mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2026-02-05 13:53:23 +02:00
Compare commits
119 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
6ef79a67ca | ||
|
|
4e39a3c332 | ||
|
|
be421fc429 | ||
|
|
87c2630546 | ||
|
|
2b3a25c212 | ||
|
|
8352cdc87b | ||
|
|
1e2f78a004 | ||
|
|
0fd7ca7a21 | ||
|
|
6fefc05a7a | ||
|
|
7ab364390f | ||
|
|
7c7f3b7f43 | ||
|
|
102ac1891d | ||
|
|
d6ae2fa061 | ||
|
|
68d0027f3d | ||
|
|
ea002810a2 | ||
|
|
8fad3c7a7c | ||
|
|
7cf64f6bee | ||
|
|
5e2d57b2b2 | ||
|
|
f1648e91cf | ||
|
|
d6c95b0740 | ||
|
|
d76a86d967 | ||
|
|
776f9e59cc | ||
|
|
3d652bfddf | ||
|
|
5220a16d18 | ||
|
|
3ffbbd5ce1 | ||
|
|
42994048a3 | ||
|
|
e9b2f84f14 | ||
|
|
e721c05c93 | ||
|
|
57b6abf85a | ||
|
|
94bb63e4f0 | ||
|
|
f79243992c | ||
|
|
ed4ce0dda2 | ||
|
|
07d1572347 | ||
|
|
5e43f104cc | ||
|
|
16e4b22c5e | ||
|
|
074c4fd39d | ||
|
|
669912d9a5 | ||
|
|
fa31c438e0 | ||
|
|
3ccbfe5a71 | ||
|
|
06a92a193a | ||
|
|
a057897ad4 | ||
|
|
5bbe6a9fe9 | ||
|
|
20a9b8f5e1 | ||
|
|
56d7a9f812 | ||
|
|
1a24c4621f | ||
|
|
becade5de7 | ||
|
|
dfd6b2c0be | ||
|
|
b64d7cc272 | ||
|
|
3d1cf3cf33 | ||
|
|
0cbee131ad | ||
|
|
8371d44595 | ||
|
|
87abb7e903 | ||
|
|
6d4c23b81b | ||
|
|
6512a90037 | ||
|
|
4512055792 | ||
|
|
f54a4ba11e | ||
|
|
aede2074f6 | ||
|
|
2679c3b55d | ||
|
|
c43af9276b | ||
|
|
d5c63cd7f9 | ||
|
|
9660ffef58 | ||
|
|
c950a1f692 | ||
|
|
7b69003af7 | ||
|
|
ece9745bb8 | ||
|
|
cc473cac7c | ||
|
|
14dec0c2f2 | ||
|
|
1782cdfed6 | ||
|
|
45a8e76745 | ||
|
|
80c41ddd8f | ||
|
|
2cc4a5e44a | ||
|
|
06c2b1561d | ||
|
|
70680c48e5 | ||
|
|
c43a3e7996 | ||
|
|
84d5f4bc19 | ||
|
|
438a83926a | ||
|
|
9c42b1718c | ||
|
|
05e6f5aad0 | ||
|
|
673cfef9aa | ||
|
|
fbeda9002d | ||
|
|
581650b7ca | ||
|
|
b95c8af37c | ||
|
|
a800ae46da | ||
|
|
69050a11be | ||
|
|
3567ee3a94 | ||
|
|
53e4db1012 | ||
|
|
d7cfe1ffe0 | ||
|
|
a82c9e7c23 | ||
|
|
401af80b54 | ||
|
|
c132239bfb | ||
|
|
393fca629e | ||
|
|
61d4f39dfe | ||
|
|
0b52745649 | ||
|
|
4d1051a40f | ||
|
|
3e9a2860e9 | ||
|
|
58d07a8043 | ||
|
|
34a846b584 | ||
|
|
7a2c913e66 | ||
|
|
08d5986290 | ||
|
|
651adf4b66 | ||
|
|
8303e8b0fb | ||
|
|
7ad0779f5d | ||
|
|
f777a73e18 | ||
|
|
af7747c95a | ||
|
|
a28e0d5eb1 | ||
|
|
36c258ee92 | ||
|
|
f3e64859ed | ||
|
|
5fa07c2f93 | ||
|
|
335eb04a91 | ||
|
|
cf756d6e0a | ||
|
|
d70908421f | ||
|
|
de8b5a3624 | ||
|
|
51f311e057 | ||
|
|
586d5fe6eb | ||
|
|
ecc8e3aeff | ||
|
|
0b3863ff95 | ||
|
|
ee02ad02c5 | ||
|
|
c392e5094d | ||
|
|
c5d91a7400 | ||
|
|
4806498bf1 |
68
.github/workflows/build.yml
vendored
68
.github/workflows/build.yml
vendored
@@ -173,7 +173,15 @@ jobs:
|
||||
name: llama-bin-macos-x64.zip
|
||||
|
||||
ubuntu-cpu-cmake:
|
||||
runs-on: ubuntu-22.04
|
||||
strategy:
|
||||
matrix:
|
||||
include:
|
||||
- build: 'x64'
|
||||
os: ubuntu-22.04
|
||||
- build: 'arm64'
|
||||
os: ubuntu-22.04-arm
|
||||
|
||||
runs-on: ${{ matrix.os }}
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
@@ -239,14 +247,14 @@ jobs:
|
||||
run: |
|
||||
cp LICENSE ./build/bin/
|
||||
cp examples/run/linenoise.cpp/LICENSE ./build/bin/LICENSE.linenoise.cpp
|
||||
zip -r llama-${{ steps.tag.outputs.name }}-bin-ubuntu-x64.zip ./build/bin/*
|
||||
zip -r llama-${{ steps.tag.outputs.name }}-bin-ubuntu-${{ matrix.build }}.zip ./build/bin/*
|
||||
|
||||
- name: Upload artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-ubuntu-x64.zip
|
||||
name: llama-bin-ubuntu-x64.zip
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-ubuntu-${{ matrix.build }}.zip
|
||||
name: llama-bin-ubuntu-${{ matrix.build }}.zip
|
||||
|
||||
ubuntu-latest-cmake-sanitizer:
|
||||
runs-on: ubuntu-latest
|
||||
@@ -459,6 +467,7 @@ jobs:
|
||||
run: |
|
||||
cmake -B build -S . \
|
||||
-DCMAKE_HIP_COMPILER="$(hipconfig -l)/clang" \
|
||||
-DGGML_HIP_ROCWMMA_FATTN=ON \
|
||||
-DGGML_HIP=ON
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
@@ -468,6 +477,7 @@ jobs:
|
||||
cmake -B build2 -S . \
|
||||
-DCMAKE_C_COMPILER=hipcc \
|
||||
-DCMAKE_CXX_COMPILER=hipcc \
|
||||
-DGGML_HIP_ROCWMMA_FATTN=ON \
|
||||
-DGGML_HIP=ON
|
||||
cmake --build build2 --config Release -j $(nproc)
|
||||
|
||||
@@ -702,12 +712,11 @@ jobs:
|
||||
-DLLAMA_BUILD_SERVER=OFF \
|
||||
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64"
|
||||
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu)
|
||||
sudo cmake --install build --config Release
|
||||
|
||||
- name: xcodebuild for swift package
|
||||
id: xcodebuild
|
||||
run: |
|
||||
xcodebuild -scheme llama-Package -destination "${{ matrix.destination }}"
|
||||
./build-xcframework.sh
|
||||
|
||||
windows-msys2:
|
||||
runs-on: windows-latest
|
||||
@@ -1195,6 +1204,11 @@ jobs:
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Clone rocWMMA repository
|
||||
id: clone_rocwmma
|
||||
run: |
|
||||
git clone https://github.com/rocm/rocwmma --branch rocm-6.2.4 --depth 1
|
||||
|
||||
- name: Install
|
||||
id: depends
|
||||
run: |
|
||||
@@ -1224,8 +1238,10 @@ jobs:
|
||||
cmake -G "Unix Makefiles" -B build -S . `
|
||||
-DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" `
|
||||
-DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" `
|
||||
-DCMAKE_CXX_FLAGS="-I$($PWD.Path.Replace('\', '/'))/rocwmma/library/include/" `
|
||||
-DCMAKE_BUILD_TYPE=Release `
|
||||
-DGGML_HIP=ON `
|
||||
-DGGML_HIP_ROCWMMA_FATTN=ON `
|
||||
-DGGML_RPC=ON
|
||||
cmake --build build -j ${env:NUMBER_OF_PROCESSORS}
|
||||
|
||||
@@ -1244,6 +1260,11 @@ jobs:
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Clone rocWMMA repository
|
||||
id: clone_rocwmma
|
||||
run: |
|
||||
git clone https://github.com/rocm/rocwmma --branch rocm-6.2.4 --depth 1
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
with:
|
||||
@@ -1273,8 +1294,10 @@ jobs:
|
||||
cmake -G "Unix Makefiles" -B build -S . `
|
||||
-DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" `
|
||||
-DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" `
|
||||
-DCMAKE_CXX_FLAGS="-I$($PWD.Path.Replace('\', '/'))/rocwmma/library/include/" `
|
||||
-DCMAKE_BUILD_TYPE=Release `
|
||||
-DAMDGPU_TARGETS=${{ matrix.gpu_target }} `
|
||||
-DGGML_HIP_ROCWMMA_FATTN=ON `
|
||||
-DGGML_HIP=ON `
|
||||
-DGGML_RPC=ON
|
||||
cmake --build build -j ${env:NUMBER_OF_PROCESSORS}
|
||||
@@ -1313,6 +1336,8 @@ jobs:
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
@@ -1328,15 +1353,40 @@ jobs:
|
||||
-DCMAKE_OSX_DEPLOYMENT_TARGET=14.0 \
|
||||
-DCMAKE_XCODE_ATTRIBUTE_DEVELOPMENT_TEAM=ggml
|
||||
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu) -- CODE_SIGNING_ALLOWED=NO
|
||||
sudo cmake --install build --config Release
|
||||
|
||||
- name: xcodebuild for swift package
|
||||
id: xcodebuild
|
||||
run: |
|
||||
xcodebuild -scheme llama-Package -destination 'generic/platform=iOS'
|
||||
./build-xcframework.sh
|
||||
|
||||
- name: Build Xcode project
|
||||
run: xcodebuild -project examples/llama.swiftui/llama.swiftui.xcodeproj -scheme llama.swiftui -sdk iphoneos CODE_SIGNING_REQUIRED=NO CODE_SIGN_IDENTITY= -destination 'generic/platform=iOS' build
|
||||
run: xcodebuild -project examples/llama.swiftui/llama.swiftui.xcodeproj -scheme llama.swiftui -sdk iphoneos CODE_SIGNING_REQUIRED=NO CODE_SIGN_IDENTITY= -destination 'generic/platform=iOS' FRAMEWORK_FOLDER_PATH=./build-ios build
|
||||
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
shell: bash
|
||||
run: |
|
||||
BUILD_NUMBER="$(git rev-list --count HEAD)"
|
||||
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
|
||||
if [[ "${{ env.BRANCH_NAME }}" == "master" ]]; then
|
||||
echo "name=b${BUILD_NUMBER}" >> $GITHUB_OUTPUT
|
||||
else
|
||||
SAFE_NAME=$(echo "${{ env.BRANCH_NAME }}" | tr '/' '-')
|
||||
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
run: |
|
||||
zip -r llama-${{ steps.tag.outputs.name }}-xcframework.zip build-apple/llama.xcframework
|
||||
|
||||
- name: Upload artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: llama-${{ steps.tag.outputs.name }}-xcframework.zip
|
||||
name: llama-${{ steps.tag.outputs.name }}-xcframework
|
||||
|
||||
android-build:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
2
.github/workflows/server.yml
vendored
2
.github/workflows/server.yml
vendored
@@ -161,6 +161,8 @@ jobs:
|
||||
- name: Tests
|
||||
id: server_integration_tests
|
||||
if: ${{ matrix.sanitizer == '' }}
|
||||
env:
|
||||
GITHUB_ACTIONS: "true"
|
||||
run: |
|
||||
cd examples/server/tests
|
||||
./tests.sh
|
||||
|
||||
2
.gitignore
vendored
2
.gitignore
vendored
@@ -45,6 +45,8 @@ lcov-report/
|
||||
tags
|
||||
.build/
|
||||
build*
|
||||
release
|
||||
debug
|
||||
!build-info.cmake
|
||||
!build-info.cpp.in
|
||||
!build-info.sh
|
||||
|
||||
61
AUTHORS
61
AUTHORS
@@ -1,4 +1,4 @@
|
||||
# date: Tue Feb 4 13:04:05 EET 2025
|
||||
# date: Sat Mar 8 18:23:52 EET 2025
|
||||
# this file is auto-generated by scripts/gen-authors.sh
|
||||
|
||||
0cc4m <picard12@live.de>
|
||||
@@ -8,10 +8,12 @@
|
||||
3ooabkhxtn <31479382+3ooabkhxtn@users.noreply.github.com>
|
||||
44670 <44670@users.noreply.github.com>
|
||||
65a <10104049+65a@users.noreply.github.com>
|
||||
708-145 <40387547+708-145@users.noreply.github.com>
|
||||
AN Long <aisk@users.noreply.github.com>
|
||||
AT <manyoso@users.noreply.github.com>
|
||||
Aarni Koskela <akx@iki.fi>
|
||||
Aaron Miller <apage43@ninjawhale.com>
|
||||
Aaron Teo <57927438+taronaeo@users.noreply.github.com>
|
||||
Aaryaman Vasishta <aaryaman.vasishta@amd.com>
|
||||
Abheek Gulati <abheekg@hotmail.com>
|
||||
Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
|
||||
@@ -20,6 +22,7 @@ Adithya Balaji <adithya.b94@gmail.com>
|
||||
AdithyanI <adithyan.i4internet@gmail.com>
|
||||
Adrian <smith.adriane@gmail.com>
|
||||
Adrian Hesketh <a-h@users.noreply.github.com>
|
||||
Adrian Kretz <me@akretz.com>
|
||||
Adrien Gallouët <adrien@gallouet.fr>
|
||||
Adrien Gallouët <angt@huggingface.co>
|
||||
Ahmad Tameem <113388789+Tameem-10xE@users.noreply.github.com>
|
||||
@@ -28,15 +31,18 @@ AidanBeltonS <87009434+AidanBeltonS@users.noreply.github.com>
|
||||
AidanBeltonS <aidan.belton@codeplay.com>
|
||||
Aisuko <urakiny@gmail.com>
|
||||
Akarshan Biswas <akarshan.biswas@gmail.com>
|
||||
Akarshan Biswas <akarshan@menlo.ai>
|
||||
Akarshan Biswas <akarshanbiswas@fedoraproject.org>
|
||||
Al Mochkin <14274697+amochkin@users.noreply.github.com>
|
||||
Albert Jin <albert.jin@gmail.com>
|
||||
Alberto <57916483+albbus-stack@users.noreply.github.com>
|
||||
Alberto Cabrera Pérez <alberto.cabrera@codeplay.com>
|
||||
Alberto Cabrera Pérez <alberto.cabrera@intel.com>
|
||||
Aleksei Nikiforov <103434461+AlekseiNikiforovIBM@users.noreply.github.com>
|
||||
Alex <awhill19@icloud.com>
|
||||
Alex Azarov <alex@azarov.by>
|
||||
Alex Azarov <alexander.azarov@mapbox.com>
|
||||
Alex Brooks <alex.brooks@ibm.com>
|
||||
Alex Klinkhamer <from.github.com.917@grencez.dev>
|
||||
Alex Klinkhamer <git@grencez.dev>
|
||||
Alex Nguyen <tiendung@users.noreply.github.com>
|
||||
@@ -67,6 +73,7 @@ Andrew Minh Nguyen <40281306+amqdn@users.noreply.github.com>
|
||||
Andy Salerno <andysalerno@gmail.com>
|
||||
Andy Tai <andy-tai@users.noreply.github.com>
|
||||
Anthony Van de Gejuchte <anthonyvdgent@gmail.com>
|
||||
Antoine Viallon <antoine@lesviallon.fr>
|
||||
Antonis Makropoulos <benuix@gmail.com>
|
||||
Arik Poznanski <arikpoz@users.noreply.github.com>
|
||||
Armen Kaleshian <kriation@users.noreply.github.com>
|
||||
@@ -83,6 +90,7 @@ Atsushi Tatsuma <yoshoku@outlook.com>
|
||||
Austin <77757836+teleprint-me@users.noreply.github.com>
|
||||
AustinMroz <austinmroz@utexas.edu>
|
||||
BADR <contact@pythops.com>
|
||||
BB-fat <45072480+BB-fat@users.noreply.github.com>
|
||||
Bach Le <bach@bullno1.com>
|
||||
Bailey Chittle <39804642+bachittle@users.noreply.github.com>
|
||||
BarfingLemurs <128182951+BarfingLemurs@users.noreply.github.com>
|
||||
@@ -101,6 +109,7 @@ Bert Wagner <github@bertwagner.com>
|
||||
Billel Mokeddem <billel.mokeddem.ml@gmail.com>
|
||||
Bingan <70050083+binganao@users.noreply.github.com>
|
||||
Bjarke Viksøe <164612031+bviksoe@users.noreply.github.com>
|
||||
Bodhi <3882561+BodhiHu@users.noreply.github.com>
|
||||
Bodo Graumann <mail@bodograumann.de>
|
||||
Bono Lv <lvscar@users.noreply.github.com>
|
||||
Borislav Stanimirov <b.stanimirov@abv.bg>
|
||||
@@ -128,6 +137,7 @@ CentricStorm <CentricStorm@users.noreply.github.com>
|
||||
Chad Brewbaker <crb002@gmail.com>
|
||||
Changyeon Kim <cyzero.kim@samsung.com>
|
||||
Chao Jiang <jc19chaoj@zoho.com>
|
||||
Charles Duffy <charles@dyfis.net>
|
||||
Charles Xu <63788048+chaxu01@users.noreply.github.com>
|
||||
Charles Xu <charles.xu@arm.com>
|
||||
Chen Xi <xi2.chen@intel.com>
|
||||
@@ -139,12 +149,14 @@ Chris Kuehl <ckuehl@ckuehl.me>
|
||||
Christian Demsar <christian@github.email.demsar.us>
|
||||
Christian Demsar <crasm@git.vczf.us>
|
||||
Christian Falch <875252+chrfalch@users.noreply.github.com>
|
||||
Christian Fillion <cfillion@users.noreply.github.com>
|
||||
Christian Kastner <ckk@kvr.at>
|
||||
Christian Kögler <ck3d@gmx.de>
|
||||
Christian Köhnenkamp <cvk5@me.com>
|
||||
Christian Zhou-Zheng <59622928+christianazinn@users.noreply.github.com>
|
||||
Christopher Nielsen <62156882+mascguy@users.noreply.github.com>
|
||||
Clark Saben <76020733+csaben@users.noreply.github.com>
|
||||
Clauszy <zhangyub@uniontech.com>
|
||||
Clint Herron <hanclinto@gmail.com>
|
||||
Conrad Kramer <conrad@conradkramer.com>
|
||||
Corentin REGAL <corentin.regal@gmail.com>
|
||||
@@ -163,6 +175,7 @@ Daniel Hiltgen <dhiltgen@users.noreply.github.com>
|
||||
Daniel Illescas Romero <illescas.daniel@protonmail.com>
|
||||
Daniel Kleine <53251018+d-kleine@users.noreply.github.com>
|
||||
Daniele <57776841+daniandtheweb@users.noreply.github.com>
|
||||
Danny Milosavljevic <dannym@friendly-machines.com>
|
||||
DannyDaemonic <DannyDaemonic@gmail.com>
|
||||
Dat Quoc Nguyen <2412555+datquocnguyen@users.noreply.github.com>
|
||||
Dave <dave-fl@users.noreply.github.com>
|
||||
@@ -170,6 +183,7 @@ Dave Airlie <airlied@gmail.com>
|
||||
Dave Airlie <airlied@redhat.com>
|
||||
Dave Della Costa <ddellacosta+github@gmail.com>
|
||||
David Friehs <david@friehs.info>
|
||||
David Huang <1969802+hjc4869@users.noreply.github.com>
|
||||
David Kennedy <dakennedyd@gmail.com>
|
||||
David Pflug <david@pflug.email>
|
||||
David Renshaw <dwrenshaw@gmail.com>
|
||||
@@ -236,6 +250,7 @@ Felix <stenbackfelix@gmail.com>
|
||||
Finn Voorhees <finnvoorhees@gmail.com>
|
||||
Firat <firatkiral@gmail.com>
|
||||
FirstTimeEZ <179362031+FirstTimeEZ@users.noreply.github.com>
|
||||
Florent BENOIT <fbenoit@redhat.com>
|
||||
Folko-Ven <71110216+Folko-Ven@users.noreply.github.com>
|
||||
Foul-Tarnished <107711110+Foul-Tarnished@users.noreply.github.com>
|
||||
Francisco Melo <43780565+francis2tm@users.noreply.github.com>
|
||||
@@ -254,6 +269,7 @@ Gary Mulder <gjmulder@gmail.com>
|
||||
Gavin Zhao <gavinzhaojw@protonmail.com>
|
||||
Genkagaku.GPT <hlhr202@163.com>
|
||||
Georgi Gerganov <ggerganov@gmail.com>
|
||||
Gian-Carlo Pascutto <gcp@sjeng.org>
|
||||
Gilad S <giladgd@users.noreply.github.com>
|
||||
Gilad S. <7817232+giladgd@users.noreply.github.com>
|
||||
Giuseppe Scrivano <giuseppe@scrivano.org>
|
||||
@@ -267,7 +283,9 @@ Guspan Tanadi <36249910+guspan-tanadi@users.noreply.github.com>
|
||||
Gustavo Rocha Dias <91472747+gustrd@users.noreply.github.com>
|
||||
Haggai Nuchi <h.nuchi@gmail.com>
|
||||
Halalaluyafail3 <55773281+Halalaluyafail3@users.noreply.github.com>
|
||||
Hale Chan <halechan@qq.com>
|
||||
Hamdoud Hakem <90524568+hamdoudhakem@users.noreply.github.com>
|
||||
Han Yin <han.yin@arm.com>
|
||||
HanishKVC <hanishkvc@gmail.com>
|
||||
Haohui Mai <ricetons@gmail.com>
|
||||
Haoxiang Fei <tonyfettes@tonyfettes.com>
|
||||
@@ -278,6 +296,7 @@ Haus1 <haus.xda@gmail.com>
|
||||
Henk Poley <HenkPoley@gmail.com>
|
||||
Henri Vasserman <henv@hot.ee>
|
||||
Henrik Forstén <henrik.forsten@gmail.com>
|
||||
Henry Linjamäki <henry.linjamaki@gmail.com>
|
||||
Herman Semenov <GermanAizek@yandex.ru>
|
||||
Hesen Peng <hesen.peng@gmail.com>
|
||||
HimariO <dsfhe49854@gmail.com>
|
||||
@@ -307,6 +326,7 @@ Ivan <nekotekina@gmail.com>
|
||||
Ivan Filipov <159561759+vanaka11@users.noreply.github.com>
|
||||
Ivan Komarov <Ivan.Komarov@dfyz.info>
|
||||
Ivan Stepanov <ivanstepanovftw@gmail.com>
|
||||
JC <43374599+MrSMlT@users.noreply.github.com>
|
||||
JFLFY2255 <JFLFY2255@163.com>
|
||||
JH23X <165871467+JH23X@users.noreply.github.com>
|
||||
Jack Mousseau <jack@software.inc>
|
||||
@@ -325,6 +345,7 @@ Jan Ploski <jpl@plosquare.com>
|
||||
Jannis Schönleber <joennlae@gmail.com>
|
||||
Jared Van Bortel <cebtenzzre@gmail.com>
|
||||
Jared Van Bortel <jared@nomic.ai>
|
||||
Jason C.H <ctrysbita@outlook.com>
|
||||
Jason McCartney <jmac@theroot.org>
|
||||
Jason Stillerman <jason.t.stillerman@gmail.com>
|
||||
Jean-Christophe Hoelt <hoelt@fovea.cc>
|
||||
@@ -342,6 +363,7 @@ Jiahao Li <liplus17@163.com>
|
||||
Jian Liao <jianliao@users.noreply.github.com>
|
||||
JidongZhang-THU <1119708529@qq.com>
|
||||
Jinwoo Jeong <33892306+williamjeong2@users.noreply.github.com>
|
||||
Jinyang He <hejinyang@loongson.cn>
|
||||
Jiří Podivín <66251151+jpodivin@users.noreply.github.com>
|
||||
Jiří Sejkora <Sejseloid@gmail.com>
|
||||
Joan Fontanals <jfontanalsmartinez@gmail.com>
|
||||
@@ -379,6 +401,7 @@ Justine Tunney <jtunney@mozilla.com>
|
||||
Juuso Alasuutari <juuso.alasuutari@gmail.com>
|
||||
KASR <karim.asrih@gmail.com>
|
||||
Kamil Tomšík <info@tomsik.cz>
|
||||
Kante Yin <kerthcet@gmail.com>
|
||||
Karol Kontny <82021046+kkontny@users.noreply.github.com>
|
||||
Karsten Weiss <knweiss@gmail.com>
|
||||
Karthick <j.karthic2004@gmail.com>
|
||||
@@ -419,6 +442,7 @@ LoganDark <github@logandark.mozmail.com>
|
||||
Loïc Carrère <loic.carrere@gmail.com>
|
||||
LostRuins <39025047+LostRuins@users.noreply.github.com>
|
||||
LostRuins Concedo <39025047+LostRuins@users.noreply.github.com>
|
||||
Lucas Moura Belo <lucas.belo@live.com>
|
||||
Luciano <lucianostrika44@gmail.com>
|
||||
Luo Tian <lt@basecity.com>
|
||||
Lyle Dean <dean@lyle.dev>
|
||||
@@ -463,6 +487,7 @@ Matthew Tejo <matthew.tejo@gmail.com>
|
||||
Matvey Soloviev <blackhole89@gmail.com>
|
||||
Max Krasnyansky <max.krasnyansky@gmail.com>
|
||||
Max Krasnyansky <quic_maxk@quicinc.com>
|
||||
Maxim Evtush <154841002+maximevtush@users.noreply.github.com>
|
||||
Maxime <672982+maximegmd@users.noreply.github.com>
|
||||
Maximilian Winter <maximilian.winter.91@gmail.com>
|
||||
Meng Zhang <meng@tabbyml.com>
|
||||
@@ -494,6 +519,7 @@ Miwa / Ensan <63481257+ensan-hcl@users.noreply.github.com>
|
||||
Mohammadreza Hendiani <hendiani.mohammadreza@gmail.com>
|
||||
Mohammadreza Hendiani <mohammad.r.hendiani@gmail.com>
|
||||
Molly Sophia <mollysophia379@gmail.com>
|
||||
MoonRide303 <130458190+MoonRide303@users.noreply.github.com>
|
||||
MorganRO8 <47795945+MorganRO8@users.noreply.github.com>
|
||||
Murilo Santana <mvrilo@gmail.com>
|
||||
Musab Gultekin <musabgultekin@users.noreply.github.com>
|
||||
@@ -524,6 +550,7 @@ Nikolas <127742645+nneubacher@users.noreply.github.com>
|
||||
Nindaleth <Nindaleth@users.noreply.github.com>
|
||||
Nuno <rare-magma@posteo.eu>
|
||||
OSecret <135510162+OLSecret@users.noreply.github.com>
|
||||
Oleksandr Kuvshynov <661042+okuvshynov@users.noreply.github.com>
|
||||
Oleksandr Nikitin <oleksandr@tvori.info>
|
||||
Oleksii Maryshchenko <oleksii.maryshchenko@gmail.com>
|
||||
Olivier Chafik <ochafik@users.noreply.github.com>
|
||||
@@ -533,6 +560,7 @@ PAB <pierreantoine.bannier@gmail.com>
|
||||
Pablo Duboue <pablo.duboue@gmail.com>
|
||||
Pascal Patry <ppatry@mtacitlabs.com>
|
||||
Patrice Ferlet <metal3d@gmail.com>
|
||||
Patrick Peng <retr0@retr0.blog>
|
||||
Paul Tsochantaris <ptsochantaris@icloud.com>
|
||||
Pavel Zloi <github.com@drteam.rocks>
|
||||
Pavol Rusnak <pavol@rusnak.io>
|
||||
@@ -549,6 +577,7 @@ Pieter Ouwerkerk <pieter.ouwerkerk@gmail.com>
|
||||
Plamen Minev <pacominev@gmail.com>
|
||||
Prashant Vithule <119530321+Vithulep@users.noreply.github.com>
|
||||
Przemysław Pawełczyk <przemoc@gmail.com>
|
||||
PureJourney <edward.pong@qq.com>
|
||||
Qin Yue Chen <71813199+chenqiny@users.noreply.github.com>
|
||||
Qingyou Meng <meng.qingyou@gmail.com>
|
||||
Qu Zongfu <43257352+yancaoweidaode@users.noreply.github.com>
|
||||
@@ -564,14 +593,17 @@ Rand Xie <randxiexyy29@gmail.com>
|
||||
Randall Fitzgerald <randall@dasaku.net>
|
||||
Random Fly <renfei8@live.cn>
|
||||
Reinforce-II <fate@eastal.com>
|
||||
Rémy O <remyoudompheng@gmail.com>
|
||||
Rémy Oudompheng <oudomphe@phare.normalesup.org>
|
||||
Ren Xuancheng <jklj077@users.noreply.github.com>
|
||||
Rene Leonhardt <65483435+reneleonhardt@users.noreply.github.com>
|
||||
Reza Kakhki <rezakakhki.de@gmail.com>
|
||||
Reza Rahemtola <49811529+RezaRahemtola@users.noreply.github.com>
|
||||
RhinoDevel <RhinoDevel@users.noreply.github.com>
|
||||
Riccardo Orlando <Riccorl@users.noreply.github.com>
|
||||
Riceball LEE <snowyu.lee@gmail.com>
|
||||
Rich Dougherty <rich@rd.nz>
|
||||
Richard <r-burton@hotmail.co.uk>
|
||||
Richard Kiss <him@richardkiss.com>
|
||||
Richard Roberson <richardr1126@gmail.com>
|
||||
Rick G <26732651+TheFlipbook@users.noreply.github.com>
|
||||
@@ -588,6 +620,7 @@ Robert Sung-wook Shin <edp1096@users.noreply.github.com>
|
||||
Robey Holderith <robey@flaminglunchbox.net>
|
||||
Robyn <robyngraf@users.noreply.github.com>
|
||||
Roger Meier <r.meier@siemens.com>
|
||||
Rohanjames1997 <rohan.james4@gmail.com>
|
||||
Roland <14355895+rbur0425@users.noreply.github.com>
|
||||
Romain Biessy <romain.biessy@codeplay.com>
|
||||
Romain D <90720+Artefact2@users.noreply.github.com>
|
||||
@@ -610,6 +643,7 @@ Ryan Landay <rlanday@gmail.com>
|
||||
Ryder Wishart <ryderwishart@gmail.com>
|
||||
Ryuei <louixs@users.noreply.github.com>
|
||||
Rőczey Barnabás <31726601+An0nie@users.noreply.github.com>
|
||||
SAMI <samuel.koesnadi@stud.uni-due.de>
|
||||
SRHMorris <69468379+SRHMorris@users.noreply.github.com>
|
||||
SXX <sxx1136965276@gmail.com>
|
||||
SakuraUmi <yukinon244@gmail.com>
|
||||
@@ -634,6 +668,8 @@ Shane A <shanea@allenai.org>
|
||||
Shangning Xu <32517059+xushangning@users.noreply.github.com>
|
||||
Shankar <gshankar.87@gmail.com>
|
||||
Shanshan Shen <467638484@qq.com>
|
||||
Shelby Jenkins <47464908+ShelbyJenkins@users.noreply.github.com>
|
||||
Sheldon Robinson <sheldon.robinson@live.com>
|
||||
Shijie <821898965@qq.com>
|
||||
Shintarou Okada <kokuzen@gmail.com>
|
||||
Shouzheng Liu <61452103+lshzh-ww@users.noreply.github.com>
|
||||
@@ -713,18 +749,24 @@ Victor Nogueira <felladrin@gmail.com>
|
||||
Victor Z. Peng <ziliangdotme@gmail.com>
|
||||
Viet-Anh NGUYEN (Andrew) <vietanh.dev@gmail.com>
|
||||
Vinesh Janarthanan <36610342+VJHack@users.noreply.github.com>
|
||||
Vitali Lovich <vlovich+github@gmail.com>
|
||||
Vivian <vynride@gmail.com>
|
||||
Vlad <spitfireage@gmail.com>
|
||||
Vladimir <bogdad@gmail.com>
|
||||
Vladimir Malyutin <first-leon@yandex.ru>
|
||||
Vladimir Vuksanovic <109677816+vvuksanovic@users.noreply.github.com>
|
||||
Vladimir Zorin <vladimir@deviant.guru>
|
||||
VoidIsVoid <343750470@qq.com>
|
||||
Volodymyr Vitvitskyi <72226+signalpillar@users.noreply.github.com>
|
||||
Wagner Bruna <wbruna@users.noreply.github.com>
|
||||
Wang Qin <37098874+wangqin0@users.noreply.github.com>
|
||||
Wang Ran (汪然) <wangr@smail.nju.edu.cn>
|
||||
WangHaoranRobin <56047610+WangHaoranRobin@users.noreply.github.com>
|
||||
Weird Constructor <weirdconstructor@gmail.com>
|
||||
Weizhao Ouyang <o451686892@gmail.com>
|
||||
Welby Seely <welbyseely@gmail.com>
|
||||
Wentai Zhang <rchardx@gmail.com>
|
||||
Wilken Gottwalt <12194808+wgottwalt@users.noreply.github.com>
|
||||
WillCorticesAI <150854901+WillCorticesAI@users.noreply.github.com>
|
||||
William Tambellini <william.tambellini@gmail.com>
|
||||
William Tambellini <wtambellini@sdl.com>
|
||||
@@ -816,6 +858,8 @@ chaihahaha <chai836275709@gmail.com>
|
||||
chiranko <96988916+chiranko@users.noreply.github.com>
|
||||
clibdev <52199778+clibdev@users.noreply.github.com>
|
||||
clyang <clyang@clyang.net>
|
||||
cmdr2 <secondary.cmdr2@gmail.com>
|
||||
cmdr2 <shashank.shekhar.global@gmail.com>
|
||||
cocktailpeanut <121128867+cocktailpeanut@users.noreply.github.com>
|
||||
codezjx <code.zjx@gmail.com>
|
||||
coezbek <c.oezbek@gmail.com>
|
||||
@@ -835,6 +879,7 @@ deepdiffuser <112834445+deepdiffuser@users.noreply.github.com>
|
||||
devojony <61173062+devojony@users.noreply.github.com>
|
||||
ditsuke <ditsuke@protonmail.com>
|
||||
divinity76 <divinity76@gmail.com>
|
||||
dm4 <dm4@secondstate.io>
|
||||
dm4 <sunrisedm4@gmail.com>
|
||||
dotpy314 <33351922+dotpy314@users.noreply.github.com>
|
||||
drbh <david.richard.holtz@gmail.com>
|
||||
@@ -849,6 +894,7 @@ fairydreaming <166155368+fairydreaming@users.noreply.github.com>
|
||||
fengerhu1 <2748250768@qq.com>
|
||||
fj-y-saito <85871716+fj-y-saito@users.noreply.github.com>
|
||||
fraxy-v <65565042+fraxy-v@users.noreply.github.com>
|
||||
fxzjshm <11426482+fxzjshm@users.noreply.github.com>
|
||||
github-actions[bot] <github-actions[bot]@users.noreply.github.com>
|
||||
gliptic <gliptic@users.noreply.github.com>
|
||||
gn64 <yukikaze.jp@gmail.com>
|
||||
@@ -873,6 +919,7 @@ hydai <z54981220@gmail.com>
|
||||
iSma <ismail.senhaji@gmail.com>
|
||||
iacore <74560659+iacore@users.noreply.github.com>
|
||||
icppWorld <124377669+icppWorld@users.noreply.github.com>
|
||||
igardev <49397134+igardev@users.noreply.github.com>
|
||||
igarnier <igarnier@protonmail.com>
|
||||
intelmatt <61025942+intelmatt@users.noreply.github.com>
|
||||
iohub <rickyang.pro@gmail.com>
|
||||
@@ -880,6 +927,7 @@ issixx <46835150+issixx@users.noreply.github.com>
|
||||
jacobi petrucciani <8117202+jpetrucciani@users.noreply.github.com>
|
||||
jaime-m-p <167997752+jaime-m-p@users.noreply.github.com>
|
||||
jameswu2014 <545426914@qq.com>
|
||||
jason_w <jason.wang@126.com>
|
||||
jdomke <28772296+jdomke@users.noreply.github.com>
|
||||
jiahao su <damow890@gmail.com>
|
||||
jiez <373447296@qq.com>
|
||||
@@ -891,6 +939,7 @@ jon-chuang <9093549+jon-chuang@users.noreply.github.com>
|
||||
jp-x-g <jpxg-dev@protonmail.com>
|
||||
jukofyork <69222624+jukofyork@users.noreply.github.com>
|
||||
junchao-loongson <68935141+junchao-loongson@users.noreply.github.com>
|
||||
junchao-zhao <68935141+junchao-loongson@users.noreply.github.com>
|
||||
jwj7140 <32943891+jwj7140@users.noreply.github.com>
|
||||
k.h.lai <adrian.k.h.lai@outlook.com>
|
||||
kaizau <kaizau@users.noreply.github.com>
|
||||
@@ -925,6 +974,7 @@ ltoniazzi <61414566+ltoniazzi@users.noreply.github.com>
|
||||
luoyu-intel <yu.luo@intel.com>
|
||||
m3ndax <adrian.goessl@outlook.com>
|
||||
maddes8cht <55592906+maddes8cht@users.noreply.github.com>
|
||||
magicse <magicse@users.noreply.github.com>
|
||||
mahorozte <41834471+mahorozte@users.noreply.github.com>
|
||||
makomk <makosoft@googlemail.com>
|
||||
manikbhandari <mbbhandarimanik2@gmail.com>
|
||||
@@ -935,6 +985,7 @@ matt23654 <matthew.webber@protonmail.com>
|
||||
matteo <matteogeniaccio@yahoo.it>
|
||||
mdrokz <mohammadmunshi@gmail.com>
|
||||
mgroeber9110 <45620825+mgroeber9110@users.noreply.github.com>
|
||||
midnight <midnightmagic@users.noreply.github.com>
|
||||
minarchist <minarchist@users.noreply.github.com>
|
||||
mj-shifu <77107165+mj-shifu@users.noreply.github.com>
|
||||
mmyjona <jonathan.gonse@gmail.com>
|
||||
@@ -958,10 +1009,12 @@ omahs <73983677+omahs@users.noreply.github.com>
|
||||
oobabooga <112222186+oobabooga@users.noreply.github.com>
|
||||
opparco <parco.opaai@gmail.com>
|
||||
ostix360 <55257054+ostix360@users.noreply.github.com>
|
||||
pascal-lc <49066376+pascal-lc@users.noreply.github.com>
|
||||
pculliton <phillipculliton@gmail.com>
|
||||
peidaqi <peidaqi@gmail.com>
|
||||
pengxin99 <pengxin.yuan@intel.com>
|
||||
perserk <perserk@gmail.com>
|
||||
petterreinholdtsen <pere-github@hungry.com>
|
||||
piDack <104877312+piDack@users.noreply.github.com>
|
||||
pmysl <piotr.myslinski@outlook.com>
|
||||
postmasters <namnguyen@google.com>
|
||||
@@ -983,6 +1036,7 @@ semidark <me@semidark.net>
|
||||
serhii-nakon <57632032+serhii-nakon@users.noreply.github.com>
|
||||
sharpHL <132747147+sharpHL@users.noreply.github.com>
|
||||
shibe2 <shibe@tuta.io>
|
||||
simon886212 <37953122+simon886212@users.noreply.github.com>
|
||||
singularity <12184989+singularity-s0@users.noreply.github.com>
|
||||
sjinzh <sjinzh@gmail.com>
|
||||
sjxx <63994076+ylsdamxssjxxdd@users.noreply.github.com>
|
||||
@@ -1000,10 +1054,12 @@ tarcey <cey.tarik@gmail.com>
|
||||
tc-mb <157115220+tc-mb@users.noreply.github.com>
|
||||
texmex76 <40733439+texmex76@users.noreply.github.com>
|
||||
thement <40525767+thement@users.noreply.github.com>
|
||||
theraininsky <76763719+theraininsky@users.noreply.github.com>
|
||||
thewh1teagle <61390950+thewh1teagle@users.noreply.github.com>
|
||||
tjohnman <tjohnman@users.noreply.github.com>
|
||||
toyer <2042519524@qq.com>
|
||||
tslmy <tslmy@users.noreply.github.com>
|
||||
tv1wnd <55383215+tv1wnd@users.noreply.github.com>
|
||||
ubik2 <ubik2@users.noreply.github.com>
|
||||
uint256_t <konndennsa@gmail.com>
|
||||
uint256_t <maekawatoshiki1017@gmail.com>
|
||||
@@ -1014,6 +1070,7 @@ valiray <133289098+valiray@users.noreply.github.com>
|
||||
vb <vaibhavs10@gmail.com>
|
||||
vik <vikhyatk@gmail.com>
|
||||
viric <viric@viric.name>
|
||||
vmobilis <75476228+vmobilis@users.noreply.github.com>
|
||||
vodkaslime <646329483@qq.com>
|
||||
vvhg1 <94630311+vvhg1@users.noreply.github.com>
|
||||
vxiiduu <73044267+vxiiduu@users.noreply.github.com>
|
||||
@@ -1028,6 +1085,8 @@ wzy <32936898+Freed-Wu@users.noreply.github.com>
|
||||
xaedes <xaedes@gmail.com>
|
||||
xaedes <xaedes@googlemail.com>
|
||||
xctan <axunlei@gmail.com>
|
||||
xiaobing318 <71554036+xiaobing318@users.noreply.github.com>
|
||||
xiaofei <hbuxiaofei@gmail.com>
|
||||
xloem <0xloem@gmail.com>
|
||||
yangli2 <yangli2@gmail.com>
|
||||
ymcki <84055651+ymcki@users.noreply.github.com>
|
||||
|
||||
@@ -6,6 +6,7 @@
|
||||
- Verify that the perplexity and the performance are not affected negatively by your changes (use `llama-perplexity` and `llama-bench`)
|
||||
- If you modified the `ggml` source, run the `test-backend-ops` tool to check whether different backend implementations of the `ggml` operators produce consistent results (this requires access to at least two different `ggml` backends)
|
||||
- If you modified a `ggml` operator or added a new one, add the corresponding test cases to `test-backend-ops`
|
||||
- Create separate PRs for each feature or fix. Avoid combining unrelated changes in a single PR
|
||||
- Consider allowing write access to your branch for faster reviews, as reviewers can push commits directly
|
||||
- If your PR becomes stale, don't hesitate to ping the maintainers in the comments
|
||||
|
||||
@@ -38,7 +39,7 @@
|
||||
|
||||
_(NOTE: this guideline is yet to be applied to the `llama.cpp` codebase. New code should follow this guideline.)_
|
||||
|
||||
- Try to follow the existing patterns in the code (indentation, spaces, etc.). In case of doubt use `clang-format` to format the added code
|
||||
- Try to follow the existing patterns in the code (indentation, spaces, etc.). In case of doubt use `clang-format` (from clang-tools v15+) to format the added code
|
||||
- For anything not covered in the current guidelines, refer to the [C++ Core Guidelines](https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines)
|
||||
- Tensors store data in row-major order. We refer to dimension 0 as columns, 1 as rows, 2 as matrices
|
||||
- Matrix multiplication is unconventional: [`C = ggml_mul_mat(ctx, A, B)`](https://github.com/ggml-org/llama.cpp/blob/880e352277fc017df4d5794f0c21c44e1eae2b84/ggml.h#L1058-L1064) means $C^T = A B^T \Leftrightarrow C = B A^T.$
|
||||
|
||||
14
Makefile
14
Makefile
@@ -680,6 +680,10 @@ ifdef GGML_CUDA_CCBIN
|
||||
MK_NVCCFLAGS += -ccbin $(GGML_CUDA_CCBIN)
|
||||
endif # GGML_CUDA_CCBIN
|
||||
|
||||
ifdef GGML_CUDA_NO_FA
|
||||
MK_NVCCFLAGS += -DGGML_CUDA_NO_FA
|
||||
endif # GGML_CUDA_NO_FA
|
||||
|
||||
ifdef GGML_CUDA_FA_ALL_QUANTS
|
||||
MK_NVCCFLAGS += -DGGML_CUDA_FA_ALL_QUANTS
|
||||
endif # GGML_CUDA_FA_ALL_QUANTS
|
||||
@@ -800,6 +804,10 @@ ifdef GGML_CUDA_NO_PEER_COPY
|
||||
HIPFLAGS += -DGGML_CUDA_NO_PEER_COPY
|
||||
endif # GGML_CUDA_NO_PEER_COPY
|
||||
|
||||
ifdef GGML_CUDA_NO_FA
|
||||
HIPFLAGS += -DGGML_CUDA_NO_FA
|
||||
endif # GGML_CUDA_NO_FA
|
||||
|
||||
OBJ_GGML_EXT += ggml/src/ggml-cuda/ggml-cuda.o
|
||||
OBJ_GGML_EXT += $(patsubst %.cu,%.o,$(wildcard ggml/src/ggml-cuda/*.cu))
|
||||
OBJ_GGML_EXT += $(OBJ_CUDA_TMPL)
|
||||
@@ -847,7 +855,7 @@ ifdef GGML_MUSA
|
||||
CXX := $(MUSA_PATH)/bin/clang++
|
||||
MCC := $(CCACHE) $(MUSA_PATH)/bin/mcc
|
||||
|
||||
MUSAFLAGS = -x musa -mtgpu
|
||||
MUSAFLAGS = -fsigned-char -x musa -mtgpu
|
||||
MUSAFLAGS += $(foreach arch,$(subst ;, ,$(MUSA_ARCHITECTURES)),--cuda-gpu-arch=mp_$(arch))
|
||||
|
||||
ifdef GGML_CUDA_FORCE_MMQ
|
||||
@@ -876,6 +884,10 @@ ifdef GGML_CUDA_NO_PEER_COPY
|
||||
MUSAFLAGS += -DGGML_CUDA_NO_PEER_COPY
|
||||
endif # GGML_CUDA_NO_PEER_COPY
|
||||
|
||||
ifdef GGML_CUDA_NO_FA
|
||||
MUSAFLAGS += -DGGML_CUDA_NO_FA
|
||||
endif # GGML_CUDA_NO_FA
|
||||
|
||||
ifdef GGML_CUDA_FA_ALL_QUANTS
|
||||
MUSAFLAGS += -DGGML_CUDA_FA_ALL_QUANTS
|
||||
endif # GGML_CUDA_FA_ALL_QUANTS
|
||||
|
||||
@@ -1,19 +0,0 @@
|
||||
// swift-tools-version:5.5
|
||||
|
||||
import PackageDescription
|
||||
|
||||
let package = Package(
|
||||
name: "llama",
|
||||
platforms: [
|
||||
.macOS(.v12),
|
||||
.iOS(.v14),
|
||||
.watchOS(.v4),
|
||||
.tvOS(.v14)
|
||||
],
|
||||
products: [
|
||||
.library(name: "llama", targets: ["llama"]),
|
||||
],
|
||||
targets: [
|
||||
.systemLibrary(name: "llama", pkgConfig: "llama"),
|
||||
]
|
||||
)
|
||||
@@ -5,7 +5,7 @@
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
[](https://github.com/ggml-org/llama.cpp/actions/workflows/server.yml)
|
||||
|
||||
[Roadmap](https://github.com/users/ggml-org/projects/7) / [Project status](https://github.com/ggml-org/llama.cpp/discussions/3471) / [Manifesto](https://github.com/ggml-org/llama.cpp/discussions/205) / [ggml](https://github.com/ggml-org/ggml)
|
||||
[Roadmap](https://github.com/users/ggerganov/projects/7) / [Project status](https://github.com/ggml-org/llama.cpp/discussions/3471) / [Manifesto](https://github.com/ggml-org/llama.cpp/discussions/205) / [ggml](https://github.com/ggml-org/ggml)
|
||||
|
||||
Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others) in pure C/C++
|
||||
|
||||
@@ -25,7 +25,7 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
|
||||
|
||||
- **How to use [MTLResidencySet](https://developer.apple.com/documentation/metal/mtlresidencyset?language=objc) to keep the GPU memory active?** https://github.com/ggml-org/llama.cpp/pull/11427
|
||||
- **VS Code extension for FIM completions:** https://github.com/ggml-org/llama.vscode
|
||||
- Universal tool call support in `llama-server`: https://github.com/ggml-org/llama.cpp/pull/9639
|
||||
- Universal [tool call support](./docs/function-calling.md) in `llama-server` https://github.com/ggml-org/llama.cpp/pull/9639
|
||||
- Vim/Neovim plugin for FIM completions: https://github.com/ggml-org/llama.vim
|
||||
- Introducing GGUF-my-LoRA https://github.com/ggml-org/llama.cpp/discussions/10123
|
||||
- Hugging Face Inference Endpoints now support GGUF out of the box! https://github.com/ggml-org/llama.cpp/discussions/9669
|
||||
@@ -157,6 +157,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
- Guile Scheme: [guile_llama_cpp](https://savannah.nongnu.org/projects/guile-llama-cpp)
|
||||
- Swift [srgtuszy/llama-cpp-swift](https://github.com/srgtuszy/llama-cpp-swift)
|
||||
- Swift [ShenghaiWang/SwiftLlama](https://github.com/ShenghaiWang/SwiftLlama)
|
||||
- Delphi [Embarcadero/llama-cpp-delphi](https://github.com/Embarcadero/llama-cpp-delphi)
|
||||
|
||||
</details>
|
||||
|
||||
@@ -219,7 +220,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
- [llama_cpp_canister](https://github.com/onicai/llama_cpp_canister) - llama.cpp as a smart contract on the Internet Computer, using WebAssembly
|
||||
- [llama-swap](https://github.com/mostlygeek/llama-swap) - transparent proxy that adds automatic model switching with llama-server
|
||||
- [Kalavai](https://github.com/kalavai-net/kalavai-client) - Crowdsource end to end LLM deployment at any scale
|
||||
|
||||
- [llmaz](https://github.com/InftyAI/llmaz) - ☸️ Easy, advanced inference platform for large language models on Kubernetes.
|
||||
</details>
|
||||
|
||||
<details>
|
||||
|
||||
@@ -1,4 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include <llama.h>
|
||||
|
||||
@@ -1,5 +0,0 @@
|
||||
module llama [system] {
|
||||
header "llama.h"
|
||||
link "llama"
|
||||
export *
|
||||
}
|
||||
519
build-xcframework.sh
Executable file
519
build-xcframework.sh
Executable file
@@ -0,0 +1,519 @@
|
||||
#!/bin/bash
|
||||
#
|
||||
# Options
|
||||
IOS_MIN_OS_VERSION=16.4
|
||||
MACOS_MIN_OS_VERSION=13.3
|
||||
VISIONOS_MIN_OS_VERSION=1.0
|
||||
TVOS_MIN_OS_VERSION=16.4
|
||||
|
||||
BUILD_SHARED_LIBS=OFF
|
||||
LLAMA_BUILD_EXAMPLES=OFF
|
||||
LLAMA_BUILD_TESTS=OFF
|
||||
LLAMA_BUILD_SERVER=OFF
|
||||
GGML_METAL=ON
|
||||
GGML_METAL_EMBED_LIBRARY=ON
|
||||
GGML_BLAS_DEFAULT=ON
|
||||
GGML_METAL_USE_BF16=ON
|
||||
GGML_OPENMP=OFF
|
||||
|
||||
COMMON_C_FLAGS="-Wno-macro-redefined -Wno-shorten-64-to-32 -Wno-unused-command-line-argument -g"
|
||||
COMMON_CXX_FLAGS="-Wno-macro-redefined -Wno-shorten-64-to-32 -Wno-unused-command-line-argument -g"
|
||||
|
||||
# Common options for all builds
|
||||
COMMON_CMAKE_ARGS=(
|
||||
-DCMAKE_XCODE_ATTRIBUTE_CODE_SIGNING_REQUIRED=NO
|
||||
-DCMAKE_XCODE_ATTRIBUTE_CODE_SIGN_IDENTITY=""
|
||||
-DCMAKE_XCODE_ATTRIBUTE_CODE_SIGNING_ALLOWED=NO
|
||||
-DCMAKE_XCODE_ATTRIBUTE_DEBUG_INFORMATION_FORMAT="dwarf-with-dsym"
|
||||
-DCMAKE_XCODE_ATTRIBUTE_GCC_GENERATE_DEBUGGING_SYMBOLS=YES
|
||||
-DCMAKE_XCODE_ATTRIBUTE_COPY_PHASE_STRIP=NO
|
||||
-DCMAKE_XCODE_ATTRIBUTE_STRIP_INSTALLED_PRODUCT=NO
|
||||
-DCMAKE_XCODE_ATTRIBUTE_DEVELOPMENT_TEAM=ggml
|
||||
-DBUILD_SHARED_LIBS=${BUILD_SHARED_LIBS}
|
||||
-DLLAMA_BUILD_EXAMPLES=${LLAMA_BUILD_EXAMPLES}
|
||||
-DLLAMA_BUILD_TESTS=${LLAMA_BUILD_TESTS}
|
||||
-DLLAMA_BUILD_SERVER=${LLAMA_BUILD_SERVER}
|
||||
-DGGML_METAL_EMBED_LIBRARY=${GGML_METAL_EMBED_LIBRARY}
|
||||
-DGGML_BLAS_DEFAULT=${GGML_BLAS_DEFAULT}
|
||||
-DGGML_METAL=${GGML_METAL}
|
||||
-DGGML_METAL_USE_BF16=${GGML_METAL_USE_BF16}
|
||||
-DGGML_NATIVE=OFF
|
||||
-DGGML_OPENMP=${GGML_OPENMP}
|
||||
)
|
||||
|
||||
check_required_tool() {
|
||||
local tool=$1
|
||||
local install_message=$2
|
||||
|
||||
if ! command -v $tool &> /dev/null; then
|
||||
echo "Error: $tool is required but not found."
|
||||
echo "$install_message"
|
||||
exit 1
|
||||
fi
|
||||
}
|
||||
echo "Checking for required tools..."
|
||||
check_required_tool "cmake" "Please install CMake 3.28.0 or later (brew install cmake)"
|
||||
check_required_tool "xcodebuild" "Please install Xcode and Xcode Command Line Tools (xcode-select --install)"
|
||||
check_required_tool "libtool" "Please install libtool which should be available with Xcode Command Line Tools (CLT). Make sure Xcode CLT is installed (xcode-select --install)"
|
||||
check_required_tool "dsymutil" "Please install Xcode and Xcode Command Line Tools (xcode-select --install)"
|
||||
|
||||
set -e
|
||||
|
||||
## Clean up previous builds
|
||||
rm -rf build-apple
|
||||
rm -rf build-ios-sim
|
||||
rm -rf build-ios-device
|
||||
rm -rf build-macos
|
||||
rm -rf build-visionos
|
||||
rm -rf build-visionos-sim
|
||||
rm -rf build-tvos-sim
|
||||
rm -rf build-tvos-device
|
||||
|
||||
# Setup the xcframework build directory structure
|
||||
setup_framework_structure() {
|
||||
local build_dir=$1
|
||||
local min_os_version=$2
|
||||
local platform=$3 # "ios", "macos", "visionos", or "tvos"
|
||||
local framework_name="llama"
|
||||
|
||||
echo "Creating ${platform}-style framework structure for ${build_dir}"
|
||||
|
||||
if [[ "$platform" == "macos" ]]; then
|
||||
# macOS versioned structure uses versioned directories
|
||||
mkdir -p ${build_dir}/framework/${framework_name}.framework/Versions/A/Headers
|
||||
mkdir -p ${build_dir}/framework/${framework_name}.framework/Versions/A/Modules
|
||||
mkdir -p ${build_dir}/framework/${framework_name}.framework/Versions/A/Resources
|
||||
|
||||
# Create symbolic links
|
||||
ln -sf A ${build_dir}/framework/${framework_name}.framework/Versions/Current
|
||||
ln -sf Versions/Current/Headers ${build_dir}/framework/${framework_name}.framework/Headers
|
||||
ln -sf Versions/Current/Modules ${build_dir}/framework/${framework_name}.framework/Modules
|
||||
ln -sf Versions/Current/Resources ${build_dir}/framework/${framework_name}.framework/Resources
|
||||
ln -sf Versions/Current/${framework_name} ${build_dir}/framework/${framework_name}.framework/${framework_name}
|
||||
|
||||
# Set header and module paths
|
||||
local header_path=${build_dir}/framework/${framework_name}.framework/Versions/A/Headers/
|
||||
local module_path=${build_dir}/framework/${framework_name}.framework/Versions/A/Modules/
|
||||
else
|
||||
# iOS/VisionOS/tvOS use a flat structure
|
||||
mkdir -p ${build_dir}/framework/${framework_name}.framework/Headers
|
||||
mkdir -p ${build_dir}/framework/${framework_name}.framework/Modules
|
||||
|
||||
# Remove any existing structure to ensure clean build
|
||||
rm -rf ${build_dir}/framework/${framework_name}.framework/Versions
|
||||
|
||||
# Set header and module paths
|
||||
local header_path=${build_dir}/framework/${framework_name}.framework/Headers/
|
||||
local module_path=${build_dir}/framework/${framework_name}.framework/Modules/
|
||||
fi
|
||||
|
||||
# Copy all required headers (common for all platforms)
|
||||
cp include/llama.h ${header_path}
|
||||
cp ggml/include/ggml.h ${header_path}
|
||||
cp ggml/include/ggml-alloc.h ${header_path}
|
||||
cp ggml/include/ggml-backend.h ${header_path}
|
||||
cp ggml/include/ggml-metal.h ${header_path}
|
||||
cp ggml/include/ggml-cpu.h ${header_path}
|
||||
cp ggml/include/ggml-blas.h ${header_path}
|
||||
cp ggml/include/gguf.h ${header_path}
|
||||
|
||||
# Create module map (common for all platforms)
|
||||
cat > ${module_path}module.modulemap << EOF
|
||||
framework module llama {
|
||||
header "llama.h"
|
||||
header "ggml.h"
|
||||
header "ggml-alloc.h"
|
||||
header "ggml-backend.h"
|
||||
header "ggml-metal.h"
|
||||
header "ggml-cpu.h"
|
||||
header "ggml-blas.h"
|
||||
header "gguf.h"
|
||||
|
||||
link "c++"
|
||||
link framework "Accelerate"
|
||||
link framework "Metal"
|
||||
link framework "Foundation"
|
||||
|
||||
export *
|
||||
}
|
||||
EOF
|
||||
|
||||
# Platform-specific settings for Info.plist
|
||||
local platform_name=""
|
||||
local sdk_name=""
|
||||
local supported_platform=""
|
||||
|
||||
case "$platform" in
|
||||
"ios")
|
||||
platform_name="iphoneos"
|
||||
sdk_name="iphoneos${min_os_version}"
|
||||
supported_platform="iPhoneOS"
|
||||
local plist_path="${build_dir}/framework/${framework_name}.framework/Info.plist"
|
||||
local device_family=' <key>UIDeviceFamily</key>
|
||||
<array>
|
||||
<integer>1</integer>
|
||||
<integer>2</integer>
|
||||
</array>'
|
||||
;;
|
||||
"macos")
|
||||
platform_name="macosx"
|
||||
sdk_name="macosx${min_os_version}"
|
||||
supported_platform="MacOSX"
|
||||
local plist_path="${build_dir}/framework/${framework_name}.framework/Versions/A/Resources/Info.plist"
|
||||
local device_family=""
|
||||
;;
|
||||
"visionos")
|
||||
platform_name="xros"
|
||||
sdk_name="xros${min_os_version}"
|
||||
supported_platform="XRPlatform"
|
||||
local plist_path="${build_dir}/framework/${framework_name}.framework/Info.plist"
|
||||
local device_family=""
|
||||
;;
|
||||
"tvos")
|
||||
platform_name="appletvos"
|
||||
sdk_name="appletvos${min_os_version}"
|
||||
supported_platform="AppleTVOS"
|
||||
local plist_path="${build_dir}/framework/${framework_name}.framework/Info.plist"
|
||||
local device_family=' <key>UIDeviceFamily</key>
|
||||
<array>
|
||||
<integer>3</integer>
|
||||
</array>'
|
||||
;;
|
||||
esac
|
||||
|
||||
# Create Info.plist
|
||||
cat > ${plist_path} << EOF
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
|
||||
<plist version="1.0">
|
||||
<dict>
|
||||
<key>CFBundleDevelopmentRegion</key>
|
||||
<string>en</string>
|
||||
<key>CFBundleExecutable</key>
|
||||
<string>llama</string>
|
||||
<key>CFBundleIdentifier</key>
|
||||
<string>org.ggml.llama</string>
|
||||
<key>CFBundleInfoDictionaryVersion</key>
|
||||
<string>6.0</string>
|
||||
<key>CFBundleName</key>
|
||||
<string>llama</string>
|
||||
<key>CFBundlePackageType</key>
|
||||
<string>FMWK</string>
|
||||
<key>CFBundleShortVersionString</key>
|
||||
<string>1.0</string>
|
||||
<key>CFBundleVersion</key>
|
||||
<string>1</string>
|
||||
<key>MinimumOSVersion</key>
|
||||
<string>${min_os_version}</string>
|
||||
<key>CFBundleSupportedPlatforms</key>
|
||||
<array>
|
||||
<string>${supported_platform}</string>
|
||||
</array>${device_family}
|
||||
<key>DTPlatformName</key>
|
||||
<string>${platform_name}</string>
|
||||
<key>DTSDKName</key>
|
||||
<string>${sdk_name}</string>
|
||||
</dict>
|
||||
</plist>
|
||||
EOF
|
||||
}
|
||||
|
||||
# Create dynamic libraries from static libraries.
|
||||
combine_static_libraries() {
|
||||
local build_dir="$1"
|
||||
local release_dir="$2"
|
||||
local platform="$3" # "ios", "macos", "visionos", or "tvos"
|
||||
local is_simulator="$4"
|
||||
local base_dir="$(pwd)"
|
||||
local framework_name="llama"
|
||||
|
||||
# Determine output path based on platform
|
||||
local output_lib=""
|
||||
if [[ "$platform" == "macos" ]]; then
|
||||
# macOS uses versioned structure
|
||||
output_lib="${build_dir}/framework/${framework_name}.framework/Versions/A/${framework_name}"
|
||||
else
|
||||
# iOS, visionOS, and tvOS use a directory flat structure
|
||||
output_lib="${build_dir}/framework/${framework_name}.framework/${framework_name}"
|
||||
fi
|
||||
|
||||
local libs=(
|
||||
"${base_dir}/${build_dir}/src/${release_dir}/libllama.a"
|
||||
"${base_dir}/${build_dir}/ggml/src/${release_dir}/libggml.a"
|
||||
"${base_dir}/${build_dir}/ggml/src/${release_dir}/libggml-base.a"
|
||||
"${base_dir}/${build_dir}/ggml/src/${release_dir}/libggml-cpu.a"
|
||||
"${base_dir}/${build_dir}/ggml/src/ggml-metal/${release_dir}/libggml-metal.a"
|
||||
"${base_dir}/${build_dir}/ggml/src/ggml-blas/${release_dir}/libggml-blas.a"
|
||||
)
|
||||
|
||||
# Create temporary directory for processing
|
||||
local temp_dir="${base_dir}/${build_dir}/temp"
|
||||
mkdir -p "${temp_dir}"
|
||||
|
||||
# Since we have multiple architectures libtool will find object files that do not
|
||||
# match the target architecture. We suppress these warnings.
|
||||
libtool -static -o "${temp_dir}/combined.a" "${libs[@]}" 2> /dev/null
|
||||
|
||||
# Determine SDK, architectures, and install_name based on platform and simulator flag.
|
||||
local sdk=""
|
||||
local archs=""
|
||||
local min_version_flag=""
|
||||
local install_name=""
|
||||
|
||||
case "$platform" in
|
||||
"ios")
|
||||
if [[ "$is_simulator" == "true" ]]; then
|
||||
sdk="iphonesimulator"
|
||||
archs="arm64 x86_64"
|
||||
min_version_flag="-mios-simulator-version-min=${IOS_MIN_OS_VERSION}"
|
||||
else
|
||||
sdk="iphoneos"
|
||||
archs="arm64"
|
||||
min_version_flag="-mios-version-min=${IOS_MIN_OS_VERSION}"
|
||||
fi
|
||||
install_name="@rpath/llama.framework/llama"
|
||||
;;
|
||||
"macos")
|
||||
sdk="macosx"
|
||||
archs="arm64 x86_64"
|
||||
min_version_flag="-mmacosx-version-min=${MACOS_MIN_OS_VERSION}"
|
||||
install_name="@rpath/llama.framework/Versions/Current/llama"
|
||||
;;
|
||||
"visionos")
|
||||
if [[ "$is_simulator" == "true" ]]; then
|
||||
sdk="xrsimulator"
|
||||
archs="arm64 x86_64"
|
||||
min_version_flag="-mtargetos=xros${VISIONOS_MIN_OS_VERSION}-simulator"
|
||||
else
|
||||
sdk="xros"
|
||||
archs="arm64"
|
||||
min_version_flag="-mtargetos=xros${VISIONOS_MIN_OS_VERSION}"
|
||||
fi
|
||||
# Use flat structure for visionOS, same as iOS
|
||||
install_name="@rpath/llama.framework/llama"
|
||||
;;
|
||||
"tvos")
|
||||
if [[ "$is_simulator" == "true" ]]; then
|
||||
sdk="appletvsimulator"
|
||||
archs="arm64 x86_64"
|
||||
min_version_flag="-mtvos-simulator-version-min=${TVOS_MIN_OS_VERSION}"
|
||||
else
|
||||
sdk="appletvos"
|
||||
archs="arm64"
|
||||
min_version_flag="-mtvos-version-min=${TVOS_MIN_OS_VERSION}"
|
||||
fi
|
||||
install_name="@rpath/llama.framework/llama"
|
||||
;;
|
||||
esac
|
||||
|
||||
# Build architecture flags
|
||||
local arch_flags=""
|
||||
for arch in $archs; do
|
||||
arch_flags+=" -arch $arch"
|
||||
done
|
||||
|
||||
# Create dynamic library
|
||||
echo "Creating dynamic library for ${platform}."
|
||||
xcrun -sdk $sdk clang++ -dynamiclib \
|
||||
-isysroot $(xcrun --sdk $sdk --show-sdk-path) \
|
||||
$arch_flags \
|
||||
$min_version_flag \
|
||||
-Wl,-force_load,"${temp_dir}/combined.a" \
|
||||
-framework Foundation -framework Metal -framework Accelerate \
|
||||
-install_name "$install_name" \
|
||||
-o "${base_dir}/${output_lib}"
|
||||
|
||||
# Platform-specific post-processing for device builds
|
||||
if [[ "$is_simulator" == "false" ]]; then
|
||||
if command -v vtool &>/dev/null; then
|
||||
case "$platform" in
|
||||
"ios")
|
||||
echo "Marking binary as a framework binary for iOS..."
|
||||
vtool -set-build-version ios ${IOS_MIN_OS_VERSION} ${IOS_MIN_OS_VERSION} -replace \
|
||||
-output "${base_dir}/${output_lib}" "${base_dir}/${output_lib}"
|
||||
;;
|
||||
"visionos")
|
||||
echo "Marking binary as a framework binary for visionOS..."
|
||||
vtool -set-build-version xros ${VISIONOS_MIN_OS_VERSION} ${VISIONOS_MIN_OS_VERSION} -replace \
|
||||
-output "${base_dir}/${output_lib}" "${base_dir}/${output_lib}"
|
||||
;;
|
||||
"tvos")
|
||||
echo "Marking binary as a framework binary for tvOS..."
|
||||
vtool -set-build-version tvos ${TVOS_MIN_OS_VERSION} ${TVOS_MIN_OS_VERSION} -replace \
|
||||
-output "${base_dir}/${output_lib}" "${base_dir}/${output_lib}"
|
||||
;;
|
||||
esac
|
||||
else
|
||||
echo "Warning: vtool not found. Binary may not pass App Store validation."
|
||||
fi
|
||||
fi
|
||||
|
||||
echo "Creating properly formatted dSYM..."
|
||||
# Create a separate directory for dSYMs for all platforms
|
||||
mkdir -p "${base_dir}/${build_dir}/dSYMs"
|
||||
|
||||
# iOS and visionOS style dSYM (flat structure)
|
||||
if [[ "$platform" == "ios" || "$platform" == "visionos" || "$platform" == "tvos" ]]; then
|
||||
# Generate dSYM in the dSYMs directory
|
||||
xcrun dsymutil "${base_dir}/${output_lib}" -o "${base_dir}/${build_dir}/dSYMs/llama.dSYM"
|
||||
|
||||
# Create a copy of the binary that will be stripped
|
||||
cp "${base_dir}/${output_lib}" "${temp_dir}/binary_to_strip"
|
||||
|
||||
# Strip debug symbols from the copy
|
||||
xcrun strip -S "${temp_dir}/binary_to_strip" -o "${temp_dir}/stripped_lib"
|
||||
|
||||
# Replace the original with the stripped version
|
||||
mv "${temp_dir}/stripped_lib" "${base_dir}/${output_lib}"
|
||||
else
|
||||
# macOS style dSYM
|
||||
# First strip debug info to a separate file
|
||||
xcrun strip -S "${base_dir}/${output_lib}" -o "${temp_dir}/stripped_lib"
|
||||
|
||||
# Generate dSYM in the dSYMs directory
|
||||
xcrun dsymutil "${base_dir}/${output_lib}" -o "${base_dir}/${build_dir}/dSYMs/llama.dSYM"
|
||||
|
||||
# Replace original binary with stripped version
|
||||
mv "${temp_dir}/stripped_lib" "${base_dir}/${output_lib}"
|
||||
fi
|
||||
|
||||
# Remove any automatically generated dSYM files in the framework structure as they will
|
||||
# otherwise case Invalid Bundle Structure validation errors.
|
||||
if [ -d "${base_dir}/${output_lib}.dSYM" ]; then
|
||||
echo "Removing generated dSYM file in framework structure: ${base_dir}/${output_lib}.dSYM"
|
||||
rm -rf "${base_dir}/${output_lib}.dSYM"
|
||||
fi
|
||||
|
||||
# Clean up
|
||||
rm -rf "${temp_dir}"
|
||||
}
|
||||
|
||||
echo "Building for iOS simulator..."
|
||||
cmake -B build-ios-sim -G Xcode \
|
||||
"${COMMON_CMAKE_ARGS[@]}" \
|
||||
-DCMAKE_OSX_DEPLOYMENT_TARGET=${IOS_MIN_OS_VERSION} \
|
||||
-DIOS=ON \
|
||||
-DCMAKE_SYSTEM_NAME=iOS \
|
||||
-DCMAKE_OSX_SYSROOT=iphonesimulator \
|
||||
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64" \
|
||||
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=iphonesimulator \
|
||||
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
|
||||
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
|
||||
-S .
|
||||
cmake --build build-ios-sim --config Release -- -quiet
|
||||
|
||||
echo "Building for iOS devices..."
|
||||
cmake -B build-ios-device -G Xcode \
|
||||
"${COMMON_CMAKE_ARGS[@]}" \
|
||||
-DCMAKE_OSX_DEPLOYMENT_TARGET=${IOS_MIN_OS_VERSION} \
|
||||
-DCMAKE_OSX_SYSROOT=iphoneos \
|
||||
-DCMAKE_OSX_ARCHITECTURES="arm64" \
|
||||
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=iphoneos \
|
||||
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
|
||||
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
|
||||
-S .
|
||||
cmake --build build-ios-device --config Release -- -quiet
|
||||
|
||||
echo "Building for macOS..."
|
||||
cmake -B build-macos -G Xcode \
|
||||
"${COMMON_CMAKE_ARGS[@]}" \
|
||||
-DCMAKE_OSX_DEPLOYMENT_TARGET=${MACOS_MIN_OS_VERSION} \
|
||||
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64" \
|
||||
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
|
||||
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
|
||||
-S .
|
||||
cmake --build build-macos --config Release -- -quiet
|
||||
|
||||
echo "Building for visionOS..."
|
||||
cmake -B build-visionos -G Xcode \
|
||||
"${COMMON_CMAKE_ARGS[@]}" \
|
||||
-DCMAKE_OSX_DEPLOYMENT_TARGET=${VISIONOS_MIN_OS_VERSION} \
|
||||
-DCMAKE_OSX_ARCHITECTURES="arm64" \
|
||||
-DCMAKE_SYSTEM_NAME=visionOS \
|
||||
-DCMAKE_OSX_SYSROOT=xros \
|
||||
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=xros \
|
||||
-DCMAKE_C_FLAGS="-D_XOPEN_SOURCE=700 -Du_int=unsigned\ int -Du_char=unsigned\ char -Du_short=unsigned\ short ${COMMON_C_FLAGS}" \
|
||||
-DCMAKE_CXX_FLAGS="-D_XOPEN_SOURCE=700 -Du_int=unsigned\ int -Du_char=unsigned\ char -Du_short=unsigned\ short ${COMMON_CXX_FLAGS}" \
|
||||
-S .
|
||||
cmake --build build-visionos --config Release -- -quiet
|
||||
|
||||
echo "Building for visionOS simulator..."
|
||||
cmake -B build-visionos-sim -G Xcode \
|
||||
"${COMMON_CMAKE_ARGS[@]}" \
|
||||
-DCMAKE_OSX_DEPLOYMENT_TARGET=${VISIONOS_MIN_OS_VERSION} \
|
||||
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64" \
|
||||
-DCMAKE_SYSTEM_NAME=visionOS \
|
||||
-DCMAKE_OSX_SYSROOT=xrsimulator \
|
||||
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=xrsimulator \
|
||||
-DCMAKE_C_FLAGS="-D_XOPEN_SOURCE=700 -Du_int=unsigned\ int -Du_char=unsigned\ char -Du_short=unsigned\ short ${COMMON_C_FLAGS}" \
|
||||
-DCMAKE_CXX_FLAGS="-D_XOPEN_SOURCE=700 -Du_int=unsigned\ int -Du_char=unsigned\ char -Du_short=unsigned\ short ${COMMON_CXX_FLAGS}" \
|
||||
-S .
|
||||
cmake --build build-visionos-sim --config Release -- -quiet
|
||||
|
||||
# Add tvOS builds (might need the same u_int definitions as watchOS and visionOS)
|
||||
echo "Building for tvOS simulator..."
|
||||
cmake -B build-tvos-sim -G Xcode \
|
||||
"${COMMON_CMAKE_ARGS[@]}" \
|
||||
-DCMAKE_OSX_DEPLOYMENT_TARGET=${TVOS_MIN_OS_VERSION} \
|
||||
-DCMAKE_SYSTEM_NAME=tvOS \
|
||||
-DCMAKE_OSX_SYSROOT=appletvsimulator \
|
||||
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64" \
|
||||
-DGGML_METAL=ON \
|
||||
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=appletvsimulator \
|
||||
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
|
||||
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
|
||||
-S .
|
||||
cmake --build build-tvos-sim --config Release -- -quiet
|
||||
|
||||
echo "Building for tvOS devices..."
|
||||
cmake -B build-tvos-device -G Xcode \
|
||||
"${COMMON_CMAKE_ARGS[@]}" \
|
||||
-DCMAKE_OSX_DEPLOYMENT_TARGET=${TVOS_MIN_OS_VERSION} \
|
||||
-DCMAKE_SYSTEM_NAME=tvOS \
|
||||
-DCMAKE_OSX_SYSROOT=appletvos \
|
||||
-DCMAKE_OSX_ARCHITECTURES="arm64" \
|
||||
-DGGML_METAL=ON \
|
||||
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=appletvos \
|
||||
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
|
||||
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
|
||||
-S .
|
||||
cmake --build build-tvos-device --config Release -- -quiet
|
||||
|
||||
# Setup frameworks and copy binaries and headers
|
||||
echo "Setting up framework structures..."
|
||||
setup_framework_structure "build-ios-sim" ${IOS_MIN_OS_VERSION} "ios"
|
||||
setup_framework_structure "build-ios-device" ${IOS_MIN_OS_VERSION} "ios"
|
||||
setup_framework_structure "build-macos" ${MACOS_MIN_OS_VERSION} "macos"
|
||||
setup_framework_structure "build-visionos" ${VISIONOS_MIN_OS_VERSION} "visionos"
|
||||
setup_framework_structure "build-visionos-sim" ${VISIONOS_MIN_OS_VERSION} "visionos"
|
||||
setup_framework_structure "build-tvos-sim" ${TVOS_MIN_OS_VERSION} "tvos"
|
||||
setup_framework_structure "build-tvos-device" ${TVOS_MIN_OS_VERSION} "tvos"
|
||||
|
||||
# Create dynamic libraries from static libraries
|
||||
echo "Creating dynamic libraries from static libraries..."
|
||||
combine_static_libraries "build-ios-sim" "Release-iphonesimulator" "ios" "true"
|
||||
combine_static_libraries "build-ios-device" "Release-iphoneos" "ios" "false"
|
||||
combine_static_libraries "build-macos" "Release" "macos" "false"
|
||||
combine_static_libraries "build-visionos" "Release-xros" "visionos" "false"
|
||||
combine_static_libraries "build-visionos-sim" "Release-xrsimulator" "visionos" "true"
|
||||
combine_static_libraries "build-tvos-sim" "Release-appletvsimulator" "tvos" "true"
|
||||
combine_static_libraries "build-tvos-device" "Release-appletvos" "tvos" "false"
|
||||
|
||||
# Create XCFramework with correct debug symbols paths
|
||||
echo "Creating XCFramework..."
|
||||
xcodebuild -create-xcframework \
|
||||
-framework $(pwd)/build-ios-sim/framework/llama.framework \
|
||||
-debug-symbols $(pwd)/build-ios-sim/dSYMs/llama.dSYM \
|
||||
-framework $(pwd)/build-ios-device/framework/llama.framework \
|
||||
-debug-symbols $(pwd)/build-ios-device/dSYMs/llama.dSYM \
|
||||
-framework $(pwd)/build-macos/framework/llama.framework \
|
||||
-debug-symbols $(pwd)/build-macos/dSYMS/llama.dSYM \
|
||||
-framework $(pwd)/build-visionos/framework/llama.framework \
|
||||
-debug-symbols $(pwd)/build-visionos/dSYMs/llama.dSYM \
|
||||
-framework $(pwd)/build-visionos-sim/framework/llama.framework \
|
||||
-debug-symbols $(pwd)/build-visionos-sim/dSYMs/llama.dSYM \
|
||||
-framework $(pwd)/build-tvos-device/framework/llama.framework \
|
||||
-debug-symbols $(pwd)/build-tvos-device/dSYMs/llama.dSYM \
|
||||
-framework $(pwd)/build-tvos-sim/framework/llama.framework \
|
||||
-debug-symbols $(pwd)/build-tvos-sim/dSYMs/llama.dSYM \
|
||||
-output $(pwd)/build-apple/llama.xcframework
|
||||
@@ -352,10 +352,10 @@ function gg_run_open_llama_7b_v2 {
|
||||
|
||||
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
|
||||
|
||||
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 10 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 10 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
|
||||
function check_ppl {
|
||||
qnt="$1"
|
||||
|
||||
@@ -813,13 +813,18 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
).set_env("LLAMA_ARG_FLASH_ATTN"));
|
||||
add_opt(common_arg(
|
||||
{"-p", "--prompt"}, "PROMPT",
|
||||
ex == LLAMA_EXAMPLE_MAIN
|
||||
? "prompt to start generation with\nif -cnv is set, this will be used as system prompt"
|
||||
: "prompt to start generation with",
|
||||
"prompt to start generation with; for system message, use -sys",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.prompt = value;
|
||||
}
|
||||
).set_excludes({LLAMA_EXAMPLE_SERVER}));
|
||||
add_opt(common_arg(
|
||||
{"-sys", "--system-prompt"}, "PROMPT",
|
||||
"system prompt to use with model (if applicable, depending on chat template)",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.system_prompt = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN}));
|
||||
add_opt(common_arg(
|
||||
{"--no-perf"},
|
||||
string_format("disable internal libllama performance timings (default: %s)", params.no_perf ? "true" : "false"),
|
||||
@@ -944,6 +949,15 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
params.conversation_mode = COMMON_CONVERSATION_MODE_DISABLED;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN}));
|
||||
add_opt(common_arg(
|
||||
{"-st", "--single-turn"},
|
||||
"run conversation for a single turn only, then exit when done\n"
|
||||
"will not be interactive if first turn is predefined with --prompt\n"
|
||||
"(default: false)",
|
||||
[](common_params & params) {
|
||||
params.single_turn = true;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN}));
|
||||
add_opt(common_arg(
|
||||
{"-i", "--interactive"},
|
||||
string_format("run in interactive mode (default: %s)", params.interactive ? "true" : "false"),
|
||||
@@ -1853,16 +1867,9 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
).set_examples({LLAMA_EXAMPLE_PASSKEY}));
|
||||
add_opt(common_arg(
|
||||
{"-o", "--output", "--output-file"}, "FNAME",
|
||||
string_format("output file (default: '%s')",
|
||||
ex == LLAMA_EXAMPLE_EXPORT_LORA
|
||||
? params.lora_outfile.c_str()
|
||||
: ex == LLAMA_EXAMPLE_CVECTOR_GENERATOR
|
||||
? params.cvector_outfile.c_str()
|
||||
: params.out_file.c_str()),
|
||||
string_format("output file (default: '%s')", params.out_file.c_str()),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.out_file = value;
|
||||
params.cvector_outfile = value;
|
||||
params.lora_outfile = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_CVECTOR_GENERATOR, LLAMA_EXAMPLE_EXPORT_LORA}));
|
||||
add_opt(common_arg(
|
||||
@@ -2447,6 +2454,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
params.vocoder.use_guide_tokens = true;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_SERVER}));
|
||||
add_opt(common_arg(
|
||||
{"--tts-speaker-file"}, "FNAME",
|
||||
"speaker file path for audio generation",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.vocoder.speaker_file = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_TTS}));
|
||||
|
||||
// model-specific
|
||||
add_opt(common_arg(
|
||||
@@ -2550,5 +2564,43 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}));
|
||||
|
||||
add_opt(common_arg(
|
||||
{"--fim-qwen-7b-spec"},
|
||||
string_format("use Qwen 2.5 Coder 7B + 0.5B draft for speculative decoding (note: can download weights from the internet)"),
|
||||
[](common_params & params) {
|
||||
params.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
|
||||
params.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
|
||||
params.speculative.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
|
||||
params.speculative.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
|
||||
params.speculative.n_gpu_layers = 99;
|
||||
params.port = 8012;
|
||||
params.n_gpu_layers = 99;
|
||||
params.flash_attn = true;
|
||||
params.n_ubatch = 1024;
|
||||
params.n_batch = 1024;
|
||||
params.n_ctx = 0;
|
||||
params.n_cache_reuse = 256;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}));
|
||||
|
||||
add_opt(common_arg(
|
||||
{"--fim-qwen-14b-spec"},
|
||||
string_format("use Qwen 2.5 Coder 14B + 0.5B draft for speculative decoding (note: can download weights from the internet)"),
|
||||
[](common_params & params) {
|
||||
params.hf_repo = "ggml-org/Qwen2.5-Coder-14B-Q8_0-GGUF";
|
||||
params.hf_file = "qwen2.5-coder-14b-q8_0.gguf";
|
||||
params.speculative.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
|
||||
params.speculative.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
|
||||
params.speculative.n_gpu_layers = 99;
|
||||
params.port = 8012;
|
||||
params.n_gpu_layers = 99;
|
||||
params.flash_attn = true;
|
||||
params.n_ubatch = 1024;
|
||||
params.n_batch = 1024;
|
||||
params.n_ctx = 0;
|
||||
params.n_cache_reuse = 256;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}));
|
||||
|
||||
return ctx_arg;
|
||||
}
|
||||
|
||||
566
common/chat.cpp
566
common/chat.cpp
@@ -60,7 +60,9 @@ std::vector<common_chat_msg> common_chat_msgs_parse_oaicompat(const json & messa
|
||||
}
|
||||
msg.role = message.at("role");
|
||||
|
||||
if (message.contains("content")) {
|
||||
auto has_content = message.contains("content");
|
||||
auto has_tool_calls = message.contains("tool_calls");
|
||||
if (has_content) {
|
||||
const auto & content = message.at("content");
|
||||
if (content.is_string()) {
|
||||
msg.content = content;
|
||||
@@ -81,19 +83,8 @@ std::vector<common_chat_msg> common_chat_msgs_parse_oaicompat(const json & messa
|
||||
} else if (!content.is_null()) {
|
||||
throw std::runtime_error("Invalid 'content' type: expected string or array, got " + content.dump() + " (ref: https://github.com/ggml-org/llama.cpp/issues/8367)");
|
||||
}
|
||||
} else {
|
||||
throw std::runtime_error("Expected 'content' (ref: https://github.com/ggml-org/llama.cpp/issues/8367)");
|
||||
}
|
||||
if (message.contains("reasoning_content")) {
|
||||
msg.reasoning_content = message.at("reasoning_content");
|
||||
}
|
||||
if (message.contains("name")) {
|
||||
msg.tool_name = message.at("name");
|
||||
}
|
||||
if (message.contains("tool_call_id")) {
|
||||
msg.tool_call_id = message.at("tool_call_id");
|
||||
}
|
||||
if (message.contains("tool_calls")) {
|
||||
if (has_tool_calls) {
|
||||
for (const auto & tool_call : message.at("tool_calls")) {
|
||||
common_chat_tool_call tc;
|
||||
if (!tool_call.contains("type")) {
|
||||
@@ -118,6 +109,18 @@ std::vector<common_chat_msg> common_chat_msgs_parse_oaicompat(const json & messa
|
||||
msg.tool_calls.push_back(tc);
|
||||
}
|
||||
}
|
||||
if (!has_content && !has_tool_calls) {
|
||||
throw std::runtime_error("Expected 'content' or 'tool_calls' (ref: https://github.com/ggml-org/llama.cpp/issues/8367 & https://github.com/ggml-org/llama.cpp/issues/12279)");
|
||||
}
|
||||
if (message.contains("reasoning_content")) {
|
||||
msg.reasoning_content = message.at("reasoning_content");
|
||||
}
|
||||
if (message.contains("name")) {
|
||||
msg.tool_name = message.at("name");
|
||||
}
|
||||
if (message.contains("tool_call_id")) {
|
||||
msg.tool_call_id = message.at("tool_call_id");
|
||||
}
|
||||
|
||||
msgs.push_back(msg);
|
||||
}
|
||||
@@ -442,6 +445,7 @@ std::string common_chat_format_name(common_chat_format format) {
|
||||
case COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2: return "Functionary v3.2";
|
||||
case COMMON_CHAT_FORMAT_FUNCTIONARY_V3_1_LLAMA_3_1: return "Functionary v3.1 Llama 3.1";
|
||||
case COMMON_CHAT_FORMAT_HERMES_2_PRO: return "Hermes 2 Pro";
|
||||
case COMMON_CHAT_FORMAT_HERMES_2_PRO_EXTRACT_REASONING: return "Hermes 2 Pro (extract reasoning)";
|
||||
case COMMON_CHAT_FORMAT_COMMAND_R7B: return "Command R7B";
|
||||
case COMMON_CHAT_FORMAT_COMMAND_R7B_EXTRACT_REASONING: return "Command R7B (extract reasoning)";
|
||||
default:
|
||||
@@ -449,12 +453,6 @@ std::string common_chat_format_name(common_chat_format format) {
|
||||
}
|
||||
}
|
||||
|
||||
const common_grammar_options grammar_options {
|
||||
/* .dotall = */ false,
|
||||
/* .compact_spaces = */ false,
|
||||
// /* .compact_spaces = */ true,
|
||||
};
|
||||
|
||||
static bool parse_json(std::string::const_iterator & it, const std::string::const_iterator & end, json & out) {
|
||||
// // https://json.nlohmann.me/features/parsing/sax_interface/
|
||||
struct json_error_locator : public nlohmann::json_sax<json> {
|
||||
@@ -500,6 +498,34 @@ static bool parse_json(std::string::const_iterator & it, const std::string::cons
|
||||
}
|
||||
}
|
||||
|
||||
static bool parse_literal(std::string::const_iterator & it, const std::string::const_iterator & end, const std::string & expected) {
|
||||
auto expected_it = expected.begin();
|
||||
auto tmp_it = it;
|
||||
while (tmp_it != end && expected_it != expected.end() && *tmp_it == *expected_it) {
|
||||
++tmp_it;
|
||||
++expected_it;
|
||||
}
|
||||
if (expected_it == expected.end()) {
|
||||
it = tmp_it;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
static std::optional<std::smatch> parse_pattern(std::string::const_iterator & it, const std::string::const_iterator & end, const std::regex & expected) {
|
||||
std::smatch match;
|
||||
if (std::regex_match(it, end, match, expected)) {
|
||||
it = match.suffix().first;
|
||||
return match;
|
||||
}
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
static void consume_spaces(std::string::const_iterator & it, const std::string::const_iterator & end) {
|
||||
while (it != end && std::isspace(*it)) {
|
||||
++it;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Takes a prefix regex that must have 1 group to capture the function name, a closing suffix, and expects json parameters in between.
|
||||
@@ -509,7 +535,8 @@ static common_chat_msg parse_json_tool_calls(
|
||||
const std::string& input,
|
||||
const std::optional<std::regex> & trigger_opt,
|
||||
const std::regex & function_regex,
|
||||
const std::regex & close_regex) {
|
||||
const std::regex & close_regex,
|
||||
bool allow_raw_python = false) {
|
||||
std::smatch match;
|
||||
|
||||
common_chat_msg result;
|
||||
@@ -540,14 +567,19 @@ static common_chat_msg parse_json_tool_calls(
|
||||
it = rit->suffix().first;
|
||||
|
||||
json arguments;
|
||||
if (!parse_json(it, end, arguments)) {
|
||||
if (parse_json(it, end, arguments)) {
|
||||
if (!std::regex_search(it, end, match, close_regex)) {
|
||||
throw std::runtime_error("Malformed input, missing closing pattern: " + input);
|
||||
}
|
||||
it = match.suffix().first;
|
||||
result.tool_calls.push_back({name, arguments.is_string() ? arguments.get<std::string>() : arguments.dump(), /* id= */ ""});
|
||||
} else {
|
||||
if (allow_raw_python && name == "python") {
|
||||
result.tool_calls.push_back({name, json({{"code", std::string(it, end)}}).dump(), /* id= */ ""});
|
||||
break;
|
||||
}
|
||||
throw std::runtime_error("Failed to parse json tool call arguments: " + input);
|
||||
}
|
||||
if (!std::regex_search(it, end, match, close_regex)) {
|
||||
throw std::runtime_error("Malformed input, missing closing pattern: " + input);
|
||||
}
|
||||
it = match.suffix().first;
|
||||
result.tool_calls.push_back({name, arguments.is_string() ? arguments.get<std::string>() : arguments.dump(), /* id= */ ""});
|
||||
}
|
||||
|
||||
if (!result.tool_calls.empty()) {
|
||||
@@ -559,29 +591,29 @@ static common_chat_msg parse_json_tool_calls(
|
||||
return result;
|
||||
}
|
||||
|
||||
static common_chat_tool_call process_tool_call(const json & tool_call) {
|
||||
const auto & arguments = tool_call.at("arguments");
|
||||
return {
|
||||
/* .name = */ tool_call.at("name"),
|
||||
/* .arguments = */ arguments.is_string() ? arguments.get<std::string>() : arguments.dump(),
|
||||
/* .id = */ tool_call.contains("id") ? tool_call.at("id") : "",
|
||||
};
|
||||
}
|
||||
static common_chat_msg parse_prefixed_json_tool_call_array(const std::string& input, const std::string & prefix, size_t rstrip_prefix = 0) {
|
||||
auto content_end = input.find(prefix);
|
||||
size_t tc_start = std::string::npos;
|
||||
|
||||
common_chat_msg result;
|
||||
result.role = "assistant";
|
||||
const auto process_tool_calls = [&](const json & tool_calls) {
|
||||
for (const auto & tool_call : tool_calls) {
|
||||
const auto & arguments = tool_call.at("arguments");
|
||||
result.tool_calls.push_back({
|
||||
tool_call.at("name"),
|
||||
arguments.is_string() ? arguments.get<std::string>() : arguments.dump(),
|
||||
tool_call.contains("id") ? tool_call.at("id") : "",
|
||||
});
|
||||
}
|
||||
};
|
||||
if (content_end == std::string::npos) {
|
||||
result.content = input;
|
||||
} else {
|
||||
tc_start = content_end + prefix.size() - rstrip_prefix;
|
||||
result.content = input.substr(0, content_end);
|
||||
auto tool_calls = json::parse(input.substr(tc_start));
|
||||
process_tool_calls(tool_calls);
|
||||
for (const auto & tool_call : tool_calls) {
|
||||
result.tool_calls.emplace_back(process_tool_call(tool_call));
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
@@ -700,7 +732,7 @@ static common_chat_params common_chat_params_init_generic(const common_chat_temp
|
||||
data.grammar_lazy = false;
|
||||
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
|
||||
builder.add_schema("root", schema);
|
||||
}, grammar_options);
|
||||
});
|
||||
|
||||
auto tweaked_messages = common_chat_template::add_system(
|
||||
inputs.messages,
|
||||
@@ -770,8 +802,11 @@ static common_chat_params common_chat_params_init_mistral_nemo(const common_chat
|
||||
schema["maxItems"] = 1;
|
||||
}
|
||||
builder.add_rule("root", "\"[TOOL_CALLS]\" " + builder.add_schema("tool_calls", schema));
|
||||
}, grammar_options);
|
||||
data.grammar_triggers.push_back({"[TOOL_CALLS]", /* .at_start = */ true});
|
||||
});
|
||||
data.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, "[TOOL_CALLS]"});
|
||||
data.preserved_tokens = {
|
||||
"[TOOL_CALLS]",
|
||||
};
|
||||
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
|
||||
data.format = COMMON_CHAT_FORMAT_MISTRAL_NEMO;
|
||||
return data;
|
||||
@@ -813,14 +848,18 @@ static common_chat_params common_chat_params_init_command_r7b(const common_chat_
|
||||
schema["maxItems"] = 1;
|
||||
}
|
||||
builder.add_rule("root", "\"<|START_ACTION|>\" " + builder.add_schema("tool_calls", schema) + " \"<|END_ACTION|>\"");
|
||||
}, grammar_options);
|
||||
data.grammar_triggers.push_back({"<|START_ACTION|>", /* .at_start = */ false});
|
||||
});
|
||||
data.grammar_triggers.push_back({
|
||||
COMMON_GRAMMAR_TRIGGER_TYPE_WORD,
|
||||
"<|START_ACTION|>",
|
||||
});
|
||||
data.preserved_tokens = {
|
||||
"<|START_ACTION|>",
|
||||
"<|END_ACTION|>",
|
||||
"<|START_RESPONSE|>",
|
||||
"<|END_RESPONSE|>",
|
||||
"<|START_THINKING|>",
|
||||
"<|END_THINKING|>",
|
||||
"<|END_ACTION|>",
|
||||
};
|
||||
auto adjusted_messages = json::array();
|
||||
for (const auto & msg : inputs.messages) {
|
||||
@@ -840,9 +879,9 @@ static common_chat_params common_chat_params_init_command_r7b(const common_chat_
|
||||
return data;
|
||||
}
|
||||
static common_chat_msg common_chat_parse_command_r7b(const std::string & input, bool extract_reasoning) {
|
||||
static std::regex thought_regex("(<\\|START_THINKING\\|>([\\s\\S\\n\\r]*?)<\\|END_THINKING\\|>)([\\s\\S\\n\\r]*)");
|
||||
static std::regex action_regex("<\\|START_ACTION\\|>([\\s\\S\\n\\r]*?)<\\|END_ACTION\\|>");
|
||||
static std::regex response_regex("(?:<\\|START_RESPONSE\\|>)?([\\s\\S\\n\\r]*?)<\\|END_RESPONSE\\|>");
|
||||
static const std::regex thought_regex("(<\\|START_THINKING\\|>([\\s\\S]*?)<\\|END_THINKING\\|>)([\\s\\S]*)");
|
||||
static const std::regex action_regex("<\\|START_ACTION\\|>([\\s\\S]*?)<\\|END_ACTION\\|>");
|
||||
static const std::regex response_regex("(?:<\\|START_RESPONSE\\|>)?([\\s\\S]*?)<\\|END_RESPONSE\\|>");
|
||||
|
||||
std::smatch match;
|
||||
|
||||
@@ -945,23 +984,23 @@ static common_chat_params common_chat_params_init_llama_3_1_tool_calls(const com
|
||||
builder.add_rule(
|
||||
name + "-call",
|
||||
"\"{\" space "
|
||||
"( \"\\\"type\\\":\" space \"\\\"function\\\",\" space )? "
|
||||
"\"\\\"name\\\": \\\"" + name + "\\\", \\\"parameters\\\": \" " +
|
||||
builder.add_schema(name + "-args", parameters) +
|
||||
" \"}\""));
|
||||
data.grammar_triggers.push_back({"{\"name\": \"" + name + "\"", /* .at_start = */ true});
|
||||
"( \"\\\"type\\\"\" space \":\" space \"\\\"function\\\"\" space \",\" space )? "
|
||||
" \"\\\"name\\\"\" space \":\" space \"\\\"" + name + "\\\"\" space \",\" space "
|
||||
" \"\\\"parameters\\\"\" space \":\" space " + builder.add_schema(name + "-args", parameters) + " "
|
||||
"\"}\" space"));
|
||||
});
|
||||
// Small models may hallucinate function names so we match anything (*at the start*) that looks like the JSON of a function call, regardless of the name.
|
||||
data.grammar_triggers.push_back({
|
||||
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_START,
|
||||
"\\{\\s*(?:\"type\"\\s*:\\s*\"function\"\\s*,\\s*)?\"name\"\\s*:\\s*\"", // + name + "\"[\\s\\S]*",
|
||||
});
|
||||
data.grammar_triggers.push_back({"{\"name\":", /* .at_start = */ true});
|
||||
data.grammar_triggers.push_back({"{\n \"name\":", /* .at_start = */ true});
|
||||
data.grammar_triggers.push_back({"{\n \"name\":", /* .at_start = */ true});
|
||||
data.grammar_triggers.push_back({"{\"type\": \"function\"", /* .at_start = */ true});
|
||||
data.grammar_triggers.push_back({"{\n \"type\": \"function\"", /* .at_start = */ true});
|
||||
data.grammar_triggers.push_back({"{\n \"type\": \"function\"", /* .at_start = */ true});
|
||||
if (!builtin_tools.empty()) {
|
||||
data.grammar_triggers.push_back({"<|python_tag|>", /* .at_start = */ false});
|
||||
data.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, "<|python_tag|>"});
|
||||
data.preserved_tokens.push_back("<|python_tag|>");
|
||||
}
|
||||
// Allow a few empty lines on top of the usual constrained json schema space rule.
|
||||
builder.add_rule("root", string_join(tool_rules, " | "));
|
||||
}, grammar_options);
|
||||
});
|
||||
data.additional_stops.push_back("<|eom_id|>");
|
||||
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt, {
|
||||
{"tools_in_user_message", false},
|
||||
@@ -974,33 +1013,33 @@ static common_chat_params common_chat_params_init_llama_3_1_tool_calls(const com
|
||||
}
|
||||
static common_chat_msg common_chat_parse_llama_3_1(const std::string & input, bool with_builtin_tools = false) {
|
||||
// TODO: tighten & simplify the parser, don't accept leading text context.
|
||||
static std::regex function_regex("\\{[\\s\\n\\r]*(?:\"type\"[\\s\\n\\r]*:[\\s\\n\\r]*\"function\"[\\s\\n\\r]*,[\\s\\n\\r]*|[\\s\\n\\r]*)\"name\"[\\s\\n\\r]*:[\\s\\n\\r]*\"([^\"]+)\"[\\s\\n\\r]*,[\\s\\n\\r]*\"parameters\": ");
|
||||
static std::regex close_regex("\\}");
|
||||
static std::regex builtin_call_regex("<\\|python_tag\\|>([^.(]+)\\.call\\((.*)\\)");
|
||||
static const std::regex function_regex(
|
||||
"\\s*\\{\\s*(?:\"type\"\\s*:\\s*\"function\"\\s*,\\s*)?\"name\"\\s*:\\s*\"([^\"]+)\"\\s*,\\s*\"parameters\"\\s*: ");
|
||||
static const std::regex close_regex("\\}\\s*");
|
||||
static const std::regex builtin_call_regex("<\\|python_tag\\|>\\s*([^.(]+)\\s*\\.\\s*call\\s*\\(\\s*([\\w]+)\\s*=\\s*([\\s\\S]*?)\\)");
|
||||
|
||||
if (with_builtin_tools) {
|
||||
std::smatch match;
|
||||
if (std::regex_match(input, match, builtin_call_regex)) {
|
||||
auto name = match[1].str();
|
||||
auto raw_args = match[2].str();
|
||||
try {
|
||||
auto name = match[1].str();
|
||||
auto arg_name = match[2].str();
|
||||
auto arg_value_str = match[3].str();
|
||||
auto arg_value = json::parse(arg_value_str);
|
||||
|
||||
// TODO: if/when builtin tools start accepting more than 1 argument, use parse_json for real parsing.
|
||||
auto it_eq = raw_args.find('=');
|
||||
auto arg_name = raw_args.substr(0, it_eq);
|
||||
auto arg_value_str = raw_args.substr(it_eq + 1);
|
||||
auto arg_value = json::parse(arg_value_str);
|
||||
|
||||
common_chat_msg msg;
|
||||
msg.role = "assistant";
|
||||
msg.content = match.prefix().str();
|
||||
msg.tool_calls.push_back({
|
||||
/* .name = */ name,
|
||||
/* .arguments = */ (json {
|
||||
{arg_name, arg_value},
|
||||
}).dump(),
|
||||
/* .id = */ "",
|
||||
});
|
||||
return msg;
|
||||
common_chat_msg msg;
|
||||
msg.role = "assistant";
|
||||
msg.tool_calls.push_back({
|
||||
/* .name = */ name,
|
||||
/* .arguments = */ (json {
|
||||
{arg_name, arg_value},
|
||||
}).dump(),
|
||||
/* .id = */ "",
|
||||
});
|
||||
return msg;
|
||||
} catch (const std::exception & e) {
|
||||
LOG_WRN("Failed to parse builtin tool call arguments (%s): %s", e.what(), input.c_str());
|
||||
}
|
||||
}
|
||||
}
|
||||
return parse_json_tool_calls(input, std::nullopt, function_regex, close_regex);
|
||||
@@ -1017,10 +1056,10 @@ static common_chat_params common_chat_params_init_deepseek_r1(const common_chat_
|
||||
std::string name = function.at("name");
|
||||
auto parameters = function.at("parameters");
|
||||
builder.resolve_refs(parameters);
|
||||
auto args_rule = builder.add_schema(name + "-args", parameters);
|
||||
tool_rules.push_back(builder.add_rule(name + "-call",
|
||||
"\"<|tool▁call▁begin|>function<|tool▁sep|>" + name + "\\n"
|
||||
"```json\\n\" " + args_rule + " \"```<|tool▁call▁end|>\""));
|
||||
"```json\\n\" " + builder.add_schema(name + "-args", parameters) + " "
|
||||
"\"```<|tool▁call▁end|>\""));
|
||||
});
|
||||
// Distill Qwen 7B & 32B models seem confused re/ syntax of their tool call opening tag,
|
||||
// so we accept common variants (then it's all constrained)
|
||||
@@ -1029,18 +1068,20 @@ static common_chat_params common_chat_params_init_deepseek_r1(const common_chat_
|
||||
"(" + string_join(tool_rules, " | ") + ")" + (inputs.parallel_tool_calls ? "*" : "") + " "
|
||||
"\"<|tool▁calls▁end|>\""
|
||||
" space");
|
||||
data.grammar_triggers.push_back({"<|tool▁calls▁begin|>", /* .at_start = */ false});
|
||||
data.grammar_triggers.push_back({"<|tool_calls_begin|>", /* .at_start = */ false});
|
||||
data.grammar_triggers.push_back({"<|tool calls begin|>", /* .at_start = */ false});
|
||||
data.grammar_triggers.push_back({"<|tool\\_calls\\_begin|>", /* .at_start = */ false});
|
||||
data.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, "<|tool▁calls▁begin|>"});
|
||||
data.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, "<|tool_calls_begin|>"});
|
||||
data.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, "<|tool calls begin|>"});
|
||||
data.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, "<|tool\\_calls\\_begin|>"});
|
||||
data.preserved_tokens = {
|
||||
"<think>",
|
||||
"</think>",
|
||||
"<|tool▁calls▁begin|>",
|
||||
"<|tool▁call▁begin|>",
|
||||
"<|tool▁sep|>",
|
||||
"<|tool▁calls▁end|",
|
||||
"<|tool▁call▁end|>",
|
||||
"<|tool▁calls▁end|",
|
||||
};
|
||||
}, grammar_options);
|
||||
});
|
||||
}
|
||||
auto prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
|
||||
|
||||
@@ -1065,34 +1106,42 @@ static common_chat_params common_chat_params_init_deepseek_r1(const common_chat_
|
||||
data.format = inputs.extract_reasoning ? COMMON_CHAT_FORMAT_DEEPSEEK_R1_EXTRACT_REASONING : COMMON_CHAT_FORMAT_DEEPSEEK_R1;
|
||||
return data;
|
||||
}
|
||||
static common_chat_msg common_chat_parse_deepseek_r1(const std::string & input, bool extract_reasoning) {
|
||||
static std::regex function_regex("<|tool▁call▁begin|>function<|tool▁sep|>([^\n]+)\n```json\n");
|
||||
static std::regex close_regex("```[\\s\\r\\n]*<|tool▁call▁end|>");
|
||||
static std::regex reasoning_content_regex("((?:<think>)?([\\s\\S\\r\\n]*?)</think>)?([\\s\\S\\r\\n]*)");
|
||||
static std::regex tool_calls_regex("[\\s\\r\\n]*(?:<|tool▁calls▁begin|>|<|tool_calls_begin|>|<|tool calls begin|>|<|tool\\\\_calls\\\\_begin|>)([\\s\\S\\r\\n]*?)<|tool▁calls▁end|>");
|
||||
common_chat_msg msg;
|
||||
msg.role = "assistant";
|
||||
static common_chat_msg handle_think_tag_prelude(const std::string & input, bool extract_reasoning, const std::function<common_chat_msg(const std::string &)> & rest_parser) {
|
||||
std::smatch match;
|
||||
static const std::regex reasoning_content_regex("((?:<think>)?([\\s\\S\\r\\n]*?)</think>)?([\\s\\S\\r\\n]*)");
|
||||
if (std::regex_match(input, match, reasoning_content_regex)) {
|
||||
std::string rest;
|
||||
auto rest = match[3].str();
|
||||
auto msg = rest_parser(rest);
|
||||
auto reasoning_content = string_strip(match[2].str());
|
||||
if (extract_reasoning) {
|
||||
msg.reasoning_content = string_strip(match[2].str());
|
||||
} else {
|
||||
msg.content = match[1].str();
|
||||
msg.reasoning_content = reasoning_content;
|
||||
} else if (!reasoning_content.empty()) {
|
||||
std::ostringstream content;
|
||||
content << "<think>" << reasoning_content << "</think>" << msg.content;
|
||||
msg.content = content.str();
|
||||
}
|
||||
rest = match[3].str();
|
||||
return msg;
|
||||
}
|
||||
return rest_parser(input);
|
||||
}
|
||||
static common_chat_msg common_chat_parse_deepseek_r1(const std::string & input, bool extract_reasoning) {
|
||||
return handle_think_tag_prelude(input, extract_reasoning, [](const std::string & input) {
|
||||
static const std::regex function_regex("<|tool▁call▁begin|>function<|tool▁sep|>([^\n]+)\n```json\n");
|
||||
static const std::regex close_regex("```[\\s\\r\\n]*<|tool▁call▁end|>");
|
||||
static const std::regex tool_calls_regex("[\\s\\r\\n]*(?:<|tool▁calls▁begin|>|<|tool_calls_begin|>|<|tool calls begin|>|<|tool\\\\_calls\\\\_begin|>)([\\s\\S\\r\\n]*?)<|tool▁calls▁end|>");
|
||||
|
||||
if (std::regex_search(rest, match, tool_calls_regex)) {
|
||||
common_chat_msg msg;
|
||||
msg.role = "assistant";
|
||||
std::smatch match;
|
||||
if (std::regex_search(input, match, tool_calls_regex)) {
|
||||
auto tool_calls = match[1].str();
|
||||
auto msg2 = parse_json_tool_calls(tool_calls, std::nullopt, function_regex, close_regex);
|
||||
msg.tool_calls = std::move(msg2.tool_calls);
|
||||
} else {
|
||||
msg.content += std::string(rest.begin() + rest.find_first_not_of(" \r\n"), rest.end());
|
||||
msg.content = input;
|
||||
}
|
||||
} else {
|
||||
msg.content = input;
|
||||
}
|
||||
return msg;
|
||||
return msg;
|
||||
});
|
||||
}
|
||||
|
||||
static common_chat_params common_chat_params_init_firefunction_v2(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||||
@@ -1129,8 +1178,11 @@ static common_chat_params common_chat_params_init_firefunction_v2(const common_c
|
||||
schema["maxItems"] = 1;
|
||||
}
|
||||
builder.add_rule("root", "\" functools\"? " + builder.add_schema("tool_calls", schema));
|
||||
}, grammar_options);
|
||||
data.grammar_triggers.push_back({" functools[", /* .at_start = */ false});
|
||||
});
|
||||
data.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, " functools["});
|
||||
data.preserved_tokens = {
|
||||
" functools[",
|
||||
};
|
||||
data.format = COMMON_CHAT_FORMAT_FIREFUNCTION_V2;
|
||||
} else {
|
||||
data.format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
|
||||
@@ -1158,11 +1210,28 @@ static common_chat_params common_chat_params_init_functionary_v3_2(const common_
|
||||
auto parameters = function.at("parameters");
|
||||
builder.resolve_refs(parameters);
|
||||
auto args_rule = builder.add_schema(name + "-args", parameters);
|
||||
first_tool_rules.push_back(builder.add_rule(name + "-call", "\"" + name + "\\n\" " + args_rule));
|
||||
first_tool_rules.push_back(builder.add_rule(name + "-call", "( \"assistant<|end_header_id|>\\n\" )? \"" + name + "\\n\" " + args_rule));
|
||||
subsequent_tool_rules.push_back(builder.add_rule(name + "-call2", "\">>>" + name + "\\n\" " + args_rule));
|
||||
data.grammar_triggers.push_back({name, /* .at_start = */ true});
|
||||
data.grammar_triggers.push_back({">>>" + name, /* .at_start = */ false});
|
||||
data.grammar_triggers.push_back({
|
||||
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_START,
|
||||
regex_escape(name + "\n"),
|
||||
});
|
||||
data.grammar_triggers.push_back({
|
||||
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_START,
|
||||
regex_escape("assistant<|end_header_id|>\n" + name + "\n"),
|
||||
});
|
||||
data.grammar_triggers.push_back({
|
||||
COMMON_GRAMMAR_TRIGGER_TYPE_WORD,
|
||||
regex_escape(">>>" + name + "\n"),
|
||||
});
|
||||
data.grammar_triggers.push_back({
|
||||
COMMON_GRAMMAR_TRIGGER_TYPE_WORD,
|
||||
">>>assistant<|end_header_id|>\n" + name,
|
||||
});
|
||||
});
|
||||
data.preserved_tokens = {
|
||||
"<|end_header_id|>",
|
||||
};
|
||||
auto first_rule = first_tool_rules.empty() ? "" : builder.add_rule("first_tool_call", string_join(first_tool_rules, " | ")) + " space";
|
||||
if (inputs.parallel_tool_calls) {
|
||||
auto subsequent_rule = builder.add_rule("subsequent_tool_call", string_join(subsequent_tool_rules, " | ")) + " space";
|
||||
@@ -1171,34 +1240,20 @@ static common_chat_params common_chat_params_init_functionary_v3_2(const common_
|
||||
builder.add_rule("root", first_rule);
|
||||
}
|
||||
|
||||
}, grammar_options);
|
||||
});
|
||||
}
|
||||
return data;
|
||||
}
|
||||
|
||||
static bool consume(std::string::const_iterator & it, const std::string::const_iterator & end, const std::string & expected) {
|
||||
auto expected_it = expected.begin();
|
||||
auto tmp_it = it;
|
||||
while (tmp_it != end && expected_it != expected.end() && *tmp_it == *expected_it) {
|
||||
++tmp_it;
|
||||
++expected_it;
|
||||
}
|
||||
if (expected_it == expected.end()) {
|
||||
it = tmp_it;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
static common_chat_msg common_chat_parse_functionary_v3_2(const std::string & input) {
|
||||
static std::regex function_regex(R"((?:>>>)?(\w+)\n)");
|
||||
static std::regex close_regex(R"($|(?=>>>))");
|
||||
static const std::regex function_regex(R"((?:>>>)?(?:assistant<|end_header_id|>\n)?(\w+)\n)");
|
||||
static const std::regex close_regex(R"($|(?=>>>))");
|
||||
|
||||
std::string content;
|
||||
auto it = input.begin();
|
||||
const auto end = input.end();
|
||||
|
||||
if (consume(it, end, "all\n")) {
|
||||
if (parse_literal(it, end, "all\n")) {
|
||||
std::smatch match;
|
||||
if (std::regex_search(it, end, match, function_regex)) {
|
||||
auto fun_it = match.prefix().second;
|
||||
@@ -1213,7 +1268,7 @@ static common_chat_msg common_chat_parse_functionary_v3_2(const std::string & in
|
||||
}
|
||||
// TODO: tighten & simplify.
|
||||
try {
|
||||
auto res = parse_json_tool_calls(std::string(it, end), std::nullopt, function_regex, close_regex);
|
||||
auto res = parse_json_tool_calls(std::string(it, end), std::nullopt, function_regex, close_regex, /* allow_raw_python= */ true);
|
||||
res.content = content + res.content;
|
||||
return res;
|
||||
} catch (const std::exception & e) {
|
||||
@@ -1266,12 +1321,13 @@ static common_chat_params common_chat_params_init_functionary_v3_1_llama_3_1(con
|
||||
});
|
||||
if (has_raw_python) {
|
||||
tool_rules.push_back(builder.add_rule("python-call", "\"<|python_tag|>\" .*"));
|
||||
data.grammar_triggers.push_back({"<|python_tag|>", /* .at_start = */ false});
|
||||
data.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, "<|python_tag|>"});
|
||||
data.preserved_tokens.push_back("<|python_tag|>");
|
||||
}
|
||||
auto tool_call = builder.add_rule("tool_call", string_join(tool_rules, " | ")) + " space";
|
||||
builder.add_rule("root", inputs.parallel_tool_calls ? "(" + tool_call + ")+" : tool_call);
|
||||
data.grammar_triggers.push_back({"<function=", /* .at_start = */ false});
|
||||
}, grammar_options);
|
||||
data.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, "<function="});
|
||||
});
|
||||
|
||||
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
|
||||
// TODO: if (has_raw_python)
|
||||
@@ -1280,7 +1336,7 @@ static common_chat_params common_chat_params_init_functionary_v3_1_llama_3_1(con
|
||||
}
|
||||
static common_chat_msg common_chat_parse_functionary_v3_1_llama_3_1(const std::string & input) {
|
||||
// This version of Functionary still supports the llama 3.1 tool call format for the python tool.
|
||||
static std::regex python_tag_regex(R"(<\|python_tag\|>([\s\S\n]*)$)");
|
||||
static const std::regex python_tag_regex(R"(<\|python_tag\|>([\s\S\n]*)$)");
|
||||
std::smatch match;
|
||||
if (std::regex_search(input, match, python_tag_regex)) {
|
||||
auto code = match[1].str();
|
||||
@@ -1294,8 +1350,8 @@ static common_chat_msg common_chat_parse_functionary_v3_1_llama_3_1(const std::s
|
||||
});
|
||||
return msg;
|
||||
}
|
||||
static std::regex function_regex(R"(<function=(\w+)>)");
|
||||
static std::regex close_regex(R"(</function>)");
|
||||
static const std::regex function_regex(R"(<function=(\w+)>)");
|
||||
static const std::regex close_regex(R"(</function>)");
|
||||
// TODO: tighten & simplify.
|
||||
return parse_json_tool_calls(input, std::nullopt, function_regex, close_regex);
|
||||
}
|
||||
@@ -1306,6 +1362,7 @@ static common_chat_params common_chat_params_init_hermes_2_pro(const common_chat
|
||||
data.grammar_lazy = inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_REQUIRED;
|
||||
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
|
||||
std::vector<std::string> tool_rules;
|
||||
std::vector<std::string> tool_call_alts;
|
||||
foreach_function(inputs.tools, [&](const json & tool) {
|
||||
const auto & function = tool.at("function");
|
||||
std::string name = function.at("name");
|
||||
@@ -1319,68 +1376,187 @@ static common_chat_params common_chat_params_init_hermes_2_pro(const common_chat
|
||||
}},
|
||||
{"required", json::array({"name", "arguments"})},
|
||||
}));
|
||||
tool_call_alts.push_back(builder.add_rule(
|
||||
name + "-function-tag",
|
||||
"\"<function\" ( \"=" + name + "\" | \" name=\\\"" + name + "\\\"\" ) \">\" space " +
|
||||
builder.add_schema(name + "-args", parameters) + " "
|
||||
"\"</function>\" space"));
|
||||
|
||||
data.grammar_triggers.push_back({
|
||||
COMMON_GRAMMAR_TRIGGER_TYPE_WORD,
|
||||
"<function=" + name + ">",
|
||||
});
|
||||
auto escaped_name = regex_escape(name);
|
||||
data.grammar_triggers.push_back({
|
||||
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN,
|
||||
"<function\\s+name\\s*=\\s*\"" + escaped_name + "\"",
|
||||
});
|
||||
});
|
||||
auto tool_call = "\"<tool_call>\" space " + builder.add_rule("tool_call", string_join(tool_rules, " | ")) + " \"</tool_call>\" space";
|
||||
auto any_tool_call = builder.add_rule("any_tool_call", "( " + string_join(tool_rules, " | ") + " ) space");
|
||||
std::vector<std::string> alt_tags {
|
||||
any_tool_call,
|
||||
"\"<tool_call>\" space " + any_tool_call + " \"</tool_call>\"",
|
||||
// The rest is just to accommodate common "good bad" outputs.
|
||||
"\"<function_call>\" space " + any_tool_call + " \"</function_call>\"",
|
||||
"\"<response>\" space " + any_tool_call + " \"</response>\"",
|
||||
"\"<tools>\" space " + any_tool_call + " \"</tools>\"",
|
||||
"\"<json>\" space " + any_tool_call + " \"</json>\"",
|
||||
"\"<xml>\" space " + any_tool_call + " \"</xml>\"",
|
||||
"\"<JSON>\" space " + any_tool_call + " \"</JSON>\"",
|
||||
};
|
||||
auto wrappable_tool_call = builder.add_rule("wrappable_tool_call", "( " + string_join(alt_tags, " | ") + " ) space");
|
||||
tool_call_alts.push_back(wrappable_tool_call);
|
||||
tool_call_alts.push_back(
|
||||
"( \"```\\n\" | \"```json\\n\" | \"```xml\\n\" ) space " + wrappable_tool_call + " space \"```\" space ");
|
||||
auto tool_call = builder.add_rule("tool_call", string_join(tool_call_alts, " | "));
|
||||
builder.add_rule("root", inputs.parallel_tool_calls ? "(" + tool_call + ")+" : tool_call);
|
||||
data.grammar_triggers.push_back({"<tool_call>", /* .at_start = */ false});
|
||||
data.preserved_tokens = { "</tool_call>" };
|
||||
}, grammar_options);
|
||||
data.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, "<tool_call>"});
|
||||
data.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, "<function"});
|
||||
// Trigger on some common known "good bad" outputs (only from the start and with a json that's about a specific argument name to avoid false positives)
|
||||
data.grammar_triggers.push_back({
|
||||
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_START,
|
||||
"(?:```(?:json|xml)?\n\\s*)?(?:<function_call>|<tools>|<xml><json>|<response>)?\\s*\\{\\s*\"", //name\"\\s*:\\s*\"" + escaped_name + "\"",
|
||||
});
|
||||
data.preserved_tokens = {
|
||||
"<think>",
|
||||
"</think>",
|
||||
"<tool_call>",
|
||||
"</tool_call>",
|
||||
"<function",
|
||||
"<tools>",
|
||||
"</tools>",
|
||||
"<response>",
|
||||
"</response>",
|
||||
"<function_call>",
|
||||
"</function_call>",
|
||||
"<json>",
|
||||
"</json>",
|
||||
"<JSON>",
|
||||
"</JSON>",
|
||||
"```",
|
||||
"```json",
|
||||
"```xml",
|
||||
};
|
||||
});
|
||||
|
||||
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
|
||||
data.format = COMMON_CHAT_FORMAT_HERMES_2_PRO;
|
||||
data.format = inputs.extract_reasoning ? COMMON_CHAT_FORMAT_HERMES_2_PRO_EXTRACT_REASONING : COMMON_CHAT_FORMAT_HERMES_2_PRO;
|
||||
return data;
|
||||
}
|
||||
static common_chat_msg common_chat_parse_hermes_2_pro(const std::string & input) {
|
||||
try {
|
||||
std::regex start_pattern(R"([\n\s]*<tool_call>)");
|
||||
std::regex middle_pattern(R"([\n\s]*</tool_call>[\n\s]*<tool_call>)");
|
||||
std::regex end_pattern(R"([\n\s]*</tool_call>[\n\s]*$)");
|
||||
static common_chat_msg common_chat_parse_hermes_2_pro(const std::string& input, bool extract_reasoning) {
|
||||
return handle_think_tag_prelude(input, extract_reasoning, [](const std::string & input) {
|
||||
static const std::regex open_regex(
|
||||
"(?:"
|
||||
"(```(?:xml|json)?\\n\\s*)?" // match 1 (block_start)
|
||||
"(<tool_call>" // match 2 (open_tag)
|
||||
"|<function_call>"
|
||||
"|<tool>"
|
||||
"|<tools>"
|
||||
"|<response>"
|
||||
"|<json>"
|
||||
"|<xml>"
|
||||
"|<JSON>"
|
||||
")?"
|
||||
"(\\s*\\{\\s*\"name\"\\s*:[\\s\\S]*)" // match 3 (named tool call + rest)
|
||||
")"
|
||||
"|"
|
||||
"(?:<function=([^>]+)>" // match 4 (function name)
|
||||
"|<function name=\"([^\"]+)\">)" // match 5 (function name again)
|
||||
"([\\s\\S]*)" // match 6 (function arguments + rest)})"
|
||||
);
|
||||
|
||||
common_chat_msg msg;
|
||||
msg.role = "assistant";
|
||||
try {
|
||||
common_chat_msg msg;
|
||||
msg.role = "assistant";
|
||||
|
||||
auto end = input.end();
|
||||
std::sregex_iterator rend;
|
||||
std::sregex_iterator rit(input.begin(), end, start_pattern);
|
||||
if (rit == rend) {
|
||||
std::string::const_iterator it = input.begin();
|
||||
const std::string::const_iterator end = input.end();
|
||||
std::smatch match;
|
||||
|
||||
while (it != end) {
|
||||
if (std::regex_search(it, end, match, open_regex)) {
|
||||
// Add content before the match
|
||||
msg.content += std::string(it, match[0].first);
|
||||
|
||||
auto block_start = match[1].str();
|
||||
std::string block_end = block_start.empty() ? "" : "```";
|
||||
|
||||
auto open_tag = match[2].str();
|
||||
std::string close_tag;
|
||||
|
||||
if (match[3].matched) {
|
||||
close_tag = open_tag.empty() ? "" : "</" + open_tag.substr(1);
|
||||
auto json_it = match[3].first;
|
||||
json tool_call;
|
||||
if (parse_json(json_it, end, tool_call) && tool_call.contains("name") && tool_call.contains("arguments")) {
|
||||
|
||||
msg.tool_calls.emplace_back(process_tool_call(tool_call));
|
||||
it = json_it; // Move iterator past parsed JSON
|
||||
|
||||
// Handle close tags
|
||||
consume_spaces(it, end);
|
||||
if (!close_tag.empty() && !parse_literal(it, end, close_tag)) {
|
||||
throw std::runtime_error("Failed to parse closing tag");
|
||||
}
|
||||
consume_spaces(it, end);
|
||||
if (!block_end.empty() && !parse_literal(it, end, block_end)) {
|
||||
throw std::runtime_error("Failed to parse block end");
|
||||
}
|
||||
consume_spaces(it, end);
|
||||
} else {
|
||||
// Not a valid tool call, treat as content
|
||||
msg.content += std::string(match[0].first, match[0].second);
|
||||
it = match[0].second;
|
||||
}
|
||||
} else {
|
||||
auto function_name = match[4].str();
|
||||
if (function_name.empty()) {
|
||||
function_name = match[5].str();
|
||||
}
|
||||
GGML_ASSERT(!function_name.empty());
|
||||
|
||||
close_tag = "</function>";
|
||||
// Start parsing from after the opening tags
|
||||
auto json_it = match[6].first;
|
||||
json arguments;
|
||||
if (parse_json(json_it, end, arguments)) {
|
||||
msg.tool_calls.emplace_back(process_tool_call({
|
||||
{"name", function_name},
|
||||
{"arguments", arguments},
|
||||
}));
|
||||
it = json_it; // Move iterator past parsed JSON
|
||||
|
||||
// Handle close tags
|
||||
consume_spaces(it, end);
|
||||
if (!close_tag.empty() && !parse_literal(it, end, close_tag)) {
|
||||
throw std::runtime_error("Failed to parse closing tag");
|
||||
}
|
||||
consume_spaces(it, end);
|
||||
if (!block_end.empty() && !parse_literal(it, end, block_end)) {
|
||||
throw std::runtime_error("Failed to parse block end");
|
||||
}
|
||||
consume_spaces(it, end);
|
||||
} else {
|
||||
// Not a valid tool call, treat as content
|
||||
msg.content += std::string(match[0].first, match[0].second);
|
||||
it = match[0].second;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// Add remaining content
|
||||
msg.content += std::string(it, end);
|
||||
break;
|
||||
}
|
||||
}
|
||||
return msg;
|
||||
} catch (const std::exception & e) {
|
||||
LOG_ERR("Failed to parse hermes 2 pro input: %s\n", e.what());
|
||||
common_chat_msg msg;
|
||||
msg.role = "assistant";
|
||||
msg.content = input;
|
||||
return msg;
|
||||
}
|
||||
|
||||
msg.content = rit->prefix();
|
||||
|
||||
auto it = rit->suffix().first;
|
||||
while (it != end) {
|
||||
json call;
|
||||
if (!parse_json(it, end, call)) {
|
||||
throw std::runtime_error("Failed to parse json tool call");
|
||||
}
|
||||
const auto & arguments = call.at("arguments");
|
||||
msg.tool_calls.push_back({
|
||||
call.at("name"),
|
||||
arguments.dump(),
|
||||
// arguments.is_string() ? arguments.get<std::string>() : arguments.dump(),
|
||||
/* id= */ "",
|
||||
});
|
||||
rit = {it, end, middle_pattern};
|
||||
if (rit != rend) {
|
||||
it = rit->suffix().first;
|
||||
} else {
|
||||
rit = {it, end, end_pattern};
|
||||
if (rit == rend) {
|
||||
throw std::runtime_error("Malformed input, missing </tool_call>");
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
return msg;
|
||||
} catch (const std::exception & e) {
|
||||
LOG_ERR("Failed to parse hermes 2 pro input: %s\n", e.what());
|
||||
common_chat_msg msg;
|
||||
msg.role = "assistant";
|
||||
msg.content = input;
|
||||
return msg;
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
static common_chat_params common_chat_params_init_without_tools(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||||
@@ -1445,6 +1621,11 @@ static common_chat_params common_chat_templates_apply_jinja(
|
||||
return common_chat_params_init_command_r7b(tmpl, params);
|
||||
}
|
||||
|
||||
// Hermes 2/3 Pro, Qwen 2.5 Instruct (w/ tools)
|
||||
if (src.find("<tool_call>") != std::string::npos && params.json_schema.is_null()) {
|
||||
return common_chat_params_init_hermes_2_pro(tmpl, params);
|
||||
}
|
||||
|
||||
// Use generic handler when mixing tools + JSON schema.
|
||||
// TODO: support that mix in handlers below.
|
||||
if ((params.tools.is_array() && params.json_schema.is_object())) {
|
||||
@@ -1466,11 +1647,6 @@ static common_chat_params common_chat_templates_apply_jinja(
|
||||
return common_chat_params_init_without_tools(tmpl, params);
|
||||
}
|
||||
|
||||
// Hermes 2/3 Pro, Qwen 2.5 Instruct (w/ tools)
|
||||
if (src.find("<tool_call>") != std::string::npos) {
|
||||
return common_chat_params_init_hermes_2_pro(tmpl, params);
|
||||
}
|
||||
|
||||
// Functionary v3.1 (w/ tools)
|
||||
if (src.find("<|start_header_id|>") != std::string::npos
|
||||
&& src.find("<function=") != std::string::npos) {
|
||||
@@ -1588,7 +1764,9 @@ common_chat_msg common_chat_parse(const std::string & input, common_chat_format
|
||||
case COMMON_CHAT_FORMAT_FUNCTIONARY_V3_1_LLAMA_3_1:
|
||||
return common_chat_parse_functionary_v3_1_llama_3_1(input);
|
||||
case COMMON_CHAT_FORMAT_HERMES_2_PRO:
|
||||
return common_chat_parse_hermes_2_pro(input);
|
||||
return common_chat_parse_hermes_2_pro(input, /* extract_reasoning= */ false);
|
||||
case COMMON_CHAT_FORMAT_HERMES_2_PRO_EXTRACT_REASONING:
|
||||
return common_chat_parse_hermes_2_pro(input, /* extract_reasoning= */ true);
|
||||
case COMMON_CHAT_FORMAT_FIREFUNCTION_V2:
|
||||
return common_chat_parse_firefunction_v2(input);
|
||||
case COMMON_CHAT_FORMAT_COMMAND_R7B:
|
||||
|
||||
@@ -53,6 +53,7 @@ enum common_chat_format {
|
||||
COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2,
|
||||
COMMON_CHAT_FORMAT_FUNCTIONARY_V3_1_LLAMA_3_1,
|
||||
COMMON_CHAT_FORMAT_HERMES_2_PRO,
|
||||
COMMON_CHAT_FORMAT_HERMES_2_PRO_EXTRACT_REASONING,
|
||||
COMMON_CHAT_FORMAT_COMMAND_R7B,
|
||||
COMMON_CHAT_FORMAT_COMMAND_R7B_EXTRACT_REASONING,
|
||||
|
||||
|
||||
@@ -10,7 +10,6 @@
|
||||
// Change JSON_ASSERT from assert() to GGML_ASSERT:
|
||||
#define JSON_ASSERT GGML_ASSERT
|
||||
#include "json.hpp"
|
||||
#include "json-schema-to-grammar.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <algorithm>
|
||||
@@ -483,6 +482,11 @@ void string_replace_all(std::string & s, const std::string & search, const std::
|
||||
s = std::move(builder);
|
||||
}
|
||||
|
||||
std::string regex_escape(const std::string & s) {
|
||||
static const std::regex special_chars("[.^$|()*+?\\[\\]{}\\\\]");
|
||||
return std::regex_replace(s, special_chars, "\\$0");
|
||||
}
|
||||
|
||||
std::string string_join(const std::vector<std::string> & values, const std::string & separator) {
|
||||
std::ostringstream result;
|
||||
for (size_t i = 0; i < values.size(); ++i) {
|
||||
@@ -2026,3 +2030,25 @@ common_control_vector_data common_control_vector_load(const std::vector<common_c
|
||||
return result;
|
||||
}
|
||||
|
||||
template <>
|
||||
json common_grammar_trigger::to_json() const {
|
||||
json out {
|
||||
{"type", (int) type},
|
||||
{"value", value},
|
||||
};
|
||||
if (type == COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN) {
|
||||
out["token"] = (int) token;
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
template <>
|
||||
common_grammar_trigger common_grammar_trigger::from_json(const json & in) {
|
||||
common_grammar_trigger out;
|
||||
out.type = (common_grammar_trigger_type) in.at("type").get<int>();
|
||||
out.value = in.at("value").get<std::string>();
|
||||
if (out.type == COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN) {
|
||||
out.token = (llama_token) in.at("token").get<int>();
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
@@ -110,9 +110,21 @@ enum common_conversation_mode {
|
||||
COMMON_CONVERSATION_MODE_AUTO = 2,
|
||||
};
|
||||
|
||||
enum common_grammar_trigger_type {
|
||||
COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN,
|
||||
COMMON_GRAMMAR_TRIGGER_TYPE_WORD,
|
||||
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN,
|
||||
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_START,
|
||||
};
|
||||
|
||||
struct common_grammar_trigger {
|
||||
std::string word;
|
||||
bool at_start;
|
||||
common_grammar_trigger_type type;
|
||||
std::string value;
|
||||
llama_token token = LLAMA_TOKEN_NULL;
|
||||
|
||||
// T can only be nlohmann::ordered_json
|
||||
template <class T> T to_json() const;
|
||||
template <class T> static common_grammar_trigger from_json(const T & in);
|
||||
};
|
||||
|
||||
// sampling parameters
|
||||
@@ -163,8 +175,7 @@ struct common_params_sampling {
|
||||
|
||||
std::string grammar; // optional BNF-like grammar to constrain sampling
|
||||
bool grammar_lazy = false;
|
||||
std::vector<common_grammar_trigger> grammar_trigger_words; // optional trigger words to trigger lazy grammar
|
||||
std::vector<llama_token> grammar_trigger_tokens; // optional trigger tokens to trigger lazy grammar and print trigger special tokens.
|
||||
std::vector<common_grammar_trigger> grammar_triggers; // optional triggers (for lazy grammars)
|
||||
std::set<llama_token> preserved_tokens;
|
||||
|
||||
std::vector<llama_logit_bias> logit_bias; // logit biases to apply
|
||||
@@ -200,6 +211,8 @@ struct common_params_vocoder {
|
||||
std::string model = ""; // model path // NOLINT
|
||||
std::string model_url = ""; // model url to download // NOLINT
|
||||
|
||||
std::string speaker_file = ""; // speaker file path // NOLINT
|
||||
|
||||
bool use_guide_tokens = false; // enable guide tokens to improve TTS accuracy // NOLINT
|
||||
};
|
||||
|
||||
@@ -261,6 +274,7 @@ struct common_params {
|
||||
std::string hf_repo = ""; // HF repo // NOLINT
|
||||
std::string hf_file = ""; // HF file // NOLINT
|
||||
std::string prompt = ""; // NOLINT
|
||||
std::string system_prompt = ""; // NOLINT
|
||||
std::string prompt_file = ""; // store the external prompt file name // NOLINT
|
||||
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state // NOLINT
|
||||
std::string input_prefix = ""; // string to prefix user inputs with // NOLINT
|
||||
@@ -325,6 +339,8 @@ struct common_params {
|
||||
bool warmup = true; // warmup run
|
||||
bool check_tensors = false; // validate tensor data
|
||||
|
||||
bool single_turn = false; // single turn chat conversation
|
||||
|
||||
ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K
|
||||
ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V
|
||||
|
||||
@@ -391,8 +407,6 @@ struct common_params {
|
||||
int32_t i_pos = -1; // position of the passkey in the junk text
|
||||
|
||||
// imatrix params
|
||||
std::string out_file = "imatrix.dat"; // save the resulting imatrix to this file
|
||||
|
||||
int32_t n_out_freq = 10; // output the imatrix every n_out_freq iterations
|
||||
int32_t n_save_freq = 0; // save the imatrix every n_save_freq iterations
|
||||
int32_t i_chunk = 0; // start processing from this chunk
|
||||
@@ -404,16 +418,16 @@ struct common_params {
|
||||
int n_pca_batch = 100;
|
||||
int n_pca_iterations = 1000;
|
||||
dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
|
||||
std::string cvector_outfile = "control_vector.gguf";
|
||||
std::string cvector_positive_file = "examples/cvector-generator/positive.txt";
|
||||
std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
|
||||
|
||||
bool spm_infill = false; // suffix/prefix/middle pattern for infill
|
||||
|
||||
std::string lora_outfile = "ggml-lora-merged-f16.gguf";
|
||||
|
||||
// batched-bench params
|
||||
bool batched_bench_output_jsonl = false;
|
||||
|
||||
// common params
|
||||
std::string out_file; // output filename for all example programs
|
||||
};
|
||||
|
||||
// call once at the start of a program if it uses libcommon
|
||||
@@ -453,6 +467,8 @@ std::string string_repeat(const std::string & str, size_t n);
|
||||
|
||||
void string_replace_all(std::string & s, const std::string & search, const std::string & replace);
|
||||
|
||||
std::string regex_escape(const std::string & s);
|
||||
|
||||
template<class T>
|
||||
static std::vector<T> string_split(const std::string & str, char delim) {
|
||||
static_assert(!std::is_same<T, std::string>::value, "Please use the specialized version for std::string");
|
||||
|
||||
@@ -264,7 +264,7 @@ static void _build_min_max_int(int min_value, int max_value, std::stringstream &
|
||||
throw std::runtime_error("At least one of min_value or max_value must be set");
|
||||
}
|
||||
|
||||
const std::string SPACE_RULE = "| \" \" | \"\\n\" [ \\t]{0,20}";
|
||||
const std::string SPACE_RULE = "| \" \" | \"\\n\"{1,2} [ \\t]{0,20}";
|
||||
|
||||
struct BuiltinRule {
|
||||
std::string content;
|
||||
@@ -764,11 +764,10 @@ private:
|
||||
public:
|
||||
SchemaConverter(
|
||||
const std::function<json(const std::string &)> & fetch_json,
|
||||
bool dotall,
|
||||
bool compact_spaces)
|
||||
bool dotall)
|
||||
: _fetch_json(fetch_json), _dotall(dotall)
|
||||
{
|
||||
_rules["space"] = compact_spaces ? "\" \"?" : SPACE_RULE;
|
||||
_rules["space"] = SPACE_RULE;
|
||||
}
|
||||
|
||||
void resolve_refs(json & schema, const std::string & url) {
|
||||
@@ -1007,7 +1006,7 @@ std::string json_schema_to_grammar(const json & schema, bool force_gbnf) {
|
||||
}
|
||||
|
||||
std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options) {
|
||||
SchemaConverter converter([&](const std::string &) { return json(); }, options.dotall, options.compact_spaces);
|
||||
SchemaConverter converter([&](const std::string &) { return json(); }, options.dotall);
|
||||
common_grammar_builder builder {
|
||||
/* .add_rule = */ [&](const std::string & name, const std::string & rule) {
|
||||
return converter._add_rule(name, rule);
|
||||
|
||||
@@ -16,7 +16,6 @@ struct common_grammar_builder {
|
||||
|
||||
struct common_grammar_options {
|
||||
bool dotall = false;
|
||||
bool compact_spaces = false;
|
||||
};
|
||||
|
||||
std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options = {});
|
||||
|
||||
@@ -1378,13 +1378,27 @@ struct ArgumentsExpression {
|
||||
}
|
||||
};
|
||||
|
||||
static std::string strip(const std::string & s) {
|
||||
auto start = s.find_first_not_of(" \t\n\r");
|
||||
static std::string strip(const std::string & s, const std::string & chars = "", bool left = true, bool right = true) {
|
||||
auto charset = chars.empty() ? " \t\n\r" : chars;
|
||||
auto start = left ? s.find_first_not_of(charset) : 0;
|
||||
if (start == std::string::npos) return "";
|
||||
auto end = s.find_last_not_of(" \t\n\r");
|
||||
auto end = right ? s.find_last_not_of(charset) : s.size() - 1;
|
||||
return s.substr(start, end - start + 1);
|
||||
}
|
||||
|
||||
static std::vector<std::string> split(const std::string & s, const std::string & sep) {
|
||||
std::vector<std::string> result;
|
||||
size_t start = 0;
|
||||
size_t end = s.find(sep);
|
||||
while (end != std::string::npos) {
|
||||
result.push_back(s.substr(start, end - start));
|
||||
start = end + sep.length();
|
||||
end = s.find(sep, start);
|
||||
}
|
||||
result.push_back(s.substr(start));
|
||||
return result;
|
||||
}
|
||||
|
||||
static std::string capitalize(const std::string & s) {
|
||||
if (s.empty()) return s;
|
||||
auto result = s;
|
||||
@@ -1467,8 +1481,26 @@ public:
|
||||
} else if (obj.is_string()) {
|
||||
auto str = obj.get<std::string>();
|
||||
if (method->get_name() == "strip") {
|
||||
vargs.expectArgs("strip method", {0, 0}, {0, 0});
|
||||
return Value(strip(str));
|
||||
vargs.expectArgs("strip method", {0, 1}, {0, 0});
|
||||
auto chars = vargs.args.empty() ? "" : vargs.args[0].get<std::string>();
|
||||
return Value(strip(str, chars));
|
||||
} else if (method->get_name() == "lstrip") {
|
||||
vargs.expectArgs("lstrip method", {0, 1}, {0, 0});
|
||||
auto chars = vargs.args.empty() ? "" : vargs.args[0].get<std::string>();
|
||||
return Value(strip(str, chars, /* left= */ true, /* right= */ false));
|
||||
} else if (method->get_name() == "rstrip") {
|
||||
vargs.expectArgs("rstrip method", {0, 1}, {0, 0});
|
||||
auto chars = vargs.args.empty() ? "" : vargs.args[0].get<std::string>();
|
||||
return Value(strip(str, chars, /* left= */ false, /* right= */ true));
|
||||
} else if (method->get_name() == "split") {
|
||||
vargs.expectArgs("split method", {1, 1}, {0, 0});
|
||||
auto sep = vargs.args[0].get<std::string>();
|
||||
auto parts = split(str, sep);
|
||||
Value result = Value::array();
|
||||
for (const auto& part : parts) {
|
||||
result.push_back(Value(part));
|
||||
}
|
||||
return result;
|
||||
} else if (method->get_name() == "capitalize") {
|
||||
vargs.expectArgs("capitalize method", {0, 0}, {0, 0});
|
||||
return Value(capitalize(str));
|
||||
|
||||
@@ -7,6 +7,7 @@
|
||||
#include <cstdio>
|
||||
#include <fstream>
|
||||
#include <thread>
|
||||
#include <algorithm>
|
||||
|
||||
void common_ngram_cache_update(common_ngram_cache & ngram_cache, int ngram_min, int ngram_max,
|
||||
std::vector<llama_token> & inp, int nnew, bool print_progress) {
|
||||
|
||||
@@ -4,6 +4,7 @@
|
||||
|
||||
#include <cmath>
|
||||
#include <unordered_map>
|
||||
#include <algorithm>
|
||||
|
||||
// the ring buffer works similarly to std::deque, but with a fixed capacity
|
||||
// TODO: deduplicate with llama-impl.h
|
||||
@@ -159,16 +160,53 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
|
||||
GGML_ABORT("llguidance (cmake -DLLAMA_LLGUIDANCE=ON) is not enabled");
|
||||
#endif // LLAMA_USE_LLGUIDANCE
|
||||
} else {
|
||||
std::vector<const char *> trigger_words;
|
||||
trigger_words.reserve(params.grammar_trigger_words.size());
|
||||
for (const auto & str : params.grammar_trigger_words) {
|
||||
trigger_words.push_back(str.word.c_str());
|
||||
std::vector<std::string> patterns_at_start;
|
||||
std::vector<std::string> patterns_anywhere;
|
||||
std::vector<llama_token> trigger_tokens;
|
||||
for (const auto & trigger : params.grammar_triggers) {
|
||||
switch (trigger.type) {
|
||||
case COMMON_GRAMMAR_TRIGGER_TYPE_WORD:
|
||||
{
|
||||
const auto & word = trigger.value;
|
||||
patterns_anywhere.push_back(regex_escape(word));
|
||||
break;
|
||||
}
|
||||
case COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN:
|
||||
case COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_START:
|
||||
{
|
||||
const auto & pattern = trigger.value;
|
||||
(trigger.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_START ? patterns_at_start : patterns_anywhere).push_back(pattern);
|
||||
break;
|
||||
}
|
||||
case COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN:
|
||||
{
|
||||
const auto token = trigger.token;
|
||||
trigger_tokens.push_back(token);
|
||||
break;
|
||||
}
|
||||
default:
|
||||
GGML_ASSERT(false && "unknown trigger type");
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<std::string> trigger_patterns;
|
||||
if (!patterns_at_start.empty()) {
|
||||
trigger_patterns.push_back("^(" + string_join(patterns_at_start, "|") + ")[\\s\\S]*");
|
||||
}
|
||||
if (!patterns_anywhere.empty()) {
|
||||
trigger_patterns.push_back("^[\\s\\S]*?(" + string_join(patterns_anywhere, "|") + ")[\\s\\S]*");
|
||||
}
|
||||
|
||||
std::vector<const char *> trigger_patterns_c;
|
||||
trigger_patterns_c.reserve(trigger_patterns.size());
|
||||
for (const auto & regex : trigger_patterns) {
|
||||
trigger_patterns_c.push_back(regex.c_str());
|
||||
}
|
||||
|
||||
grmr = params.grammar_lazy
|
||||
? llama_sampler_init_grammar_lazy(vocab, params.grammar.c_str(), "root",
|
||||
trigger_words.data(), trigger_words.size(),
|
||||
params.grammar_trigger_tokens.data(), params.grammar_trigger_tokens.size())
|
||||
? llama_sampler_init_grammar_lazy_patterns(vocab, params.grammar.c_str(), "root",
|
||||
trigger_patterns_c.data(), trigger_patterns_c.size(),
|
||||
trigger_tokens.data(), trigger_tokens.size())
|
||||
: llama_sampler_init_grammar(vocab, params.grammar.c_str(), "root");
|
||||
}
|
||||
|
||||
|
||||
@@ -5,6 +5,7 @@
|
||||
#include "sampling.h"
|
||||
|
||||
#include <cstring>
|
||||
#include <algorithm>
|
||||
|
||||
#define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 128
|
||||
#define SPEC_VOCAB_CHECK_START_TOKEN_ID 5
|
||||
|
||||
@@ -699,6 +699,9 @@ class Model:
|
||||
if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
|
||||
# ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
|
||||
res = "deepseek-r1-qwen"
|
||||
if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
|
||||
# ref: https://huggingface.co/Xenova/gpt-4o
|
||||
res = "gpt-4o"
|
||||
|
||||
if res is None:
|
||||
logger.warning("\n")
|
||||
@@ -2512,7 +2515,8 @@ class Phi3MiniModel(Model):
|
||||
rms_eps = self.find_hparam(["rms_norm_eps"])
|
||||
max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
|
||||
orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
|
||||
rope_dims = n_embd // n_head
|
||||
rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
|
||||
rope_dims = int(rot_pct * n_embd) // n_head
|
||||
|
||||
self.gguf_writer.add_context_length(max_pos_embds)
|
||||
self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
|
||||
@@ -2536,7 +2540,8 @@ class Phi3MiniModel(Model):
|
||||
n_head = self.find_hparam(["num_attention_heads", "n_head"])
|
||||
max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
|
||||
orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
|
||||
rope_dims = n_embd // n_head
|
||||
rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
|
||||
rope_dims = int(rot_pct * n_embd) // n_head
|
||||
|
||||
# write rope scaling for long context (128k) model
|
||||
rope_scaling = self.find_hparam(['rope_scaling'], True)
|
||||
@@ -2565,7 +2570,7 @@ class Phi3MiniModel(Model):
|
||||
raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
|
||||
|
||||
if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
|
||||
raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
|
||||
raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
|
||||
|
||||
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
|
||||
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
|
||||
|
||||
@@ -109,6 +109,7 @@ models = [
|
||||
{"name": "megrez", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Infinigence/Megrez-3B-Instruct"},
|
||||
{"name": "deepseek-v3", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/DeepSeek-V3"},
|
||||
{"name": "deepseek-r1-qwen", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"},
|
||||
{"name": "gpt-4o", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Xenova/gpt-4o", },
|
||||
]
|
||||
|
||||
|
||||
@@ -131,6 +132,10 @@ def download_model(model):
|
||||
|
||||
files = ["config.json", "tokenizer.json", "tokenizer_config.json"]
|
||||
|
||||
if name == "gpt-4o":
|
||||
# Xenova/gpt-4o is tokenizer-only, it does not contain config.json
|
||||
files = ["tokenizer.json", "tokenizer_config.json"]
|
||||
|
||||
if tokt == TOKENIZER_TYPE.SPM:
|
||||
files.append("tokenizer.model")
|
||||
|
||||
|
||||
@@ -42,6 +42,16 @@ The following release is verified with good quality:
|
||||
|
||||
## News
|
||||
|
||||
- 2025.2
|
||||
- Optimize MUL_MAT Q4_0 on Intel GPU for all dGPUs and built-in GPUs since MTL. Increase the performance of LLM (llama-2-7b.Q4_0.gguf) 21%-87% on Intel GPUs (MTL, ARL-H, Arc, Flex, PVC).
|
||||
|GPU|Base tokens/s|Increased tokens/s|Percent|
|
||||
|-|-|-|-|
|
||||
|PVC 1550|39|73|+87%|
|
||||
|Flex 170|39|50|+28%|
|
||||
|Arc770|42|55|+30%|
|
||||
|MTL|13|16|+23%|
|
||||
|ARL-H|14|17|+21%|
|
||||
|
||||
- 2024.11
|
||||
- Use syclcompat to improve the performance on some platforms. This requires to use oneAPI 2025.0 or newer.
|
||||
|
||||
@@ -97,8 +107,8 @@ SYCL backend supports Intel GPU Family:
|
||||
| Intel Data Center Max Series | Support | Max 1550, 1100 |
|
||||
| Intel Data Center Flex Series | Support | Flex 170 |
|
||||
| Intel Arc Series | Support | Arc 770, 730M, Arc A750 |
|
||||
| Intel built-in Arc GPU | Support | built-in Arc GPU in Meteor Lake |
|
||||
| Intel iGPU | Support | iGPU in 13700k, i5-1250P, i7-1260P, i7-1165G7 |
|
||||
| Intel built-in Arc GPU | Support | built-in Arc GPU in Meteor Lake, Arrow Lake |
|
||||
| Intel iGPU | Support | iGPU in 13700k,iGPU in 13400, i5-1250P, i7-1260P, i7-1165G7 |
|
||||
|
||||
*Notes:*
|
||||
|
||||
@@ -660,8 +670,10 @@ use 1 SYCL GPUs: [0] with Max compute units:512
|
||||
| Name | Value | Function |
|
||||
|-------------------|------------------|---------------------------------------------------------------------------------------------------------------------------|
|
||||
| GGML_SYCL_DEBUG | 0 (default) or 1 | Enable log function by macro: GGML_SYCL_DEBUG |
|
||||
| GGML_SYCL_DISABLE_OPT | 0 (default) or 1 | Disable optimize features based on Intel GPU type, to compare the performance increase |
|
||||
| ZES_ENABLE_SYSMAN | 0 (default) or 1 | Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory.<br>Recommended to use when --split-mode = layer |
|
||||
|
||||
|
||||
## Known Issues
|
||||
|
||||
- `Split-mode:[row]` is not supported.
|
||||
|
||||
@@ -206,6 +206,14 @@ This provides GPU acceleration using the MUSA cores of your Moore Threads MTT GP
|
||||
cmake --build build --config Release
|
||||
```
|
||||
|
||||
For static build:
|
||||
|
||||
```bash
|
||||
cmake -B build -DGGML_MUSA=ON \
|
||||
-DBUILD_SHARED_LIBS=OFF -DCMAKE_POSITION_INDEPENDENT_CODE=ON
|
||||
cmake --build build --config Release
|
||||
```
|
||||
|
||||
The environment variable [`MUSA_VISIBLE_DEVICES`](https://docs.mthreads.com/musa-sdk/musa-sdk-doc-online/programming_guide/Z%E9%99%84%E5%BD%95/) can be used to specify which GPU(s) will be used.
|
||||
|
||||
The environment variable `GGML_CUDA_ENABLE_UNIFIED_MEMORY=1` can be used to enable unified memory in Linux. This allows swapping to system RAM instead of crashing when the GPU VRAM is exhausted.
|
||||
@@ -227,6 +235,12 @@ You can download it from your Linux distro's package manager or from here: [ROCm
|
||||
On Linux it is also possible to use unified memory architecture (UMA) to share main memory between the CPU and integrated GPU by setting `-DGGML_HIP_UMA=ON`.
|
||||
However, this hurts performance for non-integrated GPUs (but enables working with integrated GPUs).
|
||||
|
||||
To enhance flash attention performance on RDNA3+ or CDNA architectures, you can utilize the rocWMMA library by enabling the `-DGGML_HIP_ROCWMMA_FATTN=ON` option. This requires rocWMMA headers to be installed on the build system.
|
||||
|
||||
The rocWMMA library is included by default when installing the ROCm SDK using the `rocm` meta package provided by AMD. Alternatively, if you are not using the meta package, you can install the library using the `rocwmma-dev` or `rocwmma-devel` package, depending on your system's package manager.
|
||||
|
||||
As an alternative, you can manually install the library by cloning it from the official [GitHub repository](https://github.com/ROCm/rocWMMA), checkout the corresponding version tag (e.g. `rocm-6.2.4`) and set `-DCMAKE_CXX_FLAGS="-I<path/to/rocwmma>/library/include/"` in CMake. This also works under Windows despite not officially supported by AMD.
|
||||
|
||||
Note that if you get the following error:
|
||||
```
|
||||
clang: error: cannot find ROCm device library; provide its path via '--rocm-path' or '--rocm-device-lib-path', or pass '-nogpulib' to build without ROCm device library
|
||||
|
||||
394
docs/function-calling.md
Normal file
394
docs/function-calling.md
Normal file
@@ -0,0 +1,394 @@
|
||||
# Function Calling
|
||||
|
||||
[chat.h](../common/chat.h) (https://github.com/ggml-org/llama.cpp/pull/9639) adds support for [OpenAI-style function calling](https://platform.openai.com/docs/guides/function-calling) and is used in:
|
||||
- `llama-server` when started w/ `--jinja` flag
|
||||
- `llama-cli` (WIP: https://github.com/ggml-org/llama.cpp/pull/11556)
|
||||
|
||||
## Universal support w/ Native & Generic handlers
|
||||
|
||||
Function calling is supported for all models (see https://github.com/ggml-org/llama.cpp/pull/9639):
|
||||
|
||||
- Native tool call formats supported:
|
||||
- Llama 3.1 / 3.3 (including builtin tools support - tool names for `wolfram_alpha`, `web_search` / `brave_search`, `code_interpreter`), Llama 3.2
|
||||
- Functionary v3.1 / v3.2
|
||||
- Hermes 2/3, Qwen 2.5
|
||||
- Qwen 2.5 Coder (WIP: https://github.com/ggml-org/llama.cpp/pull/12034)
|
||||
- Mistral Nemo
|
||||
- Firefunction v2
|
||||
- Command R7B
|
||||
- DeepSeek R1 (WIP / seems reluctant to call any tools?)
|
||||
|
||||
- Generic tool call is supported when the template isn't recognized by native format handlers (you'll see `Chat format: Generic` in the logs).
|
||||
- Use `--chat-template-file` to override the template when appropriate (see examples below)
|
||||
- Generic support may consume more tokens and be less efficient than a model's native format.
|
||||
|
||||
<details>
|
||||
<summary>Show some common templates and which format handler they use</summary>
|
||||
|
||||
| Template | Format |
|
||||
|----------|--------|
|
||||
| Almawave-Velvet-14B.jinja | Hermes 2 Pro |
|
||||
| AtlaAI-Selene-1-Mini-Llama-3.1-8B.jinja | Llama 3.x |
|
||||
| CohereForAI-aya-expanse-8b.jinja | Generic |
|
||||
| CohereForAI-c4ai-command-r-plus-default.jinja | Generic |
|
||||
| CohereForAI-c4ai-command-r-plus-rag.jinja | Generic |
|
||||
| CohereForAI-c4ai-command-r-plus-tool_use.jinja | Generic |
|
||||
| CohereForAI-c4ai-command-r7b-12-2024-default.jinja | Command R7B (extract reasoning) |
|
||||
| CohereForAI-c4ai-command-r7b-12-2024-rag.jinja | Command R7B (extract reasoning) |
|
||||
| CohereForAI-c4ai-command-r7b-12-2024-tool_use.jinja | Command R7B (extract reasoning) |
|
||||
| CohereForAI-c4ai-command-r7b-12-2024.jinja | Generic |
|
||||
| DavieLion-Llama-3.2-1B-SPIN-iter3.jinja | Generic |
|
||||
| Delta-Vector-Rei-12B.jinja | Mistral Nemo |
|
||||
| EpistemeAI-Mistral-Nemo-Instruct-12B-Philosophy-Math.jinja | Mistral Nemo |
|
||||
| FlofloB-83k_continued_pretraining_Qwen2.5-0.5B-Instruct_Unsloth_merged_16bit.jinja | Hermes 2 Pro |
|
||||
| FlofloB-test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit.jinja | Generic |
|
||||
| HelpingAI-HAI-SER.jinja | Generic |
|
||||
| HuggingFaceTB-SmolLM2-1.7B-Instruct.jinja | Generic |
|
||||
| HuggingFaceTB-SmolLM2-135M-Instruct.jinja | Generic |
|
||||
| HuggingFaceTB-SmolLM2-360M-Instruct.jinja | Generic |
|
||||
| INSAIT-Institute-BgGPT-Gemma-2-27B-IT-v1.0.jinja | Generic |
|
||||
| Ihor-Text2Graph-R1-Qwen2.5-0.5b.jinja | Hermes 2 Pro |
|
||||
| Infinigence-Megrez-3B-Instruct.jinja | Generic |
|
||||
| Josephgflowers-TinyLlama_v1.1_math_code-world-test-1.jinja | Generic |
|
||||
| LGAI-EXAONE-EXAONE-3.5-2.4B-Instruct.jinja | Generic |
|
||||
| LGAI-EXAONE-EXAONE-3.5-7.8B-Instruct.jinja | Generic |
|
||||
| LatitudeGames-Wayfarer-12B.jinja | Generic |
|
||||
| Magpie-Align-Llama-3-8B-Magpie-Align-v0.1.jinja | Generic |
|
||||
| Magpie-Align-Llama-3.1-8B-Magpie-Align-v0.1.jinja | Generic |
|
||||
| MaziyarPanahi-calme-3.2-instruct-78b.jinja | Generic |
|
||||
| MiniMaxAI-MiniMax-Text-01.jinja | Generic |
|
||||
| MiniMaxAI-MiniMax-VL-01.jinja | Generic |
|
||||
| NaniDAO-deepseek-r1-qwen-2.5-32B-ablated.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| NexaAIDev-Octopus-v2.jinja | Generic |
|
||||
| NousResearch-Hermes-2-Pro-Llama-3-8B-default.jinja | Generic |
|
||||
| NousResearch-Hermes-2-Pro-Llama-3-8B-tool_use.jinja | Hermes 2 Pro |
|
||||
| NousResearch-Hermes-2-Pro-Mistral-7B-default.jinja | Generic |
|
||||
| NousResearch-Hermes-2-Pro-Mistral-7B-tool_use.jinja | Hermes 2 Pro |
|
||||
| NousResearch-Hermes-3-Llama-3.1-70B-default.jinja | Generic |
|
||||
| NousResearch-Hermes-3-Llama-3.1-70B-tool_use.jinja | Hermes 2 Pro |
|
||||
| NovaSky-AI-Sky-T1-32B-Flash.jinja | Hermes 2 Pro |
|
||||
| NovaSky-AI-Sky-T1-32B-Preview.jinja | Hermes 2 Pro |
|
||||
| OnlyCheeini-greesychat-turbo.jinja | Generic |
|
||||
| Orenguteng-Llama-3.1-8B-Lexi-Uncensored-V2.jinja | Llama 3.x |
|
||||
| OrionStarAI-Orion-14B-Chat.jinja | Generic |
|
||||
| PowerInfer-SmallThinker-3B-Preview.jinja | Generic |
|
||||
| PrimeIntellect-INTELLECT-1-Instruct.jinja | Generic |
|
||||
| Qwen-QVQ-72B-Preview.jinja | Generic |
|
||||
| Qwen-QwQ-32B-Preview.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen1.5-7B-Chat.jinja | Generic |
|
||||
| Qwen-Qwen2-7B-Instruct.jinja | Generic |
|
||||
| Qwen-Qwen2-VL-72B-Instruct.jinja | Generic |
|
||||
| Qwen-Qwen2-VL-7B-Instruct.jinja | Generic |
|
||||
| Qwen-Qwen2.5-0.5B.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-1.5B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-14B-Instruct-1M.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-14B.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-32B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-32B.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-3B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-72B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-7B-Instruct-1M.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-7B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-7B.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-Coder-32B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-Coder-7B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-Math-1.5B.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-Math-7B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-VL-3B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-VL-72B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-VL-7B-Instruct.jinja | Hermes 2 Pro |
|
||||
| RWKV-Red-Team-ARWKV-7B-Preview-0.1.jinja | Hermes 2 Pro |
|
||||
| SakanaAI-TinySwallow-1.5B-Instruct.jinja | Hermes 2 Pro |
|
||||
| SakanaAI-TinySwallow-1.5B.jinja | Hermes 2 Pro |
|
||||
| Sao10K-70B-L3.3-Cirrus-x1.jinja | Llama 3.x |
|
||||
| SentientAGI-Dobby-Mini-Leashed-Llama-3.1-8B.jinja | Llama 3.x |
|
||||
| SentientAGI-Dobby-Mini-Unhinged-Llama-3.1-8B.jinja | Llama 3.x |
|
||||
| Steelskull-L3.3-Damascus-R1.jinja | Llama 3.x |
|
||||
| Steelskull-L3.3-MS-Nevoria-70b.jinja | Llama 3.x |
|
||||
| Steelskull-L3.3-Nevoria-R1-70b.jinja | Llama 3.x |
|
||||
| THUDM-glm-4-9b-chat.jinja | Generic |
|
||||
| THUDM-glm-edge-1.5b-chat.jinja | Generic |
|
||||
| Tarek07-Progenitor-V1.1-LLaMa-70B.jinja | Llama 3.x |
|
||||
| TheBloke-FusionNet_34Bx2_MoE-AWQ.jinja | Generic |
|
||||
| TinyLlama-TinyLlama-1.1B-Chat-v1.0.jinja | Generic |
|
||||
| UCLA-AGI-Mistral7B-PairRM-SPPO-Iter3.jinja | Generic |
|
||||
| ValiantLabs-Llama3.1-8B-Enigma.jinja | Llama 3.x |
|
||||
| abacusai-Fewshot-Metamath-OrcaVicuna-Mistral.jinja | Generic |
|
||||
| ai21labs-AI21-Jamba-1.5-Large.jinja | Generic |
|
||||
| allenai-Llama-3.1-Tulu-3-405B-SFT.jinja | Generic |
|
||||
| allenai-Llama-3.1-Tulu-3-405B.jinja | Generic |
|
||||
| allenai-Llama-3.1-Tulu-3-8B.jinja | Generic |
|
||||
| arcee-ai-Virtuoso-Lite.jinja | Hermes 2 Pro |
|
||||
| arcee-ai-Virtuoso-Medium-v2.jinja | Hermes 2 Pro |
|
||||
| arcee-ai-Virtuoso-Small-v2.jinja | Hermes 2 Pro |
|
||||
| avemio-GRAG-NEMO-12B-ORPO-HESSIAN-AI.jinja | Generic |
|
||||
| bespokelabs-Bespoke-Stratos-7B.jinja | Hermes 2 Pro |
|
||||
| bfuzzy1-acheron-m1a-llama.jinja | Generic |
|
||||
| bofenghuang-vigogne-2-70b-chat.jinja | Generic |
|
||||
| bytedance-research-UI-TARS-72B-DPO.jinja | Generic |
|
||||
| bytedance-research-UI-TARS-7B-DPO.jinja | Generic |
|
||||
| bytedance-research-UI-TARS-7B-SFT.jinja | Generic |
|
||||
| carsenk-phi3.5_mini_exp_825_uncensored.jinja | Generic |
|
||||
| cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| databricks-dbrx-instruct.jinja | Generic |
|
||||
| deepseek-ai-DeepSeek-Coder-V2-Instruct.jinja | Generic |
|
||||
| deepseek-ai-DeepSeek-Coder-V2-Lite-Base.jinja | Generic |
|
||||
| deepseek-ai-DeepSeek-Coder-V2-Lite-Instruct.jinja | Generic |
|
||||
| deepseek-ai-DeepSeek-R1-Distill-Llama-70B.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-DeepSeek-R1-Distill-Llama-8B.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-DeepSeek-R1-Distill-Qwen-1.5B.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-DeepSeek-R1-Distill-Qwen-14B.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-DeepSeek-R1-Distill-Qwen-32B.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-DeepSeek-R1-Distill-Qwen-7B.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-DeepSeek-R1-Zero.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-DeepSeek-R1.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-DeepSeek-V2-Lite.jinja | Generic |
|
||||
| deepseek-ai-DeepSeek-V2.5.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-DeepSeek-V3.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-deepseek-coder-33b-instruct.jinja | Generic |
|
||||
| deepseek-ai-deepseek-coder-6.7b-instruct.jinja | Generic |
|
||||
| deepseek-ai-deepseek-coder-7b-instruct-v1.5.jinja | Generic |
|
||||
| deepseek-ai-deepseek-llm-67b-chat.jinja | Generic |
|
||||
| deepseek-ai-deepseek-llm-7b-chat.jinja | Generic |
|
||||
| dicta-il-dictalm2.0-instruct.jinja | Generic |
|
||||
| ehristoforu-Falcon3-8B-Franken-Basestruct.jinja | Hermes 2 Pro |
|
||||
| fireworks-ai-llama-3-firefunction-v2.jinja | FireFunction v2 |
|
||||
| godlikehhd-alpaca_data_sampled_ifd_new_5200.jinja | Hermes 2 Pro |
|
||||
| godlikehhd-alpaca_data_score_max_0.7_2600.jinja | Hermes 2 Pro |
|
||||
| google-gemma-2-27b-it.jinja | Generic |
|
||||
| google-gemma-2-2b-it.jinja | Generic |
|
||||
| google-gemma-2-2b-jpn-it.jinja | Generic |
|
||||
| google-gemma-7b-it.jinja | Generic |
|
||||
| huihui-ai-DeepSeek-R1-Distill-Llama-70B-abliterated.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| huihui-ai-DeepSeek-R1-Distill-Llama-8B-abliterated.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| huihui-ai-DeepSeek-R1-Distill-Qwen-14B-abliterated-v2.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| huihui-ai-DeepSeek-R1-Distill-Qwen-32B-abliterated.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| huihui-ai-DeepSeek-R1-Distill-Qwen-7B-abliterated-v2.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| huihui-ai-Qwen2.5-14B-Instruct-1M-abliterated.jinja | Hermes 2 Pro |
|
||||
| ibm-granite-granite-3.1-8b-instruct.jinja | Generic |
|
||||
| indischepartij-MiniCPM-3B-OpenHermes-2.5-v2.jinja | Generic |
|
||||
| inflatebot-MN-12B-Mag-Mell-R1.jinja | Generic |
|
||||
| jinaai-ReaderLM-v2.jinja | Generic |
|
||||
| kms7530-chemeng_qwen-math-7b_24_1_100_1_nonmath.jinja | Hermes 2 Pro |
|
||||
| knifeayumu-Cydonia-v1.3-Magnum-v4-22B.jinja | Mistral Nemo |
|
||||
| langgptai-qwen1.5-7b-chat-sa-v0.1.jinja | Generic |
|
||||
| lightblue-DeepSeek-R1-Distill-Qwen-7B-Japanese.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| mattshumer-Reflection-Llama-3.1-70B.jinja | Generic |
|
||||
| meetkai-functionary-medium-v3.1.jinja | Functionary v3.1 Llama 3.1 |
|
||||
| meetkai-functionary-medium-v3.2.jinja | Functionary v3.2 |
|
||||
| meta-llama-Llama-2-7b-chat-hf.jinja | Generic |
|
||||
| meta-llama-Llama-3.1-8B-Instruct.jinja | Llama 3.x |
|
||||
| meta-llama-Llama-3.2-11B-Vision-Instruct.jinja | Llama 3.x |
|
||||
| meta-llama-Llama-3.2-1B-Instruct.jinja | Llama 3.x |
|
||||
| meta-llama-Llama-3.2-3B-Instruct.jinja | Llama 3.x |
|
||||
| meta-llama-Llama-3.3-70B-Instruct.jinja | Llama 3.x |
|
||||
| meta-llama-Meta-Llama-3-8B-Instruct.jinja | Generic |
|
||||
| meta-llama-Meta-Llama-3.1-8B-Instruct.jinja | Llama 3.x |
|
||||
| microsoft-Phi-3-medium-4k-instruct.jinja | Generic |
|
||||
| microsoft-Phi-3-mini-4k-instruct.jinja | Generic |
|
||||
| microsoft-Phi-3-small-8k-instruct.jinja | Generic |
|
||||
| microsoft-Phi-3.5-mini-instruct.jinja | Generic |
|
||||
| microsoft-Phi-3.5-vision-instruct.jinja | Generic |
|
||||
| microsoft-phi-4.jinja | Generic |
|
||||
| migtissera-Tess-3-Mistral-Nemo-12B.jinja | Generic |
|
||||
| ministral-Ministral-3b-instruct.jinja | Generic |
|
||||
| mistralai-Codestral-22B-v0.1.jinja | Generic |
|
||||
| mistralai-Mistral-7B-Instruct-v0.1.jinja | Generic |
|
||||
| mistralai-Mistral-7B-Instruct-v0.2.jinja | Generic |
|
||||
| mistralai-Mistral-7B-Instruct-v0.3.jinja | Mistral Nemo |
|
||||
| mistralai-Mistral-Large-Instruct-2407.jinja | Mistral Nemo |
|
||||
| mistralai-Mistral-Large-Instruct-2411.jinja | Generic |
|
||||
| mistralai-Mistral-Nemo-Instruct-2407.jinja | Mistral Nemo |
|
||||
| mistralai-Mistral-Small-24B-Instruct-2501.jinja | Generic |
|
||||
| mistralai-Mixtral-8x7B-Instruct-v0.1.jinja | Generic |
|
||||
| mkurman-Qwen2.5-14B-DeepSeek-R1-1M.jinja | Hermes 2 Pro |
|
||||
| mlabonne-AlphaMonarch-7B.jinja | Generic |
|
||||
| mlx-community-Josiefied-Qwen2.5-0.5B-Instruct-abliterated-v1-float32.jinja | Hermes 2 Pro |
|
||||
| mlx-community-Qwen2.5-VL-7B-Instruct-8bit.jinja | Hermes 2 Pro |
|
||||
| mobiuslabsgmbh-DeepSeek-R1-ReDistill-Qwen-1.5B-v1.1.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| netcat420-MFANNv0.20.jinja | Generic |
|
||||
| netcat420-MFANNv0.24.jinja | Generic |
|
||||
| netease-youdao-Confucius-o1-14B.jinja | Hermes 2 Pro |
|
||||
| nvidia-AceMath-7B-RM.jinja | Hermes 2 Pro |
|
||||
| nvidia-Eagle2-1B.jinja | Hermes 2 Pro |
|
||||
| nvidia-Eagle2-9B.jinja | Hermes 2 Pro |
|
||||
| nvidia-Llama-3.1-Nemotron-70B-Instruct-HF.jinja | Llama 3.x |
|
||||
| onnx-community-DeepSeek-R1-Distill-Qwen-1.5B-ONNX.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| open-thoughts-OpenThinker-7B.jinja | Hermes 2 Pro |
|
||||
| openchat-openchat-3.5-0106.jinja | Generic |
|
||||
| pankajmathur-orca_mini_v6_8b.jinja | Generic |
|
||||
| princeton-nlp-Mistral-7B-Base-SFT-RDPO.jinja | Generic |
|
||||
| princeton-nlp-Mistral-7B-Instruct-DPO.jinja | Generic |
|
||||
| princeton-nlp-Mistral-7B-Instruct-RDPO.jinja | Generic |
|
||||
| prithivMLmods-Bellatrix-Tiny-1.5B-R1.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Bellatrix-Tiny-1B-R1.jinja | Llama 3.x |
|
||||
| prithivMLmods-Bellatrix-Tiny-1B-v3.jinja | Generic |
|
||||
| prithivMLmods-Bellatrix-Tiny-3B-R1.jinja | Llama 3.x |
|
||||
| prithivMLmods-Blaze-14B-xElite.jinja | Generic |
|
||||
| prithivMLmods-Calcium-Opus-14B-Elite2-R1.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Calme-Ties-78B.jinja | Generic |
|
||||
| prithivMLmods-Calme-Ties2-78B.jinja | Generic |
|
||||
| prithivMLmods-Calme-Ties3-78B.jinja | Generic |
|
||||
| prithivMLmods-ChemQwen2-vL.jinja | Generic |
|
||||
| prithivMLmods-GWQ2b.jinja | Generic |
|
||||
| prithivMLmods-LatexMind-2B-Codec.jinja | Generic |
|
||||
| prithivMLmods-Llama-3.2-6B-AlgoCode.jinja | Llama 3.x |
|
||||
| prithivMLmods-Megatron-Opus-14B-Exp.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Megatron-Opus-14B-Stock.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Megatron-Opus-7B-Exp.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Omni-Reasoner-Merged.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Omni-Reasoner4-Merged.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Primal-Opus-14B-Optimus-v1.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-QwQ-Math-IO-500M.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Qwen-7B-Distill-Reasoner.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| prithivMLmods-Qwen2.5-1.5B-DeepSeek-R1-Instruct.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Qwen2.5-14B-DeepSeek-R1-1M.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Qwen2.5-32B-DeepSeek-R1-Instruct.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Qwen2.5-7B-DeepSeek-R1-1M.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Triangulum-v2-10B.jinja | Hermes 2 Pro |
|
||||
| qingy2024-Falcon3-2x10B-MoE-Instruct.jinja | Hermes 2 Pro |
|
||||
| rubenroy-Zurich-14B-GCv2-5m.jinja | Hermes 2 Pro |
|
||||
| rubenroy-Zurich-7B-GCv2-5m.jinja | Hermes 2 Pro |
|
||||
| silma-ai-SILMA-Kashif-2B-Instruct-v1.0.jinja | Generic |
|
||||
| simplescaling-s1-32B.jinja | Hermes 2 Pro |
|
||||
| sometimesanotion-Lamarck-14B-v0.7.jinja | Hermes 2 Pro |
|
||||
| sonthenguyen-zephyr-sft-bnb-4bit-DPO-mtbr-180steps.jinja | Generic |
|
||||
| sthenno-tempesthenno-icy-0130.jinja | Generic |
|
||||
| sumink-qwft.jinja | Hermes 2 Pro |
|
||||
| teknium-OpenHermes-2.5-Mistral-7B.jinja | Generic |
|
||||
| thirdeyeai-elevate360m.jinja | Generic |
|
||||
| tiiuae-Falcon3-10B-Instruct.jinja | Hermes 2 Pro |
|
||||
| unsloth-DeepSeek-R1-Distill-Llama-8B-unsloth-bnb-4bit.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| unsloth-DeepSeek-R1-Distill-Llama-8B.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| unsloth-DeepSeek-R1.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| unsloth-Mistral-Small-24B-Instruct-2501-unsloth-bnb-4bit.jinja | Generic |
|
||||
| upstage-solar-pro-preview-instruct.jinja | Generic |
|
||||
| whyhow-ai-PatientSeek.jinja | Generic |
|
||||
| xwen-team-Xwen-72B-Chat.jinja | Hermes 2 Pro |
|
||||
| xwen-team-Xwen-7B-Chat.jinja | Hermes 2 Pro |
|
||||
|
||||
This table can be generated with:
|
||||
|
||||
```bash
|
||||
./build/bin/test-chat ../minja/build/tests/*.jinja 2>/dev/null
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
# Usage - need tool-aware Jinja template
|
||||
|
||||
First, start a server with any model, but make sure it has a tools-enabled template: you can verify this by inspecting the `chat_template` or `chat_template_tool_use` properties in `http://localhost:8080/props`).
|
||||
|
||||
Here are some models known to work (w/ chat template override when needed):
|
||||
|
||||
```shell
|
||||
# Native support:
|
||||
|
||||
llama-server --jinja -fa -hf bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M
|
||||
llama-server --jinja -fa -hf bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q6_K_L
|
||||
llama-server --jinja -fa -hf bartowski/Llama-3.3-70B-Instruct-GGUF:Q4_K_M
|
||||
|
||||
# Native support for DeepSeek R1 works best w/ our template override (official template is buggy, although we do work around it)
|
||||
|
||||
llama-server --jinja -fa -hf bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q6_K_L \
|
||||
--chat-template-file models/templates/llama-cpp-deepseek-r1.jinja
|
||||
|
||||
llama-server --jinja -fa -hf bartowski/DeepSeek-R1-Distill-Qwen-32B-GGUF:Q4_K_M \
|
||||
--chat-template-file models/templates/llama-cpp-deepseek-r1.jinja
|
||||
|
||||
# Native support requires the right template for these GGUFs:
|
||||
|
||||
llama-server --jinja -fa -hf bartowski/functionary-small-v3.2-GGUF:Q4_K_M
|
||||
--chat-template-file models/templates/meetkai-functionary-medium-v3.2.jinja
|
||||
|
||||
llama-server --jinja -fa -hf bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M \
|
||||
--chat-template-file models/templates/NousResearch-Hermes-2-Pro-Llama-3-8B-tool_use.jinja
|
||||
|
||||
llama-server --jinja -fa -hf bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M \
|
||||
--chat-template-file models/templates/NousResearch-Hermes-3-Llama-3.1-8B-tool_use.jinja
|
||||
|
||||
llama-server --jinja -fa -hf bartowski/firefunction-v2-GGUF -hff firefunction-v2-IQ1_M.gguf \
|
||||
--chat-template-file models/templates/fireworks-ai-llama-3-firefunction-v2.jinja
|
||||
|
||||
llama-server --jinja -fa -hf bartowski/c4ai-command-r7b-12-2024-GGUF:Q6_K_L \
|
||||
--chat-template-file models/templates/CohereForAI-c4ai-command-r7b-12-2024-tool_use.jinja
|
||||
|
||||
# Generic format support
|
||||
llama-server --jinja -fa -hf bartowski/phi-4-GGUF:Q4_0
|
||||
llama-server --jinja -fa -hf bartowski/gemma-2-2b-it-GGUF:Q8_0
|
||||
llama-server --jinja -fa -hf bartowski/c4ai-command-r-v01-GGUF:Q2_K
|
||||
```
|
||||
|
||||
To get the official template from original HuggingFace repos, you can use [scripts/get_chat_template.py](../scripts/get_chat_template.py) (see examples invocations in [models/templates/README.md](../models/templates/README.md))
|
||||
|
||||
> [!TIP]
|
||||
> If there is no official `tool_use` Jinja template, you may want to set `--chat-template chatml` to use a default that works with many models (YMMV!), or write your own (e.g. we provide a custom [llama-cpp-deepseek-r1.jinja](../models/templates/llama-cpp-deepseek-r1.jinja) for DeepSeek R1 distills)
|
||||
|
||||
Test in CLI (or with any library / software that can use OpenAI-compatible API backends):
|
||||
|
||||
```bash
|
||||
curl http://localhost:8080/v1/chat/completions -d '{
|
||||
"model": "gpt-3.5-turbo",
|
||||
"tools": [
|
||||
{
|
||||
"type":"function",
|
||||
"function":{
|
||||
"name":"python",
|
||||
"description":"Runs code in an ipython interpreter and returns the result of the execution after 60 seconds.",
|
||||
"parameters":{
|
||||
"type":"object",
|
||||
"properties":{
|
||||
"code":{
|
||||
"type":"string",
|
||||
"description":"The code to run in the ipython interpreter."
|
||||
}
|
||||
},
|
||||
"required":["code"]
|
||||
}
|
||||
}
|
||||
}
|
||||
],
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Print a hello world message with python."
|
||||
}
|
||||
]
|
||||
}'
|
||||
```
|
||||
|
||||
<details>
|
||||
<summary>Show output</summary>
|
||||
|
||||
```json
|
||||
{
|
||||
"choices": [
|
||||
{
|
||||
"finish_reason": "tool",
|
||||
"index": 0,
|
||||
"message": {
|
||||
"content": null,
|
||||
"tool_calls": [
|
||||
{
|
||||
"name": "python",
|
||||
"arguments": "{\"code\":\" \\nprint(\\\"Hello, World!\\\")\"}"
|
||||
}
|
||||
],
|
||||
"role": "assistant"
|
||||
}
|
||||
}
|
||||
],
|
||||
"created": 1727287211,
|
||||
"model": "gpt-3.5-turbo",
|
||||
"object": "chat.completion",
|
||||
"usage": {
|
||||
"completion_tokens": 16,
|
||||
"prompt_tokens": 44,
|
||||
"total_tokens": 60
|
||||
},
|
||||
"id": "chatcmpl-Htbgh9feMmGM0LEH2hmQvwsCxq3c6Ni8"
|
||||
}
|
||||
```
|
||||
|
||||
</details>
|
||||
@@ -394,6 +394,8 @@ static int prepare_entries(common_params & params, train_context & ctx_train) {
|
||||
int main(int argc, char ** argv) {
|
||||
common_params params;
|
||||
|
||||
params.out_file = "control_vector.gguf";
|
||||
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_CVECTOR_GENERATOR, print_usage)) {
|
||||
return 1;
|
||||
}
|
||||
@@ -498,7 +500,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// write output vectors to gguf
|
||||
export_gguf(ctx_train.v_final, params.cvector_outfile, model_hint);
|
||||
export_gguf(ctx_train.v_final, params.out_file, model_hint);
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
|
||||
@@ -4,6 +4,7 @@
|
||||
#include "llama.h"
|
||||
|
||||
#include <ctime>
|
||||
#include <algorithm>
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
|
||||
@@ -413,20 +413,22 @@ static void print_usage(int, char ** argv) {
|
||||
int main(int argc, char ** argv) {
|
||||
common_params params;
|
||||
|
||||
params.out_file = "ggml-lora-merged-f16.gguf";
|
||||
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_EXPORT_LORA, print_usage)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
g_verbose = (params.verbosity > 1);
|
||||
try {
|
||||
lora_merge_ctx ctx(params.model, params.lora_adapters, params.lora_outfile, params.cpuparams.n_threads);
|
||||
lora_merge_ctx ctx(params.model, params.lora_adapters, params.out_file, params.cpuparams.n_threads);
|
||||
ctx.run_merge();
|
||||
} catch (const std::exception & err) {
|
||||
fprintf(stderr, "%s\n", err.what());
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
printf("done, output file is %s\n", params.lora_outfile.c_str());
|
||||
printf("done, output file is %s\n", params.out_file.c_str());
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -206,9 +206,6 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
|
||||
|
||||
void IMatrixCollector::save_imatrix(int ncall) const {
|
||||
auto fname = m_params.out_file;
|
||||
if (fname.empty()) {
|
||||
fname = "imatrix.dat";
|
||||
}
|
||||
|
||||
if (ncall > 0) {
|
||||
fname += ".at_";
|
||||
@@ -583,6 +580,8 @@ static bool compute_imatrix(llama_context * ctx, const common_params & params) {
|
||||
int main(int argc, char ** argv) {
|
||||
common_params params;
|
||||
|
||||
params.out_file = "imatrix.dat" ;
|
||||
|
||||
params.n_ctx = 512;
|
||||
params.logits_all = true;
|
||||
params.escape = false;
|
||||
|
||||
@@ -195,7 +195,7 @@ class BuiltinRule:
|
||||
self.deps = deps or []
|
||||
|
||||
# Constraining spaces to prevent model "running away".
|
||||
SPACE_RULE = '| " " | "\\n" [ \\t]{0,20}'
|
||||
SPACE_RULE = '| " " | "\\n"{1,2} [ \\t]{0,20}'
|
||||
|
||||
PRIMITIVE_RULES = {
|
||||
'boolean' : BuiltinRule('("true" | "false") space', []),
|
||||
|
||||
@@ -361,7 +361,7 @@ Java_android_llama_cpp_LLamaAndroid_completion_1init(
|
||||
const auto tokens_list = common_tokenize(context, text, true, parse_special);
|
||||
|
||||
auto n_ctx = llama_n_ctx(context);
|
||||
auto n_kv_req = tokens_list.size() + (n_len - tokens_list.size());
|
||||
auto n_kv_req = tokens_list.size() + n_len;
|
||||
|
||||
LOGi("n_len = %d, n_ctx = %d, n_kv_req = %d", n_len, n_ctx, n_kv_req);
|
||||
|
||||
|
||||
@@ -5,6 +5,21 @@ point for more advanced projects.
|
||||
|
||||
For usage instructions and performance stats, check the following discussion: https://github.com/ggml-org/llama.cpp/discussions/4508
|
||||
|
||||
|
||||
### Building
|
||||
First llama.cpp need to be built and a XCFramework needs to be created. This can be done by running
|
||||
the following script from the llama.cpp project root:
|
||||
```console
|
||||
$ ./build-xcframework.sh
|
||||
```
|
||||
Open `llama.swiftui.xcodeproj` project in Xcode and you should be able to build and run the app on
|
||||
a simulator or a real device.
|
||||
|
||||
To use the framework with a different project, the XCFramework can be added to the project by
|
||||
adding `build-ios/llama.xcframework` by dragging and dropping it into the project navigator, or
|
||||
by manually selecting the framework in the "Frameworks, Libraries, and Embedded Content" section
|
||||
of the project settings.
|
||||
|
||||

|
||||
|
||||
Video demonstration:
|
||||
|
||||
@@ -7,7 +7,6 @@
|
||||
objects = {
|
||||
|
||||
/* Begin PBXBuildFile section */
|
||||
1809696D2D05A39F00400EE8 /* llama in Frameworks */ = {isa = PBXBuildFile; productRef = 1809696C2D05A39F00400EE8 /* llama */; };
|
||||
549479CB2AC9E16000E0F78B /* Metal.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = 549479CA2AC9E16000E0F78B /* Metal.framework */; };
|
||||
79E1D9CD2B4CD16E005F8E46 /* InputButton.swift in Sources */ = {isa = PBXBuildFile; fileRef = 79E1D9CC2B4CD16E005F8E46 /* InputButton.swift */; };
|
||||
7FA3D2B32B2EA2F600543F92 /* DownloadButton.swift in Sources */ = {isa = PBXBuildFile; fileRef = 7FA3D2B22B2EA2F600543F92 /* DownloadButton.swift */; };
|
||||
@@ -18,9 +17,25 @@
|
||||
8A3F84242AC4C891005E2EE8 /* models in Resources */ = {isa = PBXBuildFile; fileRef = 8A3F84232AC4C891005E2EE8 /* models */; };
|
||||
8A907F332AC7138A006146EA /* LibLlama.swift in Sources */ = {isa = PBXBuildFile; fileRef = 8A907F322AC7134E006146EA /* LibLlama.swift */; };
|
||||
8A9F7C4D2AC332EE008AE1EA /* LlamaState.swift in Sources */ = {isa = PBXBuildFile; fileRef = 8A9F7C4C2AC332EE008AE1EA /* LlamaState.swift */; };
|
||||
DD84C9FD2D747FED007778EC /* llama.xcframework in Frameworks */ = {isa = PBXBuildFile; fileRef = DD84C9FC2D747FED007778EC /* llama.xcframework */; };
|
||||
DD84C9FE2D747FED007778EC /* llama.xcframework in Embed Frameworks */ = {isa = PBXBuildFile; fileRef = DD84C9FC2D747FED007778EC /* llama.xcframework */; settings = {ATTRIBUTES = (CodeSignOnCopy, RemoveHeadersOnCopy, ); }; };
|
||||
F1FE20E22B465ECA00B45541 /* LoadCustomButton.swift in Sources */ = {isa = PBXBuildFile; fileRef = F1FE20E12B465EC900B45541 /* LoadCustomButton.swift */; };
|
||||
/* End PBXBuildFile section */
|
||||
|
||||
/* Begin PBXCopyFilesBuildPhase section */
|
||||
DD84C9FF2D747FED007778EC /* Embed Frameworks */ = {
|
||||
isa = PBXCopyFilesBuildPhase;
|
||||
buildActionMask = 2147483647;
|
||||
dstPath = "";
|
||||
dstSubfolderSpec = 10;
|
||||
files = (
|
||||
DD84C9FE2D747FED007778EC /* llama.xcframework in Embed Frameworks */,
|
||||
);
|
||||
name = "Embed Frameworks";
|
||||
runOnlyForDeploymentPostprocessing = 0;
|
||||
};
|
||||
/* End PBXCopyFilesBuildPhase section */
|
||||
|
||||
/* Begin PBXFileReference section */
|
||||
549479CA2AC9E16000E0F78B /* Metal.framework */ = {isa = PBXFileReference; lastKnownFileType = wrapper.framework; name = Metal.framework; path = System/Library/Frameworks/Metal.framework; sourceTree = SDKROOT; };
|
||||
79E1D9CC2B4CD16E005F8E46 /* InputButton.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = InputButton.swift; sourceTree = "<group>"; };
|
||||
@@ -33,6 +48,7 @@
|
||||
8A3F84232AC4C891005E2EE8 /* models */ = {isa = PBXFileReference; lastKnownFileType = folder; name = models; path = llama.swiftui/Resources/models; sourceTree = "<group>"; };
|
||||
8A907F322AC7134E006146EA /* LibLlama.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = LibLlama.swift; sourceTree = "<group>"; };
|
||||
8A9F7C4C2AC332EE008AE1EA /* LlamaState.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = LlamaState.swift; sourceTree = "<group>"; };
|
||||
DD84C9FC2D747FED007778EC /* llama.xcframework */ = {isa = PBXFileReference; lastKnownFileType = wrapper.xcframework; name = llama.xcframework; path = "../../build-apple/llama.xcframework"; sourceTree = "<group>"; };
|
||||
DF2D2FE72B4A59BE00FCB72D /* llama.cpp */ = {isa = PBXFileReference; lastKnownFileType = wrapper; name = llama.cpp; path = ../..; sourceTree = "<group>"; };
|
||||
F1FE20E12B465EC900B45541 /* LoadCustomButton.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = LoadCustomButton.swift; sourceTree = "<group>"; };
|
||||
/* End PBXFileReference section */
|
||||
@@ -42,9 +58,9 @@
|
||||
isa = PBXFrameworksBuildPhase;
|
||||
buildActionMask = 2147483647;
|
||||
files = (
|
||||
1809696D2D05A39F00400EE8 /* llama in Frameworks */,
|
||||
549479CB2AC9E16000E0F78B /* Metal.framework in Frameworks */,
|
||||
8A39BE0A2AC7601100BFEB40 /* Accelerate.framework in Frameworks */,
|
||||
DD84C9FD2D747FED007778EC /* llama.xcframework in Frameworks */,
|
||||
);
|
||||
runOnlyForDeploymentPostprocessing = 0;
|
||||
};
|
||||
@@ -86,6 +102,7 @@
|
||||
8A39BE082AC7601000BFEB40 /* Frameworks */ = {
|
||||
isa = PBXGroup;
|
||||
children = (
|
||||
DD84C9FC2D747FED007778EC /* llama.xcframework */,
|
||||
549479CA2AC9E16000E0F78B /* Metal.framework */,
|
||||
8A39BE092AC7601000BFEB40 /* Accelerate.framework */,
|
||||
);
|
||||
@@ -144,6 +161,7 @@
|
||||
8A1C836F2AC328BD0096AF73 /* Sources */,
|
||||
8A1C83702AC328BD0096AF73 /* Frameworks */,
|
||||
8A1C83712AC328BD0096AF73 /* Resources */,
|
||||
DD84C9FF2D747FED007778EC /* Embed Frameworks */,
|
||||
);
|
||||
buildRules = (
|
||||
);
|
||||
@@ -151,7 +169,6 @@
|
||||
);
|
||||
name = llama.swiftui;
|
||||
packageProductDependencies = (
|
||||
1809696C2D05A39F00400EE8 /* llama */,
|
||||
);
|
||||
productName = llama.swiftui;
|
||||
productReference = 8A1C83732AC328BD0096AF73 /* llama.swiftui.app */;
|
||||
@@ -427,13 +444,6 @@
|
||||
defaultConfigurationName = Release;
|
||||
};
|
||||
/* End XCConfigurationList section */
|
||||
|
||||
/* Begin XCSwiftPackageProductDependency section */
|
||||
1809696C2D05A39F00400EE8 /* llama */ = {
|
||||
isa = XCSwiftPackageProductDependency;
|
||||
productName = llama;
|
||||
};
|
||||
/* End XCSwiftPackageProductDependency section */
|
||||
};
|
||||
rootObject = 8A1C836B2AC328BD0096AF73 /* Project object */;
|
||||
}
|
||||
|
||||
@@ -124,15 +124,26 @@ struct ContentView: View {
|
||||
}
|
||||
}
|
||||
}.sheet(isPresented: $showingHelp) { // Sheet for help modal
|
||||
VStack(alignment: .leading) {
|
||||
NavigationView {
|
||||
VStack(alignment: .leading) {
|
||||
Text("1. Make sure the model is in GGUF Format")
|
||||
.padding()
|
||||
Text("2. Copy the download link of the quantized model")
|
||||
.padding()
|
||||
VStack(alignment: .leading) {
|
||||
Text("1. Make sure the model is in GGUF Format")
|
||||
.padding()
|
||||
Text("2. Copy the download link of the quantized model")
|
||||
.padding()
|
||||
}
|
||||
Spacer()
|
||||
}
|
||||
Spacer()
|
||||
}
|
||||
.navigationTitle("Help")
|
||||
.navigationBarTitleDisplayMode(.inline)
|
||||
.toolbar {
|
||||
ToolbarItem(placement: .navigationBarTrailing) {
|
||||
Button("Done") {
|
||||
showingHelp = false
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
190
examples/llava/README-granitevision.md
Normal file
190
examples/llava/README-granitevision.md
Normal file
@@ -0,0 +1,190 @@
|
||||
# Granite Vision
|
||||
|
||||
Download the model and point your `GRANITE_MODEL` environment variable to the path.
|
||||
|
||||
```bash
|
||||
$ git clone https://huggingface.co/ibm-granite/granite-vision-3.2-2b
|
||||
$ export GRANITE_MODEL=./granite-vision-3.2-2b
|
||||
```
|
||||
|
||||
|
||||
### 1. Running llava surgery v2.
|
||||
First, we need to run the llava surgery script as shown below:
|
||||
|
||||
`python llava_surgery_v2.py -C -m $GRANITE_MODEL`
|
||||
|
||||
You should see two new files (`llava.clip` and `llava.projector`) written into your model's directory, as shown below.
|
||||
|
||||
```bash
|
||||
$ ls $GRANITE_MODEL | grep -i llava
|
||||
llava.clip
|
||||
llava.projector
|
||||
```
|
||||
|
||||
We should see that the projector and visual encoder get split out into the llava files. Quick check to make sure they aren't empty:
|
||||
```python
|
||||
import os
|
||||
import torch
|
||||
|
||||
MODEL_PATH = os.getenv("GRANITE_MODEL")
|
||||
if not MODEL_PATH:
|
||||
raise ValueError("env var GRANITE_MODEL is unset!")
|
||||
|
||||
encoder_tensors = torch.load(os.path.join(MODEL_PATH, "llava.clip"))
|
||||
projector_tensors = torch.load(os.path.join(MODEL_PATH, "llava.projector"))
|
||||
|
||||
assert len(encoder_tensors) > 0
|
||||
assert len(projector_tensors) > 0
|
||||
```
|
||||
|
||||
If you actually inspect the `.keys()` of the loaded tensors, you should see a lot of `vision_model` tensors in the `encoder_tensors`, and 5 tensors (`'multi_modal_projector.linear_1.bias'`, `'multi_modal_projector.linear_1.weight'`, `'multi_modal_projector.linear_2.bias'`, `'multi_modal_projector.linear_2.weight'`, `'image_newline'`) in the multimodal `projector_tensors`.
|
||||
|
||||
|
||||
### 2. Creating the Visual Component GGUF
|
||||
Next, create a new directory to hold the visual components, and copy the llava.clip/projector files, as shown below.
|
||||
|
||||
```bash
|
||||
$ ENCODER_PATH=$PWD/visual_encoder
|
||||
$ mkdir $ENCODER_PATH
|
||||
|
||||
$ cp $GRANITE_MODEL/llava.clip $ENCODER_PATH/pytorch_model.bin
|
||||
$ cp $GRANITE_MODEL/llava.projector $ENCODER_PATH/
|
||||
```
|
||||
|
||||
Now, we need to write a config for the visual encoder. In order to convert the model, be sure to use the correct `image_grid_pinpoints`, as these may vary based on the model. You can find the `image_grid_pinpoints` in `$GRANITE_MODEL/config.json`.
|
||||
|
||||
```json
|
||||
{
|
||||
"_name_or_path": "siglip-model",
|
||||
"architectures": [
|
||||
"SiglipVisionModel"
|
||||
],
|
||||
"image_grid_pinpoints": [
|
||||
[384,384],
|
||||
[384,768],
|
||||
[384,1152],
|
||||
[384,1536],
|
||||
[384,1920],
|
||||
[384,2304],
|
||||
[384,2688],
|
||||
[384,3072],
|
||||
[384,3456],
|
||||
[384,3840],
|
||||
[768,384],
|
||||
[768,768],
|
||||
[768,1152],
|
||||
[768,1536],
|
||||
[768,1920],
|
||||
[1152,384],
|
||||
[1152,768],
|
||||
[1152,1152],
|
||||
[1536,384],
|
||||
[1536,768],
|
||||
[1920,384],
|
||||
[1920,768],
|
||||
[2304,384],
|
||||
[2688,384],
|
||||
[3072,384],
|
||||
[3456,384],
|
||||
[3840,384]
|
||||
],
|
||||
"mm_patch_merge_type": "spatial_unpad",
|
||||
"hidden_size": 1152,
|
||||
"image_size": 384,
|
||||
"intermediate_size": 4304,
|
||||
"model_type": "siglip_vision_model",
|
||||
"num_attention_heads": 16,
|
||||
"num_hidden_layers": 27,
|
||||
"patch_size": 14,
|
||||
"layer_norm_eps": 1e-6,
|
||||
"hidden_act": "gelu_pytorch_tanh",
|
||||
"projection_dim": 0,
|
||||
"vision_feature_layer": [-24, -20, -12, -1]
|
||||
}
|
||||
```
|
||||
|
||||
At this point you should have something like this:
|
||||
```bash
|
||||
$ ls $ENCODER_PATH
|
||||
config.json llava.projector pytorch_model.bin
|
||||
```
|
||||
|
||||
Now convert the components to GGUF; Note that we also override the image mean/std dev to `[.5,.5,.5]` since we use the SigLIP visual encoder - in the transformers model, you can find these numbers in the `preprocessor_config.json`.
|
||||
```bash
|
||||
$ python convert_image_encoder_to_gguf.py \
|
||||
-m $ENCODER_PATH \
|
||||
--llava-projector $ENCODER_PATH/llava.projector \
|
||||
--output-dir $ENCODER_PATH \
|
||||
--clip-model-is-vision \
|
||||
--clip-model-is-siglip \
|
||||
--image-mean 0.5 0.5 0.5 \
|
||||
--image-std 0.5 0.5 0.5
|
||||
```
|
||||
|
||||
This will create the first GGUF file at `$ENCODER_PATH/mmproj-model-f16.gguf`; we will refer to the absolute path of this file as the `$VISUAL_GGUF_PATH.`
|
||||
|
||||
|
||||
### 3. Creating the LLM GGUF.
|
||||
The granite vision model contains a granite LLM as its language model. For now, the easiest way to get the GGUF for LLM is by loading the composite model in `transformers` and exporting the LLM so that it can be directly converted with the normal conversion path.
|
||||
|
||||
First, set the `LLM_EXPORT_PATH` to the path to export the `transformers` LLM to.
|
||||
```bash
|
||||
$ export LLM_EXPORT_PATH=$PWD/granite_vision_llm
|
||||
```
|
||||
|
||||
```python
|
||||
import os
|
||||
import transformers
|
||||
|
||||
MODEL_PATH = os.getenv("GRANITE_MODEL")
|
||||
if not MODEL_PATH:
|
||||
raise ValueError("env var GRANITE_MODEL is unset!")
|
||||
|
||||
LLM_EXPORT_PATH = os.getenv("LLM_EXPORT_PATH")
|
||||
if not LLM_EXPORT_PATH:
|
||||
raise ValueError("env var LLM_EXPORT_PATH is unset!")
|
||||
|
||||
tokenizer = transformers.AutoTokenizer.from_pretrained(MODEL_PATH)
|
||||
|
||||
# NOTE: granite vision support was added to transformers very recently (4.49);
|
||||
# if you get size mismatches, your version is too old.
|
||||
# If you are running with an older version, set `ignore_mismatched_sizes=True`
|
||||
# as shown below; it won't be loaded correctly, but the LLM part of the model that
|
||||
# we are exporting will be loaded correctly.
|
||||
model = transformers.AutoModelForImageTextToText.from_pretrained(MODEL_PATH, ignore_mismatched_sizes=True)
|
||||
|
||||
tokenizer.save_pretrained(LLM_EXPORT_PATH)
|
||||
model.language_model.save_pretrained(LLM_EXPORT_PATH)
|
||||
```
|
||||
|
||||
Now you can convert the exported LLM to GGUF with the normal converter in the root of the llama cpp project.
|
||||
```bash
|
||||
$ LLM_GGUF_PATH=$LLM_EXPORT_PATH/granite_llm.gguf
|
||||
...
|
||||
$ python convert_hf_to_gguf.py --outfile $LLM_GGUF_PATH $LLM_EXPORT_PATH
|
||||
```
|
||||
|
||||
|
||||
### 4. Quantization
|
||||
If you want to quantize the LLM, you can do so with `llama-quantize` as you would any other LLM. For example:
|
||||
```bash
|
||||
$ ./build/bin/llama-quantize $LLM_EXPORT_PATH/granite_llm.gguf $LLM_EXPORT_PATH/granite_llm_q4_k_m.gguf Q4_K_M
|
||||
$ LLM_GGUF_PATH=$LLM_EXPORT_PATH/granite_llm_q4_k_m.gguf
|
||||
```
|
||||
|
||||
Note that currently you cannot quantize the visual encoder because granite vision models use SigLIP as the visual encoder, which has tensor dimensions that are not divisible by 32.
|
||||
|
||||
|
||||
### 5. Running the Model in Llama cpp
|
||||
Build llama cpp normally; you should have a target binary named `llama-llava-cli`, which you can pass two binaries to. As an example, we pass the the llama.cpp banner.
|
||||
|
||||
```bash
|
||||
$ ./build/bin/llama-llava-cli -m $LLM_GGUF_PATH \
|
||||
--mmproj $VISUAL_GGUF_PATH \
|
||||
--image ./media/llama0-banner.png \
|
||||
-c 16384 \
|
||||
-p "<|system|>\nA chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.\n<|user|>\n\<image>\nWhat does the text in this image say?\n<|assistant|>\n" \
|
||||
--temp 0
|
||||
```
|
||||
|
||||
Sample output: `The text in the image reads "LLAMA C++ Can it run DOOM Llama?"`
|
||||
@@ -5,13 +5,25 @@ Currently, this readme only supports minicpm-omni's image capabilities, and we w
|
||||
|
||||
Download [MiniCPM-o-2_6](https://huggingface.co/openbmb/MiniCPM-o-2_6) PyTorch model from huggingface to "MiniCPM-o-2_6" folder.
|
||||
|
||||
|
||||
### Build llama.cpp
|
||||
Readme modification time: 20250206
|
||||
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
|
||||
|
||||
Clone llama.cpp:
|
||||
```bash
|
||||
git clone git@github.com:OpenBMB/llama.cpp.git
|
||||
git clone https://github.com/ggerganov/llama.cpp
|
||||
cd llama.cpp
|
||||
git checkout minicpm-omni
|
||||
```
|
||||
|
||||
Build llama.cpp using `CMake`:
|
||||
```bash
|
||||
cmake -B build
|
||||
cmake --build build --config Release
|
||||
```
|
||||
|
||||
|
||||
### Usage of MiniCPM-o 2.6
|
||||
|
||||
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-o-2_6-gguf) by us)
|
||||
@@ -22,25 +34,15 @@ python ./examples/llava/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-
|
||||
python ./convert_hf_to_gguf.py ../MiniCPM-o-2_6/model
|
||||
|
||||
# quantize int4 version
|
||||
./llama-quantize ../MiniCPM-o-2_6/model/ggml-model-f16.gguf ../MiniCPM-o-2_6/model/ggml-model-Q4_K_M.gguf Q4_K_M
|
||||
./build/bin/llama-quantize ../MiniCPM-o-2_6/model/ggml-model-f16.gguf ../MiniCPM-o-2_6/model/ggml-model-Q4_K_M.gguf Q4_K_M
|
||||
```
|
||||
|
||||
Build llama.cpp using `CMake`:
|
||||
https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md
|
||||
|
||||
```bash
|
||||
cmake -B build
|
||||
cmake --build build --config Release
|
||||
```
|
||||
|
||||
Inference on Linux or Mac
|
||||
```
|
||||
```bash
|
||||
# run f16 version
|
||||
./llama-minicpmv-cli -m ../MiniCPM-o-2_6/model/ggml-model-f16.gguf --mmproj ../MiniCPM-o-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
|
||||
./build/bin/llama-minicpmv-cli -m ../MiniCPM-o-2_6/model/ggml-model-f16.gguf --mmproj ../MiniCPM-o-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
|
||||
|
||||
# run quantized int4 version
|
||||
./llama-minicpmv-cli -m ../MiniCPM-o-2_6/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-o-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
|
||||
|
||||
# or run in interactive mode
|
||||
./llama-minicpmv-cli -m ../MiniCPM-o-2_6/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-o-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -i
|
||||
./build/bin/llama-minicpmv-cli -m ../MiniCPM-o-2_6/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-o-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
|
||||
```
|
||||
|
||||
@@ -4,13 +4,26 @@
|
||||
|
||||
Download [MiniCPM-Llama3-V-2_5](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5) PyTorch model from huggingface to "MiniCPM-Llama3-V-2_5" folder.
|
||||
|
||||
|
||||
### Build llama.cpp
|
||||
Readme modification time: 20250206
|
||||
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
|
||||
|
||||
Clone llama.cpp:
|
||||
```bash
|
||||
git clone https://github.com/ggml-org/llama.cpp
|
||||
cd llama.cpp
|
||||
```
|
||||
|
||||
### Usage
|
||||
Build llama.cpp using `CMake`:
|
||||
```bash
|
||||
cmake -B build
|
||||
cmake --build build --config Release
|
||||
```
|
||||
|
||||
|
||||
### Usage of MiniCPM-Llama3-V 2.5
|
||||
|
||||
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf) by us)
|
||||
|
||||
@@ -20,80 +33,15 @@ python ./examples/llava/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-
|
||||
python ./convert_hf_to_gguf.py ../MiniCPM-Llama3-V-2_5/model
|
||||
|
||||
# quantize int4 version
|
||||
./llama-quantize ../MiniCPM-Llama3-V-2_5/model/model-8B-F16.gguf ../MiniCPM-Llama3-V-2_5/model/ggml-model-Q4_K_M.gguf Q4_K_M
|
||||
./build/bin/llama-quantize ../MiniCPM-Llama3-V-2_5/model/model-8B-F16.gguf ../MiniCPM-Llama3-V-2_5/model/ggml-model-Q4_K_M.gguf Q4_K_M
|
||||
```
|
||||
|
||||
Build for Linux or Mac
|
||||
|
||||
```bash
|
||||
make
|
||||
make llama-minicpmv-cli
|
||||
```
|
||||
|
||||
Inference on Linux or Mac
|
||||
```
|
||||
```bash
|
||||
# run f16 version
|
||||
./llama-minicpmv-cli -m ../MiniCPM-Llama3-V-2_5/model/model-8B-F16.gguf --mmproj ../MiniCPM-Llama3-V-2_5/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
|
||||
./build/bin/llama-minicpmv-cli -m ../MiniCPM-Llama3-V-2_5/model/model-8B-F16.gguf --mmproj ../MiniCPM-Llama3-V-2_5/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
|
||||
|
||||
# run quantized int4 version
|
||||
./llama-minicpmv-cli -m ../MiniCPM-Llama3-V-2_5/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-Llama3-V-2_5/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
|
||||
|
||||
# or run in interactive mode
|
||||
./llama-minicpmv-cli -m ../MiniCPM-Llama3-V-2_5/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-Llama3-V-2_5/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -i
|
||||
```
|
||||
|
||||
### Android
|
||||
|
||||
#### Build on Android device using Termux
|
||||
We found that build on Android device would bring better runtime performance, so we recommend to build on device.
|
||||
|
||||
[Termux](https://github.com/termux/termux-app#installation) is a terminal app on Android device (no root required).
|
||||
|
||||
Install tools in Termux:
|
||||
```
|
||||
apt update && apt upgrade -y
|
||||
apt install git make cmake
|
||||
```
|
||||
|
||||
It's recommended to move your model inside the `~/` directory for best performance:
|
||||
```
|
||||
cd storage/downloads
|
||||
mv model.gguf ~/
|
||||
```
|
||||
|
||||
#### Building the Project using Android NDK
|
||||
Obtain the [Android NDK](https://developer.android.com/ndk) and then build with CMake.
|
||||
|
||||
Execute the following commands on your computer to avoid downloading the NDK to your mobile. Alternatively, you can also do this in Termux:
|
||||
|
||||
```bash
|
||||
mkdir build-android
|
||||
cd build-android
|
||||
export NDK=/your_ndk_path
|
||||
cmake -DCMAKE_TOOLCHAIN_FILE=$NDK/build/cmake/android.toolchain.cmake -DANDROID_ABI=arm64-v8a -DANDROID_PLATFORM=android-23 -DCMAKE_C_FLAGS=-march=armv8.4a+dotprod ..
|
||||
make
|
||||
```
|
||||
|
||||
Install [termux](https://github.com/termux/termux-app#installation) on your device and run `termux-setup-storage` to get access to your SD card (if Android 11+ then run the command twice).
|
||||
|
||||
Finally, copy these built `llama` binaries and the model file to your device storage. Because the file permissions in the Android sdcard cannot be changed, you can copy the executable files to the `/data/data/com.termux/files/home/bin` path, and then execute the following commands in Termux to add executable permission:
|
||||
|
||||
(Assumed that you have pushed the built executable files to the /sdcard/llama.cpp/bin path using `adb push`)
|
||||
```
|
||||
$cp -r /sdcard/llama.cpp/bin /data/data/com.termux/files/home/
|
||||
$cd /data/data/com.termux/files/home/bin
|
||||
$chmod +x ./*
|
||||
```
|
||||
|
||||
Download models and push them to `/sdcard/llama.cpp/`, then move it to `/data/data/com.termux/files/home/model/`
|
||||
|
||||
```
|
||||
$mv /sdcard/llama.cpp/ggml-model-Q4_K_M.gguf /data/data/com.termux/files/home/model/
|
||||
$mv /sdcard/llama.cpp/mmproj-model-f16.gguf /data/data/com.termux/files/home/model/
|
||||
```
|
||||
|
||||
Now, you can start chatting:
|
||||
```
|
||||
$cd /data/data/com.termux/files/home/bin
|
||||
$./llama-minicpmv-cli -m ../model/ggml-model-Q4_K_M.gguf --mmproj ../model/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
|
||||
./build/bin/llama-minicpmv-cli -m ../MiniCPM-Llama3-V-2_5/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-Llama3-V-2_5/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
|
||||
```
|
||||
|
||||
@@ -4,13 +4,25 @@
|
||||
|
||||
Download [MiniCPM-V-2_6](https://huggingface.co/openbmb/MiniCPM-V-2_6) PyTorch model from huggingface to "MiniCPM-V-2_6" folder.
|
||||
|
||||
|
||||
### Build llama.cpp
|
||||
Readme modification time: 20250206
|
||||
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
|
||||
|
||||
Clone llama.cpp:
|
||||
```bash
|
||||
git clone git@github.com:OpenBMB/llama.cpp.git
|
||||
git clone https://github.com/ggerganov/llama.cpp
|
||||
cd llama.cpp
|
||||
git checkout minicpmv-main
|
||||
```
|
||||
|
||||
Build llama.cpp using `CMake`:
|
||||
```bash
|
||||
cmake -B build
|
||||
cmake --build build --config Release
|
||||
```
|
||||
|
||||
|
||||
### Usage of MiniCPM-V 2.6
|
||||
|
||||
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-V-2_6-gguf) by us)
|
||||
@@ -21,87 +33,15 @@ python ./examples/llava/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-
|
||||
python ./convert_hf_to_gguf.py ../MiniCPM-V-2_6/model
|
||||
|
||||
# quantize int4 version
|
||||
./llama-quantize ../MiniCPM-V-2_6/model/ggml-model-f16.gguf ../MiniCPM-V-2_6/model/ggml-model-Q4_K_M.gguf Q4_K_M
|
||||
./build/bin/llama-quantize ../MiniCPM-V-2_6/model/ggml-model-f16.gguf ../MiniCPM-V-2_6/model/ggml-model-Q4_K_M.gguf Q4_K_M
|
||||
```
|
||||
|
||||
Build for Linux or Mac
|
||||
|
||||
```bash
|
||||
make
|
||||
make llama-minicpmv-cli
|
||||
```
|
||||
|
||||
Inference on Linux or Mac
|
||||
```
|
||||
```bash
|
||||
# run f16 version
|
||||
./llama-minicpmv-cli -m ../MiniCPM-V-2_6/model/ggml-model-f16.gguf --mmproj ../MiniCPM-V-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
|
||||
./build/bin/llama-minicpmv-cli -m ../MiniCPM-V-2_6/model/ggml-model-f16.gguf --mmproj ../MiniCPM-V-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
|
||||
|
||||
# run quantized int4 version
|
||||
./llama-minicpmv-cli -m ../MiniCPM-V-2_6/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-V-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
|
||||
|
||||
# or run in interactive mode
|
||||
./llama-minicpmv-cli -m ../MiniCPM-V-2_6/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-V-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -i
|
||||
```
|
||||
|
||||
### Video
|
||||
Install FFmpeg
|
||||
```
|
||||
brew install ffmpeg
|
||||
brew install pkg-config
|
||||
```
|
||||
|
||||
### Android
|
||||
|
||||
#### Build on Android device using Termux
|
||||
We found that build on Android device would bring better runtime performance, so we recommend to build on device.
|
||||
|
||||
[Termux](https://github.com/termux/termux-app#installation) is a terminal app on Android device (no root required).
|
||||
|
||||
Install tools in Termux:
|
||||
```
|
||||
apt update && apt upgrade -y
|
||||
apt install git make cmake
|
||||
```
|
||||
|
||||
It's recommended to move your model inside the `~/` directory for best performance:
|
||||
```
|
||||
cd storage/downloads
|
||||
mv model.gguf ~/
|
||||
```
|
||||
|
||||
#### Building the Project using Android NDK
|
||||
Obtain the [Android NDK](https://developer.android.com/ndk) and then build with CMake.
|
||||
|
||||
Execute the following commands on your computer to avoid downloading the NDK to your mobile. Alternatively, you can also do this in Termux:
|
||||
|
||||
```bash
|
||||
mkdir build-android
|
||||
cd build-android
|
||||
export NDK=/your_ndk_path
|
||||
cmake -DCMAKE_TOOLCHAIN_FILE=$NDK/build/cmake/android.toolchain.cmake -DANDROID_ABI=arm64-v8a -DANDROID_PLATFORM=android-23 -DCMAKE_C_FLAGS=-march=armv8.4a+dotprod ..
|
||||
make
|
||||
```
|
||||
|
||||
Install [termux](https://github.com/termux/termux-app#installation) on your device and run `termux-setup-storage` to get access to your SD card (if Android 11+ then run the command twice).
|
||||
|
||||
Finally, copy these built `llama` binaries and the model file to your device storage. Because the file permissions in the Android sdcard cannot be changed, you can copy the executable files to the `/data/data/com.termux/files/home/bin` path, and then execute the following commands in Termux to add executable permission:
|
||||
|
||||
(Assumed that you have pushed the built executable files to the /sdcard/llama.cpp/bin path using `adb push`)
|
||||
```
|
||||
$cp -r /sdcard/llama.cpp/bin /data/data/com.termux/files/home/
|
||||
$cd /data/data/com.termux/files/home/bin
|
||||
$chmod +x ./*
|
||||
```
|
||||
|
||||
Download models and push them to `/sdcard/llama.cpp/`, then move it to `/data/data/com.termux/files/home/model/`
|
||||
|
||||
```
|
||||
$mv /sdcard/llama.cpp/ggml-model-Q4_K_M.gguf /data/data/com.termux/files/home/model/
|
||||
$mv /sdcard/llama.cpp/mmproj-model-f16.gguf /data/data/com.termux/files/home/model/
|
||||
```
|
||||
|
||||
Now, you can start chatting:
|
||||
```
|
||||
$cd /data/data/com.termux/files/home/bin
|
||||
$./llama-minicpmv-cli -m ../model/ggml-model-Q4_K_M.gguf --mmproj ../model/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
|
||||
./build/bin/llama-minicpmv-cli -m ../MiniCPM-V-2_6/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-V-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
|
||||
```
|
||||
|
||||
@@ -101,8 +101,27 @@ python ./examples/convert_legacy_llama.py ../llava-v1.6-vicuna-7b/ --skip-unknow
|
||||
```
|
||||
|
||||
**note** llava-1.6 needs more context than llava-1.5, at least 3000 is needed (just run it at -c 4096)
|
||||
|
||||
**note** llava-1.6 greatly benefits from batched prompt processing (defaults work)
|
||||
|
||||
**note** if the language model in step `6)` is incompatible with the legacy conversion script, the easiest way handle the LLM model conversion is to load the model in transformers, and export only the LLM from the llava next model.
|
||||
|
||||
```python
|
||||
import os
|
||||
import transformers
|
||||
|
||||
model_path = ...
|
||||
llm_export_path = ...
|
||||
|
||||
tokenizer = transformers.AutoTokenizer.from_pretrained(model_path)
|
||||
model = transformers.AutoModelForImageTextToText.from_pretrained(model_path)
|
||||
|
||||
tokenizer.save_pretrained(llm_export_path)
|
||||
model.language_model.save_pretrained(llm_export_path)
|
||||
```
|
||||
|
||||
Then, you can convert the LLM using the `convert_hf_to_gguf.py` script, which handles more LLM architectures.
|
||||
|
||||
## llava-cli templating and llava-1.6 prompting
|
||||
|
||||
llava-1.5 models all use the same vicuna prompt, here you can just add your image question like `-p "Provide a full description."`
|
||||
|
||||
@@ -40,6 +40,7 @@
|
||||
#include <map>
|
||||
#include <regex>
|
||||
#include <stdexcept>
|
||||
#include <unordered_set>
|
||||
#include <vector>
|
||||
#include <sstream>
|
||||
#include <cinttypes>
|
||||
@@ -120,6 +121,7 @@ static std::string format(const char * fmt, ...) {
|
||||
#define KEY_IMAGE_MEAN "clip.vision.image_mean"
|
||||
#define KEY_IMAGE_STD "clip.vision.image_std"
|
||||
#define KEY_PROJ_TYPE "clip.projector_type"
|
||||
#define KEY_FEATURE_LAYER "clip.vision.feature_layer"
|
||||
|
||||
#define KEY_MM_PATCH_MERGE_TYPE "clip.vision.mm_patch_merge_type"
|
||||
#define KEY_IMAGE_GRID_PINPOINTS "clip.vision.image_grid_pinpoints"
|
||||
@@ -444,8 +446,9 @@ struct clip_hparams {
|
||||
|
||||
char mm_patch_merge_type[32] = "flat"; // spatial_unpad or flat (default)
|
||||
|
||||
int32_t image_grid_pinpoints[32];
|
||||
std::vector<int32_t> image_grid_pinpoints;
|
||||
int32_t image_crop_resolution;
|
||||
std::unordered_set<int32_t> vision_feature_layer;
|
||||
};
|
||||
|
||||
struct clip_layer {
|
||||
@@ -585,6 +588,7 @@ struct clip_ctx {
|
||||
struct clip_vision_model vision_model;
|
||||
projector_type proj_type = PROJECTOR_TYPE_MLP;
|
||||
|
||||
int32_t max_feature_layer;
|
||||
float image_mean[3];
|
||||
float image_std[3];
|
||||
bool use_gelu = false;
|
||||
@@ -651,7 +655,6 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
||||
const int hidden_size = hparams.hidden_size;
|
||||
const int n_head = hparams.n_head;
|
||||
const int d_head = hidden_size / n_head;
|
||||
int n_layer = hparams.n_layer;
|
||||
const float eps = hparams.eps;
|
||||
int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
|
||||
|
||||
@@ -752,13 +755,19 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
||||
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.pre_ln_w), model.pre_ln_b);
|
||||
}
|
||||
|
||||
std::vector<struct ggml_tensor *> embedding_stack;
|
||||
const auto & vision_feature_layer = hparams.vision_feature_layer;
|
||||
|
||||
// loop over layers
|
||||
if (ctx->has_minicpmv_projector || ctx->has_glm_projector || ctx->has_qwen2vl_merger) {
|
||||
n_layer += 1;
|
||||
}
|
||||
for (int il = 0; il < n_layer - 1; il++) {
|
||||
for (int il = 0; il < ctx->max_feature_layer; il++) {
|
||||
struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states
|
||||
|
||||
// If this is an embedding feature layer, save the output.
|
||||
// NOTE: 0 index here refers to the input to the encoder.
|
||||
if (vision_feature_layer.find(il) != vision_feature_layer.end()) {
|
||||
embedding_stack.push_back(embeddings);
|
||||
}
|
||||
|
||||
//const size_t nb_q_w = model.layers[il].q_w->nb[0];
|
||||
|
||||
// layernorm1
|
||||
@@ -846,7 +855,6 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
||||
cur = ggml_add(ctx0, embeddings, cur);
|
||||
|
||||
embeddings = cur;
|
||||
|
||||
}
|
||||
|
||||
// post-layernorm
|
||||
@@ -857,6 +865,19 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
||||
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b);
|
||||
}
|
||||
|
||||
// final layer is a vision feature layer
|
||||
if (vision_feature_layer.find(ctx->max_feature_layer) != vision_feature_layer.end()) {
|
||||
embedding_stack.push_back(embeddings);
|
||||
}
|
||||
|
||||
// If feature layers are explicitly set, stack them (if we have multiple)
|
||||
if (!embedding_stack.empty()) {
|
||||
embeddings = embedding_stack[0];
|
||||
for (size_t i = 1; i < embedding_stack.size(); i++) {
|
||||
embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0);
|
||||
}
|
||||
}
|
||||
|
||||
// llava projector
|
||||
if (ctx->has_llava_projector) {
|
||||
embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
|
||||
@@ -1357,6 +1378,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
LOG_INF("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder);
|
||||
LOG_INF("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector);
|
||||
LOG_INF("%s: minicpmv_projector: %d\n", __func__, new_clip->has_minicpmv_projector);
|
||||
LOG_INF("%s: minicpmv_version: %d\n", __func__, new_clip->minicpmv_version);
|
||||
LOG_INF("%s: glm_projector: %d\n", __func__, new_clip->has_glm_projector);
|
||||
LOG_INF("%s: model size: %.2f MB\n", __func__, model_size / 1024.0 / 1024.0);
|
||||
LOG_INF("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0);
|
||||
@@ -1443,14 +1465,26 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
int idx = get_key_idx(ctx, KEY_IMAGE_GRID_PINPOINTS);
|
||||
int n = gguf_get_arr_n(ctx, idx);
|
||||
const int32_t * pinpoints = (const int32_t *)gguf_get_arr_data(ctx, idx);
|
||||
for (int i = 0; i < 32 && i < n && pinpoints[i] != 0; ++i) {
|
||||
hparams.image_grid_pinpoints[i] = pinpoints[i];
|
||||
for (int i = 0; i < n; ++i) {
|
||||
hparams.image_grid_pinpoints.push_back(pinpoints[i]);
|
||||
}
|
||||
if (n < 32)
|
||||
hparams.image_grid_pinpoints[n] = 0;
|
||||
} catch (std::runtime_error & /*e*/) {
|
||||
hparams.image_grid_pinpoints[0]=0;
|
||||
}
|
||||
} catch (std::runtime_error & /*e*/) { }
|
||||
|
||||
// Load the vision feature layer indices if they are explicitly provided;
|
||||
// if multiple vision feature layers are present, the values will be concatenated
|
||||
// to form the final visual features.
|
||||
// NOTE: gguf conversions should standardize the values of the vision feature layer to
|
||||
// be non-negative, since we use -1 to mark values as unset here.
|
||||
try {
|
||||
int idx = get_key_idx(ctx, KEY_FEATURE_LAYER);
|
||||
int n = gguf_get_arr_n(ctx, idx);
|
||||
|
||||
const int32_t * vision_feature_layer = (const int32_t *)gguf_get_arr_data(ctx, idx);
|
||||
|
||||
for (int i = 0; i < n; ++i) {
|
||||
hparams.vision_feature_layer.insert(vision_feature_layer[i]);
|
||||
}
|
||||
} catch (std::runtime_error & /*e*/) { }
|
||||
|
||||
try {
|
||||
int idx = get_key_idx(ctx, KEY_MM_PATCH_MERGE_TYPE);
|
||||
@@ -1476,6 +1510,9 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
new_clip->image_std[i] = std_data[i];
|
||||
}
|
||||
|
||||
// Calculate the deepest feature layer based on hparams and projector type
|
||||
new_clip->max_feature_layer = get_deepest_feature_layer(new_clip);
|
||||
|
||||
if (verbosity >= 2) {
|
||||
LOG_INF("\n%s: vision model hparams\n", __func__);
|
||||
LOG_INF("image_size %d\n", hparams.image_size);
|
||||
@@ -1489,8 +1526,13 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
LOG_INF("v_image_mean %f %f %f\n", new_clip->image_mean[0], new_clip->image_mean[1], new_clip->image_mean[2]);
|
||||
LOG_INF("v_image_std %f %f %f\n", new_clip->image_std[0], new_clip->image_std[1], new_clip->image_std[2]);
|
||||
LOG_INF("v_image_grid_pinpoints: ");
|
||||
for (int i = 0; i < 32 && (hparams.image_grid_pinpoints[i] != 0); ++i) {
|
||||
LOG_INF("%d ", hparams.image_grid_pinpoints[i]);
|
||||
for (const auto & pp : hparams.image_grid_pinpoints) {
|
||||
LOG_INF("%d ", pp);
|
||||
}
|
||||
LOG_INF("\n");
|
||||
LOG_INF("v_vision_feature_layer: ");
|
||||
for (const auto & feature_layer: hparams.vision_feature_layer) {
|
||||
LOG_INF("%d ", feature_layer);
|
||||
}
|
||||
LOG_INF("\n");
|
||||
LOG_INF("v_mm_patch_merge_type: %s\n", hparams.mm_patch_merge_type);
|
||||
@@ -1729,11 +1771,11 @@ void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) {
|
||||
}
|
||||
}
|
||||
|
||||
static void build_clip_img_from_data(const stbi_uc * data, int nx, int ny, clip_image_u8 * img) {
|
||||
void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img) {
|
||||
img->nx = nx;
|
||||
img->ny = ny;
|
||||
img->buf.resize(3 * nx * ny);
|
||||
memcpy(img->buf.data(), data, img->buf.size());
|
||||
memcpy(img->buf.data(), rgb_pixels, img->buf.size());
|
||||
}
|
||||
|
||||
bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) {
|
||||
@@ -1743,7 +1785,7 @@ bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) {
|
||||
LOG_ERR("%s: failed to load image '%s'\n", __func__, fname);
|
||||
return false;
|
||||
}
|
||||
build_clip_img_from_data(data, nx, ny, img);
|
||||
clip_build_img_from_pixels(data, nx, ny, img);
|
||||
stbi_image_free(data);
|
||||
return true;
|
||||
}
|
||||
@@ -1755,7 +1797,7 @@ bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length
|
||||
LOG_ERR("%s: failed to decode image bytes\n", __func__);
|
||||
return false;
|
||||
}
|
||||
build_clip_img_from_data(data, nx, ny, img);
|
||||
clip_build_img_from_pixels(data, nx, ny, img);
|
||||
stbi_image_free(data);
|
||||
return true;
|
||||
}
|
||||
@@ -2235,10 +2277,10 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, cli
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if (params.image_grid_pinpoints[0] != 0) {
|
||||
if (!params.image_grid_pinpoints.empty()) {
|
||||
// "spatial_unpad" with "anyres" processing for llava-1.6
|
||||
std::vector<std::pair<int, int>> possible_resolutions;
|
||||
for (int i = 0; i < 32 && params.image_grid_pinpoints[i] != 0; i+=2) {
|
||||
for (size_t i = 0; i < params.image_grid_pinpoints.size(); i+=2) {
|
||||
possible_resolutions.push_back({params.image_grid_pinpoints[i], params.image_grid_pinpoints[i+1]});
|
||||
}
|
||||
std::pair<int, int> best_resolution = select_best_resolution({img->nx, img->ny}, possible_resolutions);
|
||||
@@ -2404,7 +2446,14 @@ const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
|
||||
}
|
||||
|
||||
const int32_t * clip_image_grid(const struct clip_ctx * ctx) {
|
||||
return ctx->vision_model.hparams.image_grid_pinpoints;
|
||||
if (ctx->vision_model.hparams.image_grid_pinpoints.size()) {
|
||||
return &ctx->vision_model.hparams.image_grid_pinpoints.front();
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
size_t get_clip_image_grid_size(const struct clip_ctx * ctx) {
|
||||
return ctx->vision_model.hparams.image_grid_pinpoints.size();
|
||||
}
|
||||
|
||||
int clip_n_patches(const struct clip_ctx * ctx) {
|
||||
@@ -2712,9 +2761,13 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
||||
|
||||
if (!ctx->has_glm_projector) {
|
||||
struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches");
|
||||
// The patches vector is used to get rows to index into the embeds with;
|
||||
// we should skip dim 0 only if we have CLS to avoid going out of bounds
|
||||
// when retrieving the rows.
|
||||
int patch_offset = ctx->has_class_embedding ? 1 : 0;
|
||||
int* patches_data = (int*)malloc(ggml_nbytes(patches));
|
||||
for (int i = 0; i < num_patches; i++) {
|
||||
patches_data[i] = i + 1;
|
||||
patches_data[i] = i + patch_offset;
|
||||
}
|
||||
ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches));
|
||||
free(patches_data);
|
||||
@@ -2925,6 +2978,28 @@ bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
|
||||
return ctx->has_qwen2vl_merger;
|
||||
}
|
||||
|
||||
// Determine the number of encoder layers to iterate over
|
||||
int get_deepest_feature_layer(const struct clip_ctx * ctx) {
|
||||
// Get the index of the second to last layer; this is the
|
||||
// default for models that have a llava projector
|
||||
const auto & hparams = ctx->vision_model.hparams;
|
||||
int n_layer = hparams.n_layer - 1;
|
||||
int deepest_feature_layer = -1;
|
||||
|
||||
// Handle other projectors; incrementing here indicates that we
|
||||
// should use the last encoder layer for the vision features.
|
||||
if (ctx->has_minicpmv_projector || ctx->has_glm_projector || ctx->has_qwen2vl_merger) {
|
||||
n_layer += 1;
|
||||
}
|
||||
|
||||
// If we set explicit vision feature layers, only go up to the deepest one
|
||||
for (const auto & feature_layer : hparams.vision_feature_layer) {
|
||||
if (feature_layer > deepest_feature_layer) {
|
||||
deepest_feature_layer = feature_layer;
|
||||
}
|
||||
}
|
||||
return deepest_feature_layer < 0 ? n_layer : deepest_feature_layer;
|
||||
}
|
||||
|
||||
bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
|
||||
clip_image_f32 clip_img;
|
||||
|
||||
@@ -55,6 +55,7 @@ CLIP_API int32_t clip_hidden_size(const struct clip_ctx * ctx);
|
||||
CLIP_API const char * clip_patch_merge_type(const struct clip_ctx * ctx);
|
||||
|
||||
CLIP_API const int32_t * clip_image_grid(const struct clip_ctx * ctx);
|
||||
CLIP_API size_t get_clip_image_grid_size(const struct clip_ctx * ctx);
|
||||
|
||||
CLIP_API int clip_n_patches (const struct clip_ctx * ctx);
|
||||
CLIP_API int clip_n_patches_by_img (const struct clip_ctx * ctx, struct clip_image_f32 * img);
|
||||
@@ -73,6 +74,12 @@ CLIP_API void clip_image_f32_free(struct clip_image_f32 * img);
|
||||
CLIP_API void clip_image_u8_batch_free (struct clip_image_u8_batch * batch);
|
||||
CLIP_API void clip_image_f32_batch_free(struct clip_image_f32_batch * batch);
|
||||
|
||||
/**
|
||||
* Build image from pixels decoded by other libraries instead of stb_image.h for better performance.
|
||||
* The memory layout is RGBRGBRGB..., input buffer length must be 3*nx*ny bytes
|
||||
*/
|
||||
CLIP_API void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, struct clip_image_u8 * img);
|
||||
|
||||
CLIP_API bool clip_image_load_from_file(const char * fname, struct clip_image_u8 * img);
|
||||
|
||||
/** interpret bytes as an image file with length bytes_length, and use the result to populate img */
|
||||
@@ -89,11 +96,13 @@ CLIP_API bool clip_image_batch_encode(struct clip_ctx * ctx, int n_threads, cons
|
||||
CLIP_API bool clip_model_quantize(const char * fname_inp, const char * fname_out, int itype);
|
||||
|
||||
CLIP_API int clip_is_minicpmv(const struct clip_ctx * ctx);
|
||||
CLIP_API bool clip_is_glm(const struct clip_ctx * ctx);
|
||||
CLIP_API bool clip_is_qwen2vl(const struct clip_ctx * ctx);
|
||||
|
||||
CLIP_API int get_deepest_feature_layer(const struct clip_ctx * ctx);
|
||||
|
||||
CLIP_API bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec);
|
||||
|
||||
CLIP_API bool clip_is_glm(const struct clip_ctx * ctx);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
||||
@@ -6,7 +6,7 @@ import re
|
||||
import torch
|
||||
import numpy as np
|
||||
from gguf import *
|
||||
from transformers import CLIPModel, CLIPProcessor, CLIPVisionModel
|
||||
from transformers import CLIPModel, CLIPProcessor, CLIPVisionModel, SiglipVisionModel
|
||||
|
||||
TEXT = "clip.text"
|
||||
VISION = "clip.vision"
|
||||
@@ -37,6 +37,18 @@ def should_skip_tensor(name: str, has_text: bool, has_vision: bool, has_llava: b
|
||||
|
||||
|
||||
def get_tensor_name(name: str) -> str:
|
||||
# Standardize the transformers llava next keys for
|
||||
# image newline / mm projector with the classes in haotian-liu LLaVA
|
||||
if name == "image_newline":
|
||||
return "model.image_newline"
|
||||
if name.startswith("multi_modal_projector"):
|
||||
name = name.replace("multi_modal_projector", "mm")
|
||||
if "linear_1" in name:
|
||||
name = name.replace("linear_1", "0")
|
||||
if "linear_2" in name:
|
||||
name = name.replace("linear_2", "2")
|
||||
return name
|
||||
|
||||
if "projection" in name:
|
||||
return name
|
||||
if "mm_projector" in name:
|
||||
@@ -77,14 +89,21 @@ def bytes_to_unicode():
|
||||
ap = argparse.ArgumentParser()
|
||||
ap.add_argument("-m", "--model-dir", help="Path to model directory cloned from HF Hub", required=True)
|
||||
ap.add_argument("--use-f32", action="store_true", default=False, help="Use f32 instead of f16")
|
||||
ap.add_argument('--bigendian', action="store_true", default=False, help="Model is executed on big-endian machine")
|
||||
ap.add_argument("--text-only", action="store_true", required=False,
|
||||
help="Save a text-only model. It can't be used to encode images")
|
||||
ap.add_argument("--vision-only", action="store_true", required=False,
|
||||
help="Save a vision-only model. It can't be used to encode texts")
|
||||
ap.add_argument("--clip-model-is-vision", action="store_true", required=False,
|
||||
help="The clip model is a pure vision model (ShareGPT4V vision extract for example)")
|
||||
ap.add_argument("--clip-model-is-openclip", action="store_true", required=False,
|
||||
|
||||
# Selectable visual encoders that are compatible with this script
|
||||
encoder_group = ap.add_mutually_exclusive_group()
|
||||
encoder_group.add_argument("--clip-model-is-openclip", action="store_true", required=False,
|
||||
help="The clip model is from openclip (for ViT-SO400M type))")
|
||||
encoder_group.add_argument("--clip-model-is-siglip", action="store_true", required=False,
|
||||
help="the visual encoder is Siglip.")
|
||||
|
||||
ap.add_argument("--llava-projector", help="Path to llava.projector file. If specified, save an image encoder for LLaVA models.")
|
||||
ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp, ldpv2", choices=["mlp", "ldp", "ldpv2"], default="mlp")
|
||||
ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None)
|
||||
@@ -109,7 +128,12 @@ if args.use_f32:
|
||||
# output in the same directory as the model if output_dir is None
|
||||
dir_model = args.model_dir
|
||||
|
||||
if args.clip_model_is_vision or not os.path.exists(dir_model + "/vocab.json") or args.clip_model_is_openclip:
|
||||
if (
|
||||
args.clip_model_is_vision or
|
||||
not os.path.exists(dir_model + "/vocab.json") or
|
||||
args.clip_model_is_openclip or
|
||||
args.clip_model_is_siglip
|
||||
):
|
||||
vocab = None
|
||||
tokens = None
|
||||
else:
|
||||
@@ -137,7 +161,10 @@ ftype = 1
|
||||
if args.use_f32:
|
||||
ftype = 0
|
||||
|
||||
if args.clip_model_is_vision or args.clip_model_is_openclip:
|
||||
if args.clip_model_is_siglip:
|
||||
model = SiglipVisionModel.from_pretrained(dir_model)
|
||||
processor = None
|
||||
elif args.clip_model_is_vision or args.clip_model_is_openclip:
|
||||
model = CLIPVisionModel.from_pretrained(dir_model)
|
||||
processor = None
|
||||
else:
|
||||
@@ -165,7 +192,7 @@ output_dir = args.output_dir if args.output_dir is not None else dir_model
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
output_prefix = os.path.basename(output_dir).replace("ggml_", "")
|
||||
fname_out = os.path.join(output_dir, f"{fname_middle}model-{ftype_str[ftype]}.gguf")
|
||||
fout = GGUFWriter(path=fname_out, arch="clip")
|
||||
fout = GGUFWriter(path=fname_out, arch="clip", endianess=GGUFEndian.LITTLE if not args.bigendian else GGUFEndian.BIG)
|
||||
|
||||
fout.add_bool("clip.has_text_encoder", has_text_encoder)
|
||||
fout.add_bool("clip.has_vision_encoder", has_vision_encoder)
|
||||
@@ -187,26 +214,71 @@ else:
|
||||
if has_text_encoder:
|
||||
assert t_hparams is not None
|
||||
assert tokens is not None
|
||||
if args.clip_model_is_siglip:
|
||||
text_projection_dim = 0
|
||||
else:
|
||||
text_projection_dim = t_hparams.get("projection_dim", config["projection_dim"])
|
||||
# text_model hparams
|
||||
fout.add_uint32(k(KEY_CONTEXT_LENGTH, TEXT), t_hparams["max_position_embeddings"])
|
||||
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, TEXT), t_hparams["hidden_size"])
|
||||
fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, TEXT), t_hparams["intermediate_size"])
|
||||
fout.add_uint32("clip.text.projection_dim", t_hparams.get("projection_dim", config["projection_dim"]))
|
||||
fout.add_uint32("clip.text.projection_dim", text_projection_dim)
|
||||
fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, TEXT), t_hparams["num_attention_heads"])
|
||||
fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, TEXT), t_hparams["layer_norm_eps"])
|
||||
fout.add_uint32(k(KEY_BLOCK_COUNT, TEXT), t_hparams["num_hidden_layers"])
|
||||
fout.add_token_list(tokens)
|
||||
|
||||
|
||||
|
||||
def get_non_negative_vision_feature_layers(v_hparams):
|
||||
"""
|
||||
Determine the vision feature layer(s) for the llava model, which are indices into the
|
||||
hidden states of the visual encoder. Note that the hidden states array generally takes the
|
||||
form:
|
||||
|
||||
[<emb input>, <output of enc block 0>, ... <output of enc block num_hidden_layers>]
|
||||
|
||||
so feature indices should be offset as n+1 to get the output of encoder block n.
|
||||
We convert all vision feature layers to non-negative so that -1 can be used in
|
||||
the model as an unset value. If no vision feature layer is found, we leave it unset.
|
||||
"""
|
||||
num_hidden_layers = v_hparams["num_hidden_layers"]
|
||||
to_non_negative = lambda layer_idx: layer_idx if layer_idx >= 0 else num_hidden_layers + layer_idx + 1
|
||||
feature_layers_key = None
|
||||
# Key used for llava models in transformers
|
||||
if "vision_feature_layer" in config:
|
||||
feature_layers_key = "vision_feature_layer"
|
||||
# Key used for llava models in the original format
|
||||
elif "mm_vision_select_layer" in config:
|
||||
feature_layers_key = "mm_vision_select_layer"
|
||||
if feature_layers_key is not None:
|
||||
feature_layers = config[feature_layers_key]
|
||||
if isinstance(feature_layers, int):
|
||||
feature_layers = [feature_layers]
|
||||
return [to_non_negative(feature_layer) for feature_layer in feature_layers]
|
||||
|
||||
# Determine if we have explicitly specified vision feature layers in our config
|
||||
feature_layers = get_non_negative_vision_feature_layers(v_hparams)
|
||||
|
||||
if has_vision_encoder:
|
||||
# vision_model hparams
|
||||
# Siglip does not have a visual projector; set projection dim to 0
|
||||
if args.clip_model_is_siglip:
|
||||
visual_projection_dim = 0
|
||||
else:
|
||||
visual_projection_dim = v_hparams.get("projection_dim", config["projection_dim"])
|
||||
|
||||
# set vision_model hparams
|
||||
fout.add_uint32("clip.vision.image_size", v_hparams["image_size"])
|
||||
fout.add_uint32("clip.vision.patch_size", v_hparams["patch_size"])
|
||||
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), v_hparams["hidden_size"])
|
||||
fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, VISION), v_hparams["intermediate_size"])
|
||||
fout.add_uint32("clip.vision.projection_dim", v_hparams.get("projection_dim", config["projection_dim"]))
|
||||
fout.add_uint32("clip.vision.projection_dim", visual_projection_dim)
|
||||
fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, VISION), v_hparams["num_attention_heads"])
|
||||
fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, VISION), v_hparams["layer_norm_eps"])
|
||||
block_count = v_hparams["num_hidden_layers"] - 1 if has_llava_projector else v_hparams["num_hidden_layers"]
|
||||
if feature_layers:
|
||||
block_count = max(feature_layers)
|
||||
else:
|
||||
block_count = v_hparams["num_hidden_layers"] - 1 if has_llava_projector else v_hparams["num_hidden_layers"]
|
||||
fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), block_count)
|
||||
# /**
|
||||
# "image_grid_pinpoints": [
|
||||
@@ -258,7 +330,8 @@ if has_vision_encoder:
|
||||
fout.add_string("clip.vision.mm_patch_merge_type", v_hparams["mm_patch_merge_type"])
|
||||
if "mm_projector_type" in v_hparams:
|
||||
fout.add_string("clip.vision.mm_projector_type", v_hparams["mm_projector_type"])
|
||||
|
||||
if feature_layers:
|
||||
fout.add_array("clip.vision.feature_layer", feature_layers)
|
||||
|
||||
if processor is not None:
|
||||
image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean # pyright: ignore[reportAttributeAccessIssue]
|
||||
@@ -274,7 +347,13 @@ fout.add_bool("clip.use_gelu", use_gelu)
|
||||
|
||||
|
||||
if has_llava_projector:
|
||||
model.vision_model.encoder.layers.pop(-1)
|
||||
# By default, we drop the last layer for llava projector
|
||||
# models unless we have explicitly set vision feature layers
|
||||
if feature_layers is None:
|
||||
model.vision_model.encoder.layers.pop(-1)
|
||||
else:
|
||||
model.vision_model.encoder.layers = model.vision_model.encoder.layers[:max(feature_layers)]
|
||||
|
||||
projector = torch.load(args.llava_projector)
|
||||
for name, data in projector.items():
|
||||
name = get_tensor_name(name)
|
||||
|
||||
@@ -353,9 +353,10 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
|
||||
LOG_INF("%s: %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
|
||||
|
||||
const int32_t * image_grid = clip_image_grid(ctx_clip);
|
||||
const size_t num_gridpoints = get_clip_image_grid_size(ctx_clip);
|
||||
|
||||
std::vector<std::pair<int, int>> grid_pinpoints;
|
||||
for (int i = 0; i < 32 && image_grid[i] != 0; i += 2) {
|
||||
for (size_t i = 0; i < num_gridpoints; i += 2) {
|
||||
grid_pinpoints.push_back({image_grid[i], image_grid[i+1]});
|
||||
}
|
||||
|
||||
@@ -405,7 +406,8 @@ bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx *
|
||||
}
|
||||
|
||||
bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) {
|
||||
int num_max_patches = 6;
|
||||
// Granite vision uses up to 10 patches + base patch
|
||||
int num_max_patches = 11;
|
||||
if (clip_is_minicpmv(ctx_clip)) {
|
||||
num_max_patches = 10;
|
||||
}
|
||||
|
||||
@@ -33,6 +33,33 @@ def save_model(model, file_path, file_type):
|
||||
else:
|
||||
torch.save(model, file_path)
|
||||
|
||||
# Helpers to match weight names from specific components or
|
||||
# determine if a saved shard contains that component
|
||||
def is_vision_tower(weight_name):
|
||||
return (
|
||||
weight_name.startswith("model.vision_tower") or
|
||||
weight_name.startswith("vit.") or
|
||||
weight_name.startswith("vision_tower")
|
||||
)
|
||||
|
||||
def is_newline(weight_name):
|
||||
return (
|
||||
weight_name.startswith("model.image_newline") or
|
||||
weight_name.startswith("image_newline")
|
||||
)
|
||||
|
||||
def is_mm_projector(weight_name):
|
||||
return (
|
||||
weight_name.startswith("model.mm_projector") or
|
||||
weight_name.startswith("vision_proj.") or
|
||||
weight_name.startswith("multi_modal_projector")
|
||||
)
|
||||
|
||||
def newline_criteria(checkpoint):
|
||||
return any(is_newline(k) for k in checkpoint.keys())
|
||||
|
||||
def proj_criteria(checkpoint):
|
||||
return any(is_mm_projector(k) for k in checkpoint.keys())
|
||||
|
||||
# Adapted function to clean vision tower from checkpoint
|
||||
def clean_vision_tower_from_checkpoint(checkpoint_path):
|
||||
@@ -40,7 +67,7 @@ def clean_vision_tower_from_checkpoint(checkpoint_path):
|
||||
# file_type = 'pytorch'
|
||||
model_path = os.path.dirname(checkpoint_path)
|
||||
print(f"Searching for vision tower tensors in {checkpoint_path}")
|
||||
clip_tensors = [k for k, v in checkpoint.items() if (k.startswith("model.vision_tower") or k.startswith("vit."))]
|
||||
clip_tensors = [k for k, v in checkpoint.items() if is_vision_tower(k)]
|
||||
|
||||
if len(clip_tensors) > 0:
|
||||
print(f"Found {len(clip_tensors)} tensors to extract from {checkpoint_path}")
|
||||
@@ -84,12 +111,6 @@ def find_relevant_checkpoints(checkpoint_paths, newline_criteria, projector):
|
||||
|
||||
return newline_checkpoint_path, projector_checkpoint_path
|
||||
|
||||
def newline_criteria(checkpoint):
|
||||
return any(k.startswith("model.image_newline") for k in checkpoint.keys())
|
||||
|
||||
def proj_criteria(checkpoint):
|
||||
return any(k.startswith("model.mm_projector") or k.startswith("vision_proj.") for k in checkpoint.keys())
|
||||
|
||||
|
||||
# Command-line interface setup
|
||||
ap = argparse.ArgumentParser()
|
||||
@@ -123,14 +144,14 @@ first_checkpoint = None
|
||||
if newline_checkpoint_path is not None:
|
||||
print(f"Taking newline from {newline_checkpoint_path}")
|
||||
first_checkpoint, file_type = load_model(newline_checkpoint_path)
|
||||
first_mm_tensors = [k for k, v in first_checkpoint.items() if k.startswith("model.image_newline")]
|
||||
first_mm_tensors = [k for k, v in first_checkpoint.items() if is_newline(k)]
|
||||
|
||||
# Load the checkpoint
|
||||
mm_tensors = []
|
||||
last_checkpoint = None
|
||||
if projector_checkpoint_path is not None:
|
||||
last_checkpoint, file_type = load_model(projector_checkpoint_path)
|
||||
mm_tensors = [k for k, v in last_checkpoint.items() if k.startswith("model.mm_projector") or k.startswith("vision_proj.")]
|
||||
mm_tensors = [k for k, v in last_checkpoint.items() if is_mm_projector(k)]
|
||||
|
||||
if len(mm_tensors) == 0:
|
||||
if last_checkpoint is not None:
|
||||
@@ -155,5 +176,5 @@ if len(projector) > 0:
|
||||
save_model(projector, f"{args.model}/llava.projector", 'pytorch')
|
||||
|
||||
print("Done!")
|
||||
print(f"Now you can convert {args.model} to a a regular LLaMA GGUF file.")
|
||||
print(f"Now you can convert {args.model} to a regular LLaMA GGUF file.")
|
||||
print(f"Also, use {args.model}/llava.projector to prepare a llava-encoder.gguf file.")
|
||||
|
||||
@@ -148,19 +148,34 @@ static void process_image(struct llava_context * ctx_llava, struct llava_image_e
|
||||
process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++);
|
||||
eval_string(ctx_llava->ctx_llama, std::string("</image>").c_str(), params->n_batch, &n_past, false);
|
||||
if (num_image_embeds > 1) {
|
||||
size_t num_image_embeds_col = clip_uhd_num_image_embeds_col(ctx_llava->ctx_clip);
|
||||
eval_string(ctx_llava->ctx_llama, std::string("<slice>").c_str(), params->n_batch, &n_past, false);
|
||||
for (size_t i = 0; i < (num_image_embeds-1)/num_image_embeds_col; ++i) {
|
||||
for (size_t j = 0; j < num_image_embeds_col; ++j) {
|
||||
eval_string(ctx_llava->ctx_llama, std::string("<image>").c_str(), params->n_batch, &n_past, false);
|
||||
process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++);
|
||||
eval_string(ctx_llava->ctx_llama, std::string("</image>").c_str(), params->n_batch, &n_past, false);
|
||||
if (j == num_image_embeds_col - 1) {
|
||||
eval_string(ctx_llava->ctx_llama, std::string("\n").c_str(), params->n_batch, &n_past, false);
|
||||
if (has_minicpmv_projector == 2) {
|
||||
size_t num_image_embeds_col = clip_uhd_num_image_embeds_col(ctx_llava->ctx_clip);
|
||||
eval_string(ctx_llava->ctx_llama, std::string("<slice>").c_str(), params->n_batch, &n_past, false);
|
||||
for (size_t i = 0; i < (num_image_embeds-1)/num_image_embeds_col; ++i) {
|
||||
for (size_t j = 0; j < num_image_embeds_col; ++j) {
|
||||
eval_string(ctx_llava->ctx_llama, std::string("<image>").c_str(), params->n_batch, &n_past, false);
|
||||
process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++);
|
||||
eval_string(ctx_llava->ctx_llama, std::string("</image>").c_str(), params->n_batch, &n_past, false);
|
||||
if (j == num_image_embeds_col - 1) {
|
||||
eval_string(ctx_llava->ctx_llama, std::string("\n").c_str(), params->n_batch, &n_past, false);
|
||||
}
|
||||
}
|
||||
}
|
||||
eval_string(ctx_llava->ctx_llama, std::string("</slice>").c_str(), params->n_batch, &n_past, false);
|
||||
}
|
||||
else if (has_minicpmv_projector == 3 || has_minicpmv_projector == 4) {
|
||||
size_t num_image_embeds_col = clip_uhd_num_image_embeds_col(ctx_llava->ctx_clip);
|
||||
for (size_t i = 0; i < (num_image_embeds-1)/num_image_embeds_col; ++i) {
|
||||
for (size_t j = 0; j < num_image_embeds_col; ++j) {
|
||||
eval_string(ctx_llava->ctx_llama, std::string("<slice>").c_str(), params->n_batch, &n_past, false);
|
||||
process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++);
|
||||
eval_string(ctx_llava->ctx_llama, std::string("</slice>").c_str(), params->n_batch, &n_past, false);
|
||||
if (j == num_image_embeds_col - 1) {
|
||||
eval_string(ctx_llava->ctx_llama, std::string("\n").c_str(), params->n_batch, &n_past, false);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
eval_string(ctx_llava->ctx_llama, std::string("</slice>").c_str(), params->n_batch, &n_past, false);
|
||||
}
|
||||
LOG_INF("%s: image token past: %d\n", __func__, n_past);
|
||||
}
|
||||
|
||||
@@ -597,7 +597,6 @@ elif args.minicpmv_projector is not None:
|
||||
fname_middle = "mmproj-"
|
||||
has_text_encoder = False
|
||||
has_minicpmv_projector = True
|
||||
minicpmv_version = 4
|
||||
elif args.vision_only:
|
||||
fname_middle = "vision-"
|
||||
has_text_encoder = False
|
||||
|
||||
@@ -7,6 +7,7 @@
|
||||
#include <cstdio>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
|
||||
struct ngram_data {
|
||||
bool active = false;
|
||||
|
||||
@@ -31,8 +31,6 @@
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
static const char * DEFAULT_SYSTEM_MESSAGE = "You are a helpful assistant";
|
||||
|
||||
static llama_context ** g_ctx;
|
||||
static llama_model ** g_model;
|
||||
static common_sampler ** g_smpl;
|
||||
@@ -47,8 +45,8 @@ static void print_usage(int argc, char ** argv) {
|
||||
(void) argc;
|
||||
|
||||
LOG("\nexample usage:\n");
|
||||
LOG("\n text generation: %s -m your_model.gguf -p \"I believe the meaning of life is\" -n 128\n", argv[0]);
|
||||
LOG("\n chat (conversation): %s -m your_model.gguf -p \"You are a helpful assistant\" -cnv\n", argv[0]);
|
||||
LOG("\n text generation: %s -m your_model.gguf -p \"I believe the meaning of life is\" -n 128 -no-cnv\n", argv[0]);
|
||||
LOG("\n chat (conversation): %s -m your_model.gguf -sys \"You are a helpful assistant\"\n", argv[0]);
|
||||
LOG("\n");
|
||||
}
|
||||
|
||||
@@ -219,6 +217,10 @@ int main(int argc, char ** argv) {
|
||||
// print chat template example in conversation mode
|
||||
if (params.conversation_mode) {
|
||||
if (params.enable_chat_template) {
|
||||
if (!params.prompt.empty() && params.system_prompt.empty()) {
|
||||
LOG_WRN("*** User-specified prompt will pre-start conversation, did you mean to set --system-prompt (-sys) instead?\n");
|
||||
}
|
||||
|
||||
LOG_INF("%s: chat template example:\n%s\n", __func__, common_chat_format_example(chat_templates.get(), params.use_jinja).c_str());
|
||||
} else {
|
||||
LOG_INF("%s: in-suffix/prefix is specified, chat template will be disabled\n", __func__);
|
||||
@@ -263,6 +265,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
std::vector<llama_token> embd_inp;
|
||||
|
||||
bool waiting_for_first_input = false;
|
||||
auto chat_add_and_format = [&chat_msgs, &chat_templates](const std::string & role, const std::string & content) {
|
||||
common_chat_msg new_msg;
|
||||
new_msg.role = role;
|
||||
@@ -273,13 +276,34 @@ int main(int argc, char ** argv) {
|
||||
return formatted;
|
||||
};
|
||||
|
||||
std::string prompt;
|
||||
{
|
||||
auto prompt = (params.conversation_mode && params.enable_chat_template)
|
||||
// format the system prompt in conversation mode (fallback to default if empty)
|
||||
? chat_add_and_format("system", params.prompt.empty() ? DEFAULT_SYSTEM_MESSAGE : params.prompt)
|
||||
if (params.conversation_mode && params.enable_chat_template) {
|
||||
if (!params.system_prompt.empty()) {
|
||||
// format the system prompt (will use template default if empty)
|
||||
chat_add_and_format("system", params.system_prompt);
|
||||
}
|
||||
|
||||
if (!params.prompt.empty()) {
|
||||
// format and append the user prompt
|
||||
chat_add_and_format("user", params.prompt);
|
||||
} else {
|
||||
waiting_for_first_input = true;
|
||||
}
|
||||
|
||||
if (!params.system_prompt.empty() || !params.prompt.empty()) {
|
||||
common_chat_templates_inputs inputs;
|
||||
inputs.messages = chat_msgs;
|
||||
inputs.add_generation_prompt = !params.prompt.empty();
|
||||
|
||||
prompt = common_chat_templates_apply(chat_templates.get(), inputs).prompt;
|
||||
}
|
||||
} else {
|
||||
// otherwise use the prompt as is
|
||||
: params.prompt;
|
||||
if (params.interactive_first || !params.prompt.empty() || session_tokens.empty()) {
|
||||
prompt = params.prompt;
|
||||
}
|
||||
|
||||
if (params.interactive_first || !prompt.empty() || session_tokens.empty()) {
|
||||
LOG_DBG("tokenize the prompt\n");
|
||||
embd_inp = common_tokenize(ctx, prompt, true, true);
|
||||
} else {
|
||||
@@ -292,7 +316,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// Should not run without any tokens
|
||||
if (embd_inp.empty()) {
|
||||
if (!waiting_for_first_input && embd_inp.empty()) {
|
||||
if (add_bos) {
|
||||
embd_inp.push_back(llama_vocab_bos(vocab));
|
||||
LOG_WRN("embd_inp was considered empty and bos was added: %s\n", string_from(ctx, embd_inp).c_str());
|
||||
@@ -352,7 +376,12 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
if (params.conversation_mode) {
|
||||
params.interactive_first = true;
|
||||
if (params.single_turn && !params.prompt.empty()) {
|
||||
params.interactive = false;
|
||||
params.interactive_first = false;
|
||||
} else {
|
||||
params.interactive_first = true;
|
||||
}
|
||||
}
|
||||
|
||||
// enable interactive mode if interactive start is specified
|
||||
@@ -476,8 +505,8 @@ int main(int argc, char ** argv) {
|
||||
LOG_INF( " - Press Ctrl+C to interject at any time.\n");
|
||||
#endif
|
||||
LOG_INF( "%s", control_message);
|
||||
if (params.conversation_mode && params.enable_chat_template && params.prompt.empty()) {
|
||||
LOG_INF( " - Using default system message. To change it, set a different value via -p PROMPT or -f FILE argument.\n");
|
||||
if (params.conversation_mode && params.enable_chat_template && params.system_prompt.empty()) {
|
||||
LOG_INF( " - Not using system message. To change it, set a different value via -sys PROMPT\n");
|
||||
}
|
||||
LOG_INF("\n");
|
||||
|
||||
@@ -773,7 +802,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// deal with end of generation tokens in interactive mode
|
||||
if (llama_vocab_is_eog(vocab, common_sampler_last(smpl))) {
|
||||
if (!waiting_for_first_input && llama_vocab_is_eog(vocab, common_sampler_last(smpl))) {
|
||||
LOG_DBG("found an EOG token\n");
|
||||
|
||||
if (params.interactive) {
|
||||
@@ -793,12 +822,17 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// if current token is not EOG, we add it to current assistant message
|
||||
if (params.conversation_mode) {
|
||||
if (params.conversation_mode && !waiting_for_first_input) {
|
||||
const auto id = common_sampler_last(smpl);
|
||||
assistant_ss << common_token_to_piece(ctx, id, false);
|
||||
|
||||
if (!prompt.empty()) {
|
||||
prompt.clear();
|
||||
is_interacting = false;
|
||||
}
|
||||
}
|
||||
|
||||
if (n_past > 0 && is_interacting) {
|
||||
if ((n_past > 0 || waiting_for_first_input) && is_interacting) {
|
||||
LOG_DBG("waiting for user input\n");
|
||||
|
||||
if (params.conversation_mode) {
|
||||
@@ -888,11 +922,17 @@ int main(int argc, char ** argv) {
|
||||
input_echo = false; // do not echo this again
|
||||
}
|
||||
|
||||
if (n_past > 0) {
|
||||
if (n_past > 0 || waiting_for_first_input) {
|
||||
if (is_interacting) {
|
||||
common_sampler_reset(smpl);
|
||||
}
|
||||
is_interacting = false;
|
||||
|
||||
if (waiting_for_first_input && params.single_turn) {
|
||||
params.interactive = false;
|
||||
params.interactive_first = false;
|
||||
}
|
||||
waiting_for_first_input = false;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -12,6 +12,7 @@
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <ctime>
|
||||
#include <algorithm>
|
||||
|
||||
// trim whitespace from the beginning and end of a string
|
||||
static std::string trim(const std::string & str) {
|
||||
|
||||
@@ -7,6 +7,7 @@
|
||||
#include <cstdio>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
|
||||
static void print_usage(int, char ** argv) {
|
||||
LOG("\nexample usage:\n");
|
||||
|
||||
@@ -8,6 +8,7 @@
|
||||
#include <unordered_map>
|
||||
#include <fstream>
|
||||
#include <cmath>
|
||||
#include <cctype>
|
||||
|
||||
struct quant_option {
|
||||
std::string name;
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -47,27 +47,27 @@ extern "C" {
|
||||
#include <stddef.h> /* For size_t. */
|
||||
#include <stdlib.h>
|
||||
|
||||
extern const char *linenoiseEditMore;
|
||||
extern const char * linenoiseEditMore;
|
||||
|
||||
/* The linenoiseState structure represents the state during line editing.
|
||||
* We pass this state to functions implementing specific editing
|
||||
* functionalities. */
|
||||
struct linenoiseState {
|
||||
int in_completion; /* The user pressed TAB and we are now in completion
|
||||
int in_completion; /* The user pressed TAB and we are now in completion
|
||||
* mode, so input is handled by completeLine(). */
|
||||
size_t completion_idx; /* Index of next completion to propose. */
|
||||
int ifd; /* Terminal stdin file descriptor. */
|
||||
int ofd; /* Terminal stdout file descriptor. */
|
||||
char *buf; /* Edited line buffer. */
|
||||
size_t buflen; /* Edited line buffer size. */
|
||||
const char *prompt; /* Prompt to display. */
|
||||
size_t plen; /* Prompt length. */
|
||||
size_t pos; /* Current cursor position. */
|
||||
size_t oldpos; /* Previous refresh cursor position. */
|
||||
size_t len; /* Current edited line length. */
|
||||
size_t cols; /* Number of columns in terminal. */
|
||||
size_t oldrows; /* Rows used by last refrehsed line (multiline mode) */
|
||||
int history_index; /* The history index we are currently editing. */
|
||||
size_t completion_idx; /* Index of next completion to propose. */
|
||||
int ifd; /* Terminal stdin file descriptor. */
|
||||
int ofd; /* Terminal stdout file descriptor. */
|
||||
char * buf; /* Edited line buffer. */
|
||||
size_t buflen; /* Edited line buffer size. */
|
||||
const char * prompt; /* Prompt to display. */
|
||||
size_t plen; /* Prompt length. */
|
||||
size_t pos; /* Current cursor position. */
|
||||
size_t oldcolpos; /* Previous refresh cursor column position. */
|
||||
size_t len; /* Current edited line length. */
|
||||
size_t cols; /* Number of columns in terminal. */
|
||||
size_t oldrows; /* Rows used by last refreshed line (multiline mode) */
|
||||
int history_index; /* The history index we are currently editing. */
|
||||
};
|
||||
|
||||
struct linenoiseCompletions {
|
||||
@@ -89,19 +89,20 @@ struct linenoiseCompletions {
|
||||
};
|
||||
|
||||
/* Non blocking API. */
|
||||
int linenoiseEditStart(struct linenoiseState *l, int stdin_fd, int stdout_fd, char *buf, size_t buflen, const char *prompt);
|
||||
const char *linenoiseEditFeed(struct linenoiseState *l);
|
||||
void linenoiseEditStop(struct linenoiseState *l);
|
||||
void linenoiseHide(struct linenoiseState *l);
|
||||
void linenoiseShow(struct linenoiseState *l);
|
||||
int linenoiseEditStart(struct linenoiseState * l, int stdin_fd, int stdout_fd, char * buf, size_t buflen,
|
||||
const char * prompt);
|
||||
const char * linenoiseEditFeed(struct linenoiseState * l);
|
||||
void linenoiseEditStop(struct linenoiseState * l);
|
||||
void linenoiseHide(struct linenoiseState * l);
|
||||
void linenoiseShow(struct linenoiseState * l);
|
||||
|
||||
/* Blocking API. */
|
||||
const char *linenoise(const char *prompt);
|
||||
void linenoiseFree(void *ptr);
|
||||
const char * linenoise(const char * prompt);
|
||||
void linenoiseFree(void * ptr);
|
||||
|
||||
/* Completion API. */
|
||||
typedef void(linenoiseCompletionCallback)(const char *, linenoiseCompletions *);
|
||||
typedef const char*(linenoiseHintsCallback)(const char *, int *color, int *bold);
|
||||
typedef const char *(linenoiseHintsCallback) (const char *, int * color, int * bold);
|
||||
typedef void(linenoiseFreeHintsCallback)(const char *);
|
||||
void linenoiseSetCompletionCallback(linenoiseCompletionCallback *);
|
||||
void linenoiseSetHintsCallback(linenoiseHintsCallback *);
|
||||
@@ -109,10 +110,10 @@ void linenoiseSetFreeHintsCallback(linenoiseFreeHintsCallback *);
|
||||
void linenoiseAddCompletion(linenoiseCompletions *, const char *);
|
||||
|
||||
/* History API. */
|
||||
int linenoiseHistoryAdd(const char *line);
|
||||
int linenoiseHistoryAdd(const char * line);
|
||||
int linenoiseHistorySetMaxLen(int len);
|
||||
int linenoiseHistorySave(const char *filename);
|
||||
int linenoiseHistoryLoad(const char *filename);
|
||||
int linenoiseHistorySave(const char * filename);
|
||||
int linenoiseHistoryLoad(const char * filename);
|
||||
|
||||
/* Other utilities. */
|
||||
void linenoiseClearScreen(void);
|
||||
@@ -121,6 +122,14 @@ void linenoisePrintKeyCodes(void);
|
||||
void linenoiseMaskModeEnable(void);
|
||||
void linenoiseMaskModeDisable(void);
|
||||
|
||||
/* Encoding functions. */
|
||||
typedef size_t(linenoisePrevCharLen)(const char * buf, size_t buf_len, size_t pos, size_t * col_len);
|
||||
typedef size_t(linenoiseNextCharLen)(const char * buf, size_t buf_len, size_t pos, size_t * col_len);
|
||||
typedef size_t(linenoiseReadCode)(int fd, char * buf, size_t buf_len, int * c);
|
||||
|
||||
void linenoiseSetEncodingFunctions(linenoisePrevCharLen * prevCharLenFunc, linenoiseNextCharLen * nextCharLenFunc,
|
||||
linenoiseReadCode * readCodeFunc);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
@@ -323,25 +323,17 @@ class File {
|
||||
return 0;
|
||||
}
|
||||
|
||||
std::string read_all(const std::string & filename){
|
||||
open(filename, "r");
|
||||
lock();
|
||||
if (!file) {
|
||||
printe("Error opening file '%s': %s", filename.c_str(), strerror(errno));
|
||||
return "";
|
||||
}
|
||||
|
||||
std::string to_string() {
|
||||
fseek(file, 0, SEEK_END);
|
||||
size_t size = ftell(file);
|
||||
const size_t size = ftell(file);
|
||||
fseek(file, 0, SEEK_SET);
|
||||
|
||||
std::string out;
|
||||
out.resize(size);
|
||||
size_t read_size = fread(&out[0], 1, size, file);
|
||||
const size_t read_size = fread(&out[0], 1, size, file);
|
||||
if (read_size != size) {
|
||||
printe("Error reading file '%s': %s", filename.c_str(), strerror(errno));
|
||||
return "";
|
||||
printe("Error reading file: %s", strerror(errno));
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
@@ -985,7 +977,8 @@ static int generate(LlamaData & llama_data, const std::string & prompt, std::str
|
||||
}
|
||||
|
||||
static int read_user_input(std::string & user_input) {
|
||||
static const char * prompt_prefix = "> ";
|
||||
static const char * prompt_prefix_env = std::getenv("LLAMA_PROMPT_PREFIX");
|
||||
static const char * prompt_prefix = prompt_prefix_env ? prompt_prefix_env : "> ";
|
||||
#ifdef WIN32
|
||||
printf("\r" LOG_CLR_TO_EOL LOG_COL_DEFAULT "%s", prompt_prefix);
|
||||
|
||||
@@ -1098,59 +1091,66 @@ static int get_user_input(std::string & user_input, const std::string & user) {
|
||||
|
||||
// Reads a chat template file to be used
|
||||
static std::string read_chat_template_file(const std::string & chat_template_file) {
|
||||
if(chat_template_file.empty()){
|
||||
return "";
|
||||
}
|
||||
|
||||
File file;
|
||||
std::string chat_template = "";
|
||||
chat_template = file.read_all(chat_template_file);
|
||||
if(chat_template.empty()){
|
||||
if (!file.open(chat_template_file, "r")) {
|
||||
printe("Error opening chat template file '%s': %s", chat_template_file.c_str(), strerror(errno));
|
||||
return "";
|
||||
}
|
||||
return chat_template;
|
||||
|
||||
return file.to_string();
|
||||
}
|
||||
|
||||
static int process_user_message(const Opt & opt, const std::string & user_input, LlamaData & llama_data,
|
||||
const common_chat_templates_ptr & chat_templates, int & prev_len,
|
||||
const bool stdout_a_terminal) {
|
||||
add_message("user", opt.user.empty() ? user_input : opt.user, llama_data);
|
||||
int new_len;
|
||||
if (apply_chat_template_with_error_handling(chat_templates.get(), llama_data, true, new_len, opt.use_jinja) < 0) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
std::string prompt(llama_data.fmtted.begin() + prev_len, llama_data.fmtted.begin() + new_len);
|
||||
std::string response;
|
||||
if (generate_response(llama_data, prompt, response, stdout_a_terminal)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (!opt.user.empty()) {
|
||||
return 2;
|
||||
}
|
||||
|
||||
add_message("assistant", response, llama_data);
|
||||
if (apply_chat_template_with_error_handling(chat_templates.get(), llama_data, false, prev_len, opt.use_jinja) < 0) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Main chat loop function
|
||||
static int chat_loop(LlamaData & llama_data, const std::string & user, const std::string & chat_template_file, bool use_jinja) {
|
||||
static int chat_loop(LlamaData & llama_data, const Opt & opt) {
|
||||
int prev_len = 0;
|
||||
llama_data.fmtted.resize(llama_n_ctx(llama_data.context.get()));
|
||||
|
||||
std::string chat_template = "";
|
||||
if(!chat_template_file.empty()){
|
||||
chat_template = read_chat_template_file(chat_template_file);
|
||||
std::string chat_template;
|
||||
if (!opt.chat_template_file.empty()) {
|
||||
chat_template = read_chat_template_file(opt.chat_template_file);
|
||||
}
|
||||
auto chat_templates = common_chat_templates_init(llama_data.model.get(), chat_template.empty() ? nullptr : chat_template);
|
||||
|
||||
common_chat_templates_ptr chat_templates = common_chat_templates_init(llama_data.model.get(), chat_template);
|
||||
static const bool stdout_a_terminal = is_stdout_a_terminal();
|
||||
while (true) {
|
||||
// Get user input
|
||||
std::string user_input;
|
||||
if (get_user_input(user_input, user) == 1) {
|
||||
if (get_user_input(user_input, opt.user) == 1) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
add_message("user", user.empty() ? user_input : user, llama_data);
|
||||
int new_len;
|
||||
if (apply_chat_template_with_error_handling(chat_templates.get(), llama_data, true, new_len, use_jinja) < 0) {
|
||||
const int ret = process_user_message(opt, user_input, llama_data, chat_templates, prev_len, stdout_a_terminal);
|
||||
if (ret == 1) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
std::string prompt(llama_data.fmtted.begin() + prev_len, llama_data.fmtted.begin() + new_len);
|
||||
std::string response;
|
||||
if (generate_response(llama_data, prompt, response, stdout_a_terminal)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (!user.empty()) {
|
||||
} else if (ret == 2) {
|
||||
break;
|
||||
}
|
||||
|
||||
add_message("assistant", response, llama_data);
|
||||
if (apply_chat_template_with_error_handling(chat_templates.get(), llama_data, false, prev_len, use_jinja) < 0) {
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
@@ -1208,7 +1208,7 @@ int main(int argc, const char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (chat_loop(llama_data, opt.user, opt.chat_template_file, opt.use_jinja)) {
|
||||
if (chat_loop(llama_data, opt)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
@@ -13,6 +13,7 @@ Set of LLM REST APIs and a simple web front end to interact with llama.cpp.
|
||||
* Multimodal (wip)
|
||||
* Monitoring endpoints
|
||||
* Schema-constrained JSON response format
|
||||
* [Function calling](../../docs/function-calling.md) / tool use for ~any model
|
||||
|
||||
The project is under active development, and we are [looking for feedback and contributors](https://github.com/ggml-org/llama.cpp/issues/4216).
|
||||
|
||||
@@ -1120,381 +1121,9 @@ curl http://localhost:8080/v1/chat/completions \
|
||||
|
||||
*Tool call support*
|
||||
|
||||
[Function calling](https://platform.openai.com/docs/guides/function-calling) is supported for all models (see https://github.com/ggml-org/llama.cpp/pull/9639):
|
||||
[OpenAI-style function calling](https://platform.openai.com/docs/guides/function-calling) is supported with the `--jinja` flag (and may require a `--chat-template-file` override to get the right tool-use compatible Jinja template; worst case, `--chat-template chatml` may also work).
|
||||
|
||||
- Requires `--jinja` flag
|
||||
- Native tool call formats supported:
|
||||
- Llama 3.1 / 3.3 (including builtin tools support - tool names for `wolfram_alpha`, `web_search` / `brave_search`, `code_interpreter`), Llama 3.2
|
||||
- Functionary v3.1 / v3.2
|
||||
- Hermes 2/3, Qwen 2.5
|
||||
- Mistral Nemo
|
||||
- Firefunction v2
|
||||
- Command R7B
|
||||
- DeepSeek R1 (WIP / seems reluctant to call any tools?)
|
||||
|
||||
<details>
|
||||
<summary>Show some common templates and which format handler they use</summary>
|
||||
|
||||
| Template | Format |
|
||||
|----------|--------|
|
||||
| Almawave-Velvet-14B.jinja | Hermes 2 Pro |
|
||||
| AtlaAI-Selene-1-Mini-Llama-3.1-8B.jinja | Llama 3.x |
|
||||
| CohereForAI-aya-expanse-8b.jinja | Generic |
|
||||
| CohereForAI-c4ai-command-r-plus-default.jinja | Generic |
|
||||
| CohereForAI-c4ai-command-r-plus-rag.jinja | Generic |
|
||||
| CohereForAI-c4ai-command-r-plus-tool_use.jinja | Generic |
|
||||
| CohereForAI-c4ai-command-r7b-12-2024-default.jinja | Command R7B (extract reasoning) |
|
||||
| CohereForAI-c4ai-command-r7b-12-2024-rag.jinja | Command R7B (extract reasoning) |
|
||||
| CohereForAI-c4ai-command-r7b-12-2024-tool_use.jinja | Command R7B (extract reasoning) |
|
||||
| CohereForAI-c4ai-command-r7b-12-2024.jinja | Generic |
|
||||
| DavieLion-Llama-3.2-1B-SPIN-iter3.jinja | Generic |
|
||||
| Delta-Vector-Rei-12B.jinja | Mistral Nemo |
|
||||
| EpistemeAI-Mistral-Nemo-Instruct-12B-Philosophy-Math.jinja | Mistral Nemo |
|
||||
| FlofloB-83k_continued_pretraining_Qwen2.5-0.5B-Instruct_Unsloth_merged_16bit.jinja | Hermes 2 Pro |
|
||||
| FlofloB-test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit.jinja | Generic |
|
||||
| HelpingAI-HAI-SER.jinja | Generic |
|
||||
| HuggingFaceTB-SmolLM2-1.7B-Instruct.jinja | Generic |
|
||||
| HuggingFaceTB-SmolLM2-135M-Instruct.jinja | Generic |
|
||||
| HuggingFaceTB-SmolLM2-360M-Instruct.jinja | Generic |
|
||||
| INSAIT-Institute-BgGPT-Gemma-2-27B-IT-v1.0.jinja | Generic |
|
||||
| Ihor-Text2Graph-R1-Qwen2.5-0.5b.jinja | Hermes 2 Pro |
|
||||
| Infinigence-Megrez-3B-Instruct.jinja | Generic |
|
||||
| Josephgflowers-TinyLlama_v1.1_math_code-world-test-1.jinja | Generic |
|
||||
| LGAI-EXAONE-EXAONE-3.5-2.4B-Instruct.jinja | Generic |
|
||||
| LGAI-EXAONE-EXAONE-3.5-7.8B-Instruct.jinja | Generic |
|
||||
| LatitudeGames-Wayfarer-12B.jinja | Generic |
|
||||
| Magpie-Align-Llama-3-8B-Magpie-Align-v0.1.jinja | Generic |
|
||||
| Magpie-Align-Llama-3.1-8B-Magpie-Align-v0.1.jinja | Generic |
|
||||
| MaziyarPanahi-calme-3.2-instruct-78b.jinja | Generic |
|
||||
| MiniMaxAI-MiniMax-Text-01.jinja | Generic |
|
||||
| MiniMaxAI-MiniMax-VL-01.jinja | Generic |
|
||||
| NaniDAO-deepseek-r1-qwen-2.5-32B-ablated.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| NexaAIDev-Octopus-v2.jinja | Generic |
|
||||
| NousResearch-Hermes-2-Pro-Llama-3-8B-default.jinja | Generic |
|
||||
| NousResearch-Hermes-2-Pro-Llama-3-8B-tool_use.jinja | Hermes 2 Pro |
|
||||
| NousResearch-Hermes-2-Pro-Mistral-7B-default.jinja | Generic |
|
||||
| NousResearch-Hermes-2-Pro-Mistral-7B-tool_use.jinja | Hermes 2 Pro |
|
||||
| NousResearch-Hermes-3-Llama-3.1-70B-default.jinja | Generic |
|
||||
| NousResearch-Hermes-3-Llama-3.1-70B-tool_use.jinja | Hermes 2 Pro |
|
||||
| NovaSky-AI-Sky-T1-32B-Flash.jinja | Hermes 2 Pro |
|
||||
| NovaSky-AI-Sky-T1-32B-Preview.jinja | Hermes 2 Pro |
|
||||
| OnlyCheeini-greesychat-turbo.jinja | Generic |
|
||||
| Orenguteng-Llama-3.1-8B-Lexi-Uncensored-V2.jinja | Llama 3.x |
|
||||
| OrionStarAI-Orion-14B-Chat.jinja | Generic |
|
||||
| PowerInfer-SmallThinker-3B-Preview.jinja | Generic |
|
||||
| PrimeIntellect-INTELLECT-1-Instruct.jinja | Generic |
|
||||
| Qwen-QVQ-72B-Preview.jinja | Generic |
|
||||
| Qwen-QwQ-32B-Preview.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen1.5-7B-Chat.jinja | Generic |
|
||||
| Qwen-Qwen2-7B-Instruct.jinja | Generic |
|
||||
| Qwen-Qwen2-VL-72B-Instruct.jinja | Generic |
|
||||
| Qwen-Qwen2-VL-7B-Instruct.jinja | Generic |
|
||||
| Qwen-Qwen2.5-0.5B.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-1.5B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-14B-Instruct-1M.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-14B.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-32B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-32B.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-3B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-72B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-7B-Instruct-1M.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-7B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-7B.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-Coder-32B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-Coder-7B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-Math-1.5B.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-Math-7B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-VL-3B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-VL-72B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-VL-7B-Instruct.jinja | Hermes 2 Pro |
|
||||
| RWKV-Red-Team-ARWKV-7B-Preview-0.1.jinja | Hermes 2 Pro |
|
||||
| SakanaAI-TinySwallow-1.5B-Instruct.jinja | Hermes 2 Pro |
|
||||
| SakanaAI-TinySwallow-1.5B.jinja | Hermes 2 Pro |
|
||||
| Sao10K-70B-L3.3-Cirrus-x1.jinja | Llama 3.x |
|
||||
| SentientAGI-Dobby-Mini-Leashed-Llama-3.1-8B.jinja | Llama 3.x |
|
||||
| SentientAGI-Dobby-Mini-Unhinged-Llama-3.1-8B.jinja | Llama 3.x |
|
||||
| Steelskull-L3.3-Damascus-R1.jinja | Llama 3.x |
|
||||
| Steelskull-L3.3-MS-Nevoria-70b.jinja | Llama 3.x |
|
||||
| Steelskull-L3.3-Nevoria-R1-70b.jinja | Llama 3.x |
|
||||
| THUDM-glm-4-9b-chat.jinja | Generic |
|
||||
| THUDM-glm-edge-1.5b-chat.jinja | Generic |
|
||||
| Tarek07-Progenitor-V1.1-LLaMa-70B.jinja | Llama 3.x |
|
||||
| TheBloke-FusionNet_34Bx2_MoE-AWQ.jinja | Generic |
|
||||
| TinyLlama-TinyLlama-1.1B-Chat-v1.0.jinja | Generic |
|
||||
| UCLA-AGI-Mistral7B-PairRM-SPPO-Iter3.jinja | Generic |
|
||||
| ValiantLabs-Llama3.1-8B-Enigma.jinja | Llama 3.x |
|
||||
| abacusai-Fewshot-Metamath-OrcaVicuna-Mistral.jinja | Generic |
|
||||
| ai21labs-AI21-Jamba-1.5-Large.jinja | Generic |
|
||||
| allenai-Llama-3.1-Tulu-3-405B-SFT.jinja | Generic |
|
||||
| allenai-Llama-3.1-Tulu-3-405B.jinja | Generic |
|
||||
| allenai-Llama-3.1-Tulu-3-8B.jinja | Generic |
|
||||
| arcee-ai-Virtuoso-Lite.jinja | Hermes 2 Pro |
|
||||
| arcee-ai-Virtuoso-Medium-v2.jinja | Hermes 2 Pro |
|
||||
| arcee-ai-Virtuoso-Small-v2.jinja | Hermes 2 Pro |
|
||||
| avemio-GRAG-NEMO-12B-ORPO-HESSIAN-AI.jinja | Generic |
|
||||
| bespokelabs-Bespoke-Stratos-7B.jinja | Hermes 2 Pro |
|
||||
| bfuzzy1-acheron-m1a-llama.jinja | Generic |
|
||||
| bofenghuang-vigogne-2-70b-chat.jinja | Generic |
|
||||
| bytedance-research-UI-TARS-72B-DPO.jinja | Generic |
|
||||
| bytedance-research-UI-TARS-7B-DPO.jinja | Generic |
|
||||
| bytedance-research-UI-TARS-7B-SFT.jinja | Generic |
|
||||
| carsenk-phi3.5_mini_exp_825_uncensored.jinja | Generic |
|
||||
| cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| databricks-dbrx-instruct.jinja | Generic |
|
||||
| deepseek-ai-DeepSeek-Coder-V2-Instruct.jinja | Generic |
|
||||
| deepseek-ai-DeepSeek-Coder-V2-Lite-Base.jinja | Generic |
|
||||
| deepseek-ai-DeepSeek-Coder-V2-Lite-Instruct.jinja | Generic |
|
||||
| deepseek-ai-DeepSeek-R1-Distill-Llama-70B.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-DeepSeek-R1-Distill-Llama-8B.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-DeepSeek-R1-Distill-Qwen-1.5B.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-DeepSeek-R1-Distill-Qwen-14B.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-DeepSeek-R1-Distill-Qwen-32B.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-DeepSeek-R1-Distill-Qwen-7B.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-DeepSeek-R1-Zero.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-DeepSeek-R1.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-DeepSeek-V2-Lite.jinja | Generic |
|
||||
| deepseek-ai-DeepSeek-V2.5.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-DeepSeek-V3.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-deepseek-coder-33b-instruct.jinja | Generic |
|
||||
| deepseek-ai-deepseek-coder-6.7b-instruct.jinja | Generic |
|
||||
| deepseek-ai-deepseek-coder-7b-instruct-v1.5.jinja | Generic |
|
||||
| deepseek-ai-deepseek-llm-67b-chat.jinja | Generic |
|
||||
| deepseek-ai-deepseek-llm-7b-chat.jinja | Generic |
|
||||
| dicta-il-dictalm2.0-instruct.jinja | Generic |
|
||||
| ehristoforu-Falcon3-8B-Franken-Basestruct.jinja | Hermes 2 Pro |
|
||||
| fireworks-ai-llama-3-firefunction-v2.jinja | FireFunction v2 |
|
||||
| godlikehhd-alpaca_data_sampled_ifd_new_5200.jinja | Hermes 2 Pro |
|
||||
| godlikehhd-alpaca_data_score_max_0.7_2600.jinja | Hermes 2 Pro |
|
||||
| google-gemma-2-27b-it.jinja | Generic |
|
||||
| google-gemma-2-2b-it.jinja | Generic |
|
||||
| google-gemma-2-2b-jpn-it.jinja | Generic |
|
||||
| google-gemma-7b-it.jinja | Generic |
|
||||
| huihui-ai-DeepSeek-R1-Distill-Llama-70B-abliterated.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| huihui-ai-DeepSeek-R1-Distill-Llama-8B-abliterated.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| huihui-ai-DeepSeek-R1-Distill-Qwen-14B-abliterated-v2.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| huihui-ai-DeepSeek-R1-Distill-Qwen-32B-abliterated.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| huihui-ai-DeepSeek-R1-Distill-Qwen-7B-abliterated-v2.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| huihui-ai-Qwen2.5-14B-Instruct-1M-abliterated.jinja | Hermes 2 Pro |
|
||||
| ibm-granite-granite-3.1-8b-instruct.jinja | Generic |
|
||||
| indischepartij-MiniCPM-3B-OpenHermes-2.5-v2.jinja | Generic |
|
||||
| inflatebot-MN-12B-Mag-Mell-R1.jinja | Generic |
|
||||
| jinaai-ReaderLM-v2.jinja | Generic |
|
||||
| kms7530-chemeng_qwen-math-7b_24_1_100_1_nonmath.jinja | Hermes 2 Pro |
|
||||
| knifeayumu-Cydonia-v1.3-Magnum-v4-22B.jinja | Mistral Nemo |
|
||||
| langgptai-qwen1.5-7b-chat-sa-v0.1.jinja | Generic |
|
||||
| lightblue-DeepSeek-R1-Distill-Qwen-7B-Japanese.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| mattshumer-Reflection-Llama-3.1-70B.jinja | Generic |
|
||||
| meetkai-functionary-medium-v3.1.jinja | Functionary v3.1 Llama 3.1 |
|
||||
| meetkai-functionary-medium-v3.2.jinja | Functionary v3.2 |
|
||||
| meta-llama-Llama-2-7b-chat-hf.jinja | Generic |
|
||||
| meta-llama-Llama-3.1-8B-Instruct.jinja | Llama 3.x |
|
||||
| meta-llama-Llama-3.2-11B-Vision-Instruct.jinja | Llama 3.x |
|
||||
| meta-llama-Llama-3.2-1B-Instruct.jinja | Llama 3.x |
|
||||
| meta-llama-Llama-3.2-3B-Instruct.jinja | Llama 3.x |
|
||||
| meta-llama-Llama-3.3-70B-Instruct.jinja | Llama 3.x |
|
||||
| meta-llama-Meta-Llama-3-8B-Instruct.jinja | Generic |
|
||||
| meta-llama-Meta-Llama-3.1-8B-Instruct.jinja | Llama 3.x |
|
||||
| microsoft-Phi-3-medium-4k-instruct.jinja | Generic |
|
||||
| microsoft-Phi-3-mini-4k-instruct.jinja | Generic |
|
||||
| microsoft-Phi-3-small-8k-instruct.jinja | Generic |
|
||||
| microsoft-Phi-3.5-mini-instruct.jinja | Generic |
|
||||
| microsoft-Phi-3.5-vision-instruct.jinja | Generic |
|
||||
| microsoft-phi-4.jinja | Generic |
|
||||
| migtissera-Tess-3-Mistral-Nemo-12B.jinja | Generic |
|
||||
| ministral-Ministral-3b-instruct.jinja | Generic |
|
||||
| mistralai-Codestral-22B-v0.1.jinja | Generic |
|
||||
| mistralai-Mistral-7B-Instruct-v0.1.jinja | Generic |
|
||||
| mistralai-Mistral-7B-Instruct-v0.2.jinja | Generic |
|
||||
| mistralai-Mistral-7B-Instruct-v0.3.jinja | Mistral Nemo |
|
||||
| mistralai-Mistral-Large-Instruct-2407.jinja | Mistral Nemo |
|
||||
| mistralai-Mistral-Large-Instruct-2411.jinja | Generic |
|
||||
| mistralai-Mistral-Nemo-Instruct-2407.jinja | Mistral Nemo |
|
||||
| mistralai-Mistral-Small-24B-Instruct-2501.jinja | Generic |
|
||||
| mistralai-Mixtral-8x7B-Instruct-v0.1.jinja | Generic |
|
||||
| mkurman-Qwen2.5-14B-DeepSeek-R1-1M.jinja | Hermes 2 Pro |
|
||||
| mlabonne-AlphaMonarch-7B.jinja | Generic |
|
||||
| mlx-community-Josiefied-Qwen2.5-0.5B-Instruct-abliterated-v1-float32.jinja | Hermes 2 Pro |
|
||||
| mlx-community-Qwen2.5-VL-7B-Instruct-8bit.jinja | Hermes 2 Pro |
|
||||
| mobiuslabsgmbh-DeepSeek-R1-ReDistill-Qwen-1.5B-v1.1.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| netcat420-MFANNv0.20.jinja | Generic |
|
||||
| netcat420-MFANNv0.24.jinja | Generic |
|
||||
| netease-youdao-Confucius-o1-14B.jinja | Hermes 2 Pro |
|
||||
| nvidia-AceMath-7B-RM.jinja | Hermes 2 Pro |
|
||||
| nvidia-Eagle2-1B.jinja | Hermes 2 Pro |
|
||||
| nvidia-Eagle2-9B.jinja | Hermes 2 Pro |
|
||||
| nvidia-Llama-3.1-Nemotron-70B-Instruct-HF.jinja | Llama 3.x |
|
||||
| onnx-community-DeepSeek-R1-Distill-Qwen-1.5B-ONNX.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| open-thoughts-OpenThinker-7B.jinja | Hermes 2 Pro |
|
||||
| openchat-openchat-3.5-0106.jinja | Generic |
|
||||
| pankajmathur-orca_mini_v6_8b.jinja | Generic |
|
||||
| princeton-nlp-Mistral-7B-Base-SFT-RDPO.jinja | Generic |
|
||||
| princeton-nlp-Mistral-7B-Instruct-DPO.jinja | Generic |
|
||||
| princeton-nlp-Mistral-7B-Instruct-RDPO.jinja | Generic |
|
||||
| prithivMLmods-Bellatrix-Tiny-1.5B-R1.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Bellatrix-Tiny-1B-R1.jinja | Llama 3.x |
|
||||
| prithivMLmods-Bellatrix-Tiny-1B-v3.jinja | Generic |
|
||||
| prithivMLmods-Bellatrix-Tiny-3B-R1.jinja | Llama 3.x |
|
||||
| prithivMLmods-Blaze-14B-xElite.jinja | Generic |
|
||||
| prithivMLmods-Calcium-Opus-14B-Elite2-R1.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Calme-Ties-78B.jinja | Generic |
|
||||
| prithivMLmods-Calme-Ties2-78B.jinja | Generic |
|
||||
| prithivMLmods-Calme-Ties3-78B.jinja | Generic |
|
||||
| prithivMLmods-ChemQwen2-vL.jinja | Generic |
|
||||
| prithivMLmods-GWQ2b.jinja | Generic |
|
||||
| prithivMLmods-LatexMind-2B-Codec.jinja | Generic |
|
||||
| prithivMLmods-Llama-3.2-6B-AlgoCode.jinja | Llama 3.x |
|
||||
| prithivMLmods-Megatron-Opus-14B-Exp.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Megatron-Opus-14B-Stock.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Megatron-Opus-7B-Exp.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Omni-Reasoner-Merged.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Omni-Reasoner4-Merged.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Primal-Opus-14B-Optimus-v1.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-QwQ-Math-IO-500M.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Qwen-7B-Distill-Reasoner.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| prithivMLmods-Qwen2.5-1.5B-DeepSeek-R1-Instruct.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Qwen2.5-14B-DeepSeek-R1-1M.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Qwen2.5-32B-DeepSeek-R1-Instruct.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Qwen2.5-7B-DeepSeek-R1-1M.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Triangulum-v2-10B.jinja | Hermes 2 Pro |
|
||||
| qingy2024-Falcon3-2x10B-MoE-Instruct.jinja | Hermes 2 Pro |
|
||||
| rubenroy-Zurich-14B-GCv2-5m.jinja | Hermes 2 Pro |
|
||||
| rubenroy-Zurich-7B-GCv2-5m.jinja | Hermes 2 Pro |
|
||||
| silma-ai-SILMA-Kashif-2B-Instruct-v1.0.jinja | Generic |
|
||||
| simplescaling-s1-32B.jinja | Hermes 2 Pro |
|
||||
| sometimesanotion-Lamarck-14B-v0.7.jinja | Hermes 2 Pro |
|
||||
| sonthenguyen-zephyr-sft-bnb-4bit-DPO-mtbr-180steps.jinja | Generic |
|
||||
| sthenno-tempesthenno-icy-0130.jinja | Generic |
|
||||
| sumink-qwft.jinja | Hermes 2 Pro |
|
||||
| teknium-OpenHermes-2.5-Mistral-7B.jinja | Generic |
|
||||
| thirdeyeai-elevate360m.jinja | Generic |
|
||||
| tiiuae-Falcon3-10B-Instruct.jinja | Hermes 2 Pro |
|
||||
| unsloth-DeepSeek-R1-Distill-Llama-8B-unsloth-bnb-4bit.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| unsloth-DeepSeek-R1-Distill-Llama-8B.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| unsloth-DeepSeek-R1.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| unsloth-Mistral-Small-24B-Instruct-2501-unsloth-bnb-4bit.jinja | Generic |
|
||||
| upstage-solar-pro-preview-instruct.jinja | Generic |
|
||||
| whyhow-ai-PatientSeek.jinja | Generic |
|
||||
| xwen-team-Xwen-72B-Chat.jinja | Hermes 2 Pro |
|
||||
| xwen-team-Xwen-7B-Chat.jinja | Hermes 2 Pro |
|
||||
|
||||
This table can be generated with:
|
||||
|
||||
```bash
|
||||
./build/bin/test-chat ../minja/build/tests/*.jinja 2>/dev/null
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
- Generic tool call is supported when the template isn't recognized by native format handlers (you'll see `Chat format: Generic` in the logs).
|
||||
- Use `--chat-template-file` to override the template when appropriate (see examples below)
|
||||
- Generic support may consume more tokens and be less efficient than a model's native format.
|
||||
|
||||
- Run with:
|
||||
|
||||
```shell
|
||||
# Native support:
|
||||
|
||||
llama-server --jinja -fa -hf bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M
|
||||
llama-server --jinja -fa -hf bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q6_K_L
|
||||
llama-server --jinja -fa -hf bartowski/functionary-small-v3.2-GGUF:Q4_K_M
|
||||
llama-server --jinja -fa -hf bartowski/Llama-3.3-70B-Instruct-GGUF:Q4_K_M
|
||||
|
||||
# Native support for DeepSeek R1 works best w/ our own template (official template buggy)
|
||||
|
||||
llama-server --jinja -fa -hf bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q6_K_L \
|
||||
--chat-template-file models/templates/llama-cpp-deepseek-r1.jinja
|
||||
|
||||
llama-server --jinja -fa -hf bartowski/DeepSeek-R1-Distill-Qwen-32B-GGUF:Q4_K_M \
|
||||
--chat-template-file models/templates/llama-cpp-deepseek-r1.jinja
|
||||
|
||||
# Native support requires the right template for these GGUFs:
|
||||
|
||||
llama-server --jinja -fa -hf bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M \
|
||||
--chat-template-file <( python scripts/get_chat_template.py NousResearch/Hermes-2-Pro-Llama-3-8B tool_use )
|
||||
|
||||
llama-server --jinja -fa -hf bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M \
|
||||
--chat-template-file <( python scripts/get_chat_template.py NousResearch/Hermes-3-Llama-3.1-8B tool_use )
|
||||
|
||||
llama-server --jinja -fa -hf bartowski/firefunction-v2-GGUF -hff firefunction-v2-IQ1_M.gguf \
|
||||
--chat-template-file <( python scripts/get_chat_template.py fireworks-ai/llama-3-firefunction-v2 tool_use )
|
||||
|
||||
llama-server --jinja -fa -hf bartowski/c4ai-command-r7b-12-2024-GGUF:Q6_K_L \
|
||||
--chat-template-file <( python scripts/get_chat_template.py CohereForAI/c4ai-command-r7b-12-2024 tool_use )
|
||||
|
||||
# Generic format support
|
||||
llama-server --jinja -fa -hf bartowski/phi-4-GGUF:Q4_0
|
||||
llama-server --jinja -fa -hf bartowski/gemma-2-2b-it-GGUF:Q8_0
|
||||
llama-server --jinja -fa -hf bartowski/c4ai-command-r-v01-GGUF:Q2_K
|
||||
```
|
||||
|
||||
- Test in CLI:
|
||||
|
||||
```bash
|
||||
curl http://localhost:8080/v1/chat/completions -d '{
|
||||
"model": "gpt-3.5-turbo",
|
||||
"tools": [
|
||||
{
|
||||
"type":"function",
|
||||
"function":{
|
||||
"name":"python",
|
||||
"description":"Runs code in an ipython interpreter and returns the result of the execution after 60 seconds.",
|
||||
"parameters":{
|
||||
"type":"object",
|
||||
"properties":{
|
||||
"code":{
|
||||
"type":"string",
|
||||
"description":"The code to run in the ipython interpreter."
|
||||
}
|
||||
},
|
||||
"required":["code"]
|
||||
}
|
||||
}
|
||||
}
|
||||
],
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Print a hello world message with python."
|
||||
}
|
||||
]
|
||||
}'
|
||||
```
|
||||
|
||||
<details>
|
||||
<summary>Show output</summary>
|
||||
|
||||
```json
|
||||
{
|
||||
"choices": [
|
||||
{
|
||||
"finish_reason": "tool",
|
||||
"index": 0,
|
||||
"message": {
|
||||
"content": null,
|
||||
"tool_calls": [
|
||||
{
|
||||
"name": "python",
|
||||
"arguments": "{\"code\":\" \\nprint(\\\"Hello, World!\\\")\"}"
|
||||
}
|
||||
],
|
||||
"role": "assistant"
|
||||
}
|
||||
}
|
||||
],
|
||||
"created": 1727287211,
|
||||
"model": "gpt-3.5-turbo",
|
||||
"object": "chat.completion",
|
||||
"usage": {
|
||||
"completion_tokens": 16,
|
||||
"prompt_tokens": 44,
|
||||
"total_tokens": 60
|
||||
},
|
||||
"id": "chatcmpl-Htbgh9feMmGM0LEH2hmQvwsCxq3c6Ni8"
|
||||
}
|
||||
```
|
||||
|
||||
</details>
|
||||
**See our [Function calling](../../docs/function-calling.md) docs** for more details, supported native tool call styles (generic tool call style is used as fallback) / examples of use.
|
||||
|
||||
### POST `/v1/embeddings`: OpenAI-compatible embeddings API
|
||||
|
||||
|
||||
Binary file not shown.
@@ -1,5 +1,5 @@
|
||||
// WARNING: This file was ported from json_schema_to_grammar.py, please fix bugs / add features there first.
|
||||
const SPACE_RULE = '| " " | "\\n" [ \\t]{0,20}';
|
||||
const SPACE_RULE = '| " " | "\\n"{1,2} [ \\t]{0,20}';
|
||||
|
||||
function _buildRepetition(itemRule, minItems, maxItems, opts={}) {
|
||||
if (minItems === 0 && maxItems === 1) {
|
||||
|
||||
@@ -131,9 +131,9 @@ struct slot_params {
|
||||
lora.push_back({{"id", i}, {"scale", this->lora[i].scale}});
|
||||
}
|
||||
|
||||
std::vector<std::string> grammar_trigger_words;
|
||||
for (const auto & trigger : sampling.grammar_trigger_words) {
|
||||
grammar_trigger_words.push_back(trigger.word);
|
||||
auto grammar_triggers = json::array();
|
||||
for (const auto & trigger : sampling.grammar_triggers) {
|
||||
grammar_triggers.push_back(trigger.to_json<json>());
|
||||
}
|
||||
|
||||
return json {
|
||||
@@ -170,8 +170,8 @@ struct slot_params {
|
||||
{"n_probs", sampling.n_probs},
|
||||
{"min_keep", sampling.min_keep},
|
||||
{"grammar", sampling.grammar},
|
||||
{"grammar_trigger_words", grammar_trigger_words},
|
||||
{"grammar_trigger_tokens", sampling.grammar_trigger_tokens},
|
||||
{"grammar_lazy", sampling.grammar_lazy},
|
||||
{"grammar_triggers", grammar_triggers},
|
||||
{"preserved_tokens", sampling.preserved_tokens},
|
||||
{"chat_format", common_chat_format_name(oaicompat_chat_format)},
|
||||
{"samplers", samplers},
|
||||
@@ -356,24 +356,6 @@ struct server_task {
|
||||
}
|
||||
|
||||
{
|
||||
const auto grammar_triggers = data.find("grammar_triggers");
|
||||
if (grammar_triggers != data.end()) {
|
||||
for (const auto & t : *grammar_triggers) {
|
||||
common_grammar_trigger trigger;
|
||||
trigger.word = t.at("word");
|
||||
trigger.at_start = t.at("at_start");
|
||||
|
||||
auto ids = common_tokenize(vocab, trigger.word, /* add_special= */ false, /* parse_special= */ true);
|
||||
if (ids.size() == 1) {
|
||||
SRV_DBG("Grammar trigger token: %d (`%s`)\n", ids[0], trigger.word.c_str());
|
||||
params.sampling.grammar_trigger_tokens.push_back(ids[0]);
|
||||
params.sampling.preserved_tokens.insert(ids[0]);
|
||||
continue;
|
||||
}
|
||||
SRV_DBG("Grammar trigger word: `%s`\n", trigger.word.c_str());
|
||||
params.sampling.grammar_trigger_words.push_back(trigger);
|
||||
}
|
||||
}
|
||||
const auto preserved_tokens = data.find("preserved_tokens");
|
||||
if (preserved_tokens != data.end()) {
|
||||
for (const auto & t : *preserved_tokens) {
|
||||
@@ -383,12 +365,39 @@ struct server_task {
|
||||
params.sampling.preserved_tokens.insert(ids[0]);
|
||||
} else {
|
||||
// This may happen when using a tool call style meant for a model with special tokens to preserve on a model without said tokens.
|
||||
SRV_WRN("Not preserved because more than 1 token (wrong chat template override?): %s\n", t.get<std::string>().c_str());
|
||||
SRV_DBG("Not preserved because more than 1 token: %s\n", t.get<std::string>().c_str());
|
||||
}
|
||||
}
|
||||
}
|
||||
if (params.sampling.grammar_lazy) {
|
||||
GGML_ASSERT(params.sampling.grammar_trigger_tokens.size() > 0 || params.sampling.grammar_trigger_words.size() > 0);
|
||||
const auto grammar_triggers = data.find("grammar_triggers");
|
||||
if (grammar_triggers != data.end()) {
|
||||
for (const auto & t : *grammar_triggers) {
|
||||
auto ct = common_grammar_trigger::from_json(t);
|
||||
if (ct.type == COMMON_GRAMMAR_TRIGGER_TYPE_WORD) {
|
||||
const auto & word = ct.value;
|
||||
auto ids = common_tokenize(vocab, word, /* add_special= */ false, /* parse_special= */ true);
|
||||
if (ids.size() == 1) {
|
||||
auto token = ids[0];
|
||||
if (std::find(params.sampling.preserved_tokens.begin(), params.sampling.preserved_tokens.end(), (llama_token) token) == params.sampling.preserved_tokens.end()) {
|
||||
throw std::runtime_error("Grammar trigger word should be marked as preserved token: " + word);
|
||||
}
|
||||
SRV_DBG("Grammar trigger token: %d (`%s`)\n", token, word.c_str());
|
||||
common_grammar_trigger trigger;
|
||||
trigger.type = COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN;
|
||||
trigger.value = word;
|
||||
trigger.token = token;
|
||||
params.sampling.grammar_triggers.push_back(std::move(trigger));
|
||||
} else {
|
||||
SRV_DBG("Grammar trigger word: `%s`\n", word.c_str());
|
||||
params.sampling.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, word});
|
||||
}
|
||||
} else {
|
||||
params.sampling.grammar_triggers.push_back(ct);
|
||||
}
|
||||
}
|
||||
}
|
||||
if (params.sampling.grammar_lazy && params.sampling.grammar_triggers.empty()) {
|
||||
throw std::runtime_error("Error: no triggers set for lazy grammar!");
|
||||
}
|
||||
}
|
||||
|
||||
@@ -742,7 +751,10 @@ struct server_task_result_cmpl_final : server_task_result {
|
||||
{"name", tc.name},
|
||||
{"arguments", tc.arguments},
|
||||
}},
|
||||
{"id", tc.id},
|
||||
// Some templates generate and require an id (sometimes in a very specific format, e.g. Mistral Nemo).
|
||||
// We only generate a random id for the ones that don't generate one by themselves
|
||||
// (they also won't get to see it as their template likely doesn't use it, so it's all for the client)
|
||||
{"id", tc.id.empty() ? gen_tool_call_id() : tc.id},
|
||||
});
|
||||
}
|
||||
message["tool_calls"] = tool_calls;
|
||||
@@ -1304,7 +1316,7 @@ struct server_slot {
|
||||
return task_type == SERVER_TASK_TYPE_EMBEDDING || task_type == SERVER_TASK_TYPE_RERANK;
|
||||
}
|
||||
|
||||
bool can_batch_with(server_slot & other_slot) {
|
||||
bool can_batch_with(server_slot & other_slot) const {
|
||||
return is_non_causal() == other_slot.is_non_causal()
|
||||
&& are_lora_equal(lora, other_slot.lora);
|
||||
}
|
||||
@@ -1892,6 +1904,7 @@ struct server_context {
|
||||
try {
|
||||
common_chat_format_example(chat_templates.get(), params.use_jinja);
|
||||
} catch (const std::exception & e) {
|
||||
SRV_WRN("%s: Chat template parsing error: %s\n", __func__, e.what());
|
||||
SRV_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
|
||||
chat_templates = common_chat_templates_init(model, "chatml");
|
||||
}
|
||||
@@ -2045,7 +2058,7 @@ struct server_context {
|
||||
|
||||
if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
|
||||
// Might be better to reject the request with a 400 ?
|
||||
SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d", slot.params.n_predict, slot.n_predict);
|
||||
SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d\n", slot.params.n_predict, slot.n_predict);
|
||||
slot.params.n_predict = slot.n_predict;
|
||||
}
|
||||
|
||||
@@ -2148,14 +2161,6 @@ struct server_context {
|
||||
}
|
||||
|
||||
if (slot.has_new_line) {
|
||||
// if we have already seen a new line, we stop after a certain time limit
|
||||
if (slot.params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) {
|
||||
slot.stop = STOP_TYPE_LIMIT;
|
||||
slot.has_next_token = false;
|
||||
|
||||
SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms);
|
||||
}
|
||||
|
||||
// require that each new line has a whitespace prefix (i.e. indentation) of at least slot.params.n_indent
|
||||
if (slot.params.n_indent > 0) {
|
||||
// check the current indentation
|
||||
@@ -2194,6 +2199,14 @@ struct server_context {
|
||||
// check if there is a new line in the generated text
|
||||
if (result.text_to_send.find('\n') != std::string::npos) {
|
||||
slot.has_new_line = true;
|
||||
|
||||
// if we have seen a new line, we stop after a certain time limit, but only upon another new line
|
||||
if (slot.params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) {
|
||||
slot.stop = STOP_TYPE_LIMIT;
|
||||
slot.has_next_token = false;
|
||||
|
||||
SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms);
|
||||
}
|
||||
}
|
||||
|
||||
// if context shift is disabled, we stop when it reaches the context limit
|
||||
@@ -3003,7 +3016,7 @@ struct server_context {
|
||||
const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
|
||||
|
||||
llama_kv_cache_seq_rm (ctx, slot.id, head_p, head_c);
|
||||
llama_kv_cache_seq_add(ctx, slot.id, head_c, -1, kv_shift);
|
||||
llama_kv_cache_seq_add(ctx, slot.id, head_c, head_c + n_match, kv_shift);
|
||||
|
||||
for (size_t i = 0; i < n_match; i++) {
|
||||
slot.cache_tokens[head_p + i] = slot.cache_tokens[head_c + i];
|
||||
|
||||
@@ -144,6 +144,7 @@ def test_apply_chat_template():
|
||||
@pytest.mark.parametrize("response_format,n_predicted,re_content", [
|
||||
({"type": "json_object", "schema": {"const": "42"}}, 6, "\"42\""),
|
||||
({"type": "json_object", "schema": {"items": [{"type": "integer"}]}}, 10, "[ -3000 ]"),
|
||||
({"type": "json_schema", "json_schema": {"schema": {"const": "foooooo"}}}, 10, "\"foooooo\""),
|
||||
({"type": "json_object"}, 10, "(\\{|John)+"),
|
||||
({"type": "sound"}, 0, None),
|
||||
# invalid response format (expected to fail)
|
||||
|
||||
239
examples/server/tests/unit/test_tool_call.py
Normal file → Executable file
239
examples/server/tests/unit/test_tool_call.py
Normal file → Executable file
@@ -1,4 +1,12 @@
|
||||
#!/usr/bin/env python
|
||||
import pytest
|
||||
|
||||
# ensure grandparent path is in sys.path
|
||||
from pathlib import Path
|
||||
import sys
|
||||
path = Path(__file__).resolve().parents[1]
|
||||
sys.path.insert(0, str(path))
|
||||
|
||||
from utils import *
|
||||
|
||||
server: ServerProcess
|
||||
@@ -66,15 +74,8 @@ WEATHER_TOOL = {
|
||||
}
|
||||
|
||||
|
||||
def do_test_completion_with_required_tool_tiny(template_name: str, tool: dict, argument_key: str | None):
|
||||
global server
|
||||
n_predict = 512
|
||||
# server = ServerPreset.stories15m_moe()
|
||||
server.jinja = True
|
||||
server.n_predict = n_predict
|
||||
server.chat_template_file = f'../../../models/templates/{template_name}.jinja'
|
||||
server.start(timeout_seconds=TIMEOUT_SERVER_START)
|
||||
res = server.make_request("POST", "/chat/completions", data={
|
||||
def do_test_completion_with_required_tool_tiny(server: ServerProcess, tool: dict, argument_key: str | None, n_predict, **kwargs):
|
||||
res = server.make_request("POST", "/v1/chat/completions", data={
|
||||
"max_tokens": n_predict,
|
||||
"messages": [
|
||||
{"role": "system", "content": "You are a coding assistant."},
|
||||
@@ -83,16 +84,15 @@ def do_test_completion_with_required_tool_tiny(template_name: str, tool: dict, a
|
||||
"tool_choice": "required",
|
||||
"tools": [tool],
|
||||
"parallel_tool_calls": False,
|
||||
"temperature": 0.0,
|
||||
"top_k": 1,
|
||||
"top_p": 1.0,
|
||||
**kwargs,
|
||||
})
|
||||
assert res.status_code == 200, f"Expected status code 200, got {res.status_code}"
|
||||
choice = res.body["choices"][0]
|
||||
tool_calls = choice["message"].get("tool_calls")
|
||||
assert tool_calls and len(tool_calls) == 1, f'Expected 1 tool call in {choice["message"]}'
|
||||
tool_call = tool_calls[0]
|
||||
assert choice["message"].get("content") is None, f'Expected no content in {choice["message"]}'
|
||||
assert choice["message"].get("content") in (None, ""), f'Expected no content in {choice["message"]}'
|
||||
assert len(tool_call.get("id", "")) > 0, f'Expected non empty tool call id in {tool_call}'
|
||||
expected_function_name = "python" if tool["type"] == "code_interpreter" else tool["function"]["name"]
|
||||
assert expected_function_name == tool_call["function"]["name"]
|
||||
actual_arguments = tool_call["function"]["arguments"]
|
||||
@@ -108,7 +108,14 @@ def do_test_completion_with_required_tool_tiny(template_name: str, tool: dict, a
|
||||
("meta-llama-Llama-3.3-70B-Instruct", PYTHON_TOOL, "code"),
|
||||
])
|
||||
def test_completion_with_required_tool_tiny_fast(template_name: str, tool: dict, argument_key: str | None):
|
||||
do_test_completion_with_required_tool_tiny(template_name, tool, argument_key)
|
||||
global server
|
||||
n_predict = 512
|
||||
# server = ServerPreset.stories15m_moe()
|
||||
server.jinja = True
|
||||
server.n_predict = n_predict
|
||||
server.chat_template_file = f'../../../models/templates/{template_name}.jinja'
|
||||
server.start(timeout_seconds=TIMEOUT_SERVER_START)
|
||||
do_test_completion_with_required_tool_tiny(server, tool, argument_key, n_predict, temperature=0.0, top_k=1, top_p=1.0)
|
||||
|
||||
|
||||
@pytest.mark.slow
|
||||
@@ -130,10 +137,17 @@ def test_completion_with_required_tool_tiny_fast(template_name: str, tool: dict,
|
||||
("deepseek-ai-DeepSeek-R1-Distill-Llama-8B", TEST_TOOL, "success"),
|
||||
("deepseek-ai-DeepSeek-R1-Distill-Llama-8B", PYTHON_TOOL, "code"),
|
||||
("fireworks-ai-llama-3-firefunction-v2", TEST_TOOL, "success"),
|
||||
("fireworks-ai-llama-3-firefunction-v2", PYTHON_TOOL, "code"),
|
||||
# ("fireworks-ai-llama-3-firefunction-v2", PYTHON_TOOL, "code"),
|
||||
])
|
||||
def test_completion_with_required_tool_tiny_slow(template_name: str, tool: dict, argument_key: str | None):
|
||||
do_test_completion_with_required_tool_tiny(template_name, tool, argument_key)
|
||||
global server
|
||||
n_predict = 512
|
||||
# server = ServerPreset.stories15m_moe()
|
||||
server.jinja = True
|
||||
server.n_predict = n_predict
|
||||
server.chat_template_file = f'../../../models/templates/{template_name}.jinja'
|
||||
server.start(timeout_seconds=TIMEOUT_SERVER_START)
|
||||
do_test_completion_with_required_tool_tiny(server, tool, argument_key, n_predict)
|
||||
|
||||
|
||||
@pytest.mark.slow
|
||||
@@ -142,25 +156,33 @@ def test_completion_with_required_tool_tiny_slow(template_name: str, tool: dict,
|
||||
(PYTHON_TOOL, "code", "bartowski/Meta-Llama-3.1-8B-Instruct-GGUF:Q4_K_M", None),
|
||||
(PYTHON_TOOL, "code", "bartowski/Meta-Llama-3.1-8B-Instruct-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
# Note: gemma-2-2b-it knows itself as "model", not "assistant", so we don't test the ill-suited chatml on it.
|
||||
(TEST_TOOL, "success", "bartowski/gemma-2-2b-it-GGUF:Q4_K_M", None),
|
||||
(PYTHON_TOOL, "code", "bartowski/gemma-2-2b-it-GGUF:Q4_K_M", None),
|
||||
(PYTHON_TOOL, "code", "bartowski/gemma-2-2b-it-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
(TEST_TOOL, "success", "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", None),
|
||||
(PYTHON_TOOL, "code", "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", None),
|
||||
(PYTHON_TOOL, "code", "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
(TEST_TOOL, "success", "bartowski/Qwen2.5-1.5B-Instruct-GGUF:Q4_K_M", None),
|
||||
(PYTHON_TOOL, "code", "bartowski/Qwen2.5-1.5B-Instruct-GGUF:Q4_K_M", None),
|
||||
(PYTHON_TOOL, "code", "bartowski/Qwen2.5-1.5B-Instruct-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
(TEST_TOOL, "success", "bartowski/Qwen2.5-Coder-3B-Instruct-GGUF:Q4_K_M", None),
|
||||
(PYTHON_TOOL, "code", "bartowski/Qwen2.5-Coder-3B-Instruct-GGUF:Q4_K_M", None),
|
||||
(PYTHON_TOOL, "code", "bartowski/Qwen2.5-Coder-3B-Instruct-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
(TEST_TOOL, "success", "bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M", None),
|
||||
(PYTHON_TOOL, "code", "bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M", None),
|
||||
(PYTHON_TOOL, "code", "bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
(TEST_TOOL, "success", "bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M", ("NousResearch/Hermes-2-Pro-Llama-3-8B", "tool_use")),
|
||||
(PYTHON_TOOL, "code", "bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M", ("NousResearch/Hermes-2-Pro-Llama-3-8B", "tool_use")),
|
||||
# (PYTHON_TOOL, "code", "bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M", "chatml"),
|
||||
(PYTHON_TOOL, "code", "bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
(TEST_TOOL, "success", "bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M", ("NousResearch/Hermes-3-Llama-3.1-8B", "tool_use")),
|
||||
(PYTHON_TOOL, "code", "bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M", ("NousResearch/Hermes-3-Llama-3.1-8B", "tool_use")),
|
||||
# (PYTHON_TOOL, "code", "bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M", "chatml"),
|
||||
(PYTHON_TOOL, "code", "bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
(TEST_TOOL, "success", "bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q4_K_M", None),
|
||||
(PYTHON_TOOL, "code", "bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q4_K_M", None),
|
||||
@@ -176,10 +198,10 @@ def test_completion_with_required_tool_tiny_slow(template_name: str, tool: dict,
|
||||
|
||||
(TEST_TOOL, "success", "bartowski/Llama-3.2-1B-Instruct-GGUF:Q4_K_M", ("meta-llama/Llama-3.2-3B-Instruct", None)),
|
||||
(PYTHON_TOOL, "code", "bartowski/Llama-3.2-1B-Instruct-GGUF:Q4_K_M", ("meta-llama/Llama-3.2-3B-Instruct", None)),
|
||||
# (PYTHON_TOOL, "code", "bartowski/Llama-3.2-1B-Instruct-GGUF:Q4_K_M", "chatml"),
|
||||
# TODO: fix these
|
||||
# (TEST_TOOL, "success", "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
|
||||
# (PYTHON_TOOL, "code", "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
|
||||
(PYTHON_TOOL, "code", "bartowski/Llama-3.2-1B-Instruct-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
(TEST_TOOL, "success", "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
|
||||
(PYTHON_TOOL, "code", "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
|
||||
])
|
||||
def test_completion_with_required_tool_real_model(tool: dict, argument_key: str | None, hf_repo: str, template_override: str | Tuple[str, str | None] | None):
|
||||
global server
|
||||
@@ -197,7 +219,7 @@ def test_completion_with_required_tool_real_model(tool: dict, argument_key: str
|
||||
elif isinstance(template_override, str):
|
||||
server.chat_template = template_override
|
||||
server.start(timeout_seconds=TIMEOUT_SERVER_START)
|
||||
res = server.make_request("POST", "/chat/completions", data={
|
||||
res = server.make_request("POST", "/v1/chat/completions", data={
|
||||
"max_tokens": n_predict,
|
||||
"messages": [
|
||||
{"role": "system", "content": "You are a coding assistant."},
|
||||
@@ -215,7 +237,7 @@ def test_completion_with_required_tool_real_model(tool: dict, argument_key: str
|
||||
tool_calls = choice["message"].get("tool_calls")
|
||||
assert tool_calls and len(tool_calls) == 1, f'Expected 1 tool call in {choice["message"]}'
|
||||
tool_call = tool_calls[0]
|
||||
assert choice["message"].get("content") is None, f'Expected no content in {choice["message"]}'
|
||||
# assert choice["message"].get("content") in (None, ""), f'Expected no content in {choice["message"]}'
|
||||
expected_function_name = "python" if tool["type"] == "code_interpreter" else tool["function"]["name"]
|
||||
assert expected_function_name == tool_call["function"]["name"]
|
||||
actual_arguments = tool_call["function"]["arguments"]
|
||||
@@ -225,13 +247,8 @@ def test_completion_with_required_tool_real_model(tool: dict, argument_key: str
|
||||
assert argument_key in actual_arguments, f"tool arguments: {json.dumps(actual_arguments)}, expected: {argument_key}"
|
||||
|
||||
|
||||
def do_test_completion_without_tool_call(template_name: str, n_predict: int, tools: list[dict], tool_choice: str | None):
|
||||
global server
|
||||
server.jinja = True
|
||||
server.n_predict = n_predict
|
||||
server.chat_template_file = f'../../../models/templates/{template_name}.jinja'
|
||||
server.start(timeout_seconds=TIMEOUT_SERVER_START)
|
||||
res = server.make_request("POST", "/chat/completions", data={
|
||||
def do_test_completion_without_tool_call(server: ServerProcess, n_predict: int, tools: list[dict], tool_choice: str | None, **kwargs):
|
||||
res = server.make_request("POST", "/v1/chat/completions", data={
|
||||
"max_tokens": n_predict,
|
||||
"messages": [
|
||||
{"role": "system", "content": "You are a coding assistant."},
|
||||
@@ -239,9 +256,7 @@ def do_test_completion_without_tool_call(template_name: str, n_predict: int, too
|
||||
],
|
||||
"tools": tools if tools else None,
|
||||
"tool_choice": tool_choice,
|
||||
"temperature": 0.0,
|
||||
"top_k": 1,
|
||||
"top_p": 1.0,
|
||||
**kwargs,
|
||||
}, timeout=TIMEOUT_HTTP_REQUEST)
|
||||
assert res.status_code == 200, f"Expected status code 200, got {res.status_code}"
|
||||
choice = res.body["choices"][0]
|
||||
@@ -254,7 +269,12 @@ def do_test_completion_without_tool_call(template_name: str, n_predict: int, too
|
||||
("meta-llama-Llama-3.3-70B-Instruct", 128, [PYTHON_TOOL], 'none'),
|
||||
])
|
||||
def test_completion_without_tool_call_fast(template_name: str, n_predict: int, tools: list[dict], tool_choice: str | None):
|
||||
do_test_completion_without_tool_call(template_name, n_predict, tools, tool_choice)
|
||||
global server
|
||||
server.jinja = True
|
||||
server.n_predict = n_predict
|
||||
server.chat_template_file = f'../../../models/templates/{template_name}.jinja'
|
||||
server.start(timeout_seconds=TIMEOUT_SERVER_START)
|
||||
do_test_completion_without_tool_call(server, n_predict, tools, tool_choice)
|
||||
|
||||
|
||||
@pytest.mark.slow
|
||||
@@ -270,7 +290,12 @@ def test_completion_without_tool_call_fast(template_name: str, n_predict: int, t
|
||||
("meta-llama-Llama-3.2-3B-Instruct", 256, [PYTHON_TOOL], 'none'),
|
||||
])
|
||||
def test_completion_without_tool_call_slow(template_name: str, n_predict: int, tools: list[dict], tool_choice: str | None):
|
||||
do_test_completion_without_tool_call(template_name, n_predict, tools, tool_choice)
|
||||
global server
|
||||
server.jinja = True
|
||||
server.n_predict = n_predict
|
||||
server.chat_template_file = f'../../../models/templates/{template_name}.jinja'
|
||||
server.start(timeout_seconds=TIMEOUT_SERVER_START)
|
||||
do_test_completion_without_tool_call(server, n_predict, tools, tool_choice)
|
||||
|
||||
|
||||
@pytest.mark.slow
|
||||
@@ -281,6 +306,12 @@ def test_completion_without_tool_call_slow(template_name: str, n_predict: int, t
|
||||
("bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", None),
|
||||
("bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
("bartowski/Qwen2.5-1.5B-Instruct-GGUF:Q4_K_M", None),
|
||||
("bartowski/Qwen2.5-1.5B-Instruct-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
("bartowski/Qwen2.5-Coder-3B-Instruct-GGUF:Q4_K_M", None),
|
||||
("bartowski/Qwen2.5-Coder-3B-Instruct-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
("bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M", None),
|
||||
("bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
@@ -324,48 +355,53 @@ def test_weather(hf_repo: str, template_override: str | Tuple[str, str | None] |
|
||||
elif isinstance(template_override, str):
|
||||
server.chat_template = template_override
|
||||
server.start(timeout_seconds=TIMEOUT_SERVER_START)
|
||||
res = server.make_request("POST", "/chat/completions", data={
|
||||
"max_tokens": n_predict,
|
||||
do_test_weather(server, max_tokens=n_predict)
|
||||
|
||||
|
||||
def do_test_weather(server: ServerProcess, **kwargs):
|
||||
res = server.make_request("POST", "/v1/chat/completions", data={
|
||||
"messages": [
|
||||
{"role": "system", "content": "You are a chatbot that uses tools/functions. Dont overthink things."},
|
||||
{"role": "user", "content": "What is the weather in Istanbul?"},
|
||||
],
|
||||
"tools": [WEATHER_TOOL],
|
||||
**kwargs,
|
||||
}, timeout=TIMEOUT_HTTP_REQUEST)
|
||||
assert res.status_code == 200, f"Expected status code 200, got {res.status_code}"
|
||||
choice = res.body["choices"][0]
|
||||
tool_calls = choice["message"].get("tool_calls")
|
||||
assert tool_calls and len(tool_calls) == 1, f'Expected 1 tool call in {choice["message"]}'
|
||||
tool_call = tool_calls[0]
|
||||
assert choice["message"].get("content") is None, f'Expected no content in {choice["message"]}'
|
||||
assert tool_call["function"]["name"] == WEATHER_TOOL["function"]["name"]
|
||||
# assert choice["message"].get("content") in (None, ""), f'Expected no content in {choice["message"]}'
|
||||
assert tool_call["function"]["name"] == WEATHER_TOOL["function"]["name"], f'Expected weather tool call, got {tool_call["function"]["name"]}'
|
||||
assert len(tool_call.get("id", "")) > 0, f'Expected non empty tool call id in {tool_call}'
|
||||
actual_arguments = json.loads(tool_call["function"]["arguments"])
|
||||
assert 'location' in actual_arguments, f"location not found in {json.dumps(actual_arguments)}"
|
||||
location = actual_arguments["location"]
|
||||
assert isinstance(location, str), f"Expected location to be a string, got {type(location)}: {json.dumps(location)}"
|
||||
assert re.match('^Istanbul(, (TR|Turkey|Türkiye))?$', location), f'Expected Istanbul for location, got {location}'
|
||||
assert re.match('^Istanbul(( |, ?)(TR|Turkey|Türkiye))?$', location), f'Expected Istanbul for location, got {location}'
|
||||
|
||||
|
||||
@pytest.mark.slow
|
||||
@pytest.mark.parametrize("result_override,n_predict,hf_repo,template_override", [
|
||||
(None, 128, "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", "chatml"),
|
||||
(None, 128, "bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M", None),
|
||||
(None, 128, "bartowski/Qwen2.5-Coder-3B-Instruct-GGUF:Q4_K_M", None),
|
||||
(None, 128, "bartowski/Qwen2.5-Coder-3B-Instruct-GGUF:Q4_K_M", "chatml"),
|
||||
(None, 128, "bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M", "chatml"),
|
||||
(None, 128, "bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M", ("NousResearch/Hermes-2-Pro-Llama-3-8B", "tool_use")),
|
||||
(None, 128, "bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M", ("NousResearch/Hermes-3-Llama-3.1-8B", "tool_use")),
|
||||
(None, 128, "bartowski/functionary-small-v3.2-GGUF:Q8_0", ("meetkai/functionary-medium-v3.2", None)),
|
||||
(None, 128, "bartowski/Meta-Llama-3.1-8B-Instruct-GGUF:Q4_K_M", None),
|
||||
(None, 128, "bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q4_K_M", None),
|
||||
(None, 128, "bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q4_K_M", "chatml"),
|
||||
(None, 128, "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", None),
|
||||
("[\\s\\S]*?\\*\\*\\s*0.5($|\\*\\*)", 8192, "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", ("llama-cpp-deepseek-r1", None)),
|
||||
|
||||
# TODO: fix these (wrong results, either didn't respect decimal instruction or got wrong value)
|
||||
("[\\s\\S]*?\\*\\*\\s*0.5($|\\*\\*)", 8192, "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
|
||||
# ("[\\s\\S]*?\\*\\*\\s*0.5($|\\*\\*)", 8192, "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", ("llama-cpp-deepseek-r1", None)),
|
||||
# (None, 128, "bartowski/Meta-Llama-3.1-8B-Instruct-GGUF:Q4_K_M", None),
|
||||
# ("[\\s\\S]*?\\*\\*\\s*0.5($|\\*\\*)", 8192, "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
|
||||
])
|
||||
def test_calc_result(result_override: str | None, n_predict: int, hf_repo: str, template_override: str | Tuple[str, str | None] | None):
|
||||
global server
|
||||
# n_predict = 512
|
||||
server.n_slots = 1
|
||||
server.jinja = True
|
||||
server.n_ctx = 8192 * 2
|
||||
@@ -379,10 +415,14 @@ def test_calc_result(result_override: str | None, n_predict: int, hf_repo: str,
|
||||
elif isinstance(template_override, str):
|
||||
server.chat_template = template_override
|
||||
server.start(timeout_seconds=TIMEOUT_SERVER_START)
|
||||
res = server.make_request("POST", "/chat/completions", data={
|
||||
do_test_calc_result(server, result_override, n_predict)
|
||||
|
||||
|
||||
def do_test_calc_result(server: ServerProcess, result_override: str | None, n_predict: int, **kwargs):
|
||||
res = server.make_request("POST", "/v1/chat/completions", data={
|
||||
"max_tokens": n_predict,
|
||||
"messages": [
|
||||
{"role": "system", "content": "You are a chatbot that uses tools/functions. Dont overthink things, and provide very concise answers. Do not explain your reasoning to the user. Provide any numerical values back to the user with at most two decimals."},
|
||||
{"role": "system", "content": "You are a tools-calling assistant. You express numerical values with at most two decimals."},
|
||||
{"role": "user", "content": "What's the y coordinate of a point on the unit sphere at angle 30 degrees?"},
|
||||
{
|
||||
"role": "assistant",
|
||||
@@ -423,7 +463,8 @@ def test_calc_result(result_override: str | None, n_predict: int, hf_repo: str,
|
||||
}
|
||||
}
|
||||
}
|
||||
]
|
||||
],
|
||||
**kwargs,
|
||||
}, timeout=TIMEOUT_HTTP_REQUEST)
|
||||
assert res.status_code == 200, f"Expected status code 200, got {res.status_code}"
|
||||
choice = res.body["choices"][0]
|
||||
@@ -434,19 +475,19 @@ def test_calc_result(result_override: str | None, n_predict: int, hf_repo: str,
|
||||
if result_override is not None:
|
||||
assert re.match(result_override, content), f'Expected {result_override}, got {content}'
|
||||
else:
|
||||
assert re.match('^[\\s\\S]*?The (y[ -])?coordinate [\\s\\S]*?is (approximately )?0\\.56\\b|^0\\.56$', content), \
|
||||
assert re.match('^[\\s\\S]*?((That\'s|\\bis) (approximately )?)?\\b0\\.(5\\b|56\\b|556)', content), \
|
||||
f'Expected something like "The y coordinate is 0.56.", got {content}'
|
||||
|
||||
|
||||
@pytest.mark.slow
|
||||
@pytest.mark.parametrize("n_predict,reasoning_format,expect_content,expect_reasoning_content,hf_repo,template_override", [
|
||||
(128, 'deepseek', "^The sum of 102 and 7 is 109.*", None, "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", None),
|
||||
(128, None, "^The sum of 102 and 7 is 109.*", None, "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", None),
|
||||
(128, 'deepseek', "^The sum of 102 and 7 is 109[\\s\\S]*", None, "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", None),
|
||||
(128, None, "^The sum of 102 and 7 is 109[\\s\\S]*", None, "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", None),
|
||||
|
||||
(1024, 'deepseek', "To find the sum of.*", "I need to calculate the sum of 102 and 7.*", "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
|
||||
(1024, 'none', "^I need[\\s\\S]*?</think>\n?To find.*", None, "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
|
||||
(1024, 'deepseek', "To find the sum of[\\s\\S]*", "I need to calculate the sum of 102 and 7[\\s\\S]*", "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
|
||||
(1024, 'none', "^(<think>\\s*)?I need[\\s\\S]*?</think>\\s*To find[\\s\\S]*", None, "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
|
||||
|
||||
(1024, 'deepseek', "To find the sum of.*", "First, I [\\s\\S]*", "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", ("llama-cpp-deepseek-r1", None)),
|
||||
(1024, 'deepseek', "To find the sum of[\\s\\S]*", "First, I [\\s\\S]*", "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", ("llama-cpp-deepseek-r1", None)),
|
||||
])
|
||||
def test_thoughts(n_predict: int, reasoning_format: Literal['deepseek', 'none'] | None, expect_content: str | None, expect_reasoning_content: str | None, hf_repo: str, template_override: str | Tuple[str, str | None] | None):
|
||||
global server
|
||||
@@ -464,7 +505,7 @@ def test_thoughts(n_predict: int, reasoning_format: Literal['deepseek', 'none']
|
||||
elif isinstance(template_override, str):
|
||||
server.chat_template = template_override
|
||||
server.start(timeout_seconds=TIMEOUT_SERVER_START)
|
||||
res = server.make_request("POST", "/chat/completions", data={
|
||||
res = server.make_request("POST", "/v1/chat/completions", data={
|
||||
"max_tokens": n_predict,
|
||||
"messages": [
|
||||
{"role": "user", "content": "What's the sum of 102 and 7?"},
|
||||
@@ -476,7 +517,7 @@ def test_thoughts(n_predict: int, reasoning_format: Literal['deepseek', 'none']
|
||||
|
||||
content = choice["message"].get("content")
|
||||
if expect_content is None:
|
||||
assert content is None, f'Expected no content in {choice["message"]}'
|
||||
assert choice["message"].get("content") in (None, ""), f'Expected no content in {choice["message"]}'
|
||||
else:
|
||||
assert re.match(expect_content, content), f'Expected {expect_content}, got {content}'
|
||||
|
||||
@@ -488,46 +529,46 @@ def test_thoughts(n_predict: int, reasoning_format: Literal['deepseek', 'none']
|
||||
|
||||
|
||||
@pytest.mark.slow
|
||||
@pytest.mark.parametrize("expected_arguments_override,hf_repo,template_override", [
|
||||
(None, "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
|
||||
# (None, "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", "chatml"),
|
||||
@pytest.mark.parametrize("hf_repo,template_override", [
|
||||
("bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
|
||||
|
||||
(None, "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", None),
|
||||
(None, "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", "chatml"),
|
||||
("bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", None),
|
||||
("bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
(None, "bartowski/functionary-small-v3.2-GGUF:Q8_0", ("meetkai-functionary-medium-v3.2", None)),
|
||||
(None, "bartowski/functionary-small-v3.2-GGUF:Q8_0", "chatml"),
|
||||
("bartowski/functionary-small-v3.2-GGUF:Q8_0", ("meetkai-functionary-medium-v3.2", None)),
|
||||
("bartowski/functionary-small-v3.2-GGUF:Q8_0", "chatml"),
|
||||
|
||||
('{"code":"print("}', "bartowski/Meta-Llama-3.1-8B-Instruct-GGUF:Q4_K_M", None),
|
||||
(None, "bartowski/Meta-Llama-3.1-8B-Instruct-GGUF:Q4_K_M", "chatml"),
|
||||
# ("bartowski/Meta-Llama-3.1-8B-Instruct-GGUF:Q4_K_M", None),
|
||||
("bartowski/Meta-Llama-3.1-8B-Instruct-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
(None, "bartowski/Llama-3.2-1B-Instruct-GGUF:Q4_K_M", ("meta-llama-Llama-3.2-3B-Instruct", None)),
|
||||
(None, "bartowski/Llama-3.2-1B-Instruct-GGUF:Q4_K_M", "chatml"),
|
||||
("bartowski/Llama-3.2-1B-Instruct-GGUF:Q4_K_M", ("meta-llama-Llama-3.2-3B-Instruct", None)),
|
||||
("bartowski/Llama-3.2-1B-Instruct-GGUF:Q4_K_M", None),
|
||||
|
||||
('{"code":"print("}', "bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M", ("meta-llama-Llama-3.2-3B-Instruct", None)),
|
||||
(None, "bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M", "chatml"),
|
||||
("bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M", ("meta-llama-Llama-3.2-3B-Instruct", None)),
|
||||
("bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M", None),
|
||||
|
||||
(None, "bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M", None),
|
||||
(None, "bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M", "chatml"),
|
||||
("bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M", None),
|
||||
("bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
(None, "bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M", ("NousResearch/Hermes-2-Pro-Llama-3-8B", "tool_use")),
|
||||
(None, "bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M", "chatml"),
|
||||
("bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M", ("NousResearch/Hermes-2-Pro-Llama-3-8B", "tool_use")),
|
||||
("bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
(None, "bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M", ("NousResearch-Hermes-3-Llama-3.1-8B", "tool_use")),
|
||||
(None, "bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M", "chatml"),
|
||||
("bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M", ("NousResearch-Hermes-3-Llama-3.1-8B", "tool_use")),
|
||||
("bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
(None, "bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q4_K_M", None),
|
||||
(None, "bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q4_K_M", "chatml"),
|
||||
("bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q4_K_M", None),
|
||||
("bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
# Note: gemma-2-2b-it knows itself as "model", not "assistant", so we don't test the ill-suited chatml on it.
|
||||
(None, "bartowski/gemma-2-2b-it-GGUF:Q4_K_M", None),
|
||||
("bartowski/gemma-2-2b-it-GGUF:Q4_K_M", None),
|
||||
("bartowski/gemma-2-2b-it-GGUF:Q4_K_M", "chatml"),
|
||||
])
|
||||
def test_hello_world(expected_arguments_override: str | None, hf_repo: str, template_override: str | Tuple[str, str | None] | None):
|
||||
def test_hello_world(hf_repo: str, template_override: str | Tuple[str, str | None] | None):
|
||||
global server
|
||||
n_predict = 512 # High because of DeepSeek R1
|
||||
server.n_slots = 1
|
||||
server.jinja = True
|
||||
server.n_ctx = 8192
|
||||
server.n_predict = 512 # High because of DeepSeek R1
|
||||
server.n_predict = n_predict
|
||||
server.model_hf_repo = hf_repo
|
||||
server.model_hf_file = None
|
||||
if isinstance(template_override, tuple):
|
||||
@@ -537,31 +578,29 @@ def test_hello_world(expected_arguments_override: str | None, hf_repo: str, temp
|
||||
elif isinstance(template_override, str):
|
||||
server.chat_template = template_override
|
||||
server.start(timeout_seconds=TIMEOUT_SERVER_START)
|
||||
res = server.make_request("POST", "/chat/completions", data={
|
||||
"max_tokens": 256,
|
||||
|
||||
do_test_hello_world(server, max_tokens=n_predict)
|
||||
|
||||
|
||||
def do_test_hello_world(server: ServerProcess, **kwargs):
|
||||
res = server.make_request("POST", "/v1/chat/completions", data={
|
||||
"messages": [
|
||||
{"role": "system", "content": "You are a coding assistant."},
|
||||
{"role": "system", "content": "You are a tool-calling agent."},
|
||||
{"role": "user", "content": "say hello world with python"},
|
||||
],
|
||||
"tools": [PYTHON_TOOL],
|
||||
# Note: without these greedy params, Functionary v3.2 writes `def hello_world():\n print("Hello, World!")\nhello_world()` which is correct but a pain to test.
|
||||
"temperature": 0.0,
|
||||
"top_k": 1,
|
||||
"top_p": 1.0,
|
||||
**kwargs,
|
||||
}, timeout=TIMEOUT_HTTP_REQUEST)
|
||||
assert res.status_code == 200, f"Expected status code 200, got {res.status_code}"
|
||||
choice = res.body["choices"][0]
|
||||
tool_calls = choice["message"].get("tool_calls")
|
||||
assert tool_calls and len(tool_calls) == 1, f'Expected 1 tool call in {choice["message"]}'
|
||||
tool_call = tool_calls[0]
|
||||
assert choice["message"].get("content") is None, f'Expected no content in {choice["message"]}'
|
||||
# assert choice["message"].get("content") in (None, ""), f'Expected no content in {choice["message"]}'
|
||||
assert tool_call["function"]["name"] == PYTHON_TOOL["function"]["name"]
|
||||
actual_arguments = tool_call["function"]["arguments"]
|
||||
if expected_arguments_override is not None:
|
||||
assert actual_arguments == expected_arguments_override
|
||||
else:
|
||||
actual_arguments = json.loads(actual_arguments)
|
||||
assert 'code' in actual_arguments, f"code not found in {json.dumps(actual_arguments)}"
|
||||
code = actual_arguments["code"]
|
||||
assert isinstance(code, str), f"Expected code to be a string, got {type(code)}: {json.dumps(code)}"
|
||||
assert re.match(r'''print\(("[Hh]ello,? [Ww]orld!?"|'[Hh]ello,? [Ww]orld!?')\)''', code), f'Expected hello world, got {code}'
|
||||
assert len(tool_call.get("id", "")) > 0, f'Expected non empty tool call id in {tool_call}'
|
||||
actual_arguments = json.loads(tool_call["function"]["arguments"])
|
||||
assert 'code' in actual_arguments, f"code not found in {json.dumps(actual_arguments)}"
|
||||
code = actual_arguments["code"]
|
||||
assert isinstance(code, str), f"Expected code to be a string, got {type(code)}: {json.dumps(code)}"
|
||||
assert re.match(r'''print\(("[Hh]ello,? [Ww]orld!?"|'[Hh]ello,? [Ww]orld!?')\)''', code), f'Expected hello world, got {code}'
|
||||
|
||||
@@ -26,7 +26,10 @@ from re import RegexFlag
|
||||
import wget
|
||||
|
||||
|
||||
DEFAULT_HTTP_TIMEOUT = 12 if "LLAMA_SANITIZE" not in os.environ else 30
|
||||
DEFAULT_HTTP_TIMEOUT = 12
|
||||
|
||||
if "LLAMA_SANITIZE" in os.environ or "GITHUB_ACTION" in os.environ:
|
||||
DEFAULT_HTTP_TIMEOUT = 30
|
||||
|
||||
|
||||
class ServerResponse:
|
||||
@@ -64,6 +67,9 @@ class ServerProcess:
|
||||
id_slot: int | None = None
|
||||
cache_prompt: bool | None = None
|
||||
n_slots: int | None = None
|
||||
ctk: str | None = None
|
||||
ctv: str | None = None
|
||||
fa: bool | None = None
|
||||
server_continuous_batching: bool | None = False
|
||||
server_embeddings: bool | None = False
|
||||
server_reranking: bool | None = False
|
||||
@@ -81,6 +87,7 @@ class ServerProcess:
|
||||
reasoning_format: Literal['deepseek', 'none'] | None = None
|
||||
chat_template: str | None = None
|
||||
chat_template_file: str | None = None
|
||||
server_path: str | None = None
|
||||
|
||||
# session variables
|
||||
process: subprocess.Popen | None = None
|
||||
@@ -94,7 +101,9 @@ class ServerProcess:
|
||||
self.server_port = int(os.environ["PORT"])
|
||||
|
||||
def start(self, timeout_seconds: int | None = DEFAULT_HTTP_TIMEOUT) -> None:
|
||||
if "LLAMA_SERVER_BIN_PATH" in os.environ:
|
||||
if self.server_path is not None:
|
||||
server_path = self.server_path
|
||||
elif "LLAMA_SERVER_BIN_PATH" in os.environ:
|
||||
server_path = os.environ["LLAMA_SERVER_BIN_PATH"]
|
||||
elif os.name == "nt":
|
||||
server_path = "../../../build/bin/Release/llama-server.exe"
|
||||
@@ -148,6 +157,12 @@ class ServerProcess:
|
||||
server_args.extend(["--ctx-size", self.n_ctx])
|
||||
if self.n_slots:
|
||||
server_args.extend(["--parallel", self.n_slots])
|
||||
if self.ctk:
|
||||
server_args.extend(["-ctk", self.ctk])
|
||||
if self.ctv:
|
||||
server_args.extend(["-ctv", self.ctv])
|
||||
if self.fa is not None:
|
||||
server_args.append("-fa")
|
||||
if self.n_predict:
|
||||
server_args.extend(["--n-predict", self.n_predict])
|
||||
if self.slot_save_path:
|
||||
@@ -181,7 +196,7 @@ class ServerProcess:
|
||||
server_args.extend(["--chat-template-file", self.chat_template_file])
|
||||
|
||||
args = [str(arg) for arg in [server_path, *server_args]]
|
||||
print(f"bench: starting server with: {' '.join(args)}")
|
||||
print(f"tests: starting server with: {' '.join(args)}")
|
||||
|
||||
flags = 0
|
||||
if "nt" == os.name:
|
||||
@@ -212,6 +227,10 @@ class ServerProcess:
|
||||
return # server is ready
|
||||
except Exception as e:
|
||||
pass
|
||||
# Check if process died
|
||||
if self.process.poll() is not None:
|
||||
raise RuntimeError(f"Server process died with return code {self.process.returncode}")
|
||||
|
||||
print(f"Waiting for server to start...")
|
||||
time.sleep(0.5)
|
||||
raise TimeoutError(f"Server did not start within {timeout_seconds} seconds")
|
||||
|
||||
@@ -7,6 +7,8 @@
|
||||
|
||||
// increase max payload length to allow use of larger context size
|
||||
#define CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 1048576
|
||||
// disable Nagle's algorithm
|
||||
#define CPPHTTPLIB_TCP_NODELAY true
|
||||
#include "httplib.h"
|
||||
|
||||
// Change JSON_ASSERT from assert() to GGML_ASSERT:
|
||||
@@ -433,6 +435,10 @@ static std::string gen_chatcmplid() {
|
||||
return "chatcmpl-" + random_string();
|
||||
}
|
||||
|
||||
static std::string gen_tool_call_id() {
|
||||
return random_string();
|
||||
}
|
||||
|
||||
//
|
||||
// other common utils
|
||||
//
|
||||
@@ -519,8 +525,13 @@ static json oaicompat_completion_params_parse(const json & body) {
|
||||
throw std::runtime_error("Only one completion choice is allowed");
|
||||
}
|
||||
|
||||
// Handle "echo" field
|
||||
if (json_value(body, "echo", false)) {
|
||||
throw std::runtime_error("Only no echo is supported");
|
||||
}
|
||||
|
||||
// Params supported by OAI but unsupported by llama.cpp
|
||||
static const std::vector<std::string> unsupported_params { "best_of", "echo", "suffix" };
|
||||
static const std::vector<std::string> unsupported_params { "best_of", "suffix" };
|
||||
for (const auto & param : unsupported_params) {
|
||||
if (body.contains(param)) {
|
||||
throw std::runtime_error("Unsupported param: " + param);
|
||||
@@ -583,8 +594,8 @@ static json oaicompat_completion_params_parse(
|
||||
if (response_type == "json_object") {
|
||||
json_schema = json_value(response_format, "schema", json::object());
|
||||
} else if (response_type == "json_schema") {
|
||||
json json_schema = json_value(response_format, "json_schema", json::object());
|
||||
json_schema = json_value(json_schema, "schema", json::object());
|
||||
auto schema_wrapper = json_value(response_format, "json_schema", json::object());
|
||||
json_schema = json_value(schema_wrapper, "schema", json::object());
|
||||
} else if (!response_type.empty() && response_type != "text") {
|
||||
throw std::runtime_error("response_format type must be one of \"text\" or \"json_object\", but got: " + response_type);
|
||||
}
|
||||
@@ -596,10 +607,11 @@ static json oaicompat_completion_params_parse(
|
||||
inputs.tool_choice = common_chat_tool_choice_parse_oaicompat(json_value(body, "tool_choice", std::string("auto")));
|
||||
inputs.json_schema = json_schema.is_null() ? "" : json_schema.dump();
|
||||
inputs.grammar = grammar;
|
||||
inputs.add_generation_prompt = true;
|
||||
inputs.add_generation_prompt = json_value(body, "add_generation_prompt", true);
|
||||
inputs.use_jinja = use_jinja;
|
||||
inputs.parallel_tool_calls = json_value(body, "parallel_tool_calls", false);
|
||||
inputs.extract_reasoning = reasoning_format != COMMON_REASONING_FORMAT_NONE;
|
||||
inputs.add_generation_prompt = json_value(body, "add_generation_prompt", true);
|
||||
if (!inputs.tools.empty() && inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_NONE && body.contains("grammar")) {
|
||||
throw std::runtime_error("Cannot use custom grammar constraints with tools.");
|
||||
}
|
||||
@@ -613,10 +625,7 @@ static json oaicompat_completion_params_parse(
|
||||
llama_params["grammar_lazy"] = chat_params.grammar_lazy;
|
||||
auto grammar_triggers = json::array();
|
||||
for (const auto & trigger : chat_params.grammar_triggers) {
|
||||
grammar_triggers.push_back({
|
||||
{"word", trigger.word},
|
||||
{"at_start", trigger.at_start},
|
||||
});
|
||||
grammar_triggers.push_back(trigger.to_json<json>());
|
||||
}
|
||||
llama_params["grammar_triggers"] = grammar_triggers;
|
||||
llama_params["preserved_tokens"] = chat_params.preserved_tokens;
|
||||
|
||||
@@ -2,7 +2,7 @@ import { useEffect, useMemo, useRef, useState } from 'react';
|
||||
import { CallbackGeneratedChunk, useAppContext } from '../utils/app.context';
|
||||
import ChatMessage from './ChatMessage';
|
||||
import { CanvasType, Message, PendingMessage } from '../utils/types';
|
||||
import { classNames, throttle } from '../utils/misc';
|
||||
import { classNames, cleanCurrentUrl, throttle } from '../utils/misc';
|
||||
import CanvasPyInterpreter from './CanvasPyInterpreter';
|
||||
import StorageUtils from '../utils/storage';
|
||||
import { useVSCodeContext } from '../utils/llama-vscode';
|
||||
@@ -18,6 +18,24 @@ export interface MessageDisplay {
|
||||
isPending?: boolean;
|
||||
}
|
||||
|
||||
/**
|
||||
* If the current URL contains "?m=...", prefill the message input with the value.
|
||||
* If the current URL contains "?q=...", prefill and SEND the message.
|
||||
*/
|
||||
const prefilledMsg = {
|
||||
content() {
|
||||
const url = new URL(window.location.href);
|
||||
return url.searchParams.get('m') ?? url.searchParams.get('q') ?? '';
|
||||
},
|
||||
shouldSend() {
|
||||
const url = new URL(window.location.href);
|
||||
return url.searchParams.has('q');
|
||||
},
|
||||
clear() {
|
||||
cleanCurrentUrl(['m', 'q']);
|
||||
},
|
||||
};
|
||||
|
||||
function getListMessageDisplay(
|
||||
msgs: Readonly<Message[]>,
|
||||
leafNodeId: Message['id']
|
||||
@@ -81,7 +99,7 @@ export default function ChatScreen() {
|
||||
canvasData,
|
||||
replaceMessageAndGenerate,
|
||||
} = useAppContext();
|
||||
const [inputMsg, setInputMsg] = useState('');
|
||||
const [inputMsg, setInputMsg] = useState(prefilledMsg.content());
|
||||
const inputRef = useRef<HTMLTextAreaElement>(null);
|
||||
|
||||
const { extraContext, clearExtraContext } = useVSCodeContext(
|
||||
@@ -172,6 +190,22 @@ export default function ChatScreen() {
|
||||
|
||||
const hasCanvas = !!canvasData;
|
||||
|
||||
useEffect(() => {
|
||||
if (prefilledMsg.shouldSend()) {
|
||||
// send the prefilled message if needed
|
||||
sendNewMessage();
|
||||
} else {
|
||||
// otherwise, focus on the input and move the cursor to the end
|
||||
if (inputRef.current) {
|
||||
inputRef.current.focus();
|
||||
inputRef.current.selectionStart = inputRef.current.value.length;
|
||||
}
|
||||
}
|
||||
prefilledMsg.clear();
|
||||
// no need to keep track of sendNewMessage
|
||||
// eslint-disable-next-line react-hooks/exhaustive-deps
|
||||
}, [inputRef]);
|
||||
|
||||
// due to some timing issues of StorageUtils.appendMsg(), we need to make sure the pendingMsg is not duplicated upon rendering (i.e. appears once in the saved conversation and once in the pendingMsg)
|
||||
const pendingMsgDisplay: MessageDisplay[] =
|
||||
pendingMsg && messages.at(-1)?.msg.id !== pendingMsg.id
|
||||
@@ -228,6 +262,7 @@ export default function ChatScreen() {
|
||||
value={inputMsg}
|
||||
onChange={(e) => setInputMsg(e.target.value)}
|
||||
onKeyDown={(e) => {
|
||||
if (e.nativeEvent.isComposing || e.keyCode === 229) return;
|
||||
if (e.key === 'Enter' && e.shiftKey) return;
|
||||
if (e.key === 'Enter' && !e.shiftKey) {
|
||||
e.preventDefault();
|
||||
|
||||
@@ -148,13 +148,13 @@ const SETTING_SECTIONS: SettingSection[] = [
|
||||
fields: [
|
||||
{
|
||||
type: SettingInputType.CHECKBOX,
|
||||
label: 'Expand though process by default for generating message',
|
||||
label: 'Expand thought process by default when generating messages',
|
||||
key: 'showThoughtInProgress',
|
||||
},
|
||||
{
|
||||
type: SettingInputType.CHECKBOX,
|
||||
label:
|
||||
'Exclude thought process when sending request to API (Recommended for DeepSeek-R1)',
|
||||
'Exclude thought process when sending requests to API (Recommended for DeepSeek-R1)',
|
||||
key: 'excludeThoughtOnReq',
|
||||
},
|
||||
],
|
||||
@@ -247,7 +247,7 @@ const SETTING_SECTIONS: SettingSection[] = [
|
||||
This feature uses{' '}
|
||||
<OpenInNewTab href="https://pyodide.org">pyodide</OpenInNewTab>,
|
||||
downloaded from CDN. To use this feature, ask the LLM to generate
|
||||
python code inside a markdown code block. You will see a "Run"
|
||||
Python code inside a Markdown code block. You will see a "Run"
|
||||
button on the code block, near the "Copy" button.
|
||||
</small>
|
||||
</>
|
||||
@@ -274,7 +274,7 @@ export default function SettingDialog({
|
||||
);
|
||||
|
||||
const resetConfig = () => {
|
||||
if (window.confirm('Are you sure to reset all settings?')) {
|
||||
if (window.confirm('Are you sure you want to reset all settings?')) {
|
||||
setLocalConfig(CONFIG_DEFAULT);
|
||||
}
|
||||
};
|
||||
@@ -296,9 +296,9 @@ export default function SettingDialog({
|
||||
return;
|
||||
}
|
||||
} else if (mustBeNumeric) {
|
||||
const trimedValue = value.toString().trim();
|
||||
const numVal = Number(trimedValue);
|
||||
if (isNaN(numVal) || !isNumeric(numVal) || trimedValue.length === 0) {
|
||||
const trimmedValue = value.toString().trim();
|
||||
const numVal = Number(trimmedValue);
|
||||
if (isNaN(numVal) || !isNumeric(numVal) || trimmedValue.length === 0) {
|
||||
alert(`Value for ${key} must be numeric`);
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -40,7 +40,7 @@ export const useVSCodeContext = (
|
||||
|
||||
window.addEventListener('message', handleMessage);
|
||||
return () => window.removeEventListener('message', handleMessage);
|
||||
}, []);
|
||||
}, [inputRef, setInputMsg]);
|
||||
|
||||
// Add a keydown listener that sends the "escapePressed" message to the parent window
|
||||
useEffect(() => {
|
||||
|
||||
@@ -118,3 +118,11 @@ export const throttle = <T extends unknown[]>(
|
||||
}, delay);
|
||||
};
|
||||
};
|
||||
|
||||
export const cleanCurrentUrl = (removeQueryParams: string[]) => {
|
||||
const url = new URL(window.location.href);
|
||||
removeQueryParams.forEach((param) => {
|
||||
url.searchParams.delete(param);
|
||||
});
|
||||
window.history.replaceState({}, '', url.toString());
|
||||
};
|
||||
|
||||
@@ -3,7 +3,7 @@
|
||||
# MIT license
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: MIT
|
||||
|
||||
export ONEAPI_DEVICE_SELECTOR="level_zero:0"
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
|
||||
#export GGML_SYCL_DEBUG=1
|
||||
@@ -13,7 +13,7 @@ source /opt/intel/oneapi/setvars.sh
|
||||
INPUT_PROMPT="Building a website can be done in 10 simple steps:\nStep 1:"
|
||||
MODEL_FILE=models/llama-2-7b.Q4_0.gguf
|
||||
NGL=33
|
||||
CONEXT=8192
|
||||
CONEXT=4096
|
||||
|
||||
if [ $# -gt 0 ]; then
|
||||
GGML_SYCL_DEVICE=$1
|
||||
|
||||
@@ -1,10 +1,11 @@
|
||||
#define _USE_MATH_DEFINES // For M_PI on MSVC
|
||||
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "sampling.h"
|
||||
#include "log.h"
|
||||
#include "llama.h"
|
||||
|
||||
#define _USE_MATH_DEFINES // For M_PI on MSVC
|
||||
#include "json.hpp"
|
||||
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
@@ -16,6 +17,13 @@
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
|
||||
using json = nlohmann::ordered_json;
|
||||
|
||||
enum outetts_version {
|
||||
OUTETTS_V0_2,
|
||||
OUTETTS_V0_3,
|
||||
};
|
||||
|
||||
//
|
||||
// Terminal utils
|
||||
//
|
||||
@@ -371,7 +379,7 @@ static std::string replace_numbers_with_words(const std::string & input_text) {
|
||||
}
|
||||
|
||||
// Based on: https://github.com/edwko/OuteTTS/blob/a613e79c489d8256dd657ea9168d78de75895d82/outetts/version/v1/prompt_processor.py#L39
|
||||
static std::string process_text(const std::string & text) {
|
||||
static std::string process_text(const std::string & text, const outetts_version tts_version = OUTETTS_V0_2) {
|
||||
|
||||
// For now I skipped text romanization as I am unsure how to handle
|
||||
// uroman and MeCab implementations in C++
|
||||
@@ -401,7 +409,8 @@ static std::string process_text(const std::string & text) {
|
||||
if (c == ' ') {
|
||||
prompt_clean += "<|text_sep|>";
|
||||
*/
|
||||
processed_text = std::regex_replace(processed_text, std::regex(R"(\s)"), "<|text_sep|>");
|
||||
std::string separator = (tts_version == OUTETTS_V0_3) ? "<|space|>" : "<|text_sep|>";
|
||||
processed_text = std::regex_replace(processed_text, std::regex(R"(\s)"), separator);
|
||||
|
||||
return processed_text;
|
||||
}
|
||||
@@ -425,8 +434,8 @@ static void prompt_init(llama_tokens & prompt, const llama_vocab * vocab) {
|
||||
prompt_add(prompt, vocab, "<|im_start|>\n", true, true);
|
||||
}
|
||||
|
||||
static std::vector<llama_token> prepare_guide_tokens(const llama_vocab * vocab, const std::string & str) {
|
||||
const std::string& delimiter = "<|text_sep|>";
|
||||
static std::vector<llama_token> prepare_guide_tokens(const llama_vocab * vocab, const std::string & str, const outetts_version tts_version = OUTETTS_V0_2) {
|
||||
const std::string& delimiter = (tts_version == OUTETTS_V0_3 ? "<|space|>" : "<|text_sep|>");
|
||||
|
||||
std::vector<llama_token> result;
|
||||
size_t start = 0;
|
||||
@@ -452,6 +461,78 @@ static std::vector<llama_token> prepare_guide_tokens(const llama_vocab * vocab,
|
||||
return result;
|
||||
}
|
||||
|
||||
static json speaker_from_file(const std::string & speaker_file) {
|
||||
std::ifstream file(speaker_file);
|
||||
if (!file) {
|
||||
LOG_ERR("%s: Failed to open file '%s' for reading\n", __func__, speaker_file.c_str());
|
||||
return json();
|
||||
}
|
||||
|
||||
json speaker = json::parse(file);
|
||||
return speaker;
|
||||
}
|
||||
|
||||
static outetts_version get_tts_version(llama_model *model, json speaker = json::object()) {
|
||||
if (speaker.contains("version")) {
|
||||
std::string version = speaker["version"].get<std::string>();
|
||||
if (version == "0.2") {
|
||||
return OUTETTS_V0_2;
|
||||
} else if (version == "0.3") {
|
||||
return OUTETTS_V0_3;
|
||||
} else {
|
||||
LOG_ERR("%s: Unsupported speaker version '%s'\n", __func__, version.c_str());
|
||||
}
|
||||
}
|
||||
|
||||
// Also could get version from model itself
|
||||
const char *chat_template = llama_model_chat_template(model, nullptr);
|
||||
if (chat_template && std::string(chat_template) == "outetts-0.3") {
|
||||
return OUTETTS_V0_3;
|
||||
}
|
||||
|
||||
// Use 0.2 as the default version
|
||||
return OUTETTS_V0_2;
|
||||
}
|
||||
|
||||
static std::string audio_text_from_speaker(json speaker, const outetts_version tts_version = OUTETTS_V0_2) {
|
||||
std::string audio_text = "<|text_start|>";
|
||||
|
||||
if (tts_version == OUTETTS_V0_2 || tts_version == OUTETTS_V0_3) {
|
||||
std::string separator = (tts_version == OUTETTS_V0_3) ? "<|space|>" : "<|text_sep|>";
|
||||
for (const auto &word : speaker["words"]) {
|
||||
audio_text += word["word"].get<std::string>() + separator;
|
||||
}
|
||||
}
|
||||
|
||||
return audio_text;
|
||||
}
|
||||
|
||||
static std::string audio_data_from_speaker(json speaker, const outetts_version tts_version = OUTETTS_V0_2) {
|
||||
std::string audio_data = "<|audio_start|>\n";
|
||||
|
||||
if (tts_version == OUTETTS_V0_2 || tts_version == OUTETTS_V0_3) {
|
||||
std::string code_start = (tts_version == OUTETTS_V0_3) ? "" : "<|code_start|>";
|
||||
std::string code_end = (tts_version == OUTETTS_V0_3) ? "<|space|>" : "<|code_end|>";
|
||||
for (const auto &word : speaker["words"]) {
|
||||
std::string word_text = word["word"].get<std::string>();
|
||||
double duration = word["duration"].get<double>();
|
||||
std::vector<int> codes = word["codes"].get<std::vector<int>>();
|
||||
|
||||
// Create the audio output entry
|
||||
std::ostringstream word_entry;
|
||||
word_entry << word_text << "<|t_" << std::fixed << std::setprecision(2)
|
||||
<< duration << "|>" + code_start;
|
||||
for (const auto &Code : codes) {
|
||||
word_entry << "<|" << Code << "|>";
|
||||
}
|
||||
word_entry << code_end << "\n";
|
||||
audio_data += word_entry.str();
|
||||
}
|
||||
}
|
||||
|
||||
return audio_data;
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
common_params params;
|
||||
|
||||
@@ -523,34 +604,9 @@ int main(int argc, char ** argv) {
|
||||
std::vector<llama_token> codes;
|
||||
std::vector<llama_token> guide_tokens;
|
||||
|
||||
// process prompt and generate voice codes
|
||||
{
|
||||
LOG_INF("%s: constructing prompt ..\n", __func__);
|
||||
|
||||
std::vector<llama_token> prompt_inp;
|
||||
|
||||
prompt_init(prompt_inp, vocab);
|
||||
|
||||
prompt_add(prompt_inp, vocab, "<|text_start|>the<|text_sep|>overall<|text_sep|>package<|text_sep|>from<|text_sep|>just<|text_sep|>two<|text_sep|>people<|text_sep|>is<|text_sep|>pretty<|text_sep|>remarkable<|text_sep|>sure<|text_sep|>i<|text_sep|>have<|text_sep|>some<|text_sep|>critiques<|text_sep|>about<|text_sep|>some<|text_sep|>of<|text_sep|>the<|text_sep|>gameplay<|text_sep|>aspects<|text_sep|>but<|text_sep|>its<|text_sep|>still<|text_sep|>really<|text_sep|>enjoyable<|text_sep|>and<|text_sep|>it<|text_sep|>looks<|text_sep|>lovely<|text_sep|>", false, true);
|
||||
|
||||
// convert the input text into the necessary format expected by OuteTTS
|
||||
{
|
||||
std::string prompt_clean = process_text(params.prompt);
|
||||
if (params.vocoder.use_guide_tokens) {
|
||||
guide_tokens = prepare_guide_tokens(vocab, prompt_clean);
|
||||
}
|
||||
|
||||
LOG_INF("%s: prompt: '%s'\n", __func__, prompt_clean.c_str());
|
||||
|
||||
prompt_add(prompt_inp, vocab, prompt_clean, false, true);
|
||||
}
|
||||
|
||||
prompt_add(prompt_inp, vocab, "<|text_end|>\n", false, true);
|
||||
|
||||
// disabled to save time on tokenizing each time
|
||||
// TODO: load voices from the json files
|
||||
#if 0
|
||||
const std::string voice_data = R"(<|audio_start|>
|
||||
// the default speaker profile is from: https://github.com/edwko/OuteTTS/blob/main/outetts/version/v1/default_speakers/en_male_1.json
|
||||
std::string audio_text = "<|text_start|>the<|text_sep|>overall<|text_sep|>package<|text_sep|>from<|text_sep|>just<|text_sep|>two<|text_sep|>people<|text_sep|>is<|text_sep|>pretty<|text_sep|>remarkable<|text_sep|>sure<|text_sep|>i<|text_sep|>have<|text_sep|>some<|text_sep|>critiques<|text_sep|>about<|text_sep|>some<|text_sep|>of<|text_sep|>the<|text_sep|>gameplay<|text_sep|>aspects<|text_sep|>but<|text_sep|>its<|text_sep|>still<|text_sep|>really<|text_sep|>enjoyable<|text_sep|>and<|text_sep|>it<|text_sep|>looks<|text_sep|>lovely<|text_sep|>";
|
||||
std::string audio_data = R"(<|audio_start|>
|
||||
the<|t_0.08|><|code_start|><|257|><|740|><|636|><|913|><|788|><|1703|><|code_end|>
|
||||
overall<|t_0.36|><|code_start|><|127|><|201|><|191|><|774|><|700|><|532|><|1056|><|557|><|798|><|298|><|1741|><|747|><|1662|><|1617|><|1702|><|1527|><|368|><|1588|><|1049|><|1008|><|1625|><|747|><|1576|><|728|><|1019|><|1696|><|1765|><|code_end|>
|
||||
package<|t_0.56|><|code_start|><|935|><|584|><|1319|><|627|><|1016|><|1491|><|1344|><|1117|><|1526|><|1040|><|239|><|1435|><|951|><|498|><|723|><|1180|><|535|><|789|><|1649|><|1637|><|78|><|465|><|1668|><|901|><|595|><|1675|><|117|><|1009|><|1667|><|320|><|840|><|79|><|507|><|1762|><|1508|><|1228|><|1768|><|802|><|1450|><|1457|><|232|><|639|><|code_end|>
|
||||
@@ -582,117 +638,170 @@ it<|t_0.09|><|code_start|><|848|><|1366|><|395|><|1601|><|1513|><|593|><|1302|><
|
||||
looks<|t_0.27|><|code_start|><|1281|><|1266|><|1755|><|572|><|248|><|1751|><|1257|><|695|><|1380|><|457|><|659|><|585|><|1315|><|1105|><|1776|><|736|><|24|><|736|><|654|><|1027|><|code_end|>
|
||||
lovely<|t_0.56|><|code_start|><|634|><|596|><|1766|><|1556|><|1306|><|1285|><|1481|><|1721|><|1123|><|438|><|1246|><|1251|><|795|><|659|><|1381|><|1658|><|217|><|1772|><|562|><|952|><|107|><|1129|><|1112|><|467|><|550|><|1079|><|840|><|1615|><|1469|><|1380|><|168|><|917|><|836|><|1827|><|437|><|583|><|67|><|595|><|1087|><|1646|><|1493|><|1677|><|code_end|>)";
|
||||
|
||||
auto tmp = common_tokenize(vocab, voice_data, false, true);
|
||||
printf("\n\n");
|
||||
for (int i = 0; i < tmp.size(); ++i) {
|
||||
printf("%d, ", tmp[i]);
|
||||
// audio data for 0.3 version
|
||||
outetts_version tts_version = get_tts_version(model_ttc);
|
||||
if (tts_version == OUTETTS_V0_3) {
|
||||
audio_text = std::regex_replace(audio_text, std::regex(R"(<\|text_sep\|>)"), "<|space|>");
|
||||
audio_data = std::regex_replace(audio_data, std::regex(R"(<\|code_start\|>)"), "");
|
||||
audio_data = std::regex_replace(audio_data, std::regex(R"(<\|code_end\|>)"), "<|space|>");
|
||||
}
|
||||
|
||||
// load speaker if given
|
||||
if (!params.vocoder.speaker_file.empty()) {
|
||||
LOG_INF("%s: loading speaker ..\n", __func__);
|
||||
json speaker = speaker_from_file(params.vocoder.speaker_file);
|
||||
if (speaker.empty()) {
|
||||
LOG_ERR("%s: Failed to load speaker file '%s'\n", __func__, params.vocoder.speaker_file.c_str());
|
||||
return 1;
|
||||
}
|
||||
printf("\n\n");
|
||||
audio_text = audio_text_from_speaker(speaker, tts_version);
|
||||
audio_data = audio_data_from_speaker(speaker, tts_version);
|
||||
}
|
||||
|
||||
// process prompt and generate voice codes
|
||||
{
|
||||
LOG_INF("%s: constructing prompt ..\n", __func__);
|
||||
|
||||
std::vector<llama_token> prompt_inp;
|
||||
|
||||
prompt_init(prompt_inp, vocab);
|
||||
|
||||
prompt_add(prompt_inp, vocab, audio_text, false, true);
|
||||
|
||||
// convert the input text into the necessary format expected by OuteTTS
|
||||
{
|
||||
std::string prompt_clean = process_text(params.prompt, tts_version);
|
||||
if (params.vocoder.use_guide_tokens) {
|
||||
guide_tokens = prepare_guide_tokens(vocab, prompt_clean, tts_version);
|
||||
}
|
||||
|
||||
LOG_INF("%s: prompt: '%s'\n", __func__, prompt_clean.c_str());
|
||||
|
||||
prompt_add(prompt_inp, vocab, prompt_clean, false, true);
|
||||
}
|
||||
|
||||
prompt_add(prompt_inp, vocab, "<|text_end|>\n", false, true);
|
||||
|
||||
if (!params.vocoder.speaker_file.empty()) {
|
||||
prompt_add(prompt_inp, vocab, audio_data, false, true);
|
||||
} else {
|
||||
// disabled to save time on tokenizing each time
|
||||
#if 1
|
||||
const std::string voice_data = audio_data;
|
||||
|
||||
auto tmp = common_tokenize(vocab, voice_data, false, true);
|
||||
printf("\n\n");
|
||||
for (size_t i = 0; i < tmp.size(); ++i) {
|
||||
printf("%d, ", tmp[i]);
|
||||
}
|
||||
printf("\n\n");
|
||||
prompt_add(prompt_inp, tmp);
|
||||
#else
|
||||
prompt_add(prompt_inp, llama_tokens {
|
||||
151667, 198, 1782, 155780, 151669, 151929, 152412, 152308, 152585,
|
||||
152460, 153375, 151670, 198, 74455, 155808, 151669, 151799,
|
||||
151873, 151863, 152446, 152372, 152204, 152728, 152229, 152470,
|
||||
151970, 153413, 152419, 153334, 153289, 153374, 153199, 152040,
|
||||
153260, 152721, 152680, 153297, 152419, 153248, 152400, 152691,
|
||||
153368, 153437, 151670, 198, 1722, 155828, 151669, 152607,
|
||||
152256, 152991, 152299, 152688, 153163, 153016, 152789, 153198,
|
||||
152712, 151911, 153107, 152623, 152170, 152395, 152852, 152207,
|
||||
152461, 153321, 153309, 151750, 152137, 153340, 152573, 152267,
|
||||
153347, 151789, 152681, 153339, 151992, 152512, 151751, 152179,
|
||||
153434, 153180, 152900, 153440, 152474, 153122, 153129, 151904,
|
||||
152311, 151670, 198, 1499, 155791, 151669, 152276, 152454,
|
||||
153354, 152544, 153204, 153272, 152708, 153433, 152319, 153226,
|
||||
153043, 152325, 153267, 152622, 151670, 198, 4250, 155797,
|
||||
151669, 153454, 153342, 151989, 152458, 153420, 152303, 152271,
|
||||
152827, 153036, 153196, 151708, 153263, 152561, 153207, 152213,
|
||||
152112, 153204, 151722, 152542, 151670, 198, 19789, 155796,
|
||||
151669, 153353, 153182, 152345, 152471, 152477, 153014, 152002,
|
||||
152191, 151734, 152312, 152810, 152237, 153224, 153169, 153224,
|
||||
152244, 153387, 153404, 151670, 198, 16069, 155811, 151669,
|
||||
152265, 151946, 151808, 152412, 152363, 152305, 153156, 152733,
|
||||
152810, 153157, 152016, 152100, 152069, 153234, 152317, 152589,
|
||||
152707, 153121, 153341, 152159, 152114, 153156, 153001, 153504,
|
||||
153376, 152272, 152433, 152325, 151941, 151670, 198, 285,
|
||||
155788, 151669, 152238, 152255, 153427, 152318, 153009, 152381,
|
||||
152474, 152680, 152157, 153255, 152324, 151682, 151670, 198,
|
||||
32955, 155804, 151669, 153490, 153419, 152364, 152405, 152682,
|
||||
152206, 152078, 153369, 152725, 153193, 153027, 152946, 152488,
|
||||
153070, 151883, 152890, 152489, 153144, 153375, 152358, 151685,
|
||||
152494, 152117, 152740, 151670, 198, 37448, 480, 155840, 151669,
|
||||
151902, 152720, 153377, 152027, 152378, 152821, 153207, 153459,
|
||||
153028, 153068, 152507, 153255, 152158, 152921, 151958, 152609,
|
||||
152748, 152822, 152286, 151714, 152730, 152377, 152353, 152470,
|
||||
152606, 152162, 152186, 153071, 152244, 153118, 153375, 153018,
|
||||
152712, 153098, 152976, 152336, 151843, 153202, 152297, 151736,
|
||||
153380, 153502, 152702, 152115, 153181, 152735, 153277, 153457,
|
||||
152393, 153112, 152595, 151670, 198, 19098, 155808, 151669,
|
||||
152464, 153452, 152595, 153312, 151937, 151933, 153197, 152239,
|
||||
153163, 152922, 153402, 152034, 152591, 153438, 152215, 151673,
|
||||
152005, 151785, 152642, 151924, 153278, 151805, 151974, 153482,
|
||||
152718, 152862, 153347, 151670, 198, 72, 155780, 151669, 151795,
|
||||
152111, 152746, 152377, 153471, 152309, 151670, 198, 19016,
|
||||
155788, 151669, 153181, 152271, 152190, 152842, 152224, 152701,
|
||||
152939, 152536, 152091, 151815, 152733, 151672, 151670, 198,
|
||||
14689, 155788, 151669, 152291, 152072, 152942, 151734, 153042,
|
||||
153504, 152589, 153333, 151839, 151941, 153038, 153180, 151670,
|
||||
198, 36996, 8303, 155832, 151669, 152231, 152256, 152835,
|
||||
152801, 152985, 153400, 152393, 152818, 152765, 152249, 152600,
|
||||
151699, 152302, 152752, 153018, 153009, 151992, 153054, 152847,
|
||||
153354, 153228, 152662, 153355, 152532, 153393, 151782, 152458,
|
||||
152048, 152757, 152428, 153195, 151906, 153006, 153178, 153250,
|
||||
152331, 152284, 152780, 153138, 153319, 151980, 153142, 152418,
|
||||
152228, 152733, 151670, 198, 9096, 155801, 151669, 151698,
|
||||
153321, 152217, 153039, 152935, 153400, 152122, 152531, 153106,
|
||||
152169, 152892, 152957, 151851, 152427, 152826, 152451, 151851,
|
||||
152901, 152885, 152594, 153446, 153080, 151670, 198, 14689,
|
||||
155795, 151669, 152658, 151700, 153321, 152450, 152530, 153191,
|
||||
151673, 151690, 151698, 152714, 152846, 152981, 153171, 153384,
|
||||
153364, 153188, 153246, 151670, 198, 1055, 155779, 151669,
|
||||
151869, 152388, 152711, 153334, 151736, 151670, 198, 1782,
|
||||
155780, 151669, 153483, 153240, 152241, 152558, 152697, 153046,
|
||||
151670, 198, 5804, 1363, 155820, 151669, 152941, 152764, 152605,
|
||||
153034, 153434, 153372, 153347, 151887, 152453, 152758, 152133,
|
||||
152510, 152694, 152431, 152321, 153088, 152676, 152223, 152581,
|
||||
152459, 152015, 152502, 153063, 152712, 153294, 153451, 153032,
|
||||
152903, 152859, 152989, 151748, 152669, 152661, 152650, 152409,
|
||||
151861, 151670, 198, 300, 7973, 155828, 151669, 153095, 152469,
|
||||
152988, 152894, 151819, 152391, 153019, 152058, 153062, 153230,
|
||||
151826, 152112, 152306, 152264, 152769, 153390, 152384, 152435,
|
||||
152790, 153393, 152983, 152540, 152252, 152034, 153107, 152540,
|
||||
151919, 151893, 152558, 152817, 152946, 152956, 152129, 152715,
|
||||
153131, 153490, 151734, 152271, 152707, 151734, 153321, 152450,
|
||||
151670, 198, 8088, 155792, 151669, 152452, 153497, 153353,
|
||||
152679, 152533, 152382, 152374, 152611, 153341, 153163, 152285,
|
||||
153411, 152495, 153141, 152320, 151670, 198, 1199, 155781,
|
||||
151669, 151764, 152360, 153295, 152634, 153342, 152199, 152271,
|
||||
151670, 198, 43366, 155799, 151669, 152308, 151682, 152889,
|
||||
152016, 152385, 152629, 152495, 151826, 153321, 152958, 152180,
|
||||
151886, 153432, 152922, 152128, 153024, 153040, 152593, 152287,
|
||||
151677, 151670, 198, 53660, 155808, 151669, 151727, 152092,
|
||||
152680, 153331, 151699, 152316, 152938, 152289, 152433, 153384,
|
||||
151781, 153137, 153259, 152175, 153213, 152291, 151869, 152691,
|
||||
152489, 151941, 152049, 152034, 153053, 152179, 153160, 151676,
|
||||
153367, 151670, 198, 268, 4123, 480, 155821, 151669, 152350,
|
||||
152173, 152536, 151991, 151960, 153144, 153013, 152358, 152234,
|
||||
153135, 152291, 153235, 152143, 152583, 152402, 153483, 152678,
|
||||
152192, 152533, 152946, 151797, 153103, 152310, 152293, 151825,
|
||||
152548, 153442, 152109, 152659, 153325, 152781, 152570, 152957,
|
||||
151752, 152265, 153381, 152515, 151670, 198, 437, 155787,
|
||||
151669, 152957, 152659, 151975, 152709, 152402, 152836, 152174,
|
||||
151792, 153409, 153327, 152990, 151670, 198, 275, 155781,
|
||||
151669, 152520, 153038, 152067, 153273, 153185, 152265, 152974,
|
||||
151670, 198, 94273, 155799, 151669, 152953, 152938, 153427,
|
||||
152244, 151920, 153423, 152929, 152367, 153052, 152129, 152331,
|
||||
152257, 152987, 152777, 153448, 152408, 151696, 152408, 152326,
|
||||
152699, 151670, 198, 385, 16239, 155828, 151669, 152306, 152268,
|
||||
153438, 153228, 152978, 152957, 153153, 153393, 152795, 152110,
|
||||
152918, 152923, 152467, 152331, 153053, 153330, 151889, 153444,
|
||||
152234, 152624, 151779, 152801, 152784, 152139, 152222, 152751,
|
||||
152512, 153287, 153141, 153052, 151840, 152589, 152508, 153499,
|
||||
152109, 152255, 151739, 152267, 152759, 153318, 153165, 153349,
|
||||
151670,});
|
||||
prompt_add(prompt_inp, llama_tokens {
|
||||
151667, 198, 1782, 155780, 151669, 151929, 152412, 152308, 152585,
|
||||
152460, 153375, 151670, 198, 74455, 155808, 151669, 151799,
|
||||
151873, 151863, 152446, 152372, 152204, 152728, 152229, 152470,
|
||||
151970, 153413, 152419, 153334, 153289, 153374, 153199, 152040,
|
||||
153260, 152721, 152680, 153297, 152419, 153248, 152400, 152691,
|
||||
153368, 153437, 151670, 198, 1722, 155828, 151669, 152607,
|
||||
152256, 152991, 152299, 152688, 153163, 153016, 152789, 153198,
|
||||
152712, 151911, 153107, 152623, 152170, 152395, 152852, 152207,
|
||||
152461, 153321, 153309, 151750, 152137, 153340, 152573, 152267,
|
||||
153347, 151789, 152681, 153339, 151992, 152512, 151751, 152179,
|
||||
153434, 153180, 152900, 153440, 152474, 153122, 153129, 151904,
|
||||
152311, 151670, 198, 1499, 155791, 151669, 152276, 152454,
|
||||
153354, 152544, 153204, 153272, 152708, 153433, 152319, 153226,
|
||||
153043, 152325, 153267, 152622, 151670, 198, 4250, 155797,
|
||||
151669, 153454, 153342, 151989, 152458, 153420, 152303, 152271,
|
||||
152827, 153036, 153196, 151708, 153263, 152561, 153207, 152213,
|
||||
152112, 153204, 151722, 152542, 151670, 198, 19789, 155796,
|
||||
151669, 153353, 153182, 152345, 152471, 152477, 153014, 152002,
|
||||
152191, 151734, 152312, 152810, 152237, 153224, 153169, 153224,
|
||||
152244, 153387, 153404, 151670, 198, 16069, 155811, 151669,
|
||||
152265, 151946, 151808, 152412, 152363, 152305, 153156, 152733,
|
||||
152810, 153157, 152016, 152100, 152069, 153234, 152317, 152589,
|
||||
152707, 153121, 153341, 152159, 152114, 153156, 153001, 153504,
|
||||
153376, 152272, 152433, 152325, 151941, 151670, 198, 285,
|
||||
155788, 151669, 152238, 152255, 153427, 152318, 153009, 152381,
|
||||
152474, 152680, 152157, 153255, 152324, 151682, 151670, 198,
|
||||
32955, 155804, 151669, 153490, 153419, 152364, 152405, 152682,
|
||||
152206, 152078, 153369, 152725, 153193, 153027, 152946, 152488,
|
||||
153070, 151883, 152890, 152489, 153144, 153375, 152358, 151685,
|
||||
152494, 152117, 152740, 151670, 198, 37448, 480, 155840, 151669,
|
||||
151902, 152720, 153377, 152027, 152378, 152821, 153207, 153459,
|
||||
153028, 153068, 152507, 153255, 152158, 152921, 151958, 152609,
|
||||
152748, 152822, 152286, 151714, 152730, 152377, 152353, 152470,
|
||||
152606, 152162, 152186, 153071, 152244, 153118, 153375, 153018,
|
||||
152712, 153098, 152976, 152336, 151843, 153202, 152297, 151736,
|
||||
153380, 153502, 152702, 152115, 153181, 152735, 153277, 153457,
|
||||
152393, 153112, 152595, 151670, 198, 19098, 155808, 151669,
|
||||
152464, 153452, 152595, 153312, 151937, 151933, 153197, 152239,
|
||||
153163, 152922, 153402, 152034, 152591, 153438, 152215, 151673,
|
||||
152005, 151785, 152642, 151924, 153278, 151805, 151974, 153482,
|
||||
152718, 152862, 153347, 151670, 198, 72, 155780, 151669, 151795,
|
||||
152111, 152746, 152377, 153471, 152309, 151670, 198, 19016,
|
||||
155788, 151669, 153181, 152271, 152190, 152842, 152224, 152701,
|
||||
152939, 152536, 152091, 151815, 152733, 151672, 151670, 198,
|
||||
14689, 155788, 151669, 152291, 152072, 152942, 151734, 153042,
|
||||
153504, 152589, 153333, 151839, 151941, 153038, 153180, 151670,
|
||||
198, 36996, 8303, 155832, 151669, 152231, 152256, 152835,
|
||||
152801, 152985, 153400, 152393, 152818, 152765, 152249, 152600,
|
||||
151699, 152302, 152752, 153018, 153009, 151992, 153054, 152847,
|
||||
153354, 153228, 152662, 153355, 152532, 153393, 151782, 152458,
|
||||
152048, 152757, 152428, 153195, 151906, 153006, 153178, 153250,
|
||||
152331, 152284, 152780, 153138, 153319, 151980, 153142, 152418,
|
||||
152228, 152733, 151670, 198, 9096, 155801, 151669, 151698,
|
||||
153321, 152217, 153039, 152935, 153400, 152122, 152531, 153106,
|
||||
152169, 152892, 152957, 151851, 152427, 152826, 152451, 151851,
|
||||
152901, 152885, 152594, 153446, 153080, 151670, 198, 14689,
|
||||
155795, 151669, 152658, 151700, 153321, 152450, 152530, 153191,
|
||||
151673, 151690, 151698, 152714, 152846, 152981, 153171, 153384,
|
||||
153364, 153188, 153246, 151670, 198, 1055, 155779, 151669,
|
||||
151869, 152388, 152711, 153334, 151736, 151670, 198, 1782,
|
||||
155780, 151669, 153483, 153240, 152241, 152558, 152697, 153046,
|
||||
151670, 198, 5804, 1363, 155820, 151669, 152941, 152764, 152605,
|
||||
153034, 153434, 153372, 153347, 151887, 152453, 152758, 152133,
|
||||
152510, 152694, 152431, 152321, 153088, 152676, 152223, 152581,
|
||||
152459, 152015, 152502, 153063, 152712, 153294, 153451, 153032,
|
||||
152903, 152859, 152989, 151748, 152669, 152661, 152650, 152409,
|
||||
151861, 151670, 198, 300, 7973, 155828, 151669, 153095, 152469,
|
||||
152988, 152894, 151819, 152391, 153019, 152058, 153062, 153230,
|
||||
151826, 152112, 152306, 152264, 152769, 153390, 152384, 152435,
|
||||
152790, 153393, 152983, 152540, 152252, 152034, 153107, 152540,
|
||||
151919, 151893, 152558, 152817, 152946, 152956, 152129, 152715,
|
||||
153131, 153490, 151734, 152271, 152707, 151734, 153321, 152450,
|
||||
151670, 198, 8088, 155792, 151669, 152452, 153497, 153353,
|
||||
152679, 152533, 152382, 152374, 152611, 153341, 153163, 152285,
|
||||
153411, 152495, 153141, 152320, 151670, 198, 1199, 155781,
|
||||
151669, 151764, 152360, 153295, 152634, 153342, 152199, 152271,
|
||||
151670, 198, 43366, 155799, 151669, 152308, 151682, 152889,
|
||||
152016, 152385, 152629, 152495, 151826, 153321, 152958, 152180,
|
||||
151886, 153432, 152922, 152128, 153024, 153040, 152593, 152287,
|
||||
151677, 151670, 198, 53660, 155808, 151669, 151727, 152092,
|
||||
152680, 153331, 151699, 152316, 152938, 152289, 152433, 153384,
|
||||
151781, 153137, 153259, 152175, 153213, 152291, 151869, 152691,
|
||||
152489, 151941, 152049, 152034, 153053, 152179, 153160, 151676,
|
||||
153367, 151670, 198, 268, 4123, 480, 155821, 151669, 152350,
|
||||
152173, 152536, 151991, 151960, 153144, 153013, 152358, 152234,
|
||||
153135, 152291, 153235, 152143, 152583, 152402, 153483, 152678,
|
||||
152192, 152533, 152946, 151797, 153103, 152310, 152293, 151825,
|
||||
152548, 153442, 152109, 152659, 153325, 152781, 152570, 152957,
|
||||
151752, 152265, 153381, 152515, 151670, 198, 437, 155787,
|
||||
151669, 152957, 152659, 151975, 152709, 152402, 152836, 152174,
|
||||
151792, 153409, 153327, 152990, 151670, 198, 275, 155781,
|
||||
151669, 152520, 153038, 152067, 153273, 153185, 152265, 152974,
|
||||
151670, 198, 94273, 155799, 151669, 152953, 152938, 153427,
|
||||
152244, 151920, 153423, 152929, 152367, 153052, 152129, 152331,
|
||||
152257, 152987, 152777, 153448, 152408, 151696, 152408, 152326,
|
||||
152699, 151670, 198, 385, 16239, 155828, 151669, 152306, 152268,
|
||||
153438, 153228, 152978, 152957, 153153, 153393, 152795, 152110,
|
||||
152918, 152923, 152467, 152331, 153053, 153330, 151889, 153444,
|
||||
152234, 152624, 151779, 152801, 152784, 152139, 152222, 152751,
|
||||
152512, 153287, 153141, 153052, 151840, 152589, 152508, 153499,
|
||||
152109, 152255, 151739, 152267, 152759, 153318, 153165, 153349,
|
||||
151670,});
|
||||
#endif
|
||||
}
|
||||
|
||||
// print the prompt token-by-token
|
||||
|
||||
|
||||
@@ -102,9 +102,11 @@ endif()
|
||||
|
||||
option(GGML_CPU_HBM "ggml: use memkind for CPU HBM" OFF)
|
||||
option(GGML_CPU_AARCH64 "ggml: use runtime weight conversion of Q4_0 to Q4_X_X" ON)
|
||||
option(GGML_CPU_KLEIDIAI "ggml: use KleidiAI optimized kernels if applicable" OFF)
|
||||
option(GGML_AVX "ggml: enable AVX" ${INS_ENB})
|
||||
option(GGML_AVX_VNNI "ggml: enable AVX-VNNI" OFF)
|
||||
option(GGML_AVX2 "ggml: enable AVX2" ${INS_ENB})
|
||||
option(GGML_BMI2 "ggml: enable BMI2" ${INS_ENB})
|
||||
option(GGML_AVX512 "ggml: enable AVX512F" OFF)
|
||||
option(GGML_AVX512_VBMI "ggml: enable AVX512-VBMI" OFF)
|
||||
option(GGML_AVX512_VNNI "ggml: enable AVX512-VNNI" OFF)
|
||||
@@ -121,6 +123,7 @@ endif()
|
||||
option(GGML_LASX "ggml: enable lasx" ON)
|
||||
option(GGML_LSX "ggml: enable lsx" ON)
|
||||
option(GGML_RVV "ggml: enable rvv" ON)
|
||||
option(GGML_VXE "ggml: enable vxe" ON)
|
||||
|
||||
option(GGML_CPU_ALL_VARIANTS "ggml: build all variants of the CPU backend (requires GGML_BACKEND_DL)" OFF)
|
||||
set(GGML_CPU_ARM_ARCH "" CACHE STRING "ggml: CPU architecture for ARM")
|
||||
@@ -150,12 +153,17 @@ set (GGML_CUDA_PEER_MAX_BATCH_SIZE "128" CACHE STRING
|
||||
"ggml: max. batch size for using peer access")
|
||||
option(GGML_CUDA_NO_PEER_COPY "ggml: do not use peer to peer copies" OFF)
|
||||
option(GGML_CUDA_NO_VMM "ggml: do not try to use CUDA VMM" OFF)
|
||||
option(GGML_CUDA_FA "ggml: compile ggml FlashAttention CUDA kernels" ON)
|
||||
option(GGML_CUDA_FA_ALL_QUANTS "ggml: compile all quants for FlashAttention" OFF)
|
||||
option(GGML_CUDA_GRAPHS "ggml: use CUDA graphs (llama.cpp only)" ${GGML_CUDA_GRAPHS_DEFAULT})
|
||||
set (GGML_CUDA_COMPRESSION_MODE "size" CACHE STRING
|
||||
"ggml: cuda link binary compression mode; requires cuda 12.8+")
|
||||
set_property(CACHE GGML_CUDA_COMPRESSION_MODE PROPERTY STRINGS "none;speed;balance;size")
|
||||
|
||||
option(GGML_HIP "ggml: use HIP" OFF)
|
||||
option(GGML_HIP_GRAPHS "ggml: use HIP graph, experimental, slow" OFF)
|
||||
option(GGML_HIP_NO_VMM "ggml: do not try to use HIP VMM" ON)
|
||||
option(GGML_HIP_ROCWMMA_FATTN "ggml: enable rocWMMA for FlashAttention" OFF)
|
||||
option(GGML_HIP_UMA "ggml: use HIP unified memory architecture" OFF)
|
||||
option(GGML_VULKAN "ggml: use Vulkan" OFF)
|
||||
option(GGML_VULKAN_CHECK_RESULTS "ggml: run Vulkan op checks" OFF)
|
||||
@@ -209,6 +217,8 @@ set(THREADS_PREFER_PTHREAD_FLAG ON)
|
||||
|
||||
find_package(Threads REQUIRED)
|
||||
|
||||
include(GNUInstallDirs)
|
||||
|
||||
#
|
||||
# build the library
|
||||
#
|
||||
@@ -232,7 +242,6 @@ endif ()
|
||||
# install
|
||||
#
|
||||
|
||||
include(GNUInstallDirs)
|
||||
include(CMakePackageConfigHelpers)
|
||||
|
||||
# all public headers
|
||||
@@ -243,6 +252,7 @@ set(GGML_PUBLIC_HEADERS
|
||||
include/ggml-backend.h
|
||||
include/ggml-blas.h
|
||||
include/ggml-cann.h
|
||||
include/ggml-cpp.h
|
||||
include/ggml-cuda.h
|
||||
include/ggml-kompute.h
|
||||
include/ggml-opt.h
|
||||
|
||||
@@ -112,7 +112,7 @@ foreach(_ggml_backend ${GGML_AVAILABLE_BACKENDS})
|
||||
|
||||
string(REGEX MATCH "^ggml-cpu" is_cpu_variant "${_ggml_backend}")
|
||||
if(is_cpu_variant)
|
||||
list(APPEND GGML_CPU_INTERFACE_LINK_LIBRARIES "ggml::ggml" "ggml::ggml-base")
|
||||
list(APPEND GGML_CPU_INTERFACE_LINK_LIBRARIES "ggml::ggml-base")
|
||||
set_target_properties(ggml::${_ggml_backend}
|
||||
PROPERTIES
|
||||
INTERFACE_LINK_LIBRARIES "${GGML_CPU_INTERFACE_LINK_LIBRARIES}")
|
||||
@@ -124,7 +124,7 @@ foreach(_ggml_backend ${GGML_AVAILABLE_BACKENDS})
|
||||
endif()
|
||||
|
||||
else()
|
||||
list(APPEND ${_ggml_backend_pfx}_INTERFACE_LINK_LIBRARIES "ggml::ggml" "ggml::ggml-base")
|
||||
list(APPEND ${_ggml_backend_pfx}_INTERFACE_LINK_LIBRARIES "ggml::ggml-base")
|
||||
set_target_properties(ggml::${_ggml_backend}
|
||||
PROPERTIES
|
||||
INTERFACE_LINK_LIBRARIES "${${_ggml_backend_pfx}_INTERFACE_LINK_LIBRARIES}")
|
||||
@@ -139,6 +139,11 @@ foreach(_ggml_backend ${GGML_AVAILABLE_BACKENDS})
|
||||
list(APPEND _ggml_all_targets ggml::${_ggml_backend})
|
||||
endforeach()
|
||||
|
||||
list(APPEND GGML_INTERFACE_LINK_LIBRARIES ggml::ggml-base "${_ggml_all_targets}")
|
||||
set_target_properties(ggml::ggml
|
||||
PROPERTIES
|
||||
INTERFACE_LINK_LIBRARIES "${GGML_INTERFACE_LINK_LIBRARIES}")
|
||||
|
||||
add_library(ggml::all INTERFACE IMPORTED)
|
||||
set_target_properties(ggml::all
|
||||
PROPERTIES
|
||||
|
||||
@@ -19,7 +19,7 @@ struct ggml_tallocr {
|
||||
};
|
||||
|
||||
GGML_API struct ggml_tallocr ggml_tallocr_new(ggml_backend_buffer_t buffer);
|
||||
GGML_API void ggml_tallocr_alloc(struct ggml_tallocr * talloc, struct ggml_tensor * tensor);
|
||||
GGML_API enum ggml_status ggml_tallocr_alloc(struct ggml_tallocr * talloc, struct ggml_tensor * tensor);
|
||||
|
||||
// Graph allocator
|
||||
/*
|
||||
|
||||
@@ -56,7 +56,7 @@ extern "C" {
|
||||
GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer);
|
||||
GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer);
|
||||
GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer);
|
||||
GGML_API void ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
GGML_API enum ggml_status ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
|
||||
GGML_API size_t ggml_backend_buffer_get_max_size (ggml_backend_buffer_t buffer);
|
||||
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
@@ -342,8 +342,8 @@ extern "C" {
|
||||
GGML_API bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data);
|
||||
|
||||
// Tensor initialization
|
||||
GGML_API void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr);
|
||||
GGML_API void ggml_backend_view_init(struct ggml_tensor * tensor);
|
||||
GGML_API enum ggml_status ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr);
|
||||
GGML_API enum ggml_status ggml_backend_view_init(struct ggml_tensor * tensor);
|
||||
|
||||
// CPU buffer types are always available
|
||||
GGML_API ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size);
|
||||
|
||||
@@ -80,6 +80,7 @@ extern "C" {
|
||||
GGML_BACKEND_API int ggml_cpu_has_avx (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_avx_vnni (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_avx2 (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_bmi2 (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_f16c (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_fma (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_avx512 (void);
|
||||
@@ -95,9 +96,11 @@ extern "C" {
|
||||
GGML_BACKEND_API int ggml_cpu_has_matmul_int8(void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_sve (void);
|
||||
GGML_BACKEND_API int ggml_cpu_get_sve_cnt (void); // sve vector length in bytes
|
||||
GGML_BACKEND_API int ggml_cpu_has_sme (void);
|
||||
// other
|
||||
GGML_BACKEND_API int ggml_cpu_has_riscv_v (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_vsx (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_vxe (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_wasm_simd (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_llamafile (void);
|
||||
|
||||
|
||||
@@ -2140,7 +2140,11 @@ extern "C" {
|
||||
# define GGML_RESTRICT
|
||||
# endif
|
||||
#else
|
||||
# define GGML_RESTRICT restrict
|
||||
# if defined (_MSC_VER) && (__STDC_VERSION__ < 201112L)
|
||||
# define GGML_RESTRICT __restrict
|
||||
# else
|
||||
# define GGML_RESTRICT restrict
|
||||
# endif
|
||||
#endif
|
||||
typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
||||
typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
@@ -226,6 +226,9 @@ add_library(ggml-base
|
||||
gguf.cpp)
|
||||
|
||||
target_include_directories(ggml-base PRIVATE .)
|
||||
if (GGML_BACKEND_DL)
|
||||
target_compile_definitions(ggml-base PUBLIC GGML_BACKEND_DL)
|
||||
endif()
|
||||
|
||||
add_library(ggml
|
||||
ggml-backend-reg.cpp)
|
||||
@@ -233,7 +236,7 @@ add_library(ggml
|
||||
target_link_libraries(ggml PUBLIC ggml-base)
|
||||
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
|
||||
target_link_libraries(ggml PRIVATE dl)
|
||||
target_link_libraries(ggml PRIVATE dl stdc++fs)
|
||||
endif()
|
||||
|
||||
function(ggml_add_backend_library backend)
|
||||
@@ -286,7 +289,7 @@ function(ggml_add_cpu_backend_variant tag_name)
|
||||
set(GGML_CPU_TAG_NAME ${tag_name})
|
||||
# other: OPENMP LLAMAFILE CPU_HBM
|
||||
foreach (feat NATIVE
|
||||
AVX AVX2 AVX_VNNI FMA F16C
|
||||
AVX AVX2 BMI2 AVX_VNNI FMA F16C
|
||||
AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16
|
||||
AMX_TILE AMX_INT8 AMX_BF16)
|
||||
set(GGML_${feat} OFF)
|
||||
@@ -306,13 +309,13 @@ if (GGML_CPU_ALL_VARIANTS)
|
||||
message(FATAL_ERROR "GGML_CPU_ALL_VARIANTS requires GGML_BACKEND_DL")
|
||||
endif()
|
||||
ggml_add_cpu_backend_variant(sandybridge AVX)
|
||||
ggml_add_cpu_backend_variant(haswell AVX F16C AVX2 FMA)
|
||||
ggml_add_cpu_backend_variant(skylakex AVX F16C AVX2 FMA AVX512)
|
||||
ggml_add_cpu_backend_variant(icelake AVX F16C AVX2 FMA AVX512 AVX512_VBMI AVX512_VNNI)
|
||||
ggml_add_cpu_backend_variant(alderlake AVX F16C AVX2 FMA AVX_VNNI)
|
||||
ggml_add_cpu_backend_variant(haswell AVX F16C AVX2 BMI2 FMA)
|
||||
ggml_add_cpu_backend_variant(skylakex AVX F16C AVX2 BMI2 FMA AVX512)
|
||||
ggml_add_cpu_backend_variant(icelake AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI)
|
||||
ggml_add_cpu_backend_variant(alderlake AVX F16C AVX2 BMI2 FMA AVX_VNNI)
|
||||
if (NOT MSVC)
|
||||
# MSVC doesn't support AMX
|
||||
ggml_add_cpu_backend_variant(sapphirerapids AVX F16C AVX2 FMA AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16 AMX_TILE AMX_INT8)
|
||||
ggml_add_cpu_backend_variant(sapphirerapids AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16 AMX_TILE AMX_INT8)
|
||||
endif()
|
||||
elseif (GGML_CPU)
|
||||
ggml_add_cpu_backend_variant_impl("")
|
||||
|
||||
@@ -89,7 +89,7 @@ struct ggml_tallocr ggml_tallocr_new(ggml_backend_buffer_t buffer) {
|
||||
return talloc;
|
||||
}
|
||||
|
||||
void ggml_tallocr_alloc(struct ggml_tallocr * talloc, struct ggml_tensor * tensor) {
|
||||
enum ggml_status ggml_tallocr_alloc(struct ggml_tallocr * talloc, struct ggml_tensor * tensor) {
|
||||
size_t size = ggml_backend_buffer_get_alloc_size(talloc->buffer, tensor);
|
||||
size = GGML_PAD(size, talloc->alignment);
|
||||
|
||||
@@ -104,7 +104,7 @@ void ggml_tallocr_alloc(struct ggml_tallocr * talloc, struct ggml_tensor * tenso
|
||||
|
||||
assert(((uintptr_t)addr % talloc->alignment) == 0);
|
||||
|
||||
ggml_backend_tensor_alloc(talloc->buffer, tensor, addr);
|
||||
return ggml_backend_tensor_alloc(talloc->buffer, tensor, addr);
|
||||
}
|
||||
|
||||
// dynamic tensor allocator
|
||||
@@ -933,42 +933,51 @@ size_t ggml_gallocr_get_buffer_size(ggml_gallocr_t galloc, int buffer_id) {
|
||||
|
||||
// utils
|
||||
|
||||
static void free_buffers(ggml_backend_buffer_t ** buffers, const size_t * n_buffers) {
|
||||
for (size_t i = 0; i < *n_buffers; i++) {
|
||||
ggml_backend_buffer_free((*buffers)[i]);
|
||||
}
|
||||
free(*buffers);
|
||||
}
|
||||
|
||||
static bool alloc_tensor_range(struct ggml_context * ctx,
|
||||
struct ggml_tensor * first, struct ggml_tensor * last,
|
||||
ggml_backend_buffer_type_t buft, size_t size,
|
||||
ggml_backend_buffer_t ** buffers, size_t * n_buffers) {
|
||||
|
||||
ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, size);
|
||||
if (buffer == NULL) {
|
||||
#ifndef NDEBUG
|
||||
GGML_LOG_DEBUG("%s: failed to allocate %s buffer of size %zu\n", __func__, ggml_backend_buft_name(buft), size);
|
||||
#endif
|
||||
for (size_t i = 0; i < *n_buffers; i++) {
|
||||
ggml_backend_buffer_free((*buffers)[i]);
|
||||
}
|
||||
free(*buffers);
|
||||
GGML_LOG_ERROR("%s: failed to allocate %s buffer of size %zu\n", __func__, ggml_backend_buft_name(buft), size);
|
||||
free_buffers(buffers, n_buffers);
|
||||
return false;
|
||||
}
|
||||
|
||||
struct ggml_tallocr tallocr = ggml_tallocr_new(buffer);
|
||||
|
||||
for (struct ggml_tensor * t = first; t != last; t = ggml_get_next_tensor(ctx, t)) {
|
||||
if (t->data == NULL) {
|
||||
if (t->view_src == NULL) {
|
||||
ggml_tallocr_alloc(&tallocr, t);
|
||||
} else if (t->buffer == NULL) {
|
||||
ggml_backend_view_init(t);
|
||||
}
|
||||
} else {
|
||||
if (t->view_src != NULL && t->buffer == NULL) {
|
||||
// view of a pre-allocated tensor
|
||||
ggml_backend_view_init(t);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
*buffers = realloc(*buffers, sizeof(ggml_backend_buffer_t) * (*n_buffers + 1));
|
||||
(*buffers)[(*n_buffers)++] = buffer;
|
||||
|
||||
struct ggml_tallocr tallocr = ggml_tallocr_new(buffer);
|
||||
|
||||
for (struct ggml_tensor * t = first; t != last; t = ggml_get_next_tensor(ctx, t)) {
|
||||
enum ggml_status status = GGML_STATUS_SUCCESS;
|
||||
if (t->data == NULL) {
|
||||
if (t->view_src == NULL) {
|
||||
status = ggml_tallocr_alloc(&tallocr, t);
|
||||
} else if (t->buffer == NULL) {
|
||||
status = ggml_backend_view_init(t);
|
||||
}
|
||||
} else {
|
||||
if (t->view_src != NULL && t->buffer == NULL) {
|
||||
// view of a pre-allocated tensor
|
||||
status = ggml_backend_view_init(t);
|
||||
}
|
||||
}
|
||||
if (status != GGML_STATUS_SUCCESS) {
|
||||
GGML_LOG_ERROR("%s: failed to initialize tensor %s\n", __func__, t->name);
|
||||
free_buffers(buffers, n_buffers);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
@@ -44,7 +44,7 @@ extern "C" {
|
||||
// base address of the buffer
|
||||
void * (*get_base) (ggml_backend_buffer_t buffer);
|
||||
// (optional) initialize a tensor in the buffer (eg. add tensor extras)
|
||||
void (*init_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
enum ggml_status (*init_tensor)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
// tensor data access
|
||||
void (*memset_tensor)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size);
|
||||
void (*set_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||
|
||||
@@ -2,14 +2,13 @@
|
||||
#include "ggml-backend.h"
|
||||
#include "ggml-impl.h"
|
||||
#include <algorithm>
|
||||
#include <codecvt>
|
||||
#include <cstring>
|
||||
#include <filesystem>
|
||||
#include <locale>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <type_traits>
|
||||
#include <vector>
|
||||
#include <cctype>
|
||||
|
||||
#ifdef _WIN32
|
||||
# define WIN32_LEAN_AND_MEAN
|
||||
@@ -72,14 +71,22 @@
|
||||
# pragma clang diagnostic ignored "-Wdeprecated-declarations"
|
||||
#endif
|
||||
|
||||
static std::wstring utf8_to_utf16(const std::string & str) {
|
||||
std::wstring_convert<std::codecvt_utf8_utf16<wchar_t>> converter;
|
||||
return converter.from_bytes(str);
|
||||
}
|
||||
namespace fs = std::filesystem;
|
||||
|
||||
static std::string utf16_to_utf8(const std::wstring & str) {
|
||||
std::wstring_convert<std::codecvt_utf8_utf16<wchar_t>> converter;
|
||||
return converter.to_bytes(str);
|
||||
static std::string path_str(const fs::path & path) {
|
||||
std::string u8path;
|
||||
try {
|
||||
#if defined(__cpp_lib_char8_t)
|
||||
// C++20 and later: u8string() returns std::u8string
|
||||
std::u8string u8str = path.u8string();
|
||||
u8path = std::string(reinterpret_cast<const char*>(u8str.c_str()));
|
||||
#else
|
||||
// C++17: u8string() returns std::string
|
||||
u8path = path.u8string();
|
||||
#endif
|
||||
} catch (...) {
|
||||
}
|
||||
return u8path;
|
||||
}
|
||||
|
||||
#if defined(__clang__)
|
||||
@@ -96,12 +103,12 @@ struct dl_handle_deleter {
|
||||
}
|
||||
};
|
||||
|
||||
static dl_handle * dl_load_library(const std::wstring & path) {
|
||||
static dl_handle * dl_load_library(const fs::path & path) {
|
||||
// suppress error dialogs for missing DLLs
|
||||
DWORD old_mode = SetErrorMode(SEM_FAILCRITICALERRORS);
|
||||
SetErrorMode(old_mode | SEM_FAILCRITICALERRORS);
|
||||
|
||||
HMODULE handle = LoadLibraryW(path.c_str());
|
||||
HMODULE handle = LoadLibraryW(path.wstring().c_str());
|
||||
|
||||
SetErrorMode(old_mode);
|
||||
|
||||
@@ -129,8 +136,8 @@ struct dl_handle_deleter {
|
||||
}
|
||||
};
|
||||
|
||||
static void * dl_load_library(const std::wstring & path) {
|
||||
dl_handle * handle = dlopen(utf16_to_utf8(path).c_str(), RTLD_NOW | RTLD_LOCAL);
|
||||
static void * dl_load_library(const fs::path & path) {
|
||||
dl_handle * handle = dlopen(path.string().c_str(), RTLD_NOW | RTLD_LOCAL);
|
||||
|
||||
return handle;
|
||||
}
|
||||
@@ -217,11 +224,11 @@ struct ggml_backend_registry {
|
||||
devices.push_back(device);
|
||||
}
|
||||
|
||||
ggml_backend_reg_t load_backend(const std::wstring & path, bool silent) {
|
||||
ggml_backend_reg_t load_backend(const fs::path & path, bool silent) {
|
||||
dl_handle_ptr handle { dl_load_library(path) };
|
||||
if (!handle) {
|
||||
if (!silent) {
|
||||
GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(path).c_str());
|
||||
GGML_LOG_ERROR("%s: failed to load %s\n", __func__, path_str(path).c_str());
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
@@ -229,7 +236,7 @@ struct ggml_backend_registry {
|
||||
auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
|
||||
if (score_fn && score_fn() == 0) {
|
||||
if (!silent) {
|
||||
GGML_LOG_INFO("%s: backend %s is not supported on this system\n", __func__, utf16_to_utf8(path).c_str());
|
||||
GGML_LOG_INFO("%s: backend %s is not supported on this system\n", __func__, path_str(path).c_str());
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
@@ -237,7 +244,7 @@ struct ggml_backend_registry {
|
||||
auto backend_init_fn = (ggml_backend_init_t) dl_get_sym(handle.get(), "ggml_backend_init");
|
||||
if (!backend_init_fn) {
|
||||
if (!silent) {
|
||||
GGML_LOG_ERROR("%s: failed to find ggml_backend_init in %s\n", __func__, utf16_to_utf8(path).c_str());
|
||||
GGML_LOG_ERROR("%s: failed to find ggml_backend_init in %s\n", __func__, path_str(path).c_str());
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
@@ -246,16 +253,17 @@ struct ggml_backend_registry {
|
||||
if (!reg || reg->api_version != GGML_BACKEND_API_VERSION) {
|
||||
if (!silent) {
|
||||
if (!reg) {
|
||||
GGML_LOG_ERROR("%s: failed to initialize backend from %s: ggml_backend_init returned NULL\n", __func__, utf16_to_utf8(path).c_str());
|
||||
GGML_LOG_ERROR("%s: failed to initialize backend from %s: ggml_backend_init returned NULL\n",
|
||||
__func__, path_str(path).c_str());
|
||||
} else {
|
||||
GGML_LOG_ERROR("%s: failed to initialize backend from %s: incompatible API version (backend: %d, current: %d)\n",
|
||||
__func__, utf16_to_utf8(path).c_str(), reg->api_version, GGML_BACKEND_API_VERSION);
|
||||
__func__, path_str(path).c_str(), reg->api_version, GGML_BACKEND_API_VERSION);
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
GGML_LOG_INFO("%s: loaded %s backend from %s\n", __func__, ggml_backend_reg_name(reg), utf16_to_utf8(path).c_str());
|
||||
GGML_LOG_INFO("%s: loaded %s backend from %s\n", __func__, ggml_backend_reg_name(reg), path_str(path).c_str());
|
||||
|
||||
register_backend(reg, std::move(handle));
|
||||
|
||||
@@ -391,14 +399,14 @@ ggml_backend_t ggml_backend_init_best(void) {
|
||||
|
||||
// Dynamic loading
|
||||
ggml_backend_reg_t ggml_backend_load(const char * path) {
|
||||
return get_reg().load_backend(utf8_to_utf16(path), false);
|
||||
return get_reg().load_backend(path, false);
|
||||
}
|
||||
|
||||
void ggml_backend_unload(ggml_backend_reg_t reg) {
|
||||
get_reg().unload_backend(reg, true);
|
||||
}
|
||||
|
||||
static std::wstring get_executable_path() {
|
||||
static fs::path get_executable_path() {
|
||||
#if defined(__APPLE__)
|
||||
// get executable path
|
||||
std::vector<char> path;
|
||||
@@ -416,7 +424,7 @@ static std::wstring get_executable_path() {
|
||||
if (last_slash != std::string::npos) {
|
||||
base_path = base_path.substr(0, last_slash);
|
||||
}
|
||||
return utf8_to_utf16(base_path + "/");
|
||||
return base_path + "/";
|
||||
#elif defined(__linux__) || defined(__FreeBSD__)
|
||||
std::string base_path = ".";
|
||||
std::vector<char> path(1024);
|
||||
@@ -442,7 +450,7 @@ static std::wstring get_executable_path() {
|
||||
path.resize(path.size() * 2);
|
||||
}
|
||||
|
||||
return utf8_to_utf16(base_path + "/");
|
||||
return base_path + "/";
|
||||
#elif defined(_WIN32)
|
||||
std::vector<wchar_t> path(MAX_PATH);
|
||||
DWORD len = GetModuleFileNameW(NULL, path.data(), path.size());
|
||||
@@ -461,74 +469,69 @@ static std::wstring get_executable_path() {
|
||||
#endif
|
||||
}
|
||||
|
||||
static std::wstring backend_filename_prefix() {
|
||||
static fs::path backend_filename_prefix() {
|
||||
#ifdef _WIN32
|
||||
return L"ggml-";
|
||||
return fs::u8path("ggml-");
|
||||
#else
|
||||
return L"libggml-";
|
||||
return fs::u8path("libggml-");
|
||||
#endif
|
||||
}
|
||||
|
||||
static std::wstring backend_filename_suffix() {
|
||||
static fs::path backend_filename_extension() {
|
||||
#ifdef _WIN32
|
||||
return L".dll";
|
||||
return fs::u8path(".dll");
|
||||
#else
|
||||
return L".so";
|
||||
#endif
|
||||
}
|
||||
|
||||
static std::wstring path_separator() {
|
||||
#ifdef _WIN32
|
||||
return L"\\";
|
||||
#else
|
||||
return L"/";
|
||||
return fs::u8path(".so");
|
||||
#endif
|
||||
}
|
||||
|
||||
static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent, const char * user_search_path) {
|
||||
// enumerate all the files that match [lib]ggml-name-*.[so|dll] in the search paths
|
||||
// TODO: search system paths
|
||||
std::wstring file_prefix = backend_filename_prefix() + utf8_to_utf16(name) + L"-";
|
||||
std::vector<std::wstring> search_paths;
|
||||
const fs::path name_path = fs::u8path(name);
|
||||
const fs::path file_prefix = backend_filename_prefix().native() + name_path.native() + fs::u8path("-").native();
|
||||
const fs::path file_extension = backend_filename_extension();
|
||||
|
||||
std::vector<fs::path> search_paths;
|
||||
if (user_search_path == nullptr) {
|
||||
search_paths.push_back(L"." + path_separator());
|
||||
// default search paths: executable directory, current directory
|
||||
search_paths.push_back(get_executable_path());
|
||||
search_paths.push_back(fs::current_path());
|
||||
} else {
|
||||
search_paths.push_back(utf8_to_utf16(user_search_path) + path_separator());
|
||||
search_paths.push_back(user_search_path);
|
||||
}
|
||||
|
||||
int best_score = 0;
|
||||
std::wstring best_path;
|
||||
fs::path best_path;
|
||||
|
||||
namespace fs = std::filesystem;
|
||||
for (const auto & search_path : search_paths) {
|
||||
if (!fs::exists(search_path)) {
|
||||
GGML_LOG_DEBUG("%s: search path %s does not exist\n", __func__, path_str(search_path).c_str());
|
||||
continue;
|
||||
}
|
||||
fs::directory_iterator dir_it(search_path, fs::directory_options::skip_permission_denied);
|
||||
for (const auto & entry : dir_it) {
|
||||
if (entry.is_regular_file()) {
|
||||
std::wstring filename = entry.path().filename().wstring();
|
||||
std::wstring ext = entry.path().extension().wstring();
|
||||
if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) {
|
||||
dl_handle_ptr handle { dl_load_library(entry.path().wstring()) };
|
||||
auto filename = entry.path().filename().native();
|
||||
auto ext = entry.path().extension().native();
|
||||
if (filename.find(file_prefix) == 0 && ext == file_extension) {
|
||||
dl_handle_ptr handle { dl_load_library(entry) };
|
||||
if (!handle && !silent) {
|
||||
GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
|
||||
GGML_LOG_ERROR("%s: failed to load %s\n", __func__, path_str(entry.path()).c_str());
|
||||
}
|
||||
if (handle) {
|
||||
auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
|
||||
if (score_fn) {
|
||||
int s = score_fn();
|
||||
#ifndef NDEBUG
|
||||
GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), s);
|
||||
GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, path_str(entry.path()).c_str(), s);
|
||||
#endif
|
||||
if (s > best_score) {
|
||||
best_score = s;
|
||||
best_path = entry.path().wstring();
|
||||
best_path = entry.path();
|
||||
}
|
||||
} else {
|
||||
if (!silent) {
|
||||
GGML_LOG_INFO("%s: failed to find ggml_backend_score in %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
|
||||
GGML_LOG_INFO("%s: failed to find ggml_backend_score in %s\n", __func__, path_str(entry.path()).c_str());
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -540,7 +543,8 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
|
||||
if (best_score == 0) {
|
||||
// try to load the base backend
|
||||
for (const auto & search_path : search_paths) {
|
||||
std::wstring path = search_path + backend_filename_prefix() + utf8_to_utf16(name) + backend_filename_suffix();
|
||||
fs::path filename = backend_filename_prefix().native() + name_path.native() + backend_filename_extension().native();
|
||||
fs::path path = search_path.native() + filename.native();
|
||||
if (fs::exists(path)) {
|
||||
return get_reg().load_backend(path, silent);
|
||||
}
|
||||
|
||||
@@ -21,6 +21,7 @@
|
||||
#include <string.h>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
|
||||
#ifdef __APPLE__
|
||||
#include <sys/types.h>
|
||||
@@ -126,11 +127,12 @@ void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
return base;
|
||||
}
|
||||
|
||||
void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
||||
enum ggml_status ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
||||
// init_tensor is optional
|
||||
if (buffer->iface.init_tensor) {
|
||||
buffer->iface.init_tensor(buffer, tensor);
|
||||
return buffer->iface.init_tensor(buffer, tensor);
|
||||
}
|
||||
return GGML_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
||||
@@ -1641,7 +1643,7 @@ ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched,
|
||||
|
||||
// utils
|
||||
|
||||
void ggml_backend_view_init(struct ggml_tensor * tensor) {
|
||||
enum ggml_status ggml_backend_view_init(struct ggml_tensor * tensor) {
|
||||
GGML_ASSERT(tensor->buffer == NULL);
|
||||
GGML_ASSERT(tensor->view_src != NULL);
|
||||
GGML_ASSERT(tensor->view_src->buffer != NULL);
|
||||
@@ -1649,10 +1651,10 @@ void ggml_backend_view_init(struct ggml_tensor * tensor) {
|
||||
|
||||
tensor->buffer = tensor->view_src->buffer;
|
||||
tensor->data = (char *)tensor->view_src->data + tensor->view_offs;
|
||||
ggml_backend_buffer_init_tensor(tensor->buffer, tensor);
|
||||
return ggml_backend_buffer_init_tensor(tensor->buffer, tensor);
|
||||
}
|
||||
|
||||
void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) {
|
||||
enum ggml_status ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) {
|
||||
GGML_ASSERT(tensor->buffer == NULL);
|
||||
GGML_ASSERT(tensor->data == NULL);
|
||||
GGML_ASSERT(tensor->view_src == NULL);
|
||||
@@ -1662,7 +1664,7 @@ void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor
|
||||
|
||||
tensor->buffer = buffer;
|
||||
tensor->data = addr;
|
||||
ggml_backend_buffer_init_tensor(buffer, tensor);
|
||||
return ggml_backend_buffer_init_tensor(buffer, tensor);
|
||||
}
|
||||
|
||||
static struct ggml_tensor * graph_copy_dup_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies,
|
||||
@@ -1708,7 +1710,8 @@ static void graph_copy_init_tensor(struct ggml_hash_set * hash_set, struct ggml_
|
||||
struct ggml_tensor * dst = node_copies[id];
|
||||
if (dst->view_src != NULL) {
|
||||
graph_copy_init_tensor(hash_set, node_copies, node_init, src->view_src);
|
||||
ggml_backend_view_init(dst);
|
||||
enum ggml_status status = ggml_backend_view_init(dst);
|
||||
GGML_ASSERT(status == GGML_STATUS_SUCCESS);
|
||||
}
|
||||
else {
|
||||
ggml_backend_tensor_copy(src, dst);
|
||||
@@ -1823,7 +1826,6 @@ bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t
|
||||
assert(g1->n_nodes == g2->n_nodes);
|
||||
|
||||
for (int i = 0; i < g1->n_nodes; i++) {
|
||||
//printf("eval %d/%d\n", i, g1->n_nodes);
|
||||
struct ggml_tensor * t1 = g1->nodes[i];
|
||||
struct ggml_tensor * t2 = g2->nodes[i];
|
||||
|
||||
|
||||
@@ -796,11 +796,11 @@ static bool need_transform(ggml_type type) {
|
||||
* @param buffer The CANN buffer from which to initialize the tensor.
|
||||
* @param tensor Pointer to the tensor to be initialized.
|
||||
*/
|
||||
static void ggml_backend_cann_buffer_init_tensor(
|
||||
static enum ggml_status ggml_backend_cann_buffer_init_tensor(
|
||||
ggml_backend_buffer_t buffer, ggml_tensor* tensor) {
|
||||
if (tensor->view_src != NULL && tensor->view_offs == 0) {
|
||||
GGML_ASSERT(tensor->view_src->buffer->buft == buffer->buft);
|
||||
return;
|
||||
return GGML_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
// TODO: can backend doesn't support quantized yet. Just leave the code
|
||||
@@ -817,6 +817,7 @@ static void ggml_backend_cann_buffer_init_tensor(
|
||||
memset_size, 0, memset_size));
|
||||
}
|
||||
}
|
||||
return GGML_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
// TODO: need handle tensor which has paddings.
|
||||
|
||||
@@ -1,7 +1,5 @@
|
||||
#include "kernel_operator.h"
|
||||
|
||||
#include <cmath>
|
||||
|
||||
using namespace AscendC;
|
||||
|
||||
#define BUFFER_NUM 2
|
||||
@@ -183,7 +181,7 @@ extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp32(
|
||||
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
||||
copy_to_ub(output_nb_gm, output_nb_ub, 32);
|
||||
|
||||
DupByRows<float_t, float_t> op;
|
||||
DupByRows<float, float> op;
|
||||
op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub);
|
||||
op.dup();
|
||||
}
|
||||
@@ -206,7 +204,7 @@ extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp32_to_fp16(
|
||||
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
||||
copy_to_ub(output_nb_gm, output_nb_ub, 32);
|
||||
|
||||
DupByRows<float_t, half> op;
|
||||
DupByRows<float, half> op;
|
||||
op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub);
|
||||
op.dup_with_cast();
|
||||
}
|
||||
@@ -230,7 +228,7 @@ extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp16_to_fp32(
|
||||
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
||||
copy_to_ub(output_nb_gm, output_nb_ub, 32);
|
||||
|
||||
DupByRows<half, float_t> op;
|
||||
DupByRows<half, float> op;
|
||||
op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub);
|
||||
op.dup_with_cast();
|
||||
}
|
||||
|
||||
@@ -111,14 +111,15 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
function(check_arm_feature tag code)
|
||||
set(CMAKE_REQUIRED_FLAGS_SAVE ${CMAKE_REQUIRED_FLAGS})
|
||||
set(CMAKE_REQUIRED_FLAGS "${ARM_MCPU_FLAG}+${tag}")
|
||||
check_cxx_source_runs(
|
||||
"${code}"
|
||||
GGML_MACHINE_SUPPORTS_${tag}
|
||||
)
|
||||
check_cxx_source_runs("${code}" GGML_MACHINE_SUPPORTS_${tag})
|
||||
if (GGML_MACHINE_SUPPORTS_${tag})
|
||||
set(ARM_MCPU_FLAG_FIX "${ARM_MCPU_FLAG_FIX}+${tag}" PARENT_SCOPE)
|
||||
else()
|
||||
set(ARM_MCPU_FLAG_FIX "${ARM_MCPU_FLAG_FIX}+no${tag}" PARENT_SCOPE)
|
||||
set(CMAKE_REQUIRED_FLAGS "${ARM_MCPU_FLAG}+no${tag}")
|
||||
check_cxx_source_compiles("int main() { return 0; }" GGML_MACHINE_SUPPORTS_no${tag})
|
||||
if (GGML_MACHINE_SUPPORTS_no${tag})
|
||||
set(ARM_MCPU_FLAG_FIX "${ARM_MCPU_FLAG_FIX}+no${tag}" PARENT_SCOPE)
|
||||
endif()
|
||||
endif()
|
||||
set(CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS_SAVE})
|
||||
endfunction()
|
||||
@@ -126,6 +127,7 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
check_arm_feature(dotprod "#include <arm_neon.h>\nint main() { int8x16_t _a, _b; volatile int32x4_t _s = vdotq_s32(_s, _a, _b); return 0; }")
|
||||
check_arm_feature(i8mm "#include <arm_neon.h>\nint main() { int8x16_t _a, _b; volatile int32x4_t _s = vmmlaq_s32(_s, _a, _b); return 0; }")
|
||||
check_arm_feature(sve "#include <arm_sve.h>\nint main() { svfloat32_t _a, _b; volatile svfloat32_t _c = svadd_f32_z(svptrue_b8(), _a, _b); return 0; }")
|
||||
check_arm_feature(sme "#include <arm_sme.h>\n__arm_locally_streaming int main() { __asm__ volatile(\"smstart; smstop;\"); return 0; }")
|
||||
|
||||
list(APPEND ARCH_FLAGS "${ARM_MCPU_FLAG}${ARM_MCPU_FLAG_FIX}")
|
||||
else()
|
||||
@@ -150,7 +152,7 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
if (ARM_FEATURE_RESULT)
|
||||
message(WARNING "Failed to get ARM features")
|
||||
else()
|
||||
foreach(feature DOTPROD SVE MATMUL_INT8 FMA FP16_VECTOR_ARITHMETIC)
|
||||
foreach(feature DOTPROD SVE MATMUL_INT8 FMA FP16_VECTOR_ARITHMETIC SME)
|
||||
string(FIND "${ARM_FEATURE}" "__ARM_FEATURE_${feature} 1" feature_pos)
|
||||
if (NOT ${feature_pos} EQUAL -1)
|
||||
message(STATUS "ARM feature ${feature} enabled")
|
||||
@@ -217,6 +219,10 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
if (GGML_AVX_VNNI)
|
||||
list(APPEND ARCH_DEFINITIONS __AVXVNNI__ GGML_AVX_VNNI)
|
||||
endif()
|
||||
if (GGML_BMI2)
|
||||
# MSVC does not define macro __BMI2__
|
||||
list(APPEND ARCH_DEFINITIONS __BMI2__ GGML_BMI2)
|
||||
endif()
|
||||
else ()
|
||||
if (GGML_NATIVE)
|
||||
list(APPEND ARCH_FLAGS -march=native)
|
||||
@@ -231,6 +237,10 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
list(APPEND ARCH_FLAGS -mfma)
|
||||
list(APPEND ARCH_DEFINITIONS GGML_FMA)
|
||||
endif()
|
||||
if (GGML_BMI2)
|
||||
list(APPEND ARCH_FLAGS -mbmi2)
|
||||
list(APPEND ARCH_DEFINITIONS GGML_BMI2)
|
||||
endif()
|
||||
if (GGML_AVX)
|
||||
list(APPEND ARCH_FLAGS -mavx)
|
||||
list(APPEND ARCH_DEFINITIONS GGML_AVX)
|
||||
@@ -279,19 +289,15 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
endif()
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64")
|
||||
message(STATUS "PowerPC detected")
|
||||
execute_process(COMMAND bash -c "grep POWER10 /proc/cpuinfo | head -n 1" OUTPUT_VARIABLE POWER10_M)
|
||||
string(FIND "${POWER10_M}" "POWER10" substring_index)
|
||||
if (NOT DEFINED substring_index OR "${substring_index}" STREQUAL "")
|
||||
set(substring_index -1)
|
||||
endif()
|
||||
|
||||
if (${substring_index} GREATER_EQUAL 0)
|
||||
list(APPEND ARCH_FLAGS -mcpu=power10)
|
||||
execute_process(COMMAND bash -c "grep POWER /proc/cpuinfo | head -n 1" OUTPUT_VARIABLE POWER_M)
|
||||
if (${POWER_M} MATCHES "POWER10")
|
||||
list(APPEND ARCH_FLAGS -mcpu=power10)
|
||||
elseif (${POWER_M} MATCHES "POWER9")
|
||||
list(APPEND ARCH_FLAGS -mcpu=power9)
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64le")
|
||||
list(APPEND ARCH_FLAGS -mcpu=powerpc64le)
|
||||
list(APPEND ARCH_FLAGS -mcpu=powerpc64le -mtune=native)
|
||||
else()
|
||||
list(APPEND ARCH_FLAGS -mcpu=native -mtune=native)
|
||||
# TODO: Add targets for Power8/Power9 (Altivec/VSX) and Power10(MMA) and query for big endian systems (ppc64/le/be)
|
||||
list(APPEND ARCH_FLAGS -mcpu=powerpc64 -mtune=native)
|
||||
endif()
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "loongarch64")
|
||||
message(STATUS "loongarch64 detected")
|
||||
@@ -308,6 +314,27 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
if (GGML_RVV)
|
||||
list(APPEND ARCH_FLAGS -march=rv64gcv -mabi=lp64d)
|
||||
endif()
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "s390x")
|
||||
message(STATUS "s390x detected")
|
||||
file(READ "/proc/cpuinfo" CPUINFO_CONTENTS)
|
||||
string(REGEX REPLACE "machine[ \t\r\n]*=[ \t\r\n]*([0-9]+)" "\\1" S390X_M ${CPUINFO_CONTENTS})
|
||||
|
||||
# TODO: Separation to determine activation of VX/VXE/VXE2
|
||||
if (${S390X_M} MATCHES "8561|8562")
|
||||
message(STATUS "z15 target")
|
||||
list(APPEND ARCH_FLAGS -march=z15 -mtune=z15)
|
||||
elseif (${S390X_M} MATCHES "3931")
|
||||
message(STATUS "z16 target")
|
||||
list(APPEND ARCH_FLAGS -march=z16 -mtune=z16)
|
||||
else()
|
||||
message(STATUS "Unknown target")
|
||||
message(WARNING "Unknown target. If you are compiling for z14 and earlier, you might have to add -DGGML_VXE=OFF.")
|
||||
list(APPEND ARCH_FLAGS -march=native -mtune=native)
|
||||
endif()
|
||||
|
||||
if (GGML_VXE)
|
||||
list(APPEND ARCH_FLAGS -mvx -mzvector)
|
||||
endif()
|
||||
else()
|
||||
message(STATUS "Unknown architecture")
|
||||
endif()
|
||||
@@ -316,6 +343,94 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
target_compile_definitions(${GGML_CPU_NAME} PRIVATE GGML_USE_CPU_AARCH64)
|
||||
endif()
|
||||
|
||||
if (GGML_CPU_KLEIDIAI)
|
||||
message(STATUS "Using KleidiAI optimized kernels if applicable")
|
||||
|
||||
# Disable the KleidiAI tests
|
||||
set(KLEIDIAI_BUILD_TESTS OFF)
|
||||
|
||||
# Fetch KleidiAI sources:
|
||||
include(FetchContent)
|
||||
set(KLEIDIAI_COMMIT_TAG "v1.3.0")
|
||||
set(KLEIDIAI_DOWNLOAD_URL "https://github.com/ARM-software/kleidiai/archive/refs/tags/${KLEIDIAI_COMMIT_TAG}.tar.gz")
|
||||
set(KLEIDIAI_ARCHIVE_MD5 "060bd2dc64642b091f461cc8dd7426d9")
|
||||
|
||||
if (POLICY CMP0135)
|
||||
cmake_policy(SET CMP0135 NEW)
|
||||
endif()
|
||||
|
||||
FetchContent_Declare(KleidiAI_Download
|
||||
URL ${KLEIDIAI_DOWNLOAD_URL}
|
||||
DOWNLOAD_EXTRACT_TIMESTAMP NEW
|
||||
URL_HASH MD5=${KLEIDIAI_ARCHIVE_MD5})
|
||||
|
||||
FetchContent_MakeAvailable(KleidiAI_Download)
|
||||
FetchContent_GetProperties(KleidiAI_Download
|
||||
SOURCE_DIR KLEIDIAI_SRC
|
||||
POPULATED KLEIDIAI_POPULATED)
|
||||
|
||||
if (NOT KLEIDIAI_POPULATED)
|
||||
message(FATAL_ERROR "KleidiAI source downloaded failed.")
|
||||
endif()
|
||||
|
||||
add_compile_definitions(GGML_USE_CPU_KLEIDIAI)
|
||||
|
||||
# Remove kleidiai target after fetching it
|
||||
if (TARGET kleidiai)
|
||||
set_target_properties(kleidiai PROPERTIES EXCLUDE_FROM_ALL TRUE)
|
||||
endif()
|
||||
|
||||
list(APPEND GGML_CPU_SOURCES
|
||||
ggml-cpu/kleidiai/kleidiai.cpp
|
||||
ggml-cpu/kleidiai/kernels.cpp
|
||||
ggml-cpu/kleidiai/kleidiai.h
|
||||
ggml-cpu/kleidiai/kernels.h
|
||||
)
|
||||
|
||||
# KleidiAI
|
||||
include_directories(
|
||||
${KLEIDIAI_SRC}/
|
||||
${KLEIDIAI_SRC}/kai/
|
||||
${KLEIDIAI_SRC}/kai/ukernels/
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/)
|
||||
|
||||
set(ARCH_FLAGS_TEMP "${ARCH_FLAGS}")
|
||||
if (NOT ARCH_FLAGS_TEMP)
|
||||
string(REGEX MATCH "-march=[^ ]+" ARCH_FLAGS_TEMP "${CMAKE_C_FLAGS}")
|
||||
endif()
|
||||
string(FIND "${ARCH_FLAGS_TEMP}" "+dotprod" DOTPROD_ENABLED)
|
||||
string(FIND "${ARCH_FLAGS_TEMP}" "+i8mm" I8MM_ENABLED)
|
||||
string(FIND "${ARCH_FLAGS_TEMP}" "+sme" SME_ENABLED)
|
||||
|
||||
set(PRIVATE_ARCH_FLAGS ${ARCH_FLAGS})
|
||||
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_quant_pack_qsi8d32p_f32.c)
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon.c)
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_quant_pack_qsi8d32p_f32_neon.c)
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0.c)
|
||||
|
||||
if (NOT DOTPROD_ENABLED MATCHES -1)
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod.c)
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod.c)
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod.c)
|
||||
endif()
|
||||
|
||||
if (NOT I8MM_ENABLED MATCHES -1)
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm.c)
|
||||
endif()
|
||||
|
||||
if (NOT SME_ENABLED MATCHES -1)
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa.c)
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot.c)
|
||||
set(PRIVATE_ARCH_FLAGS "${PRIVATE_ARCH_FLAGS}+sve+sve2")
|
||||
endif()
|
||||
|
||||
set_source_files_properties(${GGML_KLEIDIAI_SOURCES} PROPERTIES COMPILE_OPTIONS "${PRIVATE_ARCH_FLAGS}")
|
||||
list(APPEND GGML_CPU_SOURCES ${GGML_KLEIDIAI_SOURCES})
|
||||
endif()
|
||||
|
||||
message(STATUS "Adding CPU backend variant ${GGML_CPU_NAME}: ${ARCH_FLAGS} ${ARCH_DEFINITIONS}")
|
||||
target_sources(${GGML_CPU_NAME} PRIVATE ${GGML_CPU_SOURCES})
|
||||
target_compile_options(${GGML_CPU_NAME} PRIVATE ${ARCH_FLAGS})
|
||||
|
||||
@@ -50,10 +50,11 @@ static void * ggml_backend_amx_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
return (void *) (buffer->context);
|
||||
}
|
||||
|
||||
static void ggml_backend_amx_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
||||
static enum ggml_status ggml_backend_amx_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
||||
tensor->extra = (void *) ggml::cpu::amx::get_tensor_traits(buffer, tensor);
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
return GGML_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
static void ggml_backend_amx_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor,
|
||||
|
||||
@@ -278,6 +278,10 @@ static int ggml_backend_cpu_x86_score() {
|
||||
if (!is.SSE42()) { return 0; }
|
||||
score += 1<<2;
|
||||
#endif
|
||||
#ifdef GGML_BMI2
|
||||
if (!is.BMI2()) { return 0; }
|
||||
score += 1<<3;
|
||||
#endif
|
||||
#ifdef GGML_AVX
|
||||
if (!is.AVX()) { return 0; }
|
||||
score += 1<<4;
|
||||
|
||||
@@ -4135,10 +4135,11 @@ static const ggml::cpu::tensor_traits * ggml_aarch64_get_optimal_repack_type(con
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_aarch64_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
||||
static enum ggml_status ggml_backend_cpu_aarch64_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
||||
tensor->extra = (void *) const_cast<ggml::cpu::tensor_traits *>(ggml_aarch64_get_optimal_repack_type(tensor));
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
return GGML_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_aarch64_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor,
|
||||
|
||||
@@ -59,6 +59,15 @@ struct ggml_compute_params {
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(__s390x__) && defined(__VEC__)
|
||||
#ifndef __VXE__
|
||||
#define __VXE__
|
||||
#endif
|
||||
#ifndef __VXE2__
|
||||
#define __VXE2__
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
#include <arm_sve.h>
|
||||
#include <sys/prctl.h>
|
||||
@@ -359,6 +368,148 @@ inline static int32x4_t ggml_vdotq_s32(int32x4_t acc, int8x16_t a, int8x16_t b)
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(__VXE__) || defined(__VXE2__)
|
||||
#include <vecintrin.h>
|
||||
|
||||
#define vec_neg(a) (-(a)) // Vector Negate
|
||||
#define vec_add(a, b) ((a) + (b)) // Vector Add
|
||||
#define vec_sub(a, b) ((a) - (b)) // Vector Subtract
|
||||
#define vec_mul(a, b) ((a) * (b)) // Vector Multiply
|
||||
#define vec_div(a, b) ((a) / (b)) // Vector Divide
|
||||
#define vec_sl(a, b) ((a) << (b)) // Vector Shift Left
|
||||
#define vec_sra(a, b) ((a) >> (b)) // Vector Shift Right
|
||||
#define vec_sr(a, b) ((a) >> (b)) // Vector Shift Right Algebraic
|
||||
#define vec_slo(a, b) vec_slb(a, (b) << 64) // Vector Shift Left by Octet
|
||||
#define vec_sro(a, b) vec_srb(a, (b) << 64) // Vector Shift Right by Octet
|
||||
|
||||
#ifndef vec_and
|
||||
#define vec_and(a, b) ((a) & (b)) // Vector AND
|
||||
#endif
|
||||
|
||||
#ifndef vec_or
|
||||
#define vec_or(a, b) ((a) | (b)) // Vector OR
|
||||
#endif
|
||||
|
||||
#ifndef vec_xor
|
||||
#define vec_xor(a, b) ((a) ^ (b)) // Vector XOR
|
||||
#endif
|
||||
|
||||
typedef signed char char8x16_t __attribute__((vector_size(16)));
|
||||
typedef unsigned char uchar8x16_t __attribute__((vector_size(16)));
|
||||
|
||||
typedef int8_t int8x16_t __attribute__((vector_size(16)));
|
||||
typedef int16_t int16x8_t __attribute__((vector_size(16)));
|
||||
typedef int32_t int32x4_t __attribute__((vector_size(16)));
|
||||
|
||||
typedef uint8_t uint8x16_t __attribute__((vector_size(16)));
|
||||
typedef uint16_t uint16x8_t __attribute__((vector_size(16)));
|
||||
typedef uint32_t uint32x4_t __attribute__((vector_size(16)));
|
||||
|
||||
typedef float float32x4_t __attribute__((vector_size(16)));
|
||||
typedef double double64x2_t __attribute((vector_size(16)));
|
||||
|
||||
typedef signed long long long64x2_t __attribute((vector_size(16)));
|
||||
typedef unsigned long long ulong64x2_t __attribute__((vector_size(16)));
|
||||
|
||||
typedef struct ggml_uint8x16x2_t {
|
||||
uint8x16_t val[2];
|
||||
} ggml_uint8x16x2_t;
|
||||
|
||||
inline static ggml_uint8x16x2_t ggml_vec_xl_u8x2(const uint8_t * ptr) {
|
||||
ggml_uint8x16x2_t res;
|
||||
|
||||
res.val[0] = vec_xl( 0, ptr);
|
||||
res.val[1] = vec_xl(16, ptr);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
typedef struct ggml_uint8x16x4_t {
|
||||
uint8x16_t val[4];
|
||||
} ggml_uint8x16x4_t;
|
||||
|
||||
inline static ggml_uint8x16x4_t ggml_vec_xl_u8x4(const uint8_t * ptr) {
|
||||
ggml_uint8x16x4_t res;
|
||||
|
||||
res.val[0] = vec_xl( 0, ptr);
|
||||
res.val[1] = vec_xl(16, ptr);
|
||||
res.val[2] = vec_xl(32, ptr);
|
||||
res.val[3] = vec_xl(48, ptr);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
typedef struct ggml_int8x16x4_t {
|
||||
int8x16_t val[4];
|
||||
} ggml_int8x16x4_t;
|
||||
|
||||
inline static ggml_int8x16x4_t ggml_vec_xl_s8x4(const int8_t * ptr) {
|
||||
ggml_int8x16x4_t res;
|
||||
|
||||
res.val[0] = vec_xl( 0, ptr);
|
||||
res.val[1] = vec_xl(16, ptr);
|
||||
res.val[2] = vec_xl(32, ptr);
|
||||
res.val[3] = vec_xl(48, ptr);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
typedef struct ggml_int16x8x2_t {
|
||||
int16x8_t val[2];
|
||||
} ggml_int16x8x2_t;
|
||||
|
||||
inline static ggml_int16x8x2_t ggml_vec_xl_s16x2(const int16_t * ptr) {
|
||||
ggml_int16x8x2_t res;
|
||||
|
||||
res.val[0] = vec_xl( 0, ptr);
|
||||
res.val[1] = vec_xl(16, ptr);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
/*
|
||||
! WARNING: Very slow. Use vec_perm if possible. Refer to iq4_xs
|
||||
! or iq4_nl for example implementation.
|
||||
*/
|
||||
inline static int8x16_t ggml_vec_tbl(int8x16_t a, uint8x16_t b) {
|
||||
int8x16_t res;
|
||||
|
||||
res[ 0] = a[b[ 0]];
|
||||
res[ 1] = a[b[ 1]];
|
||||
res[ 2] = a[b[ 2]];
|
||||
res[ 3] = a[b[ 3]];
|
||||
res[ 4] = a[b[ 4]];
|
||||
res[ 5] = a[b[ 5]];
|
||||
res[ 6] = a[b[ 6]];
|
||||
res[ 7] = a[b[ 7]];
|
||||
res[ 8] = a[b[ 8]];
|
||||
res[ 9] = a[b[ 9]];
|
||||
res[10] = a[b[10]];
|
||||
res[11] = a[b[11]];
|
||||
res[12] = a[b[12]];
|
||||
res[13] = a[b[13]];
|
||||
res[14] = a[b[14]];
|
||||
res[15] = a[b[15]];
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
inline static int16x8_t vec_padd_s16(int16x8_t a, int16x8_t b) {
|
||||
const uchar8x16_t v_maske = { 0, 1, 4, 5, 8, 9, 12, 13,
|
||||
16, 17, 20, 21, 24, 25, 28, 29 };
|
||||
|
||||
const int16x8_t v_abo = vec_pack((int32x4_t)a, (int32x4_t)b);
|
||||
const int16x8_t v_abe = vec_perm(a, b, v_maske);
|
||||
return v_abo + v_abe;
|
||||
}
|
||||
|
||||
inline static int32x4_t ggml_vec_dot(int32x4_t acc, int8x16_t a, int8x16_t b) {
|
||||
const int16x8_t p = vec_mule(a, b) + vec_mulo(a, b);
|
||||
return acc + (vec_unpackh(p) + vec_unpackl(p));
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(__loongarch_asx)
|
||||
/* float type data load instructions */
|
||||
static __m128 __lsx_vreplfr2vr_s(const float val) {
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@@ -14,6 +14,10 @@
|
||||
#include "ggml-cpu-hbm.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_CPU_KLEIDIAI
|
||||
#include "kleidiai/kleidiai.h"
|
||||
#endif
|
||||
|
||||
#if defined(__APPLE__)
|
||||
#include <sys/types.h>
|
||||
#include <sys/sysctl.h>
|
||||
@@ -39,6 +43,12 @@ std::vector<ggml_backend_buffer_type_t>& ggml_backend_cpu_get_extra_buffers_type
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_CPU_KLEIDIAI
|
||||
if (ggml_backend_cpu_kleidiai_buffer_type()) {
|
||||
bufts.push_back(ggml_backend_cpu_kleidiai_buffer_type());
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_CPU_AARCH64
|
||||
if (ggml_backend_cpu_aarch64_buffer_type()) {
|
||||
bufts.push_back(ggml_backend_cpu_aarch64_buffer_type());
|
||||
@@ -501,6 +511,9 @@ static ggml_backend_feature * ggml_backend_cpu_get_features(ggml_backend_reg_t r
|
||||
if (ggml_cpu_has_fma()) {
|
||||
features.push_back({ "FMA", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_bmi2()) {
|
||||
features.push_back({ "BMI2", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_avx512()) {
|
||||
features.push_back({ "AVX512", "1" });
|
||||
}
|
||||
@@ -538,12 +551,18 @@ static ggml_backend_feature * ggml_backend_cpu_get_features(ggml_backend_reg_t r
|
||||
static std::string sve_cnt = std::to_string(ggml_cpu_get_sve_cnt());
|
||||
features.push_back({ "SVE_CNT", sve_cnt.c_str() });
|
||||
}
|
||||
if (ggml_cpu_has_sme()) {
|
||||
features.push_back({ "SME", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_riscv_v()) {
|
||||
features.push_back({ "RISCV_V", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_vsx()) {
|
||||
features.push_back({ "VSX", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_vxe()) {
|
||||
features.push_back({ "VXE", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_wasm_simd()) {
|
||||
features.push_back({ "WASM_SIMD", "1" });
|
||||
}
|
||||
@@ -559,6 +578,9 @@ static ggml_backend_feature * ggml_backend_cpu_get_features(ggml_backend_reg_t r
|
||||
#ifdef GGML_USE_OPENMP
|
||||
features.push_back({ "OPENMP", "1" });
|
||||
#endif
|
||||
#ifdef GGML_USE_CPU_KLEIDIAI
|
||||
features.push_back({ "KLEIDIAI", "1" });
|
||||
#endif
|
||||
#ifdef GGML_USE_CPU_AARCH64
|
||||
features.push_back({ "AARCH64_REPACK", "1" });
|
||||
#endif
|
||||
|
||||
259
ggml/src/ggml-cpu/kleidiai/kernels.cpp
Normal file
259
ggml/src/ggml-cpu/kleidiai/kernels.cpp
Normal file
@@ -0,0 +1,259 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2025 Arm Limited and/or its affiliates <open-source-office@arm.com>
|
||||
// SPDX-License-Identifier: MIT
|
||||
//
|
||||
|
||||
// KleidiAI micro-kernels
|
||||
#include "kai_matmul_clamp_f32_qsi8d32p_qsi4c32p_interface.h"
|
||||
#include "kai_lhs_quant_pack_qsi8d32p_f32.h"
|
||||
#include "kai_lhs_quant_pack_qsi8d32p_f32_neon.h"
|
||||
#include "kai_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0.h"
|
||||
#include "kai_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon.h"
|
||||
#include "kai_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod.h"
|
||||
#include "kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod.h"
|
||||
#include "kai_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod.h"
|
||||
#include "kai_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm.h"
|
||||
#include "kai_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa.h"
|
||||
#include "kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot.h"
|
||||
#include "kai_common.h"
|
||||
|
||||
#include "kernels.h"
|
||||
|
||||
#define NELEMS(x) sizeof(x) / sizeof(*x)
|
||||
static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
|
||||
#if defined(__ARM_FEATURE_SME)
|
||||
{
|
||||
/* SME GEMM */
|
||||
/* .kern_info = */ {
|
||||
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa,
|
||||
/* .get_n_step = */ kai_get_n_step_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa,
|
||||
/* .get_mr = */ kai_get_mr_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa,
|
||||
/* .get_nr = */ kai_get_nr_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa,
|
||||
/* .get_kr = */ kai_get_kr_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa,
|
||||
/* .get_sr = */ kai_get_sr_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa,
|
||||
/* .get_lhs_offset = */ kai_get_lhs_packed_offset_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa,
|
||||
/* .get_rhs_packed_offset = */ kai_get_rhs_packed_offset_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa,
|
||||
/* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa,
|
||||
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa,
|
||||
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa,
|
||||
},
|
||||
/* SME GEMV */
|
||||
/* .kern_info = */ {
|
||||
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot,
|
||||
/* .get_n_step = */ kai_get_n_step_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot,
|
||||
/* .get_mr = */ kai_get_mr_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot,
|
||||
/* .get_nr = */ kai_get_nr_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot,
|
||||
/* .get_kr = */ kai_get_kr_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot,
|
||||
/* .get_sr = */ kai_get_sr_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot,
|
||||
/* .get_lhs_offset = */ kai_get_lhs_packed_offset_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot,
|
||||
/* .get_rhs_packed_offset = */ kai_get_rhs_packed_offset_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot,
|
||||
/* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot,
|
||||
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot,
|
||||
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot,
|
||||
},
|
||||
/* .lhs_info = */ {
|
||||
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
|
||||
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
|
||||
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32_neon,
|
||||
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32_neon,
|
||||
/* .require_aligned_m_idx = */ true,
|
||||
},
|
||||
/* .rhs_info = */ {
|
||||
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon,
|
||||
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon,
|
||||
},
|
||||
/* .required_cpu = */ CPU_FEATURE_SME,
|
||||
},
|
||||
#endif
|
||||
#if defined(__APPLE__)
|
||||
#if defined(__ARM_FEATURE_DOTPROD)
|
||||
{
|
||||
/* DOTPROD GEMM */
|
||||
/* .kern_info = */ {
|
||||
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
/* .get_n_step = */ kai_get_n_step_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
/* .get_mr = */ kai_get_mr_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
/* .get_nr = */ kai_get_nr_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
/* .get_kr = */ kai_get_kr_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
/* .get_sr = */ kai_get_sr_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
/* .get_lhs_offset = */ kai_get_lhs_packed_offset_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
/* .get_rhs_packed_offset = */ kai_get_rhs_packed_offset_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
/* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
},
|
||||
/* DOTPROD GEMV */
|
||||
/* .kern_info = */ {
|
||||
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
/* .get_n_step = */ kai_get_n_step_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
/* .get_mr = */ kai_get_mr_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
/* .get_nr = */ kai_get_nr_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
/* .get_kr = */ kai_get_kr_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
/* .get_sr = */ kai_get_sr_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
/* .get_lhs_offset = */ kai_get_lhs_packed_offset_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
/* .get_rhs_packed_offset = */ kai_get_rhs_packed_offset_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
/* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
},
|
||||
/* .lhs_info = */ {
|
||||
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
|
||||
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
|
||||
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,
|
||||
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32,
|
||||
/* .require_aligned_m_idx = */ false,
|
||||
},
|
||||
/* .rhs_info = */ {
|
||||
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
|
||||
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
|
||||
},
|
||||
/* .required_cpu = */ CPU_FEATURE_DOTPROD,
|
||||
},
|
||||
#endif
|
||||
#if defined(__ARM_FEATURE_MATMUL_INT8)
|
||||
{
|
||||
/* i8mm GEMM */
|
||||
/* .kern_info = */ {
|
||||
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
/* .get_n_step = */ kai_get_n_step_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
/* .get_mr = */ kai_get_mr_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
/* .get_nr = */ kai_get_nr_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
/* .get_kr = */ kai_get_kr_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
/* .get_sr = */ kai_get_sr_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
/* .get_lhs_offset = */ kai_get_lhs_packed_offset_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
/* .get_rhs_packed_offset = */ kai_get_rhs_packed_offset_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
/* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
},
|
||||
/* i8mm GEMV */
|
||||
/* .kern_info = */ {
|
||||
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
/* .get_n_step = */ kai_get_n_step_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
/* .get_mr = */ kai_get_mr_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
/* .get_nr = */ kai_get_nr_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
/* .get_kr = */ kai_get_kr_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
/* .get_sr = */ kai_get_sr_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
/* .get_lhs_offset = */ kai_get_lhs_packed_offset_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
/* .get_rhs_packed_offset = */ kai_get_rhs_packed_offset_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
/* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
},
|
||||
/* .lhs_info = */ {
|
||||
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
|
||||
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
|
||||
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,
|
||||
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32,
|
||||
/* .require_aligned_m_idx = */ false,
|
||||
},
|
||||
/* .rhs_info = */ {
|
||||
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
|
||||
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
|
||||
},
|
||||
/* .required_cpu = */ CPU_FEATURE_DOTPROD | CPU_FEATURE_I8MM,
|
||||
},
|
||||
#endif
|
||||
#else
|
||||
#if defined(__ARM_FEATURE_MATMUL_INT8)
|
||||
{
|
||||
/* i8mm GEMM */
|
||||
/* .kern_info = */ {
|
||||
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
/* .get_n_step = */ kai_get_n_step_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
/* .get_mr = */ kai_get_mr_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
/* .get_nr = */ kai_get_nr_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
/* .get_kr = */ kai_get_kr_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
/* .get_sr = */ kai_get_sr_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
/* .get_lhs_offset = */ kai_get_lhs_packed_offset_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
/* .get_rhs_packed_offset = */ kai_get_rhs_packed_offset_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
/* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
},
|
||||
/* i8mm GEMV */
|
||||
/* .kern_info = */ {
|
||||
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
/* .get_n_step = */ kai_get_n_step_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
/* .get_mr = */ kai_get_mr_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
/* .get_nr = */ kai_get_nr_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
/* .get_kr = */ kai_get_kr_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
/* .get_sr = */ kai_get_sr_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
/* .get_lhs_offset = */ kai_get_lhs_packed_offset_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
/* .get_rhs_packed_offset = */ kai_get_rhs_packed_offset_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
/* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
},
|
||||
/* .lhs_info = */ {
|
||||
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
|
||||
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
|
||||
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,
|
||||
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32,
|
||||
/* .require_aligned_m_idx = */ false,
|
||||
},
|
||||
/* .rhs_info = */ {
|
||||
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
|
||||
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
|
||||
},
|
||||
/* .required_cpu = */ CPU_FEATURE_DOTPROD | CPU_FEATURE_I8MM,
|
||||
},
|
||||
#endif
|
||||
#if defined(__ARM_FEATURE_DOTPROD)
|
||||
{
|
||||
/* DOTPROD GEMM */
|
||||
/* .kern_info = */ {
|
||||
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
/* .get_n_step = */ kai_get_n_step_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
/* .get_mr = */ kai_get_mr_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
/* .get_nr = */ kai_get_nr_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
/* .get_kr = */ kai_get_kr_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
/* .get_sr = */ kai_get_sr_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
/* .get_lhs_offset = */ kai_get_lhs_packed_offset_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
/* .get_rhs_packed_offset = */ kai_get_rhs_packed_offset_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
/* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
},
|
||||
/* DOTPROD GEMV */
|
||||
/* .kern_info = */ {
|
||||
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
/* .get_n_step = */ kai_get_n_step_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
/* .get_mr = */ kai_get_mr_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
/* .get_nr = */ kai_get_nr_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
/* .get_kr = */ kai_get_kr_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
/* .get_sr = */ kai_get_sr_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
/* .get_lhs_offset = */ kai_get_lhs_packed_offset_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
/* .get_rhs_packed_offset = */ kai_get_rhs_packed_offset_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
/* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
},
|
||||
/* .lhs_info = */ {
|
||||
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
|
||||
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
|
||||
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,
|
||||
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32,
|
||||
/* .require_aligned_m_idx = */ false,
|
||||
},
|
||||
/* .rhs_info = */ {
|
||||
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
|
||||
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
|
||||
},
|
||||
/* .required_cpu = */ CPU_FEATURE_DOTPROD,
|
||||
},
|
||||
#endif
|
||||
#endif
|
||||
};
|
||||
|
||||
ggml_kleidiai_kernels * ggml_kleidiai_select_kernels(cpu_feature features) {
|
||||
ggml_kleidiai_kernels * kernels = nullptr;
|
||||
|
||||
for (size_t i = 0; i < NELEMS(gemm_gemv_kernels); ++i) {
|
||||
if ((features & gemm_gemv_kernels[i].required_cpu) == gemm_gemv_kernels[i].required_cpu) {
|
||||
kernels = &gemm_gemv_kernels[i];
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return kernels;
|
||||
}
|
||||
61
ggml/src/ggml-cpu/kleidiai/kernels.h
Normal file
61
ggml/src/ggml-cpu/kleidiai/kernels.h
Normal file
@@ -0,0 +1,61 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2025 Arm Limited and/or its affiliates <open-source-office@arm.com>
|
||||
// SPDX-License-Identifier: MIT
|
||||
//
|
||||
|
||||
#pragma once
|
||||
|
||||
enum cpu_feature {
|
||||
CPU_FEATURE_NONE = 0,
|
||||
CPU_FEATURE_DOTPROD = 1,
|
||||
CPU_FEATURE_I8MM = 2,
|
||||
CPU_FEATURE_SVE = 4,
|
||||
CPU_FEATURE_SME = 8
|
||||
};
|
||||
inline cpu_feature& operator|=(cpu_feature& lhs, cpu_feature rhs) {
|
||||
lhs = static_cast<cpu_feature>(lhs | rhs);
|
||||
return lhs;
|
||||
}
|
||||
inline cpu_feature operator|(cpu_feature lhs, cpu_feature rhs) {
|
||||
return static_cast<cpu_feature>(static_cast<int>(lhs) | static_cast<int>(rhs));
|
||||
}
|
||||
|
||||
struct kernel_info {
|
||||
size_t (*get_m_step)(void);
|
||||
size_t (*get_n_step)(void);
|
||||
size_t (*get_mr)(void);
|
||||
size_t (*get_nr)(void);
|
||||
size_t (*get_kr)(void);
|
||||
size_t (*get_sr)(void);
|
||||
size_t (*get_lhs_offset)(size_t m_idx, size_t k, size_t bl);
|
||||
size_t (*get_rhs_packed_offset)(size_t n_idx, size_t k, size_t bl);
|
||||
size_t (*get_dst_offset)(size_t m_idx, size_t n_idx, size_t stride);
|
||||
size_t (*get_dst_size)(size_t m, size_t n);
|
||||
void (*run_kernel)(size_t m, size_t n, size_t k, size_t bl, const void* lhs_packed, const void* rhs_packed,
|
||||
float* dst, size_t dst_stride_row, size_t dst_stride_col, float scalar_min, float scalar_max);
|
||||
};
|
||||
|
||||
struct lhs_packing_info {
|
||||
size_t (*get_offset)(size_t m_idx, size_t lhs_stride);
|
||||
size_t (*get_packed_offset)(size_t m_idx, size_t k, size_t bl, size_t mr, size_t kr, size_t sr);
|
||||
size_t (*packed_size)(size_t m, size_t k, size_t bl, size_t mr, size_t kr, size_t sr);
|
||||
void (*pack_func)(size_t m, size_t k, size_t bl, size_t mr, size_t kr, size_t sr, size_t m_idx_start, const float* lhs,
|
||||
size_t lhs_stride, void* lhs_packed);
|
||||
bool require_aligned_m_idx;
|
||||
};
|
||||
|
||||
struct rhs_packing_info {
|
||||
size_t (*packed_size)(size_t n, size_t k, size_t nr, size_t kr, size_t bl);
|
||||
void (*pack_func)(size_t num_groups, size_t n, size_t k, size_t nr, size_t kr, size_t sr, size_t bl, const uint8_t* rhs,
|
||||
const float* bias, void* rhs_packed, size_t extra_bytes, const struct kai_rhs_pack_qs4cxs1s0_param* params);
|
||||
};
|
||||
|
||||
struct ggml_kleidiai_kernels {
|
||||
kernel_info gemm;
|
||||
kernel_info gemv;
|
||||
lhs_packing_info lhs_info;
|
||||
rhs_packing_info rhs_info;
|
||||
|
||||
cpu_feature required_cpu;
|
||||
};
|
||||
|
||||
ggml_kleidiai_kernels * ggml_kleidiai_select_kernels(cpu_feature cpu_features);
|
||||
288
ggml/src/ggml-cpu/kleidiai/kleidiai.cpp
Normal file
288
ggml/src/ggml-cpu/kleidiai/kleidiai.cpp
Normal file
@@ -0,0 +1,288 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2025 Arm Limited and/or its affiliates <open-source-office@arm.com>
|
||||
// SPDX-License-Identifier: MIT
|
||||
//
|
||||
#include <arm_neon.h>
|
||||
#include <assert.h>
|
||||
#include <cfloat>
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
#if defined(__linux__)
|
||||
#include <asm/hwcap.h>
|
||||
#include <sys/auxv.h>
|
||||
#elif defined(__APPLE__)
|
||||
#include <string_view>
|
||||
#include <sys/sysctl.h>
|
||||
#include <sys/types.h>
|
||||
#elif defined(_WIN32)
|
||||
#include <windows.h>
|
||||
#include <excpt.h>
|
||||
#endif
|
||||
|
||||
#include "kleidiai.h"
|
||||
|
||||
#include "ggml-cpu.h"
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml-backend-impl.h"
|
||||
#include "ggml-threading.h"
|
||||
#include "ggml-cpu-traits.h"
|
||||
|
||||
#include "kernels.h"
|
||||
|
||||
#include "kai_common.h"
|
||||
|
||||
#define GGML_COMMON_DECL_CPP
|
||||
#include "ggml-common.h"
|
||||
|
||||
struct ggml_kleidiai_context {
|
||||
ggml_kleidiai_kernels * kernels;
|
||||
} static ctx = { NULL };
|
||||
|
||||
static void init_kleidiai_context(void) {
|
||||
|
||||
ggml_critical_section_start();
|
||||
static bool initialized = false;
|
||||
|
||||
if (!initialized) {
|
||||
initialized = true;
|
||||
const char *env_var = getenv("GGML_KLEIDIAI_SME");
|
||||
int sme_enabled = 0;
|
||||
|
||||
cpu_feature features = (ggml_cpu_has_dotprod() ? CPU_FEATURE_DOTPROD : CPU_FEATURE_NONE) |
|
||||
(ggml_cpu_has_matmul_int8() ? CPU_FEATURE_I8MM : CPU_FEATURE_NONE) |
|
||||
(ggml_cpu_has_sve() ? CPU_FEATURE_SVE : CPU_FEATURE_NONE);
|
||||
|
||||
if (env_var) {
|
||||
sme_enabled = atoi(env_var);
|
||||
}
|
||||
|
||||
if (sme_enabled != 0) {
|
||||
features |= ggml_cpu_has_sme() ? CPU_FEATURE_SME : CPU_FEATURE_NONE;
|
||||
}
|
||||
ctx.kernels = ggml_kleidiai_select_kernels(features);
|
||||
}
|
||||
ggml_critical_section_end();
|
||||
}
|
||||
|
||||
static inline int64_t ggml_ne(const ggml_tensor * tensor, int dim) {
|
||||
GGML_ASSERT(dim >= 0 && dim < GGML_MAX_DIMS);
|
||||
return tensor->ne[dim];
|
||||
}
|
||||
|
||||
namespace ggml::cpu::kleidiai {
|
||||
class tensor_traits : public ggml::cpu::tensor_traits {
|
||||
bool work_size(int /* n_threads */, const struct ggml_tensor * op, size_t & size) override {
|
||||
GGML_ASSERT(ctx.kernels);
|
||||
kernel_info * kernel = op->src[1]->ne[1] == 1 ? &ctx.kernels->gemv : &ctx.kernels->gemm;
|
||||
|
||||
size_t k = op->src[0]->ne[0];
|
||||
size_t m = op->src[1]->ne[1];
|
||||
|
||||
size_t mr = kernel->get_mr();
|
||||
size_t kr = kernel->get_kr();
|
||||
size_t sr = kernel->get_sr();
|
||||
|
||||
size = ctx.kernels->lhs_info.packed_size(m, k, QK4_0, mr, kr, sr);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool compute_forward(struct ggml_compute_params * params, struct ggml_tensor * dst) override {
|
||||
if (dst->op == GGML_OP_MUL_MAT) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
GGML_ASSERT(ctx.kernels);
|
||||
kernel_info * kernel = src1->ne[1] == 1 ? &ctx.kernels->gemv : &ctx.kernels->gemm;
|
||||
lhs_packing_info * lhs_info = &ctx.kernels->lhs_info;
|
||||
|
||||
GGML_ASSERT(kernel);
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
const size_t k = ne00;
|
||||
const size_t m = ne11;
|
||||
const size_t n = ne01;
|
||||
|
||||
const size_t n_step = kernel->get_n_step();
|
||||
const size_t num_n_per_thread = kai_roundup(kai_roundup(n, nth) / nth, n_step);
|
||||
const size_t n_start = ith * num_n_per_thread;
|
||||
|
||||
size_t n_to_process = num_n_per_thread;
|
||||
if ((n_start + n_to_process) > n) {
|
||||
n_to_process = n - n_start;
|
||||
}
|
||||
|
||||
const uint8_t * lhs = static_cast<const uint8_t *>(src1->data);
|
||||
uint8_t * lhs_packed = (uint8_t*)params->wdata;
|
||||
const uint8_t * rhs_packed = static_cast<const uint8_t *>(src0->data);
|
||||
|
||||
size_t mr = kernel->get_mr();
|
||||
size_t kr = kernel->get_kr();
|
||||
size_t sr = kernel->get_sr();
|
||||
|
||||
// Calculate number of columns to be processed per thread
|
||||
const bool use_multithread = lhs_info->require_aligned_m_idx && m <= mr ? false : true;
|
||||
const size_t num_m_per_thread = use_multithread ? kai_roundup(m, nth) / nth : m;
|
||||
const size_t m_start = ith * num_m_per_thread;
|
||||
size_t m_to_process = num_m_per_thread;
|
||||
if ((m_start + m_to_process) > m) {
|
||||
m_to_process = m - m_start;
|
||||
}
|
||||
|
||||
if(m_start < m) {
|
||||
// Transform LHS
|
||||
const size_t src_stride = src1->nb[1];
|
||||
const float * src_ptr = reinterpret_cast<const float *>(lhs + lhs_info->get_offset(0, dst->src[1]->nb[1]));
|
||||
const size_t lhs_packed_offset = lhs_info->get_packed_offset(m_start, k, QK4_0, mr, kr, sr);
|
||||
void * lhs_packed_ptr = static_cast<void *>(lhs_packed + lhs_packed_offset);
|
||||
|
||||
lhs_info->pack_func(m_to_process, k, QK4_0, mr, kr, sr, m_start, src_ptr, src_stride, lhs_packed_ptr);
|
||||
}
|
||||
|
||||
ggml_barrier(params->threadpool);
|
||||
|
||||
// Perform the operation
|
||||
const size_t dst_stride = dst->nb[1];
|
||||
const size_t lhs_packed_offset = lhs_info->get_packed_offset(0, k, QK4_0, mr, kr, sr);
|
||||
const size_t rhs_packed_offset = kernel->get_rhs_packed_offset(n_start, k, QK4_0);
|
||||
const size_t dst_offset = kernel->get_dst_offset(0, n_start, dst_stride);
|
||||
const void * rhs_ptr = static_cast<const void *>(rhs_packed + rhs_packed_offset);
|
||||
const void* lhs_ptr = (const void*)((const char *)lhs_packed + lhs_packed_offset);
|
||||
float *dst_ptr = reinterpret_cast<float *>(static_cast<uint8_t *>(dst->data) + dst_offset);
|
||||
|
||||
kernel->run_kernel(m, n_to_process, k, QK4_0, lhs_ptr, rhs_ptr, dst_ptr,
|
||||
dst_stride, sizeof(float), -FLT_MAX, FLT_MAX);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
public:
|
||||
int repack(struct ggml_tensor * tensor, const void * data, size_t data_size) {
|
||||
GGML_ASSERT(ctx.kernels);
|
||||
const size_t n = tensor->ne[1];
|
||||
const size_t k = tensor->ne[0];
|
||||
size_t nr = ctx.kernels->gemm.get_nr();
|
||||
size_t kr = ctx.kernels->gemm.get_kr();
|
||||
size_t sr = ctx.kernels->gemm.get_sr();
|
||||
|
||||
#ifndef NDEBUG
|
||||
const size_t repacked_size = ctx.kernels->rhs_info.packed_size(n, k, nr, kr, QK4_0);
|
||||
GGML_ASSERT(repacked_size <= data_size && "repacked size larger than the packed size!");
|
||||
#endif
|
||||
struct kai_rhs_pack_qs4cxs1s0_param params;
|
||||
params.lhs_zero_point = 1;
|
||||
params.rhs_zero_point = 8;
|
||||
ctx.kernels->rhs_info.pack_func(1, n, k, nr, kr, sr, QK4_0, (const uint8_t *)data, NULL, tensor->data, 0, ¶ms);
|
||||
|
||||
return 0;
|
||||
|
||||
GGML_UNUSED(data_size);
|
||||
}
|
||||
};
|
||||
|
||||
static ggml::cpu::tensor_traits * get_tensor_traits(ggml_backend_buffer_t, struct ggml_tensor *) {
|
||||
static tensor_traits traits;
|
||||
return &traits;
|
||||
}
|
||||
} // namespace ggml::cpu::kleidiai
|
||||
|
||||
GGML_API enum ggml_status ggml_backend_cpu_kleidiai_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
||||
tensor->extra = (void *) ggml::cpu::kleidiai::get_tensor_traits(buffer, tensor);
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
return GGML_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_kleidiai_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor,
|
||||
const void * data, size_t offset, size_t size) {
|
||||
GGML_ASSERT(offset == 0);
|
||||
GGML_ASSERT(size == ggml_nbytes(tensor));
|
||||
|
||||
auto tensor_traits = (ggml::cpu::kleidiai::tensor_traits *) tensor->extra;
|
||||
auto OK = tensor_traits->repack(tensor, data, size);
|
||||
|
||||
GGML_ASSERT(OK == 0);
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static const char * ggml_backend_cpu_kleidiai_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
|
||||
return "CPU_KLEIDIAI";
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_t ggml_backend_cpu_kleidiai_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
|
||||
|
||||
if (buffer == nullptr) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
buffer->buft = buft;
|
||||
buffer->iface.init_tensor = ggml_backend_cpu_kleidiai_buffer_init_tensor;
|
||||
buffer->iface.set_tensor = ggml_backend_cpu_kleidiai_buffer_set_tensor;
|
||||
buffer->iface.get_tensor = nullptr;
|
||||
buffer->iface.cpy_tensor = nullptr;
|
||||
return buffer;
|
||||
}
|
||||
|
||||
static size_t ggml_backend_cpu_kleidiai_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
||||
return TENSOR_ALIGNMENT;
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
namespace ggml::cpu::kleidiai {
|
||||
class extra_buffer_type : ggml::cpu::extra_buffer_type {
|
||||
bool supports_op(ggml_backend_dev_t, const struct ggml_tensor * op) override {
|
||||
if ( op->op == GGML_OP_MUL_MAT &&
|
||||
op->src[0]->type == GGML_TYPE_Q4_0 &&
|
||||
op->src[0]->buffer &&
|
||||
(ggml_n_dims(op->src[0]) == 2) &&
|
||||
op->src[0]->buffer->buft == ggml_backend_cpu_kleidiai_buffer_type() && ctx.kernels
|
||||
) {
|
||||
if (op->src[1]->buffer && !ggml_backend_buft_is_host(op->src[1]->buffer->buft)) {
|
||||
return false;
|
||||
}
|
||||
if (op->src[1]->type == GGML_TYPE_F32 &&
|
||||
ggml_ne(op->src[1], 2) == 1 && ggml_ne(op->src[1], 3) == 1) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
ggml::cpu::tensor_traits * get_tensor_traits(const struct ggml_tensor * op) override {
|
||||
if (op->op == GGML_OP_MUL_MAT) {
|
||||
if (op->src[0]->buffer && op->src[0]->buffer->buft == ggml_backend_cpu_kleidiai_buffer_type()) {
|
||||
return (ggml::cpu::tensor_traits *) op->src[0]->extra;
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
};
|
||||
} // namespace ggml::cpu::kleidiai
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_cpu_kleidiai_buffer_type(void) {
|
||||
static ggml::cpu::kleidiai::extra_buffer_type ctx;
|
||||
static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_kleidiai = {
|
||||
/* .iface = */ {
|
||||
/* .get_name = */ ggml_backend_cpu_kleidiai_buffer_type_get_name,
|
||||
/* .alloc_buffer = */ ggml_backend_cpu_kleidiai_buffer_type_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_cpu_kleidiai_buffer_type_get_alignment,
|
||||
/* .get_max_size = */ nullptr, // defaults to SIZE_MAX
|
||||
/* .get_alloc_size = */ nullptr, // defaults to ggml_nbytes
|
||||
/* .is_host = */ nullptr,
|
||||
},
|
||||
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
|
||||
/* .context = */ &ctx,
|
||||
};
|
||||
|
||||
init_kleidiai_context();
|
||||
|
||||
return &ggml_backend_cpu_buffer_type_kleidiai;
|
||||
}
|
||||
17
ggml/src/ggml-cpu/kleidiai/kleidiai.h
Normal file
17
ggml/src/ggml-cpu/kleidiai/kleidiai.h
Normal file
@@ -0,0 +1,17 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2025 Arm Limited and/or its affiliates <open-source-office@arm.com>
|
||||
// SPDX-License-Identifier: MIT
|
||||
//
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "ggml-alloc.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_cpu_kleidiai_buffer_type(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
@@ -7,7 +7,7 @@ if (CUDAToolkit_FOUND)
|
||||
|
||||
if (NOT DEFINED CMAKE_CUDA_ARCHITECTURES)
|
||||
# native == GPUs available at build time
|
||||
# 52 == Maxwell, lowest CUDA 12 standard
|
||||
# 50 == Maxwell, lowest CUDA 12 standard
|
||||
# 60 == P100, FP16 CUDA intrinsics
|
||||
# 61 == Pascal, __dp4a instruction (per-byte integer dot product)
|
||||
# 70 == V100, FP16 tensor cores
|
||||
@@ -17,7 +17,7 @@ if (CUDAToolkit_FOUND)
|
||||
elseif(GGML_CUDA_F16 OR GGML_CUDA_DMMV_F16)
|
||||
set(CMAKE_CUDA_ARCHITECTURES "60;61;70;75;80")
|
||||
else()
|
||||
set(CMAKE_CUDA_ARCHITECTURES "52;61;70;75;80")
|
||||
set(CMAKE_CUDA_ARCHITECTURES "50;61;70;75;80")
|
||||
endif()
|
||||
endif()
|
||||
message(STATUS "Using CUDA architectures: ${CMAKE_CUDA_ARCHITECTURES}")
|
||||
@@ -69,6 +69,10 @@ if (CUDAToolkit_FOUND)
|
||||
add_compile_definitions(GGML_CUDA_NO_VMM)
|
||||
endif()
|
||||
|
||||
if (NOT GGML_CUDA_FA)
|
||||
add_compile_definitions(GGML_CUDA_NO_FA)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_F16 OR GGML_CUDA_DMMV_F16)
|
||||
add_compile_definitions(GGML_CUDA_F16)
|
||||
endif()
|
||||
@@ -98,6 +102,15 @@ if (CUDAToolkit_FOUND)
|
||||
|
||||
set(CUDA_FLAGS -use_fast_math)
|
||||
|
||||
if (CUDAToolkit_VERSION VERSION_GREATER_EQUAL "12.8")
|
||||
# Options are:
|
||||
# - none (not recommended)
|
||||
# - speed (nvcc's default)
|
||||
# - balance
|
||||
# - size
|
||||
list(APPEND CUDA_FLAGS -compress-mode=${GGML_CUDA_COMPRESSION_MODE})
|
||||
endif()
|
||||
|
||||
if (GGML_FATAL_WARNINGS)
|
||||
list(APPEND CUDA_FLAGS -Werror all-warnings)
|
||||
endif()
|
||||
|
||||
@@ -294,11 +294,13 @@ static void ggml_cuda_op_bin_bcast(
|
||||
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||
const void * src0_dd, const void * src1_dd, void * dst_dd, cudaStream_t stream) {
|
||||
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16);
|
||||
|
||||
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
op()(src0, src1, dst, (const float *)src0_dd, (const float *)src1_dd, (float *)dst_dd, stream);
|
||||
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
|
||||
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
|
||||
op()(src0, src1, dst, (const half *) src0_dd, (const half *)src1_dd, (half *) dst_dd, stream);
|
||||
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F16) {
|
||||
op()(src0, src1, dst, (const half *) src0_dd, (const float *)src1_dd, (half *) dst_dd, stream);
|
||||
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
|
||||
op()(src0, src1, dst, (const half *) src0_dd, (const float *)src1_dd, (float *)dst_dd, stream);
|
||||
|
||||
@@ -1,34 +1,45 @@
|
||||
#include "clamp.cuh"
|
||||
|
||||
static __global__ void clamp_f32(const float * x, float * dst, const float min, const float max, const int k) {
|
||||
static __device__ __forceinline__ float op_clamp(float x, float min, float max) {
|
||||
return fminf(fmaxf(x, min), max);
|
||||
}
|
||||
|
||||
template <class T>
|
||||
static __global__ void op_clamp_kernel(const T * x, T * dst, const T min, const T max, const int k) {
|
||||
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i >= k) {
|
||||
return;
|
||||
}
|
||||
|
||||
dst[i] = x[i] < min ? min : (x[i] > max ? max : x[i]);
|
||||
dst[i] = (T)op_clamp((float)x[i], (float)min, (float)max);
|
||||
}
|
||||
|
||||
static void clamp_f32_cuda(const float * x, float * dst, const float min, const float max, const int k, cudaStream_t stream) {
|
||||
template <class T>
|
||||
static void clamp_cuda(const T * x, T * dst, const T min, const T max, const int k, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_CLAMP_BLOCK_SIZE - 1) / CUDA_CLAMP_BLOCK_SIZE;
|
||||
clamp_f32<<<num_blocks, CUDA_CLAMP_BLOCK_SIZE, 0, stream>>>(x, dst, min, max, k);
|
||||
op_clamp_kernel<<<num_blocks, CUDA_CLAMP_BLOCK_SIZE, 0, stream>>>(x, dst, min, max, k);
|
||||
}
|
||||
|
||||
|
||||
void ggml_cuda_op_clamp(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
float * dst_d = (float *)dst->data;
|
||||
const void * src0_d = src0->data;
|
||||
void * dst_d = dst->data;
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(src0->type == dst->type);
|
||||
|
||||
float min;
|
||||
float max;
|
||||
memcpy(&min, dst->op_params, sizeof(float));
|
||||
memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
|
||||
|
||||
clamp_f32_cuda(src0_d, dst_d, min, max, ggml_nelements(src0), stream);
|
||||
if (src0->type == GGML_TYPE_F16) {
|
||||
clamp_cuda((const half *)src0_d, (half *)dst_d, (half)min, (half)max, ggml_nelements(src0), stream);
|
||||
} else {
|
||||
clamp_cuda((const float *)src0_d, (float *)dst_d, (float)min, (float)max, ggml_nelements(src0), stream);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -62,6 +62,7 @@
|
||||
#define GGML_CUDA_CC_RDNA2 (GGML_CUDA_CC_OFFSET_AMD + 0x1030) // RX 6000, minimum for dp4a
|
||||
#define GGML_CUDA_CC_RDNA3 (GGML_CUDA_CC_OFFSET_AMD + 0x1100) // RX 7000, minimum for WMMA
|
||||
|
||||
#define GGML_CUDA_CC_IS_AMD(cc) (cc >= GGML_CUDA_CC_OFFSET_AMD)
|
||||
#define GGML_CUDA_CC_IS_RDNA(cc) (cc >= GGML_CUDA_CC_RDNA1)
|
||||
#define GGML_CUDA_CC_IS_RDNA1(cc) (cc >= GGML_CUDA_CC_RDNA1 && cc < GGML_CUDA_CC_RDNA2)
|
||||
#define GGML_CUDA_CC_IS_RDNA2(cc) (cc >= GGML_CUDA_CC_RDNA2 && cc < GGML_CUDA_CC_RDNA3)
|
||||
@@ -196,6 +197,10 @@ typedef float2 dfloat2;
|
||||
#define FP16_MMA_AVAILABLE
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
|
||||
|
||||
#if defined(GGML_HIP_ROCWMMA_FATTN) && (defined(CDNA) || defined(RDNA3))
|
||||
#define FP16_MMA_AVAILABLE
|
||||
#endif // defined(GGML_HIP_ROCWMMA_FATTN) && (defined(CDNA) || defined(RDNA3))
|
||||
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
|
||||
#define NEW_MMA_AVAILABLE
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
|
||||
@@ -204,9 +209,9 @@ typedef float2 dfloat2;
|
||||
#define CP_ASYNC_AVAILABLE
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
||||
|
||||
#if !(defined(GGML_USE_MUSA) && __MUSA_ARCH__ <= GGML_CUDA_CC_QY1)
|
||||
#if !defined(GGML_CUDA_NO_FA) && !(defined(GGML_USE_MUSA) && __MUSA_ARCH__ <= GGML_CUDA_CC_QY1)
|
||||
#define FLASH_ATTN_AVAILABLE
|
||||
#endif // !(defined(GGML_USE_MUSA) && __MUSA_ARCH__ <= GGML_CUDA_CC_QY1)
|
||||
#endif // !defined(GGML_CUDA_NO_FA) && !(defined(GGML_USE_MUSA) && __MUSA_ARCH__ <= GGML_CUDA_CC_QY1)
|
||||
|
||||
static bool fp16_available(const int cc) {
|
||||
return ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_PASCAL;
|
||||
@@ -223,12 +228,18 @@ static bool fast_fp16_hardware_available(const int cc) {
|
||||
|
||||
// Any FP16 tensor core instructions are available for ggml code.
|
||||
static bool fp16_mma_available(const int cc) {
|
||||
return cc < GGML_CUDA_CC_OFFSET_AMD && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA;
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(GGML_HIP_ROCWMMA_FATTN)
|
||||
return false;
|
||||
#else
|
||||
return cc < GGML_CUDA_CC_OFFSET_AMD && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA ||
|
||||
GGML_CUDA_CC_IS_CDNA(cc) || cc >= GGML_CUDA_CC_RDNA3;
|
||||
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(GGML_HIP_ROCWMMA_FATTN)
|
||||
}
|
||||
|
||||
// To be used for feature selection of external libraries, e.g. cuBLAS.
|
||||
static bool fp16_mma_hardware_available(const int cc) {
|
||||
return cc < GGML_CUDA_CC_OFFSET_AMD && cc >= GGML_CUDA_CC_VOLTA;
|
||||
return cc < GGML_CUDA_CC_OFFSET_AMD && cc >= GGML_CUDA_CC_VOLTA ||
|
||||
GGML_CUDA_CC_IS_CDNA(cc) || cc >= GGML_CUDA_CC_RDNA3;
|
||||
}
|
||||
|
||||
// Volta technically had FP16 tensor cores but they work very differently compared to Turing and later.
|
||||
@@ -411,13 +422,13 @@ static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, i
|
||||
|
||||
#else // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
|
||||
#if __CUDA_ARCH__ >= GGML_CUDA_CC_DP4A
|
||||
#if __CUDA_ARCH__ >= GGML_CUDA_CC_DP4A || defined(GGML_USE_MUSA)
|
||||
return __dp4a(a, b, c);
|
||||
#else // __CUDA_ARCH__ >= GGML_CUDA_CC_DP4A
|
||||
#else // __CUDA_ARCH__ >= GGML_CUDA_CC_DP4A || defined(GGML_USE_MUSA)
|
||||
const int8_t * a8 = (const int8_t *) &a;
|
||||
const int8_t * b8 = (const int8_t *) &b;
|
||||
return c + a8[0]*b8[0] + a8[1]*b8[1] + a8[2]*b8[2] + a8[3]*b8[3];
|
||||
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_DP4A
|
||||
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_DP4A || defined(GGML_USE_MUSA)
|
||||
|
||||
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
}
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user