Compare commits

...

85 Commits
b4783 ... b4868

Author SHA1 Message Date
R0CKSTAR
251364549f musa: support new arch mp_31 and update doc (#12296)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-03-10 18:18:25 +01:00
Henry Linjamäki
8acdacb3ea opencl: use OpenCL C standard supported by the device (#12221)
Some checks failed
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
This patch nudges the llama.cpp a bit to be supported on PoCL which
doesn't support OpenCL C CL2.0. The issue is solved by querying the
device for the supported OpenCL C versions and using the highest one
available.
2025-03-10 09:57:00 -07:00
John Bean
89b2b56e86 readme: added Sidekick to available UIs (#12311) 2025-03-10 16:13:09 +02:00
Georgi Gerganov
e128a1bf5b tests : fix test-quantize-fns to init the CPU backend (#12306)
ggml-ci
2025-03-10 14:07:15 +02:00
marcoStocchi
6ef79a67ca common : refactor '-o' option (#12278)
As discussed in PR 'llama-tts : add -o option' (#12042):

* common_params : 'out_file' string is the only output file name parameter left in common_params. It's intended to be used in all example programs implementing an '-o' option.

* cvector-generator, export-lora, imatrix : default output filenames moved from 'common_params' to the 'main()' of each example program.
2025-03-10 13:34:13 +02:00
Olivier Chafik
4e39a3c332 server: extract <think> tags from qwq outputs (#12297)
* extract <think> tags from qwq outputs

* const for all static regexes in chat.cpp
2025-03-10 10:59:03 +00:00
Olivier Chafik
be421fc429 tool-call: ensure there's always a non-empty tool call id (#12292) 2025-03-10 09:45:29 +00:00
Olivier Chafik
87c2630546 allow missing content in message if tool_calls provided (#12293) 2025-03-10 09:45:07 +00:00
Olivier Chafik
2b3a25c212 sampler: fixes trigger tokens + lazy grammars (fix typo cast from token to string) (#12291)
* Fix typo in lazy grammar handling (fixes trigger tokens)

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-03-10 09:44:42 +00:00
tc-mb
8352cdc87b llava : fix bug in minicpm-v code (#11513)
Some checks are pending
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
* fix bug in minicpm-v code

* update readme of minicpm-v
2025-03-10 10:33:24 +02:00
Georgi Gerganov
1e2f78a004 server : add speculative decoding presets for FIM (#12287) 2025-03-09 19:08:20 +02:00
Georgi Gerganov
0fd7ca7a21 authors : update (#12271) 2025-03-08 18:26:00 +02:00
Jason C.H
6fefc05a7a ggml-backend : make path_str compatible with C++20 (#12269) 2025-03-08 17:02:39 +01:00
Georgi Gerganov
7ab364390f server : infill gen ends on new line (#12254) 2025-03-07 20:54:30 +02:00
Daniel Bevenius
7c7f3b7f43 ggml : skip intermediate .air file when compiling .metallib (#12247)
This commit updates the compilation of default.metallib to skip the
intermediate .air (Apple Intermediate Representation) file.

The motivation for this change is to simplify the custom command a
little and avoid generating and then removing the .air file.
2025-03-07 14:15:27 +01:00
Georgi Gerganov
102ac1891d sync : ggml
ggml-ci
2025-03-07 14:49:44 +02:00
vmobilis
d6ae2fa061 ggml : ggml_compute_forward_concat() for arbitrary tensor type (ggml/1118)
* ggml_compute_forward_concat() for arbitrary tensor type

* Check that tensors' type match

* ggml-cpu.c: check type of source tensors

* ggml-cpu.c: move tensor type check to ggml_compute_forward_concat()

* ggml.c: check concatenated tensor type

* Remove tensor type check from ggml_compute_forward_concat() in ggml-cpu.c

..., as it was moved to ggml.c.
2025-03-07 14:49:44 +02:00
Rémy O
68d0027f3d ggml-cpu: faster AVX2 variant for IQ1_M (#12216) 2025-03-07 13:54:22 +02:00
Georgi Gerganov
ea002810a2 ci : fix save-load test invocations (#12245) 2025-03-07 12:19:31 +02:00
Sigbjørn Skjæret
8fad3c7a7c server : Log original chat template parsing error (#12233) 2025-03-07 11:15:33 +01:00
Olivier Chafik
7cf64f6bee sync: minja - support QwQ-32B (#12235)
8a76f7815e
2025-03-07 09:33:37 +00:00
BB-fat
5e2d57b2b2 metal : simplify kernel arguments using a struct (#3229) (#12194)
* metal : refactor im2col parameters into a struct

* metal: Change im2col offset types from int32_t to uint64_t to support larger memory offsets

* metal : refactor sum_rows parameters into a struct

* metal : refactor soft_max parameters into a struct

* metal : refactor diag_mask_inf parameters into a struct

* metal : refactor ssm_conv parameters into a struct

* metal : refactor ssm_scan parameters into a struct

* metal : refactor get_rows parameters into a struct

* metal : refactor group_norm parameters into a struct

* metal : refactor conv_transpose_1d parameters into a struct

* metal : refactor upscale parameters into a struct

* metal : refactor pad parameters into a struct

* metal : refactor pad_reflect_1d parameters into a struct

* metal : refactor arange parameters into a struct

* metal : refactor timestep_embedding parameters into a struct

* metal : refactor argsort parameters into a struct

* metal : refactor leaky_relu parameters into a struct

* metal : refactor pool_2d parameters into a struct

* metal : fix trailing whitespace

---------

Co-authored-by: alexju <alexju@tencent.com>
2025-03-07 08:35:57 +01:00
David Huang
f1648e91cf HIP: fix rocWMMA build flags under Windows (#12230) 2025-03-07 08:06:08 +01:00
Daniel Bevenius
d6c95b0740 metal : fix default.metallib build (#12224)
This commit updates the custom command to build the default.metallib
file to use the correct path to ../ggml-common.h by using the variable
METALLIB_COMMON.

The motivation for this change is that currently when building and
specifying GGML_METAL_EMBED_LIBRARY=OFF the following error is
generated:
```console
[ 11%] Linking CXX shared library ../../bin/libggml.dylib
[ 11%] Built target ggml
make[2]: *** No rule to make target `ggml/src/ggml-metal/ggml-common.h', needed by `bin/default.metallib'.  Stop.
make[1]: *** [ggml/src/ggml-metal/CMakeFiles/ggml-metal-lib.dir/all] Error 2
```

With the above change the build could progress but there was a follow
on error about not being able to find the ggml-common.h file in
ggml-metal.metal where is was included as a relative path:
```console
[ 11%] Compiling Metal kernels
/Users/danbev/work/llama.cpp/build/bin/ggml-metal.metal:6:10: error: '../ggml-common.h' file not found, did you mean 'ggml-common.h'?
         ^~~~~~~~~~~~~~~~~~
         "ggml-common.h"
1 error generated.
```
Removing the relative path then allowed the build to complete
successfully.
2025-03-07 06:23:16 +01:00
lhez
d76a86d967 opencl: Noncontiguous norm, rms_norm, disable fp16 for some ops (#12217)
* opencl: support noncontiguous `norm`

* opencl: support noncontiguous `rms_norm`

* opencl: disable fp16 for `ADD`, `MUL`, `SCALE`, `RELU`, `GELU`, `SILU`, `CLAMP`
2025-03-07 00:20:35 +00:00
xiaofei
776f9e59cc cmake : fix undefined reference errors for std::filesystem in ggml (#12092) (#12094)
Signed-off-by: Ray Lee <hburaylee@gmail.com>
Co-authored-by: Ray Lee <hburaylee@gmail.com>
2025-03-06 22:58:25 +00:00
Lucas Moura Belo
3d652bfddf readme : update bindings (#12229) 2025-03-06 21:15:13 +02:00
Johannes Gäßler
5220a16d18 CUDA: fix FA logic for PTX 7.0 and CC >= 7.5 (#12222) 2025-03-06 18:45:09 +01:00
David Huang
3ffbbd5ce1 HIP: rocWMMA documentation and enabling in workflow builds (#12179)
Some checks failed
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
* Enable rocWMMA for Windows CI build

* Enable for Ubuntu

* GGML_HIP_ROCWMMA_FATTN documentation work
2025-03-06 14:14:11 +01:00
Olivier Chafik
42994048a3 update function-calling.md w/ template override for functionary-small-v3.2 (#12214) 2025-03-06 09:03:31 +00:00
Aaron Teo
e9b2f84f14 llava: add big-endian conversion for image encoder (#12218)
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-03-06 09:33:21 +01:00
uvos
e721c05c93 HIP/CUDA: set the paramerter value in maintain_cuda_graph instead of replaceing it. (#12209)
This avoids conflict with internal cuda/hip runtimes memory managment behavior.
2025-03-06 08:20:52 +01:00
Han Yin
57b6abf85a android : fix KV cache log message condition (#12212) 2025-03-06 08:22:49 +02:00
Henry Linjamäki
94bb63e4f0 opencl : fix buffer alignment (#12197)
Fix the following error:

```
ggml-alloc.c:99: not enough space in the buffer
ggml_tallocr_alloc: not enough space in the buffer to allocate blk.17.ffn_down.weight (needed 27525120, available 27521024)
```

which occurs when `ggml_backend_opencl_context::alignment` is larger
than `cl_ptr_base` (hard-coded to `0x1000`).

Also, fix `ggml_backend_opencl_context::alignment` was set to
`CL_DEVICE_MEM_BASE_ADDR_ALIGN` which was treated as bytes but the
value is reported in bits.
2025-03-06 02:33:40 +01:00
Henry Linjamäki
f79243992c opencl : fix ulong kernel args were set from int variables (#12174)
... which left garbage bits in the upper half of the kernel args. This
caused segmentation faults when running PoCL.
2025-03-06 02:31:14 +01:00
simon886212
ed4ce0dda2 opencl : fix profile-related errors (#12095)
Co-authored-by: ubuntu <ubuntu@localhost.localdomain>
2025-03-06 02:30:05 +01:00
Rémy O
07d1572347 ggml-cpu: Faster IQ1 mul_mat_vec on AVX2 using BMI2 instructions (#12154)
* ggml-cpu: Faster IQ1 mul_mat_vec on AVX2 using BMI2 instructions

* cmake: Add GGML_BMI2 build option

* ggml: enable BMI2 on relevant CPU variants

* ggml-cpu: include BMI2 in backend score

* ggml-cpu: register BMI2 in ggml_backend_cpu_get_features

* ggml-cpu: add __BMI2__ define when using MSVC
2025-03-06 02:26:10 +01:00
Akarshan Biswas
5e43f104cc SYCL: Disable f16 Unary OPs as not supported by the kernels (#12201) 2025-03-05 16:58:23 +01:00
Plamen Minev
16e4b22c5e ggml : fix GGMLMetalClass ODR (#12200)
-- it might happen if ggml is loaded from 2 separate libraries since each one of them will expose the class. This is more of a guard since we want to use only Metal as embedded library and don't care about the other case.
2025-03-05 17:16:01 +02:00
Daniel Bevenius
074c4fd39d ci : add fetch-depth to xcframework upload (#12195)
Some checks failed
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
Python check requirements.txt / check-requirements (push) Has been cancelled
This commit adds the fetch-depth: 0 option to the checkout action in the
build.yml workflow file (0 meaning that it fetches the complete
history). The default value is 1 when not specified which only fetches
the latest commit.

This is necessary to ensure that `git rev-list --count HEAD` counts the
total number of commits in the history. Currently because the default is
being used the name of the xcframework artifact is always
llama-b1-xcframework.
2025-03-05 14:16:40 +01:00
Olivier Chafik
669912d9a5 tool-call: fix Qwen 2.5 Coder support, add micro benchmarks, support trigger patterns for lazy grammars (#12034)
* sampler: turn lazy grammar trigger words to regexes

* add scripts/tool_bench.sh & .py

* constrain llama json output regardless of function name if matches at beginning

* update relaxed newline space rule in grammar tests

* support add_generation_prompt query parameter (useful for /apply_template)

* Update src/llama-grammar.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-03-05 13:05:13 +00:00
Daniel Bevenius
fa31c438e0 ci : fix xcframework artifact tag (#12191)
The commit add the name parameter to the upload-artifact action to
ensure that the artifact is uploaded with the correct name.

The motivation for this is that currently the uploaded xcframework
is named as llama-b1-xcframework.zip. With this change the name of this
artifact should contain the build number like the other artifacts.
2025-03-05 10:22:29 +01:00
Daniel Bevenius
3ccbfe5a71 ci : remove xframework upload (#12190)
* ci : remove xframework upload

This commit removes the upload of the xframework zip file as an
artifact.

The motivation for this change is that the xframework zip file is
currently being uploaded as part of strategy and will therefore be
attempted to be uploaded multiple times and will fail the build.

The uploading should be moved to somewhere else in the build to avoid
this.

* ci : add xcframework upload to macos-latest job
2025-03-05 08:34:02 +01:00
Clauszy
06a92a193a server : fix cache reuse logic (#12161)
The first kv shift offsets the positions of all tokens after head_c.
When using llama_kv_cache_seq_rm next, using head_c will remove the valid tokens because their positions have already been offset.
2025-03-05 09:25:45 +02:00
Daniel Bevenius
a057897ad4 llama : add xcframework build script (#11996)
* llama : add xcframework build script

This commit adds a script to build an XCFramework for Apple
ios, macos, visionos, and tvos platforms.

The generated XCFramework can then be added to a project and used in
the same way as a regular framework. The llama.swiftui example project
has been updated to use the XCFramework and can be started using the
following command:
```console
$ open examples/llama.swiftui/llama.swiftui.xcodeproj/
```

Refs: https://github.com/ggml-org/llama.cpp/issues/10747

* examples : remove llama.cpp (source dir ref) from project.pbxproj

This commit removes the reference to llama.cpp from the project.pbxproj
file since Package.swift has been removed.

* ci : updated build.yml to use build-xcframework.sh

* ci : add xcframework build to github releases

This commit adds the ability to create a GitHub release with the
xcframework build artifact.

* scripts : add apple app validation scripts

This commit adds scripts that can validate the iOS, macOS, tvOS, and
VisionOS applications. The scripts create a simple test app project,
copy the llama.xcframework to the test project, build and archive the
app, create an IPA from the archive, and validate the IPA using altool.

The motivation for this is to provide some basic validation and
hopefully avoid having to manually validate apps in Xcode.

* llama : remove Package.swift

This commit removes the Package.swift file, as we are now building an
XCFramework for the project.

* llama : remove Sources and spm-headers directories

* llama : use TargetConditionals.h for visionOS/tvOS
2025-03-05 06:30:31 +01:00
mgroeber9110
5bbe6a9fe9 ggml : portability fixes for VS 2017 (#12150)
* Add include files for std::min/max and std::toupper/tolower

* win32: move _USE_MATH_DEFINES before includes to ensure M_PI is defined

* Use GGML_RESTRICT instead of "restrict" keyword everywhere, and use "__restrict" in MSVC plain C mode

* win32: only use __restrict in MSVC if C11/C17 support is not enabled

---------

Co-authored-by: Marcus Groeber <Marcus.Groeber@cerence.com>
2025-03-04 18:53:26 +02:00
Georgi Gerganov
20a9b8f5e1 readme : fix roadmap link (#12185) 2025-03-04 18:42:44 +02:00
Sigbjørn Skjæret
56d7a9f812 main: allow preloading conversation with -p and add -st / --single-turn (#12145)
* Add chat template formatting to -no-cnv

* only enable prompt formatting if explicitly enabled

* add -st / --single-turn

* add --single-turn and -p in conversation mode

* fix -sys + -p

* reword warning

* small readability change and fix (long) outdated example usage

* only activate single turn in conversation mode
2025-03-04 12:19:39 -04:00
Olivier Chafik
1a24c4621f server: fix deadly typo in response_format.json_schema.schema handling (#12168)
Some checks are pending
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
2025-03-04 08:24:07 +02:00
David Huang
becade5de7 HIP: implement FlashAttention via rocWMMA for CDNA and RDNA3+ (#12032)
Adds GGML_HIP_ROCWMMA_FATTN and rocwmma header check
Adds rocWMMA support to fattn-wmma-f16

---

Signed-off-by: Carl Klemm <carl@uvos.xyz>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Ben Jackson <ben@ben.com>
2025-03-03 22:10:54 +01:00
Georgi Gerganov
dfd6b2c0be sync : ggml
ggml-ci
2025-03-03 18:18:11 +02:00
cmdr2
b64d7cc272 cuda: unary ops as float + de-duplicate (ggml/1130) 2025-03-03 18:18:11 +02:00
Georgi Gerganov
3d1cf3cf33 sync : ggml
ggml-ci
2025-03-03 18:18:11 +02:00
cmdr2
0cbee131ad cuda/vulkan: specify fp32-only support for some operations in supports_op (ggml/1129)
ggml-ci
2025-03-03 18:18:11 +02:00
Georgi Gerganov
8371d44595 sync : ggml
ggml-ci
2025-03-03 18:18:11 +02:00
cmdr2
87abb7e903 cuda/cpu: Increase support for fp16 unary operations (ggml/1125)
* Support fp16 unary operations in the CUDA backend

* cpu: increase fp16 support for unary operators in the CPU backend

* cuda: increase fp16 support for unary operators in the CUDA backend

* Add test cases for fp16 unary operators

* metal: update supports_op for unary operators that don't support fp16, to prevent test-backend-ops from failing

* metal: fix PR comments for unary op support after fp16 unary tests
2025-03-03 18:18:11 +02:00
Diego Devesa
6d4c23b81b whisper : support GGML_BACKEND_DL (whisper/2843)
* whisper : support GGML_BACKEND_DL

* fix DTW crash

* whisper.objc : fix build - add ggml-cpp.h

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-03-03 18:18:11 +02:00
midnight
6512a90037 cmake : fix compile assumptions for power9/etc (whisper/2777)
* Add small comment re: VSX to readme

Co-authored-by: midnight <midnight@example.com>
2025-03-03 18:18:11 +02:00
petterreinholdtsen
4512055792 Told cmake to install ggml-cpp.h as a public header file. (ggml/1126)
It is used by Whisper talk-llama example.

Co-authored-by: Petter Reinholdtsen <pere@debian.org>
2025-03-03 18:18:11 +02:00
cmdr2
f54a4ba11e Support pure float16 add/sub/mul/div operations in the CUDA (and CPU) backend (ggml/1121)
* Support float16-to-float16 add/sub/mul/div operations in the CUDA backend

* Add fp16 support for add/sub/mul/div on the CPU backend

* Add test cases for fp16 add/sub/mul/div
2025-03-03 18:18:11 +02:00
Georgi Gerganov
aede2074f6 scripts : sync-ggml-am.sh fix 2025-03-03 18:18:11 +02:00
Daniel Bevenius
2679c3b55d ci : set GITHUB_ACTION env var for server tests (#12162)
This commit tries to address/improve an issue with the server tests
which are failing with a timeout. Looking at the logs it seems like
they are timing out after 12 seconds:
```
FAILED unit/test_chat_completion.py::test_completion_with_json_schema[False-json_schema0-6-"42"] - TimeoutError: Server did not start within 12 seconds
```

This is somewhat strange as in utils.py we have the following values:
```python
DEFAULT_HTTP_TIMEOUT = 12

if "LLAMA_SANITIZE" in os.environ or "GITHUB_ACTION" in os.environ:
    DEFAULT_HTTP_TIMEOUT = 30

    def start(self, timeout_seconds: int | None = DEFAULT_HTTP_TIMEOUT) -> None:
```
It should be the case that a test running in a github action should have
a timeout of 30 seconds. However, it seems like this is not the case.
Inspecting the logs from the CI job we can see the following environment
variables:
```console
Run cd examples/server/tests
2 cd examples/server/tests
3 ./tests.sh
4 shell: /usr/bin/bash -e {0}
5 env:
6 LLAMA_LOG_COLORS: 1
7 LLAMA_LOG_PREFIX: 1
8 LLAMA_LOG_TIMESTAMPS: 1
9 LLAMA_LOG_VERBOSITY: 10
10 pythonLocation: /opt/hostedtoolcache/Python/3.11.11/x64
```

This probably does not address the underlying issue that the servers
that are providing the models to be downloaded occasionally take a
longer time to response but might improve these situations in some
cases.
2025-03-03 16:17:36 +01:00
dm4
c43af9276b tts: add speaker file support (#12048)
Some checks are pending
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
* tts: add speaker file support

Signed-off-by: dm4 <sunrisedm4@gmail.com>

* tts: handle outetts-0.3

* tts : add new line in error message

---------

Signed-off-by: dm4 <sunrisedm4@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-03-03 15:09:29 +02:00
Diego Devesa
d5c63cd7f9 test-backend-ops : add option -p to filter by op params (#12155) 2025-03-03 14:00:46 +01:00
ag2s20150909
9660ffef58 ggml : fix kleidiai build (#12159)
The libggml API has changed, but this has not been updated.
2025-03-03 13:54:08 +01:00
Eric Curtin
c950a1f692 Adding UTF-8 support to llama.cpp (#12111)
For emojis, non-alpha characters, etc.

Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2025-03-03 12:44:56 +00:00
Xuan-Son Nguyen
7b69003af7 webui : add ?m=... and ?q=... params (#12148)
* webui : add ?m=... and ?q=... params

* also clear prefilledMessage variable

* better approach

* fix comment

* test: bump timeout on GITHUB_ACTION
2025-03-03 11:42:45 +01:00
Akarshan Biswas
ece9745bb8 SYCL: Move CPY kernels to a separate file and add few missing kernels (#12133)
* SYCL: refactor and move cpy kernels to a separate file

* Add few missing cpy kernels

* refactor and add debug logs
2025-03-03 11:07:22 +01:00
Diego Devesa
cc473cac7c ggml-backend : keep paths in native string type when possible (#12144) 2025-03-02 22:11:00 +01:00
Sigbjørn Skjæret
14dec0c2f2 main: use jinja chat template system prompt by default (#12118)
* Use jinja chat template system prompt by default

* faster conditional order

* remove nested ternary

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-03-02 14:53:48 +01:00
Sigbjørn Skjæret
1782cdfed6 main: update outdated system prompt message (followup to #12131) (#12132)
* Update outdated message

* wording

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>

---------

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-03-01 15:22:27 +01:00
Sigbjørn Skjæret
45a8e76745 common : add --system-prompt parameter, replace behavior of -p in conversation mode (#12131)
* Add --system-prompt parameter

* use user defined system prompt

* clarify

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>

* add warning

* clarify

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>

---------

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-03-01 13:56:45 +01:00
Erik Scholz
80c41ddd8f CUDA: compress mode option and default to size (#12029)
cuda 12.8 added the option to specify stronger compression for binaries, so we now default to "size".
2025-03-01 12:57:22 +01:00
Vivian
2cc4a5e44a webui : minor typo fixes (#12116)
* fix typos and improve menu text clarity

* rename variable trimedValue to trimmedValue

* add updated index.html.gz

* rebuild

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-03-01 11:15:09 +01:00
Xuan-Son Nguyen
06c2b1561d convert : fix Norway problem when parsing YAML (#12114)
Some checks failed
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
* convert : fix Norway problem when parsing YAML

* Update gguf-py/gguf/metadata.py

* add newline at correct place
2025-02-28 17:44:46 +01:00
William Tambellini
70680c48e5 ggml : upgrade init_tensor API to return a ggml_status (#11854)
* Upgrade init_tensor API to return a ggml_status

To prepare for an 'abort-free' ggml
(ggml not to abort on OOMs but return a OOM status),
as agreeed with Diego in the ggml repo,
upgrade the init_tensor() and view_init() APIs
to return a ggml_status.

* misc fixes

---------

Co-authored-by: slaren <slarengh@gmail.com>
2025-02-28 14:41:47 +01:00
Xuan-Son Nguyen
c43a3e7996 llama : add Phi-4-mini support (supersede #12099) (#12108)
Some checks failed
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
Python check requirements.txt / check-requirements (push) Has been cancelled
* Added Phi-4-mini-instruct support

* Update regex per ngxson

* Change the vocab base to Xenova/gpt-4o

* fix conversion update script

* no need to check longrope

* minor style fix

* fix python style

---------

Co-authored-by: Nicholas Sparks <nisparks@microsoft.com>
2025-02-28 12:44:11 +01:00
Alex Brooks
84d5f4bc19 Update granite vision docs for 3.2 model (#12105)
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
2025-02-28 11:31:47 +00:00
Rémy O
438a83926a vulkan: add specific MMV kernels for IQ2 and IQ3 quants + optimizations (#11595)
* vulkan: implement specialized MMV kernels for IQ2 quantizations

* vulkan: add MMV kernels for IQ3 quants

* vulkan: Increase MMV batch size and unroll IQ LUT setup

* vulkan: fix init_iq_shmem for WG sizes larger than tables

* vulkan: common batch size for all I-quants
2025-02-28 09:42:52 +01:00
Johannes Gäßler
9c42b1718c CUDA: fix logic for V100 + GGML_CUDA_FORCE_MMQ (#12098) 2025-02-28 09:26:43 +01:00
Prashant Vithule
05e6f5aad0 ggml: aarch64: implement SVE kernels for q2_k_q8_k vector dot (#12064)
* Added SVE Support for Q2_K Quantized Models

* Use 4-space indentation in the switch cases

* removed comments lines

* Remove the loop Retain the curly bracess for better understanding of code

* Remove the comment like added for q3_k_q8_k kernel

---------

Co-authored-by: vithulep <p.m.vithule1517@gmail.com>
2025-02-28 09:36:12 +02:00
hipudding
673cfef9aa CANN: Fix build error with GCC 13 (#11990)
Remove unused header file that causes compilation failure on ARM
platform with GCC 13.
2025-02-28 15:23:47 +08:00
Eve
fbeda9002d vulkan: matmul dequantization improvements (#12015)
* faster dequant for old quants

* dont use unpack for iq4_nl

* vec2 unpack for q8
2025-02-28 08:20:08 +01:00
Daniele
581650b7ca vulkan: improve im2col (#11826)
* vulkan: improve im2col performance
2025-02-28 07:52:51 +01:00
Vladimir Vuksanovic
b95c8af37c cmake: Fix ggml backend dependencies and installation (#11818)
* Fix dependencies between ggml and backends

ggml backends link only to ggml-base and ggml links to all backends.

* Fix installation of ggml backends

Set up GNUInstallDirs before setting the installation directory of ggml backends
2025-02-27 09:42:48 +02:00
160 changed files with 12242 additions and 3929 deletions

View File

@@ -467,6 +467,7 @@ jobs:
run: |
cmake -B build -S . \
-DCMAKE_HIP_COMPILER="$(hipconfig -l)/clang" \
-DGGML_HIP_ROCWMMA_FATTN=ON \
-DGGML_HIP=ON
cmake --build build --config Release -j $(nproc)
@@ -476,6 +477,7 @@ jobs:
cmake -B build2 -S . \
-DCMAKE_C_COMPILER=hipcc \
-DCMAKE_CXX_COMPILER=hipcc \
-DGGML_HIP_ROCWMMA_FATTN=ON \
-DGGML_HIP=ON
cmake --build build2 --config Release -j $(nproc)
@@ -710,12 +712,11 @@ jobs:
-DLLAMA_BUILD_SERVER=OFF \
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64"
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu)
sudo cmake --install build --config Release
- name: xcodebuild for swift package
id: xcodebuild
run: |
xcodebuild -scheme llama-Package -destination "${{ matrix.destination }}"
./build-xcframework.sh
windows-msys2:
runs-on: windows-latest
@@ -1203,6 +1204,11 @@ jobs:
id: checkout
uses: actions/checkout@v4
- name: Clone rocWMMA repository
id: clone_rocwmma
run: |
git clone https://github.com/rocm/rocwmma --branch rocm-6.2.4 --depth 1
- name: Install
id: depends
run: |
@@ -1232,8 +1238,10 @@ jobs:
cmake -G "Unix Makefiles" -B build -S . `
-DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" `
-DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" `
-DCMAKE_CXX_FLAGS="-I$($PWD.Path.Replace('\', '/'))/rocwmma/library/include/" `
-DCMAKE_BUILD_TYPE=Release `
-DGGML_HIP=ON `
-DGGML_HIP_ROCWMMA_FATTN=ON `
-DGGML_RPC=ON
cmake --build build -j ${env:NUMBER_OF_PROCESSORS}
@@ -1252,6 +1260,11 @@ jobs:
with:
fetch-depth: 0
- name: Clone rocWMMA repository
id: clone_rocwmma
run: |
git clone https://github.com/rocm/rocwmma --branch rocm-6.2.4 --depth 1
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
with:
@@ -1281,8 +1294,10 @@ jobs:
cmake -G "Unix Makefiles" -B build -S . `
-DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" `
-DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" `
-DCMAKE_CXX_FLAGS="-I$($PWD.Path.Replace('\', '/'))/rocwmma/library/include/" `
-DCMAKE_BUILD_TYPE=Release `
-DAMDGPU_TARGETS=${{ matrix.gpu_target }} `
-DGGML_HIP_ROCWMMA_FATTN=ON `
-DGGML_HIP=ON `
-DGGML_RPC=ON
cmake --build build -j ${env:NUMBER_OF_PROCESSORS}
@@ -1321,6 +1336,8 @@ jobs:
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Build
id: cmake_build
@@ -1336,15 +1353,40 @@ jobs:
-DCMAKE_OSX_DEPLOYMENT_TARGET=14.0 \
-DCMAKE_XCODE_ATTRIBUTE_DEVELOPMENT_TEAM=ggml
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu) -- CODE_SIGNING_ALLOWED=NO
sudo cmake --install build --config Release
- name: xcodebuild for swift package
id: xcodebuild
run: |
xcodebuild -scheme llama-Package -destination 'generic/platform=iOS'
./build-xcframework.sh
- name: Build Xcode project
run: xcodebuild -project examples/llama.swiftui/llama.swiftui.xcodeproj -scheme llama.swiftui -sdk iphoneos CODE_SIGNING_REQUIRED=NO CODE_SIGN_IDENTITY= -destination 'generic/platform=iOS' build
run: xcodebuild -project examples/llama.swiftui/llama.swiftui.xcodeproj -scheme llama.swiftui -sdk iphoneos CODE_SIGNING_REQUIRED=NO CODE_SIGN_IDENTITY= -destination 'generic/platform=iOS' FRAMEWORK_FOLDER_PATH=./build-ios build
- name: Determine tag name
id: tag
shell: bash
run: |
BUILD_NUMBER="$(git rev-list --count HEAD)"
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
if [[ "${{ env.BRANCH_NAME }}" == "master" ]]; then
echo "name=b${BUILD_NUMBER}" >> $GITHUB_OUTPUT
else
SAFE_NAME=$(echo "${{ env.BRANCH_NAME }}" | tr '/' '-')
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
fi
- name: Pack artifacts
id: pack_artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
run: |
zip -r llama-${{ steps.tag.outputs.name }}-xcframework.zip build-apple/llama.xcframework
- name: Upload artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-xcframework.zip
name: llama-${{ steps.tag.outputs.name }}-xcframework
android-build:
runs-on: ubuntu-latest

View File

@@ -161,6 +161,8 @@ jobs:
- name: Tests
id: server_integration_tests
if: ${{ matrix.sanitizer == '' }}
env:
GITHUB_ACTIONS: "true"
run: |
cd examples/server/tests
./tests.sh

2
.gitignore vendored
View File

@@ -45,6 +45,8 @@ lcov-report/
tags
.build/
build*
release
debug
!build-info.cmake
!build-info.cpp.in
!build-info.sh

61
AUTHORS
View File

@@ -1,4 +1,4 @@
# date: Tue Feb 4 13:04:05 EET 2025
# date: Sat Mar 8 18:23:52 EET 2025
# this file is auto-generated by scripts/gen-authors.sh
0cc4m <picard12@live.de>
@@ -8,10 +8,12 @@
3ooabkhxtn <31479382+3ooabkhxtn@users.noreply.github.com>
44670 <44670@users.noreply.github.com>
65a <10104049+65a@users.noreply.github.com>
708-145 <40387547+708-145@users.noreply.github.com>
AN Long <aisk@users.noreply.github.com>
AT <manyoso@users.noreply.github.com>
Aarni Koskela <akx@iki.fi>
Aaron Miller <apage43@ninjawhale.com>
Aaron Teo <57927438+taronaeo@users.noreply.github.com>
Aaryaman Vasishta <aaryaman.vasishta@amd.com>
Abheek Gulati <abheekg@hotmail.com>
Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
@@ -20,6 +22,7 @@ Adithya Balaji <adithya.b94@gmail.com>
AdithyanI <adithyan.i4internet@gmail.com>
Adrian <smith.adriane@gmail.com>
Adrian Hesketh <a-h@users.noreply.github.com>
Adrian Kretz <me@akretz.com>
Adrien Gallouët <adrien@gallouet.fr>
Adrien Gallouët <angt@huggingface.co>
Ahmad Tameem <113388789+Tameem-10xE@users.noreply.github.com>
@@ -28,15 +31,18 @@ AidanBeltonS <87009434+AidanBeltonS@users.noreply.github.com>
AidanBeltonS <aidan.belton@codeplay.com>
Aisuko <urakiny@gmail.com>
Akarshan Biswas <akarshan.biswas@gmail.com>
Akarshan Biswas <akarshan@menlo.ai>
Akarshan Biswas <akarshanbiswas@fedoraproject.org>
Al Mochkin <14274697+amochkin@users.noreply.github.com>
Albert Jin <albert.jin@gmail.com>
Alberto <57916483+albbus-stack@users.noreply.github.com>
Alberto Cabrera Pérez <alberto.cabrera@codeplay.com>
Alberto Cabrera Pérez <alberto.cabrera@intel.com>
Aleksei Nikiforov <103434461+AlekseiNikiforovIBM@users.noreply.github.com>
Alex <awhill19@icloud.com>
Alex Azarov <alex@azarov.by>
Alex Azarov <alexander.azarov@mapbox.com>
Alex Brooks <alex.brooks@ibm.com>
Alex Klinkhamer <from.github.com.917@grencez.dev>
Alex Klinkhamer <git@grencez.dev>
Alex Nguyen <tiendung@users.noreply.github.com>
@@ -67,6 +73,7 @@ Andrew Minh Nguyen <40281306+amqdn@users.noreply.github.com>
Andy Salerno <andysalerno@gmail.com>
Andy Tai <andy-tai@users.noreply.github.com>
Anthony Van de Gejuchte <anthonyvdgent@gmail.com>
Antoine Viallon <antoine@lesviallon.fr>
Antonis Makropoulos <benuix@gmail.com>
Arik Poznanski <arikpoz@users.noreply.github.com>
Armen Kaleshian <kriation@users.noreply.github.com>
@@ -83,6 +90,7 @@ Atsushi Tatsuma <yoshoku@outlook.com>
Austin <77757836+teleprint-me@users.noreply.github.com>
AustinMroz <austinmroz@utexas.edu>
BADR <contact@pythops.com>
BB-fat <45072480+BB-fat@users.noreply.github.com>
Bach Le <bach@bullno1.com>
Bailey Chittle <39804642+bachittle@users.noreply.github.com>
BarfingLemurs <128182951+BarfingLemurs@users.noreply.github.com>
@@ -101,6 +109,7 @@ Bert Wagner <github@bertwagner.com>
Billel Mokeddem <billel.mokeddem.ml@gmail.com>
Bingan <70050083+binganao@users.noreply.github.com>
Bjarke Viksøe <164612031+bviksoe@users.noreply.github.com>
Bodhi <3882561+BodhiHu@users.noreply.github.com>
Bodo Graumann <mail@bodograumann.de>
Bono Lv <lvscar@users.noreply.github.com>
Borislav Stanimirov <b.stanimirov@abv.bg>
@@ -128,6 +137,7 @@ CentricStorm <CentricStorm@users.noreply.github.com>
Chad Brewbaker <crb002@gmail.com>
Changyeon Kim <cyzero.kim@samsung.com>
Chao Jiang <jc19chaoj@zoho.com>
Charles Duffy <charles@dyfis.net>
Charles Xu <63788048+chaxu01@users.noreply.github.com>
Charles Xu <charles.xu@arm.com>
Chen Xi <xi2.chen@intel.com>
@@ -139,12 +149,14 @@ Chris Kuehl <ckuehl@ckuehl.me>
Christian Demsar <christian@github.email.demsar.us>
Christian Demsar <crasm@git.vczf.us>
Christian Falch <875252+chrfalch@users.noreply.github.com>
Christian Fillion <cfillion@users.noreply.github.com>
Christian Kastner <ckk@kvr.at>
Christian Kögler <ck3d@gmx.de>
Christian Köhnenkamp <cvk5@me.com>
Christian Zhou-Zheng <59622928+christianazinn@users.noreply.github.com>
Christopher Nielsen <62156882+mascguy@users.noreply.github.com>
Clark Saben <76020733+csaben@users.noreply.github.com>
Clauszy <zhangyub@uniontech.com>
Clint Herron <hanclinto@gmail.com>
Conrad Kramer <conrad@conradkramer.com>
Corentin REGAL <corentin.regal@gmail.com>
@@ -163,6 +175,7 @@ Daniel Hiltgen <dhiltgen@users.noreply.github.com>
Daniel Illescas Romero <illescas.daniel@protonmail.com>
Daniel Kleine <53251018+d-kleine@users.noreply.github.com>
Daniele <57776841+daniandtheweb@users.noreply.github.com>
Danny Milosavljevic <dannym@friendly-machines.com>
DannyDaemonic <DannyDaemonic@gmail.com>
Dat Quoc Nguyen <2412555+datquocnguyen@users.noreply.github.com>
Dave <dave-fl@users.noreply.github.com>
@@ -170,6 +183,7 @@ Dave Airlie <airlied@gmail.com>
Dave Airlie <airlied@redhat.com>
Dave Della Costa <ddellacosta+github@gmail.com>
David Friehs <david@friehs.info>
David Huang <1969802+hjc4869@users.noreply.github.com>
David Kennedy <dakennedyd@gmail.com>
David Pflug <david@pflug.email>
David Renshaw <dwrenshaw@gmail.com>
@@ -236,6 +250,7 @@ Felix <stenbackfelix@gmail.com>
Finn Voorhees <finnvoorhees@gmail.com>
Firat <firatkiral@gmail.com>
FirstTimeEZ <179362031+FirstTimeEZ@users.noreply.github.com>
Florent BENOIT <fbenoit@redhat.com>
Folko-Ven <71110216+Folko-Ven@users.noreply.github.com>
Foul-Tarnished <107711110+Foul-Tarnished@users.noreply.github.com>
Francisco Melo <43780565+francis2tm@users.noreply.github.com>
@@ -254,6 +269,7 @@ Gary Mulder <gjmulder@gmail.com>
Gavin Zhao <gavinzhaojw@protonmail.com>
Genkagaku.GPT <hlhr202@163.com>
Georgi Gerganov <ggerganov@gmail.com>
Gian-Carlo Pascutto <gcp@sjeng.org>
Gilad S <giladgd@users.noreply.github.com>
Gilad S. <7817232+giladgd@users.noreply.github.com>
Giuseppe Scrivano <giuseppe@scrivano.org>
@@ -267,7 +283,9 @@ Guspan Tanadi <36249910+guspan-tanadi@users.noreply.github.com>
Gustavo Rocha Dias <91472747+gustrd@users.noreply.github.com>
Haggai Nuchi <h.nuchi@gmail.com>
Halalaluyafail3 <55773281+Halalaluyafail3@users.noreply.github.com>
Hale Chan <halechan@qq.com>
Hamdoud Hakem <90524568+hamdoudhakem@users.noreply.github.com>
Han Yin <han.yin@arm.com>
HanishKVC <hanishkvc@gmail.com>
Haohui Mai <ricetons@gmail.com>
Haoxiang Fei <tonyfettes@tonyfettes.com>
@@ -278,6 +296,7 @@ Haus1 <haus.xda@gmail.com>
Henk Poley <HenkPoley@gmail.com>
Henri Vasserman <henv@hot.ee>
Henrik Forstén <henrik.forsten@gmail.com>
Henry Linjamäki <henry.linjamaki@gmail.com>
Herman Semenov <GermanAizek@yandex.ru>
Hesen Peng <hesen.peng@gmail.com>
HimariO <dsfhe49854@gmail.com>
@@ -307,6 +326,7 @@ Ivan <nekotekina@gmail.com>
Ivan Filipov <159561759+vanaka11@users.noreply.github.com>
Ivan Komarov <Ivan.Komarov@dfyz.info>
Ivan Stepanov <ivanstepanovftw@gmail.com>
JC <43374599+MrSMlT@users.noreply.github.com>
JFLFY2255 <JFLFY2255@163.com>
JH23X <165871467+JH23X@users.noreply.github.com>
Jack Mousseau <jack@software.inc>
@@ -325,6 +345,7 @@ Jan Ploski <jpl@plosquare.com>
Jannis Schönleber <joennlae@gmail.com>
Jared Van Bortel <cebtenzzre@gmail.com>
Jared Van Bortel <jared@nomic.ai>
Jason C.H <ctrysbita@outlook.com>
Jason McCartney <jmac@theroot.org>
Jason Stillerman <jason.t.stillerman@gmail.com>
Jean-Christophe Hoelt <hoelt@fovea.cc>
@@ -342,6 +363,7 @@ Jiahao Li <liplus17@163.com>
Jian Liao <jianliao@users.noreply.github.com>
JidongZhang-THU <1119708529@qq.com>
Jinwoo Jeong <33892306+williamjeong2@users.noreply.github.com>
Jinyang He <hejinyang@loongson.cn>
Jiří Podivín <66251151+jpodivin@users.noreply.github.com>
Jiří Sejkora <Sejseloid@gmail.com>
Joan Fontanals <jfontanalsmartinez@gmail.com>
@@ -379,6 +401,7 @@ Justine Tunney <jtunney@mozilla.com>
Juuso Alasuutari <juuso.alasuutari@gmail.com>
KASR <karim.asrih@gmail.com>
Kamil Tomšík <info@tomsik.cz>
Kante Yin <kerthcet@gmail.com>
Karol Kontny <82021046+kkontny@users.noreply.github.com>
Karsten Weiss <knweiss@gmail.com>
Karthick <j.karthic2004@gmail.com>
@@ -419,6 +442,7 @@ LoganDark <github@logandark.mozmail.com>
Loïc Carrère <loic.carrere@gmail.com>
LostRuins <39025047+LostRuins@users.noreply.github.com>
LostRuins Concedo <39025047+LostRuins@users.noreply.github.com>
Lucas Moura Belo <lucas.belo@live.com>
Luciano <lucianostrika44@gmail.com>
Luo Tian <lt@basecity.com>
Lyle Dean <dean@lyle.dev>
@@ -463,6 +487,7 @@ Matthew Tejo <matthew.tejo@gmail.com>
Matvey Soloviev <blackhole89@gmail.com>
Max Krasnyansky <max.krasnyansky@gmail.com>
Max Krasnyansky <quic_maxk@quicinc.com>
Maxim Evtush <154841002+maximevtush@users.noreply.github.com>
Maxime <672982+maximegmd@users.noreply.github.com>
Maximilian Winter <maximilian.winter.91@gmail.com>
Meng Zhang <meng@tabbyml.com>
@@ -494,6 +519,7 @@ Miwa / Ensan <63481257+ensan-hcl@users.noreply.github.com>
Mohammadreza Hendiani <hendiani.mohammadreza@gmail.com>
Mohammadreza Hendiani <mohammad.r.hendiani@gmail.com>
Molly Sophia <mollysophia379@gmail.com>
MoonRide303 <130458190+MoonRide303@users.noreply.github.com>
MorganRO8 <47795945+MorganRO8@users.noreply.github.com>
Murilo Santana <mvrilo@gmail.com>
Musab Gultekin <musabgultekin@users.noreply.github.com>
@@ -524,6 +550,7 @@ Nikolas <127742645+nneubacher@users.noreply.github.com>
Nindaleth <Nindaleth@users.noreply.github.com>
Nuno <rare-magma@posteo.eu>
OSecret <135510162+OLSecret@users.noreply.github.com>
Oleksandr Kuvshynov <661042+okuvshynov@users.noreply.github.com>
Oleksandr Nikitin <oleksandr@tvori.info>
Oleksii Maryshchenko <oleksii.maryshchenko@gmail.com>
Olivier Chafik <ochafik@users.noreply.github.com>
@@ -533,6 +560,7 @@ PAB <pierreantoine.bannier@gmail.com>
Pablo Duboue <pablo.duboue@gmail.com>
Pascal Patry <ppatry@mtacitlabs.com>
Patrice Ferlet <metal3d@gmail.com>
Patrick Peng <retr0@retr0.blog>
Paul Tsochantaris <ptsochantaris@icloud.com>
Pavel Zloi <github.com@drteam.rocks>
Pavol Rusnak <pavol@rusnak.io>
@@ -549,6 +577,7 @@ Pieter Ouwerkerk <pieter.ouwerkerk@gmail.com>
Plamen Minev <pacominev@gmail.com>
Prashant Vithule <119530321+Vithulep@users.noreply.github.com>
Przemysław Pawełczyk <przemoc@gmail.com>
PureJourney <edward.pong@qq.com>
Qin Yue Chen <71813199+chenqiny@users.noreply.github.com>
Qingyou Meng <meng.qingyou@gmail.com>
Qu Zongfu <43257352+yancaoweidaode@users.noreply.github.com>
@@ -564,14 +593,17 @@ Rand Xie <randxiexyy29@gmail.com>
Randall Fitzgerald <randall@dasaku.net>
Random Fly <renfei8@live.cn>
Reinforce-II <fate@eastal.com>
Rémy O <remyoudompheng@gmail.com>
Rémy Oudompheng <oudomphe@phare.normalesup.org>
Ren Xuancheng <jklj077@users.noreply.github.com>
Rene Leonhardt <65483435+reneleonhardt@users.noreply.github.com>
Reza Kakhki <rezakakhki.de@gmail.com>
Reza Rahemtola <49811529+RezaRahemtola@users.noreply.github.com>
RhinoDevel <RhinoDevel@users.noreply.github.com>
Riccardo Orlando <Riccorl@users.noreply.github.com>
Riceball LEE <snowyu.lee@gmail.com>
Rich Dougherty <rich@rd.nz>
Richard <r-burton@hotmail.co.uk>
Richard Kiss <him@richardkiss.com>
Richard Roberson <richardr1126@gmail.com>
Rick G <26732651+TheFlipbook@users.noreply.github.com>
@@ -588,6 +620,7 @@ Robert Sung-wook Shin <edp1096@users.noreply.github.com>
Robey Holderith <robey@flaminglunchbox.net>
Robyn <robyngraf@users.noreply.github.com>
Roger Meier <r.meier@siemens.com>
Rohanjames1997 <rohan.james4@gmail.com>
Roland <14355895+rbur0425@users.noreply.github.com>
Romain Biessy <romain.biessy@codeplay.com>
Romain D <90720+Artefact2@users.noreply.github.com>
@@ -610,6 +643,7 @@ Ryan Landay <rlanday@gmail.com>
Ryder Wishart <ryderwishart@gmail.com>
Ryuei <louixs@users.noreply.github.com>
Rőczey Barnabás <31726601+An0nie@users.noreply.github.com>
SAMI <samuel.koesnadi@stud.uni-due.de>
SRHMorris <69468379+SRHMorris@users.noreply.github.com>
SXX <sxx1136965276@gmail.com>
SakuraUmi <yukinon244@gmail.com>
@@ -634,6 +668,8 @@ Shane A <shanea@allenai.org>
Shangning Xu <32517059+xushangning@users.noreply.github.com>
Shankar <gshankar.87@gmail.com>
Shanshan Shen <467638484@qq.com>
Shelby Jenkins <47464908+ShelbyJenkins@users.noreply.github.com>
Sheldon Robinson <sheldon.robinson@live.com>
Shijie <821898965@qq.com>
Shintarou Okada <kokuzen@gmail.com>
Shouzheng Liu <61452103+lshzh-ww@users.noreply.github.com>
@@ -713,18 +749,24 @@ Victor Nogueira <felladrin@gmail.com>
Victor Z. Peng <ziliangdotme@gmail.com>
Viet-Anh NGUYEN (Andrew) <vietanh.dev@gmail.com>
Vinesh Janarthanan <36610342+VJHack@users.noreply.github.com>
Vitali Lovich <vlovich+github@gmail.com>
Vivian <vynride@gmail.com>
Vlad <spitfireage@gmail.com>
Vladimir <bogdad@gmail.com>
Vladimir Malyutin <first-leon@yandex.ru>
Vladimir Vuksanovic <109677816+vvuksanovic@users.noreply.github.com>
Vladimir Zorin <vladimir@deviant.guru>
VoidIsVoid <343750470@qq.com>
Volodymyr Vitvitskyi <72226+signalpillar@users.noreply.github.com>
Wagner Bruna <wbruna@users.noreply.github.com>
Wang Qin <37098874+wangqin0@users.noreply.github.com>
Wang Ran (汪然) <wangr@smail.nju.edu.cn>
WangHaoranRobin <56047610+WangHaoranRobin@users.noreply.github.com>
Weird Constructor <weirdconstructor@gmail.com>
Weizhao Ouyang <o451686892@gmail.com>
Welby Seely <welbyseely@gmail.com>
Wentai Zhang <rchardx@gmail.com>
Wilken Gottwalt <12194808+wgottwalt@users.noreply.github.com>
WillCorticesAI <150854901+WillCorticesAI@users.noreply.github.com>
William Tambellini <william.tambellini@gmail.com>
William Tambellini <wtambellini@sdl.com>
@@ -816,6 +858,8 @@ chaihahaha <chai836275709@gmail.com>
chiranko <96988916+chiranko@users.noreply.github.com>
clibdev <52199778+clibdev@users.noreply.github.com>
clyang <clyang@clyang.net>
cmdr2 <secondary.cmdr2@gmail.com>
cmdr2 <shashank.shekhar.global@gmail.com>
cocktailpeanut <121128867+cocktailpeanut@users.noreply.github.com>
codezjx <code.zjx@gmail.com>
coezbek <c.oezbek@gmail.com>
@@ -835,6 +879,7 @@ deepdiffuser <112834445+deepdiffuser@users.noreply.github.com>
devojony <61173062+devojony@users.noreply.github.com>
ditsuke <ditsuke@protonmail.com>
divinity76 <divinity76@gmail.com>
dm4 <dm4@secondstate.io>
dm4 <sunrisedm4@gmail.com>
dotpy314 <33351922+dotpy314@users.noreply.github.com>
drbh <david.richard.holtz@gmail.com>
@@ -849,6 +894,7 @@ fairydreaming <166155368+fairydreaming@users.noreply.github.com>
fengerhu1 <2748250768@qq.com>
fj-y-saito <85871716+fj-y-saito@users.noreply.github.com>
fraxy-v <65565042+fraxy-v@users.noreply.github.com>
fxzjshm <11426482+fxzjshm@users.noreply.github.com>
github-actions[bot] <github-actions[bot]@users.noreply.github.com>
gliptic <gliptic@users.noreply.github.com>
gn64 <yukikaze.jp@gmail.com>
@@ -873,6 +919,7 @@ hydai <z54981220@gmail.com>
iSma <ismail.senhaji@gmail.com>
iacore <74560659+iacore@users.noreply.github.com>
icppWorld <124377669+icppWorld@users.noreply.github.com>
igardev <49397134+igardev@users.noreply.github.com>
igarnier <igarnier@protonmail.com>
intelmatt <61025942+intelmatt@users.noreply.github.com>
iohub <rickyang.pro@gmail.com>
@@ -880,6 +927,7 @@ issixx <46835150+issixx@users.noreply.github.com>
jacobi petrucciani <8117202+jpetrucciani@users.noreply.github.com>
jaime-m-p <167997752+jaime-m-p@users.noreply.github.com>
jameswu2014 <545426914@qq.com>
jason_w <jason.wang@126.com>
jdomke <28772296+jdomke@users.noreply.github.com>
jiahao su <damow890@gmail.com>
jiez <373447296@qq.com>
@@ -891,6 +939,7 @@ jon-chuang <9093549+jon-chuang@users.noreply.github.com>
jp-x-g <jpxg-dev@protonmail.com>
jukofyork <69222624+jukofyork@users.noreply.github.com>
junchao-loongson <68935141+junchao-loongson@users.noreply.github.com>
junchao-zhao <68935141+junchao-loongson@users.noreply.github.com>
jwj7140 <32943891+jwj7140@users.noreply.github.com>
k.h.lai <adrian.k.h.lai@outlook.com>
kaizau <kaizau@users.noreply.github.com>
@@ -925,6 +974,7 @@ ltoniazzi <61414566+ltoniazzi@users.noreply.github.com>
luoyu-intel <yu.luo@intel.com>
m3ndax <adrian.goessl@outlook.com>
maddes8cht <55592906+maddes8cht@users.noreply.github.com>
magicse <magicse@users.noreply.github.com>
mahorozte <41834471+mahorozte@users.noreply.github.com>
makomk <makosoft@googlemail.com>
manikbhandari <mbbhandarimanik2@gmail.com>
@@ -935,6 +985,7 @@ matt23654 <matthew.webber@protonmail.com>
matteo <matteogeniaccio@yahoo.it>
mdrokz <mohammadmunshi@gmail.com>
mgroeber9110 <45620825+mgroeber9110@users.noreply.github.com>
midnight <midnightmagic@users.noreply.github.com>
minarchist <minarchist@users.noreply.github.com>
mj-shifu <77107165+mj-shifu@users.noreply.github.com>
mmyjona <jonathan.gonse@gmail.com>
@@ -958,10 +1009,12 @@ omahs <73983677+omahs@users.noreply.github.com>
oobabooga <112222186+oobabooga@users.noreply.github.com>
opparco <parco.opaai@gmail.com>
ostix360 <55257054+ostix360@users.noreply.github.com>
pascal-lc <49066376+pascal-lc@users.noreply.github.com>
pculliton <phillipculliton@gmail.com>
peidaqi <peidaqi@gmail.com>
pengxin99 <pengxin.yuan@intel.com>
perserk <perserk@gmail.com>
petterreinholdtsen <pere-github@hungry.com>
piDack <104877312+piDack@users.noreply.github.com>
pmysl <piotr.myslinski@outlook.com>
postmasters <namnguyen@google.com>
@@ -983,6 +1036,7 @@ semidark <me@semidark.net>
serhii-nakon <57632032+serhii-nakon@users.noreply.github.com>
sharpHL <132747147+sharpHL@users.noreply.github.com>
shibe2 <shibe@tuta.io>
simon886212 <37953122+simon886212@users.noreply.github.com>
singularity <12184989+singularity-s0@users.noreply.github.com>
sjinzh <sjinzh@gmail.com>
sjxx <63994076+ylsdamxssjxxdd@users.noreply.github.com>
@@ -1000,10 +1054,12 @@ tarcey <cey.tarik@gmail.com>
tc-mb <157115220+tc-mb@users.noreply.github.com>
texmex76 <40733439+texmex76@users.noreply.github.com>
thement <40525767+thement@users.noreply.github.com>
theraininsky <76763719+theraininsky@users.noreply.github.com>
thewh1teagle <61390950+thewh1teagle@users.noreply.github.com>
tjohnman <tjohnman@users.noreply.github.com>
toyer <2042519524@qq.com>
tslmy <tslmy@users.noreply.github.com>
tv1wnd <55383215+tv1wnd@users.noreply.github.com>
ubik2 <ubik2@users.noreply.github.com>
uint256_t <konndennsa@gmail.com>
uint256_t <maekawatoshiki1017@gmail.com>
@@ -1014,6 +1070,7 @@ valiray <133289098+valiray@users.noreply.github.com>
vb <vaibhavs10@gmail.com>
vik <vikhyatk@gmail.com>
viric <viric@viric.name>
vmobilis <75476228+vmobilis@users.noreply.github.com>
vodkaslime <646329483@qq.com>
vvhg1 <94630311+vvhg1@users.noreply.github.com>
vxiiduu <73044267+vxiiduu@users.noreply.github.com>
@@ -1028,6 +1085,8 @@ wzy <32936898+Freed-Wu@users.noreply.github.com>
xaedes <xaedes@gmail.com>
xaedes <xaedes@googlemail.com>
xctan <axunlei@gmail.com>
xiaobing318 <71554036+xiaobing318@users.noreply.github.com>
xiaofei <hbuxiaofei@gmail.com>
xloem <0xloem@gmail.com>
yangli2 <yangli2@gmail.com>
ymcki <84055651+ymcki@users.noreply.github.com>

View File

@@ -39,7 +39,7 @@
_(NOTE: this guideline is yet to be applied to the `llama.cpp` codebase. New code should follow this guideline.)_
- Try to follow the existing patterns in the code (indentation, spaces, etc.). In case of doubt use `clang-format` to format the added code
- Try to follow the existing patterns in the code (indentation, spaces, etc.). In case of doubt use `clang-format` (from clang-tools v15+) to format the added code
- For anything not covered in the current guidelines, refer to the [C++ Core Guidelines](https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines)
- Tensors store data in row-major order. We refer to dimension 0 as columns, 1 as rows, 2 as matrices
- Matrix multiplication is unconventional: [`C = ggml_mul_mat(ctx, A, B)`](https://github.com/ggml-org/llama.cpp/blob/880e352277fc017df4d5794f0c21c44e1eae2b84/ggml.h#L1058-L1064) means $C^T = A B^T \Leftrightarrow C = B A^T.$

View File

@@ -836,7 +836,7 @@ ifdef GGML_MUSA
else
MUSA_PATH ?= /opt/musa
endif
MUSA_ARCHITECTURES ?= 21;22
MUSA_ARCHITECTURES ?= 21;22;31
MK_CPPFLAGS += -DGGML_USE_MUSA -DGGML_USE_CUDA
MK_LDFLAGS += -L$(MUSA_PATH)/lib -Wl,-rpath=$(MUSA_PATH)/lib

View File

@@ -1,19 +0,0 @@
// swift-tools-version:5.5
import PackageDescription
let package = Package(
name: "llama",
platforms: [
.macOS(.v12),
.iOS(.v14),
.watchOS(.v4),
.tvOS(.v14)
],
products: [
.library(name: "llama", targets: ["llama"]),
],
targets: [
.systemLibrary(name: "llama", pkgConfig: "llama"),
]
)

View File

@@ -5,7 +5,7 @@
[![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT)
[![Server](https://github.com/ggml-org/llama.cpp/actions/workflows/server.yml/badge.svg)](https://github.com/ggml-org/llama.cpp/actions/workflows/server.yml)
[Roadmap](https://github.com/users/ggml-org/projects/7) / [Project status](https://github.com/ggml-org/llama.cpp/discussions/3471) / [Manifesto](https://github.com/ggml-org/llama.cpp/discussions/205) / [ggml](https://github.com/ggml-org/ggml)
[Roadmap](https://github.com/users/ggerganov/projects/7) / [Project status](https://github.com/ggml-org/llama.cpp/discussions/3471) / [Manifesto](https://github.com/ggml-org/llama.cpp/discussions/205) / [ggml](https://github.com/ggml-org/ggml)
Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others) in pure C/C++
@@ -25,7 +25,7 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
- **How to use [MTLResidencySet](https://developer.apple.com/documentation/metal/mtlresidencyset?language=objc) to keep the GPU memory active?** https://github.com/ggml-org/llama.cpp/pull/11427
- **VS Code extension for FIM completions:** https://github.com/ggml-org/llama.vscode
- Universal tool call support in `llama-server`: https://github.com/ggml-org/llama.cpp/pull/9639
- Universal [tool call support](./docs/function-calling.md) in `llama-server` https://github.com/ggml-org/llama.cpp/pull/9639
- Vim/Neovim plugin for FIM completions: https://github.com/ggml-org/llama.vim
- Introducing GGUF-my-LoRA https://github.com/ggml-org/llama.cpp/discussions/10123
- Hugging Face Inference Endpoints now support GGUF out of the box! https://github.com/ggml-org/llama.cpp/discussions/9669
@@ -157,6 +157,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- Guile Scheme: [guile_llama_cpp](https://savannah.nongnu.org/projects/guile-llama-cpp)
- Swift [srgtuszy/llama-cpp-swift](https://github.com/srgtuszy/llama-cpp-swift)
- Swift [ShenghaiWang/SwiftLlama](https://github.com/ShenghaiWang/SwiftLlama)
- Delphi [Embarcadero/llama-cpp-delphi](https://github.com/Embarcadero/llama-cpp-delphi)
</details>
@@ -171,6 +172,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- [eva](https://github.com/ylsdamxssjxxdd/eva) (MIT)
- [iohub/collama](https://github.com/iohub/coLLaMA) (Apache-2.0)
- [janhq/jan](https://github.com/janhq/jan) (AGPL)
- [johnbean393/Sidekick](https://github.com/johnbean393/Sidekick) (MIT)
- [KanTV](https://github.com/zhouwg/kantv?tab=readme-ov-file) (Apache-2.0)
- [KodiBot](https://github.com/firatkiral/kodibot) (GPL)
- [llama.vim](https://github.com/ggml-org/llama.vim) (MIT)

View File

@@ -1,4 +0,0 @@
#pragma once
#include <llama.h>

View File

@@ -1,5 +0,0 @@
module llama [system] {
header "llama.h"
link "llama"
export *
}

519
build-xcframework.sh Executable file
View File

@@ -0,0 +1,519 @@
#!/bin/bash
#
# Options
IOS_MIN_OS_VERSION=16.4
MACOS_MIN_OS_VERSION=13.3
VISIONOS_MIN_OS_VERSION=1.0
TVOS_MIN_OS_VERSION=16.4
BUILD_SHARED_LIBS=OFF
LLAMA_BUILD_EXAMPLES=OFF
LLAMA_BUILD_TESTS=OFF
LLAMA_BUILD_SERVER=OFF
GGML_METAL=ON
GGML_METAL_EMBED_LIBRARY=ON
GGML_BLAS_DEFAULT=ON
GGML_METAL_USE_BF16=ON
GGML_OPENMP=OFF
COMMON_C_FLAGS="-Wno-macro-redefined -Wno-shorten-64-to-32 -Wno-unused-command-line-argument -g"
COMMON_CXX_FLAGS="-Wno-macro-redefined -Wno-shorten-64-to-32 -Wno-unused-command-line-argument -g"
# Common options for all builds
COMMON_CMAKE_ARGS=(
-DCMAKE_XCODE_ATTRIBUTE_CODE_SIGNING_REQUIRED=NO
-DCMAKE_XCODE_ATTRIBUTE_CODE_SIGN_IDENTITY=""
-DCMAKE_XCODE_ATTRIBUTE_CODE_SIGNING_ALLOWED=NO
-DCMAKE_XCODE_ATTRIBUTE_DEBUG_INFORMATION_FORMAT="dwarf-with-dsym"
-DCMAKE_XCODE_ATTRIBUTE_GCC_GENERATE_DEBUGGING_SYMBOLS=YES
-DCMAKE_XCODE_ATTRIBUTE_COPY_PHASE_STRIP=NO
-DCMAKE_XCODE_ATTRIBUTE_STRIP_INSTALLED_PRODUCT=NO
-DCMAKE_XCODE_ATTRIBUTE_DEVELOPMENT_TEAM=ggml
-DBUILD_SHARED_LIBS=${BUILD_SHARED_LIBS}
-DLLAMA_BUILD_EXAMPLES=${LLAMA_BUILD_EXAMPLES}
-DLLAMA_BUILD_TESTS=${LLAMA_BUILD_TESTS}
-DLLAMA_BUILD_SERVER=${LLAMA_BUILD_SERVER}
-DGGML_METAL_EMBED_LIBRARY=${GGML_METAL_EMBED_LIBRARY}
-DGGML_BLAS_DEFAULT=${GGML_BLAS_DEFAULT}
-DGGML_METAL=${GGML_METAL}
-DGGML_METAL_USE_BF16=${GGML_METAL_USE_BF16}
-DGGML_NATIVE=OFF
-DGGML_OPENMP=${GGML_OPENMP}
)
check_required_tool() {
local tool=$1
local install_message=$2
if ! command -v $tool &> /dev/null; then
echo "Error: $tool is required but not found."
echo "$install_message"
exit 1
fi
}
echo "Checking for required tools..."
check_required_tool "cmake" "Please install CMake 3.28.0 or later (brew install cmake)"
check_required_tool "xcodebuild" "Please install Xcode and Xcode Command Line Tools (xcode-select --install)"
check_required_tool "libtool" "Please install libtool which should be available with Xcode Command Line Tools (CLT). Make sure Xcode CLT is installed (xcode-select --install)"
check_required_tool "dsymutil" "Please install Xcode and Xcode Command Line Tools (xcode-select --install)"
set -e
## Clean up previous builds
rm -rf build-apple
rm -rf build-ios-sim
rm -rf build-ios-device
rm -rf build-macos
rm -rf build-visionos
rm -rf build-visionos-sim
rm -rf build-tvos-sim
rm -rf build-tvos-device
# Setup the xcframework build directory structure
setup_framework_structure() {
local build_dir=$1
local min_os_version=$2
local platform=$3 # "ios", "macos", "visionos", or "tvos"
local framework_name="llama"
echo "Creating ${platform}-style framework structure for ${build_dir}"
if [[ "$platform" == "macos" ]]; then
# macOS versioned structure uses versioned directories
mkdir -p ${build_dir}/framework/${framework_name}.framework/Versions/A/Headers
mkdir -p ${build_dir}/framework/${framework_name}.framework/Versions/A/Modules
mkdir -p ${build_dir}/framework/${framework_name}.framework/Versions/A/Resources
# Create symbolic links
ln -sf A ${build_dir}/framework/${framework_name}.framework/Versions/Current
ln -sf Versions/Current/Headers ${build_dir}/framework/${framework_name}.framework/Headers
ln -sf Versions/Current/Modules ${build_dir}/framework/${framework_name}.framework/Modules
ln -sf Versions/Current/Resources ${build_dir}/framework/${framework_name}.framework/Resources
ln -sf Versions/Current/${framework_name} ${build_dir}/framework/${framework_name}.framework/${framework_name}
# Set header and module paths
local header_path=${build_dir}/framework/${framework_name}.framework/Versions/A/Headers/
local module_path=${build_dir}/framework/${framework_name}.framework/Versions/A/Modules/
else
# iOS/VisionOS/tvOS use a flat structure
mkdir -p ${build_dir}/framework/${framework_name}.framework/Headers
mkdir -p ${build_dir}/framework/${framework_name}.framework/Modules
# Remove any existing structure to ensure clean build
rm -rf ${build_dir}/framework/${framework_name}.framework/Versions
# Set header and module paths
local header_path=${build_dir}/framework/${framework_name}.framework/Headers/
local module_path=${build_dir}/framework/${framework_name}.framework/Modules/
fi
# Copy all required headers (common for all platforms)
cp include/llama.h ${header_path}
cp ggml/include/ggml.h ${header_path}
cp ggml/include/ggml-alloc.h ${header_path}
cp ggml/include/ggml-backend.h ${header_path}
cp ggml/include/ggml-metal.h ${header_path}
cp ggml/include/ggml-cpu.h ${header_path}
cp ggml/include/ggml-blas.h ${header_path}
cp ggml/include/gguf.h ${header_path}
# Create module map (common for all platforms)
cat > ${module_path}module.modulemap << EOF
framework module llama {
header "llama.h"
header "ggml.h"
header "ggml-alloc.h"
header "ggml-backend.h"
header "ggml-metal.h"
header "ggml-cpu.h"
header "ggml-blas.h"
header "gguf.h"
link "c++"
link framework "Accelerate"
link framework "Metal"
link framework "Foundation"
export *
}
EOF
# Platform-specific settings for Info.plist
local platform_name=""
local sdk_name=""
local supported_platform=""
case "$platform" in
"ios")
platform_name="iphoneos"
sdk_name="iphoneos${min_os_version}"
supported_platform="iPhoneOS"
local plist_path="${build_dir}/framework/${framework_name}.framework/Info.plist"
local device_family=' <key>UIDeviceFamily</key>
<array>
<integer>1</integer>
<integer>2</integer>
</array>'
;;
"macos")
platform_name="macosx"
sdk_name="macosx${min_os_version}"
supported_platform="MacOSX"
local plist_path="${build_dir}/framework/${framework_name}.framework/Versions/A/Resources/Info.plist"
local device_family=""
;;
"visionos")
platform_name="xros"
sdk_name="xros${min_os_version}"
supported_platform="XRPlatform"
local plist_path="${build_dir}/framework/${framework_name}.framework/Info.plist"
local device_family=""
;;
"tvos")
platform_name="appletvos"
sdk_name="appletvos${min_os_version}"
supported_platform="AppleTVOS"
local plist_path="${build_dir}/framework/${framework_name}.framework/Info.plist"
local device_family=' <key>UIDeviceFamily</key>
<array>
<integer>3</integer>
</array>'
;;
esac
# Create Info.plist
cat > ${plist_path} << EOF
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>CFBundleDevelopmentRegion</key>
<string>en</string>
<key>CFBundleExecutable</key>
<string>llama</string>
<key>CFBundleIdentifier</key>
<string>org.ggml.llama</string>
<key>CFBundleInfoDictionaryVersion</key>
<string>6.0</string>
<key>CFBundleName</key>
<string>llama</string>
<key>CFBundlePackageType</key>
<string>FMWK</string>
<key>CFBundleShortVersionString</key>
<string>1.0</string>
<key>CFBundleVersion</key>
<string>1</string>
<key>MinimumOSVersion</key>
<string>${min_os_version}</string>
<key>CFBundleSupportedPlatforms</key>
<array>
<string>${supported_platform}</string>
</array>${device_family}
<key>DTPlatformName</key>
<string>${platform_name}</string>
<key>DTSDKName</key>
<string>${sdk_name}</string>
</dict>
</plist>
EOF
}
# Create dynamic libraries from static libraries.
combine_static_libraries() {
local build_dir="$1"
local release_dir="$2"
local platform="$3" # "ios", "macos", "visionos", or "tvos"
local is_simulator="$4"
local base_dir="$(pwd)"
local framework_name="llama"
# Determine output path based on platform
local output_lib=""
if [[ "$platform" == "macos" ]]; then
# macOS uses versioned structure
output_lib="${build_dir}/framework/${framework_name}.framework/Versions/A/${framework_name}"
else
# iOS, visionOS, and tvOS use a directory flat structure
output_lib="${build_dir}/framework/${framework_name}.framework/${framework_name}"
fi
local libs=(
"${base_dir}/${build_dir}/src/${release_dir}/libllama.a"
"${base_dir}/${build_dir}/ggml/src/${release_dir}/libggml.a"
"${base_dir}/${build_dir}/ggml/src/${release_dir}/libggml-base.a"
"${base_dir}/${build_dir}/ggml/src/${release_dir}/libggml-cpu.a"
"${base_dir}/${build_dir}/ggml/src/ggml-metal/${release_dir}/libggml-metal.a"
"${base_dir}/${build_dir}/ggml/src/ggml-blas/${release_dir}/libggml-blas.a"
)
# Create temporary directory for processing
local temp_dir="${base_dir}/${build_dir}/temp"
mkdir -p "${temp_dir}"
# Since we have multiple architectures libtool will find object files that do not
# match the target architecture. We suppress these warnings.
libtool -static -o "${temp_dir}/combined.a" "${libs[@]}" 2> /dev/null
# Determine SDK, architectures, and install_name based on platform and simulator flag.
local sdk=""
local archs=""
local min_version_flag=""
local install_name=""
case "$platform" in
"ios")
if [[ "$is_simulator" == "true" ]]; then
sdk="iphonesimulator"
archs="arm64 x86_64"
min_version_flag="-mios-simulator-version-min=${IOS_MIN_OS_VERSION}"
else
sdk="iphoneos"
archs="arm64"
min_version_flag="-mios-version-min=${IOS_MIN_OS_VERSION}"
fi
install_name="@rpath/llama.framework/llama"
;;
"macos")
sdk="macosx"
archs="arm64 x86_64"
min_version_flag="-mmacosx-version-min=${MACOS_MIN_OS_VERSION}"
install_name="@rpath/llama.framework/Versions/Current/llama"
;;
"visionos")
if [[ "$is_simulator" == "true" ]]; then
sdk="xrsimulator"
archs="arm64 x86_64"
min_version_flag="-mtargetos=xros${VISIONOS_MIN_OS_VERSION}-simulator"
else
sdk="xros"
archs="arm64"
min_version_flag="-mtargetos=xros${VISIONOS_MIN_OS_VERSION}"
fi
# Use flat structure for visionOS, same as iOS
install_name="@rpath/llama.framework/llama"
;;
"tvos")
if [[ "$is_simulator" == "true" ]]; then
sdk="appletvsimulator"
archs="arm64 x86_64"
min_version_flag="-mtvos-simulator-version-min=${TVOS_MIN_OS_VERSION}"
else
sdk="appletvos"
archs="arm64"
min_version_flag="-mtvos-version-min=${TVOS_MIN_OS_VERSION}"
fi
install_name="@rpath/llama.framework/llama"
;;
esac
# Build architecture flags
local arch_flags=""
for arch in $archs; do
arch_flags+=" -arch $arch"
done
# Create dynamic library
echo "Creating dynamic library for ${platform}."
xcrun -sdk $sdk clang++ -dynamiclib \
-isysroot $(xcrun --sdk $sdk --show-sdk-path) \
$arch_flags \
$min_version_flag \
-Wl,-force_load,"${temp_dir}/combined.a" \
-framework Foundation -framework Metal -framework Accelerate \
-install_name "$install_name" \
-o "${base_dir}/${output_lib}"
# Platform-specific post-processing for device builds
if [[ "$is_simulator" == "false" ]]; then
if command -v vtool &>/dev/null; then
case "$platform" in
"ios")
echo "Marking binary as a framework binary for iOS..."
vtool -set-build-version ios ${IOS_MIN_OS_VERSION} ${IOS_MIN_OS_VERSION} -replace \
-output "${base_dir}/${output_lib}" "${base_dir}/${output_lib}"
;;
"visionos")
echo "Marking binary as a framework binary for visionOS..."
vtool -set-build-version xros ${VISIONOS_MIN_OS_VERSION} ${VISIONOS_MIN_OS_VERSION} -replace \
-output "${base_dir}/${output_lib}" "${base_dir}/${output_lib}"
;;
"tvos")
echo "Marking binary as a framework binary for tvOS..."
vtool -set-build-version tvos ${TVOS_MIN_OS_VERSION} ${TVOS_MIN_OS_VERSION} -replace \
-output "${base_dir}/${output_lib}" "${base_dir}/${output_lib}"
;;
esac
else
echo "Warning: vtool not found. Binary may not pass App Store validation."
fi
fi
echo "Creating properly formatted dSYM..."
# Create a separate directory for dSYMs for all platforms
mkdir -p "${base_dir}/${build_dir}/dSYMs"
# iOS and visionOS style dSYM (flat structure)
if [[ "$platform" == "ios" || "$platform" == "visionos" || "$platform" == "tvos" ]]; then
# Generate dSYM in the dSYMs directory
xcrun dsymutil "${base_dir}/${output_lib}" -o "${base_dir}/${build_dir}/dSYMs/llama.dSYM"
# Create a copy of the binary that will be stripped
cp "${base_dir}/${output_lib}" "${temp_dir}/binary_to_strip"
# Strip debug symbols from the copy
xcrun strip -S "${temp_dir}/binary_to_strip" -o "${temp_dir}/stripped_lib"
# Replace the original with the stripped version
mv "${temp_dir}/stripped_lib" "${base_dir}/${output_lib}"
else
# macOS style dSYM
# First strip debug info to a separate file
xcrun strip -S "${base_dir}/${output_lib}" -o "${temp_dir}/stripped_lib"
# Generate dSYM in the dSYMs directory
xcrun dsymutil "${base_dir}/${output_lib}" -o "${base_dir}/${build_dir}/dSYMs/llama.dSYM"
# Replace original binary with stripped version
mv "${temp_dir}/stripped_lib" "${base_dir}/${output_lib}"
fi
# Remove any automatically generated dSYM files in the framework structure as they will
# otherwise case Invalid Bundle Structure validation errors.
if [ -d "${base_dir}/${output_lib}.dSYM" ]; then
echo "Removing generated dSYM file in framework structure: ${base_dir}/${output_lib}.dSYM"
rm -rf "${base_dir}/${output_lib}.dSYM"
fi
# Clean up
rm -rf "${temp_dir}"
}
echo "Building for iOS simulator..."
cmake -B build-ios-sim -G Xcode \
"${COMMON_CMAKE_ARGS[@]}" \
-DCMAKE_OSX_DEPLOYMENT_TARGET=${IOS_MIN_OS_VERSION} \
-DIOS=ON \
-DCMAKE_SYSTEM_NAME=iOS \
-DCMAKE_OSX_SYSROOT=iphonesimulator \
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64" \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=iphonesimulator \
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
-S .
cmake --build build-ios-sim --config Release -- -quiet
echo "Building for iOS devices..."
cmake -B build-ios-device -G Xcode \
"${COMMON_CMAKE_ARGS[@]}" \
-DCMAKE_OSX_DEPLOYMENT_TARGET=${IOS_MIN_OS_VERSION} \
-DCMAKE_OSX_SYSROOT=iphoneos \
-DCMAKE_OSX_ARCHITECTURES="arm64" \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=iphoneos \
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
-S .
cmake --build build-ios-device --config Release -- -quiet
echo "Building for macOS..."
cmake -B build-macos -G Xcode \
"${COMMON_CMAKE_ARGS[@]}" \
-DCMAKE_OSX_DEPLOYMENT_TARGET=${MACOS_MIN_OS_VERSION} \
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64" \
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
-S .
cmake --build build-macos --config Release -- -quiet
echo "Building for visionOS..."
cmake -B build-visionos -G Xcode \
"${COMMON_CMAKE_ARGS[@]}" \
-DCMAKE_OSX_DEPLOYMENT_TARGET=${VISIONOS_MIN_OS_VERSION} \
-DCMAKE_OSX_ARCHITECTURES="arm64" \
-DCMAKE_SYSTEM_NAME=visionOS \
-DCMAKE_OSX_SYSROOT=xros \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=xros \
-DCMAKE_C_FLAGS="-D_XOPEN_SOURCE=700 -Du_int=unsigned\ int -Du_char=unsigned\ char -Du_short=unsigned\ short ${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="-D_XOPEN_SOURCE=700 -Du_int=unsigned\ int -Du_char=unsigned\ char -Du_short=unsigned\ short ${COMMON_CXX_FLAGS}" \
-S .
cmake --build build-visionos --config Release -- -quiet
echo "Building for visionOS simulator..."
cmake -B build-visionos-sim -G Xcode \
"${COMMON_CMAKE_ARGS[@]}" \
-DCMAKE_OSX_DEPLOYMENT_TARGET=${VISIONOS_MIN_OS_VERSION} \
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64" \
-DCMAKE_SYSTEM_NAME=visionOS \
-DCMAKE_OSX_SYSROOT=xrsimulator \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=xrsimulator \
-DCMAKE_C_FLAGS="-D_XOPEN_SOURCE=700 -Du_int=unsigned\ int -Du_char=unsigned\ char -Du_short=unsigned\ short ${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="-D_XOPEN_SOURCE=700 -Du_int=unsigned\ int -Du_char=unsigned\ char -Du_short=unsigned\ short ${COMMON_CXX_FLAGS}" \
-S .
cmake --build build-visionos-sim --config Release -- -quiet
# Add tvOS builds (might need the same u_int definitions as watchOS and visionOS)
echo "Building for tvOS simulator..."
cmake -B build-tvos-sim -G Xcode \
"${COMMON_CMAKE_ARGS[@]}" \
-DCMAKE_OSX_DEPLOYMENT_TARGET=${TVOS_MIN_OS_VERSION} \
-DCMAKE_SYSTEM_NAME=tvOS \
-DCMAKE_OSX_SYSROOT=appletvsimulator \
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64" \
-DGGML_METAL=ON \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=appletvsimulator \
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
-S .
cmake --build build-tvos-sim --config Release -- -quiet
echo "Building for tvOS devices..."
cmake -B build-tvos-device -G Xcode \
"${COMMON_CMAKE_ARGS[@]}" \
-DCMAKE_OSX_DEPLOYMENT_TARGET=${TVOS_MIN_OS_VERSION} \
-DCMAKE_SYSTEM_NAME=tvOS \
-DCMAKE_OSX_SYSROOT=appletvos \
-DCMAKE_OSX_ARCHITECTURES="arm64" \
-DGGML_METAL=ON \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=appletvos \
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
-S .
cmake --build build-tvos-device --config Release -- -quiet
# Setup frameworks and copy binaries and headers
echo "Setting up framework structures..."
setup_framework_structure "build-ios-sim" ${IOS_MIN_OS_VERSION} "ios"
setup_framework_structure "build-ios-device" ${IOS_MIN_OS_VERSION} "ios"
setup_framework_structure "build-macos" ${MACOS_MIN_OS_VERSION} "macos"
setup_framework_structure "build-visionos" ${VISIONOS_MIN_OS_VERSION} "visionos"
setup_framework_structure "build-visionos-sim" ${VISIONOS_MIN_OS_VERSION} "visionos"
setup_framework_structure "build-tvos-sim" ${TVOS_MIN_OS_VERSION} "tvos"
setup_framework_structure "build-tvos-device" ${TVOS_MIN_OS_VERSION} "tvos"
# Create dynamic libraries from static libraries
echo "Creating dynamic libraries from static libraries..."
combine_static_libraries "build-ios-sim" "Release-iphonesimulator" "ios" "true"
combine_static_libraries "build-ios-device" "Release-iphoneos" "ios" "false"
combine_static_libraries "build-macos" "Release" "macos" "false"
combine_static_libraries "build-visionos" "Release-xros" "visionos" "false"
combine_static_libraries "build-visionos-sim" "Release-xrsimulator" "visionos" "true"
combine_static_libraries "build-tvos-sim" "Release-appletvsimulator" "tvos" "true"
combine_static_libraries "build-tvos-device" "Release-appletvos" "tvos" "false"
# Create XCFramework with correct debug symbols paths
echo "Creating XCFramework..."
xcodebuild -create-xcframework \
-framework $(pwd)/build-ios-sim/framework/llama.framework \
-debug-symbols $(pwd)/build-ios-sim/dSYMs/llama.dSYM \
-framework $(pwd)/build-ios-device/framework/llama.framework \
-debug-symbols $(pwd)/build-ios-device/dSYMs/llama.dSYM \
-framework $(pwd)/build-macos/framework/llama.framework \
-debug-symbols $(pwd)/build-macos/dSYMS/llama.dSYM \
-framework $(pwd)/build-visionos/framework/llama.framework \
-debug-symbols $(pwd)/build-visionos/dSYMs/llama.dSYM \
-framework $(pwd)/build-visionos-sim/framework/llama.framework \
-debug-symbols $(pwd)/build-visionos-sim/dSYMs/llama.dSYM \
-framework $(pwd)/build-tvos-device/framework/llama.framework \
-debug-symbols $(pwd)/build-tvos-device/dSYMs/llama.dSYM \
-framework $(pwd)/build-tvos-sim/framework/llama.framework \
-debug-symbols $(pwd)/build-tvos-sim/dSYMs/llama.dSYM \
-output $(pwd)/build-apple/llama.xcframework

View File

@@ -352,10 +352,10 @@ function gg_run_open_llama_7b_v2 {
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 10 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 10 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"

View File

@@ -813,13 +813,18 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
).set_env("LLAMA_ARG_FLASH_ATTN"));
add_opt(common_arg(
{"-p", "--prompt"}, "PROMPT",
ex == LLAMA_EXAMPLE_MAIN
? "prompt to start generation with\nif -cnv is set, this will be used as system prompt"
: "prompt to start generation with",
"prompt to start generation with; for system message, use -sys",
[](common_params & params, const std::string & value) {
params.prompt = value;
}
).set_excludes({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"-sys", "--system-prompt"}, "PROMPT",
"system prompt to use with model (if applicable, depending on chat template)",
[](common_params & params, const std::string & value) {
params.system_prompt = value;
}
).set_examples({LLAMA_EXAMPLE_MAIN}));
add_opt(common_arg(
{"--no-perf"},
string_format("disable internal libllama performance timings (default: %s)", params.no_perf ? "true" : "false"),
@@ -944,6 +949,15 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.conversation_mode = COMMON_CONVERSATION_MODE_DISABLED;
}
).set_examples({LLAMA_EXAMPLE_MAIN}));
add_opt(common_arg(
{"-st", "--single-turn"},
"run conversation for a single turn only, then exit when done\n"
"will not be interactive if first turn is predefined with --prompt\n"
"(default: false)",
[](common_params & params) {
params.single_turn = true;
}
).set_examples({LLAMA_EXAMPLE_MAIN}));
add_opt(common_arg(
{"-i", "--interactive"},
string_format("run in interactive mode (default: %s)", params.interactive ? "true" : "false"),
@@ -1853,16 +1867,9 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
).set_examples({LLAMA_EXAMPLE_PASSKEY}));
add_opt(common_arg(
{"-o", "--output", "--output-file"}, "FNAME",
string_format("output file (default: '%s')",
ex == LLAMA_EXAMPLE_EXPORT_LORA
? params.lora_outfile.c_str()
: ex == LLAMA_EXAMPLE_CVECTOR_GENERATOR
? params.cvector_outfile.c_str()
: params.out_file.c_str()),
string_format("output file (default: '%s')", params.out_file.c_str()),
[](common_params & params, const std::string & value) {
params.out_file = value;
params.cvector_outfile = value;
params.lora_outfile = value;
}
).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_CVECTOR_GENERATOR, LLAMA_EXAMPLE_EXPORT_LORA}));
add_opt(common_arg(
@@ -2447,6 +2454,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.vocoder.use_guide_tokens = true;
}
).set_examples({LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"--tts-speaker-file"}, "FNAME",
"speaker file path for audio generation",
[](common_params & params, const std::string & value) {
params.vocoder.speaker_file = value;
}
).set_examples({LLAMA_EXAMPLE_TTS}));
// model-specific
add_opt(common_arg(
@@ -2550,5 +2564,43 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
}
).set_examples({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"--fim-qwen-7b-spec"},
string_format("use Qwen 2.5 Coder 7B + 0.5B draft for speculative decoding (note: can download weights from the internet)"),
[](common_params & params) {
params.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
params.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
params.speculative.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
params.speculative.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
params.speculative.n_gpu_layers = 99;
params.port = 8012;
params.n_gpu_layers = 99;
params.flash_attn = true;
params.n_ubatch = 1024;
params.n_batch = 1024;
params.n_ctx = 0;
params.n_cache_reuse = 256;
}
).set_examples({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"--fim-qwen-14b-spec"},
string_format("use Qwen 2.5 Coder 14B + 0.5B draft for speculative decoding (note: can download weights from the internet)"),
[](common_params & params) {
params.hf_repo = "ggml-org/Qwen2.5-Coder-14B-Q8_0-GGUF";
params.hf_file = "qwen2.5-coder-14b-q8_0.gguf";
params.speculative.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
params.speculative.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
params.speculative.n_gpu_layers = 99;
params.port = 8012;
params.n_gpu_layers = 99;
params.flash_attn = true;
params.n_ubatch = 1024;
params.n_batch = 1024;
params.n_ctx = 0;
params.n_cache_reuse = 256;
}
).set_examples({LLAMA_EXAMPLE_SERVER}));
return ctx_arg;
}

View File

@@ -60,7 +60,9 @@ std::vector<common_chat_msg> common_chat_msgs_parse_oaicompat(const json & messa
}
msg.role = message.at("role");
if (message.contains("content")) {
auto has_content = message.contains("content");
auto has_tool_calls = message.contains("tool_calls");
if (has_content) {
const auto & content = message.at("content");
if (content.is_string()) {
msg.content = content;
@@ -81,19 +83,8 @@ std::vector<common_chat_msg> common_chat_msgs_parse_oaicompat(const json & messa
} else if (!content.is_null()) {
throw std::runtime_error("Invalid 'content' type: expected string or array, got " + content.dump() + " (ref: https://github.com/ggml-org/llama.cpp/issues/8367)");
}
} else {
throw std::runtime_error("Expected 'content' (ref: https://github.com/ggml-org/llama.cpp/issues/8367)");
}
if (message.contains("reasoning_content")) {
msg.reasoning_content = message.at("reasoning_content");
}
if (message.contains("name")) {
msg.tool_name = message.at("name");
}
if (message.contains("tool_call_id")) {
msg.tool_call_id = message.at("tool_call_id");
}
if (message.contains("tool_calls")) {
if (has_tool_calls) {
for (const auto & tool_call : message.at("tool_calls")) {
common_chat_tool_call tc;
if (!tool_call.contains("type")) {
@@ -118,6 +109,18 @@ std::vector<common_chat_msg> common_chat_msgs_parse_oaicompat(const json & messa
msg.tool_calls.push_back(tc);
}
}
if (!has_content && !has_tool_calls) {
throw std::runtime_error("Expected 'content' or 'tool_calls' (ref: https://github.com/ggml-org/llama.cpp/issues/8367 & https://github.com/ggml-org/llama.cpp/issues/12279)");
}
if (message.contains("reasoning_content")) {
msg.reasoning_content = message.at("reasoning_content");
}
if (message.contains("name")) {
msg.tool_name = message.at("name");
}
if (message.contains("tool_call_id")) {
msg.tool_call_id = message.at("tool_call_id");
}
msgs.push_back(msg);
}
@@ -442,6 +445,7 @@ std::string common_chat_format_name(common_chat_format format) {
case COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2: return "Functionary v3.2";
case COMMON_CHAT_FORMAT_FUNCTIONARY_V3_1_LLAMA_3_1: return "Functionary v3.1 Llama 3.1";
case COMMON_CHAT_FORMAT_HERMES_2_PRO: return "Hermes 2 Pro";
case COMMON_CHAT_FORMAT_HERMES_2_PRO_EXTRACT_REASONING: return "Hermes 2 Pro (extract reasoning)";
case COMMON_CHAT_FORMAT_COMMAND_R7B: return "Command R7B";
case COMMON_CHAT_FORMAT_COMMAND_R7B_EXTRACT_REASONING: return "Command R7B (extract reasoning)";
default:
@@ -449,12 +453,6 @@ std::string common_chat_format_name(common_chat_format format) {
}
}
const common_grammar_options grammar_options {
/* .dotall = */ false,
/* .compact_spaces = */ false,
// /* .compact_spaces = */ true,
};
static bool parse_json(std::string::const_iterator & it, const std::string::const_iterator & end, json & out) {
// // https://json.nlohmann.me/features/parsing/sax_interface/
struct json_error_locator : public nlohmann::json_sax<json> {
@@ -500,6 +498,34 @@ static bool parse_json(std::string::const_iterator & it, const std::string::cons
}
}
static bool parse_literal(std::string::const_iterator & it, const std::string::const_iterator & end, const std::string & expected) {
auto expected_it = expected.begin();
auto tmp_it = it;
while (tmp_it != end && expected_it != expected.end() && *tmp_it == *expected_it) {
++tmp_it;
++expected_it;
}
if (expected_it == expected.end()) {
it = tmp_it;
return true;
}
return false;
}
static std::optional<std::smatch> parse_pattern(std::string::const_iterator & it, const std::string::const_iterator & end, const std::regex & expected) {
std::smatch match;
if (std::regex_match(it, end, match, expected)) {
it = match.suffix().first;
return match;
}
return std::nullopt;
}
static void consume_spaces(std::string::const_iterator & it, const std::string::const_iterator & end) {
while (it != end && std::isspace(*it)) {
++it;
}
}
/**
* Takes a prefix regex that must have 1 group to capture the function name, a closing suffix, and expects json parameters in between.
@@ -509,7 +535,8 @@ static common_chat_msg parse_json_tool_calls(
const std::string& input,
const std::optional<std::regex> & trigger_opt,
const std::regex & function_regex,
const std::regex & close_regex) {
const std::regex & close_regex,
bool allow_raw_python = false) {
std::smatch match;
common_chat_msg result;
@@ -540,14 +567,19 @@ static common_chat_msg parse_json_tool_calls(
it = rit->suffix().first;
json arguments;
if (!parse_json(it, end, arguments)) {
if (parse_json(it, end, arguments)) {
if (!std::regex_search(it, end, match, close_regex)) {
throw std::runtime_error("Malformed input, missing closing pattern: " + input);
}
it = match.suffix().first;
result.tool_calls.push_back({name, arguments.is_string() ? arguments.get<std::string>() : arguments.dump(), /* id= */ ""});
} else {
if (allow_raw_python && name == "python") {
result.tool_calls.push_back({name, json({{"code", std::string(it, end)}}).dump(), /* id= */ ""});
break;
}
throw std::runtime_error("Failed to parse json tool call arguments: " + input);
}
if (!std::regex_search(it, end, match, close_regex)) {
throw std::runtime_error("Malformed input, missing closing pattern: " + input);
}
it = match.suffix().first;
result.tool_calls.push_back({name, arguments.is_string() ? arguments.get<std::string>() : arguments.dump(), /* id= */ ""});
}
if (!result.tool_calls.empty()) {
@@ -559,29 +591,29 @@ static common_chat_msg parse_json_tool_calls(
return result;
}
static common_chat_tool_call process_tool_call(const json & tool_call) {
const auto & arguments = tool_call.at("arguments");
return {
/* .name = */ tool_call.at("name"),
/* .arguments = */ arguments.is_string() ? arguments.get<std::string>() : arguments.dump(),
/* .id = */ tool_call.contains("id") ? tool_call.at("id") : "",
};
}
static common_chat_msg parse_prefixed_json_tool_call_array(const std::string& input, const std::string & prefix, size_t rstrip_prefix = 0) {
auto content_end = input.find(prefix);
size_t tc_start = std::string::npos;
common_chat_msg result;
result.role = "assistant";
const auto process_tool_calls = [&](const json & tool_calls) {
for (const auto & tool_call : tool_calls) {
const auto & arguments = tool_call.at("arguments");
result.tool_calls.push_back({
tool_call.at("name"),
arguments.is_string() ? arguments.get<std::string>() : arguments.dump(),
tool_call.contains("id") ? tool_call.at("id") : "",
});
}
};
if (content_end == std::string::npos) {
result.content = input;
} else {
tc_start = content_end + prefix.size() - rstrip_prefix;
result.content = input.substr(0, content_end);
auto tool_calls = json::parse(input.substr(tc_start));
process_tool_calls(tool_calls);
for (const auto & tool_call : tool_calls) {
result.tool_calls.emplace_back(process_tool_call(tool_call));
}
}
return result;
}
@@ -700,7 +732,7 @@ static common_chat_params common_chat_params_init_generic(const common_chat_temp
data.grammar_lazy = false;
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
builder.add_schema("root", schema);
}, grammar_options);
});
auto tweaked_messages = common_chat_template::add_system(
inputs.messages,
@@ -770,8 +802,11 @@ static common_chat_params common_chat_params_init_mistral_nemo(const common_chat
schema["maxItems"] = 1;
}
builder.add_rule("root", "\"[TOOL_CALLS]\" " + builder.add_schema("tool_calls", schema));
}, grammar_options);
data.grammar_triggers.push_back({"[TOOL_CALLS]", /* .at_start = */ true});
});
data.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, "[TOOL_CALLS]"});
data.preserved_tokens = {
"[TOOL_CALLS]",
};
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
data.format = COMMON_CHAT_FORMAT_MISTRAL_NEMO;
return data;
@@ -813,14 +848,18 @@ static common_chat_params common_chat_params_init_command_r7b(const common_chat_
schema["maxItems"] = 1;
}
builder.add_rule("root", "\"<|START_ACTION|>\" " + builder.add_schema("tool_calls", schema) + " \"<|END_ACTION|>\"");
}, grammar_options);
data.grammar_triggers.push_back({"<|START_ACTION|>", /* .at_start = */ false});
});
data.grammar_triggers.push_back({
COMMON_GRAMMAR_TRIGGER_TYPE_WORD,
"<|START_ACTION|>",
});
data.preserved_tokens = {
"<|START_ACTION|>",
"<|END_ACTION|>",
"<|START_RESPONSE|>",
"<|END_RESPONSE|>",
"<|START_THINKING|>",
"<|END_THINKING|>",
"<|END_ACTION|>",
};
auto adjusted_messages = json::array();
for (const auto & msg : inputs.messages) {
@@ -840,9 +879,9 @@ static common_chat_params common_chat_params_init_command_r7b(const common_chat_
return data;
}
static common_chat_msg common_chat_parse_command_r7b(const std::string & input, bool extract_reasoning) {
static std::regex thought_regex("(<\\|START_THINKING\\|>([\\s\\S\\n\\r]*?)<\\|END_THINKING\\|>)([\\s\\S\\n\\r]*)");
static std::regex action_regex("<\\|START_ACTION\\|>([\\s\\S\\n\\r]*?)<\\|END_ACTION\\|>");
static std::regex response_regex("(?:<\\|START_RESPONSE\\|>)?([\\s\\S\\n\\r]*?)<\\|END_RESPONSE\\|>");
static const std::regex thought_regex("(<\\|START_THINKING\\|>([\\s\\S]*?)<\\|END_THINKING\\|>)([\\s\\S]*)");
static const std::regex action_regex("<\\|START_ACTION\\|>([\\s\\S]*?)<\\|END_ACTION\\|>");
static const std::regex response_regex("(?:<\\|START_RESPONSE\\|>)?([\\s\\S]*?)<\\|END_RESPONSE\\|>");
std::smatch match;
@@ -945,23 +984,23 @@ static common_chat_params common_chat_params_init_llama_3_1_tool_calls(const com
builder.add_rule(
name + "-call",
"\"{\" space "
"( \"\\\"type\\\":\" space \"\\\"function\\\",\" space )? "
"\"\\\"name\\\": \\\"" + name + "\\\", \\\"parameters\\\": \" " +
builder.add_schema(name + "-args", parameters) +
" \"}\""));
data.grammar_triggers.push_back({"{\"name\": \"" + name + "\"", /* .at_start = */ true});
"( \"\\\"type\\\"\" space \":\" space \"\\\"function\\\"\" space \",\" space )? "
" \"\\\"name\\\"\" space \":\" space \"\\\"" + name + "\\\"\" space \",\" space "
" \"\\\"parameters\\\"\" space \":\" space " + builder.add_schema(name + "-args", parameters) + " "
"\"}\" space"));
});
// Small models may hallucinate function names so we match anything (*at the start*) that looks like the JSON of a function call, regardless of the name.
data.grammar_triggers.push_back({
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_START,
"\\{\\s*(?:\"type\"\\s*:\\s*\"function\"\\s*,\\s*)?\"name\"\\s*:\\s*\"", // + name + "\"[\\s\\S]*",
});
data.grammar_triggers.push_back({"{\"name\":", /* .at_start = */ true});
data.grammar_triggers.push_back({"{\n \"name\":", /* .at_start = */ true});
data.grammar_triggers.push_back({"{\n \"name\":", /* .at_start = */ true});
data.grammar_triggers.push_back({"{\"type\": \"function\"", /* .at_start = */ true});
data.grammar_triggers.push_back({"{\n \"type\": \"function\"", /* .at_start = */ true});
data.grammar_triggers.push_back({"{\n \"type\": \"function\"", /* .at_start = */ true});
if (!builtin_tools.empty()) {
data.grammar_triggers.push_back({"<|python_tag|>", /* .at_start = */ false});
data.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, "<|python_tag|>"});
data.preserved_tokens.push_back("<|python_tag|>");
}
// Allow a few empty lines on top of the usual constrained json schema space rule.
builder.add_rule("root", string_join(tool_rules, " | "));
}, grammar_options);
});
data.additional_stops.push_back("<|eom_id|>");
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt, {
{"tools_in_user_message", false},
@@ -974,33 +1013,33 @@ static common_chat_params common_chat_params_init_llama_3_1_tool_calls(const com
}
static common_chat_msg common_chat_parse_llama_3_1(const std::string & input, bool with_builtin_tools = false) {
// TODO: tighten & simplify the parser, don't accept leading text context.
static std::regex function_regex("\\{[\\s\\n\\r]*(?:\"type\"[\\s\\n\\r]*:[\\s\\n\\r]*\"function\"[\\s\\n\\r]*,[\\s\\n\\r]*|[\\s\\n\\r]*)\"name\"[\\s\\n\\r]*:[\\s\\n\\r]*\"([^\"]+)\"[\\s\\n\\r]*,[\\s\\n\\r]*\"parameters\": ");
static std::regex close_regex("\\}");
static std::regex builtin_call_regex("<\\|python_tag\\|>([^.(]+)\\.call\\((.*)\\)");
static const std::regex function_regex(
"\\s*\\{\\s*(?:\"type\"\\s*:\\s*\"function\"\\s*,\\s*)?\"name\"\\s*:\\s*\"([^\"]+)\"\\s*,\\s*\"parameters\"\\s*: ");
static const std::regex close_regex("\\}\\s*");
static const std::regex builtin_call_regex("<\\|python_tag\\|>\\s*([^.(]+)\\s*\\.\\s*call\\s*\\(\\s*([\\w]+)\\s*=\\s*([\\s\\S]*?)\\)");
if (with_builtin_tools) {
std::smatch match;
if (std::regex_match(input, match, builtin_call_regex)) {
auto name = match[1].str();
auto raw_args = match[2].str();
try {
auto name = match[1].str();
auto arg_name = match[2].str();
auto arg_value_str = match[3].str();
auto arg_value = json::parse(arg_value_str);
// TODO: if/when builtin tools start accepting more than 1 argument, use parse_json for real parsing.
auto it_eq = raw_args.find('=');
auto arg_name = raw_args.substr(0, it_eq);
auto arg_value_str = raw_args.substr(it_eq + 1);
auto arg_value = json::parse(arg_value_str);
common_chat_msg msg;
msg.role = "assistant";
msg.content = match.prefix().str();
msg.tool_calls.push_back({
/* .name = */ name,
/* .arguments = */ (json {
{arg_name, arg_value},
}).dump(),
/* .id = */ "",
});
return msg;
common_chat_msg msg;
msg.role = "assistant";
msg.tool_calls.push_back({
/* .name = */ name,
/* .arguments = */ (json {
{arg_name, arg_value},
}).dump(),
/* .id = */ "",
});
return msg;
} catch (const std::exception & e) {
LOG_WRN("Failed to parse builtin tool call arguments (%s): %s", e.what(), input.c_str());
}
}
}
return parse_json_tool_calls(input, std::nullopt, function_regex, close_regex);
@@ -1017,10 +1056,10 @@ static common_chat_params common_chat_params_init_deepseek_r1(const common_chat_
std::string name = function.at("name");
auto parameters = function.at("parameters");
builder.resolve_refs(parameters);
auto args_rule = builder.add_schema(name + "-args", parameters);
tool_rules.push_back(builder.add_rule(name + "-call",
"\"<tool▁call▁begin>function<tool▁sep>" + name + "\\n"
"```json\\n\" " + args_rule + " \"```<tool▁call▁end>\""));
"```json\\n\" " + builder.add_schema(name + "-args", parameters) + " "
"\"```<tool▁call▁end>\""));
});
// Distill Qwen 7B & 32B models seem confused re/ syntax of their tool call opening tag,
// so we accept common variants (then it's all constrained)
@@ -1029,18 +1068,20 @@ static common_chat_params common_chat_params_init_deepseek_r1(const common_chat_
"(" + string_join(tool_rules, " | ") + ")" + (inputs.parallel_tool_calls ? "*" : "") + " "
"\"<tool▁calls▁end>\""
" space");
data.grammar_triggers.push_back({"<tool▁calls▁begin>", /* .at_start = */ false});
data.grammar_triggers.push_back({"<tool_calls_begin>", /* .at_start = */ false});
data.grammar_triggers.push_back({"<tool calls begin>", /* .at_start = */ false});
data.grammar_triggers.push_back({"<tool\\_calls\\_begin>", /* .at_start = */ false});
data.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, "<tool▁calls▁begin>"});
data.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, "<tool_calls_begin>"});
data.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, "<tool calls begin>"});
data.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, "<tool\\_calls\\_begin>"});
data.preserved_tokens = {
"<think>",
"</think>",
"<tool▁calls▁begin>",
"<tool▁call▁begin>",
"<tool▁sep>",
"<tool▁calls▁end",
"<tool▁call▁end>",
"<tool▁calls▁end",
};
}, grammar_options);
});
}
auto prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
@@ -1065,34 +1106,42 @@ static common_chat_params common_chat_params_init_deepseek_r1(const common_chat_
data.format = inputs.extract_reasoning ? COMMON_CHAT_FORMAT_DEEPSEEK_R1_EXTRACT_REASONING : COMMON_CHAT_FORMAT_DEEPSEEK_R1;
return data;
}
static common_chat_msg common_chat_parse_deepseek_r1(const std::string & input, bool extract_reasoning) {
static std::regex function_regex("<tool▁call▁begin>function<tool▁sep>([^\n]+)\n```json\n");
static std::regex close_regex("```[\\s\\r\\n]*<tool▁call▁end>");
static std::regex reasoning_content_regex("((?:<think>)?([\\s\\S\\r\\n]*?)</think>)?([\\s\\S\\r\\n]*)");
static std::regex tool_calls_regex("[\\s\\r\\n]*(?:<tool▁calls▁begin>|<tool_calls_begin>|<tool calls begin>|<tool\\\\_calls\\\\_begin>)([\\s\\S\\r\\n]*?)<tool▁calls▁end>");
common_chat_msg msg;
msg.role = "assistant";
static common_chat_msg handle_think_tag_prelude(const std::string & input, bool extract_reasoning, const std::function<common_chat_msg(const std::string &)> & rest_parser) {
std::smatch match;
static const std::regex reasoning_content_regex("((?:<think>)?([\\s\\S\\r\\n]*?)</think>)?([\\s\\S\\r\\n]*)");
if (std::regex_match(input, match, reasoning_content_regex)) {
std::string rest;
auto rest = match[3].str();
auto msg = rest_parser(rest);
auto reasoning_content = string_strip(match[2].str());
if (extract_reasoning) {
msg.reasoning_content = string_strip(match[2].str());
} else {
msg.content = match[1].str();
msg.reasoning_content = reasoning_content;
} else if (!reasoning_content.empty()) {
std::ostringstream content;
content << "<think>" << reasoning_content << "</think>" << msg.content;
msg.content = content.str();
}
rest = match[3].str();
return msg;
}
return rest_parser(input);
}
static common_chat_msg common_chat_parse_deepseek_r1(const std::string & input, bool extract_reasoning) {
return handle_think_tag_prelude(input, extract_reasoning, [](const std::string & input) {
static const std::regex function_regex("<tool▁call▁begin>function<tool▁sep>([^\n]+)\n```json\n");
static const std::regex close_regex("```[\\s\\r\\n]*<tool▁call▁end>");
static const std::regex tool_calls_regex("[\\s\\r\\n]*(?:<tool▁calls▁begin>|<tool_calls_begin>|<tool calls begin>|<tool\\\\_calls\\\\_begin>)([\\s\\S\\r\\n]*?)<tool▁calls▁end>");
if (std::regex_search(rest, match, tool_calls_regex)) {
common_chat_msg msg;
msg.role = "assistant";
std::smatch match;
if (std::regex_search(input, match, tool_calls_regex)) {
auto tool_calls = match[1].str();
auto msg2 = parse_json_tool_calls(tool_calls, std::nullopt, function_regex, close_regex);
msg.tool_calls = std::move(msg2.tool_calls);
} else {
msg.content += std::string(rest.begin() + rest.find_first_not_of(" \r\n"), rest.end());
msg.content = input;
}
} else {
msg.content = input;
}
return msg;
return msg;
});
}
static common_chat_params common_chat_params_init_firefunction_v2(const common_chat_template & tmpl, const struct templates_params & inputs) {
@@ -1129,8 +1178,11 @@ static common_chat_params common_chat_params_init_firefunction_v2(const common_c
schema["maxItems"] = 1;
}
builder.add_rule("root", "\" functools\"? " + builder.add_schema("tool_calls", schema));
}, grammar_options);
data.grammar_triggers.push_back({" functools[", /* .at_start = */ false});
});
data.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, " functools["});
data.preserved_tokens = {
" functools[",
};
data.format = COMMON_CHAT_FORMAT_FIREFUNCTION_V2;
} else {
data.format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
@@ -1158,11 +1210,28 @@ static common_chat_params common_chat_params_init_functionary_v3_2(const common_
auto parameters = function.at("parameters");
builder.resolve_refs(parameters);
auto args_rule = builder.add_schema(name + "-args", parameters);
first_tool_rules.push_back(builder.add_rule(name + "-call", "\"" + name + "\\n\" " + args_rule));
first_tool_rules.push_back(builder.add_rule(name + "-call", "( \"assistant<|end_header_id|>\\n\" )? \"" + name + "\\n\" " + args_rule));
subsequent_tool_rules.push_back(builder.add_rule(name + "-call2", "\">>>" + name + "\\n\" " + args_rule));
data.grammar_triggers.push_back({name, /* .at_start = */ true});
data.grammar_triggers.push_back({">>>" + name, /* .at_start = */ false});
data.grammar_triggers.push_back({
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_START,
regex_escape(name + "\n"),
});
data.grammar_triggers.push_back({
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_START,
regex_escape("assistant<|end_header_id|>\n" + name + "\n"),
});
data.grammar_triggers.push_back({
COMMON_GRAMMAR_TRIGGER_TYPE_WORD,
regex_escape(">>>" + name + "\n"),
});
data.grammar_triggers.push_back({
COMMON_GRAMMAR_TRIGGER_TYPE_WORD,
">>>assistant<|end_header_id|>\n" + name,
});
});
data.preserved_tokens = {
"<|end_header_id|>",
};
auto first_rule = first_tool_rules.empty() ? "" : builder.add_rule("first_tool_call", string_join(first_tool_rules, " | ")) + " space";
if (inputs.parallel_tool_calls) {
auto subsequent_rule = builder.add_rule("subsequent_tool_call", string_join(subsequent_tool_rules, " | ")) + " space";
@@ -1171,34 +1240,20 @@ static common_chat_params common_chat_params_init_functionary_v3_2(const common_
builder.add_rule("root", first_rule);
}
}, grammar_options);
});
}
return data;
}
static bool consume(std::string::const_iterator & it, const std::string::const_iterator & end, const std::string & expected) {
auto expected_it = expected.begin();
auto tmp_it = it;
while (tmp_it != end && expected_it != expected.end() && *tmp_it == *expected_it) {
++tmp_it;
++expected_it;
}
if (expected_it == expected.end()) {
it = tmp_it;
return true;
}
return false;
}
static common_chat_msg common_chat_parse_functionary_v3_2(const std::string & input) {
static std::regex function_regex(R"((?:>>>)?(\w+)\n)");
static std::regex close_regex(R"($|(?=>>>))");
static const std::regex function_regex(R"((?:>>>)?(?:assistant<|end_header_id|>\n)?(\w+)\n)");
static const std::regex close_regex(R"($|(?=>>>))");
std::string content;
auto it = input.begin();
const auto end = input.end();
if (consume(it, end, "all\n")) {
if (parse_literal(it, end, "all\n")) {
std::smatch match;
if (std::regex_search(it, end, match, function_regex)) {
auto fun_it = match.prefix().second;
@@ -1213,7 +1268,7 @@ static common_chat_msg common_chat_parse_functionary_v3_2(const std::string & in
}
// TODO: tighten & simplify.
try {
auto res = parse_json_tool_calls(std::string(it, end), std::nullopt, function_regex, close_regex);
auto res = parse_json_tool_calls(std::string(it, end), std::nullopt, function_regex, close_regex, /* allow_raw_python= */ true);
res.content = content + res.content;
return res;
} catch (const std::exception & e) {
@@ -1266,12 +1321,13 @@ static common_chat_params common_chat_params_init_functionary_v3_1_llama_3_1(con
});
if (has_raw_python) {
tool_rules.push_back(builder.add_rule("python-call", "\"<|python_tag|>\" .*"));
data.grammar_triggers.push_back({"<|python_tag|>", /* .at_start = */ false});
data.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, "<|python_tag|>"});
data.preserved_tokens.push_back("<|python_tag|>");
}
auto tool_call = builder.add_rule("tool_call", string_join(tool_rules, " | ")) + " space";
builder.add_rule("root", inputs.parallel_tool_calls ? "(" + tool_call + ")+" : tool_call);
data.grammar_triggers.push_back({"<function=", /* .at_start = */ false});
}, grammar_options);
data.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, "<function="});
});
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
// TODO: if (has_raw_python)
@@ -1280,7 +1336,7 @@ static common_chat_params common_chat_params_init_functionary_v3_1_llama_3_1(con
}
static common_chat_msg common_chat_parse_functionary_v3_1_llama_3_1(const std::string & input) {
// This version of Functionary still supports the llama 3.1 tool call format for the python tool.
static std::regex python_tag_regex(R"(<\|python_tag\|>([\s\S\n]*)$)");
static const std::regex python_tag_regex(R"(<\|python_tag\|>([\s\S\n]*)$)");
std::smatch match;
if (std::regex_search(input, match, python_tag_regex)) {
auto code = match[1].str();
@@ -1294,8 +1350,8 @@ static common_chat_msg common_chat_parse_functionary_v3_1_llama_3_1(const std::s
});
return msg;
}
static std::regex function_regex(R"(<function=(\w+)>)");
static std::regex close_regex(R"(</function>)");
static const std::regex function_regex(R"(<function=(\w+)>)");
static const std::regex close_regex(R"(</function>)");
// TODO: tighten & simplify.
return parse_json_tool_calls(input, std::nullopt, function_regex, close_regex);
}
@@ -1306,6 +1362,7 @@ static common_chat_params common_chat_params_init_hermes_2_pro(const common_chat
data.grammar_lazy = inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_REQUIRED;
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
std::vector<std::string> tool_rules;
std::vector<std::string> tool_call_alts;
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool.at("function");
std::string name = function.at("name");
@@ -1319,68 +1376,187 @@ static common_chat_params common_chat_params_init_hermes_2_pro(const common_chat
}},
{"required", json::array({"name", "arguments"})},
}));
tool_call_alts.push_back(builder.add_rule(
name + "-function-tag",
"\"<function\" ( \"=" + name + "\" | \" name=\\\"" + name + "\\\"\" ) \">\" space " +
builder.add_schema(name + "-args", parameters) + " "
"\"</function>\" space"));
data.grammar_triggers.push_back({
COMMON_GRAMMAR_TRIGGER_TYPE_WORD,
"<function=" + name + ">",
});
auto escaped_name = regex_escape(name);
data.grammar_triggers.push_back({
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN,
"<function\\s+name\\s*=\\s*\"" + escaped_name + "\"",
});
});
auto tool_call = "\"<tool_call>\" space " + builder.add_rule("tool_call", string_join(tool_rules, " | ")) + " \"</tool_call>\" space";
auto any_tool_call = builder.add_rule("any_tool_call", "( " + string_join(tool_rules, " | ") + " ) space");
std::vector<std::string> alt_tags {
any_tool_call,
"\"<tool_call>\" space " + any_tool_call + " \"</tool_call>\"",
// The rest is just to accommodate common "good bad" outputs.
"\"<function_call>\" space " + any_tool_call + " \"</function_call>\"",
"\"<response>\" space " + any_tool_call + " \"</response>\"",
"\"<tools>\" space " + any_tool_call + " \"</tools>\"",
"\"<json>\" space " + any_tool_call + " \"</json>\"",
"\"<xml>\" space " + any_tool_call + " \"</xml>\"",
"\"<JSON>\" space " + any_tool_call + " \"</JSON>\"",
};
auto wrappable_tool_call = builder.add_rule("wrappable_tool_call", "( " + string_join(alt_tags, " | ") + " ) space");
tool_call_alts.push_back(wrappable_tool_call);
tool_call_alts.push_back(
"( \"```\\n\" | \"```json\\n\" | \"```xml\\n\" ) space " + wrappable_tool_call + " space \"```\" space ");
auto tool_call = builder.add_rule("tool_call", string_join(tool_call_alts, " | "));
builder.add_rule("root", inputs.parallel_tool_calls ? "(" + tool_call + ")+" : tool_call);
data.grammar_triggers.push_back({"<tool_call>", /* .at_start = */ false});
data.preserved_tokens = { "</tool_call>" };
}, grammar_options);
data.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, "<tool_call>"});
data.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, "<function"});
// Trigger on some common known "good bad" outputs (only from the start and with a json that's about a specific argument name to avoid false positives)
data.grammar_triggers.push_back({
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_START,
"(?:```(?:json|xml)?\n\\s*)?(?:<function_call>|<tools>|<xml><json>|<response>)?\\s*\\{\\s*\"", //name\"\\s*:\\s*\"" + escaped_name + "\"",
});
data.preserved_tokens = {
"<think>",
"</think>",
"<tool_call>",
"</tool_call>",
"<function",
"<tools>",
"</tools>",
"<response>",
"</response>",
"<function_call>",
"</function_call>",
"<json>",
"</json>",
"<JSON>",
"</JSON>",
"```",
"```json",
"```xml",
};
});
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
data.format = COMMON_CHAT_FORMAT_HERMES_2_PRO;
data.format = inputs.extract_reasoning ? COMMON_CHAT_FORMAT_HERMES_2_PRO_EXTRACT_REASONING : COMMON_CHAT_FORMAT_HERMES_2_PRO;
return data;
}
static common_chat_msg common_chat_parse_hermes_2_pro(const std::string & input) {
try {
std::regex start_pattern(R"([\n\s]*<tool_call>)");
std::regex middle_pattern(R"([\n\s]*</tool_call>[\n\s]*<tool_call>)");
std::regex end_pattern(R"([\n\s]*</tool_call>[\n\s]*$)");
static common_chat_msg common_chat_parse_hermes_2_pro(const std::string& input, bool extract_reasoning) {
return handle_think_tag_prelude(input, extract_reasoning, [](const std::string & input) {
static const std::regex open_regex(
"(?:"
"(```(?:xml|json)?\\n\\s*)?" // match 1 (block_start)
"(<tool_call>" // match 2 (open_tag)
"|<function_call>"
"|<tool>"
"|<tools>"
"|<response>"
"|<json>"
"|<xml>"
"|<JSON>"
")?"
"(\\s*\\{\\s*\"name\"\\s*:[\\s\\S]*)" // match 3 (named tool call + rest)
")"
"|"
"(?:<function=([^>]+)>" // match 4 (function name)
"|<function name=\"([^\"]+)\">)" // match 5 (function name again)
"([\\s\\S]*)" // match 6 (function arguments + rest)})"
);
common_chat_msg msg;
msg.role = "assistant";
try {
common_chat_msg msg;
msg.role = "assistant";
auto end = input.end();
std::sregex_iterator rend;
std::sregex_iterator rit(input.begin(), end, start_pattern);
if (rit == rend) {
std::string::const_iterator it = input.begin();
const std::string::const_iterator end = input.end();
std::smatch match;
while (it != end) {
if (std::regex_search(it, end, match, open_regex)) {
// Add content before the match
msg.content += std::string(it, match[0].first);
auto block_start = match[1].str();
std::string block_end = block_start.empty() ? "" : "```";
auto open_tag = match[2].str();
std::string close_tag;
if (match[3].matched) {
close_tag = open_tag.empty() ? "" : "</" + open_tag.substr(1);
auto json_it = match[3].first;
json tool_call;
if (parse_json(json_it, end, tool_call) && tool_call.contains("name") && tool_call.contains("arguments")) {
msg.tool_calls.emplace_back(process_tool_call(tool_call));
it = json_it; // Move iterator past parsed JSON
// Handle close tags
consume_spaces(it, end);
if (!close_tag.empty() && !parse_literal(it, end, close_tag)) {
throw std::runtime_error("Failed to parse closing tag");
}
consume_spaces(it, end);
if (!block_end.empty() && !parse_literal(it, end, block_end)) {
throw std::runtime_error("Failed to parse block end");
}
consume_spaces(it, end);
} else {
// Not a valid tool call, treat as content
msg.content += std::string(match[0].first, match[0].second);
it = match[0].second;
}
} else {
auto function_name = match[4].str();
if (function_name.empty()) {
function_name = match[5].str();
}
GGML_ASSERT(!function_name.empty());
close_tag = "</function>";
// Start parsing from after the opening tags
auto json_it = match[6].first;
json arguments;
if (parse_json(json_it, end, arguments)) {
msg.tool_calls.emplace_back(process_tool_call({
{"name", function_name},
{"arguments", arguments},
}));
it = json_it; // Move iterator past parsed JSON
// Handle close tags
consume_spaces(it, end);
if (!close_tag.empty() && !parse_literal(it, end, close_tag)) {
throw std::runtime_error("Failed to parse closing tag");
}
consume_spaces(it, end);
if (!block_end.empty() && !parse_literal(it, end, block_end)) {
throw std::runtime_error("Failed to parse block end");
}
consume_spaces(it, end);
} else {
// Not a valid tool call, treat as content
msg.content += std::string(match[0].first, match[0].second);
it = match[0].second;
}
}
} else {
// Add remaining content
msg.content += std::string(it, end);
break;
}
}
return msg;
} catch (const std::exception & e) {
LOG_ERR("Failed to parse hermes 2 pro input: %s\n", e.what());
common_chat_msg msg;
msg.role = "assistant";
msg.content = input;
return msg;
}
msg.content = rit->prefix();
auto it = rit->suffix().first;
while (it != end) {
json call;
if (!parse_json(it, end, call)) {
throw std::runtime_error("Failed to parse json tool call");
}
const auto & arguments = call.at("arguments");
msg.tool_calls.push_back({
call.at("name"),
arguments.dump(),
// arguments.is_string() ? arguments.get<std::string>() : arguments.dump(),
/* id= */ "",
});
rit = {it, end, middle_pattern};
if (rit != rend) {
it = rit->suffix().first;
} else {
rit = {it, end, end_pattern};
if (rit == rend) {
throw std::runtime_error("Malformed input, missing </tool_call>");
}
break;
}
}
return msg;
} catch (const std::exception & e) {
LOG_ERR("Failed to parse hermes 2 pro input: %s\n", e.what());
common_chat_msg msg;
msg.role = "assistant";
msg.content = input;
return msg;
}
});
}
static common_chat_params common_chat_params_init_without_tools(const common_chat_template & tmpl, const struct templates_params & inputs) {
@@ -1445,6 +1621,11 @@ static common_chat_params common_chat_templates_apply_jinja(
return common_chat_params_init_command_r7b(tmpl, params);
}
// Hermes 2/3 Pro, Qwen 2.5 Instruct (w/ tools)
if (src.find("<tool_call>") != std::string::npos && params.json_schema.is_null()) {
return common_chat_params_init_hermes_2_pro(tmpl, params);
}
// Use generic handler when mixing tools + JSON schema.
// TODO: support that mix in handlers below.
if ((params.tools.is_array() && params.json_schema.is_object())) {
@@ -1466,11 +1647,6 @@ static common_chat_params common_chat_templates_apply_jinja(
return common_chat_params_init_without_tools(tmpl, params);
}
// Hermes 2/3 Pro, Qwen 2.5 Instruct (w/ tools)
if (src.find("<tool_call>") != std::string::npos) {
return common_chat_params_init_hermes_2_pro(tmpl, params);
}
// Functionary v3.1 (w/ tools)
if (src.find("<|start_header_id|>") != std::string::npos
&& src.find("<function=") != std::string::npos) {
@@ -1588,7 +1764,9 @@ common_chat_msg common_chat_parse(const std::string & input, common_chat_format
case COMMON_CHAT_FORMAT_FUNCTIONARY_V3_1_LLAMA_3_1:
return common_chat_parse_functionary_v3_1_llama_3_1(input);
case COMMON_CHAT_FORMAT_HERMES_2_PRO:
return common_chat_parse_hermes_2_pro(input);
return common_chat_parse_hermes_2_pro(input, /* extract_reasoning= */ false);
case COMMON_CHAT_FORMAT_HERMES_2_PRO_EXTRACT_REASONING:
return common_chat_parse_hermes_2_pro(input, /* extract_reasoning= */ true);
case COMMON_CHAT_FORMAT_FIREFUNCTION_V2:
return common_chat_parse_firefunction_v2(input);
case COMMON_CHAT_FORMAT_COMMAND_R7B:

View File

@@ -53,6 +53,7 @@ enum common_chat_format {
COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2,
COMMON_CHAT_FORMAT_FUNCTIONARY_V3_1_LLAMA_3_1,
COMMON_CHAT_FORMAT_HERMES_2_PRO,
COMMON_CHAT_FORMAT_HERMES_2_PRO_EXTRACT_REASONING,
COMMON_CHAT_FORMAT_COMMAND_R7B,
COMMON_CHAT_FORMAT_COMMAND_R7B_EXTRACT_REASONING,

View File

@@ -10,7 +10,6 @@
// Change JSON_ASSERT from assert() to GGML_ASSERT:
#define JSON_ASSERT GGML_ASSERT
#include "json.hpp"
#include "json-schema-to-grammar.h"
#include "llama.h"
#include <algorithm>
@@ -483,6 +482,11 @@ void string_replace_all(std::string & s, const std::string & search, const std::
s = std::move(builder);
}
std::string regex_escape(const std::string & s) {
static const std::regex special_chars("[.^$|()*+?\\[\\]{}\\\\]");
return std::regex_replace(s, special_chars, "\\$0");
}
std::string string_join(const std::vector<std::string> & values, const std::string & separator) {
std::ostringstream result;
for (size_t i = 0; i < values.size(); ++i) {
@@ -2026,3 +2030,25 @@ common_control_vector_data common_control_vector_load(const std::vector<common_c
return result;
}
template <>
json common_grammar_trigger::to_json() const {
json out {
{"type", (int) type},
{"value", value},
};
if (type == COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN) {
out["token"] = (int) token;
}
return out;
}
template <>
common_grammar_trigger common_grammar_trigger::from_json(const json & in) {
common_grammar_trigger out;
out.type = (common_grammar_trigger_type) in.at("type").get<int>();
out.value = in.at("value").get<std::string>();
if (out.type == COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN) {
out.token = (llama_token) in.at("token").get<int>();
}
return out;
}

View File

@@ -110,9 +110,21 @@ enum common_conversation_mode {
COMMON_CONVERSATION_MODE_AUTO = 2,
};
enum common_grammar_trigger_type {
COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN,
COMMON_GRAMMAR_TRIGGER_TYPE_WORD,
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN,
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_START,
};
struct common_grammar_trigger {
std::string word;
bool at_start;
common_grammar_trigger_type type;
std::string value;
llama_token token = LLAMA_TOKEN_NULL;
// T can only be nlohmann::ordered_json
template <class T> T to_json() const;
template <class T> static common_grammar_trigger from_json(const T & in);
};
// sampling parameters
@@ -163,8 +175,7 @@ struct common_params_sampling {
std::string grammar; // optional BNF-like grammar to constrain sampling
bool grammar_lazy = false;
std::vector<common_grammar_trigger> grammar_trigger_words; // optional trigger words to trigger lazy grammar
std::vector<llama_token> grammar_trigger_tokens; // optional trigger tokens to trigger lazy grammar and print trigger special tokens.
std::vector<common_grammar_trigger> grammar_triggers; // optional triggers (for lazy grammars)
std::set<llama_token> preserved_tokens;
std::vector<llama_logit_bias> logit_bias; // logit biases to apply
@@ -200,6 +211,8 @@ struct common_params_vocoder {
std::string model = ""; // model path // NOLINT
std::string model_url = ""; // model url to download // NOLINT
std::string speaker_file = ""; // speaker file path // NOLINT
bool use_guide_tokens = false; // enable guide tokens to improve TTS accuracy // NOLINT
};
@@ -261,6 +274,7 @@ struct common_params {
std::string hf_repo = ""; // HF repo // NOLINT
std::string hf_file = ""; // HF file // NOLINT
std::string prompt = ""; // NOLINT
std::string system_prompt = ""; // NOLINT
std::string prompt_file = ""; // store the external prompt file name // NOLINT
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state // NOLINT
std::string input_prefix = ""; // string to prefix user inputs with // NOLINT
@@ -325,6 +339,8 @@ struct common_params {
bool warmup = true; // warmup run
bool check_tensors = false; // validate tensor data
bool single_turn = false; // single turn chat conversation
ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K
ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V
@@ -391,8 +407,6 @@ struct common_params {
int32_t i_pos = -1; // position of the passkey in the junk text
// imatrix params
std::string out_file = "imatrix.dat"; // save the resulting imatrix to this file
int32_t n_out_freq = 10; // output the imatrix every n_out_freq iterations
int32_t n_save_freq = 0; // save the imatrix every n_save_freq iterations
int32_t i_chunk = 0; // start processing from this chunk
@@ -404,16 +418,16 @@ struct common_params {
int n_pca_batch = 100;
int n_pca_iterations = 1000;
dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
std::string cvector_outfile = "control_vector.gguf";
std::string cvector_positive_file = "examples/cvector-generator/positive.txt";
std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
bool spm_infill = false; // suffix/prefix/middle pattern for infill
std::string lora_outfile = "ggml-lora-merged-f16.gguf";
// batched-bench params
bool batched_bench_output_jsonl = false;
// common params
std::string out_file; // output filename for all example programs
};
// call once at the start of a program if it uses libcommon
@@ -453,6 +467,8 @@ std::string string_repeat(const std::string & str, size_t n);
void string_replace_all(std::string & s, const std::string & search, const std::string & replace);
std::string regex_escape(const std::string & s);
template<class T>
static std::vector<T> string_split(const std::string & str, char delim) {
static_assert(!std::is_same<T, std::string>::value, "Please use the specialized version for std::string");

View File

@@ -264,7 +264,7 @@ static void _build_min_max_int(int min_value, int max_value, std::stringstream &
throw std::runtime_error("At least one of min_value or max_value must be set");
}
const std::string SPACE_RULE = "| \" \" | \"\\n\" [ \\t]{0,20}";
const std::string SPACE_RULE = "| \" \" | \"\\n\"{1,2} [ \\t]{0,20}";
struct BuiltinRule {
std::string content;
@@ -764,11 +764,10 @@ private:
public:
SchemaConverter(
const std::function<json(const std::string &)> & fetch_json,
bool dotall,
bool compact_spaces)
bool dotall)
: _fetch_json(fetch_json), _dotall(dotall)
{
_rules["space"] = compact_spaces ? "\" \"?" : SPACE_RULE;
_rules["space"] = SPACE_RULE;
}
void resolve_refs(json & schema, const std::string & url) {
@@ -1007,7 +1006,7 @@ std::string json_schema_to_grammar(const json & schema, bool force_gbnf) {
}
std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options) {
SchemaConverter converter([&](const std::string &) { return json(); }, options.dotall, options.compact_spaces);
SchemaConverter converter([&](const std::string &) { return json(); }, options.dotall);
common_grammar_builder builder {
/* .add_rule = */ [&](const std::string & name, const std::string & rule) {
return converter._add_rule(name, rule);

View File

@@ -16,7 +16,6 @@ struct common_grammar_builder {
struct common_grammar_options {
bool dotall = false;
bool compact_spaces = false;
};
std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options = {});

View File

@@ -1378,13 +1378,27 @@ struct ArgumentsExpression {
}
};
static std::string strip(const std::string & s) {
auto start = s.find_first_not_of(" \t\n\r");
static std::string strip(const std::string & s, const std::string & chars = "", bool left = true, bool right = true) {
auto charset = chars.empty() ? " \t\n\r" : chars;
auto start = left ? s.find_first_not_of(charset) : 0;
if (start == std::string::npos) return "";
auto end = s.find_last_not_of(" \t\n\r");
auto end = right ? s.find_last_not_of(charset) : s.size() - 1;
return s.substr(start, end - start + 1);
}
static std::vector<std::string> split(const std::string & s, const std::string & sep) {
std::vector<std::string> result;
size_t start = 0;
size_t end = s.find(sep);
while (end != std::string::npos) {
result.push_back(s.substr(start, end - start));
start = end + sep.length();
end = s.find(sep, start);
}
result.push_back(s.substr(start));
return result;
}
static std::string capitalize(const std::string & s) {
if (s.empty()) return s;
auto result = s;
@@ -1467,8 +1481,26 @@ public:
} else if (obj.is_string()) {
auto str = obj.get<std::string>();
if (method->get_name() == "strip") {
vargs.expectArgs("strip method", {0, 0}, {0, 0});
return Value(strip(str));
vargs.expectArgs("strip method", {0, 1}, {0, 0});
auto chars = vargs.args.empty() ? "" : vargs.args[0].get<std::string>();
return Value(strip(str, chars));
} else if (method->get_name() == "lstrip") {
vargs.expectArgs("lstrip method", {0, 1}, {0, 0});
auto chars = vargs.args.empty() ? "" : vargs.args[0].get<std::string>();
return Value(strip(str, chars, /* left= */ true, /* right= */ false));
} else if (method->get_name() == "rstrip") {
vargs.expectArgs("rstrip method", {0, 1}, {0, 0});
auto chars = vargs.args.empty() ? "" : vargs.args[0].get<std::string>();
return Value(strip(str, chars, /* left= */ false, /* right= */ true));
} else if (method->get_name() == "split") {
vargs.expectArgs("split method", {1, 1}, {0, 0});
auto sep = vargs.args[0].get<std::string>();
auto parts = split(str, sep);
Value result = Value::array();
for (const auto& part : parts) {
result.push_back(Value(part));
}
return result;
} else if (method->get_name() == "capitalize") {
vargs.expectArgs("capitalize method", {0, 0}, {0, 0});
return Value(capitalize(str));

View File

@@ -7,6 +7,7 @@
#include <cstdio>
#include <fstream>
#include <thread>
#include <algorithm>
void common_ngram_cache_update(common_ngram_cache & ngram_cache, int ngram_min, int ngram_max,
std::vector<llama_token> & inp, int nnew, bool print_progress) {

View File

@@ -4,6 +4,7 @@
#include <cmath>
#include <unordered_map>
#include <algorithm>
// the ring buffer works similarly to std::deque, but with a fixed capacity
// TODO: deduplicate with llama-impl.h
@@ -159,16 +160,53 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
GGML_ABORT("llguidance (cmake -DLLAMA_LLGUIDANCE=ON) is not enabled");
#endif // LLAMA_USE_LLGUIDANCE
} else {
std::vector<const char *> trigger_words;
trigger_words.reserve(params.grammar_trigger_words.size());
for (const auto & str : params.grammar_trigger_words) {
trigger_words.push_back(str.word.c_str());
std::vector<std::string> patterns_at_start;
std::vector<std::string> patterns_anywhere;
std::vector<llama_token> trigger_tokens;
for (const auto & trigger : params.grammar_triggers) {
switch (trigger.type) {
case COMMON_GRAMMAR_TRIGGER_TYPE_WORD:
{
const auto & word = trigger.value;
patterns_anywhere.push_back(regex_escape(word));
break;
}
case COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN:
case COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_START:
{
const auto & pattern = trigger.value;
(trigger.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_START ? patterns_at_start : patterns_anywhere).push_back(pattern);
break;
}
case COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN:
{
const auto token = trigger.token;
trigger_tokens.push_back(token);
break;
}
default:
GGML_ASSERT(false && "unknown trigger type");
}
}
std::vector<std::string> trigger_patterns;
if (!patterns_at_start.empty()) {
trigger_patterns.push_back("^(" + string_join(patterns_at_start, "|") + ")[\\s\\S]*");
}
if (!patterns_anywhere.empty()) {
trigger_patterns.push_back("^[\\s\\S]*?(" + string_join(patterns_anywhere, "|") + ")[\\s\\S]*");
}
std::vector<const char *> trigger_patterns_c;
trigger_patterns_c.reserve(trigger_patterns.size());
for (const auto & regex : trigger_patterns) {
trigger_patterns_c.push_back(regex.c_str());
}
grmr = params.grammar_lazy
? llama_sampler_init_grammar_lazy(vocab, params.grammar.c_str(), "root",
trigger_words.data(), trigger_words.size(),
params.grammar_trigger_tokens.data(), params.grammar_trigger_tokens.size())
? llama_sampler_init_grammar_lazy_patterns(vocab, params.grammar.c_str(), "root",
trigger_patterns_c.data(), trigger_patterns_c.size(),
trigger_tokens.data(), trigger_tokens.size())
: llama_sampler_init_grammar(vocab, params.grammar.c_str(), "root");
}

View File

@@ -5,6 +5,7 @@
#include "sampling.h"
#include <cstring>
#include <algorithm>
#define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 128
#define SPEC_VOCAB_CHECK_START_TOKEN_ID 5

View File

@@ -699,6 +699,9 @@ class Model:
if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
# ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
res = "deepseek-r1-qwen"
if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
# ref: https://huggingface.co/Xenova/gpt-4o
res = "gpt-4o"
if res is None:
logger.warning("\n")
@@ -2512,7 +2515,8 @@ class Phi3MiniModel(Model):
rms_eps = self.find_hparam(["rms_norm_eps"])
max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
rope_dims = n_embd // n_head
rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
rope_dims = int(rot_pct * n_embd) // n_head
self.gguf_writer.add_context_length(max_pos_embds)
self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
@@ -2536,7 +2540,8 @@ class Phi3MiniModel(Model):
n_head = self.find_hparam(["num_attention_heads", "n_head"])
max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
rope_dims = n_embd // n_head
rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
rope_dims = int(rot_pct * n_embd) // n_head
# write rope scaling for long context (128k) model
rope_scaling = self.find_hparam(['rope_scaling'], True)
@@ -2565,7 +2570,7 @@ class Phi3MiniModel(Model):
raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))

View File

@@ -109,6 +109,7 @@ models = [
{"name": "megrez", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Infinigence/Megrez-3B-Instruct"},
{"name": "deepseek-v3", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/DeepSeek-V3"},
{"name": "deepseek-r1-qwen", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"},
{"name": "gpt-4o", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Xenova/gpt-4o", },
]
@@ -131,6 +132,10 @@ def download_model(model):
files = ["config.json", "tokenizer.json", "tokenizer_config.json"]
if name == "gpt-4o":
# Xenova/gpt-4o is tokenizer-only, it does not contain config.json
files = ["tokenizer.json", "tokenizer_config.json"]
if tokt == TOKENIZER_TYPE.SPM:
files.append("tokenizer.model")

View File

@@ -197,29 +197,53 @@ The following compilation options are also available to tweak performance:
## MUSA
This provides GPU acceleration using the MUSA cores of your Moore Threads MTT GPU. Make sure to have the MUSA SDK installed. You can download it from here: [MUSA SDK](https://developer.mthreads.com/sdk/download/musa).
This provides GPU acceleration using a Moore Threads GPU. Make sure to have the [MUSA SDK](https://developer.mthreads.com/musa/musa-sdk) installed.
- Using `CMake`:
#### Download directly from Moore Threads
```bash
cmake -B build -DGGML_MUSA=ON
cmake --build build --config Release
You may find the official downloads here: [Moore Threads developer site](https://developer.mthreads.com/sdk/download/musa).
### Compilation
```bash
cmake -B build -DGGML_MUSA=ON
cmake --build build --config Release
```
#### Override Compute Capability Specifications
By default, all supported compute capabilities are enabled. To customize this behavior, you can specify the `MUSA_ARCHITECTURES` option in the CMake command:
```bash
cmake -B build -DGGML_MUSA=ON -DMUSA_ARCHITECTURES="21"
```
This configuration enables only compute capability `2.1` (MTT S80) during compilation, which can help reduce compilation time.
#### Compilation options
Most of the compilation options available for CUDA should also be available for MUSA, though they haven't been thoroughly tested yet.
- For static builds, add `-DBUILD_SHARED_LIBS=OFF` and `-DCMAKE_POSITION_INDEPENDENT_CODE=ON`:
```
For static build:
```bash
cmake -B build -DGGML_MUSA=ON \
-DBUILD_SHARED_LIBS=OFF -DCMAKE_POSITION_INDEPENDENT_CODE=ON
cmake --build build --config Release
```
The environment variable [`MUSA_VISIBLE_DEVICES`](https://docs.mthreads.com/musa-sdk/musa-sdk-doc-online/programming_guide/Z%E9%99%84%E5%BD%95/) can be used to specify which GPU(s) will be used.
### Runtime MUSA environmental variables
You may set the [musa environmental variables](https://docs.mthreads.com/musa-sdk/musa-sdk-doc-online/programming_guide/Z%E9%99%84%E5%BD%95/) at runtime.
```bash
# Use `MUSA_VISIBLE_DEVICES` to hide the first compute device.
MUSA_VISIBLE_DEVICES="-0" ./build/bin/llama-server --model /srv/models/llama.gguf
```
### Unified Memory
The environment variable `GGML_CUDA_ENABLE_UNIFIED_MEMORY=1` can be used to enable unified memory in Linux. This allows swapping to system RAM instead of crashing when the GPU VRAM is exhausted.
Most of the compilation options available for CUDA should also be available for MUSA, though they haven't been thoroughly tested yet.
## HIP
This provides GPU acceleration on HIP-supported AMD GPUs.
@@ -235,6 +259,12 @@ You can download it from your Linux distro's package manager or from here: [ROCm
On Linux it is also possible to use unified memory architecture (UMA) to share main memory between the CPU and integrated GPU by setting `-DGGML_HIP_UMA=ON`.
However, this hurts performance for non-integrated GPUs (but enables working with integrated GPUs).
To enhance flash attention performance on RDNA3+ or CDNA architectures, you can utilize the rocWMMA library by enabling the `-DGGML_HIP_ROCWMMA_FATTN=ON` option. This requires rocWMMA headers to be installed on the build system.
The rocWMMA library is included by default when installing the ROCm SDK using the `rocm` meta package provided by AMD. Alternatively, if you are not using the meta package, you can install the library using the `rocwmma-dev` or `rocwmma-devel` package, depending on your system's package manager.
As an alternative, you can manually install the library by cloning it from the official [GitHub repository](https://github.com/ROCm/rocWMMA), checkout the corresponding version tag (e.g. `rocm-6.2.4`) and set `-DCMAKE_CXX_FLAGS="-I<path/to/rocwmma>/library/include/"` in CMake. This also works under Windows despite not officially supported by AMD.
Note that if you get the following error:
```
clang: error: cannot find ROCm device library; provide its path via '--rocm-path' or '--rocm-device-lib-path', or pass '-nogpulib' to build without ROCm device library

View File

@@ -287,30 +287,32 @@ Here are some models known to work (w/ chat template override when needed):
llama-server --jinja -fa -hf bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M
llama-server --jinja -fa -hf bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q6_K_L
llama-server --jinja -fa -hf bartowski/functionary-small-v3.2-GGUF:Q4_K_M
llama-server --jinja -fa -hf bartowski/Llama-3.3-70B-Instruct-GGUF:Q4_K_M
# Native support for DeepSeek R1 works best w/ our own template (official template buggy)
# Native support for DeepSeek R1 works best w/ our template override (official template is buggy, although we do work around it)
llama-server --jinja -fa -hf bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q6_K_L \
--chat-template-file models/templates/llama-cpp-deepseek-r1.jinja
--chat-template-file models/templates/llama-cpp-deepseek-r1.jinja
llama-server --jinja -fa -hf bartowski/DeepSeek-R1-Distill-Qwen-32B-GGUF:Q4_K_M \
--chat-template-file models/templates/llama-cpp-deepseek-r1.jinja
--chat-template-file models/templates/llama-cpp-deepseek-r1.jinja
# Native support requires the right template for these GGUFs:
llama-server --jinja -fa -hf bartowski/functionary-small-v3.2-GGUF:Q4_K_M
--chat-template-file models/templates/meetkai-functionary-medium-v3.2.jinja
llama-server --jinja -fa -hf bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M \
--chat-template-file <( python scripts/get_chat_template.py NousResearch/Hermes-2-Pro-Llama-3-8B tool_use )
--chat-template-file models/templates/NousResearch-Hermes-2-Pro-Llama-3-8B-tool_use.jinja
llama-server --jinja -fa -hf bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M \
--chat-template-file <( python scripts/get_chat_template.py NousResearch/Hermes-3-Llama-3.1-8B tool_use )
--chat-template-file models/templates/NousResearch-Hermes-3-Llama-3.1-8B-tool_use.jinja
llama-server --jinja -fa -hf bartowski/firefunction-v2-GGUF -hff firefunction-v2-IQ1_M.gguf \
--chat-template-file <( python scripts/get_chat_template.py fireworks-ai/llama-3-firefunction-v2 tool_use )
--chat-template-file models/templates/fireworks-ai-llama-3-firefunction-v2.jinja
llama-server --jinja -fa -hf bartowski/c4ai-command-r7b-12-2024-GGUF:Q6_K_L \
--chat-template-file <( python scripts/get_chat_template.py CohereForAI/c4ai-command-r7b-12-2024 tool_use )
--chat-template-file models/templates/CohereForAI-c4ai-command-r7b-12-2024-tool_use.jinja
# Generic format support
llama-server --jinja -fa -hf bartowski/phi-4-GGUF:Q4_0
@@ -318,6 +320,8 @@ llama-server --jinja -fa -hf bartowski/gemma-2-2b-it-GGUF:Q8_0
llama-server --jinja -fa -hf bartowski/c4ai-command-r-v01-GGUF:Q2_K
```
To get the official template from original HuggingFace repos, you can use [scripts/get_chat_template.py](../scripts/get_chat_template.py) (see examples invocations in [models/templates/README.md](../models/templates/README.md))
> [!TIP]
> If there is no official `tool_use` Jinja template, you may want to set `--chat-template chatml` to use a default that works with many models (YMMV!), or write your own (e.g. we provide a custom [llama-cpp-deepseek-r1.jinja](../models/templates/llama-cpp-deepseek-r1.jinja) for DeepSeek R1 distills)

View File

@@ -394,6 +394,8 @@ static int prepare_entries(common_params & params, train_context & ctx_train) {
int main(int argc, char ** argv) {
common_params params;
params.out_file = "control_vector.gguf";
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_CVECTOR_GENERATOR, print_usage)) {
return 1;
}
@@ -498,7 +500,7 @@ int main(int argc, char ** argv) {
}
// write output vectors to gguf
export_gguf(ctx_train.v_final, params.cvector_outfile, model_hint);
export_gguf(ctx_train.v_final, params.out_file, model_hint);
llama_backend_free();

View File

@@ -4,6 +4,7 @@
#include "llama.h"
#include <ctime>
#include <algorithm>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data

View File

@@ -413,20 +413,22 @@ static void print_usage(int, char ** argv) {
int main(int argc, char ** argv) {
common_params params;
params.out_file = "ggml-lora-merged-f16.gguf";
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_EXPORT_LORA, print_usage)) {
return 1;
}
g_verbose = (params.verbosity > 1);
try {
lora_merge_ctx ctx(params.model, params.lora_adapters, params.lora_outfile, params.cpuparams.n_threads);
lora_merge_ctx ctx(params.model, params.lora_adapters, params.out_file, params.cpuparams.n_threads);
ctx.run_merge();
} catch (const std::exception & err) {
fprintf(stderr, "%s\n", err.what());
exit(EXIT_FAILURE);
}
printf("done, output file is %s\n", params.lora_outfile.c_str());
printf("done, output file is %s\n", params.out_file.c_str());
return 0;
}

View File

@@ -206,9 +206,6 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
void IMatrixCollector::save_imatrix(int ncall) const {
auto fname = m_params.out_file;
if (fname.empty()) {
fname = "imatrix.dat";
}
if (ncall > 0) {
fname += ".at_";
@@ -583,6 +580,8 @@ static bool compute_imatrix(llama_context * ctx, const common_params & params) {
int main(int argc, char ** argv) {
common_params params;
params.out_file = "imatrix.dat" ;
params.n_ctx = 512;
params.logits_all = true;
params.escape = false;

View File

@@ -195,7 +195,7 @@ class BuiltinRule:
self.deps = deps or []
# Constraining spaces to prevent model "running away".
SPACE_RULE = '| " " | "\\n" [ \\t]{0,20}'
SPACE_RULE = '| " " | "\\n"{1,2} [ \\t]{0,20}'
PRIMITIVE_RULES = {
'boolean' : BuiltinRule('("true" | "false") space', []),

View File

@@ -361,7 +361,7 @@ Java_android_llama_cpp_LLamaAndroid_completion_1init(
const auto tokens_list = common_tokenize(context, text, true, parse_special);
auto n_ctx = llama_n_ctx(context);
auto n_kv_req = tokens_list.size() + (n_len - tokens_list.size());
auto n_kv_req = tokens_list.size() + n_len;
LOGi("n_len = %d, n_ctx = %d, n_kv_req = %d", n_len, n_ctx, n_kv_req);

View File

@@ -5,6 +5,21 @@ point for more advanced projects.
For usage instructions and performance stats, check the following discussion: https://github.com/ggml-org/llama.cpp/discussions/4508
### Building
First llama.cpp need to be built and a XCFramework needs to be created. This can be done by running
the following script from the llama.cpp project root:
```console
$ ./build-xcframework.sh
```
Open `llama.swiftui.xcodeproj` project in Xcode and you should be able to build and run the app on
a simulator or a real device.
To use the framework with a different project, the XCFramework can be added to the project by
adding `build-ios/llama.xcframework` by dragging and dropping it into the project navigator, or
by manually selecting the framework in the "Frameworks, Libraries, and Embedded Content" section
of the project settings.
![image](https://github.com/ggml-org/llama.cpp/assets/1991296/2b40284f-8421-47a2-b634-74eece09a299)
Video demonstration:

View File

@@ -7,7 +7,6 @@
objects = {
/* Begin PBXBuildFile section */
1809696D2D05A39F00400EE8 /* llama in Frameworks */ = {isa = PBXBuildFile; productRef = 1809696C2D05A39F00400EE8 /* llama */; };
549479CB2AC9E16000E0F78B /* Metal.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = 549479CA2AC9E16000E0F78B /* Metal.framework */; };
79E1D9CD2B4CD16E005F8E46 /* InputButton.swift in Sources */ = {isa = PBXBuildFile; fileRef = 79E1D9CC2B4CD16E005F8E46 /* InputButton.swift */; };
7FA3D2B32B2EA2F600543F92 /* DownloadButton.swift in Sources */ = {isa = PBXBuildFile; fileRef = 7FA3D2B22B2EA2F600543F92 /* DownloadButton.swift */; };
@@ -18,9 +17,25 @@
8A3F84242AC4C891005E2EE8 /* models in Resources */ = {isa = PBXBuildFile; fileRef = 8A3F84232AC4C891005E2EE8 /* models */; };
8A907F332AC7138A006146EA /* LibLlama.swift in Sources */ = {isa = PBXBuildFile; fileRef = 8A907F322AC7134E006146EA /* LibLlama.swift */; };
8A9F7C4D2AC332EE008AE1EA /* LlamaState.swift in Sources */ = {isa = PBXBuildFile; fileRef = 8A9F7C4C2AC332EE008AE1EA /* LlamaState.swift */; };
DD84C9FD2D747FED007778EC /* llama.xcframework in Frameworks */ = {isa = PBXBuildFile; fileRef = DD84C9FC2D747FED007778EC /* llama.xcframework */; };
DD84C9FE2D747FED007778EC /* llama.xcframework in Embed Frameworks */ = {isa = PBXBuildFile; fileRef = DD84C9FC2D747FED007778EC /* llama.xcframework */; settings = {ATTRIBUTES = (CodeSignOnCopy, RemoveHeadersOnCopy, ); }; };
F1FE20E22B465ECA00B45541 /* LoadCustomButton.swift in Sources */ = {isa = PBXBuildFile; fileRef = F1FE20E12B465EC900B45541 /* LoadCustomButton.swift */; };
/* End PBXBuildFile section */
/* Begin PBXCopyFilesBuildPhase section */
DD84C9FF2D747FED007778EC /* Embed Frameworks */ = {
isa = PBXCopyFilesBuildPhase;
buildActionMask = 2147483647;
dstPath = "";
dstSubfolderSpec = 10;
files = (
DD84C9FE2D747FED007778EC /* llama.xcframework in Embed Frameworks */,
);
name = "Embed Frameworks";
runOnlyForDeploymentPostprocessing = 0;
};
/* End PBXCopyFilesBuildPhase section */
/* Begin PBXFileReference section */
549479CA2AC9E16000E0F78B /* Metal.framework */ = {isa = PBXFileReference; lastKnownFileType = wrapper.framework; name = Metal.framework; path = System/Library/Frameworks/Metal.framework; sourceTree = SDKROOT; };
79E1D9CC2B4CD16E005F8E46 /* InputButton.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = InputButton.swift; sourceTree = "<group>"; };
@@ -33,6 +48,7 @@
8A3F84232AC4C891005E2EE8 /* models */ = {isa = PBXFileReference; lastKnownFileType = folder; name = models; path = llama.swiftui/Resources/models; sourceTree = "<group>"; };
8A907F322AC7134E006146EA /* LibLlama.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = LibLlama.swift; sourceTree = "<group>"; };
8A9F7C4C2AC332EE008AE1EA /* LlamaState.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = LlamaState.swift; sourceTree = "<group>"; };
DD84C9FC2D747FED007778EC /* llama.xcframework */ = {isa = PBXFileReference; lastKnownFileType = wrapper.xcframework; name = llama.xcframework; path = "../../build-apple/llama.xcframework"; sourceTree = "<group>"; };
DF2D2FE72B4A59BE00FCB72D /* llama.cpp */ = {isa = PBXFileReference; lastKnownFileType = wrapper; name = llama.cpp; path = ../..; sourceTree = "<group>"; };
F1FE20E12B465EC900B45541 /* LoadCustomButton.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = LoadCustomButton.swift; sourceTree = "<group>"; };
/* End PBXFileReference section */
@@ -42,9 +58,9 @@
isa = PBXFrameworksBuildPhase;
buildActionMask = 2147483647;
files = (
1809696D2D05A39F00400EE8 /* llama in Frameworks */,
549479CB2AC9E16000E0F78B /* Metal.framework in Frameworks */,
8A39BE0A2AC7601100BFEB40 /* Accelerate.framework in Frameworks */,
DD84C9FD2D747FED007778EC /* llama.xcframework in Frameworks */,
);
runOnlyForDeploymentPostprocessing = 0;
};
@@ -86,6 +102,7 @@
8A39BE082AC7601000BFEB40 /* Frameworks */ = {
isa = PBXGroup;
children = (
DD84C9FC2D747FED007778EC /* llama.xcframework */,
549479CA2AC9E16000E0F78B /* Metal.framework */,
8A39BE092AC7601000BFEB40 /* Accelerate.framework */,
);
@@ -144,6 +161,7 @@
8A1C836F2AC328BD0096AF73 /* Sources */,
8A1C83702AC328BD0096AF73 /* Frameworks */,
8A1C83712AC328BD0096AF73 /* Resources */,
DD84C9FF2D747FED007778EC /* Embed Frameworks */,
);
buildRules = (
);
@@ -151,7 +169,6 @@
);
name = llama.swiftui;
packageProductDependencies = (
1809696C2D05A39F00400EE8 /* llama */,
);
productName = llama.swiftui;
productReference = 8A1C83732AC328BD0096AF73 /* llama.swiftui.app */;
@@ -427,13 +444,6 @@
defaultConfigurationName = Release;
};
/* End XCConfigurationList section */
/* Begin XCSwiftPackageProductDependency section */
1809696C2D05A39F00400EE8 /* llama */ = {
isa = XCSwiftPackageProductDependency;
productName = llama;
};
/* End XCSwiftPackageProductDependency section */
};
rootObject = 8A1C836B2AC328BD0096AF73 /* Project object */;
}

View File

@@ -3,8 +3,8 @@
Download the model and point your `GRANITE_MODEL` environment variable to the path.
```bash
$ git clone https://huggingface.co/ibm-granite/granite-vision-3.1-2b-preview
$ export GRANITE_MODEL=./granite-vision-3.1-2b-preview
$ git clone https://huggingface.co/ibm-granite/granite-vision-3.2-2b
$ export GRANITE_MODEL=./granite-vision-3.2-2b
```
@@ -41,10 +41,18 @@ If you actually inspect the `.keys()` of the loaded tensors, you should see a lo
### 2. Creating the Visual Component GGUF
To create the GGUF for the visual components, we need to write a config for the visual encoder; make sure the config contains the correct `image_grid_pinpoints`
Next, create a new directory to hold the visual components, and copy the llava.clip/projector files, as shown below.
```bash
$ ENCODER_PATH=$PWD/visual_encoder
$ mkdir $ENCODER_PATH
$ cp $GRANITE_MODEL/llava.clip $ENCODER_PATH/pytorch_model.bin
$ cp $GRANITE_MODEL/llava.projector $ENCODER_PATH/
```
Now, we need to write a config for the visual encoder. In order to convert the model, be sure to use the correct `image_grid_pinpoints`, as these may vary based on the model. You can find the `image_grid_pinpoints` in `$GRANITE_MODEL/config.json`.
Note: we refer to this file as `$VISION_CONFIG` later on.
```json
{
"_name_or_path": "siglip-model",
@@ -52,6 +60,7 @@ Note: we refer to this file as `$VISION_CONFIG` later on.
"SiglipVisionModel"
],
"image_grid_pinpoints": [
[384,384],
[384,768],
[384,1152],
[384,1536],
@@ -94,24 +103,13 @@ Note: we refer to this file as `$VISION_CONFIG` later on.
}
```
Create a new directory to hold the visual components, and copy the llava.clip/projector files, as well as the vision config into it.
```bash
$ ENCODER_PATH=$PWD/visual_encoder
$ mkdir $ENCODER_PATH
$ cp $GRANITE_MODEL/llava.clip $ENCODER_PATH/pytorch_model.bin
$ cp $GRANITE_MODEL/llava.projector $ENCODER_PATH/
$ cp $VISION_CONFIG $ENCODER_PATH/config.json
```
At which point you should have something like this:
At this point you should have something like this:
```bash
$ ls $ENCODER_PATH
config.json llava.projector pytorch_model.bin
```
Now convert the components to GGUF; Note that we also override the image mean/std dev to `[.5,.5,.5]` since we use the siglip visual encoder - in the transformers model, you can find these numbers in the [preprocessor_config.json](https://huggingface.co/ibm-granite/granite-vision-3.1-2b-preview/blob/main/preprocessor_config.json).
Now convert the components to GGUF; Note that we also override the image mean/std dev to `[.5,.5,.5]` since we use the SigLIP visual encoder - in the transformers model, you can find these numbers in the `preprocessor_config.json`.
```bash
$ python convert_image_encoder_to_gguf.py \
-m $ENCODER_PATH \
@@ -119,17 +117,18 @@ $ python convert_image_encoder_to_gguf.py \
--output-dir $ENCODER_PATH \
--clip-model-is-vision \
--clip-model-is-siglip \
--image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5
--image-mean 0.5 0.5 0.5 \
--image-std 0.5 0.5 0.5
```
this will create the first GGUF file at `$ENCODER_PATH/mmproj-model-f16.gguf`; we will refer to the abs path of this file as the `$VISUAL_GGUF_PATH.`
This will create the first GGUF file at `$ENCODER_PATH/mmproj-model-f16.gguf`; we will refer to the absolute path of this file as the `$VISUAL_GGUF_PATH.`
### 3. Creating the LLM GGUF.
The granite vision model contains a granite LLM as its language model. For now, the easiest way to get the GGUF for LLM is by loading the composite model in `transformers` and exporting the LLM so that it can be directly converted with the normal conversion path.
First, set the `LLM_EXPORT_PATH` to the path to export the `transformers` LLM to.
```
```bash
$ export LLM_EXPORT_PATH=$PWD/granite_vision_llm
```
@@ -142,7 +141,7 @@ if not MODEL_PATH:
raise ValueError("env var GRANITE_MODEL is unset!")
LLM_EXPORT_PATH = os.getenv("LLM_EXPORT_PATH")
if not MODEL_PATH:
if not LLM_EXPORT_PATH:
raise ValueError("env var LLM_EXPORT_PATH is unset!")
tokenizer = transformers.AutoTokenizer.from_pretrained(MODEL_PATH)
@@ -166,18 +165,26 @@ $ python convert_hf_to_gguf.py --outfile $LLM_GGUF_PATH $LLM_EXPORT_PATH
```
### 4. Running the Model in Llama cpp
Build llama cpp normally; you should have a target binary named `llama-llava-cli`, which you can pass two binaries to. Sample usage:
### 4. Quantization
If you want to quantize the LLM, you can do so with `llama-quantize` as you would any other LLM. For example:
```bash
$ ./build/bin/llama-quantize $LLM_EXPORT_PATH/granite_llm.gguf $LLM_EXPORT_PATH/granite_llm_q4_k_m.gguf Q4_K_M
$ LLM_GGUF_PATH=$LLM_EXPORT_PATH/granite_llm_q4_k_m.gguf
```
Note - the test image shown below can be found [here](https://github-production-user-asset-6210df.s3.amazonaws.com/10740300/415512792-d90d5562-8844-4f34-a0a5-77f62d5a58b5.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAVCODYLSA53PQK4ZA%2F20250221%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20250221T054145Z&X-Amz-Expires=300&X-Amz-Signature=86c60be490aa49ef7d53f25d6c973580a8273904fed11ed2453d0a38240ee40a&X-Amz-SignedHeaders=host).
Note that currently you cannot quantize the visual encoder because granite vision models use SigLIP as the visual encoder, which has tensor dimensions that are not divisible by 32.
### 5. Running the Model in Llama cpp
Build llama cpp normally; you should have a target binary named `llama-llava-cli`, which you can pass two binaries to. As an example, we pass the the llama.cpp banner.
```bash
$ ./build/bin/llama-llava-cli -m $LLM_GGUF_PATH \
--mmproj $VISUAL_GGUF_PATH \
--image cherry_blossom.jpg \
--image ./media/llama0-banner.png \
-c 16384 \
-p "<|system|>\nA chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.\n<|user|>\n\<image>\nWhat type of flowers are in this picture?\n<|assistant|>\n" \
-p "<|system|>\nA chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.\n<|user|>\n\<image>\nWhat does the text in this image say?\n<|assistant|>\n" \
--temp 0
```
Sample response: `The flowers in the picture are cherry blossoms, which are known for their delicate pink petals and are often associated with the beauty of spring.`
Sample output: `The text in the image reads "LLAMA C++ Can it run DOOM Llama?"`

View File

@@ -5,13 +5,25 @@ Currently, this readme only supports minicpm-omni's image capabilities, and we w
Download [MiniCPM-o-2_6](https://huggingface.co/openbmb/MiniCPM-o-2_6) PyTorch model from huggingface to "MiniCPM-o-2_6" folder.
### Build llama.cpp
Readme modification time: 20250206
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
Clone llama.cpp:
```bash
git clone git@github.com:OpenBMB/llama.cpp.git
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
git checkout minicpm-omni
```
Build llama.cpp using `CMake`:
```bash
cmake -B build
cmake --build build --config Release
```
### Usage of MiniCPM-o 2.6
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-o-2_6-gguf) by us)
@@ -22,25 +34,15 @@ python ./examples/llava/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-
python ./convert_hf_to_gguf.py ../MiniCPM-o-2_6/model
# quantize int4 version
./llama-quantize ../MiniCPM-o-2_6/model/ggml-model-f16.gguf ../MiniCPM-o-2_6/model/ggml-model-Q4_K_M.gguf Q4_K_M
./build/bin/llama-quantize ../MiniCPM-o-2_6/model/ggml-model-f16.gguf ../MiniCPM-o-2_6/model/ggml-model-Q4_K_M.gguf Q4_K_M
```
Build llama.cpp using `CMake`:
https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md
```bash
cmake -B build
cmake --build build --config Release
```
Inference on Linux or Mac
```
```bash
# run f16 version
./llama-minicpmv-cli -m ../MiniCPM-o-2_6/model/ggml-model-f16.gguf --mmproj ../MiniCPM-o-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
./build/bin/llama-minicpmv-cli -m ../MiniCPM-o-2_6/model/ggml-model-f16.gguf --mmproj ../MiniCPM-o-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
# run quantized int4 version
./llama-minicpmv-cli -m ../MiniCPM-o-2_6/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-o-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
# or run in interactive mode
./llama-minicpmv-cli -m ../MiniCPM-o-2_6/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-o-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -i
./build/bin/llama-minicpmv-cli -m ../MiniCPM-o-2_6/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-o-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
```

View File

@@ -4,13 +4,26 @@
Download [MiniCPM-Llama3-V-2_5](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5) PyTorch model from huggingface to "MiniCPM-Llama3-V-2_5" folder.
### Build llama.cpp
Readme modification time: 20250206
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
Clone llama.cpp:
```bash
git clone https://github.com/ggml-org/llama.cpp
cd llama.cpp
```
### Usage
Build llama.cpp using `CMake`:
```bash
cmake -B build
cmake --build build --config Release
```
### Usage of MiniCPM-Llama3-V 2.5
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf) by us)
@@ -20,80 +33,15 @@ python ./examples/llava/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-
python ./convert_hf_to_gguf.py ../MiniCPM-Llama3-V-2_5/model
# quantize int4 version
./llama-quantize ../MiniCPM-Llama3-V-2_5/model/model-8B-F16.gguf ../MiniCPM-Llama3-V-2_5/model/ggml-model-Q4_K_M.gguf Q4_K_M
./build/bin/llama-quantize ../MiniCPM-Llama3-V-2_5/model/model-8B-F16.gguf ../MiniCPM-Llama3-V-2_5/model/ggml-model-Q4_K_M.gguf Q4_K_M
```
Build for Linux or Mac
```bash
make
make llama-minicpmv-cli
```
Inference on Linux or Mac
```
```bash
# run f16 version
./llama-minicpmv-cli -m ../MiniCPM-Llama3-V-2_5/model/model-8B-F16.gguf --mmproj ../MiniCPM-Llama3-V-2_5/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
./build/bin/llama-minicpmv-cli -m ../MiniCPM-Llama3-V-2_5/model/model-8B-F16.gguf --mmproj ../MiniCPM-Llama3-V-2_5/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
# run quantized int4 version
./llama-minicpmv-cli -m ../MiniCPM-Llama3-V-2_5/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-Llama3-V-2_5/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
# or run in interactive mode
./llama-minicpmv-cli -m ../MiniCPM-Llama3-V-2_5/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-Llama3-V-2_5/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -i
```
### Android
#### Build on Android device using Termux
We found that build on Android device would bring better runtime performance, so we recommend to build on device.
[Termux](https://github.com/termux/termux-app#installation) is a terminal app on Android device (no root required).
Install tools in Termux:
```
apt update && apt upgrade -y
apt install git make cmake
```
It's recommended to move your model inside the `~/` directory for best performance:
```
cd storage/downloads
mv model.gguf ~/
```
#### Building the Project using Android NDK
Obtain the [Android NDK](https://developer.android.com/ndk) and then build with CMake.
Execute the following commands on your computer to avoid downloading the NDK to your mobile. Alternatively, you can also do this in Termux:
```bash
mkdir build-android
cd build-android
export NDK=/your_ndk_path
cmake -DCMAKE_TOOLCHAIN_FILE=$NDK/build/cmake/android.toolchain.cmake -DANDROID_ABI=arm64-v8a -DANDROID_PLATFORM=android-23 -DCMAKE_C_FLAGS=-march=armv8.4a+dotprod ..
make
```
Install [termux](https://github.com/termux/termux-app#installation) on your device and run `termux-setup-storage` to get access to your SD card (if Android 11+ then run the command twice).
Finally, copy these built `llama` binaries and the model file to your device storage. Because the file permissions in the Android sdcard cannot be changed, you can copy the executable files to the `/data/data/com.termux/files/home/bin` path, and then execute the following commands in Termux to add executable permission:
(Assumed that you have pushed the built executable files to the /sdcard/llama.cpp/bin path using `adb push`)
```
$cp -r /sdcard/llama.cpp/bin /data/data/com.termux/files/home/
$cd /data/data/com.termux/files/home/bin
$chmod +x ./*
```
Download models and push them to `/sdcard/llama.cpp/`, then move it to `/data/data/com.termux/files/home/model/`
```
$mv /sdcard/llama.cpp/ggml-model-Q4_K_M.gguf /data/data/com.termux/files/home/model/
$mv /sdcard/llama.cpp/mmproj-model-f16.gguf /data/data/com.termux/files/home/model/
```
Now, you can start chatting:
```
$cd /data/data/com.termux/files/home/bin
$./llama-minicpmv-cli -m ../model/ggml-model-Q4_K_M.gguf --mmproj ../model/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
./build/bin/llama-minicpmv-cli -m ../MiniCPM-Llama3-V-2_5/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-Llama3-V-2_5/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
```

View File

@@ -4,13 +4,25 @@
Download [MiniCPM-V-2_6](https://huggingface.co/openbmb/MiniCPM-V-2_6) PyTorch model from huggingface to "MiniCPM-V-2_6" folder.
### Build llama.cpp
Readme modification time: 20250206
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
Clone llama.cpp:
```bash
git clone git@github.com:OpenBMB/llama.cpp.git
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
git checkout minicpmv-main
```
Build llama.cpp using `CMake`:
```bash
cmake -B build
cmake --build build --config Release
```
### Usage of MiniCPM-V 2.6
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-V-2_6-gguf) by us)
@@ -21,87 +33,15 @@ python ./examples/llava/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-
python ./convert_hf_to_gguf.py ../MiniCPM-V-2_6/model
# quantize int4 version
./llama-quantize ../MiniCPM-V-2_6/model/ggml-model-f16.gguf ../MiniCPM-V-2_6/model/ggml-model-Q4_K_M.gguf Q4_K_M
./build/bin/llama-quantize ../MiniCPM-V-2_6/model/ggml-model-f16.gguf ../MiniCPM-V-2_6/model/ggml-model-Q4_K_M.gguf Q4_K_M
```
Build for Linux or Mac
```bash
make
make llama-minicpmv-cli
```
Inference on Linux or Mac
```
```bash
# run f16 version
./llama-minicpmv-cli -m ../MiniCPM-V-2_6/model/ggml-model-f16.gguf --mmproj ../MiniCPM-V-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
./build/bin/llama-minicpmv-cli -m ../MiniCPM-V-2_6/model/ggml-model-f16.gguf --mmproj ../MiniCPM-V-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
# run quantized int4 version
./llama-minicpmv-cli -m ../MiniCPM-V-2_6/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-V-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
# or run in interactive mode
./llama-minicpmv-cli -m ../MiniCPM-V-2_6/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-V-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -i
```
### Video
Install FFmpeg
```
brew install ffmpeg
brew install pkg-config
```
### Android
#### Build on Android device using Termux
We found that build on Android device would bring better runtime performance, so we recommend to build on device.
[Termux](https://github.com/termux/termux-app#installation) is a terminal app on Android device (no root required).
Install tools in Termux:
```
apt update && apt upgrade -y
apt install git make cmake
```
It's recommended to move your model inside the `~/` directory for best performance:
```
cd storage/downloads
mv model.gguf ~/
```
#### Building the Project using Android NDK
Obtain the [Android NDK](https://developer.android.com/ndk) and then build with CMake.
Execute the following commands on your computer to avoid downloading the NDK to your mobile. Alternatively, you can also do this in Termux:
```bash
mkdir build-android
cd build-android
export NDK=/your_ndk_path
cmake -DCMAKE_TOOLCHAIN_FILE=$NDK/build/cmake/android.toolchain.cmake -DANDROID_ABI=arm64-v8a -DANDROID_PLATFORM=android-23 -DCMAKE_C_FLAGS=-march=armv8.4a+dotprod ..
make
```
Install [termux](https://github.com/termux/termux-app#installation) on your device and run `termux-setup-storage` to get access to your SD card (if Android 11+ then run the command twice).
Finally, copy these built `llama` binaries and the model file to your device storage. Because the file permissions in the Android sdcard cannot be changed, you can copy the executable files to the `/data/data/com.termux/files/home/bin` path, and then execute the following commands in Termux to add executable permission:
(Assumed that you have pushed the built executable files to the /sdcard/llama.cpp/bin path using `adb push`)
```
$cp -r /sdcard/llama.cpp/bin /data/data/com.termux/files/home/
$cd /data/data/com.termux/files/home/bin
$chmod +x ./*
```
Download models and push them to `/sdcard/llama.cpp/`, then move it to `/data/data/com.termux/files/home/model/`
```
$mv /sdcard/llama.cpp/ggml-model-Q4_K_M.gguf /data/data/com.termux/files/home/model/
$mv /sdcard/llama.cpp/mmproj-model-f16.gguf /data/data/com.termux/files/home/model/
```
Now, you can start chatting:
```
$cd /data/data/com.termux/files/home/bin
$./llama-minicpmv-cli -m ../model/ggml-model-Q4_K_M.gguf --mmproj ../model/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
./build/bin/llama-minicpmv-cli -m ../MiniCPM-V-2_6/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-V-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
```

View File

@@ -1378,6 +1378,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
LOG_INF("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder);
LOG_INF("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector);
LOG_INF("%s: minicpmv_projector: %d\n", __func__, new_clip->has_minicpmv_projector);
LOG_INF("%s: minicpmv_version: %d\n", __func__, new_clip->minicpmv_version);
LOG_INF("%s: glm_projector: %d\n", __func__, new_clip->has_glm_projector);
LOG_INF("%s: model size: %.2f MB\n", __func__, model_size / 1024.0 / 1024.0);
LOG_INF("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0);

View File

@@ -89,6 +89,7 @@ def bytes_to_unicode():
ap = argparse.ArgumentParser()
ap.add_argument("-m", "--model-dir", help="Path to model directory cloned from HF Hub", required=True)
ap.add_argument("--use-f32", action="store_true", default=False, help="Use f32 instead of f16")
ap.add_argument('--bigendian', action="store_true", default=False, help="Model is executed on big-endian machine")
ap.add_argument("--text-only", action="store_true", required=False,
help="Save a text-only model. It can't be used to encode images")
ap.add_argument("--vision-only", action="store_true", required=False,
@@ -191,7 +192,7 @@ output_dir = args.output_dir if args.output_dir is not None else dir_model
os.makedirs(output_dir, exist_ok=True)
output_prefix = os.path.basename(output_dir).replace("ggml_", "")
fname_out = os.path.join(output_dir, f"{fname_middle}model-{ftype_str[ftype]}.gguf")
fout = GGUFWriter(path=fname_out, arch="clip")
fout = GGUFWriter(path=fname_out, arch="clip", endianess=GGUFEndian.LITTLE if not args.bigendian else GGUFEndian.BIG)
fout.add_bool("clip.has_text_encoder", has_text_encoder)
fout.add_bool("clip.has_vision_encoder", has_vision_encoder)

View File

@@ -148,19 +148,34 @@ static void process_image(struct llava_context * ctx_llava, struct llava_image_e
process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++);
eval_string(ctx_llava->ctx_llama, std::string("</image>").c_str(), params->n_batch, &n_past, false);
if (num_image_embeds > 1) {
size_t num_image_embeds_col = clip_uhd_num_image_embeds_col(ctx_llava->ctx_clip);
eval_string(ctx_llava->ctx_llama, std::string("<slice>").c_str(), params->n_batch, &n_past, false);
for (size_t i = 0; i < (num_image_embeds-1)/num_image_embeds_col; ++i) {
for (size_t j = 0; j < num_image_embeds_col; ++j) {
eval_string(ctx_llava->ctx_llama, std::string("<image>").c_str(), params->n_batch, &n_past, false);
process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++);
eval_string(ctx_llava->ctx_llama, std::string("</image>").c_str(), params->n_batch, &n_past, false);
if (j == num_image_embeds_col - 1) {
eval_string(ctx_llava->ctx_llama, std::string("\n").c_str(), params->n_batch, &n_past, false);
if (has_minicpmv_projector == 2) {
size_t num_image_embeds_col = clip_uhd_num_image_embeds_col(ctx_llava->ctx_clip);
eval_string(ctx_llava->ctx_llama, std::string("<slice>").c_str(), params->n_batch, &n_past, false);
for (size_t i = 0; i < (num_image_embeds-1)/num_image_embeds_col; ++i) {
for (size_t j = 0; j < num_image_embeds_col; ++j) {
eval_string(ctx_llava->ctx_llama, std::string("<image>").c_str(), params->n_batch, &n_past, false);
process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++);
eval_string(ctx_llava->ctx_llama, std::string("</image>").c_str(), params->n_batch, &n_past, false);
if (j == num_image_embeds_col - 1) {
eval_string(ctx_llava->ctx_llama, std::string("\n").c_str(), params->n_batch, &n_past, false);
}
}
}
eval_string(ctx_llava->ctx_llama, std::string("</slice>").c_str(), params->n_batch, &n_past, false);
}
else if (has_minicpmv_projector == 3 || has_minicpmv_projector == 4) {
size_t num_image_embeds_col = clip_uhd_num_image_embeds_col(ctx_llava->ctx_clip);
for (size_t i = 0; i < (num_image_embeds-1)/num_image_embeds_col; ++i) {
for (size_t j = 0; j < num_image_embeds_col; ++j) {
eval_string(ctx_llava->ctx_llama, std::string("<slice>").c_str(), params->n_batch, &n_past, false);
process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++);
eval_string(ctx_llava->ctx_llama, std::string("</slice>").c_str(), params->n_batch, &n_past, false);
if (j == num_image_embeds_col - 1) {
eval_string(ctx_llava->ctx_llama, std::string("\n").c_str(), params->n_batch, &n_past, false);
}
}
}
}
eval_string(ctx_llava->ctx_llama, std::string("</slice>").c_str(), params->n_batch, &n_past, false);
}
LOG_INF("%s: image token past: %d\n", __func__, n_past);
}

View File

@@ -597,7 +597,6 @@ elif args.minicpmv_projector is not None:
fname_middle = "mmproj-"
has_text_encoder = False
has_minicpmv_projector = True
minicpmv_version = 4
elif args.vision_only:
fname_middle = "vision-"
has_text_encoder = False

View File

@@ -7,6 +7,7 @@
#include <cstdio>
#include <string>
#include <vector>
#include <algorithm>
struct ngram_data {
bool active = false;

View File

@@ -31,8 +31,6 @@
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
static const char * DEFAULT_SYSTEM_MESSAGE = "You are a helpful assistant";
static llama_context ** g_ctx;
static llama_model ** g_model;
static common_sampler ** g_smpl;
@@ -47,8 +45,8 @@ static void print_usage(int argc, char ** argv) {
(void) argc;
LOG("\nexample usage:\n");
LOG("\n text generation: %s -m your_model.gguf -p \"I believe the meaning of life is\" -n 128\n", argv[0]);
LOG("\n chat (conversation): %s -m your_model.gguf -p \"You are a helpful assistant\" -cnv\n", argv[0]);
LOG("\n text generation: %s -m your_model.gguf -p \"I believe the meaning of life is\" -n 128 -no-cnv\n", argv[0]);
LOG("\n chat (conversation): %s -m your_model.gguf -sys \"You are a helpful assistant\"\n", argv[0]);
LOG("\n");
}
@@ -219,6 +217,10 @@ int main(int argc, char ** argv) {
// print chat template example in conversation mode
if (params.conversation_mode) {
if (params.enable_chat_template) {
if (!params.prompt.empty() && params.system_prompt.empty()) {
LOG_WRN("*** User-specified prompt will pre-start conversation, did you mean to set --system-prompt (-sys) instead?\n");
}
LOG_INF("%s: chat template example:\n%s\n", __func__, common_chat_format_example(chat_templates.get(), params.use_jinja).c_str());
} else {
LOG_INF("%s: in-suffix/prefix is specified, chat template will be disabled\n", __func__);
@@ -263,6 +265,7 @@ int main(int argc, char ** argv) {
std::vector<llama_token> embd_inp;
bool waiting_for_first_input = false;
auto chat_add_and_format = [&chat_msgs, &chat_templates](const std::string & role, const std::string & content) {
common_chat_msg new_msg;
new_msg.role = role;
@@ -273,13 +276,34 @@ int main(int argc, char ** argv) {
return formatted;
};
std::string prompt;
{
auto prompt = (params.conversation_mode && params.enable_chat_template)
// format the system prompt in conversation mode (fallback to default if empty)
? chat_add_and_format("system", params.prompt.empty() ? DEFAULT_SYSTEM_MESSAGE : params.prompt)
if (params.conversation_mode && params.enable_chat_template) {
if (!params.system_prompt.empty()) {
// format the system prompt (will use template default if empty)
chat_add_and_format("system", params.system_prompt);
}
if (!params.prompt.empty()) {
// format and append the user prompt
chat_add_and_format("user", params.prompt);
} else {
waiting_for_first_input = true;
}
if (!params.system_prompt.empty() || !params.prompt.empty()) {
common_chat_templates_inputs inputs;
inputs.messages = chat_msgs;
inputs.add_generation_prompt = !params.prompt.empty();
prompt = common_chat_templates_apply(chat_templates.get(), inputs).prompt;
}
} else {
// otherwise use the prompt as is
: params.prompt;
if (params.interactive_first || !params.prompt.empty() || session_tokens.empty()) {
prompt = params.prompt;
}
if (params.interactive_first || !prompt.empty() || session_tokens.empty()) {
LOG_DBG("tokenize the prompt\n");
embd_inp = common_tokenize(ctx, prompt, true, true);
} else {
@@ -292,7 +316,7 @@ int main(int argc, char ** argv) {
}
// Should not run without any tokens
if (embd_inp.empty()) {
if (!waiting_for_first_input && embd_inp.empty()) {
if (add_bos) {
embd_inp.push_back(llama_vocab_bos(vocab));
LOG_WRN("embd_inp was considered empty and bos was added: %s\n", string_from(ctx, embd_inp).c_str());
@@ -352,7 +376,12 @@ int main(int argc, char ** argv) {
}
if (params.conversation_mode) {
params.interactive_first = true;
if (params.single_turn && !params.prompt.empty()) {
params.interactive = false;
params.interactive_first = false;
} else {
params.interactive_first = true;
}
}
// enable interactive mode if interactive start is specified
@@ -476,8 +505,8 @@ int main(int argc, char ** argv) {
LOG_INF( " - Press Ctrl+C to interject at any time.\n");
#endif
LOG_INF( "%s", control_message);
if (params.conversation_mode && params.enable_chat_template && params.prompt.empty()) {
LOG_INF( " - Using default system message. To change it, set a different value via -p PROMPT or -f FILE argument.\n");
if (params.conversation_mode && params.enable_chat_template && params.system_prompt.empty()) {
LOG_INF( " - Not using system message. To change it, set a different value via -sys PROMPT\n");
}
LOG_INF("\n");
@@ -773,7 +802,7 @@ int main(int argc, char ** argv) {
}
// deal with end of generation tokens in interactive mode
if (llama_vocab_is_eog(vocab, common_sampler_last(smpl))) {
if (!waiting_for_first_input && llama_vocab_is_eog(vocab, common_sampler_last(smpl))) {
LOG_DBG("found an EOG token\n");
if (params.interactive) {
@@ -793,12 +822,17 @@ int main(int argc, char ** argv) {
}
// if current token is not EOG, we add it to current assistant message
if (params.conversation_mode) {
if (params.conversation_mode && !waiting_for_first_input) {
const auto id = common_sampler_last(smpl);
assistant_ss << common_token_to_piece(ctx, id, false);
if (!prompt.empty()) {
prompt.clear();
is_interacting = false;
}
}
if (n_past > 0 && is_interacting) {
if ((n_past > 0 || waiting_for_first_input) && is_interacting) {
LOG_DBG("waiting for user input\n");
if (params.conversation_mode) {
@@ -888,11 +922,17 @@ int main(int argc, char ** argv) {
input_echo = false; // do not echo this again
}
if (n_past > 0) {
if (n_past > 0 || waiting_for_first_input) {
if (is_interacting) {
common_sampler_reset(smpl);
}
is_interacting = false;
if (waiting_for_first_input && params.single_turn) {
params.interactive = false;
params.interactive_first = false;
}
waiting_for_first_input = false;
}
}

View File

@@ -12,6 +12,7 @@
#include <string>
#include <vector>
#include <ctime>
#include <algorithm>
// trim whitespace from the beginning and end of a string
static std::string trim(const std::string & str) {

View File

@@ -7,6 +7,7 @@
#include <cstdio>
#include <string>
#include <vector>
#include <algorithm>
static void print_usage(int, char ** argv) {
LOG("\nexample usage:\n");

View File

@@ -8,6 +8,7 @@
#include <unordered_map>
#include <fstream>
#include <cmath>
#include <cctype>
struct quant_option {
std::string name;

File diff suppressed because it is too large Load Diff

View File

@@ -47,27 +47,27 @@ extern "C" {
#include <stddef.h> /* For size_t. */
#include <stdlib.h>
extern const char *linenoiseEditMore;
extern const char * linenoiseEditMore;
/* The linenoiseState structure represents the state during line editing.
* We pass this state to functions implementing specific editing
* functionalities. */
struct linenoiseState {
int in_completion; /* The user pressed TAB and we are now in completion
int in_completion; /* The user pressed TAB and we are now in completion
* mode, so input is handled by completeLine(). */
size_t completion_idx; /* Index of next completion to propose. */
int ifd; /* Terminal stdin file descriptor. */
int ofd; /* Terminal stdout file descriptor. */
char *buf; /* Edited line buffer. */
size_t buflen; /* Edited line buffer size. */
const char *prompt; /* Prompt to display. */
size_t plen; /* Prompt length. */
size_t pos; /* Current cursor position. */
size_t oldpos; /* Previous refresh cursor position. */
size_t len; /* Current edited line length. */
size_t cols; /* Number of columns in terminal. */
size_t oldrows; /* Rows used by last refrehsed line (multiline mode) */
int history_index; /* The history index we are currently editing. */
size_t completion_idx; /* Index of next completion to propose. */
int ifd; /* Terminal stdin file descriptor. */
int ofd; /* Terminal stdout file descriptor. */
char * buf; /* Edited line buffer. */
size_t buflen; /* Edited line buffer size. */
const char * prompt; /* Prompt to display. */
size_t plen; /* Prompt length. */
size_t pos; /* Current cursor position. */
size_t oldcolpos; /* Previous refresh cursor column position. */
size_t len; /* Current edited line length. */
size_t cols; /* Number of columns in terminal. */
size_t oldrows; /* Rows used by last refreshed line (multiline mode) */
int history_index; /* The history index we are currently editing. */
};
struct linenoiseCompletions {
@@ -89,19 +89,20 @@ struct linenoiseCompletions {
};
/* Non blocking API. */
int linenoiseEditStart(struct linenoiseState *l, int stdin_fd, int stdout_fd, char *buf, size_t buflen, const char *prompt);
const char *linenoiseEditFeed(struct linenoiseState *l);
void linenoiseEditStop(struct linenoiseState *l);
void linenoiseHide(struct linenoiseState *l);
void linenoiseShow(struct linenoiseState *l);
int linenoiseEditStart(struct linenoiseState * l, int stdin_fd, int stdout_fd, char * buf, size_t buflen,
const char * prompt);
const char * linenoiseEditFeed(struct linenoiseState * l);
void linenoiseEditStop(struct linenoiseState * l);
void linenoiseHide(struct linenoiseState * l);
void linenoiseShow(struct linenoiseState * l);
/* Blocking API. */
const char *linenoise(const char *prompt);
void linenoiseFree(void *ptr);
const char * linenoise(const char * prompt);
void linenoiseFree(void * ptr);
/* Completion API. */
typedef void(linenoiseCompletionCallback)(const char *, linenoiseCompletions *);
typedef const char*(linenoiseHintsCallback)(const char *, int *color, int *bold);
typedef const char *(linenoiseHintsCallback) (const char *, int * color, int * bold);
typedef void(linenoiseFreeHintsCallback)(const char *);
void linenoiseSetCompletionCallback(linenoiseCompletionCallback *);
void linenoiseSetHintsCallback(linenoiseHintsCallback *);
@@ -109,10 +110,10 @@ void linenoiseSetFreeHintsCallback(linenoiseFreeHintsCallback *);
void linenoiseAddCompletion(linenoiseCompletions *, const char *);
/* History API. */
int linenoiseHistoryAdd(const char *line);
int linenoiseHistoryAdd(const char * line);
int linenoiseHistorySetMaxLen(int len);
int linenoiseHistorySave(const char *filename);
int linenoiseHistoryLoad(const char *filename);
int linenoiseHistorySave(const char * filename);
int linenoiseHistoryLoad(const char * filename);
/* Other utilities. */
void linenoiseClearScreen(void);
@@ -121,6 +122,14 @@ void linenoisePrintKeyCodes(void);
void linenoiseMaskModeEnable(void);
void linenoiseMaskModeDisable(void);
/* Encoding functions. */
typedef size_t(linenoisePrevCharLen)(const char * buf, size_t buf_len, size_t pos, size_t * col_len);
typedef size_t(linenoiseNextCharLen)(const char * buf, size_t buf_len, size_t pos, size_t * col_len);
typedef size_t(linenoiseReadCode)(int fd, char * buf, size_t buf_len, int * c);
void linenoiseSetEncodingFunctions(linenoisePrevCharLen * prevCharLenFunc, linenoiseNextCharLen * nextCharLenFunc,
linenoiseReadCode * readCodeFunc);
#ifdef __cplusplus
}
#endif

Binary file not shown.

View File

@@ -1,5 +1,5 @@
// WARNING: This file was ported from json_schema_to_grammar.py, please fix bugs / add features there first.
const SPACE_RULE = '| " " | "\\n" [ \\t]{0,20}';
const SPACE_RULE = '| " " | "\\n"{1,2} [ \\t]{0,20}';
function _buildRepetition(itemRule, minItems, maxItems, opts={}) {
if (minItems === 0 && maxItems === 1) {

View File

@@ -131,9 +131,9 @@ struct slot_params {
lora.push_back({{"id", i}, {"scale", this->lora[i].scale}});
}
std::vector<std::string> grammar_trigger_words;
for (const auto & trigger : sampling.grammar_trigger_words) {
grammar_trigger_words.push_back(trigger.word);
auto grammar_triggers = json::array();
for (const auto & trigger : sampling.grammar_triggers) {
grammar_triggers.push_back(trigger.to_json<json>());
}
return json {
@@ -170,8 +170,8 @@ struct slot_params {
{"n_probs", sampling.n_probs},
{"min_keep", sampling.min_keep},
{"grammar", sampling.grammar},
{"grammar_trigger_words", grammar_trigger_words},
{"grammar_trigger_tokens", sampling.grammar_trigger_tokens},
{"grammar_lazy", sampling.grammar_lazy},
{"grammar_triggers", grammar_triggers},
{"preserved_tokens", sampling.preserved_tokens},
{"chat_format", common_chat_format_name(oaicompat_chat_format)},
{"samplers", samplers},
@@ -356,24 +356,6 @@ struct server_task {
}
{
const auto grammar_triggers = data.find("grammar_triggers");
if (grammar_triggers != data.end()) {
for (const auto & t : *grammar_triggers) {
common_grammar_trigger trigger;
trigger.word = t.at("word");
trigger.at_start = t.at("at_start");
auto ids = common_tokenize(vocab, trigger.word, /* add_special= */ false, /* parse_special= */ true);
if (ids.size() == 1) {
SRV_DBG("Grammar trigger token: %d (`%s`)\n", ids[0], trigger.word.c_str());
params.sampling.grammar_trigger_tokens.push_back(ids[0]);
params.sampling.preserved_tokens.insert(ids[0]);
continue;
}
SRV_DBG("Grammar trigger word: `%s`\n", trigger.word.c_str());
params.sampling.grammar_trigger_words.push_back(trigger);
}
}
const auto preserved_tokens = data.find("preserved_tokens");
if (preserved_tokens != data.end()) {
for (const auto & t : *preserved_tokens) {
@@ -383,12 +365,39 @@ struct server_task {
params.sampling.preserved_tokens.insert(ids[0]);
} else {
// This may happen when using a tool call style meant for a model with special tokens to preserve on a model without said tokens.
SRV_WRN("Not preserved because more than 1 token (wrong chat template override?): %s\n", t.get<std::string>().c_str());
SRV_DBG("Not preserved because more than 1 token: %s\n", t.get<std::string>().c_str());
}
}
}
if (params.sampling.grammar_lazy) {
GGML_ASSERT(params.sampling.grammar_trigger_tokens.size() > 0 || params.sampling.grammar_trigger_words.size() > 0);
const auto grammar_triggers = data.find("grammar_triggers");
if (grammar_triggers != data.end()) {
for (const auto & t : *grammar_triggers) {
auto ct = common_grammar_trigger::from_json(t);
if (ct.type == COMMON_GRAMMAR_TRIGGER_TYPE_WORD) {
const auto & word = ct.value;
auto ids = common_tokenize(vocab, word, /* add_special= */ false, /* parse_special= */ true);
if (ids.size() == 1) {
auto token = ids[0];
if (std::find(params.sampling.preserved_tokens.begin(), params.sampling.preserved_tokens.end(), (llama_token) token) == params.sampling.preserved_tokens.end()) {
throw std::runtime_error("Grammar trigger word should be marked as preserved token: " + word);
}
SRV_DBG("Grammar trigger token: %d (`%s`)\n", token, word.c_str());
common_grammar_trigger trigger;
trigger.type = COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN;
trigger.value = word;
trigger.token = token;
params.sampling.grammar_triggers.push_back(std::move(trigger));
} else {
SRV_DBG("Grammar trigger word: `%s`\n", word.c_str());
params.sampling.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, word});
}
} else {
params.sampling.grammar_triggers.push_back(ct);
}
}
}
if (params.sampling.grammar_lazy && params.sampling.grammar_triggers.empty()) {
throw std::runtime_error("Error: no triggers set for lazy grammar!");
}
}
@@ -742,7 +751,10 @@ struct server_task_result_cmpl_final : server_task_result {
{"name", tc.name},
{"arguments", tc.arguments},
}},
{"id", tc.id},
// Some templates generate and require an id (sometimes in a very specific format, e.g. Mistral Nemo).
// We only generate a random id for the ones that don't generate one by themselves
// (they also won't get to see it as their template likely doesn't use it, so it's all for the client)
{"id", tc.id.empty() ? gen_tool_call_id() : tc.id},
});
}
message["tool_calls"] = tool_calls;
@@ -1304,7 +1316,7 @@ struct server_slot {
return task_type == SERVER_TASK_TYPE_EMBEDDING || task_type == SERVER_TASK_TYPE_RERANK;
}
bool can_batch_with(server_slot & other_slot) {
bool can_batch_with(server_slot & other_slot) const {
return is_non_causal() == other_slot.is_non_causal()
&& are_lora_equal(lora, other_slot.lora);
}
@@ -1892,6 +1904,7 @@ struct server_context {
try {
common_chat_format_example(chat_templates.get(), params.use_jinja);
} catch (const std::exception & e) {
SRV_WRN("%s: Chat template parsing error: %s\n", __func__, e.what());
SRV_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
chat_templates = common_chat_templates_init(model, "chatml");
}
@@ -2045,7 +2058,7 @@ struct server_context {
if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
// Might be better to reject the request with a 400 ?
SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d", slot.params.n_predict, slot.n_predict);
SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d\n", slot.params.n_predict, slot.n_predict);
slot.params.n_predict = slot.n_predict;
}
@@ -2148,14 +2161,6 @@ struct server_context {
}
if (slot.has_new_line) {
// if we have already seen a new line, we stop after a certain time limit
if (slot.params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) {
slot.stop = STOP_TYPE_LIMIT;
slot.has_next_token = false;
SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms);
}
// require that each new line has a whitespace prefix (i.e. indentation) of at least slot.params.n_indent
if (slot.params.n_indent > 0) {
// check the current indentation
@@ -2194,6 +2199,14 @@ struct server_context {
// check if there is a new line in the generated text
if (result.text_to_send.find('\n') != std::string::npos) {
slot.has_new_line = true;
// if we have seen a new line, we stop after a certain time limit, but only upon another new line
if (slot.params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) {
slot.stop = STOP_TYPE_LIMIT;
slot.has_next_token = false;
SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms);
}
}
// if context shift is disabled, we stop when it reaches the context limit
@@ -3003,7 +3016,7 @@ struct server_context {
const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
llama_kv_cache_seq_rm (ctx, slot.id, head_p, head_c);
llama_kv_cache_seq_add(ctx, slot.id, head_c, -1, kv_shift);
llama_kv_cache_seq_add(ctx, slot.id, head_c, head_c + n_match, kv_shift);
for (size_t i = 0; i < n_match; i++) {
slot.cache_tokens[head_p + i] = slot.cache_tokens[head_c + i];

View File

@@ -144,6 +144,7 @@ def test_apply_chat_template():
@pytest.mark.parametrize("response_format,n_predicted,re_content", [
({"type": "json_object", "schema": {"const": "42"}}, 6, "\"42\""),
({"type": "json_object", "schema": {"items": [{"type": "integer"}]}}, 10, "[ -3000 ]"),
({"type": "json_schema", "json_schema": {"schema": {"const": "foooooo"}}}, 10, "\"foooooo\""),
({"type": "json_object"}, 10, "(\\{|John)+"),
({"type": "sound"}, 0, None),
# invalid response format (expected to fail)

239
examples/server/tests/unit/test_tool_call.py Normal file → Executable file
View File

@@ -1,4 +1,12 @@
#!/usr/bin/env python
import pytest
# ensure grandparent path is in sys.path
from pathlib import Path
import sys
path = Path(__file__).resolve().parents[1]
sys.path.insert(0, str(path))
from utils import *
server: ServerProcess
@@ -66,15 +74,8 @@ WEATHER_TOOL = {
}
def do_test_completion_with_required_tool_tiny(template_name: str, tool: dict, argument_key: str | None):
global server
n_predict = 512
# server = ServerPreset.stories15m_moe()
server.jinja = True
server.n_predict = n_predict
server.chat_template_file = f'../../../models/templates/{template_name}.jinja'
server.start(timeout_seconds=TIMEOUT_SERVER_START)
res = server.make_request("POST", "/chat/completions", data={
def do_test_completion_with_required_tool_tiny(server: ServerProcess, tool: dict, argument_key: str | None, n_predict, **kwargs):
res = server.make_request("POST", "/v1/chat/completions", data={
"max_tokens": n_predict,
"messages": [
{"role": "system", "content": "You are a coding assistant."},
@@ -83,16 +84,15 @@ def do_test_completion_with_required_tool_tiny(template_name: str, tool: dict, a
"tool_choice": "required",
"tools": [tool],
"parallel_tool_calls": False,
"temperature": 0.0,
"top_k": 1,
"top_p": 1.0,
**kwargs,
})
assert res.status_code == 200, f"Expected status code 200, got {res.status_code}"
choice = res.body["choices"][0]
tool_calls = choice["message"].get("tool_calls")
assert tool_calls and len(tool_calls) == 1, f'Expected 1 tool call in {choice["message"]}'
tool_call = tool_calls[0]
assert choice["message"].get("content") is None, f'Expected no content in {choice["message"]}'
assert choice["message"].get("content") in (None, ""), f'Expected no content in {choice["message"]}'
assert len(tool_call.get("id", "")) > 0, f'Expected non empty tool call id in {tool_call}'
expected_function_name = "python" if tool["type"] == "code_interpreter" else tool["function"]["name"]
assert expected_function_name == tool_call["function"]["name"]
actual_arguments = tool_call["function"]["arguments"]
@@ -108,7 +108,14 @@ def do_test_completion_with_required_tool_tiny(template_name: str, tool: dict, a
("meta-llama-Llama-3.3-70B-Instruct", PYTHON_TOOL, "code"),
])
def test_completion_with_required_tool_tiny_fast(template_name: str, tool: dict, argument_key: str | None):
do_test_completion_with_required_tool_tiny(template_name, tool, argument_key)
global server
n_predict = 512
# server = ServerPreset.stories15m_moe()
server.jinja = True
server.n_predict = n_predict
server.chat_template_file = f'../../../models/templates/{template_name}.jinja'
server.start(timeout_seconds=TIMEOUT_SERVER_START)
do_test_completion_with_required_tool_tiny(server, tool, argument_key, n_predict, temperature=0.0, top_k=1, top_p=1.0)
@pytest.mark.slow
@@ -130,10 +137,17 @@ def test_completion_with_required_tool_tiny_fast(template_name: str, tool: dict,
("deepseek-ai-DeepSeek-R1-Distill-Llama-8B", TEST_TOOL, "success"),
("deepseek-ai-DeepSeek-R1-Distill-Llama-8B", PYTHON_TOOL, "code"),
("fireworks-ai-llama-3-firefunction-v2", TEST_TOOL, "success"),
("fireworks-ai-llama-3-firefunction-v2", PYTHON_TOOL, "code"),
# ("fireworks-ai-llama-3-firefunction-v2", PYTHON_TOOL, "code"),
])
def test_completion_with_required_tool_tiny_slow(template_name: str, tool: dict, argument_key: str | None):
do_test_completion_with_required_tool_tiny(template_name, tool, argument_key)
global server
n_predict = 512
# server = ServerPreset.stories15m_moe()
server.jinja = True
server.n_predict = n_predict
server.chat_template_file = f'../../../models/templates/{template_name}.jinja'
server.start(timeout_seconds=TIMEOUT_SERVER_START)
do_test_completion_with_required_tool_tiny(server, tool, argument_key, n_predict)
@pytest.mark.slow
@@ -142,25 +156,33 @@ def test_completion_with_required_tool_tiny_slow(template_name: str, tool: dict,
(PYTHON_TOOL, "code", "bartowski/Meta-Llama-3.1-8B-Instruct-GGUF:Q4_K_M", None),
(PYTHON_TOOL, "code", "bartowski/Meta-Llama-3.1-8B-Instruct-GGUF:Q4_K_M", "chatml"),
# Note: gemma-2-2b-it knows itself as "model", not "assistant", so we don't test the ill-suited chatml on it.
(TEST_TOOL, "success", "bartowski/gemma-2-2b-it-GGUF:Q4_K_M", None),
(PYTHON_TOOL, "code", "bartowski/gemma-2-2b-it-GGUF:Q4_K_M", None),
(PYTHON_TOOL, "code", "bartowski/gemma-2-2b-it-GGUF:Q4_K_M", "chatml"),
(TEST_TOOL, "success", "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", None),
(PYTHON_TOOL, "code", "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", None),
(PYTHON_TOOL, "code", "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", "chatml"),
(TEST_TOOL, "success", "bartowski/Qwen2.5-1.5B-Instruct-GGUF:Q4_K_M", None),
(PYTHON_TOOL, "code", "bartowski/Qwen2.5-1.5B-Instruct-GGUF:Q4_K_M", None),
(PYTHON_TOOL, "code", "bartowski/Qwen2.5-1.5B-Instruct-GGUF:Q4_K_M", "chatml"),
(TEST_TOOL, "success", "bartowski/Qwen2.5-Coder-3B-Instruct-GGUF:Q4_K_M", None),
(PYTHON_TOOL, "code", "bartowski/Qwen2.5-Coder-3B-Instruct-GGUF:Q4_K_M", None),
(PYTHON_TOOL, "code", "bartowski/Qwen2.5-Coder-3B-Instruct-GGUF:Q4_K_M", "chatml"),
(TEST_TOOL, "success", "bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M", None),
(PYTHON_TOOL, "code", "bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M", None),
(PYTHON_TOOL, "code", "bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M", "chatml"),
(TEST_TOOL, "success", "bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M", ("NousResearch/Hermes-2-Pro-Llama-3-8B", "tool_use")),
(PYTHON_TOOL, "code", "bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M", ("NousResearch/Hermes-2-Pro-Llama-3-8B", "tool_use")),
# (PYTHON_TOOL, "code", "bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M", "chatml"),
(PYTHON_TOOL, "code", "bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M", "chatml"),
(TEST_TOOL, "success", "bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M", ("NousResearch/Hermes-3-Llama-3.1-8B", "tool_use")),
(PYTHON_TOOL, "code", "bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M", ("NousResearch/Hermes-3-Llama-3.1-8B", "tool_use")),
# (PYTHON_TOOL, "code", "bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M", "chatml"),
(PYTHON_TOOL, "code", "bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M", "chatml"),
(TEST_TOOL, "success", "bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q4_K_M", None),
(PYTHON_TOOL, "code", "bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q4_K_M", None),
@@ -176,10 +198,10 @@ def test_completion_with_required_tool_tiny_slow(template_name: str, tool: dict,
(TEST_TOOL, "success", "bartowski/Llama-3.2-1B-Instruct-GGUF:Q4_K_M", ("meta-llama/Llama-3.2-3B-Instruct", None)),
(PYTHON_TOOL, "code", "bartowski/Llama-3.2-1B-Instruct-GGUF:Q4_K_M", ("meta-llama/Llama-3.2-3B-Instruct", None)),
# (PYTHON_TOOL, "code", "bartowski/Llama-3.2-1B-Instruct-GGUF:Q4_K_M", "chatml"),
# TODO: fix these
# (TEST_TOOL, "success", "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
# (PYTHON_TOOL, "code", "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
(PYTHON_TOOL, "code", "bartowski/Llama-3.2-1B-Instruct-GGUF:Q4_K_M", "chatml"),
(TEST_TOOL, "success", "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
(PYTHON_TOOL, "code", "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
])
def test_completion_with_required_tool_real_model(tool: dict, argument_key: str | None, hf_repo: str, template_override: str | Tuple[str, str | None] | None):
global server
@@ -197,7 +219,7 @@ def test_completion_with_required_tool_real_model(tool: dict, argument_key: str
elif isinstance(template_override, str):
server.chat_template = template_override
server.start(timeout_seconds=TIMEOUT_SERVER_START)
res = server.make_request("POST", "/chat/completions", data={
res = server.make_request("POST", "/v1/chat/completions", data={
"max_tokens": n_predict,
"messages": [
{"role": "system", "content": "You are a coding assistant."},
@@ -215,7 +237,7 @@ def test_completion_with_required_tool_real_model(tool: dict, argument_key: str
tool_calls = choice["message"].get("tool_calls")
assert tool_calls and len(tool_calls) == 1, f'Expected 1 tool call in {choice["message"]}'
tool_call = tool_calls[0]
assert choice["message"].get("content") is None, f'Expected no content in {choice["message"]}'
# assert choice["message"].get("content") in (None, ""), f'Expected no content in {choice["message"]}'
expected_function_name = "python" if tool["type"] == "code_interpreter" else tool["function"]["name"]
assert expected_function_name == tool_call["function"]["name"]
actual_arguments = tool_call["function"]["arguments"]
@@ -225,13 +247,8 @@ def test_completion_with_required_tool_real_model(tool: dict, argument_key: str
assert argument_key in actual_arguments, f"tool arguments: {json.dumps(actual_arguments)}, expected: {argument_key}"
def do_test_completion_without_tool_call(template_name: str, n_predict: int, tools: list[dict], tool_choice: str | None):
global server
server.jinja = True
server.n_predict = n_predict
server.chat_template_file = f'../../../models/templates/{template_name}.jinja'
server.start(timeout_seconds=TIMEOUT_SERVER_START)
res = server.make_request("POST", "/chat/completions", data={
def do_test_completion_without_tool_call(server: ServerProcess, n_predict: int, tools: list[dict], tool_choice: str | None, **kwargs):
res = server.make_request("POST", "/v1/chat/completions", data={
"max_tokens": n_predict,
"messages": [
{"role": "system", "content": "You are a coding assistant."},
@@ -239,9 +256,7 @@ def do_test_completion_without_tool_call(template_name: str, n_predict: int, too
],
"tools": tools if tools else None,
"tool_choice": tool_choice,
"temperature": 0.0,
"top_k": 1,
"top_p": 1.0,
**kwargs,
}, timeout=TIMEOUT_HTTP_REQUEST)
assert res.status_code == 200, f"Expected status code 200, got {res.status_code}"
choice = res.body["choices"][0]
@@ -254,7 +269,12 @@ def do_test_completion_without_tool_call(template_name: str, n_predict: int, too
("meta-llama-Llama-3.3-70B-Instruct", 128, [PYTHON_TOOL], 'none'),
])
def test_completion_without_tool_call_fast(template_name: str, n_predict: int, tools: list[dict], tool_choice: str | None):
do_test_completion_without_tool_call(template_name, n_predict, tools, tool_choice)
global server
server.jinja = True
server.n_predict = n_predict
server.chat_template_file = f'../../../models/templates/{template_name}.jinja'
server.start(timeout_seconds=TIMEOUT_SERVER_START)
do_test_completion_without_tool_call(server, n_predict, tools, tool_choice)
@pytest.mark.slow
@@ -270,7 +290,12 @@ def test_completion_without_tool_call_fast(template_name: str, n_predict: int, t
("meta-llama-Llama-3.2-3B-Instruct", 256, [PYTHON_TOOL], 'none'),
])
def test_completion_without_tool_call_slow(template_name: str, n_predict: int, tools: list[dict], tool_choice: str | None):
do_test_completion_without_tool_call(template_name, n_predict, tools, tool_choice)
global server
server.jinja = True
server.n_predict = n_predict
server.chat_template_file = f'../../../models/templates/{template_name}.jinja'
server.start(timeout_seconds=TIMEOUT_SERVER_START)
do_test_completion_without_tool_call(server, n_predict, tools, tool_choice)
@pytest.mark.slow
@@ -281,6 +306,12 @@ def test_completion_without_tool_call_slow(template_name: str, n_predict: int, t
("bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", None),
("bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", "chatml"),
("bartowski/Qwen2.5-1.5B-Instruct-GGUF:Q4_K_M", None),
("bartowski/Qwen2.5-1.5B-Instruct-GGUF:Q4_K_M", "chatml"),
("bartowski/Qwen2.5-Coder-3B-Instruct-GGUF:Q4_K_M", None),
("bartowski/Qwen2.5-Coder-3B-Instruct-GGUF:Q4_K_M", "chatml"),
("bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M", None),
("bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M", "chatml"),
@@ -324,48 +355,53 @@ def test_weather(hf_repo: str, template_override: str | Tuple[str, str | None] |
elif isinstance(template_override, str):
server.chat_template = template_override
server.start(timeout_seconds=TIMEOUT_SERVER_START)
res = server.make_request("POST", "/chat/completions", data={
"max_tokens": n_predict,
do_test_weather(server, max_tokens=n_predict)
def do_test_weather(server: ServerProcess, **kwargs):
res = server.make_request("POST", "/v1/chat/completions", data={
"messages": [
{"role": "system", "content": "You are a chatbot that uses tools/functions. Dont overthink things."},
{"role": "user", "content": "What is the weather in Istanbul?"},
],
"tools": [WEATHER_TOOL],
**kwargs,
}, timeout=TIMEOUT_HTTP_REQUEST)
assert res.status_code == 200, f"Expected status code 200, got {res.status_code}"
choice = res.body["choices"][0]
tool_calls = choice["message"].get("tool_calls")
assert tool_calls and len(tool_calls) == 1, f'Expected 1 tool call in {choice["message"]}'
tool_call = tool_calls[0]
assert choice["message"].get("content") is None, f'Expected no content in {choice["message"]}'
assert tool_call["function"]["name"] == WEATHER_TOOL["function"]["name"]
# assert choice["message"].get("content") in (None, ""), f'Expected no content in {choice["message"]}'
assert tool_call["function"]["name"] == WEATHER_TOOL["function"]["name"], f'Expected weather tool call, got {tool_call["function"]["name"]}'
assert len(tool_call.get("id", "")) > 0, f'Expected non empty tool call id in {tool_call}'
actual_arguments = json.loads(tool_call["function"]["arguments"])
assert 'location' in actual_arguments, f"location not found in {json.dumps(actual_arguments)}"
location = actual_arguments["location"]
assert isinstance(location, str), f"Expected location to be a string, got {type(location)}: {json.dumps(location)}"
assert re.match('^Istanbul(, (TR|Turkey|Türkiye))?$', location), f'Expected Istanbul for location, got {location}'
assert re.match('^Istanbul(( |, ?)(TR|Turkey|Türkiye))?$', location), f'Expected Istanbul for location, got {location}'
@pytest.mark.slow
@pytest.mark.parametrize("result_override,n_predict,hf_repo,template_override", [
(None, 128, "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", "chatml"),
(None, 128, "bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M", None),
(None, 128, "bartowski/Qwen2.5-Coder-3B-Instruct-GGUF:Q4_K_M", None),
(None, 128, "bartowski/Qwen2.5-Coder-3B-Instruct-GGUF:Q4_K_M", "chatml"),
(None, 128, "bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M", "chatml"),
(None, 128, "bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M", ("NousResearch/Hermes-2-Pro-Llama-3-8B", "tool_use")),
(None, 128, "bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M", ("NousResearch/Hermes-3-Llama-3.1-8B", "tool_use")),
(None, 128, "bartowski/functionary-small-v3.2-GGUF:Q8_0", ("meetkai/functionary-medium-v3.2", None)),
(None, 128, "bartowski/Meta-Llama-3.1-8B-Instruct-GGUF:Q4_K_M", None),
(None, 128, "bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q4_K_M", None),
(None, 128, "bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q4_K_M", "chatml"),
(None, 128, "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", None),
("[\\s\\S]*?\\*\\*\\s*0.5($|\\*\\*)", 8192, "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", ("llama-cpp-deepseek-r1", None)),
# TODO: fix these (wrong results, either didn't respect decimal instruction or got wrong value)
("[\\s\\S]*?\\*\\*\\s*0.5($|\\*\\*)", 8192, "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
# ("[\\s\\S]*?\\*\\*\\s*0.5($|\\*\\*)", 8192, "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", ("llama-cpp-deepseek-r1", None)),
# (None, 128, "bartowski/Meta-Llama-3.1-8B-Instruct-GGUF:Q4_K_M", None),
# ("[\\s\\S]*?\\*\\*\\s*0.5($|\\*\\*)", 8192, "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
])
def test_calc_result(result_override: str | None, n_predict: int, hf_repo: str, template_override: str | Tuple[str, str | None] | None):
global server
# n_predict = 512
server.n_slots = 1
server.jinja = True
server.n_ctx = 8192 * 2
@@ -379,10 +415,14 @@ def test_calc_result(result_override: str | None, n_predict: int, hf_repo: str,
elif isinstance(template_override, str):
server.chat_template = template_override
server.start(timeout_seconds=TIMEOUT_SERVER_START)
res = server.make_request("POST", "/chat/completions", data={
do_test_calc_result(server, result_override, n_predict)
def do_test_calc_result(server: ServerProcess, result_override: str | None, n_predict: int, **kwargs):
res = server.make_request("POST", "/v1/chat/completions", data={
"max_tokens": n_predict,
"messages": [
{"role": "system", "content": "You are a chatbot that uses tools/functions. Dont overthink things, and provide very concise answers. Do not explain your reasoning to the user. Provide any numerical values back to the user with at most two decimals."},
{"role": "system", "content": "You are a tools-calling assistant. You express numerical values with at most two decimals."},
{"role": "user", "content": "What's the y coordinate of a point on the unit sphere at angle 30 degrees?"},
{
"role": "assistant",
@@ -423,7 +463,8 @@ def test_calc_result(result_override: str | None, n_predict: int, hf_repo: str,
}
}
}
]
],
**kwargs,
}, timeout=TIMEOUT_HTTP_REQUEST)
assert res.status_code == 200, f"Expected status code 200, got {res.status_code}"
choice = res.body["choices"][0]
@@ -434,19 +475,19 @@ def test_calc_result(result_override: str | None, n_predict: int, hf_repo: str,
if result_override is not None:
assert re.match(result_override, content), f'Expected {result_override}, got {content}'
else:
assert re.match('^[\\s\\S]*?The (y[ -])?coordinate [\\s\\S]*?is (approximately )?0\\.56\\b|^0\\.56$', content), \
assert re.match('^[\\s\\S]*?((That\'s|\\bis) (approximately )?)?\\b0\\.(5\\b|56\\b|556)', content), \
f'Expected something like "The y coordinate is 0.56.", got {content}'
@pytest.mark.slow
@pytest.mark.parametrize("n_predict,reasoning_format,expect_content,expect_reasoning_content,hf_repo,template_override", [
(128, 'deepseek', "^The sum of 102 and 7 is 109.*", None, "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", None),
(128, None, "^The sum of 102 and 7 is 109.*", None, "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", None),
(128, 'deepseek', "^The sum of 102 and 7 is 109[\\s\\S]*", None, "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", None),
(128, None, "^The sum of 102 and 7 is 109[\\s\\S]*", None, "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", None),
(1024, 'deepseek', "To find the sum of.*", "I need to calculate the sum of 102 and 7.*", "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
(1024, 'none', "^I need[\\s\\S]*?</think>\n?To find.*", None, "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
(1024, 'deepseek', "To find the sum of[\\s\\S]*", "I need to calculate the sum of 102 and 7[\\s\\S]*", "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
(1024, 'none', "^(<think>\\s*)?I need[\\s\\S]*?</think>\\s*To find[\\s\\S]*", None, "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
(1024, 'deepseek', "To find the sum of.*", "First, I [\\s\\S]*", "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", ("llama-cpp-deepseek-r1", None)),
(1024, 'deepseek', "To find the sum of[\\s\\S]*", "First, I [\\s\\S]*", "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", ("llama-cpp-deepseek-r1", None)),
])
def test_thoughts(n_predict: int, reasoning_format: Literal['deepseek', 'none'] | None, expect_content: str | None, expect_reasoning_content: str | None, hf_repo: str, template_override: str | Tuple[str, str | None] | None):
global server
@@ -464,7 +505,7 @@ def test_thoughts(n_predict: int, reasoning_format: Literal['deepseek', 'none']
elif isinstance(template_override, str):
server.chat_template = template_override
server.start(timeout_seconds=TIMEOUT_SERVER_START)
res = server.make_request("POST", "/chat/completions", data={
res = server.make_request("POST", "/v1/chat/completions", data={
"max_tokens": n_predict,
"messages": [
{"role": "user", "content": "What's the sum of 102 and 7?"},
@@ -476,7 +517,7 @@ def test_thoughts(n_predict: int, reasoning_format: Literal['deepseek', 'none']
content = choice["message"].get("content")
if expect_content is None:
assert content is None, f'Expected no content in {choice["message"]}'
assert choice["message"].get("content") in (None, ""), f'Expected no content in {choice["message"]}'
else:
assert re.match(expect_content, content), f'Expected {expect_content}, got {content}'
@@ -488,46 +529,46 @@ def test_thoughts(n_predict: int, reasoning_format: Literal['deepseek', 'none']
@pytest.mark.slow
@pytest.mark.parametrize("expected_arguments_override,hf_repo,template_override", [
(None, "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
# (None, "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", "chatml"),
@pytest.mark.parametrize("hf_repo,template_override", [
("bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
(None, "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", None),
(None, "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", "chatml"),
("bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", None),
("bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", "chatml"),
(None, "bartowski/functionary-small-v3.2-GGUF:Q8_0", ("meetkai-functionary-medium-v3.2", None)),
(None, "bartowski/functionary-small-v3.2-GGUF:Q8_0", "chatml"),
("bartowski/functionary-small-v3.2-GGUF:Q8_0", ("meetkai-functionary-medium-v3.2", None)),
("bartowski/functionary-small-v3.2-GGUF:Q8_0", "chatml"),
('{"code":"print("}', "bartowski/Meta-Llama-3.1-8B-Instruct-GGUF:Q4_K_M", None),
(None, "bartowski/Meta-Llama-3.1-8B-Instruct-GGUF:Q4_K_M", "chatml"),
# ("bartowski/Meta-Llama-3.1-8B-Instruct-GGUF:Q4_K_M", None),
("bartowski/Meta-Llama-3.1-8B-Instruct-GGUF:Q4_K_M", "chatml"),
(None, "bartowski/Llama-3.2-1B-Instruct-GGUF:Q4_K_M", ("meta-llama-Llama-3.2-3B-Instruct", None)),
(None, "bartowski/Llama-3.2-1B-Instruct-GGUF:Q4_K_M", "chatml"),
("bartowski/Llama-3.2-1B-Instruct-GGUF:Q4_K_M", ("meta-llama-Llama-3.2-3B-Instruct", None)),
("bartowski/Llama-3.2-1B-Instruct-GGUF:Q4_K_M", None),
('{"code":"print("}', "bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M", ("meta-llama-Llama-3.2-3B-Instruct", None)),
(None, "bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M", "chatml"),
("bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M", ("meta-llama-Llama-3.2-3B-Instruct", None)),
("bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M", None),
(None, "bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M", None),
(None, "bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M", "chatml"),
("bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M", None),
("bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M", "chatml"),
(None, "bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M", ("NousResearch/Hermes-2-Pro-Llama-3-8B", "tool_use")),
(None, "bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M", "chatml"),
("bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M", ("NousResearch/Hermes-2-Pro-Llama-3-8B", "tool_use")),
("bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M", "chatml"),
(None, "bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M", ("NousResearch-Hermes-3-Llama-3.1-8B", "tool_use")),
(None, "bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M", "chatml"),
("bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M", ("NousResearch-Hermes-3-Llama-3.1-8B", "tool_use")),
("bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M", "chatml"),
(None, "bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q4_K_M", None),
(None, "bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q4_K_M", "chatml"),
("bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q4_K_M", None),
("bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q4_K_M", "chatml"),
# Note: gemma-2-2b-it knows itself as "model", not "assistant", so we don't test the ill-suited chatml on it.
(None, "bartowski/gemma-2-2b-it-GGUF:Q4_K_M", None),
("bartowski/gemma-2-2b-it-GGUF:Q4_K_M", None),
("bartowski/gemma-2-2b-it-GGUF:Q4_K_M", "chatml"),
])
def test_hello_world(expected_arguments_override: str | None, hf_repo: str, template_override: str | Tuple[str, str | None] | None):
def test_hello_world(hf_repo: str, template_override: str | Tuple[str, str | None] | None):
global server
n_predict = 512 # High because of DeepSeek R1
server.n_slots = 1
server.jinja = True
server.n_ctx = 8192
server.n_predict = 512 # High because of DeepSeek R1
server.n_predict = n_predict
server.model_hf_repo = hf_repo
server.model_hf_file = None
if isinstance(template_override, tuple):
@@ -537,31 +578,29 @@ def test_hello_world(expected_arguments_override: str | None, hf_repo: str, temp
elif isinstance(template_override, str):
server.chat_template = template_override
server.start(timeout_seconds=TIMEOUT_SERVER_START)
res = server.make_request("POST", "/chat/completions", data={
"max_tokens": 256,
do_test_hello_world(server, max_tokens=n_predict)
def do_test_hello_world(server: ServerProcess, **kwargs):
res = server.make_request("POST", "/v1/chat/completions", data={
"messages": [
{"role": "system", "content": "You are a coding assistant."},
{"role": "system", "content": "You are a tool-calling agent."},
{"role": "user", "content": "say hello world with python"},
],
"tools": [PYTHON_TOOL],
# Note: without these greedy params, Functionary v3.2 writes `def hello_world():\n print("Hello, World!")\nhello_world()` which is correct but a pain to test.
"temperature": 0.0,
"top_k": 1,
"top_p": 1.0,
**kwargs,
}, timeout=TIMEOUT_HTTP_REQUEST)
assert res.status_code == 200, f"Expected status code 200, got {res.status_code}"
choice = res.body["choices"][0]
tool_calls = choice["message"].get("tool_calls")
assert tool_calls and len(tool_calls) == 1, f'Expected 1 tool call in {choice["message"]}'
tool_call = tool_calls[0]
assert choice["message"].get("content") is None, f'Expected no content in {choice["message"]}'
# assert choice["message"].get("content") in (None, ""), f'Expected no content in {choice["message"]}'
assert tool_call["function"]["name"] == PYTHON_TOOL["function"]["name"]
actual_arguments = tool_call["function"]["arguments"]
if expected_arguments_override is not None:
assert actual_arguments == expected_arguments_override
else:
actual_arguments = json.loads(actual_arguments)
assert 'code' in actual_arguments, f"code not found in {json.dumps(actual_arguments)}"
code = actual_arguments["code"]
assert isinstance(code, str), f"Expected code to be a string, got {type(code)}: {json.dumps(code)}"
assert re.match(r'''print\(("[Hh]ello,? [Ww]orld!?"|'[Hh]ello,? [Ww]orld!?')\)''', code), f'Expected hello world, got {code}'
assert len(tool_call.get("id", "")) > 0, f'Expected non empty tool call id in {tool_call}'
actual_arguments = json.loads(tool_call["function"]["arguments"])
assert 'code' in actual_arguments, f"code not found in {json.dumps(actual_arguments)}"
code = actual_arguments["code"]
assert isinstance(code, str), f"Expected code to be a string, got {type(code)}: {json.dumps(code)}"
assert re.match(r'''print\(("[Hh]ello,? [Ww]orld!?"|'[Hh]ello,? [Ww]orld!?')\)''', code), f'Expected hello world, got {code}'

View File

@@ -26,7 +26,10 @@ from re import RegexFlag
import wget
DEFAULT_HTTP_TIMEOUT = 12 if "LLAMA_SANITIZE" not in os.environ else 30
DEFAULT_HTTP_TIMEOUT = 12
if "LLAMA_SANITIZE" in os.environ or "GITHUB_ACTION" in os.environ:
DEFAULT_HTTP_TIMEOUT = 30
class ServerResponse:
@@ -64,6 +67,9 @@ class ServerProcess:
id_slot: int | None = None
cache_prompt: bool | None = None
n_slots: int | None = None
ctk: str | None = None
ctv: str | None = None
fa: bool | None = None
server_continuous_batching: bool | None = False
server_embeddings: bool | None = False
server_reranking: bool | None = False
@@ -81,6 +87,7 @@ class ServerProcess:
reasoning_format: Literal['deepseek', 'none'] | None = None
chat_template: str | None = None
chat_template_file: str | None = None
server_path: str | None = None
# session variables
process: subprocess.Popen | None = None
@@ -94,7 +101,9 @@ class ServerProcess:
self.server_port = int(os.environ["PORT"])
def start(self, timeout_seconds: int | None = DEFAULT_HTTP_TIMEOUT) -> None:
if "LLAMA_SERVER_BIN_PATH" in os.environ:
if self.server_path is not None:
server_path = self.server_path
elif "LLAMA_SERVER_BIN_PATH" in os.environ:
server_path = os.environ["LLAMA_SERVER_BIN_PATH"]
elif os.name == "nt":
server_path = "../../../build/bin/Release/llama-server.exe"
@@ -148,6 +157,12 @@ class ServerProcess:
server_args.extend(["--ctx-size", self.n_ctx])
if self.n_slots:
server_args.extend(["--parallel", self.n_slots])
if self.ctk:
server_args.extend(["-ctk", self.ctk])
if self.ctv:
server_args.extend(["-ctv", self.ctv])
if self.fa is not None:
server_args.append("-fa")
if self.n_predict:
server_args.extend(["--n-predict", self.n_predict])
if self.slot_save_path:
@@ -181,7 +196,7 @@ class ServerProcess:
server_args.extend(["--chat-template-file", self.chat_template_file])
args = [str(arg) for arg in [server_path, *server_args]]
print(f"bench: starting server with: {' '.join(args)}")
print(f"tests: starting server with: {' '.join(args)}")
flags = 0
if "nt" == os.name:
@@ -212,6 +227,10 @@ class ServerProcess:
return # server is ready
except Exception as e:
pass
# Check if process died
if self.process.poll() is not None:
raise RuntimeError(f"Server process died with return code {self.process.returncode}")
print(f"Waiting for server to start...")
time.sleep(0.5)
raise TimeoutError(f"Server did not start within {timeout_seconds} seconds")

View File

@@ -435,6 +435,10 @@ static std::string gen_chatcmplid() {
return "chatcmpl-" + random_string();
}
static std::string gen_tool_call_id() {
return random_string();
}
//
// other common utils
//
@@ -590,8 +594,8 @@ static json oaicompat_completion_params_parse(
if (response_type == "json_object") {
json_schema = json_value(response_format, "schema", json::object());
} else if (response_type == "json_schema") {
json json_schema = json_value(response_format, "json_schema", json::object());
json_schema = json_value(json_schema, "schema", json::object());
auto schema_wrapper = json_value(response_format, "json_schema", json::object());
json_schema = json_value(schema_wrapper, "schema", json::object());
} else if (!response_type.empty() && response_type != "text") {
throw std::runtime_error("response_format type must be one of \"text\" or \"json_object\", but got: " + response_type);
}
@@ -607,6 +611,7 @@ static json oaicompat_completion_params_parse(
inputs.use_jinja = use_jinja;
inputs.parallel_tool_calls = json_value(body, "parallel_tool_calls", false);
inputs.extract_reasoning = reasoning_format != COMMON_REASONING_FORMAT_NONE;
inputs.add_generation_prompt = json_value(body, "add_generation_prompt", true);
if (!inputs.tools.empty() && inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_NONE && body.contains("grammar")) {
throw std::runtime_error("Cannot use custom grammar constraints with tools.");
}
@@ -620,10 +625,7 @@ static json oaicompat_completion_params_parse(
llama_params["grammar_lazy"] = chat_params.grammar_lazy;
auto grammar_triggers = json::array();
for (const auto & trigger : chat_params.grammar_triggers) {
grammar_triggers.push_back({
{"word", trigger.word},
{"at_start", trigger.at_start},
});
grammar_triggers.push_back(trigger.to_json<json>());
}
llama_params["grammar_triggers"] = grammar_triggers;
llama_params["preserved_tokens"] = chat_params.preserved_tokens;

View File

@@ -2,7 +2,7 @@ import { useEffect, useMemo, useRef, useState } from 'react';
import { CallbackGeneratedChunk, useAppContext } from '../utils/app.context';
import ChatMessage from './ChatMessage';
import { CanvasType, Message, PendingMessage } from '../utils/types';
import { classNames, throttle } from '../utils/misc';
import { classNames, cleanCurrentUrl, throttle } from '../utils/misc';
import CanvasPyInterpreter from './CanvasPyInterpreter';
import StorageUtils from '../utils/storage';
import { useVSCodeContext } from '../utils/llama-vscode';
@@ -18,6 +18,24 @@ export interface MessageDisplay {
isPending?: boolean;
}
/**
* If the current URL contains "?m=...", prefill the message input with the value.
* If the current URL contains "?q=...", prefill and SEND the message.
*/
const prefilledMsg = {
content() {
const url = new URL(window.location.href);
return url.searchParams.get('m') ?? url.searchParams.get('q') ?? '';
},
shouldSend() {
const url = new URL(window.location.href);
return url.searchParams.has('q');
},
clear() {
cleanCurrentUrl(['m', 'q']);
},
};
function getListMessageDisplay(
msgs: Readonly<Message[]>,
leafNodeId: Message['id']
@@ -81,7 +99,7 @@ export default function ChatScreen() {
canvasData,
replaceMessageAndGenerate,
} = useAppContext();
const [inputMsg, setInputMsg] = useState('');
const [inputMsg, setInputMsg] = useState(prefilledMsg.content());
const inputRef = useRef<HTMLTextAreaElement>(null);
const { extraContext, clearExtraContext } = useVSCodeContext(
@@ -172,6 +190,22 @@ export default function ChatScreen() {
const hasCanvas = !!canvasData;
useEffect(() => {
if (prefilledMsg.shouldSend()) {
// send the prefilled message if needed
sendNewMessage();
} else {
// otherwise, focus on the input and move the cursor to the end
if (inputRef.current) {
inputRef.current.focus();
inputRef.current.selectionStart = inputRef.current.value.length;
}
}
prefilledMsg.clear();
// no need to keep track of sendNewMessage
// eslint-disable-next-line react-hooks/exhaustive-deps
}, [inputRef]);
// due to some timing issues of StorageUtils.appendMsg(), we need to make sure the pendingMsg is not duplicated upon rendering (i.e. appears once in the saved conversation and once in the pendingMsg)
const pendingMsgDisplay: MessageDisplay[] =
pendingMsg && messages.at(-1)?.msg.id !== pendingMsg.id

View File

@@ -148,13 +148,13 @@ const SETTING_SECTIONS: SettingSection[] = [
fields: [
{
type: SettingInputType.CHECKBOX,
label: 'Expand though process by default for generating message',
label: 'Expand thought process by default when generating messages',
key: 'showThoughtInProgress',
},
{
type: SettingInputType.CHECKBOX,
label:
'Exclude thought process when sending request to API (Recommended for DeepSeek-R1)',
'Exclude thought process when sending requests to API (Recommended for DeepSeek-R1)',
key: 'excludeThoughtOnReq',
},
],
@@ -247,7 +247,7 @@ const SETTING_SECTIONS: SettingSection[] = [
This feature uses{' '}
<OpenInNewTab href="https://pyodide.org">pyodide</OpenInNewTab>,
downloaded from CDN. To use this feature, ask the LLM to generate
python code inside a markdown code block. You will see a "Run"
Python code inside a Markdown code block. You will see a "Run"
button on the code block, near the "Copy" button.
</small>
</>
@@ -274,7 +274,7 @@ export default function SettingDialog({
);
const resetConfig = () => {
if (window.confirm('Are you sure to reset all settings?')) {
if (window.confirm('Are you sure you want to reset all settings?')) {
setLocalConfig(CONFIG_DEFAULT);
}
};
@@ -296,9 +296,9 @@ export default function SettingDialog({
return;
}
} else if (mustBeNumeric) {
const trimedValue = value.toString().trim();
const numVal = Number(trimedValue);
if (isNaN(numVal) || !isNumeric(numVal) || trimedValue.length === 0) {
const trimmedValue = value.toString().trim();
const numVal = Number(trimmedValue);
if (isNaN(numVal) || !isNumeric(numVal) || trimmedValue.length === 0) {
alert(`Value for ${key} must be numeric`);
return;
}

View File

@@ -118,3 +118,11 @@ export const throttle = <T extends unknown[]>(
}, delay);
};
};
export const cleanCurrentUrl = (removeQueryParams: string[]) => {
const url = new URL(window.location.href);
removeQueryParams.forEach((param) => {
url.searchParams.delete(param);
});
window.history.replaceState({}, '', url.toString());
};

View File

@@ -1,10 +1,11 @@
#define _USE_MATH_DEFINES // For M_PI on MSVC
#include "arg.h"
#include "common.h"
#include "sampling.h"
#include "log.h"
#include "llama.h"
#define _USE_MATH_DEFINES // For M_PI on MSVC
#include "json.hpp"
#include <algorithm>
#include <cmath>
@@ -16,6 +17,13 @@
#include <thread>
#include <vector>
using json = nlohmann::ordered_json;
enum outetts_version {
OUTETTS_V0_2,
OUTETTS_V0_3,
};
//
// Terminal utils
//
@@ -371,7 +379,7 @@ static std::string replace_numbers_with_words(const std::string & input_text) {
}
// Based on: https://github.com/edwko/OuteTTS/blob/a613e79c489d8256dd657ea9168d78de75895d82/outetts/version/v1/prompt_processor.py#L39
static std::string process_text(const std::string & text) {
static std::string process_text(const std::string & text, const outetts_version tts_version = OUTETTS_V0_2) {
// For now I skipped text romanization as I am unsure how to handle
// uroman and MeCab implementations in C++
@@ -401,7 +409,8 @@ static std::string process_text(const std::string & text) {
if (c == ' ') {
prompt_clean += "<|text_sep|>";
*/
processed_text = std::regex_replace(processed_text, std::regex(R"(\s)"), "<|text_sep|>");
std::string separator = (tts_version == OUTETTS_V0_3) ? "<|space|>" : "<|text_sep|>";
processed_text = std::regex_replace(processed_text, std::regex(R"(\s)"), separator);
return processed_text;
}
@@ -425,8 +434,8 @@ static void prompt_init(llama_tokens & prompt, const llama_vocab * vocab) {
prompt_add(prompt, vocab, "<|im_start|>\n", true, true);
}
static std::vector<llama_token> prepare_guide_tokens(const llama_vocab * vocab, const std::string & str) {
const std::string& delimiter = "<|text_sep|>";
static std::vector<llama_token> prepare_guide_tokens(const llama_vocab * vocab, const std::string & str, const outetts_version tts_version = OUTETTS_V0_2) {
const std::string& delimiter = (tts_version == OUTETTS_V0_3 ? "<|space|>" : "<|text_sep|>");
std::vector<llama_token> result;
size_t start = 0;
@@ -452,6 +461,78 @@ static std::vector<llama_token> prepare_guide_tokens(const llama_vocab * vocab,
return result;
}
static json speaker_from_file(const std::string & speaker_file) {
std::ifstream file(speaker_file);
if (!file) {
LOG_ERR("%s: Failed to open file '%s' for reading\n", __func__, speaker_file.c_str());
return json();
}
json speaker = json::parse(file);
return speaker;
}
static outetts_version get_tts_version(llama_model *model, json speaker = json::object()) {
if (speaker.contains("version")) {
std::string version = speaker["version"].get<std::string>();
if (version == "0.2") {
return OUTETTS_V0_2;
} else if (version == "0.3") {
return OUTETTS_V0_3;
} else {
LOG_ERR("%s: Unsupported speaker version '%s'\n", __func__, version.c_str());
}
}
// Also could get version from model itself
const char *chat_template = llama_model_chat_template(model, nullptr);
if (chat_template && std::string(chat_template) == "outetts-0.3") {
return OUTETTS_V0_3;
}
// Use 0.2 as the default version
return OUTETTS_V0_2;
}
static std::string audio_text_from_speaker(json speaker, const outetts_version tts_version = OUTETTS_V0_2) {
std::string audio_text = "<|text_start|>";
if (tts_version == OUTETTS_V0_2 || tts_version == OUTETTS_V0_3) {
std::string separator = (tts_version == OUTETTS_V0_3) ? "<|space|>" : "<|text_sep|>";
for (const auto &word : speaker["words"]) {
audio_text += word["word"].get<std::string>() + separator;
}
}
return audio_text;
}
static std::string audio_data_from_speaker(json speaker, const outetts_version tts_version = OUTETTS_V0_2) {
std::string audio_data = "<|audio_start|>\n";
if (tts_version == OUTETTS_V0_2 || tts_version == OUTETTS_V0_3) {
std::string code_start = (tts_version == OUTETTS_V0_3) ? "" : "<|code_start|>";
std::string code_end = (tts_version == OUTETTS_V0_3) ? "<|space|>" : "<|code_end|>";
for (const auto &word : speaker["words"]) {
std::string word_text = word["word"].get<std::string>();
double duration = word["duration"].get<double>();
std::vector<int> codes = word["codes"].get<std::vector<int>>();
// Create the audio output entry
std::ostringstream word_entry;
word_entry << word_text << "<|t_" << std::fixed << std::setprecision(2)
<< duration << "|>" + code_start;
for (const auto &Code : codes) {
word_entry << "<|" << Code << "|>";
}
word_entry << code_end << "\n";
audio_data += word_entry.str();
}
}
return audio_data;
}
int main(int argc, char ** argv) {
common_params params;
@@ -523,34 +604,9 @@ int main(int argc, char ** argv) {
std::vector<llama_token> codes;
std::vector<llama_token> guide_tokens;
// process prompt and generate voice codes
{
LOG_INF("%s: constructing prompt ..\n", __func__);
std::vector<llama_token> prompt_inp;
prompt_init(prompt_inp, vocab);
prompt_add(prompt_inp, vocab, "<|text_start|>the<|text_sep|>overall<|text_sep|>package<|text_sep|>from<|text_sep|>just<|text_sep|>two<|text_sep|>people<|text_sep|>is<|text_sep|>pretty<|text_sep|>remarkable<|text_sep|>sure<|text_sep|>i<|text_sep|>have<|text_sep|>some<|text_sep|>critiques<|text_sep|>about<|text_sep|>some<|text_sep|>of<|text_sep|>the<|text_sep|>gameplay<|text_sep|>aspects<|text_sep|>but<|text_sep|>its<|text_sep|>still<|text_sep|>really<|text_sep|>enjoyable<|text_sep|>and<|text_sep|>it<|text_sep|>looks<|text_sep|>lovely<|text_sep|>", false, true);
// convert the input text into the necessary format expected by OuteTTS
{
std::string prompt_clean = process_text(params.prompt);
if (params.vocoder.use_guide_tokens) {
guide_tokens = prepare_guide_tokens(vocab, prompt_clean);
}
LOG_INF("%s: prompt: '%s'\n", __func__, prompt_clean.c_str());
prompt_add(prompt_inp, vocab, prompt_clean, false, true);
}
prompt_add(prompt_inp, vocab, "<|text_end|>\n", false, true);
// disabled to save time on tokenizing each time
// TODO: load voices from the json files
#if 0
const std::string voice_data = R"(<|audio_start|>
// the default speaker profile is from: https://github.com/edwko/OuteTTS/blob/main/outetts/version/v1/default_speakers/en_male_1.json
std::string audio_text = "<|text_start|>the<|text_sep|>overall<|text_sep|>package<|text_sep|>from<|text_sep|>just<|text_sep|>two<|text_sep|>people<|text_sep|>is<|text_sep|>pretty<|text_sep|>remarkable<|text_sep|>sure<|text_sep|>i<|text_sep|>have<|text_sep|>some<|text_sep|>critiques<|text_sep|>about<|text_sep|>some<|text_sep|>of<|text_sep|>the<|text_sep|>gameplay<|text_sep|>aspects<|text_sep|>but<|text_sep|>its<|text_sep|>still<|text_sep|>really<|text_sep|>enjoyable<|text_sep|>and<|text_sep|>it<|text_sep|>looks<|text_sep|>lovely<|text_sep|>";
std::string audio_data = R"(<|audio_start|>
the<|t_0.08|><|code_start|><|257|><|740|><|636|><|913|><|788|><|1703|><|code_end|>
overall<|t_0.36|><|code_start|><|127|><|201|><|191|><|774|><|700|><|532|><|1056|><|557|><|798|><|298|><|1741|><|747|><|1662|><|1617|><|1702|><|1527|><|368|><|1588|><|1049|><|1008|><|1625|><|747|><|1576|><|728|><|1019|><|1696|><|1765|><|code_end|>
package<|t_0.56|><|code_start|><|935|><|584|><|1319|><|627|><|1016|><|1491|><|1344|><|1117|><|1526|><|1040|><|239|><|1435|><|951|><|498|><|723|><|1180|><|535|><|789|><|1649|><|1637|><|78|><|465|><|1668|><|901|><|595|><|1675|><|117|><|1009|><|1667|><|320|><|840|><|79|><|507|><|1762|><|1508|><|1228|><|1768|><|802|><|1450|><|1457|><|232|><|639|><|code_end|>
@@ -582,117 +638,170 @@ it<|t_0.09|><|code_start|><|848|><|1366|><|395|><|1601|><|1513|><|593|><|1302|><
looks<|t_0.27|><|code_start|><|1281|><|1266|><|1755|><|572|><|248|><|1751|><|1257|><|695|><|1380|><|457|><|659|><|585|><|1315|><|1105|><|1776|><|736|><|24|><|736|><|654|><|1027|><|code_end|>
lovely<|t_0.56|><|code_start|><|634|><|596|><|1766|><|1556|><|1306|><|1285|><|1481|><|1721|><|1123|><|438|><|1246|><|1251|><|795|><|659|><|1381|><|1658|><|217|><|1772|><|562|><|952|><|107|><|1129|><|1112|><|467|><|550|><|1079|><|840|><|1615|><|1469|><|1380|><|168|><|917|><|836|><|1827|><|437|><|583|><|67|><|595|><|1087|><|1646|><|1493|><|1677|><|code_end|>)";
auto tmp = common_tokenize(vocab, voice_data, false, true);
printf("\n\n");
for (int i = 0; i < tmp.size(); ++i) {
printf("%d, ", tmp[i]);
// audio data for 0.3 version
outetts_version tts_version = get_tts_version(model_ttc);
if (tts_version == OUTETTS_V0_3) {
audio_text = std::regex_replace(audio_text, std::regex(R"(<\|text_sep\|>)"), "<|space|>");
audio_data = std::regex_replace(audio_data, std::regex(R"(<\|code_start\|>)"), "");
audio_data = std::regex_replace(audio_data, std::regex(R"(<\|code_end\|>)"), "<|space|>");
}
// load speaker if given
if (!params.vocoder.speaker_file.empty()) {
LOG_INF("%s: loading speaker ..\n", __func__);
json speaker = speaker_from_file(params.vocoder.speaker_file);
if (speaker.empty()) {
LOG_ERR("%s: Failed to load speaker file '%s'\n", __func__, params.vocoder.speaker_file.c_str());
return 1;
}
printf("\n\n");
audio_text = audio_text_from_speaker(speaker, tts_version);
audio_data = audio_data_from_speaker(speaker, tts_version);
}
// process prompt and generate voice codes
{
LOG_INF("%s: constructing prompt ..\n", __func__);
std::vector<llama_token> prompt_inp;
prompt_init(prompt_inp, vocab);
prompt_add(prompt_inp, vocab, audio_text, false, true);
// convert the input text into the necessary format expected by OuteTTS
{
std::string prompt_clean = process_text(params.prompt, tts_version);
if (params.vocoder.use_guide_tokens) {
guide_tokens = prepare_guide_tokens(vocab, prompt_clean, tts_version);
}
LOG_INF("%s: prompt: '%s'\n", __func__, prompt_clean.c_str());
prompt_add(prompt_inp, vocab, prompt_clean, false, true);
}
prompt_add(prompt_inp, vocab, "<|text_end|>\n", false, true);
if (!params.vocoder.speaker_file.empty()) {
prompt_add(prompt_inp, vocab, audio_data, false, true);
} else {
// disabled to save time on tokenizing each time
#if 1
const std::string voice_data = audio_data;
auto tmp = common_tokenize(vocab, voice_data, false, true);
printf("\n\n");
for (size_t i = 0; i < tmp.size(); ++i) {
printf("%d, ", tmp[i]);
}
printf("\n\n");
prompt_add(prompt_inp, tmp);
#else
prompt_add(prompt_inp, llama_tokens {
151667, 198, 1782, 155780, 151669, 151929, 152412, 152308, 152585,
152460, 153375, 151670, 198, 74455, 155808, 151669, 151799,
151873, 151863, 152446, 152372, 152204, 152728, 152229, 152470,
151970, 153413, 152419, 153334, 153289, 153374, 153199, 152040,
153260, 152721, 152680, 153297, 152419, 153248, 152400, 152691,
153368, 153437, 151670, 198, 1722, 155828, 151669, 152607,
152256, 152991, 152299, 152688, 153163, 153016, 152789, 153198,
152712, 151911, 153107, 152623, 152170, 152395, 152852, 152207,
152461, 153321, 153309, 151750, 152137, 153340, 152573, 152267,
153347, 151789, 152681, 153339, 151992, 152512, 151751, 152179,
153434, 153180, 152900, 153440, 152474, 153122, 153129, 151904,
152311, 151670, 198, 1499, 155791, 151669, 152276, 152454,
153354, 152544, 153204, 153272, 152708, 153433, 152319, 153226,
153043, 152325, 153267, 152622, 151670, 198, 4250, 155797,
151669, 153454, 153342, 151989, 152458, 153420, 152303, 152271,
152827, 153036, 153196, 151708, 153263, 152561, 153207, 152213,
152112, 153204, 151722, 152542, 151670, 198, 19789, 155796,
151669, 153353, 153182, 152345, 152471, 152477, 153014, 152002,
152191, 151734, 152312, 152810, 152237, 153224, 153169, 153224,
152244, 153387, 153404, 151670, 198, 16069, 155811, 151669,
152265, 151946, 151808, 152412, 152363, 152305, 153156, 152733,
152810, 153157, 152016, 152100, 152069, 153234, 152317, 152589,
152707, 153121, 153341, 152159, 152114, 153156, 153001, 153504,
153376, 152272, 152433, 152325, 151941, 151670, 198, 285,
155788, 151669, 152238, 152255, 153427, 152318, 153009, 152381,
152474, 152680, 152157, 153255, 152324, 151682, 151670, 198,
32955, 155804, 151669, 153490, 153419, 152364, 152405, 152682,
152206, 152078, 153369, 152725, 153193, 153027, 152946, 152488,
153070, 151883, 152890, 152489, 153144, 153375, 152358, 151685,
152494, 152117, 152740, 151670, 198, 37448, 480, 155840, 151669,
151902, 152720, 153377, 152027, 152378, 152821, 153207, 153459,
153028, 153068, 152507, 153255, 152158, 152921, 151958, 152609,
152748, 152822, 152286, 151714, 152730, 152377, 152353, 152470,
152606, 152162, 152186, 153071, 152244, 153118, 153375, 153018,
152712, 153098, 152976, 152336, 151843, 153202, 152297, 151736,
153380, 153502, 152702, 152115, 153181, 152735, 153277, 153457,
152393, 153112, 152595, 151670, 198, 19098, 155808, 151669,
152464, 153452, 152595, 153312, 151937, 151933, 153197, 152239,
153163, 152922, 153402, 152034, 152591, 153438, 152215, 151673,
152005, 151785, 152642, 151924, 153278, 151805, 151974, 153482,
152718, 152862, 153347, 151670, 198, 72, 155780, 151669, 151795,
152111, 152746, 152377, 153471, 152309, 151670, 198, 19016,
155788, 151669, 153181, 152271, 152190, 152842, 152224, 152701,
152939, 152536, 152091, 151815, 152733, 151672, 151670, 198,
14689, 155788, 151669, 152291, 152072, 152942, 151734, 153042,
153504, 152589, 153333, 151839, 151941, 153038, 153180, 151670,
198, 36996, 8303, 155832, 151669, 152231, 152256, 152835,
152801, 152985, 153400, 152393, 152818, 152765, 152249, 152600,
151699, 152302, 152752, 153018, 153009, 151992, 153054, 152847,
153354, 153228, 152662, 153355, 152532, 153393, 151782, 152458,
152048, 152757, 152428, 153195, 151906, 153006, 153178, 153250,
152331, 152284, 152780, 153138, 153319, 151980, 153142, 152418,
152228, 152733, 151670, 198, 9096, 155801, 151669, 151698,
153321, 152217, 153039, 152935, 153400, 152122, 152531, 153106,
152169, 152892, 152957, 151851, 152427, 152826, 152451, 151851,
152901, 152885, 152594, 153446, 153080, 151670, 198, 14689,
155795, 151669, 152658, 151700, 153321, 152450, 152530, 153191,
151673, 151690, 151698, 152714, 152846, 152981, 153171, 153384,
153364, 153188, 153246, 151670, 198, 1055, 155779, 151669,
151869, 152388, 152711, 153334, 151736, 151670, 198, 1782,
155780, 151669, 153483, 153240, 152241, 152558, 152697, 153046,
151670, 198, 5804, 1363, 155820, 151669, 152941, 152764, 152605,
153034, 153434, 153372, 153347, 151887, 152453, 152758, 152133,
152510, 152694, 152431, 152321, 153088, 152676, 152223, 152581,
152459, 152015, 152502, 153063, 152712, 153294, 153451, 153032,
152903, 152859, 152989, 151748, 152669, 152661, 152650, 152409,
151861, 151670, 198, 300, 7973, 155828, 151669, 153095, 152469,
152988, 152894, 151819, 152391, 153019, 152058, 153062, 153230,
151826, 152112, 152306, 152264, 152769, 153390, 152384, 152435,
152790, 153393, 152983, 152540, 152252, 152034, 153107, 152540,
151919, 151893, 152558, 152817, 152946, 152956, 152129, 152715,
153131, 153490, 151734, 152271, 152707, 151734, 153321, 152450,
151670, 198, 8088, 155792, 151669, 152452, 153497, 153353,
152679, 152533, 152382, 152374, 152611, 153341, 153163, 152285,
153411, 152495, 153141, 152320, 151670, 198, 1199, 155781,
151669, 151764, 152360, 153295, 152634, 153342, 152199, 152271,
151670, 198, 43366, 155799, 151669, 152308, 151682, 152889,
152016, 152385, 152629, 152495, 151826, 153321, 152958, 152180,
151886, 153432, 152922, 152128, 153024, 153040, 152593, 152287,
151677, 151670, 198, 53660, 155808, 151669, 151727, 152092,
152680, 153331, 151699, 152316, 152938, 152289, 152433, 153384,
151781, 153137, 153259, 152175, 153213, 152291, 151869, 152691,
152489, 151941, 152049, 152034, 153053, 152179, 153160, 151676,
153367, 151670, 198, 268, 4123, 480, 155821, 151669, 152350,
152173, 152536, 151991, 151960, 153144, 153013, 152358, 152234,
153135, 152291, 153235, 152143, 152583, 152402, 153483, 152678,
152192, 152533, 152946, 151797, 153103, 152310, 152293, 151825,
152548, 153442, 152109, 152659, 153325, 152781, 152570, 152957,
151752, 152265, 153381, 152515, 151670, 198, 437, 155787,
151669, 152957, 152659, 151975, 152709, 152402, 152836, 152174,
151792, 153409, 153327, 152990, 151670, 198, 275, 155781,
151669, 152520, 153038, 152067, 153273, 153185, 152265, 152974,
151670, 198, 94273, 155799, 151669, 152953, 152938, 153427,
152244, 151920, 153423, 152929, 152367, 153052, 152129, 152331,
152257, 152987, 152777, 153448, 152408, 151696, 152408, 152326,
152699, 151670, 198, 385, 16239, 155828, 151669, 152306, 152268,
153438, 153228, 152978, 152957, 153153, 153393, 152795, 152110,
152918, 152923, 152467, 152331, 153053, 153330, 151889, 153444,
152234, 152624, 151779, 152801, 152784, 152139, 152222, 152751,
152512, 153287, 153141, 153052, 151840, 152589, 152508, 153499,
152109, 152255, 151739, 152267, 152759, 153318, 153165, 153349,
151670,});
prompt_add(prompt_inp, llama_tokens {
151667, 198, 1782, 155780, 151669, 151929, 152412, 152308, 152585,
152460, 153375, 151670, 198, 74455, 155808, 151669, 151799,
151873, 151863, 152446, 152372, 152204, 152728, 152229, 152470,
151970, 153413, 152419, 153334, 153289, 153374, 153199, 152040,
153260, 152721, 152680, 153297, 152419, 153248, 152400, 152691,
153368, 153437, 151670, 198, 1722, 155828, 151669, 152607,
152256, 152991, 152299, 152688, 153163, 153016, 152789, 153198,
152712, 151911, 153107, 152623, 152170, 152395, 152852, 152207,
152461, 153321, 153309, 151750, 152137, 153340, 152573, 152267,
153347, 151789, 152681, 153339, 151992, 152512, 151751, 152179,
153434, 153180, 152900, 153440, 152474, 153122, 153129, 151904,
152311, 151670, 198, 1499, 155791, 151669, 152276, 152454,
153354, 152544, 153204, 153272, 152708, 153433, 152319, 153226,
153043, 152325, 153267, 152622, 151670, 198, 4250, 155797,
151669, 153454, 153342, 151989, 152458, 153420, 152303, 152271,
152827, 153036, 153196, 151708, 153263, 152561, 153207, 152213,
152112, 153204, 151722, 152542, 151670, 198, 19789, 155796,
151669, 153353, 153182, 152345, 152471, 152477, 153014, 152002,
152191, 151734, 152312, 152810, 152237, 153224, 153169, 153224,
152244, 153387, 153404, 151670, 198, 16069, 155811, 151669,
152265, 151946, 151808, 152412, 152363, 152305, 153156, 152733,
152810, 153157, 152016, 152100, 152069, 153234, 152317, 152589,
152707, 153121, 153341, 152159, 152114, 153156, 153001, 153504,
153376, 152272, 152433, 152325, 151941, 151670, 198, 285,
155788, 151669, 152238, 152255, 153427, 152318, 153009, 152381,
152474, 152680, 152157, 153255, 152324, 151682, 151670, 198,
32955, 155804, 151669, 153490, 153419, 152364, 152405, 152682,
152206, 152078, 153369, 152725, 153193, 153027, 152946, 152488,
153070, 151883, 152890, 152489, 153144, 153375, 152358, 151685,
152494, 152117, 152740, 151670, 198, 37448, 480, 155840, 151669,
151902, 152720, 153377, 152027, 152378, 152821, 153207, 153459,
153028, 153068, 152507, 153255, 152158, 152921, 151958, 152609,
152748, 152822, 152286, 151714, 152730, 152377, 152353, 152470,
152606, 152162, 152186, 153071, 152244, 153118, 153375, 153018,
152712, 153098, 152976, 152336, 151843, 153202, 152297, 151736,
153380, 153502, 152702, 152115, 153181, 152735, 153277, 153457,
152393, 153112, 152595, 151670, 198, 19098, 155808, 151669,
152464, 153452, 152595, 153312, 151937, 151933, 153197, 152239,
153163, 152922, 153402, 152034, 152591, 153438, 152215, 151673,
152005, 151785, 152642, 151924, 153278, 151805, 151974, 153482,
152718, 152862, 153347, 151670, 198, 72, 155780, 151669, 151795,
152111, 152746, 152377, 153471, 152309, 151670, 198, 19016,
155788, 151669, 153181, 152271, 152190, 152842, 152224, 152701,
152939, 152536, 152091, 151815, 152733, 151672, 151670, 198,
14689, 155788, 151669, 152291, 152072, 152942, 151734, 153042,
153504, 152589, 153333, 151839, 151941, 153038, 153180, 151670,
198, 36996, 8303, 155832, 151669, 152231, 152256, 152835,
152801, 152985, 153400, 152393, 152818, 152765, 152249, 152600,
151699, 152302, 152752, 153018, 153009, 151992, 153054, 152847,
153354, 153228, 152662, 153355, 152532, 153393, 151782, 152458,
152048, 152757, 152428, 153195, 151906, 153006, 153178, 153250,
152331, 152284, 152780, 153138, 153319, 151980, 153142, 152418,
152228, 152733, 151670, 198, 9096, 155801, 151669, 151698,
153321, 152217, 153039, 152935, 153400, 152122, 152531, 153106,
152169, 152892, 152957, 151851, 152427, 152826, 152451, 151851,
152901, 152885, 152594, 153446, 153080, 151670, 198, 14689,
155795, 151669, 152658, 151700, 153321, 152450, 152530, 153191,
151673, 151690, 151698, 152714, 152846, 152981, 153171, 153384,
153364, 153188, 153246, 151670, 198, 1055, 155779, 151669,
151869, 152388, 152711, 153334, 151736, 151670, 198, 1782,
155780, 151669, 153483, 153240, 152241, 152558, 152697, 153046,
151670, 198, 5804, 1363, 155820, 151669, 152941, 152764, 152605,
153034, 153434, 153372, 153347, 151887, 152453, 152758, 152133,
152510, 152694, 152431, 152321, 153088, 152676, 152223, 152581,
152459, 152015, 152502, 153063, 152712, 153294, 153451, 153032,
152903, 152859, 152989, 151748, 152669, 152661, 152650, 152409,
151861, 151670, 198, 300, 7973, 155828, 151669, 153095, 152469,
152988, 152894, 151819, 152391, 153019, 152058, 153062, 153230,
151826, 152112, 152306, 152264, 152769, 153390, 152384, 152435,
152790, 153393, 152983, 152540, 152252, 152034, 153107, 152540,
151919, 151893, 152558, 152817, 152946, 152956, 152129, 152715,
153131, 153490, 151734, 152271, 152707, 151734, 153321, 152450,
151670, 198, 8088, 155792, 151669, 152452, 153497, 153353,
152679, 152533, 152382, 152374, 152611, 153341, 153163, 152285,
153411, 152495, 153141, 152320, 151670, 198, 1199, 155781,
151669, 151764, 152360, 153295, 152634, 153342, 152199, 152271,
151670, 198, 43366, 155799, 151669, 152308, 151682, 152889,
152016, 152385, 152629, 152495, 151826, 153321, 152958, 152180,
151886, 153432, 152922, 152128, 153024, 153040, 152593, 152287,
151677, 151670, 198, 53660, 155808, 151669, 151727, 152092,
152680, 153331, 151699, 152316, 152938, 152289, 152433, 153384,
151781, 153137, 153259, 152175, 153213, 152291, 151869, 152691,
152489, 151941, 152049, 152034, 153053, 152179, 153160, 151676,
153367, 151670, 198, 268, 4123, 480, 155821, 151669, 152350,
152173, 152536, 151991, 151960, 153144, 153013, 152358, 152234,
153135, 152291, 153235, 152143, 152583, 152402, 153483, 152678,
152192, 152533, 152946, 151797, 153103, 152310, 152293, 151825,
152548, 153442, 152109, 152659, 153325, 152781, 152570, 152957,
151752, 152265, 153381, 152515, 151670, 198, 437, 155787,
151669, 152957, 152659, 151975, 152709, 152402, 152836, 152174,
151792, 153409, 153327, 152990, 151670, 198, 275, 155781,
151669, 152520, 153038, 152067, 153273, 153185, 152265, 152974,
151670, 198, 94273, 155799, 151669, 152953, 152938, 153427,
152244, 151920, 153423, 152929, 152367, 153052, 152129, 152331,
152257, 152987, 152777, 153448, 152408, 151696, 152408, 152326,
152699, 151670, 198, 385, 16239, 155828, 151669, 152306, 152268,
153438, 153228, 152978, 152957, 153153, 153393, 152795, 152110,
152918, 152923, 152467, 152331, 153053, 153330, 151889, 153444,
152234, 152624, 151779, 152801, 152784, 152139, 152222, 152751,
152512, 153287, 153141, 153052, 151840, 152589, 152508, 153499,
152109, 152255, 151739, 152267, 152759, 153318, 153165, 153349,
151670,});
#endif
}
// print the prompt token-by-token

View File

@@ -106,6 +106,7 @@ option(GGML_CPU_KLEIDIAI "ggml: use KleidiAI optimized kernels if applicable
option(GGML_AVX "ggml: enable AVX" ${INS_ENB})
option(GGML_AVX_VNNI "ggml: enable AVX-VNNI" OFF)
option(GGML_AVX2 "ggml: enable AVX2" ${INS_ENB})
option(GGML_BMI2 "ggml: enable BMI2" ${INS_ENB})
option(GGML_AVX512 "ggml: enable AVX512F" OFF)
option(GGML_AVX512_VBMI "ggml: enable AVX512-VBMI" OFF)
option(GGML_AVX512_VNNI "ggml: enable AVX512-VNNI" OFF)
@@ -155,10 +156,14 @@ option(GGML_CUDA_NO_VMM "ggml: do not try to use CUDA VMM"
option(GGML_CUDA_FA "ggml: compile ggml FlashAttention CUDA kernels" ON)
option(GGML_CUDA_FA_ALL_QUANTS "ggml: compile all quants for FlashAttention" OFF)
option(GGML_CUDA_GRAPHS "ggml: use CUDA graphs (llama.cpp only)" ${GGML_CUDA_GRAPHS_DEFAULT})
set (GGML_CUDA_COMPRESSION_MODE "size" CACHE STRING
"ggml: cuda link binary compression mode; requires cuda 12.8+")
set_property(CACHE GGML_CUDA_COMPRESSION_MODE PROPERTY STRINGS "none;speed;balance;size")
option(GGML_HIP "ggml: use HIP" OFF)
option(GGML_HIP_GRAPHS "ggml: use HIP graph, experimental, slow" OFF)
option(GGML_HIP_NO_VMM "ggml: do not try to use HIP VMM" ON)
option(GGML_HIP_ROCWMMA_FATTN "ggml: enable rocWMMA for FlashAttention" OFF)
option(GGML_HIP_UMA "ggml: use HIP unified memory architecture" OFF)
option(GGML_VULKAN "ggml: use Vulkan" OFF)
option(GGML_VULKAN_CHECK_RESULTS "ggml: run Vulkan op checks" OFF)
@@ -190,6 +195,8 @@ option(GGML_OPENCL "ggml: use OpenCL"
option(GGML_OPENCL_PROFILING "ggml: use OpenCL profiling (increases overhead)" OFF)
option(GGML_OPENCL_EMBED_KERNELS "ggml: embed kernels" ON)
option(GGML_OPENCL_USE_ADRENO_KERNELS "ggml: use optimized kernels for Adreno" ON)
set (GGML_OPENCL_TARGET_VERSION "300" CACHE STRING
"gmml: OpenCL API version to target")
# toolchain for vulkan-shaders-gen
set (GGML_VULKAN_SHADERS_GEN_TOOLCHAIN "" CACHE FILEPATH "ggml: toolchain file for vulkan-shaders-gen")
@@ -212,6 +219,8 @@ set(THREADS_PREFER_PTHREAD_FLAG ON)
find_package(Threads REQUIRED)
include(GNUInstallDirs)
#
# build the library
#
@@ -235,7 +244,6 @@ endif ()
# install
#
include(GNUInstallDirs)
include(CMakePackageConfigHelpers)
# all public headers
@@ -246,6 +254,7 @@ set(GGML_PUBLIC_HEADERS
include/ggml-backend.h
include/ggml-blas.h
include/ggml-cann.h
include/ggml-cpp.h
include/ggml-cuda.h
include/ggml-kompute.h
include/ggml-opt.h

View File

@@ -112,7 +112,7 @@ foreach(_ggml_backend ${GGML_AVAILABLE_BACKENDS})
string(REGEX MATCH "^ggml-cpu" is_cpu_variant "${_ggml_backend}")
if(is_cpu_variant)
list(APPEND GGML_CPU_INTERFACE_LINK_LIBRARIES "ggml::ggml" "ggml::ggml-base")
list(APPEND GGML_CPU_INTERFACE_LINK_LIBRARIES "ggml::ggml-base")
set_target_properties(ggml::${_ggml_backend}
PROPERTIES
INTERFACE_LINK_LIBRARIES "${GGML_CPU_INTERFACE_LINK_LIBRARIES}")
@@ -124,7 +124,7 @@ foreach(_ggml_backend ${GGML_AVAILABLE_BACKENDS})
endif()
else()
list(APPEND ${_ggml_backend_pfx}_INTERFACE_LINK_LIBRARIES "ggml::ggml" "ggml::ggml-base")
list(APPEND ${_ggml_backend_pfx}_INTERFACE_LINK_LIBRARIES "ggml::ggml-base")
set_target_properties(ggml::${_ggml_backend}
PROPERTIES
INTERFACE_LINK_LIBRARIES "${${_ggml_backend_pfx}_INTERFACE_LINK_LIBRARIES}")
@@ -139,6 +139,11 @@ foreach(_ggml_backend ${GGML_AVAILABLE_BACKENDS})
list(APPEND _ggml_all_targets ggml::${_ggml_backend})
endforeach()
list(APPEND GGML_INTERFACE_LINK_LIBRARIES ggml::ggml-base "${_ggml_all_targets}")
set_target_properties(ggml::ggml
PROPERTIES
INTERFACE_LINK_LIBRARIES "${GGML_INTERFACE_LINK_LIBRARIES}")
add_library(ggml::all INTERFACE IMPORTED)
set_target_properties(ggml::all
PROPERTIES

View File

@@ -19,7 +19,7 @@ struct ggml_tallocr {
};
GGML_API struct ggml_tallocr ggml_tallocr_new(ggml_backend_buffer_t buffer);
GGML_API void ggml_tallocr_alloc(struct ggml_tallocr * talloc, struct ggml_tensor * tensor);
GGML_API enum ggml_status ggml_tallocr_alloc(struct ggml_tallocr * talloc, struct ggml_tensor * tensor);
// Graph allocator
/*

View File

@@ -56,7 +56,7 @@ extern "C" {
GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer);
GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer);
GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer);
GGML_API void ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
GGML_API enum ggml_status ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
GGML_API size_t ggml_backend_buffer_get_max_size (ggml_backend_buffer_t buffer);
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
@@ -342,8 +342,8 @@ extern "C" {
GGML_API bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data);
// Tensor initialization
GGML_API void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr);
GGML_API void ggml_backend_view_init(struct ggml_tensor * tensor);
GGML_API enum ggml_status ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr);
GGML_API enum ggml_status ggml_backend_view_init(struct ggml_tensor * tensor);
// CPU buffer types are always available
GGML_API ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size);

View File

@@ -80,6 +80,7 @@ extern "C" {
GGML_BACKEND_API int ggml_cpu_has_avx (void);
GGML_BACKEND_API int ggml_cpu_has_avx_vnni (void);
GGML_BACKEND_API int ggml_cpu_has_avx2 (void);
GGML_BACKEND_API int ggml_cpu_has_bmi2 (void);
GGML_BACKEND_API int ggml_cpu_has_f16c (void);
GGML_BACKEND_API int ggml_cpu_has_fma (void);
GGML_BACKEND_API int ggml_cpu_has_avx512 (void);

View File

@@ -2140,7 +2140,11 @@ extern "C" {
# define GGML_RESTRICT
# endif
#else
# define GGML_RESTRICT restrict
# if defined (_MSC_VER) && (__STDC_VERSION__ < 201112L)
# define GGML_RESTRICT __restrict
# else
# define GGML_RESTRICT restrict
# endif
#endif
typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);

View File

@@ -226,6 +226,9 @@ add_library(ggml-base
gguf.cpp)
target_include_directories(ggml-base PRIVATE .)
if (GGML_BACKEND_DL)
target_compile_definitions(ggml-base PUBLIC GGML_BACKEND_DL)
endif()
add_library(ggml
ggml-backend-reg.cpp)
@@ -233,7 +236,7 @@ add_library(ggml
target_link_libraries(ggml PUBLIC ggml-base)
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
target_link_libraries(ggml PRIVATE dl)
target_link_libraries(ggml PRIVATE dl stdc++fs)
endif()
function(ggml_add_backend_library backend)
@@ -286,7 +289,7 @@ function(ggml_add_cpu_backend_variant tag_name)
set(GGML_CPU_TAG_NAME ${tag_name})
# other: OPENMP LLAMAFILE CPU_HBM
foreach (feat NATIVE
AVX AVX2 AVX_VNNI FMA F16C
AVX AVX2 BMI2 AVX_VNNI FMA F16C
AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16
AMX_TILE AMX_INT8 AMX_BF16)
set(GGML_${feat} OFF)
@@ -306,13 +309,13 @@ if (GGML_CPU_ALL_VARIANTS)
message(FATAL_ERROR "GGML_CPU_ALL_VARIANTS requires GGML_BACKEND_DL")
endif()
ggml_add_cpu_backend_variant(sandybridge AVX)
ggml_add_cpu_backend_variant(haswell AVX F16C AVX2 FMA)
ggml_add_cpu_backend_variant(skylakex AVX F16C AVX2 FMA AVX512)
ggml_add_cpu_backend_variant(icelake AVX F16C AVX2 FMA AVX512 AVX512_VBMI AVX512_VNNI)
ggml_add_cpu_backend_variant(alderlake AVX F16C AVX2 FMA AVX_VNNI)
ggml_add_cpu_backend_variant(haswell AVX F16C AVX2 BMI2 FMA)
ggml_add_cpu_backend_variant(skylakex AVX F16C AVX2 BMI2 FMA AVX512)
ggml_add_cpu_backend_variant(icelake AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI)
ggml_add_cpu_backend_variant(alderlake AVX F16C AVX2 BMI2 FMA AVX_VNNI)
if (NOT MSVC)
# MSVC doesn't support AMX
ggml_add_cpu_backend_variant(sapphirerapids AVX F16C AVX2 FMA AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16 AMX_TILE AMX_INT8)
ggml_add_cpu_backend_variant(sapphirerapids AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16 AMX_TILE AMX_INT8)
endif()
elseif (GGML_CPU)
ggml_add_cpu_backend_variant_impl("")

View File

@@ -89,7 +89,7 @@ struct ggml_tallocr ggml_tallocr_new(ggml_backend_buffer_t buffer) {
return talloc;
}
void ggml_tallocr_alloc(struct ggml_tallocr * talloc, struct ggml_tensor * tensor) {
enum ggml_status ggml_tallocr_alloc(struct ggml_tallocr * talloc, struct ggml_tensor * tensor) {
size_t size = ggml_backend_buffer_get_alloc_size(talloc->buffer, tensor);
size = GGML_PAD(size, talloc->alignment);
@@ -104,7 +104,7 @@ void ggml_tallocr_alloc(struct ggml_tallocr * talloc, struct ggml_tensor * tenso
assert(((uintptr_t)addr % talloc->alignment) == 0);
ggml_backend_tensor_alloc(talloc->buffer, tensor, addr);
return ggml_backend_tensor_alloc(talloc->buffer, tensor, addr);
}
// dynamic tensor allocator
@@ -933,42 +933,51 @@ size_t ggml_gallocr_get_buffer_size(ggml_gallocr_t galloc, int buffer_id) {
// utils
static void free_buffers(ggml_backend_buffer_t ** buffers, const size_t * n_buffers) {
for (size_t i = 0; i < *n_buffers; i++) {
ggml_backend_buffer_free((*buffers)[i]);
}
free(*buffers);
}
static bool alloc_tensor_range(struct ggml_context * ctx,
struct ggml_tensor * first, struct ggml_tensor * last,
ggml_backend_buffer_type_t buft, size_t size,
ggml_backend_buffer_t ** buffers, size_t * n_buffers) {
ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, size);
if (buffer == NULL) {
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: failed to allocate %s buffer of size %zu\n", __func__, ggml_backend_buft_name(buft), size);
#endif
for (size_t i = 0; i < *n_buffers; i++) {
ggml_backend_buffer_free((*buffers)[i]);
}
free(*buffers);
GGML_LOG_ERROR("%s: failed to allocate %s buffer of size %zu\n", __func__, ggml_backend_buft_name(buft), size);
free_buffers(buffers, n_buffers);
return false;
}
struct ggml_tallocr tallocr = ggml_tallocr_new(buffer);
for (struct ggml_tensor * t = first; t != last; t = ggml_get_next_tensor(ctx, t)) {
if (t->data == NULL) {
if (t->view_src == NULL) {
ggml_tallocr_alloc(&tallocr, t);
} else if (t->buffer == NULL) {
ggml_backend_view_init(t);
}
} else {
if (t->view_src != NULL && t->buffer == NULL) {
// view of a pre-allocated tensor
ggml_backend_view_init(t);
}
}
}
*buffers = realloc(*buffers, sizeof(ggml_backend_buffer_t) * (*n_buffers + 1));
(*buffers)[(*n_buffers)++] = buffer;
struct ggml_tallocr tallocr = ggml_tallocr_new(buffer);
for (struct ggml_tensor * t = first; t != last; t = ggml_get_next_tensor(ctx, t)) {
enum ggml_status status = GGML_STATUS_SUCCESS;
if (t->data == NULL) {
if (t->view_src == NULL) {
status = ggml_tallocr_alloc(&tallocr, t);
} else if (t->buffer == NULL) {
status = ggml_backend_view_init(t);
}
} else {
if (t->view_src != NULL && t->buffer == NULL) {
// view of a pre-allocated tensor
status = ggml_backend_view_init(t);
}
}
if (status != GGML_STATUS_SUCCESS) {
GGML_LOG_ERROR("%s: failed to initialize tensor %s\n", __func__, t->name);
free_buffers(buffers, n_buffers);
return false;
}
}
return true;
}

View File

@@ -44,7 +44,7 @@ extern "C" {
// base address of the buffer
void * (*get_base) (ggml_backend_buffer_t buffer);
// (optional) initialize a tensor in the buffer (eg. add tensor extras)
void (*init_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
enum ggml_status (*init_tensor)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
// tensor data access
void (*memset_tensor)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size);
void (*set_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);

View File

@@ -2,14 +2,13 @@
#include "ggml-backend.h"
#include "ggml-impl.h"
#include <algorithm>
#include <codecvt>
#include <cstring>
#include <filesystem>
#include <locale>
#include <memory>
#include <string>
#include <type_traits>
#include <vector>
#include <cctype>
#ifdef _WIN32
# define WIN32_LEAN_AND_MEAN
@@ -72,14 +71,22 @@
# pragma clang diagnostic ignored "-Wdeprecated-declarations"
#endif
static std::wstring utf8_to_utf16(const std::string & str) {
std::wstring_convert<std::codecvt_utf8_utf16<wchar_t>> converter;
return converter.from_bytes(str);
}
namespace fs = std::filesystem;
static std::string utf16_to_utf8(const std::wstring & str) {
std::wstring_convert<std::codecvt_utf8_utf16<wchar_t>> converter;
return converter.to_bytes(str);
static std::string path_str(const fs::path & path) {
std::string u8path;
try {
#if defined(__cpp_lib_char8_t)
// C++20 and later: u8string() returns std::u8string
std::u8string u8str = path.u8string();
u8path = std::string(reinterpret_cast<const char*>(u8str.c_str()));
#else
// C++17: u8string() returns std::string
u8path = path.u8string();
#endif
} catch (...) {
}
return u8path;
}
#if defined(__clang__)
@@ -96,12 +103,12 @@ struct dl_handle_deleter {
}
};
static dl_handle * dl_load_library(const std::wstring & path) {
static dl_handle * dl_load_library(const fs::path & path) {
// suppress error dialogs for missing DLLs
DWORD old_mode = SetErrorMode(SEM_FAILCRITICALERRORS);
SetErrorMode(old_mode | SEM_FAILCRITICALERRORS);
HMODULE handle = LoadLibraryW(path.c_str());
HMODULE handle = LoadLibraryW(path.wstring().c_str());
SetErrorMode(old_mode);
@@ -129,8 +136,8 @@ struct dl_handle_deleter {
}
};
static void * dl_load_library(const std::wstring & path) {
dl_handle * handle = dlopen(utf16_to_utf8(path).c_str(), RTLD_NOW | RTLD_LOCAL);
static void * dl_load_library(const fs::path & path) {
dl_handle * handle = dlopen(path.string().c_str(), RTLD_NOW | RTLD_LOCAL);
return handle;
}
@@ -217,11 +224,11 @@ struct ggml_backend_registry {
devices.push_back(device);
}
ggml_backend_reg_t load_backend(const std::wstring & path, bool silent) {
ggml_backend_reg_t load_backend(const fs::path & path, bool silent) {
dl_handle_ptr handle { dl_load_library(path) };
if (!handle) {
if (!silent) {
GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(path).c_str());
GGML_LOG_ERROR("%s: failed to load %s\n", __func__, path_str(path).c_str());
}
return nullptr;
}
@@ -229,7 +236,7 @@ struct ggml_backend_registry {
auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
if (score_fn && score_fn() == 0) {
if (!silent) {
GGML_LOG_INFO("%s: backend %s is not supported on this system\n", __func__, utf16_to_utf8(path).c_str());
GGML_LOG_INFO("%s: backend %s is not supported on this system\n", __func__, path_str(path).c_str());
}
return nullptr;
}
@@ -237,7 +244,7 @@ struct ggml_backend_registry {
auto backend_init_fn = (ggml_backend_init_t) dl_get_sym(handle.get(), "ggml_backend_init");
if (!backend_init_fn) {
if (!silent) {
GGML_LOG_ERROR("%s: failed to find ggml_backend_init in %s\n", __func__, utf16_to_utf8(path).c_str());
GGML_LOG_ERROR("%s: failed to find ggml_backend_init in %s\n", __func__, path_str(path).c_str());
}
return nullptr;
}
@@ -246,16 +253,17 @@ struct ggml_backend_registry {
if (!reg || reg->api_version != GGML_BACKEND_API_VERSION) {
if (!silent) {
if (!reg) {
GGML_LOG_ERROR("%s: failed to initialize backend from %s: ggml_backend_init returned NULL\n", __func__, utf16_to_utf8(path).c_str());
GGML_LOG_ERROR("%s: failed to initialize backend from %s: ggml_backend_init returned NULL\n",
__func__, path_str(path).c_str());
} else {
GGML_LOG_ERROR("%s: failed to initialize backend from %s: incompatible API version (backend: %d, current: %d)\n",
__func__, utf16_to_utf8(path).c_str(), reg->api_version, GGML_BACKEND_API_VERSION);
__func__, path_str(path).c_str(), reg->api_version, GGML_BACKEND_API_VERSION);
}
}
return nullptr;
}
GGML_LOG_INFO("%s: loaded %s backend from %s\n", __func__, ggml_backend_reg_name(reg), utf16_to_utf8(path).c_str());
GGML_LOG_INFO("%s: loaded %s backend from %s\n", __func__, ggml_backend_reg_name(reg), path_str(path).c_str());
register_backend(reg, std::move(handle));
@@ -391,14 +399,14 @@ ggml_backend_t ggml_backend_init_best(void) {
// Dynamic loading
ggml_backend_reg_t ggml_backend_load(const char * path) {
return get_reg().load_backend(utf8_to_utf16(path), false);
return get_reg().load_backend(path, false);
}
void ggml_backend_unload(ggml_backend_reg_t reg) {
get_reg().unload_backend(reg, true);
}
static std::wstring get_executable_path() {
static fs::path get_executable_path() {
#if defined(__APPLE__)
// get executable path
std::vector<char> path;
@@ -416,7 +424,7 @@ static std::wstring get_executable_path() {
if (last_slash != std::string::npos) {
base_path = base_path.substr(0, last_slash);
}
return utf8_to_utf16(base_path + "/");
return base_path + "/";
#elif defined(__linux__) || defined(__FreeBSD__)
std::string base_path = ".";
std::vector<char> path(1024);
@@ -442,7 +450,7 @@ static std::wstring get_executable_path() {
path.resize(path.size() * 2);
}
return utf8_to_utf16(base_path + "/");
return base_path + "/";
#elif defined(_WIN32)
std::vector<wchar_t> path(MAX_PATH);
DWORD len = GetModuleFileNameW(NULL, path.data(), path.size());
@@ -461,74 +469,69 @@ static std::wstring get_executable_path() {
#endif
}
static std::wstring backend_filename_prefix() {
static fs::path backend_filename_prefix() {
#ifdef _WIN32
return L"ggml-";
return fs::u8path("ggml-");
#else
return L"libggml-";
return fs::u8path("libggml-");
#endif
}
static std::wstring backend_filename_suffix() {
static fs::path backend_filename_extension() {
#ifdef _WIN32
return L".dll";
return fs::u8path(".dll");
#else
return L".so";
#endif
}
static std::wstring path_separator() {
#ifdef _WIN32
return L"\\";
#else
return L"/";
return fs::u8path(".so");
#endif
}
static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent, const char * user_search_path) {
// enumerate all the files that match [lib]ggml-name-*.[so|dll] in the search paths
// TODO: search system paths
std::wstring file_prefix = backend_filename_prefix() + utf8_to_utf16(name) + L"-";
std::vector<std::wstring> search_paths;
const fs::path name_path = fs::u8path(name);
const fs::path file_prefix = backend_filename_prefix().native() + name_path.native() + fs::u8path("-").native();
const fs::path file_extension = backend_filename_extension();
std::vector<fs::path> search_paths;
if (user_search_path == nullptr) {
search_paths.push_back(L"." + path_separator());
// default search paths: executable directory, current directory
search_paths.push_back(get_executable_path());
search_paths.push_back(fs::current_path());
} else {
search_paths.push_back(utf8_to_utf16(user_search_path) + path_separator());
search_paths.push_back(user_search_path);
}
int best_score = 0;
std::wstring best_path;
fs::path best_path;
namespace fs = std::filesystem;
for (const auto & search_path : search_paths) {
if (!fs::exists(search_path)) {
GGML_LOG_DEBUG("%s: search path %s does not exist\n", __func__, path_str(search_path).c_str());
continue;
}
fs::directory_iterator dir_it(search_path, fs::directory_options::skip_permission_denied);
for (const auto & entry : dir_it) {
if (entry.is_regular_file()) {
std::wstring filename = entry.path().filename().wstring();
std::wstring ext = entry.path().extension().wstring();
if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) {
dl_handle_ptr handle { dl_load_library(entry.path().wstring()) };
auto filename = entry.path().filename().native();
auto ext = entry.path().extension().native();
if (filename.find(file_prefix) == 0 && ext == file_extension) {
dl_handle_ptr handle { dl_load_library(entry) };
if (!handle && !silent) {
GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
GGML_LOG_ERROR("%s: failed to load %s\n", __func__, path_str(entry.path()).c_str());
}
if (handle) {
auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
if (score_fn) {
int s = score_fn();
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), s);
GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, path_str(entry.path()).c_str(), s);
#endif
if (s > best_score) {
best_score = s;
best_path = entry.path().wstring();
best_path = entry.path();
}
} else {
if (!silent) {
GGML_LOG_INFO("%s: failed to find ggml_backend_score in %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str());
GGML_LOG_INFO("%s: failed to find ggml_backend_score in %s\n", __func__, path_str(entry.path()).c_str());
}
}
}
@@ -540,7 +543,8 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
if (best_score == 0) {
// try to load the base backend
for (const auto & search_path : search_paths) {
std::wstring path = search_path + backend_filename_prefix() + utf8_to_utf16(name) + backend_filename_suffix();
fs::path filename = backend_filename_prefix().native() + name_path.native() + backend_filename_extension().native();
fs::path path = search_path.native() + filename.native();
if (fs::exists(path)) {
return get_reg().load_backend(path, silent);
}

View File

@@ -21,6 +21,7 @@
#include <string.h>
#include <string>
#include <vector>
#include <algorithm>
#ifdef __APPLE__
#include <sys/types.h>
@@ -126,11 +127,12 @@ void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
return base;
}
void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
enum ggml_status ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
// init_tensor is optional
if (buffer->iface.init_tensor) {
buffer->iface.init_tensor(buffer, tensor);
return buffer->iface.init_tensor(buffer, tensor);
}
return GGML_STATUS_SUCCESS;
}
void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
@@ -1641,7 +1643,7 @@ ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched,
// utils
void ggml_backend_view_init(struct ggml_tensor * tensor) {
enum ggml_status ggml_backend_view_init(struct ggml_tensor * tensor) {
GGML_ASSERT(tensor->buffer == NULL);
GGML_ASSERT(tensor->view_src != NULL);
GGML_ASSERT(tensor->view_src->buffer != NULL);
@@ -1649,10 +1651,10 @@ void ggml_backend_view_init(struct ggml_tensor * tensor) {
tensor->buffer = tensor->view_src->buffer;
tensor->data = (char *)tensor->view_src->data + tensor->view_offs;
ggml_backend_buffer_init_tensor(tensor->buffer, tensor);
return ggml_backend_buffer_init_tensor(tensor->buffer, tensor);
}
void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) {
enum ggml_status ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) {
GGML_ASSERT(tensor->buffer == NULL);
GGML_ASSERT(tensor->data == NULL);
GGML_ASSERT(tensor->view_src == NULL);
@@ -1662,7 +1664,7 @@ void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor
tensor->buffer = buffer;
tensor->data = addr;
ggml_backend_buffer_init_tensor(buffer, tensor);
return ggml_backend_buffer_init_tensor(buffer, tensor);
}
static struct ggml_tensor * graph_copy_dup_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies,
@@ -1708,7 +1710,8 @@ static void graph_copy_init_tensor(struct ggml_hash_set * hash_set, struct ggml_
struct ggml_tensor * dst = node_copies[id];
if (dst->view_src != NULL) {
graph_copy_init_tensor(hash_set, node_copies, node_init, src->view_src);
ggml_backend_view_init(dst);
enum ggml_status status = ggml_backend_view_init(dst);
GGML_ASSERT(status == GGML_STATUS_SUCCESS);
}
else {
ggml_backend_tensor_copy(src, dst);
@@ -1823,7 +1826,6 @@ bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t
assert(g1->n_nodes == g2->n_nodes);
for (int i = 0; i < g1->n_nodes; i++) {
//printf("eval %d/%d\n", i, g1->n_nodes);
struct ggml_tensor * t1 = g1->nodes[i];
struct ggml_tensor * t2 = g2->nodes[i];

View File

@@ -796,11 +796,11 @@ static bool need_transform(ggml_type type) {
* @param buffer The CANN buffer from which to initialize the tensor.
* @param tensor Pointer to the tensor to be initialized.
*/
static void ggml_backend_cann_buffer_init_tensor(
static enum ggml_status ggml_backend_cann_buffer_init_tensor(
ggml_backend_buffer_t buffer, ggml_tensor* tensor) {
if (tensor->view_src != NULL && tensor->view_offs == 0) {
GGML_ASSERT(tensor->view_src->buffer->buft == buffer->buft);
return;
return GGML_STATUS_SUCCESS;
}
// TODO: can backend doesn't support quantized yet. Just leave the code
@@ -817,6 +817,7 @@ static void ggml_backend_cann_buffer_init_tensor(
memset_size, 0, memset_size));
}
}
return GGML_STATUS_SUCCESS;
}
// TODO: need handle tensor which has paddings.

View File

@@ -1,7 +1,5 @@
#include "kernel_operator.h"
#include <cmath>
using namespace AscendC;
#define BUFFER_NUM 2
@@ -183,7 +181,7 @@ extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp32(
copy_to_ub(output_ne_gm, output_ne_ub, 32);
copy_to_ub(output_nb_gm, output_nb_ub, 32);
DupByRows<float_t, float_t> op;
DupByRows<float, float> op;
op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub);
op.dup();
}
@@ -206,7 +204,7 @@ extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp32_to_fp16(
copy_to_ub(output_ne_gm, output_ne_ub, 32);
copy_to_ub(output_nb_gm, output_nb_ub, 32);
DupByRows<float_t, half> op;
DupByRows<float, half> op;
op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub);
op.dup_with_cast();
}
@@ -230,7 +228,7 @@ extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp16_to_fp32(
copy_to_ub(output_ne_gm, output_ne_ub, 32);
copy_to_ub(output_nb_gm, output_nb_ub, 32);
DupByRows<half, float_t> op;
DupByRows<half, float> op;
op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub);
op.dup_with_cast();
}

View File

@@ -219,6 +219,10 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
if (GGML_AVX_VNNI)
list(APPEND ARCH_DEFINITIONS __AVXVNNI__ GGML_AVX_VNNI)
endif()
if (GGML_BMI2)
# MSVC does not define macro __BMI2__
list(APPEND ARCH_DEFINITIONS __BMI2__ GGML_BMI2)
endif()
else ()
if (GGML_NATIVE)
list(APPEND ARCH_FLAGS -march=native)
@@ -233,6 +237,10 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
list(APPEND ARCH_FLAGS -mfma)
list(APPEND ARCH_DEFINITIONS GGML_FMA)
endif()
if (GGML_BMI2)
list(APPEND ARCH_FLAGS -mbmi2)
list(APPEND ARCH_DEFINITIONS GGML_BMI2)
endif()
if (GGML_AVX)
list(APPEND ARCH_FLAGS -mavx)
list(APPEND ARCH_DEFINITIONS GGML_AVX)
@@ -281,19 +289,15 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
endif()
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64")
message(STATUS "PowerPC detected")
execute_process(COMMAND bash -c "grep POWER10 /proc/cpuinfo | head -n 1" OUTPUT_VARIABLE POWER10_M)
string(FIND "${POWER10_M}" "POWER10" substring_index)
if (NOT DEFINED substring_index OR "${substring_index}" STREQUAL "")
set(substring_index -1)
endif()
if (${substring_index} GREATER_EQUAL 0)
list(APPEND ARCH_FLAGS -mcpu=power10)
execute_process(COMMAND bash -c "grep POWER /proc/cpuinfo | head -n 1" OUTPUT_VARIABLE POWER_M)
if (${POWER_M} MATCHES "POWER10")
list(APPEND ARCH_FLAGS -mcpu=power10)
elseif (${POWER_M} MATCHES "POWER9")
list(APPEND ARCH_FLAGS -mcpu=power9)
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64le")
list(APPEND ARCH_FLAGS -mcpu=powerpc64le)
list(APPEND ARCH_FLAGS -mcpu=powerpc64le -mtune=native)
else()
list(APPEND ARCH_FLAGS -mcpu=native -mtune=native)
# TODO: Add targets for Power8/Power9 (Altivec/VSX) and Power10(MMA) and query for big endian systems (ppc64/le/be)
list(APPEND ARCH_FLAGS -mcpu=powerpc64 -mtune=native)
endif()
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "loongarch64")
message(STATUS "loongarch64 detected")

View File

@@ -50,10 +50,11 @@ static void * ggml_backend_amx_buffer_get_base(ggml_backend_buffer_t buffer) {
return (void *) (buffer->context);
}
static void ggml_backend_amx_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
static enum ggml_status ggml_backend_amx_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
tensor->extra = (void *) ggml::cpu::amx::get_tensor_traits(buffer, tensor);
GGML_UNUSED(buffer);
return GGML_STATUS_SUCCESS;
}
static void ggml_backend_amx_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor,

View File

@@ -278,6 +278,10 @@ static int ggml_backend_cpu_x86_score() {
if (!is.SSE42()) { return 0; }
score += 1<<2;
#endif
#ifdef GGML_BMI2
if (!is.BMI2()) { return 0; }
score += 1<<3;
#endif
#ifdef GGML_AVX
if (!is.AVX()) { return 0; }
score += 1<<4;

View File

@@ -4135,10 +4135,11 @@ static const ggml::cpu::tensor_traits * ggml_aarch64_get_optimal_repack_type(con
return nullptr;
}
static void ggml_backend_cpu_aarch64_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
static enum ggml_status ggml_backend_cpu_aarch64_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
tensor->extra = (void *) const_cast<ggml::cpu::tensor_traits *>(ggml_aarch64_get_optimal_repack_type(tensor));
GGML_UNUSED(buffer);
return GGML_STATUS_SUCCESS;
}
static void ggml_backend_cpu_aarch64_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor,

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -511,6 +511,9 @@ static ggml_backend_feature * ggml_backend_cpu_get_features(ggml_backend_reg_t r
if (ggml_cpu_has_fma()) {
features.push_back({ "FMA", "1" });
}
if (ggml_cpu_has_bmi2()) {
features.push_back({ "BMI2", "1" });
}
if (ggml_cpu_has_avx512()) {
features.push_back({ "AVX512", "1" });
}

View File

@@ -190,10 +190,11 @@ static ggml::cpu::tensor_traits * get_tensor_traits(ggml_backend_buffer_t, struc
}
} // namespace ggml::cpu::kleidiai
static void ggml_backend_cpu_kleidiai_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
GGML_API enum ggml_status ggml_backend_cpu_kleidiai_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
tensor->extra = (void *) ggml::cpu::kleidiai::get_tensor_traits(buffer, tensor);
GGML_UNUSED(buffer);
return GGML_STATUS_SUCCESS;
}
static void ggml_backend_cpu_kleidiai_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor,

View File

@@ -102,6 +102,15 @@ if (CUDAToolkit_FOUND)
set(CUDA_FLAGS -use_fast_math)
if (CUDAToolkit_VERSION VERSION_GREATER_EQUAL "12.8")
# Options are:
# - none (not recommended)
# - speed (nvcc's default)
# - balance
# - size
list(APPEND CUDA_FLAGS -compress-mode=${GGML_CUDA_COMPRESSION_MODE})
endif()
if (GGML_FATAL_WARNINGS)
list(APPEND CUDA_FLAGS -Werror all-warnings)
endif()

View File

@@ -294,11 +294,13 @@ static void ggml_cuda_op_bin_bcast(
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const void * src0_dd, const void * src1_dd, void * dst_dd, cudaStream_t stream) {
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16);
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
op()(src0, src1, dst, (const float *)src0_dd, (const float *)src1_dd, (float *)dst_dd, stream);
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
op()(src0, src1, dst, (const half *) src0_dd, (const half *)src1_dd, (half *) dst_dd, stream);
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F16) {
op()(src0, src1, dst, (const half *) src0_dd, (const float *)src1_dd, (half *) dst_dd, stream);
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
op()(src0, src1, dst, (const half *) src0_dd, (const float *)src1_dd, (float *)dst_dd, stream);

View File

@@ -1,34 +1,45 @@
#include "clamp.cuh"
static __global__ void clamp_f32(const float * x, float * dst, const float min, const float max, const int k) {
static __device__ __forceinline__ float op_clamp(float x, float min, float max) {
return fminf(fmaxf(x, min), max);
}
template <class T>
static __global__ void op_clamp_kernel(const T * x, T * dst, const T min, const T max, const int k) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= k) {
return;
}
dst[i] = x[i] < min ? min : (x[i] > max ? max : x[i]);
dst[i] = (T)op_clamp((float)x[i], (float)min, (float)max);
}
static void clamp_f32_cuda(const float * x, float * dst, const float min, const float max, const int k, cudaStream_t stream) {
template <class T>
static void clamp_cuda(const T * x, T * dst, const T min, const T max, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_CLAMP_BLOCK_SIZE - 1) / CUDA_CLAMP_BLOCK_SIZE;
clamp_f32<<<num_blocks, CUDA_CLAMP_BLOCK_SIZE, 0, stream>>>(x, dst, min, max, k);
op_clamp_kernel<<<num_blocks, CUDA_CLAMP_BLOCK_SIZE, 0, stream>>>(x, dst, min, max, k);
}
void ggml_cuda_op_clamp(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *)src0->data;
float * dst_d = (float *)dst->data;
const void * src0_d = src0->data;
void * dst_d = dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
GGML_ASSERT(src0->type == dst->type);
float min;
float max;
memcpy(&min, dst->op_params, sizeof(float));
memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
clamp_f32_cuda(src0_d, dst_d, min, max, ggml_nelements(src0), stream);
if (src0->type == GGML_TYPE_F16) {
clamp_cuda((const half *)src0_d, (half *)dst_d, (half)min, (half)max, ggml_nelements(src0), stream);
} else {
clamp_cuda((const float *)src0_d, (float *)dst_d, (float)min, (float)max, ggml_nelements(src0), stream);
}
}

View File

@@ -62,6 +62,7 @@
#define GGML_CUDA_CC_RDNA2 (GGML_CUDA_CC_OFFSET_AMD + 0x1030) // RX 6000, minimum for dp4a
#define GGML_CUDA_CC_RDNA3 (GGML_CUDA_CC_OFFSET_AMD + 0x1100) // RX 7000, minimum for WMMA
#define GGML_CUDA_CC_IS_AMD(cc) (cc >= GGML_CUDA_CC_OFFSET_AMD)
#define GGML_CUDA_CC_IS_RDNA(cc) (cc >= GGML_CUDA_CC_RDNA1)
#define GGML_CUDA_CC_IS_RDNA1(cc) (cc >= GGML_CUDA_CC_RDNA1 && cc < GGML_CUDA_CC_RDNA2)
#define GGML_CUDA_CC_IS_RDNA2(cc) (cc >= GGML_CUDA_CC_RDNA2 && cc < GGML_CUDA_CC_RDNA3)
@@ -196,6 +197,10 @@ typedef float2 dfloat2;
#define FP16_MMA_AVAILABLE
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
#if defined(GGML_HIP_ROCWMMA_FATTN) && (defined(CDNA) || defined(RDNA3))
#define FP16_MMA_AVAILABLE
#endif // defined(GGML_HIP_ROCWMMA_FATTN) && (defined(CDNA) || defined(RDNA3))
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
#define NEW_MMA_AVAILABLE
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
@@ -223,12 +228,18 @@ static bool fast_fp16_hardware_available(const int cc) {
// Any FP16 tensor core instructions are available for ggml code.
static bool fp16_mma_available(const int cc) {
return cc < GGML_CUDA_CC_OFFSET_AMD && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA;
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(GGML_HIP_ROCWMMA_FATTN)
return false;
#else
return cc < GGML_CUDA_CC_OFFSET_AMD && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA ||
GGML_CUDA_CC_IS_CDNA(cc) || cc >= GGML_CUDA_CC_RDNA3;
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(GGML_HIP_ROCWMMA_FATTN)
}
// To be used for feature selection of external libraries, e.g. cuBLAS.
static bool fp16_mma_hardware_available(const int cc) {
return cc < GGML_CUDA_CC_OFFSET_AMD && cc >= GGML_CUDA_CC_VOLTA;
return cc < GGML_CUDA_CC_OFFSET_AMD && cc >= GGML_CUDA_CC_VOLTA ||
GGML_CUDA_CC_IS_CDNA(cc) || cc >= GGML_CUDA_CC_RDNA3;
}
// Volta technically had FP16 tensor cores but they work very differently compared to Turing and later.

View File

@@ -57,12 +57,13 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_0(
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
const block_q4_0 * K_q4_0 = (const block_q4_0 *) K_c;
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
GGML_UNUSED(Q_v);
T sum = 0.0f;
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) {
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += warp_size) {
const int k_KQ = k_KQ_0 + threadIdx.x;
const int ib = k_KQ / QI8_1;
@@ -70,7 +71,7 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_0(
const int shift = k_KQ & (QI8_1/2);
const int v = (get_int_b2(K_q4_0[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
const int u = Q_q8[k_KQ_0/WARP_SIZE];
const int u = Q_q8[k_KQ_0/warp_size];
const int sumi = ggml_cuda_dp4a(v, u, 0);
@@ -78,14 +79,14 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_0(
if (std::is_same<T, half>::value) {
const half2 * Q_ds = (const half2 *) Q_ds_v;
const half2 sum2 = __half2half2(K_q4_0[ib].d) * Q_ds[k_KQ_0/WARP_SIZE];
const half2 sum2 = __half2half2(K_q4_0[ib].d) * Q_ds[k_KQ_0/warp_size];
sum += (T) (((half) sumi)*__low2half(sum2) - __high2half(sum2) /* *8/QI8_1 == 1 */);
} else
#endif // FP16_AVAILABLE
{
const float2 * Q_ds = (const float2 *) Q_ds_v;
sum += (T) (__half2float(K_q4_0[ib].d) * (sumi*Q_ds[k_KQ_0/WARP_SIZE].x - (8/QI8_1)*Q_ds[k_KQ_0/WARP_SIZE].y));
sum += (T) (__half2float(K_q4_0[ib].d) * (sumi*Q_ds[k_KQ_0/warp_size].x - (8/QI8_1)*Q_ds[k_KQ_0/warp_size].y));
}
}
@@ -97,12 +98,13 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_1(
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
const block_q4_1 * K_q4_1 = (const block_q4_1 *) K_c;
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
GGML_UNUSED(Q_v);
T sum = 0.0f;
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) {
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += warp_size) {
const int k_KQ = k_KQ_0 + threadIdx.x;
const int ib = k_KQ / QI8_1;
@@ -110,7 +112,7 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_1(
const int shift = k_KQ & (QI8_1/2);
const int v = (get_int_b4(K_q4_1[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
const int u = Q_q8[k_KQ_0/WARP_SIZE];
const int u = Q_q8[k_KQ_0/warp_size];
const int sumi = ggml_cuda_dp4a(v, u, 0);
@@ -118,7 +120,7 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_1(
if (std::is_same<T, half>::value) {
const half2 * Q_ds = (const half2 *) Q_ds_v;
const half2 d4d8_m4s8 = K_q4_1[ib].dm * Q_ds[k_KQ_0/WARP_SIZE];
const half2 d4d8_m4s8 = K_q4_1[ib].dm * Q_ds[k_KQ_0/warp_size];
const half2 sumid4d8_m4s8scaled = d4d8_m4s8 * make_half2(sumi, 1.0f/QI8_1);
sum += (T) (__low2half(sumid4d8_m4s8scaled) + __high2half(sumid4d8_m4s8scaled));
} else
@@ -126,8 +128,8 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_1(
{
const float2 * Q_ds = (const float2 *) Q_ds_v;
const float sumid4d8 = __low2float(K_q4_1[ib].dm)*Q_ds[k_KQ_0/WARP_SIZE].x * sumi;
const float m4s8scaled = __high2float(K_q4_1[ib].dm)*Q_ds[k_KQ_0/WARP_SIZE].y / QI8_1;
const float sumid4d8 = __low2float(K_q4_1[ib].dm)*Q_ds[k_KQ_0/warp_size].x * sumi;
const float m4s8scaled = __high2float(K_q4_1[ib].dm)*Q_ds[k_KQ_0/warp_size].y / QI8_1;
sum += (T) (sumid4d8 + m4s8scaled);
}
@@ -141,12 +143,13 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_0(
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
const block_q5_0 * K_q5_0 = (const block_q5_0 *) K_c;
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
GGML_UNUSED(Q_v);
T sum = 0.0f;
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) {
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += warp_size) {
const int k_KQ = k_KQ_0 + threadIdx.x;
const int ib = k_KQ / QI8_1;
@@ -161,7 +164,7 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_0(
v |= (vh << 18) & 0x00100000; // 2 -> 20
v |= (vh << 25) & 0x10000000; // 3 -> 28
const int u = Q_q8[k_KQ_0/WARP_SIZE];
const int u = Q_q8[k_KQ_0/warp_size];
const int sumi = ggml_cuda_dp4a(v, u, 0);
@@ -169,14 +172,14 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_0(
if (std::is_same<T, half>::value) {
const half2 * Q_ds = (const half2 *) Q_ds_v;
const half2 sum2 = __half2half2(K_q5_0[ib].d) * Q_ds[k_KQ_0/WARP_SIZE];
const half2 sum2 = __half2half2(K_q5_0[ib].d) * Q_ds[k_KQ_0/warp_size];
sum += (T) (((half) sumi)*__low2half(sum2) - __high2half(sum2)*__float2half(2.0f)) /* *16/QI8_1 == 2 */;
} else
#endif // FP16_AVAILABLE
{
const float2 * Q_ds = (const float2 *) Q_ds_v;
sum += (T) (__half2float(K_q5_0[ib].d) * (sumi*Q_ds[k_KQ_0/WARP_SIZE].x - (16/QI8_1)*Q_ds[k_KQ_0/WARP_SIZE].y));
sum += (T) (__half2float(K_q5_0[ib].d) * (sumi*Q_ds[k_KQ_0/warp_size].x - (16/QI8_1)*Q_ds[k_KQ_0/warp_size].y));
}
}
@@ -188,12 +191,13 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_1(
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
const block_q5_1 * K_q5_1 = (const block_q5_1 *) K_c;
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
GGML_UNUSED(Q_v);
T sum = 0.0f;
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) {
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += warp_size) {
const int k_KQ = k_KQ_0 + threadIdx.x;
const int ib = k_KQ / QI8_1;
@@ -208,7 +212,7 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_1(
v |= (vh << 18) & 0x00100000; // 2 -> 20
v |= (vh << 25) & 0x10000000; // 3 -> 28
const int u = Q_q8[k_KQ_0/WARP_SIZE];
const int u = Q_q8[k_KQ_0/warp_size];
const int sumi = ggml_cuda_dp4a(v, u, 0);
@@ -216,7 +220,7 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_1(
if (std::is_same<T, half>::value) {
const half2 * Q_ds = (const half2 *) Q_ds_v;
const half2 d5d8_m5s8 = K_q5_1[ib].dm * Q_ds[k_KQ_0/WARP_SIZE];
const half2 d5d8_m5s8 = K_q5_1[ib].dm * Q_ds[k_KQ_0/warp_size];
const half2 sumid5d8_m5s8scaled = d5d8_m5s8 * make_half2(sumi, 1.0f/QI8_1);
sum += (T) (__low2half(sumid5d8_m5s8scaled) + __high2half(sumid5d8_m5s8scaled));
} else
@@ -224,8 +228,8 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_1(
{
const float2 * Q_ds = (const float2 *) Q_ds_v;
const float sumid5d8 = __low2float(K_q5_1[ib].dm)*Q_ds[k_KQ_0/WARP_SIZE].x * sumi;
const float m5s8scaled = __high2float(K_q5_1[ib].dm)*Q_ds[k_KQ_0/WARP_SIZE].y / QI8_1;
const float sumid5d8 = __low2float(K_q5_1[ib].dm)*Q_ds[k_KQ_0/warp_size].x * sumi;
const float m5s8scaled = __high2float(K_q5_1[ib].dm)*Q_ds[k_KQ_0/warp_size].y / QI8_1;
sum += (T) (sumid5d8 + m5s8scaled);
}
@@ -239,12 +243,13 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q8_0(
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
const block_q8_0 * K_q8_0 = (const block_q8_0 *) K_c;
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
GGML_UNUSED(Q_v);
T sum = 0.0f;
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) {
for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += warp_size) {
const int k_KQ = k_KQ_0 + threadIdx.x;
const int ib = k_KQ / QI8_0;
@@ -255,13 +260,13 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q8_0(
T Q_d;
if (std::is_same<T, half>::value) {
const half2 * Q_ds = (const half2 *) Q_ds_v;
Q_d = __low2half(Q_ds[k_KQ_0/WARP_SIZE]);
Q_d = __low2half(Q_ds[k_KQ_0/warp_size]);
} else {
const float2 * Q_ds = (const float2 *) Q_ds_v;
Q_d = Q_ds[k_KQ_0/WARP_SIZE].x;
Q_d = Q_ds[k_KQ_0/warp_size].x;
}
sum += vec_dot_q8_0_q8_1_impl<T, 1>(&v, &Q_q8[k_KQ_0/WARP_SIZE], K_q8_0[ib].d, Q_d);
sum += vec_dot_q8_0_q8_1_impl<T, 1>(&v, &Q_q8[k_KQ_0/warp_size], K_q8_0[ib].d, Q_d);
}
return sum;
@@ -272,6 +277,7 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_f16(
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8 , const void * __restrict__ Q_ds_v) {
const half2 * K_h2 = (const half2 *) K_c;
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
GGML_UNUSED(Q_q8);
GGML_UNUSED(Q_ds_v);
@@ -282,11 +288,11 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_f16(
half2 sum2 = make_half2(0.0f, 0.0f);
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += warp_size) {
const int k_KQ = k_KQ_0 + threadIdx.x;
const half2 K_ik = K_h2[k_KQ];
sum2 += K_ik * Q_h2[k_KQ_0/WARP_SIZE];
sum2 += K_ik * Q_h2[k_KQ_0/warp_size];
}
return __low2half(sum2) + __high2half(sum2);
@@ -298,12 +304,12 @@ static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_f16(
float sum = 0.0f;
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += warp_size) {
const int k_KQ = k_KQ_0 + threadIdx.x;
const half2 K_ik = K_h2[k_KQ];
sum += __low2float(K_ik) * Q_f2[k_KQ_0/WARP_SIZE].x;
sum += __high2float(K_ik) * Q_f2[k_KQ_0/WARP_SIZE].y;
sum += __low2float(K_ik) * Q_f2[k_KQ_0/warp_size].x;
sum += __high2float(K_ik) * Q_f2[k_KQ_0/warp_size].y;
}
return sum;
@@ -698,6 +704,8 @@ void launch_fattn(
GGML_ASSERT(Q->ne[3] == 1);
const int warp_size = ggml_cuda_info().devices[ctx.device].warp_size;
ggml_cuda_pool & pool = ctx.pool();
cudaStream_t main_stream = ctx.stream();
const int id = ggml_cuda_get_device();
@@ -750,7 +758,7 @@ void launch_fattn(
const int ntiles_x = ((Q->ne[1] + ncols1 - 1) / ncols1);
const int ntiles_total = ntiles_x * (Q->ne[2] / ncols2) * Q->ne[3];
const dim3 block_dim(WARP_SIZE, nwarps, 1);
const dim3 block_dim(warp_size, nwarps, 1);
dim3 blocks_num;
if (parallel_blocks == 0) {
// For short contexts it can be faster to have the SMs work on whole tiles because this lets us skip the fixup.
@@ -796,6 +804,8 @@ void launch_fattn(
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
GGML_ASSERT(block_dim.x % warp_size == 0);
GGML_ASSERT(!GGML_CUDA_CC_IS_AMD(cc) || block_dim.x * block_dim.y <= 4 * (unsigned int)warp_size);
fattn_kernel<<<blocks_num, block_dim, nbytes_shared, main_stream>>>(
(const char *) Q->data,
K_data,

View File

@@ -7,14 +7,19 @@
#include "fattn-wmma-f16.cuh"
#ifdef FP16_MMA_AVAILABLE
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
#include <mma.h>
namespace wmma = nvcuda::wmma;
#elif defined(GGML_HIP_ROCWMMA_FATTN) && defined(FP16_MMA_AVAILABLE)
#undef HIP_ENABLE_WARP_SYNC_BUILTINS // conflicts with rocWMMA headers
#include <rocwmma/rocwmma.hpp>
namespace wmma = rocwmma;
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
#endif // FP16_MMA_AVAILABLE
// D == head size, VKQ_stride == num VKQ rows calculated in parallel:
template<int D, int ncols, int nwarps, int VKQ_stride, int parallel_blocks, typename KQ_acc_t, bool use_logit_softcap>
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
__launch_bounds__(nwarps*WARP_SIZE, 1)
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
__launch_bounds__(nwarps*ggml_cuda_get_physical_warp_size(), 1)
static __global__ void flash_attn_ext_f16(
const char * __restrict__ Q,
const char * __restrict__ K,
@@ -51,7 +56,7 @@ static __global__ void flash_attn_ext_f16(
const int ne1,
const int ne2,
const int ne3) {
#if defined(FLASH_ATTN_AVAILABLE) && __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
#if defined(FLASH_ATTN_AVAILABLE) && (__CUDA_ARCH__ == GGML_CUDA_CC_VOLTA || (defined(GGML_HIP_ROCWMMA_FATTN) && defined(FP16_MMA_AVAILABLE)))
// Skip unused kernel variants for faster compilation:
if (use_logit_softcap && !(D == 128 || D == 256)) {
NO_DEVICE_CODE;
@@ -60,6 +65,8 @@ static __global__ void flash_attn_ext_f16(
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
const int ic0 = ncols*(blockIdx.x / parallel_blocks); // Index of the first Q/QKV column to work on.
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
@@ -68,11 +75,11 @@ static __global__ void flash_attn_ext_f16(
constexpr int frag_m = ncols == 8 ? 32 : 16;
constexpr int frag_n = ncols == 8 ? 8 : 16;
static_assert(D % frag_m == 0, "If ncols == 8 then D % frag_m must be 0.");
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, frag_m, frag_n, 16, half, nvcuda::wmma::row_major> frag_a_K;
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, frag_m, frag_n, 16, half, nvcuda::wmma::col_major> frag_a_V;
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_b, frag_m, frag_n, 16, half, nvcuda::wmma::col_major> frag_b;
typedef nvcuda::wmma::fragment<nvcuda::wmma::accumulator, frag_m, frag_n, 16, KQ_acc_t> frag_c_KQ;
typedef nvcuda::wmma::fragment<nvcuda::wmma::accumulator, frag_m, frag_n, 16, half> frag_c_VKQ;
typedef wmma::fragment<wmma::matrix_a, frag_m, frag_n, 16, half, wmma::row_major> frag_a_K;
typedef wmma::fragment<wmma::matrix_a, frag_m, frag_n, 16, half, wmma::col_major> frag_a_V;
typedef wmma::fragment<wmma::matrix_b, frag_m, frag_n, 16, half, wmma::col_major> frag_b;
typedef wmma::fragment<wmma::accumulator, frag_m, frag_n, 16, KQ_acc_t> frag_c_KQ;
typedef wmma::fragment<wmma::accumulator, frag_m, frag_n, 16, half> frag_c_VKQ;
constexpr int KQ_stride_tc = nwarps*frag_m; // Number of KQ rows calculated in parallel.
constexpr int VKQ_ratio = KQ_stride_tc/VKQ_stride; // Number of parallel VKQ accumulators needed to keep all warps busy.
@@ -132,9 +139,9 @@ static __global__ void flash_attn_ext_f16(
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j = j0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
for (int i0 = 0; i0 < D/2; i0 += warp_size) {
const int i = i0 + threadIdx.x;
if (i0 + WARP_SIZE > D/2 && i >= D/2) {
if (i0 + warp_size > D/2 && i >= D/2) {
break;
}
VKQ2[j*(D_padded/2) + i] = make_half2(0.0f, 0.0f);
@@ -146,9 +153,9 @@ static __global__ void flash_attn_ext_f16(
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j = j0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
for (int i0 = 0; i0 < D; i0 += warp_size) {
const int i = i0 + threadIdx.x;
if (i0 + WARP_SIZE > D && i >= D) {
if (i0 + warp_size > D && i >= D) {
break;
}
KQ[j*D_padded + i] = ic0 + j < ne01 ? Q_f[j*stride_Q + i] * scale : 0.0f;
@@ -162,7 +169,7 @@ static __global__ void flash_attn_ext_f16(
for (int i0 = 0; i0 < D; i0 += 16) {
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
nvcuda::wmma::load_matrix_sync(Q_b[i0/16][j0/frag_n], KQ + j0*D_padded + i0, D_padded);
wmma::load_matrix_sync(Q_b[i0/16][j0/frag_n], KQ + j0*D_padded + i0, D_padded);
}
}
@@ -176,20 +183,20 @@ static __global__ void flash_attn_ext_f16(
frag_c_KQ KQ_c[ncols/frag_n];
#pragma unroll
for (int j = 0; j < ncols/frag_n; ++j) {
nvcuda::wmma::fill_fragment(KQ_c[j], 0.0f);
wmma::fill_fragment(KQ_c[j], static_cast<KQ_acc_t>(0.0f));
}
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += 16) {
frag_a_K K_a;
nvcuda::wmma::load_matrix_sync(K_a, K_h + (k_VKQ_0 + i_KQ_0 + frag_m*threadIdx.y)*stride_KV + k_KQ_0, stride_KV);
wmma::load_matrix_sync(K_a, K_h + (k_VKQ_0 + i_KQ_0 + frag_m*threadIdx.y)*stride_KV + k_KQ_0, stride_KV);
#pragma unroll
for (int j = 0; j < ncols/frag_n; ++j) {
nvcuda::wmma::mma_sync(KQ_c[j], K_a, Q_b[k_KQ_0/16][j], KQ_c[j]);
wmma::mma_sync(KQ_c[j], K_a, Q_b[k_KQ_0/16][j], KQ_c[j]);
}
}
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
nvcuda::wmma::store_matrix_sync((KQ_acc_t *) KQ + j0*kqs_padded + i_KQ_0 + frag_m*threadIdx.y, KQ_c[j0/frag_n], kqs_padded, nvcuda::wmma::mem_col_major);
wmma::store_matrix_sync((KQ_acc_t *) KQ + j0*kqs_padded + i_KQ_0 + frag_m*threadIdx.y, KQ_c[j0/frag_n], kqs_padded, wmma::mem_col_major);
}
}
@@ -202,27 +209,27 @@ static __global__ void flash_attn_ext_f16(
const int j = j0 + threadIdx.y;
if (std::is_same<KQ_acc_t, float>::value) {
float KQ_f_tmp[FATTN_KQ_STRIDE / WARP_SIZE];
float KQ_f_tmp[FATTN_KQ_STRIDE / warp_size];
#pragma unroll
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += warp_size) {
const int k = k0 + threadIdx.x;
KQ_f_tmp[k0/WARP_SIZE] = KQ_f[j*kqs_padded + k];
KQ_f_tmp[k0/warp_size] = KQ_f[j*kqs_padded + k];
if (use_logit_softcap) {
KQ_f_tmp[k0/WARP_SIZE] = logit_softcap*tanhf(KQ_f_tmp[k0/WARP_SIZE]);
KQ_f_tmp[k0/warp_size] = logit_softcap*tanhf(KQ_f_tmp[k0/warp_size]);
}
}
float KQ_max_new = KQ_max_f[j0/nwarps];
#pragma unroll
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += warp_size) {
const int k = k0 + threadIdx.x;
KQ_f_tmp[k0/WARP_SIZE] += mask ? __half2float(slopeh*maskh[j*(nb31/sizeof(half)) + k_VKQ_0 + k]) : 0.0f;
KQ_max_new = max(KQ_max_new, KQ_f_tmp[k0/WARP_SIZE]);
KQ_f_tmp[k0/warp_size] += mask ? __half2float(slopeh*maskh[j*(nb31/sizeof(half)) + k_VKQ_0 + k]) : 0.0f;
KQ_max_new = max(KQ_max_new, KQ_f_tmp[k0/warp_size]);
}
KQ_max_new = warp_reduce_max(KQ_max_new);
KQ_max_new = warp_reduce_max<warp_size>(KQ_max_new);
const float diff = KQ_max_f[j0/nwarps] - KQ_max_new;
KQ_max_scale_f[j0/nwarps] = expf(diff);
@@ -233,48 +240,48 @@ static __global__ void flash_attn_ext_f16(
float KQ_rowsum_add = 0.0f;
#pragma unroll
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += warp_size) {
const int k = k0 + threadIdx.x;
const float diff = KQ_f_tmp[k0/WARP_SIZE] - KQ_max_f[j0/nwarps];
KQ_f_tmp[k0/WARP_SIZE] = expf(diff);
const float diff = KQ_f_tmp[k0/warp_size] - KQ_max_f[j0/nwarps];
KQ_f_tmp[k0/warp_size] = expf(diff);
if (diff <= SOFTMAX_FTZ_THRESHOLD) {
KQ_f_tmp[k0/WARP_SIZE] = 0.0f;
KQ_f_tmp[k0/warp_size] = 0.0f;
}
KQ_rowsum_add += KQ_f_tmp[k0/WARP_SIZE];
KQ[j*(kqar*kqs_padded) + k] = KQ_f_tmp[k0/WARP_SIZE];
KQ_rowsum_add += KQ_f_tmp[k0/warp_size];
KQ[j*(kqar*kqs_padded) + k] = KQ_f_tmp[k0/warp_size];
}
KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add);
KQ_rowsum_add = warp_reduce_sum<warp_size>(KQ_rowsum_add);
// Scale previous KQ_rowsum to account for a potential increase in KQ_max:
KQ_rowsum_f[j0/nwarps] = KQ_max_scale_f[j0/nwarps]*KQ_rowsum_f[j0/nwarps] + KQ_rowsum_add;
} else {
half2 KQ2_tmp[FATTN_KQ_STRIDE/(2*WARP_SIZE)];
half2 KQ2_tmp[FATTN_KQ_STRIDE/(2*warp_size)];
#pragma unroll
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += warp_size) {
const int k = k0 + threadIdx.x;
KQ2_tmp[k0/WARP_SIZE] = KQ2[j*(kqs_padded/2) + k];
KQ2_tmp[k0/warp_size] = KQ2[j*(kqs_padded/2) + k];
if (use_logit_softcap) {
// There is no dedicated tangens hyperbolicus function for half2.
KQ2_tmp[k0/WARP_SIZE] = h2exp(KQ2_tmp[k0/WARP_SIZE]*make_half2(2.0f, 2.0f));
KQ2_tmp[k0/WARP_SIZE] = (KQ2_tmp[k0/WARP_SIZE] - make_half2(1.0f, 1.0f))
/(KQ2_tmp[k0/WARP_SIZE] + make_half2(1.0f, 1.0f));
KQ2_tmp[k0/warp_size] = h2exp(KQ2_tmp[k0/warp_size]*make_half2(2.0f, 2.0f));
KQ2_tmp[k0/warp_size] = (KQ2_tmp[k0/warp_size] - make_half2(1.0f, 1.0f))
/(KQ2_tmp[k0/warp_size] + make_half2(1.0f, 1.0f));
KQ2_tmp[k0/WARP_SIZE] *= logit_softcap_2;
KQ2_tmp[k0/warp_size] *= logit_softcap_2;
}
}
half2 KQ_max_new = KQ_max_h2[j0/nwarps];
#pragma unroll
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += warp_size) {
const int k = k0 + threadIdx.x;
KQ2_tmp[k0/WARP_SIZE] += mask ? slope2*mask2[(j*ne11 + k_VKQ_0)/2 + k] : make_half2(0.0f, 0.0f);
KQ_max_new = ggml_cuda_hmax2(KQ_max_new, KQ2_tmp[k0/WARP_SIZE]);
KQ2_tmp[k0/warp_size] += mask ? slope2*mask2[(j*ne11 + k_VKQ_0)/2 + k] : make_half2(0.0f, 0.0f);
KQ_max_new = ggml_cuda_hmax2(KQ_max_new, KQ2_tmp[k0/warp_size]);
}
KQ_max_new = __half2half2(warp_reduce_max(ggml_cuda_hmax(__low2half(KQ_max_new), __high2half(KQ_max_new))));
KQ_max_new = __half2half2(warp_reduce_max<warp_size>(ggml_cuda_hmax(__low2half(KQ_max_new), __high2half(KQ_max_new))));
const half2 diff = KQ_max_h2[j0/nwarps] - KQ_max_new;
KQ_max_scale_h2[j0/nwarps] = h2exp(diff);
const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
@@ -283,17 +290,17 @@ static __global__ void flash_attn_ext_f16(
half2 KQ_rowsum_add = make_half2(0.0f, 0.0f);
#pragma unroll
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += warp_size) {
const int k = k0 + threadIdx.x;
const half2 diff = KQ2_tmp[k0/WARP_SIZE] - KQ_max_h2[j0/nwarps];
KQ2_tmp[k0/WARP_SIZE] = h2exp(diff);
const half2 diff = KQ2_tmp[k0/warp_size] - KQ_max_h2[j0/nwarps];
KQ2_tmp[k0/warp_size] = h2exp(diff);
const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
*((uint32_t *) &KQ2_tmp[k0/WARP_SIZE]) &= ftz_mask;
KQ_rowsum_add += KQ2_tmp[k0/WARP_SIZE];
KQ2[j*(kqs_padded/2) + k] = KQ2_tmp[k0/WARP_SIZE];
*((uint32_t *) &KQ2_tmp[k0/warp_size]) &= ftz_mask;
KQ_rowsum_add += KQ2_tmp[k0/warp_size];
KQ2[j*(kqs_padded/2) + k] = KQ2_tmp[k0/warp_size];
}
KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add);
KQ_rowsum_add = warp_reduce_sum<warp_size>(KQ_rowsum_add);
// Scale previous KQ_rowsum to account for a potential increase in KQ_max:
KQ_rowsum_h2[j0/nwarps] = KQ_max_scale_h2[j0/nwarps]*KQ_rowsum_h2[j0/nwarps] + KQ_rowsum_add;
@@ -308,7 +315,7 @@ static __global__ void flash_attn_ext_f16(
#pragma unroll
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) {
const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
nvcuda::wmma::load_matrix_sync(
wmma::load_matrix_sync(
KQ_b[k0/(VKQ_ratio*16)][j0/frag_n],
KQ + j0*(kqar*kqs_padded) + k,
kqar*kqs_padded);
@@ -320,7 +327,7 @@ static __global__ void flash_attn_ext_f16(
for (int i_VKQ_0 = 0; i_VKQ_0 < D; i_VKQ_0 += VKQ_stride) {
#pragma unroll
for (int j = 0; j < ncols/frag_n; ++j) {
nvcuda::wmma::fill_fragment(VKQ_c[i_VKQ_0/VKQ_stride][j], 0.0f);
wmma::fill_fragment(VKQ_c[i_VKQ_0/VKQ_stride][j], static_cast<half>(0.0f));
}
#pragma unroll
@@ -328,10 +335,10 @@ static __global__ void flash_attn_ext_f16(
const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
frag_a_V v_a;
nvcuda::wmma::load_matrix_sync(v_a, V_h + (k_VKQ_0 + k)*stride_KV + i_VKQ_0 + frag_m*(threadIdx.y/VKQ_ratio), stride_KV);
wmma::load_matrix_sync(v_a, V_h + (k_VKQ_0 + k)*stride_KV + i_VKQ_0 + frag_m*(threadIdx.y/VKQ_ratio), stride_KV);
#pragma unroll
for (int j = 0; j < ncols/frag_n; ++j) {
nvcuda::wmma::mma_sync(VKQ_c[i_VKQ_0/VKQ_stride][j], v_a, KQ_b[k0/(VKQ_ratio*16)][j], VKQ_c[i_VKQ_0/VKQ_stride][j]);
wmma::mma_sync(VKQ_c[i_VKQ_0/VKQ_stride][j], v_a, KQ_b[k0/(VKQ_ratio*16)][j], VKQ_c[i_VKQ_0/VKQ_stride][j]);
}
}
}
@@ -343,10 +350,10 @@ static __global__ void flash_attn_ext_f16(
for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += VKQ_stride) {
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
nvcuda::wmma::store_matrix_sync(
wmma::store_matrix_sync(
KQ + offset_k + j0*D_padded + i_KQ_0 + frag_m*(threadIdx.y/VKQ_ratio),
VKQ_c[i_KQ_0/VKQ_stride][j0/frag_n],
D_padded, nvcuda::wmma::mem_col_major);
D_padded, wmma::mem_col_major);
}
}
@@ -364,9 +371,9 @@ static __global__ void flash_attn_ext_f16(
}
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
for (int i0 = 0; i0 < D/2; i0 += warp_size) {
const int i = i0 + threadIdx.x;
if (i0 + WARP_SIZE > D/2 && i >= D/2) {
if (i0 + warp_size > D/2 && i >= D/2) {
break;
}
@@ -398,9 +405,9 @@ static __global__ void flash_attn_ext_f16(
}
#pragma unroll
for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
for (int i0 = 0; i0 < D; i0 += warp_size) {
const int i = i0 + threadIdx.x;
if (i0 + WARP_SIZE > D && i >= D) {
if (i0 + warp_size > D && i >= D) {
break;
}
float dst_val = VKQ[j_VKQ*D_padded + i];
@@ -425,7 +432,7 @@ static __global__ void flash_attn_ext_f16(
}
#else
NO_DEVICE_CODE;
#endif // defined(FLASH_ATTN_AVAILABLE) && __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
#endif // defined(FLASH_ATTN_AVAILABLE) && (__CUDA_ARCH__ == GGML_CUDA_CC_VOLTA || (defined(GGML_HIP_ROCWMMA_FATTN) && defined(FP16_MMA_AVAILABLE)))
}
constexpr int get_max_power_of_2(int x) {
@@ -515,6 +522,7 @@ void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, ggml_ten
const ggml_tensor * Q = dst->src[0];
const enum ggml_prec prec = ggml_flash_attn_ext_get_prec(KQV);
const int warp_size = ggml_cuda_info().devices[ctx.device].warp_size;
if (prec != GGML_PREC_DEFAULT) {
if (Q->ne[1] <= 32 || Q->ne[0] > 128) {
@@ -571,7 +579,8 @@ void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, ggml_ten
return;
}
if (Q->ne[1] <= 8 && Q->ne[0] % WARP_SIZE == 0) {
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
if (Q->ne[1] <= 8 && Q->ne[0] % warp_size == 0) {
constexpr int cols_per_block = 8;
switch (Q->ne[0]) {
case 64:
@@ -592,6 +601,7 @@ void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, ggml_ten
}
return;
}
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
if (Q->ne[1] <= 32) {
constexpr int cols_per_block = 16;

View File

@@ -250,10 +250,18 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
ggml_cuda_set_device(ctx.device);
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
const int warp_size = ggml_cuda_info().devices[ggml_cuda_get_device()].warp_size;
const enum ggml_prec prec = ggml_flash_attn_ext_get_prec(KQV);
// On AMD the tile kernels perform poorly, use the vec kernel instead:
if (cc >= GGML_CUDA_CC_OFFSET_AMD) {
#if defined(GGML_HIP_ROCWMMA_FATTN)
if (fp16_mma_available(cc)) {
ggml_cuda_flash_attn_ext_wmma_f16(ctx, dst);
return;
}
#endif // defined(GGML_HIP_ROCWMMA_FATTN)
// On AMD the tile kernels perform poorly, use the vec kernel instead:
if (prec == GGML_PREC_DEFAULT && fast_fp16_available(cc)) {
ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
} else {
@@ -291,7 +299,7 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
const int gqa_ratio = Q->ne[2] / K->ne[2];
const bool mma_fast_for_bs1 = fp16_mma_available(cc) && gqa_ratio % 2 == 0 &&
K->type == GGML_TYPE_F16 && V->type == GGML_TYPE_F16 && mask;
if (Q->ne[1] == 1 && Q->ne[0] % (2*WARP_SIZE) == 0 && !mma_fast_for_bs1) {
if (Q->ne[1] == 1 && Q->ne[0] % (2*warp_size) == 0 && !mma_fast_for_bs1) {
if (prec == GGML_PREC_DEFAULT) {
ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
return;
@@ -302,7 +310,7 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
}
// The MMA implementation needs Turing or newer, use the old WMMA code for Volta:
if (cc == GGML_CUDA_CC_VOLTA) {
if (fp16_mma_available(cc) && !new_mma_available(cc)) {
ggml_cuda_flash_attn_ext_wmma_f16(ctx, dst);
return;
}

View File

@@ -540,12 +540,12 @@ static void * ggml_backend_cuda_buffer_get_base(ggml_backend_buffer_t buffer) {
return ctx->dev_ptr;
}
static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
static enum ggml_status ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
if (tensor->view_src != NULL) {
assert(tensor->view_src->buffer->buft == buffer->buft);
return;
return GGML_STATUS_SUCCESS;
}
if (ggml_is_quantized(tensor->type) && tensor->view_src == nullptr && ggml_backend_buffer_get_usage(buffer) != GGML_BACKEND_BUFFER_USAGE_COMPUTE) {
@@ -558,6 +558,7 @@ static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, g
CUDA_CHECK(cudaMemset((char *)tensor->data + original_size, 0, padded_size - original_size));
}
}
return GGML_STATUS_SUCCESS;
}
static void ggml_backend_cuda_buffer_memset_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
@@ -792,7 +793,7 @@ static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buff
GGML_UNUSED(buffer);
}
static void ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
static enum ggml_status ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported
ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
@@ -838,6 +839,7 @@ static void ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_buffer_t buf
}
}
tensor->extra = extra;
return GGML_STATUS_SUCCESS;
}
static void ggml_backend_cuda_split_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
@@ -2145,6 +2147,12 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
break;
case GGML_OP_UNARY:
switch (ggml_get_unary_op(dst)) {
case GGML_UNARY_OP_ABS:
ggml_cuda_op_abs(ctx, dst);
break;
case GGML_UNARY_OP_SGN:
ggml_cuda_op_sgn(ctx, dst);
break;
case GGML_UNARY_OP_NEG:
ggml_cuda_op_neg(ctx, dst);
break;
@@ -2242,6 +2250,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_CLAMP:
ggml_cuda_op_clamp(ctx, dst);
break;
case GGML_OP_LOG:
ggml_cuda_op_log(ctx, dst);
break;
case GGML_OP_NONE:
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
@@ -2560,7 +2571,7 @@ static void maintain_cuda_graph(ggml_backend_cuda_context * cuda_ctx, std::vecto
for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) {
if(count(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), cuda_ctx->cuda_graph->params[i].func) > 0) {
char ** updated_kernel_arg_ptr = cuda_ctx->cuda_graph->updated_kernel_arg.at(k++);
cuda_ctx->cuda_graph->params[i].kernelParams[1] = updated_kernel_arg_ptr;
*(void**)cuda_ctx->cuda_graph->params[i].kernelParams[1] = *(void**)updated_kernel_arg_ptr;
CUDA_CHECK(cudaGraphKernelNodeSetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]));
}
}
@@ -2960,6 +2971,8 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
switch (op->op) {
case GGML_OP_UNARY:
switch (ggml_get_unary_op(op)) {
case GGML_UNARY_OP_ABS:
case GGML_UNARY_OP_SGN:
case GGML_UNARY_OP_NEG:
case GGML_UNARY_OP_STEP:
case GGML_UNARY_OP_GELU:
@@ -3142,7 +3155,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
return false;
} break;
case GGML_OP_SILU_BACK:
return ggml_is_contiguous(op->src[0]);
return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
break;
case GGML_OP_NORM:
case GGML_OP_RMS_NORM:
@@ -3166,6 +3179,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_SIN:
case GGML_OP_COS:
case GGML_OP_CLAMP:
case GGML_OP_LOG:
return true;
case GGML_OP_CONT:
return op->src[0]->type != GGML_TYPE_BF16;

View File

@@ -109,9 +109,9 @@ static constexpr __device__ int get_mmq_x_max_device() {
#if __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
#ifdef GGML_CUDA_FORCE_MMQ
return MMQ_DP4A_MAX_BATCH_SIZE;
#else // GGML_CUDA_FORCE_MMQ
return 128;
#else // GGML_CUDA_FORCE_MMQ
return MMQ_DP4A_MAX_BATCH_SIZE;
#endif // GGML_CUDA_FORCE_MMQ
#else // __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA

View File

@@ -1,305 +1,213 @@
#include "unary.cuh"
static __global__ void neg_f32(const float * x, float * dst, const int k) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= k) {
return;
}
dst[i] = -x[i];
static __device__ __forceinline__ float op_abs(float x) {
return fabsf(x);
}
static __global__ void step_f32(const float * x, float * dst, const int k) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= k) {
return;
}
dst[i] = x[i] > 0.0f;
static __device__ __forceinline__ float op_sgn(float x) {
return (x > 0.f ? 1.f : ((x < 0.f ? -1.f : 0.f)));
}
static __global__ void gelu_f32(const float * x, float * dst, const int k) {
static __device__ __forceinline__ float op_neg(float x) {
return -x;
}
static __device__ __forceinline__ float op_step(float x) {
return x > 0.0f;
}
static __device__ __forceinline__ float op_gelu(float x) {
const float GELU_COEF_A = 0.044715f;
const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
const int i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= k) {
return;
}
float xi = x[i];
dst[i] = 0.5f*xi*(1.0f + tanhf(SQRT_2_OVER_PI*xi*(1.0f + GELU_COEF_A*xi*xi)));
return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
}
static __global__ void gelu_quick_f32(const float * x, float * dst, int k) {
static __device__ __forceinline__ float op_gelu_quick(float x) {
const float GELU_QUICK_COEF = -1.702f;
const int i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= k) {
return;
}
dst[i] = x[i] * (1.0f / (1.0f + expf(GELU_QUICK_COEF * x[i])));
return x * (1.0f / (1.0f + expf(GELU_QUICK_COEF * x)));
}
static __global__ void silu_f32(const float * x, float * dst, const int k) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= k) {
return;
}
dst[i] = x[i] / (1.0f + expf(-x[i]));
static __device__ __forceinline__ float op_silu(float x) {
return x / (1.0f + expf(-x));
}
static __global__ void silu_back_f32(
const float * grad, const float * xf, float * dst, const int k) {
static __device__ __forceinline__ float op_tanh(float x) {
return tanhf(x);
}
static __device__ __forceinline__ float op_relu(float x) {
return fmaxf(x, 0);
}
static __device__ __forceinline__ float op_sigmoid(float x) {
return 1.0f / (1.0f + expf(-x));
}
static __device__ __forceinline__ float op_hardsigmoid(float x) {
return fminf(1.0f, fmaxf(0.0f, (x + 3.0f) / 6.0f));
}
static __device__ __forceinline__ float op_hardswish(float x) {
return x * fminf(1.0f, fmaxf(0.0f, (x + 3.0f) / 6.0f));
}
static __device__ __forceinline__ float op_exp(float x) {
return expf(x);
}
static __device__ __forceinline__ float op_sqr(float x) {
return x * x;
}
static __device__ __forceinline__ float op_sqrt(float x) {
return sqrtf(x);
}
static __device__ __forceinline__ float op_sin(float x) {
return sinf(x);
}
static __device__ __forceinline__ float op_cos(float x) {
return cosf(x);
}
static __device__ __forceinline__ float op_log(float x) {
return logf(x);
}
template <float (*op)(float), typename T>
static __global__ void unary_op_kernel(const T * x, T * dst, const int k) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= k) {
return;
}
const float xfi = xf[i];
const float s = 1.0f / (1.0f + expf(-xfi));
dst[i] = grad[i] * s * (1.0f + xfi * (1.0f - s));
dst[i] = (T)op((float)x[i]);
}
static __global__ void tanh_f32(const float * x, float * dst, int k) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= k) {
return;
}
dst[i] = tanhf(x[i]);
}
static __global__ void relu_f32(const float * x, float * dst, const int k) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= k) {
return;
}
dst[i] = fmaxf(x[i], 0);
}
static __global__ void sigmoid_f32(const float * x, float * dst, const int k) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= k) {
return;
}
dst[i] = 1.0f / (1.0f + expf(-x[i]));
}
static __global__ void hardsigmoid_f32(const float * x, float * dst, const int k) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= k) {
return;
}
dst[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f));
}
static __global__ void hardswish_f32(const float * x, float * dst, const int k) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= k) {
return;
}
dst[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f));
}
static __global__ void exp_f32(const float * x, float * dst, const int k) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= k) {
return;
}
dst[i] = expf(x[i]);
}
static __global__ void leaky_relu_f32(const float * x, float * dst, const int k, const float negative_slope) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= k) {
return;
}
dst[i] = fmaxf(x[i], 0) + fminf(x[i], 0.0f) * negative_slope;
}
static __global__ void sqr_f32(const float * x, float * dst, const int k) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= k) {
return;
}
dst[i] = x[i] * x[i];
}
static __global__ void sqrt_f32(const float * x, float * dst, const int k) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= k) {
return;
}
dst[i] = sqrtf(x[i]);
}
static __global__ void sin_f32(const float * x, float * dst, const int k) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= k) {
return;
}
dst[i] = sinf(x[i]);
}
static __global__ void cos_f32(const float * x, float * dst, const int k) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= k) {
return;
}
dst[i] = cosf(x[i]);
}
static void neg_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
template <float (*op)(float), typename T>
static void unary_cuda(const T * x, T * dst, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_NEG_BLOCK_SIZE - 1) / CUDA_NEG_BLOCK_SIZE;
neg_f32<<<num_blocks, CUDA_NEG_BLOCK_SIZE, 0, stream>>>(x, dst, k);
unary_op_kernel<op><<<num_blocks, CUDA_NEG_BLOCK_SIZE, 0, stream>>>(x, dst, k);
}
static void step_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_STEP_BLOCK_SIZE - 1) / CUDA_STEP_BLOCK_SIZE;
step_f32<<<num_blocks, CUDA_STEP_BLOCK_SIZE, 0, stream>>>(x, dst, k);
template <float (*op)(float)>
void ggml_cuda_op_unary(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const void * src0_d = src0->data;
void * dst_d = dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
GGML_ASSERT(src0->type == dst->type);
if (src0->type == GGML_TYPE_F16) {
unary_cuda<op>((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream);
} else {
unary_cuda<op>((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream);
}
}
static void gelu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
gelu_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
void ggml_cuda_op_abs(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_cuda_op_unary<op_abs>(ctx, dst);
}
static void gelu_quick_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
gelu_quick_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
}
static void silu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_SILU_BLOCK_SIZE - 1) / CUDA_SILU_BLOCK_SIZE;
silu_f32<<<num_blocks, CUDA_SILU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
}
static void silu_back_f32_cuda(const float * grad, const float * x, float * dst, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_SILU_BACK_BLOCK_SIZE - 1) / CUDA_SILU_BLOCK_SIZE;
silu_back_f32<<<num_blocks, CUDA_SILU_BACK_BLOCK_SIZE, 0, stream>>>(grad, x, dst, k);
}
static void tanh_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_TANH_BLOCK_SIZE - 1) / CUDA_TANH_BLOCK_SIZE;
tanh_f32<<<num_blocks, CUDA_TANH_BLOCK_SIZE, 0, stream>>>(x, dst, k);
}
static void relu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE;
relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
}
static void sigmoid_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_SIGMOID_BLOCK_SIZE - 1) / CUDA_SIGMOID_BLOCK_SIZE;
sigmoid_f32<<<num_blocks, CUDA_SIGMOID_BLOCK_SIZE, 0, stream>>>(x, dst, k);
}
static void hardsigmoid_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_HARDSIGMOID_BLOCK_SIZE - 1) / CUDA_HARDSIGMOID_BLOCK_SIZE;
hardsigmoid_f32<<<num_blocks, CUDA_HARDSIGMOID_BLOCK_SIZE, 0, stream>>>(x, dst, k);
}
static void hardswish_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_HARDSWISH_BLOCK_SIZE - 1) / CUDA_HARDSWISH_BLOCK_SIZE;
hardswish_f32<<<num_blocks, CUDA_HARDSWISH_BLOCK_SIZE, 0, stream>>>(x, dst, k);
}
static void exp_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_EXP_BLOCK_SIZE - 1) / CUDA_EXP_BLOCK_SIZE;
exp_f32<<<num_blocks, CUDA_EXP_BLOCK_SIZE, 0, stream>>>(x, dst, k);
}
static void leaky_relu_f32_cuda(const float * x, float * dst, const int k, const float negative_slope, cudaStream_t stream) {
const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE;
leaky_relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k, negative_slope);
}
static void sqr_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_SQR_BLOCK_SIZE - 1) / CUDA_SQR_BLOCK_SIZE;
sqr_f32<<<num_blocks, CUDA_SQR_BLOCK_SIZE, 0, stream>>>(x, dst, k);
}
static void sqrt_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_SQRT_BLOCK_SIZE - 1) / CUDA_SQRT_BLOCK_SIZE;
sqrt_f32<<<num_blocks, CUDA_SQRT_BLOCK_SIZE, 0, stream>>>(x, dst, k);
}
static void sin_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_SIN_BLOCK_SIZE - 1) / CUDA_SIN_BLOCK_SIZE;
sin_f32<<<num_blocks, CUDA_SIN_BLOCK_SIZE, 0, stream>>>(x, dst, k);
}
static void cos_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_COS_BLOCK_SIZE - 1) / CUDA_COS_BLOCK_SIZE;
cos_f32<<<num_blocks, CUDA_COS_BLOCK_SIZE, 0, stream>>>(x, dst, k);
void ggml_cuda_op_sgn(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_cuda_op_unary<op_sgn>(ctx, dst);
}
void ggml_cuda_op_neg(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *)src0->data;
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
neg_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
ggml_cuda_op_unary<op_neg>(ctx, dst);
}
void ggml_cuda_op_step(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *)src0->data;
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
step_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
ggml_cuda_op_unary<op_step>(ctx, dst);
}
void ggml_cuda_op_gelu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *)src0->data;
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
ggml_cuda_op_unary<op_gelu>(ctx, dst);
}
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
gelu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
void ggml_cuda_op_gelu_quick(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_cuda_op_unary<op_gelu_quick>(ctx, dst);
}
void ggml_cuda_op_silu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *)src0->data;
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
ggml_cuda_op_unary<op_silu>(ctx, dst);
}
GGML_ASSERT(ggml_is_contiguous(src0));
void ggml_cuda_op_tanh(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_cuda_op_unary<op_tanh>(ctx, dst);
}
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
void ggml_cuda_op_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_cuda_op_unary<op_relu>(ctx, dst);
}
silu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
void ggml_cuda_op_sigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_cuda_op_unary<op_sigmoid>(ctx, dst);
}
void ggml_cuda_op_hardsigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_cuda_op_unary<op_hardsigmoid>(ctx, dst);
}
void ggml_cuda_op_hardswish(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_cuda_op_unary<op_hardswish>(ctx, dst);
}
void ggml_cuda_op_exp(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_cuda_op_unary<op_exp>(ctx, dst);
}
void ggml_cuda_op_sqr(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_cuda_op_unary<op_sqr>(ctx, dst);
}
void ggml_cuda_op_sqrt(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_cuda_op_unary<op_sqrt>(ctx, dst);
}
void ggml_cuda_op_sin(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_cuda_op_unary<op_sin>(ctx, dst);
}
void ggml_cuda_op_cos(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_cuda_op_unary<op_cos>(ctx, dst);
}
void ggml_cuda_op_log(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_cuda_op_unary<op_log>(ctx, dst);
}
/* silu_back */
static __device__ __forceinline__ float op_silu_back(float grad, float x) {
const float s = 1.0f / (1.0f + expf(-x));
return grad * s * (1.0f + x * (1.0f - s));
}
template <class T>
static __global__ void silu_back_kernel(const T * grad, const T * xf, T * dst, const int k) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= k) {
return;
}
dst[i] = (T)op_silu_back((float)grad[i], (float)xf[i]);
}
template <class T>
static void silu_back_cuda(const T * grad, const T * x, T * dst, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_SILU_BACK_BLOCK_SIZE - 1) / CUDA_SILU_BLOCK_SIZE;
silu_back_kernel<<<num_blocks, CUDA_SILU_BACK_BLOCK_SIZE, 0, stream>>>(grad, x, dst, k);
}
void ggml_cuda_op_silu_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
@@ -314,179 +222,58 @@ void ggml_cuda_op_silu_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst)
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
GGML_ASSERT(src0->type == dst->type);
silu_back_f32_cuda(src0_d, src1_d, dst_d, ggml_nelements(src0), stream);
if (src0->type == GGML_TYPE_F16) {
silu_back_cuda((const half *)src0_d, (const half *)src1_d, (half *)dst_d, ggml_nelements(src0), stream);
} else {
silu_back_cuda((const float*)src0_d, (const float*)src1_d, (float *)dst_d, ggml_nelements(src0), stream);
}
}
void ggml_cuda_op_gelu_quick(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *)src0->data;
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
/* leaky relu */
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
gelu_quick_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
static __device__ __forceinline__ float op_leaky_relu(float x, const float negative_slope) {
return fmaxf(x, 0) + fminf(x, 0.0f) * negative_slope;
}
void ggml_cuda_op_tanh(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *)src0->data;
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
template <class T>
static __global__ void leaky_relu_kernel(const T * x, T * dst, const int k, const float negative_slope) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
GGML_ASSERT(ggml_is_contiguous(src0));
if (i >= k) {
return;
}
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
tanh_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
dst[i] = (T)op_leaky_relu((float)x[i], negative_slope);
}
void ggml_cuda_op_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *)src0->data;
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
relu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
}
void ggml_cuda_op_sigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *)src0->data;
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
sigmoid_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
}
void ggml_cuda_op_hardsigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *)src0->data;
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
hardsigmoid_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
}
void ggml_cuda_op_hardswish(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *)src0->data;
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
hardswish_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
}
void ggml_cuda_op_exp(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *)src0->data;
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
exp_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
template <class T>
static void leaky_relu_cuda(const T * x, T * dst, const int k, const float negative_slope, cudaStream_t stream) {
const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE;
leaky_relu_kernel<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k, negative_slope);
}
void ggml_cuda_op_leaky_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *)src0->data;
float * dst_d = (float *)dst->data;
const void * src0_d = src0->data;
void * dst_d = dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
GGML_ASSERT(src0->type == dst->type);
float negative_slope;
memcpy(&negative_slope, dst->op_params, sizeof(float));
leaky_relu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), negative_slope, stream);
}
void ggml_cuda_op_sqr(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *)src0->data;
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
sqr_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
}
void ggml_cuda_op_sqrt(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *)src0->data;
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
sqrt_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
}
void ggml_cuda_op_sin(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *)src0->data;
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
sin_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
}
void ggml_cuda_op_cos(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *)src0->data;
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
cos_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
if (src0->type == GGML_TYPE_F16) {
leaky_relu_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), negative_slope, stream);
} else {
leaky_relu_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), negative_slope, stream);
}
}

View File

@@ -16,6 +16,10 @@
#define CUDA_SIN_BLOCK_SIZE 256
#define CUDA_COS_BLOCK_SIZE 256
void ggml_cuda_op_abs(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_sgn(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_neg(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_step(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
@@ -49,3 +53,5 @@ void ggml_cuda_op_sqrt(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_sin(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_cos(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_log(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View File

@@ -39,6 +39,12 @@ endif()
find_package(hip REQUIRED)
find_package(hipblas REQUIRED)
find_package(rocblas REQUIRED)
if (GGML_HIP_ROCWMMA_FATTN)
CHECK_INCLUDE_FILE_CXX("rocwmma/rocwmma.hpp" FOUND_ROCWMMA)
if (NOT ${FOUND_ROCWMMA})
message(FATAL_ERROR "rocwmma has not been found")
endif()
endif()
if (${hip_VERSION} VERSION_LESS 5.5)
message(FATAL_ERROR "At least ROCM/HIP V5.5 is required")
@@ -107,6 +113,10 @@ if (GGML_HIP_NO_VMM)
add_compile_definitions(GGML_HIP_NO_VMM)
endif()
if (GGML_HIP_ROCWMMA_FATTN)
add_compile_definitions(GGML_HIP_ROCWMMA_FATTN)
endif()
if (NOT GGML_CUDA_FA)
add_compile_definitions(GGML_CUDA_NO_FA)
endif()

View File

@@ -27,12 +27,12 @@ configure_file(../ggml-common.h ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-common.h
configure_file(ggml-metal.metal ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.metal COPYONLY)
configure_file(ggml-metal-impl.h ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal-impl.h COPYONLY)
set(METALLIB_COMMON "${CMAKE_CURRENT_SOURCE_DIR}/../ggml-common.h")
if (GGML_METAL_EMBED_LIBRARY)
enable_language(ASM)
add_compile_definitions(GGML_METAL_EMBED_LIBRARY)
set(METALLIB_COMMON "${CMAKE_CURRENT_SOURCE_DIR}/../ggml-common.h")
set(METALLIB_SOURCE "${CMAKE_CURRENT_SOURCE_DIR}/ggml-metal.metal")
set(METALLIB_IMPL "${CMAKE_CURRENT_SOURCE_DIR}/ggml-metal-impl.h")
@@ -88,12 +88,11 @@ else()
add_custom_command(
OUTPUT ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/default.metallib
COMMAND xcrun -sdk macosx metal ${XC_FLAGS} -c ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.metal -o ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.air
COMMAND xcrun -sdk macosx metallib ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.air -o ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/default.metallib
COMMAND rm -f ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.air
COMMAND xcrun -sdk macosx metal ${XC_FLAGS} -c ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.metal -o - |
xcrun -sdk macosx metallib - -o ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/default.metallib
COMMAND rm -f ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-common.h
COMMAND rm -f ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.metal
DEPENDS ggml-metal.metal ggml-common.h
DEPENDS ggml-metal.metal ${METALLIB_COMMON}
COMMENT "Compiling Metal kernels"
)

View File

@@ -285,4 +285,239 @@ typedef struct {
float eps;
} ggml_metal_kargs_rms_norm;
typedef struct {
int64_t ne00;
int64_t ne01;
int64_t ne02;
uint64_t nb00;
uint64_t nb01;
uint64_t nb02;
int32_t n_groups;
float eps;
} ggml_metal_kargs_group_norm;
typedef struct {
int32_t IC;
int32_t IL;
int32_t K;
int32_t s0;
uint64_t nb0;
uint64_t nb1;
} ggml_metal_kargs_conv_transpose_1d;
typedef struct {
uint64_t ofs0;
uint64_t ofs1;
int32_t IW;
int32_t IH;
int32_t CHW;
int32_t s0;
int32_t s1;
int32_t p0;
int32_t p1;
int32_t d0;
int32_t d1;
int32_t N;
int32_t KH;
int32_t KW;
int32_t KHW; // KH * KW, pre-computed on CPU to save GPU resources
} ggml_metal_kargs_im2col;
typedef struct {
int64_t ne00;
int64_t ne01;
int64_t ne02;
int64_t ne03;
uint64_t nb00;
uint64_t nb01;
uint64_t nb02;
uint64_t nb03;
int64_t ne10;
int64_t ne11;
int64_t ne12;
int64_t ne13;
uint64_t nb10;
uint64_t nb11;
uint64_t nb12;
uint64_t nb13;
int64_t ne0;
int64_t ne1;
int64_t ne2;
int64_t ne3;
uint64_t nb0;
uint64_t nb1;
uint64_t nb2;
uint64_t nb3;
} ggml_metal_kargs_sum_rows;
typedef struct {
int64_t ne00;
int64_t ne01;
int64_t ne02;
float scale;
float max_bias;
float m0;
float m1;
uint32_t n_head_log2;
} ggml_metal_kargs_soft_max;
typedef struct {
int64_t ne00;
int64_t ne01;
int n_past;
} ggml_metal_kargs_diag_mask_inf;
typedef struct {
int64_t ne00;
int64_t ne01;
int64_t ne02;
uint64_t nb00;
uint64_t nb01;
uint64_t nb02;
int64_t ne10;
int64_t ne11;
uint64_t nb10;
uint64_t nb11;
int64_t ne0;
int64_t ne1;
int64_t ne2;
uint64_t nb0;
uint64_t nb1;
uint64_t nb2;
} ggml_metal_kargs_ssm_conv;
typedef struct {
int64_t d_state;
int64_t d_inner;
int64_t n_seq_tokens;
int64_t n_seqs;
uint64_t nb00;
uint64_t nb01;
uint64_t nb02;
uint64_t nb10;
uint64_t nb11;
uint64_t nb12;
uint64_t nb13;
uint64_t nb20;
uint64_t nb21;
uint64_t nb22;
uint64_t nb30;
uint64_t nb31;
uint64_t nb40;
uint64_t nb41;
uint64_t nb42;
uint64_t nb50;
uint64_t nb51;
uint64_t nb52;
} ggml_metal_kargs_ssm_scan;
typedef struct {
int64_t ne00;
uint64_t nb01;
uint64_t nb02;
int64_t ne10;
uint64_t nb10;
uint64_t nb11;
uint64_t nb1;
uint64_t nb2;
} ggml_metal_kargs_get_rows;
typedef struct {
int64_t ne00;
int64_t ne01;
int64_t ne02;
int64_t ne03;
uint64_t nb00;
uint64_t nb01;
uint64_t nb02;
uint64_t nb03;
int64_t ne0;
int64_t ne1;
int64_t ne2;
int64_t ne3;
uint64_t nb0;
uint64_t nb1;
uint64_t nb2;
uint64_t nb3;
float sf0;
float sf1;
float sf2;
float sf3;
} ggml_metal_kargs_upscale;
typedef struct {
int64_t ne00;
int64_t ne01;
int64_t ne02;
int64_t ne03;
uint64_t nb00;
uint64_t nb01;
uint64_t nb02;
uint64_t nb03;
int64_t ne0;
int64_t ne1;
int64_t ne2;
int64_t ne3;
uint64_t nb0;
uint64_t nb1;
uint64_t nb2;
uint64_t nb3;
} ggml_metal_kargs_pad;
typedef struct {
int64_t ne00;
int64_t ne01;
int64_t ne02;
int64_t ne03;
uint64_t nb00;
uint64_t nb01;
uint64_t nb02;
uint64_t nb03;
int64_t ne0;
int64_t ne1;
int64_t ne2;
int64_t ne3;
uint64_t nb0;
uint64_t nb1;
uint64_t nb2;
uint64_t nb3;
int32_t p0;
int32_t p1;
} ggml_metal_kargs_pad_reflect_1d;
typedef struct {
uint64_t nb1;
int dim;
int max_period;
} ggml_metal_kargs_timestep_embedding;
typedef struct {
float slope;
} ggml_metal_kargs_leaky_relu;
typedef struct {
int64_t ncols;
int64_t ncols_pad;
} ggml_metal_kargs_argsort;
typedef struct {
int64_t ne0;
float start;
float step;
} ggml_metal_kargs_arange;
typedef struct {
int32_t k0;
int32_t k1;
int32_t s0;
int32_t s1;
int32_t p0;
int32_t p1;
int64_t IH;
int64_t IW;
int64_t OH;
int64_t OW;
int64_t parallel_elements;
} ggml_metal_kargs_pool_2d;
#endif // GGML_METAL_IMPL

View File

@@ -467,11 +467,13 @@ struct ggml_backend_metal_context {
// for now it is easier to work in a separate file
// static NSString * const msl_library_source = @"see metal.metal";
#if !GGML_METAL_EMBED_LIBRARY
// Here to assist with NSBundle Path Hack
@interface GGMLMetalClass : NSObject
@end
@implementation GGMLMetalClass
@end
#endif
static void * ggml_metal_host_malloc(size_t n) {
void * data = NULL;
@@ -520,7 +522,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
ctx->d_queue = dispatch_queue_create("ggml-metal", DISPATCH_QUEUE_CONCURRENT);
id<MTLLibrary> metal_library;
id<MTLLibrary> metal_library = nil;
// load library
//
@@ -529,19 +531,23 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
// - if not found, load the source and compile it
// - if that fails, return NULL
{
NSBundle * bundle = nil;
#ifdef SWIFT_PACKAGE
bundle = SWIFTPM_MODULE_BUNDLE;
#else
bundle = [NSBundle bundleForClass:[GGMLMetalClass class]];
#endif
NSError * error = nil;
NSString * src = nil;
#if GGML_METAL_EMBED_LIBRARY
const bool try_metallib = false;
GGML_LOG_INFO("%s: using embedded metal library\n", __func__);
extern const char ggml_metallib_start[];
extern const char ggml_metallib_end[];
src = [[NSString alloc] initWithBytes:ggml_metallib_start length:(ggml_metallib_end-ggml_metallib_start) encoding:NSUTF8StringEncoding];
#else
const bool try_metallib = true;
#ifdef SWIFT_PACKAGE
NSBundle * bundle = SWIFTPM_MODULE_BUNDLE;
#else
NSBundle * bundle = [NSBundle bundleForClass:[GGMLMetalClass class]];
#endif
NSString * path_lib = [bundle pathForResource:@"default" ofType:@"metallib"];
@@ -574,7 +580,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
path_lib = default_metallib_path;
}
if (try_metallib && path_lib != nil) {
if (path_lib != nil) {
// pre-compiled library found
NSURL * libURL = [NSURL fileURLWithPath:path_lib];
GGML_LOG_INFO("%s: loading '%s'\n", __func__, [path_lib UTF8String]);
@@ -585,14 +591,6 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
return NULL;
}
} else {
#if GGML_METAL_EMBED_LIBRARY
GGML_LOG_INFO("%s: using embedded metal library\n", __func__);
extern const char ggml_metallib_start[];
extern const char ggml_metallib_end[];
NSString * src = [[NSString alloc] initWithBytes:ggml_metallib_start length:(ggml_metallib_end-ggml_metallib_start) encoding:NSUTF8StringEncoding];
#else
GGML_LOG_INFO("%s: default.metallib not found, loading from source\n", __func__);
NSString * path_source;
@@ -613,13 +611,15 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_LOG_INFO("%s: loading '%s'\n", __func__, [path_source UTF8String]);
NSString * src = [NSString stringWithContentsOfFile:path_source encoding:NSUTF8StringEncoding error:&error];
src = [NSString stringWithContentsOfFile:path_source encoding:NSUTF8StringEncoding error:&error];
if (error) {
GGML_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
return NULL;
}
#endif // GGML_METAL_EMBED_LIBRARY
}
#endif
if (!metal_library) {
@autoreleasepool {
// dictionary of preprocessor macros
NSMutableDictionary * prep = [NSMutableDictionary dictionary];
@@ -647,10 +647,11 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
[options release];
#endif
}
#if GGML_METAL_EMBED_LIBRARY
[src release];
#endif // GGML_METAL_EMBED_LIBRARY
}
#if GGML_METAL_EMBED_LIBRARY
[src release];
#endif // GGML_METAL_EMBED_LIBRARY
}
// print MTL GPU family:
@@ -1200,7 +1201,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
case GGML_UNARY_OP_GELU_QUICK:
case GGML_UNARY_OP_SILU:
case GGML_UNARY_OP_ELU:
return ggml_is_contiguous(op->src[0]);
return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
default:
return false;
}
@@ -1210,21 +1211,26 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
case GGML_OP_TRANSPOSE:
case GGML_OP_PERMUTE:
case GGML_OP_CONCAT:
return true;
case GGML_OP_ADD:
case GGML_OP_SUB:
case GGML_OP_ACC:
case GGML_OP_MUL:
case GGML_OP_DIV:
return op->src[0]->type == GGML_TYPE_F32;
case GGML_OP_ACC:
case GGML_OP_REPEAT:
case GGML_OP_SCALE:
case GGML_OP_CLAMP:
case GGML_OP_CONV_TRANSPOSE_1D:
return true;
case GGML_OP_CLAMP:
return op->src[0]->type == GGML_TYPE_F32;
case GGML_OP_SQR:
case GGML_OP_SQRT:
case GGML_OP_SIN:
case GGML_OP_COS:
return ggml_is_contiguous(op->src[0]);
return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
case GGML_OP_LOG:
return false; // TODO: implement
case GGML_OP_SUM_ROWS:
case GGML_OP_SOFT_MAX:
case GGML_OP_GROUP_NORM:
@@ -1254,10 +1260,11 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
case GGML_OP_UPSCALE:
case GGML_OP_PAD:
case GGML_OP_PAD_REFLECT_1D:
case GGML_OP_ARANGE:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_ARGSORT:
case GGML_OP_LEAKY_RELU:
return op->src[0]->type == GGML_TYPE_F32;
case GGML_OP_ARANGE:
return true;
case GGML_OP_FLASH_ATTN_EXT:
if (op->src[1]->type != op->src[2]->type) {
@@ -1938,34 +1945,38 @@ static void ggml_metal_encode_node(
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SUM_ROWS].pipeline;
// TODO: add ggml_metal_kargs struct
ggml_metal_kargs_sum_rows args = {
/*.ne00 =*/ ne00,
/*.ne01 =*/ ne01,
/*.ne02 =*/ ne02,
/*.ne03 =*/ ne03,
/*.nb00 =*/ nb00,
/*.nb01 =*/ nb01,
/*.nb02 =*/ nb02,
/*.nb03 =*/ nb03,
/*.ne10 =*/ ne10,
/*.ne11 =*/ ne11,
/*.ne12 =*/ ne12,
/*.ne13 =*/ ne13,
/*.nb10 =*/ nb10,
/*.nb11 =*/ nb11,
/*.nb12 =*/ nb12,
/*.nb13 =*/ nb13,
/*.ne0 =*/ ne0,
/*.ne1 =*/ ne1,
/*.ne2 =*/ ne2,
/*.ne3 =*/ ne3,
/*.nb0 =*/ nb0,
/*.nb1 =*/ nb1,
/*.nb2 =*/ nb2,
/*.nb3 =*/ nb3,
};
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
[encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5];
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
[encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9];
[encoder setBytes:&ne10 length:sizeof(ne10) atIndex:10];
[encoder setBytes:&ne11 length:sizeof(ne11) atIndex:11];
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:12];
[encoder setBytes:&ne13 length:sizeof(ne13) atIndex:13];
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:14];
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:15];
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:16];
[encoder setBytes:&nb13 length:sizeof(nb13) atIndex:17];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:18];
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:19];
[encoder setBytes:&ne2 length:sizeof(ne2) atIndex:20];
[encoder setBytes:&ne3 length:sizeof(ne3) atIndex:21];
[encoder setBytes:&nb0 length:sizeof(nb0) atIndex:22];
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:23];
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:24];
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:25];
[encoder setBytes:&args length:sizeof(args) atIndex:2];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
@@ -2014,8 +2025,17 @@ static void ggml_metal_encode_node(
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
// TODO: add ggml_metal_kargs struct
// TODO: optimize (see https://github.com/ggml-org/llama.cpp/pull/10238/commits/7941b6b9ec29a2866fec6fa6c51612515ca509f6)
ggml_metal_kargs_soft_max args = {
/*.ne00 =*/ ne00,
/*.ne01 =*/ ne01,
/*.ne02 =*/ ne02,
/*.scale =*/ scale,
/*.max_bias =*/ max_bias,
/*.m0 =*/ m0,
/*.m1 =*/ m1,
/*.n_head_log2 =*/ n_head_log2,
};
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
if (id_src1) {
@@ -2024,14 +2044,7 @@ static void ggml_metal_encode_node(
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
}
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
[encoder setBytes:&scale length:sizeof(scale) atIndex:6];
[encoder setBytes:&max_bias length:sizeof(max_bias) atIndex:7];
[encoder setBytes:&m0 length:sizeof(m0) atIndex:8];
[encoder setBytes:&m1 length:sizeof(m1) atIndex:9];
[encoder setBytes:&n_head_log2 length:sizeof(n_head_log2) atIndex:10];
[encoder setBytes:&args length:sizeof(args) atIndex:3];
[encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
@@ -2049,13 +2062,16 @@ static void ggml_metal_encode_node(
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF].pipeline;
}
// TODO: add ggml_metal_kargs struct
ggml_metal_kargs_diag_mask_inf args = {
/*.ne00 =*/ ne00,
/*.ne01 =*/ ne01,
/*.n_past =*/ n_past,
};
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
[encoder setBytes:&n_past length:sizeof(int) atIndex:4];
[encoder setBytes:&args length:sizeof(args) atIndex:2];
if (ne00%8 == 0) {
[encoder dispatchThreadgroups:MTLSizeMake(ne00*ne01*ne02/8, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
@@ -2074,27 +2090,30 @@ static void ggml_metal_encode_node(
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SSM_CONV_F32].pipeline;
// TODO: add ggml_metal_kargs struct
ggml_metal_kargs_ssm_conv args = {
/*.ne00 =*/ ne00,
/*.ne01 =*/ ne01,
/*.ne02 =*/ ne02,
/*.nb00 =*/ nb00,
/*.nb01 =*/ nb01,
/*.nb02 =*/ nb02,
/*.ne10 =*/ ne10,
/*.ne11 =*/ ne11,
/*.nb10 =*/ nb10,
/*.nb11 =*/ nb11,
/*.ne0 =*/ ne0,
/*.ne1 =*/ ne1,
/*.ne2 =*/ ne2,
/*.nb0 =*/ nb0,
/*.nb1 =*/ nb1,
/*.nb2 =*/ nb2,
};
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
[encoder setBytes:&ne10 length:sizeof(ne10) atIndex:9];
[encoder setBytes:&ne11 length:sizeof(ne11) atIndex:10];
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:11];
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:12];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:13];
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:14];
[encoder setBytes:&ne2 length:sizeof(ne2) atIndex:15];
[encoder setBytes:&nb0 length:sizeof(nb0) atIndex:16];
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:17];
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:18];
[encoder setBytes:&args length:sizeof(args) atIndex:3];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne1, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
@@ -2145,7 +2164,31 @@ static void ggml_metal_encode_node(
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SSM_SCAN_F32].pipeline;
// TODO: add ggml_metal_kargs struct
ggml_metal_kargs_ssm_scan args = {
/*.d_state =*/ d_state,
/*.d_inner =*/ d_inner,
/*.n_seq_tokens =*/ n_seq_tokens,
/*.n_seqs =*/ n_seqs,
/*.nb00 =*/ nb00,
/*.nb01 =*/ nb01,
/*.nb02 =*/ nb02,
/*.nb10 =*/ nb10,
/*.nb11 =*/ nb11,
/*.nb12 =*/ nb12,
/*.nb13 =*/ nb13,
/*.nb20 =*/ nb20,
/*.nb21 =*/ nb21,
/*.nb22 =*/ nb22,
/*.nb30 =*/ nb30,
/*.nb31 =*/ nb31,
/*.nb40 =*/ nb40,
/*.nb41 =*/ nb41,
/*.nb42 =*/ nb42,
/*.nb50 =*/ nb50,
/*.nb51 =*/ nb51,
/*.nb52 =*/ nb52,
};
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
@@ -2154,30 +2197,7 @@ static void ggml_metal_encode_node(
[encoder setBuffer:id_src4 offset:offs_src4 atIndex:4];
[encoder setBuffer:id_src5 offset:offs_src5 atIndex:5];
[encoder setBuffer:id_dst offset:offs_dst atIndex:6];
[encoder setBytes:&d_state length:sizeof(d_state) atIndex:7];
[encoder setBytes:&d_inner length:sizeof(d_inner) atIndex:8];
[encoder setBytes:&n_seq_tokens length:sizeof(n_seq_tokens) atIndex:9];
[encoder setBytes:&n_seqs length:sizeof(n_seqs) atIndex:10];
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:11];
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:12];
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:13];
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:14];
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:15];
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:16];
[encoder setBytes:&nb13 length:sizeof(nb13) atIndex:17];
[encoder setBytes:&nb20 length:sizeof(nb20) atIndex:18];
[encoder setBytes:&nb21 length:sizeof(nb21) atIndex:19];
[encoder setBytes:&nb22 length:sizeof(nb22) atIndex:20];
[encoder setBytes:&nb30 length:sizeof(nb30) atIndex:21];
[encoder setBytes:&nb31 length:sizeof(nb31) atIndex:22];
[encoder setBytes:&nb40 length:sizeof(nb40) atIndex:23];
[encoder setBytes:&nb41 length:sizeof(nb41) atIndex:24];
[encoder setBytes:&nb42 length:sizeof(nb42) atIndex:25];
[encoder setBytes:&nb50 length:sizeof(nb50) atIndex:26];
[encoder setBytes:&nb51 length:sizeof(nb51) atIndex:27];
[encoder setBytes:&nb52 length:sizeof(nb52) atIndex:28];
[encoder setBytes:&args length:sizeof(args) atIndex:7];
[encoder dispatchThreadgroups:MTLSizeMake(d_inner, n_seqs, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
@@ -3034,19 +3054,22 @@ static void ggml_metal_encode_node(
default: GGML_ABORT("not implemented");
}
// TODO: add ggml_metal_kargs struct
ggml_metal_kargs_get_rows args = {
/*.ne00 =*/ ne00,
/*.nb01 =*/ nb01,
/*.nb02 =*/ nb02,
/*.ne10 =*/ ne10,
/*.nb10 =*/ nb10,
/*.nb11 =*/ nb11,
/*.nb1 =*/ nb1,
/*.nb2 =*/ nb2,
};
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:3];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:4];
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:5];
[encoder setBytes:&ne10 length:sizeof( int64_t) atIndex:6];
[encoder setBytes:&nb10 length:sizeof( int64_t) atIndex:7];
[encoder setBytes:&nb11 length:sizeof( int64_t) atIndex:8];
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:9];
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:10];
[encoder setBytes:&args length:sizeof(args) atIndex:3];
[encoder dispatchThreadgroups:MTLSizeMake(ne10, ne11, 1) threadsPerThreadgroup:MTLSizeMake(32, 1, 1)];
} break;
@@ -3103,18 +3126,21 @@ static void ggml_metal_encode_node(
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GROUP_NORM].pipeline;
// TODO: add ggml_metal_kargs struct
ggml_metal_kargs_group_norm args = {
/*.ne00 =*/ ne00,
/*.ne01 =*/ ne01,
/*.ne02 =*/ ne02,
/*.nb00 =*/ nb00,
/*.nb01 =*/ nb01,
/*.nb02 =*/ nb02,
/*.n_groups =*/ n_groups,
/*.eps =*/ eps,
};
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:5];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:6];
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:7];
[encoder setBytes:&n_groups length:sizeof( int32_t) atIndex:8];
[encoder setBytes:&eps length:sizeof( float) atIndex:9];
[encoder setBytes:&args length:sizeof(args) atIndex:2];
[encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake(n_groups, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
@@ -3272,8 +3298,8 @@ static void ggml_metal_encode_node(
const int32_t CHW = IC * KH * KW;
const int32_t ofs0 = src1->nb[is_2D ? 3 : 2] / 4;
const int32_t ofs1 = src1->nb[is_2D ? 2 : 1] / 4;
const uint64_t ofs0 = src1->nb[is_2D ? 3 : 2] / 4;
const uint64_t ofs1 = src1->nb[is_2D ? 2 : 1] / 4;
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_IM2COL_F32].pipeline;
@@ -3295,27 +3321,30 @@ static void ggml_metal_encode_node(
default: GGML_ABORT("fatal error");
};
// TODO: add ggml_metal_kargs struct
ggml_metal_kargs_im2col args = {
/*.ofs0 =*/ ofs0,
/*.ofs1 =*/ ofs1,
/*.IW =*/ IW,
/*.IH =*/ IH,
/*.CHW =*/ CHW,
/*.s0 =*/ s0,
/*.s1 =*/ s1,
/*.p0 =*/ p0,
/*.p1 =*/ p1,
/*.d0 =*/ d0,
/*.d1 =*/ d1,
/*.N =*/ N,
/*.KH =*/ KH,
/*.KW =*/ KW,
/*.KHW =*/ KH * KW,
};
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ofs0 length:sizeof(int32_t) atIndex:2];
[encoder setBytes:&ofs1 length:sizeof(int32_t) atIndex:3];
[encoder setBytes:&IW length:sizeof(int32_t) atIndex:4];
[encoder setBytes:&IH length:sizeof(int32_t) atIndex:5];
[encoder setBytes:&CHW length:sizeof(int32_t) atIndex:6];
[encoder setBytes:&s0 length:sizeof(int32_t) atIndex:7];
[encoder setBytes:&s1 length:sizeof(int32_t) atIndex:8];
[encoder setBytes:&p0 length:sizeof(int32_t) atIndex:9];
[encoder setBytes:&p1 length:sizeof(int32_t) atIndex:10];
[encoder setBytes:&d0 length:sizeof(int32_t) atIndex:11];
[encoder setBytes:&d1 length:sizeof(int32_t) atIndex:12];
[encoder setBytes:&args length:sizeof(args) atIndex:2];
if (is_gt_mttpt) {
[encoder setBytes:&N length:sizeof(int32_t) atIndex:13];
[encoder setBytes:&KH length:sizeof(int32_t) atIndex:14];
[encoder setBytes:&KW length:sizeof(int32_t) atIndex:15];
const uint64_t n_threads = MIN(pipeline.maxTotalThreadsPerThreadgroup, (uint64_t)N);
const int64_t quotient = N / n_threads + (N % n_threads > 0 ? 1 : 0);
@@ -3355,16 +3384,20 @@ static void ggml_metal_encode_node(
default: GGML_ABORT("fatal error");
};
ggml_metal_kargs_conv_transpose_1d args = {
/*.IC =*/ IC,
/*.IL =*/ IL,
/*.K =*/ K,
/*.s0 =*/ s0,
/*.nb0 =*/ nb0,
/*.nb1 =*/ nb1,
};
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&IC length:sizeof( int32_t) atIndex:3];
[encoder setBytes:&IL length:sizeof( int32_t) atIndex:4];
[encoder setBytes:&K length:sizeof( int32_t) atIndex:5];
[encoder setBytes:&s0 length:sizeof( int32_t) atIndex:6];
[encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:7];
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:8];
[encoder setBytes:&args length:sizeof(args) atIndex:3];
[encoder dispatchThreadgroups:MTLSizeMake(OL, OC, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
@@ -3379,30 +3412,33 @@ static void ggml_metal_encode_node(
const id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_UPSCALE_F32].pipeline;
// TODO: add ggml_metal_kargs struct
ggml_metal_kargs_upscale args = {
/*.ne00 =*/ ne00,
/*.ne01 =*/ ne01,
/*.ne02 =*/ ne02,
/*.ne03 =*/ ne03,
/*.nb00 =*/ nb00,
/*.nb01 =*/ nb01,
/*.nb02 =*/ nb02,
/*.nb03 =*/ nb03,
/*.ne0 =*/ ne0,
/*.ne1 =*/ ne1,
/*.ne2 =*/ ne2,
/*.ne3 =*/ ne3,
/*.nb0 =*/ nb0,
/*.nb1 =*/ nb1,
/*.nb2 =*/ nb2,
/*.nb3 =*/ nb3,
/*.sf0 =*/ sf0,
/*.sf1 =*/ sf1,
/*.sf2 =*/ sf2,
/*.sf3 =*/ sf3
};
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
[encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5];
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
[encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:10];
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:11];
[encoder setBytes:&ne2 length:sizeof(ne2) atIndex:12];
[encoder setBytes:&ne3 length:sizeof(ne3) atIndex:13];
[encoder setBytes:&nb0 length:sizeof(nb0) atIndex:14];
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:15];
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:16];
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:17];
[encoder setBytes:&sf0 length:sizeof(sf0) atIndex:18];
[encoder setBytes:&sf1 length:sizeof(sf1) atIndex:19];
[encoder setBytes:&sf2 length:sizeof(sf2) atIndex:20];
[encoder setBytes:&sf3 length:sizeof(sf3) atIndex:21];
[encoder setBytes:&args length:sizeof(args) atIndex:2];
const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne0);
@@ -3414,26 +3450,29 @@ static void ggml_metal_encode_node(
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_PAD_F32].pipeline;
// TODO: add ggml_metal_kargs struct
ggml_metal_kargs_pad args = {
/*.ne00 =*/ ne00,
/*.ne01 =*/ ne01,
/*.ne02 =*/ ne02,
/*.ne03 =*/ ne03,
/*.nb00 =*/ nb00,
/*.nb01 =*/ nb01,
/*.nb02 =*/ nb02,
/*.nb03 =*/ nb03,
/*.ne0 =*/ ne0,
/*.ne1 =*/ ne1,
/*.ne2 =*/ ne2,
/*.ne3 =*/ ne3,
/*.nb0 =*/ nb0,
/*.nb1 =*/ nb1,
/*.nb2 =*/ nb2,
/*.nb3 =*/ nb3
};
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
[encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5];
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
[encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:10];
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:11];
[encoder setBytes:&ne2 length:sizeof(ne2) atIndex:12];
[encoder setBytes:&ne3 length:sizeof(ne3) atIndex:13];
[encoder setBytes:&nb0 length:sizeof(nb0) atIndex:14];
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:15];
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:16];
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:17];
[encoder setBytes:&args length:sizeof(args) atIndex:2];
const int nth = MIN(1024, ne0);
@@ -3448,24 +3487,31 @@ static void ggml_metal_encode_node(
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_PAD_REFLECT_1D_F32].pipeline;
ggml_metal_kargs_pad_reflect_1d args = {
/*.ne00 =*/ ne00,
/*.ne01 =*/ ne01,
/*.ne02 =*/ ne02,
/*.ne03 =*/ ne03,
/*.nb00 =*/ nb00,
/*.nb01 =*/ nb01,
/*.nb02 =*/ nb02,
/*.nb03 =*/ nb03,
/*.ne0 =*/ ne0,
/*.ne1 =*/ ne1,
/*.ne2 =*/ ne2,
/*.ne3 =*/ ne3,
/*.nb0 =*/ nb0,
/*.nb1 =*/ nb1,
/*.nb2 =*/ nb2,
/*.nb3 =*/ nb3,
/*.p0 =*/ p0,
/*.p1 =*/ p1
};
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
[encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:6];
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:7];
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:8];
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:9];
[encoder setBytes:&nb03 length:sizeof(nb03) atIndex:10];
[encoder setBytes:&nb0 length:sizeof(nb0) atIndex:11];
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:12];
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:13];
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:14];
[encoder setBytes:&p0 length:sizeof(p0) atIndex:15];
[encoder setBytes:&p1 length:sizeof(p1) atIndex:16];
[encoder setBytes:&args length:sizeof(args) atIndex:2];
const int nth = MIN(1024, ne0);
@@ -3483,12 +3529,15 @@ static void ggml_metal_encode_node(
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARANGE_F32].pipeline;
// TODO: add ggml_metal_kargs struct
ggml_metal_kargs_arange args = {
/*.ne0 =*/ ne0,
/*.start =*/ start,
/*.step =*/ step
};
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_dst offset:offs_dst atIndex:0];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:1];
[encoder setBytes:&start length:sizeof(start) atIndex:2];
[encoder setBytes:&step length:sizeof(step) atIndex:3];
[encoder setBuffer:id_dst offset:offs_dst atIndex:0];
[encoder setBytes:&args length:sizeof(args) atIndex:1];
const int nth = MIN(1024, ne0);
@@ -3505,13 +3554,16 @@ static void ggml_metal_encode_node(
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32].pipeline;
// TODO: add ggml_metal_kargs struct
ggml_metal_kargs_timestep_embedding args = {
/*.nb1 =*/ nb1,
/*.dim =*/ dim,
/*.max_period =*/ max_period
};
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:2];
[encoder setBytes:&dim length:sizeof(dim) atIndex:3];
[encoder setBytes:&max_period length:sizeof(max_period) atIndex:4];
[encoder setBytes:&args length:sizeof(args) atIndex:2];
const int nth = MIN(1024, half);
@@ -3544,12 +3596,15 @@ static void ggml_metal_encode_node(
default: GGML_ABORT("fatal error");
};
// TODO: add ggml_metal_kargs struct
ggml_metal_kargs_argsort args = {
/*.ncols =*/ ne00,
/*.ncols_pad =*/ ne00_padded
};
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
[encoder setBytes:&ne00_padded length:sizeof( int64_t) atIndex:3];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&args length:sizeof(args) atIndex:2];
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake(1, nrows, 1) threadsPerThreadgroup:MTLSizeMake(ne00_padded, 1, 1)];
@@ -3563,11 +3618,14 @@ static void ggml_metal_encode_node(
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32].pipeline;
// TODO: add ggml_metal_kargs struct
ggml_metal_kargs_leaky_relu args = {
/*.slope =*/ slope
};
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&slope length:sizeof(slope) atIndex:2];
[encoder setBytes:&args length:sizeof(args) atIndex:2];
const int64_t n = ggml_nelements(dst);
@@ -4143,21 +4201,24 @@ static void ggml_metal_encode_node(
const int64_t n_threads = MIN((int64_t)[pipeline maxTotalThreadsPerThreadgroup], parallel_elements);
const int64_t n_tg = (parallel_elements + n_threads - 1) / n_threads;
// TODO: add ggml_metal_kargs struct
ggml_metal_kargs_pool_2d args_pool_2d = {
/* .k0 = */ k0,
/* .k1 = */ k1,
/* .s0 = */ s0,
/* .s1 = */ s1,
/* .p0 = */ p0,
/* .p1 = */ p1,
/* .IH = */ IH,
/* .IW = */ IW,
/* .OH = */ OH,
/* .OW = */ OW,
/* .parallel_elements = */ parallel_elements
};
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&k0 length:sizeof(int32_t) atIndex:2];
[encoder setBytes:&k1 length:sizeof(int32_t) atIndex:3];
[encoder setBytes:&s0 length:sizeof(int32_t) atIndex:4];
[encoder setBytes:&s1 length:sizeof(int32_t) atIndex:5];
[encoder setBytes:&p0 length:sizeof(int32_t) atIndex:6];
[encoder setBytes:&p1 length:sizeof(int32_t) atIndex:7];
[encoder setBytes:&IH length:sizeof(int64_t) atIndex:8];
[encoder setBytes:&IW length:sizeof(int64_t) atIndex:9];
[encoder setBytes:&OH length:sizeof(int64_t) atIndex:10];
[encoder setBytes:&OW length:sizeof(int64_t) atIndex:11];
[encoder setBytes:&parallel_elements length:sizeof(int64_t) atIndex:12];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&args_pool_2d length:sizeof(args_pool_2d) atIndex:2];
[encoder dispatchThreadgroups:MTLSizeMake(n_tg, 1, 1) threadsPerThreadgroup:MTLSizeMake(n_threads, 1, 1)];
} break;

File diff suppressed because it is too large Load Diff

View File

@@ -21,7 +21,7 @@ if (MUSAToolkit_FOUND)
message(STATUS "MUSA Toolkit found")
if (NOT DEFINED MUSA_ARCHITECTURES)
set(MUSA_ARCHITECTURES "21;22")
set(MUSA_ARCHITECTURES "21;22;31")
endif()
message(STATUS "Using MUSA architectures: ${MUSA_ARCHITECTURES}")

View File

@@ -15,6 +15,7 @@ if (GGML_OPENCL_PROFILING)
endif ()
add_compile_definitions(GGML_OPENCL_SOA_Q)
add_compile_definitions(GGML_OPENCL_TARGET_VERSION=${GGML_OPENCL_TARGET_VERSION})
if (GGML_OPENCL_USE_ADRENO_KERNELS)
message(STATUS "OpenCL will use matmul kernels optimized for Adreno")

Some files were not shown because too many files have changed in this diff Show More