Compare commits

..

31 Commits
b4836 ... b4867

Author SHA1 Message Date
Henry Linjamäki
8acdacb3ea opencl: use OpenCL C standard supported by the device (#12221)
Some checks failed
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
This patch nudges the llama.cpp a bit to be supported on PoCL which
doesn't support OpenCL C CL2.0. The issue is solved by querying the
device for the supported OpenCL C versions and using the highest one
available.
2025-03-10 09:57:00 -07:00
John Bean
89b2b56e86 readme: added Sidekick to available UIs (#12311) 2025-03-10 16:13:09 +02:00
Georgi Gerganov
e128a1bf5b tests : fix test-quantize-fns to init the CPU backend (#12306)
ggml-ci
2025-03-10 14:07:15 +02:00
marcoStocchi
6ef79a67ca common : refactor '-o' option (#12278)
As discussed in PR 'llama-tts : add -o option' (#12042):

* common_params : 'out_file' string is the only output file name parameter left in common_params. It's intended to be used in all example programs implementing an '-o' option.

* cvector-generator, export-lora, imatrix : default output filenames moved from 'common_params' to the 'main()' of each example program.
2025-03-10 13:34:13 +02:00
Olivier Chafik
4e39a3c332 server: extract <think> tags from qwq outputs (#12297)
* extract <think> tags from qwq outputs

* const for all static regexes in chat.cpp
2025-03-10 10:59:03 +00:00
Olivier Chafik
be421fc429 tool-call: ensure there's always a non-empty tool call id (#12292) 2025-03-10 09:45:29 +00:00
Olivier Chafik
87c2630546 allow missing content in message if tool_calls provided (#12293) 2025-03-10 09:45:07 +00:00
Olivier Chafik
2b3a25c212 sampler: fixes trigger tokens + lazy grammars (fix typo cast from token to string) (#12291)
* Fix typo in lazy grammar handling (fixes trigger tokens)

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-03-10 09:44:42 +00:00
tc-mb
8352cdc87b llava : fix bug in minicpm-v code (#11513)
Some checks are pending
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
* fix bug in minicpm-v code

* update readme of minicpm-v
2025-03-10 10:33:24 +02:00
Georgi Gerganov
1e2f78a004 server : add speculative decoding presets for FIM (#12287) 2025-03-09 19:08:20 +02:00
Georgi Gerganov
0fd7ca7a21 authors : update (#12271) 2025-03-08 18:26:00 +02:00
Jason C.H
6fefc05a7a ggml-backend : make path_str compatible with C++20 (#12269) 2025-03-08 17:02:39 +01:00
Georgi Gerganov
7ab364390f server : infill gen ends on new line (#12254) 2025-03-07 20:54:30 +02:00
Daniel Bevenius
7c7f3b7f43 ggml : skip intermediate .air file when compiling .metallib (#12247)
This commit updates the compilation of default.metallib to skip the
intermediate .air (Apple Intermediate Representation) file.

The motivation for this change is to simplify the custom command a
little and avoid generating and then removing the .air file.
2025-03-07 14:15:27 +01:00
Georgi Gerganov
102ac1891d sync : ggml
ggml-ci
2025-03-07 14:49:44 +02:00
vmobilis
d6ae2fa061 ggml : ggml_compute_forward_concat() for arbitrary tensor type (ggml/1118)
* ggml_compute_forward_concat() for arbitrary tensor type

* Check that tensors' type match

* ggml-cpu.c: check type of source tensors

* ggml-cpu.c: move tensor type check to ggml_compute_forward_concat()

* ggml.c: check concatenated tensor type

* Remove tensor type check from ggml_compute_forward_concat() in ggml-cpu.c

..., as it was moved to ggml.c.
2025-03-07 14:49:44 +02:00
Rémy O
68d0027f3d ggml-cpu: faster AVX2 variant for IQ1_M (#12216) 2025-03-07 13:54:22 +02:00
Georgi Gerganov
ea002810a2 ci : fix save-load test invocations (#12245) 2025-03-07 12:19:31 +02:00
Sigbjørn Skjæret
8fad3c7a7c server : Log original chat template parsing error (#12233) 2025-03-07 11:15:33 +01:00
Olivier Chafik
7cf64f6bee sync: minja - support QwQ-32B (#12235)
8a76f7815e
2025-03-07 09:33:37 +00:00
BB-fat
5e2d57b2b2 metal : simplify kernel arguments using a struct (#3229) (#12194)
* metal : refactor im2col parameters into a struct

* metal: Change im2col offset types from int32_t to uint64_t to support larger memory offsets

* metal : refactor sum_rows parameters into a struct

* metal : refactor soft_max parameters into a struct

* metal : refactor diag_mask_inf parameters into a struct

* metal : refactor ssm_conv parameters into a struct

* metal : refactor ssm_scan parameters into a struct

* metal : refactor get_rows parameters into a struct

* metal : refactor group_norm parameters into a struct

* metal : refactor conv_transpose_1d parameters into a struct

* metal : refactor upscale parameters into a struct

* metal : refactor pad parameters into a struct

* metal : refactor pad_reflect_1d parameters into a struct

* metal : refactor arange parameters into a struct

* metal : refactor timestep_embedding parameters into a struct

* metal : refactor argsort parameters into a struct

* metal : refactor leaky_relu parameters into a struct

* metal : refactor pool_2d parameters into a struct

* metal : fix trailing whitespace

---------

Co-authored-by: alexju <alexju@tencent.com>
2025-03-07 08:35:57 +01:00
David Huang
f1648e91cf HIP: fix rocWMMA build flags under Windows (#12230) 2025-03-07 08:06:08 +01:00
Daniel Bevenius
d6c95b0740 metal : fix default.metallib build (#12224)
This commit updates the custom command to build the default.metallib
file to use the correct path to ../ggml-common.h by using the variable
METALLIB_COMMON.

The motivation for this change is that currently when building and
specifying GGML_METAL_EMBED_LIBRARY=OFF the following error is
generated:
```console
[ 11%] Linking CXX shared library ../../bin/libggml.dylib
[ 11%] Built target ggml
make[2]: *** No rule to make target `ggml/src/ggml-metal/ggml-common.h', needed by `bin/default.metallib'.  Stop.
make[1]: *** [ggml/src/ggml-metal/CMakeFiles/ggml-metal-lib.dir/all] Error 2
```

With the above change the build could progress but there was a follow
on error about not being able to find the ggml-common.h file in
ggml-metal.metal where is was included as a relative path:
```console
[ 11%] Compiling Metal kernels
/Users/danbev/work/llama.cpp/build/bin/ggml-metal.metal:6:10: error: '../ggml-common.h' file not found, did you mean 'ggml-common.h'?
         ^~~~~~~~~~~~~~~~~~
         "ggml-common.h"
1 error generated.
```
Removing the relative path then allowed the build to complete
successfully.
2025-03-07 06:23:16 +01:00
lhez
d76a86d967 opencl: Noncontiguous norm, rms_norm, disable fp16 for some ops (#12217)
* opencl: support noncontiguous `norm`

* opencl: support noncontiguous `rms_norm`

* opencl: disable fp16 for `ADD`, `MUL`, `SCALE`, `RELU`, `GELU`, `SILU`, `CLAMP`
2025-03-07 00:20:35 +00:00
xiaofei
776f9e59cc cmake : fix undefined reference errors for std::filesystem in ggml (#12092) (#12094)
Signed-off-by: Ray Lee <hburaylee@gmail.com>
Co-authored-by: Ray Lee <hburaylee@gmail.com>
2025-03-06 22:58:25 +00:00
Lucas Moura Belo
3d652bfddf readme : update bindings (#12229) 2025-03-06 21:15:13 +02:00
Johannes Gäßler
5220a16d18 CUDA: fix FA logic for PTX 7.0 and CC >= 7.5 (#12222) 2025-03-06 18:45:09 +01:00
David Huang
3ffbbd5ce1 HIP: rocWMMA documentation and enabling in workflow builds (#12179)
Some checks failed
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
* Enable rocWMMA for Windows CI build

* Enable for Ubuntu

* GGML_HIP_ROCWMMA_FATTN documentation work
2025-03-06 14:14:11 +01:00
Olivier Chafik
42994048a3 update function-calling.md w/ template override for functionary-small-v3.2 (#12214) 2025-03-06 09:03:31 +00:00
Aaron Teo
e9b2f84f14 llava: add big-endian conversion for image encoder (#12218)
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-03-06 09:33:21 +01:00
uvos
e721c05c93 HIP/CUDA: set the paramerter value in maintain_cuda_graph instead of replaceing it. (#12209)
This avoids conflict with internal cuda/hip runtimes memory managment behavior.
2025-03-06 08:20:52 +01:00
42 changed files with 1549 additions and 1116 deletions

View File

@@ -467,6 +467,7 @@ jobs:
run: |
cmake -B build -S . \
-DCMAKE_HIP_COMPILER="$(hipconfig -l)/clang" \
-DGGML_HIP_ROCWMMA_FATTN=ON \
-DGGML_HIP=ON
cmake --build build --config Release -j $(nproc)
@@ -476,6 +477,7 @@ jobs:
cmake -B build2 -S . \
-DCMAKE_C_COMPILER=hipcc \
-DCMAKE_CXX_COMPILER=hipcc \
-DGGML_HIP_ROCWMMA_FATTN=ON \
-DGGML_HIP=ON
cmake --build build2 --config Release -j $(nproc)
@@ -1202,6 +1204,11 @@ jobs:
id: checkout
uses: actions/checkout@v4
- name: Clone rocWMMA repository
id: clone_rocwmma
run: |
git clone https://github.com/rocm/rocwmma --branch rocm-6.2.4 --depth 1
- name: Install
id: depends
run: |
@@ -1231,8 +1238,10 @@ jobs:
cmake -G "Unix Makefiles" -B build -S . `
-DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" `
-DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" `
-DCMAKE_CXX_FLAGS="-I$($PWD.Path.Replace('\', '/'))/rocwmma/library/include/" `
-DCMAKE_BUILD_TYPE=Release `
-DGGML_HIP=ON `
-DGGML_HIP_ROCWMMA_FATTN=ON `
-DGGML_RPC=ON
cmake --build build -j ${env:NUMBER_OF_PROCESSORS}
@@ -1251,6 +1260,11 @@ jobs:
with:
fetch-depth: 0
- name: Clone rocWMMA repository
id: clone_rocwmma
run: |
git clone https://github.com/rocm/rocwmma --branch rocm-6.2.4 --depth 1
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
with:
@@ -1280,8 +1294,10 @@ jobs:
cmake -G "Unix Makefiles" -B build -S . `
-DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" `
-DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" `
-DCMAKE_CXX_FLAGS="-I$($PWD.Path.Replace('\', '/'))/rocwmma/library/include/" `
-DCMAKE_BUILD_TYPE=Release `
-DAMDGPU_TARGETS=${{ matrix.gpu_target }} `
-DGGML_HIP_ROCWMMA_FATTN=ON `
-DGGML_HIP=ON `
-DGGML_RPC=ON
cmake --build build -j ${env:NUMBER_OF_PROCESSORS}

61
AUTHORS
View File

@@ -1,4 +1,4 @@
# date: Tue Feb 4 13:04:05 EET 2025
# date: Sat Mar 8 18:23:52 EET 2025
# this file is auto-generated by scripts/gen-authors.sh
0cc4m <picard12@live.de>
@@ -8,10 +8,12 @@
3ooabkhxtn <31479382+3ooabkhxtn@users.noreply.github.com>
44670 <44670@users.noreply.github.com>
65a <10104049+65a@users.noreply.github.com>
708-145 <40387547+708-145@users.noreply.github.com>
AN Long <aisk@users.noreply.github.com>
AT <manyoso@users.noreply.github.com>
Aarni Koskela <akx@iki.fi>
Aaron Miller <apage43@ninjawhale.com>
Aaron Teo <57927438+taronaeo@users.noreply.github.com>
Aaryaman Vasishta <aaryaman.vasishta@amd.com>
Abheek Gulati <abheekg@hotmail.com>
Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
@@ -20,6 +22,7 @@ Adithya Balaji <adithya.b94@gmail.com>
AdithyanI <adithyan.i4internet@gmail.com>
Adrian <smith.adriane@gmail.com>
Adrian Hesketh <a-h@users.noreply.github.com>
Adrian Kretz <me@akretz.com>
Adrien Gallouët <adrien@gallouet.fr>
Adrien Gallouët <angt@huggingface.co>
Ahmad Tameem <113388789+Tameem-10xE@users.noreply.github.com>
@@ -28,15 +31,18 @@ AidanBeltonS <87009434+AidanBeltonS@users.noreply.github.com>
AidanBeltonS <aidan.belton@codeplay.com>
Aisuko <urakiny@gmail.com>
Akarshan Biswas <akarshan.biswas@gmail.com>
Akarshan Biswas <akarshan@menlo.ai>
Akarshan Biswas <akarshanbiswas@fedoraproject.org>
Al Mochkin <14274697+amochkin@users.noreply.github.com>
Albert Jin <albert.jin@gmail.com>
Alberto <57916483+albbus-stack@users.noreply.github.com>
Alberto Cabrera Pérez <alberto.cabrera@codeplay.com>
Alberto Cabrera Pérez <alberto.cabrera@intel.com>
Aleksei Nikiforov <103434461+AlekseiNikiforovIBM@users.noreply.github.com>
Alex <awhill19@icloud.com>
Alex Azarov <alex@azarov.by>
Alex Azarov <alexander.azarov@mapbox.com>
Alex Brooks <alex.brooks@ibm.com>
Alex Klinkhamer <from.github.com.917@grencez.dev>
Alex Klinkhamer <git@grencez.dev>
Alex Nguyen <tiendung@users.noreply.github.com>
@@ -67,6 +73,7 @@ Andrew Minh Nguyen <40281306+amqdn@users.noreply.github.com>
Andy Salerno <andysalerno@gmail.com>
Andy Tai <andy-tai@users.noreply.github.com>
Anthony Van de Gejuchte <anthonyvdgent@gmail.com>
Antoine Viallon <antoine@lesviallon.fr>
Antonis Makropoulos <benuix@gmail.com>
Arik Poznanski <arikpoz@users.noreply.github.com>
Armen Kaleshian <kriation@users.noreply.github.com>
@@ -83,6 +90,7 @@ Atsushi Tatsuma <yoshoku@outlook.com>
Austin <77757836+teleprint-me@users.noreply.github.com>
AustinMroz <austinmroz@utexas.edu>
BADR <contact@pythops.com>
BB-fat <45072480+BB-fat@users.noreply.github.com>
Bach Le <bach@bullno1.com>
Bailey Chittle <39804642+bachittle@users.noreply.github.com>
BarfingLemurs <128182951+BarfingLemurs@users.noreply.github.com>
@@ -101,6 +109,7 @@ Bert Wagner <github@bertwagner.com>
Billel Mokeddem <billel.mokeddem.ml@gmail.com>
Bingan <70050083+binganao@users.noreply.github.com>
Bjarke Viksøe <164612031+bviksoe@users.noreply.github.com>
Bodhi <3882561+BodhiHu@users.noreply.github.com>
Bodo Graumann <mail@bodograumann.de>
Bono Lv <lvscar@users.noreply.github.com>
Borislav Stanimirov <b.stanimirov@abv.bg>
@@ -128,6 +137,7 @@ CentricStorm <CentricStorm@users.noreply.github.com>
Chad Brewbaker <crb002@gmail.com>
Changyeon Kim <cyzero.kim@samsung.com>
Chao Jiang <jc19chaoj@zoho.com>
Charles Duffy <charles@dyfis.net>
Charles Xu <63788048+chaxu01@users.noreply.github.com>
Charles Xu <charles.xu@arm.com>
Chen Xi <xi2.chen@intel.com>
@@ -139,12 +149,14 @@ Chris Kuehl <ckuehl@ckuehl.me>
Christian Demsar <christian@github.email.demsar.us>
Christian Demsar <crasm@git.vczf.us>
Christian Falch <875252+chrfalch@users.noreply.github.com>
Christian Fillion <cfillion@users.noreply.github.com>
Christian Kastner <ckk@kvr.at>
Christian Kögler <ck3d@gmx.de>
Christian Köhnenkamp <cvk5@me.com>
Christian Zhou-Zheng <59622928+christianazinn@users.noreply.github.com>
Christopher Nielsen <62156882+mascguy@users.noreply.github.com>
Clark Saben <76020733+csaben@users.noreply.github.com>
Clauszy <zhangyub@uniontech.com>
Clint Herron <hanclinto@gmail.com>
Conrad Kramer <conrad@conradkramer.com>
Corentin REGAL <corentin.regal@gmail.com>
@@ -163,6 +175,7 @@ Daniel Hiltgen <dhiltgen@users.noreply.github.com>
Daniel Illescas Romero <illescas.daniel@protonmail.com>
Daniel Kleine <53251018+d-kleine@users.noreply.github.com>
Daniele <57776841+daniandtheweb@users.noreply.github.com>
Danny Milosavljevic <dannym@friendly-machines.com>
DannyDaemonic <DannyDaemonic@gmail.com>
Dat Quoc Nguyen <2412555+datquocnguyen@users.noreply.github.com>
Dave <dave-fl@users.noreply.github.com>
@@ -170,6 +183,7 @@ Dave Airlie <airlied@gmail.com>
Dave Airlie <airlied@redhat.com>
Dave Della Costa <ddellacosta+github@gmail.com>
David Friehs <david@friehs.info>
David Huang <1969802+hjc4869@users.noreply.github.com>
David Kennedy <dakennedyd@gmail.com>
David Pflug <david@pflug.email>
David Renshaw <dwrenshaw@gmail.com>
@@ -236,6 +250,7 @@ Felix <stenbackfelix@gmail.com>
Finn Voorhees <finnvoorhees@gmail.com>
Firat <firatkiral@gmail.com>
FirstTimeEZ <179362031+FirstTimeEZ@users.noreply.github.com>
Florent BENOIT <fbenoit@redhat.com>
Folko-Ven <71110216+Folko-Ven@users.noreply.github.com>
Foul-Tarnished <107711110+Foul-Tarnished@users.noreply.github.com>
Francisco Melo <43780565+francis2tm@users.noreply.github.com>
@@ -254,6 +269,7 @@ Gary Mulder <gjmulder@gmail.com>
Gavin Zhao <gavinzhaojw@protonmail.com>
Genkagaku.GPT <hlhr202@163.com>
Georgi Gerganov <ggerganov@gmail.com>
Gian-Carlo Pascutto <gcp@sjeng.org>
Gilad S <giladgd@users.noreply.github.com>
Gilad S. <7817232+giladgd@users.noreply.github.com>
Giuseppe Scrivano <giuseppe@scrivano.org>
@@ -267,7 +283,9 @@ Guspan Tanadi <36249910+guspan-tanadi@users.noreply.github.com>
Gustavo Rocha Dias <91472747+gustrd@users.noreply.github.com>
Haggai Nuchi <h.nuchi@gmail.com>
Halalaluyafail3 <55773281+Halalaluyafail3@users.noreply.github.com>
Hale Chan <halechan@qq.com>
Hamdoud Hakem <90524568+hamdoudhakem@users.noreply.github.com>
Han Yin <han.yin@arm.com>
HanishKVC <hanishkvc@gmail.com>
Haohui Mai <ricetons@gmail.com>
Haoxiang Fei <tonyfettes@tonyfettes.com>
@@ -278,6 +296,7 @@ Haus1 <haus.xda@gmail.com>
Henk Poley <HenkPoley@gmail.com>
Henri Vasserman <henv@hot.ee>
Henrik Forstén <henrik.forsten@gmail.com>
Henry Linjamäki <henry.linjamaki@gmail.com>
Herman Semenov <GermanAizek@yandex.ru>
Hesen Peng <hesen.peng@gmail.com>
HimariO <dsfhe49854@gmail.com>
@@ -307,6 +326,7 @@ Ivan <nekotekina@gmail.com>
Ivan Filipov <159561759+vanaka11@users.noreply.github.com>
Ivan Komarov <Ivan.Komarov@dfyz.info>
Ivan Stepanov <ivanstepanovftw@gmail.com>
JC <43374599+MrSMlT@users.noreply.github.com>
JFLFY2255 <JFLFY2255@163.com>
JH23X <165871467+JH23X@users.noreply.github.com>
Jack Mousseau <jack@software.inc>
@@ -325,6 +345,7 @@ Jan Ploski <jpl@plosquare.com>
Jannis Schönleber <joennlae@gmail.com>
Jared Van Bortel <cebtenzzre@gmail.com>
Jared Van Bortel <jared@nomic.ai>
Jason C.H <ctrysbita@outlook.com>
Jason McCartney <jmac@theroot.org>
Jason Stillerman <jason.t.stillerman@gmail.com>
Jean-Christophe Hoelt <hoelt@fovea.cc>
@@ -342,6 +363,7 @@ Jiahao Li <liplus17@163.com>
Jian Liao <jianliao@users.noreply.github.com>
JidongZhang-THU <1119708529@qq.com>
Jinwoo Jeong <33892306+williamjeong2@users.noreply.github.com>
Jinyang He <hejinyang@loongson.cn>
Jiří Podivín <66251151+jpodivin@users.noreply.github.com>
Jiří Sejkora <Sejseloid@gmail.com>
Joan Fontanals <jfontanalsmartinez@gmail.com>
@@ -379,6 +401,7 @@ Justine Tunney <jtunney@mozilla.com>
Juuso Alasuutari <juuso.alasuutari@gmail.com>
KASR <karim.asrih@gmail.com>
Kamil Tomšík <info@tomsik.cz>
Kante Yin <kerthcet@gmail.com>
Karol Kontny <82021046+kkontny@users.noreply.github.com>
Karsten Weiss <knweiss@gmail.com>
Karthick <j.karthic2004@gmail.com>
@@ -419,6 +442,7 @@ LoganDark <github@logandark.mozmail.com>
Loïc Carrère <loic.carrere@gmail.com>
LostRuins <39025047+LostRuins@users.noreply.github.com>
LostRuins Concedo <39025047+LostRuins@users.noreply.github.com>
Lucas Moura Belo <lucas.belo@live.com>
Luciano <lucianostrika44@gmail.com>
Luo Tian <lt@basecity.com>
Lyle Dean <dean@lyle.dev>
@@ -463,6 +487,7 @@ Matthew Tejo <matthew.tejo@gmail.com>
Matvey Soloviev <blackhole89@gmail.com>
Max Krasnyansky <max.krasnyansky@gmail.com>
Max Krasnyansky <quic_maxk@quicinc.com>
Maxim Evtush <154841002+maximevtush@users.noreply.github.com>
Maxime <672982+maximegmd@users.noreply.github.com>
Maximilian Winter <maximilian.winter.91@gmail.com>
Meng Zhang <meng@tabbyml.com>
@@ -494,6 +519,7 @@ Miwa / Ensan <63481257+ensan-hcl@users.noreply.github.com>
Mohammadreza Hendiani <hendiani.mohammadreza@gmail.com>
Mohammadreza Hendiani <mohammad.r.hendiani@gmail.com>
Molly Sophia <mollysophia379@gmail.com>
MoonRide303 <130458190+MoonRide303@users.noreply.github.com>
MorganRO8 <47795945+MorganRO8@users.noreply.github.com>
Murilo Santana <mvrilo@gmail.com>
Musab Gultekin <musabgultekin@users.noreply.github.com>
@@ -524,6 +550,7 @@ Nikolas <127742645+nneubacher@users.noreply.github.com>
Nindaleth <Nindaleth@users.noreply.github.com>
Nuno <rare-magma@posteo.eu>
OSecret <135510162+OLSecret@users.noreply.github.com>
Oleksandr Kuvshynov <661042+okuvshynov@users.noreply.github.com>
Oleksandr Nikitin <oleksandr@tvori.info>
Oleksii Maryshchenko <oleksii.maryshchenko@gmail.com>
Olivier Chafik <ochafik@users.noreply.github.com>
@@ -533,6 +560,7 @@ PAB <pierreantoine.bannier@gmail.com>
Pablo Duboue <pablo.duboue@gmail.com>
Pascal Patry <ppatry@mtacitlabs.com>
Patrice Ferlet <metal3d@gmail.com>
Patrick Peng <retr0@retr0.blog>
Paul Tsochantaris <ptsochantaris@icloud.com>
Pavel Zloi <github.com@drteam.rocks>
Pavol Rusnak <pavol@rusnak.io>
@@ -549,6 +577,7 @@ Pieter Ouwerkerk <pieter.ouwerkerk@gmail.com>
Plamen Minev <pacominev@gmail.com>
Prashant Vithule <119530321+Vithulep@users.noreply.github.com>
Przemysław Pawełczyk <przemoc@gmail.com>
PureJourney <edward.pong@qq.com>
Qin Yue Chen <71813199+chenqiny@users.noreply.github.com>
Qingyou Meng <meng.qingyou@gmail.com>
Qu Zongfu <43257352+yancaoweidaode@users.noreply.github.com>
@@ -564,14 +593,17 @@ Rand Xie <randxiexyy29@gmail.com>
Randall Fitzgerald <randall@dasaku.net>
Random Fly <renfei8@live.cn>
Reinforce-II <fate@eastal.com>
Rémy O <remyoudompheng@gmail.com>
Rémy Oudompheng <oudomphe@phare.normalesup.org>
Ren Xuancheng <jklj077@users.noreply.github.com>
Rene Leonhardt <65483435+reneleonhardt@users.noreply.github.com>
Reza Kakhki <rezakakhki.de@gmail.com>
Reza Rahemtola <49811529+RezaRahemtola@users.noreply.github.com>
RhinoDevel <RhinoDevel@users.noreply.github.com>
Riccardo Orlando <Riccorl@users.noreply.github.com>
Riceball LEE <snowyu.lee@gmail.com>
Rich Dougherty <rich@rd.nz>
Richard <r-burton@hotmail.co.uk>
Richard Kiss <him@richardkiss.com>
Richard Roberson <richardr1126@gmail.com>
Rick G <26732651+TheFlipbook@users.noreply.github.com>
@@ -588,6 +620,7 @@ Robert Sung-wook Shin <edp1096@users.noreply.github.com>
Robey Holderith <robey@flaminglunchbox.net>
Robyn <robyngraf@users.noreply.github.com>
Roger Meier <r.meier@siemens.com>
Rohanjames1997 <rohan.james4@gmail.com>
Roland <14355895+rbur0425@users.noreply.github.com>
Romain Biessy <romain.biessy@codeplay.com>
Romain D <90720+Artefact2@users.noreply.github.com>
@@ -610,6 +643,7 @@ Ryan Landay <rlanday@gmail.com>
Ryder Wishart <ryderwishart@gmail.com>
Ryuei <louixs@users.noreply.github.com>
Rőczey Barnabás <31726601+An0nie@users.noreply.github.com>
SAMI <samuel.koesnadi@stud.uni-due.de>
SRHMorris <69468379+SRHMorris@users.noreply.github.com>
SXX <sxx1136965276@gmail.com>
SakuraUmi <yukinon244@gmail.com>
@@ -634,6 +668,8 @@ Shane A <shanea@allenai.org>
Shangning Xu <32517059+xushangning@users.noreply.github.com>
Shankar <gshankar.87@gmail.com>
Shanshan Shen <467638484@qq.com>
Shelby Jenkins <47464908+ShelbyJenkins@users.noreply.github.com>
Sheldon Robinson <sheldon.robinson@live.com>
Shijie <821898965@qq.com>
Shintarou Okada <kokuzen@gmail.com>
Shouzheng Liu <61452103+lshzh-ww@users.noreply.github.com>
@@ -713,18 +749,24 @@ Victor Nogueira <felladrin@gmail.com>
Victor Z. Peng <ziliangdotme@gmail.com>
Viet-Anh NGUYEN (Andrew) <vietanh.dev@gmail.com>
Vinesh Janarthanan <36610342+VJHack@users.noreply.github.com>
Vitali Lovich <vlovich+github@gmail.com>
Vivian <vynride@gmail.com>
Vlad <spitfireage@gmail.com>
Vladimir <bogdad@gmail.com>
Vladimir Malyutin <first-leon@yandex.ru>
Vladimir Vuksanovic <109677816+vvuksanovic@users.noreply.github.com>
Vladimir Zorin <vladimir@deviant.guru>
VoidIsVoid <343750470@qq.com>
Volodymyr Vitvitskyi <72226+signalpillar@users.noreply.github.com>
Wagner Bruna <wbruna@users.noreply.github.com>
Wang Qin <37098874+wangqin0@users.noreply.github.com>
Wang Ran (汪然) <wangr@smail.nju.edu.cn>
WangHaoranRobin <56047610+WangHaoranRobin@users.noreply.github.com>
Weird Constructor <weirdconstructor@gmail.com>
Weizhao Ouyang <o451686892@gmail.com>
Welby Seely <welbyseely@gmail.com>
Wentai Zhang <rchardx@gmail.com>
Wilken Gottwalt <12194808+wgottwalt@users.noreply.github.com>
WillCorticesAI <150854901+WillCorticesAI@users.noreply.github.com>
William Tambellini <william.tambellini@gmail.com>
William Tambellini <wtambellini@sdl.com>
@@ -816,6 +858,8 @@ chaihahaha <chai836275709@gmail.com>
chiranko <96988916+chiranko@users.noreply.github.com>
clibdev <52199778+clibdev@users.noreply.github.com>
clyang <clyang@clyang.net>
cmdr2 <secondary.cmdr2@gmail.com>
cmdr2 <shashank.shekhar.global@gmail.com>
cocktailpeanut <121128867+cocktailpeanut@users.noreply.github.com>
codezjx <code.zjx@gmail.com>
coezbek <c.oezbek@gmail.com>
@@ -835,6 +879,7 @@ deepdiffuser <112834445+deepdiffuser@users.noreply.github.com>
devojony <61173062+devojony@users.noreply.github.com>
ditsuke <ditsuke@protonmail.com>
divinity76 <divinity76@gmail.com>
dm4 <dm4@secondstate.io>
dm4 <sunrisedm4@gmail.com>
dotpy314 <33351922+dotpy314@users.noreply.github.com>
drbh <david.richard.holtz@gmail.com>
@@ -849,6 +894,7 @@ fairydreaming <166155368+fairydreaming@users.noreply.github.com>
fengerhu1 <2748250768@qq.com>
fj-y-saito <85871716+fj-y-saito@users.noreply.github.com>
fraxy-v <65565042+fraxy-v@users.noreply.github.com>
fxzjshm <11426482+fxzjshm@users.noreply.github.com>
github-actions[bot] <github-actions[bot]@users.noreply.github.com>
gliptic <gliptic@users.noreply.github.com>
gn64 <yukikaze.jp@gmail.com>
@@ -873,6 +919,7 @@ hydai <z54981220@gmail.com>
iSma <ismail.senhaji@gmail.com>
iacore <74560659+iacore@users.noreply.github.com>
icppWorld <124377669+icppWorld@users.noreply.github.com>
igardev <49397134+igardev@users.noreply.github.com>
igarnier <igarnier@protonmail.com>
intelmatt <61025942+intelmatt@users.noreply.github.com>
iohub <rickyang.pro@gmail.com>
@@ -880,6 +927,7 @@ issixx <46835150+issixx@users.noreply.github.com>
jacobi petrucciani <8117202+jpetrucciani@users.noreply.github.com>
jaime-m-p <167997752+jaime-m-p@users.noreply.github.com>
jameswu2014 <545426914@qq.com>
jason_w <jason.wang@126.com>
jdomke <28772296+jdomke@users.noreply.github.com>
jiahao su <damow890@gmail.com>
jiez <373447296@qq.com>
@@ -891,6 +939,7 @@ jon-chuang <9093549+jon-chuang@users.noreply.github.com>
jp-x-g <jpxg-dev@protonmail.com>
jukofyork <69222624+jukofyork@users.noreply.github.com>
junchao-loongson <68935141+junchao-loongson@users.noreply.github.com>
junchao-zhao <68935141+junchao-loongson@users.noreply.github.com>
jwj7140 <32943891+jwj7140@users.noreply.github.com>
k.h.lai <adrian.k.h.lai@outlook.com>
kaizau <kaizau@users.noreply.github.com>
@@ -925,6 +974,7 @@ ltoniazzi <61414566+ltoniazzi@users.noreply.github.com>
luoyu-intel <yu.luo@intel.com>
m3ndax <adrian.goessl@outlook.com>
maddes8cht <55592906+maddes8cht@users.noreply.github.com>
magicse <magicse@users.noreply.github.com>
mahorozte <41834471+mahorozte@users.noreply.github.com>
makomk <makosoft@googlemail.com>
manikbhandari <mbbhandarimanik2@gmail.com>
@@ -935,6 +985,7 @@ matt23654 <matthew.webber@protonmail.com>
matteo <matteogeniaccio@yahoo.it>
mdrokz <mohammadmunshi@gmail.com>
mgroeber9110 <45620825+mgroeber9110@users.noreply.github.com>
midnight <midnightmagic@users.noreply.github.com>
minarchist <minarchist@users.noreply.github.com>
mj-shifu <77107165+mj-shifu@users.noreply.github.com>
mmyjona <jonathan.gonse@gmail.com>
@@ -958,10 +1009,12 @@ omahs <73983677+omahs@users.noreply.github.com>
oobabooga <112222186+oobabooga@users.noreply.github.com>
opparco <parco.opaai@gmail.com>
ostix360 <55257054+ostix360@users.noreply.github.com>
pascal-lc <49066376+pascal-lc@users.noreply.github.com>
pculliton <phillipculliton@gmail.com>
peidaqi <peidaqi@gmail.com>
pengxin99 <pengxin.yuan@intel.com>
perserk <perserk@gmail.com>
petterreinholdtsen <pere-github@hungry.com>
piDack <104877312+piDack@users.noreply.github.com>
pmysl <piotr.myslinski@outlook.com>
postmasters <namnguyen@google.com>
@@ -983,6 +1036,7 @@ semidark <me@semidark.net>
serhii-nakon <57632032+serhii-nakon@users.noreply.github.com>
sharpHL <132747147+sharpHL@users.noreply.github.com>
shibe2 <shibe@tuta.io>
simon886212 <37953122+simon886212@users.noreply.github.com>
singularity <12184989+singularity-s0@users.noreply.github.com>
sjinzh <sjinzh@gmail.com>
sjxx <63994076+ylsdamxssjxxdd@users.noreply.github.com>
@@ -1000,10 +1054,12 @@ tarcey <cey.tarik@gmail.com>
tc-mb <157115220+tc-mb@users.noreply.github.com>
texmex76 <40733439+texmex76@users.noreply.github.com>
thement <40525767+thement@users.noreply.github.com>
theraininsky <76763719+theraininsky@users.noreply.github.com>
thewh1teagle <61390950+thewh1teagle@users.noreply.github.com>
tjohnman <tjohnman@users.noreply.github.com>
toyer <2042519524@qq.com>
tslmy <tslmy@users.noreply.github.com>
tv1wnd <55383215+tv1wnd@users.noreply.github.com>
ubik2 <ubik2@users.noreply.github.com>
uint256_t <konndennsa@gmail.com>
uint256_t <maekawatoshiki1017@gmail.com>
@@ -1014,6 +1070,7 @@ valiray <133289098+valiray@users.noreply.github.com>
vb <vaibhavs10@gmail.com>
vik <vikhyatk@gmail.com>
viric <viric@viric.name>
vmobilis <75476228+vmobilis@users.noreply.github.com>
vodkaslime <646329483@qq.com>
vvhg1 <94630311+vvhg1@users.noreply.github.com>
vxiiduu <73044267+vxiiduu@users.noreply.github.com>
@@ -1028,6 +1085,8 @@ wzy <32936898+Freed-Wu@users.noreply.github.com>
xaedes <xaedes@gmail.com>
xaedes <xaedes@googlemail.com>
xctan <axunlei@gmail.com>
xiaobing318 <71554036+xiaobing318@users.noreply.github.com>
xiaofei <hbuxiaofei@gmail.com>
xloem <0xloem@gmail.com>
yangli2 <yangli2@gmail.com>
ymcki <84055651+ymcki@users.noreply.github.com>

View File

@@ -157,6 +157,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- Guile Scheme: [guile_llama_cpp](https://savannah.nongnu.org/projects/guile-llama-cpp)
- Swift [srgtuszy/llama-cpp-swift](https://github.com/srgtuszy/llama-cpp-swift)
- Swift [ShenghaiWang/SwiftLlama](https://github.com/ShenghaiWang/SwiftLlama)
- Delphi [Embarcadero/llama-cpp-delphi](https://github.com/Embarcadero/llama-cpp-delphi)
</details>
@@ -171,6 +172,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- [eva](https://github.com/ylsdamxssjxxdd/eva) (MIT)
- [iohub/collama](https://github.com/iohub/coLLaMA) (Apache-2.0)
- [janhq/jan](https://github.com/janhq/jan) (AGPL)
- [johnbean393/Sidekick](https://github.com/johnbean393/Sidekick) (MIT)
- [KanTV](https://github.com/zhouwg/kantv?tab=readme-ov-file) (Apache-2.0)
- [KodiBot](https://github.com/firatkiral/kodibot) (GPL)
- [llama.vim](https://github.com/ggml-org/llama.vim) (MIT)

View File

@@ -352,10 +352,10 @@ function gg_run_open_llama_7b_v2 {
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 10 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 10 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"

View File

@@ -1867,16 +1867,9 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
).set_examples({LLAMA_EXAMPLE_PASSKEY}));
add_opt(common_arg(
{"-o", "--output", "--output-file"}, "FNAME",
string_format("output file (default: '%s')",
ex == LLAMA_EXAMPLE_EXPORT_LORA
? params.lora_outfile.c_str()
: ex == LLAMA_EXAMPLE_CVECTOR_GENERATOR
? params.cvector_outfile.c_str()
: params.out_file.c_str()),
string_format("output file (default: '%s')", params.out_file.c_str()),
[](common_params & params, const std::string & value) {
params.out_file = value;
params.cvector_outfile = value;
params.lora_outfile = value;
}
).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_CVECTOR_GENERATOR, LLAMA_EXAMPLE_EXPORT_LORA}));
add_opt(common_arg(
@@ -2571,5 +2564,43 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
}
).set_examples({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"--fim-qwen-7b-spec"},
string_format("use Qwen 2.5 Coder 7B + 0.5B draft for speculative decoding (note: can download weights from the internet)"),
[](common_params & params) {
params.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
params.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
params.speculative.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
params.speculative.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
params.speculative.n_gpu_layers = 99;
params.port = 8012;
params.n_gpu_layers = 99;
params.flash_attn = true;
params.n_ubatch = 1024;
params.n_batch = 1024;
params.n_ctx = 0;
params.n_cache_reuse = 256;
}
).set_examples({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"--fim-qwen-14b-spec"},
string_format("use Qwen 2.5 Coder 14B + 0.5B draft for speculative decoding (note: can download weights from the internet)"),
[](common_params & params) {
params.hf_repo = "ggml-org/Qwen2.5-Coder-14B-Q8_0-GGUF";
params.hf_file = "qwen2.5-coder-14b-q8_0.gguf";
params.speculative.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
params.speculative.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
params.speculative.n_gpu_layers = 99;
params.port = 8012;
params.n_gpu_layers = 99;
params.flash_attn = true;
params.n_ubatch = 1024;
params.n_batch = 1024;
params.n_ctx = 0;
params.n_cache_reuse = 256;
}
).set_examples({LLAMA_EXAMPLE_SERVER}));
return ctx_arg;
}

View File

@@ -60,7 +60,9 @@ std::vector<common_chat_msg> common_chat_msgs_parse_oaicompat(const json & messa
}
msg.role = message.at("role");
if (message.contains("content")) {
auto has_content = message.contains("content");
auto has_tool_calls = message.contains("tool_calls");
if (has_content) {
const auto & content = message.at("content");
if (content.is_string()) {
msg.content = content;
@@ -81,19 +83,8 @@ std::vector<common_chat_msg> common_chat_msgs_parse_oaicompat(const json & messa
} else if (!content.is_null()) {
throw std::runtime_error("Invalid 'content' type: expected string or array, got " + content.dump() + " (ref: https://github.com/ggml-org/llama.cpp/issues/8367)");
}
} else {
throw std::runtime_error("Expected 'content' (ref: https://github.com/ggml-org/llama.cpp/issues/8367)");
}
if (message.contains("reasoning_content")) {
msg.reasoning_content = message.at("reasoning_content");
}
if (message.contains("name")) {
msg.tool_name = message.at("name");
}
if (message.contains("tool_call_id")) {
msg.tool_call_id = message.at("tool_call_id");
}
if (message.contains("tool_calls")) {
if (has_tool_calls) {
for (const auto & tool_call : message.at("tool_calls")) {
common_chat_tool_call tc;
if (!tool_call.contains("type")) {
@@ -118,6 +109,18 @@ std::vector<common_chat_msg> common_chat_msgs_parse_oaicompat(const json & messa
msg.tool_calls.push_back(tc);
}
}
if (!has_content && !has_tool_calls) {
throw std::runtime_error("Expected 'content' or 'tool_calls' (ref: https://github.com/ggml-org/llama.cpp/issues/8367 & https://github.com/ggml-org/llama.cpp/issues/12279)");
}
if (message.contains("reasoning_content")) {
msg.reasoning_content = message.at("reasoning_content");
}
if (message.contains("name")) {
msg.tool_name = message.at("name");
}
if (message.contains("tool_call_id")) {
msg.tool_call_id = message.at("tool_call_id");
}
msgs.push_back(msg);
}
@@ -442,6 +445,7 @@ std::string common_chat_format_name(common_chat_format format) {
case COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2: return "Functionary v3.2";
case COMMON_CHAT_FORMAT_FUNCTIONARY_V3_1_LLAMA_3_1: return "Functionary v3.1 Llama 3.1";
case COMMON_CHAT_FORMAT_HERMES_2_PRO: return "Hermes 2 Pro";
case COMMON_CHAT_FORMAT_HERMES_2_PRO_EXTRACT_REASONING: return "Hermes 2 Pro (extract reasoning)";
case COMMON_CHAT_FORMAT_COMMAND_R7B: return "Command R7B";
case COMMON_CHAT_FORMAT_COMMAND_R7B_EXTRACT_REASONING: return "Command R7B (extract reasoning)";
default:
@@ -875,9 +879,9 @@ static common_chat_params common_chat_params_init_command_r7b(const common_chat_
return data;
}
static common_chat_msg common_chat_parse_command_r7b(const std::string & input, bool extract_reasoning) {
static std::regex thought_regex("(<\\|START_THINKING\\|>([\\s\\S]*?)<\\|END_THINKING\\|>)([\\s\\S]*)");
static std::regex action_regex("<\\|START_ACTION\\|>([\\s\\S]*?)<\\|END_ACTION\\|>");
static std::regex response_regex("(?:<\\|START_RESPONSE\\|>)?([\\s\\S]*?)<\\|END_RESPONSE\\|>");
static const std::regex thought_regex("(<\\|START_THINKING\\|>([\\s\\S]*?)<\\|END_THINKING\\|>)([\\s\\S]*)");
static const std::regex action_regex("<\\|START_ACTION\\|>([\\s\\S]*?)<\\|END_ACTION\\|>");
static const std::regex response_regex("(?:<\\|START_RESPONSE\\|>)?([\\s\\S]*?)<\\|END_RESPONSE\\|>");
std::smatch match;
@@ -1009,10 +1013,10 @@ static common_chat_params common_chat_params_init_llama_3_1_tool_calls(const com
}
static common_chat_msg common_chat_parse_llama_3_1(const std::string & input, bool with_builtin_tools = false) {
// TODO: tighten & simplify the parser, don't accept leading text context.
static std::regex function_regex(
static const std::regex function_regex(
"\\s*\\{\\s*(?:\"type\"\\s*:\\s*\"function\"\\s*,\\s*)?\"name\"\\s*:\\s*\"([^\"]+)\"\\s*,\\s*\"parameters\"\\s*: ");
static std::regex close_regex("\\}\\s*");
static std::regex builtin_call_regex("<\\|python_tag\\|>\\s*([^.(]+)\\s*\\.\\s*call\\s*\\(\\s*([\\w]+)\\s*=\\s*([\\s\\S]*?)\\)");
static const std::regex close_regex("\\}\\s*");
static const std::regex builtin_call_regex("<\\|python_tag\\|>\\s*([^.(]+)\\s*\\.\\s*call\\s*\\(\\s*([\\w]+)\\s*=\\s*([\\s\\S]*?)\\)");
if (with_builtin_tools) {
std::smatch match;
@@ -1102,34 +1106,42 @@ static common_chat_params common_chat_params_init_deepseek_r1(const common_chat_
data.format = inputs.extract_reasoning ? COMMON_CHAT_FORMAT_DEEPSEEK_R1_EXTRACT_REASONING : COMMON_CHAT_FORMAT_DEEPSEEK_R1;
return data;
}
static common_chat_msg common_chat_parse_deepseek_r1(const std::string & input, bool extract_reasoning) {
static std::regex function_regex("<tool▁call▁begin>function<tool▁sep>([^\n]+)\n```json\n");
static std::regex close_regex("```[\\s\\r\\n]*<tool▁call▁end>");
static std::regex reasoning_content_regex("((?:<think>)?([\\s\\S\\r\\n]*?)</think>)?([\\s\\S\\r\\n]*)");
static std::regex tool_calls_regex("[\\s\\r\\n]*(?:<tool▁calls▁begin>|<tool_calls_begin>|<tool calls begin>|<tool\\\\_calls\\\\_begin>)([\\s\\S\\r\\n]*?)<tool▁calls▁end>");
common_chat_msg msg;
msg.role = "assistant";
static common_chat_msg handle_think_tag_prelude(const std::string & input, bool extract_reasoning, const std::function<common_chat_msg(const std::string &)> & rest_parser) {
std::smatch match;
static const std::regex reasoning_content_regex("((?:<think>)?([\\s\\S\\r\\n]*?)</think>)?([\\s\\S\\r\\n]*)");
if (std::regex_match(input, match, reasoning_content_regex)) {
std::string rest;
auto rest = match[3].str();
auto msg = rest_parser(rest);
auto reasoning_content = string_strip(match[2].str());
if (extract_reasoning) {
msg.reasoning_content = string_strip(match[2].str());
} else {
msg.content = match[1].str();
msg.reasoning_content = reasoning_content;
} else if (!reasoning_content.empty()) {
std::ostringstream content;
content << "<think>" << reasoning_content << "</think>" << msg.content;
msg.content = content.str();
}
rest = match[3].str();
return msg;
}
return rest_parser(input);
}
static common_chat_msg common_chat_parse_deepseek_r1(const std::string & input, bool extract_reasoning) {
return handle_think_tag_prelude(input, extract_reasoning, [](const std::string & input) {
static const std::regex function_regex("<tool▁call▁begin>function<tool▁sep>([^\n]+)\n```json\n");
static const std::regex close_regex("```[\\s\\r\\n]*<tool▁call▁end>");
static const std::regex tool_calls_regex("[\\s\\r\\n]*(?:<tool▁calls▁begin>|<tool_calls_begin>|<tool calls begin>|<tool\\\\_calls\\\\_begin>)([\\s\\S\\r\\n]*?)<tool▁calls▁end>");
if (std::regex_search(rest, match, tool_calls_regex)) {
common_chat_msg msg;
msg.role = "assistant";
std::smatch match;
if (std::regex_search(input, match, tool_calls_regex)) {
auto tool_calls = match[1].str();
auto msg2 = parse_json_tool_calls(tool_calls, std::nullopt, function_regex, close_regex);
msg.tool_calls = std::move(msg2.tool_calls);
} else {
msg.content += std::string(rest.begin() + rest.find_first_not_of(" \r\n"), rest.end());
msg.content = input;
}
} else {
msg.content = input;
}
return msg;
return msg;
});
}
static common_chat_params common_chat_params_init_firefunction_v2(const common_chat_template & tmpl, const struct templates_params & inputs) {
@@ -1234,8 +1246,8 @@ static common_chat_params common_chat_params_init_functionary_v3_2(const common_
}
static common_chat_msg common_chat_parse_functionary_v3_2(const std::string & input) {
static std::regex function_regex(R"((?:>>>)?(?:assistant<|end_header_id|>\n)?(\w+)\n)");
static std::regex close_regex(R"($|(?=>>>))");
static const std::regex function_regex(R"((?:>>>)?(?:assistant<|end_header_id|>\n)?(\w+)\n)");
static const std::regex close_regex(R"($|(?=>>>))");
std::string content;
auto it = input.begin();
@@ -1324,7 +1336,7 @@ static common_chat_params common_chat_params_init_functionary_v3_1_llama_3_1(con
}
static common_chat_msg common_chat_parse_functionary_v3_1_llama_3_1(const std::string & input) {
// This version of Functionary still supports the llama 3.1 tool call format for the python tool.
static std::regex python_tag_regex(R"(<\|python_tag\|>([\s\S\n]*)$)");
static const std::regex python_tag_regex(R"(<\|python_tag\|>([\s\S\n]*)$)");
std::smatch match;
if (std::regex_search(input, match, python_tag_regex)) {
auto code = match[1].str();
@@ -1338,8 +1350,8 @@ static common_chat_msg common_chat_parse_functionary_v3_1_llama_3_1(const std::s
});
return msg;
}
static std::regex function_regex(R"(<function=(\w+)>)");
static std::regex close_regex(R"(</function>)");
static const std::regex function_regex(R"(<function=(\w+)>)");
static const std::regex close_regex(R"(</function>)");
// TODO: tighten & simplify.
return parse_json_tool_calls(input, std::nullopt, function_regex, close_regex);
}
@@ -1406,6 +1418,8 @@ static common_chat_params common_chat_params_init_hermes_2_pro(const common_chat
"(?:```(?:json|xml)?\n\\s*)?(?:<function_call>|<tools>|<xml><json>|<response>)?\\s*\\{\\s*\"", //name\"\\s*:\\s*\"" + escaped_name + "\"",
});
data.preserved_tokens = {
"<think>",
"</think>",
"<tool_call>",
"</tool_call>",
"<function",
@@ -1426,122 +1440,123 @@ static common_chat_params common_chat_params_init_hermes_2_pro(const common_chat
});
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
data.format = COMMON_CHAT_FORMAT_HERMES_2_PRO;
data.format = inputs.extract_reasoning ? COMMON_CHAT_FORMAT_HERMES_2_PRO_EXTRACT_REASONING : COMMON_CHAT_FORMAT_HERMES_2_PRO;
return data;
}
static common_chat_msg common_chat_parse_hermes_2_pro(const std::string& input) {
const static std::regex open_regex(
"(?:"
"(```(?:xml|json)?\\n\\s*)?" // match 1 (block_start)
"(<tool_call>" // match 2 (open_tag)
"|<function_call>"
"|<tool>"
"|<tools>"
"|<response>"
"|<json>"
"|<xml>"
"|<JSON>"
")?"
"(\\s*\\{\\s*\"name\"\\s*:[\\s\\S]*)" // match 3 (named tool call + rest)
")"
"|"
"(?:<function=([^>]+)>" // match 4 (function name)
"|<function name=\"([^\"]+)\">)" // match 5 (function name again)
"([\\s\\S]*)" // match 6 (function arguments + rest)})"
);
static common_chat_msg common_chat_parse_hermes_2_pro(const std::string& input, bool extract_reasoning) {
return handle_think_tag_prelude(input, extract_reasoning, [](const std::string & input) {
static const std::regex open_regex(
"(?:"
"(```(?:xml|json)?\\n\\s*)?" // match 1 (block_start)
"(<tool_call>" // match 2 (open_tag)
"|<function_call>"
"|<tool>"
"|<tools>"
"|<response>"
"|<json>"
"|<xml>"
"|<JSON>"
")?"
"(\\s*\\{\\s*\"name\"\\s*:[\\s\\S]*)" // match 3 (named tool call + rest)
")"
"|"
"(?:<function=([^>]+)>" // match 4 (function name)
"|<function name=\"([^\"]+)\">)" // match 5 (function name again)
"([\\s\\S]*)" // match 6 (function arguments + rest)})"
);
try {
try {
common_chat_msg msg;
msg.role = "assistant";
common_chat_msg msg;
msg.role = "assistant";
std::string::const_iterator it = input.begin();
const std::string::const_iterator end = input.end();
std::smatch match;
std::string::const_iterator it = input.begin();
const std::string::const_iterator end = input.end();
std::smatch match;
while (it != end) {
if (std::regex_search(it, end, match, open_regex)) {
// Add content before the match
msg.content += std::string(it, match[0].first);
while (it != end) {
if (std::regex_search(it, end, match, open_regex)) {
// Add content before the match
msg.content += std::string(it, match[0].first);
auto block_start = match[1].str();
std::string block_end = block_start.empty() ? "" : "```";
auto block_start = match[1].str();
std::string block_end = block_start.empty() ? "" : "```";
auto open_tag = match[2].str();
std::string close_tag;
auto open_tag = match[2].str();
std::string close_tag;
if (match[3].matched) {
close_tag = open_tag.empty() ? "" : "</" + open_tag.substr(1);
auto json_it = match[3].first;
json tool_call;
if (parse_json(json_it, end, tool_call) && tool_call.contains("name") && tool_call.contains("arguments")) {
if (match[3].matched) {
close_tag = open_tag.empty() ? "" : "</" + open_tag.substr(1);
auto json_it = match[3].first;
json tool_call;
if (parse_json(json_it, end, tool_call) && tool_call.contains("name") && tool_call.contains("arguments")) {
msg.tool_calls.emplace_back(process_tool_call(tool_call));
it = json_it; // Move iterator past parsed JSON
msg.tool_calls.emplace_back(process_tool_call(tool_call));
it = json_it; // Move iterator past parsed JSON
// Handle close tags
consume_spaces(it, end);
if (!close_tag.empty() && !parse_literal(it, end, close_tag)) {
throw std::runtime_error("Failed to parse closing tag");
// Handle close tags
consume_spaces(it, end);
if (!close_tag.empty() && !parse_literal(it, end, close_tag)) {
throw std::runtime_error("Failed to parse closing tag");
}
consume_spaces(it, end);
if (!block_end.empty() && !parse_literal(it, end, block_end)) {
throw std::runtime_error("Failed to parse block end");
}
consume_spaces(it, end);
} else {
// Not a valid tool call, treat as content
msg.content += std::string(match[0].first, match[0].second);
it = match[0].second;
}
consume_spaces(it, end);
if (!block_end.empty() && !parse_literal(it, end, block_end)) {
throw std::runtime_error("Failed to parse block end");
}
consume_spaces(it, end);
} else {
// Not a valid tool call, treat as content
msg.content += std::string(match[0].first, match[0].second);
it = match[0].second;
auto function_name = match[4].str();
if (function_name.empty()) {
function_name = match[5].str();
}
GGML_ASSERT(!function_name.empty());
close_tag = "</function>";
// Start parsing from after the opening tags
auto json_it = match[6].first;
json arguments;
if (parse_json(json_it, end, arguments)) {
msg.tool_calls.emplace_back(process_tool_call({
{"name", function_name},
{"arguments", arguments},
}));
it = json_it; // Move iterator past parsed JSON
// Handle close tags
consume_spaces(it, end);
if (!close_tag.empty() && !parse_literal(it, end, close_tag)) {
throw std::runtime_error("Failed to parse closing tag");
}
consume_spaces(it, end);
if (!block_end.empty() && !parse_literal(it, end, block_end)) {
throw std::runtime_error("Failed to parse block end");
}
consume_spaces(it, end);
} else {
// Not a valid tool call, treat as content
msg.content += std::string(match[0].first, match[0].second);
it = match[0].second;
}
}
} else {
auto function_name = match[4].str();
if (function_name.empty()) {
function_name = match[5].str();
}
GGML_ASSERT(!function_name.empty());
close_tag = "</function>";
// Start parsing from after the opening tags
auto json_it = match[6].first;
json arguments;
if (parse_json(json_it, end, arguments)) {
msg.tool_calls.emplace_back(process_tool_call({
{"name", function_name},
{"arguments", arguments},
}));
it = json_it; // Move iterator past parsed JSON
// Handle close tags
consume_spaces(it, end);
if (!close_tag.empty() && !parse_literal(it, end, close_tag)) {
throw std::runtime_error("Failed to parse closing tag");
}
consume_spaces(it, end);
if (!block_end.empty() && !parse_literal(it, end, block_end)) {
throw std::runtime_error("Failed to parse block end");
}
consume_spaces(it, end);
} else {
// Not a valid tool call, treat as content
msg.content += std::string(match[0].first, match[0].second);
it = match[0].second;
}
// Add remaining content
msg.content += std::string(it, end);
break;
}
} else {
// Add remaining content
msg.content += std::string(it, end);
break;
}
return msg;
} catch (const std::exception & e) {
LOG_ERR("Failed to parse hermes 2 pro input: %s\n", e.what());
common_chat_msg msg;
msg.role = "assistant";
msg.content = input;
return msg;
}
return msg;
} catch (const std::exception & e) {
LOG_ERR("Failed to parse hermes 2 pro input: %s\n", e.what());
common_chat_msg msg;
msg.role = "assistant";
msg.content = input;
return msg;
}
});
}
static common_chat_params common_chat_params_init_without_tools(const common_chat_template & tmpl, const struct templates_params & inputs) {
@@ -1606,6 +1621,11 @@ static common_chat_params common_chat_templates_apply_jinja(
return common_chat_params_init_command_r7b(tmpl, params);
}
// Hermes 2/3 Pro, Qwen 2.5 Instruct (w/ tools)
if (src.find("<tool_call>") != std::string::npos && params.json_schema.is_null()) {
return common_chat_params_init_hermes_2_pro(tmpl, params);
}
// Use generic handler when mixing tools + JSON schema.
// TODO: support that mix in handlers below.
if ((params.tools.is_array() && params.json_schema.is_object())) {
@@ -1627,11 +1647,6 @@ static common_chat_params common_chat_templates_apply_jinja(
return common_chat_params_init_without_tools(tmpl, params);
}
// Hermes 2/3 Pro, Qwen 2.5 Instruct (w/ tools)
if (src.find("<tool_call>") != std::string::npos) {
return common_chat_params_init_hermes_2_pro(tmpl, params);
}
// Functionary v3.1 (w/ tools)
if (src.find("<|start_header_id|>") != std::string::npos
&& src.find("<function=") != std::string::npos) {
@@ -1749,7 +1764,9 @@ common_chat_msg common_chat_parse(const std::string & input, common_chat_format
case COMMON_CHAT_FORMAT_FUNCTIONARY_V3_1_LLAMA_3_1:
return common_chat_parse_functionary_v3_1_llama_3_1(input);
case COMMON_CHAT_FORMAT_HERMES_2_PRO:
return common_chat_parse_hermes_2_pro(input);
return common_chat_parse_hermes_2_pro(input, /* extract_reasoning= */ false);
case COMMON_CHAT_FORMAT_HERMES_2_PRO_EXTRACT_REASONING:
return common_chat_parse_hermes_2_pro(input, /* extract_reasoning= */ true);
case COMMON_CHAT_FORMAT_FIREFUNCTION_V2:
return common_chat_parse_firefunction_v2(input);
case COMMON_CHAT_FORMAT_COMMAND_R7B:

View File

@@ -53,6 +53,7 @@ enum common_chat_format {
COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2,
COMMON_CHAT_FORMAT_FUNCTIONARY_V3_1_LLAMA_3_1,
COMMON_CHAT_FORMAT_HERMES_2_PRO,
COMMON_CHAT_FORMAT_HERMES_2_PRO_EXTRACT_REASONING,
COMMON_CHAT_FORMAT_COMMAND_R7B,
COMMON_CHAT_FORMAT_COMMAND_R7B_EXTRACT_REASONING,

View File

@@ -407,8 +407,6 @@ struct common_params {
int32_t i_pos = -1; // position of the passkey in the junk text
// imatrix params
std::string out_file = "imatrix.dat"; // save the resulting imatrix to this file
int32_t n_out_freq = 10; // output the imatrix every n_out_freq iterations
int32_t n_save_freq = 0; // save the imatrix every n_save_freq iterations
int32_t i_chunk = 0; // start processing from this chunk
@@ -420,16 +418,16 @@ struct common_params {
int n_pca_batch = 100;
int n_pca_iterations = 1000;
dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
std::string cvector_outfile = "control_vector.gguf";
std::string cvector_positive_file = "examples/cvector-generator/positive.txt";
std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
bool spm_infill = false; // suffix/prefix/middle pattern for infill
std::string lora_outfile = "ggml-lora-merged-f16.gguf";
// batched-bench params
bool batched_bench_output_jsonl = false;
// common params
std::string out_file; // output filename for all example programs
};
// call once at the start of a program if it uses libcommon

View File

@@ -1378,13 +1378,27 @@ struct ArgumentsExpression {
}
};
static std::string strip(const std::string & s) {
auto start = s.find_first_not_of(" \t\n\r");
static std::string strip(const std::string & s, const std::string & chars = "", bool left = true, bool right = true) {
auto charset = chars.empty() ? " \t\n\r" : chars;
auto start = left ? s.find_first_not_of(charset) : 0;
if (start == std::string::npos) return "";
auto end = s.find_last_not_of(" \t\n\r");
auto end = right ? s.find_last_not_of(charset) : s.size() - 1;
return s.substr(start, end - start + 1);
}
static std::vector<std::string> split(const std::string & s, const std::string & sep) {
std::vector<std::string> result;
size_t start = 0;
size_t end = s.find(sep);
while (end != std::string::npos) {
result.push_back(s.substr(start, end - start));
start = end + sep.length();
end = s.find(sep, start);
}
result.push_back(s.substr(start));
return result;
}
static std::string capitalize(const std::string & s) {
if (s.empty()) return s;
auto result = s;
@@ -1467,8 +1481,26 @@ public:
} else if (obj.is_string()) {
auto str = obj.get<std::string>();
if (method->get_name() == "strip") {
vargs.expectArgs("strip method", {0, 0}, {0, 0});
return Value(strip(str));
vargs.expectArgs("strip method", {0, 1}, {0, 0});
auto chars = vargs.args.empty() ? "" : vargs.args[0].get<std::string>();
return Value(strip(str, chars));
} else if (method->get_name() == "lstrip") {
vargs.expectArgs("lstrip method", {0, 1}, {0, 0});
auto chars = vargs.args.empty() ? "" : vargs.args[0].get<std::string>();
return Value(strip(str, chars, /* left= */ true, /* right= */ false));
} else if (method->get_name() == "rstrip") {
vargs.expectArgs("rstrip method", {0, 1}, {0, 0});
auto chars = vargs.args.empty() ? "" : vargs.args[0].get<std::string>();
return Value(strip(str, chars, /* left= */ false, /* right= */ true));
} else if (method->get_name() == "split") {
vargs.expectArgs("split method", {1, 1}, {0, 0});
auto sep = vargs.args[0].get<std::string>();
auto parts = split(str, sep);
Value result = Value::array();
for (const auto& part : parts) {
result.push_back(Value(part));
}
return result;
} else if (method->get_name() == "capitalize") {
vargs.expectArgs("capitalize method", {0, 0}, {0, 0});
return Value(capitalize(str));

View File

@@ -235,6 +235,12 @@ You can download it from your Linux distro's package manager or from here: [ROCm
On Linux it is also possible to use unified memory architecture (UMA) to share main memory between the CPU and integrated GPU by setting `-DGGML_HIP_UMA=ON`.
However, this hurts performance for non-integrated GPUs (but enables working with integrated GPUs).
To enhance flash attention performance on RDNA3+ or CDNA architectures, you can utilize the rocWMMA library by enabling the `-DGGML_HIP_ROCWMMA_FATTN=ON` option. This requires rocWMMA headers to be installed on the build system.
The rocWMMA library is included by default when installing the ROCm SDK using the `rocm` meta package provided by AMD. Alternatively, if you are not using the meta package, you can install the library using the `rocwmma-dev` or `rocwmma-devel` package, depending on your system's package manager.
As an alternative, you can manually install the library by cloning it from the official [GitHub repository](https://github.com/ROCm/rocWMMA), checkout the corresponding version tag (e.g. `rocm-6.2.4`) and set `-DCMAKE_CXX_FLAGS="-I<path/to/rocwmma>/library/include/"` in CMake. This also works under Windows despite not officially supported by AMD.
Note that if you get the following error:
```
clang: error: cannot find ROCm device library; provide its path via '--rocm-path' or '--rocm-device-lib-path', or pass '-nogpulib' to build without ROCm device library

View File

@@ -287,30 +287,32 @@ Here are some models known to work (w/ chat template override when needed):
llama-server --jinja -fa -hf bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M
llama-server --jinja -fa -hf bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q6_K_L
llama-server --jinja -fa -hf bartowski/functionary-small-v3.2-GGUF:Q4_K_M
llama-server --jinja -fa -hf bartowski/Llama-3.3-70B-Instruct-GGUF:Q4_K_M
# Native support for DeepSeek R1 works best w/ our own template (official template buggy)
# Native support for DeepSeek R1 works best w/ our template override (official template is buggy, although we do work around it)
llama-server --jinja -fa -hf bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q6_K_L \
--chat-template-file models/templates/llama-cpp-deepseek-r1.jinja
--chat-template-file models/templates/llama-cpp-deepseek-r1.jinja
llama-server --jinja -fa -hf bartowski/DeepSeek-R1-Distill-Qwen-32B-GGUF:Q4_K_M \
--chat-template-file models/templates/llama-cpp-deepseek-r1.jinja
--chat-template-file models/templates/llama-cpp-deepseek-r1.jinja
# Native support requires the right template for these GGUFs:
llama-server --jinja -fa -hf bartowski/functionary-small-v3.2-GGUF:Q4_K_M
--chat-template-file models/templates/meetkai-functionary-medium-v3.2.jinja
llama-server --jinja -fa -hf bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M \
--chat-template-file <( python scripts/get_chat_template.py NousResearch/Hermes-2-Pro-Llama-3-8B tool_use )
--chat-template-file models/templates/NousResearch-Hermes-2-Pro-Llama-3-8B-tool_use.jinja
llama-server --jinja -fa -hf bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M \
--chat-template-file <( python scripts/get_chat_template.py NousResearch/Hermes-3-Llama-3.1-8B tool_use )
--chat-template-file models/templates/NousResearch-Hermes-3-Llama-3.1-8B-tool_use.jinja
llama-server --jinja -fa -hf bartowski/firefunction-v2-GGUF -hff firefunction-v2-IQ1_M.gguf \
--chat-template-file <( python scripts/get_chat_template.py fireworks-ai/llama-3-firefunction-v2 tool_use )
--chat-template-file models/templates/fireworks-ai-llama-3-firefunction-v2.jinja
llama-server --jinja -fa -hf bartowski/c4ai-command-r7b-12-2024-GGUF:Q6_K_L \
--chat-template-file <( python scripts/get_chat_template.py CohereForAI/c4ai-command-r7b-12-2024 tool_use )
--chat-template-file models/templates/CohereForAI-c4ai-command-r7b-12-2024-tool_use.jinja
# Generic format support
llama-server --jinja -fa -hf bartowski/phi-4-GGUF:Q4_0
@@ -318,6 +320,8 @@ llama-server --jinja -fa -hf bartowski/gemma-2-2b-it-GGUF:Q8_0
llama-server --jinja -fa -hf bartowski/c4ai-command-r-v01-GGUF:Q2_K
```
To get the official template from original HuggingFace repos, you can use [scripts/get_chat_template.py](../scripts/get_chat_template.py) (see examples invocations in [models/templates/README.md](../models/templates/README.md))
> [!TIP]
> If there is no official `tool_use` Jinja template, you may want to set `--chat-template chatml` to use a default that works with many models (YMMV!), or write your own (e.g. we provide a custom [llama-cpp-deepseek-r1.jinja](../models/templates/llama-cpp-deepseek-r1.jinja) for DeepSeek R1 distills)

View File

@@ -394,6 +394,8 @@ static int prepare_entries(common_params & params, train_context & ctx_train) {
int main(int argc, char ** argv) {
common_params params;
params.out_file = "control_vector.gguf";
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_CVECTOR_GENERATOR, print_usage)) {
return 1;
}
@@ -498,7 +500,7 @@ int main(int argc, char ** argv) {
}
// write output vectors to gguf
export_gguf(ctx_train.v_final, params.cvector_outfile, model_hint);
export_gguf(ctx_train.v_final, params.out_file, model_hint);
llama_backend_free();

View File

@@ -413,20 +413,22 @@ static void print_usage(int, char ** argv) {
int main(int argc, char ** argv) {
common_params params;
params.out_file = "ggml-lora-merged-f16.gguf";
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_EXPORT_LORA, print_usage)) {
return 1;
}
g_verbose = (params.verbosity > 1);
try {
lora_merge_ctx ctx(params.model, params.lora_adapters, params.lora_outfile, params.cpuparams.n_threads);
lora_merge_ctx ctx(params.model, params.lora_adapters, params.out_file, params.cpuparams.n_threads);
ctx.run_merge();
} catch (const std::exception & err) {
fprintf(stderr, "%s\n", err.what());
exit(EXIT_FAILURE);
}
printf("done, output file is %s\n", params.lora_outfile.c_str());
printf("done, output file is %s\n", params.out_file.c_str());
return 0;
}

View File

@@ -206,9 +206,6 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
void IMatrixCollector::save_imatrix(int ncall) const {
auto fname = m_params.out_file;
if (fname.empty()) {
fname = "imatrix.dat";
}
if (ncall > 0) {
fname += ".at_";
@@ -583,6 +580,8 @@ static bool compute_imatrix(llama_context * ctx, const common_params & params) {
int main(int argc, char ** argv) {
common_params params;
params.out_file = "imatrix.dat" ;
params.n_ctx = 512;
params.logits_all = true;
params.escape = false;

View File

@@ -5,13 +5,25 @@ Currently, this readme only supports minicpm-omni's image capabilities, and we w
Download [MiniCPM-o-2_6](https://huggingface.co/openbmb/MiniCPM-o-2_6) PyTorch model from huggingface to "MiniCPM-o-2_6" folder.
### Build llama.cpp
Readme modification time: 20250206
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
Clone llama.cpp:
```bash
git clone git@github.com:OpenBMB/llama.cpp.git
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
git checkout minicpm-omni
```
Build llama.cpp using `CMake`:
```bash
cmake -B build
cmake --build build --config Release
```
### Usage of MiniCPM-o 2.6
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-o-2_6-gguf) by us)
@@ -22,25 +34,15 @@ python ./examples/llava/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-
python ./convert_hf_to_gguf.py ../MiniCPM-o-2_6/model
# quantize int4 version
./llama-quantize ../MiniCPM-o-2_6/model/ggml-model-f16.gguf ../MiniCPM-o-2_6/model/ggml-model-Q4_K_M.gguf Q4_K_M
./build/bin/llama-quantize ../MiniCPM-o-2_6/model/ggml-model-f16.gguf ../MiniCPM-o-2_6/model/ggml-model-Q4_K_M.gguf Q4_K_M
```
Build llama.cpp using `CMake`:
https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md
```bash
cmake -B build
cmake --build build --config Release
```
Inference on Linux or Mac
```
```bash
# run f16 version
./llama-minicpmv-cli -m ../MiniCPM-o-2_6/model/ggml-model-f16.gguf --mmproj ../MiniCPM-o-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
./build/bin/llama-minicpmv-cli -m ../MiniCPM-o-2_6/model/ggml-model-f16.gguf --mmproj ../MiniCPM-o-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
# run quantized int4 version
./llama-minicpmv-cli -m ../MiniCPM-o-2_6/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-o-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
# or run in interactive mode
./llama-minicpmv-cli -m ../MiniCPM-o-2_6/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-o-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -i
./build/bin/llama-minicpmv-cli -m ../MiniCPM-o-2_6/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-o-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
```

View File

@@ -4,13 +4,26 @@
Download [MiniCPM-Llama3-V-2_5](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5) PyTorch model from huggingface to "MiniCPM-Llama3-V-2_5" folder.
### Build llama.cpp
Readme modification time: 20250206
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
Clone llama.cpp:
```bash
git clone https://github.com/ggml-org/llama.cpp
cd llama.cpp
```
### Usage
Build llama.cpp using `CMake`:
```bash
cmake -B build
cmake --build build --config Release
```
### Usage of MiniCPM-Llama3-V 2.5
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf) by us)
@@ -20,80 +33,15 @@ python ./examples/llava/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-
python ./convert_hf_to_gguf.py ../MiniCPM-Llama3-V-2_5/model
# quantize int4 version
./llama-quantize ../MiniCPM-Llama3-V-2_5/model/model-8B-F16.gguf ../MiniCPM-Llama3-V-2_5/model/ggml-model-Q4_K_M.gguf Q4_K_M
./build/bin/llama-quantize ../MiniCPM-Llama3-V-2_5/model/model-8B-F16.gguf ../MiniCPM-Llama3-V-2_5/model/ggml-model-Q4_K_M.gguf Q4_K_M
```
Build for Linux or Mac
```bash
make
make llama-minicpmv-cli
```
Inference on Linux or Mac
```
```bash
# run f16 version
./llama-minicpmv-cli -m ../MiniCPM-Llama3-V-2_5/model/model-8B-F16.gguf --mmproj ../MiniCPM-Llama3-V-2_5/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
./build/bin/llama-minicpmv-cli -m ../MiniCPM-Llama3-V-2_5/model/model-8B-F16.gguf --mmproj ../MiniCPM-Llama3-V-2_5/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
# run quantized int4 version
./llama-minicpmv-cli -m ../MiniCPM-Llama3-V-2_5/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-Llama3-V-2_5/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
# or run in interactive mode
./llama-minicpmv-cli -m ../MiniCPM-Llama3-V-2_5/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-Llama3-V-2_5/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -i
```
### Android
#### Build on Android device using Termux
We found that build on Android device would bring better runtime performance, so we recommend to build on device.
[Termux](https://github.com/termux/termux-app#installation) is a terminal app on Android device (no root required).
Install tools in Termux:
```
apt update && apt upgrade -y
apt install git make cmake
```
It's recommended to move your model inside the `~/` directory for best performance:
```
cd storage/downloads
mv model.gguf ~/
```
#### Building the Project using Android NDK
Obtain the [Android NDK](https://developer.android.com/ndk) and then build with CMake.
Execute the following commands on your computer to avoid downloading the NDK to your mobile. Alternatively, you can also do this in Termux:
```bash
mkdir build-android
cd build-android
export NDK=/your_ndk_path
cmake -DCMAKE_TOOLCHAIN_FILE=$NDK/build/cmake/android.toolchain.cmake -DANDROID_ABI=arm64-v8a -DANDROID_PLATFORM=android-23 -DCMAKE_C_FLAGS=-march=armv8.4a+dotprod ..
make
```
Install [termux](https://github.com/termux/termux-app#installation) on your device and run `termux-setup-storage` to get access to your SD card (if Android 11+ then run the command twice).
Finally, copy these built `llama` binaries and the model file to your device storage. Because the file permissions in the Android sdcard cannot be changed, you can copy the executable files to the `/data/data/com.termux/files/home/bin` path, and then execute the following commands in Termux to add executable permission:
(Assumed that you have pushed the built executable files to the /sdcard/llama.cpp/bin path using `adb push`)
```
$cp -r /sdcard/llama.cpp/bin /data/data/com.termux/files/home/
$cd /data/data/com.termux/files/home/bin
$chmod +x ./*
```
Download models and push them to `/sdcard/llama.cpp/`, then move it to `/data/data/com.termux/files/home/model/`
```
$mv /sdcard/llama.cpp/ggml-model-Q4_K_M.gguf /data/data/com.termux/files/home/model/
$mv /sdcard/llama.cpp/mmproj-model-f16.gguf /data/data/com.termux/files/home/model/
```
Now, you can start chatting:
```
$cd /data/data/com.termux/files/home/bin
$./llama-minicpmv-cli -m ../model/ggml-model-Q4_K_M.gguf --mmproj ../model/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
./build/bin/llama-minicpmv-cli -m ../MiniCPM-Llama3-V-2_5/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-Llama3-V-2_5/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
```

View File

@@ -4,13 +4,25 @@
Download [MiniCPM-V-2_6](https://huggingface.co/openbmb/MiniCPM-V-2_6) PyTorch model from huggingface to "MiniCPM-V-2_6" folder.
### Build llama.cpp
Readme modification time: 20250206
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
Clone llama.cpp:
```bash
git clone git@github.com:OpenBMB/llama.cpp.git
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
git checkout minicpmv-main
```
Build llama.cpp using `CMake`:
```bash
cmake -B build
cmake --build build --config Release
```
### Usage of MiniCPM-V 2.6
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-V-2_6-gguf) by us)
@@ -21,87 +33,15 @@ python ./examples/llava/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-
python ./convert_hf_to_gguf.py ../MiniCPM-V-2_6/model
# quantize int4 version
./llama-quantize ../MiniCPM-V-2_6/model/ggml-model-f16.gguf ../MiniCPM-V-2_6/model/ggml-model-Q4_K_M.gguf Q4_K_M
./build/bin/llama-quantize ../MiniCPM-V-2_6/model/ggml-model-f16.gguf ../MiniCPM-V-2_6/model/ggml-model-Q4_K_M.gguf Q4_K_M
```
Build for Linux or Mac
```bash
make
make llama-minicpmv-cli
```
Inference on Linux or Mac
```
```bash
# run f16 version
./llama-minicpmv-cli -m ../MiniCPM-V-2_6/model/ggml-model-f16.gguf --mmproj ../MiniCPM-V-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
./build/bin/llama-minicpmv-cli -m ../MiniCPM-V-2_6/model/ggml-model-f16.gguf --mmproj ../MiniCPM-V-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
# run quantized int4 version
./llama-minicpmv-cli -m ../MiniCPM-V-2_6/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-V-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
# or run in interactive mode
./llama-minicpmv-cli -m ../MiniCPM-V-2_6/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-V-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -i
```
### Video
Install FFmpeg
```
brew install ffmpeg
brew install pkg-config
```
### Android
#### Build on Android device using Termux
We found that build on Android device would bring better runtime performance, so we recommend to build on device.
[Termux](https://github.com/termux/termux-app#installation) is a terminal app on Android device (no root required).
Install tools in Termux:
```
apt update && apt upgrade -y
apt install git make cmake
```
It's recommended to move your model inside the `~/` directory for best performance:
```
cd storage/downloads
mv model.gguf ~/
```
#### Building the Project using Android NDK
Obtain the [Android NDK](https://developer.android.com/ndk) and then build with CMake.
Execute the following commands on your computer to avoid downloading the NDK to your mobile. Alternatively, you can also do this in Termux:
```bash
mkdir build-android
cd build-android
export NDK=/your_ndk_path
cmake -DCMAKE_TOOLCHAIN_FILE=$NDK/build/cmake/android.toolchain.cmake -DANDROID_ABI=arm64-v8a -DANDROID_PLATFORM=android-23 -DCMAKE_C_FLAGS=-march=armv8.4a+dotprod ..
make
```
Install [termux](https://github.com/termux/termux-app#installation) on your device and run `termux-setup-storage` to get access to your SD card (if Android 11+ then run the command twice).
Finally, copy these built `llama` binaries and the model file to your device storage. Because the file permissions in the Android sdcard cannot be changed, you can copy the executable files to the `/data/data/com.termux/files/home/bin` path, and then execute the following commands in Termux to add executable permission:
(Assumed that you have pushed the built executable files to the /sdcard/llama.cpp/bin path using `adb push`)
```
$cp -r /sdcard/llama.cpp/bin /data/data/com.termux/files/home/
$cd /data/data/com.termux/files/home/bin
$chmod +x ./*
```
Download models and push them to `/sdcard/llama.cpp/`, then move it to `/data/data/com.termux/files/home/model/`
```
$mv /sdcard/llama.cpp/ggml-model-Q4_K_M.gguf /data/data/com.termux/files/home/model/
$mv /sdcard/llama.cpp/mmproj-model-f16.gguf /data/data/com.termux/files/home/model/
```
Now, you can start chatting:
```
$cd /data/data/com.termux/files/home/bin
$./llama-minicpmv-cli -m ../model/ggml-model-Q4_K_M.gguf --mmproj ../model/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
./build/bin/llama-minicpmv-cli -m ../MiniCPM-V-2_6/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-V-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
```

View File

@@ -1378,6 +1378,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
LOG_INF("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder);
LOG_INF("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector);
LOG_INF("%s: minicpmv_projector: %d\n", __func__, new_clip->has_minicpmv_projector);
LOG_INF("%s: minicpmv_version: %d\n", __func__, new_clip->minicpmv_version);
LOG_INF("%s: glm_projector: %d\n", __func__, new_clip->has_glm_projector);
LOG_INF("%s: model size: %.2f MB\n", __func__, model_size / 1024.0 / 1024.0);
LOG_INF("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0);

View File

@@ -89,6 +89,7 @@ def bytes_to_unicode():
ap = argparse.ArgumentParser()
ap.add_argument("-m", "--model-dir", help="Path to model directory cloned from HF Hub", required=True)
ap.add_argument("--use-f32", action="store_true", default=False, help="Use f32 instead of f16")
ap.add_argument('--bigendian', action="store_true", default=False, help="Model is executed on big-endian machine")
ap.add_argument("--text-only", action="store_true", required=False,
help="Save a text-only model. It can't be used to encode images")
ap.add_argument("--vision-only", action="store_true", required=False,
@@ -191,7 +192,7 @@ output_dir = args.output_dir if args.output_dir is not None else dir_model
os.makedirs(output_dir, exist_ok=True)
output_prefix = os.path.basename(output_dir).replace("ggml_", "")
fname_out = os.path.join(output_dir, f"{fname_middle}model-{ftype_str[ftype]}.gguf")
fout = GGUFWriter(path=fname_out, arch="clip")
fout = GGUFWriter(path=fname_out, arch="clip", endianess=GGUFEndian.LITTLE if not args.bigendian else GGUFEndian.BIG)
fout.add_bool("clip.has_text_encoder", has_text_encoder)
fout.add_bool("clip.has_vision_encoder", has_vision_encoder)

View File

@@ -148,19 +148,34 @@ static void process_image(struct llava_context * ctx_llava, struct llava_image_e
process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++);
eval_string(ctx_llava->ctx_llama, std::string("</image>").c_str(), params->n_batch, &n_past, false);
if (num_image_embeds > 1) {
size_t num_image_embeds_col = clip_uhd_num_image_embeds_col(ctx_llava->ctx_clip);
eval_string(ctx_llava->ctx_llama, std::string("<slice>").c_str(), params->n_batch, &n_past, false);
for (size_t i = 0; i < (num_image_embeds-1)/num_image_embeds_col; ++i) {
for (size_t j = 0; j < num_image_embeds_col; ++j) {
eval_string(ctx_llava->ctx_llama, std::string("<image>").c_str(), params->n_batch, &n_past, false);
process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++);
eval_string(ctx_llava->ctx_llama, std::string("</image>").c_str(), params->n_batch, &n_past, false);
if (j == num_image_embeds_col - 1) {
eval_string(ctx_llava->ctx_llama, std::string("\n").c_str(), params->n_batch, &n_past, false);
if (has_minicpmv_projector == 2) {
size_t num_image_embeds_col = clip_uhd_num_image_embeds_col(ctx_llava->ctx_clip);
eval_string(ctx_llava->ctx_llama, std::string("<slice>").c_str(), params->n_batch, &n_past, false);
for (size_t i = 0; i < (num_image_embeds-1)/num_image_embeds_col; ++i) {
for (size_t j = 0; j < num_image_embeds_col; ++j) {
eval_string(ctx_llava->ctx_llama, std::string("<image>").c_str(), params->n_batch, &n_past, false);
process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++);
eval_string(ctx_llava->ctx_llama, std::string("</image>").c_str(), params->n_batch, &n_past, false);
if (j == num_image_embeds_col - 1) {
eval_string(ctx_llava->ctx_llama, std::string("\n").c_str(), params->n_batch, &n_past, false);
}
}
}
eval_string(ctx_llava->ctx_llama, std::string("</slice>").c_str(), params->n_batch, &n_past, false);
}
else if (has_minicpmv_projector == 3 || has_minicpmv_projector == 4) {
size_t num_image_embeds_col = clip_uhd_num_image_embeds_col(ctx_llava->ctx_clip);
for (size_t i = 0; i < (num_image_embeds-1)/num_image_embeds_col; ++i) {
for (size_t j = 0; j < num_image_embeds_col; ++j) {
eval_string(ctx_llava->ctx_llama, std::string("<slice>").c_str(), params->n_batch, &n_past, false);
process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++);
eval_string(ctx_llava->ctx_llama, std::string("</slice>").c_str(), params->n_batch, &n_past, false);
if (j == num_image_embeds_col - 1) {
eval_string(ctx_llava->ctx_llama, std::string("\n").c_str(), params->n_batch, &n_past, false);
}
}
}
}
eval_string(ctx_llava->ctx_llama, std::string("</slice>").c_str(), params->n_batch, &n_past, false);
}
LOG_INF("%s: image token past: %d\n", __func__, n_past);
}

View File

@@ -597,7 +597,6 @@ elif args.minicpmv_projector is not None:
fname_middle = "mmproj-"
has_text_encoder = False
has_minicpmv_projector = True
minicpmv_version = 4
elif args.vision_only:
fname_middle = "vision-"
has_text_encoder = False

View File

@@ -384,8 +384,9 @@ struct server_task {
SRV_DBG("Grammar trigger token: %d (`%s`)\n", token, word.c_str());
common_grammar_trigger trigger;
trigger.type = COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN;
trigger.value = (llama_token) token;
params.sampling.grammar_triggers.push_back(trigger);
trigger.value = word;
trigger.token = token;
params.sampling.grammar_triggers.push_back(std::move(trigger));
} else {
SRV_DBG("Grammar trigger word: `%s`\n", word.c_str());
params.sampling.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, word});
@@ -750,7 +751,10 @@ struct server_task_result_cmpl_final : server_task_result {
{"name", tc.name},
{"arguments", tc.arguments},
}},
{"id", tc.id},
// Some templates generate and require an id (sometimes in a very specific format, e.g. Mistral Nemo).
// We only generate a random id for the ones that don't generate one by themselves
// (they also won't get to see it as their template likely doesn't use it, so it's all for the client)
{"id", tc.id.empty() ? gen_tool_call_id() : tc.id},
});
}
message["tool_calls"] = tool_calls;
@@ -1312,7 +1316,7 @@ struct server_slot {
return task_type == SERVER_TASK_TYPE_EMBEDDING || task_type == SERVER_TASK_TYPE_RERANK;
}
bool can_batch_with(server_slot & other_slot) {
bool can_batch_with(server_slot & other_slot) const {
return is_non_causal() == other_slot.is_non_causal()
&& are_lora_equal(lora, other_slot.lora);
}
@@ -1900,6 +1904,7 @@ struct server_context {
try {
common_chat_format_example(chat_templates.get(), params.use_jinja);
} catch (const std::exception & e) {
SRV_WRN("%s: Chat template parsing error: %s\n", __func__, e.what());
SRV_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
chat_templates = common_chat_templates_init(model, "chatml");
}
@@ -2156,14 +2161,6 @@ struct server_context {
}
if (slot.has_new_line) {
// if we have already seen a new line, we stop after a certain time limit
if (slot.params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) {
slot.stop = STOP_TYPE_LIMIT;
slot.has_next_token = false;
SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms);
}
// require that each new line has a whitespace prefix (i.e. indentation) of at least slot.params.n_indent
if (slot.params.n_indent > 0) {
// check the current indentation
@@ -2202,6 +2199,14 @@ struct server_context {
// check if there is a new line in the generated text
if (result.text_to_send.find('\n') != std::string::npos) {
slot.has_new_line = true;
// if we have seen a new line, we stop after a certain time limit, but only upon another new line
if (slot.params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) {
slot.stop = STOP_TYPE_LIMIT;
slot.has_next_token = false;
SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms);
}
}
// if context shift is disabled, we stop when it reaches the context limit

View File

@@ -92,6 +92,7 @@ def do_test_completion_with_required_tool_tiny(server: ServerProcess, tool: dict
assert tool_calls and len(tool_calls) == 1, f'Expected 1 tool call in {choice["message"]}'
tool_call = tool_calls[0]
assert choice["message"].get("content") in (None, ""), f'Expected no content in {choice["message"]}'
assert len(tool_call.get("id", "")) > 0, f'Expected non empty tool call id in {tool_call}'
expected_function_name = "python" if tool["type"] == "code_interpreter" else tool["function"]["name"]
assert expected_function_name == tool_call["function"]["name"]
actual_arguments = tool_call["function"]["arguments"]
@@ -373,6 +374,7 @@ def do_test_weather(server: ServerProcess, **kwargs):
tool_call = tool_calls[0]
# assert choice["message"].get("content") in (None, ""), f'Expected no content in {choice["message"]}'
assert tool_call["function"]["name"] == WEATHER_TOOL["function"]["name"], f'Expected weather tool call, got {tool_call["function"]["name"]}'
assert len(tool_call.get("id", "")) > 0, f'Expected non empty tool call id in {tool_call}'
actual_arguments = json.loads(tool_call["function"]["arguments"])
assert 'location' in actual_arguments, f"location not found in {json.dumps(actual_arguments)}"
location = actual_arguments["location"]
@@ -596,6 +598,7 @@ def do_test_hello_world(server: ServerProcess, **kwargs):
tool_call = tool_calls[0]
# assert choice["message"].get("content") in (None, ""), f'Expected no content in {choice["message"]}'
assert tool_call["function"]["name"] == PYTHON_TOOL["function"]["name"]
assert len(tool_call.get("id", "")) > 0, f'Expected non empty tool call id in {tool_call}'
actual_arguments = json.loads(tool_call["function"]["arguments"])
assert 'code' in actual_arguments, f"code not found in {json.dumps(actual_arguments)}"
code = actual_arguments["code"]

View File

@@ -435,6 +435,10 @@ static std::string gen_chatcmplid() {
return "chatcmpl-" + random_string();
}
static std::string gen_tool_call_id() {
return random_string();
}
//
// other common utils
//

View File

@@ -195,6 +195,8 @@ option(GGML_OPENCL "ggml: use OpenCL"
option(GGML_OPENCL_PROFILING "ggml: use OpenCL profiling (increases overhead)" OFF)
option(GGML_OPENCL_EMBED_KERNELS "ggml: embed kernels" ON)
option(GGML_OPENCL_USE_ADRENO_KERNELS "ggml: use optimized kernels for Adreno" ON)
set (GGML_OPENCL_TARGET_VERSION "300" CACHE STRING
"gmml: OpenCL API version to target")
# toolchain for vulkan-shaders-gen
set (GGML_VULKAN_SHADERS_GEN_TOOLCHAIN "" CACHE FILEPATH "ggml: toolchain file for vulkan-shaders-gen")

View File

@@ -236,7 +236,7 @@ add_library(ggml
target_link_libraries(ggml PUBLIC ggml-base)
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
target_link_libraries(ggml PRIVATE dl)
target_link_libraries(ggml PRIVATE dl stdc++fs)
endif()
function(ggml_add_backend_library backend)

View File

@@ -76,7 +76,14 @@ namespace fs = std::filesystem;
static std::string path_str(const fs::path & path) {
std::string u8path;
try {
#if defined(__cpp_lib_char8_t)
// C++20 and later: u8string() returns std::u8string
std::u8string u8str = path.u8string();
u8path = std::string(reinterpret_cast<const char*>(u8str.c_str()));
#else
// C++17: u8string() returns std::string
u8path = path.u8string();
#endif
} catch (...) {
}
return u8path;

View File

@@ -11718,9 +11718,12 @@ void ggml_vec_dot_iq1_m_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const
#elif defined __AVX2__
const __m256i mask = _mm256_set1_epi16(2 * 0x7);
const __m256i mask = _mm256_set1_epi16(0x7);
const __m256i mone = _mm256_set1_epi16(1);
const __m256i mone8 = _mm256_set1_epi8(1);
const __m256i mtwo8 = _mm256_set1_epi8(2);
// VPSHUFB cannot cross 128-bit lanes so odd shifts go to upper half.
const __m256i scales_shift = _mm256_set_epi64x(9, 3, 6, 0);
__m256 accum1 = _mm256_setzero_ps();
__m256 accum2 = _mm256_setzero_ps();
@@ -11732,6 +11735,14 @@ void ggml_vec_dot_iq1_m_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const
const uint16_t * sc = (const uint16_t *)x[i].scales;
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
// Extract 3-bit scales (16 values)
__m256i scales = _mm256_set1_epi64x(*(const uint64_t*)sc);
scales = _mm256_srlv_epi64(scales, scales_shift);
scales = _mm256_add_epi16(_mm256_slli_epi16(_mm256_and_si256(scales, mask), 1), mone);
// Indices to repeat each scale 8 times.
__m256i scales_idx1 = _mm256_set1_epi16(0x0100);
__m256i scales_idx2 = _mm256_add_epi8(scales_idx1, _mm256_set1_epi8(8));
__m256i sumi1 = _mm256_setzero_si256();
__m256i sumi2 = _mm256_setzero_si256();
@@ -11777,11 +11788,12 @@ void ggml_vec_dot_iq1_m_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const
const __m256i dot3 = _mm256_maddubs_epi16(mone8, _mm256_sign_epi8(q8b_1, delta1));
const __m256i dot4 = _mm256_maddubs_epi16(mone8, _mm256_sign_epi8(q8b_2, delta2));
__m256i scale1 = MM256_SET_M128I(_mm_set1_epi16(sc[ib/2] >> 2), _mm_set1_epi16(sc[ib/2] << 1));
__m256i scale2 = MM256_SET_M128I(_mm_set1_epi16(sc[ib/2] >> 8), _mm_set1_epi16(sc[ib/2] >> 5));
__m256i scale1 = _mm256_shuffle_epi8(scales, scales_idx1);
__m256i scale2 = _mm256_shuffle_epi8(scales, scales_idx2);
scales_idx1 = _mm256_add_epi8(scales_idx1, mtwo8);
scales_idx2 = _mm256_add_epi8(scales_idx2, mtwo8);
scale1 = _mm256_add_epi16(_mm256_and_si256(scale1, mask), mone);
scale2 = _mm256_add_epi16(_mm256_and_si256(scale2, mask), mone);
const __m256i p1 = _mm256_madd_epi16(dot1, scale1);
const __m256i p2 = _mm256_madd_epi16(dot2, scale2);
const __m256i p3 = _mm256_madd_epi16(dot3, scale1);

View File

@@ -6648,6 +6648,135 @@ static void ggml_compute_forward_repeat_back(
// ggml_compute_forward_concat
static void ggml_compute_forward_concat_any(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
const size_t len = ggml_type_size(src0->type);
const int ith = params->ith;
const int nth = params->nth;
GGML_TENSOR_BINARY_OP_LOCALS
const int32_t dim = ggml_get_op_params_i32(dst, 0);
GGML_ASSERT(dim >= 0 && dim < 4);
int64_t o[4] = {0, 0, 0, 0};
o[dim] = src0->ne[dim];
const char * x;
// TODO: smarter multi-theading
for (int i3 = 0; i3 < ne3; i3++) {
for (int i2 = ith; i2 < ne2; i2 += nth) {
for (int i1 = 0; i1 < ne1; i1++) {
for (int i0 = 0; i0 < ne0; i0++) {
if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
x = (const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03;
} else {
x = (const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13;
}
char * y = (char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3;
memcpy(y, x, len);
}
}
}
}
}
static void ggml_compute_forward_concat_i8(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(ggml_type_size(src0->type) == sizeof(int8_t));
const int ith = params->ith;
const int nth = params->nth;
GGML_TENSOR_BINARY_OP_LOCALS
const int32_t dim = ggml_get_op_params_i32(dst, 0);
GGML_ASSERT(dim >= 0 && dim < 4);
int64_t o[4] = {0, 0, 0, 0};
o[dim] = src0->ne[dim];
const int8_t * x;
// TODO: smarter multi-theading
for (int i3 = 0; i3 < ne3; i3++) {
for (int i2 = ith; i2 < ne2; i2 += nth) {
for (int i1 = 0; i1 < ne1; i1++) {
for (int i0 = 0; i0 < ne0; i0++) {
if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
x = (const int8_t *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
} else {
x = (const int8_t *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
}
int8_t * y = (int8_t *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
*y = *x;
}
}
}
}
}
static void ggml_compute_forward_concat_f16(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(ggml_type_size(src0->type) == sizeof(ggml_fp16_t));
const int ith = params->ith;
const int nth = params->nth;
GGML_TENSOR_BINARY_OP_LOCALS
const int32_t dim = ggml_get_op_params_i32(dst, 0);
GGML_ASSERT(dim >= 0 && dim < 4);
int64_t o[4] = {0, 0, 0, 0};
o[dim] = src0->ne[dim];
const ggml_fp16_t * x;
// TODO: smarter multi-theading
for (int i3 = 0; i3 < ne3; i3++) {
for (int i2 = ith; i2 < ne2; i2 += nth) {
for (int i1 = 0; i1 < ne1; i1++) {
for (int i0 = 0; i0 < ne0; i0++) {
if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
x = (const ggml_fp16_t *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
} else {
x = (const ggml_fp16_t *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
}
ggml_fp16_t * y = (ggml_fp16_t *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
*y = *x;
}
}
}
}
}
static void ggml_compute_forward_concat_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
@@ -6655,7 +6784,7 @@ static void ggml_compute_forward_concat_f32(
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(src0->nb[0] == sizeof(float));
GGML_ASSERT(ggml_type_size(src0->type) == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
@@ -6698,6 +6827,16 @@ static void ggml_compute_forward_concat(
const struct ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F16:
case GGML_TYPE_BF16:
case GGML_TYPE_I16:
{
ggml_compute_forward_concat_f16(params, dst);
} break;
case GGML_TYPE_I8:
{
ggml_compute_forward_concat_i8(params, dst);
} break;
case GGML_TYPE_F32:
case GGML_TYPE_I32:
{
@@ -6705,7 +6844,7 @@ static void ggml_compute_forward_concat(
} break;
default:
{
GGML_ABORT("fatal error");
ggml_compute_forward_concat_any(params, dst);
}
}
}

View File

@@ -310,7 +310,7 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
}
// The MMA implementation needs Turing or newer, use the old WMMA code for Volta:
if (cc == GGML_CUDA_CC_VOLTA) {
if (fp16_mma_available(cc) && !new_mma_available(cc)) {
ggml_cuda_flash_attn_ext_wmma_f16(ctx, dst);
return;
}

View File

@@ -2571,7 +2571,7 @@ static void maintain_cuda_graph(ggml_backend_cuda_context * cuda_ctx, std::vecto
for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) {
if(count(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), cuda_ctx->cuda_graph->params[i].func) > 0) {
char ** updated_kernel_arg_ptr = cuda_ctx->cuda_graph->updated_kernel_arg.at(k++);
cuda_ctx->cuda_graph->params[i].kernelParams[1] = updated_kernel_arg_ptr;
*(void**)cuda_ctx->cuda_graph->params[i].kernelParams[1] = *(void**)updated_kernel_arg_ptr;
CUDA_CHECK(cudaGraphKernelNodeSetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]));
}
}

View File

@@ -27,12 +27,12 @@ configure_file(../ggml-common.h ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-common.h
configure_file(ggml-metal.metal ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.metal COPYONLY)
configure_file(ggml-metal-impl.h ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal-impl.h COPYONLY)
set(METALLIB_COMMON "${CMAKE_CURRENT_SOURCE_DIR}/../ggml-common.h")
if (GGML_METAL_EMBED_LIBRARY)
enable_language(ASM)
add_compile_definitions(GGML_METAL_EMBED_LIBRARY)
set(METALLIB_COMMON "${CMAKE_CURRENT_SOURCE_DIR}/../ggml-common.h")
set(METALLIB_SOURCE "${CMAKE_CURRENT_SOURCE_DIR}/ggml-metal.metal")
set(METALLIB_IMPL "${CMAKE_CURRENT_SOURCE_DIR}/ggml-metal-impl.h")
@@ -88,12 +88,11 @@ else()
add_custom_command(
OUTPUT ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/default.metallib
COMMAND xcrun -sdk macosx metal ${XC_FLAGS} -c ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.metal -o ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.air
COMMAND xcrun -sdk macosx metallib ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.air -o ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/default.metallib
COMMAND rm -f ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.air
COMMAND xcrun -sdk macosx metal ${XC_FLAGS} -c ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.metal -o - |
xcrun -sdk macosx metallib - -o ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/default.metallib
COMMAND rm -f ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-common.h
COMMAND rm -f ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-metal.metal
DEPENDS ggml-metal.metal ggml-common.h
DEPENDS ggml-metal.metal ${METALLIB_COMMON}
COMMENT "Compiling Metal kernels"
)

View File

@@ -285,4 +285,239 @@ typedef struct {
float eps;
} ggml_metal_kargs_rms_norm;
typedef struct {
int64_t ne00;
int64_t ne01;
int64_t ne02;
uint64_t nb00;
uint64_t nb01;
uint64_t nb02;
int32_t n_groups;
float eps;
} ggml_metal_kargs_group_norm;
typedef struct {
int32_t IC;
int32_t IL;
int32_t K;
int32_t s0;
uint64_t nb0;
uint64_t nb1;
} ggml_metal_kargs_conv_transpose_1d;
typedef struct {
uint64_t ofs0;
uint64_t ofs1;
int32_t IW;
int32_t IH;
int32_t CHW;
int32_t s0;
int32_t s1;
int32_t p0;
int32_t p1;
int32_t d0;
int32_t d1;
int32_t N;
int32_t KH;
int32_t KW;
int32_t KHW; // KH * KW, pre-computed on CPU to save GPU resources
} ggml_metal_kargs_im2col;
typedef struct {
int64_t ne00;
int64_t ne01;
int64_t ne02;
int64_t ne03;
uint64_t nb00;
uint64_t nb01;
uint64_t nb02;
uint64_t nb03;
int64_t ne10;
int64_t ne11;
int64_t ne12;
int64_t ne13;
uint64_t nb10;
uint64_t nb11;
uint64_t nb12;
uint64_t nb13;
int64_t ne0;
int64_t ne1;
int64_t ne2;
int64_t ne3;
uint64_t nb0;
uint64_t nb1;
uint64_t nb2;
uint64_t nb3;
} ggml_metal_kargs_sum_rows;
typedef struct {
int64_t ne00;
int64_t ne01;
int64_t ne02;
float scale;
float max_bias;
float m0;
float m1;
uint32_t n_head_log2;
} ggml_metal_kargs_soft_max;
typedef struct {
int64_t ne00;
int64_t ne01;
int n_past;
} ggml_metal_kargs_diag_mask_inf;
typedef struct {
int64_t ne00;
int64_t ne01;
int64_t ne02;
uint64_t nb00;
uint64_t nb01;
uint64_t nb02;
int64_t ne10;
int64_t ne11;
uint64_t nb10;
uint64_t nb11;
int64_t ne0;
int64_t ne1;
int64_t ne2;
uint64_t nb0;
uint64_t nb1;
uint64_t nb2;
} ggml_metal_kargs_ssm_conv;
typedef struct {
int64_t d_state;
int64_t d_inner;
int64_t n_seq_tokens;
int64_t n_seqs;
uint64_t nb00;
uint64_t nb01;
uint64_t nb02;
uint64_t nb10;
uint64_t nb11;
uint64_t nb12;
uint64_t nb13;
uint64_t nb20;
uint64_t nb21;
uint64_t nb22;
uint64_t nb30;
uint64_t nb31;
uint64_t nb40;
uint64_t nb41;
uint64_t nb42;
uint64_t nb50;
uint64_t nb51;
uint64_t nb52;
} ggml_metal_kargs_ssm_scan;
typedef struct {
int64_t ne00;
uint64_t nb01;
uint64_t nb02;
int64_t ne10;
uint64_t nb10;
uint64_t nb11;
uint64_t nb1;
uint64_t nb2;
} ggml_metal_kargs_get_rows;
typedef struct {
int64_t ne00;
int64_t ne01;
int64_t ne02;
int64_t ne03;
uint64_t nb00;
uint64_t nb01;
uint64_t nb02;
uint64_t nb03;
int64_t ne0;
int64_t ne1;
int64_t ne2;
int64_t ne3;
uint64_t nb0;
uint64_t nb1;
uint64_t nb2;
uint64_t nb3;
float sf0;
float sf1;
float sf2;
float sf3;
} ggml_metal_kargs_upscale;
typedef struct {
int64_t ne00;
int64_t ne01;
int64_t ne02;
int64_t ne03;
uint64_t nb00;
uint64_t nb01;
uint64_t nb02;
uint64_t nb03;
int64_t ne0;
int64_t ne1;
int64_t ne2;
int64_t ne3;
uint64_t nb0;
uint64_t nb1;
uint64_t nb2;
uint64_t nb3;
} ggml_metal_kargs_pad;
typedef struct {
int64_t ne00;
int64_t ne01;
int64_t ne02;
int64_t ne03;
uint64_t nb00;
uint64_t nb01;
uint64_t nb02;
uint64_t nb03;
int64_t ne0;
int64_t ne1;
int64_t ne2;
int64_t ne3;
uint64_t nb0;
uint64_t nb1;
uint64_t nb2;
uint64_t nb3;
int32_t p0;
int32_t p1;
} ggml_metal_kargs_pad_reflect_1d;
typedef struct {
uint64_t nb1;
int dim;
int max_period;
} ggml_metal_kargs_timestep_embedding;
typedef struct {
float slope;
} ggml_metal_kargs_leaky_relu;
typedef struct {
int64_t ncols;
int64_t ncols_pad;
} ggml_metal_kargs_argsort;
typedef struct {
int64_t ne0;
float start;
float step;
} ggml_metal_kargs_arange;
typedef struct {
int32_t k0;
int32_t k1;
int32_t s0;
int32_t s1;
int32_t p0;
int32_t p1;
int64_t IH;
int64_t IW;
int64_t OH;
int64_t OW;
int64_t parallel_elements;
} ggml_metal_kargs_pool_2d;
#endif // GGML_METAL_IMPL

View File

@@ -1945,34 +1945,38 @@ static void ggml_metal_encode_node(
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SUM_ROWS].pipeline;
// TODO: add ggml_metal_kargs struct
ggml_metal_kargs_sum_rows args = {
/*.ne00 =*/ ne00,
/*.ne01 =*/ ne01,
/*.ne02 =*/ ne02,
/*.ne03 =*/ ne03,
/*.nb00 =*/ nb00,
/*.nb01 =*/ nb01,
/*.nb02 =*/ nb02,
/*.nb03 =*/ nb03,
/*.ne10 =*/ ne10,
/*.ne11 =*/ ne11,
/*.ne12 =*/ ne12,
/*.ne13 =*/ ne13,
/*.nb10 =*/ nb10,
/*.nb11 =*/ nb11,
/*.nb12 =*/ nb12,
/*.nb13 =*/ nb13,
/*.ne0 =*/ ne0,
/*.ne1 =*/ ne1,
/*.ne2 =*/ ne2,
/*.ne3 =*/ ne3,
/*.nb0 =*/ nb0,
/*.nb1 =*/ nb1,
/*.nb2 =*/ nb2,
/*.nb3 =*/ nb3,
};
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
[encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5];
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
[encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9];
[encoder setBytes:&ne10 length:sizeof(ne10) atIndex:10];
[encoder setBytes:&ne11 length:sizeof(ne11) atIndex:11];
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:12];
[encoder setBytes:&ne13 length:sizeof(ne13) atIndex:13];
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:14];
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:15];
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:16];
[encoder setBytes:&nb13 length:sizeof(nb13) atIndex:17];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:18];
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:19];
[encoder setBytes:&ne2 length:sizeof(ne2) atIndex:20];
[encoder setBytes:&ne3 length:sizeof(ne3) atIndex:21];
[encoder setBytes:&nb0 length:sizeof(nb0) atIndex:22];
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:23];
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:24];
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:25];
[encoder setBytes:&args length:sizeof(args) atIndex:2];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
@@ -2021,8 +2025,17 @@ static void ggml_metal_encode_node(
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
// TODO: add ggml_metal_kargs struct
// TODO: optimize (see https://github.com/ggml-org/llama.cpp/pull/10238/commits/7941b6b9ec29a2866fec6fa6c51612515ca509f6)
ggml_metal_kargs_soft_max args = {
/*.ne00 =*/ ne00,
/*.ne01 =*/ ne01,
/*.ne02 =*/ ne02,
/*.scale =*/ scale,
/*.max_bias =*/ max_bias,
/*.m0 =*/ m0,
/*.m1 =*/ m1,
/*.n_head_log2 =*/ n_head_log2,
};
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
if (id_src1) {
@@ -2031,14 +2044,7 @@ static void ggml_metal_encode_node(
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
}
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
[encoder setBytes:&scale length:sizeof(scale) atIndex:6];
[encoder setBytes:&max_bias length:sizeof(max_bias) atIndex:7];
[encoder setBytes:&m0 length:sizeof(m0) atIndex:8];
[encoder setBytes:&m1 length:sizeof(m1) atIndex:9];
[encoder setBytes:&n_head_log2 length:sizeof(n_head_log2) atIndex:10];
[encoder setBytes:&args length:sizeof(args) atIndex:3];
[encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
@@ -2056,13 +2062,16 @@ static void ggml_metal_encode_node(
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF].pipeline;
}
// TODO: add ggml_metal_kargs struct
ggml_metal_kargs_diag_mask_inf args = {
/*.ne00 =*/ ne00,
/*.ne01 =*/ ne01,
/*.n_past =*/ n_past,
};
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
[encoder setBytes:&n_past length:sizeof(int) atIndex:4];
[encoder setBytes:&args length:sizeof(args) atIndex:2];
if (ne00%8 == 0) {
[encoder dispatchThreadgroups:MTLSizeMake(ne00*ne01*ne02/8, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
@@ -2081,27 +2090,30 @@ static void ggml_metal_encode_node(
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SSM_CONV_F32].pipeline;
// TODO: add ggml_metal_kargs struct
ggml_metal_kargs_ssm_conv args = {
/*.ne00 =*/ ne00,
/*.ne01 =*/ ne01,
/*.ne02 =*/ ne02,
/*.nb00 =*/ nb00,
/*.nb01 =*/ nb01,
/*.nb02 =*/ nb02,
/*.ne10 =*/ ne10,
/*.ne11 =*/ ne11,
/*.nb10 =*/ nb10,
/*.nb11 =*/ nb11,
/*.ne0 =*/ ne0,
/*.ne1 =*/ ne1,
/*.ne2 =*/ ne2,
/*.nb0 =*/ nb0,
/*.nb1 =*/ nb1,
/*.nb2 =*/ nb2,
};
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
[encoder setBytes:&ne10 length:sizeof(ne10) atIndex:9];
[encoder setBytes:&ne11 length:sizeof(ne11) atIndex:10];
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:11];
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:12];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:13];
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:14];
[encoder setBytes:&ne2 length:sizeof(ne2) atIndex:15];
[encoder setBytes:&nb0 length:sizeof(nb0) atIndex:16];
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:17];
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:18];
[encoder setBytes:&args length:sizeof(args) atIndex:3];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne1, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
@@ -2152,7 +2164,31 @@ static void ggml_metal_encode_node(
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SSM_SCAN_F32].pipeline;
// TODO: add ggml_metal_kargs struct
ggml_metal_kargs_ssm_scan args = {
/*.d_state =*/ d_state,
/*.d_inner =*/ d_inner,
/*.n_seq_tokens =*/ n_seq_tokens,
/*.n_seqs =*/ n_seqs,
/*.nb00 =*/ nb00,
/*.nb01 =*/ nb01,
/*.nb02 =*/ nb02,
/*.nb10 =*/ nb10,
/*.nb11 =*/ nb11,
/*.nb12 =*/ nb12,
/*.nb13 =*/ nb13,
/*.nb20 =*/ nb20,
/*.nb21 =*/ nb21,
/*.nb22 =*/ nb22,
/*.nb30 =*/ nb30,
/*.nb31 =*/ nb31,
/*.nb40 =*/ nb40,
/*.nb41 =*/ nb41,
/*.nb42 =*/ nb42,
/*.nb50 =*/ nb50,
/*.nb51 =*/ nb51,
/*.nb52 =*/ nb52,
};
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
@@ -2161,30 +2197,7 @@ static void ggml_metal_encode_node(
[encoder setBuffer:id_src4 offset:offs_src4 atIndex:4];
[encoder setBuffer:id_src5 offset:offs_src5 atIndex:5];
[encoder setBuffer:id_dst offset:offs_dst atIndex:6];
[encoder setBytes:&d_state length:sizeof(d_state) atIndex:7];
[encoder setBytes:&d_inner length:sizeof(d_inner) atIndex:8];
[encoder setBytes:&n_seq_tokens length:sizeof(n_seq_tokens) atIndex:9];
[encoder setBytes:&n_seqs length:sizeof(n_seqs) atIndex:10];
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:11];
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:12];
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:13];
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:14];
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:15];
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:16];
[encoder setBytes:&nb13 length:sizeof(nb13) atIndex:17];
[encoder setBytes:&nb20 length:sizeof(nb20) atIndex:18];
[encoder setBytes:&nb21 length:sizeof(nb21) atIndex:19];
[encoder setBytes:&nb22 length:sizeof(nb22) atIndex:20];
[encoder setBytes:&nb30 length:sizeof(nb30) atIndex:21];
[encoder setBytes:&nb31 length:sizeof(nb31) atIndex:22];
[encoder setBytes:&nb40 length:sizeof(nb40) atIndex:23];
[encoder setBytes:&nb41 length:sizeof(nb41) atIndex:24];
[encoder setBytes:&nb42 length:sizeof(nb42) atIndex:25];
[encoder setBytes:&nb50 length:sizeof(nb50) atIndex:26];
[encoder setBytes:&nb51 length:sizeof(nb51) atIndex:27];
[encoder setBytes:&nb52 length:sizeof(nb52) atIndex:28];
[encoder setBytes:&args length:sizeof(args) atIndex:7];
[encoder dispatchThreadgroups:MTLSizeMake(d_inner, n_seqs, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
@@ -3041,19 +3054,22 @@ static void ggml_metal_encode_node(
default: GGML_ABORT("not implemented");
}
// TODO: add ggml_metal_kargs struct
ggml_metal_kargs_get_rows args = {
/*.ne00 =*/ ne00,
/*.nb01 =*/ nb01,
/*.nb02 =*/ nb02,
/*.ne10 =*/ ne10,
/*.nb10 =*/ nb10,
/*.nb11 =*/ nb11,
/*.nb1 =*/ nb1,
/*.nb2 =*/ nb2,
};
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:3];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:4];
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:5];
[encoder setBytes:&ne10 length:sizeof( int64_t) atIndex:6];
[encoder setBytes:&nb10 length:sizeof( int64_t) atIndex:7];
[encoder setBytes:&nb11 length:sizeof( int64_t) atIndex:8];
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:9];
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:10];
[encoder setBytes:&args length:sizeof(args) atIndex:3];
[encoder dispatchThreadgroups:MTLSizeMake(ne10, ne11, 1) threadsPerThreadgroup:MTLSizeMake(32, 1, 1)];
} break;
@@ -3110,18 +3126,21 @@ static void ggml_metal_encode_node(
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GROUP_NORM].pipeline;
// TODO: add ggml_metal_kargs struct
ggml_metal_kargs_group_norm args = {
/*.ne00 =*/ ne00,
/*.ne01 =*/ ne01,
/*.ne02 =*/ ne02,
/*.nb00 =*/ nb00,
/*.nb01 =*/ nb01,
/*.nb02 =*/ nb02,
/*.n_groups =*/ n_groups,
/*.eps =*/ eps,
};
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:5];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:6];
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:7];
[encoder setBytes:&n_groups length:sizeof( int32_t) atIndex:8];
[encoder setBytes:&eps length:sizeof( float) atIndex:9];
[encoder setBytes:&args length:sizeof(args) atIndex:2];
[encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake(n_groups, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
@@ -3279,8 +3298,8 @@ static void ggml_metal_encode_node(
const int32_t CHW = IC * KH * KW;
const int32_t ofs0 = src1->nb[is_2D ? 3 : 2] / 4;
const int32_t ofs1 = src1->nb[is_2D ? 2 : 1] / 4;
const uint64_t ofs0 = src1->nb[is_2D ? 3 : 2] / 4;
const uint64_t ofs1 = src1->nb[is_2D ? 2 : 1] / 4;
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_IM2COL_F32].pipeline;
@@ -3302,27 +3321,30 @@ static void ggml_metal_encode_node(
default: GGML_ABORT("fatal error");
};
// TODO: add ggml_metal_kargs struct
ggml_metal_kargs_im2col args = {
/*.ofs0 =*/ ofs0,
/*.ofs1 =*/ ofs1,
/*.IW =*/ IW,
/*.IH =*/ IH,
/*.CHW =*/ CHW,
/*.s0 =*/ s0,
/*.s1 =*/ s1,
/*.p0 =*/ p0,
/*.p1 =*/ p1,
/*.d0 =*/ d0,
/*.d1 =*/ d1,
/*.N =*/ N,
/*.KH =*/ KH,
/*.KW =*/ KW,
/*.KHW =*/ KH * KW,
};
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ofs0 length:sizeof(int32_t) atIndex:2];
[encoder setBytes:&ofs1 length:sizeof(int32_t) atIndex:3];
[encoder setBytes:&IW length:sizeof(int32_t) atIndex:4];
[encoder setBytes:&IH length:sizeof(int32_t) atIndex:5];
[encoder setBytes:&CHW length:sizeof(int32_t) atIndex:6];
[encoder setBytes:&s0 length:sizeof(int32_t) atIndex:7];
[encoder setBytes:&s1 length:sizeof(int32_t) atIndex:8];
[encoder setBytes:&p0 length:sizeof(int32_t) atIndex:9];
[encoder setBytes:&p1 length:sizeof(int32_t) atIndex:10];
[encoder setBytes:&d0 length:sizeof(int32_t) atIndex:11];
[encoder setBytes:&d1 length:sizeof(int32_t) atIndex:12];
[encoder setBytes:&args length:sizeof(args) atIndex:2];
if (is_gt_mttpt) {
[encoder setBytes:&N length:sizeof(int32_t) atIndex:13];
[encoder setBytes:&KH length:sizeof(int32_t) atIndex:14];
[encoder setBytes:&KW length:sizeof(int32_t) atIndex:15];
const uint64_t n_threads = MIN(pipeline.maxTotalThreadsPerThreadgroup, (uint64_t)N);
const int64_t quotient = N / n_threads + (N % n_threads > 0 ? 1 : 0);
@@ -3362,16 +3384,20 @@ static void ggml_metal_encode_node(
default: GGML_ABORT("fatal error");
};
ggml_metal_kargs_conv_transpose_1d args = {
/*.IC =*/ IC,
/*.IL =*/ IL,
/*.K =*/ K,
/*.s0 =*/ s0,
/*.nb0 =*/ nb0,
/*.nb1 =*/ nb1,
};
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&IC length:sizeof( int32_t) atIndex:3];
[encoder setBytes:&IL length:sizeof( int32_t) atIndex:4];
[encoder setBytes:&K length:sizeof( int32_t) atIndex:5];
[encoder setBytes:&s0 length:sizeof( int32_t) atIndex:6];
[encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:7];
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:8];
[encoder setBytes:&args length:sizeof(args) atIndex:3];
[encoder dispatchThreadgroups:MTLSizeMake(OL, OC, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
@@ -3386,30 +3412,33 @@ static void ggml_metal_encode_node(
const id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_UPSCALE_F32].pipeline;
// TODO: add ggml_metal_kargs struct
ggml_metal_kargs_upscale args = {
/*.ne00 =*/ ne00,
/*.ne01 =*/ ne01,
/*.ne02 =*/ ne02,
/*.ne03 =*/ ne03,
/*.nb00 =*/ nb00,
/*.nb01 =*/ nb01,
/*.nb02 =*/ nb02,
/*.nb03 =*/ nb03,
/*.ne0 =*/ ne0,
/*.ne1 =*/ ne1,
/*.ne2 =*/ ne2,
/*.ne3 =*/ ne3,
/*.nb0 =*/ nb0,
/*.nb1 =*/ nb1,
/*.nb2 =*/ nb2,
/*.nb3 =*/ nb3,
/*.sf0 =*/ sf0,
/*.sf1 =*/ sf1,
/*.sf2 =*/ sf2,
/*.sf3 =*/ sf3
};
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
[encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5];
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
[encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:10];
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:11];
[encoder setBytes:&ne2 length:sizeof(ne2) atIndex:12];
[encoder setBytes:&ne3 length:sizeof(ne3) atIndex:13];
[encoder setBytes:&nb0 length:sizeof(nb0) atIndex:14];
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:15];
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:16];
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:17];
[encoder setBytes:&sf0 length:sizeof(sf0) atIndex:18];
[encoder setBytes:&sf1 length:sizeof(sf1) atIndex:19];
[encoder setBytes:&sf2 length:sizeof(sf2) atIndex:20];
[encoder setBytes:&sf3 length:sizeof(sf3) atIndex:21];
[encoder setBytes:&args length:sizeof(args) atIndex:2];
const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne0);
@@ -3421,26 +3450,29 @@ static void ggml_metal_encode_node(
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_PAD_F32].pipeline;
// TODO: add ggml_metal_kargs struct
ggml_metal_kargs_pad args = {
/*.ne00 =*/ ne00,
/*.ne01 =*/ ne01,
/*.ne02 =*/ ne02,
/*.ne03 =*/ ne03,
/*.nb00 =*/ nb00,
/*.nb01 =*/ nb01,
/*.nb02 =*/ nb02,
/*.nb03 =*/ nb03,
/*.ne0 =*/ ne0,
/*.ne1 =*/ ne1,
/*.ne2 =*/ ne2,
/*.ne3 =*/ ne3,
/*.nb0 =*/ nb0,
/*.nb1 =*/ nb1,
/*.nb2 =*/ nb2,
/*.nb3 =*/ nb3
};
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
[encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5];
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
[encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:10];
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:11];
[encoder setBytes:&ne2 length:sizeof(ne2) atIndex:12];
[encoder setBytes:&ne3 length:sizeof(ne3) atIndex:13];
[encoder setBytes:&nb0 length:sizeof(nb0) atIndex:14];
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:15];
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:16];
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:17];
[encoder setBytes:&args length:sizeof(args) atIndex:2];
const int nth = MIN(1024, ne0);
@@ -3455,24 +3487,31 @@ static void ggml_metal_encode_node(
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_PAD_REFLECT_1D_F32].pipeline;
ggml_metal_kargs_pad_reflect_1d args = {
/*.ne00 =*/ ne00,
/*.ne01 =*/ ne01,
/*.ne02 =*/ ne02,
/*.ne03 =*/ ne03,
/*.nb00 =*/ nb00,
/*.nb01 =*/ nb01,
/*.nb02 =*/ nb02,
/*.nb03 =*/ nb03,
/*.ne0 =*/ ne0,
/*.ne1 =*/ ne1,
/*.ne2 =*/ ne2,
/*.ne3 =*/ ne3,
/*.nb0 =*/ nb0,
/*.nb1 =*/ nb1,
/*.nb2 =*/ nb2,
/*.nb3 =*/ nb3,
/*.p0 =*/ p0,
/*.p1 =*/ p1
};
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
[encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:6];
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:7];
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:8];
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:9];
[encoder setBytes:&nb03 length:sizeof(nb03) atIndex:10];
[encoder setBytes:&nb0 length:sizeof(nb0) atIndex:11];
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:12];
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:13];
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:14];
[encoder setBytes:&p0 length:sizeof(p0) atIndex:15];
[encoder setBytes:&p1 length:sizeof(p1) atIndex:16];
[encoder setBytes:&args length:sizeof(args) atIndex:2];
const int nth = MIN(1024, ne0);
@@ -3490,12 +3529,15 @@ static void ggml_metal_encode_node(
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARANGE_F32].pipeline;
// TODO: add ggml_metal_kargs struct
ggml_metal_kargs_arange args = {
/*.ne0 =*/ ne0,
/*.start =*/ start,
/*.step =*/ step
};
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_dst offset:offs_dst atIndex:0];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:1];
[encoder setBytes:&start length:sizeof(start) atIndex:2];
[encoder setBytes:&step length:sizeof(step) atIndex:3];
[encoder setBuffer:id_dst offset:offs_dst atIndex:0];
[encoder setBytes:&args length:sizeof(args) atIndex:1];
const int nth = MIN(1024, ne0);
@@ -3512,13 +3554,16 @@ static void ggml_metal_encode_node(
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32].pipeline;
// TODO: add ggml_metal_kargs struct
ggml_metal_kargs_timestep_embedding args = {
/*.nb1 =*/ nb1,
/*.dim =*/ dim,
/*.max_period =*/ max_period
};
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:2];
[encoder setBytes:&dim length:sizeof(dim) atIndex:3];
[encoder setBytes:&max_period length:sizeof(max_period) atIndex:4];
[encoder setBytes:&args length:sizeof(args) atIndex:2];
const int nth = MIN(1024, half);
@@ -3551,12 +3596,15 @@ static void ggml_metal_encode_node(
default: GGML_ABORT("fatal error");
};
// TODO: add ggml_metal_kargs struct
ggml_metal_kargs_argsort args = {
/*.ncols =*/ ne00,
/*.ncols_pad =*/ ne00_padded
};
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
[encoder setBytes:&ne00_padded length:sizeof( int64_t) atIndex:3];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&args length:sizeof(args) atIndex:2];
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake(1, nrows, 1) threadsPerThreadgroup:MTLSizeMake(ne00_padded, 1, 1)];
@@ -3570,11 +3618,14 @@ static void ggml_metal_encode_node(
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32].pipeline;
// TODO: add ggml_metal_kargs struct
ggml_metal_kargs_leaky_relu args = {
/*.slope =*/ slope
};
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&slope length:sizeof(slope) atIndex:2];
[encoder setBytes:&args length:sizeof(args) atIndex:2];
const int64_t n = ggml_nelements(dst);
@@ -4150,21 +4201,24 @@ static void ggml_metal_encode_node(
const int64_t n_threads = MIN((int64_t)[pipeline maxTotalThreadsPerThreadgroup], parallel_elements);
const int64_t n_tg = (parallel_elements + n_threads - 1) / n_threads;
// TODO: add ggml_metal_kargs struct
ggml_metal_kargs_pool_2d args_pool_2d = {
/* .k0 = */ k0,
/* .k1 = */ k1,
/* .s0 = */ s0,
/* .s1 = */ s1,
/* .p0 = */ p0,
/* .p1 = */ p1,
/* .IH = */ IH,
/* .IW = */ IW,
/* .OH = */ OH,
/* .OW = */ OW,
/* .parallel_elements = */ parallel_elements
};
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&k0 length:sizeof(int32_t) atIndex:2];
[encoder setBytes:&k1 length:sizeof(int32_t) atIndex:3];
[encoder setBytes:&s0 length:sizeof(int32_t) atIndex:4];
[encoder setBytes:&s1 length:sizeof(int32_t) atIndex:5];
[encoder setBytes:&p0 length:sizeof(int32_t) atIndex:6];
[encoder setBytes:&p1 length:sizeof(int32_t) atIndex:7];
[encoder setBytes:&IH length:sizeof(int64_t) atIndex:8];
[encoder setBytes:&IW length:sizeof(int64_t) atIndex:9];
[encoder setBytes:&OH length:sizeof(int64_t) atIndex:10];
[encoder setBytes:&OW length:sizeof(int64_t) atIndex:11];
[encoder setBytes:&parallel_elements length:sizeof(int64_t) atIndex:12];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&args_pool_2d length:sizeof(args_pool_2d) atIndex:2];
[encoder dispatchThreadgroups:MTLSizeMake(n_tg, 1, 1) threadsPerThreadgroup:MTLSizeMake(n_threads, 1, 1)];
} break;

File diff suppressed because it is too large Load Diff

View File

@@ -15,6 +15,7 @@ if (GGML_OPENCL_PROFILING)
endif ()
add_compile_definitions(GGML_OPENCL_SOA_Q)
add_compile_definitions(GGML_OPENCL_TARGET_VERSION=${GGML_OPENCL_TARGET_VERSION})
if (GGML_OPENCL_USE_ADRENO_KERNELS)
message(STATUS "OpenCL will use matmul kernels optimized for Adreno")

View File

@@ -1,4 +1,4 @@
#define CL_TARGET_OPENCL_VERSION 220
#define CL_TARGET_OPENCL_VERSION GGML_OPENCL_TARGET_VERSION
#define CL_USE_DEPRECATED_OPENCL_1_2_APIS
// suppress warnings in CL headers for GCC and Clang
@@ -25,6 +25,8 @@
#include <vector>
#include <string>
#include <cmath>
#include <memory>
#include <charconv>
#undef MIN
#undef MAX
@@ -62,6 +64,97 @@ enum ADRENO_GPU_GEN {
X1E,
};
struct ggml_cl_version {
cl_uint major = 0;
cl_uint minor = 0;
};
// Parses a version string of form "XX.YY ". On an error returns ggml_cl_version with all zeroes.
static ggml_cl_version parse_cl_version(std::string_view str) {
size_t major_str_begin = 0;
size_t major_str_end = str.find(".", major_str_begin);
if (major_str_end == std::string::npos) {
return {};
}
size_t minor_str_begin = major_str_end + 1;
size_t minor_str_end = str.find(" ", minor_str_begin);
if (minor_str_end == std::string::npos) {
return {};
}
cl_uint version_major;
if (std::from_chars(str.data() + major_str_begin, str.data() + major_str_end, version_major).ec != std::errc{}) {
return {};
}
cl_uint version_minor;
if (std::from_chars(str.data() + minor_str_begin, str.data() + minor_str_end, version_minor).ec != std::errc{}) {
return {};
}
return { version_major, version_minor };
}
// Returns OpenCL platform's version. On an error returns ggml_cl_version with all zeroes.
static ggml_cl_version get_opencl_platform_version(cl_platform_id platform) {
size_t param_size;
CL_CHECK(clGetPlatformInfo(platform, CL_PLATFORM_VERSION, 0, nullptr, &param_size));
std::unique_ptr<char[]> param_storage(new char[param_size]);
CL_CHECK(clGetPlatformInfo(platform, CL_PLATFORM_VERSION, param_size, param_storage.get(), nullptr));
auto param_value = std::string_view(param_storage.get(), param_size);
const std::string version_prefix = "OpenCL "; // Suffix: "XX.YY <platform-specific-info>"
if (param_value.find(version_prefix) != 0) {
return {};
}
param_value.remove_prefix(version_prefix.length());
return parse_cl_version(param_value);
}
// Return a version to use in OpenCL C compilation. On an error returns ggml_cl_version with all zeroes.
static ggml_cl_version get_opencl_c_version(ggml_cl_version platform_version, cl_device_id device) {
size_t param_size;
#if CL_TARGET_OPENCL_VERSION >= 300
if (platform_version.major >= 3) {
CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_ALL_VERSIONS, 0, nullptr, &param_size));
if (!param_size) {
return {};
}
std::unique_ptr<cl_name_version[]> versions(new cl_name_version[param_size]);
CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_ALL_VERSIONS, param_size, versions.get(), nullptr));
unsigned versions_count = param_size / sizeof(cl_name_version);
cl_version version_max = 0;
for (unsigned i = 0; i < versions_count; i++) {
version_max = std::max<cl_version>(versions[i].version, version_max);
}
return { CL_VERSION_MAJOR(version_max), CL_VERSION_MINOR(version_max) };
}
#else
GGML_UNUSED(platform_version);
#endif // CL_TARGET_OPENCL_VERSION >= 300
CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_VERSION, 0, nullptr, &param_size));
if (!param_size) {
return {};
}
std::unique_ptr<char[]> param_storage(new char[param_size]);
CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_VERSION, param_size, param_storage.get(), nullptr));
auto param_value = std::string_view(param_storage.get(), param_size);
const std::string version_prefix = "OpenCL C "; // Suffix: "XX.YY <platform-specific-info>"
if (param_value.find(version_prefix) != 0) {
return {};
}
param_value.remove_prefix(version_prefix.length());
return parse_cl_version(param_value);
}
static ADRENO_GPU_GEN get_adreno_gpu_gen(const char *device_name) {
if (strstr(device_name, "730") ||
strstr(device_name, "740") ||
@@ -470,16 +563,11 @@ static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
// A local ref of cl_device_id for convenience
cl_device_id device = backend_ctx->device;
// Check device OpenCL version, OpenCL 2.0 or above is required
size_t device_ver_str_size;
clGetDeviceInfo(device, CL_DEVICE_VERSION, 0, NULL, &device_ver_str_size);
char *device_ver_buffer = (char *)alloca(device_ver_str_size + 1);
clGetDeviceInfo(device, CL_DEVICE_VERSION, device_ver_str_size, device_ver_buffer, NULL);
device_ver_buffer[device_ver_str_size] = '\0';
GGML_LOG_INFO("ggml_opencl: device OpenCL version: %s\n", device_ver_buffer);
ggml_cl_version platform_version = get_opencl_platform_version(default_device->platform->id);
if (strstr(device_ver_buffer, "OpenCL 2") == NULL &&
strstr(device_ver_buffer, "OpenCL 3") == NULL) {
// Check device OpenCL version, OpenCL 2.0 or above is required
ggml_cl_version opencl_c_version = get_opencl_c_version(platform_version, device);
if (opencl_c_version.major < 2) {
GGML_LOG_ERROR("ggml_opencl: OpenCL 2.0 or above is required\n");
return backend_ctx;
}
@@ -516,8 +604,7 @@ static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
// If OpenCL 3.0 is supported, then check for cl_khr_subgroups, which becomes
// optional in OpenCL 3.0 (cl_khr_subgroup is mandatory in OpenCL 2.x)
if (strstr(device_ver_buffer, "OpenCL 3") &&
strstr(ext_buffer, "cl_khr_subgroups") == NULL &&
if (opencl_c_version.major == 3 && strstr(ext_buffer, "cl_khr_subgroups") == NULL &&
strstr(ext_buffer, "cl_intel_subgroups") == NULL) {
GGML_LOG_ERROR("ggml_opencl: device does not support subgroups (cl_khr_subgroups or cl_intel_subgroups) "
"(note that subgroups is an optional feature in OpenCL 3.0)\n");
@@ -581,9 +668,12 @@ static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
const std::string kernel_src = read_file("ggml-opencl.cl");
#endif
std::string compile_opts =
"-cl-std=CL2.0 -cl-mad-enable -cl-unsafe-math-optimizations "
"-cl-finite-math-only -cl-fast-relaxed-math ";
auto opencl_c_std =
std::string("CL") + std::to_string(opencl_c_version.major) + "." + std::to_string(opencl_c_version.minor);
std::string compile_opts = std::string("-cl-std=") + opencl_c_std +
" -cl-mad-enable -cl-unsafe-math-optimizations"
" -cl-finite-math-only -cl-fast-relaxed-math";
backend_ctx->program = build_program_from_source(context, device, kernel_src.c_str(), compile_opts);
// Non matmul kernels.
@@ -693,10 +783,10 @@ static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
CL_CHECK((backend_ctx->kernel_transpose_16 = clCreateKernel(backend_ctx->program_transpose_16, "kernel_transpose_16", &err), err));
// Gemv general
std::string CL_gemv_compile_opts =
" -cl-std=CL2.0 "
" -cl-mad-enable "
" -DSIMDGROUP_WIDTH=" + std::to_string(backend_ctx->adreno_wave_size);
std::string CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
" -cl-mad-enable "
" -DSIMDGROUP_WIDTH=" +
std::to_string(backend_ctx->adreno_wave_size);
if (has_vector_subgroup_broadcast) {
CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
}
@@ -713,12 +803,12 @@ static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general = clCreateKernel(backend_ctx->program_CL_gemv_general, "kernel_gemv_noshuffle", &err), err));
// Gemv 2048, 16384
CL_gemv_compile_opts =
" -cl-std=CL2.0 "
" -cl-mad-enable "
" -DLINE_STRIDE_A=2048 "
" -DBLOCK_STRIDE_A=16384 "
" -DSIMDGROUP_WIDTH=" + std::to_string(backend_ctx->adreno_wave_size);
CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
" -cl-mad-enable "
" -DLINE_STRIDE_A=2048 "
" -DBLOCK_STRIDE_A=16384 "
" -DSIMDGROUP_WIDTH=" +
std::to_string(backend_ctx->adreno_wave_size);
if (has_vector_subgroup_broadcast) {
CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
}
@@ -735,12 +825,12 @@ static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_4096_1_4096, "kernel_gemv_noshuffle", &err), err));
// Gemv 2048, 16384
CL_gemv_compile_opts =
" -cl-std=CL2.0 "
" -cl-mad-enable "
" -DLINE_STRIDE_A=2048 "
" -DBLOCK_STRIDE_A=16384 "
" -DSIMDGROUP_WIDTH=" + std::to_string(backend_ctx->adreno_wave_size);
CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
" -cl-mad-enable "
" -DLINE_STRIDE_A=2048 "
" -DBLOCK_STRIDE_A=16384 "
" -DSIMDGROUP_WIDTH=" +
std::to_string(backend_ctx->adreno_wave_size);
if (has_vector_subgroup_broadcast) {
CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
}
@@ -750,12 +840,12 @@ static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008 = clCreateKernel(backend_ctx->program_CL_gemv_4096_1_11008, "kernel_gemv_noshuffle", &err), err));
// Gemv 5504, 44032
CL_gemv_compile_opts =
" -cl-std=CL2.0 "
" -cl-mad-enable "
" -DLINE_STRIDE_A=5504 "
" -DBLOCK_STRIDE_A=44032 "
" -DSIMDGROUP_WIDTH=" + std::to_string(backend_ctx->adreno_wave_size);
CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
" -cl-mad-enable "
" -DLINE_STRIDE_A=5504 "
" -DBLOCK_STRIDE_A=44032 "
" -DSIMDGROUP_WIDTH=" +
std::to_string(backend_ctx->adreno_wave_size);
if (has_vector_subgroup_broadcast) {
CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
}
@@ -765,12 +855,12 @@ static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_11008_1_4096, "kernel_gemv_noshuffle", &err), err));
// Gemv 16000, 128000
CL_gemv_compile_opts =
" -cl-std=CL2.0 "
" -cl-mad-enable "
" -DLINE_STRIDE_A=16000 "
" -DBLOCK_STRIDE_A=128000 "
" -DSIMDGROUP_WIDTH=" + std::to_string(backend_ctx->adreno_wave_size);
CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
" -cl-mad-enable "
" -DLINE_STRIDE_A=16000 "
" -DBLOCK_STRIDE_A=128000 "
" -DSIMDGROUP_WIDTH=" +
std::to_string(backend_ctx->adreno_wave_size);
if (has_vector_subgroup_broadcast) {
CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
}
@@ -1007,17 +1097,18 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
case GGML_OP_ADD:
case GGML_OP_SCALE:
case GGML_OP_MUL:
return true;
return op->src[0]->type == GGML_TYPE_F32;
case GGML_OP_UNARY:
switch (ggml_get_unary_op(op)) {
case GGML_UNARY_OP_GELU:
case GGML_UNARY_OP_SILU:
case GGML_UNARY_OP_RELU:
return ggml_is_contiguous(op->src[0]);
return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
default:
return false;
}
case GGML_OP_CLAMP:
return op->src[0]->type == GGML_TYPE_F32;
case GGML_OP_SOFT_MAX:
case GGML_OP_NORM:
case GGML_OP_RMS_NORM:
@@ -2573,26 +2664,33 @@ static void ggml_cl_norm(ggml_backend_t backend, const ggml_tensor * src0, const
memcpy(&eps, dst->op_params, sizeof(float));
const int ne00 = src0 ? src0->ne[0] : 0;
const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
const int ne01 = src0 ? src0->ne[1] : 0;
const int ne02 = src0 ? src0->ne[2] : 0;
const int ne03 = src0 ? src0->ne[3] : 0;
GGML_ASSERT(ggml_is_contiguous_1(src0));
const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
const int nth = MIN(64, ne00);
cl_kernel kernel = backend_ctx->kernel_norm;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(float), &eps));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(float)*nth, NULL));
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(float), &eps));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float)*nth, NULL));
const int64_t nrows = ggml_nrows(src0);
size_t global_work_size[] = {(size_t)nrows*nth, 1, 1};
size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
size_t local_work_size[] = {(size_t)nth, 1, 1};
#ifdef GGML_OPENCL_PROFILING
@@ -2630,16 +2728,19 @@ static void ggml_cl_rms_norm(ggml_backend_t backend, const ggml_tensor * src0, c
memcpy(&eps, dst->op_params, sizeof(float));
const int ne00 = src0 ? src0->ne[0] : 0;
const int ne01 = src0 ? src0->ne[1] : 0;
const int ne02 = src0 ? src0->ne[2] : 0;
const int ne03 = src0 ? src0->ne[3] : 0;
const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
GGML_ASSERT(ne00 % 4 == 0);
GGML_ASSERT(ggml_is_contiguous_1(src0));
const int nth = MIN(64, ne00);
const int64_t nrows = ggml_nrows(src0);
size_t global_work_size[] = {(size_t)nrows*nth, 1, 1};
size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
size_t local_work_size[] = {(size_t)nth, 1, 1};
cl_kernel kernel = backend_ctx->kernel_rms_norm;
@@ -2654,15 +2755,20 @@ static void ggml_cl_rms_norm(ggml_backend_t backend, const ggml_tensor * src0, c
sizeof(local_work_size), local_work_size,
sizeof(size_t), &sgs, NULL));
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(float), &eps));
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(float), &eps));
// This is local memory - the size depends on subgroup size.
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(float)*nth/sgs, NULL));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float)*nth/sgs, NULL));
#ifdef GGML_OPENCL_PROFILING
cl_event evt;

View File

@@ -506,14 +506,23 @@ kernel void kernel_norm(
global float * dst,
ulong offsetd,
int ne00,
int ne01,
int ne02,
int ne03,
ulong nb01,
ulong nb02,
ulong nb03,
float eps,
local float * sum
) {
src0 = (global void*)((global char*)src0 + offset0);
dst = (global void*)((global char*)dst + offsetd);
global float * x = (global float *) ((global char *) src0 + get_group_id(0)*nb01);
int i03 = get_group_id(2);
int i02 = get_group_id(1);
int i01 = get_group_id(0);
global float * x = (global float *) ((global char *) src0 + i03*nb03 + i02*nb02 + i01*nb01);
// MEAN
// parallel sum
@@ -533,7 +542,7 @@ kernel void kernel_norm(
// recenter and VARIANCE
barrier(CLK_LOCAL_MEM_FENCE);
global float * y = dst + get_group_id(0)*ne00;
global float * y = dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
sum[get_local_id(0)] = 0.0f;
for (int i00 = get_local_id(0); i00 < ne00; i00 += get_local_size(0)) {
y[i00] = x[i00] - mean;
@@ -566,14 +575,23 @@ kernel void kernel_rms_norm(
global float * dst,
ulong offsetd,
int ne00,
int ne01,
int ne02,
int ne03,
ulong nb01,
ulong nb02,
ulong nb03,
float eps,
local float * sum // Note, the size depends on number of subgroups
) {
src0 = (global void*)((global char*)src0 + offset0);
dst = (global float*)((global char*)dst + offsetd);
global float4 * x = (global float4 *) ((global char *) src0 + get_group_id(0)*nb01);
int i03 = get_group_id(2);
int i02 = get_group_id(1);
int i01 = get_group_id(0);
global float4 * x = (global float4 *) ((global char *) src0 + i03*nb03 + i02*nb02 + i01*nb01);
global float * x_scalar = (global float *) x;
float4 sumf = 0;
float all_sum = 0;
@@ -607,7 +625,7 @@ kernel void kernel_rms_norm(
const float mean = sum[0];
const float scale = 1.0f/sqrt(mean + eps);
global float4 * y = (global float4 *) (dst + get_group_id(0)*ne00);
global float4 * y = (global float4 *) (dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
global float * y_scalar = (global float *) y;
for (int i00 = get_local_id(0); i00 < ne00/4; i00 += get_local_size(0)) {
y[i00] = x[i00] * scale;

View File

@@ -2332,6 +2332,7 @@ struct ggml_tensor * ggml_concat(
struct ggml_tensor * b,
int dim) {
GGML_ASSERT(dim >= 0 && dim < GGML_MAX_DIMS);
GGML_ASSERT(a->type == b->type);
int64_t ne[GGML_MAX_DIMS];
for (int d = 0; d < GGML_MAX_DIMS; ++d) {

View File

@@ -1 +1 @@
58ecf6b96d887e408b6869915863fa1126483d51
c7dfe3d174f98b14801f9ed12f129179d3e7b638

View File

@@ -480,6 +480,21 @@ static void test_msgs_oaicompat_json_conversion() {
"]"
),
common_chat_msgs_to_json_oaicompat<json>({message_assist_call_python}).dump(2));
auto res = common_chat_msgs_parse_oaicompat(json::parse("[{\"role\": \"assistant\", \"tool_calls\": []}]"));
assert_equals<size_t>(1, res.size());
assert_equals<std::string>(res[0].role, "assistant");
assert_equals(true, res[0].content.empty());
assert_equals(true, res[0].tool_calls.empty());
try {
common_chat_msgs_parse_oaicompat(json::parse("[{\"role\": \"assistant\"}]"));
throw std::runtime_error("Expected exception");
} catch (const std::exception & e) {
if (std::string(e.what()).find("'content'") == std::string::npos) {
throw std::runtime_error("Expected exception about missing 'content'");
}
}
}
static void test_tools_oaicompat_json_conversion() {
@@ -751,6 +766,19 @@ static void test_template_output_parsers() {
"{\n \"name\": \"special_function\", \"arguments\": {\"arg1\": 1}}",
COMMON_CHAT_FORMAT_HERMES_2_PRO));
assert_msg_equals(message_assist_thoughts_unparsed_think,
common_chat_parse("<think>I'm thinking</think>Hello, world!\nWhat's up?",
COMMON_CHAT_FORMAT_HERMES_2_PRO));
assert_msg_equals(message_assist_thoughts_unparsed_think,
common_chat_parse("I'm thinking</think>Hello, world!\nWhat's up?",
COMMON_CHAT_FORMAT_HERMES_2_PRO));
assert_msg_equals(message_assist_thoughts,
common_chat_parse("<think>I'm thinking</think>Hello, world!\nWhat's up?",
COMMON_CHAT_FORMAT_HERMES_2_PRO_EXTRACT_REASONING));
assert_msg_equals(message_assist_thoughts,
common_chat_parse("I'm thinking</think>Hello, world!\nWhat's up?",
COMMON_CHAT_FORMAT_HERMES_2_PRO_EXTRACT_REASONING));
test_templates(tmpls.get(), end_tokens, message_assist, tools, "Hello, world!\nWhat's up?", /* expect_grammar_triggered= */ false);
test_templates(tmpls.get(), end_tokens, message_assist_call, tools,
"<tool_call>\n"

View File

@@ -120,13 +120,7 @@ int main(int argc, char * argv[]) {
generate_data(0.0, test_data.size(), test_data.data());
generate_data(1.0, test_data2.size(), test_data2.data());
// Initialize GGML, ensures float conversion tables are initialized
struct ggml_init_params ggml_params = {
/* .mem_size = */ 1*1024,
/* .mem_buffer = */ NULL,
/* .no_alloc = */ true,
};
struct ggml_context * ctx = ggml_init(ggml_params);
ggml_cpu_init();
int num_failed = 0;
bool failed = false;
@@ -188,7 +182,5 @@ int main(int argc, char * argv[]) {
printf("%d tests failed\n", num_failed);
}
ggml_free(ctx);
return num_failed > 0;
}