Compare commits

..

270 Commits
b4875 ... b5145

Author SHA1 Message Date
kimminsu
12b17501e6 opencl: fix incorrect local_size index in profiling log (#12868) 2025-04-16 14:25:57 -07:00
Jeff Bolz
015022bb53 vulkan: enable coopmat2 FA gqa and split_k optimizations more often (#12931)
The grouped query attention optmization doesn't require a power of two ratio,
the only thing relying on it was the modulo operation written as bitwise &.

split_k need not depend on gqa_ratio - enable it any time there's only one
workgroup in the X dimension. The shader gets the split index from the x coord,
and multiple workgroups in the X dimension (pre-split) indicates a larger
FA operation that wouldn't need splitting.
2025-04-16 20:37:25 +02:00
Chenguang Li
b43d89e311 CANN: Add 310P operator support check (#12962) 2025-04-16 16:21:05 +08:00
lhez
80f19b4186 opencl: split ggml-opencl.cl into multiple files and cleanup (#12886)
* opencl: refactor - split the kernel files

---------

Co-authored-by: Shangqing Gu <quic_shawngu@quicinc.com>

* opencl: split more kernels into separate files

* opencl: specify subgroup size instead of querying it

* opencl: refine Adreno cl compiler version parsing

* opencl: skip some kernels not used by Adreno on old compilers

* opencl: refine logic for selecting Adreno kernels

* opencl: refine Adreno cl compiler version

* opencl: cleanup preprocessor for kernels

* opencl: consider Adreno CL compiler on Windows

* opencl: add final newline for `mul_mv_f16_f16.cl`

---------

Co-authored-by: Shangqing Gu <quic_shawngu@quicinc.com>
2025-04-15 12:26:00 -07:00
Georgi Gerganov
f8f820cc4d metal : add FA-vec kernels for head size 96 (#12952)
ggml-ci
2025-04-15 14:45:05 +03:00
hipudding
54a7272043 CANN: Add x86 build ci (#12950)
* CANN: Add x86 build ci

* CANN: fix code format
2025-04-15 12:08:55 +01:00
David Huang
84778e9770 CUDA/HIP: Share the same unified memory allocation logic. (#12934)
Replace compile-time `GGML_HIP_UMA` with environment variable `GGML_CUDA_ENABLE_UNIFIED_MEMORY`. This unifies the usage on NVIDIA and AMD GPUs, and allows a single binary to be shared between integrated and dedicated GPUs.
2025-04-15 11:20:38 +02:00
Akarshan Biswas
510676475f SYCL: Add ROPE vision kernel (#12887)
* SYCL: Add ROPE vision kernel

* Add comment about rope mode
2025-04-15 10:37:42 +02:00
Juk Armstrong
daa422881a llama : DeepSeek V2/V3 MLA implementation (#12801)
* Merged using squash to remove all noise commit messages

* Force flash attention off for `LLM_ARCH_DEEPSEEK2` - embedding too large

* Removed 3 conts (2x RoPE and 1x RMS-norm)

* Changed to use `<cmath>` instead of `<math.h>`

* Reverted removal of the 3 conts

* Used `reshape` in `llm_graph_context::build_attn_mha()`

* Use `k_pe = ggml_reshape`

* Removed the 3 conts again

* Removed the 3D views of `wk_b` and `wv_b`, and just save and 3D in GGUF

* Removed MQA optimisation from `build_attn_mha()` as no gains now

* Simplified `is_mla` branch in `llm_build_deepseek2()`

* Removed `build_attn_mla` and added `nullptr` to all `build_atnn` calls

* Fixed call to `build_attn` in `llm_build_t5_enc`
2025-04-15 09:49:57 +03:00
Srihari-mcw
eccc7a1602 ggml : Add AVX512 implementation of GEMM - Q4_Kx8 (#12829)
* Add AVX512 implementation of GEMM - q4kx8

* Update changes to remove unnecessary whitespaces
2025-04-15 09:22:36 +03:00
Chenguang Li
0019279bb5 CANN: Opt ROPE optimization (#12865)
* [CANN]Opt ROPE optimization

* [CANN]Codestyle adjustment

* [CANN]Fix the ROPE precision issue

* [CANN]codestyle fix

* [CANN]add rope unsupport case

Signed-off-by: noemotiovon <noemotiovon@gmail.com>
2025-04-15 10:09:35 +08:00
Xinpeng Dou
b0c75ac9f9 CANN: Optimize CANN buffer pool memory management (#12875)
Multiple optional memory pools are provided for CANN, including VMM, 
priority queue-based, and traditional memory pools.
1.When the memory pool is available and GGML_CANN_DISABLE_VMM_POOL 
   is not defined, the VMM pool is selected by default.
2.Otherwise, if GGML_CANN_ENABLE_BUF_PRIO_POOL is defined, 
   the priority queue-based memory pool is used.
3.If neither condition is met, the default memory pool is used.
2025-04-15 10:04:24 +08:00
Russyyds
d6d2c2ab8c Add performance print for gemma3 in example (#12929) 2025-04-14 19:18:20 +02:00
Akarshan Biswas
75afa0ae31 SYCL: Fix im2col (#12910)
* SYCL: Fix im2col

* restore local workgroup size adjustments for large inputs

* restore format
2025-04-14 14:23:53 +02:00
Radoslav Gerganov
c772d54926 rpc : use ggml_context_ptr (#12938) 2025-04-14 13:59:34 +03:00
Neo Zhang Jianyu
81c7e64fc2 dsiable curl lib check, this action is missed by commit bd3f59f812 (#12761) (#12937) 2025-04-14 18:19:07 +08:00
Georgi Gerganov
526739b879 sync : ggml
ggml-ci
2025-04-14 09:26:15 +03:00
cmdr2
a25355e264 cpu: fix cpu backend's supports-op for GET_ROWS_BACK. fixes a fatal when running test-backend-ops with only the CPU backend (ggml/1190) 2025-04-14 09:26:15 +03:00
SXX
e959d32b1c ggml: use _mm[512/256]_dpbusd[_avx]_epi32 to directly accumulate into the result register (#12773)
* ggml: use _mm[512/256]_dpbusd[_avx]_epi32 to directly accumulate into the result register

* simplifies the codebase by removing redundant functions
2025-04-14 08:47:55 +03:00
Alan Gray
307bfa253d ggml: disable CUDA graphs for unsupported DUP and CONT node types (#12891)
Fixes #12798
2025-04-13 23:12:21 +02:00
Ed Addario
71e90e8813 quantize: Handle user-defined quantization levels for additional tensors (#12511)
* Add llama_model_quantize_params parameters

* Add new quantize parameters parsing and validation

* Update usage

* Add new parameters defaults

* Add new quantization parameters logic

* Add llama_model_quantize_params parameters

* Add new quantize parameters parsing and validation

* Update usage

* Add new parameters defaults

* Add new quantization parameters logic

* Minor refactoring as per the contributors' coding guidelines

* Update descriptions to match existing style

* Add llama_model_quantize_params parameters

* Add new quantize parameters parsing and validation

* Update usage

* Add new parameters defaults

* Add new quantization parameters logic

* Minor refactoring as per the contributors' guidelines

* Implement general --tensor-type instead of tensor-specific command option

* Fix implied type bug

* Restore missing #includes

* Add regex capability for tensor selection

* Refactor function name and update ALLOWED_TENSOR_TYPE

* Add missing #include

* Handle edge case when tensor name is cls.output

* Minor logging improvement
2025-04-13 21:29:28 +03:00
Prajwal B Mehendarkar
bc091a4dc5 common : Define cache directory on AIX (#12915) 2025-04-12 17:33:39 +02:00
Jeff Bolz
a4837577aa vulkan: use aligned loads for flash attention mask (#12853)
Rewrite the stride logic for the mask tensor in the FA shader to force the
stride to be aligned, to allow using more efficient loads.
2025-04-12 10:44:48 +02:00
Matt Clayton
e59ea539b8 llava: Fix cpu-only clip image encoding sefault (#12907)
* llava: Fix cpu-only clip image encoding

* clip : no smart ptr for ggml_backend_t

* Fix for backend_ptr push_back

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-04-12 07:29:03 +02:00
Georgi Gerganov
c94085df28 server : add VSCode's Github Copilot Chat support (#12896)
* server : add VSCode's Github Copilot Chat support

* cont : update handler name
2025-04-11 23:37:41 +03:00
yuri@FreeBSD
e8a62631b3 rpc : Set cache directory in rpc-server.cpp on FreeBSD (#12903) 2025-04-11 22:04:14 +02:00
Olivier Chafik
b6930ebc42 tool-call: fix non-tool-calling grammar crashes w/ Qwen / Hermes 2 templates (#12900)
* `tool-call`: don't call common_chat_params_init_hermes_2_pro when there aren't tools (or when there's a schema)

* test all chat formats w/o tools
2025-04-11 21:47:52 +02:00
yuri@FreeBSD
68b08f36d0 common : Define cache directory on FreeBSD (#12892) 2025-04-11 21:45:44 +02:00
Ewan Crawford
578754b315 sycl: Support sycl_ext_oneapi_limited_graph (#12873)
The current usage of the SYCL-Graph extension checks for
the `sycl_ext_oneapi_graph` device aspect. However, it is also
possible to support `sycl_ext_oneapi_limied_graph` devices that
don't support update
2025-04-11 15:32:14 +02:00
tastelikefeet
b2034c2b55 contrib: support modelscope community (#12664)
* support download from modelscope

* support login

* remove comments

* add arguments

* fix code

* fix win32

* test passed

* fix readme

* revert readme

* change to MODEL_ENDPOINT

* revert tail line

* fix readme

* refactor model endpoint

* remove blank line

* fix header

* fix as comments

* update comment

* update readme

---------

Co-authored-by: tastelikefeet <yuze.zyz@alibaba-inc/com>
2025-04-11 14:01:56 +02:00
Yuxuan Zhang
06bb53ad9b llama-model : add Glm4Model implementation for GLM-4-0414 (#12867)
* GLM-4-0414

* use original one

* Using with tensor map

* fix bug

* change order

* change order

* format with flask8
2025-04-11 12:10:10 +02:00
Xuan-Son Nguyen
0c50923944 clip : use smart pointer (⚠️ breaking change) (#12869)
* clip : use smart pointers

* fix warmup

* add forward declaration

* misisng include

* fix include (2)

* composite

* simplify batch ptr

* fix conflict
2025-04-11 12:09:39 +02:00
Akarshan Biswas
fccf9cae83 SYCL: Add fp16 type support to unary op kernels (#12788)
* SYCL: Add fp16 support to some elementwise OP kernels

* remove comment

ggml-ci

* Use static_cast directly

* remove not needed cast from tanh

* Use static cast and remove unneeded castings

* Adjust device_support_op for unary OPs

* Use cast_data and typed_data struct to deduplicate casting code
2025-04-11 16:03:50 +08:00
Daniel Han
ec6c09d0fa convert : Llama4 RoPE fix (#12889) 2025-04-11 09:49:09 +02:00
R0CKSTAR
8ac9f5d765 ci : Replace freediskspace to free_disk_space in docker.yml (#12861)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-04-11 09:26:17 +02:00
Daniel Bevenius
12e9158f25 xcf : add check for visionos build version (#12854)
This commit adds a check for the visionos build version used with vtool
in build-xcframework.sh. The script now checks the Xcode version and
determines whether to use "xros" or "visionos" for the build version.

This commit also uses xcrun for the vtool so that the version of vtool
in xcode command line tools is used instead of the one in the system
path.

Refs: https://github.com/ggml-org/whisper.cpp/pull/2994#issuecomment-2773292223
2025-04-11 09:24:34 +02:00
Xuan-Son Nguyen
5b1f13cb64 convert : proper tensor name mapping for llama4 (#12870)
* Llama-4 mapping

* remove hacky renaming

---------

Co-authored-by: Daniel Han <danielhanchen@gmail.com>
2025-04-11 09:23:37 +02:00
Xuan-Son Nguyen
8b91d5355a llama : correct rms norm for llama 4 (#12882) 2025-04-11 08:49:50 +02:00
Aaron Teo
0fed24c347 ggml: fix compilation error s390x (#12848)
* ggml: fixes #12846 compilation error

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

Co-authored-by: Aleksei Nikiforov <aleksei.nikiforov@ibm.com>

* ggml: add documentation for code change

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

Co-authored-by: Aleksei Nikiforov <aleksei.nikiforov@ibm.com>

* ggml: refactor to type-cast and update documentation

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

Co-authored-by: Aleksei Nikiforov <aleksei.nikiforov@ibm.com>

* ggml: update documentation to provide full issue link

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

Co-authored-by: Aleksei Nikiforov <aleksei.nikiforov@ibm.com>

---------

Co-authored-by: Aleksei Nikiforov <aleksei.nikiforov@ibm.com>
2025-04-11 08:20:07 +03:00
Georgi Gerganov
47ba87d0a4 sync : ggml 2025-04-11 00:17:47 +03:00
Georgi Gerganov
1d2b613445 tests : fix init order (#0)
ggml-ci
2025-04-11 00:17:47 +03:00
Georgi Gerganov
eb420e1148 sync : ggml
ggml-ci
2025-04-11 00:17:47 +03:00
cmdr2
cb79c2e7fa ggml: don't include arm_neon.h when using CUDA 12 with ARM Neon (ggml/1187)
fix #1186
2025-04-11 00:17:47 +03:00
Diego Devesa
fe92821ea9 ggml : add bilinear upscale support (ggml/1185) 2025-04-11 00:17:47 +03:00
Diego Devesa
459895c326 ggml : add more generic custom op, remove deprecated custom ops (ggml/1183)
* ggml : add more generic ggml_custom op

* ggml : remove deprecated custom ops
2025-04-11 00:17:47 +03:00
Georgi Gerganov
e4bf72d631 scripts : fix sync-ggml-am.sh 2025-04-11 00:17:47 +03:00
Xuan-Son Nguyen
8b9cc7cdd8 llava : introduce libmtmd (#12849)
* wip llava2

* migrated gemma3 to llava2

* add timings

* correct pre/postfix

* fix missing include

* fix compilation unused var warn

* update llava2_tokenize

* change name llava2 --> mtmd

* improve api

* refine helpers

* Update examples/llava/mtmd.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-04-10 22:57:16 +02:00
Xuan-Son Nguyen
64eda5deb9 convert : ability to lazy-load safetensors remotely without downloading to disk (#12820)
* gguf util : add SafetensorRemote

* fix style

* convert: add --remote option

* convert : allow using lazy remote tensors

It's a bit slow for now since everything is blocking and single-threaded.

* correct metadata.name

* small style fix

* support HF_TOKEN

* convert : use writeable buffer for remote lazy tensors

* convert : fix flake8 lint regarding lamdba assigment

* multithreaded download

* multithread: print debug

* fix style

* Revert "multithreaded download"

This reverts commit 42fc895ace.

* bring back _get_request_headers

---------

Co-authored-by: Francis Couture-Harpin <git@compilade.net>
2025-04-10 17:24:44 +02:00
Chenguang Li
fe5b78c896 CANN: Support more ops (#12841)
* [CANN]Support Opt LOG && MEAN && PAD_REFLECT_1D

* [CANN]Support COUNT_EQUAL && STEP && SGN

* [CANN]codestyle adjustment

* [CANN]codestyle adjustment

---------

Signed-off-by: noemotiovon <noemotiovon@gmail.com>
2025-04-10 08:51:52 +08:00
Prajwal B Mehendarkar
11d07e1e69 Fixes #12823 (#12830)
* Including limits file on AIX

* Fixes #12823
2025-04-10 01:18:01 +02:00
Rudi Servo
b0091ecc1e docker : added all CPU to GPU images (#12749) 2025-04-10 01:17:12 +02:00
Piotr Kubaj
31f7803bc4 ggml-cpu-impl.h: do not redefine bool on POWER9 (#12856)
error: unknown type name '_Bool'
2025-04-10 01:00:34 +02:00
Piotr Kubaj
2391506ace ggml-impl.h: fix build on POWER9 (#12855)
error: ISO C++17 does not allow 'register' storage class specifier
2025-04-10 01:00:25 +02:00
Bo Zheng
d3bd7193ba llama : Support Qwen3 and Qwen3MoE (#12828)
* add qwen3 & qwen3moe support.

* fix

---------

Co-authored-by: bozheng-hit <dsoul0621@gmail.com>
2025-04-09 11:47:36 +02:00
R0CKSTAR
d9a63b2f2e musa: enable freediskspace for docker image build (#12839)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-04-09 11:22:30 +02:00
Romain Biessy
8ed71242f4 sycl: update documentation to use -no-cnv (#12845) 2025-04-09 11:22:04 +02:00
Plamen Minev
381603a775 ci: detach common from the library (#12827)
* fix: detach common from the library

* fix: building chat test template
2025-04-09 10:11:11 +02:00
Xuan-Son Nguyen
65a69e6e1b clip : do not print ftype (#12832) 2025-04-09 10:09:53 +02:00
Georgi Gerganov
47277d6d1d readme : add rpc backend (#12842) 2025-04-09 10:54:42 +03:00
Chenguang Li
6e1c4cebdb CANN: Support Opt CONV_TRANSPOSE_1D and ELU (#12786)
* [CANN] Support ELU and CONV_TRANSPOSE_1D

* [CANN]Modification review comments

* [CANN]Modification review comments

* [CANN]name adjustment

* [CANN]remove lambda used in template

* [CANN]Use std::func instead of template

* [CANN]Modify the code according to the review comments

---------

Signed-off-by: noemotiovon <noemotiovon@gmail.com>
2025-04-09 14:04:14 +08:00
Jeff Bolz
0090950f67 vulkan: In coopmat2 mmq, load q4_k/q5_k scales through shared memory (#12833)
q4_k and q5_k had a lot of redundant global loads where the same 16B of
scale information is repeatedly loaded and decoded during each loop iteration.
This change restructures the loops to more explicitly iterate over whole
blocks in the outer loop (with unrolled inner loop) and to copy/decode the
scale data into shared memory once at the start of each outer loop. The copy
is pipelined so the scale load from global memory is relatively cheap.

This improves q4_k/q5_k model prompt processing performance by around 5-7%.
I briefly tried applying this to q6_k and q4_0, and it didn't help for q6_k
and hurt for q4_0.

The big "else" path in mul_mm_cm2.comp that had all the clamped/unclamped
variants isn't used as often as it originally was (e.g. due to the padded_N
change), so I trimmed it down to offset some of the new complexity of the
semi-manual loop unrolling.
2025-04-09 07:25:08 +02:00
Jeff Bolz
7ecd780b1a vulkan: Use fp16 for the flash attention P*V multiplication (#12783)
This is consistent with the ggml-cuda behavior and the mul_mat fallback.
2025-04-09 07:12:57 +02:00
Sigbjørn Skjæret
7538246e7c cuda : add f32 to bf16 copy op (#12806)
This allows BF16 KV-cache on CUDA.
2025-04-08 23:21:31 +02:00
Matt Clayton
b32efad2bc llava: improve clip_ctx destructor to not memleak load_image_size (#12834) 2025-04-08 22:01:58 +02:00
Georgi Gerganov
a19b5cef16 llama : fix FA when KV cache is not used (i.e. embeddings) (#12825)
* ggml : FA supports F32 V

* graph : cast KV to F16 when the KV cache is not used

ggml-ci

* server : add test that exercises embeddings with FA enabled

ggml-ci
2025-04-08 19:54:51 +03:00
Xuan-Son Nguyen
78a1ba0a4f server : fix thread.join() on exit (#12831) 2025-04-08 18:37:06 +02:00
dm4
2dabf759e7 llava: add more helper functions to check projector types in clip context (#12824)
Signed-off-by: dm4 <sunrisedm4@gmail.com>
2025-04-08 15:49:13 +02:00
Prajwal B Mehendarkar
1d343b4069 arg : Including limits file on AIX (#12822) 2025-04-08 14:30:59 +02:00
characharm
8ca6e1c3a4 server : webui : Improve Chat Input with Auto-Sizing Textarea (#12785)
* Update ChatScreen.tsx

* useAutosizeTextarea.ts

useAutosizeTextarea to encapsulate the logic.

* Implement responsive auto-sizing chat textarea

Replaces the manual textarea resizing with an automatic height adjustment based on content.

- `useChatTextarea` hook to manage textarea state and auto-sizing logic via refs, preserving the optimization
- Textarea now grows vertically up to a maximum height (`lg:max-h-48`) on large screens (lg breakpoint and up).
- Disables auto-sizing and enables manual vertical resizing (`resize-vertical`) on smaller screens for better mobile usability.
- Aligns the "Send" button to the bottom of the textarea (`items-end`) for consistent positioning during resize.

* -update compressed index.html.gz after npm run build
-refactor: replace OptimizedTextareaValue with AutosizeTextareaApi in VSCode context hook

* chore: normalize line endings to LF
refactor: AutosizeTextareaApi -> chatTextareaApi

* refactor: Rename interface to PascalCase

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-04-08 11:14:59 +02:00
Neo Zhang Jianyu
656babd6c2 Revert "sycl:remove redundant memcopy in function ggml_backend_sycl_buffer_set_tensor" (#12812)
* Revert "sycl: remove redundant memcopy in function ggml_backend_sycl_buffer_s…"

This reverts commit 518a01480e.

* Update ggml/src/ggml-sycl/ggml-sycl.cpp

* Update ggml/src/ggml-sycl/ggml-sycl.cpp

* rm tail space
2025-04-08 15:03:21 +08:00
compilade
a226bc7a9a gguf-py : support lazy tensor splitting (#12809)
* gguf-py : support lazy tensor splitting

Splitting usually involves returning tuples of tensors,
which need to be handled properly to avoid early eager evaluation.

* gguf-py : fix flake8 lint
2025-04-08 09:03:07 +02:00
Xuan-Son Nguyen
1466621e73 llama : Support llama 4 text-only (#12791)
* llama4 conversion

* initial support, no chat template

* clean up a bit

* fix tokenizer conversion

* correct hparams

* try this

* fix shexp

* ffn_inp_normed

* chat template

* clean up model conversion

* add_bos

* add scale_before_ffn

* fix order

* weight_before_ffn

* llm_graph_input_attn_temp

* add chunk attn mask

* build_inp_attn_scale()

* add comment about ggml_repeat

* clarify comments

* fix build
2025-04-07 23:06:44 +02:00
lhez
82974011f3 opencl: better identify Adreno GPU (#12760) 2025-04-07 13:22:54 -07:00
stduhpf
4ccea213bc hellaswag: display estimated score confidence interval (#12797) 2025-04-07 18:47:08 +03:00
Georgi Gerganov
1a1ab7e7a4 cuda : fix HIP and MUSA BF16 (#0)
ggml-ci
2025-04-07 18:44:17 +03:00
Georgi Gerganov
a4e46e28f9 sync : ggml
ggml-ci
2025-04-07 18:44:17 +03:00
Georgi Gerganov
ff067dbcb9 ggml : simplify Arm fp16 CPU logic (ggml/1177)
* ggml : simlpify Arm fp16 CPU logic

ggml-ci

* cont : bring back CUDA/MUSA checks

ggml-ci
2025-04-07 18:44:17 +03:00
Sigbjørn Skjæret
36ca8b3628 CUDA: don't convert BF16 weights to FP32 (ggml/1174)
* add bf16 support

* use convert_from_bf16_cuda instead of convert_unary_cuda for f32

* revert 7ec5085

* move functionality into convert_unary with constexpr
2025-04-07 18:44:17 +03:00
cmdr2
995083e4ed cpu: move all the operators into a separate c++ file (except mul_mat) (ggml/1167)
* cpu: refactor SIMD mappings and vectorized op functions into separate files

* Fix warning for ggml_float to float

* Fix warnings

* cpu: move all the operations (except mul_mat) to a separate c++ file

* fix whitespace

* Update ggml/src/ggml-cpu/vec.h

Co-authored-by: Diego Devesa <slarengh@gmail.com>

* Fix PR comments - use GGML_UNUSED, use cassert in ops.cpp

* Reverse the order of import for ops.h and vec.h, to match what was present in ggml-cpu.c previously

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-04-07 18:44:17 +03:00
zhouwg
518a01480e sycl: remove redundant memcopy in function ggml_backend_sycl_buffer_set_tensor (#12734) 2025-04-07 17:22:57 +02:00
Xuan-Son Nguyen
e391d3ee8d ci : no curl on ggml-ci (#12796) 2025-04-07 15:37:28 +03:00
Xuan-Son Nguyen
bd3f59f812 cmake : enable curl by default (#12761)
* cmake : enable curl by default

* no curl if no examples

* fix build

* fix build-linux-cross

* add windows-setup-curl

* fix

* shell

* fix path

* fix windows-latest-cmake*

* run: include_directories

* LLAMA_RUN_EXTRA_LIBS

* sycl: no llama_curl

* no test-arg-parser on windows

* clarification

* try riscv64 / arm64

* windows: include libcurl inside release binary

* add msg

* fix mac / ios / android build

* will this fix xcode?

* try clearing the cache

* add bunch of licenses

* revert clear cache

* fix xcode

* fix xcode (2)

* fix typo
2025-04-07 13:35:19 +02:00
zhouwg
52b3d71f12 CANN: fix typo in ggml-cann (#12733) 2025-04-07 19:34:14 +08:00
hipudding
d0d5b2232b CANN: Refactor to reduce duplicate code (#12731)
* CANN: Refactor to reduce duplicate code

* CANN: fix review comment
2025-04-07 17:10:36 +08:00
R0CKSTAR
916c83bfe7 musa: fix compilation warnings in mp_22/31 (#12780)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-04-06 15:23:54 +02:00
Jeff Bolz
0c74b04376 vulkan: fix NaN issue in flash attention shader (#12776)
Use -FLT_MAX/2 rather than -inf as the initial value for computing the maximum.
2025-04-06 11:03:47 +02:00
Jeff Bolz
80b717d493 vulkan: Use unclamped loads for flash attention mask (#12720)
nem1 must be a multiple of GGML_KQ_MASK_PAD, and GGML_KQ_MASK_PAD is a multiple
of the number of rows in the matrix. The KV dim is a multiple of the number of
columns for the aligned shader.
2025-04-06 10:47:13 +02:00
0cc4m
6bf28f0111 Vulkan: Tune Vulkan mmq int dot shader for performance (#12767)
Some checks failed
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/cpu.Dockerfile freediskspace:false full:true light:true platforms:linux/amd64,linux/arm64 server:true tag:cpu]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/cuda.Dockerfile freediskspace:false full:true light:true platforms:linux/amd64 server:true tag:cuda]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/intel.Dockerfile freediskspace:false full:true light:true platforms:linux/amd64 server:true tag:intel]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/musa.Dockerfile freediskspace:false full:true light:true platforms:linux/amd64 server:true tag:musa]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/vulkan.Dockerfile freediskspace:false full:true light:true platforms:linux/amd64 server:true tag:vulkan]) (push) Has been cancelled
2025-04-05 18:04:03 +02:00
Sergey Fedorov
f1e3eb4249 common : fix includes in arg.cpp and gemma3-cli.cpp (#12766)
* arg.cpp: add a missing include

* gemma3-cli.cpp: fix cinttypes include
2025-04-05 17:46:00 +02:00
Xuan-Son Nguyen
0364178ca2 clip : refactor clip_init, add tests (#12757)
* refactor clip_init

* fix loading file

* fix style

* test ok

* better test with report

* add missing headers

* clarify

* add KEY_MM_PATCH_MERGE_TYPE

* remove bool has_* pattern

* Apply suggestions from code review

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update examples/llava/clip.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* use ggml_soft_max_ext

* refactor logging system

* add minicpm-v-o 2.6 for testing

* use nullptr everywhere

* fix Yi-VL model

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-04-05 17:17:40 +02:00
エシュナヴァリシア
c6ff5d2a8d common: custom hf endpoint support (#12769)
Some checks failed
Close inactive issues / close-issues (push) Has been cancelled
* common: custom hf endpoint support

Add support for custom huggingface endpoints via HF_ENDPOINT environment variable

You can now specify a custom huggingface endpoint using the HF_ENDPOINT environment variable when using the --hf-repo flag, which works similarly to huggingface-cli's endpoint configuration.

Example usage:
HF_ENDPOINT=https://hf-mirror.com/ ./bin/llama-cli --hf-repo Qwen/Qwen1.5-0.5B-Chat-GGUF --hf-file qwen1_5-0_5b-chat-q2_k.gguf -p "The meaning to life and the universe is"

The trailing slash in the URL is optional:
HF_ENDPOINT=https://hf-mirror.com ./bin/llama-cli --hf-repo Qwen/Qwen1.5-0.5B-Chat-GGUF --hf-file qwen1_5-0_5b-chat-q2_k.gguf -p "The meaning to life and the universe is"

* Update common/arg.cpp

readability Improvement

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>

* Apply suggestions from code review

---------

Co-authored-by: ベアトリーチェ <148695646+MakiSonomura@users.noreply.github.com>
Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-04-05 15:31:42 +02:00
Olivier Chafik
7a84777f42 sync: minja (#12739)
* sync: minja

https://github.com/google/minja/pull/57

* fix json include
2025-04-04 21:16:39 +01:00
Georgi Gerganov
3e1d29348b kv-cache : simplify + fix warning for recurrent models (#12756)
ggml-ci
2025-04-04 21:48:10 +03:00
bandoti
1be76e4620 ci: add Linux cross-compile build (#12428) 2025-04-04 14:05:12 -03:00
Nauful Shaikh
b772394297 server : webui : Upgrade daisyui, tailwindcss. (#12735)
* Upgrade daisyui, tailwindcss.

* Switch to all themes.

* Revert a change.

* Update formatting.

* Install packages before npm build.

* Revert "Install packages before npm build."

This reverts commit 336c5147e6.

* Add index.html.gz

* run build

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-04-04 16:09:52 +02:00
nick huang
23106f94ea gguf-split : --merge now respects --dry-run option (#12681)
* gguf-split now respects dry-run option

* removing trailing space
2025-04-04 16:09:12 +02:00
Nicolò Scipione
94148ba330 sycl: allow ggml-sycl configuration and compilation using Visual Studio project/solution (#12625) 2025-04-04 16:00:46 +02:00
Ronny Brendel
9ac4d611d0 cmake: fix ggml-shaders-gen compiler paths containing spaces (#12747)
fixes error for compiler paths with spaces
2025-04-04 10:12:40 -03:00
Daniel Bevenius
348888e0dc docs : add XCFramework section to README.md [no ci] (#12746)
This commit adds a new section to the README.md file, detailing the
usage of the XCFramework.

The motivation for this is that it might not be immediately clear to
users how to use the XCFramework in their projects and hopefully this
will help.
2025-04-04 10:24:12 +02:00
Jeff Bolz
74d4f5b041 vulkan: Hybrid waitForFences/getFenceStatus to reduce fence latency (#12630)
There seems to be a bubble waking up from waitForFences, which costs a few
percent performance and also increased variance in performance. This change
inserts an "almost_ready" fence when the graph is about 80% complete and we
waitForFences for the almost_ready fence and then spin (with _mm_pauses) waiting
for the final fence to be signaled.
2025-04-04 07:54:35 +02:00
Jeff Bolz
35e592eb30 vulkan: set cmake minimum and project name in vulkan-shaders (#12744) 2025-04-04 07:53:20 +02:00
lhez
7d7b1bafa7 opencl: update doc for OpenCL (#12702)
* opencl: add OpenCL to build.md

* opencl: remove fixed issue/TODO

* opencl: add link to OPENCL.md

* opencl: update doc - refine tools requirement for Windows 11 arm64
2025-04-03 22:18:17 -07:00
Gaurav Garg
c262beddf2 CUDA: Prefer vector flash decoding kernel for Gemma models (#12738)
* Prefer vector flash decoding kernel for Gemma models

Vector flash decoding kernel was not being picked for models with head dimension 256. Gemma models are in this category.
Removing this limit improves e2e performance by upto 12% in gen phase throughput for Gemm models.

* Update ggml/src/ggml-cuda/fattn.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-04-03 18:20:29 +02:00
yumeyao
5dd5d1ab00 vocab : use string_view::find() to avoid unnecessary looking up beyond the fragment range (#12706) 2025-04-03 18:32:54 +03:00
Jeff Bolz
1c059995e0 vulkan: Fix missing cmake logic for dot product extension (#12721) 2025-04-03 10:08:26 -05:00
Atharva Dubey
2004644b7a ci : add env variable in ggml-ci and document the same in SYCL.md (#12736) 2025-04-03 15:12:39 +03:00
R0CKSTAR
5f696e88e0 sync : minja (inclusionAI/Ling) and update tests (#12699)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-04-03 13:51:35 +02:00
a3sh
193c3e03a6 fix MUSA compiler warning (#12704)
* fix MUSA compiler warning

* replace (void) with GGML_UNUSED
2025-04-03 09:32:55 +02:00
Chenguang Li
65cfe136a0 CANN: Support operator SIN COS ARGMAX (#12709)
* [CANN]support sin cos argmax

Signed-off-by: noemotiovon <noemotiovon@gmail.com>

* [CANN]codestyle adjustment

Signed-off-by: noemotiovon <noemotiovon@gmail.com>

* [CANN]Remove redundant code

Signed-off-by: noemotiovon <noemotiovon@gmail.com>

---------

Signed-off-by: noemotiovon <noemotiovon@gmail.com>
Co-authored-by: noemotiovon <noemotiovon@gmail.com>
2025-04-03 15:18:08 +08:00
Alan Gray
3f9da22c2b Simplify and improve CUDA graphs through use of indirect copy pointers (#9017)
* CUDA: Simplify and improve CUDA graphs through use of indirect copy pointers

Previously there was complexity in the CUDA graphs implementation due
frequently changing parameters to copy kernels associated with K and V
cache pointers. This patch simplifies by using indirection to avoid
such parameters frequently changing, avoiding the need for frequent
graph updates.

Fixes #12152

* Addressed comments

* fix HIP builds

* properly sync to stream

* removed ggml_cuda_cpy_fn_ptrs

* move stream sync before free

* guard to only use indirection with graphs

* style fixes

* check for errors

---------

Co-authored-by: slaren <slarengh@gmail.com>
2025-04-03 03:31:15 +02:00
hipudding
2a0dc97e56 CANN: Fix failed test cases (#12708)
* CANN: Fix memory waste in aclnn_tensor

* CANN: fix backend ops fail

* CANN: fix acl_tensor memory alloc.

* CANN: format

* CANN: remove trailing whitespace
2025-04-03 08:49:51 +08:00
lhez
97a20c012b opencl: use max_alloc_size in backend ctx instead of querying again (#12705) 2025-04-02 17:01:42 -07:00
Jeff Bolz
f01bd02376 vulkan: Implement split_k for coopmat2 flash attention. (#12627)
When using group query attention, we have one workgroup per KV batch and this
can be very few workgroups (e.g. just 8 in some models). Enable split_k to
spread the work across SMs. This helps a lot when the KV cache is large.
2025-04-02 14:25:08 -05:00
bandoti
6f3bd38640 cmake: remove caching from vulkan coopmat checks (#12719) 2025-04-02 14:56:26 -03:00
Jeff Bolz
be0a0f8cae vulkan: Implement grouped query attention in the coopmat2 FA shader (#12559)
When adjacent batches of Q share the same batches of K/V, batch them into
the same workgroup. For example, when:

dst(128,32,1,1) = FA(q(128,1,32,1), k(128,16640,8,1), v(128,16640,8,1))

previously we would run 32 workgroups computing 1 result each, now we will
run 8 workgroups computing 4 results each.

This doesn't directly translate to better performance (at least when you have
>=32 SMs), but in a subsequent change I'll enable split_k which will scale much
better with 4x fewer workgroups.
2025-04-02 19:40:32 +02:00
0cc4m
92e3006bb6 Vulkan: Fix mmq int dot float cache size (#12722) 2025-04-02 19:12:30 +02:00
Georgi Gerganov
833e2b7409 model : print tensor size during load (#12711)
* model : print tensor size during load

* cont : fix units MB -> MiB

Co-authored-by: Diego Devesa <slarengh@gmail.com>

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-04-02 16:38:54 +03:00
Diego Devesa
e0e912f49b llama : add option to override model tensor buffers (#11397)
* llama : add option to override tensor buffers

* ggml : fix possible underflow in ggml_nbytes
2025-04-02 14:52:01 +02:00
Georgi Gerganov
a10b36c91a llama : refactor kv cache guard (#12695)
* llama : refactor kv cache guard

ggml-ci

* cont : fix comment [no ci]

* llama : fix kv_cache restore logic

ggml-ci

* context : simplify kv cache updates

ggml-ci

* cont : better name [no ci]

* llama : fix llama_decode return code when could not find KV slot

ggml-ci

* context : change log err -> warn [no ci]

* kv-cache : add comment + warning
2025-04-02 14:32:59 +03:00
Sigbjørn Skjæret
83a88bd6af vocab : BailingMoE : change possessive quantifiers to greedy (#12677) 2025-04-02 11:21:48 +02:00
Xuan-Son Nguyen
42eb248f46 common : remove json.hpp from common.cpp (#12697)
* common : remove json.hpp from common.cpp

* fix comment
2025-04-02 09:58:34 +02:00
Chenguang Li
9bacd6b374 [CANN] get_rows and dup optimization (#12671)
* [CANN]get_rows and dup optimization.

Co-authored-by: hipudding <huafengchun@gmail.com>
Signed-off-by: noemotiovon <noemotiovon@gmail.com>

* [CANN]GET_ROWS and CPY/DUP optimization

Co-authored-by: hipudding <huafengchun@gmail.com>
Signed-off-by: noemotiovon <noemotiovon@gmail.com>

* [CANN]code style adjustment

Signed-off-by: noemotiovon <noemotiovon@gmail.com>

* [CANN]code style adjustment

Signed-off-by: noemotiovon <noemotiovon@gmail.com>

* [CANN]code style adjustment

Signed-off-by: noemotiovon <noemotiovon@gmail.com>

* [CANN]code style adjustment

Signed-off-by: noemotiovon <noemotiovon@gmail.com>

---------

Signed-off-by: noemotiovon <noemotiovon@gmail.com>
Co-authored-by: noemotiovon <noemotiovon@gmail.com>
Co-authored-by: hipudding <huafengchun@gmail.com>
2025-04-02 15:22:13 +08:00
Xuan-Son Nguyen
267c1399f1 common : refactor downloading system, handle mmproj with -hf option (#12694)
* (wip) refactor downloading system [no ci]

* fix all examples

* fix mmproj with -hf

* gemma3: update readme

* only handle mmproj in llava example

* fix multi-shard download

* windows: fix problem with std::min and std::max

* fix 2
2025-04-01 23:44:05 +02:00
Junil Kim
f423981ac8 opencl : fix memory allocation size (#12649)
Some checks failed
Python check requirements.txt / check-requirements (push) Has been cancelled
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
issue:
https://github.com/CodeLinaro/llama.cpp/pull/17#issuecomment-2760611283

This patch fixes the memory allocation size
not exceeding the maximum size of the OpenCL device.
2025-04-01 09:54:34 -07:00
jklincn
e39e727e9a llama : use LLM_KV_GENERAL_FILE_TYPE instead of gguf_find_key (#12672) 2025-04-01 14:54:28 +02:00
Sigbjørn Skjæret
5936a616e4 convert : BailingMoE : fix qkv split when head_dim is 0 (#12687)
NOTE: Ling-lite-base is broken, see https://huggingface.co/inclusionAI/Ling-lite-base/discussions/2
2025-04-01 14:37:13 +02:00
Georgi Gerganov
3fd072a540 metal : use F32 prec in FA kernels (#12688)
* metal : use F32 prec in FA kernels

ggml-ci

* cont : fix FA vec kernel

ggml-ci
2025-04-01 14:57:19 +03:00
R0CKSTAR
a6f32f0b34 Fix clang warning in gguf_check_reserved_keys (#12686)
* Fix clang warning in gguf_check_reserved_keys

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* Fix typo

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

---------

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-04-01 13:12:53 +02:00
Wagner Bruna
2bb3597e42 vulkan: fix build when glslc doesn't support coopmat (#12683) 2025-04-01 11:38:07 +02:00
Romain Biessy
8293970542 SYCL: Rename oneMKL to oneMath (#12192)
* Rename oneMKL Interface to oneMath

* Use oneMath for Intel vendor

* Rename occurences to mkl

* clang-format

* Silence verbose warnings

* Set oneMath HIP_TARGETS

* Fix silence warnings

* Remove step to build oneMath from build instructions

* Use fixed oneMath version

* Remove INTEL_CPU

* Fold CMake oneDNN conditions

* Use Intel oneMKL for Intel devices

* Improve CMake message

* Link against MKL::MKL_SYCL::BLAS only

* Move oneMath documentation to Nvidia and AMD sections
2025-04-01 16:24:29 +08:00
Akarshan Biswas
8bbf26083d SYCL: switch to SYCL namespace (#12674) 2025-04-01 10:11:39 +02:00
Sigbjørn Skjæret
35782aeedb convert : BailingMoE : avoid setting rope_dim to 0 (#12678)
Some checks are pending
Python check requirements.txt / check-requirements (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
2025-03-31 23:09:48 +02:00
Daniel Bevenius
c80a7759da vocab : add special infill tokens for CodeLlama (#11850)
Some checks are pending
Python check requirements.txt / check-requirements (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
* vocab : add special infill tokens for CodeLlama

The commit adds the following special tokens for CodeLlama infill:
- `▁<PRE>`
- `▁<SUF>`
- `▁<MID>`

The motivation for this is that currently the infill example uses
CodeLlama as a suggested model. But when using this model the following
error is generated:
```console
/llama.cpp-debug/examples/infill/infill.cpp:165: GGML_ASSERT(llama_vocab_fim_pre(vocab) >= 0) failed

Could not attach to process.  If your uid matches the uid of the target
process, check the setting of /proc/sys/kernel/yama/ptrace_scope, or try
again as the root user.  For more details, see /etc/sysctl.d/10-ptrace.conf
ptrace: Operation not permitted.
No stack.
The program is not being run.
305251 Aborted                 (core dumped)
./build/bin/llama-infill -t 10 -ngl 0 -m models/codellama-13b.Q5_K_S.gguf \
  -c 4096 --temp 0.7 --repeat_penalty 1.1 -n 20 \
  --in-prefix "def helloworld():\n    print(\"hell" \
  --in-suffix "\n   print(\"goodbye world\")\n    "
```

* squash! vocab : add special infill tokens for CodeLlama

Add _<EOT> as well.
2025-03-31 18:40:56 +02:00
a3sh
250d7953e8 ggml : faster ssm scan (#10558)
* faster ssm_scan

* delete unused commnet

* clang format

* add space

* modify unnecessary calculations

* faster ssm conv implementatioin

* modify file name with dash
2025-03-31 18:05:13 +02:00
Sigbjørn Skjæret
403fbacbbc convert : Qwerky : use lora_rank_tokenshift and lora_rank_decay if present (#12667) 2025-03-31 16:36:25 +02:00
0cc4m
a8a1f33567 Vulkan: Add DP4A MMQ and Q8_1 quantization shader (#12135)
* Vulkan: Add DP4A MMQ and Q8_1 quantization shader

* Add q4_0 x q8_1 matrix matrix multiplication support

* Vulkan: Add int8 coopmat MMQ support

* Vulkan: Add q4_1, q5_0 and q5_1 quants, improve integer dot code

* Add GL_EXT_integer_dot_product check

* Remove ggml changes, fix mmq pipeline picker

* Remove ggml changes, restore Intel coopmat behaviour

* Fix glsl compile attempt when integer vec dot is not supported

* Remove redundant code, use non-saturating integer dot, enable all matmul sizes for mmq

* Remove redundant comment

* Fix integer dot check

* Fix compile issue with unsupported int dot glslc

* Update Windows build Vulkan SDK version
2025-03-31 14:37:01 +02:00
Georgi Gerganov
1790e73157 cmake : fix whitespace (#0) 2025-03-31 15:07:32 +03:00
Georgi Gerganov
0114a32da0 sync : ggml
ggml-ci
2025-03-31 15:07:32 +03:00
Sandro Hanea
a7724480fd cmake: improve Vulkan cooperative matrix support checks (whisper/2966)
Co-authored-by: Sandro Hanea <me@sandro.rocks>
2025-03-31 15:07:32 +03:00
Sigbjørn Skjæret
1a85949067 llava : proper description fix (#12668) 2025-03-31 11:28:30 +02:00
Akarshan Biswas
6c02a032fa SYCL: Remove misleading ggml_sycl_op_flatten function (#12387)
* SYCL: Remove misleading ggml_sycl_op_flatten function

* remove trailing whitespace

* Fix L2 norm from rebase

* remove try catch block from element_wise.cpp

* remove comment from common.hp

* ggml-sycl.cpp: Add try catch sycl::exception block in compute_forward

* norm.cpp: remove try catch exception block
2025-03-31 11:25:24 +02:00
Sigbjørn Skjæret
f52d59d771 llava : fix clip loading GGUFs with missing description (#12660) 2025-03-31 11:07:07 +02:00
marcoStocchi
52de2e5949 tts : remove printfs (#12640)
* tts.cpp : llama tokens console output is done using LOG_INF instead of printf(). Therefore the options '--log-disable' and '--log-file' have now uniform impact on all output.
2025-03-31 11:20:30 +03:00
Sigbjørn Skjæret
2c3f8b850a llama : support BailingMoE (Ling) (#12634)
Some checks are pending
Python check requirements.txt / check-requirements (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
2025-03-30 22:21:03 +02:00
Georgi Gerganov
4663bd353c metal : use constexpr in FA kernels + fix typedef (#12659)
* metal : use constexpr in FA kernels

ggml-ci

* cont

ggml-ci

* cont : fix typedef

ggml-ci
2025-03-30 22:04:04 +03:00
Juyoung Suk
b3de7cac73 llama : add Trillion 7B model support (#12556)
Some checks are pending
Python check requirements.txt / check-requirements (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
* Support Trillion 7B

* Update llama.h

* Update llama.h

* Update llama-vocab.cpp for Trillion

* Update llama-vocab.cpp
2025-03-30 20:38:33 +02:00
Sergei Vorobyov
7242dd9675 llama-chat : Add Yandex instruct model template support (#12621)
* add yandex template

* update yandex chat template

* fix tests

* adjust chat template

* fix style

* fix tool macro in template

* add clarify comment

---------

Co-authored-by: Sergei Vorobev <serv01@yandex-team.ru>
Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-03-30 20:12:03 +02:00
R0CKSTAR
492d7f1ff7 musa: fix all warnings, re-enable -DLLAMA_FATAL_WARNINGS=ON in ci and update doc (#12611)
* musa: fix all warnings

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* musa: enable -DLLAMA_FATAL_WARNINGS=ON in run.sh

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* musa: update ci doc (install ccache)

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* fix Windows build issue

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* Address review comments

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* Address review comments

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

---------

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-03-30 10:59:38 +02:00
Georgi Gerganov
d3f1f0acfb sync : ggml
ggml-ci
2025-03-30 08:33:31 +03:00
Xuan-Son Nguyen
360dc22c00 cpu : rm unused variable (ggml/1166) 2025-03-30 08:33:31 +03:00
cmdr2
a62d7fa7a9 cpu: de-duplicate some of the operators and refactor (ggml/1144)
* cpu: de-duplicate some of the operators and refactor

* Fix PR comments

* Fix PR comments
2025-03-30 08:33:31 +03:00
Daniel Bevenius
e408d4351a ggml : add logging for native build options/vars (whisper/2935)
This commit adds debug level logging for the native build options and
variables to ggml/CMakeLists.txt.

The motivation for this is that it can be useful to see the effective
result of `GGML_NATIVE`, `GGML_NATIVE_DEFAULT`, and `INS_ENB` for a
cmake build. I've found myself adding similar logging a few times now,
so I thought it might be a good idea to add this.

Example output, specifying `-DCMAKE_MESSAGE_LOG_LEVEL=DEBUG` when
running cmake produces the following output:
```console
-- GGML_NATIVE         : OFF
-- GGML_NATIVE_DEFAULT : OFF
-- INS_ENB             : OFF
```
2025-03-30 08:33:31 +03:00
Daniel Bevenius
3891e183c6 examples : command.wasm updates (whisper/2904)
This commit updates the command.wasm example by adding a server.py script to make it easy to start a local http server to try out the example, updates the build instructions, and also addresses some of the compiler warnings that were being generated.

* emscripten : fix TOTAL_STACK for wasm

This commit moves the TOTAL_STACK setting from the compile flags to the
linker flags. This is because the TOTAL_STACK setting is a linker
setting.

The motivation for this change is that currently the following warnings
are generated when building:
```console
em++: warning: linker setting ignored during compilation: 'TOTAL_STACK' [-Wunused-command-line-argument]
em++: warning: linker setting ignored during compilation: 'TOTAL_STACK' [-Wunused-command-line-argument]
em++: warning: linker setting ignored during compilation: 'TOTAL_STACK' [-Wunused-command-line-argument]
em++: warning: linker setting ignored during compilation: 'TOTAL_STACK' [-Wunused-command-line-argument]
em++: warning: linker setting ignored during compilation: 'TOTAL_STACK' [-Wunused-command-line-argument]
em++: warning: linker setting ignored during compilation: 'TOTAL_STACK' [-Wunused-command-line-argument]
```

* examples : suppress C++17 deprecation warning for std::codecvt_utf8

This commit suppresses the C++17 deprecation warning for
std::codecvt_utf8 similar to what is done in
examples/talk-llama/unicode.cpp.

The motivation for this change is to suppress these warnings:
```console
/Users/danbev/work/ai/whisper-work/examples/common.cpp:251:31: warning: 'codecvt_utf8<wchar_t>' is deprecated [-Wdeprecated-declarations]
  251 |     std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
      |                               ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/codecvt:193:28: note: 'codecvt_utf8<wchar_t>' has been explicitly marked deprecated here
  193 | class _LIBCPP_TEMPLATE_VIS _LIBCPP_DEPRECATED_IN_CXX17 codecvt_utf8 : public __codecvt_utf8<_Elem> {
      |                            ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/__config:723:41: note: expanded from macro '_LIBCPP_DEPRECATED_IN_CXX17'
  723 | #    define _LIBCPP_DEPRECATED_IN_CXX17 _LIBCPP_DEPRECATED
      |                                         ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/__config:688:49: note: expanded from macro '_LIBCPP_DEPRECATED'
  688 | #      define _LIBCPP_DEPRECATED __attribute__((__deprecated__))
      |                                                 ^
/Users/danbev/work/ai/whisper-work/examples/common.cpp:251:10: warning: 'wstring_convert<std::codecvt_utf8<wchar_t>>' is deprecated [-Wdeprecated-declarations]
  251 |     std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
      |          ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/locale:3145:28: note: 'wstring_convert<std::codecvt_utf8<wchar_t>>' has been explicitly marked deprecated here
 3145 | class _LIBCPP_TEMPLATE_VIS _LIBCPP_DEPRECATED_IN_CXX17 wstring_convert {
      |                            ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/__config:723:41: note: expanded from macro '_LIBCPP_DEPRECATED_IN_CXX17'
  723 | #    define _LIBCPP_DEPRECATED_IN_CXX17 _LIBCPP_DEPRECATED
      |                                         ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/__config:688:49: note: expanded from macro '_LIBCPP_DEPRECATED'
  688 | #      define _LIBCPP_DEPRECATED __attribute__((__deprecated__))
      |                                                 ^
/Users/danbev/work/ai/whisper-work/examples/common.cpp:257:31: warning: 'codecvt_utf8<wchar_t>' is deprecated [-Wdeprecated-declarations]
  257 |     std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
      |                               ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/codecvt:193:28: note: 'codecvt_utf8<wchar_t>' has been explicitly marked deprecated here
  193 | class _LIBCPP_TEMPLATE_VIS _LIBCPP_DEPRECATED_IN_CXX17 codecvt_utf8 : public __codecvt_utf8<_Elem> {
      |                            ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/__config:723:41: note: expanded from macro '_LIBCPP_DEPRECATED_IN_CXX17'
  723 | #    define _LIBCPP_DEPRECATED_IN_CXX17 _LIBCPP_DEPRECATED
      |                                         ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/__config:688:49: note: expanded from macro '_LIBCPP_DEPRECATED'
  688 | #      define _LIBCPP_DEPRECATED __attribute__((__deprecated__))
      |                                                 ^
/Users/danbev/work/ai/whisper-work/examples/common.cpp:257:10: warning: 'wstring_convert<std::codecvt_utf8<wchar_t>>' is deprecated [-Wdeprecated-declarations]
  257 |     std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
      |          ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/locale:3145:28: note: 'wstring_convert<std::codecvt_utf8<wchar_t>>' has been explicitly marked deprecated here
 3145 | class _LIBCPP_TEMPLATE_VIS _LIBCPP_DEPRECATED_IN_CXX17 wstring_convert {
      |                            ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/__config:723:41: note: expanded from macro '_LIBCPP_DEPRECATED_IN_CXX17'
  723 | #    define _LIBCPP_DEPRECATED_IN_CXX17 _LIBCPP_DEPRECATED
      |                                         ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/__config:688:49: note: expanded from macro '_LIBCPP_DEPRECATED'
  688 | #      define _LIBCPP_DEPRECATED __attribute__((__deprecated__))
      |                                                 ^
4 warnings generated.
```

* ggml : suppress double-promotion warning in GGML_F16x4_REDUCE

This commit adds a cast to `ggml_float` in the `GGML_F16x4_REDUCE` macro
to suppress a double-promotion warning.

Currently the following warning is generated when compiling the
command.wasm example:
```console
/whisper-work/src/ggml-cpu/ggml-cpu.c:1592:5: warning: implicit conversion increases floating-point precision: 'float' to 'ggml_float' (aka 'double') [-Wdouble-promotion]
 1592 |     GGML_F16_VEC_REDUCE(sumf, sum);
      |     ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/Users/danbev/work/ai/whisper-work/src/ggml-cpu/ggml-cpu.c:932:37: note: expanded from macro 'GGML_F16_VEC_REDUCE'
  932 | #define GGML_F16_VEC_REDUCE         GGML_F16x4_REDUCE
      |                                     ^
/Users/danbev/work/ai/whisper-work/src/ggml-cpu/ggml-cpu.c:920:44: note: expanded from macro 'GGML_F16x4_REDUCE'
  918 |     res = wasm_f32x4_extract_lane(x[0], 0) +       \
      |         ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  919 |           wasm_f32x4_extract_lane(x[0], 1) +       \
      |           ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  920 |           wasm_f32x4_extract_lane(x[0], 2) +       \
      |           ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~
  921 |           wasm_f32x4_extract_lane(x[0], 3);        \
      |           ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/whisper-work/src/ggml-cpu/ggml-cpu.c:1640:9: warning: implicit conversion increases floating-point precision: 'float' to 'ggml_float' (aka 'double') [-Wdouble-promotion]
 1640 |         GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
      |         ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/Users/danbev/work/ai/whisper-work/src/ggml-cpu/ggml-cpu.c:932:37: note: expanded from macro 'GGML_F16_VEC_REDUCE'
  932 | #define GGML_F16_VEC_REDUCE         GGML_F16x4_REDUCE
      |                                     ^
/Users/danbev/work/ai/whisper-work/src/ggml-cpu/ggml-cpu.c:920:44: note: expanded from macro 'GGML_F16x4_REDUCE'
  918 |     res = wasm_f32x4_extract_lane(x[0], 0) +       \
      |         ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  919 |           wasm_f32x4_extract_lane(x[0], 1) +       \
      |           ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  920 |           wasm_f32x4_extract_lane(x[0], 2) +       \
      |           ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~
  921 |           wasm_f32x4_extract_lane(x[0], 3);        \
      |           ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2 warnings generated.
```
wasm_f32x4_extract_lane returns a 32-bit float and this is what the
addition is performed on. But there is an implicit conversion from
32-bit float to 64-bit double when the result is assigned to `res`,
which is of type `ggml_float`. My understanding here is that this is
intentional and adding a cast to `ggml_float` should suppress the
warning.

* emscripten : add -Wno-deprecated to for emscripten

This commit adds -Wno-deprecated to the CMAKE_CXX_FLAGS for emscripten
builds.

The motivation for this is that currently there a number of warnings
generated like the following:
```console
warning: JS library symbol '$print' is deprecated. Please open a bug if you have a continuing need for this symbol [-Wdeprecated]
warning: JS library symbol '$printErr' is deprecated. Please open a bug if you have a continuing need for this symbol [-Wdeprecated]
em++: warning: warnings in JS library compilation [-Wjs-compiler]
em++: warning: linker setting ignored during compilation: 'ENVIRONMENT' [-Wunused-command-line-argument]
warning: JS library symbol '$print' is deprecated. Please open a bug if you have a continuing need for this symbol [-Wdeprecated]
warning: JS library symbol '$printErr' is deprecated. Please open a bug if you have a continuing need for this symbol [-Wdeprecated]
em++: warning: warnings in JS library compilation [-Wjs-compiler]
warning: JS library symbol '$print' is deprecated. Please open a bug if you have a continuing need for this symbol [-Wdeprecated]
warning: JS library symbol '$printErr' is deprecated. Please open a bug if you have a continuing need for this symbol [-Wdeprecated]
em++: warning: warnings in JS library compilation [-Wjs-compiler]
em++: warning: linker setting ignored during compilation: 'ENVIRONMENT' [-Wunused-command-line-argument]
em++: warning: linker setting ignored during compilation: 'ENVIRONMENT' [-Wunused-command-line-argument]
```

The downside of this is that we might miss other deprecation warnings
in the future so I'm not sure if this is acceptable. But it make the
wasm examples cleaner without the warnings.

* examples : fix tautological-compare warning in stb_vorbis.c [no ci]

This commit applies a fix to address a tautological-compare warning
in stb_vorbis.c.

The motivation for this is that currently the following warning is
generated when compiling the commmand-wasm example:
```console
/Users/danbev/work/ai/whisper-work/examples/stb_vorbis.c:1404:75: warning: pointer comparison always evaluates to false [-Wtautological-compare]
 1404 |       if (f->stream_start + loc >= f->stream_end || f->stream_start + loc < f->stream_start) {
      |                                                                           ^
1 warning generated.
```

This fix was taken from an open pull request on the stb repository
that addreses this issue:
https://github.com/nothings/stb/pull/1746

* squash! examples : update command.wasm instructions [no ci]

This commit adds a Python script to serve the the wasm examples build
in the `build-em` directory. Initially I thought that it would be enough
to start a simple python server but I did not notice that there was an
error in the browser console when I did that:
```console
command.js:1 Uncaught (in promise) DataCloneError: Failed to execute 'postMessage' on 'Worker': SharedArrayBuffer transfer requires self.crossOriginIsolated.
    at command.js:1:1206224
    at new Promise (<anonymous>)
    at loadWasmModuleToWorker (command.js:1:1204981)
    at Array.map (<anonymous>)
    at Object.loadWasmModuleToAllWorkers (command.js:1:1206428)
    at command.js:1:1204318
    at callRuntimeCallbacks (command.js:1:1202062)
    at preRun (command.js:1:6136)
    at run (command.js:1:1294094)
    at removeRunDependency (command.js:1:7046)
```
We need a few CORS headers to be set and in order hopefully make this
easy for users a Python script is added to the examples directory.
This should be able to server all the wasm examples provided they have
been built. command.wasm's README.md is updated to reflect this change.

* examples : remove unused functions

This commit removed the unused functions convert_to_utf8 and
convert_to_wstring from examples/common.cpp.

* Revert "examples : fix tautological-compare warning in stb_vorbis.c [no ci]"

This reverts commit 8e3c47d96141c7675c985562ebdc705e839e338a.

We should not make this change here and instead when the upstream PR is
merged we can sync with it.

Refs: https://github.com/ggerganov/whisper.cpp/issues/2784
2025-03-30 08:33:31 +03:00
Xuan-Son Nguyen
af6ae1efb2 llama : fix non-causal mask for gemma 3 (#12615) 2025-03-30 00:07:37 +01:00
Djip007
0bb2919335 llama : change cpu_buft_list order: ACCEL -> GPU host -> CPU extra -> CPU (#12632)
this allow to use GPU host when possible over CPU repack.
this have the same effect to resolve this issues (#12498) without
completely disable CPU extra buffer.

Co-authored-by: philou <philou@framework>
2025-03-29 14:07:37 +01:00
Jay
a69f846351 cmake : fix ccache conflict (#12522)
If users already set CMAKE_C_COMPILER_LAUNCHER globally, setting it in
cmake again will lead to conflict and compile fail.

Signed-off-by: Jay <BusyJay@users.noreply.github.com>
2025-03-29 11:04:58 +01:00
hipudding
d07a0d7a79 CANN : remove clang-format in ggml-cann (#12607) 2025-03-29 11:03:28 +01:00
Sigbjørn Skjæret
3714c3ee1a llama : fix incorrect Qwen2Moe ffn_moe_out graph callback (#12631) 2025-03-28 22:13:02 +01:00
Georgi Gerganov
b4ae50810e metal : improve FA + improve MoE (#12612)
* ggml : FA with different K, V head sizes (CPU)

ggml-ci

* metal : add FA with HS=192

* metal : extend FA to support different K and V head sizes

ggml-ci

* metal : add FA vector kernels for heads K 192 and V 128

ggml-ci

* ggml : restrict op on other backends to equal head sizes

ggml-ci

* metal : optimize FA-vec kernel

ggml-ci

* metal : FA remove mq registers

* metal : improve MoE mul_mat_id condition

ggml-ci

* metal : fix comments + remove unnecessary addition

ggml-ci

* metal : avoid too much shared memory usage with mul_mat_id

ggml-ci
2025-03-28 20:21:59 +02:00
Icenowy Zheng
b86f600723 vulkan: fix coopmat shader generation when cross-compiling (#12272)
* vulkan: fix coopmat shader generation when cross-compiling

Previously the status of coopmat{,2} support isn't passed to the
vulkan-shaders-gen project building on the host, which leads to build
failure because of the cross-compiling code expecting coopmat{,2}
shaders that didn't get generated.

Fix this by passing the coopmat{,2} support status to vulkan-shaders
subproject.

Signed-off-by: Icenowy Zheng <uwu@icenowy.me>

* Only call coop-mat shaders once

* Fix whitespace

---------

Signed-off-by: Icenowy Zheng <uwu@icenowy.me>
Co-authored-by: bandoti <141645996+bandoti@users.noreply.github.com>
2025-03-28 14:51:06 -03:00
Johannes Gäßler
dd373dd3bf llama: fix error on bad grammar (#12628) 2025-03-28 18:08:52 +01:00
Benson Wong
5d01670266 server : include speculative decoding stats when timings_per_token is enabled (#12603)
* Include speculative decoding stats when timings_per_token is true

New fields added to the `timings` object:

  - draft_n           : number of draft tokens generated
  - draft_accepted_n  : number of draft tokens accepted
  - draft_accept_ratio: ratio of accepted/generated

* Remove redundant draft_accept_ratio var

* add draft acceptance rate to server console output
2025-03-28 10:05:44 +02:00
Radoslav Gerganov
ef03229ff4 rpc : update README for cache usage (#12620) 2025-03-28 09:44:13 +02:00
amritahs-ibm
13731766db llamafile : ppc64le GEMV forwarding for FP32. (#12594)
This patch enables usage of MMA when one of the
dimensions of the matrix(ie either M or N) is 1. This
is useful in case of token generation where N < 2.

The concept of 'GEMV Forwarding' is used where when one
of the matrix has a single row/column, the elements are
broadcasted, instead of using packing routine to prepack
the matrix elements.

This change results in 5% - 15% improvement in total
speed(ie all tokens/total time), across various batch
sizes. This is in comparision with the corresponding
dot product implementation.

The patch is tested with FP32 models of Meta-Lllama-3-8B,
Mistral-7B, Llama-2-7B-chat-hf on a IBM POWER10 machine.

Signed-off-by: Amrita H S <amritahs@linux.vnet.ibm.com>
2025-03-28 09:43:22 +02:00
Radoslav Gerganov
ab6ab8f809 rpc : send hash when tensor data is above some fixed threshold (#12496)
* rpc : send hash when tensor data is above some fixed threshold

ref #10095

* rpc : put cache under $HOME/.cache/llama.cpp

* try to fix win32 build

* another try to fix win32 build

* remove llama as dependency
2025-03-28 08:18:04 +02:00
Piotr
2099a9d5db server : Support listening on a unix socket (#12613)
* server : Bump cpp-httplib to include AF_UNIX windows support

Signed-off-by: Piotr Stankiewicz <piotr.stankiewicz@docker.com>

* server : Allow running the server example on a unix socket

Signed-off-by: Piotr Stankiewicz <piotr.stankiewicz@docker.com>

---------

Signed-off-by: Piotr Stankiewicz <piotr.stankiewicz@docker.com>
2025-03-27 23:41:04 +01:00
Georgi Gerganov
2969019837 media : add SVG logo [no ci] (#12616) 2025-03-27 23:09:05 +02:00
lhez
5dec47dcd4 opencl: add multi and vision rope, gelu_quick and im2col (#12600)
Some checks failed
Python check requirements.txt / check-requirements (push) Has been cancelled
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
* opencl: add `im2col`

* opencl: add `gelu_quick`

* opencl: add mrope

* opencl: add vision rope
2025-03-27 08:08:08 -07:00
Si1w
f125b8dccf llama : add PLM GGUF Conversion & Inference Support (#12457)
* add edgellm model arch[conversation feature doesn't work]

* remove output.weight layer for edgellm arch

* [Model] update the name of the model

* update the name of model arch in convert gguf

* [Model] Refarctor the model arch into llama-model

* [Bug] Fix the bug in create attn kv

* [Code] Fix editorconfig erros

* [Code] Remove Trailing whitespace

* [Code] Remove Trailing whitespace

* [Code] Change the order of model arch in list

* [Code] Fix flake8 Lint errors

* Remove trailing white space

* [Code] Remove  call in model arch
2025-03-27 12:49:15 +02:00
HighDoping
953c2a62cf model : restore support for T5Encoder (#12590) 2025-03-27 11:43:33 +01:00
Csaba Kecskemeti
d5c6309d91 convert : Support Qwen2_5_VLForConditionalGeneration (#12595) 2025-03-27 11:11:23 +01:00
Georgi Gerganov
029c693fdc sync : ggml
ggml-ci
2025-03-27 10:09:29 +02:00
Georgi Gerganov
771d84371c scripts : update sync + fix cmake merge
ggml-ci
2025-03-27 10:09:29 +02:00
Georgi Gerganov
df0665a483 sync : ggml
ggml-ci
2025-03-27 09:04:38 +02:00
Georgi Gerganov
0306aad1ca cmake : sync/merge PowerPC build commands (#0) 2025-03-27 09:04:38 +02:00
amritahs-ibm
c7b43ab608 llamafile : ppc64le MMA implementation for Q4_0. (#12489)
This change upstreams llamafile's cpu matrix
multiplication kernels for ppc64le ISA using MMA
builtins. This patch handles matrix multiplication
between quantised datatypes, block_q4_0 and
block_q8_0.

This change results in 5% - 50% improvement
in total speed(ie all tokens/total time), across
various batch sizes.

The patch is tested with Meta-Lllama-3-8B,
Mistral-7B, Llama-2-7B-chat-hf models on a
IBM POWER10 machine.

Signed-off-by: Amrita H S <amritahs@linux.vnet.ibm.com>
2025-03-27 08:51:47 +02:00
xctan
24feaec057 ggml : riscv: add 128-bit RVV support (#12530)
* ggml : add 128-bit RVV support

* ggml : revert to old RVV 256+ q2_K, q3_K, q4_K, q6_K impl

* remove trailing whitespaces

* restructure vector length selection code
2025-03-27 08:38:34 +02:00
Georgi Gerganov
f28bc4c286 llama : make loras compatible with repacking (#12593)
* llama : make loras compatible with repacking

ggml-ci

* cont : simplify

ggml-ci

* cont : add TODO [no ci]
2025-03-27 08:24:10 +02:00
Akarshan Biswas
f17a3bb4e8 SYCL: implement memset ggml backend buffer interface (#12580)
* SYCL: implement memset ggml backend buffer interface

* use GGML_ABORT macro

* Do not wait for all queues to finish for memset operation
2025-03-27 09:46:00 +08:00
Slobodan Josic
bd40678df7 HIP: Add support for RDNA4 targets (#12372) 2025-03-26 23:46:30 +01:00
Georgi Gerganov
b3298fa47a metal : refactor mat-vec code (#12569)
* metal : refactor mat-vec code

ggml-ci

* metal : rename all_sum -> sum_all

ggml-ci

* metal : fix comments [no ci]

* metal : fix nr constant [no ci]

* metal : mv q6_K support nr0 > 1

ggml-ci

* metal : reduce register pressure

ggml-ci

* metal : fix typo [no ci]

* metal : reduce register pressure

ggml-ci
2025-03-26 21:38:38 +02:00
Michał Moskal
2447ad8a98 upgrade to llguidance 0.7.10 (#12576) 2025-03-26 11:06:09 -07:00
Ivy233
02082f1519 clip: Fix llama-llava-clip-quantize-cli quantization error under CUDA backend (#12566)
Some checks are pending
Python check requirements.txt / check-requirements (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
* [Fix] Compiling clip-quantize-cli and running it in a CUDA environment will cause ggml_fp16_to_fp32 to report an error when trying to access video memory. You need to switch to the CPU backend to run quantize.
After the fix, it will automatically run in the CPU backend and will no longer be bound to CUDA.

* [Fix]Roll back the signature and implementation of clip_model_load, and change the call in clip_model_quantize to clip_init.
2025-03-26 15:06:04 +01:00
Georgi Gerganov
df4d20cd53 convert : fix squeeze for ssm_conv tensors (#12573)
* convert : fix squeeze for ssm_conv tensors

* convert : match ssm_conv tensors by type

---------

Co-authored-by: Francis Couture-Harpin <git@compilade.net>
2025-03-26 08:21:05 -04:00
Georgi Gerganov
5ed38b6852 ggml : fix MUL_MAT_ID repack with Q8_K (#12544)
* ggml : fix MUL_MAT_ID repack with Q8_K

ggml-ci

* ggml : improve repack templates

ggml-ci
2025-03-26 13:02:00 +02:00
R0CKSTAR
fd7855f8f5 doc: [MUSA] minor changes (#12583)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-03-26 09:09:48 +02:00
Sigbjørn Skjæret
53af4dba42 convert: fix Mistral3/Gemma3 model hparams init (#12571)
Some checks are pending
Python check requirements.txt / check-requirements (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
* Fix Mistral3/Gemma3 model hparams init

* set positional args correctly

* use existing hparams if passed
2025-03-25 23:03:10 +01:00
Eric Curtin
ef19c71769 run: de-duplicate fmt and format functions and optimize (#11596) 2025-03-25 18:46:11 +01:00
Dan Johansson
053b3f9aae ggml-cpu : update KleidiAI to v1.5.0 (#12568)
ggml-cpu : bug fix related to KleidiAI LHS packing

Signed-off-by: Dan Johansson <dan.johansson@arm.com>
2025-03-25 13:10:18 +02:00
Akarshan Biswas
e2f560175a SYCL: disable Q4_0 reorder optimization (#12560)
ggml-ci
2025-03-25 18:40:18 +08:00
Dan Johansson
36ee06dd2d docs : add build instructions for KleidiAI (#12563)
Signed-off-by: Dan Johansson <dan.johansson@arm.com>
2025-03-25 11:35:20 +02:00
R0CKSTAR
3cd3a39532 ci: [MUSA] add CI and update doc (#12562)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-03-25 09:45:08 +02:00
Georgi Gerganov
2d77d88e70 context : fix worst-case reserve outputs (#12545)
ggml-ci
2025-03-25 09:19:23 +02:00
Akarshan Biswas
c95fa362b3 ci: [SYCL] ggml-ci Use main GPU and enable sysman (#12547) 2025-03-24 19:35:38 +02:00
lhez
2b65ae3029 opencl: simplify kernel embedding logic in cmakefile (#12503)
Co-authored-by: Max Krasnyansky <quic_maxk@quicinc.com>
2025-03-24 09:20:47 -07:00
Akarshan Biswas
48d7021c61 CI: fix SYCL build (#12546)
Some checks failed
Python check requirements.txt / check-requirements (push) Has been cancelled
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
2025-03-24 14:58:32 +02:00
Tei Home
3361e2deba docs: update: improve the Fedoa CUDA guide (#12536)
* docs: update fedora-cuda guide

- Rename and place into Backend Folder.
- Update Host-Supplied Packages.
- Expand Recommended Users Section.

* docs: improve the flow of CUDA-FEDORA.md
2025-03-24 11:02:26 +00:00
compilade
00d53800e0 llama-vocab : add SuperBPE pre-tokenizer (#12532) 2025-03-24 11:47:24 +01:00
R0CKSTAR
7ea75035b6 CUDA: Fix clang warnings (#12540)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-03-24 11:28:34 +01:00
Prajwal B Mehendarkar
c54f6b7988 mmap : skip resource limit checks on AIX (#12541) 2025-03-24 12:17:10 +02:00
Jeff Bolz
9b169a4d4e vulkan: fix mul_mat_vec failure in backend tests (#12529)
The OOB calculation could be wrong if the last iteration was during one of
the unrolled loops. Adjust the unrolling counts to avoid this. Add a couple
new backend tests that hit this failure on NVIDIA GPUs.
2025-03-24 07:56:17 +01:00
Marius Gerdes
77f9c6bbe5 server : Add verbose output to OAI compatible chat endpoint. (#12246)
Add verbose output to server_task_result_cmpl_final::to_json_oaicompat_chat_stream, making it conform with server_task_result_cmpl_final::to_json_oaicompat_chat, as well as the other to_json methods.
2025-03-23 19:30:26 +01:00
Lars Sonchocky-Helldorf
18b663d8e4 install : add macports (#12518)
MacPorts section added
2025-03-23 10:21:48 +02:00
Xuan-Son Nguyen
fbdfefe74e llama : gemma3 : use output tensor if it exists in model weight (#12506)
Some checks failed
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
* llama : gemma3 : use output tensor if it exists in model weight

* also add to the llm_tensor_names
2025-03-22 23:28:19 +01:00
Georgi Gerganov
ba932dfb50 ggml : fix quantized cpy op (#12310)
* ggml : fix quantized cpy op

ggml-ci

* tests : add cpy tests for all types

ggml-ci

* tests : add BF16 copy tests

ggml-ci

* tests : fix loop for same-type copy

ggml-ci

* tests : add option to permute the dst tensor

ggml-ci
2025-03-22 16:23:26 +02:00
R0CKSTAR
fac63a3d78 musa: refine compute capability (#12493)
* musa: refine compute capability

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* Address review comments

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

---------

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-03-22 10:11:37 +01:00
Jeff Bolz
eddfb43850 vulkan: Optimize mul_mat_vec p021 and nc shaders (#12505)
* tests: add mul_mat perf/functional tests for p021/nc vulkan shaders

* vulkan: Optimize mul_mat_vec p021 and nc shaders.

These shaders are used in attention calculations, and when the KV cache grows
large they start to dominate the run time. For the nc shader (which is called
with large 'k' dimension), use unrolling and vector loads. For the p021 shader
(which is called with large 'm' and small 'k' dimensions), take advantage of
grouped query attention to reuse loads from the A matrix for the whole group,
and reduce the number of workgroups (too much overhead from tiny dispatches).

Using subgroupAdd in the p021 shader also helps, use that conditionally.
2025-03-22 09:40:11 +01:00
stduhpf
4375415b4a Vulkan: RTE rounding for cpy to quant (#12480)
* Vulkan: RTE rounding for cpy to quant

Co-Authored-By: Jeff Bolz <jbolz@nvidia.com>

* remove trailing whitespace

* avoid duplicating pipeline_cpy_f32_quant

* fix copypasting issue

* remove duplicated code

---------

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
2025-03-21 20:34:50 +01:00
Eve
30c42ef5cb vulkan: workaround for AMD Windows driver 16 bit unpack8 bug (#12472) 2025-03-21 20:27:47 +01:00
Georgi Gerganov
af04481e6b model : do not repack if a GPU device is present (#12498)
ggml-ci
2025-03-21 16:14:29 +02:00
Sigbjørn Skjæret
960e726077 chore : cleanup llama_model_loader::TENSOR_ usage (#12492) 2025-03-21 10:21:36 +01:00
marcoStocchi
ea1518e839 llama-tts : avoid crashes related to bad model file paths (#12482) 2025-03-21 11:12:45 +02:00
蕭澧邦
1aa87ee53d [SYCL] Fix build on Windows when ccache enabled (#9954) (#9976)
* [SYCL] Fix build on Windows when ccache enabled (#9954)

* take effect only on windows and force it to icl

---------

Co-authored-by: Romain Biessy <romain.biessy@codeplay.com>
2025-03-21 14:58:47 +08:00
Svetlozar Georgiev
9ffcc9e374 sycl: cleanup oneDNN related code (#12097) 2025-03-21 10:15:56 +08:00
Woof Dog
e04643063b webui : Prevent rerendering on textarea input (#12299)
* webui: Make textarea uncontrolled to eliminate devastating lag

* Update index.html.gz

* use signal-style implementation

* rm console log

* no duplicated savedInitValue set

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-03-20 15:57:43 +01:00
Sigbjørn Skjæret
dbb3a4739e llama : make Qwen2MoE QKV bias optional (#12477)
Some checks failed
Python check requirements.txt / check-requirements (push) Has been cancelled
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
2025-03-20 12:49:59 +01:00
Srihari-mcw
3d82dbcbce ggml : block interleaving support for Q4_K quantization for x86 AVX2 architecture (#12332)
* Add block interleaving support for Q4_K quantization

* Remove whitespaces and fix CI/CD issues

* Update pointer of bsums from int16_t to const int16_t

* Add vector version of quantize_q8_K_4x8 function

* Update code formatting based on review comments
2025-03-20 13:35:34 +02:00
Bartowski
732b5fbf5e convert : avoid calls to tokenizer.added_tokens_decoder (#12473)
tokenizer.added_tokens_decoder returns a fresh dict every time relatively slowly (~0.04s on average) which results in massive slowdowns when we have a huge number of added tokens
2025-03-20 08:36:37 +02:00
fairydreaming
568013d0cd context : clear sets containing encoder output sequence ids before storing new values (#12470)
Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
2025-03-19 21:01:57 +01:00
Gaurav Garg
517b5ddbf0 CUDA: Improve flash decoding kernel GPU occupancy for BS=1 case (#12183)
- Find out active blocks per SM using cudaOccupancyMaxActiveBlocksPerMultiprocessor API. Use this value to determine the optimal parallel_blocks value.
- Prefer vector flash attention kernels over MMA kernel for BS=1

Fixes Issue: #12182
---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-03-19 20:52:06 +01:00
Jeff Bolz
a9b59288e2 vulkan: optimize iq1 coopmat2 dequant functions (#12427) 2025-03-19 19:56:23 +01:00
Guus Waals
0fd8487b14 Fix visionOS build and add CI (#12415)
Some checks are pending
Python check requirements.txt / check-requirements (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
* ci: add visionOS build workflow

Add a new GitHub Actions workflow for building on visionOS with CMake and Xcode.

* ggml: Define _DARWIN_C_SOURCE for visionOS to fix missing u_xxx typedefs

* ci: remove define hacks for u_xxx system types

---------

Co-authored-by: Giovanni Petrantoni <7008900+sinkingsugar@users.noreply.github.com>
2025-03-19 11:15:23 +01:00
Sigbjørn Skjæret
108e53c2f1 llama : add support for GPT2, Bloom and CodeShell tied word embeddings (#12456)
* Add support for GPT2, Bloom and CodeShell tied word embeddings

* Deduplicate tied word embeddings weights

* Workaround for incorrect weight map

It appears transformer.wte.weight is in the weight map even though the weights are not there, remove it if output weights are encountered first.

* check++

* fatfingers--
2025-03-19 09:08:49 +01:00
Sigbjørn Skjæret
a686171ea7 convert : Support chat_template.json (#12460) 2025-03-19 08:58:13 +01:00
Jeff Bolz
c446b2edd2 vulkan: Submit once enough matmul work has been recorded (#12406)
I've been seeing significantly worse performance for tg with flash attention
enabled vs disabled, and it seems to be related to the submit heuristic.
Change the heuristic to check how many bytes worth of weight matrix are
used and flush every 100MB, and ramp up after the first few submits.
This seems to resolve the issue, and also increases perf for non-FA a bit.
2025-03-19 08:26:26 +01:00
lhez
d84635b1b0 opencl: improve profiling (#12442)
Some checks are pending
Python check requirements.txt / check-requirements (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
* opencl: more profiling timing

* opencl: generate trace for profiling

* opencl: reduce profiling overhead

* Populate profiling timing info at the end rather than after each
  kernel run

* opencl: fix for chrome tracing
2025-03-18 12:54:55 -07:00
Georgi Gerganov
75422e8bc4 graph : normalize Q, K, V shapes + sync cross attention (#12449)
* graph : normalize Q, K, V shapes and add comments

ggml-ci

* context : synchronize before getting cross attention data

* model : fix command-r attention norm check
2025-03-18 21:35:19 +02:00
R0CKSTAR
bb115d2bf7 musa: override warp_size of musa device to 32 (#12445)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-03-18 19:28:26 +01:00
Xuan-Son Nguyen
29fff308c7 llama : support converting Mistral Small text-only (#12450) 2025-03-18 19:16:19 +01:00
Georgi Gerganov
c6af2161b2 speculative : fix seg fault in certain cases (#12454) 2025-03-18 19:35:11 +02:00
Xuan-Son Nguyen
99aa304fb9 llama : add support for EXAONE tied word embeddings (#12451) 2025-03-18 17:24:33 +01:00
Georgi Gerganov
8551c44d84 context : always use non-causal attention for encoder graphs (#12447)
* context : always use non-causal attention for encoder graphs

ggml-ci

* context : move the change to llama_context::encode()

ggml-ci
2025-03-18 13:05:49 +02:00
Łukasz Ślusarczyk
35cae5ba05 SYCL: using graphs is configurable by environment variable and compile option (#12371)
* alberto changes

* enable sycl graphs by env variable

* fixed compilation warnings in ggml-sycl.cpp

* renamed graph variables

* fix markdown in docs/backend/SYCL.md

Co-authored-by: Romain Biessy <romain.biessy@codeplay.com>

* fix markdown in docs/backend/SYCL.md again

* compiling graphs by default, renamed graph_enable to graph_disable

---------

Co-authored-by: Romain Biessy <romain.biessy@codeplay.com>
2025-03-18 11:16:31 +01:00
Georgi Gerganov
810e0af3f5 server : fix warmup draft cache type (#12446)
ggml-ci
2025-03-18 12:05:42 +02:00
Prajwal B Mehendarkar
eba92d64c3 cmake : fix PowerPC build (#12241)
Closes #12240
2025-03-18 11:37:33 +02:00
fj-y-saito
d9a14523bb ggml : add SVE support for q6_K_q8_K (#12361) 2025-03-18 10:14:39 +02:00
0cc4m
fd123cfead Vulkan: Default to 1GB allocations instead of 4GB to avoid fragmentation and driver issues (#12434) 2025-03-18 07:21:40 +01:00
Łukasz Ślusarczyk
a53f7f7b88 fixed compilation warnings in ggml-sycl (#12424)
Some checks are pending
Python check requirements.txt / check-requirements (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
2025-03-18 08:51:25 +08:00
Molly Sophia
7dfad387e3 llama: Add support for RWKV v7 architecture (#12412)
* ggml: Add op l2_norm

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* ggml: Add op rwkv_wkv7

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: Add support for RWKV7 and ARWKV7 models

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: fix inference with RWKV6Qwen2

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: add more (a)rwkv7 variants in size

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Apply code-format changes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* fix MUSA build

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: fix shape error with rwkv using llama-parallel

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
2025-03-18 07:27:50 +08:00
Sigbjørn Skjæret
60c902926c docs : bring llama-cli conversation/template docs up-to-date (#12426) 2025-03-17 21:14:32 +01:00
Gaurav Garg
b1b132efcb cuda : enable CUDA Graph on CUDA Toolkit < 12.x (#12394)
* Enable CUDA Graph on CTK < 12.x

`cudaGraphExecUpdate` API was changed on 12.x. For this reason CUDA graph support was disabled on older CUDA toolkit. This change enables CUDA support in CTK version < 12.x by using older API if CTK < 12.x.

* Fix compilation errors with MUSA

* Disable CUDA Graph for MUSA
2025-03-17 20:25:13 +02:00
Guus Waals
01e8f2138b ggml-vulkan: remove unused find_program(glslc) (#12416)
It's already found by FindVulkan.cmake in the parent CMakeLists
2025-03-17 13:35:43 -03:00
Jeff Bolz
484a8ab513 vulkan: Add N/2 and N/4 optimized paths in coopmat2 shader (#12312) 2025-03-17 09:26:18 -05:00
Daniele
cf2270e4d3 vulkan: subgroup size tuning (#12087)
* vulkan: subgroup size test

* Vulkan: Add device architecture enum and logic to recognize AMD generations

* vulkan: use new architecture logic to specify subgroup size

* Initial vulkan subgroup size tuning for RDNA3

* vulkan: commonize RDNA subgroup tuning

* vulkan: override subgroup size if required_subgroup_size = 0

* vulkan: disable warp 32 for RDNA3

* vulkan: fine tuned RDNA1 subgroup sizes

* vulkan: adjusted subgroup size map

* vulkan: fixed RDNA2 subgroup map

---------

Co-authored-by: 0cc4m <picard12@live.de>
2025-03-17 12:42:33 +01:00
Jeff Bolz
f07690c930 vulkan: use fp32 in coopmat2 q4_k dequant function (#12309) 2025-03-17 10:43:35 +01:00
Jeff Bolz
891c63956d vulkan: Pad N dimension of B matrix for coopmat2 perf, to avoid bounds checking (#12273)
* vulkan: Pad N dimension of B matrix for coopmat2 perf, to avoid bounds checking
2025-03-17 10:41:59 +01:00
Jeff Bolz
2f21123c1d vulkan: Adjust coopmat2 tile sizes and selection heuristic (#12258) 2025-03-17 10:35:00 +01:00
Christian Kastner
374101fd74 cmake : enable building llama.cpp using system libggml (#12321)
* cmake: Factor out compiler flag function from ggml

llama.cpps's build requires it, too, and we may want to make use of it
without add_subdirectory(ggml).

* cmake: Enable building against system ggml

This facilitates package maintenance for Linux distributions, where the
libggml library most likely will be shipped as an individual package
upon which a llama.cpp package depends.
2025-03-17 11:05:23 +02:00
Akarshan Biswas
b3c9a65673 SYCL: set extras only on GGML_TYPE_Q4_0 (#12366)
* SYCL: set extras only on GGML_TYPE_Q4_0

* release tensor_extras in reset buffer interface
2025-03-17 09:45:12 +08:00
Sigbjørn Skjæret
8ba95dca20 llama : fix OLMo-2-0325-32B-Instruct K-norm size (#12400) 2025-03-16 19:46:36 +02:00
Georgi Gerganov
dc079cfdff context : fix init of n_outputs (#12397)
ggml-ci
2025-03-16 19:29:36 +02:00
Daniel Bevenius
7b61bcc87c ci : add --symlinks to xcframework zip command (#12409)
This commit adds the --symlinks option to the zip command used to create
the xcframework zip file. This is necessary to create symlinks in the
zip file. Without this option,  the Versions symlink is stored as a
regular directory entry in the zip file, rather than as a symlink in the
zip which causes the followig error in xcode:
```console
Couldn't resolve framework symlink for '/Users/danbev/work/ai/llama.cpp/tmp_1/build-apple/llama.xcframework/macos-arm64_x86_64/llama.framework/Versions/Current': readlink(/Users/danbev/work/ai/llama.cpp/tmp_1/build-apple/llama.xcframework/macos-arm64_x86_64/llama.framework/Versions/Current): Invalid argument (22)
```

Refs: https://github.com/ggml-org/llama.cpp/pull/11996#issuecomment-2727026377
2025-03-16 18:22:05 +01:00
marcoStocchi
f4c3dd5daa llama-tts : add '-o' option (#12398)
* added -o option to specify an output file name

* llama-tts returns ENOENT in case of file write error

note : PR #12042 is closed as superseded with this one.
2025-03-15 17:23:11 +01:00
aubreyli
3d35d87b41 SYCL: Delete redundant plus sign and space (#12391) 2025-03-15 15:49:03 +01:00
fairydreaming
b19bd064c0 SYCL : support non-contiguous tensors in binary ops (add, sub, etc) (#12399)
* sycl : support non-contiguous tensors in binary ops

* sycl : silence unused variable warning

---------

Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
2025-03-15 22:19:30 +08:00
Chenguang Li
92a391327e [CANN]MUL_MAT optimization (#12382) 2025-03-15 09:31:08 +08:00
Eric Curtin
9f2250ba72 Add CLI arg to llama-run to adjust the number of threads used (#12370)
We default to 4, sometimes we want to manually adjust this

Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2025-03-14 16:41:20 +00:00
Sigbjørn Skjæret
774973b8f3 main : add -sysf / --system-prompt-file (#12249) (#12250)
* add system_prompt_file

* add -sysf / --system-prompt-file

* remove system_prompt_file
2025-03-14 16:57:05 +01:00
fairydreaming
8fcb563613 Load all MoE experts during warmup (#11571)
* llama : introduce llama_set_warmup() API call that controls warmup mode; use all MoE experts during warmup

* common : use new API to enable warmup mode during model warmup

---------

Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
2025-03-14 13:47:05 +01:00
Victor
add2a3aa5a server: fix "--grammar-file" parameter (#12285) 2025-03-14 11:21:17 +01:00
Georgi Gerganov
c522ce4143 graph : simplify attn input build for unified KV cache (#12381)
ggml-ci
2025-03-14 10:47:44 +02:00
Georgi Gerganov
081bee8c64 hparams : add SWA rope parameters (#12374)
ggml-ci
2025-03-14 09:03:24 +02:00
Georgi Gerganov
84d5475541 llama : fix Gemma3 SWA KV cache shift (#12373)
* llama : fix Gemma3 SWA KV cache shift

ggml-ci

* hparams : add comment [no ci]
2025-03-13 19:08:07 +02:00
Xuan-Son Nguyen
be7c303410 arg : no n_predict = -2 for examples except for main and infill (#12364) 2025-03-13 12:34:54 +01:00
Georgi Gerganov
e0dbec0bc6 llama : refactor llama_context, llama_kv_cache, llm_build_context (#12181)
Some checks failed
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
* llama : refactor llama_context, llama_kv_cache, llm_build_context

ggml-ci

* graph : don't mutate the KV cache during defrag

ggml-ci

* context : reduce virtuals + remove test function

ggml-ci

* context : move interface implementation to source file + factory

ggml-ci

* graph : move KV cache build functions to llama_context impl

ggml-ci

* graph : remove model reference from build_pooling

ggml-ci

* graph : remove llama_model reference

ggml-ci

* kv_cache : provide rope factors

ggml-ci

* graph : rework inputs to use only unique_ptr, remove attn input abstraction

ggml-ci

* context : remove llama_context_i abstraction

ggml-ci

* context : clean-up

ggml-ci

* graph : clean-up

ggml-ci

* llama : remove redundant keywords (struct, enum)

ggml-ci

* model : adapt gemma3

ggml-ci

* graph : restore same attention ops as on master

ggml-ci

* llama : remove TODO + fix indent

ggml-ci
2025-03-13 12:35:44 +02:00
Ishaan Gandhi
2048b5913d server : fix crash when using verbose output with input tokens that are not in printable range (#12178) (#12338)
* Fix DOS index bug

* Remove new APIs

* remove extra line

* Remove from API

* Add extra newline

* Update examples/server/server.cpp

---------

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-03-13 11:10:05 +01:00
Oscar Barenys
f08f4b3187 Update build.yml for Windows Vulkan builder to use Vulkan 1.4.304 SDK for VK_NV_cooperative_matrix2 support (#12301) 2025-03-12 20:06:58 +01:00
Daniel Bevenius
80a02aa858 llama.swiftui : fix xcframework dir in README [no ci] (#12353)
This commit fixes the path to the xcframework in the README file which I
had forgotten to change after renaming the build directory.
2025-03-12 13:45:32 +01:00
Alberto Cabrera Pérez
363f8c5d67 sycl : variable sg_size support for mmvq kernels (#12336)
Some checks failed
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
Python check requirements.txt / check-requirements (push) Has been cancelled
2025-03-12 09:57:32 +00:00
uvos
34c961b181 CUDA/HIP: Fix fattn-vec-* when device warp size is not 32 (#12315)
When fattn-wmma was ported over to warp64 various bits that also touch fattn-vec where converted to
selectable warp size, however the fattn-vec kernels dont work with 64 wide warps for now, so we need
to avoid launching them with parameters for warp64
2025-03-12 10:14:11 +01:00
340 changed files with 53785 additions and 41362 deletions

View File

@@ -14,9 +14,9 @@ WORKDIR /app
COPY . .
RUN if [ "$TARGETARCH" = "amd64" ]; then \
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON -DGGML_NATIVE=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON; \
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON; \
elif [ "$TARGETARCH" = "arm64" ]; then \
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON -DGGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=${GGML_CPU_ARM_ARCH}; \
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=${GGML_CPU_ARM_ARCH}; \
else \
echo "Unsupported architecture"; \
exit 1; \

View File

@@ -21,7 +21,7 @@ COPY . .
RUN if [ "${CUDA_DOCKER_ARCH}" != "default" ]; then \
export CMAKE_ARGS="-DCMAKE_CUDA_ARCHITECTURES=${CUDA_DOCKER_ARCH}"; \
fi && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_CUDA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_CUDA=ON -DLLAMA_CURL=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib && \

View File

@@ -17,7 +17,7 @@ RUN if [ "${GGML_SYCL_F16}" = "ON" ]; then \
&& export OPT_SYCL_F16="-DGGML_SYCL_F16=ON"; \
fi && \
echo "Building with dynamic libs" && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_CURL=ON ${OPT_SYCL_F16} && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_CURL=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON ${OPT_SYCL_F16} && \
cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib && \

View File

@@ -1,4 +1,4 @@
ARG ASCEND_VERSION=8.0.rc2.alpha003-910b-openeuler22.03-py3.8
ARG ASCEND_VERSION=8.1.RC1.alpha001-910b-openeuler22.03-py3.10
FROM ascendai/cann:$ASCEND_VERSION AS build
@@ -6,7 +6,7 @@ WORKDIR /app
COPY . .
RUN yum install -y gcc g++ cmake make
RUN yum install -y gcc g++ cmake make libcurl-devel
ENV ASCEND_TOOLKIT_HOME=/usr/local/Ascend/ascend-toolkit/latest
ENV LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/lib64:$LIBRARY_PATH
ENV LD_LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/lib64:${ASCEND_TOOLKIT_HOME}/lib64/plugin/opskernel:${ASCEND_TOOLKIT_HOME}/lib64/plugin/nnengine:${ASCEND_TOOLKIT_HOME}/opp/built-in/op_impl/ai_core/tbe/op_tiling:${LD_LIBRARY_PATH}

View File

@@ -35,7 +35,7 @@ COPY . .
RUN if [ "${MUSA_DOCKER_ARCH}" != "default" ]; then \
export CMAKE_ARGS="-DMUSA_ARCHITECTURES=${MUSA_DOCKER_ARCH}"; \
fi && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON -DLLAMA_CURL=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib && \

View File

@@ -17,8 +17,8 @@ FROM ${BASE_ROCM_DEV_CONTAINER} AS build
# gfx906 is deprecated
#check https://rocm.docs.amd.com/projects/install-on-linux/en/docs-6.2.4/reference/system-requirements.html
#ARG ROCM_DOCKER_ARCH='gfx803,gfx900,gfx906,gfx908,gfx90a,gfx942,gfx1010,gfx1030,gfx1032,gfx1100,gfx1101,gfx1102'
ARG ROCM_DOCKER_ARCH=gfx1100
ARG ROCM_DOCKER_ARCH='gfx803,gfx900,gfx906,gfx908,gfx90a,gfx942,gfx1010,gfx1030,gfx1032,gfx1100,gfx1101,gfx1102'
#ARG ROCM_DOCKER_ARCH=gfx1100
# Set nvcc architectured
ENV AMDGPU_TARGETS=${ROCM_DOCKER_ARCH}
@@ -40,7 +40,7 @@ WORKDIR /app
COPY . .
RUN HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" \
cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=$ROCM_DOCKER_ARCH -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON \
cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=$ROCM_DOCKER_ARCH -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON \
&& cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib \

View File

@@ -16,7 +16,7 @@ WORKDIR /app
COPY . .
RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_VULKAN=1 -DLLAMA_CURL=1 && \
RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_VULKAN=1 -DLLAMA_CURL=1 -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON && \
cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib && \

View File

@@ -0,0 +1,25 @@
name: 'Windows - Setup CURL'
description: 'Composite action, to be reused in other workflow'
inputs:
curl_version:
description: 'CURL version'
required: false
default: '8.6.0_6'
outputs:
curl_path:
description: "Path to the downloaded libcurl"
value: ${{ steps.get_libcurl.outputs.curl_path }}
runs:
using: "composite"
steps:
- name: libCURL
id: get_libcurl
shell: powershell
env:
CURL_VERSION: ${{ inputs.curl_version }}
run: |
curl.exe -o $env:RUNNER_TEMP/curl.zip -L "https://curl.se/windows/dl-${env:CURL_VERSION}/curl-${env:CURL_VERSION}-win64-mingw.zip"
mkdir $env:RUNNER_TEMP/libcurl
tar.exe -xvf $env:RUNNER_TEMP/curl.zip --strip-components=1 -C $env:RUNNER_TEMP/libcurl
echo "curl_path=$env:RUNNER_TEMP/libcurl" >> $env:GITHUB_OUTPUT

View File

@@ -104,7 +104,6 @@ jobs:
cmake -B build \
-DGGML_NATIVE=OFF \
-DLLAMA_BUILD_SERVER=ON \
-DLLAMA_CURL=ON \
-DLLAMA_CUBLAS=ON \
-DCUDAToolkit_ROOT=/usr/local/cuda \
-DCMAKE_CUDA_COMPILER=/usr/local/cuda/bin/nvcc \

124
.github/workflows/build-linux-cross.yml vendored Normal file
View File

@@ -0,0 +1,124 @@
name: Build on Linux using cross-compiler
on:
workflow_dispatch:
workflow_call:
jobs:
ubuntu-latest-riscv64-cpu-cross:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Setup Riscv
run: |
sudo dpkg --add-architecture riscv64
sudo sed -i 's|http://azure.archive.ubuntu.com/ubuntu|http://ports.ubuntu.com/ubuntu-ports|g' \
/etc/apt/sources.list /etc/apt/apt-mirrors.txt
sudo apt-get clean
sudo apt-get update
sudo apt-get install -y --no-install-recommends \
build-essential \
gcc-14-riscv64-linux-gnu \
g++-14-riscv64-linux-gnu \
libcurl4-openssl-dev:riscv64
- name: Build
run: |
cmake -B build -DCMAKE_BUILD_TYPE=Release \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_SYSTEM_NAME=Linux \
-DCMAKE_SYSTEM_PROCESSOR=riscv64 \
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
-DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
cmake --build build --config Release -j $(nproc)
ubuntu-latest-riscv64-vulkan-cross:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Setup Riscv
run: |
sudo dpkg --add-architecture riscv64
sudo sed -i 's|http://azure.archive.ubuntu.com/ubuntu|http://ports.ubuntu.com/ubuntu-ports|g' \
/etc/apt/sources.list /etc/apt/apt-mirrors.txt
sudo apt-get clean
sudo apt-get update
sudo apt-get install -y --no-install-recommends \
build-essential \
glslc \
gcc-14-riscv64-linux-gnu \
g++-14-riscv64-linux-gnu \
libvulkan-dev:riscv64 \
libcurl4-openssl-dev:riscv64
- name: Build
run: |
cmake -B build -DCMAKE_BUILD_TYPE=Release \
-DGGML_VULKAN=ON \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_SYSTEM_NAME=Linux \
-DCMAKE_SYSTEM_PROCESSOR=riscv64 \
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
-DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
cmake --build build --config Release -j $(nproc)
ubuntu-latest-arm64-vulkan-cross:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Setup Arm64
run: |
sudo dpkg --add-architecture arm64
sudo sed -i 's|http://azure.archive.ubuntu.com/ubuntu|http://ports.ubuntu.com/ubuntu-ports|g' \
/etc/apt/sources.list /etc/apt/apt-mirrors.txt
sudo apt-get clean
sudo apt-get update
sudo apt-get install -y --no-install-recommends \
build-essential \
glslc \
crossbuild-essential-arm64 \
libvulkan-dev:arm64 \
libcurl4-openssl-dev:arm64
- name: Build
run: |
cmake -B build -DCMAKE_BUILD_TYPE=Release \
-DGGML_VULKAN=ON \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_SYSTEM_NAME=Linux \
-DCMAKE_SYSTEM_PROCESSOR=aarch64 \
-DCMAKE_C_COMPILER=aarch64-linux-gnu-gcc \
-DCMAKE_CXX_COMPILER=aarch64-linux-gnu-g++ \
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
-DCMAKE_FIND_ROOT_PATH=/usr/lib/aarch64-linux-gnu \
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
cmake --build build --config Release -j $(nproc)

View File

@@ -10,7 +10,7 @@ on:
push:
branches:
- master
paths: ['.github/workflows/build.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.cuh', '**/*.swift', '**/*.m', '**/*.metal', '**/*.comp']
paths: ['.github/workflows/build.yml', '.github/workflows/build-linux-cross.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.cuh', '**/*.swift', '**/*.m', '**/*.metal', '**/*.comp']
pull_request:
types: [opened, synchronize, reopened]
paths: ['.github/workflows/build.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.cuh', '**/*.swift', '**/*.m', '**/*.metal', '**/*.comp']
@@ -54,6 +54,7 @@ jobs:
continue-on-error: true
run: |
brew update
brew install curl
- name: Build
id: cmake_build
@@ -62,7 +63,6 @@ jobs:
cmake -B build \
-DCMAKE_BUILD_RPATH="@loader_path" \
-DLLAMA_FATAL_WARNINGS=ON \
-DLLAMA_CURL=ON \
-DGGML_METAL_USE_BF16=ON \
-DGGML_METAL_EMBED_LIBRARY=ON \
-DGGML_RPC=ON
@@ -92,7 +92,6 @@ jobs:
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
run: |
cp LICENSE ./build/bin/
cp examples/run/linenoise.cpp/LICENSE ./build/bin/LICENSE.linenoise.cpp
zip -r llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.zip ./build/bin/*
- name: Upload artifacts
@@ -123,6 +122,7 @@ jobs:
continue-on-error: true
run: |
brew update
brew install curl
- name: Build
id: cmake_build
@@ -133,7 +133,6 @@ jobs:
cmake -B build \
-DCMAKE_BUILD_RPATH="@loader_path" \
-DLLAMA_FATAL_WARNINGS=ON \
-DLLAMA_CURL=ON \
-DGGML_METAL=OFF \
-DGGML_RPC=ON
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu)
@@ -162,7 +161,6 @@ jobs:
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
run: |
cp LICENSE ./build/bin/
cp examples/run/linenoise.cpp/LICENSE ./build/bin/LICENSE.linenoise.cpp
zip -r llama-${{ steps.tag.outputs.name }}-bin-macos-x64.zip ./build/bin/*
- name: Upload artifacts
@@ -207,7 +205,6 @@ jobs:
run: |
cmake -B build \
-DLLAMA_FATAL_WARNINGS=ON \
-DLLAMA_CURL=ON \
-DGGML_RPC=ON
cmake --build build --config Release -j $(nproc)
@@ -246,7 +243,6 @@ jobs:
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
run: |
cp LICENSE ./build/bin/
cp examples/run/linenoise.cpp/LICENSE ./build/bin/LICENSE.linenoise.cpp
zip -r llama-${{ steps.tag.outputs.name }}-bin-ubuntu-${{ matrix.build }}.zip ./build/bin/*
- name: Upload artifacts
@@ -281,7 +277,7 @@ jobs:
id: depends
run: |
sudo apt-get update
sudo apt-get install build-essential
sudo apt-get install build-essential libcurl4-openssl-dev
- name: Build
id: cmake_build
@@ -322,7 +318,7 @@ jobs:
id: depends
run: |
sudo apt-get update
sudo apt-get install build-essential
sudo apt-get install build-essential libcurl4-openssl-dev
- name: Build
id: cmake_build
@@ -360,7 +356,7 @@ jobs:
id: depends
run: |
sudo apt-get update
sudo apt-get install build-essential
sudo apt-get install build-essential libcurl4-openssl-dev
- name: Build
id: cmake_build
@@ -397,7 +393,7 @@ jobs:
wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | sudo apt-key add -
sudo wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list
sudo apt-get update -y
sudo apt-get install -y build-essential mesa-vulkan-drivers vulkan-sdk
sudo apt-get install -y build-essential mesa-vulkan-drivers vulkan-sdk libcurl4-openssl-dev
- name: Build
id: cmake_build
@@ -431,7 +427,6 @@ jobs:
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
run: |
cp LICENSE ./build/bin/
cp examples/run/linenoise.cpp/LICENSE ./build/bin/LICENSE.linenoise.cpp
zip -r llama-${{ steps.tag.outputs.name }}-bin-ubuntu-vulkan-x64.zip ./build/bin/*
- name: Upload artifacts
@@ -454,7 +449,7 @@ jobs:
id: depends
run: |
sudo apt-get update
sudo apt-get install -y build-essential git cmake rocblas-dev hipblas-dev
sudo apt-get install -y build-essential git cmake rocblas-dev hipblas-dev libcurl4-openssl-dev
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
@@ -530,7 +525,7 @@ jobs:
shell: bash
run: |
sudo apt update
sudo apt install intel-oneapi-compiler-dpcpp-cpp
sudo apt install intel-oneapi-compiler-dpcpp-cpp libcurl4-openssl-dev
- name: install oneAPI MKL library
shell: bash
@@ -578,7 +573,7 @@ jobs:
shell: bash
run: |
sudo apt update
sudo apt install intel-oneapi-compiler-dpcpp-cpp
sudo apt install intel-oneapi-compiler-dpcpp-cpp libcurl4-openssl-dev
- name: install oneAPI MKL library
shell: bash
@@ -606,6 +601,9 @@ jobs:
-DGGML_SYCL_F16=ON
cmake --build build --config Release -j $(nproc)
build-linux-cross:
uses: ./.github/workflows/build-linux-cross.yml
macOS-latest-cmake-ios:
runs-on: macos-latest
@@ -633,6 +631,7 @@ jobs:
cmake -B build -G Xcode \
-DGGML_METAL_USE_BF16=ON \
-DGGML_METAL_EMBED_LIBRARY=ON \
-DLLAMA_BUILD_COMMON=OFF \
-DLLAMA_BUILD_EXAMPLES=OFF \
-DLLAMA_BUILD_TESTS=OFF \
-DLLAMA_BUILD_SERVER=OFF \
@@ -668,6 +667,7 @@ jobs:
cmake -B build -G Xcode \
-DGGML_METAL_USE_BF16=ON \
-DGGML_METAL_EMBED_LIBRARY=ON \
-DLLAMA_BUILD_COMMON=OFF \
-DLLAMA_BUILD_EXAMPLES=OFF \
-DLLAMA_BUILD_TESTS=OFF \
-DLLAMA_BUILD_SERVER=OFF \
@@ -676,6 +676,36 @@ jobs:
-DCMAKE_XCODE_ATTRIBUTE_DEVELOPMENT_TEAM=ggml
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu) -- CODE_SIGNING_ALLOWED=NO
macOS-latest-cmake-visionos:
runs-on: macos-latest
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Dependencies
id: depends
continue-on-error: true
run: |
brew update
- name: Build
id: cmake_build
run: |
sysctl -a
cmake -B build -G Xcode \
-DGGML_METAL_USE_BF16=ON \
-DGGML_METAL_EMBED_LIBRARY=ON \
-DLLAMA_BUILD_COMMON=OFF \
-DLLAMA_BUILD_EXAMPLES=OFF \
-DLLAMA_BUILD_TESTS=OFF \
-DLLAMA_BUILD_SERVER=OFF \
-DCMAKE_SYSTEM_NAME=visionOS \
-DCMAKE_OSX_DEPLOYMENT_TARGET=1.0 \
-DCMAKE_XCODE_ATTRIBUTE_DEVELOPMENT_TEAM=ggml
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu) -- CODE_SIGNING_ALLOWED=NO
macOS-latest-swift:
runs-on: macos-latest
@@ -707,6 +737,7 @@ jobs:
cmake -B build -G Xcode \
-DGGML_METAL_USE_BF16=ON \
-DGGML_METAL_EMBED_LIBRARY=ON \
-DLLAMA_CURL=OFF \
-DLLAMA_BUILD_EXAMPLES=OFF \
-DLLAMA_BUILD_TESTS=OFF \
-DLLAMA_BUILD_SERVER=OFF \
@@ -774,7 +805,7 @@ jobs:
env:
OPENBLAS_VERSION: 0.3.23
SDE_VERSION: 9.33.0-2024-01-07
VULKAN_VERSION: 1.3.261.1
VULKAN_VERSION: 1.4.309.0
strategy:
matrix:
@@ -867,10 +898,17 @@ jobs:
-DCMAKE_INSTALL_PREFIX="$env:RUNNER_TEMP/opencl-arm64-release"
cmake --build build-arm64-release --target install --config release
- name: libCURL
id: get_libcurl
uses: ./.github/actions/windows-setup-curl
- name: Build
id: cmake_build
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
cmake -S . -B build ${{ matrix.defines }}
cmake -S . -B build ${{ matrix.defines }} `
-DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include"
cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS}
- name: Add libopenblas.dll
@@ -930,9 +968,10 @@ jobs:
- name: Pack artifacts
id: pack_artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
Copy-Item LICENSE .\build\bin\Release\llama.cpp.txt
Copy-Item .\examples\run\linenoise.cpp\LICENSE .\build\bin\Release\linenoise.cpp.txt
Copy-Item $env:CURL_PATH\bin\libcurl-x64.dll .\build\bin\Release\libcurl-x64.dll
7z a llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}.zip .\build\bin\Release\*
- name: Upload artifacts
@@ -958,7 +997,7 @@ jobs:
DEBIAN_FRONTEND: noninteractive
run: |
apt update
apt install -y cmake build-essential ninja-build libgomp1 git
apt install -y cmake build-essential ninja-build libgomp1 git libcurl4-openssl-dev
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
@@ -1060,16 +1099,23 @@ jobs:
run: |
choco install ninja
- name: libCURL
id: get_libcurl
uses: ./.github/actions/windows-setup-curl
- name: Build
id: cmake_build
shell: cmd
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
call "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\VC\Auxiliary\Build\vcvars64.bat"
cmake -S . -B build -G "Ninja Multi-Config" ^
-DLLAMA_BUILD_SERVER=ON ^
-DGGML_NATIVE=OFF ^
-DGGML_CUDA=ON ^
-DGGML_RPC=ON
-DGGML_RPC=ON ^
-DCURL_LIBRARY="%CURL_PATH%/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="%CURL_PATH%/include"
set /A NINJA_JOBS=%NUMBER_OF_PROCESSORS%-1
cmake --build build --config Release -j %NINJA_JOBS% -t ggml
cmake --build build --config Release
@@ -1090,7 +1136,10 @@ jobs:
- name: Pack artifacts
id: pack_artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
cp $env:CURL_PATH\bin\libcurl-x64.dll .\build\bin\Release\libcurl-x64.dll
7z a llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}-cu${{ matrix.cuda }}-x64.zip .\build\bin\Release\*
- name: Upload artifacts
@@ -1145,6 +1194,8 @@ jobs:
run: |
scripts/install-oneapi.bat $WINDOWS_BASEKIT_URL $WINDOWS_DPCPP_MKL
# TODO: add libcurl support ; we will also need to modify win-build-sycl.bat to accept user-specified args
- name: Build
id: cmake_build
run: examples/sycl/win-build-sycl.bat
@@ -1230,8 +1281,14 @@ jobs:
key: ${{ github.job }}
evict-old-files: 1d
- name: libCURL
id: get_libcurl
uses: ./.github/actions/windows-setup-curl
- name: Build
id: cmake_build
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
$env:CMAKE_PREFIX_PATH="${env:HIP_PATH}"
@@ -1242,9 +1299,11 @@ jobs:
-DCMAKE_BUILD_TYPE=Release `
-DGGML_HIP=ON `
-DGGML_HIP_ROCWMMA_FATTN=ON `
-DGGML_RPC=ON
-DGGML_RPC=ON `
-DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include"
cmake --build build -j ${env:NUMBER_OF_PROCESSORS}
# TODO: reuse windows-latest-cmake-hip instead of duplicating this job
windows-latest-cmake-hip-release:
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
runs-on: windows-latest
@@ -1286,8 +1345,14 @@ jobs:
run: |
& 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' --version
- name: libCURL
id: get_libcurl
uses: ./.github/actions/windows-setup-curl
- name: Build
id: cmake_build
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
$env:CMAKE_PREFIX_PATH="${env:HIP_PATH}"
@@ -1299,7 +1364,8 @@ jobs:
-DAMDGPU_TARGETS=${{ matrix.gpu_target }} `
-DGGML_HIP_ROCWMMA_FATTN=ON `
-DGGML_HIP=ON `
-DGGML_RPC=ON
-DGGML_RPC=ON `
-DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include"
cmake --build build -j ${env:NUMBER_OF_PROCESSORS}
md "build\bin\rocblas\library\"
cp "${env:HIP_PATH}\bin\hipblas.dll" "build\bin\"
@@ -1321,7 +1387,10 @@ jobs:
- name: Pack artifacts
id: pack_artifacts
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
cp $env:CURL_PATH\bin\libcurl-x64.dll .\build\bin\libcurl-x64.dll
7z a llama-${{ steps.tag.outputs.name }}-bin-win-hip-x64-${{ matrix.gpu_target }}.zip .\build\bin\*
- name: Upload artifacts
@@ -1346,6 +1415,7 @@ jobs:
cmake -B build -G Xcode \
-DGGML_METAL_USE_BF16=ON \
-DGGML_METAL_EMBED_LIBRARY=ON \
-DLLAMA_CURL=OFF \
-DLLAMA_BUILD_EXAMPLES=OFF \
-DLLAMA_BUILD_TESTS=OFF \
-DLLAMA_BUILD_SERVER=OFF \
@@ -1379,7 +1449,7 @@ jobs:
id: pack_artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
run: |
zip -r llama-${{ steps.tag.outputs.name }}-xcframework.zip build-apple/llama.xcframework
zip --symlinks -r llama-${{ steps.tag.outputs.name }}-xcframework.zip build-apple/llama.xcframework
- name: Upload artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
@@ -1696,16 +1766,17 @@ jobs:
if: ${{ github.event_name != 'pull_request' || contains(github.event.pull_request.labels.*.name, 'Ascend NPU') }}
defaults:
run:
shell: bash -el {0}
runs-on: ubuntu-24.04-arm
shell: bash -el {0}
strategy:
matrix:
arch: [x86, aarch64]
cann:
- '8.0.rc3.beta1-910b-openeuler22.03-py3.10'
- '8.1.RC1.alpha001-910b-openeuler22.03-py3.10'
device:
- 'ascend910b3'
build:
- 'Release'
runs-on: ${{ matrix.arch == 'aarch64' && 'ubuntu-24.04-arm' || 'ubuntu-24.04' }}
container: ascendai/cann:${{ matrix.cann }}
steps:
- name: Checkout
@@ -1714,7 +1785,7 @@ jobs:
- name: Dependencies
run: |
yum update -y
yum install -y git gcc gcc-c++ make cmake
yum install -y git gcc gcc-c++ make cmake libcurl-devel
- name: Build
run: |

View File

@@ -36,13 +36,13 @@ jobs:
matrix:
config:
# Multi-stage build
- { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, freediskspace: false}
- { tag: "cuda", dockerfile: ".devops/cuda.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, freediskspace: false}
- { tag: "musa", dockerfile: ".devops/musa.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, freediskspace: false}
- { tag: "intel", dockerfile: ".devops/intel.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, freediskspace: false}
- { tag: "vulkan", dockerfile: ".devops/vulkan.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, freediskspace: false}
- { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, free_disk_space: false }
- { tag: "cuda", dockerfile: ".devops/cuda.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
- { tag: "musa", dockerfile: ".devops/musa.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true }
- { tag: "intel", dockerfile: ".devops/intel.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
- { tag: "vulkan", dockerfile: ".devops/vulkan.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
# Note: the rocm images are failing due to a compiler error and are disabled until this is fixed to allow the workflow to complete
#- {tag: "rocm", dockerfile: ".devops/rocm.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, freediskspace: true }
#- {tag: "rocm", dockerfile: ".devops/rocm.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, free_disk_space: true }
steps:
- name: Check out the repo
uses: actions/checkout@v4

View File

@@ -129,7 +129,6 @@ jobs:
cmake -B build \
-DGGML_NATIVE=OFF \
-DLLAMA_BUILD_SERVER=ON \
-DLLAMA_CURL=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
-DGGML_OPENMP=OFF ;
@@ -142,7 +141,6 @@ jobs:
cmake -B build \
-DGGML_NATIVE=OFF \
-DLLAMA_BUILD_SERVER=ON \
-DLLAMA_CURL=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON ;
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
@@ -154,7 +152,6 @@ jobs:
cmake -B build \
-DGGML_NATIVE=OFF \
-DLLAMA_BUILD_SERVER=ON \
-DLLAMA_CURL=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} ;
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
@@ -195,17 +192,14 @@ jobs:
- name: libCURL
id: get_libcurl
env:
CURL_VERSION: 8.6.0_6
run: |
curl.exe -o $env:RUNNER_TEMP/curl.zip -L "https://curl.se/windows/dl-${env:CURL_VERSION}/curl-${env:CURL_VERSION}-win64-mingw.zip"
mkdir $env:RUNNER_TEMP/libcurl
tar.exe -xvf $env:RUNNER_TEMP/curl.zip --strip-components=1 -C $env:RUNNER_TEMP/libcurl
uses: ./.github/actions/windows-setup-curl
- name: Build
id: cmake_build
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
cmake -B build -DLLAMA_CURL=ON -DCURL_LIBRARY="$env:RUNNER_TEMP/libcurl/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:RUNNER_TEMP/libcurl/include"
cmake -B build -DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include"
cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS} --target llama-server
- name: Python setup
@@ -221,8 +215,10 @@ jobs:
- name: Copy Libcurl
id: prepare_libcurl
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
cp $env:RUNNER_TEMP/libcurl/bin/libcurl-x64.dll ./build/bin/Release/libcurl-x64.dll
cp $env:CURL_PATH/bin/libcurl-x64.dll ./build/bin/Release/libcurl-x64.dll
- name: Tests
id: server_integration_tests

View File

@@ -29,6 +29,8 @@ else()
set(LLAMA_STANDALONE OFF)
endif()
option(LLAMA_USE_SYSTEM_GGML "Use system libggml" OFF)
if (EMSCRIPTEN)
set(BUILD_SHARED_LIBS_DEFAULT OFF)
@@ -79,7 +81,7 @@ option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
option(LLAMA_BUILD_SERVER "llama: build server example" ${LLAMA_STANDALONE})
# 3rd party libs
option(LLAMA_CURL "llama: use libcurl to download model from an URL" OFF)
option(LLAMA_CURL "llama: use libcurl to download model from an URL" ON)
option(LLAMA_LLGUIDANCE "llama-common: include LLGuidance library for structured output in common utils" OFF)
# Required for relocatable CMake package
@@ -145,7 +147,13 @@ endif()
# 3rd-party
#
if (NOT TARGET ggml)
if (LLAMA_USE_SYSTEM_GGML)
message(STATUS "Using system-provided libggml, skipping ggml build")
find_package(ggml REQUIRED)
add_library(ggml ALIAS ggml::ggml)
endif()
if (NOT TARGET ggml AND NOT LLAMA_USE_SYSTEM_GGML)
add_subdirectory(ggml)
# ... otherwise assume ggml is added by a parent CMakeLists.txt
endif()
@@ -160,6 +168,11 @@ add_subdirectory(src)
# utils, programs, examples and tests
#
if (NOT LLAMA_BUILD_COMMON)
message(STATUS "LLAMA_BUILD_COMMON is OFF, disabling LLAMA_CURL")
set(LLAMA_CURL OFF)
endif()
if (LLAMA_BUILD_COMMON)
add_subdirectory(common)
endif()
@@ -234,3 +247,20 @@ configure_file(cmake/llama.pc.in
install(FILES "${CMAKE_CURRENT_BINARY_DIR}/llama.pc"
DESTINATION ${CMAKE_INSTALL_LIBDIR}/pkgconfig)
#
# copy the license files
#
# Check if running in GitHub Actions
if(DEFINED ENV{GITHUB_ACTIONS} AND "$ENV{GITHUB_ACTIONS}" STREQUAL "true")
message(STATUS "Running inside GitHub Actions - copying license files")
# Copy all files from licenses/ to build/bin/
file(GLOB LICENSE_FILES "${CMAKE_SOURCE_DIR}/licenses/*")
foreach(LICENSE_FILE ${LICENSE_FILES})
get_filename_component(FILENAME ${LICENSE_FILE} NAME)
configure_file(${LICENSE_FILE} "${CMAKE_BINARY_DIR}/bin/${FILENAME}" COPYONLY)
endforeach()
endif()

View File

@@ -780,10 +780,6 @@ ifdef GGML_HIP
MK_CPPFLAGS += -DGGML_USE_HIP -DGGML_USE_CUDA
ifdef GGML_HIP_UMA
MK_CPPFLAGS += -DGGML_HIP_UMA
endif # GGML_HIP_UMA
MK_LDFLAGS += -L$(ROCM_PATH)/lib -Wl,-rpath=$(ROCM_PATH)/lib
MK_LDFLAGS += -L$(ROCM_PATH)/lib64 -Wl,-rpath=$(ROCM_PATH)/lib64
MK_LDFLAGS += -lhipblas -lamdhip64 -lrocblas

View File

@@ -9,13 +9,6 @@
Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others) in pure C/C++
> [!IMPORTANT]
> New `llama.cpp` package location: [ggml-org/llama.cpp](https://github.com/ggml-org/llama.cpp/pkgs/container/llama.cpp)
>
> Update your container URLs to: `ghcr.io/ggml-org/llama.cpp`
>
> More info: https://github.com/ggml-org/llama.cpp/discussions/11801
## Recent API changes
- [Changelog for `libllama` API](https://github.com/ggml-org/llama.cpp/issues/9289)
@@ -104,6 +97,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- [x] [Flan T5](https://huggingface.co/models?search=flan-t5)
- [x] [Open Elm models](https://huggingface.co/collections/apple/openelm-instruct-models-6619ad295d7ae9f868b759ca)
- [x] [ChatGLM3-6b](https://huggingface.co/THUDM/chatglm3-6b) + [ChatGLM4-9b](https://huggingface.co/THUDM/glm-4-9b) + [GLMEdge-1.5b](https://huggingface.co/THUDM/glm-edge-1.5b-chat) + [GLMEdge-4b](https://huggingface.co/THUDM/glm-edge-4b-chat)
- [x] [GLM-4-0414](https://huggingface.co/collections/THUDM/glm-4-0414-67f3cbcb34dd9d252707cb2e)
- [x] [SmolLM](https://huggingface.co/collections/HuggingFaceTB/smollm-6695016cad7167254ce15966)
- [x] [EXAONE-3.0-7.8B-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct)
- [x] [FalconMamba Models](https://huggingface.co/collections/tiiuae/falconmamba-7b-66b9a580324dd1598b0f6d4a)
@@ -112,6 +106,8 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- [x] [RWKV-6](https://github.com/BlinkDL/RWKV-LM)
- [x] [QRWKV-6](https://huggingface.co/recursal/QRWKV6-32B-Instruct-Preview-v0.1)
- [x] [GigaChat-20B-A3B](https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct)
- [X] [Trillion-7B-preview](https://huggingface.co/trillionlabs/Trillion-7B-preview)
- [x] [Ling models](https://huggingface.co/collections/inclusionAI/ling-67c51c85b34a7ea0aba94c32)
#### Multimodal
@@ -245,6 +241,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
| [Vulkan](docs/build.md#vulkan) | GPU |
| [CANN](docs/build.md#cann) | Ascend NPU |
| [OpenCL](docs/backend/OPENCL.md) | Adreno GPU |
| [RPC](https://github.com/ggml-org/llama.cpp/tree/master/examples/rpc) | All |
## Building the project
@@ -263,7 +260,9 @@ The [Hugging Face](https://huggingface.co) platform hosts a [number of LLMs](htt
- [Trending](https://huggingface.co/models?library=gguf&sort=trending)
- [LLaMA](https://huggingface.co/models?sort=trending&search=llama+gguf)
You can either manually download the GGUF file or directly use any `llama.cpp`-compatible models from Hugging Face by using this CLI argument: `-hf <user>/<model>[:quant]`
You can either manually download the GGUF file or directly use any `llama.cpp`-compatible models from [Hugging Face](https://huggingface.co/) or other model hosting sites, such as [ModelScope](https://modelscope.cn/), by using this CLI argument: `-hf <user>/<model>[:quant]`.
By default, the CLI would download from Hugging Face, you can switch to other options with the environment variable `MODEL_ENDPOINT`. For example, you may opt to downloading model checkpoints from ModelScope or other model sharing communities by setting the environment variable, e.g. `MODEL_ENDPOINT=https://www.modelscope.cn/`.
After downloading a model, use the CLI tools to run it locally - see below.
@@ -528,6 +527,35 @@ If your issue is with model generation quality, then please at least scan the fo
- [Aligning language models to follow instructions](https://openai.com/research/instruction-following)
- [Training language models to follow instructions with human feedback](https://arxiv.org/abs/2203.02155)
## XCFramework
The XCFramework is a precompiled version of the library for iOS, visionOS, tvOS,
and macOS. It can be used in Swift projects without the need to compile the
library from source. For example:
```swift
// swift-tools-version: 5.10
// The swift-tools-version declares the minimum version of Swift required to build this package.
import PackageDescription
let package = Package(
name: "MyLlamaPackage",
targets: [
.executableTarget(
name: "MyLlamaPackage",
dependencies: [
"LlamaFramework"
]),
.binaryTarget(
name: "LlamaFramework",
url: "https://github.com/ggml-org/llama.cpp/releases/download/b5046/llama-b5046-xcframework.zip",
checksum: "c19be78b5f00d8d29a25da41042cb7afa094cbf6280a225abe614b03b20029ab"
)
]
)
```
The above example is using an intermediate build `b5046` of the library. This can be modified
to use a different version by changing the URL and checksum.
## Completions
Command-line completion is available for some environments.

View File

@@ -41,6 +41,11 @@ COMMON_CMAKE_ARGS=(
-DGGML_OPENMP=${GGML_OPENMP}
)
XCODE_VERSION=$(xcodebuild -version 2>/dev/null | head -n1 | awk '{ print $2 }')
MAJOR_VERSION=$(echo $XCODE_VERSION | cut -d. -f1)
MINOR_VERSION=$(echo $XCODE_VERSION | cut -d. -f2)
echo "Detected Xcode version: $XCODE_VERSION"
check_required_tool() {
local tool=$1
local install_message=$2
@@ -325,21 +330,28 @@ combine_static_libraries() {
# Platform-specific post-processing for device builds
if [[ "$is_simulator" == "false" ]]; then
if command -v vtool &>/dev/null; then
if command -v xcrun vtool &>/dev/null; then
case "$platform" in
"ios")
echo "Marking binary as a framework binary for iOS..."
vtool -set-build-version ios ${IOS_MIN_OS_VERSION} ${IOS_MIN_OS_VERSION} -replace \
xcrun vtool -set-build-version ios ${IOS_MIN_OS_VERSION} ${IOS_MIN_OS_VERSION} -replace \
-output "${base_dir}/${output_lib}" "${base_dir}/${output_lib}"
;;
"visionos")
echo "Marking binary as a framework binary for visionOS..."
vtool -set-build-version xros ${VISIONOS_MIN_OS_VERSION} ${VISIONOS_MIN_OS_VERSION} -replace \
if [[ "$MAJOR_VERSION" -gt 16 ]] || [[ "$MAJOR_VERSION" -eq 16 && "$MINOR_VERSION" -gt 2 ]]; then
echo "Xcode version greater than 16.2, using visionOS."
VISION_OS_BUILD_VERSION="visionos"
else
echo "Xcode version less than or equal to 16.2, using xros."
VISION_OS_BUILD_VERSION="xros"
fi
xcrun vtool -set-build-version ${VISION_OS_BUILD_VERSION} ${VISIONOS_MIN_OS_VERSION} ${VISIONOS_MIN_OS_VERSION} -replace \
-output "${base_dir}/${output_lib}" "${base_dir}/${output_lib}"
;;
"tvos")
echo "Marking binary as a framework binary for tvOS..."
vtool -set-build-version tvos ${TVOS_MIN_OS_VERSION} ${TVOS_MIN_OS_VERSION} -replace \
xcrun vtool -set-build-version tvos ${TVOS_MIN_OS_VERSION} ${TVOS_MIN_OS_VERSION} -replace \
-output "${base_dir}/${output_lib}" "${base_dir}/${output_lib}"
;;
esac
@@ -399,6 +411,7 @@ cmake -B build-ios-sim -G Xcode \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=iphonesimulator \
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
-DLLAMA_CURL=OFF \
-S .
cmake --build build-ios-sim --config Release -- -quiet
@@ -411,6 +424,7 @@ cmake -B build-ios-device -G Xcode \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=iphoneos \
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
-DLLAMA_CURL=OFF \
-S .
cmake --build build-ios-device --config Release -- -quiet
@@ -421,6 +435,7 @@ cmake -B build-macos -G Xcode \
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64" \
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
-DLLAMA_CURL=OFF \
-S .
cmake --build build-macos --config Release -- -quiet
@@ -432,8 +447,9 @@ cmake -B build-visionos -G Xcode \
-DCMAKE_SYSTEM_NAME=visionOS \
-DCMAKE_OSX_SYSROOT=xros \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=xros \
-DCMAKE_C_FLAGS="-D_XOPEN_SOURCE=700 -Du_int=unsigned\ int -Du_char=unsigned\ char -Du_short=unsigned\ short ${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="-D_XOPEN_SOURCE=700 -Du_int=unsigned\ int -Du_char=unsigned\ char -Du_short=unsigned\ short ${COMMON_CXX_FLAGS}" \
-DCMAKE_C_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_CXX_FLAGS}" \
-DLLAMA_CURL=OFF \
-S .
cmake --build build-visionos --config Release -- -quiet
@@ -445,8 +461,9 @@ cmake -B build-visionos-sim -G Xcode \
-DCMAKE_SYSTEM_NAME=visionOS \
-DCMAKE_OSX_SYSROOT=xrsimulator \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=xrsimulator \
-DCMAKE_C_FLAGS="-D_XOPEN_SOURCE=700 -Du_int=unsigned\ int -Du_char=unsigned\ char -Du_short=unsigned\ short ${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="-D_XOPEN_SOURCE=700 -Du_int=unsigned\ int -Du_char=unsigned\ char -Du_short=unsigned\ short ${COMMON_CXX_FLAGS}" \
-DCMAKE_C_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_CXX_FLAGS}" \
-DLLAMA_CURL=OFF \
-S .
cmake --build build-visionos-sim --config Release -- -quiet
@@ -462,6 +479,7 @@ cmake -B build-tvos-sim -G Xcode \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=appletvsimulator \
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
-DLLAMA_CURL=OFF \
-S .
cmake --build build-tvos-sim --config Release -- -quiet
@@ -476,6 +494,7 @@ cmake -B build-tvos-device -G Xcode \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=appletvos \
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
-DLLAMA_CURL=OFF \
-S .
cmake --build build-tvos-device --config Release -- -quiet

View File

@@ -26,4 +26,43 @@ GG_BUILD_CUDA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
# with SYCL support
source /opt/intel/oneapi/setvars.sh
GG_BUILD_SYCL=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
# with MUSA support
GG_BUILD_MUSA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
```
## Running MUSA CI in a Docker Container
Assuming `$PWD` is the root of the `llama.cpp` repository, follow these steps to set up and run MUSA CI in a Docker container:
### 1. Create a local directory to store cached models, configuration files and venv:
```bash
mkdir -p $HOME/llama.cpp/ci-cache
```
### 2. Create a local directory to store CI run results:
```bash
mkdir -p $HOME/llama.cpp/ci-results
```
### 3. Start a Docker container and run the CI:
```bash
docker run --privileged -it \
-v $HOME/llama.cpp/ci-cache:/ci-cache \
-v $HOME/llama.cpp/ci-results:/ci-results \
-v $PWD:/ws -w /ws \
mthreads/musa:rc3.1.1-devel-ubuntu22.04
```
Inside the container, execute the following commands:
```bash
apt update -y && apt install -y bc cmake ccache git python3.10-venv time unzip wget
git config --global --add safe.directory /ws
GG_BUILD_MUSA=1 bash ./ci/run.sh /ci-results /ci-cache
```
This setup ensures that the CI runs within an isolated Docker environment while maintaining cached files and results across runs.

View File

@@ -16,6 +16,9 @@
# # with VULKAN support
# GG_BUILD_VULKAN=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
#
# # with MUSA support
# GG_BUILD_MUSA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
#
if [ -z "$2" ]; then
echo "usage: $0 <output-dir> <mnt-dir>"
@@ -36,7 +39,7 @@ sd=`dirname $0`
cd $sd/../
SRC=`pwd`
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=ON"
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=OFF"
if [ ! -z ${GG_BUILD_METAL} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_METAL=ON -DGGML_METAL_USE_BF16=ON"
@@ -52,13 +55,24 @@ if [ ! -z ${GG_BUILD_SYCL} ]; then
echo "source /opt/intel/oneapi/setvars.sh"
exit 1
fi
# Use only main GPU
export ONEAPI_DEVICE_SELECTOR="level_zero:0"
# Enable sysman for correct memory reporting
export ZES_ENABLE_SYSMAN=1
# to circumvent precision issues on CPY operations
export SYCL_PROGRAM_COMPILE_OPTIONS="-cl-fp32-correctly-rounded-divide-sqrt"
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_SYCL=1 -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON"
fi
if [ ! -z ${GG_BUILD_VULKAN} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_VULKAN=1"
fi
if [ ! -z ${GG_BUILD_MUSA} ]; then
# Use qy1 by default (MTT S80)
MUSA_ARCH=${MUSA_ARCH:-21}
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_MUSA=ON -DMUSA_ARCHITECTURES=${MUSA_ARCH}"
fi
## helpers
# download a file if it does not exist or if it is outdated
@@ -808,7 +822,7 @@ export LLAMA_LOG_PREFIX=1
export LLAMA_LOG_TIMESTAMPS=1
if [ -z ${GG_BUILD_LOW_PERF} ]; then
# Create symlink: ./llama.cpp/models-mnt -> $MNT/models/models-mnt
# Create symlink: ./llama.cpp/models-mnt -> $MNT/models
rm -rf ${SRC}/models-mnt
mnt_models=${MNT}/models
mkdir -p ${mnt_models}
@@ -826,8 +840,10 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
fi
ret=0
test $ret -eq 0 && gg_run ctest_debug
if [ -z ${GG_BUILD_SYCL} ]; then
# SYCL build breaks with debug build flags
test $ret -eq 0 && gg_run ctest_debug
fi
test $ret -eq 0 && gg_run ctest_release
if [ -z ${GG_BUILD_LOW_PERF} ]; then
@@ -835,7 +851,9 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
test $ret -eq 0 && gg_run rerank_tiny
if [ -z ${GG_BUILD_CLOUD} ] || [ ${GG_BUILD_EXTRA_TESTS_0} ]; then
test $ret -eq 0 && gg_run test_scripts_debug
if [ -z ${GG_BUILD_SYCL} ]; then
test $ret -eq 0 && gg_run test_scripts_debug
fi
test $ret -eq 0 && gg_run test_scripts_release
fi
@@ -846,7 +864,9 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
test $ret -eq 0 && gg_run pythia_2_8b
#test $ret -eq 0 && gg_run open_llama_7b_v2
fi
test $ret -eq 0 && gg_run ctest_with_model_debug
if [ -z ${GG_BUILD_SYCL} ]; then
test $ret -eq 0 && gg_run ctest_with_model_debug
fi
test $ret -eq 0 && gg_run ctest_with_model_release
fi
fi

View File

@@ -1,3 +1,5 @@
include("ggml/cmake/common.cmake")
function(llama_add_compile_flags)
if (LLAMA_FATAL_WARNINGS)
if (CMAKE_CXX_COMPILER_ID MATCHES "GNU" OR CMAKE_CXX_COMPILER_ID MATCHES "Clang")

View File

@@ -85,7 +85,10 @@ set(LLAMA_COMMON_EXTRA_LIBS build_info)
# Use curl to download model url
if (LLAMA_CURL)
find_package(CURL REQUIRED)
find_package(CURL)
if (NOT CURL_FOUND)
message(FATAL_ERROR "Could NOT find CURL. Hint: to disable this feature, set -DLLAMA_CURL=OFF")
endif()
target_compile_definitions(${TARGET} PUBLIC LLAMA_USE_CURL)
include_directories(${CURL_INCLUDE_DIRS})
find_library(CURL_LIBRARY curl REQUIRED)
@@ -114,8 +117,8 @@ if (LLAMA_LLGUIDANCE)
ExternalProject_Add(llguidance_ext
GIT_REPOSITORY https://github.com/guidance-ai/llguidance
# v0.6.12:
GIT_TAG ced1c9023d47ec194fa977932d35ce65c2ebfc09
# v0.7.10:
GIT_TAG 0309d2a6bf40abda35344a362edc71e06d5009f8
PREFIX ${CMAKE_BINARY_DIR}/llguidance
SOURCE_DIR ${LLGUIDANCE_SRC}
BUILD_IN_SOURCE TRUE

View File

@@ -1,12 +1,24 @@
#include "gguf.h" // for reading GGUF splits
#include "arg.h"
#include "common.h"
#include "log.h"
#include "sampling.h"
#include "chat.h"
// fix problem with std::min and std::max
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
# define NOMINMAX
#endif
#include <windows.h>
#endif
#include <algorithm>
#include <climits>
#include <cstdarg>
#include <filesystem>
#include <fstream>
#include <regex>
#include <set>
@@ -14,6 +26,14 @@
#include <thread>
#include <vector>
//#define LLAMA_USE_CURL
#if defined(LLAMA_USE_CURL)
#include <curl/curl.h>
#include <curl/easy.h>
#include <future>
#endif
#include "json-schema-to-grammar.h"
using json = nlohmann::ordered_json;
@@ -125,47 +145,554 @@ std::string common_arg::to_string() {
return ss.str();
}
//
// downloader
//
struct common_hf_file_res {
std::string repo; // repo name with ":tag" removed
std::string ggufFile;
std::string mmprojFile;
};
#ifdef LLAMA_USE_CURL
#ifdef __linux__
#include <linux/limits.h>
#elif defined(_WIN32)
# if !defined(PATH_MAX)
# define PATH_MAX MAX_PATH
# endif
#elif defined(_AIX)
#include <sys/limits.h>
#else
#include <sys/syslimits.h>
#endif
#define LLAMA_CURL_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
//
// CURL utils
//
using curl_ptr = std::unique_ptr<CURL, decltype(&curl_easy_cleanup)>;
// cannot use unique_ptr for curl_slist, because we cannot update without destroying the old one
struct curl_slist_ptr {
struct curl_slist * ptr = nullptr;
~curl_slist_ptr() {
if (ptr) {
curl_slist_free_all(ptr);
}
}
};
#define CURL_MAX_RETRY 3
#define CURL_RETRY_DELAY_SECONDS 2
static bool curl_perform_with_retry(const std::string & url, CURL * curl, int max_attempts, int retry_delay_seconds) {
int remaining_attempts = max_attempts;
while (remaining_attempts > 0) {
LOG_INF("%s: Trying to download from %s (attempt %d of %d)...\n", __func__ , url.c_str(), max_attempts - remaining_attempts + 1, max_attempts);
CURLcode res = curl_easy_perform(curl);
if (res == CURLE_OK) {
return true;
}
int exponential_backoff_delay = std::pow(retry_delay_seconds, max_attempts - remaining_attempts) * 1000;
LOG_WRN("%s: curl_easy_perform() failed: %s, retrying after %d milliseconds...\n", __func__, curl_easy_strerror(res), exponential_backoff_delay);
remaining_attempts--;
std::this_thread::sleep_for(std::chrono::milliseconds(exponential_backoff_delay));
}
LOG_ERR("%s: curl_easy_perform() failed after %d attempts\n", __func__, max_attempts);
return false;
}
// download one single file from remote URL to local path
static bool common_download_file_single(const std::string & url, const std::string & path, const std::string & bearer_token) {
// Initialize libcurl
curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
curl_slist_ptr http_headers;
if (!curl) {
LOG_ERR("%s: error initializing libcurl\n", __func__);
return false;
}
bool force_download = false;
// Set the URL, allow to follow http redirection
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L);
http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp");
// Check if hf-token or bearer-token was specified
if (!bearer_token.empty()) {
std::string auth_header = "Authorization: Bearer " + bearer_token;
http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
}
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
#if defined(_WIN32)
// CURLSSLOPT_NATIVE_CA tells libcurl to use standard certificate store of
// operating system. Currently implemented under MS-Windows.
curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
#endif
// Check if the file already exists locally
auto file_exists = std::filesystem::exists(path);
// If the file exists, check its JSON metadata companion file.
std::string metadata_path = path + ".json";
nlohmann::json metadata;
std::string etag;
std::string last_modified;
if (file_exists) {
// Try and read the JSON metadata file (note: stream autoclosed upon exiting this block).
std::ifstream metadata_in(metadata_path);
if (metadata_in.good()) {
try {
metadata_in >> metadata;
LOG_INF("%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str());
if (metadata.contains("url") && metadata.at("url").is_string()) {
auto previous_url = metadata.at("url").get<std::string>();
if (previous_url != url) {
LOG_ERR("%s: Model URL mismatch: %s != %s\n", __func__, url.c_str(), previous_url.c_str());
return false;
}
}
if (metadata.contains("etag") && metadata.at("etag").is_string()) {
etag = metadata.at("etag");
}
if (metadata.contains("lastModified") && metadata.at("lastModified").is_string()) {
last_modified = metadata.at("lastModified");
}
} catch (const nlohmann::json::exception & e) {
LOG_ERR("%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
return false;
}
}
} else {
LOG_INF("%s: no previous model file found %s\n", __func__, path.c_str());
}
// Send a HEAD request to retrieve the etag and last-modified headers
struct common_load_model_from_url_headers {
std::string etag;
std::string last_modified;
};
common_load_model_from_url_headers headers;
{
typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
common_load_model_from_url_headers * headers = (common_load_model_from_url_headers *) userdata;
static std::regex header_regex("([^:]+): (.*)\r\n");
static std::regex etag_regex("ETag", std::regex_constants::icase);
static std::regex last_modified_regex("Last-Modified", std::regex_constants::icase);
std::string header(buffer, n_items);
std::smatch match;
if (std::regex_match(header, match, header_regex)) {
const std::string & key = match[1];
const std::string & value = match[2];
if (std::regex_match(key, match, etag_regex)) {
headers->etag = value;
} else if (std::regex_match(key, match, last_modified_regex)) {
headers->last_modified = value;
}
}
return n_items;
};
curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 1L); // will trigger the HEAD verb
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L); // hide head request progress
curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers);
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
if (!was_perform_successful) {
return false;
}
long http_code = 0;
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
if (http_code != 200) {
// HEAD not supported, we don't know if the file has changed
// force trigger downloading
force_download = true;
LOG_ERR("%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
}
}
bool should_download = !file_exists || force_download;
if (!should_download) {
if (!etag.empty() && etag != headers.etag) {
LOG_WRN("%s: ETag header is different (%s != %s): triggering a new download\n", __func__, etag.c_str(), headers.etag.c_str());
should_download = true;
} else if (!last_modified.empty() && last_modified != headers.last_modified) {
LOG_WRN("%s: Last-Modified header is different (%s != %s): triggering a new download\n", __func__, last_modified.c_str(), headers.last_modified.c_str());
should_download = true;
}
}
if (should_download) {
std::string path_temporary = path + ".downloadInProgress";
if (file_exists) {
LOG_WRN("%s: deleting previous downloaded file: %s\n", __func__, path.c_str());
if (remove(path.c_str()) != 0) {
LOG_ERR("%s: unable to delete file: %s\n", __func__, path.c_str());
return false;
}
}
// Set the output file
struct FILE_deleter {
void operator()(FILE * f) const {
fclose(f);
}
};
std::unique_ptr<FILE, FILE_deleter> outfile(fopen(path_temporary.c_str(), "wb"));
if (!outfile) {
LOG_ERR("%s: error opening local file for writing: %s\n", __func__, path.c_str());
return false;
}
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * data, size_t size, size_t nmemb, void * fd);
auto write_callback = [](void * data, size_t size, size_t nmemb, void * fd) -> size_t {
return fwrite(data, size, nmemb, (FILE *)fd);
};
curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 0L);
curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, outfile.get());
// display download progress
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 0L);
// helper function to hide password in URL
auto llama_download_hide_password_in_url = [](const std::string & url) -> std::string {
std::size_t protocol_pos = url.find("://");
if (protocol_pos == std::string::npos) {
return url; // Malformed URL
}
std::size_t at_pos = url.find('@', protocol_pos + 3);
if (at_pos == std::string::npos) {
return url; // No password in URL
}
return url.substr(0, protocol_pos + 3) + "********" + url.substr(at_pos);
};
// start the download
LOG_INF("%s: trying to download model from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str());
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
if (!was_perform_successful) {
return false;
}
long http_code = 0;
curl_easy_getinfo (curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
if (http_code < 200 || http_code >= 400) {
LOG_ERR("%s: invalid http status code received: %ld\n", __func__, http_code);
return false;
}
// Causes file to be closed explicitly here before we rename it.
outfile.reset();
// Write the updated JSON metadata file.
metadata.update({
{"url", url},
{"etag", headers.etag},
{"lastModified", headers.last_modified}
});
std::ofstream(metadata_path) << metadata.dump(4);
LOG_INF("%s: file metadata saved: %s\n", __func__, metadata_path.c_str());
if (rename(path_temporary.c_str(), path.c_str()) != 0) {
LOG_ERR("%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str());
return false;
}
}
return true;
}
// download multiple files from remote URLs to local paths
// the input is a vector of pairs <url, path>
static bool common_download_file_multiple(const std::vector<std::pair<std::string, std::string>> & urls, const std::string & bearer_token) {
// Prepare download in parallel
std::vector<std::future<bool>> futures_download;
for (auto const & item : urls) {
futures_download.push_back(std::async(std::launch::async, [bearer_token](const std::pair<std::string, std::string> & it) -> bool {
return common_download_file_single(it.first, it.second, bearer_token);
}, item));
}
// Wait for all downloads to complete
for (auto & f : futures_download) {
if (!f.get()) {
return false;
}
}
return true;
}
static bool common_download_model(
const common_params_model & model,
const std::string & bearer_token) {
// Basic validation of the model.url
if (model.url.empty()) {
LOG_ERR("%s: invalid model url\n", __func__);
return false;
}
if (!common_download_file_single(model.url, model.path, bearer_token)) {
return false;
}
// check for additional GGUFs split to download
int n_split = 0;
{
struct gguf_init_params gguf_params = {
/*.no_alloc = */ true,
/*.ctx = */ NULL,
};
auto * ctx_gguf = gguf_init_from_file(model.path.c_str(), gguf_params);
if (!ctx_gguf) {
LOG_ERR("\n%s: failed to load input GGUF from %s\n", __func__, model.path.c_str());
return false;
}
auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT);
if (key_n_split >= 0) {
n_split = gguf_get_val_u16(ctx_gguf, key_n_split);
}
gguf_free(ctx_gguf);
}
if (n_split > 1) {
char split_prefix[PATH_MAX] = {0};
char split_url_prefix[LLAMA_CURL_MAX_URL_LENGTH] = {0};
// Verify the first split file format
// and extract split URL and PATH prefixes
{
if (!llama_split_prefix(split_prefix, sizeof(split_prefix), model.path.c_str(), 0, n_split)) {
LOG_ERR("\n%s: unexpected model file name: %s n_split=%d\n", __func__, model.path.c_str(), n_split);
return false;
}
if (!llama_split_prefix(split_url_prefix, sizeof(split_url_prefix), model.url.c_str(), 0, n_split)) {
LOG_ERR("\n%s: unexpected model url: %s n_split=%d\n", __func__, model.url.c_str(), n_split);
return false;
}
}
std::vector<std::pair<std::string, std::string>> urls;
for (int idx = 1; idx < n_split; idx++) {
char split_path[PATH_MAX] = {0};
llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
char split_url[LLAMA_CURL_MAX_URL_LENGTH] = {0};
llama_split_path(split_url, sizeof(split_url), split_url_prefix, idx, n_split);
if (std::string(split_path) == model.path) {
continue; // skip the already downloaded file
}
urls.push_back({split_url, split_path});
}
// Download in parallel
common_download_file_multiple(urls, bearer_token);
}
return true;
}
/**
* Allow getting the HF file from the HF repo with tag (like ollama), for example:
* - bartowski/Llama-3.2-3B-Instruct-GGUF:q4
* - bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M
* - bartowski/Llama-3.2-3B-Instruct-GGUF:q5_k_s
* Tag is optional, default to "latest" (meaning it checks for Q4_K_M first, then Q4, then if not found, return the first GGUF file in repo)
*
* Return pair of <repo, file> (with "repo" already having tag removed)
*
* Note: we use the Ollama-compatible HF API, but not using the blobId. Instead, we use the special "ggufFile" field which returns the value for "hf_file". This is done to be backward-compatible with existing cache files.
*/
static struct common_hf_file_res common_get_hf_file(const std::string & hf_repo_with_tag, const std::string & bearer_token) {
auto parts = string_split<std::string>(hf_repo_with_tag, ':');
std::string tag = parts.size() > 1 ? parts.back() : "latest";
std::string hf_repo = parts[0];
if (string_split<std::string>(hf_repo, '/').size() != 2) {
throw std::invalid_argument("error: invalid HF repo format, expected <user>/<model>[:quant]\n");
}
// fetch model info from Hugging Face Hub API
curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
curl_slist_ptr http_headers;
std::string res_str;
std::string model_endpoint = get_model_endpoint();
std::string url = model_endpoint + "v2/" + hf_repo + "/manifests/" + tag;
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L);
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * ptr, size_t size, size_t nmemb, void * data);
auto write_callback = [](void * ptr, size_t size, size_t nmemb, void * data) -> size_t {
static_cast<std::string *>(data)->append((char * ) ptr, size * nmemb);
return size * nmemb;
};
curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, &res_str);
#if defined(_WIN32)
curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
#endif
if (!bearer_token.empty()) {
std::string auth_header = "Authorization: Bearer " + bearer_token;
http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
}
// Important: the User-Agent must be "llama-cpp" to get the "ggufFile" field in the response
http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp");
http_headers.ptr = curl_slist_append(http_headers.ptr, "Accept: application/json");
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
CURLcode res = curl_easy_perform(curl.get());
if (res != CURLE_OK) {
throw std::runtime_error("error: cannot make GET request to HF API");
}
long res_code;
std::string ggufFile = "";
std::string mmprojFile = "";
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &res_code);
if (res_code == 200) {
// extract ggufFile.rfilename in json, using regex
{
std::regex pattern("\"ggufFile\"[\\s\\S]*?\"rfilename\"\\s*:\\s*\"([^\"]+)\"");
std::smatch match;
if (std::regex_search(res_str, match, pattern)) {
ggufFile = match[1].str();
}
}
// extract mmprojFile.rfilename in json, using regex
{
std::regex pattern("\"mmprojFile\"[\\s\\S]*?\"rfilename\"\\s*:\\s*\"([^\"]+)\"");
std::smatch match;
if (std::regex_search(res_str, match, pattern)) {
mmprojFile = match[1].str();
}
}
} else if (res_code == 401) {
throw std::runtime_error("error: model is private or does not exist; if you are accessing a gated model, please provide a valid HF token");
} else {
throw std::runtime_error(string_format("error from HF API, response code: %ld, data: %s", res_code, res_str.c_str()));
}
// check response
if (ggufFile.empty()) {
throw std::runtime_error("error: model does not have ggufFile");
}
return { hf_repo, ggufFile, mmprojFile };
}
#else
static bool common_download_file_single(const std::string &, const std::string &, const std::string &) {
LOG_ERR("error: built without CURL, cannot download model from internet\n");
return false;
}
static bool common_download_file_multiple(const std::vector<std::pair<std::string, std::string>> &, const std::string &) {
LOG_ERR("error: built without CURL, cannot download model from the internet\n");
return false;
}
static bool common_download_model(
const common_params_model &,
const std::string &) {
LOG_ERR("error: built without CURL, cannot download model from the internet\n");
return false;
}
static struct common_hf_file_res common_get_hf_file(const std::string &, const std::string &) {
LOG_ERR("error: built without CURL, cannot download model from the internet\n");
return {};
}
#endif // LLAMA_USE_CURL
//
// utils
//
static void common_params_handle_model_default(
std::string & model,
const std::string & model_url,
std::string & hf_repo,
std::string & hf_file,
const std::string & hf_token,
const std::string & model_default) {
if (!hf_repo.empty()) {
// short-hand to avoid specifying --hf-file -> default it to --model
if (hf_file.empty()) {
if (model.empty()) {
auto auto_detected = common_get_hf_file(hf_repo, hf_token);
if (auto_detected.first.empty() || auto_detected.second.empty()) {
exit(1); // built without CURL, error message already printed
static void common_params_handle_model(
struct common_params_model & model,
const std::string & bearer_token,
const std::string & model_path_default,
bool is_mmproj = false) { // TODO: move is_mmproj to an enum when we have more files?
// handle pre-fill default model path and url based on hf_repo and hf_file
{
if (!model.hf_repo.empty()) {
// short-hand to avoid specifying --hf-file -> default it to --model
if (model.hf_file.empty()) {
if (model.path.empty()) {
auto auto_detected = common_get_hf_file(model.hf_repo, bearer_token);
if (auto_detected.repo.empty() || auto_detected.ggufFile.empty()) {
exit(1); // built without CURL, error message already printed
}
model.hf_repo = auto_detected.repo;
model.hf_file = is_mmproj ? auto_detected.mmprojFile : auto_detected.ggufFile;
} else {
model.hf_file = model.path;
}
hf_repo = auto_detected.first;
hf_file = auto_detected.second;
} else {
hf_file = model;
}
std::string model_endpoint = get_model_endpoint();
model.url = model_endpoint + model.hf_repo + "/resolve/main/" + model.hf_file;
// make sure model path is present (for caching purposes)
if (model.path.empty()) {
// this is to avoid different repo having same file name, or same file name in different subdirs
std::string filename = model.hf_repo + "_" + model.hf_file;
// to make sure we don't have any slashes in the filename
string_replace_all(filename, "/", "_");
model.path = fs_get_cache_file(filename);
}
} else if (!model.url.empty()) {
if (model.path.empty()) {
auto f = string_split<std::string>(model.url, '#').front();
f = string_split<std::string>(f, '?').front();
model.path = fs_get_cache_file(string_split<std::string>(f, '/').back());
}
} else if (model.path.empty()) {
model.path = model_path_default;
}
// make sure model path is present (for caching purposes)
if (model.empty()) {
// this is to avoid different repo having same file name, or same file name in different subdirs
std::string filename = hf_repo + "_" + hf_file;
// to make sure we don't have any slashes in the filename
string_replace_all(filename, "/", "_");
model = fs_get_cache_file(filename);
}
// then, download it if needed
if (!model.url.empty()) {
bool ok = common_download_model(model, bearer_token);
if (!ok) {
LOG_ERR("error: failed to download model from %s\n", model.url.c_str());
exit(1);
}
} else if (!model_url.empty()) {
if (model.empty()) {
auto f = string_split<std::string>(model_url, '#').front();
f = string_split<std::string>(f, '?').front();
model = fs_get_cache_file(string_split<std::string>(f, '/').back());
}
} else if (model.empty()) {
model = model_default;
}
}
@@ -300,10 +827,16 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n");
}
// TODO: refactor model params in a common struct
common_params_handle_model_default(params.model, params.model_url, params.hf_repo, params.hf_file, params.hf_token, DEFAULT_MODEL_PATH);
common_params_handle_model_default(params.speculative.model, params.speculative.model_url, params.speculative.hf_repo, params.speculative.hf_file, params.hf_token, "");
common_params_handle_model_default(params.vocoder.model, params.vocoder.model_url, params.vocoder.hf_repo, params.vocoder.hf_file, params.hf_token, "");
common_params_handle_model(params.model, params.hf_token, DEFAULT_MODEL_PATH);
common_params_handle_model(params.speculative.model, params.hf_token, "");
common_params_handle_model(params.vocoder.model, params.hf_token, "");
// allow --mmproj to be set from -hf
// assuming that mmproj is always in the same repo as text model
if (!params.model.hf_repo.empty() && ctx_arg.ex == LLAMA_EXAMPLE_LLAVA) {
params.mmproj.hf_repo = params.model.hf_repo;
}
common_params_handle_model(params.mmproj, params.hf_token, "", true);
if (params.escape) {
string_process_escapes(params.prompt);
@@ -322,6 +855,10 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
params.kv_overrides.back().key[0] = 0;
}
if (!params.tensor_buft_overrides.empty()) {
params.tensor_buft_overrides.push_back({nullptr, nullptr});
}
if (params.reranking && params.embedding) {
throw std::invalid_argument("error: either --embedding or --reranking can be specified, but not both");
}
@@ -764,7 +1301,11 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
).set_env("LLAMA_ARG_CTX_SIZE"));
add_opt(common_arg(
{"-n", "--predict", "--n-predict"}, "N",
string_format("number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)", params.n_predict),
string_format(
ex == LLAMA_EXAMPLE_MAIN || ex == LLAMA_EXAMPLE_INFILL
? "number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)"
: "number of tokens to predict (default: %d, -1 = infinity)",
params.n_predict),
[](common_params & params, int value) {
params.n_predict = value;
}
@@ -849,6 +1390,20 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
}
}
).set_excludes({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"-sysf", "--system-prompt-file"}, "FNAME",
"a file containing the system prompt (default: none)",
[](common_params & params, const std::string & value) {
std::ifstream file(value);
if (!file) {
throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
}
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.system_prompt));
if (!params.system_prompt.empty() && params.system_prompt.back() == '\n') {
params.system_prompt.pop_back();
}
}
).set_examples({LLAMA_EXAMPLE_MAIN}));
add_opt(common_arg(
{"--in-file"}, "FNAME",
"an input file (repeat to specify multiple files)",
@@ -1543,7 +2098,14 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--mmproj"}, "FILE",
"path to a multimodal projector file for LLaVA. see examples/llava/README.md",
[](common_params & params, const std::string & value) {
params.mmproj = value;
params.mmproj.path = value;
}
).set_examples({LLAMA_EXAMPLE_LLAVA}));
add_opt(common_arg(
{"--mmproj-url"}, "URL",
"URL to a multimodal projector file for LLaVA. see examples/llava/README.md",
[](common_params & params, const std::string & value) {
params.mmproj.url = value;
}
).set_examples({LLAMA_EXAMPLE_LLAVA}));
add_opt(common_arg(
@@ -1629,6 +2191,41 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
exit(0);
}
));
add_opt(common_arg(
{"--override-tensor", "-ot"}, "<tensor name pattern>=<buffer type>,...",
"override tensor buffer type", [](common_params & params, const std::string & value) {
/* static */ std::map<std::string, ggml_backend_buffer_type_t> buft_list;
if (buft_list.empty()) {
// enumerate all the devices and add their buffer types to the list
for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
auto * dev = ggml_backend_dev_get(i);
auto * buft = ggml_backend_dev_buffer_type(dev);
if (buft) {
buft_list[ggml_backend_buft_name(buft)] = buft;
}
}
}
for (const auto & override : string_split<std::string>(value, ',')) {
std::string::size_type pos = override.find('=');
if (pos == std::string::npos) {
throw std::invalid_argument("invalid value");
}
std::string tensor_name = override.substr(0, pos);
std::string buffer_type = override.substr(pos + 1);
if (buft_list.find(buffer_type) == buft_list.end()) {
printf("Available buffer types:\n");
for (const auto & it : buft_list) {
printf(" %s\n", ggml_backend_buft_name(it.second));
}
throw std::invalid_argument("unknown buffer type");
}
// FIXME: this leaks memory
params.tensor_buft_overrides.push_back({strdup(tensor_name.c_str()), buft_list.at(buffer_type)});
}
}
));
add_opt(common_arg(
{"-ngl", "--gpu-layers", "--n-gpu-layers"}, "N",
"number of layers to store in VRAM",
@@ -1772,14 +2369,14 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
"or `--model-url` if set, otherwise %s)", DEFAULT_MODEL_PATH
),
[](common_params & params, const std::string & value) {
params.model = value;
params.model.path = value;
}
).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}).set_env("LLAMA_ARG_MODEL"));
add_opt(common_arg(
{"-mu", "--model-url"}, "MODEL_URL",
"model download url (default: unused)",
[](common_params & params, const std::string & value) {
params.model_url = value;
params.model.url = value;
}
).set_env("LLAMA_ARG_MODEL_URL"));
add_opt(common_arg(
@@ -1788,35 +2385,35 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
"example: unsloth/phi-4-GGUF:q4_k_m\n"
"(default: unused)",
[](common_params & params, const std::string & value) {
params.hf_repo = value;
params.model.hf_repo = value;
}
).set_env("LLAMA_ARG_HF_REPO"));
add_opt(common_arg(
{"-hfd", "-hfrd", "--hf-repo-draft"}, "<user>/<model>[:quant]",
"Same as --hf-repo, but for the draft model (default: unused)",
[](common_params & params, const std::string & value) {
params.speculative.hf_repo = value;
params.speculative.model.hf_repo = value;
}
).set_env("LLAMA_ARG_HFD_REPO"));
add_opt(common_arg(
{"-hff", "--hf-file"}, "FILE",
"Hugging Face model file. If specified, it will override the quant in --hf-repo (default: unused)",
[](common_params & params, const std::string & value) {
params.hf_file = value;
params.model.hf_file = value;
}
).set_env("LLAMA_ARG_HF_FILE"));
add_opt(common_arg(
{"-hfv", "-hfrv", "--hf-repo-v"}, "<user>/<model>[:quant]",
"Hugging Face model repository for the vocoder model (default: unused)",
[](common_params & params, const std::string & value) {
params.vocoder.hf_repo = value;
params.vocoder.model.hf_repo = value;
}
).set_env("LLAMA_ARG_HF_REPO_V"));
add_opt(common_arg(
{"-hffv", "--hf-file-v"}, "FILE",
"Hugging Face model file for the vocoder model (default: unused)",
[](common_params & params, const std::string & value) {
params.vocoder.hf_file = value;
params.vocoder.model.hf_file = value;
}
).set_env("LLAMA_ARG_HF_FILE_V"));
add_opt(common_arg(
@@ -1871,7 +2468,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params, const std::string & value) {
params.out_file = value;
}
).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_CVECTOR_GENERATOR, LLAMA_EXAMPLE_EXPORT_LORA}));
).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_CVECTOR_GENERATOR, LLAMA_EXAMPLE_EXPORT_LORA, LLAMA_EXAMPLE_TTS}));
add_opt(common_arg(
{"-ofreq", "--output-frequency"}, "N",
string_format("output the imatrix every N iterations (default: %d)", params.n_out_freq),
@@ -1961,7 +2558,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
add_opt(common_arg(
{"--host"}, "HOST",
string_format("ip address to listen (default: %s)", params.hostname.c_str()),
string_format("ip address to listen, or bind to an UNIX socket if the address ends with .sock (default: %s)", params.hostname.c_str()),
[](common_params & params, const std::string & value) {
params.hostname = value;
}
@@ -2436,7 +3033,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"-md", "--model-draft"}, "FNAME",
"draft model for speculative decoding (default: unused)",
[](common_params & params, const std::string & value) {
params.speculative.model = value;
params.speculative.model.path = value;
}
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODEL_DRAFT"));
@@ -2444,7 +3041,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"-mv", "--model-vocoder"}, "FNAME",
"vocoder model for audio generation (default: unused)",
[](common_params & params, const std::string & value) {
params.vocoder.model = value;
params.vocoder.model.path = value;
}
).set_examples({LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
@@ -2467,10 +3064,10 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--tts-oute-default"},
string_format("use default OuteTTS models (note: can download weights from the internet)"),
[](common_params & params) {
params.hf_repo = "OuteAI/OuteTTS-0.2-500M-GGUF";
params.hf_file = "OuteTTS-0.2-500M-Q8_0.gguf";
params.vocoder.hf_repo = "ggml-org/WavTokenizer";
params.vocoder.hf_file = "WavTokenizer-Large-75-F16.gguf";
params.model.hf_repo = "OuteAI/OuteTTS-0.2-500M-GGUF";
params.model.hf_file = "OuteTTS-0.2-500M-Q8_0.gguf";
params.vocoder.model.hf_repo = "ggml-org/WavTokenizer";
params.vocoder.model.hf_file = "WavTokenizer-Large-75-F16.gguf";
}
).set_examples({LLAMA_EXAMPLE_TTS}));
@@ -2478,8 +3075,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--embd-bge-small-en-default"},
string_format("use default bge-small-en-v1.5 model (note: can download weights from the internet)"),
[](common_params & params) {
params.hf_repo = "ggml-org/bge-small-en-v1.5-Q8_0-GGUF";
params.hf_file = "bge-small-en-v1.5-q8_0.gguf";
params.model.hf_repo = "ggml-org/bge-small-en-v1.5-Q8_0-GGUF";
params.model.hf_file = "bge-small-en-v1.5-q8_0.gguf";
params.pooling_type = LLAMA_POOLING_TYPE_NONE;
params.embd_normalize = 2;
params.n_ctx = 512;
@@ -2492,8 +3089,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--embd-e5-small-en-default"},
string_format("use default e5-small-v2 model (note: can download weights from the internet)"),
[](common_params & params) {
params.hf_repo = "ggml-org/e5-small-v2-Q8_0-GGUF";
params.hf_file = "e5-small-v2-q8_0.gguf";
params.model.hf_repo = "ggml-org/e5-small-v2-Q8_0-GGUF";
params.model.hf_file = "e5-small-v2-q8_0.gguf";
params.pooling_type = LLAMA_POOLING_TYPE_NONE;
params.embd_normalize = 2;
params.n_ctx = 512;
@@ -2506,8 +3103,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--embd-gte-small-default"},
string_format("use default gte-small model (note: can download weights from the internet)"),
[](common_params & params) {
params.hf_repo = "ggml-org/gte-small-Q8_0-GGUF";
params.hf_file = "gte-small-q8_0.gguf";
params.model.hf_repo = "ggml-org/gte-small-Q8_0-GGUF";
params.model.hf_file = "gte-small-q8_0.gguf";
params.pooling_type = LLAMA_POOLING_TYPE_NONE;
params.embd_normalize = 2;
params.n_ctx = 512;
@@ -2520,8 +3117,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--fim-qwen-1.5b-default"},
string_format("use default Qwen 2.5 Coder 1.5B (note: can download weights from the internet)"),
[](common_params & params) {
params.hf_repo = "ggml-org/Qwen2.5-Coder-1.5B-Q8_0-GGUF";
params.hf_file = "qwen2.5-coder-1.5b-q8_0.gguf";
params.model.hf_repo = "ggml-org/Qwen2.5-Coder-1.5B-Q8_0-GGUF";
params.model.hf_file = "qwen2.5-coder-1.5b-q8_0.gguf";
params.port = 8012;
params.n_gpu_layers = 99;
params.flash_attn = true;
@@ -2536,8 +3133,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--fim-qwen-3b-default"},
string_format("use default Qwen 2.5 Coder 3B (note: can download weights from the internet)"),
[](common_params & params) {
params.hf_repo = "ggml-org/Qwen2.5-Coder-3B-Q8_0-GGUF";
params.hf_file = "qwen2.5-coder-3b-q8_0.gguf";
params.model.hf_repo = "ggml-org/Qwen2.5-Coder-3B-Q8_0-GGUF";
params.model.hf_file = "qwen2.5-coder-3b-q8_0.gguf";
params.port = 8012;
params.n_gpu_layers = 99;
params.flash_attn = true;
@@ -2552,8 +3149,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--fim-qwen-7b-default"},
string_format("use default Qwen 2.5 Coder 7B (note: can download weights from the internet)"),
[](common_params & params) {
params.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
params.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
params.model.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
params.port = 8012;
params.n_gpu_layers = 99;
params.flash_attn = true;
@@ -2568,10 +3165,10 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--fim-qwen-7b-spec"},
string_format("use Qwen 2.5 Coder 7B + 0.5B draft for speculative decoding (note: can download weights from the internet)"),
[](common_params & params) {
params.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
params.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
params.speculative.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
params.speculative.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
params.model.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
params.speculative.n_gpu_layers = 99;
params.port = 8012;
params.n_gpu_layers = 99;
@@ -2587,10 +3184,10 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--fim-qwen-14b-spec"},
string_format("use Qwen 2.5 Coder 14B + 0.5B draft for speculative decoding (note: can download weights from the internet)"),
[](common_params & params) {
params.hf_repo = "ggml-org/Qwen2.5-Coder-14B-Q8_0-GGUF";
params.hf_file = "qwen2.5-coder-14b-q8_0.gguf";
params.speculative.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
params.speculative.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
params.model.hf_repo = "ggml-org/Qwen2.5-Coder-14B-Q8_0-GGUF";
params.model.hf_file = "qwen2.5-coder-14b-q8_0.gguf";
params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
params.speculative.n_gpu_layers = 99;
params.port = 8012;
params.n_gpu_layers = 99;

View File

@@ -1622,7 +1622,7 @@ static common_chat_params common_chat_templates_apply_jinja(
}
// Hermes 2/3 Pro, Qwen 2.5 Instruct (w/ tools)
if (src.find("<tool_call>") != std::string::npos && params.json_schema.is_null()) {
if (src.find("<tool_call>") != std::string::npos && params.json_schema.is_null() && params.tools.is_array() && params.json_schema.is_null()) {
return common_chat_params_init_hermes_2_pro(tmpl, params);
}

View File

@@ -7,9 +7,6 @@
#include "common.h"
#include "log.h"
// Change JSON_ASSERT from assert() to GGML_ASSERT:
#define JSON_ASSERT GGML_ASSERT
#include "json.hpp"
#include "llama.h"
#include <algorithm>
@@ -51,47 +48,11 @@
#include <sys/stat.h>
#include <unistd.h>
#endif
#if defined(LLAMA_USE_CURL)
#include <curl/curl.h>
#include <curl/easy.h>
#include <future>
#endif
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
#if defined(LLAMA_USE_CURL)
#ifdef __linux__
#include <linux/limits.h>
#elif defined(_WIN32)
# if !defined(PATH_MAX)
# define PATH_MAX MAX_PATH
# endif
#else
#include <sys/syslimits.h>
#endif
#define LLAMA_CURL_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
//
// CURL utils
//
using curl_ptr = std::unique_ptr<CURL, decltype(&curl_easy_cleanup)>;
// cannot use unique_ptr for curl_slist, because we cannot update without destroying the old one
struct curl_slist_ptr {
struct curl_slist * ptr = nullptr;
~curl_slist_ptr() {
if (ptr) {
curl_slist_free_all(ptr);
}
}
};
#endif // LLAMA_USE_CURL
using json = nlohmann::ordered_json;
//
// CPU utils
//
@@ -869,7 +830,7 @@ std::string fs_get_cache_directory() {
if (getenv("LLAMA_CACHE")) {
cache_directory = std::getenv("LLAMA_CACHE");
} else {
#ifdef __linux__
#if defined(__linux__) || defined(__FreeBSD__) || defined(_AIX)
if (std::getenv("XDG_CACHE_HOME")) {
cache_directory = std::getenv("XDG_CACHE_HOME");
} else {
@@ -879,7 +840,9 @@ std::string fs_get_cache_directory() {
cache_directory = std::getenv("HOME") + std::string("/Library/Caches/");
#elif defined(_WIN32)
cache_directory = std::getenv("LOCALAPPDATA");
#endif // __linux__
#else
# error Unknown architecture
#endif
cache_directory = ensure_trailing_slash(cache_directory);
cache_directory += "llama.cpp";
}
@@ -900,22 +863,14 @@ std::string fs_get_cache_file(const std::string & filename) {
//
// Model utils
//
struct common_init_result common_init_from_params(common_params & params) {
common_init_result iparams;
auto mparams = common_model_params_to_llama(params);
llama_model * model = nullptr;
if (!params.hf_repo.empty() && !params.hf_file.empty()) {
model = common_load_model_from_hf(params.hf_repo, params.hf_file, params.model, params.hf_token, mparams);
} else if (!params.model_url.empty()) {
model = common_load_model_from_url(params.model_url, params.model, params.hf_token, mparams);
} else {
model = llama_model_load_from_file(params.model.c_str(), mparams);
}
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), mparams);
if (model == NULL) {
LOG_ERR("%s: failed to load model '%s'\n", __func__, params.model.c_str());
LOG_ERR("%s: failed to load model '%s'\n", __func__, params.model.path.c_str());
return iparams;
}
@@ -950,13 +905,13 @@ struct common_init_result common_init_from_params(common_params & params) {
llama_context * lctx = llama_init_from_model(model, cparams);
if (lctx == NULL) {
LOG_ERR("%s: failed to create context with model '%s'\n", __func__, params.model.c_str());
LOG_ERR("%s: failed to create context with model '%s'\n", __func__, params.model.path.c_str());
llama_model_free(model);
return iparams;
}
if (params.ctx_shift && !llama_kv_cache_can_shift(lctx)) {
LOG_WRN("%s: KV cache shifting is not supported for this model, disabling KV cache shifting\n", __func__);
if (params.ctx_shift && !llama_kv_self_can_shift(lctx)) {
LOG_WRN("%s: KV cache shifting is not supported for this context, disabling KV cache shifting\n", __func__);
params.ctx_shift = false;
}
@@ -1033,6 +988,8 @@ struct common_init_result common_init_from_params(common_params & params) {
if (params.warmup) {
LOG_WRN("%s: warming up the model with an empty run - please wait ... (--no-warmup to disable)\n", __func__);
llama_set_warmup(lctx, true);
std::vector<llama_token> tmp;
llama_token bos = llama_vocab_bos(vocab);
llama_token eos = llama_vocab_eos(vocab);
@@ -1060,9 +1017,10 @@ struct common_init_result common_init_from_params(common_params & params) {
if (llama_model_has_decoder(model)) {
llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch)));
}
llama_kv_cache_clear(lctx);
llama_kv_self_clear(lctx);
llama_synchronize(lctx);
llama_perf_context_reset(lctx);
llama_set_warmup(lctx, false);
}
iparams.model.reset(model);
@@ -1071,6 +1029,19 @@ struct common_init_result common_init_from_params(common_params & params) {
return iparams;
}
std::string get_model_endpoint() {
const char * model_endpoint_env = getenv("MODEL_ENDPOINT");
// We still respect the use of environment-variable "HF_ENDPOINT" for backward-compatibility.
const char * hf_endpoint_env = getenv("HF_ENDPOINT");
const char * endpoint_env = model_endpoint_env ? model_endpoint_env : hf_endpoint_env;
std::string model_endpoint = "https://huggingface.co/";
if (endpoint_env) {
model_endpoint = endpoint_env;
if (model_endpoint.back() != '/') model_endpoint += '/';
}
return model_endpoint;
}
void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adapter_lora_info> & lora) {
llama_clear_adapter_lora(ctx);
for (auto & la : lora) {
@@ -1086,15 +1057,18 @@ struct llama_model_params common_model_params_to_llama(common_params & params) {
if (!params.devices.empty()) {
mparams.devices = params.devices.data();
}
if (params.n_gpu_layers != -1) {
mparams.n_gpu_layers = params.n_gpu_layers;
}
mparams.main_gpu = params.main_gpu;
mparams.split_mode = params.split_mode;
mparams.tensor_split = params.tensor_split;
mparams.use_mmap = params.use_mmap;
mparams.use_mlock = params.use_mlock;
mparams.check_tensors = params.check_tensors;
if (params.kv_overrides.empty()) {
mparams.kv_overrides = NULL;
} else {
@@ -1102,6 +1076,13 @@ struct llama_model_params common_model_params_to_llama(common_params & params) {
mparams.kv_overrides = params.kv_overrides.data();
}
if (params.tensor_buft_overrides.empty()) {
mparams.tensor_buft_overrides = NULL;
} else {
GGML_ASSERT(params.tensor_buft_overrides.back().pattern == nullptr && "Tensor buffer overrides not terminated with empty pattern");
mparams.tensor_buft_overrides = params.tensor_buft_overrides.data();
}
return mparams;
}
@@ -1161,451 +1142,6 @@ struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_p
return tpp;
}
#ifdef LLAMA_USE_CURL
#define CURL_MAX_RETRY 3
#define CURL_RETRY_DELAY_SECONDS 2
static bool curl_perform_with_retry(const std::string & url, CURL * curl, int max_attempts, int retry_delay_seconds) {
int remaining_attempts = max_attempts;
while (remaining_attempts > 0) {
LOG_INF("%s: Trying to download from %s (attempt %d of %d)...\n", __func__ , url.c_str(), max_attempts - remaining_attempts + 1, max_attempts);
CURLcode res = curl_easy_perform(curl);
if (res == CURLE_OK) {
return true;
}
int exponential_backoff_delay = std::pow(retry_delay_seconds, max_attempts - remaining_attempts) * 1000;
LOG_WRN("%s: curl_easy_perform() failed: %s, retrying after %d milliseconds...\n", __func__, curl_easy_strerror(res), exponential_backoff_delay);
remaining_attempts--;
std::this_thread::sleep_for(std::chrono::milliseconds(exponential_backoff_delay));
}
LOG_ERR("%s: curl_easy_perform() failed after %d attempts\n", __func__, max_attempts);
return false;
}
static bool common_download_file(const std::string & url, const std::string & path, const std::string & hf_token) {
// Initialize libcurl
curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
curl_slist_ptr http_headers;
if (!curl) {
LOG_ERR("%s: error initializing libcurl\n", __func__);
return false;
}
bool force_download = false;
// Set the URL, allow to follow http redirection
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L);
// Check if hf-token or bearer-token was specified
if (!hf_token.empty()) {
std::string auth_header = "Authorization: Bearer " + hf_token;
http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
}
#if defined(_WIN32)
// CURLSSLOPT_NATIVE_CA tells libcurl to use standard certificate store of
// operating system. Currently implemented under MS-Windows.
curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
#endif
// Check if the file already exists locally
auto file_exists = std::filesystem::exists(path);
// If the file exists, check its JSON metadata companion file.
std::string metadata_path = path + ".json";
nlohmann::json metadata;
std::string etag;
std::string last_modified;
if (file_exists) {
// Try and read the JSON metadata file (note: stream autoclosed upon exiting this block).
std::ifstream metadata_in(metadata_path);
if (metadata_in.good()) {
try {
metadata_in >> metadata;
LOG_INF("%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str());
if (metadata.contains("url") && metadata.at("url").is_string()) {
auto previous_url = metadata.at("url").get<std::string>();
if (previous_url != url) {
LOG_ERR("%s: Model URL mismatch: %s != %s\n", __func__, url.c_str(), previous_url.c_str());
return false;
}
}
if (metadata.contains("etag") && metadata.at("etag").is_string()) {
etag = metadata.at("etag");
}
if (metadata.contains("lastModified") && metadata.at("lastModified").is_string()) {
last_modified = metadata.at("lastModified");
}
} catch (const nlohmann::json::exception & e) {
LOG_ERR("%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
return false;
}
}
} else {
LOG_INF("%s: no previous model file found %s\n", __func__, path.c_str());
}
// Send a HEAD request to retrieve the etag and last-modified headers
struct common_load_model_from_url_headers {
std::string etag;
std::string last_modified;
};
common_load_model_from_url_headers headers;
{
typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
common_load_model_from_url_headers * headers = (common_load_model_from_url_headers *) userdata;
static std::regex header_regex("([^:]+): (.*)\r\n");
static std::regex etag_regex("ETag", std::regex_constants::icase);
static std::regex last_modified_regex("Last-Modified", std::regex_constants::icase);
std::string header(buffer, n_items);
std::smatch match;
if (std::regex_match(header, match, header_regex)) {
const std::string & key = match[1];
const std::string & value = match[2];
if (std::regex_match(key, match, etag_regex)) {
headers->etag = value;
} else if (std::regex_match(key, match, last_modified_regex)) {
headers->last_modified = value;
}
}
return n_items;
};
curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 1L); // will trigger the HEAD verb
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L); // hide head request progress
curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers);
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
if (!was_perform_successful) {
return false;
}
long http_code = 0;
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
if (http_code != 200) {
// HEAD not supported, we don't know if the file has changed
// force trigger downloading
force_download = true;
LOG_ERR("%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
}
}
bool should_download = !file_exists || force_download;
if (!should_download) {
if (!etag.empty() && etag != headers.etag) {
LOG_WRN("%s: ETag header is different (%s != %s): triggering a new download\n", __func__, etag.c_str(), headers.etag.c_str());
should_download = true;
} else if (!last_modified.empty() && last_modified != headers.last_modified) {
LOG_WRN("%s: Last-Modified header is different (%s != %s): triggering a new download\n", __func__, last_modified.c_str(), headers.last_modified.c_str());
should_download = true;
}
}
if (should_download) {
std::string path_temporary = path + ".downloadInProgress";
if (file_exists) {
LOG_WRN("%s: deleting previous downloaded file: %s\n", __func__, path.c_str());
if (remove(path.c_str()) != 0) {
LOG_ERR("%s: unable to delete file: %s\n", __func__, path.c_str());
return false;
}
}
// Set the output file
struct FILE_deleter {
void operator()(FILE * f) const {
fclose(f);
}
};
std::unique_ptr<FILE, FILE_deleter> outfile(fopen(path_temporary.c_str(), "wb"));
if (!outfile) {
LOG_ERR("%s: error opening local file for writing: %s\n", __func__, path.c_str());
return false;
}
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * data, size_t size, size_t nmemb, void * fd);
auto write_callback = [](void * data, size_t size, size_t nmemb, void * fd) -> size_t {
return fwrite(data, size, nmemb, (FILE *)fd);
};
curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 0L);
curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, outfile.get());
// display download progress
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 0L);
// helper function to hide password in URL
auto llama_download_hide_password_in_url = [](const std::string & url) -> std::string {
std::size_t protocol_pos = url.find("://");
if (protocol_pos == std::string::npos) {
return url; // Malformed URL
}
std::size_t at_pos = url.find('@', protocol_pos + 3);
if (at_pos == std::string::npos) {
return url; // No password in URL
}
return url.substr(0, protocol_pos + 3) + "********" + url.substr(at_pos);
};
// start the download
LOG_INF("%s: trying to download model from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str());
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
if (!was_perform_successful) {
return false;
}
long http_code = 0;
curl_easy_getinfo (curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
if (http_code < 200 || http_code >= 400) {
LOG_ERR("%s: invalid http status code received: %ld\n", __func__, http_code);
return false;
}
// Causes file to be closed explicitly here before we rename it.
outfile.reset();
// Write the updated JSON metadata file.
metadata.update({
{"url", url},
{"etag", headers.etag},
{"lastModified", headers.last_modified}
});
std::ofstream(metadata_path) << metadata.dump(4);
LOG_INF("%s: file metadata saved: %s\n", __func__, metadata_path.c_str());
if (rename(path_temporary.c_str(), path.c_str()) != 0) {
LOG_ERR("%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str());
return false;
}
}
return true;
}
struct llama_model * common_load_model_from_url(
const std::string & model_url,
const std::string & local_path,
const std::string & hf_token,
const struct llama_model_params & params) {
// Basic validation of the model_url
if (model_url.empty()) {
LOG_ERR("%s: invalid model_url\n", __func__);
return NULL;
}
if (!common_download_file(model_url, local_path, hf_token)) {
return NULL;
}
// check for additional GGUFs split to download
int n_split = 0;
{
struct gguf_init_params gguf_params = {
/*.no_alloc = */ true,
/*.ctx = */ NULL,
};
auto * ctx_gguf = gguf_init_from_file(local_path.c_str(), gguf_params);
if (!ctx_gguf) {
LOG_ERR("\n%s: failed to load input GGUF from %s\n", __func__, local_path.c_str());
return NULL;
}
auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT);
if (key_n_split >= 0) {
n_split = gguf_get_val_u16(ctx_gguf, key_n_split);
}
gguf_free(ctx_gguf);
}
if (n_split > 1) {
char split_prefix[PATH_MAX] = {0};
char split_url_prefix[LLAMA_CURL_MAX_URL_LENGTH] = {0};
// Verify the first split file format
// and extract split URL and PATH prefixes
{
if (!llama_split_prefix(split_prefix, sizeof(split_prefix), local_path.c_str(), 0, n_split)) {
LOG_ERR("\n%s: unexpected model file name: %s n_split=%d\n", __func__, local_path.c_str(), n_split);
return NULL;
}
if (!llama_split_prefix(split_url_prefix, sizeof(split_url_prefix), model_url.c_str(), 0, n_split)) {
LOG_ERR("\n%s: unexpected model url: %s n_split=%d\n", __func__, model_url.c_str(), n_split);
return NULL;
}
}
// Prepare download in parallel
std::vector<std::future<bool>> futures_download;
for (int idx = 1; idx < n_split; idx++) {
futures_download.push_back(std::async(std::launch::async, [&split_prefix, &split_url_prefix, &n_split, hf_token](int download_idx) -> bool {
char split_path[PATH_MAX] = {0};
llama_split_path(split_path, sizeof(split_path), split_prefix, download_idx, n_split);
char split_url[LLAMA_CURL_MAX_URL_LENGTH] = {0};
llama_split_path(split_url, sizeof(split_url), split_url_prefix, download_idx, n_split);
return common_download_file(split_url, split_path, hf_token);
}, idx));
}
// Wait for all downloads to complete
for (auto & f : futures_download) {
if (!f.get()) {
return NULL;
}
}
}
return llama_model_load_from_file(local_path.c_str(), params);
}
struct llama_model * common_load_model_from_hf(
const std::string & repo,
const std::string & remote_path,
const std::string & local_path,
const std::string & hf_token,
const struct llama_model_params & params) {
// construct hugging face model url:
//
// --repo ggml-org/models --file tinyllama-1.1b/ggml-model-f16.gguf
// https://huggingface.co/ggml-org/models/resolve/main/tinyllama-1.1b/ggml-model-f16.gguf
//
// --repo TheBloke/Mixtral-8x7B-v0.1-GGUF --file mixtral-8x7b-v0.1.Q4_K_M.gguf
// https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF/resolve/main/mixtral-8x7b-v0.1.Q4_K_M.gguf
//
std::string model_url = "https://huggingface.co/";
model_url += repo;
model_url += "/resolve/main/";
model_url += remote_path;
return common_load_model_from_url(model_url, local_path, hf_token, params);
}
/**
* Allow getting the HF file from the HF repo with tag (like ollama), for example:
* - bartowski/Llama-3.2-3B-Instruct-GGUF:q4
* - bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M
* - bartowski/Llama-3.2-3B-Instruct-GGUF:q5_k_s
* Tag is optional, default to "latest" (meaning it checks for Q4_K_M first, then Q4, then if not found, return the first GGUF file in repo)
*
* Return pair of <repo, file> (with "repo" already having tag removed)
*
* Note: we use the Ollama-compatible HF API, but not using the blobId. Instead, we use the special "ggufFile" field which returns the value for "hf_file". This is done to be backward-compatible with existing cache files.
*/
std::pair<std::string, std::string> common_get_hf_file(const std::string & hf_repo_with_tag, const std::string & hf_token) {
auto parts = string_split<std::string>(hf_repo_with_tag, ':');
std::string tag = parts.size() > 1 ? parts.back() : "latest";
std::string hf_repo = parts[0];
if (string_split<std::string>(hf_repo, '/').size() != 2) {
throw std::invalid_argument("error: invalid HF repo format, expected <user>/<model>[:quant]\n");
}
// fetch model info from Hugging Face Hub API
json model_info;
curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
curl_slist_ptr http_headers;
std::string res_str;
std::string url = "https://huggingface.co/v2/" + hf_repo + "/manifests/" + tag;
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L);
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * ptr, size_t size, size_t nmemb, void * data);
auto write_callback = [](void * ptr, size_t size, size_t nmemb, void * data) -> size_t {
static_cast<std::string *>(data)->append((char * ) ptr, size * nmemb);
return size * nmemb;
};
curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, &res_str);
#if defined(_WIN32)
curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
#endif
if (!hf_token.empty()) {
std::string auth_header = "Authorization: Bearer " + hf_token;
http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
}
// Important: the User-Agent must be "llama-cpp" to get the "ggufFile" field in the response
http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp");
http_headers.ptr = curl_slist_append(http_headers.ptr, "Accept: application/json");
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
CURLcode res = curl_easy_perform(curl.get());
if (res != CURLE_OK) {
throw std::runtime_error("error: cannot make GET request to HF API");
}
long res_code;
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &res_code);
if (res_code == 200) {
model_info = json::parse(res_str);
} else if (res_code == 401) {
throw std::runtime_error("error: model is private or does not exist; if you are accessing a gated model, please provide a valid HF token");
} else {
throw std::runtime_error(string_format("error from HF API, response code: %ld, data: %s", res_code, res_str.c_str()));
}
// check response
if (!model_info.contains("ggufFile")) {
throw std::runtime_error("error: model does not have ggufFile");
}
json & gguf_file = model_info.at("ggufFile");
if (!gguf_file.contains("rfilename")) {
throw std::runtime_error("error: ggufFile does not have rfilename");
}
return std::make_pair(hf_repo, gguf_file.at("rfilename"));
}
#else
struct llama_model * common_load_model_from_url(
const std::string & /*model_url*/,
const std::string & /*local_path*/,
const std::string & /*hf_token*/,
const struct llama_model_params & /*params*/) {
LOG_WRN("%s: llama.cpp built without libcurl, downloading from an url not supported.\n", __func__);
return nullptr;
}
struct llama_model * common_load_model_from_hf(
const std::string & /*repo*/,
const std::string & /*remote_path*/,
const std::string & /*local_path*/,
const std::string & /*hf_token*/,
const struct llama_model_params & /*params*/) {
LOG_WRN("%s: llama.cpp built without libcurl, downloading from Hugging Face not supported.\n", __func__);
return nullptr;
}
std::pair<std::string, std::string> common_get_hf_file(const std::string &, const std::string &) {
LOG_WRN("%s: llama.cpp built without libcurl, downloading from Hugging Face not supported.\n", __func__);
return std::make_pair("", "");
}
#endif // LLAMA_USE_CURL
//
// Batch utils
//
@@ -2029,26 +1565,3 @@ common_control_vector_data common_control_vector_load(const std::vector<common_c
return result;
}
template <>
json common_grammar_trigger::to_json() const {
json out {
{"type", (int) type},
{"value", value},
};
if (type == COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN) {
out["token"] = (int) token;
}
return out;
}
template <>
common_grammar_trigger common_grammar_trigger::from_json(const json & in) {
common_grammar_trigger out;
out.type = (common_grammar_trigger_type) in.at("type").get<int>();
out.value = in.at("value").get<std::string>();
if (out.type == COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN) {
out.token = (llama_token) in.at("token").get<int>();
}
return out;
}

View File

@@ -121,10 +121,6 @@ struct common_grammar_trigger {
common_grammar_trigger_type type;
std::string value;
llama_token token = LLAMA_TOKEN_NULL;
// T can only be nlohmann::ordered_json
template <class T> T to_json() const;
template <class T> static common_grammar_trigger from_json(const T & in);
};
// sampling parameters
@@ -184,6 +180,13 @@ struct common_params_sampling {
std::string print() const;
};
struct common_params_model {
std::string path = ""; // model local path // NOLINT
std::string url = ""; // model url to download // NOLINT
std::string hf_repo = ""; // HF repo // NOLINT
std::string hf_file = ""; // HF file // NOLINT
};
struct common_params_speculative {
std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
@@ -197,19 +200,11 @@ struct common_params_speculative {
struct cpu_params cpuparams;
struct cpu_params cpuparams_batch;
std::string hf_repo = ""; // HF repo // NOLINT
std::string hf_file = ""; // HF file // NOLINT
std::string model = ""; // draft model for speculative decoding // NOLINT
std::string model_url = ""; // model url to download // NOLINT
struct common_params_model model;
};
struct common_params_vocoder {
std::string hf_repo = ""; // HF repo // NOLINT
std::string hf_file = ""; // HF file // NOLINT
std::string model = ""; // model path // NOLINT
std::string model_url = ""; // model url to download // NOLINT
struct common_params_model model;
std::string speaker_file = ""; // speaker file path // NOLINT
@@ -267,12 +262,10 @@ struct common_params {
struct common_params_speculative speculative;
struct common_params_vocoder vocoder;
std::string model = ""; // model path // NOLINT
struct common_params_model model;
std::string model_alias = ""; // model alias // NOLINT
std::string model_url = ""; // model url to download // NOLINT
std::string hf_token = ""; // HF token // NOLINT
std::string hf_repo = ""; // HF repo // NOLINT
std::string hf_file = ""; // HF file // NOLINT
std::string prompt = ""; // NOLINT
std::string system_prompt = ""; // NOLINT
std::string prompt_file = ""; // store the external prompt file name // NOLINT
@@ -286,6 +279,7 @@ struct common_params {
std::vector<std::string> in_files; // all input files
std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
std::vector<llama_model_kv_override> kv_overrides;
std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_adapter_lora_apply)
std::vector<common_adapter_lora_info> lora_adapters; // lora adapter path with user defined scale
@@ -347,7 +341,7 @@ struct common_params {
common_conversation_mode conversation_mode = COMMON_CONVERSATION_MODE_AUTO;
// multimodal models (see examples/llava)
std::string mmproj = ""; // path to multimodal projector // NOLINT
struct common_params_model mmproj;
std::vector<std::string> image; // path to image file(s)
// embedding
@@ -546,26 +540,11 @@ struct llama_model_params common_model_params_to_llama ( common_params
struct llama_context_params common_context_params_to_llama(const common_params & params);
struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
struct llama_model * common_load_model_from_url(
const std::string & model_url,
const std::string & local_path,
const std::string & hf_token,
const struct llama_model_params & params);
struct llama_model * common_load_model_from_hf(
const std::string & repo,
const std::string & remote_path,
const std::string & local_path,
const std::string & hf_token,
const struct llama_model_params & params);
std::pair<std::string, std::string> common_get_hf_file(
const std::string & hf_repo_with_tag,
const std::string & hf_token);
// clear LoRA adapters from context, then apply new list of adapters
void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adapter_lora_info> & lora);
std::string get_model_endpoint();
//
// Batch utils
//

View File

@@ -11,25 +11,24 @@ struct llama_sampler_llg {
std::string grammar_kind;
std::string grammar_data;
LlgTokenizer * tokenizer;
LlgConstraint * grammar;
LlgMaskResult llg_res;
bool has_llg_res;
LlgMatcher * grammar;
};
static LlgConstraint * llama_sampler_llg_new(LlgTokenizer * tokenizer, const char * grammar_kind,
const char * grammar_data) {
static LlgMatcher * llama_sampler_llg_new(LlgTokenizer * tokenizer, const char * grammar_kind,
const char * grammar_data) {
LlgConstraintInit cinit;
llg_constraint_init_set_defaults(&cinit, tokenizer);
const char * log_level = getenv("LLGUIDANCE_LOG_LEVEL");
if (log_level && *log_level) {
cinit.log_stderr_level = atoi(log_level);
}
auto c = llg_new_constraint_any(&cinit, grammar_kind, grammar_data);
if (llg_get_error(c)) {
LOG_ERR("llg error: %s\n", llg_get_error(c));
llg_free_constraint(c);
auto c = llg_new_matcher(&cinit, grammar_kind, grammar_data);
if (llg_matcher_get_error(c)) {
LOG_ERR("llg error: %s\n", llg_matcher_get_error(c));
llg_free_matcher(c);
return nullptr;
}
return c;
}
@@ -40,39 +39,29 @@ static const char * llama_sampler_llg_name(const llama_sampler * /*smpl*/) {
static void llama_sampler_llg_accept_impl(llama_sampler * smpl, llama_token token) {
auto * ctx = (llama_sampler_llg *) smpl->ctx;
if (ctx->grammar) {
LlgCommitResult res;
llg_commit_token(ctx->grammar, token, &res);
ctx->has_llg_res = false;
llg_matcher_consume_token(ctx->grammar, token);
}
}
static void llama_sampler_llg_apply(llama_sampler * smpl, llama_token_data_array * cur_p) {
auto * ctx = (llama_sampler_llg *) smpl->ctx;
if (ctx->grammar) {
if (!ctx->has_llg_res) {
if (llg_compute_mask(ctx->grammar, &ctx->llg_res) == 0) {
ctx->has_llg_res = true;
const uint32_t * mask = llg_matcher_get_mask(ctx->grammar);
if (mask == nullptr) {
if (llg_matcher_compute_mask(ctx->grammar) == 0) {
mask = llg_matcher_get_mask(ctx->grammar);
} else {
LOG_ERR("llg error: %s\n", llg_get_error(ctx->grammar));
llg_free_constraint(ctx->grammar);
LOG_ERR("llg error: %s\n", llg_matcher_get_error(ctx->grammar));
llg_free_matcher(ctx->grammar);
ctx->grammar = nullptr;
return;
}
}
if (ctx->has_llg_res) {
if (ctx->llg_res.is_stop) {
for (size_t i = 0; i < cur_p->size; ++i) {
if (!llama_vocab_is_eog(ctx->vocab, cur_p->data[i].id)) {
cur_p->data[i].logit = -INFINITY;
}
}
} else {
const uint32_t * mask = ctx->llg_res.sample_mask;
for (size_t i = 0; i < cur_p->size; ++i) {
auto token = cur_p->data[i].id;
if ((mask[token / 32] & (1 << (token % 32))) == 0) {
cur_p->data[i].logit = -INFINITY;
}
}
for (size_t i = 0; i < cur_p->size; ++i) {
auto token = cur_p->data[i].id;
if ((mask[token / 32] & (1 << (token % 32))) == 0) {
cur_p->data[i].logit = -INFINITY;
}
}
}
@@ -80,14 +69,9 @@ static void llama_sampler_llg_apply(llama_sampler * smpl, llama_token_data_array
static void llama_sampler_llg_reset(llama_sampler * smpl) {
auto * ctx = (llama_sampler_llg *) smpl->ctx;
if (!ctx->grammar) {
return;
if (ctx->grammar) {
llg_matcher_reset(ctx->grammar);
}
auto * grammar_new = llama_sampler_llg_new(ctx->tokenizer, ctx->grammar_kind.c_str(), ctx->grammar_data.c_str());
llg_free_constraint(ctx->grammar);
ctx->grammar = grammar_new;
ctx->has_llg_res = false;
}
static llama_sampler * llama_sampler_llg_clone(const llama_sampler * smpl) {
@@ -102,7 +86,7 @@ static llama_sampler * llama_sampler_llg_clone(const llama_sampler * smpl) {
if (ctx->grammar) {
result_ctx->grammar_kind = ctx->grammar_kind;
result_ctx->grammar_data = ctx->grammar_data;
result_ctx->grammar = llg_clone_constraint(ctx->grammar);
result_ctx->grammar = llg_clone_matcher(ctx->grammar);
result_ctx->tokenizer = llg_clone_tokenizer(ctx->tokenizer);
}
}
@@ -114,7 +98,7 @@ static void llama_sampler_llg_free(llama_sampler * smpl) {
const auto * ctx = (llama_sampler_llg *) smpl->ctx;
if (ctx->grammar) {
llg_free_constraint(ctx->grammar);
llg_free_matcher(ctx->grammar);
llg_free_tokenizer(ctx->tokenizer);
}
@@ -239,9 +223,11 @@ llama_sampler * llama_sampler_init_llg(const llama_vocab * vocab, const char * g
/* .grammar_data = */ grammar_data,
/* .tokenizer = */ tokenizer,
/* .grammar = */ llama_sampler_llg_new(tokenizer, grammar_kind, grammar_data),
/* .llg_res = */ {},
/* .has_llg_res = */ false,
};
if (ctx->grammar) {
GGML_ASSERT(((size_t) llama_vocab_n_tokens(vocab) + 31) / 32 * 4 ==
llg_matcher_get_mask_byte_size(ctx->grammar));
}
} else {
*ctx = {
/* .vocab = */ vocab,
@@ -249,15 +235,12 @@ llama_sampler * llama_sampler_init_llg(const llama_vocab * vocab, const char * g
/* .grammar_data = */ {},
/* .tokenizer = */ nullptr,
/* .grammar = */ nullptr,
/* .llg_res = */ {},
/* .has_llg_res = */ false,
};
}
return llama_sampler_init(
/* .iface = */ &llama_sampler_llg_i,
/* .ctx = */ ctx
);
/* .ctx = */ ctx);
}
#else

View File

@@ -9,10 +9,19 @@
#pragma once
#include "minja.hpp"
#include <json.hpp>
#include <chrono>
#include <cstddef>
#include <cstdio>
#include <exception>
#include <iomanip>
#include <memory>
#include <sstream>
#include <string>
#include <vector>
#include <json.hpp>
using json = nlohmann::ordered_json;
namespace minja {
@@ -425,7 +434,7 @@ class chat_template {
auto obj = json {
{"tool_calls", tool_calls},
};
if (!content.is_null() && content != "") {
if (!content.is_null() && !content.empty()) {
obj["content"] = content;
}
message["content"] = obj.dump(2);
@@ -435,13 +444,12 @@ class chat_template {
if (polyfill_tool_responses && role == "tool") {
message["role"] = "user";
auto obj = json {
{"tool_response", {
{"content", message.at("content")},
}},
{"tool_response", json::object()},
};
if (message.contains("name")) {
obj["tool_response"]["name"] = message.at("name");
obj["tool_response"]["tool"] = message.at("name");
}
obj["tool_response"]["content"] = message.at("content");
if (message.contains("tool_call_id")) {
obj["tool_response"]["tool_call_id"] = message.at("tool_call_id");
}
@@ -510,7 +518,7 @@ class chat_template {
static nlohmann::ordered_json add_system(const nlohmann::ordered_json & messages, const std::string & system_prompt) {
json messages_with_system = messages;
if (messages_with_system.size() > 0 && messages_with_system[0].at("role") == "system") {
if (!messages_with_system.empty() && messages_with_system[0].at("role") == "system") {
std::string existing_system = messages_with_system.at(0).at("content");
messages_with_system[0] = json {
{"role", "system"},

View File

@@ -8,14 +8,26 @@
// SPDX-License-Identifier: MIT
#pragma once
#include <algorithm>
#include <cctype>
#include <cstddef>
#include <cmath>
#include <exception>
#include <functional>
#include <iostream>
#include <string>
#include <vector>
#include <regex>
#include <iterator>
#include <limits>
#include <map>
#include <memory>
#include <stdexcept>
#include <regex>
#include <sstream>
#include <string>
#include <stdexcept>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#include <json.hpp>
using json = nlohmann::ordered_json;
@@ -731,51 +743,51 @@ public:
struct TextTemplateToken : public TemplateToken {
std::string text;
TextTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, const std::string& t) : TemplateToken(Type::Text, location, pre, post), text(t) {}
TextTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, const std::string& t) : TemplateToken(Type::Text, loc, pre, post), text(t) {}
};
struct ExpressionTemplateToken : public TemplateToken {
std::shared_ptr<Expression> expr;
ExpressionTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && e) : TemplateToken(Type::Expression, location, pre, post), expr(std::move(e)) {}
ExpressionTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && e) : TemplateToken(Type::Expression, loc, pre, post), expr(std::move(e)) {}
};
struct IfTemplateToken : public TemplateToken {
std::shared_ptr<Expression> condition;
IfTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && c) : TemplateToken(Type::If, location, pre, post), condition(std::move(c)) {}
IfTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && c) : TemplateToken(Type::If, loc, pre, post), condition(std::move(c)) {}
};
struct ElifTemplateToken : public TemplateToken {
std::shared_ptr<Expression> condition;
ElifTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && c) : TemplateToken(Type::Elif, location, pre, post), condition(std::move(c)) {}
ElifTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && c) : TemplateToken(Type::Elif, loc, pre, post), condition(std::move(c)) {}
};
struct ElseTemplateToken : public TemplateToken {
ElseTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::Else, location, pre, post) {}
ElseTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::Else, loc, pre, post) {}
};
struct EndIfTemplateToken : public TemplateToken {
EndIfTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndIf, location, pre, post) {}
EndIfTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndIf, loc, pre, post) {}
};
struct MacroTemplateToken : public TemplateToken {
std::shared_ptr<VariableExpr> name;
Expression::Parameters params;
MacroTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, std::shared_ptr<VariableExpr> && n, Expression::Parameters && p)
: TemplateToken(Type::Macro, location, pre, post), name(std::move(n)), params(std::move(p)) {}
MacroTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, std::shared_ptr<VariableExpr> && n, Expression::Parameters && p)
: TemplateToken(Type::Macro, loc, pre, post), name(std::move(n)), params(std::move(p)) {}
};
struct EndMacroTemplateToken : public TemplateToken {
EndMacroTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndMacro, location, pre, post) {}
EndMacroTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndMacro, loc, pre, post) {}
};
struct FilterTemplateToken : public TemplateToken {
std::shared_ptr<Expression> filter;
FilterTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && filter)
: TemplateToken(Type::Filter, location, pre, post), filter(std::move(filter)) {}
FilterTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && filter)
: TemplateToken(Type::Filter, loc, pre, post), filter(std::move(filter)) {}
};
struct EndFilterTemplateToken : public TemplateToken {
EndFilterTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndFilter, location, pre, post) {}
EndFilterTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndFilter, loc, pre, post) {}
};
struct ForTemplateToken : public TemplateToken {
@@ -783,38 +795,38 @@ struct ForTemplateToken : public TemplateToken {
std::shared_ptr<Expression> iterable;
std::shared_ptr<Expression> condition;
bool recursive;
ForTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, const std::vector<std::string> & vns, std::shared_ptr<Expression> && iter,
ForTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, const std::vector<std::string> & vns, std::shared_ptr<Expression> && iter,
std::shared_ptr<Expression> && c, bool r)
: TemplateToken(Type::For, location, pre, post), var_names(vns), iterable(std::move(iter)), condition(std::move(c)), recursive(r) {}
: TemplateToken(Type::For, loc, pre, post), var_names(vns), iterable(std::move(iter)), condition(std::move(c)), recursive(r) {}
};
struct EndForTemplateToken : public TemplateToken {
EndForTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndFor, location, pre, post) {}
EndForTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndFor, loc, pre, post) {}
};
struct GenerationTemplateToken : public TemplateToken {
GenerationTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::Generation, location, pre, post) {}
GenerationTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::Generation, loc, pre, post) {}
};
struct EndGenerationTemplateToken : public TemplateToken {
EndGenerationTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndGeneration, location, pre, post) {}
EndGenerationTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndGeneration, loc, pre, post) {}
};
struct SetTemplateToken : public TemplateToken {
std::string ns;
std::vector<std::string> var_names;
std::shared_ptr<Expression> value;
SetTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, const std::string & ns, const std::vector<std::string> & vns, std::shared_ptr<Expression> && v)
: TemplateToken(Type::Set, location, pre, post), ns(ns), var_names(vns), value(std::move(v)) {}
SetTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, const std::string & ns, const std::vector<std::string> & vns, std::shared_ptr<Expression> && v)
: TemplateToken(Type::Set, loc, pre, post), ns(ns), var_names(vns), value(std::move(v)) {}
};
struct EndSetTemplateToken : public TemplateToken {
EndSetTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndSet, location, pre, post) {}
EndSetTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndSet, loc, pre, post) {}
};
struct CommentTemplateToken : public TemplateToken {
std::string text;
CommentTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, const std::string& t) : TemplateToken(Type::Comment, location, pre, post), text(t) {}
CommentTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, const std::string& t) : TemplateToken(Type::Comment, loc, pre, post), text(t) {}
};
enum class LoopControlType { Break, Continue };
@@ -830,7 +842,7 @@ public:
struct LoopControlTemplateToken : public TemplateToken {
LoopControlType control_type;
LoopControlTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, LoopControlType control_type) : TemplateToken(Type::Break, location, pre, post), control_type(control_type) {}
LoopControlTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, LoopControlType control_type) : TemplateToken(Type::Break, loc, pre, post), control_type(control_type) {}
};
class TemplateNode {
@@ -868,8 +880,8 @@ public:
class SequenceNode : public TemplateNode {
std::vector<std::shared_ptr<TemplateNode>> children;
public:
SequenceNode(const Location & location, std::vector<std::shared_ptr<TemplateNode>> && c)
: TemplateNode(location), children(std::move(c)) {}
SequenceNode(const Location & loc, std::vector<std::shared_ptr<TemplateNode>> && c)
: TemplateNode(loc), children(std::move(c)) {}
void do_render(std::ostringstream & out, const std::shared_ptr<Context> & context) const override {
for (const auto& child : children) child->render(out, context);
}
@@ -878,7 +890,7 @@ public:
class TextNode : public TemplateNode {
std::string text;
public:
TextNode(const Location & location, const std::string& t) : TemplateNode(location), text(t) {}
TextNode(const Location & loc, const std::string& t) : TemplateNode(loc), text(t) {}
void do_render(std::ostringstream & out, const std::shared_ptr<Context> &) const override {
out << text;
}
@@ -887,7 +899,7 @@ public:
class ExpressionNode : public TemplateNode {
std::shared_ptr<Expression> expr;
public:
ExpressionNode(const Location & location, std::shared_ptr<Expression> && e) : TemplateNode(location), expr(std::move(e)) {}
ExpressionNode(const Location & loc, std::shared_ptr<Expression> && e) : TemplateNode(loc), expr(std::move(e)) {}
void do_render(std::ostringstream & out, const std::shared_ptr<Context> & context) const override {
if (!expr) throw std::runtime_error("ExpressionNode.expr is null");
auto result = expr->evaluate(context);
@@ -904,8 +916,8 @@ public:
class IfNode : public TemplateNode {
std::vector<std::pair<std::shared_ptr<Expression>, std::shared_ptr<TemplateNode>>> cascade;
public:
IfNode(const Location & location, std::vector<std::pair<std::shared_ptr<Expression>, std::shared_ptr<TemplateNode>>> && c)
: TemplateNode(location), cascade(std::move(c)) {}
IfNode(const Location & loc, std::vector<std::pair<std::shared_ptr<Expression>, std::shared_ptr<TemplateNode>>> && c)
: TemplateNode(loc), cascade(std::move(c)) {}
void do_render(std::ostringstream & out, const std::shared_ptr<Context> & context) const override {
for (const auto& branch : cascade) {
auto enter_branch = true;
@@ -924,7 +936,7 @@ public:
class LoopControlNode : public TemplateNode {
LoopControlType control_type_;
public:
LoopControlNode(const Location & location, LoopControlType control_type) : TemplateNode(location), control_type_(control_type) {}
LoopControlNode(const Location & loc, LoopControlType control_type) : TemplateNode(loc), control_type_(control_type) {}
void do_render(std::ostringstream &, const std::shared_ptr<Context> &) const override {
throw LoopControlException(control_type_);
}
@@ -938,9 +950,9 @@ class ForNode : public TemplateNode {
bool recursive;
std::shared_ptr<TemplateNode> else_body;
public:
ForNode(const Location & location, std::vector<std::string> && var_names, std::shared_ptr<Expression> && iterable,
ForNode(const Location & loc, std::vector<std::string> && var_names, std::shared_ptr<Expression> && iterable,
std::shared_ptr<Expression> && condition, std::shared_ptr<TemplateNode> && body, bool recursive, std::shared_ptr<TemplateNode> && else_body)
: TemplateNode(location), var_names(var_names), iterable(std::move(iterable)), condition(std::move(condition)), body(std::move(body)), recursive(recursive), else_body(std::move(else_body)) {}
: TemplateNode(loc), var_names(var_names), iterable(std::move(iterable)), condition(std::move(condition)), body(std::move(body)), recursive(recursive), else_body(std::move(else_body)) {}
void do_render(std::ostringstream & out, const std::shared_ptr<Context> & context) const override {
// https://jinja.palletsprojects.com/en/3.0.x/templates/#for
@@ -1025,8 +1037,8 @@ class MacroNode : public TemplateNode {
std::shared_ptr<TemplateNode> body;
std::unordered_map<std::string, size_t> named_param_positions;
public:
MacroNode(const Location & location, std::shared_ptr<VariableExpr> && n, Expression::Parameters && p, std::shared_ptr<TemplateNode> && b)
: TemplateNode(location), name(std::move(n)), params(std::move(p)), body(std::move(b)) {
MacroNode(const Location & loc, std::shared_ptr<VariableExpr> && n, Expression::Parameters && p, std::shared_ptr<TemplateNode> && b)
: TemplateNode(loc), name(std::move(n)), params(std::move(p)), body(std::move(b)) {
for (size_t i = 0; i < params.size(); ++i) {
const auto & name = params[i].first;
if (!name.empty()) {
@@ -1072,8 +1084,8 @@ class FilterNode : public TemplateNode {
std::shared_ptr<TemplateNode> body;
public:
FilterNode(const Location & location, std::shared_ptr<Expression> && f, std::shared_ptr<TemplateNode> && b)
: TemplateNode(location), filter(std::move(f)), body(std::move(b)) {}
FilterNode(const Location & loc, std::shared_ptr<Expression> && f, std::shared_ptr<TemplateNode> && b)
: TemplateNode(loc), filter(std::move(f)), body(std::move(b)) {}
void do_render(std::ostringstream & out, const std::shared_ptr<Context> & context) const override {
if (!filter) throw std::runtime_error("FilterNode.filter is null");
@@ -1095,8 +1107,8 @@ class SetNode : public TemplateNode {
std::vector<std::string> var_names;
std::shared_ptr<Expression> value;
public:
SetNode(const Location & location, const std::string & ns, const std::vector<std::string> & vns, std::shared_ptr<Expression> && v)
: TemplateNode(location), ns(ns), var_names(vns), value(std::move(v)) {}
SetNode(const Location & loc, const std::string & ns, const std::vector<std::string> & vns, std::shared_ptr<Expression> && v)
: TemplateNode(loc), ns(ns), var_names(vns), value(std::move(v)) {}
void do_render(std::ostringstream &, const std::shared_ptr<Context> & context) const override {
if (!value) throw std::runtime_error("SetNode.value is null");
if (!ns.empty()) {
@@ -1118,8 +1130,8 @@ class SetTemplateNode : public TemplateNode {
std::string name;
std::shared_ptr<TemplateNode> template_value;
public:
SetTemplateNode(const Location & location, const std::string & name, std::shared_ptr<TemplateNode> && tv)
: TemplateNode(location), name(name), template_value(std::move(tv)) {}
SetTemplateNode(const Location & loc, const std::string & name, std::shared_ptr<TemplateNode> && tv)
: TemplateNode(loc), name(name), template_value(std::move(tv)) {}
void do_render(std::ostringstream &, const std::shared_ptr<Context> & context) const override {
if (!template_value) throw std::runtime_error("SetTemplateNode.template_value is null");
Value value { template_value->render(context) };
@@ -1132,8 +1144,8 @@ class IfExpr : public Expression {
std::shared_ptr<Expression> then_expr;
std::shared_ptr<Expression> else_expr;
public:
IfExpr(const Location & location, std::shared_ptr<Expression> && c, std::shared_ptr<Expression> && t, std::shared_ptr<Expression> && e)
: Expression(location), condition(std::move(c)), then_expr(std::move(t)), else_expr(std::move(e)) {}
IfExpr(const Location & loc, std::shared_ptr<Expression> && c, std::shared_ptr<Expression> && t, std::shared_ptr<Expression> && e)
: Expression(loc), condition(std::move(c)), then_expr(std::move(t)), else_expr(std::move(e)) {}
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
if (!condition) throw std::runtime_error("IfExpr.condition is null");
if (!then_expr) throw std::runtime_error("IfExpr.then_expr is null");
@@ -1150,16 +1162,16 @@ public:
class LiteralExpr : public Expression {
Value value;
public:
LiteralExpr(const Location & location, const Value& v)
: Expression(location), value(v) {}
LiteralExpr(const Location & loc, const Value& v)
: Expression(loc), value(v) {}
Value do_evaluate(const std::shared_ptr<Context> &) const override { return value; }
};
class ArrayExpr : public Expression {
std::vector<std::shared_ptr<Expression>> elements;
public:
ArrayExpr(const Location & location, std::vector<std::shared_ptr<Expression>> && e)
: Expression(location), elements(std::move(e)) {}
ArrayExpr(const Location & loc, std::vector<std::shared_ptr<Expression>> && e)
: Expression(loc), elements(std::move(e)) {}
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
auto result = Value::array();
for (const auto& e : elements) {
@@ -1173,8 +1185,8 @@ public:
class DictExpr : public Expression {
std::vector<std::pair<std::shared_ptr<Expression>, std::shared_ptr<Expression>>> elements;
public:
DictExpr(const Location & location, std::vector<std::pair<std::shared_ptr<Expression>, std::shared_ptr<Expression>>> && e)
: Expression(location), elements(std::move(e)) {}
DictExpr(const Location & loc, std::vector<std::pair<std::shared_ptr<Expression>, std::shared_ptr<Expression>>> && e)
: Expression(loc), elements(std::move(e)) {}
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
auto result = Value::object();
for (const auto& [key, value] : elements) {
@@ -1189,8 +1201,8 @@ public:
class SliceExpr : public Expression {
public:
std::shared_ptr<Expression> start, end;
SliceExpr(const Location & location, std::shared_ptr<Expression> && s, std::shared_ptr<Expression> && e)
: Expression(location), start(std::move(s)), end(std::move(e)) {}
SliceExpr(const Location & loc, std::shared_ptr<Expression> && s, std::shared_ptr<Expression> && e)
: Expression(loc), start(std::move(s)), end(std::move(e)) {}
Value do_evaluate(const std::shared_ptr<Context> &) const override {
throw std::runtime_error("SliceExpr not implemented");
}
@@ -1200,8 +1212,8 @@ class SubscriptExpr : public Expression {
std::shared_ptr<Expression> base;
std::shared_ptr<Expression> index;
public:
SubscriptExpr(const Location & location, std::shared_ptr<Expression> && b, std::shared_ptr<Expression> && i)
: Expression(location), base(std::move(b)), index(std::move(i)) {}
SubscriptExpr(const Location & loc, std::shared_ptr<Expression> && b, std::shared_ptr<Expression> && i)
: Expression(loc), base(std::move(b)), index(std::move(i)) {}
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
if (!base) throw std::runtime_error("SubscriptExpr.base is null");
if (!index) throw std::runtime_error("SubscriptExpr.index is null");
@@ -1243,8 +1255,8 @@ public:
enum class Op { Plus, Minus, LogicalNot, Expansion, ExpansionDict };
std::shared_ptr<Expression> expr;
Op op;
UnaryOpExpr(const Location & location, std::shared_ptr<Expression> && e, Op o)
: Expression(location), expr(std::move(e)), op(o) {}
UnaryOpExpr(const Location & loc, std::shared_ptr<Expression> && e, Op o)
: Expression(loc), expr(std::move(e)), op(o) {}
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
if (!expr) throw std::runtime_error("UnaryOpExpr.expr is null");
auto e = expr->evaluate(context);
@@ -1269,8 +1281,8 @@ private:
std::shared_ptr<Expression> right;
Op op;
public:
BinaryOpExpr(const Location & location, std::shared_ptr<Expression> && l, std::shared_ptr<Expression> && r, Op o)
: Expression(location), left(std::move(l)), right(std::move(r)), op(o) {}
BinaryOpExpr(const Location & loc, std::shared_ptr<Expression> && l, std::shared_ptr<Expression> && r, Op o)
: Expression(loc), left(std::move(l)), right(std::move(r)), op(o) {}
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
if (!left) throw std::runtime_error("BinaryOpExpr.left is null");
if (!right) throw std::runtime_error("BinaryOpExpr.right is null");
@@ -1427,8 +1439,8 @@ class MethodCallExpr : public Expression {
std::shared_ptr<VariableExpr> method;
ArgumentsExpression args;
public:
MethodCallExpr(const Location & location, std::shared_ptr<Expression> && obj, std::shared_ptr<VariableExpr> && m, ArgumentsExpression && a)
: Expression(location), object(std::move(obj)), method(std::move(m)), args(std::move(a)) {}
MethodCallExpr(const Location & loc, std::shared_ptr<Expression> && obj, std::shared_ptr<VariableExpr> && m, ArgumentsExpression && a)
: Expression(loc), object(std::move(obj)), method(std::move(m)), args(std::move(a)) {}
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
if (!object) throw std::runtime_error("MethodCallExpr.object is null");
if (!method) throw std::runtime_error("MethodCallExpr.method is null");
@@ -1526,8 +1538,8 @@ class CallExpr : public Expression {
public:
std::shared_ptr<Expression> object;
ArgumentsExpression args;
CallExpr(const Location & location, std::shared_ptr<Expression> && obj, ArgumentsExpression && a)
: Expression(location), object(std::move(obj)), args(std::move(a)) {}
CallExpr(const Location & loc, std::shared_ptr<Expression> && obj, ArgumentsExpression && a)
: Expression(loc), object(std::move(obj)), args(std::move(a)) {}
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
if (!object) throw std::runtime_error("CallExpr.object is null");
auto obj = object->evaluate(context);
@@ -1542,8 +1554,8 @@ public:
class FilterExpr : public Expression {
std::vector<std::shared_ptr<Expression>> parts;
public:
FilterExpr(const Location & location, std::vector<std::shared_ptr<Expression>> && p)
: Expression(location), parts(std::move(p)) {}
FilterExpr(const Location & loc, std::vector<std::shared_ptr<Expression>> && p)
: Expression(loc), parts(std::move(p)) {}
Value do_evaluate(const std::shared_ptr<Context> & context) const override {
Value result;
bool first = true;
@@ -2460,7 +2472,7 @@ private:
static std::regex leading_space_regex(R"(^\s+)");
text = std::regex_replace(text, leading_space_regex, "");
} else if (options.trim_blocks && (it - 1) != begin && !dynamic_cast<ExpressionTemplateToken*>((*(it - 2)).get())) {
if (text.length() > 0 && text[0] == '\n') {
if (!text.empty() && text[0] == '\n') {
text.erase(0, 1);
}
}
@@ -2538,7 +2550,7 @@ public:
TemplateTokenIterator begin = tokens.begin();
auto it = begin;
TemplateTokenIterator end = tokens.end();
return parser.parseTemplate(begin, it, end, /* full= */ true);
return parser.parseTemplate(begin, it, end, /* fully= */ true);
}
};
@@ -2577,7 +2589,7 @@ inline std::shared_ptr<Context> Context::builtins() {
throw std::runtime_error(args.at("message").get<std::string>());
}));
globals.set("tojson", simple_function("tojson", { "value", "indent" }, [](const std::shared_ptr<Context> &, Value & args) {
return Value(args.at("value").dump(args.get<int64_t>("indent", -1), /* tojson= */ true));
return Value(args.at("value").dump(args.get<int64_t>("indent", -1), /* to_json= */ true));
}));
globals.set("items", simple_function("items", { "object" }, [](const std::shared_ptr<Context> &, Value & args) {
auto items = Value::array();
@@ -2599,21 +2611,25 @@ inline std::shared_ptr<Context> Context::builtins() {
globals.set("last", simple_function("last", { "items" }, [](const std::shared_ptr<Context> &, Value & args) {
auto items = args.at("items");
if (!items.is_array()) throw std::runtime_error("object is not a list");
if (items.size() == 0) return Value();
if (items.empty()) return Value();
return items.at(items.size() - 1);
}));
globals.set("trim", simple_function("trim", { "text" }, [](const std::shared_ptr<Context> &, Value & args) {
auto & text = args.at("text");
return text.is_null() ? text : Value(strip(text.get<std::string>()));
}));
globals.set("lower", simple_function("lower", { "text" }, [](const std::shared_ptr<Context> &, Value & args) {
auto text = args.at("text");
if (text.is_null()) return text;
std::string res;
auto str = text.get<std::string>();
std::transform(str.begin(), str.end(), std::back_inserter(res), ::tolower);
return Value(res);
}));
auto char_transform_function = [](const std::string & name, const std::function<char(char)> & fn) {
return simple_function(name, { "text" }, [=](const std::shared_ptr<Context> &, Value & args) {
auto text = args.at("text");
if (text.is_null()) return text;
std::string res;
auto str = text.get<std::string>();
std::transform(str.begin(), str.end(), std::back_inserter(res), fn);
return Value(res);
});
};
globals.set("lower", char_transform_function("lower", ::tolower));
globals.set("upper", char_transform_function("upper", ::toupper));
globals.set("default", Value::callable([=](const std::shared_ptr<Context> &, ArgumentsValue & args) {
args.expectArgs("default", {2, 3}, {0, 1});
auto & value = args.args[0];
@@ -2743,12 +2759,17 @@ inline std::shared_ptr<Context> Context::builtins() {
return Value::callable([=](const std::shared_ptr<Context> & context, ArgumentsValue & args) {
args.expectArgs(is_select ? "select" : "reject", {2, (std::numeric_limits<size_t>::max)()}, {0, 0});
auto & items = args.args[0];
if (items.is_null())
if (items.is_null()) {
return Value::array();
if (!items.is_array()) throw std::runtime_error("object is not iterable: " + items.dump());
}
if (!items.is_array()) {
throw std::runtime_error("object is not iterable: " + items.dump());
}
auto filter_fn = context->get(args.args[1]);
if (filter_fn.is_null()) throw std::runtime_error("Undefined filter: " + args.args[1].dump());
if (filter_fn.is_null()) {
throw std::runtime_error("Undefined filter: " + args.args[1].dump());
}
auto filter_args = Value::array();
for (size_t i = 2, n = args.args.size(); i < n; i++) {
@@ -2870,20 +2891,25 @@ inline std::shared_ptr<Context> Context::builtins() {
auto v = arg.get<int64_t>();
startEndStep[i] = v;
param_set[i] = true;
}
}
for (auto & [name, value] : args.kwargs) {
size_t i;
if (name == "start") i = 0;
else if (name == "end") i = 1;
else if (name == "step") i = 2;
else throw std::runtime_error("Unknown argument " + name + " for function range");
}
for (auto & [name, value] : args.kwargs) {
size_t i;
if (name == "start") {
i = 0;
} else if (name == "end") {
i = 1;
} else if (name == "step") {
i = 2;
} else {
throw std::runtime_error("Unknown argument " + name + " for function range");
}
if (param_set[i]) {
throw std::runtime_error("Duplicate argument " + name + " for function range");
}
startEndStep[i] = value.get<int64_t>();
param_set[i] = true;
if (param_set[i]) {
throw std::runtime_error("Duplicate argument " + name + " for function range");
}
startEndStep[i] = value.get<int64_t>();
param_set[i] = true;
}
if (!param_set[1]) {
throw std::runtime_error("Missing required argument 'end' for function range");

View File

@@ -208,6 +208,9 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
trigger_patterns_c.data(), trigger_patterns_c.size(),
trigger_tokens.data(), trigger_tokens.size())
: llama_sampler_init_grammar(vocab, params.grammar.c_str(), "root");
if (!grmr) {
return nullptr;
}
}
auto * result = new common_sampler {

View File

@@ -173,7 +173,7 @@ llama_tokens common_speculative_gen_draft(
result.reserve(params.n_draft);
if (reuse_n == 0) {
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
prompt.clear();
} else {
@@ -192,14 +192,14 @@ llama_tokens common_speculative_gen_draft(
}
if (reuse_i > 0) {
llama_kv_cache_seq_rm (ctx, 0, 0, reuse_i);
llama_kv_cache_seq_add(ctx, 0, reuse_i, -1, -reuse_i);
llama_kv_self_seq_rm (ctx, 0, 0, reuse_i);
llama_kv_self_seq_add(ctx, 0, reuse_i, -1, -reuse_i);
prompt.erase(prompt.begin(), prompt.begin() + reuse_i);
}
if (reuse_n < (int) prompt.size()) {
llama_kv_cache_seq_rm (ctx, 0, reuse_n, -1);
llama_kv_self_seq_rm (ctx, 0, reuse_n, -1);
prompt.erase(prompt.begin() + reuse_n, prompt.end());
}

View File

@@ -65,6 +65,7 @@ class Model:
model_name: str | None
metadata_override: Path | None
dir_model_card: Path
remote_hf_model_id: str | None
# subclasses should define this!
model_arch: gguf.MODEL_ARCH
@@ -73,7 +74,7 @@ class Model:
use_temp_file: bool = False, eager: bool = False,
metadata_override: Path | None = None, model_name: str | None = None,
split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
small_first_shard: bool = False, hparams: dict[str, Any] | None = None):
small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None):
if type(self) is Model:
raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
@@ -83,11 +84,24 @@ class Model:
self.is_big_endian = is_big_endian
self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
self.use_temp_file = use_temp_file
self.lazy = not eager
self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
self.is_safetensors = len(self.part_names) > 0
if not self.is_safetensors:
self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
self.lazy = not eager or (remote_hf_model_id is not None)
self.remote_hf_model_id = remote_hf_model_id
if remote_hf_model_id is not None:
self.is_safetensors = True
def get_remote_tensors() -> Iterator[tuple[str, Tensor]]:
logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
self.tensor_names = set(name for name in remote_tensors.keys())
for name, remote_tensor in gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id).items():
yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor))
self.get_tensors = get_remote_tensors
else:
self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
self.is_safetensors = len(self.part_names) > 0
if not self.is_safetensors:
self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
self.hparams = Model.load_hparams(self.dir_model) if hparams is None else hparams
self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
@@ -180,7 +194,8 @@ class Model:
extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
if len(extra) == 0 and len(missing_files) > 0:
raise ValueError(f"Missing or incomplete model files: {missing_files}")
raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
f"Missing tensors: {missing}")
else:
raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
f"Missing tensors: {missing}\n"
@@ -392,6 +407,10 @@ class Model:
self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
# If we are using HF model id, set the metadata name to the model id
if self.remote_hf_model_id:
self.metadata.name = self.remote_hf_model_id
# Fallback to model directory name if metadata name is still missing
if self.metadata.name is None:
self.metadata.name = self.dir_model.name
@@ -528,6 +547,8 @@ class Model:
reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
added_vocab = tokenizer.get_added_vocab()
added_tokens_decoder = tokenizer.added_tokens_decoder
for i in range(vocab_size):
if i not in reverse_vocab:
tokens.append(f"[PAD{i}]")
@@ -537,13 +558,13 @@ class Model:
if token in added_vocab:
# The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
# To avoid unexpected issues - we make sure to normalize non-normalized tokens
if not tokenizer.added_tokens_decoder[i].normalized:
if not added_tokens_decoder[i].normalized:
previous_token = token
token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
if previous_token != token:
logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token):
if added_tokens_decoder[i].special or self.does_token_look_special(token):
toktypes.append(gguf.TokenType.CONTROL)
else:
# NOTE: this was added for Gemma.
@@ -702,6 +723,21 @@ class Model:
if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
# ref: https://huggingface.co/Xenova/gpt-4o
res = "gpt-4o"
if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
# ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
res = "superbpe"
if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
# ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
res = "trillion"
if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
# ref: https://huggingface.co/inclusionAI/Ling-lite
res = "bailingmoe"
if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
# ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
res = "llama4"
if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
# ref: https://huggingface.co/THUDM/glm-4-9b-hf
res = "glm4"
if res is None:
logger.warning("\n")
@@ -908,6 +944,40 @@ class Model:
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
special_vocab.add_to_gguf(self.gguf_writer)
def _set_vocab_rwkv_world(self):
assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
vocab_size = self.hparams.get("vocab_size", 65536)
tokens: list[bytes] = ['<s>'.encode("utf-8")]
toktypes: list[int] = [gguf.TokenType.CONTROL]
with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
lines = f.readlines()
for line in lines:
parts = line.split(' ')
assert len(parts) >= 3
token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
token = token.encode("utf-8") if isinstance(token, str) else token
assert isinstance(token, bytes)
assert len(token) == token_len
token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
tokens.append(token_text.encode("utf-8"))
toktypes.append(gguf.TokenType.NORMAL)
remainder = vocab_size - len(tokens)
assert remainder >= 0
for i in range(len(tokens), vocab_size):
tokens.append(f"[PAD{i}]".encode("utf-8"))
toktypes.append(gguf.TokenType.UNUSED)
self.gguf_writer.add_tokenizer_model("rwkv")
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
special_vocab.chat_template = "rwkv-world"
# hack: Add '\n\n' as the EOT token to make it chat normally
special_vocab._set_special_token("eot", 261)
special_vocab.add_to_gguf(self.gguf_writer)
def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
@@ -1065,13 +1135,6 @@ class BloomModel(Model):
tensors.append((self.map_tensor_name(name), data_torch))
if name == "word_embeddings.weight":
assert self.tensor_names is not None
# TODO: tie them at runtime, don't duplicate in the model file
if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
return tensors
@@ -1569,6 +1632,7 @@ class StableLMModel(Model):
@Model.register("LLaMAForCausalLM", "LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
class LlamaModel(Model):
model_arch = gguf.MODEL_ARCH.LLAMA
undo_permute = True
def set_vocab(self):
try:
@@ -1633,10 +1697,11 @@ class LlamaModel(Model):
n_head = self.hparams["num_attention_heads"]
n_kv_head = self.hparams.get("num_key_value_heads")
if name.endswith(("q_proj.weight", "q_proj.bias")):
data_torch = LlamaModel.permute(data_torch, n_head, n_head)
if name.endswith(("k_proj.weight", "k_proj.bias")):
data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
if self.undo_permute:
if name.endswith(("q_proj.weight", "q_proj.bias")):
data_torch = LlamaModel.permute(data_torch, n_head, n_head)
if name.endswith(("k_proj.weight", "k_proj.bias")):
data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
# process the experts separately
if name.find("block_sparse_moe.experts") != -1:
@@ -1688,7 +1753,7 @@ class LlamaModel(Model):
low_freq_wavelen = old_context_len / low_freq_factor
high_freq_wavelen = old_context_len / high_freq_factor
assert low_freq_wavelen != high_freq_wavelen
# assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
rope_factors = []
for freq in freqs:
@@ -1713,6 +1778,76 @@ class LlamaModel(Model):
raise ValueError(f"Unprocessed experts: {experts}")
@Model.register("Llama4ForConditionalGeneration")
class Llama4Model(LlamaModel):
model_arch = gguf.MODEL_ARCH.LLAMA4
has_vision: bool = False
undo_permute = False
# TODO @ngxson : avoid duplicate this code everywhere by at least support "text_config"
# same with llama, but we need to merge the text_config into the root level of hparams
def __init__(self, *args, **kwargs):
hparams = kwargs["hparams"] if "hparams" in kwargs else Model.load_hparams(args[0])
if "text_config" in hparams:
hparams = {**hparams, **hparams["text_config"]}
kwargs["hparams"] = hparams
super().__init__(*args, **kwargs)
if "vision_config" in hparams:
logger.info("Has vision encoder, but it will be ignored")
self.has_vision = True
# IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
def set_vocab(self):
self._set_vocab_gpt2()
self.gguf_writer.add_add_bos_token(True)
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
# split the gate_up into gate and up
if "gate_up_proj" in name:
name_up = name.replace("gate_up_proj", "up_proj.weight")
name_gate = name.replace("gate_up_proj", "gate_proj.weight")
dim_half = data_torch.shape[-1] // 2
gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
return [
(self.map_tensor_name(name_gate), gate_proj_weight),
(self.map_tensor_name(name_up), up_proj_weight)
]
if name.endswith("down_proj"):
name += ".weight"
data_torch = data_torch.transpose(-1, -2)
if "multi_modal_projector" in name or "vision_model" in name:
return []
return super().modify_tensors(data_torch, name, bid)
@Model.register("Mistral3ForConditionalGeneration")
class Mistral3Model(LlamaModel):
model_arch = gguf.MODEL_ARCH.LLAMA
# we need to merge the text_config into the root level of hparams
def __init__(self, *args, **kwargs):
hparams = kwargs["hparams"] if "hparams" in kwargs else Model.load_hparams(args[0])
if "text_config" in hparams:
hparams = {**hparams, **hparams["text_config"]}
kwargs["hparams"] = hparams
super().__init__(*args, **kwargs)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
name = name.replace("language_model.", "")
if "multi_modal_projector" in name or "vision_tower" in name:
return []
return super().modify_tensors(data_torch, name, bid)
@Model.register("DeciLMForCausalLM")
class DeciModel(Model):
model_arch = gguf.MODEL_ARCH.DECI
@@ -2217,7 +2352,7 @@ class Qwen2Model(Model):
self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
@Model.register("Qwen2VLForConditionalGeneration")
@Model.register("Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
class Qwen2VLModel(Model):
model_arch = gguf.MODEL_ARCH.QWEN2VL
@@ -2341,6 +2476,16 @@ class Qwen2MoeModel(Model):
raise ValueError(f"Unprocessed experts: {experts}")
@Model.register("Qwen3ForCausalLM")
class Qwen3Model(Qwen2Model):
model_arch = gguf.MODEL_ARCH.QWEN3
@Model.register("Qwen3MoeForCausalLM")
class Qwen3MoeModel(Qwen2MoeModel):
model_arch = gguf.MODEL_ARCH.QWEN3MOE
@Model.register("GPT2LMHeadModel")
class GPT2Model(Model):
model_arch = gguf.MODEL_ARCH.GPT2
@@ -2370,10 +2515,6 @@ class GPT2Model(Model):
tensors.append((new_name, data_torch))
# note: GPT2 output is tied to (same as) wte in original model
if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
return tensors
@@ -2703,21 +2844,26 @@ class CodeShellModel(Model):
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(1.0)
_has_tok_embd = False
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
new_name = self.map_tensor_name(name)
tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
# assuming token_embd.weight is seen before output.weight
if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
# even though the tensor file(s) does not contain the word embeddings they are still in the weight map
if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
self.tensor_names.remove("transformer.wte.weight")
elif new_name == tok_embd_name:
self._has_tok_embd = True
if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
assert self.tensor_names is not None
if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
# copy tok_embd.weight to output.weight
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
return tensors
return [(new_name, data_torch)]
@Model.register("InternLM2ForCausalLM")
@@ -3332,7 +3478,7 @@ class Gemma3Model(Model):
# we need to merge the text_config into the root level of hparams
def __init__(self, *args, **kwargs):
hparams = Model.load_hparams(kwargs["dir_model"])
hparams = kwargs["hparams"] if "hparams" in kwargs else Model.load_hparams(args[0])
if "text_config" in hparams:
hparams = {**hparams, **hparams["text_config"]}
kwargs["hparams"] = hparams
@@ -3412,38 +3558,7 @@ class Rwkv6Model(Model):
model_arch = gguf.MODEL_ARCH.RWKV6
def set_vocab(self):
assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
vocab_size = self.hparams.get("vocab_size", 65536)
tokens: list[bytes] = ['<s>'.encode("utf-8")]
toktypes: list[int] = [gguf.TokenType.CONTROL]
with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
lines = f.readlines()
for line in lines:
parts = line.split(' ')
assert len(parts) >= 3
token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
token = token.encode("utf-8") if isinstance(token, str) else token
assert isinstance(token, bytes)
assert len(token) == token_len
token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
tokens.append(token_text.encode("utf-8"))
toktypes.append(gguf.TokenType.NORMAL)
remainder = vocab_size - len(tokens)
assert remainder >= 0
for i in range(len(tokens), vocab_size):
tokens.append(f"[PAD{i}]".encode("utf-8"))
toktypes.append(gguf.TokenType.UNUSED)
self.gguf_writer.add_tokenizer_model("rwkv")
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
special_vocab.chat_template = "rwkv-world"
# hack: Add '\n\n' as the EOT token to make it chat normally
special_vocab._set_special_token("eot", 261)
special_vocab.add_to_gguf(self.gguf_writer)
self._set_vocab_rwkv_world()
def set_gguf_parameters(self):
block_count = self.hparams["num_hidden_layers"]
@@ -3529,8 +3644,8 @@ class RWKV6Qwen2Model(Rwkv6Model):
head_size = hidden_size // num_attention_heads
rms_norm_eps = self.hparams["rms_norm_eps"]
intermediate_size = self.hparams["intermediate_size"]
time_mix_extra_dim = 64 if hidden_size >= 4096 else 32
time_decay_extra_dim = 128 if hidden_size >= 4096 else 64
time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
# RWKV isn't context limited
self.gguf_writer.add_context_length(1048576)
@@ -3565,6 +3680,168 @@ class RWKV6Qwen2Model(Rwkv6Model):
yield (new_name, data)
@Model.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
class Rwkv7Model(Model):
model_arch = gguf.MODEL_ARCH.RWKV7
def set_vocab(self):
self._set_vocab_rwkv_world()
def calc_lora_rank(self, hidden_size, exponent, multiplier):
return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
def set_gguf_parameters(self):
block_count = self.hparams["num_hidden_layers"]
try:
head_size = self.hparams["head_size"]
layer_norm_eps = self.hparams["layer_norm_epsilon"]
except KeyError:
head_size = self.hparams["head_dim"]
layer_norm_eps = self.hparams["norm_eps"]
hidden_size = self.hparams["hidden_size"]
intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
# ICLR: In-Context-Learning-Rate
try:
lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
except KeyError:
lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
# RWKV isn't context limited
self.gguf_writer.add_context_length(1048576)
self.gguf_writer.add_embedding_length(hidden_size)
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
self.gguf_writer.add_wkv_head_size(head_size)
self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
self.gguf_writer.add_feed_forward_length(intermediate_size)
self.gguf_writer.add_file_type(self.ftype)
# required by llama.cpp, unused
self.gguf_writer.add_head_count(0)
lerp_weights: dict[int, dict[str, Tensor]] = {}
lora_needs_transpose: bool = True
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
# unify tensor names here to make life easier
name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
name = name.replace("self_attn", "attention").replace("attn", "attention")
name = name.replace("time_mixer.", "")
# lora layer names in fla-hub's impl
if "_lora.lora" in name:
self.lora_needs_transpose = False
name = name.replace("_lora.lora.0.weight", "1.weight")
name = name.replace("_lora.lora.2.weight", "2.weight")
name = name.replace("_lora.lora.2.bias", "0.weight")
name = name.replace("feed_forward_norm", "ln2")
name = name.replace("g_norm", "ln_x")
if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
# some models have dummy v0/v1/v2 on first layer while others don't
# ignore them all since they are not used
return
wkv_has_gate = self.hparams.get("wkv_has_gate", True)
lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
if bid is not None and "attention.x_" in name:
if "attention.x_x" in name:
# already concatenated
new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
data = data_torch.reshape(len(lerp_list), 1, 1, -1)
yield (new_name, data)
else:
try:
self.lerp_weights[bid][name] = data_torch
except KeyError:
self.lerp_weights[bid] = {name: data_torch}
if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
yield (new_name, data)
return
else:
data_torch = data_torch.squeeze()
new_name = self.map_tensor_name(name)
if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
new_name += ".weight"
if self.lora_needs_transpose and any(
new_name.endswith(t) for t in [
"time_mix_w1.weight", "time_mix_w2.weight",
"time_mix_a1.weight", "time_mix_a2.weight",
"time_mix_v1.weight", "time_mix_v2.weight",
"time_mix_g1.weight", "time_mix_g2.weight",
]
):
data_torch = data_torch.transpose(0, 1)
if 'r_k' in new_name:
data_torch = data_torch.flatten()
if bid == 0 and "time_mix_a" in new_name:
# dummy v0/v1/v2 on first layer
# easist way to make llama happy
yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
yield (new_name, data_torch)
@Model.register("RwkvHybridForCausalLM")
class ARwkv7Model(Rwkv7Model):
model_arch = gguf.MODEL_ARCH.ARWKV7
def set_vocab(self):
try:
self._set_vocab_sentencepiece()
except FileNotFoundError:
self._set_vocab_gpt2()
def set_gguf_parameters(self):
block_count = self.hparams["num_hidden_layers"]
hidden_size = self.hparams["hidden_size"]
head_size = self.hparams["head_size"]
rms_norm_eps = self.hparams["rms_norm_eps"]
intermediate_size = self.hparams["intermediate_size"]
wkv_has_gate = self.hparams["wkv_has_gate"]
assert self.hparams["wkv_version"] == 7
# ICLR: In-Context-Learning-Rate
lora_rank_decay = 64
lora_rank_iclr = 64
lora_rank_value_residual_mix = 32
lora_rank_gate = 128 if wkv_has_gate else 0
# RWKV isn't context limited
self.gguf_writer.add_context_length(1048576)
self.gguf_writer.add_embedding_length(hidden_size)
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
self.gguf_writer.add_wkv_head_size(head_size)
self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
self.gguf_writer.add_feed_forward_length(intermediate_size)
self.gguf_writer.add_file_type(self.ftype)
self.gguf_writer.add_token_shift_count(1)
# required by llama.cpp, unused
self.gguf_writer.add_head_count(0)
@Model.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
class MambaModel(Model):
model_arch = gguf.MODEL_ARCH.MAMBA
@@ -3619,8 +3896,6 @@ class MambaModel(Model):
_tok_embd = None
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
@@ -3630,6 +3905,10 @@ class MambaModel(Model):
logger.debug("A_log --> A ==> " + new_name)
data_torch = -torch.exp(data_torch)
# [4 1 8192 1] -> [4 8192 1 1]
if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
data_torch = data_torch.squeeze()
# assuming token_embd.weight is seen before output.weight
if self._tok_embd is not None and new_name == output_name:
if torch.equal(self._tok_embd, data_torch):
@@ -4143,6 +4422,10 @@ class DeepseekV2Model(Model):
self._set_vocab_gpt2()
def set_gguf_parameters(self):
# note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
self.hparams["num_key_value_heads"] = 1
super().set_gguf_parameters()
hparams = self.hparams
@@ -4151,8 +4434,13 @@ class DeepseekV2Model(Model):
if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
self.gguf_writer.add_value_length(hparams["v_head_dim"])
# note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
@@ -4221,6 +4509,26 @@ class DeepseekV2Model(Model):
else:
return []
# note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
if name.endswith("kv_b_proj.weight"):
name_kb = name.replace("kv_b_proj", "k_b_proj")
name_vb = name.replace("kv_b_proj", "v_b_proj")
n_head_kv = self.hparams["num_key_value_heads"]
v_head_dim = self.hparams["v_head_dim"]
qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
k_b = k_b.transpose(1, 2)
return [
(self.map_tensor_name(name_kb), k_b),
(self.map_tensor_name(name_vb), v_b)
]
return [(self.map_tensor_name(name), data_torch)]
def prepare_tensors(self):
@@ -4233,6 +4541,29 @@ class DeepseekV2Model(Model):
raise ValueError(f"Unprocessed experts: {experts}")
@Model.register("PLMForCausalLM")
class PLMModel(Model):
model_arch = gguf.MODEL_ARCH.PLM
def set_vocab(self):
self._set_vocab_gpt2()
def set_gguf_parameters(self):
super().set_gguf_parameters()
hparams = self.hparams
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
self.gguf_writer.add_value_length(hparams["v_head_dim"])
self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
return [(self.map_tensor_name(name), data_torch)]
def prepare_tensors(self):
super().prepare_tensors()
@Model.register("T5WithLMHeadModel")
@Model.register("T5ForConditionalGeneration")
@Model.register("MT5ForConditionalGeneration")
@@ -4598,6 +4929,22 @@ class JaisModel(Model):
self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
@Model.register("Glm4ForCausalLM")
class Glm4Model(Model):
model_arch = gguf.MODEL_ARCH.GLM4
def set_vocab(self):
self._set_vocab_gpt2()
def set_gguf_parameters(self):
super().set_gguf_parameters()
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
if self.hparams["rope_scaling"].get("type") == "yarn":
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
@Model.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
class ChatGLMModel(Model):
model_arch = gguf.MODEL_ARCH.CHATGLM
@@ -4921,6 +5268,105 @@ class GraniteMoeModel(GraniteModel):
return super().modify_tensors(data_torch, name, bid)
@Model.register("BailingMoeForCausalLM")
class BailingMoeModel(Model):
model_arch = gguf.MODEL_ARCH.BAILINGMOE
def set_vocab(self):
self._set_vocab_gpt2()
def set_gguf_parameters(self):
super().set_gguf_parameters()
hparams = self.hparams
rope_dim = hparams.get("head_dim") or hparams["hidden_size"] // hparams["num_attention_heads"]
self.gguf_writer.add_rope_dimension_count(rope_dim)
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
self.gguf_writer.add_expert_weights_scale(1.0)
self.gguf_writer.add_expert_count(hparams["num_experts"])
self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
_experts: list[dict[str, Tensor]] | None = None
@staticmethod
def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
if n_head_kv is not None and n_head != n_head_kv:
n_head = n_head_kv
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
.swapaxes(1, 2)
.reshape(weights.shape))
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
n_head = self.hparams["num_attention_heads"]
n_kv_head = self.hparams.get("num_key_value_heads")
n_embd = self.hparams["hidden_size"]
head_dim = self.hparams.get("head_dim") or n_embd // n_head
output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
if name.endswith("attention.dense.weight"):
return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
elif name.endswith("query_key_value.weight"):
q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
return [
(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
]
elif name.find("mlp.experts") != -1:
n_experts = self.hparams["num_experts"]
assert bid is not None
tensors: list[tuple[str, Tensor]] = []
if self._experts is None:
self._experts = [{} for _ in range(self.block_count)]
self._experts[bid][name] = data_torch
if len(self._experts[bid]) >= n_experts * 3:
# merge the experts into a single 3d tensor
for w_name in ["down_proj", "gate_proj", "up_proj"]:
datas: list[Tensor] = []
for xid in range(n_experts):
ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
datas.append(self._experts[bid][ename])
del self._experts[bid][ename]
data_torch = torch.stack(datas, dim=0)
merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
new_name = self.map_tensor_name(merged_name)
tensors.append((new_name, data_torch))
return tensors
new_name = self.map_tensor_name(name)
if new_name == output_name and self.hparams.get("norm_head"):
data_torch = data_torch.float()
data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
return [(new_name, data_torch)]
def prepare_tensors(self):
super().prepare_tensors()
if self._experts is not None:
# flatten `list[dict[str, Tensor]]` into `list[str]`
experts = [k for d in self._experts for k in d.keys()]
if len(experts) > 0:
raise ValueError(f"Unprocessed experts: {experts}")
@Model.register("ChameleonForConditionalGeneration")
@Model.register("ChameleonForCausalLM") # obsolete
class ChameleonModel(Model):
@@ -5019,6 +5465,14 @@ class LazyTorchTensor(gguf.LazyBase):
lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
return cast(torch.Tensor, lazy)
@classmethod
def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
dtype = cls._dtype_str_map[remote_tensor.dtype]
shape = remote_tensor.shape
meta = cls.meta_with_dtype_and_shape(dtype, shape)
lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
return cast(torch.Tensor, lazy)
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
del types # unused
@@ -5096,6 +5550,10 @@ def parse_args() -> argparse.Namespace:
"--print-supported-models", action="store_true",
help="Print the supported models"
)
parser.add_argument(
"--remote", action="store_true",
help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
)
args = parser.parse_args()
if not args.print_supported_models and args.model is None:
@@ -5136,6 +5594,14 @@ def main() -> None:
dir_model = args.model
if args.remote:
from huggingface_hub import snapshot_download
local_dir = snapshot_download(
repo_id=str(dir_model),
allow_patterns=["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"])
dir_model = Path(local_dir)
logger.info(f"Downloaded config and tokenizer to {local_dir}")
if not dir_model.is_dir():
logger.error(f'Error: {args.model} is not a directory')
sys.exit(1)
@@ -5157,6 +5623,9 @@ def main() -> None:
if args.outfile is not None:
fname_out = args.outfile
elif args.remote:
# if remote, use the model ID as the output file name
fname_out = Path("./" + str(args.model).replace("/", "-") + "-{ftype}.gguf")
else:
fname_out = dir_model
@@ -5167,20 +5636,20 @@ def main() -> None:
with torch.inference_mode():
output_type = ftype_map[args.outtype]
model_architecture = hparams["architectures"][0]
try:
model_class = Model.from_model_architecture(model_architecture)
except NotImplementedError:
logger.error(f"Model {model_architecture} is not supported")
sys.exit(1)
model_instance = model_class(dir_model=dir_model, ftype=output_type, fname_out=fname_out,
model_instance = model_class(dir_model, output_type, fname_out,
is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
eager=args.no_lazy,
metadata_override=args.metadata, model_name=args.model_name,
split_max_tensors=args.split_max_tensors,
split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
small_first_shard=args.no_tensor_first_split)
small_first_shard=args.no_tensor_first_split,
remote_hf_model_id=str(args.model) if args.remote else None)
if args.vocab_only:
logger.info("Exporting model vocab...")

View File

@@ -110,6 +110,11 @@ models = [
{"name": "deepseek-v3", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/DeepSeek-V3"},
{"name": "deepseek-r1-qwen", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"},
{"name": "gpt-4o", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Xenova/gpt-4o", },
{"name": "superbpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k", },
{"name": "trillion", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/trillionlabs/Trillion-7B-preview", },
{"name": "bailingmoe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/inclusionAI/Ling-lite", },
{"name": "llama4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct", },
{"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-hf", },
]

View File

@@ -14,9 +14,7 @@ In this guide we setup [Nvidia CUDA](https://docs.nvidia.com/cuda/) in a toolbox
- [Creating a Fedora Toolbox Environment](#creating-a-fedora-toolbox-environment)
- [Installing Essential Development Tools](#installing-essential-development-tools)
- [Adding the CUDA Repository](#adding-the-cuda-repository)
- [Installing `nvidia-driver-libs`](#installing-nvidia-driver-libs)
- [Manually Resolving Package Conflicts](#manually-resolving-package-conflicts)
- [Finalizing the Installation of `nvidia-driver-libs`](#finalizing-the-installation-of-nvidia-driver-libs)
- [Installing Nvidia Driver Libraries](#installing-nvidia-driver-libraries)
- [Installing the CUDA Meta-Package](#installing-the-cuda-meta-package)
- [Configuring the Environment](#configuring-the-environment)
- [Verifying the Installation](#verifying-the-installation)
@@ -67,7 +65,7 @@ This guide focuses on Fedora hosts, but with small adjustments, it can work for
sudo dnf distro-sync
```
2. **Install the Default Text Editor (Optional):**
2. **Install **Vim** the default text editor (Optional):**
```bash
sudo dnf install vim-default-editor --allowerasing
@@ -97,36 +95,48 @@ After adding the repository, synchronize the package manager again:
sudo dnf distro-sync
```
## Installing `nvidia-driver-libs` and `nvidia-driver-cuda-libs`
## Installing Nvidia Driver Libraries
We need to detect if the host is supplying the [NVIDIA driver libraries into the toolbox](https://github.com/containers/toolbox/blob/main/src/pkg/nvidia/nvidia.go).
First, we need to detect if the host is supplying the [NVIDIA driver libraries into the toolbox](https://github.com/containers/toolbox/blob/main/src/pkg/nvidia/nvidia.go):
```bash
ls -la /usr/lib64/libcuda.so.1
```
### If *`libcuda.so.1`* is missing:
```
ls: cannot access '/usr/lib64/libcuda.so.1': No such file or directory
```
**Explanation:**
The host dose not supply the CUDA drivers, **install them now:**
- `nvidia-driver-libs` and `nvidia-driver-cuda-libs` contains necessary NVIDIA driver libraries required by CUDA,
on hosts with NVIDIA drivers installed the Fedora Container will supply the host libraries.
### Install Nvidia Driver Libraries on Guest (if `libcuda.so.1` was NOT found).
#### Install the Nvidia Driver Libraries on Guest:
```bash
sudo dnf install nvidia-driver-libs nvidia-driver-cuda-libs
sudo dnf install nvidia-driver-cuda nvidia-driver-libs nvidia-driver-cuda-libs nvidia-persistenced
```
### Manually Updating the RPM database for host-supplied NVIDIA drivers (if `libcuda.so.1` was found).
### If *`libcuda.so.1`* exists:
```
lrwxrwxrwx. 1 root root 21 Mar 24 11:26 /usr/lib64/libcuda.so.1 -> libcuda.so.570.133.07
```
If the installation fails due to conflicts, we'll manually download and install the required packages, excluding conflicting files.
**Explanation:**
The host is supply the CUDA drivers, **we need to update the guest RPM Database accordingly:**
#### 1. Download `nvidia-driver-libs` and `nvidia-driver-cuda-libs` RPM's (with dependencies)
#### Update the Toolbox RPM Database to include the Host-Supplied Libraries:
Note: we do not actually install the libraries, we just update the DB so that the guest system knows they are supplied by the host.
##### 1. Download `nvidia-` parts that are supplied by the host RPM's (with dependencies)
```bash
sudo dnf download --destdir=/tmp/nvidia-driver-libs --resolve --arch x86_64 nvidia-driver-libs nvidia-driver-cuda-libs
sudo dnf download --destdir=/tmp/nvidia-driver-libs --resolve --arch x86_64 nvidia-driver-cuda nvidia-driver-libs nvidia-driver-cuda-libs nvidia-persistenced
```
#### 2. Update the RPM database to assume the installation of these packages.
##### 2. Update the RPM database to assume the installation of these packages.
```bash
sudo rpm --install --verbose --hash --justdb /tmp/nvidia-driver-libs/*
@@ -134,23 +144,26 @@ sudo rpm --install --verbose --hash --justdb /tmp/nvidia-driver-libs/*
**Note:**
- The `--justdb` option only updates the RPM database, without touching the filesystem.
- The `--justdb` option only updates the RPM database, without touching the filesystem elsewhere.
#### Finalizing the Installation of `nvidia-driver-libs` and `nvidia-driver-cuda-libs`
##### Check that the RPM Database has been correctly updated:
**Note:** This is the same command as in the *"Install the Nvidia Driver Libraries on Guest"* for if *`libcuda.so.1`* was missing.
After manually installing the dependencies, run:
```bash
sudo dnf install nvidia-driver-libs nvidia-driver-cuda-libs
sudo dnf install nvidia-driver-cuda nvidia-driver-libs nvidia-driver-cuda-libs nvidia-persistenced
```
You should receive a message indicating the package is already installed:
*(this time it will not install anything, as the database things that these packages are already installed)*
```
Updating and loading repositories:
Repositories loaded.
Package "nvidia-driver-libs-3:570.86.10-1.fc41.x86_64" is already installed.
Package "nvidia-driver-cuda-libs-3:570.86.10-1.fc41.x86_64" is already installed.
Package "nvidia-driver-cuda-3:570.124.06-1.fc41.x86_64" is already installed.
Package "nvidia-driver-libs-3:570.124.06-1.fc41.x86_64" is already installed.
Package "nvidia-driver-cuda-libs-3:570.124.06-1.fc41.x86_64" is already installed.
Package "nvidia-persistenced-3:570.124.06-1.fc41.x86_64" is already installed.
Nothing to do.
```
@@ -207,9 +220,9 @@ You should see output similar to:
```
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2025 NVIDIA Corporation
Built on Wed_Jan_15_19:20:09_PST_2025
Cuda compilation tools, release 12.8, V12.8.61
Build cuda_12.8.r12.8/compiler.35404655_0
Built on Fri_Feb_21_20:23:50_PST_2025
Cuda compilation tools, release 12.8, V12.8.93
Build cuda_12.8.r12.8/compiler.35583870_0
```
This output confirms that the CUDA compiler is accessible and indicates the installed version.

View File

@@ -145,8 +145,13 @@ A Snapdragon X Elite device with Windows 11 Arm64 is used. Make sure the followi
* Clang 19
* Ninja
* Visual Studio 2022
* Powershell 7
Powershell is used for the following instructions.
Visual Studio provides necessary headers and libraries although it is not directly used for building.
Alternatively, Visual Studio Build Tools can be installed instead of the full Visual Studio.
Powershell 7 is used for the following commands.
If an older version of Powershell is used, these commands may not work as they are.
### I. Setup Environment
@@ -196,10 +201,9 @@ ninja
## Known Issues
- Qwen2.5 0.5B model produces gibberish output with Adreno kernels.
- Currently OpenCL backend does not work on Adreno 6xx GPUs.
## TODO
- Fix Qwen2.5 0.5B
- Optimization for Q6_K
- Support and optimization for Q4_K

View File

@@ -20,7 +20,7 @@
**oneAPI** is an open ecosystem and a standard-based specification, supporting multiple architectures including but not limited to intel CPUs, GPUs and FPGAs. The key components of the oneAPI ecosystem include:
- **DPCPP** *(Data Parallel C++)*: The primary oneAPI SYCL implementation, which includes the icpx/icx Compilers.
- **oneAPI Libraries**: A set of highly optimized libraries targeting multiple domains *(e.g. oneMKL and oneDNN)*.
- **oneAPI Libraries**: A set of highly optimized libraries targeting multiple domains *(e.g. Intel oneMKL, oneMath and oneDNN)*.
- **oneAPI LevelZero**: A high performance low level interface for fine-grained control over intel iGPUs and dGPUs.
- **Nvidia & AMD Plugins**: These are plugins extending oneAPI's DPCPP support to SYCL on Nvidia and AMD GPU targets.
@@ -227,30 +227,19 @@ Upon a successful installation, SYCL is enabled for the available intel devices,
**oneAPI Plugin**: In order to enable SYCL support on Nvidia GPUs, please install the [Codeplay oneAPI Plugin for Nvidia GPUs](https://developer.codeplay.com/products/oneapi/nvidia/download). User should also make sure the plugin version matches the installed base toolkit one *(previous step)* for a seamless "oneAPI on Nvidia GPU" setup.
**oneMKL for cuBlas**: The current oneMKL releases *(shipped with the oneAPI base-toolkit)* do not contain the cuBLAS backend. A build from source of the upstream [oneMKL](https://github.com/oneapi-src/oneMKL) with the *cuBLAS* backend enabled is thus required to run it on Nvidia GPUs.
**oneDNN**: The current oneDNN releases *(shipped with the oneAPI base-toolkit)* do not include the NVIDIA backend. Therefore, oneDNN must be compiled from source to enable the NVIDIA target:
```sh
git clone https://github.com/oneapi-src/oneMKL
cd oneMKL
cmake -B buildWithCublas -DCMAKE_CXX_COMPILER=icpx -DCMAKE_C_COMPILER=icx -DENABLE_MKLGPU_BACKEND=OFF -DENABLE_MKLCPU_BACKEND=OFF -DENABLE_CUBLAS_BACKEND=ON -DTARGET_DOMAINS=blas
cmake --build buildWithCublas --config Release
git clone https://github.com/oneapi-src/oneDNN.git
cd oneDNN
cmake -GNinja -Bbuild-nvidia -DDNNL_CPU_RUNTIME=DPCPP -DDNNL_GPU_RUNTIME=DPCPP -DDNNL_GPU_VENDOR=NVIDIA -DONEDNN_BUILD_GRAPH=OFF -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
cmake --build build-nvidia --config Release
```
- **Adding support to AMD GPUs**
**oneAPI Plugin**: In order to enable SYCL support on AMD GPUs, please install the [Codeplay oneAPI Plugin for AMD GPUs](https://developer.codeplay.com/products/oneapi/amd/download). As with Nvidia GPUs, the user should also make sure the plugin version matches the installed base toolkit.
**oneMKL for rocBlas**: The current oneMKL releases *(shipped with the oneAPI base-toolkit)* doesn't contain the rocBLAS backend. A build from source of the upstream [oneMKL](https://github.com/oneapi-src/oneMKL) with the *rocBLAS* backend enabled is thus required to run it on AMD GPUs.
```sh
git clone https://github.com/oneapi-src/oneMKL
cd oneMKL
# Find your HIPTARGET with rocminfo, under the key 'Name:'
cmake -B buildWithrocBLAS -DCMAKE_CXX_COMPILER=icpx -DCMAKE_C_COMPILER=icx -DENABLE_MKLGPU_BACKEND=OFF -DENABLE_MKLCPU_BACKEND=OFF -DENABLE_ROCBLAS_BACKEND=ON -DHIPTARGETS=${HIPTARGET} -DTARGET_DOMAINS=blas
cmake --build buildWithrocBLAS --config Release
```
3. **Verify installation and environment**
In order to check the available SYCL devices on the machine, please use the `sycl-ls` command.
@@ -313,37 +302,39 @@ cmake -B build -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -
cmake --build build --config Release -j -v
```
It is possible to come across some precision issues when running tests that stem from using faster
instructions, which can be circumvented by setting the environment variable `SYCL_PROGRAM_COMPILE_OPTIONS`
as `-cl-fp32-correctly-rounded-divide-sqrt`
#### Nvidia GPU
```sh
# Export relevant ENV variables
export LD_LIBRARY_PATH=/path/to/oneMKL/buildWithCublas/lib:$LD_LIBRARY_PATH
export LIBRARY_PATH=/path/to/oneMKL/buildWithCublas/lib:$LIBRARY_PATH
export CPLUS_INCLUDE_DIR=/path/to/oneMKL/buildWithCublas/include:$CPLUS_INCLUDE_DIR
export CPLUS_INCLUDE_DIR=/path/to/oneMKL/include:$CPLUS_INCLUDE_DIR
The SYCL backend depends on [oneMath](https://github.com/uxlfoundation/oneMath) for Nvidia and AMD devices.
By default it is automatically built along with the project. A specific build can be provided by setting the CMake flag `-DoneMath_DIR=/path/to/oneMath/install/lib/cmake/oneMath`.
```sh
# Build LLAMA with Nvidia BLAS acceleration through SYCL
# Setting GGML_SYCL_DEVICE_ARCH is optional but can improve performance
GGML_SYCL_DEVICE_ARCH=sm_80 # Example architecture
# Option 1: Use FP32 (recommended for better performance in most cases)
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DDNNL_DIR=/path/to/oneDNN/build-nvidia/install/lib/cmake/dnnl
# Option 2: Use FP16
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON -DDNNL_DIR=/path/to/oneDNN/build-nvidia/install/lib/cmake/dnnl
# build all binary
cmake --build build --config Release -j -v
```
It is possible to come across some precision issues when running tests that stem from using faster
instructions, which can be circumvented by passing the `-fno-fast-math` flag to the compiler.
#### AMD GPU
```sh
# Export relevant ENV variables
export LD_LIBRARY_PATH=/path/to/oneMKL/buildWithrocBLAS/lib:$LD_LIBRARY_PATH
export LIBRARY_PATH=/path/to/oneMKL/buildWithrocBLAS/lib:$LIBRARY_PATH
export CPLUS_INCLUDE_DIR=/path/to/oneMKL/buildWithrocBLAS/include:$CPLUS_INCLUDE_DIR
The SYCL backend depends on [oneMath](https://github.com/uxlfoundation/oneMath) for Nvidia and AMD devices.
By default it is automatically built along with the project. A specific build can be provided by setting the CMake flag `-DoneMath_DIR=/path/to/oneMath/install/lib/cmake/oneMath`.
```sh
# Build LLAMA with rocBLAS acceleration through SYCL
## AMD
@@ -434,13 +425,13 @@ Examples:
- Use device 0:
```sh
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm none -mg 0
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -no-cnv -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm none -mg 0
```
- Use multiple devices:
```sh
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm layer
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -no-cnv -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm layer
```
*Notes:*
@@ -484,6 +475,12 @@ b. Enable oneAPI running environment:
"C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64
```
- if you are using Powershell, enable the runtime environment with the following:
```
cmd.exe "/K" '"C:\Program Files (x86)\Intel\oneAPI\setvars.bat" && powershell'
```
c. Verify installation
In the oneAPI command line, run the following to print the available SYCL devices:
@@ -514,13 +511,13 @@ You could download the release package for Windows directly, which including bin
Choose one of following methods to build from source code.
1. Script
#### 1. Script
```sh
.\examples\sycl\win-build-sycl.bat
```
2. CMake
#### 2. CMake
On the oneAPI command line window, step into the llama.cpp main directory and run the following:
@@ -549,13 +546,84 @@ cmake --preset x64-windows-sycl-debug
cmake --build build-x64-windows-sycl-debug -j --target llama-cli
```
3. Visual Studio
#### 3. Visual Studio
You can use Visual Studio to open llama.cpp folder as a CMake project. Choose the sycl CMake presets (`x64-windows-sycl-release` or `x64-windows-sycl-debug`) before you compile the project.
You have two options to use Visual Studio to build llama.cpp:
- As CMake Project using CMake presets.
- Creating a Visual Studio solution to handle the project.
**Note**:
All following commands are executed in PowerShell.
##### - Open as a CMake Project
You can use Visual Studio to open the `llama.cpp` folder directly as a CMake project. Before compiling, select one of the SYCL CMake presets:
- `x64-windows-sycl-release`
- `x64-windows-sycl-debug`
*Notes:*
- For a minimal experimental setup, you can build only the inference executable using:
- In case of a minimal experimental setup, the user can build the inference executable only through `cmake --build build --config Release -j --target llama-cli`.
```Powershell
cmake --build build --config Release -j --target llama-cli
```
##### - Generating a Visual Studio Solution
You can use Visual Studio solution to build and work on llama.cpp on Windows. You need to convert the CMake Project into a `.sln` file.
If you want to use the Intel C++ Compiler for the entire `llama.cpp` project, run the following command:
```Powershell
cmake -B build -G "Visual Studio 17 2022" -T "Intel C++ Compiler 2025" -A x64 -DGGML_SYCL=ON -DCMAKE_BUILD_TYPE=Release
```
If you prefer to use the Intel C++ Compiler only for `ggml-sycl`, ensure that `ggml` and its backend libraries are built as shared libraries ( i.e. `-DBUILD_SHARED_LIBRARIES=ON`, this is default behaviour):
```Powershell
cmake -B build -G "Visual Studio 17 2022" -A x64 -DGGML_SYCL=ON -DCMAKE_BUILD_TYPE=Release \
-DSYCL_INCLUDE_DIR="C:\Program Files (x86)\Intel\oneAPI\compiler\latest\include" \
-DSYCL_LIBRARY_DIR="C:\Program Files (x86)\Intel\oneAPI\compiler\latest\lib"
```
If successful the build files have been written to: *path/to/llama.cpp/build*
Open the project file **build/llama.cpp.sln** with Visual Studio.
Once the Visual Studio solution is created, follow these steps:
1. Open the solution in Visual Studio.
2. Right-click on `ggml-sycl` and select **Properties**.
3. In the left column, expand **C/C++** and select **DPC++**.
4. In the right panel, find **Enable SYCL Offload** and set it to `Yes`.
5. Apply the changes and save.
*Navigation Path:*
```
Properties -> C/C++ -> DPC++ -> Enable SYCL Offload (Yes)
```
Now, you can build `llama.cpp` with the SYCL backend as a Visual Studio project.
To do it from menu: `Build -> Build Solution`.
Once it is completed, final results will be in **build/Release/bin**
*Additional Note*
- You can avoid specifying `SYCL_INCLUDE_DIR` and `SYCL_LIBRARY_DIR` in the CMake command by setting the environment variables:
- `SYCL_INCLUDE_DIR_HINT`
- `SYCL_LIBRARY_DIR_HINT`
- Above instruction has been tested with Visual Studio 17 Community edition and oneAPI 2025.0. We expect them to work also with future version if the instructions are adapted accordingly.
### III. Run the inference
@@ -629,13 +697,13 @@ Examples:
- Use device 0:
```
build\bin\llama-cli.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm none -mg 0
build\bin\llama-cli.exe -no-cnv -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm none -mg 0
```
- Use multiple devices:
```
build\bin\llama-cli.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm layer
build\bin\llama-cli.exe -no-cnv -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm layer
```
@@ -660,8 +728,9 @@ use 1 SYCL GPUs: [0] with Max compute units:512
|--------------------|---------------------------------------|---------------------------------------------|
| GGML_SYCL | ON (mandatory) | Enable build with SYCL code path.<br>FP32 path - recommended for better perforemance than FP16 on quantized model|
| GGML_SYCL_TARGET | INTEL *(default)* \| NVIDIA \| AMD | Set the SYCL target device type. |
| GGML_SYCL_DEVICE_ARCH | Optional (except for AMD) | Set the SYCL device architecture, optional except for AMD. Setting the device architecture can improve the performance. See the table [--offload-arch](https://github.com/intel/llvm/blob/sycl/sycl/doc/design/OffloadDesign.md#--offload-arch) for a list of valid architectures. |
| GGML_SYCL_DEVICE_ARCH | Optional (except for AMD) | Set the SYCL device architecture, optional except for AMD. Setting the device architecture can improve the performance. See the table [--offload-arch](https://github.com/intel/llvm/blob/sycl/sycl/doc/design/OffloadDesign.md#--offload-arch) for a list of valid architectures. |
| GGML_SYCL_F16 | OFF *(default)* \|ON *(optional)* | Enable FP16 build with SYCL code path. |
| GGML_SYCL_GRAPH | ON *(default)* \|OFF *(Optional)* | Enable build with [SYCL Graph extension](https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/experimental/sycl_ext_oneapi_graph.asciidoc). |
| CMAKE_C_COMPILER | `icx` *(Linux)*, `icx/cl` *(Windows)* | Set `icx` compiler for SYCL code path. |
| CMAKE_CXX_COMPILER | `icpx` *(Linux)*, `icx` *(Windows)* | Set `icpx/icx` compiler for SYCL code path. |
@@ -671,6 +740,7 @@ use 1 SYCL GPUs: [0] with Max compute units:512
|-------------------|------------------|---------------------------------------------------------------------------------------------------------------------------|
| GGML_SYCL_DEBUG | 0 (default) or 1 | Enable log function by macro: GGML_SYCL_DEBUG |
| GGML_SYCL_DISABLE_OPT | 0 (default) or 1 | Disable optimize features based on Intel GPU type, to compare the performance increase |
| GGML_SYCL_DISABLE_GRAPH | 0 or 1 (default) | Disable running computations through SYCL Graphs feature. Disabled by default because graph performance isn't yet better than non-graph performance. |
| ZES_ENABLE_SYSMAN | 0 (default) or 1 | Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory.<br>Recommended to use when --split-mode = layer |

View File

@@ -132,12 +132,14 @@ You may find the official downloads here: [NVIDIA developer site](https://develo
#### Compile and run inside a Fedora Toolbox Container
We also have a [guide](./cuda-fedora.md) for setting up CUDA toolkit in a Fedora [toolbox container](https://containertoolbx.org/).
We also have a [guide](./backend/CUDA-FEDORA.md) for setting up CUDA toolkit in a Fedora [toolbox container](https://containertoolbx.org/).
**Recommended for:**
- ***Particularly*** *convenient* for users of [Atomic Desktops for Fedora](https://fedoraproject.org/atomic-desktops/); such as: [Silverblue](https://fedoraproject.org/atomic-desktops/silverblue/) and [Kinoite](https://fedoraproject.org/atomic-desktops/kinoite/).
- Toolbox is installed by default: [Fedora Workstation](https://fedoraproject.org/workstation/) or [Fedora KDE Plasma Desktop](https://fedoraproject.org/spins/kde).
- ***Necessary*** for users of [Atomic Desktops for Fedora](https://fedoraproject.org/atomic-desktops/); such as: [Silverblue](https://fedoraproject.org/atomic-desktops/silverblue/) and [Kinoite](https://fedoraproject.org/atomic-desktops/kinoite/).
- (there are no supported CUDA packages for these systems)
- ***Necessary*** for users that have a host that is not a: [Supported Nvidia CUDA Release Platform](https://developer.nvidia.com/cuda-downloads).
- (for example, you may have [Fedora 42 Beta](https://fedoramagazine.org/announcing-fedora-linux-42-beta/) as your your host operating system)
- ***Convenient*** For those running [Fedora Workstation](https://fedoraproject.org/workstation/) or [Fedora KDE Plasma Desktop](https://fedoraproject.org/spins/kde), and want to keep their host system clean.
- *Optionally* toolbox packages are available: [Arch Linux](https://archlinux.org/), [Red Hat Enterprise Linux >= 8.5](https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux), or [Ubuntu](https://ubuntu.com/download)
@@ -189,7 +191,7 @@ The following compilation options are also available to tweak performance:
| Option | Legal values | Default | Description |
|-------------------------------|------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GGML_CUDA_FORCE_MMQ | Boolean | false | Force the use of custom matrix multiplication kernels for quantized models instead of FP16 cuBLAS even if there is no int8 tensor core implementation available (affects V100, RDNA3). MMQ kernels are enabled by default on GPUs with int8 tensor core support. With MMQ force enabled, speed for large batch sizes will be worse but VRAM consumption will be lower. |
| GGML_CUDA_FORCE_MMQ | Boolean | false | Force the use of custom matrix multiplication kernels for quantized models instead of FP16 cuBLAS even if there is no int8 tensor core implementation available (affects V100, CDNA and RDNA3+). MMQ kernels are enabled by default on GPUs with int8 tensor core support. With MMQ force enabled, speed for large batch sizes will be worse but VRAM consumption will be lower. |
| GGML_CUDA_FORCE_CUBLAS | Boolean | false | Force the use of FP16 cuBLAS instead of custom matrix multiplication kernels for quantized models |
| GGML_CUDA_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels and for the q4_1 and q5_1 matrix matrix multiplication kernels. Can improve performance on relatively recent GPUs. |
| GGML_CUDA_PEER_MAX_BATCH_SIZE | Positive integer | 128 | Maximum batch size for which to enable peer access between multiple GPUs. Peer access requires either Linux or NVLink. When using NVLink enabling peer access for larger batch sizes is potentially beneficial. |
@@ -216,6 +218,7 @@ By default, all supported compute capabilities are enabled. To customize this be
```bash
cmake -B build -DGGML_MUSA=ON -DMUSA_ARCHITECTURES="21"
cmake --build build --config Release
```
This configuration enables only compute capability `2.1` (MTT S80) during compilation, which can help reduce compilation time.
@@ -256,8 +259,6 @@ You can download it from your Linux distro's package manager or from here: [ROCm
cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
&& cmake --build build --config Release -- -j 16
```
On Linux it is also possible to use unified memory architecture (UMA) to share main memory between the CPU and integrated GPU by setting `-DGGML_HIP_UMA=ON`.
However, this hurts performance for non-integrated GPUs (but enables working with integrated GPUs).
To enhance flash attention performance on RDNA3+ or CDNA architectures, you can utilize the rocWMMA library by enabling the `-DGGML_HIP_ROCWMMA_FATTN=ON` option. This requires rocWMMA headers to be installed on the build system.
@@ -293,6 +294,10 @@ You can download it from your Linux distro's package manager or from here: [ROCm
The environment variable [`HIP_VISIBLE_DEVICES`](https://rocm.docs.amd.com/en/latest/understand/gpu_isolation.html#hip-visible-devices) can be used to specify which GPU(s) will be used.
If your GPU is not officially supported you can use the environment variable [`HSA_OVERRIDE_GFX_VERSION`] set to a similar GPU, for example 10.3.0 on RDNA2 (e.g. gfx1030, gfx1031, or gfx1035) or 11.0.0 on RDNA3.
### Unified Memory
On Linux it is possible to use unified memory architecture (UMA) to share main memory between the CPU and integrated GPU by setting environment variable `GGML_CUDA_ENABLE_UNIFIED_MEMORY=1`. However, this hurts performance for non-integrated GPUs (but enables working with integrated GPUs).
## Vulkan
**Windows**
@@ -433,6 +438,116 @@ llama_new_context_with_model: CANN compute buffer size = 1260.81 MiB
For detailed info, such as model/device supports, CANN install, please refer to [llama.cpp for CANN](./backend/CANN.md).
## Arm® KleidiAI™
KleidiAI is a library of optimized microkernels for AI workloads, specifically designed for Arm CPUs. These microkernels enhance performance and can be enabled for use by the CPU backend.
To enable KleidiAI, go to the llama.cpp directory and build using CMake
```bash
cmake -B build -DGGML_CPU_KLEIDIAI=ON
cmake --build build --config Release
```
You can verify that KleidiAI is being used by running
```bash
./build/bin/llama-cli -m PATH_TO_MODEL -p "What is a car?"
```
If KleidiAI is enabled, the ouput will contain a line similar to:
```
load_tensors: CPU_KLEIDIAI model buffer size = 3474.00 MiB
```
KleidiAI's microkernels implement optimized tensor operations using Arm CPU features such as dotprod, int8mm and SME. llama.cpp selects the most efficient kernel based on runtime CPU feature detection. However, on platforms that support SME, you must manually enable SME microkernels by setting the environment variable `GGML_KLEIDIAI_SME=1`.
Depending on your build target, other higher priority backends may be enabled by default. To ensure the CPU backend is used, you must disable the higher priority backends either at compile time, e.g. -DGGML_METAL=OFF, or during run-time using the command line option `--device none`.
## OpenCL
This provides GPU acceleration through OpenCL on recent Adreno GPU.
More information about OpenCL backend can be found in [OPENCL.md](./backend/OPENCL.md) for more information.
### Android
Assume NDK is available in `$ANDROID_NDK`. First, install OpenCL headers and ICD loader library if not available,
```sh
mkdir -p ~/dev/llm
cd ~/dev/llm
git clone https://github.com/KhronosGroup/OpenCL-Headers && \
cd OpenCL-Headers && \
cp -r CL $ANDROID_NDK/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/include
cd ~/dev/llm
git clone https://github.com/KhronosGroup/OpenCL-ICD-Loader && \
cd OpenCL-ICD-Loader && \
mkdir build_ndk && cd build_ndk && \
cmake .. -G Ninja -DCMAKE_BUILD_TYPE=Release \
-DCMAKE_TOOLCHAIN_FILE=$ANDROID_NDK/build/cmake/android.toolchain.cmake \
-DOPENCL_ICD_LOADER_HEADERS_DIR=$ANDROID_NDK/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/include \
-DANDROID_ABI=arm64-v8a \
-DANDROID_PLATFORM=24 \
-DANDROID_STL=c++_shared && \
ninja && \
cp libOpenCL.so $ANDROID_NDK/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/lib/aarch64-linux-android
```
Then build llama.cpp with OpenCL enabled,
```sh
cd ~/dev/llm
git clone https://github.com/ggml-org/llama.cpp && \
cd llama.cpp && \
mkdir build-android && cd build-android
cmake .. -G Ninja \
-DCMAKE_TOOLCHAIN_FILE=$ANDROID_NDK/build/cmake/android.toolchain.cmake \
-DANDROID_ABI=arm64-v8a \
-DANDROID_PLATFORM=android-28 \
-DBUILD_SHARED_LIBS=OFF \
-DGGML_OPENCL=ON
ninja
```
### Windows Arm64
First, install OpenCL headers and ICD loader library if not available,
```powershell
mkdir -p ~/dev/llm
cd ~/dev/llm
git clone https://github.com/KhronosGroup/OpenCL-Headers && cd OpenCL-Headers
mkdir build && cd build
cmake .. -G Ninja `
-DBUILD_TESTING=OFF `
-DOPENCL_HEADERS_BUILD_TESTING=OFF `
-DOPENCL_HEADERS_BUILD_CXX_TESTS=OFF `
-DCMAKE_INSTALL_PREFIX="$HOME/dev/llm/opencl"
cmake --build . --target install
cd ~/dev/llm
git clone https://github.com/KhronosGroup/OpenCL-ICD-Loader && cd OpenCL-ICD-Loader
mkdir build && cd build
cmake .. -G Ninja `
-DCMAKE_BUILD_TYPE=Release `
-DCMAKE_PREFIX_PATH="$HOME/dev/llm/opencl" `
-DCMAKE_INSTALL_PREFIX="$HOME/dev/llm/opencl"
cmake --build . --target install
```
Then build llama.cpp with OpenCL enabled,
```powershell
cmake .. -G Ninja `
-DCMAKE_TOOLCHAIN_FILE="$HOME/dev/llm/llama.cpp/cmake/arm64-windows-llvm.cmake" `
-DCMAKE_BUILD_TYPE=Release `
-DCMAKE_PREFIX_PATH="$HOME/dev/llm/opencl" `
-DBUILD_SHARED_LIBS=OFF `
-DGGML_OPENCL=ON
ninja
```
## Android
To read documentation for how to build on Android, [click here](./android.md)

View File

@@ -9,6 +9,13 @@ brew install llama.cpp
```
The formula is automatically updated with new `llama.cpp` releases. More info: https://github.com/ggml-org/llama.cpp/discussions/7668
## MacPorts
```sh
sudo port install llama.cpp
```
see also: https://ports.macports.org/port/llama.cpp/details/
## Nix
On Mac and Linux, the Nix package manager can be used via

View File

@@ -38,7 +38,7 @@ int main(int argc, char ** argv) {
llama_model_params model_params = common_model_params_to_llama(params);
llama_model * model = llama_model_load_from_file(params.model.c_str(), model_params);
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), model_params);
if (model == NULL) {
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
@@ -132,7 +132,7 @@ int main(int argc, char ** argv) {
const auto t_pp_start = ggml_time_us();
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
LOG_ERR("%s: llama_decode() failed\n", __func__);
@@ -141,7 +141,7 @@ int main(int argc, char ** argv) {
if (is_pp_shared) {
for (int32_t i = 1; i < pl; ++i) {
llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
llama_kv_self_seq_cp(ctx, 0, i, -1, -1);
}
}

View File

@@ -116,7 +116,7 @@ if llama_decode(context, batch) != 0 {
}
for i in 1 ..< n_parallel {
llama_kv_cache_seq_cp(context, 0, Int32(i), 0, batch.n_tokens)
llama_kv_self_seq_cp(context, 0, Int32(i), 0, batch.n_tokens)
}
if n_parallel > 1 {

View File

@@ -41,7 +41,7 @@ int main(int argc, char ** argv) {
llama_model_params model_params = common_model_params_to_llama(params);
llama_model * model = llama_model_load_from_file(params.model.c_str(), model_params);
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), model_params);
if (model == NULL) {
LOG_ERR("%s: error: unable to load model\n" , __func__);

View File

@@ -342,7 +342,7 @@ static bool cb_eval(struct ggml_tensor * t, bool ask, void * user_data) {
}
static bool get_hidden_layers(llama_context * ctx, std::vector<llama_token> & tokens) {
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size()))) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return false;

View File

@@ -38,7 +38,7 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
const struct llama_model * model = llama_get_model(ctx);
// clear previous kv_cache values (irrelevant for embeddings)
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
// run model
LOG_INF("%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);

View File

@@ -421,7 +421,7 @@ int main(int argc, char ** argv) {
g_verbose = (params.verbosity > 1);
try {
lora_merge_ctx ctx(params.model, params.lora_adapters, params.out_file, params.cpuparams.n_threads);
lora_merge_ctx ctx(params.model.path, params.lora_adapters, params.out_file, params.cpuparams.n_threads);
ctx.run_merge();
} catch (const std::exception & err) {
fprintf(stderr, "%s\n", err.what());

View File

@@ -408,8 +408,6 @@ static void gguf_merge(const split_params & split_params) {
exit(EXIT_FAILURE);
}
std::ofstream fout(split_params.output.c_str(), std::ios::binary);
fout.exceptions(std::ofstream::failbit); // fail fast on write errors
auto * ctx_out = gguf_init_empty();
@@ -453,7 +451,6 @@ static void gguf_merge(const split_params & split_params) {
gguf_free(ctx_gguf);
ggml_free(ctx_meta);
gguf_free(ctx_out);
fout.close();
exit(EXIT_FAILURE);
}
@@ -466,7 +463,6 @@ static void gguf_merge(const split_params & split_params) {
gguf_free(ctx_gguf);
ggml_free(ctx_meta);
gguf_free(ctx_out);
fout.close();
exit(EXIT_FAILURE);
}
@@ -479,7 +475,6 @@ static void gguf_merge(const split_params & split_params) {
gguf_free(ctx_gguf);
ggml_free(ctx_meta);
gguf_free(ctx_out);
fout.close();
exit(EXIT_FAILURE);
}
@@ -500,9 +495,11 @@ static void gguf_merge(const split_params & split_params) {
fprintf(stderr, "\033[3Ddone\n");
}
// placeholder for the meta data
{
std::ofstream fout;
if (!split_params.dry_run) {
fout.open(split_params.output.c_str(), std::ios::binary);
fout.exceptions(std::ofstream::failbit); // fail fast on write errors
// placeholder for the meta data
auto meta_size = gguf_get_meta_size(ctx_out);
::zeros(fout, meta_size);
}
@@ -518,7 +515,9 @@ static void gguf_merge(const split_params & split_params) {
ggml_free(ctx_metas[i]);
}
gguf_free(ctx_out);
fout.close();
if (!split_params.dry_run) {
fout.close();
}
exit(EXIT_FAILURE);
}
fprintf(stderr, "%s: writing tensors %s ...", __func__, split_path);
@@ -540,10 +539,11 @@ static void gguf_merge(const split_params & split_params) {
auto offset = gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, i_tensor);
f_input.seekg(offset);
f_input.read((char *)read_data.data(), n_bytes);
// write tensor data + padding
fout.write((const char *)read_data.data(), n_bytes);
zeros(fout, GGML_PAD(n_bytes, GGUF_DEFAULT_ALIGNMENT) - n_bytes);
if (!split_params.dry_run) {
// write tensor data + padding
fout.write((const char *)read_data.data(), n_bytes);
zeros(fout, GGML_PAD(n_bytes, GGUF_DEFAULT_ALIGNMENT) - n_bytes);
}
}
gguf_free(ctx_gguf);
@@ -552,16 +552,15 @@ static void gguf_merge(const split_params & split_params) {
fprintf(stderr, "\033[3Ddone\n");
}
{
if (!split_params.dry_run) {
// go back to beginning of file and write the updated metadata
fout.seekp(0);
std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
gguf_get_meta_data(ctx_out, data.data());
fout.write((const char *)data.data(), data.size());
fout.close();
gguf_free(ctx_out);
}
gguf_free(ctx_out);
fprintf(stderr, "%s: %s merged from %d split with %d tensors.\n",
__func__, split_params.output.c_str(), n_split, total_tensors);

View File

@@ -45,7 +45,7 @@ static std::vector<std::vector<float>> encode(llama_context * ctx, const std::ve
}
// clear previous kv_cache values (irrelevant for embeddings)
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
llama_set_embeddings(ctx, true);
llama_set_causal_attn(ctx, false);
@@ -102,7 +102,7 @@ static std::string generate(llama_context * ctx, llama_sampler * smpl, const std
llama_token eos_token = llama_vocab_eos(vocab);
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
llama_set_embeddings(ctx, false);
llama_set_causal_attn(ctx, true);
@@ -168,7 +168,7 @@ int main(int argc, char * argv[]) {
llama_backend_init();
llama_model * model = llama_model_load_from_file(params.model.c_str(), mparams);
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), mparams);
// create generation context
llama_context * ctx = llama_init_from_model(model, cparams);

View File

@@ -495,7 +495,7 @@ static bool compute_imatrix(llama_context * ctx, const common_params & params) {
const auto t_start = std::chrono::high_resolution_clock::now();
// clear the KV cache
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
llama_batch batch = llama_batch_init(n_batch, 0, 1);

View File

@@ -332,8 +332,8 @@ int main(int argc, char ** argv) {
LOG_DBG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
n_past, n_left, n_ctx, params.n_keep, n_discard);
llama_kv_cache_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1);
llama_kv_cache_seq_add(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard);
llama_kv_self_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1);
llama_kv_self_seq_add(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard);
n_past -= n_discard;

View File

@@ -1578,7 +1578,7 @@ int main(int argc, char ** argv) {
test t(inst, lmodel, ctx);
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
// cool off before the test
if (params.delay) {
@@ -1618,7 +1618,7 @@ int main(int argc, char ** argv) {
}
for (int i = 0; i < params.reps; i++) {
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
uint64_t t_start = get_time_ns();

View File

@@ -18,6 +18,7 @@ android {
}
externalNativeBuild {
cmake {
arguments += "-DLLAMA_CURL=OFF"
arguments += "-DLLAMA_BUILD_COMMON=ON"
arguments += "-DGGML_LLAMAFILE=OFF"
arguments += "-DCMAKE_BUILD_TYPE=Release"

View File

@@ -194,7 +194,7 @@ Java_android_llama_cpp_LLamaAndroid_bench_1model(
}
batch->logits[batch->n_tokens - 1] = true;
llama_kv_cache_clear(context);
llama_kv_self_clear(context);
const auto t_pp_start = ggml_time_us();
if (llama_decode(context, *batch) != 0) {
@@ -206,7 +206,7 @@ Java_android_llama_cpp_LLamaAndroid_bench_1model(
LOGi("Benchmark text generation (tg)");
llama_kv_cache_clear(context);
llama_kv_self_clear(context);
const auto t_tg_start = ggml_time_us();
for (i = 0; i < tg; i++) {
@@ -223,7 +223,7 @@ Java_android_llama_cpp_LLamaAndroid_bench_1model(
const auto t_tg_end = ggml_time_us();
llama_kv_cache_clear(context);
llama_kv_self_clear(context);
const auto t_pp = double(t_pp_end - t_pp_start) / 1000000.0;
const auto t_tg = double(t_tg_end - t_tg_start) / 1000000.0;
@@ -448,5 +448,5 @@ Java_android_llama_cpp_LLamaAndroid_completion_1loop(
extern "C"
JNIEXPORT void JNICALL
Java_android_llama_cpp_LLamaAndroid_kv_1cache_1clear(JNIEnv *, jobject, jlong context) {
llama_kv_cache_clear(reinterpret_cast<llama_context *>(context));
llama_kv_self_clear(reinterpret_cast<llama_context *>(context));
}

View File

@@ -16,7 +16,7 @@ Open `llama.swiftui.xcodeproj` project in Xcode and you should be able to build
a simulator or a real device.
To use the framework with a different project, the XCFramework can be added to the project by
adding `build-ios/llama.xcframework` by dragging and dropping it into the project navigator, or
adding `build-apple/llama.xcframework` by dragging and dropping it into the project navigator, or
by manually selecting the framework in the "Frameworks, Libraries, and Embedded Content" section
of the project settings.

View File

@@ -210,7 +210,7 @@ actor LlamaContext {
}
batch.logits[Int(batch.n_tokens) - 1] = 1 // true
llama_kv_cache_clear(context)
llama_kv_self_clear(context)
let t_pp_start = DispatchTime.now().uptimeNanoseconds / 1000;
@@ -223,7 +223,7 @@ actor LlamaContext {
// bench text generation
llama_kv_cache_clear(context)
llama_kv_self_clear(context)
let t_tg_start = DispatchTime.now().uptimeNanoseconds / 1000;
@@ -242,7 +242,7 @@ actor LlamaContext {
let t_tg_end = DispatchTime.now().uptimeNanoseconds / 1000;
llama_kv_cache_clear(context)
llama_kv_self_clear(context)
let t_pp = Double(t_pp_end - t_pp_start) / 1000000.0
let t_tg = Double(t_tg_end - t_tg_start) / 1000000.0
@@ -292,7 +292,7 @@ actor LlamaContext {
func clear() {
tokens_list.removeAll()
temporary_invalid_cchars.removeAll()
llama_kv_cache_clear(context)
llama_kv_self_clear(context)
}
private func tokenize(text: String, add_bos: Bool) -> [llama_token] {

View File

@@ -1,3 +1,5 @@
# llava (legacy)
add_library(llava OBJECT
llava.cpp
llava.h
@@ -22,12 +24,41 @@ if (BUILD_SHARED_LIBS)
install(TARGETS llava_shared LIBRARY)
endif()
# mtmd
add_library(mtmd OBJECT
mtmd.cpp
mtmd.h
clip.cpp
clip.h
clip-impl.h
)
target_link_libraries(mtmd PRIVATE ggml llama ${CMAKE_THREAD_LIBS_INIT})
target_include_directories(mtmd PUBLIC .)
target_include_directories(mtmd PRIVATE ../..)
target_include_directories(mtmd PRIVATE ../../common) # for stb_image.h
target_compile_features(mtmd PRIVATE cxx_std_17)
add_library(mtmd_static STATIC $<TARGET_OBJECTS:mtmd>)
if (BUILD_SHARED_LIBS)
set_target_properties(mtmd PROPERTIES POSITION_INDEPENDENT_CODE ON)
target_compile_definitions(mtmd PRIVATE LLAMA_SHARED LLAMA_BUILD)
add_library(mtmd_shared SHARED $<TARGET_OBJECTS:mtmd>)
target_link_libraries(mtmd_shared PRIVATE ggml llama ${CMAKE_THREAD_LIBS_INIT})
install(TARGETS mtmd_shared LIBRARY)
endif()
if (NOT MSVC)
target_compile_options(llava PRIVATE -Wno-cast-qual) # stb_image.h
target_compile_options(mtmd PRIVATE -Wno-cast-qual) # stb_image.h
endif()
if(TARGET BUILD_INFO)
add_dependencies(llava BUILD_INFO)
add_dependencies(mtmd BUILD_INFO)
endif()
set(TARGET llama-llava-cli)
@@ -55,7 +86,7 @@ set(TARGET llama-gemma3-cli)
add_executable(${TARGET} gemma3-cli.cpp)
set_target_properties(${TARGET} PROPERTIES OUTPUT_NAME llama-gemma3-cli)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llava ${CMAKE_THREAD_LIBS_INIT})
target_link_libraries(${TARGET} PRIVATE common mtmd ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_17)
set(TARGET llama-llava-clip-quantize-cli)

View File

@@ -4,6 +4,26 @@
>
> This is very experimental, only used for demo purpose.
## Quick started
You can use pre-quantized model from [ggml-org](https://huggingface.co/ggml-org)'s Hugging Face account
```bash
# build
cmake -B build
cmake --build build --target llama-gemma3-cli
# alternatively, install from brew (MacOS)
brew install llama.cpp
# run it
llama-gemma3-cli -hf ggml-org/gemma-3-4b-it-GGUF
llama-gemma3-cli -hf ggml-org/gemma-3-12b-it-GGUF
llama-gemma3-cli -hf ggml-org/gemma-3-27b-it-GGUF
# note: 1B model does not support vision
```
## How to get mmproj.gguf?
```bash

344
examples/llava/clip-impl.h Normal file
View File

@@ -0,0 +1,344 @@
#include "ggml.h"
#include "gguf.h"
#include "clip.h"
#include "clip.h"
#include <climits>
#include <cstdarg>
#include <string>
#include <map>
#include <sstream>
#include <vector>
#include <memory>
// Internal header for clip.cpp
#define KEY_FTYPE "general.file_type"
#define KEY_NAME "general.name"
#define KEY_DESCRIPTION "general.description"
#define KEY_HAS_TEXT_ENC "clip.has_text_encoder"
#define KEY_HAS_VIS_ENC "clip.has_vision_encoder"
#define KEY_HAS_LLAVA_PROJ "clip.has_llava_projector"
#define KEY_HAS_MINICPMV_PROJ "clip.has_minicpmv_projector"
#define KEY_HAS_GLM_PROJ "clip.has_glm_projector"
#define KEY_MINICPMV_VERSION "clip.minicpmv_version"
#define KEY_HAS_QWEN2VL_MERGER "clip.has_qwen2vl_merger"
#define KEY_USE_GELU "clip.use_gelu"
#define KEY_USE_SILU "clip.use_silu"
#define KEY_N_EMBD "clip.%s.embedding_length"
#define KEY_N_FF "clip.%s.feed_forward_length"
#define KEY_N_BLOCK "clip.%s.block_count"
#define KEY_N_HEAD "clip.%s.attention.head_count"
#define KEY_LAYER_NORM_EPS "clip.%s.attention.layer_norm_epsilon"
#define KEY_PROJ_DIM "clip.%s.projection_dim"
#define KEY_TOKENS "tokenizer.ggml.tokens"
#define KEY_N_POSITIONS "clip.text.context_length"
#define KEY_IMAGE_SIZE "clip.vision.image_size"
#define KEY_PATCH_SIZE "clip.vision.patch_size"
#define KEY_IMAGE_MEAN "clip.vision.image_mean"
#define KEY_IMAGE_STD "clip.vision.image_std"
#define KEY_PROJ_TYPE "clip.projector_type"
#define KEY_FEATURE_LAYER "clip.vision.feature_layer"
#define KEY_MM_PATCH_MERGE_TYPE "clip.vision.mm_patch_merge_type"
#define KEY_IMAGE_GRID_PINPOINTS "clip.vision.image_grid_pinpoints"
#define KEY_IMAGE_CROP_RESOLUTION "clip.vision.image_crop_resolution"
//
// tensor name constants
//
#define TN_TOKEN_EMBD "%s.token_embd.weight"
#define TN_POS_EMBD "%s.position_embd.weight"
#define TN_CLASS_EMBD "v.class_embd"
#define TN_PATCH_EMBD "v.patch_embd.weight" // not rename tensor with ".0" postfix for backwrad compat
#define TN_PATCH_EMBD_1 "v.patch_embd.weight.1"
#define TN_PATCH_BIAS "v.patch_embd.bias"
#define TN_ATTN_K "%s.blk.%d.attn_k.%s"
#define TN_ATTN_Q "%s.blk.%d.attn_q.%s"
#define TN_ATTN_V "%s.blk.%d.attn_v.%s"
#define TN_ATTN_OUTPUT "%s.blk.%d.attn_out.%s"
#define TN_FFN_DOWN "%s.blk.%d.ffn_down.%s"
#define TN_FFN_UP "%s.blk.%d.ffn_up.%s"
#define TN_LN_1 "%s.blk.%d.ln1.%s"
#define TN_LN_2 "%s.blk.%d.ln2.%s"
#define TN_LN_PRE "%s.pre_ln.%s"
#define TN_LN_POST "%s.post_ln.%s"
#define TN_TEXT_PROJ "text_projection.weight"
#define TN_VIS_PROJ "visual_projection.weight"
#define TN_LLAVA_PROJ "mm.%d.%s"
#define TN_MVLM_PROJ_MLP "mm.model.mlp.%d.%s"
#define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s"
#define TN_MVLM_PROJ_PEG "mm.model.peg.%d.%s"
#define TN_IMAGE_NEWLINE "model.image_newline"
#define TN_MM_INP_PROJ "mm.input_projection.weight" // gemma3
#define TN_MM_SOFT_EMB_N "mm.soft_emb_norm.weight" // gemma3
// mimicpmv
#define TN_MINICPMV_POS_EMBD_K "resampler.pos_embed_k"
#define TN_MINICPMV_QUERY "resampler.query"
#define TN_MINICPMV_PROJ "resampler.proj.weight"
#define TN_MINICPMV_KV_PROJ "resampler.kv.weight"
#define TN_MINICPMV_ATTN "resampler.attn.%s.%s"
#define TN_MINICPMV_LN "resampler.ln_%s.%s"
#define TN_GLM_ADAPER_CONV "adapter.conv.%s"
#define TN_GLM_ADAPTER_LINEAR "adapter.linear.linear.%s"
#define TN_GLM_ADAPTER_NORM_1 "adapter.linear.norm1.%s"
#define TN_GLM_ADAPTER_D_H_2_4H "adapter.linear.dense_h_to_4h.%s"
#define TN_GLM_ADAPTER_GATE "adapter.linear.gate.%s"
#define TN_GLM_ADAPTER_D_4H_2_H "adapter.linear.dense_4h_to_h.%s"
#define TN_GLM_BOI_W "adapter.boi"
#define TN_GLM_EOI_W "adapter.eoi"
enum projector_type {
PROJECTOR_TYPE_MLP,
PROJECTOR_TYPE_MLP_NORM,
PROJECTOR_TYPE_LDP,
PROJECTOR_TYPE_LDPV2,
PROJECTOR_TYPE_RESAMPLER,
PROJECTOR_TYPE_GLM_EDGE,
PROJECTOR_TYPE_MERGER,
PROJECTOR_TYPE_GEMMA3,
PROJECTOR_TYPE_UNKNOWN,
};
static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
{ PROJECTOR_TYPE_MLP, "mlp" },
{ PROJECTOR_TYPE_LDP, "ldp" },
{ PROJECTOR_TYPE_LDPV2, "ldpv2"},
{ PROJECTOR_TYPE_RESAMPLER, "resampler"},
{ PROJECTOR_TYPE_GLM_EDGE, "adapter"},
{ PROJECTOR_TYPE_MERGER, "qwen2vl_merger"},
{ PROJECTOR_TYPE_GEMMA3, "gemma3"},
};
static projector_type clip_projector_type_from_string(const std::string & str) {
for (const auto & pair : PROJECTOR_TYPE_NAMES) {
if (pair.second == str) {
return pair.first;
}
}
return PROJECTOR_TYPE_UNKNOWN;
}
// RGB uint8 image
struct clip_image_u8 {
int nx;
int ny;
std::vector<uint8_t> buf;
};
// RGB float32 image (NHWC)
// Memory layout: RGBRGBRGB...
struct clip_image_f32 {
int nx;
int ny;
std::vector<float> buf;
};
//
// logging
//
static void clip_log_callback_default(enum ggml_log_level level, const char * text, void * user_data) {
(void) level;
(void) user_data;
fputs(text, stderr);
fflush(stderr);
}
struct clip_logger_state {
ggml_log_level verbosity_thold;
ggml_log_callback log_callback;
void * log_callback_user_data;
};
extern struct clip_logger_state g_logger_state;
static void clip_log_internal_v(enum ggml_log_level level, const char * format, va_list args) {
if (format == NULL) {
return;
}
va_list args_copy;
va_copy(args_copy, args);
char buffer[128];
int len = vsnprintf(buffer, 128, format, args);
if (len < 128) {
g_logger_state.log_callback(level, buffer, g_logger_state.log_callback_user_data);
} else {
char * buffer2 = (char *) calloc(len + 1, sizeof(char));
vsnprintf(buffer2, len + 1, format, args_copy);
buffer2[len] = 0;
g_logger_state.log_callback(level, buffer2, g_logger_state.log_callback_user_data);
free(buffer2);
}
va_end(args_copy);
}
static void clip_log_internal(enum ggml_log_level level, const char * format, ...) {
va_list args;
va_start(args, format);
clip_log_internal_v(level, format, args);
va_end(args);
}
#define LOG_TMPL(level, ...) \
do { \
if ((level) >= g_logger_state.verbosity_thold) { \
clip_log_internal((level), __VA_ARGS__); \
} \
} while (0)
#define LOG_INF(...) LOG_TMPL(GGML_LOG_LEVEL_INFO, __VA_ARGS__)
#define LOG_WRN(...) LOG_TMPL(GGML_LOG_LEVEL_WARN, __VA_ARGS__)
#define LOG_ERR(...) LOG_TMPL(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
#define LOG_DBG(...) LOG_TMPL(GGML_LOG_LEVEL_DEBUG, __VA_ARGS__)
#define LOG_CNT(...) LOG_TMPL(GGML_LOG_LEVEL_CONT, __VA_ARGS__)
//
// cpp wrappers
//
// wrapper for clip_image_size
struct clip_image_size_deleter {
void operator()(clip_image_size * val) { clip_image_size_free(val); }
};
typedef std::unique_ptr<clip_image_size, clip_image_size_deleter> clip_image_size_ptr;
// wrapper for clip_image_u8
struct clip_image_u8_deleter {
void operator()(clip_image_u8 * val) { clip_image_u8_free(val); }
};
typedef std::unique_ptr<clip_image_u8, clip_image_u8_deleter> clip_image_u8_ptr;
// wrapper for clip_image_f32
struct clip_image_f32_deleter {
void operator()(clip_image_f32 * val) { clip_image_f32_free(val); }
};
typedef std::unique_ptr<clip_image_f32, clip_image_f32_deleter> clip_image_f32_ptr;
struct clip_image_u8_batch {
std::vector<clip_image_u8_ptr> entries;
};
struct clip_image_f32_batch {
std::vector<clip_image_f32_ptr> entries;
};
//
// common utils
//
static std::string string_format(const char * fmt, ...) {
va_list ap;
va_list ap2;
va_start(ap, fmt);
va_copy(ap2, ap);
int size = vsnprintf(NULL, 0, fmt, ap);
GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
std::vector<char> buf(size + 1);
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
GGML_ASSERT(size2 == size);
va_end(ap2);
va_end(ap);
return std::string(buf.data(), buf.size());
}
static void string_replace_all(std::string & s, const std::string & search, const std::string & replace) {
if (search.empty()) {
return;
}
std::string builder;
builder.reserve(s.length());
size_t pos = 0;
size_t last_pos = 0;
while ((pos = s.find(search, last_pos)) != std::string::npos) {
builder.append(s, last_pos, pos - last_pos);
builder.append(replace);
last_pos = pos + search.length();
}
builder.append(s, last_pos, std::string::npos);
s = std::move(builder);
}
// split string by a `std::string delim` instead of `char delim`
static std::vector<std::string> string_split_str(std::string s, const std::string & delimiter) {
std::vector<std::string> tokens;
size_t pos = 0;
std::string token;
while ((pos = s.find(delimiter)) != std::string::npos) {
token = s.substr(0, pos);
tokens.push_back(token);
s.erase(0, pos + delimiter.length());
}
tokens.push_back(s);
return tokens;
}
//
// gguf utils
//
static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
switch (type) {
case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
default: return string_format("unknown type %d", type);
}
}
static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
switch (type) {
case GGUF_TYPE_STRING:
return gguf_get_val_str(ctx_gguf, i);
case GGUF_TYPE_ARRAY:
{
const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
int arr_n = gguf_get_arr_n(ctx_gguf, i);
const void * data = arr_type == GGUF_TYPE_STRING ? nullptr : gguf_get_arr_data(ctx_gguf, i);
std::stringstream ss;
ss << "[";
for (int j = 0; j < arr_n; j++) {
if (arr_type == GGUF_TYPE_STRING) {
std::string val = gguf_get_arr_str(ctx_gguf, i, j);
// escape quotes
string_replace_all(val, "\\", "\\\\");
string_replace_all(val, "\"", "\\\"");
ss << '"' << val << '"';
} else if (arr_type == GGUF_TYPE_ARRAY) {
ss << "???";
} else {
ss << gguf_data_to_str(arr_type, data, j);
}
if (j < arr_n - 1) {
ss << ", ";
}
}
ss << "]";
return ss.str();
}
default:
return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
}
}
//
// API used internally with mtmd
//
projector_type clip_get_projector_type(const struct clip_ctx * ctx);

File diff suppressed because it is too large Load Diff

View File

@@ -1,6 +1,7 @@
#ifndef CLIP_H
#define CLIP_H
#include "ggml.h"
#include <stddef.h>
#include <stdint.h>
@@ -29,19 +30,12 @@ struct clip_image_size {
int height;
};
struct clip_image_u8_batch {
struct clip_image_u8 * data;
size_t size;
};
struct clip_image_f32_batch {
struct clip_image_f32 * data;
size_t size;
};
struct clip_image_u8_batch;
struct clip_image_f32_batch;
struct clip_context_params {
bool use_gpu;
int verbosity;
ggml_log_level verbosity;
};
// deprecated, use clip_init
@@ -54,9 +48,9 @@ CLIP_API void clip_free(struct clip_ctx * ctx);
CLIP_API size_t clip_embd_nbytes(const struct clip_ctx * ctx);
CLIP_API size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_h, int img_w);
CLIP_API int32_t clip_image_size (const struct clip_ctx * ctx);
CLIP_API int32_t clip_patch_size (const struct clip_ctx * ctx);
CLIP_API int32_t clip_hidden_size(const struct clip_ctx * ctx);
CLIP_API int32_t clip_get_image_size (const struct clip_ctx * ctx);
CLIP_API int32_t clip_get_patch_size (const struct clip_ctx * ctx);
CLIP_API int32_t clip_get_hidden_size(const struct clip_ctx * ctx);
// TODO: should be enum, not string
CLIP_API const char * clip_patch_merge_type(const struct clip_ctx * ctx);
@@ -72,15 +66,26 @@ CLIP_API int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip);
CLIP_API void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size);
CLIP_API struct clip_image_size * clip_get_load_image_size(struct clip_ctx * ctx_clip);
CLIP_API struct clip_image_size * clip_image_size_init();
CLIP_API struct clip_image_u8 * clip_image_u8_init ();
CLIP_API struct clip_image_f32 * clip_image_f32_init();
CLIP_API struct clip_image_size * clip_image_size_init();
CLIP_API struct clip_image_u8 * clip_image_u8_init ();
CLIP_API struct clip_image_f32 * clip_image_f32_init();
CLIP_API struct clip_image_f32_batch * clip_image_f32_batch_init(); // only used by libllava
// nx, ny are the output image dimensions
CLIP_API unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny);
CLIP_API void clip_image_size_free (struct clip_image_size * img_size);
CLIP_API void clip_image_u8_free (struct clip_image_u8 * img);
CLIP_API void clip_image_f32_free(struct clip_image_f32 * img);
CLIP_API void clip_image_u8_batch_free (struct clip_image_u8_batch * batch);
CLIP_API void clip_image_f32_batch_free(struct clip_image_f32_batch * batch);
// use for accessing underlay data of clip_image_f32_batch
CLIP_API size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch); // equivalent to batch->size()
CLIP_API size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx); // equivalent to batch[idx]->nx
CLIP_API size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx); // equivalent to batch[idx]->ny
CLIP_API clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx); // equivalent to batch[idx]->data
/**
* Build image from pixels decoded by other libraries instead of stb_image.h for better performance.
* The memory layout is RGBRGBRGB..., input buffer length must be 3*nx*ny bytes
@@ -105,6 +110,8 @@ CLIP_API bool clip_model_quantize(const char * fname_inp, const char * fname_out
CLIP_API int clip_is_minicpmv(const struct clip_ctx * ctx);
CLIP_API bool clip_is_glm(const struct clip_ctx * ctx);
CLIP_API bool clip_is_qwen2vl(const struct clip_ctx * ctx);
CLIP_API bool clip_is_llava(const struct clip_ctx * ctx);
CLIP_API bool clip_is_gemma3(const struct clip_ctx * ctx);
CLIP_API int get_deepest_feature_layer(const struct clip_ctx * ctx);

View File

@@ -2,15 +2,15 @@
#include "log.h"
#include "common.h"
#include "sampling.h"
#include "clip.h"
#include "stb_image.h"
#include "llama.h"
#include "ggml.h"
#include "console.h"
#include "chat.h"
#include "mtmd.h"
#include <vector>
#include <limits.h>
#include <inttypes.h>
#include <cinttypes>
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
#include <signal.h>
@@ -57,13 +57,18 @@ static void sigint_handler(int signo) {
#endif
struct gemma3_context {
struct clip_ctx * ctx_clip = NULL;
common_init_result llama_init;
mtmd_context_ptr ctx_vision;
common_init_result llama_init;
llama_model * model;
llama_context * lctx;
const llama_vocab * vocab;
llama_batch batch;
int n_batch;
// note: we know that gemma3 template is "linear", meaning each turn is completely separated to another
// so here we don't need to keep track of chat history
common_chat_templates_ptr tmpls;
int n_threads = 1;
llama_pos n_past = 0;
@@ -74,16 +79,23 @@ struct gemma3_context {
vocab = llama_model_get_vocab(model);
n_threads = params.cpuparams.n_threads;
batch = llama_batch_init(params.n_batch, 0, 1);
init_clip_model(params);
n_batch = params.n_batch;
tmpls = common_chat_templates_init(model, params.chat_template);
init_vision_context(params);
}
void init_clip_model(common_params & params) {
const char * clip_path = params.mmproj.c_str();
ctx_clip = clip_model_load(clip_path, params.verbosity > 1);
}
~gemma3_context() {
clip_free(ctx_clip);
void init_vision_context(common_params & params) {
const char * clip_path = params.mmproj.path.c_str();
ctx_vision.reset(mtmd_init_from_file(clip_path, model, mtmd_context_params{
/* use_gpu */ true,
/* timings */ true,
/* n_threads */ params.cpuparams.n_threads,
/* verbosity */ GGML_LOG_LEVEL_INFO,
}));
if (!ctx_vision.get()) {
LOG_ERR("Failed to load vision model from %s\n", clip_path);
exit(1);
}
}
};
@@ -120,77 +132,6 @@ struct decode_embd_batch {
}
};
static int eval_text(gemma3_context & ctx, std::string input, bool logits_last = false) {
llama_tokens tokens = common_tokenize(ctx.lctx, input, false, true);
common_batch_clear(ctx.batch);
for (llama_token & t : tokens) {
common_batch_add(ctx.batch, t, ctx.n_past++, {0}, false);
}
if (logits_last) {
ctx.batch.logits[ctx.batch.n_tokens - 1] = true;
}
// LOG("eval_text (n_tokens = %d): %s\n", (int)tokens.size(), input.c_str());
if (llama_decode(ctx.lctx, ctx.batch)) {
LOG_ERR("Failed to decode text\n");
return 1;
}
return 0;
}
static int eval_image(gemma3_context & ctx, std::string & fname) {
std::vector<float> image_embd_v;
int n_embd = llama_model_n_embd(ctx.model);
int n_tokens = 256;
image_embd_v.resize(n_tokens * n_embd);
bool ok;
struct clip_image_u8 * img_u8 = clip_image_u8_init();
ok = clip_image_load_from_file(fname.c_str(), img_u8);
if (!ok) {
LOG_ERR("Unable to load image %s\n", fname.c_str());
clip_image_u8_free(img_u8);
return 2; // non-fatal error
}
clip_image_f32_batch batch_f32;
ok = clip_image_preprocess(ctx.ctx_clip, img_u8, &batch_f32);
if (!ok) {
LOG_ERR("Unable to preprocess image\n");
clip_image_f32_batch_free(&batch_f32);
clip_image_u8_free(img_u8);
return 1;
}
int64_t t0 = ggml_time_ms();
LOG("Encoding image %s\n", fname.c_str());
ok = clip_image_batch_encode(ctx.ctx_clip, ctx.n_threads, &batch_f32, image_embd_v.data());
if (!ok) {
LOG_ERR("Unable to encode image\n");
clip_image_f32_batch_free(&batch_f32);
clip_image_u8_free(img_u8);
return 1;
}
LOG("Image encoded in %" PRId64 " ms\n", ggml_time_ms() - t0);
clip_image_f32_batch_free(&batch_f32);
clip_image_u8_free(img_u8);
// decode image embeddings
int64_t t1 = ggml_time_ms();
eval_text(ctx, "<start_of_image>");
llama_set_causal_attn(ctx.lctx, false);
decode_embd_batch batch_img(image_embd_v.data(), n_tokens, ctx.n_past, 0);
if (llama_decode(ctx.lctx, batch_img.batch)) {
LOG_ERR("failed to decode image\n");
return 1;
}
ctx.n_past += n_tokens;
llama_set_causal_attn(ctx.lctx, true);
eval_text(ctx, "<end_of_image>");
LOG("Image decoded in %" PRId64 " ms\n", ggml_time_ms() - t1);
return 0;
}
static int generate_response(gemma3_context & ctx, common_sampler * smpl, int n_predict) {
for (int i = 0; i < n_predict; i++) {
if (i > n_predict || !g_is_generating) {
@@ -220,6 +161,45 @@ static int generate_response(gemma3_context & ctx, common_sampler * smpl, int n_
return 0;
}
static int eval_message(gemma3_context & ctx, common_chat_msg & msg, std::vector<std::string> & images_fname, bool add_bos = false) {
std::vector<mtmd_bitmap> bitmaps;
common_chat_templates_inputs tmpl_inputs;
tmpl_inputs.messages = {msg};
tmpl_inputs.add_generation_prompt = true;
tmpl_inputs.use_jinja = false; // jinja is buggy here
auto formatted_chat = common_chat_templates_apply(ctx.tmpls.get(), tmpl_inputs);
LOG_DBG("formatted_chat.prompt: %s\n", formatted_chat.prompt.c_str());
for (auto & fname : images_fname) {
mtmd_bitmap bitmap;
if (mtmd_helper_bitmap_init_from_file(fname.c_str(), bitmap)) {
LOG_ERR("Unable to load image %s\n", fname.c_str());
return 2; // image not found
}
bitmaps.push_back(std::move(bitmap));
}
mtmd_input_text text;
text.text = formatted_chat.prompt;
text.add_special = add_bos;
text.parse_special = true;
mtmd_input_chunks_ptr chunks(mtmd_tokenize(ctx.ctx_vision.get(), text, bitmaps));
if (chunks == nullptr) {
LOG_ERR("Unable to tokenize prompt\n");
return 1;
}
if (mtmd_helper_eval(ctx.ctx_vision.get(), ctx.lctx, chunks.get(), ctx.n_past, 0, ctx.n_batch)) {
LOG_ERR("Unable to eval prompt\n");
return 1;
}
ctx.n_past += mtmd_helper_get_n_tokens(chunks.get());
return 0;
}
int main(int argc, char ** argv) {
ggml_time_init();
@@ -232,13 +212,13 @@ int main(int argc, char ** argv) {
common_init();
if (params.mmproj.empty()) {
if (params.mmproj.path.empty()) {
show_additional_info(argc, argv);
return 1;
}
gemma3_context ctx(params);
printf("%s: %s\n", __func__, params.model.c_str());
printf("%s: %s\n", __func__, params.model.path.c_str());
bool is_single_turn = !params.prompt.empty() && !params.image.empty();
@@ -261,21 +241,15 @@ int main(int argc, char ** argv) {
#endif
}
if (eval_text(ctx, "<bos>")) {
return 1;
}
if (is_single_turn) {
g_is_generating = true;
if (eval_text(ctx, "<start_of_turn>user\n")) {
return 1;
if (params.prompt.find("<__image__>") == std::string::npos) {
params.prompt += " <__image__>";
}
for (auto & fname : params.image) {
if (eval_image(ctx, fname)) {
return 1;
}
}
if (eval_text(ctx, params.prompt + "<end_of_turn><start_of_turn>model\n", true)) {
common_chat_msg msg;
msg.role = "user";
msg.content = params.prompt;
if (eval_message(ctx, msg, params.image, true)) {
return 1;
}
if (generate_response(ctx, smpl, n_predict)) {
@@ -289,9 +263,9 @@ int main(int argc, char ** argv) {
LOG("\n /quit or /exit exit the program");
LOG("\n");
if (eval_text(ctx, "<start_of_turn>user\n")) {
return 1;
}
bool is_first_msg = true;
std::vector<std::string> images_fname;
std::string content;
while (true) {
g_is_generating = false;
@@ -309,33 +283,40 @@ int main(int argc, char ** argv) {
}
if (line == "/clear") {
ctx.n_past = 0;
llama_kv_cache_seq_rm(ctx.lctx, 0, 1, -1); // keep BOS
llama_kv_self_seq_rm(ctx.lctx, 0, 1, -1); // keep BOS
LOG("Chat history cleared\n\n");
continue;
}
g_is_generating = true;
if (line.find("/image") == 0) {
std::string image = line.substr(7);
int res = eval_image(ctx, image);
if (res == 2) {
continue; // image not found
}
if (res) {
return 1;
}
images_fname.push_back(string_strip(image));
content += "<__image__>";
continue;
} else {
content += line;
}
common_chat_msg msg;
msg.role = "user";
msg.content = content;
int ret = eval_message(ctx, msg, images_fname, is_first_msg);
if (ret == 2) {
// non-fatal error
images_fname.clear();
content.clear();
continue;
}
if (eval_text(ctx, line + "<end_of_turn><start_of_turn>model\n", true)) {
if (ret) {
return 1;
}
if (generate_response(ctx, smpl, n_predict)) {
return 1;
}
if (eval_text(ctx, "<end_of_turn><start_of_turn>user\n")) {
return 1;
}
images_fname.clear();
content.clear();
is_first_msg = false;
}
}
llama_perf_context_print(ctx.lctx);
return 0;
}

View File

@@ -225,7 +225,7 @@ static struct llama_model * llava_init(common_params * params) {
llama_model_params model_params = common_model_params_to_llama(*params);
llama_model * model = llama_model_load_from_file(params->model.c_str(), model_params);
llama_model * model = llama_model_load_from_file(params->model.path.c_str(), model_params);
if (model == NULL) {
LOG_ERR("%s: unable to load model\n" , __func__);
return NULL;
@@ -234,14 +234,14 @@ static struct llama_model * llava_init(common_params * params) {
}
static struct llava_context * llava_init_context(common_params * params, llama_model * model) {
const char * clip_path = params->mmproj.c_str();
const char * clip_path = params->mmproj.path.c_str();
auto prompt = params->prompt;
if (prompt.empty()) {
prompt = "describe the image in detail.";
}
auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
auto ctx_clip = clip_model_load(clip_path, GGML_LOG_LEVEL_INFO);
llama_context_params ctx_params = common_context_params_to_llama(*params);
ctx_params.n_ctx = params->n_ctx < 2048 ? 2048 : params->n_ctx; // we need a longer context size to process image embeddings
@@ -283,7 +283,7 @@ int main(int argc, char ** argv) {
common_init();
if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
if (params.mmproj.path.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
print_usage(argc, argv);
return 1;
}

View File

@@ -10,6 +10,7 @@
#include <cstring>
#include <limits>
#include <vector>
#include <memory>
#if defined(LLAVA_LOG_OFF)
# define LOG_INF(...)
@@ -45,6 +46,17 @@ struct clip_image_grid_shape {
int second;
};
// convenience cpp wrapper
struct clip_image_f32_batch_deleter {
void operator()(clip_image_f32_batch * val) { clip_image_f32_batch_free(val); }
};
typedef std::unique_ptr<clip_image_f32_batch, clip_image_f32_batch_deleter> clip_image_f32_batch_ptr;
struct clip_image_size_deleter {
void operator()(clip_image_f32_batch * val) { clip_image_f32_batch_free(val); }
};
typedef std::unique_ptr<clip_image_size, clip_image_size_deleter> clip_image_size_ptr;
/**
* Selects the best resolution from a list of possible resolutions based on the original size.
*
@@ -105,8 +117,8 @@ static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *>
struct ggml_context * ctx;
} model;
const int32_t image_size = clip_image_size(ctx_clip);
const int32_t patch_size = clip_patch_size(ctx_clip);
const int32_t image_size = clip_get_image_size(ctx_clip);
const int32_t patch_size = clip_get_patch_size(ctx_clip);
int32_t num_patches_per_side = image_size / patch_size; // 336 / 14 = 24 - used for embedding-patching boxes (24*24 = 576 patches)
@@ -246,12 +258,9 @@ static clip_image_f32 * reshape_by_patch(clip_image_f32 * image, int patch_size)
static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_pos) {
// std::vector<clip_image_f32*> img_res_v; // format VectN x H x W x RGB (N x 336 x 336 x 3), so interleaved RGB - different to the python implementation which is N x 3 x 336 x 336
clip_image_f32_batch img_res_v;
img_res_v.size = 0;
img_res_v.data = nullptr;
if (!clip_image_preprocess(ctx_clip, img, &img_res_v)) {
clip_image_f32_batch_ptr img_res_v(clip_image_f32_batch_init());
if (!clip_image_preprocess(ctx_clip, img, img_res_v.get())) {
LOG_ERR("%s: unable to preprocess image\n", __func__);
delete[] img_res_v.data;
return false;
}
@@ -259,66 +268,72 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
const char * mm_patch_merge_type = clip_patch_merge_type(ctx_clip);
const size_t n_imgs = clip_image_f32_batch_n_images(img_res_v.get());
if (clip_is_minicpmv(ctx_clip) || clip_is_qwen2vl(ctx_clip)) {
std::vector<float *> image_embd_v;
image_embd_v.resize(img_res_v.size);
struct clip_image_size * load_image_size = clip_image_size_init();
image_embd_v.resize(n_imgs);
clip_image_size load_image_size;
for (size_t i = 0; i < img_res_v.size; i++) {
for (size_t i = 0; i < n_imgs; i++) {
const int64_t t_img_enc_step_start_us = ggml_time_us();
image_embd_v[i] = (float *)malloc(clip_embd_nbytes_by_img(ctx_clip, img_res_v.data[i].nx, img_res_v.data[i].ny));
int patch_size=14;
load_image_size->width = img_res_v.data[i].nx;
load_image_size->height = img_res_v.data[i].ny;
clip_add_load_image_size(ctx_clip, load_image_size);
int nx = clip_image_f32_batch_nx(img_res_v.get(), i);
int ny = clip_image_f32_batch_ny(img_res_v.get(), i);
image_embd_v[i] = (float *)malloc(clip_embd_nbytes_by_img(ctx_clip, nx, ny));
int patch_size = 14;
load_image_size.width = nx;
load_image_size.height = ny;
clip_add_load_image_size(ctx_clip, &load_image_size);
bool encoded = false;
clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), i);
if (clip_is_qwen2vl(ctx_clip)) {
encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]);
encoded = clip_image_encode(ctx_clip, n_threads, img_res, image_embd_v[i]);
}
else {
encoded = clip_image_encode(ctx_clip, n_threads, reshape_by_patch(&img_res_v.data[i], patch_size), image_embd_v[i]);
encoded = clip_image_encode(ctx_clip, n_threads, reshape_by_patch(img_res, patch_size), image_embd_v[i]);
}
if (!encoded) {
LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) n_imgs);
return false;
}
const int64_t t_img_enc_steop_batch_us = ggml_time_us();
LOG_INF("%s: step %d of %d encoded in %8.2f ms\n", __func__, (int)i+1, (int)img_res_v.size, (t_img_enc_steop_batch_us - t_img_enc_step_start_us) / 1000.0);
LOG_INF("%s: step %d of %d encoded in %8.2f ms\n", __func__, (int)i+1, (int)n_imgs, (t_img_enc_steop_batch_us - t_img_enc_step_start_us) / 1000.0);
}
const int64_t t_img_enc_batch_us = ggml_time_us();
LOG_INF("%s: all %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
LOG_INF("%s: all %d segments encoded in %8.2f ms\n", __func__, (int)n_imgs, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
int n_img_pos_out = 0;
for (size_t i = 0; i < image_embd_v.size(); i++) {
int nx = clip_image_f32_batch_nx(img_res_v.get(), i);
int ny = clip_image_f32_batch_ny(img_res_v.get(), i);
clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), i);
std::memcpy(
image_embd + n_img_pos_out * clip_n_mmproj_embd(ctx_clip),
image_embd_v[i],
clip_embd_nbytes_by_img(ctx_clip, img_res_v.data[i].nx, img_res_v.data[i].ny));
n_img_pos_out += clip_n_patches_by_img(ctx_clip, &img_res_v.data[i]);
clip_embd_nbytes_by_img(ctx_clip, nx, ny));
n_img_pos_out += clip_n_patches_by_img(ctx_clip, img_res);
}
*n_img_pos = n_img_pos_out;
for (size_t i = 0; i < image_embd_v.size(); i++) {
free(image_embd_v[i]);
}
image_embd_v.clear();
load_image_size->width = img->nx;
load_image_size->height = img->ny;
clip_add_load_image_size(ctx_clip, load_image_size);
LOG_INF("%s: load_image_size %d %d\n", __func__, load_image_size->width, load_image_size->height);
delete[] img_res_v.data;
img_res_v.size = 0;
img_res_v.data = nullptr;
load_image_size.width = img->nx;
load_image_size.height = img->ny;
clip_add_load_image_size(ctx_clip, &load_image_size);
LOG_INF("%s: load_image_size %d %d\n", __func__, load_image_size.width, load_image_size.height);
}
else if (clip_is_glm(ctx_clip)){
struct clip_image_size * load_image_size = clip_image_size_init();
load_image_size->width = img_res_v.data[0].nx;
load_image_size->height = img_res_v.data[0].ny;
load_image_size->width = clip_image_f32_batch_nx(img_res_v.get(), 0);
load_image_size->height = clip_image_f32_batch_ny(img_res_v.get(), 0);
clip_add_load_image_size(ctx_clip, load_image_size);
bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd);
int pos = int(load_image_size->width/clip_patch_size(ctx_clip)/2);
clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), 0);
bool encoded = clip_image_encode(ctx_clip, n_threads, img_res, image_embd);
int pos = int(load_image_size->width/clip_get_patch_size(ctx_clip)/2);
*n_img_pos = (pos * pos + 2);
if (!encoded){
LOG_ERR("Unable to encode image \n");
@@ -328,8 +343,8 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
else if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) {
// flat / default llava-1.5 type embedding
*n_img_pos = clip_n_patches(ctx_clip);
bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd); // image_embd shape is 576 x 4096
delete[] img_res_v.data;
clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), 0);
bool encoded = clip_image_encode(ctx_clip, n_threads, img_res, image_embd); // image_embd shape is 576 x 4096
if (!encoded) {
LOG_ERR("Unable to encode image\n");
@@ -340,17 +355,18 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
// spatial_unpad llava-1.6 type embedding
// TODO: CLIP needs batching support - in HF the llm projection is separate after encoding, which might be a solution to quickly get batching working
std::vector<float *> image_embd_v;
image_embd_v.resize(img_res_v.size);
for (size_t i = 0; i < img_res_v.size; i++) {
image_embd_v.resize(n_imgs);
for (size_t i = 0; i < n_imgs; i++) {
clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), i);
image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip)); // 576 patches * 4096 embeddings * 4 bytes = 9437184
const bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]); // image data is in 3x336x336 format and will be converted to 336x336x3 inside
const bool encoded = clip_image_encode(ctx_clip, n_threads, img_res, image_embd_v[i]); // image data is in 3x336x336 format and will be converted to 336x336x3 inside
if (!encoded) {
LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) n_imgs);
return false;
}
}
const int64_t t_img_enc_batch_us = ggml_time_us();
LOG_INF("%s: %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
LOG_INF("%s: %d segments encoded in %8.2f ms\n", __func__, (int)n_imgs, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
const int32_t * image_grid = clip_image_grid(ctx_clip);
const size_t num_gridpoints = get_clip_image_grid_size(ctx_clip);
@@ -360,12 +376,7 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
grid_pinpoints.push_back({image_grid[i], image_grid[i+1]});
}
// free all img_res_v - not needed anymore
delete[] img_res_v.data;
img_res_v.size = 0;
img_res_v.data = nullptr;
const int32_t image_size = clip_image_size(ctx_clip);
const int32_t image_size = clip_get_image_size(ctx_clip);
struct clip_image_grid_shape grid_shape = get_anyres_image_grid_shape({img->nx,img->ny}, grid_pinpoints, image_size);

View File

@@ -31,7 +31,7 @@ static struct llama_model * llava_init(common_params * params) {
llama_model_params model_params = common_model_params_to_llama(*params);
llama_model * model = llama_model_load_from_file(params->model.c_str(), model_params);
llama_model * model = llama_model_load_from_file(params->model.path.c_str(), model_params);
if (model == NULL) {
LOG_ERR("%s: unable to load model\n" , __func__);
return NULL;
@@ -80,7 +80,7 @@ static void llava_free(struct llava_context * ctx_llava) {
}
static struct clip_ctx * clip_init_context(common_params * params) {
const char * clip_path = params->mmproj.c_str();
const char * clip_path = params->mmproj.path.c_str();
auto prompt = params->prompt;
if (prompt.empty()) {
@@ -88,7 +88,7 @@ static struct clip_ctx * clip_init_context(common_params * params) {
}
struct clip_context_params clip_params = {
/* use_gpu */ params->n_gpu_layers != 0,
/* verbosity */ params->verbosity,
/* verbosity */ GGML_LOG_LEVEL_INFO, // TODO: make this configurable
};
auto * ctx_clip = clip_init(clip_path, clip_params);
return ctx_clip;
@@ -290,7 +290,7 @@ int main(int argc, char ** argv) {
common_init();
if (params.mmproj.empty() || (params.image.empty())) {
if (params.mmproj.path.empty() || (params.image.empty())) {
show_additional_info(argc, argv);
return 1;
}

341
examples/llava/mtmd.cpp Normal file
View File

@@ -0,0 +1,341 @@
#include "clip.h"
#include "clip-impl.h"
#include "mtmd.h"
#include "llama.h"
#include <algorithm>
#include <cerrno>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <limits>
#include <vector>
struct mtmd_context {
struct clip_ctx * ctx_clip;
const struct llama_model * text_model;
std::vector<float> image_embd_v; // image embedding vector
bool print_timings;
int n_threads;
std::string image_marker;
// TODO @ngxson : add timings
mtmd_context(const char * mmproj_fname,
const llama_model * text_model,
const mtmd_context_params & ctx_params) : print_timings(ctx_params.print_timings), n_threads(ctx_params.n_threads), image_marker(ctx_params.image_marker) {
clip_context_params ctx_clip_params;
ctx_clip_params.use_gpu = ctx_params.use_gpu;
ctx_clip_params.verbosity = ctx_params.verbosity;
ctx_clip = clip_init(mmproj_fname, ctx_clip_params);
if (!ctx_clip) {
throw std::runtime_error(string_format("Failed to load CLIP model from %s\n", mmproj_fname));
}
this->text_model = text_model;
}
~mtmd_context() {
clip_free(ctx_clip);
}
};
struct mtmd_image_tokens_data {
clip_image_f32_batch batch_f32; // preprocessed image patches
};
struct mtmd_image_tokens {
uint32_t nx; // number of tokens in x direction
uint32_t ny; // number of tokens in y direction
uint32_t n_tokens() const { return nx * ny; }
clip_image_f32_batch batch_f32; // preprocessed image patches
};
mtmd_context * mtmd_init_from_file(const char * mmproj_fname,
const struct llama_model * text_model,
const struct mtmd_context_params ctx_params) {
try {
return new mtmd_context(mmproj_fname, text_model, ctx_params);
} catch (const std::exception & e) {
LOG_ERR("%s: error: %s\n", __func__, e.what());
return nullptr;
}
}
void mtmd_free(mtmd_context * ctx) {
if (ctx) {
delete ctx;
}
}
// copied from common_tokenize
static std::vector<llama_token> mtmd_tokenize_text_internal(
const struct llama_vocab * vocab,
const std::string & text,
bool add_special,
bool parse_special) {
// upper limit for the number of tokens
int n_tokens = text.length() + 2 * add_special;
std::vector<llama_token> result(n_tokens);
n_tokens = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
if (n_tokens < 0) {
result.resize(-n_tokens);
int check = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
GGML_ASSERT(check == -n_tokens);
} else {
result.resize(n_tokens);
}
return result;
}
mtmd_input_chunks * mtmd_tokenize(mtmd_context * ctx,
const mtmd_input_text & text,
const std::vector<mtmd_bitmap> & bitmaps) {
mtmd_input_chunks * output = new mtmd_input_chunks;
auto vocab = llama_model_get_vocab(ctx->text_model);
std::string prompt_modified(text.text);
std::string marker_modified(ctx->image_marker);
projector_type proj_type = clip_get_projector_type(ctx->ctx_clip);
// a bit hacky here, but works for now
// for some models, we need to add prefix and suffix to the image embeddings
if (proj_type == PROJECTOR_TYPE_GEMMA3) {
// <start_of_image> ... (image embeddings) ... <end_of_image>
marker_modified = "<start_of_image>" + ctx->image_marker + "<end_of_image>";
string_replace_all(prompt_modified, ctx->image_marker, marker_modified);
}
std::vector<std::string> parts = string_split_str(text.text, ctx->image_marker);
output->clear();
output->reserve(parts.size());
size_t i_img = 0;
for (const auto & part : parts) {
//printf("tokenizing part: %s\n", part.c_str());
bool add_bos = &parts.front() == &part;
auto tokens = mtmd_tokenize_text_internal(vocab, part, text.add_special && add_bos, text.parse_special);
if (tokens.empty()) {
continue;
}
mtmd_input_chunk chunk{
MTMD_INPUT_CHUNK_TYPE_TEXT,
std::move(tokens),
{},
};
output->emplace_back(std::move(chunk));
if (&parts.back() != &part) {
// add image token to middle of 2 parts
if (i_img >= bitmaps.size()) {
LOG_ERR("%s: error: not enough images for %d parts\n", __func__, (int)parts.size());
return nullptr;
}
// shim layer
clip_image_u8_ptr img_u8(clip_image_u8_init());
img_u8->nx = bitmaps[i_img].nx;
img_u8->ny = bitmaps[i_img].ny;
img_u8->buf.resize(bitmaps[i_img].data.size());
std::memcpy(img_u8->buf.data(), bitmaps[i_img].data.data(), img_u8->nx * img_u8->ny * 3);
// preprocess image
clip_image_f32_batch batch_f32;
bool ok = clip_image_preprocess(ctx->ctx_clip, img_u8.get(), &batch_f32);
if (!ok) {
LOG_ERR("Unable to preprocess image\n");
return nullptr;
}
mtmd_image_tokens * image_tokens = new mtmd_image_tokens;
image_tokens->nx = clip_n_patches(ctx->ctx_clip); // TODO @ngxson : use clip_n_patches_by_image
image_tokens->ny = 1; // TODO
image_tokens->batch_f32 = std::move(batch_f32);
mtmd_input_chunk chunk{
MTMD_INPUT_CHUNK_TYPE_IMAGE,
{},
image_tokens,
};
output->emplace_back(std::move(chunk));
i_img++;
}
}
return output;
}
void mtmd_input_chunks_free(mtmd_input_chunks * chunks) {
for (auto & chunk : *chunks) {
if (chunk.type == MTMD_INPUT_CHUNK_TYPE_IMAGE && chunk.tokens_image) {
delete chunk.tokens_image;
}
}
delete chunks;
}
int32_t mtmd_encode(mtmd_context * ctx, const mtmd_image_tokens * image_tokens) {
int n_mmproj_embd = clip_n_mmproj_embd(ctx->ctx_clip);
ctx->image_embd_v.resize(image_tokens->n_tokens() * n_mmproj_embd);
bool ok = clip_image_batch_encode(
ctx->ctx_clip,
ctx->n_threads,
&image_tokens->batch_f32,
ctx->image_embd_v.data());
return ok ? 0 : 1;
}
float * mtmd_get_output_embd(mtmd_context * ctx) {
return ctx->image_embd_v.data();
}
size_t mtmd_helper_get_n_tokens(mtmd_input_chunks * chunks) {
size_t n_tokens = 0;
for (auto & chunk : *chunks) {
if (chunk.type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
n_tokens += chunk.tokens_text.size();
} else if (chunk.type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
n_tokens += chunk.tokens_image->n_tokens();
} else {
GGML_ASSERT(false && "chunk type not supported");
}
}
return n_tokens;
}
// helper struct to make working with embd batch easier
// note: this will be removed after llama_batch_ext refactoring
struct decode_embd_batch {
std::vector<llama_pos> pos;
std::vector<int32_t> n_seq_id;
std::vector<llama_seq_id> seq_id_0;
std::vector<llama_seq_id *> seq_ids;
std::vector<int8_t> logits;
llama_batch batch;
decode_embd_batch(float * embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) {
pos .resize(n_tokens);
n_seq_id.resize(n_tokens);
seq_ids .resize(n_tokens + 1);
logits .resize(n_tokens);
seq_id_0.resize(1);
seq_id_0[0] = seq_id;
seq_ids [n_tokens] = nullptr;
batch = {
/*n_tokens =*/ n_tokens,
/*tokens =*/ nullptr,
/*embd =*/ embd,
/*pos =*/ pos.data(),
/*n_seq_id =*/ n_seq_id.data(),
/*seq_id =*/ seq_ids.data(),
/*logits =*/ logits.data(),
};
for (int i = 0; i < n_tokens; i++) {
batch.pos [i] = pos_0 + i;
batch.n_seq_id[i] = 1;
batch.seq_id [i] = seq_id_0.data();
batch.logits [i] = false;
}
}
};
int32_t mtmd_helper_eval(mtmd_context * ctx,
llama_context * lctx,
mtmd_input_chunks * chunks,
llama_pos pos0,
llama_seq_id seq_id,
int32_t n_batch) {
int32_t ret;
llama_pos n_past = pos0;
llama_batch text_batch = llama_batch_init(n_batch, 0, 1);
for (auto & chunk : *chunks) {
bool is_last = &chunk == &chunks->back();
if (chunk.type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
// TODO @ngxson : may need to split into smaller batches
text_batch.n_tokens = chunk.tokens_text.size();
for (size_t i = 0; i < chunk.tokens_text.size(); i++) {
text_batch.token [i] = chunk.tokens_text[i];
text_batch.pos [i] = n_past++;
text_batch.n_seq_id[i] = 1;
text_batch.seq_id [i][0] = seq_id;
text_batch.logits [i] = false;
}
if (is_last) {
// always get logits for last input chunk
text_batch.logits[text_batch.n_tokens - 1] = true;
}
ret = llama_decode(lctx, text_batch);
if (ret != 0) {
LOG_ERR("failed to decode text\n");
llama_batch_free(text_batch);
return ret;
}
} else if (chunk.type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
GGML_ASSERT(!is_last && "logits for last image chunk is not yet support");
GGML_ASSERT(chunk.tokens_image != nullptr);
int64_t t0 = ggml_time_ms();
if (ctx->print_timings) {
LOG_INF("encoding image...\n");
}
ret = mtmd_encode(ctx, chunk.tokens_image);
if (ret != 0) {
LOG_ERR("failed to encode image\n");
llama_batch_free(text_batch);
return ret;
}
if (ctx->print_timings) {
LOG_INF("image encoded in %" PRId64 " ms\n", ggml_time_ms() - t0);
}
int32_t n_tokens = chunk.tokens_image->n_tokens();
float * embd = mtmd_get_output_embd(ctx);
decode_embd_batch batch_img(embd, n_tokens, n_past, 0);
int64_t t1 = ggml_time_ms();
ret = llama_decode(lctx, batch_img.batch);
if (ret != 0) {
LOG_ERR("failed to decode image\n");
llama_batch_free(text_batch);
return ret;
}
if (ctx->print_timings) {
LOG_INF("image decoded in %" PRId64 " ms\n", ggml_time_ms() - t1);
}
n_past += n_tokens;
} else {
GGML_ASSERT(false && "chunk type not supported");
}
}
llama_batch_free(text_batch);
return 0;
}
int32_t mtmd_helper_bitmap_init_from_buf(const unsigned char * buf, size_t len, mtmd_bitmap & output) {
clip_image_u8_ptr img_u8(clip_image_u8_init());
bool ok = clip_image_load_from_bytes(buf, len, img_u8.get());
if (!ok) {
LOG_ERR("Unable to load image from buffer\n");
return 1;
}
unsigned char * data = clip_image_u8_get_data(img_u8.get(), &output.nx, &output.ny);
output.data.resize(output.nx * output.ny * 3);
std::memcpy(output.data.data(), data, output.nx * output.ny * 3);
return 0;
}
int32_t mtmd_helper_bitmap_init_from_file(const char * fname, mtmd_bitmap & output) {
clip_image_u8_ptr img_u8(clip_image_u8_init());
bool ok = clip_image_load_from_file(fname, img_u8.get());
if (!ok) {
LOG_ERR("Unable to load image %s\n", fname);
return 1;
}
unsigned char * data = clip_image_u8_get_data(img_u8.get(), &output.nx, &output.ny);
output.data.resize(output.nx * output.ny * 3);
std::memcpy(output.data.data(), data, output.nx * output.ny * 3);
return 0;
}

146
examples/llava/mtmd.h Normal file
View File

@@ -0,0 +1,146 @@
#ifndef MTMD_H
#define MTMD_H
#include "ggml.h"
#include "llama.h"
#include "clip.h"
#include <vector>
#include <cinttypes>
#include <memory>
#ifdef LLAMA_SHARED
# if defined(_WIN32) && !defined(__MINGW32__)
# ifdef LLAMA_BUILD
# define MTMD_API __declspec(dllexport)
# else
# define MTMD_API __declspec(dllimport)
# endif
# else
# define MTMD_API __attribute__ ((visibility ("default")))
# endif
#else
# define MTMD_API
#endif
#ifdef __cplusplus
enum mtmd_input_chunk_type {
MTMD_INPUT_CHUNK_TYPE_TEXT,
MTMD_INPUT_CHUNK_TYPE_IMAGE,
};
struct mtmd_context;
struct mtmd_image_tokens;
// represents raw image data, layout is RGBRGBRGB...
// length of data must be nx * ny * 3
struct mtmd_bitmap {
uint32_t nx;
uint32_t ny;
std::vector<unsigned char> data;
};
struct mtmd_input_chunk {
mtmd_input_chunk_type type;
std::vector<llama_token> tokens_text;
mtmd_image_tokens * tokens_image = nullptr;
};
using mtmd_input_chunks = std::vector<mtmd_input_chunk>;
struct mtmd_context_params {
bool use_gpu = true;
bool print_timings = true;
int n_threads = 4;
enum ggml_log_level verbosity = GGML_LOG_LEVEL_INFO;
const char * image_marker = "<__image__>";
};
struct mtmd_input_text {
std::string text;
bool add_special;
bool parse_special;
};
// initialize the mtmd context
// return nullptr on failure
MTMD_API mtmd_context * mtmd_init_from_file(const char * mmproj_fname,
const llama_model * text_model,
const mtmd_context_params ctx_params);
MTMD_API void mtmd_free(mtmd_context * ctx);
// tokenize an input text prompt and an image
// the prompt must have the input image marker (default: "<__image__>") in it
// the marker will be replaced with the image tokens
// for example:
// "here is an image: <__image__>\ndescribe it in detail."
// this will gives 3 chunks:
// 1. "here is an image: <start_of_image>"
// 2. (image tokens)
// 3. "<end_of_image>\ndescribe it in detail."
// number of bitmaps must be equal to the number of image markers in the prompt
// this function is thread-safe (shared ctx)
MTMD_API mtmd_input_chunks * mtmd_tokenize(mtmd_context * ctx,
const mtmd_input_text & text,
const std::vector<mtmd_bitmap> & bitmaps);
// free image chunk data
MTMD_API void mtmd_input_chunks_free(mtmd_input_chunks * chunks);
// returns 0 on success
MTMD_API int32_t mtmd_encode(mtmd_context * ctx,
const mtmd_image_tokens * image_tokens);
// get output embeddings from the last encode pass
MTMD_API float * mtmd_get_output_embd(mtmd_context * ctx);
//
// helper functions (can be implemented based on other functions)
//
// helper to count the total number of tokens from a list of chunks, useful to keep track of n_past
MTMD_API size_t mtmd_helper_get_n_tokens(mtmd_input_chunks * chunks);
// helper function that automatically:
// 1. run llama_decode() on text chunks
// 2. run mtmd_encode() on image chunks, then mtmd_get_output_embd() and then llama_decode()
// if any of the mtmd_encode() or llama_decode() calls return non-zero, stop and forward the error
// otherwise, returns 0 on success
MTMD_API int32_t mtmd_helper_eval(mtmd_context * ctx,
llama_context * lctx,
mtmd_input_chunks * chunks,
llama_pos pos0,
llama_seq_id seq_id,
int32_t n_batch);
// helper function to construct a mtmd_bitmap from a file
// returns 0 on success
// this function is thread-safe
MTMD_API int32_t mtmd_helper_bitmap_init_from_file(const char * fname, mtmd_bitmap & output);
// helper function to construct a mtmd_bitmap from a buffer
// the buffer must be an image in format supported by stb_image (jpg, png, bmp, gif, etc.)
// returns 0 on success
// this function is thread-safe
MTMD_API int32_t mtmd_helper_bitmap_init_from_buf(const unsigned char * buf, size_t len, mtmd_bitmap & output);
// convenient unique_ptr wrappers
struct mtmd_context_deleter {
void operator()(mtmd_context * val) { mtmd_free(val); }
};
using mtmd_context_ptr = std::unique_ptr<mtmd_context, mtmd_context_deleter>;
struct mtmd_input_chunks_deleter {
void operator()(mtmd_input_chunks * val) { mtmd_input_chunks_free(val); }
};
using mtmd_input_chunks_ptr = std::unique_ptr<mtmd_input_chunks, mtmd_input_chunks_deleter>;
#else
static_assert(false && "C header is not yet supported by this library");
#endif
#endif

View File

@@ -314,7 +314,7 @@ static struct llama_model * llava_init(common_params * params) {
llama_model_params model_params = common_model_params_to_llama(*params);
llama_model * model = llama_model_load_from_file(params->model.c_str(), model_params);
llama_model * model = llama_model_load_from_file(params->model.path.c_str(), model_params);
if (model == NULL) {
LOG_ERR("%s: unable to load model\n" , __func__);
return NULL;
@@ -323,14 +323,14 @@ static struct llama_model * llava_init(common_params * params) {
}
static struct llava_context * llava_init_context(common_params * params, llama_model * model) {
const char * clip_path = params->mmproj.c_str();
const char * clip_path = params->mmproj.path.c_str();
auto prompt = params->prompt;
if (prompt.empty()) {
prompt = "describe the image in detail.";
}
auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
auto ctx_clip = clip_model_load(clip_path, GGML_LOG_LEVEL_INFO);
llama_context_params ctx_params = common_context_params_to_llama(*params);
ctx_params.n_ctx = params->n_ctx < 2048 ? 2048 : params->n_ctx; // we need a longer context size to process image embeddings
@@ -524,7 +524,7 @@ int main(int argc, char ** argv) {
common_init();
if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
if (params.mmproj.path.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
print_usage(argc, argv);
return 1;
}

BIN
examples/llava/test-1.jpeg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 121 KiB

81
examples/llava/tests.sh Executable file
View File

@@ -0,0 +1,81 @@
#!/bin/bash
# make sure we are in the right directory
SCRIPT_DIR=$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )
cd $SCRIPT_DIR
#export LLAMA_CACHE="$SCRIPT_DIR/tmp"
set -eux
mkdir -p $SCRIPT_DIR/output
PROJ_ROOT="$SCRIPT_DIR/../.."
cd $PROJ_ROOT
###############
arr_bin=()
arr_hf=()
add_test() {
local bin=$1
local hf=$2
arr_bin+=("$bin")
arr_hf+=("$hf")
}
add_test "llama-gemma3-cli" "ggml-org/gemma-3-4b-it-GGUF:Q4_K_M"
add_test "llama-llava-cli" "cmp-nct/Yi-VL-6B-GGUF:Q5_K"
add_test "llama-llava-cli" "guinmoon/MobileVLM-3B-GGUF:Q4_K_M"
add_test "llama-llava-cli" "THUDM/glm-edge-v-5b-gguf:Q4_K_M"
add_test "llama-llava-cli" "second-state/Llava-v1.5-7B-GGUF:Q2_K"
add_test "llama-llava-cli" "cjpais/llava-1.6-mistral-7b-gguf:Q3_K"
add_test "llama-llava-cli" "ibm-research/granite-vision-3.2-2b-GGUF:Q4_K_M"
add_test "llama-minicpmv-cli" "second-state/MiniCPM-Llama3-V-2_5-GGUF:Q2_K" # model from openbmb is corrupted
add_test "llama-minicpmv-cli" "openbmb/MiniCPM-V-2_6-gguf:Q2_K"
add_test "llama-minicpmv-cli" "openbmb/MiniCPM-o-2_6-gguf:Q4_0"
add_test "llama-qwen2vl-cli" "bartowski/Qwen2-VL-2B-Instruct-GGUF:Q4_K_M"
###############
cmake --build build -j --target "${arr_bin[@]}"
arr_res=()
for i in "${!arr_bin[@]}"; do
bin="${arr_bin[$i]}"
hf="${arr_hf[$i]}"
echo "Running test with binary: $bin and HF model: $hf"
echo ""
echo ""
output=$("$PROJ_ROOT/build/bin/$bin" -hf "$hf" --image $SCRIPT_DIR/test-1.jpeg -p "what is the publisher name of the newspaper?" --temp 0 2>&1 | tee /dev/tty)
echo "$output" > $SCRIPT_DIR/output/$bin-$(echo "$hf" | tr '/' '-').log
if echo "$output" | grep -iq "new york"; then
result="\033[32mOK\033[0m: $bin $hf"
else
result="\033[31mFAIL\033[0m: $bin $hf"
fi
echo -e "$result"
arr_res+=("$result")
echo ""
echo ""
echo ""
echo "#################################################"
echo "#################################################"
echo ""
echo ""
done
set +x
for i in "${!arr_res[@]}"; do
echo -e "${arr_res[$i]}"
done
echo ""
echo "Output logs are saved in $SCRIPT_DIR/output"

View File

@@ -96,7 +96,7 @@ int main(int argc, char ** argv) {
llama_decode(ctx, llama_batch_get_one(&inp.back(), 1));
for (int s = 1; s < W + G + 1; ++s) {
llama_kv_cache_seq_cp(ctx, 0, s, -1, -1);
llama_kv_self_seq_cp(ctx, 0, s, -1, -1);
}
const auto t_enc_end = ggml_time_us();
@@ -438,17 +438,17 @@ int main(int argc, char ** argv) {
// KV cache management
// if no verification token matched, we simply remove all cells from this batch -> no fragmentation
llama_kv_cache_seq_rm(ctx, -1, n_past, -1);
llama_kv_self_seq_rm(ctx, -1, n_past, -1);
if (seq_id_best != 0) {
// if a verification token matched, we keep the best sequence and remove the rest
// this leads to some KV cache fragmentation
llama_kv_cache_seq_keep(ctx, seq_id_best);
llama_kv_cache_seq_cp (ctx, seq_id_best, 0, -1, -1);
llama_kv_cache_seq_rm (ctx, seq_id_best, -1, -1);
llama_kv_self_seq_keep(ctx, seq_id_best);
llama_kv_self_seq_cp (ctx, seq_id_best, 0, -1, -1);
llama_kv_self_seq_rm (ctx, seq_id_best, -1, -1);
for (int s = 1; s < W + G + 1; ++s) {
llama_kv_cache_seq_cp(ctx, 0, s, -1, -1);
llama_kv_self_seq_cp(ctx, 0, s, -1, -1);
}
}
}

View File

@@ -192,7 +192,7 @@ int main(int argc, char ** argv){
// KV cache management
// clean the cache of draft tokens that weren't accepted
llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
llama_kv_self_seq_rm(ctx, 0, n_past, -1);
common_batch_clear(batch_tgt);
common_batch_add(batch_tgt, draft[0], n_past, { 0 }, true);

View File

@@ -27,12 +27,24 @@ Once downloaded, place your model in the models folder in llama.cpp.
##### Input prompt (One-and-done)
```bash
./llama-cli -m models/gemma-1.1-7b-it.Q4_K_M.gguf --prompt "Once upon a time"
./llama-cli -m models/gemma-1.1-7b-it.Q4_K_M.gguf -no-cnv --prompt "Once upon a time"
```
##### Conversation mode (Allow for continuous interaction with the model)
```bash
./llama-cli -m models/gemma-1.1-7b-it.Q4_K_M.gguf -cnv --chat-template gemma
./llama-cli -m models/gemma-1.1-7b-it.Q4_K_M.gguf --chat-template gemma
```
##### Conversation mode using built-in jinja chat template
```bash
./llama-cli -m models/gemma-1.1-7b-it.Q4_K_M.gguf --jinja
```
##### One-and-done query using jinja with custom system prompt and a starting prompt
```bash
./llama-cli -m models/gemma-1.1-7b-it.Q4_K_M.gguf --jinja --single-turn -sys "You are a helpful assistant" -p "Hello"
```
##### Infinite text from a starting prompt (you can use `Ctrl-C` to stop it):
@@ -44,12 +56,24 @@ Once downloaded, place your model in the models folder in llama.cpp.
##### Input prompt (One-and-done)
```powershell
./llama-cli.exe -m models\gemma-1.1-7b-it.Q4_K_M.gguf --prompt "Once upon a time"
./llama-cli.exe -m models\gemma-1.1-7b-it.Q4_K_M.gguf -no-cnv --prompt "Once upon a time"
```
##### Conversation mode (Allow for continuous interaction with the model)
```powershell
./llama-cli.exe -m models\gemma-1.1-7b-it.Q4_K_M.gguf -cnv --chat-template gemma
./llama-cli.exe -m models\gemma-1.1-7b-it.Q4_K_M.gguf --chat-template gemma
```
##### Conversation mode using built-in jinja chat template
```powershell
./llama-cli.exe -m models\gemma-1.1-7b-it.Q4_K_M.gguf --jinja
```
##### One-and-done query using jinja with custom system prompt and a starting prompt
```powershell
./llama-cli.exe -m models\gemma-1.1-7b-it.Q4_K_M.gguf --jinja --single-turn -sys "You are a helpful assistant" -p "Hello"
```
#### Infinite text from a starting prompt (you can use `Ctrl-C` to stop it):
@@ -77,6 +101,8 @@ The `llama-cli` program provides several ways to interact with the LLaMA models
- `--prompt PROMPT`: Provide a prompt directly as a command-line option.
- `--file FNAME`: Provide a file containing a prompt or multiple prompts.
- `--system-prompt PROMPT`: Provide a system prompt (will otherwise use the default one in the chat template (if provided)).
- `--system-prompt-file FNAME`: Provide a file containing a system prompt.
- `--interactive-first`: Run the program in interactive mode and wait for input right away. (More on this below.)
## Interaction
@@ -89,7 +115,10 @@ In interactive mode, users can participate in text generation by injecting their
- `-i, --interactive`: Run the program in interactive mode, allowing users to engage in real-time conversations or provide specific instructions to the model.
- `--interactive-first`: Run the program in interactive mode and immediately wait for user input before starting the text generation.
- `-cnv, --conversation`: Run the program in conversation mode (does not print special tokens and suffix/prefix, use default chat template) (default: false)
- `-cnv, --conversation`: Run the program in conversation mode (does not print special tokens and suffix/prefix, use default or provided chat template) (default: true if chat template found)
- `-no-cnv`: Disable conversation mode (default: false)
- `-st, --single-turn`: Only process a single conversation turn (user input) and then exit.
- `--jinja`: Enable jinja chat template parser, will use the model's built-in template or a user-provided one (default: false)
- `--color`: Enable colorized output to differentiate visually distinguishing between prompts, user input, and generated text.
By understanding and utilizing these interaction options, you can create engaging and dynamic experiences with the LLaMA models, tailoring the text generation process to your specific needs.
@@ -125,6 +154,8 @@ When --in-prefix or --in-suffix options are enabled the chat template ( --chat-t
Example usage: `--chat-template gemma`
`--chat-template-file FNAME`: Load a custom jinja chat template from an external file, useful if the model contains outdated or incompatible template, some examples can be found in models/templates. Up-to-date chat templates can be downloaded from Hugging Face using scripts/get_chat_template.py
## Context Management
During text generation, LLaMA models have a limited context size, which means they can only consider a certain number of tokens from the input and generated text. When the context fills up, the model resets internally, potentially losing some information from the beginning of the conversation or instructions. Context management options help maintain continuity and coherence in these situations.

View File

@@ -354,7 +354,7 @@ int main(int argc, char ** argv) {
}
// remove any "future" tokens that we might have inherited from the previous session
llama_kv_cache_seq_rm(ctx, -1, n_matching_session_tokens, -1);
llama_kv_self_seq_rm(ctx, -1, n_matching_session_tokens, -1);
}
LOG_DBG("recalculate the cached logits (check): embd_inp.size() %zu, n_matching_session_tokens %zu, embd_inp.size() %zu, session_tokens.size() %zu\n",
@@ -602,8 +602,8 @@ int main(int argc, char ** argv) {
LOG_DBG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
n_past, n_left, n_ctx, params.n_keep, n_discard);
llama_kv_cache_seq_rm (ctx, 0, params.n_keep , params.n_keep + n_discard);
llama_kv_cache_seq_add(ctx, 0, params.n_keep + n_discard, n_past, -n_discard);
llama_kv_self_seq_rm (ctx, 0, params.n_keep , params.n_keep + n_discard);
llama_kv_self_seq_add(ctx, 0, params.n_keep + n_discard, n_past, -n_discard);
n_past -= n_discard;
@@ -626,9 +626,9 @@ int main(int argc, char ** argv) {
LOG_DBG("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n, (ga_i + ib*bd)/ga_n, (ga_i + ib*bd + ga_w)/ga_n);
LOG_DBG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", ga_i + ib*bd + ga_w, n_past + ib*bd, dd, ga_i + ib*bd + ga_w + dd, n_past + ib*bd + dd);
llama_kv_cache_seq_add(ctx, 0, ga_i, n_past, ib*bd);
llama_kv_cache_seq_div(ctx, 0, ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n);
llama_kv_cache_seq_add(ctx, 0, ga_i + ib*bd + ga_w, n_past + ib*bd, dd);
llama_kv_self_seq_add(ctx, 0, ga_i, n_past, ib*bd);
llama_kv_self_seq_div(ctx, 0, ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n);
llama_kv_self_seq_add(ctx, 0, ga_i + ib*bd + ga_w, n_past + ib*bd, dd);
n_past -= bd;

View File

@@ -106,6 +106,8 @@ int main(int argc, char ** argv) {
common_params params;
params.n_predict = 128;
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_PARALLEL)) {
return 1;
}
@@ -202,7 +204,7 @@ int main(int argc, char ** argv) {
// assign the system KV cache to all parallel sequences
for (int32_t i = 1; i <= n_clients; ++i) {
llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
llama_kv_self_seq_cp(ctx, 0, i, -1, -1);
}
LOG_INF("\n");
@@ -234,9 +236,9 @@ int main(int argc, char ** argv) {
if (batch.n_tokens == 0) {
// all sequences have ended - clear the entire KV cache
for (int i = 1; i <= n_clients; ++i) {
llama_kv_cache_seq_rm(ctx, i, -1, -1);
llama_kv_self_seq_rm(ctx, i, -1, -1);
// but keep the system prompt
llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
llama_kv_self_seq_cp(ctx, 0, i, -1, -1);
}
LOG_INF("%s: clearing the KV cache\n", __func__);
@@ -372,8 +374,8 @@ int main(int argc, char ** argv) {
}
// delete only the generated part of the sequence, i.e. keep the system prompt in the cache
llama_kv_cache_seq_rm(ctx, client.id + 1, -1, -1);
llama_kv_cache_seq_cp(ctx, 0, client.id + 1, -1, -1);
llama_kv_self_seq_rm(ctx, client.id + 1, -1, -1);
llama_kv_self_seq_cp(ctx, 0, client.id + 1, -1, -1);
const auto t_main_end = ggml_time_us();
@@ -405,7 +407,7 @@ int main(int argc, char ** argv) {
params.prompt_file = "used built-in defaults";
}
LOG_INF("External prompt file: \033[32m%s\033[0m\n", params.prompt_file.c_str());
LOG_INF("Model and path used: \033[32m%s\033[0m\n\n", params.model.c_str());
LOG_INF("Model and path used: \033[32m%s\033[0m\n\n", params.model.path.c_str());
LOG_INF("Total prompt tokens: %6d, speed: %5.2f t/s\n", n_total_prompt, (double) (n_total_prompt ) / (t_main_end - t_main_start) * 1e6);
LOG_INF("Total gen tokens: %6d, speed: %5.2f t/s\n", n_total_gen, (double) (n_total_gen ) / (t_main_end - t_main_start) * 1e6);

View File

@@ -64,7 +64,7 @@ int main(int argc, char ** argv) {
llama_model_params model_params = common_model_params_to_llama(params);
llama_model * model = llama_model_load_from_file(params.model.c_str(), model_params);
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), model_params);
if (model == NULL) {
LOG_ERR("%s: unable to load model\n" , __func__);
@@ -133,11 +133,11 @@ int main(int argc, char ** argv) {
const int ib = i/n_batch - 1;
const int bd = n_batch_grp*(n_grp - 1);
llama_kv_cache_seq_add (ctx, 0, n_past - n_batch, n_past, ib*bd);
llama_kv_cache_seq_div (ctx, 0, n_past - n_batch + ib*bd, n_past + ib*bd, n_grp);
llama_kv_cache_update (ctx);
llama_kv_self_seq_add (ctx, 0, n_past - n_batch, n_past, ib*bd);
llama_kv_self_seq_div (ctx, 0, n_past - n_batch + ib*bd, n_past + ib*bd, n_grp);
llama_kv_self_update (ctx);
n_past = llama_kv_cache_seq_pos_max(ctx, 0) + 1;
n_past = llama_kv_self_seq_pos_max(ctx, 0) + 1;
}
common_batch_clear(batch);
@@ -167,12 +167,12 @@ int main(int argc, char ** argv) {
LOG_INF("%s: shifting KV cache with %d\n", __func__, n_discard);
llama_kv_cache_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
llama_kv_cache_seq_add(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
//llama_kv_cache_defrag (ctx);
llama_kv_cache_update (ctx);
llama_kv_self_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
llama_kv_self_seq_add(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
//llama_kv_self_defrag (ctx);
llama_kv_self_update (ctx);
n_past = llama_kv_cache_seq_pos_max(ctx, 0) + 1;
n_past = llama_kv_self_seq_pos_max(ctx, 0) + 1;
common_batch_clear(batch);
@@ -198,12 +198,12 @@ int main(int argc, char ** argv) {
if (n_discard > 0) {
LOG_INF("%s: shifting KV cache with %d to free space for the answer\n", __func__, n_discard);
llama_kv_cache_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
llama_kv_cache_seq_add(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
//llama_kv_cache_defrag (ctx);
llama_kv_cache_update (ctx);
llama_kv_self_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
llama_kv_self_seq_add(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
//llama_kv_self_defrag (ctx);
llama_kv_self_update (ctx);
n_past = llama_kv_cache_seq_pos_max(ctx, 0) + 1;
n_past = llama_kv_self_seq_pos_max(ctx, 0) + 1;
}
}

View File

@@ -361,7 +361,7 @@ static results_perplexity perplexity_v2(llama_context * ctx, const common_params
const auto t_start = std::chrono::high_resolution_clock::now();
// clear the KV cache
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
llama_batch batch = llama_batch_init(n_batch, 0, 1);
@@ -547,7 +547,7 @@ static results_perplexity perplexity(llama_context * ctx, const common_params &
const auto t_start = std::chrono::high_resolution_clock::now();
// clear the KV cache
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
for (int j = 0; j < num_batches; ++j) {
const int batch_start = start + j * n_batch;
@@ -851,7 +851,7 @@ static void hellaswag_score(llama_context * ctx, const common_params & params) {
LOG_INF("%s : calculating hellaswag score over selected tasks.\n", __func__);
LOG("\ntask\tacc_norm\n");
LOG("\ntask\tacc_norm\t95%% confidence interval\n");
double acc = 0.0f;
@@ -924,7 +924,7 @@ static void hellaswag_score(llama_context * ctx, const common_params & params) {
return;
}
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
// decode all tasks [i0, i1)
if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) {
@@ -985,8 +985,22 @@ static void hellaswag_score(llama_context * ctx, const common_params & params) {
acc += 1.0;
}
// Print the accumulated accuracy mean x 100
LOG("%zu\t%.8lf\n", i + 1, acc/double(i + 1)*100.0);
double freq = acc / double(i + 1);
const double za = 1.95996398454;
// // Wald normal approx
// double conf =za*sqrt(freq*(1-freq)/double(i + 1));
// LOG("%zu\t%.8lf +/- %.8lf\n", i + 1, freq*100.0, conf*100.0);
// Wilson score interval, more accurate
double z = za * za / double(i + 1);
double cnf = z * sqrt(double(i + 1) * (4.0 * freq * (1 - freq) + z)) / (za + za);
double a = (freq + z * 0.5 - cnf) / (1.0 + z);
double b = (freq + z * 0.5 + cnf) / (1.0 + z);
// Print the accumulated accuracy mean x 100 and confidence interval
LOG("%zu\t%3.8lf%%\t[%3.4lf%%, %3.4lf%%]\n", i + 1, freq * 100.0, a * 100.0, b * 100.0);
}
i0 = i1 - 1;
@@ -1203,7 +1217,7 @@ static void winogrande_score(llama_context * ctx, const common_params & params)
return;
}
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
// decode all tasks [i0, i1)
if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) {
@@ -1575,7 +1589,7 @@ static void multiple_choice_score(llama_context * ctx, const common_params & par
return;
}
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
// decode all tasks [i0, i1)
if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) {
@@ -1765,7 +1779,7 @@ static void kl_divergence(llama_context * ctx, const common_params & params) {
}
// clear the KV cache
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
llama_batch batch = llama_batch_init(n_batch, 0, 1);

View File

@@ -1,6 +1,6 @@
#include "ggml.h"
#include "llama.h"
#include "llama-context.h"
#include "llama-model.h"
#include "common.h"
#include <algorithm>
@@ -328,7 +328,7 @@ int main(int argc, char ** argv) {
}
}
const auto & tensors = llama_internal_get_tensor_map(ctx);
const auto & tensors = llama_internal_get_tensor_map(model);
// check layer tensors
int included_layers = 0;

View File

@@ -9,6 +9,7 @@
#include <fstream>
#include <cmath>
#include <cctype>
#include <algorithm>
struct quant_option {
std::string name;
@@ -16,7 +17,7 @@ struct quant_option {
std::string desc;
};
static const std::vector<struct quant_option> QUANT_OPTIONS = {
static const std::vector<quant_option> QUANT_OPTIONS = {
{ "Q4_0", LLAMA_FTYPE_MOSTLY_Q4_0, " 4.34G, +0.4685 ppl @ Llama-3-8B", },
{ "Q4_1", LLAMA_FTYPE_MOSTLY_Q4_1, " 4.78G, +0.4511 ppl @ Llama-3-8B", },
{ "Q5_0", LLAMA_FTYPE_MOSTLY_Q5_0, " 5.21G, +0.1316 ppl @ Llama-3-8B", },
@@ -105,7 +106,8 @@ static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftyp
//
[[noreturn]]
static void usage(const char * executable) {
printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] [--imatrix] [--include-weights] [--exclude-weights] [--output-tensor-type] [--token-embedding-type] [--override-kv] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] [--imatrix] [--include-weights] [--exclude-weights] [--output-tensor-type]\n", executable);
printf(" [--token-embedding-type] [--tensor-type] [--keep-split] [--override-kv] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n");
printf(" --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
printf(" --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
printf(" --pure: Disable k-quant mixtures and quantize all tensors to the same type\n");
@@ -114,6 +116,8 @@ static void usage(const char * executable) {
printf(" --exclude-weights tensor_name: use importance matrix for this/these tensor(s)\n");
printf(" --output-tensor-type ggml_type: use this ggml_type for the output.weight tensor\n");
printf(" --token-embedding-type ggml_type: use this ggml_type for the token embeddings tensor\n");
printf(" --tensor-type TENSOR=TYPE: quantize this tensor to this ggml_type. example: --tensor-type attn_q=q8_0\n");
printf(" Advanced option to selectively quantize tensors. May be specified multiple times.\n");
printf(" --keep-split: will generate quantized model in the same shards as input\n");
printf(" --override-kv KEY=TYPE:VALUE\n");
printf(" Advanced option to override model metadata by key in the quantized model. May be specified multiple times.\n");
@@ -244,6 +248,107 @@ static ggml_type parse_ggml_type(const char * arg) {
return GGML_TYPE_COUNT;
}
// Allowed tensors for arbitrary quantization with --tensor-type option
static const std::vector<std::string> ALLOWED_TENSOR_TYPE = {
"attn_k",
"attn_kv_a_mqa",
"attn_kv_b",
"attn_o",
"attn_output",
"attn_q",
"attn_q_a",
"attn_q_b",
"attn_qkv",
"attn_v",
"channel_mix_key",
"channel_mix_receptance",
"channel_mix_value",
"cls",
"cls.output",
"cross_attn_k",
"cross_attn_o",
"cross_attn_q",
"cross_attn_v",
"ffn_act",
"ffn_down",
"ffn_down_exps",
"ffn_down_shexp",
"ffn_gate",
"ffn_gate_exps",
"ffn_gate_shexp",
"ffn_up",
"ffn_up_exps",
"ffn_up_shexp",
"ssm_in",
"ssm_out",
"time_mix_gate",
"time_mix_key",
"time_mix_output",
"time_mix_receptance",
"time_mix_value",
};
// changes to this struct must be replicated in llama-quant.cpp
struct tensor_quantization {
std::string name;
ggml_type quant = GGML_TYPE_COUNT;
};
static bool parse_tensor_type(const char * data, std::vector<tensor_quantization> & tensor_type) {
const char * sep = strchr(data, '=');
if (sep == nullptr) {
printf("\n%s: malformed tensor type '%s'\n\n", __func__, data);
return false;
}
const size_t tn_len = sep - data;
if (tn_len == 0) {
printf("\n%s: missing tensor name\n\n", __func__);
return false;
}
if (const size_t qt_len = strlen(sep); qt_len == 1) {
printf("\n%s: missing quantization type\n\n", __func__);
return false;
}
std::string tn(data, tn_len);
std::transform(tn.begin(), tn.end(), tn.begin(), tolower);
sep++;
const std::string qt(sep);
bool found = false;
for (const auto & allowed : ALLOWED_TENSOR_TYPE) {
std::string tensor;
tensor = tn.rfind('.') != std::string::npos ? tn.substr(tn.rfind('.') + 1) : tn;
// handle special case of cls.output
std::string cls_output = "cls.output";
if (tn.find(cls_output) != std::string::npos) {
tensor = "cls.output";
}
// check if an allowed tensor exists and it's at the end of the kv string
if (tensor == allowed) {
found = true;
break;
}
}
if (!found) {
printf("\n%s: invalid tensor name '%s'\n\n", __func__, tn.c_str());
return false;
}
if (parse_ggml_type(qt.c_str()) == GGML_TYPE_COUNT) {
printf("\n%s: invalid quantization type '%s'\n\n", __func__, qt.c_str());
return false;
}
tensor_quantization tqz;
tqz.name = tn;
tqz.quant = parse_ggml_type(qt.c_str());
tensor_type.emplace_back(std::move(tqz));
return true;
}
int main(int argc, char ** argv) {
if (argc < 3) {
usage(argv[0]);
@@ -255,6 +360,7 @@ int main(int argc, char ** argv) {
std::string imatrix_file;
std::vector<std::string> included_weights, excluded_weights;
std::vector<llama_model_kv_override> kv_overrides;
std::vector<tensor_quantization> tensor_types;
for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) {
if (strcmp(argv[arg_idx], "--leave-output-tensor") == 0) {
@@ -277,6 +383,10 @@ int main(int argc, char ** argv) {
} else {
usage(argv[0]);
}
} else if (strcmp(argv[arg_idx], "--tensor-type") == 0) {
if (arg_idx == argc-1 || !parse_tensor_type(argv[++arg_idx], tensor_types)) {
usage(argv[0]);
}
} else if (strcmp(argv[arg_idx], "--override-kv") == 0) {
if (arg_idx == argc-1 || !string_parse_kv_override(argv[++arg_idx], kv_overrides)) {
usage(argv[0]);
@@ -361,6 +471,9 @@ int main(int argc, char ** argv) {
kv_overrides.back().key[0] = 0;
params.kv_overrides = &kv_overrides;
}
if (!tensor_types.empty()) {
params.tensor_types = &tensor_types;
}
llama_backend_init();

View File

@@ -83,7 +83,7 @@ static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & toke
static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd) {
// clear previous kv_cache values (irrelevant for embeddings)
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
// run model
LOG_INF("%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);

View File

@@ -1,2 +1,4 @@
add_executable(rpc-server rpc-server.cpp)
target_link_libraries(rpc-server PRIVATE ggml llama)
set(TARGET rpc-server)
add_executable(${TARGET} rpc-server.cpp)
target_link_libraries(${TARGET} PRIVATE ggml)
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@@ -72,3 +72,14 @@ $ bin/llama-cli -m ../models/tinyllama-1b/ggml-model-f16.gguf -p "Hello, my name
This way you can offload model layers to both local and remote devices.
### Local cache
The RPC server can use a local cache to store large tensors and avoid transferring them over the network.
This can speed up model loading significantly, especially when using large models.
To enable the cache, use the `-c` option:
```bash
$ bin/rpc-server -c
```
By default, the cache is stored in the `$HOME/.cache/llama.cpp/rpc` directory and can be controlled via the `LLAMA_CACHE` environment variable.

View File

@@ -1,3 +1,7 @@
#if defined(_MSC_VER)
#define _SILENCE_CXX17_CODECVT_HEADER_DEPRECATION_WARNING
#endif
#include "ggml-cpu.h"
#ifdef GGML_USE_CUDA
@@ -18,26 +22,144 @@
#include "ggml-rpc.h"
#ifdef _WIN32
# define DIRECTORY_SEPARATOR '\\'
# include <locale>
# include <windows.h>
# include <fcntl.h>
# include <io.h>
#else
# define DIRECTORY_SEPARATOR '/'
# include <unistd.h>
# include <sys/stat.h>
#endif
#include <codecvt>
#include <string>
#include <stdio.h>
#include <vector>
#include <filesystem>
namespace fs = std::filesystem;
// NOTE: this is copied from common.cpp to avoid linking with libcommon
// returns true if successful, false otherwise
static bool fs_create_directory_with_parents(const std::string & path) {
#ifdef _WIN32
std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
std::wstring wpath = converter.from_bytes(path);
// if the path already exists, check whether it's a directory
const DWORD attributes = GetFileAttributesW(wpath.c_str());
if ((attributes != INVALID_FILE_ATTRIBUTES) && (attributes & FILE_ATTRIBUTE_DIRECTORY)) {
return true;
}
size_t pos_slash = 0;
// process path from front to back, procedurally creating directories
while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) {
const std::wstring subpath = wpath.substr(0, pos_slash);
const wchar_t * test = subpath.c_str();
const bool success = CreateDirectoryW(test, NULL);
if (!success) {
const DWORD error = GetLastError();
// if the path already exists, ensure that it's a directory
if (error == ERROR_ALREADY_EXISTS) {
const DWORD attributes = GetFileAttributesW(subpath.c_str());
if (attributes == INVALID_FILE_ATTRIBUTES || !(attributes & FILE_ATTRIBUTE_DIRECTORY)) {
return false;
}
} else {
return false;
}
}
pos_slash += 1;
}
return true;
#else
// if the path already exists, check whether it's a directory
struct stat info;
if (stat(path.c_str(), &info) == 0) {
return S_ISDIR(info.st_mode);
}
size_t pos_slash = 1; // skip leading slashes for directory creation
// process path from front to back, procedurally creating directories
while ((pos_slash = path.find('/', pos_slash)) != std::string::npos) {
const std::string subpath = path.substr(0, pos_slash);
struct stat info;
// if the path already exists, ensure that it's a directory
if (stat(subpath.c_str(), &info) == 0) {
if (!S_ISDIR(info.st_mode)) {
return false;
}
} else {
// create parent directories
const int ret = mkdir(subpath.c_str(), 0755);
if (ret != 0) {
return false;
}
}
pos_slash += 1;
}
return true;
#endif // _WIN32
}
// NOTE: this is copied from common.cpp to avoid linking with libcommon
static std::string fs_get_cache_directory() {
std::string cache_directory = "";
auto ensure_trailing_slash = [](std::string p) {
// Make sure to add trailing slash
if (p.back() != DIRECTORY_SEPARATOR) {
p += DIRECTORY_SEPARATOR;
}
return p;
};
if (getenv("LLAMA_CACHE")) {
cache_directory = std::getenv("LLAMA_CACHE");
} else {
#if defined(__linux__) || defined(__FreeBSD__) || defined(_AIX)
if (std::getenv("XDG_CACHE_HOME")) {
cache_directory = std::getenv("XDG_CACHE_HOME");
} else {
cache_directory = std::getenv("HOME") + std::string("/.cache/");
}
#elif defined(__APPLE__)
cache_directory = std::getenv("HOME") + std::string("/Library/Caches/");
#elif defined(_WIN32)
cache_directory = std::getenv("LOCALAPPDATA");
#else
# error Unknown architecture
#endif
cache_directory = ensure_trailing_slash(cache_directory);
cache_directory += "llama.cpp";
}
return ensure_trailing_slash(cache_directory);
}
struct rpc_server_params {
std::string host = "127.0.0.1";
int port = 50052;
size_t backend_mem = 0;
bool use_cache = false;
};
static void print_usage(int /*argc*/, char ** argv, rpc_server_params params) {
fprintf(stderr, "Usage: %s [options]\n\n", argv[0]);
fprintf(stderr, "options:\n");
fprintf(stderr, " -h, --help show this help message and exit\n");
fprintf(stderr, " -H HOST, --host HOST host to bind to (default: %s)\n", params.host.c_str());
fprintf(stderr, " -p PORT, --port PORT port to bind to (default: %d)\n", params.port);
fprintf(stderr, " -m MEM, --mem MEM backend memory size (in MB)\n");
fprintf(stderr, " -h, --help show this help message and exit\n");
fprintf(stderr, " -H HOST, --host HOST host to bind to (default: %s)\n", params.host.c_str());
fprintf(stderr, " -p PORT, --port PORT port to bind to (default: %d)\n", params.port);
fprintf(stderr, " -m MEM, --mem MEM backend memory size (in MB)\n");
fprintf(stderr, " -c, --cache enable local file cache\n");
fprintf(stderr, "\n");
}
@@ -58,6 +180,8 @@ static bool rpc_server_params_parse(int argc, char ** argv, rpc_server_params &
if (params.port <= 0 || params.port > 65535) {
return false;
}
} else if (arg == "-c" || arg == "--cache") {
params.use_cache = true;
} else if (arg == "-m" || arg == "--mem") {
if (++i >= argc) {
return false;
@@ -164,8 +288,20 @@ int main(int argc, char * argv[]) {
} else {
get_backend_memory(&free_mem, &total_mem);
}
printf("Starting RPC server on %s, backend memory: %zu MB\n", endpoint.c_str(), free_mem / (1024 * 1024));
ggml_backend_rpc_start_server(backend, endpoint.c_str(), free_mem, total_mem);
const char * cache_dir = nullptr;
std::string cache_dir_str = fs_get_cache_directory() + "rpc/";
if (params.use_cache) {
if (!fs_create_directory_with_parents(cache_dir_str)) {
fprintf(stderr, "Failed to create cache directory: %s\n", cache_dir_str.c_str());
return 1;
}
cache_dir = cache_dir_str.c_str();
}
printf("Starting RPC server\n");
printf(" endpoint : %s\n", endpoint.c_str());
printf(" local cache : %s\n", cache_dir ? cache_dir : "n/a");
printf(" backend memory : %zu MB\n", free_mem / (1024 * 1024));
ggml_backend_rpc_start_server(backend, endpoint.c_str(), cache_dir, free_mem, total_mem);
ggml_backend_free(backend);
return 0;
}

View File

@@ -1,5 +1,16 @@
set(TARGET llama-run)
add_executable(${TARGET} run.cpp linenoise.cpp/linenoise.cpp)
# TODO: avoid copying this code block from common/CMakeLists.txt
set(LLAMA_RUN_EXTRA_LIBS "")
if (LLAMA_CURL)
find_package(CURL REQUIRED)
target_compile_definitions(${TARGET} PUBLIC LLAMA_USE_CURL)
include_directories(${CURL_INCLUDE_DIRS})
find_library(CURL_LIBRARY curl REQUIRED)
set(LLAMA_RUN_EXTRA_LIBS ${LLAMA_RUN_EXTRA_LIBS} ${CURL_LIBRARY})
endif ()
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT} ${LLAMA_RUN_EXTRA_LIBS})
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@@ -38,24 +38,6 @@
}
#endif
GGML_ATTRIBUTE_FORMAT(1, 2)
static std::string fmt(const char * fmt, ...) {
va_list ap;
va_list ap2;
va_start(ap, fmt);
va_copy(ap2, ap);
const int size = vsnprintf(NULL, 0, fmt, ap);
GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
std::string buf;
buf.resize(size);
const int size2 = vsnprintf(const_cast<char *>(buf.data()), buf.size() + 1, fmt, ap2);
GGML_ASSERT(size2 == size);
va_end(ap2);
va_end(ap);
return buf;
}
GGML_ATTRIBUTE_FORMAT(1, 2)
static int printe(const char * fmt, ...) {
va_list args;
@@ -79,6 +61,7 @@ class Opt {
ctx_params = llama_context_default_params();
model_params = llama_model_default_params();
context_size_default = ctx_params.n_batch;
n_threads_default = ctx_params.n_threads;
ngl_default = model_params.n_gpu_layers;
common_params_sampling sampling;
temperature_default = sampling.temp;
@@ -104,6 +87,7 @@ class Opt {
ctx_params.n_batch = context_size >= 0 ? context_size : context_size_default;
ctx_params.n_ctx = ctx_params.n_batch;
ctx_params.n_threads = ctx_params.n_threads_batch = n_threads >= 0 ? n_threads : n_threads_default;
model_params.n_gpu_layers = ngl >= 0 ? ngl : ngl_default;
temperature = temperature >= 0 ? temperature : temperature_default;
@@ -116,12 +100,12 @@ class Opt {
std::string chat_template_file;
std::string user;
bool use_jinja = false;
int context_size = -1, ngl = -1;
int context_size = -1, ngl = -1, n_threads = -1;
float temperature = -1;
bool verbose = false;
private:
int context_size_default = -1, ngl_default = -1;
int context_size_default = -1, ngl_default = -1, n_threads_default = -1;
float temperature_default = -1;
bool help = false;
@@ -159,53 +143,94 @@ class Opt {
return 0;
}
int parse_options_with_value(int argc, const char ** argv, int & i, bool & options_parsing) {
if (options_parsing && (strcmp(argv[i], "-c") == 0 || strcmp(argv[i], "--context-size") == 0)) {
if (handle_option_with_value(argc, argv, i, context_size) == 1) {
return 1;
}
} else if (options_parsing &&
(strcmp(argv[i], "-n") == 0 || strcmp(argv[i], "-ngl") == 0 || strcmp(argv[i], "--ngl") == 0)) {
if (handle_option_with_value(argc, argv, i, ngl) == 1) {
return 1;
}
} else if (options_parsing && (strcmp(argv[i], "-t") == 0 || strcmp(argv[i], "--threads") == 0)) {
if (handle_option_with_value(argc, argv, i, n_threads) == 1) {
return 1;
}
} else if (options_parsing && strcmp(argv[i], "--temp") == 0) {
if (handle_option_with_value(argc, argv, i, temperature) == 1) {
return 1;
}
} else if (options_parsing && strcmp(argv[i], "--chat-template-file") == 0) {
if (handle_option_with_value(argc, argv, i, chat_template_file) == 1) {
return 1;
}
use_jinja = true;
} else {
return 2;
}
return 0;
}
int parse_options(const char ** argv, int & i, bool & options_parsing) {
if (options_parsing && (parse_flag(argv, i, "-v", "--verbose") || parse_flag(argv, i, "-v", "--log-verbose"))) {
verbose = true;
} else if (options_parsing && strcmp(argv[i], "--jinja") == 0) {
use_jinja = true;
} else if (options_parsing && parse_flag(argv, i, "-h", "--help")) {
help = true;
return 0;
} else if (options_parsing && strcmp(argv[i], "--") == 0) {
options_parsing = false;
} else {
return 2;
}
return 0;
}
int parse_positional_args(const char ** argv, int & i, int & positional_args_i) {
if (positional_args_i == 0) {
if (!argv[i][0] || argv[i][0] == '-') {
return 1;
}
++positional_args_i;
model_ = argv[i];
} else if (positional_args_i == 1) {
++positional_args_i;
user = argv[i];
} else {
user += " " + std::string(argv[i]);
}
return 0;
}
int parse(int argc, const char ** argv) {
bool options_parsing = true;
for (int i = 1, positional_args_i = 0; i < argc; ++i) {
if (options_parsing && (strcmp(argv[i], "-c") == 0 || strcmp(argv[i], "--context-size") == 0)) {
if (handle_option_with_value(argc, argv, i, context_size) == 1) {
return 1;
}
} else if (options_parsing &&
(strcmp(argv[i], "-n") == 0 || strcmp(argv[i], "-ngl") == 0 || strcmp(argv[i], "--ngl") == 0)) {
if (handle_option_with_value(argc, argv, i, ngl) == 1) {
return 1;
}
} else if (options_parsing && strcmp(argv[i], "--temp") == 0) {
if (handle_option_with_value(argc, argv, i, temperature) == 1) {
return 1;
}
} else if (options_parsing &&
(parse_flag(argv, i, "-v", "--verbose") || parse_flag(argv, i, "-v", "--log-verbose"))) {
verbose = true;
} else if (options_parsing && strcmp(argv[i], "--jinja") == 0) {
use_jinja = true;
} else if (options_parsing && strcmp(argv[i], "--chat-template-file") == 0){
if (handle_option_with_value(argc, argv, i, chat_template_file) == 1) {
return 1;
}
use_jinja = true;
} else if (options_parsing && parse_flag(argv, i, "-h", "--help")) {
help = true;
return 0;
} else if (options_parsing && strcmp(argv[i], "--") == 0) {
options_parsing = false;
} else if (positional_args_i == 0) {
if (!argv[i][0] || argv[i][0] == '-') {
return 1;
}
int ret = parse_options_with_value(argc, argv, i, options_parsing);
if (ret == 0) {
continue;
} else if (ret == 1) {
return ret;
}
++positional_args_i;
model_ = argv[i];
} else if (positional_args_i == 1) {
++positional_args_i;
user = argv[i];
} else {
user += " " + std::string(argv[i]);
ret = parse_options(argv, i, options_parsing);
if (ret == 0) {
continue;
} else if (ret == 1) {
return ret;
}
if (parse_positional_args(argv, i, positional_args_i)) {
return 1;
}
}
if (model_.empty()){
if (model_.empty()) {
return 1;
}
@@ -232,6 +257,8 @@ class Opt {
" Number of GPU layers (default: %d)\n"
" --temp <value>\n"
" Temperature (default: %.1f)\n"
" -t, --threads <value>\n"
" Number of threads to use during generation (default: %d)\n"
" -v, --verbose, --log-verbose\n"
" Set verbosity level to infinity (i.e. log all messages, useful for debugging)\n"
" -h, --help\n"
@@ -260,7 +287,7 @@ class Opt {
" llama-run file://some-file3.gguf\n"
" llama-run --ngl 999 some-file4.gguf\n"
" llama-run --ngl 999 some-file5.gguf Hello World\n",
context_size_default, ngl_default, temperature_default);
context_size_default, ngl_default, temperature_default, n_threads_default);
}
};
@@ -480,11 +507,11 @@ class HttpClient {
int secs = static_cast<int>(seconds) % 60;
if (hrs > 0) {
return fmt("%dh %02dm %02ds", hrs, mins, secs);
return string_format("%dh %02dm %02ds", hrs, mins, secs);
} else if (mins > 0) {
return fmt("%dm %02ds", mins, secs);
return string_format("%dm %02ds", mins, secs);
} else {
return fmt("%ds", secs);
return string_format("%ds", secs);
}
}
@@ -499,7 +526,7 @@ class HttpClient {
}
}
return fmt("%.2f %s", dbl_size, suffix[i]);
return string_format("%.2f %s", dbl_size, suffix[i]);
}
static int update_progress(void * ptr, curl_off_t total_to_download, curl_off_t now_downloaded, curl_off_t,
@@ -533,7 +560,9 @@ class HttpClient {
return (now_downloaded_plus_file_size * 100) / total_to_download;
}
static std::string generate_progress_prefix(curl_off_t percentage) { return fmt("%3ld%% |", static_cast<long int>(percentage)); }
static std::string generate_progress_prefix(curl_off_t percentage) {
return string_format("%3ld%% |", static_cast<long int>(percentage));
}
static double calculate_speed(curl_off_t now_downloaded, const std::chrono::steady_clock::time_point & start_time) {
const auto now = std::chrono::steady_clock::now();
@@ -544,9 +573,9 @@ class HttpClient {
static std::string generate_progress_suffix(curl_off_t now_downloaded_plus_file_size, curl_off_t total_to_download,
double speed, double estimated_time) {
const int width = 10;
return fmt("%*s/%*s%*s/s%*s", width, human_readable_size(now_downloaded_plus_file_size).c_str(), width,
human_readable_size(total_to_download).c_str(), width, human_readable_size(speed).c_str(), width,
human_readable_time(estimated_time).c_str());
return string_format("%*s/%*s%*s/s%*s", width, human_readable_size(now_downloaded_plus_file_size).c_str(),
width, human_readable_size(total_to_download).c_str(), width,
human_readable_size(speed).c_str(), width, human_readable_time(estimated_time).c_str());
}
static int calculate_progress_bar_width(const std::string & progress_prefix, const std::string & progress_suffix) {
@@ -668,8 +697,10 @@ class LlamaData {
std::vector<std::string> headers = { "User-Agent: llama-cpp", "Accept: application/json" };
std::string url;
std::string model_endpoint = get_model_endpoint();
if (pos == std::string::npos) {
auto [model_name, manifest_url] = extract_model_and_tag(model, "https://huggingface.co/v2/");
auto [model_name, manifest_url] = extract_model_and_tag(model, model_endpoint + "v2/");
hfr = model_name;
nlohmann::json manifest;
@@ -684,7 +715,7 @@ class LlamaData {
hff = model.substr(pos + 1);
}
url = "https://huggingface.co/" + hfr + "/resolve/main/" + hff;
url = model_endpoint + hfr + "/resolve/main/" + hff;
return download(url, bn, true, headers);
}
@@ -891,7 +922,7 @@ static int apply_chat_template(const struct common_chat_templates * tmpls, Llama
// Function to tokenize the prompt
static int tokenize_prompt(const llama_vocab * vocab, const std::string & prompt,
std::vector<llama_token> & prompt_tokens, const LlamaData & llama_data) {
const bool is_first = llama_get_kv_cache_used_cells(llama_data.context.get()) == 0;
const bool is_first = llama_kv_self_used_cells(llama_data.context.get()) == 0;
const int n_prompt_tokens = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, is_first, true);
prompt_tokens.resize(n_prompt_tokens);
@@ -907,7 +938,7 @@ static int tokenize_prompt(const llama_vocab * vocab, const std::string & prompt
// Check if we have enough space in the context to evaluate this batch
static int check_context_size(const llama_context_ptr & ctx, const llama_batch & batch) {
const int n_ctx = llama_n_ctx(ctx.get());
const int n_ctx_used = llama_get_kv_cache_used_cells(ctx.get());
const int n_ctx_used = llama_kv_self_used_cells(ctx.get());
if (n_ctx_used + batch.n_tokens > n_ctx) {
printf(LOG_COL_DEFAULT "\n");
printe("context size exceeded\n");

View File

@@ -15,7 +15,7 @@ int main(int argc, char ** argv) {
return 1;
}
print_build_info();
common_init();
if (params.n_predict < 0) {
params.n_predict = 16;
@@ -196,7 +196,7 @@ int main(int argc, char ** argv) {
fprintf(stderr, "%s : seq 0 copied, %zd bytes\n", __func__, ncopy);
// erase whole kv
llama_kv_cache_clear(ctx3);
llama_kv_self_clear(ctx3);
fprintf(stderr, "%s : kv cache cleared\n", __func__);
// restore kv into seq 1

File diff suppressed because it is too large Load Diff

Binary file not shown.

View File

@@ -133,7 +133,8 @@ struct slot_params {
auto grammar_triggers = json::array();
for (const auto & trigger : sampling.grammar_triggers) {
grammar_triggers.push_back(trigger.to_json<json>());
server_grammar_trigger ct(std::move(trigger));
grammar_triggers.push_back(ct.to_json());
}
return json {
@@ -372,9 +373,9 @@ struct server_task {
const auto grammar_triggers = data.find("grammar_triggers");
if (grammar_triggers != data.end()) {
for (const auto & t : *grammar_triggers) {
auto ct = common_grammar_trigger::from_json(t);
if (ct.type == COMMON_GRAMMAR_TRIGGER_TYPE_WORD) {
const auto & word = ct.value;
server_grammar_trigger ct(t);
if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_WORD) {
const auto & word = ct.value.value;
auto ids = common_tokenize(vocab, word, /* add_special= */ false, /* parse_special= */ true);
if (ids.size() == 1) {
auto token = ids[0];
@@ -392,7 +393,7 @@ struct server_task {
params.sampling.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, word});
}
} else {
params.sampling.grammar_triggers.push_back(ct);
params.sampling.grammar_triggers.push_back(std::move(ct.value));
}
}
}
@@ -489,8 +490,12 @@ struct result_timings {
double predicted_per_token_ms;
double predicted_per_second;
// Optional speculative metrics - only included when > 0
int32_t draft_n = 0;
int32_t draft_n_accepted = 0;
json to_json() const {
return {
json base = {
{"prompt_n", prompt_n},
{"prompt_ms", prompt_ms},
{"prompt_per_token_ms", prompt_per_token_ms},
@@ -501,6 +506,13 @@ struct result_timings {
{"predicted_per_token_ms", predicted_per_token_ms},
{"predicted_per_second", predicted_per_second},
};
if (draft_n > 0) {
base["draft_n"] = draft_n;
base["draft_n_accepted"] = draft_n_accepted;
}
return base;
}
};
@@ -830,6 +842,11 @@ struct server_task_result_cmpl_final : server_task_result {
ret.push_back({"timings", timings.to_json()});
}
// extra fields for debugging purposes
if (verbose) {
ret["__verbose"] = to_json_non_oaicompat();
}
return ret;
}
};
@@ -1294,6 +1311,10 @@ struct server_slot {
std::function<void(int)> callback_on_release;
// Speculative decoding stats
int32_t n_draft_total = 0; // Total draft tokens generated
int32_t n_draft_accepted = 0; // Draft tokens actually accepted
void reset() {
SLT_DBG(*this, "%s", "\n");
@@ -1310,6 +1331,10 @@ struct server_slot {
generated_tokens.clear();
generated_token_probs.clear();
// clear speculative decoding stats
n_draft_total = 0;
n_draft_accepted = 0;
}
bool is_non_causal() const {
@@ -1376,6 +1401,12 @@ struct server_slot {
timings.predicted_per_token_ms = t_token_generation / n_decoded;
timings.predicted_per_second = 1e3 / t_token_generation * n_decoded;
// Add speculative metrics
if (n_draft_total > 0) {
timings.draft_n = n_draft_total;
timings.draft_n_accepted = n_draft_accepted;
}
return timings;
}
@@ -1423,6 +1454,15 @@ struct server_slot {
t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
t_token_generation, n_decoded, t_gen, n_gen_second,
t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);
if (n_draft_total > 0) {
const float draft_ratio = (float) n_draft_accepted / n_draft_total;
SLT_INF(*this,
"\n"
"draft acceptance rate = %0.5f (%5d accepted / %5d generated)\n",
draft_ratio, n_draft_accepted, n_draft_total
);
}
}
json to_json() const {
@@ -1665,6 +1705,8 @@ private:
};
struct server_response {
bool running = true;
// for keeping track of all tasks waiting for the result
std::unordered_set<int> waiting_task_ids;
@@ -1719,6 +1761,10 @@ struct server_response {
while (true) {
std::unique_lock<std::mutex> lock(mutex_results);
condition_results.wait(lock, [&]{
if (!running) {
SRV_DBG("%s : queue result stop\n", __func__);
std::terminate(); // we cannot return here since the caller is HTTP code
}
return !queue_results.empty();
});
@@ -1749,6 +1795,10 @@ struct server_response {
}
std::cv_status cr_res = condition_results.wait_for(lock, std::chrono::seconds(timeout));
if (!running) {
SRV_DBG("%s : queue result stop\n", __func__);
std::terminate(); // we cannot return here since the caller is HTTP code
}
if (cr_res == std::cv_status::timeout) {
return nullptr;
}
@@ -1778,6 +1828,12 @@ struct server_response {
}
}
}
// terminate the waiting loop
void terminate() {
running = false;
condition_results.notify_all();
}
};
struct server_context {
@@ -1837,7 +1893,7 @@ struct server_context {
}
bool load_model(const common_params & params) {
SRV_INF("loading model '%s'\n", params.model.c_str());
SRV_INF("loading model '%s'\n", params.model.path.c_str());
params_base = params;
@@ -1847,7 +1903,7 @@ struct server_context {
ctx = llama_init.context.get();
if (model == nullptr) {
SRV_ERR("failed to load model, '%s'\n", params_base.model.c_str());
SRV_ERR("failed to load model, '%s'\n", params_base.model.path.c_str());
return false;
}
@@ -1858,31 +1914,32 @@ struct server_context {
add_bos_token = llama_vocab_get_add_bos(vocab);
has_eos_token = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
if (!params_base.speculative.model.empty() || !params_base.speculative.hf_repo.empty()) {
SRV_INF("loading draft model '%s'\n", params_base.speculative.model.c_str());
if (!params_base.speculative.model.path.empty() || !params_base.speculative.model.hf_repo.empty()) {
SRV_INF("loading draft model '%s'\n", params_base.speculative.model.path.c_str());
auto params_dft = params_base;
params_dft.devices = params_base.speculative.devices;
params_dft.hf_file = params_base.speculative.hf_file;
params_dft.hf_repo = params_base.speculative.hf_repo;
params_dft.model = params_base.speculative.model;
params_dft.model_url = params_base.speculative.model_url;
params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? params_base.n_ctx / params_base.n_parallel : params_base.speculative.n_ctx;
params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
params_dft.n_parallel = 1;
// force F16 KV cache for the draft model for extra performance
params_dft.cache_type_k = GGML_TYPE_F16;
params_dft.cache_type_v = GGML_TYPE_F16;
llama_init_dft = common_init_from_params(params_dft);
model_dft = llama_init_dft.model.get();
if (model_dft == nullptr) {
SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.c_str());
SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.path.c_str());
return false;
}
if (!common_speculative_are_compatible(ctx, llama_init_dft.context.get())) {
SRV_ERR("the draft model '%s' is not compatible with the target model '%s'\n", params_base.speculative.model.c_str(), params_base.model.c_str());
SRV_ERR("the draft model '%s' is not compatible with the target model '%s'\n", params_base.speculative.model.path.c_str(), params_base.model.path.c_str());
return false;
}
@@ -1892,10 +1949,6 @@ struct server_context {
cparams_dft = common_context_params_to_llama(params_dft);
cparams_dft.n_batch = n_ctx_dft;
// force F16 KV cache for the draft model for extra performance
cparams_dft.type_k = GGML_TYPE_F16;
cparams_dft.type_v = GGML_TYPE_F16;
// the context is not needed - we will create one for each slot
llama_init_dft.context.reset();
}
@@ -2040,6 +2093,18 @@ struct server_context {
return ret;
}
bool can_be_detokenized(const struct llama_context * ctx, const std::vector<llama_token> & tokens) {
const llama_model * model = llama_get_model(ctx);
const llama_vocab * vocab = llama_model_get_vocab(model);
const int32_t n_vocab = llama_vocab_n_tokens(vocab);
for (const auto & token : tokens) {
if (token < 0 || token >= n_vocab) {
return false;
}
}
return true;
}
bool launch_slot_with_task(server_slot & slot, const server_task & task) {
slot.reset();
slot.id_task = task.id;
@@ -2054,6 +2119,11 @@ struct server_context {
slot.lora = task.params.lora;
}
bool can_detokenize = can_be_detokenized(ctx, slot.prompt_tokens);
if (!can_detokenize) {
send_error(task, "Prompt contains invalid tokens", ERROR_TYPE_INVALID_REQUEST);
return false;
}
SLT_DBG(slot, "launching slot : %s\n", safe_json_to_str(slot.to_json()).c_str());
if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
@@ -2096,7 +2166,7 @@ struct server_context {
SRV_DBG("%s", "clearing KV cache\n");
// clear the entire KV cache
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
clean_kv_cache = false;
}
@@ -2638,8 +2708,8 @@ struct server_context {
res->n_tasks_deferred = queue_tasks.queue_tasks_deferred.size();
res->t_start = metrics.t_start;
res->kv_cache_tokens_count = llama_get_kv_cache_token_count(ctx);
res->kv_cache_used_cells = llama_get_kv_cache_used_cells(ctx);
res->kv_cache_tokens_count = llama_kv_self_n_tokens(ctx);
res->kv_cache_used_cells = llama_kv_self_used_cells(ctx);
res->n_prompt_tokens_processed_total = metrics.n_prompt_tokens_processed_total;
res->t_prompt_processing_total = metrics.t_prompt_processing_total;
@@ -2755,7 +2825,7 @@ struct server_context {
// Erase token cache
const size_t n_erased = slot->cache_tokens.size();
llama_kv_cache_seq_rm(ctx, slot->id, -1, -1);
llama_kv_self_seq_rm(ctx, slot->id, -1, -1);
slot->cache_tokens.clear();
auto res = std::make_unique<server_task_result_slot_erase>();
@@ -2823,8 +2893,8 @@ struct server_context {
SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
llama_kv_cache_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard);
llama_kv_cache_seq_add(ctx, slot.id, n_keep + n_discard, slot.n_past, -n_discard);
llama_kv_self_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard);
llama_kv_self_seq_add(ctx, slot.id, n_keep + n_discard, slot.n_past, -n_discard);
if (slot.params.cache_prompt) {
for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++) {
@@ -3015,8 +3085,8 @@ struct server_context {
const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
llama_kv_cache_seq_rm (ctx, slot.id, head_p, head_c);
llama_kv_cache_seq_add(ctx, slot.id, head_c, head_c + n_match, kv_shift);
llama_kv_self_seq_rm (ctx, slot.id, head_p, head_c);
llama_kv_self_seq_add(ctx, slot.id, head_c, head_c + n_match, kv_shift);
for (size_t i = 0; i < n_match; i++) {
slot.cache_tokens[head_p + i] = slot.cache_tokens[head_c + i];
@@ -3054,9 +3124,9 @@ struct server_context {
}
// keep only the common part
if (!llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1)) {
if (!llama_kv_self_seq_rm(ctx, slot.id, slot.n_past, -1)) {
// could not partially delete (likely using a non-Transformer model)
llama_kv_cache_seq_rm(ctx, slot.id, -1, -1);
llama_kv_self_seq_rm(ctx, slot.id, -1, -1);
// there is no common part left
slot.n_past = 0;
@@ -3268,6 +3338,9 @@ struct server_context {
llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, slot.cache_tokens, id);
// keep track of total number of tokens generated in the draft
slot.n_draft_total += draft.size();
// ignore small drafts
if (slot.params.speculative.n_min > (int) draft.size()) {
SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.params.speculative.n_min);
@@ -3293,10 +3366,13 @@ struct server_context {
slot.n_past += ids.size();
slot.n_decoded += ids.size();
// update how many tokens out of draft was accepted
slot.n_draft_accepted += ids.size() - 1;
slot.cache_tokens.push_back(id);
slot.cache_tokens.insert(slot.cache_tokens.end(), ids.begin(), ids.end() - 1);
llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1);
llama_kv_self_seq_rm(ctx, slot.id, slot.n_past, -1);
for (size_t i = 0; i < ids.size(); ++i) {
completion_token_output result;
@@ -3803,7 +3879,7 @@ int main(int argc, char ** argv) {
json data = {
{ "default_generation_settings", ctx_server.default_generation_settings_for_props },
{ "total_slots", ctx_server.params_base.n_parallel },
{ "model_path", ctx_server.params_base.model },
{ "model_path", ctx_server.params_base.model.path },
{ "chat_template", common_chat_templates_source(ctx_server.chat_templates.get()) },
{ "bos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_bos(ctx_server.vocab), /* special= */ true)},
{ "eos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_eos(ctx_server.vocab), /* special= */ true)},
@@ -3831,6 +3907,21 @@ int main(int argc, char ** argv) {
res_ok(res, {{ "success", true }});
};
const auto handle_api_show = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
json data = {
{
"template", common_chat_templates_source(ctx_server.chat_templates.get()),
},
{
"model_info", {
{ "llama.context_length", ctx_server.slots.back().n_ctx, },
}
},
};
res_ok(res, data);
};
// handle completion-like requests (completion, chat, infill)
// we can optionally provide a custom format for partial results and final results
const auto handle_completions_impl = [&ctx_server, &res_error, &res_ok](
@@ -4069,7 +4160,7 @@ int main(int argc, char ** argv) {
{"object", "list"},
{"data", {
{
{"id", params.model_alias.empty() ? params.model : params.model_alias},
{"id", params.model_alias.empty() ? params.model.path : params.model_alias},
{"object", "model"},
{"created", std::time(0)},
{"owned_by", "llamacpp"},
@@ -4395,6 +4486,7 @@ int main(int argc, char ** argv) {
svr->Get ("/metrics", handle_metrics);
svr->Get ("/props", handle_props);
svr->Post("/props", handle_props_change);
svr->Post("/api/show", handle_api_show);
svr->Get ("/models", handle_models); // public endpoint (no API key check)
svr->Get ("/v1/models", handle_models); // public endpoint (no API key check)
svr->Post("/completion", handle_completions); // legacy
@@ -4431,21 +4523,31 @@ int main(int argc, char ** argv) {
svr->new_task_queue = [&params] { return new httplib::ThreadPool(params.n_threads_http); };
// clean up function, to be called before exit
auto clean_up = [&svr]() {
auto clean_up = [&svr, &ctx_server]() {
SRV_INF("%s: cleaning up before exit...\n", __func__);
svr->stop();
ctx_server.queue_results.terminate();
llama_backend_free();
};
// bind HTTP listen port
bool was_bound = false;
if (params.port == 0) {
int bound_port = svr->bind_to_any_port(params.hostname);
if ((was_bound = (bound_port >= 0))) {
params.port = bound_port;
}
if (string_ends_with(std::string(params.hostname), ".sock")) {
LOG_INF("%s: setting address family to AF_UNIX\n", __func__);
svr->set_address_family(AF_UNIX);
// bind_to_port requires a second arg, any value other than 0 should
// simply get ignored
was_bound = svr->bind_to_port(params.hostname, 8080);
} else {
was_bound = svr->bind_to_port(params.hostname, params.port);
LOG_INF("%s: binding port with default address family\n", __func__);
// bind HTTP listen port
if (params.port == 0) {
int bound_port = svr->bind_to_any_port(params.hostname);
if ((was_bound = (bound_port >= 0))) {
params.port = bound_port;
}
} else {
was_bound = svr->bind_to_port(params.hostname, params.port);
}
}
if (!was_bound) {
@@ -4465,7 +4567,7 @@ int main(int argc, char ** argv) {
if (!ctx_server.load_model(params)) {
clean_up();
// t.join(); // FIXME: see below
t.join();
LOG_ERR("%s: exiting due to model loading error\n", __func__);
return 1;
}
@@ -4513,7 +4615,7 @@ int main(int argc, char ** argv) {
ctx_server.queue_tasks.start_loop();
clean_up();
// t.join(); // FIXME: http thread may stuck if there is an on-going request. we don't need to care about this for now as the HTTP connection will already be closed at this point, but it's better to fix this
t.join();
return 0;
}

View File

@@ -17,7 +17,7 @@ To mitigate it, you can increase values in `n_predict`, `kv_size`.
```shell
cd ../../..
cmake -B build -DLLAMA_CURL=ON
cmake -B build
cmake --build build --target llama-server
```

View File

@@ -49,6 +49,26 @@ def test_embedding_multiple():
assert len(d['embedding']) > 1
def test_embedding_multiple_with_fa():
server = ServerPreset.bert_bge_small_with_fa()
server.pooling = 'last'
server.start()
# one of these should trigger the FA branch (i.e. context size % 256 == 0)
res = server.make_request("POST", "/v1/embeddings", data={
"input": [
"a "*253,
"b "*254,
"c "*255,
"d "*256,
],
})
assert res.status_code == 200
assert len(res.body['data']) == 4
for d in res.body['data']:
assert 'embedding' in d
assert len(d['embedding']) > 1
@pytest.mark.parametrize(
"input,is_multi_prompt",
[

View File

@@ -302,7 +302,7 @@ class ServerPreset:
server.model_hf_repo = "ggml-org/models"
server.model_hf_file = "tinyllamas/stories260K.gguf"
server.model_alias = "tinyllama-2"
server.n_ctx = 256
server.n_ctx = 512
server.n_batch = 32
server.n_slots = 2
server.n_predict = 64
@@ -323,6 +323,21 @@ class ServerPreset:
server.server_embeddings = True
return server
@staticmethod
def bert_bge_small_with_fa() -> ServerProcess:
server = ServerProcess()
server.model_hf_repo = "ggml-org/models"
server.model_hf_file = "bert-bge-small/ggml-model-f16.gguf"
server.model_alias = "bert-bge-small"
server.n_ctx = 1024
server.n_batch = 300
server.n_ubatch = 300
server.n_slots = 2
server.fa = True
server.seed = 42
server.server_embeddings = True
return server
@staticmethod
def tinyllama_infill() -> ServerProcess:
server = ServerProcess()

View File

@@ -3,7 +3,7 @@
#include "common.h"
#include "log.h"
#include "llama.h"
#include "common/base64.hpp"
#include "base64.hpp"
// increase max payload length to allow use of larger context size
#define CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 1048576
@@ -58,6 +58,32 @@ static T json_value(const json & body, const std::string & key, const T & defaul
const static std::string build_info("b" + std::to_string(LLAMA_BUILD_NUMBER) + "-" + LLAMA_COMMIT);
// thin wrapper around common_grammar_trigger with (de)serialization functions
struct server_grammar_trigger {
common_grammar_trigger value;
server_grammar_trigger() = default;
server_grammar_trigger(const common_grammar_trigger & value) : value(value) {}
server_grammar_trigger(const json & in) {
value.type = (common_grammar_trigger_type) in.at("type").get<int>();
value.value = in.at("value").get<std::string>();
if (value.type == COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN) {
value.token = (llama_token) in.at("token").get<int>();
}
}
json to_json() const {
json out {
{"type", (int) value.type},
{"value", value.value},
};
if (value.type == COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN) {
out["token"] = (int) value.token;
}
return out;
}
};
//
// tokenizer and input processing utils
//
@@ -621,11 +647,14 @@ static json oaicompat_completion_params_parse(
llama_params["chat_format"] = static_cast<int>(chat_params.format);
llama_params["prompt"] = chat_params.prompt;
llama_params["grammar"] = chat_params.grammar;
if (!chat_params.grammar.empty()) {
llama_params["grammar"] = chat_params.grammar;
}
llama_params["grammar_lazy"] = chat_params.grammar_lazy;
auto grammar_triggers = json::array();
for (const auto & trigger : chat_params.grammar_triggers) {
grammar_triggers.push_back(trigger.to_json<json>());
server_grammar_trigger ct(trigger);
grammar_triggers.push_back(ct.to_json());
}
llama_params["grammar_triggers"] = grammar_triggers;
llama_params["preserved_tokens"] = chat_params.preserved_tokens;

File diff suppressed because it is too large Load Diff

View File

@@ -13,9 +13,11 @@
"dependencies": {
"@heroicons/react": "^2.2.0",
"@sec-ant/readable-stream": "^0.6.0",
"@tailwindcss/postcss": "^4.1.1",
"@tailwindcss/vite": "^4.1.1",
"@vscode/markdown-it-katex": "^1.1.1",
"autoprefixer": "^10.4.20",
"daisyui": "^4.12.14",
"daisyui": "^5.0.12",
"dexie": "^4.0.11",
"highlight.js": "^11.10.0",
"katex": "^0.16.15",
@@ -29,7 +31,7 @@
"remark-breaks": "^4.0.0",
"remark-gfm": "^4.0.0",
"remark-math": "^6.0.0",
"tailwindcss": "^3.4.15",
"tailwindcss": "^4.1.1",
"textlinestream": "^1.1.1",
"vite-plugin-singlefile": "^2.0.3"
},

View File

@@ -1,6 +1,5 @@
export default {
plugins: {
tailwindcss: {},
autoprefixer: {},
"@tailwindcss/postcss": {},
},
}

View File

@@ -28,7 +28,7 @@ function AppLayout() {
<>
<Sidebar />
<div
className="drawer-content grow flex flex-col h-screen w-screen mx-auto px-4 overflow-auto"
className="drawer-content grow flex flex-col h-screen w-screen mx-auto px-4 overflow-auto bg-base-100"
id="main-scroll"
>
<Header />

View File

@@ -1,4 +1,4 @@
import daisyuiThemes from 'daisyui/src/theming/themes';
import daisyuiThemes from 'daisyui/theme/object';
import { isNumeric } from './utils/misc';
export const isDev = import.meta.env.MODE === 'development';

View File

@@ -1,4 +1,4 @@
import { useEffect, useMemo, useRef, useState } from 'react';
import { useEffect, useMemo, useState } from 'react';
import { CallbackGeneratedChunk, useAppContext } from '../utils/app.context';
import ChatMessage from './ChatMessage';
import { CanvasType, Message, PendingMessage } from '../utils/types';
@@ -6,6 +6,7 @@ import { classNames, cleanCurrentUrl, throttle } from '../utils/misc';
import CanvasPyInterpreter from './CanvasPyInterpreter';
import StorageUtils from '../utils/storage';
import { useVSCodeContext } from '../utils/llama-vscode';
import { useChatTextarea, ChatTextareaApi } from './useChatTextarea.ts';
/**
* A message display is a message node with additional information for rendering.
@@ -99,13 +100,10 @@ export default function ChatScreen() {
canvasData,
replaceMessageAndGenerate,
} = useAppContext();
const [inputMsg, setInputMsg] = useState(prefilledMsg.content());
const inputRef = useRef<HTMLTextAreaElement>(null);
const { extraContext, clearExtraContext } = useVSCodeContext(
inputRef,
setInputMsg
);
const textarea: ChatTextareaApi = useChatTextarea(prefilledMsg.content());
const { extraContext, clearExtraContext } = useVSCodeContext(textarea);
// TODO: improve this when we have "upload file" feature
const currExtra: Message['extra'] = extraContext ? [extraContext] : undefined;
@@ -135,9 +133,10 @@ export default function ChatScreen() {
};
const sendNewMessage = async () => {
if (inputMsg.trim().length === 0 || isGenerating(currConvId ?? '')) return;
const lastInpMsg = inputMsg;
setInputMsg('');
const lastInpMsg = textarea.value();
if (lastInpMsg.trim().length === 0 || isGenerating(currConvId ?? ''))
return;
textarea.setValue('');
scrollToBottom(false);
setCurrNodeId(-1);
// get the last message node
@@ -146,13 +145,13 @@ export default function ChatScreen() {
!(await sendMessage(
currConvId,
lastMsgNodeId,
inputMsg,
lastInpMsg,
currExtra,
onChunk
))
) {
// restore the input message if failed
setInputMsg(lastInpMsg);
textarea.setValue(lastInpMsg);
}
// OK
clearExtraContext();
@@ -195,16 +194,13 @@ export default function ChatScreen() {
// send the prefilled message if needed
sendNewMessage();
} else {
// otherwise, focus on the input and move the cursor to the end
if (inputRef.current) {
inputRef.current.focus();
inputRef.current.selectionStart = inputRef.current.value.length;
}
// otherwise, focus on the input
textarea.focus();
}
prefilledMsg.clear();
// no need to keep track of sendNewMessage
// eslint-disable-next-line react-hooks/exhaustive-deps
}, [inputRef]);
}, [textarea.ref]);
// due to some timing issues of StorageUtils.appendMsg(), we need to make sure the pendingMsg is not duplicated upon rendering (i.e. appears once in the saved conversation and once in the pendingMsg)
const pendingMsgDisplay: MessageDisplay[] =
@@ -254,16 +250,16 @@ export default function ChatScreen() {
</div>
{/* chat input */}
<div className="flex flex-row items-center pt-8 pb-6 sticky bottom-0 bg-base-100">
<div className="flex flex-row items-end pt-8 pb-6 sticky bottom-0 bg-base-100">
<textarea
className="textarea textarea-bordered w-full"
// Default (mobile): Enable vertical resize, overflow auto for scrolling if needed
// Large screens (lg:): Disable manual resize, apply max-height for autosize limit
className="textarea textarea-bordered w-full resize-vertical lg:resize-none lg:max-h-48 lg:overflow-y-auto" // Adjust lg:max-h-48 as needed (e.g., lg:max-h-60)
placeholder="Type a message (Shift+Enter to add a new line)"
ref={inputRef}
value={inputMsg}
onChange={(e) => setInputMsg(e.target.value)}
ref={textarea.ref}
onInput={textarea.onInput} // Hook's input handler (will only resize height on lg+ screens)
onKeyDown={(e) => {
if (e.nativeEvent.isComposing || e.keyCode === 229) return;
if (e.key === 'Enter' && e.shiftKey) return;
if (e.key === 'Enter' && !e.shiftKey) {
e.preventDefault();
sendNewMessage();
@@ -271,7 +267,11 @@ export default function ChatScreen() {
}}
id="msg-input"
dir="auto"
// Set a base height of 2 rows for mobile views
// On lg+ screens, the hook will calculate and set the initial height anyway
rows={2}
></textarea>
{isGenerating(currConvId ?? '') ? (
<button
className="btn btn-neutral ml-2"
@@ -280,11 +280,7 @@ export default function ChatScreen() {
Stop
</button>
) : (
<button
className="btn btn-primary ml-2"
onClick={sendNewMessage}
disabled={inputMsg.trim().length === 0}
>
<button className="btn btn-primary ml-2" onClick={sendNewMessage}>
Send
</button>
)}

View File

@@ -2,7 +2,7 @@ import { useEffect, useState } from 'react';
import StorageUtils from '../utils/storage';
import { useAppContext } from '../utils/app.context';
import { classNames } from '../utils/misc';
import daisyuiThemes from 'daisyui/src/theming/themes';
import daisyuiThemes from 'daisyui/theme/object';
import { THEMES } from '../Config';
import { useNavigate } from 'react-router';
@@ -20,7 +20,6 @@ export default function Header() {
document.body.setAttribute('data-theme', selectedTheme);
document.body.setAttribute(
'data-color-scheme',
// @ts-expect-error daisyuiThemes complains about index type, but it should work
daisyuiThemes[selectedTheme]?.['color-scheme'] ?? 'auto'
);
}, [selectedTheme]);

View File

@@ -0,0 +1,96 @@
import { useEffect, useRef, useState, useCallback } from 'react';
// Media Query for detecting "large" screens (matching Tailwind's lg: breakpoint)
const LARGE_SCREEN_MQ = '(min-width: 1024px)';
// Calculates and sets the textarea height based on its scrollHeight
const adjustTextareaHeight = (textarea: HTMLTextAreaElement | null) => {
if (!textarea) return;
// Only perform auto-sizing on large screens
if (!window.matchMedia(LARGE_SCREEN_MQ).matches) {
// On small screens, reset inline height and max-height styles.
// This allows CSS (e.g., `rows` attribute or classes) to control the height,
// and enables manual resizing if `resize-vertical` is set.
textarea.style.height = ''; // Use 'auto' or '' to reset
textarea.style.maxHeight = '';
return; // Do not adjust height programmatically on small screens
}
const computedStyle = window.getComputedStyle(textarea);
// Get the max-height specified by CSS (e.g., from `lg:max-h-48`)
const currentMaxHeight = computedStyle.maxHeight;
// Temporarily remove max-height to allow scrollHeight to be calculated correctly
textarea.style.maxHeight = 'none';
// Reset height to 'auto' to measure the actual scrollHeight needed
textarea.style.height = 'auto';
// Set the height to the calculated scrollHeight
textarea.style.height = `${textarea.scrollHeight}px`;
// Re-apply the original max-height from CSS to enforce the limit
textarea.style.maxHeight = currentMaxHeight;
};
// Interface describing the API returned by the hook
export interface ChatTextareaApi {
value: () => string;
setValue: (value: string) => void;
focus: () => void;
ref: React.RefObject<HTMLTextAreaElement>;
onInput: (event: React.FormEvent<HTMLTextAreaElement>) => void; // Input handler
}
// This is a workaround to prevent the textarea from re-rendering when the inner content changes
// See https://github.com/ggml-org/llama.cpp/pull/12299
// combined now with auto-sizing logic.
export function useChatTextarea(initValue: string): ChatTextareaApi {
const [savedInitValue, setSavedInitValue] = useState<string>(initValue);
const textareaRef = useRef<HTMLTextAreaElement>(null);
// Effect to set initial value and height on mount or when initValue changes
useEffect(() => {
const textarea = textareaRef.current;
if (textarea) {
if (typeof savedInitValue === 'string' && savedInitValue.length > 0) {
textarea.value = savedInitValue;
// Call adjustTextareaHeight - it will check screen size internally
setTimeout(() => adjustTextareaHeight(textarea), 0);
setSavedInitValue(''); // Reset after applying
} else {
// Adjust height even if there's no initial value (for initial render)
setTimeout(() => adjustTextareaHeight(textarea), 0);
}
}
}, [textareaRef, savedInitValue]); // Depend on ref and savedInitValue
const handleInput = useCallback(
(event: React.FormEvent<HTMLTextAreaElement>) => {
// Call adjustTextareaHeight on every input - it will decide whether to act
adjustTextareaHeight(event.currentTarget);
},
[]
);
return {
// Method to get the current value directly from the textarea
value: () => {
return textareaRef.current?.value ?? '';
},
// Method to programmatically set the value and trigger height adjustment
setValue: (value: string) => {
const textarea = textareaRef.current;
if (textarea) {
textarea.value = value;
// Call adjustTextareaHeight - it will check screen size internally
setTimeout(() => adjustTextareaHeight(textarea), 0);
}
},
focus: () => {
if (textareaRef.current) {
textareaRef.current.focus();
}
},
ref: textareaRef,
onInput: handleInput,
};
}

View File

@@ -1,8 +1,13 @@
@use 'sass:meta';
@use 'tailwindcss';
@tailwind base;
@tailwind components;
@tailwind utilities;
@plugin 'daisyui' {
themes: all;
}
html {
scrollbar-gutter: auto;
}
.markdown {
h1,

View File

@@ -1,5 +1,6 @@
import { useEffect, useState } from 'react';
import { MessageExtraContext } from './types';
import { ChatTextareaApi } from '../components/useChatTextarea.ts';
// Extra context when using llama.cpp WebUI from llama-vscode, inside an iframe
// Ref: https://github.com/ggml-org/llama.cpp/pull/11940
@@ -14,10 +15,7 @@ interface SetTextEvData {
* window.postMessage({ command: 'setText', text: 'Spot the syntax error', context: 'def test()\n return 123' }, '*');
*/
export const useVSCodeContext = (
inputRef: React.RefObject<HTMLTextAreaElement>,
setInputMsg: (text: string) => void
) => {
export const useVSCodeContext = (textarea: ChatTextareaApi) => {
const [extraContext, setExtraContext] = useState<MessageExtraContext | null>(
null
);
@@ -27,20 +25,20 @@ export const useVSCodeContext = (
const handleMessage = (event: MessageEvent) => {
if (event.data?.command === 'setText') {
const data: SetTextEvData = event.data;
setInputMsg(data?.text);
textarea.setValue(data?.text);
if (data?.context && data.context.length > 0) {
setExtraContext({
type: 'context',
content: data.context,
});
}
inputRef.current?.focus();
textarea.focus();
}
};
window.addEventListener('message', handleMessage);
return () => window.removeEventListener('message', handleMessage);
}, [inputRef, setInputMsg]);
}, [textarea]);
// Add a keydown listener that sends the "escapePressed" message to the parent window
useEffect(() => {

View File

@@ -15,7 +15,7 @@ async def main():
model_url = "http://127.0.0.1:6900"
responses: list[requests.Response] = await asyncio.gather(*[requests_post_async(
url= f"{model_url}/embedding",
json= {"content": str(0)*1024}
json= {"content": "a "*1022}
) for i in range(n)])
for response in responses:

Some files were not shown because too many files have changed in this diff Show More