mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2026-02-05 13:53:23 +02:00
Compare commits
121 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
f0d4b29edf | ||
|
|
815857791d | ||
|
|
1a0e87d291 | ||
|
|
d2e518e9b4 | ||
|
|
b636228c0a | ||
|
|
325afb370a | ||
|
|
794fe23f29 | ||
|
|
cf8cc856d7 | ||
|
|
d0c08040b6 | ||
|
|
be5ef7963f | ||
|
|
cae9fb4361 | ||
|
|
7fee2889e6 | ||
|
|
d7d1eccacc | ||
|
|
4bf3119d61 | ||
|
|
f643120bad | ||
|
|
6e84b0ab8e | ||
|
|
2b8525d5c8 | ||
|
|
a4417ddda9 | ||
|
|
d6d24cd9ed | ||
|
|
a5203b4465 | ||
|
|
df984e0147 | ||
|
|
acd38efee3 | ||
|
|
caf773f249 | ||
|
|
178a7eb952 | ||
|
|
6f53d8a6b4 | ||
|
|
19f65187cb | ||
|
|
1d8ee06000 | ||
|
|
2cc9b8c32c | ||
|
|
f35726c2fb | ||
|
|
4a75d19376 | ||
|
|
26771a1491 | ||
|
|
ca6baf76c1 | ||
|
|
6e264a905b | ||
|
|
49b0e3cec4 | ||
|
|
20a758155b | ||
|
|
00c24acb2a | ||
|
|
466ea66f33 | ||
|
|
5f0db9522f | ||
|
|
c5d9effb49 | ||
|
|
9fbadaef4f | ||
|
|
9755129c27 | ||
|
|
a07c2c8a52 | ||
|
|
8137b4bb2b | ||
|
|
1af6945eb0 | ||
|
|
01f37edf1a | ||
|
|
c07e87f38b | ||
|
|
564804b79b | ||
|
|
05f63cc9ee | ||
|
|
f7fb43cd0b | ||
|
|
5845661640 | ||
|
|
f211d1dc10 | ||
|
|
955a6c2d91 | ||
|
|
1971adf55e | ||
|
|
5245729e33 | ||
|
|
6152129d05 | ||
|
|
16d3df7ab0 | ||
|
|
12c2bdf2de | ||
|
|
c64d2becb1 | ||
|
|
96f4053934 | ||
|
|
a94f3b2727 | ||
|
|
3e3357fd77 | ||
|
|
6171c9d258 | ||
|
|
e28245f35f | ||
|
|
6da5bec81c | ||
|
|
2e2f8f093c | ||
|
|
2139667ec4 | ||
|
|
80d0d6b4b7 | ||
|
|
aea8ddd516 | ||
|
|
9f7add1cde | ||
|
|
90d987b105 | ||
|
|
a4251edd6f | ||
|
|
ec7f3ac9ab | ||
|
|
ef6dada60c | ||
|
|
ae3c1db2f9 | ||
|
|
92bc493917 | ||
|
|
b9daaffe02 | ||
|
|
99487b57d4 | ||
|
|
a1649cc13f | ||
|
|
4dd34ff831 | ||
|
|
f30f099228 | ||
|
|
f26c874179 | ||
|
|
6390a998bf | ||
|
|
44e18ef939 | ||
|
|
3edfa7d375 | ||
|
|
667d72846c | ||
|
|
a133566d34 | ||
|
|
960ec65273 | ||
|
|
7a689c415e | ||
|
|
bd38ddea01 | ||
|
|
466300fe14 | ||
|
|
206bc53422 | ||
|
|
4dbc8b9cb7 | ||
|
|
9c8dcefe17 | ||
|
|
681149ced2 | ||
|
|
c67cc9837d | ||
|
|
adc5dd92e8 | ||
|
|
f11cfdfd7f | ||
|
|
1d8504338e | ||
|
|
432df2d5f9 | ||
|
|
0ccd7f3eb2 | ||
|
|
f446c2cf6a | ||
|
|
b4d92a59a2 | ||
|
|
bbf3e55e35 | ||
|
|
c5bf0d1bd7 | ||
|
|
091592d758 | ||
|
|
44d1e796d0 | ||
|
|
a4f3f5d8e6 | ||
|
|
48e1ae0e61 | ||
|
|
d00a80e89d | ||
|
|
504af20ee4 | ||
|
|
84a44815f7 | ||
|
|
39509fb082 | ||
|
|
a29f0870d4 | ||
|
|
437e05f714 | ||
|
|
ca001f6656 | ||
|
|
00b4c3da62 | ||
|
|
7426a26b24 | ||
|
|
8f70fc3d1b | ||
|
|
1244cdcf14 | ||
|
|
924518e2e5 | ||
|
|
9a483999a6 |
@@ -2,6 +2,10 @@ ARG UBUNTU_VERSION=22.04
|
||||
|
||||
FROM ubuntu:$UBUNTU_VERSION AS build
|
||||
|
||||
ARG TARGETARCH
|
||||
|
||||
ARG GGML_CPU_ARM_ARCH=armv8-a
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential git cmake libcurl4-openssl-dev
|
||||
|
||||
@@ -9,7 +13,14 @@ WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
|
||||
RUN cmake -S . -B build -DGGML_BACKEND_DL=ON -DGGML_NATIVE=OFF -DGGML_CPU_ALL_VARIANTS=ON -DLLAMA_CURL=ON -DCMAKE_BUILD_TYPE=Release && \
|
||||
RUN if [ "$TARGETARCH" = "amd64" ]; then \
|
||||
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON -DGGML_NATIVE=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON; \
|
||||
elif [ "$TARGETARCH" = "arm64" ]; then \
|
||||
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON -DGGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=${GGML_CPU_ARM_ARCH}; \
|
||||
else \
|
||||
echo "Unsupported architecture"; \
|
||||
exit 1; \
|
||||
fi && \
|
||||
cmake --build build -j $(nproc)
|
||||
|
||||
RUN mkdir -p /app/lib && \
|
||||
|
||||
@@ -13,9 +13,13 @@ elif [[ "$arg1" == '--quantize' || "$arg1" == '-q' ]]; then
|
||||
exec ./llama-quantize "$@"
|
||||
elif [[ "$arg1" == '--run' || "$arg1" == '-r' ]]; then
|
||||
exec ./llama-cli "$@"
|
||||
elif [[ "$arg1" == '--bench' || "$arg1" == '-b' ]]; then
|
||||
exec ./llama-bench "$@"
|
||||
elif [[ "$arg1" == '--perplexity' || "$arg1" == '-p' ]]; then
|
||||
exec ./llama-perplexity "$@"
|
||||
elif [[ "$arg1" == '--all-in-one' || "$arg1" == '-a' ]]; then
|
||||
echo "Converting PTH to GGML..."
|
||||
for i in `ls $1/$2/ggml-model-f16.bin*`; do
|
||||
for i in $(ls $1/$2/ggml-model-f16.bin*); do
|
||||
if [ -f "${i/f16/q4_0}" ]; then
|
||||
echo "Skip model quantization, it already exists: ${i/f16/q4_0}"
|
||||
else
|
||||
@@ -30,6 +34,10 @@ else
|
||||
echo "Available commands: "
|
||||
echo " --run (-r): Run a model previously converted into ggml"
|
||||
echo " ex: -m /models/7B/ggml-model-q4_0.bin -p \"Building a website can be done in 10 simple steps:\" -n 512"
|
||||
echo " --bench (-b): Benchmark the performance of the inference for various parameters."
|
||||
echo " ex: -m model.gguf"
|
||||
echo " --perplexity (-p): Measure the perplexity of a model over a given text."
|
||||
echo " ex: -m model.gguf -f file.txt"
|
||||
echo " --convert (-c): Convert a llama model into ggml"
|
||||
echo " ex: --outtype f16 \"/models/7B/\" "
|
||||
echo " --quantize (-q): Optimize with quantization process ggml"
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
ARG UBUNTU_VERSION=jammy
|
||||
ARG UBUNTU_VERSION=24.04
|
||||
|
||||
FROM ubuntu:$UBUNTU_VERSION AS build
|
||||
|
||||
@@ -7,7 +7,7 @@ RUN apt update && apt install -y git build-essential cmake wget
|
||||
|
||||
# Install Vulkan SDK and cURL
|
||||
RUN wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add - && \
|
||||
wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list && \
|
||||
wget -qO /etc/apt/sources.list.d/lunarg-vulkan-noble.list https://packages.lunarg.com/vulkan/lunarg-vulkan-noble.list && \
|
||||
apt update -y && \
|
||||
apt-get install -y vulkan-sdk libcurl4-openssl-dev curl
|
||||
|
||||
@@ -34,7 +34,7 @@ RUN mkdir -p /app/full \
|
||||
FROM ubuntu:$UBUNTU_VERSION AS base
|
||||
|
||||
RUN apt-get update \
|
||||
&& apt-get install -y libgomp1 curl\
|
||||
&& apt-get install -y libgomp1 curl libvulkan-dev \
|
||||
&& apt autoremove -y \
|
||||
&& apt clean -y \
|
||||
&& rm -rf /tmp/* /var/tmp/* \
|
||||
@@ -55,8 +55,9 @@ RUN apt-get update \
|
||||
git \
|
||||
python3 \
|
||||
python3-pip \
|
||||
&& pip install --upgrade pip setuptools wheel \
|
||||
&& pip install -r requirements.txt \
|
||||
python3-wheel \
|
||||
&& pip install --break-system-packages --upgrade setuptools \
|
||||
&& pip install --break-system-packages -r requirements.txt \
|
||||
&& apt autoremove -y \
|
||||
&& apt clean -y \
|
||||
&& rm -rf /tmp/* /var/tmp/* \
|
||||
|
||||
157
.github/workflows/build.yml
vendored
157
.github/workflows/build.yml
vendored
@@ -56,6 +56,7 @@ jobs:
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. \
|
||||
-DCMAKE_BUILD_RPATH="@loader_path" \
|
||||
-DLLAMA_FATAL_WARNINGS=ON \
|
||||
-DLLAMA_CURL=ON \
|
||||
-DGGML_METAL_USE_BF16=ON \
|
||||
@@ -87,6 +88,7 @@ jobs:
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
run: |
|
||||
cp LICENSE ./build/bin/
|
||||
cp examples/run/linenoise.cpp/LICENSE ./build/bin/LICENSE.linenoise.cpp
|
||||
zip -r llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.zip ./build/bin/*
|
||||
|
||||
- name: Upload artifacts
|
||||
@@ -119,6 +121,7 @@ jobs:
|
||||
# Metal is disabled due to intermittent failures with Github runners not having a GPU:
|
||||
# https://github.com/ggerganov/llama.cpp/actions/runs/8635935781/job/23674807267#step:5:2313
|
||||
cmake -B build \
|
||||
-DCMAKE_BUILD_RPATH="@loader_path" \
|
||||
-DLLAMA_FATAL_WARNINGS=ON \
|
||||
-DLLAMA_CURL=ON \
|
||||
-DGGML_METAL=OFF \
|
||||
@@ -149,6 +152,7 @@ jobs:
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
run: |
|
||||
cp LICENSE ./build/bin/
|
||||
cp examples/run/linenoise.cpp/LICENSE ./build/bin/LICENSE.linenoise.cpp
|
||||
zip -r llama-${{ steps.tag.outputs.name }}-bin-macos-x64.zip ./build/bin/*
|
||||
|
||||
- name: Upload artifacts
|
||||
@@ -158,8 +162,8 @@ jobs:
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-macos-x64.zip
|
||||
name: llama-bin-macos-x64.zip
|
||||
|
||||
ubuntu-latest-cmake:
|
||||
runs-on: ubuntu-latest
|
||||
ubuntu-cpu-cmake:
|
||||
runs-on: ubuntu-22.04
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
@@ -179,7 +183,10 @@ jobs:
|
||||
run: |
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=ON -DGGML_RPC=ON
|
||||
cmake .. \
|
||||
-DLLAMA_FATAL_WARNINGS=ON \
|
||||
-DLLAMA_CURL=ON \
|
||||
-DGGML_RPC=ON
|
||||
cmake --build . --config Release -j $(nproc)
|
||||
|
||||
- name: Test
|
||||
@@ -217,6 +224,7 @@ jobs:
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
run: |
|
||||
cp LICENSE ./build/bin/
|
||||
cp examples/run/linenoise.cpp/LICENSE ./build/bin/LICENSE.linenoise.cpp
|
||||
zip -r llama-${{ steps.tag.outputs.name }}-bin-ubuntu-x64.zip ./build/bin/*
|
||||
|
||||
- name: Upload artifacts
|
||||
@@ -234,7 +242,7 @@ jobs:
|
||||
strategy:
|
||||
matrix:
|
||||
sanitizer: [ADDRESS, THREAD, UNDEFINED]
|
||||
build_type: [Debug, Release]
|
||||
build_type: [Debug]
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
@@ -253,7 +261,10 @@ jobs:
|
||||
run: |
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON -DCMAKE_BUILD_TYPE=${{ matrix.build_type }}
|
||||
cmake .. \
|
||||
-DLLAMA_FATAL_WARNINGS=ON \
|
||||
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }}
|
||||
cmake --build . --config ${{ matrix.build_type }} -j $(nproc)
|
||||
|
||||
- name: Build (no OpenMP)
|
||||
@@ -262,7 +273,11 @@ jobs:
|
||||
run: |
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON -DCMAKE_BUILD_TYPE=${{ matrix.build_type }} -DGGML_OPENMP=OFF
|
||||
cmake .. \
|
||||
-DLLAMA_FATAL_WARNINGS=ON \
|
||||
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
|
||||
-DGGML_OPENMP=OFF
|
||||
cmake --build . --config ${{ matrix.build_type }} -j $(nproc)
|
||||
|
||||
- name: Test
|
||||
@@ -292,7 +307,8 @@ jobs:
|
||||
run: |
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -DGGML_RPC=ON ..
|
||||
cmake .. \
|
||||
-DGGML_RPC=ON
|
||||
cmake --build . --config Release -j $(nproc)
|
||||
|
||||
- name: Test
|
||||
@@ -322,7 +338,8 @@ jobs:
|
||||
run: |
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -DGGML_VULKAN=ON ..
|
||||
cmake .. \
|
||||
-DGGML_VULKAN=ON
|
||||
cmake --build . --config Release -j $(nproc)
|
||||
|
||||
- name: Test
|
||||
@@ -349,13 +366,18 @@ jobs:
|
||||
- name: Build with native CMake HIP support
|
||||
id: cmake_build
|
||||
run: |
|
||||
cmake -B build -S . -DCMAKE_HIP_COMPILER="$(hipconfig -l)/clang" -DGGML_HIP=ON
|
||||
cmake -B build -S . \
|
||||
-DCMAKE_HIP_COMPILER="$(hipconfig -l)/clang" \
|
||||
-DGGML_HIP=ON
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
- name: Build with legacy HIP support
|
||||
id: cmake_build_legacy_hip
|
||||
run: |
|
||||
cmake -B build2 -S . -DCMAKE_C_COMPILER=hipcc -DCMAKE_CXX_COMPILER=hipcc -DGGML_HIP=ON
|
||||
cmake -B build2 -S . \
|
||||
-DCMAKE_C_COMPILER=hipcc \
|
||||
-DCMAKE_CXX_COMPILER=hipcc \
|
||||
-DGGML_HIP=ON
|
||||
cmake --build build2 --config Release -j $(nproc)
|
||||
|
||||
ubuntu-22-cmake-musa:
|
||||
@@ -376,7 +398,8 @@ jobs:
|
||||
- name: Build with native CMake MUSA support
|
||||
id: cmake_build
|
||||
run: |
|
||||
cmake -B build -S . -DGGML_MUSA=ON
|
||||
cmake -B build -S . \
|
||||
-DGGML_MUSA=ON
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
ubuntu-22-cmake-sycl:
|
||||
@@ -417,7 +440,10 @@ jobs:
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ..
|
||||
cmake .. \
|
||||
-DGGML_SYCL=ON \
|
||||
-DCMAKE_C_COMPILER=icx \
|
||||
-DCMAKE_CXX_COMPILER=icpx
|
||||
cmake --build . --config Release -j $(nproc)
|
||||
|
||||
ubuntu-22-cmake-sycl-fp16:
|
||||
@@ -458,42 +484,13 @@ jobs:
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON ..
|
||||
cmake .. \
|
||||
-DGGML_SYCL=ON \
|
||||
-DCMAKE_C_COMPILER=icx \
|
||||
-DCMAKE_CXX_COMPILER=icpx \
|
||||
-DGGML_SYCL_F16=ON
|
||||
cmake --build . --config Release -j $(nproc)
|
||||
|
||||
# TODO: build with GGML_METAL=OFF because test-backend-ops fail on "Apple Paravirtual device" and I don't know
|
||||
# how to debug it.
|
||||
# ref: https://github.com/ggerganov/llama.cpp/actions/runs/7132125951/job/19422043567?pr=4359#step:5:6584
|
||||
# would be great if we fix these
|
||||
macOS-latest-cmake:
|
||||
runs-on: macos-latest
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
continue-on-error: true
|
||||
run: |
|
||||
brew update
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
sysctl -a
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -DLLAMA_FATAL_WARNINGS=ON -DGGML_METAL=OFF ..
|
||||
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu)
|
||||
|
||||
- name: Test
|
||||
id: cmake_test
|
||||
run: |
|
||||
cd build
|
||||
ctest -L main --verbose --timeout 900
|
||||
|
||||
macOS-latest-cmake-ios:
|
||||
runs-on: macos-latest
|
||||
|
||||
@@ -616,6 +613,7 @@ jobs:
|
||||
msystem: ${{matrix.sys}}
|
||||
install: >-
|
||||
base-devel
|
||||
git
|
||||
mingw-w64-${{matrix.env}}-toolchain
|
||||
mingw-w64-${{matrix.env}}-cmake
|
||||
mingw-w64-${{matrix.env}}-openblas
|
||||
@@ -796,6 +794,7 @@ jobs:
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
run: |
|
||||
Copy-Item LICENSE .\build\bin\Release\llama.cpp.txt
|
||||
Copy-Item .\examples\run\linenoise.cpp\LICENSE .\build\bin\Release\linenoise.cpp.txt
|
||||
7z a llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}.zip .\build\bin\Release\*
|
||||
|
||||
- name: Upload artifacts
|
||||
@@ -823,7 +822,13 @@ jobs:
|
||||
|
||||
- name: Build with CMake
|
||||
run: |
|
||||
cmake -S . -B build -G Ninja -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DGGML_CUDA=ON -DCMAKE_CUDA_ARCHITECTURES=89-real -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined -DLLAMA_FATAL_WARNINGS=ON
|
||||
cmake -S . -B build -G Ninja \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DCMAKE_CUDA_ARCHITECTURES=89-real \
|
||||
-DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined \
|
||||
-DLLAMA_FATAL_WARNINGS=ON \
|
||||
-DGGML_NATIVE=OFF \
|
||||
-DGGML_CUDA=ON
|
||||
cmake --build build
|
||||
|
||||
windows-2019-cmake-cuda:
|
||||
@@ -912,7 +917,11 @@ jobs:
|
||||
shell: cmd
|
||||
run: |
|
||||
call "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\VC\Auxiliary\Build\vcvars64.bat"
|
||||
cmake -S . -B build -G "Ninja Multi-Config" -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_CUDA=ON -DGGML_RPC=ON
|
||||
cmake -S . -B build -G "Ninja Multi-Config" ^
|
||||
-DLLAMA_BUILD_SERVER=ON ^
|
||||
-DGGML_NATIVE=OFF ^
|
||||
-DGGML_CUDA=ON ^
|
||||
-DGGML_RPC=ON
|
||||
set /A NINJA_JOBS=%NUMBER_OF_PROCESSORS%-1
|
||||
cmake --build build --config Release -j %NINJA_JOBS% -t ggml
|
||||
cmake --build build --config Release
|
||||
@@ -1065,7 +1074,12 @@ jobs:
|
||||
run: |
|
||||
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
|
||||
$env:CMAKE_PREFIX_PATH="${env:HIP_PATH}"
|
||||
cmake -G "Unix Makefiles" -B build -S . -DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" -DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" -DGGML_HIP=ON -DCMAKE_BUILD_TYPE=Release -DGGML_RPC=ON
|
||||
cmake -G "Unix Makefiles" -B build -S . `
|
||||
-DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" `
|
||||
-DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" `
|
||||
-DCMAKE_BUILD_TYPE=Release `
|
||||
-DGGML_HIP=ON `
|
||||
-DGGML_RPC=ON
|
||||
cmake --build build -j ${env:NUMBER_OF_PROCESSORS}
|
||||
|
||||
windows-latest-cmake-hip-release:
|
||||
@@ -1103,7 +1117,13 @@ jobs:
|
||||
run: |
|
||||
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
|
||||
$env:CMAKE_PREFIX_PATH="${env:HIP_PATH}"
|
||||
cmake -G "Unix Makefiles" -B build -S . -DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" -DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" -DGGML_HIP=ON -DCMAKE_BUILD_TYPE=Release -DAMDGPU_TARGETS=${{ matrix.gpu_target }} -DGGML_RPC=ON
|
||||
cmake -G "Unix Makefiles" -B build -S . `
|
||||
-DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" `
|
||||
-DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" `
|
||||
-DCMAKE_BUILD_TYPE=Release `
|
||||
-DAMDGPU_TARGETS=${{ matrix.gpu_target }} `
|
||||
-DGGML_HIP=ON `
|
||||
-DGGML_RPC=ON
|
||||
cmake --build build -j ${env:NUMBER_OF_PROCESSORS}
|
||||
md "build\bin\rocblas\library\"
|
||||
cp "${env:HIP_PATH}\bin\hipblas.dll" "build\bin\"
|
||||
@@ -1197,8 +1217,7 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
needs:
|
||||
- ubuntu-latest-cmake
|
||||
- macOS-latest-cmake
|
||||
- ubuntu-cpu-cmake
|
||||
- windows-latest-cmake
|
||||
- windows-2019-cmake-cuda
|
||||
- windows-latest-cmake-hip-release
|
||||
@@ -1457,3 +1476,37 @@ jobs:
|
||||
# popd
|
||||
# emcmake cmake . -DCMAKE_BUILD_TYPE=${{ matrix.build }}
|
||||
# make
|
||||
|
||||
openEuler-latest-cmake-cann:
|
||||
if: ${{ github.event_name != 'pull_request' || contains(github.event.pull_request.labels.*.name, 'Ascend NPU') }}
|
||||
defaults:
|
||||
run:
|
||||
shell: bash -el {0}
|
||||
runs-on: ubuntu-24.04-arm
|
||||
strategy:
|
||||
matrix:
|
||||
cann:
|
||||
- '8.0.rc3.beta1-910b-openeuler22.03-py3.10'
|
||||
device:
|
||||
- 'ascend910b3'
|
||||
build:
|
||||
- 'Release'
|
||||
container: ascendai/cann:${{ matrix.cann }}
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Dependencies
|
||||
run: |
|
||||
yum update -y
|
||||
yum install -y git gcc gcc-c++ make cmake
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
export LD_LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/lib64:${ASCEND_TOOLKIT_HOME}/$(uname -m)-linux/devlib/:${LD_LIBRARY_PATH}
|
||||
|
||||
cmake -S . -B build \
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build }} \
|
||||
-DGGML_CANN=on \
|
||||
-DSOC_TYPE=${{ matrix.device }}
|
||||
cmake --build build -j $(nproc)
|
||||
|
||||
3
.github/workflows/docker.yml
vendored
3
.github/workflows/docker.yml
vendored
@@ -28,10 +28,11 @@ jobs:
|
||||
push_to_registry:
|
||||
name: Push Docker image to Docker Hub
|
||||
|
||||
runs-on: ubuntu-latest
|
||||
runs-on: ubuntu-22.04
|
||||
env:
|
||||
COMMIT_SHA: ${{ github.sha }}
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
config:
|
||||
# Multi-stage build
|
||||
|
||||
25
.github/workflows/server.yml
vendored
25
.github/workflows/server.yml
vendored
@@ -112,9 +112,9 @@ jobs:
|
||||
-DGGML_OPENMP=OFF ;
|
||||
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
if: ${{ matrix.sanitizer != 'THREAD' }}
|
||||
- name: Build (sanitizers)
|
||||
id: cmake_build_sanitizers
|
||||
if: ${{ matrix.sanitizer != '' && matrix.sanitizer != 'THREAD' }}
|
||||
run: |
|
||||
cmake -B build \
|
||||
-DGGML_NATIVE=OFF \
|
||||
@@ -124,12 +124,31 @@ jobs:
|
||||
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON ;
|
||||
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
|
||||
|
||||
- name: Build (sanitizers)
|
||||
id: cmake_build
|
||||
if: ${{ matrix.sanitizer == '' }}
|
||||
run: |
|
||||
cmake -B build \
|
||||
-DGGML_NATIVE=OFF \
|
||||
-DLLAMA_BUILD_SERVER=ON \
|
||||
-DLLAMA_CURL=ON \
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} ;
|
||||
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
|
||||
|
||||
- name: Tests
|
||||
id: server_integration_tests
|
||||
if: ${{ matrix.sanitizer == '' }}
|
||||
run: |
|
||||
cd examples/server/tests
|
||||
./tests.sh
|
||||
|
||||
- name: Tests (sanitizers)
|
||||
id: server_integration_tests_sanitizers
|
||||
if: ${{ matrix.sanitizer != '' }}
|
||||
run: |
|
||||
cd examples/server/tests
|
||||
LLAMA_SANITIZE=1 ./tests.sh
|
||||
|
||||
- name: Slow tests
|
||||
id: server_integration_tests_slow
|
||||
if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }}
|
||||
|
||||
1
.gitignore
vendored
1
.gitignore
vendored
@@ -18,6 +18,7 @@
|
||||
*.metallib
|
||||
*.o
|
||||
*.so
|
||||
*.swp
|
||||
*.tmp
|
||||
|
||||
# IDE / OS
|
||||
|
||||
@@ -16,6 +16,7 @@ endif()
|
||||
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake/")
|
||||
|
||||
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin)
|
||||
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin)
|
||||
|
||||
if (CMAKE_SOURCE_DIR STREQUAL CMAKE_CURRENT_SOURCE_DIR)
|
||||
set(LLAMA_STANDALONE ON)
|
||||
@@ -49,6 +50,8 @@ endif()
|
||||
if (MSVC)
|
||||
add_compile_options("$<$<COMPILE_LANGUAGE:C>:/utf-8>")
|
||||
add_compile_options("$<$<COMPILE_LANGUAGE:CXX>:/utf-8>")
|
||||
add_compile_options("$<$<COMPILE_LANGUAGE:C>:/bigobj>")
|
||||
add_compile_options("$<$<COMPILE_LANGUAGE:CXX>:/bigobj>")
|
||||
endif()
|
||||
|
||||
#
|
||||
@@ -83,11 +86,8 @@ include(${CMAKE_CURRENT_SOURCE_DIR}/cmake/build-info.cmake)
|
||||
include(${CMAKE_CURRENT_SOURCE_DIR}/cmake/common.cmake)
|
||||
|
||||
# override ggml options
|
||||
set(GGML_SANITIZE_THREAD ${LLAMA_SANITIZE_THREAD})
|
||||
set(GGML_SANITIZE_ADDRESS ${LLAMA_SANITIZE_ADDRESS})
|
||||
set(GGML_SANITIZE_UNDEFINED ${LLAMA_SANITIZE_UNDEFINED})
|
||||
set(GGML_ALL_WARNINGS ${LLAMA_ALL_WARNINGS})
|
||||
set(GGML_FATAL_WARNINGS ${LLAMA_FATAL_WARNINGS})
|
||||
set(GGML_ALL_WARNINGS ${LLAMA_ALL_WARNINGS})
|
||||
set(GGML_FATAL_WARNINGS ${LLAMA_FATAL_WARNINGS})
|
||||
|
||||
# change the default for these ggml options
|
||||
if (NOT DEFINED GGML_LLAMAFILE)
|
||||
@@ -117,16 +117,62 @@ llama_option_depr(WARNING LLAMA_SYCL GGML_SYCL)
|
||||
llama_option_depr(WARNING LLAMA_SYCL_F16 GGML_SYCL_F16)
|
||||
llama_option_depr(WARNING LLAMA_CANN GGML_CANN)
|
||||
|
||||
if (NOT MSVC)
|
||||
if (LLAMA_SANITIZE_THREAD)
|
||||
message(STATUS "Using -fsanitize=thread")
|
||||
|
||||
add_compile_options(-fsanitize=thread)
|
||||
link_libraries (-fsanitize=thread)
|
||||
endif()
|
||||
|
||||
if (LLAMA_SANITIZE_ADDRESS)
|
||||
message(STATUS "Using -fsanitize=address")
|
||||
|
||||
add_compile_options(-fsanitize=address -fno-omit-frame-pointer)
|
||||
link_libraries (-fsanitize=address)
|
||||
endif()
|
||||
|
||||
if (LLAMA_SANITIZE_UNDEFINED)
|
||||
message(STATUS "Using -fsanitize=undefined")
|
||||
|
||||
add_compile_options(-fsanitize=undefined)
|
||||
link_libraries (-fsanitize=undefined)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
#
|
||||
# build the library
|
||||
# 3rd-party
|
||||
#
|
||||
|
||||
if (NOT TARGET ggml)
|
||||
add_subdirectory(ggml)
|
||||
# ... otherwise assume ggml is added by a parent CMakeLists.txt
|
||||
endif()
|
||||
|
||||
#
|
||||
# build the library
|
||||
#
|
||||
|
||||
add_subdirectory(src)
|
||||
|
||||
#
|
||||
# utils, programs, examples and tests
|
||||
#
|
||||
|
||||
if (LLAMA_BUILD_COMMON)
|
||||
add_subdirectory(common)
|
||||
endif()
|
||||
|
||||
if (LLAMA_BUILD_COMMON AND LLAMA_BUILD_TESTS AND NOT CMAKE_JS_VERSION)
|
||||
include(CTest)
|
||||
add_subdirectory(tests)
|
||||
endif()
|
||||
|
||||
if (LLAMA_BUILD_COMMON AND LLAMA_BUILD_EXAMPLES)
|
||||
add_subdirectory(examples)
|
||||
add_subdirectory(pocs)
|
||||
endif()
|
||||
|
||||
#
|
||||
# install
|
||||
#
|
||||
@@ -142,27 +188,14 @@ set(LLAMA_INCLUDE_INSTALL_DIR ${CMAKE_INSTALL_INCLUDEDIR} CACHE PATH "Location o
|
||||
set(LLAMA_LIB_INSTALL_DIR ${CMAKE_INSTALL_LIBDIR} CACHE PATH "Location of library files")
|
||||
set(LLAMA_BIN_INSTALL_DIR ${CMAKE_INSTALL_BINDIR} CACHE PATH "Location of binary files")
|
||||
|
||||
# At the moment some compile definitions are placed within the ggml/src
|
||||
# directory but not exported on the `ggml` target. This could be improved by
|
||||
# determining _precisely_ which defines are necessary for the llama-config
|
||||
# package.
|
||||
#
|
||||
set(GGML_TRANSIENT_DEFINES)
|
||||
get_target_property(GGML_DIRECTORY ggml SOURCE_DIR)
|
||||
get_directory_property(GGML_DIR_DEFINES DIRECTORY ${GGML_DIRECTORY} COMPILE_DEFINITIONS)
|
||||
if (GGML_DIR_DEFINES)
|
||||
list(APPEND GGML_TRANSIENT_DEFINES ${GGML_DIR_DEFINES})
|
||||
endif()
|
||||
get_target_property(GGML_TARGET_DEFINES ggml COMPILE_DEFINITIONS)
|
||||
if (GGML_TARGET_DEFINES)
|
||||
list(APPEND GGML_TRANSIENT_DEFINES ${GGML_TARGET_DEFINES})
|
||||
endif()
|
||||
get_target_property(GGML_LINK_LIBRARIES ggml LINK_LIBRARIES)
|
||||
# all public headers
|
||||
set(LLAMA_PUBLIC_HEADERS
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/include/llama.h
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/include/llama-cpp.h)
|
||||
set_target_properties(llama PROPERTIES PUBLIC_HEADER "${LLAMA_PUBLIC_HEADERS}")
|
||||
|
||||
set_target_properties(llama
|
||||
PROPERTIES
|
||||
PUBLIC_HEADER "${LLAMA_PUBLIC_HEADERS}")
|
||||
|
||||
install(TARGETS llama LIBRARY PUBLIC_HEADER)
|
||||
|
||||
configure_package_config_file(
|
||||
@@ -200,21 +233,3 @@ configure_file(cmake/llama.pc.in
|
||||
|
||||
install(FILES "${CMAKE_CURRENT_BINARY_DIR}/llama.pc"
|
||||
DESTINATION lib/pkgconfig)
|
||||
|
||||
#
|
||||
# utils, programs, examples and tests
|
||||
#
|
||||
|
||||
if (LLAMA_BUILD_COMMON)
|
||||
add_subdirectory(common)
|
||||
endif()
|
||||
|
||||
if (LLAMA_BUILD_COMMON AND LLAMA_BUILD_TESTS AND NOT CMAKE_JS_VERSION)
|
||||
include(CTest)
|
||||
add_subdirectory(tests)
|
||||
endif()
|
||||
|
||||
if (LLAMA_BUILD_COMMON AND LLAMA_BUILD_EXAMPLES)
|
||||
add_subdirectory(examples)
|
||||
add_subdirectory(pocs)
|
||||
endif()
|
||||
|
||||
102
CONTRIBUTING.md
102
CONTRIBUTING.md
@@ -1,10 +1,10 @@
|
||||
# Pull requests (for contributors)
|
||||
|
||||
- Test your changes:
|
||||
- Execute [the full CI locally on your machine](ci/README.md) before publishing
|
||||
- Verify that the perplexity and the performance are not affected negatively by your changes (use `llama-perplexity` and `llama-bench`)
|
||||
- If you modified the `ggml` source, run the `test-backend-ops` tool to check whether different backend implementations of the `ggml` operators produce consistent results (this requires access to at least two different `ggml` backends)
|
||||
- If you modified a `ggml` operator or added a new one, add the corresponding test cases to `test-backend-ops`
|
||||
- Execute [the full CI locally on your machine](ci/README.md) before publishing
|
||||
- Verify that the perplexity and the performance are not affected negatively by your changes (use `llama-perplexity` and `llama-bench`)
|
||||
- If you modified the `ggml` source, run the `test-backend-ops` tool to check whether different backend implementations of the `ggml` operators produce consistent results (this requires access to at least two different `ggml` backends)
|
||||
- If you modified a `ggml` operator or added a new one, add the corresponding test cases to `test-backend-ops`
|
||||
- Consider allowing write access to your branch for faster reviews, as reviewers can push commits directly
|
||||
- If your PR becomes stale, don't hesitate to ping the maintainers in the comments
|
||||
|
||||
@@ -20,14 +20,104 @@
|
||||
- Avoid adding third-party dependencies, extra files, extra headers, etc.
|
||||
- Always consider cross-compatibility with other operating systems and architectures
|
||||
- Avoid fancy-looking modern STL constructs, use basic `for` loops, avoid templates, keep it simple
|
||||
- There are no strict rules for the code style, but try to follow the patterns in the code (indentation, spaces, etc.). Vertical alignment makes things more readable and easier to batch edit
|
||||
- Vertical alignment makes things more readable and easier to batch edit
|
||||
- Clean-up any trailing whitespaces, use 4 spaces for indentation, brackets on the same line, `void * ptr`, `int & a`
|
||||
- Naming usually optimizes for common prefix (see https://github.com/ggerganov/ggml/pull/302#discussion_r1243240963)
|
||||
- Use sized integer types such as `int32_t` in the public API, e.g. `size_t` may also be appropriate for allocation sizes or byte offsets
|
||||
- Declare structs with `struct foo {}` instead of `typedef struct foo {} foo`
|
||||
- In C++ code omit optional `struct` and `enum` keyword whenever they are not necessary
|
||||
```cpp
|
||||
// OK
|
||||
llama_context * ctx;
|
||||
const llama_rope_type rope_type;
|
||||
|
||||
// not OK
|
||||
struct llama_context * ctx;
|
||||
const enum llama_rope_type rope_type;
|
||||
```
|
||||
|
||||
_(NOTE: this guideline is yet to be applied to the `llama.cpp` codebase. New code should follow this guideline.)_
|
||||
|
||||
- Try to follow the existing patterns in the code (indentation, spaces, etc.). In case of doubt use `clang-format` to format the added code
|
||||
- For anything not covered in the current guidelines, refer to the [C++ Core Guidelines](https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines)
|
||||
- Tensors store data in row-major order. We refer to dimension 0 as columns, 1 as rows, 2 as matrices
|
||||
- Matrix multiplication is unconventional: [`C = ggml_mul_mat(ctx, A, B)`](https://github.com/ggerganov/llama.cpp/blob/880e352277fc017df4d5794f0c21c44e1eae2b84/ggml.h#L1058-L1064) means $C^T = A B^T \Leftrightarrow C = B A^T.$
|
||||
|
||||

|
||||
|
||||
# Naming guidelines
|
||||
|
||||
- Use `snake_case` for function, variable and type names
|
||||
- Naming usually optimizes for longest common prefix (see https://github.com/ggerganov/ggml/pull/302#discussion_r1243240963)
|
||||
|
||||
```cpp
|
||||
// not OK
|
||||
int small_number;
|
||||
int big_number;
|
||||
|
||||
// OK
|
||||
int number_small;
|
||||
int number_big;
|
||||
```
|
||||
|
||||
- Enum values are always in upper case and prefixed with the enum name
|
||||
|
||||
```cpp
|
||||
enum llama_vocab_type {
|
||||
LLAMA_VOCAB_TYPE_NONE = 0,
|
||||
LLAMA_VOCAB_TYPE_SPM = 1,
|
||||
LLAMA_VOCAB_TYPE_BPE = 2,
|
||||
LLAMA_VOCAB_TYPE_WPM = 3,
|
||||
LLAMA_VOCAB_TYPE_UGM = 4,
|
||||
LLAMA_VOCAB_TYPE_RWKV = 5,
|
||||
};
|
||||
```
|
||||
|
||||
- The general naming pattern is `<class>_<method>`, with `<method>` being `<action>_<noun>`
|
||||
|
||||
```cpp
|
||||
llama_model_init(); // class: "llama_model", method: "init"
|
||||
llama_sampler_chain_remove(); // class: "llama_sampler_chain", method: "remove"
|
||||
llama_sampler_get_seed(); // class: "llama_sampler", method: "get_seed"
|
||||
llama_set_embeddings(); // class: "llama_context", method: "set_embeddings"
|
||||
llama_n_threads(); // class: "llama_context", method: "n_threads"
|
||||
llama_adapter_lora_free(); // class: "llama_adapter_lora", method: "free"
|
||||
```
|
||||
|
||||
- The `get` `<action>` can be omitted
|
||||
- The `<noun>` can be omitted if not necessary
|
||||
- The `_context` suffix of the `<class>` is optional. Use it to disambiguate symbols when needed
|
||||
- Use `init`/`free` for constructor/destructor `<action>`
|
||||
|
||||
- Use the `_t` suffix when a type is supposed to be opaque to the user - it's not relevant to them if it is a struct or anything else
|
||||
|
||||
```cpp
|
||||
typedef struct llama_context * llama_context_t;
|
||||
|
||||
enum llama_pooling_type llama_pooling_type(const llama_context_t ctx);
|
||||
```
|
||||
|
||||
_(NOTE: this guideline is yet to be applied to the `llama.cpp` codebase. New code should follow this guideline)_
|
||||
|
||||
- C/C++ filenames are all lowercase with dashes. Headers use the `.h` extension. Source files use the `.c` or `.cpp` extension
|
||||
- Python filenames are all lowercase with underscores
|
||||
|
||||
- _(TODO: abbreviations usage)_
|
||||
|
||||
# Preprocessor directives
|
||||
|
||||
- _(TODO: add guidelines with examples and apply them to the codebase)_
|
||||
|
||||
```cpp
|
||||
#ifdef FOO
|
||||
#endif // FOO
|
||||
```
|
||||
|
||||
# Documentation
|
||||
|
||||
- Documentation is a community effort
|
||||
- When you need to look into the source code to figure out how to use an API consider adding a short summary to the header file for future reference
|
||||
- When you notice incorrect or outdated documentation, please update it
|
||||
|
||||
# Resources
|
||||
|
||||
The Github issues, PRs and discussions contain a lot of information that can be useful to get familiar with the codebase. For convenience, some of the more important information is referenced from Github projects:
|
||||
|
||||
2
Makefile
2
Makefile
@@ -1361,7 +1361,9 @@ llama-server: \
|
||||
examples/server/httplib.h \
|
||||
examples/server/index.html.hpp \
|
||||
examples/server/loading.html.hpp \
|
||||
common/chat-template.hpp \
|
||||
common/json.hpp \
|
||||
common/minja.hpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h %.hpp $<,$^) -Iexamples/server $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(LWINSOCK2)
|
||||
|
||||
44
README.md
44
README.md
@@ -16,7 +16,10 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
|
||||
|
||||
## Hot topics
|
||||
|
||||
- **Introducing GGUF-my-LoRA** https://github.com/ggerganov/llama.cpp/discussions/10123
|
||||
- **How to use [MTLResidencySet](https://developer.apple.com/documentation/metal/mtlresidencyset?language=objc) to keep the GPU memory active?** https://github.com/ggerganov/llama.cpp/pull/11427
|
||||
- **VS Code extension for FIM completions:** https://github.com/ggml-org/llama.vscode
|
||||
- Vim/Neovim plugin for FIM completions: https://github.com/ggml-org/llama.vim
|
||||
- Introducing GGUF-my-LoRA https://github.com/ggerganov/llama.cpp/discussions/10123
|
||||
- Hugging Face Inference Endpoints now support GGUF out of the box! https://github.com/ggerganov/llama.cpp/discussions/9669
|
||||
- Hugging Face GGUF editor: [discussion](https://github.com/ggerganov/llama.cpp/discussions/9268) | [tool](https://huggingface.co/spaces/CISCai/gguf-editor)
|
||||
|
||||
@@ -204,6 +207,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
- [GPUStack](https://github.com/gpustack/gpustack) - Manage GPU clusters for running LLMs
|
||||
- [llama_cpp_canister](https://github.com/onicai/llama_cpp_canister) - llama.cpp as a smart contract on the Internet Computer, using WebAssembly
|
||||
- [llama-swap](https://github.com/mostlygeek/llama-swap) - transparent proxy that adds automatic model switching with llama-server
|
||||
- [Kalavai](https://github.com/kalavai-net/kalavai-client) - Crowdsource end to end LLM deployment at any scale
|
||||
|
||||
</details>
|
||||
|
||||
@@ -245,6 +249,8 @@ The [Hugging Face](https://huggingface.co) platform hosts a [number of LLMs](htt
|
||||
- [Trending](https://huggingface.co/models?library=gguf&sort=trending)
|
||||
- [LLaMA](https://huggingface.co/models?sort=trending&search=llama+gguf)
|
||||
|
||||
You can either manually download the GGUF file or directly use any `llama.cpp`-compatible models from Hugging Face by using this CLI argument: `-hf <user>/<model>[:quant]`
|
||||
|
||||
After downloading a model, use the CLI tools to run it locally - see below.
|
||||
|
||||
`llama.cpp` requires the model to be stored in the [GGUF](https://github.com/ggerganov/ggml/blob/master/docs/gguf.md) file format. Models in other data formats can be converted to GGUF using the `convert_*.py` Python scripts in this repo.
|
||||
@@ -263,21 +269,12 @@ To learn more about model quantization, [read this documentation](examples/quant
|
||||
#### A CLI tool for accessing and experimenting with most of `llama.cpp`'s functionality.
|
||||
|
||||
- <details open>
|
||||
<summary>Run simple text completion</summary>
|
||||
|
||||
```bash
|
||||
llama-cli -m model.gguf -p "I believe the meaning of life is" -n 128
|
||||
|
||||
# I believe the meaning of life is to find your own truth and to live in accordance with it. For me, this means being true to myself and following my passions, even if they don't align with societal expectations. I think that's what I love about yoga – it's not just a physical practice, but a spiritual one too. It's about connecting with yourself, listening to your inner voice, and honoring your own unique journey.
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
- <details>
|
||||
<summary>Run in conversation mode</summary>
|
||||
|
||||
Models with a built-in chat template will automatically activate conversation mode. If this doesn't occur, you can manually enable it by adding `-cnv` and specifying a suitable chat template with `--chat-template NAME`
|
||||
|
||||
```bash
|
||||
llama-cli -m model.gguf -p "You are a helpful assistant" -cnv
|
||||
llama-cli -m model.gguf
|
||||
|
||||
# > hi, who are you?
|
||||
# Hi there! I'm your helpful assistant! I'm an AI-powered chatbot designed to assist and provide information to users like you. I'm here to help answer your questions, provide guidance, and offer support on a wide range of topics. I'm a friendly and knowledgeable AI, and I'm always happy to help with anything you need. What's on your mind, and how can I assist you today?
|
||||
@@ -289,17 +286,28 @@ To learn more about model quantization, [read this documentation](examples/quant
|
||||
</details>
|
||||
|
||||
- <details>
|
||||
<summary>Run with custom chat template</summary>
|
||||
<summary>Run in conversation mode with custom chat template</summary>
|
||||
|
||||
```bash
|
||||
# use the "chatml" template
|
||||
llama-cli -m model.gguf -p "You are a helpful assistant" -cnv --chat-template chatml
|
||||
# use the "chatml" template (use -h to see the list of supported templates)
|
||||
llama-cli -m model.gguf -cnv --chat-template chatml
|
||||
|
||||
# use a custom template
|
||||
llama-cli -m model.gguf -p "You are a helpful assistant" -cnv --in-prefix 'User: ' --reverse-prompt 'User:'
|
||||
llama-cli -m model.gguf -cnv --in-prefix 'User: ' --reverse-prompt 'User:'
|
||||
```
|
||||
|
||||
[Supported templates](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template)
|
||||
</details>
|
||||
|
||||
- <details>
|
||||
<summary>Run simple text completion</summary>
|
||||
|
||||
To disable conversation mode explicitly, use `-no-cnv`
|
||||
|
||||
```bash
|
||||
llama-cli -m model.gguf -p "I believe the meaning of life is" -n 128 -no-cnv
|
||||
|
||||
# I believe the meaning of life is to find your own truth and to live in accordance with it. For me, this means being true to myself and following my passions, even if they don't align with societal expectations. I think that's what I love about yoga – it's not just a physical practice, but a spiritual one too. It's about connecting with yourself, listening to your inner voice, and honoring your own unique journey.
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
|
||||
66
ci/run.sh
66
ci/run.sh
@@ -326,17 +326,17 @@ function gg_run_open_llama_7b_v2 {
|
||||
./bin/llama-quantize ${model_f16} ${model_q5_k} q5_k
|
||||
./bin/llama-quantize ${model_f16} ${model_q6_k} q6_k
|
||||
|
||||
(time ./bin/llama-cli --model ${model_f16} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/llama-cli --model ${model_q8_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/llama-cli --model ${model_q4_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/llama-cli --model ${model_q4_1} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/llama-cli --model ${model_q5_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/llama-cli --model ${model_q5_1} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/llama-cli --model ${model_q2_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/llama-cli --model ${model_q3_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/llama-cli --model ${model_q4_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/llama-cli --model ${model_q5_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/llama-cli --model ${model_q6_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
(time ./bin/llama-cli -no-cnv --model ${model_f16} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/llama-cli -no-cnv --model ${model_q8_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/llama-cli -no-cnv --model ${model_q4_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/llama-cli -no-cnv --model ${model_q4_1} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/llama-cli -no-cnv --model ${model_q5_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/llama-cli -no-cnv --model ${model_q5_1} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/llama-cli -no-cnv --model ${model_q2_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/llama-cli -no-cnv --model ${model_q3_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/llama-cli -no-cnv --model ${model_q4_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/llama-cli -no-cnv --model ${model_q5_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/llama-cli -no-cnv --model ${model_q6_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
|
||||
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
@@ -460,17 +460,17 @@ function gg_run_pythia_1_4b {
|
||||
./bin/llama-quantize ${model_f16} ${model_q5_k} q5_k
|
||||
./bin/llama-quantize ${model_f16} ${model_q6_k} q6_k
|
||||
|
||||
(time ./bin/llama-cli --model ${model_f16} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/llama-cli --model ${model_q8_0} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/llama-cli --model ${model_q4_0} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/llama-cli --model ${model_q4_1} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/llama-cli --model ${model_q5_0} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/llama-cli --model ${model_q5_1} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/llama-cli --model ${model_q2_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/llama-cli --model ${model_q3_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/llama-cli --model ${model_q4_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/llama-cli --model ${model_q5_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/llama-cli --model ${model_q6_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
(time ./bin/llama-cli -no-cnv --model ${model_f16} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/llama-cli -no-cnv --model ${model_q8_0} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/llama-cli -no-cnv --model ${model_q4_0} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/llama-cli -no-cnv --model ${model_q4_1} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/llama-cli -no-cnv --model ${model_q5_0} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/llama-cli -no-cnv --model ${model_q5_1} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/llama-cli -no-cnv --model ${model_q2_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/llama-cli -no-cnv --model ${model_q3_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/llama-cli -no-cnv --model ${model_q4_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/llama-cli -no-cnv --model ${model_q5_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/llama-cli -no-cnv --model ${model_q6_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
|
||||
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
@@ -591,17 +591,17 @@ function gg_run_pythia_2_8b {
|
||||
./bin/llama-quantize ${model_f16} ${model_q5_k} q5_k
|
||||
./bin/llama-quantize ${model_f16} ${model_q6_k} q6_k
|
||||
|
||||
(time ./bin/llama-cli --model ${model_f16} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/llama-cli --model ${model_q8_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/llama-cli --model ${model_q4_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/llama-cli --model ${model_q4_1} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/llama-cli --model ${model_q5_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/llama-cli --model ${model_q5_1} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/llama-cli --model ${model_q2_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/llama-cli --model ${model_q3_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/llama-cli --model ${model_q4_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/llama-cli --model ${model_q5_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/llama-cli --model ${model_q6_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
(time ./bin/llama-cli -no-cnv --model ${model_f16} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/llama-cli -no-cnv --model ${model_q8_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/llama-cli -no-cnv --model ${model_q4_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/llama-cli -no-cnv --model ${model_q4_1} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/llama-cli -no-cnv --model ${model_q5_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/llama-cli -no-cnv --model ${model_q5_1} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/llama-cli -no-cnv --model ${model_q2_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/llama-cli -no-cnv --model ${model_q3_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/llama-cli -no-cnv --model ${model_q4_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/llama-cli -no-cnv --model ${model_q5_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/llama-cli -no-cnv --model ${model_q6_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
|
||||
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
|
||||
@@ -44,7 +44,7 @@ if(MSVC)
|
||||
set(BUILD_TARGET ${CMAKE_VS_PLATFORM_NAME})
|
||||
else()
|
||||
execute_process(
|
||||
COMMAND sh -c "$@ --version | head -1" _ ${CMAKE_C_COMPILER}
|
||||
COMMAND sh -c "\"$@\" --version | head -1" _ ${CMAKE_C_COMPILER}
|
||||
OUTPUT_VARIABLE OUT
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE
|
||||
)
|
||||
|
||||
@@ -3,159 +3,13 @@ set(LLAMA_BUILD_COMMIT @LLAMA_BUILD_COMMIT@)
|
||||
set(LLAMA_BUILD_NUMBER @LLAMA_BUILD_NUMBER@)
|
||||
set(LLAMA_SHARED_LIB @BUILD_SHARED_LIBS@)
|
||||
|
||||
set(GGML_STATIC @GGML_STATIC@)
|
||||
set(GGML_NATIVE @GGML_NATIVE@)
|
||||
set(GGML_LTO @GGML_LTO@)
|
||||
set(GGML_CCACHE @GGML_CCACHE@)
|
||||
set(GGML_AVX @GGML_AVX@)
|
||||
set(GGML_AVX2 @GGML_AVX2@)
|
||||
set(GGML_AVX512 @GGML_AVX512@)
|
||||
set(GGML_AVX512_VBMI @GGML_AVX512_VBMI@)
|
||||
set(GGML_AVX512_VNNI @GGML_AVX512_VNNI@)
|
||||
set(GGML_AVX512_BF16 @GGML_AVX512_BF16@)
|
||||
set(GGML_AMX_TILE @GGML_AMX_TILE@)
|
||||
set(GGML_AMX_INT8 @GGML_AMX_INT8@)
|
||||
set(GGML_AMX_BF16 @GGML_AMX_BF16@)
|
||||
set(GGML_FMA @GGML_FMA@)
|
||||
set(GGML_LASX @GGML_LASX@)
|
||||
set(GGML_LSX @GGML_LSX@)
|
||||
set(GGML_RVV @GGML_RVV@)
|
||||
set(GGML_SVE @GGML_SVE@)
|
||||
|
||||
set(GGML_ACCELERATE @GGML_ACCELERATE@)
|
||||
set(GGML_OPENMP @GGML_OPENMP@)
|
||||
set(GGML_CPU_HBM @GGML_CPU_HBM@)
|
||||
set(GGML_BLAS_VENDOR @GGML_BLAS_VENDOR@)
|
||||
|
||||
set(GGML_CUDA_FORCE_MMQ @GGML_CUDA_FORCE_MMQ@)
|
||||
set(GGML_CUDA_FORCE_CUBLAS @GGML_CUDA_FORCE_CUBLAS@)
|
||||
set(GGML_CUDA_F16 @GGML_CUDA_F16@)
|
||||
set(GGML_CUDA_PEER_MAX_BATCH_SIZE @GGML_CUDA_PEER_MAX_BATCH_SIZE@)
|
||||
set(GGML_CUDA_NO_PEER_COPY @GGML_CUDA_NO_PEER_COPY@)
|
||||
set(GGML_CUDA_NO_VMM @GGML_CUDA_NO_VMM@)
|
||||
set(GGML_CUDA_FA_ALL_QUANTS @GGML_CUDA_FA_ALL_QUANTS@)
|
||||
set(GGML_CUDA_GRAPHS @GGML_CUDA_GRAPHS@)
|
||||
|
||||
set(GGML_HIP_UMA @GGML_HIP_UMA@)
|
||||
|
||||
set(GGML_VULKAN_CHECK_RESULTS @GGML_VULKAN_CHECK_RESULTS@)
|
||||
set(GGML_VULKAN_DEBUG @GGML_VULKAN_DEBUG@)
|
||||
set(GGML_VULKAN_MEMORY_DEBUG @GGML_VULKAN_MEMORY_DEBUG@)
|
||||
set(GGML_VULKAN_SHADER_DEBUG_INFO @GGML_VULKAN_SHADER_DEBUG_INFO@)
|
||||
set(GGML_VULKAN_PERF @GGML_VULKAN_PERF@)
|
||||
set(GGML_VULKAN_VALIDATE @GGML_VULKAN_VALIDATE@)
|
||||
set(GGML_VULKAN_RUN_TESTS @GGML_VULKAN_RUN_TESTS@)
|
||||
|
||||
set(GGML_METAL_USE_BF16 @GGML_METAL_USE_BF16@)
|
||||
set(GGML_METAL_NDEBUG @GGML_METAL_NDEBUG@)
|
||||
set(GGML_METAL_SHADER_DEBUG @GGML_METAL_SHADER_DEBUG@)
|
||||
set(GGML_METAL_EMBED_LIBRARY @GGML_METAL_EMBED_LIBRARY@)
|
||||
set(GGML_METAL_MACOSX_VERSION_MIN @GGML_METAL_MACOSX_VERSION_MIN@)
|
||||
set(GGML_METAL_STD @GGML_METAL_STD@)
|
||||
|
||||
set(GGML_SYCL_F16 @GGML_SYCL_F16@)
|
||||
set(GGML_SYCL_TARGET @GGML_SYCL_TARGET@)
|
||||
set(GGML_SYCL_DEVICE_ARCH @GGML_SYCL_DEVICE_ARCH@)
|
||||
|
||||
|
||||
@PACKAGE_INIT@
|
||||
|
||||
set_and_check(LLAMA_INCLUDE_DIR "@PACKAGE_LLAMA_INCLUDE_INSTALL_DIR@")
|
||||
set_and_check(LLAMA_LIB_DIR "@PACKAGE_LLAMA_LIB_INSTALL_DIR@")
|
||||
set_and_check(LLAMA_BIN_DIR "@PACKAGE_LLAMA_BIN_INSTALL_DIR@")
|
||||
|
||||
find_package(Threads REQUIRED)
|
||||
|
||||
set(_llama_transient_defines "@GGML_TRANSIENT_DEFINES@")
|
||||
set(_llama_link_deps "")
|
||||
set(_llama_link_opts "")
|
||||
foreach(_ggml_lib ggml ggml-base)
|
||||
string(REPLACE "-" "_" _ggml_lib_var "${_ggml_lib}_LIBRARY")
|
||||
find_library(${_ggml_lib_var} ${_ggml_lib}
|
||||
REQUIRED
|
||||
HINTS ${LLAMA_LIB_DIR}
|
||||
NO_CMAKE_FIND_ROOT_PATH
|
||||
)
|
||||
list(APPEND _llama_link_deps "${${_ggml_lib_var}}")
|
||||
message(STATUS "Found ${${_ggml_lib_var}}")
|
||||
endforeach()
|
||||
|
||||
foreach(backend amx blas cann cpu cuda hip kompute metal musa rpc sycl vulkan)
|
||||
string(TOUPPER "GGML_${backend}" backend_id)
|
||||
set(_ggml_lib "ggml-${backend}")
|
||||
string(REPLACE "-" "_" _ggml_lib_var "${_ggml_lib}_LIBRARY")
|
||||
|
||||
find_library(${_ggml_lib_var} ${_ggml_lib}
|
||||
HINTS ${LLAMA_LIB_DIR}
|
||||
NO_CMAKE_FIND_ROOT_PATH
|
||||
)
|
||||
if(${_ggml_lib_var})
|
||||
list(APPEND _llama_link_deps "${${_ggml_lib_var}}")
|
||||
set(${backend_id} ON)
|
||||
message(STATUS "Found backend ${${_ggml_lib_var}}")
|
||||
else()
|
||||
set(${backend_id} OFF)
|
||||
endif()
|
||||
endforeach()
|
||||
|
||||
if (NOT LLAMA_SHARED_LIB)
|
||||
if (APPLE AND GGML_ACCELERATE)
|
||||
find_library(ACCELERATE_FRAMEWORK Accelerate REQUIRED)
|
||||
list(APPEND _llama_link_deps ${ACCELERATE_FRAMEWORK})
|
||||
endif()
|
||||
|
||||
if (GGML_OPENMP)
|
||||
find_package(OpenMP REQUIRED)
|
||||
list(APPEND _llama_link_deps OpenMP::OpenMP_C OpenMP::OpenMP_CXX)
|
||||
endif()
|
||||
|
||||
if (GGML_CPU_HBM)
|
||||
find_library(memkind memkind REQUIRED)
|
||||
list(APPEND _llama_link_deps memkind)
|
||||
endif()
|
||||
|
||||
if (GGML_BLAS)
|
||||
find_package(BLAS REQUIRED)
|
||||
list(APPEND _llama_link_deps ${BLAS_LIBRARIES})
|
||||
list(APPEND _llama_link_opts ${BLAS_LINKER_FLAGS})
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA)
|
||||
find_package(CUDAToolkit REQUIRED)
|
||||
endif()
|
||||
|
||||
if (GGML_METAL)
|
||||
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
|
||||
find_library(METAL_FRAMEWORK Metal REQUIRED)
|
||||
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
|
||||
list(APPEND _llama_link_deps ${FOUNDATION_LIBRARY}
|
||||
${METAL_FRAMEWORK} ${METALKIT_FRAMEWORK})
|
||||
endif()
|
||||
|
||||
if (GGML_VULKAN)
|
||||
find_package(Vulkan REQUIRED)
|
||||
list(APPEND _llama_link_deps Vulkan::Vulkan)
|
||||
endif()
|
||||
|
||||
if (GGML_HIP)
|
||||
find_package(hip REQUIRED)
|
||||
find_package(hipblas REQUIRED)
|
||||
find_package(rocblas REQUIRED)
|
||||
list(APPEND _llama_link_deps hip::host roc::rocblas roc::hipblas)
|
||||
endif()
|
||||
|
||||
if (GGML_SYCL)
|
||||
find_package(DNNL)
|
||||
if (${DNNL_FOUND} AND GGML_SYCL_TARGET STREQUAL "INTEL")
|
||||
list(APPEND _llama_link_deps DNNL::dnnl)
|
||||
endif()
|
||||
if (WIN32)
|
||||
find_package(IntelSYCL REQUIRED)
|
||||
find_package(MKL REQUIRED)
|
||||
list(APPEND _llama_link_deps IntelSYCL::SYCL_CXX MKL::MKL MKL::MKL_SYCL)
|
||||
endif()
|
||||
endif()
|
||||
endif()
|
||||
find_package(ggml REQUIRED HINTS ${LLAMA_LIB_DIR}/cmake)
|
||||
|
||||
find_library(llama_LIBRARY llama
|
||||
REQUIRED
|
||||
@@ -167,12 +21,10 @@ add_library(llama UNKNOWN IMPORTED)
|
||||
set_target_properties(llama
|
||||
PROPERTIES
|
||||
INTERFACE_INCLUDE_DIRECTORIES "${LLAMA_INCLUDE_DIR}"
|
||||
INTERFACE_LINK_LIBRARIES "${_llama_link_deps}"
|
||||
INTERFACE_LINK_OPTIONS "${_llama_link_opts}"
|
||||
INTERFACE_COMPILE_DEFINITIONS "${_llama_transient_defines}"
|
||||
INTERFACE_LINK_LIBRARIES "ggml::ggml;ggml::ggml-base;"
|
||||
IMPORTED_LINK_INTERFACE_LANGUAGES "CXX"
|
||||
IMPORTED_LOCATION "${llama_LIBRARY}"
|
||||
INTERFACE_COMPILE_FEATURES cxx_std_11
|
||||
POSITION_INDEPENDENT_CODE ON )
|
||||
INTERFACE_COMPILE_FEATURES c_std_90
|
||||
POSITION_INDEPENDENT_CODE ON)
|
||||
|
||||
check_required_components(Llama)
|
||||
|
||||
@@ -56,6 +56,7 @@ add_library(${TARGET} STATIC
|
||||
arg.cpp
|
||||
arg.h
|
||||
base64.hpp
|
||||
chat-template.hpp
|
||||
common.cpp
|
||||
common.h
|
||||
console.cpp
|
||||
@@ -64,6 +65,7 @@ add_library(${TARGET} STATIC
|
||||
json.hpp
|
||||
log.cpp
|
||||
log.h
|
||||
minja.hpp
|
||||
ngram-cache.cpp
|
||||
ngram-cache.h
|
||||
sampling.cpp
|
||||
|
||||
142
common/arg.cpp
142
common/arg.cpp
@@ -130,17 +130,27 @@ std::string common_arg::to_string() {
|
||||
|
||||
static void common_params_handle_model_default(
|
||||
std::string & model,
|
||||
std::string & model_url,
|
||||
const std::string & model_url,
|
||||
std::string & hf_repo,
|
||||
std::string & hf_file) {
|
||||
std::string & hf_file,
|
||||
const std::string & hf_token,
|
||||
const std::string & model_default) {
|
||||
if (!hf_repo.empty()) {
|
||||
// short-hand to avoid specifying --hf-file -> default it to --model
|
||||
if (hf_file.empty()) {
|
||||
if (model.empty()) {
|
||||
throw std::invalid_argument("error: --hf-repo requires either --hf-file or --model\n");
|
||||
auto auto_detected = common_get_hf_file(hf_repo, hf_token);
|
||||
if (auto_detected.first.empty() || auto_detected.second.empty()) {
|
||||
exit(1); // built without CURL, error message already printed
|
||||
}
|
||||
hf_repo = auto_detected.first;
|
||||
hf_file = auto_detected.second;
|
||||
} else {
|
||||
hf_file = model;
|
||||
}
|
||||
hf_file = model;
|
||||
} else if (model.empty()) {
|
||||
}
|
||||
// make sure model path is present (for caching purposes)
|
||||
if (model.empty()) {
|
||||
// this is to avoid different repo having same file name, or same file name in different subdirs
|
||||
std::string filename = hf_repo + "_" + hf_file;
|
||||
// to make sure we don't have any slashes in the filename
|
||||
@@ -154,7 +164,7 @@ static void common_params_handle_model_default(
|
||||
model = fs_get_cache_file(string_split<std::string>(f, '/').back());
|
||||
}
|
||||
} else if (model.empty()) {
|
||||
model = DEFAULT_MODEL_PATH;
|
||||
model = model_default;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -290,8 +300,9 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
|
||||
}
|
||||
|
||||
// TODO: refactor model params in a common struct
|
||||
common_params_handle_model_default(params.model, params.model_url, params.hf_repo, params.hf_file);
|
||||
common_params_handle_model_default(params.vocoder.model, params.vocoder.model_url, params.vocoder.hf_repo, params.vocoder.hf_file);
|
||||
common_params_handle_model_default(params.model, params.model_url, params.hf_repo, params.hf_file, params.hf_token, DEFAULT_MODEL_PATH);
|
||||
common_params_handle_model_default(params.speculative.model, params.speculative.model_url, params.speculative.hf_repo, params.speculative.hf_file, params.hf_token, "");
|
||||
common_params_handle_model_default(params.vocoder.model, params.vocoder.model_url, params.vocoder.hf_repo, params.vocoder.hf_file, params.hf_token, "");
|
||||
|
||||
if (params.escape) {
|
||||
string_process_escapes(params.prompt);
|
||||
@@ -314,6 +325,14 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
|
||||
throw std::invalid_argument("error: either --embedding or --reranking can be specified, but not both");
|
||||
}
|
||||
|
||||
if (!params.chat_template.empty() && !common_chat_verify_template(params.chat_template, params.use_jinja)) {
|
||||
throw std::runtime_error(string_format(
|
||||
"error: the supplied chat template is not supported: %s%s\n",
|
||||
params.chat_template.c_str(),
|
||||
params.use_jinja ? "" : "\nnote: llama.cpp was started without --jinja, we only support commonly used templates"
|
||||
));
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
@@ -367,6 +386,30 @@ static std::vector<ggml_backend_dev_t> parse_device_list(const std::string & val
|
||||
return devices;
|
||||
}
|
||||
|
||||
static void add_rpc_devices(std::string servers) {
|
||||
auto rpc_servers = string_split<std::string>(servers, ',');
|
||||
if (rpc_servers.empty()) {
|
||||
throw std::invalid_argument("no RPC servers specified");
|
||||
}
|
||||
ggml_backend_reg_t rpc_reg = ggml_backend_reg_by_name("RPC");
|
||||
if (!rpc_reg) {
|
||||
throw std::invalid_argument("failed to find RPC backend");
|
||||
}
|
||||
typedef ggml_backend_dev_t (*ggml_backend_rpc_add_device_t)(const char * endpoint);
|
||||
ggml_backend_rpc_add_device_t ggml_backend_rpc_add_device_fn = (ggml_backend_rpc_add_device_t) ggml_backend_reg_get_proc_address(rpc_reg, "ggml_backend_rpc_add_device");
|
||||
if (!ggml_backend_rpc_add_device_fn) {
|
||||
throw std::invalid_argument("failed to find RPC device add function");
|
||||
}
|
||||
for (const auto & server : rpc_servers) {
|
||||
ggml_backend_dev_t dev = ggml_backend_rpc_add_device_fn(server.c_str());
|
||||
if (dev) {
|
||||
ggml_backend_device_register(dev);
|
||||
} else {
|
||||
throw std::invalid_argument("failed to register RPC device");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bool common_params_parse(int argc, char ** argv, common_params & params, llama_example ex, void(*print_usage)(int, char **)) {
|
||||
auto ctx_arg = common_params_parser_init(params, ex, print_usage);
|
||||
const common_params params_org = ctx_arg.params; // the example can modify the default params
|
||||
@@ -768,15 +811,19 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}));
|
||||
add_opt(common_arg(
|
||||
{"-cnv", "--conversation"},
|
||||
string_format(
|
||||
"run in conversation mode:\n"
|
||||
"- does not print special tokens and suffix/prefix\n"
|
||||
"- interactive mode is also enabled\n"
|
||||
"(default: %s)",
|
||||
params.conversation ? "true" : "false"
|
||||
),
|
||||
"run in conversation mode:\n"
|
||||
"- does not print special tokens and suffix/prefix\n"
|
||||
"- interactive mode is also enabled\n"
|
||||
"(default: auto enabled if chat template is available)",
|
||||
[](common_params & params) {
|
||||
params.conversation = true;
|
||||
params.conversation_mode = COMMON_CONVERSATION_MODE_ENABLED;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN}));
|
||||
add_opt(common_arg(
|
||||
{"-no-cnv", "--no-conversation"},
|
||||
"force disable conversation mode (default: false)",
|
||||
[](common_params & params) {
|
||||
params.conversation_mode = COMMON_CONVERSATION_MODE_DISABLED;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN}));
|
||||
add_opt(common_arg(
|
||||
@@ -830,7 +877,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
[](common_params & params) {
|
||||
params.warmup = false;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}));
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_EMBEDDING}));
|
||||
add_opt(common_arg(
|
||||
{"--spm-infill"},
|
||||
string_format(
|
||||
@@ -1372,7 +1419,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
{"--rpc"}, "SERVERS",
|
||||
"comma separated list of RPC servers",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.rpc_servers = value;
|
||||
add_rpc_devices(value);
|
||||
GGML_UNUSED(params);
|
||||
}
|
||||
).set_env("LLAMA_ARG_RPC"));
|
||||
}
|
||||
@@ -1583,21 +1631,30 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
}
|
||||
).set_env("LLAMA_ARG_MODEL_URL"));
|
||||
add_opt(common_arg(
|
||||
{"-hfr", "--hf-repo"}, "REPO",
|
||||
"Hugging Face model repository (default: unused)",
|
||||
{"-hf", "-hfr", "--hf-repo"}, "<user>/<model>[:quant]",
|
||||
"Hugging Face model repository; quant is optional, case-insensitive, default to Q4_K_M, or falls back to the first file in the repo if Q4_K_M doesn't exist.\n"
|
||||
"example: unsloth/phi-4-GGUF:q4_k_m\n"
|
||||
"(default: unused)",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.hf_repo = value;
|
||||
}
|
||||
).set_env("LLAMA_ARG_HF_REPO"));
|
||||
add_opt(common_arg(
|
||||
{"-hfd", "-hfrd", "--hf-repo-draft"}, "<user>/<model>[:quant]",
|
||||
"Same as --hf-repo, but for the draft model (default: unused)",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.speculative.hf_repo = value;
|
||||
}
|
||||
).set_env("LLAMA_ARG_HFD_REPO"));
|
||||
add_opt(common_arg(
|
||||
{"-hff", "--hf-file"}, "FILE",
|
||||
"Hugging Face model file (default: unused)",
|
||||
"Hugging Face model file. If specified, it will override the quant in --hf-repo (default: unused)",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.hf_file = value;
|
||||
}
|
||||
).set_env("LLAMA_ARG_HF_FILE"));
|
||||
add_opt(common_arg(
|
||||
{"-hfrv", "--hf-repo-v"}, "REPO",
|
||||
{"-hfv", "-hfrv", "--hf-repo-v"}, "<user>/<model>[:quant]",
|
||||
"Hugging Face model repository for the vocoder model (default: unused)",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.vocoder.hf_repo = value;
|
||||
@@ -1898,24 +1955,44 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
}
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}));
|
||||
add_opt(common_arg(
|
||||
{"--jinja"},
|
||||
"use jinja template for chat (default: disabled)",
|
||||
[](common_params & params) {
|
||||
params.use_jinja = true;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN}).set_env("LLAMA_ARG_JINJA"));
|
||||
add_opt(common_arg(
|
||||
{"--chat-template"}, "JINJA_TEMPLATE",
|
||||
string_format(
|
||||
"set custom jinja chat template (default: template taken from model's metadata)\n"
|
||||
"if suffix/prefix are specified, template will be disabled\n"
|
||||
"only commonly used templates are accepted (unless --jinja is set before this flag):\n"
|
||||
"list of built-in templates:\n%s", list_builtin_chat_templates().c_str()
|
||||
),
|
||||
[](common_params & params, const std::string & value) {
|
||||
if (!common_chat_verify_template(value)) {
|
||||
throw std::runtime_error(string_format(
|
||||
"error: the supplied chat template is not supported: %s\n"
|
||||
"note: llama.cpp does not use jinja parser, we only support commonly used templates\n",
|
||||
value.c_str()
|
||||
));
|
||||
}
|
||||
params.chat_template = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CHAT_TEMPLATE"));
|
||||
add_opt(common_arg(
|
||||
{"--chat-template-file"}, "JINJA_TEMPLATE_FILE",
|
||||
string_format(
|
||||
"set custom jinja chat template file (default: template taken from model's metadata)\n"
|
||||
"if suffix/prefix are specified, template will be disabled\n"
|
||||
"only commonly used templates are accepted (unless --jinja is set before this flag):\n"
|
||||
"list of built-in templates:\n%s", list_builtin_chat_templates().c_str()
|
||||
),
|
||||
[](common_params & params, const std::string & value) {
|
||||
std::ifstream file(value);
|
||||
if (!file) {
|
||||
throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
|
||||
}
|
||||
std::copy(
|
||||
std::istreambuf_iterator<char>(file),
|
||||
std::istreambuf_iterator<char>(),
|
||||
std::back_inserter(params.chat_template));
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CHAT_TEMPLATE_FILE"));
|
||||
add_opt(common_arg(
|
||||
{"-sps", "--slot-prompt-similarity"}, "SIMILARITY",
|
||||
string_format("how much the prompt of a request must match the prompt of a slot in order to use that slot (default: %.2f, 0.0 = disabled)\n", params.slot_prompt_similarity),
|
||||
@@ -2214,6 +2291,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
params.vocoder.model = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_SERVER}));
|
||||
add_opt(common_arg(
|
||||
{"--tts-use-guide-tokens"},
|
||||
"Use guide tokens to improve TTS word recall",
|
||||
[](common_params & params) {
|
||||
params.vocoder.use_guide_tokens = true;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_SERVER}));
|
||||
|
||||
// model-specific
|
||||
add_opt(common_arg(
|
||||
|
||||
268
common/chat-template.hpp
Normal file
268
common/chat-template.hpp
Normal file
@@ -0,0 +1,268 @@
|
||||
/*
|
||||
Copyright 2024 Google LLC
|
||||
|
||||
Use of this source code is governed by an MIT-style
|
||||
license that can be found in the LICENSE file or at
|
||||
https://opensource.org/licenses/MIT.
|
||||
*/
|
||||
// SPDX-License-Identifier: MIT
|
||||
#pragma once
|
||||
|
||||
#include "minja.hpp"
|
||||
#include <json.hpp>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
using json = nlohmann::ordered_json;
|
||||
|
||||
namespace minja {
|
||||
|
||||
class chat_template {
|
||||
public:
|
||||
|
||||
private:
|
||||
bool supports_tools_ = true;
|
||||
// Meta-Llama-3.1-8B-Instruct's template expects arguments to be an object.
|
||||
// Most other templates (and OpenAI's API) expect the arguments object to be stringified.
|
||||
bool requires_object_arguments_ = false;
|
||||
bool requires_typed_content_ = false;
|
||||
bool supports_system_role_ = true;
|
||||
bool supports_parallel_tool_calls_ = false;
|
||||
std::string source_;
|
||||
std::string bos_token_;
|
||||
std::string eos_token_;
|
||||
std::shared_ptr<minja::TemplateNode> template_root_;
|
||||
|
||||
std::string try_raw_render(
|
||||
const nlohmann::ordered_json & messages,
|
||||
const nlohmann::ordered_json & tools,
|
||||
bool add_generation_prompt,
|
||||
const nlohmann::ordered_json & extra_context = nlohmann::ordered_json()) const
|
||||
{
|
||||
try {
|
||||
auto prompt = apply(messages, tools, add_generation_prompt, extra_context, /* adjust_inputs= */ false);
|
||||
// fprintf(stderr, "Prompt: %s\n", prompt.c_str());
|
||||
return prompt;
|
||||
} catch (const std::exception & e) {
|
||||
// fprintf(stderr, "Error: %s\n", e.what());
|
||||
return "";
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
chat_template(const std::string & source, const std::string & bos_token, const std::string & eos_token)
|
||||
: source_(source), bos_token_(bos_token), eos_token_(eos_token)
|
||||
{
|
||||
template_root_ = minja::Parser::parse(source_, {
|
||||
/* .trim_blocks = */ true,
|
||||
/* .lstrip_blocks = */ true,
|
||||
/* .keep_trailing_newline = */ false,
|
||||
});
|
||||
supports_tools_ = source.find("tools") != std::string::npos;
|
||||
|
||||
auto renders_string_arguments =
|
||||
try_raw_render({
|
||||
{
|
||||
{"role", "user"},
|
||||
{"content", "Hey"}
|
||||
},
|
||||
{
|
||||
{"role", "assistant"},
|
||||
{"tool_calls", json::array({
|
||||
{
|
||||
{"id", "call_1___"},
|
||||
{"type", "function"},
|
||||
{"function", {
|
||||
{"arguments", "{\"code\": \"print('Hello, World!')\"}"},
|
||||
{"name", "ipython"},
|
||||
}},
|
||||
},
|
||||
})},
|
||||
}
|
||||
}, {}, false).find("{\"code\": \"print") != std::string::npos;
|
||||
if (!renders_string_arguments) {
|
||||
auto renders_object_arguments =
|
||||
try_raw_render({
|
||||
{
|
||||
{"role", "user"},
|
||||
{"content", "Hey"}
|
||||
},
|
||||
{
|
||||
{"role", "assistant"},
|
||||
{"tool_calls", json::array({
|
||||
{
|
||||
{"id", "call_1___"},
|
||||
{"type", "function"},
|
||||
{"function", {
|
||||
{"arguments", {
|
||||
{"code", "print('Hello, World!')"},
|
||||
}},
|
||||
{"name", "ipython"},
|
||||
}},
|
||||
},
|
||||
})},
|
||||
}
|
||||
}, {}, false).find("{\"code\": \"print") != std::string::npos;
|
||||
requires_object_arguments_ = renders_object_arguments;
|
||||
}
|
||||
supports_parallel_tool_calls_ = source.find("tool_call_id") != std::string::npos;
|
||||
|
||||
supports_system_role_ = try_raw_render({
|
||||
{{"role", "system"}, {"content", "<System Needle>"}},
|
||||
{{"role", "user"}, {"content", "Hey"}}
|
||||
}, {}, false).find("<System Needle>") != std::string::npos;
|
||||
|
||||
requires_typed_content_ = try_raw_render({{{"role", "user"}, {"content", "Hey"}}}, {}, false).find("Hey") == std::string::npos
|
||||
&& try_raw_render({{{"role", "user"}, {"content", {{{"type", "text"}, {"text", "Hey"}}}}}}, {}, false).find("Hey") != std::string::npos;
|
||||
}
|
||||
|
||||
const std::string & source() const { return source_; }
|
||||
const std::string & bos_token() const { return bos_token_; }
|
||||
const std::string & eos_token() const { return eos_token_; }
|
||||
bool supports_tools() const { return supports_tools_; }
|
||||
bool supports_parallel_tool_calls() const { return supports_parallel_tool_calls_; }
|
||||
|
||||
std::string apply(
|
||||
const nlohmann::ordered_json & messages,
|
||||
const nlohmann::ordered_json & tools,
|
||||
bool add_generation_prompt,
|
||||
const nlohmann::ordered_json & extra_context = nlohmann::ordered_json(),
|
||||
bool adjust_inputs = true) const
|
||||
{
|
||||
json actual_messages;
|
||||
|
||||
// First, "fix" messages so they have a chance to be rendered correctly by the template
|
||||
|
||||
if (adjust_inputs && (requires_object_arguments_ || !supports_system_role_ || !supports_tools_ || requires_typed_content_)) {
|
||||
actual_messages = json::array();
|
||||
|
||||
auto add_message = [&](const json & msg) {
|
||||
if (requires_typed_content_ && msg.contains("content") && !msg.at("content").is_null() && msg.at("content").is_string()) {
|
||||
actual_messages.push_back({
|
||||
{"role", msg.at("role")},
|
||||
{"content", {{
|
||||
{"type", "text"},
|
||||
{"text", msg.at("content")},
|
||||
}}},
|
||||
});
|
||||
} else {
|
||||
actual_messages.push_back(msg);
|
||||
}
|
||||
};
|
||||
|
||||
std::string pending_system;
|
||||
auto flush_sys = [&]() {
|
||||
if (!pending_system.empty()) {
|
||||
add_message({
|
||||
{"role", "user"},
|
||||
{"content", pending_system},
|
||||
});
|
||||
pending_system.clear();
|
||||
}
|
||||
};
|
||||
for (const auto & message_ : messages) {
|
||||
auto message = message_;
|
||||
if (!message.contains("role") || !message.contains("content")) {
|
||||
throw std::runtime_error("message must have 'role' and 'content' fields: " + message.dump());
|
||||
}
|
||||
std::string role = message.at("role");
|
||||
|
||||
if (message.contains("tool_calls")) {
|
||||
if (requires_object_arguments_ || !supports_tools_) {
|
||||
for (auto & tool_call : message.at("tool_calls")) {
|
||||
if (tool_call["type"] == "function") {
|
||||
auto & function = tool_call.at("function");
|
||||
std::string arguments = function.at("arguments");
|
||||
function["arguments"] = json::parse(arguments);
|
||||
}
|
||||
}
|
||||
}
|
||||
if (!supports_tools_) {
|
||||
auto content = message.at("content");
|
||||
auto tool_calls = json::array();
|
||||
for (const auto & tool_call : message.at("tool_calls")) {
|
||||
if (tool_call.at("type") != "function") {
|
||||
continue;
|
||||
}
|
||||
const auto & function = tool_call.at("function");
|
||||
auto tc = json {
|
||||
{"name", function.at("name")},
|
||||
{"arguments", function.at("arguments")},
|
||||
};
|
||||
if (tool_call.contains("id")) {
|
||||
tc["id"] = tool_call["id"];
|
||||
}
|
||||
tool_calls.push_back(tc);
|
||||
}
|
||||
auto obj = json {
|
||||
{"tool_calls", tool_calls},
|
||||
};
|
||||
if (!content.is_null() && content != "") {
|
||||
obj["content"] = content;
|
||||
}
|
||||
message["content"] = obj.dump(2);
|
||||
message.erase("tool_calls");
|
||||
}
|
||||
}
|
||||
if (!supports_tools_ && role == "tool") {
|
||||
message["role"] = "user";
|
||||
auto obj = json {
|
||||
{"tool_response", {
|
||||
{"tool", message.at("name")},
|
||||
{"content", message.at("content")},
|
||||
}},
|
||||
};
|
||||
if (message.contains("tool_call_id")) {
|
||||
obj["tool_response"]["tool_call_id"] = message.at("tool_call_id");
|
||||
}
|
||||
message["content"] = obj.dump(2);
|
||||
message.erase("name");
|
||||
}
|
||||
|
||||
if (!message["content"].is_null() && !supports_system_role_) {
|
||||
std::string content = message.at("content");
|
||||
if (role == "system") {
|
||||
if (!pending_system.empty()) pending_system += "\n";
|
||||
pending_system += content;
|
||||
continue;
|
||||
} else {
|
||||
if (role == "user") {
|
||||
if (!pending_system.empty()) {
|
||||
message["content"] = pending_system + (content.empty() ? "" : "\n" + content);
|
||||
pending_system.clear();
|
||||
}
|
||||
} else {
|
||||
flush_sys();
|
||||
}
|
||||
}
|
||||
}
|
||||
add_message(message);
|
||||
}
|
||||
flush_sys();
|
||||
} else {
|
||||
actual_messages = messages;
|
||||
}
|
||||
|
||||
auto context = minja::Context::make(json({
|
||||
{"messages", actual_messages},
|
||||
{"add_generation_prompt", add_generation_prompt},
|
||||
{"bos_token", bos_token_},
|
||||
{"eos_token", eos_token_},
|
||||
}));
|
||||
|
||||
if (!tools.is_null()) {
|
||||
auto tools_val = minja::Value(tools);
|
||||
context->set("tools", tools_val);
|
||||
}
|
||||
if (!extra_context.is_null()) {
|
||||
for (auto & kv : extra_context.items()) {
|
||||
minja::Value val(kv.value());
|
||||
context->set(kv.key(), val);
|
||||
}
|
||||
}
|
||||
|
||||
return template_root_->render(context);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace minja
|
||||
@@ -12,6 +12,7 @@
|
||||
#include "json.hpp"
|
||||
#include "json-schema-to-grammar.h"
|
||||
#include "llama.h"
|
||||
#include "chat-template.hpp"
|
||||
|
||||
#include <algorithm>
|
||||
#include <cinttypes>
|
||||
@@ -73,6 +74,22 @@
|
||||
#include <sys/syslimits.h>
|
||||
#endif
|
||||
#define LLAMA_CURL_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
|
||||
|
||||
//
|
||||
// CURL utils
|
||||
//
|
||||
|
||||
using curl_ptr = std::unique_ptr<CURL, decltype(&curl_easy_cleanup)>;
|
||||
|
||||
// cannot use unique_ptr for curl_slist, because we cannot update without destroying the old one
|
||||
struct curl_slist_ptr {
|
||||
struct curl_slist * ptr = nullptr;
|
||||
~curl_slist_ptr() {
|
||||
if (ptr) {
|
||||
curl_slist_free_all(ptr);
|
||||
}
|
||||
}
|
||||
};
|
||||
#endif // LLAMA_USE_CURL
|
||||
|
||||
using json = nlohmann::ordered_json;
|
||||
@@ -467,6 +484,48 @@ void string_replace_all(std::string & s, const std::string & search, const std::
|
||||
s = std::move(builder);
|
||||
}
|
||||
|
||||
std::string string_join(const std::vector<std::string> & values, const std::string & separator) {
|
||||
std::ostringstream result;
|
||||
for (size_t i = 0; i < values.size(); ++i) {
|
||||
if (i > 0) {
|
||||
result << separator;
|
||||
}
|
||||
result << values[i];
|
||||
}
|
||||
return result.str();
|
||||
}
|
||||
|
||||
std::vector<std::string> string_split(const std::string & str, const std::string & delimiter) {
|
||||
std::vector<std::string> parts;
|
||||
size_t start = 0;
|
||||
size_t end = str.find(delimiter);
|
||||
|
||||
while (end != std::string::npos) {
|
||||
parts.push_back(str.substr(start, end - start));
|
||||
start = end + delimiter.length();
|
||||
end = str.find(delimiter, start);
|
||||
}
|
||||
|
||||
parts.push_back(str.substr(start));
|
||||
|
||||
return parts;
|
||||
}
|
||||
|
||||
std::string string_repeat(const std::string & str, size_t n) {
|
||||
if (n == 0) {
|
||||
return "";
|
||||
}
|
||||
|
||||
std::string result;
|
||||
result.reserve(str.length() * n);
|
||||
|
||||
for (size_t i = 0; i < n; ++i) {
|
||||
result += str;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
std::string string_from(bool value) {
|
||||
return value ? "true" : "false";
|
||||
}
|
||||
@@ -1027,7 +1086,6 @@ struct llama_model_params common_model_params_to_llama(common_params & params) {
|
||||
if (params.n_gpu_layers != -1) {
|
||||
mparams.n_gpu_layers = params.n_gpu_layers;
|
||||
}
|
||||
mparams.rpc_servers = params.rpc_servers.c_str();
|
||||
mparams.main_gpu = params.main_gpu;
|
||||
mparams.split_mode = params.split_mode;
|
||||
mparams.tensor_split = params.tensor_split;
|
||||
@@ -1130,7 +1188,8 @@ static bool curl_perform_with_retry(const std::string & url, CURL * curl, int ma
|
||||
|
||||
static bool common_download_file(const std::string & url, const std::string & path, const std::string & hf_token) {
|
||||
// Initialize libcurl
|
||||
std::unique_ptr<CURL, decltype(&curl_easy_cleanup)> curl(curl_easy_init(), &curl_easy_cleanup);
|
||||
curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
|
||||
curl_slist_ptr http_headers;
|
||||
if (!curl) {
|
||||
LOG_ERR("%s: error initializing libcurl\n", __func__);
|
||||
return false;
|
||||
@@ -1144,11 +1203,9 @@ static bool common_download_file(const std::string & url, const std::string & pa
|
||||
|
||||
// Check if hf-token or bearer-token was specified
|
||||
if (!hf_token.empty()) {
|
||||
std::string auth_header = "Authorization: Bearer ";
|
||||
auth_header += hf_token.c_str();
|
||||
struct curl_slist *http_headers = NULL;
|
||||
http_headers = curl_slist_append(http_headers, auth_header.c_str());
|
||||
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers);
|
||||
std::string auth_header = "Authorization: Bearer " + hf_token;
|
||||
http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
|
||||
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
|
||||
}
|
||||
|
||||
#if defined(_WIN32)
|
||||
@@ -1444,6 +1501,80 @@ struct llama_model * common_load_model_from_hf(
|
||||
return common_load_model_from_url(model_url, local_path, hf_token, params);
|
||||
}
|
||||
|
||||
/**
|
||||
* Allow getting the HF file from the HF repo with tag (like ollama), for example:
|
||||
* - bartowski/Llama-3.2-3B-Instruct-GGUF:q4
|
||||
* - bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M
|
||||
* - bartowski/Llama-3.2-3B-Instruct-GGUF:q5_k_s
|
||||
* Tag is optional, default to "latest" (meaning it checks for Q4_K_M first, then Q4, then if not found, return the first GGUF file in repo)
|
||||
*
|
||||
* Return pair of <repo, file> (with "repo" already having tag removed)
|
||||
*
|
||||
* Note: we use the Ollama-compatible HF API, but not using the blobId. Instead, we use the special "ggufFile" field which returns the value for "hf_file". This is done to be backward-compatible with existing cache files.
|
||||
*/
|
||||
std::pair<std::string, std::string> common_get_hf_file(const std::string & hf_repo_with_tag, const std::string & hf_token) {
|
||||
auto parts = string_split<std::string>(hf_repo_with_tag, ':');
|
||||
std::string tag = parts.size() > 1 ? parts.back() : "latest";
|
||||
std::string hf_repo = parts[0];
|
||||
if (string_split<std::string>(hf_repo, '/').size() != 2) {
|
||||
throw std::invalid_argument("error: invalid HF repo format, expected <user>/<model>[:quant]\n");
|
||||
}
|
||||
|
||||
// fetch model info from Hugging Face Hub API
|
||||
json model_info;
|
||||
curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
|
||||
curl_slist_ptr http_headers;
|
||||
std::string res_str;
|
||||
std::string url = "https://huggingface.co/v2/" + hf_repo + "/manifests/" + tag;
|
||||
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
|
||||
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L);
|
||||
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * ptr, size_t size, size_t nmemb, void * data);
|
||||
auto write_callback = [](void * ptr, size_t size, size_t nmemb, void * data) -> size_t {
|
||||
static_cast<std::string *>(data)->append((char * ) ptr, size * nmemb);
|
||||
return size * nmemb;
|
||||
};
|
||||
curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
|
||||
curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, &res_str);
|
||||
#if defined(_WIN32)
|
||||
curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
|
||||
#endif
|
||||
if (!hf_token.empty()) {
|
||||
std::string auth_header = "Authorization: Bearer " + hf_token;
|
||||
http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
|
||||
}
|
||||
// Important: the User-Agent must be "llama-cpp" to get the "ggufFile" field in the response
|
||||
http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp");
|
||||
http_headers.ptr = curl_slist_append(http_headers.ptr, "Accept: application/json");
|
||||
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
|
||||
|
||||
CURLcode res = curl_easy_perform(curl.get());
|
||||
|
||||
if (res != CURLE_OK) {
|
||||
throw std::runtime_error("error: cannot make GET request to HF API");
|
||||
}
|
||||
|
||||
long res_code;
|
||||
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &res_code);
|
||||
if (res_code == 200) {
|
||||
model_info = json::parse(res_str);
|
||||
} else if (res_code == 401) {
|
||||
throw std::runtime_error("error: model is private or does not exist; if you are accessing a gated model, please provide a valid HF token");
|
||||
} else {
|
||||
throw std::runtime_error(string_format("error from HF API, response code: %ld, data: %s", res_code, res_str.c_str()));
|
||||
}
|
||||
|
||||
// check response
|
||||
if (!model_info.contains("ggufFile")) {
|
||||
throw std::runtime_error("error: model does not have ggufFile");
|
||||
}
|
||||
json & gguf_file = model_info.at("ggufFile");
|
||||
if (!gguf_file.contains("rfilename")) {
|
||||
throw std::runtime_error("error: ggufFile does not have rfilename");
|
||||
}
|
||||
|
||||
return std::make_pair(hf_repo, gguf_file.at("rfilename"));
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
struct llama_model * common_load_model_from_url(
|
||||
@@ -1465,6 +1596,11 @@ struct llama_model * common_load_model_from_hf(
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
std::pair<std::string, std::string> common_get_hf_file(const std::string &, const std::string &) {
|
||||
LOG_WRN("%s: llama.cpp built without libcurl, downloading from Hugging Face not supported.\n", __func__);
|
||||
return std::make_pair("", "");
|
||||
}
|
||||
|
||||
#endif // LLAMA_USE_CURL
|
||||
|
||||
//
|
||||
@@ -1635,74 +1771,75 @@ std::string common_detokenize(const struct llama_vocab * vocab, const std::vecto
|
||||
// Chat template utils
|
||||
//
|
||||
|
||||
std::string common_get_builtin_chat_template(const struct llama_model * model) {
|
||||
static const char * template_key = "tokenizer.chat_template";
|
||||
// call with NULL buffer to get the total size of the string
|
||||
int32_t res = llama_model_meta_val_str(model, template_key, NULL, 0);
|
||||
if (res > 0) {
|
||||
std::vector<char> model_template(res + 1, 0);
|
||||
llama_model_meta_val_str(model, template_key, model_template.data(), model_template.size());
|
||||
return std::string(model_template.data(), model_template.size() - 1);
|
||||
bool common_chat_verify_template(const std::string & tmpl, bool use_jinja) {
|
||||
if (use_jinja) {
|
||||
try {
|
||||
auto chat_template = minja::chat_template(tmpl, "<s>", "</s>");
|
||||
chat_template.apply({{
|
||||
{"role", "user"},
|
||||
{"content", "test"},
|
||||
}}, json(), true);
|
||||
return true;
|
||||
} catch (const std::exception & e) {
|
||||
LOG_ERR("%s: failed to apply template: %s\n", __func__, e.what());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return "";
|
||||
}
|
||||
|
||||
bool common_chat_verify_template(const std::string & tmpl) {
|
||||
llama_chat_message chat[] = {{"user", "test"}};
|
||||
const int res = llama_chat_apply_template(tmpl.c_str(), chat, 1, true, nullptr, 0);
|
||||
return res >= 0;
|
||||
}
|
||||
|
||||
std::string common_chat_apply_template(const struct llama_model * model,
|
||||
const std::string & tmpl,
|
||||
std::string common_chat_apply_template(
|
||||
const common_chat_template & tmpl,
|
||||
const std::vector<common_chat_msg> & msgs,
|
||||
bool add_ass) {
|
||||
bool add_ass,
|
||||
bool use_jinja) {
|
||||
if (use_jinja) {
|
||||
auto messages = json::array();
|
||||
for (const auto & msg : msgs) {
|
||||
messages.push_back({{"role", msg.role}, {"content", msg.content}});
|
||||
}
|
||||
return tmpl.apply(messages, /* tools= */ json(), add_ass);
|
||||
}
|
||||
|
||||
int alloc_size = 0;
|
||||
bool fallback = false; // indicate if we must fallback to default chatml
|
||||
std::vector<llama_chat_message> chat;
|
||||
for (const auto & msg : msgs) {
|
||||
chat.push_back({msg.role.c_str(), msg.content.c_str()});
|
||||
alloc_size += (msg.role.size() + msg.content.size()) * 1.25;
|
||||
}
|
||||
|
||||
const char * ptr_tmpl = tmpl.empty() ? llama_model_chat_template(model) : tmpl.c_str();
|
||||
std::vector<char> buf(alloc_size);
|
||||
|
||||
// run the first time to get the total output length
|
||||
int32_t res = llama_chat_apply_template(ptr_tmpl, chat.data(), chat.size(), add_ass, buf.data(), buf.size());
|
||||
int32_t res = llama_chat_apply_template(tmpl.source().c_str(), chat.data(), chat.size(), add_ass, buf.data(), buf.size());
|
||||
|
||||
// error: chat template is not supported
|
||||
if (res < 0) {
|
||||
if (ptr_tmpl != nullptr) {
|
||||
// if the custom "tmpl" is not supported, we throw an error
|
||||
// this is a bit redundant (for good), since we're not sure if user validated the custom template with llama_chat_verify_template()
|
||||
throw std::runtime_error("this custom template is not supported");
|
||||
}
|
||||
|
||||
// If the built-in template is not supported, we default to chatml
|
||||
res = llama_chat_apply_template("chatml", chat.data(), chat.size(), add_ass, buf.data(), buf.size());
|
||||
fallback = true;
|
||||
// if the custom "tmpl" is not supported, we throw an error
|
||||
// this is a bit redundant (for good), since we're not sure if user validated the custom template with llama_chat_verify_template()
|
||||
throw std::runtime_error("this custom template is not supported");
|
||||
}
|
||||
|
||||
// if it turns out that our buffer is too small, we resize it
|
||||
if ((size_t) res > buf.size()) {
|
||||
buf.resize(res);
|
||||
res = llama_chat_apply_template(
|
||||
fallback ? "chatml" : ptr_tmpl,
|
||||
chat.data(), chat.size(), add_ass, buf.data(), buf.size());
|
||||
res = llama_chat_apply_template(tmpl.source().c_str(), chat.data(), chat.size(), add_ass, buf.data(), buf.size());
|
||||
}
|
||||
|
||||
std::string formatted_chat(buf.data(), res);
|
||||
return formatted_chat;
|
||||
}
|
||||
|
||||
std::string common_chat_format_single(const struct llama_model * model,
|
||||
const std::string & tmpl,
|
||||
std::string common_chat_format_single(
|
||||
const common_chat_template & tmpl,
|
||||
const std::vector<common_chat_msg> & past_msg,
|
||||
const common_chat_msg & new_msg,
|
||||
bool add_ass) {
|
||||
bool add_ass,
|
||||
bool use_jinja) {
|
||||
std::ostringstream ss;
|
||||
auto fmt_past_msg = past_msg.empty() ? "" : common_chat_apply_template(model, tmpl, past_msg, false);
|
||||
auto fmt_past_msg = past_msg.empty() ? "" : common_chat_apply_template(tmpl, past_msg, false, use_jinja);
|
||||
std::vector<common_chat_msg> chat_new(past_msg);
|
||||
// if the past_msg ends with a newline, we must preserve it in the formatted version
|
||||
if (add_ass && !fmt_past_msg.empty() && fmt_past_msg.back() == '\n') {
|
||||
@@ -1710,21 +1847,74 @@ std::string common_chat_format_single(const struct llama_model * model,
|
||||
};
|
||||
// format chat with new_msg
|
||||
chat_new.push_back(new_msg);
|
||||
auto fmt_new_msg = common_chat_apply_template(model, tmpl, chat_new, add_ass);
|
||||
auto fmt_new_msg = common_chat_apply_template(tmpl, chat_new, add_ass, use_jinja);
|
||||
// get the diff part
|
||||
ss << fmt_new_msg.substr(fmt_past_msg.size(), fmt_new_msg.size() - fmt_past_msg.size());
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
std::string common_chat_format_example(const struct llama_model * model,
|
||||
const std::string & tmpl) {
|
||||
std::string common_chat_format_example(const common_chat_template & tmpl, bool use_jinja) {
|
||||
std::vector<common_chat_msg> msgs = {
|
||||
{"system", "You are a helpful assistant"},
|
||||
{"user", "Hello"},
|
||||
{"assistant", "Hi there"},
|
||||
{"user", "How are you?"},
|
||||
};
|
||||
return common_chat_apply_template(model, tmpl, msgs, true);
|
||||
return common_chat_apply_template(tmpl, msgs, true, use_jinja);
|
||||
}
|
||||
|
||||
common_chat_templates common_chat_templates_from_model(const struct llama_model * model, const std::string & chat_template_override)
|
||||
{
|
||||
auto vocab = llama_model_get_vocab(model);
|
||||
std::string default_template_src = chat_template_override;
|
||||
std::string template_tool_use_src = chat_template_override;
|
||||
bool has_explicit_template = !chat_template_override.empty();
|
||||
if (chat_template_override.empty()) {
|
||||
auto str = llama_model_chat_template(model, /* name */ nullptr);
|
||||
if (str) {
|
||||
default_template_src = str;
|
||||
has_explicit_template = true;
|
||||
}
|
||||
str = llama_model_chat_template(model, /* name */ "tool_use");
|
||||
if (str) {
|
||||
template_tool_use_src = str;
|
||||
has_explicit_template = true;
|
||||
}
|
||||
}
|
||||
if (default_template_src.empty() || default_template_src == "chatml") {
|
||||
if (!template_tool_use_src.empty()) {
|
||||
default_template_src = template_tool_use_src;
|
||||
} else {
|
||||
default_template_src = R"(
|
||||
{%- for message in messages -%}
|
||||
{{- "<|im_start|>" + message.role + "\n" + message.content + "<|im_end|>\n" -}}
|
||||
{%- endfor -%}
|
||||
{%- if add_generation_prompt -%}
|
||||
{{- "<|im_start|>assistant\n" -}}
|
||||
{%- endif -%}
|
||||
)";
|
||||
}
|
||||
}
|
||||
const auto get_token = [&](llama_token token, const char * name, const char * jinja_variable_name) {
|
||||
if (token == LLAMA_TOKEN_NULL) {
|
||||
if (default_template_src.find(jinja_variable_name) != std::string::npos
|
||||
|| template_tool_use_src.find(jinja_variable_name) != std::string::npos) {
|
||||
LOG_WRN("%s: warning: vocab does not have a %s token, jinja template won't work as intended.\n", __func__, name);
|
||||
}
|
||||
return std::string();
|
||||
} else {
|
||||
return common_token_to_piece(vocab, token, true);
|
||||
}
|
||||
};
|
||||
auto token_bos = get_token(llama_vocab_bos(vocab), "BOS", "bos_token");
|
||||
auto token_eos = get_token(llama_vocab_eos(vocab), "EOS", "eos_token");
|
||||
return {
|
||||
has_explicit_template,
|
||||
std::make_unique<minja::chat_template>(default_template_src, token_bos, token_eos),
|
||||
template_tool_use_src.empty()
|
||||
? nullptr
|
||||
: std::make_unique<minja::chat_template>(template_tool_use_src, token_bos, token_eos)
|
||||
};
|
||||
}
|
||||
|
||||
//
|
||||
|
||||
@@ -103,6 +103,12 @@ enum dimre_method {
|
||||
DIMRE_METHOD_MEAN,
|
||||
};
|
||||
|
||||
enum common_conversation_mode {
|
||||
COMMON_CONVERSATION_MODE_DISABLED = 0,
|
||||
COMMON_CONVERSATION_MODE_ENABLED = 1,
|
||||
COMMON_CONVERSATION_MODE_AUTO = 2,
|
||||
};
|
||||
|
||||
// sampling parameters
|
||||
struct common_params_sampling {
|
||||
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
|
||||
@@ -169,7 +175,11 @@ struct common_params_speculative {
|
||||
struct cpu_params cpuparams;
|
||||
struct cpu_params cpuparams_batch;
|
||||
|
||||
std::string model = ""; // draft model for speculative decoding // NOLINT
|
||||
std::string hf_repo = ""; // HF repo // NOLINT
|
||||
std::string hf_file = ""; // HF file // NOLINT
|
||||
|
||||
std::string model = ""; // draft model for speculative decoding // NOLINT
|
||||
std::string model_url = ""; // model url to download // NOLINT
|
||||
};
|
||||
|
||||
struct common_params_vocoder {
|
||||
@@ -178,6 +188,8 @@ struct common_params_vocoder {
|
||||
|
||||
std::string model = ""; // model path // NOLINT
|
||||
std::string model_url = ""; // model url to download // NOLINT
|
||||
|
||||
bool use_guide_tokens = false; // enable guide tokens to improve TTS accuracy // NOLINT
|
||||
};
|
||||
|
||||
struct common_params {
|
||||
@@ -240,7 +252,6 @@ struct common_params {
|
||||
std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding // NOLINT
|
||||
std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding // NOLINT
|
||||
std::string logits_file = ""; // file for saving *all* logits // NOLINT
|
||||
std::string rpc_servers = ""; // comma separated list of RPC servers // NOLINT
|
||||
|
||||
std::vector<std::string> in_files; // all input files
|
||||
std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
|
||||
@@ -275,7 +286,6 @@ struct common_params {
|
||||
bool special = false; // enable special token output
|
||||
bool interactive = false; // interactive mode
|
||||
bool interactive_first = false; // wait for user input immediately
|
||||
bool conversation = false; // conversation mode (does not print special tokens and suffix/prefix)
|
||||
bool prompt_cache_all = false; // save user input and generations to prompt cache
|
||||
bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
|
||||
|
||||
@@ -301,6 +311,8 @@ struct common_params {
|
||||
ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K
|
||||
ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V
|
||||
|
||||
common_conversation_mode conversation_mode = COMMON_CONVERSATION_MODE_AUTO;
|
||||
|
||||
// multimodal models (see examples/llava)
|
||||
std::string mmproj = ""; // path to multimodal projector // NOLINT
|
||||
std::vector<std::string> image; // path to image file(s)
|
||||
@@ -322,6 +334,7 @@ struct common_params {
|
||||
std::string hostname = "127.0.0.1";
|
||||
std::string public_path = ""; // NOLINT
|
||||
std::string chat_template = ""; // NOLINT
|
||||
bool use_jinja = false; // NOLINT
|
||||
bool enable_chat_template = true;
|
||||
|
||||
std::vector<std::string> api_keys;
|
||||
@@ -416,6 +429,10 @@ std::string string_format(const char * fmt, ...);
|
||||
std::string string_strip(const std::string & str);
|
||||
std::string string_get_sortable_timestamp();
|
||||
|
||||
std::string string_join(const std::vector<std::string> & values, const std::string & separator);
|
||||
std::vector<std::string> string_split(const std::string & str, const std::string & delimiter);
|
||||
std::string string_repeat(const std::string & str, size_t n);
|
||||
|
||||
void string_replace_all(std::string & s, const std::string & search, const std::string & replace);
|
||||
|
||||
template<class T>
|
||||
@@ -454,6 +471,11 @@ static bool string_starts_with(const std::string & str,
|
||||
return str.rfind(prefix, 0) == 0;
|
||||
}
|
||||
|
||||
static bool string_ends_with(const std::string & str,
|
||||
const std::string & suffix) { // While we wait for C++20's std::string::ends_with...
|
||||
return str.size() >= suffix.size() && str.compare(str.size()-suffix.size(), suffix.size(), suffix) == 0;
|
||||
}
|
||||
|
||||
bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
|
||||
void string_process_escapes(std::string & input);
|
||||
|
||||
@@ -495,6 +517,7 @@ struct llama_model * common_load_model_from_url(
|
||||
const std::string & local_path,
|
||||
const std::string & hf_token,
|
||||
const struct llama_model_params & params);
|
||||
|
||||
struct llama_model * common_load_model_from_hf(
|
||||
const std::string & repo,
|
||||
const std::string & remote_path,
|
||||
@@ -502,6 +525,10 @@ struct llama_model * common_load_model_from_hf(
|
||||
const std::string & hf_token,
|
||||
const struct llama_model_params & params);
|
||||
|
||||
std::pair<std::string, std::string> common_get_hf_file(
|
||||
const std::string & hf_repo_with_tag,
|
||||
const std::string & hf_token);
|
||||
|
||||
// clear LoRA adapters from context, then apply new list of adapters
|
||||
void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adapter_lora_info> & lora);
|
||||
|
||||
@@ -581,30 +608,43 @@ struct common_chat_msg {
|
||||
std::string content;
|
||||
};
|
||||
|
||||
// Get the built-in chat template for the model. Return empty string if not present.
|
||||
std::string common_get_builtin_chat_template(const struct llama_model * model);
|
||||
|
||||
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
|
||||
bool common_chat_verify_template(const std::string & tmpl);
|
||||
bool common_chat_verify_template(const std::string & tmpl, bool use_jinja);
|
||||
|
||||
namespace minja {
|
||||
class chat_template;
|
||||
}
|
||||
|
||||
typedef minja::chat_template common_chat_template;
|
||||
|
||||
struct common_chat_templates {
|
||||
bool has_explicit_template; // Model had builtin template or template overridde was specified.
|
||||
std::unique_ptr<common_chat_template> template_default; // always set (defaults to chatml)
|
||||
std::unique_ptr<common_chat_template> template_tool_use;
|
||||
};
|
||||
|
||||
// CPP wrapper for llama_chat_apply_template
|
||||
// If the built-in template is not supported, we default to chatml
|
||||
// If the custom "tmpl" is not supported, we throw an error
|
||||
std::string common_chat_apply_template(const struct llama_model * model,
|
||||
const std::string & tmpl,
|
||||
std::string common_chat_apply_template(
|
||||
const common_chat_template & tmpl,
|
||||
const std::vector<common_chat_msg> & chat,
|
||||
bool add_ass);
|
||||
bool add_ass,
|
||||
bool use_jinja);
|
||||
|
||||
// Format single message, while taking into account the position of that message in chat history
|
||||
std::string common_chat_format_single(const struct llama_model * model,
|
||||
const std::string & tmpl,
|
||||
std::string common_chat_format_single(
|
||||
const common_chat_template & tmpl,
|
||||
const std::vector<common_chat_msg> & past_msg,
|
||||
const common_chat_msg & new_msg,
|
||||
bool add_ass);
|
||||
bool add_ass,
|
||||
bool use_jinja);
|
||||
|
||||
// Returns an example of formatted chat
|
||||
std::string common_chat_format_example(const struct llama_model * model,
|
||||
const std::string & tmpl);
|
||||
std::string common_chat_format_example(
|
||||
const common_chat_template & tmpl, bool use_jinja);
|
||||
|
||||
common_chat_templates common_chat_templates_from_model(const struct llama_model * model, const std::string & chat_template_override);
|
||||
|
||||
//
|
||||
// KV cache utils
|
||||
|
||||
@@ -1,4 +1,6 @@
|
||||
#include "json-schema-to-grammar.h"
|
||||
#include "common.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <fstream>
|
||||
#include <map>
|
||||
@@ -11,11 +13,6 @@
|
||||
|
||||
using json = nlohmann::ordered_json;
|
||||
|
||||
template <typename Iterator>
|
||||
static std::string join(Iterator begin, Iterator end, const std::string & separator);
|
||||
|
||||
static std::string repeat(const std::string & str, size_t n);
|
||||
|
||||
static std::string build_repetition(const std::string & item_rule, int min_items, int max_items, const std::string & separator_rule = "") {
|
||||
auto has_max = max_items != std::numeric_limits<int>::max();
|
||||
|
||||
@@ -128,8 +125,8 @@ static void _build_min_max_int(int min_value, int max_value, std::stringstream &
|
||||
if (sub_len > 0) {
|
||||
auto from_sub = from.substr(i + 1);
|
||||
auto to_sub = to.substr(i + 1);
|
||||
auto sub_zeros = repeat("0", sub_len);
|
||||
auto sub_nines = repeat("9", sub_len);
|
||||
auto sub_zeros = string_repeat("0", sub_len);
|
||||
auto sub_nines = string_repeat("9", sub_len);
|
||||
|
||||
auto to_reached = false;
|
||||
out << "(";
|
||||
@@ -188,8 +185,8 @@ static void _build_min_max_int(int min_value, int max_value, std::stringstream &
|
||||
auto max_digits = max_s.length();
|
||||
|
||||
for (auto digits = min_digits; digits < max_digits; digits++) {
|
||||
uniform_range(min_s, repeat("9", digits));
|
||||
min_s = "1" + repeat("0", digits);
|
||||
uniform_range(min_s, string_repeat("9", digits));
|
||||
min_s = "1" + string_repeat("0", digits);
|
||||
out << " | ";
|
||||
}
|
||||
uniform_range(min_s, max_s);
|
||||
@@ -318,49 +315,6 @@ std::unordered_map<char, std::string> GRAMMAR_LITERAL_ESCAPES = {
|
||||
std::unordered_set<char> NON_LITERAL_SET = {'|', '.', '(', ')', '[', ']', '{', '}', '*', '+', '?'};
|
||||
std::unordered_set<char> ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS = {'^', '$', '.', '[', ']', '(', ')', '|', '{', '}', '*', '+', '?'};
|
||||
|
||||
template <typename Iterator>
|
||||
std::string join(Iterator begin, Iterator end, const std::string & separator) {
|
||||
std::ostringstream result;
|
||||
if (begin != end) {
|
||||
result << *begin;
|
||||
for (Iterator it = begin + 1; it != end; ++it) {
|
||||
result << separator << *it;
|
||||
}
|
||||
}
|
||||
return result.str();
|
||||
}
|
||||
|
||||
static std::vector<std::string> split(const std::string & str, const std::string & delimiter) {
|
||||
std::vector<std::string> tokens;
|
||||
size_t start = 0;
|
||||
size_t end = str.find(delimiter);
|
||||
|
||||
while (end != std::string::npos) {
|
||||
tokens.push_back(str.substr(start, end - start));
|
||||
start = end + delimiter.length();
|
||||
end = str.find(delimiter, start);
|
||||
}
|
||||
|
||||
tokens.push_back(str.substr(start));
|
||||
|
||||
return tokens;
|
||||
}
|
||||
|
||||
static std::string repeat(const std::string & str, size_t n) {
|
||||
if (n == 0) {
|
||||
return "";
|
||||
}
|
||||
|
||||
std::string result;
|
||||
result.reserve(str.length() * n);
|
||||
|
||||
for (size_t i = 0; i < n; ++i) {
|
||||
result += str;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
static std::string replacePattern(const std::string & input, const std::regex & regex, const std::function<std::string(const std::smatch &)> & replacement) {
|
||||
std::smatch match;
|
||||
std::string result;
|
||||
@@ -389,6 +343,7 @@ static std::string format_literal(const std::string & literal) {
|
||||
|
||||
class SchemaConverter {
|
||||
private:
|
||||
friend std::string build_grammar(const std::function<void(const llama_grammar_builder &)> & cb);
|
||||
std::function<json(const std::string &)> _fetch_json;
|
||||
bool _dotall;
|
||||
std::map<std::string, std::string> _rules;
|
||||
@@ -418,7 +373,7 @@ private:
|
||||
for (size_t i = 0; i < alt_schemas.size(); i++) {
|
||||
rules.push_back(visit(alt_schemas[i], name + (name.empty() ? "alternative-" : "-") + std::to_string(i)));
|
||||
}
|
||||
return join(rules.begin(), rules.end(), " | ");
|
||||
return string_join(rules, " | ");
|
||||
}
|
||||
|
||||
std::string _visit_pattern(const std::string & pattern, const std::string & name) {
|
||||
@@ -481,7 +436,7 @@ private:
|
||||
for (const auto & item : ret) {
|
||||
results.push_back(to_rule(item));
|
||||
}
|
||||
return std::make_pair(join(results.begin(), results.end(), " "), false);
|
||||
return std::make_pair(string_join(results, " "), false);
|
||||
};
|
||||
|
||||
while (i < length) {
|
||||
@@ -539,7 +494,7 @@ private:
|
||||
}
|
||||
curly_brackets += '}';
|
||||
i++;
|
||||
auto nums = split(curly_brackets.substr(1, curly_brackets.length() - 2), ",");
|
||||
auto nums = string_split(curly_brackets.substr(1, curly_brackets.length() - 2), ",");
|
||||
int min_times = 0;
|
||||
int max_times = std::numeric_limits<int>::max();
|
||||
try {
|
||||
@@ -854,7 +809,7 @@ public:
|
||||
return;
|
||||
}
|
||||
std::string pointer = ref.substr(ref.find('#') + 1);
|
||||
std::vector<std::string> tokens = split(pointer, "/");
|
||||
std::vector<std::string> tokens = string_split(pointer, "/");
|
||||
for (size_t i = 1; i < tokens.size(); ++i) {
|
||||
std::string sel = tokens[i];
|
||||
if (target.is_null() || !target.contains(sel)) {
|
||||
@@ -905,7 +860,7 @@ public:
|
||||
for (const auto & v : schema["enum"]) {
|
||||
enum_values.push_back(_generate_constant_rule(v));
|
||||
}
|
||||
return _add_rule(rule_name, "(" + join(enum_values.begin(), enum_values.end(), " | ") + ") space");
|
||||
return _add_rule(rule_name, "(" + string_join(enum_values, " | ") + ") space");
|
||||
} else if ((schema_type.is_null() || schema_type == "object")
|
||||
&& (schema.contains("properties") ||
|
||||
(schema.contains("additionalProperties") && schema["additionalProperties"] != true))) {
|
||||
@@ -1019,10 +974,10 @@ public:
|
||||
|
||||
void check_errors() {
|
||||
if (!_errors.empty()) {
|
||||
throw std::runtime_error("JSON schema conversion failed:\n" + join(_errors.begin(), _errors.end(), "\n"));
|
||||
throw std::runtime_error("JSON schema conversion failed:\n" + string_join(_errors, "\n"));
|
||||
}
|
||||
if (!_warnings.empty()) {
|
||||
fprintf(stderr, "WARNING: JSON schema conversion was incomplete: %s\n", join(_warnings.begin(), _warnings.end(), "; ").c_str());
|
||||
fprintf(stderr, "WARNING: JSON schema conversion was incomplete: %s\n", string_join(_warnings, "; ").c_str());
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1036,10 +991,27 @@ public:
|
||||
};
|
||||
|
||||
std::string json_schema_to_grammar(const json & schema) {
|
||||
SchemaConverter converter([](const std::string &) { return json::object(); }, /* dotall= */ false);
|
||||
auto copy = schema;
|
||||
converter.resolve_refs(copy, "input");
|
||||
converter.visit(copy, "");
|
||||
return build_grammar([&](const llama_grammar_builder & callbacks) {
|
||||
auto copy = schema;
|
||||
callbacks.resolve_refs(copy);
|
||||
callbacks.add_schema("", copy);
|
||||
});
|
||||
}
|
||||
|
||||
std::string build_grammar(const std::function<void(const llama_grammar_builder &)> & cb) {
|
||||
SchemaConverter converter([&](const std::string &) { return json(); }, /* dotall= */ false);
|
||||
llama_grammar_builder builder {
|
||||
/* .add_rule = */ [&](const std::string & name, const std::string & rule) {
|
||||
return converter._add_rule(name, rule);
|
||||
},
|
||||
/* .add_schema = */ [&](const std::string & name, const nlohmann::ordered_json & schema) {
|
||||
return converter.visit(schema, name == "root" ? "" : name);
|
||||
},
|
||||
/* .resolve_refs = */ [&](nlohmann::ordered_json & schema) {
|
||||
converter.resolve_refs(schema, "");
|
||||
}
|
||||
};
|
||||
cb(builder);
|
||||
converter.check_errors();
|
||||
return converter.format_grammar();
|
||||
}
|
||||
|
||||
@@ -5,4 +5,12 @@
|
||||
#define JSON_ASSERT GGML_ASSERT
|
||||
#include "json.hpp"
|
||||
|
||||
std::string json_schema_to_grammar(const nlohmann::ordered_json& schema);
|
||||
std::string json_schema_to_grammar(const nlohmann::ordered_json & schema);
|
||||
|
||||
struct llama_grammar_builder {
|
||||
std::function<std::string(const std::string &, const std::string &)> add_rule;
|
||||
std::function<std::string(const std::string &, const nlohmann::ordered_json &)> add_schema;
|
||||
std::function<void(nlohmann::ordered_json &)> resolve_refs;
|
||||
};
|
||||
|
||||
std::string build_grammar(const std::function<void(const llama_grammar_builder &)> & cb);
|
||||
|
||||
2812
common/minja.hpp
Normal file
2812
common/minja.hpp
Normal file
File diff suppressed because it is too large
Load Diff
@@ -696,6 +696,9 @@ class Model:
|
||||
if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
|
||||
# ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
|
||||
res = "deepseek-v3"
|
||||
if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
|
||||
# ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
|
||||
res = "deepseek-r1-qwen"
|
||||
|
||||
if res is None:
|
||||
logger.warning("\n")
|
||||
@@ -2882,6 +2885,66 @@ class InternLM2Model(Model):
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
|
||||
@Model.register("InternLM3ForCausalLM")
|
||||
class InternLM3Model(Model):
|
||||
model_arch = gguf.MODEL_ARCH.LLAMA
|
||||
|
||||
def set_vocab(self):
|
||||
tokens, scores, toktypes = self._create_vocab_sentencepiece()
|
||||
|
||||
self.gguf_writer.add_tokenizer_model("llama")
|
||||
self.gguf_writer.add_tokenizer_pre("default")
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
self.gguf_writer.add_token_scores(scores)
|
||||
self.gguf_writer.add_token_types(toktypes)
|
||||
|
||||
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
|
||||
|
||||
tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
|
||||
if tokenizer_config_file.is_file():
|
||||
with open(tokenizer_config_file, "r", encoding="utf-8") as f:
|
||||
tokenizer_config_json = json.load(f)
|
||||
if "add_prefix_space" in tokenizer_config_json:
|
||||
self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
|
||||
|
||||
if "added_tokens_decoder" in tokenizer_config_json:
|
||||
for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
|
||||
if token_data.get("special"):
|
||||
token_id = int(token_id)
|
||||
token = token_data["content"]
|
||||
special_vocab._set_special_token(token, token_id)
|
||||
# update eos token
|
||||
if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
|
||||
special_vocab.special_token_ids["eos"] = token_id
|
||||
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
hparams = self.hparams
|
||||
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
|
||||
|
||||
if "head_dim" in hparams:
|
||||
rope_dim = hparams["head_dim"]
|
||||
else:
|
||||
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
|
||||
self.gguf_writer.add_rope_dimension_count(rope_dim)
|
||||
|
||||
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
|
||||
if self.hparams["rope_scaling"].get("type") == "linear" or self.hparams["rope_scaling"].get("rope_type") == "linear":
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||||
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
n_head = self.hparams["num_attention_heads"]
|
||||
n_kv_head = self.hparams.get("num_key_value_heads")
|
||||
if name.endswith(("q_proj.weight", "q_proj.bias")):
|
||||
data_torch = LlamaModel.permute(data_torch, n_head, n_head)
|
||||
if name.endswith(("k_proj.weight", "k_proj.bias")):
|
||||
data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
|
||||
@Model.register("BertModel", "BertForMaskedLM", "CamembertModel")
|
||||
class BertModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.BERT
|
||||
|
||||
@@ -65,49 +65,50 @@ else:
|
||||
|
||||
# TODO: add models here, base models preferred
|
||||
models = [
|
||||
{"name": "llama-spm", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/meta-llama/Llama-2-7b-hf", },
|
||||
{"name": "llama-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Meta-Llama-3-8B", },
|
||||
{"name": "phi-3", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct", },
|
||||
{"name": "deepseek-llm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-llm-7b-base", },
|
||||
{"name": "deepseek-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base", },
|
||||
{"name": "falcon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/falcon-7b", },
|
||||
{"name": "bert-bge", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/BAAI/bge-small-en-v1.5", },
|
||||
{"name": "falcon3", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/Falcon3-7B-Base", },
|
||||
{"name": "bert-bge-large", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/BAAI/bge-large-zh-v1.5", },
|
||||
{"name": "mpt", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mosaicml/mpt-7b", },
|
||||
{"name": "starcoder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigcode/starcoder2-3b", },
|
||||
{"name": "gpt-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/openai-community/gpt2", },
|
||||
{"name": "stablelm2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b", },
|
||||
{"name": "refact", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/smallcloudai/Refact-1_6-base", },
|
||||
{"name": "command-r", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/CohereForAI/c4ai-command-r-v01", },
|
||||
{"name": "qwen2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen1.5-7B", },
|
||||
{"name": "olmo", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/allenai/OLMo-1.7-7B-hf", },
|
||||
{"name": "dbrx", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/databricks/dbrx-base", },
|
||||
{"name": "jina-v1-en", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-reranker-v1-tiny-en", },
|
||||
{"name": "jina-v2-en", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-en", }, # WPM!
|
||||
{"name": "jina-v2-es", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-es", },
|
||||
{"name": "jina-v2-de", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-de", },
|
||||
{"name": "smaug-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct", },
|
||||
{"name": "poro-chat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LumiOpen/Poro-34B-chat", },
|
||||
{"name": "jina-v2-code", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-code", },
|
||||
{"name": "viking", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LumiOpen/Viking-7B", }, # Also used for Viking 13B and 33B
|
||||
{"name": "gemma", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/google/gemma-2b", },
|
||||
{"name": "gemma-2", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/google/gemma-2-9b", },
|
||||
{"name": "jais", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/core42/jais-13b", },
|
||||
{"name": "t5", "tokt": TOKENIZER_TYPE.UGM, "repo": "https://huggingface.co/google-t5/t5-small", },
|
||||
{"name": "codeshell", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/WisdomShell/CodeShell-7B", },
|
||||
{"name": "tekken", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mistralai/Mistral-Nemo-Base-2407", },
|
||||
{"name": "smollm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/HuggingFaceTB/SmolLM-135M", },
|
||||
{'name': "bloom", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigscience/bloom", },
|
||||
{'name': "gpt3-finnish", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/TurkuNLP/gpt3-finnish-small", },
|
||||
{"name": "exaone", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct", },
|
||||
{"name": "phi-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/microsoft/phi-2", },
|
||||
{"name": "chameleon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/facebook/chameleon-7b", },
|
||||
{"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", },
|
||||
{"name": "roberta-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sentence-transformers/stsb-roberta-base"},
|
||||
{"name": "gigachat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct"},
|
||||
{"name": "megrez", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Infinigence/Megrez-3B-Instruct"},
|
||||
{"name": "deepseek-v3", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/DeepSeek-V3"},
|
||||
{"name": "llama-spm", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/meta-llama/Llama-2-7b-hf", },
|
||||
{"name": "llama-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Meta-Llama-3-8B", },
|
||||
{"name": "phi-3", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct", },
|
||||
{"name": "deepseek-llm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-llm-7b-base", },
|
||||
{"name": "deepseek-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base", },
|
||||
{"name": "falcon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/falcon-7b", },
|
||||
{"name": "bert-bge", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/BAAI/bge-small-en-v1.5", },
|
||||
{"name": "falcon3", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/Falcon3-7B-Base", },
|
||||
{"name": "bert-bge-large", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/BAAI/bge-large-zh-v1.5", },
|
||||
{"name": "mpt", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mosaicml/mpt-7b", },
|
||||
{"name": "starcoder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigcode/starcoder2-3b", },
|
||||
{"name": "gpt-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/openai-community/gpt2", },
|
||||
{"name": "stablelm2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b", },
|
||||
{"name": "refact", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/smallcloudai/Refact-1_6-base", },
|
||||
{"name": "command-r", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/CohereForAI/c4ai-command-r-v01", },
|
||||
{"name": "qwen2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen1.5-7B", },
|
||||
{"name": "olmo", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/allenai/OLMo-1.7-7B-hf", },
|
||||
{"name": "dbrx", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/databricks/dbrx-base", },
|
||||
{"name": "jina-v1-en", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-reranker-v1-tiny-en", },
|
||||
{"name": "jina-v2-en", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-en", }, # WPM!
|
||||
{"name": "jina-v2-es", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-es", },
|
||||
{"name": "jina-v2-de", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-de", },
|
||||
{"name": "smaug-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct", },
|
||||
{"name": "poro-chat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LumiOpen/Poro-34B-chat", },
|
||||
{"name": "jina-v2-code", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-code", },
|
||||
{"name": "viking", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LumiOpen/Viking-7B", }, # Also used for Viking 13B and 33B
|
||||
{"name": "gemma", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/google/gemma-2b", },
|
||||
{"name": "gemma-2", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/google/gemma-2-9b", },
|
||||
{"name": "jais", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/core42/jais-13b", },
|
||||
{"name": "t5", "tokt": TOKENIZER_TYPE.UGM, "repo": "https://huggingface.co/google-t5/t5-small", },
|
||||
{"name": "codeshell", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/WisdomShell/CodeShell-7B", },
|
||||
{"name": "tekken", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mistralai/Mistral-Nemo-Base-2407", },
|
||||
{"name": "smollm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/HuggingFaceTB/SmolLM-135M", },
|
||||
{'name': "bloom", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigscience/bloom", },
|
||||
{'name': "gpt3-finnish", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/TurkuNLP/gpt3-finnish-small", },
|
||||
{"name": "exaone", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct", },
|
||||
{"name": "phi-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/microsoft/phi-2", },
|
||||
{"name": "chameleon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/facebook/chameleon-7b", },
|
||||
{"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", },
|
||||
{"name": "roberta-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sentence-transformers/stsb-roberta-base"},
|
||||
{"name": "gigachat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct"},
|
||||
{"name": "megrez", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Infinigence/Megrez-3B-Instruct"},
|
||||
{"name": "deepseek-v3", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/DeepSeek-V3"},
|
||||
{"name": "deepseek-r1-qwen", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"},
|
||||
]
|
||||
|
||||
|
||||
|
||||
@@ -133,7 +133,7 @@ The docker build option is currently limited to *intel GPU* targets.
|
||||
### Build image
|
||||
```sh
|
||||
# Using FP16
|
||||
docker build -t llama-cpp-sycl --build-arg="GGML_SYCL_F16=ON" -f .devops/llama-cli-intel.Dockerfile .
|
||||
docker build -t llama-cpp-sycl --build-arg="GGML_SYCL_F16=ON" --target light -f .devops/intel.Dockerfile .
|
||||
```
|
||||
|
||||
*Notes*:
|
||||
|
||||
@@ -286,7 +286,7 @@ You don't need to install Vulkan SDK. It will be installed inside the container.
|
||||
|
||||
```sh
|
||||
# Build the image
|
||||
docker build -t llama-cpp-vulkan -f .devops/llama-cli-vulkan.Dockerfile .
|
||||
docker build -t llama-cpp-vulkan --target light -f .devops/vulkan.Dockerfile .
|
||||
|
||||
# Then, use it:
|
||||
docker run -it --rm -v "$(pwd):/app:Z" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card1:/dev/dri/card1 llama-cpp-vulkan -m "/app/models/YOUR_MODEL_FILE" -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33
|
||||
|
||||
@@ -60,9 +60,9 @@ Assuming one has the [nvidia-container-toolkit](https://github.com/NVIDIA/nvidia
|
||||
## Building Docker locally
|
||||
|
||||
```bash
|
||||
docker build -t local/llama.cpp:full-cuda -f .devops/full-cuda.Dockerfile .
|
||||
docker build -t local/llama.cpp:light-cuda -f .devops/llama-cli-cuda.Dockerfile .
|
||||
docker build -t local/llama.cpp:server-cuda -f .devops/llama-server-cuda.Dockerfile .
|
||||
docker build -t local/llama.cpp:full-cuda --target full -f .devops/cuda.Dockerfile .
|
||||
docker build -t local/llama.cpp:light-cuda --target light -f .devops/cuda.Dockerfile .
|
||||
docker build -t local/llama.cpp:server-cuda --target server -f .devops/cuda.Dockerfile .
|
||||
```
|
||||
|
||||
You may want to pass in some different `ARGS`, depending on the CUDA environment supported by your container host, as well as the GPU architecture.
|
||||
@@ -95,9 +95,9 @@ Assuming one has the [mt-container-toolkit](https://developer.mthreads.com/musa/
|
||||
## Building Docker locally
|
||||
|
||||
```bash
|
||||
docker build -t local/llama.cpp:full-musa -f .devops/full-musa.Dockerfile .
|
||||
docker build -t local/llama.cpp:light-musa -f .devops/llama-cli-musa.Dockerfile .
|
||||
docker build -t local/llama.cpp:server-musa -f .devops/llama-server-musa.Dockerfile .
|
||||
docker build -t local/llama.cpp:full-musa --target full -f .devops/musa.Dockerfile .
|
||||
docker build -t local/llama.cpp:light-musa --target light -f .devops/musa.Dockerfile .
|
||||
docker build -t local/llama.cpp:server-musa --target server -f .devops/musa.Dockerfile .
|
||||
```
|
||||
|
||||
You may want to pass in some different `ARGS`, depending on the MUSA environment supported by your container host, as well as the GPU architecture.
|
||||
|
||||
@@ -345,8 +345,18 @@ struct lora_merge_ctx {
|
||||
gf = ggml_new_graph(ctx0);
|
||||
struct ggml_tensor * cur = inp_base;
|
||||
for (size_t i = 0; i < adapters.size(); ++i) {
|
||||
struct ggml_tensor * a_T = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_cast(ctx0, inp_a[i], GGML_TYPE_F32)));
|
||||
struct ggml_tensor * delta = ggml_mul_mat(ctx0, a_T, ggml_cast(ctx0, inp_b[i], GGML_TYPE_F32));
|
||||
struct ggml_tensor * delta;
|
||||
bool is_tok_embd = string_starts_with(name_base, "token_embd");
|
||||
if (is_tok_embd) {
|
||||
printf("%s : detected token embeddings tensor\n", __func__);
|
||||
delta = ggml_mul_mat(ctx0,
|
||||
ggml_cast(ctx0, inp_b[i], GGML_TYPE_F32),
|
||||
ggml_cast(ctx0, inp_a[i], GGML_TYPE_F32));
|
||||
} else {
|
||||
delta = ggml_mul_mat(ctx0,
|
||||
ggml_cont(ctx0, ggml_transpose(ctx0, ggml_cast(ctx0, inp_a[i], GGML_TYPE_F32))),
|
||||
ggml_cast(ctx0, inp_b[i], GGML_TYPE_F32));
|
||||
}
|
||||
// scale
|
||||
const float alpha = adapters[i]->alpha;
|
||||
const float rank = (float) inp_b[i]->ne[0];
|
||||
|
||||
@@ -41,7 +41,7 @@ echo PASS
|
||||
echo
|
||||
|
||||
# 2b. Test the sharded model is loading properly
|
||||
$MAIN --model $WORK_PATH/ggml-model-split-00001-of-00006.gguf --n-predict 32
|
||||
$MAIN -no-cnv --model $WORK_PATH/ggml-model-split-00001-of-00006.gguf --n-predict 32
|
||||
echo PASS
|
||||
echo
|
||||
|
||||
@@ -51,7 +51,7 @@ echo PASS
|
||||
echo
|
||||
|
||||
# 3b. Test the merged model is loading properly
|
||||
$MAIN --model $WORK_PATH/ggml-model-merge.gguf --n-predict 32
|
||||
$MAIN -no-cnv --model $WORK_PATH/ggml-model-merge.gguf --n-predict 32
|
||||
echo PASS
|
||||
echo
|
||||
|
||||
@@ -61,7 +61,7 @@ echo PASS
|
||||
echo
|
||||
|
||||
# 4b. Test the sharded model is loading properly
|
||||
$MAIN --model $WORK_PATH/ggml-model-split-32-tensors-00001-of-00007.gguf --n-predict 32
|
||||
$MAIN -no-cnv --model $WORK_PATH/ggml-model-split-32-tensors-00001-of-00007.gguf --n-predict 32
|
||||
echo PASS
|
||||
echo
|
||||
|
||||
@@ -71,7 +71,7 @@ echo
|
||||
#echo
|
||||
|
||||
# 5b. Test the merged model is loading properly
|
||||
#$MAIN --model $WORK_PATH/ggml-model-merge-2.gguf --n-predict 32
|
||||
#$MAIN -no-cnv --model $WORK_PATH/ggml-model-merge-2.gguf --n-predict 32
|
||||
#echo PASS
|
||||
#echo
|
||||
|
||||
@@ -81,7 +81,7 @@ echo PASS
|
||||
echo
|
||||
|
||||
# 6b. Test the sharded model is loading properly
|
||||
$MAIN --model $WORK_PATH/ggml-model-split-2G-00001-of-00002.gguf --n-predict 32
|
||||
$MAIN -no-cnv --model $WORK_PATH/ggml-model-split-2G-00001-of-00002.gguf --n-predict 32
|
||||
echo PASS
|
||||
echo
|
||||
|
||||
|
||||
@@ -683,7 +683,7 @@ struct cmd_params_instance {
|
||||
bool cpu_strict;
|
||||
int poll;
|
||||
int n_gpu_layers;
|
||||
std::string rpc_servers;
|
||||
std::string rpc_servers_str;
|
||||
llama_split_mode split_mode;
|
||||
int main_gpu;
|
||||
bool no_kv_offload;
|
||||
@@ -696,8 +696,37 @@ struct cmd_params_instance {
|
||||
llama_model_params mparams = llama_model_default_params();
|
||||
|
||||
mparams.n_gpu_layers = n_gpu_layers;
|
||||
if (!rpc_servers.empty()) {
|
||||
mparams.rpc_servers = rpc_servers.c_str();
|
||||
if (!rpc_servers_str.empty()) {
|
||||
auto rpc_servers = string_split<std::string>(rpc_servers_str, ',');
|
||||
|
||||
// add RPC devices
|
||||
if (!rpc_servers.empty()) {
|
||||
ggml_backend_reg_t rpc_reg = ggml_backend_reg_by_name("RPC");
|
||||
if (!rpc_reg) {
|
||||
fprintf(stderr, "%s: failed to find RPC backend\n", __func__);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
typedef ggml_backend_dev_t (*ggml_backend_rpc_add_device_t)(const char * endpoint);
|
||||
ggml_backend_rpc_add_device_t ggml_backend_rpc_add_device_fn = (ggml_backend_rpc_add_device_t) ggml_backend_reg_get_proc_address(rpc_reg, "ggml_backend_rpc_add_device");
|
||||
if (!ggml_backend_rpc_add_device_fn) {
|
||||
fprintf(stderr, "%s: failed to find RPC device add function\n", __func__);
|
||||
exit(1);
|
||||
}
|
||||
static std::vector<ggml_backend_dev_t> devices;
|
||||
devices.clear();
|
||||
for (const std::string & server : rpc_servers) {
|
||||
ggml_backend_dev_t dev = ggml_backend_rpc_add_device_fn(server.c_str());
|
||||
if (dev) {
|
||||
devices.push_back(dev);
|
||||
} else {
|
||||
fprintf(stderr, "%s: failed to add RPC device for server '%s'\n", __func__, server.c_str());
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
devices.push_back(nullptr);
|
||||
mparams.devices = devices.data();
|
||||
}
|
||||
}
|
||||
mparams.split_mode = split_mode;
|
||||
mparams.main_gpu = main_gpu;
|
||||
@@ -708,7 +737,7 @@ struct cmd_params_instance {
|
||||
}
|
||||
|
||||
bool equal_mparams(const cmd_params_instance & other) const {
|
||||
return model == other.model && n_gpu_layers == other.n_gpu_layers && rpc_servers == other.rpc_servers &&
|
||||
return model == other.model && n_gpu_layers == other.n_gpu_layers && rpc_servers_str == other.rpc_servers_str &&
|
||||
split_mode == other.split_mode && main_gpu == other.main_gpu && use_mmap == other.use_mmap &&
|
||||
tensor_split == other.tensor_split;
|
||||
}
|
||||
|
||||
@@ -347,6 +347,7 @@ Java_android_llama_cpp_LLamaAndroid_completion_1init(
|
||||
jlong context_pointer,
|
||||
jlong batch_pointer,
|
||||
jstring jtext,
|
||||
jboolean format_chat,
|
||||
jint n_len
|
||||
) {
|
||||
|
||||
@@ -356,7 +357,8 @@ Java_android_llama_cpp_LLamaAndroid_completion_1init(
|
||||
const auto context = reinterpret_cast<llama_context *>(context_pointer);
|
||||
const auto batch = reinterpret_cast<llama_batch *>(batch_pointer);
|
||||
|
||||
const auto tokens_list = common_tokenize(context, text, 1);
|
||||
bool parse_special = (format_chat == JNI_TRUE);
|
||||
const auto tokens_list = common_tokenize(context, text, true, parse_special);
|
||||
|
||||
auto n_ctx = llama_n_ctx(context);
|
||||
auto n_kv_req = tokens_list.size() + (n_len - tokens_list.size());
|
||||
@@ -368,7 +370,7 @@ Java_android_llama_cpp_LLamaAndroid_completion_1init(
|
||||
}
|
||||
|
||||
for (auto id : tokens_list) {
|
||||
LOGi("%s", common_token_to_piece(context, id).c_str());
|
||||
LOGi("token: `%s`-> %d ", common_token_to_piece(context, id).c_str(), id);
|
||||
}
|
||||
|
||||
common_batch_clear(*batch);
|
||||
|
||||
@@ -65,6 +65,7 @@ class LLamaAndroid {
|
||||
context: Long,
|
||||
batch: Long,
|
||||
text: String,
|
||||
formatChat: Boolean,
|
||||
nLen: Int
|
||||
): Int
|
||||
|
||||
@@ -115,10 +116,10 @@ class LLamaAndroid {
|
||||
}
|
||||
}
|
||||
|
||||
fun send(message: String): Flow<String> = flow {
|
||||
fun send(message: String, formatChat: Boolean = false): Flow<String> = flow {
|
||||
when (val state = threadLocalState.get()) {
|
||||
is State.Loaded -> {
|
||||
val ncur = IntVar(completion_init(state.context, state.batch, message, nlen))
|
||||
val ncur = IntVar(completion_init(state.context, state.batch, message, formatChat, nlen))
|
||||
while (ncur.value <= nlen) {
|
||||
val str = completion_loop(state.context, state.batch, state.sampler, nlen, ncur)
|
||||
if (str == null) {
|
||||
|
||||
46
examples/llava/README-minicpmo2.6.md
Normal file
46
examples/llava/README-minicpmo2.6.md
Normal file
@@ -0,0 +1,46 @@
|
||||
## MiniCPM-o 2.6
|
||||
Currently, this readme only supports minicpm-omni's image capabilities, and we will update the full-mode support as soon as possible.
|
||||
|
||||
### Prepare models and code
|
||||
|
||||
Download [MiniCPM-o-2_6](https://huggingface.co/openbmb/MiniCPM-o-2_6) PyTorch model from huggingface to "MiniCPM-o-2_6" folder.
|
||||
|
||||
Clone llama.cpp:
|
||||
```bash
|
||||
git clone git@github.com:OpenBMB/llama.cpp.git
|
||||
cd llama.cpp
|
||||
git checkout minicpm-omni
|
||||
```
|
||||
|
||||
### Usage of MiniCPM-o 2.6
|
||||
|
||||
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-o-2_6-gguf) by us)
|
||||
|
||||
```bash
|
||||
python ./examples/llava/minicpmv-surgery.py -m ../MiniCPM-o-2_6
|
||||
python ./examples/llava/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-o-2_6 --minicpmv-projector ../MiniCPM-o-2_6/minicpmv.projector --output-dir ../MiniCPM-o-2_6/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 4
|
||||
python ./convert_hf_to_gguf.py ../MiniCPM-o-2_6/model
|
||||
|
||||
# quantize int4 version
|
||||
./llama-quantize ../MiniCPM-o-2_6/model/ggml-model-f16.gguf ../MiniCPM-o-2_6/model/ggml-model-Q4_K_M.gguf Q4_K_M
|
||||
```
|
||||
|
||||
Build llama.cpp using `CMake`:
|
||||
https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md
|
||||
|
||||
```bash
|
||||
cmake -B build
|
||||
cmake --build build --config Release
|
||||
```
|
||||
|
||||
Inference on Linux or Mac
|
||||
```
|
||||
# run f16 version
|
||||
./llama-minicpmv-cli -m ../MiniCPM-o-2_6/model/ggml-model-f16.gguf --mmproj ../MiniCPM-o-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
|
||||
|
||||
# run quantized int4 version
|
||||
./llama-minicpmv-cli -m ../MiniCPM-o-2_6/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-o-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
|
||||
|
||||
# or run in interactive mode
|
||||
./llama-minicpmv-cli -m ../MiniCPM-o-2_6/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-o-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -i
|
||||
```
|
||||
@@ -718,6 +718,9 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
||||
else if (ctx->minicpmv_version == 3) {
|
||||
pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 3584, pos_w * pos_h, 1);
|
||||
}
|
||||
else if (ctx->minicpmv_version == 4) {
|
||||
pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 3584, pos_w * pos_h, 1);
|
||||
}
|
||||
ggml_set_name(pos_embed, "pos_embed");
|
||||
ggml_set_input(pos_embed);
|
||||
}
|
||||
@@ -1053,6 +1056,11 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
||||
n_head = hidden_size/d_head;
|
||||
num_query = 64;
|
||||
}
|
||||
else if (ctx->minicpmv_version == 4) {
|
||||
hidden_size = 3584;
|
||||
n_head = hidden_size/d_head;
|
||||
num_query = 64;
|
||||
}
|
||||
|
||||
struct ggml_tensor * Q = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q), model.mm_model_attn_q_b);
|
||||
Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head));
|
||||
@@ -2041,6 +2049,7 @@ static std::vector<std::vector<clip_image_u8 *>> uhd_slice_image(const clip_imag
|
||||
images[images.size()-1].push_back(patch);
|
||||
}
|
||||
}
|
||||
clip_image_u8_free(refine_image);
|
||||
}
|
||||
return images;
|
||||
}
|
||||
@@ -2079,6 +2088,13 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, cli
|
||||
clip_image_f32_free(res);
|
||||
}
|
||||
}
|
||||
for (size_t i = 0; i < imgs.size(); ++i) {
|
||||
for (size_t j = 0; j < imgs[i].size(); ++j) {
|
||||
if (imgs[i][j] != nullptr) {
|
||||
clip_image_u8_free(imgs[i][j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
else if (ctx->has_qwen2vl_merger) {
|
||||
@@ -2335,6 +2351,9 @@ int clip_n_patches_by_img(const struct clip_ctx * ctx, struct clip_image_f32 * i
|
||||
else if (ctx->minicpmv_version == 3) {
|
||||
n_patches = 64;
|
||||
}
|
||||
else if (ctx->minicpmv_version == 4) {
|
||||
n_patches = 64;
|
||||
}
|
||||
} else if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
|
||||
int patch_size = params.patch_size * 2;
|
||||
int x_patch = img->nx / patch_size + (int)(img->nx % patch_size > 0);
|
||||
@@ -2514,8 +2533,8 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
||||
// -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
|
||||
struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
|
||||
int* positions_data = (int*)malloc(ggml_nbytes(positions));
|
||||
int bucket_coords_h[70];
|
||||
int bucket_coords_w[70];
|
||||
int bucket_coords_h[1024];
|
||||
int bucket_coords_w[1024];
|
||||
for (int i = 0; i < pos_h; i++){
|
||||
bucket_coords_h[i] = std::floor(70.0*i/pos_h);
|
||||
}
|
||||
@@ -2543,6 +2562,9 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
||||
else if (ctx->minicpmv_version == 3) {
|
||||
embed_dim = 3584;
|
||||
}
|
||||
else if (ctx->minicpmv_version == 4) {
|
||||
embed_dim = 3584;
|
||||
}
|
||||
auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));
|
||||
|
||||
float * pos_embed_data = (float *)malloc(ggml_nbytes(pos_embed));
|
||||
@@ -2786,6 +2808,9 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
|
||||
else if (ctx->minicpmv_version == 3) {
|
||||
return 3584;
|
||||
}
|
||||
else if (ctx->minicpmv_version == 4) {
|
||||
return 3584;
|
||||
}
|
||||
}
|
||||
if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
|
||||
return ctx->vision_model.mm_1_b->ne[0];
|
||||
|
||||
@@ -216,7 +216,7 @@ static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *>
|
||||
return true;
|
||||
}
|
||||
|
||||
static clip_image_f32 * only_v2_5_reshape_by_patch(clip_image_f32 * image, int patch_size) {
|
||||
static clip_image_f32 * reshape_by_patch(clip_image_f32 * image, int patch_size) {
|
||||
int width = image->nx;
|
||||
int height = image->ny;
|
||||
int num_patches = (height / patch_size) * (width / patch_size);
|
||||
@@ -277,13 +277,7 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
|
||||
encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]);
|
||||
}
|
||||
else {
|
||||
int has_minicpmv_projector = clip_is_minicpmv(ctx_clip);
|
||||
if (has_minicpmv_projector == 2) {
|
||||
encoded = clip_image_encode(ctx_clip, n_threads, only_v2_5_reshape_by_patch(&img_res_v.data[i], patch_size), image_embd_v[i]);
|
||||
}
|
||||
else if (has_minicpmv_projector == 3) {
|
||||
encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]);
|
||||
}
|
||||
encoded = clip_image_encode(ctx_clip, n_threads, reshape_by_patch(&img_res_v.data[i], patch_size), image_embd_v[i]);
|
||||
}
|
||||
|
||||
if (!encoded) {
|
||||
@@ -313,6 +307,9 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
|
||||
load_image_size->height = img->ny;
|
||||
clip_add_load_image_size(ctx_clip, load_image_size);
|
||||
LOG_INF("%s: load_image_size %d %d\n", __func__, load_image_size->width, load_image_size->height);
|
||||
delete[] img_res_v.data;
|
||||
img_res_v.size = 0;
|
||||
img_res_v.data = nullptr;
|
||||
}
|
||||
else if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) {
|
||||
// flat / default llava-1.5 type embedding
|
||||
|
||||
@@ -140,6 +140,9 @@ static void process_image(struct llava_context * ctx_llava, struct llava_image_e
|
||||
else if (has_minicpmv_projector == 3) {
|
||||
system_prompt = "<|im_start|>user\n";
|
||||
}
|
||||
else if (has_minicpmv_projector == 4) {
|
||||
system_prompt = "<|im_start|>user\n";
|
||||
}
|
||||
LOG_INF("%s: image token past: %d\n", __func__, n_past);
|
||||
eval_string(ctx_llava->ctx_llama, (system_prompt+"<image>").c_str(), params->n_batch, &n_past, false);
|
||||
process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++);
|
||||
@@ -227,6 +230,9 @@ static struct common_sampler * llama_init(struct llava_context * ctx_llava, comm
|
||||
else if (has_minicpmv_projector == 3) {
|
||||
user_prompt = "<|im_start|>user\n" + prompt;
|
||||
}
|
||||
else if (has_minicpmv_projector == 4) {
|
||||
user_prompt = "<|im_start|>user\n" + prompt;
|
||||
}
|
||||
}
|
||||
|
||||
eval_string(ctx_llava->ctx_llama, user_prompt.c_str(), params->n_batch, &n_past, false);
|
||||
@@ -236,6 +242,9 @@ static struct common_sampler * llama_init(struct llava_context * ctx_llava, comm
|
||||
else if (has_minicpmv_projector == 3) {
|
||||
eval_string(ctx_llava->ctx_llama, "<|im_end|><|im_start|>assistant\n", params->n_batch, &n_past, false);
|
||||
}
|
||||
else if (has_minicpmv_projector == 4) {
|
||||
eval_string(ctx_llava->ctx_llama, "<|im_end|><|im_start|>assistant\n", params->n_batch, &n_past, false);
|
||||
}
|
||||
|
||||
// generate the response
|
||||
|
||||
@@ -308,7 +317,6 @@ int main(int argc, char ** argv) {
|
||||
const auto * tmp = llama_loop(ctx_llava, smpl, n_past);
|
||||
response += tmp;
|
||||
if (strcmp(tmp, "</s>") == 0) break;
|
||||
if (strstr(tmp, "###")) break; // Yi-VL behavior
|
||||
printf("%s", tmp);// mistral llava-1.6
|
||||
if (strstr(response.c_str(), "<user>")) break; // minicpm-v
|
||||
fflush(stdout);
|
||||
|
||||
@@ -501,7 +501,7 @@ default_image_mean = [0.48145466, 0.4578275, 0.40821073]
|
||||
default_image_std = [0.26862954, 0.26130258, 0.27577711]
|
||||
ap.add_argument('--image-mean', type=float, nargs='+', help='Mean of the images for normalization (overrides processor) ', default=None)
|
||||
ap.add_argument('--image-std', type=float, nargs='+', help='Standard deviation of the images for normalization (overrides processor)', default=None)
|
||||
ap.add_argument('--minicpmv_version', type=int, help='minicpmv_version: MiniCPM-V-2 use 1; MiniCPM-V-2.5 use 2; MiniCPM-V-2.6 use 3', default=2)
|
||||
ap.add_argument('--minicpmv_version', type=int, help='minicpmv_version: MiniCPM-V-2 use 1; MiniCPM-V-2.5 use 2; MiniCPM-V-2.6 use 3; MiniCPM-o-2.6 use 4', default=2)
|
||||
|
||||
# with proper
|
||||
args = ap.parse_args()
|
||||
@@ -545,12 +545,19 @@ if args.use_f32:
|
||||
|
||||
minicpmv_version = args.minicpmv_version
|
||||
emb_dim = 4096
|
||||
block_count = 26
|
||||
if minicpmv_version == 1:
|
||||
emb_dim = 2304
|
||||
block_count = 26
|
||||
elif minicpmv_version == 2:
|
||||
emb_dim = 4096
|
||||
block_count = 27
|
||||
elif minicpmv_version == 3:
|
||||
emb_dim = 3584
|
||||
block_count = 27
|
||||
elif minicpmv_version == 4:
|
||||
emb_dim = 3584
|
||||
block_count = 27
|
||||
|
||||
default_vision_config = {
|
||||
"hidden_size": 1152,
|
||||
@@ -567,6 +574,9 @@ model = Idefics2VisionTransformer(vision_config)
|
||||
if minicpmv_version == 3:
|
||||
vision_config = SiglipVisionConfig(**default_vision_config)
|
||||
model = SiglipVisionTransformer(vision_config)
|
||||
elif minicpmv_version == 4:
|
||||
vision_config = SiglipVisionConfig(**default_vision_config)
|
||||
model = SiglipVisionTransformer(vision_config)
|
||||
|
||||
processor = None
|
||||
# if model.attn_pool is not None:
|
||||
@@ -587,7 +597,7 @@ elif args.minicpmv_projector is not None:
|
||||
fname_middle = "mmproj-"
|
||||
has_text_encoder = False
|
||||
has_minicpmv_projector = True
|
||||
minicpmv_version = 3
|
||||
minicpmv_version = 4
|
||||
elif args.vision_only:
|
||||
fname_middle = "vision-"
|
||||
has_text_encoder = False
|
||||
@@ -625,7 +635,6 @@ if has_vision_encoder:
|
||||
fout.add_uint32("clip.vision.projection_dim", 0)
|
||||
fout.add_uint32(add_key_str(KEY_ATTENTION_HEAD_COUNT, VISION), 16)
|
||||
fout.add_float32(add_key_str(KEY_ATTENTION_LAYERNORM_EPS, VISION), 1e-6)
|
||||
block_count = 26
|
||||
fout.add_uint32(add_key_str(KEY_BLOCK_COUNT, VISION), block_count)
|
||||
|
||||
if processor is not None:
|
||||
|
||||
@@ -8,7 +8,7 @@ ap.add_argument("-m", "--model", help="Path to MiniCPM-V model")
|
||||
args = ap.parse_args()
|
||||
|
||||
# find the model part that includes the the multimodal projector weights
|
||||
model = AutoModel.from_pretrained(args.model, trust_remote_code=True, local_files_only=True)
|
||||
model = AutoModel.from_pretrained(args.model, trust_remote_code=True, local_files_only=True, torch_dtype=torch.bfloat16)
|
||||
checkpoint = model.state_dict()
|
||||
|
||||
# get a list of mm tensor names
|
||||
|
||||
@@ -1,32 +0,0 @@
|
||||
cmake_minimum_required(VERSION 3.12)
|
||||
project("llama-cli-cmake-pkg" C CXX)
|
||||
set(TARGET llama-cli-cmake-pkg)
|
||||
|
||||
find_package(Llama 0.0.1 REQUIRED)
|
||||
|
||||
# Bake common functionality in with target. Because applications
|
||||
# using the relocatable Llama package should be outside of the
|
||||
# source tree, llama-cli-cmake-pkg pretends the dependencies are built-in.
|
||||
set(_common_path "${CMAKE_CURRENT_LIST_DIR}/../../common")
|
||||
add_library(common OBJECT)
|
||||
file(GLOB _common_files
|
||||
"${_common_path}/*.h"
|
||||
"${_common_path}/*.cpp"
|
||||
)
|
||||
target_sources(common PRIVATE ${_common_files})
|
||||
|
||||
# If the common project was part of "llama-cli-cmake-pkg" the transient
|
||||
# defines would automatically be attached. Because the common func-
|
||||
# tionality is separate, but dependent upon the defines, it must be
|
||||
# explicitly extracted from the "llama" target.
|
||||
#
|
||||
get_target_property(_llama_transient_defines llama
|
||||
INTERFACE_COMPILE_DEFINITIONS)
|
||||
|
||||
target_compile_definitions(common PRIVATE "${_llama_transient_defines}")
|
||||
|
||||
add_executable(${TARGET} ${CMAKE_CURRENT_LIST_DIR}/../main/main.cpp)
|
||||
target_include_directories(${TARGET} PRIVATE ${_common_path})
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_17)
|
||||
@@ -1,31 +0,0 @@
|
||||
# llama.cpp/example/main-cmake-pkg
|
||||
|
||||
This program builds [llama-cli](../main) using a relocatable CMake package. It serves as an example of using the `find_package()` CMake command to conveniently include [llama.cpp](https://github.com/ggerganov/llama.cpp) in projects which live outside of the source tree.
|
||||
|
||||
## Building
|
||||
|
||||
Because this example is "outside of the source tree", it is important to first build/install llama.cpp using CMake. An example is provided here, but please see the [llama.cpp build instructions](../..) for more detailed build instructions.
|
||||
|
||||
### Considerations
|
||||
|
||||
When hardware acceleration libraries are used (e.g. CUDA, Metal, etc.), CMake must be able to locate the associated CMake package.
|
||||
|
||||
### Build llama.cpp and install to C:\LlamaCPP directory
|
||||
|
||||
```cmd
|
||||
git clone https://github.com/ggerganov/llama.cpp
|
||||
cd llama.cpp
|
||||
cmake -B build -DBUILD_SHARED_LIBS=OFF -G "Visual Studio 17 2022" -A x64
|
||||
cmake --build build --config Release
|
||||
cmake --install build --prefix C:/LlamaCPP
|
||||
```
|
||||
|
||||
### Build llama-cli-cmake-pkg
|
||||
|
||||
|
||||
```cmd
|
||||
cd ..\examples\main-cmake-pkg
|
||||
cmake -B build -DBUILD_SHARED_LIBS=OFF -DCMAKE_PREFIX_PATH="C:/LlamaCPP/lib/cmake/Llama" -G "Visual Studio 17 2022" -A x64
|
||||
cmake --build build --config Release
|
||||
cmake --install build --prefix C:/MyLlamaApp
|
||||
```
|
||||
@@ -310,9 +310,9 @@ These options help improve the performance and memory usage of the LLaMA models.
|
||||
|
||||
### Batch Size
|
||||
|
||||
- `-b N, --batch-size N`: Set the batch size for prompt processing (default: `2048`). This large batch size benefits users who have BLAS installed and enabled it during the build. If you don't have BLAS enabled ("BLAS=0"), you can use a smaller number, such as 8, to see the prompt progress as it's evaluated in some situations.
|
||||
- `-ub N`, `--ubatch-size N`: Physical batch size. This is the maximum number of tokens that may be processed at a time. Increasing this value may improve performance during prompt processing, at the expense of higher memory usage. Default: `512`.
|
||||
|
||||
- `-ub N`, `--ubatch-size N`: physical maximum batch size. This is for pipeline parallelization. Default: `512`.
|
||||
- `-b N`, `--batch-size N`: Logical batch size. Increasing this value above the value of the physical batch size may improve prompt processing performance when using multiple GPUs with pipeline parallelism. Default: `2048`.
|
||||
|
||||
### Prompt Caching
|
||||
|
||||
|
||||
@@ -4,6 +4,7 @@
|
||||
#include "log.h"
|
||||
#include "sampling.h"
|
||||
#include "llama.h"
|
||||
#include "chat-template.hpp"
|
||||
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
@@ -30,6 +31,8 @@
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
static const char * DEFAULT_SYSTEM_MESSAGE = "You are a helpful assistant";
|
||||
|
||||
static llama_context ** g_ctx;
|
||||
static llama_model ** g_model;
|
||||
static common_sampler ** g_smpl;
|
||||
@@ -82,14 +85,6 @@ static void sigint_handler(int signo) {
|
||||
}
|
||||
#endif
|
||||
|
||||
static std::string chat_add_and_format(struct llama_model * model, std::vector<common_chat_msg> & chat_msgs, const std::string & role, const std::string & content) {
|
||||
common_chat_msg new_msg{role, content};
|
||||
auto formatted = common_chat_format_single(model, g_params->chat_template, chat_msgs, new_msg, role == "user");
|
||||
chat_msgs.push_back({role, content});
|
||||
LOG_DBG("formatted: '%s'\n", formatted.c_str());
|
||||
return formatted;
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
common_params params;
|
||||
g_params = ¶ms;
|
||||
@@ -163,6 +158,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
auto chat_templates = common_chat_templates_from_model(model, params.chat_template);
|
||||
|
||||
LOG_INF("%s: llama threadpool init, n_threads = %d\n", __func__, (int) params.cpuparams.n_threads);
|
||||
|
||||
@@ -204,10 +200,26 @@ int main(int argc, char ** argv) {
|
||||
LOG_WRN("%s: model was trained on only %d context tokens (%d specified)\n", __func__, n_ctx_train, n_ctx);
|
||||
}
|
||||
|
||||
// auto enable conversation mode if chat template is available
|
||||
const bool has_chat_template = chat_templates.has_explicit_template && chat_templates.template_default;
|
||||
if (params.conversation_mode == COMMON_CONVERSATION_MODE_AUTO) {
|
||||
if (has_chat_template) {
|
||||
LOG_INF("%s: chat template is available, enabling conversation mode (disable it with -no-cnv)\n", __func__);
|
||||
params.conversation_mode = COMMON_CONVERSATION_MODE_ENABLED;
|
||||
} else {
|
||||
params.conversation_mode = COMMON_CONVERSATION_MODE_DISABLED;
|
||||
}
|
||||
}
|
||||
|
||||
// in case user force-activate conversation mode (via -cnv) without proper chat template, we show a warning
|
||||
if (params.conversation_mode && !has_chat_template) {
|
||||
LOG_WRN("%s: chat template is not available or is not supported. This may cause the model to output suboptimal responses\n", __func__);
|
||||
}
|
||||
|
||||
// print chat template example in conversation mode
|
||||
if (params.conversation) {
|
||||
if (params.conversation_mode) {
|
||||
if (params.enable_chat_template) {
|
||||
LOG_INF("%s: chat template example:\n%s\n", __func__, common_chat_format_example(model, params.chat_template).c_str());
|
||||
LOG_INF("%s: chat template example:\n%s\n", __func__, common_chat_format_example(*chat_templates.template_default, params.use_jinja).c_str());
|
||||
} else {
|
||||
LOG_INF("%s: in-suffix/prefix is specified, chat template will be disabled\n", __func__);
|
||||
}
|
||||
@@ -251,9 +263,19 @@ int main(int argc, char ** argv) {
|
||||
|
||||
std::vector<llama_token> embd_inp;
|
||||
|
||||
auto chat_add_and_format = [&chat_msgs, &chat_templates](const std::string & role, const std::string & content) {
|
||||
common_chat_msg new_msg{role, content};
|
||||
auto formatted = common_chat_format_single(*chat_templates.template_default, chat_msgs, new_msg, role == "user", g_params->use_jinja);
|
||||
chat_msgs.push_back({role, content});
|
||||
LOG_DBG("formatted: '%s'\n", formatted.c_str());
|
||||
return formatted;
|
||||
};
|
||||
|
||||
{
|
||||
auto prompt = (params.conversation && params.enable_chat_template && !params.prompt.empty())
|
||||
? chat_add_and_format(model, chat_msgs, "system", params.prompt) // format the system prompt in conversation mode
|
||||
auto prompt = (params.conversation_mode && params.enable_chat_template)
|
||||
// format the system prompt in conversation mode (fallback to default if empty)
|
||||
? chat_add_and_format("system", params.prompt.empty() ? DEFAULT_SYSTEM_MESSAGE : params.prompt)
|
||||
// otherwise use the prompt as is
|
||||
: params.prompt;
|
||||
if (params.interactive_first || !params.prompt.empty() || session_tokens.empty()) {
|
||||
LOG_DBG("tokenize the prompt\n");
|
||||
@@ -327,7 +349,7 @@ int main(int argc, char ** argv) {
|
||||
params.n_keep += add_bos; // always keep the BOS token
|
||||
}
|
||||
|
||||
if (params.conversation) {
|
||||
if (params.conversation_mode) {
|
||||
params.interactive_first = true;
|
||||
}
|
||||
|
||||
@@ -451,7 +473,11 @@ int main(int argc, char ** argv) {
|
||||
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
|
||||
LOG_INF( " - Press Ctrl+C to interject at any time.\n");
|
||||
#endif
|
||||
LOG_INF( "%s\n", control_message);
|
||||
LOG_INF( "%s", control_message);
|
||||
if (params.conversation_mode && params.enable_chat_template && params.prompt.empty()) {
|
||||
LOG_INF( " - Using default system message. To change it, set a different value via -p PROMPT or -f FILE argument.\n");
|
||||
}
|
||||
LOG_INF("\n");
|
||||
|
||||
is_interacting = params.interactive_first;
|
||||
}
|
||||
@@ -755,7 +781,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
if (params.enable_chat_template) {
|
||||
chat_add_and_format(model, chat_msgs, "assistant", assistant_ss.str());
|
||||
chat_add_and_format("assistant", assistant_ss.str());
|
||||
}
|
||||
is_interacting = true;
|
||||
LOG("\n");
|
||||
@@ -763,7 +789,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// if current token is not EOG, we add it to current assistant message
|
||||
if (params.conversation) {
|
||||
if (params.conversation_mode) {
|
||||
const auto id = common_sampler_last(smpl);
|
||||
assistant_ss << common_token_to_piece(ctx, id, false);
|
||||
}
|
||||
@@ -771,7 +797,7 @@ int main(int argc, char ** argv) {
|
||||
if (n_past > 0 && is_interacting) {
|
||||
LOG_DBG("waiting for user input\n");
|
||||
|
||||
if (params.conversation) {
|
||||
if (params.conversation_mode) {
|
||||
LOG("\n> ");
|
||||
}
|
||||
|
||||
@@ -781,7 +807,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
std::string buffer;
|
||||
if (!params.input_prefix.empty() && !params.conversation) {
|
||||
if (!params.input_prefix.empty() && !params.conversation_mode) {
|
||||
LOG_DBG("appending input prefix: '%s'\n", params.input_prefix.c_str());
|
||||
LOG("%s", params.input_prefix.c_str());
|
||||
}
|
||||
@@ -805,7 +831,7 @@ int main(int argc, char ** argv) {
|
||||
// Entering a empty line lets the user pass control back
|
||||
if (buffer.length() > 1) {
|
||||
// append input suffix if any
|
||||
if (!params.input_suffix.empty() && !params.conversation) {
|
||||
if (!params.input_suffix.empty() && !params.conversation_mode) {
|
||||
LOG_DBG("appending input suffix: '%s'\n", params.input_suffix.c_str());
|
||||
LOG("%s", params.input_suffix.c_str());
|
||||
}
|
||||
@@ -818,9 +844,9 @@ int main(int argc, char ** argv) {
|
||||
string_process_escapes(buffer);
|
||||
}
|
||||
|
||||
bool format_chat = params.conversation && params.enable_chat_template;
|
||||
bool format_chat = params.conversation_mode && params.enable_chat_template;
|
||||
std::string user_inp = format_chat
|
||||
? chat_add_and_format(model, chat_msgs, "user", std::move(buffer))
|
||||
? chat_add_and_format("user", std::move(buffer))
|
||||
: std::move(buffer);
|
||||
// TODO: one inconvenient of current chat template implementation is that we can't distinguish between user input and special tokens (prefix/postfix)
|
||||
const auto line_pfx = common_tokenize(ctx, params.input_prefix, false, true);
|
||||
|
||||
@@ -47,7 +47,7 @@ echo PASS
|
||||
echo
|
||||
|
||||
# 3a. Test the requanted model is loading properly
|
||||
$MAIN --model $WORK_PATH/ggml-model-requant-00001-of-00006.gguf --n-predict 32
|
||||
$MAIN -no-cnv --model $WORK_PATH/ggml-model-requant-00001-of-00006.gguf --n-predict 32
|
||||
echo PASS
|
||||
echo
|
||||
|
||||
@@ -57,7 +57,7 @@ echo PASS
|
||||
echo
|
||||
|
||||
# 4b. Test the requanted model is loading properly
|
||||
$MAIN --model $WORK_PATH/ggml-model-requant-merge.gguf --n-predict 32
|
||||
$MAIN -no-cnv --model $WORK_PATH/ggml-model-requant-merge.gguf --n-predict 32
|
||||
echo PASS
|
||||
echo
|
||||
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
set(TARGET llama-run)
|
||||
add_executable(${TARGET} run.cpp)
|
||||
add_executable(${TARGET} run.cpp linenoise.cpp/linenoise.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_17)
|
||||
|
||||
@@ -3,11 +3,10 @@
|
||||
The purpose of this example is to demonstrate a minimal usage of llama.cpp for running models.
|
||||
|
||||
```bash
|
||||
llama-run granite-code
|
||||
llama-run granite3-moe
|
||||
```
|
||||
|
||||
```bash
|
||||
llama-run -h
|
||||
Description:
|
||||
Runs a llm
|
||||
|
||||
@@ -17,7 +16,7 @@ Usage:
|
||||
Options:
|
||||
-c, --context-size <value>
|
||||
Context size (default: 2048)
|
||||
-n, --ngl <value>
|
||||
-n, -ngl, --ngl <value>
|
||||
Number of GPU layers (default: 0)
|
||||
--temp <value>
|
||||
Temperature (default: 0.8)
|
||||
|
||||
26
examples/run/linenoise.cpp/LICENSE
Normal file
26
examples/run/linenoise.cpp/LICENSE
Normal file
@@ -0,0 +1,26 @@
|
||||
Copyright (c) 2010-2014, Salvatore Sanfilippo <antirez at gmail dot com>
|
||||
Copyright (c) 2010-2013, Pieter Noordhuis <pcnoordhuis at gmail dot com>
|
||||
Copyright (c) 2025, Eric Curtin <ericcurtin17 at gmail dot com>
|
||||
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright notice,
|
||||
this list of conditions and the following disclaimer.
|
||||
|
||||
* Redistributions in binary form must reproduce the above copyright notice,
|
||||
this list of conditions and the following disclaimer in the documentation
|
||||
and/or other materials provided with the distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||||
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
|
||||
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||||
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
||||
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
1350
examples/run/linenoise.cpp/linenoise.cpp
Normal file
1350
examples/run/linenoise.cpp/linenoise.cpp
Normal file
File diff suppressed because it is too large
Load Diff
128
examples/run/linenoise.cpp/linenoise.h
Normal file
128
examples/run/linenoise.cpp/linenoise.h
Normal file
@@ -0,0 +1,128 @@
|
||||
/* linenoise.h -- VERSION 1.0
|
||||
*
|
||||
* Guerrilla line editing library against the idea that a line editing lib
|
||||
* needs to be 20,000 lines of C++ code.
|
||||
*
|
||||
* See linenoise.cpp for more information.
|
||||
*
|
||||
* ------------------------------------------------------------------------
|
||||
*
|
||||
* Copyright (c) 2010-2023, Salvatore Sanfilippo <antirez at gmail dot com>
|
||||
* Copyright (c) 2010-2013, Pieter Noordhuis <pcnoordhuis at gmail dot com>
|
||||
* Copyright (c) 2025, Eric Curtin <ericcurtin17 at gmail dot com>
|
||||
*
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are
|
||||
* met:
|
||||
*
|
||||
* * Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
*
|
||||
* * Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#ifndef __LINENOISE_H
|
||||
#define __LINENOISE_H
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include <stddef.h> /* For size_t. */
|
||||
#include <stdlib.h>
|
||||
|
||||
extern const char *linenoiseEditMore;
|
||||
|
||||
/* The linenoiseState structure represents the state during line editing.
|
||||
* We pass this state to functions implementing specific editing
|
||||
* functionalities. */
|
||||
struct linenoiseState {
|
||||
int in_completion; /* The user pressed TAB and we are now in completion
|
||||
* mode, so input is handled by completeLine(). */
|
||||
size_t completion_idx; /* Index of next completion to propose. */
|
||||
int ifd; /* Terminal stdin file descriptor. */
|
||||
int ofd; /* Terminal stdout file descriptor. */
|
||||
char *buf; /* Edited line buffer. */
|
||||
size_t buflen; /* Edited line buffer size. */
|
||||
const char *prompt; /* Prompt to display. */
|
||||
size_t plen; /* Prompt length. */
|
||||
size_t pos; /* Current cursor position. */
|
||||
size_t oldpos; /* Previous refresh cursor position. */
|
||||
size_t len; /* Current edited line length. */
|
||||
size_t cols; /* Number of columns in terminal. */
|
||||
size_t oldrows; /* Rows used by last refrehsed line (multiline mode) */
|
||||
int history_index; /* The history index we are currently editing. */
|
||||
};
|
||||
|
||||
struct linenoiseCompletions {
|
||||
size_t len = 0;
|
||||
char ** cvec = nullptr;
|
||||
bool to_free = true;
|
||||
|
||||
~linenoiseCompletions() {
|
||||
if (!to_free) {
|
||||
return;
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < len; ++i) {
|
||||
free(cvec[i]);
|
||||
}
|
||||
|
||||
free(cvec);
|
||||
}
|
||||
};
|
||||
|
||||
/* Non blocking API. */
|
||||
int linenoiseEditStart(struct linenoiseState *l, int stdin_fd, int stdout_fd, char *buf, size_t buflen, const char *prompt);
|
||||
const char *linenoiseEditFeed(struct linenoiseState *l);
|
||||
void linenoiseEditStop(struct linenoiseState *l);
|
||||
void linenoiseHide(struct linenoiseState *l);
|
||||
void linenoiseShow(struct linenoiseState *l);
|
||||
|
||||
/* Blocking API. */
|
||||
const char *linenoise(const char *prompt);
|
||||
void linenoiseFree(void *ptr);
|
||||
|
||||
/* Completion API. */
|
||||
typedef void(linenoiseCompletionCallback)(const char *, linenoiseCompletions *);
|
||||
typedef const char*(linenoiseHintsCallback)(const char *, int *color, int *bold);
|
||||
typedef void(linenoiseFreeHintsCallback)(const char *);
|
||||
void linenoiseSetCompletionCallback(linenoiseCompletionCallback *);
|
||||
void linenoiseSetHintsCallback(linenoiseHintsCallback *);
|
||||
void linenoiseSetFreeHintsCallback(linenoiseFreeHintsCallback *);
|
||||
void linenoiseAddCompletion(linenoiseCompletions *, const char *);
|
||||
|
||||
/* History API. */
|
||||
int linenoiseHistoryAdd(const char *line);
|
||||
int linenoiseHistorySetMaxLen(int len);
|
||||
int linenoiseHistorySave(const char *filename);
|
||||
int linenoiseHistoryLoad(const char *filename);
|
||||
|
||||
/* Other utilities. */
|
||||
void linenoiseClearScreen(void);
|
||||
void linenoiseSetMultiLine(int ml);
|
||||
void linenoisePrintKeyCodes(void);
|
||||
void linenoiseMaskModeEnable(void);
|
||||
void linenoiseMaskModeDisable(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* __LINENOISE_H */
|
||||
@@ -19,17 +19,20 @@
|
||||
#include <cstring>
|
||||
#include <filesystem>
|
||||
#include <iostream>
|
||||
#include <list>
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "common.h"
|
||||
#include "json.hpp"
|
||||
#include "linenoise.cpp/linenoise.h"
|
||||
#include "llama-cpp.h"
|
||||
#include "chat-template.hpp"
|
||||
|
||||
#if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__)) || defined(_WIN32)
|
||||
[[noreturn]] static void sigint_handler(int) {
|
||||
printf("\n");
|
||||
printf("\n\033[0m");
|
||||
exit(0); // not ideal, but it's the only way to guarantee exit in all cases
|
||||
}
|
||||
#endif
|
||||
@@ -103,6 +106,7 @@ class Opt {
|
||||
llama_model_params model_params;
|
||||
std::string model_;
|
||||
std::string user;
|
||||
bool use_jinja = false;
|
||||
int context_size = -1, ngl = -1;
|
||||
float temperature = -1;
|
||||
bool verbose = false;
|
||||
@@ -143,7 +147,8 @@ class Opt {
|
||||
if (handle_option_with_value(argc, argv, i, context_size) == 1) {
|
||||
return 1;
|
||||
}
|
||||
} else if (options_parsing && (strcmp(argv[i], "-n") == 0 || strcmp(argv[i], "--ngl") == 0)) {
|
||||
} else if (options_parsing &&
|
||||
(strcmp(argv[i], "-n") == 0 || strcmp(argv[i], "-ngl") == 0 || strcmp(argv[i], "--ngl") == 0)) {
|
||||
if (handle_option_with_value(argc, argv, i, ngl) == 1) {
|
||||
return 1;
|
||||
}
|
||||
@@ -154,6 +159,8 @@ class Opt {
|
||||
} else if (options_parsing &&
|
||||
(parse_flag(argv, i, "-v", "--verbose") || parse_flag(argv, i, "-v", "--log-verbose"))) {
|
||||
verbose = true;
|
||||
} else if (options_parsing && strcmp(argv[i], "--jinja") == 0) {
|
||||
use_jinja = true;
|
||||
} else if (options_parsing && parse_flag(argv, i, "-h", "--help")) {
|
||||
help = true;
|
||||
return 0;
|
||||
@@ -174,6 +181,10 @@ class Opt {
|
||||
}
|
||||
}
|
||||
|
||||
if (model_.empty()){
|
||||
return 1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -188,7 +199,7 @@ class Opt {
|
||||
"Options:\n"
|
||||
" -c, --context-size <value>\n"
|
||||
" Context size (default: %d)\n"
|
||||
" -n, --ngl <value>\n"
|
||||
" -n, -ngl, --ngl <value>\n"
|
||||
" Number of GPU layers (default: %d)\n"
|
||||
" --temp <value>\n"
|
||||
" Temperature (default: %.1f)\n"
|
||||
@@ -312,6 +323,10 @@ class HttpClient {
|
||||
public:
|
||||
int init(const std::string & url, const std::vector<std::string> & headers, const std::string & output_file,
|
||||
const bool progress, std::string * response_str = nullptr) {
|
||||
if (std::filesystem::exists(output_file)) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
std::string output_file_partial;
|
||||
curl = curl_easy_init();
|
||||
if (!curl) {
|
||||
@@ -339,7 +354,11 @@ class HttpClient {
|
||||
data.file_size = set_resume_point(output_file_partial);
|
||||
set_progress_options(progress, data);
|
||||
set_headers(headers);
|
||||
perform(url);
|
||||
CURLcode res = perform(url);
|
||||
if (res != CURLE_OK){
|
||||
printe("Fetching resource '%s' failed: %s\n", url.c_str(), curl_easy_strerror(res));
|
||||
return 1;
|
||||
}
|
||||
if (!output_file.empty()) {
|
||||
std::filesystem::rename(output_file_partial, output_file);
|
||||
}
|
||||
@@ -404,16 +423,12 @@ class HttpClient {
|
||||
}
|
||||
}
|
||||
|
||||
void perform(const std::string & url) {
|
||||
CURLcode res;
|
||||
CURLcode perform(const std::string & url) {
|
||||
curl_easy_setopt(curl, CURLOPT_URL, url.c_str());
|
||||
curl_easy_setopt(curl, CURLOPT_FOLLOWLOCATION, 1L);
|
||||
curl_easy_setopt(curl, CURLOPT_DEFAULT_PROTOCOL, "https");
|
||||
curl_easy_setopt(curl, CURLOPT_FAILONERROR, 1L);
|
||||
res = curl_easy_perform(curl);
|
||||
if (res != CURLE_OK) {
|
||||
printe("curl_easy_perform() failed: %s\n", curl_easy_strerror(res));
|
||||
}
|
||||
return curl_easy_perform(curl);
|
||||
}
|
||||
|
||||
static std::string human_readable_time(double seconds) {
|
||||
@@ -536,7 +551,7 @@ class LlamaData {
|
||||
llama_sampler_ptr sampler;
|
||||
llama_context_ptr context;
|
||||
std::vector<llama_chat_message> messages;
|
||||
std::vector<std::string> msg_strs;
|
||||
std::list<std::string> msg_strs;
|
||||
std::vector<char> fmtted;
|
||||
|
||||
int init(Opt & opt) {
|
||||
@@ -551,13 +566,14 @@ class LlamaData {
|
||||
}
|
||||
|
||||
sampler = initialize_sampler(opt);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
private:
|
||||
#ifdef LLAMA_USE_CURL
|
||||
int download(const std::string & url, const std::vector<std::string> & headers, const std::string & output_file,
|
||||
const bool progress, std::string * response_str = nullptr) {
|
||||
int download(const std::string & url, const std::string & output_file, const bool progress,
|
||||
const std::vector<std::string> & headers = {}, std::string * response_str = nullptr) {
|
||||
HttpClient http;
|
||||
if (http.init(url, headers, output_file, progress, response_str)) {
|
||||
return 1;
|
||||
@@ -566,48 +582,85 @@ class LlamaData {
|
||||
return 0;
|
||||
}
|
||||
#else
|
||||
int download(const std::string &, const std::vector<std::string> &, const std::string &, const bool,
|
||||
int download(const std::string &, const std::string &, const bool, const std::vector<std::string> & = {},
|
||||
std::string * = nullptr) {
|
||||
printe("%s: llama.cpp built without libcurl, downloading from an url not supported.\n", __func__);
|
||||
|
||||
return 1;
|
||||
}
|
||||
#endif
|
||||
|
||||
int huggingface_dl(const std::string & model, const std::vector<std::string> headers, const std::string & bn) {
|
||||
// Find the second occurrence of '/' after protocol string
|
||||
size_t pos = model.find('/');
|
||||
pos = model.find('/', pos + 1);
|
||||
if (pos == std::string::npos) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
const std::string hfr = model.substr(0, pos);
|
||||
const std::string hff = model.substr(pos + 1);
|
||||
const std::string url = "https://huggingface.co/" + hfr + "/resolve/main/" + hff;
|
||||
return download(url, headers, bn, true);
|
||||
}
|
||||
|
||||
int ollama_dl(std::string & model, const std::vector<std::string> headers, const std::string & bn) {
|
||||
if (model.find('/') == std::string::npos) {
|
||||
model = "library/" + model;
|
||||
}
|
||||
|
||||
std::string model_tag = "latest";
|
||||
size_t colon_pos = model.find(':');
|
||||
// Helper function to handle model tag extraction and URL construction
|
||||
std::pair<std::string, std::string> extract_model_and_tag(std::string & model, const std::string & base_url) {
|
||||
std::string model_tag = "latest";
|
||||
const size_t colon_pos = model.find(':');
|
||||
if (colon_pos != std::string::npos) {
|
||||
model_tag = model.substr(colon_pos + 1);
|
||||
model = model.substr(0, colon_pos);
|
||||
}
|
||||
|
||||
std::string manifest_url = "https://registry.ollama.ai/v2/" + model + "/manifests/" + model_tag;
|
||||
std::string url = base_url + model + "/manifests/" + model_tag;
|
||||
|
||||
return { model, url };
|
||||
}
|
||||
|
||||
// Helper function to download and parse the manifest
|
||||
int download_and_parse_manifest(const std::string & url, const std::vector<std::string> & headers,
|
||||
nlohmann::json & manifest) {
|
||||
std::string manifest_str;
|
||||
const int ret = download(manifest_url, headers, "", false, &manifest_str);
|
||||
int ret = download(url, "", false, headers, &manifest_str);
|
||||
if (ret) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
nlohmann::json manifest = nlohmann::json::parse(manifest_str);
|
||||
std::string layer;
|
||||
manifest = nlohmann::json::parse(manifest_str);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int huggingface_dl(std::string & model, const std::string & bn) {
|
||||
// Find the second occurrence of '/' after protocol string
|
||||
size_t pos = model.find('/');
|
||||
pos = model.find('/', pos + 1);
|
||||
std::string hfr, hff;
|
||||
std::vector<std::string> headers = { "User-Agent: llama-cpp", "Accept: application/json" };
|
||||
std::string url;
|
||||
|
||||
if (pos == std::string::npos) {
|
||||
auto [model_name, manifest_url] = extract_model_and_tag(model, "https://huggingface.co/v2/");
|
||||
hfr = model_name;
|
||||
|
||||
nlohmann::json manifest;
|
||||
int ret = download_and_parse_manifest(manifest_url, headers, manifest);
|
||||
if (ret) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
hff = manifest["ggufFile"]["rfilename"];
|
||||
} else {
|
||||
hfr = model.substr(0, pos);
|
||||
hff = model.substr(pos + 1);
|
||||
}
|
||||
|
||||
url = "https://huggingface.co/" + hfr + "/resolve/main/" + hff;
|
||||
|
||||
return download(url, bn, true, headers);
|
||||
}
|
||||
|
||||
int ollama_dl(std::string & model, const std::string & bn) {
|
||||
const std::vector<std::string> headers = { "Accept: application/vnd.docker.distribution.manifest.v2+json" };
|
||||
if (model.find('/') == std::string::npos) {
|
||||
model = "library/" + model;
|
||||
}
|
||||
|
||||
auto [model_name, manifest_url] = extract_model_and_tag(model, "https://registry.ollama.ai/v2/");
|
||||
nlohmann::json manifest;
|
||||
int ret = download_and_parse_manifest(manifest_url, {}, manifest);
|
||||
if (ret) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
std::string layer;
|
||||
for (const auto & l : manifest["layers"]) {
|
||||
if (l["mediaType"] == "application/vnd.ollama.image.model") {
|
||||
layer = l["digest"];
|
||||
@@ -615,8 +668,34 @@ class LlamaData {
|
||||
}
|
||||
}
|
||||
|
||||
std::string blob_url = "https://registry.ollama.ai/v2/" + model + "/blobs/" + layer;
|
||||
return download(blob_url, headers, bn, true);
|
||||
std::string blob_url = "https://registry.ollama.ai/v2/" + model_name + "/blobs/" + layer;
|
||||
|
||||
return download(blob_url, bn, true, headers);
|
||||
}
|
||||
|
||||
int github_dl(const std::string & model, const std::string & bn) {
|
||||
std::string repository = model;
|
||||
std::string branch = "main";
|
||||
const size_t at_pos = model.find('@');
|
||||
if (at_pos != std::string::npos) {
|
||||
repository = model.substr(0, at_pos);
|
||||
branch = model.substr(at_pos + 1);
|
||||
}
|
||||
|
||||
const std::vector<std::string> repo_parts = string_split(repository, "/");
|
||||
if (repo_parts.size() < 3) {
|
||||
printe("Invalid GitHub repository format\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
const std::string & org = repo_parts[0];
|
||||
const std::string & project = repo_parts[1];
|
||||
std::string url = "https://raw.githubusercontent.com/" + org + "/" + project + "/" + branch;
|
||||
for (size_t i = 2; i < repo_parts.size(); ++i) {
|
||||
url += "/" + repo_parts[i];
|
||||
}
|
||||
|
||||
return download(url, bn, true);
|
||||
}
|
||||
|
||||
std::string basename(const std::string & path) {
|
||||
@@ -628,37 +707,41 @@ class LlamaData {
|
||||
return path.substr(pos + 1);
|
||||
}
|
||||
|
||||
int remove_proto(std::string & model_) {
|
||||
const std::string::size_type pos = model_.find("://");
|
||||
int rm_until_substring(std::string & model_, const std::string & substring) {
|
||||
const std::string::size_type pos = model_.find(substring);
|
||||
if (pos == std::string::npos) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
model_ = model_.substr(pos + 3); // Skip past "://"
|
||||
model_ = model_.substr(pos + substring.size()); // Skip past the substring
|
||||
return 0;
|
||||
}
|
||||
|
||||
int resolve_model(std::string & model_) {
|
||||
int ret = 0;
|
||||
if (string_starts_with(model_, "file://") || std::filesystem::exists(model_)) {
|
||||
remove_proto(model_);
|
||||
rm_until_substring(model_, "://");
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
const std::string bn = basename(model_);
|
||||
const std::vector<std::string> headers = { "--header",
|
||||
"Accept: application/vnd.docker.distribution.manifest.v2+json" };
|
||||
if (string_starts_with(model_, "hf://") || string_starts_with(model_, "huggingface://")) {
|
||||
remove_proto(model_);
|
||||
ret = huggingface_dl(model_, headers, bn);
|
||||
} else if (string_starts_with(model_, "ollama://")) {
|
||||
remove_proto(model_);
|
||||
ret = ollama_dl(model_, headers, bn);
|
||||
} else if (string_starts_with(model_, "https://")) {
|
||||
download(model_, headers, bn, true);
|
||||
} else {
|
||||
ret = ollama_dl(model_, headers, bn);
|
||||
const std::string bn = basename(model_);
|
||||
if (string_starts_with(model_, "hf://") || string_starts_with(model_, "huggingface://") ||
|
||||
string_starts_with(model_, "hf.co/")) {
|
||||
rm_until_substring(model_, "hf.co/");
|
||||
rm_until_substring(model_, "://");
|
||||
ret = huggingface_dl(model_, bn);
|
||||
} else if ((string_starts_with(model_, "https://") || string_starts_with(model_, "http://")) &&
|
||||
!string_starts_with(model_, "https://ollama.com/library/")) {
|
||||
ret = download(model_, bn, true);
|
||||
} else if (string_starts_with(model_, "github:") || string_starts_with(model_, "github://")) {
|
||||
rm_until_substring(model_, "github:");
|
||||
rm_until_substring(model_, "://");
|
||||
ret = github_dl(model_, bn);
|
||||
} else { // ollama:// or nothing
|
||||
rm_until_substring(model_, "ollama.com/library/");
|
||||
rm_until_substring(model_, "://");
|
||||
ret = ollama_dl(model_, bn);
|
||||
}
|
||||
|
||||
model_ = bn;
|
||||
@@ -711,13 +794,31 @@ static void add_message(const char * role, const std::string & text, LlamaData &
|
||||
}
|
||||
|
||||
// Function to apply the chat template and resize `formatted` if needed
|
||||
static int apply_chat_template(LlamaData & llama_data, const bool append) {
|
||||
static int apply_chat_template(const common_chat_template & tmpl, LlamaData & llama_data, const bool append, bool use_jinja) {
|
||||
if (use_jinja) {
|
||||
json messages = json::array();
|
||||
for (const auto & msg : llama_data.messages) {
|
||||
messages.push_back({
|
||||
{"role", msg.role},
|
||||
{"content", msg.content},
|
||||
});
|
||||
}
|
||||
try {
|
||||
auto result = tmpl.apply(messages, /* tools= */ json(), append);
|
||||
llama_data.fmtted.resize(result.size() + 1);
|
||||
memcpy(llama_data.fmtted.data(), result.c_str(), result.size() + 1);
|
||||
return result.size();
|
||||
} catch (const std::exception & e) {
|
||||
printe("failed to render the chat template: %s\n", e.what());
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
int result = llama_chat_apply_template(
|
||||
llama_model_chat_template(llama_data.model.get()), llama_data.messages.data(), llama_data.messages.size(), append,
|
||||
tmpl.source().c_str(), llama_data.messages.data(), llama_data.messages.size(), append,
|
||||
append ? llama_data.fmtted.data() : nullptr, append ? llama_data.fmtted.size() : 0);
|
||||
if (append && result > static_cast<int>(llama_data.fmtted.size())) {
|
||||
llama_data.fmtted.resize(result);
|
||||
result = llama_chat_apply_template(llama_model_chat_template(llama_data.model.get()), llama_data.messages.data(),
|
||||
result = llama_chat_apply_template(tmpl.source().c_str(), llama_data.messages.data(),
|
||||
llama_data.messages.size(), append, llama_data.fmtted.data(),
|
||||
llama_data.fmtted.size());
|
||||
}
|
||||
@@ -727,10 +828,12 @@ static int apply_chat_template(LlamaData & llama_data, const bool append) {
|
||||
|
||||
// Function to tokenize the prompt
|
||||
static int tokenize_prompt(const llama_vocab * vocab, const std::string & prompt,
|
||||
std::vector<llama_token> & prompt_tokens) {
|
||||
const int n_prompt_tokens = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, true, true);
|
||||
std::vector<llama_token> & prompt_tokens, const LlamaData & llama_data) {
|
||||
const bool is_first = llama_get_kv_cache_used_cells(llama_data.context.get()) == 0;
|
||||
|
||||
const int n_prompt_tokens = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, is_first, true);
|
||||
prompt_tokens.resize(n_prompt_tokens);
|
||||
if (llama_tokenize(vocab, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), true,
|
||||
if (llama_tokenize(vocab, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), is_first,
|
||||
true) < 0) {
|
||||
printe("failed to tokenize the prompt\n");
|
||||
return -1;
|
||||
@@ -776,7 +879,7 @@ static int generate(LlamaData & llama_data, const std::string & prompt, std::str
|
||||
const llama_vocab * vocab = llama_model_get_vocab(llama_data.model.get());
|
||||
|
||||
std::vector<llama_token> tokens;
|
||||
if (tokenize_prompt(vocab, prompt, tokens) < 0) {
|
||||
if (tokenize_prompt(vocab, prompt, tokens, llama_data) < 0) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
@@ -807,24 +910,44 @@ static int generate(LlamaData & llama_data, const std::string & prompt, std::str
|
||||
batch = llama_batch_get_one(&new_token_id, 1);
|
||||
}
|
||||
|
||||
printf("\033[0m");
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int read_user_input(std::string & user) {
|
||||
std::getline(std::cin, user);
|
||||
static int read_user_input(std::string & user_input) {
|
||||
static const char * prompt_prefix = "> ";
|
||||
#ifdef WIN32
|
||||
printf(
|
||||
"\r%*s"
|
||||
"\r\033[0m%s",
|
||||
get_terminal_width(), " ", prompt_prefix);
|
||||
|
||||
std::getline(std::cin, user_input);
|
||||
if (std::cin.eof()) {
|
||||
printf("\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (user == "/bye") {
|
||||
#else
|
||||
std::unique_ptr<char, decltype(&std::free)> line(const_cast<char *>(linenoise(prompt_prefix)), free);
|
||||
if (!line) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (user.empty()) {
|
||||
user_input = line.get();
|
||||
#endif
|
||||
|
||||
if (user_input == "/bye") {
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (user_input.empty()) {
|
||||
return 2;
|
||||
}
|
||||
|
||||
#ifndef WIN32
|
||||
linenoiseHistoryAdd(line.get());
|
||||
#endif
|
||||
|
||||
return 0; // Should have data in happy path
|
||||
}
|
||||
|
||||
@@ -847,8 +970,8 @@ static int generate_response(LlamaData & llama_data, const std::string & prompt,
|
||||
}
|
||||
|
||||
// Helper function to apply the chat template and handle errors
|
||||
static int apply_chat_template_with_error_handling(LlamaData & llama_data, const bool append, int & output_length) {
|
||||
const int new_len = apply_chat_template(llama_data, append);
|
||||
static int apply_chat_template_with_error_handling(const common_chat_template & tmpl, LlamaData & llama_data, const bool append, int & output_length, bool use_jinja) {
|
||||
const int new_len = apply_chat_template(tmpl, llama_data, append, use_jinja);
|
||||
if (new_len < 0) {
|
||||
printe("failed to apply the chat template\n");
|
||||
return -1;
|
||||
@@ -865,10 +988,6 @@ static int handle_user_input(std::string & user_input, const std::string & user)
|
||||
return 0; // No need for interactive input
|
||||
}
|
||||
|
||||
printf(
|
||||
"\r%*s"
|
||||
"\r\033[32m> \033[0m",
|
||||
get_terminal_width(), " ");
|
||||
return read_user_input(user_input); // Returns true if input ends the loop
|
||||
}
|
||||
|
||||
@@ -911,9 +1030,11 @@ static int get_user_input(std::string & user_input, const std::string & user) {
|
||||
}
|
||||
|
||||
// Main chat loop function
|
||||
static int chat_loop(LlamaData & llama_data, const std::string & user) {
|
||||
static int chat_loop(LlamaData & llama_data, const std::string & user, bool use_jinja) {
|
||||
int prev_len = 0;
|
||||
llama_data.fmtted.resize(llama_n_ctx(llama_data.context.get()));
|
||||
auto chat_templates = common_chat_templates_from_model(llama_data.model.get(), "");
|
||||
GGML_ASSERT(chat_templates.template_default);
|
||||
static const bool stdout_a_terminal = is_stdout_a_terminal();
|
||||
while (true) {
|
||||
// Get user input
|
||||
@@ -924,7 +1045,7 @@ static int chat_loop(LlamaData & llama_data, const std::string & user) {
|
||||
|
||||
add_message("user", user.empty() ? user_input : user, llama_data);
|
||||
int new_len;
|
||||
if (apply_chat_template_with_error_handling(llama_data, true, new_len) < 0) {
|
||||
if (apply_chat_template_with_error_handling(*chat_templates.template_default, llama_data, true, new_len, use_jinja) < 0) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
@@ -939,7 +1060,7 @@ static int chat_loop(LlamaData & llama_data, const std::string & user) {
|
||||
}
|
||||
|
||||
add_message("assistant", response, llama_data);
|
||||
if (apply_chat_template_with_error_handling(llama_data, false, prev_len) < 0) {
|
||||
if (apply_chat_template_with_error_handling(*chat_templates.template_default, llama_data, false, prev_len, use_jinja) < 0) {
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
@@ -999,7 +1120,7 @@ int main(int argc, const char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (chat_loop(llama_data, opt.user)) {
|
||||
if (chat_loop(llama_data, opt.user, opt.use_jinja)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
@@ -126,7 +126,7 @@ The project is under active development, and we are [looking for feedback and co
|
||||
| `--grammar GRAMMAR` | BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '') |
|
||||
| `--grammar-file FNAME` | file to read grammar from |
|
||||
| `-j, --json-schema SCHEMA` | JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object<br/>For schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead |
|
||||
|
||||
| `--jinja` | Enable experimental Jinja templating engine (needed for tool use) |
|
||||
|
||||
**Example-specific params**
|
||||
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
Binary file not shown.
@@ -19,6 +19,7 @@
|
||||
#include "loading.html.hpp"
|
||||
|
||||
#include <atomic>
|
||||
#include <chrono>
|
||||
#include <condition_variable>
|
||||
#include <cstddef>
|
||||
#include <cinttypes>
|
||||
@@ -32,6 +33,8 @@
|
||||
|
||||
using json = nlohmann::ordered_json;
|
||||
|
||||
constexpr int HTTP_POLLING_SECONDS = 1;
|
||||
|
||||
enum stop_type {
|
||||
STOP_TYPE_NONE,
|
||||
STOP_TYPE_EOS,
|
||||
@@ -264,6 +267,11 @@ struct server_task {
|
||||
params.speculative.n_min = std::max(params.speculative.n_min, 2);
|
||||
params.speculative.n_max = std::max(params.speculative.n_max, 0);
|
||||
|
||||
// Use OpenAI API logprobs only if n_probs wasn't provided
|
||||
if (data.contains("logprobs") && params.sampling.n_probs == defaults.sampling.n_probs){
|
||||
params.sampling.n_probs = json_value(data, "logprobs", defaults.sampling.n_probs);
|
||||
}
|
||||
|
||||
if (data.contains("lora")) {
|
||||
if (data.at("lora").is_array()) {
|
||||
params.lora = parse_lora_request(params_base.lora_adapters, data.at("lora"));
|
||||
@@ -1419,6 +1427,10 @@ struct server_queue {
|
||||
int post(server_task task, bool front = false) {
|
||||
std::unique_lock<std::mutex> lock(mutex_tasks);
|
||||
GGML_ASSERT(task.id != -1);
|
||||
// if this is cancel task make sure to clean up pending tasks
|
||||
if (task.type == SERVER_TASK_TYPE_CANCEL) {
|
||||
cleanup_pending_task(task.id_target);
|
||||
}
|
||||
QUE_DBG("new task, id = %d, front = %d\n", task.id, front);
|
||||
if (front) {
|
||||
queue_tasks.push_front(std::move(task));
|
||||
@@ -1436,6 +1448,10 @@ struct server_queue {
|
||||
if (task.id == -1) {
|
||||
task.id = id++;
|
||||
}
|
||||
// if this is cancel task make sure to clean up pending tasks
|
||||
if (task.type == SERVER_TASK_TYPE_CANCEL) {
|
||||
cleanup_pending_task(task.id_target);
|
||||
}
|
||||
QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front);
|
||||
if (front) {
|
||||
queue_tasks.push_front(std::move(task));
|
||||
@@ -1536,6 +1552,20 @@ struct server_queue {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
void cleanup_pending_task(int id_target) {
|
||||
// no need lock because this is called exclusively by post()
|
||||
auto rm_func = [id_target](const server_task & task) {
|
||||
return task.id_target == id_target;
|
||||
};
|
||||
queue_tasks.erase(
|
||||
std::remove_if(queue_tasks.begin(), queue_tasks.end(), rm_func),
|
||||
queue_tasks.end());
|
||||
queue_tasks_deferred.erase(
|
||||
std::remove_if(queue_tasks_deferred.begin(), queue_tasks_deferred.end(), rm_func),
|
||||
queue_tasks_deferred.end());
|
||||
}
|
||||
};
|
||||
|
||||
struct server_response {
|
||||
@@ -1571,6 +1601,12 @@ struct server_response {
|
||||
|
||||
std::unique_lock<std::mutex> lock(mutex_results);
|
||||
waiting_task_ids.erase(id_task);
|
||||
// make sure to clean up all pending results
|
||||
queue_results.erase(
|
||||
std::remove_if(queue_results.begin(), queue_results.end(), [id_task](const server_task_result_ptr & res) {
|
||||
return res->id == id_task;
|
||||
}),
|
||||
queue_results.end());
|
||||
}
|
||||
|
||||
void remove_waiting_task_ids(const std::unordered_set<int> & id_tasks) {
|
||||
@@ -1590,6 +1626,24 @@ struct server_response {
|
||||
return !queue_results.empty();
|
||||
});
|
||||
|
||||
for (size_t i = 0; i < queue_results.size(); i++) {
|
||||
if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
|
||||
server_task_result_ptr res = std::move(queue_results[i]);
|
||||
queue_results.erase(queue_results.begin() + i);
|
||||
return res;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// should never reach here
|
||||
}
|
||||
|
||||
// same as recv(), but have timeout in seconds
|
||||
// if timeout is reached, nullptr is returned
|
||||
server_task_result_ptr recv_with_timeout(const std::unordered_set<int> & id_tasks, int timeout) {
|
||||
while (true) {
|
||||
std::unique_lock<std::mutex> lock(mutex_results);
|
||||
|
||||
for (int i = 0; i < (int) queue_results.size(); i++) {
|
||||
if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
|
||||
server_task_result_ptr res = std::move(queue_results[i]);
|
||||
@@ -1597,6 +1651,11 @@ struct server_response {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
std::cv_status cr_res = condition_results.wait_for(lock, std::chrono::seconds(timeout));
|
||||
if (cr_res == std::cv_status::timeout) {
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
// should never reach here
|
||||
@@ -1661,6 +1720,8 @@ struct server_context {
|
||||
// Necessary similarity of prompt for slot selection
|
||||
float slot_prompt_similarity = 0.0f;
|
||||
|
||||
common_chat_templates chat_templates;
|
||||
|
||||
~server_context() {
|
||||
// Clear any sampling context
|
||||
for (server_slot & slot : slots) {
|
||||
@@ -1701,13 +1762,16 @@ struct server_context {
|
||||
add_bos_token = llama_vocab_get_add_bos(vocab);
|
||||
has_eos_token = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
|
||||
|
||||
if (!params_base.speculative.model.empty()) {
|
||||
if (!params_base.speculative.model.empty() || !params_base.speculative.hf_repo.empty()) {
|
||||
SRV_INF("loading draft model '%s'\n", params_base.speculative.model.c_str());
|
||||
|
||||
auto params_dft = params_base;
|
||||
|
||||
params_dft.devices = params_base.speculative.devices;
|
||||
params_dft.hf_file = params_base.speculative.hf_file;
|
||||
params_dft.hf_repo = params_base.speculative.hf_repo;
|
||||
params_dft.model = params_base.speculative.model;
|
||||
params_dft.model_url = params_base.speculative.model_url;
|
||||
params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? params_base.n_ctx / params_base.n_parallel : params_base.speculative.n_ctx;
|
||||
params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
|
||||
params_dft.n_parallel = 1;
|
||||
@@ -1735,16 +1799,44 @@ struct server_context {
|
||||
// force F16 KV cache for the draft model for extra performance
|
||||
cparams_dft.type_k = GGML_TYPE_F16;
|
||||
cparams_dft.type_v = GGML_TYPE_F16;
|
||||
|
||||
// the context is not needed - we will create one for each slot
|
||||
llama_init_dft.context.reset();
|
||||
}
|
||||
|
||||
chat_templates = common_chat_templates_from_model(model, params_base.chat_template);
|
||||
GGML_ASSERT(chat_templates.template_default.get() != nullptr);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool validate_builtin_chat_template() const {
|
||||
bool validate_builtin_chat_template(bool use_jinja) const {
|
||||
llama_chat_message chat[] = {{"user", "test"}};
|
||||
const char * tmpl = llama_model_chat_template(model);
|
||||
const int32_t chat_res = llama_chat_apply_template(tmpl, chat, 1, true, nullptr, 0);
|
||||
return chat_res > 0;
|
||||
|
||||
if (use_jinja) {
|
||||
auto templates = common_chat_templates_from_model(model, "");
|
||||
GGML_ASSERT(templates.template_default);
|
||||
try {
|
||||
templates.template_default->apply({{
|
||||
{"role", "user"},
|
||||
{"content", "test"},
|
||||
}}, json(), true);
|
||||
if (templates.template_tool_use) {
|
||||
templates.template_tool_use->apply({{
|
||||
{"role", "user"},
|
||||
{"content", "test"},
|
||||
}}, json(), true);
|
||||
}
|
||||
return true;
|
||||
} catch (const std::exception & e) {
|
||||
SRV_ERR("failed to apply template: %s\n", e.what());
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
const char * tmpl = llama_model_chat_template(model, /* name */ nullptr);
|
||||
const int32_t chat_res = llama_chat_apply_template(tmpl, chat, 1, true, nullptr, 0);
|
||||
return chat_res > 0;
|
||||
}
|
||||
}
|
||||
|
||||
void init() {
|
||||
@@ -2311,8 +2403,8 @@ struct server_context {
|
||||
|
||||
server_task task(SERVER_TASK_TYPE_CANCEL);
|
||||
task.id_target = id_task;
|
||||
cancel_tasks.push_back(task);
|
||||
queue_results.remove_waiting_task_id(id_task);
|
||||
cancel_tasks.push_back(task);
|
||||
}
|
||||
// push to beginning of the queue, so it has highest priority
|
||||
queue_tasks.post(cancel_tasks, true);
|
||||
@@ -2322,10 +2414,21 @@ struct server_context {
|
||||
void receive_multi_results(
|
||||
const std::unordered_set<int> & id_tasks,
|
||||
const std::function<void(std::vector<server_task_result_ptr>&)> & result_handler,
|
||||
const std::function<void(json)> & error_handler) {
|
||||
const std::function<void(json)> & error_handler,
|
||||
const std::function<bool()> & is_connection_closed) {
|
||||
std::vector<server_task_result_ptr> results(id_tasks.size());
|
||||
for (size_t i = 0; i < id_tasks.size(); i++) {
|
||||
server_task_result_ptr result = queue_results.recv(id_tasks);
|
||||
for (int i = 0; i < (int)id_tasks.size(); i++) {
|
||||
server_task_result_ptr result = queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS);
|
||||
|
||||
if (is_connection_closed()) {
|
||||
cancel_tasks(id_tasks);
|
||||
return;
|
||||
}
|
||||
|
||||
if (result == nullptr) {
|
||||
i--; // retry
|
||||
continue;
|
||||
}
|
||||
|
||||
if (result->is_error()) {
|
||||
error_handler(result->to_json());
|
||||
@@ -2349,10 +2452,20 @@ struct server_context {
|
||||
void receive_cmpl_results_stream(
|
||||
const std::unordered_set<int> & id_tasks,
|
||||
const std::function<bool(server_task_result_ptr&)> & result_handler,
|
||||
const std::function<void(json)> & error_handler) {
|
||||
const std::function<void(json)> & error_handler,
|
||||
const std::function<bool()> & is_connection_closed) {
|
||||
size_t n_finished = 0;
|
||||
while (true) {
|
||||
server_task_result_ptr result = queue_results.recv(id_tasks);
|
||||
server_task_result_ptr result = queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS);
|
||||
|
||||
if (is_connection_closed()) {
|
||||
cancel_tasks(id_tasks);
|
||||
return;
|
||||
}
|
||||
|
||||
if (result == nullptr) {
|
||||
continue; // retry
|
||||
}
|
||||
|
||||
if (result->is_error()) {
|
||||
error_handler(result->to_json());
|
||||
@@ -3608,9 +3721,12 @@ int main(int argc, char ** argv) {
|
||||
{ "default_generation_settings", ctx_server.default_generation_settings_for_props },
|
||||
{ "total_slots", ctx_server.params_base.n_parallel },
|
||||
{ "model_path", ctx_server.params_base.model },
|
||||
{ "chat_template", common_get_builtin_chat_template(ctx_server.model) },
|
||||
{ "chat_template", ctx_server.chat_templates.template_default->source() },
|
||||
{ "build_info", build_info },
|
||||
};
|
||||
if (ctx_server.params_base.use_jinja && ctx_server.chat_templates.template_tool_use) {
|
||||
data["chat_template_tool_use"] = ctx_server.chat_templates.template_tool_use->source();
|
||||
}
|
||||
|
||||
res_ok(res, data);
|
||||
};
|
||||
@@ -3633,6 +3749,7 @@ int main(int argc, char ** argv) {
|
||||
const auto handle_completions_impl = [&ctx_server, &res_error, &res_ok](
|
||||
server_task_type type,
|
||||
json & data,
|
||||
std::function<bool()> is_connection_closed,
|
||||
httplib::Response & res,
|
||||
oaicompat_type oaicompat) {
|
||||
GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION || type == SERVER_TASK_TYPE_INFILL);
|
||||
@@ -3694,7 +3811,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}, [&](const json & error_data) {
|
||||
res_error(res, error_data);
|
||||
});
|
||||
}, is_connection_closed);
|
||||
|
||||
ctx_server.queue_results.remove_waiting_task_ids(task_ids);
|
||||
} else {
|
||||
@@ -3704,6 +3821,7 @@ int main(int argc, char ** argv) {
|
||||
if (res_json.is_array()) {
|
||||
for (const auto & res : res_json) {
|
||||
if (!server_sent_event(sink, "data", res)) {
|
||||
// sending failed (HTTP connection closed), cancel the generation
|
||||
return false;
|
||||
}
|
||||
}
|
||||
@@ -3713,6 +3831,9 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}, [&](const json & error_data) {
|
||||
server_sent_event(sink, "error", error_data);
|
||||
}, [&sink]() {
|
||||
// note: do not use req.is_connection_closed here because req is already destroyed
|
||||
return !sink.is_writable();
|
||||
});
|
||||
if (oaicompat != OAICOMPAT_TYPE_NONE) {
|
||||
static const std::string ev_done = "data: [DONE]\n\n";
|
||||
@@ -3735,6 +3856,7 @@ int main(int argc, char ** argv) {
|
||||
return handle_completions_impl(
|
||||
SERVER_TASK_TYPE_COMPLETION,
|
||||
data,
|
||||
req.is_connection_closed,
|
||||
res,
|
||||
OAICOMPAT_TYPE_NONE);
|
||||
};
|
||||
@@ -3744,6 +3866,7 @@ int main(int argc, char ** argv) {
|
||||
return handle_completions_impl(
|
||||
SERVER_TASK_TYPE_COMPLETION,
|
||||
data,
|
||||
req.is_connection_closed,
|
||||
res,
|
||||
OAICOMPAT_TYPE_COMPLETION);
|
||||
};
|
||||
@@ -3820,6 +3943,7 @@ int main(int argc, char ** argv) {
|
||||
return handle_completions_impl(
|
||||
SERVER_TASK_TYPE_INFILL,
|
||||
data,
|
||||
req.is_connection_closed,
|
||||
res,
|
||||
OAICOMPAT_TYPE_NONE); // infill is not OAI compatible
|
||||
};
|
||||
@@ -3830,10 +3954,14 @@ int main(int argc, char ** argv) {
|
||||
return;
|
||||
}
|
||||
|
||||
json data = oaicompat_chat_completion_params_parse(ctx_server.model, json::parse(req.body), params.chat_template);
|
||||
auto body = json::parse(req.body);
|
||||
const auto & chat_template = body.contains("tools") && ctx_server.chat_templates.template_tool_use ? *ctx_server.chat_templates.template_tool_use : *ctx_server.chat_templates.template_default;
|
||||
json data = oaicompat_completion_params_parse(body, chat_template, params.use_jinja);
|
||||
|
||||
return handle_completions_impl(
|
||||
SERVER_TASK_TYPE_COMPLETION,
|
||||
data,
|
||||
req.is_connection_closed,
|
||||
res,
|
||||
OAICOMPAT_TYPE_CHAT);
|
||||
};
|
||||
@@ -3980,7 +4108,7 @@ int main(int argc, char ** argv) {
|
||||
}, [&](const json & error_data) {
|
||||
res_error(res, error_data);
|
||||
error = true;
|
||||
});
|
||||
}, req.is_connection_closed);
|
||||
|
||||
ctx_server.queue_results.remove_waiting_task_ids(task_ids);
|
||||
}
|
||||
@@ -4070,7 +4198,7 @@ int main(int argc, char ** argv) {
|
||||
}, [&](const json & error_data) {
|
||||
res_error(res, error_data);
|
||||
error = true;
|
||||
});
|
||||
}, req.is_connection_closed);
|
||||
}
|
||||
|
||||
if (error) {
|
||||
@@ -4239,7 +4367,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// if a custom chat template is not supplied, we will use the one that comes with the model (if any)
|
||||
if (params.chat_template.empty()) {
|
||||
if (!ctx_server.validate_builtin_chat_template()) {
|
||||
if (!ctx_server.validate_builtin_chat_template(params.use_jinja)) {
|
||||
LOG_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
|
||||
params.chat_template = "chatml";
|
||||
}
|
||||
@@ -4247,8 +4375,8 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// print sample chat example to make it clear which template is used
|
||||
LOG_INF("%s: chat template, chat_template: %s, example_format: '%s'\n", __func__,
|
||||
params.chat_template.empty() ? "(built-in)" : params.chat_template.c_str(),
|
||||
common_chat_format_example(ctx_server.model, params.chat_template).c_str());
|
||||
ctx_server.chat_templates.template_default->source().c_str(),
|
||||
common_chat_format_example(*ctx_server.chat_templates.template_default, ctx_server.params_base.use_jinja).c_str());
|
||||
|
||||
ctx_server.queue_tasks.on_new_task(std::bind(
|
||||
&server_context::process_single_task, &ctx_server, std::placeholders::_1));
|
||||
|
||||
@@ -4,22 +4,26 @@ from utils import *
|
||||
|
||||
server = ServerPreset.tinyllama2()
|
||||
|
||||
|
||||
@pytest.fixture(scope="module", autouse=True)
|
||||
@pytest.fixture(autouse=True)
|
||||
def create_server():
|
||||
global server
|
||||
server = ServerPreset.tinyllama2()
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"model,system_prompt,user_prompt,max_tokens,re_content,n_prompt,n_predicted,finish_reason",
|
||||
"model,system_prompt,user_prompt,max_tokens,re_content,n_prompt,n_predicted,finish_reason,jinja,chat_template",
|
||||
[
|
||||
(None, "Book", "What is the best book", 8, "(Suddenly)+", 77, 8, "length"),
|
||||
("codellama70b", "You are a coding assistant.", "Write the fibonacci function in c++.", 128, "(Aside|she|felter|alonger)+", 104, 64, "length"),
|
||||
(None, "Book", "What is the best book", 8, "(Suddenly)+", 77, 8, "length", False, None),
|
||||
(None, "Book", "What is the best book", 8, "(Suddenly)+", 77, 8, "length", True, None),
|
||||
(None, "Book", "What is the best book", 8, "^ blue", 23, 8, "length", True, "This is not a chat template, it is"),
|
||||
("codellama70b", "You are a coding assistant.", "Write the fibonacci function in c++.", 128, "(Aside|she|felter|alonger)+", 104, 64, "length", False, None),
|
||||
("codellama70b", "You are a coding assistant.", "Write the fibonacci function in c++.", 128, "(Aside|she|felter|alonger)+", 104, 64, "length", True, None),
|
||||
]
|
||||
)
|
||||
def test_chat_completion(model, system_prompt, user_prompt, max_tokens, re_content, n_prompt, n_predicted, finish_reason):
|
||||
def test_chat_completion(model, system_prompt, user_prompt, max_tokens, re_content, n_prompt, n_predicted, finish_reason, jinja, chat_template):
|
||||
global server
|
||||
server.jinja = jinja
|
||||
server.chat_template = chat_template
|
||||
server.start()
|
||||
res = server.make_request("POST", "/chat/completions", data={
|
||||
"model": model,
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
import pytest
|
||||
import requests
|
||||
import time
|
||||
from openai import OpenAI
|
||||
from utils import *
|
||||
@@ -86,7 +87,7 @@ def test_completion_stream_vs_non_stream():
|
||||
assert content_stream == res_non_stream.body["content"]
|
||||
|
||||
|
||||
def test_completion_stream_with_openai_library():
|
||||
def test_completion_with_openai_library():
|
||||
global server
|
||||
server.start()
|
||||
client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}/v1")
|
||||
@@ -101,7 +102,7 @@ def test_completion_stream_with_openai_library():
|
||||
assert match_regex("(going|bed)+", res.choices[0].text)
|
||||
|
||||
|
||||
def test_completion_with_openai_library():
|
||||
def test_completion_stream_with_openai_library():
|
||||
global server
|
||||
server.start()
|
||||
client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}/v1")
|
||||
@@ -405,3 +406,23 @@ def test_n_probs_post_sampling():
|
||||
assert "bytes" in prob and type(prob["bytes"]) == list
|
||||
# because the test model usually output token with either 100% or 0% probability, we need to check all the top_probs
|
||||
assert any(prob["prob"] == 1.0 for prob in tok["top_probs"])
|
||||
|
||||
|
||||
def test_cancel_request():
|
||||
global server
|
||||
server.n_ctx = 4096
|
||||
server.n_predict = -1
|
||||
server.n_slots = 1
|
||||
server.server_slots = True
|
||||
server.start()
|
||||
# send a request that will take a long time, but cancel it before it finishes
|
||||
try:
|
||||
server.make_request("POST", "/completion", data={
|
||||
"prompt": "I believe the meaning of life is",
|
||||
}, timeout=0.1)
|
||||
except requests.exceptions.ReadTimeout:
|
||||
pass # expected
|
||||
# make sure the slot is free
|
||||
time.sleep(1) # wait for HTTP_POLLING_SECONDS
|
||||
res = server.make_request("GET", "/slots")
|
||||
assert res.body[0]["is_processing"] == False
|
||||
|
||||
@@ -26,6 +26,9 @@ from re import RegexFlag
|
||||
import wget
|
||||
|
||||
|
||||
DEFAULT_HTTP_TIMEOUT = 10 if "LLAMA_SANITIZE" not in os.environ else 30
|
||||
|
||||
|
||||
class ServerResponse:
|
||||
headers: dict
|
||||
status_code: int
|
||||
@@ -69,13 +72,14 @@ class ServerProcess:
|
||||
pooling: str | None = None
|
||||
draft: int | None = None
|
||||
api_key: str | None = None
|
||||
response_format: str | None = None
|
||||
lora_files: List[str] | None = None
|
||||
disable_ctx_shift: int | None = False
|
||||
draft_min: int | None = None
|
||||
draft_max: int | None = None
|
||||
no_webui: bool | None = None
|
||||
jinja: bool | None = None
|
||||
chat_template: str | None = None
|
||||
chat_template_file: str | None = None
|
||||
|
||||
# session variables
|
||||
process: subprocess.Popen | None = None
|
||||
@@ -88,7 +92,7 @@ class ServerProcess:
|
||||
if "PORT" in os.environ:
|
||||
self.server_port = int(os.environ["PORT"])
|
||||
|
||||
def start(self, timeout_seconds: int = 10) -> None:
|
||||
def start(self, timeout_seconds: int | None = DEFAULT_HTTP_TIMEOUT) -> None:
|
||||
if "LLAMA_SERVER_BIN_PATH" in os.environ:
|
||||
server_path = os.environ["LLAMA_SERVER_BIN_PATH"]
|
||||
elif os.name == "nt":
|
||||
@@ -166,8 +170,12 @@ class ServerProcess:
|
||||
server_args.extend(["--draft-min", self.draft_min])
|
||||
if self.no_webui:
|
||||
server_args.append("--no-webui")
|
||||
if self.jinja:
|
||||
server_args.append("--jinja")
|
||||
if self.chat_template:
|
||||
server_args.extend(["--chat-template", self.chat_template])
|
||||
if self.chat_template_file:
|
||||
server_args.extend(["--chat-template-file", self.chat_template_file])
|
||||
|
||||
args = [str(arg) for arg in [server_path, *server_args]]
|
||||
print(f"bench: starting server with: {' '.join(args)}")
|
||||
@@ -219,17 +227,18 @@ class ServerProcess:
|
||||
path: str,
|
||||
data: dict | Any | None = None,
|
||||
headers: dict | None = None,
|
||||
timeout: float | None = None,
|
||||
) -> ServerResponse:
|
||||
url = f"http://{self.server_host}:{self.server_port}{path}"
|
||||
parse_body = False
|
||||
if method == "GET":
|
||||
response = requests.get(url, headers=headers)
|
||||
response = requests.get(url, headers=headers, timeout=timeout)
|
||||
parse_body = True
|
||||
elif method == "POST":
|
||||
response = requests.post(url, headers=headers, json=data)
|
||||
response = requests.post(url, headers=headers, json=data, timeout=timeout)
|
||||
parse_body = True
|
||||
elif method == "OPTIONS":
|
||||
response = requests.options(url, headers=headers)
|
||||
response = requests.options(url, headers=headers, timeout=timeout)
|
||||
else:
|
||||
raise ValueError(f"Unimplemented method: {method}")
|
||||
result = ServerResponse()
|
||||
|
||||
@@ -16,6 +16,8 @@
|
||||
// Change JSON_ASSERT from assert() to GGML_ASSERT:
|
||||
#define JSON_ASSERT GGML_ASSERT
|
||||
#include "json.hpp"
|
||||
#include "minja.hpp"
|
||||
#include "chat-template.hpp"
|
||||
|
||||
#include <random>
|
||||
#include <sstream>
|
||||
@@ -349,7 +351,7 @@ static llama_tokens format_infill(
|
||||
}
|
||||
|
||||
// Format given chat. If tmpl is empty, we take the template from model metadata
|
||||
inline std::string format_chat(const struct llama_model * model, const std::string & tmpl, const std::vector<json> & messages) {
|
||||
inline std::string format_chat(const common_chat_template & tmpl, const std::vector<json> & messages) {
|
||||
std::vector<common_chat_msg> chat;
|
||||
|
||||
for (size_t i = 0; i < messages.size(); ++i) {
|
||||
@@ -377,7 +379,7 @@ inline std::string format_chat(const struct llama_model * model, const std::stri
|
||||
chat.push_back({role, content});
|
||||
}
|
||||
|
||||
const auto formatted_chat = common_chat_apply_template(model, tmpl, chat, true);
|
||||
const auto formatted_chat = common_chat_apply_template(tmpl, chat, true, /* use_jinja= */ false);
|
||||
LOG_DBG("formatted_chat: '%s'\n", formatted_chat.c_str());
|
||||
|
||||
return formatted_chat;
|
||||
@@ -576,14 +578,23 @@ static json oaicompat_completion_params_parse(const json & body) {
|
||||
return llama_params;
|
||||
}
|
||||
|
||||
static json oaicompat_chat_completion_params_parse(
|
||||
const struct llama_model * model,
|
||||
const json & body, /* openai api json semantics */
|
||||
const std::string & chat_template) {
|
||||
static json oaicompat_completion_params_parse(
|
||||
const json & body, /* openai api json semantics */
|
||||
const common_chat_template & tmpl,
|
||||
bool use_jinja)
|
||||
{
|
||||
json llama_params;
|
||||
|
||||
// Apply chat template to the list of messages
|
||||
llama_params["prompt"] = format_chat(model, chat_template, body.at("messages"));
|
||||
auto tools = json_value(body, "tools", json());
|
||||
auto has_tools = tools.is_array() && !tools.empty();
|
||||
|
||||
if (has_tools) {
|
||||
if (use_jinja) {
|
||||
LOG_WRN("tools param is not fully supported yet\n");
|
||||
} else {
|
||||
throw std::runtime_error("tools param requires --jinja flag");
|
||||
}
|
||||
}
|
||||
|
||||
// Handle "stop" field
|
||||
if (body.contains("stop") && body.at("stop").is_string()) {
|
||||
@@ -606,6 +617,13 @@ static json oaicompat_chat_completion_params_parse(
|
||||
}
|
||||
}
|
||||
|
||||
// Apply chat template to the list of messages
|
||||
if (use_jinja) {
|
||||
llama_params["prompt"] = tmpl.apply(body.at("messages"), tools, /* add_generation_prompt= */ true);
|
||||
} else {
|
||||
llama_params["prompt"] = format_chat(tmpl, body.at("messages"));
|
||||
}
|
||||
|
||||
// Handle "n" field
|
||||
int n_choices = json_value(body, "n", 1);
|
||||
if (n_choices != 1) {
|
||||
@@ -621,7 +639,7 @@ static json oaicompat_chat_completion_params_parse(
|
||||
}
|
||||
|
||||
// Params supported by OAI but unsupported by llama.cpp
|
||||
static const std::vector<std::string> unsupported_params { "tools", "tool_choice" };
|
||||
static const std::vector<std::string> unsupported_params { "tool_choice" };
|
||||
for (const auto & param : unsupported_params) {
|
||||
if (body.contains(param)) {
|
||||
throw std::runtime_error("Unsupported param: " + param);
|
||||
|
||||
@@ -37,7 +37,7 @@
|
||||
<div v-for="conv in conversations" :class="{
|
||||
'btn btn-ghost justify-start font-normal': true,
|
||||
'btn-active': conv.id === viewingConvId,
|
||||
}" @click="setViewingConv(conv.id)">
|
||||
}" @click="setViewingConv(conv.id)" dir="auto">
|
||||
<span class="truncate">{{ conv.messages[0].content }}</span>
|
||||
</div>
|
||||
<div class="text-center text-xs opacity-40 mt-auto mx-4">
|
||||
@@ -141,6 +141,7 @@
|
||||
:msg="pendingMsg"
|
||||
:key="pendingMsg.id"
|
||||
:is-generating="isGenerating"
|
||||
:show-thought-in-progress="config.showThoughtInProgress"
|
||||
:edit-user-msg-and-regenerate="() => {}"
|
||||
:regenerate-msg="() => {}"></message-bubble>
|
||||
</div>
|
||||
@@ -156,6 +157,7 @@
|
||||
@keydown.enter.shift.exact.prevent="inputMsg += '\n'"
|
||||
:disabled="isGenerating"
|
||||
id="msg-input"
|
||||
dir="auto"
|
||||
></textarea>
|
||||
<button v-if="!isGenerating" class="btn btn-primary ml-2" @click="sendMessage" :disabled="inputMsg.length === 0">Send</button>
|
||||
<button v-else class="btn btn-neutral ml-2" @click="stopGeneration">Stop</button>
|
||||
@@ -201,6 +203,20 @@
|
||||
</template>
|
||||
</div>
|
||||
</details>
|
||||
<!-- Section: Reasoning models -->
|
||||
<details class="collapse collapse-arrow bg-base-200 mb-2 overflow-visible">
|
||||
<summary class="collapse-title font-bold">Reasoning models</summary>
|
||||
<div class="collapse-content">
|
||||
<div class="flex flex-row items-center mb-2">
|
||||
<input type="checkbox" class="checkbox" v-model="config.showThoughtInProgress" />
|
||||
<span class="ml-4">Expand though process by default for generating message</span>
|
||||
</div>
|
||||
<div class="flex flex-row items-center mb-2">
|
||||
<input type="checkbox" class="checkbox" v-model="config.excludeThoughtOnReq" />
|
||||
<span class="ml-4">Exclude thought process when sending request to API (Recommended for DeepSeek-R1)</span>
|
||||
</div>
|
||||
</div>
|
||||
</details>
|
||||
<!-- Section: Advanced config -->
|
||||
<details class="collapse collapse-arrow bg-base-200 mb-2 overflow-visible">
|
||||
<summary class="collapse-title font-bold">Advanced config</summary>
|
||||
@@ -248,6 +264,7 @@
|
||||
<!-- textarea for editing message -->
|
||||
<template v-if="editingContent !== null">
|
||||
<textarea
|
||||
dir="auto"
|
||||
class="textarea textarea-bordered bg-base-100 text-base-content w-[calc(90vw-8em)] lg:w-96"
|
||||
v-model="editingContent"></textarea>
|
||||
<br/>
|
||||
@@ -258,7 +275,19 @@
|
||||
<!-- show loading dots for pending message -->
|
||||
<span v-if="msg.content === null" class="loading loading-dots loading-md"></span>
|
||||
<!-- render message as markdown -->
|
||||
<vue-markdown v-else :source="msg.content"></vue-markdown>
|
||||
<div v-else dir="auto">
|
||||
<details v-if="msg.role === 'assistant' && splitMsgContent.cot" class="collapse bg-base-200 collapse-arrow mb-4" :open="splitMsgContent.isThinking && showThoughtInProgress">
|
||||
<summary class="collapse-title">
|
||||
<span v-if="splitMsgContent.isThinking">
|
||||
<span v-if="isGenerating" class="loading loading-spinner loading-md mr-2" style="vertical-align: middle;"></span>
|
||||
<b>Thinking</b>
|
||||
</span>
|
||||
<b v-else>Thought Process</b>
|
||||
</summary>
|
||||
<vue-markdown :source="splitMsgContent.cot" dir="auto" class="collapse-content"></vue-markdown>
|
||||
</details>
|
||||
<vue-markdown :source="splitMsgContent.content"></vue-markdown>
|
||||
</div>
|
||||
<!-- render timings if enabled -->
|
||||
<div class="dropdown dropdown-hover dropdown-top mt-2" v-if="timings && config.showTokensPerSecond">
|
||||
<div tabindex="0" role="button" class="cursor-pointer font-semibold text-sm opacity-60">Speed: {{ timings.predicted_per_second.toFixed(1) }} t/s</div>
|
||||
|
||||
@@ -17,6 +17,11 @@ import { asyncIterator } from '@sec-ant/readable-stream/ponyfill/asyncIterator';
|
||||
|
||||
const isDev = import.meta.env.MODE === 'development';
|
||||
|
||||
// types
|
||||
/** @typedef {{ id: number, role: 'user' | 'assistant', content: string, timings: any }} Message */
|
||||
/** @typedef {{ role: 'user' | 'assistant', content: string }} APIMessage */
|
||||
/** @typedef {{ id: string, lastModified: number, messages: Array<Message> }} Conversation */
|
||||
|
||||
// utility functions
|
||||
const isString = (x) => !!x.toLowerCase;
|
||||
const isBoolean = (x) => x === true || x === false;
|
||||
@@ -50,6 +55,8 @@ const CONFIG_DEFAULT = {
|
||||
apiKey: '',
|
||||
systemMessage: 'You are a helpful assistant.',
|
||||
showTokensPerSecond: false,
|
||||
showThoughtInProgress: false,
|
||||
excludeThoughtOnReq: true,
|
||||
// make sure these default values are in sync with `common.h`
|
||||
samplers: 'edkypmxt',
|
||||
temperature: 0.8,
|
||||
@@ -111,12 +118,12 @@ const VueMarkdown = defineComponent(
|
||||
highlight: function (str, lang) { // Add highlight.js
|
||||
if (lang && hljs.getLanguage(lang)) {
|
||||
try {
|
||||
return '<pre><code class="hljs">' +
|
||||
return '<pre dir="auto"><code class="hljs">' +
|
||||
hljs.highlight(str, { language: lang, ignoreIllegals: true }).value +
|
||||
'</code></pre>';
|
||||
} catch (__) {}
|
||||
}
|
||||
return '<pre><code class="hljs">' + md.value.utils.escapeHtml(str) + '</code></pre>';
|
||||
return '<pre dir="auto"><code class="hljs">' + md.value.utils.escapeHtml(str) + '</code></pre>';
|
||||
}
|
||||
}));
|
||||
// support latex with double dollar sign and square brackets
|
||||
@@ -172,6 +179,7 @@ const MessageBubble = defineComponent({
|
||||
config: Object,
|
||||
msg: Object,
|
||||
isGenerating: Boolean,
|
||||
showThoughtInProgress: Boolean,
|
||||
editUserMsgAndRegenerate: Function,
|
||||
regenerateMsg: Function,
|
||||
},
|
||||
@@ -188,7 +196,31 @@ const MessageBubble = defineComponent({
|
||||
prompt_per_second: this.msg.timings.prompt_n / (this.msg.timings.prompt_ms / 1000),
|
||||
predicted_per_second: this.msg.timings.predicted_n / (this.msg.timings.predicted_ms / 1000),
|
||||
};
|
||||
}
|
||||
},
|
||||
splitMsgContent() {
|
||||
const content = this.msg.content;
|
||||
if (this.msg.role !== 'assistant') {
|
||||
return { content };
|
||||
}
|
||||
let actualContent = '';
|
||||
let cot = '';
|
||||
let isThinking = false;
|
||||
let thinkSplit = content.split('<think>', 2);
|
||||
actualContent += thinkSplit[0];
|
||||
while (thinkSplit[1] !== undefined) {
|
||||
// <think> tag found
|
||||
thinkSplit = thinkSplit[1].split('</think>', 2);
|
||||
cot += thinkSplit[0];
|
||||
isThinking = true;
|
||||
if (thinkSplit[1] !== undefined) {
|
||||
// </think> closing tag found
|
||||
isThinking = false;
|
||||
thinkSplit = thinkSplit[1].split('<think>', 2);
|
||||
actualContent += thinkSplit[0];
|
||||
}
|
||||
}
|
||||
return { content: actualContent, cot, isThinking };
|
||||
},
|
||||
},
|
||||
methods: {
|
||||
copyMsg() {
|
||||
@@ -208,7 +240,10 @@ const MessageBubble = defineComponent({
|
||||
// format: { [convId]: { id: string, lastModified: number, messages: [...] } }
|
||||
// convId is a string prefixed with 'conv-'
|
||||
const StorageUtils = {
|
||||
// manage conversations
|
||||
/**
|
||||
* manage conversations
|
||||
* @returns {Array<Conversation>}
|
||||
*/
|
||||
getAllConversations() {
|
||||
const res = [];
|
||||
for (const key in localStorage) {
|
||||
@@ -219,11 +254,19 @@ const StorageUtils = {
|
||||
res.sort((a, b) => b.lastModified - a.lastModified);
|
||||
return res;
|
||||
},
|
||||
// can return null if convId does not exist
|
||||
/**
|
||||
* can return null if convId does not exist
|
||||
* @param {string} convId
|
||||
* @returns {Conversation | null}
|
||||
*/
|
||||
getOneConversation(convId) {
|
||||
return JSON.parse(localStorage.getItem(convId) || 'null');
|
||||
},
|
||||
// if convId does not exist, create one
|
||||
/**
|
||||
* if convId does not exist, create one
|
||||
* @param {string} convId
|
||||
* @param {Message} msg
|
||||
*/
|
||||
appendMsg(convId, msg) {
|
||||
if (msg.content === null) return;
|
||||
const conv = StorageUtils.getOneConversation(convId) || {
|
||||
@@ -235,12 +278,24 @@ const StorageUtils = {
|
||||
conv.lastModified = Date.now();
|
||||
localStorage.setItem(convId, JSON.stringify(conv));
|
||||
},
|
||||
/**
|
||||
* Get new conversation id
|
||||
* @returns {string}
|
||||
*/
|
||||
getNewConvId() {
|
||||
return `conv-${Date.now()}`;
|
||||
},
|
||||
/**
|
||||
* remove conversation by id
|
||||
* @param {string} convId
|
||||
*/
|
||||
remove(convId) {
|
||||
localStorage.removeItem(convId);
|
||||
},
|
||||
/**
|
||||
* remove all conversations
|
||||
* @param {string} convId
|
||||
*/
|
||||
filterAndKeepMsgs(convId, predicate) {
|
||||
const conv = StorageUtils.getOneConversation(convId);
|
||||
if (!conv) return;
|
||||
@@ -248,6 +303,11 @@ const StorageUtils = {
|
||||
conv.lastModified = Date.now();
|
||||
localStorage.setItem(convId, JSON.stringify(conv));
|
||||
},
|
||||
/**
|
||||
* remove last message from conversation
|
||||
* @param {string} convId
|
||||
* @returns {Message | undefined}
|
||||
*/
|
||||
popMsg(convId) {
|
||||
const conv = StorageUtils.getOneConversation(convId);
|
||||
if (!conv) return;
|
||||
@@ -322,10 +382,12 @@ const mainApp = createApp({
|
||||
data() {
|
||||
return {
|
||||
conversations: StorageUtils.getAllConversations(),
|
||||
messages: [], // { id: number, role: 'user' | 'assistant', content: string }
|
||||
/** @type {Array<Message>} */
|
||||
messages: [],
|
||||
viewingConvId: StorageUtils.getNewConvId(),
|
||||
inputMsg: '',
|
||||
isGenerating: false,
|
||||
/** @type {Array<Message> | null} */
|
||||
pendingMsg: null, // the on-going message from assistant
|
||||
stopGeneration: () => {},
|
||||
selectedTheme: StorageUtils.getTheme(),
|
||||
@@ -333,6 +395,7 @@ const mainApp = createApp({
|
||||
showConfigDialog: false,
|
||||
// const
|
||||
themes: THEMES,
|
||||
/** @type {CONFIG_DEFAULT} */
|
||||
configDefault: {...CONFIG_DEFAULT},
|
||||
configInfo: {...CONFIG_INFO},
|
||||
isDev,
|
||||
@@ -425,42 +488,50 @@ const mainApp = createApp({
|
||||
this.isGenerating = true;
|
||||
|
||||
try {
|
||||
/** @type {CONFIG_DEFAULT} */
|
||||
const config = this.config;
|
||||
const abortController = new AbortController();
|
||||
this.stopGeneration = () => abortController.abort();
|
||||
/** @type {Array<APIMessage>} */
|
||||
let messages = [
|
||||
{ role: 'system', content: config.systemMessage },
|
||||
...normalizeMsgsForAPI(this.messages),
|
||||
];
|
||||
if (config.excludeThoughtOnReq) {
|
||||
messages = filterThoughtFromMsgs(messages);
|
||||
}
|
||||
if (isDev) console.log({messages});
|
||||
const params = {
|
||||
messages: [
|
||||
{ role: 'system', content: this.config.systemMessage },
|
||||
...this.messages,
|
||||
],
|
||||
messages,
|
||||
stream: true,
|
||||
cache_prompt: true,
|
||||
samplers: this.config.samplers,
|
||||
temperature: this.config.temperature,
|
||||
dynatemp_range: this.config.dynatemp_range,
|
||||
dynatemp_exponent: this.config.dynatemp_exponent,
|
||||
top_k: this.config.top_k,
|
||||
top_p: this.config.top_p,
|
||||
min_p: this.config.min_p,
|
||||
typical_p: this.config.typical_p,
|
||||
xtc_probability: this.config.xtc_probability,
|
||||
xtc_threshold: this.config.xtc_threshold,
|
||||
repeat_last_n: this.config.repeat_last_n,
|
||||
repeat_penalty: this.config.repeat_penalty,
|
||||
presence_penalty: this.config.presence_penalty,
|
||||
frequency_penalty: this.config.frequency_penalty,
|
||||
dry_multiplier: this.config.dry_multiplier,
|
||||
dry_base: this.config.dry_base,
|
||||
dry_allowed_length: this.config.dry_allowed_length,
|
||||
dry_penalty_last_n: this.config.dry_penalty_last_n,
|
||||
max_tokens: this.config.max_tokens,
|
||||
timings_per_token: !!this.config.showTokensPerSecond,
|
||||
...(this.config.custom.length ? JSON.parse(this.config.custom) : {}),
|
||||
samplers: config.samplers,
|
||||
temperature: config.temperature,
|
||||
dynatemp_range: config.dynatemp_range,
|
||||
dynatemp_exponent: config.dynatemp_exponent,
|
||||
top_k: config.top_k,
|
||||
top_p: config.top_p,
|
||||
min_p: config.min_p,
|
||||
typical_p: config.typical_p,
|
||||
xtc_probability: config.xtc_probability,
|
||||
xtc_threshold: config.xtc_threshold,
|
||||
repeat_last_n: config.repeat_last_n,
|
||||
repeat_penalty: config.repeat_penalty,
|
||||
presence_penalty: config.presence_penalty,
|
||||
frequency_penalty: config.frequency_penalty,
|
||||
dry_multiplier: config.dry_multiplier,
|
||||
dry_base: config.dry_base,
|
||||
dry_allowed_length: config.dry_allowed_length,
|
||||
dry_penalty_last_n: config.dry_penalty_last_n,
|
||||
max_tokens: config.max_tokens,
|
||||
timings_per_token: !!config.showTokensPerSecond,
|
||||
...(config.custom.length ? JSON.parse(config.custom) : {}),
|
||||
};
|
||||
const chunks = sendSSEPostRequest(`${BASE_URL}/v1/chat/completions`, {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Content-Type': 'application/json',
|
||||
...(this.config.apiKey ? {'Authorization': `Bearer ${this.config.apiKey}`} : {})
|
||||
...(config.apiKey ? {'Authorization': `Bearer ${config.apiKey}`} : {})
|
||||
},
|
||||
body: JSON.stringify(params),
|
||||
signal: abortController.signal,
|
||||
@@ -477,7 +548,7 @@ const mainApp = createApp({
|
||||
};
|
||||
}
|
||||
const timings = chunk.timings;
|
||||
if (timings && this.config.showTokensPerSecond) {
|
||||
if (timings && config.showTokensPerSecond) {
|
||||
// only extract what's really needed, to save some space
|
||||
this.pendingMsg.timings = {
|
||||
prompt_n: timings.prompt_n,
|
||||
@@ -598,3 +669,33 @@ try {
|
||||
<button class="btn" onClick="localStorage.clear(); window.location.reload();">Clear localStorage</button>
|
||||
</div>`;
|
||||
}
|
||||
|
||||
/**
|
||||
* filter out redundant fields upon sending to API
|
||||
* @param {Array<APIMessage>} messages
|
||||
* @returns {Array<APIMessage>}
|
||||
*/
|
||||
function normalizeMsgsForAPI(messages) {
|
||||
return messages.map((msg) => {
|
||||
return {
|
||||
role: msg.role,
|
||||
content: msg.content,
|
||||
};
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* recommended for DeepsSeek-R1, filter out content between <think> and </think> tags
|
||||
* @param {Array<APIMessage>} messages
|
||||
* @returns {Array<APIMessage>}
|
||||
*/
|
||||
function filterThoughtFromMsgs(messages) {
|
||||
return messages.map((msg) => {
|
||||
return {
|
||||
role: msg.role,
|
||||
content: msg.role === 'assistant'
|
||||
? msg.content.split('</think>').at(-1).trim()
|
||||
: msg.content,
|
||||
};
|
||||
});
|
||||
}
|
||||
|
||||
@@ -98,10 +98,12 @@ int main(int argc, char ** argv) {
|
||||
auto generate = [&](const std::string & prompt) {
|
||||
std::string response;
|
||||
|
||||
const bool is_first = llama_get_kv_cache_used_cells(ctx) == 0;
|
||||
|
||||
// tokenize the prompt
|
||||
const int n_prompt_tokens = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, true, true);
|
||||
const int n_prompt_tokens = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, is_first, true);
|
||||
std::vector<llama_token> prompt_tokens(n_prompt_tokens);
|
||||
if (llama_tokenize(vocab, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), llama_get_kv_cache_used_cells(ctx) == 0, true) < 0) {
|
||||
if (llama_tokenize(vocab, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), is_first, true) < 0) {
|
||||
GGML_ABORT("failed to tokenize the prompt\n");
|
||||
}
|
||||
|
||||
@@ -161,7 +163,7 @@ int main(int argc, char ** argv) {
|
||||
break;
|
||||
}
|
||||
|
||||
const char * tmpl = llama_model_chat_template(model);
|
||||
const char * tmpl = llama_model_chat_template(model, /* name */ nullptr);
|
||||
|
||||
// add the user input to the message list and format it
|
||||
messages.push_back({"user", strdup(user.c_str())});
|
||||
|
||||
11
examples/simple-cmake-pkg/CMakeLists.txt
Normal file
11
examples/simple-cmake-pkg/CMakeLists.txt
Normal file
@@ -0,0 +1,11 @@
|
||||
cmake_minimum_required(VERSION 3.12)
|
||||
project(llama-simple-cmake-pkg)
|
||||
|
||||
set(TARGET llama-simple-cmake-pkg)
|
||||
|
||||
find_package(Llama REQUIRED)
|
||||
|
||||
add_executable(${TARGET} ${CMAKE_CURRENT_LIST_DIR}/../simple/simple.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE llama ggml::all ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_17)
|
||||
34
examples/simple-cmake-pkg/README.md
Normal file
34
examples/simple-cmake-pkg/README.md
Normal file
@@ -0,0 +1,34 @@
|
||||
# llama.cpp/example/simple-cmake-pkg
|
||||
|
||||
This program builds [simple](../simple) using a relocatable CMake package. It serves as an example of using the `find_package()` CMake command to conveniently include [llama.cpp](https://github.com/ggerganov/llama.cpp) in projects which live outside of the source tree.
|
||||
|
||||
## Building
|
||||
|
||||
Because this example is "outside of the source tree", it is important to first build/install llama.cpp using CMake. An example is provided here, but please see the [llama.cpp build instructions](../..) for more detailed build instructions.
|
||||
|
||||
### Considerations
|
||||
|
||||
When hardware acceleration libraries are used (e.g. CUDA, Metal, Vulkan, etc.), the appropriate dependencies will be searched for automatically. So, for example, when finding a package
|
||||
|
||||
### Build llama.cpp and install to llama.cpp/inst
|
||||
|
||||
```sh
|
||||
git clone https://github.com/ggerganov/llama.cpp
|
||||
cd llama.cpp
|
||||
cmake -S . -B build
|
||||
cmake --build build
|
||||
cmake --install build --prefix inst
|
||||
|
||||
### Build simple-cmake-pkg
|
||||
|
||||
```sh
|
||||
cd examples/simple-cmake-pkg
|
||||
cmake -S . -B build -DCMAKE_PREFIX_PATH=../../inst/lib/cmake
|
||||
cmake --build build
|
||||
```
|
||||
|
||||
### Run simple-cmake-pkg
|
||||
|
||||
```sh
|
||||
./build/llama-simple-cmake-pkg -m ./models/llama-7b-v2/ggml-model-f16.gguf "Hello my name is"
|
||||
```
|
||||
@@ -78,3 +78,40 @@ play the audio:
|
||||
$ aplay output.wav
|
||||
```
|
||||
|
||||
### Running the example with llama-server
|
||||
Running this example with `llama-server` is also possible and requires two
|
||||
server instances to be started. One will serve the LLM model and the other
|
||||
will serve the voice decoder model.
|
||||
|
||||
The LLM model server can be started with the following command:
|
||||
```console
|
||||
$ ./build/bin/llama-server -m ./models/outetts-0.2-0.5B-q8_0.gguf --port 8020
|
||||
```
|
||||
|
||||
And the voice decoder model server can be started using:
|
||||
```console
|
||||
./build/bin/llama-server -m ./models/wavtokenizer-large-75-f16.gguf --port 8021 --embeddings --pooling none
|
||||
```
|
||||
|
||||
Then we can run [tts-outetts.py](tts-outetts.py) to generate the audio.
|
||||
|
||||
First create a virtual environment for python and install the required
|
||||
dependencies (this in only required to be done once):
|
||||
```console
|
||||
$ python3 -m venv venv
|
||||
$ source venv/bin/activate
|
||||
(venv) pip install requests numpy
|
||||
```
|
||||
|
||||
And then run the python script using:
|
||||
```conole
|
||||
(venv) python ./examples/tts/tts-outetts.py http://localhost:8020 http://localhost:8021 "Hello world"
|
||||
spectrogram generated: n_codes: 90, n_embd: 1282
|
||||
converting to audio ...
|
||||
audio generated: 28800 samples
|
||||
audio written to file "output.wav"
|
||||
```
|
||||
And to play the audio we can again use aplay or any other media player:
|
||||
```console
|
||||
$ aplay output.wav
|
||||
```
|
||||
|
||||
@@ -3,6 +3,121 @@ import sys
|
||||
#import struct
|
||||
import requests
|
||||
import re
|
||||
import struct
|
||||
import numpy as np
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
|
||||
|
||||
def fill_hann_window(size, periodic=True):
|
||||
if periodic:
|
||||
return np.hanning(size + 1)[:-1]
|
||||
return np.hanning(size)
|
||||
|
||||
|
||||
def irfft(n_fft, complex_input):
|
||||
return np.fft.irfft(complex_input, n=n_fft)
|
||||
|
||||
|
||||
def fold(buffer, n_out, n_win, n_hop, n_pad):
|
||||
result = np.zeros(n_out)
|
||||
n_frames = len(buffer) // n_win
|
||||
|
||||
for i in range(n_frames):
|
||||
start = i * n_hop
|
||||
end = start + n_win
|
||||
result[start:end] += buffer[i * n_win:(i + 1) * n_win]
|
||||
|
||||
return result[n_pad:-n_pad] if n_pad > 0 else result
|
||||
|
||||
|
||||
def process_frame(args):
|
||||
l, n_fft, ST, hann = args
|
||||
frame = irfft(n_fft, ST[l])
|
||||
frame = frame * hann
|
||||
hann2 = hann * hann
|
||||
return frame, hann2
|
||||
|
||||
|
||||
def embd_to_audio(embd, n_codes, n_embd, n_thread=4):
|
||||
embd = np.asarray(embd, dtype=np.float32).reshape(n_codes, n_embd)
|
||||
|
||||
n_fft = 1280
|
||||
n_hop = 320
|
||||
n_win = 1280
|
||||
n_pad = (n_win - n_hop) // 2
|
||||
n_out = (n_codes - 1) * n_hop + n_win
|
||||
|
||||
hann = fill_hann_window(n_fft, True)
|
||||
|
||||
E = np.zeros((n_embd, n_codes), dtype=np.float32)
|
||||
for l in range(n_codes):
|
||||
for k in range(n_embd):
|
||||
E[k, l] = embd[l, k]
|
||||
|
||||
half_embd = n_embd // 2
|
||||
S = np.zeros((n_codes, half_embd + 1), dtype=np.complex64)
|
||||
|
||||
for k in range(half_embd):
|
||||
for l in range(n_codes):
|
||||
mag = E[k, l]
|
||||
phi = E[k + half_embd, l]
|
||||
|
||||
mag = np.clip(np.exp(mag), 0, 1e2)
|
||||
S[l, k] = mag * np.exp(1j * phi)
|
||||
|
||||
res = np.zeros(n_codes * n_fft)
|
||||
hann2_buffer = np.zeros(n_codes * n_fft)
|
||||
|
||||
with ThreadPoolExecutor(max_workers=n_thread) as executor:
|
||||
args = [(l, n_fft, S, hann) for l in range(n_codes)]
|
||||
results = list(executor.map(process_frame, args))
|
||||
|
||||
for l, (frame, hann2) in enumerate(results):
|
||||
res[l*n_fft:(l+1)*n_fft] = frame
|
||||
hann2_buffer[l*n_fft:(l+1)*n_fft] = hann2
|
||||
|
||||
audio = fold(res, n_out, n_win, n_hop, n_pad)
|
||||
env = fold(hann2_buffer, n_out, n_win, n_hop, n_pad)
|
||||
|
||||
mask = env > 1e-10
|
||||
audio[mask] /= env[mask]
|
||||
|
||||
return audio
|
||||
|
||||
|
||||
def save_wav(filename, audio_data, sample_rate):
|
||||
num_channels = 1
|
||||
bits_per_sample = 16
|
||||
bytes_per_sample = bits_per_sample // 8
|
||||
data_size = len(audio_data) * bytes_per_sample
|
||||
byte_rate = sample_rate * num_channels * bytes_per_sample
|
||||
block_align = num_channels * bytes_per_sample
|
||||
chunk_size = 36 + data_size # 36 = size of header minus first 8 bytes
|
||||
|
||||
header = struct.pack(
|
||||
'<4sI4s4sIHHIIHH4sI',
|
||||
b'RIFF',
|
||||
chunk_size,
|
||||
b'WAVE',
|
||||
b'fmt ',
|
||||
16, # fmt chunk size
|
||||
1, # audio format (PCM)
|
||||
num_channels,
|
||||
sample_rate,
|
||||
byte_rate,
|
||||
block_align,
|
||||
bits_per_sample,
|
||||
b'data',
|
||||
data_size
|
||||
)
|
||||
|
||||
audio_data = np.clip(audio_data * 32767, -32768, 32767)
|
||||
pcm_data = audio_data.astype(np.int16)
|
||||
|
||||
with open(filename, 'wb') as f:
|
||||
f.write(header)
|
||||
f.write(pcm_data.tobytes())
|
||||
|
||||
|
||||
def process_text(text: str):
|
||||
text = re.sub(r'\d+(\.\d+)?', lambda x: x.group(), text.lower()) # TODO this needs to be fixed
|
||||
@@ -170,6 +285,15 @@ n_embd = len(embd[0])
|
||||
print('spectrogram generated: n_codes: %d, n_embd: %d' % (n_codes, n_embd))
|
||||
|
||||
# post-process the spectrogram to convert to audio
|
||||
# TODO: see the tts.cpp:embd_to_audio() and implement it in Python
|
||||
print('converting to audio ...')
|
||||
print('TODO: see the tts.cpp:embd_to_audio() and implement it in Python')
|
||||
audio = embd_to_audio(embd, n_codes, n_embd)
|
||||
print('audio generated: %d samples' % len(audio))
|
||||
|
||||
filename = "output.wav"
|
||||
sample_rate = 24000 # sampling rate
|
||||
|
||||
# zero out first 0.25 seconds
|
||||
audio[:24000 // 4] = 0.0
|
||||
|
||||
save_wav(filename, audio, sample_rate)
|
||||
print('audio written to file "%s"' % filename)
|
||||
|
||||
@@ -425,6 +425,33 @@ static void prompt_init(llama_tokens & prompt, const llama_vocab * vocab) {
|
||||
prompt_add(prompt, vocab, "<|im_start|>\n", true, true);
|
||||
}
|
||||
|
||||
static std::vector<llama_token> prepare_guide_tokens(const llama_vocab * vocab, const std::string & str) {
|
||||
const std::string& delimiter = "<|text_sep|>";
|
||||
|
||||
std::vector<llama_token> result;
|
||||
size_t start = 0;
|
||||
size_t end = str.find(delimiter);
|
||||
|
||||
//first token is always a newline, as it was not previously added
|
||||
result.push_back(common_tokenize(vocab, "\n", false, true)[0]);
|
||||
|
||||
while (end != std::string::npos) {
|
||||
std::string current_word = str.substr(start, end - start);
|
||||
auto tmp = common_tokenize(vocab, current_word, false, true);
|
||||
result.push_back(tmp[0]);
|
||||
start = end + delimiter.length();
|
||||
end = str.find(delimiter, start);
|
||||
}
|
||||
|
||||
// Add the last part
|
||||
std::string current_word = str.substr(start);
|
||||
auto tmp = common_tokenize(vocab, current_word, false, true);
|
||||
if (tmp.size() > 0) {
|
||||
result.push_back(tmp[0]);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
common_params params;
|
||||
|
||||
@@ -494,6 +521,7 @@ int main(int argc, char ** argv) {
|
||||
const auto t_main_start = ggml_time_us();
|
||||
|
||||
std::vector<llama_token> codes;
|
||||
std::vector<llama_token> guide_tokens;
|
||||
|
||||
// process prompt and generate voice codes
|
||||
{
|
||||
@@ -508,6 +536,9 @@ int main(int argc, char ** argv) {
|
||||
// convert the input text into the necessary format expected by OuteTTS
|
||||
{
|
||||
std::string prompt_clean = process_text(params.prompt);
|
||||
if (params.vocoder.use_guide_tokens) {
|
||||
guide_tokens = prepare_guide_tokens(vocab, prompt_clean);
|
||||
}
|
||||
|
||||
LOG_INF("%s: prompt: '%s'\n", __func__, prompt_clean.c_str());
|
||||
|
||||
@@ -717,6 +748,8 @@ lovely<|t_0.56|><|code_start|><|634|><|596|><|1766|><|1556|><|1306|><|1285|><|14
|
||||
int n_past = batch.n_tokens;
|
||||
int n_decode = 0;
|
||||
|
||||
bool next_token_uses_guide_token = true;
|
||||
|
||||
while (n_decode <= n_predict) {
|
||||
// prepare the next batch
|
||||
common_batch_clear(batch);
|
||||
@@ -728,7 +761,17 @@ lovely<|t_0.56|><|code_start|><|634|><|596|><|1766|><|1556|><|1306|><|1285|><|14
|
||||
continue;
|
||||
}
|
||||
|
||||
const llama_token new_token_id = common_sampler_sample(smpl[i], ctx_ttc, i_batch[i]);
|
||||
llama_token new_token_id = common_sampler_sample(smpl[i], ctx_ttc, i_batch[i]);
|
||||
|
||||
//guide tokens help prevent hallucinations by forcing the TTS to use the correct word
|
||||
if (!guide_tokens.empty() && next_token_uses_guide_token && !llama_vocab_is_control(vocab, new_token_id) && !llama_vocab_is_eog(vocab, new_token_id)) {
|
||||
llama_token guide_token = guide_tokens[0];
|
||||
guide_tokens.erase(guide_tokens.begin());
|
||||
new_token_id = guide_token; //ensure correct word fragment is used
|
||||
}
|
||||
|
||||
//this is the token id that always precedes a new word
|
||||
next_token_uses_guide_token = (new_token_id == 198);
|
||||
|
||||
common_sampler_accept(smpl[i], new_token_id, true);
|
||||
|
||||
|
||||
@@ -58,7 +58,8 @@ else()
|
||||
set(GGML_BLAS_VENDOR_DEFAULT "Generic")
|
||||
endif()
|
||||
|
||||
if (CMAKE_CROSSCOMPILING)
|
||||
if (CMAKE_CROSSCOMPILING OR DEFINED ENV{SOURCE_DATE_EPOCH})
|
||||
message(STATUS "Setting GGML_NATIVE_DEFAULT to OFF")
|
||||
set(GGML_NATIVE_DEFAULT OFF)
|
||||
else()
|
||||
set(GGML_NATIVE_DEFAULT ON)
|
||||
@@ -153,6 +154,8 @@ option(GGML_CUDA_FA_ALL_QUANTS "ggml: compile all quants for FlashA
|
||||
option(GGML_CUDA_GRAPHS "ggml: use CUDA graphs (llama.cpp only)" ${GGML_CUDA_GRAPHS_DEFAULT})
|
||||
|
||||
option(GGML_HIP "ggml: use HIP" OFF)
|
||||
option(GGML_HIP_GRAPHS "ggml: use HIP graph, experimental, slow" OFF)
|
||||
option(GGML_HIP_NO_VMM "ggml: do not try to use HIP VMM" ON)
|
||||
option(GGML_HIP_UMA "ggml: use HIP unified memory architecture" OFF)
|
||||
option(GGML_VULKAN "ggml: use Vulkan" OFF)
|
||||
option(GGML_VULKAN_CHECK_RESULTS "ggml: run Vulkan op checks" OFF)
|
||||
@@ -185,6 +188,9 @@ option(GGML_OPENCL_PROFILING "ggml: use OpenCL profiling (increas
|
||||
option(GGML_OPENCL_EMBED_KERNELS "ggml: embed kernels" ON)
|
||||
option(GGML_OPENCL_USE_ADRENO_KERNELS "ggml: use optimized kernels for Adreno" ON)
|
||||
|
||||
# toolchain for vulkan-shaders-gen
|
||||
set (GGML_VULKAN_SHADERS_GEN_TOOLCHAIN "" CACHE FILEPATH "ggml: toolchain file for vulkan-shaders-gen")
|
||||
|
||||
# extra artifacts
|
||||
option(GGML_BUILD_TESTS "ggml: build tests" ${GGML_STANDALONE})
|
||||
option(GGML_BUILD_EXAMPLES "ggml: build examples" ${GGML_STANDALONE})
|
||||
@@ -261,3 +267,74 @@ if (GGML_STANDALONE)
|
||||
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/ggml.pc
|
||||
DESTINATION share/pkgconfig)
|
||||
endif()
|
||||
|
||||
#
|
||||
# Create CMake package
|
||||
#
|
||||
|
||||
# Generate version info based on git commit.
|
||||
|
||||
find_program(GIT_EXE NAMES git git.exe REQUIRED NO_CMAKE_FIND_ROOT_PATH)
|
||||
execute_process(COMMAND ${GIT_EXE} rev-list --count HEAD
|
||||
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
|
||||
OUTPUT_VARIABLE GGML_BUILD_NUMBER
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE
|
||||
)
|
||||
|
||||
if(GGML_BUILD_NUMBER EQUAL 1)
|
||||
message(WARNING "GGML build version fixed at 1 likely due to a shallow clone.")
|
||||
endif()
|
||||
|
||||
execute_process(COMMAND ${GIT_EXE} rev-parse --short HEAD
|
||||
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
|
||||
OUTPUT_VARIABLE GGML_BUILD_COMMIT
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE
|
||||
)
|
||||
|
||||
# Capture variables prefixed with GGML_.
|
||||
|
||||
set(variable_set_statements
|
||||
"
|
||||
####### Expanded from @GGML_VARIABLES_EXPANED@ by configure_package_config_file() #######
|
||||
####### Any changes to this file will be overwritten by the next CMake run #######
|
||||
|
||||
")
|
||||
|
||||
set(GGML_SHARED_LIB ${BUILD_SHARED_LIBS})
|
||||
|
||||
get_cmake_property(all_variables VARIABLES)
|
||||
foreach(variable_name IN LISTS all_variables)
|
||||
if(variable_name MATCHES "^GGML_")
|
||||
string(REPLACE ";" "\\;"
|
||||
variable_value "${${variable_name}}")
|
||||
|
||||
set(variable_set_statements
|
||||
"${variable_set_statements}set(${variable_name} \"${variable_value}\")\n")
|
||||
endif()
|
||||
endforeach()
|
||||
|
||||
set(GGML_VARIABLES_EXPANDED ${variable_set_statements})
|
||||
|
||||
# Create the CMake package and set install location.
|
||||
|
||||
set(GGML_INSTALL_VERSION 0.0.${GGML_BUILD_NUMBER})
|
||||
set(GGML_INCLUDE_INSTALL_DIR ${CMAKE_INSTALL_INCLUDEDIR} CACHE PATH "Location of header files")
|
||||
set(GGML_LIB_INSTALL_DIR ${CMAKE_INSTALL_LIBDIR} CACHE PATH "Location of library files")
|
||||
set(GGML_BIN_INSTALL_DIR ${CMAKE_INSTALL_BINDIR} CACHE PATH "Location of binary files")
|
||||
|
||||
configure_package_config_file(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/cmake/ggml-config.cmake.in
|
||||
${CMAKE_CURRENT_BINARY_DIR}/ggml-config.cmake
|
||||
INSTALL_DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/ggml
|
||||
PATH_VARS GGML_INCLUDE_INSTALL_DIR
|
||||
GGML_LIB_INSTALL_DIR
|
||||
GGML_BIN_INSTALL_DIR)
|
||||
|
||||
write_basic_package_version_file(
|
||||
${CMAKE_CURRENT_BINARY_DIR}/ggml-version.cmake
|
||||
VERSION ${GGML_INSTALL_VERSION}
|
||||
COMPATIBILITY SameMajorVersion)
|
||||
|
||||
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/ggml-config.cmake
|
||||
${CMAKE_CURRENT_BINARY_DIR}/ggml-version.cmake
|
||||
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/ggml)
|
||||
|
||||
147
ggml/cmake/ggml-config.cmake.in
Normal file
147
ggml/cmake/ggml-config.cmake.in
Normal file
@@ -0,0 +1,147 @@
|
||||
|
||||
@GGML_VARIABLES_EXPANDED@
|
||||
|
||||
@PACKAGE_INIT@
|
||||
|
||||
set_and_check(GGML_INCLUDE_DIR "@PACKAGE_GGML_INCLUDE_INSTALL_DIR@")
|
||||
set_and_check(GGML_LIB_DIR "@PACKAGE_GGML_LIB_INSTALL_DIR@")
|
||||
set_and_check(GGML_BIN_DIR "@PACKAGE_GGML_BIN_INSTALL_DIR@")
|
||||
|
||||
find_package(Threads REQUIRED)
|
||||
|
||||
find_library(GGML_LIBRARY ggml
|
||||
REQUIRED
|
||||
HINTS ${GGML_LIB_DIR}
|
||||
NO_CMAKE_FIND_ROOT_PATH)
|
||||
|
||||
add_library(ggml::ggml UNKNOWN IMPORTED)
|
||||
set_target_properties(ggml::ggml
|
||||
PROPERTIES
|
||||
IMPORTED_LOCATION "${GGML_LIBRARY}")
|
||||
|
||||
find_library(GGML_BASE_LIBRARY ggml-base
|
||||
REQUIRED
|
||||
HINTS ${GGML_LIB_DIR}
|
||||
NO_CMAKE_FIND_ROOT_PATH)
|
||||
|
||||
add_library(ggml::ggml-base UNKNOWN IMPORTED)
|
||||
set_target_properties(ggml::ggml-base
|
||||
PROPERTIES
|
||||
IMPORTED_LOCATION "${GGML_BASE_LIBRARY}")
|
||||
|
||||
if (NOT GGML_SHARED_LIB)
|
||||
if (APPLE AND GGML_ACCELERATE)
|
||||
find_library(ACCELERATE_FRAMEWORK Accelerate REQUIRED)
|
||||
list(APPEND GGML_CPU_INTERFACE_LINK_LIBRARIES ${ACCELERATE_FRAMEWORK})
|
||||
endif()
|
||||
|
||||
if (GGML_OPENMP)
|
||||
find_package(OpenMP REQUIRED)
|
||||
list(APPEND GGML_CPU_INTERFACE_LINK_LIBRARIES OpenMP::OpenMP_C OpenMP::OpenMP_CXX)
|
||||
endif()
|
||||
|
||||
if (GGML_CPU_HBM)
|
||||
find_library(memkind memkind REQUIRED)
|
||||
list(APPEND GGML_CPU_INTERFACE_LINK_LIBRARIES memkind)
|
||||
endif()
|
||||
|
||||
if (GGML_BLAS)
|
||||
find_package(BLAS REQUIRED)
|
||||
list(APPEND GGML_CPU_INTERFACE_LINK_LIBRARIES ${BLAS_LIBRARIES})
|
||||
list(APPEND GGML_CPU_INTERFACE_LINK_OPTIONS ${BLAS_LINKER_FLAGS})
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA)
|
||||
find_package(CUDAToolkit REQUIRED)
|
||||
endif()
|
||||
|
||||
if (GGML_METAL)
|
||||
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
|
||||
find_library(METAL_FRAMEWORK Metal REQUIRED)
|
||||
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
|
||||
|
||||
list(APPEND GGML_METAL_INTERFACE_LINK_LIBRARIES
|
||||
${FOUNDATION_LIBRARY} ${METAL_FRAMEWORK} ${METALKIT_FRAMEWORK})
|
||||
endif()
|
||||
|
||||
if (GGML_VULKAN)
|
||||
find_package(Vulkan REQUIRED)
|
||||
list(APPEND GGML_VULKAN_INTERFACE_LINK_LIBRARIES Vulkan::Vulkan)
|
||||
endif()
|
||||
|
||||
if (GGML_HIP)
|
||||
find_package(hip REQUIRED)
|
||||
find_package(hipblas REQUIRED)
|
||||
find_package(rocblas REQUIRED)
|
||||
list(APPEND GGML_HIP_INTERFACE_LINK_LIBRARIES hip::host roc::rocblas roc::hipblas)
|
||||
endif()
|
||||
|
||||
if (GGML_SYCL)
|
||||
find_package(DNNL)
|
||||
if (${DNNL_FOUND} AND GGML_SYCL_TARGET STREQUAL "INTEL")
|
||||
list(APPEND GGML_SYCL_INTERFACE_LINK_LIBRARIES DNNL::dnnl)
|
||||
endif()
|
||||
if (WIN32)
|
||||
find_package(IntelSYCL REQUIRED)
|
||||
find_package(MKL REQUIRED)
|
||||
list(APPEND GGML_SYCL_INTERFACE_LINK_LIBRARIES IntelSYCL::SYCL_CXX MKL::MKL MKL::MKL_SYCL)
|
||||
endif()
|
||||
endif()
|
||||
endif()
|
||||
|
||||
set(_ggml_all_targets "")
|
||||
foreach(_ggml_backend ${GGML_AVAILABLE_BACKENDS})
|
||||
string(REPLACE "-" "_" _ggml_backend_pfx "${_ggml_backend}")
|
||||
string(TOUPPER "${_ggml_backend_pfx}" _ggml_backend_pfx)
|
||||
|
||||
find_library(${_ggml_backend_pfx}_LIBRARY ${_ggml_backend}
|
||||
REQUIRED
|
||||
HINTS ${GGML_LIB_DIR}
|
||||
NO_CMAKE_FIND_ROOT_PATH)
|
||||
|
||||
message(STATUS "Found ${${_ggml_backend_pfx}_LIBRARY}")
|
||||
|
||||
add_library(ggml::${_ggml_backend} UNKNOWN IMPORTED)
|
||||
set_target_properties(ggml::${_ggml_backend}
|
||||
PROPERTIES
|
||||
INTERFACE_INCLUDE_DIRECTORIES "${GGML_INCLUDE_DIR}"
|
||||
IMPORTED_LINK_INTERFACE_LANGUAGES "CXX"
|
||||
IMPORTED_LOCATION "${${_ggml_backend_pfx}_LIBRARY}"
|
||||
INTERFACE_COMPILE_FEATURES c_std_90
|
||||
POSITION_INDEPENDENT_CODE ON)
|
||||
|
||||
string(REGEX MATCH "^ggml-cpu" is_cpu_variant "${_ggml_backend}")
|
||||
if(is_cpu_variant)
|
||||
list(APPEND GGML_CPU_INTERFACE_LINK_LIBRARIES "ggml::ggml" "ggml::ggml-base")
|
||||
set_target_properties(ggml::${_ggml_backend}
|
||||
PROPERTIES
|
||||
INTERFACE_LINK_LIBRARIES "${GGML_CPU_INTERFACE_LINK_LIBRARIES}")
|
||||
|
||||
if(GGML_CPU_INTERFACE_LINK_OPTIONS)
|
||||
set_target_properties(ggml::${_ggml_backend}
|
||||
PROPERTIES
|
||||
INTERFACE_LINK_OPTIONS "${GGML_CPU_INTERFACE_LINK_OPTIONS}")
|
||||
endif()
|
||||
|
||||
else()
|
||||
list(APPEND ${_ggml_backend_pfx}_INTERFACE_LINK_LIBRARIES "ggml::ggml" "ggml::ggml-base")
|
||||
set_target_properties(ggml::${_ggml_backend}
|
||||
PROPERTIES
|
||||
INTERFACE_LINK_LIBRARIES "${${_ggml_backend_pfx}_INTERFACE_LINK_LIBRARIES}")
|
||||
|
||||
if(${_ggml_backend_pfx}_INTERFACE_LINK_OPTIONS)
|
||||
set_target_properties(ggml::${_ggml_backend}
|
||||
PROPERTIES
|
||||
INTERFACE_LINK_OPTIONS "${${_ggml_backend_pfx}_INTERFACE_LINK_OPTIONS}")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
list(APPEND _ggml_all_targets ggml::${_ggml_backend})
|
||||
endforeach()
|
||||
|
||||
add_library(ggml::all INTERFACE IMPORTED)
|
||||
set_target_properties(ggml::all
|
||||
PROPERTIES
|
||||
INTERFACE_LINK_LIBRARIES "${_ggml_all_targets}")
|
||||
|
||||
check_required_components(ggml)
|
||||
@@ -203,6 +203,8 @@ extern "C" {
|
||||
// Backend registry
|
||||
//
|
||||
|
||||
GGML_API void ggml_backend_device_register(ggml_backend_dev_t device);
|
||||
|
||||
// Backend (reg) enumeration
|
||||
GGML_API size_t ggml_backend_reg_count(void);
|
||||
GGML_API ggml_backend_reg_t ggml_backend_reg_get(size_t index);
|
||||
|
||||
@@ -1384,16 +1384,20 @@ extern "C" {
|
||||
float scale,
|
||||
float max_bias);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_soft_max_back(
|
||||
GGML_API struct ggml_tensor * ggml_soft_max_ext_back(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
struct ggml_tensor * b,
|
||||
float scale,
|
||||
float max_bias);
|
||||
|
||||
// in-place, returns view(a)
|
||||
GGML_API struct ggml_tensor * ggml_soft_max_back_inplace(
|
||||
GGML_API struct ggml_tensor * ggml_soft_max_ext_back_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
struct ggml_tensor * b,
|
||||
float scale,
|
||||
float max_bias);
|
||||
|
||||
// rotary position embedding
|
||||
// if (mode & 1) - skip n_past elements (NOT SUPPORTED)
|
||||
@@ -1500,7 +1504,7 @@ extern "C" {
|
||||
|
||||
// rotary position embedding backward, i.e compute dx from dy
|
||||
// a - dy
|
||||
GGML_API struct ggml_tensor * ggml_rope_back(
|
||||
GGML_API struct ggml_tensor * ggml_rope_ext_back(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a, // gradients of ggml_rope result
|
||||
struct ggml_tensor * b, // positions
|
||||
@@ -1515,6 +1519,23 @@ extern "C" {
|
||||
float beta_fast,
|
||||
float beta_slow);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_rope_multi_back(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
struct ggml_tensor * c,
|
||||
int n_dims,
|
||||
int sections[4],
|
||||
int mode,
|
||||
int n_ctx_orig,
|
||||
float freq_base,
|
||||
float freq_scale,
|
||||
float ext_factor,
|
||||
float attn_factor,
|
||||
float beta_fast,
|
||||
float beta_slow);
|
||||
|
||||
|
||||
// clamp
|
||||
// in-place, returns view(a)
|
||||
GGML_API struct ggml_tensor * ggml_clamp(
|
||||
|
||||
@@ -250,6 +250,17 @@ function(ggml_add_backend_library backend)
|
||||
target_compile_definitions(${backend} PRIVATE GGML_BACKEND_BUILD)
|
||||
target_compile_definitions(${backend} PUBLIC GGML_BACKEND_SHARED)
|
||||
endif()
|
||||
|
||||
if(NOT GGML_AVAILABLE_BACKENDS)
|
||||
set(GGML_AVAILABLE_BACKENDS "${backend}"
|
||||
CACHE INTERNAL "List of backends for cmake package")
|
||||
else()
|
||||
list(FIND GGML_AVAILABLE_BACKENDS "${backend}" has_backend)
|
||||
if(has_backend EQUAL -1)
|
||||
set(GGML_AVAILABLE_BACKENDS "${GGML_AVAILABLE_BACKENDS};${backend}"
|
||||
CACHE INTERNAL "List of backends for cmake package")
|
||||
endif()
|
||||
endif()
|
||||
endfunction()
|
||||
|
||||
function(ggml_add_backend backend)
|
||||
@@ -297,7 +308,7 @@ if (GGML_CPU_ALL_VARIANTS)
|
||||
# MSVC doesn't support AMX
|
||||
ggml_add_cpu_backend_variant(sapphirerapids AVX F16C AVX2 FMA AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16 AMX_TILE AMX_INT8)
|
||||
endif()
|
||||
else ()
|
||||
elseif (GGML_CPU)
|
||||
ggml_add_cpu_backend_variant_impl("")
|
||||
endif()
|
||||
|
||||
|
||||
@@ -37,6 +37,7 @@ static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml
|
||||
return true;
|
||||
}
|
||||
|
||||
// ops that return true for this function must not use restrict pointers for their backend implementations
|
||||
static bool ggml_op_can_inplace(enum ggml_op op) {
|
||||
switch (op) {
|
||||
case GGML_OP_SCALE:
|
||||
@@ -52,8 +53,12 @@ static bool ggml_op_can_inplace(enum ggml_op op) {
|
||||
case GGML_OP_LOG:
|
||||
case GGML_OP_UNARY:
|
||||
case GGML_OP_ROPE:
|
||||
case GGML_OP_ROPE_BACK:
|
||||
case GGML_OP_SILU_BACK:
|
||||
case GGML_OP_RMS_NORM:
|
||||
case GGML_OP_RMS_NORM_BACK:
|
||||
case GGML_OP_SOFT_MAX:
|
||||
case GGML_OP_SOFT_MAX_BACK:
|
||||
return true;
|
||||
|
||||
default:
|
||||
|
||||
@@ -208,7 +208,6 @@ extern "C" {
|
||||
|
||||
// Internal backend registry API
|
||||
GGML_API void ggml_backend_register(ggml_backend_reg_t reg);
|
||||
GGML_API void ggml_backend_device_register(ggml_backend_dev_t device);
|
||||
|
||||
// Add backend dynamic loading support to the backend
|
||||
|
||||
|
||||
@@ -5573,7 +5573,88 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * r
|
||||
|
||||
uint32_t utmp[4];
|
||||
|
||||
#ifdef __ARM_NEON
|
||||
#ifdef __ARM_FEATURE_SVE
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
|
||||
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
|
||||
const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
|
||||
|
||||
const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
|
||||
|
||||
memcpy(utmp, x[i].scales, K_SCALE_SIZE);
|
||||
|
||||
uint32x2_t mins8 = { 0 };
|
||||
mins8 = vset_lane_u32(utmp[1] & kmask1, mins8, 0);
|
||||
mins8 = vset_lane_u32(((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4), mins8, 1);
|
||||
|
||||
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
|
||||
utmp[0] &= kmask1;
|
||||
|
||||
const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins8)));
|
||||
const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
|
||||
vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
|
||||
sumf -= dmin * vaddvq_s32(prod);
|
||||
|
||||
const uint8_t * scales = (const uint8_t *)utmp;
|
||||
|
||||
const uint8_t * restrict q4 = x[i].qs;
|
||||
const int8_t * restrict q8 = y[i].qs;
|
||||
|
||||
const int vector_length = ggml_cpu_get_sve_cnt()*8;
|
||||
const svuint8_t m4b = svdup_n_u8(0xf);
|
||||
const svint32_t mzero = svdup_n_s32(0);
|
||||
svint32_t sumi1 = svdup_n_s32(0);
|
||||
svint32_t sumi1_1 = svdup_n_s32(0);
|
||||
svint32_t sumi1_2 = svdup_n_s32(0);
|
||||
svint32_t sumi2 = svdup_n_s32(0);
|
||||
svint32_t sumi2_1 = svdup_n_s32(0);
|
||||
svint32_t sumi2_2 = svdup_n_s32(0);
|
||||
switch (vector_length) {
|
||||
case 128:
|
||||
{
|
||||
for (int j = 0; j < QK_K/64; ++j) {
|
||||
svint8_t q4bytes = svreinterpret_s8_u8(svand_u8_x(svptrue_b8(), svld1_u8(svptrue_b8(), q4), m4b));
|
||||
svint8_t q8bytes = svld1_s8(svptrue_b8(), q8); q8 += 16;
|
||||
sumi1_1 = svmla_n_s32_x(svptrue_b32(), sumi1_1, svdot_s32(mzero, q4bytes, q8bytes), scales[2*j+0]);
|
||||
q4bytes = svreinterpret_s8_u8(svand_u8_x(svptrue_b8(), svld1_u8(svptrue_b8(), q4+16), m4b));
|
||||
q8bytes = svld1_s8(svptrue_b8(), q8); q8 += 16;
|
||||
sumi1_2 = svmla_n_s32_x(svptrue_b32(), sumi1_2, svdot_s32(mzero, q4bytes, q8bytes), scales[2*j+0]);
|
||||
|
||||
q4bytes = svreinterpret_s8_u8(svlsr_n_u8_x(svptrue_b8(), svld1_u8(svptrue_b8(), q4), 4));
|
||||
q8bytes = svld1_s8(svptrue_b8(), q8); q8 += 16;
|
||||
sumi2_1 = svmla_n_s32_x(svptrue_b32(), sumi2_1, svdot_s32(mzero, q4bytes, q8bytes), scales[2*j+1]);
|
||||
q4bytes = svreinterpret_s8_u8(svlsr_n_u8_x(svptrue_b8(), svld1_u8(svptrue_b8(), q4+16), 4));
|
||||
q8bytes = svld1_s8(svptrue_b8(), q8); q8 += 16;
|
||||
sumi2_2 = svmla_n_s32_x(svptrue_b32(), sumi2_2, svdot_s32(mzero, q4bytes, q8bytes), scales[2*j+1]);
|
||||
q4 += 32;
|
||||
}
|
||||
sumi1 = svadd_s32_x(svptrue_b32(), sumi1_1, sumi1_2);
|
||||
sumi2 = svadd_s32_x(svptrue_b32(), sumi2_1, sumi2_2);
|
||||
sumf += d * (svaddv_s32(svptrue_b32(), svadd_s32_x(svptrue_b32(), sumi1, sumi2)));
|
||||
} break;
|
||||
case 256:
|
||||
case 512:
|
||||
{
|
||||
for (int j = 0; j < QK_K/64; ++j) {
|
||||
const svuint8_t q4bits = svld1_u8(svptrue_pat_b8(SV_VL32), q4); q4 += 32;
|
||||
svint8_t q4bytes = svreinterpret_s8_u8(svand_u8_x(svptrue_pat_b8(SV_VL32), q4bits, m4b));
|
||||
svint8_t q8bytes = svld1_s8(svptrue_pat_b8(SV_VL32), q8); q8 += 32;
|
||||
sumi1 = svmla_n_s32_x(svptrue_pat_b32(SV_VL8), sumi1, svdot_s32(mzero, q4bytes, q8bytes), scales[2*j+0]);
|
||||
|
||||
q4bytes = svreinterpret_s8_u8(svlsr_n_u8_x(svptrue_pat_b8(SV_VL32), q4bits, 4));
|
||||
q8bytes = svld1_s8(svptrue_pat_b8(SV_VL32), q8); q8 += 32;
|
||||
sumi2 = svmla_n_s32_x(svptrue_pat_b32(SV_VL8), sumi2, svdot_s32(mzero, q4bytes, q8bytes), scales[2*j+1]);
|
||||
}
|
||||
sumf += d * (svaddv_s32(svptrue_pat_b32(SV_VL8), svadd_s32_x(svptrue_pat_b32(SV_VL8), sumi1, sumi2)));
|
||||
} break;
|
||||
default:
|
||||
assert(false && "Unsupported vector length");
|
||||
break;
|
||||
}
|
||||
}
|
||||
*s = sumf;
|
||||
#elif __ARM_NEON
|
||||
const uint8x16_t m4b = vdupq_n_u8(0xf);
|
||||
const int32x4_t mzero = vdupq_n_s32(0);
|
||||
|
||||
|
||||
@@ -1302,7 +1302,7 @@ struct ggml_threadpool {
|
||||
// these are atomic as an annotation for thread-sanitizer
|
||||
atomic_bool stop; // Used for stopping the threadpool altogether
|
||||
atomic_bool pause; // Used for pausing the threadpool or individual threads
|
||||
atomic_bool abort; // Used for aborting processing of a graph
|
||||
atomic_int abort; // Used for aborting processing of a graph
|
||||
|
||||
struct ggml_compute_state * workers; // per thread state
|
||||
int n_threads_max; // number of threads in the pool
|
||||
@@ -3967,6 +3967,57 @@ static void ggml_compute_forward_dup_bytes(
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_compute_forward_dup_q(
|
||||
const struct ggml_compute_params * params,
|
||||
struct ggml_tensor * dst) {
|
||||
|
||||
const struct ggml_tensor * src0 = dst->src[0];
|
||||
const struct ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
const enum ggml_type type = src0->type;
|
||||
ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
|
||||
|
||||
size_t qk = ggml_blck_size(type);
|
||||
const int64_t nr = ggml_nelements(src1) / qk;
|
||||
|
||||
// destination must be contiguous in the first dimension
|
||||
GGML_ASSERT(nb10 == ggml_type_size(dst->type));
|
||||
// must either have first dimension large enough to hold a row, or fully contiguous
|
||||
GGML_ASSERT((ne10 % qk) == 0 || ggml_is_contiguous(dst));
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
const int dr = (nr + nth - 1)/nth;
|
||||
|
||||
// row range for this thread
|
||||
const int ir0 = dr*ith;
|
||||
const int ir1 = MIN(ir0 + dr, nr);
|
||||
|
||||
for (int64_t ir = ir0; ir < ir1; ++ir) {
|
||||
|
||||
uint32_t i = ir * qk;
|
||||
|
||||
const int64_t i03 = i/(ne00 * ne01 * ne02);
|
||||
const int64_t i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
|
||||
const int64_t i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
|
||||
const int64_t i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
|
||||
const int64_t x_offset = (i00/qk)*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
|
||||
|
||||
const int64_t i13 = i/(ne10 * ne11 * ne12);
|
||||
const int64_t i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
|
||||
const int64_t i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
|
||||
const int64_t i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
|
||||
const int64_t dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
|
||||
|
||||
dequantize_row_q(
|
||||
(const void *) ((char *) src0->data + x_offset),
|
||||
(float *) ((char *) dst->data + dst_offset), qk);
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_compute_forward_dup(
|
||||
const struct ggml_compute_params * params,
|
||||
struct ggml_tensor * dst) {
|
||||
@@ -3993,6 +4044,10 @@ static void ggml_compute_forward_dup(
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
if (ggml_is_quantized(src0->type) && dst->type == GGML_TYPE_F32) {
|
||||
ggml_compute_forward_dup_q(params, dst);
|
||||
break;
|
||||
}
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
}
|
||||
@@ -6691,20 +6746,20 @@ static void ggml_compute_forward_silu_back_f32(
|
||||
const struct ggml_compute_params * params,
|
||||
struct ggml_tensor * dst) {
|
||||
|
||||
const struct ggml_tensor * src0 = dst->src[0];
|
||||
const struct ggml_tensor * grad = dst->src[1];
|
||||
const struct ggml_tensor * grad = dst->src[0];
|
||||
const struct ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
assert(ggml_is_contiguous_1(grad));
|
||||
assert(ggml_is_contiguous_1(src0));
|
||||
assert(ggml_is_contiguous_1(src1));
|
||||
assert(ggml_is_contiguous_1(dst));
|
||||
assert(ggml_are_same_shape(src0, dst));
|
||||
assert(ggml_are_same_shape(src0, grad));
|
||||
assert(ggml_are_same_shape(src1, dst));
|
||||
assert(ggml_are_same_shape(src1, grad));
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
const int nc = src0->ne[0];
|
||||
const int nr = ggml_nrows(src0);
|
||||
const int nc = src1->ne[0];
|
||||
const int nr = ggml_nrows(src1);
|
||||
|
||||
// rows per thread
|
||||
const int dr = (nr + nth - 1)/nth;
|
||||
@@ -6716,7 +6771,7 @@ static void ggml_compute_forward_silu_back_f32(
|
||||
for (int i1 = ir0; i1 < ir1; i1++) {
|
||||
ggml_vec_silu_backward_f32(nc,
|
||||
(float *) ((char *) dst->data + i1*( dst->nb[1])),
|
||||
(float *) ((char *) src0->data + i1*(src0->nb[1])),
|
||||
(float *) ((char *) src1->data + i1*(src1->nb[1])),
|
||||
(float *) ((char *) grad->data + i1*(grad->nb[1])));
|
||||
|
||||
#ifndef NDEBUG
|
||||
@@ -6895,7 +6950,7 @@ static void ggml_compute_forward_norm_f32(
|
||||
float eps;
|
||||
memcpy(&eps, dst->op_params, sizeof(float));
|
||||
|
||||
GGML_ASSERT(eps > 0.0f);
|
||||
GGML_ASSERT(eps >= 0.0f);
|
||||
|
||||
// TODO: optimize
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
@@ -6966,7 +7021,7 @@ static void ggml_compute_forward_rms_norm_f32(
|
||||
float eps;
|
||||
memcpy(&eps, dst->op_params, sizeof(float));
|
||||
|
||||
GGML_ASSERT(eps > 0.0f);
|
||||
GGML_ASSERT(eps >= 0.0f);
|
||||
|
||||
// TODO: optimize
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
@@ -7018,12 +7073,13 @@ static void ggml_compute_forward_rms_norm_back_f32(
|
||||
const struct ggml_compute_params * params,
|
||||
struct ggml_tensor * dst) {
|
||||
|
||||
const struct ggml_tensor * src0 = dst->src[0];
|
||||
const struct ggml_tensor * src1 = dst->src[1];
|
||||
const struct ggml_tensor * src0 = dst->src[0]; // gradients from forward pass output
|
||||
const struct ggml_tensor * src1 = dst->src[1]; // src1 from forward pass
|
||||
|
||||
GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
|
||||
|
||||
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
||||
GGML_ASSERT(src1->nb[0] == sizeof(float));
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
@@ -7042,8 +7098,8 @@ static void ggml_compute_forward_rms_norm_back_f32(
|
||||
const int64_t i12 = i02;
|
||||
const int64_t i13 = i03;
|
||||
|
||||
const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
|
||||
const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
|
||||
const float * dz = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
|
||||
const float * x = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
|
||||
|
||||
ggml_float sum_xx = 0.0;
|
||||
ggml_float sum_xdz = 0.0;
|
||||
@@ -7066,9 +7122,9 @@ static void ggml_compute_forward_rms_norm_back_f32(
|
||||
{
|
||||
// z = rms_norm(x)
|
||||
//
|
||||
// rms_norm(src0) =
|
||||
// rms_norm(src1) =
|
||||
// scale(
|
||||
// src0,
|
||||
// src1,
|
||||
// div(
|
||||
// 1,
|
||||
// sqrt(
|
||||
@@ -7076,13 +7132,13 @@ static void ggml_compute_forward_rms_norm_back_f32(
|
||||
// scale(
|
||||
// sum(
|
||||
// sqr(
|
||||
// src0)),
|
||||
// src1)),
|
||||
// (1.0/N)),
|
||||
// eps))));
|
||||
|
||||
// postorder:
|
||||
// ## op args grad
|
||||
// 00 param src0 grad[#00]
|
||||
// 00 param src1 grad[#00]
|
||||
// 01 const 1
|
||||
// 02 sqr (#00) grad[#02]
|
||||
// 03 sum (#02) grad[#03]
|
||||
@@ -7159,6 +7215,7 @@ static void ggml_compute_forward_rms_norm_back_f32(
|
||||
// dx := scale(dx, rrms)
|
||||
float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
|
||||
|
||||
// dx[i00] = (x*(-sum_xdz/sum_eps) + dz) / sqrtf(mean_eps)
|
||||
ggml_vec_cpy_f32 (ne00, dx, x);
|
||||
// ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
|
||||
ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
|
||||
@@ -7750,12 +7807,13 @@ static void ggml_compute_forward_out_prod_f32(
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
GGML_ASSERT(ne0 == ne00);
|
||||
GGML_ASSERT(ne1 == ne10);
|
||||
GGML_ASSERT(ne2 == ne02);
|
||||
GGML_ASSERT(ne02 == ne12);
|
||||
GGML_ASSERT(ne3 == ne13);
|
||||
GGML_ASSERT(ne03 == ne13);
|
||||
GGML_ASSERT(ne0 == ne00);
|
||||
GGML_ASSERT(ne1 == ne10);
|
||||
GGML_ASSERT(ne2 == ne12);
|
||||
GGML_ASSERT(ne3 == ne13);
|
||||
|
||||
GGML_ASSERT(ne2 % ne02 == 0);
|
||||
GGML_ASSERT(ne3 % ne03 == 0);
|
||||
|
||||
// we don't support permuted src0 or src1
|
||||
GGML_ASSERT(nb00 == sizeof(float));
|
||||
@@ -7797,6 +7855,10 @@ static void ggml_compute_forward_out_prod_f32(
|
||||
const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
|
||||
const int64_t blck_1 = 16;
|
||||
|
||||
// dps == dst per src0, used for group query attention
|
||||
const int64_t dps2 = ne2 / ne02;
|
||||
const int64_t dps3 = ne3 / ne03;
|
||||
|
||||
for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
|
||||
const int64_t bir1 = MIN(bir + blck_1, ir1);
|
||||
for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
|
||||
@@ -7807,8 +7869,8 @@ static void ggml_compute_forward_out_prod_f32(
|
||||
const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
|
||||
const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
|
||||
|
||||
const int64_t i02 = i2;
|
||||
const int64_t i03 = i3;
|
||||
const int64_t i02 = i2 / dps2;
|
||||
const int64_t i03 = i3 / dps3;
|
||||
|
||||
//const int64_t i10 = i1;
|
||||
const int64_t i12 = i2;
|
||||
@@ -7821,7 +7883,7 @@ static void ggml_compute_forward_out_prod_f32(
|
||||
|
||||
float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
|
||||
float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
|
||||
float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
|
||||
float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
|
||||
|
||||
ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
|
||||
}
|
||||
@@ -7830,7 +7892,7 @@ static void ggml_compute_forward_out_prod_f32(
|
||||
|
||||
float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
|
||||
float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
|
||||
float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
|
||||
float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
|
||||
|
||||
ggml_vec_mad_f32(ne0, d, s0, *s1);
|
||||
}
|
||||
@@ -8906,9 +8968,9 @@ static void ggml_compute_forward_soft_max(
|
||||
}
|
||||
|
||||
|
||||
// ggml_compute_forward_soft_max_back
|
||||
// ggml_compute_forward_soft_max_ext_back
|
||||
|
||||
static void ggml_compute_forward_soft_max_back_f32(
|
||||
static void ggml_compute_forward_soft_max_ext_back_f32(
|
||||
const struct ggml_compute_params * params,
|
||||
struct ggml_tensor * dst) {
|
||||
|
||||
@@ -8921,6 +8983,14 @@ static void ggml_compute_forward_soft_max_back_f32(
|
||||
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
||||
GGML_ASSERT(ggml_are_same_shape(src1, dst));
|
||||
|
||||
float scale = 1.0f;
|
||||
float max_bias = 0.0f;
|
||||
|
||||
memcpy(&scale, (const float *) dst->op_params + 0, sizeof(float));
|
||||
memcpy(&max_bias, (const float *) dst->op_params + 1, sizeof(float));
|
||||
|
||||
GGML_ASSERT(max_bias == 0.0f);
|
||||
|
||||
// TODO: handle transposed/permuted matrices
|
||||
|
||||
const int ith = params->ith;
|
||||
@@ -8969,10 +9039,11 @@ static void ggml_compute_forward_soft_max_back_f32(
|
||||
|
||||
// linear runtime, no additional memory
|
||||
float dot_y_dy = 0;
|
||||
ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
|
||||
ggml_vec_cpy_f32 (nc, dx, dy);
|
||||
ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
|
||||
ggml_vec_mul_f32 (nc, dx, dx, y);
|
||||
ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
|
||||
ggml_vec_cpy_f32 (nc, dx, dy);
|
||||
ggml_vec_acc1_f32 (nc, dx, -dot_y_dy);
|
||||
ggml_vec_mul_f32 (nc, dx, dx, y);
|
||||
ggml_vec_scale_f32(nc, dx, scale);
|
||||
|
||||
#ifndef NDEBUG
|
||||
for (int i = 0; i < nc; ++i) {
|
||||
@@ -8983,7 +9054,7 @@ static void ggml_compute_forward_soft_max_back_f32(
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_compute_forward_soft_max_back(
|
||||
static void ggml_compute_forward_soft_max_ext_back(
|
||||
const struct ggml_compute_params * params,
|
||||
struct ggml_tensor * dst) {
|
||||
|
||||
@@ -8992,7 +9063,7 @@ static void ggml_compute_forward_soft_max_back(
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32:
|
||||
{
|
||||
ggml_compute_forward_soft_max_back_f32(params, dst);
|
||||
ggml_compute_forward_soft_max_ext_back_f32(params, dst);
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
@@ -9985,9 +10056,10 @@ static void ggml_compute_forward_im2col_back_f32(
|
||||
const struct ggml_compute_params * params,
|
||||
struct ggml_tensor * dst) {
|
||||
|
||||
const struct ggml_tensor * src0 = dst->src[0];
|
||||
const struct ggml_tensor * src1 = dst->src[1];
|
||||
const struct ggml_tensor * src0 = dst->src[0]; // gradients of forward pass output
|
||||
const struct ggml_tensor * src1 = dst->src[1]; // convolution kernel
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
@@ -10009,11 +10081,11 @@ static void ggml_compute_forward_im2col_back_f32(
|
||||
const int64_t IH = is_2D ? ne1 : 1;
|
||||
const int64_t IW = ne0;
|
||||
|
||||
const int64_t KH = is_2D ? ne01 : 1;
|
||||
const int64_t KW = ne00;
|
||||
const int64_t KH = is_2D ? ne11 : 1;
|
||||
const int64_t KW = ne10;
|
||||
|
||||
const int64_t OH = is_2D ? ne12 : 1;
|
||||
const int64_t OW = ne11;
|
||||
const int64_t OH = is_2D ? ne02 : 1;
|
||||
const int64_t OW = ne01;
|
||||
|
||||
int ofs0 = is_2D ? nb3 : nb2;
|
||||
int ofs1 = is_2D ? nb2 : nb1;
|
||||
@@ -10059,9 +10131,9 @@ static void ggml_compute_forward_im2col_back_f32(
|
||||
continue;
|
||||
}
|
||||
|
||||
const float * const src_data = (const float *) src1->data
|
||||
const float * const grad_in = (const float *) src0->data
|
||||
+ (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
|
||||
grad += src_data[iic*(KH*KW) + ikh*KW + ikw];
|
||||
grad += grad_in[iic*(KH*KW) + ikh*KW + ikw];
|
||||
}
|
||||
}
|
||||
float * dst_data = (float *)((char *) wdata + (in*ofs0 + iic*ofs1)); // [IH, IW]
|
||||
@@ -12484,22 +12556,22 @@ static void ggml_compute_forward_cross_entropy_loss_back_f32(
|
||||
const struct ggml_compute_params * params,
|
||||
struct ggml_tensor * dst) {
|
||||
|
||||
const struct ggml_tensor * src0 = dst->src[0];
|
||||
const struct ggml_tensor * src1 = dst->src[1];
|
||||
const struct ggml_tensor * opt0 = dst->src[2];
|
||||
const struct ggml_tensor * grad = dst->src[0]; // gradient of forward pass output
|
||||
const struct ggml_tensor * src0f = dst->src[1]; // src0 of forward pass
|
||||
const struct ggml_tensor * src1f = dst->src[2]; // src1 of forward pass
|
||||
|
||||
GGML_ASSERT(ggml_is_contiguous(dst));
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
GGML_ASSERT(ggml_is_contiguous(src1));
|
||||
GGML_ASSERT(ggml_is_contiguous(opt0));
|
||||
GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
|
||||
GGML_ASSERT(ggml_is_contiguous(src0f));
|
||||
GGML_ASSERT(ggml_is_contiguous(src1f));
|
||||
GGML_ASSERT(ggml_is_contiguous(grad));
|
||||
GGML_ASSERT(ggml_are_same_shape(src0f, src1f) && ggml_are_same_shape(src0f, dst));
|
||||
|
||||
const int64_t ith = params->ith;
|
||||
const int64_t nth = params->nth;
|
||||
|
||||
// TODO: handle transposed/permuted matrices
|
||||
const int64_t nc = src0->ne[0];
|
||||
const int64_t nr = ggml_nrows(src0);
|
||||
const int64_t nc = src0f->ne[0];
|
||||
const int64_t nr = ggml_nrows(src0f);
|
||||
|
||||
// rows per thread
|
||||
const int64_t dr = (nr + nth - 1)/nth;
|
||||
@@ -12508,12 +12580,12 @@ static void ggml_compute_forward_cross_entropy_loss_back_f32(
|
||||
const int64_t ir0 = dr*ith;
|
||||
const int64_t ir1 = MIN(ir0 + dr, nr);
|
||||
|
||||
const float d_by_nr = ((const float *) opt0->data)[0] / (float) nr;
|
||||
const float d_by_nr = ((const float *) grad->data)[0] / (float) nr;
|
||||
|
||||
for (int64_t i1 = ir0; i1 < ir1; i1++) {
|
||||
float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
|
||||
float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
|
||||
float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
|
||||
float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
|
||||
const float * s0 = (const float *)((const char *) src0f->data + i1*src0f->nb[1]);
|
||||
const float * s1 = (const float *)((const char *) src1f->data + i1*src1f->nb[1]);
|
||||
|
||||
#ifndef NDEBUG
|
||||
for (int64_t i = 0; i < nc; ++i) {
|
||||
@@ -12526,11 +12598,11 @@ static void ggml_compute_forward_cross_entropy_loss_back_f32(
|
||||
// soft_max
|
||||
float max = -INFINITY;
|
||||
ggml_vec_max_f32(nc, &max, s0);
|
||||
ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
|
||||
const ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
|
||||
assert(sum > 0.0);
|
||||
ggml_vec_scale_f32(nc, ds0, 1.0/sum);
|
||||
|
||||
// grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
|
||||
// grad(src0f) = (softmax(src0f) - src1f) * grad(cross_entropy_loss(src0f, src1f)) / nr
|
||||
ggml_vec_sub_f32(nc, ds0, ds0, s1);
|
||||
ggml_vec_scale_f32(nc, ds0, d_by_nr);
|
||||
|
||||
@@ -12827,7 +12899,7 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
||||
} break;
|
||||
case GGML_OP_SOFT_MAX_BACK:
|
||||
{
|
||||
ggml_compute_forward_soft_max_back(params, tensor);
|
||||
ggml_compute_forward_soft_max_ext_back(params, tensor);
|
||||
} break;
|
||||
case GGML_OP_ROPE:
|
||||
{
|
||||
@@ -13668,6 +13740,7 @@ struct ggml_cplan ggml_graph_plan(
|
||||
} break;
|
||||
case GGML_OP_SOFT_MAX:
|
||||
case GGML_OP_ROPE:
|
||||
case GGML_OP_ROPE_BACK:
|
||||
{
|
||||
cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
|
||||
} break;
|
||||
@@ -13778,14 +13851,14 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
|
||||
/*.threadpool=*/ tp,
|
||||
};
|
||||
|
||||
for (int node_n = 0; node_n < cgraph->n_nodes && !tp->abort; node_n++) {
|
||||
for (int node_n = 0; node_n < cgraph->n_nodes && atomic_load_explicit(&tp->abort, memory_order_relaxed) != node_n; node_n++) {
|
||||
struct ggml_tensor * node = cgraph->nodes[node_n];
|
||||
|
||||
ggml_compute_forward(¶ms, node);
|
||||
|
||||
if (state->ith == 0 && cplan->abort_callback &&
|
||||
cplan->abort_callback(cplan->abort_callback_data)) {
|
||||
tp->abort = true;
|
||||
atomic_store_explicit(&tp->abort, node_n + 1, memory_order_relaxed);
|
||||
tp->ec = GGML_STATUS_ABORTED;
|
||||
}
|
||||
|
||||
@@ -13958,7 +14031,7 @@ static struct ggml_threadpool * ggml_threadpool_new_impl(
|
||||
threadpool->current_chunk = 0;
|
||||
threadpool->stop = false;
|
||||
threadpool->pause = tpp->paused;
|
||||
threadpool->abort = false;
|
||||
threadpool->abort = -1;
|
||||
threadpool->workers = NULL;
|
||||
threadpool->n_threads_max = tpp->n_threads;
|
||||
threadpool->n_threads_cur = tpp->n_threads;
|
||||
@@ -14037,7 +14110,7 @@ enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cpl
|
||||
threadpool->cgraph = cgraph;
|
||||
threadpool->cplan = cplan;
|
||||
threadpool->current_chunk = 0;
|
||||
threadpool->abort = false;
|
||||
threadpool->abort = -1;
|
||||
threadpool->ec = GGML_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
|
||||
@@ -403,12 +403,21 @@ static bool ggml_backend_cpu_device_supports_op(ggml_backend_dev_t dev, const st
|
||||
op->type != GGML_TYPE_IQ1_M; // missing type_traits.from_float
|
||||
case GGML_OP_MUL_MAT:
|
||||
return src1->type == GGML_TYPE_F32 || src1->type == ggml_get_type_traits_cpu(src0->type)->vec_dot_type;
|
||||
case GGML_OP_ROPE_BACK:
|
||||
return op->src[2] == NULL && (op->op_params[2] & 4) == 0;
|
||||
case GGML_OP_SOFT_MAX_BACK: {
|
||||
if (op->src[0]->type != GGML_TYPE_F32 || op->src[1]->type != GGML_TYPE_F32) {
|
||||
return false;
|
||||
}
|
||||
float max_bias = 0.0f;
|
||||
|
||||
memcpy(&max_bias, (const float *) op->op_params + 1, sizeof(float));
|
||||
|
||||
return max_bias == 0.0f;
|
||||
}
|
||||
case GGML_OP_IM2COL_BACK:
|
||||
return src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32;
|
||||
case GGML_OP_OUT_PROD:
|
||||
return (src0->type == GGML_TYPE_F32 || ggml_is_quantized(src0->type)) && src1->type == GGML_TYPE_F32;
|
||||
return (src0->type == GGML_TYPE_F32 || (ggml_is_quantized(src0->type) && src0->ne[2] == src1->ne[2] && src0->ne[3] == src1->ne[3])) &&
|
||||
src1->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
|
||||
default:
|
||||
return true;
|
||||
}
|
||||
|
||||
@@ -93,26 +93,31 @@ static __global__ void k_bin_bcast_unravel(const src0_t * src0, const src1_t * s
|
||||
|
||||
template <typename T>
|
||||
static __global__ void k_repeat_back(
|
||||
const T * __restrict__ src, T * __restrict__ dst, const int64_t ne00, const int64_t ne01, const int64_t ne02,
|
||||
const int64_t ne0, const int64_t ne1, const int64_t ne2) {
|
||||
const T * __restrict__ src, T * __restrict__ dst, const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03,
|
||||
const size_t s00, const size_t s01, const size_t s02, const size_t s03,
|
||||
const int64_t ne0, const int64_t ne1, const int64_t ne2, const int64_t ne3) {
|
||||
|
||||
const int64_t tid0 = (int64_t) blockIdx.x*blockDim.x + threadIdx.x;
|
||||
const int64_t tid1 = (int64_t) blockIdx.y*blockDim.y + threadIdx.y;
|
||||
const int64_t tid2 = (int64_t) blockIdx.z*blockDim.z + threadIdx.z;
|
||||
const int64_t tid0 = int64_t(blockIdx.x)*blockDim.x + threadIdx.x;
|
||||
const int64_t tid1 = int64_t(blockIdx.y)*blockDim.y + threadIdx.y;
|
||||
const int64_t tid23 = int64_t(blockIdx.z)*blockDim.z + threadIdx.z;
|
||||
const int64_t tid2 = tid23 % ne2;
|
||||
const int64_t tid3 = tid23 / ne2;
|
||||
|
||||
if (tid0 >= ne0) {
|
||||
return;
|
||||
}
|
||||
|
||||
T sum = 0;
|
||||
for (int64_t i2 = tid2; i2 < ne02; i2 += ne2) {
|
||||
for (int64_t i1 = tid1; i1 < ne01; i1 += ne1) {
|
||||
for (int64_t i0 = tid0; i0 < ne00; i0 += ne0) {
|
||||
sum += src[i2*ne01*ne00 + i1*ne00 + i0];
|
||||
for (int64_t i3 = tid3; i3 < ne03; i3 += ne3) {
|
||||
for (int64_t i2 = tid2; i2 < ne02; i2 += ne2) {
|
||||
for (int64_t i1 = tid1; i1 < ne01; i1 += ne1) {
|
||||
for (int64_t i0 = tid0; i0 < ne00; i0 += ne0) {
|
||||
sum += src[i3*s03 + i2*s02 + i1*s01 + i0*s00];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
dst[tid2*ne1*ne0 + tid1*ne0 + tid0] = sum;
|
||||
dst[tid3*ne2*ne1*ne0 + tid2*ne1*ne0 + tid1*ne0 + tid0] = sum;
|
||||
}
|
||||
|
||||
template<float (*bin_op)(const float, const float)>
|
||||
@@ -274,12 +279,14 @@ struct bin_bcast_cuda {
|
||||
|
||||
template <typename T>
|
||||
static void repeat_back_cuda(
|
||||
const T * src, T * dst, const int64_t ne00, const int64_t ne01, const int64_t ne02,
|
||||
const int64_t ne0, const int64_t ne1, const int64_t ne2, cudaStream_t stream) {
|
||||
const T * src, T * dst, const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03,
|
||||
const size_t s00, const size_t s01, const size_t s02, const size_t s03,
|
||||
const int64_t ne0, const int64_t ne1, const int64_t ne2, const int64_t ne3, cudaStream_t stream) {
|
||||
|
||||
const dim3 block_dims(WARP_SIZE, 1, 1);
|
||||
const dim3 block_nums((ne0 + WARP_SIZE - 1) / WARP_SIZE, ne1, ne2);
|
||||
k_repeat_back<T><<<block_nums, block_dims, 0, stream>>>(src, dst, ne00, ne01, ne02, ne0, ne1, ne2);
|
||||
const dim3 block_nums((ne0 + WARP_SIZE - 1) / WARP_SIZE, ne1, ne2*ne3);
|
||||
k_repeat_back<T><<<block_nums, block_dims, 0, stream>>>
|
||||
(src, dst, ne00, ne01, ne02, ne03, s00, s01, s02, s03, ne0, ne1, ne2, ne3);
|
||||
}
|
||||
|
||||
template<class op>
|
||||
@@ -326,27 +333,26 @@ void ggml_cuda_op_repeat_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
GGML_ASSERT(src0->type == dst->type);
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
GGML_ASSERT(ggml_is_contiguous(dst));
|
||||
GGML_ASSERT(ggml_can_repeat(dst, src0));
|
||||
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t ne01 = src0->ne[1];
|
||||
const int64_t ne02 = src0->ne[2];
|
||||
GGML_ASSERT(src0->ne[3] == 1);
|
||||
GGML_TENSOR_UNARY_OP_LOCALS;
|
||||
|
||||
const int64_t ne0 = dst->ne[0];
|
||||
const int64_t ne1 = dst->ne[1];
|
||||
const int64_t ne2 = dst->ne[2];
|
||||
GGML_ASSERT(dst->ne[3] == 1);
|
||||
GGML_ASSERT(ne2*ne3 <= (1 << 15));
|
||||
|
||||
const size_t ts = ggml_type_size(src0->type);
|
||||
const size_t s00 = nb00 / ts;
|
||||
const size_t s01 = nb01 / ts;
|
||||
const size_t s02 = nb02 / ts;
|
||||
const size_t s03 = nb03 / ts;
|
||||
|
||||
switch (dst->type) {
|
||||
case GGML_TYPE_F32: {
|
||||
const float * src0_d = (const float *) src0->data;
|
||||
float * dst_d = (float *) dst->data;
|
||||
repeat_back_cuda<float>(src0_d, dst_d, ne00, ne01, ne02, ne0, ne1, ne2, stream);
|
||||
repeat_back_cuda(src0_d, dst_d, ne00, ne01, ne02, ne03, s00, s01, s02, s03, ne0, ne1, ne2, ne3, stream);
|
||||
} break;
|
||||
default: {
|
||||
GGML_ASSERT(false);
|
||||
|
||||
@@ -46,20 +46,20 @@
|
||||
#define GGML_CUDA_CC_VOLTA 700
|
||||
#define GGML_CUDA_CC_TURING 750
|
||||
#define GGML_CUDA_CC_AMPERE 800
|
||||
#define GGML_CUDA_CC_OFFSET_AMD 1000000
|
||||
#define GGML_CUDA_CC_OFFSET_AMD 0x1000000
|
||||
|
||||
// GCN/CNDA, wave size is 64
|
||||
#define GGML_CUDA_CC_GCN4 (GGML_CUDA_CC_OFFSET_AMD + 803) // Tonga, Fiji, Polaris, minimum for fast fp16
|
||||
#define GGML_CUDA_CC_VEGA (GGML_CUDA_CC_OFFSET_AMD + 900) // Vega56/64, minimum for fp16 dual issue
|
||||
#define GGML_CUDA_CC_VEGA20 (GGML_CUDA_CC_OFFSET_AMD + 906) // MI50/Radeon VII, minimum for dp4a
|
||||
#define GGML_CUDA_CC_CDNA (GGML_CUDA_CC_OFFSET_AMD + 908) // MI100, minimum for MFMA, acc registers
|
||||
#define GGML_CUDA_CC_CDNA2 (GGML_CUDA_CC_OFFSET_AMD + 910) // MI210, minimum acc register renameing
|
||||
#define GGML_CUDA_CC_CDNA3 (GGML_CUDA_CC_OFFSET_AMD + 942) // MI300
|
||||
#define GGML_CUDA_CC_GCN4 (GGML_CUDA_CC_OFFSET_AMD + 0x803) // Tonga, Fiji, Polaris, minimum for fast fp16
|
||||
#define GGML_CUDA_CC_VEGA (GGML_CUDA_CC_OFFSET_AMD + 0x900) // Vega56/64, minimum for fp16 dual issue
|
||||
#define GGML_CUDA_CC_VEGA20 (GGML_CUDA_CC_OFFSET_AMD + 0x906) // MI50/Radeon VII, minimum for dp4a
|
||||
#define GGML_CUDA_CC_CDNA (GGML_CUDA_CC_OFFSET_AMD + 0x908) // MI100, minimum for MFMA, acc registers
|
||||
#define GGML_CUDA_CC_CDNA2 (GGML_CUDA_CC_OFFSET_AMD + 0x910) // MI210, minimum acc register renameing
|
||||
#define GGML_CUDA_CC_CDNA3 (GGML_CUDA_CC_OFFSET_AMD + 0x942) // MI300
|
||||
|
||||
// RNDA removes MFMA, dp4a, xnack, acc registers, wave size is 32
|
||||
#define GGML_CUDA_CC_RDNA1 (GGML_CUDA_CC_OFFSET_AMD + 1010) // RX 5000
|
||||
#define GGML_CUDA_CC_RDNA2 (GGML_CUDA_CC_OFFSET_AMD + 1030) // RX 6000, minimum for dp4a
|
||||
#define GGML_CUDA_CC_RDNA3 (GGML_CUDA_CC_OFFSET_AMD + 1100) // RX 7000, minimum for WMMA
|
||||
#define GGML_CUDA_CC_RDNA1 (GGML_CUDA_CC_OFFSET_AMD + 0x1010) // RX 5000
|
||||
#define GGML_CUDA_CC_RDNA2 (GGML_CUDA_CC_OFFSET_AMD + 0x1030) // RX 6000, minimum for dp4a
|
||||
#define GGML_CUDA_CC_RDNA3 (GGML_CUDA_CC_OFFSET_AMD + 0x1100) // RX 7000, minimum for WMMA
|
||||
|
||||
#define GGML_CUDA_CC_QY1 210
|
||||
#define GGML_CUDA_CC_QY2 220
|
||||
@@ -131,6 +131,10 @@ typedef float dfloat; // dequantize float
|
||||
typedef float2 dfloat2;
|
||||
#endif // GGML_CUDA_F16
|
||||
|
||||
#if (!defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)) || (defined(GGML_USE_HIP) && !defined(GGML_HIP_NO_VMM))
|
||||
#define GGML_USE_VMM
|
||||
#endif // (!defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)) || (defined(GGML_USE_HIP) && !defined(GGML_HIP_NO_VMM))
|
||||
|
||||
#if (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
|
||||
#define FP16_AVAILABLE
|
||||
#endif // (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
|
||||
@@ -588,7 +592,7 @@ struct ggml_tensor_extra_gpu {
|
||||
};
|
||||
|
||||
|
||||
#if (CUDART_VERSION >= 12000) && defined(GGML_CUDA_USE_GRAPHS)
|
||||
#if ((CUDART_VERSION >= 12000) && defined(GGML_CUDA_USE_GRAPHS)) || defined(GGML_HIP_GRAPHS)
|
||||
#define USE_CUDA_GRAPH
|
||||
#endif
|
||||
|
||||
|
||||
@@ -5,95 +5,89 @@
|
||||
#include <cmath>
|
||||
#include <cstdint>
|
||||
|
||||
static __global__ void cross_entropy_loss_f32(const float * logits, const float * labels, float * dst, const int nclasses, const int k) {
|
||||
const int warp_id = threadIdx.x / WARP_SIZE;
|
||||
const int lane_id = threadIdx.x % WARP_SIZE;
|
||||
const int i0 = blockDim.x*blockIdx.x + warp_id*WARP_SIZE;
|
||||
template <bool use_shared>
|
||||
static __global__ void cross_entropy_loss_f32(
|
||||
const float * __restrict__ logits, const float * __restrict__ labels, float * __restrict__ dst, const int nclasses, const int k) {
|
||||
extern __shared__ float tmp[];
|
||||
|
||||
const int ne_tmp = WARP_SIZE*nclasses;
|
||||
|
||||
extern __shared__ float tmp_all[];
|
||||
float * tmp_logits = tmp_all + (2*warp_id + 0)*ne_tmp;
|
||||
float * tmp_labels = tmp_all + (2*warp_id + 1)*ne_tmp;
|
||||
|
||||
// Each warp first loads ne_tmp logits/labels into shared memory:
|
||||
for (int i = lane_id; i < ne_tmp; i += WARP_SIZE) {
|
||||
const int ig = i0*nclasses + i; // ig == i global
|
||||
|
||||
tmp_logits[i] = ig < k*nclasses ? logits[ig] : 0.0f;
|
||||
tmp_labels[i] = ig < k*nclasses ? labels[ig] : 0.0f;
|
||||
}
|
||||
|
||||
// Each thread in the warp then calculates the cross entropy loss for a single row.
|
||||
// TODO: pad in order to avoid shared memory bank conflicts.
|
||||
logits += int64_t(blockIdx.x)*nclasses;
|
||||
labels += int64_t(blockIdx.x)*nclasses;
|
||||
|
||||
// Find maximum for softmax:
|
||||
float max = -INFINITY;
|
||||
for (int i = 0; i < nclasses; ++i) {
|
||||
max = fmaxf(max, tmp_logits[lane_id*nclasses + i]);
|
||||
float max_logit = -INFINITY;
|
||||
for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) {
|
||||
const float val = logits[i];
|
||||
max_logit = fmaxf(max_logit, val);
|
||||
|
||||
if (use_shared) {
|
||||
tmp[i] = val;
|
||||
}
|
||||
}
|
||||
max_logit = warp_reduce_max(max_logit);
|
||||
|
||||
// Calculate log(softmax(logits)) which is just logits - max:
|
||||
float sum = 0.0f;
|
||||
for (int i = 0; i < nclasses; ++i) {
|
||||
float val = tmp_logits[lane_id*nclasses + i] - max;
|
||||
sum += expf(val);
|
||||
tmp_logits[lane_id*nclasses + i] = val;
|
||||
for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) {
|
||||
const float logit_i = use_shared ? tmp[i] : logits[i];
|
||||
sum += expf(logit_i - max_logit);
|
||||
}
|
||||
sum = warp_reduce_sum(sum);
|
||||
sum = logf(sum);
|
||||
|
||||
// log(exp(logits - max) / sum) = (logits - max) - log(sum)
|
||||
float loss = 0.0f;
|
||||
for (int i = 0; i < nclasses; ++i) {
|
||||
loss += (tmp_logits[lane_id*nclasses + i] - sum) * tmp_labels[lane_id*nclasses + i];
|
||||
for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) {
|
||||
const float logit_i = use_shared ? tmp[i] : logits[i];
|
||||
loss += (logit_i - max_logit - sum) * labels[i];
|
||||
}
|
||||
loss = -warp_reduce_sum(loss) / (float)k;
|
||||
|
||||
__syncthreads();
|
||||
|
||||
if (lane_id == 0) {
|
||||
tmp_all[warp_id] = loss;
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
if (warp_id != 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
loss = lane_id < CUDA_CROSS_ENTROPY_LOSS_BLOCK_SIZE/WARP_SIZE ? tmp_all[lane_id] : 0.0f;
|
||||
loss = warp_reduce_sum(loss);
|
||||
|
||||
if (lane_id != 0) {
|
||||
if (threadIdx.x != 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
dst[blockIdx.x] = loss;
|
||||
}
|
||||
|
||||
static __global__ void cross_entropy_loss_back_f32(const float * logits, const float * labels, const float * loss, float * dst, const int nclasses) {
|
||||
template <bool use_shared>
|
||||
static __global__ void cross_entropy_loss_back_f32(
|
||||
const float * __restrict__ grad, const float * __restrict__ logits, const float * __restrict__ labels,
|
||||
float * __restrict__ dst, const int nclasses) {
|
||||
extern __shared__ float tmp[];
|
||||
|
||||
logits += int64_t(blockIdx.x)*nclasses;
|
||||
labels += int64_t(blockIdx.x)*nclasses;
|
||||
dst += int64_t(blockIdx.x)*nclasses;
|
||||
|
||||
float maxval = -INFINITY;
|
||||
for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) {
|
||||
const float val = logits[blockIdx.x*nclasses + i];
|
||||
const float val = logits[i];
|
||||
maxval = fmaxf(maxval, val);
|
||||
tmp[i] = val;
|
||||
|
||||
if (use_shared) {
|
||||
tmp[i] = val;
|
||||
}
|
||||
}
|
||||
maxval = warp_reduce_max(maxval);
|
||||
|
||||
float sum = 0.0f;
|
||||
for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) {
|
||||
const float val = expf(tmp[i] - maxval);
|
||||
const float val = expf((use_shared ? tmp[i] : logits[i]) - maxval);
|
||||
sum += val;
|
||||
tmp[i] = val;
|
||||
|
||||
if (use_shared) {
|
||||
tmp[i] = val;
|
||||
} else {
|
||||
dst[i] = val;
|
||||
}
|
||||
}
|
||||
sum = warp_reduce_sum(sum);
|
||||
const float sm_scale = 1.0f/sum;
|
||||
|
||||
const float d_by_nrows = *loss/gridDim.x;
|
||||
const float d_by_nrows = *grad/gridDim.x;
|
||||
for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) {
|
||||
dst[blockIdx.x*nclasses + i] = (tmp[i]*sm_scale - labels[blockIdx.x*nclasses + i])*d_by_nrows;
|
||||
const float val = use_shared ? tmp[i] : dst[i];
|
||||
dst[i] = (val*sm_scale - labels[i])*d_by_nrows;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -119,48 +113,77 @@ void ggml_cuda_cross_entropy_loss(ggml_backend_cuda_context & ctx, ggml_tensor *
|
||||
ggml_cuda_pool & pool = ctx.pool();
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
const dim3 blocks_dim(CUDA_CROSS_ENTROPY_LOSS_BLOCK_SIZE, 1, 1);
|
||||
const dim3 blocks_num((nrows + CUDA_CROSS_ENTROPY_LOSS_BLOCK_SIZE - 1) / CUDA_CROSS_ENTROPY_LOSS_BLOCK_SIZE, 1, 1);
|
||||
const int shmem = 2*CUDA_CROSS_ENTROPY_LOSS_BLOCK_SIZE*ne00*sizeof(float);
|
||||
const dim3 blocks_dim(WARP_SIZE, 1, 1);
|
||||
const dim3 blocks_num(nrows, 1, 1);
|
||||
const size_t nbytes_shared = ne00*sizeof(float);
|
||||
|
||||
const int id = ggml_cuda_get_device();
|
||||
const size_t smpbo = ggml_cuda_info().devices[id].smpbo;
|
||||
|
||||
ggml_cuda_pool_alloc<float> dst_tmp(pool, blocks_num.x);
|
||||
|
||||
cross_entropy_loss_f32<<<blocks_num, blocks_dim, shmem, stream>>>(src0_d, src1_d, dst_tmp.ptr, ne00, nrows);
|
||||
if (nbytes_shared <= smpbo) {
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
static bool shared_memory_limit_raised[GGML_CUDA_MAX_DEVICES] = {false};
|
||||
if (!shared_memory_limit_raised[id]) {
|
||||
CUDA_CHECK(cudaFuncSetAttribute(cross_entropy_loss_back_f32<true>, cudaFuncAttributeMaxDynamicSharedMemorySize, smpbo));
|
||||
shared_memory_limit_raised[id] = true;
|
||||
}
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
cross_entropy_loss_f32<true><<<blocks_num, blocks_dim, nbytes_shared, stream>>>(src0_d, src1_d, dst_tmp.ptr, ne00, nrows);
|
||||
} else {
|
||||
cross_entropy_loss_f32<false><<<blocks_num, blocks_dim, 0, stream>>>(src0_d, src1_d, dst_tmp.ptr, ne00, nrows);
|
||||
}
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
// Combine results from individual blocks:
|
||||
sum_f32_cuda(pool, dst_tmp.ptr, dst_d, blocks_num.x, stream);
|
||||
}
|
||||
|
||||
void ggml_cuda_cross_entropy_loss_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
const ggml_tensor * opt0 = dst->src[2];
|
||||
const ggml_tensor * grad = dst->src[0];
|
||||
const ggml_tensor * src0f = dst->src[1];
|
||||
const ggml_tensor * src1f = dst->src[2];
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(opt0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src0f->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src1f->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( grad->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
GGML_ASSERT(ggml_is_contiguous(src1));
|
||||
GGML_ASSERT(ggml_is_contiguous(opt0));
|
||||
GGML_ASSERT(ggml_is_scalar(grad));
|
||||
GGML_ASSERT(ggml_is_contiguous(src0f));
|
||||
GGML_ASSERT(ggml_is_contiguous(src1f));
|
||||
GGML_ASSERT(ggml_is_contiguous(dst));
|
||||
GGML_ASSERT(ggml_are_same_shape(src0, src1));
|
||||
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
||||
GGML_ASSERT(ggml_are_same_shape(src0f, src1f));
|
||||
GGML_ASSERT(ggml_are_same_shape(src0f, dst));
|
||||
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t nrows = ggml_nrows(src0);
|
||||
const int64_t ne00 = src0f->ne[0];
|
||||
const int64_t nrows = ggml_nrows(src0f);
|
||||
|
||||
const float * src0_d = (const float *) src0->data;
|
||||
const float * src1_d = (const float *) src1->data;
|
||||
const float * opt0_d = (const float *) opt0->data;
|
||||
float * dst_d = (float *) dst->data;
|
||||
const float * grad_d = (const float *) grad->data;
|
||||
const float * src0f_d = (const float *) src0f->data;
|
||||
const float * src1f_d = (const float *) src1f->data;
|
||||
float * dst_d = (float *) dst->data;
|
||||
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
const dim3 blocks_dim(WARP_SIZE, 1, 1);
|
||||
const dim3 blocks_num(nrows, 1, 1);
|
||||
const int shmem = ne00*sizeof(float);
|
||||
const size_t nbytes_shared = ne00*sizeof(float);
|
||||
|
||||
cross_entropy_loss_back_f32<<<blocks_num, blocks_dim, shmem, stream>>>(src0_d, src1_d, opt0_d, dst_d, ne00);
|
||||
const int id = ggml_cuda_get_device();
|
||||
const size_t smpbo = ggml_cuda_info().devices[id].smpbo;
|
||||
|
||||
if (nbytes_shared <= smpbo) {
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
static bool shared_memory_limit_raised[GGML_CUDA_MAX_DEVICES] = {false};
|
||||
if (!shared_memory_limit_raised[id]) {
|
||||
CUDA_CHECK(cudaFuncSetAttribute(cross_entropy_loss_back_f32<true>, cudaFuncAttributeMaxDynamicSharedMemorySize, smpbo));
|
||||
shared_memory_limit_raised[id] = true;
|
||||
}
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
|
||||
cross_entropy_loss_back_f32<true><<<blocks_num, blocks_dim, nbytes_shared, stream>>>(grad_d, src0f_d, src1f_d, dst_d, ne00);
|
||||
} else {
|
||||
cross_entropy_loss_back_f32<false><<<blocks_num, blocks_dim, 0, stream>>>(grad_d, src0f_d, src1f_d, dst_d, ne00);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -3,15 +3,15 @@
|
||||
|
||||
template<int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
|
||||
static __global__ void k_get_rows(
|
||||
const void * src0, const int32_t * src1, dst_t * dst,
|
||||
int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
|
||||
/*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
|
||||
/*size_t s0,*/ size_t s1, size_t s2, size_t s3,
|
||||
/*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
|
||||
size_t s10, size_t s11, size_t s12/*, size_t s13*/) {
|
||||
const void * __restrict__ src0, const int32_t * __restrict__ src1, dst_t * __restrict__ dst,
|
||||
const int64_t ne00, /*const int64_t ne01, const int64_t ne02, const int64_t ne03,*/
|
||||
/*const int64_t ne10, const int64_t ne11,*/ const int64_t ne12, /*const int64_t ne13,*/
|
||||
/*const size_t s0,*/ const size_t s1, const size_t s2, const size_t s3,
|
||||
/*const size_t nb00,*/ const size_t nb01, const size_t nb02, const size_t nb03,
|
||||
const size_t s10, const size_t s11, const size_t s12/*, const size_t s13*/) {
|
||||
|
||||
const int i00 = (blockIdx.x*blockDim.x + threadIdx.x)*2;
|
||||
const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
|
||||
const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
|
||||
const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
|
||||
const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;
|
||||
|
||||
@@ -22,10 +22,10 @@ static __global__ void k_get_rows(
|
||||
const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
|
||||
|
||||
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
|
||||
const void * src0_row = (const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03;
|
||||
const void * src0_row = (const char *) src0 + i01*nb01 + i11*nb02 + i12*nb03;
|
||||
|
||||
const int ib = i00/qk; // block index
|
||||
const int iqs = (i00%qk)/qr; // quant index
|
||||
const int ib = i00/qk; // block index
|
||||
const int iqs = (i00%qk)/qr; // quant index
|
||||
const int iybs = i00 - i00%qk; // dst block start index
|
||||
const int y_offset = qr == 1 ? 1 : qk/2;
|
||||
|
||||
@@ -39,15 +39,15 @@ static __global__ void k_get_rows(
|
||||
|
||||
template<typename src0_t, typename dst_t>
|
||||
static __global__ void k_get_rows_float(
|
||||
const src0_t * src0, const int32_t * src1, dst_t * dst,
|
||||
int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
|
||||
/*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
|
||||
/*size_t s0,*/ size_t s1, size_t s2, size_t s3,
|
||||
/*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
|
||||
size_t s10, size_t s11, size_t s12/*, size_t s13*/) {
|
||||
const src0_t * __restrict__ src0, const int32_t * __restrict__ src1, dst_t * __restrict__ dst,
|
||||
const int64_t ne00, /*const int64_t ne01, const int64_t ne02, const int64_t ne03,*/
|
||||
/*const int64_t ne10, const int64_t ne11,*/ const int64_t ne12, /*const int64_t ne13,*/
|
||||
/*const size_t s0,*/ const size_t s1, const size_t s2, const size_t s3,
|
||||
/*const size_t nb00,*/ const size_t nb01, const size_t nb02, const size_t nb03,
|
||||
const size_t s10, const size_t s11, const size_t s12/*, const size_t s13*/) {
|
||||
|
||||
const int i00 = blockIdx.x*blockDim.x + threadIdx.x;
|
||||
const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
|
||||
const int i00 = blockIdx.x*blockDim.x + threadIdx.x;
|
||||
const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
|
||||
const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
|
||||
const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;
|
||||
|
||||
@@ -58,14 +58,38 @@ static __global__ void k_get_rows_float(
|
||||
const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
|
||||
|
||||
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
|
||||
const src0_t * src0_row = (const src0_t *)((const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03);
|
||||
const src0_t * src0_row = (const src0_t *)((const char *) src0 + i01*nb01 + i11*nb02 + i12*nb03);
|
||||
|
||||
dst_row[i00] = src0_row[i00];
|
||||
}
|
||||
|
||||
template<typename grad_t, typename dst_t>
|
||||
static __global__ void k_get_rows_back_float(
|
||||
const grad_t * __restrict__ grad, const int32_t * __restrict__ rows, dst_t * __restrict__ dst, const int64_t ncols, const int64_t nrows_grad) {
|
||||
const int col = blockIdx.x*blockDim.x + threadIdx.x;
|
||||
|
||||
if (col >= ncols) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int dst_row = blockIdx.y*blockDim.y + threadIdx.y;
|
||||
|
||||
float sum = 0.0f;
|
||||
|
||||
for (int64_t i = 0; i < nrows_grad; ++i) {
|
||||
if (rows[i] != dst_row) {
|
||||
continue;
|
||||
}
|
||||
sum += grad[i*ncols + col];
|
||||
}
|
||||
|
||||
dst[dst_row*ncols + col] = sum;
|
||||
}
|
||||
|
||||
template<int qk, int qr, dequantize_kernel_t dq>
|
||||
static void get_rows_cuda(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||
const void * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
|
||||
static void get_rows_cuda(
|
||||
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||
const void * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
@@ -87,22 +111,25 @@ static void get_rows_cuda(const ggml_tensor * src0, const ggml_tensor * src1, gg
|
||||
GGML_ASSERT(ne00 % 2 == 0);
|
||||
|
||||
k_get_rows<qk, qr, dq><<<block_nums, block_dims, 0, stream>>>(
|
||||
src0_dd, src1_dd, dst_dd,
|
||||
ne00, /*ne01, ne02, ne03,*/
|
||||
/*ne10, ne11,*/ ne12, /*ne13,*/
|
||||
/* s0,*/ s1, s2, s3,
|
||||
/* nb00,*/ nb01, nb02, nb03,
|
||||
s10, s11, s12/*, s13*/);
|
||||
src0_dd, src1_dd, dst_dd,
|
||||
ne00, /*ne01, ne02, ne03,*/
|
||||
/*ne10, ne11,*/ ne12, /*ne13,*/
|
||||
/* s0,*/ s1, s2, s3,
|
||||
/* nb00,*/ nb01, nb02, nb03,
|
||||
s10, s11, s12/*, s13*/);
|
||||
|
||||
GGML_UNUSED(dst);
|
||||
}
|
||||
|
||||
template<typename src0_t>
|
||||
static void get_rows_cuda_float(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||
const src0_t * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
|
||||
static void get_rows_cuda_float(
|
||||
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||
const src0_t * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
GGML_ASSERT(ne13 == 1);
|
||||
|
||||
const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
|
||||
const int block_num_x = (ne00 + CUDA_GET_ROWS_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BLOCK_SIZE;
|
||||
const dim3 block_nums(block_num_x, ne10, ne11*ne12);
|
||||
@@ -119,12 +146,12 @@ static void get_rows_cuda_float(const ggml_tensor * src0, const ggml_tensor * sr
|
||||
//const size_t s13 = nb13 / ggml_element_size(src1);
|
||||
|
||||
k_get_rows_float<<<block_nums, block_dims, 0, stream>>>(
|
||||
src0_dd, src1_dd, dst_dd,
|
||||
ne00, /*ne01, ne02, ne03,*/
|
||||
/*ne10, ne11,*/ ne12, /*ne13,*/
|
||||
/* s0,*/ s1, s2, s3,
|
||||
/* nb00,*/ nb01, nb02, nb03,
|
||||
s10, s11, s12/*, s13*/);
|
||||
src0_dd, src1_dd, dst_dd,
|
||||
ne00, /*ne01, ne02, ne03,*/
|
||||
/*ne10, ne11,*/ ne12, /*ne13,*/
|
||||
/* s0,*/ s1, s2, s3,
|
||||
/* nb00,*/ nb01, nb02, nb03,
|
||||
s10, s11, s12/*, s13*/);
|
||||
|
||||
GGML_UNUSED(dst);
|
||||
}
|
||||
@@ -132,42 +159,41 @@ static void get_rows_cuda_float(const ggml_tensor * src0, const ggml_tensor * sr
|
||||
void ggml_cuda_op_get_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
const float * src1_d = (const float *)src1->data;
|
||||
float * dst_d = (float *)dst->data;
|
||||
|
||||
const void * src0_d = (const void *) src0->data;
|
||||
const int32_t * src1_d = (const int32_t *) src1->data;
|
||||
float * dst_d = (float *) dst->data;
|
||||
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_I32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
|
||||
GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
|
||||
GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
|
||||
GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type));
|
||||
|
||||
const int32_t * src1_i32 = (const int32_t *) src1_d;
|
||||
GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type));
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F16:
|
||||
get_rows_cuda_float(src0, src1, dst, (const half *)src0_d, src1_i32, dst_d, stream);
|
||||
get_rows_cuda_float(src0, src1, dst, (const half *) src0_d, src1_d, dst_d, stream);
|
||||
break;
|
||||
case GGML_TYPE_F32:
|
||||
get_rows_cuda_float(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||||
get_rows_cuda_float(src0, src1, dst, (const float *) src0_d, src1_d, dst_d, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q4_0:
|
||||
get_rows_cuda<QK4_0, QR4_0, dequantize_q4_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||||
get_rows_cuda<QK4_0, QR4_0, dequantize_q4_0>(src0, src1, dst, src0_d, src1_d, dst_d, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q4_1:
|
||||
get_rows_cuda<QK4_1, QR4_1, dequantize_q4_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||||
get_rows_cuda<QK4_1, QR4_1, dequantize_q4_1>(src0, src1, dst, src0_d, src1_d, dst_d, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q5_0:
|
||||
get_rows_cuda<QK5_0, QR5_0, dequantize_q5_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||||
get_rows_cuda<QK5_0, QR5_0, dequantize_q5_0>(src0, src1, dst, src0_d, src1_d, dst_d, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q5_1:
|
||||
get_rows_cuda<QK5_1, QR5_1, dequantize_q5_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||||
get_rows_cuda<QK5_1, QR5_1, dequantize_q5_1>(src0, src1, dst, src0_d, src1_d, dst_d, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q8_0:
|
||||
get_rows_cuda<QK8_0, QR8_0, dequantize_q8_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||||
get_rows_cuda<QK8_0, QR8_0, dequantize_q8_0>(src0, src1, dst, src0_d, src1_d, dst_d, stream);
|
||||
break;
|
||||
default:
|
||||
// TODO: k-quants
|
||||
@@ -175,3 +201,34 @@ void ggml_cuda_op_get_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cuda_op_get_rows_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0]; // gradients of forward pass output
|
||||
const ggml_tensor * src1 = dst->src[1]; // src1 in forward pass
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
const float * src0_d = (const float *) src0->data;
|
||||
const int32_t * src1_d = (const int32_t *) src1->data;
|
||||
float * dst_d = (float *) dst->data;
|
||||
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_I32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
GGML_ASSERT(ggml_is_contiguous(src1));
|
||||
GGML_ASSERT(ggml_is_contiguous(dst));
|
||||
|
||||
GGML_ASSERT(ne02*ne03 == 1);
|
||||
GGML_ASSERT(ne12*ne13 == 1);
|
||||
GGML_ASSERT(ne2*ne3 == 1);
|
||||
|
||||
const dim3 block_dims(CUDA_GET_ROWS_BACK_BLOCK_SIZE, 1, 1);
|
||||
const int block_num_x = (ne00 + CUDA_GET_ROWS_BACK_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BACK_BLOCK_SIZE;
|
||||
const dim3 block_nums(block_num_x, ne1, 1);
|
||||
|
||||
k_get_rows_back_float<<<block_nums, block_dims, 0, stream>>>(src0_d, src1_d, dst_d, ne00, ne10);
|
||||
}
|
||||
|
||||
@@ -1,5 +1,8 @@
|
||||
#include "common.cuh"
|
||||
|
||||
#define CUDA_GET_ROWS_BLOCK_SIZE 256
|
||||
#define CUDA_GET_ROWS_BACK_BLOCK_SIZE 256
|
||||
|
||||
void ggml_cuda_op_get_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_get_rows_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
@@ -42,6 +42,7 @@
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
#include <atomic>
|
||||
#include <charconv>
|
||||
#include <cinttypes>
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
@@ -62,7 +63,7 @@ static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
|
||||
[[noreturn]]
|
||||
void ggml_cuda_error(const char * stmt, const char * func, const char * file, int line, const char * msg) {
|
||||
int id = -1; // in case cudaGetDevice fails
|
||||
cudaGetDevice(&id);
|
||||
(void)cudaGetDevice(&id);
|
||||
|
||||
GGML_LOG_ERROR(GGML_CUDA_NAME " error: %s\n", msg);
|
||||
GGML_LOG_ERROR(" current device: %d, in function %s at %s:%d\n", id, func, file, line);
|
||||
@@ -119,12 +120,78 @@ static cudaError_t ggml_cuda_device_malloc(void ** ptr, size_t size, int device)
|
||||
#endif
|
||||
}
|
||||
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
static int ggml_cuda_parse_id(char devName[]) {
|
||||
// A list of possible Target IDs can be found under the rocclr/clr repo in device.cpp
|
||||
// these values are not stable so this is susceptible to breakage
|
||||
// https://github.com/ROCm/clr/blob/amd-staging/rocclr/device/device.cpp
|
||||
int archMajor = 0x0;
|
||||
int archMinor = 0x0;
|
||||
int archNum = GGML_CUDA_CC_OFFSET_AMD;
|
||||
int archLen = strlen(devName);
|
||||
char archName[archLen + 1];
|
||||
|
||||
// strip leading 'gfx' while copying into our buffer
|
||||
if (archLen > 3) {
|
||||
strcpy(archName, &devName[3]);
|
||||
archLen -= 3;
|
||||
}
|
||||
|
||||
// trim trailing :xnack- or :sramecc- statuses
|
||||
archLen = strcspn(archName, ":");
|
||||
archName[archLen] = '\0';
|
||||
|
||||
// tease out the version information
|
||||
if (archLen > 8) {
|
||||
// versions labeled generic use '-' as delimiter
|
||||
// strip the trailing "-generic" then iterate through what remains
|
||||
if ((strstr(archName, "-generic"))) {
|
||||
archName[archLen - 8] = '\0';
|
||||
char * pch;
|
||||
if ((pch = strtok(archName, "-"))) {
|
||||
archMajor = (int)strtoul(pch, 0, 16);
|
||||
if ((pch = strtok(NULL, "-"))) {
|
||||
archMinor = 0x10 * (int)strtoul(pch, 0, 16);
|
||||
}
|
||||
}
|
||||
}
|
||||
} else if (archLen >= 3) {
|
||||
// last two digits should be the minor * 0x10 + stepping
|
||||
archMinor = (int)strtoul(&archName[archLen - 2], 0, 16);
|
||||
archName[archLen - 2] = '\0';
|
||||
|
||||
// only the major version remains
|
||||
archMajor = (int)strtoul(archName, 0, 16);
|
||||
}
|
||||
archNum += archMajor * 0x100;
|
||||
archNum += archMinor;
|
||||
return archNum;
|
||||
}
|
||||
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
|
||||
static ggml_cuda_device_info ggml_cuda_init() {
|
||||
#ifdef __HIP_PLATFORM_AMD__
|
||||
// Workaround for a rocBLAS bug when using multiple graphics cards:
|
||||
// https://github.com/ROCmSoftwarePlatform/rocBLAS/issues/1346
|
||||
rocblas_initialize();
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
{
|
||||
int major_version = 0;
|
||||
size_t version_length = 0;
|
||||
if (rocblas_get_version_string_size(&version_length) == rocblas_status_success) {
|
||||
std::string version(version_length, '\0');
|
||||
if (rocblas_get_version_string(version.data(), version.size()) == rocblas_status_success) {
|
||||
version.resize(::strlen(version.c_str()));
|
||||
int parsed_value = 0;
|
||||
if (std::from_chars(version.c_str(), version.c_str() + version.length(), parsed_value).ec == std::errc()) {
|
||||
major_version = parsed_value;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (major_version < 4) {
|
||||
GGML_LOG_DEBUG(GGML_CUDA_NAME " calling rocblas_initialize as a workaround for a rocBLAS bug\n");
|
||||
rocblas_initialize();
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
ggml_cuda_device_info info = {};
|
||||
@@ -152,7 +219,7 @@ static ggml_cuda_device_info ggml_cuda_init() {
|
||||
for (int id = 0; id < info.device_count; ++id) {
|
||||
int device_vmm = 0;
|
||||
|
||||
#if !defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)
|
||||
#if defined(GGML_USE_VMM)
|
||||
CUdevice device;
|
||||
CU_CHECK(cuDeviceGet(&device, id));
|
||||
CU_CHECK(cuDeviceGetAttribute(&device_vmm, CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED, device));
|
||||
@@ -164,12 +231,11 @@ static ggml_cuda_device_info ggml_cuda_init() {
|
||||
alloc_prop.location.id = id;
|
||||
CU_CHECK(cuMemGetAllocationGranularity(&info.devices[id].vmm_granularity, &alloc_prop, CU_MEM_ALLOC_GRANULARITY_RECOMMENDED));
|
||||
}
|
||||
#endif // !defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)
|
||||
#endif // defined(GGML_USE_VMM)
|
||||
info.devices[id].vmm = !!device_vmm;
|
||||
|
||||
cudaDeviceProp prop;
|
||||
CUDA_CHECK(cudaGetDeviceProperties(&prop, id));
|
||||
GGML_LOG_INFO(" Device %d: %s, compute capability %d.%d, VMM: %s\n", id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no");
|
||||
|
||||
info.default_tensor_split[id] = total_vram;
|
||||
total_vram += prop.totalGlobalMem;
|
||||
@@ -178,10 +244,25 @@ static ggml_cuda_device_info ggml_cuda_init() {
|
||||
info.devices[id].smpb = prop.sharedMemPerBlock;
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
info.devices[id].smpbo = prop.sharedMemPerBlock;
|
||||
info.devices[id].cc = 100*prop.major + 10*prop.minor + GGML_CUDA_CC_OFFSET_AMD;
|
||||
|
||||
info.devices[id].cc = ggml_cuda_parse_id(prop.gcnArchName);
|
||||
if ((info.devices[id].cc & 0xff00) == 0x0) {
|
||||
GGML_LOG_WARN("invalid architecture ID received for device %d %s: %s cc %d.%d\n",
|
||||
id, prop.name, prop.gcnArchName, prop.major, prop.minor);
|
||||
|
||||
// Fallback to prop.major and prop.minor
|
||||
if (prop.major > 0) {
|
||||
info.devices[id].cc = GGML_CUDA_CC_OFFSET_AMD + prop.major * 0x100;
|
||||
info.devices[id].cc += prop.minor * 0x10;
|
||||
}
|
||||
}
|
||||
GGML_LOG_INFO(" Device %d: %s, %s (0x%x), VMM: %s\n",
|
||||
id, prop.name, prop.gcnArchName, info.devices[id].cc & 0xffff, device_vmm ? "yes" : "no");
|
||||
#else
|
||||
info.devices[id].smpbo = prop.sharedMemPerBlockOptin;
|
||||
info.devices[id].cc = 100*prop.major + 10*prop.minor;
|
||||
GGML_LOG_INFO(" Device %d: %s, compute capability %d.%d, VMM: %s\n",
|
||||
id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no");
|
||||
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
}
|
||||
|
||||
@@ -300,7 +381,7 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
|
||||
};
|
||||
|
||||
// pool with virtual memory
|
||||
#if !defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)
|
||||
#if defined(GGML_USE_VMM)
|
||||
struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
|
||||
static const size_t CUDA_POOL_VMM_MAX_SIZE = 1ull << 35; // 32 GB
|
||||
|
||||
@@ -309,6 +390,9 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
|
||||
size_t pool_used = 0;
|
||||
size_t pool_size = 0;
|
||||
size_t granularity;
|
||||
#if defined(GGML_USE_HIP)
|
||||
std::vector<std::pair<CUdeviceptr, size_t>> mappings;
|
||||
#endif
|
||||
|
||||
explicit ggml_cuda_pool_vmm(int device) :
|
||||
device(device),
|
||||
@@ -317,7 +401,14 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
|
||||
|
||||
~ggml_cuda_pool_vmm() {
|
||||
if (pool_addr != 0) {
|
||||
#if defined(GGML_USE_HIP)
|
||||
// Workaround for https://github.com/ROCm/ROCR-Runtime/issues/285
|
||||
for (std::pair<CUdeviceptr, size_t> & mapping : mappings) {
|
||||
CU_CHECK(cuMemUnmap(mapping.first, mapping.second));
|
||||
}
|
||||
#else
|
||||
CU_CHECK(cuMemUnmap(pool_addr, pool_size));
|
||||
#endif
|
||||
CU_CHECK(cuMemAddressFree(pool_addr, CUDA_POOL_VMM_MAX_SIZE));
|
||||
}
|
||||
}
|
||||
@@ -350,7 +441,11 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
|
||||
}
|
||||
|
||||
// map at the end of the pool
|
||||
CU_CHECK(cuMemMap(pool_addr + pool_size, reserve_size, 0, handle, 0));
|
||||
CUdeviceptr start_ptr = (CUdeviceptr)((char *)(pool_addr) + pool_size);
|
||||
CU_CHECK(cuMemMap(start_ptr, reserve_size, 0, handle, 0));
|
||||
#if defined(GGML_USE_HIP)
|
||||
mappings.push_back({start_ptr, reserve_size});
|
||||
#endif
|
||||
|
||||
// the memory allocation handle is no longer needed after mapping
|
||||
CU_CHECK(cuMemRelease(handle));
|
||||
@@ -360,7 +455,7 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
|
||||
access.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
|
||||
access.location.id = device;
|
||||
access.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE;
|
||||
CU_CHECK(cuMemSetAccess(pool_addr + pool_size, reserve_size, &access, 1));
|
||||
CU_CHECK(cuMemSetAccess((CUdeviceptr)((char *)(pool_addr) + pool_size), reserve_size, &access, 1));
|
||||
|
||||
// add to the pool
|
||||
pool_size += reserve_size;
|
||||
@@ -372,7 +467,7 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
|
||||
|
||||
GGML_ASSERT(pool_addr != 0);
|
||||
|
||||
void * ptr = (void *) (pool_addr + pool_used);
|
||||
void * ptr = (void *) ((CUdeviceptr)((char *)(pool_addr) + pool_used));
|
||||
*actual_size = size;
|
||||
pool_used += size;
|
||||
|
||||
@@ -391,17 +486,17 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
|
||||
pool_used -= size;
|
||||
|
||||
// all deallocations must be in reverse order of the allocations
|
||||
GGML_ASSERT(ptr == (void *) (pool_addr + pool_used));
|
||||
GGML_ASSERT(ptr == (void *) ((char *)(pool_addr) + pool_used));
|
||||
}
|
||||
};
|
||||
#endif // !defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)
|
||||
#endif // defined(GGML_USE_VMM)
|
||||
|
||||
std::unique_ptr<ggml_cuda_pool> ggml_backend_cuda_context::new_pool_for_device(int device) {
|
||||
#if !defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)
|
||||
#if defined(GGML_USE_VMM)
|
||||
if (ggml_cuda_info().devices[device].vmm) {
|
||||
return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_vmm(device));
|
||||
}
|
||||
#endif // !defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)
|
||||
#endif // defined(GGML_USE_VMM)
|
||||
return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_leg(device));
|
||||
}
|
||||
|
||||
@@ -547,7 +642,7 @@ static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_bac
|
||||
cudaError_t err = ggml_cuda_device_malloc(&dev_ptr, size, buft_ctx->device);
|
||||
if (err != cudaSuccess) {
|
||||
// clear the error
|
||||
cudaGetLastError();
|
||||
(void)cudaGetLastError();
|
||||
GGML_LOG_ERROR("%s: allocating %.2f MiB on device %d: cudaMalloc failed: %s\n", __func__, size / 1024.0 / 1024.0, buft_ctx->device, cudaGetErrorString(err));
|
||||
return nullptr;
|
||||
}
|
||||
@@ -962,7 +1057,7 @@ static void * ggml_cuda_host_malloc(size_t size) {
|
||||
cudaError_t err = cudaMallocHost((void **) &ptr, size);
|
||||
if (err != cudaSuccess) {
|
||||
// clear the error
|
||||
cudaGetLastError();
|
||||
(void)cudaGetLastError();
|
||||
GGML_LOG_DEBUG("%s: failed to allocate %.2f MiB of pinned memory: %s\n", __func__,
|
||||
size / 1024.0 / 1024.0, cudaGetErrorString(err));
|
||||
return nullptr;
|
||||
@@ -1082,7 +1177,9 @@ static void ggml_cuda_op_mul_mat_cublas(
|
||||
|
||||
const int compute_capability = ggml_cuda_info().devices[id].cc;
|
||||
|
||||
if (compute_capability >= GGML_CUDA_CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) {
|
||||
const bool use_fp16 = (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT;
|
||||
|
||||
if (compute_capability >= GGML_CUDA_CC_VOLTA && use_fp16) {
|
||||
// convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32
|
||||
ggml_cuda_pool_alloc<half> src0_as_f16(ctx.pool(id));
|
||||
if (src0->type != GGML_TYPE_F16) {
|
||||
@@ -1103,28 +1200,38 @@ static void ggml_cuda_op_mul_mat_cublas(
|
||||
to_fp16_cuda(src1_ddf_i, src1_as_f16.get(), ne, stream);
|
||||
}
|
||||
const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16.get();
|
||||
ggml_cuda_pool_alloc<half> dst_f16(ctx.pool(id), row_diff*src1_ncols);
|
||||
|
||||
const half alpha_f16 = 1.0f;
|
||||
const half beta_f16 = 0.0f;
|
||||
|
||||
cublasComputeType_t cu_compute_type = CUBLAS_COMPUTE_16F;
|
||||
if (ggml_cuda_info().devices[ctx.device].cc == GGML_CUDA_CC_CDNA) {
|
||||
cu_compute_type = CUBLAS_COMPUTE_32F;
|
||||
}
|
||||
|
||||
CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream));
|
||||
CUBLAS_CHECK(
|
||||
cublasGemmEx(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
|
||||
row_diff, src1_ncols, ne10,
|
||||
&alpha_f16, src0_ptr, CUDA_R_16F, ne00,
|
||||
src1_ptr, CUDA_R_16F, ne10,
|
||||
&beta_f16, dst_f16.get(), CUDA_R_16F, ldc,
|
||||
cu_compute_type,
|
||||
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
|
||||
|
||||
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
|
||||
to_fp32_cuda(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream);
|
||||
if (compute_capability == GGML_CUDA_CC_CDNA) {
|
||||
const float alpha = 1.0f;
|
||||
const float beta = 0.0f;
|
||||
CUBLAS_CHECK(
|
||||
cublasGemmEx(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
|
||||
row_diff, src1_ncols, ne10,
|
||||
&alpha, src0_ptr, CUDA_R_16F, ne00,
|
||||
src1_ptr, CUDA_R_16F, ne10,
|
||||
&beta, dst_dd_i, CUDA_R_32F, ldc,
|
||||
CUBLAS_COMPUTE_32F,
|
||||
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
|
||||
} else {
|
||||
ggml_cuda_pool_alloc<half> dst_f16(ctx.pool(id), row_diff*src1_ncols);
|
||||
|
||||
const half alpha_f16 = 1.0f;
|
||||
const half beta_f16 = 0.0f;
|
||||
|
||||
CUBLAS_CHECK(
|
||||
cublasGemmEx(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
|
||||
row_diff, src1_ncols, ne10,
|
||||
&alpha_f16, src0_ptr, CUDA_R_16F, ne00,
|
||||
src1_ptr, CUDA_R_16F, ne10,
|
||||
&beta_f16, dst_f16.get(), CUDA_R_16F, ldc,
|
||||
CUBLAS_COMPUTE_16F,
|
||||
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
|
||||
|
||||
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
|
||||
to_fp32_cuda(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream);
|
||||
}
|
||||
} else {
|
||||
ggml_cuda_pool_alloc<float> src0_ddq_as_f32(ctx.pool(id));
|
||||
ggml_cuda_pool_alloc<float> src1_ddq_as_f32(ctx.pool(id));
|
||||
@@ -1197,7 +1304,7 @@ static void ggml_cuda_set_peer_access(const int n_tokens, int main_device) {
|
||||
CUDA_CHECK(err);
|
||||
} else {
|
||||
// reset the error
|
||||
cudaGetLastError();
|
||||
(void)cudaGetLastError();
|
||||
}
|
||||
} else {
|
||||
cudaError_t err = cudaDeviceDisablePeerAccess(id_other);
|
||||
@@ -1205,7 +1312,7 @@ static void ggml_cuda_set_peer_access(const int n_tokens, int main_device) {
|
||||
CUDA_CHECK(err);
|
||||
} else {
|
||||
// reset the error
|
||||
cudaGetLastError();
|
||||
(void)cudaGetLastError();
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1613,10 +1720,6 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
|
||||
cublasComputeType_t cu_compute_type = CUBLAS_COMPUTE_16F;
|
||||
cudaDataType_t cu_data_type = CUDA_R_16F;
|
||||
|
||||
if (ggml_cuda_info().devices[ctx.device].cc == GGML_CUDA_CC_CDNA) {
|
||||
cu_compute_type = CUBLAS_COMPUTE_32F;
|
||||
}
|
||||
|
||||
// dst strides
|
||||
size_t nbd2 = dst->nb[2];
|
||||
size_t nbd3 = dst->nb[3];
|
||||
@@ -1645,6 +1748,12 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
|
||||
beta = &beta_f32;
|
||||
}
|
||||
|
||||
if (ggml_cuda_info().devices[ctx.device].cc == GGML_CUDA_CC_CDNA) {
|
||||
cu_compute_type = CUBLAS_COMPUTE_32F;
|
||||
alpha = &alpha_f32;
|
||||
beta = &beta_f32;
|
||||
}
|
||||
|
||||
GGML_ASSERT(ne12 % ne02 == 0);
|
||||
GGML_ASSERT(ne13 % ne03 == 0);
|
||||
|
||||
@@ -2003,6 +2112,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
||||
case GGML_OP_GET_ROWS:
|
||||
ggml_cuda_op_get_rows(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_GET_ROWS_BACK:
|
||||
ggml_cuda_op_get_rows_back(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_DUP:
|
||||
ggml_cuda_dup(ctx, dst);
|
||||
break;
|
||||
@@ -2091,9 +2203,15 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
||||
case GGML_OP_LEAKY_RELU:
|
||||
ggml_cuda_op_leaky_relu(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_SILU_BACK:
|
||||
ggml_cuda_op_silu_back(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_RMS_NORM:
|
||||
ggml_cuda_op_rms_norm(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_RMS_NORM_BACK:
|
||||
ggml_cuda_op_rms_norm_back(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_MUL_MAT:
|
||||
if (dst->src[0]->ne[3] != dst->src[1]->ne[3]) {
|
||||
GGML_LOG_ERROR("%s: cannot compute %s: src0->ne[3] = %" PRId64 ", src1->ne[3] = %" PRId64 " - fallback to CPU\n", __func__, dst->name, dst->src[0]->ne[3], dst->src[1]->ne[3]);
|
||||
@@ -2138,9 +2256,15 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
||||
case GGML_OP_SOFT_MAX:
|
||||
ggml_cuda_op_soft_max(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_SOFT_MAX_BACK:
|
||||
ggml_cuda_op_soft_max_back(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_ROPE:
|
||||
ggml_cuda_op_rope(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_ROPE_BACK:
|
||||
ggml_cuda_op_rope_back(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_IM2COL:
|
||||
ggml_cuda_op_im2col(ctx, dst);
|
||||
break;
|
||||
@@ -2289,6 +2413,66 @@ static void ggml_backend_cuda_synchronize(ggml_backend_t backend) {
|
||||
}
|
||||
|
||||
#ifdef USE_CUDA_GRAPH
|
||||
static bool check_node_graph_compatibility_and_refresh_copy_ops(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph,
|
||||
std::vector<void *> & ggml_cuda_cpy_fn_ptrs, bool use_cuda_graph) {
|
||||
|
||||
// Loop over nodes in GGML graph to obtain info needed for CUDA graph
|
||||
cuda_ctx->cuda_graph->updated_kernel_arg.clear();
|
||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
ggml_tensor * node = cgraph->nodes[i];
|
||||
|
||||
if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (node->src[0] && node->src[0]->buffer && ggml_backend_buft_is_cuda_split(node->src[0]->buffer->buft)) {
|
||||
use_cuda_graph = false; // Split buffers are not supported by CUDA graph capture
|
||||
#ifndef NDEBUG
|
||||
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to split buffer\n", __func__);
|
||||
#endif
|
||||
}
|
||||
|
||||
if (node->op == GGML_OP_MUL_MAT_ID) {
|
||||
use_cuda_graph = false; // This node type is not supported by CUDA graph capture
|
||||
#ifndef NDEBUG
|
||||
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to mul_mat_id\n", __func__);
|
||||
#endif
|
||||
}
|
||||
|
||||
if (node->op == GGML_OP_ADD && node->src[1] && node->src[1]->ne[1] > 1) {
|
||||
// disable CUDA graphs for batch size > 1 for now.
|
||||
// Changes in batch size or context size can cause changes to the grid size of some kernels.
|
||||
use_cuda_graph = false;
|
||||
#ifndef NDEBUG
|
||||
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to batch size > 1 [%s] [%ld %ld %ld %ld]\n", __func__, node->name, node->ne[0], node->ne[1], node->ne[2], node->ne[3]);
|
||||
#endif
|
||||
}
|
||||
|
||||
if (node->op == GGML_OP_CPY) {
|
||||
// store the copy op parameter which changes with each token.
|
||||
cuda_ctx->cuda_graph->updated_kernel_arg.push_back((char **) &(node->src[1]->data));
|
||||
// store a pointer to each copy op CUDA kernel to identify it later
|
||||
void * ptr = ggml_cuda_cpy_fn(node->src[0], node->src[1]);
|
||||
if (!ptr) {
|
||||
use_cuda_graph = false;
|
||||
#ifndef NDEBUG
|
||||
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to unsupported copy op\n", __func__);
|
||||
#endif
|
||||
} else {
|
||||
if (std::find(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), ptr) == ggml_cuda_cpy_fn_ptrs.end()) {
|
||||
ggml_cuda_cpy_fn_ptrs.push_back(ptr);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (!use_cuda_graph) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return use_cuda_graph;
|
||||
}
|
||||
|
||||
static void set_ggml_graph_node_properties(ggml_tensor * node, ggml_graph_node_properties * graph_node_properties) {
|
||||
graph_node_properties->node_address = node->data;
|
||||
graph_node_properties->node_op = node->op;
|
||||
@@ -2339,149 +2523,111 @@ static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_gra
|
||||
|
||||
return true;
|
||||
}
|
||||
#endif
|
||||
|
||||
static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
|
||||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
||||
static void maintain_cuda_graph(ggml_backend_cuda_context * cuda_ctx, std::vector<void *> & ggml_cuda_cpy_fn_ptrs, bool cuda_graph_update_required) {
|
||||
|
||||
ggml_cuda_set_device(cuda_ctx->device);
|
||||
if (cuda_graph_update_required) {
|
||||
// Extract nodes from graph
|
||||
// First call with null argument gets number of nodes in graph
|
||||
CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, nullptr, &cuda_ctx->cuda_graph->num_nodes));
|
||||
// Subsequent call with non-null argument gets nodes
|
||||
cuda_ctx->cuda_graph->nodes.clear();
|
||||
cuda_ctx->cuda_graph->nodes.resize(cuda_ctx->cuda_graph->num_nodes);
|
||||
cuda_ctx->cuda_graph->params.clear();
|
||||
cuda_ctx->cuda_graph->params.resize(cuda_ctx->cuda_graph->num_nodes);
|
||||
if (cuda_ctx->cuda_graph->num_nodes > 0) {
|
||||
CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, cuda_ctx->cuda_graph->nodes.data(), &cuda_ctx->cuda_graph->num_nodes));
|
||||
|
||||
#ifdef USE_CUDA_GRAPH
|
||||
static const bool disable_cuda_graphs_due_to_env = (getenv("GGML_CUDA_DISABLE_GRAPHS") != nullptr);
|
||||
|
||||
// Objects required for CUDA Graph
|
||||
if (cuda_ctx->cuda_graph == nullptr) {
|
||||
cuda_ctx->cuda_graph.reset(new ggml_cuda_graph());
|
||||
}
|
||||
|
||||
bool use_cuda_graph = true;
|
||||
bool cuda_graph_update_required = false;
|
||||
// vector of pointers to CUDA cpy kernels, which are required to identify
|
||||
// kernel parameters which need updated in the graph for each token
|
||||
std::vector<void *> ggml_cuda_cpy_fn_ptrs;
|
||||
|
||||
if (cuda_ctx->cuda_graph->graph == nullptr) {
|
||||
if (ggml_cuda_info().devices[cuda_ctx->device].cc < GGML_CUDA_CC_AMPERE) {
|
||||
cuda_ctx->cuda_graph->disable_due_to_gpu_arch = true;
|
||||
#ifndef NDEBUG
|
||||
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to GPU architecture\n", __func__);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
// Disable CUDA graphs in presence of env var, old GPU, use-case which is changing too rapidly,
|
||||
// or previous graph capture failure.
|
||||
// Also disable for multi-gpu for now. TO DO investigate
|
||||
if (disable_cuda_graphs_due_to_env
|
||||
|| cuda_ctx->cuda_graph->disable_due_to_gpu_arch
|
||||
|| cuda_ctx->cuda_graph->disable_due_to_too_many_updates
|
||||
|| cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture) {
|
||||
use_cuda_graph = false;
|
||||
}
|
||||
|
||||
if (use_cuda_graph) {
|
||||
if (cuda_ctx->cuda_graph->instance == nullptr) {
|
||||
cuda_graph_update_required = true;
|
||||
}
|
||||
|
||||
// Check if the graph size has changed
|
||||
if (cuda_ctx->cuda_graph->ggml_graph_properties.size() != (size_t)cgraph->n_nodes) {
|
||||
cuda_graph_update_required = true;
|
||||
cuda_ctx->cuda_graph->ggml_graph_properties.resize(cgraph->n_nodes);
|
||||
}
|
||||
|
||||
// Loop over nodes in GGML graph to determine if CUDA graph update is required
|
||||
// and store properties to allow this comparison for the next token
|
||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
bool has_matching_properties = true;
|
||||
if (!cuda_graph_update_required) {
|
||||
has_matching_properties = ggml_graph_node_has_matching_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]);
|
||||
}
|
||||
if (!has_matching_properties) {
|
||||
cuda_graph_update_required = true;
|
||||
}
|
||||
set_ggml_graph_node_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]);
|
||||
}
|
||||
|
||||
// Loop over nodes in GGML graph to obtain info needed for CUDA graph
|
||||
cuda_ctx->cuda_graph->updated_kernel_arg.clear();
|
||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
ggml_tensor * node = cgraph->nodes[i];
|
||||
|
||||
if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (node->src[0] && node->src[0]->buffer && ggml_backend_buft_is_cuda_split(node->src[0]->buffer->buft)) {
|
||||
use_cuda_graph = false; // Split buffers are not supported by CUDA graph capture
|
||||
#ifndef NDEBUG
|
||||
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to split buffer\n", __func__);
|
||||
#endif
|
||||
}
|
||||
|
||||
if (node->op == GGML_OP_MUL_MAT_ID) {
|
||||
use_cuda_graph = false; // This node type is not supported by CUDA graph capture
|
||||
#ifndef NDEBUG
|
||||
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to mul_mat_id\n", __func__);
|
||||
#endif
|
||||
}
|
||||
|
||||
if (node->op == GGML_OP_ADD && node->src[1] && node->src[1]->ne[1] > 1) {
|
||||
// disable CUDA graphs for batch size > 1 for now.
|
||||
// Changes in batch size or context size can cause changes to the grid size of some kernels.
|
||||
use_cuda_graph = false;
|
||||
#ifndef NDEBUG
|
||||
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to batch size > 1 [%s] [%ld %ld %ld %ld]\n", __func__, node->name, node->ne[0], node->ne[1], node->ne[2], node->ne[3]);
|
||||
#endif
|
||||
}
|
||||
|
||||
if (node->op == GGML_OP_CPY) {
|
||||
// store the copy op parameter which changes with each token.
|
||||
cuda_ctx->cuda_graph->updated_kernel_arg.push_back((char **) &(node->src[1]->data));
|
||||
// store a pointer to each copy op CUDA kernel to identify it later
|
||||
void * ptr = ggml_cuda_cpy_fn(node->src[0], node->src[1]);
|
||||
if (!ptr) {
|
||||
use_cuda_graph = false;
|
||||
#ifndef NDEBUG
|
||||
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to unsupported copy op\n", __func__);
|
||||
#endif
|
||||
} else {
|
||||
if (std::find(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), ptr) == ggml_cuda_cpy_fn_ptrs.end()) {
|
||||
ggml_cuda_cpy_fn_ptrs.push_back(ptr);
|
||||
// Loop over nodes, and extract kernel parameters from each node
|
||||
for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) {
|
||||
cudaGraphNodeType node_type;
|
||||
CUDA_CHECK(cudaGraphNodeGetType(cuda_ctx->cuda_graph->nodes[i], &node_type));
|
||||
if (node_type == cudaGraphNodeTypeKernel) {
|
||||
cudaError_t stat = cudaGraphKernelNodeGetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]); // Get params using runtime
|
||||
if (stat == cudaErrorInvalidDeviceFunction) {
|
||||
// Fails due to incorrect handling by CUDA runtime of CUDA BLAS node.
|
||||
// We don't need to update blas nodes, so clear error and move on.
|
||||
(void)cudaGetLastError();
|
||||
} else {
|
||||
GGML_ASSERT(stat == cudaSuccess);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (!use_cuda_graph) {
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
// One of the arguments to the copy kernel is updated for each token, hence we need to
|
||||
// replace that argument with the updated value in the CUDA graph
|
||||
// on update steps, the live parameters will already be captured
|
||||
int k = 0;
|
||||
for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) {
|
||||
if(count(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), cuda_ctx->cuda_graph->params[i].func) > 0) {
|
||||
char ** updated_kernel_arg_ptr = cuda_ctx->cuda_graph->updated_kernel_arg.at(k++);
|
||||
cuda_ctx->cuda_graph->params[i].kernelParams[1] = updated_kernel_arg_ptr;
|
||||
CUDA_CHECK(cudaGraphKernelNodeSetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]));
|
||||
}
|
||||
}
|
||||
|
||||
// Disable CUDA graphs (from the next token) if the use-case is demanding too many consecutive graph updates.
|
||||
if (use_cuda_graph && cuda_graph_update_required) {
|
||||
cuda_ctx->cuda_graph->number_consecutive_updates++;
|
||||
} else {
|
||||
cuda_ctx->cuda_graph->number_consecutive_updates = 0;
|
||||
}
|
||||
|
||||
if (cuda_ctx->cuda_graph->number_consecutive_updates >= 4) {
|
||||
cuda_ctx->cuda_graph->disable_due_to_too_many_updates = true;
|
||||
#ifndef NDEBUG
|
||||
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to too many consecutive updates\n", __func__);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (use_cuda_graph && cuda_graph_update_required) { // Start CUDA graph capture
|
||||
CUDA_CHECK(cudaStreamBeginCapture(cuda_ctx->stream(), cudaStreamCaptureModeRelaxed));
|
||||
}
|
||||
static bool is_cuda_graph_update_required(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph) {
|
||||
|
||||
#else
|
||||
bool use_cuda_graph = false;
|
||||
bool cuda_graph_update_required = false;
|
||||
#endif // USE_CUDA_GRAPH
|
||||
|
||||
bool graph_evaluated_or_captured = false;
|
||||
if (cuda_ctx->cuda_graph->instance == nullptr) {
|
||||
cuda_graph_update_required = true;
|
||||
}
|
||||
|
||||
// Check if the graph size has changed
|
||||
if (cuda_ctx->cuda_graph->ggml_graph_properties.size() != (size_t)cgraph->n_nodes) {
|
||||
cuda_graph_update_required = true;
|
||||
cuda_ctx->cuda_graph->ggml_graph_properties.resize(cgraph->n_nodes);
|
||||
}
|
||||
|
||||
// Loop over nodes in GGML graph to determine if CUDA graph update is required
|
||||
// and store properties to allow this comparison for the next token
|
||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
bool has_matching_properties = true;
|
||||
if (!cuda_graph_update_required) {
|
||||
has_matching_properties = ggml_graph_node_has_matching_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]);
|
||||
}
|
||||
if (!has_matching_properties) {
|
||||
cuda_graph_update_required = true;
|
||||
}
|
||||
set_ggml_graph_node_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]);
|
||||
}
|
||||
|
||||
return cuda_graph_update_required;
|
||||
}
|
||||
|
||||
static void update_cuda_graph_executable(ggml_backend_cuda_context * cuda_ctx) {
|
||||
|
||||
cudaGraphExecUpdateResultInfo result_info;
|
||||
#ifdef __HIP_PLATFORM_AMD__
|
||||
hipGraphNode_t errorNode;
|
||||
hipError_t stat = hipGraphExecUpdate(cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, &errorNode, &result_info);
|
||||
#else
|
||||
cudaError_t stat = cudaGraphExecUpdate(cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, &result_info);
|
||||
#endif
|
||||
if (stat == cudaErrorGraphExecUpdateFailure) {
|
||||
#ifndef NDEBUG
|
||||
GGML_LOG_DEBUG("%s: CUDA graph update failed\n", __func__);
|
||||
#endif
|
||||
|
||||
// The pre-existing graph exec cannot be updated due to violated constraints
|
||||
// so instead clear error and re-instantiate
|
||||
(void)cudaGetLastError();
|
||||
CUDA_CHECK(cudaGraphExecDestroy(cuda_ctx->cuda_graph->instance));
|
||||
cuda_ctx->cuda_graph->instance = nullptr;
|
||||
CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0));
|
||||
} else {
|
||||
GGML_ASSERT(stat == cudaSuccess);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph,
|
||||
[[maybe_unused]] std::vector<void *> & ggml_cuda_cpy_fn_ptrs, bool & graph_evaluated_or_captured, bool & use_cuda_graph,
|
||||
bool & cuda_graph_update_required) {
|
||||
|
||||
while (!graph_evaluated_or_captured) {
|
||||
// Only perform the graph execution if CUDA graphs are not enabled, or we are capturing the graph.
|
||||
@@ -2519,19 +2665,8 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
|
||||
CUDA_CHECK(cudaGraphDestroy(cuda_ctx->cuda_graph->graph));
|
||||
cuda_ctx->cuda_graph->graph = nullptr;
|
||||
}
|
||||
CUDA_CHECK(cudaStreamEndCapture(cuda_ctx->stream(), &cuda_ctx->cuda_graph->graph));
|
||||
|
||||
#if 0
|
||||
if (disable_cuda_graphs_due_to_failed_capture) {
|
||||
use_cuda_graph = false;
|
||||
cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture = true;
|
||||
#ifndef NDEBUG
|
||||
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to failed graph capture\n", __func__);
|
||||
#endif
|
||||
} else {
|
||||
graph_evaluated_or_captured = true; // CUDA graph has been captured
|
||||
}
|
||||
#endif
|
||||
CUDA_CHECK(cudaStreamEndCapture(cuda_ctx->stream(), &cuda_ctx->cuda_graph->graph));
|
||||
graph_evaluated_or_captured = true; // CUDA graph has been captured
|
||||
} else {
|
||||
graph_evaluated_or_captured = true; // ggml graph has been directly evaluated
|
||||
@@ -2544,72 +2679,91 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
|
||||
}
|
||||
|
||||
// Perform update to graph (if required for this token), and change copy parameter (required for every token)
|
||||
|
||||
if (cuda_graph_update_required) {
|
||||
// Extract nodes from graph
|
||||
// First call with null argument gets number of nodes in graph
|
||||
CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, nullptr, &cuda_ctx->cuda_graph->num_nodes));
|
||||
// Subsequent call with non-null argument gets nodes
|
||||
cuda_ctx->cuda_graph->nodes.clear();
|
||||
cuda_ctx->cuda_graph->nodes.resize(cuda_ctx->cuda_graph->num_nodes);
|
||||
cuda_ctx->cuda_graph->params.clear();
|
||||
cuda_ctx->cuda_graph->params.resize(cuda_ctx->cuda_graph->num_nodes);
|
||||
if (cuda_ctx->cuda_graph->num_nodes > 0) {
|
||||
CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, cuda_ctx->cuda_graph->nodes.data(), &cuda_ctx->cuda_graph->num_nodes));
|
||||
|
||||
// Loop over nodes, and extract kernel parameters from each node
|
||||
for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) {
|
||||
cudaGraphNodeType node_type;
|
||||
CUDA_CHECK(cudaGraphNodeGetType(cuda_ctx->cuda_graph->nodes[i], &node_type));
|
||||
if (node_type == cudaGraphNodeTypeKernel) {
|
||||
cudaError_t stat = cudaGraphKernelNodeGetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]); // Get params using runtime
|
||||
if (stat == cudaErrorInvalidDeviceFunction) {
|
||||
// Fails due to incorrect handling by CUDA runtime of CUDA BLAS node.
|
||||
// We don't need to update blas nodes, so clear error and move on.
|
||||
cudaGetLastError();
|
||||
} else {
|
||||
GGML_ASSERT(stat == cudaSuccess);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// One of the arguments to the copy kernel is updated for each token, hence we need to
|
||||
// replace that argument with the updated value in the CUDA graph
|
||||
if (!cuda_graph_update_required) { // on update steps, the live parameters will already be captured
|
||||
int k = 0;
|
||||
for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) {
|
||||
if(count(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), cuda_ctx->cuda_graph->params[i].func) > 0) {
|
||||
char ** updated_kernel_arg_ptr = cuda_ctx->cuda_graph->updated_kernel_arg.at(k++);
|
||||
cuda_ctx->cuda_graph->params[i].kernelParams[1] = updated_kernel_arg_ptr;
|
||||
CUDA_CHECK(cudaGraphKernelNodeSetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]));
|
||||
}
|
||||
}
|
||||
}
|
||||
maintain_cuda_graph(cuda_ctx, ggml_cuda_cpy_fn_ptrs, cuda_graph_update_required);
|
||||
|
||||
// Update graph executable
|
||||
cudaGraphExecUpdateResultInfo result_info;
|
||||
cudaError_t stat = cudaGraphExecUpdate(cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, &result_info);
|
||||
if (stat == cudaErrorGraphExecUpdateFailure) {
|
||||
#ifndef NDEBUG
|
||||
GGML_LOG_DEBUG("%s: CUDA graph update failed\n", __func__);
|
||||
#endif
|
||||
// The pre-existing graph exec cannot be updated due to violated constraints
|
||||
// so instead clear error and re-instantiate
|
||||
cudaGetLastError();
|
||||
CUDA_CHECK(cudaGraphExecDestroy(cuda_ctx->cuda_graph->instance));
|
||||
cuda_ctx->cuda_graph->instance = nullptr;
|
||||
CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0));
|
||||
} else {
|
||||
GGML_ASSERT(stat == cudaSuccess);
|
||||
}
|
||||
update_cuda_graph_executable(cuda_ctx);
|
||||
|
||||
// Launch graph
|
||||
CUDA_CHECK(cudaGraphLaunch(cuda_ctx->cuda_graph->instance, cuda_ctx->stream()));
|
||||
#else
|
||||
graph_evaluated_or_captured = true;
|
||||
#endif // USE_CUDA_GRAPH
|
||||
#endif // USE_CUDA_GRAPH
|
||||
}
|
||||
}
|
||||
|
||||
static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
|
||||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
||||
|
||||
ggml_cuda_set_device(cuda_ctx->device);
|
||||
|
||||
// vector of pointers to CUDA cpy kernels, which are required to identify
|
||||
// kernel parameters which need updated in the graph for each token
|
||||
std::vector<void *> ggml_cuda_cpy_fn_ptrs;
|
||||
|
||||
#ifdef USE_CUDA_GRAPH
|
||||
static const bool disable_cuda_graphs_due_to_env = (getenv("GGML_CUDA_DISABLE_GRAPHS") != nullptr);
|
||||
|
||||
// Objects required for CUDA Graph
|
||||
if (cuda_ctx->cuda_graph == nullptr) {
|
||||
cuda_ctx->cuda_graph.reset(new ggml_cuda_graph());
|
||||
}
|
||||
|
||||
bool use_cuda_graph = true;
|
||||
bool cuda_graph_update_required = false;
|
||||
|
||||
if (cuda_ctx->cuda_graph->graph == nullptr) {
|
||||
if (ggml_cuda_info().devices[cuda_ctx->device].cc < GGML_CUDA_CC_AMPERE) {
|
||||
cuda_ctx->cuda_graph->disable_due_to_gpu_arch = true;
|
||||
#ifndef NDEBUG
|
||||
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to GPU architecture\n", __func__);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
// Disable CUDA graphs in presence of env var, old GPU, use-case which is changing too rapidly,
|
||||
// or previous graph capture failure.
|
||||
// Also disable for multi-gpu for now. TO DO investigate
|
||||
if (disable_cuda_graphs_due_to_env
|
||||
|| cuda_ctx->cuda_graph->disable_due_to_gpu_arch
|
||||
|| cuda_ctx->cuda_graph->disable_due_to_too_many_updates
|
||||
|| cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture) {
|
||||
use_cuda_graph = false;
|
||||
}
|
||||
|
||||
if (use_cuda_graph) {
|
||||
cuda_graph_update_required = is_cuda_graph_update_required(cuda_ctx, cgraph);
|
||||
|
||||
use_cuda_graph = check_node_graph_compatibility_and_refresh_copy_ops(cuda_ctx, cgraph,
|
||||
ggml_cuda_cpy_fn_ptrs, use_cuda_graph);
|
||||
|
||||
// Disable CUDA graphs (from the next token) if the use-case is demanding too many consecutive graph updates.
|
||||
if (use_cuda_graph && cuda_graph_update_required) {
|
||||
cuda_ctx->cuda_graph->number_consecutive_updates++;
|
||||
} else {
|
||||
cuda_ctx->cuda_graph->number_consecutive_updates = 0;
|
||||
}
|
||||
|
||||
if (cuda_ctx->cuda_graph->number_consecutive_updates >= 4) {
|
||||
cuda_ctx->cuda_graph->disable_due_to_too_many_updates = true;
|
||||
#ifndef NDEBUG
|
||||
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to too many consecutive updates\n", __func__);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
if (use_cuda_graph && cuda_graph_update_required) { // Start CUDA graph capture
|
||||
CUDA_CHECK(cudaStreamBeginCapture(cuda_ctx->stream(), cudaStreamCaptureModeRelaxed));
|
||||
}
|
||||
|
||||
#else
|
||||
bool use_cuda_graph = false;
|
||||
bool cuda_graph_update_required = false;
|
||||
#endif // USE_CUDA_GRAPH
|
||||
|
||||
bool graph_evaluated_or_captured = false;
|
||||
|
||||
evaluate_and_capture_cuda_graph(cuda_ctx, cgraph, ggml_cuda_cpy_fn_ptrs, graph_evaluated_or_captured, use_cuda_graph, cuda_graph_update_required);
|
||||
|
||||
return GGML_STATUS_SUCCESS;
|
||||
}
|
||||
@@ -2689,7 +2843,7 @@ bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size) {
|
||||
cudaError_t err = cudaHostRegister(buffer, size, cudaHostRegisterPortable | cudaHostRegisterReadOnly);
|
||||
if (err != cudaSuccess) {
|
||||
// clear the error
|
||||
cudaGetLastError();
|
||||
(void)cudaGetLastError();
|
||||
|
||||
GGML_LOG_DEBUG("%s: failed to register %.2f MiB of pinned memory: %s\n", __func__,
|
||||
size / 1024.0 / 1024.0, cudaGetErrorString(err));
|
||||
@@ -2709,7 +2863,7 @@ void ggml_backend_cuda_unregister_host_buffer(void * buffer) {
|
||||
cudaError_t err = cudaHostUnregister(buffer);
|
||||
if (err != cudaSuccess) {
|
||||
// clear the error
|
||||
cudaGetLastError();
|
||||
(void)cudaGetLastError();
|
||||
}
|
||||
}
|
||||
|
||||
@@ -2885,7 +3039,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_OUT_PROD:
|
||||
return op->type == GGML_TYPE_F32 && op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->ne[2] == 1 && op->ne[3] == 1;
|
||||
return op->type == GGML_TYPE_F32 && op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32;
|
||||
case GGML_OP_GET_ROWS:
|
||||
{
|
||||
switch (op->src[0]->type) {
|
||||
@@ -2901,6 +3055,10 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
||||
return false;
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_GET_ROWS_BACK:
|
||||
{
|
||||
return op->type == GGML_TYPE_F32 && op->src[0]->type == GGML_TYPE_F32 && op->ne[2] == 1 && op->ne[3] == 1;
|
||||
} break;
|
||||
case GGML_OP_CPY:
|
||||
{
|
||||
ggml_type src0_type = op->src[0]->type;
|
||||
@@ -2959,7 +3117,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
||||
return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16;
|
||||
} break;
|
||||
case GGML_OP_REPEAT_BACK:
|
||||
return op->type == GGML_TYPE_F32 && op->src[0]->ne[3] == 1;
|
||||
return op->type == GGML_TYPE_F32 && (op->src[0]->ne[2]*op->src[0]->ne[3]) <= (1 << 15);
|
||||
case GGML_OP_CONCAT:
|
||||
{
|
||||
ggml_type src0_type = op->src[0]->type;
|
||||
@@ -2974,8 +3132,12 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
||||
}
|
||||
return false;
|
||||
} break;
|
||||
case GGML_OP_SILU_BACK:
|
||||
return ggml_is_contiguous(op->src[0]);
|
||||
break;
|
||||
case GGML_OP_NORM:
|
||||
case GGML_OP_RMS_NORM:
|
||||
case GGML_OP_RMS_NORM_BACK:
|
||||
return ggml_is_contiguous(op->src[0]) && op->ne[0] % WARP_SIZE == 0;
|
||||
break;
|
||||
case GGML_OP_NONE:
|
||||
@@ -3000,8 +3162,17 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
||||
case GGML_OP_DIAG_MASK_INF:
|
||||
case GGML_OP_SOFT_MAX:
|
||||
return true;
|
||||
case GGML_OP_SOFT_MAX_BACK: {
|
||||
float max_bias = 0.0f;
|
||||
memcpy(&max_bias, (const float *) op->op_params + 1, sizeof(float));
|
||||
return max_bias == 0.0f;
|
||||
}
|
||||
case GGML_OP_ROPE:
|
||||
return ggml_is_contiguous(op->src[0]);
|
||||
case GGML_OP_ROPE_BACK: {
|
||||
const size_t ts = ggml_type_size(op->src[0]->type);
|
||||
const int64_t ne0_012 = op->src[0]->ne[0] * op->src[0]->ne[1] * op->src[0]->ne[2];
|
||||
return op->src[0]->nb[0] == ts && op->src[0]->nb[3] == ne0_012*ts;
|
||||
}
|
||||
case GGML_OP_IM2COL:
|
||||
case GGML_OP_POOL_2D:
|
||||
case GGML_OP_SUM:
|
||||
@@ -3057,6 +3228,7 @@ static int64_t get_op_batch_size(const ggml_tensor * op) {
|
||||
return op->ne[1];
|
||||
case GGML_OP_MUL_MAT_ID:
|
||||
case GGML_OP_ROPE:
|
||||
case GGML_OP_ROPE_BACK:
|
||||
return op->ne[2];
|
||||
default:
|
||||
return ggml_nrows(op);
|
||||
@@ -3159,7 +3331,7 @@ static ggml_backend_feature * ggml_backend_cuda_get_features(ggml_backend_reg_t
|
||||
features.push_back({ "FORCE_CUBLAS", "1" });
|
||||
#endif
|
||||
|
||||
#ifdef GGML_CUDA_NO_VMM
|
||||
#ifndef GGML_USE_VMM
|
||||
features.push_back({ "NO_VMM", "1" });
|
||||
#endif
|
||||
|
||||
|
||||
@@ -142,7 +142,7 @@ static void mul_mat_vec_q_cuda(
|
||||
int64_t nwarps = 1;
|
||||
int64_t rows_per_cuda_block = 1;
|
||||
|
||||
if (ggml_cuda_info().devices[id].cc < GGML_CUDA_CC_CDNA || ggml_cuda_info().devices[id].cc == GGML_CUDA_CC_RDNA1) { // NVIDIA and AMD older than RDNA2 but not CDNA
|
||||
if (ggml_cuda_info().devices[id].cc < GGML_CUDA_CC_RDNA2) { // NVIDIA and AMD older than RDNA2
|
||||
switch(ncols_y) {
|
||||
case 1:
|
||||
nwarps = 4;
|
||||
@@ -166,6 +166,7 @@ static void mul_mat_vec_q_cuda(
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
const int64_t nblocks = (nrows_x + rows_per_cuda_block - 1) / rows_per_cuda_block;
|
||||
const dim3 block_nums(nblocks, 1, 1);
|
||||
const dim3 block_dims(WARP_SIZE, nwarps, 1);
|
||||
|
||||
@@ -5,20 +5,24 @@ static __global__ void norm_f32(const float * x, float * dst, const int ncols, c
|
||||
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
||||
const int tid = threadIdx.x;
|
||||
|
||||
float2 mean_var = make_float2(0.f, 0.f);
|
||||
x += int64_t(row)*ncols;
|
||||
dst += int64_t(row)*ncols;
|
||||
|
||||
float2 mean_var = make_float2(0.0f, 0.0f);
|
||||
|
||||
for (int col = tid; col < ncols; col += block_size) {
|
||||
const float xi = x[row*ncols + col];
|
||||
const float xi = x[col];
|
||||
mean_var.x += xi;
|
||||
mean_var.y += xi * xi;
|
||||
}
|
||||
|
||||
// sum up partial sums
|
||||
mean_var = warp_reduce_sum(mean_var);
|
||||
if (block_size > WARP_SIZE) {
|
||||
if constexpr (block_size > WARP_SIZE) {
|
||||
static_assert(block_size == 1024, "unexpected block_size");
|
||||
__shared__ float2 s_sum[32];
|
||||
int warp_id = threadIdx.x / WARP_SIZE;
|
||||
int lane_id = threadIdx.x % WARP_SIZE;
|
||||
const int warp_id = threadIdx.x / WARP_SIZE;
|
||||
const int lane_id = threadIdx.x % WARP_SIZE;
|
||||
if (lane_id == 0) {
|
||||
s_sum[warp_id] = mean_var;
|
||||
}
|
||||
@@ -32,7 +36,7 @@ static __global__ void norm_f32(const float * x, float * dst, const int ncols, c
|
||||
const float inv_std = rsqrtf(var + eps);
|
||||
|
||||
for (int col = tid; col < ncols; col += block_size) {
|
||||
dst[row*ncols + col] = (x[row*ncols + col] - mean) * inv_std;
|
||||
dst[col] = (x[col] - mean) * inv_std;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -40,14 +44,8 @@ template <int block_size>
|
||||
static __global__ void group_norm_f32(const float * x, float * dst, const int group_size, const int ne_elements, const float eps) {
|
||||
// blockIdx.x: num_groups idx
|
||||
// threadIdx.x: block_size idx
|
||||
int start = blockIdx.x * group_size;
|
||||
int end = start + group_size;
|
||||
|
||||
start += threadIdx.x;
|
||||
|
||||
if (end >= ne_elements) {
|
||||
end = ne_elements;
|
||||
}
|
||||
const int start = blockIdx.x*group_size + threadIdx.x;
|
||||
const int end = min(blockIdx.x*group_size + group_size, ne_elements);
|
||||
|
||||
float tmp = 0.0f; // partial sum for thread in warp
|
||||
|
||||
@@ -56,10 +54,11 @@ static __global__ void group_norm_f32(const float * x, float * dst, const int gr
|
||||
}
|
||||
|
||||
tmp = warp_reduce_sum(tmp);
|
||||
if (block_size > WARP_SIZE) {
|
||||
if constexpr (block_size > WARP_SIZE) {
|
||||
static_assert(block_size == 1024, "unexpected block_size");
|
||||
__shared__ float s_sum[32];
|
||||
int warp_id = threadIdx.x / WARP_SIZE;
|
||||
int lane_id = threadIdx.x % WARP_SIZE;
|
||||
const int warp_id = threadIdx.x / WARP_SIZE;
|
||||
const int lane_id = threadIdx.x % WARP_SIZE;
|
||||
if (lane_id == 0) {
|
||||
s_sum[warp_id] = tmp;
|
||||
}
|
||||
@@ -68,11 +67,11 @@ static __global__ void group_norm_f32(const float * x, float * dst, const int gr
|
||||
tmp = warp_reduce_sum(tmp);
|
||||
}
|
||||
|
||||
float mean = tmp / group_size;
|
||||
const float mean = tmp / group_size;
|
||||
tmp = 0.0f;
|
||||
|
||||
for (int j = start; j < end; j += block_size) {
|
||||
float xi = x[j] - mean;
|
||||
const float xi = x[j] - mean;
|
||||
dst[j] = xi;
|
||||
tmp += xi * xi;
|
||||
}
|
||||
@@ -80,8 +79,8 @@ static __global__ void group_norm_f32(const float * x, float * dst, const int gr
|
||||
tmp = warp_reduce_sum(tmp);
|
||||
if (block_size > WARP_SIZE) {
|
||||
__shared__ float s_sum[32];
|
||||
int warp_id = threadIdx.x / WARP_SIZE;
|
||||
int lane_id = threadIdx.x % WARP_SIZE;
|
||||
const int warp_id = threadIdx.x / WARP_SIZE;
|
||||
const int lane_id = threadIdx.x % WARP_SIZE;
|
||||
if (lane_id == 0) {
|
||||
s_sum[warp_id] = tmp;
|
||||
}
|
||||
@@ -90,8 +89,8 @@ static __global__ void group_norm_f32(const float * x, float * dst, const int gr
|
||||
tmp = warp_reduce_sum(tmp);
|
||||
}
|
||||
|
||||
float variance = tmp / group_size;
|
||||
float scale = rsqrtf(variance + eps);
|
||||
const float variance = tmp / group_size;
|
||||
const float scale = rsqrtf(variance + eps);
|
||||
for (int j = start; j < end; j += block_size) {
|
||||
dst[j] *= scale;
|
||||
}
|
||||
@@ -102,19 +101,23 @@ static __global__ void rms_norm_f32(const float * x, float * dst, const int ncol
|
||||
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
||||
const int tid = threadIdx.x;
|
||||
|
||||
x += int64_t(row)*ncols;
|
||||
dst += int64_t(row)*ncols;
|
||||
|
||||
float tmp = 0.0f; // partial sum for thread in warp
|
||||
|
||||
for (int col = tid; col < ncols; col += block_size) {
|
||||
const float xi = x[row*ncols + col];
|
||||
const float xi = x[col];
|
||||
tmp += xi * xi;
|
||||
}
|
||||
|
||||
// sum up partial sums
|
||||
tmp = warp_reduce_sum(tmp);
|
||||
if (block_size > WARP_SIZE) {
|
||||
if constexpr (block_size > WARP_SIZE) {
|
||||
static_assert(block_size == 1024, "unexpected block_size");
|
||||
__shared__ float s_sum[32];
|
||||
int warp_id = threadIdx.x / WARP_SIZE;
|
||||
int lane_id = threadIdx.x % WARP_SIZE;
|
||||
const int warp_id = threadIdx.x / WARP_SIZE;
|
||||
const int lane_id = threadIdx.x % WARP_SIZE;
|
||||
if (lane_id == 0) {
|
||||
s_sum[warp_id] = tmp;
|
||||
}
|
||||
@@ -127,12 +130,63 @@ static __global__ void rms_norm_f32(const float * x, float * dst, const int ncol
|
||||
const float scale = rsqrtf(mean + eps);
|
||||
|
||||
for (int col = tid; col < ncols; col += block_size) {
|
||||
dst[row*ncols + col] = scale * x[row*ncols + col];
|
||||
dst[col] = scale * x[col];
|
||||
}
|
||||
}
|
||||
|
||||
template <int block_size>
|
||||
static __global__ void rms_norm_back_f32(
|
||||
const float * grad, const float * xf, float * dst, const int ncols, const float eps) {
|
||||
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
||||
const int tid = threadIdx.x;
|
||||
|
||||
grad += int64_t(row)*ncols;
|
||||
xf += int64_t(row)*ncols;
|
||||
dst += int64_t(row)*ncols;
|
||||
|
||||
float sum_xx = 0.0f; // sum for squares of x, equivalent to forward pass
|
||||
float sum_xg = 0.0f; // sum for x * gradient, needed because RMS norm mixes inputs
|
||||
|
||||
for (int col = tid; col < ncols; col += block_size) {
|
||||
const float xfi = xf[col];
|
||||
sum_xx += xfi * xfi;
|
||||
sum_xg += xfi * grad[col];
|
||||
}
|
||||
|
||||
// sum up partial sums
|
||||
sum_xx = warp_reduce_sum(sum_xx);
|
||||
sum_xg = warp_reduce_sum(sum_xg);
|
||||
if constexpr (block_size > WARP_SIZE) {
|
||||
static_assert(block_size == 1024, "unexpected block_size");
|
||||
__shared__ float s_sum_xx[32];
|
||||
__shared__ float s_sum_xg[32];
|
||||
const int warp_id = threadIdx.x / WARP_SIZE;
|
||||
const int lane_id = threadIdx.x % WARP_SIZE;
|
||||
if (lane_id == 0) {
|
||||
s_sum_xx[warp_id] = sum_xx;
|
||||
s_sum_xg[warp_id] = sum_xg;
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
sum_xx = s_sum_xx[lane_id];
|
||||
sum_xx = warp_reduce_sum(sum_xx);
|
||||
|
||||
sum_xg = s_sum_xg[lane_id];
|
||||
sum_xg = warp_reduce_sum(sum_xg);
|
||||
}
|
||||
|
||||
const float mean_eps = sum_xx / ncols + eps;
|
||||
const float sum_eps = sum_xx + ncols*eps;
|
||||
|
||||
const float scale_grad = rsqrtf(mean_eps);
|
||||
const float scale_x = -scale_grad * sum_xg/sum_eps;
|
||||
|
||||
for (int col = tid; col < ncols; col += block_size) {
|
||||
dst[col] = scale_grad*grad[col] + scale_x*xf[col];
|
||||
}
|
||||
}
|
||||
|
||||
static void norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % WARP_SIZE == 0);
|
||||
if (ncols < 1024) {
|
||||
const dim3 block_dims(WARP_SIZE, 1, 1);
|
||||
norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
|
||||
@@ -142,7 +196,8 @@ static void norm_f32_cuda(const float * x, float * dst, const int ncols, const i
|
||||
}
|
||||
}
|
||||
|
||||
static void group_norm_f32_cuda(const float * x, float * dst, const int num_groups, const float eps, const int group_size, const int ne_elements, cudaStream_t stream) {
|
||||
static void group_norm_f32_cuda(
|
||||
const float * x, float * dst, const int num_groups, const float eps, const int group_size, const int ne_elements, cudaStream_t stream) {
|
||||
if (group_size < 1024) {
|
||||
const dim3 block_dims(WARP_SIZE, 1, 1);
|
||||
group_norm_f32<WARP_SIZE><<<num_groups, block_dims, 0, stream>>>(x, dst, group_size, ne_elements, eps);
|
||||
@@ -153,7 +208,6 @@ static void group_norm_f32_cuda(const float * x, float * dst, const int num_grou
|
||||
}
|
||||
|
||||
static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % WARP_SIZE == 0);
|
||||
if (ncols < 1024) {
|
||||
const dim3 block_dims(WARP_SIZE, 1, 1);
|
||||
rms_norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
|
||||
@@ -163,6 +217,16 @@ static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, con
|
||||
}
|
||||
}
|
||||
|
||||
static void rms_norm_back_f32_cuda(const float * grad, const float * xf, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
|
||||
if (ncols < 1024) {
|
||||
const dim3 block_dims(WARP_SIZE, 1, 1);
|
||||
rms_norm_back_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(grad, xf, dst, ncols, eps);
|
||||
} else {
|
||||
const dim3 block_dims(1024, 1, 1);
|
||||
rms_norm_back_f32<1024><<<nrows, block_dims, 0, stream>>>(grad, xf, dst, ncols, eps);
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cuda_op_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
@@ -179,6 +243,7 @@ void ggml_cuda_op_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
|
||||
float eps;
|
||||
memcpy(&eps, dst->op_params, sizeof(float));
|
||||
GGML_ASSERT(eps >= 0.0f);
|
||||
|
||||
norm_f32_cuda(src0_d, dst_d, ne00, nrows, eps, stream);
|
||||
}
|
||||
@@ -198,6 +263,7 @@ void ggml_cuda_op_group_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst)
|
||||
|
||||
float eps;
|
||||
memcpy(&eps, dst->op_params + 1, sizeof(float));
|
||||
GGML_ASSERT(eps >= 0.0f);
|
||||
|
||||
int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups);
|
||||
group_norm_f32_cuda(src0_d, dst_d, num_groups * src0->ne[3], eps, group_size, ggml_nelements(src0), stream);
|
||||
@@ -219,6 +285,33 @@ void ggml_cuda_op_rms_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
|
||||
float eps;
|
||||
memcpy(&eps, dst->op_params, sizeof(float));
|
||||
GGML_ASSERT(eps >= 0.0f);
|
||||
|
||||
rms_norm_f32_cuda(src0_d, dst_d, ne00, nrows, eps, stream);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_rms_norm_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * grad = dst->src[0]; // gradients
|
||||
const ggml_tensor * src0f = dst->src[1]; // src0 from forward pass
|
||||
|
||||
const float * grad_d = (const float *) grad->data;
|
||||
const float * src0f_d = (const float *) src0f->data;
|
||||
float * dst_d = (float *) dst->data;
|
||||
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(ggml_is_contiguous(grad));
|
||||
|
||||
GGML_ASSERT( grad->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src0f->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
const int64_t ne00 = src0f->ne[0];
|
||||
const int64_t nrows = ggml_nrows(src0f);
|
||||
|
||||
float eps;
|
||||
memcpy(&eps, dst->op_params, sizeof(float));
|
||||
GGML_ASSERT(eps >= 0.0f);
|
||||
|
||||
rms_norm_back_f32_cuda(grad_d, src0f_d, dst_d, ne00, nrows, eps, stream);
|
||||
}
|
||||
|
||||
@@ -5,3 +5,5 @@ void ggml_cuda_op_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
void ggml_cuda_op_group_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_rms_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_rms_norm_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
@@ -11,16 +11,15 @@ void ggml_cuda_out_prod(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
GGML_ASSERT(ggml_is_contiguous(dst));
|
||||
|
||||
GGML_ASSERT(ne01 == ne11);
|
||||
GGML_ASSERT(ne0 == ne00);
|
||||
GGML_ASSERT(ne1 == ne10);
|
||||
|
||||
GGML_ASSERT(ne2 == src0->ne[2]);
|
||||
GGML_ASSERT(ne2 % src0->ne[2] == 0);
|
||||
GGML_ASSERT(ne3 % src0->ne[3] == 0);
|
||||
|
||||
GGML_ASSERT(ne2 == src1->ne[2]);
|
||||
GGML_ASSERT(ne3 == src0->ne[3]);
|
||||
GGML_ASSERT(ne3 == src1->ne[3]);
|
||||
|
||||
const float * src0_d = (const float *) src0->data;
|
||||
@@ -33,19 +32,37 @@ void ggml_cuda_out_prod(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const float alpha = 1.0f;
|
||||
const float beta = 0.0f;
|
||||
|
||||
GGML_ASSERT(ne2 == 1);
|
||||
GGML_ASSERT(ne3 == 1);
|
||||
CUBLAS_CHECK(cublasSetStream(handle, stream));
|
||||
|
||||
const int64_t lda = nb01 / sizeof(float);
|
||||
const int64_t ldc = nb1 / sizeof(float);
|
||||
|
||||
const bool src1_T = ggml_is_transposed(src1);
|
||||
const cublasOperation_t src1_cublas_op = src1_T ? CUBLAS_OP_N : CUBLAS_OP_T;
|
||||
const int64_t ldb = (src1_T ? nb10 : nb11) / sizeof(float);
|
||||
GGML_ASSERT( (src1_T ? nb11 : nb10) == sizeof(float));
|
||||
|
||||
CUBLAS_CHECK(
|
||||
cublasSgemm(handle, CUBLAS_OP_N, src1_cublas_op,
|
||||
ne0, ne1, ne01,
|
||||
&alpha, src0_d, ne00,
|
||||
src1_d, ldb,
|
||||
&beta, dst_d, ne0));
|
||||
// data strides in dimensions 2/3
|
||||
const size_t s02 = nb02 / sizeof(float);
|
||||
const size_t s03 = nb03 / sizeof(float);
|
||||
const size_t s12 = nb12 / sizeof(float);
|
||||
const size_t s13 = nb13 / sizeof(float);
|
||||
const size_t s2 = nb2 / sizeof(float);
|
||||
const size_t s3 = nb3 / sizeof(float);
|
||||
|
||||
// dps == dst per src0, used for group query attention
|
||||
const int64_t dps2 = ne2 / ne02;
|
||||
const int64_t dps3 = ne3 / ne03;
|
||||
|
||||
// TODO batched matrix multiplication
|
||||
for (int64_t i3 = 0; i3 < ne3; ++i3) {
|
||||
for (int64_t i2 = 0; i2 < ne2; ++i2) {
|
||||
CUBLAS_CHECK(
|
||||
cublasSgemm(handle, CUBLAS_OP_N, src1_cublas_op,
|
||||
ne0, ne1, ne01,
|
||||
&alpha, src0_d + (i3/dps3)*s03 + (i2/dps2)*s02, lda,
|
||||
src1_d + i3 *s13 + i2 *s12, ldb,
|
||||
&beta, dst_d + i3 *s3 + i2 *s2, ldc));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -16,9 +16,10 @@ static __device__ float rope_yarn_ramp(const float low, const float high, const
|
||||
|
||||
// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
|
||||
// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
|
||||
template<bool forward>
|
||||
static __device__ void rope_yarn(
|
||||
float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale,
|
||||
float * cos_theta, float * sin_theta) {
|
||||
const float theta_extrap, const float freq_scale, const rope_corr_dims corr_dims, const int64_t i0, const float ext_factor,
|
||||
float mscale, float & cos_theta, float & sin_theta) {
|
||||
// Get n-d rotational scaling corrected for extrapolation
|
||||
float theta_interp = freq_scale * theta_extrap;
|
||||
float theta = theta_interp;
|
||||
@@ -29,24 +30,28 @@ static __device__ void rope_yarn(
|
||||
// Get n-d magnitude scaling corrected for interpolation
|
||||
mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
|
||||
}
|
||||
*cos_theta = cosf(theta) * mscale;
|
||||
*sin_theta = sinf(theta) * mscale;
|
||||
cos_theta = cosf(theta) * mscale;
|
||||
sin_theta = sinf(theta) * mscale;
|
||||
if (!forward) {
|
||||
sin_theta *= -1.0f;
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T, bool has_ff>
|
||||
template<bool forward, bool has_ff, typename T>
|
||||
static __global__ void rope_norm(
|
||||
const T * x, T * dst, int ne0, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||
float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, const float * freq_factors) {
|
||||
const T * x, T * dst, const int ne0, const int ne1, const int s1, const int s2, const int n_dims,
|
||||
const int32_t * pos, const float freq_scale, const float ext_factor, const float attn_factor,
|
||||
const rope_corr_dims corr_dims, const float theta_scale, const float * freq_factors) {
|
||||
const int i0 = 2*(blockDim.y*blockIdx.y + threadIdx.y);
|
||||
|
||||
if (i0 >= ne0) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int row = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
const int row_dst = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i0 >= n_dims) {
|
||||
const int i = row*ne0 + i0;
|
||||
const int i = row_dst*ne0 + i0;
|
||||
|
||||
dst[i + 0] = x[i + 0];
|
||||
dst[i + 1] = x[i + 1];
|
||||
@@ -54,39 +59,43 @@ static __global__ void rope_norm(
|
||||
return;
|
||||
}
|
||||
|
||||
const int i = row*ne0 + i0;
|
||||
const int i2 = row/p_delta_rows;
|
||||
const int row_x = row_dst % ne1;
|
||||
const int channel_x = row_dst / ne1;
|
||||
|
||||
const float theta_base = pos[i2]*powf(theta_scale, i0/2.0f);
|
||||
const int idst = row_dst*ne0 + i0;
|
||||
const int ix = channel_x*s2 + row_x*s1 + i0;
|
||||
|
||||
const float theta_base = pos[channel_x]*powf(theta_scale, i0/2.0f);
|
||||
|
||||
const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f;
|
||||
|
||||
float cos_theta;
|
||||
float sin_theta;
|
||||
|
||||
rope_yarn(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
|
||||
rope_yarn<forward>(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, cos_theta, sin_theta);
|
||||
|
||||
const float x0 = x[i + 0];
|
||||
const float x1 = x[i + 1];
|
||||
const float x0 = x[ix + 0];
|
||||
const float x1 = x[ix + 1];
|
||||
|
||||
dst[i + 0] = x0*cos_theta - x1*sin_theta;
|
||||
dst[i + 1] = x0*sin_theta + x1*cos_theta;
|
||||
dst[idst + 0] = x0*cos_theta - x1*sin_theta;
|
||||
dst[idst + 1] = x0*sin_theta + x1*cos_theta;
|
||||
}
|
||||
|
||||
template<typename T, bool has_ff>
|
||||
template<bool forward, bool has_ff, typename T>
|
||||
static __global__ void rope_neox(
|
||||
const T * x, T * dst, int ne0, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||
float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, const float * freq_factors) {
|
||||
const T * x, T * dst, const int ne0, const int ne1, const int s1, const int s2, const int n_dims,
|
||||
const int32_t * pos, const float freq_scale, const float ext_factor, const float attn_factor,
|
||||
const rope_corr_dims corr_dims, const float theta_scale, const float * freq_factors) {
|
||||
const int i0 = 2*(blockDim.y*blockIdx.y + threadIdx.y);
|
||||
|
||||
if (i0 >= ne0) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int row = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
const int row_dst = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i0 >= n_dims) {
|
||||
const int i = row*ne0 + i0;
|
||||
const int i = row_dst*ne0 + i0;
|
||||
|
||||
dst[i + 0] = x[i + 0];
|
||||
dst[i + 1] = x[i + 1];
|
||||
@@ -94,39 +103,43 @@ static __global__ void rope_neox(
|
||||
return;
|
||||
}
|
||||
|
||||
const int i = row*ne0 + i0/2;
|
||||
const int i2 = row/p_delta_rows;
|
||||
const int row_x = row_dst % ne1;
|
||||
const int channel_x = row_dst / ne1;
|
||||
|
||||
const float theta_base = pos[i2]*powf(theta_scale, i0/2.0f);
|
||||
const int idst = row_dst*ne0 + i0/2;
|
||||
const int ix = channel_x*s2 + row_x*s1 + i0/2;
|
||||
|
||||
const float theta_base = pos[channel_x]*powf(theta_scale, i0/2.0f);
|
||||
|
||||
const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f;
|
||||
|
||||
float cos_theta;
|
||||
float sin_theta;
|
||||
|
||||
rope_yarn(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
|
||||
rope_yarn<forward>(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, cos_theta, sin_theta);
|
||||
|
||||
const float x0 = x[i + 0];
|
||||
const float x1 = x[i + n_dims/2];
|
||||
const float x0 = x[ix + 0];
|
||||
const float x1 = x[ix + n_dims/2];
|
||||
|
||||
dst[i + 0] = x0*cos_theta - x1*sin_theta;
|
||||
dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta;
|
||||
dst[idst + 0] = x0*cos_theta - x1*sin_theta;
|
||||
dst[idst + n_dims/2] = x0*sin_theta + x1*cos_theta;
|
||||
}
|
||||
|
||||
template<typename T, bool has_ff>
|
||||
template<bool forward, bool has_ff, typename T>
|
||||
static __global__ void rope_multi(
|
||||
const T * x, T * dst, int ne0, int ne2, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||
float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, const float * freq_factors, mrope_sections sections) {
|
||||
const T * x, T * dst, const int ne0, const int ne1, const int ne2, const int s1, const int s2,
|
||||
const int n_dims, const int32_t * pos, const float freq_scale, const float ext_factor, const float attn_factor,
|
||||
const rope_corr_dims corr_dims, const float theta_scale, const float * freq_factors, const mrope_sections sections) {
|
||||
const int i0 = 2*(blockDim.y*blockIdx.y + threadIdx.y);
|
||||
|
||||
if (i0 >= ne0) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int row = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
const int row_dst = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i0 >= n_dims) {
|
||||
const int i = row*ne0 + i0;
|
||||
const int i = row_dst*ne0 + i0;
|
||||
|
||||
dst[i + 0] = x[i + 0];
|
||||
dst[i + 1] = x[i + 1];
|
||||
@@ -134,25 +147,28 @@ static __global__ void rope_multi(
|
||||
return;
|
||||
}
|
||||
|
||||
const int i = row*ne0 + i0/2;
|
||||
const int i2 = row/p_delta_rows;
|
||||
const int row_x = row_dst % ne1;
|
||||
const int channel_x = row_dst / ne1;
|
||||
|
||||
int sect_dims = sections.v[0] + sections.v[1] + sections.v[2] + sections.v[3];
|
||||
int sec_w = sections.v[1] + sections.v[0];
|
||||
int sector = (i0 / 2) % sect_dims;
|
||||
const int idst = row_dst*ne0 + i0/2;
|
||||
const int ix = channel_x*s2 + row_x*s1 + i0/2;
|
||||
|
||||
const int sect_dims = sections.v[0] + sections.v[1] + sections.v[2] + sections.v[3];
|
||||
const int sec_w = sections.v[1] + sections.v[0];
|
||||
const int sector = (i0 / 2) % sect_dims;
|
||||
|
||||
float theta_base = 0.0;
|
||||
if (sector < sections.v[0]) {
|
||||
theta_base = pos[i2]*powf(theta_scale, i0/2.0f);
|
||||
theta_base = pos[channel_x]*powf(theta_scale, i0/2.0f);
|
||||
}
|
||||
else if (sector >= sections.v[0] && sector < sec_w) {
|
||||
theta_base = pos[i2 + ne2 * 1]*powf(theta_scale, i0/2.0f);
|
||||
theta_base = pos[channel_x + ne2 * 1]*powf(theta_scale, i0/2.0f);
|
||||
}
|
||||
else if (sector >= sec_w && sector < sec_w + sections.v[2]) {
|
||||
theta_base = pos[i2 + ne2 * 2]*powf(theta_scale, i0/2.0f);
|
||||
theta_base = pos[channel_x + ne2 * 2]*powf(theta_scale, i0/2.0f);
|
||||
}
|
||||
else if (sector >= sec_w + sections.v[2]) {
|
||||
theta_base = pos[i2 + ne2 * 3]*powf(theta_scale, i0/2.0f);
|
||||
theta_base = pos[channel_x + ne2 * 3]*powf(theta_scale, i0/2.0f);
|
||||
}
|
||||
|
||||
const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f;
|
||||
@@ -160,42 +176,46 @@ static __global__ void rope_multi(
|
||||
float cos_theta;
|
||||
float sin_theta;
|
||||
|
||||
rope_yarn(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
|
||||
rope_yarn<forward>(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, cos_theta, sin_theta);
|
||||
|
||||
const float x0 = x[i + 0];
|
||||
const float x1 = x[i + n_dims/2];
|
||||
const float x0 = x[ix + 0];
|
||||
const float x1 = x[ix + n_dims/2];
|
||||
|
||||
dst[i + 0] = x0*cos_theta - x1*sin_theta;
|
||||
dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta;
|
||||
dst[idst + 0] = x0*cos_theta - x1*sin_theta;
|
||||
dst[idst + n_dims/2] = x0*sin_theta + x1*cos_theta;
|
||||
}
|
||||
|
||||
template<typename T, bool has_ff>
|
||||
template<bool forward, bool has_ff, typename T>
|
||||
static __global__ void rope_vision(
|
||||
const T * x, T * dst, int ne0, int ne2, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||
float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, const float * freq_factors, mrope_sections sections) {
|
||||
const T * x, T * dst, const int ne0, const int ne1, const int ne2, const int s1, const int s2, const int n_dims,
|
||||
const int32_t * pos, const float freq_scale, const float ext_factor, const float attn_factor, const rope_corr_dims corr_dims,
|
||||
const float theta_scale, const float * freq_factors, const mrope_sections sections) {
|
||||
const int i0 = 2*(blockDim.y*blockIdx.y + threadIdx.y);
|
||||
|
||||
if (i0 >= ne0) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int row = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
const int row_dst = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
const int i = row*ne0 + i0/2;
|
||||
const int i2 = row/p_delta_rows; // i2-th tokens
|
||||
const int row_x = row_dst % ne1;
|
||||
const int channel_x = row_dst / ne1;
|
||||
|
||||
int sect_dims = sections.v[0] + sections.v[1];
|
||||
int sec_w = sections.v[1] + sections.v[0];
|
||||
int sector = (i0 / 2) % sect_dims;
|
||||
const int idst = row_dst*ne0 + i0/2;
|
||||
const int ix = channel_x*s2 + row_x*s1 + i0/2;
|
||||
|
||||
const int sect_dims = sections.v[0] + sections.v[1];
|
||||
const int sec_w = sections.v[1] + sections.v[0];
|
||||
const int sector = (i0 / 2) % sect_dims;
|
||||
|
||||
float theta_base = 0.0;
|
||||
if (sector < sections.v[0]) {
|
||||
const int p = sector;
|
||||
theta_base = pos[i2]*powf(theta_scale, p);
|
||||
theta_base = pos[channel_x]*powf(theta_scale, p);
|
||||
}
|
||||
else if (sector >= sections.v[0] && sector < sec_w) {
|
||||
const int p = sector - sections.v[0];
|
||||
theta_base = pos[i2 + ne2]*powf(theta_scale, p);
|
||||
theta_base = pos[channel_x + ne2]*powf(theta_scale, p);
|
||||
}
|
||||
|
||||
const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f;
|
||||
@@ -203,19 +223,20 @@ static __global__ void rope_vision(
|
||||
float cos_theta;
|
||||
float sin_theta;
|
||||
|
||||
rope_yarn(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
|
||||
rope_yarn<forward>(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, cos_theta, sin_theta);
|
||||
|
||||
const float x0 = x[i + 0];
|
||||
const float x1 = x[i + n_dims];
|
||||
const float x0 = x[ix + 0];
|
||||
const float x1 = x[ix + n_dims];
|
||||
|
||||
dst[i + 0] = x0*cos_theta - x1*sin_theta;
|
||||
dst[i + n_dims] = x0*sin_theta + x1*cos_theta;
|
||||
dst[idst + 0] = x0*cos_theta - x1*sin_theta;
|
||||
dst[idst + n_dims] = x0*sin_theta + x1*cos_theta;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
template<bool forward, typename T>
|
||||
static void rope_norm_cuda(
|
||||
const T * x, T * dst, int ne0, int n_dims, int nr, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream) {
|
||||
const T * x, T * dst, const int ne0, const int ne1, const int s1, const int s2, const int n_dims, const int nr,
|
||||
const int32_t * pos, const float freq_scale, const float freq_base, const float ext_factor, const float attn_factor,
|
||||
const rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream) {
|
||||
GGML_ASSERT(ne0 % 2 == 0);
|
||||
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
|
||||
const int n_blocks_x = (ne0 + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
|
||||
@@ -224,22 +245,21 @@ static void rope_norm_cuda(
|
||||
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
||||
|
||||
if (freq_factors == nullptr) {
|
||||
rope_norm<T, false><<<block_nums, block_dims, 0, stream>>>(
|
||||
x, dst, ne0, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
|
||||
theta_scale, freq_factors
|
||||
);
|
||||
rope_norm<forward, false><<<block_nums, block_dims, 0, stream>>>(
|
||||
x, dst, ne0, ne1, s1, s2, n_dims, pos, freq_scale, ext_factor,
|
||||
attn_factor, corr_dims, theta_scale, freq_factors);
|
||||
} else {
|
||||
rope_norm<T, true><<<block_nums, block_dims, 0, stream>>>(
|
||||
x, dst, ne0, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
|
||||
theta_scale, freq_factors
|
||||
);
|
||||
rope_norm<forward, true><<<block_nums, block_dims, 0, stream>>>(
|
||||
x, dst, ne0, ne1, s1, s2, n_dims, pos, freq_scale, ext_factor,
|
||||
attn_factor, corr_dims, theta_scale, freq_factors);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
template<bool forward, typename T>
|
||||
static void rope_neox_cuda(
|
||||
const T * x, T * dst, int ne0, int n_dims, int nr, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream) {
|
||||
const T * x, T * dst, const int ne0, const int ne1, const int s1, const int s2, const int n_dims, const int nr,
|
||||
const int32_t * pos, const float freq_scale, const float freq_base, const float ext_factor, const float attn_factor,
|
||||
const rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream) {
|
||||
GGML_ASSERT(ne0 % 2 == 0);
|
||||
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
|
||||
const int n_blocks_x = (ne0 + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
|
||||
@@ -248,22 +268,21 @@ static void rope_neox_cuda(
|
||||
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
||||
|
||||
if (freq_factors == nullptr) {
|
||||
rope_neox<T, false><<<block_nums, block_dims, 0, stream>>>(
|
||||
x, dst, ne0, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
|
||||
theta_scale, freq_factors
|
||||
);
|
||||
rope_neox<forward, false, T><<<block_nums, block_dims, 0, stream>>>(
|
||||
x, dst, ne0, ne1, s1, s2, n_dims, pos, freq_scale, ext_factor,
|
||||
attn_factor, corr_dims, theta_scale, freq_factors);
|
||||
} else {
|
||||
rope_neox<T, true><<<block_nums, block_dims, 0, stream>>>(
|
||||
x, dst, ne0, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
|
||||
theta_scale, freq_factors
|
||||
);
|
||||
rope_neox<forward, true, T><<<block_nums, block_dims, 0, stream>>>(
|
||||
x, dst, ne0, ne1, s1, s2, n_dims, pos, freq_scale, ext_factor,
|
||||
attn_factor, corr_dims, theta_scale, freq_factors);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
template<bool forward, typename T>
|
||||
static void rope_multi_cuda(
|
||||
const T * x, T * dst, int ne0, int ne2, int n_dims, int nr, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, mrope_sections sections, cudaStream_t stream) {
|
||||
const T * x, T * dst, const int ne0, const int ne1, const int ne2, const int s1, const int s2, const int n_dims, const int nr,
|
||||
const int32_t * pos, const float freq_scale, const float freq_base, const float ext_factor, const float attn_factor,
|
||||
const rope_corr_dims corr_dims, const float * freq_factors, const mrope_sections sections, cudaStream_t stream) {
|
||||
GGML_ASSERT(ne0 % 2 == 0);
|
||||
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
|
||||
const int n_blocks_x = (ne0 + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
|
||||
@@ -272,22 +291,21 @@ static void rope_multi_cuda(
|
||||
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
||||
|
||||
if (freq_factors == nullptr) {
|
||||
rope_multi<T, false><<<block_nums, block_dims, 0, stream>>>(
|
||||
x, dst, ne0, ne2, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
|
||||
theta_scale, freq_factors, sections
|
||||
);
|
||||
rope_multi<forward, false, T><<<block_nums, block_dims, 0, stream>>>(
|
||||
x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor,
|
||||
attn_factor, corr_dims, theta_scale, freq_factors, sections);
|
||||
} else {
|
||||
rope_multi<T, true><<<block_nums, block_dims, 0, stream>>>(
|
||||
x, dst, ne0, ne2, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
|
||||
theta_scale, freq_factors, sections
|
||||
);
|
||||
rope_multi<forward, true, T><<<block_nums, block_dims, 0, stream>>>(
|
||||
x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor,
|
||||
attn_factor, corr_dims, theta_scale, freq_factors, sections);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
template<bool forward, typename T>
|
||||
static void rope_vision_cuda(
|
||||
const T * x, T * dst, int ne0, int ne2, int n_dims, int nr, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, mrope_sections sections, cudaStream_t stream) {
|
||||
const T * x, T * dst, const int ne0, const int ne1, const int ne2, const int s1, const int s2, const int n_dims, const int nr,
|
||||
const int32_t * pos, const float freq_scale, const float freq_base, const float ext_factor, const float attn_factor,
|
||||
const rope_corr_dims corr_dims, const float * freq_factors, const mrope_sections sections, cudaStream_t stream) {
|
||||
GGML_ASSERT(ne0 % 2 == 0);
|
||||
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
|
||||
const int n_blocks_x = (ne0 + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
|
||||
@@ -298,80 +316,18 @@ static void rope_vision_cuda(
|
||||
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
||||
|
||||
if (freq_factors == nullptr) {
|
||||
rope_vision<T, false><<<block_nums, block_dims, 0, stream>>>(
|
||||
x, dst, ne0, ne2, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
|
||||
theta_scale, freq_factors, sections
|
||||
);
|
||||
rope_vision<forward, false, T><<<block_nums, block_dims, 0, stream>>>(
|
||||
x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor,
|
||||
attn_factor, corr_dims, theta_scale, freq_factors, sections);
|
||||
} else {
|
||||
rope_vision<T, true><<<block_nums, block_dims, 0, stream>>>(
|
||||
x, dst, ne0, ne2, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
|
||||
theta_scale, freq_factors, sections
|
||||
);
|
||||
rope_vision<forward, true, T><<<block_nums, block_dims, 0, stream>>>(
|
||||
x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor,
|
||||
attn_factor, corr_dims, theta_scale, freq_factors, sections);
|
||||
}
|
||||
}
|
||||
|
||||
static void rope_norm_cuda_f16(
|
||||
const half * x, half * dst, int ne0, int n_dims, int nr, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream) {
|
||||
|
||||
rope_norm_cuda<half>(x, dst, ne0, n_dims, nr, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, stream);
|
||||
}
|
||||
|
||||
static void rope_norm_cuda_f32(
|
||||
const float * x, float * dst, int ne0, int n_dims, int nr, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream) {
|
||||
|
||||
rope_norm_cuda<float>(x, dst, ne0, n_dims, nr, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, stream);
|
||||
}
|
||||
|
||||
static void rope_neox_cuda_f16(
|
||||
const half * x, half * dst, int ne0, int n_dims, int nr, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream) {
|
||||
|
||||
rope_neox_cuda<half>(x, dst, ne0, n_dims, nr, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, stream);
|
||||
}
|
||||
|
||||
static void rope_neox_cuda_f32(
|
||||
const float * x, float * dst, int ne0, int n_dims, int nr, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream
|
||||
) {
|
||||
|
||||
rope_neox_cuda<float>(x, dst, ne0, n_dims, nr, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, stream);
|
||||
}
|
||||
|
||||
static void rope_multi_cuda_f16(
|
||||
const half * x, half * dst, int ne0, int ne2, int n_dims, int nr, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, mrope_sections sections, cudaStream_t stream
|
||||
) {
|
||||
|
||||
rope_multi_cuda<half>(x, dst, ne0, ne2, n_dims, nr, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, stream);
|
||||
}
|
||||
|
||||
static void rope_multi_cuda_f32(
|
||||
const float * x, float * dst, int ne0, int ne2, int n_dims, int nr, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, mrope_sections sections, cudaStream_t stream
|
||||
) {
|
||||
|
||||
rope_multi_cuda<float>(x, dst, ne0, ne2, n_dims, nr, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, stream);
|
||||
}
|
||||
|
||||
static void rope_vision_cuda_f16(
|
||||
const half * x, half * dst, int ne0, int ne2, int n_dims, int nr, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, mrope_sections sections, cudaStream_t stream
|
||||
) {
|
||||
|
||||
rope_vision_cuda<half>(x, dst, ne0, ne2, n_dims, nr, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, stream);
|
||||
}
|
||||
|
||||
static void rope_vision_cuda_f32(
|
||||
const float * x, float * dst, int ne0, int ne2, int n_dims, int nr, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, mrope_sections sections, cudaStream_t stream
|
||||
) {
|
||||
|
||||
rope_vision_cuda<float>(x, dst, ne0, ne2, n_dims, nr, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, stream);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
template <bool forward>
|
||||
void ggml_cuda_op_rope_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
const ggml_tensor * src2 = dst->src[2];
|
||||
@@ -382,7 +338,6 @@ void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
float * dst_d = (float *)dst->data;
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(src0->type == dst->type);
|
||||
@@ -392,6 +347,9 @@ void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const int64_t ne02 = src0->ne[2]; // num heads
|
||||
const int64_t nr = ggml_nrows(src0);
|
||||
|
||||
const size_t s01 = src0->nb[1] / ggml_type_size(src0->type);
|
||||
const size_t s02 = src0->nb[2] / ggml_type_size(src0->type);
|
||||
|
||||
//const int n_past = ((int32_t *) dst->op_params)[0];
|
||||
const int n_dims = ((int32_t *) dst->op_params)[1];
|
||||
const int mode = ((int32_t *) dst->op_params)[2];
|
||||
@@ -440,59 +398,59 @@ void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
// compute
|
||||
if (is_neox) {
|
||||
if (src0->type == GGML_TYPE_F32) {
|
||||
rope_neox_cuda_f32(
|
||||
(const float *)src0_d, (float *)dst_d, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
|
||||
attn_factor, corr_dims, freq_factors, stream
|
||||
);
|
||||
rope_neox_cuda<forward>(
|
||||
(const float *) src0_d, (float *) dst_d, ne00, ne01, s01, s02, n_dims, nr, pos, freq_scale,
|
||||
freq_base, ext_factor, attn_factor, corr_dims, freq_factors, stream);
|
||||
} else if (src0->type == GGML_TYPE_F16) {
|
||||
rope_neox_cuda_f16(
|
||||
(const half *)src0_d, (half *)dst_d, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
|
||||
attn_factor, corr_dims, freq_factors, stream
|
||||
);
|
||||
rope_neox_cuda<forward>(
|
||||
(const half *) src0_d, (half *) dst_d, ne00, ne01, s01, s02, n_dims, nr, pos, freq_scale,
|
||||
freq_base, ext_factor, attn_factor, corr_dims, freq_factors, stream);
|
||||
} else {
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
} else if (is_mrope && !is_vision) {
|
||||
if (src0->type == GGML_TYPE_F32) {
|
||||
rope_multi_cuda_f32(
|
||||
(const float *)src0_d, (float *)dst_d, ne00, ne02, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
|
||||
attn_factor, corr_dims, freq_factors, sections, stream
|
||||
);
|
||||
rope_multi_cuda<forward>(
|
||||
(const float *) src0_d, (float *) dst_d, ne00, ne01, ne02, s01, s02, n_dims, nr, pos, freq_scale,
|
||||
freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, stream);
|
||||
} else if (src0->type == GGML_TYPE_F16) {
|
||||
rope_multi_cuda_f16(
|
||||
(const half *)src0_d, (half *)dst_d, ne00, ne02, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
|
||||
attn_factor, corr_dims, freq_factors, sections, stream
|
||||
);
|
||||
rope_multi_cuda<forward>(
|
||||
(const half *) src0_d, (half *) dst_d, ne00, ne01, ne02, s01, s02, n_dims, nr, pos, freq_scale,
|
||||
freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, stream);
|
||||
} else {
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
} else if (is_vision) {
|
||||
if (src0->type == GGML_TYPE_F32) {
|
||||
rope_vision_cuda_f32(
|
||||
(const float *)src0_d, (float *)dst_d, ne00, ne02, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
|
||||
attn_factor, corr_dims, freq_factors, sections, stream
|
||||
);
|
||||
rope_vision_cuda<forward>(
|
||||
(const float *) src0_d, (float *) dst_d, ne00, ne01, ne02, s01, s02, n_dims, nr, pos, freq_scale,
|
||||
freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, stream);
|
||||
} else if (src0->type == GGML_TYPE_F16) {
|
||||
rope_vision_cuda_f16(
|
||||
(const half *)src0_d, (half *)dst_d, ne00, ne02, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
|
||||
attn_factor, corr_dims, freq_factors, sections, stream
|
||||
);
|
||||
rope_vision_cuda<forward>(
|
||||
(const half *) src0_d, (half *) dst_d, ne00, ne01, ne02, s01, s02, n_dims, nr, pos, freq_scale,
|
||||
freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, stream);
|
||||
} else {
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
} else {
|
||||
if (src0->type == GGML_TYPE_F32) {
|
||||
rope_norm_cuda_f32(
|
||||
(const float *)src0_d, (float *)dst_d, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
|
||||
attn_factor, corr_dims, freq_factors, stream
|
||||
);
|
||||
rope_norm_cuda<forward>(
|
||||
(const float *) src0_d, (float *) dst_d, ne00, ne01, s01, s02, n_dims, nr, pos, freq_scale,
|
||||
freq_base, ext_factor, attn_factor, corr_dims, freq_factors, stream);
|
||||
} else if (src0->type == GGML_TYPE_F16) {
|
||||
rope_norm_cuda_f16(
|
||||
(const half *)src0_d, (half *)dst_d, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
|
||||
attn_factor, corr_dims, freq_factors, stream
|
||||
);
|
||||
rope_norm_cuda<forward>(
|
||||
(const half *) src0_d, (half *) dst_d, ne00, ne01, s01, s02, n_dims, nr, pos, freq_scale,
|
||||
freq_base, ext_factor, attn_factor, corr_dims, freq_factors, stream);
|
||||
} else {
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
ggml_cuda_op_rope_impl<true>(ctx, dst);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_rope_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
ggml_cuda_op_rope_impl<false>(ctx, dst);
|
||||
}
|
||||
|
||||
@@ -3,3 +3,5 @@
|
||||
#define CUDA_ROPE_BLOCK_SIZE 256
|
||||
|
||||
void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_rope_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
@@ -1,5 +1,7 @@
|
||||
#include "common.cuh"
|
||||
#include "ggml.h"
|
||||
#include "softmax.cuh"
|
||||
#include <cstdint>
|
||||
|
||||
template <typename T>
|
||||
static __device__ __forceinline__ float t2f32(T val) {
|
||||
@@ -11,14 +13,26 @@ __device__ float __forceinline__ t2f32<half>(half val) {
|
||||
return __half2float(val);
|
||||
}
|
||||
|
||||
template <bool vals_smem, int ncols_template, int block_size_template, typename T>
|
||||
static __global__ void soft_max_f32(const float * x, const T * mask, float * dst, const int ncols_par, const int nrows_y, const float scale, const float max_bias, const float m0, const float m1, uint32_t n_head_log2) {
|
||||
// When ncols_template == 0 the bounds for the loops in this function are not known and can't be unrolled.
|
||||
// As we want to keep pragma unroll for all other cases we supress the clang transformation warning here.
|
||||
#ifdef __clang__
|
||||
#pragma clang diagnostic push
|
||||
#pragma clang diagnostic ignored "-Wpass-failed"
|
||||
#endif
|
||||
template <bool use_shared, int ncols_template, int block_size_template, typename T>
|
||||
static __global__ void soft_max_f32(
|
||||
const float * x, const T * mask, float * dst, const int ncols_par, const int nrows_y,
|
||||
const float scale, const float max_bias, const float m0, const float m1, uint32_t n_head_log2) {
|
||||
const int ncols = ncols_template == 0 ? ncols_par : ncols_template;
|
||||
|
||||
const int tid = threadIdx.x;
|
||||
const int rowx = blockIdx.x;
|
||||
const int rowy = rowx % nrows_y; // broadcast the mask in the row dimension
|
||||
|
||||
x += int64_t(rowx)*ncols;
|
||||
mask += int64_t(rowy)*ncols * (mask != nullptr);
|
||||
dst += int64_t(rowx)*ncols;
|
||||
|
||||
const int block_size = block_size_template == 0 ? blockDim.x : block_size_template;
|
||||
|
||||
const int warp_id = threadIdx.x / WARP_SIZE;
|
||||
@@ -29,7 +43,7 @@ static __global__ void soft_max_f32(const float * x, const T * mask, float * dst
|
||||
extern __shared__ float data_soft_max_f32[];
|
||||
float * buf_iw = data_soft_max_f32; // shared memory buffer for inter-warp communication
|
||||
// shared memory buffer to cache values between iterations:
|
||||
float * vals = vals_smem ? buf_iw + WARP_SIZE : dst + (int64_t)rowx*ncols;
|
||||
float * vals = use_shared ? buf_iw + WARP_SIZE : dst;
|
||||
|
||||
float max_val = -INFINITY;
|
||||
|
||||
@@ -41,10 +55,7 @@ static __global__ void soft_max_f32(const float * x, const T * mask, float * dst
|
||||
break;
|
||||
}
|
||||
|
||||
const int64_t ix = (int64_t)rowx*ncols + col;
|
||||
const int64_t iy = (int64_t)rowy*ncols + col;
|
||||
|
||||
const float val = x[ix]*scale + (mask ? slope*t2f32(mask[iy]) : 0.0f);
|
||||
const float val = x[col]*scale + (mask ? slope*t2f32(mask[col]) : 0.0f);
|
||||
|
||||
vals[col] = val;
|
||||
max_val = max(max_val, val);
|
||||
@@ -110,8 +121,32 @@ static __global__ void soft_max_f32(const float * x, const T * mask, float * dst
|
||||
return;
|
||||
}
|
||||
|
||||
const int64_t idst = (int64_t)rowx*ncols + col;
|
||||
dst[idst] = vals[col] * inv_sum;
|
||||
dst[col] = vals[col] * inv_sum;
|
||||
}
|
||||
}
|
||||
#ifdef __clang__
|
||||
#pragma clang diagnostic pop
|
||||
#endif
|
||||
|
||||
static __global__ void soft_max_back_f32(
|
||||
const float * grad, const float * dstf, float * dst, const int ncols, const float scale) {
|
||||
const int tid = threadIdx.x;
|
||||
const int rowx = blockIdx.x;
|
||||
|
||||
grad += int64_t(rowx)*ncols;
|
||||
dstf += int64_t(rowx)*ncols;
|
||||
dst += int64_t(rowx)*ncols;
|
||||
|
||||
float dgf_dot = 0.0f; // dot product of dst from forward pass and gradients
|
||||
|
||||
for (int col = tid; col < ncols; col += WARP_SIZE) {
|
||||
dgf_dot += dstf[col]*grad[col];
|
||||
}
|
||||
|
||||
dgf_dot = warp_reduce_sum(dgf_dot);
|
||||
|
||||
for (int col = tid; col < ncols; col += WARP_SIZE) {
|
||||
dst[col] = scale * (grad[col] - dgf_dot) * dstf[col];
|
||||
}
|
||||
}
|
||||
|
||||
@@ -121,7 +156,7 @@ static void soft_max_f32_cuda(const float * x, const T * mask, float * dst, cons
|
||||
while (nth < ncols_x && nth < CUDA_SOFT_MAX_BLOCK_SIZE) nth *= 2;
|
||||
const dim3 block_dims(nth, 1, 1);
|
||||
const dim3 block_nums(nrows_x, 1, 1);
|
||||
const size_t shmem = (GGML_PAD(ncols_x, WARP_SIZE) + WARP_SIZE)*sizeof(float);
|
||||
const size_t nbytes_shared = (GGML_PAD(ncols_x, WARP_SIZE) + WARP_SIZE)*sizeof(float);
|
||||
static_assert(CUDA_SOFT_MAX_BLOCK_SIZE == 1024, "These values need to be adjusted.");
|
||||
|
||||
const uint32_t n_head = nrows_x/nrows_y;
|
||||
@@ -131,50 +166,68 @@ static void soft_max_f32_cuda(const float * x, const T * mask, float * dst, cons
|
||||
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
||||
|
||||
// FIXME: this limit could be raised by ~2-4x on Ampere or newer
|
||||
if (shmem < ggml_cuda_info().devices[ggml_cuda_get_device()].smpb) {
|
||||
if (nbytes_shared < ggml_cuda_info().devices[ggml_cuda_get_device()].smpb) {
|
||||
switch (ncols_x) {
|
||||
case 32:
|
||||
soft_max_f32<true, 32, 32><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
soft_max_f32<true, 32, 32><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
break;
|
||||
case 64:
|
||||
soft_max_f32<true, 64, 64><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
soft_max_f32<true, 64, 64><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
break;
|
||||
case 128:
|
||||
soft_max_f32<true, 128, 128><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
soft_max_f32<true, 128, 128><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
break;
|
||||
case 256:
|
||||
soft_max_f32<true, 256, 256><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
soft_max_f32<true, 256, 256><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
break;
|
||||
case 512:
|
||||
soft_max_f32<true, 512, 512><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
soft_max_f32<true, 512, 512><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
break;
|
||||
case 1024:
|
||||
soft_max_f32<true, 1024, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
soft_max_f32<true, 1024, 1024><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
break;
|
||||
case 2048:
|
||||
soft_max_f32<true, 2048, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
soft_max_f32<true, 2048, 1024><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
break;
|
||||
case 4096:
|
||||
soft_max_f32<true, 4096, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
soft_max_f32<true, 4096, 1024><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
break;
|
||||
default:
|
||||
soft_max_f32<true, 0, 0><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
soft_max_f32<true, 0, 0><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
const size_t shmem_low = WARP_SIZE*sizeof(float);
|
||||
soft_max_f32<false, 0, 0><<<block_nums, block_dims, shmem_low, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
const size_t nbytes_shared_low = WARP_SIZE*sizeof(float);
|
||||
soft_max_f32<false, 0, 0><<<block_nums, block_dims, nbytes_shared_low, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
|
||||
}
|
||||
}
|
||||
|
||||
static void soft_max_back_f32_cuda(
|
||||
const float * grad, const float * dstf, float * dst,
|
||||
const int ncols, const int nrows, const float scale, cudaStream_t stream) {
|
||||
const dim3 block_dims(WARP_SIZE, 1, 1);
|
||||
const dim3 block_nums(nrows, 1, 1);
|
||||
|
||||
soft_max_back_f32<<<block_nums, block_dims, 0, stream>>>(grad, dstf, dst, ncols, scale);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_soft_max(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
const void * src1_d = src1 ? (const void *)src1->data : nullptr;
|
||||
const float * src0_d = (const float *) src0->data;
|
||||
const void * src1_d = src1 ? (const void *) src1->data : nullptr;
|
||||
float * dst_d = (float *) dst->data;
|
||||
|
||||
float * dst_d = (float *)dst->data;
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
@@ -189,18 +242,42 @@ void ggml_cuda_op_soft_max(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
float scale = 1.0f;
|
||||
float max_bias = 0.0f;
|
||||
|
||||
memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
|
||||
memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
|
||||
memcpy(&scale, (const float *) dst->op_params + 0, sizeof(float));
|
||||
memcpy(&max_bias, (const float *) dst->op_params + 1, sizeof(float));
|
||||
|
||||
const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
|
||||
|
||||
if (use_f16) {
|
||||
const half * src1_dd = (const half *)src1_d;
|
||||
|
||||
soft_max_f32_cuda(src0_d, src1_dd, dst_d, ne00, nrows_x, nrows_y, scale, max_bias, stream);
|
||||
soft_max_f32_cuda(src0_d, (const half *) src1_d, dst_d, ne00, nrows_x, nrows_y, scale, max_bias, stream);
|
||||
} else {
|
||||
const float * src1_dd = (const float *)src1_d;
|
||||
|
||||
soft_max_f32_cuda(src0_d, src1_dd, dst_d, ne00, nrows_x, nrows_y, scale, max_bias, stream);
|
||||
soft_max_f32_cuda(src0_d, (const float *) src1_d, dst_d, ne00, nrows_x, nrows_y, scale, max_bias, stream);
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cuda_op_soft_max_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0]; // grad
|
||||
const ggml_tensor * src1 = dst->src[1]; // forward pass output
|
||||
|
||||
const float * src0_d = (const float *) src0->data;
|
||||
const float * src1_d = (const float *) src1->data;
|
||||
float * dst_d = (float *) dst->data;
|
||||
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
const int64_t ncols = src0->ne[0];
|
||||
const int64_t nrows = ggml_nrows(src0);
|
||||
|
||||
float scale = 1.0f;
|
||||
float max_bias = 0.0f;
|
||||
|
||||
memcpy(&scale, (const float *) dst->op_params + 0, sizeof(float));
|
||||
memcpy(&max_bias, (const float *) dst->op_params + 1, sizeof(float));
|
||||
|
||||
GGML_ASSERT(max_bias == 0.0f);
|
||||
|
||||
soft_max_back_f32_cuda(src0_d, src1_d, dst_d, ncols, nrows, scale, stream);
|
||||
}
|
||||
|
||||
@@ -3,3 +3,5 @@
|
||||
#define CUDA_SOFT_MAX_BLOCK_SIZE 1024
|
||||
|
||||
void ggml_cuda_op_soft_max(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_soft_max_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
@@ -51,6 +51,19 @@ static __global__ void silu_f32(const float * x, float * dst, const int k) {
|
||||
dst[i] = x[i] / (1.0f + expf(-x[i]));
|
||||
}
|
||||
|
||||
static __global__ void silu_back_f32(
|
||||
const float * grad, const float * xf, float * dst, const int k) {
|
||||
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i >= k) {
|
||||
return;
|
||||
}
|
||||
|
||||
const float xfi = xf[i];
|
||||
const float s = 1.0f / (1.0f + expf(-xfi));
|
||||
dst[i] = grad[i] * s * (1.0f + xfi * (1.0f - s));
|
||||
}
|
||||
|
||||
static __global__ void tanh_f32(const float * x, float * dst, int k) {
|
||||
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
if (i >= k) {
|
||||
@@ -173,6 +186,11 @@ static void silu_f32_cuda(const float * x, float * dst, const int k, cudaStream_
|
||||
silu_f32<<<num_blocks, CUDA_SILU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||
}
|
||||
|
||||
static void silu_back_f32_cuda(const float * grad, const float * x, float * dst, const int k, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_SILU_BACK_BLOCK_SIZE - 1) / CUDA_SILU_BLOCK_SIZE;
|
||||
silu_back_f32<<<num_blocks, CUDA_SILU_BACK_BLOCK_SIZE, 0, stream>>>(grad, x, dst, k);
|
||||
}
|
||||
|
||||
static void tanh_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_TANH_BLOCK_SIZE - 1) / CUDA_TANH_BLOCK_SIZE;
|
||||
tanh_f32<<<num_blocks, CUDA_TANH_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||
@@ -284,6 +302,24 @@ void ggml_cuda_op_silu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
silu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_silu_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0]; // input from forward pass
|
||||
const ggml_tensor * src1 = dst->src[1]; // grads of forward pass output
|
||||
|
||||
const float * src0_d = (const float *) src0->data;
|
||||
const float * src1_d = (const float *) src1->data;
|
||||
float * dst_d = (float *) dst->data;
|
||||
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
silu_back_f32_cuda(src0_d, src1_d, dst_d, ggml_nelements(src0), stream);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_gelu_quick(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
|
||||
@@ -4,6 +4,7 @@
|
||||
#define CUDA_STEP_BLOCK_SIZE 256
|
||||
#define CUDA_GELU_BLOCK_SIZE 256
|
||||
#define CUDA_SILU_BLOCK_SIZE 256
|
||||
#define CUDA_SILU_BACK_BLOCK_SIZE 256
|
||||
#define CUDA_TANH_BLOCK_SIZE 256
|
||||
#define CUDA_RELU_BLOCK_SIZE 256
|
||||
#define CUDA_SIGMOID_BLOCK_SIZE 256
|
||||
@@ -23,6 +24,8 @@ void ggml_cuda_op_gelu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_silu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_silu_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_gelu_quick(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_tanh(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
43
ggml/src/ggml-cuda/vendors/hip.h
vendored
43
ggml/src/ggml-cuda/vendors/hip.h
vendored
@@ -19,6 +19,12 @@
|
||||
#define CUBLAS_TF32_TENSOR_OP_MATH 0
|
||||
#define CUDA_R_16F HIPBLAS_R_16F
|
||||
#define CUDA_R_32F HIPBLAS_R_32F
|
||||
#define CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED hipDeviceAttributeVirtualMemoryManagementSupported
|
||||
#define CU_MEM_ALLOC_GRANULARITY_RECOMMENDED hipMemAllocationGranularityRecommended
|
||||
#define CU_MEM_ALLOCATION_TYPE_PINNED hipMemAllocationTypePinned
|
||||
#define CU_MEM_LOCATION_TYPE_DEVICE hipMemLocationTypeDevice
|
||||
#define CU_MEM_ACCESS_FLAGS_PROT_READWRITE hipMemAccessFlagsProtReadWrite
|
||||
#define CU_CHECK(fn) {hipError_t err = fn; if(err != hipSuccess) { GGML_ABORT("HipVMM Failure: %s\n", hipGetErrorString(err)); }}
|
||||
#define __shfl_xor_sync(mask, var, laneMask, width) __shfl_xor(var, laneMask, width)
|
||||
#define cublasComputeType_t hipblasDatatype_t //deprecated, new hipblasComputeType_t not in 5.6
|
||||
#define cublasCreate hipblasCreate
|
||||
@@ -74,6 +80,21 @@
|
||||
#define cudaMemGetInfo hipMemGetInfo
|
||||
#define cudaOccupancyMaxPotentialBlockSize hipOccupancyMaxPotentialBlockSize
|
||||
#define cudaSetDevice hipSetDevice
|
||||
#define cuDeviceGet hipDeviceGet
|
||||
#define CUdevice hipDevice_t
|
||||
#define CUdeviceptr hipDeviceptr_t
|
||||
#define cuMemUnmap hipMemUnmap
|
||||
#define CUmemAccessDesc hipMemAccessDesc
|
||||
#define cuMemAddressFree hipMemAddressFree
|
||||
#define cuMemRelease hipMemRelease
|
||||
#define CUmemGenericAllocationHandle hipMemGenericAllocationHandle_t
|
||||
#define cuMemCreate hipMemCreate
|
||||
#define cuMemAddressReserve hipMemAddressReserve
|
||||
#define cuMemMap hipMemMap
|
||||
#define cuMemSetAccess hipMemSetAccess
|
||||
#define cuMemGetAllocationGranularity hipMemGetAllocationGranularity
|
||||
#define CUmemAllocationProp hipMemAllocationProp
|
||||
#define cuDeviceGetAttribute hipDeviceGetAttribute
|
||||
#define cudaStreamCreateWithFlags hipStreamCreateWithFlags
|
||||
#define cudaStreamDestroy hipStreamDestroy
|
||||
#define cudaStreamFireAndForget hipStreamFireAndForget
|
||||
@@ -81,6 +102,28 @@
|
||||
#define cudaStreamPerThread hipStreamPerThread
|
||||
#define cudaStreamSynchronize hipStreamSynchronize
|
||||
#define cudaStreamWaitEvent(stream, event, flags) hipStreamWaitEvent(stream, event, flags)
|
||||
#define cudaGraphExec_t hipGraphExec_t
|
||||
#define cudaGraphNode_t hipGraphNode_t
|
||||
#define cudaKernelNodeParams hipKernelNodeParams
|
||||
#define cudaKernelNodeParams hipKernelNodeParams
|
||||
#define cudaGraphExecDestroy hipGraphExecDestroy
|
||||
#define cudaGraphLaunch hipGraphLaunch
|
||||
#define cudaErrorGraphExecUpdateFailure hipErrorGraphExecUpdateFailure
|
||||
#define cudaGraphExecUpdateResultInfo hipGraphExecUpdateResult
|
||||
#define cudaGraphNodeType hipGraphNodeType
|
||||
#define cudaGraphNodeTypeKernel hipGraphNodeTypeKernel
|
||||
#define cudaGraphInstantiate hipGraphInstantiate
|
||||
#define cudaStreamEndCapture hipStreamEndCapture
|
||||
#define cudaGraphDestroy hipGraphDestroy
|
||||
#define cudaGraphKernelNodeSetParams hipGraphKernelNodeSetParams
|
||||
#define cudaErrorInvalidDeviceFunction hipErrorInvalidDeviceFunction
|
||||
#define cudaGraphKernelNodeGetParams hipGraphKernelNodeGetParams
|
||||
#define cudaGraphNodeGetType hipGraphNodeGetType
|
||||
#define cudaGraphGetNodes hipGraphGetNodes
|
||||
#define cudaGraphExecUpdate hipGraphExecUpdate
|
||||
#define cudaStreamCaptureModeRelaxed hipStreamCaptureModeRelaxed
|
||||
#define cudaStreamBeginCapture hipStreamBeginCapture
|
||||
#define cudaGraph_t hipGraph_t
|
||||
#define cudaStream_t hipStream_t
|
||||
#define cudaSuccess hipSuccess
|
||||
#define __trap() do { abort(); __builtin_unreachable(); } while(0)
|
||||
|
||||
@@ -70,7 +70,9 @@ ggml_add_backend_library(ggml-hip
|
||||
)
|
||||
|
||||
# TODO: do not use CUDA definitions for HIP
|
||||
target_compile_definitions(ggml PUBLIC GGML_USE_CUDA)
|
||||
if (NOT GGML_BACKEND_DL)
|
||||
target_compile_definitions(ggml PUBLIC GGML_USE_CUDA)
|
||||
endif()
|
||||
|
||||
add_compile_definitions(GGML_USE_HIP)
|
||||
|
||||
@@ -90,6 +92,14 @@ if (GGML_CUDA_NO_PEER_COPY)
|
||||
add_compile_definitions(GGML_CUDA_NO_PEER_COPY)
|
||||
endif()
|
||||
|
||||
if (GGML_HIP_GRAPHS)
|
||||
add_compile_definitions(GGML_HIP_GRAPHS)
|
||||
endif()
|
||||
|
||||
if (GGML_HIP_NO_VMM)
|
||||
add_compile_definitions(GGML_HIP_NO_VMM)
|
||||
endif()
|
||||
|
||||
if (CXX_IS_HIPCC)
|
||||
set_source_files_properties(${GGML_SOURCES_ROCM} PROPERTIES LANGUAGE CXX)
|
||||
target_link_libraries(ggml-hip PRIVATE hip::device)
|
||||
|
||||
@@ -19,7 +19,10 @@
|
||||
// max number of MTLCommandBuffer used to submit a graph for processing
|
||||
#define GGML_METAL_MAX_COMMAND_BUFFERS 8
|
||||
|
||||
#define UNUSED(x) (void)(x)
|
||||
// create residency sets only on macOS >= 15.0
|
||||
#if TARGET_OS_OSX && __MAC_OS_X_VERSION_MAX_ALLOWED >= 150000
|
||||
#define GGML_METAL_HAS_RESIDENCY_SETS 1
|
||||
#endif
|
||||
|
||||
// globals
|
||||
|
||||
@@ -39,6 +42,7 @@ static struct ggml_backend_metal_device_context {
|
||||
|
||||
bool has_simdgroup_reduction;
|
||||
bool has_simdgroup_mm;
|
||||
bool has_residency_sets;
|
||||
bool has_bfloat;
|
||||
bool use_bfloat;
|
||||
|
||||
@@ -48,6 +52,7 @@ static struct ggml_backend_metal_device_context {
|
||||
/*.mtl_device_ref_count =*/ 0,
|
||||
/*.has_simdgroup_reduction =*/ false,
|
||||
/*.has_simdgroup_mm =*/ false,
|
||||
/*.has_residency_sets =*/ false,
|
||||
/*.has_bfloat =*/ false,
|
||||
/*.use_bfloat =*/ false,
|
||||
/*.name =*/ "",
|
||||
@@ -59,12 +64,18 @@ static id<MTLDevice> ggml_backend_metal_device_acq(struct ggml_backend_metal_dev
|
||||
|
||||
if (ctx->mtl_device == nil) {
|
||||
ctx->mtl_device = MTLCreateSystemDefaultDevice();
|
||||
}
|
||||
|
||||
if (ctx->mtl_device) {
|
||||
ctx->has_simdgroup_reduction = [ctx->mtl_device supportsFamily:MTLGPUFamilyApple7];
|
||||
ctx->has_simdgroup_reduction |= [ctx->mtl_device supportsFamily:MTLGPUFamilyMetal3_GGML];
|
||||
|
||||
ctx->has_simdgroup_mm = [ctx->mtl_device supportsFamily:MTLGPUFamilyApple7];
|
||||
|
||||
#if defined(GGML_METAL_HAS_RESIDENCY_SETS)
|
||||
ctx->has_residency_sets = getenv("GGML_METAL_NO_RESIDENCY") == NULL;
|
||||
#endif
|
||||
|
||||
ctx->has_bfloat = [ctx->mtl_device supportsFamily:MTLGPUFamilyMetal3_GGML];
|
||||
ctx->has_bfloat |= [ctx->mtl_device supportsFamily:MTLGPUFamilyApple6];
|
||||
|
||||
@@ -90,8 +101,10 @@ static void ggml_backend_metal_device_rel(struct ggml_backend_metal_device_conte
|
||||
ctx->mtl_device_ref_count--;
|
||||
|
||||
if (ctx->mtl_device_ref_count == 0) {
|
||||
[ctx->mtl_device release];
|
||||
ctx->mtl_device = nil;
|
||||
if (ctx->mtl_device) {
|
||||
[ctx->mtl_device release];
|
||||
ctx->mtl_device = nil;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -483,6 +496,11 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
|
||||
GGML_LOG_INFO("%s: picking default device: %s\n", __func__, [[device name] UTF8String]);
|
||||
|
||||
ctx->queue = [device newCommandQueue];
|
||||
if (ctx->queue == nil) {
|
||||
GGML_LOG_ERROR("%s: error: failed to create command queue\n", __func__);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
ctx->d_queue = dispatch_queue_create("ggml-metal", DISPATCH_QUEUE_CONCURRENT);
|
||||
|
||||
id<MTLLibrary> metal_library;
|
||||
@@ -649,6 +667,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
|
||||
|
||||
GGML_LOG_INFO("%s: simdgroup reduction = %s\n", __func__, ctx_dev->has_simdgroup_reduction ? "true" : "false");
|
||||
GGML_LOG_INFO("%s: simdgroup matrix mul. = %s\n", __func__, ctx_dev->has_simdgroup_mm ? "true" : "false");
|
||||
GGML_LOG_INFO("%s: has residency sets = %s\n", __func__, ctx_dev->has_residency_sets ? "true" : "false");
|
||||
GGML_LOG_INFO("%s: has bfloat = %s\n", __func__, ctx_dev->has_bfloat ? "true" : "false");
|
||||
GGML_LOG_INFO("%s: use bfloat = %s\n", __func__, ctx_dev->use_bfloat ? "true" : "false");
|
||||
GGML_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx_dev->mtl_device.hasUnifiedMemory ? "true" : "false");
|
||||
@@ -1035,8 +1054,70 @@ struct ggml_backend_metal_buffer_context {
|
||||
// multiple buffers are used only to avoid the maximum buffer size limitation when using mmap
|
||||
int n_buffers;
|
||||
struct ggml_backend_metal_buffer buffers[GGML_METAL_MAX_BUFFERS];
|
||||
|
||||
// optional MTLResidencySet
|
||||
id rset;
|
||||
};
|
||||
|
||||
// rset init
|
||||
static bool ggml_backend_metal_buffer_rset_init(
|
||||
struct ggml_backend_metal_buffer_context * ctx,
|
||||
struct ggml_backend_metal_device_context * ctx_dev,
|
||||
id<MTLDevice> device) {
|
||||
ctx->rset = nil;
|
||||
|
||||
if (!ctx_dev->has_residency_sets) {
|
||||
return true;
|
||||
}
|
||||
|
||||
#if defined(GGML_METAL_HAS_RESIDENCY_SETS)
|
||||
if (@available(macOS 15.0, *)) {
|
||||
MTLResidencySetDescriptor * desc = [[MTLResidencySetDescriptor alloc] init];
|
||||
desc.label = @"ggml_backend_metal";
|
||||
desc.initialCapacity = ctx->n_buffers;
|
||||
|
||||
NSError * error;
|
||||
ctx->rset = [device newResidencySetWithDescriptor:desc error:&error];
|
||||
if (error) {
|
||||
GGML_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
|
||||
[desc release];
|
||||
return false;
|
||||
}
|
||||
|
||||
[desc release];
|
||||
|
||||
for (int i = 0; i < ctx->n_buffers; i++) {
|
||||
[ctx->rset addAllocation:ctx->buffers[i].metal];
|
||||
}
|
||||
|
||||
[ctx->rset commit];
|
||||
[ctx->rset requestResidency];
|
||||
|
||||
return true;
|
||||
}
|
||||
#else
|
||||
GGML_UNUSED(ctx_dev);
|
||||
GGML_UNUSED(device);
|
||||
#endif
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// rset free
|
||||
static void ggml_backend_metal_buffer_rset_free(struct ggml_backend_metal_buffer_context * ctx) {
|
||||
#if defined(GGML_METAL_HAS_RESIDENCY_SETS)
|
||||
if (@available(macOS 15.0, *)) {
|
||||
if (ctx->rset) {
|
||||
[ctx->rset endResidency];
|
||||
[ctx->rset removeAllAllocations];
|
||||
[ctx->rset release];
|
||||
}
|
||||
}
|
||||
#else
|
||||
GGML_UNUSED(ctx);
|
||||
#endif
|
||||
}
|
||||
|
||||
// finds the Metal buffer that contains the tensor data on the GPU device
|
||||
// the assumption is that there is 1-to-1 mapping between the host and device memory buffers, so we can find the
|
||||
// Metal buffer based on the host memory pointer
|
||||
@@ -4176,6 +4257,8 @@ static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer)
|
||||
for (int i = 0; i < ctx->n_buffers; i++) {
|
||||
[ctx->buffers[i].metal release];
|
||||
}
|
||||
|
||||
ggml_backend_metal_buffer_rset_free(ctx);
|
||||
ggml_backend_metal_device_rel(buffer->buft->device->context);
|
||||
|
||||
if (ctx->owned) {
|
||||
@@ -4198,19 +4281,19 @@ static void * ggml_backend_metal_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
static void ggml_backend_metal_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
|
||||
memset((char *)tensor->data + offset, value, size);
|
||||
|
||||
UNUSED(buffer);
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_metal_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
memcpy((char *)tensor->data + offset, data, size);
|
||||
|
||||
UNUSED(buffer);
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_metal_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
memcpy(data, (const char *)tensor->data + offset, size);
|
||||
|
||||
UNUSED(buffer);
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static bool ggml_backend_metal_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||
@@ -4220,7 +4303,7 @@ static bool ggml_backend_metal_buffer_cpy_tensor(ggml_backend_buffer_t buffer, c
|
||||
}
|
||||
return false;
|
||||
|
||||
UNUSED(buffer);
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_metal_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
||||
@@ -4246,7 +4329,7 @@ static struct ggml_backend_buffer_i ggml_backend_metal_buffer_i = {
|
||||
static const char * ggml_backend_metal_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
|
||||
return "Metal";
|
||||
|
||||
UNUSED(buft);
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static void ggml_backend_metal_log_allocated_size(id<MTLDevice> device, size_t size_aligned) {
|
||||
@@ -4270,8 +4353,8 @@ static void ggml_backend_metal_log_allocated_size(id<MTLDevice> device, size_t s
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
UNUSED(device);
|
||||
UNUSED(size_aligned);
|
||||
GGML_UNUSED(device);
|
||||
GGML_UNUSED(size_aligned);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
@@ -4284,7 +4367,8 @@ static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_ba
|
||||
size_aligned += (size_page - (size_aligned % size_page));
|
||||
}
|
||||
|
||||
id<MTLDevice> device = ggml_backend_metal_device_acq(buft->device->context);
|
||||
struct ggml_backend_metal_device_context * ctx_dev = (struct ggml_backend_metal_device_context *)buft->device->context;
|
||||
id<MTLDevice> device = ggml_backend_metal_device_acq(ctx_dev);
|
||||
|
||||
ctx->all_data = ggml_metal_host_malloc(size_aligned);
|
||||
ctx->all_size = size_aligned;
|
||||
@@ -4307,7 +4391,14 @@ static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_ba
|
||||
if (size_aligned > 0 && (ctx->all_data == NULL || ctx->buffers[0].metal == nil)) {
|
||||
GGML_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_aligned / 1024.0 / 1024.0);
|
||||
free(ctx);
|
||||
ggml_backend_metal_device_rel(buft->device->context);
|
||||
ggml_backend_metal_device_rel(ctx_dev);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if (!ggml_backend_metal_buffer_rset_init(ctx, ctx_dev, device)) {
|
||||
GGML_LOG_ERROR("%s: error: failed to initialize residency set\n", __func__);
|
||||
free(ctx);
|
||||
ggml_backend_metal_device_rel(ctx_dev);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
@@ -4318,7 +4409,7 @@ static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_ba
|
||||
|
||||
static size_t ggml_backend_metal_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
||||
return 32;
|
||||
UNUSED(buft);
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static size_t ggml_backend_metal_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
|
||||
@@ -4328,13 +4419,13 @@ static size_t ggml_backend_metal_buffer_type_get_max_size(ggml_backend_buffer_ty
|
||||
|
||||
return max_size;
|
||||
|
||||
UNUSED(buft);
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static bool ggml_backend_metal_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
|
||||
return true;
|
||||
|
||||
UNUSED(buft);
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void) {
|
||||
@@ -4357,7 +4448,7 @@ ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void) {
|
||||
static const char * ggml_backend_metal_buffer_from_ptr_type_get_name(ggml_backend_buffer_type_t buft) {
|
||||
return "Metal_Mapped";
|
||||
|
||||
UNUSED(buft);
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_type_t ggml_backend_metal_buffer_from_ptr_type(void) {
|
||||
@@ -4400,7 +4491,8 @@ ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t siz
|
||||
size_aligned += (size_page - (size_aligned % size_page));
|
||||
}
|
||||
|
||||
id<MTLDevice> device = ggml_backend_metal_device_acq(&g_ggml_ctx_dev_main);
|
||||
struct ggml_backend_metal_device_context * ctx_dev = &g_ggml_ctx_dev_main;
|
||||
id<MTLDevice> device = ggml_backend_metal_device_acq(ctx_dev);
|
||||
|
||||
// the buffer fits into the max buffer size allowed by the device
|
||||
if (size_aligned <= device.maxBufferLength) {
|
||||
@@ -4453,6 +4545,13 @@ ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t siz
|
||||
}
|
||||
}
|
||||
|
||||
if (!ggml_backend_metal_buffer_rset_init(ctx, ctx_dev, device)) {
|
||||
GGML_LOG_ERROR("%s: error: failed to initialize residency set\n", __func__);
|
||||
free(ctx);
|
||||
ggml_backend_metal_device_rel(ctx_dev);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
return ggml_backend_buffer_init(ggml_backend_metal_buffer_from_ptr_type(), ggml_backend_metal_buffer_i, ctx, size);
|
||||
}
|
||||
|
||||
@@ -4461,7 +4560,7 @@ ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t siz
|
||||
static const char * ggml_backend_metal_name(ggml_backend_t backend) {
|
||||
return "Metal";
|
||||
|
||||
UNUSED(backend);
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
static void ggml_backend_metal_free(ggml_backend_t backend) {
|
||||
@@ -4766,6 +4865,13 @@ static ggml_backend_buffer_t ggml_backend_metal_device_buffer_from_ptr(ggml_back
|
||||
}
|
||||
}
|
||||
|
||||
if (!ggml_backend_metal_buffer_rset_init(ctx, ctx_dev, device)) {
|
||||
GGML_LOG_ERROR("%s: error: failed to initialize residency set\n", __func__);
|
||||
free(ctx);
|
||||
ggml_backend_metal_device_rel(ctx_dev);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
return ggml_backend_buffer_init(ggml_backend_metal_buffer_from_ptr_type(), ggml_backend_metal_buffer_i, ctx, size);
|
||||
}
|
||||
|
||||
@@ -4779,7 +4885,7 @@ static bool ggml_backend_metal_device_supports_buft(ggml_backend_dev_t dev, ggml
|
||||
return buft->iface.get_name == ggml_backend_metal_buffer_type_get_name ||
|
||||
buft->iface.get_name == ggml_backend_metal_buffer_from_ptr_type_get_name;
|
||||
|
||||
UNUSED(dev);
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static bool ggml_backend_metal_device_offload_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
|
||||
|
||||
@@ -4416,7 +4416,6 @@ void kernel_mul_mv_q2_K_f32_impl(
|
||||
device const half * dh = &x[ib].d;
|
||||
|
||||
for (int row = 0; row < N_DST; row++) {
|
||||
|
||||
float4 acc1 = {0.f, 0.f, 0.f, 0.f};
|
||||
float4 acc2 = {0.f, 0.f, 0.f, 0.f};
|
||||
for (int i = 0; i < 8; i += 2) {
|
||||
@@ -4447,7 +4446,7 @@ void kernel_mul_mv_q2_K_f32_impl(
|
||||
|
||||
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
|
||||
|
||||
for (int row = 0; row < N_DST; ++row) {
|
||||
for (int row = 0; row < N_DST && first_row + row < args.ne0; ++row) {
|
||||
all_sum = simd_sum(sumf[row]);
|
||||
if (tiisg == 0) {
|
||||
dst_f32[first_row + row] = all_sum;
|
||||
@@ -4613,7 +4612,7 @@ void kernel_mul_mv_q3_K_f32_impl(
|
||||
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
|
||||
|
||||
if (tiisg == 0) {
|
||||
for (int row = 0; row < 2; ++row) {
|
||||
for (int row = 0; row < 2 && first_row + row < args.ne0; ++row) {
|
||||
dst_f32[first_row + row] = sumf1[row];
|
||||
}
|
||||
}
|
||||
@@ -4729,7 +4728,7 @@ void kernel_mul_mv_q4_K_f32_impl(
|
||||
|
||||
device float * dst_f32 = (device float *) dst + (int64_t)im*args.ne0*args.ne1 + (int64_t)r1*args.ne0;
|
||||
|
||||
for (int row = 0; row < N_DST; ++row) {
|
||||
for (int row = 0; row < N_DST && first_row + row < args.ne0; ++row) {
|
||||
all_sum = simd_sum(sumf[row]);
|
||||
if (tiisg == 0) {
|
||||
dst_f32[first_row + row] = all_sum;
|
||||
@@ -4861,7 +4860,7 @@ void kernel_mul_mv_q5_K_f32_impl(
|
||||
|
||||
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
|
||||
|
||||
for (int row = 0; row < 2; ++row) {
|
||||
for (int row = 0; row < 2 && first_row + row < args.ne0; ++row) {
|
||||
const float tot = simd_sum(sumf[row]);
|
||||
if (tiisg == 0) {
|
||||
dst_f32[first_row + row] = tot;
|
||||
@@ -4906,6 +4905,10 @@ void kernel_mul_mv_q6_K_f32_impl(
|
||||
|
||||
const int row = 2*r0 + sgitg;
|
||||
|
||||
if (row >= args.ne0) {
|
||||
return;
|
||||
}
|
||||
|
||||
const uint i12 = im%args.ne12;
|
||||
const uint i13 = im/args.ne12;
|
||||
|
||||
@@ -5061,7 +5064,7 @@ void kernel_mul_mv_iq2_xxs_f32_impl(
|
||||
|
||||
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
|
||||
|
||||
for (int row = 0; row < N_DST; ++row) {
|
||||
for (int row = 0; row < N_DST && first_row + row < args.ne0; ++row) {
|
||||
all_sum = simd_sum(sumf[row]);
|
||||
if (tiisg == 0) {
|
||||
dst_f32[first_row + row] = all_sum * 0.25f;
|
||||
@@ -5179,7 +5182,7 @@ void kernel_mul_mv_iq2_xs_f32_impl(
|
||||
|
||||
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
|
||||
|
||||
for (int row = 0; row < N_DST; ++row) {
|
||||
for (int row = 0; row < N_DST && first_row + row < args.ne0; ++row) {
|
||||
all_sum = simd_sum(sumf[row]);
|
||||
if (tiisg == 0) {
|
||||
dst_f32[first_row + row] = all_sum * 0.25f;
|
||||
@@ -5289,7 +5292,7 @@ void kernel_mul_mv_iq3_xxs_f32_impl(
|
||||
|
||||
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
|
||||
|
||||
for (int row = 0; row < N_DST; ++row) {
|
||||
for (int row = 0; row < N_DST && first_row + row < args.ne0; ++row) {
|
||||
all_sum = simd_sum(sumf[row]);
|
||||
if (tiisg == 0) {
|
||||
dst_f32[first_row + row] = all_sum * 0.5f;
|
||||
@@ -5401,7 +5404,7 @@ void kernel_mul_mv_iq3_s_f32_impl(
|
||||
|
||||
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
|
||||
|
||||
for (int row = 0; row < N_DST; ++row) {
|
||||
for (int row = 0; row < N_DST && first_row + row < args.ne0; ++row) {
|
||||
all_sum = simd_sum(sumf[row]);
|
||||
if (tiisg == 0) {
|
||||
dst_f32[first_row + row] = all_sum;
|
||||
@@ -5514,7 +5517,7 @@ void kernel_mul_mv_iq2_s_f32_impl(
|
||||
|
||||
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
|
||||
|
||||
for (int row = 0; row < N_DST; ++row) {
|
||||
for (int row = 0; row < N_DST && first_row + row < args.ne0; ++row) {
|
||||
all_sum = simd_sum(sumf[row]);
|
||||
if (tiisg == 0) {
|
||||
dst_f32[first_row + row] = all_sum * 0.25f;
|
||||
@@ -5614,7 +5617,7 @@ void kernel_mul_mv_iq1_s_f32_impl(
|
||||
|
||||
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
|
||||
|
||||
for (int row = 0; row < N_DST; ++row) {
|
||||
for (int row = 0; row < N_DST && first_row + row < args.ne0; ++row) {
|
||||
all_sum = simd_sum(sumf[row]);
|
||||
if (tiisg == 0) {
|
||||
dst_f32[first_row + row] = all_sum;
|
||||
@@ -5709,7 +5712,7 @@ void kernel_mul_mv_iq1_m_f32_impl(
|
||||
|
||||
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
|
||||
|
||||
for (int row = 0; row < N_DST; ++row) {
|
||||
for (int row = 0; row < N_DST && first_row + row < args.ne0; ++row) {
|
||||
all_sum = simd_sum(sumf[row]);
|
||||
if (tiisg == 0) {
|
||||
dst_f32[first_row + row] = all_sum;
|
||||
@@ -5799,7 +5802,7 @@ void kernel_mul_mv_iq4_nl_f32_impl(
|
||||
|
||||
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
|
||||
|
||||
for (int row = 0; row < 2 && first_row + row < args.ne01; ++row) {
|
||||
for (int row = 0; row < 2 && first_row + row < args.ne0; ++row) {
|
||||
all_sum = simd_sum(sumf[row]);
|
||||
if (tiisg == 0) {
|
||||
dst_f32[first_row + row] = all_sum;
|
||||
@@ -5888,7 +5891,7 @@ void kernel_mul_mv_iq4_xs_f32_impl(
|
||||
|
||||
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
|
||||
|
||||
for (int row = 0; row < 2; ++row) {
|
||||
for (int row = 0; row < 2 && first_row + row < args.ne0; ++row) {
|
||||
all_sum = simd_sum(sumf[row]);
|
||||
if (tiisg == 0) {
|
||||
dst_f32[first_row + row] = all_sum;
|
||||
|
||||
@@ -181,7 +181,7 @@ struct ggml_backend_rpc_context {
|
||||
|
||||
struct ggml_backend_rpc_buffer_context {
|
||||
std::shared_ptr<socket_t> sock;
|
||||
std::unordered_map<ggml_backend_buffer_t, void *> base_cache;
|
||||
void * base_ptr;
|
||||
uint64_t remote_ptr;
|
||||
};
|
||||
|
||||
@@ -423,16 +423,15 @@ static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
|
||||
static void * ggml_backend_rpc_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
|
||||
if (ctx->base_cache.find(buffer) != ctx->base_cache.end()) {
|
||||
return ctx->base_cache[buffer];
|
||||
if (ctx->base_ptr != nullptr) {
|
||||
return ctx->base_ptr;
|
||||
}
|
||||
rpc_msg_buffer_get_base_req request = {ctx->remote_ptr};
|
||||
rpc_msg_buffer_get_base_rsp response;
|
||||
bool status = send_rpc_cmd(ctx->sock, RPC_CMD_BUFFER_GET_BASE, &request, sizeof(request), &response, sizeof(response));
|
||||
GGML_ASSERT(status);
|
||||
void * base_ptr = reinterpret_cast<void *>(response.base_ptr);
|
||||
ctx->base_cache[buffer] = base_ptr;
|
||||
return base_ptr;
|
||||
ctx->base_ptr = reinterpret_cast<void *>(response.base_ptr);
|
||||
return ctx->base_ptr;
|
||||
}
|
||||
|
||||
static rpc_tensor serialize_tensor(const ggml_tensor * tensor) {
|
||||
@@ -557,7 +556,7 @@ static ggml_backend_buffer_t ggml_backend_rpc_buffer_type_alloc_buffer(ggml_back
|
||||
if (response.remote_ptr != 0) {
|
||||
ggml_backend_buffer_t buffer = ggml_backend_buffer_init(buft,
|
||||
ggml_backend_rpc_buffer_interface,
|
||||
new ggml_backend_rpc_buffer_context{sock, {}, response.remote_ptr},
|
||||
new ggml_backend_rpc_buffer_context{sock, nullptr, response.remote_ptr},
|
||||
response.remote_size);
|
||||
return buffer;
|
||||
} else {
|
||||
|
||||
@@ -29,5 +29,6 @@
|
||||
#include "wkv6.hpp"
|
||||
#include "outprod.hpp"
|
||||
#include "element_wise.hpp"
|
||||
#include "gla.hpp"
|
||||
|
||||
#endif // GGML_SYCL_BACKEND_HPP
|
||||
|
||||
@@ -333,8 +333,12 @@ struct ggml_backend_sycl_context {
|
||||
// pool
|
||||
std::unique_ptr<ggml_sycl_pool> pools[GGML_SYCL_MAX_DEVICES];
|
||||
|
||||
std::unique_ptr<ggml_sycl_pool> host_pools[GGML_SYCL_MAX_DEVICES];
|
||||
|
||||
static std::unique_ptr<ggml_sycl_pool> new_pool_for_device(queue_ptr qptr, int device);
|
||||
|
||||
static std::unique_ptr<ggml_sycl_pool> new_pool_for_host(queue_ptr qptr, int device);
|
||||
|
||||
ggml_sycl_pool & pool(int device) {
|
||||
if (pools[device] == nullptr) {
|
||||
pools[device] = new_pool_for_device(stream(device,0), device);
|
||||
@@ -345,6 +349,15 @@ struct ggml_backend_sycl_context {
|
||||
ggml_sycl_pool & pool() {
|
||||
return pool(device);
|
||||
}
|
||||
|
||||
ggml_sycl_pool & host_pool(int device) {
|
||||
if (host_pools[device] == nullptr) {
|
||||
host_pools[device] = new_pool_for_host(stream(device, 0), device);
|
||||
}
|
||||
return *host_pools[device];
|
||||
}
|
||||
|
||||
ggml_sycl_pool & host_pool() { return host_pool(device); }
|
||||
};
|
||||
|
||||
// common device functions
|
||||
|
||||
@@ -82,6 +82,14 @@ inline std::string get_device_backend_and_type(const sycl::device &device) {
|
||||
return device_type.str();
|
||||
}
|
||||
|
||||
template <typename Ts> struct matrix_info_t {
|
||||
oneapi::mkl::transpose transpose_info[2];
|
||||
Ts value_info[2];
|
||||
std::int64_t size_info[3];
|
||||
std::int64_t ld_info[3];
|
||||
std::int64_t groupsize_info;
|
||||
};
|
||||
|
||||
namespace dpct
|
||||
{
|
||||
typedef sycl::queue *queue_ptr;
|
||||
@@ -1727,26 +1735,13 @@ namespace dpct
|
||||
};
|
||||
|
||||
template <class Ta, class Tb, class Tc, class Ts>
|
||||
inline void gemm_batch_impl(sycl::queue &q, oneapi::mkl::transpose a_trans,
|
||||
oneapi::mkl::transpose b_trans, int m, int n, int k,
|
||||
const void *alpha, const void **a, int lda,
|
||||
const void **b, int ldb, const void *beta, void **c,
|
||||
int ldc, int batch_size)
|
||||
{
|
||||
struct matrix_info_t
|
||||
{
|
||||
oneapi::mkl::transpose transpose_info[2];
|
||||
Ts value_info[2];
|
||||
std::int64_t size_info[3];
|
||||
std::int64_t ld_info[3];
|
||||
std::int64_t groupsize_info;
|
||||
};
|
||||
|
||||
inline void gemm_batch_impl(sycl::queue & q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans,
|
||||
int m, int n, int k, const void * alpha, const void ** a, int lda, const void ** b,
|
||||
int ldb, const void * beta, void ** c, int ldc, int batch_size,
|
||||
matrix_info_t<float> * matrix_info) {
|
||||
Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q);
|
||||
Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q);
|
||||
|
||||
matrix_info_t *matrix_info =
|
||||
(matrix_info_t *)std::malloc(sizeof(matrix_info_t));
|
||||
matrix_info->transpose_info[0] = a_trans;
|
||||
matrix_info->transpose_info[1] = b_trans;
|
||||
matrix_info->value_info[0] = alpha_value;
|
||||
@@ -1763,23 +1758,18 @@ namespace dpct
|
||||
sycl::event e = oneapi::mkl::blas::column_major::gemm_batch(
|
||||
oneapi::mkl::backend_selector<oneapi::mkl::backend::cublas>{ q }, matrix_info->transpose_info,
|
||||
matrix_info->transpose_info + 1, matrix_info->size_info, matrix_info->size_info + 1,
|
||||
matrix_info->size_info + 2, matrix_info->value_info, reinterpret_cast<const Ta **>(a),
|
||||
matrix_info->ld_info, reinterpret_cast<const Tb **>(b), matrix_info->ld_info + 1,
|
||||
matrix_info->value_info + 1, reinterpret_cast<Tc **>(c), matrix_info->ld_info + 2, 1,
|
||||
&(matrix_info->groupsize_info));
|
||||
matrix_info->size_info + 2, reinterpret_cast<Ts *>(matrix_info->value_info),
|
||||
reinterpret_cast<const Ta **>(a), matrix_info->ld_info, reinterpret_cast<const Tb **>(b),
|
||||
matrix_info->ld_info + 1, reinterpret_cast<Ts *>(matrix_info->value_info + 1),
|
||||
reinterpret_cast<Tc **>(c), matrix_info->ld_info + 2, 1, &(matrix_info->groupsize_info));
|
||||
#else
|
||||
sycl::event e = oneapi::mkl::blas::column_major::gemm_batch(
|
||||
q, matrix_info->transpose_info, matrix_info->transpose_info + 1, matrix_info->size_info,
|
||||
matrix_info->size_info + 1, matrix_info->size_info + 2, matrix_info->value_info,
|
||||
matrix_info->size_info + 1, matrix_info->size_info + 2, reinterpret_cast<Ts *>(matrix_info->value_info),
|
||||
reinterpret_cast<const Ta **>(a), matrix_info->ld_info, reinterpret_cast<const Tb **>(b),
|
||||
matrix_info->ld_info + 1, matrix_info->value_info + 1, reinterpret_cast<Tc **>(c),
|
||||
matrix_info->ld_info + 2, 1, &(matrix_info->groupsize_info));
|
||||
matrix_info->ld_info + 1, reinterpret_cast<Ts *>(matrix_info->value_info + 1),
|
||||
reinterpret_cast<Tc **>(c), matrix_info->ld_info + 2, 1, &(matrix_info->groupsize_info));
|
||||
#endif
|
||||
|
||||
q.submit([&](sycl::handler &cgh)
|
||||
{
|
||||
cgh.depends_on(e);
|
||||
cgh.host_task([=] { std::free(matrix_info); }); });
|
||||
}
|
||||
|
||||
template <class Ta, class Tb, class Tc, class Ts>
|
||||
@@ -2422,25 +2412,11 @@ namespace dpct
|
||||
/// \param [in] ldc Leading dimension of C.
|
||||
/// \param [in] batch_size Specifies the number of matrix multiply operations to perform.
|
||||
/// \param [in] scaling_type Data type of the scaling factors.
|
||||
inline void gemm_batch(sycl::queue &q, oneapi::mkl::transpose a_trans,
|
||||
oneapi::mkl::transpose b_trans, int m, int n, int k,
|
||||
const void *alpha, const void *a[],
|
||||
library_data_t a_type, int lda, const void *b[],
|
||||
library_data_t b_type, int ldb, const void *beta,
|
||||
void *c[], library_data_t c_type, int ldc,
|
||||
int batch_size, library_data_t scaling_type)
|
||||
{
|
||||
if (scaling_type == library_data_t::real_float &&
|
||||
c_type == library_data_t::complex_float)
|
||||
{
|
||||
scaling_type = library_data_t::complex_float;
|
||||
}
|
||||
else if (scaling_type == library_data_t::real_double &&
|
||||
c_type == library_data_t::complex_double)
|
||||
{
|
||||
scaling_type = library_data_t::complex_double;
|
||||
}
|
||||
|
||||
inline void gemm_batch(sycl::queue & q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m,
|
||||
int n, int k, const void * alpha, const void * a[], library_data_t a_type, int lda,
|
||||
const void * b[], library_data_t b_type, int ldb, const void * beta, void * c[],
|
||||
library_data_t c_type, int ldc, int batch_size, library_data_t scaling_type,
|
||||
matrix_info_t<float> * matrix_info) {
|
||||
std::uint64_t key =
|
||||
detail::get_type_combination_id(a_type, b_type, c_type, scaling_type);
|
||||
switch (key)
|
||||
@@ -2449,48 +2425,24 @@ namespace dpct
|
||||
library_data_t::real_float, library_data_t::real_float,
|
||||
library_data_t::real_float, library_data_t::real_float):
|
||||
{
|
||||
detail::gemm_batch_impl<float, float, float, float>(
|
||||
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
|
||||
batch_size);
|
||||
detail::gemm_batch_impl<float, float, float, float>(q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb,
|
||||
beta, c, ldc, batch_size, matrix_info);
|
||||
break;
|
||||
}
|
||||
case detail::get_type_combination_id(
|
||||
library_data_t::real_double, library_data_t::real_double,
|
||||
library_data_t::real_double, library_data_t::real_double):
|
||||
{
|
||||
detail::gemm_batch_impl<double, double, double, double>(
|
||||
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
|
||||
batch_size);
|
||||
break;
|
||||
}
|
||||
case detail::get_type_combination_id(
|
||||
library_data_t::complex_float, library_data_t::complex_float,
|
||||
library_data_t::complex_float, library_data_t::complex_float):
|
||||
{
|
||||
detail::gemm_batch_impl<std::complex<float>, std::complex<float>,
|
||||
std::complex<float>, std::complex<float>>(
|
||||
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
|
||||
batch_size);
|
||||
break;
|
||||
}
|
||||
case detail::get_type_combination_id(
|
||||
library_data_t::complex_double, library_data_t::complex_double,
|
||||
library_data_t::complex_double, library_data_t::complex_double):
|
||||
{
|
||||
detail::gemm_batch_impl<std::complex<double>, std::complex<double>,
|
||||
std::complex<double>, std::complex<double>>(
|
||||
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
|
||||
batch_size);
|
||||
detail::gemm_batch_impl<double, double, double, double>(q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb,
|
||||
beta, c, ldc, batch_size, matrix_info);
|
||||
break;
|
||||
}
|
||||
case detail::get_type_combination_id(
|
||||
library_data_t::real_half, library_data_t::real_half,
|
||||
library_data_t::real_half, library_data_t::real_half):
|
||||
{
|
||||
detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half,
|
||||
sycl::half>(q, a_trans, b_trans, m, n, k, alpha,
|
||||
a, lda, b, ldb, beta, c, ldc,
|
||||
batch_size);
|
||||
detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half, sycl::half>(
|
||||
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size, matrix_info);
|
||||
break;
|
||||
}
|
||||
#ifdef __INTEL_MKL__
|
||||
@@ -2498,19 +2450,16 @@ namespace dpct
|
||||
library_data_t::real_bfloat16, library_data_t::real_bfloat16,
|
||||
library_data_t::real_bfloat16, library_data_t::real_float):
|
||||
{
|
||||
detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16,
|
||||
oneapi::mkl::bfloat16, float>(
|
||||
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
|
||||
batch_size);
|
||||
detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float>(
|
||||
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size, matrix_info);
|
||||
break;
|
||||
}
|
||||
case detail::get_type_combination_id(
|
||||
library_data_t::real_bfloat16, library_data_t::real_bfloat16,
|
||||
library_data_t::real_float, library_data_t::real_float):
|
||||
{
|
||||
detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float,
|
||||
float>(q, a_trans, b_trans, m, n, k, alpha, a, lda,
|
||||
b, ldb, beta, c, ldc, batch_size);
|
||||
detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float, float>(
|
||||
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size, matrix_info);
|
||||
break;
|
||||
}
|
||||
#endif
|
||||
@@ -2522,10 +2471,9 @@ namespace dpct
|
||||
dpct::get_value(reinterpret_cast<const std::int32_t *>(alpha), q);
|
||||
float beta_float =
|
||||
dpct::get_value(reinterpret_cast<const std::int32_t *>(beta), q);
|
||||
detail::gemm_batch_impl<std::int8_t, std::int8_t, std::int32_t,
|
||||
float>(q, a_trans, b_trans, m, n, k, &alpha_float,
|
||||
a, lda, b, ldb, &beta_float, c, ldc,
|
||||
batch_size);
|
||||
detail::gemm_batch_impl<std::int8_t, std::int8_t, std::int32_t, float>(
|
||||
q, a_trans, b_trans, m, n, k, &alpha_float, a, lda, b, ldb, &beta_float, c, ldc, batch_size,
|
||||
matrix_info);
|
||||
break;
|
||||
}
|
||||
case detail::get_type_combination_id(
|
||||
@@ -2533,8 +2481,7 @@ namespace dpct
|
||||
library_data_t::real_float, library_data_t::real_float):
|
||||
{
|
||||
detail::gemm_batch_impl<std::int8_t, std::int8_t, float, float>(
|
||||
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
|
||||
batch_size);
|
||||
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size, matrix_info);
|
||||
break;
|
||||
}
|
||||
case detail::get_type_combination_id(
|
||||
@@ -2542,8 +2489,7 @@ namespace dpct
|
||||
library_data_t::real_float, library_data_t::real_float):
|
||||
{
|
||||
detail::gemm_batch_impl<sycl::half, sycl::half, float, float>(
|
||||
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
|
||||
batch_size);
|
||||
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size, matrix_info);
|
||||
break;
|
||||
}
|
||||
case detail::get_type_combination_id(
|
||||
@@ -2557,8 +2503,7 @@ namespace dpct
|
||||
sycl::half alpha_half(alpha_value);
|
||||
sycl::half beta_half(beta_value);
|
||||
detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half, sycl::half>(
|
||||
q, a_trans, b_trans, m, n, k, &alpha_half, a, lda, b, ldb, &beta_half, c, ldc,
|
||||
batch_size);
|
||||
q, a_trans, b_trans, m, n, k, &alpha_half, a, lda, b, ldb, &beta_half, c, ldc, batch_size, matrix_info);
|
||||
break;
|
||||
}
|
||||
default:
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user