Compare commits

..

163 Commits
b4191 ... b4354

Author SHA1 Message Date
Georgi Gerganov
0e70ba686e server : add "tokens" output (#10853)
* server : add "tokens" output

ggml-ci

* server : update readme

ggml-ci

* server : return tokens ids only if requested

ggml-ci

* tests : improve "tokens" type check

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>

* server : remove "tokens" from the OAI endpoint

ggml-ci

---------

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
2024-12-18 11:05:29 +02:00
Xuan Son Nguyen
46828872c3 server : (embeddings) using same format for "input" and "content" (#10872)
* server : (embeddings) using same format for "input" and "content"

* fix test case

* handle empty input case

* fix test
2024-12-18 10:55:09 +02:00
redbeard
6b064c92b4 docs: Fix HIP (née hipBLAS) in README (#10880)
Related to #10524 / be0e350c references to hipBLAS have been removed
across the repository.  This fixes the link from the repositories
`README.md`.

Signed-off-by: Brian 'redbeard' Harrington <redbeard@dead-city.org>
2024-12-18 10:35:00 +02:00
Diego Devesa
4da69d1abd Revert "llama : add Falcon3 support (#10864)" (#10876)
Some checks failed
Python check requirements.txt / check-requirements (push) Has been cancelled
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
This reverts commit 382bc7f2e8.
2024-12-18 01:36:46 +01:00
DAN™
d62b532c52 Use model->gguf_kv for loading the template instead of using the C API. (#10868)
* Bump model_template to 16384 bytes to support larger chat templates.

* Use `model->gguf_kv` for efficiency.
2024-12-17 23:24:22 +01:00
Johannes Gäßler
081b29bd2a tests: add tests for GGUF (#10830)
Some checks are pending
Python check requirements.txt / check-requirements (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
2024-12-17 19:09:35 +01:00
Georgi Gerganov
5437d4aaf5 sync : ggml 2024-12-17 18:36:02 +02:00
Georgi Gerganov
78f766768d cmake : fix "amd64" processor string (whisper/2638) 2024-12-17 18:35:49 +02:00
gn64
8dd19a4812 vulkan : fix soft_max.comp division by zero (whisper/2633)
This change prevents a division by zero error when p.KY is 0.
2024-12-17 18:35:49 +02:00
Daniel Bevenius
130d0c90bd ggml : remove return from ggml_gallocr_allocate_node (ggml/1048)
This commit removes the return statement from ggml_gallocr_allocate_node
function.

The motivation behind this change is to make the code more readable and
consistent.
2024-12-17 18:35:49 +02:00
Daniel Bevenius
3919da8e33 ggml : add check for grad_accs (ggml/1046)
* ggml : add check for grad_accs

This commit adds a check for grad_accs in ggml_graph_get_grad and
ggml_graph_get_grad_acc functions. This is necessary to avoid segfaults
when grad_accs is not initialized.

The motivation for this change is that I find it nice to be able to
print out a computation graph using ggml_graph_print but this function
segfaults when grad_accs is not initialized:
```console
(gdb) p g1
$2 = (ggml_cgraph *) 0x7ffff66004b0
(gdb) p *g1
$3 = {size = 2048, n_nodes = 1, n_leafs = 2, nodes = 0x7ffff6600500,
grads = 0x0, grad_accs = 0x0, leafs = 0x7ffff6604500,
visited_hash_set = {size = 4099, used = 0x7ffff6610518,
keys = 0x7ffff6608500}, order = GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT}
(gdb) p ggml_graph_print(g1)
=== GRAPH ===
n_nodes = 1

Program received signal SIGSEGV, Segmentation fault.
0x0000555555579775 in ggml_graph_get_grad
(cgraph=0x7ffff66004b0,node=0x7ffff6600340)
    at /ggml/ggml/src/ggml.c:5990
5990  return igrad != GGML_HASHSET_FULL &&
          ggml_bitset_get(cgraph->visited_hash_set.used, igrad) ?
          cgraph->grads[igrad] : NULL;
```

* squash! ggml : add check for grad_accs

Fix the check in ggml_graph_get_grad. The check was incorrectly using
cgraph->grad_accs instead of cgraph->grads.
2024-12-17 18:35:48 +02:00
Georgi Gerganov
0006f5a74a ggml : update ggml_backend_cpu_device_supports_op (#10867)
* ggml : fix cpy op for IQ-quants to use reference impl

ggml-ci

* ggml : disable tests involving i-matrix quantization

* ggml : update ggml_backend_cpu_device_supports_op

ggml-ci
2024-12-17 18:35:42 +02:00
krystiancha
05c3a444b8 server : fill usage info in embeddings and rerank responses (#10852)
* server : fill usage info in embeddings response

* server : fill usage info in reranking response
2024-12-17 18:00:24 +02:00
Billel Mokeddem
382bc7f2e8 llama : add Falcon3 support (#10864) 2024-12-17 17:24:56 +02:00
Ruan
4f51968aca readme : update typos (#10863) 2024-12-17 11:47:20 +02:00
Xuan Son Nguyen
227d7c5a7f server : (UI) fix missing async generator on safari (#10857)
* server : (UI) fix missing async generator on safari

* fix
2024-12-17 09:52:09 +01:00
Eve
7b1ec53f56 vulkan: bugfixes for small subgroup size systems + llvmpipe test (#10809)
* ensure mul mat shaders work on systems with subgroup size less than 32

more fixes

add test

* only s_warptile_mmq needs to be run with 32 threads or more
2024-12-17 06:52:55 +01:00
Zhiyuan Li
160bc039c8 rwkv6: add wkv6 support for Vulkan backend (#10829)
* rwkv_wkv6 vulkan shader

* RWKV_WKV6 Vulkan op tests passed

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Apply code format changes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* add [[unroll]] and remove unnecessary conditions

* add uma support

* fix erros in EditorConfig Checker

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
Co-authored-by: Molly Sophia <mollysophia379@gmail.com>
2024-12-16 22:00:46 +01:00
Georgi Gerganov
08ea539df2 unicode : improve naming style (#10838)
* unicode : improve naming style

ggml-ci

* cont [no ci]
2024-12-16 12:31:45 +02:00
Georgi Gerganov
644fd71b44 sampling : refactor + optimize penalties sampler (#10803)
* sampling : refactor + optimize penalties sampler

ggml-ci

* common : apply ignore_eos as logit bias

ggml-ci

* batched : remove penalties sampler

* params : allow penalty_last_n == -1 to be equal to context size

ggml-ci

* common : by default, move the penalties at the end of the sampling chain

ggml-ci

* common : ignore all EOG tokens

Co-authored-by: Diego Devesa <slarengh@gmail.com>

* common : move back the penalties at the front of the sampling chain

ggml-ci

* readme : restore hint about --ignore-eos flag [no ci]

* llama : minor

ggml-ci

* webui : update

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2024-12-16 12:31:14 +02:00
Bartowski
4ddd199f6f llava : Allow locally downloaded models for QwenVL (#10833)
Some checks failed
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
* Allow locally downloaded models for QwenVL

* Define model_path

* rm trailing space

---------

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
2024-12-15 21:43:25 +01:00
Valentin Mamedov
a0974156f3 llama : add Deepseek MoE v1 & GigaChat models (#10827)
Some checks failed
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
Python check requirements.txt / check-requirements (push) Has been cancelled
* Add deepseek v1 arch & gigachat template

* improve template code

* add readme

* delete comments

* remove comment

* fix format

* lint llama.cpp

* fix order of deepseek and deepseek2, move gigachat temlate to the end of func

* fix order of deepseek and deepseek2 in constants; mark shared exp as deepseek arch need

* remove comments

* move deepseek above deepseek2

* change placement of gigachat chat template
2024-12-15 19:02:46 +02:00
Georgi Gerganov
87cf323cef scripts : change build path to "build-bench" for compare-commits.sh (#10836) 2024-12-15 18:44:47 +02:00
Vinesh Janarthanan
5478bbcd17 server: (UI) add syntax highlighting and latex math rendering (#10808)
* add code highlighting and math formatting

* code cleanup

* build public/index.html

* rebuild public/index.html

* fixed coding style

* fixed coding style

* style fixes

* highlight: smaller bundle size, fix light & dark theme

* remove katex

* add bundle size check

* add more languages

* add php

* reuse some langs

* use gzip

* Revert "remove katex"

This reverts commit c0e5046acc.

* use better maintained @vscode/markdown-it-katex

* fix gzip non deterministic

* ability to add a demo conversation for dev

* fix latex rendering

* add comment

* latex codeblock as code

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2024-12-15 12:55:54 +01:00
Georgi Gerganov
b5ae1ddff9 gguf-py : bump to v0.13.0 2024-12-15 13:16:42 +02:00
Michelle Tan
89d604f2c8 server: Fix has_next_line in JSON response (#10818)
Some checks are pending
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
* Update server JSON response.

* Add unit test to check `has_new_line` JSON response

* Remove `has_new_line` unit test changes.

* Address code review comment: type check for `has_new_line` in unit test
2024-12-14 23:29:45 +01:00
Evgeny Kurnevsky
e52aba537a nix: allow to override rocm gpu targets (#10794)
This allows to reduce compile time when you are building for a single GPU.
2024-12-14 10:17:36 -08:00
HimariO
ba1cb19cdd llama : add Qwen2VL support + multimodal RoPE (#10361)
Some checks failed
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
Python check requirements.txt / check-requirements (push) Has been cancelled
* Barebone Qwen2VL LLM convertor

* Add Qwen2VL cli entrypoint

* [WIP] add qwen2vl arch

* Verify m-rope output

* Add vl-rope/2d-rope support for qwen2vl ViT

* update qwen2vl cli tool

* update 5D tensor op workaround

* [WIP] qwen2vl vision model

* make batch and clip utils compatible with qwen2vl

* [WIP] create inference workflow, gguf convert script but fix

* correcting vision-rope behavior, add the missing last layer back to ViT

* add arg parser to qwen2vl_surgery

* replace variable size array with vector

* cuda-gdb cmake preset

* add fp32 mrope, vision rope kernel

* add fp16 support for qwen2vl and m-rope

* add `GGML_ROPE_TYPE_MROPE`, `GGML_ROPE_TYPE_VISION`

* fix rope op mode switching, out dated func args

* update `llama_hparams`

* update to keep up stream changes

* resolve linter, test errors

* add makefile entry, update speical image padding token

* add mrope unit test, fix few compiler warnings

* rename `mrope` related function, params

* minor updates on debug util, bug fixs

* add `m-rope` testcase to `test-backend-ops`

* Apply suggestions from code review

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* fix traililng whitespce

* store `llama_hparams.rope_sections` with fixed size array

* update position id tensor size check in GGML_OP_ROPE

* minor updates

* update `ggml_backend_*_supports_op` of unsupported backends

* remote old `rope_section` compare operator

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-12-14 14:43:46 +02:00
cduk
56eea0781c Removes spurious \r in output that causes logging in journalctl to treat lines as binary and therefore hidden by default (#10771)
Some checks are pending
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
Signed-off-by: Charles Darke <s.cduk@toodevious.com>
Co-authored-by: Charles Darke <s.cduk@toodevious.com>
2024-12-13 23:21:49 +01:00
lhez
a76c56fa1a Introducing experimental OpenCL backend with support for Qualcomm Adreno GPUs (#10693)
* [cl][adreno] Add Adreno GPU support

Add new OpenCL backend to support Adreno GPUs

---------

Co-authored-by: Skyler Szot <quic_sszot@quicinc.com>
Co-authored-by: Shangqing Gu <quic_shawngu@quicinc.com>
Co-authored-by: Alexander Angus <quic_aangus@quicinc.com>
Co-authored-by: Hongqiang Wang <quic_wangh@quicinc.com>
Co-authored-by: Max Krasnyansky <quic_maxk@quicinc.com>

* [cl][ci] Add workflow for CL

* [cl][adreno] Fix memory leak for non SMALL_ALLOC path

* opencl: integrate backend dyn.load interface and fix compiler and format warnings

* opencl: remove small-alloc support and fix build errors for non-opencl platforms

* opencl: fixed merge conflict (MUSA added twice in cmake)

* opencl-ci: use RUNNER_TEMP instead of github.workspace

* opencl: fix embed tool invocation with python3

* opencl: CI workflow fixes

* opencl: Clean up small-alloc in CMake files

* opencl: cleanup ggml-opencl2 header file

* opencl: use ulong for offsets and strides in ADD kernel

* opencl: use cl_ulong for all offsets

* opencl: use cl_ulong for sizes and strides

* opencl: use `GGML_LOG_xxx` instead of `fprintf(stderr, ...)`

* opencl: rename backend `opencl2` -> `opencl`

* opencl: rename kernel files `ggml-opencl2` -> `ggml-opencl`

* opencl: make OpenCL required, remove redundant lib and inc directories

* `ggml-base`, `..` and `.` are added by `ggml_add_backend_library`

* opencl: rename backend - funcs, structs, etc `opencl2` -> `opencl`

* opencl: remove copyright marker since main license already covers

* opencl: replace some more OPENCL2 leftovers

* opencl: remove limits on `tensor_extra`

* opencl: use pools for `tensor_extra`

* opencl: fix compiler warnings with GCC and Clang

Still getting the warning about clCreateCmdQueue being obsolete.
Will fix that separately.

* opencl: fail gracefully if opencl devices are not available

Also for unsupported GPUs.

* opencl: fix MSVC builds (string length error)

* opencl: check for various requirements, allow deprecated API

* opencl: update log message for unsupported GPUs

---------

Co-authored-by: Skyler Szot <quic_sszot@quicinc.com>
Co-authored-by: Shangqing Gu <quic_shawngu@quicinc.com>
Co-authored-by: Alexander Angus <quic_aangus@quicinc.com>
Co-authored-by: Hongqiang Wang <quic_wangh@quicinc.com>
Co-authored-by: Max Krasnyansky <quic_maxk@quicinc.com>
2024-12-13 12:23:52 -08:00
Eric Curtin
c27ac678dd Opt class for positional argument handling (#10508)
Added support for positional arguments `model` and `prompt`. Added
functionality to download via strings like:

  llama-run llama3
  llama-run ollama://granite-code
  llama-run ollama://granite-code:8b
  llama-run hf://QuantFactory/SmolLM-135M-GGUF/SmolLM-135M.Q2_K.gguf
  llama-run huggingface://bartowski/SmolLM-1.7B-Instruct-v0.2-GGUF/SmolLM-1.7B-Instruct-v0.2-IQ3_M.gguf
  llama-run https://example.com/some-file1.gguf
  llama-run some-file2.gguf
  llama-run file://some-file3.gguf

Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2024-12-13 19:34:25 +01:00
Corentin REGAL
11e07fd63b fix: graceful shutdown for Docker images (#10815) 2024-12-13 18:23:50 +01:00
Jett Janiak
4601a8bb67 gguf-py : numpy 2 newbyteorder fix (#9772) 2024-12-13 16:48:44 +02:00
谢乃闻
9f35e44592 Fix crash caused by ggml_backend_load_all when launching on Android Activity (#10812)
* Fix crash caused by ggml_backend_load_all when launching on AndroidActivity.

Details:
Calling ggml_backend_load_all during initialization in the AndroidActivity project leads to a crash with the error:
terminating with uncaught exception of type std::__ndk1::__fs::filesystem::filesystem_error: filesystem error: in directory_iterator::directory_iterator(...): Permission denied [./].
This issue occurs because AndroidActivity restricts file access due to sandboxing.

Reproduction:
In the example folder, the LlamaAndroid project can reproduce the crash by calling ggml_backend_load_all first in Java_android_llama_cpp_LLamaAndroid_backend_1init.

* Update ggml/src/ggml-backend-reg.cpp

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2024-12-13 13:56:07 +01:00
Eve
64ae065511 vulkan: small mul_mat_vec optimizations (#10665)
* double the number of rows per workgroup

* Update ggml-vulkan.cpp

* Vulkan: Add VK_EXT_subgroup_size_control support to ensure full subgroups for coopmats

* only increase the number of rows for amd and subgroup size 64

* fix missing NUM_ROWS for mul_mat_vec_iq4_nl_f16_f32, untested

* use subgroup min and max to check for gcn (requires https://github.com/ggerganov/llama.cpp/pull/10721)

* manual merge ggml-vulkan.cpp

* set min and max subgroup size in any case

* Also double the number of rows for Intel GPUs
2024-12-13 09:42:04 +01:00
Akarshan Biswas
83ed24a97b SYCL: Reduce most of the compiler warnings (#10748)
* Try to reduce some unused and typecast warnings

* Reduce compiler warnings step 2

* add a newline at the end of the file

* Initialize nreduce as size_t

* [SYCL] Remove pragma directives from mmq.cpp

* SYCL: mmq add condition to prevent blocks_per_tile_x_row variable from becoming 0

* SYCL softmax: Initialize nreduce as size_t

* ggml-sycl.cpp: fix some trailing whitespaces

* SYCL: remove the unused variables instead of commenting it out

* SYCL poo2d kernel: set NAN for invalid pooling op

* SYCL gemm.hpp: remove pragma directives

* SYCL gemm.hpp: use const cast to properly support dnnl::memory

* SYCL: wkv6 remove a comment

* SYCL: clean comments step 2

* SYCL: clean comments and variables step 3

* SYCL: Use GGML_UNUSED for unused variables

* SYCL: remove extra empty lines and a comment

* Remove TODO

* cleanup spaces

* add a stdout for unsupported op

* use sycl printf over fprintf

* remove prints for CI

* SYCL ggml-sycl: pool2D use sycl::nan and remove if-else block

---------

Co-authored-by: Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
2024-12-13 12:12:15 +05:30
Karol Kontny
d583cd03f6 ggml : Fix compilation issues on ARM platform when building without fp16 (#10811) 2024-12-13 01:04:19 +01:00
Xuan Son Nguyen
adffa6ffd5 common : improve -ctv -ctk CLI arguments (#10806)
* common : improve ctv ctk cli argument

* regenerate docs

* even better approach

* use std::vector
2024-12-12 22:53:05 +01:00
Xuan Son Nguyen
274ec65af6 contrib : add ngxson as codeowner (#10804) 2024-12-12 20:52:28 +01:00
a3sh
8faa1d4dd4 CUDA: faster non-contiguous concat (#10760)
* faster uncontiguous concat

* Use a lambda to avoid code duplication

Co-authored-by: Diego Devesa <slarengh@gmail.com>

* Update ggml/src/ggml-cuda/concat.cu

* add constexpr  and static assert

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2024-12-12 19:09:50 +01:00
Diego Devesa
cb13ef85a4 remove CMAKE_WINDOWS_EXPORT_ALL_SYMBOLS (#10797)
other windows build fixes
2024-12-12 19:02:49 +01:00
0cc4m
4064c0e3b6 Vulkan: Use improved q4_k and q5_k dequant code in dequant shaders (#10798) 2024-12-12 18:36:00 +01:00
0cc4m
dc5301d565 Vulkan: Add VK_EXT_subgroup_size_control support to ensure full subgroups for coopmats (#10721)
* Vulkan: Add VK_EXT_subgroup_size_control support to ensure full subgroups for coopmats

* Fix subgroup size control extension support check

Add accf32 and accf16 checks for coopmats

* Also disable coopmats on amdvlk
2024-12-12 18:35:37 +01:00
Xuan Son Nguyen
9fdb124304 common : add missing env var for speculative (#10801) 2024-12-12 16:57:32 +01:00
CentricStorm
5555c0c1f6 docs: update server streaming mode documentation (#9519)
Provide more documentation for streaming mode.
2024-12-11 23:40:40 +01:00
Georgi Gerganov
973f328b1e Merge pull request #10788 from ggerganov/gg/gguf-py-0.11.0 2024-12-11 23:14:46 +02:00
Georgi Gerganov
fb18934a97 gguf-py : bump version to 0.11.0 2024-12-11 23:13:31 +02:00
Xuan Son Nguyen
235f6e14bf server : (UI) add tok/s, get rid of completion.js (#10786)
* get rid of completion.js

* extract chat bubble to a component

* add tok/s info

* sync

* fix BASE_URL

* only extract timings when it's enabled

* fix auto scroll
2024-12-11 20:52:14 +01:00
qingy1337
1a31d0dc00 Update README.md (#10772) 2024-12-11 16:16:32 +01:00
Xuan Son Nguyen
92f77a640f ci : pin nodejs to 22.11.0 (#10779) 2024-12-11 14:59:41 +01:00
kallewoof
484d2f31ae bug-fix: snprintf prints NULL in place of the last character (#10419)
* bug-fix: snprintf prints NULL in place of the last character

We need to give snprintf enough space to print the last character and the null character, thus we allocate one extra byte and then ignore it when converting to std::string.

* add comment about extra null-term byte requirement
2024-12-11 14:48:04 +01:00
CentricStorm
4b4d92b098 docs: fix server documentation formatting (#10776) 2024-12-11 11:47:43 +01:00
Gilad S.
43041d2eb3 ggml: load all backends from a user-provided search path (#10699)
* feat: load all backends from a user-provided search path

* fix: Windows search path

* refactor: rename `ggml_backend_load_all_in_search_path` to `ggml_backend_load_all_from_path`

* refactor: rename `search_path` to `dir_path`

* fix: change `NULL` to `nullptr`

Co-authored-by: Diego Devesa <slarengh@gmail.com>

* fix: change `NULL` to `nullptr`

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2024-12-11 01:47:21 +01:00
Jeff Bolz
b685daf386 vulkan: request round-to-even for fp16 in im2col/rope_head (#10767)
Some checks failed
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
Vulkan doesn't mandate a specific rounding mode, but the shader_float_controls
feature allows rounding mode to be requested if the implementation supports it.
2024-12-10 21:23:17 +01:00
Eve
dafae66cc2 vulkan: dynamic subgroup size for the remaining k quants (#10745)
* q5_k

q4_k

q3_k

q2_k

q6_k multi row example

* revert as multi row isnt faster for k quants
2024-12-10 20:33:23 +01:00
Bartowski
ae4b922614 imatrix : Add imatrix to --no-context-shift (#10766)
This allows for setting the --no-context-shift value in llama-imatrix which is required for models like DeepSeek
2024-12-10 18:23:50 +01:00
Andreas Kieslinger
750cb3e246 CUDA: rename macros to avoid conflicts with WinAPI (#10736)
* Renames NVIDIA GPU-architecture flags to avoid name clashes with WinAPI. (e.g. CC_PASCAL, GPU architecture or WinAPI pascal compiler flag?)

* Reverts erroneous rename in SYCL-code.

* Renames GGML_CUDA_MIN_CC_DP4A to GGML_CUDA_CC_DP4A.

* Renames the rest of the compute capability macros for consistency.
2024-12-10 18:23:24 +01:00
Yüg
a86ad841f1 server : add flag to disable the web-ui (#10762) (#10751)
Co-authored-by: eugenio.segala <esegala@deloitte.co.uk>
2024-12-10 18:22:34 +01:00
Jeff Bolz
a05e2afcc2 vulkan: disable spirv-opt for coopmat shaders (#10763)
There are some bugs in the 1.3.296 SDK, so disable this. It isn't strictly
necessary anyway.

Add missing dependency on vulkan-shaders-gen, so shaders get recompiled when it
changes.

Fix coopmat support reporting when glslc doesn't support NV_coopmat2.
2024-12-10 18:22:20 +01:00
Johannes Gäßler
26a8406ba9 CUDA: fix shared memory access condition for mmv (#10740) 2024-12-09 20:07:12 +01:00
Srihari-mcw
c37fb4cf62 Changes to CMakePresets.json to add ninja clang target on windows (#10668)
* Update cmakepreset.json to use clang with ninja by default

* Update cmakepreset.json to add clang and ninja based configs

* Updates to build.md file

* Make updates to rename preset targets

* Update with .cmake file

* Remove additional whitespaces

* Add .cmake file for x64-windows-llvm

* Update docs/build.md

* Update docs/build.md

---------

Co-authored-by: Max Krasnyansky <max.krasnyansky@gmail.com>
2024-12-09 09:40:19 -08:00
Jeff Bolz
3d98b4cb22 vulkan: fix compile warnings (#10731) 2024-12-09 08:24:01 +01:00
Borislav Stanimirov
1a05004743 cmake : simplify msvc charsets (#10672) 2024-12-09 09:15:13 +02:00
Xuan Son Nguyen
ce8784bdb1 server : fix format_infill (#10724)
Some checks failed
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
* server : fix format_infill

* fix

* rename

* update test

* use another model

* update test

* update test

* test_invalid_input_extra_req
2024-12-08 23:04:29 +01:00
Xuan Son Nguyen
e52522b869 server : bring back info of final chunk in stream mode (#10722)
* server : bring back into to final chunk in stream mode

* clarify a bit

* traling space
2024-12-08 20:38:51 +01:00
stduhpf
06d70147e6 Vulkan: fix NaN in tanh.comp with AMD proprietary driver on Windows (#10723)
* Vulkan: fix NaN in tanh.comp

* Faster NaN-free tanh
2024-12-08 19:19:19 +01:00
Diego Devesa
43ed389a3f llama : use cmake for swift build (#10525)
* llama : use cmake for swift build

* swift : <> -> ""

* ci : remove make

* ci : disable ios build

* Revert "swift : <> -> """

This reverts commit d39ffd9556.

* ci : try fix ios build

* ci : cont

* ci : cont

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-12-08 13:14:54 +02:00
Jeff Bolz
ecc93d0558 vulkan: compile a test shader in cmake to check for coopmat2 support (#10713) 2024-12-08 09:05:55 +01:00
Robert Collins
62e84d9848 llama : add 128k yarn context for Qwen (#10698)
Some checks failed
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
Python check requirements.txt / check-requirements (push) Has been cancelled
* add 128k yarn context for Qwen

* added property for model tensors

* removing useless line
2024-12-07 23:12:27 +02:00
Xuan Son Nguyen
3573fa8e7b server : (refactor) no more json in server_task input (#10691)
* server : (refactor) no more json in server_task input

* add test for slots endpoint

* add tests for /props and /slots

* remove task inf_type

* fix CI by adding safe_json_to_str

* add "model_path" to /props

* update readme
2024-12-07 20:21:09 +01:00
Georgi Gerganov
d9c3ba2b77 ggml : disable iq4_nl interleave size 8 (#10709)
ggml-ci
2024-12-07 18:38:15 +02:00
Georgi Gerganov
ce4a7b8493 server : various fixes (#10704)
* server : various fixes

ggml-ci

* server : show curent seed in slot_params

ggml-ci

* fix /slots endpoint

* Update examples/server/server.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* server : reflect endpoint response changes in the readme

ggml-ci

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
2024-12-07 18:02:05 +02:00
Djip007
19d8762ab6 ggml : refactor online repacking (#10446)
Some checks are pending
Python check requirements.txt / check-requirements (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
* rename ggml-cpu-aarch64.c to .cpp

* reformat extra cpu backend.

- clean Q4_0_N_M and IQ4_0_N_M
  - remove from "file" tensor type
  - allow only with dynamic repack

- extract cpu extra bufts and convert to C++
  - hbm
  - "aarch64"

- more generic use of extra buffer
  - generalise extra_supports_op
  - new API for "cpu-accel":
     - amx
     - aarch64

* clang-format

* Clean Q4_0_N_M ref

Enable restrict on C++

* add op GGML_OP_MUL_MAT_ID for Q4_0_N_M with runtime repack

* added/corrected control on tensor size for Q4 repacking.

* Update ggml/src/ggml-cpu/ggml-cpu-aarch64.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml/src/ggml-cpu/ggml-cpu-aarch64.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* add debug logs on repacks.

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-12-07 14:37:50 +02:00
Georgi Gerganov
c2a16c0bdb server : fix free of spec context and batch (#10651)
ggml-ci
2024-12-07 11:52:44 +02:00
0cc4m
3df784b305 Vulkan: VK_KHR_cooperative_matrix support to speed up prompt processing (#10597)
* Vulkan: Implement VK_KHR_cooperative_matrix support in the matrix matrix multiplication shader

* Improve performance with better q4_k and q5_k dequant and store unrolling

* Add Vulkan MUL_MAT and MUL_MAT_ID accumulator precision selection

* Rework mulmat shader selection and compilation logic, avoid compiling shaders that won't get used by device

* Vulkan: Implement accumulator switch for specific mul mat mat shaders

* Vulkan: Unroll more loops for more mul mat mat performance

* Vulkan: Add VK_AMD_shader_core_properties2 support to read Compute Unit count for split_k logic

* Disable coopmat support on AMD proprietary driver

* Remove redundant checks

* Add environment variable GGML_VK_DISABLE_COOPMAT to disable VK_KHR_cooperative_matrix support

* Fix rebase typo

* Fix coopmat2 MUL_MAT_ID pipeline selection
2024-12-07 10:24:15 +01:00
Robert Ormandi
86a1934978 metal : Extend how Llama.cpp locates metal resources (#10676)
* metal : Extend how Llama.cpp locates metal resources (#10675)

  * It searches the resource file in the directory where the current
    binary is located as well.
  * Resolves symbolic links.

Rationale:

When we plug this dependency into a Bazel build and run it in the
context of Bazel (e.g. testing):

  * the execution directory is often very different from where the files
    are located and no direct control over this (Bazel sandboxing),
  * the Bazel sandbox often use symbolic links to make files available.

With this patch, we can have the resource file added to the target,
can build and run tests in the context of Bazel.

* Update ggml/src/ggml-metal/ggml-metal.m

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml/src/ggml-metal/ggml-metal.m

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-12-07 09:55:01 +02:00
Sukriti Sharma
784a14aa49 convert : add support for Roberta embeddings (#10695) 2024-12-07 09:02:14 +02:00
Georgi Gerganov
c5ede3849f convert : add custom attention mapping
Some checks are pending
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
2024-12-06 21:33:49 +02:00
Xuan Son Nguyen
f162d45a21 common : bring back --no-warmup to server (#10686)
Some checks are pending
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
2024-12-06 13:29:05 +01:00
Xuan Son Nguyen
6c5bc0625f server : (refactoring) do not rely on JSON internally (#10643)
* server : (refactoring) reduce usage of json internally

* move all response types to struct

* wip [no ci]

* many fixes

* add virtual function

* fix index

* minor style fix

* add std::move

* refactor handle_completions_generic

* add virtual functions

* remove server.hpp

* clarify server_sent_event RFC specs

* apply review comments

* fix model_alias and completion_probabilities

* small clean up

* remove virtual for to_json_oai_compat()

* naming oai_compat --> oaicompat

* fix unwanted recursive call

* update docs
2024-12-06 11:14:32 +01:00
Plamen Minev
7736837d62 fix(server) : not show alert when DONE is received (#10674) 2024-12-05 22:36:41 +01:00
Jeff Bolz
c9c6e01dae vulkan: Add VK_NV_cooperative_matrix2 support for mul_mat and flash attention (#10206)
Some checks failed
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
Python check requirements.txt / check-requirements (push) Has been cancelled
2024-12-05 20:15:05 +01:00
Riccardo Orlando
6fe6247831 llama : add Minerva 7B model support (#10673)
* Support for Minerva 7B

* Update convert_hf_to_gguf_update.py
2024-12-05 20:30:59 +02:00
Georgi Gerganov
0cd182ebcc sync : ggml
Some checks are pending
Python check requirements.txt / check-requirements (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
2024-12-05 13:27:42 +02:00
PAB
a8cbab201d ggml: add GGML_SET Metal kernel + i32 CPU kernel (ggml/1037)
* implemented cpu kernel

* add i32 test cases in test-backend-ops

* typedef `ggml_metal_kargs_set`

* implemented `kernel_set`

* memcpy
2024-12-05 13:27:33 +02:00
PAB
c2082d93a8 ggml : add GGML_PAD_REFLECT_1D operation (ggml/1034)
* ggml_pad_reflect_1d defined in header

* implemented on CPU

* called the forward pass

* impl Metal kernel

* added Metal kernel

* added OP_PAD_REFLECT_1D in test-backend-ops.cpp

* add test-pad-reflect-1d test case

* test case support multiple backend
2024-12-05 13:27:31 +02:00
Daniel Bevenius
d405804be8 py : update outdated copy-paste instructions [no ci] (#10667)
This commit updates the copy-paste instruction in
convert_hf_to_gguf_update.py to reflect that convert_hf_to_gguf.py
will have already been updated with the new get_vocab_base_pre()
function when this script completes.
2024-12-05 09:47:55 +02:00
aryantandon01
f112d198cd Update deprecation-warning.cpp (#10619)
Some checks are pending
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
Fixed Path Separator Handling for Cross-Platform Support (Windows File Systems)
2024-12-04 23:19:20 +01:00
Georgi Gerganov
1da7b76569 server : fix speculative decoding with context shift (#10641)
* server : fix speculative decoding with context shift

ggml-ci

* server : take into account speculative limits

ggml-ci

* server : add tests
2024-12-04 22:38:20 +02:00
Diego Devesa
59f4db1088 ggml : add predefined list of CPU backend variants to build (#10626)
Some checks are pending
Python check requirements.txt / check-requirements (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
* ggml : add predefined list of CPU backend variants to build

* update CPU dockerfiles
2024-12-04 14:45:40 +01:00
Diego Devesa
2803540814 ggml-cpu : fix HWCAP2_I8MM value (#10646) 2024-12-04 14:40:44 +01:00
ltoniazzi
253b7fde91 Fix HF repo commit to clone lora test models (#10649) 2024-12-04 10:45:48 +01:00
JFLFY2255
8d0cfd554a llama: Support MiniCPM-1B (with & w/o longrope) (#10559) 2024-12-04 11:42:50 +02:00
Jeff Bolz
2759916d86 vulkan: Implement "fast divide" (mul+shift) for unary ops like copy (#10642) 2024-12-04 08:28:59 +01:00
Nicolò Scipione
40c6d79fb5 SYCL : Move to compile time oneMKL interface backend selection for NVIDIA backend (#10584)
* [SYCL] Move to Compile Time backend selection on oneMKL Interface for NVIDIA backend

Move to compile time selection to backend to avoid latency at run time.
Add it to all mkl gemm calls and only for NVIDIA backend.

Signed-off-by: nscipione <nicolo.scipione@codeplay.com>

* Formatting

* Address PR comments to increase readibility

---------

Signed-off-by: nscipione <nicolo.scipione@codeplay.com>
2024-12-04 09:29:20 +08:00
Wang Ran (汪然)
98036d5670 fix typo of README.md (#10605) 2024-12-04 02:22:50 +01:00
Frankie Robertson
cd2f37b304 Avoid using __fp16 on ARM with old nvcc (#10616) 2024-12-04 01:41:37 +01:00
Benson Wong
da6aac91f1 Add docs for creating a static build (#10268) (#10630)
* Add notes for a static build

* Update docs/build.md

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2024-12-04 01:40:36 +01:00
piDack
01e6d9bb71 clip : add sycl support (#10574)
Co-authored-by: piDack <pcdack@hotmail.co>
2024-12-04 01:26:37 +01:00
Jeff Bolz
cc98896db8 vulkan: optimize and reenable split_k (#10637)
Use vector loads when possible in mul_mat_split_k_reduce. Use split_k
when there aren't enough workgroups to fill the shaders.
2024-12-03 20:29:54 +01:00
Xuan Son Nguyen
91c36c269b server : (web ui) Various improvements, now use vite as bundler (#10599)
* hide buttons in dropdown menu

* use npm as deps manager and vite as bundler

* fix build

* fix build (2)

* fix responsive on mobile

* fix more problems on mobile

* sync build

* (test) add CI step for verifying build

* fix ci

* force rebuild .hpp files

* cmake: clean up generated files pre build
2024-12-03 19:38:44 +01:00
Georgi Gerganov
1cd3df46bd scripts : remove amx sync
ggml-ci
2024-12-03 20:04:49 +02:00
Georgi Gerganov
c505471857 sync : ggml 2024-12-03 20:04:49 +02:00
mahorozte
e9e661bd59 CUDA: remove unnecessary warp reduce in FA (ggml/1032)
* kqmax_new_j in every thread within warp is same after operate at line 199,this reduce can be omit

* same problem in vec32

---------

Co-authored-by: ZhaoXiaoYu <zhao.xiaoyu@zte.com.cn>
2024-12-03 20:04:49 +02:00
PAB
efb6ae9630 feat: add GGML_UNARY_OP_ARGMAX Metal kernel (ggml/1019)
* implemented argmax kernel

* tpig -> tgpig

* change to strides

* contiguous assertions

* kernel working and tested

* argmax simd parallel implementation

* added 2 new tests for argmax in test-backend-ops

* cosmit

* added 3 tests cases for perf eval

* add test_argmax in make_test_cases_perf

* Update test-backend-ops.cpp

Co-authored-by: Diego Devesa <slarengh@gmail.com>

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2024-12-03 20:04:49 +02:00
PAB
667d70d170 metal : add GGML_OP_CONV_TRANSPOSE_1D kernels (ggml/1026)
* wip

* wip implementation f32

* kernel conv transpose 1d f32 working

* initial commit
2024-12-03 20:04:49 +02:00
Xuan Son Nguyen
3b4f2e33e2 llama : add missing LLAMA_API for llama_chat_builtin_templates (#10636) 2024-12-03 12:54:30 +01:00
Nikolaos Pothitos
82bca2257b readme : add option, update default value, fix formatting (#10271)
* readme : document --no-display-prompt

* readme : update default prompt context size

* readme : remove unnecessary indentation

Indenting a line with four spaces makes Markdown treat that section as
plain text.

* readme : indent commands under bullets

* readme : indent commands in lettered list
2024-12-03 12:50:08 +02:00
Georgi Gerganov
0115df2f65 metal : small-batch mat-mul kernels (#10581)
* metal : small-batch mat-mul kernels

ggml-ci

* metal : add rest of types

ggml-ci

* metal : final adjustments

ggml-ci

* metal : add comments

ggml-ci
2024-12-03 11:52:33 +02:00
Georgi Gerganov
515d4e5372 github : minify link [no ci] (revert)
this doesn't work as expected
2024-12-03 11:21:43 +02:00
Georgi Gerganov
844e2e1fee github : minify link [no ci] 2024-12-03 11:20:35 +02:00
Georgi Gerganov
70b98fadbc server : fix default draft model parameters (#10586)
* server : force F16 KV cache for the draft model

ggml-ci

* server : fix draft params

ggml-ci

* server : various params fixes

ggml-ci
2024-12-03 11:20:00 +02:00
Xuan Son Nguyen
642330ac7c llama : add enum for built-in chat templates (#10623)
* llama : add enum for supported chat templates

* use "built-in" instead of "supported"

* arg: print list of built-in templates

* fix test

* update server README
2024-12-02 22:10:19 +01:00
Georgi Gerganov
8648c52101 make : deprecate (#10514)
* make : deprecate

ggml-ci

* ci : disable Makefile builds

ggml-ci

* docs : remove make references [no ci]

* ci : disable swift build

ggml-ci

* docs : remove obsolete make references, scripts, examples

ggml-ci

* basic fix for compare-commits.sh

* update build.md

* more build.md updates

* more build.md updates

* more build.md updates

* Update Makefile

Co-authored-by: Diego Devesa <slarengh@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-12-02 21:22:53 +02:00
haopeng
64ed2091b2 server: Add "tokens per second" information in the backend (#10548)
* add cmake rvv support

* add timings

* remove space

* update readme

* fix

* fix code

* remove empty line

* add test

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2024-12-02 14:45:54 +01:00
Akarshan Biswas
991f8aabee SYCL: Fix and switch to GGML_LOG system instead of fprintf (#10579)
* Switched to GGML_LOG

* Fix missing semicolon
2024-12-02 15:04:11 +08:00
Georgi Gerganov
4cb003dd8d contrib : refresh (#10593)
* contrib : refresh

* contrib : expand [no ci]

* contrib : expand test-backend-ops instructions

* contrib : add CODEOWNERS

* prs : update template to not have checkbox [no ci]
2024-12-02 08:53:27 +02:00
Juk Armstrong
917786f43d Add mistral-v1, mistral-v3, mistral-v3-tekken and mistral-v7 chat template types (#10572)
* Templates: `mistral-v1`, `mistral-v2`, `mistral-v3`, `mistral-v3-tekken`

* Changed system message logic and added tests for all 4

* Invalid `system_message` instead of `content` fixed

* Removed tab-indented lines

* Added template code and test for `mistral-v7`

* Added all tests. Fixed bug with `tmpl == "llama2"` test.

* Replaced tabs with spaces.

* Removed `'mistral-v2'` option as no (open) models ever used it

* Removed all references to 'v2' template from comments

* Update llama.cpp

Fixed `trim_assistant_message` bug
2024-12-01 23:09:49 +01:00
Georgi Gerganov
5e1ed95583 grammars : add English-only grammar (#10612) 2024-12-01 21:37:54 +02:00
Wang Qin
5c7a5aa0c3 ci: add error handling for Python venv creation in run.sh (#10608) 2024-12-01 20:11:42 +02:00
Diego Devesa
3420909dff ggml : automatic selection of best CPU backend (#10606)
* ggml : automatic selection of best CPU backend

* amx : minor opt

* add GGML_AVX_VNNI to enable avx-vnni, fix checks
2024-12-01 16:12:41 +01:00
alek3y
86dc11c5bc server : bind to any port when specified (#10590) 2024-12-01 13:33:12 +02:00
Georgi Gerganov
6acce39710 readme : update the usage section with examples (#10596)
* readme : update the usage section with examples

* readme : more examples
2024-12-01 11:25:17 +02:00
Wang Qin
43957ef203 build: update Makefile comments for C++ version change (#10598) 2024-12-01 04:19:44 +01:00
Adrien Gallouët
0c39f44d70 ggml-cpu: replace AArch64 NEON assembly with intrinsics in ggml_gemv_q4_0_4x4_q8_0() (#10567)
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2024-11-30 09:13:18 -08:00
Georgi Gerganov
3e0ba0e604 readme : remove old badge 2024-11-30 10:09:21 +02:00
Georgi Gerganov
abadba05be readme : refresh (#10587)
* readme : refresh

* readme : move section [no ci]

* readme : clarify [no ci]

* readme : fixes [no ci]

* readme : more fixes [no ci]

* readme : simplify [no ci]

* readme : clarify GGUF
2024-11-30 09:47:07 +02:00
Eve
0533e7fb38 vulkan: Dynamic subgroup size support for Q6_K mat_vec (#10536)
* subgroup 64 version with subgroup add. 15% faster

scalable version

tested for subgroup sizes 16-128

* check for subgroup multiple of 16 and greater than 16

* subgroup sizes are always a power of 2 (https://github.com/KhronosGroup/GLSL/issues/45)

* force 16 sequential threads per block

* make 16 subgroup size a constant
2024-11-30 08:00:02 +01:00
Diego Devesa
7cc2d2c889 ggml : move AMX to the CPU backend (#10570)
Some checks failed
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
* ggml : move AMX to the CPU backend

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-11-29 21:54:58 +01:00
Xuan Son Nguyen
b782e5c7d4 server : add more test cases (#10569)
* server : add split model test

* add test speculative

* add invalid cases
2024-11-29 21:48:56 +01:00
Robert Collins
3a8e9af402 imatrix : support combine-only (#10492)
* imatrix-combine-only idea

* ensured that behavior consistent with log
2024-11-29 19:21:37 +02:00
Diego Devesa
a3a3048e7a cleanup UI link list (#10577)
* cleanup UI link list

* sort list alphabetically

* add missing licenses
2024-11-29 17:45:08 +01:00
Georgi Gerganov
f0678c5ff4 ggml : fix I8MM Q4_1 scaling factor conversion (#10562)
ggml-ci
2024-11-29 16:25:39 +02:00
Shupei Fan
4b3242bbea ggml-cpu: fix typo in gemv/gemm iq4_nl_4_4 (#10580) 2024-11-29 14:49:02 +01:00
Alberto Cabrera Pérez
0f77aae560 sycl : offload of get_rows set to 0 (#10432) 2024-11-29 20:38:45 +08:00
Alberto Cabrera Pérez
266b8519ee sycl : Reroute permuted mul_mats through oneMKL (#10408)
This PR fixes the failing MUL_MAT tests for the sycl backend.
2024-11-29 09:49:43 +00:00
Chenguang Li
938f608742 CANN: RoPE operator optimization (#10563)
* [cann] RoPE operator optimization

* [CANN]Code Formatting

---------

Co-authored-by: noemotiovon <noemotiovon@gmail.com>
2024-11-29 14:46:55 +08:00
Jeff Bolz
f095a649ec vulkan: get the first command buffer submitted sooner (#10499)
This is an incremental improvement over #9118 to get work to the GPU a bit
sooner. The first part is to start with a smaller number of nodes before
the first submit, and ramp it up to the current 100 nodes/submit. The
second part is to reduce the dryrun overhead for all the nodes that just
need to request descriptor space.

With these changes I get around 1-2% speedup on RTX 4070 combined with my
old Haswell-era CPU.
2024-11-29 07:18:02 +01:00
Ting Lou
678d7994f4 llava: return false instead of exit (#10546) 2024-11-29 01:09:46 +01:00
Georgi Gerganov
dc22344088 ggml : remove redundant copyright notice + update authors
Some checks failed
Python check requirements.txt / check-requirements (push) Has been cancelled
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
2024-11-28 20:46:40 +02:00
Georgi Gerganov
4c0a95b107 llama : add missing model types 2024-11-28 20:45:07 +02:00
Xuan Son Nguyen
6c59567689 server : (tests) don't use thread for capturing stdout/stderr, bump openai client library (#10568)
* server : (tests) don't use thread for capturing stdout/stderr

* test: bump openai to 1.55.2

* bump openai to 1.55.3
2024-11-28 19:17:49 +01:00
Johannes Gäßler
890719311b common: fix warning message when no GPU found (#10564) 2024-11-28 18:15:25 +01:00
Random Fly
7281cf13ad docs: fix outdated usage of llama-simple (#10565) 2024-11-28 16:03:11 +01:00
Diego Devesa
e90688edd0 ci : fix tag name in cuda and hip releases (#10566) 2024-11-28 15:58:54 +01:00
Georgi Gerganov
76b27d29c2 ggml : fix row condition for i8mm kernels (#10561)
ggml-ci
2024-11-28 14:56:37 +02:00
Georgi Gerganov
eea986f215 cmake : fix ARM feature detection (#10543)
ggml-ci
2024-11-28 14:56:23 +02:00
Shupei Fan
c202cef168 ggml-cpu: support IQ4_NL_4_4 by runtime repack (#10541)
* ggml-cpu: support IQ4_NL_4_4 by runtime repack

* ggml-cpu: add __ARM_FEATURE_DOTPROD guard
2024-11-28 13:52:03 +01:00
Sergio López
2025fa67e9 kompute : improve backend to pass test_backend_ops (#10542)
* kompute: op_unary: reject unsupported parameters

Signed-off-by: Sergio Lopez <slp@redhat.com>

* kompute: softmax: implement ALiBi support

Signed-off-by: Sergio Lopez <slp@redhat.com>

* kompute: rope: implement neox and phi3 support

Signed-off-by: Sergio Lopez <slp@redhat.com>

* kompute: op_mul_mat_q4_k permutted support

Signed-off-by: Sergio Lopez <slp@redhat.com>

* kompute: op_mul_mat_[q4_0|q4_1|q8_0] permutted support

Signed-off-by: Sergio Lopez <slp@redhat.com>

* kompute: op_mul_mat_f16 permutted support

Signed-off-by: Sergio Lopez <slp@redhat.com>

* kompute: op_mul_mat_q6_k permutted support

Signed-off-by: Sergio Lopez <slp@redhat.com>

---------

Signed-off-by: Sergio Lopez <slp@redhat.com>
2024-11-28 12:51:38 +01:00
Ruixin Huang
c6bc73951e CANN: Update cann.md to display correctly in CLion (#10538) 2024-11-28 15:27:11 +08:00
leo-pony
605fa66c50 CANN: Fix SOC_TYPE compile bug (#10519)
* CANN: Fix the bug build fail on Ascend310P under two cases:
1) Manual specify SOC_TYPE
2) Under some unusual compile environment

* Update the cann backend News content: Support F16 and F32 data type model for Ascend 310P NPU.

* fix CANN  compile fail bug: the assert in ascend kernel function doesn't supportted on some CANN version
2024-11-28 15:25:24 +08:00
Chenguang Li
b7420131bf CANN: ROPE operator optimization (#10540)
* [cann] ROPE operator optimization

Co-authored-by: noemotiovon <noemotiovon@gmail.com>
2024-11-28 14:24:46 +08:00
Xuan Son Nguyen
9f912511bc common : fix duplicated file name with hf_repo and hf_file (#10550)
Some checks are pending
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
2024-11-27 22:30:52 +01:00
uvos
3ad5451f3b Add some minimal optimizations for CDNA (#10498)
Some checks failed
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-musa.Dockerfile platforms:linux/amd64 tag:full-musa]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-musa.Dockerfile platforms:linux/amd64 tag:light-musa]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-musa.Dockerfile platforms:linux/amd64 tag:server-musa]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Has been cancelled
* Add some minimal optimizations for CDNA

* ggml_cuda: set launch bounds also for GCN as it helps there too
2024-11-27 17:10:08 +01:00
Diego Devesa
46c69e0e75 ci : faster CUDA toolkit installation method and use ccache (#10537)
* ci : faster CUDA toolkit installation method and use ccache

* remove fetch-depth

* only pack CUDA runtime on master
2024-11-27 11:03:25 +01:00
Georgi Gerganov
9e2301f4a4 metal : fix group_norm support condition (#0) 2024-11-27 11:22:14 +02:00
Georgi Gerganov
fee824a1a1 sync : ggml 2024-11-27 11:10:42 +02:00
Frankie Robertson
9150f8fef9 Do not include arm_neon.h when compiling CUDA code (ggml/1028) 2024-11-27 11:10:27 +02:00
Jeff Bolz
c31ed2abfc vulkan: define all quant data structures in types.comp (#10440) 2024-11-27 08:32:54 +01:00
Jeff Bolz
5b3466bedf vulkan: Handle GPUs with less shared memory (#10468)
There have been reports of failure to compile on systems with <= 32KB
of shared memory (e.g. #10037). This change makes the large tile size
fall back to a smaller size if necessary, and makes mul_mat_id fall
back to CPU if there's only 16KB of shared memory.
2024-11-27 08:30:27 +01:00
Jeff Bolz
249a7902ec vulkan: further optimize q5_k mul_mat_vec (#10479) 2024-11-27 08:21:59 +01:00
Jeff Bolz
71a64989a5 vulkan: skip integer div/mod in get_offsets for batch_idx==0 (#10506) 2024-11-27 08:08:54 +01:00
Jeff Bolz
4a57d362e1 vulkan: optimize Q2_K and Q3_K mul_mat_vec (#10459) 2024-11-27 08:00:50 +01:00
303 changed files with 30865 additions and 35171 deletions

View File

@@ -17,8 +17,10 @@ Checks: >
-clang-analyzer-security.insecureAPI.DeprecatedOrUnsafeBufferHandling,
performance-*,
portability-*,
-portability-simd-intrinsics,
misc-*,
-misc-const-correctness,
-misc-non-private-member-variables-in-classes,
-misc-no-recursion,
-misc-use-anonymous-namespace,
FormatStyle: none

View File

@@ -3,23 +3,36 @@ ARG UBUNTU_VERSION=22.04
FROM ubuntu:$UBUNTU_VERSION AS build
RUN apt-get update && \
apt-get install -y build-essential python3 python3-pip git libcurl4-openssl-dev libgomp1
COPY requirements.txt requirements.txt
COPY requirements requirements
RUN pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt
apt-get install -y build-essential git cmake libcurl4-openssl-dev
WORKDIR /app
COPY . .
ENV LLAMA_CURL=1
RUN cmake -S . -B build -DGGML_BACKEND_DL=ON -DGGML_NATIVE=OFF -DGGML_CPU_ALL_VARIANTS=ON -DLLAMA_CURL=ON -DCMAKE_BUILD_TYPE=Release && \
cmake --build build -j $(nproc) && \
mkdir -p /app/lib && \
find build -name "*.so" -exec cp {} /app/lib/ \;
FROM ubuntu:$UBUNTU_VERSION as runtime
RUN make -j$(nproc)
WORKDIR /app
RUN apt-get update && \
apt-get install -y build-essential python3 python3-pip git libcurl4-openssl-dev libgomp1
COPY requirements.txt /app/requirements.txt
COPY requirements /app/requirements
COPY .devops/tools.sh /app/tools.sh
RUN pip install --upgrade pip setuptools wheel && \
pip install -r /app/requirements.txt
COPY --from=build /app/build/bin/ /app/
COPY --from=build /app/lib/ /app/
COPY --from=build /app/convert_hf_to_gguf.py /app/
COPY --from=build /app/gguf-py /app/gguf-py
ENV LC_ALL=C.utf8
ENTRYPOINT ["/app/.devops/tools.sh"]
ENTRYPOINT ["/app/tools.sh"]

View File

@@ -3,21 +3,27 @@ ARG UBUNTU_VERSION=22.04
FROM ubuntu:$UBUNTU_VERSION AS build
RUN apt-get update && \
apt-get install -y build-essential git
apt-get install -y build-essential git cmake libcurl4-openssl-dev
WORKDIR /app
COPY . .
RUN make -j$(nproc) llama-cli
RUN cmake -S . -B build -DGGML_BACKEND_DL=ON -DGGML_NATIVE=OFF -DGGML_CPU_ALL_VARIANTS=ON -DLLAMA_CURL=ON -DCMAKE_BUILD_TYPE=Release && \
cmake --build build -j $(nproc) && \
mkdir -p /app/lib && \
find build -name "*.so" -exec cp {} /app/lib/ \;
FROM ubuntu:$UBUNTU_VERSION AS runtime
RUN apt-get update && \
apt-get install -y libgomp1
WORKDIR /app
COPY --from=build /app/llama-cli /llama-cli
RUN apt-get update && \
apt-get install -y libcurl4-openssl-dev libgomp1 curl
COPY --from=build /app/build/bin/llama-cli /app/
COPY --from=build /app/lib/ /app/
ENV LC_ALL=C.utf8
ENTRYPOINT [ "/llama-cli" ]
ENTRYPOINT [ "/app/llama-cli" ]

View File

@@ -3,22 +3,26 @@ ARG UBUNTU_VERSION=22.04
FROM ubuntu:$UBUNTU_VERSION AS build
RUN apt-get update && \
apt-get install -y build-essential git libcurl4-openssl-dev
apt-get install -y build-essential git cmake libcurl4-openssl-dev
WORKDIR /app
COPY . .
ENV LLAMA_CURL=1
RUN make -j$(nproc) llama-server
RUN cmake -S . -B build -DGGML_BACKEND_DL=ON -DGGML_NATIVE=OFF -DGGML_CPU_ALL_VARIANTS=ON -DLLAMA_CURL=ON -DCMAKE_BUILD_TYPE=Release && \
cmake --build build -j $(nproc) && \
mkdir -p /app/lib && \
find build -name "*.so" -exec cp {} /app/lib/ \;
FROM ubuntu:$UBUNTU_VERSION AS runtime
WORKDIR /app
RUN apt-get update && \
apt-get install -y libcurl4-openssl-dev libgomp1 curl
COPY --from=build /app/llama-server /llama-server
COPY --from=build /app/build/bin/llama-server /app/
COPY --from=build /app/lib/ /app/
ENV LC_ALL=C.utf8
# Must be set to 0.0.0.0 so it can listen to requests from host machine
@@ -26,4 +30,4 @@ ENV LLAMA_ARG_HOST=0.0.0.0
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
ENTRYPOINT [ "/llama-server" ]
ENTRYPOINT [ "/app/llama-server" ]

View File

@@ -31,6 +31,7 @@
# Increases the runtime closure size by ~700M
useMpi ? false,
useRocm ? config.rocmSupport,
rocmGpuTargets ? builtins.concatStringsSep ";" rocmPackages.clr.gpuTargets,
enableCurl ? true,
useVulkan ? false,
llamaVersion ? "0.0.0", # Arbitrary version, substituted by the flake
@@ -188,7 +189,7 @@ effectiveStdenv.mkDerivation (finalAttrs: {
]
++ optionals useRocm [
(cmakeFeature "CMAKE_HIP_COMPILER" "${rocmPackages.llvm.clang}/bin/clang")
(cmakeFeature "CMAKE_HIP_ARCHITECTURES" (builtins.concatStringsSep ";" rocmPackages.clr.gpuTargets))
(cmakeFeature "CMAKE_HIP_ARCHITECTURES" rocmGpuTargets)
]
++ optionals useMetalKit [
(lib.cmakeFeature "CMAKE_C_FLAGS" "-D__ARM_FEATURE_DOTPROD=1")

View File

@@ -8,11 +8,11 @@ arg1="$1"
shift
if [[ "$arg1" == '--convert' || "$arg1" == '-c' ]]; then
python3 ./convert_hf_to_gguf.py "$@"
exec python3 ./convert_hf_to_gguf.py "$@"
elif [[ "$arg1" == '--quantize' || "$arg1" == '-q' ]]; then
./llama-quantize "$@"
exec ./llama-quantize "$@"
elif [[ "$arg1" == '--run' || "$arg1" == '-r' ]]; then
./llama-cli "$@"
exec ./llama-cli "$@"
elif [[ "$arg1" == '--all-in-one' || "$arg1" == '-a' ]]; then
echo "Converting PTH to GGML..."
for i in `ls $1/$2/ggml-model-f16.bin*`; do
@@ -20,11 +20,11 @@ elif [[ "$arg1" == '--all-in-one' || "$arg1" == '-a' ]]; then
echo "Skip model quantization, it already exists: ${i/f16/q4_0}"
else
echo "Converting PTH to GGML: $i into ${i/f16/q4_0}..."
./llama-quantize "$i" "${i/f16/q4_0}" q4_0
exec ./llama-quantize "$i" "${i/f16/q4_0}" q4_0
fi
done
elif [[ "$arg1" == '--server' || "$arg1" == '-s' ]]; then
./llama-server "$@"
exec ./llama-server "$@"
else
echo "Unknown command: $arg1"
echo "Available commands: "

View File

@@ -1,7 +1 @@
- [x] I have read the [contributing guidelines](https://github.com/ggerganov/llama.cpp/blob/master/CONTRIBUTING.md)
- Self-reported review complexity:
- [ ] Low
- [ ] Medium
- [ ] High
*Make sure to read the [contributing guidelines](https://github.com/ggerganov/llama.cpp/blob/master/CONTRIBUTING.md) before submitting a PR*

View File

@@ -160,66 +160,6 @@ jobs:
path: llama-${{ steps.tag.outputs.name }}-bin-macos-x64.zip
name: llama-bin-macos-x64.zip
ubuntu-focal-make:
runs-on: ubuntu-20.04
env:
LLAMA_NODE_AVAILABLE: true
LLAMA_PYTHON_AVAILABLE: true
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Dependencies
id: depends
run: |
sudo apt-get update
sudo apt-get install build-essential gcc-8
- uses: actions/setup-node@v4
with:
node-version: "20"
- uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Build
id: make_build
env:
LLAMA_FATAL_WARNINGS: 1
run: |
CC=gcc-8 make -j $(nproc)
- name: Test
id: make_test
run: |
CC=gcc-8 make tests -j $(nproc)
make test -j $(nproc)
ubuntu-focal-make-curl:
runs-on: ubuntu-20.04
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Dependencies
id: depends
run: |
sudo apt-get update
sudo apt-get install build-essential gcc-8 libcurl4-openssl-dev
- name: Build
id: make_build
env:
LLAMA_FATAL_WARNINGS: 1
LLAMA_CURL: 1
run: |
CC=gcc-8 make -j $(nproc)
ubuntu-latest-cmake:
runs-on: ubuntu-latest
@@ -377,7 +317,7 @@ jobs:
wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | sudo apt-key add -
sudo wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list
sudo apt-get update -y
sudo apt-get install -y build-essential vulkan-sdk
sudo apt-get install -y build-essential mesa-vulkan-drivers vulkan-sdk
- name: Build
id: cmake_build
@@ -387,6 +327,12 @@ jobs:
cmake -DGGML_VULKAN=ON ..
cmake --build . --config Release -j $(nproc)
- name: Test
id: cmake_test
run: |
cd build
ctest -L main --verbose --timeout 900
ubuntu-22-cmake-hip:
runs-on: ubuntu-22.04
container: rocm/dev-ubuntu-22.04:6.0.2
@@ -517,36 +463,6 @@ jobs:
cmake -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON ..
cmake --build . --config Release -j $(nproc)
# TODO: build with GGML_NO_METAL because test-backend-ops fail on "Apple Paravirtual device" and I don't know
# how to debug it.
# ref: https://github.com/ggerganov/llama.cpp/actions/runs/7131777249/job/19420981052#step:5:1124
macOS-latest-make:
runs-on: macos-latest
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Dependencies
id: depends
continue-on-error: true
run: |
brew update
- name: Build
id: make_build
env:
LLAMA_FATAL_WARNINGS: 1
run: |
GGML_NO_METAL=1 make -j $(sysctl -n hw.logicalcpu)
- name: Test
id: make_test
run: |
GGML_NO_METAL=1 make tests -j $(sysctl -n hw.logicalcpu)
GGML_NO_METAL=1 make test -j $(sysctl -n hw.logicalcpu)
# TODO: build with GGML_METAL=OFF because test-backend-ops fail on "Apple Paravirtual device" and I don't know
# how to debug it.
# ref: https://github.com/ggerganov/llama.cpp/actions/runs/7132125951/job/19422043567?pr=4359#step:5:6584
@@ -660,15 +576,26 @@ jobs:
run: |
brew update
- name: Build llama.cpp with CMake
id: cmake_build
run: |
sysctl -a
mkdir build
cd build
cmake -G Xcode .. \
-DGGML_METAL_USE_BF16=ON \
-DGGML_METAL_EMBED_LIBRARY=ON \
-DLLAMA_BUILD_EXAMPLES=OFF \
-DLLAMA_BUILD_TESTS=OFF \
-DLLAMA_BUILD_SERVER=OFF \
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64"
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu)
sudo cmake --install . --config Release
- name: xcodebuild for swift package
id: xcodebuild
run: |
xcodebuild -scheme llama -destination "${{ matrix.destination }}"
- name: Build Swift Example
id: make_build_swift_example
run: |
make swift
xcodebuild -scheme llama-Package -destination "${{ matrix.destination }}"
windows-msys2:
runs-on: windows-latest
@@ -695,21 +622,6 @@ jobs:
mingw-w64-${{matrix.env}}-cmake
mingw-w64-${{matrix.env}}-openblas
- name: Build using make
shell: msys2 {0}
run: |
make -j $(nproc)
- name: Clean after building using make
shell: msys2 {0}
run: |
make clean
- name: Build using make w/ OpenBLAS
shell: msys2 {0}
run: |
make GGML_OPENBLAS=1 -j $(nproc)
- name: Build using CMake
shell: msys2 {0}
run: |
@@ -756,6 +668,8 @@ jobs:
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DBUILD_SHARED_LIBS=ON'
- build: 'msvc-arm64'
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-msvc.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DBUILD_SHARED_LIBS=ON'
- build: 'llvm-arm64-opencl-adreno'
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON'
steps:
- name: Clone
@@ -797,6 +711,28 @@ jobs:
run: |
choco install ninja
- name: Install OpenCL Headers and Libs
id: install_opencl
if: ${{ matrix.build == 'llvm-arm64-opencl-adreno' }}
run: |
git clone https://github.com/KhronosGroup/OpenCL-Headers
cd OpenCL-Headers
mkdir build && cd build
cmake .. `
-DBUILD_TESTING=OFF `
-DOPENCL_HEADERS_BUILD_TESTING=OFF `
-DOPENCL_HEADERS_BUILD_CXX_TESTS=OFF `
-DCMAKE_INSTALL_PREFIX="$env:RUNNER_TEMP/opencl-arm64-release"
cmake --build . --target install
git clone https://github.com/KhronosGroup/OpenCL-ICD-Loader
cd OpenCL-ICD-Loader
mkdir build-arm64-release && cd build-arm64-release
cmake .. `
-A arm64 `
-DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" `
-DCMAKE_INSTALL_PREFIX="$env:RUNNER_TEMP/opencl-arm64-release"
cmake --build . --target install --config release
- name: Build
id: cmake_build
run: |
@@ -826,7 +762,7 @@ jobs:
- name: Test
id: cmake_test
# not all machines have native AVX-512
if: ${{ matrix.build != 'msvc-arm64' && matrix.build != 'llvm-arm64' && matrix.build != 'kompute-x64' && matrix.build != 'vulkan-x64' && (matrix.build != 'avx512-x64' || env.HAS_AVX512F == '1') }}
if: ${{ matrix.build != 'msvc-arm64' && matrix.build != 'llvm-arm64' && matrix.build != 'llvm-arm64-opencl-adreno' && matrix.build != 'kompute-x64' && matrix.build != 'vulkan-x64' && (matrix.build != 'avx512-x64' || env.HAS_AVX512F == '1') }}
run: |
cd build
ctest -L main -C Release --verbose --timeout 900
@@ -892,26 +828,81 @@ jobs:
cmake -S . -B build -G Ninja -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DGGML_CUDA=ON -DCMAKE_CUDA_ARCHITECTURES=89-real -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined -DLLAMA_FATAL_WARNINGS=ON
cmake --build build
windows-latest-cmake-cuda:
runs-on: windows-latest
windows-2019-cmake-cuda:
runs-on: windows-2019
strategy:
matrix:
cuda: ['12.6.2']
cuda: ['12.4', '11.7']
build: ['cuda']
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Install CUDA toolkit
id: cuda-toolkit
uses: Jimver/cuda-toolkit@v0.2.19
with:
cuda: ${{ matrix.cuda }}
method: 'network'
sub-packages: '["nvcc", "cudart", "cublas", "cublas_dev", "thrust", "visual_studio_integration"]'
fetch-depth: 0
- name: Install Cuda Toolkit 11.7
if: ${{ matrix.cuda == '11.7' }}
run: |
mkdir -p "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7"
choco install unzip -y
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_cudart/windows-x86_64/cuda_cudart-windows-x86_64-11.7.99-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvcc/windows-x86_64/cuda_nvcc-windows-x86_64-11.7.99-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvrtc/windows-x86_64/cuda_nvrtc-windows-x86_64-11.7.99-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/libcublas/windows-x86_64/libcublas-windows-x86_64-11.7.4.6-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvtx/windows-x86_64/cuda_nvtx-windows-x86_64-11.7.91-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/visual_studio_integration/windows-x86_64/visual_studio_integration-windows-x86_64-11.7.91-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvprof/windows-x86_64/cuda_nvprof-windows-x86_64-11.7.101-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_cccl/windows-x86_64/cuda_cccl-windows-x86_64-11.7.91-archive.zip"
unzip '*.zip' -d "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7"
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\cuda_cudart-windows-x86_64-11.7.99-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\cuda_nvcc-windows-x86_64-11.7.99-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\cuda_nvrtc-windows-x86_64-11.7.99-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\libcublas-windows-x86_64-11.7.4.6-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\cuda_nvtx-windows-x86_64-11.7.91-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\visual_studio_integration-windows-x86_64-11.7.91-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\cuda_nvprof-windows-x86_64-11.7.101-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\cuda_cccl-windows-x86_64-11.7.91-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" /E /I /H /Y
echo "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\libnvvp" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "CUDA_PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" | Out-File -FilePath $env:GITHUB_ENV -Append -Encoding utf8
echo "CUDA_PATH_V11_7=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" | Out-File -FilePath $env:GITHUB_ENV -Append -Encoding utf8
- name: Install Cuda Toolkit 12.4
if: ${{ matrix.cuda == '12.4' }}
run: |
mkdir -p "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4"
choco install unzip -y
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_cudart/windows-x86_64/cuda_cudart-windows-x86_64-12.4.127-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvcc/windows-x86_64/cuda_nvcc-windows-x86_64-12.4.131-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvrtc/windows-x86_64/cuda_nvrtc-windows-x86_64-12.4.127-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/libcublas/windows-x86_64/libcublas-windows-x86_64-12.4.5.8-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvtx/windows-x86_64/cuda_nvtx-windows-x86_64-12.4.127-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_profiler_api/windows-x86_64/cuda_profiler_api-windows-x86_64-12.4.127-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/visual_studio_integration/windows-x86_64/visual_studio_integration-windows-x86_64-12.4.127-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvprof/windows-x86_64/cuda_nvprof-windows-x86_64-12.4.127-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_cccl/windows-x86_64/cuda_cccl-windows-x86_64-12.4.127-archive.zip"
unzip '*.zip' -d "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4"
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\cuda_cudart-windows-x86_64-12.4.127-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\cuda_nvcc-windows-x86_64-12.4.131-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\cuda_nvrtc-windows-x86_64-12.4.127-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\libcublas-windows-x86_64-12.4.5.8-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\cuda_nvtx-windows-x86_64-12.4.127-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\cuda_profiler_api-windows-x86_64-12.4.127-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\visual_studio_integration-windows-x86_64-12.4.127-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\cuda_nvprof-windows-x86_64-12.4.127-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\cuda_cccl-windows-x86_64-12.4.127-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" /E /I /H /Y
echo "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\libnvvp" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "CUDA_PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" | Out-File -FilePath $env:GITHUB_ENV -Append -Encoding utf8
echo "CUDA_PATH_V12_4=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" | Out-File -FilePath $env:GITHUB_ENV -Append -Encoding utf8
- name: Install ccache
uses: hendrikmuhs/ccache-action@v1.2
with:
key: ${{ github.job }}-${{ matrix.cuda }}-${{ matrix.build }}
- name: Install Ninja
id: install_ninja
@@ -922,44 +913,12 @@ jobs:
id: cmake_build
shell: cmd
run: |
call "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvars64.bat"
cmake -S . -B build -G "Ninja Multi-Config" -DGGML_NATIVE=OFF -DGGML_CUDA=ON -DBUILD_SHARED_LIBS=ON -DGGML_RPC=ON -DCMAKE_CUDA_ARCHITECTURES=89-real
cmake --build build --config Release -t ggml-cuda
call "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\VC\Auxiliary\Build\vcvars64.bat"
cmake -S . -B build -G "Ninja Multi-Config" -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_CUDA=ON -DBUILD_SHARED_LIBS=ON -DGGML_RPC=ON
set /A NINJA_JOBS=%NUMBER_OF_PROCESSORS%-1
cmake --build build --config Release -j %NINJA_JOBS% -t ggml
cmake --build build --config Release
windows-2019-cmake-cuda:
runs-on: windows-2019
if: ${{ github.event_name == 'push' && github.ref == 'refs/heads/master' }}
strategy:
matrix:
cuda: ['12.2.0', '11.7.1']
build: ['cuda']
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Install CUDA toolkit
id: cuda-toolkit
uses: Jimver/cuda-toolkit@v0.2.15
with:
cuda: ${{ matrix.cuda }}
method: 'network'
sub-packages: '["nvcc", "cudart", "cublas", "cublas_dev", "thrust", "visual_studio_integration"]'
- name: Build
id: cmake_build
run: |
mkdir build
cd build
cmake .. -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_CUDA=ON -DBUILD_SHARED_LIBS=ON -DGGML_RPC=ON
cmake --build . --config Release -j $((${env:NUMBER_OF_PROCESSORS} - 1)) -t ggml
cmake --build . --config Release -j ${env:NUMBER_OF_PROCESSORS}
- name: Determine tag name
id: tag
shell: bash
@@ -987,10 +946,12 @@ jobs:
name: llama-bin-win-cu${{ matrix.cuda }}-x64.zip
- name: Copy and pack Cuda runtime
if: ${{ github.event_name == 'push' && github.ref == 'refs/heads/master' }}
run: |
echo "Cuda install location: ${{steps.cuda-toolkit.outputs.CUDA_PATH}}"
echo "Cuda install location: ${{ env.CUDA_PATH }}"
$dst='.\build\bin\cudart\'
robocopy "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin" $dst cudart64_*.dll cublas64_*.dll cublasLt64_*.dll
robocopy "${{env.CUDA_PATH}}\bin" $dst cudart64_*.dll cublas64_*.dll cublasLt64_*.dll
robocopy "${{env.CUDA_PATH}}\lib" $dst cudart64_*.dll cublas64_*.dll cublasLt64_*.dll
7z a cudart-llama-bin-win-cu${{ matrix.cuda }}-x64.zip $dst\*
- name: Upload Cuda runtime
@@ -1096,6 +1057,11 @@ jobs:
run: |
& 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' --version
- name: Install ccache
uses: hendrikmuhs/ccache-action@v1.2
with:
key: ${{ github.job }}
- name: Build
id: cmake_build
run: |
@@ -1116,6 +1082,8 @@ jobs:
- name: Clone
id: checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Install
id: depends
@@ -1175,6 +1143,29 @@ jobs:
- name: Checkout code
uses: actions/checkout@v4
- name: Build
id: cmake_build
run: |
sysctl -a
mkdir build
cd build
cmake -G Xcode .. \
-DGGML_METAL_USE_BF16=ON \
-DGGML_METAL_EMBED_LIBRARY=ON \
-DLLAMA_BUILD_EXAMPLES=OFF \
-DLLAMA_BUILD_TESTS=OFF \
-DLLAMA_BUILD_SERVER=OFF \
-DCMAKE_SYSTEM_NAME=iOS \
-DCMAKE_OSX_DEPLOYMENT_TARGET=14.0 \
-DCMAKE_XCODE_ATTRIBUTE_DEVELOPMENT_TEAM=ggml
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu) -- CODE_SIGNING_ALLOWED=NO
sudo cmake --install . --config Release
- name: xcodebuild for swift package
id: xcodebuild
run: |
xcodebuild -scheme llama-Package -destination 'generic/platform=iOS'
- name: Build Xcode project
run: xcodebuild -project examples/llama.swiftui/llama.swiftui.xcodeproj -scheme llama.swiftui -sdk iphoneos CODE_SIGNING_REQUIRED=NO CODE_SIGN_IDENTITY= -destination 'generic/platform=iOS' build
@@ -1202,32 +1193,13 @@ jobs:
./gradlew build --no-daemon
# freeBSD-latest:
# runs-on: macos-12
# steps:
# - name: Clone
# uses: actions/checkout@v4
#
# - name: Build
# uses: cross-platform-actions/action@v0.19.0
# with:
# operating_system: freebsd
# version: '13.2'
# hypervisor: 'qemu'
# run: |
# sudo pkg update
# sudo pkg install -y gmake automake autoconf pkgconf llvm15 openblas
# gmake CC=/usr/local/bin/clang15 CXX=/usr/local/bin/clang++15 -j `sysctl -n hw.ncpu`
release:
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
runs-on: ubuntu-latest
needs:
- ubuntu-focal-make
- ubuntu-latest-cmake
- macOS-latest-make
- macOS-latest-cmake
- windows-latest-cmake
- windows-2019-cmake-cuda

View File

@@ -76,20 +76,26 @@ jobs:
run: |
pip install -r examples/server/tests/requirements.txt
- name: Verify server deps
id: verify_server_deps
# Setup nodejs (to be used for verifying bundled index.html)
- uses: actions/setup-node@v4
with:
node-version: '22.11.0'
- name: Verify bundled index.html
id: verify_server_index_html
run: |
git config --global --add safe.directory $(realpath .)
cd examples/server
git ls-files --others --modified
cd examples/server/webui
git status
./deps.sh
npm ci
npm run build
git status
not_ignored_files="$(git ls-files --others --modified)"
echo "Modified files: ${not_ignored_files}"
if [ -n "${not_ignored_files}" ]; then
echo "Repository is dirty or server deps are not built as expected"
echo "${not_ignored_files}"
modified_files="$(git status -s)"
echo "Modified files: ${modified_files}"
if [ -n "${modified_files}" ]; then
echo "Repository is dirty or server/webui is not built as expected"
echo "Hint: You may need to follow Web UI build guide in server/README.md"
echo "${modified_files}"
exit 1
fi

4
.gitignore vendored
View File

@@ -104,6 +104,10 @@ examples/server/*.mjs.hpp
!examples/sycl/*.bat
!examples/sycl/*.sh
# Server Web UI temporary files
node_modules
examples/server/webui/dist
# Python
/.venv

186
AUTHORS
View File

@@ -1,4 +1,4 @@
# date: Wed Jun 26 19:36:34 EEST 2024
# date: Thu Nov 28 20:46:15 EET 2024
# this file is auto-generated by scripts/gen-authors.sh
0cc4m <picard12@live.de>
@@ -7,6 +7,7 @@
2f38b454 <dxf@protonmail.com>
3ooabkhxtn <31479382+3ooabkhxtn@users.noreply.github.com>
44670 <44670@users.noreply.github.com>
65a <10104049+65a@users.noreply.github.com>
AN Long <aisk@users.noreply.github.com>
AT <manyoso@users.noreply.github.com>
Aarni Koskela <akx@iki.fi>
@@ -19,20 +20,28 @@ Adithya Balaji <adithya.b94@gmail.com>
AdithyanI <adithyan.i4internet@gmail.com>
Adrian <smith.adriane@gmail.com>
Adrian Hesketh <a-h@users.noreply.github.com>
Ahmad Tameem <113388789+Tameem-10xE@users.noreply.github.com>
Ahmet Zeer <ahmed.zeer@std.yildiz.edu.tr>
AidanBeltonS <87009434+AidanBeltonS@users.noreply.github.com>
AidanBeltonS <aidan.belton@codeplay.com>
Aisuko <urakiny@gmail.com>
Akarshan Biswas <akarshan.biswas@gmail.com>
Akarshan Biswas <akarshanbiswas@fedoraproject.org>
Al Mochkin <14274697+amochkin@users.noreply.github.com>
Albert Jin <albert.jin@gmail.com>
Alberto <57916483+albbus-stack@users.noreply.github.com>
Alberto Cabrera Pérez <alberto.cabrera@codeplay.com>
Alberto Cabrera Pérez <alberto.cabrera@intel.com>
Alex <awhill19@icloud.com>
Alex Azarov <alex@azarov.by>
Alex Azarov <alexander.azarov@mapbox.com>
Alex Klinkhamer <from.github.com.917@grencez.dev>
Alex Klinkhamer <git@grencez.dev>
Alex Nguyen <tiendung@users.noreply.github.com>
Alex O'Connell <35843486+acon96@users.noreply.github.com>
Alex Petenchea <alex.petenchea@gmail.com>
Alex Renda <alexrenda@users.noreply.github.com>
Alex Tuddenham <61622354+AlexsCode@users.noreply.github.com>
Alex von Gluck IV <kallisti5@unixzen.com>
Alexey Parfenov <zxed@alkatrazstudio.net>
Ali Chraghi <63465728+alichraghi@users.noreply.github.com>
@@ -45,18 +54,25 @@ AmirAli Mirian <37371367+amiralimi@users.noreply.github.com>
Ananta Bastola <anantarajbastola@gmail.com>
Anas Ahouzi <112881240+aahouzi@users.noreply.github.com>
András Salamon <ott2@users.noreply.github.com>
Andreas (Andi) Kunar <andreask@msn.com>
Andrei <abetlen@gmail.com>
Andrew Canis <andrew.canis@gmail.com>
Andrew Downing <andrew2085@gmail.com>
Andrew Duffy <a10y@users.noreply.github.com>
Andrew Godfrey <AndrewGodfrey@users.noreply.github.com>
Andrew Minh Nguyen <40281306+amqdn@users.noreply.github.com>
Andy Salerno <andysalerno@gmail.com>
Andy Tai <andy-tai@users.noreply.github.com>
Anthony Van de Gejuchte <anthonyvdgent@gmail.com>
Antonis Makropoulos <benuix@gmail.com>
Arik Poznanski <arikpoz@users.noreply.github.com>
Armen Kaleshian <kriation@users.noreply.github.com>
Artem <guinmoon@gmail.com>
Artem Zinnatullin <ceo@abstractny.gay>
Artyom Lebedev <vagran.ast@gmail.com>
Asbjørn Olling <asbjornolling@gmail.com>
Ásgeir Bjarni Ingvarsson <asgeir@fundinn.org>
Asghar Ghorbani <a-ghorbani@users.noreply.github.com>
Ashish <1856117+ashishdatta@users.noreply.github.com>
Ashok Gelal <401055+ashokgelal@users.noreply.github.com>
Ashraful Islam <ashraful.meche@gmail.com>
@@ -76,12 +92,16 @@ Ben Williams <ben@719ben.com>
Benjamin Findley <39356821+Kartoffelsaft@users.noreply.github.com>
Benjamin Lecaillon <84293038+blecaillon@users.noreply.github.com>
Bernat Vadell <hounter.caza@gmail.com>
Bert Wagner <github@bertwagner.com>
Bingan <70050083+binganao@users.noreply.github.com>
Bjarke Viksøe <164612031+bviksoe@users.noreply.github.com>
Bodo Graumann <mail@bodograumann.de>
Bono Lv <lvscar@users.noreply.github.com>
Borislav Stanimirov <b.stanimirov@abv.bg>
Branden Butler <bwtbutler@hotmail.com>
Brandon Squizzato <35474886+bsquizz@users.noreply.github.com>
Brian <mofosyne@gmail.com>
Brian Cunnie <brian.cunnie@gmail.com>
Bruce MacDonald <brucewmacdonald@gmail.com>
Bryan Honof <bryanhonof@gmail.com>
CJ Pais <cj@cjpais.com>
@@ -90,32 +110,47 @@ Calvin Laurenson <calvin@laurenson.dev>
Cameron <csteele@steelecameron.com>
Cameron Kaiser <classilla@users.noreply.github.com>
Carolinabanana <140120812+Carolinabanana@users.noreply.github.com>
CarryFun <76023481+CarryFun@users.noreply.github.com>
Carsten Kragelund Jørgensen <carsten@kragelund.me>
CarterLi999 <664681047@qq.com>
Casey Primozic <casey@cprimozic.net>
Casey Primozic <me@ameo.link>
CausalLM <148736309+CausalLM@users.noreply.github.com>
Cebtenzzre <cebtenzzre@gmail.com>
Chad Brewbaker <crb002@gmail.com>
Changyeon Kim <cyzero.kim@samsung.com>
Chao Jiang <jc19chaoj@zoho.com>
Charles Xu <63788048+chaxu01@users.noreply.github.com>
Charles Xu <charles.xu@arm.com>
Chen Xi <xi2.chen@intel.com>
Chen Xi <xixichen08@foxmail.com>
Cheng Shao <terrorjack@type.dance>
Chenguang Li <87689256+noemotiovon@users.noreply.github.com>
Chris Elrod <elrodc@gmail.com>
Chris Kuehl <ckuehl@ckuehl.me>
Christian Demsar <christian@github.email.demsar.us>
Christian Demsar <crasm@git.vczf.us>
Christian Falch <875252+chrfalch@users.noreply.github.com>
Christian Kögler <ck3d@gmx.de>
Christian Köhnenkamp <cvk5@me.com>
Christian Zhou-Zheng <59622928+christianazinn@users.noreply.github.com>
Clark Saben <76020733+csaben@users.noreply.github.com>
Clint Herron <hanclinto@gmail.com>
Conrad Kramer <conrad@conradkramer.com>
CrispStrobe <154636388+CrispStrobe@users.noreply.github.com>
Csaba Kecskemeti <csaba.kecskemeti@gmail.com>
Cuong Trinh Manh <nguoithichkhampha@gmail.com>
DAN™ <dranger003@gmail.com>
Damian Stewart <d@damianstewart.com>
Dan Johansson <164997844+eddnjjn@users.noreply.github.com>
Dan Johansson <dan.johansson@arm.com>
Dane Madsen <dane_madsen@hotmail.com>
DaniAndTheWeb <57776841+DaniAndTheWeb@users.noreply.github.com>
Daniel Bevenius <daniel.bevenius@gmail.com>
Daniel Drake <drake@endlessos.org>
Daniel Hiltgen <dhiltgen@users.noreply.github.com>
Daniel Illescas Romero <illescas.daniel@protonmail.com>
Daniel Kleine <53251018+d-kleine@users.noreply.github.com>
Daniele <57776841+daniandtheweb@users.noreply.github.com>
DannyDaemonic <DannyDaemonic@gmail.com>
Dat Quoc Nguyen <2412555+datquocnguyen@users.noreply.github.com>
@@ -129,19 +164,28 @@ David Pflug <david@pflug.email>
David Renshaw <dwrenshaw@gmail.com>
David Sommers <12738+databyte@users.noreply.github.com>
David Yang <davidyang6us@gmail.com>
DavidKorczynski <david@adalogics.com>
Dawid Potocki <github@dawidpotocki.com>
Dawid Wysocki <62249621+TortillaZHawaii@users.noreply.github.com>
Dean <Dean.Sinaean@gmail.com>
Deins <deinsegle@gmail.com>
Denis Spasyuk <34203011+dspasyuk@users.noreply.github.com>
Derrick T. Woolworth <dwoolworth@gmail.com>
Deven Mistry <31466137+deven367@users.noreply.github.com>
Dibakar Gope <dibakar.gope@arm.com>
Didzis Gosko <didzis@users.noreply.github.com>
Diego Devesa <slarengh@gmail.com>
Diogo Teles Sant'Anna <diogoteles@google.com>
Djip007 <djip.perois@free.fr>
Don Mahurin <dmahurin@users.noreply.github.com>
DooWoong Lee (David) <manics99@naver.com>
Doomsdayrs <38189170+Doomsdayrs@users.noreply.github.com>
Dou Xinpeng <15529241576@163.com>
Dou Xinpeng <81913537+Dou-Git@users.noreply.github.com>
Douglas Hanley <thesecretaryofwar@gmail.com>
Dr. Tom Murphy VII Ph.D <499244+tom7@users.noreply.github.com>
Ebey Abraham <ebey97@gmail.com>
Echo Nolan <echo@echonolan.net>
Ed Lee <edilee@mozilla.com>
Ed Lepedus <ed.lepedus@googlemail.com>
Eddie-Wang <wangjinheng1120@163.com>
@@ -151,10 +195,13 @@ Elbios <141279586+Elbios@users.noreply.github.com>
Elton Kola <eltonkola@gmail.com>
Engininja2 <139037756+Engininja2@users.noreply.github.com>
Equim <sayaka@ekyu.moe>
Eric Curtin <ecurtin@redhat.com>
Eric Curtin <ericcurtin17@gmail.com>
Eric Sommerlade <es0m@users.noreply.github.com>
Eric Zhang <34133756+EZForever@users.noreply.github.com>
Erik Garrison <erik.garrison@gmail.com>
Erik Scholz <Green-Sky@users.noreply.github.com>
Esko Toivonen <eskot98@gmail.com>
Ettore Di Giacinto <mudler@users.noreply.github.com>
Evan Jones <evan.q.jones@gmail.com>
Evan Miller <emmiller@gmail.com>
@@ -166,19 +213,26 @@ FK <sozforex@gmail.com>
Fabian <cmdrf@users.noreply.github.com>
Fabio R. Sluzala <Fabio3rs@users.noreply.github.com>
Faez Shakil <faez.shakil@gmail.com>
Faisal Zaghloul <faisal.zaghloul@gmail.com>
Faisal Zaghloul <quic_fzaghlou@quicinc.com>
Fan Shupei <dymarkfan@outlook.com>
FantasyGmm <16450052+FantasyGmm@users.noreply.github.com>
Farbod Bijary <110523279+farbodbj@users.noreply.github.com>
Fattire <528174+fat-tire@users.noreply.github.com>
Felix <stenbackfelix@gmail.com>
Finn Voorhees <finnvoorhees@gmail.com>
Firat <firatkiral@gmail.com>
FirstTimeEZ <179362031+FirstTimeEZ@users.noreply.github.com>
Folko-Ven <71110216+Folko-Ven@users.noreply.github.com>
Foul-Tarnished <107711110+Foul-Tarnished@users.noreply.github.com>
Francisco Melo <43780565+francis2tm@users.noreply.github.com>
Frank Mai <thxcode0824@gmail.com>
FrankHB <frankhb1989@gmail.com>
Frankie Robertson <frankier@users.noreply.github.com>
Fred Douglas <43351173+fredlas@users.noreply.github.com>
Frederik Vogel <Schaltfehler@users.noreply.github.com>
Gabe Goodhart <gabe.l.hart@gmail.com>
Gabe Goodhart <ghart@us.ibm.com>
GainLee <perfecter.gen@gmail.com>
Galunid <karolek1231456@gmail.com>
Gary Linscott <glinscott@gmail.com>
@@ -187,11 +241,13 @@ Gavin Zhao <gavinzhaojw@protonmail.com>
Genkagaku.GPT <hlhr202@163.com>
Georgi Gerganov <ggerganov@gmail.com>
Gilad S <giladgd@users.noreply.github.com>
Gilad S. <7817232+giladgd@users.noreply.github.com>
Giuseppe Scrivano <giuseppe@scrivano.org>
GiviMAD <GiviMAD@users.noreply.github.com>
Govlzkoy <gotope@users.noreply.github.com>
Guillaume "Vermeille" Sanchez <Guillaume.V.Sanchez@gmail.com>
Guillaume Wenzek <gwenzek@users.noreply.github.com>
Guoliang Hua <32868157+nbcsm@users.noreply.github.com>
Guoteng <32697156+SolenoidWGT@users.noreply.github.com>
Gustavo Rocha Dias <91472747+gustrd@users.noreply.github.com>
Haggai Nuchi <h.nuchi@gmail.com>
@@ -213,11 +269,14 @@ Hong Bo PENG <penghb@cn.ibm.com>
Hongyu Ouyang <96765450+casavaca@users.noreply.github.com>
Howard Su <howard0su@gmail.com>
Hua Jiang <allenhjiang@outlook.com>
Huang Qi <huangqi3@xiaomi.com>
Huawei Lin <huaweilin.cs@gmail.com>
Hugo Roussel <hugo.rous@gmail.com>
Huifeng Ou <79071290+ho2103@users.noreply.github.com>
Ian Bull <irbull@eclipsesource.com>
Ian Bull <irbull@gmail.com>
Ian Scrivener <github@zilogy.asia>
Icecream95 <the.real.icecream95@gmail.com>
Ido S <ido.pluto@gmail.com>
IgnacioFDM <ignaciofdm@gmail.com>
Igor Okulist <okigan@gmail.com>
@@ -226,11 +285,15 @@ Ilya Kurdyukov <59548320+ilyakurdyukov@users.noreply.github.com>
Ionoclast Laboratories <brigham@ionoclast.com>
Isaac McFadyen <isaac@imcf.me>
IsaacDynamo <61521674+IsaacDynamo@users.noreply.github.com>
Ivan <nekotekina@gmail.com>
Ivan Filipov <159561759+vanaka11@users.noreply.github.com>
Ivan Komarov <Ivan.Komarov@dfyz.info>
Ivan Stepanov <ivanstepanovftw@gmail.com>
JH23X <165871467+JH23X@users.noreply.github.com>
Jack Mousseau <jack@software.inc>
Jack Mousseau <jmousseau@users.noreply.github.com>
JackJollimore <130917767+JackJollimore@users.noreply.github.com>
Jaeden Amero <jaeden@patater.com>
Jaemin Son <woalsdnd@gmail.com>
Jag Chadha <jagtesh@gmail.com>
Jakub N <jakubniemczyk97@gmail.com>
@@ -243,10 +306,14 @@ Jannis Schönleber <joennlae@gmail.com>
Jared Van Bortel <cebtenzzre@gmail.com>
Jared Van Bortel <jared@nomic.ai>
Jason McCartney <jmac@theroot.org>
Jason Stillerman <jason.t.stillerman@gmail.com>
Jean-Christophe Hoelt <hoelt@fovea.cc>
Jean-Michaël Celerier <jeanmichael.celerier+github@gmail.com>
Jed Fox <git@jedfox.com>
Jeff Bolz <jbolz@nvidia.com>
Jeffrey Morgan <jmorganca@gmail.com>
Jeffrey Quesnelle <emozilla@nousresearch.com>
Jeroen Mostert <jeroen.mostert@cm.com>
Jesse Jojo Johnson <williamsaintgeorge@gmail.com>
Jeximo <jeximo@gmail.com>
Jhen-Jie Hong <iainst0409@gmail.com>
@@ -258,6 +325,9 @@ Jiří Podivín <66251151+jpodivin@users.noreply.github.com>
Jiří Sejkora <Sejseloid@gmail.com>
Joan Fontanals <jfontanalsmartinez@gmail.com>
Joan Fontanals <joan.fontanals.martinez@jina.ai>
João Dinis Ferreira <hello@joaof.eu>
Joe Eli McIlvain <joe.eli.mac@gmail.com>
Joe Todd <joe.todd@codeplay.com>
Johan <JohanAR@users.noreply.github.com>
Johannes Gäßler <johannesg@5d6.de>
Johannes Rudolph <johannes.rudolph@gmail.com>
@@ -274,7 +344,9 @@ Joyce <joycebrum@google.com>
Juan Calderon-Perez <835733+gaby@users.noreply.github.com>
Judd <foldl@users.noreply.github.com>
Julius Arkenberg <arki05@users.noreply.github.com>
Jun Hee Yoo <contact.jhyoo@gmail.com>
Jun Jie <71215065+junnjiee16@users.noreply.github.com>
Junil Kim <logyourself@gmail.com>
Junyang Lin <justinlin930319@hotmail.com>
Juraj Bednar <juraj@bednar.io>
Justin Parker <jparkerweb@gmail.com>
@@ -292,12 +364,14 @@ Karthik Sethuraman <k.seth1993@gmail.com>
Kasumi <90275229+kasumi-1@users.noreply.github.com>
Kawrakow <48489457+ikawrakow@users.noreply.github.com>
Keiichi Tabata <keiichi.tabata@outlook.com>
Keke Han <hankeke303@163.com>
Kenvix ⭐ <kenvixzure@live.com>
Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com>
Kevin Gibbons <bakkot@gmail.com>
Kevin Ji <1146876+kevinji@users.noreply.github.com>
Kevin Kwok <antimatter15@gmail.com>
Kevin Lo <kevlo@kevlo.org>
Kevin Wang <kevmo314@gmail.com>
Kolen Cheung <ickc@users.noreply.github.com>
Konstantin Herud <konstantin.herud@denkbares.com>
Konstantin Zhuravlyov <konstantin.zhuravlyov@amd.com>
@@ -315,22 +389,29 @@ LeonEricsson <70749762+LeonEricsson@users.noreply.github.com>
Leonardo Neumann <leonardo@neumann.dev.br>
Li Tan <tanliboy@gmail.com>
Linwei Wang <wanix1988@gmail.com>
Liu Jia <109258120+Septa2112@users.noreply.github.com>
Liu Jia <jia3.liu@intel.com>
LoganDark <github@logandark.mozmail.com>
Loïc Carrère <loic.carrere@gmail.com>
LostRuins <39025047+LostRuins@users.noreply.github.com>
Luciano <lucianostrika44@gmail.com>
Luo Tian <lt@basecity.com>
Lyle Dean <dean@lyle.dev>
M-A <maruel@gmail.com>
M. Yusuf Sarıgöz <yusufsarigoz@gmail.com>
Ma Mingfei <mingfei.ma@intel.com>
Maarten ter Huurne <maarten@treewalker.org>
Mack Straight <eiz@users.noreply.github.com>
Maël Kerbiriou <m431.kerbiriou@gmail.com>
MaggotHATE <clay1326@gmail.com>
Mahesh Madhav <67384846+heshpdx@users.noreply.github.com>
Manuel <44313466+makuche@users.noreply.github.com>
Marc Köhlbrugge <subscriptions@marckohlbrugge.com>
Marco Matthies <71844+marcom@users.noreply.github.com>
Marcus Dunn <51931484+MarcusDunn@users.noreply.github.com>
Marian Cepok <marian.cepok@gmail.com>
Mark Fairbairn <thebaron88@gmail.com>
Mark Zhuang <zhuangqiubin@gmail.com>
Marko Tasic <mtasic85@gmail.com>
Markus Tavenrath <mtavenrath@users.noreply.github.com>
Martin Delille <martin@delille.org>
@@ -342,11 +423,15 @@ MasterYi1024 <39848311+MasterYi1024@users.noreply.github.com>
Mateusz Charytoniuk <mateusz.charytoniuk@protonmail.com>
Matheus C. França <matheus-catarino@hotmail.com>
Matheus Gabriel Alves Silva <matheusgasource@gmail.com>
Mathieu Geli <mathieu.geli@gmail.com>
Mathieu Nayrolles <MathieuNls@users.noreply.github.com>
Mathijs Henquet <mathijs.henquet@gmail.com>
Mathijs de Bruin <mathijs@mathijsfietst.nl>
Matt Clayton <156335168+mattjcly@users.noreply.github.com>
Matt Pulver <matt.pulver@heavy.ai>
Matt Stephenson <mstephenson6@users.noreply.github.com>
Matteo Boschini <12133566+mbosc@users.noreply.github.com>
Matteo Mortari <matteo.mortari@gmail.com>
Mattheus Chediak <shammcity00@gmail.com>
Matthew Tejo <matthew.tejo@gmail.com>
Matvey Soloviev <blackhole89@gmail.com>
@@ -356,8 +441,10 @@ Maxime <672982+maximegmd@users.noreply.github.com>
Maximilian Winter <maximilian.winter.91@gmail.com>
Meng Zhang <meng@tabbyml.com>
Meng, Hengyu <hengyu.meng@intel.com>
Mengqing Cao <cmq0113@163.com>
Merrick Christensen <merrick.christensen@gmail.com>
Michael Coppola <m18coppola@gmail.com>
Michael Francis <edude03@gmail.com>
Michael Hueschen <m@mhueschen.dev>
Michael Kesper <mkesper@schokokeks.org>
Michael Klimenko <mklimenko29@gmail.com>
@@ -365,41 +452,57 @@ Michael Podvitskiy <podvitskiymichael@gmail.com>
Michael Potter <NanoTekGuy@Gmail.com>
Michael de Gans <michael.john.degans@gmail.com>
Michaël de Vries <vriesdemichael@gmail.com>
Michał Tuszyński <srgtuszy@gmail.com>
Mihai <mihai.chirculescu@yahoo.com>
Mike <ytianhui2004@gmail.com>
Mikko Juola <mikjuo@gmail.com>
Minsoo Cheong <54794500+mscheong01@users.noreply.github.com>
Minsoo Cheong <icycle0409@snu.ac.kr>
Mirko185 <mirkosig@gmail.com>
Mirror Azure <54669636+MirrorAzure@users.noreply.github.com>
MistApproach <98988043+MistApproach@users.noreply.github.com>
Miwa / Ensan <63481257+ensan-hcl@users.noreply.github.com>
Mohammadreza Hendiani <hendiani.mohammadreza@gmail.com>
Mohammadreza Hendiani <mohammad.r.hendiani@gmail.com>
Molly Sophia <mollysophia379@gmail.com>
MorganRO8 <47795945+MorganRO8@users.noreply.github.com>
Murilo Santana <mvrilo@gmail.com>
Musab Gultekin <musabgultekin@users.noreply.github.com>
Nam D. Tran <42194884+namtranase@users.noreply.github.com>
Nathan Epstein <nate2@umbc.edu>
Natsu <chino@hotococoa.moe>
NawafAlansari <72708095+NawafAlansari@users.noreply.github.com>
Nebula <infinitewormhole@gmail.com>
Neo Zhang <14088817+arthw@users.noreply.github.com>
Neo Zhang <zhang.jianyu@outlook.com>
Neo Zhang Jianyu <jianyu.zhang@intel.com>
Neuman Vong <neuman.vong@gmail.com>
Nexes the Old <124105151+Nexesenex@users.noreply.github.com>
Nexesenex <124105151+Nexesenex@users.noreply.github.com>
Niall Coates <1349685+Niall-@users.noreply.github.com>
Nicholai Tukanov <nicholaitukanov@gmail.com>
Nico Bosshard <nico@bosshome.ch>
Nicolai Weitkemper <kontakt@nicolaiweitkemper.de>
Nicolás Pérez <nicolas_perez@brown.edu>
Nigel Bosch <pnigelb@gmail.com>
Niklas Korz <niklas@niklaskorz.de>
NikolaiLyssogor <59844691+NikolaiLyssogor@users.noreply.github.com>
Nikolas <127742645+nneubacher@users.noreply.github.com>
Nindaleth <Nindaleth@users.noreply.github.com>
OSecret <135510162+OLSecret@users.noreply.github.com>
Oleksandr Nikitin <oleksandr@tvori.info>
Oleksii Maryshchenko <oleksii.maryshchenko@gmail.com>
Olivier Chafik <ochafik@users.noreply.github.com>
Ondřej Čertík <ondrej@certik.us>
Ouadie EL FAROUKI <ouadie.elfarouki@codeplay.com>
PAB <pierreantoine.bannier@gmail.com>
Pablo Duboue <pablo.duboue@gmail.com>
Pascal Patry <ppatry@mtacitlabs.com>
Patrice Ferlet <metal3d@gmail.com>
Paul Tsochantaris <ptsochantaris@icloud.com>
Pavel Zloi <github.com@drteam.rocks>
Pavol Rusnak <pavol@rusnak.io>
Paweł Wodnicki <151604+32bitmicro@users.noreply.github.com>
Pedro Cuenca <pedro@huggingface.co>
Peter Sugihara <peter@campsh.com>
Phil H <5756783+phiharri@users.noreply.github.com>
@@ -407,10 +510,15 @@ Philip Taron <philip.taron@gmail.com>
Phillip Kravtsov <phillip@kravtsov.net>
Pierre Alexandre SCHEMBRI <pa.schembri@gmail.com>
Pierrick Hymbert <pierrick.hymbert@gmail.com>
Pieter Ouwerkerk <pieter.ouwerkerk@gmail.com>
Plamen Minev <pacominev@gmail.com>
Prashant Vithule <119530321+Vithulep@users.noreply.github.com>
Przemysław Pawełczyk <przemoc@gmail.com>
Qin Yue Chen <71813199+chenqiny@users.noreply.github.com>
Qingyou Meng <meng.qingyou@gmail.com>
Qu Zongfu <43257352+yancaoweidaode@users.noreply.github.com>
R0CKSTAR <xiaodong.ye@mthreads.com>
R0CKSTAR <yeahdongcn@gmail.com>
RJ Adriaansen <adriaansen@eshcc.eur.nl>
Radoslav Gerganov <rgerganov@gmail.com>
Radosław Gryta <radek.gryta@gmail.com>
@@ -419,11 +527,13 @@ Raj Hammeer Singh Hada <hammeerraj@gmail.com>
Ralph Soika <ralph.soika@imixs.com>
Rand Xie <randxiexyy29@gmail.com>
Randall Fitzgerald <randall@dasaku.net>
Random Fly <renfei8@live.cn>
Reinforce-II <fate@eastal.com>
Ren Xuancheng <jklj077@users.noreply.github.com>
Rene Leonhardt <65483435+reneleonhardt@users.noreply.github.com>
RhinoDevel <RhinoDevel@users.noreply.github.com>
Riceball LEE <snowyu.lee@gmail.com>
Rich Dougherty <rich@rd.nz>
Richard Kiss <him@richardkiss.com>
Richard Roberson <richardr1126@gmail.com>
Rick G <26732651+TheFlipbook@users.noreply.github.com>
@@ -439,21 +549,30 @@ Robey Holderith <robey@flaminglunchbox.net>
Robyn <robyngraf@users.noreply.github.com>
Roger Meier <r.meier@siemens.com>
Roland <14355895+rbur0425@users.noreply.github.com>
Romain Biessy <romain.biessy@codeplay.com>
Romain D <90720+Artefact2@users.noreply.github.com>
Romain Neutron <romain@neutron.io>
Roman Parykin <donderom@gmail.com>
Ron Evans <ron@hybridgroup.com>
Ron Jailall <rojailal@gmail.com>
Roni <sulpher@gmx.net>
Ronny Brendel <ronnybrendel@gmail.com>
Ronsor <ronsor@ronsor.pw>
Rowan Hart <rowanbhart@gmail.com>
Ruchira Hasaranga <ruchira66@gmail.com>
Ruixin Huang <18860020911@163.com>
Rune <43761327+Rune-AI@users.noreply.github.com>
RunningLeon <maningsheng@sensetime.com>
RunningLeon <mnsheng@yeah.net>
Ryan Landay <rlanday@gmail.com>
Ryder Wishart <ryderwishart@gmail.com>
Ryuei <louixs@users.noreply.github.com>
Rőczey Barnabás <31726601+An0nie@users.noreply.github.com>
SRHMorris <69468379+SRHMorris@users.noreply.github.com>
SXX <sxx1136965276@gmail.com>
SakuraUmi <yukinon244@gmail.com>
Salvador E. Tropea <stropea@inti.gob.ar>
Salvatore Mesoraca <s.mesoraca16@gmail.com>
Sam Spilsbury <smspillaz@gmail.com>
Sami Farin <3876865+Safari77@users.noreply.github.com>
Samuel Maynard <samwmaynard@gmail.com>
@@ -463,23 +582,29 @@ Sebastián A <sebastian.aedo29@gmail.com>
SebastianApel <13675545+SebastianApel@users.noreply.github.com>
Senemu <10880819+Senemu@users.noreply.github.com>
Sergey Alirzaev <zl29ah@gmail.com>
Sergio López <slp@redhat.com>
Sergio López <slp@sinrega.org>
Sertaç Özercan <852750+sozercan@users.noreply.github.com>
SeungWon Jeong <65549245+redlion0929@users.noreply.github.com>
ShadovvBeast <ShadovvBeast@gmail.com>
Shakhar Dasgupta <shakhardasgupta@gmail.com>
Shane A <shanea@allenai.org>
Shangning Xu <32517059+xushangning@users.noreply.github.com>
Shankar <gshankar.87@gmail.com>
Shanshan Shen <467638484@qq.com>
Shijie <821898965@qq.com>
Shintarou Okada <kokuzen@gmail.com>
Shouzheng Liu <61452103+lshzh-ww@users.noreply.github.com>
Shouzheng Liu <lshzh.hi@gmail.com>
Shuichi Tsutsumi <shuichi0526@gmail.com>
Shupei Fan <dymarkfan@outlook.com>
Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Simon Willison <swillison@gmail.com>
Siwen Yu <yusiwen@gmail.com>
Sky Yan <skyan83@gmail.com>
Slaren <2141330+slaren@users.noreply.github.com>
Slava Primenko <primenko.s@gmail.com>
Small Grass Forest <zixuanxcl@gmail.com>
SoftwareRenderer <138734813+SoftwareRenderer@users.noreply.github.com>
Someone <sergei.kozlukov@aalto.fi>
Someone Serge <sergei.kozlukov@aalto.fi>
@@ -491,12 +616,15 @@ Stefan Sydow <stefan@sydow.email>
Steffen Röcker <sroecker@gmail.com>
Stephan Walter <stephan@walter.name>
Stephen Nichols <snichols@users.noreply.github.com>
Steve Bonds <sbonds@gmail.com>
Steve Grubb <ausearch.1@gmail.com>
Steven Prichard <spprichard20@gmail.com>
Steven Roussey <sroussey@gmail.com>
Steward Garcia <57494570+FSSRepo@users.noreply.github.com>
StrangeBytesDev <141275258+StrangeBytesDev@users.noreply.github.com>
Suaj Carrot <72162667+SuajCarrot@users.noreply.github.com>
SuperUserNameMan <yoann@terminajones.com>
Sutou Kouhei <kou@cozmixng.org>
Tai Duc Nguyen <taiducnguyen.drexel@gmail.com>
Taikono-Himazin <kazu@po.harenet.ne.jp>
Tameem <113388789+AhmadTameem@users.noreply.github.com>
@@ -507,7 +635,9 @@ Theia Vogel <theia@vgel.me>
Thérence <13496987+Royalphax@users.noreply.github.com>
Thibault Terrasson <thibault.terrasson@gmail.com>
Thomas Klausner <wiz@gatalith.at>
Thorsten Sommer <SommerEngineering@users.noreply.github.com>
Tim Miller <drasticactions@users.noreply.github.com>
Tim Wang <overocean@gmail.com>
Timmy Knight <r2d2fish@gmail.com>
Timothy Cronin <40186632+4imothy@users.noreply.github.com>
Ting Lou <ting.lou@gmail.com>
@@ -517,24 +647,31 @@ Tom C <tom.corelis@gmail.com>
Tom Jobbins <784313+TheBloke@users.noreply.github.com>
Tomas <tom.tomas.36478119@gmail.com>
Tomáš Pazdiora <tomas.pazdiora@gmail.com>
Tony Wasserka <4840017+neobrain@users.noreply.github.com>
Tristan Druyen <tristan@vault81.mozmail.com>
Tristan Ross <rosscomputerguy@protonmail.com>
Trivikram Kamat <16024985+trivikr@users.noreply.github.com>
Tungsten842 <886724vf@anonaddy.me>
Tungsten842 <quantmint@protonmail.com>
Tushar <ditsuke@protonmail.com>
UEXTM.com <84163508+uextm@users.noreply.github.com>
Ujjawal Panchal <31011628+Ujjawal-K-Panchal@users.noreply.github.com>
Ulrich Drepper <drepper@gmail.com>
Uzo Nweke <uzoechi@gmail.com>
Vaibhav Srivastav <vaibhavs10@gmail.com>
Val Kharitonov <mail@kharvd.com>
Valentin Konovalov <valle.ketsujin@gmail.com>
Valentyn Bezshapkin <61702053+valentynbez@users.noreply.github.com>
Vali Malinoiu <0x4139@gmail.com>
Victor Nogueira <felladrin@gmail.com>
Victor Z. Peng <ziliangdotme@gmail.com>
Viet-Anh NGUYEN (Andrew) <vietanh.dev@gmail.com>
Vinesh Janarthanan <36610342+VJHack@users.noreply.github.com>
Vlad <spitfireage@gmail.com>
Vladimir <bogdad@gmail.com>
Vladimir Malyutin <first-leon@yandex.ru>
Vladimir Zorin <vladimir@deviant.guru>
VoidIsVoid <343750470@qq.com>
Volodymyr Vitvitskyi <72226+signalpillar@users.noreply.github.com>
WangHaoranRobin <56047610+WangHaoranRobin@users.noreply.github.com>
Weird Constructor <weirdconstructor@gmail.com>
@@ -551,15 +688,22 @@ Xiang (Kevin) Li <kevinli020508@gmail.com>
Xiao-Yong Jin <jinxiaoyong@gmail.com>
XiaotaoChen <chenxiaotao1234@gmail.com>
Xiaoyi Chen <cxychina@gmail.com>
Xie Yanbo <xieyanbo@gmail.com>
Xingchen Song(宋星辰) <xingchensong1996@163.com>
Xinpeng Dou <81913537+Dou-Git@users.noreply.github.com>
Xuan Son Nguyen <thichthat@gmail.com>
Yaiko <elyaiko@hotmail.com>
Yann Follet <131855179+YannFollet@users.noreply.github.com>
Yaroslav <yaroslav.yashin@me.com>
Yazan Agha-Schrader <mountaiin@icloud.com>
Yiming Cui <conandiy@vip.qq.com>
Yishuo Wang <MeouSker77@outlook.com>
Yoshi Suhara <y.suhara@gmail.com>
Yoshi Suhara <ysuhara@nvidia.com>
Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Yueh-Po Peng <94939112+y10ab1@users.noreply.github.com>
Yui <dev@sleepyyui.com>
Yuri Khrustalev <ykhrustalev@users.noreply.github.com>
Yusuf Kağan Hanoğlu <hanoglu@yahoo.com>
Yuval Peled <31162840+Yuval-Peled@users.noreply.github.com>
ZHAOKAI WANG <sanxianwei@163.com>
@@ -568,6 +712,8 @@ Zay <95888118+isaiahbjork@users.noreply.github.com>
Zenix <zenixls2@gmail.com>
Zhang Peiyuan <a1286225768@gmail.com>
Zheng.Deng <32841220+dengzheng-cloud@users.noreply.github.com>
Zhenwei Jin <109658203+kylo5aby@users.noreply.github.com>
Zhiyuan Li <lizhiyuan@uniartisan.com>
ZhouYuChen <zhouyuchen@naver.com>
Ziad Ben Hadj-Alouane <zied.benhadjalouane@gmail.com>
Ziang Wu <97337387+ZiangWu-77@users.noreply.github.com>
@@ -581,6 +727,7 @@ alexpinel <93524949+alexpinel@users.noreply.github.com>
alonfaraj <alonfaraj@gmail.com>
alwqx <kenan3015@gmail.com>
amd-lalithnc <lalithnc@amd.com>
amritahs-ibm <amritahs@linux.vnet.ibm.com>
andrijdavid <david@geek.mg>
anon998 <131767832+anon998@users.noreply.github.com>
anzz1 <anzz1@live.com>
@@ -588,14 +735,18 @@ apaz <aarpazdera@gmail.com>
apcameron <37645737+apcameron@users.noreply.github.com>
arch-btw <57669023+arch-btw@users.noreply.github.com>
arcrank <arcrank@gmail.com>
ardfork <134447697+ardfork@users.noreply.github.com>
arlo-phoenix <140345165+arlo-phoenix@users.noreply.github.com>
at8u <129688334+at8u@users.noreply.github.com>
automaticcat <daogiatuank54@gmail.com>
awatuna <23447591+awatuna@users.noreply.github.com>
b4b4o <zwbao@foxmail.com>
bandoti <141645996+bandoti@users.noreply.github.com>
beiller <beiller@gmail.com>
bhubbb <79117352+bhubbb@users.noreply.github.com>
bmwl <brian.marshall@tolko.com>
bobqianic <129547291+bobqianic@users.noreply.github.com>
brucepro <git@brucepro.net>
bryanSwk <93190252+bryanSwk@users.noreply.github.com>
bsilvereagle <bsilvereagle@users.noreply.github.com>
bssrdf <merlintiger@hotmail.com>
@@ -614,10 +765,14 @@ cpumaxx <163466046+cpumaxx@users.noreply.github.com>
crasm <crasm@git.vczf.net>
crasm <crasm@git.vczf.us>
daboe01 <daboe01@googlemail.com>
daghanerdonmez <44506702+daghanerdonmez@users.noreply.github.com>
daminho <37615795+daminho@users.noreply.github.com>
david raistrick <keen99@users.noreply.github.com>
ddh0 <dylanhalladay02@icloud.com>
ddpasa <112642920+ddpasa@users.noreply.github.com>
deepdiffuser <112834445+deepdiffuser@users.noreply.github.com>
devojony <61173062+devojony@users.noreply.github.com>
ditsuke <ditsuke@protonmail.com>
divinity76 <divinity76@gmail.com>
dm4 <sunrisedm4@gmail.com>
dotpy314 <33351922+dotpy314@users.noreply.github.com>
@@ -629,14 +784,18 @@ ebraminio <ebraminio@gmail.com>
eiery <19350831+eiery@users.noreply.github.com>
eric8607242 <e0928021388@gmail.com>
fairydreaming <166155368+fairydreaming@users.noreply.github.com>
fengerhu1 <2748250768@qq.com>
fraxy-v <65565042+fraxy-v@users.noreply.github.com>
github-actions[bot] <github-actions[bot]@users.noreply.github.com>
gliptic <gliptic@users.noreply.github.com>
goerch <jhr.walter@t-online.de>
grahameth <96447521+grahameth@users.noreply.github.com>
gtygo <gtydoit@gmail.com>
gwjr <502526+gwjr@users.noreply.github.com>
h-h-h-h <13482553+h-h-h-h@users.noreply.github.com>
hankcs <cnhankmc@gmail.com>
haopeng <657407891@qq.com>
hipudding <huafengchun@gmail.com>
hoangmit <hoangmit@users.noreply.github.com>
hongbo.mo <352280764@qq.com>
hopkins385 <98618192+hopkins385@users.noreply.github.com>
@@ -649,12 +808,14 @@ hxer7963 <hxer7963@gmail.com>
hydai <z54981220@gmail.com>
iSma <ismail.senhaji@gmail.com>
iacore <74560659+iacore@users.noreply.github.com>
icppWorld <124377669+icppWorld@users.noreply.github.com>
igarnier <igarnier@protonmail.com>
intelmatt <61025942+intelmatt@users.noreply.github.com>
iohub <rickyang.pro@gmail.com>
jacobi petrucciani <8117202+jpetrucciani@users.noreply.github.com>
jaime-m-p <167997752+jaime-m-p@users.noreply.github.com>
jameswu2014 <545426914@qq.com>
jdomke <28772296+jdomke@users.noreply.github.com>
jiez <373447296@qq.com>
jneem <joeneeman@gmail.com>
joecryptotoo <80373433+joecryptotoo@users.noreply.github.com>
@@ -677,28 +838,35 @@ klosax <131523366+klosax@users.noreply.github.com>
kunal-vaishnavi <115581922+kunal-vaishnavi@users.noreply.github.com>
kunnis <kunnis@users.noreply.github.com>
kuronekosaiko <EvanChanJ@163.com>
kustaaya <58045274+kustaaya@users.noreply.github.com>
kuvaus <22169537+kuvaus@users.noreply.github.com>
kwin1412 <42286931+kwin1412@users.noreply.github.com>
l3utterfly <gc.pthzfoldr@gmail.com>
laik <laik.lj@me.com>
ldwang <ftgreat@163.com>
le.chang <cljs118@126.com>
leejet <leejet714@gmail.com>
leo-pony <nengjunma@outlook.com>
limitedAtonement <limitedAtonement@users.noreply.github.com>
liuwei-git <14815172+liuwei-git@users.noreply.github.com>
lon <114724657+longregen@users.noreply.github.com>
loonerin <132926317+loonerin@users.noreply.github.com>
ltoniazzi <61414566+ltoniazzi@users.noreply.github.com>
luoyu-intel <yu.luo@intel.com>
m3ndax <adrian.goessl@outlook.com>
maddes8cht <55592906+maddes8cht@users.noreply.github.com>
makomk <makosoft@googlemail.com>
manikbhandari <mbbhandarimanik2@gmail.com>
maor-ps <154728172+maor-ps@users.noreply.github.com>
matiaslin <45382001+matiaslin@users.noreply.github.com>
matteo <matteogeniaccio@yahoo.it>
mdrokz <mohammadmunshi@gmail.com>
mgroeber9110 <45620825+mgroeber9110@users.noreply.github.com>
minarchist <minarchist@users.noreply.github.com>
mj-shifu <77107165+mj-shifu@users.noreply.github.com>
mmyjona <jonathan.gonse@gmail.com>
momonga <115213907+mmnga@users.noreply.github.com>
momonga <146910567+mmngays@users.noreply.github.com>
moritzbrantner <31051084+moritzbrantner@users.noreply.github.com>
mzcu <milos.cubrilo@gmail.com>
nanahi <130121847+na-na-hi@users.noreply.github.com>
@@ -716,8 +884,10 @@ omahs <73983677+omahs@users.noreply.github.com>
oobabooga <112222186+oobabooga@users.noreply.github.com>
opparco <parco.opaai@gmail.com>
ostix360 <55257054+ostix360@users.noreply.github.com>
pculliton <phillipculliton@gmail.com>
pengxin99 <pengxin.yuan@intel.com>
perserk <perserk@gmail.com>
piDack <104877312+piDack@users.noreply.github.com>
pmysl <piotr.myslinski@outlook.com>
postmasters <namnguyen@google.com>
pudepiedj <pudepiedj@gmail.com>
@@ -733,6 +903,7 @@ runfuture <runfuture@users.noreply.github.com>
sandyiscool <sandyiscool@gmail.com>
sasha0552 <admin@sasha0552.org>
semidark <me@semidark.net>
serhii-nakon <57632032+serhii-nakon@users.noreply.github.com>
sharpHL <132747147+sharpHL@users.noreply.github.com>
shibe2 <shibe@tuta.io>
singularity <12184989+singularity-s0@users.noreply.github.com>
@@ -741,42 +912,55 @@ sjxx <63994076+ylsdamxssjxxdd@users.noreply.github.com>
slaren <2141330+slaren@users.noreply.github.com>
slaren <slarengh@gmail.com>
snadampal <87143774+snadampal@users.noreply.github.com>
standby24x7 <standby24x7@gmail.com>
staviq <staviq@gmail.com>
stduhpf <stephduh@live.fr>
strawberrymelonpanda <152940198+strawberrymelonpanda@users.noreply.github.com>
swittk <switt1995@gmail.com>
takov751 <40316768+takov751@users.noreply.github.com>
tarcey <cey.tarik@gmail.com>
tc-mb <157115220+tc-mb@users.noreply.github.com>
texmex76 <40733439+texmex76@users.noreply.github.com>
thement <40525767+thement@users.noreply.github.com>
thewh1teagle <61390950+thewh1teagle@users.noreply.github.com>
tjohnman <tjohnman@users.noreply.github.com>
toyer <2042519524@qq.com>
tslmy <tslmy@users.noreply.github.com>
ubik2 <ubik2@users.noreply.github.com>
uint256_t <konndennsa@gmail.com>
uint256_t <maekawatoshiki1017@gmail.com>
unbounded <haakon@likedan.net>
uvos <devnull@uvos.xyz>
valiray <133289098+valiray@users.noreply.github.com>
vb <vaibhavs10@gmail.com>
vik <vikhyatk@gmail.com>
viric <viric@viric.name>
vodkaslime <646329483@qq.com>
vvhg1 <94630311+vvhg1@users.noreply.github.com>
vxiiduu <73044267+vxiiduu@users.noreply.github.com>
wangshuai09 <391746016@qq.com>
wbpxre150 <100937007+wbpxre150@users.noreply.github.com>
whoreson <139810751+whoreson@users.noreply.github.com>
woachk <24752637+woachk@users.noreply.github.com>
wonjun Jang <strutive07@gmail.com>
woodx <124784234+woodx9@users.noreply.github.com>
wwoodsTM <104587230+wwoodsTM@users.noreply.github.com>
wzy <32936898+Freed-Wu@users.noreply.github.com>
xaedes <xaedes@gmail.com>
xaedes <xaedes@googlemail.com>
xctan <axunlei@gmail.com>
xloem <0xloem@gmail.com>
yangli2 <yangli2@gmail.com>
yuiseki <yuiseki@gmail.com>
yuri@FreeBSD <yurivict@users.noreply.github.com>
zakkor <edward.partenie@gmail.com>
zhangkaihuo <zhangkaihuo@gmail.com>
zhentaoyu <zhentao.yu@intel.com>
zhouwg <6889919+zhouwg@users.noreply.github.com>
zhouwg <zhouwg2000@gmail.com>
zrm <trustiosity.zrm@gmail.com>
Ștefan-Gabriel Muscalu <legraphista@users.noreply.github.com>
杨朱 · Kiki <baofa.fan@daocloud.io>
源文雨 <41315874+fumiama@users.noreply.github.com>
蕭澧邦 <45505768+shou692199@users.noreply.github.com>
Нияз Гарифзянов <112617865+garrnizon@users.noreply.github.com>

View File

@@ -46,11 +46,9 @@ if (WIN32)
add_compile_definitions(_CRT_SECURE_NO_WARNINGS)
endif()
if ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "MSVC")
add_compile_options("$<$<COMPILE_LANGUAGE:C>:/source-charset:utf-8>")
add_compile_options("$<$<COMPILE_LANGUAGE:CXX>:/source-charset:utf-8>")
add_compile_options("$<$<COMPILE_LANGUAGE:C>:/execution-charset:utf-8>")
add_compile_options("$<$<COMPILE_LANGUAGE:CXX>:/execution-charset:utf-8>")
if (MSVC)
add_compile_options("$<$<COMPILE_LANGUAGE:C>:/utf-8>")
add_compile_options("$<$<COMPILE_LANGUAGE:CXX>:/utf-8>")
endif()
#
@@ -96,10 +94,6 @@ if (NOT DEFINED GGML_LLAMAFILE)
set(GGML_LLAMAFILE_DEFAULT ON)
endif()
if (NOT DEFINED GGML_AMX)
set(GGML_AMX ON)
endif()
if (NOT DEFINED GGML_CUDA_GRAPHS)
set(GGML_CUDA_GRAPHS_DEFAULT ON)
endif()

View File

@@ -31,6 +31,13 @@
{ "name": "sycl_f16", "hidden": true, "cacheVariables": { "GGML_SYCL_F16": "ON" } },
{ "name": "vulkan", "hidden": true, "cacheVariables": { "GGML_VULKAN": "ON" } },
{
"name": "x64-windows-llvm", "hidden": true,
"cacheVariables": {
"CMAKE_TOOLCHAIN_FILE": "${sourceDir}/cmake/x64-windows-llvm.cmake"
}
},
{
"name": "arm64-windows-msvc", "hidden": true,
"architecture": { "value": "arm64", "strategy": "external" },
@@ -70,6 +77,11 @@
{ "name": "arm64-windows-msvc-release", "inherits": [ "base", "arm64-windows-msvc", "reldbg" ] },
{ "name": "arm64-windows-msvc+static-release", "inherits": [ "base", "arm64-windows-msvc", "reldbg", "static" ] },
{ "name": "x64-windows-llvm-debug", "inherits": [ "base", "x64-windows-llvm", "debug" ] },
{ "name": "x64-windows-llvm-release", "inherits": [ "base", "x64-windows-llvm", "release" ] },
{ "name": "x64-windows-llvm-reldbg", "inherits": [ "base", "x64-windows-llvm", "reldbg" ] },
{ "name": "x64-windows-llvm+static-release", "inherits": [ "base", "x64-windows-llvm", "reldbg", "static" ] },
{ "name": "x64-windows-msvc-debug", "inherits": [ "base", "debug" ] },
{ "name": "x64-windows-msvc-release", "inherits": [ "base", "reldbg" ] },
{ "name": "x64-windows-msvc+static-release", "inherits": [ "base", "reldbg", "static" ] },

5
CODEOWNERS Normal file
View File

@@ -0,0 +1,5 @@
# collaborators can optionally add themselves here to indicate their availability for reviewing related PRs
/ci/ @ggerganov
/.devops/ @ngxson
/examples/server/ @ngxson

View File

@@ -1,9 +1,10 @@
# Pull requests (for contributors)
- Test your changes:
- Using the commands in the [`tests`](tests) folder. For instance, running the `./tests/test-backend-ops` command tests different backend implementations of the `ggml` library
- Execute [the full CI locally on your machine](ci/README.md) before publishing
- Optionally rate the complexity of your PR (i.e. `Review Complexity : Low`, `Review Complexity : Medium`, `Review Complexity : High`). This makes it easier for maintainers to triage the PRs
- Verify that the perplexity and the performance are not affected negatively by your changes (use `llama-perplexity` and `llama-bench`)
- If you modified the `ggml` source, run the `test-backend-ops` tool to check whether different backend implementations of the `ggml` operators produce consistent results (this requires access to at least two different `ggml` backends)
- If you modified a `ggml` operator or added a new one, add the corresponding test cases to `test-backend-ops`
- Consider allowing write access to your branch for faster reviews, as reviewers can push commits directly
- If your PR becomes stale, don't hesitate to ping the maintainers in the comments
@@ -12,6 +13,7 @@
- Squash-merge PRs
- Use the following format for the squashed commit title: `<module> : <commit title> (#<issue_number>)`. For example: `utils : fix typo in utils.py (#1234)`
- Optionally pick a `<module>` from here: https://github.com/ggerganov/llama.cpp/wiki/Modules
- Consider adding yourself to [CODEOWNERS](CODEOWNERS)
# Coding guidelines

View File

@@ -1,3 +1,7 @@
ifndef LLAMA_MAKEFILE
$(error The Makefile build is deprecated. Use the CMake build instead. For more details, see https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
endif
# Define the default target now so that it is always the first target
BUILD_TARGETS = \
libllava.a \
@@ -18,6 +22,7 @@ BUILD_TARGETS = \
llama-infill \
llama-llava-cli \
llama-minicpmv-cli\
llama-qwen2vl-cli\
llama-lookahead \
llama-lookup \
llama-lookup-create \
@@ -251,11 +256,11 @@ endif
# Compile flags
#
# keep standard at C11 and C++11
# keep standard at C11 and C++17
MK_CPPFLAGS = -Iggml/include -Iggml/src -Iinclude -Isrc -Icommon -DGGML_USE_CPU
MK_CFLAGS = -std=c11 -fPIC
MK_CXXFLAGS = -std=c++11 -fPIC
MK_NVCCFLAGS = -std=c++11
MK_CXXFLAGS = -std=c++17 -fPIC
MK_NVCCFLAGS = -std=c++17
ifdef LLAMA_NO_CCACHE
GGML_NO_CCACHE := 1
@@ -441,6 +446,10 @@ ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686 amd64))
MK_CFLAGS += -march=native -mtune=native
HOST_CXXFLAGS += -march=native -mtune=native
# Usage AMX build test
#MK_CFLAGS += -march=graniterapids -mtune=graniterapids
#HOST_CXXFLAGS += -march=graniterapids -mtune=graniterapids
# Usage AVX-only
#MK_CFLAGS += -mfma -mf16c -mavx
#MK_CXXFLAGS += -mfma -mf16c -mavx
@@ -575,9 +584,12 @@ endif
ifndef GGML_NO_AMX
MK_CPPFLAGS += -DGGML_USE_AMX
OBJ_GGML_EXT += ggml/src/ggml-amx/ggml-amx.o ggml/src/ggml-amx/mmq.o
OBJ_GGML_EXT += ggml/src/ggml-cpu/amx/amx.o ggml/src/ggml-cpu/amx/mmq.o
endif
# only necessary for the CPU backend files
MK_CPPFLAGS += -Iggml/src/ggml-cpu
ifdef GGML_RPC
MK_CPPFLAGS += -DGGML_USE_RPC
OBJ_GGML_EXT += ggml/src/ggml-rpc.o
@@ -941,7 +953,6 @@ DIR_COMMON = common
OBJ_GGML = \
$(DIR_GGML)/src/ggml.o \
$(DIR_GGML)/src/ggml-aarch64.o \
$(DIR_GGML)/src/ggml-alloc.o \
$(DIR_GGML)/src/ggml-backend.o \
$(DIR_GGML)/src/ggml-backend-reg.o \
@@ -949,9 +960,11 @@ OBJ_GGML = \
$(DIR_GGML)/src/ggml-quants.o \
$(DIR_GGML)/src/ggml-threading.o \
$(DIR_GGML)/src/ggml-cpu/ggml-cpu.o \
$(DIR_GGML)/src/ggml-cpu/ggml-cpu-cpp.o \
$(DIR_GGML)/src/ggml-cpu/ggml-cpu_cpp.o \
$(DIR_GGML)/src/ggml-cpu/ggml-cpu-aarch64.o \
$(DIR_GGML)/src/ggml-cpu/ggml-cpu-hbm.o \
$(DIR_GGML)/src/ggml-cpu/ggml-cpu-quants.o \
$(DIR_GGML)/src/ggml-cpu/ggml-cpu-traits.o \
$(OBJ_GGML_EXT)
OBJ_LLAMA = \
@@ -1091,17 +1104,10 @@ DEP_FILES = $(OBJ_GGML:.o=.d) $(OBJ_LLAMA:.o=.d) $(OBJ_COMMON:.o=.d)
# Default target
all: $(BUILD_TARGETS)
# force c++ build for source file that have same name as c file
# Note: need this exception because `ggml-cpu.c` and `ggml-cpu.cpp` both produce the same obj/dep files
# g++ -M -I ./ggml/include/ -I ./ggml/src ggml/src/ggml-cpu/ggml-cpu.cpp | grep ggml
$(DIR_GGML)/src/ggml-cpu/ggml-cpu-cpp.o: \
ggml/src/ggml-cpu/ggml-cpu.cpp \
ggml/include/ggml-backend.h \
ggml/include/ggml.h \
ggml/include/ggml-alloc.h \
ggml/src/ggml-backend-impl.h \
ggml/include/ggml-cpu.h \
ggml/src/ggml-impl.h
$(CXX) $(CXXFLAGS) -c $< -o $@
$(DIR_GGML)/%_cpp.o: $(DIR_GGML)/%.cpp
$(CXX) $(CXXFLAGS) -MMD -c $< -o $@
# Rules for building object files
$(DIR_GGML)/%.o: $(DIR_GGML)/%.c
@@ -1138,8 +1144,15 @@ $(LIB_COMMON_S): $(OBJ_COMMON)
# Include dependency files
-include $(DEP_FILES)
# Clean generated server assets
clean-server-assets:
find examples/server -type f -name "*.js.hpp" -delete
find examples/server -type f -name "*.mjs.hpp" -delete
find examples/server -type f -name "*.css.hpp" -delete
find examples/server -type f -name "*.html.hpp" -delete
# Clean rule
clean:
clean: clean-server-assets
rm -vrf $(BUILD_TARGETS) $(TEST_TARGETS)
rm -rvf *.a *.dll *.so *.dot
find ggml src common tests examples pocs -type f -name "*.o" -delete
@@ -1347,20 +1360,14 @@ llama-server: \
examples/server/utils.hpp \
examples/server/httplib.h \
examples/server/index.html.hpp \
examples/server/completion.js.hpp \
examples/server/loading.html.hpp \
examples/server/deps_daisyui.min.css.hpp \
examples/server/deps_markdown-it.js.hpp \
examples/server/deps_tailwindcss.js.hpp \
examples/server/deps_vue.esm-browser.js.hpp \
common/json.hpp \
common/stb_image.h \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h %.hpp $<,$^) -Iexamples/server $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(LWINSOCK2)
# Portable equivalent of `cd examples/server/public && xxd -i $(notdir $<) ../$(notdir $<).hpp`:
examples/server/%.hpp: examples/server/public/% Makefile
examples/server/%.hpp: examples/server/public/% FORCE Makefile
@( export NAME=$(subst .,_,$(subst -,_,$(notdir $<))) && \
echo "unsigned char $${NAME}[] = {" && \
cat $< | od -v -t x1 -An | sed -E 's/([0-9a-fA-F]+)/0x\1, /g' && \
@@ -1398,6 +1405,14 @@ llama-minicpmv-cli: examples/llava/minicpmv-cli.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) $< $(filter-out %.h $<,$^) -o $@ $(LDFLAGS) -Wno-cast-qual
llama-qwen2vl-cli: examples/llava/qwen2vl-cli.cpp \
examples/llava/llava.cpp \
examples/llava/llava.h \
examples/llava/clip.cpp \
examples/llava/clip.h \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) $< $(filter-out %.h $<,$^) -o $@ $(LDFLAGS) -Wno-cast-qual
ifeq ($(UNAME_S),Darwin)
swift: examples/batched.swift
(cd examples/batched.swift; make build)
@@ -1535,7 +1550,7 @@ llama-q8dot: pocs/vdot/q8dot.cpp ggml/src/ggml.o \
# Deprecated binaries that we want to keep around long enough for people to migrate to the new filenames, then these can be removed.
#
# Mark legacy binary targets as .PHONY so that they are always checked.
.PHONY: main quantize perplexity embedding server
.PHONY: FORCE main quantize perplexity embedding server
# Define the object file target
examples/deprecation-warning/deprecation-warning.o: examples/deprecation-warning/deprecation-warning.cpp

View File

@@ -2,57 +2,6 @@
import PackageDescription
var sources = [
"src/llama.cpp",
"src/llama-vocab.cpp",
"src/llama-grammar.cpp",
"src/llama-sampling.cpp",
"src/unicode.cpp",
"src/unicode-data.cpp",
"ggml/src/ggml.c",
"ggml/src/ggml-aarch64.c",
"ggml/src/ggml-alloc.c",
"ggml/src/ggml-backend.cpp",
"ggml/src/ggml-backend-reg.cpp",
"ggml/src/ggml-cpu/ggml-cpu.c",
"ggml/src/ggml-cpu/ggml-cpu.cpp",
"ggml/src/ggml-cpu/ggml-cpu-aarch64.c",
"ggml/src/ggml-cpu/ggml-cpu-quants.c",
"ggml/src/ggml-threading.cpp",
"ggml/src/ggml-quants.c",
]
var resources: [Resource] = []
var linkerSettings: [LinkerSetting] = []
var cSettings: [CSetting] = [
.unsafeFlags(["-Wno-shorten-64-to-32", "-O3", "-DNDEBUG"]),
.unsafeFlags(["-fno-objc-arc"]),
.headerSearchPath("ggml/src"),
// NOTE: NEW_LAPACK will required iOS version 16.4+
// We should consider add this in the future when we drop support for iOS 14
// (ref: ref: https://developer.apple.com/documentation/accelerate/1513264-cblas_sgemm?language=objc)
// .define("ACCELERATE_NEW_LAPACK"),
// .define("ACCELERATE_LAPACK_ILP64")
]
#if canImport(Darwin)
sources.append("ggml/src/ggml-common.h")
sources.append("ggml/src/ggml-metal/ggml-metal.m")
resources.append(.process("ggml/src/ggml-metal/ggml-metal.metal"))
linkerSettings.append(.linkedFramework("Accelerate"))
cSettings.append(
contentsOf: [
.define("GGML_USE_ACCELERATE"),
.define("GGML_USE_METAL"),
.define("GGML_USE_CPU")
]
)
#endif
#if os(Linux)
cSettings.append(.define("_GNU_SOURCE"))
#endif
let package = Package(
name: "llama",
platforms: [
@@ -65,26 +14,6 @@ let package = Package(
.library(name: "llama", targets: ["llama"]),
],
targets: [
.target(
name: "llama",
path: ".",
exclude: [
"build",
"cmake",
"examples",
"scripts",
"models",
"tests",
"CMakeLists.txt",
"Makefile",
"ggml/src/ggml-metal-embed.metal"
],
sources: sources,
resources: resources,
publicHeadersPath: "spm-headers",
cSettings: cSettings,
linkerSettings: linkerSettings
)
],
cxxLanguageStandard: .cxx11
.systemLibrary(name: "llama", pkgConfig: "llama"),
]
)

615
README.md
View File

@@ -4,7 +4,6 @@
[![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT)
[![Server](https://github.com/ggerganov/llama.cpp/actions/workflows/server.yml/badge.svg)](https://github.com/ggerganov/llama.cpp/actions/workflows/server.yml)
[![Conan Center](https://shields.io/conan/v/llama-cpp)](https://conan.io/center/llama-cpp)
[Roadmap](https://github.com/users/ggerganov/projects/7) / [Project status](https://github.com/ggerganov/llama.cpp/discussions/3471) / [Manifesto](https://github.com/ggerganov/llama.cpp/discussions/205) / [ggml](https://github.com/ggerganov/ggml)
@@ -26,7 +25,7 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
## Description
The main goal of `llama.cpp` is to enable LLM inference with minimal setup and state-of-the-art performance on a wide
variety of hardware - locally and in the cloud.
range of hardware - locally and in the cloud.
- Plain C/C++ implementation without any dependencies
- Apple silicon is a first-class citizen - optimized via ARM NEON, Accelerate and Metal frameworks
@@ -36,14 +35,17 @@ variety of hardware - locally and in the cloud.
- Vulkan and SYCL backend support
- CPU+GPU hybrid inference to partially accelerate models larger than the total VRAM capacity
Since its [inception](https://github.com/ggerganov/llama.cpp/issues/33#issuecomment-1465108022), the project has
improved significantly thanks to many contributions. It is the main playground for developing new features for the
[ggml](https://github.com/ggerganov/ggml) library.
The `llama.cpp` project is the main playground for developing new features for the [ggml](https://github.com/ggerganov/ggml) library.
**Supported models:**
<details>
<summary>Models</summary>
Typically finetunes of the base models below are supported as well.
Instructions for adding support for new models: [HOWTO-add-model.md](docs/development/HOWTO-add-model.md)
#### Text-only
- [X] LLaMA 🦙
- [x] LLaMA 2 🦙🦙
- [x] LLaMA 3 🦙🦙🦙
@@ -96,10 +98,9 @@ Typically finetunes of the base models below are supported as well.
- [x] [Jais](https://huggingface.co/inceptionai/jais-13b-chat)
- [x] [Bielik-11B-v2.3](https://huggingface.co/collections/speakleash/bielik-11b-v23-66ee813238d9b526a072408a)
- [x] [RWKV-6](https://github.com/BlinkDL/RWKV-LM)
- [x] [GigaChat-20B-A3B](https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct)
(instructions for supporting more models: [HOWTO-add-model.md](./docs/development/HOWTO-add-model.md))
**Multimodal models:**
#### Multimodal
- [x] [LLaVA 1.5 models](https://huggingface.co/collections/liuhaotian/llava-15-653aac15d994e992e2677a7e), [LLaVA 1.6 models](https://huggingface.co/collections/liuhaotian/llava-16-65b9e40155f60fd046a5ccf2)
- [x] [BakLLaVA](https://huggingface.co/models?search=SkunkworksAI/Bakllava)
@@ -110,8 +111,12 @@ Typically finetunes of the base models below are supported as well.
- [x] [Mini CPM](https://huggingface.co/models?search=MiniCPM)
- [x] [Moondream](https://huggingface.co/vikhyatk/moondream2)
- [x] [Bunny](https://github.com/BAAI-DCAI/Bunny)
- [x] [Qwen2-VL](https://huggingface.co/collections/Qwen/qwen2-vl-66cee7455501d7126940800d)
**Bindings:**
</details>
<details>
<summary>Bindings</summary>
- Python: [abetlen/llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
- Go: [go-skynet/go-llama.cpp](https://github.com/go-skynet/go-llama.cpp)
@@ -138,316 +143,328 @@ Typically finetunes of the base models below are supported as well.
- Swift [srgtuszy/llama-cpp-swift](https://github.com/srgtuszy/llama-cpp-swift)
- Swift [ShenghaiWang/SwiftLlama](https://github.com/ShenghaiWang/SwiftLlama)
**UI:**
</details>
Unless otherwise noted these projects are open-source with permissive licensing:
- [MindWorkAI/AI-Studio](https://github.com/MindWorkAI/AI-Studio) (FSL-1.1-MIT)
- [iohub/collama](https://github.com/iohub/coLLaMA)
- [janhq/jan](https://github.com/janhq/jan) (AGPL)
- [nat/openplayground](https://github.com/nat/openplayground)
- [Faraday](https://faraday.dev/) (proprietary)
- [LMStudio](https://lmstudio.ai/) (proprietary)
- [Layla](https://play.google.com/store/apps/details?id=com.laylalite) (proprietary)
- [ramalama](https://github.com/containers/ramalama) (MIT)
- [LocalAI](https://github.com/mudler/LocalAI) (MIT)
- [LostRuins/koboldcpp](https://github.com/LostRuins/koboldcpp) (AGPL)
- [Mozilla-Ocho/llamafile](https://github.com/Mozilla-Ocho/llamafile)
- [nomic-ai/gpt4all](https://github.com/nomic-ai/gpt4all)
- [ollama/ollama](https://github.com/ollama/ollama)
- [oobabooga/text-generation-webui](https://github.com/oobabooga/text-generation-webui) (AGPL)
- [psugihara/FreeChat](https://github.com/psugihara/FreeChat)
- [cztomsik/ava](https://github.com/cztomsik/ava) (MIT)
- [ptsochantaris/emeltal](https://github.com/ptsochantaris/emeltal)
- [pythops/tenere](https://github.com/pythops/tenere) (AGPL)
- [RAGNA Desktop](https://ragna.app/) (proprietary)
- [RecurseChat](https://recurse.chat/) (proprietary)
- [semperai/amica](https://github.com/semperai/amica)
- [withcatai/catai](https://github.com/withcatai/catai)
- [Mobile-Artificial-Intelligence/maid](https://github.com/Mobile-Artificial-Intelligence/maid) (MIT)
- [Msty](https://msty.app) (proprietary)
- [LLMFarm](https://github.com/guinmoon/LLMFarm?tab=readme-ov-file) (MIT)
- [KanTV](https://github.com/zhouwg/kantv?tab=readme-ov-file)(Apachev2.0 or later)
- [Dot](https://github.com/alexpinel/Dot) (GPL)
- [MindMac](https://mindmac.app) (proprietary)
- [KodiBot](https://github.com/firatkiral/kodibot) (GPL)
- [eva](https://github.com/ylsdamxssjxxdd/eva) (MIT)
- [AI Sublime Text plugin](https://github.com/yaroslavyaroslav/OpenAI-sublime-text) (MIT)
- [AIKit](https://github.com/sozercan/aikit) (MIT)
- [LARS - The LLM & Advanced Referencing Solution](https://github.com/abgulati/LARS) (AGPL)
- [LLMUnity](https://github.com/undreamai/LLMUnity) (MIT)
- [Llama Assistant](https://github.com/vietanhdev/llama-assistant) (GPL)
- [PocketPal AI - An iOS and Android App](https://github.com/a-ghorbani/pocketpal-ai) (MIT)
<details>
<summary>UIs</summary>
*(to have a project listed here, it should clearly state that it depends on `llama.cpp`)*
**Tools:**
- [AI Sublime Text plugin](https://github.com/yaroslavyaroslav/OpenAI-sublime-text) (MIT)
- [cztomsik/ava](https://github.com/cztomsik/ava) (MIT)
- [Dot](https://github.com/alexpinel/Dot) (GPL)
- [eva](https://github.com/ylsdamxssjxxdd/eva) (MIT)
- [iohub/collama](https://github.com/iohub/coLLaMA) (Apache-2.0)
- [janhq/jan](https://github.com/janhq/jan) (AGPL)
- [KanTV](https://github.com/zhouwg/kantv?tab=readme-ov-file) (Apache-2.0)
- [KodiBot](https://github.com/firatkiral/kodibot) (GPL)
- [llama.vim](https://github.com/ggml-org/llama.vim) (MIT)
- [LARS](https://github.com/abgulati/LARS) (AGPL)
- [Llama Assistant](https://github.com/vietanhdev/llama-assistant) (GPL)
- [LLMFarm](https://github.com/guinmoon/LLMFarm?tab=readme-ov-file) (MIT)
- [LLMUnity](https://github.com/undreamai/LLMUnity) (MIT)
- [LMStudio](https://lmstudio.ai/) (proprietary)
- [LocalAI](https://github.com/mudler/LocalAI) (MIT)
- [LostRuins/koboldcpp](https://github.com/LostRuins/koboldcpp) (AGPL)
- [MindMac](https://mindmac.app) (proprietary)
- [MindWorkAI/AI-Studio](https://github.com/MindWorkAI/AI-Studio) (FSL-1.1-MIT)
- [Mobile-Artificial-Intelligence/maid](https://github.com/Mobile-Artificial-Intelligence/maid) (MIT)
- [Mozilla-Ocho/llamafile](https://github.com/Mozilla-Ocho/llamafile) (Apache-2.0)
- [nat/openplayground](https://github.com/nat/openplayground) (MIT)
- [nomic-ai/gpt4all](https://github.com/nomic-ai/gpt4all) (MIT)
- [ollama/ollama](https://github.com/ollama/ollama) (MIT)
- [oobabooga/text-generation-webui](https://github.com/oobabooga/text-generation-webui) (AGPL)
- [PocketPal AI](https://github.com/a-ghorbani/pocketpal-ai) (MIT)
- [psugihara/FreeChat](https://github.com/psugihara/FreeChat) (MIT)
- [ptsochantaris/emeltal](https://github.com/ptsochantaris/emeltal) (MIT)
- [pythops/tenere](https://github.com/pythops/tenere) (AGPL)
- [ramalama](https://github.com/containers/ramalama) (MIT)
- [semperai/amica](https://github.com/semperai/amica) (MIT)
- [withcatai/catai](https://github.com/withcatai/catai) (MIT)
</details>
<details>
<summary>Tools</summary>
- [akx/ggify](https://github.com/akx/ggify) download PyTorch models from HuggingFace Hub and convert them to GGML
- [akx/ollama-dl](https://github.com/akx/ollama-dl) download models from the Ollama library to be used directly with llama.cpp
- [crashr/gppm](https://github.com/crashr/gppm) launch llama.cpp instances utilizing NVIDIA Tesla P40 or P100 GPUs with reduced idle power consumption
- [gpustack/gguf-parser](https://github.com/gpustack/gguf-parser-go/tree/main/cmd/gguf-parser) - review/check the GGUF file and estimate the memory usage
- [Styled Lines](https://marketplace.unity.com/packages/tools/generative-ai/styled-lines-llama-cpp-model-292902) (proprietary licensed, async wrapper of inference part for game development in Unity3d with prebuild Mobile and Web platform wrappers and a model example)
- [Styled Lines](https://marketplace.unity.com/packages/tools/generative-ai/styled-lines-llama-cpp-model-292902) (proprietary licensed, async wrapper of inference part for game development in Unity3d with pre-built Mobile and Web platform wrappers and a model example)
**Infrastructure:**
</details>
<details>
<summary>Infrastructure</summary>
- [Paddler](https://github.com/distantmagic/paddler) - Stateful load balancer custom-tailored for llama.cpp
- [GPUStack](https://github.com/gpustack/gpustack) - Manage GPU clusters for running LLMs
- [llama_cpp_canister](https://github.com/onicai/llama_cpp_canister) - llama.cpp as a smart contract on the Internet Computer, using WebAssembly
**Games:**
</details>
<details>
<summary>Games</summary>
- [Lucy's Labyrinth](https://github.com/MorganRO8/Lucys_Labyrinth) - A simple maze game where agents controlled by an AI model will try to trick you.
## Demo
<details>
<summary>Typical run using LLaMA v2 13B on M2 Ultra</summary>
```
$ make -j && ./llama-cli -m models/llama-13b-v2/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e
I llama.cpp build info:
I UNAME_S: Darwin
I UNAME_P: arm
I UNAME_M: arm64
I CFLAGS: -I. -O3 -std=c11 -fPIC -DNDEBUG -Wall -Wextra -Wpedantic -Wcast-qual -Wdouble-promotion -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -pthread -DGGML_USE_K_QUANTS -DGGML_USE_ACCELERATE
I CXXFLAGS: -I. -I./common -O3 -std=c++11 -fPIC -DNDEBUG -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wno-multichar -pthread -DGGML_USE_K_QUANTS
I LDFLAGS: -framework Accelerate
I CC: Apple clang version 14.0.3 (clang-1403.0.22.14.1)
I CXX: Apple clang version 14.0.3 (clang-1403.0.22.14.1)
make: Nothing to be done for `default'.
main: build = 1041 (cf658ad)
main: seed = 1692823051
llama_model_loader: loaded meta data with 16 key-value pairs and 363 tensors from models/llama-13b-v2/ggml-model-q4_0.gguf (version GGUF V1 (latest))
llama_model_loader: - type f32: 81 tensors
llama_model_loader: - type q4_0: 281 tensors
llama_model_loader: - type q6_K: 1 tensors
llm_load_print_meta: format = GGUF V1 (latest)
llm_load_print_meta: arch = llama
llm_load_print_meta: vocab type = SPM
llm_load_print_meta: n_vocab = 32000
llm_load_print_meta: n_merges = 0
llm_load_print_meta: n_ctx_train = 4096
llm_load_print_meta: n_ctx = 512
llm_load_print_meta: n_embd = 5120
llm_load_print_meta: n_head = 40
llm_load_print_meta: n_head_kv = 40
llm_load_print_meta: n_layer = 40
llm_load_print_meta: n_rot = 128
llm_load_print_meta: n_gqa = 1
llm_load_print_meta: f_norm_eps = 1.0e-05
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
llm_load_print_meta: n_ff = 13824
llm_load_print_meta: freq_base = 10000.0
llm_load_print_meta: freq_scale = 1
llm_load_print_meta: model type = 13B
llm_load_print_meta: model ftype = mostly Q4_0
llm_load_print_meta: model size = 13.02 B
llm_load_print_meta: general.name = LLaMA v2
llm_load_print_meta: BOS token = 1 '<s>'
llm_load_print_meta: EOS token = 2 '</s>'
llm_load_print_meta: UNK token = 0 '<unk>'
llm_load_print_meta: LF token = 13 '<0x0A>'
llm_load_tensors: ggml ctx size = 0.11 MB
llm_load_tensors: mem required = 7024.01 MB (+ 400.00 MB per state)
...................................................................................................
llama_new_context_with_model: kv self size = 400.00 MB
llama_new_context_with_model: compute buffer total size = 75.41 MB
system_info: n_threads = 16 / 24 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | VSX = 0 |
sampling: repeat_last_n = 64, repeat_penalty = 1.100000, presence_penalty = 0.000000, frequency_penalty = 0.000000, top_k = 40, tfs_z = 1.000000, top_p = 0.950000, typical_p = 1.000000, temp = 0.800000, mirostat = 0, mirostat_lr = 0.100000, mirostat_ent = 5.000000
generate: n_ctx = 512, n_batch = 512, n_predict = 400, n_keep = 0
Building a website can be done in 10 simple steps:
Step 1: Find the right website platform.
Step 2: Choose your domain name and hosting plan.
Step 3: Design your website layout.
Step 4: Write your website content and add images.
Step 5: Install security features to protect your site from hackers or spammers
Step 6: Test your website on multiple browsers, mobile devices, operating systems etc…
Step 7: Test it again with people who are not related to you personally friends or family members will work just fine!
Step 8: Start marketing and promoting the website via social media channels or paid ads
Step 9: Analyze how many visitors have come to your site so far, what type of people visit more often than others (e.g., men vs women) etc…
Step 10: Continue to improve upon all aspects mentioned above by following trends in web design and staying up-to-date on new technologies that can enhance user experience even further!
How does a Website Work?
A website works by having pages, which are made of HTML code. This code tells your computer how to display the content on each page you visit whether its an image or text file (like PDFs). In order for someone elses browser not only be able but also want those same results when accessing any given URL; some additional steps need taken by way of programming scripts that will add functionality such as making links clickable!
The most common type is called static HTML pages because they remain unchanged over time unless modified manually (either through editing files directly or using an interface such as WordPress). They are usually served up via HTTP protocols this means anyone can access them without having any special privileges like being part of a group who is allowed into restricted areas online; however, there may still exist some limitations depending upon where one lives geographically speaking.
How to
llama_print_timings: load time = 576.45 ms
llama_print_timings: sample time = 283.10 ms / 400 runs ( 0.71 ms per token, 1412.91 tokens per second)
llama_print_timings: prompt eval time = 599.83 ms / 19 tokens ( 31.57 ms per token, 31.68 tokens per second)
llama_print_timings: eval time = 24513.59 ms / 399 runs ( 61.44 ms per token, 16.28 tokens per second)
llama_print_timings: total time = 25431.49 ms
```
</details>
<details>
<summary>Demo of running both LLaMA-7B and whisper.cpp on a single M1 Pro MacBook</summary>
And here is another demo of running both LLaMA-7B and [whisper.cpp](https://github.com/ggerganov/whisper.cpp) on a single M1 Pro MacBook:
https://user-images.githubusercontent.com/1991296/224442907-7693d4be-acaa-4e01-8b4f-add84093ffff.mp4
</details>
## Usage
Here are the end-to-end binary build and model conversion steps for most supported models.
### Basic usage
Firstly, you need to get the binary. There are different methods that you can follow:
- Method 1: Clone this repository and build locally, see [how to build](./docs/build.md)
- Method 2: If you are using MacOS or Linux, you can install llama.cpp via [brew, flox or nix](./docs/install.md)
- Method 3: Use a Docker image, see [documentation for Docker](./docs/docker.md)
- Method 4: Download pre-built binary from [releases](https://github.com/ggerganov/llama.cpp/releases)
You can run a basic completion using this command:
```bash
llama-cli -m your_model.gguf -p "I believe the meaning of life is" -n 128
# Output:
# I believe the meaning of life is to find your own truth and to live in accordance with it. For me, this means being true to myself and following my passions, even if they don't align with societal expectations. I think that's what I love about yoga it's not just a physical practice, but a spiritual one too. It's about connecting with yourself, listening to your inner voice, and honoring your own unique journey.
```
See [this page](./examples/main/README.md) for a full list of parameters.
### Conversation mode
If you want a more ChatGPT-like experience, you can run in conversation mode by passing `-cnv` as a parameter:
```bash
llama-cli -m your_model.gguf -p "You are a helpful assistant" -cnv
# Output:
# > hi, who are you?
# Hi there! I'm your helpful assistant! I'm an AI-powered chatbot designed to assist and provide information to users like you. I'm here to help answer your questions, provide guidance, and offer support on a wide range of topics. I'm a friendly and knowledgeable AI, and I'm always happy to help with anything you need. What's on your mind, and how can I assist you today?
#
# > what is 1+1?
# Easy peasy! The answer to 1+1 is... 2!
```
By default, the chat template will be taken from the input model. If you want to use another chat template, pass `--chat-template NAME` as a parameter. See the list of [supported templates](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template)
```bash
./llama-cli -m your_model.gguf -p "You are a helpful assistant" -cnv --chat-template chatml
```
You can also use your own template via in-prefix, in-suffix and reverse-prompt parameters:
```bash
./llama-cli -m your_model.gguf -p "You are a helpful assistant" -cnv --in-prefix 'User: ' --reverse-prompt 'User:'
```
### Web server
[llama.cpp web server](./examples/server/README.md) is a lightweight [OpenAI API](https://github.com/openai/openai-openapi) compatible HTTP server that can be used to serve local models and easily connect them to existing clients.
Example usage:
```bash
./llama-server -m your_model.gguf --port 8080
# Basic web UI can be accessed via browser: http://localhost:8080
# Chat completion endpoint: http://localhost:8080/v1/chat/completions
```
### Interactive mode
> [!NOTE]
> If you prefer basic usage, please consider using conversation mode instead of interactive mode
In this mode, you can always interrupt generation by pressing Ctrl+C and entering one or more lines of text, which will be converted into tokens and appended to the current context. You can also specify a *reverse prompt* with the parameter `-r "reverse prompt string"`. This will result in user input being prompted whenever the exact tokens of the reverse prompt string are encountered in the generation. A typical use is to use a prompt that makes LLaMA emulate a chat between multiple users, say Alice and Bob, and pass `-r "Alice:"`.
Here is an example of a few-shot interaction, invoked with the command
```bash
# default arguments using a 7B model
./examples/chat.sh
# advanced chat with a 13B model
./examples/chat-13B.sh
# custom arguments using a 13B model
./llama-cli -m ./models/13B/ggml-model-q4_0.gguf -n 256 --repeat_penalty 1.0 --color -i -r "User:" -f prompts/chat-with-bob.txt
```
Note the use of `--color` to distinguish between user input and generated text. Other parameters are explained in more detail in the [README](examples/main/README.md) for the `llama-cli` example program.
![image](https://user-images.githubusercontent.com/1991296/224575029-2af3c7dc-5a65-4f64-a6bb-517a532aea38.png)
### Persistent Interaction
The prompt, user inputs, and model generations can be saved and resumed across calls to `./llama-cli` by leveraging `--prompt-cache` and `--prompt-cache-all`. The `./examples/chat-persistent.sh` script demonstrates this with support for long-running, resumable chat sessions. To use this example, you must provide a file to cache the initial chat prompt and a directory to save the chat session, and may optionally provide the same variables as `chat-13B.sh`. The same prompt cache can be reused for new chat sessions. Note that both prompt cache and chat directory are tied to the initial prompt (`PROMPT_TEMPLATE`) and the model file.
```bash
# Start a new chat
PROMPT_CACHE_FILE=chat.prompt.bin CHAT_SAVE_DIR=./chat/default ./examples/chat-persistent.sh
# Resume that chat
PROMPT_CACHE_FILE=chat.prompt.bin CHAT_SAVE_DIR=./chat/default ./examples/chat-persistent.sh
# Start a different chat with the same prompt/model
PROMPT_CACHE_FILE=chat.prompt.bin CHAT_SAVE_DIR=./chat/another ./examples/chat-persistent.sh
# Different prompt cache for different prompt/model
PROMPT_TEMPLATE=./prompts/chat-with-bob.txt PROMPT_CACHE_FILE=bob.prompt.bin \
CHAT_SAVE_DIR=./chat/bob ./examples/chat-persistent.sh
```
### Constrained output with grammars
`llama.cpp` supports grammars to constrain model output. For example, you can force the model to output JSON only:
```bash
./llama-cli -m ./models/13B/ggml-model-q4_0.gguf -n 256 --grammar-file grammars/json.gbnf -p 'Request: schedule a call at 8pm; Command:'
```
The `grammars/` folder contains a handful of sample grammars. To write your own, check out the [GBNF Guide](./grammars/README.md).
For authoring more complex JSON grammars, you can also check out https://grammar.intrinsiclabs.ai/, a browser app that lets you write TypeScript interfaces which it compiles to GBNF grammars that you can save for local use. Note that the app is built and maintained by members of the community, please file any issues or FRs on [its repo](http://github.com/intrinsiclabsai/gbnfgen) and not this one.
## Build
Please refer to [Build llama.cpp locally](./docs/build.md)
## Supported backends
| Backend | Target devices |
| --- | --- |
| [Metal](./docs/build.md#metal-build) | Apple Silicon |
| [BLAS](./docs/build.md#blas-build) | All |
| [BLIS](./docs/backend/BLIS.md) | All |
| [SYCL](./docs/backend/SYCL.md) | Intel and Nvidia GPU |
| [MUSA](./docs/build.md#musa) | Moore Threads MTT GPU |
| [CUDA](./docs/build.md#cuda) | Nvidia GPU |
| [hipBLAS](./docs/build.md#hipblas) | AMD GPU |
| [Vulkan](./docs/build.md#vulkan) | GPU |
| [CANN](./docs/build.md#cann) | Ascend NPU |
| [Metal](docs/build.md#metal-build) | Apple Silicon |
| [BLAS](docs/build.md#blas-build) | All |
| [BLIS](docs/backend/BLIS.md) | All |
| [SYCL](docs/backend/SYCL.md) | Intel and Nvidia GPU |
| [MUSA](docs/build.md#musa) | Moore Threads MTT GPU |
| [CUDA](docs/build.md#cuda) | Nvidia GPU |
| [HIP](docs/build.md#hip) | AMD GPU |
| [Vulkan](docs/build.md#vulkan) | GPU |
| [CANN](docs/build.md#cann) | Ascend NPU |
## Tools
## Building the project
### Prepare and Quantize
The main product of this project is the `llama` library. Its C-style interface can be found in [include/llama.h](include/llama.h).
The project also includes many example programs and tools using the `llama` library. The examples range from simple, minimal code snippets to sophisticated sub-projects such as an OpenAI-compatible HTTP server. Possible methods for obtaining the binaries:
> [!NOTE]
> You can use the [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space on Hugging Face to quantise your model weights without any setup too. It is synced from `llama.cpp` main every 6 hours.
- Clone this repository and build locally, see [how to build](docs/build.md)
- On MacOS or Linux, install `llama.cpp` via [brew, flox or nix](docs/install.md)
- Use a Docker image, see [documentation for Docker](docs/docker.md)
- Download pre-built binaries from [releases](https://github.com/ggerganov/llama.cpp/releases)
To obtain the official LLaMA 2 weights please see the <a href="#obtaining-and-using-the-facebook-llama-2-model">Obtaining and using the Facebook LLaMA 2 model</a> section. There is also a large selection of pre-quantized `gguf` models available on Hugging Face.
## Obtaining and quantizing models
Note: `convert.py` has been moved to `examples/convert_legacy_llama.py` and shouldn't be used for anything other than `Llama/Llama2/Mistral` models and their derivatives.
It does not support LLaMA 3, you can use `convert_hf_to_gguf.py` with LLaMA 3 downloaded from Hugging Face.
The [Hugging Face](https://huggingface.co) platform hosts a [number of LLMs](https://huggingface.co/models?library=gguf&sort=trending) compatible with `llama.cpp`:
To learn more about quantizing model, [read this documentation](./examples/quantize/README.md)
- [Trending](https://huggingface.co/models?library=gguf&sort=trending)
- [LLaMA](https://huggingface.co/models?sort=trending&search=llama+gguf)
### Perplexity (measuring model quality)
After downloading a model, use the CLI tools to run it locally - see below.
You can use the `perplexity` example to measure perplexity over a given prompt (lower perplexity is better).
For more information, see [https://huggingface.co/docs/transformers/perplexity](https://huggingface.co/docs/transformers/perplexity).
`llama.cpp` requires the model to be stored in the [GGUF](https://github.com/ggerganov/ggml/blob/master/docs/gguf.md) file format. Models in other data formats can be converted to GGUF using the `convert_*.py` Python scripts in this repo.
The Hugging Face platform provides a variety of online tools for converting, quantizing and hosting models with `llama.cpp`:
- Use the [GGUF-my-repo space](https://huggingface.co/spaces/ggml-org/gguf-my-repo) to convert to GGUF format and quantize model weights to smaller sizes
- Use the [GGUF-my-LoRA space](https://huggingface.co/spaces/ggml-org/gguf-my-lora) to convert LoRA adapters to GGUF format (more info: https://github.com/ggerganov/llama.cpp/discussions/10123)
- Use the [GGUF-editor space](https://huggingface.co/spaces/CISCai/gguf-editor) to edit GGUF meta data in the browser (more info: https://github.com/ggerganov/llama.cpp/discussions/9268)
- Use the [Inference Endpoints](https://ui.endpoints.huggingface.co/) to directly host `llama.cpp` in the cloud (more info: https://github.com/ggerganov/llama.cpp/discussions/9669)
To learn more about model quantization, [read this documentation](examples/quantize/README.md)
## [`llama-cli`](examples/main)
#### A CLI tool for accessing and experimenting with most of `llama.cpp`'s functionality.
- <details open>
<summary>Run simple text completion</summary>
```bash
llama-cli -m model.gguf -p "I believe the meaning of life is" -n 128
# I believe the meaning of life is to find your own truth and to live in accordance with it. For me, this means being true to myself and following my passions, even if they don't align with societal expectations. I think that's what I love about yoga it's not just a physical practice, but a spiritual one too. It's about connecting with yourself, listening to your inner voice, and honoring your own unique journey.
```
</details>
- <details>
<summary>Run in conversation mode</summary>
```bash
llama-cli -m model.gguf -p "You are a helpful assistant" -cnv
# > hi, who are you?
# Hi there! I'm your helpful assistant! I'm an AI-powered chatbot designed to assist and provide information to users like you. I'm here to help answer your questions, provide guidance, and offer support on a wide range of topics. I'm a friendly and knowledgeable AI, and I'm always happy to help with anything you need. What's on your mind, and how can I assist you today?
#
# > what is 1+1?
# Easy peasy! The answer to 1+1 is... 2!
```
</details>
- <details>
<summary>Run with custom chat template</summary>
```bash
# use the "chatml" template
llama-cli -m model.gguf -p "You are a helpful assistant" -cnv --chat-template chatml
# use a custom template
llama-cli -m model.gguf -p "You are a helpful assistant" -cnv --in-prefix 'User: ' --reverse-prompt 'User:'
```
[Supported templates](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template)
</details>
- <details>
<summary>Constrain the output with a custom grammar</summary>
```bash
llama-cli -m model.gguf -n 256 --grammar-file grammars/json.gbnf -p 'Request: schedule a call at 8pm; Command:'
# {"appointmentTime": "8pm", "appointmentDetails": "schedule a a call"}
```
The [grammars/](grammars/) folder contains a handful of sample grammars. To write your own, check out the [GBNF Guide](grammars/README.md).
For authoring more complex JSON grammars, check out https://grammar.intrinsiclabs.ai/
</details>
## [`llama-server`](examples/server)
#### A lightweight, [OpenAI API](https://github.com/openai/openai-openapi) compatible, HTTP server for serving LLMs.
- <details open>
<summary>Start a local HTTP server with default configuration on port 8080</summary>
```bash
llama-server -m model.gguf --port 8080
# Basic web UI can be accessed via browser: http://localhost:8080
# Chat completion endpoint: http://localhost:8080/v1/chat/completions
```
</details>
- <details>
<summary>Support multiple-users and parallel decoding</summary>
```bash
# up to 4 concurrent requests, each with 4096 max context
llama-server -m model.gguf -c 16384 -np 4
```
</details>
- <details>
<summary>Enable speculative decoding</summary>
```bash
# the draft.gguf model should be a small variant of the target model.gguf
llama-server -m model.gguf -md draft.gguf
```
</details>
- <details>
<summary>Serve an embedding model</summary>
```bash
# use the /embedding endpoint
llama-server -m model.gguf --embedding --pooling cls -ub 8192
```
</details>
- <details>
<summary>Serve a reranking model</summary>
```bash
# use the /reranking endpoint
llama-server -m model.gguf --reranking
```
</details>
- <details>
<summary>Constrain all outputs with a grammar</summary>
```bash
# custom grammar
llama-server -m model.gguf --grammar-file grammar.gbnf
# JSON
llama-server -m model.gguf --grammar-file grammars/json.gbnf
```
</details>
## [`llama-perplexity`](examples/perplexity)
#### A tool for measuring the perplexity [^1][^2] (and other quality metrics) of a model over a given text.
- <details open>
<summary>Measure the perplexity over a text file</summary>
```bash
llama-perplexity -m model.gguf -f file.txt
# [1]15.2701,[2]5.4007,[3]5.3073,[4]6.2965,[5]5.8940,[6]5.6096,[7]5.7942,[8]4.9297, ...
# Final estimate: PPL = 5.4007 +/- 0.67339
```
</details>
- <details>
<summary>Measure KL divergence</summary>
```bash
# TODO
```
</details>
[^1]: [examples/perplexity/README.md](examples/perplexity/README.md)
[^2]: [https://huggingface.co/docs/transformers/perplexity](https://huggingface.co/docs/transformers/perplexity)
## [`llama-bench`](examples/llama-bench)
#### Benchmark the performance of the inference for various parameters.
- <details open>
<summary>Run default benchmark</summary>
```bash
llama-bench -m model.gguf
# Output:
# | model | size | params | backend | threads | test | t/s |
# | ------------------- | ---------: | ---------: | ---------- | ------: | ------------: | -------------------: |
# | qwen2 1.5B Q4_0 | 885.97 MiB | 1.54 B | Metal,BLAS | 16 | pp512 | 5765.41 ± 20.55 |
# | qwen2 1.5B Q4_0 | 885.97 MiB | 1.54 B | Metal,BLAS | 16 | tg128 | 197.71 ± 0.81 |
#
# build: 3e0ba0e60 (4229)
```
</details>
## [`llama-run`](examples/run)
#### A comprehensive example for running `llama.cpp` models. Useful for inferencing. Used with RamaLama [^3].
- <details>
<summary>Run a model with a specific prompt (by default it's pulled from Ollama registry)</summary>
```bash
llama-run granite-code
```
</details>
[^3]: [https://github.com/containers/ramalama](RamaLama)
## [`llama-simple`](examples/simple)
#### A minimal example for implementing apps with `llama.cpp`. Useful for developers.
- <details>
<summary>Basic text completion</summary>
```bash
llama-simple -m model.gguf
# Hello my name is Kaitlyn and I am a 16 year old girl. I am a junior in high school and I am currently taking a class called "The Art of
```
</details>
To learn more how to measure perplexity using llama.cpp, [read this documentation](./examples/perplexity/README.md)
## Contributing
@@ -462,20 +479,19 @@ To learn more how to measure perplexity using llama.cpp, [read this documentatio
## Other documentation
- [main (cli)](./examples/main/README.md)
- [server](./examples/server/README.md)
- [jeopardy](./examples/jeopardy/README.md)
- [GBNF grammars](./grammars/README.md)
- [main (cli)](examples/main/README.md)
- [server](examples/server/README.md)
- [GBNF grammars](grammars/README.md)
**Development documentation**
#### Development documentation
- [How to build](./docs/build.md)
- [Running on Docker](./docs/docker.md)
- [Build on Android](./docs/android.md)
- [Performance troubleshooting](./docs/development/token_generation_performance_tips.md)
- [How to build](docs/build.md)
- [Running on Docker](docs/docker.md)
- [Build on Android](docs/android.md)
- [Performance troubleshooting](docs/development/token_generation_performance_tips.md)
- [GGML tips & tricks](https://github.com/ggerganov/llama.cpp/wiki/GGML-Tips-&-Tricks)
**Seminal papers and background on the models**
#### Seminal papers and background on the models
If your issue is with model generation quality, then please at least scan the following links and papers to understand the limitations of LLaMA models. This is especially important when choosing an appropriate model size and appreciating both the significant and subtle differences between LLaMA models and ChatGPT:
- LLaMA:
@@ -486,3 +502,6 @@ If your issue is with model generation quality, then please at least scan the fo
- GPT-3.5 / InstructGPT / ChatGPT:
- [Aligning language models to follow instructions](https://openai.com/research/instruction-following)
- [Training language models to follow instructions with human feedback](https://arxiv.org/abs/2203.02155)
#### References

4
Sources/llama/llama.h Normal file
View File

@@ -0,0 +1,4 @@
#pragma once
#include <llama.h>

View File

@@ -0,0 +1,5 @@
module llama [system] {
header "llama.h"
link "llama"
export *
}

View File

@@ -815,7 +815,10 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
ln -sfn ${mnt_models} ${SRC}/models-mnt
# Create a fresh python3 venv and enter it
python3 -m venv "$MNT/venv"
if ! python3 -m venv "$MNT/venv"; then
echo "Error: Failed to create Python virtual environment at $MNT/venv."
exit 1
fi
source "$MNT/venv/bin/activate"
pip install -r ${SRC}/requirements.txt --disable-pip-version-check

View File

@@ -6,5 +6,5 @@ includedir=${prefix}/include
Name: llama
Description: Port of Facebook's LLaMA model in C/C++
Version: @PROJECT_VERSION@
Libs: -L${libdir} -lllama
Libs: -L${libdir} -lggml -lggml-base -lllama
Cflags: -I${includedir}

View File

@@ -0,0 +1,11 @@
set( CMAKE_SYSTEM_NAME Windows )
set( CMAKE_SYSTEM_PROCESSOR x86_64 )
set( CMAKE_C_COMPILER clang )
set( CMAKE_CXX_COMPILER clang++ )
set( arch_c_flags "-march=native" )
set( CMAKE_C_FLAGS_INIT "${arch_c_flags}" )
set( CMAKE_CXX_FLAGS_INIT "${arch_c_flags}" )

View File

@@ -81,12 +81,12 @@ set(LLAMA_COMMON_EXTRA_LIBS build_info)
# Use curl to download model url
if (LLAMA_CURL)
find_package(CURL REQUIRED)
add_definitions(-DLLAMA_USE_CURL)
target_compile_definitions(${TARGET} PUBLIC LLAMA_USE_CURL)
include_directories(${CURL_INCLUDE_DIRS})
find_library(CURL_LIBRARY curl REQUIRED)
set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} ${CURL_LIBRARY})
endif ()
target_include_directories(${TARGET} PUBLIC .)
target_compile_features (${TARGET} PUBLIC cxx_std_11)
target_compile_features (${TARGET} PUBLIC cxx_std_17)
target_link_libraries (${TARGET} PRIVATE ${LLAMA_COMMON_EXTRA_LIBS} PUBLIC llama Threads::Threads)

View File

@@ -128,7 +128,11 @@ static void common_params_handle_model_default(common_params & params) {
}
params.hf_file = params.model;
} else if (params.model.empty()) {
params.model = fs_get_cache_file(string_split<std::string>(params.hf_file, '/').back());
// this is to avoid different repo having same file name, or same file name in different subdirs
std::string filename = params.hf_repo + "_" + params.hf_file;
// to make sure we don't have any slashes in the filename
string_replace_all(filename, "/", "_");
params.model = fs_get_cache_file(filename);
}
} else if (!params.model_url.empty()) {
if (params.model.empty()) {
@@ -141,6 +145,35 @@ static void common_params_handle_model_default(common_params & params) {
}
}
const std::vector<ggml_type> kv_cache_types = {
GGML_TYPE_F32,
GGML_TYPE_F16,
GGML_TYPE_BF16,
GGML_TYPE_Q8_0,
GGML_TYPE_Q4_0,
GGML_TYPE_Q4_1,
GGML_TYPE_IQ4_NL,
GGML_TYPE_Q5_0,
GGML_TYPE_Q5_1,
};
static ggml_type kv_cache_type_from_str(const std::string & s) {
for (const auto & type : kv_cache_types) {
if (ggml_type_name(type) == s) {
return type;
}
}
throw std::runtime_error("Unsupported cache type: " + s);
}
static std::string get_all_kv_cache_types() {
std::ostringstream msg;
for (const auto & type : kv_cache_types) {
msg << ggml_type_name(type) << (&type == &kv_cache_types.back() ? "" : ", ");
}
return msg.str();
}
//
// CLI argument parsing functions
//
@@ -344,6 +377,18 @@ bool common_params_parse(int argc, char ** argv, common_params & params, llama_e
return true;
}
static std::string list_builtin_chat_templates() {
std::vector<const char *> supported_tmpl;
int32_t res = llama_chat_builtin_templates(nullptr, 0);
supported_tmpl.resize(res);
res = llama_chat_builtin_templates(supported_tmpl.data(), supported_tmpl.size());
std::ostringstream msg;
for (auto & tmpl : supported_tmpl) {
msg << tmpl << (&tmpl == &supported_tmpl.back() ? "" : ", ");
}
return msg.str();
}
common_params_context common_params_parser_init(common_params & params, llama_example ex, void(*print_usage)(int, char **)) {
// load dynamic backends
ggml_backend_load_all();
@@ -575,7 +620,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params) {
params.ctx_shift = false;
}
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_CONTEXT_SHIFT"));
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_IMATRIX}).set_env("LLAMA_ARG_NO_CONTEXT_SHIFT"));
add_opt(common_arg(
{"--chunks"}, "N",
string_format("max number of chunks to process (default: %d, -1 = all)", params.n_chunks),
@@ -770,7 +815,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params) {
params.warmup = false;
}
).set_examples({LLAMA_EXAMPLE_MAIN}));
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"--spm-infill"},
string_format(
@@ -810,13 +855,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.sampling.ignore_eos = true;
}
).set_sparam());
add_opt(common_arg(
{"--penalize-nl"},
string_format("penalize newline tokens (default: %s)", params.sampling.penalize_nl ? "true" : "false"),
[](common_params & params) {
params.sampling.penalize_nl = true;
}
).set_sparam());
add_opt(common_arg(
{"--temp"}, "N",
string_format("temperature (default: %.1f)", (double)params.sampling.temp),
@@ -871,6 +909,9 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--repeat-last-n"}, "N",
string_format("last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)", params.sampling.penalty_last_n),
[](common_params & params, int value) {
if (value < -1) {
throw std::runtime_error(string_format("error: invalid repeat-last-n = %d\n", value));
}
params.sampling.penalty_last_n = value;
params.sampling.n_prev = std::max(params.sampling.n_prev, params.sampling.penalty_last_n);
}
@@ -925,6 +966,9 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--dry-penalty-last-n"}, "N",
string_format("set DRY penalty for the last n tokens (default: %d, 0 = disable, -1 = context size)", params.sampling.dry_penalty_last_n),
[](common_params & params, int value) {
if (value < -1) {
throw std::runtime_error(string_format("error: invalid dry-penalty-last-n = %d\n", value));
}
params.sampling.dry_penalty_last_n = value;
}
).set_sparam());
@@ -1158,18 +1202,28 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
).set_env("LLAMA_ARG_NO_KV_OFFLOAD"));
add_opt(common_arg(
{"-ctk", "--cache-type-k"}, "TYPE",
string_format("KV cache data type for K (default: %s)", params.cache_type_k.c_str()),
string_format(
"KV cache data type for K\n"
"allowed values: %s\n"
"(default: %s)",
get_all_kv_cache_types().c_str(),
ggml_type_name(params.cache_type_k)
),
[](common_params & params, const std::string & value) {
// TODO: get the type right here
params.cache_type_k = value;
params.cache_type_k = kv_cache_type_from_str(value);
}
).set_env("LLAMA_ARG_CACHE_TYPE_K"));
add_opt(common_arg(
{"-ctv", "--cache-type-v"}, "TYPE",
string_format("KV cache data type for V (default: %s)", params.cache_type_v.c_str()),
string_format(
"KV cache data type for V\n"
"allowed values: %s\n"
"(default: %s)",
get_all_kv_cache_types().c_str(),
ggml_type_name(params.cache_type_v)
),
[](common_params & params, const std::string & value) {
// TODO: get the type right here
params.cache_type_v = value;
params.cache_type_v = kv_cache_type_from_str(value);
}
).set_env("LLAMA_ARG_CACHE_TYPE_V"));
add_opt(common_arg(
@@ -1366,8 +1420,9 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params, int value) {
params.n_gpu_layers = value;
if (!llama_supports_gpu_offload()) {
fprintf(stderr, "warning: not compiled with GPU offload support, --gpu-layers option will be ignored\n");
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
fprintf(stderr, "warning: no usable GPU found, --gpu-layers option will be ignored\n");
fprintf(stderr, "warning: one possible reason is that llama.cpp was compiled without GPU support\n");
fprintf(stderr, "warning: consult docs/build.md for compilation instructions\n");
}
}
).set_env("LLAMA_ARG_N_GPU_LAYERS"));
@@ -1694,6 +1749,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.public_path = value;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_STATIC_PATH"));
add_opt(common_arg(
{"--no-webui"},
string_format("Disable the Web UI (default: %s)", params.webui ? "enabled" : "disabled"),
[](common_params & params) {
params.webui = false;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_WEBUI"));
add_opt(common_arg(
{"--embedding", "--embeddings"},
string_format("restrict to only support embedding use case; use only with dedicated embedding models (default: %s)", params.embedding ? "enabled" : "disabled"),
@@ -1809,9 +1871,11 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
).set_examples({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"--chat-template"}, "JINJA_TEMPLATE",
"set custom jinja chat template (default: template taken from model's metadata)\n"
"if suffix/prefix are specified, template will be disabled\n"
"only commonly used templates are accepted:\nhttps://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template",
string_format(
"set custom jinja chat template (default: template taken from model's metadata)\n"
"if suffix/prefix are specified, template will be disabled\n"
"list of built-in templates:\n%s", list_builtin_chat_templates().c_str()
),
[](common_params & params, const std::string & value) {
if (!common_chat_verify_template(value)) {
throw std::runtime_error(string_format(
@@ -2057,35 +2121,35 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params, int value) {
params.speculative.n_max = value;
}
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER}));
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_DRAFT_MAX"));
add_opt(common_arg(
{"--draft-min", "--draft-n-min"}, "N",
string_format("minimum number of draft tokens to use for speculative decoding (default: %d)", params.speculative.n_min),
[](common_params & params, int value) {
params.speculative.n_min = value;
}
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER}));
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_DRAFT_MIN"));
add_opt(common_arg(
{"--draft-p-split"}, "P",
string_format("speculative decoding split probability (default: %.1f)", (double)params.speculative.p_split),
[](common_params & params, const std::string & value) {
params.speculative.p_split = std::stof(value);
}
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}).set_env("LLAMA_ARG_DRAFT_P_SPLIT"));
add_opt(common_arg(
{"--draft-p-min"}, "P",
string_format("minimum speculative decoding probability (greedy) (default: %.1f)", (double)params.speculative.p_min),
[](common_params & params, const std::string & value) {
params.speculative.p_min = std::stof(value);
}
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_DRAFT_P_MIN"));
add_opt(common_arg(
{"-cd", "--ctx-size-draft"}, "N",
string_format("size of the prompt context for the draft model (default: %d, 0 = loaded from model)", params.speculative.n_ctx),
[](common_params & params, int value) {
params.speculative.n_ctx = value;
}
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CTX_SIZE_DRAFT"));
add_opt(common_arg(
{"-devd", "--device-draft"}, "<dev1,dev2,..>",
"comma-separated list of devices to use for offloading the draft model (none = don't offload)\n"
@@ -2100,18 +2164,19 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params, int value) {
params.speculative.n_gpu_layers = value;
if (!llama_supports_gpu_offload()) {
fprintf(stderr, "warning: not compiled with GPU offload support, --gpu-layers-draft option will be ignored\n");
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
fprintf(stderr, "warning: no usable GPU found, --gpu-layers-draft option will be ignored\n");
fprintf(stderr, "warning: one possible reason is that llama.cpp was compiled without GPU support\n");
fprintf(stderr, "warning: consult docs/build.md for compilation instructions\n");
}
}
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_N_GPU_LAYERS_DRAFT"));
add_opt(common_arg(
{"-md", "--model-draft"}, "FNAME",
"draft model for speculative decoding (default: unused)",
[](common_params & params, const std::string & value) {
params.speculative.model = value;
}
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODEL_DRAFT"));
return ctx_arg;
}

View File

@@ -652,7 +652,17 @@ bool fs_validate_filename(const std::string & filename) {
std::u32string filename_utf32;
try {
#if defined(__clang__)
// disable C++17 deprecation warning for std::codecvt_utf8
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wdeprecated-declarations"
#endif
std::wstring_convert<std::codecvt_utf8<char32_t>, char32_t> converter;
#if defined(__clang__)
# pragma clang diagnostic pop
#endif
filename_utf32 = converter.from_bytes(filename);
// If the reverse conversion mismatches, it means overlong UTF-8 sequences were used,
@@ -829,9 +839,9 @@ struct common_init_result common_init_from_params(common_params & params) {
llama_model * model = nullptr;
if (!params.hf_repo.empty() && !params.hf_file.empty()) {
model = common_load_model_from_hf(params.hf_repo.c_str(), params.hf_file.c_str(), params.model.c_str(), params.hf_token.c_str(), mparams);
model = common_load_model_from_hf(params.hf_repo, params.hf_file, params.model, params.hf_token, mparams);
} else if (!params.model_url.empty()) {
model = common_load_model_from_url(params.model_url.c_str(), params.model.c_str(), params.hf_token.c_str(), mparams);
model = common_load_model_from_url(params.model_url, params.model, params.hf_token, mparams);
} else {
model = llama_load_model_from_file(params.model.c_str(), mparams);
}
@@ -930,6 +940,25 @@ struct common_init_result common_init_from_params(common_params & params) {
params.sampling.ignore_eos = false;
}
if (params.sampling.ignore_eos) {
for (llama_token i = 0; i < llama_n_vocab(model); i++) {
if (llama_token_is_eog(model, i)) {
LOG_INF("%s: added %s logit bias = %f\n", __func__, common_token_to_piece(lctx, i).c_str(), -INFINITY);
params.sampling.logit_bias.push_back({i, -INFINITY});
}
}
}
if (params.sampling.penalty_last_n == -1) {
LOG_INF("%s: setting penalty_last_n to ctx_size = %d\n", __func__, llama_n_ctx(lctx));
params.sampling.penalty_last_n = llama_n_ctx(lctx);
}
if (params.sampling.dry_penalty_last_n == -1) {
LOG_INF("%s: setting dry_penalty_last_n to ctx_size = %d\n", __func__, llama_n_ctx(lctx));
params.sampling.dry_penalty_last_n = llama_n_ctx(lctx);
}
if (params.warmup) {
LOG_WRN("%s: warming up the model with an empty run - please wait ... (--no-warmup to disable)\n", __func__);
@@ -1005,38 +1034,6 @@ struct llama_model_params common_model_params_to_llama(common_params & params) {
return mparams;
}
static ggml_type kv_cache_type_from_str(const std::string & s) {
if (s == "f32") {
return GGML_TYPE_F32;
}
if (s == "f16") {
return GGML_TYPE_F16;
}
if (s == "bf16") {
return GGML_TYPE_BF16;
}
if (s == "q8_0") {
return GGML_TYPE_Q8_0;
}
if (s == "q4_0") {
return GGML_TYPE_Q4_0;
}
if (s == "q4_1") {
return GGML_TYPE_Q4_1;
}
if (s == "iq4_nl") {
return GGML_TYPE_IQ4_NL;
}
if (s == "q5_0") {
return GGML_TYPE_Q5_0;
}
if (s == "q5_1") {
return GGML_TYPE_Q5_1;
}
throw std::runtime_error("Unsupported cache type: " + s);
}
struct llama_context_params common_context_params_to_llama(const common_params & params) {
auto cparams = llama_context_default_params();
@@ -1071,8 +1068,8 @@ struct llama_context_params common_context_params_to_llama(const common_params &
cparams.pooling_type = LLAMA_POOLING_TYPE_RANK;
}
cparams.type_k = kv_cache_type_from_str(params.cache_type_k);
cparams.type_v = kv_cache_type_from_str(params.cache_type_v);
cparams.type_k = params.cache_type_k;
cparams.type_v = params.cache_type_v;
return cparams;
}
@@ -1098,12 +1095,6 @@ struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_p
#define CURL_MAX_RETRY 3
#define CURL_RETRY_DELAY_SECONDS 2
static bool starts_with(const std::string & str, const std::string & prefix) {
// While we wait for C++20's std::string::starts_with...
return str.rfind(prefix, 0) == 0;
}
static bool curl_perform_with_retry(const std::string& url, CURL* curl, int max_attempts, int retry_delay_seconds) {
int remaining_attempts = max_attempts;
@@ -1342,17 +1333,17 @@ static bool common_download_file(const std::string & url, const std::string & pa
}
struct llama_model * common_load_model_from_url(
const char * model_url,
const char * path_model,
const char * hf_token,
const std::string & model_url,
const std::string & local_path,
const std::string & hf_token,
const struct llama_model_params & params) {
// Basic validation of the model_url
if (!model_url || strlen(model_url) == 0) {
if (model_url.empty()) {
LOG_ERR("%s: invalid model_url\n", __func__);
return NULL;
}
if (!common_download_file(model_url, path_model, hf_token)) {
if (!common_download_file(model_url, local_path, hf_token)) {
return NULL;
}
@@ -1363,9 +1354,9 @@ struct llama_model * common_load_model_from_url(
/*.no_alloc = */ true,
/*.ctx = */ NULL,
};
auto * ctx_gguf = gguf_init_from_file(path_model, gguf_params);
auto * ctx_gguf = gguf_init_from_file(local_path.c_str(), gguf_params);
if (!ctx_gguf) {
LOG_ERR("\n%s: failed to load input GGUF from %s\n", __func__, path_model);
LOG_ERR("\n%s: failed to load input GGUF from %s\n", __func__, local_path.c_str());
return NULL;
}
@@ -1384,13 +1375,13 @@ struct llama_model * common_load_model_from_url(
// Verify the first split file format
// and extract split URL and PATH prefixes
{
if (!llama_split_prefix(split_prefix, sizeof(split_prefix), path_model, 0, n_split)) {
LOG_ERR("\n%s: unexpected model file name: %s n_split=%d\n", __func__, path_model, n_split);
if (!llama_split_prefix(split_prefix, sizeof(split_prefix), local_path.c_str(), 0, n_split)) {
LOG_ERR("\n%s: unexpected model file name: %s n_split=%d\n", __func__, local_path.c_str(), n_split);
return NULL;
}
if (!llama_split_prefix(split_url_prefix, sizeof(split_url_prefix), model_url, 0, n_split)) {
LOG_ERR("\n%s: unexpected model url: %s n_split=%d\n", __func__, model_url, n_split);
if (!llama_split_prefix(split_url_prefix, sizeof(split_url_prefix), model_url.c_str(), 0, n_split)) {
LOG_ERR("\n%s: unexpected model url: %s n_split=%d\n", __func__, model_url.c_str(), n_split);
return NULL;
}
}
@@ -1417,14 +1408,14 @@ struct llama_model * common_load_model_from_url(
}
}
return llama_load_model_from_file(path_model, params);
return llama_load_model_from_file(local_path.c_str(), params);
}
struct llama_model * common_load_model_from_hf(
const char * repo,
const char * model,
const char * path_model,
const char * hf_token,
const std::string & repo,
const std::string & remote_path,
const std::string & local_path,
const std::string & hf_token,
const struct llama_model_params & params) {
// construct hugging face model url:
//
@@ -1438,27 +1429,27 @@ struct llama_model * common_load_model_from_hf(
std::string model_url = "https://huggingface.co/";
model_url += repo;
model_url += "/resolve/main/";
model_url += model;
model_url += remote_path;
return common_load_model_from_url(model_url.c_str(), path_model, hf_token, params);
return common_load_model_from_url(model_url, local_path, hf_token, params);
}
#else
struct llama_model * common_load_model_from_url(
const char * /*model_url*/,
const char * /*path_model*/,
const char * /*hf_token*/,
const std::string & /*model_url*/,
const std::string & /*local_path*/,
const std::string & /*hf_token*/,
const struct llama_model_params & /*params*/) {
LOG_WRN("%s: llama.cpp built without libcurl, downloading from an url not supported.\n", __func__);
return nullptr;
}
struct llama_model * common_load_model_from_hf(
const char * /*repo*/,
const char * /*model*/,
const char * /*path_model*/,
const char * /*hf_token*/,
const std::string & /*repo*/,
const std::string & /*remote_path*/,
const std::string & /*local_path*/,
const std::string & /*hf_token*/,
const struct llama_model_params & /*params*/) {
LOG_WRN("%s: llama.cpp built without libcurl, downloading from Hugging Face not supported.\n", __func__);
return nullptr;

View File

@@ -37,9 +37,9 @@ using llama_tokens = std::vector<llama_token>;
// build info
extern int LLAMA_BUILD_NUMBER;
extern char const * LLAMA_COMMIT;
extern char const * LLAMA_COMPILER;
extern char const * LLAMA_BUILD_TARGET;
extern const char * LLAMA_COMMIT;
extern const char * LLAMA_COMPILER;
extern const char * LLAMA_BUILD_TARGET;
struct common_control_vector_load_info;
@@ -95,6 +95,7 @@ enum common_sampler_type {
COMMON_SAMPLER_TYPE_TEMPERATURE = 7,
COMMON_SAMPLER_TYPE_XTC = 8,
COMMON_SAMPLER_TYPE_INFILL = 9,
COMMON_SAMPLER_TYPE_PENALTIES = 10,
};
// dimensionality reduction methods, used by cvector-generator
@@ -130,14 +131,15 @@ struct common_params_sampling {
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
float mirostat_tau = 5.00f; // target entropy
float mirostat_eta = 0.10f; // learning rate
bool penalize_nl = false; // consider newlines as a repeatable token
bool ignore_eos = false;
bool no_perf = false; // disable performance metrics
bool timing_per_token = false;
std::vector<std::string> dry_sequence_breakers = {"\n", ":", "\"", "*"}; // default sequence breakers for DRY
std::vector<enum common_sampler_type> samplers = {
COMMON_SAMPLER_TYPE_PENALTIES,
COMMON_SAMPLER_TYPE_DRY,
COMMON_SAMPLER_TYPE_TOP_K,
COMMON_SAMPLER_TYPE_TYPICAL_P,
@@ -192,11 +194,13 @@ struct common_params {
float defrag_thold = 0.1f; // KV cache defragmentation threshold
// offload params
std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
struct cpu_params cpuparams;
struct cpu_params cpuparams_batch;
@@ -214,7 +218,7 @@ struct common_params {
struct common_params_speculative speculative;
std::string model = ""; // model path // NOLINT
std::string model_alias = "unknown"; // model alias // NOLINT
std::string model_alias = ""; // model alias // NOLINT
std::string model_url = ""; // model url to download // NOLINT
std::string hf_token = ""; // HF token // NOLINT
std::string hf_repo = ""; // HF repo // NOLINT
@@ -285,8 +289,8 @@ struct common_params {
bool warmup = true; // warmup run
bool check_tensors = false; // validate tensor data
std::string cache_type_k = "f16"; // KV cache data type for the K
std::string cache_type_v = "f16"; // KV cache data type for the V
ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K
ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V
// multimodal models (see examples/llava)
std::string mmproj = ""; // path to multimodal projector // NOLINT
@@ -436,6 +440,11 @@ std::vector<std::string> string_split<std::string>(const std::string & input, ch
return parts;
}
static bool string_starts_with(const std::string & str,
const std::string & prefix) { // While we wait for C++20's std::string::starts_with...
return str.rfind(prefix, 0) == 0;
}
bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
void string_process_escapes(std::string & input);
@@ -470,8 +479,17 @@ struct llama_model_params common_model_params_to_llama ( common_params
struct llama_context_params common_context_params_to_llama(const common_params & params);
struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
struct llama_model * common_load_model_from_url(const char * model_url, const char * path_model, const char * hf_token, const struct llama_model_params & params);
struct llama_model * common_load_model_from_hf(const char * repo, const char * file, const char * path_model, const char * hf_token, const struct llama_model_params & params);
struct llama_model * common_load_model_from_url(
const std::string & model_url,
const std::string & local_path,
const std::string & hf_token,
const struct llama_model_params & params);
struct llama_model * common_load_model_from_hf(
const std::string & repo,
const std::string & remote_path,
const std::string & local_path,
const std::string & hf_token,
const struct llama_model_params & params);
// clear LoRA adapters from context, then apply new list of adapters
void common_lora_adapters_apply(struct llama_context * ctx, std::vector<common_lora_adapter_container> & lora_adapters);

View File

@@ -161,32 +161,20 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
params.logit_bias.size(),
params.logit_bias.data()));
llama_sampler_chain_add(result->chain,
llama_sampler_init_penalties(
llama_n_vocab (model),
llama_token_eos(model),
llama_token_nl (model),
params.penalty_last_n,
params.penalty_repeat,
params.penalty_freq,
params.penalty_present,
params.penalize_nl,
params.ignore_eos));
if (params.mirostat == 0) {
for (const auto & cnstr : params.samplers) {
switch (cnstr) {
case COMMON_SAMPLER_TYPE_DRY:
case COMMON_SAMPLER_TYPE_DRY:
{
std::vector<const char*> c_breakers;
std::vector<const char *> c_breakers;
c_breakers.reserve(params.dry_sequence_breakers.size());
for (const auto& str : params.dry_sequence_breakers) {
for (const auto & str : params.dry_sequence_breakers) {
c_breakers.push_back(str.c_str());
}
llama_sampler_chain_add(result->chain, llama_sampler_init_dry (model, params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
}
break;
break;
case COMMON_SAMPLER_TYPE_TOP_K:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
break;
@@ -208,6 +196,9 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
case COMMON_SAMPLER_TYPE_INFILL:
llama_sampler_chain_add(result->chain, llama_sampler_init_infill (model));
break;
case COMMON_SAMPLER_TYPE_PENALTIES:
llama_sampler_chain_add(result->chain, llama_sampler_init_penalties(params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
break;
default:
GGML_ASSERT(false && "unknown sampler type");
}
@@ -415,6 +406,7 @@ char common_sampler_type_to_chr(enum common_sampler_type cnstr) {
case COMMON_SAMPLER_TYPE_TEMPERATURE: return 't';
case COMMON_SAMPLER_TYPE_XTC: return 'x';
case COMMON_SAMPLER_TYPE_INFILL: return 'i';
case COMMON_SAMPLER_TYPE_PENALTIES: return 'e';
default : return '?';
}
}
@@ -429,6 +421,7 @@ std::string common_sampler_type_to_str(enum common_sampler_type cnstr) {
case COMMON_SAMPLER_TYPE_TEMPERATURE: return "temperature";
case COMMON_SAMPLER_TYPE_XTC: return "xtc";
case COMMON_SAMPLER_TYPE_INFILL: return "infill";
case COMMON_SAMPLER_TYPE_PENALTIES: return "penalties";
default : return "";
}
}
@@ -443,6 +436,7 @@ std::vector<common_sampler_type> common_sampler_types_from_names(const std::vect
{ "temperature", COMMON_SAMPLER_TYPE_TEMPERATURE },
{ "xtc", COMMON_SAMPLER_TYPE_XTC },
{ "infill", COMMON_SAMPLER_TYPE_INFILL },
{ "penalties", COMMON_SAMPLER_TYPE_PENALTIES },
};
// since samplers names are written multiple ways
@@ -489,6 +483,7 @@ std::vector<common_sampler_type> common_sampler_types_from_chars(const std::stri
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TEMPERATURE), COMMON_SAMPLER_TYPE_TEMPERATURE },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_XTC), COMMON_SAMPLER_TYPE_XTC },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_INFILL), COMMON_SAMPLER_TYPE_INFILL },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_PENALTIES), COMMON_SAMPLER_TYPE_PENALTIES },
};
std::vector<common_sampler_type> samplers;

View File

@@ -62,6 +62,10 @@ struct common_speculative * common_speculative_init(
}
void common_speculative_free(struct common_speculative * spec) {
if (spec == nullptr) {
return;
}
common_sampler_free(spec->smpl);
llama_batch_free(spec->batch);

View File

@@ -658,6 +658,15 @@ class Model:
if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
# ref: https://huggingface.co/facebook/chameleon-7b
res = "chameleon"
if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
# ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
res = "minerva-7b"
if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
# ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
res = "roberta-bpe"
if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
# ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
res = "gigachat"
if res is None:
logger.warning("\n")
@@ -1831,29 +1840,40 @@ class MiniCPMModel(Model):
model_arch = gguf.MODEL_ARCH.MINICPM
def set_gguf_parameters(self):
block_count = self.hparams["num_hidden_layers"]
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
self.gguf_writer.add_file_type(self.ftype)
super().set_gguf_parameters()
embedding_scale = float(self.hparams["scale_emb"])
self.gguf_writer.add_embedding_scale(embedding_scale)
logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
self.gguf_writer.add_residual_scale(residual_scale)
logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
self.gguf_writer.add_logit_scale(logit_scale)
logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
if self.hparams.get("rope_scaling") is not None:
if self.hparams["rope_scaling"].get("type") == "longrope":
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
rope_scaling = self.find_hparam(['rope_scaling'], True)
if rope_scaling is not None:
long_factors = rope_scaling.get('long_factor', None)
short_factors = rope_scaling.get('short_factor', None)
if long_factors is None or short_factors is None:
raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
def set_vocab(self):
self._set_vocab_llama_hf()
def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
if n_kv_head is not None and n_head != n_kv_head:
n_head //= n_kv_head
return (
weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
.swapaxes(1, 2)
.reshape(weights.shape)
)
self._set_vocab_sentencepiece()
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
@@ -1863,9 +1883,9 @@ class MiniCPMModel(Model):
# HF models permute some of the tensors, so we need to undo that
if name.endswith(("q_proj.weight")):
data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
data_torch = LlamaModel.permute(data_torch, n_head, n_head)
if name.endswith(("k_proj.weight")):
data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
return [(self.map_tensor_name(name), data_torch)]
@@ -1975,6 +1995,37 @@ class Qwen2Model(Model):
except FileNotFoundError:
self._set_vocab_gpt2()
def set_gguf_parameters(self):
super().set_gguf_parameters()
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
if self.hparams["rope_scaling"].get("type") == "yarn":
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
@Model.register("Qwen2VLForConditionalGeneration")
class Qwen2VLModel(Model):
model_arch = gguf.MODEL_ARCH.QWEN2VL
def set_gguf_parameters(self):
super().set_gguf_parameters()
mrope_section = self.hparams["rope_scaling"]["mrope_section"]
mrope_section += [0] * max(0, 4 - len(mrope_section))
self.gguf_writer.add_rope_dimension_sections(mrope_section)
def set_vocab(self):
try:
self._set_vocab_sentencepiece()
except FileNotFoundError:
self._set_vocab_gpt2()
def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
for name, data in super().get_tensors():
if name.startswith("visual."):
continue
yield name, data
@Model.register("Qwen2MoeForCausalLM")
class Qwen2MoeModel(Model):
@@ -2519,7 +2570,7 @@ class InternLM2Model(Model):
return [(self.map_tensor_name(name), data_torch)]
@Model.register("BertModel", "CamembertModel")
@Model.register("BertModel", "CamembertModel", "RobertaModel")
class BertModel(Model):
model_arch = gguf.MODEL_ARCH.BERT
@@ -2560,7 +2611,8 @@ class BertModel(Model):
# we need this to validate the size of the token_type embeddings
# though currently we are passing all zeros to the token_type embeddings
self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
# "Sequence A" or "Sequence B"
self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
# convert to phantom space vocab
def phantom(tok):
@@ -3378,6 +3430,97 @@ class ArcticModel(Model):
raise ValueError(f"Unprocessed experts: {experts}")
@Model.register("DeepseekForCausalLM")
class DeepseekModel(Model):
model_arch = gguf.MODEL_ARCH.DEEPSEEK
def set_vocab(self):
try:
self._set_vocab_sentencepiece()
except FileNotFoundError:
self._set_vocab_gpt2()
def set_gguf_parameters(self):
super().set_gguf_parameters()
hparams = self.hparams
if "head_dim" in hparams:
rope_dim = hparams["head_dim"]
else:
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
self.gguf_writer.add_rope_dimension_count(rope_dim)
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
self.gguf_writer.add_expert_weights_scale(1.0)
self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
_experts: list[dict[str, Tensor]] | None = None
@staticmethod
def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
if n_head_kv is not None and n_head != n_head_kv:
n_head = n_head_kv
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
.swapaxes(1, 2)
.reshape(weights.shape))
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
n_head = self.hparams["num_attention_heads"]
n_kv_head = self.hparams.get("num_key_value_heads")
if name.endswith(("q_proj.weight", "q_proj.bias")):
data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
if name.endswith(("k_proj.weight", "k_proj.bias")):
data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
# process the experts separately
if name.find("mlp.experts") != -1:
n_experts = self.hparams["n_routed_experts"]
assert bid is not None
if self._experts is None:
self._experts = [{} for _ in range(self.block_count)]
self._experts[bid][name] = data_torch
if len(self._experts[bid]) >= n_experts * 3:
tensors: list[tuple[str, Tensor]] = []
# merge the experts into a single 3d tensor
for w_name in ["down_proj", "gate_proj", "up_proj"]:
datas: list[Tensor] = []
for xid in range(n_experts):
ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
datas.append(self._experts[bid][ename])
del self._experts[bid][ename]
data_torch = torch.stack(datas, dim=0)
merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
new_name = self.map_tensor_name(merged_name)
tensors.append((new_name, data_torch))
return tensors
else:
return []
return [(self.map_tensor_name(name), data_torch)]
def prepare_tensors(self):
super().prepare_tensors()
if self._experts is not None:
# flatten `list[dict[str, Tensor]]` into `list[str]`
experts = [k for d in self._experts for k in d.keys()]
if len(experts) > 0:
raise ValueError(f"Unprocessed experts: {experts}")
@Model.register("DeepseekV2ForCausalLM")
class DeepseekV2Model(Model):
model_arch = gguf.MODEL_ARCH.DEEPSEEK2

View File

@@ -17,7 +17,7 @@
#
# python3 convert_hf_to_gguf_update.py <huggingface_token>
#
# - Copy-paste the generated get_vocab_base_pre() function into convert_hf_to_gguf.py
# - The convert_hf_to_gguf.py script will have had its get_vocab_base_pre() function updated
# - Update llama.cpp with the new pre-tokenizer if necessary
#
# TODO: generate tokenizer tests for llama.cpp
@@ -102,6 +102,9 @@ models = [
{"name": "exaone", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct", },
{"name": "phi-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/microsoft/phi-2", },
{"name": "chameleon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/facebook/chameleon-7b", },
{"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", },
{"name": "roberta-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sentence-transformers/stsb-roberta-base"},
{"name": "gigachat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct"},
]

View File

@@ -23,10 +23,10 @@ $ curl -L {model-url} -o ~/{model}.gguf
Then, if you are not already in the repo directory, `cd` into `llama.cpp` and:
```
$ ./build/bin/llama-simple -m ~/{model}.gguf -c {context-size} -p "{your-prompt}"
$ ./build/bin/llama-cli -m ~/{model}.gguf -c {context-size} -p "{your-prompt}"
```
Here, we show `llama-simple`, but any of the executables under `examples` should work, in theory. Be sure to set `context-size` to a reasonable number (say, 4096) to start with; otherwise, memory could spike and kill your terminal.
Here, we show `llama-cli`, but any of the executables under `examples` should work, in theory. Be sure to set `context-size` to a reasonable number (say, 4096) to start with; otherwise, memory could spike and kill your terminal.
To see what it might look like visually, here's an old demo of an interactive session running on a Pixel 5 phone:

View File

@@ -27,13 +27,6 @@ We recommend using openmp since it's easier to modify the cores being used.
### llama.cpp compilation
Makefile:
```bash
make GGML_BLIS=1 -j
# make GGML_BLIS=1 llama-benchmark-matmult
```
CMake:
```bash

View File

@@ -23,6 +23,8 @@ The llama.cpp CANN backend is designed to support Ascend NPU. It utilize the abi
## News
- 2024.11
- Support F16 and F32 data type model for Ascend 310P NPU.
- 2024.8
- Support `Q4_0` and `Q8_0` data type for Ascend NPU.
- 2024.7
@@ -40,9 +42,11 @@ The llama.cpp CANN backend is designed to support Ascend NPU. It utilize the abi
### Ascend NPU
**Verified devices**
| Ascend NPU | Status |
|:-----------------------------:|:-------:|
| Atlas 300T A2 | Support |
| Atlas 300I Duo | Support |
*Notes:*

View File

@@ -7,124 +7,75 @@ git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
```
In order to build llama.cpp you have four different options.
The following sections describe how to build with different backends and options.
- Using `make`:
- On Linux or MacOS:
## CPU Build
```bash
make
```
Build llama.cpp using `CMake`:
- On Windows (x86/x64 only, arm64 requires cmake):
```bash
cmake -B build
cmake --build build --config Release
```
1. Download the latest fortran version of [w64devkit](https://github.com/skeeto/w64devkit/releases).
2. Extract `w64devkit` on your pc.
3. Run `w64devkit.exe`.
4. Use the `cd` command to reach the `llama.cpp` folder.
5. From here you can run:
```bash
make
```
**Notes**:
- Notes:
- For `Q4_0_4_4` quantization type build, add the `GGML_NO_LLAMAFILE=1` flag. For example, use `make GGML_NO_LLAMAFILE=1`.
- For faster compilation, add the `-j` argument to run multiple jobs in parallel. For example, `make -j 8` will run 8 jobs in parallel.
- For faster repeated compilation, install [ccache](https://ccache.dev/).
- For debug builds, run `make LLAMA_DEBUG=1`
- For faster compilation, add the `-j` argument to run multiple jobs in parallel, or use a generator that does this automatically such as Ninja. For example, `cmake --build build --config Release -j 8` will run 8 jobs in parallel.
- For faster repeated compilation, install [ccache](https://ccache.dev/)
- For debug builds, there are two cases:
- Using `CMake`:
1. Single-config generators (e.g. default = `Unix Makefiles`; note that they just ignore the `--config` flag):
```bash
cmake -B build
```bash
cmake -B build -DCMAKE_BUILD_TYPE=Debug
cmake --build build
```
2. Multi-config generators (`-G` param set to Visual Studio, XCode...):
```bash
cmake -B build -G "Xcode"
cmake --build build --config Debug
```
For more details and a list of supported generators, see the [CMake documentation](https://cmake.org/cmake/help/latest/manual/cmake-generators.7.html).
- For static builds, add `-DBUILD_SHARED_LIBS=OFF`:
```
cmake -B build -DBUILD_SHARED_LIBS=OFF
cmake --build build --config Release
```
**Notes**:
- For `Q4_0_4_4` quantization type build, add the `-DGGML_LLAMAFILE=OFF` cmake option. For example, use `cmake -B build -DGGML_LLAMAFILE=OFF`.
- For faster compilation, add the `-j` argument to run multiple jobs in parallel. For example, `cmake --build build --config Release -j 8` will run 8 jobs in parallel.
- For faster repeated compilation, install [ccache](https://ccache.dev/).
- For debug builds, there are two cases:
1. Single-config generators (e.g. default = `Unix Makefiles`; note that they just ignore the `--config` flag):
- Building for Windows (x86, x64 and arm64) with MSVC or clang as compilers:
- Install Visual Studio 2022, e.g. via the [Community Edition](https://visualstudio.microsoft.com/de/vs/community/). In the installer, select at least the following options (this also automatically installs the required additional tools like CMake,...):
- Tab Workload: Desktop-development with C++
- Tab Components (select quickly via search): C++-_CMake_ Tools for Windows, _Git_ for Windows, C++-_Clang_ Compiler for Windows, MS-Build Support for LLVM-Toolset (clang)
- Please remember to always use a Developer Command Prompt / PowerShell for VS2022 for git, build, test
- For Windows on ARM (arm64, WoA) build with:
```bash
cmake --preset arm64-windows-llvm-release -D GGML_OPENMP=OFF
cmake --build build-arm64-windows-llvm-release
```
Building for arm64 can also be done with the MSVC compiler with the build-arm64-windows-MSVC preset, or the standard CMake build instructions. However, note that the MSVC compiler does not support inline ARM assembly code, used e.g. for the accelerated Q4_0_N_M CPU kernels.
For building with ninja generator and clang compiler as default:
-set path:set LIB=C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.41.34120\lib\x64\uwp;C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\x64
```bash
cmake -B build -DCMAKE_BUILD_TYPE=Debug
cmake --build build
cmake --preset x64-windows-llvm-release
cmake --build build-x64-windows-llvm-release
```
2. Multi-config generators (`-G` param set to Visual Studio, XCode...):
```bash
cmake -B build -G "Xcode"
cmake --build build --config Debug
```
- Building for Windows (x86, x64 and arm64) with MSVC or clang as compilers:
- Install Visual Studio 2022, e.g. via the [Community Edition](https://visualstudio.microsoft.com/de/vs/community/). In the installer, select at least the following options (this also automatically installs the required additional tools like CMake,...):
- Tab Workload: Desktop-development with C++
- Tab Components (select quickly via search): C++-_CMake_ Tools for Windows, _Git_ for Windows, C++-_Clang_ Compiler for Windows, MS-Build Support for LLVM-Toolset (clang)
- Please remember to always use a Developer Command Prompt / PowerShell for VS2022 for git, build, test
- For Windows on ARM (arm64, WoA) build with:
```bash
cmake --preset arm64-windows-llvm-release -D GGML_OPENMP=OFF
cmake --build build-arm64-windows-llvm-release
```
Note: Building for arm64 could also be done just with MSVC (with the build-arm64-windows-MSVC preset, or the standard CMake build instructions). But MSVC does not support inline ARM assembly-code, used e.g. for the accelerated Q4_0_4_8 CPU kernels.
- Using `gmake` (FreeBSD):
1. Install and activate [DRM in FreeBSD](https://wiki.freebsd.org/Graphics)
2. Add your user to **video** group
3. Install compilation dependencies.
```bash
sudo pkg install gmake automake autoconf pkgconf llvm15 openblas
gmake CC=/usr/local/bin/clang15 CXX=/usr/local/bin/clang++15 -j4
```
## Metal Build
On MacOS, Metal is enabled by default. Using Metal makes the computation run on the GPU.
To disable the Metal build at compile time use the `GGML_NO_METAL=1` flag or the `GGML_METAL=OFF` cmake option.
When built with Metal support, you can explicitly disable GPU inference with the `--n-gpu-layers|-ngl 0` command-line
argument.
## BLAS Build
Building the program with BLAS support may lead to some performance improvements in prompt processing using batch sizes higher than 32 (the default is 512). Support with CPU-only BLAS implementations doesn't affect the normal generation performance. We may see generation performance improvements with GPU-involved BLAS implementations, e.g. cuBLAS, hipBLAS. There are currently several different BLAS implementations available for build and use:
Building the program with BLAS support may lead to some performance improvements in prompt processing using batch sizes higher than 32 (the default is 512). Using BLAS doesn't affect the generation performance. There are currently several different BLAS implementations available for build and use:
### Accelerate Framework:
### Accelerate Framework
This is only available on Mac PCs and it's enabled by default. You can just build using the normal instructions.
### OpenBLAS:
### OpenBLAS
This provides BLAS acceleration using only the CPU. Make sure to have OpenBLAS installed on your machine.
- Using `make`:
- On Linux:
```bash
make GGML_OPENBLAS=1
```
- On Windows:
1. Download the latest fortran version of [w64devkit](https://github.com/skeeto/w64devkit/releases).
2. Download the latest version of [OpenBLAS for Windows](https://github.com/xianyi/OpenBLAS/releases).
3. Extract `w64devkit` on your pc.
4. From the OpenBLAS zip that you just downloaded copy `libopenblas.a`, located inside the `lib` folder, inside `w64devkit\x86_64-w64-mingw32\lib`.
5. From the same OpenBLAS zip copy the content of the `include` folder inside `w64devkit\x86_64-w64-mingw32\include`.
6. Run `w64devkit.exe`.
7. Use the `cd` command to reach the `llama.cpp` folder.
8. From here you can run:
```bash
make GGML_OPENBLAS=1
```
- Using `CMake` on Linux:
```bash
@@ -136,14 +87,6 @@ This provides BLAS acceleration using only the CPU. Make sure to have OpenBLAS i
Check [BLIS.md](./backend/BLIS.md) for more information.
### SYCL
SYCL is a higher-level programming model to improve programming productivity on various hardware accelerators.
llama.cpp based on SYCL is used to **support Intel GPU** (Data Center Max series, Flex series, Arc series, Built-in GPU and iGPU).
For detailed info, please refer to [llama.cpp for SYCL](./backend/SYCL.md).
### Intel oneMKL
Building through oneAPI compilers will make avx_vnni instruction set available for intel processors that do not support avx512 and avx512_vnni. Please note that this build config **does not support Intel GPU**. For Intel GPU support, please refer to [llama.cpp for SYCL](./backend/SYCL.md).
@@ -161,16 +104,29 @@ Building through oneAPI compilers will make avx_vnni instruction set available f
Check [Optimizing and Running LLaMA2 on Intel® CPU](https://www.intel.com/content/www/us/en/content-details/791610/optimizing-and-running-llama2-on-intel-cpu.html) for more information.
### CUDA
### Other BLAS libraries
This provides GPU acceleration using the CUDA cores of your Nvidia GPU. Make sure to have the CUDA toolkit installed. You can download it from your Linux distro's package manager (e.g. `apt install nvidia-cuda-toolkit`) or from here: [CUDA Toolkit](https://developer.nvidia.com/cuda-downloads).
Any other BLAS library can be used by setting the `GGML_BLAS_VENDOR` option. See the [CMake documentation](https://cmake.org/cmake/help/latest/module/FindBLAS.html#blas-lapack-vendors) for a list of supported vendors.
For Jetson user, if you have Jetson Orin, you can try this: [Offical Support](https://www.jetson-ai-lab.com/tutorial_text-generation.html). If you are using an old model(nano/TX2), need some additional operations before compiling.
## Metal Build
On MacOS, Metal is enabled by default. Using Metal makes the computation run on the GPU.
To disable the Metal build at compile time use the `-DGGML_METAL=OFF` cmake option.
When built with Metal support, you can explicitly disable GPU inference with the `--n-gpu-layers 0` command-line argument.
## SYCL
SYCL is a higher-level programming model to improve programming productivity on various hardware accelerators.
llama.cpp based on SYCL is used to **support Intel GPU** (Data Center Max series, Flex series, Arc series, Built-in GPU and iGPU).
For detailed info, please refer to [llama.cpp for SYCL](./backend/SYCL.md).
## CUDA
This provides GPU acceleration using an NVIDIA GPU. Make sure to have the CUDA toolkit installed. You can download it from your Linux distro's package manager (e.g. `apt install nvidia-cuda-toolkit`) or from the [NVIDIA developer site](https://developer.nvidia.com/cuda-downloads).
- Using `make`:
```bash
make GGML_CUDA=1
```
- Using `CMake`:
```bash
@@ -192,14 +148,10 @@ The following compilation options are also available to tweak performance:
| GGML_CUDA_PEER_MAX_BATCH_SIZE | Positive integer | 128 | Maximum batch size for which to enable peer access between multiple GPUs. Peer access requires either Linux or NVLink. When using NVLink enabling peer access for larger batch sizes is potentially beneficial. |
| GGML_CUDA_FA_ALL_QUANTS | Boolean | false | Compile support for all KV cache quantization type (combinations) for the FlashAttention CUDA kernels. More fine-grained control over KV cache size but compilation takes much longer. |
### MUSA
## MUSA
This provides GPU acceleration using the MUSA cores of your Moore Threads MTT GPU. Make sure to have the MUSA SDK installed. You can download it from here: [MUSA SDK](https://developer.mthreads.com/sdk/download/musa).
- Using `make`:
```bash
make GGML_MUSA=1
```
- Using `CMake`:
```bash
@@ -213,16 +165,12 @@ The environment variable `GGML_CUDA_ENABLE_UNIFIED_MEMORY=1` can be used to enab
Most of the compilation options available for CUDA should also be available for MUSA, though they haven't been thoroughly tested yet.
### hipBLAS
## HIP
This provides BLAS acceleration on HIP-supported AMD GPUs.
This provides GPU acceleration on HIP-supported AMD GPUs.
Make sure to have ROCm installed.
You can download it from your Linux distro's package manager or from here: [ROCm Quick Start (Linux)](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/tutorial/quick-start.html#rocm-install-quick).
- Using `make`:
```bash
make GGML_HIP=1
```
- Using `CMake` for Linux (assuming a gfx1030-compatible AMD GPU):
```bash
HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" \
@@ -247,11 +195,6 @@ You can download it from your Linux distro's package manager or from here: [ROCm
&& cmake --build build -- -j 16
```
- Using `make` (example for target gfx1030, build with 16 CPU threads):
```bash
make -j16 GGML_HIP=1 GGML_HIP_UMA=1 AMDGPU_TARGETS=gfx1030
```
- Using `CMake` for Windows (using x64 Native Tools Command Prompt for VS, and assuming a gfx1100-compatible AMD GPU):
```bash
set PATH=%HIP_PATH%\bin;%PATH%
@@ -265,11 +208,11 @@ You can download it from your Linux distro's package manager or from here: [ROCm
The environment variable [`HIP_VISIBLE_DEVICES`](https://rocm.docs.amd.com/en/latest/understand/gpu_isolation.html#hip-visible-devices) can be used to specify which GPU(s) will be used.
If your GPU is not officially supported you can use the environment variable [`HSA_OVERRIDE_GFX_VERSION`] set to a similar GPU, for example 10.3.0 on RDNA2 (e.g. gfx1030, gfx1031, or gfx1035) or 11.0.0 on RDNA3.
### Vulkan
## Vulkan
**Windows**
#### w64devkit
### w64devkit
Download and extract [`w64devkit`](https://github.com/skeeto/w64devkit/releases).
@@ -289,9 +232,14 @@ Libs: -lvulkan-1
EOF
```
Switch into the `llama.cpp` directory and run `make GGML_VULKAN=1`.
#### Git Bash MINGW64
Switch into the `llama.cpp` directory and build using CMake.
```sh
cmake -B build -DGGML_VULKAN=ON
cmake --build build --config Release
```
### Git Bash MINGW64
Download and install [`Git-SCM`](https://git-scm.com/downloads/win) with the default settings
@@ -310,20 +258,21 @@ cmake --build build --config Release
Now you can load the model in conversation mode using `Vulkan`
```
build/bin/release/llama-cli -m "[PATH TO MODEL]" -ngl 100 -c 16384 -t 10 -n -2 -cnv
```sh
build/bin/Release/llama-cli -m "[PATH TO MODEL]" -ngl 100 -c 16384 -t 10 -n -2 -cnv
```
#### MSYS2
### MSYS2
Install [MSYS2](https://www.msys2.org/) and then run the following commands in a UCRT terminal to install dependencies.
```sh
pacman -S git \
mingw-w64-ucrt-x86_64-gcc \
mingw-w64-ucrt-x86_64-cmake \
mingw-w64-ucrt-x86_64-vulkan-devel \
mingw-w64-ucrt-x86_64-shaderc
```
Switch into `llama.cpp` directory and build using CMake.
```sh
pacman -S git \
mingw-w64-ucrt-x86_64-gcc \
mingw-w64-ucrt-x86_64-cmake \
mingw-w64-ucrt-x86_64-vulkan-devel \
mingw-w64-ucrt-x86_64-shaderc
```
Switch into the `llama.cpp` directory and build using CMake.
```sh
cmake -B build -DGGML_VULKAN=ON
cmake --build build --config Release
@@ -372,7 +321,7 @@ cmake --build build --config Release
# ggml_vulkan: Using Intel(R) Graphics (ADL GT2) | uma: 1 | fp16: 1 | warp size: 32
```
### CANN
## CANN
This provides NPU acceleration using the AI cores of your Ascend NPU. And [CANN](https://www.hiascend.com/en/software/cann) is a hierarchical APIs to help you to quickly build AI applications and service based on Ascend NPU.
For more information about Ascend NPU in [Ascend Community](https://www.hiascend.com/en/).
@@ -387,22 +336,26 @@ cmake --build build --config release
You can test with:
`./build/bin/llama-cli -m PATH_TO_MODEL -p "Building a website can be done in 10 steps:" -ngl 32`
If the fllowing info is output on screen, you are using `llama.cpp by CANN backend`:
```bash
llm_load_tensors: CANN buffer size = 13313.00 MiB
./build/bin/llama-cli -m PATH_TO_MODEL -p "Building a website can be done in 10 steps:" -ngl 32
```
If the following info is output on screen, you are using `llama.cpp` with the CANN backend:
```bash
llm_load_tensors: CANN model buffer size = 13313.00 MiB
llama_new_context_with_model: CANN compute buffer size = 1260.81 MiB
```
For detailed info, such as model/device supports, CANN install, please refer to [llama.cpp for CANN](./backend/CANN.md).
### Android
## Android
To read documentation for how to build on Android, [click here](./android.md)
### Arm CPU optimized mulmat kernels
## Notes about GPU-accelerated backends
Llama.cpp includes a set of optimized mulmat kernels for the Arm architecture, leveraging Arm® Neon™, int8mm and SVE instructions. These kernels are enabled at build time through the appropriate compiler cpu-type flags, such as `-DCMAKE_C_FLAGS=-march=armv8.2a+i8mm+sve`. Note that these optimized kernels require the model to be quantized into one of the formats: `Q4_0_4_4` (Arm Neon), `Q4_0_4_8` (int8mm) or `Q4_0_8_8` (SVE). The SVE mulmat kernel specifically requires a vector width of 256 bits. When running on devices with a different vector width, it is recommended to use the `Q4_0_4_8` (int8mm) or `Q4_0_4_4` (Arm Neon) formats for better performance. Refer to [examples/quantize/README.md](../examples/quantize/README.md) for more information on the quantization formats.
The GPU may still be used to accelerate some parts of the computation even when using the `-ngl 0` option. You can fully disable GPU acceleration by using `--device none`.
To support `Q4_0_4_4`, you must build with `GGML_NO_LLAMAFILE=1` (`make`) or `-DGGML_LLAMAFILE=OFF` (`cmake`).
In most cases, it is possible to build and use multiple backends at the same time. For example, you can build llama.cpp with both CUDA and Vulkan support by using the `-DGGML_CUDA=ON -DGGML_VULKAN=ON` options with CMake. At runtime, you can specify which backend devices to use with the `--device` option. To see a list of available devices, use the `--list-devices` option.
Backends can be built as dynamic libraries that can be loaded dynamically at runtime. This allows you to use the same llama.cpp binary on different machines with different GPUs. To enable this feature, use the `GGML_BACKEND_DL` option when building.

View File

@@ -20,7 +20,12 @@ else()
add_subdirectory(batched)
add_subdirectory(embedding)
add_subdirectory(eval-callback)
add_subdirectory(gbnf-validator)
if (NOT WIN32)
# disabled on Windows because it uses internal functions not exported with LLAMA_API
add_subdirectory(gbnf-validator)
endif()
add_subdirectory(gguf-hash)
add_subdirectory(gguf-split)
add_subdirectory(gguf)
@@ -46,12 +51,16 @@ else()
add_subdirectory(speculative)
add_subdirectory(speculative-simple)
add_subdirectory(tokenize)
add_subdirectory(gen-docs)
if (NOT GGML_BACKEND_DL)
# these examples use the backends directly and cannot be built with dynamic loading
add_subdirectory(convert-llama2c-to-ggml)
add_subdirectory(cvector-generator)
add_subdirectory(export-lora)
add_subdirectory(quantize-stats)
if (NOT WIN32)
# disabled on Windows because it uses internal functions not exported with LLAMA_API
add_subdirectory(quantize-stats)
endif()
add_subdirectory(llava)
if (GGML_RPC)
add_subdirectory(rpc)

View File

@@ -1,61 +0,0 @@
#!/bin/bash
#
# Few-shot translation example.
# Requires a base model (i.e. no fine-tuned or instruct models).
#
# Usage:
#
# cd llama.cpp
# make -j
#
# ./examples/base-translate.sh <model-base> "<text>" [extra-main-args]
#
if [ $# -lt 2 ]; then
echo "Usage: ./base-translate.sh <model-base> \"<text>\" [extra-main-args]"
exit 1
fi
eargs=""
if [ $# -gt 2 ]; then
eargs="${@:3}"
fi
ftmp="__llama.cpp_example_tmp__.txt"
trap "rm -f $ftmp" EXIT
echo "Translate from English to French:
===
sea otter, peppermint, plush girafe:
sea otter => loutre de mer
peppermint => menthe poivrée
plush girafe => girafe peluche
===
violin
violin => violon
===
phone, computer, mouse, keyboard:
phone => téléphone
computer => ordinateur
mouse => souris
keyboard => clavier
===
" > $ftmp
echo "$2
" >> $ftmp
model=$1
# generate the most likely continuation until the string "===" is found
./llama-cli -m $model -f $ftmp -n 64 --temp 0 --repeat-penalty 1.0 --no-penalize-nl -r "===" $eargs

View File

@@ -2,4 +2,4 @@ set(TARGET llama-batched-bench)
add_executable(${TARGET} batched-bench.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@@ -2,4 +2,4 @@ set(TARGET llama-batched)
add_executable(${TARGET} batched.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@@ -65,6 +65,7 @@ int main(int argc, char ** argv) {
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
auto sparams = llama_sampler_chain_default_params();
sparams.no_perf = false;
llama_sampler * smpl = llama_sampler_chain_init(sparams);

View File

@@ -2,4 +2,4 @@ set(TARGET llama-convert-llama2c-to-ggml)
add_executable(${TARGET} convert-llama2c-to-ggml.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@@ -2,11 +2,8 @@
This example reads weights from project [llama2.c](https://github.com/karpathy/llama2.c) and saves them in ggml compatible format. The vocab that is available in `models/ggml-vocab.bin` is used by default.
To convert the model first download the models from the [llama2.c](https://github.com/karpathy/llama2.c) repository:
To convert the model first download the models from the [llama2.c](https://github.com/karpathy/llama2.c) repository.
`$ make -j`
After successful compilation, following usage options are available:
```
usage: ./llama-convert-llama2c-to-ggml [options]

View File

@@ -2,4 +2,4 @@ set(TARGET llama-cvector-generator)
add_executable(${TARGET} cvector-generator.cpp pca.hpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@@ -12,7 +12,7 @@ int main(int argc, char** argv) {
}
// Get only the program name from the full path
auto pos = filename.find_last_of('/');
auto pos = filename.find_last_of("/\\");
if (pos != std::string::npos) {
filename = filename.substr(pos+1);
}

View File

@@ -2,4 +2,4 @@ set(TARGET llama-embedding)
add_executable(${TARGET} embedding.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@@ -2,7 +2,7 @@ set(TARGET llama-eval-callback)
add_executable(${TARGET} eval-callback.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
target_compile_features(${TARGET} PRIVATE cxx_std_17)
set(TEST_TARGET test-eval-callback)
add_test(NAME ${TEST_TARGET}

View File

@@ -2,4 +2,4 @@ set(TARGET llama-export-lora)
add_executable(${TARGET} export-lora.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@@ -2,4 +2,4 @@ set(TARGET llama-gbnf-validator)
add_executable(${TARGET} gbnf-validator.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@@ -2,4 +2,4 @@ set(TARGET llama-gen-docs)
add_executable(${TARGET} gen-docs.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@@ -19,4 +19,4 @@ add_library(sha256 OBJECT deps/sha256/sha256.c deps/sha256/sha256.h)
target_link_libraries(${TARGET} PRIVATE sha256)
target_link_libraries(${TARGET} PRIVATE ggml ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@@ -2,4 +2,4 @@ set(TARGET llama-gguf-split)
add_executable(${TARGET} gguf-split.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@@ -287,7 +287,7 @@ struct split_strategy {
}
void print_info() {
printf("n_split: %ld\n", ctx_outs.size());
printf("n_split: %zu\n", ctx_outs.size());
int i_split = 0;
for (auto & ctx_out : ctx_outs) {
// re-calculate the real gguf size for each split (= metadata size + total size of all tensors)
@@ -297,7 +297,7 @@ struct split_strategy {
total_size += ggml_nbytes(t);
}
total_size = total_size / 1000 / 1000; // convert to megabytes
printf("split %05d: n_tensors = %d, total_size = %ldM\n", i_split + 1, gguf_get_n_tensors(ctx_out), total_size);
printf("split %05d: n_tensors = %d, total_size = %zuM\n", i_split + 1, gguf_get_n_tensors(ctx_out), total_size);
i_split++;
}
}

View File

@@ -2,4 +2,4 @@ set(TARGET llama-gguf)
add_executable(${TARGET} gguf.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE ggml ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@@ -2,4 +2,4 @@ set(TARGET llama-gritlm)
add_executable(${TARGET} gritlm.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@@ -2,4 +2,4 @@ set(TARGET llama-imatrix)
add_executable(${TARGET} imatrix.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@@ -25,8 +25,6 @@ For faster computation, make sure to use GPU offloading via the `-ngl` argument
## Example
```bash
GGML_CUDA=1 make -j
# generate importance matrix (imatrix.dat)
./llama-imatrix -m ggml-model-f16.gguf -f train-data.txt -ngl 99

View File

@@ -637,10 +637,19 @@ int main(int argc, char ** argv) {
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
}
if (!compute_imatrix(ctx, params)) {
return 1;
if (params.prompt.empty()) {
if (params.in_files.empty()) {
LOG_ERR("Error: No prompt provided and no precomputed matrices (--in-file) to combine.\n");
return 1;
}
LOG_INF("No prompt provided; combining precomputed matrices only.\n");
} else {
if (!compute_imatrix(ctx, params)) {
return 1;
}
}
g_collector.save_imatrix();
LOG("\n");

View File

@@ -2,4 +2,4 @@ set(TARGET llama-infill)
add_executable(${TARGET} infill.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@@ -14,7 +14,7 @@ In this section, we cover the most commonly used options for running the `infill
- `-m FNAME, --model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.bin`).
- `-i, --interactive`: Run the program in interactive mode, allowing you to provide input directly and receive real-time responses.
- `-n N, --n-predict N`: Set the number of tokens to predict when generating text. Adjusting this value can influence the length of the generated text.
- `-c N, --ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference.
- `-c N, --ctx-size N`: Set the size of the prompt context. The default is 4096, but if a LLaMA model was built with a longer context, increasing this value will provide better results for longer input/inference.
- `--spm-infill`: Use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this.
## Input Prompts

View File

@@ -2,4 +2,4 @@ set(TARGET llama-bench)
add_executable(${TARGET} llama-bench.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@@ -1521,7 +1521,7 @@ int main(int argc, char ** argv) {
for (const auto & inst : params_instances) {
params_idx++;
if (params.progress) {
fprintf(stderr, "llama-bench: benchmark %d/%ld: starting\n", params_idx, params_count);
fprintf(stderr, "llama-bench: benchmark %d/%zu: starting\n", params_idx, params_count);
}
// keep the same model between tests when possible
if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
@@ -1573,14 +1573,14 @@ int main(int argc, char ** argv) {
// warmup run
if (t.n_prompt > 0) {
if (params.progress) {
fprintf(stderr, "llama-bench: benchmark %d/%ld: warmup prompt run\n", params_idx, params_count);
fprintf(stderr, "llama-bench: benchmark %d/%zu: warmup prompt run\n", params_idx, params_count);
}
//test_prompt(ctx, std::min(t.n_batch, std::min(t.n_prompt, 32)), 0, t.n_batch, t.n_threads);
test_prompt(ctx, t.n_prompt, t.n_batch, t.n_threads);
}
if (t.n_gen > 0) {
if (params.progress) {
fprintf(stderr, "llama-bench: benchmark %d/%ld: warmup generation run\n", params_idx, params_count);
fprintf(stderr, "llama-bench: benchmark %d/%zu: warmup generation run\n", params_idx, params_count);
}
test_gen(ctx, 1, t.n_threads);
}
@@ -1592,14 +1592,14 @@ int main(int argc, char ** argv) {
if (t.n_prompt > 0) {
if (params.progress) {
fprintf(stderr, "llama-bench: benchmark %d/%ld: prompt run %d/%d\n", params_idx, params_count,
fprintf(stderr, "llama-bench: benchmark %d/%zu: prompt run %d/%d\n", params_idx, params_count,
i + 1, params.reps);
}
test_prompt(ctx, t.n_prompt, t.n_batch, t.n_threads);
}
if (t.n_gen > 0) {
if (params.progress) {
fprintf(stderr, "llama-bench: benchmark %d/%ld: generation run %d/%d\n", params_idx, params_count,
fprintf(stderr, "llama-bench: benchmark %d/%zu: generation run %d/%d\n", params_idx, params_count,
i + 1, params.reps);
}
test_gen(ctx, t.n_gen, t.n_threads);

View File

@@ -210,20 +210,20 @@ actor LlamaContext {
llama_kv_cache_clear(context)
let t_pp_start = ggml_time_us()
let t_pp_start = DispatchTime.now().uptimeNanoseconds / 1000;
if llama_decode(context, batch) != 0 {
print("llama_decode() failed during prompt")
}
llama_synchronize(context)
let t_pp_end = ggml_time_us()
let t_pp_end = DispatchTime.now().uptimeNanoseconds / 1000;
// bench text generation
llama_kv_cache_clear(context)
let t_tg_start = ggml_time_us()
let t_tg_start = DispatchTime.now().uptimeNanoseconds / 1000;
for i in 0..<tg {
llama_batch_clear(&batch)
@@ -238,7 +238,7 @@ actor LlamaContext {
llama_synchronize(context)
}
let t_tg_end = ggml_time_us()
let t_tg_end = DispatchTime.now().uptimeNanoseconds / 1000;
llama_kv_cache_clear(context)

View File

@@ -7,6 +7,7 @@
objects = {
/* Begin PBXBuildFile section */
1809696D2D05A39F00400EE8 /* llama in Frameworks */ = {isa = PBXBuildFile; productRef = 1809696C2D05A39F00400EE8 /* llama */; };
549479CB2AC9E16000E0F78B /* Metal.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = 549479CA2AC9E16000E0F78B /* Metal.framework */; };
79E1D9CD2B4CD16E005F8E46 /* InputButton.swift in Sources */ = {isa = PBXBuildFile; fileRef = 79E1D9CC2B4CD16E005F8E46 /* InputButton.swift */; };
7FA3D2B32B2EA2F600543F92 /* DownloadButton.swift in Sources */ = {isa = PBXBuildFile; fileRef = 7FA3D2B22B2EA2F600543F92 /* DownloadButton.swift */; };
@@ -17,7 +18,6 @@
8A3F84242AC4C891005E2EE8 /* models in Resources */ = {isa = PBXBuildFile; fileRef = 8A3F84232AC4C891005E2EE8 /* models */; };
8A907F332AC7138A006146EA /* LibLlama.swift in Sources */ = {isa = PBXBuildFile; fileRef = 8A907F322AC7134E006146EA /* LibLlama.swift */; };
8A9F7C4D2AC332EE008AE1EA /* LlamaState.swift in Sources */ = {isa = PBXBuildFile; fileRef = 8A9F7C4C2AC332EE008AE1EA /* LlamaState.swift */; };
DF810E132B4A5BA200301144 /* llama in Frameworks */ = {isa = PBXBuildFile; productRef = DF810E122B4A5BA200301144 /* llama */; };
F1FE20E22B465ECA00B45541 /* LoadCustomButton.swift in Sources */ = {isa = PBXBuildFile; fileRef = F1FE20E12B465EC900B45541 /* LoadCustomButton.swift */; };
/* End PBXBuildFile section */
@@ -42,7 +42,7 @@
isa = PBXFrameworksBuildPhase;
buildActionMask = 2147483647;
files = (
DF810E132B4A5BA200301144 /* llama in Frameworks */,
1809696D2D05A39F00400EE8 /* llama in Frameworks */,
549479CB2AC9E16000E0F78B /* Metal.framework in Frameworks */,
8A39BE0A2AC7601100BFEB40 /* Accelerate.framework in Frameworks */,
);
@@ -151,7 +151,7 @@
);
name = llama.swiftui;
packageProductDependencies = (
DF810E122B4A5BA200301144 /* llama */,
1809696C2D05A39F00400EE8 /* llama */,
);
productName = llama.swiftui;
productReference = 8A1C83732AC328BD0096AF73 /* llama.swiftui.app */;
@@ -429,7 +429,7 @@
/* End XCConfigurationList section */
/* Begin XCSwiftPackageProductDependency section */
DF810E122B4A5BA200301144 /* llama */ = {
1809696C2D05A39F00400EE8 /* llama */ = {
isa = XCSwiftPackageProductDependency;
productName = llama;
};

View File

@@ -11,7 +11,7 @@ target_include_directories(llava PUBLIC .)
target_include_directories(llava PUBLIC ../..)
target_include_directories(llava PUBLIC ../../common)
target_compile_features(llava PRIVATE cxx_std_11)
target_compile_features(llava PRIVATE cxx_std_17)
add_library(llava_static STATIC $<TARGET_OBJECTS:llava>)
if (BUILD_SHARED_LIBS)
@@ -35,11 +35,18 @@ add_executable(${TARGET} llava-cli.cpp)
set_target_properties(${TARGET} PROPERTIES OUTPUT_NAME llama-llava-cli)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llava ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
target_compile_features(${TARGET} PRIVATE cxx_std_17)
set(TARGET llama-minicpmv-cli)
add_executable(${TARGET} minicpmv-cli.cpp)
set_target_properties(${TARGET} PROPERTIES OUTPUT_NAME llama-minicpmv-cli)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llava ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
target_compile_features(${TARGET} PRIVATE cxx_std_17)
set(TARGET llama-qwen2vl-cli)
add_executable(${TARGET} qwen2vl-cli.cpp)
set_target_properties(${TARGET} PROPERTIES OUTPUT_NAME llama-qwen2vl-cli)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llava ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@@ -12,6 +12,10 @@
#include "ggml-cuda.h"
#endif
#ifdef GGML_USE_SYCL
#include "ggml-sycl.h"
#endif
#ifdef GGML_USE_METAL
#include "ggml-metal.h"
#endif
@@ -40,10 +44,17 @@
#include <cinttypes>
#include <limits>
#define LOG_INF(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
#define LOG_WRN(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
#define LOG_ERR(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
#define LOG_DBG(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
#if defined(LLAVA_LOG_OFF)
# define LOG_INF(...)
# define LOG_WRN(...)
# define LOG_ERR(...)
# define LOG_DBG(...)
#else // defined(LLAVA_LOG_OFF)
# define LOG_INF(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
# define LOG_WRN(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
# define LOG_ERR(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
# define LOG_DBG(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
#endif // defined(LLAVA_LOG_OFF)
//#define CLIP_DEBUG_FUNCTIONS
@@ -91,7 +102,9 @@ static std::string format(const char * fmt, ...) {
#define KEY_HAS_LLAVA_PROJ "clip.has_llava_projector"
#define KEY_HAS_MINICPMV_PROJ "clip.has_minicpmv_projector"
#define KEY_MINICPMV_VERSION "clip.minicpmv_version"
#define KEY_HAS_QWEN2VL_MERGER "clip.has_qwen2vl_merger"
#define KEY_USE_GELU "clip.use_gelu"
#define KEY_USE_SILU "clip.use_silu"
#define KEY_N_EMBD "clip.%s.embedding_length"
#define KEY_N_FF "clip.%s.feed_forward_length"
#define KEY_N_BLOCK "clip.%s.block_count"
@@ -118,7 +131,8 @@ static std::string format(const char * fmt, ...) {
#define TN_TOKEN_EMBD "%s.token_embd.weight"
#define TN_POS_EMBD "%s.position_embd.weight"
#define TN_CLASS_EMBD "v.class_embd"
#define TN_PATCH_EMBD "v.patch_embd.weight"
#define TN_PATCH_EMBD "v.patch_embd.weight" // not rename tensor with ".0" postfix for backwrad compat
#define TN_PATCH_EMBD_1 "v.patch_embd.weight.1"
#define TN_PATCH_BIAS "v.patch_embd.bias"
#define TN_ATTN_K "%s.blk.%d.attn_k.%s"
#define TN_ATTN_Q "%s.blk.%d.attn_q.%s"
@@ -152,6 +166,7 @@ enum projector_type {
PROJECTOR_TYPE_LDP,
PROJECTOR_TYPE_LDPV2,
PROJECTOR_TYPE_RESAMPLER,
PROJECTOR_TYPE_MERGER,
PROJECTOR_TYPE_UNKNOWN,
};
@@ -160,6 +175,7 @@ static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
{ PROJECTOR_TYPE_LDP, "ldp" },
{ PROJECTOR_TYPE_LDPV2, "ldpv2"},
{ PROJECTOR_TYPE_RESAMPLER, "resampler"},
{ PROJECTOR_TYPE_MERGER, "qwen2vl_merger"},
};
@@ -452,7 +468,8 @@ struct clip_vision_model {
// embeddings
struct ggml_tensor * class_embedding;
struct ggml_tensor * patch_embeddings;
struct ggml_tensor * patch_embeddings_0;
struct ggml_tensor * patch_embeddings_1; // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL)
struct ggml_tensor * patch_bias;
struct ggml_tensor * position_embeddings;
@@ -542,6 +559,7 @@ struct clip_ctx {
bool has_vision_encoder = false;
bool has_llava_projector = false;
bool has_minicpmv_projector = false;
bool has_qwen2vl_merger = false;
int minicpmv_version = 2;
struct clip_vision_model vision_model;
@@ -550,6 +568,7 @@ struct clip_ctx {
float image_mean[3];
float image_std[3];
bool use_gelu = false;
bool use_silu = false;
int32_t ftype = 1;
bool has_class_embedding = true;
@@ -595,14 +614,26 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
image_size_height = imgs->data->ny;
}
}
else if (ctx->has_qwen2vl_merger) {
// use the image's native resolution when image is avaible
if (is_inf) {
// if (imgs->data->nx && imgs->data->ny) {
image_size_width = imgs->data->nx;
image_size_height = imgs->data->ny;
}
}
const int patch_size = hparams.patch_size;
const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
const int patches_w = image_size_width / patch_size;
const int patches_h = image_size_height / patch_size;
const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0);
const int num_position_ids = ctx->has_qwen2vl_merger ? num_positions * 4 : num_positions;
const int hidden_size = hparams.hidden_size;
const int n_head = hparams.n_head;
const int d_head = hidden_size / n_head;
int n_layer = hparams.n_layer;
const float eps = hparams.eps;
int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
const int batch_size = imgs->size;
@@ -623,10 +654,30 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
ggml_set_name(inp_raw, "inp_raw");
ggml_set_input(inp_raw);
struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, batch_size);
inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3));
if (ctx->has_qwen2vl_merger) {
GGML_ASSERT(image_size_width % (patch_size * 2) == 0);
GGML_ASSERT(image_size_height % (patch_size * 2) == 0);
auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
inp = ggml_add(ctx0, inp, inp_1);
inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 2, 0, 3)); // [w, h, c, b] -> [c, w, h, b]
inp = ggml_reshape_4d(
ctx0, inp,
hidden_size * 2, patches_w / 2, patches_h, batch_size);
inp = ggml_reshape_4d(
ctx0, inp,
hidden_size * 2, patches_w / 2, 2, batch_size * (patches_h / 2));
inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 0, 2, 1, 3));
inp = ggml_reshape_3d(
ctx0, inp,
hidden_size, patches_w * patches_h, batch_size);
}
else {
inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, batch_size);
inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3));
}
if (ctx->has_patch_bias) {
// inp = ggml_add(ctx0, inp, ggml_repeat(ctx0, model.patch_bias, inp));
@@ -648,12 +699,14 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
}
}
struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions);
struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
ggml_set_name(positions, "positions");
ggml_set_input(positions);
embeddings =
ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions));
if (!ctx->has_qwen2vl_merger) { // qwen2vl use rope position embedding
embeddings =
ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions));
}
if (ctx->has_minicpmv_projector) {
int pos_w = image_size_width/patch_size;
@@ -677,7 +730,8 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
}
// loop over layers
if (ctx->has_minicpmv_projector) {
if (ctx->has_minicpmv_projector || ctx->has_qwen2vl_merger) {
// TODO: figure out why we doing thing in this way ???
n_layer += 1;
}
for (int il = 0; il < n_layer - 1; il++) {
@@ -699,8 +753,13 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
struct ggml_tensor * Q =
ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b);
Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head));
Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_positions, batch_size);
if (ctx->has_qwen2vl_merger) {
Q = ggml_rope_multi(
ctx0, Q, positions, nullptr,
d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
}
Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head));
Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
Q = ggml_reshape_3d(ctx0, Q, d_head, num_positions, n_head * batch_size);
@@ -708,6 +767,11 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b);
K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
if (ctx->has_qwen2vl_merger) {
K = ggml_rope_multi(
ctx0, K, positions, nullptr,
d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
}
K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
@@ -747,6 +811,8 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
if (ctx->use_gelu) {
cur = ggml_gelu_inplace(ctx0, cur);
} else if (ctx->use_silu) {
cur = ggml_silu_inplace(ctx0, cur);
} else {
cur = ggml_gelu_quick_inplace(ctx0, cur);
}
@@ -758,6 +824,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
cur = ggml_add(ctx0, embeddings, cur);
embeddings = cur;
}
// post-layernorm
@@ -1019,6 +1086,19 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
GGML_ASSERT(false);
}
}
else if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size * 4, num_positions / 4, batch_size);
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
// GELU activation
embeddings = ggml_gelu(ctx0, embeddings);
// Second linear layer
embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);
}
// build the graph
ggml_build_forward_expand(gf, embeddings);
@@ -1162,6 +1242,11 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
LOG_INF("%s: CLIP using Vulkan backend\n", __func__);
#endif
#ifdef GGML_USE_SYCL
new_clip->backend = ggml_backend_sycl_init(0);
LOG_INF("%s: CLIP using SYCL backend\n", __func__);
#endif
if (!new_clip->backend) {
new_clip->backend = ggml_backend_cpu_init();
LOG_INF("%s: CLIP using CPU backend\n", __func__);
@@ -1190,6 +1275,10 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
new_clip->minicpmv_version = gguf_get_val_i32(ctx, idx);
}
idx = gguf_find_key(ctx, KEY_HAS_QWEN2VL_MERGER);
if (idx != -1) {
new_clip->has_qwen2vl_merger = gguf_get_val_bool(ctx, idx);
}
// GGML_ASSERT(new_clip->has_llava_projector); // see monatis/clip.cpp for image and/or text encoding for semantic search
GGML_ASSERT(new_clip->has_vision_encoder);
@@ -1198,6 +1287,13 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
idx = get_key_idx(ctx, KEY_USE_GELU);
new_clip->use_gelu = gguf_get_val_bool(ctx, idx);
try {
idx = get_key_idx(ctx, KEY_USE_SILU);
new_clip->use_silu = gguf_get_val_bool(ctx, idx);
} catch (std::runtime_error & /*e*/) {
new_clip->use_silu = false;
}
if (verbosity >= 1) {
LOG_INF("%s: text_encoder: %d\n", __func__, new_clip->has_text_encoder);
LOG_INF("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder);
@@ -1373,11 +1469,16 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
}
try {
vision_model.patch_embeddings = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD);
vision_model.patch_embeddings_0 = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD);
vision_model.position_embeddings = get_tensor(new_clip->ctx_data, format(TN_POS_EMBD, "v"));
} catch(const std::exception& /*e*/) {
LOG_ERR("%s: failed to load vision model tensors\n", __func__);
}
try {
vision_model.patch_embeddings_1 = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD_1);
} catch(const std::exception& /*e*/) {
new_clip->has_qwen2vl_merger = false;
}
// LLaVA projection
if (new_clip->proj_type == PROJECTOR_TYPE_MLP || new_clip->proj_type == PROJECTOR_TYPE_MLP_NORM) {
@@ -1465,6 +1566,12 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
vision_model.mm_model_ln_post_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "weight"));
vision_model.mm_model_ln_post_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "bias"));
}
else if (new_clip->proj_type == PROJECTOR_TYPE_MERGER) {
vision_model.mm_0_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "weight"));
vision_model.mm_0_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "bias"));
vision_model.mm_1_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "weight"));
vision_model.mm_1_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "bias"));
}
else {
std::string proj_type = PROJECTOR_TYPE_NAMES[new_clip->proj_type];
throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
@@ -1503,6 +1610,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
new_clip->compute_alloc = ggml_gallocr_new(ggml_backend_get_default_buffer_type(new_clip->backend));
clip_image_f32_batch batch;
batch.size = 1;
batch.data = nullptr;
ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch, nullptr, false);
ggml_gallocr_reserve(new_clip->compute_alloc, gf);
size_t compute_memory_buffer_size = ggml_gallocr_get_buffer_size(new_clip->compute_alloc, 0);
@@ -1516,6 +1624,10 @@ void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size
ctx_clip->load_image_size = load_image_size;
}
struct clip_image_size * clip_get_load_image_size(struct clip_ctx * ctx_clip) {
return ctx_clip->load_image_size;
}
struct clip_image_size * clip_image_size_init() {
struct clip_image_size * load_image_size = new struct clip_image_size();
load_image_size->width = 448;
@@ -1968,6 +2080,23 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, cli
}
return true;
}
else if (ctx->has_qwen2vl_merger) {
clip_image_u8 * resized = clip_image_u8_init();
auto patch_size = clip_patch_size(ctx) * 2;
int nx = ceil((float)img->nx / patch_size) * patch_size;
int ny = ceil((float)img->ny / patch_size) * patch_size;
bicubic_resize(*img, *resized, nx, ny);
res_imgs->data = new clip_image_f32[1];
// clip_image_f32 * res = clip_image_f32_init();
normalize_image_u8_to_f32(resized, res_imgs->data, ctx->image_mean, ctx->image_std);
// res_imgs->data[0] = *res;
res_imgs->size = 1;
// clip_image_f32_free(res);
clip_image_u8_free(resized);
return true;
}
bool pad_to_square = true;
if (!ctx->has_vision_encoder) {
@@ -2157,6 +2286,13 @@ size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
return clip_n_patches(ctx) * clip_n_mmproj_embd(ctx) * sizeof(float);
}
size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_h, int img_w) {
clip_image_f32 img;
img.nx = img_w;
img.ny = img_h;
return clip_n_patches_by_img(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float);
}
int32_t clip_image_size(const struct clip_ctx * ctx) {
return ctx->vision_model.hparams.image_size;
}
@@ -2178,6 +2314,13 @@ const int32_t * clip_image_grid(const struct clip_ctx * ctx) {
}
int clip_n_patches(const struct clip_ctx * ctx) {
clip_image_f32 img;
img.nx = ctx->vision_model.hparams.image_size;
img.ny = ctx->vision_model.hparams.image_size;
return clip_n_patches_by_img(ctx, &img);
}
int clip_n_patches_by_img(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
const auto & params = ctx->vision_model.hparams;
int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size);
@@ -2191,6 +2334,11 @@ int clip_n_patches(const struct clip_ctx * ctx) {
else if (ctx->minicpmv_version == 3) {
n_patches = 64;
}
} else if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
int patch_size = params.patch_size * 2;
int x_patch = img->nx / patch_size + (int)(img->nx % patch_size > 0);
int y_patch = img->ny / patch_size + (int)(img->ny % patch_size > 0);
n_patches = x_patch * y_patch;
}
return n_patches;
@@ -2319,7 +2467,7 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
const int image_size = hparams.image_size;
int image_size_width = image_size;
int image_size_height = image_size;
if (ctx->has_minicpmv_projector) {
if (ctx->has_minicpmv_projector | ctx->has_qwen2vl_merger) {
image_size_width = imgs->data[0].nx;
image_size_height = imgs->data[0].ny;
}
@@ -2339,7 +2487,7 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
for (size_t i = 0; i < imgs->size; i++) {
const int nx = imgs->data[i].nx;
const int ny = imgs->data[i].ny;
if (!ctx->has_minicpmv_projector) {
if (!(ctx->has_minicpmv_projector | ctx->has_qwen2vl_merger)) {
GGML_ASSERT(nx == image_size && ny == image_size);
}
@@ -2397,9 +2545,9 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));
float * pos_embed_data = (float *)malloc(ggml_nbytes(pos_embed));
for(int i=0;i<pos_w * pos_h;++i){
for(int j=0;j<embed_dim;++j){
pos_embed_data[i*embed_dim+j]=pos_embed_t[i][j];
for(int i=0;i < pos_w * pos_h; ++i){
for(int j=0; j < embed_dim; ++j){
pos_embed_data[i * embed_dim + j] = pos_embed_t[i][j];
}
}
@@ -2419,7 +2567,34 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
}
}
{
if (ctx->has_qwen2vl_merger) {
struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
const int pw = image_size_width / patch_size;
const int ph = image_size_height / patch_size;
int* positions_data = (int*)malloc(ggml_nbytes(positions));
int ptr = 0;
for (int y = 0; y < ph; y+=2)
{
for (int x = 0; x < pw; x+=2)
{
for (int dy = 0; dy < 2; dy++) {
for (int dx = 0; dx < 2; dx++) {
positions_data[ptr] = y + dy;
positions_data[num_patches + ptr] = x + dx;
positions_data[num_patches * 2 + ptr] = y + dy;
positions_data[num_patches * 3 + ptr] = x + dx;
ptr++;
}
}
}
}
ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
free(positions_data);
}
else {
struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
int* positions_data = (int*)malloc(ggml_nbytes(positions));
@@ -2428,16 +2603,16 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
}
ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
free(positions_data);
}
{
struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches");
int* patches_data = (int*)malloc(ggml_nbytes(patches));
for (int i = 0; i < num_patches; i++) {
patches_data[i] = i + 1;
{
struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches");
int* patches_data = (int*)malloc(ggml_nbytes(patches));
for (int i = 0; i < num_patches; i++) {
patches_data[i] = i + 1;
}
ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches));
free(patches_data);
}
ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches));
free(patches_data);
}
}
@@ -2610,6 +2785,9 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
return 3584;
}
}
if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
return ctx->vision_model.mm_1_b->ne[0];
}
std::string proj_type = PROJECTOR_TYPE_NAMES[ctx->proj_type];
throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
@@ -2621,3 +2799,21 @@ int clip_is_minicpmv(const struct clip_ctx * ctx) {
}
return 0;
}
bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
return ctx->has_qwen2vl_merger;
}
bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
clip_image_f32 clip_img;
clip_img.buf.resize(h * w * 3);
for (int i = 0; i < h*w*3; i++)
{
clip_img.buf[i] = img[i];
}
clip_img.nx = w;
clip_img.ny = h;
clip_image_encode(ctx, n_threads, &clip_img, vec);
return true;
}

View File

@@ -45,6 +45,7 @@ CLIP_API struct clip_ctx * clip_model_load_cpu(const char * fname, int verbosity
CLIP_API void clip_free(struct clip_ctx * ctx);
CLIP_API size_t clip_embd_nbytes(const struct clip_ctx * ctx);
CLIP_API size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_h, int img_w);
CLIP_API int32_t clip_image_size (const struct clip_ctx * ctx);
CLIP_API int32_t clip_patch_size (const struct clip_ctx * ctx);
@@ -55,11 +56,13 @@ CLIP_API const char * clip_patch_merge_type(const struct clip_ctx * ctx);
CLIP_API const int32_t * clip_image_grid(const struct clip_ctx * ctx);
CLIP_API int clip_n_patches (const struct clip_ctx * ctx);
CLIP_API int clip_n_mmproj_embd(const struct clip_ctx * ctx);
CLIP_API int clip_n_patches (const struct clip_ctx * ctx);
CLIP_API int clip_n_patches_by_img (const struct clip_ctx * ctx, struct clip_image_f32 * img);
CLIP_API int clip_n_mmproj_embd (const struct clip_ctx * ctx);
CLIP_API int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip);
CLIP_API void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size);
CLIP_API struct clip_image_size * clip_get_load_image_size(struct clip_ctx * ctx_clip);
CLIP_API struct clip_image_size * clip_image_size_init();
CLIP_API struct clip_image_u8 * clip_image_u8_init ();
@@ -86,6 +89,9 @@ CLIP_API bool clip_image_batch_encode(struct clip_ctx * ctx, int n_threads, cons
CLIP_API bool clip_model_quantize(const char * fname_inp, const char * fname_out, int itype);
CLIP_API int clip_is_minicpmv(const struct clip_ctx * ctx);
CLIP_API bool clip_is_qwen2vl(const struct clip_ctx * ctx);
CLIP_API bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec);
#ifdef __cplusplus
}

View File

@@ -11,13 +11,17 @@
#include <limits>
#include <vector>
#define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0)
#define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
#define LOG_INF(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
#define LOG_WRN(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
#define LOG_ERR(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
#define LOG_DBG(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
#if defined(LLAVA_LOG_OFF)
# define LOG_INF(...)
# define LOG_WRN(...)
# define LOG_ERR(...)
# define LOG_DBG(...)
#else // defined(LLAVA_LOG_OFF)
# define LOG_INF(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
# define LOG_WRN(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
# define LOG_ERR(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
# define LOG_DBG(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
#endif // defined(LLAVA_LOG_OFF)
// RGB uint8 image
struct clip_image_u8 {
@@ -255,25 +259,33 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
const char * mm_patch_merge_type = clip_patch_merge_type(ctx_clip);
if (clip_is_minicpmv(ctx_clip)) {
if (clip_is_minicpmv(ctx_clip) || clip_is_qwen2vl(ctx_clip)) {
std::vector<float *> image_embd_v;
image_embd_v.resize(img_res_v.size);
struct clip_image_size * load_image_size = clip_image_size_init();
for (size_t i = 0; i < img_res_v.size; i++) {
const int64_t t_img_enc_step_start_us = ggml_time_us();
image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip));
image_embd_v[i] = (float *)malloc(clip_embd_nbytes_by_img(ctx_clip, img_res_v.data[i].nx, img_res_v.data[i].ny));
int patch_size=14;
load_image_size->width = img_res_v.data[i].nx;
load_image_size->height = img_res_v.data[i].ny;
clip_add_load_image_size(ctx_clip, load_image_size);
bool encoded = false;
int has_minicpmv_projector = clip_is_minicpmv(ctx_clip);
if (has_minicpmv_projector == 2) {
encoded = clip_image_encode(ctx_clip, n_threads, only_v2_5_reshape_by_patch(&img_res_v.data[i], patch_size), image_embd_v[i]);
}
else if (has_minicpmv_projector == 3) {
if (clip_is_qwen2vl(ctx_clip)) {
encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]);
}
else {
int has_minicpmv_projector = clip_is_minicpmv(ctx_clip);
if (has_minicpmv_projector == 2) {
encoded = clip_image_encode(ctx_clip, n_threads, only_v2_5_reshape_by_patch(&img_res_v.data[i], patch_size), image_embd_v[i]);
}
else if (has_minicpmv_projector == 3) {
encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]);
}
}
if (!encoded) {
LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
return false;
@@ -286,8 +298,11 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
int n_img_pos_out = 0;
for (size_t i = 0; i < image_embd_v.size(); i++) {
std::memcpy(image_embd + n_img_pos_out * clip_n_mmproj_embd(ctx_clip), image_embd_v[i], clip_embd_nbytes(ctx_clip));
n_img_pos_out += clip_n_patches(ctx_clip);
std::memcpy(
image_embd + n_img_pos_out * clip_n_mmproj_embd(ctx_clip),
image_embd_v[i],
clip_embd_nbytes_by_img(ctx_clip, img_res_v.data[i].nx, img_res_v.data[i].ny));
n_img_pos_out += clip_n_patches_by_img(ctx_clip, &img_res_v.data[i]);
}
*n_img_pos = n_img_pos_out;
for (size_t i = 0; i < image_embd_v.size(); i++) {
@@ -383,7 +398,13 @@ bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, co
if (clip_is_minicpmv(ctx_clip)) {
num_max_patches = 10;
}
float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*num_max_patches); // TODO: base on gridsize/llava model
float * image_embd;
if (clip_is_qwen2vl(ctx_clip)) {
// qwen2vl don't split image into chunks, so `num_max_patches` is not needed.
image_embd = (float *)malloc(clip_embd_nbytes_by_img(ctx_clip, img->nx, img->ny));
} else {
image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*num_max_patches); // TODO: base on gridsize/llava model
}
if (!image_embd) {
LOG_ERR("Unable to allocate memory for image embeddings\n");
return false;
@@ -498,10 +519,16 @@ static bool load_file_to_bytes(const char* path, unsigned char** bytesOut, long
errno = 0;
size_t ret = fread(buffer, 1, fileSize, file); // Read the file into the buffer
if (ferror(file)) {
die_fmt("read error: %s", strerror(errno));
LOG_ERR("read error: %s", strerror(errno));
free(buffer);
fclose(file);
return false;
}
if (ret != (size_t) fileSize) {
die("unexpectedly reached end of file");
LOG_ERR("unexpectedly reached end of file");
free(buffer);
fclose(file);
return false;
}
fclose(file); // Close the file

View File

@@ -0,0 +1,165 @@
import argparse
from typing import Dict
import torch
import numpy as np
from gguf import *
from transformers import (
Qwen2VLForConditionalGeneration,
Qwen2VLProcessor,
AutoProcessor,
Qwen2VLConfig
)
VISION = "clip.vision"
def k(raw_key: str, arch: str) -> str:
return raw_key.format(arch=arch)
def to_gguf_name(name: str) -> str:
og = name
name = name.replace("text_model", "t").replace("vision_model", "v")
name = name.replace("blocks", "blk").replace("embeddings.", "")
name = name.replace("attn.", "attn_")
name = name.replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("proj.", "out.")
# name = name.replace("layrnorm", "ln").replace("layer_norm", "ln").replace("layernorm", "ln")
name = name.replace("norm1", "ln1").replace("norm2", "ln2")
name = name.replace("merger.mlp", 'mm')
print(f"[to_gguf_name] {og} --> {name}")
return name
def find_vision_tensors(qwen2vl, dtype) -> Dict[str, np.ndarray]:
vision_model = qwen2vl.visual
tensor_map = {}
for name, ten in vision_model.state_dict().items():
ten = ten.numpy()
if 'qkv' in name:
if ten.ndim == 2: # weight
c3, _ = ten.shape
else: # bias
c3 = ten.shape[0]
assert c3 % 3 == 0
c = c3 // 3
wq = ten[:c]
wk = ten[c: c * 2]
wv = ten[c * 2:]
tensor_map[to_gguf_name(f"vision_model.{name}").replace("qkv", "q")] = wq
tensor_map[to_gguf_name(f"vision_model.{name}").replace("qkv", "k")] = wk
tensor_map[to_gguf_name(f"vision_model.{name}").replace("qkv", "v")] = wv
elif 'merger' in name:
if name.endswith("ln_q.weight"):
tensor_map['v.post_ln.weight'] = ten
elif name.endswith("ln_q.bias"):
tensor_map['v.post_ln.bias'] = ten
else:
# "merger.mlp.%d.weight/bias" --> "mm.%d.weight/bias"
tensor_map[to_gguf_name(name)] = ten
elif 'patch_embed.proj.weight' in name:
# NOTE: split Conv3D into Conv2Ds
c1, c2, kt, kh, kw = ten.shape
assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
tensor_map["v.patch_embd.weight"] = ten[:, :, 0, ...]
tensor_map["v.patch_embd.weight.1"] = ten[:, :, 1, ...]
else:
tensor_map[to_gguf_name(f"vision_model.{name}")] = ten
for new_name, ten in tensor_map.items():
if ten.ndim <= 1 or new_name.endswith("_norm.weight"):
tensor_map[new_name] = ten.astype(np.float32)
else:
tensor_map[new_name] = ten.astype(dtype)
tensor_map["v.position_embd.weight"] = np.zeros([10, 10], dtype=np.float32) # dummy tensor, just here as a placeholder
return tensor_map
def main(args):
if args.data_type == 'fp32':
dtype = torch.float32
np_dtype = np.float32
ftype = 0
elif args.data_type == 'fp16':
dtype = torch.float32
np_dtype = np.float16
ftype = 1
else:
raise ValueError()
local_model = False
model_path = ""
model_name = args.model_name
print("model_name: ", model_name)
qwen2vl = Qwen2VLForConditionalGeneration.from_pretrained(
model_name, torch_dtype=dtype, device_map="cpu"
)
cfg: Qwen2VLConfig = qwen2vl.config # type: ignore[reportAssignmentType]
vcfg = cfg.vision_config
if os.path.isdir(model_name):
local_model = True
if model_name.endswith(os.sep):
model_name = model_name[:-1]
model_path = model_name
model_name = os.path.basename(model_name)
fname_out = f"{model_name.replace('/', '-').lower()}-vision.gguf"
fout = GGUFWriter(path=fname_out, arch="clip")
fout.add_description("image encoder for Qwen2VL")
fout.add_file_type(ftype)
fout.add_bool("clip.has_text_encoder", False)
fout.add_bool("clip.has_vision_encoder", True)
fout.add_bool("clip.has_qwen2vl_merger", True)
fout.add_string("clip.projector_type", "qwen2vl_merger")
print(cfg.vision_config)
if 'silu' in cfg.vision_config.hidden_act.lower():
fout.add_bool("clip.use_silu", True)
fout.add_bool("clip.use_gelu", False)
elif 'gelu' in cfg.vision_config.hidden_act.lower():
fout.add_bool("clip.use_silu", False)
fout.add_bool("clip.use_gelu", 'quick' not in cfg.vision_config.hidden_act.lower())
else:
raise ValueError()
tensor_map = find_vision_tensors(qwen2vl, np_dtype)
for name, data in tensor_map.items():
fout.add_tensor(name, data)
fout.add_uint32("clip.vision.patch_size", vcfg.patch_size)
fout.add_uint32("clip.vision.image_size", 14 * 40) # some reasonable size that is divable by (14*2)
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), vcfg.embed_dim)
fout.add_uint32("clip.vision.projection_dim", vcfg.hidden_size)
fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, VISION), vcfg.num_heads)
fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, VISION), 1e-6)
fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), vcfg.depth)
fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, VISION), 0) # not sure what this does, put 0 here as a placeholder
fout.add_name(model_name)
"""
HACK: Since vision rope related parameter aren't stored in the `Qwen2VLConfig,
it will be hardcoded in the `clip_image_build_graph` from `clip.cpp`.
"""
if local_model:
processor: Qwen2VLProcessor = AutoProcessor.from_pretrained(model_path)
else:
processor: Qwen2VLProcessor = AutoProcessor.from_pretrained(model_name)
fout.add_array("clip.vision.image_mean", processor.image_processor.image_mean) # type: ignore[reportAttributeAccessIssue]
fout.add_array("clip.vision.image_std", processor.image_processor.image_std) # type: ignore[reportAttributeAccessIssue]
fout.write_header_to_file()
fout.write_kv_data_to_file()
fout.write_tensors_to_file()
fout.close()
print("save model as: ", fname_out)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("model_name", nargs='?', default="Qwen/Qwen2-VL-2B-Instruct")
parser.add_argument("--data_type", nargs='?', choices=['fp32', 'fp16'], default="fp32")
args = parser.parse_args()
main(args)

View File

@@ -0,0 +1,581 @@
#include "arg.h"
#include "base64.hpp"
#include "log.h"
#include "common.h"
#include "sampling.h"
#include "clip.h"
#include "llava.h"
#include "llama.h"
#include "ggml.h"
#ifdef GGML_USE_CUDA
#include "ggml-cuda.h"
#endif
#ifdef NDEBUG
#include "ggml-alloc.h"
#include "ggml-backend.h"
#endif
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <vector>
#include <algorithm>
#include <iostream>
#include <fstream>
static bool qwen2vl_eval_image_embed(llama_context * ctx_llama, const struct llava_image_embed * image_embed,
int n_batch, int * n_past, int * st_pos_id, struct clip_image_size * image_size) {
int n_embd = llama_n_embd(llama_get_model(ctx_llama));
const int patch_size = 14 * 2;
const int ph = image_size->height / patch_size + (image_size->height % patch_size > 0);
const int pw = image_size->width / patch_size + (image_size->width % patch_size > 0);
auto img_tokens = image_embed->n_image_pos;
// llama_pos mrope_pos[img_tokens * 4];
std::vector<llama_pos> mrope_pos;
mrope_pos.resize(img_tokens * 4);
for (int y = 0; y < ph; y++)
{
for (int x = 0; x < pw; x++)
{
int i = y * pw + x;
mrope_pos[i] = *st_pos_id;
mrope_pos[i + img_tokens] = *st_pos_id + y;
mrope_pos[i + img_tokens * 2] = *st_pos_id + x;
mrope_pos[i + img_tokens * 3] = 0;
}
}
*st_pos_id += std::max(pw, ph);
int processed = 0;
std::vector<llama_pos> batch_mrope_pos;
batch_mrope_pos.resize(img_tokens * 4);
for (int i = 0; i < img_tokens; i += n_batch) {
int n_eval = img_tokens - i;
if (n_eval > n_batch) {
n_eval = n_batch;
}
// llama_pos batch_mrope_pos[n_eval * 4];
std::fill(batch_mrope_pos.begin(), batch_mrope_pos.end(), 0);
memcpy(batch_mrope_pos.data(), &mrope_pos[processed], n_eval * sizeof(llama_pos));
memcpy(&batch_mrope_pos[n_eval * 1], &mrope_pos[img_tokens * 1 + processed], n_eval * sizeof(llama_pos));
memcpy(&batch_mrope_pos[n_eval * 2], &mrope_pos[img_tokens * 2 + processed], n_eval * sizeof(llama_pos));
memcpy(&batch_mrope_pos[n_eval * 3], &mrope_pos[img_tokens * 3 + processed], n_eval * sizeof(llama_pos));
llama_batch batch = {
int32_t(n_eval), // n_tokens
nullptr, // token
(image_embed->embed+i*n_embd), // embed
batch_mrope_pos.data(), // pos
nullptr, // n_seq_id
nullptr, // seq_id
nullptr, // logits
};
if (llama_decode(ctx_llama, batch)) {
LOG_ERR("%s : failed to eval\n", __func__);
return false;
}
*n_past += n_eval;
processed += n_eval;
}
return true;
}
static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past, int * st_pos_id) {
int N = (int) tokens.size();
std::vector<llama_pos> pos;
for (int i = 0; i < N; i += n_batch) {
int n_eval = (int) tokens.size() - i;
if (n_eval > n_batch) {
n_eval = n_batch;
}
auto batch = llama_batch_get_one(&tokens[i], n_eval);
// TODO: add mrope pos ids somewhere else
pos.resize(batch.n_tokens * 4);
std::fill(pos.begin(), pos.end(), 0);
for (int j = 0; j < batch.n_tokens * 3; j ++) {
pos[j] = *st_pos_id + (j % batch.n_tokens);
}
batch.pos = pos.data();
if (llama_decode(ctx_llama, batch)) {
LOG_ERR("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past);
return false;
}
*n_past += n_eval;
*st_pos_id += n_eval;
}
return true;
}
static bool eval_id(struct llama_context * ctx_llama, int id, int * n_past, int * st_pos_id) {
std::vector<llama_token> tokens;
tokens.push_back(id);
return eval_tokens(ctx_llama, tokens, 1, n_past, st_pos_id);
}
static bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, int * st_pos_id, bool add_bos){
std::string str2 = str;
std::vector<llama_token> embd_inp = common_tokenize(ctx_llama, str2, add_bos, true);
eval_tokens(ctx_llama, embd_inp, n_batch, n_past, st_pos_id);
return true;
}
static const char * sample(struct common_sampler * smpl,
struct llama_context * ctx_llama,
int * n_past, int * st_pos_id) {
const llama_token id = common_sampler_sample(smpl, ctx_llama, -1);
common_sampler_accept(smpl, id, true);
static std::string ret;
if (llama_token_is_eog(llama_get_model(ctx_llama), id)) {
ret = "</s>";
} else {
ret = common_token_to_piece(ctx_llama, id);
}
eval_id(ctx_llama, id, n_past, st_pos_id);
return ret.c_str();
}
static const char* IMG_BASE64_TAG_BEGIN = "<img src=\"data:image/jpeg;base64,";
static const char* IMG_BASE64_TAG_END = "\">";
static void find_image_tag_in_prompt(const std::string& prompt, size_t& begin_out, size_t& end_out) {
begin_out = prompt.find(IMG_BASE64_TAG_BEGIN);
end_out = prompt.find(IMG_BASE64_TAG_END, (begin_out == std::string::npos) ? 0UL : begin_out);
}
static bool prompt_contains_image(const std::string& prompt) {
size_t begin, end;
find_image_tag_in_prompt(prompt, begin, end);
return (begin != std::string::npos);
}
// replaces the base64 image tag in the prompt with `replacement`
static llava_image_embed * llava_image_embed_make_with_prompt_base64(struct clip_ctx * ctx_clip, int n_threads, const std::string& prompt) {
size_t img_base64_str_start, img_base64_str_end;
find_image_tag_in_prompt(prompt, img_base64_str_start, img_base64_str_end);
if (img_base64_str_start == std::string::npos || img_base64_str_end == std::string::npos) {
LOG_ERR("%s: invalid base64 image tag. must be %s<base64 byte string>%s\n", __func__, IMG_BASE64_TAG_BEGIN, IMG_BASE64_TAG_END);
return NULL;
}
auto base64_bytes_start = img_base64_str_start + strlen(IMG_BASE64_TAG_BEGIN);
auto base64_bytes_count = img_base64_str_end - base64_bytes_start;
auto base64_str = prompt.substr(base64_bytes_start, base64_bytes_count );
auto required_bytes = base64::required_encode_size(base64_str.size());
auto img_bytes = std::vector<unsigned char>(required_bytes);
base64::decode(base64_str.begin(), base64_str.end(), img_bytes.begin());
auto embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, img_bytes.data(), img_bytes.size());
if (!embed) {
LOG_ERR("%s: could not load image from base64 string.\n", __func__);
return NULL;
}
return embed;
}
static std::string remove_image_from_prompt(const std::string& prompt, const char * replacement = "") {
size_t begin, end;
find_image_tag_in_prompt(prompt, begin, end);
if (begin == std::string::npos || end == std::string::npos) {
return prompt;
}
auto pre = prompt.substr(0, begin);
auto post = prompt.substr(end + strlen(IMG_BASE64_TAG_END));
return pre + replacement + post;
}
struct llava_context {
struct clip_ctx * ctx_clip = NULL;
struct llama_context * ctx_llama = NULL;
struct llama_model * model = NULL;
};
static void print_usage(int, char ** argv) {
LOG("\n example usage:\n");
LOG("\n %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
LOG("\n note: a lower temperature value like 0.1 is recommended for better quality.\n");
}
static struct llava_image_embed * load_image(llava_context * ctx_llava, common_params * params, const std::string & fname) {
// load and preprocess the image
llava_image_embed * embed = NULL;
auto prompt = params->prompt;
if (prompt_contains_image(prompt)) {
if (!params->image.empty()) {
LOG_INF("using base64 encoded image instead of command line image path\n");
}
embed = llava_image_embed_make_with_prompt_base64(ctx_llava->ctx_clip, params->cpuparams.n_threads, prompt);
if (!embed) {
LOG_ERR("%s: can't load image from prompt\n", __func__);
return NULL;
}
params->prompt = remove_image_from_prompt(prompt);
} else {
embed = llava_image_embed_make_with_filename(ctx_llava->ctx_clip, params->cpuparams.n_threads, fname.c_str());
if (!embed) {
fprintf(stderr, "%s: is %s really an image file?\n", __func__, fname.c_str());
return NULL;
}
}
return embed;
}
static void process_prompt(struct llava_context * ctx_llava, struct llava_image_embed * image_embed, common_params * params, const std::string & prompt) {
int n_past = 0;
int cur_pos_id = 0;
const int max_tgt_len = params->n_predict < 0 ? 256 : params->n_predict;
std::string system_prompt, user_prompt;
size_t image_pos = prompt.find("<|vision_start|>");
if (image_pos != std::string::npos) {
// new templating mode: Provide the full prompt including system message and use <image> as a placeholder for the image
system_prompt = prompt.substr(0, image_pos);
user_prompt = prompt.substr(image_pos + std::string("<|vision_pad|>").length());
LOG_INF("system_prompt: %s\n", system_prompt.c_str());
if (params->verbose_prompt) {
auto tmp = common_tokenize(ctx_llava->ctx_llama, system_prompt, true, true);
for (int i = 0; i < (int) tmp.size(); i++) {
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
}
}
LOG_INF("user_prompt: %s\n", user_prompt.c_str());
if (params->verbose_prompt) {
auto tmp = common_tokenize(ctx_llava->ctx_llama, user_prompt, true, true);
for (int i = 0; i < (int) tmp.size(); i++) {
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
}
}
} else {
// llava-1.5 native mode
system_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|>";
user_prompt = "<|vision_end|>" + prompt + "<|im_end|>\n<|im_start|>assistant\n";
if (params->verbose_prompt) {
auto tmp = common_tokenize(ctx_llava->ctx_llama, user_prompt, true, true);
for (int i = 0; i < (int) tmp.size(); i++) {
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
}
}
}
eval_string(ctx_llava->ctx_llama, system_prompt.c_str(), params->n_batch, &n_past, &cur_pos_id, true);
if (image_embed != nullptr) {
auto image_size = clip_get_load_image_size(ctx_llava->ctx_clip);
qwen2vl_eval_image_embed(ctx_llava->ctx_llama, image_embed, params->n_batch, &n_past, &cur_pos_id, image_size);
}
eval_string(ctx_llava->ctx_llama, user_prompt.c_str(), params->n_batch, &n_past, &cur_pos_id, false);
// generate the response
LOG("\n");
struct common_sampler * smpl = common_sampler_init(ctx_llava->model, params->sampling);
if (!smpl) {
LOG_ERR("%s: failed to initialize sampling subsystem\n", __func__);
exit(1);
}
std::string response = "";
for (int i = 0; i < max_tgt_len; i++) {
const char * tmp = sample(smpl, ctx_llava->ctx_llama, &n_past, &cur_pos_id);
response += tmp;
if (strcmp(tmp, "</s>") == 0) break;
if (strstr(tmp, "###")) break; // Yi-VL behavior
LOG("%s", tmp);
if (strstr(response.c_str(), "<|im_end|>")) break; // Yi-34B llava-1.6 - for some reason those decode not as the correct token (tokenizer works)
if (strstr(response.c_str(), "<|im_start|>")) break; // Yi-34B llava-1.6
if (strstr(response.c_str(), "USER:")) break; // mistral llava-1.6
fflush(stdout);
}
common_sampler_free(smpl);
LOG("\n");
}
static struct llama_model * llava_init(common_params * params) {
llama_backend_init();
llama_numa_init(params->numa);
llama_model_params model_params = common_model_params_to_llama(*params);
llama_model * model = llama_load_model_from_file(params->model.c_str(), model_params);
if (model == NULL) {
LOG_ERR("%s: unable to load model\n" , __func__);
return NULL;
}
return model;
}
static struct llava_context * llava_init_context(common_params * params, llama_model * model) {
const char * clip_path = params->mmproj.c_str();
auto prompt = params->prompt;
if (prompt.empty()) {
prompt = "describe the image in detail.";
}
auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
llama_context_params ctx_params = common_context_params_to_llama(*params);
ctx_params.n_ctx = params->n_ctx < 2048 ? 2048 : params->n_ctx; // we need a longer context size to process image embeddings
llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params);
if (ctx_llama == NULL) {
LOG_ERR("%s: failed to create the llama_context\n" , __func__);
return NULL;
}
auto * ctx_llava = (struct llava_context *)malloc(sizeof(llava_context));
ctx_llava->ctx_llama = ctx_llama;
ctx_llava->ctx_clip = ctx_clip;
ctx_llava->model = model;
return ctx_llava;
}
static void llava_free(struct llava_context * ctx_llava) {
if (ctx_llava->ctx_clip) {
clip_free(ctx_llava->ctx_clip);
ctx_llava->ctx_clip = NULL;
}
llama_free(ctx_llava->ctx_llama);
llama_free_model(ctx_llava->model);
llama_backend_free();
}
#ifndef NDEBUG
static void debug_test_mrope_2d() {
// 1. Initialize backend
ggml_backend_t backend = NULL;
std::string backend_name = "";
#ifdef GGML_USE_CUDA
fprintf(stderr, "%s: using CUDA backend\n", __func__);
backend = ggml_backend_cuda_init(0); // init device 0
backend_name = "cuda";
if (!backend) {
fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__);
}
#endif
// if there aren't GPU Backends fallback to CPU backend
if (!backend) {
backend = ggml_backend_cpu_init();
backend_name = "cpu";
}
// Calculate the size needed to allocate
size_t ctx_size = 0;
ctx_size += 2 * ggml_tensor_overhead(); // tensors
// no need to allocate anything else!
// 2. Allocate `ggml_context` to store tensor data
struct ggml_init_params params = {
/*.mem_size =*/ ctx_size,
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true, // the tensors will be allocated later by ggml_backend_alloc_ctx_tensors()
};
struct ggml_context * ctx = ggml_init(params);
struct ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, 128, 12, 30);
ggml_set_name(inp_raw, "inp_raw");
ggml_set_input(inp_raw);
struct ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 30 * 4);
ggml_set_name(pos, "pos");
ggml_set_input(pos);
std::vector<float> dummy_q;
dummy_q.resize(128 * 12 * 30);
std::fill(dummy_q.begin(), dummy_q.end(), 0.1);
// memcpy(inp_raw->data, dummy_q.data(), 128 * 12 * 30 * ggml_element_size(inp_raw));
std::vector<int> pos_id;
pos_id.resize(30 * 4);
for (int i = 0; i < 30; i ++) {
pos_id[i] = i;
pos_id[i + 30] = i + 10;
pos_id[i + 60] = i + 20;
pos_id[i + 90] = i + 30;
}
int sections[4] = {32, 32, 0, 0};
// 4. Allocate a `ggml_backend_buffer` to store all tensors
ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx, backend);
// 5. Copy tensor data from main memory (RAM) to backend buffer
ggml_backend_tensor_set(inp_raw, dummy_q.data(), 0, ggml_nbytes(inp_raw));
ggml_backend_tensor_set(pos, pos_id.data(), 0, ggml_nbytes(pos));
// 6. Create a `ggml_cgraph` for mul_mat operation
struct ggml_cgraph * gf = NULL;
struct ggml_context * ctx_cgraph = NULL;
// create a temporally context to build the graph
struct ggml_init_params params0 = {
/*.mem_size =*/ ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead(),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true, // the tensors will be allocated later by ggml_gallocr_alloc_graph()
};
ctx_cgraph = ggml_init(params0);
gf = ggml_new_graph(ctx_cgraph);
struct ggml_tensor * result0 = ggml_rope_multi(
ctx_cgraph, inp_raw, pos, nullptr,
128/2, sections, LLAMA_ROPE_TYPE_VISION, 32768, 1000000, 1,
0, 1, 32, 1);
// Add "result" tensor and all of its dependencies to the cgraph
ggml_build_forward_expand(gf, result0);
// 7. Create a `ggml_gallocr` for cgraph computation
ggml_gallocr_t allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(backend));
ggml_gallocr_alloc_graph(allocr, gf);
// 9. Run the computation
int n_threads = 1; // Optional: number of threads to perform some operations with multi-threading
if (ggml_backend_is_cpu(backend)) {
ggml_backend_cpu_set_n_threads(backend, n_threads);
}
ggml_backend_graph_compute(backend, gf);
// 10. Retrieve results (output tensors)
// in this example, output tensor is always the last tensor in the graph
struct ggml_tensor * result = result0;
// struct ggml_tensor * result = gf->nodes[gf->n_nodes - 1];
float * result_data = (float *)malloc(ggml_nbytes(result));
// because the tensor data is stored in device buffer, we need to copy it back to RAM
ggml_backend_tensor_get(result, result_data, 0, ggml_nbytes(result));
const std::string bin_file = "mrope_2d_" + backend_name +".bin";
std::ofstream outFile(bin_file, std::ios::binary);
if (outFile.is_open()) {
outFile.write(reinterpret_cast<const char*>(result_data), ggml_nbytes(result));
outFile.close();
std::cout << "Data successfully written to " + bin_file << std::endl;
} else {
std::cerr << "Error opening file!" << std::endl;
}
free(result_data);
// 11. Free memory and exit
ggml_free(ctx_cgraph);
ggml_gallocr_free(allocr);
ggml_free(ctx);
ggml_backend_buffer_free(buffer);
ggml_backend_free(backend);
}
static void debug_dump_img_embed(struct llava_context * ctx_llava) {
int n_embd = llama_n_embd(llama_get_model(ctx_llava->ctx_llama));
int ne = n_embd * 4;
float vals[56 * 56 * 3];
// float embd[ne];
std::vector<float> embd;
embd.resize(ne);
for (int i = 0; i < 56*56; i++)
{
for (int c = 0; c < 3; c++)
vals[i * 3 + c] = (float)(i % (56 * 56)) / (56*56);
}
clip_encode_float_image(ctx_llava->ctx_clip, 16, vals, 56, 56, embd.data());
std::ofstream outFile("img_embed.bin", std::ios::binary);
if (outFile.is_open()) {
outFile.write(reinterpret_cast<const char*>(embd.data()), ne * sizeof(float));
outFile.close();
std::cout << "Data successfully written to mrope.bin" << std::endl;
} else {
std::cerr << "Error opening file!" << std::endl;
}
}
#endif
int main(int argc, char ** argv) {
ggml_time_init();
common_params params;
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_LLAVA, print_usage)) {
return 1;
}
common_init();
if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
print_usage(argc, argv);
return 1;
}
auto * model = llava_init(&params);
if (model == NULL) {
fprintf(stderr, "%s: error: failed to init llava model\n", __func__);
return 1;
}
if (prompt_contains_image(params.prompt)) {
auto * ctx_llava = llava_init_context(&params, model);
auto * image_embed = load_image(ctx_llava, &params, "");
// process the prompt
process_prompt(ctx_llava, image_embed, &params, params.prompt);
llama_perf_context_print(ctx_llava->ctx_llama);
llava_image_embed_free(image_embed);
ctx_llava->model = NULL;
llava_free(ctx_llava);
#ifndef NDEBUG
} else if (params.image[0].empty()) {
auto ctx_llava = llava_init_context(&params, model);
debug_test_mrope_2d();
debug_dump_img_embed(ctx_llava);
llama_perf_context_print(ctx_llava->ctx_llama);
ctx_llava->model = NULL;
llava_free(ctx_llava);
#endif
} else {
for (auto & image : params.image) {
auto * ctx_llava = llava_init_context(&params, model);
auto * image_embed = load_image(ctx_llava, &params, image);
if (!image_embed) {
LOG_ERR("%s: failed to load image %s. Terminating\n\n", __func__, image.c_str());
return 1;
}
// process the prompt
process_prompt(ctx_llava, image_embed, &params, params.prompt);
llama_perf_context_print(ctx_llava->ctx_llama);
llava_image_embed_free(image_embed);
ctx_llava->model = NULL;
llava_free(ctx_llava);
}
}
llama_free_model(model);
return 0;
}

View File

@@ -2,4 +2,4 @@ set(TARGET llama-lookahead)
add_executable(${TARGET} lookahead.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@@ -2,22 +2,22 @@ set(TARGET llama-lookup)
add_executable(${TARGET} lookup.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
target_compile_features(${TARGET} PRIVATE cxx_std_17)
set(TARGET llama-lookup-create)
add_executable(${TARGET} lookup-create.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
target_compile_features(${TARGET} PRIVATE cxx_std_17)
set(TARGET llama-lookup-merge)
add_executable(${TARGET} lookup-merge.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
target_compile_features(${TARGET} PRIVATE cxx_std_17)
set(TARGET llama-lookup-stats)
add_executable(${TARGET} lookup-stats.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@@ -29,4 +29,4 @@ add_executable(${TARGET} ${CMAKE_CURRENT_LIST_DIR}/../main/main.cpp)
target_include_directories(${TARGET} PRIVATE ${_common_path})
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@@ -2,4 +2,4 @@ set(TARGET llama-cli)
add_executable(${TARGET} main.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@@ -66,7 +66,7 @@ In this section, we cover the most commonly used options for running the `llama-
- `-mu MODEL_URL --model-url MODEL_URL`: Specify a remote http url to download the file (e.g [https://huggingface.co/ggml-org/gemma-1.1-7b-it-Q4_K_M-GGUF/resolve/main/gemma-1.1-7b-it.Q4_K_M.gguf?download=true](https://huggingface.co/ggml-org/gemma-1.1-7b-it-Q4_K_M-GGUF/resolve/main/gemma-1.1-7b-it.Q4_K_M.gguf?download=true)).
- `-i, --interactive`: Run the program in interactive mode, allowing you to provide input directly and receive real-time responses.
- `-n N, --n-predict N`: Set the number of tokens to predict when generating text. Adjusting this value can influence the length of the generated text.
- `-c N, --ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference.
- `-c N, --ctx-size N`: Set the size of the prompt context. The default is 4096, but if a LLaMA model was built with a longer context, increasing this value will provide better results for longer input/inference.
- `-mli, --multiline-input`: Allows you to write or paste multiple lines without ending each in '\'
- `-t N, --threads N`: Set the number of threads to use during generation. For optimal performance, it is recommended to set this value to the number of physical CPU cores your system has.
- `-ngl N, --n-gpu-layers N`: When compiled with GPU support, this option allows offloading some layers to the GPU for computation. Generally results in increased performance.
@@ -131,7 +131,7 @@ During text generation, LLaMA models have a limited context size, which means th
### Context Size
- `-c N, --ctx-size N`: Set the size of the prompt context (default: 0, 0 = loaded from model). The LLaMA models were built with a context of 2048-8192, which will yield the best results on longer input/inference.
- `-c N, --ctx-size N`: Set the size of the prompt context (default: 4096, 0 = loaded from model). If a LLaMA model was built with a longer context, increasing this value will yield the best results on longer input/inference.
### Extended Context Size
@@ -177,16 +177,11 @@ Example usage: `--temp 0`
- `--repeat-penalty N`: Control the repetition of token sequences in the generated text default: 1.0, 1.0 = disabled).
- `--repeat-last-n N`: Last n tokens to consider for penalizing repetition (default: 64, 0 = disabled, -1 = ctx-size).
- `--no-penalize-nl`: Disable penalization for newline tokens when applying the repeat penalty.
The `repeat-penalty` option helps prevent the model from generating repetitive or monotonous text. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. The default value is 1.
The `repeat-last-n` option controls the number of tokens in the history to consider for penalizing repetition. A larger value will look further back in the generated text to prevent repetitions, while a smaller value will only consider recent tokens. A value of 0 disables the penalty, and a value of -1 sets the number of tokens considered equal to the context size (`ctx-size`).
Use the `--no-penalize-nl` option to disable newline penalization when applying the repeat penalty. This option is particularly useful for generating chat conversations, dialogues, code, poetry, or any text where newline tokens play a significant role in structure and formatting. Disabling newline penalization helps maintain the natural flow and intended formatting in these specific use cases.
Example usage: `--repeat-penalty 1.15 --repeat-last-n 128 --no-penalize-nl`
### DRY Repetition Penalty
DRY (Don't Repeat Yourself) sampling is an effective technique for reducing repetition in generated text even across long contexts by penalizing tokens based on their recent usage patterns (original [PR link](https://github.com/oobabooga/text-generation-webui/pull/5677)).
@@ -348,6 +343,7 @@ These options provide extra functionality and customization when running the LLa
- `-h, --help`: Display a help message showing all available options and their default values. This is particularly useful for checking the latest options and default values, as they can change frequently, and the information in this document may become outdated.
- `--verbose-prompt`: Print the prompt before generating text.
- `--no-display-prompt`: Don't print prompt at generation.
- `-mg i, --main-gpu i`: When using multiple GPUs this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default GPU 0 is used.
- `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance.
- `-hfr URL --hf-repo URL`: The url to the Hugging Face model repository. Used in conjunction with `--hf-file` or `-hff`. The model is downloaded and stored in the file provided by `-m` or `--model`. If `-m` is not provided, the model is auto-stored in the path specified by the `LLAMA_CACHE` environment variable or in an OS-specific local cache.

View File

@@ -2,4 +2,4 @@ set(TARGET llama-parallel)
add_executable(${TARGET} parallel.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@@ -2,4 +2,4 @@ set(TARGET llama-passkey)
add_executable(${TARGET} passkey.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@@ -2,4 +2,4 @@ set(TARGET llama-perplexity)
add_executable(${TARGET} perplexity.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@@ -3,4 +3,4 @@ add_executable(${TARGET} quantize-stats.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE llama build_info ${CMAKE_THREAD_LIBS_INIT})
target_include_directories(${TARGET} PRIVATE ../../common)
target_compile_features(${TARGET} PRIVATE cxx_std_11)
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@@ -3,4 +3,4 @@ add_executable(${TARGET} quantize.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_include_directories(${TARGET} PRIVATE ../../common)
target_compile_features(${TARGET} PRIVATE cxx_std_11)
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@@ -54,8 +54,6 @@ As the models are currently fully loaded into memory, you will need adequate dis
Several quantization methods are supported. They differ in the resulting model disk size and inference speed.
The quantization formats `Q4_0_4_4`, `Q4_0_4_8` and `Q4_0_8_8` are block interleaved variants of the `Q4_0` format, providing a data layout that is better suited for specific implementations of optimized mulmat kernels. Since these formats differ only in data layout, they have the same quantized size as the `Q4_0` format.
*(outdated)*
| Model | Measure | F16 | Q4_0 | Q4_1 | Q5_0 | Q5_1 | Q8_0 |
@@ -83,7 +81,7 @@ The quantization formats `Q4_0_4_4`, `Q4_0_4_8` and `Q4_0_8_8` are block interle
- [#4930 - imatrix for all k-quants](https://github.com/ggerganov/llama.cpp/pull/4930)
- [#4951 - imatrix on the GPU](https://github.com/ggerganov/llama.cpp/pull/4957)
- [#4969 - imatrix for legacy quants](https://github.com/ggerganov/llama.cpp/pull/4969)
- [#4996 - k-qunats tuning](https://github.com/ggerganov/llama.cpp/pull/4996)
- [#4996 - k-quants tuning](https://github.com/ggerganov/llama.cpp/pull/4996)
- [#5060 - Q3_K_XS](https://github.com/ggerganov/llama.cpp/pull/5060)
- [#5196 - 3-bit i-quants](https://github.com/ggerganov/llama.cpp/pull/5196)
- [quantization tuning](https://github.com/ggerganov/llama.cpp/pull/5320), [another one](https://github.com/ggerganov/llama.cpp/pull/5334), and [another one](https://github.com/ggerganov/llama.cpp/pull/5361)

View File

@@ -48,9 +48,6 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = {
{ "Q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M, " 5.33G, +0.0569 ppl @ Llama-3-8B", },
{ "Q6_K", LLAMA_FTYPE_MOSTLY_Q6_K, " 6.14G, +0.0217 ppl @ Llama-3-8B", },
{ "Q8_0", LLAMA_FTYPE_MOSTLY_Q8_0, " 7.96G, +0.0026 ppl @ Llama-3-8B", },
{ "Q4_0_4_4", LLAMA_FTYPE_MOSTLY_Q4_0_4_4, " 4.34G, +0.4685 ppl @ Llama-3-8B", },
{ "Q4_0_4_8", LLAMA_FTYPE_MOSTLY_Q4_0_4_8, " 4.34G, +0.4685 ppl @ Llama-3-8B", },
{ "Q4_0_8_8", LLAMA_FTYPE_MOSTLY_Q4_0_8_8, " 4.34G, +0.4685 ppl @ Llama-3-8B", },
{ "F16", LLAMA_FTYPE_MOSTLY_F16, "14.00G, +0.0020 ppl @ Mistral-7B", },
{ "BF16", LLAMA_FTYPE_MOSTLY_BF16, "14.00G, -0.0050 ppl @ Mistral-7B", },
{ "F32", LLAMA_FTYPE_ALL_F32, "26.00G @ 7B", },

View File

@@ -2,4 +2,4 @@ set(TARGET llama-retrieval)
add_executable(${TARGET} retrieval.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@@ -143,7 +143,7 @@ int main(int argc, char ** argv) {
std::vector<chunk> file_chunk = chunk_file(context_file, params.chunk_size, params.chunk_separator);
chunks.insert(chunks.end(), file_chunk.begin(), file_chunk.end());
}
LOG_INF("Number of chunks: %ld\n", chunks.size());
LOG_INF("Number of chunks: %zu\n", chunks.size());
llama_backend_init();
llama_numa_init(params.numa);

View File

@@ -1,5 +1,5 @@
set(TARGET llama-run)
add_executable(${TARGET} run.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@@ -3,5 +3,45 @@
The purpose of this example is to demonstrate a minimal usage of llama.cpp for running models.
```bash
./llama-run Meta-Llama-3.1-8B-Instruct.gguf
llama-run granite-code
...
```bash
llama-run -h
Description:
Runs a llm
Usage:
llama-run [options] model [prompt]
Options:
-c, --context-size <value>
Context size (default: 2048)
-n, --ngl <value>
Number of GPU layers (default: 0)
-h, --help
Show help message
Commands:
model
Model is a string with an optional prefix of
huggingface:// (hf://), ollama://, https:// or file://.
If no protocol is specified and a file exists in the specified
path, file:// is assumed, otherwise if a file does not exist in
the specified path, ollama:// is assumed. Models that are being
pulled are downloaded with .partial extension while being
downloaded and then renamed as the file without the .partial
extension when complete.
Examples:
llama-run llama3
llama-run ollama://granite-code
llama-run ollama://smollm:135m
llama-run hf://QuantFactory/SmolLM-135M-GGUF/SmolLM-135M.Q2_K.gguf
llama-run huggingface://bartowski/SmolLM-1.7B-Instruct-v0.2-GGUF/SmolLM-1.7B-Instruct-v0.2-IQ3_M.gguf
llama-run https://example.com/some-file1.gguf
llama-run some-file2.gguf
llama-run file://some-file3.gguf
llama-run --ngl 99 some-file4.gguf
llama-run --ngl 99 some-file5.gguf Hello World
...

View File

@@ -1,128 +1,350 @@
#if defined(_WIN32)
#include <windows.h>
# include <windows.h>
#else
#include <unistd.h>
# include <unistd.h>
#endif
#include <climits>
#if defined(LLAMA_USE_CURL)
# include <curl/curl.h>
#endif
#include <cstdarg>
#include <cstdio>
#include <cstring>
#include <filesystem>
#include <iostream>
#include <sstream>
#include <string>
#include <unordered_map>
#include <vector>
#include "common.h"
#include "json.hpp"
#include "llama-cpp.h"
typedef std::unique_ptr<char[]> char_array_ptr;
#define printe(...) \
do { \
fprintf(stderr, __VA_ARGS__); \
} while (0)
struct Argument {
std::string flag;
std::string help_text;
};
class Opt {
public:
int init(int argc, const char ** argv) {
construct_help_str_();
// Parse arguments
if (parse(argc, argv)) {
printe("Error: Failed to parse arguments.\n");
help();
return 1;
}
struct Options {
std::string model_path, prompt_non_interactive;
int ngl = 99;
int n_ctx = 2048;
};
// If help is requested, show help and exit
if (help_) {
help();
return 2;
}
class ArgumentParser {
public:
ArgumentParser(const char * program_name) : program_name(program_name) {}
void add_argument(const std::string & flag, std::string & var, const std::string & help_text = "") {
string_args[flag] = &var;
arguments.push_back({flag, help_text});
return 0; // Success
}
void add_argument(const std::string & flag, int & var, const std::string & help_text = "") {
int_args[flag] = &var;
arguments.push_back({flag, help_text});
std::string model_;
std::string user_;
int context_size_ = 2048, ngl_ = -1;
private:
std::string help_str_;
bool help_ = false;
void construct_help_str_() {
help_str_ =
"Description:\n"
" Runs a llm\n"
"\n"
"Usage:\n"
" llama-run [options] model [prompt]\n"
"\n"
"Options:\n"
" -c, --context-size <value>\n"
" Context size (default: " +
std::to_string(context_size_);
help_str_ +=
")\n"
" -n, --ngl <value>\n"
" Number of GPU layers (default: " +
std::to_string(ngl_);
help_str_ +=
")\n"
" -h, --help\n"
" Show help message\n"
"\n"
"Commands:\n"
" model\n"
" Model is a string with an optional prefix of \n"
" huggingface:// (hf://), ollama://, https:// or file://.\n"
" If no protocol is specified and a file exists in the specified\n"
" path, file:// is assumed, otherwise if a file does not exist in\n"
" the specified path, ollama:// is assumed. Models that are being\n"
" pulled are downloaded with .partial extension while being\n"
" downloaded and then renamed as the file without the .partial\n"
" extension when complete.\n"
"\n"
"Examples:\n"
" llama-run llama3\n"
" llama-run ollama://granite-code\n"
" llama-run ollama://smollm:135m\n"
" llama-run hf://QuantFactory/SmolLM-135M-GGUF/SmolLM-135M.Q2_K.gguf\n"
" llama-run huggingface://bartowski/SmolLM-1.7B-Instruct-v0.2-GGUF/SmolLM-1.7B-Instruct-v0.2-IQ3_M.gguf\n"
" llama-run https://example.com/some-file1.gguf\n"
" llama-run some-file2.gguf\n"
" llama-run file://some-file3.gguf\n"
" llama-run --ngl 99 some-file4.gguf\n"
" llama-run --ngl 99 some-file5.gguf Hello World\n";
}
int parse(int argc, const char ** argv) {
int positional_args_i = 0;
for (int i = 1; i < argc; ++i) {
std::string arg = argv[i];
if (string_args.count(arg)) {
if (i + 1 < argc) {
*string_args[arg] = argv[++i];
} else {
fprintf(stderr, "error: missing value for %s\n", arg.c_str());
print_usage();
if (strcmp(argv[i], "-c") == 0 || strcmp(argv[i], "--context-size") == 0) {
if (i + 1 >= argc) {
return 1;
}
} else if (int_args.count(arg)) {
if (i + 1 < argc) {
if (parse_int_arg(argv[++i], *int_args[arg]) != 0) {
fprintf(stderr, "error: invalid value for %s: %s\n", arg.c_str(), argv[i]);
print_usage();
return 1;
}
} else {
fprintf(stderr, "error: missing value for %s\n", arg.c_str());
print_usage();
context_size_ = std::atoi(argv[++i]);
} else if (strcmp(argv[i], "-n") == 0 || strcmp(argv[i], "--ngl") == 0) {
if (i + 1 >= argc) {
return 1;
}
ngl_ = std::atoi(argv[++i]);
} else if (strcmp(argv[i], "-h") == 0 || strcmp(argv[i], "--help") == 0) {
help_ = true;
return 0;
} else if (!positional_args_i) {
++positional_args_i;
model_ = argv[i];
} else if (positional_args_i == 1) {
++positional_args_i;
user_ = argv[i];
} else {
fprintf(stderr, "error: unrecognized argument %s\n", arg.c_str());
print_usage();
return 1;
user_ += " " + std::string(argv[i]);
}
}
if (string_args["-m"]->empty()) {
fprintf(stderr, "error: -m is required\n");
print_usage();
return model_.empty(); // model_ is the only required value
}
void help() const { printf("%s", help_str_.c_str()); }
};
struct progress_data {
size_t file_size = 0;
std::chrono::steady_clock::time_point start_time = std::chrono::steady_clock::now();
bool printed = false;
};
struct FileDeleter {
void operator()(FILE * file) const {
if (file) {
fclose(file);
}
}
};
typedef std::unique_ptr<FILE, FileDeleter> FILE_ptr;
#ifdef LLAMA_USE_CURL
class CurlWrapper {
public:
int init(const std::string & url, const std::vector<std::string> & headers, const std::string & output_file,
const bool progress, std::string * response_str = nullptr) {
std::string output_file_partial;
curl = curl_easy_init();
if (!curl) {
return 1;
}
progress_data data;
FILE_ptr out;
if (!output_file.empty()) {
output_file_partial = output_file + ".partial";
out.reset(fopen(output_file_partial.c_str(), "ab"));
}
set_write_options(response_str, out);
data.file_size = set_resume_point(output_file_partial);
set_progress_options(progress, data);
set_headers(headers);
perform(url);
if (!output_file.empty()) {
std::filesystem::rename(output_file_partial, output_file);
}
return 0;
}
private:
const char * program_name;
std::unordered_map<std::string, std::string *> string_args;
std::unordered_map<std::string, int *> int_args;
std::vector<Argument> arguments;
~CurlWrapper() {
if (chunk) {
curl_slist_free_all(chunk);
}
int parse_int_arg(const char * arg, int & value) {
char * end;
const long val = std::strtol(arg, &end, 10);
if (*end == '\0' && val >= INT_MIN && val <= INT_MAX) {
value = static_cast<int>(val);
if (curl) {
curl_easy_cleanup(curl);
}
}
private:
CURL * curl = nullptr;
struct curl_slist * chunk = nullptr;
void set_write_options(std::string * response_str, const FILE_ptr & out) {
if (response_str) {
curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, capture_data);
curl_easy_setopt(curl, CURLOPT_WRITEDATA, response_str);
} else {
curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, write_data);
curl_easy_setopt(curl, CURLOPT_WRITEDATA, out.get());
}
}
size_t set_resume_point(const std::string & output_file) {
size_t file_size = 0;
if (std::filesystem::exists(output_file)) {
file_size = std::filesystem::file_size(output_file);
curl_easy_setopt(curl, CURLOPT_RESUME_FROM_LARGE, static_cast<curl_off_t>(file_size));
}
return file_size;
}
void set_progress_options(bool progress, progress_data & data) {
if (progress) {
curl_easy_setopt(curl, CURLOPT_NOPROGRESS, 0L);
curl_easy_setopt(curl, CURLOPT_XFERINFODATA, &data);
curl_easy_setopt(curl, CURLOPT_XFERINFOFUNCTION, progress_callback);
}
}
void set_headers(const std::vector<std::string> & headers) {
if (!headers.empty()) {
if (chunk) {
curl_slist_free_all(chunk);
chunk = 0;
}
for (const auto & header : headers) {
chunk = curl_slist_append(chunk, header.c_str());
}
curl_easy_setopt(curl, CURLOPT_HTTPHEADER, chunk);
}
}
void perform(const std::string & url) {
CURLcode res;
curl_easy_setopt(curl, CURLOPT_URL, url.c_str());
curl_easy_setopt(curl, CURLOPT_FOLLOWLOCATION, 1L);
curl_easy_setopt(curl, CURLOPT_DEFAULT_PROTOCOL, "https");
curl_easy_setopt(curl, CURLOPT_FAILONERROR, 1L);
res = curl_easy_perform(curl);
if (res != CURLE_OK) {
printe("curl_easy_perform() failed: %s\n", curl_easy_strerror(res));
}
}
static std::string human_readable_time(double seconds) {
int hrs = static_cast<int>(seconds) / 3600;
int mins = (static_cast<int>(seconds) % 3600) / 60;
int secs = static_cast<int>(seconds) % 60;
std::ostringstream out;
if (hrs > 0) {
out << hrs << "h " << std::setw(2) << std::setfill('0') << mins << "m " << std::setw(2) << std::setfill('0')
<< secs << "s";
} else if (mins > 0) {
out << mins << "m " << std::setw(2) << std::setfill('0') << secs << "s";
} else {
out << secs << "s";
}
return out.str();
}
static std::string human_readable_size(curl_off_t size) {
static const char * suffix[] = { "B", "KB", "MB", "GB", "TB" };
char length = sizeof(suffix) / sizeof(suffix[0]);
int i = 0;
double dbl_size = size;
if (size > 1024) {
for (i = 0; (size / 1024) > 0 && i < length - 1; i++, size /= 1024) {
dbl_size = size / 1024.0;
}
}
std::ostringstream out;
out << std::fixed << std::setprecision(2) << dbl_size << " " << suffix[i];
return out.str();
}
static int progress_callback(void * ptr, curl_off_t total_to_download, curl_off_t now_downloaded, curl_off_t,
curl_off_t) {
progress_data * data = static_cast<progress_data *>(ptr);
if (total_to_download <= 0) {
return 0;
}
return 1;
}
void print_usage() const {
printf("\nUsage:\n");
printf(" %s [OPTIONS]\n\n", program_name);
printf("Options:\n");
for (const auto & arg : arguments) {
printf(" %-10s %s\n", arg.flag.c_str(), arg.help_text.c_str());
total_to_download += data->file_size;
const curl_off_t now_downloaded_plus_file_size = now_downloaded + data->file_size;
const curl_off_t percentage = (now_downloaded_plus_file_size * 100) / total_to_download;
const curl_off_t pos = (percentage / 5);
std::string progress_bar;
for (int i = 0; i < 20; ++i) {
progress_bar.append((i < pos) ? "" : " ");
}
printf("\n");
// Calculate download speed and estimated time to completion
const auto now = std::chrono::steady_clock::now();
const std::chrono::duration<double> elapsed_seconds = now - data->start_time;
const double speed = now_downloaded / elapsed_seconds.count();
const double estimated_time = (total_to_download - now_downloaded) / speed;
printe("\r%ld%% |%s| %s/%s %.2f MB/s %s ", percentage, progress_bar.c_str(),
human_readable_size(now_downloaded).c_str(), human_readable_size(total_to_download).c_str(),
speed / (1024 * 1024), human_readable_time(estimated_time).c_str());
fflush(stderr);
data->printed = true;
return 0;
}
// Function to write data to a file
static size_t write_data(void * ptr, size_t size, size_t nmemb, void * stream) {
FILE * out = static_cast<FILE *>(stream);
return fwrite(ptr, size, nmemb, out);
}
// Function to capture data into a string
static size_t capture_data(void * ptr, size_t size, size_t nmemb, void * stream) {
std::string * str = static_cast<std::string *>(stream);
str->append(static_cast<char *>(ptr), size * nmemb);
return size * nmemb;
}
};
#endif
class LlamaData {
public:
llama_model_ptr model;
llama_sampler_ptr sampler;
llama_context_ptr context;
public:
llama_model_ptr model;
llama_sampler_ptr sampler;
llama_context_ptr context;
std::vector<llama_chat_message> messages;
std::vector<std::string> msg_strs;
std::vector<char> fmtted;
int init(const Options & opt) {
model = initialize_model(opt.model_path, opt.ngl);
int init(Opt & opt) {
model = initialize_model(opt);
if (!model) {
return 1;
}
context = initialize_context(model, opt.n_ctx);
context = initialize_context(model, opt.context_size_);
if (!context) {
return 1;
}
@@ -131,15 +353,123 @@ class LlamaData {
return 0;
}
private:
// Initializes the model and returns a unique pointer to it
llama_model_ptr initialize_model(const std::string & model_path, const int ngl) {
llama_model_params model_params = llama_model_default_params();
model_params.n_gpu_layers = ngl;
private:
#ifdef LLAMA_USE_CURL
int download(const std::string & url, const std::vector<std::string> & headers, const std::string & output_file,
const bool progress, std::string * response_str = nullptr) {
CurlWrapper curl;
if (curl.init(url, headers, output_file, progress, response_str)) {
return 1;
}
llama_model_ptr model(llama_load_model_from_file(model_path.c_str(), model_params));
return 0;
}
#else
int download(const std::string &, const std::vector<std::string> &, const std::string &, const bool,
std::string * = nullptr) {
printe("%s: llama.cpp built without libcurl, downloading from an url not supported.\n", __func__);
return 1;
}
#endif
int huggingface_dl(const std::string & model, const std::vector<std::string> headers, const std::string & bn) {
// Find the second occurrence of '/' after protocol string
size_t pos = model.find('/');
pos = model.find('/', pos + 1);
if (pos == std::string::npos) {
return 1;
}
const std::string hfr = model.substr(0, pos);
const std::string hff = model.substr(pos + 1);
const std::string url = "https://huggingface.co/" + hfr + "/resolve/main/" + hff;
return download(url, headers, bn, true);
}
int ollama_dl(std::string & model, const std::vector<std::string> headers, const std::string & bn) {
if (model.find('/') == std::string::npos) {
model = "library/" + model;
}
std::string model_tag = "latest";
size_t colon_pos = model.find(':');
if (colon_pos != std::string::npos) {
model_tag = model.substr(colon_pos + 1);
model = model.substr(0, colon_pos);
}
std::string manifest_url = "https://registry.ollama.ai/v2/" + model + "/manifests/" + model_tag;
std::string manifest_str;
const int ret = download(manifest_url, headers, "", false, &manifest_str);
if (ret) {
return ret;
}
nlohmann::json manifest = nlohmann::json::parse(manifest_str);
std::string layer;
for (const auto & l : manifest["layers"]) {
if (l["mediaType"] == "application/vnd.ollama.image.model") {
layer = l["digest"];
break;
}
}
std::string blob_url = "https://registry.ollama.ai/v2/" + model + "/blobs/" + layer;
return download(blob_url, headers, bn, true);
}
std::string basename(const std::string & path) {
const size_t pos = path.find_last_of("/\\");
if (pos == std::string::npos) {
return path;
}
return path.substr(pos + 1);
}
int remove_proto(std::string & model_) {
const std::string::size_type pos = model_.find("://");
if (pos == std::string::npos) {
return 1;
}
model_ = model_.substr(pos + 3); // Skip past "://"
return 0;
}
int resolve_model(std::string & model_) {
const std::string bn = basename(model_);
const std::vector<std::string> headers = { "--header",
"Accept: application/vnd.docker.distribution.manifest.v2+json" };
int ret = 0;
if (string_starts_with(model_, "file://") || std::filesystem::exists(bn)) {
remove_proto(model_);
} else if (string_starts_with(model_, "hf://") || string_starts_with(model_, "huggingface://")) {
remove_proto(model_);
ret = huggingface_dl(model_, headers, bn);
} else if (string_starts_with(model_, "ollama://")) {
remove_proto(model_);
ret = ollama_dl(model_, headers, bn);
} else if (string_starts_with(model_, "https://")) {
download(model_, headers, bn, true);
} else {
ret = ollama_dl(model_, headers, bn);
}
model_ = bn;
return ret;
}
// Initializes the model and returns a unique pointer to it
llama_model_ptr initialize_model(Opt & opt) {
ggml_backend_load_all();
llama_model_params model_params = llama_model_default_params();
model_params.n_gpu_layers = opt.ngl_ >= 0 ? opt.ngl_ : model_params.n_gpu_layers;
resolve_model(opt.model_);
llama_model_ptr model(llama_load_model_from_file(opt.model_.c_str(), model_params));
if (!model) {
fprintf(stderr, "%s: error: unable to load model\n", __func__);
printe("%s: error: unable to load model from file: %s\n", __func__, opt.model_.c_str());
}
return model;
@@ -148,12 +478,11 @@ class LlamaData {
// Initializes the context with the specified parameters
llama_context_ptr initialize_context(const llama_model_ptr & model, const int n_ctx) {
llama_context_params ctx_params = llama_context_default_params();
ctx_params.n_ctx = n_ctx;
ctx_params.n_batch = n_ctx;
ctx_params.n_ctx = n_ctx;
ctx_params.n_batch = n_ctx;
llama_context_ptr context(llama_new_context_with_model(model.get(), ctx_params));
if (!context) {
fprintf(stderr, "%s: error: failed to create the llama_context\n", __func__);
printe("%s: error: failed to create the llama_context\n", __func__);
}
return context;
@@ -170,23 +499,22 @@ class LlamaData {
}
};
// Add a message to `messages` and store its content in `owned_content`
static void add_message(const char * role, const std::string & text, LlamaData & llama_data,
std::vector<char_array_ptr> & owned_content) {
char_array_ptr content(new char[text.size() + 1]);
std::strcpy(content.get(), text.c_str());
llama_data.messages.push_back({role, content.get()});
owned_content.push_back(std::move(content));
// Add a message to `messages` and store its content in `msg_strs`
static void add_message(const char * role, const std::string & text, LlamaData & llama_data) {
llama_data.msg_strs.push_back(std::move(text));
llama_data.messages.push_back({ role, llama_data.msg_strs.back().c_str() });
}
// Function to apply the chat template and resize `formatted` if needed
static int apply_chat_template(const LlamaData & llama_data, std::vector<char> & formatted, const bool append) {
int result = llama_chat_apply_template(llama_data.model.get(), nullptr, llama_data.messages.data(),
llama_data.messages.size(), append, formatted.data(), formatted.size());
if (result > static_cast<int>(formatted.size())) {
formatted.resize(result);
static int apply_chat_template(LlamaData & llama_data, const bool append) {
int result = llama_chat_apply_template(
llama_data.model.get(), nullptr, llama_data.messages.data(), llama_data.messages.size(), append,
append ? llama_data.fmtted.data() : nullptr, append ? llama_data.fmtted.size() : 0);
if (append && result > static_cast<int>(llama_data.fmtted.size())) {
llama_data.fmtted.resize(result);
result = llama_chat_apply_template(llama_data.model.get(), nullptr, llama_data.messages.data(),
llama_data.messages.size(), append, formatted.data(), formatted.size());
llama_data.messages.size(), append, llama_data.fmtted.data(),
llama_data.fmtted.size());
}
return result;
@@ -199,7 +527,8 @@ static int tokenize_prompt(const llama_model_ptr & model, const std::string & pr
prompt_tokens.resize(n_prompt_tokens);
if (llama_tokenize(model.get(), prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), true,
true) < 0) {
GGML_ABORT("failed to tokenize the prompt\n");
printe("failed to tokenize the prompt\n");
return -1;
}
return n_prompt_tokens;
@@ -207,11 +536,11 @@ static int tokenize_prompt(const llama_model_ptr & model, const std::string & pr
// Check if we have enough space in the context to evaluate this batch
static int check_context_size(const llama_context_ptr & ctx, const llama_batch & batch) {
const int n_ctx = llama_n_ctx(ctx.get());
const int n_ctx = llama_n_ctx(ctx.get());
const int n_ctx_used = llama_get_kv_cache_used_cells(ctx.get());
if (n_ctx_used + batch.n_tokens > n_ctx) {
printf("\033[0m\n");
fprintf(stderr, "context size exceeded\n");
printe("context size exceeded\n");
return 1;
}
@@ -221,9 +550,10 @@ static int check_context_size(const llama_context_ptr & ctx, const llama_batch &
// convert the token to a string
static int convert_token_to_string(const llama_model_ptr & model, const llama_token token_id, std::string & piece) {
char buf[256];
int n = llama_token_to_piece(model.get(), token_id, buf, sizeof(buf), 0, true);
int n = llama_token_to_piece(model.get(), token_id, buf, sizeof(buf), 0, true);
if (n < 0) {
GGML_ABORT("failed to convert token to piece\n");
printe("failed to convert token to piece\n");
return 1;
}
piece = std::string(buf, n);
@@ -238,19 +568,19 @@ static void print_word_and_concatenate_to_response(const std::string & piece, st
// helper function to evaluate a prompt and generate a response
static int generate(LlamaData & llama_data, const std::string & prompt, std::string & response) {
std::vector<llama_token> prompt_tokens;
const int n_prompt_tokens = tokenize_prompt(llama_data.model, prompt, prompt_tokens);
if (n_prompt_tokens < 0) {
std::vector<llama_token> tokens;
if (tokenize_prompt(llama_data.model, prompt, tokens) < 0) {
return 1;
}
// prepare a batch for the prompt
llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size());
llama_batch batch = llama_batch_get_one(tokens.data(), tokens.size());
llama_token new_token_id;
while (true) {
check_context_size(llama_data.context, batch);
if (llama_decode(llama_data.context.get(), batch)) {
GGML_ABORT("failed to decode\n");
printe("failed to decode\n");
return 1;
}
// sample the next token, check is it an end of generation?
@@ -273,22 +603,9 @@ static int generate(LlamaData & llama_data, const std::string & prompt, std::str
return 0;
}
static int parse_arguments(const int argc, const char ** argv, Options & opt) {
ArgumentParser parser(argv[0]);
parser.add_argument("-m", opt.model_path, "model");
parser.add_argument("-p", opt.prompt_non_interactive, "prompt");
parser.add_argument("-c", opt.n_ctx, "context_size");
parser.add_argument("-ngl", opt.ngl, "n_gpu_layers");
if (parser.parse(argc, argv)) {
return 1;
}
return 0;
}
static int read_user_input(std::string & user) {
std::getline(std::cin, user);
return user.empty(); // Indicate an error or empty input
return user.empty(); // Should have data in happy path
}
// Function to generate a response based on the prompt
@@ -296,7 +613,7 @@ static int generate_response(LlamaData & llama_data, const std::string & prompt,
// Set response color
printf("\033[33m");
if (generate(llama_data, prompt, response)) {
fprintf(stderr, "failed to generate response\n");
printe("failed to generate response\n");
return 1;
}
@@ -306,11 +623,10 @@ static int generate_response(LlamaData & llama_data, const std::string & prompt,
}
// Helper function to apply the chat template and handle errors
static int apply_chat_template_with_error_handling(const LlamaData & llama_data, std::vector<char> & formatted,
const bool is_user_input, int & output_length) {
const int new_len = apply_chat_template(llama_data, formatted, is_user_input);
static int apply_chat_template_with_error_handling(LlamaData & llama_data, const bool append, int & output_length) {
const int new_len = apply_chat_template(llama_data, append);
if (new_len < 0) {
fprintf(stderr, "failed to apply the chat template\n");
printe("failed to apply the chat template\n");
return -1;
}
@@ -319,56 +635,63 @@ static int apply_chat_template_with_error_handling(const LlamaData & llama_data,
}
// Helper function to handle user input
static bool handle_user_input(std::string & user_input, const std::string & prompt_non_interactive) {
if (!prompt_non_interactive.empty()) {
user_input = prompt_non_interactive;
return true; // No need for interactive input
static int handle_user_input(std::string & user_input, const std::string & user_) {
if (!user_.empty()) {
user_input = user_;
return 0; // No need for interactive input
}
printf("\033[32m> \033[0m");
return !read_user_input(user_input); // Returns false if input ends the loop
printf(
"\r "
"\r\033[32m> \033[0m");
return read_user_input(user_input); // Returns true if input ends the loop
}
// Function to tokenize the prompt
static int chat_loop(LlamaData & llama_data, std::string & prompt_non_interactive) {
std::vector<char_array_ptr> owned_content;
std::vector<char> fmtted(llama_n_ctx(llama_data.context.get()));
static int chat_loop(LlamaData & llama_data, const std::string & user_) {
int prev_len = 0;
llama_data.fmtted.resize(llama_n_ctx(llama_data.context.get()));
while (true) {
// Get user input
std::string user_input;
if (!handle_user_input(user_input, prompt_non_interactive)) {
break;
while (handle_user_input(user_input, user_)) {
}
add_message("user", prompt_non_interactive.empty() ? user_input : prompt_non_interactive, llama_data,
owned_content);
add_message("user", user_.empty() ? user_input : user_, llama_data);
int new_len;
if (apply_chat_template_with_error_handling(llama_data, fmtted, true, new_len) < 0) {
if (apply_chat_template_with_error_handling(llama_data, true, new_len) < 0) {
return 1;
}
std::string prompt(fmtted.begin() + prev_len, fmtted.begin() + new_len);
std::string prompt(llama_data.fmtted.begin() + prev_len, llama_data.fmtted.begin() + new_len);
std::string response;
if (generate_response(llama_data, prompt, response)) {
return 1;
}
if (!user_.empty()) {
break;
}
add_message("assistant", response, llama_data);
if (apply_chat_template_with_error_handling(llama_data, false, prev_len) < 0) {
return 1;
}
}
return 0;
}
static void log_callback(const enum ggml_log_level level, const char * text, void *) {
if (level == GGML_LOG_LEVEL_ERROR) {
fprintf(stderr, "%s", text);
printe("%s", text);
}
}
static bool is_stdin_a_terminal() {
#if defined(_WIN32)
HANDLE hStdin = GetStdHandle(STD_INPUT_HANDLE);
DWORD mode;
DWORD mode;
return GetConsoleMode(hStdin, &mode);
#else
return isatty(STDIN_FILENO);
@@ -382,17 +705,20 @@ static std::string read_pipe_data() {
}
int main(int argc, const char ** argv) {
Options opt;
if (parse_arguments(argc, argv, opt)) {
Opt opt;
const int ret = opt.init(argc, argv);
if (ret == 2) {
return 0;
} else if (ret) {
return 1;
}
if (!is_stdin_a_terminal()) {
if (!opt.prompt_non_interactive.empty()) {
opt.prompt_non_interactive += "\n\n";
if (!opt.user_.empty()) {
opt.user_ += "\n\n";
}
opt.prompt_non_interactive += read_pipe_data();
opt.user_ += read_pipe_data();
}
llama_log_set(log_callback, nullptr);
@@ -401,7 +727,7 @@ int main(int argc, const char ** argv) {
return 1;
}
if (chat_loop(llama_data, opt.prompt_non_interactive)) {
if (chat_loop(llama_data, opt.user_)) {
return 1;
}

View File

@@ -2,4 +2,4 @@ set(TARGET llama-save-load-state)
add_executable(${TARGET} save-load-state.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@@ -15,13 +15,8 @@ set(TARGET_SRCS
httplib.h
)
set(PUBLIC_ASSETS
index.html
completion.js
index.html.gz
loading.html
deps_daisyui.min.css
deps_markdown-it.js
deps_tailwindcss.js
deps_vue.esm-browser.js
)
foreach(asset ${PUBLIC_ASSETS})
@@ -33,6 +28,7 @@ foreach(asset ${PUBLIC_ASSETS})
OUTPUT "${output}"
COMMAND "${CMAKE_COMMAND}" "-DINPUT=${input}" "-DOUTPUT=${output}" -P "${PROJECT_SOURCE_DIR}/scripts/xxd.cmake"
)
set_source_files_properties(${output} PROPERTIES GENERATED TRUE)
endforeach()
add_executable(${TARGET} ${TARGET_SRCS})
@@ -50,4 +46,4 @@ if (WIN32)
TARGET_LINK_LIBRARIES(${TARGET} PRIVATE ws2_32)
endif()
target_compile_features(${TARGET} PRIVATE cxx_std_11)
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@@ -62,13 +62,15 @@ The project is under active development, and we are [looking for feedback and co
| `--yarn-beta-fast N` | YaRN: low correction dim or beta (default: 32.0)<br/>(env: LLAMA_ARG_YARN_BETA_FAST) |
| `-dkvc, --dump-kv-cache` | verbose print of the KV cache |
| `-nkvo, --no-kv-offload` | disable KV offload<br/>(env: LLAMA_ARG_NO_KV_OFFLOAD) |
| `-ctk, --cache-type-k TYPE` | KV cache data type for K (default: f16)<br/>(env: LLAMA_ARG_CACHE_TYPE_K) |
| `-ctv, --cache-type-v TYPE` | KV cache data type for V (default: f16)<br/>(env: LLAMA_ARG_CACHE_TYPE_V) |
| `-ctk, --cache-type-k TYPE` | KV cache data type for K<br/>allowed values: f32, f16, bf16, q8_0, q4_0, q4_1, iq4_nl, q5_0, q5_1<br/>(default: f16)<br/>(env: LLAMA_ARG_CACHE_TYPE_K) |
| `-ctv, --cache-type-v TYPE` | KV cache data type for V<br/>allowed values: f32, f16, bf16, q8_0, q4_0, q4_1, iq4_nl, q5_0, q5_1<br/>(default: f16)<br/>(env: LLAMA_ARG_CACHE_TYPE_V) |
| `-dt, --defrag-thold N` | KV cache defragmentation threshold (default: 0.1, < 0 - disabled)<br/>(env: LLAMA_ARG_DEFRAG_THOLD) |
| `-np, --parallel N` | number of parallel sequences to decode (default: 1)<br/>(env: LLAMA_ARG_N_PARALLEL) |
| `--mlock` | force system to keep model in RAM rather than swapping or compressing<br/>(env: LLAMA_ARG_MLOCK) |
| `--no-mmap` | do not memory-map model (slower load but may reduce pageouts if not using mlock)<br/>(env: LLAMA_ARG_NO_MMAP) |
| `--numa TYPE` | attempt optimizations that help on some NUMA systems<br/>- distribute: spread execution evenly over all nodes<br/>- isolate: only spawn threads on CPUs on the node that execution started on<br/>- numactl: use the CPU map provided by numactl<br/>if run without this previously, it is recommended to drop the system page cache before using this<br/>see https://github.com/ggerganov/llama.cpp/issues/1437<br/>(env: LLAMA_ARG_NUMA) |
| `-dev, --device <dev1,dev2,..>` | comma-separated list of devices to use for offloading (none = don't offload)<br/>use --list-devices to see a list of available devices<br/>(env: LLAMA_ARG_DEVICE) |
| `--list-devices` | print list of available devices and exit |
| `-ngl, --gpu-layers, --n-gpu-layers N` | number of layers to store in VRAM<br/>(env: LLAMA_ARG_N_GPU_LAYERS) |
| `-sm, --split-mode {none,layer,row}` | how to split the model across multiple GPUs, one of:<br/>- none: use one GPU only<br/>- layer (default): split layers and KV across GPUs<br/>- row: split rows across GPUs<br/>(env: LLAMA_ARG_SPLIT_MODE) |
| `-ts, --tensor-split N0,N1,N2,...` | fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1<br/>(env: LLAMA_ARG_TENSOR_SPLIT) |
@@ -102,7 +104,6 @@ The project is under active development, and we are [looking for feedback and co
| `-s, --seed SEED` | RNG seed (default: -1, use random seed for -1) |
| `--sampling-seq SEQUENCE` | simplified sequence for samplers that will be used (default: dkypmxt) |
| `--ignore-eos` | ignore end of stream token and continue generating (implies --logit-bias EOS-inf) |
| `--penalize-nl` | penalize newline tokens (default: false) |
| `--temp N` | temperature (default: 0.8) |
| `--top-k N` | top-k sampling (default: 40, 0 = disabled) |
| `--top-p N` | top-p sampling (default: 0.9, 1.0 = disabled) |
@@ -136,6 +137,7 @@ The project is under active development, and we are [looking for feedback and co
| -------- | ----------- |
| `--no-context-shift` | disables context shift on inifinite text generation (default: disabled)<br/>(env: LLAMA_ARG_NO_CONTEXT_SHIFT) |
| `-sp, --special` | special tokens output enabled (default: false) |
| `--no-warmup` | skip warming up the model with an empty run |
| `--spm-infill` | use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: disabled) |
| `--pooling {none,mean,cls,last,rank}` | pooling type for embeddings, use model default if unspecified<br/>(env: LLAMA_ARG_POOLING) |
| `-cb, --cont-batching` | enable continuous batching (a.k.a dynamic batching) (default: enabled)<br/>(env: LLAMA_ARG_CONT_BATCHING) |
@@ -144,6 +146,7 @@ The project is under active development, and we are [looking for feedback and co
| `--host HOST` | ip address to listen (default: 127.0.0.1)<br/>(env: LLAMA_ARG_HOST) |
| `--port PORT` | port to listen (default: 8080)<br/>(env: LLAMA_ARG_PORT) |
| `--path PATH` | path to serve static files from (default: )<br/>(env: LLAMA_ARG_STATIC_PATH) |
| `--no-webui` | Disable the Web UI (default: enabled)<br/>(env: LLAMA_ARG_NO_WEBUI) |
| `--embedding, --embeddings` | restrict to only support embedding use case; use only with dedicated embedding models (default: disabled)<br/>(env: LLAMA_ARG_EMBEDDINGS) |
| `--reranking, --rerank` | enable reranking endpoint on server (default: disabled)<br/>(env: LLAMA_ARG_RERANKING) |
| `--api-key KEY` | API key to use for authentication (default: none)<br/>(env: LLAMA_API_KEY) |
@@ -158,9 +161,16 @@ The project is under active development, and we are [looking for feedback and co
| `--props` | enable changing global properties via POST /props (default: disabled)<br/>(env: LLAMA_ARG_ENDPOINT_PROPS) |
| `--no-slots` | disables slots monitoring endpoint<br/>(env: LLAMA_ARG_NO_ENDPOINT_SLOTS) |
| `--slot-save-path PATH` | path to save slot kv cache (default: disabled) |
| `--chat-template JINJA_TEMPLATE` | set custom jinja chat template (default: template taken from model's metadata)<br/>if suffix/prefix are specified, template will be disabled<br/>only commonly used templates are accepted:<br/>https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template<br/>(env: LLAMA_ARG_CHAT_TEMPLATE) |
| `--chat-template JINJA_TEMPLATE` | set custom jinja chat template (default: template taken from model's metadata)<br/>if suffix/prefix are specified, template will be disabled<br/>list of built-in templates:<br/>chatglm3, chatglm4, chatml, command-r, deepseek, deepseek2, exaone3, gemma, granite, llama2, llama2-sys, llama2-sys-bos, llama2-sys-strip, llama3, minicpm, mistral-v1, mistral-v3, mistral-v3-tekken, mistral-v7, monarch, openchat, orion, phi3, rwkv-world, vicuna, vicuna-orca, zephyr<br/>(env: LLAMA_ARG_CHAT_TEMPLATE) |
| `-sps, --slot-prompt-similarity SIMILARITY` | how much the prompt of a request must match the prompt of a slot in order to use that slot (default: 0.50, 0.0 = disabled)<br/> |
| `--lora-init-without-apply` | load LoRA adapters without applying them (apply later via POST /lora-adapters) (default: disabled) |
| `--draft-max, --draft, --draft-n N` | number of tokens to draft for speculative decoding (default: 16)<br/>(env: LLAMA_ARG_DRAFT_MAX) |
| `--draft-min, --draft-n-min N` | minimum number of draft tokens to use for speculative decoding (default: 5)<br/>(env: LLAMA_ARG_DRAFT_MIN) |
| `--draft-p-min P` | minimum speculative decoding probability (greedy) (default: 0.9)<br/>(env: LLAMA_ARG_DRAFT_P_MIN) |
| `-cd, --ctx-size-draft N` | size of the prompt context for the draft model (default: 0, 0 = loaded from model)<br/>(env: LLAMA_ARG_CTX_SIZE_DRAFT) |
| `-devd, --device-draft <dev1,dev2,..>` | comma-separated list of devices to use for offloading the draft model (none = don't offload)<br/>use --list-devices to see a list of available devices |
| `-ngld, --gpu-layers-draft, --n-gpu-layers-draft N` | number of layers to store in VRAM for the draft model<br/>(env: LLAMA_ARG_N_GPU_LAYERS_DRAFT) |
| `-md, --model-draft FNAME` | draft model for speculative decoding (default: unused)<br/>(env: LLAMA_ARG_MODEL_DRAFT) |
Note: If both command line argument and environment variable are both set for the same param, the argument will take precedence over env var.
@@ -188,12 +198,6 @@ services:
`llama-server` is built alongside everything else from the root of the project
- Using `make`:
```bash
make llama-server
```
- Using `CMake`:
```bash
@@ -207,15 +211,6 @@ services:
`llama-server` can also be built with SSL support using OpenSSL 3
- Using `make`:
```bash
# NOTE: For non-system openssl, use the following:
# CXXFLAGS="-I /path/to/openssl/include"
# LDFLAGS="-L /path/to/openssl/lib"
make LLAMA_SERVER_SSL=true llama-server
```
- Using `CMake`:
```bash
@@ -223,6 +218,37 @@ services:
cmake --build build --config Release -t llama-server
```
## Web UI
The project includes a web-based user interface that enables interaction with the model through the `/chat/completions` endpoint.
The web UI is developed using:
- `vue` framework for frontend development
- `tailwindcss` and `daisyui` for styling
- `vite` for build tooling
A pre-built version is available as a single HTML file under `/public` directory.
To build or to run the dev server (with hot reload):
```sh
# make sure you have nodejs installed
cd examples/server/webui
npm i
# to run the dev server
npm run dev
# to build the public/index.html
npm run build
```
NOTE: if you are using the vite dev server, you can change the API base URL to llama.cpp. To do that, run this code snippet in browser's console:
```js
localStorage.setItem('base', 'http://localhost:8080')
```
## Quick Start
To get started right away, run the following command, making sure to use the correct path for the model you have:
@@ -277,23 +303,23 @@ mkdir llama-client
cd llama-client
```
Create a index.js file and put this inside:
Create an index.js file and put this inside:
```javascript
const prompt = `Building a website can be done in 10 simple steps:`;
const prompt = "Building a website can be done in 10 simple steps:"
async function Test() {
async function test() {
let response = await fetch("http://127.0.0.1:8080/completion", {
method: 'POST',
method: "POST",
body: JSON.stringify({
prompt,
n_predict: 512,
n_predict: 64,
})
})
console.log((await response.json()).content)
}
Test()
test()
```
And run it:
@@ -317,114 +343,117 @@ node index.js
### POST `/completion`: Given a `prompt`, it returns the predicted completion.
*Options:*
*Options:*
`prompt`: Provide the prompt for this completion as a string or as an array of strings or numbers representing tokens. Internally, if `cache_prompt` is `true`, the prompt is compared to the previous completion and only the "unseen" suffix is evaluated. A `BOS` token is inserted at the start, if all of the following conditions are true:
`prompt`: Provide the prompt for this completion as a string or as an array of strings or numbers representing tokens. Internally, if `cache_prompt` is `true`, the prompt is compared to the previous completion and only the "unseen" suffix is evaluated. A `BOS` token is inserted at the start, if all of the following conditions are true:
- The prompt is a string or an array with the first element given as a string
- The model's `tokenizer.ggml.add_bos_token` metadata is `true`
- The prompt is a string or an array with the first element given as a string
- The model's `tokenizer.ggml.add_bos_token` metadata is `true`
These input shapes and data type are allowed for `prompt`:
These input shapes and data type are allowed for `prompt`:
- Single string: `"string"`
- Single sequence of tokens: `[12, 34, 56]`
- Mixed tokens and strings: `[12, 34, "string", 56, 78]`
- Single string: `"string"`
- Single sequence of tokens: `[12, 34, 56]`
- Mixed tokens and strings: `[12, 34, "string", 56, 78]`
Multiple prompts are also supported. In this case, the completion result will be an array.
Multiple prompts are also supported. In this case, the completion result will be an array.
- Only strings: `["string1", "string2"]`
- Strings and sequences of tokens: `["string1", [12, 34, 56]]`
- Mixed types: `[[12, 34, "string", 56, 78], [12, 34, 56], "string"]`
- Only strings: `["string1", "string2"]`
- Strings and sequences of tokens: `["string1", [12, 34, 56]]`
- Mixed types: `[[12, 34, "string", 56, 78], [12, 34, 56], "string"]`
`temperature`: Adjust the randomness of the generated text. Default: `0.8`
`temperature`: Adjust the randomness of the generated text. Default: `0.8`
`dynatemp_range`: Dynamic temperature range. The final temperature will be in the range of `[temperature - dynatemp_range; temperature + dynatemp_range]` Default: `0.0`, which is disabled.
`dynatemp_range`: Dynamic temperature range. The final temperature will be in the range of `[temperature - dynatemp_range; temperature + dynatemp_range]` Default: `0.0`, which is disabled.
`dynatemp_exponent`: Dynamic temperature exponent. Default: `1.0`
`dynatemp_exponent`: Dynamic temperature exponent. Default: `1.0`
`top_k`: Limit the next token selection to the K most probable tokens. Default: `40`
`top_k`: Limit the next token selection to the K most probable tokens. Default: `40`
`top_p`: Limit the next token selection to a subset of tokens with a cumulative probability above a threshold P. Default: `0.95`
`top_p`: Limit the next token selection to a subset of tokens with a cumulative probability above a threshold P. Default: `0.95`
`min_p`: The minimum probability for a token to be considered, relative to the probability of the most likely token. Default: `0.05`
`min_p`: The minimum probability for a token to be considered, relative to the probability of the most likely token. Default: `0.05`
`n_predict`: Set the maximum number of tokens to predict when generating text. **Note:** May exceed the set limit slightly if the last token is a partial multibyte character. When 0, no tokens will be generated but the prompt is evaluated into the cache. Default: `-1`, where `-1` is infinity.
`n_predict`: Set the maximum number of tokens to predict when generating text. **Note:** May exceed the set limit slightly if the last token is a partial multibyte character. When 0, no tokens will be generated but the prompt is evaluated into the cache. Default: `-1`, where `-1` is infinity.
`n_indent`: Specify the minimum line indentation for the generated text in number of whitespace characters. Useful for code completion tasks. Default: `0`
`n_indent`: Specify the minimum line indentation for the generated text in number of whitespace characters. Useful for code completion tasks. Default: `0`
`n_keep`: Specify the number of tokens from the prompt to retain when the context size is exceeded and tokens need to be discarded. The number excludes the BOS token.
By default, this value is set to `0`, meaning no tokens are kept. Use `-1` to retain all tokens from the prompt.
`n_keep`: Specify the number of tokens from the prompt to retain when the context size is exceeded and tokens need to be discarded. The number excludes the BOS token.
By default, this value is set to `0`, meaning no tokens are kept. Use `-1` to retain all tokens from the prompt.
`stream`: It allows receiving each predicted token in real-time instead of waiting for the completion to finish. To enable this, set to `true`.
`stream`: Allows receiving each predicted token in real-time instead of waiting for the completion to finish (uses a different response format). To enable this, set to `true`.
`stop`: Specify a JSON array of stopping strings.
These words will not be included in the completion, so make sure to add them to the prompt for the next iteration. Default: `[]`
`stop`: Specify a JSON array of stopping strings.
These words will not be included in the completion, so make sure to add them to the prompt for the next iteration. Default: `[]`
`typical_p`: Enable locally typical sampling with parameter p. Default: `1.0`, which is disabled.
`typical_p`: Enable locally typical sampling with parameter p. Default: `1.0`, which is disabled.
`repeat_penalty`: Control the repetition of token sequences in the generated text. Default: `1.1`
`repeat_penalty`: Control the repetition of token sequences in the generated text. Default: `1.1`
`repeat_last_n`: Last n tokens to consider for penalizing repetition. Default: `64`, where `0` is disabled and `-1` is ctx-size.
`repeat_last_n`: Last n tokens to consider for penalizing repetition. Default: `64`, where `0` is disabled and `-1` is ctx-size.
`penalize_nl`: Penalize newline tokens when applying the repeat penalty. Default: `true`
`presence_penalty`: Repeat alpha presence penalty. Default: `0.0`, which is disabled.
`presence_penalty`: Repeat alpha presence penalty. Default: `0.0`, which is disabled.
`frequency_penalty`: Repeat alpha frequency penalty. Default: `0.0`, which is disabled.
`frequency_penalty`: Repeat alpha frequency penalty. Default: `0.0`, which is disabled.
`dry_multiplier`: Set the DRY (Don't Repeat Yourself) repetition penalty multiplier. Default: `0.0`, which is disabled.
`dry_multiplier`: Set the DRY (Don't Repeat Yourself) repetition penalty multiplier. Default: `0.0`, which is disabled.
`dry_base`: Set the DRY repetition penalty base value. Default: `1.75`
`dry_base`: Set the DRY repetition penalty base value. Default: `1.75`
`dry_allowed_length`: Tokens that extend repetition beyond this receive exponentially increasing penalty: multiplier * base ^ (length of repeating sequence before token - allowed length). Default: `2`
`dry_allowed_length`: Tokens that extend repetition beyond this receive exponentially increasing penalty: multiplier * base ^ (length of repeating sequence before token - allowed length). Default: `2`
`dry_penalty_last_n`: How many tokens to scan for repetitions. Default: `-1`, where `0` is disabled and `-1` is context size.
`dry_penalty_last_n`: How many tokens to scan for repetitions. Default: `-1`, where `0` is disabled and `-1` is context size.
`dry_sequence_breakers`: Specify an array of sequence breakers for DRY sampling. Only a JSON array of strings is accepted. Default: `['\n', ':', '"', '*']`
`dry_sequence_breakers`: Specify an array of sequence breakers for DRY sampling. Only a JSON array of strings is accepted. Default: `['\n', ':', '"', '*']`
`xtc_probability`: Set the chance for token removal via XTC sampler. Default: `0.0`, which is disabled.
`xtc_probability`: Set the chance for token removal via XTC sampler. Default: `0.0`, which is disabled.
`xtc_threshold`: Set a minimum probability threshold for tokens to be removed via XTC sampler. Default: `0.1` (> `0.5` disables XTC)
`xtc_threshold`: Set a minimum probability threshold for tokens to be removed via XTC sampler. Default: `0.1` (> `0.5` disables XTC)
`mirostat`: Enable Mirostat sampling, controlling perplexity during text generation. Default: `0`, where `0` is disabled, `1` is Mirostat, and `2` is Mirostat 2.0.
`mirostat`: Enable Mirostat sampling, controlling perplexity during text generation. Default: `0`, where `0` is disabled, `1` is Mirostat, and `2` is Mirostat 2.0.
`mirostat_tau`: Set the Mirostat target entropy, parameter tau. Default: `5.0`
`mirostat_tau`: Set the Mirostat target entropy, parameter tau. Default: `5.0`
`mirostat_eta`: Set the Mirostat learning rate, parameter eta. Default: `0.1`
`mirostat_eta`: Set the Mirostat learning rate, parameter eta. Default: `0.1`
`grammar`: Set grammar for grammar-based sampling. Default: no grammar
`grammar`: Set grammar for grammar-based sampling. Default: no grammar
`json_schema`: Set a JSON schema for grammar-based sampling (e.g. `{"items": {"type": "string"}, "minItems": 10, "maxItems": 100}` of a list of strings, or `{}` for any JSON). See [tests](../../tests/test-json-schema-to-grammar.cpp) for supported features. Default: no JSON schema.
`json_schema`: Set a JSON schema for grammar-based sampling (e.g. `{"items": {"type": "string"}, "minItems": 10, "maxItems": 100}` of a list of strings, or `{}` for any JSON). See [tests](../../tests/test-json-schema-to-grammar.cpp) for supported features. Default: no JSON schema.
`seed`: Set the random number generator (RNG) seed. Default: `-1`, which is a random seed.
`seed`: Set the random number generator (RNG) seed. Default: `-1`, which is a random seed.
`ignore_eos`: Ignore end of stream token and continue generating. Default: `false`
`ignore_eos`: Ignore end of stream token and continue generating. Default: `false`
`logit_bias`: Modify the likelihood of a token appearing in the generated text completion. For example, use `"logit_bias": [[15043,1.0]]` to increase the likelihood of the token 'Hello', or `"logit_bias": [[15043,-1.0]]` to decrease its likelihood. Setting the value to false, `"logit_bias": [[15043,false]]` ensures that the token `Hello` is never produced. The tokens can also be represented as strings, e.g. `[["Hello, World!",-0.5]]` will reduce the likelihood of all the individual tokens that represent the string `Hello, World!`, just like the `presence_penalty` does. Default: `[]`
`logit_bias`: Modify the likelihood of a token appearing in the generated text completion. For example, use `"logit_bias": [[15043,1.0]]` to increase the likelihood of the token 'Hello', or `"logit_bias": [[15043,-1.0]]` to decrease its likelihood. Setting the value to false, `"logit_bias": [[15043,false]]` ensures that the token `Hello` is never produced. The tokens can also be represented as strings, e.g. `[["Hello, World!",-0.5]]` will reduce the likelihood of all the individual tokens that represent the string `Hello, World!`, just like the `presence_penalty` does. Default: `[]`
`n_probs`: If greater than 0, the response also contains the probabilities of top N tokens for each generated token given the sampling settings. Note that for temperature < 0 the tokens are sampled greedily but token probabilities are still being calculated via a simple softmax of the logits without considering any other sampler settings. Default: `0`
`n_probs`: If greater than 0, the response also contains the probabilities of top N tokens for each generated token given the sampling settings. Note that for temperature < 0 the tokens are sampled greedily but token probabilities are still being calculated via a simple softmax of the logits without considering any other sampler settings. Default: `0`
`min_keep`: If greater than 0, force samplers to return N possible tokens at minimum. Default: `0`
`min_keep`: If greater than 0, force samplers to return N possible tokens at minimum. Default: `0`
`t_max_predict_ms`: Set a time limit in milliseconds for the prediction (a.k.a. text-generation) phase. The timeout will trigger if the generation takes more than the specified time (measured since the first token was generated) and if a new-line character has already been generated. Useful for FIM applications. Default: `0`, which is disabled.
`t_max_predict_ms`: Set a time limit in milliseconds for the prediction (a.k.a. text-generation) phase. The timeout will trigger if the generation takes more than the specified time (measured since the first token was generated) and if a new-line character has already been generated. Useful for FIM applications. Default: `0`, which is disabled.
`image_data`: An array of objects to hold base64-encoded image `data` and its `id`s to be reference in `prompt`. You can determine the place of the image in the prompt as in the following: `USER:[img-12]Describe the image in detail.\nASSISTANT:`. In this case, `[img-12]` will be replaced by the embeddings of the image with id `12` in the following `image_data` array: `{..., "image_data": [{"data": "<BASE64_STRING>", "id": 12}]}`. Use `image_data` only with multimodal models, e.g., LLaVA.
`image_data`: An array of objects to hold base64-encoded image `data` and its `id`s to be reference in `prompt`. You can determine the place of the image in the prompt as in the following: `USER:[img-12]Describe the image in detail.\nASSISTANT:`. In this case, `[img-12]` will be replaced by the embeddings of the image with id `12` in the following `image_data` array: `{..., "image_data": [{"data": "<BASE64_STRING>", "id": 12}]}`. Use `image_data` only with multimodal models, e.g., LLaVA.
`id_slot`: Assign the completion task to an specific slot. If is -1 the task will be assigned to a Idle slot. Default: `-1`
`id_slot`: Assign the completion task to an specific slot. If is -1 the task will be assigned to a Idle slot. Default: `-1`
`cache_prompt`: Re-use KV cache from a previous request if possible. This way the common prefix does not have to be re-processed, only the suffix that differs between the requests. Because (depending on the backend) the logits are **not** guaranteed to be bit-for-bit identical for different batch sizes (prompt processing vs. token generation) enabling this option can cause nondeterministic results. Default: `true`
`cache_prompt`: Re-use KV cache from a previous request if possible. This way the common prefix does not have to be re-processed, only the suffix that differs between the requests. Because (depending on the backend) the logits are **not** guaranteed to be bit-for-bit identical for different batch sizes (prompt processing vs. token generation) enabling this option can cause nondeterministic results. Default: `true`
`return_tokens`: Return the raw generated token ids in the `tokens` field. Otherwise `tokens` remains empty. Default: `false`
`samplers`: The order the samplers should be applied in. An array of strings representing sampler type names. If a sampler is not set, it will not be used. If a sampler is specified more than once, it will be applied multiple times. Default: `["dry", "top_k", "typ_p", "top_p", "min_p", "xtc", "temperature"]` - these are all the available values.
`samplers`: The order the samplers should be applied in. An array of strings representing sampler type names. If a sampler is not set, it will not be used. If a sampler is specified more than once, it will be applied multiple times. Default: `["dry", "top_k", "typ_p", "top_p", "min_p", "xtc", "temperature"]` - these are all the available values.
`timings_per_token`: Include prompt processing and text generation speed information in each response. Default: `false`
**Response format**
- Note: When using streaming mode (`stream`), only `content` and `stop` will be returned until end of completion.
- Note: In streaming mode (`stream`), only `content`, `tokens` and `stop` will be returned until end of completion. Responses are sent using the [Server-sent events](https://html.spec.whatwg.org/multipage/server-sent-events.html) standard. Note: the browser's `EventSource` interface cannot be used due to its lack of `POST` request support.
- `completion_probabilities`: An array of token probabilities for each completion. The array's length is `n_predict`. Each item in the array has the following structure:
```json
{
"content": "<the token selected by the model>",
"content": "<the token generated by the model>",
"tokens": [ generated token ids if requested ],
"probs": [
{
"prob": float,
@@ -442,13 +471,16 @@ node index.js
Notice that each `probs` is an array of length `n_probs`.
- `content`: Completion result as a string (excluding `stopping_word` if any). In case of streaming mode, will contain the next token as a string.
- `tokens`: Same as `content` but represented as raw token ids. Only populated if `"return_tokens": true` or `"stream": true` in the request.
- `stop`: Boolean for use with `stream` to check whether the generation has stopped (Note: This is not related to stopping words array `stop` from input options)
- `generation_settings`: The provided options above excluding `prompt` but including `n_ctx`, `model`. These options may differ from the original ones in some way (e.g. bad values filtered out, strings converted to tokens, etc.).
- `model`: The path to the model loaded with `-m`
- `prompt`: The provided `prompt`
- `stopped_eos`: Indicating whether the completion has stopped because it encountered the EOS token
- `stopped_limit`: Indicating whether the completion stopped because `n_predict` tokens were generated before stop words or EOS was encountered
- `stopped_word`: Indicating whether the completion stopped due to encountering a stopping word from `stop` JSON array provided
- `stop_type`: Indicating whether the completion has stopped. Possible values are:
- `none`: Generating (not stopped)
- `eos`: Stopped because it encountered the EOS token
- `limit`: Stopped because `n_predict` tokens were generated before stop words or EOS was encountered
- `word`: Stopped due to encountering a stopping word from `stop` JSON array provided
- `stopping_word`: The stopping word encountered which stopped the generation (or "" if not stopped due to a stopping word)
- `timings`: Hash of timing information about the completion such as the number of tokens `predicted_per_second`
- `tokens_cached`: Number of tokens from the prompt which could be re-used from previous completion (`n_past`)
@@ -457,13 +489,13 @@ Notice that each `probs` is an array of length `n_probs`.
### POST `/tokenize`: Tokenize a given text
*Options:*
*Options:*
`content`: (Required) The text to tokenize.
`content`: (Required) The text to tokenize.
`add_special`: (Optional) Boolean indicating if special tokens, i.e. `BOS`, should be inserted. Default: `false`
`add_special`: (Optional) Boolean indicating if special tokens, i.e. `BOS`, should be inserted. Default: `false`
`with_pieces`: (Optional) Boolean indicating whether to return token pieces along with IDs. Default: `false`
`with_pieces`: (Optional) Boolean indicating whether to return token pieces along with IDs. Default: `false`
**Response:**
@@ -500,52 +532,52 @@ With input 'á' (utf8 hex: C3 A1) on tinyllama/stories260k
### POST `/detokenize`: Convert tokens to text
*Options:*
*Options:*
`tokens`: Set the tokens to detokenize.
`tokens`: Set the tokens to detokenize.
### POST `/embedding`: Generate embedding of a given text
The same as [the embedding example](../embedding) does.
*Options:*
*Options:*
`content`: Set the text to process.
`content`: Set the text to process.
`image_data`: An array of objects to hold base64-encoded image `data` and its `id`s to be reference in `content`. You can determine the place of the image in the content as in the following: `Image: [img-21].\nCaption: This is a picture of a house`. In this case, `[img-21]` will be replaced by the embeddings of the image with id `21` in the following `image_data` array: `{..., "image_data": [{"data": "<BASE64_STRING>", "id": 21}]}`. Use `image_data` only with multimodal models, e.g., LLaVA.
`image_data`: An array of objects to hold base64-encoded image `data` and its `id`s to be reference in `content`. You can determine the place of the image in the content as in the following: `Image: [img-21].\nCaption: This is a picture of a house`. In this case, `[img-21]` will be replaced by the embeddings of the image with id `21` in the following `image_data` array: `{..., "image_data": [{"data": "<BASE64_STRING>", "id": 21}]}`. Use `image_data` only with multimodal models, e.g., LLaVA.
### POST `/reranking`: Rerank documents according to a given query
Similar to https://jina.ai/reranker/ but might change in the future.
Requires a reranker model (such as [bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3)) and the `--embedding --pooling rank` options.
*Options:*
*Options:*
`query`: The query against which the documents will be ranked.
`query`: The query against which the documents will be ranked.
`documents`: An array strings representing the documents to be ranked.
`documents`: An array strings representing the documents to be ranked.
*Aliases:*
- `/rerank`
- `/v1/rerank`
- `/v1/reranking`
*Aliases:*
- `/rerank`
- `/v1/rerank`
- `/v1/reranking`
*Examples:*
*Examples:*
```shell
curl http://127.0.0.1:8012/v1/rerank \
-H "Content-Type: application/json" \
-d '{
"model": "some-model",
"query": "What is panda?",
"top_n": 3,
"documents": [
"hi",
"it is a bear",
"The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China."
]
}' | jq
```
```shell
curl http://127.0.0.1:8012/v1/rerank \
-H "Content-Type: application/json" \
-d '{
"model": "some-model",
"query": "What is panda?",
"top_n": 3,
"documents": [
"hi",
"it is a bear",
"The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China."
]
}' | jq
```
### POST `/infill`: For code infilling.
@@ -589,14 +621,82 @@ This endpoint is public (no API key check). By default, it is read-only. To make
```json
{
"default_generation_settings": { ... },
"default_generation_settings": {
"id": 0,
"id_task": -1,
"n_ctx": 1024,
"speculative": false,
"is_processing": false,
"params": {
"n_predict": -1,
"seed": 4294967295,
"temperature": 0.800000011920929,
"dynatemp_range": 0.0,
"dynatemp_exponent": 1.0,
"top_k": 40,
"top_p": 0.949999988079071,
"min_p": 0.05000000074505806,
"xtc_probability": 0.0,
"xtc_threshold": 0.10000000149011612,
"typical_p": 1.0,
"repeat_last_n": 64,
"repeat_penalty": 1.0,
"presence_penalty": 0.0,
"frequency_penalty": 0.0,
"dry_multiplier": 0.0,
"dry_base": 1.75,
"dry_allowed_length": 2,
"dry_penalty_last_n": -1,
"dry_sequence_breakers": [
"\n",
":",
"\"",
"*"
],
"mirostat": 0,
"mirostat_tau": 5.0,
"mirostat_eta": 0.10000000149011612,
"stop": [],
"max_tokens": -1,
"n_keep": 0,
"n_discard": 0,
"ignore_eos": false,
"stream": true,
"n_probs": 0,
"min_keep": 0,
"grammar": "",
"samplers": [
"dry",
"top_k",
"typ_p",
"top_p",
"min_p",
"xtc",
"temperature"
],
"speculative.n_max": 16,
"speculative.n_min": 5,
"speculative.p_min": 0.8999999761581421,
"timings_per_token": false
},
"prompt": "",
"next_token": {
"has_next_token": true,
"has_new_line": false,
"n_remain": -1,
"n_decoded": 0,
"stopping_word": ""
}
},
"total_slots": 1,
"chat_template": ""
"model_path": "../models/Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf",
"chat_template": "..."
}
```
- `default_generation_settings` - the default generation settings for the `/completion` endpoint, which has the same fields as the `generation_settings` response object from the `/completion` endpoint.
- `total_slots` - the total number of slots for process requests (defined by `--parallel` option)
- `model_path` - the path to model file (same with `-m` argument)
- `chat_template` - the model's original Jinja2 prompt template
### POST `/props`: Change server global properties.
@@ -611,89 +711,89 @@ To use this endpoint with POST method, you need to start server with `--props`
Given a ChatML-formatted json description in `messages`, it returns the predicted completion. Both synchronous and streaming mode are supported, so scripted and interactive applications work fine. While no strong claims of compatibility with OpenAI API spec is being made, in our experience it suffices to support many apps. Only models with a [supported chat template](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template) can be used optimally with this endpoint. By default, the ChatML template will be used.
*Options:*
*Options:*
See [OpenAI Chat Completions API documentation](https://platform.openai.com/docs/api-reference/chat). While some OpenAI-specific features such as function calling aren't supported, llama.cpp `/completion`-specific features such as `mirostat` are supported.
See [OpenAI Chat Completions API documentation](https://platform.openai.com/docs/api-reference/chat). While some OpenAI-specific features such as function calling aren't supported, llama.cpp `/completion`-specific features such as `mirostat` are supported.
The `response_format` parameter supports both plain JSON output (e.g. `{"type": "json_object"}`) and schema-constrained JSON (e.g. `{"type": "json_object", "schema": {"type": "string", "minLength": 10, "maxLength": 100}}` or `{"type": "json_schema", "schema": {"properties": { "name": { "title": "Name", "type": "string" }, "date": { "title": "Date", "type": "string" }, "participants": { "items": {"type: "string" }, "title": "Participants", "type": "string" } } } }`), similar to other OpenAI-inspired API providers.
The `response_format` parameter supports both plain JSON output (e.g. `{"type": "json_object"}`) and schema-constrained JSON (e.g. `{"type": "json_object", "schema": {"type": "string", "minLength": 10, "maxLength": 100}}` or `{"type": "json_schema", "schema": {"properties": { "name": { "title": "Name", "type": "string" }, "date": { "title": "Date", "type": "string" }, "participants": { "items": {"type: "string" }, "title": "Participants", "type": "string" } } } }`), similar to other OpenAI-inspired API providers.
*Examples:*
*Examples:*
You can use either Python `openai` library with appropriate checkpoints:
You can use either Python `openai` library with appropriate checkpoints:
```python
import openai
```python
import openai
client = openai.OpenAI(
base_url="http://localhost:8080/v1", # "http://<Your api-server IP>:port"
api_key = "sk-no-key-required"
)
client = openai.OpenAI(
base_url="http://localhost:8080/v1", # "http://<Your api-server IP>:port"
api_key = "sk-no-key-required"
)
completion = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are ChatGPT, an AI assistant. Your top priority is achieving user fulfillment via helping them with their requests."},
{"role": "user", "content": "Write a limerick about python exceptions"}
]
)
completion = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are ChatGPT, an AI assistant. Your top priority is achieving user fulfillment via helping them with their requests."},
{"role": "user", "content": "Write a limerick about python exceptions"}
]
)
print(completion.choices[0].message)
```
print(completion.choices[0].message)
```
... or raw HTTP requests:
... or raw HTTP requests:
```shell
curl http://localhost:8080/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer no-key" \
-d '{
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "system",
"content": "You are ChatGPT, an AI assistant. Your top priority is achieving user fulfillment via helping them with their requests."
},
{
"role": "user",
"content": "Write a limerick about python exceptions"
}
]
}'
```
```shell
curl http://localhost:8080/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer no-key" \
-d '{
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "system",
"content": "You are ChatGPT, an AI assistant. Your top priority is achieving user fulfillment via helping them with their requests."
},
{
"role": "user",
"content": "Write a limerick about python exceptions"
}
]
}'
```
### POST `/v1/embeddings`: OpenAI-compatible embeddings API
*Options:*
*Options:*
See [OpenAI Embeddings API documentation](https://platform.openai.com/docs/api-reference/embeddings).
See [OpenAI Embeddings API documentation](https://platform.openai.com/docs/api-reference/embeddings).
*Examples:*
*Examples:*
- input as string
- input as string
```shell
curl http://localhost:8080/v1/embeddings \
-H "Content-Type: application/json" \
-H "Authorization: Bearer no-key" \
-d '{
"input": "hello",
"model":"GPT-4",
"encoding_format": "float"
}'
```
```shell
curl http://localhost:8080/v1/embeddings \
-H "Content-Type: application/json" \
-H "Authorization: Bearer no-key" \
-d '{
"input": "hello",
"model":"GPT-4",
"encoding_format": "float"
}'
```
- `input` as string array
- `input` as string array
```shell
curl http://localhost:8080/v1/embeddings \
-H "Content-Type: application/json" \
-H "Authorization: Bearer no-key" \
-d '{
"input": ["hello", "world"],
"model":"GPT-4",
"encoding_format": "float"
}'
```
```shell
curl http://localhost:8080/v1/embeddings \
-H "Content-Type: application/json" \
-H "Authorization: Bearer no-key" \
-d '{
"input": ["hello", "world"],
"model":"GPT-4",
"encoding_format": "float"
}'
```
### GET `/slots`: Returns the current slots processing state
@@ -710,56 +810,73 @@ Example:
```json
[
{
"dynatemp_exponent": 1.0,
"dynatemp_range": 0.0,
"frequency_penalty": 0.0,
"grammar": "",
"id": 0,
"ignore_eos": false,
"is_processing": false,
"logit_bias": [],
"min_p": 0.05000000074505806,
"mirostat": 0,
"mirostat_eta": 0.10000000149011612,
"mirostat_tau": 5.0,
"model": "llama-2-7b-32k-instruct.Q2_K.gguf",
"n_ctx": 2048,
"n_keep": 0,
"n_predict": 100000,
"n_probs": 0,
"next_token": {
"has_next_token": true,
"n_remain": -1,
"n_decoded": 0,
"stopped_eos": false,
"stopped_limit": false,
"stopped_word": false,
"stopping_word": ""
},
"penalize_nl": true,
"presence_penalty": 0.0,
"prompt": "Say hello to llama.cpp",
"repeat_last_n": 64,
"repeat_penalty": 1.100000023841858,
"samplers": [
"top_k",
"typical_p",
"top_p",
"min_p",
"temperature"
],
"seed": 42,
"stop": [
"\n"
],
"stream": false,
"task_id": 0,
"temperature": 0.0,
"top_k": 40,
"top_p": 0.949999988079071,
"typical_p": 1.0
{
"id": 0,
"id_task": -1,
"n_ctx": 1024,
"speculative": false,
"is_processing": false,
"params": {
"n_predict": -1,
"seed": 4294967295,
"temperature": 0.800000011920929,
"dynatemp_range": 0.0,
"dynatemp_exponent": 1.0,
"top_k": 40,
"top_p": 0.949999988079071,
"min_p": 0.05000000074505806,
"xtc_probability": 0.0,
"xtc_threshold": 0.10000000149011612,
"typical_p": 1.0,
"repeat_last_n": 64,
"repeat_penalty": 1.0,
"presence_penalty": 0.0,
"frequency_penalty": 0.0,
"dry_multiplier": 0.0,
"dry_base": 1.75,
"dry_allowed_length": 2,
"dry_penalty_last_n": -1,
"dry_sequence_breakers": [
"\n",
":",
"\"",
"*"
],
"mirostat": 0,
"mirostat_tau": 5.0,
"mirostat_eta": 0.10000000149011612,
"stop": [],
"max_tokens": -1,
"n_keep": 0,
"n_discard": 0,
"ignore_eos": false,
"stream": true,
"n_probs": 0,
"min_keep": 0,
"grammar": "",
"samplers": [
"dry",
"top_k",
"typ_p",
"top_p",
"min_p",
"xtc",
"temperature"
],
"speculative.n_max": 16,
"speculative.n_min": 5,
"speculative.p_min": 0.8999999761581421,
"timings_per_token": false
},
"prompt": "",
"next_token": {
"has_next_token": true,
"has_new_line": false,
"n_remain": -1,
"n_decoded": 0,
"stopping_word": ""
}
}
]
```
@@ -779,9 +896,9 @@ Available metrics:
### POST `/slots/{id_slot}?action=save`: Save the prompt cache of the specified slot to a file.
*Options:*
*Options:*
`filename`: Name of the file to save the slot's prompt cache. The file will be saved in the directory specified by the `--slot-save-path` server parameter.
`filename`: Name of the file to save the slot's prompt cache. The file will be saved in the directory specified by the `--slot-save-path` server parameter.
**Response format**
@@ -799,9 +916,9 @@ Available metrics:
### POST `/slots/{id_slot}?action=restore`: Restore the prompt cache of the specified slot from a file.
*Options:*
*Options:*
`filename`: Name of the file to restore the slot's prompt cache from. The file should be located in the directory specified by the `--slot-save-path` server parameter.
`filename`: Name of the file to restore the slot's prompt cache from. The file should be located in the directory specified by the `--slot-save-path` server parameter.
**Response format**

View File

@@ -1,25 +0,0 @@
#!/bin/bash
# Download and update deps for binary
# get the directory of this script file
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
PUBLIC=$DIR/public
echo "download js bundle files"
# Note for contributors: Always pin to a specific version "maj.min.patch" to avoid breaking the CI
curl -L https://cdn.tailwindcss.com/3.4.14 > $PUBLIC/deps_tailwindcss.js
echo >> $PUBLIC/deps_tailwindcss.js # add newline
curl -L https://cdnjs.cloudflare.com/ajax/libs/daisyui/4.12.14/styled.min.css > $PUBLIC/deps_daisyui.min.css
curl -L https://cdnjs.cloudflare.com/ajax/libs/daisyui/4.12.14/themes.min.css >> $PUBLIC/deps_daisyui.min.css
echo >> $PUBLIC/deps_daisyui.min.css # add newline
curl -L https://unpkg.com/vue@3.5.12/dist/vue.esm-browser.js > $PUBLIC/deps_vue.esm-browser.js
echo >> $PUBLIC/deps_vue.esm-browser.js # add newline
curl -L https://cdnjs.cloudflare.com/ajax/libs/markdown-it/13.0.2/markdown-it.js > $PUBLIC/deps_markdown-it.js
echo >> $PUBLIC/deps_markdown-it.js # add newline
ls -lah $PUBLIC

View File

@@ -1,225 +0,0 @@
const paramDefaults = {
stream: true,
temperature: 0.2,
};
let generation_settings = null;
export class CompletionError extends Error {
constructor(message, name, data) {
super(message);
this.name = name;
}
};
// Completes the prompt as a generator. Recommended for most use cases.
//
// Example:
//
// import { llama } from '/completion.js'
//
// const request = llama("Tell me a joke", {n_predict: 800})
// for await (const chunk of request) {
// document.write(chunk.data.content)
// }
//
export async function* llama(prompt, params = {}, config = {}) {
let controller = config.controller;
const api_url = config.api_url?.replace(/\/+$/, '') || "";
if (!controller) {
controller = new AbortController();
}
const completionParams = { ...paramDefaults, ...params, prompt };
const response = await fetch(`${api_url}${config.endpoint || '/completion'}`, {
method: 'POST',
body: JSON.stringify(completionParams),
headers: {
'Connection': 'keep-alive',
'Content-Type': 'application/json',
'Accept': 'text/event-stream',
...(params.api_key ? {'Authorization': `Bearer ${params.api_key}`} : {})
},
signal: controller.signal,
});
const status = response.status;
if (status !== 200) {
try {
const body = await response.json();
if (body && body.error && body.error.message) {
throw new CompletionError(body.error.message, 'ServerError');
}
} catch (err) {
throw new CompletionError(err.message, 'ServerError');
}
}
const reader = response.body.getReader();
const decoder = new TextDecoder();
let content = "";
let leftover = ""; // Buffer for partially read lines
try {
let cont = true;
while (cont) {
const result = await reader.read();
if (result.done) {
break;
}
// Add any leftover data to the current chunk of data
const text = leftover + decoder.decode(result.value);
// Check if the last character is a line break
const endsWithLineBreak = text.endsWith('\n');
// Split the text into lines
let lines = text.split('\n');
// If the text doesn't end with a line break, then the last line is incomplete
// Store it in leftover to be added to the next chunk of data
if (!endsWithLineBreak) {
leftover = lines.pop();
} else {
leftover = ""; // Reset leftover if we have a line break at the end
}
// Parse all sse events and add them to result
const regex = /^(\S+):\s(.*)$/gm;
for (const line of lines) {
const match = regex.exec(line);
if (match) {
result[match[1]] = match[2];
if (result.data === '[DONE]') {
cont = false;
break;
}
// since we know this is llama.cpp, let's just decode the json in data
if (result.data) {
result.data = JSON.parse(result.data);
content += result.data.content;
// yield
yield result;
// if we got a stop token from server, we will break here
if (result.data.stop) {
if (result.data.generation_settings) {
generation_settings = result.data.generation_settings;
}
cont = false;
break;
}
}
if (result.error) {
try {
result.error = JSON.parse(result.error);
if (result.error.message.includes('slot unavailable')) {
// Throw an error to be caught by upstream callers
throw new Error('slot unavailable');
} else {
console.error(`llama.cpp error [${result.error.code} - ${result.error.type}]: ${result.error.message}`);
}
} catch(e) {
console.error(`llama.cpp error ${result.error}`)
}
}
}
}
}
} catch (e) {
if (e.name !== 'AbortError') {
console.error("llama error: ", e);
}
throw e;
}
finally {
controller.abort();
}
return content;
}
// Call llama, return an event target that you can subscribe to
//
// Example:
//
// import { llamaEventTarget } from '/completion.js'
//
// const conn = llamaEventTarget(prompt)
// conn.addEventListener("message", (chunk) => {
// document.write(chunk.detail.content)
// })
//
export const llamaEventTarget = (prompt, params = {}, config = {}) => {
const eventTarget = new EventTarget();
(async () => {
let content = "";
for await (const chunk of llama(prompt, params, config)) {
if (chunk.data) {
content += chunk.data.content;
eventTarget.dispatchEvent(new CustomEvent("message", { detail: chunk.data }));
}
if (chunk.data.generation_settings) {
eventTarget.dispatchEvent(new CustomEvent("generation_settings", { detail: chunk.data.generation_settings }));
}
if (chunk.data.timings) {
eventTarget.dispatchEvent(new CustomEvent("timings", { detail: chunk.data.timings }));
}
}
eventTarget.dispatchEvent(new CustomEvent("done", { detail: { content } }));
})();
return eventTarget;
}
// Call llama, return a promise that resolves to the completed text. This does not support streaming
//
// Example:
//
// llamaPromise(prompt).then((content) => {
// document.write(content)
// })
//
// or
//
// const content = await llamaPromise(prompt)
// document.write(content)
//
export const llamaPromise = (prompt, params = {}, config = {}) => {
return new Promise(async (resolve, reject) => {
let content = "";
try {
for await (const chunk of llama(prompt, params, config)) {
content += chunk.data.content;
}
resolve(content);
} catch (error) {
reject(error);
}
});
};
/**
* (deprecated)
*/
export const llamaComplete = async (params, controller, callback) => {
for await (const chunk of llama(params.prompt, params, { controller })) {
callback(chunk);
}
}
// Get the model info from the server. This is useful for getting the context window and so on.
export const llamaModelInfo = async (config = {}) => {
if (!generation_settings) {
const api_url = config.api_url?.replace(/\/+$/, '') || "";
const props = await fetch(`${api_url}/props`).then(r => r.json());
generation_settings = props.default_generation_settings;
}
return generation_settings;
}

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

View File

@@ -1,730 +0,0 @@
<html>
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1" />
<meta name="color-scheme" content="light dark">
<title>🦙 llama.cpp - chat</title>
<!-- Note: dependencies can de updated using ./deps.sh script -->
<link href="./deps_daisyui.min.css" rel="stylesheet" type="text/css" />
<script src="./deps_tailwindcss.js"></script>
<style type="text/tailwindcss">
.markdown {
h1, h2, h3, h4, h5, h6, ul, ol, li { all: revert; }
pre {
@apply whitespace-pre-wrap rounded-lg p-2;
border: 1px solid currentColor;
}
/* TODO: fix markdown table */
}
/*
Note for daisyui: because we're using a subset of daisyui via CDN, many things won't be included
We can manually add the missing styles from https://cdnjs.cloudflare.com/ajax/libs/daisyui/4.12.14/full.css
*/
.bg-base-100 {background-color: var(--fallback-b1,oklch(var(--b1)/1))}
.bg-base-200 {background-color: var(--fallback-b2,oklch(var(--b2)/1))}
.bg-base-300 {background-color: var(--fallback-b3,oklch(var(--b3)/1))}
.text-base-content {color: var(--fallback-bc,oklch(var(--bc)/1))}
.show-on-hover {
@apply opacity-0 group-hover:opacity-100;
}
.btn-mini {
@apply cursor-pointer hover:shadow-md;
}
.chat-screen { max-width: 900px; }
/* because the default bubble color is quite dark, we will make a custom one using bg-base-300 */
.chat-bubble-base-300 {
--tw-bg-opacity: 1;
--tw-text-opacity: 1;
@apply bg-base-300 text-base-content;
}
</style>
</head>
<body>
<div id="app" class="flex flex-row opacity-0"> <!-- opacity-0 will be removed on app mounted -->
<!-- sidebar -->
<div class="flex flex-col bg-black bg-opacity-5 w-64 py-8 px-4 h-screen overflow-y-auto">
<h2 class="font-bold mb-4 ml-4">Conversations</h2>
<!-- list of conversations -->
<div :class="{
'btn btn-ghost justify-start': true,
'btn-active': messages.length === 0,
}" @click="newConversation">
+ New conversation
</div>
<div v-for="conv in conversations" :class="{
'btn btn-ghost justify-start font-normal': true,
'btn-active': conv.id === viewingConvId,
}" @click="setViewingConv(conv.id)">
<span class="truncate">{{ conv.messages[0].content }}</span>
</div>
<div class="text-center text-xs opacity-40 mt-auto mx-4">
Conversations are saved to browser's localStorage
</div>
</div>
<div class="chat-screen flex flex-col w-screen h-screen px-8 mx-auto">
<!-- header -->
<div class="flex flex-row items-center">
<div class="grow text-2xl font-bold mt-8 mb-6">
🦙 llama.cpp - chat
</div>
<!-- action buttons (top right) -->
<div class="flex items-center">
<button v-if="messages.length > 0" class="btn mr-1" @click="deleteConv(viewingConvId)" :disabled="isGenerating">
<!-- delete conversation button -->
<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-trash" viewBox="0 0 16 16">
<path d="M5.5 5.5A.5.5 0 0 1 6 6v6a.5.5 0 0 1-1 0V6a.5.5 0 0 1 .5-.5m2.5 0a.5.5 0 0 1 .5.5v6a.5.5 0 0 1-1 0V6a.5.5 0 0 1 .5-.5m3 .5a.5.5 0 0 0-1 0v6a.5.5 0 0 0 1 0z"/>
<path d="M14.5 3a1 1 0 0 1-1 1H13v9a2 2 0 0 1-2 2H5a2 2 0 0 1-2-2V4h-.5a1 1 0 0 1-1-1V2a1 1 0 0 1 1-1H6a1 1 0 0 1 1-1h2a1 1 0 0 1 1 1h3.5a1 1 0 0 1 1 1zM4.118 4 4 4.059V13a1 1 0 0 0 1 1h6a1 1 0 0 0 1-1V4.059L11.882 4zM2.5 3h11V2h-11z"/>
</svg>
</button>
<button v-if="messages.length > 0" class="btn mr-1" @click="downloadConv(viewingConvId)" :disabled="isGenerating">
<!-- download conversation button -->
<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-download" viewBox="0 0 16 16">
<path d="M.5 9.9a.5.5 0 0 1 .5.5v2.5a1 1 0 0 0 1 1h12a1 1 0 0 0 1-1v-2.5a.5.5 0 0 1 1 0v2.5a2 2 0 0 1-2 2H2a2 2 0 0 1-2-2v-2.5a.5.5 0 0 1 .5-.5"/>
<path d="M7.646 11.854a.5.5 0 0 0 .708 0l3-3a.5.5 0 0 0-.708-.708L8.5 10.293V1.5a.5.5 0 0 0-1 0v8.793L5.354 8.146a.5.5 0 1 0-.708.708z"/>
</svg>
</button>
<button class="btn" @click="showConfigDialog = true" :disabled="isGenerating">
<!-- edit config button -->
<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" fill="currentColor" class="bi bi-gear" viewBox="0 0 16 16">
<path d="M8 4.754a3.246 3.246 0 1 0 0 6.492 3.246 3.246 0 0 0 0-6.492M5.754 8a2.246 2.246 0 1 1 4.492 0 2.246 2.246 0 0 1-4.492 0"/>
<path d="M9.796 1.343c-.527-1.79-3.065-1.79-3.592 0l-.094.319a.873.873 0 0 1-1.255.52l-.292-.16c-1.64-.892-3.433.902-2.54 2.541l.159.292a.873.873 0 0 1-.52 1.255l-.319.094c-1.79.527-1.79 3.065 0 3.592l.319.094a.873.873 0 0 1 .52 1.255l-.16.292c-.892 1.64.901 3.434 2.541 2.54l.292-.159a.873.873 0 0 1 1.255.52l.094.319c.527 1.79 3.065 1.79 3.592 0l.094-.319a.873.873 0 0 1 1.255-.52l.292.16c1.64.893 3.434-.902 2.54-2.541l-.159-.292a.873.873 0 0 1 .52-1.255l.319-.094c1.79-.527 1.79-3.065 0-3.592l-.319-.094a.873.873 0 0 1-.52-1.255l.16-.292c.893-1.64-.902-3.433-2.541-2.54l-.292.159a.873.873 0 0 1-1.255-.52zm-2.633.283c.246-.835 1.428-.835 1.674 0l.094.319a1.873 1.873 0 0 0 2.693 1.115l.291-.16c.764-.415 1.6.42 1.184 1.185l-.159.292a1.873 1.873 0 0 0 1.116 2.692l.318.094c.835.246.835 1.428 0 1.674l-.319.094a1.873 1.873 0 0 0-1.115 2.693l.16.291c.415.764-.42 1.6-1.185 1.184l-.291-.159a1.873 1.873 0 0 0-2.693 1.116l-.094.318c-.246.835-1.428.835-1.674 0l-.094-.319a1.873 1.873 0 0 0-2.692-1.115l-.292.16c-.764.415-1.6-.42-1.184-1.185l.159-.291A1.873 1.873 0 0 0 1.945 8.93l-.319-.094c-.835-.246-.835-1.428 0-1.674l.319-.094A1.873 1.873 0 0 0 3.06 4.377l-.16-.292c-.415-.764.42-1.6 1.185-1.184l.292.159a1.873 1.873 0 0 0 2.692-1.115z"/>
</svg>
</button>
<!-- theme controller is copied from https://daisyui.com/components/theme-controller/ -->
<div class="dropdown dropdown-end dropdown-bottom">
<div tabindex="0" role="button" class="btn m-1">
Theme
<svg width="12px" height="12px" class="inline-block h-2 w-2 fill-current opacity-60" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 2048 2048">
<path d="M1799 349l242 241-1017 1017L7 590l242-241 775 775 775-775z"></path>
</svg>
</div>
<ul tabindex="0" class="dropdown-content bg-base-300 rounded-box z-[1] w-52 p-2 shadow-2xl h-80 overflow-y-auto">
<li>
<button
class="btn btn-sm btn-block w-full btn-ghost justify-start"
:class="{ 'btn-active': selectedTheme === 'auto' }"
@click="setSelectedTheme('auto')">
auto
</button>
</li>
<li v-for="theme in themes">
<input
type="radio"
name="theme-dropdown"
class="theme-controller btn btn-sm btn-block w-full btn-ghost justify-start"
:aria-label="theme"
:value="theme"
:checked="selectedTheme === theme"
@click="setSelectedTheme(theme)" />
</li>
</ul>
</div>
</div>
</div>
<!-- chat messages -->
<div id="messages-list" class="flex flex-col grow overflow-y-auto">
<div class="mt-auto flex justify-center">
<!-- placeholder to shift the message to the bottom -->
{{ messages.length === 0 ? 'Send a message to start' : '' }}
</div>
<div v-for="msg in messages" class="group">
<div :class="{
'chat': true,
'chat-start': msg.role !== 'user',
'chat-end': msg.role === 'user',
}">
<div :class="{
'chat-bubble markdown': true,
'chat-bubble-base-300': msg.role !== 'user',
}">
<!-- textarea for editing message -->
<template v-if="editingMsg && editingMsg.id === msg.id">
<textarea
class="textarea textarea-bordered bg-base-100 text-base-content w-96"
v-model="msg.content"></textarea>
<br/>
<button class="btn btn-ghost mt-2 mr-2" @click="editingMsg = null">Cancel</button>
<button class="btn mt-2" @click="editUserMsgAndRegenerate(msg)">Submit</button>
</template>
<!-- render message as markdown -->
<vue-markdown v-else :source="msg.content" />
</div>
</div>
<!-- actions for each message -->
<div :class="{'text-right': msg.role === 'user'}" class="mx-4 mt-2 mb-2">
<!-- user message -->
<button v-if="msg.role === 'user'" class="badge btn-minishow-on-hover " @click="editingMsg = msg" :disabled="isGenerating">
✍️ Edit
</button>
<!-- assistant message -->
<button v-if="msg.role === 'assistant'" class="badge btn-mini show-on-hover mr-2" @click="regenerateMsg(msg)" :disabled="isGenerating">
🔄 Regenerate
</button>
<button v-if="msg.role === 'assistant'" class="badge btn-mini show-on-hover mr-2" @click="copyMsg(msg)" :disabled="isGenerating">
📋 Copy
</button>
</div>
</div>
<!-- pending (ongoing) assistant message -->
<div id="pending-msg" class="chat chat-start">
<div v-if="pendingMsg" class="chat-bubble markdown chat-bubble-base-300">
<span v-if="!pendingMsg.content" class="loading loading-dots loading-md"></span>
<vue-markdown v-else :source="pendingMsg.content" />
</div>
</div>
</div>
<!-- chat input -->
<div class="flex flex-row items-center mt-8 mb-6">
<textarea
class="textarea textarea-bordered w-full"
placeholder="Type a message (Shift+Enter to add a new line)"
v-model="inputMsg"
@keydown.enter.exact.prevent="sendMessage"
@keydown.enter.shift.exact.prevent="inputMsg += '\n'"
:disabled="isGenerating"
id="msg-input"
></textarea>
<button v-if="!isGenerating" class="btn btn-primary ml-2" @click="sendMessage" :disabled="inputMsg.length === 0">Send</button>
<button v-else class="btn btn-neutral ml-2" @click="stopGeneration">Stop</button>
</div>
</div>
<!-- modal for editing config -->
<dialog class="modal" :class="{'modal-open': showConfigDialog}">
<div class="modal-box">
<h3 class="text-lg font-bold mb-6">Settings</h3>
<div class="h-[calc(90vh-12rem)] overflow-y-auto">
<p class="opacity-40 mb-6">Settings below are saved in browser's localStorage</p>
<settings-modal-short-input :config-key="'apiKey'" :config-default="configDefault" :config-info="configInfo" v-model="config.apiKey"></settings-modal-short-input>
<label class="form-control mb-2">
<div class="label">System Message</div>
<textarea class="textarea textarea-bordered h-24" :placeholder="'Default: ' + configDefault.systemMessage" v-model="config.systemMessage"></textarea>
</label>
<template v-for="configKey in ['temperature', 'top_k', 'top_p', 'min_p', 'max_tokens']">
<settings-modal-short-input :config-key="configKey" :config-default="configDefault" :config-info="configInfo" v-model="config[configKey]" />
</template>
<!-- TODO: add more sampling-related configs, please regroup them into different "collapse" sections -->
<!-- Section: Other sampler settings -->
<details class="collapse collapse-arrow bg-base-200 mb-2 overflow-visible">
<summary class="collapse-title font-bold">Other sampler settings</summary>
<div class="collapse-content">
<!-- Samplers queue -->
<settings-modal-short-input label="Samplers queue" :config-key="'samplers'" :config-default="configDefault" :config-info="configInfo" v-model="config.samplers"></settings-modal-short-input>
<!-- Samplers -->
<template v-for="configKey in ['dynatemp_range', 'dynatemp_exponent', 'typical_p', 'xtc_probability', 'xtc_threshold']">
<settings-modal-short-input :config-key="configKey" :config-default="configDefault" :config-info="configInfo" v-model="config[configKey]" />
</template>
</div>
</details>
<!-- Section: Penalties settings -->
<details class="collapse collapse-arrow bg-base-200 mb-2 overflow-visible">
<summary class="collapse-title font-bold">Penalties settings</summary>
<div class="collapse-content">
<template v-for="configKey in ['repeat_last_n', 'repeat_penalty', 'presence_penalty', 'frequency_penalty', 'dry_multiplier', 'dry_base', 'dry_allowed_length', 'dry_penalty_last_n']">
<settings-modal-short-input :config-key="configKey" :config-default="configDefault" :config-info="configInfo" v-model="config[configKey]" />
</template>
</div>
</details>
<!-- Section: Advanced config -->
<details class="collapse collapse-arrow bg-base-200 mb-2 overflow-visible">
<summary class="collapse-title font-bold">Advanced config</summary>
<div class="collapse-content">
<label class="form-control mb-2">
<!-- Custom parameters input -->
<div class="label inline">Custom JSON config (For more info, refer to <a class="underline" href="https://github.com/ggerganov/llama.cpp/blob/master/examples/server/README.md" target="_blank" rel="noopener noreferrer">server documentation</a>)</div>
<textarea class="textarea textarea-bordered h-24" placeholder="Example: { &quot;mirostat&quot;: 1, &quot;min_p&quot;: 0.1 }" v-model="config.custom"></textarea>
</label>
</div>
</details>
</div>
<!-- action buttons -->
<div class="modal-action">
<button class="btn" @click="resetConfigDialog">Reset to default</button>
<button class="btn" @click="closeAndDiscardConfigDialog">Close</button>
<button class="btn btn-primary" @click="closeAndSaveConfigDialog">Save and close</button>
</div>
</div>
</dialog>
</div>
<!-- Template to be used by settings modal -->
<template id="settings-modal-short-input">
<label class="input input-bordered join-item grow flex items-center gap-2 mb-2">
<!-- Show help message on hovering on the input label -->
<div class="dropdown dropdown-hover">
<div tabindex="0" role="button" class="font-bold">{{ label || configKey }}</div>
<div class="dropdown-content menu bg-base-100 rounded-box z-10 w-64 p-2 shadow mt-4">
{{ configInfo[configKey] || '(no help message available)' }}
</div>
</div>
<!-- Here we forward v-model from parent to child component, see: https://stackoverflow.com/questions/47311936/v-model-and-child-components -->
<input type="text" class="grow" :placeholder="'Default: ' + (configDefault[configKey] || 'none')" :value="modelValue" @input="$emit('update:modelValue', $event.target.value)" />
</label>
</template>
<script src="./deps_markdown-it.js"></script>
<script type="module">
import { createApp, defineComponent, shallowRef, computed, h } from './deps_vue.esm-browser.js';
import { llama } from './completion.js';
// utility functions
const isString = (x) => !!x.toLowerCase;
const isNumeric = (n) => !isString(n) && !isNaN(n);
const escapeAttr = (str) => str.replace(/>/g, '&gt;').replace(/"/g, '&quot;');
const copyStr = (str) => navigator.clipboard.writeText(str);
// constants
const BASE_URL = localStorage.getItem('base') // for debugging
|| (new URL('.', document.baseURI).href).toString(); // for production
const CONFIG_DEFAULT = {
// Note: in order not to introduce breaking changes, please keep the same data type (number, string, etc) if you want to change the default value. Do not use null or undefined for default value.
apiKey: '',
systemMessage: 'You are a helpful assistant.',
// make sure these default values are in sync with `common.h`
samplers: 'dkypmxt',
temperature: 0.8,
dynatemp_range: 0.0,
dynatemp_exponent: 1.0,
top_k: 40,
top_p: 0.95,
min_p: 0.05,
xtc_probability: 0.0,
xtc_threshold: 0.1,
typical_p: 1.0,
repeat_last_n: 64,
repeat_penalty: 1.0,
presence_penalty: 0.0,
frequency_penalty: 0.0,
dry_multiplier: 0.0,
dry_base: 1.75,
dry_allowed_length: 2,
dry_penalty_last_n: -1,
max_tokens: -1,
custom: '', // custom json-stringified object
};
const CONFIG_INFO = {
apiKey: 'Set the API Key if you are using --api-key option for the server.',
systemMessage: 'The starting message that defines how model should behave.',
samplers: 'The order at which samplers are applied, in simplified way. Default is "dkypmxt": dry->top_k->typ_p->top_p->min_p->xtc->temperature',
temperature: 'Controls the randomness of the generated text by affecting the probability distribution of the output tokens. Higher = more random, lower = more focused.',
dynatemp_range: 'Addon for the temperature sampler. The added value to the range of dynamic temperature, which adjusts probabilities by entropy of tokens.',
dynatemp_exponent: 'Addon for the temperature sampler. Smoothes out the probability redistribution based on the most probable token.',
top_k: 'Keeps only k top tokens.',
top_p: 'Limits tokens to those that together have a cumulative probability of at least p',
min_p: 'Limits tokens based on the minimum probability for a token to be considered, relative to the probability of the most likely token.',
xtc_probability: 'XTC sampler cuts out top tokens; this parameter controls the chance of cutting tokens at all. 0 disables XTC.',
xtc_threshold: 'XTC sampler cuts out top tokens; this parameter controls the token probability that is required to cut that token.',
typical_p: 'Sorts and limits tokens based on the difference between log-probability and entropy.',
repeat_last_n: 'Last n tokens to consider for penalizing repetition',
repeat_penalty: 'Controls the repetition of token sequences in the generated text',
presence_penalty: 'Limits tokens based on whether they appear in the output or not.',
frequency_penalty: 'Limits tokens based on how often they appear in the output.',
dry_multiplier: 'DRY sampling reduces repetition in generated text even across long contexts. This parameter sets the DRY sampling multiplier.',
dry_base: 'DRY sampling reduces repetition in generated text even across long contexts. This parameter sets the DRY sampling base value.',
dry_allowed_length: 'DRY sampling reduces repetition in generated text even across long contexts. This parameter sets the allowed length for DRY sampling.',
dry_penalty_last_n: 'DRY sampling reduces repetition in generated text even across long contexts. This parameter sets DRY penalty for the last n tokens.',
max_tokens: 'The maximum number of token per output.',
custom: '', // custom json-stringified object
};
// config keys having numeric value (i.e. temperature, top_k, top_p, etc)
const CONFIG_NUMERIC_KEYS = Object.entries(CONFIG_DEFAULT).filter(e => isNumeric(e[1])).map(e => e[0]);
// list of themes supported by daisyui
const THEMES = ['light', 'dark', 'cupcake', 'bumblebee', 'emerald', 'corporate', 'synthwave', 'retro', 'cyberpunk', 'valentine', 'halloween', 'garden', 'forest', 'aqua', 'lofi', 'pastel', 'fantasy', 'wireframe', 'black', 'luxury', 'dracula', 'cmyk', 'autumn', 'business', 'acid', 'lemonade', 'night', 'coffee', 'winter', 'dim', 'nord', 'sunset'];
// markdown support
const VueMarkdown = defineComponent(
(props) => {
const md = shallowRef(new markdownit({ breaks: true }));
const origFenchRenderer = md.value.renderer.rules.fence;
md.value.renderer.rules.fence = (tokens, idx, ...args) => {
const content = tokens[idx].content;
const origRendered = origFenchRenderer(tokens, idx, ...args);
return `<div class="relative my-4">
<div class="text-right sticky top-4 mb-2 mr-2 h-0">
<button class="badge btn-mini" onclick="copyStr(${escapeAttr(JSON.stringify(content))})">📋 Copy</button>
</div>
${origRendered}
</div>`;
};
window.copyStr = copyStr;
const content = computed(() => md.value.render(props.source));
return () => h("div", { innerHTML: content.value });
},
{ props: ["source"] }
);
// input field to be used by settings modal
const SettingsModalShortInput = defineComponent({
template: document.getElementById('settings-modal-short-input').innerHTML,
props: {
label: { type: String, required: false },
configKey: String,
configDefault: Object,
configInfo: Object,
modelValue: [Object, String, Number],
},
});
// coversations is stored in localStorage
// format: { [convId]: { id: string, lastModified: number, messages: [...] } }
// convId is a string prefixed with 'conv-'
const StorageUtils = {
// manage conversations
getAllConversations() {
const res = [];
for (const key in localStorage) {
if (key.startsWith('conv-')) {
res.push(JSON.parse(localStorage.getItem(key)));
}
}
res.sort((a, b) => b.lastModified - a.lastModified);
return res;
},
// can return null if convId does not exist
getOneConversation(convId) {
return JSON.parse(localStorage.getItem(convId) || 'null');
},
// if convId does not exist, create one
appendMsg(convId, msg) {
if (msg.content === null) return;
const conv = StorageUtils.getOneConversation(convId) || {
id: convId,
lastModified: Date.now(),
messages: [],
};
conv.messages.push(msg);
conv.lastModified = Date.now();
localStorage.setItem(convId, JSON.stringify(conv));
},
getNewConvId() {
return `conv-${Date.now()}`;
},
remove(convId) {
localStorage.removeItem(convId);
},
filterAndKeepMsgs(convId, predicate) {
const conv = StorageUtils.getOneConversation(convId);
if (!conv) return;
conv.messages = conv.messages.filter(predicate);
conv.lastModified = Date.now();
localStorage.setItem(convId, JSON.stringify(conv));
},
popMsg(convId) {
const conv = StorageUtils.getOneConversation(convId);
if (!conv) return;
const msg = conv.messages.pop();
conv.lastModified = Date.now();
if (conv.messages.length === 0) {
StorageUtils.remove(convId);
} else {
localStorage.setItem(convId, JSON.stringify(conv));
}
return msg;
},
// manage config
getConfig() {
const savedVal = JSON.parse(localStorage.getItem('config') || '{}');
// to prevent breaking changes in the future, we always provide default value for missing keys
return {
...CONFIG_DEFAULT,
...savedVal,
};
},
setConfig(config) {
localStorage.setItem('config', JSON.stringify(config));
},
getTheme() {
return localStorage.getItem('theme') || 'auto';
},
setTheme(theme) {
if (theme === 'auto') {
localStorage.removeItem('theme');
} else {
localStorage.setItem('theme', theme);
}
},
};
// scroll to bottom of chat messages
// if requiresNearBottom is true, only auto-scroll if user is near bottom
const chatScrollToBottom = (requiresNearBottom) => {
const msgListElem = document.getElementById('messages-list');
const spaceToBottom = msgListElem.scrollHeight - msgListElem.scrollTop - msgListElem.clientHeight;
if (!requiresNearBottom || (spaceToBottom < 100)) {
setTimeout(() => msgListElem.scrollTo({ top: msgListElem.scrollHeight }), 1);
}
};
const mainApp = createApp({
components: {
VueMarkdown,
SettingsModalShortInput,
},
data() {
return {
conversations: StorageUtils.getAllConversations(),
messages: [], // { id: number, role: 'user' | 'assistant', content: string }
viewingConvId: StorageUtils.getNewConvId(),
inputMsg: '',
isGenerating: false,
pendingMsg: null, // the on-going message from assistant
stopGeneration: () => {},
selectedTheme: StorageUtils.getTheme(),
config: StorageUtils.getConfig(),
showConfigDialog: false,
editingMsg: null,
// const
themes: THEMES,
configDefault: {...CONFIG_DEFAULT},
configInfo: {...CONFIG_INFO},
}
},
computed: {},
mounted() {
document.getElementById('app').classList.remove('opacity-0'); // show app
// scroll to the bottom when the pending message height is updated
const pendingMsgElem = document.getElementById('pending-msg');
const resizeObserver = new ResizeObserver(() => {
if (this.isGenerating) chatScrollToBottom(true);
});
resizeObserver.observe(pendingMsgElem);
},
methods: {
setSelectedTheme(theme) {
this.selectedTheme = theme;
StorageUtils.setTheme(theme);
},
newConversation() {
if (this.isGenerating) return;
this.viewingConvId = StorageUtils.getNewConvId();
this.editingMsg = null;
this.fetchMessages();
chatScrollToBottom();
},
setViewingConv(convId) {
if (this.isGenerating) return;
this.viewingConvId = convId;
this.editingMsg = null;
this.fetchMessages();
chatScrollToBottom();
},
deleteConv(convId) {
if (this.isGenerating) return;
if (window.confirm('Are you sure to delete this conversation?')) {
StorageUtils.remove(convId);
if (this.viewingConvId === convId) {
this.viewingConvId = StorageUtils.getNewConvId();
this.editingMsg = null;
}
this.fetchConversation();
this.fetchMessages();
}
},
downloadConv(convId) {
const conversation = StorageUtils.getOneConversation(convId);
if (!conversation) {
alert('Conversation not found.');
return;
}
const conversationJson = JSON.stringify(conversation, null, 2);
const blob = new Blob([conversationJson], { type: 'application/json' });
const url = URL.createObjectURL(blob);
const a = document.createElement('a');
a.href = url;
a.download = `conversation_${convId}.json`;
document.body.appendChild(a);
a.click();
document.body.removeChild(a);
URL.revokeObjectURL(url);
},
async sendMessage() {
if (!this.inputMsg) return;
const currConvId = this.viewingConvId;
StorageUtils.appendMsg(currConvId, {
id: Date.now(),
role: 'user',
content: this.inputMsg,
});
this.fetchConversation();
this.fetchMessages();
this.inputMsg = '';
this.editingMsg = null;
this.generateMessage(currConvId);
chatScrollToBottom();
},
async generateMessage(currConvId) {
if (this.isGenerating) return;
this.pendingMsg = { id: Date.now()+1, role: 'assistant', content: null };
this.isGenerating = true;
this.editingMsg = null;
try {
const abortController = new AbortController();
this.stopGeneration = () => abortController.abort();
const params = {
messages: [
{ role: 'system', content: this.config.systemMessage },
...this.messages,
],
stream: true,
cache_prompt: true,
samplers: this.config.samplers,
temperature: this.config.temperature,
dynatemp_range: this.config.dynatemp_range,
dynatemp_exponent: this.config.dynatemp_exponent,
top_k: this.config.top_k,
top_p: this.config.top_p,
min_p: this.config.min_p,
typical_p: this.config.typical_p,
xtc_probability: this.config.xtc_probability,
xtc_threshold: this.config.xtc_threshold,
repeat_last_n: this.config.repeat_last_n,
repeat_penalty: this.config.repeat_penalty,
presence_penalty: this.config.presence_penalty,
frequency_penalty: this.config.frequency_penalty,
dry_multiplier: this.config.dry_multiplier,
dry_base: this.config.dry_base,
dry_allowed_length: this.config.dry_allowed_length,
dry_penalty_last_n: this.config.dry_penalty_last_n,
max_tokens: this.config.max_tokens,
...(this.config.custom.length ? JSON.parse(this.config.custom) : {}),
...(this.config.apiKey ? { api_key: this.config.apiKey } : {}),
};
const config = {
controller: abortController,
api_url: BASE_URL,
endpoint: '/chat/completions',
};
for await (const chunk of llama(prompt, params, config)) {
const stop = chunk.data.stop;
const addedContent = chunk.data.choices[0].delta.content;
const lastContent = this.pendingMsg.content || '';
if (addedContent) {
this.pendingMsg = {
id: this.pendingMsg.id,
role: 'assistant',
content: lastContent + addedContent,
};
}
}
StorageUtils.appendMsg(currConvId, this.pendingMsg);
this.fetchConversation();
this.fetchMessages();
setTimeout(() => document.getElementById('msg-input').focus(), 1);
} catch (error) {
if (error.name === 'AbortError') {
// user stopped the generation via stopGeneration() function
StorageUtils.appendMsg(currConvId, this.pendingMsg);
this.fetchConversation();
this.fetchMessages();
} else {
console.error(error);
alert(error);
// pop last user message
const lastUserMsg = StorageUtils.popMsg(currConvId);
this.inputMsg = lastUserMsg ? lastUserMsg.content : '';
}
}
this.pendingMsg = null;
this.isGenerating = false;
this.stopGeneration = () => {};
this.fetchMessages();
chatScrollToBottom();
},
// message actions
regenerateMsg(msg) {
if (this.isGenerating) return;
// TODO: somehow keep old history (like how ChatGPT has different "tree"). This can be done by adding "sub-conversations" with "subconv-" prefix, and new message will have a list of subconvIds
const currConvId = this.viewingConvId;
StorageUtils.filterAndKeepMsgs(currConvId, (m) => m.id < msg.id);
this.fetchConversation();
this.fetchMessages();
this.generateMessage(currConvId);
},
copyMsg(msg) {
copyStr(msg.content);
},
editUserMsgAndRegenerate(msg) {
if (this.isGenerating) return;
const currConvId = this.viewingConvId;
const newContent = msg.content;
this.editingMsg = null;
StorageUtils.filterAndKeepMsgs(currConvId, (m) => m.id < msg.id);
StorageUtils.appendMsg(currConvId, {
id: Date.now(),
role: 'user',
content: newContent,
});
this.fetchConversation();
this.fetchMessages();
this.generateMessage(currConvId);
},
// settings dialog methods
closeAndSaveConfigDialog() {
try {
if (this.config.custom.length) JSON.parse(this.config.custom);
} catch (error) {
alert('Invalid JSON for custom config. Please either fix it or leave it empty.');
return;
}
for (const key of CONFIG_NUMERIC_KEYS) {
if (isNaN(this.config[key]) || this.config[key].toString().trim().length === 0) {
alert(`Invalid number for ${key} (expected an integer or a float)`);
return;
}
this.config[key] = parseFloat(this.config[key]);
}
this.showConfigDialog = false;
StorageUtils.setConfig(this.config);
},
closeAndDiscardConfigDialog() {
this.showConfigDialog = false;
this.config = StorageUtils.getConfig();
},
resetConfigDialog() {
if (window.confirm('Are you sure to reset all settings?')) {
this.config = {...CONFIG_DEFAULT};
}
},
// sync state functions
fetchConversation() {
this.conversations = StorageUtils.getAllConversations();
},
fetchMessages() {
this.messages = StorageUtils.getOneConversation(this.viewingConvId)?.messages ?? [];
},
},
});
mainApp.config.errorHandler = alert;
try {
mainApp.mount('#app');
} catch (err) {
console.error(err);
document.getElementById('app').innerHTML = `<div style="margin:2em auto">
Failed to start app. Please try clearing localStorage and try again.<br/>
<br/>
<button class="btn" onClick="localStorage.clear(); window.location.reload();">Clear localStorage</button>
</div>`;
}
</script>
</body>
</html>

Binary file not shown.

View File

@@ -39,7 +39,6 @@
temperature: 0.8, // adapt all following parameters to optimized min-p requierements. If for non-english, set to 0.6 or lower
repeat_last_n: 0, // 0 = disable penalty, -1 = context size
repeat_penalty: 1.0, // 1.0 = disabled
penalize_nl: false, // true only useful for infinite completion
dry_multiplier: 0.0, // 0.0 = disabled, 0.8 works well
dry_base: 1.75, // 0.0 = disabled
dry_allowed_length: 2, // tokens extending repetitions beyond this receive penalty, 2 works well

View File

@@ -303,7 +303,6 @@
temperature: 0.7,
repeat_last_n: 256, // 0 = disable penalty, -1 = context size
repeat_penalty: 1.18, // 1.0 = disabled
penalize_nl: false,
dry_multiplier: 0.0, // 0.0 = disabled, 0.8 works well
dry_base: 1.75, // 0.0 = disabled
dry_allowed_length: 2, // tokens extending repetitions beyond this receive penalty, 2 works well
@@ -1006,7 +1005,6 @@
${FloatField({ label: "Temperature", max: 2.0, min: 0.0, name: "temperature", step: 0.01, value: params.value.temperature })}
${FloatField({ label: "Penalize repeat sequence", max: 2.0, min: 0.0, name: "repeat_penalty", step: 0.01, value: params.value.repeat_penalty })}
${IntField({ label: "Consider N tokens for penalize", max: 2048, min: 0, name: "repeat_last_n", value: params.value.repeat_last_n })}
${BoolField({ label: "Penalize repetition of newlines", name: "penalize_nl", value: params.value.penalize_nl })}
${IntField({ label: "Top-K sampling", max: 100, min: -1, name: "top_k", value: params.value.top_k })}
${FloatField({ label: "Top-P sampling", max: 1.0, min: 0.0, name: "top_p", step: 0.01, value: params.value.top_p })}
${FloatField({ label: "Min-P sampling", max: 1.0, min: 0.0, name: "min_p", step: 0.01, value: params.value.min_p })}

View File

@@ -407,6 +407,9 @@ class SimpleChat {
if (curLine.startsWith("data:")) {
curLine = curLine.substring(5);
}
if (curLine.trim() === "[DONE]") {
break;
}
let curJson = JSON.parse(curLine);
console.debug("DBUG:SC:PART:Json:", curJson);
this.append_response(this.response_extract_stream(curJson, apiEP));

Some files were not shown because too many files have changed in this diff Show More