mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2026-02-05 13:53:23 +02:00
Compare commits
7 Commits
b4366
...
gg/fix-pyt
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
117f7adbd9 | ||
|
|
91deef4606 | ||
|
|
902de8826b | ||
|
|
3e3cc7102f | ||
|
|
c172b322c2 | ||
|
|
d8f2da6b9f | ||
|
|
39a41a53b0 |
161
.clang-format
161
.clang-format
@@ -1,161 +0,0 @@
|
||||
---
|
||||
Language: Cpp
|
||||
AlignAfterOpenBracket: Align
|
||||
AlignArrayOfStructures: Left
|
||||
AlignConsecutiveAssignments: AcrossComments
|
||||
AlignConsecutiveBitFields: AcrossComments
|
||||
AlignConsecutiveDeclarations: AcrossComments
|
||||
AlignConsecutiveMacros: AcrossComments
|
||||
# AlignConsecutiveShortCaseStatements: AcrossComments
|
||||
AlignEscapedNewlines: Left # LeftWithLastLine
|
||||
AlignOperands: Align
|
||||
AlignTrailingComments:
|
||||
Kind: Always
|
||||
OverEmptyLines: 1
|
||||
AllowAllArgumentsOnNextLine: true
|
||||
AllowAllParametersOfDeclarationOnNextLine: false
|
||||
# AllowBreakBeforeNoexceptSpecifier: OnlyWithParen
|
||||
AllowShortBlocksOnASingleLine: Never
|
||||
AllowShortCaseLabelsOnASingleLine: false
|
||||
AllowShortFunctionsOnASingleLine: Inline
|
||||
AllowShortIfStatementsOnASingleLine: Never
|
||||
AllowShortLambdasOnASingleLine: Inline
|
||||
AllowShortLoopsOnASingleLine: false
|
||||
AlwaysBreakBeforeMultilineStrings: true
|
||||
BinPackArguments: true
|
||||
BinPackParameters: true # OnePerLine
|
||||
BitFieldColonSpacing: Both
|
||||
BreakBeforeBraces: Custom # Attach
|
||||
BraceWrapping:
|
||||
AfterCaseLabel: true
|
||||
AfterClass: false
|
||||
AfterControlStatement: false
|
||||
AfterEnum: false
|
||||
AfterFunction: false
|
||||
AfterNamespace: false
|
||||
AfterObjCDeclaration: false
|
||||
AfterStruct: false
|
||||
AfterUnion: false
|
||||
AfterExternBlock: false
|
||||
BeforeCatch: false
|
||||
BeforeElse: false
|
||||
BeforeLambdaBody: false
|
||||
BeforeWhile: false
|
||||
IndentBraces: false
|
||||
SplitEmptyFunction: false
|
||||
SplitEmptyRecord: false
|
||||
SplitEmptyNamespace: false
|
||||
# BreakAdjacentStringLiterals: true
|
||||
BreakAfterAttributes: Never
|
||||
BreakBeforeBinaryOperators: None
|
||||
BreakBeforeInlineASMColon: OnlyMultiline
|
||||
BreakBeforeTernaryOperators: false
|
||||
# BreakBinaryOperations: Never
|
||||
BreakConstructorInitializers: AfterColon
|
||||
# BreakFunctionDefinitionParameters: false
|
||||
BreakInheritanceList: AfterComma
|
||||
BreakStringLiterals: true
|
||||
# BreakTemplateDeclarations: Yes
|
||||
ColumnLimit: 120
|
||||
CommentPragmas: '^ IWYU pragma:'
|
||||
CompactNamespaces: false
|
||||
ConstructorInitializerIndentWidth: 4
|
||||
ContinuationIndentWidth: 4
|
||||
Cpp11BracedListStyle: false
|
||||
DerivePointerAlignment: false
|
||||
DisableFormat: false
|
||||
EmptyLineBeforeAccessModifier: Leave
|
||||
EmptyLineAfterAccessModifier: Never
|
||||
ExperimentalAutoDetectBinPacking: false
|
||||
FixNamespaceComments: true
|
||||
IncludeBlocks: Regroup
|
||||
IncludeCategories:
|
||||
- Regex: '^<.*\.h>'
|
||||
Priority: 1
|
||||
SortPriority: 0
|
||||
- Regex: '^<.*'
|
||||
Priority: 2
|
||||
SortPriority: 0
|
||||
- Regex: '.*'
|
||||
Priority: 3
|
||||
SortPriority: 0
|
||||
IncludeIsMainRegex: '([-_](test|unittest))?$'
|
||||
IncludeIsMainSourceRegex: ''
|
||||
IndentAccessModifiers: false
|
||||
IndentCaseBlocks: true
|
||||
IndentCaseLabels: true
|
||||
IndentExternBlock: NoIndent
|
||||
IndentGotoLabels: false
|
||||
IndentPPDirectives: AfterHash
|
||||
IndentWidth: 4
|
||||
IndentWrappedFunctionNames: false
|
||||
InsertBraces: true # NOTE: may lead to incorrect formatting
|
||||
InsertNewlineAtEOF: true
|
||||
JavaScriptQuotes: Leave
|
||||
JavaScriptWrapImports: true
|
||||
KeepEmptyLinesAtTheStartOfBlocks: false
|
||||
LambdaBodyIndentation: Signature
|
||||
LineEnding: LF
|
||||
MacroBlockBegin: ''
|
||||
MacroBlockEnd: ''
|
||||
MaxEmptyLinesToKeep: 1
|
||||
NamespaceIndentation: None
|
||||
ObjCBinPackProtocolList: Auto
|
||||
ObjCBlockIndentWidth: 4
|
||||
ObjCSpaceAfterProperty: true
|
||||
ObjCSpaceBeforeProtocolList: true
|
||||
PPIndentWidth: -1
|
||||
PackConstructorInitializers: CurrentLine
|
||||
PenaltyBreakAssignment: 2
|
||||
PenaltyBreakBeforeFirstCallParameter: 1
|
||||
PenaltyBreakComment: 300
|
||||
PenaltyBreakFirstLessLess: 120
|
||||
PenaltyBreakString: 1000
|
||||
PenaltyBreakTemplateDeclaration: 10
|
||||
PenaltyExcessCharacter: 1000000
|
||||
PenaltyReturnTypeOnItsOwnLine: 200
|
||||
PointerAlignment: Middle
|
||||
QualifierAlignment: Left
|
||||
#QualifierOrder: ['static', 'inline', 'friend', 'constexpr', 'const', 'volatile', 'type', 'restrict']
|
||||
RawStringFormats:
|
||||
- Language: Cpp
|
||||
Delimiters:
|
||||
- cc
|
||||
- CC
|
||||
- cpp
|
||||
- Cpp
|
||||
- CPP
|
||||
- 'c++'
|
||||
- 'C++'
|
||||
CanonicalDelimiter: ''
|
||||
ReferenceAlignment: Middle
|
||||
ReflowComments: false # IndentOnly
|
||||
SeparateDefinitionBlocks: Always
|
||||
SortIncludes: CaseInsensitive
|
||||
SortUsingDeclarations: LexicographicNumeric
|
||||
SpaceAfterCStyleCast: true
|
||||
SpaceAfterLogicalNot: false
|
||||
SpaceAfterTemplateKeyword: true
|
||||
SpaceBeforeAssignmentOperators: true
|
||||
SpaceBeforeCpp11BracedList: false
|
||||
SpaceBeforeCtorInitializerColon: true
|
||||
SpaceBeforeInheritanceColon: true
|
||||
SpaceBeforeParens: ControlStatements
|
||||
SpaceBeforeRangeBasedForLoopColon: true
|
||||
SpaceInEmptyBlock: false
|
||||
SpaceInEmptyParentheses: false
|
||||
SpacesBeforeTrailingComments: 2
|
||||
SpacesInAngles: Never
|
||||
SpacesInContainerLiterals: true
|
||||
SpacesInLineCommentPrefix:
|
||||
Minimum: 1
|
||||
Maximum: -1
|
||||
SpacesInParentheses: false
|
||||
SpacesInSquareBrackets: false
|
||||
SpaceBeforeSquareBrackets: false
|
||||
Standard: c++17
|
||||
TabWidth: 4
|
||||
UseTab: Never
|
||||
WhitespaceSensitiveMacros: ['STRINGIZE']
|
||||
...
|
||||
|
||||
@@ -17,10 +17,8 @@ Checks: >
|
||||
-clang-analyzer-security.insecureAPI.DeprecatedOrUnsafeBufferHandling,
|
||||
performance-*,
|
||||
portability-*,
|
||||
-portability-simd-intrinsics,
|
||||
misc-*,
|
||||
-misc-const-correctness,
|
||||
-misc-non-private-member-variables-in-classes,
|
||||
-misc-no-recursion,
|
||||
-misc-use-anonymous-namespace,
|
||||
FormatStyle: none
|
||||
|
||||
@@ -1,16 +1,18 @@
|
||||
ARG UBUNTU_VERSION=22.04
|
||||
|
||||
# This needs to generally match the container host's environment.
|
||||
ARG CUDA_VERSION=12.6.0
|
||||
ARG CUDA_VERSION=11.7.1
|
||||
|
||||
# Target the CUDA build image
|
||||
ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
|
||||
|
||||
FROM ${BASE_CUDA_DEV_CONTAINER} AS build
|
||||
FROM ${BASE_CUDA_DEV_CONTAINER} as build
|
||||
|
||||
# CUDA architecture to build for (defaults to all supported archs)
|
||||
ARG CUDA_DOCKER_ARCH=default
|
||||
# Unless otherwise specified, we make a fat build.
|
||||
ARG CUDA_DOCKER_ARCH=all
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential cmake python3 python3-pip git libcurl4-openssl-dev libgomp1
|
||||
apt-get install -y build-essential python3 python3-pip git libcurl4-openssl-dev libgomp1
|
||||
|
||||
COPY requirements.txt requirements.txt
|
||||
COPY requirements requirements
|
||||
@@ -22,12 +24,13 @@ WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
|
||||
# Use the default CUDA archs if not specified
|
||||
RUN if [ "${CUDA_DOCKER_ARCH}" != "default" ]; then \
|
||||
export CMAKE_ARGS="-DCMAKE_CUDA_ARCHITECTURES=${CUDA_DOCKER_ARCH}"; \
|
||||
fi && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_CUDA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
cmake --build build --config Release -j$(nproc) && \
|
||||
cp build/bin/* .
|
||||
# Set nvcc architecture
|
||||
ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
|
||||
# Enable CUDA
|
||||
ENV GGML_CUDA=1
|
||||
# Enable cURL
|
||||
ENV LLAMA_CURL=1
|
||||
|
||||
RUN make -j$(nproc)
|
||||
|
||||
ENTRYPOINT ["/app/.devops/tools.sh"]
|
||||
|
||||
@@ -1,33 +0,0 @@
|
||||
ARG UBUNTU_VERSION=22.04
|
||||
# This needs to generally match the container host's environment.
|
||||
ARG MUSA_VERSION=rc3.1.0
|
||||
# Target the MUSA build image
|
||||
ARG BASE_MUSA_DEV_CONTAINER=mthreads/musa:${MUSA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
|
||||
|
||||
FROM ${BASE_MUSA_DEV_CONTAINER} AS build
|
||||
|
||||
# MUSA architecture to build for (defaults to all supported archs)
|
||||
ARG MUSA_DOCKER_ARCH=default
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential cmake python3 python3-pip git libcurl4-openssl-dev libgomp1
|
||||
|
||||
COPY requirements.txt requirements.txt
|
||||
COPY requirements requirements
|
||||
|
||||
RUN pip install --upgrade pip setuptools wheel \
|
||||
&& pip install -r requirements.txt
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
|
||||
# Use the default MUSA archs if not specified
|
||||
RUN if [ "${MUSA_DOCKER_ARCH}" != "default" ]; then \
|
||||
export CMAKE_ARGS="-DMUSA_ARCHITECTURES=${MUSA_DOCKER_ARCH}"; \
|
||||
fi && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
cmake --build build --config Release -j$(nproc) && \
|
||||
cp build/bin/* .
|
||||
|
||||
ENTRYPOINT ["/app/.devops/tools.sh"]
|
||||
@@ -6,12 +6,12 @@ ARG ROCM_VERSION=5.6
|
||||
# Target the CUDA build image
|
||||
ARG BASE_ROCM_DEV_CONTAINER=rocm/dev-ubuntu-${UBUNTU_VERSION}:${ROCM_VERSION}-complete
|
||||
|
||||
FROM ${BASE_ROCM_DEV_CONTAINER} AS build
|
||||
FROM ${BASE_ROCM_DEV_CONTAINER} as build
|
||||
|
||||
# Unless otherwise specified, we make a fat build.
|
||||
# List from https://github.com/ggerganov/llama.cpp/pull/1087#issuecomment-1682807878
|
||||
# This is mostly tied to rocBLAS supported archs.
|
||||
ARG ROCM_DOCKER_ARCH="\
|
||||
ARG ROCM_DOCKER_ARCH=\
|
||||
gfx803 \
|
||||
gfx900 \
|
||||
gfx906 \
|
||||
@@ -21,7 +21,7 @@ ARG ROCM_DOCKER_ARCH="\
|
||||
gfx1030 \
|
||||
gfx1100 \
|
||||
gfx1101 \
|
||||
gfx1102"
|
||||
gfx1102
|
||||
|
||||
COPY requirements.txt requirements.txt
|
||||
COPY requirements requirements
|
||||
@@ -34,7 +34,7 @@ WORKDIR /app
|
||||
COPY . .
|
||||
|
||||
# Set nvcc architecture
|
||||
ENV AMDGPU_TARGETS=${ROCM_DOCKER_ARCH}
|
||||
ENV GPU_TARGETS=${ROCM_DOCKER_ARCH}
|
||||
# Enable ROCm
|
||||
ENV GGML_HIPBLAS=1
|
||||
ENV CC=/opt/rocm/llvm/bin/clang
|
||||
|
||||
@@ -1,38 +1,25 @@
|
||||
ARG UBUNTU_VERSION=22.04
|
||||
|
||||
FROM ubuntu:$UBUNTU_VERSION AS build
|
||||
FROM ubuntu:$UBUNTU_VERSION as build
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential git cmake libcurl4-openssl-dev
|
||||
apt-get install -y build-essential python3 python3-pip git libcurl4-openssl-dev libgomp1
|
||||
|
||||
COPY requirements.txt requirements.txt
|
||||
COPY requirements requirements
|
||||
|
||||
RUN pip install --upgrade pip setuptools wheel \
|
||||
&& pip install -r requirements.txt
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
|
||||
RUN cmake -S . -B build -DGGML_BACKEND_DL=ON -DGGML_NATIVE=OFF -DGGML_CPU_ALL_VARIANTS=ON -DLLAMA_CURL=ON -DCMAKE_BUILD_TYPE=Release && \
|
||||
cmake --build build -j $(nproc) && \
|
||||
mkdir -p /app/lib && \
|
||||
find build -name "*.so" -exec cp {} /app/lib/ \;
|
||||
ENV LLAMA_CURL=1
|
||||
|
||||
FROM ubuntu:$UBUNTU_VERSION as runtime
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential python3 python3-pip git libcurl4-openssl-dev libgomp1
|
||||
|
||||
COPY requirements.txt /app/requirements.txt
|
||||
COPY requirements /app/requirements
|
||||
COPY .devops/tools.sh /app/tools.sh
|
||||
|
||||
RUN pip install --upgrade pip setuptools wheel && \
|
||||
pip install -r /app/requirements.txt
|
||||
|
||||
COPY --from=build /app/build/bin/ /app/
|
||||
COPY --from=build /app/lib/ /app/
|
||||
COPY --from=build /app/convert_hf_to_gguf.py /app/
|
||||
COPY --from=build /app/gguf-py /app/gguf-py
|
||||
RUN make -j$(nproc)
|
||||
|
||||
ENV LC_ALL=C.utf8
|
||||
|
||||
ENTRYPOINT ["/app/tools.sh"]
|
||||
ENTRYPOINT ["/app/.devops/tools.sh"]
|
||||
|
||||
@@ -1,44 +0,0 @@
|
||||
ARG ASCEND_VERSION=8.0.rc2.alpha003-910b-openeuler22.03-py3.8
|
||||
|
||||
FROM ascendai/cann:$ASCEND_VERSION AS build
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
|
||||
RUN yum install -y gcc g++ cmake make
|
||||
ENV ASCEND_TOOLKIT_HOME=/usr/local/Ascend/ascend-toolkit/latest
|
||||
ENV LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/lib64:$LIBRARY_PATH
|
||||
ENV LD_LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/lib64:${ASCEND_TOOLKIT_HOME}/lib64/plugin/opskernel:${ASCEND_TOOLKIT_HOME}/lib64/plugin/nnengine:${ASCEND_TOOLKIT_HOME}/opp/built-in/op_impl/ai_core/tbe/op_tiling:${LD_LIBRARY_PATH}
|
||||
ENV PYTHONPATH=${ASCEND_TOOLKIT_HOME}/python/site-packages:${ASCEND_TOOLKIT_HOME}/opp/built-in/op_impl/ai_core/tbe:${PYTHONPATH}
|
||||
ENV PATH=${ASCEND_TOOLKIT_HOME}/bin:${ASCEND_TOOLKIT_HOME}/compiler/ccec_compiler/bin:${PATH}
|
||||
ENV ASCEND_AICPU_PATH=${ASCEND_TOOLKIT_HOME}
|
||||
ENV ASCEND_OPP_PATH=${ASCEND_TOOLKIT_HOME}/opp
|
||||
ENV TOOLCHAIN_HOME=${ASCEND_TOOLKIT_HOME}/toolkit
|
||||
ENV ASCEND_HOME_PATH=${ASCEND_TOOLKIT_HOME}
|
||||
|
||||
# find libascend_hal.so, because the drive hasn`t been mounted.
|
||||
ENV LD_LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/runtime/lib64/stub:$LD_LIBRARY_PATH
|
||||
|
||||
RUN echo "Building with static libs" && \
|
||||
source /usr/local/Ascend/ascend-toolkit/set_env.sh --force && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_CANN=ON -DBUILD_SHARED_LIBS=OFF && \
|
||||
cmake --build build --config Release --target llama-cli
|
||||
|
||||
# TODO: use image with NNRT
|
||||
FROM ascendai/cann:$ASCEND_VERSION AS runtime
|
||||
COPY --from=build /app/build/bin/llama-cli /llama-cli
|
||||
|
||||
ENV LC_ALL=C.utf8
|
||||
|
||||
ENV ASCEND_TOOLKIT_HOME=/usr/local/Ascend/ascend-toolkit/latest
|
||||
ENV LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/lib64:$LIBRARY_PATH
|
||||
ENV LD_LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/lib64:${ASCEND_TOOLKIT_HOME}/lib64/plugin/opskernel:${ASCEND_TOOLKIT_HOME}/lib64/plugin/nnengine:${ASCEND_TOOLKIT_HOME}/opp/built-in/op_impl/ai_core/tbe/op_tiling:${LD_LIBRARY_PATH}
|
||||
ENV PYTHONPATH=${ASCEND_TOOLKIT_HOME}/python/site-packages:${ASCEND_TOOLKIT_HOME}/opp/built-in/op_impl/ai_core/tbe:${PYTHONPATH}
|
||||
ENV PATH=${ASCEND_TOOLKIT_HOME}/bin:${ASCEND_TOOLKIT_HOME}/compiler/ccec_compiler/bin:${PATH}
|
||||
ENV ASCEND_AICPU_PATH=${ASCEND_TOOLKIT_HOME}
|
||||
ENV ASCEND_OPP_PATH=${ASCEND_TOOLKIT_HOME}/opp
|
||||
ENV TOOLCHAIN_HOME=${ASCEND_TOOLKIT_HOME}/toolkit
|
||||
ENV ASCEND_HOME_PATH=${ASCEND_TOOLKIT_HOME}
|
||||
|
||||
ENTRYPOINT ["/llama-cli" ]
|
||||
@@ -1,38 +1,35 @@
|
||||
ARG UBUNTU_VERSION=22.04
|
||||
# This needs to generally match the container host's environment.
|
||||
ARG CUDA_VERSION=12.6.0
|
||||
ARG CUDA_VERSION=11.7.1
|
||||
# Target the CUDA build image
|
||||
ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
|
||||
# Target the CUDA runtime image
|
||||
ARG BASE_CUDA_RUN_CONTAINER=nvidia/cuda:${CUDA_VERSION}-runtime-ubuntu${UBUNTU_VERSION}
|
||||
|
||||
FROM ${BASE_CUDA_DEV_CONTAINER} AS build
|
||||
FROM ${BASE_CUDA_DEV_CONTAINER} as build
|
||||
|
||||
# CUDA architecture to build for (defaults to all supported archs)
|
||||
ARG CUDA_DOCKER_ARCH=default
|
||||
# Unless otherwise specified, we make a fat build.
|
||||
ARG CUDA_DOCKER_ARCH=all
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential git cmake
|
||||
apt-get install -y build-essential git
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
|
||||
# Use the default CUDA archs if not specified
|
||||
RUN if [ "${CUDA_DOCKER_ARCH}" != "default" ]; then \
|
||||
export CMAKE_ARGS="-DCMAKE_CUDA_ARCHITECTURES=${CUDA_DOCKER_ARCH}"; \
|
||||
fi && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_CUDA=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
cmake --build build --config Release --target llama-cli -j$(nproc) && \
|
||||
mkdir -p /app/lib && \
|
||||
find build -name "*.so" -exec cp {} /app/lib \;
|
||||
# Set nvcc architecture
|
||||
ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
|
||||
# Enable CUDA
|
||||
ENV GGML_CUDA=1
|
||||
|
||||
FROM ${BASE_CUDA_RUN_CONTAINER} AS runtime
|
||||
RUN make -j$(nproc) llama-cli
|
||||
|
||||
FROM ${BASE_CUDA_RUN_CONTAINER} as runtime
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y libgomp1
|
||||
|
||||
COPY --from=build /app/lib/ /
|
||||
COPY --from=build /app/build/bin/llama-cli /
|
||||
COPY --from=build /app/llama-cli /llama-cli
|
||||
|
||||
ENTRYPOINT [ "/llama-cli" ]
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
ARG ONEAPI_VERSION=2025.0.0-0-devel-ubuntu22.04
|
||||
ARG ONEAPI_VERSION=2024.1.1-devel-ubuntu22.04
|
||||
|
||||
FROM intel/oneapi-basekit:$ONEAPI_VERSION AS build
|
||||
FROM intel/oneapi-basekit:$ONEAPI_VERSION as build
|
||||
|
||||
ARG GGML_SYCL_F16=OFF
|
||||
RUN apt-get update && \
|
||||
@@ -14,12 +14,10 @@ RUN if [ "${GGML_SYCL_F16}" = "ON" ]; then \
|
||||
echo "GGML_SYCL_F16 is set" && \
|
||||
export OPT_SYCL_F16="-DGGML_SYCL_F16=ON"; \
|
||||
fi && \
|
||||
echo "Building with static libs" && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx \
|
||||
${OPT_SYCL_F16} -DBUILD_SHARED_LIBS=OFF && \
|
||||
cmake -B build -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ${OPT_SYCL_F16} && \
|
||||
cmake --build build --config Release --target llama-cli
|
||||
|
||||
FROM intel/oneapi-basekit:$ONEAPI_VERSION AS runtime
|
||||
FROM intel/oneapi-basekit:$ONEAPI_VERSION as runtime
|
||||
|
||||
COPY --from=build /app/build/bin/llama-cli /llama-cli
|
||||
|
||||
|
||||
@@ -1,38 +0,0 @@
|
||||
ARG UBUNTU_VERSION=22.04
|
||||
# This needs to generally match the container host's environment.
|
||||
ARG MUSA_VERSION=rc3.1.0
|
||||
# Target the MUSA build image
|
||||
ARG BASE_MUSA_DEV_CONTAINER=mthreads/musa:${MUSA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
|
||||
# Target the MUSA runtime image
|
||||
ARG BASE_MUSA_RUN_CONTAINER=mthreads/musa:${MUSA_VERSION}-runtime-ubuntu${UBUNTU_VERSION}
|
||||
|
||||
FROM ${BASE_MUSA_DEV_CONTAINER} AS build
|
||||
|
||||
# MUSA architecture to build for (defaults to all supported archs)
|
||||
ARG MUSA_DOCKER_ARCH=default
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential git cmake
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
|
||||
# Use the default MUSA archs if not specified
|
||||
RUN if [ "${MUSA_DOCKER_ARCH}" != "default" ]; then \
|
||||
export CMAKE_ARGS="-DMUSA_ARCHITECTURES=${MUSA_DOCKER_ARCH}"; \
|
||||
fi && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
cmake --build build --config Release --target llama-cli -j$(nproc) && \
|
||||
mkdir -p /app/lib && \
|
||||
find build -name "*.so" -exec cp {} /app/lib \;
|
||||
|
||||
FROM ${BASE_MUSA_RUN_CONTAINER} AS runtime
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y libgomp1
|
||||
|
||||
COPY --from=build /app/lib/ /
|
||||
COPY --from=build /app/build/bin/llama-cli /llama-cli
|
||||
|
||||
ENTRYPOINT [ "/llama-cli" ]
|
||||
@@ -6,12 +6,12 @@ ARG ROCM_VERSION=5.6
|
||||
# Target the CUDA build image
|
||||
ARG BASE_ROCM_DEV_CONTAINER=rocm/dev-ubuntu-${UBUNTU_VERSION}:${ROCM_VERSION}-complete
|
||||
|
||||
FROM ${BASE_ROCM_DEV_CONTAINER} AS build
|
||||
FROM ${BASE_ROCM_DEV_CONTAINER} as build
|
||||
|
||||
# Unless otherwise specified, we make a fat build.
|
||||
# List from https://github.com/ggerganov/llama.cpp/pull/1087#issuecomment-1682807878
|
||||
# This is mostly tied to rocBLAS supported archs.
|
||||
ARG ROCM_DOCKER_ARCH="\
|
||||
ARG ROCM_DOCKER_ARCH=\
|
||||
gfx803 \
|
||||
gfx900 \
|
||||
gfx906 \
|
||||
@@ -21,7 +21,7 @@ ARG ROCM_DOCKER_ARCH="\
|
||||
gfx1030 \
|
||||
gfx1100 \
|
||||
gfx1101 \
|
||||
gfx1102"
|
||||
gfx1102
|
||||
|
||||
COPY requirements.txt requirements.txt
|
||||
COPY requirements requirements
|
||||
@@ -34,7 +34,7 @@ WORKDIR /app
|
||||
COPY . .
|
||||
|
||||
# Set nvcc architecture
|
||||
ENV AMDGPU_TARGETS=${ROCM_DOCKER_ARCH}
|
||||
ENV GPU_TARGETS=${ROCM_DOCKER_ARCH}
|
||||
# Enable ROCm
|
||||
ENV GGML_HIPBLAS=1
|
||||
ENV CC=/opt/rocm/llvm/bin/clang
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
ARG UBUNTU_VERSION=jammy
|
||||
|
||||
FROM ubuntu:$UBUNTU_VERSION AS build
|
||||
FROM ubuntu:$UBUNTU_VERSION as build
|
||||
|
||||
# Install build tools
|
||||
RUN apt update && apt install -y git build-essential cmake wget libgomp1
|
||||
@@ -14,7 +14,7 @@ RUN wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key
|
||||
# Build it
|
||||
WORKDIR /app
|
||||
COPY . .
|
||||
RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_VULKAN=1 && \
|
||||
RUN cmake -B build -DGGML_VULKAN=1 && \
|
||||
cmake --build build --config Release --target llama-cli
|
||||
|
||||
# Clean up
|
||||
|
||||
@@ -1,29 +1,23 @@
|
||||
ARG UBUNTU_VERSION=22.04
|
||||
|
||||
FROM ubuntu:$UBUNTU_VERSION AS build
|
||||
FROM ubuntu:$UBUNTU_VERSION as build
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential git cmake libcurl4-openssl-dev
|
||||
apt-get install -y build-essential git
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
|
||||
RUN cmake -S . -B build -DGGML_BACKEND_DL=ON -DGGML_NATIVE=OFF -DGGML_CPU_ALL_VARIANTS=ON -DLLAMA_CURL=ON -DCMAKE_BUILD_TYPE=Release && \
|
||||
cmake --build build -j $(nproc) && \
|
||||
mkdir -p /app/lib && \
|
||||
find build -name "*.so" -exec cp {} /app/lib/ \;
|
||||
RUN make -j$(nproc) llama-cli
|
||||
|
||||
FROM ubuntu:$UBUNTU_VERSION AS runtime
|
||||
|
||||
WORKDIR /app
|
||||
FROM ubuntu:$UBUNTU_VERSION as runtime
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y libcurl4-openssl-dev libgomp1 curl
|
||||
apt-get install -y libgomp1
|
||||
|
||||
COPY --from=build /app/build/bin/llama-cli /app/
|
||||
COPY --from=build /app/lib/ /app/
|
||||
COPY --from=build /app/llama-cli /llama-cli
|
||||
|
||||
ENV LC_ALL=C.utf8
|
||||
|
||||
ENTRYPOINT [ "/app/llama-cli" ]
|
||||
ENTRYPOINT [ "/llama-cli" ]
|
||||
|
||||
@@ -1,42 +1,38 @@
|
||||
ARG UBUNTU_VERSION=22.04
|
||||
# This needs to generally match the container host's environment.
|
||||
ARG CUDA_VERSION=12.6.0
|
||||
ARG CUDA_VERSION=11.7.1
|
||||
# Target the CUDA build image
|
||||
ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
|
||||
# Target the CUDA runtime image
|
||||
ARG BASE_CUDA_RUN_CONTAINER=nvidia/cuda:${CUDA_VERSION}-runtime-ubuntu${UBUNTU_VERSION}
|
||||
|
||||
FROM ${BASE_CUDA_DEV_CONTAINER} AS build
|
||||
FROM ${BASE_CUDA_DEV_CONTAINER} as build
|
||||
|
||||
# CUDA architecture to build for (defaults to all supported archs)
|
||||
ARG CUDA_DOCKER_ARCH=default
|
||||
# Unless otherwise specified, we make a fat build.
|
||||
ARG CUDA_DOCKER_ARCH=all
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential git cmake libcurl4-openssl-dev
|
||||
apt-get install -y build-essential git libcurl4-openssl-dev
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
|
||||
# Use the default CUDA archs if not specified
|
||||
RUN if [ "${CUDA_DOCKER_ARCH}" != "default" ]; then \
|
||||
export CMAKE_ARGS="-DCMAKE_CUDA_ARCHITECTURES=${CUDA_DOCKER_ARCH}"; \
|
||||
fi && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_CUDA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
cmake --build build --config Release --target llama-server -j$(nproc) && \
|
||||
mkdir -p /app/lib && \
|
||||
find build -name "*.so" -exec cp {} /app/lib \;
|
||||
# Set nvcc architecture
|
||||
ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
|
||||
# Enable CUDA
|
||||
ENV GGML_CUDA=1
|
||||
# Enable cURL
|
||||
ENV LLAMA_CURL=1
|
||||
|
||||
FROM ${BASE_CUDA_RUN_CONTAINER} AS runtime
|
||||
RUN make -j$(nproc) llama-server
|
||||
|
||||
FROM ${BASE_CUDA_RUN_CONTAINER} as runtime
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y libcurl4-openssl-dev libgomp1 curl
|
||||
|
||||
COPY --from=build /app/lib/ /
|
||||
COPY --from=build /app/build/bin/llama-server /llama-server
|
||||
|
||||
# Must be set to 0.0.0.0 so it can listen to requests from host machine
|
||||
ENV LLAMA_ARG_HOST=0.0.0.0
|
||||
COPY --from=build /app/llama-server /llama-server
|
||||
|
||||
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
ARG ONEAPI_VERSION=2025.0.0-0-devel-ubuntu22.04
|
||||
ARG ONEAPI_VERSION=2024.1.1-devel-ubuntu22.04
|
||||
|
||||
FROM intel/oneapi-basekit:$ONEAPI_VERSION AS build
|
||||
FROM intel/oneapi-basekit:$ONEAPI_VERSION as build
|
||||
|
||||
ARG GGML_SYCL_F16=OFF
|
||||
RUN apt-get update && \
|
||||
@@ -14,11 +14,10 @@ RUN if [ "${GGML_SYCL_F16}" = "ON" ]; then \
|
||||
echo "GGML_SYCL_F16 is set" && \
|
||||
export OPT_SYCL_F16="-DGGML_SYCL_F16=ON"; \
|
||||
fi && \
|
||||
echo "Building with dynamic libs" && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_CURL=ON ${OPT_SYCL_F16} && \
|
||||
cmake -B build -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_CURL=ON ${OPT_SYCL_F16} && \
|
||||
cmake --build build --config Release --target llama-server
|
||||
|
||||
FROM intel/oneapi-basekit:$ONEAPI_VERSION AS runtime
|
||||
FROM intel/oneapi-basekit:$ONEAPI_VERSION as runtime
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y libcurl4-openssl-dev curl
|
||||
@@ -26,8 +25,6 @@ RUN apt-get update && \
|
||||
COPY --from=build /app/build/bin/llama-server /llama-server
|
||||
|
||||
ENV LC_ALL=C.utf8
|
||||
# Must be set to 0.0.0.0 so it can listen to requests from host machine
|
||||
ENV LLAMA_ARG_HOST=0.0.0.0
|
||||
|
||||
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
|
||||
|
||||
|
||||
@@ -1,43 +0,0 @@
|
||||
ARG UBUNTU_VERSION=22.04
|
||||
# This needs to generally match the container host's environment.
|
||||
ARG MUSA_VERSION=rc3.1.0
|
||||
# Target the MUSA build image
|
||||
ARG BASE_MUSA_DEV_CONTAINER=mthreads/musa:${MUSA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
|
||||
# Target the MUSA runtime image
|
||||
ARG BASE_MUSA_RUN_CONTAINER=mthreads/musa:${MUSA_VERSION}-runtime-ubuntu${UBUNTU_VERSION}
|
||||
|
||||
FROM ${BASE_MUSA_DEV_CONTAINER} AS build
|
||||
|
||||
# MUSA architecture to build for (defaults to all supported archs)
|
||||
ARG MUSA_DOCKER_ARCH=default
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential git cmake libcurl4-openssl-dev
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
|
||||
# Use the default MUSA archs if not specified
|
||||
RUN if [ "${MUSA_DOCKER_ARCH}" != "default" ]; then \
|
||||
export CMAKE_ARGS="-DMUSA_ARCHITECTURES=${MUSA_DOCKER_ARCH}"; \
|
||||
fi && \
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
|
||||
cmake --build build --config Release --target llama-server -j$(nproc) && \
|
||||
mkdir -p /app/lib && \
|
||||
find build -name "*.so" -exec cp {} /app/lib \;
|
||||
|
||||
FROM ${BASE_MUSA_RUN_CONTAINER} AS runtime
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y libcurl4-openssl-dev libgomp1 curl
|
||||
|
||||
COPY --from=build /app/lib/ /
|
||||
COPY --from=build /app/build/bin/llama-server /llama-server
|
||||
|
||||
# Must be set to 0.0.0.0 so it can listen to requests from host machine
|
||||
ENV LLAMA_ARG_HOST=0.0.0.0
|
||||
|
||||
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
|
||||
|
||||
ENTRYPOINT [ "/llama-server" ]
|
||||
@@ -6,12 +6,12 @@ ARG ROCM_VERSION=5.6
|
||||
# Target the CUDA build image
|
||||
ARG BASE_ROCM_DEV_CONTAINER=rocm/dev-ubuntu-${UBUNTU_VERSION}:${ROCM_VERSION}-complete
|
||||
|
||||
FROM ${BASE_ROCM_DEV_CONTAINER} AS build
|
||||
FROM ${BASE_ROCM_DEV_CONTAINER} as build
|
||||
|
||||
# Unless otherwise specified, we make a fat build.
|
||||
# List from https://github.com/ggerganov/llama.cpp/pull/1087#issuecomment-1682807878
|
||||
# This is mostly tied to rocBLAS supported archs.
|
||||
ARG ROCM_DOCKER_ARCH="\
|
||||
ARG ROCM_DOCKER_ARCH=\
|
||||
gfx803 \
|
||||
gfx900 \
|
||||
gfx906 \
|
||||
@@ -21,7 +21,7 @@ ARG ROCM_DOCKER_ARCH="\
|
||||
gfx1030 \
|
||||
gfx1100 \
|
||||
gfx1101 \
|
||||
gfx1102"
|
||||
gfx1102
|
||||
|
||||
COPY requirements.txt requirements.txt
|
||||
COPY requirements requirements
|
||||
@@ -34,13 +34,11 @@ WORKDIR /app
|
||||
COPY . .
|
||||
|
||||
# Set nvcc architecture
|
||||
ENV AMDGPU_TARGETS=${ROCM_DOCKER_ARCH}
|
||||
ENV GPU_TARGETS=${ROCM_DOCKER_ARCH}
|
||||
# Enable ROCm
|
||||
ENV GGML_HIPBLAS=1
|
||||
ENV CC=/opt/rocm/llvm/bin/clang
|
||||
ENV CXX=/opt/rocm/llvm/bin/clang++
|
||||
# Must be set to 0.0.0.0 so it can listen to requests from host machine
|
||||
ENV LLAMA_ARG_HOST=0.0.0.0
|
||||
|
||||
# Enable cURL
|
||||
ENV LLAMA_CURL=1
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
ARG UBUNTU_VERSION=jammy
|
||||
|
||||
FROM ubuntu:$UBUNTU_VERSION AS build
|
||||
FROM ubuntu:$UBUNTU_VERSION as build
|
||||
|
||||
# Install build tools
|
||||
RUN apt update && apt install -y git build-essential cmake wget
|
||||
@@ -14,7 +14,7 @@ RUN wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key
|
||||
# Build it
|
||||
WORKDIR /app
|
||||
COPY . .
|
||||
RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_VULKAN=1 -DLLAMA_CURL=1 && \
|
||||
RUN cmake -B build -DGGML_VULKAN=1 -DLLAMA_CURL=1 && \
|
||||
cmake --build build --config Release --target llama-server
|
||||
|
||||
# Clean up
|
||||
@@ -23,8 +23,6 @@ RUN cp /app/build/bin/llama-server /llama-server && \
|
||||
rm -rf /app
|
||||
|
||||
ENV LC_ALL=C.utf8
|
||||
# Must be set to 0.0.0.0 so it can listen to requests from host machine
|
||||
ENV LLAMA_ARG_HOST=0.0.0.0
|
||||
|
||||
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
|
||||
|
||||
|
||||
@@ -1,33 +1,27 @@
|
||||
ARG UBUNTU_VERSION=22.04
|
||||
|
||||
FROM ubuntu:$UBUNTU_VERSION AS build
|
||||
FROM ubuntu:$UBUNTU_VERSION as build
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential git cmake libcurl4-openssl-dev
|
||||
apt-get install -y build-essential git libcurl4-openssl-dev curl
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
|
||||
RUN cmake -S . -B build -DGGML_BACKEND_DL=ON -DGGML_NATIVE=OFF -DGGML_CPU_ALL_VARIANTS=ON -DLLAMA_CURL=ON -DCMAKE_BUILD_TYPE=Release && \
|
||||
cmake --build build -j $(nproc) && \
|
||||
mkdir -p /app/lib && \
|
||||
find build -name "*.so" -exec cp {} /app/lib/ \;
|
||||
ENV LLAMA_CURL=1
|
||||
|
||||
FROM ubuntu:$UBUNTU_VERSION AS runtime
|
||||
RUN make -j$(nproc) llama-server
|
||||
|
||||
WORKDIR /app
|
||||
FROM ubuntu:$UBUNTU_VERSION as runtime
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y libcurl4-openssl-dev libgomp1 curl
|
||||
apt-get install -y libcurl4-openssl-dev libgomp1
|
||||
|
||||
COPY --from=build /app/build/bin/llama-server /app/
|
||||
COPY --from=build /app/lib/ /app/
|
||||
COPY --from=build /app/llama-server /llama-server
|
||||
|
||||
ENV LC_ALL=C.utf8
|
||||
# Must be set to 0.0.0.0 so it can listen to requests from host machine
|
||||
ENV LLAMA_ARG_HOST=0.0.0.0
|
||||
|
||||
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
|
||||
|
||||
ENTRYPOINT [ "/app/llama-server" ]
|
||||
ENTRYPOINT [ "/llama-server" ]
|
||||
|
||||
@@ -10,6 +10,7 @@
|
||||
"llama-embedding"
|
||||
"llama-server"
|
||||
"llama-quantize"
|
||||
"llama-train-text-from-scratch"
|
||||
];
|
||||
mkApp = name: {
|
||||
type = "app";
|
||||
|
||||
@@ -1,52 +1,13 @@
|
||||
{ inputs, ... }:
|
||||
|
||||
{
|
||||
perSystem =
|
||||
{
|
||||
config,
|
||||
lib,
|
||||
system,
|
||||
...
|
||||
}:
|
||||
{ config, lib, ... }:
|
||||
{
|
||||
devShells =
|
||||
let
|
||||
pkgs = import inputs.nixpkgs { inherit system; };
|
||||
stdenv = pkgs.stdenv;
|
||||
scripts = config.packages.python-scripts;
|
||||
in
|
||||
lib.pipe (config.packages) [
|
||||
(lib.concatMapAttrs (
|
||||
name: package: {
|
||||
${name} = pkgs.mkShell {
|
||||
name = "${name}";
|
||||
inputsFrom = [ package ];
|
||||
shellHook = ''
|
||||
echo "Entering ${name} devShell"
|
||||
'';
|
||||
};
|
||||
"${name}-extra" =
|
||||
if (name == "python-scripts") then
|
||||
null
|
||||
else
|
||||
pkgs.mkShell {
|
||||
name = "${name}-extra";
|
||||
inputsFrom = [
|
||||
package
|
||||
scripts
|
||||
];
|
||||
# Extra packages that *may* be used by some scripts
|
||||
packages = [
|
||||
pkgs.python3Packages.tiktoken
|
||||
];
|
||||
shellHook = ''
|
||||
echo "Entering ${name} devShell"
|
||||
addToSearchPath "LD_LIBRARY_PATH" "${lib.getLib stdenv.cc.cc}/lib"
|
||||
'';
|
||||
};
|
||||
}
|
||||
))
|
||||
(lib.filterAttrs (name: value: value != null))
|
||||
];
|
||||
lib.concatMapAttrs
|
||||
(name: package: {
|
||||
${name} = package.passthru.shell;
|
||||
${name + "-extra"} = package.passthru.shell-extra;
|
||||
})
|
||||
config.packages;
|
||||
};
|
||||
}
|
||||
|
||||
@@ -26,14 +26,16 @@
|
||||
config.cudaSupport = true;
|
||||
config.allowUnfreePredicate =
|
||||
p:
|
||||
builtins.all (
|
||||
license:
|
||||
license.free
|
||||
|| builtins.elem license.shortName [
|
||||
"CUDA EULA"
|
||||
"cuDNN EULA"
|
||||
]
|
||||
) (p.meta.licenses or [ p.meta.license ]);
|
||||
builtins.all
|
||||
(
|
||||
license:
|
||||
license.free
|
||||
|| builtins.elem license.shortName [
|
||||
"CUDA EULA"
|
||||
"cuDNN EULA"
|
||||
]
|
||||
)
|
||||
(p.meta.licenses or [ p.meta.license ]);
|
||||
};
|
||||
# Ensure dependencies use ROCm consistently
|
||||
pkgsRocm = import inputs.nixpkgs {
|
||||
|
||||
@@ -1,36 +0,0 @@
|
||||
{
|
||||
lib,
|
||||
llamaVersion,
|
||||
numpy,
|
||||
tqdm,
|
||||
sentencepiece,
|
||||
pyyaml,
|
||||
poetry-core,
|
||||
buildPythonPackage,
|
||||
pytestCheckHook,
|
||||
}:
|
||||
|
||||
buildPythonPackage {
|
||||
pname = "gguf";
|
||||
version = llamaVersion;
|
||||
pyproject = true;
|
||||
nativeBuildInputs = [ poetry-core ];
|
||||
propagatedBuildInputs = [
|
||||
numpy
|
||||
tqdm
|
||||
sentencepiece
|
||||
pyyaml
|
||||
];
|
||||
src = lib.cleanSource ../../gguf-py;
|
||||
pythonImportsCheck = [
|
||||
"numpy"
|
||||
"gguf"
|
||||
];
|
||||
nativeCheckInputs = [ pytestCheckHook ];
|
||||
doCheck = true;
|
||||
meta = with lib; {
|
||||
description = "Python package for writing binary files in the GGUF format";
|
||||
license = licenses.mit;
|
||||
maintainers = [ maintainers.ditsuke ];
|
||||
};
|
||||
}
|
||||
@@ -3,35 +3,31 @@
|
||||
glibc,
|
||||
config,
|
||||
stdenv,
|
||||
mkShell,
|
||||
runCommand,
|
||||
cmake,
|
||||
ninja,
|
||||
pkg-config,
|
||||
git,
|
||||
python3,
|
||||
mpi,
|
||||
blas,
|
||||
cudaPackages,
|
||||
autoAddDriverRunpath,
|
||||
darwin,
|
||||
rocmPackages,
|
||||
vulkan-headers,
|
||||
vulkan-loader,
|
||||
curl,
|
||||
shaderc,
|
||||
useBlas ?
|
||||
builtins.all (x: !x) [
|
||||
useCuda
|
||||
useMetalKit
|
||||
useRocm
|
||||
useVulkan
|
||||
]
|
||||
&& blas.meta.available,
|
||||
useBlas ? builtins.all (x: !x) [
|
||||
useCuda
|
||||
useMetalKit
|
||||
useRocm
|
||||
useVulkan
|
||||
] && blas.meta.available,
|
||||
useCuda ? config.cudaSupport,
|
||||
useMetalKit ? stdenv.isAarch64 && stdenv.isDarwin,
|
||||
# Increases the runtime closure size by ~700M
|
||||
useMpi ? false,
|
||||
useMpi ? false, # Increases the runtime closure size by ~700M
|
||||
useRocm ? config.rocmSupport,
|
||||
rocmGpuTargets ? builtins.concatStringsSep ";" rocmPackages.clr.gpuTargets,
|
||||
enableCurl ? true,
|
||||
useVulkan ? false,
|
||||
llamaVersion ? "0.0.0", # Arbitrary version, substituted by the flake
|
||||
@@ -40,8 +36,8 @@
|
||||
# otherwise we get libstdc++ errors downstream.
|
||||
effectiveStdenv ? if useCuda then cudaPackages.backendStdenv else stdenv,
|
||||
enableStatic ? effectiveStdenv.hostPlatform.isStatic,
|
||||
precompileMetalShaders ? false,
|
||||
}:
|
||||
precompileMetalShaders ? false
|
||||
}@inputs:
|
||||
|
||||
let
|
||||
inherit (lib)
|
||||
@@ -49,6 +45,7 @@ let
|
||||
cmakeFeature
|
||||
optionals
|
||||
strings
|
||||
versionOlder
|
||||
;
|
||||
|
||||
stdenv = throw "Use effectiveStdenv instead";
|
||||
@@ -64,11 +61,38 @@ let
|
||||
pnameSuffix =
|
||||
strings.optionalString (suffices != [ ])
|
||||
"-${strings.concatMapStringsSep "-" strings.toLower suffices}";
|
||||
descriptionSuffix = strings.optionalString (
|
||||
suffices != [ ]
|
||||
) ", accelerated with ${strings.concatStringsSep ", " suffices}";
|
||||
descriptionSuffix =
|
||||
strings.optionalString (suffices != [ ])
|
||||
", accelerated with ${strings.concatStringsSep ", " suffices}";
|
||||
|
||||
xcrunHost = runCommand "xcrunHost" { } ''
|
||||
executableSuffix = effectiveStdenv.hostPlatform.extensions.executable;
|
||||
|
||||
# TODO: package the Python in this repository in a Nix-like way.
|
||||
# It'd be nice to migrate to buildPythonPackage, as well as ensure this repo
|
||||
# is PEP 517-compatible, and ensure the correct .dist-info is generated.
|
||||
# https://peps.python.org/pep-0517/
|
||||
#
|
||||
# TODO: Package up each Python script or service appropriately, by making
|
||||
# them into "entrypoints"
|
||||
llama-python = python3.withPackages (
|
||||
ps: [
|
||||
ps.numpy
|
||||
ps.sentencepiece
|
||||
]
|
||||
);
|
||||
|
||||
# TODO(Green-Sky): find a better way to opt-into the heavy ml python runtime
|
||||
llama-python-extra = python3.withPackages (
|
||||
ps: [
|
||||
ps.numpy
|
||||
ps.sentencepiece
|
||||
ps.tiktoken
|
||||
ps.torchWithoutCuda
|
||||
ps.transformers
|
||||
]
|
||||
);
|
||||
|
||||
xcrunHost = runCommand "xcrunHost" {} ''
|
||||
mkdir -p $out/bin
|
||||
ln -s /usr/bin/xcrun $out/bin
|
||||
'';
|
||||
@@ -85,9 +109,16 @@ let
|
||||
++ optionals useMetalKit [ MetalKit ];
|
||||
|
||||
cudaBuildInputs = with cudaPackages; [
|
||||
cuda_cudart
|
||||
cuda_cccl # <nv/target>
|
||||
libcublas
|
||||
cuda_cccl.dev # <nv/target>
|
||||
|
||||
# A temporary hack for reducing the closure size, remove once cudaPackages
|
||||
# have stopped using lndir: https://github.com/NixOS/nixpkgs/issues/271792
|
||||
cuda_cudart.dev
|
||||
cuda_cudart.lib
|
||||
cuda_cudart.static
|
||||
libcublas.dev
|
||||
libcublas.lib
|
||||
libcublas.static
|
||||
];
|
||||
|
||||
rocmBuildInputs = with rocmPackages; [
|
||||
@@ -99,149 +130,184 @@ let
|
||||
vulkanBuildInputs = [
|
||||
vulkan-headers
|
||||
vulkan-loader
|
||||
shaderc
|
||||
];
|
||||
in
|
||||
|
||||
effectiveStdenv.mkDerivation (finalAttrs: {
|
||||
pname = "llama-cpp${pnameSuffix}";
|
||||
version = llamaVersion;
|
||||
effectiveStdenv.mkDerivation (
|
||||
finalAttrs: {
|
||||
pname = "llama-cpp${pnameSuffix}";
|
||||
version = llamaVersion;
|
||||
|
||||
# Note: none of the files discarded here are visible in the sandbox or
|
||||
# affect the output hash. This also means they can be modified without
|
||||
# triggering a rebuild.
|
||||
src = lib.cleanSourceWith {
|
||||
filter =
|
||||
name: type:
|
||||
let
|
||||
noneOf = builtins.all (x: !x);
|
||||
baseName = baseNameOf name;
|
||||
in
|
||||
noneOf [
|
||||
(lib.hasSuffix ".nix" name) # Ignore *.nix files when computing outPaths
|
||||
(lib.hasSuffix ".md" name) # Ignore *.md changes whe computing outPaths
|
||||
(lib.hasPrefix "." baseName) # Skip hidden files and directories
|
||||
(baseName == "flake.lock")
|
||||
# Note: none of the files discarded here are visible in the sandbox or
|
||||
# affect the output hash. This also means they can be modified without
|
||||
# triggering a rebuild.
|
||||
src = lib.cleanSourceWith {
|
||||
filter =
|
||||
name: type:
|
||||
let
|
||||
noneOf = builtins.all (x: !x);
|
||||
baseName = baseNameOf name;
|
||||
in
|
||||
noneOf [
|
||||
(lib.hasSuffix ".nix" name) # Ignore *.nix files when computing outPaths
|
||||
(lib.hasSuffix ".md" name) # Ignore *.md changes whe computing outPaths
|
||||
(lib.hasPrefix "." baseName) # Skip hidden files and directories
|
||||
(baseName == "flake.lock")
|
||||
];
|
||||
src = lib.cleanSource ../../.;
|
||||
};
|
||||
|
||||
postPatch = ''
|
||||
substituteInPlace ./ggml/src/ggml-metal.m \
|
||||
--replace '[bundle pathForResource:@"ggml-metal" ofType:@"metal"];' "@\"$out/bin/ggml-metal.metal\";"
|
||||
substituteInPlace ./ggml/src/ggml-metal.m \
|
||||
--replace '[bundle pathForResource:@"default" ofType:@"metallib"];' "@\"$out/bin/default.metallib\";"
|
||||
'';
|
||||
|
||||
# With PR#6015 https://github.com/ggerganov/llama.cpp/pull/6015,
|
||||
# `default.metallib` may be compiled with Metal compiler from XCode
|
||||
# and we need to escape sandbox on MacOS to access Metal compiler.
|
||||
# `xcrun` is used find the path of the Metal compiler, which is varible
|
||||
# and not on $PATH
|
||||
# see https://github.com/ggerganov/llama.cpp/pull/6118 for discussion
|
||||
__noChroot = effectiveStdenv.isDarwin && useMetalKit && precompileMetalShaders;
|
||||
|
||||
nativeBuildInputs =
|
||||
[
|
||||
cmake
|
||||
ninja
|
||||
pkg-config
|
||||
git
|
||||
]
|
||||
++ optionals useCuda [
|
||||
cudaPackages.cuda_nvcc
|
||||
|
||||
# TODO: Replace with autoAddDriverRunpath
|
||||
# once https://github.com/NixOS/nixpkgs/pull/275241 has been merged
|
||||
cudaPackages.autoAddOpenGLRunpathHook
|
||||
]
|
||||
++ optionals (effectiveStdenv.hostPlatform.isGnu && enableStatic) [
|
||||
glibc.static
|
||||
] ++ optionals (effectiveStdenv.isDarwin && useMetalKit && precompileMetalShaders) [
|
||||
xcrunHost
|
||||
];
|
||||
src = lib.cleanSource ../../.;
|
||||
};
|
||||
|
||||
postPatch = ''
|
||||
substituteInPlace ./ggml/src/ggml-metal/ggml-metal.m \
|
||||
--replace '[bundle pathForResource:@"ggml-metal" ofType:@"metal"];' "@\"$out/bin/ggml-metal.metal\";"
|
||||
substituteInPlace ./ggml/src/ggml-metal/ggml-metal.m \
|
||||
--replace '[bundle pathForResource:@"default" ofType:@"metallib"];' "@\"$out/bin/default.metallib\";"
|
||||
'';
|
||||
buildInputs =
|
||||
optionals effectiveStdenv.isDarwin darwinBuildInputs
|
||||
++ optionals useCuda cudaBuildInputs
|
||||
++ optionals useMpi [ mpi ]
|
||||
++ optionals useRocm rocmBuildInputs
|
||||
++ optionals useBlas [ blas ]
|
||||
++ optionals useVulkan vulkanBuildInputs
|
||||
++ optionals enableCurl [ curl ];
|
||||
|
||||
# With PR#6015 https://github.com/ggerganov/llama.cpp/pull/6015,
|
||||
# `default.metallib` may be compiled with Metal compiler from XCode
|
||||
# and we need to escape sandbox on MacOS to access Metal compiler.
|
||||
# `xcrun` is used find the path of the Metal compiler, which is varible
|
||||
# and not on $PATH
|
||||
# see https://github.com/ggerganov/llama.cpp/pull/6118 for discussion
|
||||
__noChroot = effectiveStdenv.isDarwin && useMetalKit && precompileMetalShaders;
|
||||
|
||||
nativeBuildInputs =
|
||||
[
|
||||
cmake
|
||||
ninja
|
||||
pkg-config
|
||||
git
|
||||
]
|
||||
++ optionals useCuda [
|
||||
cudaPackages.cuda_nvcc
|
||||
|
||||
autoAddDriverRunpath
|
||||
]
|
||||
++ optionals (effectiveStdenv.hostPlatform.isGnu && enableStatic) [ glibc.static ]
|
||||
++ optionals (effectiveStdenv.isDarwin && useMetalKit && precompileMetalShaders) [ xcrunHost ];
|
||||
|
||||
buildInputs =
|
||||
optionals effectiveStdenv.isDarwin darwinBuildInputs
|
||||
++ optionals useCuda cudaBuildInputs
|
||||
++ optionals useMpi [ mpi ]
|
||||
++ optionals useRocm rocmBuildInputs
|
||||
++ optionals useBlas [ blas ]
|
||||
++ optionals useVulkan vulkanBuildInputs
|
||||
++ optionals enableCurl [ curl ];
|
||||
|
||||
cmakeFlags =
|
||||
[
|
||||
(cmakeBool "LLAMA_BUILD_SERVER" true)
|
||||
(cmakeBool "BUILD_SHARED_LIBS" (!enableStatic))
|
||||
(cmakeBool "CMAKE_SKIP_BUILD_RPATH" true)
|
||||
(cmakeBool "LLAMA_CURL" enableCurl)
|
||||
(cmakeBool "GGML_NATIVE" false)
|
||||
(cmakeBool "GGML_BLAS" useBlas)
|
||||
(cmakeBool "GGML_CUDA" useCuda)
|
||||
(cmakeBool "GGML_HIP" useRocm)
|
||||
(cmakeBool "GGML_METAL" useMetalKit)
|
||||
(cmakeBool "GGML_VULKAN" useVulkan)
|
||||
(cmakeBool "GGML_STATIC" enableStatic)
|
||||
]
|
||||
++ optionals useCuda [
|
||||
(
|
||||
with cudaPackages.flags;
|
||||
cmakeFeature "CMAKE_CUDA_ARCHITECTURES" (
|
||||
builtins.concatStringsSep ";" (map dropDot cudaCapabilities)
|
||||
cmakeFlags =
|
||||
[
|
||||
(cmakeBool "LLAMA_BUILD_SERVER" true)
|
||||
(cmakeBool "BUILD_SHARED_LIBS" (!enableStatic))
|
||||
(cmakeBool "CMAKE_SKIP_BUILD_RPATH" true)
|
||||
(cmakeBool "LLAMA_CURL" enableCurl)
|
||||
(cmakeBool "GGML_NATIVE" false)
|
||||
(cmakeBool "GGML_BLAS" useBlas)
|
||||
(cmakeBool "GGML_CUDA" useCuda)
|
||||
(cmakeBool "GGML_HIPBLAS" useRocm)
|
||||
(cmakeBool "GGML_METAL" useMetalKit)
|
||||
(cmakeBool "GGML_VULKAN" useVulkan)
|
||||
(cmakeBool "GGML_STATIC" enableStatic)
|
||||
]
|
||||
++ optionals useCuda [
|
||||
(
|
||||
with cudaPackages.flags;
|
||||
cmakeFeature "CMAKE_CUDA_ARCHITECTURES" (
|
||||
builtins.concatStringsSep ";" (map dropDot cudaCapabilities)
|
||||
)
|
||||
)
|
||||
)
|
||||
]
|
||||
++ optionals useRocm [
|
||||
(cmakeFeature "CMAKE_HIP_COMPILER" "${rocmPackages.llvm.clang}/bin/clang")
|
||||
(cmakeFeature "CMAKE_HIP_ARCHITECTURES" rocmGpuTargets)
|
||||
]
|
||||
++ optionals useMetalKit [
|
||||
(lib.cmakeFeature "CMAKE_C_FLAGS" "-D__ARM_FEATURE_DOTPROD=1")
|
||||
(cmakeBool "GGML_METAL_EMBED_LIBRARY" (!precompileMetalShaders))
|
||||
];
|
||||
]
|
||||
++ optionals useRocm [
|
||||
(cmakeFeature "CMAKE_HIP_COMPILER" "${rocmPackages.llvm.clang}/bin/clang")
|
||||
(cmakeFeature "CMAKE_HIP_ARCHITECTURES" (builtins.concatStringsSep ";" rocmPackages.clr.gpuTargets))
|
||||
]
|
||||
++ optionals useMetalKit [
|
||||
(lib.cmakeFeature "CMAKE_C_FLAGS" "-D__ARM_FEATURE_DOTPROD=1")
|
||||
(cmakeBool "GGML_METAL_EMBED_LIBRARY" (!precompileMetalShaders))
|
||||
];
|
||||
|
||||
# Environment variables needed for ROCm
|
||||
env = optionals useRocm {
|
||||
ROCM_PATH = "${rocmPackages.clr}";
|
||||
HIP_DEVICE_LIB_PATH = "${rocmPackages.rocm-device-libs}/amdgcn/bitcode";
|
||||
};
|
||||
# Environment variables needed for ROCm
|
||||
env = optionals useRocm {
|
||||
ROCM_PATH = "${rocmPackages.clr}";
|
||||
HIP_DEVICE_LIB_PATH = "${rocmPackages.rocm-device-libs}/amdgcn/bitcode";
|
||||
};
|
||||
|
||||
# TODO(SomeoneSerge): It's better to add proper install targets at the CMake level,
|
||||
# if they haven't been added yet.
|
||||
postInstall = ''
|
||||
mkdir -p $out/include
|
||||
cp $src/include/llama.h $out/include/
|
||||
'';
|
||||
# TODO(SomeoneSerge): It's better to add proper install targets at the CMake level,
|
||||
# if they haven't been added yet.
|
||||
postInstall = ''
|
||||
mkdir -p $out/include
|
||||
cp $src/include/llama.h $out/include/
|
||||
'';
|
||||
|
||||
meta = {
|
||||
# Configurations we don't want even the CI to evaluate. Results in the
|
||||
# "unsupported platform" messages. This is mostly a no-op, because
|
||||
# cudaPackages would've refused to evaluate anyway.
|
||||
badPlatforms = optionals useCuda lib.platforms.darwin;
|
||||
# Define the shells here, but don't add in the inputsFrom to avoid recursion.
|
||||
passthru = {
|
||||
inherit
|
||||
useBlas
|
||||
useCuda
|
||||
useMetalKit
|
||||
useMpi
|
||||
useRocm
|
||||
useVulkan
|
||||
;
|
||||
|
||||
# Configurations that are known to result in build failures. Can be
|
||||
# overridden by importing Nixpkgs with `allowBroken = true`.
|
||||
broken = (useMetalKit && !effectiveStdenv.isDarwin);
|
||||
shell = mkShell {
|
||||
name = "shell-${finalAttrs.finalPackage.name}";
|
||||
description = "contains numpy and sentencepiece";
|
||||
buildInputs = [ llama-python ];
|
||||
inputsFrom = [ finalAttrs.finalPackage ];
|
||||
shellHook = ''
|
||||
addToSearchPath "LD_LIBRARY_PATH" "${lib.getLib effectiveStdenv.cc.cc}/lib"
|
||||
'';
|
||||
};
|
||||
|
||||
description = "Inference of LLaMA model in pure C/C++${descriptionSuffix}";
|
||||
homepage = "https://github.com/ggerganov/llama.cpp/";
|
||||
license = lib.licenses.mit;
|
||||
shell-extra = mkShell {
|
||||
name = "shell-extra-${finalAttrs.finalPackage.name}";
|
||||
description = "contains numpy, sentencepiece, torchWithoutCuda, and transformers";
|
||||
buildInputs = [ llama-python-extra ];
|
||||
inputsFrom = [ finalAttrs.finalPackage ];
|
||||
};
|
||||
};
|
||||
|
||||
# Accommodates `nix run` and `lib.getExe`
|
||||
mainProgram = "llama-cli";
|
||||
meta = {
|
||||
# Configurations we don't want even the CI to evaluate. Results in the
|
||||
# "unsupported platform" messages. This is mostly a no-op, because
|
||||
# cudaPackages would've refused to evaluate anyway.
|
||||
badPlatforms = optionals useCuda lib.platforms.darwin;
|
||||
|
||||
# These people might respond, on the best effort basis, if you ping them
|
||||
# in case of Nix-specific regressions or for reviewing Nix-specific PRs.
|
||||
# Consider adding yourself to this list if you want to ensure this flake
|
||||
# stays maintained and you're willing to invest your time. Do not add
|
||||
# other people without their consent. Consider removing people after
|
||||
# they've been unreachable for long periods of time.
|
||||
# Configurations that are known to result in build failures. Can be
|
||||
# overridden by importing Nixpkgs with `allowBroken = true`.
|
||||
broken = (useMetalKit && !effectiveStdenv.isDarwin);
|
||||
|
||||
# Note that lib.maintainers is defined in Nixpkgs, but you may just add
|
||||
# an attrset following the same format as in
|
||||
# https://github.com/NixOS/nixpkgs/blob/f36a80e54da29775c78d7eff0e628c2b4e34d1d7/maintainers/maintainer-list.nix
|
||||
maintainers = with lib.maintainers; [
|
||||
philiptaron
|
||||
SomeoneSerge
|
||||
];
|
||||
description = "Inference of LLaMA model in pure C/C++${descriptionSuffix}";
|
||||
homepage = "https://github.com/ggerganov/llama.cpp/";
|
||||
license = lib.licenses.mit;
|
||||
|
||||
# Extend `badPlatforms` instead
|
||||
platforms = lib.platforms.all;
|
||||
};
|
||||
})
|
||||
# Accommodates `nix run` and `lib.getExe`
|
||||
mainProgram = "llama-cli";
|
||||
|
||||
# These people might respond, on the best effort basis, if you ping them
|
||||
# in case of Nix-specific regressions or for reviewing Nix-specific PRs.
|
||||
# Consider adding yourself to this list if you want to ensure this flake
|
||||
# stays maintained and you're willing to invest your time. Do not add
|
||||
# other people without their consent. Consider removing people after
|
||||
# they've been unreachable for long periods of time.
|
||||
|
||||
# Note that lib.maintainers is defined in Nixpkgs, but you may just add
|
||||
# an attrset following the same format as in
|
||||
# https://github.com/NixOS/nixpkgs/blob/f36a80e54da29775c78d7eff0e628c2b4e34d1d7/maintainers/maintainer-list.nix
|
||||
maintainers = with lib.maintainers; [
|
||||
philiptaron
|
||||
SomeoneSerge
|
||||
];
|
||||
|
||||
# Extend `badPlatforms` instead
|
||||
platforms = lib.platforms.all;
|
||||
};
|
||||
}
|
||||
)
|
||||
|
||||
@@ -1,66 +0,0 @@
|
||||
{
|
||||
lib,
|
||||
stdenv,
|
||||
buildPythonPackage,
|
||||
poetry-core,
|
||||
mkShell,
|
||||
python3Packages,
|
||||
gguf-py,
|
||||
}@inputs:
|
||||
|
||||
let
|
||||
llama-python-deps = with python3Packages; [
|
||||
numpy
|
||||
sentencepiece
|
||||
transformers
|
||||
protobuf
|
||||
torchWithoutCuda
|
||||
gguf-py
|
||||
tqdm
|
||||
|
||||
# for scripts/compare-llama-bench.py
|
||||
gitpython
|
||||
tabulate
|
||||
|
||||
# for examples/pydantic-models-to-grammar-examples.py
|
||||
docstring-parser
|
||||
pydantic
|
||||
|
||||
];
|
||||
|
||||
llama-python-test-deps = with python3Packages; [
|
||||
# Server bench
|
||||
matplotlib
|
||||
|
||||
# server tests
|
||||
openai
|
||||
pytest
|
||||
prometheus-client
|
||||
];
|
||||
in
|
||||
|
||||
buildPythonPackage ({
|
||||
pname = "llama-scripts";
|
||||
version = "0.0.0";
|
||||
pyproject = true;
|
||||
|
||||
# NOTE: The files filtered out here are not visible in the build sandbox, neither
|
||||
# do they affect the output hash. They can be modified without triggering a rebuild.
|
||||
src = lib.cleanSourceWith {
|
||||
filter =
|
||||
name: type:
|
||||
let
|
||||
any = builtins.any (x: x);
|
||||
baseName = builtins.baseNameOf name;
|
||||
in
|
||||
any [
|
||||
(lib.hasSuffix ".py" name)
|
||||
(baseName == "README.md")
|
||||
(baseName == "pyproject.toml")
|
||||
];
|
||||
src = lib.cleanSource ../../.;
|
||||
};
|
||||
nativeBuildInputs = [ poetry-core ];
|
||||
nativeCheckInputs = llama-python-test-deps;
|
||||
dependencies = llama-python-deps;
|
||||
})
|
||||
@@ -1,41 +1,19 @@
|
||||
{
|
||||
lib,
|
||||
newScope,
|
||||
python3,
|
||||
llamaVersion ? "0.0.0",
|
||||
}:
|
||||
|
||||
let
|
||||
pythonPackages = python3.pkgs;
|
||||
buildPythonPackage = pythonPackages.buildPythonPackage;
|
||||
numpy = pythonPackages.numpy;
|
||||
tqdm = pythonPackages.tqdm;
|
||||
sentencepiece = pythonPackages.sentencepiece;
|
||||
pyyaml = pythonPackages.pyyaml;
|
||||
poetry-core = pythonPackages.poetry-core;
|
||||
pytestCheckHook = pythonPackages.pytestCheckHook;
|
||||
in
|
||||
|
||||
# We're using `makeScope` instead of just writing out an attrset
|
||||
# because it allows users to apply overlays later using `overrideScope'`.
|
||||
# Cf. https://noogle.dev/f/lib/makeScope
|
||||
|
||||
lib.makeScope newScope (self: {
|
||||
inherit llamaVersion;
|
||||
gguf-py = self.callPackage ./package-gguf-py.nix {
|
||||
inherit
|
||||
buildPythonPackage
|
||||
numpy
|
||||
tqdm
|
||||
sentencepiece
|
||||
poetry-core
|
||||
pyyaml
|
||||
pytestCheckHook
|
||||
;
|
||||
};
|
||||
python-scripts = self.callPackage ./python-scripts.nix { inherit buildPythonPackage poetry-core; };
|
||||
llama-cpp = self.callPackage ./package.nix { };
|
||||
docker = self.callPackage ./docker.nix { };
|
||||
docker-min = self.callPackage ./docker.nix { interactive = false; };
|
||||
sif = self.callPackage ./sif.nix { };
|
||||
})
|
||||
lib.makeScope newScope (
|
||||
self: {
|
||||
inherit llamaVersion;
|
||||
llama-cpp = self.callPackage ./package.nix { };
|
||||
docker = self.callPackage ./docker.nix { };
|
||||
docker-min = self.callPackage ./docker.nix { interactive = false; };
|
||||
sif = self.callPackage ./sif.nix { };
|
||||
}
|
||||
)
|
||||
|
||||
@@ -8,11 +8,13 @@ arg1="$1"
|
||||
shift
|
||||
|
||||
if [[ "$arg1" == '--convert' || "$arg1" == '-c' ]]; then
|
||||
exec python3 ./convert_hf_to_gguf.py "$@"
|
||||
python3 ./convert-hf-to-gguf.py "$@"
|
||||
elif [[ "$arg1" == '--quantize' || "$arg1" == '-q' ]]; then
|
||||
exec ./llama-quantize "$@"
|
||||
./llama-quantize "$@"
|
||||
elif [[ "$arg1" == '--run' || "$arg1" == '-r' ]]; then
|
||||
exec ./llama-cli "$@"
|
||||
./llama-cli "$@"
|
||||
elif [[ "$arg1" == '--finetune' || "$arg1" == '-f' ]]; then
|
||||
./llama-finetune "$@"
|
||||
elif [[ "$arg1" == '--all-in-one' || "$arg1" == '-a' ]]; then
|
||||
echo "Converting PTH to GGML..."
|
||||
for i in `ls $1/$2/ggml-model-f16.bin*`; do
|
||||
@@ -20,11 +22,11 @@ elif [[ "$arg1" == '--all-in-one' || "$arg1" == '-a' ]]; then
|
||||
echo "Skip model quantization, it already exists: ${i/f16/q4_0}"
|
||||
else
|
||||
echo "Converting PTH to GGML: $i into ${i/f16/q4_0}..."
|
||||
exec ./llama-quantize "$i" "${i/f16/q4_0}" q4_0
|
||||
./llama-quantize "$i" "${i/f16/q4_0}" q4_0
|
||||
fi
|
||||
done
|
||||
elif [[ "$arg1" == '--server' || "$arg1" == '-s' ]]; then
|
||||
exec ./llama-server "$@"
|
||||
./llama-server "$@"
|
||||
else
|
||||
echo "Unknown command: $arg1"
|
||||
echo "Available commands: "
|
||||
@@ -34,6 +36,8 @@ else
|
||||
echo " ex: --outtype f16 \"/models/7B/\" "
|
||||
echo " --quantize (-q): Optimize with quantization process ggml"
|
||||
echo " ex: \"/models/7B/ggml-model-f16.bin\" \"/models/7B/ggml-model-q4_0.bin\" 2"
|
||||
echo " --finetune (-f): Run finetune command to create a lora finetune of the model"
|
||||
echo " See documentation for finetune for command-line parameters"
|
||||
echo " --all-in-one (-a): Execute --convert & --quantize"
|
||||
echo " ex: \"/models/\" 7B"
|
||||
echo " --server (-s): Run a model on the server"
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
*.o
|
||||
*.a
|
||||
.cache/
|
||||
# Do not ignore .git directory, otherwise the reported build number will always be 0
|
||||
.git/
|
||||
.github/
|
||||
.gitignore
|
||||
.vs/
|
||||
|
||||
2
.ecrc
2
.ecrc
@@ -1,5 +1,5 @@
|
||||
{
|
||||
"Exclude": ["^\\.gitmodules$", "stb_image\\.h"],
|
||||
"Exclude": ["^\\.gitmodules$"],
|
||||
"Disable": {
|
||||
"IndentSize": true
|
||||
}
|
||||
|
||||
@@ -24,16 +24,6 @@ insert_final_newline = unset
|
||||
[examples/server/public/*]
|
||||
indent_size = 2
|
||||
|
||||
[examples/server/public/deps_*]
|
||||
trim_trailing_whitespace = unset
|
||||
indent_style = unset
|
||||
indent_size = unset
|
||||
|
||||
[examples/server/deps_*]
|
||||
trim_trailing_whitespace = unset
|
||||
indent_style = unset
|
||||
indent_size = unset
|
||||
|
||||
[examples/llama.swiftui/llama.swiftui.xcodeproj/*]
|
||||
indent_style = tab
|
||||
|
||||
|
||||
50
.github/ISSUE_TEMPLATE/01-bug-low.yml
vendored
Normal file
50
.github/ISSUE_TEMPLATE/01-bug-low.yml
vendored
Normal file
@@ -0,0 +1,50 @@
|
||||
name: Low Severity Bugs
|
||||
description: Used to report low severity bugs in llama.cpp (e.g. cosmetic issues, non critical UI glitches)
|
||||
title: "Bug: "
|
||||
labels: ["bug-unconfirmed", "low severity"]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Thanks for taking the time to fill out this bug report!
|
||||
Please include information about your system, the steps to reproduce the bug,
|
||||
and the version of llama.cpp that you are using.
|
||||
If possible, please provide a minimal code example that reproduces the bug.
|
||||
- type: textarea
|
||||
id: what-happened
|
||||
attributes:
|
||||
label: What happened?
|
||||
description: Also tell us, what did you expect to happen?
|
||||
placeholder: Tell us what you see!
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: version
|
||||
attributes:
|
||||
label: Name and Version
|
||||
description: Which executable and which version of our software are you running? (use `--version` to get a version string)
|
||||
placeholder: |
|
||||
$./llama-cli --version
|
||||
version: 2999 (42b4109e)
|
||||
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: operating-system
|
||||
attributes:
|
||||
label: What operating system are you seeing the problem on?
|
||||
multiple: true
|
||||
options:
|
||||
- Linux
|
||||
- Mac
|
||||
- Windows
|
||||
- BSD
|
||||
- Other? (Please let us know in description)
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
id: logs
|
||||
attributes:
|
||||
label: Relevant log output
|
||||
description: Please copy and paste any relevant log output. This will be automatically formatted into code, so no need for backticks.
|
||||
render: shell
|
||||
77
.github/ISSUE_TEMPLATE/010-bug-compilation.yml
vendored
77
.github/ISSUE_TEMPLATE/010-bug-compilation.yml
vendored
@@ -1,77 +0,0 @@
|
||||
name: Bug (compilation)
|
||||
description: Something goes wrong when trying to compile llama.cpp.
|
||||
title: "Compile bug: "
|
||||
labels: ["bug-unconfirmed", "compilation"]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
Thanks for taking the time to fill out this bug report!
|
||||
This issue template is intended for bug reports where the compilation of llama.cpp fails.
|
||||
Before opening an issue, please confirm that the compilation still fails with `-DGGML_CCACHE=OFF`.
|
||||
If the compilation succeeds with ccache disabled you should be able to permanently fix the issue
|
||||
by clearing `~/.cache/ccache` (on Linux).
|
||||
- type: textarea
|
||||
id: commit
|
||||
attributes:
|
||||
label: Git commit
|
||||
description: Which commit are you trying to compile?
|
||||
placeholder: |
|
||||
$git rev-parse HEAD
|
||||
84a07a17b1b08cf2b9747c633a2372782848a27f
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: operating-system
|
||||
attributes:
|
||||
label: Operating systems
|
||||
description: Which operating systems do you know to be affected?
|
||||
multiple: true
|
||||
options:
|
||||
- Linux
|
||||
- Mac
|
||||
- Windows
|
||||
- BSD
|
||||
- Other? (Please let us know in description)
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: backends
|
||||
attributes:
|
||||
label: GGML backends
|
||||
description: Which GGML backends do you know to be affected?
|
||||
options: [AMX, BLAS, CPU, CUDA, HIP, Kompute, Metal, Musa, RPC, SYCL, Vulkan]
|
||||
multiple: true
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: info
|
||||
attributes:
|
||||
label: Problem description & steps to reproduce
|
||||
description: >
|
||||
Please give us a summary of the problem and tell us how to reproduce it.
|
||||
If you can narrow down the bug to specific compile flags, that information would be very much appreciated by us.
|
||||
placeholder: >
|
||||
I'm trying to compile llama.cpp with CUDA support on a fresh install of Ubuntu and get error XY.
|
||||
Here are the exact commands that I used: ...
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: first_bad_commit
|
||||
attributes:
|
||||
label: First Bad Commit
|
||||
description: >
|
||||
If the bug was not present on an earlier version: when did it start appearing?
|
||||
If possible, please do a git bisect and identify the exact commit that introduced the bug.
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
id: logs
|
||||
attributes:
|
||||
label: Relevant log output
|
||||
description: >
|
||||
Please copy and paste any relevant log output, including the command that you entered and any generated text.
|
||||
This will be automatically formatted into code, so no need for backticks.
|
||||
render: shell
|
||||
validations:
|
||||
required: true
|
||||
101
.github/ISSUE_TEMPLATE/011-bug-results.yml
vendored
101
.github/ISSUE_TEMPLATE/011-bug-results.yml
vendored
@@ -1,101 +0,0 @@
|
||||
name: Bug (model use)
|
||||
description: Something goes wrong when using a model (in general, not specific to a single llama.cpp module).
|
||||
title: "Eval bug: "
|
||||
labels: ["bug-unconfirmed", "model evaluation"]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
Thanks for taking the time to fill out this bug report!
|
||||
This issue template is intended for bug reports where the model evaluation results
|
||||
(i.e. the generated text) are incorrect or llama.cpp crashes during model evaluation.
|
||||
If you encountered the issue while using an external UI (e.g. ollama),
|
||||
please reproduce your issue using one of the examples/binaries in this repository.
|
||||
The `llama-cli` binary can be used for simple and reproducible model inference.
|
||||
- type: textarea
|
||||
id: version
|
||||
attributes:
|
||||
label: Name and Version
|
||||
description: Which version of our software are you running? (use `--version` to get a version string)
|
||||
placeholder: |
|
||||
$./llama-cli --version
|
||||
version: 2999 (42b4109e)
|
||||
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: operating-system
|
||||
attributes:
|
||||
label: Operating systems
|
||||
description: Which operating systems do you know to be affected?
|
||||
multiple: true
|
||||
options:
|
||||
- Linux
|
||||
- Mac
|
||||
- Windows
|
||||
- BSD
|
||||
- Other? (Please let us know in description)
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: backends
|
||||
attributes:
|
||||
label: GGML backends
|
||||
description: Which GGML backends do you know to be affected?
|
||||
options: [AMX, BLAS, CPU, CUDA, HIP, Kompute, Metal, Musa, RPC, SYCL, Vulkan]
|
||||
multiple: true
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: hardware
|
||||
attributes:
|
||||
label: Hardware
|
||||
description: Which CPUs/GPUs are you using?
|
||||
placeholder: >
|
||||
e.g. Ryzen 5950X + 2x RTX 4090
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: model
|
||||
attributes:
|
||||
label: Models
|
||||
description: >
|
||||
Which model(s) at which quantization were you using when encountering the bug?
|
||||
If you downloaded a GGUF file off of Huggingface, please provide a link.
|
||||
placeholder: >
|
||||
e.g. Meta LLaMA 3.1 Instruct 8b q4_K_M
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
id: info
|
||||
attributes:
|
||||
label: Problem description & steps to reproduce
|
||||
description: >
|
||||
Please give us a summary of the problem and tell us how to reproduce it.
|
||||
If you can narrow down the bug to specific hardware, compile flags, or command line arguments,
|
||||
that information would be very much appreciated by us.
|
||||
placeholder: >
|
||||
e.g. when I run llama-cli with -ngl 99 I get garbled outputs.
|
||||
When I use -ngl 0 it works correctly.
|
||||
Here are the exact commands that I used: ...
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: first_bad_commit
|
||||
attributes:
|
||||
label: First Bad Commit
|
||||
description: >
|
||||
If the bug was not present on an earlier version: when did it start appearing?
|
||||
If possible, please do a git bisect and identify the exact commit that introduced the bug.
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
id: logs
|
||||
attributes:
|
||||
label: Relevant log output
|
||||
description: >
|
||||
Please copy and paste any relevant log output, including the command that you entered and any generated text.
|
||||
This will be automatically formatted into code, so no need for backticks.
|
||||
render: shell
|
||||
validations:
|
||||
required: true
|
||||
81
.github/ISSUE_TEMPLATE/019-bug-misc.yml
vendored
81
.github/ISSUE_TEMPLATE/019-bug-misc.yml
vendored
@@ -1,81 +0,0 @@
|
||||
name: Bug (misc.)
|
||||
description: Something is not working the way it should (and it's not covered by any of the above cases).
|
||||
title: "Misc. bug: "
|
||||
labels: ["bug-unconfirmed"]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
Thanks for taking the time to fill out this bug report!
|
||||
This issue template is intended for miscellaneous bugs that don't fit into any other category.
|
||||
If you encountered the issue while using an external UI (e.g. ollama),
|
||||
please reproduce your issue using one of the examples/binaries in this repository.
|
||||
- type: textarea
|
||||
id: version
|
||||
attributes:
|
||||
label: Name and Version
|
||||
description: Which version of our software is affected? (You can use `--version` to get a version string.)
|
||||
placeholder: |
|
||||
$./llama-cli --version
|
||||
version: 2999 (42b4109e)
|
||||
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: operating-system
|
||||
attributes:
|
||||
label: Operating systems
|
||||
description: Which operating systems do you know to be affected?
|
||||
multiple: true
|
||||
options:
|
||||
- Linux
|
||||
- Mac
|
||||
- Windows
|
||||
- BSD
|
||||
- Other? (Please let us know in description)
|
||||
validations:
|
||||
required: false
|
||||
- type: dropdown
|
||||
id: module
|
||||
attributes:
|
||||
label: Which llama.cpp modules do you know to be affected?
|
||||
multiple: true
|
||||
options:
|
||||
- Documentation/Github
|
||||
- libllama (core library)
|
||||
- llama-cli
|
||||
- llama-server
|
||||
- llama-bench
|
||||
- llama-quantize
|
||||
- Python/Bash scripts
|
||||
- Test code
|
||||
- Other (Please specify in the next section)
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
id: info
|
||||
attributes:
|
||||
label: Problem description & steps to reproduce
|
||||
description: >
|
||||
Please give us a summary of the problem and tell us how to reproduce it (if applicable).
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: first_bad_commit
|
||||
attributes:
|
||||
label: First Bad Commit
|
||||
description: >
|
||||
If the bug was not present on an earlier version and it's not trivial to track down: when did it start appearing?
|
||||
If possible, please do a git bisect and identify the exact commit that introduced the bug.
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
id: logs
|
||||
attributes:
|
||||
label: Relevant log output
|
||||
description: >
|
||||
If applicable, please copy and paste any relevant log output, including the command that you entered and any generated text.
|
||||
This will be automatically formatted into code, so no need for backticks.
|
||||
render: shell
|
||||
validations:
|
||||
required: false
|
||||
50
.github/ISSUE_TEMPLATE/02-bug-medium.yml
vendored
Normal file
50
.github/ISSUE_TEMPLATE/02-bug-medium.yml
vendored
Normal file
@@ -0,0 +1,50 @@
|
||||
name: Medium Severity Bug
|
||||
description: Used to report medium severity bugs in llama.cpp (e.g. Malfunctioning Features but generally still useable)
|
||||
title: "Bug: "
|
||||
labels: ["bug-unconfirmed", "medium severity"]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Thanks for taking the time to fill out this bug report!
|
||||
Please include information about your system, the steps to reproduce the bug,
|
||||
and the version of llama.cpp that you are using.
|
||||
If possible, please provide a minimal code example that reproduces the bug.
|
||||
- type: textarea
|
||||
id: what-happened
|
||||
attributes:
|
||||
label: What happened?
|
||||
description: Also tell us, what did you expect to happen?
|
||||
placeholder: Tell us what you see!
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: version
|
||||
attributes:
|
||||
label: Name and Version
|
||||
description: Which executable and which version of our software are you running? (use `--version` to get a version string)
|
||||
placeholder: |
|
||||
$./llama-cli --version
|
||||
version: 2999 (42b4109e)
|
||||
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: operating-system
|
||||
attributes:
|
||||
label: What operating system are you seeing the problem on?
|
||||
multiple: true
|
||||
options:
|
||||
- Linux
|
||||
- Mac
|
||||
- Windows
|
||||
- BSD
|
||||
- Other? (Please let us know in description)
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
id: logs
|
||||
attributes:
|
||||
label: Relevant log output
|
||||
description: Please copy and paste any relevant log output. This will be automatically formatted into code, so no need for backticks.
|
||||
render: shell
|
||||
50
.github/ISSUE_TEMPLATE/03-bug-high.yml
vendored
Normal file
50
.github/ISSUE_TEMPLATE/03-bug-high.yml
vendored
Normal file
@@ -0,0 +1,50 @@
|
||||
name: High Severity Bug
|
||||
description: Used to report high severity bugs in llama.cpp (e.g. Malfunctioning features hindering important common workflow)
|
||||
title: "Bug: "
|
||||
labels: ["bug-unconfirmed", "high severity"]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Thanks for taking the time to fill out this bug report!
|
||||
Please include information about your system, the steps to reproduce the bug,
|
||||
and the version of llama.cpp that you are using.
|
||||
If possible, please provide a minimal code example that reproduces the bug.
|
||||
- type: textarea
|
||||
id: what-happened
|
||||
attributes:
|
||||
label: What happened?
|
||||
description: Also tell us, what did you expect to happen?
|
||||
placeholder: Tell us what you see!
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: version
|
||||
attributes:
|
||||
label: Name and Version
|
||||
description: Which executable and which version of our software are you running? (use `--version` to get a version string)
|
||||
placeholder: |
|
||||
$./llama-cli --version
|
||||
version: 2999 (42b4109e)
|
||||
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: operating-system
|
||||
attributes:
|
||||
label: What operating system are you seeing the problem on?
|
||||
multiple: true
|
||||
options:
|
||||
- Linux
|
||||
- Mac
|
||||
- Windows
|
||||
- BSD
|
||||
- Other? (Please let us know in description)
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
id: logs
|
||||
attributes:
|
||||
label: Relevant log output
|
||||
description: Please copy and paste any relevant log output. This will be automatically formatted into code, so no need for backticks.
|
||||
render: shell
|
||||
50
.github/ISSUE_TEMPLATE/04-bug-critical.yml
vendored
Normal file
50
.github/ISSUE_TEMPLATE/04-bug-critical.yml
vendored
Normal file
@@ -0,0 +1,50 @@
|
||||
name: Critical Severity Bug
|
||||
description: Used to report critical severity bugs in llama.cpp (e.g. Crashing, Corrupted, Dataloss)
|
||||
title: "Bug: "
|
||||
labels: ["bug-unconfirmed", "critical severity"]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Thanks for taking the time to fill out this bug report!
|
||||
Please include information about your system, the steps to reproduce the bug,
|
||||
and the version of llama.cpp that you are using.
|
||||
If possible, please provide a minimal code example that reproduces the bug.
|
||||
- type: textarea
|
||||
id: what-happened
|
||||
attributes:
|
||||
label: What happened?
|
||||
description: Also tell us, what did you expect to happen?
|
||||
placeholder: Tell us what you see!
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: version
|
||||
attributes:
|
||||
label: Name and Version
|
||||
description: Which executable and which version of our software are you running? (use `--version` to get a version string)
|
||||
placeholder: |
|
||||
$./llama-cli --version
|
||||
version: 2999 (42b4109e)
|
||||
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: operating-system
|
||||
attributes:
|
||||
label: What operating system are you seeing the problem on?
|
||||
multiple: true
|
||||
options:
|
||||
- Linux
|
||||
- Mac
|
||||
- Windows
|
||||
- BSD
|
||||
- Other? (Please let us know in description)
|
||||
validations:
|
||||
required: false
|
||||
- type: textarea
|
||||
id: logs
|
||||
attributes:
|
||||
label: Relevant log output
|
||||
description: Please copy and paste any relevant log output. This will be automatically formatted into code, so no need for backticks.
|
||||
render: shell
|
||||
@@ -1,5 +1,5 @@
|
||||
name: Enhancement
|
||||
description: Used to request enhancements for llama.cpp.
|
||||
description: Used to request enhancements for llama.cpp
|
||||
title: "Feature Request: "
|
||||
labels: ["enhancement"]
|
||||
body:
|
||||
@@ -1,5 +1,5 @@
|
||||
name: Research
|
||||
description: Track new technical research area.
|
||||
description: Track new technical research area
|
||||
title: "Research: "
|
||||
labels: ["research 🔬"]
|
||||
body:
|
||||
@@ -1,5 +1,5 @@
|
||||
name: Refactor (Maintainers)
|
||||
description: Used to track refactoring opportunities.
|
||||
description: Used to track refactoring opportunities
|
||||
title: "Refactor: "
|
||||
labels: ["refactor"]
|
||||
body:
|
||||
19
.github/labeler.yml
vendored
19
.github/labeler.yml
vendored
@@ -3,21 +3,20 @@ Kompute:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- ggml/include/ggml-kompute.h
|
||||
- ggml/src/ggml-kompute/**
|
||||
- ggml/src/ggml-kompute.cpp
|
||||
- README-kompute.md
|
||||
Apple Metal:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- ggml/include/ggml-metal.h
|
||||
- ggml/src/ggml-metal/**
|
||||
- ggml/src/ggml-metal.cpp
|
||||
- README-metal.md
|
||||
SYCL:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- ggml/include/ggml-sycl.h
|
||||
- ggml/src/ggml-sycl/**
|
||||
- docs/backend/SYCL.md
|
||||
- examples/sycl/**
|
||||
- ggml/src/ggml-sycl.cpp
|
||||
- README-sycl.md
|
||||
Nvidia GPU:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
@@ -26,8 +25,8 @@ Nvidia GPU:
|
||||
Vulkan:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- ggml/include/ggml-vulkan.h
|
||||
- ggml/src/ggml-vulkan/**
|
||||
- ggml/ggml_vk_generate_shaders.py
|
||||
- ggml/src/ggml-vulkan*
|
||||
documentation:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
@@ -74,7 +73,11 @@ server:
|
||||
ggml:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- ggml/**
|
||||
- ggml/include/ggml*.h
|
||||
- ggml/src/ggml*.c
|
||||
- ggml/src/ggml*.cpp
|
||||
- ggml/src/ggml*.h
|
||||
- ggml-cuda/**
|
||||
nix:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
|
||||
8
.github/pull_request_template.md
vendored
8
.github/pull_request_template.md
vendored
@@ -1 +1,7 @@
|
||||
*Make sure to read the [contributing guidelines](https://github.com/ggerganov/llama.cpp/blob/master/CONTRIBUTING.md) before submitting a PR*
|
||||
|
||||
|
||||
- [x] I have read the [contributing guidelines](https://github.com/ggerganov/llama.cpp/blob/master/CONTRIBUTING.md)
|
||||
- Self-reported review complexity:
|
||||
- [ ] Low
|
||||
- [ ] Medium
|
||||
- [ ] High
|
||||
|
||||
@@ -1,6 +1,3 @@
|
||||
# TODO: there have been some issues with the workflow, so disabling for now
|
||||
# https://github.com/ggerganov/llama.cpp/issues/7893
|
||||
#
|
||||
# Benchmark
|
||||
name: Benchmark
|
||||
|
||||
@@ -27,10 +24,10 @@ on:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
paths: ['llama.cpp', 'ggml.c', 'ggml-backend.cpp', 'ggml-quants.c', '**/*.cu', 'examples/server/*.h*', 'examples/server/*.cpp']
|
||||
paths: ['llama.cpp', 'ggml.c', 'ggml-backend.c', 'ggml-quants.c', '**/*.cu', 'examples/server/*.h*', 'examples/server/*.cpp']
|
||||
pull_request_target:
|
||||
types: [opened, synchronize, reopened]
|
||||
paths: ['llama.cpp', 'ggml.c', 'ggml-backend.cpp', 'ggml-quants.c', '**/*.cu', 'examples/server/*.h*', 'examples/server/*.cpp']
|
||||
paths: ['llama.cpp', 'ggml.c', 'ggml-backend.c', 'ggml-quants.c', '**/*.cu', 'examples/server/*.h*', 'examples/server/*.cpp']
|
||||
schedule:
|
||||
- cron: '04 2 * * *'
|
||||
|
||||
@@ -132,8 +129,6 @@ jobs:
|
||||
|
||||
- name: Server bench
|
||||
id: server_bench
|
||||
env:
|
||||
HEAD_REF: ${{ github.head_ref || github.ref_name }}
|
||||
run: |
|
||||
set -eux
|
||||
|
||||
@@ -142,7 +137,7 @@ jobs:
|
||||
python bench.py \
|
||||
--runner-label ${{ env.RUNNER_LABEL }} \
|
||||
--name ${{ github.job }} \
|
||||
--branch $HEAD_REF \
|
||||
--branch ${{ github.head_ref || github.ref_name }} \
|
||||
--commit ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha }} \
|
||||
--scenario script.js \
|
||||
--duration ${{ github.event.inputs.duration || env.DURATION }} \
|
||||
520
.github/workflows/build.yml
vendored
520
.github/workflows/build.yml
vendored
@@ -19,18 +19,10 @@ concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
# Fine-grant permission
|
||||
# https://docs.github.com/en/actions/security-for-github-actions/security-guides/automatic-token-authentication#modifying-the-permissions-for-the-github_token
|
||||
permissions:
|
||||
contents: write # for creating release
|
||||
|
||||
env:
|
||||
BRANCH_NAME: ${{ github.head_ref || github.ref_name }}
|
||||
GGML_NLOOP: 3
|
||||
GGML_N_THREADS: 1
|
||||
LLAMA_LOG_COLORS: 1
|
||||
LLAMA_LOG_PREFIX: 1
|
||||
LLAMA_LOG_TIMESTAMPS: 1
|
||||
|
||||
jobs:
|
||||
macOS-latest-cmake-arm64:
|
||||
@@ -55,13 +47,7 @@ jobs:
|
||||
sysctl -a
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. \
|
||||
-DLLAMA_FATAL_WARNINGS=ON \
|
||||
-DLLAMA_CURL=ON \
|
||||
-DGGML_METAL_USE_BF16=ON \
|
||||
-DGGML_METAL_EMBED_LIBRARY=ON \
|
||||
-DGGML_RPC=ON \
|
||||
-DBUILD_SHARED_LIBS=OFF
|
||||
cmake -DLLAMA_FATAL_WARNINGS=ON -DGGML_METAL_EMBED_LIBRARY=ON -DLLAMA_CURL=ON -DBUILD_SHARED_LIBS=OFF ..
|
||||
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu)
|
||||
|
||||
- name: Test
|
||||
@@ -98,7 +84,7 @@ jobs:
|
||||
name: llama-bin-macos-arm64.zip
|
||||
|
||||
macOS-latest-cmake-x64:
|
||||
runs-on: macos-13
|
||||
runs-on: macos-12
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
@@ -119,12 +105,7 @@ jobs:
|
||||
sysctl -a
|
||||
# Metal is disabled due to intermittent failures with Github runners not having a GPU:
|
||||
# https://github.com/ggerganov/llama.cpp/actions/runs/8635935781/job/23674807267#step:5:2313
|
||||
cmake -B build \
|
||||
-DLLAMA_FATAL_WARNINGS=ON \
|
||||
-DLLAMA_CURL=ON \
|
||||
-DGGML_METAL=OFF \
|
||||
-DGGML_RPC=ON \
|
||||
-DBUILD_SHARED_LIBS=OFF
|
||||
cmake -B build -DLLAMA_FATAL_WARNINGS=ON -DGGML_METAL=OFF -DLLAMA_CURL=ON -DBUILD_SHARED_LIBS=OFF
|
||||
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu)
|
||||
|
||||
- name: Test
|
||||
@@ -160,6 +141,66 @@ jobs:
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-macos-x64.zip
|
||||
name: llama-bin-macos-x64.zip
|
||||
|
||||
ubuntu-focal-make:
|
||||
runs-on: ubuntu-20.04
|
||||
env:
|
||||
LLAMA_NODE_AVAILABLE: true
|
||||
LLAMA_PYTHON_AVAILABLE: true
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential gcc-8
|
||||
|
||||
- uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: "20"
|
||||
|
||||
- uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.11"
|
||||
|
||||
- name: Build
|
||||
id: make_build
|
||||
env:
|
||||
LLAMA_FATAL_WARNINGS: 1
|
||||
run: |
|
||||
CC=gcc-8 make -j $(nproc)
|
||||
|
||||
- name: Test
|
||||
id: make_test
|
||||
run: |
|
||||
CC=gcc-8 make tests -j $(nproc)
|
||||
make test -j $(nproc)
|
||||
|
||||
ubuntu-focal-make-curl:
|
||||
runs-on: ubuntu-20.04
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential gcc-8 libcurl4-openssl-dev
|
||||
|
||||
- name: Build
|
||||
id: make_build
|
||||
env:
|
||||
LLAMA_FATAL_WARNINGS: 1
|
||||
LLAMA_CURL: 1
|
||||
run: |
|
||||
CC=gcc-8 make -j $(nproc)
|
||||
|
||||
ubuntu-latest-cmake:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
@@ -181,7 +222,7 @@ jobs:
|
||||
run: |
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF
|
||||
cmake .. -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=ON -DBUILD_SHARED_LIBS=OFF
|
||||
cmake --build . --config Release -j $(nproc)
|
||||
|
||||
- name: Test
|
||||
@@ -314,10 +355,8 @@ jobs:
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
run: |
|
||||
wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | sudo apt-key add -
|
||||
sudo wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list
|
||||
sudo apt-get update -y
|
||||
sudo apt-get install -y build-essential mesa-vulkan-drivers vulkan-sdk
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential libvulkan-dev
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
@@ -327,12 +366,6 @@ jobs:
|
||||
cmake -DGGML_VULKAN=ON ..
|
||||
cmake --build . --config Release -j $(nproc)
|
||||
|
||||
- name: Test
|
||||
id: cmake_test
|
||||
run: |
|
||||
cd build
|
||||
ctest -L main --verbose --timeout 900
|
||||
|
||||
ubuntu-22-cmake-hip:
|
||||
runs-on: ubuntu-22.04
|
||||
container: rocm/dev-ubuntu-22.04:6.0.2
|
||||
@@ -340,7 +373,7 @@ jobs:
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
@@ -351,43 +384,22 @@ jobs:
|
||||
- name: Build with native CMake HIP support
|
||||
id: cmake_build
|
||||
run: |
|
||||
cmake -B build -S . -DCMAKE_HIP_COMPILER="$(hipconfig -l)/clang" -DGGML_HIP=ON
|
||||
cmake -B build -S . -DCMAKE_HIP_COMPILER="$(hipconfig -l)/clang" -DGGML_HIPBLAS=ON
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
- name: Build with legacy HIP support
|
||||
id: cmake_build_legacy_hip
|
||||
run: |
|
||||
cmake -B build2 -S . -DCMAKE_C_COMPILER=hipcc -DCMAKE_CXX_COMPILER=hipcc -DGGML_HIP=ON
|
||||
cmake -B build2 -S . -DCMAKE_C_COMPILER=hipcc -DCMAKE_CXX_COMPILER=hipcc -DGGML_HIPBLAS=ON
|
||||
cmake --build build2 --config Release -j $(nproc)
|
||||
|
||||
ubuntu-22-cmake-musa:
|
||||
runs-on: ubuntu-22.04
|
||||
container: mthreads/musa:rc3.1.0-devel-ubuntu22.04
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
run: |
|
||||
apt-get update
|
||||
apt-get install -y build-essential git cmake libcurl4-openssl-dev
|
||||
|
||||
- name: Build with native CMake MUSA support
|
||||
id: cmake_build
|
||||
run: |
|
||||
cmake -B build -S . -DGGML_MUSA=ON
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
ubuntu-22-cmake-sycl:
|
||||
runs-on: ubuntu-22.04
|
||||
|
||||
continue-on-error: true
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/checkout@v2
|
||||
|
||||
- name: add oneAPI to apt
|
||||
shell: bash
|
||||
@@ -428,7 +440,7 @@ jobs:
|
||||
continue-on-error: true
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/checkout@v2
|
||||
|
||||
- name: add oneAPI to apt
|
||||
shell: bash
|
||||
@@ -463,6 +475,36 @@ jobs:
|
||||
cmake -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON ..
|
||||
cmake --build . --config Release -j $(nproc)
|
||||
|
||||
# TODO: build with GGML_NO_METAL because test-backend-ops fail on "Apple Paravirtual device" and I don't know
|
||||
# how to debug it.
|
||||
# ref: https://github.com/ggerganov/llama.cpp/actions/runs/7131777249/job/19420981052#step:5:1124
|
||||
macOS-latest-make:
|
||||
runs-on: macos-latest
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
continue-on-error: true
|
||||
run: |
|
||||
brew update
|
||||
|
||||
- name: Build
|
||||
id: make_build
|
||||
env:
|
||||
LLAMA_FATAL_WARNINGS: 1
|
||||
run: |
|
||||
GGML_NO_METAL=1 make -j $(sysctl -n hw.logicalcpu)
|
||||
|
||||
- name: Test
|
||||
id: make_test
|
||||
run: |
|
||||
GGML_NO_METAL=1 make tests -j $(sysctl -n hw.logicalcpu)
|
||||
GGML_NO_METAL=1 make test -j $(sysctl -n hw.logicalcpu)
|
||||
|
||||
# TODO: build with GGML_METAL=OFF because test-backend-ops fail on "Apple Paravirtual device" and I don't know
|
||||
# how to debug it.
|
||||
# ref: https://github.com/ggerganov/llama.cpp/actions/runs/7132125951/job/19422043567?pr=4359#step:5:6584
|
||||
@@ -502,7 +544,7 @@ jobs:
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
@@ -517,7 +559,6 @@ jobs:
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -G Xcode .. \
|
||||
-DGGML_METAL_USE_BF16=ON \
|
||||
-DGGML_METAL_EMBED_LIBRARY=ON \
|
||||
-DLLAMA_BUILD_EXAMPLES=OFF \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
@@ -533,7 +574,7 @@ jobs:
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
@@ -548,7 +589,6 @@ jobs:
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -G Xcode .. \
|
||||
-DGGML_METAL_USE_BF16=ON \
|
||||
-DGGML_METAL_EMBED_LIBRARY=ON \
|
||||
-DLLAMA_BUILD_EXAMPLES=OFF \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
@@ -568,7 +608,7 @@ jobs:
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
@@ -576,26 +616,15 @@ jobs:
|
||||
run: |
|
||||
brew update
|
||||
|
||||
- name: Build llama.cpp with CMake
|
||||
id: cmake_build
|
||||
run: |
|
||||
sysctl -a
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -G Xcode .. \
|
||||
-DGGML_METAL_USE_BF16=ON \
|
||||
-DGGML_METAL_EMBED_LIBRARY=ON \
|
||||
-DLLAMA_BUILD_EXAMPLES=OFF \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DLLAMA_BUILD_SERVER=OFF \
|
||||
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64"
|
||||
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu)
|
||||
sudo cmake --install . --config Release
|
||||
|
||||
- name: xcodebuild for swift package
|
||||
id: xcodebuild
|
||||
run: |
|
||||
xcodebuild -scheme llama-Package -destination "${{ matrix.destination }}"
|
||||
xcodebuild -scheme llama -destination "${{ matrix.destination }}"
|
||||
|
||||
- name: Build Swift Example
|
||||
id: make_build_swift_example
|
||||
run: |
|
||||
make swift
|
||||
|
||||
windows-msys2:
|
||||
runs-on: windows-latest
|
||||
@@ -622,6 +651,21 @@ jobs:
|
||||
mingw-w64-${{matrix.env}}-cmake
|
||||
mingw-w64-${{matrix.env}}-openblas
|
||||
|
||||
- name: Build using make
|
||||
shell: msys2 {0}
|
||||
run: |
|
||||
make -j $(nproc)
|
||||
|
||||
- name: Clean after building using make
|
||||
shell: msys2 {0}
|
||||
run: |
|
||||
make clean
|
||||
|
||||
- name: Build using make w/ OpenBLAS
|
||||
shell: msys2 {0}
|
||||
run: |
|
||||
make GGML_OPENBLAS=1 -j $(nproc)
|
||||
|
||||
- name: Build using CMake
|
||||
shell: msys2 {0}
|
||||
run: |
|
||||
@@ -640,7 +684,7 @@ jobs:
|
||||
cmake --build build --config ${{ matrix.build }} -j $(nproc)
|
||||
|
||||
windows-latest-cmake:
|
||||
runs-on: windows-latest
|
||||
runs-on: windows-2019
|
||||
|
||||
env:
|
||||
OPENBLAS_VERSION: 0.3.23
|
||||
@@ -650,26 +694,26 @@ jobs:
|
||||
strategy:
|
||||
matrix:
|
||||
include:
|
||||
- build: 'noavx-x64'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_AVX=OFF -DGGML_AVX2=OFF -DGGML_FMA=OFF -DBUILD_SHARED_LIBS=ON'
|
||||
- build: 'avx2-x64'
|
||||
- build: 'rpc-x64'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=ON'
|
||||
- build: 'noavx-x64'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_AVX=OFF -DGGML_AVX2=OFF -DGGML_FMA=OFF -DBUILD_SHARED_LIBS=ON'
|
||||
- build: 'avx2-x64'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DBUILD_SHARED_LIBS=ON'
|
||||
- build: 'avx-x64'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_AVX2=OFF -DBUILD_SHARED_LIBS=ON'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_AVX2=OFF -DBUILD_SHARED_LIBS=ON'
|
||||
- build: 'avx512-x64'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_AVX512=ON -DBUILD_SHARED_LIBS=ON'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_AVX512=ON -DBUILD_SHARED_LIBS=ON'
|
||||
- build: 'openblas-x64'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BLAS=ON -DBUILD_SHARED_LIBS=ON -DGGML_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_BLAS=ON -DBUILD_SHARED_LIBS=ON -DGGML_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"'
|
||||
- build: 'kompute-x64'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_KOMPUTE=ON -DKOMPUTE_OPT_DISABLE_VULKAN_VERSION_CHECK=ON -DBUILD_SHARED_LIBS=ON'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_KOMPUTE=ON -DKOMPUTE_OPT_DISABLE_VULKAN_VERSION_CHECK=ON -DBUILD_SHARED_LIBS=ON'
|
||||
- build: 'vulkan-x64'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_VULKAN=ON -DBUILD_SHARED_LIBS=ON'
|
||||
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_VULKAN=ON -DBUILD_SHARED_LIBS=ON'
|
||||
- build: 'llvm-arm64'
|
||||
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DBUILD_SHARED_LIBS=ON'
|
||||
- build: 'msvc-arm64'
|
||||
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-msvc.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DBUILD_SHARED_LIBS=ON'
|
||||
- build: 'llvm-arm64-opencl-adreno'
|
||||
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON'
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
@@ -682,7 +726,7 @@ jobs:
|
||||
id: clone_kompute
|
||||
if: ${{ matrix.build == 'kompute-x64' }}
|
||||
run: |
|
||||
git submodule update --init ggml/src/ggml-kompute/kompute
|
||||
git submodule update --init ggml/src/kompute
|
||||
|
||||
- name: Download OpenBLAS
|
||||
id: get_openblas
|
||||
@@ -711,28 +755,6 @@ jobs:
|
||||
run: |
|
||||
choco install ninja
|
||||
|
||||
- name: Install OpenCL Headers and Libs
|
||||
id: install_opencl
|
||||
if: ${{ matrix.build == 'llvm-arm64-opencl-adreno' }}
|
||||
run: |
|
||||
git clone https://github.com/KhronosGroup/OpenCL-Headers
|
||||
cd OpenCL-Headers
|
||||
mkdir build && cd build
|
||||
cmake .. `
|
||||
-DBUILD_TESTING=OFF `
|
||||
-DOPENCL_HEADERS_BUILD_TESTING=OFF `
|
||||
-DOPENCL_HEADERS_BUILD_CXX_TESTS=OFF `
|
||||
-DCMAKE_INSTALL_PREFIX="$env:RUNNER_TEMP/opencl-arm64-release"
|
||||
cmake --build . --target install
|
||||
git clone https://github.com/KhronosGroup/OpenCL-ICD-Loader
|
||||
cd OpenCL-ICD-Loader
|
||||
mkdir build-arm64-release && cd build-arm64-release
|
||||
cmake .. `
|
||||
-A arm64 `
|
||||
-DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" `
|
||||
-DCMAKE_INSTALL_PREFIX="$env:RUNNER_TEMP/opencl-arm64-release"
|
||||
cmake --build . --target install --config release
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
@@ -762,7 +784,7 @@ jobs:
|
||||
- name: Test
|
||||
id: cmake_test
|
||||
# not all machines have native AVX-512
|
||||
if: ${{ matrix.build != 'msvc-arm64' && matrix.build != 'llvm-arm64' && matrix.build != 'llvm-arm64-opencl-adreno' && matrix.build != 'kompute-x64' && matrix.build != 'vulkan-x64' && (matrix.build != 'avx512-x64' || env.HAS_AVX512F == '1') }}
|
||||
if: ${{ matrix.build != 'msvc-arm64' && matrix.build != 'llvm-arm64' && matrix.build != 'kompute-x64' && matrix.build != 'vulkan-x64' && (matrix.build != 'avx512-x64' || env.HAS_AVX512F == '1') }}
|
||||
run: |
|
||||
cd build
|
||||
ctest -L main -C Release --verbose --timeout 900
|
||||
@@ -807,33 +829,12 @@ jobs:
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}.zip
|
||||
name: llama-bin-win-${{ matrix.build }}.zip
|
||||
|
||||
ubuntu-latest-cmake-cuda:
|
||||
runs-on: ubuntu-latest
|
||||
container: nvidia/cuda:12.6.2-devel-ubuntu24.04
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Install dependencies
|
||||
env:
|
||||
DEBIAN_FRONTEND: noninteractive
|
||||
run: |
|
||||
apt update
|
||||
apt install -y cmake build-essential ninja-build libgomp1 git
|
||||
|
||||
- name: Build with CMake
|
||||
run: |
|
||||
cmake -S . -B build -G Ninja -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DGGML_CUDA=ON -DCMAKE_CUDA_ARCHITECTURES=89-real -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined -DLLAMA_FATAL_WARNINGS=ON
|
||||
cmake --build build
|
||||
|
||||
windows-2019-cmake-cuda:
|
||||
windows-latest-cmake-cuda:
|
||||
runs-on: windows-2019
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
cuda: ['12.4', '11.7']
|
||||
cuda: ['12.2.0', '11.7.1']
|
||||
build: ['cuda']
|
||||
|
||||
steps:
|
||||
@@ -841,83 +842,23 @@ jobs:
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Install Cuda Toolkit 11.7
|
||||
if: ${{ matrix.cuda == '11.7' }}
|
||||
run: |
|
||||
mkdir -p "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7"
|
||||
choco install unzip -y
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_cudart/windows-x86_64/cuda_cudart-windows-x86_64-11.7.99-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvcc/windows-x86_64/cuda_nvcc-windows-x86_64-11.7.99-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvrtc/windows-x86_64/cuda_nvrtc-windows-x86_64-11.7.99-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/libcublas/windows-x86_64/libcublas-windows-x86_64-11.7.4.6-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvtx/windows-x86_64/cuda_nvtx-windows-x86_64-11.7.91-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/visual_studio_integration/windows-x86_64/visual_studio_integration-windows-x86_64-11.7.91-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvprof/windows-x86_64/cuda_nvprof-windows-x86_64-11.7.101-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_cccl/windows-x86_64/cuda_cccl-windows-x86_64-11.7.91-archive.zip"
|
||||
unzip '*.zip' -d "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7"
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\cuda_cudart-windows-x86_64-11.7.99-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\cuda_nvcc-windows-x86_64-11.7.99-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\cuda_nvrtc-windows-x86_64-11.7.99-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\libcublas-windows-x86_64-11.7.4.6-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\cuda_nvtx-windows-x86_64-11.7.91-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\visual_studio_integration-windows-x86_64-11.7.91-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\cuda_nvprof-windows-x86_64-11.7.101-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\cuda_cccl-windows-x86_64-11.7.91-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" /E /I /H /Y
|
||||
echo "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
echo "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\libnvvp" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
echo "CUDA_PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" | Out-File -FilePath $env:GITHUB_ENV -Append -Encoding utf8
|
||||
echo "CUDA_PATH_V11_7=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7" | Out-File -FilePath $env:GITHUB_ENV -Append -Encoding utf8
|
||||
|
||||
- name: Install Cuda Toolkit 12.4
|
||||
if: ${{ matrix.cuda == '12.4' }}
|
||||
run: |
|
||||
mkdir -p "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4"
|
||||
choco install unzip -y
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_cudart/windows-x86_64/cuda_cudart-windows-x86_64-12.4.127-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvcc/windows-x86_64/cuda_nvcc-windows-x86_64-12.4.131-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvrtc/windows-x86_64/cuda_nvrtc-windows-x86_64-12.4.127-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/libcublas/windows-x86_64/libcublas-windows-x86_64-12.4.5.8-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvtx/windows-x86_64/cuda_nvtx-windows-x86_64-12.4.127-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_profiler_api/windows-x86_64/cuda_profiler_api-windows-x86_64-12.4.127-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/visual_studio_integration/windows-x86_64/visual_studio_integration-windows-x86_64-12.4.127-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvprof/windows-x86_64/cuda_nvprof-windows-x86_64-12.4.127-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_cccl/windows-x86_64/cuda_cccl-windows-x86_64-12.4.127-archive.zip"
|
||||
unzip '*.zip' -d "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4"
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\cuda_cudart-windows-x86_64-12.4.127-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\cuda_nvcc-windows-x86_64-12.4.131-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\cuda_nvrtc-windows-x86_64-12.4.127-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\libcublas-windows-x86_64-12.4.5.8-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\cuda_nvtx-windows-x86_64-12.4.127-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\cuda_profiler_api-windows-x86_64-12.4.127-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\visual_studio_integration-windows-x86_64-12.4.127-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\cuda_nvprof-windows-x86_64-12.4.127-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\cuda_cccl-windows-x86_64-12.4.127-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" /E /I /H /Y
|
||||
echo "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
echo "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\libnvvp" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
echo "CUDA_PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" | Out-File -FilePath $env:GITHUB_ENV -Append -Encoding utf8
|
||||
echo "CUDA_PATH_V12_4=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" | Out-File -FilePath $env:GITHUB_ENV -Append -Encoding utf8
|
||||
|
||||
- name: Install ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2
|
||||
- name: Install CUDA toolkit
|
||||
id: cuda-toolkit
|
||||
uses: Jimver/cuda-toolkit@v0.2.15
|
||||
with:
|
||||
key: ${{ github.job }}-${{ matrix.cuda }}-${{ matrix.build }}
|
||||
|
||||
- name: Install Ninja
|
||||
id: install_ninja
|
||||
run: |
|
||||
choco install ninja
|
||||
cuda: ${{ matrix.cuda }}
|
||||
method: 'network'
|
||||
sub-packages: '["nvcc", "cudart", "cublas", "cublas_dev", "thrust", "visual_studio_integration"]'
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
shell: cmd
|
||||
run: |
|
||||
call "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\VC\Auxiliary\Build\vcvars64.bat"
|
||||
cmake -S . -B build -G "Ninja Multi-Config" -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_CUDA=ON -DBUILD_SHARED_LIBS=ON -DGGML_RPC=ON
|
||||
set /A NINJA_JOBS=%NUMBER_OF_PROCESSORS%-1
|
||||
cmake --build build --config Release -j %NINJA_JOBS% -t ggml
|
||||
cmake --build build --config Release
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_CUDA=ON -DBUILD_SHARED_LIBS=ON
|
||||
cmake --build . --config Release -j ${env:NUMBER_OF_PROCESSORS}
|
||||
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
@@ -946,12 +887,10 @@ jobs:
|
||||
name: llama-bin-win-cu${{ matrix.cuda }}-x64.zip
|
||||
|
||||
- name: Copy and pack Cuda runtime
|
||||
if: ${{ github.event_name == 'push' && github.ref == 'refs/heads/master' }}
|
||||
run: |
|
||||
echo "Cuda install location: ${{ env.CUDA_PATH }}"
|
||||
echo "Cuda install location: ${{steps.cuda-toolkit.outputs.CUDA_PATH}}"
|
||||
$dst='.\build\bin\cudart\'
|
||||
robocopy "${{env.CUDA_PATH}}\bin" $dst cudart64_*.dll cublas64_*.dll cublasLt64_*.dll
|
||||
robocopy "${{env.CUDA_PATH}}\lib" $dst cudart64_*.dll cublas64_*.dll cublasLt64_*.dll
|
||||
robocopy "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin" $dst cudart64_*.dll cublas64_*.dll cublasLt64_*.dll
|
||||
7z a cudart-llama-bin-win-cu${{ matrix.cuda }}-x64.zip $dst\*
|
||||
|
||||
- name: Upload Cuda runtime
|
||||
@@ -969,8 +908,8 @@ jobs:
|
||||
shell: bash
|
||||
|
||||
env:
|
||||
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/b380d914-366b-4b77-a74a-05e3c38b3514/intel-oneapi-base-toolkit-2025.0.0.882_offline.exe
|
||||
WINDOWS_DPCPP_MKL: intel.oneapi.win.cpp-dpcpp-common:intel.oneapi.win.mkl.devel:intel.oneapi.win.dnnl:intel.oneapi.win.tbb.devel
|
||||
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/7dff44ba-e3af-4448-841c-0d616c8da6e7/w_BaseKit_p_2024.1.0.595_offline.exe
|
||||
WINDOWS_DPCPP_MKL: intel.oneapi.win.cpp-dpcpp-common:intel.oneapi.win.mkl.devel
|
||||
ONEAPI_ROOT: "C:/Program Files (x86)/Intel/oneAPI"
|
||||
steps:
|
||||
- name: Clone
|
||||
@@ -980,8 +919,7 @@ jobs:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Install
|
||||
run: |
|
||||
scripts/install-oneapi.bat $WINDOWS_BASEKIT_URL $WINDOWS_DPCPP_MKL
|
||||
run: scripts/install-oneapi.bat $WINDOWS_BASEKIT_URL $WINDOWS_DPCPP_MKL
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
@@ -1000,33 +938,24 @@ jobs:
|
||||
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
|
||||
- name: Build the release package
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
run: |
|
||||
echo "cp oneAPI running time dll files in ${{ env.ONEAPI_ROOT }} to ./build/bin"
|
||||
|
||||
cp "${{ env.ONEAPI_ROOT }}/mkl/latest/bin/mkl_sycl_blas.5.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/mkl/latest/bin/mkl_sycl_blas.4.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/mkl/latest/bin/mkl_core.2.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/mkl/latest/bin/mkl_tbb_thread.2.dll" ./build/bin
|
||||
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_adapter_level_zero.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_adapter_opencl.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_loader.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_win_proxy_loader.dll" ./build/bin
|
||||
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/sycl8.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/pi_win_proxy_loader.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/pi_level_zero.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/sycl7.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/svml_dispmd.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/libmmd.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/libiomp5md.dll" ./build/bin
|
||||
|
||||
cp "${{ env.ONEAPI_ROOT }}/dnnl/latest/bin/dnnl.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/tbb/latest/bin/tbb12.dll" ./build/bin
|
||||
|
||||
echo "cp oneAPI running time dll files to ./build/bin done"
|
||||
7z a llama-${{ steps.tag.outputs.name }}-bin-win-sycl-x64.zip ./build/bin/*
|
||||
|
||||
- name: Upload the release package
|
||||
- name: Upload artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
@@ -1034,63 +963,19 @@ jobs:
|
||||
name: llama-bin-win-sycl-x64.zip
|
||||
|
||||
windows-latest-cmake-hip:
|
||||
if: ${{ github.event.inputs.create_release != 'true' }}
|
||||
runs-on: windows-latest
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Install
|
||||
id: depends
|
||||
run: |
|
||||
$ErrorActionPreference = "Stop"
|
||||
write-host "Downloading AMD HIP SDK Installer"
|
||||
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
|
||||
write-host "Installing AMD HIP SDK"
|
||||
Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
|
||||
write-host "Completed AMD HIP SDK installation"
|
||||
|
||||
- name: Verify ROCm
|
||||
id: verify
|
||||
run: |
|
||||
& 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' --version
|
||||
|
||||
- name: Install ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2
|
||||
with:
|
||||
key: ${{ github.job }}
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
|
||||
$env:CMAKE_PREFIX_PATH="${env:HIP_PATH}"
|
||||
cmake -G "Unix Makefiles" -B build -S . -DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" -DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" -DGGML_HIP=ON -DCMAKE_BUILD_TYPE=Release -DGGML_RPC=ON
|
||||
cmake --build build -j ${env:NUMBER_OF_PROCESSORS}
|
||||
|
||||
windows-latest-cmake-hip-release:
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
runs-on: windows-latest
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
gpu_target: [gfx1100, gfx1101, gfx1030]
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Install
|
||||
id: depends
|
||||
run: |
|
||||
$ErrorActionPreference = "Stop"
|
||||
write-host "Downloading AMD HIP SDK Installer"
|
||||
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
|
||||
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-23.Q4-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
|
||||
write-host "Installing AMD HIP SDK"
|
||||
Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
|
||||
write-host "Completed AMD HIP SDK installation"
|
||||
@@ -1105,36 +990,8 @@ jobs:
|
||||
run: |
|
||||
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
|
||||
$env:CMAKE_PREFIX_PATH="${env:HIP_PATH}"
|
||||
cmake -G "Unix Makefiles" -B build -S . -DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" -DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" -DGGML_HIP=ON -DCMAKE_BUILD_TYPE=Release -DAMDGPU_TARGETS=${{ matrix.gpu_target }} -DGGML_RPC=ON
|
||||
cmake --build build -j ${env:NUMBER_OF_PROCESSORS}
|
||||
md "build\bin\rocblas\library\"
|
||||
cp "${env:HIP_PATH}\bin\hipblas.dll" "build\bin\"
|
||||
cp "${env:HIP_PATH}\bin\rocblas.dll" "build\bin\"
|
||||
cp "${env:HIP_PATH}\bin\rocblas\library\*" "build\bin\rocblas\library\"
|
||||
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
shell: bash
|
||||
run: |
|
||||
BUILD_NUMBER="$(git rev-list --count HEAD)"
|
||||
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
|
||||
if [[ "${{ env.BRANCH_NAME }}" == "master" ]]; then
|
||||
echo "name=b${BUILD_NUMBER}" >> $GITHUB_OUTPUT
|
||||
else
|
||||
SAFE_NAME=$(echo "${{ env.BRANCH_NAME }}" | tr '/' '-')
|
||||
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
run: |
|
||||
7z a llama-${{ steps.tag.outputs.name }}-bin-win-hip-x64-${{ matrix.gpu_target }}.zip .\build\bin\*
|
||||
|
||||
- name: Upload artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-win-hip-x64-${{ matrix.gpu_target }}.zip
|
||||
name: llama-bin-win-hip-x64-${{ matrix.gpu_target }}.zip
|
||||
cmake -G "Unix Makefiles" -B build -S . -DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" -DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" -DGGML_HIPBLAS=ON
|
||||
cmake --build build --config Release
|
||||
|
||||
ios-xcode-build:
|
||||
runs-on: macos-latest
|
||||
@@ -1143,29 +1000,6 @@ jobs:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
sysctl -a
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -G Xcode .. \
|
||||
-DGGML_METAL_USE_BF16=ON \
|
||||
-DGGML_METAL_EMBED_LIBRARY=ON \
|
||||
-DLLAMA_BUILD_EXAMPLES=OFF \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DLLAMA_BUILD_SERVER=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=iOS \
|
||||
-DCMAKE_OSX_DEPLOYMENT_TARGET=14.0 \
|
||||
-DCMAKE_XCODE_ATTRIBUTE_DEVELOPMENT_TEAM=ggml
|
||||
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu) -- CODE_SIGNING_ALLOWED=NO
|
||||
sudo cmake --install . --config Release
|
||||
|
||||
- name: xcodebuild for swift package
|
||||
id: xcodebuild
|
||||
run: |
|
||||
xcodebuild -scheme llama-Package -destination 'generic/platform=iOS'
|
||||
|
||||
- name: Build Xcode project
|
||||
run: xcodebuild -project examples/llama.swiftui/llama.swiftui.xcodeproj -scheme llama.swiftui -sdk iphoneos CODE_SIGNING_REQUIRED=NO CODE_SIGN_IDENTITY= -destination 'generic/platform=iOS' build
|
||||
|
||||
@@ -1193,17 +1027,35 @@ jobs:
|
||||
|
||||
./gradlew build --no-daemon
|
||||
|
||||
# freeBSD-latest:
|
||||
# runs-on: macos-12
|
||||
# steps:
|
||||
# - name: Clone
|
||||
# uses: actions/checkout@v4
|
||||
#
|
||||
# - name: Build
|
||||
# uses: cross-platform-actions/action@v0.19.0
|
||||
# with:
|
||||
# operating_system: freebsd
|
||||
# version: '13.2'
|
||||
# hypervisor: 'qemu'
|
||||
# run: |
|
||||
# sudo pkg update
|
||||
# sudo pkg install -y gmake automake autoconf pkgconf llvm15 openblas
|
||||
# gmake CC=/usr/local/bin/clang15 CXX=/usr/local/bin/clang++15 -j `sysctl -n hw.ncpu`
|
||||
|
||||
release:
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
needs:
|
||||
- ubuntu-focal-make
|
||||
- ubuntu-latest-cmake
|
||||
- macOS-latest-make
|
||||
- macOS-latest-cmake
|
||||
- windows-latest-cmake
|
||||
- windows-2019-cmake-cuda
|
||||
- windows-latest-cmake-hip-release
|
||||
- windows-latest-cmake-cuda
|
||||
- macOS-latest-cmake-arm64
|
||||
- macOS-latest-cmake-x64
|
||||
|
||||
|
||||
5
.github/workflows/close-issue.yml
vendored
5
.github/workflows/close-issue.yml
vendored
@@ -3,11 +3,6 @@ on:
|
||||
schedule:
|
||||
- cron: "42 0 * * *"
|
||||
|
||||
# Fine-grant permission
|
||||
# https://docs.github.com/en/actions/security-for-github-actions/security-guides/automatic-token-authentication#modifying-the-permissions-for-the-github_token
|
||||
permissions:
|
||||
issues: write
|
||||
|
||||
jobs:
|
||||
close-issues:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
91
.github/workflows/docker.yml
vendored
91
.github/workflows/docker.yml
vendored
@@ -10,23 +10,20 @@
|
||||
name: Publish Docker image
|
||||
|
||||
on:
|
||||
workflow_dispatch: # allows manual triggering
|
||||
schedule:
|
||||
# Rebuild daily rather than on every push because it is expensive
|
||||
- cron: '12 4 * * *'
|
||||
#pull_request:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
paths: ['.github/workflows/docker.yml', '.devops/*.Dockerfile', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.cuh', '**/*.swift', '**/*.m', '**/*.metal']
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
# Fine-grant permission
|
||||
# https://docs.github.com/en/actions/security-for-github-actions/security-guides/automatic-token-authentication#modifying-the-permissions-for-the-github_token
|
||||
permissions:
|
||||
packages: write
|
||||
|
||||
jobs:
|
||||
push_to_registry:
|
||||
name: Push Docker image to Docker Hub
|
||||
#if: github.event.pull_request.draft == false
|
||||
|
||||
runs-on: ubuntu-latest
|
||||
env:
|
||||
@@ -40,20 +37,15 @@ jobs:
|
||||
- { tag: "light-cuda", dockerfile: ".devops/llama-cli-cuda.Dockerfile", platforms: "linux/amd64" }
|
||||
- { tag: "server-cuda", dockerfile: ".devops/llama-server-cuda.Dockerfile", platforms: "linux/amd64" }
|
||||
- { tag: "full-cuda", dockerfile: ".devops/full-cuda.Dockerfile", platforms: "linux/amd64" }
|
||||
- { tag: "light-musa", dockerfile: ".devops/llama-cli-musa.Dockerfile", platforms: "linux/amd64" }
|
||||
- { tag: "server-musa", dockerfile: ".devops/llama-server-musa.Dockerfile", platforms: "linux/amd64" }
|
||||
- { tag: "full-musa", dockerfile: ".devops/full-musa.Dockerfile", platforms: "linux/amd64" }
|
||||
# Note: the rocm images are failing due to a compiler error and are disabled until this is fixed to allow the workflow to complete
|
||||
#- { tag: "light-rocm", dockerfile: ".devops/llama-cli-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
||||
#- { tag: "server-rocm", dockerfile: ".devops/llama-server-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
||||
- { tag: "light-rocm", dockerfile: ".devops/llama-cli-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
||||
- { tag: "server-rocm", dockerfile: ".devops/llama-server-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
||||
# Note: the full-rocm image is failing due to a "no space left on device" error. It is disabled for now to allow the workflow to complete.
|
||||
#- { tag: "full-rocm", dockerfile: ".devops/full-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
||||
- { tag: "light-intel", dockerfile: ".devops/llama-cli-intel.Dockerfile", platforms: "linux/amd64" }
|
||||
- { tag: "server-intel", dockerfile: ".devops/llama-server-intel.Dockerfile", platforms: "linux/amd64" }
|
||||
steps:
|
||||
- name: Check out the repo
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0 # preserve git history, so we can determine the build number
|
||||
|
||||
- name: Set up QEMU
|
||||
uses: docker/setup-qemu-action@v2
|
||||
@@ -68,34 +60,6 @@ jobs:
|
||||
username: ${{ github.repository_owner }}
|
||||
password: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
shell: bash
|
||||
run: |
|
||||
BUILD_NUMBER="$(git rev-list --count HEAD)"
|
||||
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
|
||||
REPO_OWNER="${GITHUB_REPOSITORY_OWNER@L}" # to lower case
|
||||
REPO_NAME="${{ github.event.repository.name }}"
|
||||
|
||||
# determine tag name postfix (build number, commit hash)
|
||||
if [[ "${{ env.GITHUB_BRANCH_NAME }}" == "master" ]]; then
|
||||
TAG_POSTFIX="b${BUILD_NUMBER}"
|
||||
else
|
||||
SAFE_NAME=$(echo "${{ env.GITHUB_BRANCH_NAME }}" | tr '/' '-')
|
||||
TAG_POSTFIX="${SAFE_NAME}-${SHORT_HASH}"
|
||||
fi
|
||||
|
||||
# list all tags possible
|
||||
TAGS=""
|
||||
TAGS="${TAGS}ghcr.io/${REPO_OWNER}/${REPO_NAME}:${{ matrix.config.tag }},"
|
||||
TAGS="${TAGS}ghcr.io/${REPO_OWNER}/${REPO_NAME}:${{ matrix.config.tag }}-${TAG_POSTFIX}"
|
||||
|
||||
echo "output_tags=$TAGS" >> $GITHUB_OUTPUT
|
||||
echo "output_tags=$TAGS" # print out for debugging
|
||||
env:
|
||||
GITHUB_BRANCH_NAME: ${{ github.head_ref || github.ref_name }}
|
||||
GITHUB_REPOSITORY_OWNER: '${{ github.repository_owner }}'
|
||||
|
||||
# https://github.com/jlumbroso/free-disk-space/tree/54081f138730dfa15788a46383842cd2f914a1be#example
|
||||
- name: Free Disk Space (Ubuntu)
|
||||
uses: jlumbroso/free-disk-space@main
|
||||
@@ -113,13 +77,40 @@ jobs:
|
||||
docker-images: true
|
||||
swap-storage: true
|
||||
|
||||
- name: Build and push Docker image (tagged + versioned)
|
||||
if: ${{ github.event_name == 'push' || github.event_name == 'schedule' || github.event_name == 'workflow_dispatch' }}
|
||||
uses: docker/build-push-action@v6
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
shell: bash
|
||||
run: |
|
||||
BUILD_NUMBER="$(git rev-list --count HEAD)"
|
||||
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
|
||||
if [[ "${{ env.BRANCH_NAME }}" == "master" ]]; then
|
||||
echo "name=b${BUILD_NUMBER}" >> $GITHUB_OUTPUT
|
||||
else
|
||||
SAFE_NAME=$(echo "${{ env.BRANCH_NAME }}" | tr '/' '-')
|
||||
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
|
||||
- name: Downcase github.repository_owner
|
||||
run: |
|
||||
echo "repository_owner_lowercase=${GITHUB_REPOSITORY_OWNER@L}" >> $GITHUB_ENV
|
||||
env:
|
||||
GITHUB_REPOSITORY_OWNER: '${{ github.repository_owner }}'
|
||||
|
||||
- name: Build and push Docker image (versioned)
|
||||
if: github.event_name == 'push'
|
||||
uses: docker/build-push-action@v4
|
||||
with:
|
||||
context: .
|
||||
push: true
|
||||
platforms: ${{ matrix.config.platforms }}
|
||||
# tag list is generated from step above
|
||||
tags: ${{ steps.tag.outputs.output_tags }}
|
||||
tags: "ghcr.io/${{ env.repository_owner_lowercase }}/llama.cpp:${{ matrix.config.tag }}-${{ env.COMMIT_SHA }}"
|
||||
file: ${{ matrix.config.dockerfile }}
|
||||
|
||||
- name: Build and push Docker image (tagged)
|
||||
uses: docker/build-push-action@v4
|
||||
with:
|
||||
context: .
|
||||
push: ${{ github.event_name == 'push' }}
|
||||
platforms: ${{ matrix.config.platforms }}
|
||||
tags: "ghcr.io/${{ env.repository_owner_lowercase }}/llama.cpp:${{ matrix.config.tag }},ghcr.io/${{ env.repository_owner_lowercase }}/llama.cpp:${{ matrix.config.tag }}-${{ steps.tag.outputs.name }}"
|
||||
file: ${{ matrix.config.dockerfile }}
|
||||
|
||||
65
.github/workflows/nix-ci-aarch64.yml
vendored
Normal file
65
.github/workflows/nix-ci-aarch64.yml
vendored
Normal file
@@ -0,0 +1,65 @@
|
||||
name: Nix aarch64 builds
|
||||
|
||||
on:
|
||||
workflow_dispatch: # allows manual triggering
|
||||
schedule:
|
||||
# Rebuild daily rather than on every push because QEMU is expensive (e.g.
|
||||
# 1.5h instead of minutes with the cold cache).
|
||||
#
|
||||
# randint(0, 59), randint(0, 23)
|
||||
- cron: '26 12 * * *'
|
||||
# But also rebuild if we touched any of the Nix expressions:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
paths: ['**/*.nix', 'flake.lock']
|
||||
pull_request:
|
||||
types: [opened, synchronize, reopened]
|
||||
paths: ['**/*.nix', 'flake.lock']
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
nix-build-aarch64:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
- name: Install QEMU
|
||||
# Copy-paste from https://github.com/orgs/community/discussions/8305#discussioncomment-5888654
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y qemu-user-static qemu-system-aarch64
|
||||
sudo usermod -a -G kvm $USER
|
||||
- name: Install Nix
|
||||
uses: DeterminateSystems/nix-installer-action@v9
|
||||
with:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
extra-conf: |
|
||||
extra-platforms = aarch64-linux
|
||||
extra-system-features = nixos-test kvm
|
||||
extra-substituters = https://llama-cpp.cachix.org https://cuda-maintainers.cachix.org
|
||||
extra-trusted-public-keys = llama-cpp.cachix.org-1:H75X+w83wUKTIPSO1KWy9ADUrzThyGs8P5tmAbkWhQc= cuda-maintainers.cachix.org-1:0dq3bujKpuEPMCX6U4WylrUDZ9JyUG0VpVZa7CNfq5E=
|
||||
- uses: DeterminateSystems/magic-nix-cache-action@v2
|
||||
with:
|
||||
upstream-cache: https://${{ matrix.cachixName }}.cachix.org
|
||||
- name: Set-up cachix to push the results to
|
||||
uses: cachix/cachix-action@v13
|
||||
with:
|
||||
authToken: '${{ secrets.CACHIX_AUTH_TOKEN }}'
|
||||
name: llama-cpp
|
||||
- name: Show all output paths
|
||||
run: >
|
||||
nix run github:nix-community/nix-eval-jobs
|
||||
-- --gc-roots-dir gcroot
|
||||
--flake
|
||||
".#packages.aarch64-linux"
|
||||
- name: Build
|
||||
run: >
|
||||
nix run github:Mic92/nix-fast-build
|
||||
-- --skip-cached --no-nom
|
||||
--systems aarch64-linux
|
||||
--flake
|
||||
".#checks.aarch64-linux"
|
||||
72
.github/workflows/nix-ci.yml
vendored
Normal file
72
.github/workflows/nix-ci.yml
vendored
Normal file
@@ -0,0 +1,72 @@
|
||||
name: Nix CI
|
||||
|
||||
on:
|
||||
workflow_dispatch: # allows manual triggering
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
pull_request:
|
||||
types: [opened, synchronize, reopened]
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
nix-eval:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
os: [ ubuntu-latest, macos-latest ]
|
||||
runs-on: ${{ matrix.os }}
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
- name: Install Nix
|
||||
uses: DeterminateSystems/nix-installer-action@v9
|
||||
with:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
extra-conf: |
|
||||
extra-substituters = https://llama-cpp.cachix.org https://cuda-maintainers.cachix.org
|
||||
extra-trusted-public-keys = llama-cpp.cachix.org-1:H75X+w83wUKTIPSO1KWy9ADUrzThyGs8P5tmAbkWhQc= cuda-maintainers.cachix.org-1:0dq3bujKpuEPMCX6U4WylrUDZ9JyUG0VpVZa7CNfq5E=
|
||||
- uses: DeterminateSystems/magic-nix-cache-action@v2
|
||||
with:
|
||||
upstream-cache: https://${{ matrix.cachixName }}.cachix.org
|
||||
- name: List all flake outputs
|
||||
run: nix flake show --all-systems
|
||||
- name: Show all output paths
|
||||
run: >
|
||||
nix run github:nix-community/nix-eval-jobs
|
||||
-- --gc-roots-dir gcroot
|
||||
--flake
|
||||
".#packages.$(nix eval --raw --impure --expr builtins.currentSystem)"
|
||||
nix-build:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
os: [ ubuntu-latest, macos-latest ]
|
||||
runs-on: ${{ matrix.os }}
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
- name: Install Nix
|
||||
uses: DeterminateSystems/nix-installer-action@v9
|
||||
with:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
extra-conf: |
|
||||
extra-substituters = https://llama-cpp.cachix.org https://cuda-maintainers.cachix.org
|
||||
extra-trusted-public-keys = llama-cpp.cachix.org-1:H75X+w83wUKTIPSO1KWy9ADUrzThyGs8P5tmAbkWhQc= cuda-maintainers.cachix.org-1:0dq3bujKpuEPMCX6U4WylrUDZ9JyUG0VpVZa7CNfq5E=
|
||||
- uses: DeterminateSystems/magic-nix-cache-action@v2
|
||||
with:
|
||||
upstream-cache: https://${{ matrix.cachixName }}.cachix.org
|
||||
- name: Set-up cachix to push the results to
|
||||
uses: cachix/cachix-action@v13
|
||||
with:
|
||||
authToken: '${{ secrets.CACHIX_AUTH_TOKEN }}'
|
||||
name: llama-cpp
|
||||
- name: Build
|
||||
run: >
|
||||
nix run github:Mic92/nix-fast-build
|
||||
-- --skip-cached --no-nom
|
||||
--flake
|
||||
".#checks.$(nix eval --raw --impure --expr builtins.currentSystem)"
|
||||
22
.github/workflows/nix-flake-update.yml
vendored
Normal file
22
.github/workflows/nix-flake-update.yml
vendored
Normal file
@@ -0,0 +1,22 @@
|
||||
name: update-flake-lock
|
||||
on:
|
||||
workflow_dispatch:
|
||||
schedule:
|
||||
- cron: '0 0 * * 0' # runs weekly on Sunday at 00:00
|
||||
|
||||
jobs:
|
||||
lockfile:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
- name: Install Nix
|
||||
uses: DeterminateSystems/nix-installer-action@main
|
||||
- name: Update flake.lock
|
||||
uses: DeterminateSystems/update-flake-lock@main
|
||||
with:
|
||||
pr-title: "nix: update flake.lock"
|
||||
pr-labels: |
|
||||
nix
|
||||
pr-reviewers: philiptaron,SomeoneSerge
|
||||
token: ${{ secrets.FLAKE_TOKEN }}
|
||||
36
.github/workflows/nix-publish-flake.yml
vendored
Normal file
36
.github/workflows/nix-publish-flake.yml
vendored
Normal file
@@ -0,0 +1,36 @@
|
||||
# Make the flake discoverable on https://flakestry.dev and https://flakehub.com/flakes
|
||||
name: "Publish a flake to flakestry & flakehub"
|
||||
on:
|
||||
push:
|
||||
tags:
|
||||
- "*"
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
tag:
|
||||
description: "The existing tag to publish"
|
||||
type: "string"
|
||||
required: true
|
||||
jobs:
|
||||
flakestry-publish:
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
id-token: "write"
|
||||
contents: "read"
|
||||
steps:
|
||||
- uses: flakestry/flakestry-publish@main
|
||||
with:
|
||||
version: "${{ inputs.tag || github.ref_name }}"
|
||||
flakehub-publish:
|
||||
runs-on: "ubuntu-latest"
|
||||
permissions:
|
||||
id-token: "write"
|
||||
contents: "read"
|
||||
steps:
|
||||
- uses: "actions/checkout@v4"
|
||||
with:
|
||||
ref: "${{ (inputs.tag != null) && format('refs/tags/{0}', inputs.tag) || '' }}"
|
||||
- uses: "DeterminateSystems/nix-installer-action@main"
|
||||
- uses: "DeterminateSystems/flakehub-push@main"
|
||||
with:
|
||||
visibility: "public"
|
||||
tag: "${{ inputs.tag }}"
|
||||
@@ -6,13 +6,15 @@ on:
|
||||
- '.github/workflows/python-check-requirements.yml'
|
||||
- 'scripts/check-requirements.sh'
|
||||
- 'convert*.py'
|
||||
- '**/requirements*.txt'
|
||||
- 'requirements.txt'
|
||||
- 'requirements/*.txt'
|
||||
pull_request:
|
||||
paths:
|
||||
- '.github/workflows/python-check-requirements.yml'
|
||||
- 'scripts/check-requirements.sh'
|
||||
- 'convert*.py'
|
||||
- '**/requirements*.txt'
|
||||
- 'requirements.txt'
|
||||
- 'requirements/*.txt'
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
|
||||
|
||||
9
.github/workflows/python-lint.yml
vendored
9
.github/workflows/python-lint.yml
vendored
@@ -1,13 +1,6 @@
|
||||
name: flake8 Lint
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
paths: ['.github/workflows/python-lint.yml', '**/*.py']
|
||||
pull_request:
|
||||
types: [opened, synchronize, reopened]
|
||||
paths: ['.github/workflows/python-lint.yml', '**/*.py']
|
||||
on: [push, pull_request]
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
|
||||
|
||||
40
.github/workflows/python-type-check.yml
vendored
40
.github/workflows/python-type-check.yml
vendored
@@ -1,40 +0,0 @@
|
||||
name: Python Type-Check
|
||||
|
||||
on:
|
||||
push:
|
||||
paths:
|
||||
- '.github/workflows/python-type-check.yml'
|
||||
- 'pyrightconfig.json'
|
||||
- '**.py'
|
||||
- '**/requirements*.txt'
|
||||
pull_request:
|
||||
paths:
|
||||
- '.github/workflows/python-type-check.yml'
|
||||
- 'pyrightconfig.json'
|
||||
- '**.py'
|
||||
- '**/requirements*.txt'
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
python-type-check:
|
||||
runs-on: ubuntu-latest
|
||||
name: pyright type-check
|
||||
steps:
|
||||
- name: Check out source repository
|
||||
uses: actions/checkout@v4
|
||||
- name: Set up Python environment
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.11"
|
||||
- name: Install Python dependencies
|
||||
# TODO: use a venv
|
||||
run: pip install -r requirements/requirements-all.txt
|
||||
- name: Type-check with Pyright
|
||||
uses: jakebailey/pyright-action@v2
|
||||
with:
|
||||
version: 1.1.382
|
||||
level: warning
|
||||
warnings: true
|
||||
42
.github/workflows/server.yml
vendored
42
.github/workflows/server.yml
vendored
@@ -20,12 +20,6 @@ on:
|
||||
types: [opened, synchronize, reopened]
|
||||
paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/**.*']
|
||||
|
||||
env:
|
||||
LLAMA_LOG_COLORS: 1
|
||||
LLAMA_LOG_PREFIX: 1
|
||||
LLAMA_LOG_TIMESTAMPS: 1
|
||||
LLAMA_LOG_VERBOSITY: 10
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}-${{ github.head_ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
@@ -76,26 +70,20 @@ jobs:
|
||||
run: |
|
||||
pip install -r examples/server/tests/requirements.txt
|
||||
|
||||
# Setup nodejs (to be used for verifying bundled index.html)
|
||||
- uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: '22.11.0'
|
||||
|
||||
- name: Verify bundled index.html
|
||||
id: verify_server_index_html
|
||||
- name: Verify server deps
|
||||
id: verify_server_deps
|
||||
run: |
|
||||
git config --global --add safe.directory $(realpath .)
|
||||
cd examples/server/webui
|
||||
cd examples/server
|
||||
git ls-files --others --modified
|
||||
git status
|
||||
npm ci
|
||||
npm run build
|
||||
./deps.sh
|
||||
git status
|
||||
modified_files="$(git status -s)"
|
||||
echo "Modified files: ${modified_files}"
|
||||
if [ -n "${modified_files}" ]; then
|
||||
echo "Repository is dirty or server/webui is not built as expected"
|
||||
echo "Hint: You may need to follow Web UI build guide in server/README.md"
|
||||
echo "${modified_files}"
|
||||
not_ignored_files="$(git ls-files --others --modified)"
|
||||
echo "Modified files: ${not_ignored_files}"
|
||||
if [ -n "${not_ignored_files}" ]; then
|
||||
echo "Repository is dirty or server deps are not built as expected"
|
||||
echo "${not_ignored_files}"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
@@ -128,14 +116,14 @@ jobs:
|
||||
id: server_integration_tests
|
||||
run: |
|
||||
cd examples/server/tests
|
||||
./tests.sh
|
||||
PORT=8888 ./tests.sh
|
||||
|
||||
- name: Slow tests
|
||||
id: server_integration_tests_slow
|
||||
if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }}
|
||||
run: |
|
||||
cd examples/server/tests
|
||||
SLOW_TESTS=1 ./tests.sh
|
||||
PORT=8888 ./tests.sh --stop --no-skipped --no-capture --tags slow
|
||||
|
||||
|
||||
server-windows:
|
||||
@@ -185,13 +173,11 @@ jobs:
|
||||
if: ${{ !matrix.disabled_on_pr || !github.event.pull_request }}
|
||||
run: |
|
||||
cd examples/server/tests
|
||||
$env:PYTHONIOENCODING = ":replace"
|
||||
pytest -v -x
|
||||
behave.exe --summary --stop --no-capture --exclude 'issues|wrong_usages|passkey' --tags llama.cpp
|
||||
|
||||
- name: Slow tests
|
||||
id: server_integration_tests_slow
|
||||
if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }}
|
||||
run: |
|
||||
cd examples/server/tests
|
||||
$env:SLOW_TESTS = "1"
|
||||
pytest -v -x
|
||||
behave.exe --stop --no-skipped --no-capture --tags slow
|
||||
|
||||
21
.gitignore
vendored
21
.gitignore
vendored
@@ -3,7 +3,6 @@
|
||||
*.a
|
||||
*.bat
|
||||
*.bin
|
||||
*.d
|
||||
*.dll
|
||||
*.dot
|
||||
*.etag
|
||||
@@ -48,10 +47,8 @@ build*
|
||||
!build-info.cpp.in
|
||||
!build-info.sh
|
||||
!build.zig
|
||||
!docs/build.md
|
||||
/libllama.so
|
||||
/llama-*
|
||||
/vulkan-shaders-gen
|
||||
android-ndk-*
|
||||
arm_neon.h
|
||||
cmake-build-*
|
||||
@@ -62,12 +59,6 @@ llama-batched-swift
|
||||
/rpc-server
|
||||
out/
|
||||
tmp/
|
||||
autogen-*.md
|
||||
|
||||
# Deprecated
|
||||
|
||||
/main
|
||||
/server
|
||||
|
||||
# CI
|
||||
|
||||
@@ -81,6 +72,7 @@ models-mnt
|
||||
!models/ggml-vocab-*.gguf*
|
||||
|
||||
# Zig
|
||||
|
||||
zig-out/
|
||||
zig-cache/
|
||||
|
||||
@@ -104,10 +96,6 @@ examples/server/*.mjs.hpp
|
||||
!examples/sycl/*.bat
|
||||
!examples/sycl/*.sh
|
||||
|
||||
# Server Web UI temporary files
|
||||
node_modules
|
||||
examples/server/webui/dist
|
||||
|
||||
# Python
|
||||
|
||||
/.venv
|
||||
@@ -135,10 +123,3 @@ poetry.toml
|
||||
|
||||
# Scripts
|
||||
!/scripts/install-oneapi.bat
|
||||
|
||||
# Test models for lora adapters
|
||||
/lora-tests
|
||||
|
||||
# Local scripts
|
||||
/run-vim.sh
|
||||
/run-chat.sh
|
||||
|
||||
2
.gitmodules
vendored
2
.gitmodules
vendored
@@ -1,3 +1,3 @@
|
||||
[submodule "kompute"]
|
||||
path = ggml/src/ggml-kompute/kompute
|
||||
path = ggml/src/kompute
|
||||
url = https://github.com/nomic-ai/kompute.git
|
||||
|
||||
186
AUTHORS
186
AUTHORS
@@ -1,4 +1,4 @@
|
||||
# date: Thu Nov 28 20:46:15 EET 2024
|
||||
# date: Wed Jun 26 19:36:34 EEST 2024
|
||||
# this file is auto-generated by scripts/gen-authors.sh
|
||||
|
||||
0cc4m <picard12@live.de>
|
||||
@@ -7,7 +7,6 @@
|
||||
2f38b454 <dxf@protonmail.com>
|
||||
3ooabkhxtn <31479382+3ooabkhxtn@users.noreply.github.com>
|
||||
44670 <44670@users.noreply.github.com>
|
||||
65a <10104049+65a@users.noreply.github.com>
|
||||
AN Long <aisk@users.noreply.github.com>
|
||||
AT <manyoso@users.noreply.github.com>
|
||||
Aarni Koskela <akx@iki.fi>
|
||||
@@ -20,28 +19,20 @@ Adithya Balaji <adithya.b94@gmail.com>
|
||||
AdithyanI <adithyan.i4internet@gmail.com>
|
||||
Adrian <smith.adriane@gmail.com>
|
||||
Adrian Hesketh <a-h@users.noreply.github.com>
|
||||
Ahmad Tameem <113388789+Tameem-10xE@users.noreply.github.com>
|
||||
Ahmet Zeer <ahmed.zeer@std.yildiz.edu.tr>
|
||||
AidanBeltonS <87009434+AidanBeltonS@users.noreply.github.com>
|
||||
AidanBeltonS <aidan.belton@codeplay.com>
|
||||
Aisuko <urakiny@gmail.com>
|
||||
Akarshan Biswas <akarshan.biswas@gmail.com>
|
||||
Akarshan Biswas <akarshanbiswas@fedoraproject.org>
|
||||
Al Mochkin <14274697+amochkin@users.noreply.github.com>
|
||||
Albert Jin <albert.jin@gmail.com>
|
||||
Alberto <57916483+albbus-stack@users.noreply.github.com>
|
||||
Alberto Cabrera Pérez <alberto.cabrera@codeplay.com>
|
||||
Alberto Cabrera Pérez <alberto.cabrera@intel.com>
|
||||
Alex <awhill19@icloud.com>
|
||||
Alex Azarov <alex@azarov.by>
|
||||
Alex Azarov <alexander.azarov@mapbox.com>
|
||||
Alex Klinkhamer <from.github.com.917@grencez.dev>
|
||||
Alex Klinkhamer <git@grencez.dev>
|
||||
Alex Nguyen <tiendung@users.noreply.github.com>
|
||||
Alex O'Connell <35843486+acon96@users.noreply.github.com>
|
||||
Alex Petenchea <alex.petenchea@gmail.com>
|
||||
Alex Renda <alexrenda@users.noreply.github.com>
|
||||
Alex Tuddenham <61622354+AlexsCode@users.noreply.github.com>
|
||||
Alex von Gluck IV <kallisti5@unixzen.com>
|
||||
Alexey Parfenov <zxed@alkatrazstudio.net>
|
||||
Ali Chraghi <63465728+alichraghi@users.noreply.github.com>
|
||||
@@ -54,25 +45,18 @@ AmirAli Mirian <37371367+amiralimi@users.noreply.github.com>
|
||||
Ananta Bastola <anantarajbastola@gmail.com>
|
||||
Anas Ahouzi <112881240+aahouzi@users.noreply.github.com>
|
||||
András Salamon <ott2@users.noreply.github.com>
|
||||
Andreas (Andi) Kunar <andreask@msn.com>
|
||||
Andrei <abetlen@gmail.com>
|
||||
Andrew Canis <andrew.canis@gmail.com>
|
||||
Andrew Downing <andrew2085@gmail.com>
|
||||
Andrew Duffy <a10y@users.noreply.github.com>
|
||||
Andrew Godfrey <AndrewGodfrey@users.noreply.github.com>
|
||||
Andrew Minh Nguyen <40281306+amqdn@users.noreply.github.com>
|
||||
Andy Salerno <andysalerno@gmail.com>
|
||||
Andy Tai <andy-tai@users.noreply.github.com>
|
||||
Anthony Van de Gejuchte <anthonyvdgent@gmail.com>
|
||||
Antonis Makropoulos <benuix@gmail.com>
|
||||
Arik Poznanski <arikpoz@users.noreply.github.com>
|
||||
Armen Kaleshian <kriation@users.noreply.github.com>
|
||||
Artem <guinmoon@gmail.com>
|
||||
Artem Zinnatullin <ceo@abstractny.gay>
|
||||
Artyom Lebedev <vagran.ast@gmail.com>
|
||||
Asbjørn Olling <asbjornolling@gmail.com>
|
||||
Ásgeir Bjarni Ingvarsson <asgeir@fundinn.org>
|
||||
Asghar Ghorbani <a-ghorbani@users.noreply.github.com>
|
||||
Ashish <1856117+ashishdatta@users.noreply.github.com>
|
||||
Ashok Gelal <401055+ashokgelal@users.noreply.github.com>
|
||||
Ashraful Islam <ashraful.meche@gmail.com>
|
||||
@@ -92,16 +76,12 @@ Ben Williams <ben@719ben.com>
|
||||
Benjamin Findley <39356821+Kartoffelsaft@users.noreply.github.com>
|
||||
Benjamin Lecaillon <84293038+blecaillon@users.noreply.github.com>
|
||||
Bernat Vadell <hounter.caza@gmail.com>
|
||||
Bert Wagner <github@bertwagner.com>
|
||||
Bingan <70050083+binganao@users.noreply.github.com>
|
||||
Bjarke Viksøe <164612031+bviksoe@users.noreply.github.com>
|
||||
Bodo Graumann <mail@bodograumann.de>
|
||||
Bono Lv <lvscar@users.noreply.github.com>
|
||||
Borislav Stanimirov <b.stanimirov@abv.bg>
|
||||
Branden Butler <bwtbutler@hotmail.com>
|
||||
Brandon Squizzato <35474886+bsquizz@users.noreply.github.com>
|
||||
Brian <mofosyne@gmail.com>
|
||||
Brian Cunnie <brian.cunnie@gmail.com>
|
||||
Bruce MacDonald <brucewmacdonald@gmail.com>
|
||||
Bryan Honof <bryanhonof@gmail.com>
|
||||
CJ Pais <cj@cjpais.com>
|
||||
@@ -110,47 +90,32 @@ Calvin Laurenson <calvin@laurenson.dev>
|
||||
Cameron <csteele@steelecameron.com>
|
||||
Cameron Kaiser <classilla@users.noreply.github.com>
|
||||
Carolinabanana <140120812+Carolinabanana@users.noreply.github.com>
|
||||
CarryFun <76023481+CarryFun@users.noreply.github.com>
|
||||
Carsten Kragelund Jørgensen <carsten@kragelund.me>
|
||||
CarterLi999 <664681047@qq.com>
|
||||
Casey Primozic <casey@cprimozic.net>
|
||||
Casey Primozic <me@ameo.link>
|
||||
CausalLM <148736309+CausalLM@users.noreply.github.com>
|
||||
Cebtenzzre <cebtenzzre@gmail.com>
|
||||
Chad Brewbaker <crb002@gmail.com>
|
||||
Changyeon Kim <cyzero.kim@samsung.com>
|
||||
Chao Jiang <jc19chaoj@zoho.com>
|
||||
Charles Xu <63788048+chaxu01@users.noreply.github.com>
|
||||
Charles Xu <charles.xu@arm.com>
|
||||
Chen Xi <xi2.chen@intel.com>
|
||||
Chen Xi <xixichen08@foxmail.com>
|
||||
Cheng Shao <terrorjack@type.dance>
|
||||
Chenguang Li <87689256+noemotiovon@users.noreply.github.com>
|
||||
Chris Elrod <elrodc@gmail.com>
|
||||
Chris Kuehl <ckuehl@ckuehl.me>
|
||||
Christian Demsar <christian@github.email.demsar.us>
|
||||
Christian Demsar <crasm@git.vczf.us>
|
||||
Christian Falch <875252+chrfalch@users.noreply.github.com>
|
||||
Christian Kögler <ck3d@gmx.de>
|
||||
Christian Köhnenkamp <cvk5@me.com>
|
||||
Christian Zhou-Zheng <59622928+christianazinn@users.noreply.github.com>
|
||||
Clark Saben <76020733+csaben@users.noreply.github.com>
|
||||
Clint Herron <hanclinto@gmail.com>
|
||||
Conrad Kramer <conrad@conradkramer.com>
|
||||
CrispStrobe <154636388+CrispStrobe@users.noreply.github.com>
|
||||
Csaba Kecskemeti <csaba.kecskemeti@gmail.com>
|
||||
Cuong Trinh Manh <nguoithichkhampha@gmail.com>
|
||||
DAN™ <dranger003@gmail.com>
|
||||
Damian Stewart <d@damianstewart.com>
|
||||
Dan Johansson <164997844+eddnjjn@users.noreply.github.com>
|
||||
Dan Johansson <dan.johansson@arm.com>
|
||||
Dane Madsen <dane_madsen@hotmail.com>
|
||||
DaniAndTheWeb <57776841+DaniAndTheWeb@users.noreply.github.com>
|
||||
Daniel Bevenius <daniel.bevenius@gmail.com>
|
||||
Daniel Drake <drake@endlessos.org>
|
||||
Daniel Hiltgen <dhiltgen@users.noreply.github.com>
|
||||
Daniel Illescas Romero <illescas.daniel@protonmail.com>
|
||||
Daniel Kleine <53251018+d-kleine@users.noreply.github.com>
|
||||
Daniele <57776841+daniandtheweb@users.noreply.github.com>
|
||||
DannyDaemonic <DannyDaemonic@gmail.com>
|
||||
Dat Quoc Nguyen <2412555+datquocnguyen@users.noreply.github.com>
|
||||
@@ -164,28 +129,19 @@ David Pflug <david@pflug.email>
|
||||
David Renshaw <dwrenshaw@gmail.com>
|
||||
David Sommers <12738+databyte@users.noreply.github.com>
|
||||
David Yang <davidyang6us@gmail.com>
|
||||
DavidKorczynski <david@adalogics.com>
|
||||
Dawid Potocki <github@dawidpotocki.com>
|
||||
Dawid Wysocki <62249621+TortillaZHawaii@users.noreply.github.com>
|
||||
Dean <Dean.Sinaean@gmail.com>
|
||||
Deins <deinsegle@gmail.com>
|
||||
Denis Spasyuk <34203011+dspasyuk@users.noreply.github.com>
|
||||
Derrick T. Woolworth <dwoolworth@gmail.com>
|
||||
Deven Mistry <31466137+deven367@users.noreply.github.com>
|
||||
Dibakar Gope <dibakar.gope@arm.com>
|
||||
Didzis Gosko <didzis@users.noreply.github.com>
|
||||
Diego Devesa <slarengh@gmail.com>
|
||||
Diogo Teles Sant'Anna <diogoteles@google.com>
|
||||
Djip007 <djip.perois@free.fr>
|
||||
Don Mahurin <dmahurin@users.noreply.github.com>
|
||||
DooWoong Lee (David) <manics99@naver.com>
|
||||
Doomsdayrs <38189170+Doomsdayrs@users.noreply.github.com>
|
||||
Dou Xinpeng <15529241576@163.com>
|
||||
Dou Xinpeng <81913537+Dou-Git@users.noreply.github.com>
|
||||
Douglas Hanley <thesecretaryofwar@gmail.com>
|
||||
Dr. Tom Murphy VII Ph.D <499244+tom7@users.noreply.github.com>
|
||||
Ebey Abraham <ebey97@gmail.com>
|
||||
Echo Nolan <echo@echonolan.net>
|
||||
Ed Lee <edilee@mozilla.com>
|
||||
Ed Lepedus <ed.lepedus@googlemail.com>
|
||||
Eddie-Wang <wangjinheng1120@163.com>
|
||||
@@ -195,13 +151,10 @@ Elbios <141279586+Elbios@users.noreply.github.com>
|
||||
Elton Kola <eltonkola@gmail.com>
|
||||
Engininja2 <139037756+Engininja2@users.noreply.github.com>
|
||||
Equim <sayaka@ekyu.moe>
|
||||
Eric Curtin <ecurtin@redhat.com>
|
||||
Eric Curtin <ericcurtin17@gmail.com>
|
||||
Eric Sommerlade <es0m@users.noreply.github.com>
|
||||
Eric Zhang <34133756+EZForever@users.noreply.github.com>
|
||||
Erik Garrison <erik.garrison@gmail.com>
|
||||
Erik Scholz <Green-Sky@users.noreply.github.com>
|
||||
Esko Toivonen <eskot98@gmail.com>
|
||||
Ettore Di Giacinto <mudler@users.noreply.github.com>
|
||||
Evan Jones <evan.q.jones@gmail.com>
|
||||
Evan Miller <emmiller@gmail.com>
|
||||
@@ -213,26 +166,19 @@ FK <sozforex@gmail.com>
|
||||
Fabian <cmdrf@users.noreply.github.com>
|
||||
Fabio R. Sluzala <Fabio3rs@users.noreply.github.com>
|
||||
Faez Shakil <faez.shakil@gmail.com>
|
||||
Faisal Zaghloul <faisal.zaghloul@gmail.com>
|
||||
Faisal Zaghloul <quic_fzaghlou@quicinc.com>
|
||||
Fan Shupei <dymarkfan@outlook.com>
|
||||
FantasyGmm <16450052+FantasyGmm@users.noreply.github.com>
|
||||
Farbod Bijary <110523279+farbodbj@users.noreply.github.com>
|
||||
Fattire <528174+fat-tire@users.noreply.github.com>
|
||||
Felix <stenbackfelix@gmail.com>
|
||||
Finn Voorhees <finnvoorhees@gmail.com>
|
||||
Firat <firatkiral@gmail.com>
|
||||
FirstTimeEZ <179362031+FirstTimeEZ@users.noreply.github.com>
|
||||
Folko-Ven <71110216+Folko-Ven@users.noreply.github.com>
|
||||
Foul-Tarnished <107711110+Foul-Tarnished@users.noreply.github.com>
|
||||
Francisco Melo <43780565+francis2tm@users.noreply.github.com>
|
||||
Frank Mai <thxcode0824@gmail.com>
|
||||
FrankHB <frankhb1989@gmail.com>
|
||||
Frankie Robertson <frankier@users.noreply.github.com>
|
||||
Fred Douglas <43351173+fredlas@users.noreply.github.com>
|
||||
Frederik Vogel <Schaltfehler@users.noreply.github.com>
|
||||
Gabe Goodhart <gabe.l.hart@gmail.com>
|
||||
Gabe Goodhart <ghart@us.ibm.com>
|
||||
GainLee <perfecter.gen@gmail.com>
|
||||
Galunid <karolek1231456@gmail.com>
|
||||
Gary Linscott <glinscott@gmail.com>
|
||||
@@ -241,13 +187,11 @@ Gavin Zhao <gavinzhaojw@protonmail.com>
|
||||
Genkagaku.GPT <hlhr202@163.com>
|
||||
Georgi Gerganov <ggerganov@gmail.com>
|
||||
Gilad S <giladgd@users.noreply.github.com>
|
||||
Gilad S. <7817232+giladgd@users.noreply.github.com>
|
||||
Giuseppe Scrivano <giuseppe@scrivano.org>
|
||||
GiviMAD <GiviMAD@users.noreply.github.com>
|
||||
Govlzkoy <gotope@users.noreply.github.com>
|
||||
Guillaume "Vermeille" Sanchez <Guillaume.V.Sanchez@gmail.com>
|
||||
Guillaume Wenzek <gwenzek@users.noreply.github.com>
|
||||
Guoliang Hua <32868157+nbcsm@users.noreply.github.com>
|
||||
Guoteng <32697156+SolenoidWGT@users.noreply.github.com>
|
||||
Gustavo Rocha Dias <91472747+gustrd@users.noreply.github.com>
|
||||
Haggai Nuchi <h.nuchi@gmail.com>
|
||||
@@ -269,14 +213,11 @@ Hong Bo PENG <penghb@cn.ibm.com>
|
||||
Hongyu Ouyang <96765450+casavaca@users.noreply.github.com>
|
||||
Howard Su <howard0su@gmail.com>
|
||||
Hua Jiang <allenhjiang@outlook.com>
|
||||
Huang Qi <huangqi3@xiaomi.com>
|
||||
Huawei Lin <huaweilin.cs@gmail.com>
|
||||
Hugo Roussel <hugo.rous@gmail.com>
|
||||
Huifeng Ou <79071290+ho2103@users.noreply.github.com>
|
||||
Ian Bull <irbull@eclipsesource.com>
|
||||
Ian Bull <irbull@gmail.com>
|
||||
Ian Scrivener <github@zilogy.asia>
|
||||
Icecream95 <the.real.icecream95@gmail.com>
|
||||
Ido S <ido.pluto@gmail.com>
|
||||
IgnacioFDM <ignaciofdm@gmail.com>
|
||||
Igor Okulist <okigan@gmail.com>
|
||||
@@ -285,15 +226,11 @@ Ilya Kurdyukov <59548320+ilyakurdyukov@users.noreply.github.com>
|
||||
Ionoclast Laboratories <brigham@ionoclast.com>
|
||||
Isaac McFadyen <isaac@imcf.me>
|
||||
IsaacDynamo <61521674+IsaacDynamo@users.noreply.github.com>
|
||||
Ivan <nekotekina@gmail.com>
|
||||
Ivan Filipov <159561759+vanaka11@users.noreply.github.com>
|
||||
Ivan Komarov <Ivan.Komarov@dfyz.info>
|
||||
Ivan Stepanov <ivanstepanovftw@gmail.com>
|
||||
JH23X <165871467+JH23X@users.noreply.github.com>
|
||||
Jack Mousseau <jack@software.inc>
|
||||
Jack Mousseau <jmousseau@users.noreply.github.com>
|
||||
JackJollimore <130917767+JackJollimore@users.noreply.github.com>
|
||||
Jaeden Amero <jaeden@patater.com>
|
||||
Jaemin Son <woalsdnd@gmail.com>
|
||||
Jag Chadha <jagtesh@gmail.com>
|
||||
Jakub N <jakubniemczyk97@gmail.com>
|
||||
@@ -306,14 +243,10 @@ Jannis Schönleber <joennlae@gmail.com>
|
||||
Jared Van Bortel <cebtenzzre@gmail.com>
|
||||
Jared Van Bortel <jared@nomic.ai>
|
||||
Jason McCartney <jmac@theroot.org>
|
||||
Jason Stillerman <jason.t.stillerman@gmail.com>
|
||||
Jean-Christophe Hoelt <hoelt@fovea.cc>
|
||||
Jean-Michaël Celerier <jeanmichael.celerier+github@gmail.com>
|
||||
Jed Fox <git@jedfox.com>
|
||||
Jeff Bolz <jbolz@nvidia.com>
|
||||
Jeffrey Morgan <jmorganca@gmail.com>
|
||||
Jeffrey Quesnelle <emozilla@nousresearch.com>
|
||||
Jeroen Mostert <jeroen.mostert@cm.com>
|
||||
Jesse Jojo Johnson <williamsaintgeorge@gmail.com>
|
||||
Jeximo <jeximo@gmail.com>
|
||||
Jhen-Jie Hong <iainst0409@gmail.com>
|
||||
@@ -325,9 +258,6 @@ Jiří Podivín <66251151+jpodivin@users.noreply.github.com>
|
||||
Jiří Sejkora <Sejseloid@gmail.com>
|
||||
Joan Fontanals <jfontanalsmartinez@gmail.com>
|
||||
Joan Fontanals <joan.fontanals.martinez@jina.ai>
|
||||
João Dinis Ferreira <hello@joaof.eu>
|
||||
Joe Eli McIlvain <joe.eli.mac@gmail.com>
|
||||
Joe Todd <joe.todd@codeplay.com>
|
||||
Johan <JohanAR@users.noreply.github.com>
|
||||
Johannes Gäßler <johannesg@5d6.de>
|
||||
Johannes Rudolph <johannes.rudolph@gmail.com>
|
||||
@@ -344,9 +274,7 @@ Joyce <joycebrum@google.com>
|
||||
Juan Calderon-Perez <835733+gaby@users.noreply.github.com>
|
||||
Judd <foldl@users.noreply.github.com>
|
||||
Julius Arkenberg <arki05@users.noreply.github.com>
|
||||
Jun Hee Yoo <contact.jhyoo@gmail.com>
|
||||
Jun Jie <71215065+junnjiee16@users.noreply.github.com>
|
||||
Junil Kim <logyourself@gmail.com>
|
||||
Junyang Lin <justinlin930319@hotmail.com>
|
||||
Juraj Bednar <juraj@bednar.io>
|
||||
Justin Parker <jparkerweb@gmail.com>
|
||||
@@ -364,14 +292,12 @@ Karthik Sethuraman <k.seth1993@gmail.com>
|
||||
Kasumi <90275229+kasumi-1@users.noreply.github.com>
|
||||
Kawrakow <48489457+ikawrakow@users.noreply.github.com>
|
||||
Keiichi Tabata <keiichi.tabata@outlook.com>
|
||||
Keke Han <hankeke303@163.com>
|
||||
Kenvix ⭐ <kenvixzure@live.com>
|
||||
Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com>
|
||||
Kevin Gibbons <bakkot@gmail.com>
|
||||
Kevin Ji <1146876+kevinji@users.noreply.github.com>
|
||||
Kevin Kwok <antimatter15@gmail.com>
|
||||
Kevin Lo <kevlo@kevlo.org>
|
||||
Kevin Wang <kevmo314@gmail.com>
|
||||
Kolen Cheung <ickc@users.noreply.github.com>
|
||||
Konstantin Herud <konstantin.herud@denkbares.com>
|
||||
Konstantin Zhuravlyov <konstantin.zhuravlyov@amd.com>
|
||||
@@ -389,29 +315,22 @@ LeonEricsson <70749762+LeonEricsson@users.noreply.github.com>
|
||||
Leonardo Neumann <leonardo@neumann.dev.br>
|
||||
Li Tan <tanliboy@gmail.com>
|
||||
Linwei Wang <wanix1988@gmail.com>
|
||||
Liu Jia <109258120+Septa2112@users.noreply.github.com>
|
||||
Liu Jia <jia3.liu@intel.com>
|
||||
LoganDark <github@logandark.mozmail.com>
|
||||
Loïc Carrère <loic.carrere@gmail.com>
|
||||
LostRuins <39025047+LostRuins@users.noreply.github.com>
|
||||
Luciano <lucianostrika44@gmail.com>
|
||||
Luo Tian <lt@basecity.com>
|
||||
Lyle Dean <dean@lyle.dev>
|
||||
M-A <maruel@gmail.com>
|
||||
M. Yusuf Sarıgöz <yusufsarigoz@gmail.com>
|
||||
Ma Mingfei <mingfei.ma@intel.com>
|
||||
Maarten ter Huurne <maarten@treewalker.org>
|
||||
Mack Straight <eiz@users.noreply.github.com>
|
||||
Maël Kerbiriou <m431.kerbiriou@gmail.com>
|
||||
MaggotHATE <clay1326@gmail.com>
|
||||
Mahesh Madhav <67384846+heshpdx@users.noreply.github.com>
|
||||
Manuel <44313466+makuche@users.noreply.github.com>
|
||||
Marc Köhlbrugge <subscriptions@marckohlbrugge.com>
|
||||
Marco Matthies <71844+marcom@users.noreply.github.com>
|
||||
Marcus Dunn <51931484+MarcusDunn@users.noreply.github.com>
|
||||
Marian Cepok <marian.cepok@gmail.com>
|
||||
Mark Fairbairn <thebaron88@gmail.com>
|
||||
Mark Zhuang <zhuangqiubin@gmail.com>
|
||||
Marko Tasic <mtasic85@gmail.com>
|
||||
Markus Tavenrath <mtavenrath@users.noreply.github.com>
|
||||
Martin Delille <martin@delille.org>
|
||||
@@ -423,15 +342,11 @@ MasterYi1024 <39848311+MasterYi1024@users.noreply.github.com>
|
||||
Mateusz Charytoniuk <mateusz.charytoniuk@protonmail.com>
|
||||
Matheus C. França <matheus-catarino@hotmail.com>
|
||||
Matheus Gabriel Alves Silva <matheusgasource@gmail.com>
|
||||
Mathieu Geli <mathieu.geli@gmail.com>
|
||||
Mathieu Nayrolles <MathieuNls@users.noreply.github.com>
|
||||
Mathijs Henquet <mathijs.henquet@gmail.com>
|
||||
Mathijs de Bruin <mathijs@mathijsfietst.nl>
|
||||
Matt Clayton <156335168+mattjcly@users.noreply.github.com>
|
||||
Matt Pulver <matt.pulver@heavy.ai>
|
||||
Matt Stephenson <mstephenson6@users.noreply.github.com>
|
||||
Matteo Boschini <12133566+mbosc@users.noreply.github.com>
|
||||
Matteo Mortari <matteo.mortari@gmail.com>
|
||||
Mattheus Chediak <shammcity00@gmail.com>
|
||||
Matthew Tejo <matthew.tejo@gmail.com>
|
||||
Matvey Soloviev <blackhole89@gmail.com>
|
||||
@@ -441,10 +356,8 @@ Maxime <672982+maximegmd@users.noreply.github.com>
|
||||
Maximilian Winter <maximilian.winter.91@gmail.com>
|
||||
Meng Zhang <meng@tabbyml.com>
|
||||
Meng, Hengyu <hengyu.meng@intel.com>
|
||||
Mengqing Cao <cmq0113@163.com>
|
||||
Merrick Christensen <merrick.christensen@gmail.com>
|
||||
Michael Coppola <m18coppola@gmail.com>
|
||||
Michael Francis <edude03@gmail.com>
|
||||
Michael Hueschen <m@mhueschen.dev>
|
||||
Michael Kesper <mkesper@schokokeks.org>
|
||||
Michael Klimenko <mklimenko29@gmail.com>
|
||||
@@ -452,57 +365,41 @@ Michael Podvitskiy <podvitskiymichael@gmail.com>
|
||||
Michael Potter <NanoTekGuy@Gmail.com>
|
||||
Michael de Gans <michael.john.degans@gmail.com>
|
||||
Michaël de Vries <vriesdemichael@gmail.com>
|
||||
Michał Tuszyński <srgtuszy@gmail.com>
|
||||
Mihai <mihai.chirculescu@yahoo.com>
|
||||
Mike <ytianhui2004@gmail.com>
|
||||
Mikko Juola <mikjuo@gmail.com>
|
||||
Minsoo Cheong <54794500+mscheong01@users.noreply.github.com>
|
||||
Minsoo Cheong <icycle0409@snu.ac.kr>
|
||||
Mirko185 <mirkosig@gmail.com>
|
||||
Mirror Azure <54669636+MirrorAzure@users.noreply.github.com>
|
||||
MistApproach <98988043+MistApproach@users.noreply.github.com>
|
||||
Miwa / Ensan <63481257+ensan-hcl@users.noreply.github.com>
|
||||
Mohammadreza Hendiani <hendiani.mohammadreza@gmail.com>
|
||||
Mohammadreza Hendiani <mohammad.r.hendiani@gmail.com>
|
||||
Molly Sophia <mollysophia379@gmail.com>
|
||||
MorganRO8 <47795945+MorganRO8@users.noreply.github.com>
|
||||
Murilo Santana <mvrilo@gmail.com>
|
||||
Musab Gultekin <musabgultekin@users.noreply.github.com>
|
||||
Nam D. Tran <42194884+namtranase@users.noreply.github.com>
|
||||
Nathan Epstein <nate2@umbc.edu>
|
||||
Natsu <chino@hotococoa.moe>
|
||||
NawafAlansari <72708095+NawafAlansari@users.noreply.github.com>
|
||||
Nebula <infinitewormhole@gmail.com>
|
||||
Neo Zhang <14088817+arthw@users.noreply.github.com>
|
||||
Neo Zhang <zhang.jianyu@outlook.com>
|
||||
Neo Zhang Jianyu <jianyu.zhang@intel.com>
|
||||
Neuman Vong <neuman.vong@gmail.com>
|
||||
Nexes the Old <124105151+Nexesenex@users.noreply.github.com>
|
||||
Nexesenex <124105151+Nexesenex@users.noreply.github.com>
|
||||
Niall Coates <1349685+Niall-@users.noreply.github.com>
|
||||
Nicholai Tukanov <nicholaitukanov@gmail.com>
|
||||
Nico Bosshard <nico@bosshome.ch>
|
||||
Nicolai Weitkemper <kontakt@nicolaiweitkemper.de>
|
||||
Nicolás Pérez <nicolas_perez@brown.edu>
|
||||
Nigel Bosch <pnigelb@gmail.com>
|
||||
Niklas Korz <niklas@niklaskorz.de>
|
||||
NikolaiLyssogor <59844691+NikolaiLyssogor@users.noreply.github.com>
|
||||
Nikolas <127742645+nneubacher@users.noreply.github.com>
|
||||
Nindaleth <Nindaleth@users.noreply.github.com>
|
||||
OSecret <135510162+OLSecret@users.noreply.github.com>
|
||||
Oleksandr Nikitin <oleksandr@tvori.info>
|
||||
Oleksii Maryshchenko <oleksii.maryshchenko@gmail.com>
|
||||
Olivier Chafik <ochafik@users.noreply.github.com>
|
||||
Ondřej Čertík <ondrej@certik.us>
|
||||
Ouadie EL FAROUKI <ouadie.elfarouki@codeplay.com>
|
||||
PAB <pierreantoine.bannier@gmail.com>
|
||||
Pablo Duboue <pablo.duboue@gmail.com>
|
||||
Pascal Patry <ppatry@mtacitlabs.com>
|
||||
Patrice Ferlet <metal3d@gmail.com>
|
||||
Paul Tsochantaris <ptsochantaris@icloud.com>
|
||||
Pavel Zloi <github.com@drteam.rocks>
|
||||
Pavol Rusnak <pavol@rusnak.io>
|
||||
Paweł Wodnicki <151604+32bitmicro@users.noreply.github.com>
|
||||
Pedro Cuenca <pedro@huggingface.co>
|
||||
Peter Sugihara <peter@campsh.com>
|
||||
Phil H <5756783+phiharri@users.noreply.github.com>
|
||||
@@ -510,15 +407,10 @@ Philip Taron <philip.taron@gmail.com>
|
||||
Phillip Kravtsov <phillip@kravtsov.net>
|
||||
Pierre Alexandre SCHEMBRI <pa.schembri@gmail.com>
|
||||
Pierrick Hymbert <pierrick.hymbert@gmail.com>
|
||||
Pieter Ouwerkerk <pieter.ouwerkerk@gmail.com>
|
||||
Plamen Minev <pacominev@gmail.com>
|
||||
Prashant Vithule <119530321+Vithulep@users.noreply.github.com>
|
||||
Przemysław Pawełczyk <przemoc@gmail.com>
|
||||
Qin Yue Chen <71813199+chenqiny@users.noreply.github.com>
|
||||
Qingyou Meng <meng.qingyou@gmail.com>
|
||||
Qu Zongfu <43257352+yancaoweidaode@users.noreply.github.com>
|
||||
R0CKSTAR <xiaodong.ye@mthreads.com>
|
||||
R0CKSTAR <yeahdongcn@gmail.com>
|
||||
RJ Adriaansen <adriaansen@eshcc.eur.nl>
|
||||
Radoslav Gerganov <rgerganov@gmail.com>
|
||||
Radosław Gryta <radek.gryta@gmail.com>
|
||||
@@ -527,13 +419,11 @@ Raj Hammeer Singh Hada <hammeerraj@gmail.com>
|
||||
Ralph Soika <ralph.soika@imixs.com>
|
||||
Rand Xie <randxiexyy29@gmail.com>
|
||||
Randall Fitzgerald <randall@dasaku.net>
|
||||
Random Fly <renfei8@live.cn>
|
||||
Reinforce-II <fate@eastal.com>
|
||||
Ren Xuancheng <jklj077@users.noreply.github.com>
|
||||
Rene Leonhardt <65483435+reneleonhardt@users.noreply.github.com>
|
||||
RhinoDevel <RhinoDevel@users.noreply.github.com>
|
||||
Riceball LEE <snowyu.lee@gmail.com>
|
||||
Rich Dougherty <rich@rd.nz>
|
||||
Richard Kiss <him@richardkiss.com>
|
||||
Richard Roberson <richardr1126@gmail.com>
|
||||
Rick G <26732651+TheFlipbook@users.noreply.github.com>
|
||||
@@ -549,30 +439,21 @@ Robey Holderith <robey@flaminglunchbox.net>
|
||||
Robyn <robyngraf@users.noreply.github.com>
|
||||
Roger Meier <r.meier@siemens.com>
|
||||
Roland <14355895+rbur0425@users.noreply.github.com>
|
||||
Romain Biessy <romain.biessy@codeplay.com>
|
||||
Romain D <90720+Artefact2@users.noreply.github.com>
|
||||
Romain Neutron <romain@neutron.io>
|
||||
Roman Parykin <donderom@gmail.com>
|
||||
Ron Evans <ron@hybridgroup.com>
|
||||
Ron Jailall <rojailal@gmail.com>
|
||||
Roni <sulpher@gmx.net>
|
||||
Ronny Brendel <ronnybrendel@gmail.com>
|
||||
Ronsor <ronsor@ronsor.pw>
|
||||
Rowan Hart <rowanbhart@gmail.com>
|
||||
Ruchira Hasaranga <ruchira66@gmail.com>
|
||||
Ruixin Huang <18860020911@163.com>
|
||||
Rune <43761327+Rune-AI@users.noreply.github.com>
|
||||
RunningLeon <maningsheng@sensetime.com>
|
||||
RunningLeon <mnsheng@yeah.net>
|
||||
Ryan Landay <rlanday@gmail.com>
|
||||
Ryder Wishart <ryderwishart@gmail.com>
|
||||
Ryuei <louixs@users.noreply.github.com>
|
||||
Rőczey Barnabás <31726601+An0nie@users.noreply.github.com>
|
||||
SRHMorris <69468379+SRHMorris@users.noreply.github.com>
|
||||
SXX <sxx1136965276@gmail.com>
|
||||
SakuraUmi <yukinon244@gmail.com>
|
||||
Salvador E. Tropea <stropea@inti.gob.ar>
|
||||
Salvatore Mesoraca <s.mesoraca16@gmail.com>
|
||||
Sam Spilsbury <smspillaz@gmail.com>
|
||||
Sami Farin <3876865+Safari77@users.noreply.github.com>
|
||||
Samuel Maynard <samwmaynard@gmail.com>
|
||||
@@ -582,29 +463,23 @@ Sebastián A <sebastian.aedo29@gmail.com>
|
||||
SebastianApel <13675545+SebastianApel@users.noreply.github.com>
|
||||
Senemu <10880819+Senemu@users.noreply.github.com>
|
||||
Sergey Alirzaev <zl29ah@gmail.com>
|
||||
Sergio López <slp@redhat.com>
|
||||
Sergio López <slp@sinrega.org>
|
||||
Sertaç Özercan <852750+sozercan@users.noreply.github.com>
|
||||
SeungWon Jeong <65549245+redlion0929@users.noreply.github.com>
|
||||
ShadovvBeast <ShadovvBeast@gmail.com>
|
||||
Shakhar Dasgupta <shakhardasgupta@gmail.com>
|
||||
Shane A <shanea@allenai.org>
|
||||
Shangning Xu <32517059+xushangning@users.noreply.github.com>
|
||||
Shankar <gshankar.87@gmail.com>
|
||||
Shanshan Shen <467638484@qq.com>
|
||||
Shijie <821898965@qq.com>
|
||||
Shintarou Okada <kokuzen@gmail.com>
|
||||
Shouzheng Liu <61452103+lshzh-ww@users.noreply.github.com>
|
||||
Shouzheng Liu <lshzh.hi@gmail.com>
|
||||
Shuichi Tsutsumi <shuichi0526@gmail.com>
|
||||
Shupei Fan <dymarkfan@outlook.com>
|
||||
Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
|
||||
Simon Willison <swillison@gmail.com>
|
||||
Siwen Yu <yusiwen@gmail.com>
|
||||
Sky Yan <skyan83@gmail.com>
|
||||
Slaren <2141330+slaren@users.noreply.github.com>
|
||||
Slava Primenko <primenko.s@gmail.com>
|
||||
Small Grass Forest <zixuanxcl@gmail.com>
|
||||
SoftwareRenderer <138734813+SoftwareRenderer@users.noreply.github.com>
|
||||
Someone <sergei.kozlukov@aalto.fi>
|
||||
Someone Serge <sergei.kozlukov@aalto.fi>
|
||||
@@ -616,15 +491,12 @@ Stefan Sydow <stefan@sydow.email>
|
||||
Steffen Röcker <sroecker@gmail.com>
|
||||
Stephan Walter <stephan@walter.name>
|
||||
Stephen Nichols <snichols@users.noreply.github.com>
|
||||
Steve Bonds <sbonds@gmail.com>
|
||||
Steve Grubb <ausearch.1@gmail.com>
|
||||
Steven Prichard <spprichard20@gmail.com>
|
||||
Steven Roussey <sroussey@gmail.com>
|
||||
Steward Garcia <57494570+FSSRepo@users.noreply.github.com>
|
||||
StrangeBytesDev <141275258+StrangeBytesDev@users.noreply.github.com>
|
||||
Suaj Carrot <72162667+SuajCarrot@users.noreply.github.com>
|
||||
SuperUserNameMan <yoann@terminajones.com>
|
||||
Sutou Kouhei <kou@cozmixng.org>
|
||||
Tai Duc Nguyen <taiducnguyen.drexel@gmail.com>
|
||||
Taikono-Himazin <kazu@po.harenet.ne.jp>
|
||||
Tameem <113388789+AhmadTameem@users.noreply.github.com>
|
||||
@@ -635,9 +507,7 @@ Theia Vogel <theia@vgel.me>
|
||||
Thérence <13496987+Royalphax@users.noreply.github.com>
|
||||
Thibault Terrasson <thibault.terrasson@gmail.com>
|
||||
Thomas Klausner <wiz@gatalith.at>
|
||||
Thorsten Sommer <SommerEngineering@users.noreply.github.com>
|
||||
Tim Miller <drasticactions@users.noreply.github.com>
|
||||
Tim Wang <overocean@gmail.com>
|
||||
Timmy Knight <r2d2fish@gmail.com>
|
||||
Timothy Cronin <40186632+4imothy@users.noreply.github.com>
|
||||
Ting Lou <ting.lou@gmail.com>
|
||||
@@ -647,31 +517,24 @@ Tom C <tom.corelis@gmail.com>
|
||||
Tom Jobbins <784313+TheBloke@users.noreply.github.com>
|
||||
Tomas <tom.tomas.36478119@gmail.com>
|
||||
Tomáš Pazdiora <tomas.pazdiora@gmail.com>
|
||||
Tony Wasserka <4840017+neobrain@users.noreply.github.com>
|
||||
Tristan Druyen <tristan@vault81.mozmail.com>
|
||||
Tristan Ross <rosscomputerguy@protonmail.com>
|
||||
Trivikram Kamat <16024985+trivikr@users.noreply.github.com>
|
||||
Tungsten842 <886724vf@anonaddy.me>
|
||||
Tungsten842 <quantmint@protonmail.com>
|
||||
Tushar <ditsuke@protonmail.com>
|
||||
UEXTM.com <84163508+uextm@users.noreply.github.com>
|
||||
Ujjawal Panchal <31011628+Ujjawal-K-Panchal@users.noreply.github.com>
|
||||
Ulrich Drepper <drepper@gmail.com>
|
||||
Uzo Nweke <uzoechi@gmail.com>
|
||||
Vaibhav Srivastav <vaibhavs10@gmail.com>
|
||||
Val Kharitonov <mail@kharvd.com>
|
||||
Valentin Konovalov <valle.ketsujin@gmail.com>
|
||||
Valentyn Bezshapkin <61702053+valentynbez@users.noreply.github.com>
|
||||
Vali Malinoiu <0x4139@gmail.com>
|
||||
Victor Nogueira <felladrin@gmail.com>
|
||||
Victor Z. Peng <ziliangdotme@gmail.com>
|
||||
Viet-Anh NGUYEN (Andrew) <vietanh.dev@gmail.com>
|
||||
Vinesh Janarthanan <36610342+VJHack@users.noreply.github.com>
|
||||
Vlad <spitfireage@gmail.com>
|
||||
Vladimir <bogdad@gmail.com>
|
||||
Vladimir Malyutin <first-leon@yandex.ru>
|
||||
Vladimir Zorin <vladimir@deviant.guru>
|
||||
VoidIsVoid <343750470@qq.com>
|
||||
Volodymyr Vitvitskyi <72226+signalpillar@users.noreply.github.com>
|
||||
WangHaoranRobin <56047610+WangHaoranRobin@users.noreply.github.com>
|
||||
Weird Constructor <weirdconstructor@gmail.com>
|
||||
@@ -688,22 +551,15 @@ Xiang (Kevin) Li <kevinli020508@gmail.com>
|
||||
Xiao-Yong Jin <jinxiaoyong@gmail.com>
|
||||
XiaotaoChen <chenxiaotao1234@gmail.com>
|
||||
Xiaoyi Chen <cxychina@gmail.com>
|
||||
Xie Yanbo <xieyanbo@gmail.com>
|
||||
Xingchen Song(宋星辰) <xingchensong1996@163.com>
|
||||
Xinpeng Dou <81913537+Dou-Git@users.noreply.github.com>
|
||||
Xuan Son Nguyen <thichthat@gmail.com>
|
||||
Yaiko <elyaiko@hotmail.com>
|
||||
Yann Follet <131855179+YannFollet@users.noreply.github.com>
|
||||
Yaroslav <yaroslav.yashin@me.com>
|
||||
Yazan Agha-Schrader <mountaiin@icloud.com>
|
||||
Yiming Cui <conandiy@vip.qq.com>
|
||||
Yishuo Wang <MeouSker77@outlook.com>
|
||||
Yoshi Suhara <y.suhara@gmail.com>
|
||||
Yoshi Suhara <ysuhara@nvidia.com>
|
||||
Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
|
||||
Yueh-Po Peng <94939112+y10ab1@users.noreply.github.com>
|
||||
Yui <dev@sleepyyui.com>
|
||||
Yuri Khrustalev <ykhrustalev@users.noreply.github.com>
|
||||
Yusuf Kağan Hanoğlu <hanoglu@yahoo.com>
|
||||
Yuval Peled <31162840+Yuval-Peled@users.noreply.github.com>
|
||||
ZHAOKAI WANG <sanxianwei@163.com>
|
||||
@@ -712,8 +568,6 @@ Zay <95888118+isaiahbjork@users.noreply.github.com>
|
||||
Zenix <zenixls2@gmail.com>
|
||||
Zhang Peiyuan <a1286225768@gmail.com>
|
||||
Zheng.Deng <32841220+dengzheng-cloud@users.noreply.github.com>
|
||||
Zhenwei Jin <109658203+kylo5aby@users.noreply.github.com>
|
||||
Zhiyuan Li <lizhiyuan@uniartisan.com>
|
||||
ZhouYuChen <zhouyuchen@naver.com>
|
||||
Ziad Ben Hadj-Alouane <zied.benhadjalouane@gmail.com>
|
||||
Ziang Wu <97337387+ZiangWu-77@users.noreply.github.com>
|
||||
@@ -727,7 +581,6 @@ alexpinel <93524949+alexpinel@users.noreply.github.com>
|
||||
alonfaraj <alonfaraj@gmail.com>
|
||||
alwqx <kenan3015@gmail.com>
|
||||
amd-lalithnc <lalithnc@amd.com>
|
||||
amritahs-ibm <amritahs@linux.vnet.ibm.com>
|
||||
andrijdavid <david@geek.mg>
|
||||
anon998 <131767832+anon998@users.noreply.github.com>
|
||||
anzz1 <anzz1@live.com>
|
||||
@@ -735,18 +588,14 @@ apaz <aarpazdera@gmail.com>
|
||||
apcameron <37645737+apcameron@users.noreply.github.com>
|
||||
arch-btw <57669023+arch-btw@users.noreply.github.com>
|
||||
arcrank <arcrank@gmail.com>
|
||||
ardfork <134447697+ardfork@users.noreply.github.com>
|
||||
arlo-phoenix <140345165+arlo-phoenix@users.noreply.github.com>
|
||||
at8u <129688334+at8u@users.noreply.github.com>
|
||||
automaticcat <daogiatuank54@gmail.com>
|
||||
awatuna <23447591+awatuna@users.noreply.github.com>
|
||||
b4b4o <zwbao@foxmail.com>
|
||||
bandoti <141645996+bandoti@users.noreply.github.com>
|
||||
beiller <beiller@gmail.com>
|
||||
bhubbb <79117352+bhubbb@users.noreply.github.com>
|
||||
bmwl <brian.marshall@tolko.com>
|
||||
bobqianic <129547291+bobqianic@users.noreply.github.com>
|
||||
brucepro <git@brucepro.net>
|
||||
bryanSwk <93190252+bryanSwk@users.noreply.github.com>
|
||||
bsilvereagle <bsilvereagle@users.noreply.github.com>
|
||||
bssrdf <merlintiger@hotmail.com>
|
||||
@@ -765,14 +614,10 @@ cpumaxx <163466046+cpumaxx@users.noreply.github.com>
|
||||
crasm <crasm@git.vczf.net>
|
||||
crasm <crasm@git.vczf.us>
|
||||
daboe01 <daboe01@googlemail.com>
|
||||
daghanerdonmez <44506702+daghanerdonmez@users.noreply.github.com>
|
||||
daminho <37615795+daminho@users.noreply.github.com>
|
||||
david raistrick <keen99@users.noreply.github.com>
|
||||
ddh0 <dylanhalladay02@icloud.com>
|
||||
ddpasa <112642920+ddpasa@users.noreply.github.com>
|
||||
deepdiffuser <112834445+deepdiffuser@users.noreply.github.com>
|
||||
devojony <61173062+devojony@users.noreply.github.com>
|
||||
ditsuke <ditsuke@protonmail.com>
|
||||
divinity76 <divinity76@gmail.com>
|
||||
dm4 <sunrisedm4@gmail.com>
|
||||
dotpy314 <33351922+dotpy314@users.noreply.github.com>
|
||||
@@ -784,18 +629,14 @@ ebraminio <ebraminio@gmail.com>
|
||||
eiery <19350831+eiery@users.noreply.github.com>
|
||||
eric8607242 <e0928021388@gmail.com>
|
||||
fairydreaming <166155368+fairydreaming@users.noreply.github.com>
|
||||
fengerhu1 <2748250768@qq.com>
|
||||
fraxy-v <65565042+fraxy-v@users.noreply.github.com>
|
||||
github-actions[bot] <github-actions[bot]@users.noreply.github.com>
|
||||
gliptic <gliptic@users.noreply.github.com>
|
||||
goerch <jhr.walter@t-online.de>
|
||||
grahameth <96447521+grahameth@users.noreply.github.com>
|
||||
gtygo <gtydoit@gmail.com>
|
||||
gwjr <502526+gwjr@users.noreply.github.com>
|
||||
h-h-h-h <13482553+h-h-h-h@users.noreply.github.com>
|
||||
hankcs <cnhankmc@gmail.com>
|
||||
haopeng <657407891@qq.com>
|
||||
hipudding <huafengchun@gmail.com>
|
||||
hoangmit <hoangmit@users.noreply.github.com>
|
||||
hongbo.mo <352280764@qq.com>
|
||||
hopkins385 <98618192+hopkins385@users.noreply.github.com>
|
||||
@@ -808,14 +649,12 @@ hxer7963 <hxer7963@gmail.com>
|
||||
hydai <z54981220@gmail.com>
|
||||
iSma <ismail.senhaji@gmail.com>
|
||||
iacore <74560659+iacore@users.noreply.github.com>
|
||||
icppWorld <124377669+icppWorld@users.noreply.github.com>
|
||||
igarnier <igarnier@protonmail.com>
|
||||
intelmatt <61025942+intelmatt@users.noreply.github.com>
|
||||
iohub <rickyang.pro@gmail.com>
|
||||
jacobi petrucciani <8117202+jpetrucciani@users.noreply.github.com>
|
||||
jaime-m-p <167997752+jaime-m-p@users.noreply.github.com>
|
||||
jameswu2014 <545426914@qq.com>
|
||||
jdomke <28772296+jdomke@users.noreply.github.com>
|
||||
jiez <373447296@qq.com>
|
||||
jneem <joeneeman@gmail.com>
|
||||
joecryptotoo <80373433+joecryptotoo@users.noreply.github.com>
|
||||
@@ -838,35 +677,28 @@ klosax <131523366+klosax@users.noreply.github.com>
|
||||
kunal-vaishnavi <115581922+kunal-vaishnavi@users.noreply.github.com>
|
||||
kunnis <kunnis@users.noreply.github.com>
|
||||
kuronekosaiko <EvanChanJ@163.com>
|
||||
kustaaya <58045274+kustaaya@users.noreply.github.com>
|
||||
kuvaus <22169537+kuvaus@users.noreply.github.com>
|
||||
kwin1412 <42286931+kwin1412@users.noreply.github.com>
|
||||
l3utterfly <gc.pthzfoldr@gmail.com>
|
||||
laik <laik.lj@me.com>
|
||||
ldwang <ftgreat@163.com>
|
||||
le.chang <cljs118@126.com>
|
||||
leejet <leejet714@gmail.com>
|
||||
leo-pony <nengjunma@outlook.com>
|
||||
limitedAtonement <limitedAtonement@users.noreply.github.com>
|
||||
liuwei-git <14815172+liuwei-git@users.noreply.github.com>
|
||||
lon <114724657+longregen@users.noreply.github.com>
|
||||
loonerin <132926317+loonerin@users.noreply.github.com>
|
||||
ltoniazzi <61414566+ltoniazzi@users.noreply.github.com>
|
||||
luoyu-intel <yu.luo@intel.com>
|
||||
m3ndax <adrian.goessl@outlook.com>
|
||||
maddes8cht <55592906+maddes8cht@users.noreply.github.com>
|
||||
makomk <makosoft@googlemail.com>
|
||||
manikbhandari <mbbhandarimanik2@gmail.com>
|
||||
maor-ps <154728172+maor-ps@users.noreply.github.com>
|
||||
matiaslin <45382001+matiaslin@users.noreply.github.com>
|
||||
matteo <matteogeniaccio@yahoo.it>
|
||||
mdrokz <mohammadmunshi@gmail.com>
|
||||
mgroeber9110 <45620825+mgroeber9110@users.noreply.github.com>
|
||||
minarchist <minarchist@users.noreply.github.com>
|
||||
mj-shifu <77107165+mj-shifu@users.noreply.github.com>
|
||||
mmyjona <jonathan.gonse@gmail.com>
|
||||
momonga <115213907+mmnga@users.noreply.github.com>
|
||||
momonga <146910567+mmngays@users.noreply.github.com>
|
||||
moritzbrantner <31051084+moritzbrantner@users.noreply.github.com>
|
||||
mzcu <milos.cubrilo@gmail.com>
|
||||
nanahi <130121847+na-na-hi@users.noreply.github.com>
|
||||
@@ -884,10 +716,8 @@ omahs <73983677+omahs@users.noreply.github.com>
|
||||
oobabooga <112222186+oobabooga@users.noreply.github.com>
|
||||
opparco <parco.opaai@gmail.com>
|
||||
ostix360 <55257054+ostix360@users.noreply.github.com>
|
||||
pculliton <phillipculliton@gmail.com>
|
||||
pengxin99 <pengxin.yuan@intel.com>
|
||||
perserk <perserk@gmail.com>
|
||||
piDack <104877312+piDack@users.noreply.github.com>
|
||||
pmysl <piotr.myslinski@outlook.com>
|
||||
postmasters <namnguyen@google.com>
|
||||
pudepiedj <pudepiedj@gmail.com>
|
||||
@@ -903,7 +733,6 @@ runfuture <runfuture@users.noreply.github.com>
|
||||
sandyiscool <sandyiscool@gmail.com>
|
||||
sasha0552 <admin@sasha0552.org>
|
||||
semidark <me@semidark.net>
|
||||
serhii-nakon <57632032+serhii-nakon@users.noreply.github.com>
|
||||
sharpHL <132747147+sharpHL@users.noreply.github.com>
|
||||
shibe2 <shibe@tuta.io>
|
||||
singularity <12184989+singularity-s0@users.noreply.github.com>
|
||||
@@ -912,55 +741,42 @@ sjxx <63994076+ylsdamxssjxxdd@users.noreply.github.com>
|
||||
slaren <2141330+slaren@users.noreply.github.com>
|
||||
slaren <slarengh@gmail.com>
|
||||
snadampal <87143774+snadampal@users.noreply.github.com>
|
||||
standby24x7 <standby24x7@gmail.com>
|
||||
staviq <staviq@gmail.com>
|
||||
stduhpf <stephduh@live.fr>
|
||||
strawberrymelonpanda <152940198+strawberrymelonpanda@users.noreply.github.com>
|
||||
swittk <switt1995@gmail.com>
|
||||
takov751 <40316768+takov751@users.noreply.github.com>
|
||||
tarcey <cey.tarik@gmail.com>
|
||||
tc-mb <157115220+tc-mb@users.noreply.github.com>
|
||||
texmex76 <40733439+texmex76@users.noreply.github.com>
|
||||
thement <40525767+thement@users.noreply.github.com>
|
||||
thewh1teagle <61390950+thewh1teagle@users.noreply.github.com>
|
||||
tjohnman <tjohnman@users.noreply.github.com>
|
||||
toyer <2042519524@qq.com>
|
||||
tslmy <tslmy@users.noreply.github.com>
|
||||
ubik2 <ubik2@users.noreply.github.com>
|
||||
uint256_t <konndennsa@gmail.com>
|
||||
uint256_t <maekawatoshiki1017@gmail.com>
|
||||
unbounded <haakon@likedan.net>
|
||||
uvos <devnull@uvos.xyz>
|
||||
valiray <133289098+valiray@users.noreply.github.com>
|
||||
vb <vaibhavs10@gmail.com>
|
||||
vik <vikhyatk@gmail.com>
|
||||
viric <viric@viric.name>
|
||||
vodkaslime <646329483@qq.com>
|
||||
vvhg1 <94630311+vvhg1@users.noreply.github.com>
|
||||
vxiiduu <73044267+vxiiduu@users.noreply.github.com>
|
||||
wangshuai09 <391746016@qq.com>
|
||||
wbpxre150 <100937007+wbpxre150@users.noreply.github.com>
|
||||
whoreson <139810751+whoreson@users.noreply.github.com>
|
||||
woachk <24752637+woachk@users.noreply.github.com>
|
||||
wonjun Jang <strutive07@gmail.com>
|
||||
woodx <124784234+woodx9@users.noreply.github.com>
|
||||
wwoodsTM <104587230+wwoodsTM@users.noreply.github.com>
|
||||
wzy <32936898+Freed-Wu@users.noreply.github.com>
|
||||
xaedes <xaedes@gmail.com>
|
||||
xaedes <xaedes@googlemail.com>
|
||||
xctan <axunlei@gmail.com>
|
||||
xloem <0xloem@gmail.com>
|
||||
yangli2 <yangli2@gmail.com>
|
||||
yuiseki <yuiseki@gmail.com>
|
||||
yuri@FreeBSD <yurivict@users.noreply.github.com>
|
||||
zakkor <edward.partenie@gmail.com>
|
||||
zhangkaihuo <zhangkaihuo@gmail.com>
|
||||
zhentaoyu <zhentao.yu@intel.com>
|
||||
zhouwg <6889919+zhouwg@users.noreply.github.com>
|
||||
zhouwg <zhouwg2000@gmail.com>
|
||||
zrm <trustiosity.zrm@gmail.com>
|
||||
Ștefan-Gabriel Muscalu <legraphista@users.noreply.github.com>
|
||||
杨朱 · Kiki <baofa.fan@daocloud.io>
|
||||
源文雨 <41315874+fumiama@users.noreply.github.com>
|
||||
蕭澧邦 <45505768+shou692199@users.noreply.github.com>
|
||||
Нияз Гарифзянов <112617865+garrnizon@users.noreply.github.com>
|
||||
|
||||
@@ -46,15 +46,13 @@ if (WIN32)
|
||||
add_compile_definitions(_CRT_SECURE_NO_WARNINGS)
|
||||
endif()
|
||||
|
||||
if (MSVC)
|
||||
add_compile_options("$<$<COMPILE_LANGUAGE:C>:/utf-8>")
|
||||
add_compile_options("$<$<COMPILE_LANGUAGE:CXX>:/utf-8>")
|
||||
endif()
|
||||
|
||||
#
|
||||
# option list
|
||||
#
|
||||
|
||||
# general
|
||||
option(LLAMA_CCACHE "llama: use ccache if available" ON)
|
||||
|
||||
# debug
|
||||
option(LLAMA_ALL_WARNINGS "llama: enable all compiler warnings" ON)
|
||||
option(LLAMA_ALL_WARNINGS_3RD_PARTY "llama: enable all compiler warnings in 3rd party libs" OFF)
|
||||
@@ -67,9 +65,6 @@ option(LLAMA_SANITIZE_THREAD "llama: enable thread sanitizer" OFF)
|
||||
option(LLAMA_SANITIZE_ADDRESS "llama: enable address sanitizer" OFF)
|
||||
option(LLAMA_SANITIZE_UNDEFINED "llama: enable undefined sanitizer" OFF)
|
||||
|
||||
# utils
|
||||
option(LLAMA_BUILD_COMMON "llama: build common utils library" ${LLAMA_STANDALONE})
|
||||
|
||||
# extra artifacts
|
||||
option(LLAMA_BUILD_TESTS "llama: build tests" ${LLAMA_STANDALONE})
|
||||
option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
|
||||
@@ -80,9 +75,9 @@ option(LLAMA_CURL "llama: use libcurl to download model from an URL" OFF)
|
||||
|
||||
# Required for relocatable CMake package
|
||||
include(${CMAKE_CURRENT_SOURCE_DIR}/cmake/build-info.cmake)
|
||||
include(${CMAKE_CURRENT_SOURCE_DIR}/cmake/common.cmake)
|
||||
|
||||
# override ggml options
|
||||
set(GGML_CCACHE ${LLAMA_CCACHE})
|
||||
set(GGML_SANITIZE_THREAD ${LLAMA_SANITIZE_THREAD})
|
||||
set(GGML_SANITIZE_ADDRESS ${LLAMA_SANITIZE_ADDRESS})
|
||||
set(GGML_SANITIZE_UNDEFINED ${LLAMA_SANITIZE_UNDEFINED})
|
||||
@@ -91,11 +86,11 @@ set(GGML_FATAL_WARNINGS ${LLAMA_FATAL_WARNINGS})
|
||||
|
||||
# change the default for these ggml options
|
||||
if (NOT DEFINED GGML_LLAMAFILE)
|
||||
set(GGML_LLAMAFILE_DEFAULT ON)
|
||||
set(GGML_LLAMAFILE ON)
|
||||
endif()
|
||||
|
||||
if (NOT DEFINED GGML_CUDA_GRAPHS)
|
||||
set(GGML_CUDA_GRAPHS_DEFAULT ON)
|
||||
if (NOT DEFINED GGML_CUDA_USE_GRAPHS)
|
||||
set(GGML_CUDA_USE_GRAPHS ON)
|
||||
endif()
|
||||
|
||||
# transition helpers
|
||||
@@ -115,16 +110,12 @@ llama_option_depr(WARNING LLAMA_NATIVE GGML_NATIVE)
|
||||
llama_option_depr(WARNING LLAMA_RPC GGML_RPC)
|
||||
llama_option_depr(WARNING LLAMA_SYCL GGML_SYCL)
|
||||
llama_option_depr(WARNING LLAMA_SYCL_F16 GGML_SYCL_F16)
|
||||
llama_option_depr(WARNING LLAMA_CANN GGML_CANN)
|
||||
|
||||
#
|
||||
# build the library
|
||||
#
|
||||
|
||||
if (NOT TARGET ggml)
|
||||
add_subdirectory(ggml)
|
||||
# ... otherwise assume ggml is added by a parent CMakeLists.txt
|
||||
endif()
|
||||
add_subdirectory(ggml)
|
||||
add_subdirectory(src)
|
||||
|
||||
#
|
||||
@@ -142,27 +133,9 @@ set(LLAMA_INCLUDE_INSTALL_DIR ${CMAKE_INSTALL_INCLUDEDIR} CACHE PATH "Location o
|
||||
set(LLAMA_LIB_INSTALL_DIR ${CMAKE_INSTALL_LIBDIR} CACHE PATH "Location of library files")
|
||||
set(LLAMA_BIN_INSTALL_DIR ${CMAKE_INSTALL_BINDIR} CACHE PATH "Location of binary files")
|
||||
|
||||
# At the moment some compile definitions are placed within the ggml/src
|
||||
# directory but not exported on the `ggml` target. This could be improved by
|
||||
# determining _precisely_ which defines are necessary for the llama-config
|
||||
# package.
|
||||
#
|
||||
set(GGML_TRANSIENT_DEFINES)
|
||||
get_target_property(GGML_DIRECTORY ggml SOURCE_DIR)
|
||||
get_directory_property(GGML_DIR_DEFINES DIRECTORY ${GGML_DIRECTORY} COMPILE_DEFINITIONS)
|
||||
if (GGML_DIR_DEFINES)
|
||||
list(APPEND GGML_TRANSIENT_DEFINES ${GGML_DIR_DEFINES})
|
||||
endif()
|
||||
get_target_property(GGML_TARGET_DEFINES ggml COMPILE_DEFINITIONS)
|
||||
if (GGML_TARGET_DEFINES)
|
||||
list(APPEND GGML_TRANSIENT_DEFINES ${GGML_TARGET_DEFINES})
|
||||
endif()
|
||||
get_target_property(GGML_LINK_LIBRARIES ggml LINK_LIBRARIES)
|
||||
# all public headers
|
||||
set(LLAMA_PUBLIC_HEADERS
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/include/llama.h
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/include/llama-cpp.h)
|
||||
set_target_properties(llama PROPERTIES PUBLIC_HEADER "${LLAMA_PUBLIC_HEADERS}")
|
||||
get_directory_property(LLAMA_TRANSIENT_DEFINES COMPILE_DEFINITIONS)
|
||||
|
||||
set_target_properties(llama PROPERTIES PUBLIC_HEADER ${CMAKE_CURRENT_SOURCE_DIR}/include/llama.h)
|
||||
install(TARGETS llama LIBRARY PUBLIC_HEADER)
|
||||
|
||||
configure_package_config_file(
|
||||
@@ -202,19 +175,17 @@ install(FILES "${CMAKE_CURRENT_BINARY_DIR}/llama.pc"
|
||||
DESTINATION lib/pkgconfig)
|
||||
|
||||
#
|
||||
# utils, programs, examples and tests
|
||||
# programs, examples and tests
|
||||
#
|
||||
|
||||
if (LLAMA_BUILD_COMMON)
|
||||
add_subdirectory(common)
|
||||
endif()
|
||||
add_subdirectory(common)
|
||||
|
||||
if (LLAMA_BUILD_COMMON AND LLAMA_BUILD_TESTS AND NOT CMAKE_JS_VERSION)
|
||||
if (LLAMA_BUILD_TESTS AND NOT CMAKE_JS_VERSION)
|
||||
include(CTest)
|
||||
add_subdirectory(tests)
|
||||
endif()
|
||||
endif ()
|
||||
|
||||
if (LLAMA_BUILD_COMMON AND LLAMA_BUILD_EXAMPLES)
|
||||
if (LLAMA_BUILD_EXAMPLES)
|
||||
add_subdirectory(examples)
|
||||
add_subdirectory(pocs)
|
||||
endif()
|
||||
|
||||
@@ -24,24 +24,15 @@
|
||||
"CMAKE_INSTALL_RPATH": "$ORIGIN;$ORIGIN/.."
|
||||
}
|
||||
},
|
||||
{ "name": "debug", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "Debug" } },
|
||||
{ "name": "release", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "Release" } },
|
||||
{ "name": "reldbg", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "RelWithDebInfo" } },
|
||||
{ "name": "static", "hidden": true, "cacheVariables": { "GGML_STATIC": "ON" } },
|
||||
{ "name": "sycl_f16", "hidden": true, "cacheVariables": { "GGML_SYCL_F16": "ON" } },
|
||||
{ "name": "vulkan", "hidden": true, "cacheVariables": { "GGML_VULKAN": "ON" } },
|
||||
|
||||
{
|
||||
"name": "x64-windows-llvm", "hidden": true,
|
||||
"cacheVariables": {
|
||||
"CMAKE_TOOLCHAIN_FILE": "${sourceDir}/cmake/x64-windows-llvm.cmake"
|
||||
}
|
||||
},
|
||||
{ "name": "debug", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "Debug" } },
|
||||
{ "name": "release", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "Release" } },
|
||||
{ "name": "reldbg", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "RelWithDebInfo" } },
|
||||
{ "name": "static", "hidden": true, "cacheVariables": { "GGML_STATIC": "ON" } },
|
||||
|
||||
{
|
||||
"name": "arm64-windows-msvc", "hidden": true,
|
||||
"architecture": { "value": "arm64", "strategy": "external" },
|
||||
"toolset": { "value": "host=x64", "strategy": "external" },
|
||||
"architecture": { "value": "arm64", "strategy": "external" },
|
||||
"toolset": { "value": "host=x86_64", "strategy": "external" },
|
||||
"cacheVariables": {
|
||||
"CMAKE_TOOLCHAIN_FILE": "${sourceDir}/cmake/arm64-windows-msvc.cmake"
|
||||
}
|
||||
@@ -49,49 +40,26 @@
|
||||
|
||||
{
|
||||
"name": "arm64-windows-llvm", "hidden": true,
|
||||
"architecture": { "value": "arm64", "strategy": "external" },
|
||||
"toolset": { "value": "host=x64", "strategy": "external" },
|
||||
"architecture": { "value": "arm64", "strategy": "external" },
|
||||
"toolset": { "value": "host=x86_64", "strategy": "external" },
|
||||
"cacheVariables": {
|
||||
"CMAKE_TOOLCHAIN_FILE": "${sourceDir}/cmake/arm64-windows-llvm.cmake"
|
||||
}
|
||||
},
|
||||
|
||||
{
|
||||
"name": "arm64-apple-clang", "hidden": true,
|
||||
"architecture": { "value": "arm64", "strategy": "external" },
|
||||
"toolset": { "value": "host=x64", "strategy": "external" },
|
||||
"cacheVariables": {
|
||||
"CMAKE_TOOLCHAIN_FILE": "${sourceDir}/cmake/arm64-apple-clang.cmake"
|
||||
}
|
||||
},
|
||||
{ "name": "arm64-windows-llvm-debug" , "inherits": [ "base", "arm64-windows-llvm", "debug" ] },
|
||||
{ "name": "arm64-windows-llvm-release", "inherits": [ "base", "arm64-windows-llvm", "reldbg" ] },
|
||||
{ "name": "arm64-windows-llvm+static-release", "inherits": [ "base", "arm64-windows-llvm", "reldbg", "static" ] },
|
||||
|
||||
{ "name": "arm64-windows-llvm-debug", "inherits": [ "base", "arm64-windows-llvm", "debug" ] },
|
||||
{ "name": "arm64-windows-llvm-release", "inherits": [ "base", "arm64-windows-llvm", "reldbg" ] },
|
||||
{ "name": "arm64-windows-llvm+static-release", "inherits": [ "base", "arm64-windows-llvm", "reldbg", "static" ] },
|
||||
|
||||
{ "name": "arm64-apple-clang-debug", "inherits": [ "base", "arm64-apple-clang", "debug" ] },
|
||||
{ "name": "arm64-apple-clang-release", "inherits": [ "base", "arm64-apple-clang", "reldbg" ] },
|
||||
{ "name": "arm64-apple-clang+static-release", "inherits": [ "base", "arm64-apple-clang", "reldbg", "static" ] },
|
||||
|
||||
{ "name": "arm64-windows-msvc-debug", "inherits": [ "base", "arm64-windows-msvc", "debug" ] },
|
||||
{ "name": "arm64-windows-msvc-debug" , "inherits": [ "base", "arm64-windows-msvc", "debug" ] },
|
||||
{ "name": "arm64-windows-msvc-release", "inherits": [ "base", "arm64-windows-msvc", "reldbg" ] },
|
||||
{ "name": "arm64-windows-msvc+static-release", "inherits": [ "base", "arm64-windows-msvc", "reldbg", "static" ] },
|
||||
|
||||
{ "name": "x64-windows-llvm-debug", "inherits": [ "base", "x64-windows-llvm", "debug" ] },
|
||||
{ "name": "x64-windows-llvm-release", "inherits": [ "base", "x64-windows-llvm", "release" ] },
|
||||
{ "name": "x64-windows-llvm-reldbg", "inherits": [ "base", "x64-windows-llvm", "reldbg" ] },
|
||||
{ "name": "x64-windows-llvm+static-release", "inherits": [ "base", "x64-windows-llvm", "reldbg", "static" ] },
|
||||
|
||||
{ "name": "x64-windows-msvc-debug", "inherits": [ "base", "debug" ] },
|
||||
{ "name": "x64-windows-msvc-debug" , "inherits": [ "base", "debug" ] },
|
||||
{ "name": "x64-windows-msvc-release", "inherits": [ "base", "reldbg" ] },
|
||||
{ "name": "x64-windows-msvc+static-release", "inherits": [ "base", "reldbg", "static" ] },
|
||||
|
||||
{ "name": "x64-windows-sycl-debug", "inherits": [ "sycl-base", "debug" ] },
|
||||
{ "name": "x64-windows-sycl-debug-f16", "inherits": [ "sycl-base", "debug", "sycl_f16" ] },
|
||||
{ "name": "x64-windows-sycl-release", "inherits": [ "sycl-base", "release" ] },
|
||||
{ "name": "x64-windows-sycl-release-f16", "inherits": [ "sycl-base", "release", "sycl_f16" ] },
|
||||
|
||||
{ "name": "x64-windows-vulkan-debug", "inherits": [ "base", "vulkan", "debug" ] },
|
||||
{ "name": "x64-windows-vulkan-release", "inherits": [ "base", "vulkan", "release" ] }
|
||||
{ "name": "x64-windows-sycl-debug" , "inherits": [ "sycl-base", "debug" ] },
|
||||
{ "name": "x64-windows-sycl-release", "inherits": [ "sycl-base", "release" ] }
|
||||
]
|
||||
}
|
||||
|
||||
@@ -1,5 +0,0 @@
|
||||
# collaborators can optionally add themselves here to indicate their availability for reviewing related PRs
|
||||
|
||||
/ci/ @ggerganov
|
||||
/.devops/ @ngxson
|
||||
/examples/server/ @ngxson
|
||||
@@ -1,35 +1,14 @@
|
||||
# Pull requests (for contributors)
|
||||
# Contributing Guidelines
|
||||
|
||||
- Test your changes:
|
||||
- Execute [the full CI locally on your machine](ci/README.md) before publishing
|
||||
- Verify that the perplexity and the performance are not affected negatively by your changes (use `llama-perplexity` and `llama-bench`)
|
||||
- If you modified the `ggml` source, run the `test-backend-ops` tool to check whether different backend implementations of the `ggml` operators produce consistent results (this requires access to at least two different `ggml` backends)
|
||||
- If you modified a `ggml` operator or added a new one, add the corresponding test cases to `test-backend-ops`
|
||||
- Consider allowing write access to your branch for faster reviews, as reviewers can push commits directly
|
||||
- If your PR becomes stale, don't hesitate to ping the maintainers in the comments
|
||||
## Checklist
|
||||
|
||||
# Pull requests (for collaborators)
|
||||
* Make sure your PR follows the [coding guidelines](https://github.com/ggerganov/llama.cpp/blob/master/README.md#coding-guidelines)
|
||||
* Test your changes using the commands in the [`tests`](tests) folder. For instance, running the `./tests/test-backend-ops` command tests different backend implementations of the GGML library
|
||||
* Execute [the full CI locally on your machine](ci/README.md) before publishing
|
||||
|
||||
- Squash-merge PRs
|
||||
- Use the following format for the squashed commit title: `<module> : <commit title> (#<issue_number>)`. For example: `utils : fix typo in utils.py (#1234)`
|
||||
- Optionally pick a `<module>` from here: https://github.com/ggerganov/llama.cpp/wiki/Modules
|
||||
- Consider adding yourself to [CODEOWNERS](CODEOWNERS)
|
||||
## PR formatting
|
||||
|
||||
# Coding guidelines
|
||||
|
||||
- Avoid adding third-party dependencies, extra files, extra headers, etc.
|
||||
- Always consider cross-compatibility with other operating systems and architectures
|
||||
- Avoid fancy-looking modern STL constructs, use basic `for` loops, avoid templates, keep it simple
|
||||
- There are no strict rules for the code style, but try to follow the patterns in the code (indentation, spaces, etc.). Vertical alignment makes things more readable and easier to batch edit
|
||||
- Clean-up any trailing whitespaces, use 4 spaces for indentation, brackets on the same line, `void * ptr`, `int & a`
|
||||
- Naming usually optimizes for common prefix (see https://github.com/ggerganov/ggml/pull/302#discussion_r1243240963)
|
||||
- Tensors store data in row-major order. We refer to dimension 0 as columns, 1 as rows, 2 as matrices
|
||||
- Matrix multiplication is unconventional: [`C = ggml_mul_mat(ctx, A, B)`](https://github.com/ggerganov/llama.cpp/blob/880e352277fc017df4d5794f0c21c44e1eae2b84/ggml.h#L1058-L1064) means $C^T = A B^T \Leftrightarrow C = B A^T.$
|
||||
|
||||

|
||||
|
||||
# Resources
|
||||
|
||||
The Github issues, PRs and discussions contain a lot of information that can be useful to get familiar with the codebase. For convenience, some of the more important information is referenced from Github projects:
|
||||
|
||||
https://github.com/ggerganov/llama.cpp/projects
|
||||
* Please rate the complexity of your PR (i.e. `Review Complexity : Low`, `Review Complexity : Medium`, `Review Complexity : High`). This makes it easier for maintainers to triage the PRs.
|
||||
- The PR template has a series of review complexity checkboxes `[ ]` that you can mark as `[X]` for your conveience. Refer to [About task lists](https://docs.github.com/en/get-started/writing-on-github/working-with-advanced-formatting/about-task-lists) for more information.
|
||||
* If the pull request only contains documentation changes (e.g., updating READMEs, adding new wiki pages), please add `[no ci]` to the commit title. This will skip unnecessary CI checks and help reduce build times.
|
||||
* When squashing multiple commits on merge, use the following format for your commit title: `<module> : <commit title> (#<issue_number>)`. For example: `utils : Fix typo in utils.py (#1234)`
|
||||
|
||||
@@ -2,6 +2,44 @@
|
||||
|
||||
import PackageDescription
|
||||
|
||||
var sources = [
|
||||
"src/llama.cpp",
|
||||
"src/unicode.cpp",
|
||||
"src/unicode-data.cpp",
|
||||
"ggml/src/ggml.c",
|
||||
"ggml/src/ggml-alloc.c",
|
||||
"ggml/src/ggml-backend.c",
|
||||
"ggml/src/ggml-quants.c",
|
||||
]
|
||||
|
||||
var resources: [Resource] = []
|
||||
var linkerSettings: [LinkerSetting] = []
|
||||
var cSettings: [CSetting] = [
|
||||
.unsafeFlags(["-Wno-shorten-64-to-32", "-O3", "-DNDEBUG"]),
|
||||
.unsafeFlags(["-fno-objc-arc"]),
|
||||
// NOTE: NEW_LAPACK will required iOS version 16.4+
|
||||
// We should consider add this in the future when we drop support for iOS 14
|
||||
// (ref: ref: https://developer.apple.com/documentation/accelerate/1513264-cblas_sgemm?language=objc)
|
||||
// .define("ACCELERATE_NEW_LAPACK"),
|
||||
// .define("ACCELERATE_LAPACK_ILP64")
|
||||
]
|
||||
|
||||
#if canImport(Darwin)
|
||||
sources.append("ggml/src/ggml-metal.m")
|
||||
resources.append(.process("ggml/src/ggml-metal.metal"))
|
||||
linkerSettings.append(.linkedFramework("Accelerate"))
|
||||
cSettings.append(
|
||||
contentsOf: [
|
||||
.define("GGML_USE_ACCELERATE"),
|
||||
.define("GGML_USE_METAL")
|
||||
]
|
||||
)
|
||||
#endif
|
||||
|
||||
#if os(Linux)
|
||||
cSettings.append(.define("_GNU_SOURCE"))
|
||||
#endif
|
||||
|
||||
let package = Package(
|
||||
name: "llama",
|
||||
platforms: [
|
||||
@@ -14,6 +52,24 @@ let package = Package(
|
||||
.library(name: "llama", targets: ["llama"]),
|
||||
],
|
||||
targets: [
|
||||
.systemLibrary(name: "llama", pkgConfig: "llama"),
|
||||
]
|
||||
.target(
|
||||
name: "llama",
|
||||
path: ".",
|
||||
exclude: [
|
||||
"cmake",
|
||||
"examples",
|
||||
"scripts",
|
||||
"models",
|
||||
"tests",
|
||||
"CMakeLists.txt",
|
||||
"Makefile"
|
||||
],
|
||||
sources: sources,
|
||||
resources: resources,
|
||||
publicHeadersPath: "spm-headers",
|
||||
cSettings: cSettings,
|
||||
linkerSettings: linkerSettings
|
||||
)
|
||||
],
|
||||
cxxLanguageStandard: .cxx11
|
||||
)
|
||||
|
||||
@@ -20,13 +20,17 @@
|
||||
**oneAPI** is an open ecosystem and a standard-based specification, supporting multiple architectures including but not limited to intel CPUs, GPUs and FPGAs. The key components of the oneAPI ecosystem include:
|
||||
|
||||
- **DPCPP** *(Data Parallel C++)*: The primary oneAPI SYCL implementation, which includes the icpx/icx Compilers.
|
||||
- **oneAPI Libraries**: A set of highly optimized libraries targeting multiple domains *(e.g. oneMKL and oneDNN)*.
|
||||
- **oneAPI Libraries**: A set of highly optimized libraries targeting multiple domains *(e.g. oneMKL - Math Kernel Library)*.
|
||||
- **oneAPI LevelZero**: A high performance low level interface for fine-grained control over intel iGPUs and dGPUs.
|
||||
- **Nvidia & AMD Plugins**: These are plugins extending oneAPI's DPCPP support to SYCL on Nvidia and AMD GPU targets.
|
||||
|
||||
### Llama.cpp + SYCL
|
||||
|
||||
The llama.cpp SYCL backend is designed to support **Intel GPU** firstly. Based on the cross-platform feature of SYCL, it also supports other vendor GPUs: Nvidia and AMD.
|
||||
The llama.cpp SYCL backend is designed to support **Intel GPU** firstly. Based on the cross-platform feature of SYCL, it could support other vendor GPUs: Nvidia GPU (*AMD GPU coming*).
|
||||
|
||||
When targeting **Intel CPU**, it is recommended to use llama.cpp for [Intel oneMKL](README.md#intel-onemkl) backend.
|
||||
|
||||
It has the similar design of other llama.cpp BLAS-based paths such as *OpenBLAS, cuBLAS, etc..*. In beginning work, the oneAPI's [SYCLomatic](https://github.com/oneapi-src/SYCLomatic) open-source migration tool (Commercial release [Intel® DPC++ Compatibility Tool](https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html)) was used for this purpose.
|
||||
|
||||
## Recommended Release
|
||||
|
||||
@@ -34,20 +38,13 @@ The SYCL backend would be broken by some PRs due to no online CI.
|
||||
|
||||
The following release is verified with good quality:
|
||||
|
||||
|Commit ID|Tag|Release|Verified Platform| Update date|
|
||||
|-|-|-|-|-|
|
||||
|3bcd40b3c593d14261fb2abfabad3c0fb5b9e318|b4040 |[llama-b4040-bin-win-sycl-x64.zip](https://github.com/ggerganov/llama.cpp/releases/download/b4040/llama-b4040-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1| 2024-11-19|
|
||||
|fb76ec31a9914b7761c1727303ab30380fd4f05c|b3038 |[llama-b3038-bin-win-sycl-x64.zip](https://github.com/ggerganov/llama.cpp/releases/download/b3038/llama-b3038-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1||
|
||||
|Commit ID|Tag|Release|Verified Platform|
|
||||
|-|-|-|-|
|
||||
|fb76ec31a9914b7761c1727303ab30380fd4f05c|b3038 |[llama-b3038-bin-win-sycl-x64.zip](https://github.com/ggerganov/llama.cpp/releases/download/b3038/llama-b3038-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1|
|
||||
|
||||
|
||||
## News
|
||||
|
||||
- 2024.11
|
||||
- Use syclcompat to improve the performance on some platforms. This requires to use oneAPI 2025.0 or newer.
|
||||
|
||||
- 2024.8
|
||||
- Use oneDNN as the default GEMM library, improve the compatibility for new Intel GPUs.
|
||||
|
||||
- 2024.5
|
||||
- Performance is increased: 34 -> 37 tokens/s of llama-2-7b.Q4_0 on Arc770.
|
||||
- Arch Linux is verified successfully.
|
||||
@@ -83,14 +80,7 @@ The following release is verified with good quality:
|
||||
|
||||
### Intel GPU
|
||||
|
||||
SYCL backend supports Intel GPU Family:
|
||||
|
||||
- Intel Data Center Max Series
|
||||
- Intel Flex Series, Arc Series
|
||||
- Intel Built-in Arc GPU
|
||||
- Intel iGPU in Core CPU (11th Generation Core CPU and newer, refer to [oneAPI supported GPU](https://www.intel.com/content/www/us/en/developer/articles/system-requirements/intel-oneapi-base-toolkit-system-requirements.html#inpage-nav-1-1)).
|
||||
|
||||
#### Verified devices
|
||||
**Verified devices**
|
||||
|
||||
| Intel GPU | Status | Verified Model |
|
||||
|-------------------------------|---------|---------------------------------------|
|
||||
@@ -98,7 +88,7 @@ SYCL backend supports Intel GPU Family:
|
||||
| Intel Data Center Flex Series | Support | Flex 170 |
|
||||
| Intel Arc Series | Support | Arc 770, 730M, Arc A750 |
|
||||
| Intel built-in Arc GPU | Support | built-in Arc GPU in Meteor Lake |
|
||||
| Intel iGPU | Support | iGPU in 13700k, i5-1250P, i7-1260P, i7-1165G7 |
|
||||
| Intel iGPU | Support | iGPU in i5-1250P, i7-1260P, i7-1165G7 |
|
||||
|
||||
*Notes:*
|
||||
|
||||
@@ -114,18 +104,10 @@ SYCL backend supports Intel GPU Family:
|
||||
|
||||
**Verified devices**
|
||||
|
||||
| Nvidia GPU | Status | Verified Model |
|
||||
|--------------------------|-----------|----------------|
|
||||
| Ampere Series | Supported | A100, A4000 |
|
||||
| Ampere Series *(Mobile)* | Supported | RTX 40 Series |
|
||||
|
||||
| AMD GPU | Status | Verified Model |
|
||||
|--------------------------|--------------|----------------|
|
||||
| Radeon Pro | Experimental | W6800 |
|
||||
| Radeon RX | Experimental | 6700 XT |
|
||||
|
||||
Note: AMD GPU support is highly experimental and is incompatible with F16.
|
||||
Additionally, it only supports GPUs with a sub_group_size (warp size) of 32.
|
||||
| Nvidia GPU | Status | Verified Model |
|
||||
|--------------------------|---------|----------------|
|
||||
| Ampere Series | Support | A100, A4000 |
|
||||
| Ampere Series *(Mobile)* | Support | RTX 40 Series |
|
||||
|
||||
## Docker
|
||||
The docker build option is currently limited to *intel GPU* targets.
|
||||
@@ -197,10 +179,6 @@ Platform #0: Intel(R) OpenCL HD Graphics
|
||||
|
||||
In order to target Nvidia GPUs through SYCL, please make sure the CUDA/CUBLAS native requirements *-found [here](README.md#cuda)-* are installed.
|
||||
|
||||
- **AMD GPU**
|
||||
|
||||
To target AMD GPUs with SYCL, the ROCm stack must be installed first.
|
||||
|
||||
2. **Install Intel® oneAPI Base toolkit**
|
||||
|
||||
- **For Intel GPU**
|
||||
@@ -211,7 +189,7 @@ Please follow the instructions for downloading and installing the Toolkit for Li
|
||||
|
||||
Following guidelines/code snippets assume the default installation values. Otherwise, please make sure the necessary changes are reflected where applicable.
|
||||
|
||||
Upon a successful installation, SYCL is enabled for the available intel devices, along with relevant libraries such as oneAPI oneDNN for Intel GPUs.
|
||||
Upon a successful installation, SYCL is enabled for the available intel devices, along with relevant libraries such as oneAPI MKL for intel GPUs.
|
||||
|
||||
- **Adding support to Nvidia GPUs**
|
||||
|
||||
@@ -227,19 +205,6 @@ cmake -B buildWithCublas -DCMAKE_CXX_COMPILER=icpx -DCMAKE_C_COMPILER=icx -DENAB
|
||||
cmake --build buildWithCublas --config Release
|
||||
```
|
||||
|
||||
- **Adding support to AMD GPUs**
|
||||
|
||||
**oneAPI Plugin**: In order to enable SYCL support on AMD GPUs, please install the [Codeplay oneAPI Plugin for AMD GPUs](https://developer.codeplay.com/products/oneapi/amd/download). As with Nvidia GPUs, the user should also make sure the plugin version matches the installed base toolkit.
|
||||
|
||||
**oneMKL for rocBlas**: The current oneMKL releases *(shipped with the oneAPI base-toolkit)* doesn't contain the rocBLAS backend. A build from source of the upstream [oneMKL](https://github.com/oneapi-src/oneMKL) with the *rocBLAS* backend enabled is thus required to run it on AMD GPUs.
|
||||
|
||||
```sh
|
||||
git clone https://github.com/oneapi-src/oneMKL
|
||||
cd oneMKL
|
||||
# Find your HIPTARGET with rocminfo, under the key 'Name:'
|
||||
cmake -B buildWithrocBLAS -DCMAKE_CXX_COMPILER=icpx -DCMAKE_C_COMPILER=icx -DENABLE_MKLGPU_BACKEND=OFF -DENABLE_MKLCPU_BACKEND=OFF -DENABLE_ROCBLAS_BACKEND=ON -DHIPTARGETS=${HIPTARGET} -DTARGET_DOMAINS=blas
|
||||
cmake --build buildWithrocBLAS --config Release
|
||||
```
|
||||
|
||||
3. **Verify installation and environment**
|
||||
|
||||
@@ -251,48 +216,33 @@ sycl-ls
|
||||
|
||||
- **Intel GPU**
|
||||
|
||||
When targeting an intel GPU, the user should expect one or more level-zero devices among the available SYCL devices. Please make sure that at least one GPU is present, for instance [`level_zero:gpu`] in the sample output below:
|
||||
When targeting an intel GPU, the user should expect one or more level-zero devices among the available SYCL devices. Please make sure that at least one GPU is present, for instance [`ext_oneapi_level_zero:gpu:0`] in the sample output below:
|
||||
|
||||
```
|
||||
[opencl:acc][opencl:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.10.0.17_160000]
|
||||
[opencl:cpu][opencl:1] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i7-13700K OpenCL 3.0 (Build 0) [2023.16.10.0.17_160000]
|
||||
[opencl:gpu][opencl:2] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics OpenCL 3.0 NEO [23.30.26918.50]
|
||||
[level_zero:gpu][level_zero:0] Intel(R) Level-Zero, Intel(R) Arc(TM) A770 Graphics 1.3 [1.3.26918]
|
||||
[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.10.0.17_160000]
|
||||
[opencl:cpu:1] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i7-13700K OpenCL 3.0 (Build 0) [2023.16.10.0.17_160000]
|
||||
[opencl:gpu:2] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics OpenCL 3.0 NEO [23.30.26918.50]
|
||||
[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Arc(TM) A770 Graphics 1.3 [1.3.26918]
|
||||
```
|
||||
|
||||
- **Nvidia GPU**
|
||||
|
||||
Similarly, user targeting Nvidia GPUs should expect at least one SYCL-CUDA device [`cuda:gpu`] as below:
|
||||
|
||||
Similarly, user targeting Nvidia GPUs should expect at least one SYCL-CUDA device [`ext_oneapi_cuda:gpu`] as bellow:
|
||||
```
|
||||
[opencl:acc][opencl:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.12.0.12_195853.xmain-hotfix]
|
||||
[opencl:cpu][opencl:1] Intel(R) OpenCL, Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz OpenCL 3.0 (Build 0) [2023.16.12.0.12_195853.xmain-hotfix]
|
||||
[cuda:gpu][cuda:0] NVIDIA CUDA BACKEND, NVIDIA A100-PCIE-40GB 8.0 [CUDA 12.5]
|
||||
```
|
||||
|
||||
- **AMD GPU**
|
||||
|
||||
For AMD GPUs we should expect at least one SYCL-HIP device [`hip:gpu`]:
|
||||
|
||||
```
|
||||
[opencl:cpu][opencl:0] Intel(R) OpenCL, 12th Gen Intel(R) Core(TM) i9-12900K OpenCL 3.0 (Build 0) [2024.18.6.0.02_160000]
|
||||
[hip:gpu][hip:0] AMD HIP BACKEND, AMD Radeon PRO W6800 gfx1030 [HIP 60140.9]
|
||||
[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.12.0.12_195853.xmain-hotfix]
|
||||
[opencl:cpu:1] Intel(R) OpenCL, Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz OpenCL 3.0 (Build 0) [2023.16.12.0.12_195853.xmain-hotfix]
|
||||
[ext_oneapi_cuda:gpu:0] NVIDIA CUDA BACKEND, NVIDIA A100-PCIE-40GB 8.0 [CUDA 12.2]
|
||||
```
|
||||
|
||||
### II. Build llama.cpp
|
||||
|
||||
#### Intel GPU
|
||||
|
||||
```
|
||||
./examples/sycl/build.sh
|
||||
```
|
||||
|
||||
or
|
||||
|
||||
```sh
|
||||
# Export relevant ENV variables
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
|
||||
# Build LLAMA with MKL BLAS acceleration for intel GPU
|
||||
|
||||
# Option 1: Use FP32 (recommended for better performance in most cases)
|
||||
cmake -B build -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||
|
||||
@@ -304,7 +254,6 @@ cmake --build build --config Release -j -v
|
||||
```
|
||||
|
||||
#### Nvidia GPU
|
||||
|
||||
```sh
|
||||
# Export relevant ENV variables
|
||||
export LD_LIBRARY_PATH=/path/to/oneMKL/buildWithCublas/lib:$LD_LIBRARY_PATH
|
||||
@@ -313,106 +262,62 @@ export CPLUS_INCLUDE_DIR=/path/to/oneMKL/buildWithCublas/include:$CPLUS_INCLUDE_
|
||||
export CPLUS_INCLUDE_DIR=/path/to/oneMKL/include:$CPLUS_INCLUDE_DIR
|
||||
|
||||
# Build LLAMA with Nvidia BLAS acceleration through SYCL
|
||||
# Setting GGML_SYCL_DEVICE_ARCH is optional but can improve performance
|
||||
GGML_SYCL_DEVICE_ARCH=sm_80 # Example architecture
|
||||
|
||||
# Option 1: Use FP32 (recommended for better performance in most cases)
|
||||
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||
|
||||
# Option 2: Use FP16
|
||||
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON
|
||||
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON
|
||||
|
||||
# build all binary
|
||||
cmake --build build --config Release -j -v
|
||||
```
|
||||
|
||||
#### AMD GPU
|
||||
|
||||
```sh
|
||||
# Export relevant ENV variables
|
||||
export LD_LIBRARY_PATH=/path/to/oneMKL/buildWithrocBLAS/lib:$LD_LIBRARY_PATH
|
||||
export LIBRARY_PATH=/path/to/oneMKL/buildWithrocBLAS/lib:$LIBRARY_PATH
|
||||
export CPLUS_INCLUDE_DIR=/path/to/oneMKL/buildWithrocBLAS/include:$CPLUS_INCLUDE_DIR
|
||||
|
||||
# Build LLAMA with rocBLAS acceleration through SYCL
|
||||
|
||||
## AMD
|
||||
# Use FP32, FP16 is not supported
|
||||
# Find your GGML_SYCL_DEVICE_ARCH with rocminfo, under the key 'Name:'
|
||||
GGML_SYCL_DEVICE_ARCH=gfx90a # Example architecture
|
||||
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=AMD -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||
|
||||
# build all binary
|
||||
cmake --build build --config Release -j -v
|
||||
```
|
||||
|
||||
### III. Run the inference
|
||||
|
||||
#### Retrieve and prepare model
|
||||
1. Retrieve and prepare model
|
||||
|
||||
You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model prepration, or simply download [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) model as example.
|
||||
|
||||
##### Check device
|
||||
|
||||
1. Enable oneAPI running environment
|
||||
2. Enable oneAPI running environment
|
||||
|
||||
```sh
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
```
|
||||
|
||||
2. List devices information
|
||||
3. List devices information
|
||||
|
||||
Similar to the native `sycl-ls`, available SYCL devices can be queried as follow:
|
||||
|
||||
```sh
|
||||
./build/bin/llama-ls-sycl-device
|
||||
```
|
||||
|
||||
This command will only display the selected backend that is supported by SYCL. The default backend is level_zero. For example, in a system with 2 *intel GPU* it would look like the following:
|
||||
A example of such log in a system with 1 *intel CPU* and 1 *intel GPU* can look like the following:
|
||||
```
|
||||
found 2 SYCL devices:
|
||||
|
||||
found 6 SYCL devices:
|
||||
| | | |Compute |Max compute|Max work|Max sub| |
|
||||
|ID| Device Type| Name|capability|units |group |group |Global mem size|
|
||||
|--|------------------|---------------------------------------------|----------|-----------|--------|-------|---------------|
|
||||
| 0|[level_zero:gpu:0]| Intel(R) Arc(TM) A770 Graphics| 1.3| 512| 1024| 32| 16225243136|
|
||||
| 1|[level_zero:gpu:1]| Intel(R) UHD Graphics 770| 1.3| 32| 512| 32| 53651849216|
|
||||
| 2| [opencl:gpu:0]| Intel(R) Arc(TM) A770 Graphics| 3.0| 512| 1024| 32| 16225243136|
|
||||
| 3| [opencl:gpu:1]| Intel(R) UHD Graphics 770| 3.0| 32| 512| 32| 53651849216|
|
||||
| 4| [opencl:cpu:0]| 13th Gen Intel(R) Core(TM) i7-13700K| 3.0| 24| 8192| 64| 67064815616|
|
||||
| 5| [opencl:acc:0]| Intel(R) FPGA Emulation Device| 1.2| 24|67108864| 64| 67064815616|
|
||||
```
|
||||
|
||||
#### Choose level-zero devices
|
||||
| Attribute | Note |
|
||||
|------------------------|-------------------------------------------------------------|
|
||||
| compute capability 1.3 | Level-zero driver/runtime, recommended |
|
||||
| compute capability 3.0 | OpenCL driver/runtime, slower than level-zero in most cases |
|
||||
|
||||
|Chosen Device ID|Setting|
|
||||
|-|-|
|
||||
|0|`export ONEAPI_DEVICE_SELECTOR="level_zero:0"` or no action|
|
||||
|1|`export ONEAPI_DEVICE_SELECTOR="level_zero:1"`|
|
||||
|0 & 1|`export ONEAPI_DEVICE_SELECTOR="level_zero:0;level_zero:1"`|
|
||||
|
||||
#### Execute
|
||||
|
||||
Choose one of following methods to run.
|
||||
|
||||
1. Script
|
||||
|
||||
- Use device 0:
|
||||
|
||||
```sh
|
||||
./examples/sycl/run-llama2.sh 0
|
||||
```
|
||||
- Use multiple devices:
|
||||
|
||||
```sh
|
||||
./examples/sycl/run-llama2.sh
|
||||
```
|
||||
|
||||
2. Command line
|
||||
Launch inference
|
||||
4. Launch inference
|
||||
|
||||
There are two device selection modes:
|
||||
|
||||
- Single device: Use one device assigned by user. Default device id is 0.
|
||||
- Multiple devices: Automatically choose the devices with the same backend.
|
||||
|
||||
In two device selection modes, the default SYCL backend is level_zero, you can choose other backend supported by SYCL by setting environment variable ONEAPI_DEVICE_SELECTOR.
|
||||
- Single device: Use one device target specified by the user.
|
||||
- Multiple devices: Automatically select the devices with the same largest Max compute-units.
|
||||
|
||||
| Device selection | Parameter |
|
||||
|------------------|----------------------------------------|
|
||||
@@ -426,6 +331,11 @@ Examples:
|
||||
```sh
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm none -mg 0
|
||||
```
|
||||
or run by script:
|
||||
|
||||
```sh
|
||||
./examples/sycl/run_llama2.sh 0
|
||||
```
|
||||
|
||||
- Use multiple devices:
|
||||
|
||||
@@ -433,6 +343,12 @@ ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/llama-2-7b.Q4_0.gguf -p "Bui
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm layer
|
||||
```
|
||||
|
||||
Otherwise, you can run the script:
|
||||
|
||||
```sh
|
||||
./examples/sycl/run_llama2.sh
|
||||
```
|
||||
|
||||
*Notes:*
|
||||
|
||||
- Upon execution, verify the selected device(s) ID(s) in the output log, which can for instance be displayed as follow:
|
||||
@@ -479,7 +395,7 @@ c. Verify installation
|
||||
In the oneAPI command line, run the following to print the available SYCL devices:
|
||||
|
||||
```
|
||||
sycl-ls.exe
|
||||
sycl-ls
|
||||
```
|
||||
|
||||
There should be one or more *level-zero* GPU devices displayed as **[ext_oneapi_level_zero:gpu]**. Below is example of such output detecting an *intel Iris Xe* GPU as a Level-zero SYCL device:
|
||||
@@ -500,18 +416,6 @@ b. The new Visual Studio will install Ninja as default. (If not, please install
|
||||
|
||||
### II. Build llama.cpp
|
||||
|
||||
You could download the release package for Windows directly, which including binary files and depended oneAPI dll files.
|
||||
|
||||
Choose one of following methods to build from source code.
|
||||
|
||||
1. Script
|
||||
|
||||
```sh
|
||||
.\examples\sycl\win-build-sycl.bat
|
||||
```
|
||||
|
||||
2. CMake
|
||||
|
||||
On the oneAPI command line window, step into the llama.cpp main directory and run the following:
|
||||
|
||||
```
|
||||
@@ -526,8 +430,12 @@ cmake -B build -G "Ninja" -DGGML_SYCL=ON -DCMAKE_C_COMPILER=cl -DCMAKE_CXX_COMPI
|
||||
cmake --build build --config Release -j
|
||||
```
|
||||
|
||||
Or, use CMake presets to build:
|
||||
Otherwise, run the `win-build-sycl.bat` wrapper which encapsulates the former instructions:
|
||||
```sh
|
||||
.\examples\sycl\win-build-sycl.bat
|
||||
```
|
||||
|
||||
Or, use CMake presets to build:
|
||||
```sh
|
||||
cmake --preset x64-windows-sycl-release
|
||||
cmake --build build-x64-windows-sycl-release -j --target llama-cli
|
||||
@@ -539,9 +447,7 @@ cmake --preset x64-windows-sycl-debug
|
||||
cmake --build build-x64-windows-sycl-debug -j --target llama-cli
|
||||
```
|
||||
|
||||
3. Visual Studio
|
||||
|
||||
You can use Visual Studio to open llama.cpp folder as a CMake project. Choose the sycl CMake presets (`x64-windows-sycl-release` or `x64-windows-sycl-debug`) before you compile the project.
|
||||
Or, you can use Visual Studio to open llama.cpp folder as a CMake project. Choose the sycl CMake presets (`x64-windows-sycl-release` or `x64-windows-sycl-debug`) before you compile the project.
|
||||
|
||||
*Notes:*
|
||||
|
||||
@@ -549,65 +455,52 @@ You can use Visual Studio to open llama.cpp folder as a CMake project. Choose th
|
||||
|
||||
### III. Run the inference
|
||||
|
||||
#### Retrieve and prepare model
|
||||
1. Retrieve and prepare model
|
||||
|
||||
You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model prepration, or simply download [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) model as example.
|
||||
You can refer to the general [*Prepare and Quantize*](README#prepare-and-quantize) guide for model prepration, or simply download [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) model as example.
|
||||
|
||||
##### Check device
|
||||
|
||||
1. Enable oneAPI running environment
|
||||
2. Enable oneAPI running environment
|
||||
|
||||
On the oneAPI command line window, run the following and step into the llama.cpp directory:
|
||||
```
|
||||
"C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64
|
||||
```
|
||||
|
||||
2. List devices information
|
||||
3. List devices information
|
||||
|
||||
Similar to the native `sycl-ls`, available SYCL devices can be queried as follow:
|
||||
|
||||
```
|
||||
build\bin\llama-ls-sycl-device.exe
|
||||
build\bin\ls-sycl-device.exe
|
||||
```
|
||||
|
||||
This command will only display the selected backend that is supported by SYCL. The default backend is level_zero. For example, in a system with 2 *intel GPU* it would look like the following:
|
||||
The output of this command in a system with 1 *intel CPU* and 1 *intel GPU* would look like the following:
|
||||
```
|
||||
found 2 SYCL devices:
|
||||
found 6 SYCL devices:
|
||||
| | | |Compute |Max compute|Max work|Max sub| |
|
||||
|ID| Device Type| Name|capability|units |group |group |Global mem size|
|
||||
|--|------------------|---------------------------------------------|----------|-----------|--------|-------|---------------|
|
||||
| 0|[level_zero:gpu:0]| Intel(R) Arc(TM) A770 Graphics| 1.3| 512| 1024| 32| 16225243136|
|
||||
| 1|[level_zero:gpu:1]| Intel(R) UHD Graphics 770| 1.3| 32| 512| 32| 53651849216|
|
||||
| 2| [opencl:gpu:0]| Intel(R) Arc(TM) A770 Graphics| 3.0| 512| 1024| 32| 16225243136|
|
||||
| 3| [opencl:gpu:1]| Intel(R) UHD Graphics 770| 3.0| 32| 512| 32| 53651849216|
|
||||
| 4| [opencl:cpu:0]| 13th Gen Intel(R) Core(TM) i7-13700K| 3.0| 24| 8192| 64| 67064815616|
|
||||
| 5| [opencl:acc:0]| Intel(R) FPGA Emulation Device| 1.2| 24|67108864| 64| 67064815616|
|
||||
|
||||
```
|
||||
#### Choose level-zero devices
|
||||
|
||||
|Chosen Device ID|Setting|
|
||||
|-|-|
|
||||
|0|`set ONEAPI_DEVICE_SELECTOR="level_zero:1"` or no action|
|
||||
|1|`set ONEAPI_DEVICE_SELECTOR="level_zero:1"`|
|
||||
|0 & 1|`set ONEAPI_DEVICE_SELECTOR="level_zero:0;level_zero:1"`|
|
||||
| Attribute | Note |
|
||||
|------------------------|-----------------------------------------------------------|
|
||||
| compute capability 1.3 | Level-zero running time, recommended |
|
||||
| compute capability 3.0 | OpenCL running time, slower than level-zero in most cases |
|
||||
|
||||
#### Execute
|
||||
|
||||
Choose one of following methods to run.
|
||||
|
||||
1. Script
|
||||
|
||||
```
|
||||
examples\sycl\win-run-llama2.bat
|
||||
```
|
||||
|
||||
2. Command line
|
||||
|
||||
Launch inference
|
||||
4. Launch inference
|
||||
|
||||
There are two device selection modes:
|
||||
|
||||
- Single device: Use one device assigned by user. Default device id is 0.
|
||||
- Multiple devices: Automatically choose the devices with the same backend.
|
||||
|
||||
In two device selection modes, the default SYCL backend is level_zero, you can choose other backend supported by SYCL by setting environment variable ONEAPI_DEVICE_SELECTOR.
|
||||
- Single device: Use one device assigned by user.
|
||||
- Multiple devices: Automatically choose the devices with the same biggest Max compute units.
|
||||
|
||||
| Device selection | Parameter |
|
||||
|------------------|----------------------------------------|
|
||||
@@ -627,7 +520,11 @@ build\bin\llama-cli.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website ca
|
||||
```
|
||||
build\bin\llama-cli.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm layer
|
||||
```
|
||||
Otherwise, run the following wrapper script:
|
||||
|
||||
```
|
||||
.\examples\sycl\win-run-llama2.bat
|
||||
```
|
||||
|
||||
Note:
|
||||
|
||||
@@ -641,19 +538,17 @@ Or
|
||||
use 1 SYCL GPUs: [0] with Max compute units:512
|
||||
```
|
||||
|
||||
|
||||
## Environment Variable
|
||||
|
||||
#### Build
|
||||
|
||||
| Name | Value | Function |
|
||||
|--------------------|---------------------------------------|---------------------------------------------|
|
||||
| GGML_SYCL | ON (mandatory) | Enable build with SYCL code path.<br>FP32 path - recommended for better perforemance than FP16 on quantized model|
|
||||
| GGML_SYCL_TARGET | INTEL *(default)* \| NVIDIA \| AMD | Set the SYCL target device type. |
|
||||
| GGML_SYCL_DEVICE_ARCH | Optional (except for AMD) | Set the SYCL device architecture, optional except for AMD. Setting the device architecture can improve the performance. See the table [--offload-arch](https://github.com/intel/llvm/blob/sycl/sycl/doc/design/OffloadDesign.md#--offload-arch) for a list of valid architectures. |
|
||||
| GGML_SYCL_F16 | OFF *(default)* \|ON *(optional)* | Enable FP16 build with SYCL code path. |
|
||||
| CMAKE_C_COMPILER | `icx` *(Linux)*, `icx/cl` *(Windows)* | Set `icx` compiler for SYCL code path. |
|
||||
| CMAKE_CXX_COMPILER | `icpx` *(Linux)*, `icx` *(Windows)* | Set `icpx/icx` compiler for SYCL code path. |
|
||||
| Name | Value | Function |
|
||||
|--------------------|-----------------------------------|---------------------------------------------|
|
||||
| GGML_SYCL | ON (mandatory) | Enable build with SYCL code path. |
|
||||
| GGML_SYCL_TARGET | INTEL *(default)* \| NVIDIA | Set the SYCL target device type. |
|
||||
| GGML_SYCL_F16 | OFF *(default)* \|ON *(optional)* | Enable FP16 build with SYCL code path. |
|
||||
| CMAKE_C_COMPILER | icx | Set *icx* compiler for SYCL code path. |
|
||||
| CMAKE_CXX_COMPILER | icpx *(Linux)*, icx *(Windows)* | Set `icpx/icx` compiler for SYCL code path. |
|
||||
|
||||
#### Runtime
|
||||
|
||||
@@ -689,26 +584,9 @@ use 1 SYCL GPUs: [0] with Max compute units:512
|
||||
```
|
||||
Otherwise, please double-check the GPU driver installation steps.
|
||||
|
||||
- Can I report Ollama issue on Intel GPU to llama.cpp SYCL backend?
|
||||
|
||||
No. We can't support Ollama issue directly, because we aren't familiar with Ollama.
|
||||
|
||||
Sugguest reproducing on llama.cpp and report similar issue to llama.cpp. We will surpport it.
|
||||
|
||||
It's same for other projects including llama.cpp SYCL backend.
|
||||
|
||||
- Meet issue: `Native API failed. Native API returns: -6 (PI_ERROR_OUT_OF_HOST_MEMORY) -6 (PI_ERROR_OUT_OF_HOST_MEMORY) -999 (UNKNOWN PI error)` or `failed to allocate SYCL0 buffer`
|
||||
|
||||
Device Memory is not enough.
|
||||
|
||||
|Reason|Solution|
|
||||
|-|-|
|
||||
|Default Context is too big. It leads to more memory usage.|Set `-c 8192` or smaller value.|
|
||||
|Model is big and require more memory than device's.|Choose smaller quantized model, like Q5 -> Q4;<br>Use more than one devices to load model.|
|
||||
|
||||
### **GitHub contribution**:
|
||||
Please add the **[SYCL]** prefix/tag in issues/PRs titles to help the SYCL-team check/address them without delay.
|
||||
|
||||
## TODO
|
||||
|
||||
- NA
|
||||
- Support row layer split for multiple card runs.
|
||||
@@ -1,4 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include <llama.h>
|
||||
|
||||
@@ -1,5 +0,0 @@
|
||||
module llama [system] {
|
||||
header "llama.h"
|
||||
link "llama"
|
||||
export *
|
||||
}
|
||||
293
ci/run.sh
293
ci/run.sh
@@ -1,4 +1,4 @@
|
||||
#!/bin/bash
|
||||
#/bin/bash
|
||||
#
|
||||
# sample usage:
|
||||
#
|
||||
@@ -13,9 +13,6 @@
|
||||
# # with SYCL support
|
||||
# GG_BUILD_SYCL=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
||||
#
|
||||
# # with VULKAN support
|
||||
# GG_BUILD_VULKAN=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
||||
#
|
||||
|
||||
if [ -z "$2" ]; then
|
||||
echo "usage: $0 <output-dir> <mnt-dir>"
|
||||
@@ -39,11 +36,11 @@ SRC=`pwd`
|
||||
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=ON"
|
||||
|
||||
if [ ! -z ${GG_BUILD_METAL} ]; then
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_METAL=ON -DGGML_METAL_USE_BF16=ON"
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_METAL=ON"
|
||||
fi
|
||||
|
||||
if [ ! -z ${GG_BUILD_CUDA} ]; then
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_CUDA=ON -DCMAKE_CUDA_ARCHITECTURES=native"
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_CUDA=1"
|
||||
fi
|
||||
|
||||
if [ ! -z ${GG_BUILD_SYCL} ]; then
|
||||
@@ -53,11 +50,7 @@ if [ ! -z ${GG_BUILD_SYCL} ]; then
|
||||
exit 1
|
||||
fi
|
||||
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_SYCL=1 -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON"
|
||||
fi
|
||||
|
||||
if [ ! -z ${GG_BUILD_VULKAN} ]; then
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_VULKAN=1"
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_SYCL=1 DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON"
|
||||
fi
|
||||
## helpers
|
||||
|
||||
@@ -110,11 +103,8 @@ function gg_run_ctest_debug {
|
||||
|
||||
set -e
|
||||
|
||||
# Check cmake, make and ctest are installed
|
||||
gg_check_build_requirements
|
||||
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Debug ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
|
||||
(time ctest --output-on-failure -L main -E test-opt ) 2>&1 | tee -a $OUT/${ci}-ctest.log
|
||||
|
||||
@@ -141,11 +131,8 @@ function gg_run_ctest_release {
|
||||
|
||||
set -e
|
||||
|
||||
# Check cmake, make and ctest are installed
|
||||
gg_check_build_requirements
|
||||
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
|
||||
if [ -z ${GG_BUILD_LOW_PERF} ]; then
|
||||
(time ctest --output-on-failure -L main ) 2>&1 | tee -a $OUT/${ci}-ctest.log
|
||||
@@ -273,6 +260,7 @@ function gg_sum_ctest_with_model_release {
|
||||
}
|
||||
|
||||
# open_llama_7b_v2
|
||||
# requires: GG_BUILD_CUDA
|
||||
|
||||
function gg_run_open_llama_7b_v2 {
|
||||
cd ${SRC}
|
||||
@@ -296,8 +284,8 @@ function gg_run_open_llama_7b_v2 {
|
||||
|
||||
set -e
|
||||
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DGGML_CUDA=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
|
||||
python3 ../examples/convert_legacy_llama.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
|
||||
|
||||
@@ -326,36 +314,36 @@ function gg_run_open_llama_7b_v2 {
|
||||
./bin/llama-quantize ${model_f16} ${model_q5_k} q5_k
|
||||
./bin/llama-quantize ${model_f16} ${model_q6_k} q6_k
|
||||
|
||||
(time ./bin/llama-cli --model ${model_f16} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/llama-cli --model ${model_q8_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/llama-cli --model ${model_q4_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/llama-cli --model ${model_q4_1} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/llama-cli --model ${model_q5_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/llama-cli --model ${model_q5_1} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/llama-cli --model ${model_q2_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/llama-cli --model ${model_q3_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/llama-cli --model ${model_q4_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/llama-cli --model ${model_q5_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/llama-cli --model ${model_q6_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
(time ./bin/llama-cli --model ${model_f16} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/llama-cli --model ${model_q8_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/llama-cli --model ${model_q4_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/llama-cli --model ${model_q4_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/llama-cli --model ${model_q5_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/llama-cli --model ${model_q5_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/llama-cli --model ${model_q2_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/llama-cli --model ${model_q3_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/llama-cli --model ${model_q4_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/llama-cli --model ${model_q5_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/llama-cli --model ${model_q6_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
|
||||
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
|
||||
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
|
||||
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
|
||||
|
||||
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 10 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 10 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state -fa -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state -fa -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
|
||||
function check_ppl {
|
||||
qnt="$1"
|
||||
@@ -431,7 +419,7 @@ function gg_run_pythia_1_4b {
|
||||
set -e
|
||||
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
|
||||
python3 ../convert_hf_to_gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
|
||||
|
||||
@@ -460,34 +448,34 @@ function gg_run_pythia_1_4b {
|
||||
./bin/llama-quantize ${model_f16} ${model_q5_k} q5_k
|
||||
./bin/llama-quantize ${model_f16} ${model_q6_k} q6_k
|
||||
|
||||
(time ./bin/llama-cli --model ${model_f16} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/llama-cli --model ${model_q8_0} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/llama-cli --model ${model_q4_0} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/llama-cli --model ${model_q4_1} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/llama-cli --model ${model_q5_0} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/llama-cli --model ${model_q5_1} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/llama-cli --model ${model_q2_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/llama-cli --model ${model_q3_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/llama-cli --model ${model_q4_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/llama-cli --model ${model_q5_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/llama-cli --model ${model_q6_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
(time ./bin/llama-cli --model ${model_f16} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/llama-cli --model ${model_q8_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/llama-cli --model ${model_q4_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/llama-cli --model ${model_q4_1} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/llama-cli --model ${model_q5_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/llama-cli --model ${model_q5_1} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/llama-cli --model ${model_q2_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/llama-cli --model ${model_q3_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/llama-cli --model ${model_q4_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/llama-cli --model ${model_q5_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/llama-cli --model ${model_q6_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
|
||||
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
|
||||
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
|
||||
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
|
||||
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state -fa --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
|
||||
function check_ppl {
|
||||
qnt="$1"
|
||||
@@ -541,6 +529,7 @@ function gg_sum_pythia_1_4b {
|
||||
}
|
||||
|
||||
# pythia_2_8b
|
||||
# requires: GG_BUILD_CUDA
|
||||
|
||||
function gg_run_pythia_2_8b {
|
||||
cd ${SRC}
|
||||
@@ -561,8 +550,8 @@ function gg_run_pythia_2_8b {
|
||||
|
||||
set -e
|
||||
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DGGML_CUDA=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
|
||||
python3 ../convert_hf_to_gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
|
||||
|
||||
@@ -591,36 +580,36 @@ function gg_run_pythia_2_8b {
|
||||
./bin/llama-quantize ${model_f16} ${model_q5_k} q5_k
|
||||
./bin/llama-quantize ${model_f16} ${model_q6_k} q6_k
|
||||
|
||||
(time ./bin/llama-cli --model ${model_f16} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/llama-cli --model ${model_q8_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/llama-cli --model ${model_q4_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/llama-cli --model ${model_q4_1} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/llama-cli --model ${model_q5_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/llama-cli --model ${model_q5_1} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/llama-cli --model ${model_q2_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/llama-cli --model ${model_q3_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/llama-cli --model ${model_q4_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/llama-cli --model ${model_q5_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/llama-cli --model ${model_q6_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
(time ./bin/llama-cli --model ${model_f16} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/llama-cli --model ${model_q8_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/llama-cli --model ${model_q4_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/llama-cli --model ${model_q4_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/llama-cli --model ${model_q5_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/llama-cli --model ${model_q5_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/llama-cli --model ${model_q2_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/llama-cli --model ${model_q3_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/llama-cli --model ${model_q4_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/llama-cli --model ${model_q5_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/llama-cli --model ${model_q6_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
|
||||
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
|
||||
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
|
||||
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
|
||||
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state -fa -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state -fa -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
|
||||
function check_ppl {
|
||||
qnt="$1"
|
||||
@@ -697,7 +686,7 @@ function gg_run_embd_bge_small {
|
||||
set -e
|
||||
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
|
||||
python3 ../convert_hf_to_gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
|
||||
|
||||
@@ -706,8 +695,8 @@ function gg_run_embd_bge_small {
|
||||
|
||||
./bin/llama-quantize ${model_f16} ${model_q8_0} q8_0
|
||||
|
||||
(time ./bin/llama-embedding --model ${model_f16} -p "I believe the meaning of life is" -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/llama-embedding --model ${model_q8_0} -p "I believe the meaning of life is" -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/llama-embedding --model ${model_f16} -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/llama-embedding --model ${model_q8_0} -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
|
||||
set +e
|
||||
}
|
||||
@@ -721,92 +710,8 @@ function gg_sum_embd_bge_small {
|
||||
gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
|
||||
}
|
||||
|
||||
# rerank_tiny
|
||||
|
||||
function gg_run_rerank_tiny {
|
||||
cd ${SRC}
|
||||
|
||||
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/config.json
|
||||
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/tokenizer.json
|
||||
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/tokenizer_config.json
|
||||
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/special_tokens_map.json
|
||||
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/resolve/main/pytorch_model.bin
|
||||
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/sentence_bert_config.json
|
||||
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/vocab.txt
|
||||
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/modules.json
|
||||
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/config.json
|
||||
|
||||
gg_wget models-mnt/rerank-tiny/1_Pooling https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/1_Pooling/config.json
|
||||
|
||||
path_models="../models-mnt/rerank-tiny"
|
||||
|
||||
rm -rf build-ci-release && mkdir build-ci-release && cd build-ci-release
|
||||
|
||||
set -e
|
||||
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
|
||||
python3 ../convert_hf_to_gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
|
||||
|
||||
model_f16="${path_models}/ggml-model-f16.gguf"
|
||||
|
||||
# for this model, the SEP token is "</s>"
|
||||
(time ./bin/llama-embedding --model ${model_f16} -p "what is panda?</s></s>hi\nwhat is panda?</s></s>it's a bear\nwhat is panda?</s></s>The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China." -ngl 99 -c 0 --pooling rank --embd-normalize -1 --verbose-prompt) 2>&1 | tee -a $OUT/${ci}-rk-f16.log
|
||||
|
||||
# sample output
|
||||
# rerank score 0: 0.029
|
||||
# rerank score 1: 0.029
|
||||
# rerank score 2: 0.135
|
||||
|
||||
# check that the score is in the range [$3, $4]
|
||||
function check_score {
|
||||
qnt="$1"
|
||||
score=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
|
||||
|
||||
if [ $(echo "$score < $3" | bc) -eq 1 ] || [ $(echo "$score > $4" | bc) -eq 1 ]; then
|
||||
printf ' - %s @ %s (FAIL: score not in range [%s, %s])\n' "$qnt" "$score" "$3" "$4"
|
||||
return 20
|
||||
fi
|
||||
|
||||
printf ' - %s @ %s OK\n' "$qnt" "$score"
|
||||
return 0
|
||||
}
|
||||
|
||||
check_score "rerank score 0" "$(cat $OUT/${ci}-rk-f16.log | grep "rerank score 0")" "0.00" "0.05" | tee -a $OUT/${ci}-rk-f16.log
|
||||
check_score "rerank score 1" "$(cat $OUT/${ci}-rk-f16.log | grep "rerank score 1")" "0.00" "0.05" | tee -a $OUT/${ci}-rk-f16.log
|
||||
check_score "rerank score 2" "$(cat $OUT/${ci}-rk-f16.log | grep "rerank score 2")" "0.10" "0.30" | tee -a $OUT/${ci}-rk-f16.log
|
||||
|
||||
set +e
|
||||
}
|
||||
|
||||
function gg_sum_rerank_tiny {
|
||||
gg_printf '### %s\n\n' "${ci}"
|
||||
|
||||
gg_printf 'Rerank Tiny (Jina):\n'
|
||||
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
|
||||
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-rk-f16.log)"
|
||||
}
|
||||
|
||||
function gg_check_build_requirements {
|
||||
if ! command -v cmake &> /dev/null; then
|
||||
gg_printf 'cmake not found, please install'
|
||||
fi
|
||||
|
||||
if ! command -v make &> /dev/null; then
|
||||
gg_printf 'make not found, please install'
|
||||
fi
|
||||
|
||||
if ! command -v ctest &> /dev/null; then
|
||||
gg_printf 'ctest not found, please install'
|
||||
fi
|
||||
}
|
||||
|
||||
## main
|
||||
|
||||
export LLAMA_LOG_PREFIX=1
|
||||
export LLAMA_LOG_TIMESTAMPS=1
|
||||
|
||||
if [ -z ${GG_BUILD_LOW_PERF} ]; then
|
||||
# Create symlink: ./llama.cpp/models-mnt -> $MNT/models/models-mnt
|
||||
rm -rf ${SRC}/models-mnt
|
||||
@@ -815,10 +720,7 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
|
||||
ln -sfn ${mnt_models} ${SRC}/models-mnt
|
||||
|
||||
# Create a fresh python3 venv and enter it
|
||||
if ! python3 -m venv "$MNT/venv"; then
|
||||
echo "Error: Failed to create Python virtual environment at $MNT/venv."
|
||||
exit 1
|
||||
fi
|
||||
python3 -m venv "$MNT/venv"
|
||||
source "$MNT/venv/bin/activate"
|
||||
|
||||
pip install -r ${SRC}/requirements.txt --disable-pip-version-check
|
||||
@@ -832,7 +734,6 @@ test $ret -eq 0 && gg_run ctest_release
|
||||
|
||||
if [ -z ${GG_BUILD_LOW_PERF} ]; then
|
||||
test $ret -eq 0 && gg_run embd_bge_small
|
||||
test $ret -eq 0 && gg_run rerank_tiny
|
||||
|
||||
if [ -z ${GG_BUILD_CLOUD} ] || [ ${GG_BUILD_EXTRA_TESTS_0} ]; then
|
||||
test $ret -eq 0 && gg_run test_scripts_debug
|
||||
@@ -840,7 +741,7 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
|
||||
fi
|
||||
|
||||
if [ -z ${GG_BUILD_VRAM_GB} ] || [ ${GG_BUILD_VRAM_GB} -ge 8 ]; then
|
||||
if [ -z ${GG_BUILD_CUDA} ] && [ -z ${GG_BUILD_VULKAN} ]; then
|
||||
if [ -z ${GG_BUILD_CUDA} ]; then
|
||||
test $ret -eq 0 && gg_run pythia_1_4b
|
||||
else
|
||||
test $ret -eq 0 && gg_run pythia_2_8b
|
||||
|
||||
@@ -1,16 +0,0 @@
|
||||
set( CMAKE_SYSTEM_NAME Darwin )
|
||||
set( CMAKE_SYSTEM_PROCESSOR arm64 )
|
||||
|
||||
set( target arm64-apple-darwin-macho )
|
||||
|
||||
set( CMAKE_C_COMPILER clang )
|
||||
set( CMAKE_CXX_COMPILER clang++ )
|
||||
|
||||
set( CMAKE_C_COMPILER_TARGET ${target} )
|
||||
set( CMAKE_CXX_COMPILER_TARGET ${target} )
|
||||
|
||||
set( arch_c_flags "-march=armv8.4-a -fvectorize -ffp-model=fast -fno-finite-math-only" )
|
||||
set( warn_c_flags "-Wno-format -Wno-unused-variable -Wno-unused-function" )
|
||||
|
||||
set( CMAKE_C_FLAGS_INIT "${arch_c_flags} ${warn_c_flags}" )
|
||||
set( CMAKE_CXX_FLAGS_INIT "${arch_c_flags} ${warn_c_flags}" )
|
||||
@@ -1,33 +0,0 @@
|
||||
function(llama_add_compile_flags)
|
||||
if (LLAMA_FATAL_WARNINGS)
|
||||
if (CMAKE_CXX_COMPILER_ID MATCHES "GNU" OR CMAKE_CXX_COMPILER_ID MATCHES "Clang")
|
||||
list(APPEND C_FLAGS -Werror)
|
||||
list(APPEND CXX_FLAGS -Werror)
|
||||
elseif (CMAKE_CXX_COMPILER_ID STREQUAL "MSVC")
|
||||
add_compile_options(/WX)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (LLAMA_ALL_WARNINGS)
|
||||
if (NOT MSVC)
|
||||
list(APPEND C_FLAGS -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes
|
||||
-Werror=implicit-int -Werror=implicit-function-declaration)
|
||||
|
||||
list(APPEND CXX_FLAGS -Wmissing-declarations -Wmissing-noreturn)
|
||||
|
||||
list(APPEND WARNING_FLAGS -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function)
|
||||
|
||||
list(APPEND C_FLAGS ${WARNING_FLAGS})
|
||||
list(APPEND CXX_FLAGS ${WARNING_FLAGS})
|
||||
|
||||
ggml_get_flags(${CMAKE_CXX_COMPILER_ID} ${CMAKE_CXX_COMPILER_VERSION})
|
||||
|
||||
add_compile_options("$<$<COMPILE_LANGUAGE:C>:${C_FLAGS};${GF_C_FLAGS}>"
|
||||
"$<$<COMPILE_LANGUAGE:CXX>:${CXX_FLAGS};${GF_CXX_FLAGS}>")
|
||||
else()
|
||||
# todo : msvc
|
||||
set(C_FLAGS "" PARENT_SCOPE)
|
||||
set(CXX_FLAGS "" PARENT_SCOPE)
|
||||
endif()
|
||||
endif()
|
||||
endfunction()
|
||||
@@ -3,60 +3,11 @@ set(LLAMA_BUILD_COMMIT @LLAMA_BUILD_COMMIT@)
|
||||
set(LLAMA_BUILD_NUMBER @LLAMA_BUILD_NUMBER@)
|
||||
set(LLAMA_SHARED_LIB @BUILD_SHARED_LIBS@)
|
||||
|
||||
set(GGML_STATIC @GGML_STATIC@)
|
||||
set(GGML_NATIVE @GGML_NATIVE@)
|
||||
set(GGML_LTO @GGML_LTO@)
|
||||
set(GGML_CCACHE @GGML_CCACHE@)
|
||||
set(GGML_AVX @GGML_AVX@)
|
||||
set(GGML_AVX2 @GGML_AVX2@)
|
||||
set(GGML_AVX512 @GGML_AVX512@)
|
||||
set(GGML_AVX512_VBMI @GGML_AVX512_VBMI@)
|
||||
set(GGML_AVX512_VNNI @GGML_AVX512_VNNI@)
|
||||
set(GGML_AVX512_BF16 @GGML_AVX512_BF16@)
|
||||
set(GGML_AMX_TILE @GGML_AMX_TILE@)
|
||||
set(GGML_AMX_INT8 @GGML_AMX_INT8@)
|
||||
set(GGML_AMX_BF16 @GGML_AMX_BF16@)
|
||||
set(GGML_FMA @GGML_FMA@)
|
||||
set(GGML_LASX @GGML_LASX@)
|
||||
set(GGML_LSX @GGML_LSX@)
|
||||
set(GGML_RVV @GGML_RVV@)
|
||||
set(GGML_SVE @GGML_SVE@)
|
||||
|
||||
set(GGML_BLAS @GGML_BLAS@)
|
||||
set(GGML_CUDA @GGML_CUDA@)
|
||||
set(GGML_METAL @GGML_METAL@)
|
||||
set(GGML_HIPBLAS @GGML_HIPBLAS@)
|
||||
set(GGML_ACCELERATE @GGML_ACCELERATE@)
|
||||
set(GGML_OPENMP @GGML_OPENMP@)
|
||||
set(GGML_CPU_HBM @GGML_CPU_HBM@)
|
||||
set(GGML_BLAS_VENDOR @GGML_BLAS_VENDOR@)
|
||||
|
||||
set(GGML_CUDA_FORCE_MMQ @GGML_CUDA_FORCE_MMQ@)
|
||||
set(GGML_CUDA_FORCE_CUBLAS @GGML_CUDA_FORCE_CUBLAS@)
|
||||
set(GGML_CUDA_F16 @GGML_CUDA_F16@)
|
||||
set(GGML_CUDA_PEER_MAX_BATCH_SIZE @GGML_CUDA_PEER_MAX_BATCH_SIZE@)
|
||||
set(GGML_CUDA_NO_PEER_COPY @GGML_CUDA_NO_PEER_COPY@)
|
||||
set(GGML_CUDA_NO_VMM @GGML_CUDA_NO_VMM@)
|
||||
set(GGML_CUDA_FA_ALL_QUANTS @GGML_CUDA_FA_ALL_QUANTS@)
|
||||
set(GGML_CUDA_GRAPHS @GGML_CUDA_GRAPHS@)
|
||||
|
||||
set(GGML_HIP_UMA @GGML_HIP_UMA@)
|
||||
|
||||
set(GGML_VULKAN_CHECK_RESULTS @GGML_VULKAN_CHECK_RESULTS@)
|
||||
set(GGML_VULKAN_DEBUG @GGML_VULKAN_DEBUG@)
|
||||
set(GGML_VULKAN_MEMORY_DEBUG @GGML_VULKAN_MEMORY_DEBUG@)
|
||||
set(GGML_VULKAN_SHADER_DEBUG_INFO @GGML_VULKAN_SHADER_DEBUG_INFO@)
|
||||
set(GGML_VULKAN_PERF @GGML_VULKAN_PERF@)
|
||||
set(GGML_VULKAN_VALIDATE @GGML_VULKAN_VALIDATE@)
|
||||
set(GGML_VULKAN_RUN_TESTS @GGML_VULKAN_RUN_TESTS@)
|
||||
|
||||
set(GGML_METAL_USE_BF16 @GGML_METAL_USE_BF16@)
|
||||
set(GGML_METAL_NDEBUG @GGML_METAL_NDEBUG@)
|
||||
set(GGML_METAL_SHADER_DEBUG @GGML_METAL_SHADER_DEBUG@)
|
||||
set(GGML_METAL_EMBED_LIBRARY @GGML_METAL_EMBED_LIBRARY@)
|
||||
set(GGML_METAL_MACOSX_VERSION_MIN @GGML_METAL_MACOSX_VERSION_MIN@)
|
||||
set(GGML_METAL_STD @GGML_METAL_STD@)
|
||||
|
||||
set(GGML_SYCL_F16 @GGML_SYCL_F16@)
|
||||
set(GGML_SYCL_TARGET @GGML_SYCL_TARGET@)
|
||||
set(GGML_SYCL_DEVICE_ARCH @GGML_SYCL_DEVICE_ARCH@)
|
||||
|
||||
|
||||
@PACKAGE_INIT@
|
||||
|
||||
@@ -64,111 +15,47 @@ set_and_check(LLAMA_INCLUDE_DIR "@PACKAGE_LLAMA_INCLUDE_INSTALL_DIR@")
|
||||
set_and_check(LLAMA_LIB_DIR "@PACKAGE_LLAMA_LIB_INSTALL_DIR@")
|
||||
set_and_check(LLAMA_BIN_DIR "@PACKAGE_LLAMA_BIN_INSTALL_DIR@")
|
||||
|
||||
# Ensure transient dependencies satisfied
|
||||
|
||||
find_package(Threads REQUIRED)
|
||||
|
||||
set(_llama_transient_defines "@GGML_TRANSIENT_DEFINES@")
|
||||
set(_llama_link_deps "")
|
||||
set(_llama_link_opts "")
|
||||
foreach(_ggml_lib ggml ggml-base)
|
||||
string(REPLACE "-" "_" _ggml_lib_var "${_ggml_lib}_LIBRARY")
|
||||
find_library(${_ggml_lib_var} ${_ggml_lib}
|
||||
REQUIRED
|
||||
HINTS ${LLAMA_LIB_DIR}
|
||||
NO_CMAKE_FIND_ROOT_PATH
|
||||
)
|
||||
list(APPEND _llama_link_deps "${${_ggml_lib_var}}")
|
||||
message(STATUS "Found ${${_ggml_lib_var}}")
|
||||
endforeach()
|
||||
if (APPLE AND GGML_ACCELERATE)
|
||||
find_library(ACCELERATE_FRAMEWORK Accelerate REQUIRED)
|
||||
endif()
|
||||
|
||||
foreach(backend amx blas cann cpu cuda hip kompute metal musa rpc sycl vulkan)
|
||||
string(TOUPPER "GGML_${backend}" backend_id)
|
||||
set(_ggml_lib "ggml-${backend}")
|
||||
string(REPLACE "-" "_" _ggml_lib_var "${_ggml_lib}_LIBRARY")
|
||||
if (GGML_BLAS)
|
||||
find_package(BLAS REQUIRED)
|
||||
endif()
|
||||
|
||||
find_library(${_ggml_lib_var} ${_ggml_lib}
|
||||
HINTS ${LLAMA_LIB_DIR}
|
||||
NO_CMAKE_FIND_ROOT_PATH
|
||||
)
|
||||
if(${_ggml_lib_var})
|
||||
list(APPEND _llama_link_deps "${${_ggml_lib_var}}")
|
||||
set(${backend_id} ON)
|
||||
message(STATUS "Found backend ${${_ggml_lib_var}}")
|
||||
else()
|
||||
set(${backend_id} OFF)
|
||||
endif()
|
||||
endforeach()
|
||||
if (GGML_CUDA)
|
||||
find_package(CUDAToolkit REQUIRED)
|
||||
endif()
|
||||
|
||||
if (NOT LLAMA_SHARED_LIB)
|
||||
if (APPLE AND GGML_ACCELERATE)
|
||||
find_library(ACCELERATE_FRAMEWORK Accelerate REQUIRED)
|
||||
list(APPEND _llama_link_deps ${ACCELERATE_FRAMEWORK})
|
||||
endif()
|
||||
if (GGML_METAL)
|
||||
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
|
||||
find_library(METAL_FRAMEWORK Metal REQUIRED)
|
||||
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
|
||||
endif()
|
||||
|
||||
if (GGML_OPENMP)
|
||||
find_package(OpenMP REQUIRED)
|
||||
list(APPEND _llama_link_deps OpenMP::OpenMP_C OpenMP::OpenMP_CXX)
|
||||
endif()
|
||||
|
||||
if (GGML_CPU_HBM)
|
||||
find_library(memkind memkind REQUIRED)
|
||||
list(APPEND _llama_link_deps memkind)
|
||||
endif()
|
||||
|
||||
if (GGML_BLAS)
|
||||
find_package(BLAS REQUIRED)
|
||||
list(APPEND _llama_link_deps ${BLAS_LIBRARIES})
|
||||
list(APPEND _llama_link_opts ${BLAS_LINKER_FLAGS})
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA)
|
||||
find_package(CUDAToolkit REQUIRED)
|
||||
endif()
|
||||
|
||||
if (GGML_METAL)
|
||||
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
|
||||
find_library(METAL_FRAMEWORK Metal REQUIRED)
|
||||
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
|
||||
list(APPEND _llama_link_deps ${FOUNDATION_LIBRARY}
|
||||
${METAL_FRAMEWORK} ${METALKIT_FRAMEWORK})
|
||||
endif()
|
||||
|
||||
if (GGML_VULKAN)
|
||||
find_package(Vulkan REQUIRED)
|
||||
list(APPEND _llama_link_deps Vulkan::Vulkan)
|
||||
endif()
|
||||
|
||||
if (GGML_HIP)
|
||||
find_package(hip REQUIRED)
|
||||
find_package(hipblas REQUIRED)
|
||||
find_package(rocblas REQUIRED)
|
||||
list(APPEND _llama_link_deps hip::host roc::rocblas roc::hipblas)
|
||||
endif()
|
||||
|
||||
if (GGML_SYCL)
|
||||
find_package(DNNL)
|
||||
if (${DNNL_FOUND} AND GGML_SYCL_TARGET STREQUAL "INTEL")
|
||||
list(APPEND _llama_link_deps DNNL::dnnl)
|
||||
endif()
|
||||
if (WIN32)
|
||||
find_package(IntelSYCL REQUIRED)
|
||||
find_package(MKL REQUIRED)
|
||||
list(APPEND _llama_link_deps IntelSYCL::SYCL_CXX MKL::MKL MKL::MKL_SYCL)
|
||||
endif()
|
||||
endif()
|
||||
if (GGML_HIPBLAS)
|
||||
find_package(hip REQUIRED)
|
||||
find_package(hipblas REQUIRED)
|
||||
find_package(rocblas REQUIRED)
|
||||
endif()
|
||||
|
||||
find_library(llama_LIBRARY llama
|
||||
REQUIRED
|
||||
HINTS ${LLAMA_LIB_DIR}
|
||||
NO_CMAKE_FIND_ROOT_PATH
|
||||
)
|
||||
HINTS ${LLAMA_LIB_DIR})
|
||||
|
||||
set(_llama_link_deps "Threads::Threads" "@LLAMA_EXTRA_LIBS@")
|
||||
set(_llama_transient_defines "@LLAMA_TRANSIENT_DEFINES@")
|
||||
|
||||
add_library(llama UNKNOWN IMPORTED)
|
||||
|
||||
set_target_properties(llama
|
||||
PROPERTIES
|
||||
INTERFACE_INCLUDE_DIRECTORIES "${LLAMA_INCLUDE_DIR}"
|
||||
INTERFACE_LINK_LIBRARIES "${_llama_link_deps}"
|
||||
INTERFACE_LINK_OPTIONS "${_llama_link_opts}"
|
||||
INTERFACE_COMPILE_DEFINITIONS "${_llama_transient_defines}"
|
||||
IMPORTED_LINK_INTERFACE_LANGUAGES "CXX"
|
||||
IMPORTED_LOCATION "${llama_LIBRARY}"
|
||||
|
||||
@@ -6,5 +6,5 @@ includedir=${prefix}/include
|
||||
Name: llama
|
||||
Description: Port of Facebook's LLaMA model in C/C++
|
||||
Version: @PROJECT_VERSION@
|
||||
Libs: -L${libdir} -lggml -lggml-base -lllama
|
||||
Libs: -L${libdir} -lllama
|
||||
Cflags: -I${includedir}
|
||||
|
||||
@@ -1,11 +0,0 @@
|
||||
set( CMAKE_SYSTEM_NAME Windows )
|
||||
set( CMAKE_SYSTEM_PROCESSOR x86_64 )
|
||||
|
||||
set( CMAKE_C_COMPILER clang )
|
||||
set( CMAKE_CXX_COMPILER clang++ )
|
||||
|
||||
set( arch_c_flags "-march=native" )
|
||||
|
||||
set( CMAKE_C_FLAGS_INIT "${arch_c_flags}" )
|
||||
set( CMAKE_CXX_FLAGS_INIT "${arch_c_flags}" )
|
||||
|
||||
@@ -2,8 +2,6 @@
|
||||
|
||||
find_package(Threads REQUIRED)
|
||||
|
||||
llama_add_compile_flags()
|
||||
|
||||
# Build info header
|
||||
#
|
||||
|
||||
@@ -53,23 +51,21 @@ endif()
|
||||
set(TARGET common)
|
||||
|
||||
add_library(${TARGET} STATIC
|
||||
arg.cpp
|
||||
arg.h
|
||||
base64.hpp
|
||||
common.cpp
|
||||
common.h
|
||||
console.cpp
|
||||
console.h
|
||||
json-schema-to-grammar.cpp
|
||||
json.hpp
|
||||
log.cpp
|
||||
log.h
|
||||
ngram-cache.cpp
|
||||
ngram-cache.h
|
||||
sampling.cpp
|
||||
common.cpp
|
||||
sampling.h
|
||||
speculative.cpp
|
||||
speculative.h
|
||||
sampling.cpp
|
||||
console.h
|
||||
console.cpp
|
||||
grammar-parser.h
|
||||
grammar-parser.cpp
|
||||
json.hpp
|
||||
json-schema-to-grammar.cpp
|
||||
train.h
|
||||
train.cpp
|
||||
ngram-cache.h
|
||||
ngram-cache.cpp
|
||||
)
|
||||
|
||||
if (BUILD_SHARED_LIBS)
|
||||
@@ -81,12 +77,12 @@ set(LLAMA_COMMON_EXTRA_LIBS build_info)
|
||||
# Use curl to download model url
|
||||
if (LLAMA_CURL)
|
||||
find_package(CURL REQUIRED)
|
||||
target_compile_definitions(${TARGET} PUBLIC LLAMA_USE_CURL)
|
||||
add_definitions(-DLLAMA_USE_CURL)
|
||||
include_directories(${CURL_INCLUDE_DIRS})
|
||||
find_library(CURL_LIBRARY curl REQUIRED)
|
||||
set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} ${CURL_LIBRARY})
|
||||
endif ()
|
||||
|
||||
target_include_directories(${TARGET} PUBLIC .)
|
||||
target_compile_features (${TARGET} PUBLIC cxx_std_17)
|
||||
target_compile_features (${TARGET} PUBLIC cxx_std_11)
|
||||
target_link_libraries (${TARGET} PRIVATE ${LLAMA_COMMON_EXTRA_LIBS} PUBLIC llama Threads::Threads)
|
||||
|
||||
2222
common/arg.cpp
2222
common/arg.cpp
File diff suppressed because it is too large
Load Diff
77
common/arg.h
77
common/arg.h
@@ -1,77 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "common.h"
|
||||
|
||||
#include <set>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
//
|
||||
// CLI argument parsing
|
||||
//
|
||||
|
||||
struct common_arg {
|
||||
std::set<enum llama_example> examples = {LLAMA_EXAMPLE_COMMON};
|
||||
std::vector<const char *> args;
|
||||
const char * value_hint = nullptr; // help text or example for arg value
|
||||
const char * value_hint_2 = nullptr; // for second arg value
|
||||
const char * env = nullptr;
|
||||
std::string help;
|
||||
bool is_sparam = false; // is current arg a sampling param?
|
||||
void (*handler_void) (common_params & params) = nullptr;
|
||||
void (*handler_string) (common_params & params, const std::string &) = nullptr;
|
||||
void (*handler_str_str)(common_params & params, const std::string &, const std::string &) = nullptr;
|
||||
void (*handler_int) (common_params & params, int) = nullptr;
|
||||
|
||||
common_arg(
|
||||
const std::initializer_list<const char *> & args,
|
||||
const char * value_hint,
|
||||
const std::string & help,
|
||||
void (*handler)(common_params & params, const std::string &)
|
||||
) : args(args), value_hint(value_hint), help(help), handler_string(handler) {}
|
||||
|
||||
common_arg(
|
||||
const std::initializer_list<const char *> & args,
|
||||
const char * value_hint,
|
||||
const std::string & help,
|
||||
void (*handler)(common_params & params, int)
|
||||
) : args(args), value_hint(value_hint), help(help), handler_int(handler) {}
|
||||
|
||||
common_arg(
|
||||
const std::initializer_list<const char *> & args,
|
||||
const std::string & help,
|
||||
void (*handler)(common_params & params)
|
||||
) : args(args), help(help), handler_void(handler) {}
|
||||
|
||||
// support 2 values for arg
|
||||
common_arg(
|
||||
const std::initializer_list<const char *> & args,
|
||||
const char * value_hint,
|
||||
const char * value_hint_2,
|
||||
const std::string & help,
|
||||
void (*handler)(common_params & params, const std::string &, const std::string &)
|
||||
) : args(args), value_hint(value_hint), value_hint_2(value_hint_2), help(help), handler_str_str(handler) {}
|
||||
|
||||
common_arg & set_examples(std::initializer_list<enum llama_example> examples);
|
||||
common_arg & set_env(const char * env);
|
||||
common_arg & set_sparam();
|
||||
bool in_example(enum llama_example ex);
|
||||
bool get_value_from_env(std::string & output);
|
||||
bool has_value_from_env();
|
||||
std::string to_string();
|
||||
};
|
||||
|
||||
struct common_params_context {
|
||||
enum llama_example ex = LLAMA_EXAMPLE_COMMON;
|
||||
common_params & params;
|
||||
std::vector<common_arg> options;
|
||||
void(*print_usage)(int, char **) = nullptr;
|
||||
common_params_context(common_params & params) : params(params) {}
|
||||
};
|
||||
|
||||
// parse input arguments from CLI
|
||||
// if one argument has invalid value, it will automatically display usage of the specific argument (and not the full usage message)
|
||||
bool common_params_parse(int argc, char ** argv, common_params & params, llama_example ex, void(*print_usage)(int, char **) = nullptr);
|
||||
|
||||
// function to be used by test-arg-parser
|
||||
common_params_context common_params_parser_init(common_params & params, llama_example ex, void(*print_usage)(int, char **) = nullptr);
|
||||
2583
common/common.cpp
2583
common/common.cpp
File diff suppressed because it is too large
Load Diff
435
common/common.h
435
common/common.h
@@ -4,9 +4,18 @@
|
||||
|
||||
#include "llama.h"
|
||||
|
||||
#include "sampling.h"
|
||||
|
||||
#define LOG_NO_FILE_LINE_FUNCTION
|
||||
#include "log.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <sstream>
|
||||
#include <random>
|
||||
#include <thread>
|
||||
#include <unordered_map>
|
||||
#include <tuple>
|
||||
|
||||
#ifdef _WIN32
|
||||
#define DIRECTORY_SEPARATOR '\\'
|
||||
@@ -24,173 +33,52 @@
|
||||
|
||||
#define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
|
||||
|
||||
struct common_lora_adapter_info {
|
||||
std::string path;
|
||||
float scale;
|
||||
};
|
||||
|
||||
struct common_lora_adapter_container : common_lora_adapter_info {
|
||||
struct llama_lora_adapter * adapter;
|
||||
};
|
||||
|
||||
using llama_tokens = std::vector<llama_token>;
|
||||
|
||||
// build info
|
||||
extern int LLAMA_BUILD_NUMBER;
|
||||
extern const char * LLAMA_COMMIT;
|
||||
extern const char * LLAMA_COMPILER;
|
||||
extern const char * LLAMA_BUILD_TARGET;
|
||||
extern char const * LLAMA_COMMIT;
|
||||
extern char const * LLAMA_COMPILER;
|
||||
extern char const * LLAMA_BUILD_TARGET;
|
||||
|
||||
struct common_control_vector_load_info;
|
||||
struct llama_control_vector_load_info;
|
||||
|
||||
//
|
||||
// CPU utils
|
||||
//
|
||||
|
||||
struct cpu_params {
|
||||
int n_threads = -1;
|
||||
bool cpumask[GGML_MAX_N_THREADS] = {false}; // CPU affinity mask.
|
||||
bool mask_valid = false; // Default: any CPU
|
||||
enum ggml_sched_priority priority = GGML_SCHED_PRIO_NORMAL; // Scheduling prio : (0 - normal, 1 - medium, 2 - high, 3 - realtime)
|
||||
bool strict_cpu = false; // Use strict CPU placement
|
||||
uint32_t poll = 50; // Polling (busywait) level (0 - no polling, 100 - mostly polling)
|
||||
};
|
||||
|
||||
int32_t cpu_get_num_physical_cores();
|
||||
int32_t cpu_get_num_math();
|
||||
|
||||
//
|
||||
// Common params
|
||||
// CLI argument parsing
|
||||
//
|
||||
|
||||
enum llama_example {
|
||||
LLAMA_EXAMPLE_COMMON,
|
||||
LLAMA_EXAMPLE_SPECULATIVE,
|
||||
LLAMA_EXAMPLE_MAIN,
|
||||
LLAMA_EXAMPLE_INFILL,
|
||||
LLAMA_EXAMPLE_EMBEDDING,
|
||||
LLAMA_EXAMPLE_PERPLEXITY,
|
||||
LLAMA_EXAMPLE_RETRIEVAL,
|
||||
LLAMA_EXAMPLE_PASSKEY,
|
||||
LLAMA_EXAMPLE_IMATRIX,
|
||||
LLAMA_EXAMPLE_BENCH,
|
||||
LLAMA_EXAMPLE_SERVER,
|
||||
LLAMA_EXAMPLE_CVECTOR_GENERATOR,
|
||||
LLAMA_EXAMPLE_EXPORT_LORA,
|
||||
LLAMA_EXAMPLE_LLAVA,
|
||||
LLAMA_EXAMPLE_LOOKUP,
|
||||
LLAMA_EXAMPLE_PARALLEL,
|
||||
LLAMA_EXAMPLE_TTS,
|
||||
|
||||
LLAMA_EXAMPLE_COUNT,
|
||||
};
|
||||
|
||||
enum common_sampler_type {
|
||||
COMMON_SAMPLER_TYPE_NONE = 0,
|
||||
COMMON_SAMPLER_TYPE_DRY = 1,
|
||||
COMMON_SAMPLER_TYPE_TOP_K = 2,
|
||||
COMMON_SAMPLER_TYPE_TOP_P = 3,
|
||||
COMMON_SAMPLER_TYPE_MIN_P = 4,
|
||||
//COMMON_SAMPLER_TYPE_TFS_Z = 5,
|
||||
COMMON_SAMPLER_TYPE_TYPICAL_P = 6,
|
||||
COMMON_SAMPLER_TYPE_TEMPERATURE = 7,
|
||||
COMMON_SAMPLER_TYPE_XTC = 8,
|
||||
COMMON_SAMPLER_TYPE_INFILL = 9,
|
||||
COMMON_SAMPLER_TYPE_PENALTIES = 10,
|
||||
};
|
||||
|
||||
// dimensionality reduction methods, used by cvector-generator
|
||||
enum dimre_method {
|
||||
DIMRE_METHOD_PCA,
|
||||
DIMRE_METHOD_MEAN,
|
||||
};
|
||||
|
||||
// sampling parameters
|
||||
struct common_params_sampling {
|
||||
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
|
||||
struct gpt_params {
|
||||
uint32_t seed = LLAMA_DEFAULT_SEED; // RNG seed
|
||||
|
||||
int32_t n_prev = 64; // number of previous tokens to remember
|
||||
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
|
||||
int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens
|
||||
int32_t top_k = 40; // <= 0 to use vocab size
|
||||
float top_p = 0.95f; // 1.0 = disabled
|
||||
float min_p = 0.05f; // 0.0 = disabled
|
||||
float xtc_probability = 0.00f; // 0.0 = disabled
|
||||
float xtc_threshold = 0.10f; // > 0.5 disables XTC
|
||||
float typ_p = 1.00f; // typical_p, 1.0 = disabled
|
||||
float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
|
||||
float dynatemp_range = 0.00f; // 0.0 = disabled
|
||||
float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
|
||||
int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
|
||||
float penalty_repeat = 1.00f; // 1.0 = disabled
|
||||
float penalty_freq = 0.00f; // 0.0 = disabled
|
||||
float penalty_present = 0.00f; // 0.0 = disabled
|
||||
float dry_multiplier = 0.0f; // 0.0 = disabled; DRY repetition penalty for tokens extending repetition:
|
||||
float dry_base = 1.75f; // 0.0 = disabled; multiplier * base ^ (length of sequence before token - allowed length)
|
||||
int32_t dry_allowed_length = 2; // tokens extending repetitions beyond this receive penalty
|
||||
int32_t dry_penalty_last_n = -1; // how many tokens to scan for repetitions (0 = disable penalty, -1 = context size)
|
||||
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
|
||||
float mirostat_tau = 5.00f; // target entropy
|
||||
float mirostat_eta = 0.10f; // learning rate
|
||||
bool ignore_eos = false;
|
||||
bool no_perf = false; // disable performance metrics
|
||||
bool timing_per_token = false;
|
||||
|
||||
std::vector<std::string> dry_sequence_breakers = {"\n", ":", "\"", "*"}; // default sequence breakers for DRY
|
||||
|
||||
|
||||
std::vector<enum common_sampler_type> samplers = {
|
||||
COMMON_SAMPLER_TYPE_PENALTIES,
|
||||
COMMON_SAMPLER_TYPE_DRY,
|
||||
COMMON_SAMPLER_TYPE_TOP_K,
|
||||
COMMON_SAMPLER_TYPE_TYPICAL_P,
|
||||
COMMON_SAMPLER_TYPE_TOP_P,
|
||||
COMMON_SAMPLER_TYPE_MIN_P,
|
||||
COMMON_SAMPLER_TYPE_XTC,
|
||||
COMMON_SAMPLER_TYPE_TEMPERATURE,
|
||||
};
|
||||
|
||||
std::string grammar; // optional BNF-like grammar to constrain sampling
|
||||
|
||||
std::vector<llama_logit_bias> logit_bias; // logit biases to apply
|
||||
|
||||
// print the parameters into a string
|
||||
std::string print() const;
|
||||
};
|
||||
|
||||
struct common_params_speculative {
|
||||
std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
|
||||
|
||||
int32_t n_ctx = 0; // draft context size
|
||||
int32_t n_max = 16; // maximum number of tokens to draft during speculative decoding
|
||||
int32_t n_min = 5; // minimum number of draft tokens to use for speculative decoding
|
||||
int32_t n_gpu_layers = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
|
||||
float p_split = 0.1f; // speculative decoding split probability
|
||||
float p_min = 0.9f; // minimum speculative decoding probability (greedy)
|
||||
|
||||
struct cpu_params cpuparams;
|
||||
struct cpu_params cpuparams_batch;
|
||||
|
||||
std::string model = ""; // draft model for speculative decoding // NOLINT
|
||||
};
|
||||
|
||||
struct common_params_vocoder {
|
||||
std::string hf_repo = ""; // HF repo // NOLINT
|
||||
std::string hf_file = ""; // HF file // NOLINT
|
||||
|
||||
std::string model = ""; // model path // NOLINT
|
||||
std::string model_url = ""; // model url to download // NOLINT
|
||||
};
|
||||
|
||||
struct common_params {
|
||||
int32_t n_threads = cpu_get_num_math();
|
||||
int32_t n_threads_draft = -1;
|
||||
int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
|
||||
int32_t n_threads_batch_draft = -1;
|
||||
int32_t n_predict = -1; // new tokens to predict
|
||||
int32_t n_ctx = 4096; // context size
|
||||
int32_t n_ctx = 0; // context size
|
||||
int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
|
||||
int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
|
||||
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
||||
int32_t n_draft = 5; // number of tokens to draft during speculative decoding
|
||||
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
|
||||
int32_t n_parallel = 1; // number of parallel sequences to decode
|
||||
int32_t n_sequences = 1; // number of sequences to decode
|
||||
float p_split = 0.1f; // speculative decoding split probability
|
||||
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
|
||||
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
|
||||
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
||||
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
|
||||
int32_t grp_attn_n = 1; // group-attention factor
|
||||
int32_t grp_attn_w = 512; // group-attention width
|
||||
int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
|
||||
@@ -201,57 +89,46 @@ struct common_params {
|
||||
float yarn_beta_fast = 32.0f; // YaRN low correction dim
|
||||
float yarn_beta_slow = 1.0f; // YaRN high correction dim
|
||||
int32_t yarn_orig_ctx = 0; // YaRN original context length
|
||||
float defrag_thold = 0.1f; // KV cache defragmentation threshold
|
||||
|
||||
// offload params
|
||||
std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
|
||||
|
||||
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
|
||||
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
||||
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
|
||||
|
||||
enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
|
||||
|
||||
struct cpu_params cpuparams;
|
||||
struct cpu_params cpuparams_batch;
|
||||
float defrag_thold = -1.0f; // KV cache defragmentation threshold
|
||||
|
||||
ggml_backend_sched_eval_callback cb_eval = nullptr;
|
||||
void * cb_eval_user_data = nullptr;
|
||||
|
||||
ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
|
||||
|
||||
enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
|
||||
enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
|
||||
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
|
||||
enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
|
||||
|
||||
struct common_params_sampling sampling;
|
||||
struct common_params_speculative speculative;
|
||||
struct common_params_vocoder vocoder;
|
||||
// // sampling parameters
|
||||
struct llama_sampling_params sparams;
|
||||
|
||||
std::string model = ""; // model path // NOLINT
|
||||
std::string model_alias = ""; // model alias // NOLINT
|
||||
std::string model_url = ""; // model url to download // NOLINT
|
||||
std::string hf_token = ""; // HF token // NOLINT
|
||||
std::string hf_repo = ""; // HF repo // NOLINT
|
||||
std::string hf_file = ""; // HF file // NOLINT
|
||||
std::string prompt = ""; // NOLINT
|
||||
std::string prompt_file = ""; // store the external prompt file name // NOLINT
|
||||
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state // NOLINT
|
||||
std::string input_prefix = ""; // string to prefix user inputs with // NOLINT
|
||||
std::string input_suffix = ""; // string to suffix user inputs with // NOLINT
|
||||
std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding // NOLINT
|
||||
std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding // NOLINT
|
||||
std::string logits_file = ""; // file for saving *all* logits // NOLINT
|
||||
std::string rpc_servers = ""; // comma separated list of RPC servers // NOLINT
|
||||
std::string model = ""; // model path
|
||||
std::string model_draft = ""; // draft model for speculative decoding
|
||||
std::string model_alias = "unknown"; // model alias
|
||||
std::string model_url = ""; // model url to download
|
||||
std::string hf_repo = ""; // HF repo
|
||||
std::string hf_file = ""; // HF file
|
||||
std::string prompt = "";
|
||||
std::string prompt_file = ""; // store the external prompt file name
|
||||
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
|
||||
std::string input_prefix = ""; // string to prefix user inputs with
|
||||
std::string input_suffix = ""; // string to suffix user inputs with
|
||||
std::string logdir = ""; // directory in which to save YAML log files
|
||||
std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding
|
||||
std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding
|
||||
std::string logits_file = ""; // file for saving *all* logits
|
||||
std::string rpc_servers = ""; // comma separated list of RPC servers
|
||||
|
||||
std::vector<std::string> in_files; // all input files
|
||||
std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
|
||||
std::vector<llama_model_kv_override> kv_overrides;
|
||||
|
||||
bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_lora_adapter_apply)
|
||||
std::vector<common_lora_adapter_info> lora_adapters; // lora adapter path with user defined scale
|
||||
// TODO: avoid tuple, use struct
|
||||
std::vector<std::tuple<std::string, float>> lora_adapter; // lora adapter path with user defined scale
|
||||
std::string lora_base = ""; // base model path for the lora adapter
|
||||
|
||||
std::vector<common_control_vector_load_info> control_vectors; // control vector with user defined scale
|
||||
std::vector<llama_control_vector_load_info> control_vectors; // control vector with user defined scale
|
||||
|
||||
int32_t verbosity = 0;
|
||||
int32_t control_vector_layer_start = -1; // layer range for control vector
|
||||
@@ -286,55 +163,51 @@ struct common_params {
|
||||
bool simple_io = false; // improves compatibility with subprocesses and limited consoles
|
||||
bool cont_batching = true; // insert new sequences for decoding on-the-fly
|
||||
bool flash_attn = false; // flash attention
|
||||
bool no_perf = false; // disable performance metrics
|
||||
bool ctx_shift = true; // context shift on inifinite text generation
|
||||
|
||||
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
|
||||
bool ignore_eos = false; // ignore generated EOS tokens
|
||||
bool logits_all = false; // return logits for all tokens in the batch
|
||||
bool use_mmap = true; // use mmap for faster loads
|
||||
bool use_mlock = false; // use mlock to keep model in memory
|
||||
bool verbose_prompt = false; // print prompt tokens before generation
|
||||
bool display_prompt = true; // print prompt before generation
|
||||
bool infill = false; // use infill mode
|
||||
bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
|
||||
bool no_kv_offload = false; // disable KV offloading
|
||||
bool warmup = true; // warmup run
|
||||
bool check_tensors = false; // validate tensor data
|
||||
|
||||
ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K
|
||||
ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V
|
||||
std::string cache_type_k = "f16"; // KV cache data type for the K
|
||||
std::string cache_type_v = "f16"; // KV cache data type for the V
|
||||
|
||||
// multimodal models (see examples/llava)
|
||||
std::string mmproj = ""; // path to multimodal projector // NOLINT
|
||||
std::string mmproj = ""; // path to multimodal projector
|
||||
std::vector<std::string> image; // path to image file(s)
|
||||
|
||||
// embedding
|
||||
bool embedding = false; // get only sentence embedding
|
||||
int32_t embd_normalize = 2; // normalisation for embeddings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
|
||||
int32_t embd_normalize = 2; // normalisation for embendings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
|
||||
std::string embd_out = ""; // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
|
||||
std::string embd_sep = "\n"; // separator of embeddings
|
||||
bool reranking = false; // enable reranking support on server
|
||||
std::string embd_sep = "\n"; // separator of embendings
|
||||
|
||||
// server params
|
||||
int32_t port = 8080; // server listens on this network port
|
||||
int32_t timeout_read = 600; // http read timeout in seconds
|
||||
int32_t timeout_write = timeout_read; // http write timeout in seconds
|
||||
int32_t n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
|
||||
int32_t n_cache_reuse = 0; // min chunk size to reuse from the cache via KV shifting
|
||||
int32_t n_threads_http = -1; // number of threads to process HTTP requests
|
||||
|
||||
std::string hostname = "127.0.0.1";
|
||||
std::string public_path = ""; // NOLINT
|
||||
std::string chat_template = ""; // NOLINT
|
||||
std::string public_path = "";
|
||||
std::string chat_template = "";
|
||||
std::string system_prompt = "";
|
||||
bool enable_chat_template = true;
|
||||
|
||||
std::vector<std::string> api_keys;
|
||||
|
||||
std::string ssl_file_key = ""; // NOLINT
|
||||
std::string ssl_file_cert = ""; // NOLINT
|
||||
std::string ssl_file_key = "";
|
||||
std::string ssl_file_cert = "";
|
||||
|
||||
// "advanced" endpoints are disabled by default for better security
|
||||
bool webui = true;
|
||||
bool endpoint_slots = false;
|
||||
bool endpoint_props = false; // only control POST requests, not GET
|
||||
bool endpoint_slots = true;
|
||||
bool endpoint_metrics = false;
|
||||
|
||||
bool log_json = false;
|
||||
@@ -380,49 +253,28 @@ struct common_params {
|
||||
std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
|
||||
|
||||
bool spm_infill = false; // suffix/prefix/middle pattern for infill
|
||||
|
||||
std::string lora_outfile = "ggml-lora-merged-f16.gguf";
|
||||
|
||||
// batched-bench params
|
||||
bool batched_bench_output_jsonl = false;
|
||||
};
|
||||
|
||||
// call once at the start of a program if it uses libcommon
|
||||
// initializes the logging system and prints info about the build
|
||||
void common_init();
|
||||
void gpt_params_handle_model_default(gpt_params & params);
|
||||
|
||||
std::string common_params_get_system_info(const common_params & params);
|
||||
bool gpt_params_parse_ex (int argc, char ** argv, gpt_params & params);
|
||||
bool gpt_params_parse (int argc, char ** argv, gpt_params & params);
|
||||
bool gpt_params_find_arg (int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param);
|
||||
void gpt_params_print_usage(int argc, char ** argv, const gpt_params & params);
|
||||
|
||||
bool parse_cpu_range(const std::string & range, bool(&boolmask)[GGML_MAX_N_THREADS]);
|
||||
bool parse_cpu_mask(const std::string & mask, bool(&boolmask)[GGML_MAX_N_THREADS]);
|
||||
void postprocess_cpu_params(cpu_params & cpuparams, const cpu_params * role_model = nullptr);
|
||||
bool set_process_priority(enum ggml_sched_priority prio);
|
||||
std::string gpt_params_get_system_info(const gpt_params & params);
|
||||
|
||||
//
|
||||
// String utils
|
||||
//
|
||||
|
||||
#ifdef __GNUC__
|
||||
#ifdef __MINGW32__
|
||||
#define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
|
||||
#else
|
||||
#define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
|
||||
#endif
|
||||
#else
|
||||
#define LLAMA_COMMON_ATTRIBUTE_FORMAT(...)
|
||||
#endif
|
||||
|
||||
LLAMA_COMMON_ATTRIBUTE_FORMAT(1, 2)
|
||||
std::string string_format(const char * fmt, ...);
|
||||
std::vector<std::string> string_split(std::string input, char separator);
|
||||
|
||||
std::string string_strip(const std::string & str);
|
||||
std::string string_get_sortable_timestamp();
|
||||
|
||||
void string_replace_all(std::string & s, const std::string & search, const std::string & replace);
|
||||
|
||||
template<class T>
|
||||
static std::vector<T> string_split(const std::string & str, char delim) {
|
||||
static_assert(!std::is_same<T, std::string>::value, "Please use the specialized version for std::string");
|
||||
std::vector<T> values;
|
||||
std::istringstream str_stream(str);
|
||||
std::string token;
|
||||
@@ -435,35 +287,9 @@ static std::vector<T> string_split(const std::string & str, char delim) {
|
||||
return values;
|
||||
}
|
||||
|
||||
template<>
|
||||
std::vector<std::string> string_split<std::string>(const std::string & input, char separator)
|
||||
{
|
||||
std::vector<std::string> parts;
|
||||
size_t begin_pos = 0;
|
||||
size_t separator_pos = input.find(separator);
|
||||
while (separator_pos != std::string::npos) {
|
||||
std::string part = input.substr(begin_pos, separator_pos - begin_pos);
|
||||
parts.emplace_back(part);
|
||||
begin_pos = separator_pos + 1;
|
||||
separator_pos = input.find(separator, begin_pos);
|
||||
}
|
||||
parts.emplace_back(input.substr(begin_pos, separator_pos - begin_pos));
|
||||
return parts;
|
||||
}
|
||||
|
||||
static bool string_starts_with(const std::string & str,
|
||||
const std::string & prefix) { // While we wait for C++20's std::string::starts_with...
|
||||
return str.rfind(prefix, 0) == 0;
|
||||
}
|
||||
|
||||
bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
|
||||
void string_process_escapes(std::string & input);
|
||||
|
||||
std::string string_from(bool value);
|
||||
std::string string_from(const std::vector<int> & values);
|
||||
std::string string_from(const struct llama_context * ctx, const std::vector<llama_token> & tokens);
|
||||
std::string string_from(const struct llama_context * ctx, const struct llama_batch & batch);
|
||||
|
||||
//
|
||||
// Filesystem utils
|
||||
//
|
||||
@@ -478,69 +304,39 @@ std::string fs_get_cache_file(const std::string & filename);
|
||||
// Model utils
|
||||
//
|
||||
|
||||
struct common_init_result {
|
||||
struct llama_model * model = nullptr;
|
||||
struct llama_context * context = nullptr;
|
||||
std::vector<common_lora_adapter_container> lora_adapters;
|
||||
};
|
||||
// TODO: avoid tuplue, use struct
|
||||
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params);
|
||||
|
||||
struct common_init_result common_init_from_params(common_params & params);
|
||||
struct llama_model_params llama_model_params_from_gpt_params (const gpt_params & params);
|
||||
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params);
|
||||
|
||||
struct llama_model_params common_model_params_to_llama ( common_params & params);
|
||||
struct llama_context_params common_context_params_to_llama(const common_params & params);
|
||||
struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
|
||||
struct llama_model * llama_load_model_from_url(const char * model_url, const char * path_model, const struct llama_model_params & params);
|
||||
struct llama_model * llama_load_model_from_hf(const char * repo, const char * file, const char * path_model, const struct llama_model_params & params);
|
||||
|
||||
struct llama_model * common_load_model_from_url(
|
||||
const std::string & model_url,
|
||||
const std::string & local_path,
|
||||
const std::string & hf_token,
|
||||
const struct llama_model_params & params);
|
||||
struct llama_model * common_load_model_from_hf(
|
||||
const std::string & repo,
|
||||
const std::string & remote_path,
|
||||
const std::string & local_path,
|
||||
const std::string & hf_token,
|
||||
const struct llama_model_params & params);
|
||||
|
||||
// clear LoRA adapters from context, then apply new list of adapters
|
||||
void common_lora_adapters_apply(struct llama_context * ctx, std::vector<common_lora_adapter_container> & lora_adapters);
|
||||
|
||||
//
|
||||
// Batch utils
|
||||
//
|
||||
|
||||
void common_batch_clear(struct llama_batch & batch);
|
||||
void llama_batch_clear(struct llama_batch & batch);
|
||||
|
||||
void common_batch_add(
|
||||
void llama_batch_add(
|
||||
struct llama_batch & batch,
|
||||
llama_token id,
|
||||
llama_pos pos,
|
||||
const std::vector<llama_seq_id> & seq_ids,
|
||||
bool logits);
|
||||
|
||||
//
|
||||
// Token utils
|
||||
//
|
||||
|
||||
// longest common prefix
|
||||
size_t common_lcp(const llama_tokens & a, const llama_tokens & b);
|
||||
|
||||
// longet common subsequence
|
||||
size_t common_lcs(const llama_tokens & a, const llama_tokens & b);
|
||||
|
||||
//
|
||||
// Vocab utils
|
||||
//
|
||||
|
||||
// tokenizes a string into a vector of tokens
|
||||
// should work similar to Python's `tokenizer.encode`
|
||||
std::vector<llama_token> common_tokenize(
|
||||
std::vector<llama_token> llama_tokenize(
|
||||
const struct llama_context * ctx,
|
||||
const std::string & text,
|
||||
bool add_special,
|
||||
bool parse_special = false);
|
||||
|
||||
std::vector<llama_token> common_tokenize(
|
||||
std::vector<llama_token> llama_tokenize(
|
||||
const struct llama_model * model,
|
||||
const std::string & text,
|
||||
bool add_special,
|
||||
@@ -548,49 +344,61 @@ std::vector<llama_token> common_tokenize(
|
||||
|
||||
// tokenizes a token into a piece, optionally renders special/control tokens
|
||||
// should work similar to Python's `tokenizer.id_to_piece`
|
||||
std::string common_token_to_piece(
|
||||
std::string llama_token_to_piece(
|
||||
const struct llama_context * ctx,
|
||||
llama_token token,
|
||||
bool special = true);
|
||||
|
||||
// TODO: these should be moved in llama.h C-style API under single `llama_detokenize` function
|
||||
// that takes into account the tokenizer type and decides how to handle the leading space
|
||||
//
|
||||
// detokenizes a vector of tokens into a string
|
||||
// should work similar to Python's `tokenizer.decode`
|
||||
// optionally renders special/control tokens
|
||||
std::string common_detokenize(
|
||||
// removes the leading space from the first non-BOS token
|
||||
std::string llama_detokenize_spm(
|
||||
llama_context * ctx,
|
||||
const std::vector<llama_token> & tokens,
|
||||
bool special = true);
|
||||
const std::vector<llama_token> & tokens);
|
||||
|
||||
// detokenizes a vector of tokens into a string
|
||||
// should work similar to Python's `tokenizer.decode`
|
||||
std::string llama_detokenize_bpe(
|
||||
llama_context * ctx,
|
||||
const std::vector<llama_token> & tokens);
|
||||
|
||||
// Uses the value from the model metadata if possible, otherwise
|
||||
// defaults to true when model type is SPM, otherwise false.
|
||||
bool llama_should_add_bos_token(const llama_model * model);
|
||||
|
||||
//
|
||||
// Chat template utils
|
||||
//
|
||||
|
||||
// same with llama_chat_message, but uses std::string
|
||||
struct common_chat_msg {
|
||||
struct llama_chat_msg {
|
||||
std::string role;
|
||||
std::string content;
|
||||
};
|
||||
|
||||
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
|
||||
bool common_chat_verify_template(const std::string & tmpl);
|
||||
bool llama_chat_verify_template(const std::string & tmpl);
|
||||
|
||||
// CPP wrapper for llama_chat_apply_template
|
||||
// If the built-in template is not supported, we default to chatml
|
||||
// If the custom "tmpl" is not supported, we throw an error
|
||||
std::string common_chat_apply_template(const struct llama_model * model,
|
||||
std::string llama_chat_apply_template(const struct llama_model * model,
|
||||
const std::string & tmpl,
|
||||
const std::vector<common_chat_msg> & chat,
|
||||
const std::vector<llama_chat_msg> & chat,
|
||||
bool add_ass);
|
||||
|
||||
// Format single message, while taking into account the position of that message in chat history
|
||||
std::string common_chat_format_single(const struct llama_model * model,
|
||||
std::string llama_chat_format_single(const struct llama_model * model,
|
||||
const std::string & tmpl,
|
||||
const std::vector<common_chat_msg> & past_msg,
|
||||
const common_chat_msg & new_msg,
|
||||
const std::vector<llama_chat_msg> & past_msg,
|
||||
const llama_chat_msg & new_msg,
|
||||
bool add_ass);
|
||||
|
||||
// Returns an example of formatted chat
|
||||
std::string common_chat_format_example(const struct llama_model * model,
|
||||
std::string llama_chat_format_example(const struct llama_model * model,
|
||||
const std::string & tmpl);
|
||||
|
||||
//
|
||||
@@ -598,32 +406,31 @@ std::string common_chat_format_example(const struct llama_model * model,
|
||||
//
|
||||
|
||||
// Dump the KV cache view with the number of sequences per cell.
|
||||
void common_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80);
|
||||
void llama_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80);
|
||||
|
||||
// Dump the KV cache view showing individual sequences in each cell (long output).
|
||||
void common_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
|
||||
void llama_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
|
||||
|
||||
//
|
||||
// Embedding utils
|
||||
//
|
||||
|
||||
// TODO: repace embd_norm with an enum
|
||||
void common_embd_normalize(const float * inp, float * out, int n, int embd_norm);
|
||||
void llama_embd_normalize(const float * inp, float * out, int n, int embd_norm = 2);
|
||||
|
||||
float common_embd_similarity_cos(const float * embd1, const float * embd2, int n);
|
||||
float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n);
|
||||
|
||||
//
|
||||
// Control vector utils
|
||||
//
|
||||
|
||||
struct common_control_vector_data {
|
||||
struct llama_control_vector_data {
|
||||
int n_embd;
|
||||
|
||||
// stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
|
||||
std::vector<float> data;
|
||||
};
|
||||
|
||||
struct common_control_vector_load_info {
|
||||
struct llama_control_vector_load_info {
|
||||
float strength;
|
||||
|
||||
std::string fname;
|
||||
@@ -631,7 +438,7 @@ struct common_control_vector_load_info {
|
||||
|
||||
// Load control vectors, scale each by strength, and add them together.
|
||||
// On error, returns {-1, empty}
|
||||
common_control_vector_data common_control_vector_load(const std::vector<common_control_vector_load_info> & load_infos);
|
||||
llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos);
|
||||
|
||||
//
|
||||
// Split utils
|
||||
@@ -640,3 +447,15 @@ common_control_vector_data common_control_vector_load(const std::vector<common_c
|
||||
static const char * const LLM_KV_SPLIT_NO = "split.no";
|
||||
static const char * const LLM_KV_SPLIT_COUNT = "split.count";
|
||||
static const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
|
||||
|
||||
//
|
||||
// YAML utils
|
||||
//
|
||||
|
||||
void yaml_dump_vector_float (FILE * stream, const char * prop_name, const std::vector<float> & data);
|
||||
void yaml_dump_vector_int (FILE * stream, const char * prop_name, const std::vector<int> & data);
|
||||
void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data);
|
||||
|
||||
void yaml_dump_non_result_info(
|
||||
FILE * stream, const gpt_params & params, const llama_context * lctx,
|
||||
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);
|
||||
|
||||
@@ -94,9 +94,6 @@ namespace console {
|
||||
simple_io = true;
|
||||
}
|
||||
}
|
||||
if (simple_io) {
|
||||
_setmode(_fileno(stdin), _O_U8TEXT);
|
||||
}
|
||||
#else
|
||||
// POSIX-specific console initialization
|
||||
if (!simple_io) {
|
||||
|
||||
536
common/grammar-parser.cpp
Normal file
536
common/grammar-parser.cpp
Normal file
@@ -0,0 +1,536 @@
|
||||
#include "grammar-parser.h"
|
||||
#include <cstdint>
|
||||
#include <cwchar>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
#include <stdexcept>
|
||||
#include <exception>
|
||||
|
||||
namespace grammar_parser {
|
||||
// NOTE: assumes valid utf8 (but checks for overrun)
|
||||
// copied from llama.cpp
|
||||
static std::pair<uint32_t, const char *> decode_utf8(const char * src) {
|
||||
static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
|
||||
uint8_t first_byte = static_cast<uint8_t>(*src);
|
||||
uint8_t highbits = first_byte >> 4;
|
||||
int len = lookup[highbits];
|
||||
uint8_t mask = (1 << (8 - len)) - 1;
|
||||
uint32_t value = first_byte & mask;
|
||||
const char * end = src + len; // may overrun!
|
||||
const char * pos = src + 1;
|
||||
for ( ; pos < end && *pos; pos++) {
|
||||
value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
|
||||
}
|
||||
return std::make_pair(value, pos);
|
||||
}
|
||||
|
||||
static uint32_t get_symbol_id(parse_state & state, const char * src, size_t len) {
|
||||
uint32_t next_id = static_cast<uint32_t>(state.symbol_ids.size());
|
||||
auto result = state.symbol_ids.emplace(std::string(src, len), next_id);
|
||||
return result.first->second;
|
||||
}
|
||||
|
||||
static uint32_t generate_symbol_id(parse_state & state, const std::string & base_name) {
|
||||
uint32_t next_id = static_cast<uint32_t>(state.symbol_ids.size());
|
||||
state.symbol_ids[base_name + '_' + std::to_string(next_id)] = next_id;
|
||||
return next_id;
|
||||
}
|
||||
|
||||
static void add_rule(
|
||||
parse_state & state,
|
||||
uint32_t rule_id,
|
||||
const std::vector<llama_grammar_element> & rule) {
|
||||
if (state.rules.size() <= rule_id) {
|
||||
state.rules.resize(rule_id + 1);
|
||||
}
|
||||
state.rules[rule_id] = rule;
|
||||
}
|
||||
|
||||
static bool is_digit_char(char c) {
|
||||
return '0' <= c && c <= '9';
|
||||
}
|
||||
|
||||
static bool is_word_char(char c) {
|
||||
return ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || c == '-' || is_digit_char(c);
|
||||
}
|
||||
|
||||
static std::pair<uint32_t, const char *> parse_hex(const char * src, int size) {
|
||||
const char * pos = src;
|
||||
const char * end = src + size;
|
||||
uint32_t value = 0;
|
||||
for ( ; pos < end && *pos; pos++) {
|
||||
value <<= 4;
|
||||
char c = *pos;
|
||||
if ('a' <= c && c <= 'f') {
|
||||
value += c - 'a' + 10;
|
||||
} else if ('A' <= c && c <= 'F') {
|
||||
value += c - 'A' + 10;
|
||||
} else if ('0' <= c && c <= '9') {
|
||||
value += c - '0';
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (pos != end) {
|
||||
throw std::runtime_error("expecting " + std::to_string(size) + " hex chars at " + src);
|
||||
}
|
||||
return std::make_pair(value, pos);
|
||||
}
|
||||
|
||||
static const char * parse_space(const char * src, bool newline_ok) {
|
||||
const char * pos = src;
|
||||
while (*pos == ' ' || *pos == '\t' || *pos == '#' ||
|
||||
(newline_ok && (*pos == '\r' || *pos == '\n'))) {
|
||||
if (*pos == '#') {
|
||||
while (*pos && *pos != '\r' && *pos != '\n') {
|
||||
pos++;
|
||||
}
|
||||
} else {
|
||||
pos++;
|
||||
}
|
||||
}
|
||||
return pos;
|
||||
}
|
||||
|
||||
static const char * parse_name(const char * src) {
|
||||
const char * pos = src;
|
||||
while (is_word_char(*pos)) {
|
||||
pos++;
|
||||
}
|
||||
if (pos == src) {
|
||||
throw std::runtime_error(std::string("expecting name at ") + src);
|
||||
}
|
||||
return pos;
|
||||
}
|
||||
|
||||
static const char * parse_int(const char * src) {
|
||||
const char * pos = src;
|
||||
while (is_digit_char(*pos)) {
|
||||
pos++;
|
||||
}
|
||||
if (pos == src) {
|
||||
throw std::runtime_error(std::string("expecting integer at ") + src);
|
||||
}
|
||||
return pos;
|
||||
}
|
||||
|
||||
static std::pair<uint32_t, const char *> parse_char(const char * src) {
|
||||
if (*src == '\\') {
|
||||
switch (src[1]) {
|
||||
case 'x': return parse_hex(src + 2, 2);
|
||||
case 'u': return parse_hex(src + 2, 4);
|
||||
case 'U': return parse_hex(src + 2, 8);
|
||||
case 't': return std::make_pair('\t', src + 2);
|
||||
case 'r': return std::make_pair('\r', src + 2);
|
||||
case 'n': return std::make_pair('\n', src + 2);
|
||||
case '\\':
|
||||
case '"':
|
||||
case '[':
|
||||
case ']':
|
||||
return std::make_pair(src[1], src + 2);
|
||||
default:
|
||||
throw std::runtime_error(std::string("unknown escape at ") + src);
|
||||
}
|
||||
} else if (*src) {
|
||||
return decode_utf8(src);
|
||||
}
|
||||
throw std::runtime_error("unexpected end of input");
|
||||
}
|
||||
|
||||
const char * parse_alternates(
|
||||
parse_state & state,
|
||||
const char * src,
|
||||
const std::string & rule_name,
|
||||
uint32_t rule_id,
|
||||
bool is_nested);
|
||||
|
||||
static const char * parse_sequence(
|
||||
parse_state & state,
|
||||
const char * src,
|
||||
const std::string & rule_name,
|
||||
std::vector<llama_grammar_element> & out_elements,
|
||||
bool is_nested) {
|
||||
size_t last_sym_start = out_elements.size();
|
||||
const char * pos = src;
|
||||
|
||||
auto handle_repetitions = [&](int min_times, int max_times) {
|
||||
|
||||
if (last_sym_start == out_elements.size()) {
|
||||
throw std::runtime_error(std::string("expecting preceding item to */+/?/{ at ") + pos);
|
||||
}
|
||||
|
||||
// apply transformation to previous symbol (last_sym_start to end) according to
|
||||
// the following rewrite rules:
|
||||
// S{m,n} --> S S S (m times) S'(n-m)
|
||||
// S'(x) ::= S S'(x-1) |
|
||||
// (... n-m definitions of these S' rules ...)
|
||||
// S'(1) ::= S |
|
||||
// S{m,} --> S S S (m times) S'
|
||||
// S' ::= S S' |
|
||||
// S* --> S{0,}
|
||||
// --> S' ::= S S' |
|
||||
// S+ --> S{1,}
|
||||
// --> S S'
|
||||
// S' ::= S S' |
|
||||
// S? --> S{0,1}
|
||||
// --> S'
|
||||
// S' ::= S |
|
||||
|
||||
std::vector<llama_grammar_element> previous_elements(out_elements.begin() + last_sym_start, out_elements.end());
|
||||
if (min_times == 0) {
|
||||
out_elements.resize(last_sym_start);
|
||||
} else {
|
||||
// Repeat the previous elements (min_times - 1) times
|
||||
for (int i = 1; i < min_times; i++) {
|
||||
out_elements.insert(out_elements.end(), previous_elements.begin(), previous_elements.end());
|
||||
}
|
||||
}
|
||||
|
||||
uint32_t last_rec_rule_id = 0;
|
||||
auto n_opt = max_times < 0 ? 1 : max_times - min_times;
|
||||
|
||||
std::vector<llama_grammar_element> rec_rule(previous_elements);
|
||||
for (int i = 0; i < n_opt; i++) {
|
||||
rec_rule.resize(previous_elements.size());
|
||||
uint32_t rec_rule_id = generate_symbol_id(state, rule_name);
|
||||
if (i > 0 || max_times < 0) {
|
||||
rec_rule.push_back({LLAMA_GRETYPE_RULE_REF, max_times < 0 ? rec_rule_id : last_rec_rule_id});
|
||||
}
|
||||
rec_rule.push_back({LLAMA_GRETYPE_ALT, 0});
|
||||
rec_rule.push_back({LLAMA_GRETYPE_END, 0});
|
||||
add_rule(state, rec_rule_id, rec_rule);
|
||||
last_rec_rule_id = rec_rule_id;
|
||||
}
|
||||
if (n_opt > 0) {
|
||||
out_elements.push_back({LLAMA_GRETYPE_RULE_REF, last_rec_rule_id});
|
||||
}
|
||||
};
|
||||
|
||||
while (*pos) {
|
||||
if (*pos == '"') { // literal string
|
||||
pos++;
|
||||
last_sym_start = out_elements.size();
|
||||
while (*pos != '"') {
|
||||
if (!*pos) {
|
||||
throw std::runtime_error("unexpected end of input");
|
||||
}
|
||||
auto char_pair = parse_char(pos);
|
||||
pos = char_pair.second;
|
||||
out_elements.push_back({LLAMA_GRETYPE_CHAR, char_pair.first});
|
||||
}
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
} else if (*pos == '[') { // char range(s)
|
||||
pos++;
|
||||
enum llama_gretype start_type = LLAMA_GRETYPE_CHAR;
|
||||
if (*pos == '^') {
|
||||
pos++;
|
||||
start_type = LLAMA_GRETYPE_CHAR_NOT;
|
||||
}
|
||||
last_sym_start = out_elements.size();
|
||||
while (*pos != ']') {
|
||||
if (!*pos) {
|
||||
throw std::runtime_error("unexpected end of input");
|
||||
}
|
||||
auto char_pair = parse_char(pos);
|
||||
pos = char_pair.second;
|
||||
enum llama_gretype type = last_sym_start < out_elements.size()
|
||||
? LLAMA_GRETYPE_CHAR_ALT
|
||||
: start_type;
|
||||
|
||||
out_elements.push_back({type, char_pair.first});
|
||||
if (pos[0] == '-' && pos[1] != ']') {
|
||||
if (!pos[1]) {
|
||||
throw std::runtime_error("unexpected end of input");
|
||||
}
|
||||
auto endchar_pair = parse_char(pos + 1);
|
||||
pos = endchar_pair.second;
|
||||
out_elements.push_back({LLAMA_GRETYPE_CHAR_RNG_UPPER, endchar_pair.first});
|
||||
}
|
||||
}
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
} else if (is_word_char(*pos)) { // rule reference
|
||||
const char * name_end = parse_name(pos);
|
||||
uint32_t ref_rule_id = get_symbol_id(state, pos, name_end - pos);
|
||||
pos = parse_space(name_end, is_nested);
|
||||
last_sym_start = out_elements.size();
|
||||
out_elements.push_back({LLAMA_GRETYPE_RULE_REF, ref_rule_id});
|
||||
} else if (*pos == '(') { // grouping
|
||||
// parse nested alternates into synthesized rule
|
||||
pos = parse_space(pos + 1, true);
|
||||
uint32_t sub_rule_id = generate_symbol_id(state, rule_name);
|
||||
pos = parse_alternates(state, pos, rule_name, sub_rule_id, true);
|
||||
last_sym_start = out_elements.size();
|
||||
// output reference to synthesized rule
|
||||
out_elements.push_back({LLAMA_GRETYPE_RULE_REF, sub_rule_id});
|
||||
if (*pos != ')') {
|
||||
throw std::runtime_error(std::string("expecting ')' at ") + pos);
|
||||
}
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
} else if (*pos == '.') { // any char
|
||||
last_sym_start = out_elements.size();
|
||||
out_elements.push_back({LLAMA_GRETYPE_CHAR_ANY, 0});
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
} else if (*pos == '*') {
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
handle_repetitions(0, -1);
|
||||
} else if (*pos == '+') {
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
handle_repetitions(1, -1);
|
||||
} else if (*pos == '?') {
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
handle_repetitions(0, 1);
|
||||
} else if (*pos == '{') {
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
|
||||
if (!is_digit_char(*pos)) {
|
||||
throw std::runtime_error(std::string("expecting an int at ") + pos);
|
||||
}
|
||||
const char * int_end = parse_int(pos);
|
||||
int min_times = std::stoul(std::string(pos, int_end - pos));
|
||||
pos = parse_space(int_end, is_nested);
|
||||
|
||||
int max_times = -1;
|
||||
|
||||
if (*pos == '}') {
|
||||
max_times = min_times;
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
} else if (*pos == ',') {
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
|
||||
if (is_digit_char(*pos)) {
|
||||
const char * int_end = parse_int(pos);
|
||||
max_times = std::stoul(std::string(pos, int_end - pos));
|
||||
pos = parse_space(int_end, is_nested);
|
||||
}
|
||||
|
||||
if (*pos != '}') {
|
||||
throw std::runtime_error(std::string("expecting '}' at ") + pos);
|
||||
}
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
} else {
|
||||
throw std::runtime_error(std::string("expecting ',' at ") + pos);
|
||||
}
|
||||
handle_repetitions(min_times, max_times);
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
return pos;
|
||||
}
|
||||
|
||||
const char * parse_alternates(
|
||||
parse_state & state,
|
||||
const char * src,
|
||||
const std::string & rule_name,
|
||||
uint32_t rule_id,
|
||||
bool is_nested) {
|
||||
std::vector<llama_grammar_element> rule;
|
||||
const char * pos = parse_sequence(state, src, rule_name, rule, is_nested);
|
||||
while (*pos == '|') {
|
||||
rule.push_back({LLAMA_GRETYPE_ALT, 0});
|
||||
pos = parse_space(pos + 1, true);
|
||||
pos = parse_sequence(state, pos, rule_name, rule, is_nested);
|
||||
}
|
||||
rule.push_back({LLAMA_GRETYPE_END, 0});
|
||||
add_rule(state, rule_id, rule);
|
||||
return pos;
|
||||
}
|
||||
|
||||
static const char * parse_rule(parse_state & state, const char * src) {
|
||||
const char * name_end = parse_name(src);
|
||||
const char * pos = parse_space(name_end, false);
|
||||
size_t name_len = name_end - src;
|
||||
uint32_t rule_id = get_symbol_id(state, src, name_len);
|
||||
const std::string name(src, name_len);
|
||||
|
||||
if (!(pos[0] == ':' && pos[1] == ':' && pos[2] == '=')) {
|
||||
throw std::runtime_error(std::string("expecting ::= at ") + pos);
|
||||
}
|
||||
pos = parse_space(pos + 3, true);
|
||||
|
||||
pos = parse_alternates(state, pos, name, rule_id, false);
|
||||
|
||||
if (*pos == '\r') {
|
||||
pos += pos[1] == '\n' ? 2 : 1;
|
||||
} else if (*pos == '\n') {
|
||||
pos++;
|
||||
} else if (*pos) {
|
||||
throw std::runtime_error(std::string("expecting newline or end at ") + pos);
|
||||
}
|
||||
return parse_space(pos, true);
|
||||
}
|
||||
|
||||
parse_state parse(const char * src) {
|
||||
try {
|
||||
parse_state state;
|
||||
const char * pos = parse_space(src, true);
|
||||
while (*pos) {
|
||||
pos = parse_rule(state, pos);
|
||||
}
|
||||
// Validate the state to ensure that all rules are defined
|
||||
for (const auto & rule : state.rules) {
|
||||
for (const auto & elem : rule) {
|
||||
if (elem.type == LLAMA_GRETYPE_RULE_REF) {
|
||||
// Ensure that the rule at that location exists
|
||||
if (elem.value >= state.rules.size() || state.rules[elem.value].empty()) {
|
||||
// Get the name of the rule that is missing
|
||||
for (const auto & kv : state.symbol_ids) {
|
||||
if (kv.second == elem.value) {
|
||||
throw std::runtime_error("Undefined rule identifier '" + kv.first + "'");
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return state;
|
||||
} catch (const std::exception & err) {
|
||||
fprintf(stderr, "%s: error parsing grammar: %s\n", __func__, err.what());
|
||||
return parse_state();
|
||||
}
|
||||
}
|
||||
|
||||
static void print_grammar_char(FILE * file, uint32_t c) {
|
||||
if (0x20 <= c && c <= 0x7f) {
|
||||
fprintf(file, "%c", static_cast<char>(c));
|
||||
} else {
|
||||
// cop out of encoding UTF-8
|
||||
fprintf(file, "<U+%04X>", c);
|
||||
}
|
||||
}
|
||||
|
||||
static bool is_char_element(llama_grammar_element elem) {
|
||||
switch (elem.type) {
|
||||
case LLAMA_GRETYPE_CHAR: return true;
|
||||
case LLAMA_GRETYPE_CHAR_NOT: return true;
|
||||
case LLAMA_GRETYPE_CHAR_ALT: return true;
|
||||
case LLAMA_GRETYPE_CHAR_RNG_UPPER: return true;
|
||||
case LLAMA_GRETYPE_CHAR_ANY: return true;
|
||||
default: return false;
|
||||
}
|
||||
}
|
||||
|
||||
static void print_rule_binary(FILE * file, const std::vector<llama_grammar_element> & rule) {
|
||||
for (auto elem : rule) {
|
||||
switch (elem.type) {
|
||||
case LLAMA_GRETYPE_END: fprintf(file, "END"); break;
|
||||
case LLAMA_GRETYPE_ALT: fprintf(file, "ALT"); break;
|
||||
case LLAMA_GRETYPE_RULE_REF: fprintf(file, "RULE_REF"); break;
|
||||
case LLAMA_GRETYPE_CHAR: fprintf(file, "CHAR"); break;
|
||||
case LLAMA_GRETYPE_CHAR_NOT: fprintf(file, "CHAR_NOT"); break;
|
||||
case LLAMA_GRETYPE_CHAR_RNG_UPPER: fprintf(file, "CHAR_RNG_UPPER"); break;
|
||||
case LLAMA_GRETYPE_CHAR_ALT: fprintf(file, "CHAR_ALT"); break;
|
||||
case LLAMA_GRETYPE_CHAR_ANY: fprintf(file, "CHAR_ANY"); break;
|
||||
}
|
||||
switch (elem.type) {
|
||||
case LLAMA_GRETYPE_END:
|
||||
case LLAMA_GRETYPE_ALT:
|
||||
case LLAMA_GRETYPE_RULE_REF:
|
||||
fprintf(file, "(%u) ", elem.value);
|
||||
break;
|
||||
case LLAMA_GRETYPE_CHAR:
|
||||
case LLAMA_GRETYPE_CHAR_NOT:
|
||||
case LLAMA_GRETYPE_CHAR_RNG_UPPER:
|
||||
case LLAMA_GRETYPE_CHAR_ALT:
|
||||
case LLAMA_GRETYPE_CHAR_ANY:
|
||||
fprintf(file, "(\"");
|
||||
print_grammar_char(file, elem.value);
|
||||
fprintf(file, "\") ");
|
||||
break;
|
||||
}
|
||||
}
|
||||
fprintf(file, "\n");
|
||||
}
|
||||
|
||||
static void print_rule(
|
||||
FILE * file,
|
||||
uint32_t rule_id,
|
||||
const std::vector<llama_grammar_element> & rule,
|
||||
const std::map<uint32_t, std::string> & symbol_id_names) {
|
||||
if (rule.empty() || rule.back().type != LLAMA_GRETYPE_END) {
|
||||
throw std::runtime_error(
|
||||
"malformed rule, does not end with LLAMA_GRETYPE_END: " + std::to_string(rule_id));
|
||||
}
|
||||
fprintf(file, "%s ::= ", symbol_id_names.at(rule_id).c_str());
|
||||
for (size_t i = 0, end = rule.size() - 1; i < end; i++) {
|
||||
llama_grammar_element elem = rule[i];
|
||||
switch (elem.type) {
|
||||
case LLAMA_GRETYPE_END:
|
||||
throw std::runtime_error(
|
||||
"unexpected end of rule: " + std::to_string(rule_id) + "," +
|
||||
std::to_string(i));
|
||||
case LLAMA_GRETYPE_ALT:
|
||||
fprintf(file, "| ");
|
||||
break;
|
||||
case LLAMA_GRETYPE_RULE_REF:
|
||||
fprintf(file, "%s ", symbol_id_names.at(elem.value).c_str());
|
||||
break;
|
||||
case LLAMA_GRETYPE_CHAR:
|
||||
fprintf(file, "[");
|
||||
print_grammar_char(file, elem.value);
|
||||
break;
|
||||
case LLAMA_GRETYPE_CHAR_NOT:
|
||||
fprintf(file, "[^");
|
||||
print_grammar_char(file, elem.value);
|
||||
break;
|
||||
case LLAMA_GRETYPE_CHAR_RNG_UPPER:
|
||||
if (i == 0 || !is_char_element(rule[i - 1])) {
|
||||
throw std::runtime_error(
|
||||
"LLAMA_GRETYPE_CHAR_RNG_UPPER without preceding char: " +
|
||||
std::to_string(rule_id) + "," + std::to_string(i));
|
||||
}
|
||||
fprintf(file, "-");
|
||||
print_grammar_char(file, elem.value);
|
||||
break;
|
||||
case LLAMA_GRETYPE_CHAR_ALT:
|
||||
if (i == 0 || !is_char_element(rule[i - 1])) {
|
||||
throw std::runtime_error(
|
||||
"LLAMA_GRETYPE_CHAR_ALT without preceding char: " +
|
||||
std::to_string(rule_id) + "," + std::to_string(i));
|
||||
}
|
||||
print_grammar_char(file, elem.value);
|
||||
break;
|
||||
case LLAMA_GRETYPE_CHAR_ANY:
|
||||
fprintf(file, ".");
|
||||
break;
|
||||
}
|
||||
if (is_char_element(elem)) {
|
||||
switch (rule[i + 1].type) {
|
||||
case LLAMA_GRETYPE_CHAR_ALT:
|
||||
case LLAMA_GRETYPE_CHAR_RNG_UPPER:
|
||||
case LLAMA_GRETYPE_CHAR_ANY:
|
||||
break;
|
||||
default:
|
||||
fprintf(file, "] ");
|
||||
}
|
||||
}
|
||||
}
|
||||
fprintf(file, "\n");
|
||||
}
|
||||
|
||||
void print_grammar(FILE * file, const parse_state & state) {
|
||||
try {
|
||||
std::map<uint32_t, std::string> symbol_id_names;
|
||||
for (const auto & kv : state.symbol_ids) {
|
||||
symbol_id_names[kv.second] = kv.first;
|
||||
}
|
||||
for (size_t i = 0, end = state.rules.size(); i < end; i++) {
|
||||
// fprintf(file, "%zu: ", i);
|
||||
// print_rule_binary(file, state.rules[i]);
|
||||
print_rule(file, uint32_t(i), state.rules[i], symbol_id_names);
|
||||
// fprintf(file, "\n");
|
||||
}
|
||||
} catch (const std::exception & err) {
|
||||
fprintf(stderr, "\n%s: error printing grammar: %s\n", __func__, err.what());
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<const llama_grammar_element *> parse_state::c_rules() {
|
||||
std::vector<const llama_grammar_element *> ret;
|
||||
ret.reserve(rules.size());
|
||||
for (const auto & rule : rules) {
|
||||
ret.push_back(rule.data());
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
29
common/grammar-parser.h
Normal file
29
common/grammar-parser.h
Normal file
@@ -0,0 +1,29 @@
|
||||
// Implements a parser for an extended Backus-Naur form (BNF), producing the
|
||||
// binary context-free grammar format specified by llama.h. Supports character
|
||||
// ranges, grouping, and repetition operators. As an example, a grammar for
|
||||
// arithmetic might look like:
|
||||
//
|
||||
// root ::= expr
|
||||
// expr ::= term ([-+*/] term)*
|
||||
// term ::= num | "(" space expr ")" space
|
||||
// num ::= [0-9]+ space
|
||||
// space ::= [ \t\n]*
|
||||
|
||||
#pragma once
|
||||
#include "llama.h"
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <cstdint>
|
||||
#include <string>
|
||||
|
||||
namespace grammar_parser {
|
||||
struct parse_state {
|
||||
std::map<std::string, uint32_t> symbol_ids;
|
||||
std::vector<std::vector<llama_grammar_element>> rules;
|
||||
|
||||
std::vector<const llama_grammar_element *> c_rules();
|
||||
};
|
||||
|
||||
parse_state parse(const char * src);
|
||||
void print_grammar(FILE * file, const parse_state & state);
|
||||
}
|
||||
@@ -611,7 +611,7 @@ private:
|
||||
}
|
||||
return join_seq();
|
||||
};
|
||||
return _add_rule(name, "\"\\\"\" (" + to_rule(transform()) + ") \"\\\"\" space");
|
||||
return _add_rule(name, "\"\\\"\" " + to_rule(transform()) + " \"\\\"\" space");
|
||||
}
|
||||
|
||||
/*
|
||||
|
||||
401
common/log.cpp
401
common/log.cpp
@@ -1,401 +0,0 @@
|
||||
#include "log.h"
|
||||
|
||||
#include <condition_variable>
|
||||
#include <cstdarg>
|
||||
#include <cstdio>
|
||||
#include <mutex>
|
||||
#include <sstream>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
|
||||
int common_log_verbosity_thold = LOG_DEFAULT_LLAMA;
|
||||
|
||||
void common_log_set_verbosity_thold(int verbosity) {
|
||||
common_log_verbosity_thold = verbosity;
|
||||
}
|
||||
|
||||
#define LOG_COL_DEFAULT "\033[0m"
|
||||
#define LOG_COL_BOLD "\033[1m"
|
||||
#define LOG_COL_RED "\033[31m"
|
||||
#define LOG_COL_GREEN "\033[32m"
|
||||
#define LOG_COL_YELLOW "\033[33m"
|
||||
#define LOG_COL_BLUE "\033[34m"
|
||||
#define LOG_COL_MAGENTA "\033[35m"
|
||||
#define LOG_COL_CYAN "\033[36m"
|
||||
#define LOG_COL_WHITE "\033[37m"
|
||||
|
||||
static int64_t t_us() {
|
||||
return std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::system_clock::now().time_since_epoch()).count();
|
||||
}
|
||||
|
||||
// colors
|
||||
enum common_log_col : int {
|
||||
COMMON_LOG_COL_DEFAULT = 0,
|
||||
COMMON_LOG_COL_BOLD,
|
||||
COMMON_LOG_COL_RED,
|
||||
COMMON_LOG_COL_GREEN,
|
||||
COMMON_LOG_COL_YELLOW,
|
||||
COMMON_LOG_COL_BLUE,
|
||||
COMMON_LOG_COL_MAGENTA,
|
||||
COMMON_LOG_COL_CYAN,
|
||||
COMMON_LOG_COL_WHITE,
|
||||
};
|
||||
|
||||
// disable colors by default
|
||||
static std::vector<const char *> g_col = {
|
||||
"",
|
||||
"",
|
||||
"",
|
||||
"",
|
||||
"",
|
||||
"",
|
||||
"",
|
||||
"",
|
||||
"",
|
||||
};
|
||||
|
||||
struct common_log_entry {
|
||||
enum ggml_log_level level;
|
||||
|
||||
bool prefix;
|
||||
|
||||
int64_t timestamp;
|
||||
|
||||
std::vector<char> msg;
|
||||
|
||||
// signals the worker thread to stop
|
||||
bool is_end;
|
||||
|
||||
void print(FILE * file = nullptr) const {
|
||||
FILE * fcur = file;
|
||||
if (!fcur) {
|
||||
// stderr displays DBG messages only when their verbosity level is not higher than the threshold
|
||||
// these messages will still be logged to a file
|
||||
if (level == GGML_LOG_LEVEL_DEBUG && common_log_verbosity_thold < LOG_DEFAULT_DEBUG) {
|
||||
return;
|
||||
}
|
||||
|
||||
fcur = stdout;
|
||||
|
||||
if (level != GGML_LOG_LEVEL_NONE) {
|
||||
fcur = stderr;
|
||||
}
|
||||
}
|
||||
|
||||
if (level != GGML_LOG_LEVEL_NONE && level != GGML_LOG_LEVEL_CONT && prefix) {
|
||||
if (timestamp) {
|
||||
// [M.s.ms.us]
|
||||
fprintf(fcur, "%s%d.%02d.%03d.%03d%s ",
|
||||
g_col[COMMON_LOG_COL_BLUE],
|
||||
(int) (timestamp / 1000000 / 60),
|
||||
(int) (timestamp / 1000000 % 60),
|
||||
(int) (timestamp / 1000 % 1000),
|
||||
(int) (timestamp % 1000),
|
||||
g_col[COMMON_LOG_COL_DEFAULT]);
|
||||
}
|
||||
|
||||
switch (level) {
|
||||
case GGML_LOG_LEVEL_INFO: fprintf(fcur, "%sI %s", g_col[COMMON_LOG_COL_GREEN], g_col[COMMON_LOG_COL_DEFAULT]); break;
|
||||
case GGML_LOG_LEVEL_WARN: fprintf(fcur, "%sW %s", g_col[COMMON_LOG_COL_MAGENTA], "" ); break;
|
||||
case GGML_LOG_LEVEL_ERROR: fprintf(fcur, "%sE %s", g_col[COMMON_LOG_COL_RED], "" ); break;
|
||||
case GGML_LOG_LEVEL_DEBUG: fprintf(fcur, "%sD %s", g_col[COMMON_LOG_COL_YELLOW], "" ); break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
fprintf(fcur, "%s", msg.data());
|
||||
|
||||
if (level == GGML_LOG_LEVEL_WARN || level == GGML_LOG_LEVEL_ERROR || level == GGML_LOG_LEVEL_DEBUG) {
|
||||
fprintf(fcur, "%s", g_col[COMMON_LOG_COL_DEFAULT]);
|
||||
}
|
||||
|
||||
fflush(fcur);
|
||||
}
|
||||
};
|
||||
|
||||
struct common_log {
|
||||
// default capacity - will be expanded if needed
|
||||
common_log() : common_log(256) {}
|
||||
|
||||
common_log(size_t capacity) {
|
||||
file = nullptr;
|
||||
prefix = false;
|
||||
timestamps = false;
|
||||
running = false;
|
||||
t_start = t_us();
|
||||
|
||||
// initial message size - will be expanded if longer messages arrive
|
||||
entries.resize(capacity);
|
||||
for (auto & entry : entries) {
|
||||
entry.msg.resize(256);
|
||||
}
|
||||
|
||||
head = 0;
|
||||
tail = 0;
|
||||
|
||||
resume();
|
||||
}
|
||||
|
||||
~common_log() {
|
||||
pause();
|
||||
if (file) {
|
||||
fclose(file);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
std::mutex mtx;
|
||||
std::thread thrd;
|
||||
std::condition_variable cv;
|
||||
|
||||
FILE * file;
|
||||
|
||||
bool prefix;
|
||||
bool timestamps;
|
||||
bool running;
|
||||
|
||||
int64_t t_start;
|
||||
|
||||
// ring buffer of entries
|
||||
std::vector<common_log_entry> entries;
|
||||
size_t head;
|
||||
size_t tail;
|
||||
|
||||
// worker thread copies into this
|
||||
common_log_entry cur;
|
||||
|
||||
public:
|
||||
void add(enum ggml_log_level level, const char * fmt, va_list args) {
|
||||
std::lock_guard<std::mutex> lock(mtx);
|
||||
|
||||
if (!running) {
|
||||
// discard messages while the worker thread is paused
|
||||
return;
|
||||
}
|
||||
|
||||
auto & entry = entries[tail];
|
||||
|
||||
{
|
||||
// cannot use args twice, so make a copy in case we need to expand the buffer
|
||||
va_list args_copy;
|
||||
va_copy(args_copy, args);
|
||||
|
||||
#if 1
|
||||
const size_t n = vsnprintf(entry.msg.data(), entry.msg.size(), fmt, args);
|
||||
if (n >= entry.msg.size()) {
|
||||
entry.msg.resize(n + 1);
|
||||
vsnprintf(entry.msg.data(), entry.msg.size(), fmt, args_copy);
|
||||
}
|
||||
#else
|
||||
// hack for bolding arguments
|
||||
|
||||
std::stringstream ss;
|
||||
for (int i = 0; fmt[i] != 0; i++) {
|
||||
if (fmt[i] == '%') {
|
||||
ss << LOG_COL_BOLD;
|
||||
while (fmt[i] != ' ' && fmt[i] != ')' && fmt[i] != ']' && fmt[i] != 0) ss << fmt[i++];
|
||||
ss << LOG_COL_DEFAULT;
|
||||
if (fmt[i] == 0) break;
|
||||
}
|
||||
ss << fmt[i];
|
||||
}
|
||||
const size_t n = vsnprintf(entry.msg.data(), entry.msg.size(), ss.str().c_str(), args);
|
||||
if (n >= entry.msg.size()) {
|
||||
entry.msg.resize(n + 1);
|
||||
vsnprintf(entry.msg.data(), entry.msg.size(), ss.str().c_str(), args_copy);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
entry.level = level;
|
||||
entry.prefix = prefix;
|
||||
entry.timestamp = 0;
|
||||
if (timestamps) {
|
||||
entry.timestamp = t_us() - t_start;
|
||||
}
|
||||
entry.is_end = false;
|
||||
|
||||
tail = (tail + 1) % entries.size();
|
||||
if (tail == head) {
|
||||
// expand the buffer
|
||||
std::vector<common_log_entry> new_entries(2*entries.size());
|
||||
|
||||
size_t new_tail = 0;
|
||||
|
||||
do {
|
||||
new_entries[new_tail] = std::move(entries[head]);
|
||||
|
||||
head = (head + 1) % entries.size();
|
||||
new_tail = (new_tail + 1);
|
||||
} while (head != tail);
|
||||
|
||||
head = 0;
|
||||
tail = new_tail;
|
||||
|
||||
for (size_t i = tail; i < new_entries.size(); i++) {
|
||||
new_entries[i].msg.resize(256);
|
||||
}
|
||||
|
||||
entries = std::move(new_entries);
|
||||
}
|
||||
|
||||
cv.notify_one();
|
||||
}
|
||||
|
||||
void resume() {
|
||||
std::lock_guard<std::mutex> lock(mtx);
|
||||
|
||||
if (running) {
|
||||
return;
|
||||
}
|
||||
|
||||
running = true;
|
||||
|
||||
thrd = std::thread([this]() {
|
||||
while (true) {
|
||||
{
|
||||
std::unique_lock<std::mutex> lock(mtx);
|
||||
cv.wait(lock, [this]() { return head != tail; });
|
||||
|
||||
cur = entries[head];
|
||||
|
||||
head = (head + 1) % entries.size();
|
||||
}
|
||||
|
||||
if (cur.is_end) {
|
||||
break;
|
||||
}
|
||||
|
||||
cur.print(); // stdout and stderr
|
||||
|
||||
if (file) {
|
||||
cur.print(file);
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
void pause() {
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(mtx);
|
||||
|
||||
if (!running) {
|
||||
return;
|
||||
}
|
||||
|
||||
running = false;
|
||||
|
||||
// push an entry to signal the worker thread to stop
|
||||
{
|
||||
auto & entry = entries[tail];
|
||||
entry.is_end = true;
|
||||
|
||||
tail = (tail + 1) % entries.size();
|
||||
}
|
||||
|
||||
cv.notify_one();
|
||||
}
|
||||
|
||||
thrd.join();
|
||||
}
|
||||
|
||||
void set_file(const char * path) {
|
||||
pause();
|
||||
|
||||
if (file) {
|
||||
fclose(file);
|
||||
}
|
||||
|
||||
if (path) {
|
||||
file = fopen(path, "w");
|
||||
} else {
|
||||
file = nullptr;
|
||||
}
|
||||
|
||||
resume();
|
||||
}
|
||||
|
||||
void set_colors(bool colors) {
|
||||
pause();
|
||||
|
||||
if (colors) {
|
||||
g_col[COMMON_LOG_COL_DEFAULT] = LOG_COL_DEFAULT;
|
||||
g_col[COMMON_LOG_COL_BOLD] = LOG_COL_BOLD;
|
||||
g_col[COMMON_LOG_COL_RED] = LOG_COL_RED;
|
||||
g_col[COMMON_LOG_COL_GREEN] = LOG_COL_GREEN;
|
||||
g_col[COMMON_LOG_COL_YELLOW] = LOG_COL_YELLOW;
|
||||
g_col[COMMON_LOG_COL_BLUE] = LOG_COL_BLUE;
|
||||
g_col[COMMON_LOG_COL_MAGENTA] = LOG_COL_MAGENTA;
|
||||
g_col[COMMON_LOG_COL_CYAN] = LOG_COL_CYAN;
|
||||
g_col[COMMON_LOG_COL_WHITE] = LOG_COL_WHITE;
|
||||
} else {
|
||||
for (size_t i = 0; i < g_col.size(); i++) {
|
||||
g_col[i] = "";
|
||||
}
|
||||
}
|
||||
|
||||
resume();
|
||||
}
|
||||
|
||||
void set_prefix(bool prefix) {
|
||||
std::lock_guard<std::mutex> lock(mtx);
|
||||
|
||||
this->prefix = prefix;
|
||||
}
|
||||
|
||||
void set_timestamps(bool timestamps) {
|
||||
std::lock_guard<std::mutex> lock(mtx);
|
||||
|
||||
this->timestamps = timestamps;
|
||||
}
|
||||
};
|
||||
|
||||
//
|
||||
// public API
|
||||
//
|
||||
|
||||
struct common_log * common_log_init() {
|
||||
return new common_log;
|
||||
}
|
||||
|
||||
struct common_log * common_log_main() {
|
||||
static struct common_log log;
|
||||
|
||||
return &log;
|
||||
}
|
||||
|
||||
void common_log_pause(struct common_log * log) {
|
||||
log->pause();
|
||||
}
|
||||
|
||||
void common_log_resume(struct common_log * log) {
|
||||
log->resume();
|
||||
}
|
||||
|
||||
void common_log_free(struct common_log * log) {
|
||||
delete log;
|
||||
}
|
||||
|
||||
void common_log_add(struct common_log * log, enum ggml_log_level level, const char * fmt, ...) {
|
||||
va_list args;
|
||||
va_start(args, fmt);
|
||||
log->add(level, fmt, args);
|
||||
va_end(args);
|
||||
}
|
||||
|
||||
void common_log_set_file(struct common_log * log, const char * file) {
|
||||
log->set_file(file);
|
||||
}
|
||||
|
||||
void common_log_set_colors(struct common_log * log, bool colors) {
|
||||
log->set_colors(colors);
|
||||
}
|
||||
|
||||
void common_log_set_prefix(struct common_log * log, bool prefix) {
|
||||
log->set_prefix(prefix);
|
||||
}
|
||||
|
||||
void common_log_set_timestamps(struct common_log * log, bool timestamps) {
|
||||
log->set_timestamps(timestamps);
|
||||
}
|
||||
780
common/log.h
780
common/log.h
@@ -1,92 +1,724 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h" // for ggml_log_level
|
||||
#include <chrono>
|
||||
#include <cstring>
|
||||
#include <sstream>
|
||||
#include <iostream>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
#include <cinttypes>
|
||||
|
||||
#ifndef __GNUC__
|
||||
# define LOG_ATTRIBUTE_FORMAT(...)
|
||||
#elif defined(__MINGW32__)
|
||||
# define LOG_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
|
||||
#else
|
||||
# define LOG_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
|
||||
// --------------------------------
|
||||
//
|
||||
// Basic usage:
|
||||
//
|
||||
// --------
|
||||
//
|
||||
// The LOG() and LOG_TEE() macros are ready to go by default
|
||||
// they do not require any initialization.
|
||||
//
|
||||
// LOGLN() and LOG_TEELN() are variants which automatically
|
||||
// include \n character at the end of the log string.
|
||||
//
|
||||
// LOG() behaves exactly like printf, by default writing to a logfile.
|
||||
// LOG_TEE() additionally, prints to the screen too ( mimics Unix tee command ).
|
||||
//
|
||||
// Default logfile is named
|
||||
// "llama.<threadID>.log"
|
||||
// Default LOG_TEE() secondary output target is
|
||||
// stderr
|
||||
//
|
||||
// Logs can be dynamically disabled or enabled using functions:
|
||||
// log_disable()
|
||||
// and
|
||||
// log_enable()
|
||||
//
|
||||
// A log target can be changed with:
|
||||
// log_set_target( string )
|
||||
// creating and opening, or re-opening a file by string filename
|
||||
// or
|
||||
// log_set_target( FILE* )
|
||||
// allowing to point at stderr, stdout, or any valid FILE* file handler.
|
||||
//
|
||||
// --------
|
||||
//
|
||||
// End of Basic usage.
|
||||
//
|
||||
// --------------------------------
|
||||
|
||||
// Specifies a log target.
|
||||
// default uses log_handler() with "llama.log" log file
|
||||
// this can be changed, by defining LOG_TARGET
|
||||
// like so:
|
||||
//
|
||||
// #define LOG_TARGET (a valid FILE*)
|
||||
// #include "log.h"
|
||||
//
|
||||
// or it can be simply redirected to stdout or stderr
|
||||
// like so:
|
||||
//
|
||||
// #define LOG_TARGET stderr
|
||||
// #include "log.h"
|
||||
//
|
||||
// The log target can also be redirected to a different function
|
||||
// like so:
|
||||
//
|
||||
// #define LOG_TARGET log_handler_different()
|
||||
// #include "log.h"
|
||||
//
|
||||
// FILE* log_handler_different()
|
||||
// {
|
||||
// return stderr;
|
||||
// }
|
||||
//
|
||||
// or:
|
||||
//
|
||||
// #define LOG_TARGET log_handler_another_one("somelog.log")
|
||||
// #include "log.h"
|
||||
//
|
||||
// FILE* log_handler_another_one(char*filename)
|
||||
// {
|
||||
// static FILE* logfile = nullptr;
|
||||
// (...)
|
||||
// if( !logfile )
|
||||
// {
|
||||
// fopen(...)
|
||||
// }
|
||||
// (...)
|
||||
// return logfile
|
||||
// }
|
||||
//
|
||||
#ifndef LOG_TARGET
|
||||
#define LOG_TARGET log_handler()
|
||||
#endif
|
||||
|
||||
#define LOG_DEFAULT_DEBUG 1
|
||||
#define LOG_DEFAULT_LLAMA 0
|
||||
#ifndef LOG_TEE_TARGET
|
||||
#define LOG_TEE_TARGET stderr
|
||||
#endif
|
||||
|
||||
// needed by the LOG_TMPL macro to avoid computing log arguments if the verbosity lower
|
||||
// set via common_log_set_verbosity()
|
||||
extern int common_log_verbosity_thold;
|
||||
// Utility for synchronizing log configuration state
|
||||
// since std::optional was introduced only in c++17
|
||||
enum LogTriState
|
||||
{
|
||||
LogTriStateSame,
|
||||
LogTriStateFalse,
|
||||
LogTriStateTrue
|
||||
};
|
||||
|
||||
void common_log_set_verbosity_thold(int verbosity); // not thread-safe
|
||||
// Utility to obtain "pid" like unique process id and use it when creating log files.
|
||||
inline std::string log_get_pid()
|
||||
{
|
||||
static std::string pid;
|
||||
if (pid.empty())
|
||||
{
|
||||
// std::this_thread::get_id() is the most portable way of obtaining a "process id"
|
||||
// it's not the same as "pid" but is unique enough to solve multiple instances
|
||||
// trying to write to the same log.
|
||||
std::stringstream ss;
|
||||
ss << std::this_thread::get_id();
|
||||
pid = ss.str();
|
||||
}
|
||||
|
||||
// the common_log uses an internal worker thread to print/write log messages
|
||||
// when the worker thread is paused, incoming log messages are discarded
|
||||
struct common_log;
|
||||
return pid;
|
||||
}
|
||||
|
||||
struct common_log * common_log_init();
|
||||
struct common_log * common_log_main(); // singleton, automatically destroys itself on exit
|
||||
void common_log_pause (struct common_log * log); // pause the worker thread, not thread-safe
|
||||
void common_log_resume(struct common_log * log); // resume the worker thread, not thread-safe
|
||||
void common_log_free (struct common_log * log);
|
||||
// Utility function for generating log file names with unique id based on thread id.
|
||||
// invocation with log_filename_generator( "llama", "log" ) creates a string "llama.<number>.log"
|
||||
// where the number is a runtime id of the current thread.
|
||||
|
||||
LOG_ATTRIBUTE_FORMAT(3, 4)
|
||||
void common_log_add(struct common_log * log, enum ggml_log_level level, const char * fmt, ...);
|
||||
#define log_filename_generator(log_file_basename, log_file_extension) log_filename_generator_impl(LogTriStateSame, log_file_basename, log_file_extension)
|
||||
|
||||
// defaults: file = NULL, colors = false, prefix = false, timestamps = false
|
||||
//
|
||||
// regular log output:
|
||||
//
|
||||
// ggml_backend_metal_log_allocated_size: allocated buffer, size = 6695.84 MiB, ( 6695.91 / 21845.34)
|
||||
// llm_load_tensors: ggml ctx size = 0.27 MiB
|
||||
// llm_load_tensors: offloading 32 repeating layers to GPU
|
||||
// llm_load_tensors: offloading non-repeating layers to GPU
|
||||
//
|
||||
// with prefix = true, timestamps = true, the log output will look like this:
|
||||
//
|
||||
// 0.00.035.060 D ggml_backend_metal_log_allocated_size: allocated buffer, size = 6695.84 MiB, ( 6695.91 / 21845.34)
|
||||
// 0.00.035.064 I llm_load_tensors: ggml ctx size = 0.27 MiB
|
||||
// 0.00.090.578 I llm_load_tensors: offloading 32 repeating layers to GPU
|
||||
// 0.00.090.579 I llm_load_tensors: offloading non-repeating layers to GPU
|
||||
//
|
||||
// I - info (stdout, V = 0)
|
||||
// W - warning (stderr, V = 0)
|
||||
// E - error (stderr, V = 0)
|
||||
// D - debug (stderr, V = LOG_DEFAULT_DEBUG)
|
||||
//
|
||||
// INTERNAL, DO NOT USE
|
||||
inline std::string log_filename_generator_impl(LogTriState multilog, const std::string & log_file_basename, const std::string & log_file_extension)
|
||||
{
|
||||
static bool _multilog = false;
|
||||
|
||||
void common_log_set_file (struct common_log * log, const char * file); // not thread-safe
|
||||
void common_log_set_colors (struct common_log * log, bool colors); // not thread-safe
|
||||
void common_log_set_prefix (struct common_log * log, bool prefix); // whether to output prefix to each log
|
||||
void common_log_set_timestamps(struct common_log * log, bool timestamps); // whether to output timestamps in the prefix
|
||||
if (multilog != LogTriStateSame)
|
||||
{
|
||||
_multilog = multilog == LogTriStateTrue;
|
||||
}
|
||||
|
||||
// helper macros for logging
|
||||
// use these to avoid computing log arguments if the verbosity of the log is higher than the threshold
|
||||
//
|
||||
// for example:
|
||||
//
|
||||
// LOG_DBG("this is a debug message: %d\n", expensive_function());
|
||||
//
|
||||
// this will avoid calling expensive_function() if LOG_DEFAULT_DEBUG > common_log_verbosity_thold
|
||||
//
|
||||
std::stringstream buf;
|
||||
|
||||
#define LOG_TMPL(level, verbosity, ...) \
|
||||
do { \
|
||||
if ((verbosity) <= common_log_verbosity_thold) { \
|
||||
common_log_add(common_log_main(), (level), __VA_ARGS__); \
|
||||
} \
|
||||
buf << log_file_basename;
|
||||
if (_multilog)
|
||||
{
|
||||
buf << ".";
|
||||
buf << log_get_pid();
|
||||
}
|
||||
buf << ".";
|
||||
buf << log_file_extension;
|
||||
|
||||
return buf.str();
|
||||
}
|
||||
|
||||
#ifndef LOG_DEFAULT_FILE_NAME
|
||||
#define LOG_DEFAULT_FILE_NAME log_filename_generator("llama", "log")
|
||||
#endif
|
||||
|
||||
// Utility for turning #define values into string literals
|
||||
// so we can have a define for stderr and
|
||||
// we can print "stderr" instead of literal stderr, etc.
|
||||
#define LOG_STRINGIZE1(s) #s
|
||||
#define LOG_STRINGIZE(s) LOG_STRINGIZE1(s)
|
||||
|
||||
#define LOG_TEE_TARGET_STRING LOG_STRINGIZE(LOG_TEE_TARGET)
|
||||
|
||||
// Allows disabling timestamps.
|
||||
// in order to disable, define LOG_NO_TIMESTAMPS
|
||||
// like so:
|
||||
//
|
||||
// #define LOG_NO_TIMESTAMPS
|
||||
// #include "log.h"
|
||||
//
|
||||
#ifndef LOG_NO_TIMESTAMPS
|
||||
#ifndef _MSC_VER
|
||||
#define LOG_TIMESTAMP_FMT "[%" PRIu64 "] "
|
||||
#define LOG_TIMESTAMP_VAL , (std::chrono::duration_cast<std::chrono::duration<std::uint64_t>>(std::chrono::system_clock::now().time_since_epoch())).count()
|
||||
#else
|
||||
#define LOG_TIMESTAMP_FMT "[%" PRIu64 "] "
|
||||
#define LOG_TIMESTAMP_VAL , (std::chrono::duration_cast<std::chrono::duration<std::uint64_t>>(std::chrono::system_clock::now().time_since_epoch())).count()
|
||||
#endif
|
||||
#else
|
||||
#define LOG_TIMESTAMP_FMT "%s"
|
||||
#define LOG_TIMESTAMP_VAL ,""
|
||||
#endif
|
||||
|
||||
#ifdef LOG_TEE_TIMESTAMPS
|
||||
#ifndef _MSC_VER
|
||||
#define LOG_TEE_TIMESTAMP_FMT "[%" PRIu64 "] "
|
||||
#define LOG_TEE_TIMESTAMP_VAL , (std::chrono::duration_cast<std::chrono::duration<std::uint64_t>>(std::chrono::system_clock::now().time_since_epoch())).count()
|
||||
#else
|
||||
#define LOG_TEE_TIMESTAMP_FMT "[%" PRIu64 "] "
|
||||
#define LOG_TEE_TIMESTAMP_VAL , (std::chrono::duration_cast<std::chrono::duration<std::uint64_t>>(std::chrono::system_clock::now().time_since_epoch())).count()
|
||||
#endif
|
||||
#else
|
||||
#define LOG_TEE_TIMESTAMP_FMT "%s"
|
||||
#define LOG_TEE_TIMESTAMP_VAL ,""
|
||||
#endif
|
||||
|
||||
// Allows disabling file/line/function prefix
|
||||
// in order to disable, define LOG_NO_FILE_LINE_FUNCTION
|
||||
// like so:
|
||||
//
|
||||
// #define LOG_NO_FILE_LINE_FUNCTION
|
||||
// #include "log.h"
|
||||
//
|
||||
#ifndef LOG_NO_FILE_LINE_FUNCTION
|
||||
#ifndef _MSC_VER
|
||||
#define LOG_FLF_FMT "[%24s:%5d][%24s] "
|
||||
#define LOG_FLF_VAL , __FILE__, __LINE__, __FUNCTION__
|
||||
#else
|
||||
#define LOG_FLF_FMT "[%24s:%5ld][%24s] "
|
||||
#define LOG_FLF_VAL , __FILE__, (long)__LINE__, __FUNCTION__
|
||||
#endif
|
||||
#else
|
||||
#define LOG_FLF_FMT "%s"
|
||||
#define LOG_FLF_VAL ,""
|
||||
#endif
|
||||
|
||||
#ifdef LOG_TEE_FILE_LINE_FUNCTION
|
||||
#ifndef _MSC_VER
|
||||
#define LOG_TEE_FLF_FMT "[%24s:%5d][%24s] "
|
||||
#define LOG_TEE_FLF_VAL , __FILE__, __LINE__, __FUNCTION__
|
||||
#else
|
||||
#define LOG_TEE_FLF_FMT "[%24s:%5ld][%24s] "
|
||||
#define LOG_TEE_FLF_VAL , __FILE__, (long)__LINE__, __FUNCTION__
|
||||
#endif
|
||||
#else
|
||||
#define LOG_TEE_FLF_FMT "%s"
|
||||
#define LOG_TEE_FLF_VAL ,""
|
||||
#endif
|
||||
|
||||
// INTERNAL, DO NOT USE
|
||||
// USE LOG() INSTEAD
|
||||
//
|
||||
#if !defined(_MSC_VER) || defined(__INTEL_LLVM_COMPILER) || defined(__clang__)
|
||||
#define LOG_IMPL(str, ...) \
|
||||
do { \
|
||||
if (LOG_TARGET != nullptr) \
|
||||
{ \
|
||||
fprintf(LOG_TARGET, LOG_TIMESTAMP_FMT LOG_FLF_FMT str "%s" LOG_TIMESTAMP_VAL LOG_FLF_VAL, __VA_ARGS__); \
|
||||
fflush(LOG_TARGET); \
|
||||
} \
|
||||
} while (0)
|
||||
#else
|
||||
#define LOG_IMPL(str, ...) \
|
||||
do { \
|
||||
if (LOG_TARGET != nullptr) \
|
||||
{ \
|
||||
fprintf(LOG_TARGET, LOG_TIMESTAMP_FMT LOG_FLF_FMT str "%s" LOG_TIMESTAMP_VAL LOG_FLF_VAL "", ##__VA_ARGS__); \
|
||||
fflush(LOG_TARGET); \
|
||||
} \
|
||||
} while (0)
|
||||
#endif
|
||||
|
||||
#define LOG(...) LOG_TMPL(GGML_LOG_LEVEL_NONE, 0, __VA_ARGS__)
|
||||
#define LOGV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_NONE, verbosity, __VA_ARGS__)
|
||||
// INTERNAL, DO NOT USE
|
||||
// USE LOG_TEE() INSTEAD
|
||||
//
|
||||
#if !defined(_MSC_VER) || defined(__INTEL_LLVM_COMPILER) || defined(__clang__)
|
||||
#define LOG_TEE_IMPL(str, ...) \
|
||||
do { \
|
||||
if (LOG_TARGET != nullptr) \
|
||||
{ \
|
||||
fprintf(LOG_TARGET, LOG_TIMESTAMP_FMT LOG_FLF_FMT str "%s" LOG_TIMESTAMP_VAL LOG_FLF_VAL, __VA_ARGS__); \
|
||||
fflush(LOG_TARGET); \
|
||||
} \
|
||||
if (LOG_TARGET != nullptr && LOG_TARGET != stdout && LOG_TARGET != stderr && LOG_TEE_TARGET != nullptr) \
|
||||
{ \
|
||||
fprintf(LOG_TEE_TARGET, LOG_TEE_TIMESTAMP_FMT LOG_TEE_FLF_FMT str "%s" LOG_TEE_TIMESTAMP_VAL LOG_TEE_FLF_VAL, __VA_ARGS__); \
|
||||
fflush(LOG_TEE_TARGET); \
|
||||
} \
|
||||
} while (0)
|
||||
#else
|
||||
#define LOG_TEE_IMPL(str, ...) \
|
||||
do { \
|
||||
if (LOG_TARGET != nullptr) \
|
||||
{ \
|
||||
fprintf(LOG_TARGET, LOG_TIMESTAMP_FMT LOG_FLF_FMT str "%s" LOG_TIMESTAMP_VAL LOG_FLF_VAL "", ##__VA_ARGS__); \
|
||||
fflush(LOG_TARGET); \
|
||||
} \
|
||||
if (LOG_TARGET != nullptr && LOG_TARGET != stdout && LOG_TARGET != stderr && LOG_TEE_TARGET != nullptr) \
|
||||
{ \
|
||||
fprintf(LOG_TEE_TARGET, LOG_TEE_TIMESTAMP_FMT LOG_TEE_FLF_FMT str "%s" LOG_TEE_TIMESTAMP_VAL LOG_TEE_FLF_VAL "", ##__VA_ARGS__); \
|
||||
fflush(LOG_TEE_TARGET); \
|
||||
} \
|
||||
} while (0)
|
||||
#endif
|
||||
|
||||
#define LOG_INF(...) LOG_TMPL(GGML_LOG_LEVEL_INFO, 0, __VA_ARGS__)
|
||||
#define LOG_WRN(...) LOG_TMPL(GGML_LOG_LEVEL_WARN, 0, __VA_ARGS__)
|
||||
#define LOG_ERR(...) LOG_TMPL(GGML_LOG_LEVEL_ERROR, 0, __VA_ARGS__)
|
||||
#define LOG_DBG(...) LOG_TMPL(GGML_LOG_LEVEL_DEBUG, LOG_DEFAULT_DEBUG, __VA_ARGS__)
|
||||
#define LOG_CNT(...) LOG_TMPL(GGML_LOG_LEVEL_CONT, 0, __VA_ARGS__)
|
||||
// The '\0' as a last argument, is a trick to bypass the silly
|
||||
// "warning: ISO C++11 requires at least one argument for the "..." in a variadic macro"
|
||||
// so we can have a single macro which can be called just like printf.
|
||||
|
||||
#define LOG_INFV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_INFO, verbosity, __VA_ARGS__)
|
||||
#define LOG_WRNV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_WARN, verbosity, __VA_ARGS__)
|
||||
#define LOG_ERRV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_ERROR, verbosity, __VA_ARGS__)
|
||||
#define LOG_DBGV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_DEBUG, verbosity, __VA_ARGS__)
|
||||
#define LOG_CNTV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_CONT, verbosity, __VA_ARGS__)
|
||||
// Main LOG macro.
|
||||
// behaves like printf, and supports arguments the exact same way.
|
||||
//
|
||||
#if !defined(_MSC_VER) || defined(__clang__)
|
||||
#define LOG(...) LOG_IMPL(__VA_ARGS__, "")
|
||||
#else
|
||||
#define LOG(str, ...) LOG_IMPL("%s" str, "", ##__VA_ARGS__, "")
|
||||
#endif
|
||||
|
||||
// Main TEE macro.
|
||||
// does the same as LOG
|
||||
// and
|
||||
// simultaneously writes stderr.
|
||||
//
|
||||
// Secondary target can be changed just like LOG_TARGET
|
||||
// by defining LOG_TEE_TARGET
|
||||
//
|
||||
#if !defined(_MSC_VER) || defined(__clang__)
|
||||
#define LOG_TEE(...) LOG_TEE_IMPL(__VA_ARGS__, "")
|
||||
#else
|
||||
#define LOG_TEE(str, ...) LOG_TEE_IMPL("%s" str, "", ##__VA_ARGS__, "")
|
||||
#endif
|
||||
|
||||
// LOG macro variants with auto endline.
|
||||
#if !defined(_MSC_VER) || defined(__clang__)
|
||||
#define LOGLN(...) LOG_IMPL(__VA_ARGS__, "\n")
|
||||
#define LOG_TEELN(...) LOG_TEE_IMPL(__VA_ARGS__, "\n")
|
||||
#else
|
||||
#define LOGLN(str, ...) LOG_IMPL("%s" str, "", ##__VA_ARGS__, "\n")
|
||||
#define LOG_TEELN(str, ...) LOG_TEE_IMPL("%s" str, "", ##__VA_ARGS__, "\n")
|
||||
#endif
|
||||
|
||||
// INTERNAL, DO NOT USE
|
||||
inline FILE *log_handler1_impl(bool change = false, LogTriState append = LogTriStateSame, LogTriState disable = LogTriStateSame, const std::string & filename = LOG_DEFAULT_FILE_NAME, FILE *target = nullptr)
|
||||
{
|
||||
static bool _initialized = false;
|
||||
static bool _append = false;
|
||||
static bool _disabled = filename.empty() && target == nullptr;
|
||||
static std::string log_current_filename{filename};
|
||||
static FILE *log_current_target{target};
|
||||
static FILE *logfile = nullptr;
|
||||
|
||||
if (change)
|
||||
{
|
||||
if (append != LogTriStateSame)
|
||||
{
|
||||
_append = append == LogTriStateTrue;
|
||||
return logfile;
|
||||
}
|
||||
|
||||
if (disable == LogTriStateTrue)
|
||||
{
|
||||
// Disable primary target
|
||||
_disabled = true;
|
||||
}
|
||||
// If previously disabled, only enable, and keep previous target
|
||||
else if (disable == LogTriStateFalse)
|
||||
{
|
||||
_disabled = false;
|
||||
}
|
||||
// Otherwise, process the arguments
|
||||
else if (log_current_filename != filename || log_current_target != target)
|
||||
{
|
||||
_initialized = false;
|
||||
}
|
||||
}
|
||||
|
||||
if (_disabled)
|
||||
{
|
||||
// Log is disabled
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
if (_initialized)
|
||||
{
|
||||
// with fallback in case something went wrong
|
||||
return logfile ? logfile : stderr;
|
||||
}
|
||||
|
||||
// do the (re)initialization
|
||||
if (target != nullptr)
|
||||
{
|
||||
if (logfile != nullptr && logfile != stdout && logfile != stderr)
|
||||
{
|
||||
fclose(logfile);
|
||||
}
|
||||
|
||||
log_current_filename = LOG_DEFAULT_FILE_NAME;
|
||||
log_current_target = target;
|
||||
|
||||
logfile = target;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (log_current_filename != filename)
|
||||
{
|
||||
if (logfile != nullptr && logfile != stdout && logfile != stderr)
|
||||
{
|
||||
fclose(logfile);
|
||||
}
|
||||
}
|
||||
|
||||
logfile = fopen(filename.c_str(), _append ? "a" : "w");
|
||||
}
|
||||
|
||||
if (!logfile)
|
||||
{
|
||||
// Verify whether the file was opened, otherwise fallback to stderr
|
||||
logfile = stderr;
|
||||
|
||||
fprintf(stderr, "Failed to open logfile '%s' with error '%s'\n", filename.c_str(), std::strerror(errno));
|
||||
fflush(stderr);
|
||||
|
||||
// At this point we let the init flag be to true below, and let the target fallback to stderr
|
||||
// otherwise we would repeatedly fopen() which was already unsuccessful
|
||||
}
|
||||
|
||||
_initialized = true;
|
||||
|
||||
return logfile ? logfile : stderr;
|
||||
}
|
||||
|
||||
// INTERNAL, DO NOT USE
|
||||
inline FILE *log_handler2_impl(bool change = false, LogTriState append = LogTriStateSame, LogTriState disable = LogTriStateSame, FILE *target = nullptr, const std::string & filename = LOG_DEFAULT_FILE_NAME)
|
||||
{
|
||||
return log_handler1_impl(change, append, disable, filename, target);
|
||||
}
|
||||
|
||||
// Disables logs entirely at runtime.
|
||||
// Makes LOG() and LOG_TEE() produce no output,
|
||||
// until enabled back.
|
||||
#define log_disable() log_disable_impl()
|
||||
|
||||
// INTERNAL, DO NOT USE
|
||||
inline FILE *log_disable_impl()
|
||||
{
|
||||
return log_handler1_impl(true, LogTriStateSame, LogTriStateTrue);
|
||||
}
|
||||
|
||||
// Enables logs at runtime.
|
||||
#define log_enable() log_enable_impl()
|
||||
|
||||
// INTERNAL, DO NOT USE
|
||||
inline FILE *log_enable_impl()
|
||||
{
|
||||
return log_handler1_impl(true, LogTriStateSame, LogTriStateFalse);
|
||||
}
|
||||
|
||||
// Sets target fir logs, either by a file name or FILE* pointer (stdout, stderr, or any valid FILE*)
|
||||
#define log_set_target(target) log_set_target_impl(target)
|
||||
|
||||
// INTERNAL, DO NOT USE
|
||||
inline FILE *log_set_target_impl(const std::string & filename) { return log_handler1_impl(true, LogTriStateSame, LogTriStateSame, filename); }
|
||||
inline FILE *log_set_target_impl(FILE *target) { return log_handler2_impl(true, LogTriStateSame, LogTriStateSame, target); }
|
||||
|
||||
// INTERNAL, DO NOT USE
|
||||
inline FILE *log_handler() { return log_handler1_impl(); }
|
||||
|
||||
// Enable or disable creating separate log files for each run.
|
||||
// can ONLY be invoked BEFORE first log use.
|
||||
#define log_multilog(enable) log_filename_generator_impl((enable) ? LogTriStateTrue : LogTriStateFalse, "", "")
|
||||
// Enable or disable append mode for log file.
|
||||
// can ONLY be invoked BEFORE first log use.
|
||||
#define log_append(enable) log_append_impl(enable)
|
||||
// INTERNAL, DO NOT USE
|
||||
inline FILE *log_append_impl(bool enable)
|
||||
{
|
||||
return log_handler1_impl(true, enable ? LogTriStateTrue : LogTriStateFalse, LogTriStateSame);
|
||||
}
|
||||
|
||||
inline void log_test()
|
||||
{
|
||||
log_disable();
|
||||
LOG("01 Hello World to nobody, because logs are disabled!\n");
|
||||
log_enable();
|
||||
LOG("02 Hello World to default output, which is \"%s\" ( Yaaay, arguments! )!\n", LOG_STRINGIZE(LOG_TARGET));
|
||||
LOG_TEE("03 Hello World to **both** default output and " LOG_TEE_TARGET_STRING "!\n");
|
||||
log_set_target(stderr);
|
||||
LOG("04 Hello World to stderr!\n");
|
||||
LOG_TEE("05 Hello World TEE with double printing to stderr prevented!\n");
|
||||
log_set_target(LOG_DEFAULT_FILE_NAME);
|
||||
LOG("06 Hello World to default log file!\n");
|
||||
log_set_target(stdout);
|
||||
LOG("07 Hello World to stdout!\n");
|
||||
log_set_target(LOG_DEFAULT_FILE_NAME);
|
||||
LOG("08 Hello World to default log file again!\n");
|
||||
log_disable();
|
||||
LOG("09 Hello World _1_ into the void!\n");
|
||||
log_enable();
|
||||
LOG("10 Hello World back from the void ( you should not see _1_ in the log or the output )!\n");
|
||||
log_disable();
|
||||
log_set_target("llama.anotherlog.log");
|
||||
LOG("11 Hello World _2_ to nobody, new target was selected but logs are still disabled!\n");
|
||||
log_enable();
|
||||
LOG("12 Hello World this time in a new file ( you should not see _2_ in the log or the output )?\n");
|
||||
log_set_target("llama.yetanotherlog.log");
|
||||
LOG("13 Hello World this time in yet new file?\n");
|
||||
log_set_target(log_filename_generator("llama_autonamed", "log"));
|
||||
LOG("14 Hello World in log with generated filename!\n");
|
||||
#ifdef _MSC_VER
|
||||
LOG_TEE("15 Hello msvc TEE without arguments\n");
|
||||
LOG_TEE("16 Hello msvc TEE with (%d)(%s) arguments\n", 1, "test");
|
||||
LOG_TEELN("17 Hello msvc TEELN without arguments\n");
|
||||
LOG_TEELN("18 Hello msvc TEELN with (%d)(%s) arguments\n", 1, "test");
|
||||
LOG("19 Hello msvc LOG without arguments\n");
|
||||
LOG("20 Hello msvc LOG with (%d)(%s) arguments\n", 1, "test");
|
||||
LOGLN("21 Hello msvc LOGLN without arguments\n");
|
||||
LOGLN("22 Hello msvc LOGLN with (%d)(%s) arguments\n", 1, "test");
|
||||
#endif
|
||||
}
|
||||
|
||||
inline bool log_param_single_parse(const std::string & param)
|
||||
{
|
||||
if ( param == "--log-test")
|
||||
{
|
||||
log_test();
|
||||
return true;
|
||||
}
|
||||
|
||||
if ( param == "--log-disable")
|
||||
{
|
||||
log_disable();
|
||||
return true;
|
||||
}
|
||||
|
||||
if ( param == "--log-enable")
|
||||
{
|
||||
log_enable();
|
||||
return true;
|
||||
}
|
||||
|
||||
if (param == "--log-new")
|
||||
{
|
||||
log_multilog(true);
|
||||
return true;
|
||||
}
|
||||
|
||||
if (param == "--log-append")
|
||||
{
|
||||
log_append(true);
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
inline bool log_param_pair_parse(bool check_but_dont_parse, const std::string & param, const std::string & next = std::string())
|
||||
{
|
||||
if ( param == "--log-file")
|
||||
{
|
||||
if (!check_but_dont_parse)
|
||||
{
|
||||
log_set_target(log_filename_generator(next.empty() ? "unnamed" : next, "log"));
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
inline void log_print_usage()
|
||||
{
|
||||
printf("log options:\n");
|
||||
/* format
|
||||
printf(" -h, --help show this help message and exit\n");*/
|
||||
/* spacing
|
||||
printf("__-param----------------Description\n");*/
|
||||
printf(" --log-test Run simple logging test\n");
|
||||
printf(" --log-disable Disable trace logs\n");
|
||||
printf(" --log-enable Enable trace logs\n");
|
||||
printf(" --log-file Specify a log filename (without extension)\n");
|
||||
printf(" --log-new Create a separate new log file on start. "
|
||||
"Each log file will have unique name: \"<name>.<ID>.log\"\n");
|
||||
printf(" --log-append Don't truncate the old log file.\n");
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
#define log_dump_cmdline(argc, argv) log_dump_cmdline_impl(argc, argv)
|
||||
|
||||
// INTERNAL, DO NOT USE
|
||||
inline void log_dump_cmdline_impl(int argc, char **argv)
|
||||
{
|
||||
std::stringstream buf;
|
||||
for (int i = 0; i < argc; ++i)
|
||||
{
|
||||
if (std::string(argv[i]).find(' ') != std::string::npos)
|
||||
{
|
||||
buf << " \"" << argv[i] <<"\"";
|
||||
}
|
||||
else
|
||||
{
|
||||
buf << " " << argv[i];
|
||||
}
|
||||
}
|
||||
LOGLN("Cmd:%s", buf.str().c_str());
|
||||
}
|
||||
|
||||
#define log_tostr(var) log_var_to_string_impl(var).c_str()
|
||||
|
||||
inline std::string log_var_to_string_impl(bool var)
|
||||
{
|
||||
return var ? "true" : "false";
|
||||
}
|
||||
|
||||
inline std::string log_var_to_string_impl(std::string var)
|
||||
{
|
||||
return var;
|
||||
}
|
||||
|
||||
inline std::string log_var_to_string_impl(const std::vector<int> & var)
|
||||
{
|
||||
std::stringstream buf;
|
||||
buf << "[ ";
|
||||
bool first = true;
|
||||
for (auto e : var)
|
||||
{
|
||||
if (first)
|
||||
{
|
||||
first = false;
|
||||
}
|
||||
else
|
||||
{
|
||||
buf << ", ";
|
||||
}
|
||||
buf << std::to_string(e);
|
||||
}
|
||||
buf << " ]";
|
||||
|
||||
return buf.str();
|
||||
}
|
||||
|
||||
template <typename C, typename T>
|
||||
inline std::string LOG_TOKENS_TOSTR_PRETTY(const C & ctx, const T & tokens)
|
||||
{
|
||||
std::stringstream buf;
|
||||
buf << "[ ";
|
||||
|
||||
bool first = true;
|
||||
for (const auto &token : tokens)
|
||||
{
|
||||
if (!first) {
|
||||
buf << ", ";
|
||||
} else {
|
||||
first = false;
|
||||
}
|
||||
|
||||
auto detokenized = llama_token_to_piece(ctx, token);
|
||||
|
||||
detokenized.erase(
|
||||
std::remove_if(
|
||||
detokenized.begin(),
|
||||
detokenized.end(),
|
||||
[](const unsigned char c) { return !std::isprint(c); }),
|
||||
detokenized.end());
|
||||
|
||||
buf
|
||||
<< "'" << detokenized << "'"
|
||||
<< ":" << std::to_string(token);
|
||||
}
|
||||
buf << " ]";
|
||||
|
||||
return buf.str();
|
||||
}
|
||||
|
||||
template <typename C, typename B>
|
||||
inline std::string LOG_BATCH_TOSTR_PRETTY(const C & ctx, const B & batch)
|
||||
{
|
||||
std::stringstream buf;
|
||||
buf << "[ ";
|
||||
|
||||
bool first = true;
|
||||
for (int i = 0; i < batch.n_tokens; ++i)
|
||||
{
|
||||
if (!first) {
|
||||
buf << ", ";
|
||||
} else {
|
||||
first = false;
|
||||
}
|
||||
|
||||
auto detokenized = llama_token_to_piece(ctx, batch.token[i]);
|
||||
|
||||
detokenized.erase(
|
||||
std::remove_if(
|
||||
detokenized.begin(),
|
||||
detokenized.end(),
|
||||
[](const unsigned char c) { return !std::isprint(c); }),
|
||||
detokenized.end());
|
||||
|
||||
buf
|
||||
<< "\n" << std::to_string(i)
|
||||
<< ":token '" << detokenized << "'"
|
||||
<< ":pos " << std::to_string(batch.pos[i])
|
||||
<< ":n_seq_id " << std::to_string(batch.n_seq_id[i])
|
||||
<< ":seq_id " << std::to_string(batch.seq_id[i][0])
|
||||
<< ":logits " << std::to_string(batch.logits[i]);
|
||||
}
|
||||
buf << " ]";
|
||||
|
||||
return buf.str();
|
||||
}
|
||||
|
||||
#ifdef LOG_DISABLE_LOGS
|
||||
|
||||
#undef LOG
|
||||
#define LOG(...) // dummy stub
|
||||
#undef LOGLN
|
||||
#define LOGLN(...) // dummy stub
|
||||
|
||||
#undef LOG_TEE
|
||||
#define LOG_TEE(...) fprintf(stderr, __VA_ARGS__) // convert to normal fprintf
|
||||
|
||||
#undef LOG_TEELN
|
||||
#define LOG_TEELN(...) fprintf(stderr, __VA_ARGS__) // convert to normal fprintf
|
||||
|
||||
#undef LOG_DISABLE
|
||||
#define LOG_DISABLE() // dummy stub
|
||||
|
||||
#undef LOG_ENABLE
|
||||
#define LOG_ENABLE() // dummy stub
|
||||
|
||||
#undef LOG_ENABLE
|
||||
#define LOG_ENABLE() // dummy stub
|
||||
|
||||
#undef LOG_SET_TARGET
|
||||
#define LOG_SET_TARGET(...) // dummy stub
|
||||
|
||||
#undef LOG_DUMP_CMDLINE
|
||||
#define LOG_DUMP_CMDLINE(...) // dummy stub
|
||||
|
||||
#endif // LOG_DISABLE_LOGS
|
||||
|
||||
@@ -2,13 +2,10 @@
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
|
||||
#include <cinttypes>
|
||||
#include <cstdint>
|
||||
#include <cstdio>
|
||||
#include <fstream>
|
||||
#include <thread>
|
||||
|
||||
void common_ngram_cache_update(common_ngram_cache & ngram_cache, int ngram_min, int ngram_max,
|
||||
void llama_ngram_cache_update(llama_ngram_cache & ngram_cache, int ngram_min, int ngram_max,
|
||||
std::vector<llama_token> & inp, int nnew, bool print_progress) {
|
||||
const int64_t t_start_ms = ggml_time_ms();
|
||||
const int64_t inp_size = inp.size();
|
||||
@@ -20,16 +17,16 @@ void common_ngram_cache_update(common_ngram_cache & ngram_cache, int ngram_min,
|
||||
const int64_t i_start = std::max(inp_size - nnew, ngram_size);
|
||||
for (int64_t i = i_start; i < inp_size; ++i) {
|
||||
const int64_t ngram_start = i - ngram_size;
|
||||
common_ngram ngram(&inp[ngram_start], ngram_size);
|
||||
llama_ngram ngram(&inp[ngram_start], ngram_size);
|
||||
const llama_token token = inp[i];
|
||||
|
||||
common_ngram_cache::iterator part_it = ngram_cache.find(ngram);
|
||||
llama_ngram_cache::iterator part_it = ngram_cache.find(ngram);
|
||||
if (part_it == ngram_cache.end()) {
|
||||
common_ngram_cache_part part;
|
||||
llama_ngram_cache_part part;
|
||||
part.emplace(token, 1);
|
||||
ngram_cache.emplace(ngram, part);
|
||||
} else {
|
||||
common_ngram_cache_part::iterator token_count_it = part_it->second.find(token);
|
||||
llama_ngram_cache_part::iterator token_count_it = part_it->second.find(token);
|
||||
if (token_count_it == part_it->second.end()) {
|
||||
part_it->second.emplace(token, 1);
|
||||
} else {
|
||||
@@ -62,12 +59,12 @@ constexpr int draft_min_sample_size_strict[LLAMA_NGRAM_MAX] = { 4, 3, 2, 2};
|
||||
constexpr int draft_min_percent_strict[LLAMA_NGRAM_MAX] = {75, 66, 66, 66};
|
||||
|
||||
// Helper function that tries to draft a token from only the static ngram cache:
|
||||
static llama_token try_draft(common_ngram_cache & nc_static, const common_ngram ngram_static) {
|
||||
common_ngram_cache::iterator part_static_it = nc_static.find(ngram_static);
|
||||
static llama_token try_draft(llama_ngram_cache & nc_static, const llama_ngram ngram_static) {
|
||||
llama_ngram_cache::iterator part_static_it = nc_static.find(ngram_static);
|
||||
if (part_static_it == nc_static.end()) {
|
||||
return -1;
|
||||
}
|
||||
const common_ngram_cache_part part_static = part_static_it->second;
|
||||
const llama_ngram_cache_part part_static = part_static_it->second;
|
||||
|
||||
int max_count_static = 0;
|
||||
int sum_count_static = 0;
|
||||
@@ -95,19 +92,19 @@ static llama_token try_draft(common_ngram_cache & nc_static, const common_ngram
|
||||
|
||||
// Try to draft a token from primary cache (context/dynamic), validate with static cache:
|
||||
static llama_token try_draft(
|
||||
common_ngram_cache & nc_primary, const std::vector<common_ngram> & ngrams_primary, common_ngram_cache_part & part_static,
|
||||
llama_ngram_cache & nc_primary, const std::vector<llama_ngram> & ngrams_primary, llama_ngram_cache_part & part_static,
|
||||
const int * min_sample_size, const int * min_percent) {
|
||||
|
||||
llama_token drafted_token = -1;
|
||||
|
||||
for (int i = ngrams_primary.size()-1; i >= 0 && drafted_token == -1; --i) {
|
||||
const common_ngram ngram_primary = ngrams_primary[i];
|
||||
const llama_ngram ngram_primary = ngrams_primary[i];
|
||||
|
||||
common_ngram_cache::iterator part_primary_it = nc_primary.find(ngram_primary);
|
||||
llama_ngram_cache::iterator part_primary_it = nc_primary.find(ngram_primary);
|
||||
if (part_primary_it == nc_primary.end()) {
|
||||
continue;
|
||||
}
|
||||
const common_ngram_cache_part part_primary = part_primary_it->second;
|
||||
const llama_ngram_cache_part part_primary = part_primary_it->second;
|
||||
|
||||
int max_count_primary = 0;
|
||||
int max_count_static = 0;
|
||||
@@ -117,7 +114,7 @@ static llama_token try_draft(
|
||||
for (std::pair<llama_token, int> token_count_primary : part_primary) {
|
||||
const llama_token token = token_count_primary.first;
|
||||
|
||||
common_ngram_cache_part::iterator token_count_static_it = part_static.find(token);
|
||||
llama_ngram_cache_part::iterator token_count_static_it = part_static.find(token);
|
||||
|
||||
const int32_t count_primary = token_count_primary.second;
|
||||
const int32_t count_static = token_count_static_it != part_static.end() ? 100*token_count_static_it->second : 1;
|
||||
@@ -142,9 +139,9 @@ static llama_token try_draft(
|
||||
return drafted_token;
|
||||
}
|
||||
|
||||
void common_ngram_cache_draft(
|
||||
void llama_ngram_cache_draft(
|
||||
std::vector<llama_token> & inp, std::vector<llama_token> & draft, int n_draft, int ngram_min, int ngram_max,
|
||||
common_ngram_cache & nc_context, common_ngram_cache & nc_dynamic, common_ngram_cache & nc_static
|
||||
llama_ngram_cache & nc_context, llama_ngram_cache & nc_dynamic, llama_ngram_cache & nc_static
|
||||
) {
|
||||
GGML_ASSERT(draft.size() == 1);
|
||||
const int inp_size = inp.size();
|
||||
@@ -157,21 +154,21 @@ void common_ngram_cache_draft(
|
||||
llama_token drafted_token = -1;
|
||||
|
||||
const int ngram_start_static = inp_size-LLAMA_NGRAM_STATIC + draft.size()-1;
|
||||
common_ngram ngram_static;
|
||||
llama_ngram ngram_static;
|
||||
for (int j = ngram_start_static; j < ngram_start_static + LLAMA_NGRAM_STATIC; ++j) {
|
||||
ngram_static.tokens[j-ngram_start_static] = get_token(inp, draft, j);
|
||||
}
|
||||
common_ngram_cache::iterator part_static_it = nc_static.find(ngram_static);
|
||||
common_ngram_cache_part part_static;
|
||||
llama_ngram_cache::iterator part_static_it = nc_static.find(ngram_static);
|
||||
llama_ngram_cache_part part_static;
|
||||
if (part_static_it != nc_static.end()) {
|
||||
part_static = part_static_it->second;
|
||||
}
|
||||
|
||||
// cd = context + dynamic
|
||||
std::vector<common_ngram> ngrams_cd;
|
||||
std::vector<llama_ngram> ngrams_cd;
|
||||
for (int ngram_size_cd = ngram_min; ngram_size_cd <= ngram_max; ++ngram_size_cd) {
|
||||
const int ngram_start_cd = inp_size-ngram_size_cd + draft.size()-1;
|
||||
common_ngram ngram_cd;
|
||||
llama_ngram ngram_cd;
|
||||
for (int j = ngram_start_cd; j < ngram_start_cd + ngram_size_cd; ++j) {
|
||||
ngram_cd.tokens[j-ngram_start_cd] = get_token(inp, draft, j);
|
||||
}
|
||||
@@ -196,16 +193,16 @@ void common_ngram_cache_draft(
|
||||
}
|
||||
}
|
||||
|
||||
void common_ngram_cache_save(common_ngram_cache & ngram_cache, std::string & filename) {
|
||||
void llama_ngram_cache_save(llama_ngram_cache & ngram_cache, std::string & filename) {
|
||||
std::ofstream file_out(filename, std::ios::binary);
|
||||
for (std::pair<common_ngram, common_ngram_cache_part> item : ngram_cache) {
|
||||
const common_ngram ngram = item.first;
|
||||
common_ngram_cache_part token_counts = item.second;
|
||||
for (std::pair<llama_ngram, llama_ngram_cache_part> item : ngram_cache) {
|
||||
const llama_ngram ngram = item.first;
|
||||
llama_ngram_cache_part token_counts = item.second;
|
||||
GGML_ASSERT(!token_counts.empty());
|
||||
const int32_t ntokens = token_counts.size();
|
||||
GGML_ASSERT(ntokens > 0);
|
||||
|
||||
file_out.write(reinterpret_cast<const char *>(&ngram), sizeof(common_ngram));
|
||||
file_out.write(reinterpret_cast<const char *>(&ngram), sizeof(llama_ngram));
|
||||
file_out.write(reinterpret_cast<const char *>(&ntokens), sizeof(int32_t));
|
||||
for (std::pair<llama_token, int32_t> item2 : token_counts) {
|
||||
const llama_token token = item2.first;
|
||||
@@ -219,14 +216,14 @@ void common_ngram_cache_save(common_ngram_cache & ngram_cache, std::string & fil
|
||||
|
||||
}
|
||||
|
||||
common_ngram_cache common_ngram_cache_load(std::string & filename) {
|
||||
llama_ngram_cache llama_ngram_cache_load(std::string & filename) {
|
||||
std::ifstream hashmap_file(filename, std::ios::binary);
|
||||
if (!hashmap_file) {
|
||||
throw std::ifstream::failure("Unable to open file " + filename);
|
||||
}
|
||||
common_ngram_cache ngram_cache;
|
||||
llama_ngram_cache ngram_cache;
|
||||
|
||||
common_ngram ngram;
|
||||
llama_ngram ngram;
|
||||
int32_t ntokens;
|
||||
llama_token token;
|
||||
int32_t count;
|
||||
@@ -235,11 +232,11 @@ common_ngram_cache common_ngram_cache_load(std::string & filename) {
|
||||
char * ntokensc = reinterpret_cast<char*>(&ntokens);
|
||||
char * tokenc = reinterpret_cast<char*>(&token);
|
||||
char * countc = reinterpret_cast<char*>(&count);
|
||||
while(hashmap_file.read(ngramc, sizeof(common_ngram))) {
|
||||
while(hashmap_file.read(ngramc, sizeof(llama_ngram))) {
|
||||
GGML_ASSERT(!hashmap_file.eof());
|
||||
GGML_ASSERT(hashmap_file.read(ntokensc, sizeof(int32_t)));
|
||||
GGML_ASSERT(ntokens > 0);
|
||||
common_ngram_cache_part token_counts;
|
||||
llama_ngram_cache_part token_counts;
|
||||
|
||||
for (int i = 0; i < ntokens; ++i) {
|
||||
GGML_ASSERT(!hashmap_file.eof());
|
||||
@@ -257,12 +254,12 @@ common_ngram_cache common_ngram_cache_load(std::string & filename) {
|
||||
return ngram_cache;
|
||||
}
|
||||
|
||||
void common_ngram_cache_merge(common_ngram_cache & ngram_cache_target, common_ngram_cache & ngram_cache_add) {
|
||||
for (std::pair<common_ngram, common_ngram_cache_part> ngram_part : ngram_cache_add) {
|
||||
const common_ngram ngram = ngram_part.first;
|
||||
common_ngram_cache_part part = ngram_part.second;
|
||||
void llama_ngram_cache_merge(llama_ngram_cache & ngram_cache_target, llama_ngram_cache & ngram_cache_add) {
|
||||
for (std::pair<llama_ngram, llama_ngram_cache_part> ngram_part : ngram_cache_add) {
|
||||
const llama_ngram ngram = ngram_part.first;
|
||||
llama_ngram_cache_part part = ngram_part.second;
|
||||
|
||||
common_ngram_cache::iterator part_merged_it = ngram_cache_target.find(ngram);
|
||||
llama_ngram_cache::iterator part_merged_it = ngram_cache_target.find(ngram);
|
||||
if (part_merged_it == ngram_cache_target.end()) {
|
||||
ngram_cache_target.emplace(ngram, part);
|
||||
continue;
|
||||
@@ -273,7 +270,7 @@ void common_ngram_cache_merge(common_ngram_cache & ngram_cache_target, common_ng
|
||||
const int32_t count = token_count.second;
|
||||
GGML_ASSERT(count > 0);
|
||||
|
||||
common_ngram_cache_part::iterator token_count_merged_it = part_merged_it->second.find(token);
|
||||
llama_ngram_cache_part::iterator token_count_merged_it = part_merged_it->second.find(token);
|
||||
if (token_count_merged_it == part_merged_it->second.end()) {
|
||||
part_merged_it->second.emplace(token, count);
|
||||
continue;
|
||||
|
||||
@@ -12,22 +12,22 @@
|
||||
|
||||
// Data structures to map n-grams to empirical token probabilities:
|
||||
|
||||
struct common_ngram {
|
||||
struct llama_ngram {
|
||||
llama_token tokens[LLAMA_NGRAM_MAX];
|
||||
|
||||
common_ngram() {
|
||||
llama_ngram() {
|
||||
for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
|
||||
tokens[i] = -1;
|
||||
}
|
||||
}
|
||||
|
||||
common_ngram(const llama_token * input, const int ngram_size) {
|
||||
llama_ngram(const llama_token * input, const int ngram_size) {
|
||||
for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
|
||||
tokens[i] = i < ngram_size ? input[i] : -1;
|
||||
}
|
||||
}
|
||||
|
||||
bool operator==(const common_ngram & other) const {
|
||||
bool operator==(const llama_ngram & other) const {
|
||||
for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
|
||||
if (tokens[i] != other.tokens[i]) {
|
||||
return false;
|
||||
@@ -37,28 +37,21 @@ struct common_ngram {
|
||||
}
|
||||
};
|
||||
|
||||
struct common_token_hash_function {
|
||||
size_t operator()(const llama_token token) const {
|
||||
// see https://probablydance.com/2018/06/16/fibonacci-hashing-the-optimization-that-the-world-forgot-or-a-better-alternative-to-integer-modulo/
|
||||
return token * 11400714819323198485llu;
|
||||
}
|
||||
};
|
||||
|
||||
struct common_ngram_hash_function {
|
||||
size_t operator()(const common_ngram & ngram) const {
|
||||
size_t hash = common_token_hash_function{}(ngram.tokens[0]);
|
||||
for (int i = 1; i < LLAMA_NGRAM_MAX; ++i) {
|
||||
hash ^= common_token_hash_function{}(ngram.tokens[i]);
|
||||
struct llama_ngram_hash_function {
|
||||
size_t operator()(const llama_ngram & ngram) const {
|
||||
size_t hash = 0;
|
||||
for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
|
||||
hash ^= std::hash<llama_token>{}(ngram.tokens[i]);
|
||||
}
|
||||
return hash;
|
||||
}
|
||||
};
|
||||
|
||||
// token -> number of times token has been seen
|
||||
typedef std::unordered_map<llama_token, int32_t> common_ngram_cache_part;
|
||||
typedef std::unordered_map<llama_token, int32_t> llama_ngram_cache_part;
|
||||
|
||||
// n-gram -> empirical distribution of following tokens
|
||||
typedef std::unordered_map<common_ngram, common_ngram_cache_part, common_ngram_hash_function> common_ngram_cache;
|
||||
typedef std::unordered_map<llama_ngram, llama_ngram_cache_part, llama_ngram_hash_function> llama_ngram_cache;
|
||||
|
||||
|
||||
// Update an ngram cache with tokens.
|
||||
@@ -70,8 +63,8 @@ typedef std::unordered_map<common_ngram, common_ngram_cache_part, common_ngram_h
|
||||
//
|
||||
// In order to get correct results inp_data can ONLY BE APPENDED TO.
|
||||
// Changes in the middle need a complete rebuild.
|
||||
void common_ngram_cache_update(
|
||||
common_ngram_cache & ngram_cache, int ngram_min, int ngram_max, std::vector<llama_token> & inp_data, int nnew, bool print_progress);
|
||||
void llama_ngram_cache_update(
|
||||
llama_ngram_cache & ngram_cache, int ngram_min, int ngram_max, std::vector<llama_token> & inp_data, int nnew, bool print_progress);
|
||||
|
||||
// Try to draft tokens from ngram caches.
|
||||
// inp: the tokens generated so far.
|
||||
@@ -81,21 +74,21 @@ void common_ngram_cache_update(
|
||||
// nc_context: ngram cache based on current context.
|
||||
// nc_dynamic: ngram cache based on previous user generations.
|
||||
// nc_static: ngram cache generated from a large text corpus, used for validation.
|
||||
void common_ngram_cache_draft(
|
||||
void llama_ngram_cache_draft(
|
||||
std::vector<llama_token> & inp, std::vector<llama_token> & draft, int n_draft, int ngram_min, int ngram_max,
|
||||
common_ngram_cache & nc_context, common_ngram_cache & nc_dynamic, common_ngram_cache & nc_static);
|
||||
llama_ngram_cache & nc_context, llama_ngram_cache & nc_dynamic, llama_ngram_cache & nc_static);
|
||||
|
||||
// Save an ngram cache to a file.
|
||||
// ngram_cache: the ngram cache to save.
|
||||
// filename: the path under which to save the ngram cache.
|
||||
void common_ngram_cache_save(common_ngram_cache & ngram_cache, std::string & filename);
|
||||
void llama_ngram_cache_save(llama_ngram_cache & ngram_cache, std::string & filename);
|
||||
|
||||
// Load an ngram cache saved with common_ngram_cache_save.
|
||||
// Load an ngram cache saved with llama_ngram_cache_save.
|
||||
// filename: the path from which to load the ngram cache.
|
||||
// returns: an ngram cache containing the information saved to filename.
|
||||
common_ngram_cache common_ngram_cache_load(std::string & filename);
|
||||
llama_ngram_cache llama_ngram_cache_load(std::string & filename);
|
||||
|
||||
// Merge two ngram caches.
|
||||
// ngram_cache_target: the ngram cache to which to add the information from ngram_cache_add.
|
||||
// ngram_cache_add: the ngram cache to add to ngram_cache_target.
|
||||
void common_ngram_cache_merge(common_ngram_cache & ngram_cache_target, common_ngram_cache & ngram_cache_add);
|
||||
void llama_ngram_cache_merge(llama_ngram_cache & ngram_cache_target, llama_ngram_cache & ngram_cache_add);
|
||||
|
||||
@@ -1,500 +1,459 @@
|
||||
#define LLAMA_API_INTERNAL
|
||||
#include "sampling.h"
|
||||
#include <random>
|
||||
|
||||
#include "common.h"
|
||||
struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_params & params) {
|
||||
struct llama_sampling_context * result = new llama_sampling_context();
|
||||
|
||||
#include <cmath>
|
||||
#include <unordered_map>
|
||||
result->params = params;
|
||||
result->grammar = nullptr;
|
||||
|
||||
// the ring buffer works similarly to std::deque, but with a fixed capacity
|
||||
// TODO: deduplicate with llama-impl.h
|
||||
template<typename T>
|
||||
struct ring_buffer {
|
||||
ring_buffer(size_t cap) : capacity(cap), data(cap) {}
|
||||
// if there is a grammar, parse it
|
||||
if (!params.grammar.empty()) {
|
||||
result->parsed_grammar = grammar_parser::parse(params.grammar.c_str());
|
||||
|
||||
T & front() {
|
||||
if (sz == 0) {
|
||||
throw std::runtime_error("ring buffer is empty");
|
||||
}
|
||||
return data[first];
|
||||
}
|
||||
|
||||
const T & front() const {
|
||||
if (sz == 0) {
|
||||
throw std::runtime_error("ring buffer is empty");
|
||||
}
|
||||
return data[first];
|
||||
}
|
||||
|
||||
T & back() {
|
||||
if (sz == 0) {
|
||||
throw std::runtime_error("ring buffer is empty");
|
||||
}
|
||||
return data[pos];
|
||||
}
|
||||
|
||||
const T & back() const {
|
||||
if (sz == 0) {
|
||||
throw std::runtime_error("ring buffer is empty");
|
||||
}
|
||||
return data[pos];
|
||||
}
|
||||
|
||||
void push_back(const T & value) {
|
||||
if (sz == capacity) {
|
||||
// advance the start when buffer is full
|
||||
first = (first + 1) % capacity;
|
||||
} else {
|
||||
sz++;
|
||||
}
|
||||
data[pos] = value;
|
||||
pos = (pos + 1) % capacity;
|
||||
}
|
||||
|
||||
T pop_front() {
|
||||
if (sz == 0) {
|
||||
throw std::runtime_error("ring buffer is empty");
|
||||
}
|
||||
T value = data[first];
|
||||
first = (first + 1) % capacity;
|
||||
sz--;
|
||||
return value;
|
||||
}
|
||||
|
||||
const T & rat(size_t i) const {
|
||||
if (i >= sz) {
|
||||
throw std::runtime_error("ring buffer: index out of bounds");
|
||||
}
|
||||
return data[(first + sz - i - 1) % capacity];
|
||||
}
|
||||
|
||||
std::vector<T> to_vector() const {
|
||||
std::vector<T> result;
|
||||
result.reserve(sz);
|
||||
for (size_t i = 0; i < sz; i++) {
|
||||
result.push_back(data[(first + i) % capacity]);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
void clear() {
|
||||
// here only reset the status of the buffer
|
||||
sz = 0;
|
||||
first = 0;
|
||||
pos = 0;
|
||||
}
|
||||
|
||||
bool empty() const {
|
||||
return sz == 0;
|
||||
}
|
||||
|
||||
size_t size() const {
|
||||
return sz;
|
||||
}
|
||||
|
||||
size_t capacity = 0;
|
||||
size_t sz = 0;
|
||||
size_t first = 0;
|
||||
size_t pos = 0;
|
||||
std::vector<T> data;
|
||||
};
|
||||
|
||||
struct common_sampler {
|
||||
common_params_sampling params;
|
||||
|
||||
struct llama_sampler * grmr;
|
||||
struct llama_sampler * chain;
|
||||
|
||||
ring_buffer<llama_token> prev;
|
||||
|
||||
std::vector<llama_token_data> cur;
|
||||
|
||||
llama_token_data_array cur_p;
|
||||
|
||||
void set_logits(struct llama_context * ctx, int idx) {
|
||||
const auto * logits = llama_get_logits_ith(ctx, idx);
|
||||
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
|
||||
cur.resize(n_vocab);
|
||||
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
|
||||
// will be empty (default) if there are parse errors
|
||||
if (result->parsed_grammar.rules.empty()) {
|
||||
fprintf(stderr, "%s: failed to parse grammar\n", __func__);
|
||||
delete result;
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
cur_p = { cur.data(), cur.size(), -1, false };
|
||||
}
|
||||
};
|
||||
// Ensure that there is a "root" node.
|
||||
if (result->parsed_grammar.symbol_ids.find("root") == result->parsed_grammar.symbol_ids.end()) {
|
||||
fprintf(stderr, "%s: grammar does not contain a 'root' symbol\n", __func__);
|
||||
delete result;
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
std::string common_params_sampling::print() const {
|
||||
std::vector<const llama_grammar_element *> grammar_rules(result->parsed_grammar.c_rules());
|
||||
|
||||
struct llama_grammar * grammar = llama_grammar_init(
|
||||
grammar_rules.data(),
|
||||
grammar_rules.size(), result->parsed_grammar.symbol_ids.at("root"));
|
||||
if (grammar == nullptr) {
|
||||
throw std::runtime_error("Failed to initialize llama_grammar");
|
||||
}
|
||||
result->grammar = grammar;
|
||||
}
|
||||
|
||||
result->prev.resize(params.n_prev);
|
||||
|
||||
result->n_valid = 0;
|
||||
|
||||
llama_sampling_set_rng_seed(result, params.seed);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
void llama_sampling_free(struct llama_sampling_context * ctx) {
|
||||
if (ctx->grammar != NULL) {
|
||||
llama_grammar_free(ctx->grammar);
|
||||
}
|
||||
|
||||
delete ctx;
|
||||
}
|
||||
|
||||
void llama_sampling_reset(llama_sampling_context * ctx) {
|
||||
if (ctx->grammar != NULL) {
|
||||
llama_grammar_free(ctx->grammar);
|
||||
ctx->grammar = NULL;
|
||||
}
|
||||
|
||||
if (!ctx->parsed_grammar.rules.empty()) {
|
||||
std::vector<const llama_grammar_element *> grammar_rules(ctx->parsed_grammar.c_rules());
|
||||
|
||||
struct llama_grammar * grammar = llama_grammar_init(
|
||||
grammar_rules.data(),
|
||||
grammar_rules.size(), ctx->parsed_grammar.symbol_ids.at("root"));
|
||||
if (grammar == nullptr) {
|
||||
throw std::runtime_error("Failed to initialize llama_grammar");
|
||||
}
|
||||
ctx->grammar = grammar;
|
||||
}
|
||||
|
||||
std::fill(ctx->prev.begin(), ctx->prev.end(), 0);
|
||||
ctx->cur.clear();
|
||||
ctx->n_valid = 0;
|
||||
}
|
||||
|
||||
void llama_sampling_set_rng_seed(struct llama_sampling_context * ctx, uint32_t seed) {
|
||||
if (seed == LLAMA_DEFAULT_SEED) {
|
||||
seed = std::random_device{}();
|
||||
}
|
||||
ctx->rng.seed(seed);
|
||||
}
|
||||
|
||||
void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst) {
|
||||
if (dst->grammar) {
|
||||
llama_grammar_free(dst->grammar);
|
||||
dst->grammar = nullptr;
|
||||
}
|
||||
|
||||
if (src->grammar) {
|
||||
dst->grammar = llama_grammar_copy(src->grammar);
|
||||
}
|
||||
|
||||
dst->prev = src->prev;
|
||||
}
|
||||
|
||||
llama_token llama_sampling_last(llama_sampling_context * ctx) {
|
||||
return ctx->prev.back();
|
||||
}
|
||||
|
||||
std::string llama_sampling_prev_str(llama_sampling_context * ctx_sampling, llama_context * ctx_main, int n) {
|
||||
const int size = ctx_sampling->prev.size();
|
||||
|
||||
n = std::min(n, size);
|
||||
|
||||
std::string result;
|
||||
|
||||
for (int i = size - n; i < size; i++) {
|
||||
result += llama_token_to_piece(ctx_main, ctx_sampling->prev[i]);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
std::string llama_sampling_print(const llama_sampling_params & params) {
|
||||
char result[1024];
|
||||
|
||||
snprintf(result, sizeof(result),
|
||||
"\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
|
||||
"\tdry_multiplier = %.3f, dry_base = %.3f, dry_allowed_length = %d, dry_penalty_last_n = %d\n"
|
||||
"\ttop_k = %d, top_p = %.3f, min_p = %.3f, xtc_probability = %.3f, xtc_threshold = %.3f, typical_p = %.3f, temp = %.3f\n"
|
||||
"\ttop_k = %d, tfs_z = %.3f, top_p = %.3f, min_p = %.3f, typical_p = %.3f, temp = %.3f\n"
|
||||
"\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
|
||||
penalty_last_n, penalty_repeat, penalty_freq, penalty_present,
|
||||
dry_multiplier, dry_base, dry_allowed_length, dry_penalty_last_n,
|
||||
top_k, top_p, min_p, xtc_probability, xtc_threshold, typ_p, temp,
|
||||
mirostat, mirostat_eta, mirostat_tau);
|
||||
params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present,
|
||||
params.top_k, params.tfs_z, params.top_p, params.min_p, params.typical_p, params.temp,
|
||||
params.mirostat, params.mirostat_eta, params.mirostat_tau);
|
||||
|
||||
return std::string(result);
|
||||
}
|
||||
|
||||
struct common_sampler * common_sampler_init(const struct llama_model * model, const struct common_params_sampling & params) {
|
||||
llama_sampler_chain_params lparams = llama_sampler_chain_default_params();
|
||||
|
||||
lparams.no_perf = params.no_perf;
|
||||
|
||||
auto * result = new common_sampler {
|
||||
/* .params = */ params,
|
||||
/* .grmr = */ llama_sampler_init_grammar(model, params.grammar.c_str(), "root"),
|
||||
/* .chain = */ llama_sampler_chain_init(lparams),
|
||||
/* .prev = */ ring_buffer<llama_token>(std::max(32, params.n_prev)),
|
||||
/* .cur = */ {},
|
||||
/* .cur_p = */ {},
|
||||
};
|
||||
|
||||
llama_sampler_chain_add(result->chain,
|
||||
llama_sampler_init_logit_bias(
|
||||
llama_n_vocab(model),
|
||||
params.logit_bias.size(),
|
||||
params.logit_bias.data()));
|
||||
|
||||
std::string llama_sampling_order_print(const llama_sampling_params & params) {
|
||||
std::string result = "CFG -> Penalties ";
|
||||
if (params.mirostat == 0) {
|
||||
for (const auto & cnstr : params.samplers) {
|
||||
switch (cnstr) {
|
||||
case COMMON_SAMPLER_TYPE_DRY:
|
||||
{
|
||||
std::vector<const char *> c_breakers;
|
||||
c_breakers.reserve(params.dry_sequence_breakers.size());
|
||||
for (const auto & str : params.dry_sequence_breakers) {
|
||||
c_breakers.push_back(str.c_str());
|
||||
}
|
||||
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_dry (model, params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
|
||||
}
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TOP_K:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TOP_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_MIN_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_XTC:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TYPICAL_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TEMPERATURE:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_INFILL:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_infill (model));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_PENALTIES:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_penalties(params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false && "unknown sampler type");
|
||||
for (auto sampler_type : params.samplers_sequence) {
|
||||
const auto sampler_type_name = llama_sampling_type_to_str(sampler_type);
|
||||
if (!sampler_type_name.empty()) {
|
||||
result += "-> " + sampler_type_name + " ";
|
||||
}
|
||||
}
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));
|
||||
} else if (params.mirostat == 1) {
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat(llama_n_vocab(model), params.seed, params.mirostat_tau, params.mirostat_eta, 100));
|
||||
} else if (params.mirostat == 2) {
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat_v2(params.seed, params.mirostat_tau, params.mirostat_eta));
|
||||
} else {
|
||||
GGML_ASSERT(false && "unknown mirostat version");
|
||||
result += "-> mirostat ";
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
void common_sampler_free(struct common_sampler * gsmpl) {
|
||||
if (gsmpl) {
|
||||
llama_sampler_free(gsmpl->grmr);
|
||||
|
||||
llama_sampler_free(gsmpl->chain);
|
||||
|
||||
delete gsmpl;
|
||||
}
|
||||
}
|
||||
|
||||
void common_sampler_accept(struct common_sampler * gsmpl, llama_token token, bool accept_grammar) {
|
||||
if (accept_grammar) {
|
||||
llama_sampler_accept(gsmpl->grmr, token);
|
||||
}
|
||||
|
||||
llama_sampler_accept(gsmpl->chain, token);
|
||||
|
||||
gsmpl->prev.push_back(token);
|
||||
}
|
||||
|
||||
void common_sampler_reset(struct common_sampler * gsmpl) {
|
||||
llama_sampler_reset(gsmpl->grmr);
|
||||
|
||||
llama_sampler_reset(gsmpl->chain);
|
||||
}
|
||||
|
||||
struct common_sampler * common_sampler_clone(common_sampler * gsmpl) {
|
||||
return new common_sampler {
|
||||
/* .params = */ gsmpl->params,
|
||||
/* .grmr = */ llama_sampler_clone(gsmpl->grmr),
|
||||
/* .chain = */ llama_sampler_clone(gsmpl->chain),
|
||||
/* .prev = */ gsmpl->prev,
|
||||
/* .cur = */ gsmpl->cur,
|
||||
/* .cur_p = */ gsmpl->cur_p,
|
||||
};
|
||||
}
|
||||
|
||||
void common_perf_print(const struct llama_context * ctx, const struct common_sampler * gsmpl) {
|
||||
// TODO: measure grammar performance
|
||||
|
||||
if (gsmpl) {
|
||||
llama_perf_sampler_print(gsmpl->chain);
|
||||
}
|
||||
if (ctx) {
|
||||
llama_perf_context_print(ctx);
|
||||
}
|
||||
}
|
||||
|
||||
llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first) {
|
||||
gsmpl->set_logits(ctx, idx);
|
||||
|
||||
auto & grmr = gsmpl->grmr;
|
||||
auto & chain = gsmpl->chain;
|
||||
auto & cur_p = gsmpl->cur_p; // initialized by set_logits
|
||||
|
||||
if (grammar_first) {
|
||||
llama_sampler_apply(grmr, &cur_p);
|
||||
}
|
||||
|
||||
llama_sampler_apply(chain, &cur_p);
|
||||
|
||||
GGML_ASSERT(cur_p.selected != -1 && "no selected token during sampling - check your sampling configuration");
|
||||
|
||||
const llama_token id = cur_p.data[cur_p.selected].id;
|
||||
|
||||
if (grammar_first) {
|
||||
return id;
|
||||
}
|
||||
|
||||
// check if it the sampled token fits the grammar
|
||||
{
|
||||
llama_token_data single_token_data = { id, 1.0f, 0.0f };
|
||||
llama_token_data_array single_token_data_array = { &single_token_data, 1, -1, false };
|
||||
|
||||
llama_sampler_apply(grmr, &single_token_data_array);
|
||||
|
||||
const bool is_valid = single_token_data_array.data[0].logit != -INFINITY;
|
||||
if (is_valid) {
|
||||
return id;
|
||||
}
|
||||
}
|
||||
|
||||
// resampling:
|
||||
// if the token is not valid, sample again, but first apply the grammar sampler and then the sampling chain
|
||||
gsmpl->set_logits(ctx, idx);
|
||||
|
||||
llama_sampler_apply(grmr, &cur_p);
|
||||
llama_sampler_apply(chain, &cur_p);
|
||||
|
||||
GGML_ASSERT(cur_p.selected != -1 && "no selected token during re-sampling - check your sampling configuration");
|
||||
|
||||
return cur_p.data[cur_p.selected].id;
|
||||
}
|
||||
|
||||
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const std::vector<int> & idxs, const llama_tokens & draft, bool grammar_first) {
|
||||
GGML_ASSERT(idxs.size() == draft.size() + 1 && "idxs.size() must be draft.size() + 1");
|
||||
|
||||
std::vector<llama_token> result;
|
||||
result.reserve(idxs.size());
|
||||
|
||||
size_t i = 0;
|
||||
for (; i < draft.size(); i++) {
|
||||
const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i], grammar_first);
|
||||
|
||||
common_sampler_accept(gsmpl, id, true);
|
||||
|
||||
result.push_back(id);
|
||||
|
||||
if (draft[i] != id) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (i == draft.size()) {
|
||||
const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i], grammar_first);
|
||||
|
||||
common_sampler_accept(gsmpl, id, true);
|
||||
|
||||
result.push_back(id);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const llama_tokens & draft, bool grammar_first) {
|
||||
std::vector<int> idxs(draft.size() + 1);
|
||||
for (size_t i = 0; i < idxs.size(); ++i) {
|
||||
idxs[i] = i;
|
||||
}
|
||||
|
||||
return common_sampler_sample_and_accept_n(gsmpl, ctx, idxs, draft, grammar_first);
|
||||
}
|
||||
|
||||
uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl) {
|
||||
return llama_sampler_get_seed(gsmpl->chain);
|
||||
}
|
||||
|
||||
// helpers
|
||||
|
||||
llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl) {
|
||||
return &gsmpl->cur_p;
|
||||
}
|
||||
|
||||
llama_token common_sampler_last(const struct common_sampler * gsmpl) {
|
||||
return gsmpl->prev.rat(0);
|
||||
}
|
||||
|
||||
std::string common_sampler_print(const struct common_sampler * gsmpl) {
|
||||
std::string result = "logits ";
|
||||
|
||||
for (int i = 0; i < llama_sampler_chain_n(gsmpl->chain); i++) {
|
||||
const auto * smpl = llama_sampler_chain_get(gsmpl->chain, i);
|
||||
result += std::string("-> ") + llama_sampler_name(smpl) + " ";
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
std::string common_sampler_prev_str(common_sampler * gsmpl, llama_context * ctx_main, int n) {
|
||||
n = std::min(n, (int) gsmpl->prev.size());
|
||||
|
||||
if (n <= 0) {
|
||||
return "";
|
||||
}
|
||||
|
||||
std::string result;
|
||||
result.reserve(8*n); // 8 is the average length of a token [citation needed], TODO: compute this from the vocab
|
||||
|
||||
for (int i = n - 1; i >= 0; i--) {
|
||||
const llama_token id = gsmpl->prev.rat(i);
|
||||
|
||||
GGML_ASSERT(id != LLAMA_TOKEN_NULL && "null token in the sampling history - should not happen");
|
||||
|
||||
result += common_token_to_piece(ctx_main, id);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
char common_sampler_type_to_chr(enum common_sampler_type cnstr) {
|
||||
switch (cnstr) {
|
||||
case COMMON_SAMPLER_TYPE_DRY: return 'd';
|
||||
case COMMON_SAMPLER_TYPE_TOP_K: return 'k';
|
||||
case COMMON_SAMPLER_TYPE_TYPICAL_P: return 'y';
|
||||
case COMMON_SAMPLER_TYPE_TOP_P: return 'p';
|
||||
case COMMON_SAMPLER_TYPE_MIN_P: return 'm';
|
||||
case COMMON_SAMPLER_TYPE_TEMPERATURE: return 't';
|
||||
case COMMON_SAMPLER_TYPE_XTC: return 'x';
|
||||
case COMMON_SAMPLER_TYPE_INFILL: return 'i';
|
||||
case COMMON_SAMPLER_TYPE_PENALTIES: return 'e';
|
||||
default : return '?';
|
||||
}
|
||||
}
|
||||
|
||||
std::string common_sampler_type_to_str(enum common_sampler_type cnstr) {
|
||||
switch (cnstr) {
|
||||
case COMMON_SAMPLER_TYPE_DRY: return "dry";
|
||||
case COMMON_SAMPLER_TYPE_TOP_K: return "top_k";
|
||||
case COMMON_SAMPLER_TYPE_TYPICAL_P: return "typ_p";
|
||||
case COMMON_SAMPLER_TYPE_TOP_P: return "top_p";
|
||||
case COMMON_SAMPLER_TYPE_MIN_P: return "min_p";
|
||||
case COMMON_SAMPLER_TYPE_TEMPERATURE: return "temperature";
|
||||
case COMMON_SAMPLER_TYPE_XTC: return "xtc";
|
||||
case COMMON_SAMPLER_TYPE_INFILL: return "infill";
|
||||
case COMMON_SAMPLER_TYPE_PENALTIES: return "penalties";
|
||||
std::string llama_sampling_type_to_str(llama_sampler_type sampler_type) {
|
||||
switch (sampler_type) {
|
||||
case llama_sampler_type::TOP_K: return "top_k";
|
||||
case llama_sampler_type::TFS_Z: return "tfs_z";
|
||||
case llama_sampler_type::TYPICAL_P: return "typical_p";
|
||||
case llama_sampler_type::TOP_P: return "top_p";
|
||||
case llama_sampler_type::MIN_P: return "min_p";
|
||||
case llama_sampler_type::TEMPERATURE: return "temperature";
|
||||
default : return "";
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<common_sampler_type> common_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
|
||||
std::unordered_map<std::string, common_sampler_type> sampler_canonical_name_map {
|
||||
{ "dry", COMMON_SAMPLER_TYPE_DRY },
|
||||
{ "top_k", COMMON_SAMPLER_TYPE_TOP_K },
|
||||
{ "top_p", COMMON_SAMPLER_TYPE_TOP_P },
|
||||
{ "typ_p", COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "min_p", COMMON_SAMPLER_TYPE_MIN_P },
|
||||
{ "temperature", COMMON_SAMPLER_TYPE_TEMPERATURE },
|
||||
{ "xtc", COMMON_SAMPLER_TYPE_XTC },
|
||||
{ "infill", COMMON_SAMPLER_TYPE_INFILL },
|
||||
{ "penalties", COMMON_SAMPLER_TYPE_PENALTIES },
|
||||
std::vector<llama_sampler_type> llama_sampling_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
|
||||
std::unordered_map<std::string, llama_sampler_type> sampler_canonical_name_map {
|
||||
{"top_k", llama_sampler_type::TOP_K},
|
||||
{"top_p", llama_sampler_type::TOP_P},
|
||||
{"typical_p", llama_sampler_type::TYPICAL_P},
|
||||
{"min_p", llama_sampler_type::MIN_P},
|
||||
{"tfs_z", llama_sampler_type::TFS_Z},
|
||||
{"temperature", llama_sampler_type::TEMPERATURE}
|
||||
};
|
||||
|
||||
// since samplers names are written multiple ways
|
||||
// make it ready for both system names and input names
|
||||
std::unordered_map<std::string, common_sampler_type> sampler_alt_name_map {
|
||||
{ "top-k", COMMON_SAMPLER_TYPE_TOP_K },
|
||||
{ "top-p", COMMON_SAMPLER_TYPE_TOP_P },
|
||||
{ "nucleus", COMMON_SAMPLER_TYPE_TOP_P },
|
||||
{ "typical-p", COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "typical", COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "typ-p", COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "typ", COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ "min-p", COMMON_SAMPLER_TYPE_MIN_P },
|
||||
{ "temp", COMMON_SAMPLER_TYPE_TEMPERATURE },
|
||||
std::unordered_map<std::string, llama_sampler_type> sampler_alt_name_map {
|
||||
{"top-k", llama_sampler_type::TOP_K},
|
||||
{"top-p", llama_sampler_type::TOP_P},
|
||||
{"nucleus", llama_sampler_type::TOP_P},
|
||||
{"typical-p", llama_sampler_type::TYPICAL_P},
|
||||
{"typical", llama_sampler_type::TYPICAL_P},
|
||||
{"min-p", llama_sampler_type::MIN_P},
|
||||
{"tfs-z", llama_sampler_type::TFS_Z},
|
||||
{"tfs", llama_sampler_type::TFS_Z},
|
||||
{"temp", llama_sampler_type::TEMPERATURE}
|
||||
};
|
||||
|
||||
std::vector<common_sampler_type> samplers;
|
||||
samplers.reserve(names.size());
|
||||
std::vector<llama_sampler_type> sampler_types;
|
||||
sampler_types.reserve(names.size());
|
||||
for (const auto & name : names)
|
||||
{
|
||||
auto sampler_item = sampler_canonical_name_map.find(name);
|
||||
if (sampler_item != sampler_canonical_name_map.end())
|
||||
{
|
||||
sampler_types.push_back(sampler_item->second);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (allow_alt_names)
|
||||
{
|
||||
sampler_item = sampler_alt_name_map.find(name);
|
||||
if (sampler_item != sampler_alt_name_map.end())
|
||||
{
|
||||
sampler_types.push_back(sampler_item->second);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return sampler_types;
|
||||
}
|
||||
|
||||
for (const auto & name : names) {
|
||||
auto sampler = sampler_canonical_name_map.find(name);
|
||||
if (sampler != sampler_canonical_name_map.end()) {
|
||||
samplers.push_back(sampler->second);
|
||||
std::vector<llama_sampler_type> llama_sampling_types_from_chars(const std::string & names_string) {
|
||||
std::unordered_map<char, llama_sampler_type> sampler_name_map {
|
||||
{'k', llama_sampler_type::TOP_K},
|
||||
{'p', llama_sampler_type::TOP_P},
|
||||
{'y', llama_sampler_type::TYPICAL_P},
|
||||
{'m', llama_sampler_type::MIN_P},
|
||||
{'f', llama_sampler_type::TFS_Z},
|
||||
{'t', llama_sampler_type::TEMPERATURE}
|
||||
};
|
||||
|
||||
std::vector<llama_sampler_type> sampler_types;
|
||||
sampler_types.reserve(names_string.size());
|
||||
for (const auto & c : names_string) {
|
||||
const auto sampler_item = sampler_name_map.find(c);
|
||||
if (sampler_item != sampler_name_map.end()) {
|
||||
sampler_types.push_back(sampler_item->second);
|
||||
}
|
||||
}
|
||||
return sampler_types;
|
||||
}
|
||||
|
||||
// no reasons to expose this function in header
|
||||
static void sampler_queue(
|
||||
struct llama_context * ctx_main,
|
||||
const llama_sampling_params & params,
|
||||
llama_token_data_array & cur_p,
|
||||
size_t min_keep) {
|
||||
const float temp = params.temp;
|
||||
const float dynatemp_range = params.dynatemp_range;
|
||||
const float dynatemp_exponent = params.dynatemp_exponent;
|
||||
const int32_t top_k = params.top_k;
|
||||
const float top_p = params.top_p;
|
||||
const float min_p = params.min_p;
|
||||
const float tfs_z = params.tfs_z;
|
||||
const float typical_p = params.typical_p;
|
||||
const std::vector<llama_sampler_type> & samplers_sequence = params.samplers_sequence;
|
||||
|
||||
for (auto sampler_type : samplers_sequence) {
|
||||
switch (sampler_type) {
|
||||
case llama_sampler_type::TOP_K : llama_sample_top_k (ctx_main, &cur_p, top_k, min_keep); break;
|
||||
case llama_sampler_type::TFS_Z : llama_sample_tail_free(ctx_main, &cur_p, tfs_z, min_keep); break;
|
||||
case llama_sampler_type::TYPICAL_P: llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep); break;
|
||||
case llama_sampler_type::TOP_P : llama_sample_top_p (ctx_main, &cur_p, top_p, min_keep); break;
|
||||
case llama_sampler_type::MIN_P : llama_sample_min_p (ctx_main, &cur_p, min_p, min_keep); break;
|
||||
case llama_sampler_type::TEMPERATURE:
|
||||
if (dynatemp_range > 0) {
|
||||
float dynatemp_min = std::max(0.0f, temp - dynatemp_range);
|
||||
float dynatemp_max = std::max(0.0f, temp + dynatemp_range);
|
||||
llama_sample_entropy(ctx_main, &cur_p, dynatemp_min, dynatemp_max, dynatemp_exponent);
|
||||
} else {
|
||||
llama_sample_temp(ctx_main, &cur_p, temp);
|
||||
}
|
||||
break;
|
||||
default : break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static llama_token llama_sampling_sample_impl(
|
||||
struct llama_sampling_context * ctx_sampling,
|
||||
struct llama_context * ctx_main,
|
||||
struct llama_context * ctx_cfg,
|
||||
const int idx,
|
||||
bool is_resampling) {
|
||||
const llama_sampling_params & params = ctx_sampling->params;
|
||||
|
||||
const float temp = params.temp;
|
||||
const int mirostat = params.mirostat;
|
||||
const float mirostat_tau = params.mirostat_tau;
|
||||
const float mirostat_eta = params.mirostat_eta;
|
||||
|
||||
std::vector<float> original_logits;
|
||||
auto cur_p = llama_sampling_prepare(ctx_sampling, ctx_main, ctx_cfg, idx, /* apply_grammar= */ is_resampling, &original_logits);
|
||||
if (ctx_sampling->grammar != NULL && !is_resampling) {
|
||||
GGML_ASSERT(!original_logits.empty());
|
||||
}
|
||||
llama_token id = 0;
|
||||
// Get a pointer to the logits
|
||||
float * logits = llama_get_logits_ith(ctx_main, idx);
|
||||
|
||||
if (temp < 0.0) {
|
||||
// greedy sampling, with probs
|
||||
llama_sample_softmax(ctx_main, &cur_p);
|
||||
id = cur_p.data[0].id;
|
||||
} else if (temp == 0.0) {
|
||||
// greedy sampling, no probs
|
||||
id = llama_sample_token_greedy(ctx_main, &cur_p);
|
||||
} else {
|
||||
if (mirostat == 1) {
|
||||
const int mirostat_m = 100;
|
||||
llama_sample_temp(ctx_main, &cur_p, temp);
|
||||
id = llama_sample_token_mirostat(ctx_main, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &ctx_sampling->mirostat_mu);
|
||||
} else if (mirostat == 2) {
|
||||
llama_sample_temp(ctx_main, &cur_p, temp);
|
||||
id = llama_sample_token_mirostat_v2(ctx_main, &cur_p, mirostat_tau, mirostat_eta, &ctx_sampling->mirostat_mu);
|
||||
} else {
|
||||
if (allow_alt_names) {
|
||||
sampler = sampler_alt_name_map.find(name);
|
||||
if (sampler != sampler_alt_name_map.end()) {
|
||||
samplers.push_back(sampler->second);
|
||||
// temperature sampling
|
||||
size_t min_keep = std::max(1, params.min_keep);
|
||||
|
||||
sampler_queue(ctx_main, params, cur_p, min_keep);
|
||||
|
||||
id = llama_sample_token_with_rng(ctx_main, &cur_p, ctx_sampling->rng);
|
||||
|
||||
//{
|
||||
// const int n_top = 10;
|
||||
// LOG("top %d candidates:\n", n_top);
|
||||
|
||||
// for (int i = 0; i < n_top; i++) {
|
||||
// const llama_token id = cur_p.data[i].id;
|
||||
// (void)id; // To avoid a warning that id is unused when logging is disabled.
|
||||
// LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx_main, id).c_str(), cur_p.data[i].p);
|
||||
// }
|
||||
//}
|
||||
|
||||
//LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx_main, id).c_str());
|
||||
}
|
||||
}
|
||||
|
||||
if (ctx_sampling->grammar != NULL && !is_resampling) {
|
||||
// Create an array with a single token data element for the sampled id
|
||||
llama_token_data single_token_data = {id, logits[id], 0.0f};
|
||||
llama_token_data_array single_token_data_array = { &single_token_data, 1, false };
|
||||
|
||||
// Apply grammar constraints to the single token
|
||||
llama_sample_grammar(ctx_main, &single_token_data_array, ctx_sampling->grammar);
|
||||
|
||||
// Check if the token is valid according to the grammar by seeing if its logit has been set to -INFINITY
|
||||
bool is_valid = single_token_data_array.data[0].logit != -INFINITY;
|
||||
|
||||
// If the token is not valid according to the grammar, perform resampling
|
||||
if (!is_valid) {
|
||||
LOG("Resampling because token %d: '%s' does not meet grammar rules\n", id, llama_token_to_piece(ctx_main, id).c_str());
|
||||
|
||||
// Restore logits from the copy
|
||||
std::copy(original_logits.begin(), original_logits.end(), logits);
|
||||
|
||||
return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, /* is_resampling= */ true);
|
||||
}
|
||||
}
|
||||
|
||||
ctx_sampling->n_valid = temp == 0.0f ? 0 : cur_p.size;
|
||||
|
||||
return id;
|
||||
}
|
||||
|
||||
static llama_token_data_array llama_sampling_prepare_impl(
|
||||
struct llama_sampling_context * ctx_sampling,
|
||||
struct llama_context * ctx_main,
|
||||
struct llama_context * ctx_cfg,
|
||||
const int idx,
|
||||
bool apply_grammar,
|
||||
std::vector<float> * original_logits) {
|
||||
const llama_sampling_params & params = ctx_sampling->params;
|
||||
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
|
||||
|
||||
const int32_t penalty_last_n = params.penalty_last_n < 0 ? params.n_prev : params.penalty_last_n;
|
||||
const float penalty_repeat = params.penalty_repeat;
|
||||
const float penalty_freq = params.penalty_freq;
|
||||
const float penalty_present = params.penalty_present;
|
||||
|
||||
const bool penalize_nl = params.penalize_nl;
|
||||
|
||||
auto & prev = ctx_sampling->prev;
|
||||
auto & cur = ctx_sampling->cur;
|
||||
|
||||
// Get a pointer to the logits
|
||||
float * logits = llama_get_logits_ith(ctx_main, idx);
|
||||
|
||||
if (ctx_sampling->grammar != NULL && !apply_grammar) {
|
||||
GGML_ASSERT(original_logits != NULL);
|
||||
// Only make a copy of the original logits if we are not applying grammar checks, not sure if I actually have to do this.
|
||||
*original_logits = {logits, logits + llama_n_vocab(llama_get_model(ctx_main))};
|
||||
}
|
||||
|
||||
// apply params.logit_bias map
|
||||
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
|
||||
logits[it->first] += it->second;
|
||||
}
|
||||
|
||||
if (ctx_cfg) {
|
||||
float * logits_guidance = llama_get_logits_ith(ctx_cfg, idx);
|
||||
llama_sample_apply_guidance(ctx_main, logits, logits_guidance, params.cfg_scale);
|
||||
}
|
||||
|
||||
cur.clear();
|
||||
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
cur.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
||||
}
|
||||
|
||||
llama_token_data_array cur_p = { cur.data(), cur.size(), false };
|
||||
|
||||
// apply penalties
|
||||
const auto& penalty_tokens = params.use_penalty_prompt_tokens ? params.penalty_prompt_tokens : prev;
|
||||
const int penalty_tokens_used_size = std::min((int)penalty_tokens.size(), penalty_last_n);
|
||||
if (penalty_tokens_used_size) {
|
||||
const float nl_logit = logits[llama_token_nl(llama_get_model(ctx_main))];
|
||||
|
||||
llama_sample_repetition_penalties(ctx_main, &cur_p,
|
||||
penalty_tokens.data() + penalty_tokens.size() - penalty_tokens_used_size,
|
||||
penalty_tokens_used_size, penalty_repeat, penalty_freq, penalty_present);
|
||||
|
||||
if (!penalize_nl) {
|
||||
for (size_t idx = 0; idx < cur_p.size; idx++) {
|
||||
if (cur_p.data[idx].id == llama_token_nl(llama_get_model(ctx_main))) {
|
||||
cur_p.data[idx].logit = nl_logit;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return samplers;
|
||||
}
|
||||
|
||||
std::vector<common_sampler_type> common_sampler_types_from_chars(const std::string & chars) {
|
||||
std::unordered_map<char, common_sampler_type> sampler_name_map = {
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_DRY), COMMON_SAMPLER_TYPE_DRY },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_K), COMMON_SAMPLER_TYPE_TOP_K },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TYPICAL_P), COMMON_SAMPLER_TYPE_TYPICAL_P },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_P), COMMON_SAMPLER_TYPE_TOP_P },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_MIN_P), COMMON_SAMPLER_TYPE_MIN_P },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TEMPERATURE), COMMON_SAMPLER_TYPE_TEMPERATURE },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_XTC), COMMON_SAMPLER_TYPE_XTC },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_INFILL), COMMON_SAMPLER_TYPE_INFILL },
|
||||
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_PENALTIES), COMMON_SAMPLER_TYPE_PENALTIES },
|
||||
};
|
||||
|
||||
std::vector<common_sampler_type> samplers;
|
||||
samplers.reserve(chars.size());
|
||||
|
||||
for (const auto & c : chars) {
|
||||
const auto sampler = sampler_name_map.find(c);
|
||||
if (sampler != sampler_name_map.end()) {
|
||||
samplers.push_back(sampler->second);
|
||||
}
|
||||
// apply grammar checks before sampling logic
|
||||
if (apply_grammar && ctx_sampling->grammar != NULL) {
|
||||
llama_sample_grammar(ctx_main, &cur_p, ctx_sampling->grammar);
|
||||
}
|
||||
|
||||
return samplers;
|
||||
return cur_p;
|
||||
}
|
||||
|
||||
llama_token llama_sampling_sample(
|
||||
struct llama_sampling_context * ctx_sampling,
|
||||
struct llama_context * ctx_main,
|
||||
struct llama_context * ctx_cfg,
|
||||
const int idx) {
|
||||
// Call the implementation function with is_resampling set to false by default
|
||||
return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, /* is_resampling= */ false);
|
||||
}
|
||||
|
||||
llama_token_data_array llama_sampling_prepare(
|
||||
struct llama_sampling_context * ctx_sampling,
|
||||
struct llama_context * ctx_main,
|
||||
struct llama_context * ctx_cfg,
|
||||
const int idx,
|
||||
bool apply_grammar,
|
||||
std::vector<float> * original_logits) {
|
||||
return llama_sampling_prepare_impl(ctx_sampling,ctx_main, ctx_cfg, idx, apply_grammar, original_logits);
|
||||
}
|
||||
|
||||
void llama_sampling_accept(
|
||||
struct llama_sampling_context * ctx_sampling,
|
||||
struct llama_context * ctx_main,
|
||||
llama_token id,
|
||||
bool apply_grammar) {
|
||||
ctx_sampling->prev.erase(ctx_sampling->prev.begin());
|
||||
ctx_sampling->prev.push_back(id);
|
||||
|
||||
if (ctx_sampling->grammar != NULL && apply_grammar) {
|
||||
llama_grammar_accept_token(ctx_main, ctx_sampling->grammar, id);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -2,103 +2,159 @@
|
||||
|
||||
#include "llama.h"
|
||||
|
||||
#include "common.h"
|
||||
#include "grammar-parser.h"
|
||||
|
||||
#include <random>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
|
||||
// common_sampler extends llama_sampler with additional functionality:
|
||||
//
|
||||
// - grammar support
|
||||
// - custom sampler logic based on the parameters
|
||||
// - history of the last accepted tokens
|
||||
// - performance metrics
|
||||
//
|
||||
// This goal is to have a common implementation of the sampling logic shared across the examples.
|
||||
// For example, depending on the temperature, the sampling chain can be very simple (greedy) or more
|
||||
// complex (top-k, top-p, etc).
|
||||
//
|
||||
// Another example is related to the grammar. In general, the grammar constraints applied on the full
|
||||
// vocabulary can be very taxing. To improve performance, the grammar can be applied only to the sampled
|
||||
// token in order to verify if it fits the grammar. And only if the token doesn't fit the grammar, the
|
||||
// grammar constraints are applied to the full vocabulary and the token is resampled.
|
||||
//
|
||||
// The common_sampler also maintains a container with the last accepted tokens. In the future, this can
|
||||
// be moved into the core llama library.
|
||||
//
|
||||
// For convenience, the common_sampler also maintains a container with the current candidate tokens.
|
||||
// This can be used to access the probabilities of the rest of the non-sampled tokens.
|
||||
//
|
||||
// TODO: measure grammar performance
|
||||
//
|
||||
// sampler types
|
||||
enum class llama_sampler_type : char {
|
||||
TOP_K = 'k',
|
||||
TOP_P = 'p',
|
||||
MIN_P = 'm',
|
||||
TFS_Z = 'f',
|
||||
TYPICAL_P = 'y',
|
||||
TEMPERATURE = 't'
|
||||
};
|
||||
|
||||
struct common_sampler;
|
||||
// sampling parameters
|
||||
typedef struct llama_sampling_params {
|
||||
int32_t n_prev = 64; // number of previous tokens to remember
|
||||
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
|
||||
int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens
|
||||
int32_t top_k = 40; // <= 0 to use vocab size
|
||||
float top_p = 0.95f; // 1.0 = disabled
|
||||
float min_p = 0.05f; // 0.0 = disabled
|
||||
float tfs_z = 1.00f; // 1.0 = disabled
|
||||
float typical_p = 1.00f; // 1.0 = disabled
|
||||
float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
|
||||
float dynatemp_range = 0.00f; // 0.0 = disabled
|
||||
float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
|
||||
int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
|
||||
float penalty_repeat = 1.00f; // 1.0 = disabled
|
||||
float penalty_freq = 0.00f; // 0.0 = disabled
|
||||
float penalty_present = 0.00f; // 0.0 = disabled
|
||||
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
|
||||
float mirostat_tau = 5.00f; // target entropy
|
||||
float mirostat_eta = 0.10f; // learning rate
|
||||
bool penalize_nl = false; // consider newlines as a repeatable token
|
||||
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampling_context
|
||||
|
||||
// llama_sampler API overloads
|
||||
std::vector<llama_sampler_type> samplers_sequence = {
|
||||
llama_sampler_type::TOP_K,
|
||||
llama_sampler_type::TFS_Z,
|
||||
llama_sampler_type::TYPICAL_P,
|
||||
llama_sampler_type::TOP_P,
|
||||
llama_sampler_type::MIN_P,
|
||||
llama_sampler_type::TEMPERATURE
|
||||
};
|
||||
|
||||
struct common_sampler * common_sampler_init(const struct llama_model * model, const struct common_params_sampling & params);
|
||||
std::string grammar; // optional BNF-like grammar to constrain sampling
|
||||
|
||||
void common_sampler_free(struct common_sampler * gsmpl);
|
||||
// Classifier-Free Guidance
|
||||
// https://arxiv.org/abs/2306.17806
|
||||
std::string cfg_negative_prompt; // string to help guidance
|
||||
float cfg_scale = 1.f; // how strong is guidance
|
||||
|
||||
// if accept_grammar is true, the token is accepted both by the sampling chain and the grammar
|
||||
void common_sampler_accept(struct common_sampler * gsmpl, llama_token token, bool accept_grammar);
|
||||
void common_sampler_reset (struct common_sampler * gsmpl);
|
||||
struct common_sampler * common_sampler_clone (struct common_sampler * gsmpl);
|
||||
std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
|
||||
|
||||
// arguments can be nullptr to skip printing
|
||||
void common_perf_print(const struct llama_context * ctx, const struct common_sampler * gsmpl);
|
||||
std::vector<llama_token> penalty_prompt_tokens;
|
||||
bool use_penalty_prompt_tokens = false;
|
||||
} llama_sampling_params;
|
||||
|
||||
// extended sampling implementation:
|
||||
// general sampler context
|
||||
// TODO: move to llama.h
|
||||
struct llama_sampling_context {
|
||||
// parameters that will be used for sampling
|
||||
llama_sampling_params params;
|
||||
|
||||
// mirostat sampler state
|
||||
float mirostat_mu;
|
||||
|
||||
llama_grammar * grammar;
|
||||
|
||||
// internal
|
||||
grammar_parser::parse_state parsed_grammar;
|
||||
|
||||
// TODO: replace with ring-buffer
|
||||
std::vector<llama_token> prev;
|
||||
std::vector<llama_token_data> cur;
|
||||
size_t n_valid; // Number of correct top tokens with correct probabilities.
|
||||
|
||||
std::mt19937 rng;
|
||||
};
|
||||
|
||||
#include "common.h"
|
||||
|
||||
// Create a new sampling context instance.
|
||||
struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_params & params);
|
||||
|
||||
void llama_sampling_free(struct llama_sampling_context * ctx);
|
||||
|
||||
// Reset the sampler context
|
||||
// - clear prev tokens
|
||||
// - reset grammar
|
||||
void llama_sampling_reset(llama_sampling_context * ctx);
|
||||
|
||||
// Set the sampler seed
|
||||
void llama_sampling_set_rng_seed(struct llama_sampling_context * ctx, uint32_t seed);
|
||||
|
||||
// Copy the sampler context
|
||||
void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst);
|
||||
|
||||
// Get the last sampled token
|
||||
llama_token llama_sampling_last(llama_sampling_context * ctx);
|
||||
|
||||
// Get a string representation of the last sampled tokens
|
||||
std::string llama_sampling_prev_str(llama_sampling_context * ctx_sampling, llama_context * ctx_main, int n);
|
||||
|
||||
// Print sampling parameters into a string
|
||||
std::string llama_sampling_print(const llama_sampling_params & params);
|
||||
|
||||
// Print sampling order into a string
|
||||
std::string llama_sampling_order_print(const llama_sampling_params & params);
|
||||
|
||||
std::string llama_sampling_type_to_str(llama_sampler_type sampler_type);
|
||||
|
||||
std::vector<llama_sampler_type> llama_sampling_types_from_names(const std::vector<std::string> & names, bool allow_alt_names);
|
||||
std::vector<llama_sampler_type> llama_sampling_types_from_chars(const std::string & names_string);
|
||||
|
||||
// this is a common sampling function used across the examples for convenience
|
||||
// it can serve as a starting point for implementing your own sampling function
|
||||
// Note: When using multiple sequences, it is the caller's responsibility to call
|
||||
// llama_sampling_reset when a sequence ends
|
||||
//
|
||||
// - set logits
|
||||
// - apply the configured sampler chain
|
||||
// - check if the token fits the grammar (if any)
|
||||
// - if not: resample by first applying the grammar constraints and then sampling again (slower path)
|
||||
// required:
|
||||
// - ctx_main: context to use for sampling
|
||||
// - ctx_sampling: sampling-specific context
|
||||
//
|
||||
// if grammar_first is true, the grammar is applied before the samplers (slower)
|
||||
// useful in cases where all the resulting candidates (not just the sampled one) must fit the grammar
|
||||
// optional:
|
||||
// - ctx_cfg: context to use for classifier-free guidance
|
||||
// - idx: sample from llama_get_logits_ith(ctx, idx)
|
||||
//
|
||||
llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first = false);
|
||||
|
||||
// generalized version of common_sampler_sample
|
||||
// returns:
|
||||
// - token: sampled token
|
||||
// - candidates: vector of candidate tokens
|
||||
//
|
||||
// will cross-reference the sampled tokens with a batch of draft tokens and accept those that match
|
||||
// if the sampler disagrees at some point, we stop and return the accepted tokens up to now
|
||||
//
|
||||
// common_sampler_sample_n(gsmpl, ctx, { idx }, {});
|
||||
//
|
||||
// is equivalent to
|
||||
//
|
||||
// common_sampler_sample(gsmpl, ctx, idx);
|
||||
// common_sampler_accept(gsmpl, token, true);
|
||||
//
|
||||
// requires: idxs.size() == draft.size() + 1
|
||||
//
|
||||
// returns at least 1 token, up to idxs.size()
|
||||
//
|
||||
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const std::vector<int> & idxs, const llama_tokens & draft, bool grammar_first = false);
|
||||
llama_token llama_sampling_sample(
|
||||
struct llama_sampling_context * ctx_sampling,
|
||||
struct llama_context * ctx_main,
|
||||
struct llama_context * ctx_cfg,
|
||||
int idx = -1);
|
||||
|
||||
// assume idxs == [ 0, 1, 2, ..., draft.size() ]
|
||||
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const llama_tokens & draft, bool grammar_first = false);
|
||||
// Prepares and adjusts the set of token candidates for sampling based on penalties, biases, and sampling parameters.
|
||||
llama_token_data_array llama_sampling_prepare(
|
||||
struct llama_sampling_context * ctx_sampling,
|
||||
struct llama_context * ctx_main,
|
||||
struct llama_context * ctx_cfg,
|
||||
int idx = 0,
|
||||
bool apply_grammar = true,
|
||||
std::vector<float> * original_logits = nullptr);
|
||||
|
||||
uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl);
|
||||
|
||||
// helpers
|
||||
|
||||
// access the internal list of current candidate tokens
|
||||
llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl);
|
||||
|
||||
// get the last accepted token
|
||||
llama_token common_sampler_last(const struct common_sampler * gsmpl);
|
||||
|
||||
// print the sampler chain into a string
|
||||
std::string common_sampler_print(const struct common_sampler * gsmpl);
|
||||
|
||||
// get a string representation of the last accepted tokens
|
||||
std::string common_sampler_prev_str(common_sampler * gsmpl, llama_context * ctx, int n);
|
||||
|
||||
char common_sampler_type_to_chr(enum common_sampler_type cnstr);
|
||||
std::string common_sampler_type_to_str(enum common_sampler_type cnstr);
|
||||
|
||||
std::vector<enum common_sampler_type> common_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names);
|
||||
std::vector<enum common_sampler_type> common_sampler_types_from_chars(const std::string & chars);
|
||||
void llama_sampling_accept(
|
||||
struct llama_sampling_context * ctx_sampling,
|
||||
struct llama_context * ctx_main,
|
||||
llama_token id,
|
||||
bool apply_grammar);
|
||||
|
||||
@@ -1,274 +0,0 @@
|
||||
#include "speculative.h"
|
||||
|
||||
#include "log.h"
|
||||
#include "common.h"
|
||||
#include "sampling.h"
|
||||
|
||||
#include <cstring>
|
||||
|
||||
#define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 128
|
||||
#define SPEC_VOCAB_CHECK_START_TOKEN_ID 5
|
||||
|
||||
struct common_speculative {
|
||||
struct llama_context * ctx;
|
||||
struct common_sampler * smpl;
|
||||
|
||||
llama_batch batch;
|
||||
llama_tokens prompt;
|
||||
};
|
||||
|
||||
struct common_speculative * common_speculative_init(
|
||||
struct llama_context * ctx_dft) {
|
||||
auto * result = new common_speculative {
|
||||
/* .ctx = */ ctx_dft,
|
||||
/* .smpl = */ nullptr,
|
||||
/* .batch = */ llama_batch_init(llama_n_batch(ctx_dft), 0, 1),
|
||||
/* .prompt = */ {},
|
||||
};
|
||||
|
||||
// TODO: optimize or pass from outside?
|
||||
#if 0
|
||||
{
|
||||
common_params_sampling params;
|
||||
params.no_perf = false;
|
||||
|
||||
params.top_k = 40;
|
||||
params.top_p = 0.9;
|
||||
|
||||
params.samplers = {
|
||||
COMMON_SAMPLER_TYPE_TOP_K,
|
||||
COMMON_SAMPLER_TYPE_TOP_P,
|
||||
COMMON_SAMPLER_TYPE_INFILL,
|
||||
};
|
||||
|
||||
result->smpl = common_sampler_init(llama_get_model(ctx_dft), params);
|
||||
}
|
||||
#else
|
||||
{
|
||||
common_params_sampling params;
|
||||
params.no_perf = false;
|
||||
|
||||
params.top_k = 10;
|
||||
|
||||
params.samplers = {
|
||||
COMMON_SAMPLER_TYPE_TOP_K,
|
||||
};
|
||||
|
||||
result->smpl = common_sampler_init(llama_get_model(ctx_dft), params);
|
||||
}
|
||||
#endif
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
void common_speculative_free(struct common_speculative * spec) {
|
||||
if (spec == nullptr) {
|
||||
return;
|
||||
}
|
||||
|
||||
common_sampler_free(spec->smpl);
|
||||
|
||||
llama_batch_free(spec->batch);
|
||||
|
||||
delete spec;
|
||||
}
|
||||
|
||||
bool common_speculative_are_compatible(
|
||||
const struct llama_context * ctx_tgt,
|
||||
const struct llama_context * ctx_dft) {
|
||||
const struct llama_model * model_tgt = llama_get_model(ctx_tgt);
|
||||
const struct llama_model * model_dft = llama_get_model(ctx_dft);
|
||||
|
||||
const bool vocab_type_tgt = llama_vocab_type(model_tgt);
|
||||
LOG_DBG("%s: vocab_type tgt: %d\n", __func__, vocab_type_tgt);
|
||||
|
||||
const bool vocab_type_dft = llama_vocab_type(model_dft);
|
||||
LOG_DBG("%s: vocab_type dft: %d\n", __func__, vocab_type_dft);
|
||||
|
||||
if (vocab_type_tgt != vocab_type_dft) {
|
||||
LOG_ERR("%s: draft model vocab type must match target model to use speculation but "
|
||||
"vocab_type_dft = %d while vocab_type_tgt = %d\n", __func__, vocab_type_dft, vocab_type_tgt);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (llama_add_bos_token(model_tgt) != llama_add_bos_token(model_dft) ||
|
||||
llama_add_eos_token(model_tgt) != llama_add_eos_token(model_dft) ||
|
||||
llama_token_bos(model_tgt) != llama_token_bos(model_dft) ||
|
||||
llama_token_eos(model_tgt) != llama_token_eos(model_dft)) {
|
||||
LOG_ERR("%s: draft model special tokens must match target model to use speculation\n", __func__);
|
||||
LOG_ERR("%s: tgt: bos = %d (%d), eos = %d (%d)\n", __func__, llama_token_bos(model_tgt), llama_add_bos_token(model_tgt), llama_token_eos(model_tgt), llama_add_eos_token(model_tgt));
|
||||
LOG_ERR("%s: dft: bos = %d (%d), eos = %d (%d)\n", __func__, llama_token_bos(model_dft), llama_add_bos_token(model_dft), llama_token_eos(model_dft), llama_add_eos_token(model_dft));
|
||||
return false;
|
||||
}
|
||||
|
||||
{
|
||||
const int n_vocab_tgt = llama_n_vocab(model_tgt);
|
||||
const int n_vocab_dft = llama_n_vocab(model_dft);
|
||||
|
||||
const int vocab_diff = std::abs(n_vocab_tgt - n_vocab_dft);
|
||||
|
||||
if (vocab_diff > SPEC_VOCAB_MAX_SIZE_DIFFERENCE) {
|
||||
LOG_ERR("%s: draft model vocab must closely match target model to use speculation but "
|
||||
"target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n",
|
||||
__func__, n_vocab_tgt, llama_n_vocab(model_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE);
|
||||
return false;
|
||||
}
|
||||
|
||||
for (int i = SPEC_VOCAB_CHECK_START_TOKEN_ID; i < std::min(n_vocab_tgt, n_vocab_dft); ++i) {
|
||||
const char * token_text_tgt = llama_token_get_text(model_tgt, i);
|
||||
const char * token_text_dft = llama_token_get_text(model_dft, i);
|
||||
if (std::strcmp(token_text_tgt, token_text_dft) != 0) {
|
||||
LOG_ERR("%s: draft model vocab must match target model to use speculation but "
|
||||
"token %d content differs - target '%s', draft '%s'\n", __func__, i,
|
||||
common_token_to_piece(ctx_tgt, i).c_str(),
|
||||
common_token_to_piece(ctx_dft, i).c_str());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
llama_tokens common_speculative_gen_draft(
|
||||
struct common_speculative * spec,
|
||||
struct common_speculative_params params,
|
||||
const llama_tokens & prompt_tgt,
|
||||
llama_token id_last) {
|
||||
auto & batch = spec->batch;
|
||||
auto & ctx = spec->ctx;
|
||||
auto & smpl = spec->smpl;
|
||||
auto & prompt = spec->prompt;
|
||||
|
||||
int reuse_i = 0;
|
||||
int reuse_n = 0;
|
||||
|
||||
const int n_ctx = llama_n_ctx(ctx) - params.n_draft;
|
||||
|
||||
const int i_start = std::max<int>(0, (int) prompt_tgt.size() - n_ctx);
|
||||
|
||||
// reuse as much as possible from the old draft context
|
||||
// ideally, the draft context should be as big as the target context and we will always reuse the entire prompt
|
||||
for (int i = 0; i < (int) prompt.size(); ++i) {
|
||||
int cur = 0;
|
||||
while (i_start + cur < (int) prompt_tgt.size() &&
|
||||
i + cur < (int) prompt.size() &&
|
||||
prompt_tgt[i_start + cur] == prompt[i + cur]) {
|
||||
cur++;
|
||||
}
|
||||
|
||||
if ((cur >= params.n_reuse || n_ctx >= (int) prompt_tgt.size()) && cur > reuse_n) {
|
||||
reuse_i = i;
|
||||
reuse_n = cur;
|
||||
}
|
||||
}
|
||||
|
||||
LOG_DBG("%s: reuse_i = %d, reuse_n = %d, prompt = %d\n", __func__, reuse_i, reuse_n, (int) prompt.size());
|
||||
|
||||
llama_tokens result;
|
||||
result.reserve(params.n_draft);
|
||||
|
||||
if (reuse_n == 0) {
|
||||
llama_kv_cache_clear(ctx);
|
||||
|
||||
prompt.clear();
|
||||
} else {
|
||||
// this happens when a previous draft has been discarded (for example, due to being too small), but the
|
||||
// target model agreed with it. in this case, we simply pass back the previous results to save compute
|
||||
if (reuse_i + reuse_n < (int) prompt.size() && prompt[reuse_i + reuse_n] == id_last) {
|
||||
for (int i = reuse_i + reuse_n + 1; i < (int) prompt.size(); ++i) {
|
||||
result.push_back(prompt[i]);
|
||||
|
||||
if (params.n_draft <= (int) result.size()) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
if (reuse_i > 0) {
|
||||
llama_kv_cache_seq_rm (ctx, 0, 0, reuse_i);
|
||||
llama_kv_cache_seq_add(ctx, 0, reuse_i, -1, -reuse_i);
|
||||
|
||||
prompt.erase(prompt.begin(), prompt.begin() + reuse_i);
|
||||
}
|
||||
|
||||
if (reuse_n < (int) prompt.size()) {
|
||||
llama_kv_cache_seq_rm (ctx, 0, reuse_n, -1);
|
||||
|
||||
prompt.erase(prompt.begin() + reuse_n, prompt.end());
|
||||
}
|
||||
}
|
||||
|
||||
// prepare a batch to evaluate any new tokens in the prompt
|
||||
common_batch_clear(batch);
|
||||
|
||||
for (size_t i = i_start + reuse_n; i < prompt_tgt.size(); ++i) {
|
||||
//LOG_DBG("i = %d, i_start = %d, reuse_n = %d, i - i_start = %d, id = %6d\n", i, i_start, reuse_n, i - i_start, prompt_tgt[i]);
|
||||
common_batch_add(batch, prompt_tgt[i], i - i_start, { 0 }, false);
|
||||
|
||||
prompt.push_back(prompt_tgt[i]);
|
||||
}
|
||||
|
||||
// we should rarely end-up here during normal decoding
|
||||
if (batch.n_tokens > 0) {
|
||||
//LOG_DBG("%s: draft prompt batch: %s\n", __func__, string_from(ctx, batch).c_str());
|
||||
|
||||
llama_decode(ctx, batch);
|
||||
}
|
||||
|
||||
const llama_pos n_past = prompt.size();
|
||||
|
||||
LOG_DBG("%s: n_past = %d\n", __func__, n_past);
|
||||
|
||||
common_batch_clear(batch);
|
||||
common_batch_add (batch, id_last, n_past, { 0 }, true);
|
||||
|
||||
prompt.push_back(id_last);
|
||||
|
||||
//LOG_DBG("%s: draft prompt: %s\n", __func__, string_from(ctx, prompt).c_str());
|
||||
|
||||
llama_decode(ctx, batch);
|
||||
|
||||
common_sampler_reset(smpl);
|
||||
|
||||
// sample n_draft tokens from the draft model
|
||||
for (int i = 0; i < params.n_draft; ++i) {
|
||||
common_batch_clear(batch);
|
||||
|
||||
common_sampler_sample(smpl, ctx, 0, true);
|
||||
|
||||
const auto * cur_p = common_sampler_get_candidates(smpl);
|
||||
|
||||
for (int k = 0; k < std::min(3, (int) cur_p->size); ++k) {
|
||||
LOG_DBG(" - draft candidate %3d, pos %3d: %6d (%8.3f) '%s'\n",
|
||||
k, i, cur_p->data[k].id, cur_p->data[k].p, common_token_to_piece(ctx, cur_p->data[k].id).c_str());
|
||||
}
|
||||
|
||||
// add drafted token for each sequence
|
||||
const llama_token id = cur_p->data[0].id;
|
||||
|
||||
// only collect very high-confidence draft tokens
|
||||
if (cur_p->data[0].p < params.p_min) {
|
||||
break;
|
||||
}
|
||||
|
||||
common_sampler_accept(smpl, id, true);
|
||||
|
||||
result.push_back(id);
|
||||
|
||||
if (params.n_draft <= (int) result.size()) {
|
||||
break;
|
||||
}
|
||||
|
||||
common_batch_add(batch, id, n_past + i + 1, { 0 }, true);
|
||||
|
||||
// evaluate the drafted tokens on the draft model
|
||||
llama_decode(ctx, batch);
|
||||
|
||||
prompt.push_back(id);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
@@ -1,28 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "llama.h"
|
||||
#include "common.h"
|
||||
|
||||
struct common_speculative;
|
||||
|
||||
struct common_speculative_params {
|
||||
int n_draft = 16; // max drafted tokens
|
||||
int n_reuse = 256;
|
||||
|
||||
float p_min = 0.9f; // min probabiliy required to accept a token in the draft
|
||||
};
|
||||
|
||||
struct common_speculative * common_speculative_init(struct llama_context * ctx_dft);
|
||||
|
||||
void common_speculative_free(struct common_speculative * spec);
|
||||
|
||||
bool common_speculative_are_compatible(
|
||||
const struct llama_context * ctx_tgt,
|
||||
const struct llama_context * ctx_dft);
|
||||
|
||||
// sample up to n_draft tokens and add them to the batch using the draft model
|
||||
llama_tokens common_speculative_gen_draft(
|
||||
struct common_speculative * spec,
|
||||
struct common_speculative_params params,
|
||||
const llama_tokens & prompt,
|
||||
llama_token id_last);
|
||||
11644
common/stb_image.h
11644
common/stb_image.h
File diff suppressed because it is too large
Load Diff
1513
common/train.cpp
Normal file
1513
common/train.cpp
Normal file
File diff suppressed because it is too large
Load Diff
233
common/train.h
Normal file
233
common/train.h
Normal file
@@ -0,0 +1,233 @@
|
||||
// Various helper functions and utilities for training
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <string>
|
||||
#include <random>
|
||||
#include <vector>
|
||||
|
||||
#include "ggml.h"
|
||||
#include "llama.h"
|
||||
|
||||
#define LLAMA_TRAIN_MAX_NODES 16384
|
||||
|
||||
typedef std::string mt19937_state;
|
||||
|
||||
struct train_state {
|
||||
struct ggml_opt_context * opt;
|
||||
|
||||
uint64_t train_its;
|
||||
uint64_t train_samples;
|
||||
uint64_t train_tokens;
|
||||
uint64_t train_epochs;
|
||||
|
||||
size_t shuffle_samples_hash; // fn, sample_count, *zip(sample_begins, sample_sizes)
|
||||
mt19937_state shuffle_rng_state_current;
|
||||
mt19937_state shuffle_rng_state_next;
|
||||
size_t shuffle_sample_count;
|
||||
size_t shuffle_next_sample;
|
||||
};
|
||||
|
||||
struct train_params_common {
|
||||
const char * fn_train_data;
|
||||
const char * fn_checkpoint_in;
|
||||
const char * fn_checkpoint_out;
|
||||
const char * pattern_fn_it;
|
||||
const char * fn_latest;
|
||||
|
||||
bool print_usage;
|
||||
|
||||
int save_every;
|
||||
|
||||
uint32_t seed;
|
||||
|
||||
int n_ctx;
|
||||
int n_threads;
|
||||
int n_batch;
|
||||
int n_gradient_accumulation;
|
||||
int n_epochs;
|
||||
int n_gpu_layers;
|
||||
|
||||
bool custom_n_ctx;
|
||||
|
||||
bool use_flash;
|
||||
bool use_checkpointing;
|
||||
|
||||
std::string sample_start;
|
||||
bool include_sample_start;
|
||||
bool escape;
|
||||
bool overlapping_samples;
|
||||
bool fill_with_next_samples;
|
||||
bool separate_with_eos;
|
||||
bool separate_with_bos;
|
||||
bool sample_random_offsets;
|
||||
|
||||
bool force_reshuffle;
|
||||
|
||||
int warmup;
|
||||
int cos_decay_steps;
|
||||
float cos_decay_restart;
|
||||
float cos_decay_min;
|
||||
bool enable_restart;
|
||||
|
||||
int opt_past;
|
||||
float opt_delta;
|
||||
int opt_max_no_improvement;
|
||||
|
||||
int adam_n_iter;
|
||||
float adam_alpha;
|
||||
float adam_min_alpha;
|
||||
float adam_decay;
|
||||
int adam_decay_min_ndim;
|
||||
float adam_beta1;
|
||||
float adam_beta2;
|
||||
float adam_gclip;
|
||||
float adam_eps_f;
|
||||
};
|
||||
|
||||
typedef void (*save_train_files_callback)(void * data, struct train_state * train);
|
||||
|
||||
struct train_opt_callback_data {
|
||||
struct train_params_common * params;
|
||||
struct train_state * train;
|
||||
save_train_files_callback save_cb;
|
||||
void * save_data;
|
||||
struct llama_context * lctx;
|
||||
int last_save_iter;
|
||||
llama_token * tokens_data;
|
||||
size_t tokens_size;
|
||||
size_t * samples_begin;
|
||||
size_t * samples_size;
|
||||
size_t * shuffled_samples_offs;
|
||||
size_t * shuffled_samples_begin;
|
||||
size_t * shuffled_samples_size;
|
||||
size_t samples_count;
|
||||
struct ggml_tensor * tokens_input;
|
||||
struct ggml_tensor * target_probs;
|
||||
int first_iter;
|
||||
int first_epoch;
|
||||
int iter_at_last_epoch;
|
||||
int64_t last_time;
|
||||
double millis_per_iter;
|
||||
};
|
||||
|
||||
struct train_state * init_train_state();
|
||||
void free_train_state(struct train_state * state);
|
||||
|
||||
struct train_params_common get_default_train_params_common();
|
||||
void print_common_train_usage(int /*argc*/, char ** argv, const struct train_params_common * params);
|
||||
|
||||
bool consume_common_train_arg(int argc, char ** argv, int * idx, struct train_params_common * params, bool * invalid_param);
|
||||
void finish_processing_train_args(struct train_params_common * params);
|
||||
|
||||
struct random_normal_distribution;
|
||||
struct random_uniform_distribution;
|
||||
|
||||
struct random_normal_distribution * init_random_normal_distribution (int seed, float mean, float std, float min, float max);
|
||||
struct random_uniform_distribution * init_random_uniform_distribution(int seed, float min, float max);
|
||||
|
||||
void free_random_normal_distribution (struct random_normal_distribution * rnd);
|
||||
void free_random_uniform_distribution(struct random_uniform_distribution * rnd);
|
||||
|
||||
struct ggml_tensor * randomize_tensor_normal (struct ggml_tensor * tensor, struct random_normal_distribution * rnd);
|
||||
struct ggml_tensor * randomize_tensor_uniform(struct ggml_tensor * tensor, struct random_uniform_distribution * rnd);
|
||||
|
||||
// generate random float in interval [0,1)
|
||||
float frand();
|
||||
float frand_normal (struct random_normal_distribution * rnd);
|
||||
float frand_uniform(struct random_uniform_distribution * rnd);
|
||||
|
||||
int clamp (const int v, const int min, const int max);
|
||||
float fclamp(const float v, const float min, const float max);
|
||||
|
||||
void assert_shape_1d(struct ggml_tensor * tensor, int64_t ne0);
|
||||
void assert_shape_2d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1);
|
||||
void assert_shape_3d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2);
|
||||
void assert_shape_4d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3);
|
||||
|
||||
size_t tokenize_file(
|
||||
struct llama_context * lctx,
|
||||
const char * filename,
|
||||
const std::string & sample_start,
|
||||
bool include_sample_start,
|
||||
bool overlapping_samples,
|
||||
unsigned context_length,
|
||||
std::vector<llama_token> & out_tokens,
|
||||
std::vector<size_t> & out_samples_begin,
|
||||
std::vector<size_t> & out_samples_size);
|
||||
|
||||
int64_t get_example_targets_batch(
|
||||
struct llama_context * lctx,
|
||||
struct ggml_tensor * tokens_input,
|
||||
struct ggml_tensor * target_probs,
|
||||
int64_t example_id,
|
||||
const size_t * samples_offs,
|
||||
const size_t * samples_begin,
|
||||
const size_t * samples_size,
|
||||
size_t samples_count,
|
||||
const llama_token * train_data,
|
||||
size_t n_train_data,
|
||||
bool separate_with_eos,
|
||||
bool separate_with_bos,
|
||||
bool fill_with_next_samples,
|
||||
bool sample_random_offsets);
|
||||
|
||||
|
||||
void mt19937_set_state(std::mt19937& rng, const mt19937_state& rng_state);
|
||||
mt19937_state mt19937_get_state(const std::mt19937& rng);
|
||||
mt19937_state mt19937_seed_to_state(unsigned seed);
|
||||
|
||||
mt19937_state shuffle_samples(
|
||||
const mt19937_state & rng_state,
|
||||
size_t * shuffled_offs,
|
||||
size_t * shuffled_begins,
|
||||
size_t * shuffled_sizes,
|
||||
const size_t * begins,
|
||||
const size_t * sizes,
|
||||
size_t count);
|
||||
|
||||
size_t hash_combine(size_t h1, size_t h2);
|
||||
|
||||
size_t compute_samples_hash(
|
||||
const char* fn,
|
||||
const size_t* samples_begin,
|
||||
const size_t* samples_size,
|
||||
size_t sample_count);
|
||||
|
||||
|
||||
std::string replace_str(const char * s, const char * needle, const char * replacement);
|
||||
|
||||
void print_duration(double milliseconds);
|
||||
|
||||
float cosine_decay(
|
||||
int64_t step,
|
||||
int64_t decay_steps,
|
||||
float minimum);
|
||||
|
||||
float cosine_decay_restart(
|
||||
int64_t step,
|
||||
int64_t decay_steps,
|
||||
float minimum,
|
||||
float restart_step_mult);
|
||||
|
||||
float learning_schedule(
|
||||
int64_t step,
|
||||
int64_t warmup_steps,
|
||||
int64_t decay_steps,
|
||||
float learning_rate,
|
||||
float overall_minimum,
|
||||
float cos_decay_minimum,
|
||||
float cos_decay_restart_step_mult,
|
||||
bool enable_restart);
|
||||
|
||||
void copy_tensor_by_name(struct ggml_tensor * dst, struct ggml_context * ctx, const char * name);
|
||||
|
||||
void load_opt_context_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct ggml_opt_context * opt);
|
||||
void save_opt_context_gguf(struct gguf_context * fctx, struct ggml_opt_context * opt);
|
||||
|
||||
bool load_train_state_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct train_state * train);
|
||||
void save_train_state_gguf(struct gguf_context * fctx, struct train_state * train);
|
||||
|
||||
std::string get_train_filename(const char * filename, const char * pattern_it, const char * latest, int64_t iteration);
|
||||
|
||||
void train_opt_callback(void * vdata, int accum_step, float * sched, bool * cancel);
|
||||
File diff suppressed because it is too large
Load Diff
@@ -17,7 +17,7 @@
|
||||
#
|
||||
# python3 convert_hf_to_gguf_update.py <huggingface_token>
|
||||
#
|
||||
# - The convert_hf_to_gguf.py script will have had its get_vocab_base_pre() function updated
|
||||
# - Copy-paste the generated get_vocab_base_pre() function into convert_hf_to_gguf.py
|
||||
# - Update llama.cpp with the new pre-tokenizer if necessary
|
||||
#
|
||||
# TODO: generate tokenizer tests for llama.cpp
|
||||
@@ -31,7 +31,6 @@ import re
|
||||
import requests
|
||||
import sys
|
||||
import json
|
||||
import shutil
|
||||
|
||||
from hashlib import sha256
|
||||
from enum import IntEnum, auto
|
||||
@@ -51,7 +50,7 @@ class TOKENIZER_TYPE(IntEnum):
|
||||
|
||||
# TODO: this string has to exercise as much pre-tokenizer functionality as possible
|
||||
# will be updated with time - contributions welcome
|
||||
CHK_TXT = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````\"\"\"\"......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
|
||||
chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````\"\"\"\"......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
|
||||
|
||||
if len(sys.argv) == 2:
|
||||
token = sys.argv[1]
|
||||
@@ -72,7 +71,6 @@ models = [
|
||||
{"name": "deepseek-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base", },
|
||||
{"name": "falcon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/falcon-7b", },
|
||||
{"name": "bert-bge", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/BAAI/bge-small-en-v1.5", },
|
||||
{"name": "bert-bge-large", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/BAAI/bge-large-zh-v1.5", },
|
||||
{"name": "mpt", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mosaicml/mpt-7b", },
|
||||
{"name": "starcoder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigcode/starcoder2-3b", },
|
||||
{"name": "gpt-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/openai-community/gpt2", },
|
||||
@@ -82,7 +80,6 @@ models = [
|
||||
{"name": "qwen2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen1.5-7B", },
|
||||
{"name": "olmo", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/allenai/OLMo-1.7-7B-hf", },
|
||||
{"name": "dbrx", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/databricks/dbrx-base", },
|
||||
{"name": "jina-v1-en", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-reranker-v1-tiny-en", },
|
||||
{"name": "jina-v2-en", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-en", }, # WPM!
|
||||
{"name": "jina-v2-es", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-es", },
|
||||
{"name": "jina-v2-de", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-de", },
|
||||
@@ -94,17 +91,6 @@ models = [
|
||||
{"name": "gemma-2", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/google/gemma-2-9b", },
|
||||
{"name": "jais", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/core42/jais-13b", },
|
||||
{"name": "t5", "tokt": TOKENIZER_TYPE.UGM, "repo": "https://huggingface.co/google-t5/t5-small", },
|
||||
{"name": "codeshell", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/WisdomShell/CodeShell-7B", },
|
||||
{"name": "tekken", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mistralai/Mistral-Nemo-Base-2407", },
|
||||
{"name": "smollm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/HuggingFaceTB/SmolLM-135M", },
|
||||
{'name': "bloom", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigscience/bloom", },
|
||||
{'name': "gpt3-finnish", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/TurkuNLP/gpt3-finnish-small", },
|
||||
{"name": "exaone", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct", },
|
||||
{"name": "phi-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/microsoft/phi-2", },
|
||||
{"name": "chameleon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/facebook/chameleon-7b", },
|
||||
{"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", },
|
||||
{"name": "roberta-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sentence-transformers/stsb-roberta-base"},
|
||||
{"name": "gigachat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct"},
|
||||
]
|
||||
|
||||
|
||||
@@ -113,8 +99,8 @@ def download_file_with_auth(url, token, save_path):
|
||||
response = sess.get(url, headers=headers)
|
||||
response.raise_for_status()
|
||||
os.makedirs(os.path.dirname(save_path), exist_ok=True)
|
||||
with open(save_path, 'wb') as downloaded_file:
|
||||
downloaded_file.write(response.content)
|
||||
with open(save_path, 'wb') as f:
|
||||
f.write(response.content)
|
||||
logger.info(f"File {save_path} downloaded successfully")
|
||||
|
||||
|
||||
@@ -133,27 +119,12 @@ def download_model(model):
|
||||
if tokt == TOKENIZER_TYPE.UGM:
|
||||
files.append("spiece.model")
|
||||
|
||||
if os.path.isdir(repo):
|
||||
# If repo is a path on the file system, copy the directory
|
||||
for file in files:
|
||||
src_path = os.path.join(repo, file)
|
||||
dst_path = f"models/tokenizers/{name}/{file}"
|
||||
if os.path.isfile(dst_path):
|
||||
logger.info(f"{name}: File {dst_path} already exists - skipping")
|
||||
continue
|
||||
if os.path.isfile(src_path):
|
||||
shutil.copy2(src_path, dst_path)
|
||||
logger.info(f"{name}: Copied {src_path} to {dst_path}")
|
||||
else:
|
||||
logger.warning(f"{name}: Source file {src_path} does not exist")
|
||||
else:
|
||||
# If repo is a URL, download the files
|
||||
for file in files:
|
||||
save_path = f"models/tokenizers/{name}/{file}"
|
||||
if os.path.isfile(save_path):
|
||||
logger.info(f"{name}: File {save_path} already exists - skipping")
|
||||
continue
|
||||
download_file_with_auth(f"{repo}/resolve/main/{file}", token, save_path)
|
||||
for file in files:
|
||||
save_path = f"models/tokenizers/{name}/{file}"
|
||||
if os.path.isfile(save_path):
|
||||
logger.info(f"{name}: File {save_path} already exists - skipping")
|
||||
continue
|
||||
download_file_with_auth(f"{repo}/resolve/main/{file}", token, save_path)
|
||||
|
||||
|
||||
for model in models:
|
||||
@@ -188,7 +159,7 @@ for model in models:
|
||||
logger.error(f"Error loading tokenizer for model {name}. The model may not exist or is not accessible with the provided token. Error: {e}")
|
||||
continue # Skip to the next model if the tokenizer can't be loaded
|
||||
|
||||
chktok = tokenizer.encode(CHK_TXT)
|
||||
chktok = tokenizer.encode(chktxt)
|
||||
chkhsh = sha256(str(chktok).encode()).hexdigest()
|
||||
|
||||
logger.info(f"model: {name}")
|
||||
@@ -220,7 +191,7 @@ src_func = f"""
|
||||
# we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
|
||||
# use in llama.cpp to implement the same pre-tokenizer
|
||||
|
||||
chktxt = {repr(CHK_TXT)}
|
||||
chktxt = {repr(chktxt)}
|
||||
|
||||
chktok = tokenizer.encode(chktxt)
|
||||
chkhsh = sha256(str(chktok).encode()).hexdigest()
|
||||
@@ -316,7 +287,7 @@ tests = [
|
||||
"333333333",
|
||||
"Cửa Việt", # llama-bpe fails on this
|
||||
" discards",
|
||||
CHK_TXT,
|
||||
chktxt,
|
||||
]
|
||||
|
||||
# write the tests to ./models/ggml-vocab-{name}.gguf.inp
|
||||
|
||||
@@ -116,7 +116,7 @@ class Tensor:
|
||||
assert quant is not None, 'Unknown tensor type'
|
||||
(blksize, tysize) = quant
|
||||
offset += 12
|
||||
self.dtype= gguf.GGMLQuantizationType(dtype)
|
||||
self.dtype= dtype
|
||||
self.dims = struct.unpack(f'<{n_dims}I', data[offset:offset + (4 * n_dims)])
|
||||
offset += 4 * n_dims
|
||||
self.name = bytes(data[offset:offset + name_len])
|
||||
@@ -132,10 +132,6 @@ class Tensor:
|
||||
|
||||
|
||||
class GGMLModel:
|
||||
|
||||
file_format: GGMLFormat
|
||||
format_version: int
|
||||
|
||||
def __init__(self):
|
||||
self.hyperparameters = None
|
||||
self.vocab = None
|
||||
@@ -294,7 +290,7 @@ class GGMLToGGUF:
|
||||
if self.vocab_override is not None:
|
||||
vo = self.vocab_override
|
||||
logger.info('* Adding vocab item(s)')
|
||||
for (_, (vbytes, score, ttype)) in enumerate(vo.all_tokens()):
|
||||
for (idx, (vbytes, score, ttype)) in enumerate(vo.all_tokens()):
|
||||
tokens.append(vbytes)
|
||||
scores.append(score)
|
||||
toktypes.append(ttype)
|
||||
@@ -358,8 +354,7 @@ class GGMLToGGUF:
|
||||
|
||||
|
||||
def handle_metadata(cfg, hp):
|
||||
import examples.convert_legacy_llama as convert
|
||||
|
||||
import convert
|
||||
assert cfg.model_metadata_dir.is_dir(), 'Metadata dir is not a directory'
|
||||
hf_config_path = cfg.model_metadata_dir / "config.json"
|
||||
orig_config_path = cfg.model_metadata_dir / "params.json"
|
||||
|
||||
@@ -1,433 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from dataclasses import dataclass
|
||||
import logging
|
||||
import argparse
|
||||
import os
|
||||
import sys
|
||||
import json
|
||||
from math import prod
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, Any, Callable, Iterable, Iterator, Sequence, SupportsIndex, cast
|
||||
from transformers import AutoConfig
|
||||
|
||||
import torch
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from torch import Tensor
|
||||
|
||||
if 'NO_LOCAL_GGUF' not in os.environ:
|
||||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
|
||||
import gguf
|
||||
|
||||
# reuse model definitions from convert_hf_to_gguf.py
|
||||
from convert_hf_to_gguf import LazyTorchTensor, Model
|
||||
|
||||
logger = logging.getLogger("lora-to-gguf")
|
||||
|
||||
|
||||
@dataclass
|
||||
class PartialLoraTensor:
|
||||
A: Tensor | None = None
|
||||
B: Tensor | None = None
|
||||
|
||||
|
||||
# magic to support tensor shape modifications and splitting
|
||||
class LoraTorchTensor:
|
||||
_lora_A: Tensor # (n_rank, row_size)
|
||||
_lora_B: Tensor # (col_size, n_rank)
|
||||
_rank: int
|
||||
|
||||
def __init__(self, A: Tensor, B: Tensor):
|
||||
assert len(A.shape) == len(B.shape)
|
||||
assert A.shape[-2] == B.shape[-1]
|
||||
if A.dtype != B.dtype:
|
||||
A = A.to(torch.float32)
|
||||
B = B.to(torch.float32)
|
||||
self._lora_A = A
|
||||
self._lora_B = B
|
||||
self._rank = B.shape[-1]
|
||||
|
||||
def get_lora_A_B(self) -> tuple[Tensor, Tensor]:
|
||||
return (self._lora_A, self._lora_B)
|
||||
|
||||
def __getitem__(
|
||||
self,
|
||||
indices: (
|
||||
SupportsIndex
|
||||
| slice
|
||||
| tuple[SupportsIndex | slice | Tensor, ...] # TODO: add ellipsis in the type signature
|
||||
),
|
||||
) -> LoraTorchTensor:
|
||||
shape = self.shape
|
||||
if isinstance(indices, SupportsIndex):
|
||||
if len(shape) > 2:
|
||||
return LoraTorchTensor(self._lora_A[indices], self._lora_B[indices])
|
||||
else:
|
||||
raise NotImplementedError # can't return a vector
|
||||
elif isinstance(indices, slice):
|
||||
if len(shape) > 2:
|
||||
return LoraTorchTensor(self._lora_A[indices], self._lora_B[indices])
|
||||
else:
|
||||
return LoraTorchTensor(self._lora_A, self._lora_B[indices])
|
||||
elif isinstance(indices, tuple):
|
||||
assert len(indices) > 0
|
||||
if indices[-1] is Ellipsis:
|
||||
return self[indices[:-1]]
|
||||
# expand ellipsis
|
||||
indices = tuple(
|
||||
u
|
||||
for v in (
|
||||
(
|
||||
(slice(None, None) for _ in range(len(indices) - 1))
|
||||
if i is Ellipsis
|
||||
else (i,)
|
||||
)
|
||||
for i in indices
|
||||
)
|
||||
for u in v
|
||||
)
|
||||
|
||||
if len(indices) < len(shape):
|
||||
indices = (*indices, *(slice(None, None) for _ in range(len(indices), len(shape))))
|
||||
|
||||
# TODO: make sure this is correct
|
||||
indices_A = (
|
||||
*(
|
||||
(
|
||||
j.__index__() % self._lora_A.shape[i]
|
||||
if isinstance(j, SupportsIndex)
|
||||
else slice(None, None)
|
||||
)
|
||||
for i, j in enumerate(indices[:-2])
|
||||
),
|
||||
slice(None, None),
|
||||
indices[-1],
|
||||
)
|
||||
indices_B = indices[:-1]
|
||||
return LoraTorchTensor(self._lora_A[indices_A], self._lora_B[indices_B])
|
||||
else:
|
||||
raise NotImplementedError # unknown indice type
|
||||
|
||||
@property
|
||||
def dtype(self) -> torch.dtype:
|
||||
assert self._lora_A.dtype == self._lora_B.dtype
|
||||
return self._lora_A.dtype
|
||||
|
||||
@property
|
||||
def shape(self) -> tuple[int, ...]:
|
||||
assert len(self._lora_A.shape) == len(self._lora_B.shape)
|
||||
return (*self._lora_B.shape[:-1], self._lora_A.shape[-1])
|
||||
|
||||
def size(self, dim=None):
|
||||
assert dim is None
|
||||
return self.shape
|
||||
|
||||
def reshape(self, *shape: int | tuple[int, ...]) -> LoraTorchTensor:
|
||||
if isinstance(shape[0], tuple):
|
||||
new_shape: tuple[int, ...] = shape[0]
|
||||
else:
|
||||
new_shape = cast(tuple[int, ...], shape)
|
||||
orig_shape = self.shape
|
||||
if len(new_shape) < 2:
|
||||
raise NotImplementedError # can't become a vector
|
||||
|
||||
# expand -1 in the shape
|
||||
if any(dim == -1 for dim in new_shape):
|
||||
n_elems = prod(orig_shape)
|
||||
n_new_elems = prod(dim if dim != -1 else 1 for dim in new_shape)
|
||||
assert n_elems % n_new_elems == 0
|
||||
new_shape = (*(dim if dim != -1 else n_elems // n_new_elems for dim in new_shape),)
|
||||
|
||||
if new_shape[-1] != orig_shape[-1]:
|
||||
raise NotImplementedError # can't reshape the row size trivially
|
||||
|
||||
shape_A = (*(1 for _ in new_shape[:-2]), self._rank, orig_shape[-1])
|
||||
shape_B = (*new_shape[:-1], self._rank)
|
||||
return LoraTorchTensor(
|
||||
self._lora_A.reshape(shape_A),
|
||||
self._lora_B.reshape(shape_B),
|
||||
)
|
||||
|
||||
def reshape_as(self, other: Tensor) -> LoraTorchTensor:
|
||||
return self.reshape(*other.shape)
|
||||
|
||||
def view(self, *size: int) -> LoraTorchTensor:
|
||||
return self.reshape(*size)
|
||||
|
||||
def permute(self, *dims: int) -> LoraTorchTensor:
|
||||
shape = self.shape
|
||||
dims = tuple(dim - len(shape) if dim >= 0 else dim for dim in dims)
|
||||
if dims[-1] == -1:
|
||||
# TODO: support higher dimensional A shapes bigger than 1
|
||||
assert all(dim == 1 for dim in self._lora_A.shape[:-2])
|
||||
return LoraTorchTensor(self._lora_A, self._lora_B.permute(*dims))
|
||||
if len(shape) == 2 and dims[-1] == -2 and dims[-2] == -1:
|
||||
return LoraTorchTensor(self._lora_B.permute(*dims), self._lora_A.permute(*dims))
|
||||
else:
|
||||
# TODO: compose the above two
|
||||
raise NotImplementedError
|
||||
|
||||
def transpose(self, dim0: int, dim1: int) -> LoraTorchTensor:
|
||||
shape = self.shape
|
||||
dims = [i for i in range(len(shape))]
|
||||
dims[dim0], dims[dim1] = dims[dim1], dims[dim0]
|
||||
return self.permute(*dims)
|
||||
|
||||
def swapaxes(self, axis0: int, axis1: int) -> LoraTorchTensor:
|
||||
return self.transpose(axis0, axis1)
|
||||
|
||||
def to(self, *args, **kwargs):
|
||||
return LoraTorchTensor(self._lora_A.to(*args, **kwargs), self._lora_B.to(*args, **kwargs))
|
||||
|
||||
@classmethod
|
||||
def __torch_function__(cls, func: Callable, types, args=(), kwargs=None):
|
||||
del types # unused
|
||||
|
||||
if kwargs is None:
|
||||
kwargs = {}
|
||||
|
||||
if func is torch.permute:
|
||||
return type(args[0]).permute(*args, **kwargs)
|
||||
elif func is torch.reshape:
|
||||
return type(args[0]).reshape(*args, **kwargs)
|
||||
elif func is torch.stack:
|
||||
assert isinstance(args[0], Sequence)
|
||||
dim = kwargs.get("dim", 0)
|
||||
assert dim == 0
|
||||
return LoraTorchTensor(
|
||||
torch.stack([a._lora_A for a in args[0]], dim),
|
||||
torch.stack([b._lora_B for b in args[0]], dim),
|
||||
)
|
||||
elif func is torch.cat:
|
||||
assert isinstance(args[0], Sequence)
|
||||
dim = kwargs.get("dim", 0)
|
||||
assert dim == 0
|
||||
if len(args[0][0].shape) > 2:
|
||||
return LoraTorchTensor(
|
||||
torch.cat([a._lora_A for a in args[0]], dim),
|
||||
torch.cat([b._lora_B for b in args[0]], dim),
|
||||
)
|
||||
elif all(torch.equal(args[0][0]._lora_A, t._lora_A) for t in args[0][1:]):
|
||||
return LoraTorchTensor(
|
||||
args[0][0]._lora_A,
|
||||
torch.cat([b._lora_B for b in args[0]], dim),
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
def get_base_tensor_name(lora_tensor_name: str) -> str:
|
||||
base_name = lora_tensor_name.replace("base_model.model.", "")
|
||||
base_name = base_name.replace(".lora_A.weight", ".weight")
|
||||
base_name = base_name.replace(".lora_B.weight", ".weight")
|
||||
return base_name
|
||||
|
||||
|
||||
def parse_args() -> argparse.Namespace:
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Convert a Hugging Face PEFT LoRA adapter to a GGUF file")
|
||||
parser.add_argument(
|
||||
"--outfile", type=Path,
|
||||
help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f16",
|
||||
help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--bigendian", action="store_true",
|
||||
help="model is executed on big endian machine",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--no-lazy", action="store_true",
|
||||
help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--verbose", action="store_true",
|
||||
help="increase output verbosity",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dry-run", action="store_true",
|
||||
help="only print out what will be done, without writing any new files",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--base", type=Path,
|
||||
help="directory containing Hugging Face model config files (config.json, tokenizer.json) for the base model that the adapter is based on - only config is needed, actual model weights are not required. If base model is unspecified, it will be loaded from Hugging Face hub based on the adapter config",
|
||||
)
|
||||
parser.add_argument(
|
||||
"lora_path", type=Path,
|
||||
help="directory containing Hugging Face PEFT LoRA config (adapter_model.json) and weights (adapter_model.safetensors or adapter_model.bin)",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def load_hparams_from_hf(hf_model_id: str) -> dict[str, Any]:
|
||||
# normally, adapter does not come with base model config, we need to load it from AutoConfig
|
||||
config = AutoConfig.from_pretrained(hf_model_id)
|
||||
return config.to_dict()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = parse_args()
|
||||
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
|
||||
|
||||
ftype_map: dict[str, gguf.LlamaFileType] = {
|
||||
"f32": gguf.LlamaFileType.ALL_F32,
|
||||
"f16": gguf.LlamaFileType.MOSTLY_F16,
|
||||
"bf16": gguf.LlamaFileType.MOSTLY_BF16,
|
||||
"q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
|
||||
"auto": gguf.LlamaFileType.GUESSED,
|
||||
}
|
||||
|
||||
ftype = ftype_map[args.outtype]
|
||||
|
||||
dir_base_model: Path | None = args.base
|
||||
dir_lora: Path = args.lora_path
|
||||
lora_config = dir_lora / "adapter_config.json"
|
||||
input_model = dir_lora / "adapter_model.safetensors"
|
||||
|
||||
if args.outfile is not None:
|
||||
fname_out = args.outfile
|
||||
else:
|
||||
# output in the same directory as the model by default
|
||||
fname_out = dir_lora
|
||||
|
||||
if os.path.exists(input_model):
|
||||
# lazy import load_file only if lora is in safetensors format.
|
||||
from safetensors.torch import load_file
|
||||
|
||||
lora_model = load_file(input_model, device="cpu")
|
||||
else:
|
||||
input_model = os.path.join(dir_lora, "adapter_model.bin")
|
||||
lora_model = torch.load(input_model, map_location="cpu", weights_only=True)
|
||||
|
||||
# load LoRA config
|
||||
with open(lora_config, "r") as f:
|
||||
lparams: dict[str, Any] = json.load(f)
|
||||
|
||||
# load base model
|
||||
if dir_base_model is None:
|
||||
if "base_model_name_or_path" in lparams:
|
||||
model_id = lparams["base_model_name_or_path"]
|
||||
logger.info(f"Loading base model from Hugging Face: {model_id}")
|
||||
try:
|
||||
hparams = load_hparams_from_hf(model_id)
|
||||
except OSError as e:
|
||||
logger.error(f"Failed to load base model config: {e}")
|
||||
logger.error("Please try downloading the base model and add its path to --base")
|
||||
sys.exit(1)
|
||||
else:
|
||||
logger.error("'base_model_name_or_path' is not found in adapter_config.json")
|
||||
logger.error("Base model config is required. Please download the base model and add its path to --base")
|
||||
sys.exit(1)
|
||||
else:
|
||||
logger.info(f"Loading base model: {dir_base_model.name}")
|
||||
hparams = Model.load_hparams(dir_base_model)
|
||||
|
||||
with torch.inference_mode():
|
||||
try:
|
||||
model_class = Model.from_model_architecture(hparams["architectures"][0])
|
||||
except NotImplementedError:
|
||||
logger.error(f"Model {hparams['architectures'][0]} is not supported")
|
||||
sys.exit(1)
|
||||
|
||||
class LoraModel(model_class):
|
||||
model_arch = model_class.model_arch
|
||||
|
||||
lora_alpha: float
|
||||
|
||||
def __init__(self, *args, dir_lora_model: Path, lora_alpha: float, **kwargs):
|
||||
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
self.dir_model_card = dir_lora_model
|
||||
self.lora_alpha = float(lora_alpha)
|
||||
|
||||
def set_vocab(self):
|
||||
pass
|
||||
|
||||
def set_type(self):
|
||||
self.gguf_writer.add_type(gguf.GGUFType.ADAPTER)
|
||||
self.gguf_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
self.gguf_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, self.lora_alpha)
|
||||
|
||||
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
|
||||
# Never add extra tensors (e.g. rope_freqs) for LoRA adapters
|
||||
return ()
|
||||
|
||||
def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
|
||||
tensor_map: dict[str, PartialLoraTensor] = {}
|
||||
|
||||
for name, tensor in lora_model.items():
|
||||
if self.lazy:
|
||||
tensor = LazyTorchTensor.from_eager(tensor)
|
||||
base_name = get_base_tensor_name(name)
|
||||
is_lora_a = ".lora_A.weight" in name
|
||||
is_lora_b = ".lora_B.weight" in name
|
||||
if not is_lora_a and not is_lora_b:
|
||||
if ".base_layer.weight" in name:
|
||||
continue
|
||||
logger.error(f"Unexpected name '{name}': Not a lora_A or lora_B tensor")
|
||||
if ".embed_tokens.weight" in name or ".lm_head.weight" in name:
|
||||
logger.error("Embeddings is present in the adapter. This can be due to new tokens added during fine tuning")
|
||||
logger.error("Please refer to https://github.com/ggerganov/llama.cpp/pull/9948")
|
||||
sys.exit(1)
|
||||
|
||||
if base_name in tensor_map:
|
||||
if is_lora_a:
|
||||
tensor_map[base_name].A = tensor
|
||||
else:
|
||||
tensor_map[base_name].B = tensor
|
||||
else:
|
||||
if is_lora_a:
|
||||
tensor_map[base_name] = PartialLoraTensor(A=tensor)
|
||||
else:
|
||||
tensor_map[base_name] = PartialLoraTensor(B=tensor)
|
||||
|
||||
for name, tensor in tensor_map.items():
|
||||
assert tensor.A is not None
|
||||
assert tensor.B is not None
|
||||
yield (name, cast(torch.Tensor, LoraTorchTensor(tensor.A, tensor.B)))
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
dest = list(super().modify_tensors(data_torch, name, bid))
|
||||
# some archs may have the same tensor for lm_head and output (tie word embeddings)
|
||||
# in this case, adapters targeting lm_head will fail when using llama-export-lora
|
||||
# therefore, we ignore them for now
|
||||
# see: https://github.com/ggerganov/llama.cpp/issues/9065
|
||||
if name == "lm_head.weight" and len(dest) == 0:
|
||||
raise ValueError("lm_head is present in adapter, but is ignored in base model")
|
||||
for dest_name, dest_data in dest:
|
||||
assert isinstance(dest_data, LoraTorchTensor)
|
||||
lora_a, lora_b = dest_data.get_lora_A_B()
|
||||
|
||||
yield (dest_name + ".lora_a", lora_a)
|
||||
yield (dest_name + ".lora_b", lora_b)
|
||||
|
||||
alpha: float = lparams["lora_alpha"]
|
||||
|
||||
model_instance = LoraModel(
|
||||
dir_base_model,
|
||||
ftype,
|
||||
fname_out,
|
||||
is_big_endian=args.bigendian,
|
||||
use_temp_file=False,
|
||||
eager=args.no_lazy,
|
||||
dry_run=args.dry_run,
|
||||
dir_lora_model=dir_lora,
|
||||
lora_alpha=alpha,
|
||||
hparams=hparams,
|
||||
)
|
||||
|
||||
logger.info("Exporting model...")
|
||||
model_instance.write()
|
||||
logger.info(f"Model successfully exported to {model_instance.fname_out}")
|
||||
@@ -27,6 +27,13 @@ We recommend using openmp since it's easier to modify the cores being used.
|
||||
|
||||
### llama.cpp compilation
|
||||
|
||||
Makefile:
|
||||
|
||||
```bash
|
||||
make GGML_BLIS=1 -j
|
||||
# make GGML_BLIS=1 llama-benchmark-matmult
|
||||
```
|
||||
|
||||
CMake:
|
||||
|
||||
```bash
|
||||
@@ -1,4 +1,4 @@
|
||||
# Add a new model architecture to `llama.cpp`
|
||||
## Add a new model architecture to `llama.cpp`
|
||||
|
||||
Adding a model requires few steps:
|
||||
|
||||
@@ -9,15 +9,15 @@ Adding a model requires few steps:
|
||||
After following these steps, you can open PR.
|
||||
|
||||
Also, it is important to check that the examples and main ggml backends (CUDA, METAL, CPU) are working with the new architecture, especially:
|
||||
- [main](/examples/main/)
|
||||
- [imatrix](/examples/imatrix/)
|
||||
- [quantize](/examples/quantize/)
|
||||
- [server](/examples/server/)
|
||||
- [main](../examples/main)
|
||||
- [imatrix](../examples/imatrix)
|
||||
- [quantize](../examples/quantize)
|
||||
- [server](../examples/server)
|
||||
|
||||
### 1. Convert the model to GGUF
|
||||
|
||||
This step is done in python with a `convert` script using the [gguf](https://pypi.org/project/gguf/) library.
|
||||
Depending on the model architecture, you can use either [convert_hf_to_gguf.py](/convert_hf_to_gguf.py) or [examples/convert_legacy_llama.py](/examples/convert_legacy_llama.py) (for `llama/llama2` models in `.pth` format).
|
||||
Depending on the model architecture, you can use either [convert_hf_to_gguf.py](../convert_hf_to_gguf.py) or [examples/convert_legacy_llama.py](../examples/convert_legacy_llama.py) (for `llama/llama2` models in `.pth` format).
|
||||
|
||||
The convert script reads the model configuration, tokenizer, tensor names+data and converts them to GGUF metadata and tensors.
|
||||
|
||||
@@ -31,7 +31,7 @@ class MyModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.GROK
|
||||
```
|
||||
|
||||
2. Define the layout of the GGUF tensors in [constants.py](/gguf-py/gguf/constants.py)
|
||||
2. Define the layout of the GGUF tensors in [constants.py](../gguf-py/gguf/constants.py)
|
||||
|
||||
Add an enum entry in `MODEL_ARCH`, the model human friendly name in `MODEL_ARCH_NAMES` and the GGUF tensor names in `MODEL_TENSORS`.
|
||||
|
||||
@@ -54,7 +54,7 @@ Example for `falcon` model:
|
||||
|
||||
As a general rule, before adding a new tensor name to GGUF, be sure the equivalent naming does not already exist.
|
||||
|
||||
Once you have found the GGUF tensor name equivalent, add it to the [tensor_mapping.py](/gguf-py/gguf/tensor_mapping.py) file.
|
||||
Once you have found the GGUF tensor name equivalent, add it to the [tensor_mapping.py](../gguf-py/gguf/tensor_mapping.py) file.
|
||||
|
||||
If the tensor name is part of a repetitive layer/block, the key word `bid` substitutes it.
|
||||
|
||||
@@ -100,7 +100,7 @@ Have a look at existing implementation like `build_llama`, `build_dbrx` or `buil
|
||||
|
||||
When implementing a new graph, please note that the underlying `ggml` backends might not support them all, support for missing backend operations can be added in another PR.
|
||||
|
||||
Note: to debug the inference graph: you can use [llama-eval-callback](/examples/eval-callback/).
|
||||
Note: to debug the inference graph: you can use [llama-eval-callback](../examples/eval-callback).
|
||||
|
||||
## GGUF specification
|
||||
|
||||
@@ -1,83 +0,0 @@
|
||||
|
||||
# Android
|
||||
|
||||
## Build on Android using Termux
|
||||
|
||||
[Termux](https://termux.dev/en/) is an Android terminal emulator and Linux environment app (no root required). As of writing, Termux is available experimentally in the Google Play Store; otherwise, it may be obtained directly from the project repo or on F-Droid.
|
||||
|
||||
With Termux, you can install and run `llama.cpp` as if the environment were Linux. Once in the Termux shell:
|
||||
|
||||
```
|
||||
$ apt update && apt upgrade -y
|
||||
$ apt install git cmake
|
||||
```
|
||||
|
||||
Then, follow the [build instructions](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md), specifically for CMake.
|
||||
|
||||
Once the binaries are built, download your model of choice (e.g., from Hugging Face). It's recommended to place it in the `~/` directory for best performance:
|
||||
|
||||
```
|
||||
$ curl -L {model-url} -o ~/{model}.gguf
|
||||
```
|
||||
|
||||
Then, if you are not already in the repo directory, `cd` into `llama.cpp` and:
|
||||
|
||||
```
|
||||
$ ./build/bin/llama-cli -m ~/{model}.gguf -c {context-size} -p "{your-prompt}"
|
||||
```
|
||||
|
||||
Here, we show `llama-cli`, but any of the executables under `examples` should work, in theory. Be sure to set `context-size` to a reasonable number (say, 4096) to start with; otherwise, memory could spike and kill your terminal.
|
||||
|
||||
To see what it might look like visually, here's an old demo of an interactive session running on a Pixel 5 phone:
|
||||
|
||||
https://user-images.githubusercontent.com/271616/225014776-1d567049-ad71-4ef2-b050-55b0b3b9274c.mp4
|
||||
|
||||
## Cross-compile using Android NDK
|
||||
It's possible to build `llama.cpp` for Android on your host system via CMake and the Android NDK. If you are interested in this path, ensure you already have an environment prepared to cross-compile programs for Android (i.e., install the Android SDK). Note that, unlike desktop environments, the Android environment ships with a limited set of native libraries, and so only those libraries are available to CMake when building with the Android NDK (see: https://developer.android.com/ndk/guides/stable_apis.)
|
||||
|
||||
Once you're ready and have cloned `llama.cpp`, invoke the following in the project directory:
|
||||
|
||||
```
|
||||
$ cmake \
|
||||
-DCMAKE_TOOLCHAIN_FILE=$ANDROID_NDK/build/cmake/android.toolchain.cmake \
|
||||
-DANDROID_ABI=arm64-v8a \
|
||||
-DANDROID_PLATFORM=android-28 \
|
||||
-DCMAKE_C_FLAGS="-march=armv8.7a" \
|
||||
-DCMAKE_CXX_FLAGS="-march=armv8.7a" \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DGGML_LLAMAFILE=OFF \
|
||||
-B build-android
|
||||
```
|
||||
|
||||
Notes:
|
||||
- While later versions of Android NDK ship with OpenMP, it must still be installed by CMake as a dependency, which is not supported at this time
|
||||
- `llamafile` does not appear to support Android devices (see: https://github.com/Mozilla-Ocho/llamafile/issues/325)
|
||||
|
||||
The above command should configure `llama.cpp` with the most performant options for modern devices. Even if your device is not running `armv8.7a`, `llama.cpp` includes runtime checks for available CPU features it can use.
|
||||
|
||||
Feel free to adjust the Android ABI for your target. Once the project is configured:
|
||||
|
||||
```
|
||||
$ cmake --build build-android --config Release -j{n}
|
||||
$ cmake --install build-android --prefix {install-dir} --config Release
|
||||
```
|
||||
|
||||
After installing, go ahead and download the model of your choice to your host system. Then:
|
||||
|
||||
```
|
||||
$ adb shell "mkdir /data/local/tmp/llama.cpp"
|
||||
$ adb push {install-dir} /data/local/tmp/llama.cpp/
|
||||
$ adb push {model}.gguf /data/local/tmp/llama.cpp/
|
||||
$ adb shell
|
||||
```
|
||||
|
||||
In the `adb shell`:
|
||||
|
||||
```
|
||||
$ cd /data/local/tmp/llama.cpp
|
||||
$ LD_LIBRARY_PATH=lib ./bin/llama-simple -m {model}.gguf -c {context-size} -p "{your-prompt}"
|
||||
```
|
||||
|
||||
That's it!
|
||||
|
||||
Be aware that Android will not find the library path `lib` on its own, so we must specify `LD_LIBRARY_PATH` in order to run the installed executables. Android does support `RPATH` in later API levels, so this could change in the future. Refer to the previous section for information about `context-size` (very important!) and running other `examples`.
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user