mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2026-02-05 13:53:23 +02:00
Compare commits
41 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
2711d0215f | ||
|
|
f0d4b29edf | ||
|
|
815857791d | ||
|
|
1a0e87d291 | ||
|
|
d2e518e9b4 | ||
|
|
b636228c0a | ||
|
|
325afb370a | ||
|
|
794fe23f29 | ||
|
|
cf8cc856d7 | ||
|
|
d0c08040b6 | ||
|
|
be5ef7963f | ||
|
|
cae9fb4361 | ||
|
|
7fee2889e6 | ||
|
|
d7d1eccacc | ||
|
|
4bf3119d61 | ||
|
|
f643120bad | ||
|
|
6e84b0ab8e | ||
|
|
2b8525d5c8 | ||
|
|
a4417ddda9 | ||
|
|
d6d24cd9ed | ||
|
|
a5203b4465 | ||
|
|
df984e0147 | ||
|
|
acd38efee3 | ||
|
|
caf773f249 | ||
|
|
178a7eb952 | ||
|
|
6f53d8a6b4 | ||
|
|
19f65187cb | ||
|
|
1d8ee06000 | ||
|
|
2cc9b8c32c | ||
|
|
f35726c2fb | ||
|
|
4a75d19376 | ||
|
|
26771a1491 | ||
|
|
ca6baf76c1 | ||
|
|
6e264a905b | ||
|
|
49b0e3cec4 | ||
|
|
20a758155b | ||
|
|
00c24acb2a | ||
|
|
466ea66f33 | ||
|
|
5f0db9522f | ||
|
|
c5d9effb49 | ||
|
|
9fbadaef4f |
@@ -2,6 +2,10 @@ ARG UBUNTU_VERSION=22.04
|
||||
|
||||
FROM ubuntu:$UBUNTU_VERSION AS build
|
||||
|
||||
ARG TARGETARCH
|
||||
|
||||
ARG GGML_CPU_ARM_ARCH=armv8-a
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential git cmake libcurl4-openssl-dev
|
||||
|
||||
@@ -9,7 +13,14 @@ WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
|
||||
RUN cmake -S . -B build -DGGML_BACKEND_DL=ON -DGGML_NATIVE=OFF -DGGML_CPU_ALL_VARIANTS=ON -DLLAMA_CURL=ON -DCMAKE_BUILD_TYPE=Release && \
|
||||
RUN if [ "$TARGETARCH" = "amd64" ]; then \
|
||||
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON -DGGML_NATIVE=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON; \
|
||||
elif [ "$TARGETARCH" = "arm64" ]; then \
|
||||
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON -DGGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=${GGML_CPU_ARM_ARCH}; \
|
||||
else \
|
||||
echo "Unsupported architecture"; \
|
||||
exit 1; \
|
||||
fi && \
|
||||
cmake --build build -j $(nproc)
|
||||
|
||||
RUN mkdir -p /app/lib && \
|
||||
|
||||
@@ -13,9 +13,13 @@ elif [[ "$arg1" == '--quantize' || "$arg1" == '-q' ]]; then
|
||||
exec ./llama-quantize "$@"
|
||||
elif [[ "$arg1" == '--run' || "$arg1" == '-r' ]]; then
|
||||
exec ./llama-cli "$@"
|
||||
elif [[ "$arg1" == '--bench' || "$arg1" == '-b' ]]; then
|
||||
exec ./llama-bench "$@"
|
||||
elif [[ "$arg1" == '--perplexity' || "$arg1" == '-p' ]]; then
|
||||
exec ./llama-perplexity "$@"
|
||||
elif [[ "$arg1" == '--all-in-one' || "$arg1" == '-a' ]]; then
|
||||
echo "Converting PTH to GGML..."
|
||||
for i in `ls $1/$2/ggml-model-f16.bin*`; do
|
||||
for i in $(ls $1/$2/ggml-model-f16.bin*); do
|
||||
if [ -f "${i/f16/q4_0}" ]; then
|
||||
echo "Skip model quantization, it already exists: ${i/f16/q4_0}"
|
||||
else
|
||||
@@ -30,6 +34,10 @@ else
|
||||
echo "Available commands: "
|
||||
echo " --run (-r): Run a model previously converted into ggml"
|
||||
echo " ex: -m /models/7B/ggml-model-q4_0.bin -p \"Building a website can be done in 10 simple steps:\" -n 512"
|
||||
echo " --bench (-b): Benchmark the performance of the inference for various parameters."
|
||||
echo " ex: -m model.gguf"
|
||||
echo " --perplexity (-p): Measure the perplexity of a model over a given text."
|
||||
echo " ex: -m model.gguf -f file.txt"
|
||||
echo " --convert (-c): Convert a llama model into ggml"
|
||||
echo " ex: --outtype f16 \"/models/7B/\" "
|
||||
echo " --quantize (-q): Optimize with quantization process ggml"
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
ARG UBUNTU_VERSION=jammy
|
||||
ARG UBUNTU_VERSION=24.04
|
||||
|
||||
FROM ubuntu:$UBUNTU_VERSION AS build
|
||||
|
||||
@@ -7,7 +7,7 @@ RUN apt update && apt install -y git build-essential cmake wget
|
||||
|
||||
# Install Vulkan SDK and cURL
|
||||
RUN wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add - && \
|
||||
wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list && \
|
||||
wget -qO /etc/apt/sources.list.d/lunarg-vulkan-noble.list https://packages.lunarg.com/vulkan/lunarg-vulkan-noble.list && \
|
||||
apt update -y && \
|
||||
apt-get install -y vulkan-sdk libcurl4-openssl-dev curl
|
||||
|
||||
@@ -34,7 +34,7 @@ RUN mkdir -p /app/full \
|
||||
FROM ubuntu:$UBUNTU_VERSION AS base
|
||||
|
||||
RUN apt-get update \
|
||||
&& apt-get install -y libgomp1 curl\
|
||||
&& apt-get install -y libgomp1 curl libvulkan-dev \
|
||||
&& apt autoremove -y \
|
||||
&& apt clean -y \
|
||||
&& rm -rf /tmp/* /var/tmp/* \
|
||||
@@ -55,8 +55,9 @@ RUN apt-get update \
|
||||
git \
|
||||
python3 \
|
||||
python3-pip \
|
||||
&& pip install --upgrade pip setuptools wheel \
|
||||
&& pip install -r requirements.txt \
|
||||
python3-wheel \
|
||||
&& pip install --break-system-packages --upgrade setuptools \
|
||||
&& pip install --break-system-packages -r requirements.txt \
|
||||
&& apt autoremove -y \
|
||||
&& apt clean -y \
|
||||
&& rm -rf /tmp/* /var/tmp/* \
|
||||
|
||||
58
.github/workflows/build.yml
vendored
58
.github/workflows/build.yml
vendored
@@ -613,6 +613,7 @@ jobs:
|
||||
msystem: ${{matrix.sys}}
|
||||
install: >-
|
||||
base-devel
|
||||
git
|
||||
mingw-w64-${{matrix.env}}-toolchain
|
||||
mingw-w64-${{matrix.env}}-cmake
|
||||
mingw-w64-${{matrix.env}}-openblas
|
||||
@@ -916,10 +917,10 @@ jobs:
|
||||
shell: cmd
|
||||
run: |
|
||||
call "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\VC\Auxiliary\Build\vcvars64.bat"
|
||||
cmake -S . -B build -G "Ninja Multi-Config" \
|
||||
-DLLAMA_BUILD_SERVER=ON \
|
||||
-DGGML_NATIVE=OFF \
|
||||
-DGGML_CUDA=ON \
|
||||
cmake -S . -B build -G "Ninja Multi-Config" ^
|
||||
-DLLAMA_BUILD_SERVER=ON ^
|
||||
-DGGML_NATIVE=OFF ^
|
||||
-DGGML_CUDA=ON ^
|
||||
-DGGML_RPC=ON
|
||||
set /A NINJA_JOBS=%NUMBER_OF_PROCESSORS%-1
|
||||
cmake --build build --config Release -j %NINJA_JOBS% -t ggml
|
||||
@@ -1073,7 +1074,12 @@ jobs:
|
||||
run: |
|
||||
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
|
||||
$env:CMAKE_PREFIX_PATH="${env:HIP_PATH}"
|
||||
cmake -G "Unix Makefiles" -B build -S . -DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" -DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" -DGGML_HIP=ON -DCMAKE_BUILD_TYPE=Release -DGGML_RPC=ON
|
||||
cmake -G "Unix Makefiles" -B build -S . `
|
||||
-DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" `
|
||||
-DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" `
|
||||
-DCMAKE_BUILD_TYPE=Release `
|
||||
-DGGML_HIP=ON `
|
||||
-DGGML_RPC=ON
|
||||
cmake --build build -j ${env:NUMBER_OF_PROCESSORS}
|
||||
|
||||
windows-latest-cmake-hip-release:
|
||||
@@ -1111,7 +1117,13 @@ jobs:
|
||||
run: |
|
||||
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
|
||||
$env:CMAKE_PREFIX_PATH="${env:HIP_PATH}"
|
||||
cmake -G "Unix Makefiles" -B build -S . -DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" -DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" -DGGML_HIP=ON -DCMAKE_BUILD_TYPE=Release -DAMDGPU_TARGETS=${{ matrix.gpu_target }} -DGGML_RPC=ON
|
||||
cmake -G "Unix Makefiles" -B build -S . `
|
||||
-DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" `
|
||||
-DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" `
|
||||
-DCMAKE_BUILD_TYPE=Release `
|
||||
-DAMDGPU_TARGETS=${{ matrix.gpu_target }} `
|
||||
-DGGML_HIP=ON `
|
||||
-DGGML_RPC=ON
|
||||
cmake --build build -j ${env:NUMBER_OF_PROCESSORS}
|
||||
md "build\bin\rocblas\library\"
|
||||
cp "${env:HIP_PATH}\bin\hipblas.dll" "build\bin\"
|
||||
@@ -1464,3 +1476,37 @@ jobs:
|
||||
# popd
|
||||
# emcmake cmake . -DCMAKE_BUILD_TYPE=${{ matrix.build }}
|
||||
# make
|
||||
|
||||
openEuler-latest-cmake-cann:
|
||||
if: ${{ github.event_name != 'pull_request' || contains(github.event.pull_request.labels.*.name, 'Ascend NPU') }}
|
||||
defaults:
|
||||
run:
|
||||
shell: bash -el {0}
|
||||
runs-on: ubuntu-24.04-arm
|
||||
strategy:
|
||||
matrix:
|
||||
cann:
|
||||
- '8.0.rc3.beta1-910b-openeuler22.03-py3.10'
|
||||
device:
|
||||
- 'ascend910b3'
|
||||
build:
|
||||
- 'Release'
|
||||
container: ascendai/cann:${{ matrix.cann }}
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Dependencies
|
||||
run: |
|
||||
yum update -y
|
||||
yum install -y git gcc gcc-c++ make cmake
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
export LD_LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/lib64:${ASCEND_TOOLKIT_HOME}/$(uname -m)-linux/devlib/:${LD_LIBRARY_PATH}
|
||||
|
||||
cmake -S . -B build \
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build }} \
|
||||
-DGGML_CANN=on \
|
||||
-DSOC_TYPE=${{ matrix.device }}
|
||||
cmake --build build -j $(nproc)
|
||||
|
||||
3
.github/workflows/docker.yml
vendored
3
.github/workflows/docker.yml
vendored
@@ -28,10 +28,11 @@ jobs:
|
||||
push_to_registry:
|
||||
name: Push Docker image to Docker Hub
|
||||
|
||||
runs-on: ubuntu-latest
|
||||
runs-on: ubuntu-22.04
|
||||
env:
|
||||
COMMIT_SHA: ${{ github.sha }}
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
config:
|
||||
# Multi-stage build
|
||||
|
||||
@@ -50,6 +50,8 @@ endif()
|
||||
if (MSVC)
|
||||
add_compile_options("$<$<COMPILE_LANGUAGE:C>:/utf-8>")
|
||||
add_compile_options("$<$<COMPILE_LANGUAGE:CXX>:/utf-8>")
|
||||
add_compile_options("$<$<COMPILE_LANGUAGE:C>:/bigobj>")
|
||||
add_compile_options("$<$<COMPILE_LANGUAGE:CXX>:/bigobj>")
|
||||
endif()
|
||||
|
||||
#
|
||||
@@ -186,27 +188,14 @@ set(LLAMA_INCLUDE_INSTALL_DIR ${CMAKE_INSTALL_INCLUDEDIR} CACHE PATH "Location o
|
||||
set(LLAMA_LIB_INSTALL_DIR ${CMAKE_INSTALL_LIBDIR} CACHE PATH "Location of library files")
|
||||
set(LLAMA_BIN_INSTALL_DIR ${CMAKE_INSTALL_BINDIR} CACHE PATH "Location of binary files")
|
||||
|
||||
# At the moment some compile definitions are placed within the ggml/src
|
||||
# directory but not exported on the `ggml` target. This could be improved by
|
||||
# determining _precisely_ which defines are necessary for the llama-config
|
||||
# package.
|
||||
#
|
||||
set(GGML_TRANSIENT_DEFINES)
|
||||
get_target_property(GGML_DIRECTORY ggml SOURCE_DIR)
|
||||
get_directory_property(GGML_DIR_DEFINES DIRECTORY ${GGML_DIRECTORY} COMPILE_DEFINITIONS)
|
||||
if (GGML_DIR_DEFINES)
|
||||
list(APPEND GGML_TRANSIENT_DEFINES ${GGML_DIR_DEFINES})
|
||||
endif()
|
||||
get_target_property(GGML_TARGET_DEFINES ggml COMPILE_DEFINITIONS)
|
||||
if (GGML_TARGET_DEFINES)
|
||||
list(APPEND GGML_TRANSIENT_DEFINES ${GGML_TARGET_DEFINES})
|
||||
endif()
|
||||
get_target_property(GGML_LINK_LIBRARIES ggml LINK_LIBRARIES)
|
||||
# all public headers
|
||||
set(LLAMA_PUBLIC_HEADERS
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/include/llama.h
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/include/llama-cpp.h)
|
||||
set_target_properties(llama PROPERTIES PUBLIC_HEADER "${LLAMA_PUBLIC_HEADERS}")
|
||||
|
||||
set_target_properties(llama
|
||||
PROPERTIES
|
||||
PUBLIC_HEADER "${LLAMA_PUBLIC_HEADERS}")
|
||||
|
||||
install(TARGETS llama LIBRARY PUBLIC_HEADER)
|
||||
|
||||
configure_package_config_file(
|
||||
|
||||
@@ -16,6 +16,7 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
|
||||
|
||||
## Hot topics
|
||||
|
||||
- **How to use [MTLResidencySet](https://developer.apple.com/documentation/metal/mtlresidencyset?language=objc) to keep the GPU memory active?** https://github.com/ggerganov/llama.cpp/pull/11427
|
||||
- **VS Code extension for FIM completions:** https://github.com/ggml-org/llama.vscode
|
||||
- Vim/Neovim plugin for FIM completions: https://github.com/ggml-org/llama.vim
|
||||
- Introducing GGUF-my-LoRA https://github.com/ggerganov/llama.cpp/discussions/10123
|
||||
|
||||
@@ -3,159 +3,13 @@ set(LLAMA_BUILD_COMMIT @LLAMA_BUILD_COMMIT@)
|
||||
set(LLAMA_BUILD_NUMBER @LLAMA_BUILD_NUMBER@)
|
||||
set(LLAMA_SHARED_LIB @BUILD_SHARED_LIBS@)
|
||||
|
||||
set(GGML_STATIC @GGML_STATIC@)
|
||||
set(GGML_NATIVE @GGML_NATIVE@)
|
||||
set(GGML_LTO @GGML_LTO@)
|
||||
set(GGML_CCACHE @GGML_CCACHE@)
|
||||
set(GGML_AVX @GGML_AVX@)
|
||||
set(GGML_AVX2 @GGML_AVX2@)
|
||||
set(GGML_AVX512 @GGML_AVX512@)
|
||||
set(GGML_AVX512_VBMI @GGML_AVX512_VBMI@)
|
||||
set(GGML_AVX512_VNNI @GGML_AVX512_VNNI@)
|
||||
set(GGML_AVX512_BF16 @GGML_AVX512_BF16@)
|
||||
set(GGML_AMX_TILE @GGML_AMX_TILE@)
|
||||
set(GGML_AMX_INT8 @GGML_AMX_INT8@)
|
||||
set(GGML_AMX_BF16 @GGML_AMX_BF16@)
|
||||
set(GGML_FMA @GGML_FMA@)
|
||||
set(GGML_LASX @GGML_LASX@)
|
||||
set(GGML_LSX @GGML_LSX@)
|
||||
set(GGML_RVV @GGML_RVV@)
|
||||
set(GGML_SVE @GGML_SVE@)
|
||||
|
||||
set(GGML_ACCELERATE @GGML_ACCELERATE@)
|
||||
set(GGML_OPENMP @GGML_OPENMP@)
|
||||
set(GGML_CPU_HBM @GGML_CPU_HBM@)
|
||||
set(GGML_BLAS_VENDOR @GGML_BLAS_VENDOR@)
|
||||
|
||||
set(GGML_CUDA_FORCE_MMQ @GGML_CUDA_FORCE_MMQ@)
|
||||
set(GGML_CUDA_FORCE_CUBLAS @GGML_CUDA_FORCE_CUBLAS@)
|
||||
set(GGML_CUDA_F16 @GGML_CUDA_F16@)
|
||||
set(GGML_CUDA_PEER_MAX_BATCH_SIZE @GGML_CUDA_PEER_MAX_BATCH_SIZE@)
|
||||
set(GGML_CUDA_NO_PEER_COPY @GGML_CUDA_NO_PEER_COPY@)
|
||||
set(GGML_CUDA_NO_VMM @GGML_CUDA_NO_VMM@)
|
||||
set(GGML_CUDA_FA_ALL_QUANTS @GGML_CUDA_FA_ALL_QUANTS@)
|
||||
set(GGML_CUDA_GRAPHS @GGML_CUDA_GRAPHS@)
|
||||
|
||||
set(GGML_HIP_UMA @GGML_HIP_UMA@)
|
||||
|
||||
set(GGML_VULKAN_CHECK_RESULTS @GGML_VULKAN_CHECK_RESULTS@)
|
||||
set(GGML_VULKAN_DEBUG @GGML_VULKAN_DEBUG@)
|
||||
set(GGML_VULKAN_MEMORY_DEBUG @GGML_VULKAN_MEMORY_DEBUG@)
|
||||
set(GGML_VULKAN_SHADER_DEBUG_INFO @GGML_VULKAN_SHADER_DEBUG_INFO@)
|
||||
set(GGML_VULKAN_PERF @GGML_VULKAN_PERF@)
|
||||
set(GGML_VULKAN_VALIDATE @GGML_VULKAN_VALIDATE@)
|
||||
set(GGML_VULKAN_RUN_TESTS @GGML_VULKAN_RUN_TESTS@)
|
||||
|
||||
set(GGML_METAL_USE_BF16 @GGML_METAL_USE_BF16@)
|
||||
set(GGML_METAL_NDEBUG @GGML_METAL_NDEBUG@)
|
||||
set(GGML_METAL_SHADER_DEBUG @GGML_METAL_SHADER_DEBUG@)
|
||||
set(GGML_METAL_EMBED_LIBRARY @GGML_METAL_EMBED_LIBRARY@)
|
||||
set(GGML_METAL_MACOSX_VERSION_MIN @GGML_METAL_MACOSX_VERSION_MIN@)
|
||||
set(GGML_METAL_STD @GGML_METAL_STD@)
|
||||
|
||||
set(GGML_SYCL_F16 @GGML_SYCL_F16@)
|
||||
set(GGML_SYCL_TARGET @GGML_SYCL_TARGET@)
|
||||
set(GGML_SYCL_DEVICE_ARCH @GGML_SYCL_DEVICE_ARCH@)
|
||||
|
||||
|
||||
@PACKAGE_INIT@
|
||||
|
||||
set_and_check(LLAMA_INCLUDE_DIR "@PACKAGE_LLAMA_INCLUDE_INSTALL_DIR@")
|
||||
set_and_check(LLAMA_LIB_DIR "@PACKAGE_LLAMA_LIB_INSTALL_DIR@")
|
||||
set_and_check(LLAMA_BIN_DIR "@PACKAGE_LLAMA_BIN_INSTALL_DIR@")
|
||||
|
||||
find_package(Threads REQUIRED)
|
||||
|
||||
set(_llama_transient_defines "@GGML_TRANSIENT_DEFINES@")
|
||||
set(_llama_link_deps "")
|
||||
set(_llama_link_opts "")
|
||||
foreach(_ggml_lib ggml ggml-base)
|
||||
string(REPLACE "-" "_" _ggml_lib_var "${_ggml_lib}_LIBRARY")
|
||||
find_library(${_ggml_lib_var} ${_ggml_lib}
|
||||
REQUIRED
|
||||
HINTS ${LLAMA_LIB_DIR}
|
||||
NO_CMAKE_FIND_ROOT_PATH
|
||||
)
|
||||
list(APPEND _llama_link_deps "${${_ggml_lib_var}}")
|
||||
message(STATUS "Found ${${_ggml_lib_var}}")
|
||||
endforeach()
|
||||
|
||||
foreach(backend amx blas cann cpu cuda hip kompute metal musa rpc sycl vulkan)
|
||||
string(TOUPPER "GGML_${backend}" backend_id)
|
||||
set(_ggml_lib "ggml-${backend}")
|
||||
string(REPLACE "-" "_" _ggml_lib_var "${_ggml_lib}_LIBRARY")
|
||||
|
||||
find_library(${_ggml_lib_var} ${_ggml_lib}
|
||||
HINTS ${LLAMA_LIB_DIR}
|
||||
NO_CMAKE_FIND_ROOT_PATH
|
||||
)
|
||||
if(${_ggml_lib_var})
|
||||
list(APPEND _llama_link_deps "${${_ggml_lib_var}}")
|
||||
set(${backend_id} ON)
|
||||
message(STATUS "Found backend ${${_ggml_lib_var}}")
|
||||
else()
|
||||
set(${backend_id} OFF)
|
||||
endif()
|
||||
endforeach()
|
||||
|
||||
if (NOT LLAMA_SHARED_LIB)
|
||||
if (APPLE AND GGML_ACCELERATE)
|
||||
find_library(ACCELERATE_FRAMEWORK Accelerate REQUIRED)
|
||||
list(APPEND _llama_link_deps ${ACCELERATE_FRAMEWORK})
|
||||
endif()
|
||||
|
||||
if (GGML_OPENMP)
|
||||
find_package(OpenMP REQUIRED)
|
||||
list(APPEND _llama_link_deps OpenMP::OpenMP_C OpenMP::OpenMP_CXX)
|
||||
endif()
|
||||
|
||||
if (GGML_CPU_HBM)
|
||||
find_library(memkind memkind REQUIRED)
|
||||
list(APPEND _llama_link_deps memkind)
|
||||
endif()
|
||||
|
||||
if (GGML_BLAS)
|
||||
find_package(BLAS REQUIRED)
|
||||
list(APPEND _llama_link_deps ${BLAS_LIBRARIES})
|
||||
list(APPEND _llama_link_opts ${BLAS_LINKER_FLAGS})
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA)
|
||||
find_package(CUDAToolkit REQUIRED)
|
||||
endif()
|
||||
|
||||
if (GGML_METAL)
|
||||
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
|
||||
find_library(METAL_FRAMEWORK Metal REQUIRED)
|
||||
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
|
||||
list(APPEND _llama_link_deps ${FOUNDATION_LIBRARY}
|
||||
${METAL_FRAMEWORK} ${METALKIT_FRAMEWORK})
|
||||
endif()
|
||||
|
||||
if (GGML_VULKAN)
|
||||
find_package(Vulkan REQUIRED)
|
||||
list(APPEND _llama_link_deps Vulkan::Vulkan)
|
||||
endif()
|
||||
|
||||
if (GGML_HIP)
|
||||
find_package(hip REQUIRED)
|
||||
find_package(hipblas REQUIRED)
|
||||
find_package(rocblas REQUIRED)
|
||||
list(APPEND _llama_link_deps hip::host roc::rocblas roc::hipblas)
|
||||
endif()
|
||||
|
||||
if (GGML_SYCL)
|
||||
find_package(DNNL)
|
||||
if (${DNNL_FOUND} AND GGML_SYCL_TARGET STREQUAL "INTEL")
|
||||
list(APPEND _llama_link_deps DNNL::dnnl)
|
||||
endif()
|
||||
if (WIN32)
|
||||
find_package(IntelSYCL REQUIRED)
|
||||
find_package(MKL REQUIRED)
|
||||
list(APPEND _llama_link_deps IntelSYCL::SYCL_CXX MKL::MKL MKL::MKL_SYCL)
|
||||
endif()
|
||||
endif()
|
||||
endif()
|
||||
find_package(ggml REQUIRED HINTS ${LLAMA_LIB_DIR}/cmake)
|
||||
|
||||
find_library(llama_LIBRARY llama
|
||||
REQUIRED
|
||||
@@ -167,12 +21,10 @@ add_library(llama UNKNOWN IMPORTED)
|
||||
set_target_properties(llama
|
||||
PROPERTIES
|
||||
INTERFACE_INCLUDE_DIRECTORIES "${LLAMA_INCLUDE_DIR}"
|
||||
INTERFACE_LINK_LIBRARIES "${_llama_link_deps}"
|
||||
INTERFACE_LINK_OPTIONS "${_llama_link_opts}"
|
||||
INTERFACE_COMPILE_DEFINITIONS "${_llama_transient_defines}"
|
||||
INTERFACE_LINK_LIBRARIES "ggml::ggml;ggml::ggml-base;"
|
||||
IMPORTED_LINK_INTERFACE_LANGUAGES "CXX"
|
||||
IMPORTED_LOCATION "${llama_LIBRARY}"
|
||||
INTERFACE_COMPILE_FEATURES cxx_std_11
|
||||
POSITION_INDEPENDENT_CODE ON )
|
||||
INTERFACE_COMPILE_FEATURES c_std_90
|
||||
POSITION_INDEPENDENT_CODE ON)
|
||||
|
||||
check_required_components(Llama)
|
||||
|
||||
@@ -877,7 +877,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
[](common_params & params) {
|
||||
params.warmup = false;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}));
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_EMBEDDING}));
|
||||
add_opt(common_arg(
|
||||
{"--spm-infill"},
|
||||
string_format(
|
||||
|
||||
@@ -1,32 +0,0 @@
|
||||
cmake_minimum_required(VERSION 3.12)
|
||||
project("llama-cli-cmake-pkg" C CXX)
|
||||
set(TARGET llama-cli-cmake-pkg)
|
||||
|
||||
find_package(Llama 0.0.1 REQUIRED)
|
||||
|
||||
# Bake common functionality in with target. Because applications
|
||||
# using the relocatable Llama package should be outside of the
|
||||
# source tree, llama-cli-cmake-pkg pretends the dependencies are built-in.
|
||||
set(_common_path "${CMAKE_CURRENT_LIST_DIR}/../../common")
|
||||
add_library(common OBJECT)
|
||||
file(GLOB _common_files
|
||||
"${_common_path}/*.h"
|
||||
"${_common_path}/*.cpp"
|
||||
)
|
||||
target_sources(common PRIVATE ${_common_files})
|
||||
|
||||
# If the common project was part of "llama-cli-cmake-pkg" the transient
|
||||
# defines would automatically be attached. Because the common func-
|
||||
# tionality is separate, but dependent upon the defines, it must be
|
||||
# explicitly extracted from the "llama" target.
|
||||
#
|
||||
get_target_property(_llama_transient_defines llama
|
||||
INTERFACE_COMPILE_DEFINITIONS)
|
||||
|
||||
target_compile_definitions(common PRIVATE "${_llama_transient_defines}")
|
||||
|
||||
add_executable(${TARGET} ${CMAKE_CURRENT_LIST_DIR}/../main/main.cpp)
|
||||
target_include_directories(${TARGET} PRIVATE ${_common_path})
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_17)
|
||||
@@ -1,31 +0,0 @@
|
||||
# llama.cpp/example/main-cmake-pkg
|
||||
|
||||
This program builds [llama-cli](../main) using a relocatable CMake package. It serves as an example of using the `find_package()` CMake command to conveniently include [llama.cpp](https://github.com/ggerganov/llama.cpp) in projects which live outside of the source tree.
|
||||
|
||||
## Building
|
||||
|
||||
Because this example is "outside of the source tree", it is important to first build/install llama.cpp using CMake. An example is provided here, but please see the [llama.cpp build instructions](../..) for more detailed build instructions.
|
||||
|
||||
### Considerations
|
||||
|
||||
When hardware acceleration libraries are used (e.g. CUDA, Metal, etc.), CMake must be able to locate the associated CMake package.
|
||||
|
||||
### Build llama.cpp and install to C:\LlamaCPP directory
|
||||
|
||||
```cmd
|
||||
git clone https://github.com/ggerganov/llama.cpp
|
||||
cd llama.cpp
|
||||
cmake -B build -DBUILD_SHARED_LIBS=OFF -G "Visual Studio 17 2022" -A x64
|
||||
cmake --build build --config Release
|
||||
cmake --install build --prefix C:/LlamaCPP
|
||||
```
|
||||
|
||||
### Build llama-cli-cmake-pkg
|
||||
|
||||
|
||||
```cmd
|
||||
cd ..\examples\main-cmake-pkg
|
||||
cmake -B build -DBUILD_SHARED_LIBS=OFF -DCMAKE_PREFIX_PATH="C:/LlamaCPP/lib/cmake/Llama" -G "Visual Studio 17 2022" -A x64
|
||||
cmake --build build --config Release
|
||||
cmake --install build --prefix C:/MyLlamaApp
|
||||
```
|
||||
@@ -181,6 +181,10 @@ class Opt {
|
||||
}
|
||||
}
|
||||
|
||||
if (model_.empty()){
|
||||
return 1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -319,6 +323,10 @@ class HttpClient {
|
||||
public:
|
||||
int init(const std::string & url, const std::vector<std::string> & headers, const std::string & output_file,
|
||||
const bool progress, std::string * response_str = nullptr) {
|
||||
if (std::filesystem::exists(output_file)) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
std::string output_file_partial;
|
||||
curl = curl_easy_init();
|
||||
if (!curl) {
|
||||
@@ -346,7 +354,11 @@ class HttpClient {
|
||||
data.file_size = set_resume_point(output_file_partial);
|
||||
set_progress_options(progress, data);
|
||||
set_headers(headers);
|
||||
perform(url);
|
||||
CURLcode res = perform(url);
|
||||
if (res != CURLE_OK){
|
||||
printe("Fetching resource '%s' failed: %s\n", url.c_str(), curl_easy_strerror(res));
|
||||
return 1;
|
||||
}
|
||||
if (!output_file.empty()) {
|
||||
std::filesystem::rename(output_file_partial, output_file);
|
||||
}
|
||||
@@ -411,16 +423,12 @@ class HttpClient {
|
||||
}
|
||||
}
|
||||
|
||||
void perform(const std::string & url) {
|
||||
CURLcode res;
|
||||
CURLcode perform(const std::string & url) {
|
||||
curl_easy_setopt(curl, CURLOPT_URL, url.c_str());
|
||||
curl_easy_setopt(curl, CURLOPT_FOLLOWLOCATION, 1L);
|
||||
curl_easy_setopt(curl, CURLOPT_DEFAULT_PROTOCOL, "https");
|
||||
curl_easy_setopt(curl, CURLOPT_FAILONERROR, 1L);
|
||||
res = curl_easy_perform(curl);
|
||||
if (res != CURLE_OK) {
|
||||
printe("curl_easy_perform() failed: %s\n", curl_easy_strerror(res));
|
||||
}
|
||||
return curl_easy_perform(curl);
|
||||
}
|
||||
|
||||
static std::string human_readable_time(double seconds) {
|
||||
@@ -558,13 +566,14 @@ class LlamaData {
|
||||
}
|
||||
|
||||
sampler = initialize_sampler(opt);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
private:
|
||||
#ifdef LLAMA_USE_CURL
|
||||
int download(const std::string & url, const std::vector<std::string> & headers, const std::string & output_file,
|
||||
const bool progress, std::string * response_str = nullptr) {
|
||||
int download(const std::string & url, const std::string & output_file, const bool progress,
|
||||
const std::vector<std::string> & headers = {}, std::string * response_str = nullptr) {
|
||||
HttpClient http;
|
||||
if (http.init(url, headers, output_file, progress, response_str)) {
|
||||
return 1;
|
||||
@@ -573,48 +582,85 @@ class LlamaData {
|
||||
return 0;
|
||||
}
|
||||
#else
|
||||
int download(const std::string &, const std::vector<std::string> &, const std::string &, const bool,
|
||||
int download(const std::string &, const std::string &, const bool, const std::vector<std::string> & = {},
|
||||
std::string * = nullptr) {
|
||||
printe("%s: llama.cpp built without libcurl, downloading from an url not supported.\n", __func__);
|
||||
|
||||
return 1;
|
||||
}
|
||||
#endif
|
||||
|
||||
int huggingface_dl(const std::string & model, const std::vector<std::string> headers, const std::string & bn) {
|
||||
// Find the second occurrence of '/' after protocol string
|
||||
size_t pos = model.find('/');
|
||||
pos = model.find('/', pos + 1);
|
||||
if (pos == std::string::npos) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
const std::string hfr = model.substr(0, pos);
|
||||
const std::string hff = model.substr(pos + 1);
|
||||
const std::string url = "https://huggingface.co/" + hfr + "/resolve/main/" + hff;
|
||||
return download(url, headers, bn, true);
|
||||
}
|
||||
|
||||
int ollama_dl(std::string & model, const std::vector<std::string> headers, const std::string & bn) {
|
||||
if (model.find('/') == std::string::npos) {
|
||||
model = "library/" + model;
|
||||
}
|
||||
|
||||
std::string model_tag = "latest";
|
||||
size_t colon_pos = model.find(':');
|
||||
// Helper function to handle model tag extraction and URL construction
|
||||
std::pair<std::string, std::string> extract_model_and_tag(std::string & model, const std::string & base_url) {
|
||||
std::string model_tag = "latest";
|
||||
const size_t colon_pos = model.find(':');
|
||||
if (colon_pos != std::string::npos) {
|
||||
model_tag = model.substr(colon_pos + 1);
|
||||
model = model.substr(0, colon_pos);
|
||||
}
|
||||
|
||||
std::string manifest_url = "https://registry.ollama.ai/v2/" + model + "/manifests/" + model_tag;
|
||||
std::string url = base_url + model + "/manifests/" + model_tag;
|
||||
|
||||
return { model, url };
|
||||
}
|
||||
|
||||
// Helper function to download and parse the manifest
|
||||
int download_and_parse_manifest(const std::string & url, const std::vector<std::string> & headers,
|
||||
nlohmann::json & manifest) {
|
||||
std::string manifest_str;
|
||||
const int ret = download(manifest_url, headers, "", false, &manifest_str);
|
||||
int ret = download(url, "", false, headers, &manifest_str);
|
||||
if (ret) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
nlohmann::json manifest = nlohmann::json::parse(manifest_str);
|
||||
std::string layer;
|
||||
manifest = nlohmann::json::parse(manifest_str);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int huggingface_dl(std::string & model, const std::string & bn) {
|
||||
// Find the second occurrence of '/' after protocol string
|
||||
size_t pos = model.find('/');
|
||||
pos = model.find('/', pos + 1);
|
||||
std::string hfr, hff;
|
||||
std::vector<std::string> headers = { "User-Agent: llama-cpp", "Accept: application/json" };
|
||||
std::string url;
|
||||
|
||||
if (pos == std::string::npos) {
|
||||
auto [model_name, manifest_url] = extract_model_and_tag(model, "https://huggingface.co/v2/");
|
||||
hfr = model_name;
|
||||
|
||||
nlohmann::json manifest;
|
||||
int ret = download_and_parse_manifest(manifest_url, headers, manifest);
|
||||
if (ret) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
hff = manifest["ggufFile"]["rfilename"];
|
||||
} else {
|
||||
hfr = model.substr(0, pos);
|
||||
hff = model.substr(pos + 1);
|
||||
}
|
||||
|
||||
url = "https://huggingface.co/" + hfr + "/resolve/main/" + hff;
|
||||
|
||||
return download(url, bn, true, headers);
|
||||
}
|
||||
|
||||
int ollama_dl(std::string & model, const std::string & bn) {
|
||||
const std::vector<std::string> headers = { "Accept: application/vnd.docker.distribution.manifest.v2+json" };
|
||||
if (model.find('/') == std::string::npos) {
|
||||
model = "library/" + model;
|
||||
}
|
||||
|
||||
auto [model_name, manifest_url] = extract_model_and_tag(model, "https://registry.ollama.ai/v2/");
|
||||
nlohmann::json manifest;
|
||||
int ret = download_and_parse_manifest(manifest_url, {}, manifest);
|
||||
if (ret) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
std::string layer;
|
||||
for (const auto & l : manifest["layers"]) {
|
||||
if (l["mediaType"] == "application/vnd.ollama.image.model") {
|
||||
layer = l["digest"];
|
||||
@@ -622,8 +668,34 @@ class LlamaData {
|
||||
}
|
||||
}
|
||||
|
||||
std::string blob_url = "https://registry.ollama.ai/v2/" + model + "/blobs/" + layer;
|
||||
return download(blob_url, headers, bn, true);
|
||||
std::string blob_url = "https://registry.ollama.ai/v2/" + model_name + "/blobs/" + layer;
|
||||
|
||||
return download(blob_url, bn, true, headers);
|
||||
}
|
||||
|
||||
int github_dl(const std::string & model, const std::string & bn) {
|
||||
std::string repository = model;
|
||||
std::string branch = "main";
|
||||
const size_t at_pos = model.find('@');
|
||||
if (at_pos != std::string::npos) {
|
||||
repository = model.substr(0, at_pos);
|
||||
branch = model.substr(at_pos + 1);
|
||||
}
|
||||
|
||||
const std::vector<std::string> repo_parts = string_split(repository, "/");
|
||||
if (repo_parts.size() < 3) {
|
||||
printe("Invalid GitHub repository format\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
const std::string & org = repo_parts[0];
|
||||
const std::string & project = repo_parts[1];
|
||||
std::string url = "https://raw.githubusercontent.com/" + org + "/" + project + "/" + branch;
|
||||
for (size_t i = 2; i < repo_parts.size(); ++i) {
|
||||
url += "/" + repo_parts[i];
|
||||
}
|
||||
|
||||
return download(url, bn, true);
|
||||
}
|
||||
|
||||
std::string basename(const std::string & path) {
|
||||
@@ -653,22 +725,23 @@ class LlamaData {
|
||||
return ret;
|
||||
}
|
||||
|
||||
const std::string bn = basename(model_);
|
||||
const std::vector<std::string> headers = { "--header",
|
||||
"Accept: application/vnd.docker.distribution.manifest.v2+json" };
|
||||
if (string_starts_with(model_, "hf://") || string_starts_with(model_, "huggingface://")) {
|
||||
rm_until_substring(model_, "://");
|
||||
ret = huggingface_dl(model_, headers, bn);
|
||||
} else if (string_starts_with(model_, "hf.co/")) {
|
||||
const std::string bn = basename(model_);
|
||||
if (string_starts_with(model_, "hf://") || string_starts_with(model_, "huggingface://") ||
|
||||
string_starts_with(model_, "hf.co/")) {
|
||||
rm_until_substring(model_, "hf.co/");
|
||||
ret = huggingface_dl(model_, headers, bn);
|
||||
} else if (string_starts_with(model_, "ollama://")) {
|
||||
rm_until_substring(model_, "://");
|
||||
ret = ollama_dl(model_, headers, bn);
|
||||
} else if (string_starts_with(model_, "https://")) {
|
||||
ret = download(model_, headers, bn, true);
|
||||
} else {
|
||||
ret = ollama_dl(model_, headers, bn);
|
||||
ret = huggingface_dl(model_, bn);
|
||||
} else if ((string_starts_with(model_, "https://") || string_starts_with(model_, "http://")) &&
|
||||
!string_starts_with(model_, "https://ollama.com/library/")) {
|
||||
ret = download(model_, bn, true);
|
||||
} else if (string_starts_with(model_, "github:") || string_starts_with(model_, "github://")) {
|
||||
rm_until_substring(model_, "github:");
|
||||
rm_until_substring(model_, "://");
|
||||
ret = github_dl(model_, bn);
|
||||
} else { // ollama:// or nothing
|
||||
rm_until_substring(model_, "ollama.com/library/");
|
||||
rm_until_substring(model_, "://");
|
||||
ret = ollama_dl(model_, bn);
|
||||
}
|
||||
|
||||
model_ = bn;
|
||||
|
||||
@@ -1427,16 +1427,16 @@ struct server_queue {
|
||||
int post(server_task task, bool front = false) {
|
||||
std::unique_lock<std::mutex> lock(mutex_tasks);
|
||||
GGML_ASSERT(task.id != -1);
|
||||
// if this is cancel task make sure to clean up pending tasks
|
||||
if (task.type == SERVER_TASK_TYPE_CANCEL) {
|
||||
cleanup_pending_task(task.id_target);
|
||||
}
|
||||
QUE_DBG("new task, id = %d, front = %d\n", task.id, front);
|
||||
if (front) {
|
||||
queue_tasks.push_front(std::move(task));
|
||||
} else {
|
||||
queue_tasks.push_back(std::move(task));
|
||||
}
|
||||
// if this is cancel task make sure to clean up pending tasks
|
||||
if (task.type == SERVER_TASK_TYPE_CANCEL) {
|
||||
cleanup_pending_task(task.id_target);
|
||||
}
|
||||
condition_tasks.notify_one();
|
||||
return task.id;
|
||||
}
|
||||
@@ -1448,16 +1448,16 @@ struct server_queue {
|
||||
if (task.id == -1) {
|
||||
task.id = id++;
|
||||
}
|
||||
// if this is cancel task make sure to clean up pending tasks
|
||||
if (task.type == SERVER_TASK_TYPE_CANCEL) {
|
||||
cleanup_pending_task(task.id_target);
|
||||
}
|
||||
QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front);
|
||||
if (front) {
|
||||
queue_tasks.push_front(std::move(task));
|
||||
} else {
|
||||
queue_tasks.push_back(std::move(task));
|
||||
}
|
||||
// if this is cancel task make sure to clean up pending tasks
|
||||
if (task.type == SERVER_TASK_TYPE_CANCEL) {
|
||||
cleanup_pending_task(task.id_target);
|
||||
}
|
||||
}
|
||||
condition_tasks.notify_one();
|
||||
return 0;
|
||||
@@ -1554,10 +1554,10 @@ struct server_queue {
|
||||
}
|
||||
|
||||
private:
|
||||
void cleanup_pending_task(int id_task) {
|
||||
void cleanup_pending_task(int id_target) {
|
||||
// no need lock because this is called exclusively by post()
|
||||
auto rm_func = [id_task](const server_task & task) {
|
||||
return task.id_target == id_task;
|
||||
auto rm_func = [id_target](const server_task & task) {
|
||||
return task.id_target == id_target;
|
||||
};
|
||||
queue_tasks.erase(
|
||||
std::remove_if(queue_tasks.begin(), queue_tasks.end(), rm_func),
|
||||
|
||||
@@ -87,7 +87,7 @@ def test_completion_stream_vs_non_stream():
|
||||
assert content_stream == res_non_stream.body["content"]
|
||||
|
||||
|
||||
def test_completion_stream_with_openai_library():
|
||||
def test_completion_with_openai_library():
|
||||
global server
|
||||
server.start()
|
||||
client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}/v1")
|
||||
@@ -102,7 +102,7 @@ def test_completion_stream_with_openai_library():
|
||||
assert match_regex("(going|bed)+", res.choices[0].text)
|
||||
|
||||
|
||||
def test_completion_with_openai_library():
|
||||
def test_completion_stream_with_openai_library():
|
||||
global server
|
||||
server.start()
|
||||
client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}/v1")
|
||||
|
||||
11
examples/simple-cmake-pkg/CMakeLists.txt
Normal file
11
examples/simple-cmake-pkg/CMakeLists.txt
Normal file
@@ -0,0 +1,11 @@
|
||||
cmake_minimum_required(VERSION 3.12)
|
||||
project(llama-simple-cmake-pkg)
|
||||
|
||||
set(TARGET llama-simple-cmake-pkg)
|
||||
|
||||
find_package(Llama REQUIRED)
|
||||
|
||||
add_executable(${TARGET} ${CMAKE_CURRENT_LIST_DIR}/../simple/simple.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE llama ggml::all ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_17)
|
||||
34
examples/simple-cmake-pkg/README.md
Normal file
34
examples/simple-cmake-pkg/README.md
Normal file
@@ -0,0 +1,34 @@
|
||||
# llama.cpp/example/simple-cmake-pkg
|
||||
|
||||
This program builds [simple](../simple) using a relocatable CMake package. It serves as an example of using the `find_package()` CMake command to conveniently include [llama.cpp](https://github.com/ggerganov/llama.cpp) in projects which live outside of the source tree.
|
||||
|
||||
## Building
|
||||
|
||||
Because this example is "outside of the source tree", it is important to first build/install llama.cpp using CMake. An example is provided here, but please see the [llama.cpp build instructions](../..) for more detailed build instructions.
|
||||
|
||||
### Considerations
|
||||
|
||||
When hardware acceleration libraries are used (e.g. CUDA, Metal, Vulkan, etc.), the appropriate dependencies will be searched for automatically. So, for example, when finding a package
|
||||
|
||||
### Build llama.cpp and install to llama.cpp/inst
|
||||
|
||||
```sh
|
||||
git clone https://github.com/ggerganov/llama.cpp
|
||||
cd llama.cpp
|
||||
cmake -S . -B build
|
||||
cmake --build build
|
||||
cmake --install build --prefix inst
|
||||
|
||||
### Build simple-cmake-pkg
|
||||
|
||||
```sh
|
||||
cd examples/simple-cmake-pkg
|
||||
cmake -S . -B build -DCMAKE_PREFIX_PATH=../../inst/lib/cmake
|
||||
cmake --build build
|
||||
```
|
||||
|
||||
### Run simple-cmake-pkg
|
||||
|
||||
```sh
|
||||
./build/llama-simple-cmake-pkg -m ./models/llama-7b-v2/ggml-model-f16.gguf "Hello my name is"
|
||||
```
|
||||
@@ -154,6 +154,8 @@ option(GGML_CUDA_FA_ALL_QUANTS "ggml: compile all quants for FlashA
|
||||
option(GGML_CUDA_GRAPHS "ggml: use CUDA graphs (llama.cpp only)" ${GGML_CUDA_GRAPHS_DEFAULT})
|
||||
|
||||
option(GGML_HIP "ggml: use HIP" OFF)
|
||||
option(GGML_HIP_GRAPHS "ggml: use HIP graph, experimental, slow" OFF)
|
||||
option(GGML_HIP_NO_VMM "ggml: do not try to use HIP VMM" ON)
|
||||
option(GGML_HIP_UMA "ggml: use HIP unified memory architecture" OFF)
|
||||
option(GGML_VULKAN "ggml: use Vulkan" OFF)
|
||||
option(GGML_VULKAN_CHECK_RESULTS "ggml: run Vulkan op checks" OFF)
|
||||
@@ -265,3 +267,74 @@ if (GGML_STANDALONE)
|
||||
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/ggml.pc
|
||||
DESTINATION share/pkgconfig)
|
||||
endif()
|
||||
|
||||
#
|
||||
# Create CMake package
|
||||
#
|
||||
|
||||
# Generate version info based on git commit.
|
||||
|
||||
find_program(GIT_EXE NAMES git git.exe REQUIRED NO_CMAKE_FIND_ROOT_PATH)
|
||||
execute_process(COMMAND ${GIT_EXE} rev-list --count HEAD
|
||||
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
|
||||
OUTPUT_VARIABLE GGML_BUILD_NUMBER
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE
|
||||
)
|
||||
|
||||
if(GGML_BUILD_NUMBER EQUAL 1)
|
||||
message(WARNING "GGML build version fixed at 1 likely due to a shallow clone.")
|
||||
endif()
|
||||
|
||||
execute_process(COMMAND ${GIT_EXE} rev-parse --short HEAD
|
||||
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
|
||||
OUTPUT_VARIABLE GGML_BUILD_COMMIT
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE
|
||||
)
|
||||
|
||||
# Capture variables prefixed with GGML_.
|
||||
|
||||
set(variable_set_statements
|
||||
"
|
||||
####### Expanded from @GGML_VARIABLES_EXPANED@ by configure_package_config_file() #######
|
||||
####### Any changes to this file will be overwritten by the next CMake run #######
|
||||
|
||||
")
|
||||
|
||||
set(GGML_SHARED_LIB ${BUILD_SHARED_LIBS})
|
||||
|
||||
get_cmake_property(all_variables VARIABLES)
|
||||
foreach(variable_name IN LISTS all_variables)
|
||||
if(variable_name MATCHES "^GGML_")
|
||||
string(REPLACE ";" "\\;"
|
||||
variable_value "${${variable_name}}")
|
||||
|
||||
set(variable_set_statements
|
||||
"${variable_set_statements}set(${variable_name} \"${variable_value}\")\n")
|
||||
endif()
|
||||
endforeach()
|
||||
|
||||
set(GGML_VARIABLES_EXPANDED ${variable_set_statements})
|
||||
|
||||
# Create the CMake package and set install location.
|
||||
|
||||
set(GGML_INSTALL_VERSION 0.0.${GGML_BUILD_NUMBER})
|
||||
set(GGML_INCLUDE_INSTALL_DIR ${CMAKE_INSTALL_INCLUDEDIR} CACHE PATH "Location of header files")
|
||||
set(GGML_LIB_INSTALL_DIR ${CMAKE_INSTALL_LIBDIR} CACHE PATH "Location of library files")
|
||||
set(GGML_BIN_INSTALL_DIR ${CMAKE_INSTALL_BINDIR} CACHE PATH "Location of binary files")
|
||||
|
||||
configure_package_config_file(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/cmake/ggml-config.cmake.in
|
||||
${CMAKE_CURRENT_BINARY_DIR}/ggml-config.cmake
|
||||
INSTALL_DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/ggml
|
||||
PATH_VARS GGML_INCLUDE_INSTALL_DIR
|
||||
GGML_LIB_INSTALL_DIR
|
||||
GGML_BIN_INSTALL_DIR)
|
||||
|
||||
write_basic_package_version_file(
|
||||
${CMAKE_CURRENT_BINARY_DIR}/ggml-version.cmake
|
||||
VERSION ${GGML_INSTALL_VERSION}
|
||||
COMPATIBILITY SameMajorVersion)
|
||||
|
||||
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/ggml-config.cmake
|
||||
${CMAKE_CURRENT_BINARY_DIR}/ggml-version.cmake
|
||||
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/ggml)
|
||||
|
||||
147
ggml/cmake/ggml-config.cmake.in
Normal file
147
ggml/cmake/ggml-config.cmake.in
Normal file
@@ -0,0 +1,147 @@
|
||||
|
||||
@GGML_VARIABLES_EXPANDED@
|
||||
|
||||
@PACKAGE_INIT@
|
||||
|
||||
set_and_check(GGML_INCLUDE_DIR "@PACKAGE_GGML_INCLUDE_INSTALL_DIR@")
|
||||
set_and_check(GGML_LIB_DIR "@PACKAGE_GGML_LIB_INSTALL_DIR@")
|
||||
set_and_check(GGML_BIN_DIR "@PACKAGE_GGML_BIN_INSTALL_DIR@")
|
||||
|
||||
find_package(Threads REQUIRED)
|
||||
|
||||
find_library(GGML_LIBRARY ggml
|
||||
REQUIRED
|
||||
HINTS ${GGML_LIB_DIR}
|
||||
NO_CMAKE_FIND_ROOT_PATH)
|
||||
|
||||
add_library(ggml::ggml UNKNOWN IMPORTED)
|
||||
set_target_properties(ggml::ggml
|
||||
PROPERTIES
|
||||
IMPORTED_LOCATION "${GGML_LIBRARY}")
|
||||
|
||||
find_library(GGML_BASE_LIBRARY ggml-base
|
||||
REQUIRED
|
||||
HINTS ${GGML_LIB_DIR}
|
||||
NO_CMAKE_FIND_ROOT_PATH)
|
||||
|
||||
add_library(ggml::ggml-base UNKNOWN IMPORTED)
|
||||
set_target_properties(ggml::ggml-base
|
||||
PROPERTIES
|
||||
IMPORTED_LOCATION "${GGML_BASE_LIBRARY}")
|
||||
|
||||
if (NOT GGML_SHARED_LIB)
|
||||
if (APPLE AND GGML_ACCELERATE)
|
||||
find_library(ACCELERATE_FRAMEWORK Accelerate REQUIRED)
|
||||
list(APPEND GGML_CPU_INTERFACE_LINK_LIBRARIES ${ACCELERATE_FRAMEWORK})
|
||||
endif()
|
||||
|
||||
if (GGML_OPENMP)
|
||||
find_package(OpenMP REQUIRED)
|
||||
list(APPEND GGML_CPU_INTERFACE_LINK_LIBRARIES OpenMP::OpenMP_C OpenMP::OpenMP_CXX)
|
||||
endif()
|
||||
|
||||
if (GGML_CPU_HBM)
|
||||
find_library(memkind memkind REQUIRED)
|
||||
list(APPEND GGML_CPU_INTERFACE_LINK_LIBRARIES memkind)
|
||||
endif()
|
||||
|
||||
if (GGML_BLAS)
|
||||
find_package(BLAS REQUIRED)
|
||||
list(APPEND GGML_CPU_INTERFACE_LINK_LIBRARIES ${BLAS_LIBRARIES})
|
||||
list(APPEND GGML_CPU_INTERFACE_LINK_OPTIONS ${BLAS_LINKER_FLAGS})
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA)
|
||||
find_package(CUDAToolkit REQUIRED)
|
||||
endif()
|
||||
|
||||
if (GGML_METAL)
|
||||
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
|
||||
find_library(METAL_FRAMEWORK Metal REQUIRED)
|
||||
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
|
||||
|
||||
list(APPEND GGML_METAL_INTERFACE_LINK_LIBRARIES
|
||||
${FOUNDATION_LIBRARY} ${METAL_FRAMEWORK} ${METALKIT_FRAMEWORK})
|
||||
endif()
|
||||
|
||||
if (GGML_VULKAN)
|
||||
find_package(Vulkan REQUIRED)
|
||||
list(APPEND GGML_VULKAN_INTERFACE_LINK_LIBRARIES Vulkan::Vulkan)
|
||||
endif()
|
||||
|
||||
if (GGML_HIP)
|
||||
find_package(hip REQUIRED)
|
||||
find_package(hipblas REQUIRED)
|
||||
find_package(rocblas REQUIRED)
|
||||
list(APPEND GGML_HIP_INTERFACE_LINK_LIBRARIES hip::host roc::rocblas roc::hipblas)
|
||||
endif()
|
||||
|
||||
if (GGML_SYCL)
|
||||
find_package(DNNL)
|
||||
if (${DNNL_FOUND} AND GGML_SYCL_TARGET STREQUAL "INTEL")
|
||||
list(APPEND GGML_SYCL_INTERFACE_LINK_LIBRARIES DNNL::dnnl)
|
||||
endif()
|
||||
if (WIN32)
|
||||
find_package(IntelSYCL REQUIRED)
|
||||
find_package(MKL REQUIRED)
|
||||
list(APPEND GGML_SYCL_INTERFACE_LINK_LIBRARIES IntelSYCL::SYCL_CXX MKL::MKL MKL::MKL_SYCL)
|
||||
endif()
|
||||
endif()
|
||||
endif()
|
||||
|
||||
set(_ggml_all_targets "")
|
||||
foreach(_ggml_backend ${GGML_AVAILABLE_BACKENDS})
|
||||
string(REPLACE "-" "_" _ggml_backend_pfx "${_ggml_backend}")
|
||||
string(TOUPPER "${_ggml_backend_pfx}" _ggml_backend_pfx)
|
||||
|
||||
find_library(${_ggml_backend_pfx}_LIBRARY ${_ggml_backend}
|
||||
REQUIRED
|
||||
HINTS ${GGML_LIB_DIR}
|
||||
NO_CMAKE_FIND_ROOT_PATH)
|
||||
|
||||
message(STATUS "Found ${${_ggml_backend_pfx}_LIBRARY}")
|
||||
|
||||
add_library(ggml::${_ggml_backend} UNKNOWN IMPORTED)
|
||||
set_target_properties(ggml::${_ggml_backend}
|
||||
PROPERTIES
|
||||
INTERFACE_INCLUDE_DIRECTORIES "${GGML_INCLUDE_DIR}"
|
||||
IMPORTED_LINK_INTERFACE_LANGUAGES "CXX"
|
||||
IMPORTED_LOCATION "${${_ggml_backend_pfx}_LIBRARY}"
|
||||
INTERFACE_COMPILE_FEATURES c_std_90
|
||||
POSITION_INDEPENDENT_CODE ON)
|
||||
|
||||
string(REGEX MATCH "^ggml-cpu" is_cpu_variant "${_ggml_backend}")
|
||||
if(is_cpu_variant)
|
||||
list(APPEND GGML_CPU_INTERFACE_LINK_LIBRARIES "ggml::ggml" "ggml::ggml-base")
|
||||
set_target_properties(ggml::${_ggml_backend}
|
||||
PROPERTIES
|
||||
INTERFACE_LINK_LIBRARIES "${GGML_CPU_INTERFACE_LINK_LIBRARIES}")
|
||||
|
||||
if(GGML_CPU_INTERFACE_LINK_OPTIONS)
|
||||
set_target_properties(ggml::${_ggml_backend}
|
||||
PROPERTIES
|
||||
INTERFACE_LINK_OPTIONS "${GGML_CPU_INTERFACE_LINK_OPTIONS}")
|
||||
endif()
|
||||
|
||||
else()
|
||||
list(APPEND ${_ggml_backend_pfx}_INTERFACE_LINK_LIBRARIES "ggml::ggml" "ggml::ggml-base")
|
||||
set_target_properties(ggml::${_ggml_backend}
|
||||
PROPERTIES
|
||||
INTERFACE_LINK_LIBRARIES "${${_ggml_backend_pfx}_INTERFACE_LINK_LIBRARIES}")
|
||||
|
||||
if(${_ggml_backend_pfx}_INTERFACE_LINK_OPTIONS)
|
||||
set_target_properties(ggml::${_ggml_backend}
|
||||
PROPERTIES
|
||||
INTERFACE_LINK_OPTIONS "${${_ggml_backend_pfx}_INTERFACE_LINK_OPTIONS}")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
list(APPEND _ggml_all_targets ggml::${_ggml_backend})
|
||||
endforeach()
|
||||
|
||||
add_library(ggml::all INTERFACE IMPORTED)
|
||||
set_target_properties(ggml::all
|
||||
PROPERTIES
|
||||
INTERFACE_LINK_LIBRARIES "${_ggml_all_targets}")
|
||||
|
||||
check_required_components(ggml)
|
||||
@@ -250,6 +250,17 @@ function(ggml_add_backend_library backend)
|
||||
target_compile_definitions(${backend} PRIVATE GGML_BACKEND_BUILD)
|
||||
target_compile_definitions(${backend} PUBLIC GGML_BACKEND_SHARED)
|
||||
endif()
|
||||
|
||||
if(NOT GGML_AVAILABLE_BACKENDS)
|
||||
set(GGML_AVAILABLE_BACKENDS "${backend}"
|
||||
CACHE INTERNAL "List of backends for cmake package")
|
||||
else()
|
||||
list(FIND GGML_AVAILABLE_BACKENDS "${backend}" has_backend)
|
||||
if(has_backend EQUAL -1)
|
||||
set(GGML_AVAILABLE_BACKENDS "${GGML_AVAILABLE_BACKENDS};${backend}"
|
||||
CACHE INTERNAL "List of backends for cmake package")
|
||||
endif()
|
||||
endif()
|
||||
endfunction()
|
||||
|
||||
function(ggml_add_backend backend)
|
||||
@@ -297,7 +308,7 @@ if (GGML_CPU_ALL_VARIANTS)
|
||||
# MSVC doesn't support AMX
|
||||
ggml_add_cpu_backend_variant(sapphirerapids AVX F16C AVX2 FMA AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16 AMX_TILE AMX_INT8)
|
||||
endif()
|
||||
else ()
|
||||
elseif (GGML_CPU)
|
||||
ggml_add_cpu_backend_variant_impl("")
|
||||
endif()
|
||||
|
||||
|
||||
@@ -1302,7 +1302,7 @@ struct ggml_threadpool {
|
||||
// these are atomic as an annotation for thread-sanitizer
|
||||
atomic_bool stop; // Used for stopping the threadpool altogether
|
||||
atomic_bool pause; // Used for pausing the threadpool or individual threads
|
||||
atomic_bool abort; // Used for aborting processing of a graph
|
||||
atomic_int abort; // Used for aborting processing of a graph
|
||||
|
||||
struct ggml_compute_state * workers; // per thread state
|
||||
int n_threads_max; // number of threads in the pool
|
||||
@@ -13851,14 +13851,14 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
|
||||
/*.threadpool=*/ tp,
|
||||
};
|
||||
|
||||
for (int node_n = 0; node_n < cgraph->n_nodes && !tp->abort; node_n++) {
|
||||
for (int node_n = 0; node_n < cgraph->n_nodes && atomic_load_explicit(&tp->abort, memory_order_relaxed) != node_n; node_n++) {
|
||||
struct ggml_tensor * node = cgraph->nodes[node_n];
|
||||
|
||||
ggml_compute_forward(¶ms, node);
|
||||
|
||||
if (state->ith == 0 && cplan->abort_callback &&
|
||||
cplan->abort_callback(cplan->abort_callback_data)) {
|
||||
tp->abort = true;
|
||||
atomic_store_explicit(&tp->abort, node_n + 1, memory_order_relaxed);
|
||||
tp->ec = GGML_STATUS_ABORTED;
|
||||
}
|
||||
|
||||
@@ -14031,7 +14031,7 @@ static struct ggml_threadpool * ggml_threadpool_new_impl(
|
||||
threadpool->current_chunk = 0;
|
||||
threadpool->stop = false;
|
||||
threadpool->pause = tpp->paused;
|
||||
threadpool->abort = false;
|
||||
threadpool->abort = -1;
|
||||
threadpool->workers = NULL;
|
||||
threadpool->n_threads_max = tpp->n_threads;
|
||||
threadpool->n_threads_cur = tpp->n_threads;
|
||||
@@ -14110,7 +14110,7 @@ enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cpl
|
||||
threadpool->cgraph = cgraph;
|
||||
threadpool->cplan = cplan;
|
||||
threadpool->current_chunk = 0;
|
||||
threadpool->abort = false;
|
||||
threadpool->abort = -1;
|
||||
threadpool->ec = GGML_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
|
||||
@@ -46,20 +46,20 @@
|
||||
#define GGML_CUDA_CC_VOLTA 700
|
||||
#define GGML_CUDA_CC_TURING 750
|
||||
#define GGML_CUDA_CC_AMPERE 800
|
||||
#define GGML_CUDA_CC_OFFSET_AMD 1000000
|
||||
#define GGML_CUDA_CC_OFFSET_AMD 0x1000000
|
||||
|
||||
// GCN/CNDA, wave size is 64
|
||||
#define GGML_CUDA_CC_GCN4 (GGML_CUDA_CC_OFFSET_AMD + 803) // Tonga, Fiji, Polaris, minimum for fast fp16
|
||||
#define GGML_CUDA_CC_VEGA (GGML_CUDA_CC_OFFSET_AMD + 900) // Vega56/64, minimum for fp16 dual issue
|
||||
#define GGML_CUDA_CC_VEGA20 (GGML_CUDA_CC_OFFSET_AMD + 906) // MI50/Radeon VII, minimum for dp4a
|
||||
#define GGML_CUDA_CC_CDNA (GGML_CUDA_CC_OFFSET_AMD + 908) // MI100, minimum for MFMA, acc registers
|
||||
#define GGML_CUDA_CC_CDNA2 (GGML_CUDA_CC_OFFSET_AMD + 910) // MI210, minimum acc register renameing
|
||||
#define GGML_CUDA_CC_CDNA3 (GGML_CUDA_CC_OFFSET_AMD + 942) // MI300
|
||||
#define GGML_CUDA_CC_GCN4 (GGML_CUDA_CC_OFFSET_AMD + 0x803) // Tonga, Fiji, Polaris, minimum for fast fp16
|
||||
#define GGML_CUDA_CC_VEGA (GGML_CUDA_CC_OFFSET_AMD + 0x900) // Vega56/64, minimum for fp16 dual issue
|
||||
#define GGML_CUDA_CC_VEGA20 (GGML_CUDA_CC_OFFSET_AMD + 0x906) // MI50/Radeon VII, minimum for dp4a
|
||||
#define GGML_CUDA_CC_CDNA (GGML_CUDA_CC_OFFSET_AMD + 0x908) // MI100, minimum for MFMA, acc registers
|
||||
#define GGML_CUDA_CC_CDNA2 (GGML_CUDA_CC_OFFSET_AMD + 0x910) // MI210, minimum acc register renameing
|
||||
#define GGML_CUDA_CC_CDNA3 (GGML_CUDA_CC_OFFSET_AMD + 0x942) // MI300
|
||||
|
||||
// RNDA removes MFMA, dp4a, xnack, acc registers, wave size is 32
|
||||
#define GGML_CUDA_CC_RDNA1 (GGML_CUDA_CC_OFFSET_AMD + 1010) // RX 5000
|
||||
#define GGML_CUDA_CC_RDNA2 (GGML_CUDA_CC_OFFSET_AMD + 1030) // RX 6000, minimum for dp4a
|
||||
#define GGML_CUDA_CC_RDNA3 (GGML_CUDA_CC_OFFSET_AMD + 1100) // RX 7000, minimum for WMMA
|
||||
#define GGML_CUDA_CC_RDNA1 (GGML_CUDA_CC_OFFSET_AMD + 0x1010) // RX 5000
|
||||
#define GGML_CUDA_CC_RDNA2 (GGML_CUDA_CC_OFFSET_AMD + 0x1030) // RX 6000, minimum for dp4a
|
||||
#define GGML_CUDA_CC_RDNA3 (GGML_CUDA_CC_OFFSET_AMD + 0x1100) // RX 7000, minimum for WMMA
|
||||
|
||||
#define GGML_CUDA_CC_QY1 210
|
||||
#define GGML_CUDA_CC_QY2 220
|
||||
@@ -131,6 +131,10 @@ typedef float dfloat; // dequantize float
|
||||
typedef float2 dfloat2;
|
||||
#endif // GGML_CUDA_F16
|
||||
|
||||
#if (!defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)) || (defined(GGML_USE_HIP) && !defined(GGML_HIP_NO_VMM))
|
||||
#define GGML_USE_VMM
|
||||
#endif // (!defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)) || (defined(GGML_USE_HIP) && !defined(GGML_HIP_NO_VMM))
|
||||
|
||||
#if (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
|
||||
#define FP16_AVAILABLE
|
||||
#endif // (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
|
||||
@@ -588,7 +592,7 @@ struct ggml_tensor_extra_gpu {
|
||||
};
|
||||
|
||||
|
||||
#if (CUDART_VERSION >= 12000) && defined(GGML_CUDA_USE_GRAPHS)
|
||||
#if ((CUDART_VERSION >= 12000) && defined(GGML_CUDA_USE_GRAPHS)) || defined(GGML_HIP_GRAPHS)
|
||||
#define USE_CUDA_GRAPH
|
||||
#endif
|
||||
|
||||
|
||||
@@ -42,6 +42,7 @@
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
#include <atomic>
|
||||
#include <charconv>
|
||||
#include <cinttypes>
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
@@ -62,7 +63,7 @@ static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
|
||||
[[noreturn]]
|
||||
void ggml_cuda_error(const char * stmt, const char * func, const char * file, int line, const char * msg) {
|
||||
int id = -1; // in case cudaGetDevice fails
|
||||
cudaGetDevice(&id);
|
||||
(void)cudaGetDevice(&id);
|
||||
|
||||
GGML_LOG_ERROR(GGML_CUDA_NAME " error: %s\n", msg);
|
||||
GGML_LOG_ERROR(" current device: %d, in function %s at %s:%d\n", id, func, file, line);
|
||||
@@ -119,12 +120,78 @@ static cudaError_t ggml_cuda_device_malloc(void ** ptr, size_t size, int device)
|
||||
#endif
|
||||
}
|
||||
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
static int ggml_cuda_parse_id(char devName[]) {
|
||||
// A list of possible Target IDs can be found under the rocclr/clr repo in device.cpp
|
||||
// these values are not stable so this is susceptible to breakage
|
||||
// https://github.com/ROCm/clr/blob/amd-staging/rocclr/device/device.cpp
|
||||
int archMajor = 0x0;
|
||||
int archMinor = 0x0;
|
||||
int archNum = GGML_CUDA_CC_OFFSET_AMD;
|
||||
int archLen = strlen(devName);
|
||||
char archName[archLen + 1];
|
||||
|
||||
// strip leading 'gfx' while copying into our buffer
|
||||
if (archLen > 3) {
|
||||
strcpy(archName, &devName[3]);
|
||||
archLen -= 3;
|
||||
}
|
||||
|
||||
// trim trailing :xnack- or :sramecc- statuses
|
||||
archLen = strcspn(archName, ":");
|
||||
archName[archLen] = '\0';
|
||||
|
||||
// tease out the version information
|
||||
if (archLen > 8) {
|
||||
// versions labeled generic use '-' as delimiter
|
||||
// strip the trailing "-generic" then iterate through what remains
|
||||
if ((strstr(archName, "-generic"))) {
|
||||
archName[archLen - 8] = '\0';
|
||||
char * pch;
|
||||
if ((pch = strtok(archName, "-"))) {
|
||||
archMajor = (int)strtoul(pch, 0, 16);
|
||||
if ((pch = strtok(NULL, "-"))) {
|
||||
archMinor = 0x10 * (int)strtoul(pch, 0, 16);
|
||||
}
|
||||
}
|
||||
}
|
||||
} else if (archLen >= 3) {
|
||||
// last two digits should be the minor * 0x10 + stepping
|
||||
archMinor = (int)strtoul(&archName[archLen - 2], 0, 16);
|
||||
archName[archLen - 2] = '\0';
|
||||
|
||||
// only the major version remains
|
||||
archMajor = (int)strtoul(archName, 0, 16);
|
||||
}
|
||||
archNum += archMajor * 0x100;
|
||||
archNum += archMinor;
|
||||
return archNum;
|
||||
}
|
||||
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
|
||||
static ggml_cuda_device_info ggml_cuda_init() {
|
||||
#ifdef __HIP_PLATFORM_AMD__
|
||||
// Workaround for a rocBLAS bug when using multiple graphics cards:
|
||||
// https://github.com/ROCmSoftwarePlatform/rocBLAS/issues/1346
|
||||
rocblas_initialize();
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
{
|
||||
int major_version = 0;
|
||||
size_t version_length = 0;
|
||||
if (rocblas_get_version_string_size(&version_length) == rocblas_status_success) {
|
||||
std::string version(version_length, '\0');
|
||||
if (rocblas_get_version_string(version.data(), version.size()) == rocblas_status_success) {
|
||||
version.resize(::strlen(version.c_str()));
|
||||
int parsed_value = 0;
|
||||
if (std::from_chars(version.c_str(), version.c_str() + version.length(), parsed_value).ec == std::errc()) {
|
||||
major_version = parsed_value;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (major_version < 4) {
|
||||
GGML_LOG_DEBUG(GGML_CUDA_NAME " calling rocblas_initialize as a workaround for a rocBLAS bug\n");
|
||||
rocblas_initialize();
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
ggml_cuda_device_info info = {};
|
||||
@@ -152,7 +219,7 @@ static ggml_cuda_device_info ggml_cuda_init() {
|
||||
for (int id = 0; id < info.device_count; ++id) {
|
||||
int device_vmm = 0;
|
||||
|
||||
#if !defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)
|
||||
#if defined(GGML_USE_VMM)
|
||||
CUdevice device;
|
||||
CU_CHECK(cuDeviceGet(&device, id));
|
||||
CU_CHECK(cuDeviceGetAttribute(&device_vmm, CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED, device));
|
||||
@@ -164,12 +231,11 @@ static ggml_cuda_device_info ggml_cuda_init() {
|
||||
alloc_prop.location.id = id;
|
||||
CU_CHECK(cuMemGetAllocationGranularity(&info.devices[id].vmm_granularity, &alloc_prop, CU_MEM_ALLOC_GRANULARITY_RECOMMENDED));
|
||||
}
|
||||
#endif // !defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)
|
||||
#endif // defined(GGML_USE_VMM)
|
||||
info.devices[id].vmm = !!device_vmm;
|
||||
|
||||
cudaDeviceProp prop;
|
||||
CUDA_CHECK(cudaGetDeviceProperties(&prop, id));
|
||||
GGML_LOG_INFO(" Device %d: %s, compute capability %d.%d, VMM: %s\n", id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no");
|
||||
|
||||
info.default_tensor_split[id] = total_vram;
|
||||
total_vram += prop.totalGlobalMem;
|
||||
@@ -178,10 +244,25 @@ static ggml_cuda_device_info ggml_cuda_init() {
|
||||
info.devices[id].smpb = prop.sharedMemPerBlock;
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
info.devices[id].smpbo = prop.sharedMemPerBlock;
|
||||
info.devices[id].cc = 100*prop.major + 10*prop.minor + GGML_CUDA_CC_OFFSET_AMD;
|
||||
|
||||
info.devices[id].cc = ggml_cuda_parse_id(prop.gcnArchName);
|
||||
if ((info.devices[id].cc & 0xff00) == 0x0) {
|
||||
GGML_LOG_WARN("invalid architecture ID received for device %d %s: %s cc %d.%d\n",
|
||||
id, prop.name, prop.gcnArchName, prop.major, prop.minor);
|
||||
|
||||
// Fallback to prop.major and prop.minor
|
||||
if (prop.major > 0) {
|
||||
info.devices[id].cc = GGML_CUDA_CC_OFFSET_AMD + prop.major * 0x100;
|
||||
info.devices[id].cc += prop.minor * 0x10;
|
||||
}
|
||||
}
|
||||
GGML_LOG_INFO(" Device %d: %s, %s (0x%x), VMM: %s\n",
|
||||
id, prop.name, prop.gcnArchName, info.devices[id].cc & 0xffff, device_vmm ? "yes" : "no");
|
||||
#else
|
||||
info.devices[id].smpbo = prop.sharedMemPerBlockOptin;
|
||||
info.devices[id].cc = 100*prop.major + 10*prop.minor;
|
||||
GGML_LOG_INFO(" Device %d: %s, compute capability %d.%d, VMM: %s\n",
|
||||
id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no");
|
||||
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
}
|
||||
|
||||
@@ -300,7 +381,7 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
|
||||
};
|
||||
|
||||
// pool with virtual memory
|
||||
#if !defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)
|
||||
#if defined(GGML_USE_VMM)
|
||||
struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
|
||||
static const size_t CUDA_POOL_VMM_MAX_SIZE = 1ull << 35; // 32 GB
|
||||
|
||||
@@ -309,6 +390,9 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
|
||||
size_t pool_used = 0;
|
||||
size_t pool_size = 0;
|
||||
size_t granularity;
|
||||
#if defined(GGML_USE_HIP)
|
||||
std::vector<std::pair<CUdeviceptr, size_t>> mappings;
|
||||
#endif
|
||||
|
||||
explicit ggml_cuda_pool_vmm(int device) :
|
||||
device(device),
|
||||
@@ -317,7 +401,14 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
|
||||
|
||||
~ggml_cuda_pool_vmm() {
|
||||
if (pool_addr != 0) {
|
||||
#if defined(GGML_USE_HIP)
|
||||
// Workaround for https://github.com/ROCm/ROCR-Runtime/issues/285
|
||||
for (std::pair<CUdeviceptr, size_t> & mapping : mappings) {
|
||||
CU_CHECK(cuMemUnmap(mapping.first, mapping.second));
|
||||
}
|
||||
#else
|
||||
CU_CHECK(cuMemUnmap(pool_addr, pool_size));
|
||||
#endif
|
||||
CU_CHECK(cuMemAddressFree(pool_addr, CUDA_POOL_VMM_MAX_SIZE));
|
||||
}
|
||||
}
|
||||
@@ -350,7 +441,11 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
|
||||
}
|
||||
|
||||
// map at the end of the pool
|
||||
CU_CHECK(cuMemMap(pool_addr + pool_size, reserve_size, 0, handle, 0));
|
||||
CUdeviceptr start_ptr = (CUdeviceptr)((char *)(pool_addr) + pool_size);
|
||||
CU_CHECK(cuMemMap(start_ptr, reserve_size, 0, handle, 0));
|
||||
#if defined(GGML_USE_HIP)
|
||||
mappings.push_back({start_ptr, reserve_size});
|
||||
#endif
|
||||
|
||||
// the memory allocation handle is no longer needed after mapping
|
||||
CU_CHECK(cuMemRelease(handle));
|
||||
@@ -360,7 +455,7 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
|
||||
access.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
|
||||
access.location.id = device;
|
||||
access.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE;
|
||||
CU_CHECK(cuMemSetAccess(pool_addr + pool_size, reserve_size, &access, 1));
|
||||
CU_CHECK(cuMemSetAccess((CUdeviceptr)((char *)(pool_addr) + pool_size), reserve_size, &access, 1));
|
||||
|
||||
// add to the pool
|
||||
pool_size += reserve_size;
|
||||
@@ -372,7 +467,7 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
|
||||
|
||||
GGML_ASSERT(pool_addr != 0);
|
||||
|
||||
void * ptr = (void *) (pool_addr + pool_used);
|
||||
void * ptr = (void *) ((CUdeviceptr)((char *)(pool_addr) + pool_used));
|
||||
*actual_size = size;
|
||||
pool_used += size;
|
||||
|
||||
@@ -391,17 +486,17 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
|
||||
pool_used -= size;
|
||||
|
||||
// all deallocations must be in reverse order of the allocations
|
||||
GGML_ASSERT(ptr == (void *) (pool_addr + pool_used));
|
||||
GGML_ASSERT(ptr == (void *) ((char *)(pool_addr) + pool_used));
|
||||
}
|
||||
};
|
||||
#endif // !defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)
|
||||
#endif // defined(GGML_USE_VMM)
|
||||
|
||||
std::unique_ptr<ggml_cuda_pool> ggml_backend_cuda_context::new_pool_for_device(int device) {
|
||||
#if !defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)
|
||||
#if defined(GGML_USE_VMM)
|
||||
if (ggml_cuda_info().devices[device].vmm) {
|
||||
return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_vmm(device));
|
||||
}
|
||||
#endif // !defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)
|
||||
#endif // defined(GGML_USE_VMM)
|
||||
return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_leg(device));
|
||||
}
|
||||
|
||||
@@ -547,7 +642,7 @@ static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_bac
|
||||
cudaError_t err = ggml_cuda_device_malloc(&dev_ptr, size, buft_ctx->device);
|
||||
if (err != cudaSuccess) {
|
||||
// clear the error
|
||||
cudaGetLastError();
|
||||
(void)cudaGetLastError();
|
||||
GGML_LOG_ERROR("%s: allocating %.2f MiB on device %d: cudaMalloc failed: %s\n", __func__, size / 1024.0 / 1024.0, buft_ctx->device, cudaGetErrorString(err));
|
||||
return nullptr;
|
||||
}
|
||||
@@ -962,7 +1057,7 @@ static void * ggml_cuda_host_malloc(size_t size) {
|
||||
cudaError_t err = cudaMallocHost((void **) &ptr, size);
|
||||
if (err != cudaSuccess) {
|
||||
// clear the error
|
||||
cudaGetLastError();
|
||||
(void)cudaGetLastError();
|
||||
GGML_LOG_DEBUG("%s: failed to allocate %.2f MiB of pinned memory: %s\n", __func__,
|
||||
size / 1024.0 / 1024.0, cudaGetErrorString(err));
|
||||
return nullptr;
|
||||
@@ -1082,7 +1177,9 @@ static void ggml_cuda_op_mul_mat_cublas(
|
||||
|
||||
const int compute_capability = ggml_cuda_info().devices[id].cc;
|
||||
|
||||
if (compute_capability >= GGML_CUDA_CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) {
|
||||
const bool use_fp16 = (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT;
|
||||
|
||||
if (compute_capability >= GGML_CUDA_CC_VOLTA && use_fp16) {
|
||||
// convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32
|
||||
ggml_cuda_pool_alloc<half> src0_as_f16(ctx.pool(id));
|
||||
if (src0->type != GGML_TYPE_F16) {
|
||||
@@ -1103,28 +1200,38 @@ static void ggml_cuda_op_mul_mat_cublas(
|
||||
to_fp16_cuda(src1_ddf_i, src1_as_f16.get(), ne, stream);
|
||||
}
|
||||
const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16.get();
|
||||
ggml_cuda_pool_alloc<half> dst_f16(ctx.pool(id), row_diff*src1_ncols);
|
||||
|
||||
const half alpha_f16 = 1.0f;
|
||||
const half beta_f16 = 0.0f;
|
||||
|
||||
cublasComputeType_t cu_compute_type = CUBLAS_COMPUTE_16F;
|
||||
if (ggml_cuda_info().devices[ctx.device].cc == GGML_CUDA_CC_CDNA) {
|
||||
cu_compute_type = CUBLAS_COMPUTE_32F;
|
||||
}
|
||||
|
||||
CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream));
|
||||
CUBLAS_CHECK(
|
||||
cublasGemmEx(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
|
||||
row_diff, src1_ncols, ne10,
|
||||
&alpha_f16, src0_ptr, CUDA_R_16F, ne00,
|
||||
src1_ptr, CUDA_R_16F, ne10,
|
||||
&beta_f16, dst_f16.get(), CUDA_R_16F, ldc,
|
||||
cu_compute_type,
|
||||
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
|
||||
|
||||
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
|
||||
to_fp32_cuda(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream);
|
||||
if (compute_capability == GGML_CUDA_CC_CDNA) {
|
||||
const float alpha = 1.0f;
|
||||
const float beta = 0.0f;
|
||||
CUBLAS_CHECK(
|
||||
cublasGemmEx(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
|
||||
row_diff, src1_ncols, ne10,
|
||||
&alpha, src0_ptr, CUDA_R_16F, ne00,
|
||||
src1_ptr, CUDA_R_16F, ne10,
|
||||
&beta, dst_dd_i, CUDA_R_32F, ldc,
|
||||
CUBLAS_COMPUTE_32F,
|
||||
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
|
||||
} else {
|
||||
ggml_cuda_pool_alloc<half> dst_f16(ctx.pool(id), row_diff*src1_ncols);
|
||||
|
||||
const half alpha_f16 = 1.0f;
|
||||
const half beta_f16 = 0.0f;
|
||||
|
||||
CUBLAS_CHECK(
|
||||
cublasGemmEx(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
|
||||
row_diff, src1_ncols, ne10,
|
||||
&alpha_f16, src0_ptr, CUDA_R_16F, ne00,
|
||||
src1_ptr, CUDA_R_16F, ne10,
|
||||
&beta_f16, dst_f16.get(), CUDA_R_16F, ldc,
|
||||
CUBLAS_COMPUTE_16F,
|
||||
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
|
||||
|
||||
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
|
||||
to_fp32_cuda(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream);
|
||||
}
|
||||
} else {
|
||||
ggml_cuda_pool_alloc<float> src0_ddq_as_f32(ctx.pool(id));
|
||||
ggml_cuda_pool_alloc<float> src1_ddq_as_f32(ctx.pool(id));
|
||||
@@ -1197,7 +1304,7 @@ static void ggml_cuda_set_peer_access(const int n_tokens, int main_device) {
|
||||
CUDA_CHECK(err);
|
||||
} else {
|
||||
// reset the error
|
||||
cudaGetLastError();
|
||||
(void)cudaGetLastError();
|
||||
}
|
||||
} else {
|
||||
cudaError_t err = cudaDeviceDisablePeerAccess(id_other);
|
||||
@@ -1205,7 +1312,7 @@ static void ggml_cuda_set_peer_access(const int n_tokens, int main_device) {
|
||||
CUDA_CHECK(err);
|
||||
} else {
|
||||
// reset the error
|
||||
cudaGetLastError();
|
||||
(void)cudaGetLastError();
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1613,10 +1720,6 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
|
||||
cublasComputeType_t cu_compute_type = CUBLAS_COMPUTE_16F;
|
||||
cudaDataType_t cu_data_type = CUDA_R_16F;
|
||||
|
||||
if (ggml_cuda_info().devices[ctx.device].cc == GGML_CUDA_CC_CDNA) {
|
||||
cu_compute_type = CUBLAS_COMPUTE_32F;
|
||||
}
|
||||
|
||||
// dst strides
|
||||
size_t nbd2 = dst->nb[2];
|
||||
size_t nbd3 = dst->nb[3];
|
||||
@@ -1645,6 +1748,12 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
|
||||
beta = &beta_f32;
|
||||
}
|
||||
|
||||
if (ggml_cuda_info().devices[ctx.device].cc == GGML_CUDA_CC_CDNA) {
|
||||
cu_compute_type = CUBLAS_COMPUTE_32F;
|
||||
alpha = &alpha_f32;
|
||||
beta = &beta_f32;
|
||||
}
|
||||
|
||||
GGML_ASSERT(ne12 % ne02 == 0);
|
||||
GGML_ASSERT(ne13 % ne03 == 0);
|
||||
|
||||
@@ -2438,7 +2547,7 @@ static void maintain_cuda_graph(ggml_backend_cuda_context * cuda_ctx, std::vecto
|
||||
if (stat == cudaErrorInvalidDeviceFunction) {
|
||||
// Fails due to incorrect handling by CUDA runtime of CUDA BLAS node.
|
||||
// We don't need to update blas nodes, so clear error and move on.
|
||||
cudaGetLastError();
|
||||
(void)cudaGetLastError();
|
||||
} else {
|
||||
GGML_ASSERT(stat == cudaSuccess);
|
||||
}
|
||||
@@ -2493,14 +2602,20 @@ static bool is_cuda_graph_update_required(ggml_backend_cuda_context * cuda_ctx,
|
||||
static void update_cuda_graph_executable(ggml_backend_cuda_context * cuda_ctx) {
|
||||
|
||||
cudaGraphExecUpdateResultInfo result_info;
|
||||
#ifdef __HIP_PLATFORM_AMD__
|
||||
hipGraphNode_t errorNode;
|
||||
hipError_t stat = hipGraphExecUpdate(cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, &errorNode, &result_info);
|
||||
#else
|
||||
cudaError_t stat = cudaGraphExecUpdate(cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, &result_info);
|
||||
#endif
|
||||
if (stat == cudaErrorGraphExecUpdateFailure) {
|
||||
#ifndef NDEBUG
|
||||
GGML_LOG_DEBUG("%s: CUDA graph update failed\n", __func__);
|
||||
#endif
|
||||
|
||||
// The pre-existing graph exec cannot be updated due to violated constraints
|
||||
// so instead clear error and re-instantiate
|
||||
cudaGetLastError();
|
||||
(void)cudaGetLastError();
|
||||
CUDA_CHECK(cudaGraphExecDestroy(cuda_ctx->cuda_graph->instance));
|
||||
cuda_ctx->cuda_graph->instance = nullptr;
|
||||
CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0));
|
||||
@@ -2728,7 +2843,7 @@ bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size) {
|
||||
cudaError_t err = cudaHostRegister(buffer, size, cudaHostRegisterPortable | cudaHostRegisterReadOnly);
|
||||
if (err != cudaSuccess) {
|
||||
// clear the error
|
||||
cudaGetLastError();
|
||||
(void)cudaGetLastError();
|
||||
|
||||
GGML_LOG_DEBUG("%s: failed to register %.2f MiB of pinned memory: %s\n", __func__,
|
||||
size / 1024.0 / 1024.0, cudaGetErrorString(err));
|
||||
@@ -2748,7 +2863,7 @@ void ggml_backend_cuda_unregister_host_buffer(void * buffer) {
|
||||
cudaError_t err = cudaHostUnregister(buffer);
|
||||
if (err != cudaSuccess) {
|
||||
// clear the error
|
||||
cudaGetLastError();
|
||||
(void)cudaGetLastError();
|
||||
}
|
||||
}
|
||||
|
||||
@@ -3216,7 +3331,7 @@ static ggml_backend_feature * ggml_backend_cuda_get_features(ggml_backend_reg_t
|
||||
features.push_back({ "FORCE_CUBLAS", "1" });
|
||||
#endif
|
||||
|
||||
#ifdef GGML_CUDA_NO_VMM
|
||||
#ifndef GGML_USE_VMM
|
||||
features.push_back({ "NO_VMM", "1" });
|
||||
#endif
|
||||
|
||||
|
||||
@@ -142,7 +142,7 @@ static void mul_mat_vec_q_cuda(
|
||||
int64_t nwarps = 1;
|
||||
int64_t rows_per_cuda_block = 1;
|
||||
|
||||
if (ggml_cuda_info().devices[id].cc < GGML_CUDA_CC_CDNA || ggml_cuda_info().devices[id].cc == GGML_CUDA_CC_RDNA1) { // NVIDIA and AMD older than RDNA2 but not CDNA
|
||||
if (ggml_cuda_info().devices[id].cc < GGML_CUDA_CC_RDNA2) { // NVIDIA and AMD older than RDNA2
|
||||
switch(ncols_y) {
|
||||
case 1:
|
||||
nwarps = 4;
|
||||
@@ -166,6 +166,7 @@ static void mul_mat_vec_q_cuda(
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
const int64_t nblocks = (nrows_x + rows_per_cuda_block - 1) / rows_per_cuda_block;
|
||||
const dim3 block_nums(nblocks, 1, 1);
|
||||
const dim3 block_dims(WARP_SIZE, nwarps, 1);
|
||||
|
||||
@@ -13,6 +13,12 @@ __device__ float __forceinline__ t2f32<half>(half val) {
|
||||
return __half2float(val);
|
||||
}
|
||||
|
||||
// When ncols_template == 0 the bounds for the loops in this function are not known and can't be unrolled.
|
||||
// As we want to keep pragma unroll for all other cases we supress the clang transformation warning here.
|
||||
#ifdef __clang__
|
||||
#pragma clang diagnostic push
|
||||
#pragma clang diagnostic ignored "-Wpass-failed"
|
||||
#endif
|
||||
template <bool use_shared, int ncols_template, int block_size_template, typename T>
|
||||
static __global__ void soft_max_f32(
|
||||
const float * x, const T * mask, float * dst, const int ncols_par, const int nrows_y,
|
||||
@@ -118,6 +124,9 @@ static __global__ void soft_max_f32(
|
||||
dst[col] = vals[col] * inv_sum;
|
||||
}
|
||||
}
|
||||
#ifdef __clang__
|
||||
#pragma clang diagnostic pop
|
||||
#endif
|
||||
|
||||
static __global__ void soft_max_back_f32(
|
||||
const float * grad, const float * dstf, float * dst, const int ncols, const float scale) {
|
||||
|
||||
43
ggml/src/ggml-cuda/vendors/hip.h
vendored
43
ggml/src/ggml-cuda/vendors/hip.h
vendored
@@ -19,6 +19,12 @@
|
||||
#define CUBLAS_TF32_TENSOR_OP_MATH 0
|
||||
#define CUDA_R_16F HIPBLAS_R_16F
|
||||
#define CUDA_R_32F HIPBLAS_R_32F
|
||||
#define CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED hipDeviceAttributeVirtualMemoryManagementSupported
|
||||
#define CU_MEM_ALLOC_GRANULARITY_RECOMMENDED hipMemAllocationGranularityRecommended
|
||||
#define CU_MEM_ALLOCATION_TYPE_PINNED hipMemAllocationTypePinned
|
||||
#define CU_MEM_LOCATION_TYPE_DEVICE hipMemLocationTypeDevice
|
||||
#define CU_MEM_ACCESS_FLAGS_PROT_READWRITE hipMemAccessFlagsProtReadWrite
|
||||
#define CU_CHECK(fn) {hipError_t err = fn; if(err != hipSuccess) { GGML_ABORT("HipVMM Failure: %s\n", hipGetErrorString(err)); }}
|
||||
#define __shfl_xor_sync(mask, var, laneMask, width) __shfl_xor(var, laneMask, width)
|
||||
#define cublasComputeType_t hipblasDatatype_t //deprecated, new hipblasComputeType_t not in 5.6
|
||||
#define cublasCreate hipblasCreate
|
||||
@@ -74,6 +80,21 @@
|
||||
#define cudaMemGetInfo hipMemGetInfo
|
||||
#define cudaOccupancyMaxPotentialBlockSize hipOccupancyMaxPotentialBlockSize
|
||||
#define cudaSetDevice hipSetDevice
|
||||
#define cuDeviceGet hipDeviceGet
|
||||
#define CUdevice hipDevice_t
|
||||
#define CUdeviceptr hipDeviceptr_t
|
||||
#define cuMemUnmap hipMemUnmap
|
||||
#define CUmemAccessDesc hipMemAccessDesc
|
||||
#define cuMemAddressFree hipMemAddressFree
|
||||
#define cuMemRelease hipMemRelease
|
||||
#define CUmemGenericAllocationHandle hipMemGenericAllocationHandle_t
|
||||
#define cuMemCreate hipMemCreate
|
||||
#define cuMemAddressReserve hipMemAddressReserve
|
||||
#define cuMemMap hipMemMap
|
||||
#define cuMemSetAccess hipMemSetAccess
|
||||
#define cuMemGetAllocationGranularity hipMemGetAllocationGranularity
|
||||
#define CUmemAllocationProp hipMemAllocationProp
|
||||
#define cuDeviceGetAttribute hipDeviceGetAttribute
|
||||
#define cudaStreamCreateWithFlags hipStreamCreateWithFlags
|
||||
#define cudaStreamDestroy hipStreamDestroy
|
||||
#define cudaStreamFireAndForget hipStreamFireAndForget
|
||||
@@ -81,6 +102,28 @@
|
||||
#define cudaStreamPerThread hipStreamPerThread
|
||||
#define cudaStreamSynchronize hipStreamSynchronize
|
||||
#define cudaStreamWaitEvent(stream, event, flags) hipStreamWaitEvent(stream, event, flags)
|
||||
#define cudaGraphExec_t hipGraphExec_t
|
||||
#define cudaGraphNode_t hipGraphNode_t
|
||||
#define cudaKernelNodeParams hipKernelNodeParams
|
||||
#define cudaKernelNodeParams hipKernelNodeParams
|
||||
#define cudaGraphExecDestroy hipGraphExecDestroy
|
||||
#define cudaGraphLaunch hipGraphLaunch
|
||||
#define cudaErrorGraphExecUpdateFailure hipErrorGraphExecUpdateFailure
|
||||
#define cudaGraphExecUpdateResultInfo hipGraphExecUpdateResult
|
||||
#define cudaGraphNodeType hipGraphNodeType
|
||||
#define cudaGraphNodeTypeKernel hipGraphNodeTypeKernel
|
||||
#define cudaGraphInstantiate hipGraphInstantiate
|
||||
#define cudaStreamEndCapture hipStreamEndCapture
|
||||
#define cudaGraphDestroy hipGraphDestroy
|
||||
#define cudaGraphKernelNodeSetParams hipGraphKernelNodeSetParams
|
||||
#define cudaErrorInvalidDeviceFunction hipErrorInvalidDeviceFunction
|
||||
#define cudaGraphKernelNodeGetParams hipGraphKernelNodeGetParams
|
||||
#define cudaGraphNodeGetType hipGraphNodeGetType
|
||||
#define cudaGraphGetNodes hipGraphGetNodes
|
||||
#define cudaGraphExecUpdate hipGraphExecUpdate
|
||||
#define cudaStreamCaptureModeRelaxed hipStreamCaptureModeRelaxed
|
||||
#define cudaStreamBeginCapture hipStreamBeginCapture
|
||||
#define cudaGraph_t hipGraph_t
|
||||
#define cudaStream_t hipStream_t
|
||||
#define cudaSuccess hipSuccess
|
||||
#define __trap() do { abort(); __builtin_unreachable(); } while(0)
|
||||
|
||||
@@ -92,6 +92,14 @@ if (GGML_CUDA_NO_PEER_COPY)
|
||||
add_compile_definitions(GGML_CUDA_NO_PEER_COPY)
|
||||
endif()
|
||||
|
||||
if (GGML_HIP_GRAPHS)
|
||||
add_compile_definitions(GGML_HIP_GRAPHS)
|
||||
endif()
|
||||
|
||||
if (GGML_HIP_NO_VMM)
|
||||
add_compile_definitions(GGML_HIP_NO_VMM)
|
||||
endif()
|
||||
|
||||
if (CXX_IS_HIPCC)
|
||||
set_source_files_properties(${GGML_SOURCES_ROCM} PROPERTIES LANGUAGE CXX)
|
||||
target_link_libraries(ggml-hip PRIVATE hip::device)
|
||||
|
||||
@@ -19,7 +19,10 @@
|
||||
// max number of MTLCommandBuffer used to submit a graph for processing
|
||||
#define GGML_METAL_MAX_COMMAND_BUFFERS 8
|
||||
|
||||
#define UNUSED(x) (void)(x)
|
||||
// create residency sets only on macOS >= 15.0
|
||||
#if TARGET_OS_OSX && __MAC_OS_X_VERSION_MAX_ALLOWED >= 150000
|
||||
#define GGML_METAL_HAS_RESIDENCY_SETS 1
|
||||
#endif
|
||||
|
||||
// globals
|
||||
|
||||
@@ -39,6 +42,7 @@ static struct ggml_backend_metal_device_context {
|
||||
|
||||
bool has_simdgroup_reduction;
|
||||
bool has_simdgroup_mm;
|
||||
bool has_residency_sets;
|
||||
bool has_bfloat;
|
||||
bool use_bfloat;
|
||||
|
||||
@@ -48,6 +52,7 @@ static struct ggml_backend_metal_device_context {
|
||||
/*.mtl_device_ref_count =*/ 0,
|
||||
/*.has_simdgroup_reduction =*/ false,
|
||||
/*.has_simdgroup_mm =*/ false,
|
||||
/*.has_residency_sets =*/ false,
|
||||
/*.has_bfloat =*/ false,
|
||||
/*.use_bfloat =*/ false,
|
||||
/*.name =*/ "",
|
||||
@@ -59,12 +64,18 @@ static id<MTLDevice> ggml_backend_metal_device_acq(struct ggml_backend_metal_dev
|
||||
|
||||
if (ctx->mtl_device == nil) {
|
||||
ctx->mtl_device = MTLCreateSystemDefaultDevice();
|
||||
}
|
||||
|
||||
if (ctx->mtl_device) {
|
||||
ctx->has_simdgroup_reduction = [ctx->mtl_device supportsFamily:MTLGPUFamilyApple7];
|
||||
ctx->has_simdgroup_reduction |= [ctx->mtl_device supportsFamily:MTLGPUFamilyMetal3_GGML];
|
||||
|
||||
ctx->has_simdgroup_mm = [ctx->mtl_device supportsFamily:MTLGPUFamilyApple7];
|
||||
|
||||
#if defined(GGML_METAL_HAS_RESIDENCY_SETS)
|
||||
ctx->has_residency_sets = getenv("GGML_METAL_NO_RESIDENCY") == NULL;
|
||||
#endif
|
||||
|
||||
ctx->has_bfloat = [ctx->mtl_device supportsFamily:MTLGPUFamilyMetal3_GGML];
|
||||
ctx->has_bfloat |= [ctx->mtl_device supportsFamily:MTLGPUFamilyApple6];
|
||||
|
||||
@@ -90,8 +101,10 @@ static void ggml_backend_metal_device_rel(struct ggml_backend_metal_device_conte
|
||||
ctx->mtl_device_ref_count--;
|
||||
|
||||
if (ctx->mtl_device_ref_count == 0) {
|
||||
[ctx->mtl_device release];
|
||||
ctx->mtl_device = nil;
|
||||
if (ctx->mtl_device) {
|
||||
[ctx->mtl_device release];
|
||||
ctx->mtl_device = nil;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -483,6 +496,11 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
|
||||
GGML_LOG_INFO("%s: picking default device: %s\n", __func__, [[device name] UTF8String]);
|
||||
|
||||
ctx->queue = [device newCommandQueue];
|
||||
if (ctx->queue == nil) {
|
||||
GGML_LOG_ERROR("%s: error: failed to create command queue\n", __func__);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
ctx->d_queue = dispatch_queue_create("ggml-metal", DISPATCH_QUEUE_CONCURRENT);
|
||||
|
||||
id<MTLLibrary> metal_library;
|
||||
@@ -649,6 +667,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
|
||||
|
||||
GGML_LOG_INFO("%s: simdgroup reduction = %s\n", __func__, ctx_dev->has_simdgroup_reduction ? "true" : "false");
|
||||
GGML_LOG_INFO("%s: simdgroup matrix mul. = %s\n", __func__, ctx_dev->has_simdgroup_mm ? "true" : "false");
|
||||
GGML_LOG_INFO("%s: has residency sets = %s\n", __func__, ctx_dev->has_residency_sets ? "true" : "false");
|
||||
GGML_LOG_INFO("%s: has bfloat = %s\n", __func__, ctx_dev->has_bfloat ? "true" : "false");
|
||||
GGML_LOG_INFO("%s: use bfloat = %s\n", __func__, ctx_dev->use_bfloat ? "true" : "false");
|
||||
GGML_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx_dev->mtl_device.hasUnifiedMemory ? "true" : "false");
|
||||
@@ -1035,8 +1054,70 @@ struct ggml_backend_metal_buffer_context {
|
||||
// multiple buffers are used only to avoid the maximum buffer size limitation when using mmap
|
||||
int n_buffers;
|
||||
struct ggml_backend_metal_buffer buffers[GGML_METAL_MAX_BUFFERS];
|
||||
|
||||
// optional MTLResidencySet
|
||||
id rset;
|
||||
};
|
||||
|
||||
// rset init
|
||||
static bool ggml_backend_metal_buffer_rset_init(
|
||||
struct ggml_backend_metal_buffer_context * ctx,
|
||||
struct ggml_backend_metal_device_context * ctx_dev,
|
||||
id<MTLDevice> device) {
|
||||
ctx->rset = nil;
|
||||
|
||||
if (!ctx_dev->has_residency_sets) {
|
||||
return true;
|
||||
}
|
||||
|
||||
#if defined(GGML_METAL_HAS_RESIDENCY_SETS)
|
||||
if (@available(macOS 15.0, *)) {
|
||||
MTLResidencySetDescriptor * desc = [[MTLResidencySetDescriptor alloc] init];
|
||||
desc.label = @"ggml_backend_metal";
|
||||
desc.initialCapacity = ctx->n_buffers;
|
||||
|
||||
NSError * error;
|
||||
ctx->rset = [device newResidencySetWithDescriptor:desc error:&error];
|
||||
if (error) {
|
||||
GGML_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
|
||||
[desc release];
|
||||
return false;
|
||||
}
|
||||
|
||||
[desc release];
|
||||
|
||||
for (int i = 0; i < ctx->n_buffers; i++) {
|
||||
[ctx->rset addAllocation:ctx->buffers[i].metal];
|
||||
}
|
||||
|
||||
[ctx->rset commit];
|
||||
[ctx->rset requestResidency];
|
||||
|
||||
return true;
|
||||
}
|
||||
#else
|
||||
GGML_UNUSED(ctx_dev);
|
||||
GGML_UNUSED(device);
|
||||
#endif
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// rset free
|
||||
static void ggml_backend_metal_buffer_rset_free(struct ggml_backend_metal_buffer_context * ctx) {
|
||||
#if defined(GGML_METAL_HAS_RESIDENCY_SETS)
|
||||
if (@available(macOS 15.0, *)) {
|
||||
if (ctx->rset) {
|
||||
[ctx->rset endResidency];
|
||||
[ctx->rset removeAllAllocations];
|
||||
[ctx->rset release];
|
||||
}
|
||||
}
|
||||
#else
|
||||
GGML_UNUSED(ctx);
|
||||
#endif
|
||||
}
|
||||
|
||||
// finds the Metal buffer that contains the tensor data on the GPU device
|
||||
// the assumption is that there is 1-to-1 mapping between the host and device memory buffers, so we can find the
|
||||
// Metal buffer based on the host memory pointer
|
||||
@@ -4176,6 +4257,8 @@ static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer)
|
||||
for (int i = 0; i < ctx->n_buffers; i++) {
|
||||
[ctx->buffers[i].metal release];
|
||||
}
|
||||
|
||||
ggml_backend_metal_buffer_rset_free(ctx);
|
||||
ggml_backend_metal_device_rel(buffer->buft->device->context);
|
||||
|
||||
if (ctx->owned) {
|
||||
@@ -4198,19 +4281,19 @@ static void * ggml_backend_metal_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
static void ggml_backend_metal_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
|
||||
memset((char *)tensor->data + offset, value, size);
|
||||
|
||||
UNUSED(buffer);
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_metal_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
memcpy((char *)tensor->data + offset, data, size);
|
||||
|
||||
UNUSED(buffer);
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_metal_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
memcpy(data, (const char *)tensor->data + offset, size);
|
||||
|
||||
UNUSED(buffer);
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static bool ggml_backend_metal_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||
@@ -4220,7 +4303,7 @@ static bool ggml_backend_metal_buffer_cpy_tensor(ggml_backend_buffer_t buffer, c
|
||||
}
|
||||
return false;
|
||||
|
||||
UNUSED(buffer);
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_metal_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
||||
@@ -4246,7 +4329,7 @@ static struct ggml_backend_buffer_i ggml_backend_metal_buffer_i = {
|
||||
static const char * ggml_backend_metal_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
|
||||
return "Metal";
|
||||
|
||||
UNUSED(buft);
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static void ggml_backend_metal_log_allocated_size(id<MTLDevice> device, size_t size_aligned) {
|
||||
@@ -4270,8 +4353,8 @@ static void ggml_backend_metal_log_allocated_size(id<MTLDevice> device, size_t s
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
UNUSED(device);
|
||||
UNUSED(size_aligned);
|
||||
GGML_UNUSED(device);
|
||||
GGML_UNUSED(size_aligned);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
@@ -4284,7 +4367,8 @@ static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_ba
|
||||
size_aligned += (size_page - (size_aligned % size_page));
|
||||
}
|
||||
|
||||
id<MTLDevice> device = ggml_backend_metal_device_acq(buft->device->context);
|
||||
struct ggml_backend_metal_device_context * ctx_dev = (struct ggml_backend_metal_device_context *)buft->device->context;
|
||||
id<MTLDevice> device = ggml_backend_metal_device_acq(ctx_dev);
|
||||
|
||||
ctx->all_data = ggml_metal_host_malloc(size_aligned);
|
||||
ctx->all_size = size_aligned;
|
||||
@@ -4307,7 +4391,14 @@ static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_ba
|
||||
if (size_aligned > 0 && (ctx->all_data == NULL || ctx->buffers[0].metal == nil)) {
|
||||
GGML_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_aligned / 1024.0 / 1024.0);
|
||||
free(ctx);
|
||||
ggml_backend_metal_device_rel(buft->device->context);
|
||||
ggml_backend_metal_device_rel(ctx_dev);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if (!ggml_backend_metal_buffer_rset_init(ctx, ctx_dev, device)) {
|
||||
GGML_LOG_ERROR("%s: error: failed to initialize residency set\n", __func__);
|
||||
free(ctx);
|
||||
ggml_backend_metal_device_rel(ctx_dev);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
@@ -4318,7 +4409,7 @@ static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_ba
|
||||
|
||||
static size_t ggml_backend_metal_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
||||
return 32;
|
||||
UNUSED(buft);
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static size_t ggml_backend_metal_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
|
||||
@@ -4328,13 +4419,13 @@ static size_t ggml_backend_metal_buffer_type_get_max_size(ggml_backend_buffer_ty
|
||||
|
||||
return max_size;
|
||||
|
||||
UNUSED(buft);
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static bool ggml_backend_metal_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
|
||||
return true;
|
||||
|
||||
UNUSED(buft);
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void) {
|
||||
@@ -4357,7 +4448,7 @@ ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void) {
|
||||
static const char * ggml_backend_metal_buffer_from_ptr_type_get_name(ggml_backend_buffer_type_t buft) {
|
||||
return "Metal_Mapped";
|
||||
|
||||
UNUSED(buft);
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_type_t ggml_backend_metal_buffer_from_ptr_type(void) {
|
||||
@@ -4400,7 +4491,8 @@ ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t siz
|
||||
size_aligned += (size_page - (size_aligned % size_page));
|
||||
}
|
||||
|
||||
id<MTLDevice> device = ggml_backend_metal_device_acq(&g_ggml_ctx_dev_main);
|
||||
struct ggml_backend_metal_device_context * ctx_dev = &g_ggml_ctx_dev_main;
|
||||
id<MTLDevice> device = ggml_backend_metal_device_acq(ctx_dev);
|
||||
|
||||
// the buffer fits into the max buffer size allowed by the device
|
||||
if (size_aligned <= device.maxBufferLength) {
|
||||
@@ -4453,6 +4545,13 @@ ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t siz
|
||||
}
|
||||
}
|
||||
|
||||
if (!ggml_backend_metal_buffer_rset_init(ctx, ctx_dev, device)) {
|
||||
GGML_LOG_ERROR("%s: error: failed to initialize residency set\n", __func__);
|
||||
free(ctx);
|
||||
ggml_backend_metal_device_rel(ctx_dev);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
return ggml_backend_buffer_init(ggml_backend_metal_buffer_from_ptr_type(), ggml_backend_metal_buffer_i, ctx, size);
|
||||
}
|
||||
|
||||
@@ -4461,7 +4560,7 @@ ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t siz
|
||||
static const char * ggml_backend_metal_name(ggml_backend_t backend) {
|
||||
return "Metal";
|
||||
|
||||
UNUSED(backend);
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
static void ggml_backend_metal_free(ggml_backend_t backend) {
|
||||
@@ -4766,6 +4865,13 @@ static ggml_backend_buffer_t ggml_backend_metal_device_buffer_from_ptr(ggml_back
|
||||
}
|
||||
}
|
||||
|
||||
if (!ggml_backend_metal_buffer_rset_init(ctx, ctx_dev, device)) {
|
||||
GGML_LOG_ERROR("%s: error: failed to initialize residency set\n", __func__);
|
||||
free(ctx);
|
||||
ggml_backend_metal_device_rel(ctx_dev);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
return ggml_backend_buffer_init(ggml_backend_metal_buffer_from_ptr_type(), ggml_backend_metal_buffer_i, ctx, size);
|
||||
}
|
||||
|
||||
@@ -4779,7 +4885,7 @@ static bool ggml_backend_metal_device_supports_buft(ggml_backend_dev_t dev, ggml
|
||||
return buft->iface.get_name == ggml_backend_metal_buffer_type_get_name ||
|
||||
buft->iface.get_name == ggml_backend_metal_buffer_from_ptr_type_get_name;
|
||||
|
||||
UNUSED(dev);
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static bool ggml_backend_metal_device_offload_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
|
||||
|
||||
@@ -3878,10 +3878,6 @@ static void ggml_sycl_diag_mask_inf(ggml_backend_sycl_context & ctx, ggml_tensor
|
||||
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_diag_mask_inf);
|
||||
}
|
||||
|
||||
static void ggml_sycl_soft_max(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
||||
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_soft_max);
|
||||
}
|
||||
|
||||
static void ggml_sycl_rope(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
||||
GGML_ASSERT(ggml_is_contiguous(dst->src[0])); // TODO: this restriction is temporary until non-cont support is implemented
|
||||
ggml_sycl_op_flatten(ctx, dst->src[0], dst->src[1], dst, ggml_sycl_op_rope);
|
||||
@@ -4090,7 +4086,7 @@ bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct ggml_tens
|
||||
ggml_sycl_diag_mask_inf(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_SOFT_MAX:
|
||||
ggml_sycl_soft_max(ctx, dst);
|
||||
ggml_sycl_op_soft_max(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_ROPE:
|
||||
ggml_sycl_rope(ctx, dst);
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
#include "norm.hpp"
|
||||
#include "softmax.hpp"
|
||||
|
||||
template <bool vals_smem, int ncols_template, int block_size_template>
|
||||
static void soft_max_f32(const float * x, const float * mask, float * dst, const int ncols_par,
|
||||
template <bool vals_smem, int ncols_template, int block_size_template, typename T>
|
||||
static void soft_max_f32(const float * x, const T * mask, float * dst, const int ncols_par,
|
||||
const int nrows_y, const float scale, const float max_bias, const float m0,
|
||||
const float m1, uint32_t n_head_log2, const sycl::nd_item<3> &item_ct1, float *buf) {
|
||||
const int ncols = ncols_template == 0 ? ncols_par : ncols_template;
|
||||
@@ -29,7 +29,7 @@ static void soft_max_f32(const float * x, const float * mask, float * dst, const
|
||||
slope = sycl::pow(base, float(exp));
|
||||
}
|
||||
|
||||
float *vals = vals_smem ? buf + std::max(nwarps, WARP_SIZE) : dst + rowx * ncols;
|
||||
float *vals = vals_smem ? buf + sycl::max(nwarps, WARP_SIZE) : dst + rowx * ncols;
|
||||
float max_val = -INFINITY;
|
||||
|
||||
for (int col0 = 0; col0 < ncols; col0 += block_size) {
|
||||
@@ -42,7 +42,7 @@ static void soft_max_f32(const float * x, const float * mask, float * dst, const
|
||||
const int ix = rowx*ncols + col;
|
||||
const int iy = rowy*ncols + col;
|
||||
|
||||
const float val = x[ix]*scale + (mask ? slope*mask[iy] : 0.0f);
|
||||
const float val = x[ix]*scale + (mask ? slope*static_cast<float>(mask[iy]) : 0.0f);
|
||||
|
||||
vals[col] = val;
|
||||
max_val = sycl::max(max_val, val);
|
||||
@@ -65,7 +65,7 @@ static void soft_max_f32(const float * x, const float * mask, float * dst, const
|
||||
item_ct1.barrier(sycl::access::fence_space::local_space);
|
||||
max_val = buf[lane_id];
|
||||
for (size_t i = 1; i < nreduce; i += 1) {
|
||||
max_val = std::max(max_val, buf[lane_id + i * WARP_SIZE]);
|
||||
max_val = sycl::max(max_val, buf[lane_id + i * WARP_SIZE]);
|
||||
}
|
||||
max_val = warp_reduce_max(max_val, item_ct1);
|
||||
}
|
||||
@@ -122,8 +122,8 @@ static void soft_max_f32(const float * x, const float * mask, float * dst, const
|
||||
}
|
||||
}
|
||||
|
||||
template <bool vals_smem, int ncols_template, int block_size_template>
|
||||
static void soft_max_f32_submitter(const float * x, const float * mask, float * dst, const int ncols_par,
|
||||
template <bool vals_smem, int ncols_template, int block_size_template, typename T>
|
||||
static void soft_max_f32_submitter(const float * x, const T * mask, float * dst, const int ncols_par,
|
||||
const int nrows_y, const float scale, const float max_bias, const float m0,
|
||||
const float m1, uint32_t n_head_log2, sycl::range<3> block_nums, sycl::range<3> block_dims,
|
||||
const size_t n_local_scratch, queue_ptr stream) {
|
||||
@@ -141,7 +141,8 @@ static void soft_max_f32_submitter(const float * x, const float * mask, float *
|
||||
});
|
||||
}
|
||||
|
||||
static void soft_max_f32_sycl(const float * x, const float * mask,
|
||||
template<typename T>
|
||||
static void soft_max_f32_sycl(const float * x, const T * mask,
|
||||
float * dst, const int ncols_x, const int nrows_x,
|
||||
const int nrows_y, const float scale, const float max_bias,
|
||||
queue_ptr stream, int device) {
|
||||
@@ -223,22 +224,16 @@ static void soft_max_f32_sycl(const float * x, const float * mask,
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_sycl_op_soft_max(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
|
||||
const ggml_tensor *src1, ggml_tensor *dst,
|
||||
const float *src0_dd, const float *src1_dd,
|
||||
float *dst_dd,
|
||||
const queue_ptr &main_stream) {
|
||||
void ggml_sycl_op_soft_max(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
#pragma message("TODO: add ggml_sycl_op_soft_max() F16 src1 support")
|
||||
#pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5021")
|
||||
GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional
|
||||
GGML_ASSERT(!dst->src[1] || dst->src[1]->type == GGML_TYPE_F16 || dst->src[1]->type == GGML_TYPE_F32); // src1 contains mask and it is optional
|
||||
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t nrows_x = ggml_nrows(src0);
|
||||
const int64_t nrows_y = src0->ne[1];
|
||||
const int64_t ne00 = dst->src[0]->ne[0];
|
||||
const int64_t nrows_x = ggml_nrows(dst->src[0]);
|
||||
const int64_t nrows_y = dst->src[0]->ne[1];
|
||||
|
||||
float scale = 1.0f;
|
||||
float max_bias = 0.0f;
|
||||
@@ -246,6 +241,21 @@ void ggml_sycl_op_soft_max(ggml_backend_sycl_context & ctx, const ggml_tensor *s
|
||||
memcpy(&scale, dst->op_params + 0, sizeof(float));
|
||||
memcpy(&max_bias, dst->op_params + 1, sizeof(float));
|
||||
|
||||
soft_max_f32_sycl(src0_dd, src1 ? src1_dd : nullptr, dst_dd, ne00,
|
||||
nrows_x, nrows_y, scale, max_bias, main_stream, ctx.device);
|
||||
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
|
||||
float * dst_dd = static_cast<float *>(dst->data);
|
||||
|
||||
ggml_sycl_set_device(ctx.device);
|
||||
dpct::queue_ptr main_stream = ctx.stream();
|
||||
|
||||
if (dst->src[1] && dst->src[1]->type == GGML_TYPE_F16) {
|
||||
const sycl::half * src1_dd = static_cast<sycl::half *>(dst->src[1]->data);
|
||||
soft_max_f32_sycl<sycl::half>(src0_dd, src1_dd, dst_dd, ne00, nrows_x, nrows_y, scale, max_bias,
|
||||
main_stream, ctx.device);
|
||||
} else if (dst->src[1] && dst->src[1]->type == GGML_TYPE_F32) {
|
||||
const float * src1_dd = static_cast<const float *>(dst->src[1]->data);
|
||||
soft_max_f32_sycl<float>(src0_dd, src1_dd, dst_dd, ne00, nrows_x, nrows_y, scale, max_bias, main_stream, ctx.device);
|
||||
} else {
|
||||
/* mask unavailable */
|
||||
soft_max_f32_sycl<float>(src0_dd, nullptr, dst_dd, ne00, nrows_x, nrows_y, scale, max_bias, main_stream, ctx.device);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -15,10 +15,6 @@
|
||||
|
||||
#include "common.hpp"
|
||||
|
||||
void ggml_sycl_op_soft_max(ggml_backend_sycl_context &ctx, const ggml_tensor *src0,
|
||||
const ggml_tensor *src1, ggml_tensor *dst,
|
||||
const float *src0_dd, const float *src1_dd,
|
||||
float *dst_dd,
|
||||
const queue_ptr &main_stream);
|
||||
void ggml_sycl_op_soft_max(ggml_backend_sycl_context &ctx, ggml_tensor *dst);
|
||||
|
||||
#endif // GGML_SYCL_SOFTMAX_HPP
|
||||
|
||||
@@ -85,6 +85,10 @@ struct vk_pipeline_struct {
|
||||
uint32_t parameter_count;
|
||||
std::array<uint32_t, 3> wg_denoms;
|
||||
uint32_t align;
|
||||
// set to true to request the pipeline is compiled after the dryrun
|
||||
bool needed {};
|
||||
// set to true when the shader has been compiled
|
||||
bool compiled {};
|
||||
};
|
||||
|
||||
typedef std::shared_ptr<vk_pipeline_struct> vk_pipeline;
|
||||
@@ -186,8 +190,11 @@ struct vk_device_struct {
|
||||
bool mul_mat_id_m;
|
||||
bool mul_mat_id_s;
|
||||
|
||||
vk_matmul_pipeline pipeline_matmul_f32;
|
||||
vk_matmul_pipeline pipeline_matmul_f32_f16;
|
||||
// set to true to indicate that some shaders need to be compiled after the dryrun
|
||||
bool need_compiles {};
|
||||
|
||||
vk_matmul_pipeline pipeline_matmul_f32 {};
|
||||
vk_matmul_pipeline pipeline_matmul_f32_f16 {};
|
||||
vk_matmul_pipeline2 pipeline_matmul_f16;
|
||||
vk_matmul_pipeline2 pipeline_matmul_f16_f32;
|
||||
vk_pipeline pipeline_matmul_split_k_reduce;
|
||||
@@ -195,7 +202,7 @@ struct vk_device_struct {
|
||||
vk_matmul_pipeline2 pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_COUNT];
|
||||
vk_matmul_pipeline2 pipeline_dequant_mul_mat_mat[GGML_TYPE_COUNT];
|
||||
|
||||
vk_matmul_pipeline pipeline_matmul_id_f32;
|
||||
vk_matmul_pipeline pipeline_matmul_id_f32 {};
|
||||
vk_matmul_pipeline2 pipeline_matmul_id_f16;
|
||||
vk_matmul_pipeline2 pipeline_matmul_id_f16_f32;
|
||||
|
||||
@@ -767,22 +774,15 @@ static uint32_t compile_count = 0;
|
||||
static std::mutex compile_count_mutex;
|
||||
static std::condition_variable compile_count_cond;
|
||||
|
||||
static void ggml_vk_create_pipeline_func(vk_device& device, vk_pipeline& pipeline, const std::string name, size_t spv_size, const void* spv_data, const std::string entrypoint,
|
||||
uint32_t parameter_count, uint32_t push_constant_size, std::array<uint32_t, 3> wg_denoms, std::vector<uint32_t> specialization_constants,
|
||||
uint32_t align, bool disable_robustness, bool require_full_subgroups, uint32_t required_subgroup_size) {
|
||||
VK_LOG_DEBUG("ggml_vk_create_pipeline(" << device->name << ", " << name << ", " << entrypoint << ", " << parameter_count << ", " << push_constant_size <<
|
||||
", (" << wg_denoms[0] << "," << wg_denoms[1] << "," << wg_denoms[2] << "), specialization_constants, " << align <<
|
||||
", " << disable_robustness << ", " << require_full_subgroups << ", " << required_subgroup_size << ")");
|
||||
static void ggml_vk_create_pipeline_func(vk_device& device, vk_pipeline& pipeline, size_t spv_size, const void* spv_data, const std::string entrypoint,
|
||||
uint32_t parameter_count, std::array<uint32_t, 3> wg_denoms, std::vector<uint32_t> specialization_constants,
|
||||
bool disable_robustness, bool require_full_subgroups, uint32_t required_subgroup_size) {
|
||||
VK_LOG_DEBUG("ggml_vk_create_pipeline(" << device->name << ", " << pipeline->name << ", " << entrypoint << ", " << parameter_count <<
|
||||
", (" << wg_denoms[0] << "," << wg_denoms[1] << "," << wg_denoms[2] << "), specialization_constants, " <<
|
||||
disable_robustness << ", " << require_full_subgroups << ", " << required_subgroup_size << ")");
|
||||
GGML_ASSERT(parameter_count > 0);
|
||||
GGML_ASSERT(wg_denoms[0] > 0 && wg_denoms[1] > 0 && wg_denoms[2] > 0); // NOLINT
|
||||
|
||||
pipeline = std::make_shared<vk_pipeline_struct>();
|
||||
pipeline->name = name;
|
||||
pipeline->parameter_count = parameter_count;
|
||||
pipeline->push_constant_size = push_constant_size;
|
||||
pipeline->wg_denoms = wg_denoms;
|
||||
pipeline->align = align;
|
||||
|
||||
vk::ShaderModuleCreateInfo shader_module_create_info({}, spv_size, reinterpret_cast<const uint32_t *>(spv_data));
|
||||
pipeline->shader_module = device->device.createShaderModule(shader_module_create_info);
|
||||
|
||||
@@ -864,7 +864,14 @@ static void ggml_vk_create_pipeline_func(vk_device& device, vk_pipeline& pipelin
|
||||
compute_pipeline_create_info.setPNext(&rci);
|
||||
}
|
||||
|
||||
pipeline->pipeline = device->device.createComputePipeline(VK_NULL_HANDLE, compute_pipeline_create_info).value;
|
||||
try {
|
||||
pipeline->pipeline = device->device.createComputePipeline(VK_NULL_HANDLE, compute_pipeline_create_info).value;
|
||||
} catch (const vk::SystemError& e) {
|
||||
std::cerr << "ggml_vulkan: Compute pipeline creation failed for " << pipeline->name << std::endl;
|
||||
std::cerr << "ggml_vulkan: " << e.what() << std::endl;
|
||||
throw e;
|
||||
}
|
||||
pipeline->compiled = true;
|
||||
|
||||
{
|
||||
std::lock_guard<std::mutex> guard(device->mutex);
|
||||
@@ -875,12 +882,6 @@ static void ggml_vk_create_pipeline_func(vk_device& device, vk_pipeline& pipelin
|
||||
std::lock_guard<std::mutex> guard(compile_count_mutex);
|
||||
assert(compile_count > 0);
|
||||
compile_count--;
|
||||
|
||||
// "Progress bar" for shader compiles
|
||||
static uint32_t total_compile_count = 0;
|
||||
if ((total_compile_count++ % 10) == 0) {
|
||||
std::cerr << ".";
|
||||
}
|
||||
}
|
||||
compile_count_cond.notify_all();
|
||||
}
|
||||
@@ -906,6 +907,10 @@ static void ggml_vk_destroy_pipeline(vk::Device& device, vk_pipeline& pipeline)
|
||||
static void ggml_pipeline_request_descriptor_sets(vk_device& device, vk_pipeline& pipeline, uint32_t n) {
|
||||
VK_LOG_DEBUG("ggml_pipeline_request_descriptor_sets(" << pipeline->name << ", " << n << ")");
|
||||
device->pipeline_descriptor_set_requirements[pipeline->name] += n;
|
||||
if (!pipeline->compiled) {
|
||||
pipeline->needed = true;
|
||||
device->need_compiles = true;
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_pipeline_allocate_descriptor_sets(vk_device& device) {
|
||||
@@ -1388,8 +1393,6 @@ static bool ggml_vk_matmul_shmem_support(const vk_device& device, const std::vec
|
||||
static void ggml_vk_load_shaders(vk_device& device) {
|
||||
VK_LOG_DEBUG("ggml_vk_load_shaders(" << device->name << ")");
|
||||
|
||||
std::cerr << "ggml_vulkan: Compiling shaders";
|
||||
|
||||
// some shaders have a minimum subgroup size
|
||||
const uint32_t subgroup_size_16 = std::max(device->subgroup_size, 16u);
|
||||
const uint32_t subgroup_size_32 = std::max(device->subgroup_size, 32u);
|
||||
@@ -1527,15 +1530,33 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
||||
}
|
||||
}
|
||||
|
||||
device->pipeline_matmul_f32 = std::make_shared<vk_matmul_pipeline_struct>();
|
||||
device->pipeline_matmul_f32_f16 = std::make_shared<vk_matmul_pipeline_struct>();
|
||||
|
||||
device->pipeline_matmul_id_f32 = std::make_shared<vk_matmul_pipeline_struct>();
|
||||
if (!device->pipeline_matmul_f32) {
|
||||
device->pipeline_matmul_f32 = std::make_shared<vk_matmul_pipeline_struct>();
|
||||
}
|
||||
if (!device->pipeline_matmul_f32_f16) {
|
||||
device->pipeline_matmul_f32_f16 = std::make_shared<vk_matmul_pipeline_struct>();
|
||||
}
|
||||
if (!device->pipeline_matmul_id_f32) {
|
||||
device->pipeline_matmul_id_f32 = std::make_shared<vk_matmul_pipeline_struct>();
|
||||
}
|
||||
|
||||
std::vector<std::future<void>> compiles;
|
||||
auto const &ggml_vk_create_pipeline = [&](vk_device& device, vk_pipeline& pipeline, const std::string &name, size_t spv_size, const void* spv_data, const std::string &entrypoint,
|
||||
uint32_t parameter_count, uint32_t push_constant_size, std::array<uint32_t, 3> wg_denoms, const std::vector<uint32_t>& specialization_constants,
|
||||
uint32_t align, bool disable_robustness = false, bool require_full_subgroups = false, uint32_t required_subgroup_size = 0) {
|
||||
|
||||
if (!pipeline) {
|
||||
pipeline = std::make_shared<vk_pipeline_struct>();
|
||||
pipeline->name = name;
|
||||
pipeline->parameter_count = parameter_count;
|
||||
pipeline->push_constant_size = push_constant_size;
|
||||
pipeline->wg_denoms = wg_denoms;
|
||||
pipeline->align = align;
|
||||
}
|
||||
|
||||
if (!pipeline->needed || pipeline->compiled) {
|
||||
return;
|
||||
}
|
||||
{
|
||||
// wait until fewer than N compiles are in progress
|
||||
uint32_t N = std::max(1u, std::thread::hardware_concurrency());
|
||||
@@ -1545,8 +1566,8 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
||||
}
|
||||
compile_count++;
|
||||
}
|
||||
compiles.push_back(std::async(ggml_vk_create_pipeline_func, std::ref(device), std::ref(pipeline), name, spv_size, spv_data, entrypoint,
|
||||
parameter_count, push_constant_size, wg_denoms, specialization_constants, align, disable_robustness, require_full_subgroups, required_subgroup_size));
|
||||
compiles.push_back(std::async(ggml_vk_create_pipeline_func, std::ref(device), std::ref(pipeline), spv_size, spv_data, entrypoint,
|
||||
parameter_count, wg_denoms, specialization_constants, disable_robustness, require_full_subgroups, required_subgroup_size));
|
||||
};
|
||||
|
||||
#if defined(VK_NV_cooperative_matrix2) && defined(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT)
|
||||
@@ -2050,7 +2071,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
||||
for (auto &c : compiles) {
|
||||
c.wait();
|
||||
}
|
||||
std::cerr << "Done!" << std::endl;
|
||||
device->need_compiles = false;
|
||||
}
|
||||
|
||||
static bool ggml_vk_khr_cooperative_matrix_support(const vk::PhysicalDeviceProperties& props, const vk::PhysicalDeviceDriverProperties& driver_props);
|
||||
@@ -7656,6 +7677,9 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg
|
||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
ggml_vk_build_graph(ctx, cgraph->nodes[i], i, nullptr, 0, true, false, false);
|
||||
}
|
||||
if (ctx->device->need_compiles) {
|
||||
ggml_vk_load_shaders(ctx->device);
|
||||
}
|
||||
ggml_vk_preallocate_buffers(ctx);
|
||||
ggml_pipeline_allocate_descriptor_sets(ctx->device);
|
||||
|
||||
|
||||
@@ -128,6 +128,10 @@ static void ggml_print_backtrace_symbols(void) {
|
||||
#endif
|
||||
|
||||
static void ggml_print_backtrace(void) {
|
||||
const char * GGML_NO_BACKTRACE = getenv("GGML_NO_BACKTRACE");
|
||||
if (GGML_NO_BACKTRACE) {
|
||||
return;
|
||||
}
|
||||
char attach[32];
|
||||
snprintf(attach, sizeof(attach), "attach %d", getpid());
|
||||
int pid = fork();
|
||||
|
||||
@@ -1 +1 @@
|
||||
d92321c0d151fe73a47d89738c7c3091ac904297
|
||||
32f0b85987396945afea2291d5f4c5862434292b
|
||||
|
||||
@@ -819,7 +819,7 @@ void llama_model_loader::init_mappings(bool prefetch, llama_mlocks * mlock_mmaps
|
||||
for (const auto & file : files) {
|
||||
auto * reg = ggml_backend_dev_backend_reg(ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU));
|
||||
auto * is_numa_fn = (decltype(ggml_is_numa) *) ggml_backend_reg_get_proc_address(reg, "ggml_backend_cpu_is_numa");
|
||||
std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, is_numa_fn()));
|
||||
std::unique_ptr<llama_mmap> mapping = std::make_unique<llama_mmap>(file.get(), prefetch ? -1 : 0, is_numa_fn());
|
||||
mmaps_used.emplace_back(mapping->size(), 0);
|
||||
if (mlock_mmaps) {
|
||||
std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
|
||||
|
||||
@@ -1303,10 +1303,12 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
const int act_gpu_layers = devices.empty() ? 0 : std::min(n_gpu_layers, (int)n_layer + 1);
|
||||
auto get_layer_buft_list = [&](int il) -> llama_model::impl::layer_dev {
|
||||
if (il < i_gpu_start || (il - i_gpu_start) >= act_gpu_layers) {
|
||||
LLAMA_LOG_DEBUG("load_tensors: layer %3d assigned to device %s\n", il, ggml_backend_dev_name(cpu_dev));
|
||||
return {cpu_dev, &pimpl->cpu_buft_list};
|
||||
}
|
||||
const int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + n_devices(), float(il - i_gpu_start)/act_gpu_layers) - splits.begin();
|
||||
auto * dev = devices.at(layer_gpu);
|
||||
LLAMA_LOG_DEBUG("load_tensors: layer %3d assigned to device %s\n", il, ggml_backend_dev_name(dev));
|
||||
return {dev, &pimpl->gpu_buft_list.at(dev)};
|
||||
};
|
||||
|
||||
|
||||
@@ -1245,8 +1245,13 @@ struct llama_vocab::impl {
|
||||
|
||||
std::vector<llama_token> cache_special_tokens;
|
||||
std::vector<std::string> cache_token_to_piece; // llama_token_to_piece(special = true);
|
||||
|
||||
std::map<std::pair<std::string, std::string>, int> bpe_ranks;
|
||||
struct pair_hash {
|
||||
size_t operator()(const std::pair<std::string, std::string> & p) const {
|
||||
return std::hash<std::string>{}(p.first) ^ //create some hash for pair
|
||||
(std::hash<std::string>{}(p.second) << 1);
|
||||
}
|
||||
};
|
||||
std::unordered_map<std::pair<std::string, std::string>, int, pair_hash> bpe_ranks;
|
||||
|
||||
// set of all tokens that cause "end of generation"
|
||||
std::set<llama_token> special_eog_ids;
|
||||
|
||||
265
src/llama.cpp
265
src/llama.cpp
@@ -7700,17 +7700,13 @@ struct llm_build_context {
|
||||
1
|
||||
);
|
||||
|
||||
struct ggml_tensor * last_norm_att = ggml_view_3d(ctx0, x_norm_att, n_embd, 1, n_seqs, x_norm_att->nb[1], x_norm_att->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(x_norm_att));
|
||||
ggml_build_forward_expand(
|
||||
gf,
|
||||
ggml_cpy(
|
||||
ctx0,
|
||||
wkv_states,
|
||||
ggml_view_1d(
|
||||
ctx0,
|
||||
kv_self.v_l[il],
|
||||
hparams.n_embd_v_s() * n_seqs,
|
||||
hparams.n_embd_v_s() * kv_head * ggml_element_size(kv_self.v_l[il])
|
||||
)
|
||||
ggml_view_1d(ctx0, last_norm_att, n_embd * n_seqs, 0),
|
||||
ggml_view_1d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s() * n_seqs, hparams.n_embd_k_s() * kv_head * ggml_element_size(kv_self.k_l[il]))
|
||||
)
|
||||
);
|
||||
|
||||
@@ -8432,13 +8428,141 @@ static enum ggml_status llama_graph_compute(
|
||||
return status;
|
||||
}
|
||||
|
||||
static int llama_prepare_sbatch(
|
||||
llama_context & lctx,
|
||||
const llama_batch & batch,
|
||||
uint32_t & n_outputs) {
|
||||
const auto & model = lctx.model;
|
||||
const auto & hparams = model.hparams;
|
||||
const auto & cparams = lctx.cparams;
|
||||
|
||||
const uint32_t n_tokens_all = batch.n_tokens;
|
||||
const int64_t n_embd = hparams.n_embd;
|
||||
|
||||
// this indicates we are doing pooled embedding, so we ignore batch.logits and output all tokens
|
||||
const bool embd_pooled = cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE;
|
||||
|
||||
GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT
|
||||
if (batch.token) {
|
||||
for (uint32_t i = 0; i < n_tokens_all; ++i) {
|
||||
if (batch.token[i] < 0 || uint32_t(batch.token[i]) >= model.vocab.n_tokens()) {
|
||||
LLAMA_LOG_ERROR("%s: invalid token[%d] = %d\n", __func__, i, batch.token[i]);
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
}
|
||||
GGML_ASSERT(n_tokens_all <= cparams.n_batch);
|
||||
GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens");
|
||||
|
||||
lctx.n_queued_tokens += n_tokens_all;
|
||||
lctx.embd_seq.clear();
|
||||
|
||||
// count outputs
|
||||
if (batch.logits && !embd_pooled) {
|
||||
for (uint32_t i = 0; i < n_tokens_all; ++i) {
|
||||
n_outputs += batch.logits[i] != 0;
|
||||
}
|
||||
} else if (lctx.logits_all || embd_pooled) {
|
||||
n_outputs = n_tokens_all;
|
||||
} else {
|
||||
// keep last output only
|
||||
n_outputs = 1;
|
||||
}
|
||||
|
||||
lctx.sbatch.from_batch(batch, n_embd,
|
||||
/* simple_split */ !lctx.kv_self.recurrent,
|
||||
/* logits_all */ n_outputs == n_tokens_all);
|
||||
|
||||
// reserve output buffer
|
||||
if (llama_output_reserve(lctx, n_outputs) < n_outputs) {
|
||||
LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_outputs);
|
||||
return -2;
|
||||
};
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int llama_prepare_ubatch(
|
||||
llama_context & lctx,
|
||||
llama_kv_slot_restorer & kv_slot_restorer,
|
||||
llama_ubatch & ubatch,
|
||||
const uint32_t n_outputs,
|
||||
const uint32_t n_tokens_all) {
|
||||
GGML_ASSERT(lctx.sbatch.n_tokens > 0);
|
||||
|
||||
auto & kv_self = lctx.kv_self;
|
||||
const auto & cparams = lctx.cparams;
|
||||
const auto & hparams = lctx.model.hparams;
|
||||
|
||||
// this indicates we are doing pooled embedding, so we ignore batch.logits and output all tokens
|
||||
const bool embd_pooled = cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE;
|
||||
|
||||
if (lctx.kv_self.recurrent) {
|
||||
if (embd_pooled) {
|
||||
// Pooled embeddings cannot be split across ubatches (yet)
|
||||
ubatch = lctx.sbatch.split_seq(cparams.n_ubatch);
|
||||
} else {
|
||||
// recurrent model architectures are easier to implement
|
||||
// with equal-length sequences
|
||||
ubatch = lctx.sbatch.split_equal(cparams.n_ubatch);
|
||||
}
|
||||
} else {
|
||||
ubatch = lctx.sbatch.split_simple(cparams.n_ubatch);
|
||||
}
|
||||
|
||||
// count the outputs in this u_batch
|
||||
{
|
||||
int32_t n_outputs_new = 0;
|
||||
|
||||
if (n_outputs == n_tokens_all) {
|
||||
n_outputs_new = ubatch.n_tokens;
|
||||
} else {
|
||||
GGML_ASSERT(ubatch.output);
|
||||
for (uint32_t i = 0; i < ubatch.n_tokens; i++) {
|
||||
n_outputs_new += int32_t(ubatch.output[i] != 0);
|
||||
}
|
||||
}
|
||||
|
||||
// needs to happen before the graph is built
|
||||
lctx.n_outputs = n_outputs_new;
|
||||
}
|
||||
|
||||
// non-causal masks do not use the KV cache
|
||||
if (hparams.causal_attn) {
|
||||
llama_kv_cache_update(&lctx);
|
||||
|
||||
// if we have enough unused cells before the current head ->
|
||||
// better to start searching from the beginning of the cache, hoping to fill it
|
||||
if (kv_self.head > kv_self.used + 2*ubatch.n_tokens) {
|
||||
kv_self.head = 0;
|
||||
}
|
||||
|
||||
const auto slot = llama_kv_cache_find_slot(kv_self, ubatch);
|
||||
if (!slot) {
|
||||
return 1;
|
||||
}
|
||||
kv_slot_restorer.save(slot);
|
||||
|
||||
if (!kv_self.recurrent) {
|
||||
// a heuristic, to avoid attending the full cache if it is not yet utilized
|
||||
// after enough generations, the benefit from this heuristic disappears
|
||||
// if we start defragmenting the cache, the benefit from this will be more important
|
||||
const uint32_t pad = llama_kv_cache_get_padding(cparams);
|
||||
kv_self.n = std::min(kv_self.size, std::max(pad, GGML_PAD(llama_kv_cache_cell_max(kv_self), pad)));
|
||||
//kv_self.n = llama_kv_cache_cell_max(kv_self);
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
// decode a batch of tokens by evaluating the transformer
|
||||
// in case of unsuccessful decoding (error or warning),
|
||||
// the kv_cache state will be returned to its original state
|
||||
// (for non-recurrent models) or cleaned (for recurrent models)
|
||||
//
|
||||
// - lctx: llama context
|
||||
// - batch: batch to evaluate
|
||||
// - inp_batch: batch to evaluate
|
||||
//
|
||||
// return 0 on success
|
||||
// return positive int on warning
|
||||
@@ -8455,37 +8579,18 @@ static int llama_decode_impl(
|
||||
return -1;
|
||||
}
|
||||
|
||||
// temporary allocate memory for the input batch if needed
|
||||
// temporarily allocate memory for the input batch if needed
|
||||
llama_batch_allocr batch_allocr(inp_batch, inp_batch.pos ? -1 : lctx.kv_self.max_pos() + 1);
|
||||
|
||||
const llama_batch & batch = batch_allocr.batch;
|
||||
const uint32_t n_tokens_all = batch.n_tokens;
|
||||
|
||||
const auto & model = lctx.model;
|
||||
const auto & vocab = model.vocab;
|
||||
const auto & hparams = model.hparams;
|
||||
const auto & cparams = lctx.cparams;
|
||||
|
||||
GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT
|
||||
|
||||
if (batch.token) {
|
||||
for (uint32_t i = 0; i < n_tokens_all; ++i) {
|
||||
if (batch.token[i] < 0 || (uint32_t) batch.token[i] >= model.vocab.n_tokens()) {
|
||||
LLAMA_LOG_ERROR("%s: invalid token[%d] = %d\n", __func__, i, batch.token[i]);
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
GGML_ASSERT(n_tokens_all <= cparams.n_batch);
|
||||
|
||||
GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens");
|
||||
|
||||
if (lctx.t_compute_start_us == 0) {
|
||||
lctx.t_compute_start_us = ggml_time_us();
|
||||
}
|
||||
lctx.n_queued_tokens += n_tokens_all;
|
||||
|
||||
auto & kv_self = lctx.kv_self;
|
||||
llama_kv_slot_restorer kv_slot_restorer(kv_self);
|
||||
|
||||
@@ -8495,99 +8600,27 @@ static int llama_decode_impl(
|
||||
uint32_t n_outputs = 0;
|
||||
uint32_t n_outputs_prev = 0;
|
||||
|
||||
const auto n_ubatch = cparams.n_ubatch;
|
||||
|
||||
// this indicates we are doing pooled embedding, so we ignore batch.logits and output all tokens
|
||||
const bool embd_pooled = cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE;
|
||||
|
||||
lctx.embd_seq.clear();
|
||||
|
||||
// count outputs
|
||||
if (batch.logits && !embd_pooled) {
|
||||
for (uint32_t i = 0; i < n_tokens_all; ++i) {
|
||||
n_outputs += batch.logits[i] != 0;
|
||||
{
|
||||
const int ret = llama_prepare_sbatch(lctx, batch, n_outputs);
|
||||
if (ret != 0) {
|
||||
return ret;
|
||||
}
|
||||
} else if (lctx.logits_all || embd_pooled) {
|
||||
n_outputs = n_tokens_all;
|
||||
} else {
|
||||
// keep last output only
|
||||
n_outputs = 1;
|
||||
}
|
||||
|
||||
lctx.sbatch.from_batch(batch, n_embd,
|
||||
/* simple_split */ !kv_self.recurrent,
|
||||
/* logits_all */ n_outputs == n_tokens_all);
|
||||
|
||||
// reserve output buffer
|
||||
if (llama_output_reserve(lctx, n_outputs) < n_outputs) {
|
||||
LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_outputs);
|
||||
return -2;
|
||||
};
|
||||
|
||||
while (lctx.sbatch.n_tokens > 0) {
|
||||
llama_ubatch ubatch;
|
||||
if (kv_self.recurrent) {
|
||||
if (embd_pooled) {
|
||||
// Pooled embeddings cannot be split across ubatches (yet)
|
||||
ubatch = lctx.sbatch.split_seq(n_ubatch);
|
||||
} else {
|
||||
// recurrent model architectures are easier to implement
|
||||
// with equal-length sequences
|
||||
ubatch = lctx.sbatch.split_equal(n_ubatch);
|
||||
}
|
||||
} else {
|
||||
ubatch = lctx.sbatch.split_simple(n_ubatch);
|
||||
}
|
||||
const uint32_t n_tokens = ubatch.n_tokens;
|
||||
|
||||
// count the outputs in this u_batch
|
||||
{
|
||||
int32_t n_outputs_new = 0;
|
||||
|
||||
if (n_outputs == n_tokens_all) {
|
||||
n_outputs_new = n_tokens;
|
||||
} else {
|
||||
GGML_ASSERT(ubatch.output);
|
||||
for (uint32_t i = 0; i < n_tokens; i++) {
|
||||
n_outputs_new += (int32_t) (ubatch.output[i] != 0);
|
||||
}
|
||||
const int ret = llama_prepare_ubatch(lctx, kv_slot_restorer, ubatch, n_outputs, batch.n_tokens);
|
||||
if (ret != 0) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
// needs to happen before the graph is built
|
||||
lctx.n_outputs = n_outputs_new;
|
||||
}
|
||||
|
||||
int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
|
||||
ggml_threadpool_t threadpool = n_tokens == 1 ? lctx.threadpool : lctx.threadpool_batch;
|
||||
const int n_threads = ubatch.n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
|
||||
ggml_threadpool_t threadpool = ubatch.n_tokens == 1 ? lctx.threadpool : lctx.threadpool_batch;
|
||||
|
||||
GGML_ASSERT(n_threads > 0);
|
||||
|
||||
// non-causal masks do not use the KV cache
|
||||
if (hparams.causal_attn) {
|
||||
llama_kv_cache_update(&lctx);
|
||||
|
||||
// if we have enough unused cells before the current head ->
|
||||
// better to start searching from the beginning of the cache, hoping to fill it
|
||||
if (kv_self.head > kv_self.used + 2*n_tokens) {
|
||||
kv_self.head = 0;
|
||||
}
|
||||
|
||||
const auto slot = llama_kv_cache_find_slot(kv_self, ubatch);
|
||||
if (!slot) {
|
||||
return 1;
|
||||
}
|
||||
kv_slot_restorer.save(slot);
|
||||
|
||||
if (!kv_self.recurrent) {
|
||||
// a heuristic, to avoid attending the full cache if it is not yet utilized
|
||||
// after enough generations, the benefit from this heuristic disappears
|
||||
// if we start defragmenting the cache, the benefit from this will be more important
|
||||
const uint32_t pad = llama_kv_cache_get_padding(cparams);
|
||||
kv_self.n = std::min(kv_self.size, std::max(pad, GGML_PAD(llama_kv_cache_cell_max(kv_self), pad)));
|
||||
//kv_self.n = llama_kv_cache_cell_max(kv_self);
|
||||
}
|
||||
}
|
||||
|
||||
//printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
|
||||
|
||||
ggml_backend_sched_reset(lctx.sched.get());
|
||||
@@ -8640,7 +8673,7 @@ static int llama_decode_impl(
|
||||
|
||||
// update the kv ring buffer
|
||||
{
|
||||
kv_self.head += n_tokens;
|
||||
kv_self.head += ubatch.n_tokens;
|
||||
|
||||
// Ensure kv cache head points to a valid index.
|
||||
if (kv_self.head >= kv_self.size) {
|
||||
@@ -9405,6 +9438,7 @@ static struct llama_model * llama_model_load_from_file_impl(
|
||||
model->devices.push_back(*dev);
|
||||
}
|
||||
} else {
|
||||
std::vector<ggml_backend_dev_t> rpc_servers;
|
||||
// use all available devices
|
||||
for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
|
||||
ggml_backend_dev_t dev = ggml_backend_dev_get(i);
|
||||
@@ -9415,10 +9449,19 @@ static struct llama_model * llama_model_load_from_file_impl(
|
||||
break;
|
||||
|
||||
case GGML_BACKEND_DEVICE_TYPE_GPU:
|
||||
model->devices.push_back(dev);
|
||||
ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
|
||||
if (ggml_backend_reg_name(reg) == std::string("RPC")) {
|
||||
rpc_servers.push_back(dev);
|
||||
} else {
|
||||
model->devices.push_back(dev);
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
// add RPC servers at the front of the list
|
||||
if (!rpc_servers.empty()) {
|
||||
model->devices.insert(model->devices.begin(), rpc_servers.begin(), rpc_servers.end());
|
||||
}
|
||||
}
|
||||
|
||||
// if using single GPU mode, remove all except the main GPU
|
||||
|
||||
@@ -2347,11 +2347,12 @@ struct test_soft_max : public test_case {
|
||||
const ggml_type type;
|
||||
const std::array<int64_t, 4> ne;
|
||||
const bool mask;
|
||||
const ggml_type m_prec;
|
||||
const float scale;
|
||||
const float max_bias;
|
||||
|
||||
std::string vars() override {
|
||||
return VARS_TO_STR5(type, ne, mask, scale, max_bias);
|
||||
return VARS_TO_STR6(type, ne, mask, m_prec, scale, max_bias);
|
||||
}
|
||||
|
||||
// the 1024 test with bias occasionally fails:
|
||||
@@ -2363,9 +2364,10 @@ struct test_soft_max : public test_case {
|
||||
test_soft_max(ggml_type type = GGML_TYPE_F32,
|
||||
std::array<int64_t, 4> ne = {10, 5, 4, 3},
|
||||
bool mask = false,
|
||||
ggml_type m_prec = GGML_TYPE_F32,
|
||||
float scale = 1.0f,
|
||||
float max_bias = 0.0f)
|
||||
: type(type), ne(ne), mask(mask), scale(scale), max_bias(max_bias) {}
|
||||
: type(type), ne(ne), mask(mask), m_prec(m_prec), scale(scale), max_bias(max_bias) {}
|
||||
|
||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
||||
@@ -2374,7 +2376,7 @@ struct test_soft_max : public test_case {
|
||||
|
||||
ggml_tensor * mask = nullptr;
|
||||
if (this->mask) {
|
||||
mask = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, ne[0], ne[1]);
|
||||
mask = ggml_new_tensor_2d(ctx, m_prec, ne[0], ne[1]);
|
||||
ggml_set_name(mask, "mask");
|
||||
}
|
||||
|
||||
@@ -4150,17 +4152,28 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
|
||||
for (float scale : {1.0f, 0.1f}) {
|
||||
for (int64_t ne0 : {16, 1024}) {
|
||||
for (int64_t ne1 : {16, 1024}) {
|
||||
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, scale, max_bias));
|
||||
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, scale, max_bias));
|
||||
if (mask) {
|
||||
for (ggml_type m_prec : {GGML_TYPE_F32, GGML_TYPE_F16}) {
|
||||
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, m_prec, scale, max_bias));
|
||||
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, m_prec, scale, max_bias));
|
||||
}
|
||||
} else {
|
||||
/* The precision of mask here doesn't matter as boolean mask is false */
|
||||
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, GGML_TYPE_F32, scale, max_bias));
|
||||
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, GGML_TYPE_F32, scale, max_bias));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, 0.1f, 0.0f));
|
||||
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, 0.1f, 0.0f));
|
||||
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, 0.1f, 0.0f));
|
||||
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, 0.1f, 8.0f));
|
||||
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, GGML_TYPE_F32, 0.1f, 0.0f));
|
||||
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, GGML_TYPE_F16, 0.1f, 0.0f));
|
||||
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, GGML_TYPE_F32, 0.1f, 0.0f));
|
||||
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F32, 0.1f, 0.0f));
|
||||
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F16, 0.1f, 0.0f));
|
||||
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F32, 0.1f, 8.0f));
|
||||
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F16, 0.1f, 8.0f));
|
||||
|
||||
for (float max_bias : {0.0f, 8.0f}) {
|
||||
for (float scale : {1.0f, 0.1f}) {
|
||||
@@ -4296,13 +4309,13 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
|
||||
test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {8192, 512, 2, 1}, {0, 2, 1, 3}));
|
||||
test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {3072, 512, 2, 1}, {0, 2, 1, 3}));
|
||||
|
||||
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {4096, 4096, 5, 1}, false, 1.0f, 0.0f));
|
||||
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 4096, 5, 1}, false, 1.0f, 0.0f));
|
||||
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {1024, 1024, 10, 1}, false, 1.0f, 0.0f));
|
||||
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 1024, 10, 1}, false, 1.0f, 0.0f));
|
||||
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {256, 256, 20, 1}, false, 1.0f, 0.0f));
|
||||
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {64, 64, 20, 1}, false, 1.0f, 0.0f));
|
||||
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 64, 20, 1}, false, 1.0f, 0.0f));
|
||||
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {4096, 4096, 5, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
|
||||
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 4096, 5, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
|
||||
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {1024, 1024, 10, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
|
||||
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 1024, 10, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
|
||||
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {256, 256, 20, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
|
||||
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {64, 64, 20, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
|
||||
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 64, 20, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
|
||||
|
||||
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 10, 1, 1}));
|
||||
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
|
||||
|
||||
Reference in New Issue
Block a user