequence breakers. Using this clears out the default breakers, which consist of: `['\n', ':', '"', '*']`. If the string `"none"` is supplied, no sequence breakers are used.
|
||||
|
||||
The `dry-multiplier` option controls the strength of the DRY sampling effect. A value of 0.0 disables DRY sampling, while higher values increase its influence. A typical recommended value is 0.8.
|
||||
|
||||
The `dry-base` option sets the base value for the exponential penalty calculation in DRY sampling. Higher values lead to more aggressive penalization of repetitions.
|
||||
|
||||
The `dry-allowed-length` option sets the maximum length of repeated sequences that will not be penalized. Repetitions shorter than or equal to this length are not penalized, allowing for natural repetitions of short phrases or common words.
|
||||
|
||||
The `dry-penalty-last-n` option controls how many recent tokens to consider when applying the DRY penalty. A value of -1 considers the entire context. Use a positive value to limit the consideration to a specific number of recent tokens.
|
||||
|
||||
The `dry-sequence-breaker` option adds a single sequence breaker and can be used more than once to specify multiple sequence breakers. Sequence breakers interrupt sequence matching and break the input into parts where matching can be applied.
|
||||
|
||||
DRY sampling provides more nuanced control over text generation, particularly for reducing long-range repetitions and maintaining global coherence.
|
||||
|
||||
Example usage: `--dry-multiplier 0.8 --dry-base 1.75 --dry-allowed-length 2 --dry-penalty-last-n -1 --dry-sequence-breaker "—" --dry-sequence-breaker "##"`
|
||||
|
||||
### Top-K Sampling
|
||||
|
||||
- `--top-k N`: Limit the next token selection to the K most probable tokens (default: 40).
|
||||
@@ -211,14 +235,6 @@ The Min-P sampling method was designed as an alternative to Top-P, and aims to e
|
||||
|
||||
Example usage: `--min-p 0.05`
|
||||
|
||||
### Tail-Free Sampling (TFS)
|
||||
|
||||
- `--tfs N`: Enable tail free sampling with parameter z (default: 1.0, 1.0 = disabled).
|
||||
|
||||
Tail-free sampling (TFS) is a text generation technique that aims to reduce the impact of less likely tokens, which may be less relevant, less coherent, or nonsensical, on the output. Similar to Top-P it tries to determine the bulk of the most likely tokens dynamically. But TFS filters out logits based on the second derivative of their probabilities. Adding tokens is stopped after the sum of the second derivatives reaches the parameter z. In short: TFS looks at how quickly the probabilities of the tokens decrease and cuts off the tail of unlikely tokens using the parameter z. Typical values for z are in the range of 0.9 to 0.95. A value of 1.0 would include all tokens and thus disables the effect of TFS.
|
||||
|
||||
Example usage: `--tfs 0.95`
|
||||
|
||||
### Locally Typical Sampling
|
||||
|
||||
- `--typical N`: Enable locally typical sampling with parameter p (default: 1.0, 1.0 = disabled).
|
||||
@@ -241,6 +257,19 @@ The `--mirostat-ent` option sets the Mirostat target entropy (tau), which repres
|
||||
|
||||
Example usage: `--mirostat 2 --mirostat-lr 0.05 --mirostat-ent 3.0`
|
||||
|
||||
### XTC Sampling
|
||||
|
||||
- `--xtc-probability N`: Sets the chance for token removal (checked once on sampler start) (default: 0.0).
|
||||
- `--xtc-threshold N`: Sets a minimum probability threshold for tokens to be removed (default: 0.1).
|
||||
|
||||
Exclude Top Choices (XTC) is a unique sampler that is designed to remove top tokens from consideration and avoid more obvious and repetitive outputs. With a chance of `xtc-probability` it searches for tokens with probabilities of `xtc-threshold` and above, then removes all such tokens except the least probable one.
|
||||
|
||||
By removing top tokens XTC can improve the variety of answers, break writing clichés and inhibit repition, since clichés and repeated phrases are usually more likely to appear. By keeping the last token above the threshold, XTC ensures that the answer is still coherent. XTC is meant to be used for creative tasks, but feel free to experiment with different settings for different models.
|
||||
|
||||
Being experimental and unique, XTC is disabled by default. The recommended combination of samplers is Min-P followed by XTC on its default settings: `--sampling-seq mx --min-p 0.02 --xtc-probability 0.5`.
|
||||
|
||||
Example usage: `--xtc-probability 0.5 --xtc-threshold 0.1`
|
||||
|
||||
### Logit Bias
|
||||
|
||||
- `-l TOKEN_ID(+/-)BIAS, --logit-bias TOKEN_ID(+/-)BIAS`: Modify the likelihood of a token appearing in the generated text completion.
|
||||
@@ -284,10 +313,6 @@ These options help improve the performance and memory usage of the LLaMA models.
|
||||
|
||||
These flags attempt optimizations that help on some systems with non-uniform memory access. This currently consists of one of the above strategies, and disabling prefetch and readahead for mmap. The latter causes mapped pages to be faulted in on first access instead of all at once, and in combination with pinning threads to NUMA nodes, more of the pages end up on the NUMA node where they are used. Note that if the model is already in the system page cache, for example because of a previous run without this option, this will have little effect unless you drop the page cache first. This can be done by rebooting the system or on Linux by writing '3' to '/proc/sys/vm/drop_caches' as root.
|
||||
|
||||
### Memory Float 32
|
||||
|
||||
- `--memory-f32`: Use 32-bit floats instead of 16-bit floats for memory key+value. This doubles the context memory requirement and cached prompt file size but does not appear to increase generation quality in a measurable way. Not recommended.
|
||||
|
||||
### Batch Size
|
||||
|
||||
- `-b N, --batch-size N`: Set the batch size for prompt processing (default: `2048`). This large batch size benefits users who have BLAS installed and enabled it during the build. If you don't have BLAS enabled ("BLAS=0"), you can use a smaller number, such as 8, to see the prompt progress as it's evaluated in some situations.
|
||||
@@ -308,6 +333,15 @@ These options help improve the performance and memory usage of the LLaMA models.
|
||||
|
||||
For information about 4-bit quantization, which can significantly improve performance and reduce memory usage, please refer to llama.cpp's primary [README](../../README.md#prepare-and-quantize).
|
||||
|
||||
## LoRA (Low-Rank Adaptation) adapters
|
||||
|
||||
- `--lora FNAME`: Optional path to a LoRA adapter to use with scaling of 1.0. Can be mixed with `--lora-scaled` and can be repeated to use multiple adapters.
|
||||
- `--lora-scaled FNAME`: Optional path to a LoRA adapter with user-defined scaling. Can be mixed with `--lora` and can repeated to use multiple adapters.
|
||||
|
||||
You can add LoRA adapters using `--lora` or `--lora-scaled`. For example: `--lora my_adapter_1.gguf --lora my_adapter_2.gguf ...` or `--lora-scaled lora_task_A.gguf 0.5 --lora-scaled lora_task_B.gguf 0.5`.
|
||||
|
||||
LoRA adapters should be in GGUF format. To convert from Hugging Face format use the `convert-lora-to-gguf.py` script. LoRA adapters are loaded separately and applied during inference - they are not merged with the main model. This means that mmap model loading is fully supported when using LoRA adapters. The old `--lora-base` flag has been removed now that merging is no longer performed.
|
||||
|
||||
## Additional Options
|
||||
|
||||
These options provide extra functionality and customization when running the LLaMA models:
|
||||
@@ -316,6 +350,4 @@ These options provide extra functionality and customization when running the LLa
|
||||
- `--verbose-prompt`: Print the prompt before generating text.
|
||||
- `-mg i, --main-gpu i`: When using multiple GPUs this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default GPU 0 is used.
|
||||
- `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance.
|
||||
- `--lora FNAME`: Apply a LoRA (Low-Rank Adaptation) adapter to the model (implies --no-mmap). This allows you to adapt the pretrained model to specific tasks or domains.
|
||||
- `--lora-base FNAME`: Optional model to use as a base for the layers modified by the LoRA adapter. This flag is used in conjunction with the `--lora` flag, and specifies the base model for the adaptation.
|
||||
- `-hfr URL --hf-repo URL`: The url to the Hugging Face model repository. Used in conjunction with `--hf-file` or `-hff`. The model is downloaded and stored in the file provided by `-m` or `--model`. If `-m` is not provided, the model is auto-stored in the path specified by the `LLAMA_CACHE` environment variable or in an OS-specific local cache.
|
||||
|
||||
@@ -33,8 +33,8 @@
|
||||
|
||||
static llama_context ** g_ctx;
|
||||
static llama_model ** g_model;
|
||||
static gpt_sampler ** g_smpl;
|
||||
static gpt_params * g_params;
|
||||
static common_sampler ** g_smpl;
|
||||
static common_params * g_params;
|
||||
static std::vector<llama_token> * g_input_tokens;
|
||||
static std::ostringstream * g_output_ss;
|
||||
static std::vector<llama_token> * g_output_tokens;
|
||||
@@ -62,49 +62,6 @@ static bool file_is_empty(const std::string & path) {
|
||||
return f.tellg() == 0;
|
||||
}
|
||||
|
||||
static void write_logfile(
|
||||
const llama_context * ctx, const gpt_params & params, const llama_model * model,
|
||||
const std::vector<llama_token> & input_tokens, const std::string & output,
|
||||
const std::vector<llama_token> & output_tokens
|
||||
) {
|
||||
if (params.logdir.empty()) {
|
||||
return;
|
||||
}
|
||||
|
||||
const std::string timestamp = string_get_sortable_timestamp();
|
||||
|
||||
const bool success = fs_create_directory_with_parents(params.logdir);
|
||||
if (!success) {
|
||||
LOG_ERR("%s: failed to create logdir %s, cannot write logfile\n", __func__, params.logdir.c_str());
|
||||
return;
|
||||
}
|
||||
|
||||
const std::string logfile_path = params.logdir + timestamp + ".yml";
|
||||
FILE * logfile = fopen(logfile_path.c_str(), "w");
|
||||
|
||||
if (logfile == NULL) {
|
||||
LOG_ERR("%s: failed to open logfile %s\n", __func__, logfile_path.c_str());
|
||||
return;
|
||||
}
|
||||
|
||||
fprintf(logfile, "binary: main\n");
|
||||
char model_desc[128];
|
||||
llama_model_desc(model, model_desc, sizeof(model_desc));
|
||||
yaml_dump_non_result_info(logfile, params, ctx, timestamp, input_tokens, model_desc);
|
||||
|
||||
fprintf(logfile, "\n");
|
||||
fprintf(logfile, "######################\n");
|
||||
fprintf(logfile, "# Generation Results #\n");
|
||||
fprintf(logfile, "######################\n");
|
||||
fprintf(logfile, "\n");
|
||||
|
||||
yaml_dump_string_multiline(logfile, "output", output.c_str());
|
||||
yaml_dump_vector_int(logfile, "output_tokens", output_tokens);
|
||||
|
||||
llama_perf_dump_yaml(logfile, ctx);
|
||||
fclose(logfile);
|
||||
}
|
||||
|
||||
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
|
||||
static void sigint_handler(int signo) {
|
||||
if (signo == SIGINT) {
|
||||
@@ -114,12 +71,11 @@ static void sigint_handler(int signo) {
|
||||
} else {
|
||||
console::cleanup();
|
||||
LOG("\n");
|
||||
gpt_perf_print(*g_ctx, *g_smpl);
|
||||
write_logfile(*g_ctx, *g_params, *g_model, *g_input_tokens, g_output_ss->str(), *g_output_tokens);
|
||||
common_perf_print(*g_ctx, *g_smpl);
|
||||
|
||||
// make sure all logs are flushed
|
||||
LOG("Interrupted by user\n");
|
||||
gpt_log_pause(gpt_log_main());
|
||||
common_log_pause(common_log_main());
|
||||
|
||||
_exit(130);
|
||||
}
|
||||
@@ -127,22 +83,22 @@ static void sigint_handler(int signo) {
|
||||
}
|
||||
#endif
|
||||
|
||||
static std::string chat_add_and_format(struct llama_model * model, std::vector<llama_chat_msg> & chat_msgs, const std::string & role, const std::string & content) {
|
||||
llama_chat_msg new_msg{role, content};
|
||||
auto formatted = llama_chat_format_single(model, g_params->chat_template, chat_msgs, new_msg, role == "user");
|
||||
static std::string chat_add_and_format(struct llama_model * model, std::vector<common_chat_msg> & chat_msgs, const std::string & role, const std::string & content) {
|
||||
common_chat_msg new_msg{role, content};
|
||||
auto formatted = common_chat_format_single(model, g_params->chat_template, chat_msgs, new_msg, role == "user");
|
||||
chat_msgs.push_back({role, content});
|
||||
LOG_DBG("formatted: '%s'\n", formatted.c_str());
|
||||
return formatted;
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
g_params = ¶ms;
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_MAIN, print_usage)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_MAIN, print_usage)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
common_init();
|
||||
|
||||
auto & sparams = params.sparams;
|
||||
|
||||
@@ -187,9 +143,9 @@ int main(int argc, char ** argv) {
|
||||
|
||||
llama_model * model = nullptr;
|
||||
llama_context * ctx = nullptr;
|
||||
gpt_sampler * smpl = nullptr;
|
||||
common_sampler * smpl = nullptr;
|
||||
|
||||
std::vector<llama_chat_msg> chat_msgs;
|
||||
std::vector<common_chat_msg> chat_msgs;
|
||||
|
||||
g_model = &model;
|
||||
g_ctx = &ctx;
|
||||
@@ -197,7 +153,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// load the model and apply lora adapter, if any
|
||||
LOG_INF("%s: load the model and apply lora adapter, if any\n", __func__);
|
||||
llama_init_result llama_init = llama_init_from_gpt_params(params);
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
model = llama_init.model;
|
||||
ctx = llama_init.context;
|
||||
@@ -246,7 +202,7 @@ int main(int argc, char ** argv) {
|
||||
// print chat template example in conversation mode
|
||||
if (params.conversation) {
|
||||
if (params.enable_chat_template) {
|
||||
LOG_INF("%s: chat template example:\n%s\n", __func__, llama_chat_format_example(model, params.chat_template).c_str());
|
||||
LOG_INF("%s: chat template example:\n%s\n", __func__, common_chat_format_example(model, params.chat_template).c_str());
|
||||
} else {
|
||||
LOG_INF("%s: in-suffix/prefix is specified, chat template will be disabled\n", __func__);
|
||||
}
|
||||
@@ -255,7 +211,7 @@ int main(int argc, char ** argv) {
|
||||
// print system information
|
||||
{
|
||||
LOG_INF("\n");
|
||||
LOG_INF("%s\n", gpt_params_get_system_info(params).c_str());
|
||||
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
|
||||
LOG_INF("\n");
|
||||
}
|
||||
|
||||
@@ -296,7 +252,7 @@ int main(int argc, char ** argv) {
|
||||
: params.prompt;
|
||||
if (params.interactive_first || !params.prompt.empty() || session_tokens.empty()) {
|
||||
LOG_DBG("tokenize the prompt\n");
|
||||
embd_inp = ::llama_tokenize(ctx, prompt, true, true);
|
||||
embd_inp = common_tokenize(ctx, prompt, true, true);
|
||||
} else {
|
||||
LOG_DBG("use session tokens\n");
|
||||
embd_inp = session_tokens;
|
||||
@@ -379,13 +335,13 @@ int main(int argc, char ** argv) {
|
||||
LOG_INF("%s: prompt: '%s'\n", __func__, params.prompt.c_str());
|
||||
LOG_INF("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
|
||||
for (int i = 0; i < (int) embd_inp.size(); i++) {
|
||||
LOG_INF("%6d -> '%s'\n", embd_inp[i], llama_token_to_piece(ctx, embd_inp[i]).c_str());
|
||||
LOG_INF("%6d -> '%s'\n", embd_inp[i], common_token_to_piece(ctx, embd_inp[i]).c_str());
|
||||
}
|
||||
|
||||
if (params.n_keep > add_bos) {
|
||||
LOG_INF("%s: static prompt based on n_keep: '", __func__);
|
||||
for (int i = 0; i < params.n_keep; i++) {
|
||||
LOG_CNT("%s", llama_token_to_piece(ctx, embd_inp[i]).c_str());
|
||||
LOG_CNT("%s", common_token_to_piece(ctx, embd_inp[i]).c_str());
|
||||
}
|
||||
LOG_CNT("'\n");
|
||||
}
|
||||
@@ -415,9 +371,9 @@ int main(int argc, char ** argv) {
|
||||
for (const auto & antiprompt : params.antiprompt) {
|
||||
LOG_INF("Reverse prompt: '%s'\n", antiprompt.c_str());
|
||||
if (params.verbose_prompt) {
|
||||
auto tmp = ::llama_tokenize(ctx, antiprompt, false, true);
|
||||
auto tmp = common_tokenize(ctx, antiprompt, false, true);
|
||||
for (int i = 0; i < (int) tmp.size(); i++) {
|
||||
LOG_INF("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx, tmp[i]).c_str());
|
||||
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx, tmp[i]).c_str());
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -430,9 +386,9 @@ int main(int argc, char ** argv) {
|
||||
if (!params.input_prefix.empty()) {
|
||||
LOG_INF("Input prefix: '%s'\n", params.input_prefix.c_str());
|
||||
if (params.verbose_prompt) {
|
||||
auto tmp = ::llama_tokenize(ctx, params.input_prefix, true, true);
|
||||
auto tmp = common_tokenize(ctx, params.input_prefix, true, true);
|
||||
for (int i = 0; i < (int) tmp.size(); i++) {
|
||||
LOG_INF("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx, tmp[i]).c_str());
|
||||
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx, tmp[i]).c_str());
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -440,23 +396,23 @@ int main(int argc, char ** argv) {
|
||||
if (!params.input_suffix.empty()) {
|
||||
LOG_INF("Input suffix: '%s'\n", params.input_suffix.c_str());
|
||||
if (params.verbose_prompt) {
|
||||
auto tmp = ::llama_tokenize(ctx, params.input_suffix, false, true);
|
||||
auto tmp = common_tokenize(ctx, params.input_suffix, false, true);
|
||||
for (int i = 0; i < (int) tmp.size(); i++) {
|
||||
LOG_INF("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx, tmp[i]).c_str());
|
||||
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx, tmp[i]).c_str());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
smpl = gpt_sampler_init(model, sparams);
|
||||
smpl = common_sampler_init(model, sparams);
|
||||
if (!smpl) {
|
||||
LOG_ERR("%s: failed to initialize sampling subsystem\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
LOG_INF("sampler seed: %u\n", gpt_sampler_get_seed(smpl));
|
||||
LOG_INF("sampler seed: %u\n", common_sampler_get_seed(smpl));
|
||||
LOG_INF("sampler params: \n%s\n", sparams.print().c_str());
|
||||
LOG_INF("sampler chain: %s\n", gpt_sampler_print(smpl).c_str());
|
||||
LOG_INF("sampler chain: %s\n", common_sampler_print(smpl).c_str());
|
||||
|
||||
LOG_INF("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
||||
|
||||
@@ -521,14 +477,14 @@ int main(int argc, char ** argv) {
|
||||
|
||||
antiprompt_ids.reserve(params.antiprompt.size());
|
||||
for (const std::string & antiprompt : params.antiprompt) {
|
||||
antiprompt_ids.emplace_back(::llama_tokenize(ctx, antiprompt, false, true));
|
||||
antiprompt_ids.emplace_back(::common_tokenize(ctx, antiprompt, false, true));
|
||||
}
|
||||
|
||||
if (llama_model_has_encoder(model)) {
|
||||
int enc_input_size = embd_inp.size();
|
||||
llama_token * enc_input_buf = embd_inp.data();
|
||||
|
||||
if (llama_encode(ctx, llama_batch_get_one(enc_input_buf, enc_input_size, 0, 0))) {
|
||||
if (llama_encode(ctx, llama_batch_get_one(enc_input_buf, enc_input_size))) {
|
||||
LOG_ERR("%s : failed to eval\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
@@ -569,30 +525,30 @@ int main(int argc, char ** argv) {
|
||||
if (!params.ctx_shift){
|
||||
LOG_DBG("\n\n%s: context full and context shift is disabled => stopping\n", __func__);
|
||||
break;
|
||||
} else {
|
||||
if (params.n_predict == -2) {
|
||||
LOG_DBG("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict);
|
||||
break;
|
||||
}
|
||||
|
||||
const int n_left = n_past - params.n_keep;
|
||||
const int n_discard = n_left/2;
|
||||
|
||||
LOG_DBG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
|
||||
n_past, n_left, n_ctx, params.n_keep, n_discard);
|
||||
|
||||
llama_kv_cache_seq_rm (ctx, 0, params.n_keep , params.n_keep + n_discard);
|
||||
llama_kv_cache_seq_add(ctx, 0, params.n_keep + n_discard, n_past, -n_discard);
|
||||
|
||||
n_past -= n_discard;
|
||||
|
||||
LOG_DBG("after swap: n_past = %d\n", n_past);
|
||||
|
||||
LOG_DBG("embd: %s\n", string_from(ctx, embd).c_str());
|
||||
|
||||
LOG_DBG("clear session path\n");
|
||||
path_session.clear();
|
||||
}
|
||||
|
||||
if (params.n_predict == -2) {
|
||||
LOG_DBG("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict);
|
||||
break;
|
||||
}
|
||||
|
||||
const int n_left = n_past - params.n_keep;
|
||||
const int n_discard = n_left/2;
|
||||
|
||||
LOG_DBG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
|
||||
n_past, n_left, n_ctx, params.n_keep, n_discard);
|
||||
|
||||
llama_kv_cache_seq_rm (ctx, 0, params.n_keep , params.n_keep + n_discard);
|
||||
llama_kv_cache_seq_add(ctx, 0, params.n_keep + n_discard, n_past, -n_discard);
|
||||
|
||||
n_past -= n_discard;
|
||||
|
||||
LOG_DBG("after swap: n_past = %d\n", n_past);
|
||||
|
||||
LOG_DBG("embd: %s\n", string_from(ctx, embd).c_str());
|
||||
|
||||
LOG_DBG("clear session path\n");
|
||||
path_session.clear();
|
||||
}
|
||||
} else {
|
||||
// context extension via Self-Extend
|
||||
@@ -648,7 +604,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
LOG_DBG("eval: %s\n", string_from(ctx, embd).c_str());
|
||||
|
||||
if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval, n_past, 0))) {
|
||||
if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval))) {
|
||||
LOG_ERR("%s : failed to eval\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
@@ -679,9 +635,9 @@ int main(int argc, char ** argv) {
|
||||
LOG_DBG("saved session to %s\n", path_session.c_str());
|
||||
}
|
||||
|
||||
const llama_token id = gpt_sampler_sample(smpl, ctx, -1);
|
||||
const llama_token id = common_sampler_sample(smpl, ctx, -1);
|
||||
|
||||
gpt_sampler_accept(smpl, id, /* accept_grammar= */ true);
|
||||
common_sampler_accept(smpl, id, /* accept_grammar= */ true);
|
||||
|
||||
// LOG_DBG("last: %s\n", string_from(ctx, smpl->prev.to_vector()).c_str());
|
||||
|
||||
@@ -702,7 +658,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// push the prompt in the sampling context in order to apply repetition penalties later
|
||||
// for the prompt, we don't apply grammar rules
|
||||
gpt_sampler_accept(smpl, embd_inp[n_consumed], /* accept_grammar= */ false);
|
||||
common_sampler_accept(smpl, embd_inp[n_consumed], /* accept_grammar= */ false);
|
||||
|
||||
++n_consumed;
|
||||
if ((int) embd.size() >= params.n_batch) {
|
||||
@@ -714,7 +670,7 @@ int main(int argc, char ** argv) {
|
||||
// display text
|
||||
if (input_echo && display) {
|
||||
for (auto id : embd) {
|
||||
const std::string token_str = llama_token_to_piece(ctx, id, params.special);
|
||||
const std::string token_str = common_token_to_piece(ctx, id, params.special);
|
||||
|
||||
// Console/Stream Output
|
||||
LOG("%s", token_str.c_str());
|
||||
@@ -743,7 +699,7 @@ int main(int argc, char ** argv) {
|
||||
// check for reverse prompt in the last n_prev tokens
|
||||
if (!params.antiprompt.empty()) {
|
||||
const int n_prev = 32;
|
||||
const std::string last_output = gpt_sampler_prev_str(smpl, ctx, n_prev);
|
||||
const std::string last_output = common_sampler_prev_str(smpl, ctx, n_prev);
|
||||
|
||||
is_antiprompt = false;
|
||||
// Check if each of the reverse prompts appears at the end of the output.
|
||||
@@ -765,7 +721,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// check for reverse prompt using special tokens
|
||||
llama_token last_token = gpt_sampler_last(smpl);
|
||||
llama_token last_token = common_sampler_last(smpl);
|
||||
for (std::vector<llama_token> ids : antiprompt_ids) {
|
||||
if (ids.size() == 1 && last_token == ids[0]) {
|
||||
if (params.interactive) {
|
||||
@@ -782,13 +738,13 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// deal with end of generation tokens in interactive mode
|
||||
if (llama_token_is_eog(model, gpt_sampler_last(smpl))) {
|
||||
if (llama_token_is_eog(model, common_sampler_last(smpl))) {
|
||||
LOG_DBG("found an EOG token\n");
|
||||
|
||||
if (params.interactive) {
|
||||
if (!params.antiprompt.empty()) {
|
||||
// tokenize and inject first reverse prompt
|
||||
const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false, true);
|
||||
const auto first_antiprompt = common_tokenize(ctx, params.antiprompt.front(), false, true);
|
||||
embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end());
|
||||
is_antiprompt = true;
|
||||
}
|
||||
@@ -803,8 +759,8 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// if current token is not EOG, we add it to current assistant message
|
||||
if (params.conversation) {
|
||||
const auto id = gpt_sampler_last(smpl);
|
||||
assistant_ss << llama_token_to_piece(ctx, id, false);
|
||||
const auto id = common_sampler_last(smpl);
|
||||
assistant_ss << common_token_to_piece(ctx, id, false);
|
||||
}
|
||||
|
||||
if (n_past > 0 && is_interacting) {
|
||||
@@ -862,9 +818,9 @@ int main(int argc, char ** argv) {
|
||||
? chat_add_and_format(model, chat_msgs, "user", std::move(buffer))
|
||||
: std::move(buffer);
|
||||
// TODO: one inconvenient of current chat template implementation is that we can't distinguish between user input and special tokens (prefix/postfix)
|
||||
const auto line_pfx = ::llama_tokenize(ctx, params.input_prefix, false, true);
|
||||
const auto line_inp = ::llama_tokenize(ctx, user_inp, false, format_chat);
|
||||
const auto line_sfx = ::llama_tokenize(ctx, params.input_suffix, false, true);
|
||||
const auto line_pfx = common_tokenize(ctx, params.input_prefix, false, true);
|
||||
const auto line_inp = common_tokenize(ctx, user_inp, false, format_chat);
|
||||
const auto line_sfx = common_tokenize(ctx, params.input_suffix, false, true);
|
||||
|
||||
LOG_DBG("input tokens: %s\n", string_from(ctx, line_inp).c_str());
|
||||
|
||||
@@ -882,7 +838,7 @@ int main(int argc, char ** argv) {
|
||||
for (size_t i = original_size; i < embd_inp.size(); ++i) {
|
||||
const llama_token token = embd_inp[i];
|
||||
output_tokens.push_back(token);
|
||||
output_ss << llama_token_to_piece(ctx, token);
|
||||
output_ss << common_token_to_piece(ctx, token);
|
||||
}
|
||||
|
||||
// reset assistant message
|
||||
@@ -899,7 +855,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
if (n_past > 0) {
|
||||
if (is_interacting) {
|
||||
gpt_sampler_reset(smpl);
|
||||
common_sampler_reset(smpl);
|
||||
}
|
||||
is_interacting = false;
|
||||
}
|
||||
@@ -925,10 +881,9 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
LOG("\n\n");
|
||||
gpt_perf_print(ctx, smpl);
|
||||
write_logfile(ctx, params, model, input_tokens, output_ss.str(), output_tokens);
|
||||
common_perf_print(ctx, smpl);
|
||||
|
||||
gpt_sampler_free(smpl);
|
||||
common_sampler_free(smpl);
|
||||
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
||||
@@ -54,7 +54,7 @@ static std::vector<std::string> k_prompts = {
|
||||
struct client {
|
||||
~client() {
|
||||
if (smpl) {
|
||||
gpt_sampler_free(smpl);
|
||||
common_sampler_free(smpl);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -75,7 +75,7 @@ struct client {
|
||||
std::string prompt;
|
||||
std::string response;
|
||||
|
||||
struct gpt_sampler * smpl = nullptr;
|
||||
struct common_sampler * smpl = nullptr;
|
||||
};
|
||||
|
||||
static void print_date_time() {
|
||||
@@ -103,13 +103,13 @@ static std::vector<std::string> split_string(const std::string& input, char deli
|
||||
int main(int argc, char ** argv) {
|
||||
srand(1234);
|
||||
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_PARALLEL)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_PARALLEL)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
common_init();
|
||||
|
||||
// number of simultaneous "clients" to simulate
|
||||
const int32_t n_clients = params.n_parallel;
|
||||
@@ -130,7 +130,7 @@ int main(int argc, char ** argv) {
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
// load the target model
|
||||
llama_init_result llama_init = llama_init_from_gpt_params(params);
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
llama_model * model = llama_init.model;
|
||||
llama_context * ctx = llama_init.context;
|
||||
@@ -160,11 +160,11 @@ int main(int argc, char ** argv) {
|
||||
for (size_t i = 0; i < clients.size(); ++i) {
|
||||
auto & client = clients[i];
|
||||
client.id = i;
|
||||
client.smpl = gpt_sampler_init(model, params.sparams);
|
||||
client.smpl = common_sampler_init(model, params.sparams);
|
||||
}
|
||||
|
||||
std::vector<llama_token> tokens_system;
|
||||
tokens_system = ::llama_tokenize(ctx, k_system, true);
|
||||
tokens_system = common_tokenize(ctx, k_system, true);
|
||||
const int32_t n_tokens_system = tokens_system.size();
|
||||
|
||||
llama_seq_id g_seq_id = 0;
|
||||
@@ -189,7 +189,7 @@ int main(int argc, char ** argv) {
|
||||
LOG_INF("%s: Evaluating the system prompt ...\n", __func__);
|
||||
|
||||
for (int32_t i = 0; i < n_tokens_system; ++i) {
|
||||
llama_batch_add(batch, tokens_system[i], i, { 0 }, false);
|
||||
common_batch_add(batch, tokens_system[i], i, { 0 }, false);
|
||||
}
|
||||
|
||||
if (llama_decode(ctx, batch) != 0) {
|
||||
@@ -210,10 +210,10 @@ int main(int argc, char ** argv) {
|
||||
while (true) {
|
||||
if (dump_kv_cache) {
|
||||
llama_kv_cache_view_update(ctx, &kvc_view);
|
||||
llama_kv_cache_dump_view_seqs(kvc_view, 40);
|
||||
common_kv_cache_dump_view_seqs(kvc_view, 40);
|
||||
}
|
||||
|
||||
llama_batch_clear(batch);
|
||||
common_batch_clear(batch);
|
||||
|
||||
// decode any currently ongoing sequences
|
||||
for (auto & client : clients) {
|
||||
@@ -223,7 +223,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
client.i_batch = batch.n_tokens;
|
||||
|
||||
llama_batch_add(batch, client.sampled, n_tokens_system + client.n_prompt + client.n_decoded, { client.id + 1 }, true);
|
||||
common_batch_add(batch, client.sampled, n_tokens_system + client.n_prompt + client.n_decoded, { client.id + 1 }, true);
|
||||
|
||||
client.n_decoded += 1;
|
||||
}
|
||||
@@ -252,14 +252,14 @@ int main(int argc, char ** argv) {
|
||||
client.prompt = client.input + "\nAssistant:";
|
||||
client.response = "";
|
||||
|
||||
gpt_sampler_reset(client.smpl);
|
||||
common_sampler_reset(client.smpl);
|
||||
|
||||
// do not prepend BOS because we have a system prompt!
|
||||
std::vector<llama_token> tokens_prompt;
|
||||
tokens_prompt = ::llama_tokenize(ctx, client.prompt, false);
|
||||
tokens_prompt = common_tokenize(ctx, client.prompt, false);
|
||||
|
||||
for (size_t i = 0; i < tokens_prompt.size(); ++i) {
|
||||
llama_batch_add(batch, tokens_prompt[i], i + n_tokens_system, { client.id + 1 }, false);
|
||||
common_batch_add(batch, tokens_prompt[i], i + n_tokens_system, { client.id + 1 }, false);
|
||||
}
|
||||
|
||||
// extract the logits only for the last token
|
||||
@@ -308,7 +308,6 @@ int main(int argc, char ** argv) {
|
||||
batch.n_seq_id + i,
|
||||
batch.seq_id + i,
|
||||
batch.logits + i,
|
||||
0, 0, 0, // unused
|
||||
};
|
||||
|
||||
const int ret = llama_decode(ctx, batch_view);
|
||||
@@ -340,9 +339,9 @@ int main(int argc, char ** argv) {
|
||||
//printf("client %d, seq %d, token %d, pos %d, batch %d\n",
|
||||
// client.id, client.seq_id, client.sampled, client.n_decoded, client.i_batch);
|
||||
|
||||
const llama_token id = gpt_sampler_sample(client.smpl, ctx, client.i_batch - i);
|
||||
const llama_token id = common_sampler_sample(client.smpl, ctx, client.i_batch - i);
|
||||
|
||||
gpt_sampler_accept(client.smpl, id, true);
|
||||
common_sampler_accept(client.smpl, id, true);
|
||||
|
||||
if (client.n_decoded == 1) {
|
||||
// start measuring generation time after the first token to make sure all concurrent clients
|
||||
@@ -350,7 +349,7 @@ int main(int argc, char ** argv) {
|
||||
client.t_start_gen = ggml_time_us();
|
||||
}
|
||||
|
||||
const std::string token_str = llama_token_to_piece(ctx, id);
|
||||
const std::string token_str = common_token_to_piece(ctx, id);
|
||||
|
||||
client.response += token_str;
|
||||
client.sampled = id;
|
||||
|
||||
@@ -15,17 +15,17 @@ static void print_usage(int, char ** argv) {
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
|
||||
params.n_junk = 250;
|
||||
params.n_keep = 32;
|
||||
params.i_pos = -1;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_PASSKEY, print_usage)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_PASSKEY, print_usage)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
common_init();
|
||||
|
||||
int n_junk = params.n_junk;
|
||||
int n_keep = params.n_keep;
|
||||
@@ -61,7 +61,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// initialize the model
|
||||
|
||||
llama_model_params model_params = llama_model_params_from_gpt_params(params);
|
||||
llama_model_params model_params = common_model_params_to_llama(params);
|
||||
|
||||
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
|
||||
|
||||
@@ -72,7 +72,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// initialize the context
|
||||
|
||||
llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
|
||||
llama_context_params ctx_params = common_context_params_to_llama(params);
|
||||
|
||||
ctx_params.n_ctx = llama_n_ctx_train(model)*n_grp + n_keep;
|
||||
|
||||
@@ -92,10 +92,10 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// tokenize the prompt
|
||||
std::vector<llama_token> tokens_list;
|
||||
tokens_list = ::llama_tokenize(ctx, params.prompt, true);
|
||||
tokens_list = common_tokenize(ctx, params.prompt, true);
|
||||
|
||||
// tokenize the prefix and use it as a sink
|
||||
const int n_tokens_prefix = ::llama_tokenize(ctx, prompt_prefix, true).size();
|
||||
const int n_tokens_prefix = common_tokenize(ctx, prompt_prefix, true).size();
|
||||
|
||||
const int n_tokens_all = tokens_list.size();
|
||||
|
||||
@@ -137,10 +137,10 @@ int main(int argc, char ** argv) {
|
||||
n_past = llama_kv_cache_seq_pos_max(ctx, 0) + 1;
|
||||
}
|
||||
|
||||
llama_batch_clear(batch);
|
||||
common_batch_clear(batch);
|
||||
|
||||
for (int j = 0; j < n_batch && i + j < n_tokens_all; j++) {
|
||||
llama_batch_add(batch, tokens_list[i + j], n_past++, { 0 }, false);
|
||||
common_batch_add(batch, tokens_list[i + j], n_past++, { 0 }, false);
|
||||
}
|
||||
|
||||
if (i + n_batch >= n_tokens_all) {
|
||||
@@ -171,10 +171,10 @@ int main(int argc, char ** argv) {
|
||||
|
||||
n_past = llama_kv_cache_seq_pos_max(ctx, 0) + 1;
|
||||
|
||||
llama_batch_clear(batch);
|
||||
common_batch_clear(batch);
|
||||
|
||||
for (int j = 0; j < n_batch && i + j < n_tokens_all; j++) {
|
||||
llama_batch_add(batch, tokens_list[i + j], n_past++, { 0 }, false);
|
||||
common_batch_add(batch, tokens_list[i + j], n_past++, { 0 }, false);
|
||||
}
|
||||
|
||||
if (i + n_batch >= n_tokens_all) {
|
||||
@@ -229,15 +229,15 @@ int main(int argc, char ** argv) {
|
||||
break;
|
||||
}
|
||||
|
||||
LOG("%s", llama_token_to_piece(ctx, new_token_id).c_str());
|
||||
LOG("%s", common_token_to_piece(ctx, new_token_id).c_str());
|
||||
|
||||
n_decode += 1;
|
||||
|
||||
// prepare the next batch
|
||||
llama_batch_clear(batch);
|
||||
common_batch_clear(batch);
|
||||
|
||||
// push this new token for next evaluation
|
||||
llama_batch_add(batch, new_token_id, n_past++, { 0 }, true);
|
||||
common_batch_add(batch, new_token_id, n_past++, { 0 }, true);
|
||||
}
|
||||
|
||||
n_cur += 1;
|
||||
|
||||
@@ -34,55 +34,6 @@ struct results_log_softmax {
|
||||
float prob;
|
||||
};
|
||||
|
||||
static void write_logfile(
|
||||
const llama_context * ctx, const gpt_params & params, const llama_model * model,
|
||||
const struct results_perplexity & results
|
||||
) {
|
||||
if (params.logdir.empty()) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (params.hellaswag) {
|
||||
LOG_WRN("%s: logging results is not implemented for HellaSwag. No files will be written.\n", __func__);
|
||||
return;
|
||||
}
|
||||
|
||||
const std::string timestamp = string_get_sortable_timestamp();
|
||||
|
||||
const bool success = fs_create_directory_with_parents(params.logdir);
|
||||
if (!success) {
|
||||
LOG_WRN("%s: failed to create logdir %s, cannot write logfile\n",
|
||||
__func__, params.logdir.c_str());
|
||||
return;
|
||||
}
|
||||
|
||||
const std::string logfile_path = params.logdir + timestamp + ".yml";
|
||||
FILE * logfile = fopen(logfile_path.c_str(), "w");
|
||||
|
||||
if (logfile == NULL) {
|
||||
LOG_ERR("%s: failed to open logfile %s\n", __func__, logfile_path.c_str());
|
||||
return;
|
||||
}
|
||||
|
||||
fprintf(logfile, "binary: main\n");
|
||||
char model_desc[128];
|
||||
llama_model_desc(model, model_desc, sizeof(model_desc));
|
||||
yaml_dump_non_result_info(logfile, params, ctx, timestamp, results.tokens, model_desc);
|
||||
|
||||
fprintf(logfile, "\n");
|
||||
fprintf(logfile, "######################\n");
|
||||
fprintf(logfile, "# Perplexity Results #\n");
|
||||
fprintf(logfile, "######################\n");
|
||||
fprintf(logfile, "\n");
|
||||
|
||||
yaml_dump_vector_float(logfile, "logits", results.logits);
|
||||
fprintf(logfile, "ppl_value: %f\n", results.ppl_value);
|
||||
yaml_dump_vector_float(logfile, "probs", results.probs);
|
||||
|
||||
llama_perf_dump_yaml(logfile, ctx);
|
||||
fclose(logfile);
|
||||
}
|
||||
|
||||
static std::vector<float> softmax(const std::vector<float>& logits) {
|
||||
std::vector<float> probs(logits.size());
|
||||
float max_logit = logits[0];
|
||||
@@ -169,7 +120,7 @@ static void process_logits(
|
||||
break;
|
||||
}
|
||||
lock.unlock();
|
||||
const results_log_softmax results = log_softmax(n_vocab, logits + i*n_vocab, tokens[i+1]);
|
||||
const results_log_softmax results = log_softmax(n_vocab, logits + size_t(i)*n_vocab, tokens[i+1]);
|
||||
const double v = -results.log_softmax;
|
||||
local_nll += v;
|
||||
local_nll2 += v*v;
|
||||
@@ -203,7 +154,7 @@ static void process_logits(std::ostream& out, int n_vocab, const float * logits,
|
||||
break;
|
||||
}
|
||||
lock.unlock();
|
||||
const double v = log_softmax(n_vocab, logits + i*n_vocab, log_probs.data() + i*nv, tokens[i+1]);
|
||||
const double v = log_softmax(n_vocab, logits + size_t(i)*n_vocab, log_probs.data() + i*nv, tokens[i+1]);
|
||||
local_nll += v;
|
||||
local_nll2 += v*v;
|
||||
}
|
||||
@@ -281,7 +232,9 @@ static std::pair<double, float> log_softmax(int n_vocab, const float * logits, c
|
||||
kld.sum_kld += sum;
|
||||
kld.sum_kld2 += sum*sum;
|
||||
++kld.count;
|
||||
if (imax == imax_base) ++kld.n_same_top;
|
||||
if (imax == imax_base) {
|
||||
++kld.n_same_top;
|
||||
}
|
||||
|
||||
const float p_base = expf(-nll_base);
|
||||
const float p = expf(-nll);
|
||||
@@ -323,7 +276,7 @@ static void process_logits(int n_vocab, const float * logits, const int * tokens
|
||||
break;
|
||||
}
|
||||
lock.unlock();
|
||||
std::pair<double, float> v = log_softmax(n_vocab, logits + i*n_vocab, base_log_probs.data() + i*nv, tokens[i+1], local_kld);
|
||||
std::pair<double, float> v = log_softmax(n_vocab, logits + size_t(i)*n_vocab, base_log_probs.data() + i*nv, tokens[i+1], local_kld);
|
||||
kld_values[i] = (float)v.first;
|
||||
p_diff_values[i] = v.second;
|
||||
}
|
||||
@@ -337,7 +290,7 @@ static void process_logits(int n_vocab, const float * logits, const int * tokens
|
||||
}
|
||||
}
|
||||
|
||||
static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params & params) {
|
||||
static results_perplexity perplexity_v2(llama_context * ctx, const common_params & params) {
|
||||
// Download: https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
|
||||
// Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
|
||||
// Output: `perplexity: 13.5106 [114/114]`
|
||||
@@ -348,7 +301,7 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params &
|
||||
|
||||
LOG_INF("%s: tokenizing the input ..\n", __func__);
|
||||
|
||||
std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, true);
|
||||
std::vector<llama_token> tokens = common_tokenize(ctx, params.prompt, true);
|
||||
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
@@ -383,9 +336,10 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params &
|
||||
const int n_chunk_max = (tokens.size() - calc_chunk + params.ppl_stride - 1) / params.ppl_stride;
|
||||
|
||||
const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
const int n_batch = params.n_batch;
|
||||
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
|
||||
int count = 0;
|
||||
double nll = 0.0;
|
||||
|
||||
@@ -405,14 +359,21 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params &
|
||||
// clear the KV cache
|
||||
llama_kv_cache_clear(ctx);
|
||||
|
||||
llama_batch batch = llama_batch_init(n_batch, 0, 1);
|
||||
|
||||
for (int j = 0; j < num_batches; ++j) {
|
||||
const int batch_start = start + j * n_batch;
|
||||
const int batch_size = std::min(end - batch_start, n_batch);
|
||||
|
||||
common_batch_clear(batch);
|
||||
for (int i = 0; i < batch_size; i++) {
|
||||
common_batch_add(batch, tokens[batch_start + i], j*n_batch + i, {0}, true);
|
||||
}
|
||||
|
||||
//LOG_DBG(" Batch %d: starts at %d, size is %d, n_past is %d\n",j,batch_start,batch_size,j * n_batch);
|
||||
// TODO: use llama_batch.logits instead of relying on logits_all == true
|
||||
if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
|
||||
if (llama_decode(ctx, batch)) {
|
||||
//LOG_ERR("%s : failed to eval\n", __func__);
|
||||
llama_batch_free(batch);
|
||||
return {tokens, -1, logit_history, prob_history};
|
||||
}
|
||||
|
||||
@@ -424,14 +385,16 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params &
|
||||
tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
|
||||
}
|
||||
|
||||
const auto batch_logits = llama_get_logits(ctx);
|
||||
logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
|
||||
const auto * batch_logits = llama_get_logits(ctx);
|
||||
logits.insert(logits.end(), batch_logits, batch_logits + size_t(batch_size) * n_vocab);
|
||||
|
||||
if (j == 0) {
|
||||
tokens[batch_start] = token_org;
|
||||
}
|
||||
}
|
||||
|
||||
llama_batch_free(batch);
|
||||
|
||||
const auto t_end = std::chrono::high_resolution_clock::now();
|
||||
|
||||
if (i == 0) {
|
||||
@@ -447,11 +410,10 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params &
|
||||
|
||||
//LOG_DBG("%s: using tokens %d...%d\n",__func__,params.n_ctx - params.ppl_stride + start, params.n_ctx + start);
|
||||
for (int j = n_ctx - params.ppl_stride - 1; j < n_ctx - 1; ++j) {
|
||||
|
||||
// Calculate probability of next token, given the previous ones.
|
||||
const std::vector<float> tok_logits(
|
||||
logits.begin() + (j + 0) * n_vocab,
|
||||
logits.begin() + (j + 1) * n_vocab);
|
||||
logits.begin() + size_t(j + 0) * n_vocab,
|
||||
logits.begin() + size_t(j + 1) * n_vocab);
|
||||
|
||||
const float prob = softmax(tok_logits)[tokens[start + j + 1]];
|
||||
logit_history[start + j + 1] = tok_logits[tokens[start + j + 1]];
|
||||
@@ -472,7 +434,7 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params &
|
||||
return {tokens, std::exp(nll / count), logit_history, prob_history};
|
||||
}
|
||||
|
||||
static results_perplexity perplexity(llama_context * ctx, const gpt_params & params, const int32_t n_ctx) {
|
||||
static results_perplexity perplexity(llama_context * ctx, const common_params & params, const int32_t n_ctx) {
|
||||
if (params.ppl_stride > 0) {
|
||||
return perplexity_v2(ctx, params);
|
||||
}
|
||||
@@ -500,7 +462,7 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
||||
auto tim1 = std::chrono::high_resolution_clock::now();
|
||||
LOG_INF("%s: tokenizing the input ..\n", __func__);
|
||||
|
||||
std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, true);
|
||||
std::vector<llama_token> tokens = common_tokenize(ctx, params.prompt, true);
|
||||
|
||||
auto tim2 = std::chrono::high_resolution_clock::now();
|
||||
LOG_INF("%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());
|
||||
@@ -521,9 +483,10 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
||||
const int n_chunk_max = tokens.size() / n_ctx;
|
||||
|
||||
const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
const int n_batch = params.n_batch;
|
||||
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
|
||||
int count = 0;
|
||||
double nll = 0.0;
|
||||
double nll2 = 0.0;
|
||||
@@ -538,7 +501,7 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
||||
|
||||
std::vector<float> logits;
|
||||
if (num_batches > 1) {
|
||||
logits.reserve((size_t)n_ctx * n_vocab);
|
||||
logits.reserve(size_t(n_ctx) * n_vocab);
|
||||
}
|
||||
|
||||
LOG_INF("%s: calculating perplexity over %d chunks, n_ctx=%d, batch_size=%d, n_seq=%d\n", __func__, n_chunk, n_ctx, n_batch, n_seq);
|
||||
@@ -620,7 +583,7 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
||||
|
||||
if (num_batches > 1 && n_outputs > 0) {
|
||||
const auto * batch_logits = llama_get_logits(ctx);
|
||||
logits.insert(logits.end(), batch_logits, batch_logits + n_outputs * n_vocab);
|
||||
logits.insert(logits.end(), batch_logits, batch_logits + size_t(n_outputs) * n_vocab);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -661,7 +624,9 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
||||
} else {
|
||||
double av = nll/count;
|
||||
double av2 = nll2/count - av*av;
|
||||
if (av2 > 0) av2 = sqrt(av2/(count-1));
|
||||
if (av2 > 0) {
|
||||
av2 = sqrt(av2/(count-1));
|
||||
}
|
||||
LOG("%8d %.4lf %4lf %4lf\n", i*n_ctx, std::exp(nll / count), av, av2);
|
||||
}
|
||||
}
|
||||
@@ -686,10 +651,10 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
||||
return {tokens, ppl, logit_history, prob_history};
|
||||
}
|
||||
|
||||
static bool decode_helper(llama_context * ctx, llama_batch & batch, std::vector<float> & batch_logits, int32_t n_batch, int32_t n_vocab) {
|
||||
static bool decode_helper(llama_context * ctx, llama_batch & batch, std::vector<float> & batch_logits, int n_batch, int n_vocab) {
|
||||
int prev_outputs = 0;
|
||||
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
|
||||
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
|
||||
for (int i = 0; i < (int) batch.n_tokens; i += n_batch) {
|
||||
const int n_tokens = std::min<int>(n_batch, batch.n_tokens - i);
|
||||
|
||||
llama_batch batch_view = {
|
||||
n_tokens,
|
||||
@@ -699,7 +664,6 @@ static bool decode_helper(llama_context * ctx, llama_batch & batch, std::vector<
|
||||
batch.n_seq_id + i,
|
||||
batch.seq_id + i,
|
||||
batch.logits + i,
|
||||
0, 0, 0, // unused
|
||||
};
|
||||
|
||||
const int ret = llama_decode(ctx, batch_view);
|
||||
@@ -713,7 +677,7 @@ static bool decode_helper(llama_context * ctx, llama_batch & batch, std::vector<
|
||||
n_outputs += batch_view.logits[i] != 0;
|
||||
}
|
||||
|
||||
memcpy(batch_logits.data() + prev_outputs*n_vocab, llama_get_logits(ctx), n_outputs*n_vocab*sizeof(float));
|
||||
memcpy(batch_logits.data() + size_t(prev_outputs)*n_vocab, llama_get_logits(ctx), size_t(n_outputs)*n_vocab*sizeof(float));
|
||||
|
||||
prev_outputs += n_outputs;
|
||||
}
|
||||
@@ -728,7 +692,9 @@ static void compute_logprobs(const float * batch_logits, int n_vocab, std::vecto
|
||||
if (eval_results.size() != eval_pairs.size()) {
|
||||
eval_results.resize(eval_pairs.size());
|
||||
}
|
||||
if (eval_pairs.empty()) return;
|
||||
if (eval_pairs.empty()) {
|
||||
return;
|
||||
}
|
||||
|
||||
size_t max_threads = std::min((eval_pairs.size() + K_TOKEN_CHUNK - 1)/K_TOKEN_CHUNK, workers.size());
|
||||
|
||||
@@ -736,11 +702,13 @@ static void compute_logprobs(const float * batch_logits, int n_vocab, std::vecto
|
||||
auto compute = [&counter, &eval_pairs, &eval_results, batch_logits, n_vocab] () {
|
||||
float local_logprobs[K_TOKEN_CHUNK];
|
||||
while (true) {
|
||||
size_t first = counter.fetch_add(K_TOKEN_CHUNK, std::memory_order_relaxed);
|
||||
if (first >= eval_results.size()) break;
|
||||
size_t last = std::min(first + K_TOKEN_CHUNK, eval_results.size());
|
||||
const size_t first = counter.fetch_add(K_TOKEN_CHUNK, std::memory_order_relaxed);
|
||||
if (first >= eval_results.size()) {
|
||||
break;
|
||||
}
|
||||
const size_t last = std::min(first + K_TOKEN_CHUNK, eval_results.size());
|
||||
for (size_t i = first; i < last; ++i) {
|
||||
auto logits = batch_logits + eval_pairs[i].first * n_vocab;
|
||||
const auto * logits = batch_logits + eval_pairs[i].first * n_vocab;
|
||||
float max_logit = logits[0];
|
||||
for (int j = 1; j < n_vocab; ++j) {
|
||||
max_logit = std::max(max_logit, logits[j]);
|
||||
@@ -763,7 +731,7 @@ static void compute_logprobs(const float * batch_logits, int n_vocab, std::vecto
|
||||
}
|
||||
}
|
||||
|
||||
static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
||||
static void hellaswag_score(llama_context * ctx, const common_params & params) {
|
||||
// Calculates hellaswag score (acc_norm) from prompt
|
||||
//
|
||||
// Data extracted from the HellaSwag validation dataset (MIT license) https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl
|
||||
@@ -844,7 +812,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
||||
hs_cur.gold_ending_idx = std::stoi( prompt_lines[idx*6+1] );
|
||||
for (size_t j = 0; j < 4; j++) {
|
||||
hs_cur.ending[j] = prompt_lines[idx*6+2+j];
|
||||
hs_cur.seq_tokens[j] = ::llama_tokenize(ctx, hs_cur.context + " " + hs_cur.ending[j], true);
|
||||
hs_cur.seq_tokens[j] = common_tokenize(ctx, hs_cur.context + " " + hs_cur.ending[j], true);
|
||||
}
|
||||
|
||||
// determine the common prefix of the endings
|
||||
@@ -877,10 +845,11 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
||||
|
||||
double acc = 0.0f;
|
||||
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
const int n_batch = params.n_batch;
|
||||
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
|
||||
const int max_tasks_per_batch = 32;
|
||||
const int max_seq = std::min(4*max_tasks_per_batch, (int) llama_n_seq_max(ctx));
|
||||
|
||||
@@ -888,7 +857,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
||||
|
||||
std::vector<float> tok_logits(n_vocab);
|
||||
// TODO: this could be made smaller; it's currently the worst-case size
|
||||
std::vector<float> batch_logits(n_vocab*n_ctx);
|
||||
std::vector<float> batch_logits(size_t(n_ctx)*n_vocab);
|
||||
|
||||
std::vector<std::pair<size_t, llama_token>> eval_pairs;
|
||||
std::vector<float> eval_results;
|
||||
@@ -900,7 +869,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
||||
size_t i1 = i0;
|
||||
size_t i_logits = 0; // this tells us how many logits were needed before this point in the batch
|
||||
|
||||
llama_batch_clear(batch);
|
||||
common_batch_clear(batch);
|
||||
|
||||
// batch as much tasks as possible into the available context
|
||||
// each task has 4 unique sequence ids - one for each ending
|
||||
@@ -916,7 +885,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < hs_cur.common_prefix; ++i) {
|
||||
llama_batch_add(batch, hs_cur.seq_tokens[0][i], i, { s0 + 0, s0 + 1, s0 + 2, s0 + 3 }, false);
|
||||
common_batch_add(batch, hs_cur.seq_tokens[0][i], i, { s0 + 0, s0 + 1, s0 + 2, s0 + 3 }, false);
|
||||
}
|
||||
batch.logits[batch.n_tokens - 1] = true; // we need logits for the last token of the common prefix
|
||||
n_logits += 1;
|
||||
@@ -926,7 +895,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
||||
// TODO: don't evaluate the last token of each sequence
|
||||
for (size_t i = hs_cur.common_prefix; i < seq_tokens_size; ++i) {
|
||||
const bool needs_logits = i < seq_tokens_size - 1;
|
||||
llama_batch_add(batch, hs_cur.seq_tokens[s][i], i, { s0 + s }, needs_logits);
|
||||
common_batch_add(batch, hs_cur.seq_tokens[s][i], i, { s0 + s }, needs_logits);
|
||||
n_logits += needs_logits;
|
||||
}
|
||||
}
|
||||
@@ -975,7 +944,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
||||
auto & hs_cur = hs_data[i];
|
||||
|
||||
// get the logits of the last token of the common prefix
|
||||
std::memcpy(tok_logits.data(), batch_logits.data() + n_vocab*hs_cur.i_logits, n_vocab*sizeof(float));
|
||||
std::memcpy(tok_logits.data(), batch_logits.data() + hs_cur.i_logits*n_vocab, n_vocab*sizeof(float));
|
||||
|
||||
const auto first_probs = softmax(tok_logits);
|
||||
|
||||
@@ -1102,7 +1071,7 @@ static std::vector<winogrande_entry> load_winogrande_from_csv(const std::string
|
||||
* 0,Sarah was a much better surgeon than Maria so _ always got the easier cases.,Sarah,Maria,2
|
||||
*
|
||||
*/
|
||||
static void winogrande_score(llama_context * ctx, const gpt_params & params) {
|
||||
static void winogrande_score(llama_context * ctx, const common_params & params) {
|
||||
|
||||
constexpr int k_min_trailing_ctx = 3;
|
||||
|
||||
@@ -1136,8 +1105,8 @@ static void winogrande_score(llama_context * ctx, const gpt_params & params) {
|
||||
LOG_INF("%s : tokenizing selected tasks\n", __func__);
|
||||
|
||||
for (auto & task : data) {
|
||||
task.seq_tokens[0] = ::llama_tokenize(ctx, task.first + task.choices[0] + task.second, true);
|
||||
task.seq_tokens[1] = ::llama_tokenize(ctx, task.first + task.choices[1] + task.second, true);
|
||||
task.seq_tokens[0] = common_tokenize(ctx, task.first + task.choices[0] + task.second, true);
|
||||
task.seq_tokens[1] = common_tokenize(ctx, task.first + task.choices[1] + task.second, true);
|
||||
|
||||
task.common_prefix = 0;
|
||||
for (size_t k = 0; k < task.seq_tokens[0].size(); k++) {
|
||||
@@ -1152,16 +1121,17 @@ static void winogrande_score(llama_context * ctx, const gpt_params & params) {
|
||||
task.seq_tokens[0].size() - task.common_prefix +
|
||||
task.seq_tokens[1].size() - task.common_prefix;
|
||||
|
||||
task.n_base1 = ::llama_tokenize(ctx, task.first + task.choices[0], true).size();
|
||||
task.n_base2 = ::llama_tokenize(ctx, task.first + task.choices[1], true).size();
|
||||
task.n_base1 = common_tokenize(ctx, task.first + task.choices[0], true).size();
|
||||
task.n_base2 = common_tokenize(ctx, task.first + task.choices[1], true).size();
|
||||
}
|
||||
|
||||
LOG_INF("%s : calculating winogrande score over selected tasks.\n", __func__);
|
||||
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
const int n_batch = params.n_batch;
|
||||
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
|
||||
const int max_tasks_per_batch = 128;
|
||||
const int max_seq = std::min(2*max_tasks_per_batch, (int) llama_n_seq_max(ctx));
|
||||
|
||||
@@ -1169,7 +1139,7 @@ static void winogrande_score(llama_context * ctx, const gpt_params & params) {
|
||||
|
||||
std::vector<float> tok_logits(n_vocab);
|
||||
// TODO: this could be made smaller; it's currently the worst-case size
|
||||
std::vector<float> batch_logits(n_vocab*n_ctx);
|
||||
std::vector<float> batch_logits(size_t(n_ctx)*n_vocab);
|
||||
|
||||
std::vector<std::pair<size_t, llama_token>> eval_pairs;
|
||||
std::vector<float> eval_results;
|
||||
@@ -1184,7 +1154,7 @@ static void winogrande_score(llama_context * ctx, const gpt_params & params) {
|
||||
size_t i1 = i0;
|
||||
size_t i_logits = 0;
|
||||
|
||||
llama_batch_clear(batch);
|
||||
common_batch_clear(batch);
|
||||
|
||||
while (n_cur + (int) data[i1].required_tokens <= n_ctx) {
|
||||
int n_logits = 0;
|
||||
@@ -1194,7 +1164,7 @@ static void winogrande_score(llama_context * ctx, const gpt_params & params) {
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < data[i1].common_prefix; ++i) {
|
||||
llama_batch_add(batch, data[i1].seq_tokens[0][i], i, { s0 + 0, s0 + 1 }, false);
|
||||
common_batch_add(batch, data[i1].seq_tokens[0][i], i, { s0 + 0, s0 + 1 }, false);
|
||||
}
|
||||
batch.logits[batch.n_tokens - 1] = true;
|
||||
n_logits += 1;
|
||||
@@ -1202,7 +1172,7 @@ static void winogrande_score(llama_context * ctx, const gpt_params & params) {
|
||||
for (int s = 0; s < 2; ++s) {
|
||||
// TODO: end before the last token, no need to predict past the end of the sequences
|
||||
for (size_t i = data[i1].common_prefix; i < data[i1].seq_tokens[s].size(); ++i) {
|
||||
llama_batch_add(batch, data[i1].seq_tokens[s][i], i, { s0 + s }, true);
|
||||
common_batch_add(batch, data[i1].seq_tokens[s][i], i, { s0 + s }, true);
|
||||
n_logits += 1;
|
||||
}
|
||||
}
|
||||
@@ -1359,7 +1329,7 @@ static bool multiple_choice_prepare_one_task(llama_context * ctx, multiple_choic
|
||||
}
|
||||
return false;
|
||||
}
|
||||
task.seq_tokens.emplace_back(::llama_tokenize(ctx, task.question + " " + answer, true));
|
||||
task.seq_tokens.emplace_back(::common_tokenize(ctx, task.question + " " + answer, true));
|
||||
}
|
||||
auto min_len = task.seq_tokens.front().size();
|
||||
for (auto& seq : task.seq_tokens) {
|
||||
@@ -1403,7 +1373,7 @@ static bool multiple_choice_prepare_one_task(llama_context * ctx, multiple_choic
|
||||
// git@hf.co:datasets/Stevross/mmlu
|
||||
// https://huggingface.co/datasets/truthful_qa
|
||||
//
|
||||
static void multiple_choice_score(llama_context * ctx, const gpt_params & params) {
|
||||
static void multiple_choice_score(llama_context * ctx, const common_params & params) {
|
||||
|
||||
std::istringstream strstream(params.prompt);
|
||||
uint32_t n_task;
|
||||
@@ -1509,17 +1479,18 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
|
||||
|
||||
LOG("\ntask\tacc_norm\n");
|
||||
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
const int n_batch = params.n_batch;
|
||||
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
|
||||
const int max_tasks_per_batch = 32;
|
||||
const int max_seq = std::min(4*max_tasks_per_batch, (int) llama_n_seq_max(ctx));
|
||||
|
||||
llama_batch batch = llama_batch_init(n_ctx, 0, max_seq);
|
||||
|
||||
std::vector<float> tok_logits(n_vocab);
|
||||
std::vector<float> batch_logits(n_vocab*n_ctx);
|
||||
std::vector<float> batch_logits(size_t(n_ctx)*n_vocab);
|
||||
|
||||
std::vector<std::pair<size_t, llama_token>> eval_pairs;
|
||||
std::vector<float> eval_results;
|
||||
@@ -1536,7 +1507,7 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
|
||||
size_t i1 = i0;
|
||||
size_t i_logits = 0; // this tells us how many logits were needed before this point in the batch
|
||||
|
||||
llama_batch_clear(batch);
|
||||
common_batch_clear(batch);
|
||||
|
||||
// batch as much tasks as possible into the available context
|
||||
// each task has 4 unique sequence ids - one for each ending
|
||||
@@ -1559,7 +1530,7 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
|
||||
|
||||
for (size_t i = 0; i < cur_task.common_prefix; ++i) {
|
||||
//llama_batch_add(batch, cur_task.seq_tokens[0][i], i, { s0 + 0, s0 + 1, s0 + 2, s0 + 3}, false);
|
||||
llama_batch_add(batch, cur_task.seq_tokens[0][i], i, batch_indeces, false);
|
||||
common_batch_add(batch, cur_task.seq_tokens[0][i], i, batch_indeces, false);
|
||||
}
|
||||
batch.logits[batch.n_tokens - 1] = true; // we need logits for the last token of the common prefix
|
||||
n_logits += 1;
|
||||
@@ -1569,7 +1540,7 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
|
||||
// TODO: don't evaluate the last token of each sequence
|
||||
for (size_t i = cur_task.common_prefix; i < seq_tokens_size; ++i) {
|
||||
const bool needs_logits = i < seq_tokens_size - 1;
|
||||
llama_batch_add(batch, cur_task.seq_tokens[s][i], i, { s0 + s }, needs_logits);
|
||||
common_batch_add(batch, cur_task.seq_tokens[s][i], i, { s0 + s }, needs_logits);
|
||||
n_logits += needs_logits;
|
||||
}
|
||||
}
|
||||
@@ -1627,7 +1598,7 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
|
||||
//LOG("\n common_prefix: %zu\n", cur_task.common_prefix);
|
||||
|
||||
// get the logits of the last token of the common prefix
|
||||
std::memcpy(tok_logits.data(), batch_logits.data() + n_vocab*cur_task.i_logits, n_vocab*sizeof(float));
|
||||
std::memcpy(tok_logits.data(), batch_logits.data() + cur_task.i_logits*n_vocab, n_vocab*sizeof(float));
|
||||
|
||||
const auto first_probs = softmax(tok_logits);
|
||||
|
||||
@@ -1683,7 +1654,7 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
|
||||
LOG_INF("\n");
|
||||
}
|
||||
|
||||
static void kl_divergence(llama_context * ctx, const gpt_params & params) {
|
||||
static void kl_divergence(llama_context * ctx, const common_params & params) {
|
||||
if (params.logits_file.empty()) {
|
||||
LOG_ERR("%s: you must provide a name of a file containing the log probabilities of the base model\n", __func__);
|
||||
return;
|
||||
@@ -1709,7 +1680,8 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) {
|
||||
__func__, params.logits_file.c_str(), n_ctx, params.n_ctx);
|
||||
}
|
||||
|
||||
int n_vocab, n_chunk;
|
||||
int n_vocab;
|
||||
int n_chunk;
|
||||
in.read((char *)&n_vocab, sizeof(n_vocab));
|
||||
in.read((char *)&n_chunk, sizeof(n_chunk));
|
||||
if (in.fail()) {
|
||||
@@ -1720,7 +1692,7 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) {
|
||||
LOG_ERR("%s: inconsistent vocabulary (%d vs %d)\n", __func__, n_vocab, llama_n_vocab(llama_get_model(ctx)));
|
||||
}
|
||||
|
||||
std::vector<llama_token> tokens(n_ctx * n_chunk);
|
||||
std::vector<llama_token> tokens(size_t(n_ctx) * n_chunk);
|
||||
if (in.read((char *)tokens.data(), tokens.size()*sizeof(tokens[0])).fail()) {
|
||||
LOG_ERR("%s: failed reading evaluation tokens from %s\n", __func__, params.logits_file.c_str());
|
||||
return;
|
||||
@@ -1737,7 +1709,7 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) {
|
||||
std::vector<float> p_diff_values(size_t(n_ctx - 1 - n_ctx/2)*n_chunk);
|
||||
std::vector<float> logits;
|
||||
if (num_batches > 1) {
|
||||
logits.reserve(n_ctx * n_vocab);
|
||||
logits.reserve(size_t(n_ctx) * n_vocab);
|
||||
}
|
||||
|
||||
std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
|
||||
@@ -1778,6 +1750,8 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) {
|
||||
// clear the KV cache
|
||||
llama_kv_cache_clear(ctx);
|
||||
|
||||
llama_batch batch = llama_batch_init(n_batch, 0, 1);
|
||||
|
||||
for (int j = 0; j < num_batches; ++j) {
|
||||
const int batch_start = start + j * n_batch;
|
||||
const int batch_size = std::min(end - batch_start, n_batch);
|
||||
@@ -1790,9 +1764,14 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) {
|
||||
tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
|
||||
}
|
||||
|
||||
// TODO: use llama_batch.logits instead of relying on logits_all == true
|
||||
if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
|
||||
common_batch_clear(batch);
|
||||
for (int i = 0; i < batch_size; i++) {
|
||||
common_batch_add(batch, tokens[batch_start + i], j*n_batch + i, {0}, true);
|
||||
}
|
||||
|
||||
if (llama_decode(ctx, batch)) {
|
||||
LOG_ERR("%s : failed to eval\n", __func__);
|
||||
llama_batch_free(batch);
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -1801,10 +1780,12 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) {
|
||||
|
||||
if (num_batches > 1) {
|
||||
const auto * batch_logits = llama_get_logits(ctx);
|
||||
logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
|
||||
logits.insert(logits.end(), batch_logits, batch_logits + size_t(batch_size) * n_vocab);
|
||||
}
|
||||
}
|
||||
|
||||
llama_batch_free(batch);
|
||||
|
||||
const auto t_end = std::chrono::high_resolution_clock::now();
|
||||
|
||||
if (i == 0) {
|
||||
@@ -1822,7 +1803,7 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) {
|
||||
|
||||
const int first = n_ctx/2;
|
||||
const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx);
|
||||
process_logits(n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first,
|
||||
process_logits(n_vocab, all_logits + size_t(first)*n_vocab, tokens.data() + start + first, n_ctx - 1 - first,
|
||||
workers, log_probs_uint16, kld, kld_ptr, p_diff_ptr);
|
||||
p_diff_ptr += n_ctx - 1 - first;
|
||||
kld_ptr += n_ctx - 1 - first;
|
||||
@@ -1955,17 +1936,17 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) {
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
|
||||
params.n_ctx = 512;
|
||||
params.logits_all = true;
|
||||
params.escape = false;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_PERPLEXITY)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_PERPLEXITY)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
common_init();
|
||||
|
||||
const int32_t n_ctx = params.n_ctx;
|
||||
|
||||
@@ -2004,7 +1985,7 @@ int main(int argc, char ** argv) {
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
// load the model and apply lora adapter, if any
|
||||
llama_init_result llama_init = llama_init_from_gpt_params(params);
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
llama_model * model = llama_init.model;
|
||||
llama_context * ctx = llama_init.context;
|
||||
@@ -2023,7 +2004,7 @@ int main(int argc, char ** argv) {
|
||||
// print system information
|
||||
{
|
||||
LOG_INF("\n");
|
||||
LOG_INF("%s\n", gpt_params_get_system_info(params).c_str());
|
||||
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
|
||||
}
|
||||
|
||||
struct results_perplexity results;
|
||||
@@ -2042,8 +2023,6 @@ int main(int argc, char ** argv) {
|
||||
LOG("\n");
|
||||
llama_perf_context_print(ctx);
|
||||
|
||||
write_logfile(ctx, params, model, results);
|
||||
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
||||
|
||||
@@ -142,7 +142,7 @@ static bool tensor_is_contiguous(const struct ggml_tensor * tensor) {
|
||||
}
|
||||
|
||||
static void test_roundtrip_on_chunk(
|
||||
const ggml_tensor * layer, int64_t offset, int64_t chunk_size, const ggml_type_traits_t & qfns, bool use_reference,
|
||||
const ggml_tensor * layer, int64_t offset, int64_t chunk_size, const ggml_type_traits & qfns, const ggml_type_traits_cpu & qfns_cpu, bool use_reference,
|
||||
float * input_scratch, char * quantized_scratch, float * output_scratch, error_stats & stats
|
||||
) {
|
||||
if (layer->type == GGML_TYPE_F16) {
|
||||
@@ -156,7 +156,7 @@ static void test_roundtrip_on_chunk(
|
||||
if (use_reference) {
|
||||
qfns.from_float_ref(input_scratch, quantized_scratch, chunk_size);
|
||||
} else {
|
||||
qfns.from_float(input_scratch, quantized_scratch, chunk_size);
|
||||
qfns_cpu.from_float(input_scratch, quantized_scratch, chunk_size);
|
||||
}
|
||||
qfns.to_float(quantized_scratch, output_scratch, chunk_size);
|
||||
|
||||
@@ -166,7 +166,7 @@ static void test_roundtrip_on_chunk(
|
||||
|
||||
// Run quantization function for a single layer and update error stats
|
||||
static void test_roundtrip_on_layer(
|
||||
std::string & name, bool print_layer_stats, const ggml_type_traits_t & qfns, bool use_reference,
|
||||
std::string & name, bool print_layer_stats, const ggml_type_traits & qfns, const ggml_type_traits_cpu & qfns_cpu, bool use_reference,
|
||||
const ggml_tensor * layer, std::vector<float> & input_scratch, std::vector<char> & quantized_scratch,
|
||||
std::vector<float> & output_scratch, error_stats & total_error, int max_thread = 0
|
||||
) {
|
||||
@@ -187,13 +187,13 @@ static void test_roundtrip_on_layer(
|
||||
int num_chunks = (nelements + chunk_size - 1)/chunk_size;
|
||||
|
||||
if (num_chunks < 2 || max_thread < 2) {
|
||||
test_roundtrip_on_chunk(layer, 0, nelements, qfns, use_reference, input_scratch_ptr, quantized_scratch.data(),
|
||||
test_roundtrip_on_chunk(layer, 0, nelements, qfns, qfns_cpu, use_reference, input_scratch_ptr, quantized_scratch.data(),
|
||||
output_scratch.data(), print_layer_stats ? layer_error : total_error);
|
||||
} else {
|
||||
auto & stats = print_layer_stats ? layer_error : total_error;
|
||||
std::mutex mutex;
|
||||
uint64_t counter = 0;
|
||||
auto compute = [&mutex, &counter, &stats, &qfns, nelements, layer, use_reference, input_scratch_ptr,
|
||||
auto compute = [&mutex, &counter, &stats, &qfns, &qfns_cpu, nelements, layer, use_reference, input_scratch_ptr,
|
||||
&quantized_scratch, &output_scratch, chunk_size] () {
|
||||
error_stats local_stats {};
|
||||
while (true) {
|
||||
@@ -205,7 +205,7 @@ static void test_roundtrip_on_layer(
|
||||
}
|
||||
lock.unlock();
|
||||
uint64_t chunk = offset + chunk_size < nelements ? chunk_size : nelements - offset;
|
||||
test_roundtrip_on_chunk(layer, offset, chunk, qfns, use_reference, input_scratch_ptr + offset,
|
||||
test_roundtrip_on_chunk(layer, offset, chunk, qfns, qfns_cpu, use_reference, input_scratch_ptr + offset,
|
||||
quantized_scratch.data() + 4*offset, output_scratch.data() + offset, local_stats);
|
||||
}
|
||||
};
|
||||
@@ -371,8 +371,9 @@ int main(int argc, char ** argv) {
|
||||
if (!params.include_types.empty() && std::find(params.include_types.begin(), params.include_types.end(), i) == params.include_types.end()) {
|
||||
continue;
|
||||
}
|
||||
ggml_type_traits_t qfns = ggml_internal_get_type_traits(type);
|
||||
if (qfns.from_float && qfns.to_float) {
|
||||
const auto * qfns = ggml_get_type_traits(type);
|
||||
const auto * qfns_cpu = ggml_get_type_traits_cpu(type);
|
||||
if (qfns_cpu->from_float && qfns->to_float) {
|
||||
if (params.verbose) {
|
||||
printf("testing %s ...\n", ggml_type_name(type));
|
||||
}
|
||||
@@ -393,7 +394,7 @@ int main(int argc, char ** argv) {
|
||||
test_roundtrip_on_layer(
|
||||
layer_name,
|
||||
params.per_layer_stats,
|
||||
qfns,
|
||||
*qfns, *qfns_cpu,
|
||||
params.reference,
|
||||
kv_tensor.second,
|
||||
input_scratch,
|
||||
|
||||
@@ -77,7 +77,7 @@ static std::vector<chunk> chunk_file(const std::string & filename, int chunk_siz
|
||||
static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, llama_seq_id seq_id) {
|
||||
size_t n_tokens = tokens.size();
|
||||
for (size_t i = 0; i < n_tokens; i++) {
|
||||
llama_batch_add(batch, tokens[i], i, { seq_id }, true);
|
||||
common_batch_add(batch, tokens[i], i, { seq_id }, true);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -107,18 +107,18 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
|
||||
}
|
||||
|
||||
float * out = output + batch.seq_id[i][0] * n_embd;
|
||||
llama_embd_normalize(embd, out, n_embd);
|
||||
common_embd_normalize(embd, out, n_embd);
|
||||
}
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_RETRIEVAL, print_usage)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_RETRIEVAL, print_usage)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
gpt_init();
|
||||
common_init();
|
||||
|
||||
// For BERT models, batch size must be equal to ubatch size
|
||||
params.n_ubatch = params.n_batch;
|
||||
@@ -149,7 +149,7 @@ int main(int argc, char ** argv) {
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
// load the model
|
||||
llama_init_result llama_init = llama_init_from_gpt_params(params);
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
llama_model * model = llama_init.model;
|
||||
llama_context * ctx = llama_init.context;
|
||||
@@ -176,7 +176,7 @@ int main(int argc, char ** argv) {
|
||||
// print system information
|
||||
{
|
||||
LOG_INF("\n");
|
||||
LOG_INF("%s\n", gpt_params_get_system_info(params).c_str());
|
||||
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
|
||||
}
|
||||
|
||||
// max batch size
|
||||
@@ -185,7 +185,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// tokenize the prompts and trim
|
||||
for (auto & chunk : chunks) {
|
||||
auto inp = ::llama_tokenize(ctx, chunk.textdata, true, false);
|
||||
auto inp = common_tokenize(ctx, chunk.textdata, true, false);
|
||||
if (inp.size() > n_batch) {
|
||||
LOG_ERR("%s: chunk size (%lld) exceeds batch size (%lld), increase batch size and re-run\n",
|
||||
__func__, (long long int) inp.size(), (long long int) n_batch);
|
||||
@@ -204,7 +204,7 @@ int main(int argc, char ** argv) {
|
||||
LOG_INF("%s: prompt %d: '%s'\n", __func__, i, chunks[i].textdata.c_str());
|
||||
LOG_INF("%s: number of tokens in prompt = %zu\n", __func__, chunks[i].tokens.size());
|
||||
for (int j = 0; j < (int) chunks[i].tokens.size(); j++) {
|
||||
LOG_INF("%6d -> '%s'\n", chunks[i].tokens[j], llama_token_to_piece(ctx, chunks[i].tokens[j]).c_str());
|
||||
LOG_INF("%6d -> '%s'\n", chunks[i].tokens[j], common_token_to_piece(ctx, chunks[i].tokens[j]).c_str());
|
||||
}
|
||||
LOG_INF("\n\n");
|
||||
}
|
||||
@@ -232,7 +232,7 @@ int main(int argc, char ** argv) {
|
||||
if (batch.n_tokens + n_toks > n_batch) {
|
||||
float * out = emb + p * n_embd;
|
||||
batch_decode(ctx, batch, out, s, n_embd);
|
||||
llama_batch_clear(batch);
|
||||
common_batch_clear(batch);
|
||||
p += s;
|
||||
s = 0;
|
||||
}
|
||||
@@ -260,20 +260,20 @@ int main(int argc, char ** argv) {
|
||||
while (true) {
|
||||
LOG("Enter query: ");
|
||||
std::getline(std::cin, query);
|
||||
std::vector<int32_t> query_tokens = llama_tokenize(ctx, query, true);
|
||||
std::vector<int32_t> query_tokens = common_tokenize(ctx, query, true);
|
||||
|
||||
batch_add_seq(query_batch, query_tokens, 0);
|
||||
|
||||
std::vector<float> query_emb(n_embd, 0);
|
||||
batch_decode(ctx, query_batch, query_emb.data(), 1, n_embd);
|
||||
|
||||
llama_batch_clear(query_batch);
|
||||
common_batch_clear(query_batch);
|
||||
|
||||
// compute cosine similarities
|
||||
{
|
||||
std::vector<std::pair<int, float>> similarities;
|
||||
for (int i = 0; i < n_chunks; i++) {
|
||||
float sim = llama_embd_similarity_cos(chunks[i].embedding.data(), query_emb.data(), n_embd);
|
||||
float sim = common_embd_similarity_cos(chunks[i].embedding.data(), query_emb.data(), n_embd);
|
||||
similarities.push_back(std::make_pair(i, sim));
|
||||
}
|
||||
|
||||
|
||||
@@ -1,3 +1,5 @@
|
||||
#include "ggml-cpu.h"
|
||||
|
||||
#ifdef GGML_USE_CUDA
|
||||
#include "ggml-cuda.h"
|
||||
#endif
|
||||
@@ -151,7 +153,7 @@ int main(int argc, char * argv[]) {
|
||||
get_backend_memory(&free_mem, &total_mem);
|
||||
}
|
||||
printf("Starting RPC server on %s, backend memory: %zu MB\n", endpoint.c_str(), free_mem / (1024 * 1024));
|
||||
start_rpc_server(backend, endpoint.c_str(), free_mem, total_mem);
|
||||
ggml_backend_rpc_start_server(backend, endpoint.c_str(), free_mem, total_mem);
|
||||
ggml_backend_free(backend);
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -6,12 +6,12 @@
|
||||
#include <cstdio>
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
common_params params;
|
||||
|
||||
params.prompt = "The quick brown fox";
|
||||
params.sparams.seed = 1234;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
@@ -28,7 +28,7 @@ int main(int argc, char ** argv) {
|
||||
std::string result2;
|
||||
|
||||
// init
|
||||
llama_init_result llama_init = llama_init_from_gpt_params(params);
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
|
||||
llama_model * model = llama_init.model;
|
||||
llama_context * ctx = llama_init.context;
|
||||
@@ -42,15 +42,21 @@ int main(int argc, char ** argv) {
|
||||
|
||||
llama_sampler * smpl = llama_sampler_chain_init(sparams);
|
||||
|
||||
llama_sampler_chain_add(smpl, llama_sampler_init_softmax());
|
||||
llama_sampler_chain_add(smpl, llama_sampler_init_dist(params.sparams.seed));
|
||||
|
||||
// tokenize prompt
|
||||
auto tokens = llama_tokenize(ctx, params.prompt, true);
|
||||
auto tokens = common_tokenize(ctx, params.prompt, true);
|
||||
|
||||
// prepare the batch
|
||||
llama_batch batch = llama_batch_init(tokens.size(), 0, 1);
|
||||
for (size_t i = 0; i < tokens.size(); i++) {
|
||||
common_batch_add(batch, tokens[i], i, {0}, false);
|
||||
}
|
||||
batch.logits[batch.n_tokens - 1] = true; // generate next token
|
||||
|
||||
// evaluate prompt
|
||||
llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size(), n_past, 0));
|
||||
n_past += tokens.size();
|
||||
llama_decode(ctx, batch);
|
||||
n_past += batch.n_tokens;
|
||||
|
||||
// save state (rng, logits, embedding and kv_cache) to file
|
||||
{
|
||||
@@ -72,13 +78,17 @@ int main(int argc, char ** argv) {
|
||||
|
||||
for (auto i = 0; i < params.n_predict; i++) {
|
||||
auto next_token = llama_sampler_sample(smpl, ctx, -1);
|
||||
auto next_token_str = llama_token_to_piece(ctx, next_token);
|
||||
auto next_token_str = common_token_to_piece(ctx, next_token);
|
||||
|
||||
printf("%s", next_token_str.c_str());
|
||||
result0 += next_token_str;
|
||||
|
||||
if (llama_decode(ctx, llama_batch_get_one(&next_token, 1, n_past, 0))) {
|
||||
common_batch_clear(batch);
|
||||
common_batch_add(batch, next_token, n_past, {0}, true);
|
||||
|
||||
if (llama_decode(ctx, batch)) {
|
||||
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
|
||||
llama_batch_free(batch);
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
return 1;
|
||||
@@ -92,11 +102,10 @@ int main(int argc, char ** argv) {
|
||||
llama_free(ctx);
|
||||
|
||||
// make new context
|
||||
auto * ctx2 = llama_new_context_with_model(model, llama_context_params_from_gpt_params(params));
|
||||
auto * ctx2 = llama_new_context_with_model(model, common_context_params_to_llama(params));
|
||||
|
||||
llama_sampler * smpl2 = llama_sampler_chain_init(sparams);
|
||||
|
||||
llama_sampler_chain_add(smpl2, llama_sampler_init_softmax());
|
||||
llama_sampler_chain_add(smpl2, llama_sampler_init_dist(params.sparams.seed));
|
||||
|
||||
printf("\nsecond run: %s", params.prompt.c_str());
|
||||
@@ -128,13 +137,17 @@ int main(int argc, char ** argv) {
|
||||
// second run
|
||||
for (auto i = 0; i < params.n_predict; i++) {
|
||||
auto next_token = llama_sampler_sample(smpl2, ctx2, -1);
|
||||
auto next_token_str = llama_token_to_piece(ctx2, next_token);
|
||||
auto next_token_str = common_token_to_piece(ctx2, next_token);
|
||||
|
||||
printf("%s", next_token_str.c_str());
|
||||
result1 += next_token_str;
|
||||
|
||||
if (llama_decode(ctx2, llama_batch_get_one(&next_token, 1, n_past, 0))) {
|
||||
common_batch_clear(batch);
|
||||
common_batch_add(batch, next_token, n_past, {0}, true);
|
||||
|
||||
if (llama_decode(ctx2, batch)) {
|
||||
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
|
||||
llama_batch_free(batch);
|
||||
llama_free(ctx2);
|
||||
llama_free_model(model);
|
||||
return 1;
|
||||
@@ -152,11 +165,10 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// make new context
|
||||
auto * ctx3 = llama_new_context_with_model(model, llama_context_params_from_gpt_params(params));
|
||||
auto * ctx3 = llama_new_context_with_model(model, common_context_params_to_llama(params));
|
||||
|
||||
llama_sampler * smpl3 = llama_sampler_chain_init(sparams);
|
||||
|
||||
llama_sampler_chain_add(smpl3, llama_sampler_init_softmax());
|
||||
llama_sampler_chain_add(smpl3, llama_sampler_init_dist(params.sparams.seed));
|
||||
|
||||
printf("\nsingle seq run: %s", params.prompt.c_str());
|
||||
@@ -216,13 +228,17 @@ int main(int argc, char ** argv) {
|
||||
// third run with seq 1 instead of 0
|
||||
for (auto i = 0; i < params.n_predict; i++) {
|
||||
auto next_token = llama_sampler_sample(smpl3, ctx3, -1);
|
||||
auto next_token_str = llama_token_to_piece(ctx3, next_token);
|
||||
auto next_token_str = common_token_to_piece(ctx3, next_token);
|
||||
|
||||
printf("%s", next_token_str.c_str());
|
||||
result2 += next_token_str;
|
||||
|
||||
if (llama_decode(ctx3, llama_batch_get_one(&next_token, 1, n_past, 1))) {
|
||||
common_batch_clear(batch);
|
||||
common_batch_add(batch, next_token, n_past, {1}, true);
|
||||
|
||||
if (llama_decode(ctx3, batch)) {
|
||||
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
|
||||
llama_batch_free(batch);
|
||||
llama_free(ctx3);
|
||||
llama_free_model(model);
|
||||
return 1;
|
||||
@@ -236,6 +252,7 @@ int main(int argc, char ** argv) {
|
||||
llama_sampler_free(smpl2);
|
||||
llama_sampler_free(smpl3);
|
||||
|
||||
llama_batch_free(batch);
|
||||
llama_free(ctx3);
|
||||
llama_free_model(model);
|
||||
|
||||
|
||||
@@ -15,22 +15,13 @@ set(TARGET_SRCS
|
||||
httplib.h
|
||||
)
|
||||
set(PUBLIC_ASSETS
|
||||
colorthemes.css
|
||||
style.css
|
||||
theme-beeninorder.css
|
||||
theme-ketivah.css
|
||||
theme-mangotango.css
|
||||
theme-playground.css
|
||||
theme-polarnight.css
|
||||
theme-snowstorm.css
|
||||
index.html
|
||||
index-new.html
|
||||
index.js
|
||||
completion.js
|
||||
system-prompts.js
|
||||
prompt-formats.js
|
||||
json-schema-to-grammar.mjs
|
||||
loading.html
|
||||
deps_daisyui.min.css
|
||||
deps_markdown-it.js
|
||||
deps_tailwindcss.js
|
||||
deps_vue.esm-browser.js
|
||||
)
|
||||
|
||||
foreach(asset ${PUBLIC_ASSETS})
|
||||
|
||||
@@ -18,6 +18,8 @@ The project is under active development, and we are [looking for feedback and co
|
||||
|
||||
## Usage
|
||||
|
||||
<!-- Note for contributors: The list below is generated by llama-gen-docs -->
|
||||
|
||||
**Common params**
|
||||
|
||||
| Argument | Explanation |
|
||||
@@ -37,7 +39,7 @@ The project is under active development, and we are [looking for feedback and co
|
||||
| `--cpu-strict-batch <0\|1>` | use strict CPU placement (default: same as --cpu-strict) |
|
||||
| `--prio-batch N` | set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: 0)<br/> |
|
||||
| `--poll-batch <0\|1>` | use polling to wait for work (default: same as --poll) |
|
||||
| `-c, --ctx-size N` | size of the prompt context (default: 0, 0 = loaded from model)<br/>(env: LLAMA_ARG_CTX_SIZE) |
|
||||
| `-c, --ctx-size N` | size of the prompt context (default: 4096, 0 = loaded from model)<br/>(env: LLAMA_ARG_CTX_SIZE) |
|
||||
| `-n, --predict, --n-predict N` | number of tokens to predict (default: -1, -1 = infinity, -2 = until context filled)<br/>(env: LLAMA_ARG_N_PREDICT) |
|
||||
| `-b, --batch-size N` | logical maximum batch size (default: 2048)<br/>(env: LLAMA_ARG_BATCH) |
|
||||
| `-ub, --ubatch-size N` | physical maximum batch size (default: 512)<br/>(env: LLAMA_ARG_UBATCH) |
|
||||
@@ -58,13 +60,11 @@ The project is under active development, and we are [looking for feedback and co
|
||||
| `--yarn-attn-factor N` | YaRN: scale sqrt(t) or attention magnitude (default: 1.0)<br/>(env: LLAMA_ARG_YARN_ATTN_FACTOR) |
|
||||
| `--yarn-beta-slow N` | YaRN: high correction dim or alpha (default: 1.0)<br/>(env: LLAMA_ARG_YARN_BETA_SLOW) |
|
||||
| `--yarn-beta-fast N` | YaRN: low correction dim or beta (default: 32.0)<br/>(env: LLAMA_ARG_YARN_BETA_FAST) |
|
||||
| `-gan, --grp-attn-n N` | group-attention factor (default: 1)<br/>(env: LLAMA_ARG_GRP_ATTN_N) |
|
||||
| `-gaw, --grp-attn-w N` | group-attention width (default: 512.0)<br/>(env: LLAMA_ARG_GRP_ATTN_W) |
|
||||
| `-dkvc, --dump-kv-cache` | verbose print of the KV cache |
|
||||
| `-nkvo, --no-kv-offload` | disable KV offload<br/>(env: LLAMA_ARG_NO_KV_OFFLOAD) |
|
||||
| `-ctk, --cache-type-k TYPE` | KV cache data type for K (default: f16)<br/>(env: LLAMA_ARG_CACHE_TYPE_K) |
|
||||
| `-ctv, --cache-type-v TYPE` | KV cache data type for V (default: f16)<br/>(env: LLAMA_ARG_CACHE_TYPE_V) |
|
||||
| `-dt, --defrag-thold N` | KV cache defragmentation threshold (default: -1.0, < 0 - disabled)<br/>(env: LLAMA_ARG_DEFRAG_THOLD) |
|
||||
| `-dt, --defrag-thold N` | KV cache defragmentation threshold (default: 0.1, < 0 - disabled)<br/>(env: LLAMA_ARG_DEFRAG_THOLD) |
|
||||
| `-np, --parallel N` | number of parallel sequences to decode (default: 1)<br/>(env: LLAMA_ARG_N_PARALLEL) |
|
||||
| `--mlock` | force system to keep model in RAM rather than swapping or compressing<br/>(env: LLAMA_ARG_MLOCK) |
|
||||
| `--no-mmap` | do not memory-map model (slower load but may reduce pageouts if not using mlock)<br/>(env: LLAMA_ARG_NO_MMAP) |
|
||||
@@ -85,7 +85,6 @@ The project is under active development, and we are [looking for feedback and co
|
||||
| `-hfr, --hf-repo REPO` | Hugging Face model repository (default: unused)<br/>(env: LLAMA_ARG_HF_REPO) |
|
||||
| `-hff, --hf-file FILE` | Hugging Face model file (default: unused)<br/>(env: LLAMA_ARG_HF_FILE) |
|
||||
| `-hft, --hf-token TOKEN` | Hugging Face access token (default: value from HF_TOKEN environment variable)<br/>(env: HF_TOKEN) |
|
||||
| `-ld, --logdir LOGDIR` | path under which to save YAML logs (no logging if unset) |
|
||||
| `--log-disable` | Log disable |
|
||||
| `--log-file FNAME` | Log to file |
|
||||
| `--log-colors` | Enable colored logging<br/>(env: LLAMA_LOG_COLORS) |
|
||||
@@ -99,24 +98,30 @@ The project is under active development, and we are [looking for feedback and co
|
||||
|
||||
| Argument | Explanation |
|
||||
| -------- | ----------- |
|
||||
| `--samplers SAMPLERS` | samplers that will be used for generation in the order, separated by ';'<br/>(default: top_k;tfs_z;typ_p;top_p;min_p;temperature) |
|
||||
| `--samplers SAMPLERS` | samplers that will be used for generation in the order, separated by ';'<br/>(default: dry;top_k;typ_p;top_p;min_p;xtc;temperature) |
|
||||
| `-s, --seed SEED` | RNG seed (default: -1, use random seed for -1) |
|
||||
| `--sampling-seq SEQUENCE` | simplified sequence for samplers that will be used (default: kfypmt) |
|
||||
| `--sampling-seq SEQUENCE` | simplified sequence for samplers that will be used (default: dkypmxt) |
|
||||
| `--ignore-eos` | ignore end of stream token and continue generating (implies --logit-bias EOS-inf) |
|
||||
| `--penalize-nl` | penalize newline tokens (default: false) |
|
||||
| `--temp N` | temperature (default: 0.8) |
|
||||
| `--top-k N` | top-k sampling (default: 40, 0 = disabled) |
|
||||
| `--top-p N` | top-p sampling (default: 0.9, 1.0 = disabled) |
|
||||
| `--min-p N` | min-p sampling (default: 0.1, 0.0 = disabled) |
|
||||
| `--tfs N` | tail free sampling, parameter z (default: 1.0, 1.0 = disabled) |
|
||||
| `--xtc-probability N` | xtc probability (default: 0.0, 0.0 = disabled) |
|
||||
| `--xtc-threshold N` | xtc threshold (default: 0.1, 1.0 = disabled) |
|
||||
| `--typical N` | locally typical sampling, parameter p (default: 1.0, 1.0 = disabled) |
|
||||
| `--repeat-last-n N` | last n tokens to consider for penalize (default: 64, 0 = disabled, -1 = ctx_size) |
|
||||
| `--repeat-penalty N` | penalize repeat sequence of tokens (default: 1.0, 1.0 = disabled) |
|
||||
| `--presence-penalty N` | repeat alpha presence penalty (default: 0.0, 0.0 = disabled) |
|
||||
| `--frequency-penalty N` | repeat alpha frequency penalty (default: 0.0, 0.0 = disabled) |
|
||||
| `--dry-multiplier N` | set DRY sampling multiplier (default: 0.0, 0.0 = disabled) |
|
||||
| `--dry-base N` | set DRY sampling base value (default: 1.75) |
|
||||
| `--dry-allowed-length N` | set allowed length for DRY sampling (default: 2) |
|
||||
| `--dry-penalty-last-n N` | set DRY penalty for the last n tokens (default: -1, 0 = disable, -1 = context size) |
|
||||
| `--dry-sequence-breaker STRING` | add sequence breaker for DRY sampling, clearing out default breakers ('\n', ':', '"', '*') in the process; use "none" to not use any sequence breakers<br/> |
|
||||
| `--dynatemp-range N` | dynamic temperature range (default: 0.0, 0.0 = disabled) |
|
||||
| `--dynatemp-exp N` | dynamic temperature exponent (default: 1.0) |
|
||||
| `--mirostat N` | use Mirostat sampling.<br/>Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.<br/>(default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0) |
|
||||
| `--mirostat N` | use Mirostat sampling.<br/>Top K, Nucleus and Locally Typical samplers are ignored if used.<br/>(default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0) |
|
||||
| `--mirostat-lr N` | Mirostat learning rate, parameter eta (default: 0.1) |
|
||||
| `--mirostat-ent N` | Mirostat target entropy, parameter tau (default: 5.0) |
|
||||
| `-l, --logit-bias TOKEN_ID(+/-)BIAS` | modifies the likelihood of token appearing in the completion,<br/>i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',<br/>or `--logit-bias 15043-1` to decrease likelihood of token ' Hello' |
|
||||
@@ -147,9 +152,11 @@ The project is under active development, and we are [looking for feedback and co
|
||||
| `--ssl-cert-file FNAME` | path to file a PEM-encoded SSL certificate<br/>(env: LLAMA_ARG_SSL_CERT_FILE) |
|
||||
| `-to, --timeout N` | server read/write timeout in seconds (default: 600)<br/>(env: LLAMA_ARG_TIMEOUT) |
|
||||
| `--threads-http N` | number of threads used to process HTTP requests (default: -1)<br/>(env: LLAMA_ARG_THREADS_HTTP) |
|
||||
| `-spf, --system-prompt-file FNAME` | set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications |
|
||||
| `--cache-reuse N` | min chunk size to attempt reusing from the cache via KV shifting (default: 0)<br/>(env: LLAMA_ARG_CACHE_REUSE) |
|
||||
| `--metrics` | enable prometheus compatible metrics endpoint (default: disabled)<br/>(env: LLAMA_ARG_ENDPOINT_METRICS) |
|
||||
| `--no-slots` | disables slots monitoring endpoint (default: enabled)<br/>(env: LLAMA_ARG_NO_ENDPOINT_SLOTS) |
|
||||
| `--slots` | enable slots monitoring endpoint (default: disabled)<br/>(env: LLAMA_ARG_ENDPOINT_SLOTS) |
|
||||
| `--props` | enable changing global properties via POST /props (default: disabled)<br/>(env: LLAMA_ARG_ENDPOINT_PROPS) |
|
||||
| `--no-slots` | disables slots monitoring endpoint<br/>(env: LLAMA_ARG_NO_ENDPOINT_SLOTS) |
|
||||
| `--slot-save-path PATH` | path to save slot kv cache (default: disabled) |
|
||||
| `--chat-template JINJA_TEMPLATE` | set custom jinja chat template (default: template taken from model's metadata)<br/>if suffix/prefix are specified, template will be disabled<br/>only commonly used templates are accepted:<br/>https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template<br/>(env: LLAMA_ARG_CHAT_TEMPLATE) |
|
||||
| `-sps, --slot-prompt-similarity SIMILARITY` | how much the prompt of a request must match the prompt of a slot in order to use that slot (default: 0.50, 0.0 = disabled)<br/> |
|
||||
@@ -316,7 +323,18 @@ node index.js
|
||||
|
||||
- The prompt is a string or an array with the first element given as a string
|
||||
- The model's `tokenizer.ggml.add_bos_token` metadata is `true`
|
||||
- The system prompt is empty
|
||||
|
||||
These input shapes and data type are allowed for `prompt`:
|
||||
|
||||
- Single string: `"string"`
|
||||
- Single sequence of tokens: `[12, 34, 56]`
|
||||
- Mixed tokens and strings: `[12, 34, "string", 56, 78]`
|
||||
|
||||
Multiple prompts are also supported. In this case, the completion result will be an array.
|
||||
|
||||
- Only strings: `["string1", "string2"]`
|
||||
- Strings and sequences of tokens: `["string1", [12, 34, 56]]`
|
||||
- Mixed types: `[[12, 34, "string", 56, 78], [12, 34, 56], "string"]`
|
||||
|
||||
`temperature`: Adjust the randomness of the generated text. Default: `0.8`
|
||||
|
||||
@@ -332,6 +350,8 @@ node index.js
|
||||
|
||||
`n_predict`: Set the maximum number of tokens to predict when generating text. **Note:** May exceed the set limit slightly if the last token is a partial multibyte character. When 0, no tokens will be generated but the prompt is evaluated into the cache. Default: `-1`, where `-1` is infinity.
|
||||
|
||||
`n_indent`: Specify the minimum line indentation for the generated text in number of whitespace characters. Useful for code completion tasks. Default: `0`
|
||||
|
||||
`n_keep`: Specify the number of tokens from the prompt to retain when the context size is exceeded and tokens need to be discarded. The number excludes the BOS token.
|
||||
By default, this value is set to `0`, meaning no tokens are kept. Use `-1` to retain all tokens from the prompt.
|
||||
|
||||
@@ -340,8 +360,6 @@ node index.js
|
||||
`stop`: Specify a JSON array of stopping strings.
|
||||
These words will not be included in the completion, so make sure to add them to the prompt for the next iteration. Default: `[]`
|
||||
|
||||
`tfs_z`: Enable tail free sampling with parameter z. Default: `1.0`, which is disabled.
|
||||
|
||||
`typical_p`: Enable locally typical sampling with parameter p. Default: `1.0`, which is disabled.
|
||||
|
||||
`repeat_penalty`: Control the repetition of token sequences in the generated text. Default: `1.1`
|
||||
@@ -354,6 +372,20 @@ node index.js
|
||||
|
||||
`frequency_penalty`: Repeat alpha frequency penalty. Default: `0.0`, which is disabled.
|
||||
|
||||
`dry_multiplier`: Set the DRY (Don't Repeat Yourself) repetition penalty multiplier. Default: `0.0`, which is disabled.
|
||||
|
||||
`dry_base`: Set the DRY repetition penalty base value. Default: `1.75`
|
||||
|
||||
`dry_allowed_length`: Tokens that extend repetition beyond this receive exponentially increasing penalty: multiplier * base ^ (length of repeating sequence before token - allowed length). Default: `2`
|
||||
|
||||
`dry_penalty_last_n`: How many tokens to scan for repetitions. Default: `-1`, where `0` is disabled and `-1` is context size.
|
||||
|
||||
`dry_sequence_breakers`: Specify an array of sequence breakers for DRY sampling. Only a JSON array of strings is accepted. Default: `['\n', ':', '"', '*']`
|
||||
|
||||
`xtc_probability`: Set the chance for token removal via XTC sampler. Default: `0.0`, which is disabled.
|
||||
|
||||
`xtc_threshold`: Set a minimum probability threshold for tokens to be removed via XTC sampler. Default: `0.1` (> `0.5` disables XTC)
|
||||
|
||||
`mirostat`: Enable Mirostat sampling, controlling perplexity during text generation. Default: `0`, where `0` is disabled, `1` is Mirostat, and `2` is Mirostat 2.0.
|
||||
|
||||
`mirostat_tau`: Set the Mirostat target entropy, parameter tau. Default: `5.0`
|
||||
@@ -374,15 +406,15 @@ node index.js
|
||||
|
||||
`min_keep`: If greater than 0, force samplers to return N possible tokens at minimum. Default: `0`
|
||||
|
||||
`t_max_predict_ms`: Set a time limit in milliseconds for the prediction (a.k.a. text-generation) phase. The timeout will trigger if the generation takes more than the specified time (measured since the first token was generated) and if a new-line character has already been generated. Useful for FIM applications. Default: `0`, which is disabled.
|
||||
|
||||
`image_data`: An array of objects to hold base64-encoded image `data` and its `id`s to be reference in `prompt`. You can determine the place of the image in the prompt as in the following: `USER:[img-12]Describe the image in detail.\nASSISTANT:`. In this case, `[img-12]` will be replaced by the embeddings of the image with id `12` in the following `image_data` array: `{..., "image_data": [{"data": "<BASE64_STRING>", "id": 12}]}`. Use `image_data` only with multimodal models, e.g., LLaVA.
|
||||
|
||||
`id_slot`: Assign the completion task to an specific slot. If is -1 the task will be assigned to a Idle slot. Default: `-1`
|
||||
|
||||
`cache_prompt`: Re-use KV cache from a previous request if possible. This way the common prefix does not have to be re-processed, only the suffix that differs between the requests. Because (depending on the backend) the logits are **not** guaranteed to be bit-for-bit identical for different batch sizes (prompt processing vs. token generation) enabling this option can cause nondeterministic results. Default: `false`
|
||||
|
||||
`system_prompt`: Change the system prompt (initial prompt of all slots), this is useful for chat applications. [See more](#change-system-prompt-on-runtime)
|
||||
|
||||
`samplers`: The order the samplers should be applied in. An array of strings representing sampler type names. If a sampler is not set, it will not be used. If a sampler is specified more than once, it will be applied multiple times. Default: `["top_k", "tfs_z", "typical_p", "top_p", "min_p", "temperature"]` - these are all the available values.
|
||||
`samplers`: The order the samplers should be applied in. An array of strings representing sampler type names. If a sampler is not set, it will not be used. If a sampler is specified more than once, it will be applied multiple times. Default: `["dry", "top_k", "typ_p", "top_p", "min_p", "xtc", "temperature"]` - these are all the available values.
|
||||
|
||||
**Response format**
|
||||
|
||||
@@ -519,34 +551,62 @@ Requires a reranker model (such as [bge-reranker-v2-m3](https://huggingface.co/B
|
||||
|
||||
Takes a prefix and a suffix and returns the predicted completion as stream.
|
||||
|
||||
*Options:*
|
||||
*Options:*
|
||||
|
||||
`input_prefix`: Set the prefix of the code to infill.
|
||||
- `input_prefix`: Set the prefix of the code to infill.
|
||||
- `input_suffix`: Set the suffix of the code to infill.
|
||||
- `input_extra`: Additional context inserted before the FIM prefix.
|
||||
- `prompt`: Added after the `FIM_MID` token
|
||||
|
||||
`input_suffix`: Set the suffix of the code to infill.
|
||||
`input_extra` is array of `{"filename": string, "text": string}` objects.
|
||||
|
||||
It also accepts all the options of `/completion` except `stream` and `prompt`.
|
||||
The endpoint also accepts all the options of `/completion`.
|
||||
|
||||
- **GET** `/props`: Return current server settings.
|
||||
If the model has `FIM_REPO` and `FIM_FILE_SEP` tokens, the [repo-level pattern](https://arxiv.org/pdf/2409.12186) is used:
|
||||
|
||||
```txt
|
||||
<FIM_REP>myproject
|
||||
<FIM_SEP>{chunk 0 filename}
|
||||
{chunk 0 text}
|
||||
<FIM_SEP>{chunk 1 filename}
|
||||
{chunk 1 text}
|
||||
...
|
||||
<FIM_SEP>filename
|
||||
<FIM_PRE>[input_prefix]<FIM_SUF>[input_suffix]<FIM_MID>[prompt]
|
||||
```
|
||||
|
||||
If the tokens are missing, then the extra context is simply prefixed at the start:
|
||||
|
||||
```txt
|
||||
[input_extra]<FIM_PRE>[input_prefix]<FIM_SUF>[input_suffix]<FIM_MID>[prompt]
|
||||
```
|
||||
|
||||
### **GET** `/props`: Get server global properties.
|
||||
|
||||
This endpoint is public (no API key check). By default, it is read-only. To make POST request to change global properties, you need to start server with `--props`
|
||||
|
||||
**Response format**
|
||||
|
||||
```json
|
||||
{
|
||||
"assistant_name": "",
|
||||
"user_name": "",
|
||||
"default_generation_settings": { ... },
|
||||
"total_slots": 1,
|
||||
"chat_template": ""
|
||||
}
|
||||
```
|
||||
|
||||
- `assistant_name` - the required assistant name to generate the prompt in case you have specified a system prompt for all slots.
|
||||
- `user_name` - the required anti-prompt to generate the prompt in case you have specified a system prompt for all slots.
|
||||
- `default_generation_settings` - the default generation settings for the `/completion` endpoint, which has the same fields as the `generation_settings` response object from the `/completion` endpoint.
|
||||
- `total_slots` - the total number of slots for process requests (defined by `--parallel` option)
|
||||
- `chat_template` - the model's original Jinja2 prompt template
|
||||
|
||||
### POST `/props`: Change server global properties.
|
||||
|
||||
To use this endpoint with POST method, you need to start server with `--props`
|
||||
|
||||
*Options:*
|
||||
|
||||
- None yet
|
||||
|
||||
### POST `/v1/chat/completions`: OpenAI-compatible Chat Completions API
|
||||
|
||||
Given a ChatML-formatted json description in `messages`, it returns the predicted completion. Both synchronous and streaming mode are supported, so scripted and interactive applications work fine. While no strong claims of compatibility with OpenAI API spec is being made, in our experience it suffices to support many apps. Only models with a [supported chat template](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template) can be used optimally with this endpoint. By default, the ChatML template will be used.
|
||||
@@ -637,7 +697,10 @@ Given a ChatML-formatted json description in `messages`, it returns the predicte
|
||||
|
||||
### GET `/slots`: Returns the current slots processing state
|
||||
|
||||
This endpoint can be disabled with `--no-slots`
|
||||
> [!WARNING]
|
||||
> This endpoint is intended for debugging and may be modified in future versions. For security reasons, we strongly advise against enabling it in production environments.
|
||||
|
||||
This endpoint is disabled by default and can be enabled with `--slots`
|
||||
|
||||
If query param `?fail_on_no_slot=1` is set, this endpoint will respond with status code 503 if there is no available slots.
|
||||
|
||||
@@ -654,6 +717,7 @@ Example:
|
||||
"grammar": "",
|
||||
"id": 0,
|
||||
"ignore_eos": false,
|
||||
"is_processing": false,
|
||||
"logit_bias": [],
|
||||
"min_p": 0.05000000074505806,
|
||||
"mirostat": 0,
|
||||
@@ -680,21 +744,18 @@ Example:
|
||||
"repeat_penalty": 1.100000023841858,
|
||||
"samplers": [
|
||||
"top_k",
|
||||
"tfs_z",
|
||||
"typical_p",
|
||||
"top_p",
|
||||
"min_p",
|
||||
"temperature"
|
||||
],
|
||||
"seed": 42,
|
||||
"state": 1,
|
||||
"stop": [
|
||||
"\n"
|
||||
],
|
||||
"stream": false,
|
||||
"task_id": 0,
|
||||
"temperature": 0.0,
|
||||
"tfs_z": 1.0,
|
||||
"top_k": 40,
|
||||
"top_p": 0.949999988079071,
|
||||
"typical_p": 1.0
|
||||
@@ -702,10 +763,6 @@ Example:
|
||||
]
|
||||
```
|
||||
|
||||
Possible values for `slot[i].state` are:
|
||||
- `0`: SLOT_STATE_IDLE
|
||||
- `1`: SLOT_STATE_PROCESSING
|
||||
|
||||
### GET `/metrics`: Prometheus compatible metrics exporter
|
||||
|
||||
This endpoint is only accessible if `--metrics` is set.
|
||||
@@ -813,28 +870,6 @@ To know the `id` of the adapter, use GET `/lora-adapters`
|
||||
|
||||
## More examples
|
||||
|
||||
### Change system prompt on runtime
|
||||
|
||||
To use the server example to serve multiple chat-type clients while keeping the same system prompt, you can utilize the option `system_prompt`. This only needs to be used once.
|
||||
|
||||
`prompt`: Specify a context that you want all connecting clients to respect.
|
||||
|
||||
`anti_prompt`: Specify the word you want to use to instruct the model to stop. This must be sent to each client through the `/props` endpoint.
|
||||
|
||||
`assistant_name`: The bot's name is necessary for each customer to generate the prompt. This must be sent to each client through the `/props` endpoint.
|
||||
|
||||
```json
|
||||
{
|
||||
"system_prompt": {
|
||||
"prompt": "Transcript of a never ending dialog, where the User interacts with an Assistant.\nThe Assistant is helpful, kind, honest, good at writing, and never fails to answer the User's requests immediately and with precision.\nUser: Recommend a nice restaurant in the area.\nAssistant: I recommend the restaurant \"The Golden Duck\". It is a 5 star restaurant with a great view of the city. The food is delicious and the service is excellent. The prices are reasonable and the portions are generous. The restaurant is located at 123 Main Street, New York, NY 10001. The phone number is (212) 555-1234. The hours are Monday through Friday from 11:00 am to 10:00 pm. The restaurant is closed on Saturdays and Sundays.\nUser: Who is Richard Feynman?\nAssistant: Richard Feynman was an American physicist who is best known for his work in quantum mechanics and particle physics. He was awarded the Nobel Prize in Physics in 1965 for his contributions to the development of quantum electrodynamics. He was a popular lecturer and author, and he wrote several books, including \"Surely You're Joking, Mr. Feynman!\" and \"What Do You Care What Other People Think?\".\nUser:",
|
||||
"anti_prompt": "User:",
|
||||
"assistant_name": "Assistant:"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
**NOTE**: You can do this automatically when starting the server by simply creating a .json file with these options and using the CLI option `-spf FNAME` or `--system-prompt-file FNAME`.
|
||||
|
||||
### Interactive mode
|
||||
|
||||
Check the sample in [chat.mjs](chat.mjs).
|
||||
@@ -898,6 +933,16 @@ Apart from error types supported by OAI, we also have custom types that are spec
|
||||
}
|
||||
```
|
||||
|
||||
### Legacy completion web UI
|
||||
|
||||
A new chat-based UI has replaced the old completion-based since [this PR](https://github.com/ggerganov/llama.cpp/pull/10175). If you want to use the old completion, start the server with `--path ./examples/server/public_legacy`
|
||||
|
||||
For example:
|
||||
|
||||
```sh
|
||||
./llama-server -m my_model.gguf -c 8192 --path ./examples/server/public_legacy
|
||||
```
|
||||
|
||||
### Extending or building alternative Web Front End
|
||||
|
||||
You can extend the front end by running the server binary with `--path` set to `./your-directory` and importing `/completion.js` to get access to the llamaComplete() method.
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import * as readline from 'node:readline'
|
||||
import { stdin, stdout } from 'node:process'
|
||||
import { readFileSync } from 'node:fs'
|
||||
import { SchemaConverter } from './public/json-schema-to-grammar.mjs'
|
||||
import { SchemaConverter } from './public_legacy/json-schema-to-grammar.mjs'
|
||||
|
||||
const args = process.argv.slice(2);
|
||||
const grammarJsonSchemaFile = args.find(
|
||||
|
||||
@@ -6,5 +6,20 @@ DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
|
||||
PUBLIC=$DIR/public
|
||||
|
||||
echo "download js bundle files"
|
||||
curl https://npm.reversehttp.com/@preact/signals-core,@preact/signals,htm/preact,preact,preact/hooks > $PUBLIC/index.js
|
||||
echo >> $PUBLIC/index.js # add newline
|
||||
|
||||
# Note for contributors: Always pin to a specific version "maj.min.patch" to avoid breaking the CI
|
||||
|
||||
curl -L https://cdn.tailwindcss.com/3.4.14 > $PUBLIC/deps_tailwindcss.js
|
||||
echo >> $PUBLIC/deps_tailwindcss.js # add newline
|
||||
|
||||
curl -L https://cdnjs.cloudflare.com/ajax/libs/daisyui/4.12.14/styled.min.css > $PUBLIC/deps_daisyui.min.css
|
||||
curl -L https://cdnjs.cloudflare.com/ajax/libs/daisyui/4.12.14/themes.min.css >> $PUBLIC/deps_daisyui.min.css
|
||||
echo >> $PUBLIC/deps_daisyui.min.css # add newline
|
||||
|
||||
curl -L https://unpkg.com/vue@3.5.12/dist/vue.esm-browser.js > $PUBLIC/deps_vue.esm-browser.js
|
||||
echo >> $PUBLIC/deps_vue.esm-browser.js # add newline
|
||||
|
||||
curl -L https://cdnjs.cloudflare.com/ajax/libs/markdown-it/13.0.2/markdown-it.js > $PUBLIC/deps_markdown-it.js
|
||||
echo >> $PUBLIC/deps_markdown-it.js # add newline
|
||||
|
||||
ls -lah $PUBLIC
|
||||
|
||||
@@ -1,12 +1,16 @@
|
||||
const paramDefaults = {
|
||||
stream: true,
|
||||
n_predict: 500,
|
||||
temperature: 0.2,
|
||||
stop: ["</s>"]
|
||||
};
|
||||
|
||||
let generation_settings = null;
|
||||
|
||||
export class CompletionError extends Error {
|
||||
constructor(message, name, data) {
|
||||
super(message);
|
||||
this.name = name;
|
||||
}
|
||||
};
|
||||
|
||||
// Completes the prompt as a generator. Recommended for most use cases.
|
||||
//
|
||||
@@ -29,7 +33,7 @@ export async function* llama(prompt, params = {}, config = {}) {
|
||||
|
||||
const completionParams = { ...paramDefaults, ...params, prompt };
|
||||
|
||||
const response = await fetch(`${api_url}/completion`, {
|
||||
const response = await fetch(`${api_url}${config.endpoint || '/completion'}`, {
|
||||
method: 'POST',
|
||||
body: JSON.stringify(completionParams),
|
||||
headers: {
|
||||
@@ -41,6 +45,18 @@ export async function* llama(prompt, params = {}, config = {}) {
|
||||
signal: controller.signal,
|
||||
});
|
||||
|
||||
const status = response.status;
|
||||
if (status !== 200) {
|
||||
try {
|
||||
const body = await response.json();
|
||||
if (body && body.error && body.error.message) {
|
||||
throw new CompletionError(body.error.message, 'ServerError');
|
||||
}
|
||||
} catch (err) {
|
||||
throw new CompletionError(err.message, 'ServerError');
|
||||
}
|
||||
}
|
||||
|
||||
const reader = response.body.getReader();
|
||||
const decoder = new TextDecoder();
|
||||
|
||||
@@ -78,7 +94,12 @@ export async function* llama(prompt, params = {}, config = {}) {
|
||||
for (const line of lines) {
|
||||
const match = regex.exec(line);
|
||||
if (match) {
|
||||
result[match[1]] = match[2]
|
||||
result[match[1]] = match[2];
|
||||
if (result.data === '[DONE]') {
|
||||
cont = false;
|
||||
break;
|
||||
}
|
||||
|
||||
// since we know this is llama.cpp, let's just decode the json in data
|
||||
if (result.data) {
|
||||
result.data = JSON.parse(result.data);
|
||||
|
||||
13
examples/server/public/deps_daisyui.min.css
vendored
Normal file
13
examples/server/public/deps_daisyui.min.css
vendored
Normal file
File diff suppressed because one or more lines are too long
8442
examples/server/public/deps_markdown-it.js
Normal file
8442
examples/server/public/deps_markdown-it.js
Normal file
File diff suppressed because it is too large
Load Diff
82
examples/server/public/deps_tailwindcss.js
Normal file
82
examples/server/public/deps_tailwindcss.js
Normal file
File diff suppressed because one or more lines are too long
18160
examples/server/public/deps_vue.esm-browser.js
Normal file
18160
examples/server/public/deps_vue.esm-browser.js
Normal file
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because one or more lines are too long
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user