mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2026-02-05 13:53:23 +02:00
Compare commits
19 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
66c2c93082 | ||
|
|
10433e8b45 | ||
|
|
1f66b699c4 | ||
|
|
0e41b300ed | ||
|
|
cd60b88bf7 | ||
|
|
becfd387f6 | ||
|
|
755a9b2bf0 | ||
|
|
223c25a72f | ||
|
|
fbc98b748e | ||
|
|
dcdd535302 | ||
|
|
4c42f93b22 | ||
|
|
a89f75e1b7 | ||
|
|
13dca2a54a | ||
|
|
d4c19c0f5c | ||
|
|
c7181bd294 | ||
|
|
92be9f1216 | ||
|
|
edc265661c | ||
|
|
1bde94dd02 | ||
|
|
95c76e8e92 |
@@ -130,6 +130,7 @@ Typically finetunes of the base models below are supported as well.
|
||||
- Flutter/Dart: [netdur/llama_cpp_dart](https://github.com/netdur/llama_cpp_dart)
|
||||
- PHP (API bindings and features built on top of llama.cpp): [distantmagic/resonance](https://github.com/distantmagic/resonance) [(more info)](https://github.com/ggerganov/llama.cpp/pull/6326)
|
||||
- Guile Scheme: [guile_llama_cpp](https://savannah.nongnu.org/projects/guile-llama-cpp)
|
||||
- Swift [srgtuszy/llama-cpp-swift](https://github.com/srgtuszy/llama-cpp-swift)
|
||||
|
||||
**UI:**
|
||||
|
||||
|
||||
@@ -947,6 +947,20 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
params.sparams.tfs_z = std::stof(value);
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--xtc-probability"}, "N",
|
||||
string_format("xtc probability (default: %.1f, 0.0 = disabled)", (double)params.sparams.xtc_probability),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sparams.xtc_probability = std::stof(value);
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--xtc-threshold"}, "N",
|
||||
string_format("xtc threshold (default: %.1f, 1.0 = disabled)", (double)params.sparams.xtc_threshold),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sparams.xtc_threshold = std::stof(value);
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--typical"}, "N",
|
||||
string_format("locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)", (double)params.sparams.typ_p),
|
||||
@@ -1163,14 +1177,14 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
[](common_params & params, int value) {
|
||||
params.grp_attn_n = value;
|
||||
}
|
||||
).set_env("LLAMA_ARG_GRP_ATTN_N"));
|
||||
).set_env("LLAMA_ARG_GRP_ATTN_N").set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_PASSKEY}));
|
||||
add_opt(common_arg(
|
||||
{"-gaw", "--grp-attn-w"}, "N",
|
||||
string_format("group-attention width (default: %.1f)", (double)params.grp_attn_w),
|
||||
string_format("group-attention width (default: %d)", params.grp_attn_w),
|
||||
[](common_params & params, int value) {
|
||||
params.grp_attn_w = value;
|
||||
}
|
||||
).set_env("LLAMA_ARG_GRP_ATTN_W"));
|
||||
).set_env("LLAMA_ARG_GRP_ATTN_W").set_examples({LLAMA_EXAMPLE_MAIN}));
|
||||
add_opt(common_arg(
|
||||
{"-dkvc", "--dump-kv-cache"},
|
||||
"verbose print of the KV cache",
|
||||
@@ -1789,22 +1803,12 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_THREADS_HTTP"));
|
||||
add_opt(common_arg(
|
||||
{"-spf", "--system-prompt-file"}, "FNAME",
|
||||
"set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications",
|
||||
[](common_params & params, const std::string & value) {
|
||||
std::ifstream file(value);
|
||||
if (!file) {
|
||||
throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
|
||||
}
|
||||
std::string system_prompt;
|
||||
std::copy(
|
||||
std::istreambuf_iterator<char>(file),
|
||||
std::istreambuf_iterator<char>(),
|
||||
std::back_inserter(system_prompt)
|
||||
);
|
||||
params.system_prompt = system_prompt;
|
||||
{"--cache-reuse"}, "N",
|
||||
string_format("min chunk size to attempt reusing from the cache via KV shifting (default: %d)", params.n_cache_reuse),
|
||||
[](common_params & params, int value) {
|
||||
params.n_cache_reuse = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}));
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CACHE_REUSE"));
|
||||
add_opt(common_arg(
|
||||
{"--metrics"},
|
||||
string_format("enable prometheus compatible metrics endpoint (default: %s)", params.endpoint_metrics ? "enabled" : "disabled"),
|
||||
|
||||
@@ -2104,6 +2104,8 @@ void yaml_dump_non_result_info(FILE * stream, const common_params & params, cons
|
||||
fprintf(stream, "top_k: %d # default: 40\n", sparams.top_k);
|
||||
fprintf(stream, "top_p: %f # default: 0.95\n", sparams.top_p);
|
||||
fprintf(stream, "min_p: %f # default: 0.0\n", sparams.min_p);
|
||||
fprintf(stream, "xtc_probability: %f # default: 0.0\n", sparams.xtc_probability);
|
||||
fprintf(stream, "xtc_threshold: %f # default: 0.1\n", sparams.xtc_threshold);
|
||||
fprintf(stream, "typ_p: %f # default: 1.0\n", sparams.typ_p);
|
||||
fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false");
|
||||
fprintf(stream, "display_prompt: %s # default: true\n", params.display_prompt ? "true" : "false");
|
||||
|
||||
@@ -90,6 +90,8 @@ enum common_sampler_type {
|
||||
COMMON_SAMPLER_TYPE_TFS_Z = 4,
|
||||
COMMON_SAMPLER_TYPE_TYPICAL_P = 5,
|
||||
COMMON_SAMPLER_TYPE_TEMPERATURE = 6,
|
||||
COMMON_SAMPLER_TYPE_XTC = 7,
|
||||
COMMON_SAMPLER_TYPE_INFILL = 8,
|
||||
};
|
||||
|
||||
// dimensionality reduction methods, used by cvector-generator
|
||||
@@ -108,6 +110,8 @@ struct common_sampler_params {
|
||||
int32_t top_k = 40; // <= 0 to use vocab size
|
||||
float top_p = 0.95f; // 1.0 = disabled
|
||||
float min_p = 0.05f; // 0.0 = disabled
|
||||
float xtc_probability = 0.00f; // 0.0 = disabled
|
||||
float xtc_threshold = 0.10f; // > 0.5 disables XTC
|
||||
float tfs_z = 1.00f; // 1.0 = disabled
|
||||
float typ_p = 1.00f; // typical_p, 1.0 = disabled
|
||||
float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
|
||||
@@ -124,13 +128,15 @@ struct common_sampler_params {
|
||||
bool ignore_eos = false;
|
||||
bool no_perf = false; // disable performance metrics
|
||||
|
||||
|
||||
std::vector<enum common_sampler_type> samplers = {
|
||||
COMMON_SAMPLER_TYPE_TOP_K,
|
||||
COMMON_SAMPLER_TYPE_TFS_Z,
|
||||
COMMON_SAMPLER_TYPE_TYPICAL_P,
|
||||
COMMON_SAMPLER_TYPE_TOP_P,
|
||||
COMMON_SAMPLER_TYPE_MIN_P,
|
||||
COMMON_SAMPLER_TYPE_TEMPERATURE
|
||||
COMMON_SAMPLER_TYPE_XTC,
|
||||
COMMON_SAMPLER_TYPE_TEMPERATURE,
|
||||
};
|
||||
|
||||
std::string grammar; // optional BNF-like grammar to constrain sampling
|
||||
@@ -277,12 +283,12 @@ struct common_params {
|
||||
int32_t port = 8080; // server listens on this network port
|
||||
int32_t timeout_read = 600; // http read timeout in seconds
|
||||
int32_t timeout_write = timeout_read; // http write timeout in seconds
|
||||
int n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
|
||||
int32_t n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
|
||||
int32_t n_cache_reuse = 0; // min chunk size to reuse from the cache via KV shifting
|
||||
|
||||
std::string hostname = "127.0.0.1";
|
||||
std::string public_path = ""; // NOLINT
|
||||
std::string chat_template = ""; // NOLINT
|
||||
std::string system_prompt = ""; // NOLINT
|
||||
bool enable_chat_template = true;
|
||||
|
||||
std::vector<std::string> api_keys;
|
||||
|
||||
@@ -611,7 +611,7 @@ private:
|
||||
}
|
||||
return join_seq();
|
||||
};
|
||||
return _add_rule(name, "\"\\\"\" " + to_rule(transform()) + " \"\\\"\" space");
|
||||
return _add_rule(name, "\"\\\"\" (" + to_rule(transform()) + ") \"\\\"\" space");
|
||||
}
|
||||
|
||||
/*
|
||||
|
||||
@@ -130,10 +130,10 @@ std::string common_sampler_params::print() const {
|
||||
|
||||
snprintf(result, sizeof(result),
|
||||
"\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
|
||||
"\ttop_k = %d, tfs_z = %.3f, top_p = %.3f, min_p = %.3f, typical_p = %.3f, temp = %.3f\n"
|
||||
"\ttop_k = %d, tfs_z = %.3f, top_p = %.3f, min_p = %.3f, xtc_probability = %.3f, xtc_threshold = %.3f, typical_p = %.3f, temp = %.3f\n"
|
||||
"\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
|
||||
penalty_last_n, penalty_repeat, penalty_freq, penalty_present,
|
||||
top_k, tfs_z, top_p, min_p, typ_p, temp,
|
||||
top_k, tfs_z, top_p, min_p, xtc_probability, xtc_threshold, typ_p, temp,
|
||||
mirostat, mirostat_eta, mirostat_tau);
|
||||
|
||||
return std::string(result);
|
||||
@@ -184,6 +184,9 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
|
||||
case COMMON_SAMPLER_TYPE_MIN_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_XTC:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TFS_Z:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_tail_free(params.tfs_z, params.min_keep));
|
||||
break;
|
||||
@@ -193,6 +196,9 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
|
||||
case COMMON_SAMPLER_TYPE_TEMPERATURE:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_INFILL:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_infill (model));
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false && "unknown sampler type");
|
||||
}
|
||||
@@ -372,6 +378,8 @@ char common_sampler_type_to_chr(enum common_sampler_type cnstr) {
|
||||
case COMMON_SAMPLER_TYPE_TOP_P: return 'p';
|
||||
case COMMON_SAMPLER_TYPE_MIN_P: return 'm';
|
||||
case COMMON_SAMPLER_TYPE_TEMPERATURE: return 't';
|
||||
case COMMON_SAMPLER_TYPE_XTC: return 'x';
|
||||
case COMMON_SAMPLER_TYPE_INFILL: return 'i';
|
||||
default : return '?';
|
||||
}
|
||||
}
|
||||
@@ -384,6 +392,8 @@ std::string common_sampler_type_to_str(enum common_sampler_type cnstr) {
|
||||
case COMMON_SAMPLER_TYPE_TOP_P: return "top_p";
|
||||
case COMMON_SAMPLER_TYPE_MIN_P: return "min_p";
|
||||
case COMMON_SAMPLER_TYPE_TEMPERATURE: return "temperature";
|
||||
case COMMON_SAMPLER_TYPE_XTC: return "xtc";
|
||||
case COMMON_SAMPLER_TYPE_INFILL: return "infill";
|
||||
default : return "";
|
||||
}
|
||||
}
|
||||
@@ -396,6 +406,8 @@ std::vector<common_sampler_type> common_sampler_types_from_names(const std::vect
|
||||
{ "min_p", COMMON_SAMPLER_TYPE_MIN_P },
|
||||
{ "tfs_z", COMMON_SAMPLER_TYPE_TFS_Z },
|
||||
{ "temperature", COMMON_SAMPLER_TYPE_TEMPERATURE },
|
||||
{ "xtc", COMMON_SAMPLER_TYPE_XTC },
|
||||
{ "infill", COMMON_SAMPLER_TYPE_INFILL },
|
||||
};
|
||||
|
||||
// since samplers names are written multiple ways
|
||||
@@ -441,7 +453,9 @@ std::vector<common_sampler_type> common_sampler_types_from_chars(const std::stri
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TYPICAL_P), COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_P), COMMON_SAMPLER_TYPE_TOP_P },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_MIN_P), COMMON_SAMPLER_TYPE_MIN_P },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TEMPERATURE), COMMON_SAMPLER_TYPE_TEMPERATURE }
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TEMPERATURE), COMMON_SAMPLER_TYPE_TEMPERATURE },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_XTC), COMMON_SAMPLER_TYPE_XTC },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_INFILL), COMMON_SAMPLER_TYPE_INFILL },
|
||||
};
|
||||
|
||||
std::vector<common_sampler_type> samplers;
|
||||
|
||||
@@ -540,7 +540,7 @@ class SchemaConverter:
|
||||
return self._add_rule(
|
||||
name,
|
||||
to_rule(transform()) if self._raw_pattern \
|
||||
else "\"\\\"\" " + to_rule(transform()) + " \"\\\"\" space")
|
||||
else "\"\\\"\" (" + to_rule(transform()) + ") \"\\\"\" space")
|
||||
|
||||
|
||||
def _resolve_ref(self, ref):
|
||||
|
||||
@@ -241,6 +241,19 @@ The `--mirostat-ent` option sets the Mirostat target entropy (tau), which repres
|
||||
|
||||
Example usage: `--mirostat 2 --mirostat-lr 0.05 --mirostat-ent 3.0`
|
||||
|
||||
### XTC Sampling
|
||||
|
||||
- `--xtc-probability N`: Sets the chance for token removal (checked once on sampler start) (default: 0.0).
|
||||
- `--xtc-threshold N`: Sets a minimum probability threshold for tokens to be removed (default: 0.1).
|
||||
|
||||
Exclude Top Choices (XTC) is a unique sampler that is designed to remove top tokens from consideration and avoid more obvious and repetitive outputs. With a chance of `xtc-probability` it searches for tokens with probabilities of `xtc-threshold` and above, then removes all such tokens except the least probable one.
|
||||
|
||||
By removing top tokens XTC can improve the variety of answers, break writing clichés and inhibit repition, since clichés and repeated phrases are usually more likely to appear. By keeping the last token above the threshold, XTC ensures that the answer is still coherent. XTC is meant to be used for creative tasks, but feel free to experiment with different settings for different models.
|
||||
|
||||
Being experimental and unique, XTC is disabled by default. The recommended combination of samplers is Min-P followed by XTC on its default settings: `--sampling-seq mx --min-p 0.02 --xtc-probability 0.5`.
|
||||
|
||||
Example usage: `--xtc-probability 0.5 --xtc-threshold 0.1`
|
||||
|
||||
### Logit Bias
|
||||
|
||||
- `-l TOKEN_ID(+/-)BIAS, --logit-bias TOKEN_ID(+/-)BIAS`: Modify the likelihood of a token appearing in the generated text completion.
|
||||
|
||||
@@ -569,30 +569,30 @@ int main(int argc, char ** argv) {
|
||||
if (!params.ctx_shift){
|
||||
LOG_DBG("\n\n%s: context full and context shift is disabled => stopping\n", __func__);
|
||||
break;
|
||||
} else {
|
||||
if (params.n_predict == -2) {
|
||||
LOG_DBG("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict);
|
||||
break;
|
||||
}
|
||||
|
||||
const int n_left = n_past - params.n_keep;
|
||||
const int n_discard = n_left/2;
|
||||
|
||||
LOG_DBG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
|
||||
n_past, n_left, n_ctx, params.n_keep, n_discard);
|
||||
|
||||
llama_kv_cache_seq_rm (ctx, 0, params.n_keep , params.n_keep + n_discard);
|
||||
llama_kv_cache_seq_add(ctx, 0, params.n_keep + n_discard, n_past, -n_discard);
|
||||
|
||||
n_past -= n_discard;
|
||||
|
||||
LOG_DBG("after swap: n_past = %d\n", n_past);
|
||||
|
||||
LOG_DBG("embd: %s\n", string_from(ctx, embd).c_str());
|
||||
|
||||
LOG_DBG("clear session path\n");
|
||||
path_session.clear();
|
||||
}
|
||||
|
||||
if (params.n_predict == -2) {
|
||||
LOG_DBG("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict);
|
||||
break;
|
||||
}
|
||||
|
||||
const int n_left = n_past - params.n_keep;
|
||||
const int n_discard = n_left/2;
|
||||
|
||||
LOG_DBG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
|
||||
n_past, n_left, n_ctx, params.n_keep, n_discard);
|
||||
|
||||
llama_kv_cache_seq_rm (ctx, 0, params.n_keep , params.n_keep + n_discard);
|
||||
llama_kv_cache_seq_add(ctx, 0, params.n_keep + n_discard, n_past, -n_discard);
|
||||
|
||||
n_past -= n_discard;
|
||||
|
||||
LOG_DBG("after swap: n_past = %d\n", n_past);
|
||||
|
||||
LOG_DBG("embd: %s\n", string_from(ctx, embd).c_str());
|
||||
|
||||
LOG_DBG("clear session path\n");
|
||||
path_session.clear();
|
||||
}
|
||||
} else {
|
||||
// context extension via Self-Extend
|
||||
|
||||
@@ -60,8 +60,6 @@ The project is under active development, and we are [looking for feedback and co
|
||||
| `--yarn-attn-factor N` | YaRN: scale sqrt(t) or attention magnitude (default: 1.0)<br/>(env: LLAMA_ARG_YARN_ATTN_FACTOR) |
|
||||
| `--yarn-beta-slow N` | YaRN: high correction dim or alpha (default: 1.0)<br/>(env: LLAMA_ARG_YARN_BETA_SLOW) |
|
||||
| `--yarn-beta-fast N` | YaRN: low correction dim or beta (default: 32.0)<br/>(env: LLAMA_ARG_YARN_BETA_FAST) |
|
||||
| `-gan, --grp-attn-n N` | group-attention factor (default: 1)<br/>(env: LLAMA_ARG_GRP_ATTN_N) |
|
||||
| `-gaw, --grp-attn-w N` | group-attention width (default: 512.0)<br/>(env: LLAMA_ARG_GRP_ATTN_W) |
|
||||
| `-dkvc, --dump-kv-cache` | verbose print of the KV cache |
|
||||
| `-nkvo, --no-kv-offload` | disable KV offload<br/>(env: LLAMA_ARG_NO_KV_OFFLOAD) |
|
||||
| `-ctk, --cache-type-k TYPE` | KV cache data type for K (default: f16)<br/>(env: LLAMA_ARG_CACHE_TYPE_K) |
|
||||
@@ -149,7 +147,7 @@ The project is under active development, and we are [looking for feedback and co
|
||||
| `--ssl-cert-file FNAME` | path to file a PEM-encoded SSL certificate<br/>(env: LLAMA_ARG_SSL_CERT_FILE) |
|
||||
| `-to, --timeout N` | server read/write timeout in seconds (default: 600)<br/>(env: LLAMA_ARG_TIMEOUT) |
|
||||
| `--threads-http N` | number of threads used to process HTTP requests (default: -1)<br/>(env: LLAMA_ARG_THREADS_HTTP) |
|
||||
| `-spf, --system-prompt-file FNAME` | set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications |
|
||||
| `--cache-reuse N` | min chunk size to attempt reusing from the cache via KV shifting (default: 0)<br/>(env: LLAMA_ARG_CACHE_REUSE) |
|
||||
| `--metrics` | enable prometheus compatible metrics endpoint (default: disabled)<br/>(env: LLAMA_ARG_ENDPOINT_METRICS) |
|
||||
| `--slots` | enable slots monitoring endpoint (default: disabled)<br/>(env: LLAMA_ARG_ENDPOINT_SLOTS) |
|
||||
| `--props` | enable changing global properties via POST /props (default: disabled)<br/>(env: LLAMA_ARG_ENDPOINT_PROPS) |
|
||||
@@ -320,7 +318,6 @@ node index.js
|
||||
|
||||
- The prompt is a string or an array with the first element given as a string
|
||||
- The model's `tokenizer.ggml.add_bos_token` metadata is `true`
|
||||
- The system prompt is empty
|
||||
|
||||
`temperature`: Adjust the randomness of the generated text. Default: `0.8`
|
||||
|
||||
@@ -378,6 +375,8 @@ node index.js
|
||||
|
||||
`min_keep`: If greater than 0, force samplers to return N possible tokens at minimum. Default: `0`
|
||||
|
||||
`t_max_predict_ms`: Set a time limit in milliseconds for the prediction (a.k.a. text-generation) phase. The timeout will trigger if the generation takes more than the specified time (measured since the first token was generated) and if a new-line character has already been generated. Useful for FIM applications. Default: `0`, which is disabled.
|
||||
|
||||
`image_data`: An array of objects to hold base64-encoded image `data` and its `id`s to be reference in `prompt`. You can determine the place of the image in the prompt as in the following: `USER:[img-12]Describe the image in detail.\nASSISTANT:`. In this case, `[img-12]` will be replaced by the embeddings of the image with id `12` in the following `image_data` array: `{..., "image_data": [{"data": "<BASE64_STRING>", "id": 12}]}`. Use `image_data` only with multimodal models, e.g., LLaVA.
|
||||
|
||||
`id_slot`: Assign the completion task to an specific slot. If is -1 the task will be assigned to a Idle slot. Default: `-1`
|
||||
@@ -525,8 +524,31 @@ Takes a prefix and a suffix and returns the predicted completion as stream.
|
||||
|
||||
- `input_prefix`: Set the prefix of the code to infill.
|
||||
- `input_suffix`: Set the suffix of the code to infill.
|
||||
- `input_extra`: Additional context inserted before the FIM prefix.
|
||||
- `prompt`: Added after the `FIM_MID` token
|
||||
|
||||
It also accepts all the options of `/completion`.
|
||||
`input_extra` is array of `{"filename": string, "text": string}` objects.
|
||||
|
||||
The endpoint also accepts all the options of `/completion`.
|
||||
|
||||
If the model has `FIM_REPO` and `FIM_FILE_SEP` tokens, the [repo-level pattern](https://arxiv.org/pdf/2409.12186) is used:
|
||||
|
||||
```txt
|
||||
<FIM_REP>myproject
|
||||
<FIM_SEP>{chunk 0 filename}
|
||||
{chunk 0 text}
|
||||
<FIM_SEP>{chunk 1 filename}
|
||||
{chunk 1 text}
|
||||
...
|
||||
<FIM_SEP>filename
|
||||
<FIM_PRE>[input_prefix]<FIM_SUF>[input_suffix]<FIM_MID>[prompt]
|
||||
```
|
||||
|
||||
If the tokens are missing, then the extra context is simply prefixed at the start:
|
||||
|
||||
```txt
|
||||
[input_extra]<FIM_PRE>[input_prefix]<FIM_SUF>[input_suffix]<FIM_MID>[prompt]
|
||||
```
|
||||
|
||||
### **GET** `/props`: Get server global properties.
|
||||
|
||||
@@ -536,14 +558,12 @@ This endpoint is public (no API key check). By default, it is read-only. To make
|
||||
|
||||
```json
|
||||
{
|
||||
"system_prompt": "",
|
||||
"default_generation_settings": { ... },
|
||||
"total_slots": 1,
|
||||
"chat_template": ""
|
||||
}
|
||||
```
|
||||
|
||||
- `system_prompt` - the system prompt (initial prompt of all slots). Please note that this does not take into account the chat template. It will append the prompt at the beginning of formatted prompt.
|
||||
- `default_generation_settings` - the default generation settings for the `/completion` endpoint, which has the same fields as the `generation_settings` response object from the `/completion` endpoint.
|
||||
- `total_slots` - the total number of slots for process requests (defined by `--parallel` option)
|
||||
- `chat_template` - the model's original Jinja2 prompt template
|
||||
@@ -554,7 +574,7 @@ To use this endpoint with POST method, you need to start server with `--props`
|
||||
|
||||
*Options:*
|
||||
|
||||
- `system_prompt`: Change the system prompt (initial prompt of all slots). Please note that this does not take into account the chat template. It will append the prompt at the beginning of formatted prompt.
|
||||
- None yet
|
||||
|
||||
### POST `/v1/chat/completions`: OpenAI-compatible Chat Completions API
|
||||
|
||||
|
||||
@@ -43,6 +43,8 @@
|
||||
top_k: 0, // <= 0 to use vocab size
|
||||
top_p: 1.0, // 1.0 = disabled
|
||||
min_p: 0.05, // 0 = disabled; recommended for non-english: ~ 0.4
|
||||
xtc_probability: 0.0, // 0 = disabled;
|
||||
xtc_threshold: 0.1, // > 0.5 disables XTC;
|
||||
tfs_z: 1.0, // 1.0 = disabled
|
||||
typical_p: 1.0, // 1.0 = disabled
|
||||
presence_penalty: 0.0, // 0.0 = disabled
|
||||
@@ -836,6 +838,8 @@ return html`
|
||||
${FloatField({ label: "TFS-Z", title: "Activates tail-free sampling, a method used to limit the prediction of tokens that are too frequent. The parameter z controls the strength of this limitation. A value of 1.0 means that this function is deactivated.", max: 1.0, min: 0.0, name: "tfs_z", step: 0.01, value: params.value.tfs_z })}
|
||||
${FloatField({ label: "Frequency Penalty", title: "A penalty that is applied based on the frequency with which certain tokens occur in the training data set. A higher value results in rare tokens being favoured.", max: 1.0, min: 0.0, name: "frequency_penalty", step: 0.01, value: params.value.frequency_penalty })}
|
||||
${FloatField({ label: "Typical-P", title: "Activates local typical sampling, a method used to limit the prediction of tokens that are atypical in the current context. The parameter p controls the strength of this limitation. A value of 1.0 means that this function is deactivated.", max: 1.0, min: 0.0, name: "typical_p", step: 0.01, value: params.value.typical_p })}
|
||||
${FloatField({ label: "XTC probability", title: "Sets the chance for token removal (checked once on sampler start)", max: 1.0, min: 0.0, name: "xtc_probability", step: 0.01, value: params.value.xtc_probability })}
|
||||
${FloatField({ label: "XTC threshold", title: "Sets a minimum probability threshold for tokens to be removed", max: 0.5, min: 0.0, name: "xtc_threshold", step: 0.01, value: params.value.xtc_threshold })}
|
||||
${IntField({ label: "Min Keep", title: "If greater than 0, samplers are forced to return N possible tokens at minimum. Default is 0", max: 10, min: 0, name: "min_keep", value: params.value.min_keep })}
|
||||
</fieldset>
|
||||
|
||||
@@ -1132,6 +1136,8 @@ document.addEventListener('DOMContentLoaded', (event) => {
|
||||
const snapSettings = {
|
||||
temperature: { snapValue: 1.0, snapRangeMultiplier: 6 },
|
||||
min_p: { snapValue: 0.05, snapRangeMultiplier: 2 },
|
||||
xtc_probability: { snapValue: 0.0, snapRangeMultiplier: 4 },
|
||||
xtc_threshold: { snapValue: 0.5, snapRangeMultiplier: 4 },
|
||||
top_p: { snapValue: 1.0, snapRangeMultiplier: 4 },
|
||||
tfs_z: { snapValue: 1.0, snapRangeMultiplier: 4 },
|
||||
typical_p: { snapValue: 1.0, snapRangeMultiplier: 4 },
|
||||
|
||||
@@ -307,6 +307,8 @@
|
||||
top_k: 40, // <= 0 to use vocab size
|
||||
top_p: 0.95, // 1.0 = disabled
|
||||
min_p: 0.05, // 0 = disabled
|
||||
xtc_probability: 0.0, // 0 = disabled;
|
||||
xtc_threshold: 0.1, // > 0.5 disables XTC;
|
||||
tfs_z: 1.0, // 1.0 = disabled
|
||||
typical_p: 1.0, // 1.0 = disabled
|
||||
presence_penalty: 0.0, // 0.0 = disabled
|
||||
@@ -1013,6 +1015,8 @@
|
||||
${FloatField({ label: "Typical P", max: 1.0, min: 0.0, name: "typical_p", step: 0.01, value: params.value.typical_p })}
|
||||
${FloatField({ label: "Presence penalty", max: 1.0, min: 0.0, name: "presence_penalty", step: 0.01, value: params.value.presence_penalty })}
|
||||
${FloatField({ label: "Frequency penalty", max: 1.0, min: 0.0, name: "frequency_penalty", step: 0.01, value: params.value.frequency_penalty })}
|
||||
${FloatField({ label: "XTC probability", max: 1.0, min: 0.0, name: "xtc_probability", step: 0.01, value: params.value.xtc_probability })}
|
||||
${FloatField({ label: "XTC threshold", max: 0.5, min: 0.0, name: "xtc_threshold", step: 0.01, value: params.value.xtc_threshold })}
|
||||
</fieldset>
|
||||
<hr />
|
||||
<fieldset class="three">
|
||||
|
||||
File diff suppressed because one or more lines are too long
@@ -529,7 +529,7 @@ export class SchemaConverter {
|
||||
return joinSeq();
|
||||
};
|
||||
|
||||
return this._addRule(name, "\"\\\"\" " + toRule(transform()) + " \"\\\"\" space")
|
||||
return this._addRule(name, "\"\\\"\" (" + toRule(transform()) + ") \"\\\"\" space")
|
||||
}
|
||||
|
||||
_notStrings(strings) {
|
||||
|
||||
@@ -128,14 +128,14 @@ struct slot_params {
|
||||
bool stream = true;
|
||||
bool cache_prompt = false; // remember the prompt to avoid reprocessing all prompt
|
||||
|
||||
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
||||
int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
|
||||
int32_t n_predict = -1; // new tokens to predict
|
||||
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
||||
int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
|
||||
int32_t n_predict = -1; // new tokens to predict
|
||||
|
||||
int64_t t_max_prompt_ms = -1; // TODO: implement
|
||||
int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
|
||||
|
||||
std::vector<std::string> antiprompt;
|
||||
|
||||
json input_prefix;
|
||||
json input_suffix;
|
||||
};
|
||||
|
||||
struct server_slot {
|
||||
@@ -165,8 +165,13 @@ struct server_slot {
|
||||
|
||||
json prompt; // can be either a string, array of strings or array of token ids
|
||||
|
||||
json input_prefix;
|
||||
json input_suffix;
|
||||
json input_extra;
|
||||
|
||||
// when a task is submitted, we first tokenize the prompt and store it here
|
||||
std::vector<llama_token> prompt_tokens;
|
||||
std::vector<llama_token> extra_tokens;
|
||||
|
||||
std::string generated_text;
|
||||
std::vector<llama_token> cache_tokens;
|
||||
@@ -175,6 +180,7 @@ struct server_slot {
|
||||
server_task_cmpl_type cmpl_type = SERVER_TASK_CMPL_TYPE_NORMAL;
|
||||
|
||||
bool has_next_token = true;
|
||||
bool has_new_line = false;
|
||||
bool truncated = false;
|
||||
bool stopped_eos = false;
|
||||
bool stopped_word = false;
|
||||
@@ -193,21 +199,15 @@ struct server_slot {
|
||||
|
||||
llama_token sampled;
|
||||
|
||||
int32_t ga_i = 0; // group-attention state
|
||||
int32_t ga_n = 1; // group-attention factor
|
||||
int32_t ga_w = 512; // group-attention width
|
||||
|
||||
int32_t n_past_se = 0; // self-extend
|
||||
|
||||
// stats
|
||||
size_t n_sent_text = 0; // number of sent text character
|
||||
size_t n_sent_text = 0; // number of sent text character
|
||||
size_t n_sent_token_probs = 0;
|
||||
|
||||
int64_t t_start_process_prompt;
|
||||
int64_t t_start_generation;
|
||||
|
||||
double t_prompt_processing; // ms
|
||||
double t_token_generation; // ms
|
||||
double t_token_generation; // ms
|
||||
|
||||
std::function<void(int)> callback_on_release;
|
||||
|
||||
@@ -216,6 +216,7 @@ struct server_slot {
|
||||
|
||||
n_prompt_tokens = 0;
|
||||
generated_text = "";
|
||||
has_new_line = false;
|
||||
truncated = false;
|
||||
stopped_eos = false;
|
||||
stopped_word = false;
|
||||
@@ -225,8 +226,6 @@ struct server_slot {
|
||||
n_sent_text = 0;
|
||||
n_sent_token_probs = 0;
|
||||
cmpl_type = SERVER_TASK_CMPL_TYPE_NORMAL;
|
||||
ga_i = 0;
|
||||
n_past_se = 0;
|
||||
|
||||
generated_token_probs.clear();
|
||||
}
|
||||
@@ -623,12 +622,6 @@ struct server_context {
|
||||
|
||||
int32_t n_ctx; // total context for all clients / slots
|
||||
|
||||
// system prompt
|
||||
bool system_need_update = false;
|
||||
|
||||
std::string system_prompt;
|
||||
std::vector<llama_token> system_tokens;
|
||||
|
||||
// slots / clients
|
||||
std::vector<server_slot> slots;
|
||||
json default_generation_settings_for_props;
|
||||
@@ -665,7 +658,7 @@ struct server_context {
|
||||
bool load_model(const common_params & params_) {
|
||||
params = params_;
|
||||
|
||||
// dedicate one sequence to the system prompt
|
||||
// reserve one extra sequence (seq_id == 0) for extra features
|
||||
params.n_parallel += 1;
|
||||
|
||||
common_init_result llama_init = common_init_from_params(params);
|
||||
@@ -711,22 +704,6 @@ struct server_context {
|
||||
|
||||
SLT_INF(slot, "new slot n_ctx_slot = %d\n", slot.n_ctx);
|
||||
|
||||
const int ga_n = params.grp_attn_n;
|
||||
const int ga_w = params.grp_attn_w;
|
||||
|
||||
if (ga_n != 1) {
|
||||
GGML_ASSERT(ga_n > 0 && "ga_n must be positive"); // NOLINT
|
||||
GGML_ASSERT(ga_w % ga_n == 0 && "ga_w must be a multiple of ga_n"); // NOLINT
|
||||
//GGML_ASSERT(n_ctx_train % ga_w == 0 && "n_ctx_train must be a multiple of ga_w"); // NOLINT
|
||||
//GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * ga_n"); // NOLINT
|
||||
|
||||
SLT_INF(slot, "slot self-extend: ga_n = %d, ga_w = %d\n", ga_n, ga_w);
|
||||
}
|
||||
|
||||
slot.ga_i = 0;
|
||||
slot.ga_n = ga_n;
|
||||
slot.ga_w = ga_w;
|
||||
|
||||
slot.sparams = params.sparams;
|
||||
|
||||
slot.callback_on_release = [this](int) {
|
||||
@@ -825,7 +802,7 @@ struct server_context {
|
||||
int slot_prompt_len = slot_prompt.size();
|
||||
|
||||
// length of the Longest Common Prefix between the current slot's prompt and the input prompt
|
||||
int lcp_len = common_part(slot_prompt, prompt);
|
||||
int lcp_len = longest_common_prefix(slot_prompt, prompt);
|
||||
|
||||
// fraction of the common substring length compared to the current slot's prompt length
|
||||
similarity = static_cast<float>(lcp_len) / slot_prompt_len;
|
||||
@@ -886,6 +863,8 @@ struct server_context {
|
||||
slot.sparams.top_k = json_value(data, "top_k", default_sparams.top_k);
|
||||
slot.sparams.top_p = json_value(data, "top_p", default_sparams.top_p);
|
||||
slot.sparams.min_p = json_value(data, "min_p", default_sparams.min_p);
|
||||
slot.sparams.xtc_probability = json_value(data, "xtc_probability", default_sparams.xtc_probability);
|
||||
slot.sparams.xtc_threshold = json_value(data, "xtc_threshold", default_sparams.xtc_threshold);
|
||||
slot.sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z);
|
||||
slot.sparams.typ_p = json_value(data, "typical_p", default_sparams.typ_p);
|
||||
slot.sparams.temp = json_value(data, "temperature", default_sparams.temp);
|
||||
@@ -904,6 +883,8 @@ struct server_context {
|
||||
slot.sparams.seed = json_value(data, "seed", default_sparams.seed);
|
||||
slot.sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
|
||||
slot.sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep);
|
||||
//slot.params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", default_params.t_max_prompt_ms); // TODO: implement
|
||||
slot.params.t_max_predict_ms = json_value(data, "t_max_predict_ms", default_params.t_max_predict_ms);
|
||||
|
||||
// process "json_schema" and "grammar"
|
||||
if (data.contains("json_schema") && !data.at("json_schema").is_null() && data.contains("grammar") && !data.at("grammar").is_null()) {
|
||||
@@ -912,19 +893,14 @@ struct server_context {
|
||||
}
|
||||
if (data.contains("json_schema") && !data.contains("grammar")) {
|
||||
try {
|
||||
auto schema = json_value(data, "json_schema", json::object());
|
||||
slot.sparams.grammar = json_schema_to_grammar(schema);
|
||||
auto schema = json_value(data, "json_schema", json::object());
|
||||
slot.sparams.grammar = json_schema_to_grammar(schema);
|
||||
} catch (const std::exception & e) {
|
||||
send_error(task, std::string("\"json_schema\": ") + e.what(), ERROR_TYPE_INVALID_REQUEST);
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
slot.sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
|
||||
}
|
||||
|
||||
if (slot.params.cache_prompt && slot.ga_n != 1) {
|
||||
slot.params.cache_prompt = false;
|
||||
SLT_WRN(slot, "%s", "group-attention is not supported with prompt caching. disabling cache\n");
|
||||
slot.sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
|
||||
}
|
||||
|
||||
if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
|
||||
@@ -934,11 +910,29 @@ struct server_context {
|
||||
}
|
||||
|
||||
// infill
|
||||
slot.params.input_prefix = json_value(data, "input_prefix", default_params.input_prefix);
|
||||
slot.params.input_suffix = json_value(data, "input_suffix", default_params.input_suffix);
|
||||
slot.input_prefix = json_value(data, "input_prefix", json());
|
||||
slot.input_suffix = json_value(data, "input_suffix", json());
|
||||
slot.input_extra = json_value(data, "input_extra", json());
|
||||
|
||||
SLT_DBG(slot, "extra_context chunks: %d\n", (int) slot.input_extra.size());
|
||||
for (const auto & chunk : slot.input_extra) {
|
||||
// { "text": string, "filename": string }
|
||||
if (!chunk.contains("text") || !chunk["text"].is_string()) {
|
||||
send_error(task, "extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST);
|
||||
return false;
|
||||
}
|
||||
|
||||
// filename is optional
|
||||
if (chunk.contains("filename") && !chunk["filename"].is_string()) {
|
||||
send_error(task, "extra_context chunk's \"filename\" field must be a string", ERROR_TYPE_INVALID_REQUEST);
|
||||
return false;
|
||||
}
|
||||
|
||||
SLT_DBG(slot, "extra_context chunk in file '%s':\n%s\n", chunk.value("filename", "").c_str(), chunk.value("text", "").c_str());
|
||||
}
|
||||
|
||||
// get prompt
|
||||
if (task.cmpl_type != SERVER_TASK_CMPL_TYPE_INFILL) {
|
||||
{
|
||||
const auto & prompt = data.find("prompt");
|
||||
if (prompt == data.end()) {
|
||||
send_error(task, "\"prompt\" must be provided", ERROR_TYPE_INVALID_REQUEST);
|
||||
@@ -1061,51 +1055,6 @@ struct server_context {
|
||||
clean_kv_cache = false;
|
||||
}
|
||||
|
||||
void system_prompt_update() {
|
||||
SRV_DBG("updating system prompt: '%s'\n", system_prompt.c_str());
|
||||
|
||||
kv_cache_clear();
|
||||
system_tokens.clear();
|
||||
|
||||
if (!system_prompt.empty()) {
|
||||
system_tokens = common_tokenize(ctx, system_prompt, true);
|
||||
|
||||
const int32_t n_batch = llama_n_batch(ctx);
|
||||
const int32_t n_tokens_prompt = system_tokens.size();
|
||||
|
||||
for (int32_t i = 0; i < n_tokens_prompt; i += n_batch) {
|
||||
const int32_t n_tokens = std::min(n_batch, n_tokens_prompt - i);
|
||||
|
||||
common_batch_clear(batch);
|
||||
|
||||
for (int32_t j = 0; j < n_tokens; ++j) {
|
||||
common_batch_add(batch, system_tokens[i + j], i + j, { 0 }, false);
|
||||
}
|
||||
|
||||
if (llama_decode(ctx, batch) != 0) {
|
||||
SRV_ERR("%s", "llama_decode() failed\n");
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// assign the system KV cache to all parallel sequences
|
||||
for (int32_t i = 1; i <= params.n_parallel; ++i) {
|
||||
llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
|
||||
}
|
||||
}
|
||||
|
||||
system_need_update = false;
|
||||
}
|
||||
|
||||
bool system_prompt_set(const std::string & sys_prompt) {
|
||||
SRV_DBG("system prompt set: '%s'\n", system_prompt.c_str());
|
||||
|
||||
system_prompt = sys_prompt;
|
||||
// update system_tokens and KV cache as soon as all slots are idle
|
||||
system_need_update = true;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool process_token(completion_token_output & result, server_slot & slot) {
|
||||
// remember which tokens were sampled - used for repetition penalties during sampling
|
||||
const std::string token_str = common_token_to_piece(ctx, result.tok, params.special);
|
||||
@@ -1141,22 +1090,21 @@ struct server_context {
|
||||
size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
|
||||
|
||||
const std::string str_test = slot.generated_text.substr(pos);
|
||||
bool is_stop_full = false;
|
||||
bool send_text = true;
|
||||
|
||||
size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), STOP_TYPE_FULL);
|
||||
if (stop_pos != std::string::npos) {
|
||||
is_stop_full = true;
|
||||
slot.generated_text.erase(
|
||||
slot.generated_text.begin() + pos + stop_pos,
|
||||
slot.generated_text.end());
|
||||
pos = std::min(slot.n_sent_text, slot.generated_text.size());
|
||||
} else {
|
||||
is_stop_full = false;
|
||||
} else if (slot.has_next_token) {
|
||||
stop_pos = slot.find_stopping_strings(str_test, token_str.size(), STOP_TYPE_PARTIAL);
|
||||
send_text = stop_pos == std::string::npos;
|
||||
}
|
||||
|
||||
// check if there is any token to predict
|
||||
if (stop_pos == std::string::npos || (!slot.has_next_token && !is_stop_full && stop_pos > 0)) {
|
||||
if (send_text) {
|
||||
// no send the stop word in the response
|
||||
result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
|
||||
slot.n_sent_text += result.text_to_send.size();
|
||||
@@ -1181,13 +1129,28 @@ struct server_context {
|
||||
SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.params.n_predict);
|
||||
}
|
||||
|
||||
// if we have already seen a new line, we stop after a certain time limit
|
||||
if (slot.has_new_line && slot.params.t_max_predict_ms > 0 &&
|
||||
(ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) {
|
||||
slot.stopped_limit = true;
|
||||
slot.has_next_token = false;
|
||||
|
||||
SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms);
|
||||
}
|
||||
|
||||
// check if there is a new line in the generated text
|
||||
if (result.text_to_send.find('\n') != std::string::npos) {
|
||||
slot.has_new_line = true;
|
||||
}
|
||||
|
||||
// if context shift is disabled, we stop when it reaches the context limit
|
||||
if (slot.n_decoded >= slot.n_ctx) {
|
||||
if (slot.n_past >= slot.n_ctx) {
|
||||
slot.truncated = true;
|
||||
slot.stopped_limit = true;
|
||||
slot.has_next_token = false;
|
||||
|
||||
SLT_DBG(slot, "stopped due to running out of context capacity, n_decoded = %d, n_ctx = %d\n", slot.n_decoded, slot.n_ctx);
|
||||
SLT_DBG(slot, "stopped due to running out of context capacity, n_past = %d, n_prompt_tokens = %d, n_decoded = %d, n_ctx = %d\n",
|
||||
slot.n_decoded, slot.n_prompt_tokens, slot.n_past, slot.n_ctx);
|
||||
}
|
||||
|
||||
if (llama_token_is_eog(model, result.tok)) {
|
||||
@@ -1199,13 +1162,13 @@ struct server_context {
|
||||
|
||||
const auto n_ctx_train = llama_n_ctx_train(model);
|
||||
|
||||
if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.ga_n == 1 && slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
|
||||
if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
|
||||
slot.truncated = true;
|
||||
slot.stopped_limit = true;
|
||||
slot.has_next_token = false; // stop prediction
|
||||
|
||||
SLT_WRN(slot,
|
||||
"n_predict (%d) is not set and self-context extend is disabled. "
|
||||
"n_predict (%d) is set for infinite generation. "
|
||||
"Limiting generated tokens to n_ctx_train (%d) to avoid EOS-less generation infinite loop\n",
|
||||
slot.params.n_predict, n_ctx_train);
|
||||
}
|
||||
@@ -1234,6 +1197,8 @@ struct server_context {
|
||||
{"top_k", slot.sparams.top_k},
|
||||
{"top_p", slot.sparams.top_p},
|
||||
{"min_p", slot.sparams.min_p},
|
||||
{"xtc_probability", slot.sparams.xtc_probability},
|
||||
{"xtc_threshold", slot.sparams.xtc_threshold},
|
||||
{"tfs_z", slot.sparams.tfs_z},
|
||||
{"typical_p", slot.sparams.typ_p},
|
||||
{"repeat_last_n", slot.sparams.penalty_last_n},
|
||||
@@ -1329,6 +1294,7 @@ struct server_context {
|
||||
{"tokens_evaluated", slot.n_prompt_tokens},
|
||||
{"generation_settings", get_formated_generation(slot)},
|
||||
{"prompt", slot.prompt},
|
||||
{"has_new_line", slot.has_new_line},
|
||||
{"truncated", slot.truncated},
|
||||
{"stopped_eos", slot.stopped_eos},
|
||||
{"stopped_word", slot.stopped_word},
|
||||
@@ -1655,6 +1621,7 @@ struct server_context {
|
||||
slot_data["prompt"] = slot.prompt;
|
||||
slot_data["next_token"] = {
|
||||
{"has_next_token", slot.has_next_token},
|
||||
{"has_new_line", slot.has_new_line},
|
||||
{"n_remain", slot.n_remaining},
|
||||
{"n_decoded", slot.n_decoded},
|
||||
{"stopped_eos", slot.stopped_eos},
|
||||
@@ -1855,12 +1822,8 @@ struct server_context {
|
||||
}
|
||||
|
||||
if (all_idle) {
|
||||
if (system_need_update) {
|
||||
system_prompt_update();
|
||||
}
|
||||
|
||||
SRV_INF("%s", "all slots are idle\n");
|
||||
if (system_prompt.empty() && clean_kv_cache) {
|
||||
if (clean_kv_cache) {
|
||||
kv_cache_clear();
|
||||
}
|
||||
|
||||
@@ -1881,38 +1844,36 @@ struct server_context {
|
||||
// apply context-shift if needed
|
||||
// TODO: simplify and improve
|
||||
for (server_slot & slot : slots) {
|
||||
if (slot.ga_n == 1) {
|
||||
if (slot.is_processing() && (int) system_tokens.size() + slot.n_past >= slot.n_ctx - 1) {
|
||||
if (!params.ctx_shift) {
|
||||
// this check is redundant (for good)
|
||||
// we should never get here, because generation should already stopped in process_token()
|
||||
slot.release();
|
||||
send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
|
||||
continue;
|
||||
}
|
||||
|
||||
// Shift context
|
||||
const int n_keep = slot.params.n_keep + add_bos_token;
|
||||
const int n_left = (int) system_tokens.size() + slot.n_past - n_keep;
|
||||
const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
|
||||
|
||||
SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
|
||||
|
||||
llama_kv_cache_seq_rm (ctx, slot.id + 1, n_keep , n_keep + n_discard);
|
||||
llama_kv_cache_seq_add(ctx, slot.id + 1, n_keep + n_discard, system_tokens.size() + slot.n_past, -n_discard);
|
||||
|
||||
if (slot.params.cache_prompt) {
|
||||
for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++) {
|
||||
slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
|
||||
}
|
||||
|
||||
slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
|
||||
}
|
||||
|
||||
slot.n_past -= n_discard;
|
||||
|
||||
slot.truncated = true;
|
||||
if (slot.is_processing() && slot.n_past + 1 >= slot.n_ctx) {
|
||||
if (!params.ctx_shift) {
|
||||
// this check is redundant (for good)
|
||||
// we should never get here, because generation should already stopped in process_token()
|
||||
slot.release();
|
||||
send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
|
||||
continue;
|
||||
}
|
||||
|
||||
// Shift context
|
||||
const int n_keep = slot.params.n_keep + add_bos_token;
|
||||
const int n_left = slot.n_past - n_keep;
|
||||
const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
|
||||
|
||||
SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
|
||||
|
||||
llama_kv_cache_seq_rm (ctx, slot.id + 1, n_keep , n_keep + n_discard);
|
||||
llama_kv_cache_seq_add(ctx, slot.id + 1, n_keep + n_discard, slot.n_past, -n_discard);
|
||||
|
||||
if (slot.params.cache_prompt) {
|
||||
for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++) {
|
||||
slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
|
||||
}
|
||||
|
||||
slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
|
||||
}
|
||||
|
||||
slot.n_past -= n_discard;
|
||||
|
||||
slot.truncated = true;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1927,11 +1888,7 @@ struct server_context {
|
||||
|
||||
slot.i_batch = batch.n_tokens;
|
||||
|
||||
const int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past;
|
||||
|
||||
// TODO: we always have to take into account the "system_tokens"
|
||||
// this is not great and needs to be improved somehow
|
||||
common_batch_add(batch, slot.sampled, system_tokens.size() + slot_npast, { slot.id + 1 }, true);
|
||||
common_batch_add(batch, slot.sampled, slot.n_past, { slot.id + 1 }, true);
|
||||
|
||||
slot.n_past += 1;
|
||||
|
||||
@@ -1939,8 +1896,8 @@ struct server_context {
|
||||
slot.cache_tokens.push_back(slot.sampled);
|
||||
}
|
||||
|
||||
SLT_DBG(slot, "slot decode token, n_ctx = %d, n_past = %d, n_system_tokens = %d, n_cache_tokens = %d, truncated = %d\n",
|
||||
slot.n_ctx, slot.n_past, (int) system_tokens.size(), (int) slot.cache_tokens.size(), slot.truncated);
|
||||
SLT_DBG(slot, "slot decode token, n_ctx = %d, n_past = %d, n_cache_tokens = %d, truncated = %d\n",
|
||||
slot.n_ctx, slot.n_past, (int) slot.cache_tokens.size(), slot.truncated);
|
||||
}
|
||||
|
||||
// process in chunks of params.n_batch
|
||||
@@ -1971,7 +1928,7 @@ struct server_context {
|
||||
case SERVER_TASK_CMPL_TYPE_NORMAL:
|
||||
case SERVER_TASK_CMPL_TYPE_EMBEDDING:
|
||||
{
|
||||
prompt_tokens = tokenize(slot.prompt, system_prompt.empty(), true); // add BOS if there isn't system prompt
|
||||
prompt_tokens = tokenize(slot.prompt, llama_add_bos_token(model), true);
|
||||
} break;
|
||||
case SERVER_TASK_CMPL_TYPE_RERANK:
|
||||
{
|
||||
@@ -2000,19 +1957,88 @@ struct server_context {
|
||||
} break;
|
||||
case SERVER_TASK_CMPL_TYPE_INFILL:
|
||||
{
|
||||
auto prefix_tokens = tokenize(slot.params.input_prefix, false, false);
|
||||
auto suffix_tokens = tokenize(slot.params.input_suffix, false, false);
|
||||
// TODO: optimize this block by reducing memory allocations and movement
|
||||
|
||||
prefix_tokens.insert(prefix_tokens.begin(), llama_token_fim_pre(model));
|
||||
suffix_tokens.insert(suffix_tokens.begin(), llama_token_fim_suf(model));
|
||||
// use FIM repo-level pattern:
|
||||
// ref: https://arxiv.org/pdf/2409.12186
|
||||
//
|
||||
// [FIM_REP]myproject
|
||||
// [FIM_SEP]filename0
|
||||
// extra chunk 0
|
||||
// [FIM_SEP]filename1
|
||||
// extra chunk 1
|
||||
// ...
|
||||
// [FIM_SEP]filename
|
||||
// [FIM_PRE]prefix[FIM_SUF]suffix[FIM_MID]prompt
|
||||
//
|
||||
auto tokens_prefix = tokenize(slot.input_prefix, false, false);
|
||||
auto tokens_suffix = tokenize(slot.input_suffix, false, false);
|
||||
auto tokens_prompt = tokenize(slot.prompt, false, false);
|
||||
|
||||
auto embd_inp = params.spm_infill ? suffix_tokens : prefix_tokens;
|
||||
auto embd_end = params.spm_infill ? prefix_tokens : suffix_tokens;
|
||||
slot.extra_tokens.clear();
|
||||
if (llama_token_fim_rep(model) != LLAMA_TOKEN_NULL) {
|
||||
static const auto k_fim_repo = tokenize("myproject\n", false, false);
|
||||
|
||||
slot.extra_tokens.push_back(llama_token_fim_rep(model));
|
||||
slot.extra_tokens.insert(slot.extra_tokens.end(), k_fim_repo.begin(), k_fim_repo.end());
|
||||
}
|
||||
|
||||
for (const auto & chunk : slot.input_extra) {
|
||||
// { "text": string, "filename": string }
|
||||
const std::string text = chunk.value("text", "");
|
||||
const std::string filename = chunk.value("filename", "tmp");
|
||||
|
||||
if (llama_token_fim_sep(model) != LLAMA_TOKEN_NULL) {
|
||||
const auto k_fim_file = tokenize(filename + "\n", false, false);
|
||||
|
||||
slot.extra_tokens.insert(slot.extra_tokens.end(), llama_token_fim_sep(model));
|
||||
slot.extra_tokens.insert(slot.extra_tokens.end(), k_fim_file.begin(), k_fim_file.end());
|
||||
} else {
|
||||
// chunk separator in binary form to avoid confusing the AI
|
||||
static const char k_chunk_prefix_str[] = {0x0a, 0x0a, 0x2d, 0x2d, 0x2d, 0x20, 0x73, 0x6e, 0x69, 0x70, 0x70, 0x65, 0x74, 0x20, 0x2d, 0x2d, 0x2d, 0x0a, 0x0a, 0x00};
|
||||
static const auto k_chunk_prefix_tokens = tokenize(k_chunk_prefix_str, false, false);
|
||||
|
||||
slot.extra_tokens.insert(slot.extra_tokens.end(), k_chunk_prefix_tokens.begin(), k_chunk_prefix_tokens.end());
|
||||
}
|
||||
|
||||
const auto chunk_tokens = tokenize(text, false, false);
|
||||
slot.extra_tokens.insert(slot.extra_tokens.end(), chunk_tokens.begin(), chunk_tokens.end());
|
||||
}
|
||||
|
||||
if (llama_token_fim_sep(model) != LLAMA_TOKEN_NULL) {
|
||||
// TODO: current filename
|
||||
static const auto k_fim_file = tokenize("filename\n", false, false);
|
||||
|
||||
slot.extra_tokens.insert(slot.extra_tokens.end(), llama_token_fim_sep(model));
|
||||
slot.extra_tokens.insert(slot.extra_tokens.end(), k_fim_file.begin(), k_fim_file.end());
|
||||
}
|
||||
|
||||
// for now pick FIM context to fit in a batch (ratio prefix:suffix = 3:1, TODO: configurable?)
|
||||
const int n_suffix_take = std::min<int>(tokens_suffix.size(), (n_batch/4));
|
||||
const int n_prefix_take = std::min<int>(tokens_prefix.size(), 3*(n_batch/4) - 3);
|
||||
|
||||
// fill the rest of the context with extra chunks
|
||||
const int n_extra_take = std::min<int>(std::max<int>(0, slot.n_ctx - (n_batch) - 2*slot.n_predict), slot.extra_tokens.size());
|
||||
|
||||
tokens_prefix.erase(tokens_prefix.begin(), tokens_prefix.begin() + tokens_prefix.size() - n_prefix_take);
|
||||
tokens_suffix.resize(n_suffix_take);
|
||||
|
||||
tokens_prefix.insert(tokens_prefix.begin(), llama_token_fim_pre(model));
|
||||
tokens_prefix.insert(tokens_prefix.end(), tokens_prompt.begin(), tokens_prompt.end());
|
||||
tokens_suffix.insert(tokens_suffix.begin(), llama_token_fim_suf(model));
|
||||
|
||||
auto embd_inp = params.spm_infill ? tokens_suffix : tokens_prefix;
|
||||
auto embd_end = params.spm_infill ? tokens_prefix : tokens_suffix;
|
||||
|
||||
if (llama_add_bos_token(model)) {
|
||||
embd_inp.insert(embd_inp.begin(), llama_token_bos(model));
|
||||
}
|
||||
|
||||
SLT_DBG(slot, "extra: n_ctx = %d, n_extra_take = %d, n_extra = %d\n", slot.n_ctx, n_extra_take, (int) slot.extra_tokens.size());
|
||||
|
||||
// put the extra context before the FIM prefix
|
||||
embd_inp.insert(embd_inp.begin(), slot.extra_tokens.end() - n_extra_take, slot.extra_tokens.end());
|
||||
|
||||
embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end());
|
||||
embd_inp.push_back(llama_token_fim_mid(model));
|
||||
|
||||
@@ -2025,9 +2051,17 @@ struct server_context {
|
||||
|
||||
SLT_INF(slot, "prompt tokenized, n_ctx_slot = %d, n_keep = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, slot.n_prompt_tokens);
|
||||
|
||||
// print prompt tokens:
|
||||
for (int i = 0; i < (int) prompt_tokens.size(); i++) {
|
||||
SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
|
||||
// print prompt tokens (for debugging)
|
||||
if (1) {
|
||||
// first 16 tokens (avoid flooding logs)
|
||||
for (int i = 0; i < std::min<int>(16, prompt_tokens.size()); i++) {
|
||||
SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
|
||||
}
|
||||
} else {
|
||||
// all
|
||||
for (int i = 0; i < (int) prompt_tokens.size(); i++) {
|
||||
SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
|
||||
}
|
||||
}
|
||||
|
||||
// empty prompt passed -> release the slot and send empty response
|
||||
@@ -2050,7 +2084,9 @@ struct server_context {
|
||||
} else {
|
||||
if (!params.ctx_shift) {
|
||||
// if context shift is disabled, we make sure prompt size is smaller than KV size
|
||||
if ((int) system_tokens.size() + slot.n_prompt_tokens >= slot.n_ctx) {
|
||||
// TODO: there should be a separate parameter that control prompt truncation
|
||||
// context shift should be applied only during the generation phase
|
||||
if (slot.n_prompt_tokens >= slot.n_ctx) {
|
||||
slot.release();
|
||||
send_error(slot, "the request exceeds the available context size. try increasing the context size or enable context shift", ERROR_TYPE_INVALID_REQUEST);
|
||||
continue;
|
||||
@@ -2061,8 +2097,8 @@ struct server_context {
|
||||
}
|
||||
slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
|
||||
|
||||
// if input prompt is too big, truncate it (if group attention self-extend is disabled)
|
||||
if (slot.ga_n == 1 && slot.n_prompt_tokens >= slot.n_ctx) {
|
||||
// if input prompt is too big, truncate it
|
||||
if (slot.n_prompt_tokens >= slot.n_ctx) {
|
||||
const int n_left = slot.n_ctx - slot.params.n_keep;
|
||||
|
||||
const int n_block_size = n_left / 2;
|
||||
@@ -2089,19 +2125,61 @@ struct server_context {
|
||||
|
||||
common_sampler_reset(slot.smpl);
|
||||
|
||||
if (!slot.params.cache_prompt) {
|
||||
slot.n_past_se = 0;
|
||||
slot.ga_i = 0;
|
||||
} else {
|
||||
GGML_ASSERT(slot.ga_n == 1);
|
||||
|
||||
if (slot.params.cache_prompt) {
|
||||
// reuse any previously computed tokens that are common with the new prompt
|
||||
slot.n_past = common_part(slot.cache_tokens, prompt_tokens);
|
||||
slot.n_past = longest_common_prefix(slot.cache_tokens, prompt_tokens);
|
||||
|
||||
// push the prompt into the sampling context (do not apply grammar)
|
||||
for (int i = 0; i < slot.n_past; ++i) {
|
||||
common_sampler_accept(slot.smpl, slot.cache_tokens[i], false);
|
||||
}
|
||||
|
||||
// reuse chunks from the cached prompt by shifting their KV cache in the new position
|
||||
if (params.n_cache_reuse > 0) {
|
||||
size_t head_c = slot.n_past; // cache
|
||||
size_t head_p = slot.n_past; // current prompt
|
||||
|
||||
SLT_DBG(slot, "trying to reuse chunks with size > %d, slot.n_past = %d\n", params.n_cache_reuse, slot.n_past);
|
||||
|
||||
while (head_c < slot.cache_tokens.size() &&
|
||||
head_p < prompt_tokens.size()) {
|
||||
|
||||
size_t n_match = 0;
|
||||
while (head_c + n_match < slot.cache_tokens.size() &&
|
||||
head_p + n_match < prompt_tokens.size() &&
|
||||
slot.cache_tokens[head_c + n_match] == prompt_tokens[head_p + n_match]) {
|
||||
|
||||
n_match++;
|
||||
}
|
||||
|
||||
if (n_match >= (size_t) params.n_cache_reuse) {
|
||||
SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match);
|
||||
//for (size_t i = head_p; i < head_p + n_match; i++) {
|
||||
// SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
|
||||
//}
|
||||
|
||||
const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
|
||||
|
||||
llama_kv_cache_seq_rm (ctx, slot.id + 1, head_p, head_c);
|
||||
llama_kv_cache_seq_add(ctx, slot.id + 1, head_c, -1, kv_shift);
|
||||
|
||||
for (size_t i = 0; i < n_match; i++) {
|
||||
slot.cache_tokens[head_p + i] = slot.cache_tokens[head_c + i];
|
||||
|
||||
common_sampler_accept(slot.smpl, slot.cache_tokens[head_p + i], false);
|
||||
|
||||
slot.n_past++;
|
||||
}
|
||||
|
||||
head_c += n_match;
|
||||
head_p += n_match;
|
||||
} else {
|
||||
head_c += 1;
|
||||
}
|
||||
}
|
||||
|
||||
SLT_DBG(slot, "after context reuse, new slot.n_past = %d\n", slot.n_past);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -2110,9 +2188,6 @@ struct server_context {
|
||||
SLT_WRN(slot, "need to evaluate at least 1 token to generate logits, n_past = %d, n_prompt_tokens = %d\n", slot.n_past, slot.n_prompt_tokens);
|
||||
|
||||
slot.n_past--;
|
||||
if (slot.ga_i > 0) {
|
||||
slot.n_past_se--;
|
||||
}
|
||||
}
|
||||
|
||||
slot.n_prompt_tokens_processed = 0;
|
||||
@@ -2138,55 +2213,31 @@ struct server_context {
|
||||
}
|
||||
|
||||
// keep only the common part
|
||||
int p0 = (int) system_tokens.size() + slot.n_past;
|
||||
if (!llama_kv_cache_seq_rm(ctx, slot.id + 1, p0, -1)) {
|
||||
if (!llama_kv_cache_seq_rm(ctx, slot.id + 1, slot.n_past, -1)) {
|
||||
// could not partially delete (likely using a non-Transformer model)
|
||||
llama_kv_cache_seq_rm(ctx, slot.id + 1, -1, -1);
|
||||
|
||||
p0 = (int) system_tokens.size();
|
||||
if (p0 != 0) {
|
||||
// copy over the system prompt when there is one
|
||||
llama_kv_cache_seq_cp(ctx, 0, slot.id + 1, -1, -1);
|
||||
}
|
||||
|
||||
// there is no common part left (except for the system prompt)
|
||||
// there is no common part left
|
||||
slot.n_past = 0;
|
||||
slot.n_past_se = 0;
|
||||
slot.ga_i = 0;
|
||||
// TODO: is the system prompt ever in the sampling context?
|
||||
|
||||
common_sampler_reset(slot.smpl);
|
||||
}
|
||||
|
||||
SLT_INF(slot, "kv cache rm [%d, end)\n", slot.n_past);
|
||||
|
||||
// remove the non-common part from the cache
|
||||
slot.cache_tokens.resize(slot.n_past);
|
||||
|
||||
SLT_INF(slot, "kv cache rm [%d, end)\n", p0);
|
||||
|
||||
int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past;
|
||||
|
||||
int32_t ga_i = slot.ga_i;
|
||||
int32_t ga_n = slot.ga_n;
|
||||
int32_t ga_w = slot.ga_w;
|
||||
|
||||
// add prompt tokens for processing in the current batch
|
||||
// TODO: the self-extend stuff here is a mess - simplify and/or abstract it somehow
|
||||
for (; slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch; ++slot.n_past) {
|
||||
if (slot.ga_n != 1) {
|
||||
while (slot_npast >= ga_i + ga_w) {
|
||||
const int bd = (ga_w/ga_n)*(ga_n - 1);
|
||||
slot_npast -= bd;
|
||||
ga_i += ga_w/ga_n;
|
||||
}
|
||||
}
|
||||
|
||||
common_batch_add(batch, prompt_tokens[slot.n_past], system_tokens.size() + slot_npast, { slot.id + 1 }, false);
|
||||
while (slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch) {
|
||||
common_batch_add(batch, prompt_tokens[slot.n_past], slot.n_past, { slot.id + 1 }, false);
|
||||
|
||||
if (slot.params.cache_prompt) {
|
||||
slot.cache_tokens.push_back(prompt_tokens[slot.n_past]);
|
||||
}
|
||||
|
||||
slot.n_prompt_tokens_processed++;
|
||||
slot_npast++;
|
||||
slot.n_past++;
|
||||
}
|
||||
|
||||
SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, batch.n_tokens, (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens);
|
||||
@@ -2227,34 +2278,6 @@ struct server_context {
|
||||
for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
|
||||
const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
|
||||
|
||||
for (auto & slot : slots) {
|
||||
if (slot.ga_n != 1) {
|
||||
// context extension via Self-Extend
|
||||
// TODO: simplify and/or abstract this
|
||||
while (slot.n_past_se >= slot.ga_i + slot.ga_w) {
|
||||
const int ib = (slot.ga_n * slot.ga_i) / slot.ga_w;
|
||||
const int bd = (slot.ga_w / slot.ga_n) * (slot.ga_n - 1);
|
||||
const int dd = (slot.ga_w / slot.ga_n) - ib * bd - slot.ga_w;
|
||||
|
||||
SLT_DBG(slot, "shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i, slot.n_past_se, ib * bd, slot.ga_i + ib * bd, slot.n_past_se + ib * bd);
|
||||
SLT_DBG(slot, "div: [%6d, %6d] / %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w, slot.ga_n, (slot.ga_i + ib * bd) / slot.ga_n, (slot.ga_i + ib * bd + slot.ga_w) / slot.ga_n);
|
||||
SLT_DBG(slot, "shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd + slot.ga_w, slot.n_past_se + ib * bd, dd, slot.ga_i + ib * bd + slot.ga_w + dd, slot.n_past_se + ib * bd + dd);
|
||||
|
||||
llama_kv_cache_seq_add(ctx, slot.id + 1, slot.ga_i, slot.n_past_se, ib * bd);
|
||||
llama_kv_cache_seq_div(ctx, slot.id + 1, slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w, slot.ga_n);
|
||||
llama_kv_cache_seq_add(ctx, slot.id + 1, slot.ga_i + ib * bd + slot.ga_w, slot.n_past_se + ib * bd, dd);
|
||||
|
||||
slot.n_past_se -= bd;
|
||||
|
||||
slot.ga_i += slot.ga_w / slot.ga_n;
|
||||
|
||||
SLT_DBG(slot, "\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", slot.n_past_se + bd, slot.n_past_se, slot.ga_i);
|
||||
}
|
||||
|
||||
slot.n_past_se += n_tokens;
|
||||
}
|
||||
}
|
||||
|
||||
llama_batch batch_view = {
|
||||
n_tokens,
|
||||
batch.token + i,
|
||||
@@ -2409,10 +2432,6 @@ int main(int argc, char ** argv) {
|
||||
// struct that contains llama context and inference
|
||||
server_context ctx_server;
|
||||
|
||||
if (!params.system_prompt.empty()) {
|
||||
ctx_server.system_prompt_set(params.system_prompt);
|
||||
}
|
||||
|
||||
if (params.model_alias == "unknown") {
|
||||
params.model_alias = params.model;
|
||||
}
|
||||
@@ -2840,7 +2859,6 @@ int main(int argc, char ** argv) {
|
||||
|
||||
const auto handle_props = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
|
||||
json data = {
|
||||
{ "system_prompt", ctx_server.system_prompt },
|
||||
{ "default_generation_settings", ctx_server.default_generation_settings_for_props },
|
||||
{ "total_slots", ctx_server.params.n_parallel },
|
||||
{ "chat_template", llama_get_chat_template(ctx_server.model) },
|
||||
@@ -2856,10 +2874,8 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
json data = json::parse(req.body);
|
||||
if (data.contains("system_prompt")) {
|
||||
std::string system_prompt = data.at("system_prompt");
|
||||
ctx_server.system_prompt_set(system_prompt);
|
||||
}
|
||||
|
||||
// update any props here
|
||||
|
||||
res_ok(res, {{ "success", true }});
|
||||
};
|
||||
@@ -3373,6 +3389,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
ctx_server.queue_tasks.on_new_task(std::bind(
|
||||
&server_context::process_single_task, &ctx_server, std::placeholders::_1));
|
||||
|
||||
ctx_server.queue_tasks.on_update_slots(std::bind(
|
||||
&server_context::update_slots, &ctx_server));
|
||||
|
||||
|
||||
@@ -13,6 +13,10 @@ Feature: llama.cpp server
|
||||
And 32 as batch size
|
||||
And 2 slots
|
||||
|
||||
# the prompt is 301 tokens
|
||||
# the slot context is 256/2 = 128 tokens
|
||||
# the prompt is truncated to keep the last 109 tokens
|
||||
# 64 tokens are generated thanks to shifting the context when it gets full
|
||||
Scenario: Inference with context shift
|
||||
And 64 server max tokens to predict
|
||||
Then the server is starting
|
||||
|
||||
@@ -195,14 +195,14 @@ static std::string gen_chatcmplid() {
|
||||
// other common utils
|
||||
//
|
||||
|
||||
static size_t common_part(const std::vector<llama_token> & a, const std::vector<llama_token> & b) {
|
||||
static size_t longest_common_prefix(const std::vector<llama_token> & a, const std::vector<llama_token> & b) {
|
||||
size_t i;
|
||||
for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) {}
|
||||
|
||||
return i;
|
||||
}
|
||||
|
||||
static size_t common_part(const std::string & a, const std::string & b) {
|
||||
static size_t longest_common_prefix(const std::string & a, const std::string & b) {
|
||||
size_t i;
|
||||
for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) {}
|
||||
|
||||
@@ -360,9 +360,9 @@ static json oaicompat_completion_params_parse(
|
||||
|
||||
// Handle "logprobs" field
|
||||
// TODO: The response format of this option is not yet OAI-compatible, but seems like no one really using it; We may need to fix it in the future
|
||||
if (body.contains("logprobs")) {
|
||||
if (json_value(body, "logprobs", false)) {
|
||||
llama_params["n_probs"] = json_value(body, "top_logprobs", 20);
|
||||
} else if (body.contains("top_logprobs")) {
|
||||
} else if (body.contains("top_logprobs") && !body.at("top_logprobs").is_null()) {
|
||||
throw std::runtime_error("top_logprobs requires logprobs to be set to true");
|
||||
}
|
||||
|
||||
|
||||
6
flake.lock
generated
6
flake.lock
generated
@@ -20,11 +20,11 @@
|
||||
},
|
||||
"nixpkgs": {
|
||||
"locked": {
|
||||
"lastModified": 1728018373,
|
||||
"narHash": "sha256-NOiTvBbRLIOe5F6RbHaAh6++BNjsb149fGZd1T4+KBg=",
|
||||
"lastModified": 1728492678,
|
||||
"narHash": "sha256-9UTxR8eukdg+XZeHgxW5hQA9fIKHsKCdOIUycTryeVw=",
|
||||
"owner": "NixOS",
|
||||
"repo": "nixpkgs",
|
||||
"rev": "bc947f541ae55e999ffdb4013441347d83b00feb",
|
||||
"rev": "5633bcff0c6162b9e4b5f1264264611e950c8ec7",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
|
||||
@@ -348,7 +348,6 @@ struct tensor_alloc {
|
||||
};
|
||||
|
||||
struct leaf_alloc {
|
||||
int buffer_id;
|
||||
struct tensor_alloc leaf;
|
||||
};
|
||||
|
||||
@@ -740,7 +739,6 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
|
||||
for (int i = 0; i < graph->n_leafs; i++) {
|
||||
struct ggml_tensor * leaf = graph->leafs[i];
|
||||
struct hash_node * hn = ggml_gallocr_hash_get(galloc, leaf);
|
||||
galloc->leaf_allocs[i].buffer_id = hn->buffer_id;
|
||||
if (leaf->view_src || leaf->data) {
|
||||
galloc->leaf_allocs[i].leaf.buffer_id = -1;
|
||||
galloc->leaf_allocs[i].leaf.offset = SIZE_MAX;
|
||||
|
||||
@@ -1148,6 +1148,7 @@ ggml_backend_cann_buffer_type(int32_t device) {
|
||||
for (int32_t i = 0; i < GGML_CANN_MAX_DEVICES; i++) {
|
||||
ggml_backend_cann_buffer_types[i] = {
|
||||
/* .iface = */ ggml_backend_cann_buffer_type_interface,
|
||||
/* .device = */ nullptr,
|
||||
/* .context = */
|
||||
new ggml_backend_cann_buffer_type_context{
|
||||
i, "CANN" + std::to_string(i)},
|
||||
@@ -1868,7 +1869,7 @@ static ggml_backend_event_t ggml_backend_cann_event_new(
|
||||
ACL_CHECK(aclrtCreateEvent(&event));
|
||||
|
||||
return new ggml_backend_event{
|
||||
/* .backend = */ backend,
|
||||
/* .device = */ nullptr,
|
||||
/* .context = */ event,
|
||||
};
|
||||
}
|
||||
@@ -1895,10 +1896,9 @@ static void ggml_backend_cann_event_free(ggml_backend_event_t event) {
|
||||
*
|
||||
* @param event Pointer to the event structure to be recorded.
|
||||
*/
|
||||
static void ggml_backend_cann_event_record(ggml_backend_event_t event) {
|
||||
static void ggml_backend_cann_event_record(ggml_backend_t backend, ggml_backend_event_t event) {
|
||||
ggml_backend_cann_context* cann_ctx =
|
||||
(ggml_backend_cann_context*)event->backend->context;
|
||||
|
||||
(ggml_backend_cann_context*)backend->context;
|
||||
ACL_CHECK(aclrtRecordEvent((aclrtEvent)event->context, cann_ctx->stream()));
|
||||
}
|
||||
|
||||
@@ -1916,8 +1916,7 @@ static void ggml_backend_cann_event_wait(ggml_backend_t backend,
|
||||
ggml_backend_event_t event) {
|
||||
ggml_backend_cann_context* cann_ctx =
|
||||
(ggml_backend_cann_context*)backend->context;
|
||||
|
||||
if (ggml_backend_is_cann(event->backend)) {
|
||||
if (ggml_backend_is_cann(backend)) {
|
||||
ACL_CHECK(aclrtStreamWaitEvent(cann_ctx->stream(),
|
||||
(aclrtEvent)event->context));
|
||||
} else {
|
||||
|
||||
@@ -416,10 +416,11 @@ static __global__ void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx,
|
||||
|
||||
static __device__ void convert_f16(const void * vx, const int64_t ib, const int iqs, dfloat2 & v){
|
||||
const half * x = (const half *) vx;
|
||||
|
||||
// load 2 halfs into register in a single instruction
|
||||
const half2 x_reg = *((half2 *) &(x[ib + iqs]));
|
||||
// automatic half -> float type cast if dfloat == float
|
||||
v.x = x[ib + iqs + 0];
|
||||
v.y = x[ib + iqs + 1];
|
||||
v.x = __low2float(x_reg);
|
||||
v.y = __high2float(x_reg);
|
||||
}
|
||||
|
||||
static constexpr __device__ dequantize_kernel_t get_dequantize_kernel(ggml_type type) {
|
||||
@@ -476,13 +477,28 @@ static __global__ void dequantize_mul_mat_vec(const void * __restrict__ vx, cons
|
||||
// matrix multiplication
|
||||
// for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2
|
||||
#ifdef GGML_CUDA_F16
|
||||
tmp += __hmul2(v, {
|
||||
y[iybs + iqs + j/qr + 0],
|
||||
y[iybs + iqs + j/qr + y_offset]
|
||||
});
|
||||
if ( y_offset == 1 ) {
|
||||
// load 2 dfloats into register in a single instruction
|
||||
const dfloat2 y_reg = *((dfloat2 *) &(y[iybs + iqs + j/qr]));
|
||||
tmp += __hmul2(v, y_reg);
|
||||
}
|
||||
else {
|
||||
tmp += __hmul2(v, {
|
||||
y[iybs + iqs + j/qr + 0],
|
||||
y[iybs + iqs + j/qr + y_offset]
|
||||
});
|
||||
}
|
||||
#else
|
||||
tmp += v.x * y[iybs + iqs + j/qr + 0];
|
||||
tmp += v.y * y[iybs + iqs + j/qr + y_offset];
|
||||
if ( y_offset == 1 ) {
|
||||
// load 2 dfloats into register in a single instruction
|
||||
const dfloat2 y_reg = *((dfloat2 *) &(y[iybs + iqs + j/qr]));
|
||||
tmp += v.x * y_reg.x;
|
||||
tmp += v.y * y_reg.y;
|
||||
}
|
||||
else {
|
||||
tmp += v.x * y[iybs + iqs + j/qr + 0];
|
||||
tmp += v.y * y[iybs + iqs + j/qr + y_offset];
|
||||
}
|
||||
#endif // GGML_CUDA_F16
|
||||
}
|
||||
}
|
||||
|
||||
@@ -953,6 +953,12 @@ extern "C" {
|
||||
int32_t lstrip,
|
||||
bool special);
|
||||
|
||||
// check if token0 is contained as a prefix in token1
|
||||
LLAMA_API bool llama_token_is_prefix(
|
||||
const struct llama_model * model,
|
||||
llama_token token0,
|
||||
llama_token token1);
|
||||
|
||||
/// @details Convert the provided tokens into text (inverse of llama_tokenize()).
|
||||
/// @param text The char pointer must be large enough to hold the resulting text.
|
||||
/// @return Returns the number of chars/bytes on success, no more than text_len_max.
|
||||
@@ -1101,6 +1107,9 @@ extern "C" {
|
||||
/// @details Dynamic temperature implementation (a.k.a. entropy) described in the paper https://arxiv.org/abs/2309.02772.
|
||||
LLAMA_API struct llama_sampler * llama_sampler_init_temp_ext (float t, float delta, float exponent);
|
||||
|
||||
/// @details XTC sampler as described in https://github.com/oobabooga/text-generation-webui/pull/6335
|
||||
LLAMA_API struct llama_sampler * llama_sampler_init_xtc (float p, float t, size_t min_keep, uint32_t seed);
|
||||
|
||||
/// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
|
||||
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
|
||||
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
|
||||
@@ -1145,6 +1154,28 @@ extern "C" {
|
||||
int32_t n_logit_bias,
|
||||
const llama_logit_bias * logit_bias);
|
||||
|
||||
// this sampler is meant to be used for fill-in-the-middle infilling
|
||||
// it's supposed to be used after top_k + top_p sampling
|
||||
//
|
||||
// 1. if the sum of the EOG probs times the number of candidates is higher than the sum of the other probs -> pick EOG
|
||||
// 2. combine probs of tokens that have the same prefix
|
||||
//
|
||||
// example:
|
||||
//
|
||||
// - before:
|
||||
// "hel": 0.5
|
||||
// "hell": 0.2
|
||||
// "hello": 0.1
|
||||
// "dummy": 0.1
|
||||
//
|
||||
// - after:
|
||||
// "hel": 0.8
|
||||
// "dummy": 0.1
|
||||
//
|
||||
// 3. discard non-EOG tokens with low prob
|
||||
// 4. if no tokens are left -> pick EOT
|
||||
//
|
||||
LLAMA_API struct llama_sampler * llama_sampler_init_infill(const struct llama_model * model);
|
||||
|
||||
// Returns the seed used by the sampler if applicable, LLAMA_DEFAULT_SEED otherwise
|
||||
LLAMA_API uint32_t llama_sampler_get_seed(const struct llama_sampler * smpl);
|
||||
|
||||
@@ -1 +1 @@
|
||||
564f42082f858f9674b2a2e06e9e779d9ed2c754
|
||||
2327bda7a55ac6b72614ac5ebd5c5a5e02553b9b
|
||||
|
||||
@@ -1059,6 +1059,101 @@ struct llama_sampler * llama_sampler_init_temp_ext(float temp, float delta, floa
|
||||
};
|
||||
}
|
||||
|
||||
// xtc
|
||||
|
||||
struct llama_sampler_xtc {
|
||||
const float probability;
|
||||
const float threshold;
|
||||
const size_t min_keep;
|
||||
|
||||
const uint32_t seed;
|
||||
uint32_t seed_cur;
|
||||
|
||||
std::mt19937 rng;
|
||||
};
|
||||
|
||||
static const char * llama_sampler_xtc_name(const struct llama_sampler * /*smpl*/) {
|
||||
return "xtc";
|
||||
}
|
||||
|
||||
static void llama_sample_xtc_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
|
||||
auto * ctx = (llama_sampler_xtc *) smpl->ctx;
|
||||
|
||||
if (ctx->probability <= 0.0f
|
||||
|| ctx->threshold > 0.5f
|
||||
|| cur_p->size < 2) {
|
||||
return;
|
||||
}
|
||||
|
||||
std::uniform_real_distribution<float> distribution(0.0f, 1.0f);
|
||||
float chance = distribution(ctx->rng);
|
||||
if (chance > ctx->probability) return;
|
||||
|
||||
// in case it's not sorted/recalculated yet
|
||||
llama_sampler_softmax_impl(cur_p);
|
||||
|
||||
int pos_last = 0;
|
||||
|
||||
for (size_t i = 0; i < cur_p->size; ++i) {
|
||||
if (cur_p->data[i].p >= ctx->threshold) {
|
||||
pos_last = i;
|
||||
} else break;
|
||||
}
|
||||
|
||||
if (cur_p->size - pos_last >= ctx->min_keep && pos_last > 0) {
|
||||
cur_p->data += pos_last;
|
||||
cur_p->size -= pos_last;
|
||||
}
|
||||
}
|
||||
|
||||
static struct llama_sampler * llama_sampler_xtc_clone(const struct llama_sampler * smpl) {
|
||||
const auto * ctx = (const llama_sampler_xtc *) smpl->ctx;
|
||||
auto * result = llama_sampler_init_xtc(ctx->probability, ctx->threshold, ctx->min_keep, ctx->seed);
|
||||
|
||||
// copy the state
|
||||
{
|
||||
auto * result_ctx = (llama_sampler_xtc *) result->ctx;
|
||||
|
||||
result_ctx->rng = ctx->rng;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
static void llama_sampler_xtc_free(struct llama_sampler * smpl) {
|
||||
delete (llama_sampler_xtc *) smpl->ctx;
|
||||
}
|
||||
|
||||
static void llama_sampler_xtc_reset(struct llama_sampler * smpl) {
|
||||
auto * ctx = (llama_sampler_xtc *) smpl->ctx;
|
||||
ctx->seed_cur = get_rng_seed(ctx->seed);
|
||||
ctx->rng.seed(ctx->seed_cur);
|
||||
}
|
||||
|
||||
static struct llama_sampler_i llama_sampler_xtc_i = {
|
||||
/* .name = */ llama_sampler_xtc_name,
|
||||
/* .accept = */ nullptr,
|
||||
/* .apply = */ llama_sample_xtc_apply,
|
||||
/* .reset = */ llama_sampler_xtc_reset,
|
||||
/* .clone = */ llama_sampler_xtc_clone,
|
||||
/* .free = */ llama_sampler_xtc_free,
|
||||
};
|
||||
|
||||
struct llama_sampler * llama_sampler_init_xtc(float p, float t, size_t min_keep, uint32_t seed) {
|
||||
auto seed_cur = get_rng_seed(seed);
|
||||
return new llama_sampler {
|
||||
/* .iface = */ &llama_sampler_xtc_i,
|
||||
/* .ctx = */ new llama_sampler_xtc {
|
||||
/* .probability = */ p,
|
||||
/* .threshold = */ t,
|
||||
/* .min_keep = */ min_keep,
|
||||
/* .seed = */ seed,
|
||||
/* .seed_cur = */ seed_cur,
|
||||
/* .rng = */ std::mt19937(seed_cur),
|
||||
},
|
||||
};
|
||||
}
|
||||
|
||||
// mirostat
|
||||
|
||||
struct llama_sampler_mirostat {
|
||||
@@ -1644,6 +1739,207 @@ struct llama_sampler * llama_sampler_init_logit_bias(
|
||||
};
|
||||
}
|
||||
|
||||
// infill
|
||||
|
||||
//#define GGML_DEBUG_SAMPLER_INFILL
|
||||
|
||||
struct llama_sampler_infill {
|
||||
const struct llama_vocab * vocab;
|
||||
};
|
||||
|
||||
static const char * llama_sampler_infill_name(const struct llama_sampler * /*smpl*/) {
|
||||
return "infill";
|
||||
}
|
||||
|
||||
static void llama_sampler_infill_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
|
||||
auto * ctx = (llama_sampler_infill *) smpl->ctx;
|
||||
|
||||
llama_sampler_softmax_impl(cur_p);
|
||||
|
||||
#if defined(GGML_DEBUG_SAMPLER_INFILL)
|
||||
#define LOG_DBG_CUR LLAMA_LOG_DEBUG
|
||||
#else
|
||||
#define LOG_DBG_CUR(...)
|
||||
#endif
|
||||
|
||||
for (size_t i = 0; i < cur_p->size; ++i) {
|
||||
LOG_DBG_CUR("%s: cur_p[%3zu] = { id: %6d, p: %.6f, logit: %6.3f }\n", __func__, i, cur_p->data[i].id, cur_p->data[i].p, cur_p->data[i].logit);
|
||||
}
|
||||
|
||||
float p_txt_sum = 0.0f;
|
||||
float p_eog_sum = 0.0f;
|
||||
|
||||
for (size_t i = 0; i < cur_p->size; ++i) {
|
||||
if (llama_token_is_eog_impl(*ctx->vocab, cur_p->data[i].id)) {
|
||||
p_eog_sum += cur_p->data[i].p;
|
||||
} else {
|
||||
p_txt_sum += cur_p->data[i].p;
|
||||
}
|
||||
}
|
||||
|
||||
const float rat = p_eog_sum == 0.0 ? INFINITY : p_txt_sum / p_eog_sum; GGML_UNUSED(rat);
|
||||
|
||||
LOG_DBG_CUR("%s: p_txt_sum = %.2f, p_eog_sum = %.2f, rat = %.2f, n = %zu\n", __func__, p_txt_sum, p_eog_sum, rat, cur_p->size);
|
||||
|
||||
if (3*p_eog_sum*cur_p->size > p_txt_sum) {
|
||||
LOG_DBG_CUR("%s: the ratio p_txt/p_eog = %.2f is too low -> sampling EOG\n", __func__, p_txt_sum/p_eog_sum);
|
||||
|
||||
// keep just the EOG tokens
|
||||
const auto size_org = cur_p->size;
|
||||
|
||||
cur_p->size = 0;
|
||||
|
||||
float p_sum = 0.0f;
|
||||
|
||||
for (size_t i = 0; i < size_org; ++i) {
|
||||
if (llama_token_is_eog_impl(*ctx->vocab, cur_p->data[i].id)) {
|
||||
p_sum += cur_p->data[i].p;
|
||||
|
||||
cur_p->data[cur_p->size++] = cur_p->data[i];
|
||||
}
|
||||
}
|
||||
|
||||
// normalize probs
|
||||
for (size_t i = 0; i < cur_p->size; ++i) {
|
||||
cur_p->data[i].p /= p_sum;
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
size_t n_combined = 0; GGML_UNUSED(n_combined);
|
||||
|
||||
// combine tokens with common prefix
|
||||
for (size_t i = 0; i < cur_p->size; ++i) {
|
||||
for (size_t j = 0; j < cur_p->size; ++j) {
|
||||
if (cur_p->data[i].logit == -INFINITY) {
|
||||
break;
|
||||
}
|
||||
|
||||
if (i == j || cur_p->data[j].logit == -INFINITY) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (llama_token_is_prefix_impl(*ctx->vocab, cur_p->data[i].id, cur_p->data[j].id)) {
|
||||
if (cur_p->data[i].p > cur_p->data[j].p) {
|
||||
cur_p->data[i].p += cur_p->data[j].p;
|
||||
cur_p->data[j].logit = -INFINITY;
|
||||
cur_p->data[j].p = 0.0f;
|
||||
} else {
|
||||
cur_p->data[j].p += cur_p->data[i].p;
|
||||
cur_p->data[i].logit = -INFINITY;
|
||||
cur_p->data[i].p = 0.0f;
|
||||
}
|
||||
|
||||
n_combined++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
size_t n_non_eog = 0;
|
||||
|
||||
size_t size_org = cur_p->size;
|
||||
|
||||
float p_sum = 0.0f;
|
||||
float thold = 0.2f;
|
||||
|
||||
cur_p->size = 0;
|
||||
|
||||
LOG_DBG_CUR("%s: n_combined = %zu, applying thold = %.3f\n", __func__, n_combined, thold);
|
||||
|
||||
for (size_t i = 0; i < size_org; ++i) {
|
||||
const bool is_eog = llama_token_is_eog_impl(*ctx->vocab, cur_p->data[i].id);
|
||||
|
||||
if (cur_p->data[i].p < thold && !is_eog) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (!is_eog) {
|
||||
++n_non_eog;
|
||||
}
|
||||
|
||||
p_sum += cur_p->data[i].p;
|
||||
|
||||
// keep this token
|
||||
cur_p->data[cur_p->size++] = cur_p->data[i];
|
||||
}
|
||||
|
||||
LOG_DBG_CUR("%s: n_non_eog = %zu\n", __func__, n_non_eog);
|
||||
|
||||
// if no non-EOG tokens are left -> reduce cur_p to single EOT token
|
||||
if (n_non_eog == 0) {
|
||||
cur_p->size = 1;
|
||||
cur_p->data[0].id = llama_token_eot_impl(*ctx->vocab);
|
||||
cur_p->data[0].logit = 1.0f;
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
// normalize probs
|
||||
for (size_t i = 0; i < cur_p->size; ++i) {
|
||||
cur_p->data[i].p /= p_sum;
|
||||
|
||||
LOG_DBG_CUR("%s: cur_p[%3zu] = { id: %6d, p: %.6f, logit: %6.3f }\n", __func__, i, cur_p->data[i].id, cur_p->data[i].p, cur_p->data[i].logit);
|
||||
}
|
||||
|
||||
size_org = cur_p->size;
|
||||
p_sum = 0.0f;
|
||||
thold = 1.0/(n_non_eog + 1);
|
||||
|
||||
cur_p->size = 0;
|
||||
|
||||
LOG_DBG_CUR("%s: applying thold = %.3f\n", __func__, thold);
|
||||
|
||||
for (size_t i = 0; i < size_org; ++i) {
|
||||
const bool is_eog = llama_token_is_eog_impl(*ctx->vocab, cur_p->data[i].id);
|
||||
|
||||
if (cur_p->data[i].p < thold && !is_eog) {
|
||||
continue;
|
||||
}
|
||||
|
||||
p_sum += cur_p->data[i].p;
|
||||
|
||||
cur_p->data[cur_p->size++] = cur_p->data[i];
|
||||
}
|
||||
|
||||
// normalize probs
|
||||
for (size_t i = 0; i < cur_p->size; ++i) {
|
||||
cur_p->data[i].p /= p_sum;
|
||||
|
||||
LOG_DBG_CUR("%s: cur_p[%3zu] = { id: %6d, p: %.6f, logit: %6.3f }\n", __func__, i, cur_p->data[i].id, cur_p->data[i].p, cur_p->data[i].logit);
|
||||
}
|
||||
|
||||
#undef LOG_DBG_CUR
|
||||
}
|
||||
|
||||
static struct llama_sampler * llama_sampler_infill_clone(const struct llama_sampler * smpl) {
|
||||
const auto * ctx = (const llama_sampler_infill *) smpl->ctx;
|
||||
return llama_sampler_init_infill_impl(*ctx->vocab);
|
||||
}
|
||||
|
||||
static void llama_sampler_infill_free(struct llama_sampler * smpl) {
|
||||
delete (llama_sampler_infill *) smpl->ctx;
|
||||
}
|
||||
|
||||
static struct llama_sampler_i llama_sampler_infill_i = {
|
||||
/* .name = */ llama_sampler_infill_name,
|
||||
/* .accept = */ nullptr,
|
||||
/* .apply = */ llama_sampler_infill_apply,
|
||||
/* .reset = */ nullptr,
|
||||
/* .clone = */ llama_sampler_infill_clone,
|
||||
/* .free = */ llama_sampler_infill_free,
|
||||
};
|
||||
|
||||
struct llama_sampler * llama_sampler_init_infill_impl(
|
||||
const struct llama_vocab & vocab) {
|
||||
return new llama_sampler {
|
||||
/* .iface = */ &llama_sampler_infill_i,
|
||||
/* .ctx = */ new llama_sampler_infill {
|
||||
/* .vocab = */ &vocab,
|
||||
},
|
||||
};
|
||||
}
|
||||
|
||||
// utils
|
||||
|
||||
uint32_t llama_sampler_get_seed(const struct llama_sampler * smpl) {
|
||||
|
||||
@@ -4,8 +4,6 @@
|
||||
|
||||
#include "llama-grammar.h"
|
||||
|
||||
#include <unordered_map>
|
||||
|
||||
struct llama_vocab;
|
||||
struct llama_grammar;
|
||||
|
||||
@@ -27,3 +25,6 @@ struct llama_sampler * llama_sampler_init_grammar_impl(
|
||||
const struct llama_vocab & vocab,
|
||||
const char * grammar_str,
|
||||
const char * grammar_root);
|
||||
|
||||
struct llama_sampler * llama_sampler_init_infill_impl(
|
||||
const struct llama_vocab & vocab);
|
||||
|
||||
@@ -1858,6 +1858,23 @@ int32_t llama_token_to_piece_impl(const struct llama_vocab & vocab, llama_token
|
||||
return 0;
|
||||
}
|
||||
|
||||
bool llama_token_is_prefix_impl(
|
||||
const struct llama_vocab & vocab,
|
||||
llama_token token0,
|
||||
llama_token token1) {
|
||||
char text_buf_0[128];
|
||||
char text_buf_1[128];
|
||||
|
||||
const int32_t len0 = llama_token_to_piece_impl(vocab, token0, text_buf_0, sizeof(text_buf_0) - 1, 0, false);
|
||||
const int32_t len1 = llama_token_to_piece_impl(vocab, token1, text_buf_1, sizeof(text_buf_1) - 1, 0, false);
|
||||
|
||||
if (len0 <= 0 || len1 <= 0) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return len0 <= len1 && memcmp(text_buf_0, text_buf_1, len0) == 0;
|
||||
}
|
||||
|
||||
int32_t llama_detokenize_impl(
|
||||
const struct llama_vocab & vocab,
|
||||
const llama_token * tokens,
|
||||
|
||||
@@ -48,7 +48,7 @@ struct llama_vocab {
|
||||
id special_cls_id = LLAMA_TOKEN_NULL;
|
||||
id special_mask_id = LLAMA_TOKEN_NULL;
|
||||
|
||||
id linefeed_id = 13;
|
||||
id linefeed_id = 13;
|
||||
|
||||
// fim tokens
|
||||
id special_fim_pre_id = LLAMA_TOKEN_NULL;
|
||||
@@ -149,6 +149,12 @@ int32_t llama_token_to_piece_impl(
|
||||
int32_t lstrip,
|
||||
bool special);
|
||||
|
||||
// check if token0 is contained as a prefix in token1
|
||||
bool llama_token_is_prefix_impl(
|
||||
const struct llama_vocab & vocab,
|
||||
llama_token token0,
|
||||
llama_token token1);
|
||||
|
||||
int32_t llama_detokenize_impl(
|
||||
const struct llama_vocab & vocab,
|
||||
const llama_token * tokens,
|
||||
|
||||
@@ -6596,8 +6596,8 @@ static void llm_load_vocab(
|
||||
) {
|
||||
vocab.special_eot_id = t.second;
|
||||
if ((vocab.id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
LLAMA_LOG_WARN("%s: control-looking token: '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
||||
__func__, t.first.c_str());
|
||||
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
||||
__func__, t.second, t.first.c_str());
|
||||
vocab.id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
|
||||
}
|
||||
}
|
||||
@@ -6610,8 +6610,8 @@ static void llm_load_vocab(
|
||||
) {
|
||||
vocab.special_eom_id = t.second;
|
||||
if ((vocab.id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
LLAMA_LOG_WARN("%s: control-looking token: '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
||||
__func__, t.first.c_str());
|
||||
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
||||
__func__, t.second, t.first.c_str());
|
||||
vocab.id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
|
||||
}
|
||||
}
|
||||
@@ -6627,8 +6627,8 @@ static void llm_load_vocab(
|
||||
) {
|
||||
vocab.special_fim_pre_id = t.second;
|
||||
if ((vocab.id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
LLAMA_LOG_WARN("%s: control-looking token: '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
||||
__func__, t.first.c_str());
|
||||
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
||||
__func__, t.second, t.first.c_str());
|
||||
vocab.id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
|
||||
}
|
||||
}
|
||||
@@ -6644,8 +6644,8 @@ static void llm_load_vocab(
|
||||
) {
|
||||
vocab.special_fim_suf_id = t.second;
|
||||
if ((vocab.id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
LLAMA_LOG_WARN("%s: control-looking token: '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
||||
__func__, t.first.c_str());
|
||||
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
||||
__func__, t.second, t.first.c_str());
|
||||
vocab.id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
|
||||
}
|
||||
}
|
||||
@@ -6661,8 +6661,8 @@ static void llm_load_vocab(
|
||||
) {
|
||||
vocab.special_fim_mid_id = t.second;
|
||||
if ((vocab.id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
LLAMA_LOG_WARN("%s: control-looking token: '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
||||
__func__, t.first.c_str());
|
||||
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
||||
__func__, t.second, t.first.c_str());
|
||||
vocab.id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
|
||||
}
|
||||
}
|
||||
@@ -6677,8 +6677,8 @@ static void llm_load_vocab(
|
||||
) {
|
||||
vocab.special_fim_pad_id = t.second;
|
||||
if ((vocab.id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
LLAMA_LOG_WARN("%s: control-looking token: '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
||||
__func__, t.first.c_str());
|
||||
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
||||
__func__, t.second, t.first.c_str());
|
||||
vocab.id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
|
||||
}
|
||||
}
|
||||
@@ -6694,8 +6694,8 @@ static void llm_load_vocab(
|
||||
) {
|
||||
vocab.special_fim_rep_id = t.second;
|
||||
if ((vocab.id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
LLAMA_LOG_WARN("%s: control-looking token: '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
||||
__func__, t.first.c_str());
|
||||
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
||||
__func__, t.second, t.first.c_str());
|
||||
vocab.id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
|
||||
}
|
||||
}
|
||||
@@ -6708,8 +6708,8 @@ static void llm_load_vocab(
|
||||
) {
|
||||
vocab.special_fim_sep_id = t.second;
|
||||
if ((vocab.id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
LLAMA_LOG_WARN("%s: control-looking token: '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
||||
__func__, t.first.c_str());
|
||||
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
||||
__func__, t.second, t.first.c_str());
|
||||
vocab.id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
|
||||
}
|
||||
}
|
||||
@@ -6720,6 +6720,19 @@ static void llm_load_vocab(
|
||||
// this is currently determined based on the token text, which is obviously not ideal
|
||||
// ref: https://github.com/ggerganov/llama.cpp/issues/9606
|
||||
vocab.special_eog_ids.clear();
|
||||
|
||||
if (vocab.special_fim_pad_id != LLAMA_TOKEN_NULL && vocab.special_eog_ids.count(vocab.special_fim_pad_id) == 0) {
|
||||
vocab.special_eog_ids.insert(vocab.special_fim_pad_id);
|
||||
}
|
||||
|
||||
if (vocab.special_fim_rep_id != LLAMA_TOKEN_NULL && vocab.special_eog_ids.count(vocab.special_fim_rep_id) == 0) {
|
||||
vocab.special_eog_ids.insert(vocab.special_fim_rep_id);
|
||||
}
|
||||
|
||||
if (vocab.special_fim_sep_id != LLAMA_TOKEN_NULL && vocab.special_eog_ids.count(vocab.special_fim_sep_id) == 0) {
|
||||
vocab.special_eog_ids.insert(vocab.special_fim_sep_id);
|
||||
}
|
||||
|
||||
for (const auto & t : vocab.token_to_id) {
|
||||
if (false
|
||||
|| t.first == "<|eot_id|>"
|
||||
@@ -6732,13 +6745,20 @@ static void llm_load_vocab(
|
||||
) {
|
||||
vocab.special_eog_ids.insert(t.second);
|
||||
if ((vocab.id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||||
LLAMA_LOG_WARN("%s: control-looking token: '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
||||
__func__, t.first.c_str());
|
||||
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
||||
__func__, t.second, t.first.c_str());
|
||||
vocab.id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
|
||||
}
|
||||
} else {
|
||||
// token is control, but not marked as EOG -> print a warning
|
||||
if (vocab.id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL && vocab.special_eog_ids.count(t.second) == 0) {
|
||||
LLAMA_LOG_WARN("%s: control token: %6d '%s' is not marked as EOG\n",
|
||||
__func__, t.second, t.first.c_str());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// sanity checks
|
||||
if (vocab.special_eos_id != LLAMA_TOKEN_NULL && vocab.special_eog_ids.count(vocab.special_eos_id) == 0) {
|
||||
vocab.special_eog_ids.insert(vocab.special_eos_id);
|
||||
LLAMA_LOG_WARN("%s: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect\n", __func__);
|
||||
@@ -16075,9 +16095,11 @@ struct llm_build_context {
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
|
||||
cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, model.output_norm_b, LLM_NORM, cb, -1);
|
||||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||||
cb(cur, "result_norm", -1);
|
||||
|
||||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||||
cb(cur, "result_output", -1);
|
||||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
|
||||
return gf;
|
||||
@@ -21480,6 +21502,13 @@ int32_t llama_token_to_piece(
|
||||
return llama_token_to_piece_impl(model->vocab, token, buf, length, lstrip, special);
|
||||
}
|
||||
|
||||
bool llama_token_is_prefix(
|
||||
const struct llama_model * model,
|
||||
llama_token token0,
|
||||
llama_token token1) {
|
||||
return llama_token_is_prefix_impl(model->vocab, token0, token1);
|
||||
}
|
||||
|
||||
int32_t llama_detokenize(
|
||||
const struct llama_model * model,
|
||||
const llama_token * tokens,
|
||||
@@ -21810,6 +21839,10 @@ struct llama_sampler * llama_sampler_init_grammar(const struct llama_model * mod
|
||||
return llama_sampler_init_grammar_impl(model->vocab, grammar_str, grammar_root);
|
||||
}
|
||||
|
||||
struct llama_sampler * llama_sampler_init_infill(const struct llama_model * model) {
|
||||
return llama_sampler_init_infill_impl(model->vocab);
|
||||
}
|
||||
|
||||
//
|
||||
// model split
|
||||
//
|
||||
|
||||
@@ -696,7 +696,7 @@ static void test_all(const std::string & lang, std::function<void(const TestCase
|
||||
"pattern": "^abc?d*efg+(hij)?kl$"
|
||||
})""",
|
||||
R"""(
|
||||
root ::= "\"" "ab" "c"? "d"* "ef" "g"+ ("hij")? "kl" "\"" space
|
||||
root ::= "\"" ("ab" "c"? "d"* "ef" "g"+ ("hij")? "kl") "\"" space
|
||||
space ::= | " " | "\n" [ \t]{0,20}
|
||||
)"""
|
||||
});
|
||||
@@ -709,7 +709,7 @@ static void test_all(const std::string & lang, std::function<void(const TestCase
|
||||
"pattern": "^\\[\\]\\{\\}\\(\\)\\|\\+\\*\\?$"
|
||||
})""",
|
||||
R"""(
|
||||
root ::= "\"" "[]{}()|+*?" "\"" space
|
||||
root ::= "\"" ("[]{}()|+*?") "\"" space
|
||||
space ::= | " " | "\n" [ \t]{0,20}
|
||||
)"""
|
||||
});
|
||||
@@ -722,7 +722,20 @@ static void test_all(const std::string & lang, std::function<void(const TestCase
|
||||
"pattern": "^\"$"
|
||||
})""",
|
||||
R"""(
|
||||
root ::= "\"" "\"" "\"" space
|
||||
root ::= "\"" ("\"") "\"" space
|
||||
space ::= | " " | "\n" [ \t]{0,20}
|
||||
)"""
|
||||
});
|
||||
|
||||
test({
|
||||
SUCCESS,
|
||||
"regexp with top-level alternation",
|
||||
R"""({
|
||||
"type": "string",
|
||||
"pattern": "^A|B|C|D$"
|
||||
})""",
|
||||
R"""(
|
||||
root ::= "\"" ("A" | "B" | "C" | "D") "\"" space
|
||||
space ::= | " " | "\n" [ \t]{0,20}
|
||||
)"""
|
||||
});
|
||||
@@ -736,7 +749,7 @@ static void test_all(const std::string & lang, std::function<void(const TestCase
|
||||
})""",
|
||||
R"""(
|
||||
dot ::= [^\x0A\x0D]
|
||||
root ::= "\"" ("(" root-1{1,3} ")")? root-1{3,3} "-" root-1{4,4} " " "a"{3,5} "nd" dot dot dot "\"" space
|
||||
root ::= "\"" (("(" root-1{1,3} ")")? root-1{3,3} "-" root-1{4,4} " " "a"{3,5} "nd" dot dot dot) "\"" space
|
||||
root-1 ::= [0-9]
|
||||
space ::= | " " | "\n" [ \t]{0,20}
|
||||
)"""
|
||||
|
||||
@@ -111,6 +111,28 @@ static void test_min_p(const std::vector<float> & probs, const std::vector<float
|
||||
}
|
||||
}
|
||||
|
||||
static void test_xtc(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p, float t) {
|
||||
const size_t n_vocab = probs.size();
|
||||
|
||||
std::vector<llama_token_data> cur;
|
||||
cur.reserve(n_vocab);
|
||||
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
|
||||
const float logit = logf(probs[token_id]);
|
||||
cur.emplace_back(llama_token_data{token_id, logit, 0.0f});
|
||||
}
|
||||
|
||||
llama_token_data_array cur_p = { cur.data(), cur.size(), -1, false };
|
||||
APPLY(llama_sampler_init_softmax(), &cur_p);
|
||||
DUMP(&cur_p);
|
||||
APPLY(llama_sampler_init_xtc(p, t, 0, 0), &cur_p);
|
||||
DUMP(&cur_p);
|
||||
|
||||
GGML_ASSERT(cur_p.size == expected_probs.size());
|
||||
for (size_t i = 0; i < cur_p.size; i++) {
|
||||
GGML_ASSERT(fabs(cur_p.data[i].p - expected_probs[i]) < 1e-5);
|
||||
}
|
||||
}
|
||||
|
||||
static void test_typical(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) {
|
||||
const size_t n_vocab = probs.size();
|
||||
|
||||
@@ -263,7 +285,7 @@ static void bench(llama_sampler * cnstr, const char * cnstr_name, const std::vec
|
||||
}
|
||||
const int64_t t_end = ggml_time_us();
|
||||
llama_sampler_free(cnstr);
|
||||
printf("%-42s: %8.3f us/iter\n", cnstr_name, (t_end - t_start) / (float)n_iter);
|
||||
printf("%-43s: %8.3f us/iter\n", cnstr_name, (t_end - t_start) / (float)n_iter);
|
||||
}
|
||||
|
||||
#define BENCH(__cnstr, __data, __n_iter) bench((__cnstr), #__cnstr, (__data), (__n_iter))
|
||||
@@ -279,12 +301,13 @@ static void test_perf() {
|
||||
data.emplace_back(llama_token_data{i, logit, 0.0f});
|
||||
}
|
||||
|
||||
BENCH(llama_sampler_init_top_k (40), data, 32);
|
||||
BENCH(llama_sampler_init_top_p (0.8f, 1), data, 32);
|
||||
BENCH(llama_sampler_init_min_p (0.2f, 1), data, 32);
|
||||
BENCH(llama_sampler_init_tail_free(0.5f, 1), data, 32);
|
||||
BENCH(llama_sampler_init_typical (0.5f, 1), data, 32);
|
||||
BENCH(llama_sampler_init_softmax (), data, 32);
|
||||
BENCH(llama_sampler_init_top_k (40), data, 32);
|
||||
BENCH(llama_sampler_init_top_p (0.8f, 1), data, 32);
|
||||
BENCH(llama_sampler_init_min_p (0.2f, 1), data, 32);
|
||||
BENCH(llama_sampler_init_tail_free(0.5f, 1), data, 32);
|
||||
BENCH(llama_sampler_init_typical (0.5f, 1), data, 32);
|
||||
BENCH(llama_sampler_init_xtc (1.0f, 0.1f, 1, 1), data, 32);
|
||||
BENCH(llama_sampler_init_softmax (), data, 32);
|
||||
}
|
||||
|
||||
int main(void) {
|
||||
@@ -309,6 +332,14 @@ int main(void) {
|
||||
test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.4f}, 0.76f);
|
||||
test_min_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f/0.4f}, 1.00f);
|
||||
|
||||
printf("XTC should:\n");
|
||||
test_xtc({0.4f, 0.3f, 0.2f, 0.1f}, {0.1f}, 0.99f, 0.09f);
|
||||
test_xtc({0.4f, 0.3f, 0.2f, 0.1f}, {0.2f, 0.1f}, 0.99f, 0.19f);
|
||||
test_xtc({0.4f, 0.3f, 0.2f, 0.1f}, {0.3f, 0.2f, 0.1f}, 0.99f, 0.29f);
|
||||
|
||||
printf("XTC should not:\n");
|
||||
test_xtc({0.4f, 0.3f, 0.2f, 0.1f}, {0.4f, 0.3f, 0.2f, 0.1f}, 0.99f, 0.39f);
|
||||
|
||||
test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f}, 0.25f);
|
||||
test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f, 0.25f}, 0.75f);
|
||||
test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f, 0.25f}, 0.99f);
|
||||
|
||||
Reference in New Issue
Block a user